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ABSTRACT
SET FUNCTIONS AND IOCAI  CONNECTIVITY

By

Eugene Leroy VandenBoss

This is a study of the closure, Y, with respect to con-
tinua with connected interior. Chapter one develops the ele-
mentary properties of Y; Chapter two develops the basic re-
lationships between Y and T, where T denotes the closure
with respect to continua; Chapter three develops relationships
between Y and monotone maps.

In Chapter one the usual hypothesis is that S 1is a
compact Hausdorff space. The main theorems are:

S is locally connected if and only if for AC S

Y(A) = Cl(A).

S 1is locally connected if and only if

1. Y(p) = {p} for all p€S and

2. S is Y-additive.

f S is Y-symmetric, then S is locally connected at

p, if and only if Y(p) = {p}.

If C is a subcontinuum of the continuum S, then

Y(C) is a continuum.

In Chapter two S denotes a Hausdorff continuum. The

main theorems are:

f S 1is weakly irreducible, then S is locally con-

nected at p, if and only if S is connected Im Kleinen at p;
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moreover, if S is also aposyndetic, then S 1is locally con-

nected.

S 1is weakly irreducible if and only if for any sub-

continuum, W, of S, S -W has a finite number of components.

S is locally connected if and only if S X S is

Y-additive.

If AcIntB)<BcS and T(B) =B, then Y(A) C B.
(Here S need not be connected.)

This last result generalizes the theorem which states:
S 1is locally connected if and only if S 1is connected Im
Kleinen.

In Chapter three S denotes a compact Hausdorff space,
which need not be connected. The main theorems are:

let f be a monotone map of S onto Z, then

v(e @) c £l for all Acz.

let f be an open monotone map of S onto Z, then

Y(Aa) = £0(E 1 (A)) for all Acz.

let f be an open monotone map of S onto Z. Then

1. If S 1is Y-additive, then Z is_ Y-additive

2, If S is Y-symmetric, then Z is Y-symmetric.




SET FUNCTIONS AND ILOCAL  CONNECTIVITY

By

Eugene Leroy VandenBoss

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
Department of Mathematics

1970



G- b54F5

/- 2= 7/

ACKNOW LEDGMENTS

I wish to thank Dr. H.S. Davis for his guidance and
time in the preparation of this work, also for his aid in
helping me form a style of writing. Above this I wish to
thank Dr. Davis for his time spent developing my mathematical

and teaching abilities.

ii



TABLE OF CONTENTS

Chapter Page
1 EIJEIENTARY mo PERT IES OF Y ® © 0 0 © 0 00 0000000 1
2 RELATIONSHIPS BETWEEN Y AND T ceeeecccvcccccccs .. 11

3 Y MDMONOTONEM% ® ® 0 0 0 000000 09 00O ON NSO S e OO 20

BIBLIOGRAPHY ..ccccecvrecoscsoescseoeneononooncss PN 26

iii



CHAPTER I

EIEMENTARY PROPERTIES OF Y

Definition. Let S be a set and let P(S) denote the
collection of all subsets of S. Let S be a topological space

and let N7 < P(S). 6 is the closure with respect to 7N 1if and

only if @: P(S) - P(S) by the following rule: x 1is not an
element of @(A) if and only if there exist N and element
of 7N such that x is an element of the interior of N and
N and A are disjoint.

The following are directly verifiable.

Formulas. Let S be a topological space, N1 < P(S)

and let @ be the closure with respect to 7, then

i. Ac ga)
ii. (AN B) C 6(A) N 6(B)
iii. 9(A) U 6(B) < (A U B)
iv. 9(S) =S
v. 9(A) 1is closed
vi. If AcC B, then 9(A) < 6(B).

In [1] the set function T was defined and its basic
properties were discussed. T 1is the closure with respect to
the collection of continua.

This paper is a study of the closure with respect to

continua with connected interiors.



Definition. Let S be a topological space and let W

be a subset of S, then W 1is called a strong continuum if and

and only if
1. W 1is a closed compact connected subset of S
2. The interior of W 1is connected.
The set-function under consideration is defined as follows:
Definition. Let S be a topological space, then Y
is the closure with respect to the collection of strong continua.
Definition. let S be a topological space and let p
be an element of S, the M(p) 1is the set of all strong continua
W in S such that p 1is an element of the interior of W.
Following are some immediate results for all topological
spaces S,

Theorem 1., Let W C S be a strong continuum then the

closure of the interior of W is a strong continuum of S.

Theorem 2. let A be a subset of S, then

Y(A) = {x|WeEMx) =2 WNn A#g}U {x|Wx) =9} = {x|[Wem&x) =Wn A £ gl
A sequence of related set-functions can be defined as

follows.
Definition. Let n be a positive integer and let A

be a subset of a topological space S, then Yl(A) = Y(A) and

" lay = vat@.

Formulas for Y.

1. AcCcY()
2. YANB)CY@M) NY@®)
3. YA UY®B)<Y@AUB)

4., Y(@E) =S



5. Y(A) 1is closed
6. If ACB then Y(A) C Y(B)
7. Let msn then Y (A) C Y (A).

The following example shows that 9M(p) can be empty
and that the inequality in formula 1 may be proper for closed
sets.

Example 1. Let S = {(%,O)In is a positive integer} U
{(0,0)} with the relative plane topology, then M((0,0)) = 4
and Y((%,O)) = {(%,O), 0,0)}.

The following example shows that the inequality in
formula 1 may be proper for a closed set when M(p) # ¢ for
all p € S.

Example 2, Let S be the subcontinuum of the plane
defined by the union of the closed line segments between (0,1)
and (%,0) for n 21 and the closed line segment between
(0,0) and (0,1); topologically this is the cone over example 1.
In S, Y((0,1)) is the closed line segment between (0,0) and
©,1).

The following example shows that formula 3 need not be
an equality.

Example 3., Let S be the subcontinuum of the plane
defined by the union of closed line segments between (0,1)
and (%30) for n 2 1, the closed line segments between (0,-1)
and %,0) for n =21 and the closed line segment between
(0,1) and (0,-1); this is topologically the suspension over
example 1 with vertices (0,1) and (0,-1). In S, Y((0,1)) =

(0,1) and Y((0,-1)) = (0,-1) but Y({(0,1), (0,-1)}) is the



closed line segment between (0,1) and (0,-1).

The following example shows that Y(A) need not be
YZ(A) and similar examples can be found which have the property
that for m and n distinct positive integers Y®(A) need
not be Yn(A).

Example 4. Let S = {(x,% + % sin(%))lo <x <1} U
{Gx,-%5 + % sin(%))\o <x <1} U {(0,y)|-%5 <y < %] with the
topology induced by the plane, then Y((0,%)) = [(O,y)‘O <y s %}
and Y2((0,5) = {©,9)|-5 <y = ¥

Definition. A space S 1is called Y-additive if and
only if for any collection {Aa} of closed subsets whose union
is closed YGJ{AQ}) = U{Y(Aa)}'

The space in example 3 is not Y-additive since
Y O,DD U Y|{O,-H] #Y({(©O,1), 0,-1D}).

For the remainder of this chapter S will denote a

compact Hausdorff space.

Theorem 3. Y(¢) = ¢ if and only if S has a finite

number of components.

Proof. Let S have a finite number of components. Then
each component is both open and closed, hence M(p) # ¢ for all
PE€S and thus if p €S then p ¢ Y(g).

Let Y(p) = ¢. Then M(p) # ¢ for all p € S, hence
each component of S 1is open. Since S 1is compact and each
component of S is open, S has only a finite number of com-
ponents.

The following theorems show the relationships between

the concept of locally connected and the set function Y.



Theorem 4. S is locally connected at a point p if and

only if for all subsets A of S, if p is an element of Y(A),

then p 1is an element of the closure of A.

Proof. Let S be locally connected at p and suppose
p 1is not an element of the closure of A. There exists an
open set U such that p €U and ClL(U) N A =¢g. Since S
is locally connected at p, there exist an open connected set
V such that p€VvcuU. Cl(V) N A=g and Cl(V) € m(p).
Therefore p is not an element of Y(A) and it follows that
if p 1is an element of Y(A), then p 1is an element of the
closure of A.

Let p be an element of S such that for all AC S,
if p 1is an element of Y(A), then p is an element of the
closure of A. Let U be an open set containing p, then
S - U 1is a closed set and p 1is not an element of S - U.
There exist W € M(p) such that W N (S - U) = ¢, hence
pPE€ Int(W)CWcU and thus, S is locally connected at p.
The theorem is proven.

Corollary 5. S 1is locally connected if and only if

for AC S, Y(A) = Cl(A).
The next theorem shows the relation between Y-additivity
and the locally connected spaces.

Theorem 6. S is locally connected if and only if

1. Y(p) = {p} for all p €S and
2, § 1is Y-additive.
Proof. Let Y(p) = {p} for all p €S and let S

be Y-additive. Let A c S, then CL(A) C Y(A) C Y(Cl(A)) =



Yy{{p}lp € cL@)}) =uf{Y(@)|p € c1(a)} = U{{p}|p € c1(8)} =
Cl(A). Hence Y(A) = Cl(A) and thus by corollary 5 S is
locally connected.
Let S be locally connected and let {Ax} be a set
of closed sets such that U{Aa} is closed. By corollary 5
Y(Aa) = Aa and Y(U{Aa]) = U{Aa}. Hence U{Y(Aa)} = U{Aa} =
YQJ{AQ}) and S 1is Y-additive. Since S is Hausdorff, for
p €S {p} is closed and by corollary 5 Y(p) = {p}. The
theorem is proven.
The following two examples show that neither Y-additivity
or Y(p) = {p} for all p € S implies the other.
In example 3 S was not Y-additive, but Y(p) = {p}
for all p element of S (hence S 1is not locally connected).
In example 2 S was Y-additive, but Y ((0,1)) =
{(O,y)‘O <y < 1} (hence S is not lacally connected).
Definition. S is called Y-symmetric if and only if
for any two closed subsets A and B of S, if Y(A) is
disjoint from B, then Y(B) is disjoint from A.

Theorem 7. Let S be Y-symmetric, then S 1is Y-additive.

Proof. Let {Aa} be a set of closed sets such that
U{Aa} is closed, then U{Y(Aa)}fz YGJ{AQ}). Hence all that
needs to be shown is that YGJ{AG}) C.U{Y(Aa)]. Let S be
Y-symmetric. Let p € YQJ{AQ}), then YGJ{AG}) n {p} # ¢,
hence Y(p) N Qj{ﬁy}) # ¢. Hence there exists B such that

Y(p) N A, # ¢- Therefore {p}nN Y(AB) ¥ ¢, hence p € Y(AB)

B
and therefore p € U{Y(Aa)}' Therefore YQJ{AQ}) C:U{Y(Aa)}

and the theorem is proven.



In example 2 S 1is Y-additive but S is not Y-symmetric
since Y((0,1)) = {(O,y)‘O <y <1} >5{(,0)} and Y((0,0)) =
‘[(030)}’

Theorem 8. Let S be Y-symmetric, then S is locally

connected at p, if and only if Y(p) = {p}.

Proof. Let S be Y-symmetric and locally connected
at p. Let q € Y(p), then Y(p) N {q} # ¢, hence Y(q) N {p} # ¢,
hence p € Y(q); since S 1is locally connected at p,
p € C1({q}) = {q} and hence p = q. Therefore {p} =Y(p).
Let S be Y-symmetric and {p} =Y(p). Let U be
an open set containing p. If p € Y(S-U), then (S -U) N
Y(p) # ¢, but Y(p) = {p} and hence (S -U) N {p} ¥ ¢, a
contradiction. Therefore p ¢ Y(S - U) and hence there exists
W €M(p) such that WN (S -U) =¢g. Thus pe€IntW) CWCU
and the theorem is proven.
Following the convention in [4] page 6, § is called
a filter-base in a topological space S 1if and only if
1. § < P(S)
2. 3#tog
3. A,B €y implies that there exist C € § such
that C 1is a subset of A intersect B.
3§ is said to be proper if and only if ¢ ¢ J.
3 1s said to be closed if and only if A € § implies
A 1is closed.

Theorem 9. If {§ is a proper closed filter-base in S,

then Y(1{A|a € ) =n{v@)|a € §].

Eaow— ]
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Proof. Let x € Y(N{A|A € J}), then for all W € M(x)
wn O{Ala € }) # ¢. Therefore for all A € J and all W € Mx),
WNAZ®# g, hence x € Y(A) for all A € , hence
x €n{Y@)|A €3} and Y({A|A € I} cn{¥@A)|Aa € g).

Let x € Y(N{A|A € J}), then there exists W € M(x)
such that W N m{A\A € g]) = ¢. Hence WC S - ﬂ{A\A € g}
and {S - A‘A € 3} 1is an open covering for W. Since W is
compact there exist Al""’An such that
Wcu{s -a|lsis<n}=5-n{A|l<1i<n}. Since § is a
proper closed filter base, there exists an element, A, of
such that Acn{Ai‘l <1isn}, hence WNA=¢g and x ¢ Y().
Thereforex ¢ N {Y(A)|A € I} and N{Y(A)|A € I} cYO({A|a € D).
The theorem is proven.

Theorem 10. S is Y-additive if and only if for each

pair A and B of closed subsets of S Y(AUB) =Y(A) U Y(B).

Proof. Let S be Y-additive and let A and B be
closed subsets, then Y(A) U Y(B) =Y(A U B).

Let Y(A) UY(@B) =Y(AU B) for any two closed subsets
of S. Let {Aor‘a € 7} be a set of closed sets such that
U{Aa\oz € d} 1is closed.

Since U{Y(a)|o € @} c YQU[A |o € @}) all that needs
to be shown is that Y(U{A |0 € @}) cU{Y(A)|x € a}.

For each o € ¢ let ;‘Q(Ad) be the collection of closed
subsets B of S such that Aa C Int(B). 1f Aa = ¢ then
Y(a) =n{Y®)|B € J(4)}. 1f A #g4, then F(A) is a closed
proper filter base of S and since n{B‘B € g(Ad)} = Aa’

Y(A) =n{Y(®)|B € 3B}



T — T T T — | —— O ————— | — T T -



Suppose x ¢ U{Y (Aa)‘a € d}. Then for each o € &
there exists Bcr € S(Aa) such that x ¢ Y(Ba). {Int (Ba)‘cv €}
is an open covering of the compact set U{Aa\o: € @} and hence
there exists Bj,...,B  such that UfA |o € @} < U{Int(8))|
1l < i < n}. By hypothesis Y(U{Bi\l <i<n}) =
UY® )|l < i s n}, hence x ¢ YU{B, |l <is<n}) >
Y(U{Aa‘cx € d}). Therefore Y(U[Aa\a € a}) c U{Y(Aa)loz €a)
and the theorem is proven.

The following example shows that Y ({p,q}) =Y(p) U Y(q)
for any two elements of Z and that Z 1is not Y-additive.

Example 5. Let S be the space in example 3 and let
Z =8 X1I. Then Y(p) UY() =Y({p,q}) for all p,q € Z,
but Y((0,1) X 1) = (0,1) X I and Y((0,-1) x 1) = (0,-1) X I
but Y(((0,1) x I) U ((0,-1) x 1)) = {(0,y)|-1 <y <1} x I.

Theorem 11, If for all p € S and any finite collection,

{wi}, of elements of M(p), there exists W € M(p) such that
W cn{wi}, then S is Y-additive.

Proof. By Theorem 10 all that is needed to be shown is
that Y(A) UY(@B) =Y(AU B) for any two closed subsets of S.
By formula 3 all that needs to be shown is that Y(A U B) ¢
Y(A) U Y(B).

let A and B be any two closed subsets of S and
let p ¢ Y(A) UY(@®B). There exists wl,wz € Mm(p) such that
wl NnNA=gs= w2 N B. By hypothesis there exists W € Mm(p)
such that W c:wl n WZ. Hence WN (AU B) = ¢ and
p¢&Y(@AUJUB), thus Y(AUB) CY(A) U Y(B). Compare with

Chapter 1, paragraph 2 of [5].
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Theorem 12. Let C be a subcontinuum of the continuum

S, then Y(C) is a continuum.

Proof. Since Y(C) is closed and hence compact, all that
needs to be proven is that Y(C) 1is connected.

Suppose Y(C) = A U Bsep and CC A, Since S 1is normal,
there exists U and V open set with disjoint closures such
that AC U and B<C V. Since CcCc AcCcU and B CV, Y(C)
is disjoint from Fr(V), where Fr(V) denotes the boundary of
V. Therefore for all y € Fr(V), there exists Wy € M(y) such
that Wy N C = ¢. Since {Int(Wy)} forms an open covering of
Fr(V), there exists strong continua W].,...,Wn such that
W.NC=g¢ and U{Int(wi)|1 <i<n}DFr(V). If K is a
component of V then Cl(K) N Fr(V) # ¢, hence
V UQU{Int (Wi)|1 < i £n}) has only a finite number of components.
Therefore each component of V U (U{Int(wi)\l < i <n}) 1is open.
Let b € B and K be the component of V U (U{Int:(wi)‘l < 1 € n})
containing b, then Cl(Kb) € m() and Cl(l(b) N C=g¢. There-
fore b ¢ Y(C), but this contradicts the fact that B < Y(C).

Therefore Y(C) is a continuum.



CHAPTER 2

RELATIONSHIPS BETWEEN Y AND T

This chapter develops some relationships between T
and Y.

Definition. Let S be a topological space, then T
is the closure with respect to continua.

Theorem 13, Let A be a subset of the topological

space S, then T(A) 1is a subset of Y(A).

Proof. Suppose x ¢ Y(A). Then there exists W € M(p)
such that WN A = g. Since W € M(p), x € Int(W) and there-
fore x ¢ T(A). Hence T(A) C Y(A).

The following example shows that T(A) need not be
Y (A).

Example 6. 1let S be the subcontinuum of the plane
defined as follows. S is the closed line segments between
(1,0) and (0,%) for n 2 1 union with the closed line
segments between (1,%) and (2,0) for n =2 1 union with the
closed line segment between (0,0) and (2,0). T((2,0)) =
{(x,0)|1 < x <2} and Y((2,0)) = {(x,0)]0 < x < 2}.

The following is an example of a space that is Y-additive,
but not T-additive.

Example 7. Let S0 be the closed line segments between

1

(0,;,0) and (1,0,0), between (1,%,0) and (2,0,0), between

11
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(2,%,0) and (3,0,0), between (1,-%,0) and (0,0,0), between
(2,-%,0) and (1,0,0), between (3,-%,0) and (2,0,0), between
(15,0,%) and (0,0,0), between (3,0,0) and (15,0,%) for

n 2 1 unioned with the closed line segment (0,0,0) and
(3,0,0). T((0,0,0)) = {(x,0,0)|0 < x <1} and T((3,0,0)) =
{(x,0,0)|2 < x = 3}, but T({(0,0,0), (3,0,0)}) =

{x,0,0)]0 < x s 3].

Let L= {(x,0,0)|0 <x <3}. If AcS is closed
then Y(A) =A if ANL=¢g and Y(A) =AUL if ANLEg.
Thus S 1is Y-additive.

For the remainder of this chapter S will be a compact
Hausdorff continuum.

Definition. S 1is called weakly irreducible if and

only if given Cl’CZ""’C subcontinua of S,

n

S - U{ci\l < i <n} has a finite number of components.

Lemma 14. let S be weakly irreducible and let C

be a subcontinuum of S, then 1Int(C) has only a finite number

of components.

Proof. let S - C have components K.,...,K , then
1 n
Int(c) =S - U{CL(K)|1 < i < n} which has only a finite number
of components.

Theorem 15. let S be weakly irreducible and let A

be a subset of S, then T(A) = Y(A).

Proof. Since T(A) C Y(A), all that needs to be shown
is that Y(A) € T(A). Let x ¢ T(A), then there exists a con-
tinuum W such that x € Int(W) and WN A = 3. Since Int(W)

has only a finite number of components each component is open;
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let K be the component containing x, then C1(K) € m(p)
and Cl(K) N A = ¢, therefore x ¢ Y(A); hence Y(A) C T(4)

and the theorem is proven.

Corollary 16. f S 1is weakly irreducible, then

1. S is Y-symmetric

2. S 1is locally connected at p, if and only

if S 1is connected Im Kleinen at p.

3. f S is also aposynedetic, then S is

locally connected.

Proof. This follows from the previous theorem and from
Theorem 6 of [2].

The following develops a weaker statement which is
equivalent to weakly irreducible.

Definition. Let S be a continuum and let A be a

subset of S. S 1is called irreducible about A if and only

if for C a subcontinuum of S such that A c C, them C = S.

Notation S = [A].

Definition. Let S be a topological space, let A and B

be two disjoint closed subsets of S and let M be a subcontinuum

of S. M is called irreducible from A to B if and only if

M intersects both A and B non-voidly and no proper sub-
continuum of M intersects both A and B.
The following two theorems are from [6].

Theorem A (Theorem 43), Let A and B be two disjoint

closed subsets of S, then S contains a continuum irreducible

from A to B.
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Theorem B (Theorem 47). let A and B be two disjoint

closed subsets of S and let M be an irreducible continuum

from A to B, then M- (AUB) and M - A are connected.

Theorem 17. Let CI’CZ""’Cn be disjoint subcontinua

of S, then there exists a component K of § - U{Cill < i <n}
such that CL(K) N C; #¢ and ClK) N (U{C,|2 < i sa}) #g.

Proof. Since C and U{Ci\Z < i £ n} are closed dis-

1
joint subsets of S, S contains a continuum, M, irreducible from
C; to U{Ci|2 £ 1i<n}.

Let L =M-U{C/|lsisn}, then CL(L) N C, # ¢
cCl(L) n GJ{Ci‘Z < i <n}) # ¢ and L is connected. Let K
be the component of S - U{Cill < i € n} containing L, then
Cl®) N c, #¢ and CLK) N M{C,|2 < ix<n]) #g.

Corollary 18. Let CysCysee05Cy Dbe disjoint subcontinua

of S, then there exists Kl""’Km’ components of
s -U{cy|1 =1 <n}, m<n, such that (U{Ki|1 <1is<m})U

{ufc;]1 < i s n}} is a subcontinuum of S.

Theorem 19, S is weakly irreducible if and only if

given any W a subcontinuum of S, S - W has a finite number

of components.

Proof. Let S be weakly irreducible and let C be a
subcont inuum of S, then S - C has a finite number of components
by definition.

Let S be such that for any subcontinuum W of S,

S -W has a finite number of components. let Cl’Cz""’Cn
be subcontinua of S. Then U{Ci|1 <isn}-= U{Mi|1 < i <m}

where the M, are disjoint components of U{C |1 < i <n}.
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The M, are disjoint subcontinua of S. Therefore there exist
kl,...,kL components of S - U{Mill < i < m} such that
C=U{kjl<ise]h U M|l <ism isa continuum. There-
fore S - C has a finite number of components tl,...,to. There-

fore S - U{Ci\l <1ic< n} has less than or equal to ¢ + O

components. The theorem is proven.

Theorem 20. let S = [{xl,xz,...,xn}], then S is weakly
irreducible.
Proof. Let C be a subcontinuum of S and let ki

be the component of S - C containing x, if x, ¢ c.

i
QJ{kill <i<n and x; € C})U C is a subcontinuum and
{x9s%550005%} C:QJ{ki|1 <i<n and x; €C}) U C; therefore
S = QJ{ki|1 <is<n and x, € Cc}]) UC. Hence S - C has less
than or equal to n components. Therefore S is weakly

irreducible.

Corollary 21. f S = [{xl,xz,...,xn}], then

1. S is connected Im Kleinen at p if and only

if S 1is locally connected at p

2. S is Y-symmetric.

Proof. This follows from Corollary 16 and Theorem 20.

In Example 2 S = [{(%,0)\:\ >0} U {(0,0), (0,1)}],
but S is not weakly irreducible since S - {(0,0)} has an
infinite number of components.

Definition. B is called a compact separator of the

topological space S 1if and only if
1. B is compact

2. S -B=HUK sep.
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Theorem 22. If A is a subset of S, then Y(A) inter-

sects any compact separator of S that separates A from any

point of Y(A).

Proof. Suppose the theorem is false and there exists a
compact set B such that S - B =HU K sep, ACH, p€Y(A)NK
and S - BDOY(A). Since B is closed, both H and K are
open and since Cl(K) N H = ¢, if k 1is a component of K then
Cl(k) N B # . Since BC S - Y(A), there exists a finite number
of strong continua, Wi, such that Wi NA=g and B C
U{Int(wi)}. Therefore K U (U{Int(wi)}) has a finite number
of components and each component is open. Let k be the
component of K U (U{Int(wi)}) containing p, then Cl(k) € M(p)
and Cl(k) N A = ¢. Therefore p ¢ Y(A), contradiction. The
theorem is proven.

Corollary 23. If A C S, then every component of Y(A)

intersects A.
Proof. See Corollary 1.1 of [7].

Corollary 24. If A is a closed subset of S and

Y(A) 1is totally disconnected, then Y(A) = A.

Proof. See Corollary 1.2 of [7].

Corollary 25. let A and B be closed, totally dis-

connected subsets, where A C S1 and Bc S_, then for any

2

closed subset KC A XBCS, X SZ’ YK) =K = T(K).

1
Proof. See Theorem 2 of [7].

Theorem 26. let p € S X S, then Y(p) = {p}.

Proof. Llet q = (a,b) and p = (c,d) be two distinct

points of S XS, then a#c or b #d. It may be assumed
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that a # c. There exists U and V open set such that a ¢ U,
céU and d ¢ V. Then (a,b) 1is an element of the open set
(UXS)YU (S xV) and (c,d) 1is not an element of the closed
set (CL(U) X S) U (S x cL(V)).

To show that (U X S) U (S X V) 1is connected, it need
only be shown that for (e,f) and (h,g) elements of (U X S) U
(S x V) that there are elements of a connected subset of
(UXxS)U (S xVv).

Case 1. (e,f) and (h,g) are elements of U X S or
S X V. It may be assumed that there are elements of U X S.
Let t €V then ({e} xS)U (fh} x8) U (s x {t}) is a
connected set since ({e} X S) N (S x {t}) = (e,t),
({h} xs) N (s x {t}) = (n,t) and ({e} xS) U ({h} xS) U
S x{t})c uUxsSUS XxV.

Case 2. (e,f) € U xS and (h,g) € S x V then
(e} X 8) U (S x {g}) 1is a connected subset of (U X S) U
(S X V). The theorem is proven.

Corollary 27. The following are equivalent

1. S 1is locally connected

2, S X8 is Y-additive
3. S xS 1is T-additive.
In the following theorem the hypothesis that S is
connected is not necessary.
Theorem 28. If AC Int(B) cBcC S and T(B) =B,
then Y(A) C B.
Proof. First we show that each component of S - B

is open. Let K be a component of S - B and let x € K.
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Since x € T(B), there exists a continuum W such that
x €Int(W) and WN B =¢. Hence WC K and x € Int(W),
therefore x € Int(K). Since x could be any element of K,
K 1is open.

Now we show that Y(A) CB. Llet p €S - B and let
K be the component of S - B containing p. Then C1(K) € M(p)
and C1(K) N A = ¢, therefore p ¢ Y(A) and thus Y(A) C B.

Corollary 29. S 1is locally connected if and only if

S is connected Im Kleinen.

Proof. If S 1is locally connected then S is connected
Im Kleinen.
Let S be connected Im Kleinen, then T(A) = Cl(A)
and S 1is T-additive [2]. Let U be an open set containing
A, then T(CL(U)) = Cl(U), hence Y(A) € Cl(U) by Theorem 28.
Cl(A) c Y(A) cn{Cl(U)|]Ac U and U is open} = Cl(A), hence
T =Y. Therefore S 1is Y-additive and Y(p) = {p} for all
p €S, thus S is locally connected.
Davis has the following theorem in [9].
Let S be a compact Hausdorff space, then the following
are equivalent
1. TA) NB=¢ where A and B are closed
2. There exist closed subsets M and N such that
AC Int(M), BC Int(N) and TM) N N = ¢.

Corollary 30. If TZ(A) = T(A) for all A cC S, then

T(A) = Y(A) for all ACS.
Proof. Let x ¢ T(A), then there exists an open set U

such that Ac U and x ¢ T(Cl(U)), [9]. Since T(T(ClL(U))) =
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T(Cl(U)) and since AC U C Int(T(Cl())), Y(A) © T(C1(U)) by

Theorem 28, therefore x ¢ Y(A). Thus T(A) = Y(A).



CHAPTER 3

Y AND MONOTONE MAPS

This chapter is a study of the relations between Y
and monotone functions.

For the following theorems all spaces are Hausdorff.

Definition. A function f from S onto Z 1is called
monotone if and only if f is continuous and f-l(z) is
connected for all z € Z.

Theorem. let f be an open monotone map of S onto

Z and let A be a connected subset of Z, then f-l(A) is

connected.
Proof. See Chapter VI, section 3, problem 1 of [8].

Theorem 31. Let f be a closed monotone map of S

onto Z and let A be a connected subset of Z, then f-l(A)

is connected.

Proof. Suppose the theorem is false and let C be a
connected subset of Z such that f-l(C) = MU N sep.
£M) N £QN) = ¢, for if p € £M) N £QN), then £ 1(p) NN # ¢
and f-l(p) nM# g, but f-l(p) is connected, hence
f-l(C) ¥ MN N sep. Therefore f(N) N £(M) = ¢.

cC= f(f-l(C)) =fMUN) =fM) U £(N) and C is
connected. Therefore ClL(f(N)) N £(M) ¥ ¢ or £f(N) N CL(EM)) # 4.

We may assume that Cl(f(N)) N M# g. Let p € CL(f(N)) N £(M),

20
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then f-l(p) nMé# s f-l(p) is connected, hence f°1(p) c M.
{p} © CL(f(W)) = £(C1(N)) since f 1is a closed map. Therefore
f-l(p) n ClN) # ¢s hence Cl(N) N M # ¢. This is a contradic-
tion of separability. Thus f—l(C) is connected.

For the following theorems all spaces are compact

Hausdorff spaces.

Theorem 32. let f be a monotone map of S onto Z

and let W be a strong subcontinuum of Z, then Cl(f-l(Int(W)))

is a strong continuum.

Proof. Since f is a continuous map of a compact
Hausdorff space onto a compact Hausdorff space f is a closed
map. Therefore by Theorem 29 f-l(Int(W)) is connected. Since
f is continuous, £ L(Int()) is open. Thus, CL(f l(Int®)))
is a strong continuum.

The following example shows that even if f is a closed
monotone map, f.1 of a strong continuum need not be a strong
cont inuum.

Example 8. Let S = Iz, Z = {(x,y)\!; <x <1 and
0<ys<1} and let A= {(x,y)|0<x<% and 0 sy <1].
define f: S-Z by f(x,y) = (x,y) if % <x <1 and
£(x,y) = (hy) if 0<sx< % Llet W= {(xy)|&x- 3/4)2 +
-8t s1/syu (Gay|osy <1}, £l =auw,

Int(A) N W =¢ and AN IntW) = 4.

Theorem 33. let f be a monotone map of S onto Z,

then Y(f 1)) c £ 1(v(a)).
Proof. Let A be a subset of Z and suppose p ¢ f-l(Y(A)),

then f(p) € Y(A). Hence there exist W € M(f(p)) such that
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WNA=4. Therefore f-l(W) n f-l(A) = ¢. By Theorem 30
Cl(f-l(Int(W))) € Mm(p), hence p ¢ Y(A) and thus Y(f-l(A)) C
£l ).

Theorem 34. Let f be a monotone map of S onto Z,

then f(Y(A)) C Y(f(QA)).

Theorem 35. Let f be an open monotone map of S onto

Z, then Y(£ '(A)) = £ 1 (¥(a)).

Proof. By Theorem 33 Y(f'l(A)) c £ 1(v)), hence all
that needs to be shown is that f-l(Y(A))vc v(£ 1(a)). Suppose
p & Y(£ 1(A)), then there exist W ¢ m(p) such that
W N f'l(A) = 4, hence fMW) N A = ¢. Since f is open
£QM) € M(E(p)) and £(p) € Y(A). Thus p & £ F(Y(A)) and
£ @) cyE e,

Theorem 36, Let f be an open monotone map of S onto

Z, then Y(A) = £(Y(£ 1(A))).

Corollary 37. let f be an open monotone map of S

onto Z, then

1. 1f S is Y-additive then Z is Y-additive

2.

lH
oy}

S 1is Y-symmetric, then Z is Y-symmetric.

Proof. Let S be Y-symmetric and let A and B be

closed subsets of Z such that Y(A) N B

¢» then

£l v ),

¥@) N £ @) = Since £ 1)
v ey n ey = ¢. Since S is Y-symmetric ve t@n n
£1A) = 4, thus Y(B)N A=¢ and Z is Y-symetric.

Let S be Y-additive and let A and B be closed
subsets of Z, then £ M(Y(A) U Y(8)) = £ -(¥(A)) U £ lv(®)) =

v tay u v @) = v t@y u i@y = v tau b)) =
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£ lcv(a U B)), thus Y(A) U Y(B) =Y(AU B) and Zz is Y-additive.

Corollary 38. Let S1 and 82

S1 X 82 is locally connected if and only if S1 and 82 are

be continua, then

locally connected.

Proof. Let P1 and P2 be the two projection maps,

then P1 and P2 are open monotone maps.

Let S1 X 82 be locally connected, then S1 and S2
are Y-additive and hence it suffices to show that Y(a) = {a}
for all a € 51 Let a € Sl,then Y(a) = Pl(Y(Pil(a)) =
Pl(Y({a} X Sz)) = Pl({a} X 82) = a, Thus s1 and 82 are

locally connected.

Let S, and S, be locally connected. Let p € S, X S2
and let A be any subset of S; X 5, such that p ¢ Cl(A),
then there exist 01 c Sl and 02 c Sz, both open, such that
P €0; X0, and (01 X 02) N A=¢g. Since S1 and S2 are
locally connected, there exist W, € Wl(Pl(p)) and W2 € Wl(PZ(P))

such that Wl C,O1 and w2 c 02, hence p € Wl

W, XW,) N A= g. Therefore p ¢ Y(A). Thus by Theorem 4

X WZ and

S1 X S2 is locally connected.

Theorem 39. let H and K be closed subsets of S,

then the following are equivalent.

a. HN Y(K) = ¢

b. There exists a finite collection C of strong

continua such that H is contained in the union

of the interiors of the elements of C and the

intersection of each element of C with K is

empty.
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c. There exist two closed subsets M and N such

that H 1is a subset of the interior of M, K is

a subset of the interior of N and M intersect

Y(N) is empty.

Proof. a implies b.

Let L be the set of strong continua of S such that
Int(W) NH# ¢ and WN K =¢g. Since HN Y(K) = ¢,

HC (U{Int(W)‘W € L}). Since H is compact, there exist
Wis--.,W such that W €L and HC (U{Int(wi)‘l <i<n}).
let C = {Wi\l < i <n}.

b implies c.

Since S 1is normal there exist V such that V is
open HcC VcCcCl(V)c U{Int(W)lw € C} and there exist U such
that U is open KC U and Cl(U) N U{W|W € C}) = ¢. There-
fore Cl(V) N Y(C1(U)) = ¢. Let Cl(V) =M and Cl(U) =N.

¢ implies a.

K © N, therefore Y(K) < Y(N), HC M and MN Y(N) = ¢,
thus HN Y(K) = ¢.

The closed monotone image of a T-symmetric compact
Hausdorff space is a T-symmetric compact Hausdorff space. This
final example shows that the closed monotone image of a Y-symmetric
space need not be Y-symmetric and that f(Y(A)) need not be
Y(f(A)).

Example 9. Let S be the closed line segments between
(-%,0) and (0,1) and the closed line segments between (-%,2)
and (0,3) wunioned with {(x,';‘ + Sin(;(]‘)|0 sx <1} U

{(x,2% + sin(i')lO < x £ 1} unioned with the closed line segment
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between (0,0) and (0,3), them S is Y-symmetric and
Y((0,3)) = {(0,y)|2 <y = 3}.

Let Z be the closed line segments between (-%,0)
and (0,1) unioned with those between (-%,1) and (0,2)
for n 21 unioned with {(x,% + sin(&))‘l <x <1} U
{(x,1% + sin(i))\o < x < 1} unioned with the closed line
segment between (0,0) and (0,2).

et f((x,y)) = (x,y) if y <1, £((x,y)) = (0,1)
if 1 <y <2 and f((x,y)) = (x,y-1) if 2 <y < 3.

Z 1is not Y-symmetric since Y((0,0)) = {(O,y)lO <y s 1}
and Y((0,2)) = {(Q,y)]|0 sy < 2}. f£(Y(0,3)) # ¥(£(0,3))
since £(Y((0,3))) = £({(0,y)|2 <y =3}) = {(O0,»]|1 <y < 2}

and Y (£((0,3))) =Y((0,2)) = {(0,y)|0 <y < 2}.
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