V. A 31...... 5.3mm... .trvaflwflnfi «{0qu 94mm: 1 3:11;! «1... 31.3.: £425: .._ JEWAJ. tr... 1.: 1:11:31} .5Jnvyr. :RE‘DU TT ITTTTTLTT ITTTT 3 12 31072 29 6851 This is to certify that the thesis entitled REDUCTION OF THE NUMBER OF INDEPENDENT VARIABLES AND OPTIMIZATION IN SWIRLING FLUID FLOW presented by Michael Jerome Brink has been accepted towards fulfillment of the requirements for Ph.D. degree in Mechanical Engineering H zv, h/WK/épé Major Agrofessor Date May 12, 1971 0-169 T JUN 031995 W / :17 1‘ Q ABSTRACT REDUCTION OF THE NUMBER OF INDEPENDENT VARIABLES AND OPTIMIZATION IN SWIRLING FLUID FLOW By Michael Jerome Brink The major objective of this investigation is to determine so— lutions to the system of fundamental equations governing inviscid, in— compressible swirling flow in (R, 6, Z) space by using group theory to reduce the number of independent variables and obtaining the solutions for the resulting system of ordinary differential equations. Transformations obtained by the application of continuous one-parameter group theory are applied to the fundamental system of non-dimensional equations for conservation of mass, conservation of mo- mentum, and conservation of energy. The number of independent varia— bles is reduced from three to two to one using the absolute invariants determined for each transformation group. The resulting system of non— linear ordinary differential equations is then solved numerically by Hamming's modified predictor—corrector technique. The one—dimensional solutions are transformed back to the three—dimensional space using the transformations obtained from the application of the continuous one- parameter group theory. Computer curves are presented for both the one—dimensional and the transformed three—dimensional solutions to the conservation of mass and conservation of momentum equations. Two continuous one— parameter transformation groups and their invariants which were discov- ered and then utilized to accomplish the reduction in the number of Michael Jerome Brink independent variables for cylindrical polar coordinates are also pre— sented. A Mayer type optimization problem is solved using the one— dimensional representations for conservation of energy and the swirl parameter to optimize the one—dimensional representation for pressure. The one-dimensional optimization results are transformed back to the three-dimensional space using the transformations obtained from the ap— plication of the continuous one—parameter group theory. Computer curves are presented for the optimization results in both the one—dimensional and the three-dimensional space. REDUCTION OF THE NUMBER OF INDEPENDENT VARIABLES AND OPTIMIZATION IN SWIRLING FLUID FLOW By Michael Jerome Brink A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Mechanical Engineering 197 l 4M2 PLEASE NOTE: Some Pages have indistinct print. Filmed as received. UNIVERSITY MICROFILMS i mm/ To Marylyn, David, Bridjette, and Cynthia — for infinite patience and understanding ii ACKNOWLEDGMENTS The author wishes to express his sincere appreciation to his guidance committee chairman, Professor M. Z. v. Krzywoblocki, for his valuable guidance during the period of graduate study and research. He also wishes to thank Professors C. R. St. Clair, Jr., Terry Triffet, Robert Wasserman, and C. P. Wells for serving on his guidance committee. Thankful acknowledgment is extended to Mr. W. Arntson for his assistance in computer programming and Mrs. J. Harris for her excellent typing. '5 TABLE OF CONTENTS Page LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . vii NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . ix I. FUNDAMENTALS . . . . . . . . . . . . . . . . l l. I Introduction. . . . . . . . . . . . l l. 2 Scope of This Investigation . . . . . . . . . . . . . 2 1-3 Group Theory. . . . . . . . . . . . . . . . . . 3 l.h Optimization Techniques . . . . . . . . . . . . . . . ll II. MATHEMATICAL SWIRLING FLOW MODEL . . . . . . . . . 15 2. 1 Type of Fluid Flow and Coordinate System. . . . . . . 15 2. 2 Fundamental Equations . . . . . . . . . l6 2 3 Boundary Conditions and Swirl Parameter . . . . . . . l9 2. h Non—Dimensional Equations . . . . . . . . . . . . . . 21 III. REDUCTION OF THE NUMBER OF INDEPENDENT VARIABLES . . . . . . 2h 3.1 Three to Two Reduction in the Number of Independent Variables . . . . . . . . . . 2A 3.2 Two to One Reduction in the Number of Independent Variables . . . . . . . . . . MA 3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . 60 IV. SOLUTIONS FOR THE CASE .5 = -1. . . . . . 62 A. l One—Dimensional Solutions of the Ordinary Differential Equations . . . . 62 h 2 Three—Dimensional Pressure and Velocity Curves. . . . 68 h.3 Summary and Recommendations for Further Research. . . 70 V. OPTIMAL SOLUTIONS. . . - 76 5 1 Application of Optimization Techniques in X Space. . - 76 5 2 Three—Dimensional OptimaI Pressure and Velocity Curves . . . - . - - - - - - - - 82 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . 85 . 88 BIBLIOGRAPHY . . iv it... APPENDICES APPENDIX A: APPENDIX B: APPENDIX C: APPENDIX D: APPENDIX E: TABLE OF CONTENTS NUMERICAL DATA FOR THE SOLUTIONS TO THE SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS. CALCOMP PLOTTER ROUTINE. LEAST SQUARES POLYNOMIAL CURVE FITTING PROGRAM. . . . . . PRESSURE AND VELOCITY PROGRAMS AND NUMERICAL DATA . . PROGRAMS AND NUMERICAL DATA FOR OPTIMUM FUNCTIONS. . . . . . . . Page 92 113 1&1 lbs Table Tl Numeric: of Ordii C.1 Curve F‘ C-2 Curve F 13.1 Sample L-rJ H Numeric tfil n) Numeri< ‘ and Ta] , T |I T't. LIST OF TABLES Page Numerical Data for Solutions to the System of Ordinary Differential Equations. . . . . . . . . . . . . 108 Curve Fitting Data for the Interval O.lOOOOSXSO.A653l . . . 129 Curve Fitting Data for the Interval O.h653lSXSl.OOOO. . . . 135 Sample Data Pressure and Velocity Functions . . . . . . . . lhh Numerical Data for Optimum One-Dimensional Functions. . . . 1&8 Numerical Data for Optimum Pressure and Tangential Velocity . . . . . . . . . . . . . . . . . . 15h vi 2.1 Cylir 2-? Velm Iva V1 A :U igure L7 §.8 ;.10 1.11 LIST OF FIGURES Page Cylindrical Polar Coordinates .7. . . . . . . . . . . . . . 17 Velocity Components . . . . . . . . . . . . . . . . . . . . 18 (R, 8, Z)+(nl, n2) Reduction R—Momentum Equation (2.h.7). . 39 (R, 6, ZT-an, n2) Reduction e-Momentum Equation (2.h.8). . A0 1’ n2) Reduction Z—Momentum Equation (2.h.9). . Al (R, 6: Z)—*(n , Mass Equation ( (R, e, z)+(n n2) Reduction Conservation of 2.h.10). . . . . . . . . . . . . . . . . . . M2 (R. e, Z)+(n , n ) Reduction Bernoulli Equation (2.h.ll) . . . . . . . . . . . . . . . . A3 (R, 9, Z)+(n , n ) Reduction Swirl Parameter Equation (2.h.ll) . . . . . . . . . . . . . . . . M3 (n1, n2)+(X) Reduction Equation (3.1.66). . . . . . . . . . 5h (n1, n2)a(X) Reduction Equation (3.1.72). . . . . . . . . . 55 (n1. n2)+(X) Reduction Equation (3.1.77). . . . . . . . . . 57 (n1, n2)+(X) Reduction Equation (3.1.82). . . . . . . . . . 58 (n , n )+(X) Reduction Equation (3.1.83) T2“ 59 an Equation (3.1.8h) . . . . . . . . . . . One—Dimensional Functions . . . . . . . . . . . . 67 Pressure Curves . . . . . . . . . . . . . T2 Radial Velocity Curves. . 73 Tangential Velocity Curves. . . . . . . . . . . 7h Axial Velocity Curves . . . . . . . 75 76 Real Space Functions. . . . . . . . . . G2 Curves S Parameter . . . GA Curves S Parameter . . . Optimum Pressure Curves . Velocity Curves for Optimum Pressure. viii Page 83 8h 86 87 p-Pr rieiz'Ph u,V,W—Ve D-De NOMENCLATURE Pressure Physical coordinates, independent variables Velocity components Density Velocity Internal energy and base of the natural logarithm system Total energy change Bernoulli constant Lagrange multipliers Augmented function Functional forms of optimal constraint equations Swirl aspect ratio = r2/z2 Tangential energy fraction = v2/(h/p) Swirl parameter = n1 N2 Axial swirl length Tangential velocity at the outer swirl radius Dimensionless independent variable = r/zO Dimensionless independent variable = z/ZO Dimensionless radial velocity component = u/vo Dimensionless tangential velocity component = v/vO Dimensionless axial velocity component = w/vo 2 Dimensionless static pressure = p/(DVO) ix H — Dimensionless Bernoulli constant = h/(pvi) Ti — Constants a - Group parameter 1 — One—parameter group Q — Differential form of k—th order in m independent variables 5 - Arguments of the k—th order differential form 1. — Independent variables, absolute invariants of Al i — Absolute invariants of Al E - Group constant = t2/tl d - Group constant = tA/t 2 P — Two—dimensional representation for the radial velocity component - Two-dimensional representation for the tangential velocity component '3 - Two—dimensional representation for the axial velocity component IA — Two—dimensional representation for static pressure k - Constant 1 — Constants c — Group parameter L — One—parameter group i — Independent variable, absolute invariant of El 7 - Group constant = Yl/k Absolute invariants of B1 One-dimensional representation for the radial velocity component One-dimensional representation for the tangential velocity component One—dimensional representation for the axial velocity component One-dimensional representation for static pressure _ 2 2 = 2 Constant - G1 + G3 G Denotes differentiation with respect to the independent variable xi 1.1 Introduc Sw.‘ engineers Si} cently, it 5 ed in Wheele "black hole" Ge which the t: that the £11 00W in H1 and rotatin ’I in the gene ferential . Tyne“ tET Were chPe “mponents ble [6, 11 to the flu are Obtai; I. FUNDAMENTALS Introduction Swirling fluid flows have been of interest to scientists and gineers since 1797 when Venturi studied the free vortex. Most re— itly, it seems that swirling flow may appear in the motion encounter- in Wheeler's theory of gravitational collapse [51] and the so—called Lack hole" in space. Generally, swirling flow may be categorized as any flow in Lch the tangential velocity component has a finite magnitude such it the fluid has a macroscopic rotary motion. Typical flow examples :ur in Hilsch tubes, vortex amplifiers, tornados, large fuel tanks, i rotating fluid machinery. The system of fundamental equations describing swirling flow the general case includes three—dimensional, nonlinear partial dif- 'ential equations which are not amenable to solution by standard ana— iical techniques. Therefore, investigators of swirling type flows 'e compelled to make various simplifying assumptions. All velocity ponents were assumed to be functions of only one independent varia- [6, 11, 1h, 15, 16, 30, 36, A7] or particular velocity components e assumed to have only certain special forms [13, 29, 35]. In this work, the major objective is to determine solutions :he fundamental equations governing swirling flow. The solutions obtained by accomplishing a reduction in the number of independent 1 variables uti ing ordinary The one-parametei differential transformed dependent va differential Ti dimensional of momentum C reduce the c°ml>lish t1 groups are fTuition by tion. The linear. H temine ti dimenSiOm Stredried ' dimenSion Tilhensi0r The aTM: 2 bles utilizing one-parameter group theory and solving the result- rdinary differential equations. The minor objective of this work is to discover two sets of arameter transformation groups such that the syStem of partial rential equations for the model in three independent variables is formed into a system of partial differential equations in two in- dent variables which is then transformed into a system of ordinary ential equations. rchpe of this Investigation The fundamental fluid flow model is posed using the three- asional system of equations for conservation of mass, conservation amentum, and conservation of energy. One—parameter group theory is applied twice in succession to :e the number of independent variables from three to one. To ac— Lish this reduction, two sets of one—parameter transformation is are discovered since the one—parameter group theory allows a re~ Lon by one in the number of independent variables per transforma— . The resulting system of ordinary differential equations is non— nu Hamming's predictor—corrector numerical method is used to de— Lne the solutions to this system of equations. Calculus of variations techniques are applied to the one— sional system of equations to determine an Optimum solution con— ned by a transformed swirl parameter. The one-dimensional solutions are then transformed from one- sional space to two-dimensional space and next to three- sional space using the two sets of transformations discovered by application of the continuous one-parameter group theory. 1.3 Group Th1 The a particular particular 0; 1. Closure. n) . Associat: w . Left Ide 4;- V1 ‘ COIHmute Not all grl fifth aKid [21]. The Trans forms The axioms [2, 18] which a set of elements must follow under ticular operation are stated below. A star (u) symbol denotes the cular operation between two elements. losure. ssociativity. .eft Identity. .eft Inverse. Tommutativity. If a and b are two elements of the set, then a*b = c is also a unique element of the set. When three or more elements are formally manipula— ted using the defined operation, the order of mani- pulation makes no difference. Hence, (a*b)*c = a*(b*c). Among the elements there is an identity element, denoted by I, with the property of leaving the ele— ments unchanged after formal manipulation with the defined operation. Therefore, I*a = a. Each element, a, in the group has a left inverse a“1 such that a'l*a = I. When two or more elements are formally manipulated using the defined operation, the order of manipula— tion may be reversed. Hence, a*b = b*a. ‘11 groups satisfy the fifth axiom. Those groups that satisfy the axiom are knOWn as Abelian or commutative. Continuous one—parameter groups are multiplicative groups The groups of interest in this work are continuous one-parameter formation groups. The defined operation for multiplicative transformatio tions. Hence Aset of tra tion of tran values a1 at such that A: and Having defi Cept is i101 1' Closure 2- T5soci 3- Left 1 h sformation groups is the successive application of the transforma— 3. Hence a point x is taken into a point X as follows: X=A X=A (A x)EA A x a2 a1 a2 a1 , 2 l where a and a are parameters. of transformations is said to be closed under the defined opera— of transformation multiplication if, given any set of parametric l 2 s a and a , a set of parametric values a3 can always be found that A 3 is a unique member of the set of given transformations a A A = A . al a2 a3 1g defined the operation for closure, the transformation group con— is now formulated in terms of the group axioms. Ilosure. A A = A l. .l )x=(A A )A x (1.3.2) A a1 a2 a3 lssociativit . A A y .2 .3 al( left Identity. A transformation I exists such that IA x = A I x = A x 1.3. a1 a1 ( 3) Any transformation which leaves a point unaltered is defined as an identity transformation. T. Left lnve: @ Q is unaltere E. Tr: i.e. QTXK... then the fun De Twit y). following (it knowing T To“ restm of the for] 5 eft Inverse. An inverse transformation A_i belonging to the set a exists such that A_]l_Alx= Ix=x. (1.3.11) a a Definition 1.3.1 - If a numerically valued (scalar) function unaltered by an r—parameter continuous group of transformations, .e. (xl,..., xm, yl,..., y“) = Q(il,..., Em, yl,..., in), (1.3-5) the function Q(x, y) is called an absolute invariant of Ar' Definition 1.3.2 - The m+n functions, Ql(x, y),..., K, y), are said to be functionally independent if and only if the ring determinant is non-vanishing. 39.1... .aQrfl 3X1 Bxi . #O(i=l,...,m;j=1,...,n) (1.3.6) E. ”391131 ring the approach developed by A.J.A. Morgan [Ah], attention is astricted to a one-parameter continuous group of transformations 2 form: A : (1.3.7) F3 = fJ(yl,..., yn; a) (j = l,..., n; n21) where a is a form a subg: and the dep‘ tions. The up to any r atives of 1 (1.3.7), ti one-perms known as e SOT-Ute inv and whue R 6 'e a is a numerical parameter. The transformations i1 = fl(xl,..., xm; a) (1.3.8) 1 a subgroup SA of Al. The xi and the yJ denote the independent the dependent iariables of a system of partial differential equa— lS. The yj are considered to be differentiable functions of the xi ,0 any required order. If the transformations of the partial deriv- 'es of the yj with respect to the xi are appended to those of i-7), the resulting set of transformations also forms a continuous -parameter group, Ak New groups constructed in this manner are l' n as enlargements of the group Al. The group Al (1.3.7) has m+n-l functionally independent ab— te invariants n(xl,...,xm),...,n (x1 ..,xm) (1.3.9) 1 l n l m g1(yl""= yn, xiv”, xm),..-, gn(y y , x x ) (1.3.10) it is possible to choose them such that the Jacobian 8(gl,..., gn) 0 (1.3.11) 3(yla"'9 yn) aé R 8(nl,..., nm—l) ] = m—l (l 3.12) 3(xl,..., Km) e R denotes the rank of the indicated Jacobian matrix. Th tions of the where the g in (1.3.10 yj) lmpliC to be exae I defined as The condi lent com? The ml" the Subg (1.315) absolute ally im 7 The yj and i3 are considered to be implicitly defined as func- ons of the x1 and i1 by the equations zj(xl,. , xm) = gj(yl,. , y , xl,. , xm) (1.3.13) 235:1, ,.em) = gj(§rl,...,yn, 21,...)21‘1) (1.3.111) ere the gj are the absolute invariants of the group (1.3.7) indicated (1.3.10). Theorem 1.3.1 — A necessary and sufficient condition for the , implicitly defined as functions of xl,..., xm by equation (1.3.13), - l m '3 ' 1' 't1 be exactly the same functions of x ,..., x as the y , imp 1C1 y l fined as functions of i ,..., Em by equation (1.3.lh), are of the ,..., 2m is that z (x1 ... xm) = 23(il,..., 'm) = 2 (il,..., Em). (1.3.15) e condition given by equation (1.3.15) can be replaced by the equiva— nt condition ). (1.3.16) pendent absolute invariants of e n -, nm—l are functionally inde 1"' e Subgroup SA of the group (1.3.7). The equivalence of equations .3.l5) and (1.3.16) is seen from the group theory statement that any solute invariant of a group is expressible in terms of the function— 1y independent absolute invariants. Pg ential equa’t same fimcti< solutions 0: W differentia essary to c form, BY equatiom Properties expressed point (x1, m indepem WhOSe arg are Consi ments of 8 Definition 1.3.3 — Solutions of a system of partial differ- ;ial equations which have the property that the y3 are exactly the 1e functions of the x1 as the y3 are of the ii are called invariant .utions of a system of partial differential equations. When considering invariant solutions of systems of partial ?ferential equations, Theorem 1.3.1 demonstrates that it is only nec— ;ary to consider equations (1.3.13) or (1.3.1h) to be given in the .m, ). (1.3.17) gj(yla"" yIl, xlgn': xm) = Fj(nl,--~, nm—l equation (1.3.11) and the assumed continuity and differentiability >perties of the functions F3 and gJ, it follows that the yj can be >ressed as functions of the F3 and xi in some neighborhood of the .nt (xl,..., xm). Y3 = yJ(F -. F . xl,..., xm) (1.3.18) 1" ’ n Definition 1.3.u — A differential form of the k-th order in ndependent variables is a function of the form 1 n ¢(xl,..., xm, yl,..., yn,...,8E1 ,...,aEx k) (1.3.19) 8(xl)k mm) J se arguments include derivatives of the yJ up to order k. The y l - _ considered to be functions of the x . For convenience, the p argu zp. . 1 ts of the differential form will be de51gnated by z ,..., 2i variant unde of the group where h is l M is some f i ally invari nation of 1 where o is MdMisg Variant u of the gr Where (1) 3 tial equ grWP or f0I‘Ins o 9 Definition 1.3.5 - A differential form ¢ is conformally in— nt under a one—parameter group Al’ if, under the transformations 1e group, it satisfies the relation @(Zl,..., 2P) = M(zl,..., zp; a) ©(zl,..., zp) (1.3.20) : ¢ is exactly the same function of the 2's as it is of the 2's and some function of the 2's and the parameter a. Definition 1.3.6 — A differential form ¢ is constant conform— invariant under a one—parameter group Al, if, under the transfor— >n of the group, it satisfies the relation 3 <1>(§1,..., 2P) = M(a) <1>(zl ..., 21’) (1.3.21) 2 s is exactly the same function of the 2's as it is of the 2's 1 is some function of the parameter a. Definition 1.3.7 - A differential form Q is absolutely in- int under a one-parameter group Al, if, under the transformations 18 gTOUp, it satisfies the relation ¢(El,..., 2P) = ¢(z ,..., zp) (1.3.22) 3 ¢ is exactly the same function of the 2's as it is of the z'S. Definition 1.3.8 - A system of k—th order partial differen- = O is invariant under a continuous one-parameter J p of transformations A1 equations d if each of the k—th order differential . k 3 Q is conformally invariant under the transformations of Al. The k . group A1 15 t cussed new be a system 11(22) indepe yli' ' I , YD V at under tl T in the Syste invariant 1x Variant Sol 0f a system 33% which is a independem the ”1‘1 ab: those of e‘ independen be reamed 10 up A: is the k-th enlargement of the group Al which has been dis— sed previously. Let 1 1 3k 1 3k n a (x ,..., xm, y ,..., yn,...,——X———,...;—JL——J = 0 (1.3.23) J 1 k k 3(x ) 3(Xm) a system of partial differential equations of the k-th order in 3) independent variables xl,..., xIn and n(21) dependent variables ..., yn where each of the differential forms is conformally invari— under the k—th enlargement of the group A1. Theorem 1.3.2 - If each of the differential forms $1,..., on he system of partial differential equations (1.3.23) is conformally riant under the k-th enlargement of the group (1.3.7), then the in— ant solutions of (1.3.23) can be expressed in terms of the solutions system of the form B ( J ”1""’ nm-l’ F l,..., n,.. , k ,...,—k— h is a system of k—th order partial differential equations in m—l pendent variables ”1"" In equation (1.3.2h), the n's are 9 nm_l ' n—l absolute invariants of the group SA and the functions FJ are 1 a of equation (1.3.17). Theorem 1.3.2 gives the conditions under which the number of pendent variables in a system of partial differential equations can educed by one in the process of obtaining invariant solutions. 1.11 Optimiz Th dard techniq [ii]. The c minima of f1 mined. Hem the assembl; or a surfac In equatim i d: fimetions 331d ’E yk for which (Mi-2) s: whieh inv frereciom o Ween the It is as: ing end ( ll Optimization Techniques The optimization techniques used in this work are the stan— techniques from the calculus of variations as presented by Miele The calculus of variations is concerned with the maxima and a of functional expressions where entire functions must be deter— . Hence, the unknown of the calculus of variations problem is ssembly of an infinite set of points which identify either a curve surface, depending upon the nature of the problem. A functional form to be optimized may be defined as shown 9 E [T(X, yk)]: + iff 0(x, yk,‘y£) dx . (1.h.1) l nation (l.h.l), subscripts i and f denote initial and final points d u g E aék. The form 9 is optimized by finding that spec1a1 set of ions (x) k = 1,..., n ' (i.h.2) 1ich it is either a maximum or a minimum. The class of functions 3) satisfy the constraints ¢J(X.yk.yk’) =0 J=1,...,pm of a differential system is defined to be the difference be— the number of dependent variables and the number of equationS. x) are consistent with the follow— assumed that the functions yk( 1dcmflhflmw. The problem Bolza proble Tl troducing a and by form Motion. It is know SatiSfy nor Whid} are 1 The differ and the E); knowns. .1 ““8 wiei Sim-tans 12 wfixis Yki) = 0 u = 1..... q (1.11.11) wu(xf. ykf) = O u = q + 1,..., s s 2n+2 (i.h.5) blem as formulated in the preceding paragraph is known as the roblem. The Bolza problem can be treated simply and elegantly by in~ 1g a set of variable Lagrange multipliers A (x) j = 1,..., p (1.h.6) ?orming the following expression which is known as the augmented 1. p K=o+2 Ada (1.11.7) J (own that the optimal arc (the special curve optimizing 9) must not only equations (1.h.3) but also the following equations 'e known as the Euler—Lagrange equations. 8 g—x(%K—.—) "3&10 k=1,... n (1.h.8) yk yk erential system composed of the constraining equations (l.h.3)’ Euler—Lagrange equations (1.h.8) includes n+p equations and un- Therefore, the solution of this sytem of differential equa— elds the n dependent variables and the p Lagrange multipliers eously. There are 2n+2 boundary conditions to which equations (1.3.3) and (11.8 the bounda‘ plied by t‘ condit ion . The trans systems 0: and (1.1;: investiga The Legen The Leger F0? 8. re. first ca 2%; th Ullmber c second ( integra; known a: are val 13 id (1.h.8) are subjected. Equations (1.h.h) and (l.h.5) supply 5 of ie boundary conditions and 2n+2—s of the boundary conditions are sup— Lied by the following condition which is known as the transversality )ndition. n K n K f [dT+ (K- 2 Ly‘)dx+z Lay] =0 (1.14.9) 1e transversality condition is to be satisfied identically for all stems of infinitesimal displacements consistent with equations (1.h.h) .d (1.11.5). After an optimal arc has been determined, it is necessary to vestigate whether the functional 9 attains a maximum or minimum value. 6 Legendre-Clebsch necessary condition is used to determine this. e Legendre—Clebsch condition for a relative minimum is n n 2 z )3 flf___;&y’5y’ Zo. (1.1+.10) r a relative maximum, the inequality (1.h.10) is reversed. There are two particular cases of the Bolza problem. The rst case is when the integrand of equation (1.h.l) is identically r0; that is, when 0 E O. This case is known as a Mayer problem. The fiber of end conditions 5 is less than 2n+2 for a Mayer problem. The :ond case is when the functional to be optimized appears entirely in 3egra1 form; that is, when T E O in equation (l.h.l). This case is an as a Lagrange problem. Equations (l.h.8), (1.h.9), and (l.h.10) : valid for both of these particular caseS- Ti to this worl the reader : excellent r 1h This section reviews only the optimization relations relevant this work. For a comprehensive treatment on calculus of variations, e reader is referred to the literature on calculus of variations. One cellent reference on calculus of variations is Akhiezer [1]. 2.1 Type c 1 since the w The follow: Therefore . °°mPressiT Cm“! of coordinat tions Shc II. MATHEMATICAL SWIRLING FLOW MODEL Type of Fluid Flow and Coordinate System In swirling flow, the fluid has a macroscopic rotary motion e the velocity has a tangential component of finite magnitude. following assumptions are made for this type of flow: Viscous effects are negligible. The dependent variables are not functions of time (3? = o). The fluid is incompressible (p = const.). Gravitational and electromagnetic body force effects are negligible. The flow is isentropic. afore, the class of flows of interest are inviscid, isentropic, in- ressible flows. Since the fluid has a macroscopic rotary motion, the natural :e of coordinates is a cylindrical polar coordinate system. These iinates are related to cartesian coordinates by the familiar rela- : shown as equations (2.1.1), (2.1.2). and (2-1-3)- r2 = x2 + y2 (2.1.1) tane = y/x (2'1'2) Z = 2 (2.1.5) 15 In Figure 2. ahasic syst has a unique W211. T will be wri The welocit Figure 2.2 2-9 Fonda in Section Serwetion in fluid e tion of 11' l6 gure 2.1, the cylindrical polar coordinates are shown referred to ic system of cartesian coordinates. Any point not on the z—axis unique representation (r,9,z) with the restrictions r20 and 7T. The vector form for velocity in cylindrical polar coordinates be written as shown by equation (2.1.h). E = u é (2.1.h) + v ée + w e I" Z elocity components at a point in (r,e,z) space are shown in a 2.2. ?undamenta1 Equations The equations governing the types of swirling flow described :tion 2.1 are based on the basic laws of conservation of mass, con— ;ion of momentum, and conservation of energy. The conservation of mass is given by the continuity equation lid dynamics. '-'+ ——'= 0 Conservation of Mass (2.2.1) (Continuity Equation) For inviscid, isentropic, incompressible flows, the conserva— tf momentum is given by the three Euler equations. 311 W 311 12 = _ .1. 22 r—Momentum (2.2.2) r p l7 b:(r,6,z) r r cos 6 r sin 6 FIGURE 2.1 CYLINDRICAL POLAR COORDINATES IL 18 / FIGURE 2.2 VELOCITY COMPONENTS The Eule‘ equation thermody may he 1 Q is th to the work, i tationa ESSUmPt u 31. 1.31. W 2X. Ez__ 1 .gR 3r + r 36 Bz r ' ' pr 39 e-Momentum (2.2.3) u3_w iLw WEE..- 122 3r r Be + z — ' p 32 Z-Momentum (2.2.h) e Euler equations are non—linear, first order, partial differential nations. The conservation of energy is expressed by the first law of ermodynamics. For the assumed model, the first law of thermodynamics y be written as the familiar steady flow energy equation. Q = A(e + p/p + éqz + gz) (2.2.5) is the total energy change or difference between the heat energy added the system and the shaft work done by the system. Assuming no shaft 7k, isentr0pic flow, no temperature variations, and negligible gravi— 3ional body forces, the quantities Q, e, and gz all vanish. For the sumptions mentioned, equation (2.2.5) reduces to Bernoulli's equation: h = p + %pq2 = constant. (2.2.6) The fundamental governing equations for this investigation a (2.2.1) — conservation of mass; (2.2.2), (2.2.3), and (2.2.h) _ iservation of momentum; and (2.2.6) — conservation of energy. 3 Boundary Conditions and Swirl Parameter I; The boundary conditions are all Specified at the outside swirl lius, r0, for any a and any 2. The Specific values of the dependent riables will be denoted as shown in the following equations. At four independent variables 20 u = uo v = vO w = wO P = P0- (2.3.1) (2.3.2) (2.3.3) (2.3.11) have specific values at the outside swirl as and these values are the boundary conditions for this investiga— The swirl parameter is defined to be the product of a geomet— similarity ratio known as the swirl aspect ratio and a kinematic Larity ratio known as the tangential energy fraction. Swirl Parameter Swirl Aspect Ratio Tangential Energy Fraction (2.3.1) (2.3.2) (2.3.3.) ituting equations (2.3.2) and (2.3.3) into equation (2.3.1), the .parameter equation becomes (2.3.11) uantity h in equation (2.3.h) is determined from Bernoulli's equa- (2.2.6). 21 rNon—Dimensional_Equations For greater generality and convenience, all variables are dimensionless. A reference length, 20, which is the axial length 1e swirl, reduces the radial and axial lengths into dimensionless linates. Similarly, the velocity compOnents and static pressure 1ade dimensionless by comparing them to the tangential velocity, and the tangential dynamic pressure, ovg. The dimensionless vari- ; are defined as follows: R 2 r/zO (2.h.i) z 2 z/zO (2.h.2) U s u/vO (2.h.3) V E V/Vo (2.h.h) w E w/vO (2.h.5) P ; p/pvg. (2.11.6) Application of the dimensionless variables to equation (2.2.2) is the following intermediate result. 2 2 Uvg 8U VVE 3U WVE 8U vo v2 _ 1 pvo 3P + ____ _____—-—__— 203R R20 88 ZOBZ 20 R p Z03R result reduces to van 17.311 was V2. if: R—Momentum (21.7) GB + R 56'+ az ’ ET' ‘ as“ 22 Similar applications of the dimensionless variables to equations (2.2.3), (2.2.h), (2.2.1), and (2.2.6) yield the following set of non— dimensional equations: U 8V V 3V W 3V UV 1 SP 3R+ R e+ S—Z—+-§_ -§a e—Momentum (2.)408) U 3W V 8W W 3W 3P 3 + R 33.+ 52-- _ BZ Z-Momentum (2-h-9) 3U U 1 8V 8W . —- —- -* _= Di Oh. 0 3R + R + R 3 + BZ 0 Conservation of ass (2 l ) H = p +1/2(U2 + V2 + W2) Bernoulli Equation. (2.h.ll) The quantity H in equation (2.h.11) is defined to be H E h/pvg. . (2.h.12) The dimensionless boundary conditions at R = R0 are: U = U0 (2.u.13) V.= V0 = 1 (2.h.1h) w = W0 (2.h.15) P = Po' (2.h.16) When converted to dimensionless variables, the SWirl para— meter (2.3.h) becomes R2 V2. (2.h.17) (. ix») i 23 Equations (2.h.7), (2.h.8), (2.u.9), (2.h.1o), and (2.h.ii) are the non-dimensional forms of the fundamental governing equations for this work. (1‘ lat .(lll. ( III. REDUCTION OF THE NUMBER OF INDEPENDENT VARIABLES In this chapter, the ideas outlined in section 1.3 are ap- plied to the non-dimensional model equations given in section 2.h. The number of independent variables is reduced from three to two and then from.two to one. 3.1 Three to Two Reduction in the Number of Independent Variables The three independent variables (R,6,Z) are reduced to the two independent variables (nl,n2). (The new independent variables (nl,n2) are functionally independent absolute invariants of a subgroup of the one-parameter continuous group of transformations, A1. The one- parameter continuous group of transformations, Al, will subsequently be referred to as the group A1. The group Al is chosen as shown below: R = eaii R U = eath U E = eatY P Al: 6 = e + 9,132 7 = eat5 V (3.1.1) 2 = eat3 Z W = eat6 W ‘ the rou where t1, t2, t3, th’ t5, t6, and t7 are constants and a is g p Parameter. The group labeled as (3.1.1) has the general form specified by equation (1.3.7). The transformed independent variables are func— tions of the parameter a and the previous independent variables. 2h 25 ilarly, the transformed dependent variables are functions of the ameter a and the previous dependent variables. There is no unique nod for specifying groups such as (3.1.1) and the form for 6 is t proposed by Hall [2b, pg. 93]. By specifying a as shown, the au- r discovered that the group Al would satisfy all the required con- ions to affect a reduction by one in the number of independent vari- es for the system of equations given in section 2.h. The group A (3.1.1) must satisfy the four group axioms given 1 equations (1.3.1), (1.3.2), (1.3.3), and (1.3.h). To demonstrate satisfaction of the group axioms, only the transformations on R and re considered. All the remaining transformations are similar to the nsformation on R and if the R transformation satisfies the group ax- s, so will the remaining transformations. The closure axiom, equation (1.3.1), is applied using the 001 A i to denote a particular transformation utilizing the parameter a altl 2 _ a t - _ _ A A R = A e l R) = A R - e R — al 3.2 al( a1 (3.1.2) 1 2 1 2 a3t _ 1 1 1 2 l ‘ = ' + 1t - A A e = A (()+ a t ) A 6 9 a 2 a1 a2 a1 2 a1 (3.1.3) — 1 6+ 321:2 + 8.1132 = e + (a1 + a2 )t2 = e + 8.3t2 : Aa3 6 — . .h Where a1 + a2 = 8-3. (3 l ) 26 closure axiom is satisfied since Aa3 and A:3 have been shown to be que members of the set of given transformations. Equation (1.3.2), the associativity axiom, is applied where denotes a particular transformation utilizing the parameter ai. 2 1 2 3 al(Aa2 A 3) R = A 1 e(& + a3)tl R = ea tl e(a + a )tl R = a a (3.1.5) e[al + (a2 + a3)]tl R 3t (a1 + a2)t a3t (A A A R = A A ea 1 R = e l e l R = 31 a2) a3 a1 a2 (3.1.6) e[(al + a2) + a3]tl R ce equation (3.1.5) equals (3.1.6), the associativity axiom is satis- d for the type of transformation employed on R. = e + [a1 + (a2 + a3)]t2 (3.1-7) 1 1 _ 1 2 3 (Aa2 Aa3) 6 — Aal(6 + (a + a )t2) _ l 2 3 1 11:2) 11:3 6 = 11:, A; (e + 8.3132) _ e + [(a + a ) + a 14.2 (3.1.8) ition (3.1.7) equals equation (3.1.8) which demonstrates that the Dciativity axiom is satisfied also for the type of transformation Loyed on 9. Any transformation which leaves a point unaltered is by defi— Lon an identity transformation. For the group Al, it is seen by in— :tion that this definition is satisfied when the parameter a equals >. The left identity axiom, equation (1.3-3). is satiSfied When a = 0. (3.1.9) 27 R = eatl R = R (3.1.10) 9 = e .+ at2 = 9, (3.1.11) For the types of transformations employed on R and 6, it is by inspection that the inverse transformation is obtained by allow— the parameter a to be negative. Therefore, the left inverse axiom, :ion (1.3.h), is satisfied when a = —a. (3.1.12) Example, A'1 A R = e'atl eatl R = IR = R (3.1.13) a a ‘a e = A;l(e + at2) = A: I; .= 5 — at2 = e + at2 — at2 = e. (3111+) ;roup Al (3.1.1) satisfies the four group axioms for closure, asso— .vity, left identity, and left inverse. Theorem 1.3.2 gives the conditions under which the number of >endent variables in a system of partial differential equations can ‘duced by one in the process of obtaining invariant solutions. The ,imensional equations given in section 2.h must be conformally in— ,nt under the k—th enlargement of the group Al (3.1.1). Conformal iance is defined by Definition 1.3.5 and given in equation form by ion (1.3.20). For convenience, equation (1.3.20) for conformal in— nce is displayed in this section. - l P 442%.”, 21’) = M(z%..., 2?; a) (z,..., z ) (1.3.20) I; 28 By conformal invariance, the group Al (3.1.1) is formally sub— 1 into an equation and the mathematical manipulations indicated equation are performed. The resulting form must then be the equation (1.3.20) for the equation to be conformally invariant. The group Al (3.1.1) is formally substituted into equation the R—Momentum equation. ea<2th—tl) U .e—U E 36 17 33 v at? 17? 31? T. + : -: + —_ — : + *2 = 3R R 39 3Z R 3B 3B (th+t5"tl) X3_U ea(t6+th—t3) W E ea(2t5—tl) K2 R as + BZ ' R a(t -t ) i + e 7 l 2%. (3.1.15) lential terms in equation (3.1.15) must equal each other to ob- necessary form for conformal invariance as indicated by equa— 3.20). Equating the exponential terms, the following results ned: 1 = tu + t5 - t1 = t6 + tu — t3 — 2t5 — t1 = t7 — t1, (3.1.16) (3.1.17) t th = t5, t11L = t6 + t1 - t3, 7 = 2th' dent from equation (3.1.15) that the function M of equation is only a function of the parameter a. By Definition 1.3.6, rential form represented by equation (3.1.15) is constant con— invariant. The group A (3.1.1) is formally substituted into equation 1 :he e—Momentum equation. a? ea(th+t5‘t1) U 3_V Ea? Va? Wav UV 1 :+:—_+ —_+—_+:—._= 6R R 39 32 R R a . 3R ea<2t5_tl) V 8V ea(t6+t5_t3) w 3V ea(tu+t5_tl) UV R 36'+ 3Z'+ ‘3? a(t -t ) e 7 l 1 BP + .— R 36 (3.1.18) >onential terms in equation 8.1.18) must equal each other to ob— 1e necessary form for conformal invariance as indicated by equa— ..3.20). Equating the exponential terms, the following results ;ained: th + t5 — t1 = 2t5 — t1 = t6 + t5 — t3 — t7 — t1, (3.1.19) th = t5, t5‘= t6 + t1 — t3, t7 = 2th. (3.1.20) son of equations (1.3.20) and (3.1.18) indicates that the func— of equation (1.3.20) is only a function of the parameter a. By ion 1.3.6, the differential form represented by equation (3.1.18) tant conformally invariant. The group Al (3.1.1) is formally substituted into equation , the Z—Momentum equation. ea. (th+t6_tl) U E Ufl+iflflfl.£= afi' R'ae 32 a 3R ea(t5+t6—tl) V aw ea(2t6—t3) w 21 + R'_6'+ 3Z t —t ) + ea( 7 3 g; (3.1.21) 3O nobtain the necessary form for conformal invariance as indicated by nation (1.3.20), the exponential terms in equation (3.1.21) must ual each other. The following results are obtained by equating the :ponential terms: th + t6 — t1 = t5 + t6 — tl = 2t6 — t3 (3.1.22) (3.1.23) t1+ = t5, 2t6 = t7. imparison of equations (3.1.17), (3.1.20), and (3.1.23) yields the (sult, (3.1.211) “om equations (3.1.22) and (3.1.2h), it follows that (3.1.25) tl = "t3. (mparison of equations (1.3.20) and (3.1.21) indicates that the func— on M in equation (1.3.20) is only a function of the parameter a. erefore, the differential form represented by equation (3.1.21) is nstant conformally invariant according to Definition 1.3.6. The group A1 (3.1.1) is formally substituted into equation ~h-10), the Conservation of Mass equation. _ _ .. — t —t ) a(t -t ) 3_U+H+1§1+§.W==ea(hlw ‘5 ”1‘1 3R" E R a 32 3B R 8L(135451) 1 av eanformal invariance verifications. Again, by comparison of equations ..3.20) and (3.1.26), the function M in equation (1.3.20) is seen to : only a function of the parameter a. Therefore, the differential )rm represented by-equation (3.1.26) is constant conformally invariant :cording to Definition 1.3.6. The group A1 (3.1.1) is formally substituted into equation !.h.ll), the Bernoulli equation: —- 2 2 H - P — 1/2 (E2 + V? + we) = H _ eatY P — 1/2 (ea tn U + ea2t5 V2 + ea2t6 W2)- (3.1.28) r conformal invariance, the exponential terms in equation (3.1.28) st equal each other as indicated by equation (1.3.20). The results equating the exponential terms are shown below: — — .1.2 t7 = 2th, t, - t5 - t6. (3 9) iations (3.1.29) agree with the results obtained previously. Compari— 1 of equations (3.1.28) and (1.3.20) indicates that the function M in lation (1.3.20) is a function only of the parameter a. By Definition 3-6, the differential form represented by equation (3.1.28) 15 32 constant conformally invariant. By inspection, it is seen that equation (2.h.17) for the Swirl Parameter is constant conformally invariant under the group A1 (3.1.1). Since the equations (2.1.7), (2.h.8), (2.h.9), (2.h.1o), (2.h.1l), and (2.h.17) are all constant conformally invariant under the K—th enlargement of the group Al (3.1.1), Theorem 1.3.2 states that the number of independent variables for the system of equations mentioned above can be reduced by one in the process of obtaining invariant solu— tions. Using the results (3.1.17), (3.1.2h), and (3.1.25) obtained from the conformal invariance verifications, the group A1 (3-1-1) is nodified as shown below: §.= eatl R fi-= eath U 2‘: e2ath P A - 6': e + at 7': eath v (3.1.30) 1' 2 2.: eatl Z W-= eath W mere t1, t2, and th are constants and a is the group parameter. The group A1 (3.1.30) has m+n—l = 6 functionally independent msolute invariants. Equation (1.3.9) gives the form for m-l = 2 of he absolute invariants and equation (1.3.10) gives the form for the emaining n = h absolute invariants. Definition 1.3.1 and equation 1-3-5) give the definition and general form for an absolutely invari— nt form. The manner in which absolute invariants are selected is not ell defined. The functions n1 and n2 are chosen as fOllOWS‘ 33 = 6—6 RP (3.1.31) n1 -6 Zb. e (3.1.32) n2 For the functions in equations (3.1.31) and (3.1.32) to be absolute in— variants, the following relations must hold: nlfif) = nl(9,R) (3.1.33) n2(6,2) = n2(6,Z). (3.1.3h) The values of the exponents p and b of equations (3.1.31) and (3.1.32) must be determined such that equations (3.1.33) and (3.1.3h) are true. The required tranformations from the group Al (3.1.30) are utilized in the following equations to determine p and b: n1 = 8—9 Bp = e—(9+at2) epatl Rp = ea(ptl_t2) e”e rp P = tQ/tl (3.1.35) e_(e+at2) ebatl Zb = ea(bt1—t2) e-G Zb _ . . 6 b — t2/tl (3 1 3 ) Equations (3.1.35) and (3.1.36) are substituted into equations (3.1.31) ind (3.1.32): = 8‘9 Rt2/t1 (3.1.37) “2 = 6—9 Zt2/t1. (3.1.38) 31. functions fl, f2, f3, and fh are chosen to resemble n1 and n2: -3 e -5 e -5 _ fl = Ue l , f2 = Ve 2 , f3 = We 39, f, = Pe one. (3.1.39) the functions in equations (3.1.39) to be absolute invariants, the .owing relations must hold: flfi. 5) = fl(U. 6). rem. 6) = f (V. 6). (3.1.1.0) f3(W, 6) = f3(w, e), rh(§, 6) = fh(P, e). (3.1.h1) values of the exponents 6 6 63, and 5h of equations (3.1.39) 1’ 2’ . be determined such that equations (3.1.h0) and (3.1.h1) are true. required transformations from the group A1 (3.1.30) are utilized in following equations to determine the exponents 61, 52, 63, and 6h: — - ‘ -6 9+ t a t -5 t -5 e = Ue 616 = oath Ue l( a 2) = e ( h l 2) Us l 51 = th/t2 (3.1.h2) — -6 5 ati -62(6+at2) a(th-52t2) -529 - - e Ve = e Ve 2 62 = th/tg (3.1.h3) f3 = We‘635 = eati We—63(9+at2) = ea(tu-63t2) We—53e 53 = tu/t2 (3.1.hh) ft = Fe_6h§ = e2ath Pe-6u(e+at2) = ea(2th—6ut2) Pe—ohe (3.1.h5) 6h = 2th/t2. 35 e values of the 61's are substituted into equations (3.1.39) to ob- in the following results: _ 6 —t t 6 —t t 6 -2t t 6 =Uetu/t2,f2=Ve u/2,f3=weu/2,fh=1.e M2, (3.1.h6) ‘The condition given by equation (1.3.11) must be satisfied by a chosen functions fl, f2, f3, and fa. J = a U, v, w,, P # O (3‘l'u7) M1 M1 M1 M1 3U av aw aP erg ar2 ar2 erg 3U av aw 8P J = (3.1.148) ar3 ar3 8f3 af3 3U av aw 8P afu th arh afu 3U 8V 8W, 3? ng equations (3.1.h6), equation (3.1.h8) becomes: e_t2+/t28 O O 0 J = o O 64mk26,0 -2t t 6 o o o e h/ 2 36 The Jacobian determinant J is non—vanishing for the chosen functions fl, f2, f3, and ti. Therefore, the condition (3.1.h7) is satisfied. The condition given by equation (1.3.12) must be satisfied by the functions ml and n2. 3(n1. n2) R m = m—1 = 2 (34-19) The rank of the indicated matrix must equal 2. Expanding the matrix given in equation (3.1.h9) gives the following result: Bnl Bnl Bnl SR 36 BZ s M. (3.1.50) 3n2 3n2 3n2 QB 39 az Using equations (3.1.37) and (3.1.38), equation (3.1.50) becomes: 3. — 0 R n1 n1 = M, (3-1051) 0 ”n2 E'n2 where E a t2/tl. (3.1.52) Since M is a 2x3 matrix and the row rank equals the column rank for a matrix, 2 is the maximum rank that M in (3.1.51) can have. Both rows >f M in (3.1.51) are linearly independent and hence, M has rank of 2. The condition indicated by equation (3.1.h9) is satisfied for the cho- Len functions nl and n2- 37 It has been demonstrated that equations (3.1.37), (3.1.38), (3.1.h6) represent the functionally independent absolute invariants the group A (3.1.30). 1 Application of equation (1.3.17) to the invariants of the up Al (3.1.30) yields the following result: fj(U, v, w, P, R, e, z) = F3011, n2) J: 1, 2, 3, 1.. (3.1.53) ations (3.1.h6) are rearranged using the symbolic equation (3.1.53): d6 W = eme F3011, n2), P = e209 F1.(nl. n2). (3.1.55) where a E th/t2' (3-1-56) For convenience, equations (3.1.hh) and (3.1.h5) and the par— 1 derivatives of these equations are listed together. nl = e_6 R5 (3.1.57) n2 = e_9 Zg (33-1-58) a? = 0 W ' 0 a an1 = _n ..“2 = -.. (3.1.59) 39 1 ea 2 3'11 5 33.12. = E n 3R =§“1 az z 2 1111‘- !)4‘)) 38 The relations (3.1.5h) through (3.1.59) are now used to re- :e the number of independent variables in the system of equations ren in section 2.h. The three independent variables (R,e, Z) are Luced to the two independent variables (n1, n2) in equations (2.h.7), .h.8), (2.h.9), (2.h.10), (2.h.11), and (2.h.17). Figures 3.1 rough 3.6 illustrate the transformation details and give the final :ult for each of these equations. Note that the final result dis- wed in each figure is obtained by summing all the transformed terms ren in the figure. 9 3 2.3.8 203353 22.94%on 289.8on Ame .HsViN .e .5 H.m smears H _ .H.m .(smH NH m Em m mcm +mclmH m H Amm V 58 cwnmrflo+mmlH cAmI Alvmg H CAMIth am 3H HC as 54.3 234.8 as. :35 AM is msOH 9.36 So I m .... as: w\H HC H: m: H: . . m m E's kin -.Imm 1% A.Jwflmv MIHCW mlHAN .... +H : v mlld mllmml am saw as. am 5. am cam am sew m m Amw.._u.mv NI 0| M NH] ma saw m: m H m N Na ca Na em Na Na sass slasmma ..inlslilHlams tuslms ansls am sow as am .5 am saw .2 mom a m H m H . . m H as N as H m m H a s e ca m AHmHmV Anas+AuHI culH :15 onfirs+lmmlle+lelH lem ouAHaa+lHemvm m "mm as am new as as. am am a sum as a sumo HC m H . . m m mm cm mm as mm mm AOWHMV H HRHCW OHAfllfll+Hlflllan DH4'H1. )"HI ho AmszmV AHN.H.mV Ao>.H.mv Amw.H.mV Amm.H.mv Asw.H.mv 311.3 203.3% 28288211 2888? Am: .HCTE .e .5 Tm smears mcm Ham NCm N Hcm JWUN I .3 NC + l: H: H Nan—“5 + Nflfih + .IN -I NC Amrm I Almvmhwv + IN HE ANW I Hmnwv as as N ..s. H T w\H c m H m H C C C C o Asasmsllmmc+|mH5 muflsasm+klm+lemlmv mluflsasm+lm minlmm. s s o m o s o as H as am and em an em as. new as sew m m maHa M u a sum Emma LEE EEK, .mm .m, m c o a o I m m H m a o u m a o : >m 3 as. sum as an em as saw as new m H m H s s m a c a c e m a m AWM 6+ ANlm NCI anm HCIanHv I0. H ANBHO +lm.lm +|m|lmvwm 0 H Amhd +|Nlmle| m H>|MM as. as men 5.. an em as a new am a saw Hes. mm New mm Hem me. mm ., in, .--.fi. -. .- . innit-"u H «.... l h. Am.s.mv.zOHsmmmzoo ZOHHDDQmm Ame .HevinN .s .mv s.m mmpoHa Wm as was Es a s was H C l Cl CI_ C o mam AH vw + mam mam as + a + Has a w\H c New N N I A Nm New + Na HemV I No I Nm mlcm. oImlml HIWI onl oIzlm am as ea am em am as am as m mew m Hem H m n as m as m ileedliulleauJ/l; am as as as as m m H. INI. a sac p Hem a .m I mm mew i mm Hem, I mm mm AsH.s.mV 20Ha A (3.1.1), the group B is chosen as shown: 1 1 _ = k — = Yl F nl c nl F2 0 2 - _ k - _ Y1 ( - _ F — c F 3.2.1) Bl‘ n2 0 n2 3 3 - _ Y ' = 2)(1 F Fl -- C 1 Fl Fu C 14 k and Y1 are constants and c is the group parameter. The group ed as (3.2.1) has the general form specified by equation (1.3.7). ransformed independent variables are functions of the parameter e 1e previous independent variables. Similarly, the transformed de- nt variables are functions of the parameter c and the previous de— 1t variables . MS The group Bl (3.2.1) must satisfy the four group axioms given .ations (1.3.1), (1.3.2), (1.3.3), and (1.3.h). The form of the brmations in group Bl (3.2.1) is the same as the form for the R 'ormation in group A1 (3.1.1). Since the R transformation in A1 (3.1.1) satisfies all the group axioms, it follows that the 'ormations in the group Bl (3.2.1) satisfy all the group axioms. The conditions under which the number of independent varia— n a system of partial differential equations can be reduced by , the process of obtaining invariant solutions are given by ‘m 1.3.2. The two-dimensional equations (3.1.66), (3.1.72), ‘7), (3.1.82), (3.1.83), and (3.1.8h) must be conformally invari- .der the k-th enlargement of the group Bl (3.2.1). Conformal in- .ce is defined by Definition 1.3.5 and given in equation form by on (1.3.20). To verify conformal invariance, the group B1 ) is formally substituted into an equation and the mathematical lations indicated by the equation are performed. The resulting ust then be the same as equation (1.3.20) for the equation to be mally invariant. The group Bl (3.2.1) is formally substituted into equation the two—dimensional representation of the R-Momentum equation. U‘ V v ' - ’ - ‘ 1/5 - - a? _ -2 - - L ' F2) “1 3=l-+ (5F3(2l) ' F ) n2 3%; F2 + “F1F2 an]. ”2 2 ‘ 3F 2Y n 1/5 _ 3F fit = c2Y1(€Fl — F2) n1 1 + c 1(5F3(_lJ F2) "2.35l )fil anl U2 2 _ C2Y1F2 + c2YldF F — c2Yl£n th (3.2.2) ‘ 2 l 2 1 3n— 1 ii lll.|| I II M6 ; evident from equation (3.2.2) that the function M of equation .20) is only a function of the parameter c. By Definition 1.3.6, lifferential form represented by equation (3.2.2) is constant con- illy invariant. The group Bl (3.2.1) is formally substituted into equation .72), the two—dimensional representation of the e-Momentum equation. '-‘ 'a'+ "l/€_- '3F2+FF+QF2 .Fl F2)1nl 8—?)— (€F3(fi_1_) 13‘2)n2 as 1 2 1 2 2 - fi 3 — H ”h + 2a? — c2Yl(EF - F ) n 8F2 1 5i. 2 5:— h 2 1 3n 1 2 1 _ C2Yln th _ C2Yln2 th + C2Y12th (3.2.3) anl 3n2 equation (3.2.3), it is evident that the function M of equation 20) is only a function of the parameter c. By definition 1.3.6, .ifferential form represented by equation (3.2.3) is constant con— lly invariant. The group Bl (3.2.1) is formally substituted into equation 77), the two—dimensional representation of the Z-Momentum equation. _ _ _ _ a" _ fi l/E _ _ 3‘ _ _ (EFl F2) n1 §fi§'+ (5F3(:l- ' 2) 2 3:; + o”T2F3 1 n2 n2 - l _ (Ll) M fig 3 u = c2Yl(€Fl — F2) nl 3F3 + czYl EF3 ”1 1/5 F2) n2 3F3 — 8— — .— n2 n2 ”1 n2 an2 2y 2v n l/E 3F 1 _ 1 + c 0LF2F3 c E(_£) 02 __£ (3.2.h) n2 . 3n2 parison of equations (1.3.20) and (3.2.h) indicates that the func— 1 M in equation (1.3.20) is only a function of the parameter c. refore, the differential form represented by equation (3.2.h) is stant conformally invariant according to Definition 1.3.6. The group Bl (3.2.1) is formally substituted into equation -.82), the two—dimensional representation of the Conservation of 1 equation. _ ai - 3F _ 3F E 1/5 _ 3F Enl___1_+Fl+0LF2u-nl__2_—n2__2+£(_i) n2— 3711 301 3n2 n2 3712 Y 3F Y Y Y 8F Y 8F = c lénl l + c 1Fl + c laF2 - c 1n1 2 — c lng 2 Bnl Snl 3n2 l/E Y n 8F + C lE(—l) ”2 —e§ (3.2.5) n2 3n2 ‘ evident from equation (3.2.5) that the function M of equation .20) is only a function of the parameter c. By Definition 1.3.6, lifferential form represented by equation (3.2.5) is constant con— Llly invariant. M8 The group Bl (3.2.1) is formally substituted into equation (3.1.83), the two-dimensional representation of the Bernoulli equation. 2ae _ _2 -2 -2 2ae 2y H - e (Fu + 1/2(Fl + F2 + F3)) = H — e (c th + l/2(c2YlFi + c2YlF: + can-Fin (3.2.6) Comparison of equations (1.3.20) and (3.2.6) indicates that the func— tion M of equation (1.3.20) is only a function of the parameter c. The iifferential form represented by equation (3.2.6) is constant conform- ally invariant according to Definition 1.3.6. The group Bl (3.2.1) is formally substituted into equation (3.1.8h), the two—dimensional representation of the Swirl Parameter :quation. s — (Sioz/g e2aeF2/H = s — c2Yl(j;J2/€ e2aeFS/H (3.2.7) E2 2 n2 Tom equation (3.2.7), it is seen that the function M of equation 1.3.20) is a function of only the parameter c. By Definition 1.3.6, quation (3.2.7) is constant conformally invariant. The group B1 (3.2.1) has m+n-l = 5 functionally independent bsolute invariants. Equation (1.3.9) gives the form for m—l = l of ie absolute invariants and equation (1.3.10) gives the form for the amaining n = h absolute invariants. Definition 1.3.1 and equation L-3.5) give the definition and general form for an absolutely invari— 1t form. As previously mentioned, the manner in which absolute M9 invariants are selected is not well defined. The function X is chosen as shown below: X ='- ' (3.2.8) This choice is suggested by the appearance of this ratio in equations (3.1.66), (3.1.72). (3.1.77), (3.1.82), and (3.1.8h). For the function X to be an absolute invariant, the following relation must hold: X(filg fig) = X(nl, 02)- (3.2.9) Phe specific condition for the absolute invariance of X is determined my substituting equation (3.2.8) into relation (3.2.9): 3| 3| l—l J . (3.2.10) [\J J NIH [sing relations from group Bl (3.2.1) for n1 and n2, it is evident that tquation (3.2.10) is satisfied and that X is an absolute invariant. Fhe functions g1, g2, g3, and 5h are chosen as shOWn: 0' _ -o _ F n—c —2o gl4 = th1 . (3.2.11) or the functions in equations (3.2.11) to be absolute invariants, the ollowing relations must hold: g16112 51) = s1(F1. n1). 32(52, fil) = s2(F2. n1) (3.2.12) v 83(F3: fil) = 83(F3, 01), gh(ihs 7]1 = gh(Fh’ n1)' (3'2'13) SO 3 value of the exponent o in equations (3.2.11) must be determined :h that symbolic equations (3.2.12) and (3.2.13) are true. The re- Lred transformations from the group B1 (3.2.1) are utilized in the Llowing equations to determine a: = — _—o = Yl k -0 = Yl—okF —0 $1 Flnl c Fl(c nl) C 1n , - -— Y k —0 Y —ok —0 = F O = l = 1 F g2 2n1 c F2(c ”1) ° 2n1 ’ (3.2.lh) — _-0 Y1 k -0 Yl-ok —o = = F = F , a3 F3nl c 3(c n1) c 3n _-2o _ 2Y1 k —20 — c Fu(c n1) _ - 2(Yl-Ok) '20 sh ' thl C thl . )m the set of equations (3.2.1h), it is evident that the gi will be solutely invariant if 0 = Yl/k. (3.2.15) , The condition given by equation (1.3.11) must be satisfied by a chosen functions g1, g2, g3, and gh. = a(gl, 829 33, 5h) # 0 (3.2.16) 3 F1, F2, F3, Fh agl agl Bgl 381 BFl 3F2 3F3 3Fh 3&2 , 3g2 age 3s2 3F are 3F aFu J = l 3 (3.2.17) 383 £3. 3%; E; aFl 3F2 3F3 th 3g, asu 33h 38h BFl 3F2 8F3 ”"1. 51 Using equations (3.2.11), equation (3.2.17) becomes: —0 n1 0 O 0 —o 0 n1 0 0 J: —o 0 0 n1 0 —2o 0 O 0 nl Phe Jacobian determinant J is non—vanishing for the chosen functions g1, g2, g3, and gh. Therefore, the condition (3.2.16) is satisfied. The function X must satisfy the condition given by equation (1.3.12). R 27%;; = m—1 = 1 (3.2.18) nl, n2 Fhe rank of the indicated matrix must equal 1. Expanding the matrix ;iven in equation (3.2.18) gives the following result: 2.31 E s M. (3.2.19) sing equation (3.2.8), equation (3.2.19) becomes, —n .1. _l = M. (3.2.20) n2 n2 52 .nce M is a 1x2 matrix and the row rank equals the column rank for a Ltrix, 1 is the maximum rank that M in (3.2.20) can have. The columns ? M in (3.2.20) are not linearly independent (one is a multiple of the :her) and hence, M has rank of 1. The condition indicated by equation 3.2.18) is satisfied for the chosen function X. It has been demonstrated that equations (3.2.8) and (3.2.11) apresent the functionally independent absolute invariants of the group _ (3.2.1). Application of equation (1.3.17) to the invariants of the roup Bl (3.2.1) yields the following result: gJ(Fl, F2, F3, Fh, n1, n2) = GJ(X) 3 = 1, 2, 3, h. (3.2.21) luations (3.2.11) are rearranged using the symbolic equation (3.2.21) > obtain the following general form for the Fi: F = nKOG,(X) i 1 1 (3.2.22) For convenience, equation (3.2.8) and the partial derivatives 'the function X are listed together. = .2.23 x nl/n2 (3 ) .831 = .1. it = ‘11 (3.2.2.) 2 8"1 n2 an2 n2 The relations (3.2.22) through (3.2.2u) are now used to reduce = number of independent variables in the system of equations given in 53 tion 3.1. The two independent variables (n1, n2) are independent variable (X) in equations (3.1.66), (3.1 1.82), (3.1.83), and (3.1.8h). Figures 3.7 through 3. transformation details and give the final result for ations. Note that the final result displayed in each ned by summing all the transformed terms given in the reduced to the .72), (3.1.77), 11 illustrate each of these figure is ob- figure. Amm.H.mV 20Ha0, x = (R/Z)E; . g<0, x = (Z/R)l€|; a = 0, X = 1. ‘or the choice E = O, X becomes a constant and is not a variable and Ihe system of ordinary differential equations (3.2.59) through (3.2.62) ecomes meaningless. For an example in this investigation, 5 is chosen to be nega— ive. By inspection, it is noted that for E = —1: 1. The system of ordinary differential equations is simplified. 2. The velocity components will be proportional to l/R in (R, 0, Z) space and the pressure will be proportional to 1/R2 in (R, e, Z) space. 3. The system of ordinary differential equations on page 60 is greatly simplified as the exponential term 1 + 1/5 vanishes. 62 63 The system of ordinary differential equations consisting of equations (3.2.59), (3.2.60), (3.2.61), and (3.2.62) simplifies to the following system of ordinary differential equations: —XGiG£ + G3G£ — GS = XGfi (h.1.1) —XGlGé + Gng + G3Gé = o (h.1.2) —XGlGé + G3Gé = —G£ (u.1.3) -XG£ + Gly+ G; = o (h.1.h) where G; E dGi/dX. Since this system of ordinary differential equa— tions is non—linear, a numerical analysis approach is required to de— termine its solutions. Hamming's modified predictor—corrector numerical method is utilized to obtain solutions for the system consisting of equations (h.l.l), (h.1.2), (u.1.3), and (u.1.h). The method employs the follow— ing numerical calculations: Predictor: Pj+l = Gj_3 + %§(203 — G3_l + 2G5_2) MOdifier: MJ+l = Pj+1 - %%%(Pj - C3) Corrector: Cj+1 = $(9GJ — G3“2 + 3h(M3+1 + 2G: - G3-1)) Final Value: Gj+l = Cj+1 + I%I(Pj+l - Cj+l> 6h If the results are known at the equidistant points XJ 3, XJ 2, XJ 1' and X g the results at point X = XJ + h (where h is the step size) J can be computed using the numerical equations given above. Hamming's 3+1 predictor—corrector method is not self starting; that is, the function— al values at a single previous point are not enough to get the func— tional values ahead. To obtain the starting values, a special Bunge— Kutta procedure followed by one iteration step is added to the predictor—corrector method. It may be demonstrated that the convergence criterion given by Wilf [52, pg. 98] for Hamming’s modified predictor-corrector method requires that the step size be chosen such that h<8/(3l8F/3NB+1|) Where ) =‘M’ . For an extensive discussion on Hamming's modi— Xj+1’ M3+1 3+1 fied predictor—corrector method, the reader is referred to Carnahan F‘( [9, pp. 381—392] or Wilf [52, pp. 96-108]. Appendix A contains the computer printout of the IBM scienti— fic subroutine DHCPG, a double precision arithmetic routine utilizing Hamming's method, which was used in this work to solve the system of non-linear ordinary differential equations. The numerical computations were performed by an IBM 360 computer and the numerical results are displayed in Table A.1. After rearrangement, equations (h.l.1), (h.1.2), (h.1.3), and (h.l.h) become: G’ = C/E (h.l.5) h - ’ - ’ h.l.6 G3 — Gh/A ( ) III. III III 65 G,” = (GlG2)/A G1 = (G1 + G3)/X where A s X01 — G3, 0 s —(AGl)/X, and E s X + 1/X. The boundary conditions (2.h.13), (2.h.1u), (2.u.l5), and (2.h.16) are constants and transform to X space unaltered. The values for the boundary conditions are selected as shown: U6+Fl*+Gl* = 1 o, V6+F2*+G2* = 1.0, (8.1.9) W6>F3*+G3* = 1.0, P6+Fh¥+Gu* = 0.5. In X space, Gj* E Gj(X*) where J = l, 2, 3, h. The boundary point X* is the left limit of the X interval (X*5XSX2). Using the result obtained from substituting equations (3.1.57) and (3.1.58) into equation (3.2.8), X* is defined to transform L U) indicated by the following equation: —e —1 n e R X* a .53.: e O = %-. (u.1.10) n2 e' z"1 0 For the selected boundary conditions, the numerical solutions 2 equations (u.1.1), (u.1.2), (8.1.3), and (u.1.t) are plotted for the Iterval 0.13XSl.O in Figure 8.1. The output from the computer program Ling the DHCPG subroutine was stored as the input to a subroutine ich controls a Calcomp plotter from which the plots were produced. pendix B contains a printout for the Calcomp plotter routine. 66 At the point x = 0.h6531 in Figure n.1, the solution func- :ions G1, G2, and G3 all have a discontinuous derivative. Gh (the one- limensional representation for pressure) reaches its maximum value and % (the one—dimensional representation for the tangential velocity com— »onent) reaches its minimum value. Therefore, the point X = 0.h6531 is esignated as the "tangential quasi—stagnation point" for this flow. The solutions G1, G2, G3, and GM were determined by simul- aneously solving the one-dimensional representations for conservation f momentum and conservation of mass. To verify these results, the ne-dimensional representation for conservation of energy, equation 3.2.63), is used to determine the Bernoulli constant H at each point X. From equation (3.2.63), it is seen that the equation for H is: 3 H = on + 1/2 2 G2. (u.1.11) i=1 1 .e value of H is fixed by the selected boundary conditions and for is case, H = 2. Data values for H were computed at each point X ing equation (h.l.ll) and the solutions G1, G2, G3, and Gh' From the data values listed in Table A.1, the maximum percent deviation of H am the value H = 2 is determined to be 0.28%. This maximum percent viation occurs at only one point. Most of the percent deviations for are in the range from 0.00% to 0.09% and hence, equation (3.2.63) is :isfied. Polynomial expressions for the solutions G1, G2, G3, and GM 2 determined using a Gaussian least squares method known as Polfit. ’olfit computer printout is included in Appendix C. The polynomial >ressions for the interval 0.15X50.h6531 are: 67 ONE DIMENSIUM‘IL FUNCTIONS , Cl SOUQRE.02 CIRCLE.L‘.3 FBIRNGLE.GLI PLUS / 3 FIGURE lI».l ONE-DIMENSIONAL FUNCTIONS 68 G1 = 0.88531 + 1.1ohox + o.hu657x2 (h.1.l2) G2 = 1.h366 — 9.5897x + 82.897'x2 - 383 95X3 + 829.38X“ — 691.71IX5 (h.l.l3) G3 = 1.0909 — 0.91970X + 0.13199x2 (u.1.1u) Gh = 0.h07h0 + 1.031hx — 1.09h1x2. (u.l.15) The polynomial expressions for the interval 0.h653lSXSl.0 are: G1 = 1.5338 - 0.29709X + 0.1I3202x2 (h.1.16) 02 = —36.18u + 2h1.ohx — 636.39X2 + 838.23x3 — 5h6.9ux” + 1h1.25x5 (u.l.17) G3 = 1.h35o — 1.7h66x + 0.30862x2 (u.1.18) Gt = 0.31091 + 1.55ohx — 1.7556x2 (h.l.19) 8.2 Three—Dimensional Pressure and Velocity Curves Application of equations (3.1.5h), (3.1.55), (3.1.57), (3.1.58), (3 2.8), and (3.2 22) to this case results in the following transformation equations: x = nl/n2 = Z/R (u.2.1) G1(X) = Fl(nl, ”2) = U(R> 6: Z): (u.2.2) 2(X) = F3(nl’ n2) = V(R§ 9,1Z), G3(X) = F3(nl, n2) = W(R: ea'Z), (8.2.3) Gt(X) = Fu(nl, n2) = P(R, e, z). The three—dimensional equations for pressure and velocity components are obtained by substituting the transformation relations (H24),Uua2hzmd(k23)imoemmfimm(ulu2)nnmgh(klum. For the interval 0.15Z/R50.h653l, the polynomial expressions become: U = 0.88531 + 1.10h0(z/R) + 0.1I1I657(z/R)2 (h.2.h) v = 1.h366 - 9.5h97(Z/R) + 82.897(z/R)2 - 383.95(Z/R)3 + 829.38(z/R)h - 691.71I(z/R)5 (h.2.5) w = 1.0909 — 0.91970(Z/R) + 0.13199(z/R)2 (h.2.6) P = 0.h07ho + 1.031h(z/R) - 1.09u1(z/R)2. (h.2.7) For the interval O.h653lSZ/R51.0, the polynomial expressions become: U = 1.5338 — 0.29709(Z/R) + o.lI32.o2(z/R)2 (h.2.8) v = —36.18h + 2u1.0h(z/R) — 636.39(z/R)2 + 838.23(Z/R)3 _ gratin/II)h + iui.2s(z/R)5 (h.2.9) 70 w = 1.8350 — 1.7866(Z/R) + 0.30862(z/R)2 (8.2.10) P = 0.31091 + 1.5508(Z/R) — 1.7556(Z/R)2. (8.2.11) The absence of the 6 coordinate in the transformed equations Tor U, V, W, and P signifies that for this case an axially symmetric ‘1ow is obtained. The U, V, W, and P curves are plotted as functions of R using as a parameter. For Z as a parameter, the plot intervals become: .OZSRS2.189lZ and 2.1891ZSR510Z. The Calcomp plotter routine is given nput data from the author's subroutines PC05El and PC05E2 which calcu— ate data points from the polynomial expressions for pressure and the elocity components. Appendix D contains the PC05El and PC05E2 subrou— The programs and a sample of the computed data for these curves. Figures 8.2, 8.3, 8.8, and 8.5 display the curves for pres— lre, radial velocity, tangential velocity, and axial velocity, respec— .vely. For the parametric values Z = 0.1, Z = 0.8, and Z = 0.7, the Irresponding tangential quasi—stagnation point locations are = 0.21891, R = 0.85968, and R = 1.5088. In each set of curves except 8 set for axial velocity, the location of the tangential quasi—stagnation int is pronounced by an abrupt slope change for a particular curve. gure 8.6 displays the real space functions U, V, W, and P on a single agram for the parametric value Z = 0.7. 3 Summary and Recommendations for Further Research Numerical solutions to the non—linear ordinary system of dif— ‘ential equations have been obtained for selected boundary conditions an the group constant E = -1. These solutions are plotted in Figure 71 8.1. Polynomial expressions were determined for each of these solu— tions and the polynomial expressions were transformed from the one- iimensional (X) space back to the three-dimensional (R, 6, Z) space. The three—dimensional polynomial solutions for pressure and the velo— city components are plotted in Figures 8.2, 8.3, 8.8 and 8.5. Solutions to the case E = —1 for boundary conditions other than those reported on in this chapter were investigated by the author. iowever, the investigations were not completed as the computer expense vas prohibitive. The author's bill for computer time on this investi- gation is $2,765.87. During this investigation, funds for computer time were generously provided by the Process Engineering Department of leneral Motors Institute, Flint, Michigan. Many interesting areas for further research are exposed by :his work. The author suggests that profitable results could be ob- ;ained from investigation into the case 5 = —l in this work, transfor- 1ations for a system of equations in spherical coordinates, and trans— formations for a system of equations including derivative boundary :onditions. U. QB ‘-' I 72 PRESSUREtP] Z=.1 SGURRE.Z;.8 LIHCLE.Z;.7 TRIRNELE x \\ \ \\ \ \ I A N 08890 1. 70 2. 50 31. 30 8'. 10 FIGURE 8.2 PRESSURE CURVES I 4. (.14 .70 fil‘ 8.5L1 73 RRDIRL VELOCITTIUJ Z—.1 SOURRE.Z=.8 CIRCLE,Z=.7 TRIFINBLE FIGURE 8.3 RADIAL VELOCITY CURVES 78 TRNGENTIPL VELUCITYIV] 22.1 SOURRE.ZL.8 CIRCLE.ZL.7 TRIQNCLE ”TM ____,_¢l.————A 48*" H // ’/K_/a/ / , _,/ / I I l I _r I 2.5L‘ 3,30 8.10 ~:.BU r1.70 5,50 FIGURE 8.8 TANGENTIAL VELOCITY CURVES 7S ,QXIRL VELOCITY (N) Z=.1 SOURRF.Z=.8 CIRCLE.Z:.7 TRIQNCLE lax—— «L M77— MIA/A 7r FIGURE 8.5 AXIAL VELOCITY CURVES IIIIIJIIIIIIII II UNLIIUNO 70 & Iu.rl|_ dl I'ILC r ESQ 030 l 10 I & fflJU 76 RHE.V—CIRCLE.H—TRIRNGLE.P-PLUS 7 REAL SPACE FUNCTIONS V. OPTIMAL SOLUTIONS 1 Application of Optimiggpion Techniques in X Spacey The mathematical optimization model employs the one— mensional representations for the conservation of energy (equation .2.63)) and the swirl parameter (equation (3.2.68)). For the case = -1, these equations become: _ 2 GM = H — 1/2(G§ + G2) where 02 = 0% + G3 (5.1.1) S = GS/(HX2). (5.1.2) 8 optimization problem is posed to discover those functions G2 and G at will optimize the function G8 subject to the restriction imposed the swirl parameter S. Let t1 = G8 - H + 1/2(G§ + 02) = 0 (5.1.3) and ¢2 = 03 — SHX2 = 0. (5.1.8) r augmented function for this case is written as: 2 A 1 2 2 : = Al¢l + i2¢2 = AlGu _ AlH + 57(02 + G ) + X2G2 — AQSHX . (5.1.5) 76 A 77 Comparison of equation (5.1.5) to equation (1.8.7) demonstrates that this problem is formulated as a classical Mayer type problem (refer to section 1.8). Following the proposition given in reference [81, pg. 33] for solving problems not involving derivatives of the dependent variables, a change of dependent variables is introduced. Let o’ = 07,, 8’ = 0.2, and Y’ = G. (5.1.6) Substitution of equations (5.1.6) into equations (5.1.3), (5.1.8), and (5.1.5) yields the following expressions for the constraint equations and the augmented function: 7. = of — H + 1/2(s’2 + V2) = 0 (5.1.7) 1 452 = 6’2 - SEX2 = 0 (5.1.8) ! Al ’2 ’2 ’2 2 (5 l 9) K=Alo—A1H+§~(B +7 )+>\2B —)\28HX. .. A single degree of freedom exists for this problem as there are three dependent variables (a, B,Y) and two constraint equations (5.1.7) and (5.1.8). Hence, one optimum requirement can be imposed on a. The following end conditions are specified for this problem: xi, xf, df, Yi, and Yf. Now the optimum problem is specifically formulated as follows: In the class of functions a(X), 8(X), and Y(X) which are consistent with the constraint equations (5.1.7) and (5.1.8) and the specified end conditions, find that special set which minimizes the difference Ar = Tf — Ti, where T = a. Note that for df specified, min— imizing the difference AT corresponds to max1lelng ai. 78 Applying equation (l.8.8), one Euler—Lagrange equation is ob— tained for each dependent variable. d. 3K 8K _ ETIEE’) — 33.. 0 (5.1.10) d 3K 3K _ 32435,) _ 38 _ 0 (5.1.11) iirié.) _ 25.: 0 (5.1.12) dX 37’ av Substitution of equation (5.1.9) into equations (5.1.10), (5.1.11), and and (5.1.12) leads to the following results: A1 = 0 or A1 = constant . (5.1.13) (Al + 2x2) 8” + (xi + 215) s” = 0 (5.1.18) (17” + iiY’ = 0. (5.1.15) Substitution of equation (5.1.13) into equation (5.1.15) leads to the following result: Y — L where L is an integration constant. (5.1.16) Since Al is a constant, an obvious solution to equation (5.1.18) is ob— tained by choosing 12 to be a constant. Let -A _ _ 1. (5.1.17) 12 — constant — 5—- 79 The value of Al is determined by applying equation (1.8.9), :he transversality condition. The specific transversality condition ?or this problem becomes: 2 :2 - B Y ’2 2 d _ _. _. B . a (Al(H + 2 + 2 ) + A ( + SHX )) dX + Aldo + (Al + 2A 2 ) 8’88 2 . f + A Y dY] = 0. (5 1.18) l 1 {quation (5.1.18) is to be satisfied identically and for the specified Ind conditions this then requires that: 81' = -1, (5.1.19) 1 rom equation (5.1.13), f d = . if Al O lerefore, = = = — , .l.2O Alf Ali Al and Al 1 (5 ) lus, from the application of the Euler—Lagrange equations and the 'ansversality condition; Al, A2, and Y’ have been determined. If expression (1.8.10), the Legendre—Clebsch necessary condi— on, is negative, the optimum obtained is a maximum. For this case, .pression (1.8.10) becomes: * ’ 5 ’<0 (5.1.21) Kyiyg 58: VJ where repeated indicial subscripts indicate summation. By inspection of the form of the augmented function, equation (5.1.9), it is seen that K . = o for j ¢ k. (5.1.22) Utilizing equation (5.1.22), the specific expression for expression (5.1.21) becomes: 22 A2 "2 Ka,a,(5a ) + KB,B,(6B ) + KY,Y,(6Y ) <0. (5.1.23) From equation (5.1.9), the following relations are determined: K , , = o, K828, = 11 + 2A2, K , = A . (5.1.2h) Upon substitution of equations (5.1.2h), expression (5.1.23) becomes: (Al + 2A2) (68’)2 + Al(6Y’)2ares favorably with the maximum Gh value determined by the solution rf the system of ordinary differential equations in Chapter IV. Figures 5.1 and 5.2 illustrate the G2 and GM curves generated rom equations (5.1.2) and (5.1.26) using S as a parameter. The S val- es chosen are S = 0.25, S = O.h5, S = 0.55, and S = 0.65. The maximum alue of GM occurs at the left end of the X interval where G2 is at a inimum. The curves were plotted by a Calcomp plotter which is con— rolled by the output data from an IBM 360 computer- The computer fa— .lity used during this investigation is located at General Motors 82 Institute, Flint, Michigan. Appendix E contains the program for compu— ting the data for these curves and the actual curve data. 5.2 Three-Dimensional Optimal Pressure and Velocity Curves The three—dimensional equations for optimum pressure and tan— gential velocity are obtained by substituting the transformation rela— tions (h.2.1), (h.2.2), and (h.2.3) into equations (5.1.26) and (5.1.2): P = H — 1/2(SH(Z/R)2 + L2), (5.2.1) V = [SH]l/2 Z/R. (5.2.2) Equation (5.2.1) represents the optimum pressure and equation (5.2.2) represents the tangential velocity for optimum pressure. The optimum P and V curves are plotted as functions of R using Z as a parameter and S = 0.65. For Z as a parameter, the plot interval becomes: ZSRSIOZ. The maximum value of P occurs at the right end of the R interval where R = lOZ. At R = lOZ, V is a minimum. Therefore, the maximum pressure occurs at the point where the tangen- tial velocity is a minimum. This same result is obtained in Chapter IV for the transformed equations of the solutions to the system of ordi— nary differential equations. These curves were also plotted by a Calcomp plotter. The :omputing program and the actual computed data are contained in lppendix E. Figures 5.3 and 5.h display the curves for optimum pressure Lnd tangential velocity, respectively. For the parametric values 62 CURVES S—PRRRMETEH S=.25 SUURHE.S=.U5 CIRCLE.S=.55 THIRNGLE.S=.BS PLUS FIGURE 5.1 G2 CURVES S PARAMETER I LLZH J GU-HXIS .16 ' O ._.___. .L- 0.08 CL). GU 8h 04 CURVES S‘PRRQMETER 52.25 SUUQRE,SL.QS CIRCLE,SL.SS T9IRNGLE.S:.65 PLUS 0150 ciau 0170 0150 0190 1100 FIGURE 5.2 Ga CURVES S PARAMETER 85 Z = 0.1, Z = O.h, and Z = 0.7, the corresponding maximum pressure loca— tions are R = 1, R = h, and R = 7. Hence, the maximum pressure value occurs at the rightwend point for each pressure curve in Figure 5.3. Similarly, the minimum value of the tangential velocity occurs at the right—end point for each velocity curve in Figure 5.h. 5.3 Summary A one—dimensional optimal expression for GM has been deter— mined for the case where the G2 expression is governed by the swirl parameter and the expression G2 is required to be a constant. Optimal curves for G2 and GM are plotted in Figures 5.1 and 5.2. The expres— sions for G2 and GM were transformed from the one-dimensional (X) space back to the three-dimensional (R, 6, Z) space omitting the passage to the two—dimensional (n1, n2) space. The three—dimensional expressions for optimal pressure and tangential velocity are plotted in Figures 5.3 and 5.h. 86 FRMILY 0F UPFIMUM PRESSURE CURVES 52.65 Z=.1 SOURRE.Z=.Q CIRCLE.Z=.7 TRIRNGLE 32 I SSUU‘RE (P) .2” I UPIIM%M PRE 16 0. 0.08 I 00.10 0190 1 . 70 ausu 3'. 3E1 u'.10 4. 90 FIGURE 5.3 OPTIMUM PRESSURE CURVES 87 TRNGENTIRL VELOCITY FUR UFTIMUM PRESSURE 52.65 D Z=.1 SUURRE.Z=.Q CIRCLE.Z;.7 TRIRNGLE ID I J L00 UCITYlV) 030 l .nuLnuan VtL 060 0. 4'0" U.8U ‘u UU 1, 10 0'. an 1'. 70 2150 3’. 30 u'. 1:: 4190 5. 70 6.51‘ R-RXIS d‘ FIGURE 5.h VELOCITY CURVES FOR OPTIMUM PRESSURE li.‘ Ill l".\l 1" El l: llll. BIBLIOGRAPHY 10. ll. l2. l3. BIBLIOGRAPHY Akhiezer, Naum I., The Calculus of Variations, Blaisdell Publish— ing Co., New York, 1962. Alexandroff, P. S., Einffihrung in Die Gruppentheorie, Deutscher Verlag der Wissenschaften, Berlin, 195H. Batchelor, G. K., "On Steady Laminar Flow with Closed Streamlines at Large Reynolds Number", Journal of Fluid Mechanics, Vol. 12, Part 2, pp. 177—190, 1956. Beckett, Royce and Hurt, James, Numerical Calculations and Algorithms, McGraw—Hill Book Co., New York, 19 7. Benjamin, T. B., "Significance of the Vortex Breakdown Phenomenon", Transactions of the ASME, pp. 518—52h, June 1965. Bichara, R. T., and Orner, P. A., "Analysis and Modeling of the Vortex Amplifier", ASME Publication, 69-FLCS—20, 1969. Birkhoff, Garrett, H drod amics, Second Edition, Princeton University Press, Princeton, 1960. Bookston, J. M. and McKeachie, D. D., "Notes on the Numerical Solution of Differential Equations", General Motors Corporation Research Laboratories Report GMR 161, July 1958. Carnahan, Brice, Luther, H. A., and Wilkes, James 0., A lied Numerical Methods, John Wiley & Sons, Inc., New York, 1969. Chow, Chuen-Yen, "Swirling Flow in Tubes of Nonuniform Cross— Sections", Journal of Fluid Mechanics, Vol. 38, Part h, pp. 8A3- 85u, October 1969. Deissler, Robert G. and Perlmutter, Morris, ”An Analysis of the Energy Separation in Laminar and Turbulent Compressible Vortex Flows", Proceedings Heat Transfer and Fluid Mechanics Institute, 1958. Dickson, L. E., "Differential Equations from the Group Standpoint", Annals of Mathematics, Second Series, Vol. 25, No. A, pp. 287—378, June 192h. Donaldson, Coleman duP. and Sullivan, Roger D., "Behavior of Solutions of the Navier—Stokes Equations for a Complete Class of Three Dimensional Viscous Vortices", 1960 Proceedings of the Heat Transfer and Fluid Mechanics Institute, Stanford University Press, pp. 16—30. 88 19. 21. 22. 33. 2h. 89 Dussourd, J. L. , and Schivley, G. P., "An Analytical and Experimental Study of a Vortex Pump", ASME Publication, 70—FE-32, 1970. Eckert, E. R. G., and Hartnett, J. P., "Experimental Study of the Velocity and Temperature Distribution in a High Velocity Vortex Type Flow", University of Minnesota Heat Transfer Laboratory Technical Report No. 6, September 1955. Einstein, Hans Albert and Li, Huon, "Steady Vortex Flow in a Real Fluid", Heat Transfer and Fluid Mechanics Proceedings, Stanford University Press, 1951. Ewing, George M., Calculus of Variatigpg with Applications, W. W. Norton & Co., New York, 1969. Frame, J. 8., "Matrix Theory and Linear Algebra with Applications", Lecture notes — Michigan State University, East Lansing, Michigan, 1968. Gartshore, I. 8., "Recent Work in Swirling Incompressible Flow", National Research Council of Canada Aeronautical Report LR-3h3, June, 1962. Greenspan, Donald, "Numerical Studies of Prototype Cavity Flow Problems", The Computer Journal, Vol. 12, No. 1, pp. 89—9h, February 1969. Greenspan, Donald, "Numerical Studies of Viscous, Incompressible Flow for Arbitrary Reynolds Number", University of Wisconsin Computer Sciences Technical Report No. 11, January 1968. Greenspan, Donald, "Numerical Studies of Two Dimensional, Steady State Navier—Stokes Equations for Arbitrary Reynold's Number", University of Wisconsin Computer Sciences Technical Report No. 9, October 1967. Greenspan, H. P., The Theory of Repating Fluids, Cambridge University Press, London, 1968 Hall, G. G., Applied Group Theory, American Elsevier Publishing Co., New York, 1967. Hansen, Arthur G., Similarity Analysis of Boundary Value Problems in En ineerin , Prentice—Hall, Inc., Englewood Cliffs, New Jersey, 1965. Hildebrand, Francis B., Finite Difference E uations and Simulations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1968. Hilsch, R., "The Use of the Expansion of Gases in a Centrifugal Field as Cooling Process", The Review of Scientific Instruments, Vol. 18, No. 2, pp. 108—113, February l9h7. 28. 29. 30. 31. 32. 33. 3h. 35- 36. 37. 38. 39. ho. A1. M2. 90 Kawaguti, M., "Numerical Solutions of the Navier—Stokes Equations for the Flow in a Two Dimensional Cavity", Journal of the Physical Society of Japan, Vol. 16, pp. 2307—2318, April 1961. Kolf, R. C., "Vortex Flow from Horizontal Thin—Plate Orifices", Ph.D. Thesis, University of Wisconsin, Madison, Wisconsin, 1956. Kwok, C. C. K., "A Theoretical Study of Vortex Flow in a Thin Cylindrical Chamber", Bendix Technical Journal, Vol. 1, No. b, 1969. Lamb, Sir Horace, Hydrodypamics, Sixth Edition, Dover Publications, New York, 1932. Ledermann, Walter, Introduction to the Theory of Finite Groups, Interscience Publishers, Inc., New York, 1957- Leitmann, George, Optimization Techniques, Academic Press, New York, 1962. Lomont, J. 8., Applications of Finite Groups, Academic Press, New York, 1961. Lugt, Hans J. and Schwiderski, Ernst W., "Birth and Decay of Vortices", Physics of Fluids, Vol. 9, No. 5, pp. 851—859, May 1966. Mack, Leslie M., "The Compressible, Viscous, Heat-Conducting Vortex" Cal. Tech. Jet Propulsion Laboratory Progress Report No. 20-382, 1959- Maker, Paul, and Mayer, Endre A., "Control Characteristics of Vortex Valves", Proceedings of the Fluid Amplification Symposium, Vol. II, U. 3. Army Material Command, pp. 61—83, May 196k. Mayer, Endre A., "Large-Signal Vortex Valve Analysis", Advances in Fluidics, Proceedings of the 1967 ASME Fluidics Symposium, ASME Publication, pp. 233—2h9, May 1967. Mellor, G. L., Chapple, P. J., and Stokes, V. K., "On the Flow Between a Rotating and a Stationary Disk", Journal of Fluid Mechanics, Vol. 31, Part 1, pp. 95-112, January 1968. Michal, A. D., "Differential Invariants and Invariant Partial Differential Equations in Normed Linear Spaces", Proceedings of the National Academy of Sciences, Vol. 37, No. 9, pp. 623-627, September 1952. Miele, Angelo, Theory of Optimum Aerodynamic Shapes, Academic Press, New York, 1965. Milne, William Edmund, Numerical Solution of Differential Equations", John Wiley & Sons, Inc., New York, 1953. M3. hh. h5. h6. h7. h8. A9. 50. 51. 52. 91 Milne—Thomson, L. M., Theoretical Hydrodynamics, Fourth Edition, The Macmillan Co., New York, 19 . Morgan, A. J. A., "The Reduction by One of the Number of Independent Variables in Some Systems of Partial Differential Equations", Quarterly Journal of Mathematics, Oxford Second Series, Vol. 3, No. 12, pp. 250—259, December 1952. Olmsted, John M. H., Advanced Calculus, Appleton—Century—Crofts, Inc., New York, 1961. Pearson, Carl E., "A Computational Method for Viscous Flow Problems", Journal of Fluid Mechanics, Vol. 21, Part A, pp. 611—622, 1965. Pengelley, C. Desmond, "Flow in a Viscous Vortex", Journal of Applied Physics, Vol. 28, No. 1, pp. 86—92, January 1957. Protter, Murray H. and Morrey, Charles B., Modern Mathematical Analysis, Addison—Wesley Publishing Co., Reading, Mass., 1965. Springer, E. Kent, and Patterson, F. M., "Experimental Investigation of Critical Submergence for Vortexing in a Vertical Cylindrical Tank”, ASME Publication, 69-FE—h9, 1969. Torda, T. P., and Agarwal, Urmila, "Numerical Investigation of Unsteady Laminar Incompressible Boundary Layer Flows with Cylindrical Symmetry", ASME Publication, 69—FE—h7, 1969. Wheeler, John A., and Ruffini, Remo, "Introducing the Black Hole", Physics Today, Vol. 2h, No. 1, January 1971. Wilf, Herbert S. and Ralston, Anthony, Mathematical Methods for Digital Computers, John Wiley & Sons, Inc., New York, 1960. APPENDICES APPENDIX A APPENDIX A NUMERICAL DATA FOR THE SOLUTIONS TO THE SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS A computer program utilizing Hamming's modified predictor— corrector method for numerically solving a general system of ordinary differential equations is presented in this appendix. This program is written in Fortran IV language and includes a file save such that the computed output data can be stored and used as input data to the sub- routine which controls a Calcomp plotter. The IBM scientific subrou— tine DHCPG mentioned in Chapter IV is included in this particular pro- gram. Table A.l presents the numerical data for the solutions to the system of non-linear ordinary differential equations given in Chapter IV. In addition to values for G , G2, G3, and GA’ values for H, S, L2, and we are listed. The values of these functions at each value of X are displayed in the order shown in the following 2X5 matrix: X value G1 G2 G3 Gu H 92 93 Z~DZ-N~ God OD Daeomuooazzvun A~¥>Hauwatwh> i—DZ.~H~ Oamm DO _ ofln¢v> oaflamv> oaH.N_> cauamv> ~\\\mom~uuxm..4<>KWH2— hDO HZ~¢Q .wh 4 ovh<£10u zzao~wao~whumz Am~.XN ..mZO~h>Hab04auohmdwb~amgo ZOumeIHO “ON-OH~XD<.AONv>wa.~MN~>-Am~h£¢a ZO~meZ~O x ZO—m~uwda wAmDDO bQD zoumuuwxa meDDO Oman—Q ummdm th wwu<4amx E>— ZOIIDU oo Oumm u bwud Uhux ouuwzuboow mOfi\ .awwz.omovudwuoedauxo.kahahaoooouomxz.mvu¥m—D wa~m\ Ow mDfi\ m20~p<30m 4U<¢DUU< >mohu¢¢wo.>.xvahao 4449 ooooooux come ~x.~p.hdo.x3zwoo>.h£ma.004: 44u.~.> ONum zunz.~u~ Oqu on tzuhzou coma z—ozxouua—_>¢wo coda tuazoau~ oo- Do and OONd Oh Do ooue->¢wo ooo~ , Z~ozaun~ Good on cam Godoowa.oo«azzvm~ O¢N+OOM\wZ~b_uwzmhwu xuerhtxa Numuzou ooow oomw.ooom.oomm-lwuzouyum .x.mpohaoex3xwo.>.hz¢a.ouar 44xwo odd IHQZ.HH~ odd on on ONa Db Ow .Oua_.>xwo com .1 m ,_ 9h 95 Aat.ba3.u2xa.zuozam41~.>ch.>.x.a~3© wznhDOKmDm Dzw szhwx tz~hZDu dado szhwx aN~emH.XNN.o.mam.....oomuw»...ooom~wa.\0h oo..xovh.x.A¢-o.h.wh~mz mama .p~.-u~ a+w~uw~ ~I~oz+~pw_u~oz_ Noz.>>H.z~u_pp~ mafia oo .m~.>uz~ _-.>u~oz ~+xxzuxxx oufi— Nada -H0.-~o.-~oafiu.-.>.ua fim.>\.~**.~.>.u.m.> Natam.>+mwu.~.>u.s.> .~**x*.ma>.\.~**a~.>_u.o.> .N\.~**.m.>+~**.~.>+~**.a.>.+L¢.>u.m.> xx..mao+a~.>.unmvo <\.h~.>*o~.>.un~.o <\.¢.ou.m.o wxuu.¢.o x\.~+xuw ~**.~.>Ixxfia~.>*<.lnu .m.>l.~.>*xu< a¢.- zoumzwzuo “-o.fl~.> zoumzwz_o x zo_w_uwma mnmsoo wz~s_.mz~pw~.muzo~.bonaa .pmmwh~.>>~ zozzou AQ.>.x.puu mz—p302m3m FWHJ Uhux sz ¢aom~ xum .m~.N~.N~.¢H 24 AN.Q.¢ hm .ouhboum auvhxxanhOJax whaz~\.A~.hzxal~vazxa_nawhmx Oanhaz~ 0N~.0Nh.~mm~ONlmhaz~.mm mkazuaovo 00 men >z> mhwoalna_vx> mhwcaueuvzz>> mhwoalua~.xx>> x<£>~.~u_ OMS Do .~_>mwou.~vw>_ 00 Oh DU >>~nx~ ¢oemoomoa>>~lzuozumu ouuxxx oufifiwu ndvhzxauaa m.¢m.m..-hzmalx.u~ baa zo~m_uwxa wqmaoo .ONVAOhm> zoumzmruo “ON—Zz>>.aoN_xz>>.ACva>..o~.oo-w>..ON—>Z zouwzwzuo .ON.ZHZ>>..ON.X>.“ON.hofi.~0N.hu~ zoumzwzuo “~thaaea->¢wo..~.> zoumzwI—Q wzuba.wz_hp~.wu20~.h04d~obmmwhua>>_ ZOIXOU 0N~ «mm mNh deum Dodo ah co ¢0 cw Aamm.o~wh_¢3 o¢moommeo¢maoooooolx.mu NDZ—hzou o¢~.o¢m.o¢m~b04a~.u~ wDZ_hZDU .x~.~u_.a_v>vexamvwhumz wazubzou onuxxx «+pfiwuuppfiu ¢NN.MNNO.¢NNnfi-luxxx_u~ ~+uxxxnuxxx MNNo D» 00 .~+.oooH\pu—mup- .m.hzma\.AdyhzaalaNgbzmavup_~m NNN O» DU ~+wfifi~ufififi~ ¢NNO.MNN.NNNo¢mlfisfiHvu~ .~—.>u.~—.aobm> x~.~u_— #90m 00 zashwx oHu.m~hzma >>>xxxux Au—.aChm>ua~—.> xmodu- moon on amen-doomeooomaleZOZOHyum ~+wzozouumzozou moom.moomod@om~.>mzou_>¢wo.uu Noom.~OOMoHoom.hxdthIx.m_ ooom.~oom.000m.ooooootxvm— tzuhzou hmmzo-mao NoznaNNv> ZneNozeruznannmeodmd a.¢.>z¢.xo..m.>I¢.xo..N_>I¢.xo.AHV>I¢.XO.XIH.X¢~.OZ Imx\~pxlnaa.zz>>la~_>.mm<.u~ acou>x omooeomoo.ONoea>x~mH ..oo~\.~.22>>.wmx o~o.o~o.ooo..—.>xwo~mu 000 D» on «~g>nanmxz>> dunmvhuu mooaoooooooa.~.xz>>oau.>vm~ ~+n~.ho~un~.hu~ mooo¢ooo¢ooa>xIA5_.xz>>lfiuv>~mm<.m~ doou>x odoooo~ooaoooon>xvuu «ooo~\auv>.mmx oooemooomoo.n~.>xwo.u~ 000 Oh Do ~+a~vhu~uauvbu~ u+amahuauauvb0fi oooo¢mMoooo.a~.>dwo.w_ mmmooooemMMAGavhzmalxwu~ ~00.Nmm.Nocn._~w>un~vz~z>> ooaeooooomaa.-Z~Z>>l«~.>_u~ anv>uam.x> o~o.ONo.ONoA.~vx>c.~.>.mm x~oau~ 000 Do am Oh Du >>>xxxux ~¢mammea¢mnooowooixauu zzahwx .awbmx.AA~h£dd.2~z>>ox>ehhoou.m>~boamha Ja~.~n~.n->vnm.wb_az «+x~uxzx>~ .\\\\~b .e.».x4huL 4440 .4H.4N4> ON.MNNw.ONa4IIuZDa~.u~ .Am.m4w¢.xw4_\m.m4w¢.m.¢4m.¢~4b>~.4n4..~4>4.x.dpaom.o~wpuxz 0N.N0.0N.wUZO—vu~ 4+4fiu41 Hao+aauaa mwemw.ON.aalxau~ swehm.nw.Hoooo+.N\AXXIx.laxlaa.mm< 4&4 w324hzou 4¢owemmo4¢omnAmvhzxalxvuu ._.>HAH+_.thu_.w> x~oana mm 00 xna4.thu—4w> 4+»houuuhhou~ awpmx+»04axuh04mx oomooomaonhO4QXvauH 04m.o4m.oomA4OOO.+.N\nxXIx.tax1b04axumm< .u4 mooooabO4a44m4 wDZHFZOU A~v>mwouauvm>ua4422>> duauuhup ooo.ooo.m4o~a~vzz>>taav>vm~ 040m 4OON OOON Hmom ON MNNw om No 04 mm hm 4¢om mm 4m 00m 04m CNN com 000 muo N40 100 A.X1wo..44>..4.hzma ZO~mzuzuo mi~h4emz~bo~.muza_.bO4a—.hmamh_.>>~ zozzou Axeapobao.x3<.u414.zHQz.>mmo.>.thavouaI wZHkDDmew Dzw szhwd xn>>>xxx .HMamvbzxa “hom4wm.m_.k<£xod .4.x>..~.z~z>>.Au.>._~o¢h.0~wh~m3 x~.4u_ w¢h OD 242 w34<> hzwmzau > ..h42x0u A~¢h.o4wh~¢3 .xzz>~.4n~.-.>.amvwh~¢3 4+x<2>uuxzz>~ ~\\.~om4w..u x 4m wammh m. I hzwzwmuzm ._v>u.4.NVXD< 2402.4n— 04 DO I+xux 004 Oh ow uuzm~ ...N4XDd do 204hxwouaaamvx3< 2.02.4HH w 00 szbmx o.~.fiam4I~4u~ o.m.oanmvh2mavd_ «Aw-hao.hzxaezuozem4ru.>¢wo.>.xvahso 44 024hxxwa.>.x.h0u 44 oz_bzmwo do ZO~hnfimouvx3< A~4>xwou._.nq.x3< o4 '4"th rd DU UL) UU UL) UL.) 102 .avbimanx A>xwo.>.x0b00 44<0 I+xux 4H2 304 Op 00 ¢uzw_ muz “40>aweu~4.040x34 .u4>n._.m.x3< z-oz.~n~ ON 00 é>mwoa>.x.h0l 4440 I+xnx omZO~h0mem AH Z0xoh00x0h00mm<fiau.m40x3<+h4wouh4wa 1.02.4u4 04 OO .OHh4wo p400 wD4<> hmwb do zo~hxmon.~.@0x3< n40>ua_.N.x3< zuozoaua ¢4 DO Nuz .>xmo.>.x0h0u 44<0 I+Xux 4N a4 04 an m4 ¢4 UL) UL) Qt.) 103 Ifi¢o+xuN ZCHH<0D4 woqxohm >x<~40x3< Z< m— N ~*¢.+.~.ZOXD Nuauom0x2< ._.~+ZOXD<*IHN £402.4nu 40H 00 .ODIHMX «Oh0w1xc0im0huuowma Ozmhm<»WIu4mm hoz wIH mom me4<> 02~h¢0 wmeaZQO 00a: wz—hboxmbm do b1 h4wo+h4wo+H4wouh4wo Aueo40x3<+fl~.o.x3 b4mc+b4wonh4wo «~.OOXD<+.H.OOXDmwouau.~+20xs< n~0>unu.zvx3< zuoz.4u~ 0N DO OON.OON.mNn¢IzOu~ o.¢N.oaam0hzxawu~ .4p.haoohzma.zmuz.w4l—.>xwo.>.x0&h33 4440 A>xmo.>.x0b0u 44<0 ~+zuz I+xux Aa~0>sz*hooood¢Oe+n~.O4Ox3<§mmmmmONoI~ mN «N MN a”.00x3<*h00049~o+-.m.x3<§mhm..*I+A_.40x3 NN .~.>xwou.~.4~.xa< Z~Oz.~n_ NN 00 UL) UUUU 10h 4+an 2 #00 Oh 4+2 000340 0 Z4Ih mmw4 z huz .~.h+z.x34u4_.o+20x34 44.20x04u6_.4l20x04 £402.4HH MON 00 heNHz MON 00 wzouh4004 004x0hm m~wa 002410 0H x34 00 030a 0:» mwmadu wnz 40N.NON.¢0N.0IZ.¢~ Mnawhmu .OOIhwz dOh0wmzoul1050uowxa ow40400£ mmzuzz4r hm4hm 30? .OwhDazo0 0&4 me44> ozubxdhm 0041244 «on hzuoalx4wxm w4m~mmoa 3m4..4N.m4.M~.ov 0h 00 AHO>000#I*0¢044>4.+4n.50x04*ommmONo4+4 ¢ON NON 40N OON A4.00x34#~om¢4mm.1-.m.x:4*moo~¢h4o+._.z.x04u-0>0¢04 zuoze4uu 404 00 4>100.>.N0b0u 4440 I+xuN N*momNMw.M+Au.00x34#mooomoomla~.m.x:4*¢00~0-.+.~.20x34u.u0> Nu._.b0x34 a~0>00081uN zuozo4n~ M04 00 A>xwoo>oN4h0m 4440 I§N~Mhmm¢e+xu~ ~*oom~mm4o+a~.m.x34*o-oco~.+n~oz.x34n-0> ~H-aovx34 fiuv>mwO*IuN £402.4nu N04 00 A>xwo.>.N0b0m 4440 UU DU UUUUL) 105 m~N.m4N.N4N4~.I.m04%.4l.4N0hi¢aux0m040404 N4N4aN4N~.¢4N..ANOszaIx~*I.u~ zmnhwx N4N.N4N.M4N.4Mlu4I~.u~ N4N.44N.N4N.Am.htma0u_ .apobaoobzma.z_02.u4xu.>100.>.x0ah00 4440 n>mwoo>ax0h0m 4440 .0000 014 ._.> 0240: h4Ih .00>44I mm #02 hsz I NNN.NNN.OHN.a40hzmath4woum— 444.040x040mm4§4~.m40x34+h4wonb4wo £002.4HH DON 00 nouh4wo 0040300 00 00>44: mm hmaz I dewaz pmwh «H.040x04*h4owm¢h0o+h4wonamv> h4wOI~_.o4.x34ua_.c40x34 nfi.~.m+z.x34lnuoo+zvx344 +.~.o+zvx04+4_0>m000#1#.m+44.Mlz0x04l.H.4lzvx04fioovfimN4cuh4woo zmozequm mON 00 >x00 z~ 00h410200 w— x0h0~0010 0000—002 00 w>0h4>~m00 4>mwoa>ux0p0d 4440 .004m0hm >0444Hx04 Z4 m24uz h400 .> z— 00h4xwzwo 04 10h0~00mm 0040400: .x34 00 04 30d 24 00b4xmzwo 302 mm 10h0uomxa p400u4—aoawx04 .4.040x34fimo4cmNaalh4wouau4> nA—.¢+z.x04+-.¢+zvx344 +4H.m+z_x04la~.o+z.x04+a~.o+z.x240#I*MMMMMM.H+A~e¢120x04nb4000 2H02.Hu_ NON 00 4+awhw~uawhm~ I+xux .40>000u.~.o+20x04 A40>nn~oul20x24 2_Qz.~u~ MON 00 > 1050w> hxmz do 20—h4h;d200 ¢4N M4N N4N 44N O4N mON NON OON MON DU UU UL.) UUU 106 I*~Aue¢+z0x04IA~.m+2.x04#.cl.4.0+20x340#m~04fla4ol440.4l20xz44 +4_.Mlzvx04#-O¢+fi~.Ntzvx04*.mM4+_~.HIZ0x34#.000*0N000M00.un00>0 2402.4n4 ¢NN 00 Ona0bm— IamonI 04NoMNN.MNN.0MIm4I~.u~ 4+04I~uu4I~ 00>44I 00 hsz I AON 0b 00 ..~.¢+20x34+~ NNN H400+4~0>1000#I*~4440M.m|440.MI20XD4I._0>0*M00Ncoomna4.040x3404NN h400+h40o+p400nh400 I4.m+z0x3<+a_.o+z0x34np400 a~.~+z0x:4ufi~.¢+20x34 ._.M+z.x04nfi~.m+20x04 .~.m+z.x34na~.c+20x04 “4.0120x04um_.ml20xs4 .~.¢Izux04n.4.Nl20x34 .~.le_x34uh4.4lz0x34 z~oze4n_ 4NN 00 oua0bm4 4:04IHuu4I4 I+IHI 40N.ONN.Homaoozuloozulawhmu.00 Nxawhw~u00z0 ©4N.o~N.4ONe¢Ia0hm~_u~ w4N.wHN.4ONa~IZIu~ 4ON.~4N.~4N.4olIOu~ 04m44—4>4 0x4 M0044> 0240000000 >m4mm000z 444 04 0040000 00 04000 I ~ON.04N.04N44¢0hzma*o4olp40000~ ~0N.N4N.~ONAI.0~ xlINOHZmduI ONN o4N 04N >~N 04N 04N N4N4 UQU UUUU 107 020 OON 0h 00 .4—>¢00uh~.M+20x34 II40>100+4 h400+40.o+z.x340*I*H4440M.MI.AHO>I40.HIZOXD40*MOONooomunH.040x040 b400+h400+p400nh400 «0.4+20x04+h~.m+z.x34uh400 £002.4n4 QNN 00 4>100.>.b4000p00 4440 AI+IOIF40QHF400 4~.¢120x04n.40> .4.>xmonn..m+z.x3< AHO>uI~.~Isz3< £002.4u0 mNN 00 .>x0o.>.h4000p0u 4440 ~I+I01xuh400 leux .~.m+20x34nfi~.¢+z.x34 44.N|z.x:4nhn.mlz.x04 I»..~.¢+:.x:<*.o~ Ifi~am+20x34*.04+40.o+z0x340*m~M¢MNO.l.A4.¢lz_x34+n~.Mlzvx34*.0044 +A_.le.xzq*.mM4+.~.4I20x04*.N40*MN000M00.HA_.¢Iz.x:40 ONN ¢NN 00 0mNMomoo 40 04M¢NN.0 4O 0NOM4M.0 40 00000N.0 00 04~¢4ooo 00 0~Nmmwoo 00 43NON~.0 40 04M¢N4ea 00 00000Noo 04 00 040N4M.0 40 050F4moo 40 0o¢mom.0 0Nmoomeo 00 0N¢aomo0 00 0AN>0>.0 40 000044eo 00 wocomNto 04 00 0mom¢M.0 4O 090M4N.0 4O 0040ncoo 0bmomm.0 00 0Noowmeo 00 00MOcho 4O 04mo44o0 00 0000MNoo 44 00 04mooMoO 40 00044N.0 4O 0wthmoO 40 00000No0 00 00¢mhmco 00 000M0®.0 00 0000mm.o 4O 04>M44oo 00 00004N.0 M4 00 00¢¢OMeo 40 4rM®0Neo N0 00N004o0 0mmmomeo 00 0¢N4N0o0 00 0¢Nwwwoo 40 0¢4444.0 OO 000004co N4 00 0oom4¢oo 40 00000N.0 No 0mo¢¢4.0 40 00000N.0 00 0owonm.0 00 0nowmaoo 00 0NM040.0 4O 040004.0 00 0000>4eo 44 . 00 0000M¢o0 4o 00040Nuo N0 0NM®04.0 . 40 00000No0 00 0M4¢¢m.0 00 0mM~¢Oo0 00 0MMON0.0 40 0mm~04co 00 000004eo 04 00 005N¢¢uo 40 000¢0N.0 N0 00P004co 4O 00000N.0 b0 0mNhMm.0 00 0N40mooo 00 0N04¢0oo 40 004004o0 00 000004o0 o 00 0w¢¢m¢o0 40 LNOMONaO N0 0004MNo0 40 00000N.0 00 0040mm.0 00 0~0¢oooo 00 LmMMMOoo 4O 050404.0 00 0OOO¢4eo m 00 0cooo¢o0 4O 00NNON~0 NO 0whm>No0 % 40 00000N.0 00 0NONNm.0 00 040Mho.0 00 0~¢mcooo 4O 040M04oo 00 0000M4.3 h 1 00 0004h¢oo 40 4Th40N-0 N0 0n040Moo 40 00000N.0 00 0NN®4m.O 00 0M00~0.0 00 00M4>0o0 40 0NOM04oo 00 0000N4oo o 00 04mh~¢eo 40 00¢40Noo N0 0004MM.0 40 00000N.0 00 0h¢m4meo 00 0N¢N00o0 00 0nN-0oo 40 0N¢N04o0 0 00 004mmceo 40 0M04ON.O N0 00MMOM.0 40 00000Noo 00 0h044m.0 00 04womoeo 00 0¢0mmoeo 4o 04w4o4uo 0 00 0wam¢o0 40 0h000Noo N0 0JOMO¢o0 40 00000N.0 00 0waom.0 00 00N4ooco 00 0o~wmoao 40 00N404.0 00 003044oo M 00 0M¢¢0¢n0 40 0MMO0N.0 N0 00¢w¢4o0 40 00000N.0 00 0¢rmomoo 00 woomOmoo 00 04¢¢OOoO 40 000004-0 00 0OOmo4oo N 00 0OOOOma0 40 LOOOON.O N0 000000c0 4O 00000N.0 00 woooomuo 40 000004o0 4O 000004o0 40 000004.: 0 000004oo 4 4m0> 4¢0> 4M0> 4N0) 440> x 02 4o 00000Noo 0 O 40 00000N.0 O O 40 00000N.0 0 O O 0000N4.0 m 0 000044eo 4 O m200p4300 444b20000040 >x4z4000 00 20bm>m 0Ip 04 nz04pa4nm 100 4440 440400202 4.4 04044 109 4 O 40 4 O 4 O 40 40 0M0004o0 0mmoo4.0 0M0004o0 0M0©04o0 000004o0 0omao4o0 0omoo4oo 0Nwoo4oo 0omoo4n0 0wwoo4o0 00000Noo 0N¢OONco 00¢OONoo 0F000No0 0oooo4oo 00000Nc0 00000Nc0 00 00 OO 00 00 00 00 00 00 00 00 00 00 00 OO 00 00 wooomooo 0moomo.0 0000m000 004omo.0 0440mo.0 0N4omooo 0N40moao 0N4omoo0 0M40mco0 0M4omo.0 0¢4omo.o 0N40mooo 0Moomooo 0Noo¢oco 0¢~o¢o.0 0m~om0.0 meONooO mo-mooomeao oo meamwo.o Noumo¢~o¢.o oo mmo¢mo.o Noumaooem.o oo mmoemo.o Noumoosom.o oo mmmmmo.o moumwom-.o oo mooomo.o Nonmmwop4.o oo mmmswo.o Normmmeo4.o oo mossmo.o monmamemL.o oo m44mmo.o moum4~m~4.o oo meommo.o ~07m~om44.o oo moaomo.o Nonma~m¢4.o oo mma4oo.o Nonmmo~m¢.o oo mmmooo.o 407mom404.o oo moooos.o Helwaemm4.o oo mewmo~.o aonmomoom.o oo maamms.o oo momm¢4.o oo moowe~.o oo mem~o~.o oo mm¢4om.o 40 0mhmoNo0 40I00N0¢oo0 40 0¢mwomoo 40I0mwooweo 4O 0¢000Nno 40I0O40M0oo 40 u¢000Nno 4OI0¢N4-oO 4o 00NO0N.0 40l000Nmoeo 4O 04MO0Neo 40I00004oo0 40 0nMO0Neo 40l0nNo~meo 40 0MMOONo0 40I00>mNmoo 40 0¢¢OONoO 40|00Ncomoo 40 04mOONeo 40I0w¢ON¢o0 40 0OthNo0 40I0N00M0o0 40 LOOONNeo 40l0mm4mono 4O 00000N00 00 0mmN¢4oo 40 00MO0No0 00 0m4¢a4oo 4O 04MMMNo0 OO 0NN04¢o0 40.00MN4No0 00 000¢¢m.0 40 0M~NMNao 00 0MOM¢Ooo 4OI000¢0N.0 4O 0N00¢4o0 4OI0¢4Mm4co 40 0400¢4.0 4OI0hoom4oO 40 0400¢4oo 4ol0040M4co 40 0OOO¢4eo Nol0wm-0.0 40 0M00¢4o0 N0|000N~wn0 40 0N0044-0 NOI0~NNhho0 40 040o¢4o0 N0|0oo~Moeo 40 0oow¢4o0 N0l0¢M4omo0 40 0000¢4co NoleN4Mmo0 4O 0OOO¢4oo N0i00MNoooO 40 0¢MO¢4co 40l0m¢¢omoo 40 0mwm¢4oo 40l04oow¢o0 4O 0¢Nm¢4eo 40l00¢OMOo0 40 0mNh¢4oo 00 0MM04mo0 40 0O44¢4o0 40 0Nm004o0 40 0N¢MM4o0 40 0MMOO4.0 4O 0400N4co 00 0hM00¢oO Mm 00 wmhmo¢o0 NM 00 0N400¢eo 4M 00 000ho¢oo 0M 00 0hwoo¢o0 ON 00 0omoo¢c0 0N 00 00N004o0 EN 00 0¢omo¢eo ON 00 0Nomo¢o0 0N 00 04mmo¢oo 4N o O 0OOmo¢oo MN 00 000004o0 NN 00 00000¢o0 4N 00 0OOOm¢uo ON 0 O 00004¢o0 04 00 0000~Moo 04 O 0 4.0.0200. 0OOOMMo0 44 4.4 04044 4OI0>000~oO 4O 0¢mhnNco 00 0N440No0 40 0N0004.0 00 0M40Nooo 00 00Nommo0 OO 0®~00Mc0 40 000004o0 00 0hM¢omoo om 4OI00M4¢OoO 40 03000N.0 00 0M¢04Noo 40 0N0004eo 00 0mmcmo.0 00 0h-hmoo 00 waofinMco 40 0NMOM4c0 00 0~M¢¢mo0 o4 40I00M400o0 40 0~¢00N.0 00 0omoo4o0 4o 0Nwom4o0 00 0450Mono 00 0M040mo0 00 0N0¢Mmeo 40 0o4om4oo 00 0~M¢Mmoo 04 J 4DI0OM4w¢.0 40 uMn40Noo 00 0ooms4oo .. 40 0N0©04o0 00 0¢¢N¢oeo 00 wommoono 00 0M404M.o 40 0noo¢4o0 .00 0HM¢Nmeo 54 40I0Mh40¢oo 40 000NONo0 00 0Mm4m4o0 40 0Nmoo4oo 00 00>¢¢ooo 00 0mmo4oeo 00 0NMM®Noo 4o 0o~o¢4eo 00 0NM¢4moo o4 40I0044NM.0 40 000MoNoo 00 0¢MON4oo 40 0Nmoo4oo 00 0~oo¢0o0 00 040MMOo0 00 4N¢MmNoo 40 0pmo¢4oo 00 0hm¢omo0 m4 40|00h4wNo0 40 0Nm¢omeo 00 090N44oo 40 0Nmao4eo 00 0h¢>¢oao 00 0¢oo¢ooo OO DwNNMNco 40 0m¢a¢4eo 00 0NMOO¢eo 44 40:040N4No0 40 00400No0 4OI0ONOOO.0 40 0Nwoo4oo 00 004w¢ooo 00 0oo~¢oo0 00 04004Neo 40 04¢o¢_.0 00 0NM¢o¢oO M4 4OI0N0NONo0 40 MomeNeo 40|0Nmm¢mno 4O 0Nmao4.0 00 0mhw¢o.0 00 0o~¢mceo 00 DNOOONoo 4O 0MMO¢4oo 00 0hM00¢e0 N4 40l0oooo4.0 40 0¢OOONoo 40I000¢wooo 40 000004oo 00 0¢N0¢ooo 00 0ma4oono 00 00No>4oo 40 0~No¢4.0 00 0hm¢w¢eo 44 43l0000¢4eo 40 00000No0 40100~000o0 40 0mm©®4o0 00 0m¢0¢oeo 00 0o¢moooo 00 000504oo 40 0MNO¢4eo 00 0~040¢o0 O4 4OI0OM4N4oO 40 0MMNON.0 40I0MNwNmoo 40 000004eo OO 0Noo¢0c0 00 0Moooooo 00 0m>mM4oo 4O 0o4o¢4eo ,00 0~Mo~¢oo 0M 40|0N0404u0 4O 04~h0No0 4ol0omo¢¢oo 4O 000004o0 00 0h~0¢0o0 00 000N~0o0 00 04mN¢4o0 40 0o4o¢4oo 00 0h00~¢eo 0M N000momeoo 40 0NOmomoo 40l0NthM.0 40 040004eo 00 00004ooo 00 0mO©~0e0 00 00¢Om4no 4O 0040¢4e0 00 0>M¢~¢o0 hm N0I0040tho 40 04Nwomco 40l0o>ONM.0 4o 0¢0oo4eo 00 0mao¢ooo 00 0¢mhhoo0 00 00¢4N4o0 40 0000¢4oo 00 0N4M~¢oo 0M N0I00M~Mooo 4O 04¢momeo 40l0¢NO0Noo 40 0¢0004o0 OO 0ooo¢ooo 00 0Moo>oeo 00 000N44oo 40 0NOO¢4oo 00 0h04~¢o0 mm N0I0004¢mo0 40 0om00No0 4000mm¢¢No0 40 0¢0004eo 00 0m00mooo OO 00¢4mooo 00 0¢0¢O4o0 40 0n00¢4oo 00 0N00h¢o0 ¢M 110 4.0.h2000 4.4 0404» 111 4 O H O 40 40 40 40 4O 4 O 40 40 40 0mooa4.0 0Mooo4.0 0N0004.0 000004.0 040004.0 0N0004.0 0mmoo4.0 0Nwoo4.0 0M~OO4.0 045004.0 00>O©4.0 0o~004oo 005004.0 000004.0 0N0004.0 0N0004.0 0Nwoo4.0 00 0 O 00 00 00 00 00 00 00 00 00 00 00 0 O 00 00 00 005044.0 000044.0 000044.0 000N44.0 0mN¢o4oo 0N~c>4.o 0¢~>w4.0 00400N.0 00044N.0 04>0MM.0 wom>¢¢.o 0m¢Mo¢.0 0ONMMm.0 00¢mom.0 0MM~Om.0 0m¢ooo.0 0mOONo.0 00 000>¢¢.0 40l0homo4.0 00 0000¢¢.0 40|0¢M044.o 00 0o¢o¢¢.0 40I0ON044.0 00 0NO¢M¢.0 40I00M00N.0 03 0mNMN¢.0 4OI00000¢.0 00 000~4¢.0 40I04mom¢.0 00 04044¢.0 40I0N4ommoo 00 00Nn0¢.0 401000hmo.0 00 0momOM.0 4OI0>~0N~.O 00 0rowNM.0 00 00mmo4.0 00 0om00N.O 00 000NON.0 00 0¢ONNN.0 00 000M4m.0 00 0N®MO4.0 00 040¢OM.O 00 0~0004.0 00 0N004¢.0 00 0mMmN4.0 00 0000©¢oo 00 004N44.0 00 wmmmo¢oo 4OI0O¢000.0 00 000NNM.0 0¢M~0N.0 0¢Mm¢0.0 04thN.0 DNNm¢o.0 0MN>®N.0 0om¢¢o.o 0om¢wN.0 4No4mo.o 004NON.0 0¢0040.0 00000N.0 0N©N4o.0 000©NN.3 0~0000.0 0Mom~N.0 0Nooom.0 0~M~>N.0 030N00.0 0NmeN.0 4M004w.0 040mmN.0 04m4N~.0 0mmmmN.o 400M>o.0 000¢mNoo 0mMNNo.0 0MhMmN.O 004>om.0 0Nm¢mN.0 0m¢oom.0 00MmmN.0 04¢Mh¢.0 0m¢omN.0 0aowm¢.0 00 40 40 00 40 40 00 40 00 4o 00 4o 00 40 00 4O 00 40 00 4O 00 40 00 4o 00 4O 00 00 40 00 40 0005¢¢.0 040904.0 0omo¢¢.0 000004.0 0o¢o¢¢.0 0~¢mo4.0 00¢0¢¢.0 000004.0 0¢w~¢¢oo 0MON04.0 0~o~¢¢.0 000504.0 00Nm¢¢.0 00Nho4.0 0Nw~¢¢.o 000004.0 0NMN¢¢.0 0OMc04.0 0NMO¢¢.0 00NNO4.0 040MN¢.0 0o¢wm4.0 0n~00¢.0 00~004.0 0n~00M.0 004004.0 0h©¢0Mo0 0ONM04.0 0MNONM.0 00¢Nm4oo 000NOM.0 000404.0 0ON40N.0 00M4m4.0 40 40 OO 00 OO 0 O 00 00 00 00 00 00 0 O o O 0 O 0 O 000004.0 000004.o 000004.0 003000.: 004N~o.0 0MNmoo.O 00Nwmo.0 0MM4mo.0 0hm¢¢o.0 0>M¢ow.0 0hm¢wh.o 0NM¢¢N.0 0hM¢0h.O 0NM¢00.0 0NM¢N0.0 0Fr¢Oo.0 0~M¢mm.o No 00 ....e 40 M0 No 40 00 om mm NM 00 mm ¢m mm N0 40 4.0.h2000 4.4 04m4h 4O 0Nooo4.0 4O 0N0004.0 00 000044.0 00 000044uo 00 0N¢o¢¢.0 40100No44.0 OO 0o¢o¢¢.0 40l0Nom44oo 4O 40 00 04thN.0 0Nh¢¢o.o 0NN~0N.0 0~N¢¢0.0 00 40 4O 0N¢o¢¢co 0~4oo4.0 0o¢o¢¢.0 0~¢Oo4.0 40 000004.0 00 4O 000004.0 mo 4.0.b200. 4.4 0404» APPENDIX B APPENDIX B CALCOMP PLOTTER ROUTINE A special library subroutine named L9MIKE was used to control the Calcomp plotter which plotted all the curves displayed in this the- sis. This subroutine allows the user to title curves, title axes, se— lect scale lengths, plot parametric curves where the plot interval is a function on the parameter, specify the order and number (up to 20) of variables to be plotted per diagram, and identify each curve by at least 10 identification marks (squares, circles, triangles, etc.). The input data for the L9MIKE subroutine is taken from a stored file and all data points in the file are plotted, but only 10 or 11 identifica— tion points are marked on each curve. The L9MIKE subroutine is written in Fortran IV language. This appendix presents the computer printout listing of the L9MIKE subroutine used for controlling the Calcomp plotter. 113 20>.znxamcoemm Nmoo amoo.~moo.4mooa4nmnoma.u_ whomaamcoqmm mozahzoo ~o~4 he m:z_azoo 04~4 a 4ma4¥a_.Nua>maaa.ms_ac_zxx exa.e__u>ma__ oa~4 oo auozaa+eaaue2_ 4+zfi4uxw4 02.4.aa>z.ema4up__ o4~4 oo 4ua<>2umx>z ones. 4m.4<.oz_a.amm_am.o..O4.4x4 ..m40m242..moomix..NooN.>..om4.>>..4~.>>z..oo040uaea zoamzmzao 1m<>zceea03a mzahaoamam ozm aoem .a<>z.ae»o4a 34zu2<>z a<>zam.o.i>aazms.ooouomxz.4.uxm_o m34ax 1memnmo.zmz.unnao.4nax.43<3aao.ooouomaz.~.nxm_o ma_u\ .amm¥.ono.uam40.4auxqanno>..eaaaea.meuxmao mn_a\ mzaeoox ameeona azooa>404 03244200 O4xuz_z44 0~w4.0504.0004424244I04x404 O4xux>n04x 0Mw4 0» 00 44+xx20>>H04x 0404.0Nm4eomw444I040m4404 0MN4.0404.0MN44mI~N0044&4 4MM.mMM.4MM4.OO©OOI444>>4u4 414>zo4npe4fiv>>04mvo40m 4+4M4 0N4 m 024100 440>>zufififi 4Mlem.-.o.h04a 4440 .MI..m4I..M0h04a 4440 4+020¥u0201 0n00h24 000.4uz4244 000.4lux4t44 000.4uz4z4 000.4lux4z4 444m4OH4IxOm 40.4u4e440022244momOO40x 404.4n4.44.024244m.m.040¢ 404.4u4.440024ZZOImon40401 .44>>24000400 >zo4n4 O4 00 4u03b4 >z4mvo40¢ xxz4m40401 M4oa44oo44o44l040m4404 0324b200 m4N4 o~w4 0004 0004 0404 OM04 0Nm4 0404 0404 4MM MMM 440 M40 4MOO 116 4M0>>u44+0020> 44oNoz4>o>>00440w 4440 x4z4u4N4>> z4z4n440>> 0N0.09h.0Nw.47040m4404 0024hzo0 4uzz44 M440.N440.N44m4zz44.u4 O4\mozuzz44 404n002 MMM.m0N4.MMM4N103h4.04 0DZ4HZO0 00244200 4N0 0h 00 4444>>HZ4I4 4Nm.4mm.4mw44440>>Iz4x4404 4444>>ux4x4 MN0.MNw.NNm44440>>Ix4x4404 4mmewa.4mm44p40>>ZI4l44.04 0Dz4h200 0M04oOMO4.4Nw44000.+4>zzzv4zxx0444>>404 4N0.4M04.4Mo444>ZZZO4ZXXI444>>404 0024b200 0M04e4NNo.OMO4.m¢N~004.04 4p44>>zu>zzz >zo4ufl4 4mm 00 a4>zeNu44 4N0 00 MMM.O40.MMM44I04004404 4xza>>u440x 00% 0h 00 44+xx20>>u444x N4o.ON.0N444040m4004 44+pfipv>>u444> 040 0b 00 4l4u4 0NN4.0MN4.0MN444fipfl04zxxl444>>404 040 0b 00 00> M440 N440 MMM 0MO4 4N0 4mm 4N0 MNm NNm Nmm 0M04 4Mo4 4NNo 040 005 ON N40 OMN4 0NN4 0NN4 . -442... .. _ 117 0324b200 4404 44!..0.04.44...Oooaoo000100232 4440 44..Oe0004a44..m.o.40400£>m 4440 xxznm< M404 4404.M404.44044Nl040m4404 0DZ—hZOU 04ON 4oceooewz.m..4Omz>m 4440 4M4.4H4e440024244mamvoum.04omz>m 4440 444>>Zu<4 . 04>.NQUQ4 .ouxxx . H .H0004 430424.4a4.4o40020>~40020x40244 4440 400HZ4.ZZ44.4.002.>.x40244 4440 44N+0024>.44+0020>..00e24>.NM.4400222..0..04w4x4 4440 44N+mozuxo44+0020x..0»Z4x.00|.02427..oeocvm4x4 4440 4N+0024>NN>>> 44+mOZO>n4>>>> 4N+0OZOXNNXXXX 44+mOZ~XH~XXXX .0324h200 0004 44.002.24xox40440m 4440 0004 0004 Oh OD 444>>H4N+0020x 4M4>>M44+0024x 44eN.Z4x.>>40440w 4440 X4£<4H4N4>> 24:44u44_>> 0004 0004.0004ooom4amlNNDO44&4 NNQ 44.002-Z4>.>404<0m 4440 0N0 5N0 OH 00 440>>H4N+0024> 118 cam oh ow mowfl.o~m.mo~dadnw4uw_.¢~ .xz.>>n.moz.x mom~.ofimd.mo-afinudum~.uw Ad+xxz.>>uamoz.x mm-.om-.om-fiduwgum~.u~ nwsw.>>uhmoz.> 94m o» co dumozumoz o-~.mhmfi.m~ma.fiduaws.>.m_ ago Oh oo HumoZHmoz oo-.oo~4.mm~fiAdooo.+.finawa._zxxu.~.>>.u_ m-~.omo~.m>-amn~N0o-¢~ coma.o~m~.ooma..oooootfia.>>.um Am<>z.~ua..w.>>..m.ow adqu .m..oo.muo~.¢d...ooo..ooo~domz>m 44.xx.gomz>m 444a duaswu<< d+owpz_nom»z~ m 3242mm ~+.aa.>>zuw13 .~:xxuxx >z.~uwa om co mom.~uz~z< mom.~nuxz.u_ .Hl..oa.omhz_.¢#...ooo..omo.aomz>m 44m 44.xx.qomz>m 4440 04M4 omN4 mwN4 m~N4 ONN4 OON4 mmN4 om04 OOM4 m0N4 Nomo 119 omomocoo¢u4h404 NNOmmhommu40004 m0~o¢o-~uamvu4 ow¢w~¢wM4ua¢.u_ o4oo4m4hnnmvu4 ¢m4mo-mu4N004 mochwoown44004 mo4 0243wm AmewOH. 4o014 .4w440h304 .404004 .44m4400am4 zomwzwz40 4mo4vabh04a wz4hnoxm3m 02m Zdthm 4N.mkh04a 4440 h—QZw 4440 o>.o~.N4¢lwqum40m4 m oz4zwx w40m44m004m¢ 4ml.oo.oo4.h04m 4440 m324hzou 40m>z4.4.4.4.4m020>.4m020x0wz44 44.x.w244 44.44+moz.>..oo.24x.o.44022.co..o.m4x< 44.>.w4<0m 44>> 0b04a 44<0 0N0.om.amm44lwquw4_u4 o4+xxxnxxx o4l>>>u>>> wDZ4»ZOU a" 2244 omN4.o¢~4.o¢N44zz44.u— O4\mozu 2244 N>>>H4N+mOZ—> 4>>>>H44+m020> Nxxxxnam+m020x 4xxxxu44+m020x 4ImDanOZ Nmmo om ONm omN4 o¢~4 ONM4 {'1‘ I'll "‘1. I»! 444~u4u420h304 o ¢4.o.o .o4l444 u4 m m.¢4.¢4 444. u4 o4 Aqvhwo4u44 244.4"; a 00 >4 444.5w04 .axvgonam40 awhmwh 4440 xam4.4nx O4 00 ¢ 4003m4 .m040 Q4om¢tn44~x4 wo¢hmoomm4u44004 Nomoowmhouao4vu4 mNmoo4woou40004 ¢oo4mo4¢mu4m004 .._.. .... .. 121 ozw ¢4.m4 mum 4M40N4.N4.¢4 z; 4.44 bum .o.¢.o <4 40.0.0 hm ¢.o 404m 0.0 mm w.44 <4 44.¢.o a 40400.5 4 44.0.04 4 4M40N4.N4.¢4 zhm n4.* 024m: 02w\ Z4 Z< m+wbuwh _ ._.>+hhu~» , 440x+>3uh3 41x0>>>u440> mzz4hzou oo 00.44m.oo.omooOI._.xvd4 .z4oz.4n1.410>>>...40x4m094wx wsz4pzou «m 4u4 NNN: Nuwp Nuh» or w324hzou mm osm.mm.mm444lz.m4 4+znz N4ux 4H0 on~ xxnovo oo w4m<4m<> 0 I042: ..4..ooo4.x..ooo4.a.4ooo4.o 204mzwz4o .n403..m4.o.4m4.m..m4.m.4m4.< 204mzwt4o 4o~0>>> zo.mzwz4o 4aumx.omo.ndm40.44mx.4~4dmmx.MVHXm4o w44ux 44m m<_zoz>moa mwx+3nz 2.4u4 own 00 NH: 00m ¢zu4z whm mhm.omm.w>mnz~u4 Nu4x 4N4 xu¢z {H43 NH4u NH4w w324b200 Nam Nu440m ~u444m NH444< 44.4n4 Nam 00 m3244200 Nmm OH4400 Nn4440 2.4n4 Nmm 00 m324h200 OMN 4\\..wwmow0 meo4I bxmz h4m H m..x0.\..>m420 wpzw404m¢w00 n 4..x0.\..x<¢00ma QObm n 0.4 .xo.\..m4 ..whxwz 4413.. mom woooo o owhoz .\44 z4¢Nm.ouwh4x3 z\hbuz 4ch4w..u x no w34<> z 4 0 a m m a < D 0 m I b m < w 4 .\.h*>+3uz >u44.a 44.0".44a .40a44mn444o«44w|.44x.n> 2.4u4 o4¢ co Nu: 4mn44+44< 43x4wu4m w324bzou .44a*.4.o*44.x+4wu4w 2.4n4 mom co ~u4w ww¢.m~¢.~0m.¢zu44m4 43xzu444m wzz4hzou 0¢¢ o¢¢ ¢¢¢ Nm¢ wom Nam 00m 126 .¢.04m.. 4mmu0mm.4mm44lm44u4 40N0.o4wh4¢3 ..HdiflOl 0N0 40N0.m404oa .\\4h<2xow Nom FO.ZZ.N0m.vaH4EZ 4|ZNZZ 40b\mb4l4uh0 00¢ 42'20\bnmh 00¢ 00¢ OH 00 oumh No¢ O¢¢oNO¢uoo¢QZIZul4 wDZ4bZOU 00¢ N§§Mh+hnh 4440l444>HMh sz4hZDQ N0¢ 4lfiufi 4043+440x*4440n4400 Z.4HN4 N0¢ DD 2H0 NH4440 2.4H4 00¢ 00 NHH wDZ4PZOU ¢0¢ Nu4440 NO¢ mDZ4hZOU 00¢ am-WV , 127 m0200400op ..aw4m.0b.44.x.~¢m.c4mp413 .4.u\mo*.oo4u4u ¢¢m 0mm 0» Do 4.04424024..x¢.oom4w¢4h..4.x4o¢m.ovwb4zz o¢m ¢¢m.m¢m.¢¢m444.uvm4 .4.ut.4.>nwo z.4n4 omm on 4x..am4olhua.4 .4<:bu<1x..xo\\.h.nmmm..u 4. uhnwn.4o. 4. mwnwn.4o. .. 0....n4o. N.cwmhmnmn..u «.ummmsnnno.o 4. www.n.4.. 4. me.n.4o. .. m...mN4o. N.ow.4wowmo.o w.-mm4w..o..c 4. MNN¢N.4.. 4. “04.0.4.. .. 0....N4o. 0.0mmmmuvwn.n c.nms.nmmwo.c 4. m>4m4.4o. 4. 00.04.4c. .. m...n44o. 4.om>o.n44..u n.tm4¢¢¢44o.l 4. mm4N4.4o. 4. mn.N4.4o. .. 0....44.. 4.ameN4<4..o n.om>o.N¢4..o 4. mn4m..4o. 4. 04.0..4.. .. w...n.4o. 4.nwmhw.h4 .3 n.omm.h.b4..o 4. 0.4...4.. 4. 0.....4.. .. m.....4.. hh40090L um40 04.000 4<=ho¢uw 4<3ho¢ux .. whmwvco. 4. m.¢.44.. .. 04000... .‘N 420404Lumoo :mmw >44oo4m> 4<4n4.. N.omm4hnh4.. .. whmwmwm.. .. 0.0045... .. w...mm4.. .. mfivc.o4.. N.ammqmwm4.. .. mowwmhm.. .. m4mwhhao. .. 0....N4o. .. mwvnm44.. «.amn4m.44.. .. mcnm4wmo. .. man.nwo.. .. m...m44.. 4.umwh4nmmo. n.|MmmhmwN.. .. mmwvmwmo. .. mamhwwmo. .. 0....44o. 4.Iubm.hna..o n.om4wommmo.o .. mmwnmmmo. .. mN4¢N..a 4. 0.50..4o. 4. 0.....4o. .. 0.....4o. hm400hom thQ 04(010 4<3H044004u> 4nwwmn.. n.nm4smnmmo. 4. mnwhmv4.. 4. qunmv4o. .. m...mwv.. 4. 04mmmv4o. .. 0....mwon 4.9 3208 4.0 mamas 131 .. umnmawm..- 4. mnn.v4h..c .. 00040.0..- 4. mmvnwhno. 4.owm.¢w.m.. 4. mom..44o.o 4.10004Nww.. .. uwo444wo. .. uhmmmcwo. 4.Imwmm¢mm..o .. mwm4NnN..I .. unnm..m..n .. 04cnww4..n 4.Im4nonmmo.a 00.... n.amwnmnn4o.n N.om¢h4w4hc.u n.umch0mnmo.n 4.000v40.4o. n.tmthNmN.. N.owm4mw.wc.o n.tm4N0¢mm.. 0.500044¢¢.. N.|mn.mwm4o. n.00hnhvcm..u N.cmnh...m..o N.amh¢mmmm..t N.um4.aNh4..u n.lmhcwwmwo.u u 0 mo. whczHHmu m0 momma ohm 4.tm4w¢hnm.. mnmN..4.. m4m¢n¢4o. wennnw4o. mnhmm4¢o. mamm.nmo. m4mmncwo. 0.5040... m4hwmmho. 0.00000». mwmo4wmo. mamw.mmo. 00¢.h4mo. 0.04.0... 4.cmnmmmnmo. 4.ommmn4nm.. mwcmwv4o. mw¢4vm4w. mmNNo4¢.. mwmmcwm.. mwvwnwoou mmwwwmh.. wnmmhmbo. mmmnmmwo. wmmwmmwo. m4vmwww.. wh4nm4mo. umnnmmmo. 4.9.Bzoov w...nm¢.. m....w¢.. u...mm¢.. 0....mVo. 0....4¢.. m....hno. m....nn.. 0....owo. m....nN-. 0....nmu. 0....4N.. 0....m4o. m....h4.. m....w4o. 4.0 mafia 132 .. 0¢N0004.. 0.50000044.. .. 0005000.. .. 0000..p.. .. 0...nm«.. N.o0w.004m.. c.00000000.. .. 000F0.h.. .. 00000.... .. 0....nv.. .. 0nv4044..o 0.0000005»..- .. 00¢.005.. .. 0.5400... .. 0....4¢.. 4.0000.04m..| 0.c0c4.mN0..o .. 054.00... .. 0N0.m0h.. .. 0....h0.. 4.00hw0n4c..u 0.:0000400..I .. 00.04.m.. .. 005.4.w.. .. 0....00.. N..00..mm0..n 1.000.0th..u .. 0¢N0000.. .. 0FONn0m.. .. 0....0N.. 4.00.00004.. 0.:0..00n4.. .. 0400000.. .. 04N¢000.. .. 0....mw.. 4.0000500N.. 0.0000h00~.. .. 0000000.. .. 0000000.. .. 0....0N.. 4.005000.0.. 0.10..¢th.. .. 04000.0.. .. 00000.0.. .. 0....4N.. 4.t0hmn0.0.. 0.I00w.mmw.. .. 00n0.N0.. .. 0v¢N4N0.. .. 0....04.. 4.00m0m50N.. 0.n0¢444mN.. .. 00.¢000.. .. 0000000.. .. 0....h4o. 4.u00mmeN.. 0.300.004N.. .. 0.04hv0.. .. 04w0hv0.. .. 0....04.. 4.00.00054.. 0.0000.004.. .. 0Nm0nn0.. .. 0404000.. .. 0....04.. 4.30004044.. 0.000¢Nw.4.. .. 000p.00.. .. 0v.m¢00.. .. 0....v4.. 0.300.0000o. «.I0v400N0.. .. 0h.00h0.. .. 0.v00h0.. .. 0....04.. N.o0v00m.4..n v.I0N0h..4..o .. 050.050.. .. 0hN.wh0.. .. 0...nm4.. N.-0m.w4wm”.n v.n00.04hm..o .. 0vhvmwmo. .. 0h4cmwm.. .. 0....N4o. 4.305000.4..n 0.300.0w.4..o .. 0540000.. .. 00.0000.. .. 0...n44.. 4.10..4m04..0 0.:0vh0004..u .. 0000400.. .. 0¢.N400.. .. 0....44.. 4.00m4mcmm..0 0.I00hN0NN..t .. 0vam00.. .. 04.0000.. .. 0...n.4.. 4.|0«h00wN .0 0.:00m.hwm..o 4. 00m...4.. 4. 0.....4.. .. 0.....4.. uh4QIHUL 0040 04<0I0 4¢:Ho¢c0 4<0H0H4oo40> 4<4x< mom zo4hw00m.. 0044400.. 004v¢¢n.. 0¢0¢hnn.. 00m0.0m.. 0000000.. 0400040.. 0¢4¢n4m.. mm¢m44m.. 00406.n.. 00000.0.- 0..000v.. 04.0-0 0mh¢nhm.. 0p¢n00m.. 0..m.nn.. 00N4vvno. 0000000.. 0004.0n.. 00NONNn.. 0400040.. 0.h¢n4n.. 00h044m.. 00th.n.. 05000.n.. 0.....n.. 4<3ho¢n0 4. 04.0.4..- 4. 0v40.4.. .. 0.¢b.v.. h20404hm0oo 0....4N.. 0....040. 0....h4o. 0....04o. 0....n4o. 0....04.. 0....04.. 0...nN4.. 0....04.. 0...n44.. 0....44.. 0...m.4.. 0.....4.. 4<=H0¢Ix N 4 . 2:0h 00000000 mom 2049(020000000 412040202400020 <0 c..... 0.30540000..o 0.50.00.0mo. n 0 000 0H.4..n 4. 0wmwmv4.. 4. 04mma¢4.. .. 004000... 4.00.¢00.w..o 0.I00004.m..0 4. 0w¢mmv4.. 4. mwmvmv4.. .. 0040n4m.. 4.n0¢.0m¢0..t 0.00.40000..o 4. 00.¢m¢4.. 4. 0.00mv4.. .. 0040n.n.. 4.I00wm0w0.. 0.:00040hm.. 4. 05000.4.. 4. 0C00mv4.. .. 0040nmv.. 4.30mw4.0¢.. 0.30000410.. 4. 00.0mc4.. 4. 0500¢v4.. .. 0040.0... 4.300hnmmv.. 0.000m.m0h.. 4. 0.<4mv4.. 4. 0¢40m¢4.. .. 0040nw'.. 4.00...00n.. 0.c0ma4wsh.. 4. 0.0.mc4.. 4. 0wn4m¢4.. .. 0040.wv.. 4.00.1.wnm.. 0.:0v.w400.. 4. 000.0(4.. 4..0m.4m¢4.. .. 004005... 4.|0whwh¢m.. 0.|0044nwm.. 4. 0hwmwv4.. 4. 00w.m¢4.. .. 0040.h1.. 4.:000n04w.. 0.:0.0004m.. 4. 004awv4.. 4. 0v..m¢4.. .. 0040nwv.. humanhom 0000 uqcono 4<=h0¢lm acahocrx .. 00.00... 0 .. 0m.hm0..o 4 4. 0000n4.. . H204o~mh0oo :zmh >040040> AtmamMBzH 005 000 ¢Embo 0.0 mqm¢B _. acqumn... m.-mmnswmw.. .- . . umnwm.~.. .. mwmnn.m.n .- mm. .... flaw." fimmfi “gnaw.“ u... . - . . . mnmcup... .- u«.n.mq.. "u mummmww.u mu-uwnmcmp.. .. ”.nnnn_.. .. mmpn4._.. -. m~_nmsq.- m. aqnwmsn. mphm._... .. u.p_m._.. .. uwmwuu_.. .- m~_n.pq.. .- ..-u_~ammm .. ~.-u..«m-.. ..-umhqapc.. .. mm_nno... ukHa.pom umHQ 04.0-o 4¢=~o¢.e 4<=~o¢rx n. mnm_._.- m n. acmecn..- . n. mama»... n n. manmnw..- m .- m.._cm.. _ N. m.w_mn..- . #2040400000 :mmh 136 >h40040> 0<4H20mz¢h «on 2°4hano4.. a. 000.004.. .. 000000... 4.30m..400.. 4.0000n0m¢.. 0.|0nn¢w¢m.. 0.a000o.4w.. 4. 000.004.. 4. 0500104.. 4. 00¢4nw4.. 4. 00.0.04.. 4.99203 .. 0wnwhwao. .. 010v4m... 0.0 M09? 137 .. 0a00h00..n .. 000m.00..0 .. 0100.04... .. 00.0.04..- .. 0hwmh40..o .. 0v40wn0.. .. 0..00v«.. .. 0004540.. 4.I0040bm0.. 4. 00.0004..- .. 00v»0w0..u .. 000.0nm.. 4. 000v404.. 4. 0a0m0.4.. 4.u00004.0..n .. 000h000..o 4. 00m4so4..o 4. 0a..440..o 4. 0000504... 4. 050.1.4..o 4.00.04mm0..l 4. 00vnh04.. 4. 0p000m0.. 00.... 0.u0mnn>00..o 0.00000400..o 0.000mh.n4..o 0..0<00¢w4..u 0.00004040..n 0.00.004m0.. 0.000wqm0¢.. 0.00000..0.. 0.:0hv4.¢0.. 4.n0m0v~.4..o 0.:00h0vh0..l 0.I0cwoww0.. 0.:04m¢¢hh.. 0.00m00>mm.. 0.:0000hm4..l 0.00.00c0c..n 0.000.0«05..- 0.0040045»..- 0.:0.h.m.0..u 0.004m.mc0..o 0.:0vwmm44..n 0.:0.h0aw0.. 0.000m0mow.. u o mom 0h<=4hm0 no 00000 ohm 00'4..4.. 00.4..4.. 0004..4.. 0014..4.. 0n14..4.. 0.0m.mm.. 0.040wm.. 00owpvm.. 0a0000m.. 0w¢0hmm.. 00.0cmh.. 000¢mm0.. 0w¢mh0w.. 0004.wn.. 0000400.. 0on¢mwv.. 000.1mv.. 0.v.04¢.. 0s0m000.. 00~0m00.. 0nwm0.0.. 0wm4000.. 0000000.. 0.54mma.. 0500maa.. 00¢mmmm.. 04.0mam.. 0000mmm.. 005.000.. 0m4¢hwm.. 0www.nm.. 0m0m00a.. 00.00vw.. 0mmm4mh.. 0040..>.. 00mnm¢w.. 0504000.. 0154400.. 0(40mw¢.. 0cmvm¢<.. 0000*.v.. 0510500.. 0000400.. 0m.m0.0.. 00mw4h0.. 00C.m00.. 4. 4. 4. 4. 4. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 4.m.azoov 0.....4.. 0.....4.. 0.....4.. 0.....4.. 0.....4.. 000000... 0wnohwa.. 0<0v4nm.. 0040m0a.. 0040mmm.. 0040mhh.. 0040005.. 0040nm0.. 0040000.. 0040040.. 0040nmm.. 0040050.. 0040000.. 0040000.. 0040000.. 0040040.. 00400.m.. 0040nmv.. 0.0 H.093. 138 4.005.0005..| 0.00000400.. .. 05010.4.. 4.00.00000.. 4.300.4000.. 4.00010.00.. 0.I0000000..| 4.101100.4..o 4.00500004..I 4.10110510..0 4.00000000..c 4.00004011..o 4.10010501..n 4.000.5500..I 4.I0w00ww0.. 4.10..w000.. 4.000004.0.. 4.00040140.. 4.00500104.. 4.I0w100.4.. 0.00000400..o humouhum 1.I0000w10..a 0.10000450.. 0.00.50050.. 0.:00.m..0.. 0.u0m.1004.. 1.00.00050.. 1.00010154..| 1.00000100..0 1.3005000»..- 0.n0..5w04..a 0.:0000040..I 0.50wm.500..n 0.I0004.50..u 0.c0000504..u 0.0005w.00.. 0.00000040.. 0.-0.w.004.. 0.u0010014.. 1.300500.0.. 1.00.10545.. 1.:00005.1..o 0040 4.-0000145.. 0000004.. 01.1000.. 0040540.. 0400000.. 0.4.001.. 0004551.. 00101.0.. 0400000.. 01.0.00.. 00.0ww0.. 00000.0.. 0.00040.. 0000400.. 0010010.. 0000000.. 00m..00.. 0000500.. 0000150.. 0000400.. 0014000.. vacuum 4.30550045.. .. a. .. .. .. .. a. .. .. .. .. .. a. .. a. a. a. .. .. 0. 0010004.. 0550000.. 0040540.. 0010000.. 00.4001.. 0004551.. 0.001.0.. 0000000.. 0004.00.. 0.00000.. 0w010.0.. 0050040.. 055.400.. 0100010.. 005.000.. 0400.00.. 0001500.. 0150150.. 0000400.. 00.4000.. Atzhoclu .. 0000.0.. 4. 000154..- 4. 0.0014.. 02000400000 0040000.. 0040000.. 0040055.. 0040005.. 0040000.. 0040000.. 0040040.. 0040000.. 0040050.. 0040000.. 0040000.. 0040000.. 0040040.. 00400.0.. 0040001.. 0040.01.. 0040001.. 0040.01.. 0040051.. 0040.51.. 0040001.. Acahoctx 0 4 . 2:00 >hmooq0> Acmxc mom 2000(020000000 0(200020zuao0zo 00 A.Q.H_.ZOOV 0.0 ”0.0950. 139 _.I000~0w1.. ..-0.1.0.0..0 ~.o0000000..o .. 00500.0..n .. 00.050—..I .. 00000.0..- .. 050.100..I .. 0000~00..| 0000:500 0. 00—000...u 0. 000.0.~..c 0. 0501000.. 0. 0001..... _. 010~500..u a. 00005.0.. _. 000000...- .. 00.5010... 0.000__1—0.. 0.:0.00.0—..u 0.a010.~—1..| 0.500000.5..o 0.500050.—..o 0.:000100~..o 0.u0_0.05—..n 0.000550.0..0 0000 .. 000.010.. .. 0010010.. .. 001.010.. .. 0500010.. .. 0000000.. .. 0500000.. .. 0005000.. .. 0500000.. 04<0|0 .. 0500010.. .. 00—.010.. .. 0100010.. .. 001—010.. .. 0100010.. 0. 0000010.. .. 001..00.. .. 000~.00.. A<050¢a0 _. 00005.... 0. 01.00... .. 0—0.~0.. 52000000000 .. 00—00.0.. .. 00—0001.. .. 00~0.01.. .. 0000001.. .. 0000.01.. .. 0000051.. .. 00—0.51.. .. 00—0001.. A<050¢rx 0 0 . 2005 00000000 000 zo~5<5z0000000 012000200000020 10 0..... n.-mmm.wmn.. n.-m.nhm_n.. n..u.n.nm...- n.-mnmnmmn..- n.-uwmmmwm.. n.-m_w~.mn.. n.-mwm_.u...- n.-ummmmwm..4 u 0 000 05120500 00 00000 050 0.u00.0000..n 0.00.__000..n 0.00.-000..o 0.00.~—000..u 0.u0._~000..n ~.o00~010~.. _.o0050000.. ~.|0~00000.. 0.00500000... 0.00000.00..s 0.00101.10..a 0.n0000100..c 0.-0000000..u _.n000150_.. ~.o0050100.. —.t000.000.. 0.95280 —. 0....._.. _. 0.....—.. _. 0....._.. _. 0.....~.. —. 0....._.. .. 0000000.. .. 0000500.. .. 0101—00.. 0.0 000-_ono mm_nmn¢..o th~Nh_.-o «nonmmn_vm.u thh-nm.- mun-mun.- mmwmmvncu m_-m~nn.- m‘_unmN.n mownnmmon H¢NN~F_.Q mmmhn_—on fin...- N..M~N-w~.- N-nmnNan—ou nncmnwmwhnou nonmmvwntwou Noam-cvnw_ou nouwwwwo-wo- N-amwmmw-—.ao N-ammnmmmuono N-omncwmanono manuscwnwn.-c Nunmcnmam_.uc n-Iucnmnwmoun n-uuucmmmm.n N-nmm-Nmn~.. N-oM¢bwwm_.- Nunmmmmmum.u Nina—mn@-N.I N-ommvsvw_.u N-ouavw-v—.n N-owwnhmn«.u nonmmmtmnhou u u mom mhczmhmu mo momma Ohm wmmhm._on awash-«o. mwnhmo_.. mwmhm-_on mwnhmunou w¢unhnuou mwnnho_.- mmebea—on mnvmmmmon mvmommn.- Nthwhmcoc mmnp—um.u wvwdnvmou mud-ohm.- NNNN-uw.u m-Nh__won Neda—No.3 me.nonm.n manhhnwon whom-«w.- uawwnvwou wwth-.. mmvch._.- umn_wn~.- wm¢nm-.I moanhn_on m_~mhn—.- wwowwm_.n mnN—nm~on wan-NNN.- wwwww¢nou mwmwmmv.u aqua-anon whbcucm.- mvnnvhn.- m—m_NIwou mo—wn—won mwhwnmwou m_mnmnw.n mam—anno- mN-umco.- mm.<¢¢w.n A.Q.BZOUV _- maniac—.u g. mucous—.- —. w...-.—.. “I u.....~.n .- mun-..~.- a. uwanmaon .— wmmwhwmon .— mvwc—nao. I. “Nunmnmou I. mN—nmnmou an um_nmsh.u I. mm—nnnhou .- MN—nnmoo. I. mN—nnmwou I. mm—nmuwon a. mm—nmmmou .— mmunnhmon .- mmdnmnm.u a. um—nmnnon a. mm.nmwm.n a. mm—nn—m.n m . o. MAM; llllli -. il. 4 APPENDIX D PRESSURE AND VELOCITY PROGRAMS AND NUMERICAL DATA This appendix presents the computer program utilizing the subroutines PC05El and PC05E2 to calculate the pressure and velocity component data for the polynomial equations given in Chapter IV. Table D.l displays some sample data for these functions at each R value in the order shown in the following 3X5 matrix: R value U V W P H The subscripts indicate the value of the Z parameter used to calculate each of the functions U, V, W, P, and H. Only a single page sample of the data is included in this appendix as it would take 76 pages to dis- play it all. 1H1 run-r V .~\.N**.~+->+N**AH+H.>+~#*.H_>.+.m+uv>u.¢+_.> oa ~*«.x\~.*d¢oo.~a.X\~.*¢Hmo.~+¢~o¢.nam+~.> ~**.xx~.woogmd.+lx\~.*~o~o.noooo.~u.~+~a» m**.xxN.*¢~.~ool¢**AX\~.a *mm.omm+m**.x\~.*mo.mwmlm**.x\~.*~om.mw+.xxw.*~o¢m.oI00m¢.~ua~+_.> ~»«.x\~“*Nmo¢¢.+ax\~.*¢o~.~+dmmmm.u.~.> m o~ O» on ~**.x\N.*onm>.Al.x\~.*¢omm.~+~ooam.n.m+u.> ~**.x\~.#Nomom.+.x\N.*oo¢~.Aumm¢.~ufi~+~.> m**.x\~.amwoa¢~+¢**.xx~.§~ eo.o¢mlm#*.xx~.*m~.wmw+~«*.xxw.»om.0mol.xx~.*¢o.~¢~+¢m_.omuu.~+_.> ~**.X\~w4~o~m¢.+.xxN.*oo~o~.lmmmm.~uan.> m.~.~ .¢¢om.~oxvu~ m.~.~ .«ommm.nxaua o.h.~ .«o¢-.lx.m— wszuhzou m.o.m -.I~.u_ ~.m.~ .¢.I~.u~ -.¢.d~ a~.nN.u_ , lxsuv-u~ H+xw~uzw_ m.ud.~n~ o~ oo ouxo— wounm.- ¢.u.~.- doua~.- m32_hzou z_zxux >>>>z.am»mx.xx¢a .xo.~m_>r¢.xa..N.>:¢.xm.la.>I¢.xo.xra.x¢~.oz Im\\.b zo_mzwz~o .aumx.omo.uam~o.~mux..hawapa.m.nxmuo wnumx ow mowx mmamzb~uomw>.mooa.xz~xm.moua ofix dNMd’mOF v-l 1h2 u-l ih3 ma «0. ozw mobm a>>>>z.au-_~..__—_.>_.X.Mwuh~x3 .oooooux ¢~oa.~.~ax>>>z.~nH—-.n—_-.>..x.m~wb~x3 A.m.m~w¢.xma.xm.m~w¢.m.¢~w.¢_vh>>>Z.AHHH_..H-.>v.x.~fiam~oo.c.whmm3 d+~fiu~fi 02m\ a.o mo m¢~w¢~.o do womoo~oo HA m¢oom¢oo mo whhho¢uo do woaoo~.o Na mmowo~.o mo mmhhudoo do m¢moomuo Na mammomoo oo maompm-o HO whmoowoo Na Whmoom.o o~ mmaoma.o do w¢¢comoo .mv> No wOONm~.OI ~o wNanm.OI oo w~m~¢ooo No m»0®h~.0l do w~oom¢.0l oo mom0¢ooo No MAANONoOI do w¢m~o¢.OI oo momomo.o NO m-OMN.OI Ho w»oo>m.0I oo m¢¢mmooo No woomcm.0! do womwfiooOI oo wMa¢om.o NO whwoom.0l do woomomoOI oo w¢~¢om.o No whmmmMoOI do wmoamo.OI Oo wNONNmoo No wm¢NN¢oot NO mo¢m-.OI oo wah¢o¢oo No w¢mmomoOI No ww~o¢~oOI co u¢>mwMoo No wfiaooo.0| No moomfia.0l oo wm¢ocm.o No w~ow¢~.o: No mth~N.OD oo mahmoHoo A¢~> oo momfiow.OI oo wNNMNmoOI oo wmmwmo.o oo wHwOHwoOI oo w~N¢hw.OI oo wmmaooao oo wmoomo.01 oo meNNOoOI oo wmaommoo oo mNN¢chOI OD wmoooooOI oo wwm¢amoo OD modaON.OI go MONQOH.OI oo wmomo¢oo NOIwmomNmoo Ho wommodoOI oo wo-o¢oo oo wom>~¢.o a0 mamm0a.01 oo mow¢¢m.o oo mommFOoo do wms~o~.0l oo wmo¢hmoo do wmm¢haoo oo mowfimOoOI OD wmwmwaeo do mamawwoo oo w¢mmmm.0l co m¢NNo~.O do wNHmm¢.o oo mw¢m~0o01 NOIwQONONcOI .m.> mzo_wuzau >h~004u> Dz< mmnmmmmm ¢oo mo m¢momwoo ¢O u¢mHHNoo oo wo¢omm.o 00 w¢om-.o ¢o waoomm.o oo womhomoo co waoowdoo ¢o u~¢m¢moo 00 wamooo.o co athoNoo «o wNOMOOoo oo wm-¢ho0 oo womoo¢uo mo m0¢mm~oo oo wmo¢mwoo co wowwONoO mo wwooomoo OO wommAOoo ho wwmdmd.o mo wo~oo¢oo do wmooodoo AN.> Ho mNowhm.o do mahoomao do wmmo¢doo HO wNmomooo do mammwm.o do wd~o¢doo HQ mamaoo.o do wowoom.3 ao wamom~.o HO w¢mm0h.o Ho wooNNMoo a0 wmwomdoo ac mNmomx.o do w-o¢m.o do woodmdoo do wmmmmOoo ~o mhm~mm.o Ho whhwmfioo No wo¢mo~.0 do wha~N¢oo do wom¢m~oo No woo¢N~oo do mwao>¢.o do maoomaoo No mdom¢~oo Ho mhm¢mmuo Ho wmommdoo NO w®m~haoo ~o mao0u0.3 do wmomo~.o NO wm~00~.0 do wwthhoo Ho wNmood.o .~.> oo oo oo oo oo oo oo oo oo oo oo wooooNoo woooo~.o mooom~.o wooo>~oo woooo~.o wooomaoo wooo¢~oo MOOOMaoo wooowgoo moccauoo wcooo~oo Ca 02 qoo w4m1¢.xo. ozw\ w do. og do >>>z.an--.A—H~__>v.x.m.wh~¢3 oaoowonx ¢~oo ¢~oo.fludnx>>>z.~n_-_.n_~_—.>u.x.m~wh~¢3 .amcme¢.xm-\mom~m¢umo¢~m.¢~.h>>>z.au_-.~H-v>..x.~wnm~oo.0~wh~«z ~+~fiuufi .N\wl.N**x#..N\m.I.a_*Iuaq+~_> 0A .I*m.hxam*xuau.> .XouwNNum ~+xo~u¥fiu N.~.~u~ o~ Do ou¥o~ moonn¢~NN mmonamvNN m¢oua~w- mNouaavNN HmGOoNuu oNuI wazuhzou zuzxux >>>>Z.awhmx.xI¢~ AV.>I¢.xo.A~V>I¢.xo.xzd.x¢auoz IM\\.h<:xOm maoo .maoouovwhuzz ou~fi .o~.NN..~N.> zoumzwtuo A1ww¥.ogovuam~o.~4mx..bthabmom.uxmuo mummx oo mofi\ F! oqu m Ih—z ¢w oz< No ZOHh>>>z.~n~—~_..-~_.>v.x.m.w»~m3 owaooonx ¢~oo edoo.~.~.x>>>z.~ua_~_.~__~H.>..x.m.w»_¢z “.m.m~w¢.xm~.xm.n~w¢.m.¢~m.¢nvh>>>z.~u_~_..-~.>a.x.~w.m~oo.o.wplmz ~+~wu~o .mxol.mau.x\~.*..~\w.u.~.*Iu.d+~.> cg «Iamahmamaax\~.u.~.> ~moo.~uu mooum .Nux .xs._-u~ ~+xolnxo— ~.n.~u~ ed on ouxwu .u.mv- «.u.-- ~.u.~.- waz~bzou zuzxux >>>>z.dwhwx.x:¢~ .xo.lm.>:¢.xm..N.>I¢.xo..a.>I¢.xo.x1~.x¢~.oz Im\\_h zommzwzln .awmx.omoanamuo.flmux.Abapapa.m.uxm_o wmuax ow meox awhwz<¢h~uomw> oz< umammmma znzuhao.moua.xz~¢m.moua sax v-l . . 1&8 oo mONNowoo oo w~h~mN.o oo mmw~¢m.o oo w¢~om~.o oo meONN.O oo mc~oom.o oo MNNOOAoo oo wo~mma.o oo wommhaoo oo wamhodoo co wNMFmdoo oo wmmo¢~.o oo m¢m0m~.o oo wommwfioo oo Lhmmmaco oo w®m¢0a.o amv> so MNM¢N0.0 oo wmmONOoo oo m¢om~o.o oo MNOOmooo oo maommooo oo wm¢¢mo.o oo wdmomouo oo wthmOoo Oo wm¢Gmooo oo wmmo¢o.o oo wmmm¢o.o oo wmom¢ouo oo wmw¢¢ooo oo w>©m¢o.o oo w~o>¢0oo oo mmoh¢ooo a¢v> mZO—buzau 4omd.o oo woowmo.o oo mmmomaoo oo mamamcoo oo MONONAoO oo wpoMMOoo oo mmm~©~.0 oo mdmmMOoo oo wONamuoo oo wmmhmoco oo mom~¢auo oo w-mmeao oo wNmNMHoo oo w~¢~¢ooo oo wmmmmaoo OO wmom¢ooo 00 w¢mmfi~.o o0 wom¢¢ooo oo wom¢ogoo so wmom¢eao aslmmow¢o.o .mv> OO w¢omwmoo 09 mmw0m0.o oo w¢om~Nco oo wmommo.o oo L¢Nmomco oo mmmomouo oo m¢wommoo oo umm0¢ooo oo w¢¢OMNoO CO mm¢~¢0oo oo wmowNN.o oo wm¢N¢ooO oo umo0~Noo oo ww¢m¢0oo OO mmmmONoo co wmm¢¢oco oo wmwmodoo OO ummm¢o.o oo mm¢~wdoo oo mmoo¢oco oo wmlouoo oo mNmo¢Ooo co wNooono oo ummh¢ooo CO wNNw¢Hno oo wNNm¢0oo OD wNmQMuao so wnww¢ooo oo wN¢mNH-o oo mm¢©¢0oo Oo wwo¢-.o oo umoo¢0oo AN~> co mmomao.o so mm~os~.o co m~>o~o.o oo maaool.o oo mmmmmo.o co mmcmoa.o oo mmmmmo.o oo wommml.o oo molmmo.o oo moeme..o oo wmeomo.o so mmeael.o oo moowmc.o so mmmeml.o oo wmo¢mo.o oo mm--.o oo momomo.o oo ml~o-.o oo mammmo.o oo m¢lm-.o oo mmooeo.o oo meooo~.o oo m~o~¢o.o Honmmoomo.o oo mo~m¢o.o no:m¢~olo.o oo mmmeeo.o lonmmnmem.o oo mesmee.o no:m~m-~.o oo wmoo¢o.o nonmaaso~.o In.» mom ~oo woooo~.o wooomaoo wooo¢~.o wooom~.o MOOONano wooodaoo woooo~oo ad ma ¢~ MA Na OH 02 How w4mm>hm.o mmo>om.o momcmMao w-o¢moo MNommm.o wm~m~m.o m¢o¢~m.o wm~¢om.o whomom.o ww~mw~.o MOONhNoo oo oo oo OO oo oo 00 oo oo oo oo oo co oo oo oo oo wNOMNmoo mamohm.o wm¢ommoo wflc¢mmoo wh¢hmm.o mmmoomoo wma¢omoo NMMNomoo wm¢ooooo wm¢moooo whmooooo mdNooooo wmoddooo moo¢~0no m>~>~o.o wmoodooo wmommo.o oo 09 03 oo 00 OO 00 00 oo 03 CO 00 oo 00 00 oo CO 09 oo OO 00 00 OO oo 00 oo oo oo oo oo wo-mmoo wm¢mam.o woam¢m.o woommm.o wm¢w¢m.o w>¢0Pm.o mammmmoo moooomno wommmm.o womOOMoo wh¢m0m.o waodmmco mammomoo wmm~¢Moo wmmmhmco w¢ONMMoo manphmoo wmmNNm.o whoammoo whomflmoo mowmwmoo wmmmomoo mmoawmoo woo¢omoo wmomomoo woo¢mm.o mmhhomno wmdmhmoo wo¢aoooo wmomomoo wfiomoooo m¢HomNoo Mammoouo mooo¢~oo usmmh¢.o wmmwoo-o uh¢ho¢.o uN¢o~0oo whoom¢.o wn¢mao.o m~o¢¢¢co wm¢¢~ooo w~Nmm¢.o mmmo~o.o womHN¢oo wmwwaooo uo¢o~¢.o mnoomo.o wooaOMoa wmwamooo MOONQMoo wmmmmo.o m0N0hm.o umwmmo.o mom¢omgo wmmomoao wn¢mmMoo wm¢mN0oo unom¢moo wnwomooo umoomm-o uN¢~mo.o wnNOAm.o mmmmmo.o wmmNQMoo wNN¢m0oo wm¢oomco mmmmmooo OO 03 00 oo 00 oo 00 oo OO 00 oo oo oo oo 00 03 oo oo oo 00 oo oo oo oo oo oo 03 wm¢nmm.o wmooomoo moooomuo wfloowmoo wm¢¢om.o w¢mNmN.o momwom.o whhmpmoo MMOMNmno mapmomoo woahpmoo mmodomoo whdawmoo wom¢m~.o wmommmoo wo¢~¢Noo wfiwmwmog mm¢o¢Noo mommom.o wmmMMNco wM#oom.o whNoNN.o woooomoo wONodNoo meNoooo wmdmaNoo womcocoo woomON-o wmmooooo wooho~ao wommdooo wNooaaoo m-m~o.o mmmmmuoo 00 0Q 00 oo oo oo oo oo oo 00 co oo oo oo oo oo 00 “-0.5200. wooom¢oo mm wooc~¢oo Nm woooo¢.o am woooom.o on wooomMoo ON wOOONMoo mm MOOOOMoo FN wooomMoo 0N wooo¢Moo mN wOOOMMoo ¢~ wOOONMoo MN wooo~Moo NN woooom.o uN wOOOONoo ON wooowNoo ma wOOOBNoo mg wOOOONuo h~ dew wmmqb 150 00 oo oo oo oo Oo oo oo oo 00 oo oo oo 00 CO oo oo mommao.o wgmwoooo wmwwom-o wMMNmm.o w¢mohm.o womoom.o w>wmmm.o mamm¢m.o wom¢mmoo wo¢¢~moo wNomAmoo wm¢momoo m¢mmo¢co mm¢~w¢~o woo~b¢.o wm¢a0¢oo woaom¢oo oo oo oo Oo oo oo oo oo oo OO oo oo oo oo Oo oo oo w~mmo¢.o whoaom.o wmwoom.o wmmddmoo wNmoam.o mmmde.o wmoowm.o whpomm.o w~¢mmm.o wmoommoo mo¢¢¢moo whhw¢moo wmommmoo wmmhmm.o wmmaomoo wmmmom.o meOOmoo oo 00 oo oo oo oo 00 oo oo 00 oo oo oo oo oo OO oo CO CO oo oo oo oo oo oo oo mo~o~¢.o thommoo mwbmmcao w¢~ommoo w-~¢¢.o wmho¢m.o w~om¢¢co wbwmmm.o mmmmm¢oo mmhfiNmoo w~omo¢oo wONNHm.O whmooeoo mOmNOm.o wooo>¢.o mumm@¢.o mommm¢.o wmmmw¢oo wmmom¢uo m¢m¢>¢.o womoo¢oo wm®¢c¢no woomomoo whmmm¢oo wNmmomoo mwmm¢¢oo w~o¢amco wom0m¢oo mmwomm.o mdoON¢.o m~oo~moo w~¢-¢co thNmmoo wmoho¢.o woswho.o uwwmom-o woonooo wmmwomoo uoom¢oco wmmahmuo wommmo.o umo¢hmto onhNo.o wmwo~m.0 woomdooo ummopmco wow¢oo.o mNNNmmoo wommom.o wmw¢mmoo u$¢awm.o mm¢hwmoo mooo~moo wmoommco m¢0mmm.o wm¢Nom.o meh¢m.o wmw¢om.o wwmmmmoo wmwhom.o mm¢¢~moo wmmoomoo wmomdmoo mamHOOoo wwo~om.0 mmo¢OOoo w~N00¢oo meooouo oo OO oo 00 00 Do 00 00 OO oo 00 oo oo oo CO Co 00 03 OO oo oo oo oo oo 00 oo oo w00a0¢oo w©-~¢co wm¢~p¢.o wNHOu¢oo wohm~¢oo mmomo¢.0 m~mo>¢oo wmomomoo wmoom¢oo w~owmm.o w~o~o¢co m¢wawm.o womh9¢oo w~>¢>m.o unfimomoo mo~hom.o wo¢oom.o mNooomoo wmo¢amoo wmmmmm.o wo¢o~moo wm¢o¢Moo wMNmNmoo w~¢omm.o wooommoo w¢MNMMoO w~oamm.o wthNmoo mmo~¢m.o womwam.o whom¢moo wm~4~Moo wo~ommoo woo¢OMoo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo woooomoo mooowmoo mooo~moo woooomoo wooommoo wooo¢moo wOOOmmoo MOOOcho mooo~moo woooomco moooo¢oo wooom¢oo mooo>¢oo woooo¢oo wooom¢oo wooo¢¢.o wooom¢oo om o¢ w¢ h¢ o¢ m¢ ¢¢ m¢ N¢ ~¢ Ce on an pm on mm ¢m goo.hzauv ~.w wmmdh 151 oo oo oo oo oo oo oo oo oo oo oo co co oo oo oo wOONONoO “Hoomfioo wmao-.o wmomosoo w¢~mm~.o mmo¢¢h.o whH¢MNoo meMN~.o mammahoo MONNONoo wHNNoooo thamcoo w¢NHh0oo wmhooooo woNomooo wNNoMQoo wmmomboo OO oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo mmmmom.o wmmoom.o mmooo¢oo mmoN~¢oo w-o~¢oo w~om~¢.o wmo~m¢.o wHNmm¢.o whm¢¢¢oo wm¢om¢.o wm¢om¢.o wmm~0¢.o wm~m0¢oo wmmm~¢oo mh¢o~¢ao waomm¢.o wm¢oo¢oo OO oo oo oo 00 00 oo oo 09 oo oo oo oo oo oo oo 00 oo oo oo oo 30 oo 00 oo oo oo 00 oo deFPN.o mooHNhoo wmwomm.o mamaahoo wamoON-O wNONONoO wNOOOMoO w¢mNoooo wo¢mHMoo wmommo.o wo~¢NMoo womMNo.O wmmmmmco mmo¢oooo woom¢m-o mom¢moco momamMoo wo~m¢ooo whooomoo wNommooo quOOMoO wmaomo.o mmmhfim.0 w¢co~0oo wamowm.o meahoaoo w~¢¢¢m.o w~o~amoo womNo¢uo wmummmoo wamo~¢co mo»w~m.0 mm¢m~¢oo wHNOOmoO oo 00 00 oo 00 oo Oo oo oo oo oo oo oo oo oo oo oo oo OO Oo oo oo oo Do oo oo oo oo oo unmoow.o wmomomoo wndmnwco mmmddm.o mm>m¢w.o wnmmamoo MMMNmmoQ unmodmoo wmoowmoo wmwNNmoo mmmoomoo mm¢owmoo wNHQGNcO wmoommoo wmfiomh.o wm¢mmmoo m~mm-.o wmmommoo MNOMON.O wm~o¢moo mummmh.o ummm¢moo Magd¢hoo mmmo¢mco uahaNh.o mmoomm.o u~mm-.o MMNmmmoo w~ooo>oo wmmommco Mammao.o wm¢ommoo mo~¢moao mm¢momoo wsbcmm.o mo¢>mmoo mmom¢m.o mmmomm.o whNHmMoo wommmm.o momomMoo waaoamoo mmmhom.o wwfioomoo mONmNMoO meNom.o mmONQMoo w~o¢0¢.o wOOOOMoo woo>m¢.o mm~momoo wmmow¢uo wommo¢oo wo~m~¢oo wth~¢.o waoco¢.o mmoom¢.o mmoom¢oo w--¢oo wmmmmcoo mo~¢m¢oc mw¢m¢¢oo wmo~¢¢oo w4¢mm¢.o mowh¢¢.o wnm~m¢.o wm¢¢m¢oo MON¢N¢co oo oo oo oo co co oo oo oo oo oo oo oo oo oo co co wooooh.o mooomhoo wooo¢hoo mOOOMNoo wooowhoo wooodh.o mOOOOFoo wooooo.o wooowo.o wOOOFOco wooooooo wOOOmooo mooo¢ooo wooomono wooomoco wooodooo wooooo.o he 00 mo ¢o no No #0 00 om mm hm on mm «m mm mm am noo.hzou. aow mamqb 152 oo oo oo oo oo oo oo oo oo 00 oo oo oo oo oo oo o O mommh0.o woo¢oo.o w~¢¢m9oo wmom¢ooo w¢¢mmouo mmONNooo wo¢-o.o who~ooco wo¢aomco woodmmoo wumosmoo wNooowoo wmmo¢m.o wmoammoo mommmmoo whowamoo wmmh0mco oo oo oo oo 00 oo oo oo oo oo oo oo oo oo oo oo oo wmmmowoo wfimqhm.o wamo~moo meNmNoO wHooowoo mpomom.o wmmudm.o mmoo~moo mmm»~m.0 wmo¢MMoo Mm¢N¢Moo whmo¢m.o wamhmMoo wm¢¢OMoo w~o~>m.o w~om~moo wmomwmoo ~01 oo oo oo oo oo oo oo 00 oo oo oo oo Oo 00 oo oo oo oo oo oo oo 00 oo oo oo oo 00 oo co oo oo 00 03 woomoono wNNNwwoo MONNofino wohmsm.o wo~¢-.o wommowoo wmomNauo wdwmmm.o momhmd.o wmm¢¢m.o w000¢~.o w¢w¢mwoo w~¢oo~oo wmmmmmoo wasuhaoo whmmfiwoo wmme~.o wmmoowoo w~wmo~.o waw0o>.o m~o¢o~.o w~¢~m~.o mommawoo wNONNN.O waomNNoo wm¢wo~.o wm¢ommoo mmowmsoo mONo¢Noo wo¢o¢hoo wooommoo mNOOMNoo whooom.o wo¢omfioo m¢ooo~.o wmwom¢no noo¢o~.o wmmo¢¢oo MONMOAoo um¢m¢¢oo mNONo~oo wmoo¢¢co wm¢~oA.o ma¢¢mvoo w¢moo~oo ummwm¢co wmodooco memo¢oo mnmomo.0 wmm~o¢oo mmdoomco mmm-¢.o wmhsmo.o unooh¢oo m¢mo¢0oo meow¢co w¢o¢mo.3 wmm¢w¢co m¢mmmouo wm¢wm¢.o w¢~maooo wm¢No¢co w¢hsoooa Mfi¢oo¢oo w¢mommoo wmmoom-o wmo~hwoo mmm¢omoo wo>o-.o mao~mo.o wmoow~.o m¢mom0.o mocho~.o m~¢m¢oco wmooomao mo¢om0oo wombamoo mmmomooo mmmoNN.o meNNooo modommoo wmamaboo w~0m¢m.o waamoooo wmommmoo w¢odoooo w~m¢omoo whomomoo womthoo wooowmoo wmonN.o mmwONmoo monaomoo wofimhm.o wm¢oomoo wmcmOm.o momoom.o waowmm.o wmw-moo m¢mammoo MOMONMoo w~¢¢¢moo oo oo oo oo co oo oo oo oo oo co oo oo oo oo oo oo fioo.hzouv m000mooo ¢m wooomooo mm woovooo Nm mooooooo aw woooomoo ow wooommoo OF wooesmoo oh woooomoo hh wooommoo oh wooo¢moo mp wooommoo «5 wooowmoo ms wooo~muo Np woooomoo ah woooahco OK wooomhoo $0 wooo~hoo we aow w4m >huuomw> 4<~bzwoz oo w¢omwmuo oo wmo¢OMuo oo mohmmm.o Do wmmomm.o Q0 wooowm.o oo m~o¢~¢oo oo whoom¢co oo w¢hoomoo Do wooosm.o oo mmmdmo.o oo ww~oo>.o oo w¢-~o.o do mmo¢~Hoo do wmommaoo do wmowmmuo do wfioom¢oo AM.> Co waoa¢o-o oo momo¢ooo OO wm~o¢ooo Oo woom¢ooo oo w¢m>¢©~o OO umo>¢o.o OO wnom¢ooo CO um¢¢¢ooo oo meN¢ooo oo mmaomooo oo wom¢mooo OD mm¢omo.o Co wwwaaooo oo wmmomm.o co wmmom¢oo NOIuoom¢N.o ~N~> oo w¢ow~moo Holwdomahcs oo mowodm.o ~0lm-oo~.o oo wm©0m¢uo AOIw~¢¢~m.o oo woomo¢.o aOIwQONcho oo whN~m¢oo dolwmaomooo oo mmmommoo oo wm0m0~.o co wmommm.o Oo w~o¢-oo oo m¢NomNoo oo wooomd.o oo w¢h¢m~.o OO wNmN¢~oo Notwoom¢Noo oo mmwmo~.o OO wNNNMN.OI oo wmooo~oo oo wmmdmcoOI OO wmommmco no mmmmm~.OI oo w¢ommmoo Ao w¢0wm~.0l Oo wooomm.o mo w~o~m~o0l oo wooo~mco No wwo-m.0i HO mmo¢-oo .~.> mom co wooooooo woooomoo wccoo¢oo moooomoo waooomoo woooo~oo OH ma ¢H Mu Nd dd Ga 02 Now wqm~o.o doIMOOONMoo Do wwm¢~o.o dolwhfimomoo CO MNmaaooo Holmtho¢oo oo wONmoooo NOIwONNN¢.O oo wmmmoo.o ~0lmmmwm¢oo oo mo¢~oo~o Helmhoom¢oo oo mmahom.o ~OleCm>¢.o OO w¢NNmmuo dolwm~m3¢oo oo w¢©owmco HOINONmamoO oo wMNowm.o ~OIM¢ON¢mco oo wNmthoo ~0Iw000hmuo oo wNN¢omoo “OIMOOOOOoo oo wm~¢mmoo ~08wm¢mmcco oo w¢NN¢moo HOIwGOOhooo go do do Ho HO do do do #0 «o wooomm.o wOOONMco wooodm.o wOOOOMoo mOOOON.o mooowNoo wooopNoo wOOOONuo wooomNoo mooc¢Noo mOOOMNoo wOOONNoO moccaNoo MOOOONao woooodco wooowaao wsoo-.o Mm NM om 0N mN 5N 0N mN ¢N mN NV uN 04 mg NH noo.hzouv Ncw wmmdh 156 Oo OO oo Oo oo oo oo oo co co co oo oo oo oo oo oo mmcomaoo mmmNc~.o wwNooaoo wumoofioo mamm>~.o moWhhaao m0m~m~.o waomwaao wmooo~oo woo¢o~oo mmmaodco mmo¢ONoo mmoofiN.o wahmuNoo wepdNNoo m¢omNN.O w¢~¢m~.o 00 OO oo 00 oo oo 00 oo oo oo o O O O OO o 0 oo oo oo mowmeo.o wwnm¢o.o meoseo.o mes»¢o.o m¢m~¢0.o mnmseo.o mwcseo.o mmwoee.o mmmo¢o.o mo~o¢o.o mmomeo.o whomeo.o mmwm¢o.o wmmeeo.o mmeeeo.o moom¢o.o wm¢m¢ouo HOIw¢~N~oop HOIw0homo.o delmeOmooo NOImNMONOoO HOImO¢~omco Co wmm~odoo oo wmomo~.o oo woooo~.o oo womm04oo oo m¢N~AA.o so wNo¢-oo Co w¢oo-oo oo wNOONaoo oo wowmmauo oo m000N~.O oo mdmomdco oo w¢~¢m~oo OO CO CO 00 oo oo oo oo oo 00 oo oo oo oo oo oo oo wrammoco DQHNmOco whfiNmOoo uodeo.o w¢~Nmooo mm~Nmo.o waaNmoco uo-mo.o wwONmOoo wOONmo.o w¢o~mo.o wNONmo.o woowmo.o mamamooo wmo~mo.o wNOHmo.O mowamcoo oo udfiomooo ~0lw¢omNNoo oo madame-O HelmooNMNco oo wmommooo ~0Iw¢mthoo oo wmommo.c ~OimomN¢N.o oo wo¢~mo.o «Olwhwh¢N.o oo MNkomooo ~0lm~mmmNco oo wooomo.o dolmm~omN.o oo wNNmMOco fioleMmomoo oo womémooo ~0|m~¢~hNoo oo womnmooo delwoothoo oo w¢mNmo.o ~OIw¢ommNoo CO mamamooo HOImeNoNoo OO wOMOMOoo delmeOOMco oo wm~0Nooo Holwo~QOMoo oo whwfiNcoo ~05w-0~m.0 oo mm¢cNono dolwhthMco 00 woa¢~0co dolwmmmMMoo do woooomco do woooo¢oo do mooow¢ao #0 wooo>¢co Ho woooo¢oo do wooom¢co do wooo¢¢uo do woocmwoo do mOOON¢oo do wooo~¢oo ~o woooo¢.o do MOOOOMoo do mooomMoo ac wOOONMoo do woooom.o do wooammoo do wooo¢m.o “.o.hzou. om o¢ m¢ h¢ o¢ m¢ ¢¢ m¢ N¢ ~¢ o¢ om mm hm on mm ¢m New wamdh m ..-—s; 157 oo oo oo oo oo 00 oo oo oo oo oo oo oo oo co oo oo mNaoH~.o wmooN~.o mahNN~.o m~h¢N~co MOQONA.O wMNwNaoo m¢NOMHco wNomm~.o mwNmm~.o w~o~m~.o wNoo¢aco wNmN¢Hoo w-m¢~oo wow~¢~oo womom~.o w0¢mmaco wcmomaco oo oo oo oo oo oo oo oo oo oo 00 co 00 oo 00 do 00 MMaombco wooomOoo wooo¢ooo waao¢o.o mmmo¢o.o w¢~o¢ooo mooo¢o.o womo¢o.o wo¢o¢o.o womo¢o.o meo¢coo wm~o¢ooo wdoa¢ooa wwwm¢o.o wm>m¢ooo woow¢0oo wm¢m¢ooo AOIwONOmo.o aOIwNOHOOoO Helmmo~o~oo delwdonfioo dolMNOMN~oo aOIwoomm~oo HOIwoo~¢hoo daleHOOBoo delwoomshuo gelwmmompoo HOImeoow.o ~0|m~¢¢amco NOIwNNOcho ~0Iwmm¢¢Moo detwamoow.o HOIwQONNm.o ~0lw0~¢amoo oo oo oo oo oo 09 ~ 00 oo OO oo oo oo oo oo oo oo oo MNMNmooO MOMNmouo MOMchoo waNNmoco womNmooo uwNNmo.o meNmooo MNNNmo.o mONNmooo woNNmooo meNmoco u¢NNmOoo m¢NNmooo wMNNmo.o wNNNmooo maNNmoco wONNmooo OO momm¢0oo Aolwm~0haoo oo w¢~m¢0oo LOIwthfia.o oo w~®¢¢ooo dolwd¢mfia.o oo who¢¢ooo AOIwmAwhdoo oo wm¢¢¢ogo Ho|wmoomaoo oo wo~¢¢ooo ~Olwoommaoo OO womm¢ooo ~Olw~oow~oo oo moom¢ooo Holwmooo~no oo momm¢ooo HOImemo~.o oo mmON¢ooo flotwmmowaoo oo wmo~¢ooo HOIwMOOONoo oo NONN¢OoO delwoomON.o oo wNo~¢o.o delwamNONoo oo wmma¢ooo ~OIw¢~A~NoO oo waaa¢coo HOIwmamHNoo OO whoo¢ooo dolwhNoaN.o oo MONO¢Ooo dolmomMNNoo do moooscao do woooeooo do wooomono do mooc¢o.o ~o wooom0co do wOOONOoo do wooo~0oo do wooooc.o do woooamoo do wooowmoo do wOOOFmoo do woooomoo do mooommoo do wooo¢moo do wOOOMmoo do wOOONmoO do moccamoo A.o.bzoug he 00 mo ¢o no No ac 06 mm mm hm ¢m mm ¢m mm Nm «m Num wamdh a a w r . 158 CO wNo¢Haoo oo wmmomo.o oo m~0m-.o oo wPNomooo oo wmom¢o.o HolwmwNo~oo «o woooo~oo OF 00 mahm¢ooo aolw¢NmoHco do woooaooo 00 oo womm¢ooo ~0lwho~o~oo ~o wooowooo mo “.o.bzou~ Now mam