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ABSTRACT

OBJECT RECOGNITION FROM RANGE IMAGES

By.

Richard Lee Hoffman

The recognition of objects in 3-dimensional space is an

essential capability of the ideal computer vision system.

Range images directly measure 30 surface coordinates of the

visible portion of a scene and are well suited for this task.

We report a procedure to identify 30 objects in range images.

which makes use of four key processes. The first process

segments the range image into "surface patches" by a

clustering algorithm using surface points and associated

surface normals. The second process classifies these patches

as planar. convex. or concave based on a nonparametric

statistical test for trend. The third process derives patch

boundary information. and the results of this and the second

process are used to merge compatible patches to produce

reasonable object faces. The fourth process takes the patch

and boundary information provided by the earlier stages and

derives a representation of the range image. A list of

salient features of the various objects in the database forms

the core of an object recognition system. which looks for

instances of these features in the representation.

Occurrences of these salient features are interpreted as

evidence for or against the hypothesis that a ‘given object

occurs in the scene. A measure of similarity between the set

of observed features and the set of salient features for a

given object in the database is used to determine the



identity of an object in the scene or reject the objectlsl in

the scene as unknown. This evidence-based object recognition

system correctly identified objects in 3% out of 31 range

images. Four range images showing objects not included in

the object database were rejected, as desired. Recognition

degraded only slightly when evidence weights were perturbed.
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CHAPTER I

INTRODUCTION

The task of endowing a computer with a visual capability

to sense. recognize. and interpret its surroundings has made

the field of Computer Vision a challenging research area over

the years. The ease with which humans perform day-to—day

visual tasks has been remarkably difficult to reproduce using

computers. Only simple tasks in restricted environments have

yielded any success when assigned to computers. Particularly

difficult is the implementation of three-dimensional vision,

yet this task is very important for a system to navigate and

operate in the real world.

This chapter briefly covers the methods and results

involved in the 3D object recognition system developed in

this thesis. Related 3D object recognition systems in the

literature are discussed. Approaches to depth perception and

object representation are also discussed. and the basic

structure of the thesis is outlined with corresponding

methodology and contributions.



1.1 -- 3D Object Recognition

The aim of this work has been to develop a computer

vision system to recognize 3D objects in a scene.

Implementation of complete recognition systems is not common

in the literature; some complete systems are discussed in

Section 1.2. The input to our system is a range image

[Jar83]. which supplies arrays of 3D spatial data which

correspond to points on object surfaces. Segmentation of

object surfaces into surface patches is performed with the

goal of detecting natural object faces. These patches are

primitives for the object recognition procedure. which is

based on matching salient features of objects with observed

features. The salient features of known objects are stored

in an evidence rule base as a set of evidence conditions with

corresponding evidence weights. This evidence rule base is

currently constructed by hand.

A few assumptions have been made:

x There is only one object in a given scene.

x Natural object faces are smooth. Hence information

will not be lost when smoothing is performed to

reduce noise.

x The system need not perform object inspection. By

looking only for notable features of objects, some

imperfections can easily be overlooked.

A set of 31 range images has been analyzed. each showing

a view of one of 10 objects. Under initial segmentation, we

found that 462 of natural object faces were correctly

identified as single surface patches. After applying a

merging procedure to help recover from oversegmentation. this

proportion increased to 582. In addition. 612 of surface

patches are correctly classified as planar. convex, or

concave. Therefore, preliminary conversion of the numerical

range data into symbolic patch information was shown to be
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moderately accurate for detecting and classifying natural

object faces.

Based on the surface patches and corresponding

classifications passed to the object recognition process,

objects in 30 of the 31 range images were correctly

identified. Four range images showing objects not included

in the object database were rejected, as desired.

Recognition degraded only slightly when evidence weights were

perturbed. The evidence-based object recognition procedure

which has been developed here performs well.

1.2 -- Background

Although it could be said that the technology of range

image sensors is in Its infancy. the general problem of range

image processing has been well covered in the literature in

the stages of acquisition. analysis. and recognition. Few of

the results report complete vision systems that implement all

three of the aforementioned tasks; however. each task is in

itself so fertile that many papers concentrate on only one or

two of these tasks. This section will present some of the

complete range image based vision systems that occur in the

literature; detailed surveys of specific topics related to

range images are presented in appropriate chapters of this

thesis.

Oshima and Shirai [Osh83] use plane projection

structured light to obtain range values. A region-growing

process identifies approximate planar regions, which are

classified as curved, planar, or undefined. and merged with

compatible neighbors to obtain global planar and curved

regions. Each region is characterized by the best fit plane

or quadric surface. relations to neighboring regions, and

other features which are then compared to features of

a priori models to obtain object recognition. This approach
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is used to identify regular solids and various machine parts.

Natural object faces are assumed to be delineated by creases

in object surface; this validates the region-growing process,

but objects with smooth joins [Bra85]. such as many

sculptured objects, cannot be handled. The recognition

technique is based on characteristic views: many sample

views of an object are shown to the system. and to recognize

an object the observed scene must be compared to all of these

Views.

Horaud and Bolles [Hor84l describe a two—step

recognition process designed to identify objects within a

jumble of objects. The first step identifies jump edges.

classifies these edges as convex or concave, examines the

visible surfaces on either side of the edge to classify and

parameterize them as planar or cylindrical (the only types of

object primitives assumed to exist). The next step is a tree

search strategy to find an object match; curved edges are

preferred because they are more useful in limiting the search

space. An obvious problem with this approach is the

dependence on jump edges in deriving primitives for

recognition. so that objects must be rich in jump edges.

Furthermore. the restriction of object surfaces to planes and

cylinders reduces the class of objects which can be

recognized.

Boyter and Aggarwal [Boy86l work only with polyhedral

objects. Planar faces and corresponding borders are detected

by first fitting a piecewise linear function to each row of

the range image. and then integrating these row-functions.

For each model object. a number of translation-rotation

matrices (TRM'sl which transform a portion of the observed

object into the model is computed. A TRM is saved if it

transforms the model object into the observed scene with

small error. A Hough technique selects that TRM which has

occurred most often to provide object identification and

location.
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The evidence-based recognition procedure implemented in

this thesis has been designed to avoid some of the drawbacks

of the above object recognition systems:

(1) Fitting quadric surfaces to object faces. and

(2) Restricting the class of objects which can be

recognized to those composed of simple primitives.

The use of quadric surface equations for recognition is a

dubious endeavor, as is demonstrated in Section 3.2;

therefore. we have restricted our classification of a surface

patch to one of three fundamental classes: planar, convex.

and concave. This broad classification requires no specific

shape of a surface, and therefore can be applied to

sculptured objects as well as to objects composed of simple

primitives.

1.3 -- Depth Perception

A single reflectance image will show the projection of

30 scene coordinates onto a 2D image plane; the inverse

reconstruction problem of recreating the true 30 coordinates

from this image generally suffers from the existence of many

conflicting solutions. For the recognition of objects

situated in 3-dimensional space it is essential that depth

information be derived from the images which enter the

system. Once this depth information is obtained it is

possible to construct a 2.5-D sketch [Mar82l of the scene.

This typically consists of depth values and surface

orientations (representable as surface normals). This

representation provides explicit information about visible

surfaces and is the last stage of precognition in which no

smaecific assumptions or hypotheses about the objects present

iri the scene are needed.
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There are three major techniques for deriving depth

information from a scene [Jar83l: ambient systems,

structured lighting systems. and time-of—flight rangefinders.

Ambient systems depend only on existing lighting; the images

used are reflectance images and depth is implicit in the data

-- that is, nontrivial procedures must be used to deduce the

depth values. Structured lighting systems impose a pattern

of light on the imaged scene and require less processing to

acquire depth information than ambient systems.

Time-of—flight rangefinders directly provide depth values: we

call the output of such sensors range images. The following

three subsections discuss these techniques in more detail.

1.3.1 -- Ambient Systems

Monocular or binocular cues can be used to deduce depth

from reflectance images. The human visual system certainly

uses both, since depth in a photograph can often be inferred

as easily as the depth in the corresponding real world view.

Some monocular cues which have been used in the literature

(e.g.. IRos78l) to detect depth are:

(1) Linear and size perspective: Parallel lines

converge as they recede into the distance: objects

look smaller at further distances.

(2) Occlusion: If object A obstruCts part of the view

of object B. object A is in front of object B, i.e.

closer.

(3) Shading: Object surfaces facing away from the

light sourcels) will be darker than those facing

the light. A shadow of one object falling on

another object is a form of occlusion. If it is

assumed that the object surfaces are Lambertian, a

precise formula relating grey level to surface

orientation (with respect to the angle of incidence

of the light source) can be used.

(4) Texture density gradient: A texture will become
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finer in resolution as it recedes from the viewer.

(5) Motion cues: Moving objects which are further away

move slower across the retina.

Note that some perspective cues require that objects in the

view be known a priori before depth may be determined. This

forms a vicious circle if depth is required to identify

objects.

An easier approach utilizes two or more views of the

same scene to deduce depth by binocular cues. The general

technique is to derive point-by-point correspondences between

two images to establish a disparity measure at each point.

Knowledge of the positions of the cameras used then allows

depth to be calculated by triangulation. The challenging

task confronting CV research is a reliable and quick

correspondence (image registration) algorithm. Work by Bela

Julesz [Jul71] has been instrumental to the study of human

stereo vision, particularly his experiments with random dot

stereographs -- pairs of images that singly appear to be

nothing more than random dot patterns but when viewed through

a stereoscope reveal structured depth patterns. Figure 1-1

shows an example of such a stereo dot pattern. If viewed

with a stereoscope. a floating "H" should appear. Thus depth

perception needn't depend on high-level cues such as object

recognition; depth may be detected solely from the disparity

between the stereo images.

A multitude of algorithms have been developed to solve

the correspondence problem. Of the various approaches.

area-based correlation and edge-based correlation techniques

dominate the literature. Below is a discussion of each of

these general approaches. Other techniques that have been

applied include relaxation [Bar80l and a hypothesize-test

paradigm [Wi180]. In almost all situations, the two-camera

(nodel is designed such that there is no relative rotation

between the v i ews .



Stereo Dot Pattern

Figure 1-1

 



8

In area-based correlation the general approach is to

pick a point in one image and search through the other image

to find the optimal match point. basing the goodness of the

match on various grey value or texture statistics of the

neighborhood of each point. Thus a window about the point to

be matched is correlated with windows of equal size in the

other image to find this optimum match. This is generally

time consuming, unless it is known a priori that the images

have one axis in common. An "interest” operator can be used

to identify those points with high local variance of grey

levels. and these "distinguished points" are correlated first

to help guide the correlation of the remaining points

[Nev76l,[Gen77].

The foundation of edge-based image matching lies in

identifying the edges in the images. perhaps by the presence

of zero-crossings in the second derivative of intensity. It

has been claimed that the best filter to perform this second

derivative is the Laplacian of the two-dimensional Gaussian

distribution, and this is typically approximated by a

difference of Gaussian (DOG) filter [Mar80]. Horizontal scan

line pairs are then independently processed. correlating

pixels belonging to an edge in one image with corresponding

edge points in the same horizontal scan line of the other

image by considering local information such as intensity

slope and contrast. and the sense of the zero-crossing ("+"

to "-" or "-" to "+"). In [Mar78] and [Gri80l edge maps are

constructed by four masks of differing sizes; the results of

matching image pairs filtered by the wider masks are used to

bring the images into better correspondence so that the finer

masks, which detect smaller disparities at higher resolution,

are effective.
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The photometric stereo technique [Ike81] uses two or

three views of a scene taken with the camera in a fixed

position but with different positions of the light source.

Differences in shading from one image to the other provide

cues about depth. Another potential ambient range-finding

process is range from focusing [Jar76I.IKro86I. The

sharpness of focus has to be quantified over a small image

window for several focus settings. and the depth is derived

by maximizing certain measures of sharpness. Disadvantages

of this scheme are (1) accuracy decreases with distance. and

(2) homogeneous regions cannot be ranged.

1.3.2 -- Structured Lighting Systems

The use of an additional (high energy) light source to

project points. lines. or grids onto the scene being imaged

allows depth to be deduced from a single 2D image by

correlating the known projector model with the detected light

pattern in the image.

The simplest technique is the projection of a single

point onto the scene [Nim82].[0de80l. Location in the image

of the beam where it hits the scene will directly provide

depth through triangulation. Hence this is almost an

explicit ranging technique, except that certain special cases

(which may occur rather frequently) must be appropriately

handled. These cases are:

(1) The point of intersection of the beam with the

scene is occluded from the camera:

(2) The beam is reflected off the scene in such a way

as to produce multiple spots of light in the camera

image;

(3) The spot may be elongated if the surface is almost

colinear with the beam.

Several industrial vision systems use a spot laser beam to

determine the position of objects [Bam83] .
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Another way is to project a line (a plane of light) onto

the scene [Osh78]. It is possible to obtain depth for each

point in the resulting line image without solving a

correspondence problem IKre82]. A range image, dense except

in shadows, may be derived by sweeping the light plane over

the scene. This is the principle behind the commercially

available White scanning system produced by Technical Arts

Corporation.

Finally. multiple plane and grid projections have been

used as well [Ha182].[St085]. However, these require that a

correspondence be made between the projected and imaged

planes and grids. This correspondence is sometimes solved by

encoding the light planes (e.g. dashed lines. colors)

[In084],[Pos82].

Inherent disadvantages of these techniques are:

(1) Without a coherent light source. accuracy at larger

depths decreases due to beam spread:

(2) Due to the special lighting setups required. these

techniques are not useful for outdoor scenes.

1.3.3 -- Time-of-Flight Rangefinders

Time-of-flight rangefinders typically use one of two

types of energy sources: ultrasonic sound or laser beams.

The procedure is to measure the time taken for an outgoing

ray to strike and reflect off the scene, and return to

trigger a detector. A major difficulty with such a method

occurs if the scene surface acts like a mirror surface and

reflects very little of the ray back toward the detector

unless the angle is just right. This is called specular

reflection.
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A commercially available ultrasonic rangefinder is

produced by Polaroid. However. the resolution is not very

good (10x10 pixels over a 80 degree solid angle field of view

at best). and the wavelength of the sound is so large that

specular effects are pronounced.

Laser rangefinders can operate in three ways:

time-of-flight (TOF) systems measure the elapsed time between

emission of the laser beam and detection of its reflected

energy; an interferometric (IM) system counts interference

bands when the reflected light is added to a reference beam;

and in a continuous wave (CW) system the laser is amplitude

modulated. and the phase of the returned signal is compared

to that of the original signal to deduce depth. The

Environmental Research Institute of Michigan has a laser

range finder system which uses the CW method. and was used to

obtain the real range images in this thesis.

A large disadvantage of a TOF system is in the accuracy,

or resolution. which is typically on the order of a meter.

Although its accuracy is on the order of the wavelength of

the light used. the IM system requires a strong return signal

and counting the interference bands is time consuming. A CW

system has the better characteristics of the TOF and IM

systems: good accuracy. which can be on the order of

0.0005". and high speed.

1.4 -- Object Features and Representations

There are a number of features which can be used to

recognize 3D objects. For example. global characteristics

such as size and shape are useful. Edges on object surfaces

may show self-occlusion or creases in the surface; a network

of such edges can provide strong evidence of certain objects.

fSegmentation of object surfaces into natural object faces

Fmrovides a number of features: there are color. texture. and
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shading of each patch. as well as spatial characteristics of

natural object faces such as shape. size. and relationships

to other faces. Objects may also be decomposed into 30

primitives, such as spheres, boxes. and cylinders. so that

recognition may follow from these primitives and their

interrelationships.

Features such as edges. surfaces. and volume primitives

can be used to construct representations of objects. The

means of constructing and operating on these representations

is commonly called modeling. Representations (or models)

form the link between image processing and image

understanding.

Three-dimensional representations have been a topic of

intense interest over the years. A big portion of this

interest comes from Computer Aided Design and Computer Aided

Manufacturing (CAD/CAM) where a quick alternative to manual

design and manufacture (e.g. design of an automobile body)

is already making a significant impact on productivity and

quality [Req80]. Some issues in 3D modeling are:

(1) Domain: What is the universe of objects that can

be modeled under a representation scheme?

(2) Validity: Is the scheme safe from nonsensical

representations?

(3) Uniqueness and completeness: Is the mapping from

representable objects to representations

one-to-one?

(4) Conciseness: How "verbose” must a representation

be?

Models of 3D objects fall into three general groups:

(1) Volume representations: Objects are represented in

terms of 3D primitives (cell decomposition, spatial

occupancy, generalized cylinders, etc.) [Nev77] or

set-theoretic combinations of primitives

(Constructive Solid Geometry. or CSG) [Bad78l.
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(2) Boundary (surface) representations: Objects are

represented by collections of "surface patches"

forming the boundary of these objects (e.g. Coons

patches. B-splines. planar and quadric patches.

etc.) IRad84].[Tom84l.

(3) Wireframe (edge) representations: Objects are

represented by the set of edges (lines of

intersection of smooth surfaces) [Gu84l.

A difficulty with volume representations is that to

recognize an object via matching "volume-based

representations", many views of the object must be used.

because there is uncertainty in the extent of an object in a

direction parallel to the line of view. However. the human

visual system can identify objects given only a partial view;

this capability is shared by matching via ”surface-based

representations" in which matching only observed surface

patches with those of a stored model can cue recognition.

Volume-representational models are based on a small set of

primitives. which either naturally excludes from their

domains sculptured objects [Bad78l or allows sculptured

objects at the expense of approximating the object with a

large number of primitives [Chi85]. Wireframe models have

many notable shortcomings, such as verbose representations.

ambiguity, and nonsensical representations IBesBSl. The

information contained in a wireframe model may be derived

from a surface-based model. since edges on an object define

boundaries between adjacent surface patches.

All three representation types have been employed in

CAD. In fact. recent work in the CAD community is favoring

rnultirepresentational schemes (e.g. CSG/boundary schemes in

IBoy78] ) such that advantages of each individual

'representation may be enjoyed IReq82]. However. new issues

Irelating to conversion procedures between representations

rnust be addressed.
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The goals of the object recognition system developed

here are:

x Make use of characteristic features of objects.

This may involve view dependent recognition rules.

x Recognize objects from a single view.

x Allow objects to be sculptured or articulated.

Since recognition is to be made from a single view of an

object, a volumetric approach is not reasonable. Thus the

approach taken by our 3D object recognition scheme is based

on surface/boundary representations, with wireframe

information available as intersections of surface patches.

The representations obtained for recognition are derived from

information which may be computed from surface patches and

boundaries between patches. However. recognition does not

use models of objects, but only lists of salient features of

objects. which are expressed in terms of natural object

faces. A salient feature of an object is some characteristic

which provides supportive evidence of that object. For

example. if a cylindrical surface component is detected on an

object. then the hypothesis that the object is an orange

would be weakened, whereas the hypothesis that the object is

a cup would be strengthened. Further discovery that the

cylindrical component is about 4" long and has a handle would

make the hypothesis that the object is a cup very strong.

Different evidence for cup is a view of a convex patch

occluding a concave patch across a jump edge of a few inches.

1.5 -- Organization of the Thesis

A computer vision system is presented in this thesis

\Jthh recognizes 3D objects in range images. The analysis

:stage consists of three major components: segmentation.

c:lassification, and merging. The first component segments

time range image into "surface patches" by a squared error
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criterion clustering algorithm using surface points and

associated surface normals. The second component classifies

these patches as planar. convex. or concave based on a

nonparametric statistical test for trend. curvature values,

and eigenvalue analysis. In the third component. compatible

patches are merged to produce reasonable faces of the

objectls). The recognition stage takes the patch information

obtained from the analysis stage to create a representation

of the range image based on properties of the patches and

relations between the patches. By seeking salient features

within a representation. evidence is accumulated which is

used to make a decision about the contents of the range

image. This procedure has been applied to both real and

synthetic range images, with a high proportion of successes.

Figure 1-2 illustrates the proposed range image analysis

procedure.

Chapter 2 presents terminology and definitions used

throughout the thesis pertaining to range images. Also

included are enhancement algorithms for smoothing. background

elimination. and jump edge detection which improve the image

quality and aid further processing. Chapter 3 discusses

segmentation of range images by clustering and a good cluster

algorithm for this task is empirically derived.

Chapter 4 is concerned with classifying the surface

patches derived by the segmentation process. One

contribution of this chapter is the design of a nonparametric

statistical 'test for trend which is used to discover

curvature in a surface patch. The advantage of this test is

that the technique is quick and very reliable for larger

patches, and requires no arbitrary thresholds except

specification of the critical level of the test. Another

contribution involves the design of a tree decision procedure

which integrates the nonparametric statistical test results

with curvature and eigenvalue measures to decide on surface

type.
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Chapter 5 deals with classifications of boundaries (or

edges) between adjacent surface patches. An important type

of edge is a crease edge, formed when two surface patches

intersect at a distinct "fold" or edge of the object. After

deriving the type of boundary between every pair of adjacent

surface patches, these patches are merged based on both the

classification of the patches and by the classification of

the boundary between patches. At the end of this stage a

final segmentation of our range image into (hopefully)

natural object faces is obtained.

The problem of identifying 3D objects from a

representation of visible surface segments is treated in

Chapter 6. The contribution of this chapter is an

evidence-based recognition technique which identifies objects

via their notable features. A representation of the range

image is derived from the patch and boundary information

provided by the analyses described in Chapters 3 through 5.

A list of salient features of the various objects in the

database forms the core of an object recognition system,

which looks for instances of these features in the

representation. Occurrences of these salient features are

interpreted as evidence for or against the hypothesis that a

given object occurs in the scene. A measure of similarity

between the set of observed features and the set of salient

features for a given object in the database is used to

determine the identity of an object in the scene or reject

the object(s) in the scene as unknown. The similarity

measure is shown to have nice properties with respect to

object model updates. The recognition technique avoids the

inherently exponential time complexities of those matching

tarocedures which find a mapping from every observed patch to

some object patch. The recognition procedure is shown to

have polynomial time complexity and to be fairly accurate in

<:orrectly identifying objects.



18

Chapter 7 outlines the overall scheme of the thesis.

summarizing the important points from each chapter. The

contributions and their advantages and disadvantages are

presented. as well as suggestions for further research to

extend the results of this thesis.



CHAPTER II

PRELIMINARIES

The success of an object recognition system can be

compromised by excessive noise in its input. Therefore,

images are usually smoothed before recognition is attempted.

Recognition may also be improved by removing extraneous

pixels. such as those which do not belong to any object.

This chapter presents smoothing and background removal

techniques to enhance real range images. A number of

features of range images are defined which will be useful for

recognition: edges. surface normals. surface area. and shape

features. Also, we formally define range images and describe

the database of range images used in this thesis.

2.1 -- Range Images

A range image is a function f(r.c) where r is the row in

the image. c is the column in the image. and f(r,c) is some

number which corresponds to depth at position (r.c). The

vector (r.c,f(r,c)) can be converted into a real world

spatial coordinate system by some procedure depending on the

ranging system used. In the simplest cases this conversion

\will be a linear transformation. We denote a pixel as p: if

the row r and column c are specified we write Pr,c° The

notation 5 denotes the vector (r,c,f(r,c)l.

20
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The range images in our experiments are 128x128 pixels

in size. Each fir.c) is represented by an 8-bit range value:

smaller range values represent more distant depth. and larger

range values correspond to pixels closer to the sensor.

We use range images from two sources: real range data

obtained from the laser scanner at ERIM (Environmental

Research Institute of Michigan) located in Ann Arbor,

Michigan. and synthetic data obtained by software we have

written.

The range sensor at ERIM operates on the continuous wave

technique. Figure 2-1 shows a block diagram of the

components of this system. The 128x128 spatial resolution

describes a footprint of approximately 6.4"x6.4". and the 256

grey values correspond to an approximate depth range of 8”.

Specifications of the ERIM scanner dictate that to

(approximately) convert one of these range images into

(x,y.z) coordinates we use x and y increments of 0.05" and z

increment of 0.032". A complication arises due to the design

of the sensor: the laser is emitted from a fixed location

and it is incremented in angles of this beam. not x-y

displacements. that correspond to the pixels. The effect is

that the range sensor produces data in an elliptical

coordinate system. These points may be transformed into

standard Cartesian coordinates by an appropriate procedure

based'on the parameters of the laser sensor system. However,

we find the distortion is not significant enough to degrade

the performance of our procedures. Hence throughout this

thesis we treat the vector (r,c.f(r,c)) as if it were the

correct Cartesian 3D coordinate. In Figure 2-2 we show the

reflectance images and corresponding range images obtained

from ERIM for two objects: an aftershave bottle and a cup.
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ERIM Laser Scanner
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Figure 2-2

Reflectance and Range Images

In our synthetic data, a pixel whose corresponding depth

value is undefined (i.e. the imaginary sensor hits no

object) is assigned a depth value of 0 and this value is

ignored in further processing. Unlike the real data, we are

able to generate data such that (r,c,f(r,c)) is an exact 30

spatial coordinate on an object surface. To simplify

software requirements, these images are also generated with

the same x. y, 2 increments as provided by the ERIM system.

The theory and basic approach behind our synthetic range

image generation is presented in Appendix A.

Both the synthetic and real range data contain noise:

in synthetic images, the quantization to 256 range values

introduces some degradation. and real images suffer from

sensor noise as well. For known planar surfaces it is

possible to measure the noise by 1) finding the best-fitting

plane for the surface, and 2) deriving the mean and standard

deviation of the (signed) distances from they observed range
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values to estimated range values derived from the planar fit.

The mean should be approximately zero. and the standard

deviation indicates the severity of the noise. Note that

since the x. y. and 2 increments are fixed. a reasonable

measure of the noise is this standard deviation. For

convenience. let us define a constant g=0.032". the distance

corresponding to one grey level in our range images. For the

rest of this thesis we denote the noise level of a surface as

a multiple of g.

A large amount of the literature dealing with

reflectance images involves detecting edges as a means of

delineating object boundaries. Edges in reflectance images

are almost always formed by large jumps in grey values. and

correspond to surface boundaries or changes in albedo. In

range images, edges have also played a big role in the

literature; however. there are at least three types of edges

that are used: jump edges, crease (or roof) edges, and

smooth edges.

As with reflectance images. jump edges in range images

are formed where depth values are discontinuous. Such edges

occur when an object occludes another object or when part of

an object occludes itself. Crease edges correspond to

surface creases; that is. points over which surface normals

are discontinuous. The third type of edge is called a smooth

edge and is characterized by continuity of surface normals

but discontinuity of curvature (rate of change of surface

normals). Only jump and crease edges have been widely used

in the literature. Ponce and Brady [Pon85] have had some

success in detecting smooth edges (smooth joins in their

terminology). In Figure 2-3 we observe 2D instances of jump,

crease. and smooth edges.
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2.2 -- Noise Reduction

In the real range images we have obtained. the

background plane (the table on which the object is placed)

typically has noise level of 1.2g. However, due to the

larger specularity of the objects in our database, the noise

on object surfaces averages about 4g.

Before analyzing the real range images. it would be

helpful to reduce the noise level of the images somewhat.

Hurt and Rosenfeld [Hur84l investigate several techniques for

reducing noise in two and three dimensional intensity imagery

without destroying edge information: we have looked at three

techniques covered in their work -- median filter. nearest

neighborhood smoothing, and maximum likelihood smoothing ~-

as well as the donut filter discussed in [Sve85l. The median

filter replaces a grey value with the median grey value of

its neighbors. where the neighborhood is nxn, where n is odd.

This filter reduces noise but also seems to blur the edges.

The donut filter operates in two stages. An intermediate

image is formed by replacing each pixel with the minimum grey

value in its 3x3 neighborhood. The last stage replaces each

pixel of the intermediate image with the maximum grey value

in its 3x3 neighborhood. This procedure really only cleans

the obvious low or high peaks in the image; noise is not

really reduced.

The nearest neighborhood smoothing technique operates on

all pixels in parallel:

For each pixel (r.c):

1. Identify the 5 neighbors in the 3x3 neighborhood of

(r,c) having corresponding grey values f1, f2, f3,

f4, f5 closest to fir.c).

2. Replace fir.c) with (f1+ f2+ f3+ f4+ fsl/S.

The maximum likelihood smoothing operates in much the same
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way: after the 5 "nearest neighbors" are identified. the

number of these neighbors falling in each 2x2 subneighborhood

is counted: the grey values falling in the 2x2 windowis) with

maximal count are averaged and the central pixel is replaced

with this average. The performances of these two procedures.

as reported in [Hur84]. are good at reducing noise without

reducing edge information. We have arbitrarily chosen from

these two approaches the nearest neighborhood technique. In

fact, we apply this filter twice. Working with planar

surfaces having noise level 4g, two applications of this

filter reduces the noise to less than 2g. Figure 2-4 shows

the effect of applying this technique to a range image of a

toy part. Notice that the grainy quality of the original

image is reduced by the smoothing, and yet the important edge

information has been retained.

 
Figure 2-4

Demonstration of NN Smoothing on Toy Part
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2.3 -- Background Removal

The flat table surface where the object(s) is resting

also provides depth values of its own at those locations

where the sensor beam hits no object. Since this background

contains no useful information, it is easier to identify

these background pixels and remove them from future

processing at the start than to analyze the entire scene,

objects and background. and then identify the background in

the recognition stage. Furthermore. the number of background

pixels can be much larger than the number of object pixels.

hence range image processing will proceed quicker if only

object pixels are analyzed.

From the laser scanner system at ERIM we also obtained a

range image of the table alone. This provides a reference

range image frefIF'c’ which, when smoothed as discussed in

Section 2.2, may be used to reject pixels that fall on the

background surface. However. we expect that the background

surface in other range images may differ by an additive

constant. Because the range scanner uses phase modulation to

determine depth, the range values are calculated modulo an

adjustable depth range. For example. a point that lies 12.2"

from the scanner and a point that lies 20.2" from the scanner

will have the same grey value (if the 256 grey values cover

an 8" depth range). During the range image acquisition of

objects. the sensed images had a wrap-around effect -- the

grey values for the closer object points would bypass the

depth level for grey value 255 and "wrap-around" to produce a

grey value close to 0. An adjustment in the sensor circuitry

allows the grey values to be shifted by an additive Constant

(modulo 256). so that no wrap-around occurs (assuming the

object is not too large for the 8" depth range to begin

with). The effect of such an adjustment is that the

background surface grey values are also shifted by a

constant. Hence. to use the reference range image we need to

compute a shift factor before comparing reference and other
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real data.

Our process for extracting, object pixels from a real

range image is as follows. In every real range image we

obtained. the bottom right corner of the image shows

background surface. Therefore. after smoothing the image as

in Section 2.2 (to obtain smoothed range image f). we perform

the following:

1. Set v“ to be the average grey value over the 5x5

neighborhood of the pixel (r.c)=(123.123) in f.

2. Set 5 = vx — fref(123.123l

3. For all (r,c):

If I f(r.c) - Fref‘r'c’ - s I e 3 then set

f)r,c) = 0.

Experience shows that single pixels or small patches of

background pixels may not be removed by this step.

particularly around the extreme border of the image. We

clean these up by removing connected nonbackground components

containing fewer than 40 pixels. The remaining pixels are

object pixels. Denote the number of object pixels by Np.

Figure 2-5 shows the result of smoothing and background

removal for cup and aftershave bottle range images. We

observe an noticeable improvement in image quality as a

result of these two simple operations.

2.4 -- Surface Normals

The orientations of visible surfaces of an object are

useful features for its recognition because they encode the

shape of the object. This orientation is represented by the

unit vector normal to the tangent plane at a pixel p. and is

denoted fip' We estimate this unit normal at a pixel by

finding the best fitting plane (by linear least squares

method) over an mxm neighborhood of the pixel. A problem
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Figure 2‘5

Background Removal for Cup and Bottle

with the normal vector estimation is the need to define a

neighborhood. Even though we can ignore background pixels.

there will be distortion of the "true" normals in the

vicinity of jump and crease edges: namely. a smoothing

effect, so that normals will not be wholly discontinuous in

passing over an edge but will gradually change. We can

expect that although large neighborhoods (e.g. 8x8. 7x7)

would give reliable normals within a face. edge effects would

propagate out from the boundaries a substantial distance:

smaller neighborhoods would produce normals which are more

susceptible to noise and quantization of range values. We

have experimented with varying neighborhood sizes and have

found 5x5 neighborhoods to provide good tradeoff with respect

to minimizing edge effect propagation and noise

(quantization) effects.
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Figure 2-6 shows a sampling of surface normals derived

from the aftershave bottle range image. This figure should

be interpreted as a picture of a 3D scene consisting of unit

length surface normal vector "needles” sticking out of the

(invisible) surface of the bottle. Note the prominent edge

effects on the edge of the main body of the bottle, where the

two planar faces meet.

2.5 -- Jump Edge Detection

Computing surface normals in the vicinity of a jump or

crease edge can give nonsensical results because pixels on

either side of such an edge generally belong to different

object faces. Although these erroneous normals could be

treated as outliers. the detection of jump edges is not a

difficult task and once known they may be used to restrict

the neighborhoods used to calculate normals. Further, jump

edges can be used to detect surfaces that are not spatially

contiguous. which will be useful in the recognition stage.

On the other hand. crease edge detection is not an easy

problem.

Our detection of pixels that appear to fall on jump

edges is based on the idea that if a jump edge intersects a

row (column) of the range image. then there will be a

discontinuity in the sequence of depth values along the row

(column). To decide if a pixel Pr,c falls on a jump edge:

Define 04(Pr,c) to be the 4—neighbors (N.S.E.WI of pixel

pr.C'

Define A:
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Figure 2-6

Surface Normals of a Bottle
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A = . 'max (Iflr,cI-f(r',c'III

(r .c Iefl4lpr C)

= If(r,c)-f(r+a,c+b)l for some (a.bIeQ4(pr c:I.

If (a.bI is not uniquely defined. pick it arbitrarily.

Define a sequence (dilig as follows:
‘11

d1: If(r+ia,c+ibI-f(r+(i+1Ia.c+(i+1IbII

(note that d®=A). The value n is user-specified. Conclude

that a pixel pr,c falls on a jump edge if

Aawxmaxidi: i=-n.....1, i20) or

A>wxmaxidiz i=-1.....n. i=0)

where w is some user-specified constant. This says that the

grey level difference A is larger than the surrounding grey

level differences by at least a factor of w.

To illustrate this procedure, let w=3 and n=4, and observe

the grid of range values shown in Figure 2-7. To decide if

the middle pixel (range value 60) falls on a jump edge. we

investigate its neighbors indicated by bold squares and find

that the neighbor with range value 138 has the greatest

absolute difference from 60 (A=78I. Thus the pixels

indicated by thin boxes are used to derive (dil. Since

maxidi: i=—1....,4; 120 l=14 and 3X14=42 is less than A=78,

we conclude that the middle pixel falls on a jump edge.

The algorithm for jump edge detection is:

(1) Calculate jump edge pixels for w=4 and n=4. This

identifies those pixels with strong evidence of

falling on a jump edge.

(2) Remove connected components of these jump edge

pixels having fewer than 5 pixels. Spots of noise

can produce false detections in (1).

(3) LOOP
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Determine if pixels adjacent to previously

detected jump edge pixels are classified as jump

edge pixels when w=3 (and n=4). Hence the

sensitivity level is increased to try to extend

the current jump edge pixel set. .

UNTIL no new jump edge pixels are found.

(4) Perform gap-filling:

(a) Creating bridge connections between

previously unconnected jump edge pixels

in a 3x3 neighborhood (e.g., see Figure

2-8(aI).

(b) Filling diagonal gaps in the edges (e.g..

see Figure 2-8(b)).

The values of 4 and 3 for w were determined empirically by

observing the performance of this technique for different

w's. The value n=4 is a compromise between having too few

di's to make a good decision and sampling so far away from

the pixel of interest that another jump edge pixel may be

encountered to adversely influence the detection scheme.

Each of the above 4 steps has time complexity O(N ), where N

is the number of object pixels. Therefore. th?$ jump edg:

procedure has time complexity O(NpI.

Note that any gradient operator such as the Sobel

operator could be used to find jump edges. However. such a

technique requires thresholding the gradient image and the

resulting jump edges could be several pixels thick (depending

on the neighborhood size used in the gradient operation).

The technique described above will. under all but certain

pathological cases. provide an edge exactly two pixels thick:

one pixel on each side of the jump edge. This provides a

crisp localization of jump edges which cannot be guaranteed

by thinning the thresholded gradient image.
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Figure 2—8

Gap-Filling Diagram
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Figure 2—9 shows in part (a) the result of applying our

Jump edge detection technique and in part (b) the result of

applging the Sobel operator to a cup image. We observe that

the intensitg_of the Sobel values diminish towards the side

of the cup along the Jump edge formed bg the lip of the cup.

To capture the Jump edge pixels toward the sides of the cup

with a threshold operation on the Sobel-based image, we need

a low threshold which mag produce a thick boundarg in other

parts of the resultant thresholded image.

 
Figure 2-9

Output of Edge Detectors

Given the binarg Jump edge image. the surface normal

vector For a pixel p is derived over the restricted 5x5

neighborhood of p defined as follows: identify the connected

components of non—Jump edge pixels in the 5x5 neighborhood,

call these sets of pixels U1, U2...., Um. Identify those Ui

which contain pixelis) that are 8-adJacent to p. The union

of these Ui's form the restricted neighborhood of p over

which the normal vector at p is calculated. Figure 2-10
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shows an example of this neighborhood. Jump edge pixels are

marked with X's and the restricted neighborhood of the center

pixel p is the shaded portion.

2.6 -- Surface Area Estimation

Information about size. whether it be absolute size of

an obJect component or relative size between two or more

obJect components. is crucial for obJect recognition. In our

surface-based approach. we use surface area to provide this

"size" information. Given a region (surface patch) P in a

range image obtained by segmentation, to derive its area we

compute a "neighborhood area value" for each pixel (r,cl in

P; their sum gives us an approximation of the surface area of

P.

To derive the neighborhood area value for pixel lr,c),

define the diagonal neighbor set Qd‘pr,c’ as (see Figure

2-11)

Qdi r cl=iir+i,c+J): i=-1.1; J=-1.1}.

We derive four 30 points Xia.bl, la,bleOd, where

Xla,bl = l fine + pa'b l / 2.

with the exception that if ia.bl is not in P then the 2

component of Xia.bl is fir,cl. The areas of the two 30

triangles defined bg the triples of points {Xlr-1,c-1l,

Xlr—1.c+1l, Xir+1,c-1l) and (Xir-1.c+1I. Xir+1.c-1l.

Xlr+1.c+1l) are added to obtain the contribution of pixel

lr,cl to the surface area of P; that is, the neighborhood

area value of lr,cI.
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Figure 2-10

Restricted Neighborhood Example



 

  
 

 

Figure 2—11

Neighborhood for Surface

Area Estimation
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Unfortunatelg. noise even of level 1g has a "crinkling"

effect which causes a substantial overestimation of the

surface area. Table 2—1 shows the effect of noise on the

estimation of surface area of a plane with true area 4.76

square inches and a spherical patch with true area 4.90. Ten

noisg surfaces were generated for each noise level, and the

table reports the average estimated area. Note that the

values under noisg conditions are considerablg greater than

the true area. The overestimation of area for the spherical

patch under noise level 0g occurs due to quantization

Table 2-1

Effect of noise and smoothing on

estimated surface area.

mine

Planar Spherical

M

@g 4.76 6.32

1g 5.63 6.02

Zg 7.41 7.66

2g & smoothed 4.76 4.98

effects. Therefore. it is important to use smoothing to

eliminate noise. This mag have an adverse effect on curved

surfaces. however. For example, the degree of smoothing

needed to reduce the noise level on a spherical surface mag

also slightlg flatten the surface, causing the area to be

underestimated. However, it is not as serious to

underestimate as it is to overestimate the surface area:

occlusion in a scene will also cause an underestimation of

surface area, so a recognition sgstem will have to be able to

handle underestimation of surface area angwag. Table 2-1

also shows the estimated areas after smoothing for the planar

and spherical patches with 2g additive noise; these are verg

close to the true values, demonstrating that smoothing can

help recover the correct surface area. Here we have applied
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the Gaussian smoothing technique, which we will now define.

The Gaussian smoothing technique is based on the

"computational molecules" of Terzopoulos [Ter83] which were

utilized by Bradg et a1. [BraBSl for range image smoothing.

This smoothing technique proceeds bg performing a weighted

averaging based on the 3x3 Gaussian filter mask shown in

Figure 2-12ia), which is broken up into the four

"computational molecules” shown in Figure 2-12ibi. These

computational molecules are used for the purpose of handling

edge effects. Application of this filter to an image n times

corresponds to smoothing with a Gaussian filter whose

standard deviation is [E [Bur83].

Smoothing a patch P bg this technique is basicallg a

convolution of the patch with the 3x3 mask shown in 2-12iai.

with adjustments in the mask for those instances where the

mask would fall partiallg outside of P. Suppose we wish to

smooth the image in a neighborhood of a pixel pr'c in patch

P. We define four values 81. 82. 83, and 84 where:

8 1 if ir-1,c-1i and ir+1.c+1l are in P,

1 - 0 otherwise:

8 _ 1 if ir-1.cl and (r+1,ci are in P,

2 - 6 otherwise;

8 1 if ir-1,c+1) and ir+1.c-1l are in P,

3 - 0 otherwise;

8 1 if ir,c-1l and ir.c+1l are in P,

4 _ 0 otherwise;

we define the smoothed pixel 53?: at ir,cl to be:
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Figure 2-12

Computational Molecules
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pr,c ‘ ( 51E pr-1,c-1 + 2pr,c + Pr+1,c+1 1

+ 52[ 2fiF-1.C + 4fir.c + 2§r+1,c J

+ 53[ fir-1.c+1 + 2l5r.c + 5r+1,c-1 ]

+ 84[ 25r,c-1 + 4§r C + 2or,c+1 ] l/l481+882+883+484l

if (81+52+83+84l20, and

pr,c Pr,c otherwise.

One application of this filter does not sufficientlg

smooth a patch. For the kinds of noise level we have. we

applg this filter 20 times in order to be reasonablg certain

that the resulting surface is smooth. Figure 2-13 shows a

spherical surface with 2g additive noise: Figure 2-14 shows

the same surface after Gaussian smoothing is applied 20

times. The elimination of "crinkling" on the surface is

obvious. although smooth pits and hills remain, possiblg an

effect of the initial greg level quantization.

2.7 -- Morphological Features

When the distinction between object and background has

been made. we can construct a binarg image, with @'s where

background pixels occur and 1's where object pixels occur.

This binarg image provides a silhouette image of the

objectlsl present in the range image. We mag think of a

silhouette image as a projection of points of a 30 object

onto a 20 image plane. The identification of objects from

silhouettes is often an easg task for humans, particularlg

for objects which have a distinctive shape. Hence we derive

various morphological features from silhouette images to help

identifg objects in a range image. We define three

morphological features:
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Figure 2—13

Contour Plot of Noisy Surface
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(1) Perimeter (two dimensional);

(2) Background component count; and

(3) Convex hull based background component count.

The perimeter is derived bg identifging those "1" pixels

which lie on the outside border of the object and tracing

around the object along these pixels.

The background component count is useful in the sense

that some objects mag have "holes" which help in recognition.

For example. in certain views of a cup it would be possible

to see a hole formed bg the cup handle and the main bodg of

the cup. To obtain this feature we simplg count the number

“b of connected components of background pixels that occur in

the silhouette image. We require that connected components

have at least 40 pixels to be counted.

Another feature which is useful for recognition is the

number of "indentations" in the object perimeter. For

example. the space occurring between the fingers of a hand

are verg suggestive for recognition. To determine the number

of indentations in the silhouette image, we first construct

the 2D convex hull of its 1-pixels. The number of connected

background components n which occur within this convex hull
c

(again having 40 or more pixels) reflects the number of

silhouette indentations. Specificallg. the number of

connected silhouette indentations is nC — nb + 1.

Figure 2-15 shows a stage in computing the number of

convex hull background components for the range image of a

hand. The convex hull of the hand pixels is colored white.

the connected background components occurring within this

convex hull are colored blue. and the object (hand) pixels

are colored red. The number of convex hull based background

components is six for this image lnot seven, since one

component has less than 40 pixels).
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Figure 2-15

Silhouette Indentations

Component counts must be used with some caution in

object recognition, since these features are verg general

properties. In particular, theg are scale invariant. These

issues are considered in more detail in Section 6.3. The

time complexitg of deriving these three features is

OlN logNp p).

2.8 -- Range Image Database

The principal set of images to which we will applg the

techniques developed in this thesis are a set of 31 range

images, 19 of which were obtained from ERIM and 12 of which

were generated with our software. These images represent

views of 10 objects (6 real and 4 sgnthetic). Table 2—2

shows a summarg of these objects and views: a description of

the objects la name), an abbreviation for each object used

_ throughout the thesis, the tgpe of object (real or
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sgnthetic), and the number of views taken. The names of the

sgnthetic objects suggest their shape. Sgnthetic range

images were generated with added Gaussian noise with noise

level 1.5g. We refer to the set of images for a given object

Table 2-2

Object and Range Image Database

Aftershave Bottle AS Real 4

Cup HC Real 4

Block GB Real 3

Tunnel TN Sgnthetic 3

Cobra Sculpture CB Real 3

Mushroom MH Sgnthetic 3

Plug PL Sgnthetic 3

Diesel DS Sgnthetic 3

Tog Part TY Real 2

Human Hand HN Real 3

bg the abbreviation and a number: for example. the four

images of the aftershave bottle are denoted A51, A52. A63.

and A54. The preprocessed views of these objects are shown

in Appendix B. Part (a) of Figures 6-1 through B-31 show the

range images for the ten objects.

2.10 -- Summarg

This chapter establishes a foundation on which to

develop procedures for range image analgsis and object

recognition. Noise reduction (smoothing) and background

pixel removal are important stages in the investigation of

real range images and provide more reliable and quicker

results. When dealing with real range images this thesis

will assume that smoothing and background pixel removal have

been applied: the depth function flr,c) will refer to the
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smoothed greg values. Sgnthetic images are not smoothed and

do not require background removal. Jump edge detection is

useful for delineating image regions which do not correspond

to contiguous surfaces in 3D, and will be useful both in the

analgsis and recognition phases.

We have also defined the concepts of surface normal and

surface area estimation and corresponding numerical

techniques for their computation on discrete images. Some

morphological features useful for object recognition have

also been defined.



CHAPTER III

RANGE IMAGE SEGMENTATION

A segmentation of a scene into regions which ideallg

correspond to natural object faces is essential for

surface-based object recognition. Properties of these

regions are used to construct a representation of the scene

which can be used for recognition. Image segmentation is

well suited to range images. in which pixels fall into

natural groups corresponding to faces of objects in the range

image. This chapter proposes clustering as a means of

segmenting range images. Section 3.1 brieflg discusses image

segmentation techniques in the literature. Section 3.2

considers issues for the specific problem of range image

segmentation bg clustering. which is followed in Section 3.3

bg an evaluation of a number of clustering techniques on

range images. Section 3.4 discusses the postprocessing stage

necessarg to clean segmentations. and evaluates our findings.

3.1 -- Image Segmentation Techniques

Image segmentation techniques fall into two classes:

edge detection approaches, and region growing or clustering

approaches. Edge detection techniques take as image segments

those regions bounded bg closed boundarg contours, which are

derived bg ang of a number of edge operators. This approach

depends on flawless edge detection (e.g. missing portions of

edges must be filled in). As seen in Section 2.5, jump edges

51
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are not difficult to detect in range images: however. most

natural object faces are bounded not bg jump edges but bg

crease edges. and there are no reliable crease edge detectors

available. Thus we rule out the possibilitg of creating a

range image segmentation sgstem solelg based on edge

detection. However, we do make use of jump edge information

in Section 3.4 to help clean the segmentation derived bg the

CLUSTER technique discussed in Section 3.3.

The clustering approach involves aggregating feature

vectors (corresponding to pixels) that are similar and

separating those feature vectors that are dissimilar.

Clustering differs from region extraction in that the latter

uses the adjacencg information available in an image to

produce connected segments, whereas clustering techniques

treat feature vectors simplg as patterns in a

high-dimensional space. Feature vectors mag include the

(x.g) coordinates so that clusters will tend to be connected.

but are not guaranteed to be connected. Consequentlg, image

segmentation bg region extraction guarantees that each

segment is connected in the image; image segmentation bg

clustering does not. Clustering has been extensivelg used in

the literature for segmenting reflectance images but not for

range images. Segmentation of reflectance images bg

clustering has been performed bg region splitting/merging

([Nar77l, [Fuk80]). bg thresholding features of the image

([Sch79]. IHar751). and bg grouping patterns in a

multidimensional feature space ([Col79l. [60178]).

3.2 -- Clustering for Range Image Segmentation

The basic purpose of segmenting range images is to

identifg connected regions of the range image such that 1)

each region is contained within a larger region of the range

image which corresponds to a natural object face. and 2) the

regions are not too small to make merging or classifging them
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impossible or unreliable. The first condition asserts one

implicit assumption about the range images we expect to see:

that the complexitg of the surface primitives is limited to

quadrics. so that a face in a range image can be approximated

bg a function

2 2
0 = alr + a2c + a3f2(r,c) + a4rc + asrflr,c)

+ ascflr,c) + a7r + aac + agflr,c) + 310'

The second condition implies that a segmentation into

singleton pixel patches triviallg satisfies condition (1) but

is clearlg of no use: the larger the segments that do not

violate condition (1), the better the detection of natural

object faces.

An important issue in ang clustering application is that

of deciding what features should be used. For each pixel of

a range image there are mang candidates; e.g.. 5. a values.

the coefficients for the best fitting quadric surfgce. and

curvature measures. In our clustering experiments. we used

the following features:

(1) The spatial coordinates p=(r.c,f(r.c)). and

(2) The estimated unit surface normal vector fip.

To avoid preference of ang features over other features due

to unequal scaling, we normalize each feature to have mean

zero and unit variance.

These features are in a sense the minimum feature set we

could justifg; theg all plag distinct and important roles.

The r and c features emphasize coherence between neighboring

pixels. That is. two pixels that are adjacent in the image

are more likelg to belong to the same object face than two

pixels which are widelg separated in the image. The depth

value flr,c) is important in the detection of jump edges, and

the normal vector is needed to detect crease edges since p

does not experience unusual change over such a boundarg.
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The idea of obtaining 10 features for each pixel bg

finding the best fitting quadric surface function over a

neighborhood of the pixel is verg appealing [Hal82l. The

clusters in this 10-dimensional space should ideallg form a

perfect segmentation, given that object faces are quadric

surfaces. Also. the center of each cluster could supplg a

function for each face of the range image. from which could

be derived the tgpe of surface (plane. sphere, cglinder,

etc.), its appropriate parameters (e.g. radius of

curvature). and its location (or translation) in space. We

have attempted this approach and found that the coefficients

ai cannot be reliablg estimated. most likelg a side effect of

noise and quantization of depth values. and too mang

parameters. Consider. for example. what happens when we

generate a range image of a hemisphere containing 5013

pixels, representing a sphere with radius 2 and center at

(0.0.2): that is. satisfging the equation x2/3 + g2/3 + 22/3

- 42/3 = 0. For this surface a4 = -4/3. a8: a9: a1®=1/3, and

other ai coefficients are 0. Consider the five surface

patches of this range image shown in Figure 3-1. Since the

basic sgstem of equations is homogeneous, we add the

constraint that a8+a9+a1®=1. If we perform a least squares

fit to obtain a1 through 810 for each patch, we obtain 5 sets

of (ai). If the values we supplg to the least squares

routine are exact (i.e. not quantized to 256 greg levels),

then we obtain Table 3-1. where each row corresponds to one

set of (ai) coefficients. We observe that the coefficients

so obtained are essentiallg correct. However, if we supplg

the least squares routine with values which are quantized to

256 greg levels. we obtain Table 3-2. which shows estimated

coefficients which are often much different from the

theoretical coefficients. Thus, unless the range data is

practicallg noise-free, the use of quadric fitting appears to

be inappropriate.
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Figure 3-1

Surface Patches of Hemisphere

Table 3—1

Quadric Fit Coefficients for Exact Sphere Data

a1 a2 a3 a4 as a6 a7 as as am

0.03 0.00 0.00 —1.35 0.00 0.00 0.00 0.33 0.33 0.33

-0.00 —0.00 0.00 -1.33 0.00 0.00 0.00 0.33 0.33 0.33

0.00 0.00 0.00 —1.33 0.00 0.00 0.00 0.33 0.33 0.33

—0.00 0.00 -0.00 —1.33 0.00 0.00 0.00 0.33 0.33 0.33

0.00 0.00 0.00 —1.33 0.00 0.00 0.00 0.33 0.33 0.33

If we repeat this process and fit a

surface—parameterization function

2 = flr.c) = a1 + a2r + a3c + a4rc + a5r2+ as:2

to obtain patterns in 6—dimensional space, the results

obtained are still unusable. Even though this surface

parametrization form is commonlg used (e.g. IBesB4l). it has
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Table 3-2

Quadric Fit Coefficients for Quantized Sphere Data

a1 a2 a3 a4 as as a7 as as aio

4.92 0.00 0.00 -3.49 0.00 0.00 0.00 0.22 0.22 0.57

0.67 0.43 0.19 -1.42 0.03 -0.04 -0.02 0.37 0.31 0.32

0.67 0.19 -0.42 -1.42 -0.03 -0.02 0.04 0.31 0.37 0.32

0.67 -0.19 0.42 -1.42 -0.03 0.02 -0.04 0.31 0.37 0.32

0.67 -0.42 -0.19 -1.42 0.03 0.04 0.02 0.37 0.31 0.32

the inherent disadvantage that even simple surfaces such as

do

parametrization over the entire surface.

spheres and cglinders not have a consistent

For example, if we

take the above information and

Table

sphere function and patch

derive coefficients al-ae using exact data. we obtain

Table 3-3

Six-coefficient Fit for Exact Sphere Data

a1 a2 a3 a4 a5 a6

15.766 -0.027 -0.026 -0.000 -2.271 -2.271

-15.071 -25.996 -24.147 -8.361 -8.550 -8.125

-9.433 -20.790 21.035 7.204 -7.430 -7.287

-9.489 19.216 -22.553 6.980 -6.988 -7.963

-4.399 17.877 16.159 -5.809 -6.787 -6.330

3-3. Each row of coefficients mag be a plausible

parametrization of one of the five patches.

satisfg the entire surface with good accuracg.

conclude that fitting quadric surfaces to real data

useful for characterizing surfaces.

but none will

Therefore,

is not
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A classical unsolved problem of clustering is the issue

of determining how mang clusters are present in a given set

of patterns [Dub80]. This problem is critical to our

application: choosing too few clusters would result in a

segment containing portions of two distinct faces, and too

mang clusters could compromise the efficiencg of further

analgsis. Mang clustering techniques will give the user as

mang clusters as requested. It is possible to define

measures which in some sense evaluate the merit of a given

clustering. For example, compactness and isolation measures

are popular [Bai82l. A priori knowledge can plag a role in

segmenting range images if the complexitg of the objects one

expects to encounter is known, such as the number of faces on

the most complex object. A reasonable upper bound 8 on the

number of segments mag be used. One mag then either choose a

clustering of exactlg 8 segments and concentrate on

developing a technique that reliablg merges segments

belonging to the same face, or use some criterion to

determine the best number of clusters from 1 to B; a

combination of utilizing a measure and a merging routine mag

be best.

3.3 -- Clustering Techniques

Different clustering techniques produce clusters with

different characteristics. For example, the single link

cluster algorithm finds "stragglg" clusters and the complete

link cluster algorithm finds ellipsoidal clusters. Some

cluster algorithms are designed to avoid such characteristic

tendencies, for example the mutual nearest neighborhood

algorithm of Gowda and Krishna [Gow78]. What characteristic

of clusters, if ang, we expect to find to be best for range

image segmentation is not immediatelg obvious. Some idea

about the shape of clusters can be obtained bg projecting our

SD data (formed bg spatial coordinates and unit surface

normal vectors) down to 20. Figure 3-2 shows a projection of
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subsampled 6D data derived from the A53 range image (Figure

B-3lall using the principal component method. The percent

variance retained is 872. The points have been labeled such

that labels 1 and 4 correspond to the two flat faces of the

bottle, label 3 corresponds to those faces whose surface

normals are parallel to the axis of sgmmetrg of the bottle.

and label 2 corresponds to the bottle cap. We observe that

points with labels 1. 2, and 4 tend to be aggregated in the

plane. We have applied a number of clustering techniques to

range images to evaluate the effectiveness of the techniques

in finding reasonable surface patches. These techniques are

described in the following subsections.

3.3.1 -- Single Link Clustering

The a priori expectation that segments should be-

spatiallg connected prompted us to trg the single link

clustering technique, where a minimal spanning tree (MST) is

constructed such that nodes of the graph correspond to pixels

in the image and edges of the graph connect 8-neighbors of

the range image. Edge weight is taken to be the Euclidean

distance in 4D space between corresponding 4-tuples formed bg

y,nzl, with the multiplicative factor of f2 for

diagonal neighbors. This technique generates clusters bg

progressivelg cutting the longer edges in the MST.

(z,nx,n

One problem of the single link technique is that it

tends to create mang small single pixel "outlier" clusters.

To remedg this situation and derive clusters of significant

size, we merge all derived clusters with less than a certain

number of pixels (in our case 40) into a single "scratch

cluster". However, even this measure is insufficient to

provide a good segmentation. To illustrate. Figure 3-4 shows

the application of the single link technique to the sgnthetic

box range image shown in Figure 3-3, deriving 10 clusters.

Note that most of the surface area belongs to a single large
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Figure 3—3

Box Range Image

 
Figure 3—4

Single Link Clustering of Box
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cluster (colored red). The inferior segmentation mag follow

from the choice of features, rather than an insufficiencg in

the single link technique. For example, perhaps the z

feature should be ignored.

A related clustering technique which is also based on

the MST was proposed bg Zahn [Zah71]. In this technique, a

value of inconsistencg is derived for each edge of the MST,

which reflects how unusual the given edge length is compared

to the "neighboring edges" in the MST. The cluster technique

proceeds bg progressivelg cutting edges with larger

inconsistencg values. Applging this cluster technique to the

box range image gives us the segmentation shown in Figure

3-5. This result is verg poor; the boundaries of these

segments tend to consist of pixels of equal depth values.

 
Figure 3-5

Inconsistent Edge Clustering of Box
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3.3.2 -- Mutual Nearest Neighbor Clustering

The mutual nearest neighbor clustering algorithm [Gow78]

uses a dissimilaritg measure called the mutual neighbor value

(mnv) along with the Euclidean distance dissimilaritg

function to sequentiallg merge clusters (initiallg individual

patterns) until a specified number c of clusters is obtained.

The measure mnv between two patterns (pixels) a and b is

defined as

mnvla,b) = NFla,bl + NFlb,a),

where NFla,bl is defined to be that integer satisfging the

statement "a is the NFla,b)'th nearest neighbor of b". The

user specifies a threshold k for mnv. Clustering proceeds bg

ordering all pairs of patterns with mnv=2, and merging the

corresponding clusters through this sequence of pairs. The

same procedure is performed for mnv=3,4,....k, and terminates

when either exactlg c clusters have been obtained, or all the

above operations have been carried out.

When applied to the box range image (Figure 3-3), with

k=20 we obtained a clustering consisting of one extremelg

large (blue) cluster containing most pixels of everg face,

and five small clusters that correspond mainlg to edge

pixels. This is seen in Figure 3-6.

3.3.3 -- Centralized Cluster Techniques

Another tgpe of clustering scheme tends to produce

globular clusters. Two such algorithms are the complete link

(COMLNK) algorithm and the CLUSTER algorithm [Dub76l. The

CLUSTER algorithm is a heuristic cluster scheme which

attempts to minimize a square error criterion. The user

specifies an upper bound on the number c of clusters desired,

and CLUSTER finds a sequence of clusterings of 2 through c
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Figure 3-6

Mutual Nearest Neighbor Clustering of Box

clusters. Unlike COMLNK. this sequence is not hierarchicallg

structured.

The memorg and time requirements of these algorithms

demand that these algorithms be applied to subsampled images.

In our studies the range images are 128x128 so that up to

16384 pixels would have to be clustered (but usuallg fewer,

since background pixels are removed) 8g sampling everg fsth

row and fsth column, the number of patterns to be clustered

can be reduced to program limits. Since both algorithms

generate clusters that are reasonablg represented as

hgperellipsoids about a cluster center, it is possible to

assign the remaining pixels to clusters having the closest

cluster center. -
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Figure 3-7 shows the 10-cluster segmentation of the box

range image using CLUSTER, and Figure 3-8 shows its

10—cluster segmentation using COMLNK. The qualitg of these

two results are surprisinglg similar. But although their

 
Figure 3-7

Clustering of Box bg CLUSTER

outputs are essentiallg equal, we note that CLUSTER is

considerablg faster to execute and has lower memorg

requirements so that finer subsamplings of the image mag be

clustered. We have applied the various segmentation schemes

discussed to several other range images, with similar

results. Hence our range image segmentation technique of

choice is CLUSTER; all further discussion in this thesis

deals with CLUSTER. A brief outline of the CLUSTER algorithm

is given in Appendix C.

The segmentation shown in Figure 3-9 was made bg

subsampling with frequencg fs=4. To verifg the clustering,

we performed two further clusterings: one utilized more

sparselg subsampled image points (fs=6), shown in Figure 3—9.

and the other chose 900 points picked at random from the
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Figure 3-8

Complete Link Clustering of Box

image. and is shown in Figure 3—10. Comparing the

clusterings formed from fs=4, fs=6. and the random sampling,

we observe that the clusters obtained are verg consistent in

the sense that a cluster for one data set is usuallg also a

cluster for the other data sets. This supports our belief

that the clusters generated bg subsampling are not radicallg

different from those which would be obtained bg applging

CLUSTER to the entire image.

3.3.4 -— Determination of Number of Segments

Now we address the issue of determining the appropriate

number of clusters. CLUSTER supplies for each cluster m the

average within-Cluster interpoint distance, CLAVGDlm),

defined as:



 
Figure 3-9

Clustering from Sparser Subsampling of Box

 
Figure 3-10

Clustering from Random Subsampling of Box
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CLAVGDlm) = 1/lel Z dlx,c(m)l

xeGm

where clm) is the center of cluster m, Gm is the set of

points belonging to cluster m, d is the Euclidean distance

measure, and (Gm) denotes the cardinalitg of Gm. Coggins

[Cog82] defined a statistic Slm) which reflects the isolation

and compactness of cluster m, defined as:

Slm) = [ min dzlclm),c(1))l / CLAVGDlm).

lzlzm

He derived an overall merit function Save which is a weighted

average of Slml's, where the weights are the cardinalities of

clusters:

- -1
S - (E )G I) (Z IG ISlm) )
ave m m m m

Those clusterings with larger values of Save are preferred

over those with smaller values.

In practice we observe that 5 often hits an earlg
ave

global maximum (e.g. a 3-cluster solution). Thus the simple

technique of accepting that clustering giving the largest

value of Save is unsuitable. Instead, we set an upper bound

on the number of segments expected (12 in our experiments)

and identified the clustering which gave the largest number

of clusters out of the set of clusterings whose Sav values
e

were local maxima. This is the criterion bg which we choose

a segmentation of a range image using CLUSTER.

For an example, Table 3-4 shows the Save values for

clusterings of the range image AS3 (Figure 8-3la)) with

numbers of segments 2 through 12. The local maxima occur at

clusterings 4, 8, and 10. The above procedure selects the

clustering with 10 segments.
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Table 3-4

Compactness Criterion Save Vs. Number of Clusters

Number of clusters Save
 

 

40.837

52.008

55.675

53.377

41.434

30.348

33.516

30.050

31.514

30.891

27.086

m
m
w
m
m
a
w
m

H
H
H

N
H
G

3.4 -- Postprocessing

The segmentation from CLUSTER is not guaranteed to

provide connected clusters. Furthermore, there is a weakness

in this approach which, fortunatelg, can usuallg be countered

bg using jump edge information. This weakness consists of

the fact that, given two object faces which are essentiallg

parallel to each other but are separated bg a jump edge, onlg

the z-components of pixels passing over the jump edge from

one patch to the other will exhibit ang change: the fact

that the other five spatial coordinates remain fairlg

constant gives CLUSTER strong reason to ignore the jump edge.

Hence, the first step in our postprocessing is to "zero out"

pixels in the segmentation label image which lie on a jump

edge. 8g doing this, we separate the incorrectlg merged

patches along the jump edge -— that is, disconnect that

particular patch.
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Next we deal with clusters that are disconnected; here

we simplg detect all connected components of all clusters,

and make these components clusters in their own right. In a

tgpical real image, the number of resulting connected

components is often as large as 100: this is caused bg mang

instances of clusters containing 1 to 4 pixels. Since these

"noise clusters" are essentiallg useless, we merge them with

larger neighboring clusters. Hence, given a cluster C1

containing fewer than some prespecified number of pixels (40

in our experiments), we merge C1 with that cluster C2 having

the largest number of pixels adjacent to pixels of cluster

C1.

Once these postprocessing steps of removing jump pixels

and detecting and merging connected components is made. we

hopefullg have a reasonable segmentation for further

analgsis. Note that the number of segments finallg obtained

can be different from that specified bg the Save statistic.

Our range image segmentation procedure can be summarized

as follows:

(1) Obtain subsampled 6D feature vectors from range

image; normalize features to mean zero and unit

variance.

(2) Applg CLUSTER to get 2 to 12 cluster segmentations.

(3) Use Save to determine the number of clusters.

(4) Use jump edge information to find clusters broken

bg depth discontinuities.

(5) ldentifg connected cluster components.

(6) Merge smaller components.
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The results of applging this segmentation and

postprocessing operations to our database of 31 range images

are shown in part (b) of Figures 8-1 through 8-31. We note

that segments do not generallg cross over natural object

faces; however, large object faces or object faces with high

surface curvature are usuallg oversegmented. Of 149 natural

object faces over the 10 objects. 69 of these, or 462, are

correctlg detected as single surface patches. Merging

techniques for recovering from this oversegmentation are

discussed in Chapters 5 and 6; the technique presented in

Section 5.4 is solelg data-driven, whereas the technique

developed in Section 6.3 involves some knowledge about the

objects to be recognized.

3.5 -- Summarg

This chapter has described cluster techniques for

segmenting a range image into reasonable surface patches. We

use the CLUSTER algorithm to segment range images because it

gives reasonable results and is computationallg expedient.

Although range image segmentation bg region extraction

is popular in the literature, we have avoided this approach

on the grounds that:

x One or more parameters are required to govern

operations such as merging and when to stop growing

regions. These parameters would depend on factors

such as the amount of noise present in the image

and the radius of curvature of surfaces on objects

in the scene.

x Adjacent natural object faces which are separated

bg smooth edges mag be incorrectlg merged.

The CLUSTER algorithm does not require setting ang

parameters: nevertheless it performs well in the sense that
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clusters (patches) do not generallg cross over natural object

face boundaries.



CHAPTER IV

SURFACE CLASSIFICATION

This chapter deals with deriving sgmbolic information

about range image segments. A segment, or surface patch, is

classified as planar, convex, or concave to characterize the

"sense” of the corresponding object face. These

classifications provide attributes of surface patches which

are useful for object recognition.

There are two issues to be considered:

(1) How can we recover from oversegmentation of

natural object faces? and,

(2) How do we utilize these patches to achieve object

recognition?

To deal with these issues, we need to derive more information

about each patch and about relationships between pairs of

patches. This chapter treats the problem of classifging

surface patches, and Chapter 5 treats the problem of

classifging boundaries between surface patches. Section 4.1

brieflg survegs the general topic of surface classification:

in Section 4.2 we introduce a number of techniques for patch

classification, and demonstrate in Section 4.3 how these

techniques can be integrated to form a global decision about

the surfaces. Finallg, Section 4.4 presents some results and

conclusions.

72
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4.1 -- Background

We need to answer the following two questions about

surface patches:

(1) What kind of surfaces do these patches represent?

This question involves determining whether a

surface comes from, for example, a plane or

sphere or cglinder. The orientation and

displacement of planes (corresponding to planar

patches) has been useful in object recognition

[Gri84l for polghedral objects.

(2) What are the parameters that specifg each

patch/surface? For example, we would like to

derive the radius and translation of the parent

sphere to which a spherical patch belongs.

To answer question (1) we need to assume a priori what kinds

of surfaces we expect to encounter. In mang cases the set of

primitive surface tgpes is restricted to a single surface

tgpe, such as planes [Mil80] or generalized cglinders

[Kua84]. These approaches can handle essentiallg ang

complexitg of object, but do so onlg bg potentiallg involving

a large number of patches. Planar surface extraction is a

popular tool for range image analgsis [Dud79l,[Mil80l. We

present some of the work related to planar region extraction,

shape classification, and derivation of surface parameters.

A popular school of thought in range image processing

contends that certain sets of mathematical features or

properties of surfaces motivated bg differential geometrg

should suffice to provide surface classification. For

example, the characteristics known as mean curvature and

Gaussian curvature are invariant to translation, rotation.

and surface parameterization. Besl and Jain [BesB4l use the

signs of mean and Gaussian curvature to assign each pixel to

one of eight different surface tgpes, and detect critical

points, such as jump and roof edges. as well as several other

characteristics, such as direction of principal curvature, to
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generate a rich representation of a range image. A general

matching procedure is sketched but not implemented. Bradg

[Bra84l proposed a "curvature patch" representation. The

direction of principal curvature and the directions in which

the normal curvature is zero. as well as the principal

curvature and geodesic curvatures at each zero normal

curvature direction are collected at each pixel. These local

features are grown to produce contours on the surface. called

"lines of curvature". It is proposed that surface regions

are delineated bg these contours.

Duda et al. [Dud79l perform a sequential process of

planar region extraction from range and reflectance images of

a scene bg first extracting horizontal planes (which have one

degree of freedom), then vertical planes (with two degrees of

freedom). and finallg arbitrarilg slanted planes (having

three degrees of freedom). This approach is most appropriate

for man-made scenerg such as an office scene. Bg appropriate

transformation, pixels in the range image are converted to

real-world (x,g.z) coordinates, where z is height and x and g

are floor positions. A histogram of 2 values indicate

horizontal planes as peaks. Vertical planes can be detected

bg strong linear clusters in the x-g plane and are detected

bg Hough transform. Finallg, reflectance data is used to

detect the remaining planar regions under the reasonable

assumption that reflectance is more or less constant over a

planar surface. As each potential plane is postulated,

points on this plane are derived bg "slicing" the 3D

coordinates into a "sandwich region" consisting of pixels

that fall within a small distance W of the postulated plane.

This slice is then "cleaned" and the larger components tested

via a planaritg test for final acceptance. The planaritg

test is based on the distances of the pixels in the slice

from the postulated plane. The distribution of distances

tends to be uniform if the region is not planar, and

essentiallg normal with mean 0 if the region is planar.

Coefficients corresponding to uniform and normal components
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of a mixture distribution are estimated, and planaritg is

accepted if the uniform coefficient is sufficientlg smaller

than the normal coefficient. This approach is designed to

work well in situations where the scene is expected to

contain mainlg horizontal and vertical planes.

Milgram and Bjorklund [Mi180l extract planes bg a

region-growing process. Theg find a best-fitting plane at

each pixel over a 5x5 neighborhood, and store its

orientation, altitude, and residual (goodness of fit) as

features. Planar regions are grown bg (1) ignoring pixels

whose residuals are too large. and (2) otherwise merging the

pixel with none, one. or both of its upper and left-hand

neighbors (with merging of corresponding regions) based on

how well the orientation and altitudes match. The result of

this process is a segmentation of the range image into planar

components with associated normals, altitudes. sizes, and

total residuals, which are then matched with an a priori

reference plane list to ascertain sensor position in the real

world. The process was applied to four real range images of

a single scene of a building site, and to two sgnthetic

images. Three thresholds based on error-of-fit, orientation,

and proximitg of a point to a given planar region were

defined to drive the plane-growing technique, and consistencg

of the results over the different views and similaritg with

ground truth were pointed out. The effects of varging the

three thresholds were not discussed.

A region-growing technique is also used bg Faugeras et

al. [Fau83l to segment range data into planar patches.

Their approach begins with a triangulation of the points on

the object surface; each triangle is a planar region with

associated points. border, and parameters of the plane (e.g.

normal vector and distance from the origin). Pairs of

adjacent regions are merged such that the induced error is

minimal over all region pairs and the error does not exceed a

pre-specified threshold. When no merging can take place
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under this criterion, the process stops. This technique is

applied to a Renault part and detects 500 and 60 regions

under two different error thresholds. A procedure to segment

a range image into quadratic patches is described but no

examples are given. '

Surface patches are classified into various shape

primitives bg Ittner and Jain [ltt85]. The surface

primitives are: a plane, a sphere of radius 3 units, a

cglinder of radius 3 units and height 6 units. and a cone

with base radius 3.5 units and height 8 units. The

classification is based on the fact that the distribution of

curvature for a surface depends on parameters of the surface.

such as radius of a sphere or cglinder. Reference cumulative

distribution functions of six curvature measures for each

primitive are formed bg sgntheticallg generating 100 surfaces

of each tgpe, degraded bg noise. and observing these measures

on sgnthetic surfaces. Given a surface patch to be

classified, CDF’s of the six curvature measures for this

patch were constructed. A Kolmogorov-Smirnov 2-sided

distance measure is used for each curvature measure to

compare the corresponding empirical CDF with the four

reference CDF's for the four primitive shapes. The lowest

distance value indicates the best match-primitive for that

curvature measure. A majoritg vote over the six best

match-primitives is used to decide the final classification.

Furthermore, if the majoritg is not strong enough, the patch

is segmented bg CLUSTER [Dub76l and the resulting subpatches

reclassified. A disadvantage of this approach is the need to

sgntheticallg generate mang instances of a given surface in

order to derive curvature distributions. This is a difficult

task unless the surface is simple (e.g., plane, sphere,

cglinder). For particular, surfaces found on the Cobra

sculpture (Figure B-15la)) would be difficult to

characterize.
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Oshima and Shirai [Osh79] classifg surface regions as

curved, planar, or undecided based on two statistics derived

from the regions. A 240x400 range image is broken up into

overlapping 8x8 surface elements. to produce a 60x80 image of

surface elements. A plane is fit to each surface element bg

the least squares method. Surface elements are merged based

on errors of fit of neighboring surface elements to produce

approximatelg planar regions called elementarg regions. Each

elementarg region is classified bg calculating two statistics

D and E: D is the average squared angle between the planes

fit to surface elements that make up the elementarg region

and the best fitting plane to the elementarg region; E is

approximatelg the diameter of the largest sphere that can be

enclosed bg the elementarg region. A value g = aD-E is

defined, where a is some constant, and classification is made

as follows:

If E < Et then the region is undefined:

otherwise, if g < -gt the region is planar;

if g > 9t the region is curved.

This procedure classifies those patches which are too small

or slender (small E) as undefined. Classification is based

on the general idea that large D indicates curvature, unless

E is also large. Curved regions are merged to form global

curved regions bg thresholding the angle between

corresponding normals of the two neighboring patches that are

classified as curved. Adjacent curved patches are merged if

theg appear to be smoothlg joined, and the final curved

patches are classified bg finding the best-fitting quadric

surface function. Because smoothlg joined curved patches are

merged, this technique is not ideal for applications which

involve sculptured objects. Difficulties with quadric fits

to real data have been documented in Section 3.2.
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Hall et al. [Hal82] and Muller and Mohr [Mul84l use the

theorg of quadric surfaces to classifg a surface into one of

several curvature classes. Theg make use of four quantities

that are invariant to translation and rotation, and three

other quantities whose signs are similarlg invariant. In

[Hal82], a decision tree tests whether a given invariant

quantitg is less than, equal to, or greater than zero to

determine the surface tgpe. The one example performed is

classification of a side of a coffee cup. It is classified

as a hgperboloid, which in the decision tree requires no

decisions that certain invariants are zero. Theg do not

specifg how, with noisg real data, to decide that an

invariant is "equal to zero", though this seems to be an

important part of their classification procedure. In

IMul84l, a Hough transform technique is used to find the

parameters of the surface (e.g., radius and center of a

sphere). once the tgpe of surface is determined. The onlg

example worked out is a sgnthetic scene with unspecified

(probablg zero) noise degradation. We have shown in Section

3.2 how small noise degradation can drasticallg affect a

quadric fit.

4.2 -- Statistics for Classification

Although classification of surface patches into quadric

surfaces would be verg useful for the task of identifging

natural object faces and recognizing 3D objects, we have seen

that no techniques are available which are insensitive to

noise. Also, we do not assume that objects are constructed

onlg from simple volumetric primitives such as spheres and

cglinders. A classification of surface patches as planar,

convex, and concave appears to be well suited for surfaces of

arbitrarg objects.
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We have combined three techniques for classifging a

patch as planar, convex, or concave:

(1) A rank-based trend test,

(2) Eigenvalue analgsis. and

(3) Differences of normals.

4.2.1 -- Nonparametric Trend Test for Planaritg

The trend test for planaritg operates under the

observation that as two points move in opposite directions

from each other from a given point on a curved surface, the

distance of closest approach of the line connecting the

points to their starting point will tend to increase

monotonicallg. For planar (or noisg planar) surfaces, this

distance should meander about zero. A nonparametric

rank-based test can be applied to determine whether there is

a significant trend in these distances. Figure 4-1

illustrates this concept, and shows a slice of a range image

patch.

r c 3 .
First we define {ei'ei)i=0'

,.

8i

C

91

sinlin/4)/max(sin(in/4),cos(in/4))

coslin/4)/max(sin(in/4),coslin/4))

The pairs (8?. 8?) correspond to increments for stepping

across an image in horizontal (0,1), diagonal slope-negative

(1,1), vertical (1,0), and diagonal slope-positive (1,-1)

directions. Also. denote bg Llr,cl the label of pixel pr c'

or the segment to which it belongs after clustering and

cleaning is performed. Hence pixels pr,c and pr',c' belong

to the same patch if and onlg if Llr,c)=L(r',c').
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Trend Test Illustration
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Suppose we are investigating patch P, having label b.

with respect to direction index j. For everg pixel Pr c in P

define

E.( i=miniiztir+iea.c+iea)zo or (r-ieV.c-ieaizoi - 1.
J pm: J J '- J .1

EjIPr,c’ measures the number of pixels gou can travel in

opposite directions (along direction j) from Pr c before

encountering the boundarg. Let

where (r®,c®) is chosen arbitrarilg if not uniquelg defined.

Figure 4-2 illustrates the derivation of E3 for a sample

patch, for j=0, 1. 2. and 3. The four thin lines indicate

the lines of greatest span in the four directions. For

example, one mag travel up and down 5 pixels from the center

pixel of the vertical line before hitting the boundarg; since

there is no pixel from which one mag travel up and down more

than 5 pixels before hitting the boundarg. 53:5 for direction

322.

Define YJ = maxi LE3/10J , 1 l

and nJ = mini E3 . 10 I

where LxJ represents the greatest integer less than or equal

to x. The number Yj represents the number of distances which

will be used bg the trend test: exact distributions of the

statistic to be defined have been published for YJ‘10, hence

the use of the factor 10 in the above definitions. The

number ”j is the number of steps of length Yj that mag be

taken in opposite directions (along direction j) from pr0,c0

without stepping outside of P. Now consider the points Ti.

l = -nJ,...,nJ, where
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' Figure 4-2

Derivation of Ej
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r.:F‘5 . r- . c
1 +‘f.e., +Y..r6 1 J J C0 1 J8J

These points form a cross section of the range image with

length (2nJ+1) centered at (r®,c®) and cut in direction

(index) j. Derive a sequence of distances di' i=1....,nJ

such that di is the distance of closest approach of the line

connecting points T_i and Ti to the point 70' multiplied bg

-1 if the line passes below Te (that is. if

flr®,c@) > I fire-iYJeS.c®-iv.eai + flr®+iY
° C

J J C®+IY'8'I 1/2.

r.

JeJ' J J

This negative factor is necessarg because without it we could

observe a definite trend in the absolute distances created bg

lines passing above and below Te alternatelg, clearlg an

instance of no trend. As an example, suppose j=0 and nJ=3.

Then the 71's all have r-coordinates equal to r0, thus

forming a horizontal cross section of the range image. This

situation is illustrated in Figure 4-1. Since the

r-coordinate is fixed, each Ti can be plotted bg its

c-coordinate and its range value. The lines connecting T_1

and Ti for i=1,2.3 are shown and the distances of closest

approach of these lines to T0, namelg d1,d2, and d3, are

indicated in Figure 4-1.

Construct a rank-ordering of these distances. randomlg

breaking ties if theg occur. to obtain a rank sequence (ri).

The statistic Sj defined as

is well-known in nonparametric statistics literature as

Spearman's rank correlation statistic [Con80]: tables exist

for various nj. Under the null hgpothesis of no curvature.

the rank order of the (di) sequence should be independent of

the sequence (1.2.....njl. We select thresholds on Sj that
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give a two-sided trend test with size about .05. If Sj is

too large or too small, we reject the surface patch as planar

in direction j.

We derive a planaritg confidence statistic. However, if

for ang direction j we find nJ<6, the patch is too narrow in

that direction and the trend test cannot be applied: in such

a case the statistic is left undefined. Otherwise we proceed

as follows:

Define SJ: ElSJ) = njlnj+1)2/4:

u2.5 = the 2.51 upper quantile of statistic SJ:

. ”0 = the maximum possible value of SJ;

Derive v0 = ISJ - Sj'

v1 = U2.5 - SJ:

v2 = u@ - Sj'

The theorg of linear fractional transformations [Con78l

provides a function Tj of Va with range [-1,1] such that

sz-l gives strong evidence of curvature (in direction j) and

Tj=1 gives strong evidence of planaritg (in direction j).

given bg:

vzlve-vll

Tj : 2vov1-v29v®+vll

 j=0,1,2,3.

Thus we obtain up to four measures which mag indicate

curvature in a surface patch with respect to specific

directions.

Since we are using signed distances in the trend test.

we can base our decision about convexitg and concavitg on the

extremitg of the distribution in which the statistic Sj lies.

Small values of Sj will indicate convexitg and large values

of Sj will indicate concavitg. The time complexitg of

deriving Sj for all surface patches is O(N ), where N is the

P )0

number of object pixels.
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4.2.2 -- Eigenvalue Planaritg Test

The planaritg test using eigenvalue analgsis is based on

the fact that the smallest eigenvalue of the covariance

matrix computed from 3D points lging on a plane is zero (or

close to zero in nong situations). This test proceeds bg

computing the three eigenvalues e1, e2. and e3 (e3<e2<e1) for

the 3D points in a surface patch. The time complexitg of

this operation is O(N ). The "planaritg confidence"
p

statistic E is given bg:

E3 - C81

 

e3l2c-1) - cel

where c is a value of e3/e1 derived for a sgnthetic noisg

plane with noise level 2g and size 20x20 pixels. Note that E

lies between -1 and 1, with -1 corresponding to e3/e1=1 which

indicates nonplanaritg, 0 corresponding to e3/e1=c. the

threshold value, and 1 corresponding to the case e3/e1=0

which indicates planaritg (or linearitg). To illustrate.

below we present the three eigenvalues for a noisg planar

patch (noise level 0.59) and a convex spherical patch:

Noisg plane: e1=0.7816, e2=0.6238, e3=0.0008

Convex sphere: e1=0.6987, e2=0.6987, e3=0.1538

Corresponding values of E are, respectivelg, 0.960 and

-0.705. We expect that the corresponding value of E will

decrease as noise is increased for a planar patch. If noise

is held constant and the patch size increases for a planar

patch, however. E will increase.
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4.2.3 -- Differences of Normals

The difference of normals test decides between convexitg

and concavitg. and is useful if the other tests indicate

nonplanaritg. Given two pixels p and q on a surface patch.

we define a difference of normals vlp,q) as

vlp,q) = H RP - fiq H x sip,q)

where H H denotes the Euclidean norm, fip denotes ,the

estimated unit surface normal vector at p. and slp,q) is a

"sign" factor which is 1 or -1 to indicate whether the

vectors (6+fip) and (q+fiq) point awag from each other

(convexitg) or toward each other (concavitg), respectivelg:

1 if dlfllp+txfip

-1 otherwise.

)-i'+txn )Hlldt >0

q q t=0

Thus if the two rags RP and fiq emanating normal to pixels p

and a initiallg approach each other, the curvature is

classified as negative. indicating concavitg; otherwise the

curvature is positive, indicating convexitg. See Figure 4—3.

For each pixel p in the patch we compute le) defined as

$( ) = (1/)Q( )I) x Z vl . );
. P P qeOlp) P q

R‘P

where Olp) is a neighborhood of pixel p. In our experiments

we define O(p) to be the set of pixels whose corresponding

rows and columns differ from the row and column of p bg

either 0 or 5. Hence we subsample the image bg everg 5th row

and everg 5th column to get O(p). We perform this

subsampling because noise degradation of 5 is apparent for
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Figure 4-3

Convex vs Concave Illustration



88

smaller sampling intervals. After computing 5 for all pixels

in the patch, the median value D of T is found. The time

complexitg of finding D for each patch is O(Np q),

Nq is the maximum of the number of pixels in the patches. If

logN where

D<0, then most differences of normals within the patch

indicated concavitg and hence we can conclude that the patch

is concave. If D>0. we conclude that the patch is convex.

4.3 -- Tree Decision Procedure

We have obtained a set of statistics for each patch in

our segmentation: T9, T1, T2, and T3 bg the trend test. E bg

eigenvalue analgsis, and D bg difference of normals. Note

that one or more of the trend values mag be undefined due to

insufficient region span in various directions. Each Tj

value implies something about the sense of the surface in

question. Specificallg:

If Tj is defined:

TJ>0 a planar;

Tj<0 and 53(53 a convex:

.( . . ;TJ 0 and SJ>SJ : concave

(where Sj is the expected value of

Sj defined in Section 4.2.1)

E > 0 a planar:

E < 0 : nonplanar;

D > 0 a convex;

D < 0 a concave:
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Given these individual classifications of a patch, which

are not necessarilg in agreement, we need to construct a

procedure for eliciting an overall classification. Define

the following:

Tlnull) = the number of undefined trend values

Tlplan) = the number of planar trend decisions

Tlcvex) = the number of convex trend decisions

Tlccav) = the number of concave trend decisions

TM 6 (plan,cvex,ccav) the trend decision corresponding to

that trend value with greatest magnitude (undefined if

Tlnull)=4).

El 6 (plan,nonpl, the decision based on eigenvalues.

DN 6 (cvex,ccav). the decision based on difference of

normals.

Our classification scheme is designed on the general strategg

to base the decision on the trend test if Tlnull) is not too

large: otherwise. information provided bg the

eigenvalue-based decision El and the difference of normal

decision DN are included. The tree decision procedure is as

follows:
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if Tlnull) z 4

.f Tlnull) < 1

if 3 tgpe e (plan,cvex,ccav) such that Tltgpe)>3

class = tgpe

else

if TlDNl=2

class = QM

elseif EI=plan and Tlplan)=2

class = plan

else

if TM = plan ,

if 3 tgpe e (cvex,ccav) such that T(tgpe)>2

 

 

class = tgpe

else

class = plan

else

class = 1M

e1 Se"

if 3 tgpe e (plan,cvex,ccav) such that Tltgpel=2

class = tgpe

else

if TlDNl>0

class = QN

elseif (E1 = plan) and Tlplan)=1

class = plan

elseif E1 = plan

class = plan

else

~class = DN

else 3

if El = planxgfijj

class = plan

else

class = QN

Figure 4-4 shows a segmentation of the bottle range image in

Figure B-3la) into patches numbered 1 through 6. Table 4-1

reports the four trend statistics, the eigenvalue-based

statistic, the difference of normals statistic, and the final

classification based on our tree classifier for each of these

patches. Each row corresponds to a patch: the four trend

values are signed "+" or "-" corresponding to decisions of

convexitg or concavitg, respectivelg. No sign corresponds to

a decision of planaritg. Those trend values which do not

exist due to insufficient size of ”j are indicated bg
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Figure 4-4

Patches for Classification Example

Table 4-1

Statistics for Patch Classification

Patch T0 - T1 -” T2 T3

1 0.610 0.223 0.555 0.536

2 -1.000 +0.828 -0.361 :::

3 0.745 -0.644 0.026 0.925

4 +0.747 +0.672 +0.594 +0.787

5 ::: ::: ::: :::

6 +0.241 ::: +0.389 +0.558

The classifications are correct for

0
8
8
0
8
0

E

925

037

921

042

839

133

the bottle;

+0.

-0.

-0.

+0.

+0.

.325+0

of Bottle

D

011

221

028

367

123

Class

Planar

Concave

Planar

Convex

Planar

Convex

the surface

of the bottle corresponding to patch 2 has slightlg raised

spines at the corners of the bottle. so that in a direction

parallel to the planar sides of the bottle we could sag that

there is a concave nature to the patch, which might explain

the concave classification of that patch.
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To evaluate the performance of our classification

technique. we generated sgnthetic range images consisting of

five 30x30 pixel surface patches with noise level bg. The

five surfaces were (with R.in inches):

(1) Convex spherical, with radius of curvature R;

(2) Concave spherical. with radius of curvature R:

(3) Planar:

(4) Convex cglindrical, with radius of curvature R;

(5) Concave conical, with radius of curvature at

widest part R.

We applied three techniques to determine the surface tgpe for

each surface patch:

(A) The full tree decision technique described above;

(B) A decision based solelg on the eigenvalue and

difference of normals: if EI=plan then conclude

that the patch is planar, otherwise conclude DN;

(C) A decision based solelg on the trend values: -if

there exists a maximum value in the set

(Tlplan),Tlcvex).T(ccav)), sag Tltgpe), then

conclude that the patch has sense tgpe:

otherwise, conclude TM.

This experiment was performed for (b,R)= (1,1), (1,3), (2,2),

(3,1), and (3,3). Each experiment involved generating 100

sgnthetic range .images containing the five tgpes of patches

as described above (where no smoothing operation was

performed), and classifging each tgpe of patch under the

three decision techniques (A), (B), and (C). For each patch

tgpe and each decision procedure we obtain a 3-tuple Inplan'

“cvex' nccav’ which gives the number of times (out of 100

trials) that the given patch tgpe was classified as planar,

convex, or concave, respectivelg, under the given decision.

Sample contour plots of convex spherical patches with

parameters (b,R)= (1,1), (1,3), (2,2), (3,1), and (3,3) are

shown in Figures 4-5 through 4-9, respectivelg.



93

Table 4-2

Results of Classification for (b,R)=(1,1)

nplan ncvex nccav

patch

(1) 0 100 0 \

(2) 0 0 100 \

(3) 100 0 0 decision (A)

(4) 0 100 0 /

(5) 0 0 100 /

(1) 0 100 0 \

(2) 0 0 100 \

(3) 100 0 0 decision (B)

(4) 58 42 0 /

(5) 0 0 100 /

(1) 0 100 0 \

(2) 0 0 100 \

(3) 100 0 0 decision (C)

(4) 1 99 0 /

(5) 0 0 100 /
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(1)

(2)
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l2)

(3)

l4)

l5)

(1)

(2)

(3l

(4)

(5)
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Table 4-3

Results of Classification for (b,R)=(1,3)

nplan ncvex nccav

18

17

100

74

0

100

100

100

100

100

45

43

100

93

8

8

N

8
V
O
0
U
I
8
0
8
0
0

0
0
7
0
0
N

0 \

83 \

0 decision (A)

0 /

100 /

decision (B)

U
]

N
0
8
\
l
8

8
8
0
8
8

\

decision (C)

(
.
0
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Table 4-4

Results of Classification for (b,R)=(2,2)

nplan ncvex nccav

patch

(1) 41 59 0 \

(2) 32 0 68 \

(3) 100 0 0 decision (A)

(4) 88 12 0 /

(5) 25 0 75 /

(1) 100 0 0 \

(2) 100 0 0 \

(3) 100 0 0 decision (B)

(4) 100 0 0 /

(5) 100 0 0 /

(1) 61 39 0 \

(2) 62 0 38 \

(3) 100 0 0 decision (C)

(4) 96 4 0 /

(5) 65 0 35 /
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Figure 4-7

Convex Sphere with Parameters (b,R)=(2,2)
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Table 4-5

Results of Classification for (b,R)=(3.1)

nplan ncvex nccav

patch

(1) 2 98 0 \

l2) 1 0 99 \

(3) 99 0 1 decision (A)

(4) 75 25 0 /

(5) 23 0 77 /

(1) 0 100 0 \

(2) 0 ® 100 \

(3) 100 Q 0 decision (8)

(4) 3 97 0 /

(S) 0 ® 100 /

(1) 3 97 0 \

(2) 3 0 97 \

(3) 100 0 0 decision (C)

(4) 91 9 0 /

i5) 46 0 54 /



\MN

Figure 4-8

Convex Sphere with Parameters (b,R):(3,1)
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Table 4-6

Results of Classification for lb.Rl=i3.3i

nplan ncvex nccav

patch

ill 94 6 0 \

(2) 97 0 3 \

(3) 100 0 0 decision (A)

(4| 96 4 0 /

(Si 78 0 22 /

ill 100 0 0 \

(2) 100 0 0 \

i3) 100 O 0 decision (Bi

(4) 10% 0 0 /

i5) 100 0 0 /

(1) 19% 0 0 \

(2) 99 0 1 \

i3) 10% 0 0 decision (Cl

(4) 100 0 0 /

(Si 99 0 1 /

From these results we can make a number of observations.

(1)

i2)

(3)

All of the decision procedures have some trouble

with the cglinder and conical surface. This is

probablg due to the fact that these surfaces have

directions of zero curvature as well as

directions of nonzero curvature. For the trend

test, this means that these patches should be

classified as planar on the basis of at least one

direction.

The eigenvalue test tends to classifg those

curved surfaces having a moderate radius of

curvature (2" or 3"! as planar. Therefore.

decision procedure (B) has problems with the

corresponding sets of experiments.

The performance of the trend decision procedure

degrades with increasing noise level. This could
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Figure 4-9

Convex Sphere with Parameters (b,R)=(3,3)
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be expected since the noise will tend to

randomize the rank ordering of the distance

sequence. The cases where the noise level is 3g

is reallg an extreme case. Due to smoothing

operations applied to our real range images, we

usuallg work with noise levels of 2g or less in

actual applications.

(4) With the exception of the experiment using

ib,Rl=i3,1i, decision procedure (a) appears to

perform better than the other two decision

procedures, justifging our tree decision

procedure. In the exceptional experiment, our

emphasis on basing the decision primarily on the

trend results works against us. due to the high

noise (detrimental to the trend test) and the low

radius of curvature (beneficial for the

eigenvalue test).

The results of our classification procedure on our

database of 31 range images are illustrated in Appendix B.

Part ici of each of Figures B-l through 8-31 shows a

segmentation of the range images pictured in parts (a) with

corresponding classifications indicated within the segments:

"+", and "-" indicate a classification of convexitg- and

concavitg, respectivelg. If no mark occurs, then the patch

was classified as planar. We observe that the classification

is generallg accurate, except when dealing with smaller

patches. in which case a classification of planaritg is

common. From the 196 surface patches shown in part (cl of

Figures B-l through 8-31. 69 out of the 77 of these which

fall within a planar object face are classified as planar, 37

out of the 98 of these which fall within a convex object face

are classified as convex, and 13 out of the 21 of these which

fall within a concave face are classified as concave.

Overall, 612 of the surface patches are classified correctlg.
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A note about the trend test: a certain amount of noise

degradation is actuallg better than no noise in real data.

due to the distortion induced by the range scanner sgstem.

In some cases this distortion is sensed bg the trend test

regardless of noise. particularlg for larger planar patches.

4.4 -- Summarg

In this chapter we have looked at the problem of

classifging surface patches as planar. convex. or concave.

We defined a trend test, an eigenvalue-based test. and a

difference of normals test. The trend test is a

nonparametric statistical rank order test and has performed

well, with degrading performance for patches with high noise

level and small numbers of pixels. We have designed a

decision technique to make a global decision about a patch

given the individual decisions provided bg the trend.

eigenvalue, and difference of normals tests, and have shown

that the accuracg of the resulting classification is. in

general.' greater than that attained bg decisions based onlg

on the trend test or onlg on the eigenvalue and difference of

normals tests.



CHAPTER V

BOUNDARY CLASSIFICATION AND MERGING

Surface patch classification is not enough to provide

information for merging or recognition. For example, even

though two adjacent surfaces are both planar, whether or not

theg should be merged depends on how theg intersect each

other. If the intersection forms a distinct crease on the

object surface. then they belong to different surface

patches, and the existence of the crease is a salient object

feature. If their angle of intersection is verg small, on

the other hand. it would appear that they belong to the same

large planar surface. This chapter addresses the task of

classifging the boundaries between adjacent surface patches

for the purpose of guiding a merging procedure. We define

normal edges in Section 5.2. and develop a test for crease

edge detection in Section 5.3. A merging procedure based on

patch and boundarg classifications is defined in Section 5.4.

Section 5.5 introduces a linear goodness of fit feature for

patch/patch and patch/background boundaries which is useful

for object recognition.

105
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5.1 —— Background

Edge detection has been a fundamental tool in image

segmentation and object recognition. The same importance is

attached to the detection of edges in range images. Jump

edge detection has been discussed in Section 2.5. Although

jump edges are readily detected by standard gradient

operators. crease edges are considerably more difficult to

detect. Most approaches detect edges by applying a certain

process to all pixels in an image: the following summarizes

edge detection research using this idea.

Ponce and Brady [Pon85] develop a technique to detect

significant surface changes in range imagery. The two models

of surface change considered are crease and jump edges, and

the approach is based on smoothing locally cylindrical

surface functions by convolving the surface with Gaussian

filters of various scales. This "scale space smoothing"

produces a sequence of progressively smoother images. In

each smoothed image they detect zero crossings of the

Gaussian curvature. retaining those points and their

associated direction of principal curvature. Expressions are

derived for the location of curvature extrema as a function

of the spread a of the Gaussian filter. for the cases of

crease and jump edges. given that the object surfaces are

planar. The behavior of the location of curvature extrema is

different in the two types of edges; hence it is possible.

given the sequence of smoothed images at different a values.

to ascertain the type of edge by observing the relative

location over the various smoothed images. Artifact edges

may be detected and rejected when they do not conform to the

expected behavior of the location under the assumptions that

the edge is a jump or crease edge.
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Inokuchi et al [InoBZ] use a ring operator to classify a

pixel as belonging to one of: jump edge. convex crease edge,

concave crease edge, and planar region. A circular path of

pixels around the pixel of interest is used to define a

periodic function. This function is decomposed into basis

waveform components by a discrete Fourier Transform, and the

amplitudes of the first three component waveforms are

thresholded to arrive at the various classifications. Given

a polyhedral scene, it is possible to obtain orientation

information for those pixels classified as planar. By

placing a point in amplitude-phase space for each "planar”

pixel. individual planar faces may appear as clusters in this

space.

Mitiche and Aggarwal [Mit83] design a crease edge

detector which has low sensitivity to noise. The NxN

neighborhood for each pixel is divided horizontally and

vertically. Best-fitting planes are found for each

half-neighborhood to derive surface normals and

goodness-of-fit values. The difference in normals is

thresholded to detect regions that are essentially flat. The

most likely direction (horizontal or vertical) for an edge is

derived via differences of normals and the goodness-of-fit

values for remaining pixels. Probabilistic merit assessment

removes those remaining points that are merely "near-edge"

points.

Gil et a1. [Gi183l consider using registered intensity

and range images to derive a combined edge map. They assume

the scene is composed only of planar surfaces and design a

technique to detect jump and crease edges. Their approach is

to first derive an angle of curvature value at each pixel in

the image. Construct the 8-neighborhood of each pixel 50.

(51, 52,.... 58), where p1 is that pixel lying directly above

p0 and the rest of the sequence is obtained by travelling

clockwise from 51 around 50. The angles 8m, m=1,...,4 are

defined to be the angle formed by the intersection of the
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lines pmpg and 505(m+4,. The angle of curvature at pg is

then max(81,83l if (61-63I>I92-94|. and maxi82.84l otherwise.

However, if there is a ”significant range discontinuity" at

50 (the meaning of this is not defined), the angle of

curvature is set to be 180 degrees plus the jump distance.

Values below a threshold are set to zero, and values above

the threshold are unchanged. A thinned version is produced

by suppressing pixels which are not local maxima nor

important for connectivity of the semithresholded pixels.

This edge map is combined with a similar map derived from an

intensity image.

These approaches are all fundamentally different from

our procedure, since no prior information regarding location

of edges is used by the edge detecting routines; individual

pixels are tested for a "crease" quality. and those

satisfying such a criterion must be connected to form crease

edges. In our approach. edges are supplied a priori by

boundaries between surface patches, and the task is to

classify them.

5.2 -- Normal Edge Detection

The primary purpose for defining normal edges is to

facilitate the reconstruction of large planar patches. and to

provide an edge classification of some sort in the situation

that a boundary between patches Pi and Pj is really a crease

edge but is too short in number of pixels to make a

reasonable decision based on the crease edge detection

technique described in Section 5.3.

Large object patches tend to be broken up into

subpatches. If a large planar surface is split into several

smaller planar subpatches it would be a simple matter to

compare the orientations of the subpatches and verify that

they are nearly identical to assert that the subpatches are
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in fact part of the same large plane. Unfortunately. in real

images we observe a curvature tendency for large planar

patches due to the range sensing technique. By computing the

unit surface normals on the flat background portion of our

real range images (the portion that is normally removed). we

observe that these unit normal vectors at two different

locations on a plane can differ by as much as 20°.

For each surface patch Pi we derive an average unit

A

normal vector ni as

A

n ol Ni/'Ni" where

Z nN .

pePi p
1

Recall that EP is the estimated unit surface normal at pixel

p. We derive a normal angle N(i.j) for each pair of adjacent

patches Pi and Pj as

N(i.ji = cos-1(ni°n-lxs(p,qi
J

where s(p.qi is the sign factor defined in Section 4.2.3. and

where p and a are two arbitrarily chosen adjacent pixels

belonging to. respectively. patches Pi and Pj' We call the

boundary between patches Pi and Pj a normal edge if

N(i,jl>20°. We consider the existence of a normal edge to be

essential for the existence of a crease edge, the detection

of which is described next.
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5.3 -- Crease Edge Detection

A crease edge occurs at a bend in the surface: The rate

of change of surface normals (curvature) is discontinuous

over such an edge. We have designed a test which checks for

a crease as follows:

Let a1 and a2 be labels of two patches P1 and P2 having

a common boundary along which a normal edge has been

detected. For j=0,....3 define the set of border pixels

BJ = (pr'c: L(r+63i,c+83il=b1 for i=0.....(n-1l

and L(r-BSi.c-8§il=b2 for i=-n,...,-1

for (b1.b2l = (a1.a2( or (a2,a1( I,

where (93,93) defines one of four directions (horizontal.

diagonal slope-negative, vertical, and diagonal

slope-positive) as defined earlier in Section 4.2.1. The set

Bj consists of those pixels pr,c belonging to either P1 or P2

such that the pixels encountered in traveling n-1 steps from

pr,c in direction (83.63) all belong to the same patch as

pr.c' and the pixels encountered in traveling n steps from

pr,c in the opposite direction (-GS.-63i all belong to the

other patch. This gives a chain of 2n pixels split down the

middle by the Pl-PZ border. Figure 5-1 shows Bj for two

patches (shown bordered by heavy lines) when n=7. The thin

lines passing through the common boundary indicate instances

in which the above conditions are satisfied. For example.

the top horizontal line indicates that the set of pixels

{p4 i: i=10,...,16} is contained in patch P1 and the set of

pixels {P4,i: i=3.....9l is contained in patch P2, therefore

piXEl p4'19 is in 50.
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columns

rows

 
o { 94,10’ P5,10' P6,9' p7,9' p8,10'

p9,10' p10,11' p11,12 }

Isl-{1

2 { p11,11 }

3 [ p8,9' p9,9 }

Figure 5-1

Derivation of B j Sets
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Let ljlejl. Suppose 1k=max(1@.11,12.13l. If ik<3. the

test for a crease should not be made because the sample size

is too small. Otherwise. for each pr c e Bk: Define T(t).

for t e [-n.n-1]

+ ‘Pr+8E(LtJ+1).c+8E(LtJ+1))‘t'LtJ)

?(t) is the piecewise linear curve whose corner points are

5r+ier'c+ieck: , i=-n,...,n-1.

Define distances dq'c. dg'c. and dg'c which roughly measure

the relative "warp" at three locations in the cross section:

dS'C measures the warp over the boundary of P1 and P2; dg'c

and d§.c measure the warps within P1 and P2. We expect that

d5,c will be larger than dE'C and d5.c if there is a crease

at the boundary of P1 and P2.

These distances are defined as follows:

dq-C: distance from the point (rt-ni+ri-2ii/2 to the

intersection point of the perpendicular bisector

(plane) of the line segment with endpoints Ti-n)

and T(-2) with the curve 7.

dE'C: distance from the point (TI-(n-l)/2]+T[(n-3)/2])/2

to the intersection point of the perpendicular

bisector (plane) of the line segment with endpoints

Ti-(n-lll2] and T[(n-3)/2] with the curve T.

ngC: distance from the point (riii+rin—1ii/2 to the

intersection point of the perpendicular bisector

(plane) of the line segment with endpoints 7(1) and

Tln-l) with the curve 7.
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As an example. suppose n=7. k=0, and Pr,c e 80' The

points Tii). i=-7,....6 form a horizontal cross section of

the range image and thus may be plotted by their

c-coordinates and range values. The function T is formed by

connecting these points by lines. This is illustrated in

Figure 5-2. which shows a crease edge between T(-1) and 7(0).

T is indicated by the solid piecewise linear line connecting

points along the slice. The derivation of distances dE'C,

dr.c dr,c

2 3
. and is pictured, and the fact that dS'c is larger

than d§.c and dg'c reflects the presence of the crease edge.

For our experiments we use n=7: if it were larger. the

crease detection at a pixel of Bj would be more reliable. but

at the expense of obtaining smaller Bj sets, making detection

of crease edges between regions less reliable.

We define

a = ((pr,c e Bk: ngC > maxid'f-C . ngCi )I.

We treat a as a Binomial. Binllk.1/3). random variable. and

decide there is a crease edge if e is too large under a

binomial test with size .05. The time complexity of

determining whether or not a crease occurs over all pairs of

adjacent surface patches is O(NSN where N5 is the number

P"

of surface patches and N is the number of object pixels.
p

We have tried to justify this procedure with theory.

However, sinCe our patch boundaries are not arbitrarily

chosen, but are instead implicitly generated by the

segmentation process, it is difficult to specify the null

hypothesis. In fact, it appears that the null distribution

of 3 depends on the noise level and amount of surface

curvature. Hence it is possible that the false alarm error

rate of this test will be unacceptably large.
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We tested the false alarm error rate for two types of

range images: planar surfaces and spherical (radius 2")

surfaces. under two noise levels. lg and 2g. Table 5-1 shows

the resulting false alarm error rates (number of false

alarms/number of boundaries tested) We observe that with

noise the segmentation technique discovers many false crease

Table 5-1

False Alarm Error Rate for Crease Edge Detection

flaming

Elana: Sphecicai

Nels:

2g 12/80 (.15) 84/160 (.53)

lg 0/97 (.00) 44/160 (.28)

edges. It should be no surprise. then. when crease

boundaries are detected where common sense says there is no

such surface anomaly.

5.4 —- Merging Patches

We now describe a procedure for recovering from some of

the oversegmentation typically produced by our segmentation

scheme. We have at our disposal classifications of the

surface patches and of the boundaries between these patches.

We utilize a two-step merging procedure.

First, adjacent patches whose boundaries are neither

jump. normal. nor crease edges are merged. We will call this

type of boundary a null edge. This merges two patches Pi and

Pj if their difference in orientation N(i.j) is less than a

threshold (20°) and are not separated by a jump edge. This

step tends to recover large planar patches. Next. these

patches and their boundaries are reclassified. and two

adjacent patches are merged if their boundary is a normal
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edge. but not a crease edge. and the classifications of the

individual patches are both concave or both convex. A normal

edge between a planar patch and another patch might indicate

a possible crease edge. and thus no merging is performed in

such a case. This second step is designed to recover the

larger curved patches.

To illustrate our merging procedure. Figure 5-3 shows

the sequence of steps used for merging the patches obtained

from the bottle range image. Figure 5-3(a) shows the

original set of patch boundaries derived from A83. Figure

5-3(bl shows the initial boundary classifications: the

boundaries colored white. yellow. black. and red correspond

to jump. crease. normal. and null edges. respectively. The

first merge joins those pairs of patches whose boundaries are

null edges: namely. the patches belonging to the planar sides

of the bottle. Figure 5-3(c) shows the boundaries derived

from these merged patches. Within each patch an indication

of the patch classification is made: "+" and "-" correspond

to. respectively. convex and concave classifications. and if

neither occurs then the patch is classified as planar. Note

that the curved head of the bottle has a normal edge forming

the boundary between two patches both classified as convex.

Therefore. the second merging step merges these patches: the

edge map for the final merged patches is shown in Figure

5-3(d). Observe that a crease edge was also detected in the

curved bottle head. and thus the merging procedure has almost

but not totally recovered from the initial oversegmentation

to provide segments, four of which correspond to natural

object faces.

When we apply this merging scheme to our database of

range images. we obtain the final segmentations shown in part

(c) of Figures B-1 through B-31: the corresponding

classifications of these patches are shown as "+" or "-" if

the patch is classified as convex or concave, respectively,

and planar if not marked. In general. we observe that:



3%

%% 
Figure 5-3

Example of Merging Procedure

(1) Planar patches are usually totally recovered. Of

63 planar natural object faces over the 10 objects.

only 5 are oversegmented.

(2) Curved surfaces tend to remain oversegmented to

some extent.

Recall that, after initial segmentation. 462 of natural

object faces were not oversegmented. After merging, 88 out

of 149 natural object faces, or 592. were represented by

single surface patches. Thus. merging appears to improve

range image segmentations.
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5.5 -- Linear Boundary Fits

Knowing whether or not a boundary is linear is useful

for object recognition. A feature which may be derived from

boundaries Is the degree to which a ZD line fits the boundary

pixels in the image plane. This may be applied to the

boundaries occurring between surface patches and the

background region as well as to those between pairs of

adjacent surface patches.

We treat the case of linear fits to boundaries between

pairs of surface patches first. Given two adjacent surface

patches Pi and Pj' we derive the set Bij of boundary pixel

coordinates ((rk.ck)) consisting of all pixels of Pi which

are adjacent to some pixel of patch Pj' A line is fit to

these 20 points by a least squares technique. We obtain the

goodness of fit of this line as the average squared error

eij' where the error contribution of each pixel (rk,ck) in

Bij is the distance of closest approach of the fitted line to

the pixel:

 

 

2
e-. = 1/(B--I 2 D--

where

aifk + bijck + dij

DiJk z 2 2
I am * “ii

and aijr + bijc + dij = 0 is the equation of the best fitting

line to Bij'

The value Eij is the linear fit feature for the boundary

between patches Pi and Pj'
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The definition of the boundary between a given patch and

the background requires a different treatment. To

illustrate. consider the segmentation for range image A51

shown in Figure B-1(b). The red patch corresponding to the

flat side of the bottle has a boundary with the background

which spans three distinct linear sides of the object

surface. Fitting a line to this group of boundary pixels

would certainly indicate a poor linear fit by the previously

described technique. However, we would like to classify the

boundary as "piecewise linear"; we need some procedure for

detecting the "corners" in the polygonal boundary.

To accomplish this. we propose deriving a segmentation

of the boundary pixels occurring between image and

background. and using this segmentation to identify

appropriate components for a given patch. For each pixel

(ri.ci) which is on the perimeter of the silhouette image

(defined in Section 2.7) and which we call a perimeter pixel.

we derive a 4D spatial vector consisting of the image

coordinates (ri.ci) and the 2D estimated unit normal vector

computed by fitting a line to the set of perimeter pixels

(rJ.cJ) satisfying (ri-rJI‘S and Ici-cJI‘S. The CLUSTER

algorithm described in Chapter 3 is applied to these 40

spatial vectors (where each feature has been normalized to

have unit variance) with 10 clusters requested. We clean the

resulting segmentation of perimeter pixels: detect connected

components, and eliminate components which have fewer than 5

pixels. We end with some number A of connected segments

(clusters) C i=1....,A of perimeter pixels.in

Suppose we are in the process of finding the linear fit

for the boundary Bj occurring between patch Pj and the

background region. For i=1,...,A we derive Bj n Ci' If

)BJ n Cil<5. set the linear fit e? to be -1. Otherwise. fit

a line to this set B- n Ci and derive the average squared

J

error 6* Define the linear fit to the patch/backgroundi.

boundary of P e . to be maxie?).

J'J’
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Although we save the actual values of the errors of fit

for these boundaries. we use the value 1 as the threshold for

deciding between linearity and nonlinearity in the

recognition process. That is. if an e-value is less than or

equal to 1. ‘we conclude that the boundary is linear

(piecewise linear for patch/background boundaries). As an

example. Table 5-2 shows the errors of linear fit for the

boundaries found in Figure B-1(c).

Table 5-2

Errors of Linear Fit For A51

Patch Color Error of fit with background

1 White 2.34

2 Red 0.45

3 Blue 0.34

4 Yellow 0.10

Adjacent patches Error of fit of boundary

1 & 4 34.18

2 & 3 0.11

3 & 4 147.30

As desired. the boundary between patches 1 and 4 and the

boundary between patch 1 and the background are correctly

classified as nonlinear and the boundary between patch 2 and

the background is correctly classified as (piecewise) linear.

However. the boundary between patch 4 and the background is

incorrectly classified as linear.
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5.6 -- Summary

In this chapter we have developed techniques for

classifying the boundary between two adjacent surface

patches. These boundaries are classified as jump. normal.

crease. or null edges. A procedure is outlined whereby this

boundary information. along with the surface patch

classifications, is used to merge adjacent surface patches to

help recover from oversegmentation. This procedure performs

well for planar object faces; unfortunately. a potentially

high false alarm error rate for crease edge detection tends

to prevent the full reconstruction of curved surfaces.

A potential technique for alleviating this difficulty

involves the assumption that boundaries between natural

object faces are "smooth". That is. the true boundary in 30

is. say. a 2nd order function of x. y. and 2. By fitting an

appropriately smooth function to a boundary between two

surface patches to construct a new boundary in the image

plane. the performance of the crease edge detector may become

better behaved.

We have also derived features called linear fits which

indicate how well a line can be fit to a patch/patch boundary

or a patch/background boundary. These features will be

useful for object recognition.



CHAPTER VI

OBJECT RECOGNITION

A computer vision system must eventually utilize

knowledge of objects to recognize objects in the external

world. The optimal stage in the processing sequence for

introducing this external knowledge is not obvious.

Psychophysical research into the human visual system seems to

indicate that much analysis of visual stimuli occurs

precognitively [Mar82]. suggesting that we initiate this

integration of knowledge after our analysis has derived what

it can from the data without a priori knowledge -- in our

case. surface patches and boundaries, and corresponding

classifications of these patches and boundaries. The

information derived from analysis is structured to form an

object representation: the formal construction and use of

these representations will be called the model (or model

scheme). These two tasks. model construction and

manipulation, are important in all object recognition

systems. This chapter first reviews pertinent topics related

to modeling and object recognition. then surveys the CV

literature dealing with these areas. Finally. an

evidence-based object recognition technique is defined.

Patch and boundary information is combined to form a

representation of a range image. A list of salient features

of the various objects in the database forms the core of an

object recognition system. which looks for instances of these

features in the representation. Occurrences of these salient

features are interpreted as evidence for or against the

122
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hypothesis that a given object occurs in the scene. A

measure of similarity between the set of observed features

and the set of salient features for a given object in the

database is used to determine the identity of an object in

the scene or reject the object(s) in the scene as unknown.

6.1 -- Preliminary Issues

Certain essential questions which must be answered when

designing an object recognition system are:

(1) What objects do we wish to recognize?

(2) What viewing conditions will we assume?

(3) What primitives will constitute a representation of

our model?

(4) How is the model constructed from the primitives?

(5) How are the observed representations compared with

database representations to achieve recognition?

These issues will now be discussed in more detail.

6.1.1 -- Domain of Objects

The choice of the class of objects to recognize is

extremely important, for it has a strong influence on the

model design itself. If only polyhedral objects will be

recognized (an object domain widely used in the literature),

a model could be designed from simple planar surface patch

primitives. However, for sculptured objects (e.g. shoes.

car parts) there is no simple family of surface patch

primitives from which to construct a representation (unless

one is willing to put up with a large number of primitives to

make up a representation, as in approximating a sculptured

object with small planar facets). If the objects can be

articulated (that is. can assume a range of different shapes.

as with a pair of scissors). then ideally the representation

should be invariant to these articulations. The larger the
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domain of objects which can be represented by a given model.

the more useful the object recognition system will be -- but

only if the recognition is computationally feasible and

successful.

Not only must we choose a family of objects to

represent. but also we must consider the viewing conditions

of these objects. For example, it is possible to assume that

objects will always be in stable positions, say resting on a

flat surface. This allows the model to ignore those

potential views of an object which turn out to be physically

impossible [St084]. Also. if the image may only contain a

portion of the object. as would happen if the object was too

large for the field of view. then the resulting model should

be designed so as not to be rendered useless by missing data.

The most difficult of the situations is a jumble of objects.

On the one hand. all possible object poses may occur when

objects rest on other objects rather than on a flat surface.

On the other hand. objects may occlude other objects.

6.1.2 -- Primitives

The analysis stage provides information about the sensed

scene. and the recognition stage must take this information

and derive a representation from it. In this sense the

choice of primitives for the model is often strongly

suggested by the form of the analysis output. Or,

conversely. a priori specification of a model can influence

what primitives should be derived in the analysis stage. The

most common primitives in the literature are [BesSS]:

points. lines. surfaces. and volume elements; point and line

primitives are usually used together and constitute wireframe

models. surfaces are used for boundary or surface-based

models. and volume elements are used in volumetric models.

Further discussion of characteristics of these modeling

schemes is provided in section 6.2.
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Having decided upon the primitives. the means of

combining these primitives to construct the representations

of the model is the next task. One useful dichotomy of

approaches to this task is the distinction between unified

models [Lu85] and characteristic view models [Cha82]. A

unified model corresponds to a model design for which an

object has a single representation. so that in some sense the

representation stores information about all views of the

object. A characteristic view model allows multiple

representations for a given object, such that each

representation corresponds to a distinct class of views of

the object. Views within a class are mapped to the same

representation. An advantage of characteristic views is the

quicker recognition times than could be achieved with unified

view models. since what is required for recognition is an

exact match of the observed representation to some

characteristic view representation rather than a mapping from

the observed representation into many "subrepresentations" of

a unified model; however. this economy in recognition time

sometimes requires that objects be assumed to be in stable

positions so that the number of characteristic views is not

too large. A disadvantage is the need to construct all

characteristic views: this is not an easy task. and is

generally done by hand. requiring some degree of faith that

all characteristic views have been discovered [Cha82].

6.1.3 —- Models

Another dichotomy involves means by which the primitives

are combined to make a representation. This involves

defining attributes and relations between primitives. It is

usually possible to define an adjacency relation on the

primitives. and such a relation forms the core of many object

representation designs. For example. if the primitives are

object surface patches. then adjacency of two patches would
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require that the patches have some boundary in common.

Generally. such a relation includes one or more attributes.

values that represent a distance between primitives. such as

a measure of the angle formed at the boundary of two surface

patches. Of course. other relations can be defined. such as

"parallel to", to enhance the information content of a

representation, as well as to define the number of attributes

for each relation.

6.1.4 —- Matching

The final important problem is matching an observed

representation to the database of model representations to

perform recognition. Some approaches [Ree85] derive a vector

of numbers from a representation. so that identification

consists merely of finding the closest model representation

vector to the object representation vector. However,

reducing an information-rich representation to a handful of

numbers is perhaps better for screening out models which

cannot possibly be the correct match than for recognizing

objects. More commonly. recognition involves matching

relational structures. which requires subgraph isomorphism

detection. preferably with provisions for errors in the

representations. An unfortunate problem is that the task of

subgraph isomorphism detection is NP—complete [Gar79]:

therefore most approaches use heuristics to speed up

recognition, often resulting in sub-optimal techniques which,

nevertheless. may perform well at recognition.
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6.2 -- Background

Approaches to modeling 3D objects can broadly be

partitioned into two schools: that of Computer Vision and

that of CAD/CAM. Whereas Computer Vision tends to construct

modeling schemes for which representations can be reliably

obtained from sensed imagery and successfully used to achieve

object recognition. CAD/CAM tries to construct modeling

schemes best suited for internal manipulation of

representations and display with an ultimate goal of guiding

the manufacture of objects from such models. The issues of

interest to these schools are very different. although

convergence of these schools is increasingly noticeable

[Yor81]. We deal solely with the modeling literature

involved in Computer Vision.

One way of partitioning the literature dealing with

modeling and recognition is by the dimensionality of the

primitives used: approaches can use BD volumetric

primitives. 2D surface primitives. or 1D and 00 (line and

point) primitives. The following subsections look at

representative work from each of these three approaches.

Finally. a survey of approaches to the matching problem is

presented.

6.2.1 -- Volumetric Models

One technique for representing 3D objects is as a union

of 3D volume elements sometimes known as voxels. Some

drawbacks are immediately apparent. First. the voxels must

be small in size to obtain reasonable resolution. and

therefore a large number of them are required to represent a

given object. Second. a single view of an object is

insufficient for determining a set of voxels of the object:

theoretically, the voxels can extend to infinity behind what

is visible in the single view. Hence. multiple views from
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widely varying vantage points are required to provide an

unambiguous approximation of an object as a collection of

voxels.

Martin and Aggarwal [Mar83] work with 2D projections of

objects (silhouettes). By back-projecting a silhouette into

3D. a volume of infinite extent in the direction

perpendicular to the silhouette plane is derived. An

approximation of the 3D object may be obtained by finding the

intersection of several of these infinite volumes

corresponding to several silhouettes. A hierarchical linked

list structure provides the object representation: at the

top level of the hierarchy. voxels are classified according

to their 2 values (voxels with the same 2 value are grouped

together). Each "constant-z" group (planar slice of the

object) is then broken into groups of constant x value (lines

through the slice). and finally a linked list enumerates

voxels belonging to each line. The claim is that the

representation is both efficient and economical. Note that

this technique is not guaranteed to detect indentations in an

object.

Wang et al. [Wan84] extend the above work to perform 30

object recognition based on the hierarchical volumetric

representation. First. the 3D reconstruction of the object

is rotated so that its three principal axes line up with the

x.y.z coordinate axes. Next. this rotated reconstruction is

projected onto the xy. xz. and yz planes to form three

silhouettes of the object. A Fourier transform technique is

used to evaluate the shape of the silhouettes and any holes

in these silhouettes. Also used are the pqr-th principal

moments of the silhouette contour functions where

pqr=(000.002.020.200l. These features are compared to model

features. and a decision is made based on the closest match.

The number of initial views (silhouettes) of the object to be

recognized is increased from a starting value of 2 views

until consistent results are obtained.
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Chien and Aggarwal [Chi85] modify the scheme of [Mar83]

by representing silhouettes and reconstructed objects as

generalized quadtrees and octrees, respectively. The term

"generalized" means that area and volume elements are

parallelepipeds. not necessarily squares or cubes. As in

[Wan84]. the reconstructed object is rotated according to its

principle axes and projected onto the principal planes to

form silhouettes. which are in turn represented as quadtrees.

A dissimilarity measure between the quadtrees corresponding

to a 3-view reconstruction and a priori models are used to

select a set of potential matches; fine matching then derives

a dissimilarity between the octree representations to select

the best match.

6.2.2 -- Wireframe Models

The human visual system generally has no difficulty in

recognizing objects depicted in crude line drawings. Hence

there is evidence that recognition can be achieved from only

edge and point information in a scene. This has been the

approach taken by many researchers. However. due to the

difficulties involved in manipulating and matching general

spatial curve functions. much of the research in this area

makes the assumption that edges will be linear or circular.

By far the most common objects recognized by edge/point

models are polyhedral objects. not only because the edges are

linear. but also because the points of interest are well

defined as intersections of these edges.

Hebert and Kanade [Heb85] utilize jump edge information

to identify potential matches for an unknown polyhedral

object. The model uses characteristic views in the sense

that a view-sphere (which enumerates all possible viewing

angles of a scene) is discretized into approximately 2000

uniform cells and the corresponding jump edge information
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Characteristic views are promoted in [Cha82l as an

efficient means of object recognition via edge

configurations. Objects are polyhedra and the assumptions

are made that these objects are in a stable position and that

scene illumination is "as favorable as possible for the

recognition task". apparently meaning that all edges should

be detectable. Characteristic views consist of topologically

equivalent 2D line configurations: these views can be

partitioned into groups based on the numbers and types of

line junctions that occur in the views. which reduces search

time in detecting a match. Recognition proceeds by

extracting the 2D line configuration from the input image and

labeling the junction points. Initial matching is made by

comparing the silhouette line structure with those for

characteristic views; further matching proceeds by use of

junction types. A junction-to-"characteristic view junction"

transformation provides 30 coordinates of the junctions.

Although they claim that nonpolyhedral objects could be

recognized as well. they provide no examples. and it is not

clear how the resulting edges should be processed.

Stockman and Esteva [St084] use inverse perspective

computations which map pairs of points of a 2D image of an

object to pairs of points on a 3D model of the object to

determine a correct object pose. It is assumed that the

object models are fixed and known. the object is at rest on a

planar surface. and the face of the object in contact with

the plane is known. Three pose parameters <r,x.y> (rotation

angle. x translation. y translation) are the free variables

to be found. The existence of a plausible <r,x.y> can be

determined by appropriate camera matrix operations with a

point-pair from the image of the object and a point-pair from

the object model. For all pair-pair combinations which do

possess an associated <r,x.y>, this triple is stored as a 3D

pattern vector. When all possible pair-pairs have been

investigated in this manner. these pattern vectors are

clustered. and the largest cluster indicates the most likely
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candidate for the correct <r.x.y> pose parameters and whether

recognition is satisfactory.

6.2.3 -- Surface Representations

Another approach to SD object modeling is based on the

fact that an object surface viewed by the sensor may be

segmented into regions which correspond to natural object

faces. By suitably describing each region and relations

between regions. it should be possible to unambiguously

identify objects. Problems arise when certain views of an

object provide too little information to make a definite

identification. For example. looking at the aftershave

bottle from below will show only the planar base surface.

Although it would be ideal to work with general quadric

functions, matters of manipulability and parameter stability

under noise degradation make it necessary to work with simple

surface primitives. such as planar. spherical. cylindrical.

and conical surfaces.

Lu et al. [Lu85] use an attributed hypergraph

representation to represent and recognize SD objects in range

images. The primitives derived in preliminary analysis

consist of object surface patches: planes. cylindrical

faces. and conical faces. The hypergraph representation at

the most primitive level has elementary area attributed

graphs to represent polygonal planar faces. Nodes represent

linear boundary segments. and edges represent the

intersections of these segments and have attributed angle

values. These elementary area attributed graphs and other

non-polygonal surface patches are considered as hypervertices

of the hypergraph; there is a relation between adjacent faces

which is a principle angle. the angle formed by surface

normals for planes and axes of symmetry for non-planes.

Hyperedges then consist of groups of hypervertices which form

polygonal blocks. cylindrical and conical surfaced blocks.
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Object recognition involves finding hypergraph monomorphisms

(subgraph isomorphisms). Certain methods for accelerating

recognition are used: sorting numerical attribute values.

looking for special features of the objects. and using a

distance measure between attributed graphs. Unfortunately.

there is no allowance for error in the image analysis stage:

one extraneous over-segmentation could easily confound the

monomorphism search. It appears that the power of this

procedure is derived from the polyhedral faces and polygonal

blocks. which are a rich source of matchable information in

the form of elementary area attributed graphs; no examples

involving nonpolyhedral surfaces were presented.

Barrow and Poppiestone [Bar71] use reflectance images

with a dynamic range of 16 grey levels to identify surfaces

in a scene. Preliminary surfaces are identified as regions

of pixels whose grey levels span at most three grey values.

These surfaces are merged if the average contrast over the

common boundary is less than some threshold. and remaining

small patches are removed. The picture is described in terms

of properties and relations between the regions. Some

properties are compactness and shape measures derived from

the Fourier analysis of the region boundary. The relations

are: "bigger than". "adjacent to". "distant from", "convex

boundary". "above". and "below”. The models are

characteristic-view models. The area information is based

only on pixel counts and thus topologically equivalent views

of an object can have different characteristic-view models.

Recognition is based on identifying the best match of a

subset of the picture with a subset of the model regions (the

hierarchical synthesis method described in more detail in

Section 6.2.4).
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6.2.4 -— The Matching Problem

Barrow et al. [Bar72] evaluate four methods for

matching relational structures. The basic problem is finding

a monomorphism (a homomorphism which is 1-1) from a given

relational structure R which is an internal representation to

a relational structure S derived from an image. These four

methods are described in detail in the following paragraphs.

The TREE SEARCH technique generates a tree of partial

mappings. where "branching out" from a node (partial mapping)

involves adding one more correspondence to the partial

mapping. Each node is evaluated through a merit function

measuring how well the corresponding relational structures

agree under the partial mapping. At each stage of tree

construction. the node representing the most promising

partial mapping is expanded. The resulting mapping. which

may itself be a partial mapping. is optimal with respect to

the merit function.

A RELATIONAL COMPOSITION SEARCH involves the creation of

"intermediate" relations from the primitive relations used in

the relational structures R and S. These can be constructed

by compositions, intersections. and inverses. of the

primitive relations. These new relations can be designed to

possess fewer members than the primitive relations. This

smaller relation size can reduce search time for a

monomorphism. As an example. consider a drawing of a face

complete with head. eyes. and mouth. and the three relations:

F = (<x,y>:x is inside of y)

G = (<x,y>:x is to the left of y)

H = (<x,y>:x is above y).

Our relational structure for the face is:

F=i<mouth.head>,<lefteye.head>.<righteye.head>)

G=I<lefteye,righteye>)

H=i<1efteye.mouth>,<righteye.mouth>).

The intermediate relation given by F'G'H"1 n F n F'G_1°H—1.
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where "°" represents composition. has one member:

<mouth,head>. If this relation were to have members in

relational structure S. assuming primitives F. G. and H are

used. these members would be good cues for locating faces in

the image 'from which S was derived. If no such members

exist. one can conclude that no complete faces are in the

image.

CLASSIFICATION REFINEMENT requires the nodes of the

relational graphs to be classifiable into two or more groups

based on a unary relation. or property. of the nodes. This

initial classification is then refined by considering the

binary relations. To illustrate, suppose the initial

classification partitions the nodes of each relational

structure into A = "circular objects" and B = "non-circular

objects". and consider binary relation F. Then A can be

refined into A1 and A2. where

A1 = ( nlleA n Fl)

A2 ( nliAxB n Fl}

where n1 is the projection function mapping an ordered pair

onto its first element. Note that A1 and A2 may not be

disjoint. As other relations are considered. some of the

classes are. hopefully. singleton sets. whereby some

unambiguous correspondences may be deduced. The refinement

technique concludes with one or more consistent monomorphisms

from R to S if any exist.

HIERARCHICAL SYNTHESIS decomposes the matching problem

into many subproblems to reduce the overall computational

time. A brute force search for a relational structure R with

n elements within another structure S with N elements (N>>n)

requires testing O(N“) combinations. However. if we

decompose R into k substructures RI of ri elements each (so

that Zri = n), and perform a brute force search to find all

occurrences of R1 in S. for all i. and test combinations of

these occurrences to identify R. then the number of

combinations to be tested will be



We accept the conjecture that the number of occurrences of a

substructure in S will be O(N) if this substructure has

nontrivial complexity. In addition. some of the R '5 could i

in turn be decomposed into RiJ's and so on to even lower

levels to give a hierarchical decomposition of the original

structure R.

These four techniques were applied to various relational

structure matching problems in vision: a representative of

CPU time required for execution of these procedures is as

follows:

(1) Tree search: ~101® secs

(2) Relational composition: 65 secs

(3) Classification refinement: 408 secs

(4) Hierarchical synthesis: 22.5 secs

They conclude that hierarchical synthesis seems to be the

most promising technique.

Shapiro and Haralick [Sha82] consider using clustering

to prune the search tree for matching a simple graph

representation of an observed object to a large database of

model objects. A simple graph is the representation

consisting of unlabeled nodes and edges. with no attributes

on the nodes and edges. A distance metric for the

dissimilarity between two graph representations is defined.

and is used to construct a dissimilarity matrix on all model

representations. These representations are then clustered

using this dissimilarity matrix. and for each cluster an

"average" or "representative" graph (the cluster center,

roughly speaking) is found. The graph for an observed object

can then be compared to each representative graph to obtain a

best match among the cluster centers. Objects are then

recognized by comparing the observed graph to each element
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graph in the best-match cluster of model graphs. This

two-level matching reduces the amount of computational time.

It is very important that the distance measure be a metric.

hence the use of simple graphs. Extensions of this technique

to include more complex representations that involve

attributes of nodes and edges require deriving a suitable

distance metric for these representations.

6.3 -- Representation Derivation

From the segmentation. classification, and merging

processes developed in Chapters 3. 4. and 5. we can obtain a

segmentation of a range image into surface patches. with

additional information consisting of the "sense" of the

surface and the relationships between pairs of patches. We

now derive a wealth of information from this segmentation. A

representation consists of three classes of information:

(1) Morphological information which characterizes the

object shape in 2D;

(2) Patch information which describes the 3D surface

patches derived in Chapters 3 through 5:

(3) ZD boundary information which describes

relationships between pairs of patches.

6.3.1 -- Initial Representation

The morphological information derived from a range image

was defined in Section 2.7: we denote this information as

PERIM. the perimeter of the silhouette image. BGCOMP. the

number of connected background components in the range image.

and CHCOMP. the number of connected background components

within the convex hull of the silhouette image.
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Patch information consists of the sense (planar. convex,

concave) derived in Chapter 4. surface area. span, and linear

fit of the boundary of the patch with the background pixels

(-1 if no such boundary exists). The surface area (or size)

attribute is an approximation of the true object surface area

corresponding to the patch and a procedure for computing it

was presented in Section 2.6.

The span of a patch. P. is defined to be

maxiflprl’cl - prz'czu, (r1.c1)eP. (r2.c2)eP ).

where pr'c is defined in Section 2.1. However. because

computation of this value can be O(IPIZ). where (P) is the

number of elements in patch P. we approximate the span by

subsampling the patch every 4th row and every 4th column

(i.e.. we constrain r1,r2.c1.c2 to be multiples of 4). If no

pixels of P are found in this subsampling, we conclude that P

is very small and set the span to 0. The linear fit was

defined in Section 5.5.

The next set of information involves the relationships

between pairs of patches. We derive one (or two) vectors of

information for each pair of patches. consisting of:

boundary type (adjacent. jump. or remote), normal angle.

minimum distance between patches. and maximum distance

between patches. along with boundary angle and linear fit of

pixels along the boundary (if the patches are adjacent) or

jump gap (if the boundary is a jump edge). Given two patches

in the segmentation. there are four possible conditions:

(a) They could be adjacent;

(b) They could be separated by a jump edge;

(c) Both (a) and (b) might hold; and

(d) They may be separated by other patches:

Cases (a). (b). and (d) are referred to as. respectively.

adjacent. jump, and remote boundary types: case (c) is

represented as two vectors of information. The normal angle
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between a pair of patches is defined in Section 5.2; the

linear fit for the case of adjacent patches is defined in

Section 5.5. The boundary angle between two adjacent patches

Pi and Pj is the average angle of intersection along the

boundary. and is given by

 

Z s(p,q) x angle between R and fi

- - P q
p 6 Pi' q s Pj

p.a adjacent

Z 1

p 6 PI' 5 e Pj

p.a adjacent

where sip.q) is the sign factor defined in Section 4.2.3.

The minimum and maximum distances between two patches P and Q

are defined by

min {|I§F1.C1 " fir2.C2llg lr1.C1lEP, lF2.C2lEQ I

max ("Pr1,c1 - pr2,C2u, (r1,c1)eP, (r2.c2)eQ I.

As with the span derivation for patches. we subsample every

4th row and 4th column to improve the execution time. The

jump gap is defined to be the maximum 2 distance between

pixels on either side of the jump edge forming the border of

the two patches.

Combining all this information, we obtain an initial

object representation R0' We establish the following

notation for patches P and Q.

PERIM perimeter of the silhouette image;

BGCOMP number of connected background

components:

CHCOMP number of connected background components

within the convex hull of the silhouette

image;

SENSE(P) sense (planar. convex. concave) of P;

SIZEiP) surface area of P;
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SPANlPl span of P;

FIT1(P) linear fit of the boundary of P with the

background;

B_TYPE(P,Q) neighborhood type (adjacent. jump.

remote) of P and Q. This is not.

strictly speaking, a function, since P

and Q may be both adjacent and jump

neighbors.

N_ANGLE(P.Q) normal angle between P and Q;

MlN_DIST(P.Q) minimum distance between P and Q:

MAX_DIST(P,Q) maximum distance between P and Q:

B_ANGLE(P.Q) boundary angle between P and Q (if

appropriate);

FIT2(P.Q) linear fit of the boundary between P and

Q (if appropriate):

JUMPGAP(P.Q) jump gap between P and Q (if

appropriate):

6.3.2 -- Modified Representations

Although the 3D surface patches in R0 are contained in

natural object faces. often a natural object face will be

broken into more than one surface patch. It would be useful

to recover from this oversegmentation to obtain

representations which better represent the object in the

range image.

Knowledge about the n objects in our database is used to

perform a merging of patches of R0 to produce n new

representations (R1.....Rn). For each object in the domain.

there is a minimum expected boundary angle. For example. if

object i is a cube then no boundary angles should be less

than 90° and pairs of adjacent patches whose boundary angles

are much less than 90° are probably part of the same face of

the cube and should be merged. Noise prevents us from using

the theoretical thresholds. Instead. we give plenty of
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margin for error.

Given angle threshold ti for object i. we construct a

new representation Ri from R9 by merging pairs of adjacent

patches whose (absolute) boundary angle is less than ti

(irrespective of their sense). Table 6-1 shows the set of 10

threshold angles used for our object database containing 10

Table 6-1

Thresholds for Knowledge-based Merging

QDJECI- Anglia

Aftershave bottle 50°

Cup 50°

Block 30°

Tunnel 50°

Cobra sculpture 0°

Mushroom 50°

Plug 50°

Diesel 30°

Toy part 30°

Human hand 0°
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objects. If a pair of patches happen to be related as both

adjacent and jump neighbors. the merging process is not

performed regardless of the boundary angle. This merging

process requires that the representation R9 be modified:

suppose that patches P1 and P2 are to be merged to make patch

P; let 0 be a patch which is not P1 or P2.

(1) If SIZE(P1)/SIZE(P2)>5 then SENSE(P)=SENSE(P1l; If

SIZE(P2)/SIZE(P1)>5 then SENSElPl=SENSElP2): If

neither of the above two conditions are satisfied.

then SENSElP) = "convex" if B_ANGLE(P1,P2)>0 and

"concave“ otherwise.

(2) SIZE(P) SIZE(PI) + SIZE(PZ).

(3) SPAN(P) = max (SPAN(P1). SPAN(P2).

MAX_DIST(P1,P2)).

(4) FIT1(P) max (FIT1(P1). FIT1(P2)).

(5) N_ANGLE(P.Q) = (N_ANGLE(P1.Q) + N_ANGLE(P2,Q))/2.

(6) MIN_DIST(P.Q) =

min I MIN_DIST(P1,Q), MIN_DIST(P2.Q))

(7) MAX_DIST(P.Q) =

max ( MAX_DIST(P1.Q). MAX_DIST(P2.Ql)

(8) If B_TYPE(P1.Q) = B_TYPE(P2.Q) = "adjacent". then

B_TYPE(P.Q)="adjacent". and B_ANGLE(P,Q) =

(B_ANGLE(P1.Q) + B_ANGLE(P2.Q))/2. Otherwise. if

one of B_TYPE(P1.Q) or B_TYPE(P2.Q) is "adjacent"

(say P1). then B_TYPE(P.Q)="adjacent" and

B_ANGLE(P.Q)=B_ANGLE(P1.Q).

(9) FIT2(P.Q) = maxlFIT2(P1.Q). FIT2(P2.Q)).

(10) If B_TYPE(P1.Q) = B_TYPE(P2,Q) = "jump", then

B_TYPE(P.Q)="jump". and JUMPGAP(P.Q) = max

(JUMPGAP(P1.Q). JUMPGAP(P2.Q)). Otherwise. if one

of B_TYPE(P1.Q) or B_TYPE(P2.Q) is "jump" (say P1).

then B_TYPE(P.Q)="jump" and

JUMPGAP(P.Q)=JUMPGAP(P1.Q).

(11) If B_TYPE(P1,QI = B_TYPE(P2.Q) = "remote". then

B_TYPE(P.Q)="remote".

Of course. the morphological information PERIM, BGCOMP, and

CHCOMP are not affected.
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At the end of this process. we have n representations of

our observed scene. (R1.....Rn). which are modified versions

of the initial representation R0 under the hypotheses that

the object in the scene is Object 1. .... Object n.

respectively. Table 6-2 shows the original representation

obtained from the cup image segmentation in Figure B-8(c).

Figure 6-1 shows the result of merging this cup

representation with an angle threshold of 50°, and the

corresponding revised representation is shown in Table 6-3.

Figures 6-2 and 6-3 show the results of merging the cup

segmentation in Figure B-7(c) and the Cobra sculpture

segmentation in Figure B-15(c) with an angle theshold of 50°.

Note that the oversegmentation of the cup passed to the

recognition stage is corrected by the threshold. whereas the

cobra sculpture segmentation loses information if patches are

merged because the boundary angles between the concave

patches at the sides of the cobra head and the planar patch

in front of the head are essentially zero. The existence of

smooth joins between patches for certain objects motivates us

to adopt a 0° threshold for those objects.

6.4 -- Evidence-Based Recognition

Many techniques for recognizing objects map quantitative

information to a model representation. This procedure

typically involves graph-matching and has exponential

time-complexity; however. Considerable speed-up has been

achieved by clever use of constraints. knowledge. and

thresholds on maximum matching error [Tom84l. Another type

of approach to object recognition involves reducing a

representation to symbolic information. or evidence; a

collection of evidence can be used to determine the likely

contents of an observed scene [Coh85].
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Table 6-2

Original Cup Representation

Morphological

PERIM

BGCOMP

CHCOMP

Patch Information

concave

convex
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concave
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Figure 6-1

Knowledge—based Merging of Cup from Figure B-8lc)

Evidence-based reasoning has played an important role in

the design of programs which make decisions under

uncertainty. particularly expert systems in Artificial

intelligence. A technique which is very popular is called

the parallel certainty inference technique, and is used by

expert systems such as MYCIN [Sho75] and PROSPECTOR [Dud79b].

it has the same flavor as the Bayesian inference technique

and the Dempster—Shafer theory [Sha76]. A decision is to be

made from observations about which of n hypotheses H1.....Hn

is true. The parallel certainty inference technique operates

in two stages. First. a conclusion (typically a number

corresponding to strength of belief. but it may also be

symbolic [Coh85]) is derived about each Hi under the

assumption that Hi is true. Second. these conclusions are

compared to obtain a final decision. Evidence-based

recognition also uses this technique. in fact. the

knowledge-based merging we have already described is a part

of the first stage of this technique.
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Table 6-3

Revised Cup Representation

Morphological Information

PERIM 13.84

BGCOMP 1

CHCOMP 0

Patch Information

mmmwmm

White 1 concave 4.677 3.031 0.79

Red 2 convex 13.011 4.028 1.54

Boundary Information

WMWW .MMECAEMLNQLSIMAXQLSIEIIZ

1 2 adj 96.520 79.450 4.332 0.26

1 2 jump 96.520 3.435 0.000 4.332 -1



 
Figure 6—2

Knowledge—based Merging of Cup from Figure B-7(c)

  
Figure 6—3

Knowledge-based Merging of Cobra from Figure B—15(c)
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Consider that an object has a set of salient features.

or set of evidence features. that help to identify the

object. We develop the concept of an evidence space. in

which objects in the model database are represented by

vectors in this space. A similarity function to compare

observed evidence to these model vectors is used for

recognition.

Given n objects in the model database and m evidence

features to be used for recognition. define an evidence

feature rule base to consist of:

(1) a set of m evidence conditions (Ejljgl' and

(2) an mxn evidence weight matrix E. where Eji

represents the degree to which satisfaction of the

evidence condition Ej (i.e.. observing the jth

evidence feature) supports the hypothesis that the

observed object is object i (denote this hypothesis

The value Eji is a number in the range {-1.1}: although any

number in this range is theoretically fair game. we restrict

our particular system to five possible values. to reduce

subjectivity in Setting the values:

 

r 1.0 if condition Zj strongly substantiates Hi:

0.5 if condition Ej tends to support Hi:

Eji = i 0.0 if condition Ej provides no information about Hi

-0.5 if condition Ej tends to refute Hi:

i -1.0 if condition SJ strongly refutes Hi'

Denote the jth evidence rule as (Ej’§j> where Ej is the jth

row of E. For each object i define an evidence m—vector 5i

which corresponds to the ith column of E. and is defined such
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Given an observed representation R. we derive an

instance m-vector LR:

R 1.0 if evidence condition Ej is satisfied;

1 . :

J 0.0 otherwise.

6.4.1 -- Evidence-Based Similarity Measure

We approach the task of recognition by deriving a

similarity between an evidence vector 5i and the instance

vector 1R. We would like the "1" entries of 1R to correspond

to positive (or zero) entries in Ei' and negative entries in

£1 to correspond to "0" entries in LR when object 1 is in a

range image. A correlation measure between 1R and 5i may

appear to be a useful similarity measure for this purpose.

The difficulty with applying a standard rank correlation

measure such as Spearman’s rank correlation coefficient

[Con80l is that the measure interprets positive and negative

elements of 5i the same. whereas their comparative effects on

a similarity measure for evidence—based decision making

should be different. For example. suppose there were 6

evidence features and 2 objects. and:

1R = ( 1.0, 1.0, 1.0, 0.0, 0.0, 0.0)

:1 = ( 1.0. o.s. -o.s, -1.o. -1.o. -1.0)

:2 = ( 1.0, 0.5. 0.0. 0.9, -o.s. -0.5)

The Spearman rank correlation coefficient applied to 1R and

:1 gives a value of 0.93. and when applied to LR and E2 gives

a value of 0.81. Notice that all positive evidence features

for each object were observed; however, negative evidence was

observed for object 1. but none was observed for object 2.

and yet the correlation returns a larger similarity to object

1. This comes from not observing the strongly refuting

evidence in 51.
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We now define a similarity measure which does behave as

we would expect given the nuances belonging to "positive" and

"negative" evidence. We also present a number of important

properties of our measure.

Construct two m-vectors from 5i and LR: 91' called the

observed evidence vector. and 5:. called the positive

evidence vector. where

_ R
$1.). - 1J- EIJ , and

EIJ z maXlEiJ.®l

The vector 91 can be written as (Q; + 9;), where

+ - R
¢iJ° - [J- maXIEiJ,®)

indicates observed positive evidence for object 1. and

- - R
oij - lJ miniEiJ.0l

indicates observed negative evidence for object i.

Define the similarity tT(R) of the observed object

representation R (having instance vector 1R) to model object

i based on m evidence features to be:

 

"911‘"? IIQ'i'IIZ

m . .

T'lRl = - if "Q "=0. and 0 otherwise.

1 ((91)) "a?" "gin2 1

We will write I? and 1 instead of IT(R) and LR when R is

understood.

IheocemJ; -1 < IT ‘ 1.

A value of T? close to 1 means that there is a good match
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between the observed evidence features and the positive

evidence features corresponding to object i. whereas a value

close to -1 means that there is a good match between the

observed evidence features and the negative evidence features

corresponding to object i. Note that rT=1 when all positive

evidence features and no negative evidence features for

object i occur in the observed representation. Similarly.

tT=-1 when all observed evidence is nonpositive for object i.

Hence we can design an object recognition system which is

m
based on detecting large values of Ti.

 

 

W;

"9;"?

s + < 1. since

"gin "gin

m

M Tu2 = z (of )2
91 J:1 1J

= g (laizlmaXIE-- oi)2
le J 1J'

= E iiRia..imaxIE..,oii2
J21 J lJ lJ

_ m +

- J91 ¢iJEIJ

E m E 5* (S h rz In ualit )

ugiuugfu.
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Also.

-ng;u2

-ug;u2

 

"g? + 9;":

-ug{ + 9;"2

 

- = —1. QED.
up} + giuz

6.4.2 -- Properties of the Similarity Measure

Our recognition system can be expanded to accommodate

more objects in the database: each added object will require

the development of a number of new evidence features. It is

useful to know how the behavior of the system will change

under an added evidence feature.

Inegnem_2; If evidence rule (m+1) is added to the system.

then the new similarity 1T+1 is related to IT as follows:

(a) If 21(m+1,=o, then TT+1 = 1?.

(b) If Eilm+1)<@' then 1T+1 < I? if L(m+1)=1:

m+1 = rm
1 1

Otherwise, T .

m+1 m - _ .
(Cl If Ei(m+1)>0. then T: 3 Ti If l(m+1)-1.

l

m+1 < rmOtherwise. tl i'

This theorem establishes some of the desirable

properties expected of an evidence-based decision system. If

new positive evidence for the hypothesis Hi is observed. then

the strength of belief in Hi should increase (i.e..

1T+1 3 TTI. and if new negative evidence for Hi is observed.

the strength of belief in Hi should decrease (i.e..

m+1 ‘ 1?). The property that Tm+1 ‘ rm when a new positive
T1 1 l
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evidence feature for Hi is added but is not observed is not

as intuitively obvious. What this property roughly means is

that if a larger proportion of object i's positive evidence

features are satisfied by representation R than that of

object j. belief in Hi should be stronger than belief in Hj'

Lemma_1; If BzA and C>A. then the function f defined by

A+x

IB+x IC+x

is a nondecreasing function of x. for x>0.

Ecgot;

d A+x

dx JB+x JC+x

fix) =
 

 

 

iB+xi‘1/2ic+xi‘1/2

-i1/2iiA+xiiB+xi‘3/2ic+xi‘1/2

—i1/2iiA+xiie+xi’1/2ic+xi‘3/2

iB+xi’1/2ic+xi‘1/2

-i1/2iie+xiie+xi’3/2ic+xi'1/2

-i1/2iic+xiie+xi'1’2ic+xi‘3/2

V

= 0 for x>0.

 

Enoot_ofi_lbeocem422

"of"? ugTuz

Tm+1 = - -i—§ .

1 "pin "if" "gin

We can write

+ 2 - m + 2 2
"min - kE1(0ik) + (i‘m+1)max(Ei(m+1,.0))

= a + 8a .

2 - m 2 2

”9i“ ‘ k§1‘¢ik’ + (‘(m+1)Ei(m+1))

b + 8b .
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+ 2 _ m + 2 2
"El” - kgl‘aik) + (maXIEi(m+1),®)l

= c + 8c . and

- 2 _ m - 2 - 2
"Q1" - k§1(¢ik) + ll(m+1)mln(8i(m+1).®}l

: d + 8d p

so that

m+1 = a + 5a _ d + 8d

1 Jo + so Jc + 5c o + so

Note that a. b. c. d. 8a. 8b. 5c. and 8d are all

nonnegative quantities. and that

a ' d
m

the values 8a. 8b. 8c. and 8d correspond to effects of

the (m+1)st evidence rule.

(a): If Ei(m+1)=@ then sa=8b:5C:5d=®. SO that

lb): If Eilm+1l<® and l‘m+1):1, then

8a=8c=0. 8b)0. and 5d=5b.

m _ 2 m 2

Note that d = 2 (01k) a 2 (01k) = o.
k=1 k=1

d + so _ d + sd

o + so o + so'

A

d

Hence -

b



(c)
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Therefore,

Tm+1 = ___E____ _ E_:_§g ‘ a _ E _ rm.

1 |o+so [E o + so 56 [E o 1

If [(m+1)=@. then 8a=8b=8c=8d=0. and as in (a)

we have 1T+1=tT.

If Eilm+1l>®' and l(m+1,=1, then

sa=so=sc=s%(m+1,, and 6d=0. Furthermore, we know that

baa and caa, since

0
'

l
l

"
M
B

5 7
6

v

(
”
W
E

3
+

7
0

I
I

o

c = E (a? )2 = E maxiE-- 0)2 a E i (maxiE-- 0))2
le 1m J:1 lJ' J:1 J 1J'

m I

. a u ' - w ° ' ’ I- Zliilmaxiall 0}) .21( I] - a

Therefore by Lemma 1 we know that.

a , a + 8a

‘ .

[E [E Jo + so Jc + sc

  

 

also.

d + 5d d d

--—-— =--——-— < -.

b + 8b b + 8b b
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Hence

rm+1 : a + 6a _ d + 8d

1 lb + 8b Jc + 8c b + 8b

a d m
 ; :1.

(BEE 1'

If [(m+1)=®. then 8a=8b=8d=0 and 8c>0 so that

m+1 a d a d m

Ti = -——-—-- - - ‘ -—-- — - = Ti. QED.

DE [5:56 o [E [E o

The behavior of TT+1 as a function of Ei(m+1) is

established in Corollary 1.

Conglla:y_1; Given the conditions of Theorem 3. then:

_. m+1 .

(a) If Ei(m+1)<® and L(m+1)-1. then Ti 15 a

decreasing function of E?(m+1)'

- m+1 -
lb) If Eilm+1I>0 and le‘l'll-l' then Ti 15 an

increasing function of E?(m+1)'

(C) If: Ei(m+1’)0 and l(m+1)=0, then TT'I’]. is a

decreasing function of E?(m+1)°

This corollary simply asserts that belief in H1 will increase

monotonically as a function of the weight assigned to new

observed positive evidence. will decrease monotonically as a

function of the (absolute) weight assigned to new observed

negative evidence. and will decrease monotonically as a

function of the weight assigned to new unobserved positive

evidence.
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PEQQ: Qt CQEQI IEEII ]’

We use the same notation used in the proof of

Theorem 2. Let PT2 be shorthand for "the proof

of Theorem 2".

(a) If Ei(m+1)<@ and l(m+1)=1 then from PT2(b) we have

 

 

a d + 8d

Tm+1 = __ - ..—
1 |b+8b [E b + 8b

which is a decreasing function of E?(m+1,(=8b=8d).

(b) If Eilm+1i>® and i(m+1,=1 then from PT2(c) we have

m+1 a + 8a d

T- : _ ______

1 Jo + so [c + 5c o + so

which is an increasing function of E?tm+1,(=8a=8b=8c),

by Lemma 1.

(c) If Eilm+1l>® and llm+1l=® then from PT2(c) we have

TIIH'I : a.__ _ g

l [E Ic+8c b

which is a decreasing function of E?(m+1,(=8c). QED.

It would also be useful to estimate the change in the

similarity measure under new evidence. This estimate would

also apply to the situation in which noise or faulty

segmentation causes one evidence feature to be missed or

incorrectly observed, and also indicates the stability of T

under changes in the degrees of evidence values.

Inegnem_3; Assume the conditions of Theorem 2. If evidence

feature (m+1) is added and 1(m+1)=1, then an upper bound on

the difference between IT and IT+1 is given by:
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1 1

(tm+1 - tTi < -—————— +.___

|o+1 IE‘ o+1

where b and c are as defined in Theorem 2:

m

(01.)2 and c - z (E 2.
J - le

U H

P
1 T.)

le lJ

If L(m+1)=@ and Eiim+1l>0' then an upper bound on the

difference between rm and rm+1 is given by:
1 l

1 Ic+1

 

Note that b increases as the number of observed evidence

features with nonzero degree of evidence values for object i

increases. and c increases as the number of positive evidence

features for object i increases. Thus the sizes of

fluctuations in the measure of similarity resulting from

adding evidence features to the evidence rule base will tend

to decrease as the number of observed evidence features with

nonzero degree of evidence values for object 1 increases. and

as the number of positive evidence features for object i

increases.

Proof of Thsocemda;

We use the same notation a. b, c. d. 8a. 8b. 8c. 8d

 

as in Theorem 2.

Then

 

US

Tin—a
1

(
7
'
0
.

?
fl
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Suppose L(m+1)=12

If Ei(m+1)>®' then by corollary 1. the maximum change

m+

from IT to Ti will occur for Eilm+1)=1° In this case

we have 5a=5b=8c=1 and 8d=0. Hence the maximum

change occurs for t?+1= T+. where

+ _ a+1 d

lb+1|C+1 b+1

a+1 d

<—- .

|o+1IE o+1

If Ei(m+1)<®' then by corollary 1. the maximum change

m m+1 - - .
from Ti to Ti will occur for Ei(m+1)'"1' In this case

we have 5a=8c=0 and 5b=8d=1. so that the maximum

change occurs for 1T+1= T'. where

a d+1
 

' |o+1fE - o+1

From Theorem 2 we know that T'sthT+.

Hence

1 1

< —————— + ———.

|o+1fE o+1

m+1It1 - TTI < T+ — T

Suppose i(m+1,=0 and Ei(m+1)>@:

By corollary 1 the maximum difference between

m+1 m _
i and T- occurs for Ei(m+1)‘1°T

i

If Eilm+1):1' then 8a=8b=8c=1 and 5d=0.

Also. from the proof of Theorem 2 we know that

baa and c>a.
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Thus

d

r? 1T+1 = a - -) - ( a - l

('61? o (Blc+1 o

-a_._1 1 ,

TEE (c+1

(Z (2
‘— —

FE Ic+1

(E

s 1 - [5:1 . QED.

6.4.3 -- Recognition Technique

The final issue to be discussed is the actual procedure

for making a decision about what object is observed. We have

imposed a few restrictions on the assignment of evidence

weights Eji to allow the option of rejecting a representation

when the observations do not strongly support any hypothesis.

We require that for evidence feature (rule) j no more than

one Eji is equal to 1.0; when EJi=1.0. we call evidence

feature j major evidence for object i -- the condition Ej is

ideally a very specific condition which constitutes strong

supporting evidence only for object i. Furthermore, we

require that for all objects 1 there exist an evidence

condition Ej such that EJi=1.0. That is. every object has at

least one major evidence feature. It is difficult to find a

specific condition to serve as major evidence for some

objects. so a more general condition will have to be used.
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A set of n representations were obtained in Section 6.3.

such that the ith representation Ri is generated from the

original representation R0 under the hypothesis that object i

is present in the scene. For each i. calculate tTlRi) as

follows:

. . R1
(1) Derive the instance vector t by determining the

presence or absence of condition in RI for each

EJ
j=1.....m.

R-

(2) Derive TTIRil from i 1 and £1.

Next. define i to be that value of i such that

~
9
3

T = maxitT: i=1....n)

Conclude that object 1 occurs in the scene if and only if:

(1) i is unique; and

(2) ((j: condition Ej occurs in Rf, Ejl = 1.0)I > 1.

Condition (2) requires that at least one instance of major

evidence for object 1 be observed. If condition (2) is not

satisfied. then reject the object; that is. decide that it

does not belong to the database.

We note here the time complexity of this object

recognition technique. Let m be the number of evidence

features. n the number of objects in the database. and N the

number of patches in an initial representation. The two main

stages of recognition are 1) deriving representations R1.

.. Rn'

The derivation of each one of the n representations require

and 2) deriving similarities tTlRll. ..., tfliRni.

as many as O(N) merges. where each merge requires the

inspection of O(NZ) patch relations, thus giving this stage a

time complexity of O(nN3). The derivation of similarities

involves n representations. each of which must be tested for

the absence or presence of m evidence features. which in turn
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require the inspection of (worst case) O(NZ) patch relations.

thus giving a time complexity of O(nmNz). Therefore. the

time complexity of our recognition technique is

O(maxlm.N)nN2). In practice. we typically find m>>N. The

value of m is 31 for the evidence rule base developed for our

10 object database. Over the 31 range images. N takes a

minimum of 4 and a maximum of 25: all but 3 of the images

have N<13.

6.5 -- Evidence Features and Results

So far. no mention has been made about the specific

objects in our database. The specific objects and format of

evidence is independent of the general design of the evidence

system presented in Section 6.4. The specific format of

evidence features based on the representations derived in

Section 6.3 will now be introduced. Define three types of

evidence features: 0th level evidence dealing with

morphological features. lst level evidence dealing with

properties of patches, and 2nd level evidence dealing with

pairs of patches.

A 0th level evidence condition is composed of any

combination of morphological features defined in Section 2.7:

(1) PERIM bounds (a real interval);

(2) BGCOMP bounds (an integer interval): and

(3) CHCOMP bounds (an integer interval).

The condition will be satisfied if the morphological features

observed for the range image satisfy the specified bounds.

For example.
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PERIM e (20".w):

BGCOMP e (1.1);

CHCOMP e (0.0)

specifies the condition that the silhouette image has

perimeter at least 20". and has no holes or indentations.

A lst level evidence condition for patch P is composed

of any combination of the following components defined in

Section 6.3:

(1) SENSEiP) specification (planar. convex. concave);

(2) SIZE(P) bounds (a real interval);

(3) SPANlP) bounds (a real interval);

(4) FIT1(P) bounds (a real interval); and

(5) OCCUR bounds (an integer interval).

The occurrence bounds specify the possible number of distinct

patches P that must satisfy conditions described in (1), (2),

and (3). An example of a lst level evidence condition is:

SENSElP) = planar:

SIZE(P) 6 (4.0.5.5):

. SPANlP) e l0.0,ml:

FIT1(P) e (-1.0,m):

OCCUR e (1.2). 

In order to be satisfied. this evidence condition requires

that the number of patches in the representation that are

planar with size in the interval (4.0.5.5) be either 1 or 2.
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The 2nd level evidence conditions are considerably more

detailed than 0th or lst level evidence conditions:

corresponding components are:

(a) Patch P conditions:

(b) Relationship(P.Q) conditions;

(c) Patch Q conditions: and

(d) Occurrence bounds.

where (a) and (c) consist of any combination of SENSE. SIZE.

SPAN. and FIT1 specifications as used in lst level evidence

conditions. (b) consists of any combination of the following

properties defined in Section 6.3:

(1) B_TYPE(P.Q) specification (adjacent, jump, remote);

(2) N_ANGLE(P.Q) bounds (a real interval);

(3) MlNDlSTiP.Q) bounds (a real interval):

(4) MAXDIST(P.Q) bounds (a real interval);

(5) B_ANGLE(P,Q) bounds (a real interval): and

(6) JUMPGAP(P.Q) bounds (a real interval).

and (d) is the integer bound on the number of occurrences of

distinct pairs of patches (P.Q) that satisfy specifications

(a). (bi. and (d).

Appendix D gives the set of evidence features and

corresponding evidence weights for the recognition of 10

objects. The evidence rules are stated verbally, with a

header which specifies if the rule is major evidence for some

object or is simply a general rule. For example. rule 22 is

a major evidence feature for the plug object. This rule is

based on the existence of two small planar patches at the

ends of the cylinders sticking out of the main body of the

plug, which are both parallel to a planar face of the main

body. With the added distance and area information. this

rule is specifically tailored to the plug object and is a

good example of a major evidence rule. On the other hand.
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rule 1 is a good example of a general rule. since the

condition that the perimeter is greater than 20" is not a

very specific condition and is satisfied by both the hand and

the toy part objects. Evidence feature conditions are based

on bounding intervals which specify the acceptable range of

values of a given feature, such as surface area or boundary

angle. which one might expect to observe under the imprecise

conditions caused by image degradation.

in creating the evidence conditions. the bounds on

angles are set to be (true angle - 10°. true angle + 10°)

when the true angle > 90°. decreasing this range to about 25°

for angles closer to 0°. Distance ranges were tailored to

the amount of uncertainty in the evidence feature being

considered. For example. the distance of the jump gap when

looking over the rim of the cup to its inside surface will

vary depending on the angle at which the cup is held. and

therefore the JUMP_GAP range is 1". On the other hand. given

two planar faces which are parallel such as encountered on

the block. the MIN_DIST between these faces could be

specified with a smaller interval about the expected distance

(e.g.. evidence condition 14 in Appendix D).

Under the expectation that a surface area is unlikely to

be grossly overestimated but that the surface could be

occluded. lower bounds for surface areas are generally set

much smaller than the true area of the object face. and upper

bounds for surface areas are close to the true surface area.

Also, the bounds on features for general evidence conditions

are usually much larger than those for major evidence

conditions which are more specifically tailored to a single

object.
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6.5.1 -- Results on the Range Image Database

For each of the 31 representations derived from the

range images in our database (Figures B-1(a) to B-31ial). a

decision is made about what object is present in the image.

Table 6-4 shows the similarities obtained from these

segmentations. Appendix E provides the results of applying

the recognition scheme to 31 range images. These results are

presented as follows:

(a) The vector of similarities tTlRi). given in the

order (A5,HC.GB.TN.CB.MH.PL.D5.TY.HNI;

(b) Those objects for which representation R1 satisfied

at least some major evidence condition for object

1:

(c) The final decision about the object, if the object

was not rejected:

(d) If (d) specified recognition of object 1. then the

evidence features satisfied by R? are listed.

Note that bottle image A54 was rejected: otherwise. all other

images were recognized correctly. The difficulty with the

A54 classification occurred because the side of the bottle

was classified as concave rather than planar.

This technique has also been applied to objects which

are not in our database to test the reject option. Table 6-5

shows the set of similarities obtained from the four alien

objects pictured in Figure 6-4. These objects were all

rejected. Note that the maximum similarity value for object '

(b) was 0.48: however. the maximum similarity for PL3 was

0.50. This indicates that forming a reject option by

thresholding the maximum similarity value would probably not

be very successful.
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Table 6-4

Recognition of Database Range Images

TY HN

—o . so

05GB TN PLA5

0.91 -0.34 -0.36 0.38 -0.26 -0.65 0.29 -0.33 0.28A51

A53 0.82 -1.00 0.20 0.27 -1.00 -1.00 0.20 0.24 0.00 -0.30

A52 0.82 -1.00 0.20 0.27 -1.00 -1.00 0.20 0.24 0.00 -1.00

A54 0.41

-0.44 0.28

-0.44 0.40

-0.44 0.28

-0.73

-1.00

-1.00

-0.50

-0.82

-0.78 -0.82

-1.00 -1.00 -0.71 -0.47 0.39 -1.00

-0.80 -0.26 -0.78

-0.26 -0.78

0.23 -1.00 0.27 0.33 0.33 0.20 -1.00 0.28 0.28

-0.45

-0.34 0.63 0.380.08

-0.05

GB3 0.08 -0.34 0.63 -0.68 -0.70 -1.00 0.29 0.34 -0.30 -1.00

-0.75 0.56 -1.00

HC3 -1.00 0.51 -1.00 0.00 0.00 -1.00 -1.00 -1.00 -0.68 0.00

HC4 -0.75 0.56 -1.00 -0.45 0.33

HC1 -0.75 0.56 -0.75

HC2

681

-1.00-0.34 -0.69 0.28-0.74 0.60 -0.27 -1.00 -0.836B2

TN1 -0.43 -0.70 -0.36 0.65 -0.47 0.05 -0.10 -0.73 0.39 0.28

TN2 0.65 -1.00 -0.65 -0.71 -0.69 0.39 -1.00-0.71-1.00 0.23

TN3 -0.21 -0.70 -1.00 0.60 -0.26 0.47 0.29 -1.00 0.28 0.28

CB1 -0.67 -0.07 -0.01 -0.02 0.20 -0.78

CB2 0.41

-0.01

-0.01

-0.75 -1.00 0.48

-o.44-0.82-0.84 0.27 0.20 0.33 0.200.23

0.23 -1.00 0.27 0.51 0.33 0.20 -1.00 0.28 0.28CB3 0.41

MH1 -0.67 -0.34 -1.00 -0.31 -0.26 0.82 -0.10 -1.00 0.28 0.28

MHZ -0.67 -0.34 -1.00 -0.31 -0.26 0.82 -0.10 -1.00 0.28 0.28

MH3 -1.00 -1.00 -0.36 -1.00 -1.00 0.25 -0.36 0.24 0.28 0.00

PL1 -0.05 -0.74 -0.88 -0.63 -0.70 -0.78 0.65 -0.86 -0.68 -0.01

PL2 -0.01 -1.00 0.28 0.11 -1.00 -0.39 0.55 -0.47 0.28 -1.00

-0.70 -0.56 0.27 -0.79 -0.39 0.50 -0.86 0.13 -0.44

D51 -0.67 0.32 0.16 -0.45 -0.81 -0.70 -0.10 0.65 0.48 -0.30

PL3 -0.62

-1.00 -1.00 -1.00 -1.00 0.69 0.39 -1.00

053 -1.00 0.23 0.28 -1.00 -1.00 -1.00 0.20 0.55 0.00 -1.00

052 -1.00 -1.00 0.28

-0.54 0.83 0.48-0.83 -0.83 -0.58 -0.09 -0.46 -0.87 -0.88

TY2 -0.70 -0.74 -0.61 -0.34 -0.46 -0.62 -0.61 -0.58 0.28 0.48

TY1

-0.46 -0.88 -0.84 -0.89 0.23 0.92-0.90 -0.73

-0.85

-0.70

-0.27

-1.00 -0.34 -0.84 -0.31

HN1 -0.82

0.68-0.56 -0.87 -0.11

-1 00 -0.82 0.48 0.62-1.00

-0.51 -0.30 -0.68

0 33

-0.82HN2

HN3
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taking 2 fewer clusters

(Section 3.3.4).
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To determine the robustness of this procedure to

segmentations.

obtained from these

prevalent problem is the number of rejections.

(a)

(b)

(c)

(d)

A5

0.03

-0.36

-0.36

-1.00

VE

we repeated the experiments by

than indicated by the 58

Table 6-6 shows the sets of similarities

values

segmentations. Here we note that the

Table 6—5

Similarities to Allen Objects

HC GB

-0.34 -0.70

0.32 -0.74

0.32 -0.08

0.23 0.22

TN CB MH PL 05

0.38 -1.00 -1.00 -0.72 -0.69

0.46 -0.46 -0.41 -0.52 -0.73

-0.45 -0.25 -0.41 0.32 ~0.05

-1.00 0.35 -1.00 0.19 0.24

Note that the

TY HN

0.28 -0.30

0.48 -0.01

0.39 0.28

0.00 0.00

 
Figure 6-4

Alien Objects
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bottle image A54 is now correctly identified. because the

side of the bottle was correctly classified as planar. Three

rejections (GB1. GB3. and TN2) are due to to initial

under-segmentation of the object surface. For example, the

initial segmentations of block images 681 and G83 merged the

distinguishing 45° slanted surface (the blue patch in Figure

B-9(c)) with its neighboring patch (colored green in Figure

B-9lcll. We conclude that there is some degradation of

performance; this suggests that the choice of number of

clusters is important.

6.5.2 —- Effects of Perturbing Evidence Weights

We also consider the sensitivity of this recognition

procedure to the values of the evidence weights Eji'

Insensitivity to arbitrary perturbations of these values is

desirable since these values are very subjective in nature.

For example. it has been shown that the certainty factors

used by MYCIN can be modified by plus or minus 0.2 without

significantly affecting performance [Buc84].

We define a perturbation of the degrees of evidence

matrix E used by our recognition system with two parameters:

a probability of distortion pd. and a restriction rule

governing the major evidence weights. The restriction rules

are important because of the significant role played by the

major evidence: we expect that the assignment of major

evidence weight 1.0 is not quite as subjective as the

assignment of lower evidence weights. The restriction rules

we have used are:

(A) Major evidence weights cannot be perturbed. and

other evidence weights may not be perturbed to take

the value 1.0.

(B) Major evidence weights cannot be perturbed. but

other evidence weights may be perturbed to 1.0.



A51

A52

A53

A54

HC1

HC2

HC3

HC4

GB1

6B2

6B3

TN1

TN2

TN3

CB1

CB2

CB3

MH1

MH2

PL1

PL3

051

052

053

TY1

TY2

HN1

HN2
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Table 6-6

Recognition Under Sparser Segmentations

CB

.25

.25

.00

.25

.25

.25

.00

.35

.25

.00

.25

.46

.00

.25

.14

0.82

.50

.00

.25

.00

.77

.00

.64

.80

.00

.00

.69

.64

.46

.83

.69

NH

.41

.21

.66

.41

.66

.70

.00

.78

.00

.63

.78

.03

.66

.55

.66

.32

.66

.21

.63

.70

.29

.41

.78

.41

.66

PL

.32

.37

.26

.32

.72

.77

.00

.83

.72

.13

.32

.12

.72

.32

.26

.19

.72

.12

.03

.21

0.59

ZLEU.
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Table 6-7

Recognition Under Perturbations of E

 
 

database images alien images

Rule.pd misclassify reject misclassify reject

(A) 0.3 1 1 0 4

(A) 0.6 2 4 1 3

(A) 1.0 2 5 1 3

(8) 0.3 3 0 3

(8) 0.6 6 0 3

(C) 0.5 7 5 3 1

We observe that modifying major evidence weights. either

by changing them or by allowing other evidence weights to be

changed to 1.0. has very serious effects on the performance

of the system: it appears that the creation of major evidence

features cannot be taken too lightly. On the other hand.

when the major evidence features are fixed under rule (A). we

find that the system performance is not bad, especially for

pd=1.0. although all supportive evidence weights (0.5) are

reduced to 0.0. The overall impression obtained from these

results is that the recognition relies heavily on the major

evidence.

Given that the major evidence features form the crux of

the recognition system. it is natural to ask how recognition

would work if we removed the general rules from the rule

base. We find that A54 is still rejected. and that images

G81 and G83 are misclassified as the aftershave bottle. All

other images are correctly classified. The difficulty with



173

the block images was the fact that the sole major evidence

feature for the aftershave bottle is also satisfied by the

G81 and G83 segmentations. Since all positive evidence and

no negative evidence for the bottle was found for G81.and

G83. the similarity measure with the aftershave bottle was

equal to 1.0. Therefore. it appears that general evidence

features may be superfluous to an extent. but may be

important in the correct classification of objects whose

major evidence features may be observed in other objects of

the database.

6.5.3 -- Effects of Object Distortion

We may also inquire about the effects of object

distortion on recognition. Experiments based on both

synthetic and real range images were made. First two

distortions of the plug object (Figure 6-5) provided two new

plug-like objects. The first distortion was created by

expanding the object along the direction of axis of symmetry

of its component cylinders by 102 (Figure 6-6): the second

was created by expanding the object along the other two

object axes by 102 (Figure 6-7). Whereas the undistorted

plug image was correctly identified. the two distorted views

were rejected. These distorted objects were rejected because

the major evidence features for the plug involve tight

bounds. This is not the case for the cup object, since the

major evidence features for the cup are not very specific

with respect to scaling. but concentrate instead on symbolic

conditions such as the jump edge between a convex and a

concave face. We also took a real range image of a different

cup (Figure 6-8) than the cup shown in HC1 through HC4. This

new cup image was identified as the cup in our object

database.
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Figure 6-5

Plug Object

 
Figure 6-6

Distorted Plug 1
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Figure 6-7

Distorted Plug 2

 
Figure 6-8

Range Image of a Different Cup
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6.5.4 -- Multiple Object Scenes

Experiments up to now have dealt solely with range

images containing single objects. The procedure we have

discussed for deducing the identity of an object in a range

image does not consider. after one object is found. whether

others may also be found in the image. A reasonable approach

to multiple object detection would be to implement the

following control loop:

(0) Generate representation R0 from the range image;

(1) Recognize a single object in R0 as discussed. If

no object is recognized, STOP.

(2) Remove those patches (and boundaries) from R0 which

were involved in the major evidence features

detected in step (1) to obtain a reduced version of

R0. and go to (1).

To illustrate this procedure. a real range image of a roll of

masking tape placed on top of the block object is considered

(see Figure 6-9). When we apply our current evidence feature

rule base to this range image. we find the block object is

identified. Two evidence features for the tape roll. one

relating the flat side of the roll to the concave inside

cylindrical surface. the other relating the flat side of the

roll to the convex outside surface. were added to the

evidence rule base.

Figure 6-10 shows the segmentation and classification of

patches for the tape-on-block range image. Applying our

augmented evidence features to this data. the roll of tape is

identified first; we remove the surface patches providing the

major evidence for identification of the tape roll (the flat

side and the concave inside surface) to obtain the set of

surface patches shown in Figure 6-11. The recognition

procedure next identifies the block object. When the surface

patches contributing to the major evidence for the block are
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Figure 6-9

Tape-on-Block Range Image

removed. we are left with the patches shown in Figure 6—12.

The recognition routine fails to find an object in this final

collection of surface patches. so the procedure terminates,

having identified the tape roll and the block.

6.6 -- Summary and Discussion

In this chapter we have defined an object representation

scheme based on the range image surface patches and patch

classifications derived in Chapters 3. 4, and 5. We have

demonstrated a knowledge—based merging process which helps to

recover from oversegmentation of objects. A recognition

procedure based on observing supporting and refuting evidence

has recognized 30 out of 31 objects. We have shown that

performance is fairly insensitive to perturbation of

non-major evidence weights. and that general rules do not

play a very large role in correct recognition. We have also

demonstrated a prototype technique for identifying multiple

objects in a scene.
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Figure 6—10

Segmentation of Tape-on-Block Range Image

 
Figure 6-11

Result of Removing Tape Patches
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Figure 6-12

Result of Removing Tape and Block Patches

One difficulty with our technique is its inability to

handle unremarkable objects; that is, objects which have no

specific distinguishable features. The main difficulty lies

in our selection of representation features: for example, if

representations included further surface information such as

classifications as cylinders or spheres. and parameters of

these corresponding surface types, then the class of

unremarkable objects would be diminished in size.

We have not addressed the task of determining the

spatial location of objects, but have only concentrated on

identification. Our recognition technique may be able to map

specific patches in the range image to model object faces

(namely, those patches involved in observations of major

evidence) and this could provide a unique location of an

object in a post-identification processing stage. However.

some major evidence features do not involve patches (e.g.

morphological features) and therefore would not provide such
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information.

A final weakness is the method of construction of the

evidence rule base. Our rule base was constructed by

manually looking for "salient" features of objects and then

deciding on what feature bounds to use. a very subjective and

empirical approach. Ideally. the rule base would be

constructed automatically from a number of object models. or

perhaps would be obtained by presenting the system with

"training range images" of objects in the database and

allowing the system to derive the evidence features from

these samples.



CHAPTER VII

SUMMARY. DISCUSSION. AND FUTURE RESEARCH

7.1 -- Summary

The goal of our work has been to develop a general 3D

object recognition system using range images as input data.

Range images are first enhanced to reduce noise and remove

known background areas. The pixels in the image are then

partitioned by clustering the set of six-dimensional feature

vectors obtained by considering the three spatial coordinates

and three unit surface normal coordinates corresponding to

each pixel. A clustering scheme which minimizes a squared

error criterion tends to produce regions which do not cross

boundaries between natural object faces.

The initial partition of the image into surface patches

was refined with techniques developed to classify both

patches and boundaries between adjacent patches. A

nonparametric statistical trend test was used to test for

curvature in a surface patch. and was found to perform well.

Its performance quickly diminished with increasing noise

degradation and decreasing patch size. Two other tests for

determining patch type were developed for small patches.

Boundaries between patches were classified as jump. crease.

or normal edges.

181
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A merging procedure based on patch and boundary

classification refines the initial cluster-induced surface

segmentation. This technique performs best at reconstructing

planar patches. Oversegmented curved surfaces are repaired

to some extent. An error of linear fit was defined for

boundaries between patches and between a patch and the

background. The degree of linearity of a boundary is a

useful feature for recognition.

The final stage is object recognition. A merging of

patches based on knowledge about the objects in the database

is performed to produce a representation relative to each

object in the database. An evidence feature rule base is

generated by hand and supplies salient information about

patches and pairs of patches. A measure of similarity

between observed features derived from the observation and

supporting features present in the evidence feature rule base

is developed: a similarity value is derived for each object

in the object database. The maximum similarity value is used

to identify the object in the range image. This system

correctly identified objects in 30 out of 31 range images.

Its performance did not degrade much under various

perturbations of the system such as modifying the evidence

weights. eliminating general evidence features. or when

encountering objects not included in its object database.

7.2 -- Computational Complexity

The time complexities of processes defined in this

thesis are reviewed. and some representative CPU times for

these processes are reported. Values used in expressing

complexities are defined as follows:

np the number of nonbackground pixels in a range image:

nS the number of 6D patterns obtained by subsampling the

range image;
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the number of clusters requested of CLUSTER;

the number of pixels belonging to the largest surface

patch:

the number of patches:

the number of objects in the database; and

the number of rules or evidence features used for

recognition.

complexities of various stages of our range image

processing paradigm are:

Tabl

proc

imag

Jump edge detection: O(n );
p

CLUSTERing of image: O(ncnsl;

Classifying boundaries as crease or normal:

(N l:O np

Classifying patches as planar. convex, or concave:

Trend test: O(n );
p

Eigenvalue: O(np);

DON method: O(nplognq);

Deriving morphological features:

l:O(nplognp 2

Object recognition: O(maxinr.N)noN )

e 7-1 shows the CPU time required for the sequence of

esses executed in analyzing a cup image and a cobra

e. The various components are denoted:

JUMP jump edge detection:

CLUSTER application of the CLUSTER technique. including

postprocessing;

MERGEl first boundary classification. merging of null

edges. and reclassification of boundaries:

CLASS classification of patches produced by the first

merge step:

MERGE2 merging over non—crease edges:

BOUND final boundary classification:

MORPH derivation of morphological features:
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IDEN identification of object (merging and

evidence-based recognition).

The cup image had 5772 nonbackground pixels and 5 surface

patches were present in the initial representation for object

recognition: The cobra image had 11419 nonbackground pixels

and 8 surface patches were present in the initial

representation for object recognition.

Table 7-1

Sample CPU Times for Range Image Analysis

on a Harris 500 Supermini Computer

  

 

Analysis Timings (sec)

Stage: Cup image Cobra image

JUMP 43 92

CLUSTER 279 472

MERGEl 140 191

CLASS 75 131

MERGE2 11 12

BOUND 37 104

MORPH 146 131

IDEN 11 22

Total: 742 1155

7.3 -- Discussion

There are three main contributions of this thesis.

(1) A complete 3D object recognition system is developed.

(2) Nonparametric statistical techniques are used to

classify surface patches.

(3) Evidence features are used for object recognition.
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The complete object recognition system described in this

thesis is different from other complete systems in the sense

that it is able to treat both articulable and

arbitrary-shaped objects. Some systems have handled

articulable objects [Tom84l while assuming that objects are

constructed from simple primitives. and some have handled

arbitrary objects [Gri84l. which are approximated by a large

number of simple primitives and therefore require rigid

geometry for recognition. Our recognition system does not

require rigid geometry constraints to recognize objects. but

may require local rigidity. Therefore. articulable objects

may be treated by the system. as has been demonstrated with

the hand object HN. Also. since surface patches are only

classified as planar. convex. or concave. no implicit

assumption about_forms of surface functions has been made.

allowing treatment of arbitrary objects.

Nonparametric statistical techniques are used in a trend

test which ascertains the sense (planar. convex. or concave)

of a surface patch. The contribution of the trend test is

that it is the first application of nonparametric techniques

to the task of determining object surface type. Some

advantages of this nonparametric test are given below.

(1) Besides setting a significance level for the tests. no

arbitrary thresholds based on (say) goodness of fit of a

plane to the surface are required.

(2) The trend test performs well for surface patches with a

moderate number of pixels.

The nonparametric trend test has the following disadvantages:

(1) Small patches or short boundaries cause the

corresponding sample sizes to be too small for a

reasonable application of the tests.

(2) The trend test deals exclusively with four fixed

directions: these directions may not optimally span a
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given patch.

Using evidence features for object recognition has the

following advantages:

(1)

(2)

(3)

(4)

Some

(1)

(2)

(3)

Recognition proceeds by searching only for salient

information.

The recognition procedure has polynomial time

complexity. Object recognition procedures which use

tree searching have potentially exponential search

times. However. lower computation times may not be

realized for simple objects.

Both symbolic and numeric information are used.

Since the object models consist of lists of salient

features of objects. the evidence feature rule base is

compact. About 3 rules were required, on the average.

for each object in our object database.

disadvantages of the evidence-based recognition are:

The generation of the evidence feature rule base is not

a well-defined procedure: the concept of a salient

feature needs to be formalized.

There is difficulty with objects which have no salient

features.

The object modeling scheme is not complete. A given

model may correspond to more than one object. For

example. a left shoe and a right shoe will have the same

model under our modeling scheme.
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7.4 -- Future Research

The following suggestions for future research will

extend the results presented in this thesis.

(1)

(2)

(3)

(4)

Small surface patches tend to be classified as planar

patches. 8y requesting a fixed number of clusters from

the segmentation process. we find that. almost all

patches in range images with few object pixels will be

too small to have a chance of being correctly

classified. Setting the requested number of clusters to

be a function of the number of object pixels may provide

better results.

The crease edge detection technique suffers from a high

false alarm rate under noise degradation. This is a

result of using the CLUSTER algorithm to identify

surface patches. Patch boundaries will tend to occur

when the difference between estimated unit surface

normals of two adjacent pixels is large. a condition

which is produced by noise degradation as well as by

true surface creases. Fitting a smooth curve to

boundaries obtained by CLUSTER may modify the set of

boundary pixels enough to obtain more reliable crease

edge detection.

Knowledge-based merging currently makes use only of

angle information. It may be possible to use other

types of knowledge about the objects in the 'database.

such as maximum and minimum patch sizes. or the number

of planar. convex. and concave object faces.

The rule base structure for our recognition process is

very simple: evidence features are either 0th level.

1st level. or 2nd level evidence conditions. A more

useful rule base structure would include the possibility

of conjunctions of these evidence conditions. In
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particular. it may be easier to develop major evidence

for unremarkable objects. For example. an evidence

condition indicating that there are 2 convex—hull-based

background components (a 0th level evidence condition)

and that no object patch has surface area greater than 4

(a lst level evidence condition) would provide a

stronger major evidence feature for the mushroom object

than is currently used (Rule 21).

The recognition technique utilizes only a bottom-up

approach to recognition. since the only control process

which occurs is the detection of evidence conditions

triggered by the observed representation. which in turn

constructs a similarity measure. It may be better to

introduce a top-down component to the recognition

process: that is. upon observing a major evidence

feature for object i. which provides identification of

two (or more) object faces in the observed

representation. a search for other patches which belong

to object i can be initiated. '
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APPENDIX A

SYNTHETIC RANGE IMAGE GENERATION

This section describes the principles and techniques

underlying the synthetic range image generation software

written for use in preliminary tests of the range image

analysis techniques presented in this thesis. The general

approach is a Constructive Solid Geometric approach: objects

to be defined are unions and differences of primitive 3D

shapes. The set of primitives we have implemented is

(sphere. cylinder. box). and the addition of other primitives

(such as cones. elliptical cylinders. etc.) is very

straightforward.

For simplicity of notation and operation, we embed

points in R3 into (R3x(1)) by the mapping

(x.y,z)t4(x.y.z,1)t. This allows us to perform rotation and

translation by multiplying by a 4x4 rotation/translation (RT)

matrix. As a brief review. such RT matrices have the general

form

all a12 a13 a14

a21 822 323 a24 =

331 a32 833 834

o o o 1

 

0 1

 

A11 | A12

 

 

where A11 is a rotation matrix and A12 is a translation

vector.
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We define the mapping C:(R3x(1))4R3 such that

C[(X.y.z.1)tl = (x.y.z)t

and extend the notation to an operation on a set of points 5

in R3xl1i in the obvious way:

CIS] = ((x,y.z)t: (x.y.z,1)teS).

User input consists of a sequence {Dilizl of primitive

object definitions and a global RT matrix G. For each i.

Di: <Pi'°i'Hi) where:

Pi is a set of 4-dimensional points (x.y.z.1)t such that

CIPil defines a 3D primitive with user-specified shape

parameters (e.g. radius for sphere. radius and height

for cylinder) In canonical position (i.e.. no

translation or rotation);

i is a set operation. either union (u) or set difference

(\I;

Hi is a RT matrix of the primitive.

For a RT matrix H and a set of points P in R3x(1). we

define

HP = (Hix.y.z.1)t: (x,y.z.1)teP).

The range image which is returned corresponds to the object

CIG("‘((((001H1P1)02H2le-3H3P3l04H4P4)"°0anPn)].

We can think of

. C[("°((((0-1H1P1)02H2P2)03H3P3)04H4P4l°"0anPnll

as the "raw object definition”. Only G need be changed in

order to obtain different views of the object. The range

image consists of a grid of numbers. with rows corresponding

to increments in the y direction and columns corresponding to

increments in the x direction. The range value r(x,y) is the

largest 2 value such that (x.y.z)t lies on the object

surface.
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The basic algorithm proceeds as follows:

(1) Derive Di's and G from user input.

(2) Step along (x.y) grid. For each (x.y):

(a) For i=1,....n find all z's such that (x.y.z)t lies on

the surface of CIGHiPil. For the convex primitives we

work with, there can be at most two such values. Using

these values. we create the one-dimensional set Oi as

follows: If there are no z's. set Oi=¢: if there is

exactly one 2 (this situation occurs with probability

zero). set Oi=(z). If two solutions 21 and 22 exist

(21(22) then set °i=[21'22]'

(b) Derive the one-dimensional set

S = I°"II($.101I.202l.303)"..non)

and let r(x,y) be 2 = sup(5) (z=-m if 5:0).

(3) Convert r(x,y)‘s to 8-bit integers: z=-m is mapped to 0.

[This is not necessary; we perform this step to emulate the

image format obtained with the real range image sensor

system.)

Step 2b above is tedious but straightforward to

implement. However. the derivation of 2 values where the 3D

ray defined by constant x and y coordinates hits the surface

of CIGHiPil is not so obvious and is treated in some detail

below. Each type of primitive demands a slightly different

approach to this task; I present the derivation for the case

of a cylindrical primitive (consisting as it does of both

planar and curved surfaces): the extension to further

primitives should then be reasonably clear. The basic idea

behind this derivation is that we can apply an inverse RT

transformation to x. y. and CIGHiPil in order to work with

the primitive object in its canonical position.
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Let primitive Pi be a cylinder. The shape parameters of

a cylinder are a radius r and a height h. Suppose our

canonical form of a cylinder is one whose axis of rotational

symmetry lies on the z axis and whose two planar end-surfaces

have equations z=hl2 and z=-h/2. We are given (x.y) and wish

to find all z's (if any exist) such that (x.y.z)t falls on

the surface of CIGHiPil. Note that this is equivalent to the

point Cihglo‘llx.g.z.1lti falling on the surface of ClPil.

the canonical primitive. Let

H716-1 = )31 B2 93 (34
1 r1 r2 r3 r4

0 0 0 1

Denote

01x + azy + C132 4' Q4

(x'.y'.z')t = CIHEIG'llx.y.z.1)tl = 31x + 32y + 332 + p4

FIX + rzy + r32 + r4

The equation of the curved surface of CiPi] is

(x’)2 + (y')2 = r2.

That is.

(G32 + n1)2 + (332 + n2)2 = r2

where

“1 = “1x + “29 + “4

U2 = P1X + P29 + 94.

We get real solutionls) of 2 (if they exist) by solving the

quadratic

(d5 + 3%)22 + 2(q3n1 + p3n2)z + (n? + n% - r2) = 0.

For each solution obtained. find

2' = rlx + ng + r32 + r4;

if -h/2 ‘ z’ < h/2. then (x.y,z)t is a surface point of the

curved surface of CIGHiPil.
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If two surface points have not been found. we test for

(x,y.z)t falling on the end-surfaces of the cylinder: solve

z' = h/2 = rlx + ng + r32 + r4

to get

2 = (h/2 - rlx - rzy - r4l/T3:

find x' and y'. and if

(x')2 + (y')2 < r2

we conclude that (x'.y'.z')t falls on the end-surface

z' = h/2. An identical procedure is carried out for the

end-surface z' = -h/2. This completes the processing for the

cylinder primitive for a given ray (x.y).

Corresponding implementation of the sphere and box

primitives are corollaries of the implementation of the

cylinder primitive. If the canonical position of the sphere

primitive has its center at the origin. the equation

(x')2 + (y')2 + (z’)2 = r2 provides a quadratic in 2 whose

real solutions give corresponding surface points. If the

canonical position of the box primitive is such that its

faces have equations of the form x=constant. y=constant. or

z=constant. then six tests. one for each face and similar to

the end-surface tests for the cylinder. are carried out.



APPENDIX B

RANGE IMAGES AND RESULTS

This appendix shows the 31 range images in our database

and results obtained by applying techniques of this thesis to

them. The format for each figure is:

where

(a)

(bl

(c)

shows the range image after smoothing and removing

background pixels.

shows the surface patches resulting from

segmentation.

shows the surface patches after merging based on

classifications of patches and boundaries between

patches.
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Figure B-1

Aftershave Bottle View 1

 
Figure 8—2

Aftershave Bottle View 2
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Figure 8—3

Aftershave Bottle View 3

 
Figure 8-4

Aftershave Bottle View 4
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Figure 8-5

Cup View 1

 
Figure B-6

Cup View 2
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Figure 8-7

Cup View 3

 
Figure 8-8

Cup View 4
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Figure 8-9

Block View 1

 
Figure 8-10

Block View 2
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Figure 8-11

Block View 3

 
Figure 8-12

Tunnel View 1
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Figure 8-13

Tunnel View 2

O

 
Figure 8-14

Tunnel View 3
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Figure 8-15

Cobra Sculpture View 1

 
Figure B-16

Cobra Sculpture View 2
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Figure 8-17

Cobra Sculpture View 3

 
Figure B-18

Mushroom View 1
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Figure 8-19

Mushroom View 2

 
Figure B-20

Mushroom View 3
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Figure 8—21

Plug View 1

 
Figure B-22

Plug View 2
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Figure B-23

Plug View 3

 
Figure 8-24

Diesel View 1
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Figure 8-25

Diesel View 2

 
Figure B—26

Diesel View 3
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Figure 8-27

Toy Part View 1

 
Figure 8-28

Toy Part View 2



N3m.>pchCMEDI

omimmtdm.u

 H3m.>UCMIcmEJI

mmimmtsm.u

 WON



210

 
Figure 8-31

Human Hand View 3



APPENDIX C

CLUSTER ALGORITHM

The following gives a brief outline of the CLUSTER

algorithm used in this thesis to perform segmentation of

range images.

(a) Input pattern vectors. consider these to form one

cluster.

(b) Create clusterings containing 2. 3. ..., C clusters:

(b1) Look for that pattern with greatest distance

(b2)

from the cluster center of its parent cluster.

Let this pattern form a new cluster seed.

Suppose there are D clusters: A pattern is

moved from its parent cluster to each of the

remaining (D-1) clusters. one by one.

attempting to reduce squared error. A move

will be permanent if squared error is reduced.

Otherwise. restore the pattern to its parent

cluster. Perform this procedure for all

patterns in the data. Repeat this process

until no moves will reduce the squared error.

(c) Create clusterings containing C. C-1.....2 clusters:

(c1) For each pair of clusters. consider the result

of merging the clusters. If lower squared

error would result. mark that pair for possible

merging. After all pairs have been considered.
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merge that marked pair which provides the

largest decrease In squared error. Repeat this

step to produce C-2. ...,2 clusters.

(d) Compare clusterings containing 2. 3..... C clusters

generated in latest execution of steps (b) and (c) to

current set of best clusterings (lowest squared error).

If there are some clusterings which have lower squared

error than achieved during earlier executions of (b)

and (c), then store the better clusterings and repeat

steps (b) and (c). Otherwise. report the current set

of best clusterings and terminate execution.

Part (b) has time complexity O(nsC). where nS is the

number of patterns to be clustered. and part (c) has time

complexity O(C2). Therefore. since C < nS in general. the

time complexity of this cluster algorithm is O(nSC).



APPENDIX 0

EVIDENCE FEATURE RULES

This appendix provides the specifications of the

evidence features which were used in our experiments. Each

rule shows:

(0)

(1)

(2)

(3)

The rule index. j.

A purpose identifier. which is enclosed in <<< >>>

brackets and specifies the object (if any) for which the

evidence feature is a major evidence. If the evidence

feature is not major evidence for any object. the rule

has purpose identifier <<< general rule >>>.

A verbal description of the evidence condition.

Distances are given in inches. areas are given in square

inches. and angles are given in degrees.

Evidence weights Jifor i=1.....10. corresponding to

the ten objects in our database. listed in the order:

AS.HC,G8,TN,C8.MH,PL.DS.TY.HN.
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Rule 1: <<< general rule >>>

the perimeter is greater than 20-

-0.5 -0.5 -0.5 -0.5 0.5 -1.0 -0.5 -0.5 0.5 0.5

Rule 2: <<< general rule >>>

there are 2 to 3 faces with area between 6 and 10:

—1.0 0.5 0.5 —1.0 0.5 -1.0 0.5 0.5 0.0 0.0

Rule 3: <<< general rule >>>

there is exactly one convex face with area larger than 10:

-1.0 0.5 -1.0 0.5 0.5 -1.0 -1.0 -1.0 0.5 0.5

Rule 4: <<< general rule >>>

there are exactly two convex faces with areas between

1.0 and 3.0;

-1.0 0.0 -1.0 0.0 0.0 0.5 0.5 -1.0 0.0 0.5

Rule 5: <<< general rule >>>

there is a nonlinear background boundary

0.5 0.5 —0.5 0.5 0.5 0.5 0.5 -0.5 0.5 0.5

Rule 6: <<< general rule >>>

there are two edges with angles of 80 to 100 degrees:

0.5 0.0 0.5 0.5 0.0 0.5 0.5 0.5 0.5 0.0

Rule 7: <<< general rule >>>

there is one edge with angle of -100 to -80 degrees,

and the edge is linear;

-0.5 0.0 0.5 0.5 -0.5 -0.5 -0.5 0.5 0.5 0.0
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Rule 8: <<< general rule >>>

there is a jump edge between two planar faces.

the jump gap is between 1 and 3:

0.0 0.0 0.5 0.5 0.0 0.5 0.5 0.5 0.5 0.0

Rule 9: <<< Aftershave bottle >>>

there are 1 or 2 planar faces. area between 4.0 and 5.5.

and boundary with background is linear;

1.0 -0.5 0.5 0.5 -0.5 -1.0 0.5 0.5 0.0 -0.5

Rule 10: <<< Cup >>>

there is a jump edge between a convex surface of area

6 to 16 and a concave surface of area 2 to 8. and the

jump gap is between 2.5 and 3.5:

-1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -0.5

Rule 11: <<< Cup >>>

there is a jump edge from a convex surface of area

greater than 10 to a planar patch -- jump gap 3 to 4;

-1.0 1.0 0.0 -1.0 0.5 -1.0 -1.0 -1.0 -1.0 0.0

Rule 12: <<< Cup >>>

there is a jump edge from a convex surface of area

greater than 10 to a patch of area less than 1.5:

-1.0 1.0 -1.0 0.0 0.0 -1.0 -1.0 -1.0 -1.0 0.0

Rule 13: <<< Cup >>>

there is a circular patch: area is between 7.0 and

9.0. and maximum distance within the patch is between

3.0 and 3.4;

-1.0 1.0 -1.0 -1.0 -0.5 -1.0 -1.0 -1.0 -1.0 0.0
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Rule 14: <<< Block >>>

there are two parallel planar faces with minimum

distance between 1.3 and 1.5:

-1.0 -1.0 1.0 -1.0 -1.0 -1.0 0.5 -1.0 0.0 0.0

Rule 15: <<< Block >>>

there are two adjacent planes whose normal vectors form

an angle of 40-50 degrees. one plane with area in

(1.0.3.1) and the other with area in (2.0.6.1):

-1.0 -1.0 1.0 -1.0 0.0 -1.0 -1.0 0.0 0.5 0.0

Rule 16: <<< Block >>>

there are two planar faces separated by a distance of

3 to 3.5 whose normals form an angle of 130-140 degrees.

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rule 17: <<< Block >>>

there are two remote planes w/ normal angle 40-50 degrees.

areas in (2.0.3.1) and (2.0.5.0). and min distance 1.5-2.5.

-1.0 -1.0 1.0 -1.0 -1.0 -1.0 -1.0 0.0 -0.5 -0.5

Rule 18: <<< Tunnel >>>

there are two parallel planar faces with minimum

distance between 1.9 and 2.1:

-0.5 -1.0 0.0 1.0 -0.5 0.5 0.5 -1.0 0.0 0.0

Rule 19: <<< Tunnel >>>

there is a convex face with area in (10.21) which is a

minimum distance (1.4.1.8) from a planar patch of area

less than 4:

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
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Rule 20: <<< Cobra sculpture >>>

there are pairs of concave patches. size of each greater

than 4. which have a minimum distance of 1.5 to 9;

-1.0 -1.0 -1.0 -1.0 1.0 -1.0 -1.0 -1.0 -1.0 0.0

Rule 21: <<< Mushroom >>>

there is no patch larger than 4:

-0.5 -0.5 -0.5 -0.5 -0.5 1.0 -0.5 0.0 0.0 0.0

Rule 22: <<< Plug >>>

there are two instances of a planar patch of area less

than 4 and a planar patch of area less than 1.2 being

parallel with distance between 2 and 2.4;

-1.0 -1.0 -1.0 0.0 —1.0 -1.0 1.0 -1.0 -1.0 -1.0

Rule 23: <<< Plug >>>

there are two planar patches of area less than 1

which are parallel with distance between 1.4 and 1.8;

-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 1.0 -1.0 0.0 0.0

Rule 24: <<< Plug >>>

there are two planar faces each with areas in (5.0.6.5)

with intersection angle of 80 to 95 degrees and linear;

0.0 -1.0 0.5 0.0 -1.0 -1.0 1.0 -1.0 —1.0 -1.0

Rule 25: <<< Plug >>>

there are two planar faces with area in (0.5.1.0) which

intersect with another patch at an angle 80—95 degrees:

-1.0 0.0 0.0 -1.0 0.0 0.0 1.0 0.0 0.0 0.0



218

Rule 26: <<< Diesel >>>

there are two planes. one with area less than 2.6 and

the other with area less than 4.5. whose normal vectors

form an angle -45 to -55 and lie 1.7 to 2.3 apart:

-1.0 -1.0 0.5 -1.0 -1.0 -1.0 -1.0 1.0 0.5 -1.0

Rule 27: <<< Diesel >>>

there are two planes. both with area in (3.0.4.5) whose

normal vectors form an angle 60-70 and are adjacent;

-1.0 -1.0 0.5 -1.0 -1.0 -1.0 -1.0 1.0 0.5 0.0

Rule 28: <<< Diesel >>>

there are two planes. one with area less than 3.3 and

the other with area less than 4.5. whose normal vectors

form an angle 20-30 degrees. and lie 2.0 to 2.4 apart:

-1.0 -1.0 0.5 -1.0 -1.0 -1.0 -1.0 1.0 0.0 0.0

Rule 29: <<< Toy part >>>

there are at least 4 jump edges with gap less than 1;

-1.0 -1.0 -1.0 -1.0 —1.0 -1.0 -1.0 -1.0 1.0 0.5

Rule 30: <<< Human hand >>>

there are two to five finger-shaped patches: area is

between 1.2 and 2.1. and maximum distance within the

patch is between 2.0 and 3.0;

0.0 -1.0 -1.0 -1.0 0.0 -1.0 0.0 -1.0 -0.5 1.0

Rule 31: <<< Human hand >>>

there is 1 background component but more than 3 CH

components. perimeter is at least 25:

-1.0 -0.5 -1.0 —1.0 -0.5 -1.0 0.0 -1.0 -1.0 1.0



APPENDIX E

RECOGNITION RESULTS

This supplement provides the results of applying the

recognition scheme for each of the 31 range images in our

range image database. These results are presented as

follows:

(a) The vector of similarities tT(Ri), given in the order

{AS.HC.G8.TN.CB.MH.PL.DS.TY,HN);

(b) Those objects for which representation R1 satisfied at

least some major evidence condition for object i:

(c) The final decision about the object. if the object was

not rejected:

(d) If (d) specified recognition of object 1. then the

evidence features satisfied by R? are listed.
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results for A51

Similarity vector:

0.91 -0.34 -0.36 0.38 -0.26 -0.65 0.29 -0.33 0.28 -0.30

Major evidence occurs for: AS

Decide the object is the AfterShave bottle

Reasoning: 5.9

results for A52

Similarity vector:

0.82 -1.00 0.20 0.27 -1.00 -1.00 0.20 0.24 0.00 -1.00

Major evidence occurs for: AS

Decide the object is the Aftershave bottle

Reasoning: 9

 

results for A53

Similarity vector:

0.82 -1.00 0.20 0.27 -1.00 -1.00 0.20 0.24 0.00 -0.30

Major evidence occurs for: AS

Decide the object is the Aftershave bottle

Reasoning: 9

results for A54

Similarity vector:

0.41 0.23 -1.00 0.27 0.33 0.33 0.20 -1.00 0.28 0.28

Major evidence occurs for no objects.

Reject the object.

results for HC1

Similarity vector:

-0.75 0.56 -0.75 -0.80 -0.26 —0.78 -0.50 -0.73 -0.44 0.28

Major evidence occurs for: HC

Decide the object is the Cup

Reasoning: 2.5.13
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results for C82

Similarity vector:

0.41 0.23 -0.84 0.27 0.70 0.33 0.20 -0.82 -0.44 -0.01

Major evidence occurs for: C8

 

Decide the object is the Cobra sculpture

Reasoning: 2.3.5.8.9.20

results for CB3

Similarity vector:

0.41 0.23 -1.00 0.27 0.51 0.33 0.20 -1.00 0.28 0.28

Major evidence occurs for: C8

 

Decide the object is the Cobra sculpture

Reasoning: 5.7.20

results for MH1

Similarity vector:

-0.67 —0.34 -1.00 -0.31 -0.26 0.82 -0.10 -1.00 0.28 0.28

Major evidence occurs for: MH

Decide the object is the Mushroom

Reasoning: 4.5.21

 

results for MH2

Similarity vector:

-0.67 -0.34 -1.00 —0.31 -0.26 0.82 -0.10 -1.00 0.28 0.28

Major evidence occurs for: MH

Decide the object is the Mushroom

Reasoning: 4.5.21

results for MH3

Similarity vector:

-1.00 -1.00 -0.36 -1.00 -1.00 0.75 -0.36 0.24 0.28 0.00

Major evidence occurs for: MH

Decide the object is the Mushroom

Reasoning: 4.21
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results for PL1

Similarity vector:

—0.05 -0.74 -0.88 -0.63 -0.70 -0.78 0.65 -0.86 -0.68 -0.01

Major evidence occurs for: AS.PL

Decide the object is the Plug

Reasoning: 5.9.23.25

results for PL2

Similarity vector:

-0.01 -1.00 0.28 0.11 -1.00 -0.39 0.54 -0.47 0.28 -1.00

Major evidence occurs for: AS.TN.PL

Decide the object is the Plug

Reasoning: 8.9.18.25

 

results for PL3

Similarity vector:

-0.62 -0.70 -0.56 0.27 -0.79 —0.39 0.50 -0.86 0.13 -0.44

Major evidence occurs for: PL,TY

 

Decide the object is the Plug

Reasoning: 4.5.24

results for D51
 

Similarity vector:

-0.67 0.32 0.16 -0.45 -0.81 -0.70 -0.10 0.64 0.48 -0.30

Major evidence occurs for: DS

Decide the object is the Diesel

Reasoning: 5.7.9.27.28

results for D52

Similarity vector:

-1.00 -1.00 0.28 -1.00 -1.00 -1.00 -1.00 0.69 0.39 -1.00

Major evidence occurs for: D5

 

Decide the object is the Diesel

Reasoning: 26.27
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results for D53

Similarity vector:

-1.00 0.23 0.28 -1.00 -1.00 -1.00 0.20 0.54 0.00 -1.00

Major evidence occurs for: DS

Decide the object is the Diesel

Reasoning: 9,28

results for TY1

Similarity vector:

-0.83 -0.83 -0.58 —0.09 -0.46 -0.87 -0.88 -0.54 0.83 0.48

Major evidence occurs for: TN.TY

Decide the object is the Toy part

Reasoning: 1.3.6.7.8.19.29

 

results for TY2

Similarity vector:

-0.70 -0.74 -0.61 -0.34 -0.46 -0.62 -0.61 —0.58 0.78 0.48

Major evidence occurs for: TY

Decide the object is the Toy part

Reasoning: 1.5.7.8.29

 

results for HN1

Similarity vector:

-0.82 -0.70 -0.90 -0.73 -0.46 -0.88 -0.84 -0.89 0.23 0.92

Major evidence occurs for: TY,HN

Decide the object is the Human hand

Reasoning: 1.5.8.29.30.31

 

results for HN2

Similarity vector:

-0.82 -0.27 -0.85 -0.51 -0.30 -0.68 -0.56 -0.87 —0.11 0.68

Major evidence occurs for: HN

Decide the object is the Human hand

Reasoning: 1,5,18,21,31
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results for HN3

Similarity vector:

-1.00 -0.34 -0.84 -0.31 0.33 -1.00 -1.00 -0.82 0.48 0.62

Major evidence occurs for: HN

 

Decide the object is the Human hand

Reasoning: 1.8.30
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