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ABSTRACT

A COMPUTER-BASED SIMULATION MODEL FOR

AGRO-ECOLOGICAL ZONE YIELD ASSESSMENT

By

Nilson Amaral

Computers and information systems are fundamental tools

for decision makers and planners. A computer-based simula-

tion model was developed in this study with the objective of

providing a practical and useful tool for decision makers

and planners to estimate crop yields in relatively large and

homogeneous regions, the so-called agro-ecological zones.

The simulation model was developed in two modes: First, the  
deterministic approach was used to analyze yield trends in

an a posteriori type of analysis. Second, a stochastic

approach, with random environmental inputs, was used to

provide decision makers with the yield-distribution parame-

ters necessary to make inferences about yield values, as

well as crop-yield prediction.

The technique used in the simulation model does not rely

solely on yield time series but on the process of biomass

production, where water deficit is a primary constraint.

The Monte Carlo approach was employed to generate random



Nilson Amaral

variates based on the distribution parameters of the popula-

tion data for the exogenous environmental inputs. A

variance-partitioning technique, which considers random

variation in the input parameter, was used with the Monte

Carlo approach.

The simulation results, using three regions in Jamaica

and three agro-ecological zones in the Dominican Republic as

data sources, showed the validity of the model when results

were compared with observed-yield data for those locations,

as well as with FAO yield guidelines. Results are presented

in the form of tables, scattergrams, and histograms to serve

as an aid to decision making and planning.

Limitations do exist in the simulation model and are

presented in the last chapter. Data completeness and preci—

sion pose some limitations to the final analysis, which

indicates a need to improve data collection.

Despite its limitations, the model shows the feasibil-

ity of the systems approach to crop-yield estimation and

opens new insights into the process of yield prediction for

use in decision making and planning, and as a linkage to

other models such as economic—optimization models.



 

 



ACKNOWLEDGMENTS

I wish to express my gratitude to:

Dr. G. Schultink, who gave me ample freedom to approach

the problem of this dissertation with my own ideas, but gave

his objective guidance and criticism to direct those ideas.

His counseling, friendship, and support during my training

at Michigan State University will always be appreciated.

Drs. D. E. Chappelle, T. Manetsch, and M. Steinmueller,

members of the advisory committee, for their comments and

suggestions at different stages of this work.  
Dr. S. Witter for his help at several stages of the

model development, as well as in the preparation of the data

set used in the simulation runs.

Thanks are also due to my colleagues and friends David

Mendez, Dorothy Dunkley, and Sashi Nair for their help in

data preparation. A number of friends, especially Eliseu

R. A. Alves, Mauro R. Lopes, and several others in Brazil,

in many ways helped me in my training process. Mrs. Sue

Cooley helped in editing and final typing.

Acknowledgment is also made to the CRIBS project at

Michigan State University, EMBRAPA, and CNPQ for their

 



financial support throughout the course of the investigation

and my training at MSU.

Last but not least, my sincere appreciation and admira-

tion to my wife, Milza; my son, Nilson; and my daughter,

Larissa, for their love, encouragement, and cooperation,

which made this undertaking possible.

vi

 



 

 

 

 



TABLE OF CONTENTS

Page

LIST OF TABLES

LIST OF FIGURES O I O I O O I I C O xiii

Chapter

I. INTRODUCTION

 
0 O O O O C O 1

Objectives of the Study . . . . . . . . . . 2

Literature Review . . . . . . . . . . . . . 6

Technique Used . . . . . . . . . 11

Organization of the Dissertation . . . . . . 14

II. AGRO-ECOLOGICAL ZONE DETERMINATION . . . . . . 16

Data-Acquisition Process . . . . . . . l7

Computational Tools for AEZ Determination . 19

CRIES-GIS: An Overview . . . . . . . . . . . 22

CRIBS—AIS: An Overview . . . . . . . . . . . 27

III. DETERMINISTIC YIELD SIMULATOR (DYS) . . . . . 31

Model Assumptions . . . . . . . . . . . . . 34

Model Structure . . . . . . . . . . . . . . 36

Mathematical Formulation . . . . . . . . . . 39

Data Requirements . . . . . . . . . . . . . 61

IV. STOCHASTIC YIELD SIMULATOR (SYS) . . . . . . . 65

Stochastic Approach . . . . . . . . . . . . 67

Random—Variates Generation . . . . . . . . . 74

Variance Partitioning and Common

Scenario Analysis . . . . . . . 77

Stochastic Yield Simulator (SYS) Structure . 78

Mathematical Formulation . . . . . . . . . . 89

Data Requirements . . . . . . . . . . . . . 93





 

V. MODEL VALIDATION AND SIMULATION RUNS

Deterministic YIELD Simulator Run,

Jamaica-~Introduction . . .

Deterministic YIELD Simulator Run,

Jamaica--Environmental Inputs .

Deterministic YIELD Simulator,

Jamaica-~Crop Parameters . . .

Deterministic YIELD Simulator,

0

Jamaica--Farm-Management-Practice

Parameters . . . . .

Deterministic YIELD Simulator,

Jamaica--Local Parameters . . .

Deterministic YIELD Simulator,

Jamaica--Simulation Results . .

Stochastic YIELD Simulator,

Jamaica--Environmental Inputs .

Stochastic YIELD Simulator,

Jamaica--Simulation Results . .

Stochastic YIELD Simulator, Dominican

Republic—-Environmental Inputs

Stochastic YIELD Simulator, Dominican

Republic--Simulation Results .

VI. SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR

FURTHER RESEARCH . . . . . . . . . .

Summary . . . . . . . . . . . . .

Conclusions .. . . . . . .. .

Suggestions for Further Research . . .

APPENDICES

A. INTERPOLATING FUNCTIONS .. . .. .

B. NUMERICAL INTEGRATION AND DIFFERENTIATION

C. THE INVERSE TRANSFORMATION METHOD .

LIST OF REFERENCES 0 C O I C O C C C O O O 0

viii

Page

95

99

100

101

101

103

105

129

139

159

172

186

186

191

195

200

207

210

215



 

LIST OF TABLES

Table Page

1. Percentage of Water that Percolates into the

Soil as a Function of Percentage Slope

and Soil Textural Classes . . . . . . . . . . 53

2. Crops, Salinity Levels in mmhos/cm, and

Percentage Yield Decrease Values . . . . . . . 60

3. Deterministic YIELD Simulator: Jamaica-—Crop

Parameters--Sugarcane, Tobacco, and Sorghum

for Worthy Park, Caymanas, and Monymusk . . . 102

4. Deterministic YIELD Simulator: Jamaica——Farm-

Management—Practice Parameters for Sugarcane,

Tobacco, and Sorghum, for Worthy Park,

Caymanas, and Monymusk . . . . . . . . . . . . 104

5. Deterministic YIELD Simulator: Jamaica-—Local

Parameters for Worthy Park, Caymanas, and

Monymusk . . . . . . . . . . . . . . . . . . . 106

6. Deterministic YIELD Simulator: Jamaica—-

St. Catherine-~Worthy Park. Sugarcane--

Observed Irrigated Yield and Simulated

Irrigated and Rain-fed Yield, 1963—1982 . . . 107

7. Deterministic YIELD Simulator: Jamaica—-

St. Catherine-—Caymanas. Sugarcane--

Observed Irrigated Yield and Simulated

Irrigated and Rain-fed Yield, 1963-1982 . . . 115

8. Deterministic YIELD Simulator: Jamaica--

Clarendon--Monymusk. Sugarcane-—

Observed Irrigated Yield and Simulated

Irrigated and Rain-fed Yield, 1963—1982 . . . 121

9. Deterministic YIELD Simulator: Tobacco and

Sorghum: Jamaica-—Worthy Park, Caymanas,

and Monymusk. Simulated "Average" Yield

Results Over the Period From 1963 to 1982 . . 127

ix

 

 

 



 

 

 

  

  



 

Stochastic YIELD Simulator: Precipitation

Probability Density Function Statistics

for Jamaica--Worthy Park, for the Years

1963 to 1982

Stochastic YIELD Simulator: Precipitation

Probability Density Function Statistics

for Jamaica--Caymanas, for the Years

1963 to 1982

Stochastic YIELD Simulator: Precipitation

Probability Density Function Statistics

for Jamaica--Monymusk, for the Years

1963 to 1982

Stochastic YIELD

Q 0 O o I O o I o o o o I o

Simulator: Temperature,

Relative Humidity, and Wind Velocity

Probability Density Function Statistics

for Jamaica-~Worthy Park for the Years

1963 to 1982

Stochastic YIELD

- o o a o I O O I a o a I I

Simulator: Temperature,

Relative Humidity, and Wind Velocity

Probability Density Function Statistics

for Jamaica—-Caymanas for the Years

1963 to 1982

Stochastic YIELD Simulator: Temperature,

Relative Humidity, and Wind Velocity

Probability Density Function Statistics

for Jamaica--Monymusk for the Years

1963 to 1982

Stochastic YIELD

for Sugarcane,

the Years 1963

Stochastic YIELD

for Sugarcane,

the Years 1963

Stochastic YIELD

for Sugarcane,

the Years 1963

Stochastic YIELD

Simulator: Fertilizer Usage

Jamaica-—Worthy Park for

to 1982 O C O O O O O O O O

Simulator: Fertilizer Usage

Jamaica—-Caymanas, for

to 1982 I O I I O O O O 0 O

Simulator: Fertilizer Usage

Jamaica-- Monymusk, for

to 1982 0 O O O O O O O I O

Simulator: Sugarcane Results,

Jamaica--Worthy Park, Caymanas, and Monymusk

Page

130

131

132

133

134

135

137

138

139

140

 



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

 

Stochastic YIELD Simulator: Tobacco Results,

Jamaica-—Worthy Park, Caymanas, and Monymusk

Stochastic YIELD Simulator: Sorghum Results,

Jamaica--Worthy Park, Caymanas, and Monymusk

Stochastic YIELD Simulator: Precipitation

Probability Density Function Statistics

for the Dominican Republic Ocoa Watershed's

AEZ Valdesia, for the Years 1970 to 1984 . .

Stochastic YIELD Simulator: Precipitation

Probability Density Function Statistics

for the Dominican Republic Ocoa Watershed's

AEZ Ocoa, for the Years 1970 to 1984 . . . .

Stochastic YIELD Simulator: Precipitation

Probability Density Function Statistics

for the Dominican Republic Ocoa Watershed's

AEZ Azua, for the Years 1970 to 1984 . . . .

Stochastic YIELD Simulator: Temperature,

Relative Humidity, and Wind Velocity

Probability Density Function Statistics

for the Dominican Republic's Ocoa Watershed

AEZ Valdesia, for the Years 1963 to 1982 . .

Stochastic YIELD Simulator: Temperature,

Relative Humidity, and Wind Velocity

Probability Density Function Statistics

for the Dominican Republic's Ocoa Watershed

AEZ Ocoa, for the Years 1963 to 1982 . . . .

Stochastic YIELD Simulator: Temperature,

Relative Humidity, and Wind Velocity

Probability Density Function Statistics

for the Dominican Republic's Ocoa Watershed

AEZ Azua, for the Years 1963 to 1982 . . . .

Stochastic YIELD Simulator: Dominican Republic

--Ocoa Watershed Crop Parameters-~Rice,

Potato, Fresh Pea for Valdesia, Ocoa, and

Azua O C 0 O O O O I O O I O I I O 0 I l I 0

Stochastic YIELD Simulator: Dominican Republic

-—Ocoa Watershed Crop Parameters--Onion

and Cabbage for Valdesia, Ocoa, and Azua . .

 

Page

149

154

160

161

162

163

164

165

166

168

 

 



 

 

 

  

  



 

 

Stochastic YIELD Simulator: Dominican Republic

—-Ocoa Watershed Farm—Management-Practice

Parameters--Rice, Potato, and Fresh Pea for

Valdesia, Ocoa, and Azua . . . . . . . . .

Stochastic YIELD Simulator: Dominican Republic

--Ocoa Watershed Farm-Management-Practice

Parameters--Onion and Cabbage for Valdesia,

Ocoa, and Azua . . . . . . . . . . . . . .

Stochastic YIELD Simulator: Dominican Republic

——Ocoa Watershed Local Parameters for

Valdesia, Ocoa, and Azua . . . . . . . . .

Stochastic YIELD Simulator: Probability

Density Function Statistics Results for

Onion for the Dominican Republic--Ocoa

Watershed--Valdesia, Ocoa, and Azua AEZs .

Stochastic YIELD Simulator: Probability

Density Function Statistics Results for

Rice for the Dominican Republic--Ocoa

Watershed-—Valdesia, Ocoa, and Azua AEZs .

Stochastic YIELD Simulator: Probability

Density Function Statistics Results for

Fresh Pea for the Dominican Republic--Ocoa

Watershed--Valdesia, Ocoa, and Azua AEZs .

Stochastic YIELD Simulator: Probability

Density Function Statistics Results for

Potato for the Dominican Republic--Ocoa

Watershed-~Valdesia, Ocoa, and Azua AEZs .

Stochastic YIELD Simulator: Probability

Density Function Statistics Results for

Cabbage for the Dominican Republic—-Ocoa

Watershed-~Valdesia, Ocoa, and Azua AEZs . .

Page

169

170

171

173

176

179

182

184

 

 



 

Figure

1.

2'

LIST OF FIGURES

Agro-Ecological Zone YIELD Assessment as a

Component Of CRIES-RIS o o a a o o o o o o 0

Geographic Information System-—OVERLAY

Analysis I I I I I I I I I I I I I I I I I I

Geographic Information System--Character

Map of Elevation . . . . . . . . . . . . . .

Geographic Information System--Two-Way

Cross—Tabulation . . . . . . . . . . . . .

Geographic Information System-~Choroline

Printer Map I I I I I I I I I I I I I I I I

General Input/Output Diagram for the

Deterministic YIELD Simulator with

Nomenclature . . . . . . . . . . .

Deterministic YIELD Simulator-~General

Diagram I I I I I I I I I I I I I I I I I I

Deterministic YIELD Simulation Model—~Phase 1:

General System Diagram . . . . . . . . . . .

Deterministic YIELD Simulation Model--Phase 2:

General System Diagram . . . . . . . . . . .

Deterministic YIELD Simulation Model——Phase 3:

System Diagram . . . . . . . . . . . . . . .

Deterministic YIELD Simulator--Phase 4:

System Diagram . . . . . . . . . . . . . . .

Yield Adjustment Based on Generalized

Fertilizer Availability for All Crops . . .

General Input/Output Diagram for the

Stochastic YIELD Simulator with Nomenclature

xiii

Page

23

24

26

28

29

32

37

44

49

54

58

58

68



 

 



 

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Stochastic YIELD Simulator--An Example of

Histogram Plot . . .

Stochastic YIELD Simulator--Probabi1ity

Density Function Skewing Factor Variation

Stochastic YIELD Simulator--Triangular

Probability Density Function .

Stochastic YIELD Simulator--Gamma—Variates-

Generation Process .

Stochastic YIELD Simulator—~General Flowchart

of the Simulation Process

Stochastic YIELD Simulator-~Phase l Flowchart

Stochastic YIELD Simulator-~Phase 2 Flowchart

Stochastic YIELD Simulator-—Phase 3 Flowchart

Stochastic YIELD Simulator-~Phases 4 and 5

Flowchart . . . . .

Stochastic YIELD Simulator—-Phase 6 Flowchart

Stochastic YIELD Simulator--Phase 7 Flowchart

Deterministic YIELD Simulator:

Worthy Park, Observed Irrigated Yield and

Simulated Irrigated Yield for Sugarcane for

the Period 1963-1982

Deterministic YIELD Simulator:

Worthy Park, Sugarcane Irrigated Observed

Yield and Simulated Rain-fed Yield From

1963 to 1982 . . . .

Deterministic YIELD Simulator:

Worthy Park, Sugarcane Irrigated Observed

Yield versus Simulated Irrigated Yield

Deterministic YIELD Simulator:

Worthy Park, Sugarcane Irrigated Observed

versus Simulated Rain-fed Yield

 

Page

69

71

73

76

80

81

83

84

86

87

88

108

110

113

113



 

 



 

Page

29. Deterministic YIELD Simulator: Jamaica--

Caymanas, Sugarcane Observed Irrigated

Yield and Simulated Irrigated Yield from

1963 to 1982 . . . . . . . . . . . . . . . . . 116

30. Deterministic YIELD Simulator: Jamaica—-

Caymanas, Sugarcane Observed Irrigated Yield

and Simulated Rain-fed Yield from 1963 to

1982 o o o o o O 0 I o o c n o o O o I O O o o 118

31. Deterministic YIELD Model: Jamaica--Caymanas,

Sugarcane Observed Irrigated Yield Versus

Simulated Irrigated Yield . .. . .. . .. . 119

32. Deterministic YIELD Model: Jamaica--Caymanas,

Sugarcane Observed Yield versus Simulated

Rain-fed Yield I I I I I I I I I I I I I I I I 119

33. Deterministic YIELD Simulator: Jamaica--

Monymusk, Sugarcane Observed Irrigated Yield

and Simulated Irrigated Yield from 1963 to

198 o o I o I I a o o 122

34. Deterministic YIELD Simulator: Jamaica-—

Monymusk, Sugarcane Observed Irrigated Yield

and Simulated Rain-fed Yield from 1963 to

19 I I I I I I I I I I I I I O I I I I I I

35. Deterministic YIELD Simulator: Jamaica-—

Monymusk, Sugarcane Observed Irrigated Yield

versus Simulated Irrigated Yield . . .. . . . 124

36. Deterministic YIELD Simulator: Jamaica--

Monymusk, Sugarcane Observed Irrigated Yield

versus Simulated Rain-fed Yield .. .. .. . 125

37. Stochastic YIELD Simulator: Jamaica--Worthy

Park. Sugarcane Absolute Frequency Histogram

for Potential, Irrigated, and Rain—fed Yield . 145

38. Stochastic YIELD Simulator: Jamaica-~Caymanas.

Sugarcane Absolute Frequency Histogram for

Potential, Irrigated, and Rain-fed Yield . . . 146

39. Stochastic YIELD Simulator: Jamaica-~Monymusk.

Sugarcane Absolute Frequency Histogram for

Potential, Irrigated, and Rain-fed Yield . . . 147

XV



 

40.

41.

42.

43.

44.

45.

46.

47.

48.

 

Stochastic YIELD Simulator: Jamaica—-Worthy

Park. Tobacco Absolute Frequency Histogram

for Potential, Irrigated, and Rain-fed

Stochastic YIELD Simulator: Jamaica—-Caymanas.

Tobacco Absolute Frequency Histogram for

Potential, Irrigated, and Rain-fed Yield .

Stochastic YIELD Simulator: Jamaica-~Monymusk.

Tobacco Absolute Frequency Histogram for

Irrigated, and Rain-fed Yield .

Stochastic YIELD Simulator: Jamaica--Worthy

Park. Sorghum Absolute Frequency Histogram

for Potential, Irrigated, and Rain-fed

Stochastic YIELD Simulator: Jamaica--Caymanas.

Sorghum Absolute Frequency Histogram for

Irrigated, and Rain-fed Yield .

Stochastic YIELD Simulator: Jamaica-~Monymusk.

Sorghum Absolute Frequency Histogram for

Irrigated, and Rain-fed Yield .

Stochastic YIELD Simulator:

Republic, Ocoa Watershed--Ocoa--Onion.

Absolute Frequency Histogram for Potential,

and Rain-fed Yield

Stochastic YIELD Simulator:

Republic, Ocoa Watershed--Ocoa--Rice.

Absolute Frequency Histogram for Potential,

and Rain-fed Yield

Stochastic YIELD Simulator:

Republic, Ocoa Watershed-—Ocoa—-Fresh Pea.

Absolute Frequency Histogram for Potential,

and Rain-fed Yield

Stochastic YIELD Simulator:

Republic, Ocoa Watershed--Ocoa--Cabbage.

Absolute Frequency Histogram for Potential,

and Rain-fed Yield

Page

151

152

153

156

157

158

175

178

181

185





 

Page

50. Tablex: A Algorithm for Functional

Interpolation . . . . . . . . . . . . . . . . 205

51. Cumulative Distribution Function . . . . . . . . 210

 

xvii



 

 



 

 

CHAPTER I

INTRODUCTION

For most developing countries, agricultural produc-

tivity has an important influence on economic development,

trade, and foreign exchange earnings. Developing nations

are seeking areas best suited for crop production to satisfy

internal demand, to keep food prices at affordable levels  for the large percentage of the population with low income,

and to generate foreign exchange to pay for the importation

of technology, goods, and services.

Past and predicted crop yields play an important role

in the decision-making process in many areas of a country's

economy. Information on harvest size is needed for a vari—

ety of purposes. Governments require information for admin-

istrative and planning purposes, possibly for measures to

regulate quantities imported and/or exported, to control

prices, and so on. Private firms are interested in approp—

riate data for their marketing and storage arrangements.

Farmers may use harvest data as the basis for their seasonal

purchases to obtain particulary favorable prices.



 

 



 

 

Researchers are interested in optimizing the regional

distribution of agricultural production patterns. Heady

(1964) used crop yields as a significant variable for a

linear optimization model for crop allocation. Vilas

(1975), who focused his Ph.D. research on the spatial equi-

librium analysis of the rice economy in Brazil, used crop

yield as one of the most important variables in the inter-

regional analysis. Heiss (1981) discussed the economic

benefits of improved crop information on wheat and all

cereals for European countries. He developed a model for

estimating the economic benefits of cropeyield assessment

for the European Community (BC) as well the benefits for

producers, consumers, and governmental agencies.

:1. . E 1 S 3

Answers are needed to questions asked by scientists,

decision makers, and planners regarding effects of agro-

climatic conditions and management practices on the agricul-

tural productivity of cash crops and basic food staples.

Answers are needed to such questions as:

1. How are yield values for the different farming

systems estimated? By farming system is meant "the complex

arrangement of soils, water sources, crops, livestock,

labor, and other resources and characteristics within an

environmental setting that the farm family manages in

 



 

accordance with its preferences, capabilities and available

technologies" (Shaner, 1982L

2. What are the tradeoffs between irrigation invest-

ment, the cost of farm management practices, and the

increase in productivity through other factors?

3. How can a developing nation, in need of foreign

exchange, improve land-use planning for agricultural produc—

tion?

Those questions demand the application of a new method

using computational procedures, preferably a computer-based

model, for evaluating responses of a broad range of agricul-

tural crops to agro-climatic (rainfall, temperature, soil,

slope, eth and farming-system parameters (fertilizer

usage, management practices, and so onL

The objective of the present research is to address

these questions in a microcomputer—based simulation model

that will aid the decision-making process in a "user

friendly" manner by predicting crop yields for a homogeneous

region or agro-ecological zone. These yield predictions are

most representative of relatively large-scale farming sys—

tems in mono cultivation.

A computer-based simulation model was developed for use

in a deterministic as well as in a stochastic or probabilis-

tic mode for farming-system yield assessment that can be run

in an interactive manner on a microcomputer.



 

 



 

 

The deterministic mode may help decision makers compare

the simulation results with the observed yield on a year-by-

year basis-—a posteriori analysis-~and evaluate the current

production systems and/or practices and their associated

yield response.

The stochastic mode may help decision makers deal with

the decision process under conditions of uncertainty. The

estimated probability-density statistics such as moments

(mean, variance, and skewness) and quantiles, computed from

the model‘s results, provide decision makers with a wealth

of information for assessing any uncertainty present in the

system.

The simulation model can simulate yield for the most  important crops responsible for generating foreign exchange

for developing nations, as well as crops responsible for

ensuring internal food security. It is also this

researcher's objective to use in the simulation model a

methodology that does not rely solely on time series of past

yield data because data availability and reliability due to,

among other things, government intervention are significant

constraints in most developing nations.

It is hoped that the simulation model can eventually be

linked to an economic-optimization model that can be used to

optimize land use and help in determining the "best" land—

allocation scheme. The YIELD model developed herein is a



 

 

component of the Comprehensive Resource Inventory and Evalu-

ation System--Resource Information System (CRIES-RIS)

(Schultink, 1981, 1983, 1984).

The CRIES resource inventory and analysis approach to

integrated rural development planning and agricultural sec—

tor analysis has two major components: the CRIES-GIS (Geo—

graphic Information System) and the CRIBS-AIS (Agro—economic

Information System). The YIELD simulator is a component of

the CRIBS-AIS information system (Schultink, 1986).

Policy variables are not explicitly included in the

model at this stage, but model results can be analyzed and

changes made in the input parameters and variables to

reflect various policy scenarios. Alternative policies and

climatic, physical, and farming-system characteristics can

easily be examined in an interactive manner using a micro-

computer. The model is designed for use by those with

little or no computer experience. A series of menus and

system prompts provides the user interaction.

The simulation model developed herein can aid in

evaluating national and international strategies for

agricultural-production planning and take advantage of pre-

vailing agro—climatic conditions. The model could form the

basis for evaluating irrigation and pest-management deci-

sions during the growth season, evaluating investment

 



 

 



 

 

decisions, forecasting yields, or predicting the effects of

soil erosion and water deficit during the growing season.

The model can determine the yield value on a seasonal

and spatial basis by Agro-Ecological Zone (AEZ) (the so-

called Resource Planning Unit or RPU [Schultink, 1983]) for

major agricultural crops, including those termed cash crops,

such as bananas, sugar cane, soybean, tobacco, and wheat,

and food staples such as potato, rice, corn, tomato, bean,

and cabbage.

Findings of the study as intended neither as precise

descriptions of the real world nor as final predictions.

Instead, the model was designed to provide insight into

decision—making criteria associated with local, soil, envi-

ronmental, and management practices and their associated

variables used in estimating crop yields. The user should

realize that the model provides yield predictions for high-

yielding varieties, adapted to the agro—ecological condi-

tions represented. As such, variety-specific yields may

change by location and are affected by general crop adapta-

bility, incidence of disease, pests, and other factors.

I' I B .

The role of crop-weather models has become increasingly

important in assessing potential crop production based on

climate, monitoring crop prospects from current weather

data, evaluating the effect of natural or man-induced

 



  

 

 



 

climatic variability on crop yields, and interpreting the

effect of weather on yields.

Much of the early modeling research on agricultural

production systems used statistical analysis as a modeling

technique (Smith, 1914; Buck, 1961; Gibson, 1979). Regres-

sion models (Botkin, 1969; Thompson, 1975; Vilas, 1979;

Bortoluzi, 1978; Heady, 1964) that are based on past crop-

yield values are often expressed in a functional format,

which contains linear, logarithmic, quadratic, or a combina-

tion of these terms involving price, fertilizer usage, and

so on, and data such as rainfall, temperature, and time.

The regression approach is one of the most common tech-

niques used in yield estimation. It has some serious limi-

tations due to a vast number of variables and the complexity

of the processes involved in plant growth. Before any

attempt is made to model a process, basic research is needed

to understand fully the theory involved.

Regression modeling was used by Sakamoto (1981) in his

paper entitled "Climatic-Crop Regression Yield Model: An

Appraisal." He made it clear that despite its limitations,

regression analysis is a useful tool. He also indicated

that much of the utility of regression analysis is associ-

ated with its simplicity of application and the availability

of data.



 

In his paper "Methods of Crop Production Forecasting in

the EEC; Present and Expected Trends in Crop Production,"

Thiede (1981) briefly discussed the methods of estimating

harvests that are currently in use. According to Thiede,

the methods used to estimate harvests in the EC vary widely

from one member state to another, partly for historical

reasons and partly because of the differing fundamental

attitudes of farmers toward statistics. Thiede also pointed

out that, concerning the methods used, a distinction must be

made between pure estimates, objective measurements, and

calculations based on agricultural meteorological data.

In the late 19605, researchers turned their attention

to understanding better the physical and chemical processes

involved in crop growth (DeWit, 1965; Ducan, 1967; Lake,

1967). Those theoretical developments gave rise to rela-

tionships that were tested in laboratories, "but they lacked

the dynamic properties of the plant systems" (Curry, 1975).

Computer modeling and simulation began to have a place

in agricultural production systems in the last decade or so.

Several simulation models for single crops were developed

for corn (Curry, 1971), soybean (Curry, 1975), and alfalfa

(Holt, 1978), based on temporal modeling, without any

attempt to have a temporal-spatial resolution for crop

yields in aiding the decision-making process. Curry (1971)

pointed out that serious limitations still may exist:



 

The ultimate computer model for the soybean plant would

be flexible enough to simulate growth and development

at any location for which climate and cultural informa-

tion is available. The expected results would be

reasonable yield estimates and understanding of the

physiological processes underlying these yields. Simu-

lations of this type are not limited by mathematical or

computer capabilities, but rather by lack of under—

standing of the interaction of the plant with its

environment.

One major use of crop-yield simulation is to improve

assessment of technology-transfer options based on regional

characteristics. By using the yield simulator, the agricul-

tural researcher can simulate environmental situations and

obtain critical information on future research priorities,

such as crop adaptation, the potential of introducing new

cultivars, and so on. This is only possible if the model is

designed to accommodate changes in the simulation process.

To permit this, the yield-simulation model must be capable

of evaluating the yield response for several sites with

different soils and climate characteristics, thereby provid—

ing a rapid and effective means of assessing and transfer-

ring crop-production technology to developed nations as well

as developing countries around the world.

The dynamics of the input variables, together with non-

availability of time series data and the spatial-dimension

requirements that affect crop yields, requires a more elabo—

rate procedure that goes beyond regression models.

Economic-development studies and policy analysis in

agriculture production and land-use planning make the usual
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regression technique for estimating crop yield less than

appropriate. This requires further research involving

dynamic simulation models that provide a more realistic

crop-yield assessment.

Essentially, such models exist for most of the world's  
major economic crops, as Hayes (1982) indicated. Most of

these models take into consideration temporal and/or deter-

ministic modeling but do not attempt to assess yield on a

spatial or farming-systems basis.

Several attempts have been made to show spatial pat-

terns of photosynthesis or yield modeling at a regional

level for a specific crop (Monteith, 1972, Baier, 1976).

Hayes (1982) constructed a numerical crop-yield model

for 11 crops. The Hayes model is a deterministic model that

computes yields for crops that are grown mainly by developed

nations (spring wheat, winter wheat, spring barley, winter

barley, and so on). The Hayes model, besides focusing

mainly on cash crops for developed nations, has requirements

for its operation that.are out of reach forxnost developing

nations (large mainframe computer, numerical calculus

libraries, expertise in computer programming, and so on).

The spatial dimension of the models described above

does not consider the yield evaluation for a micro-region

such as an agro-ecological zone, a production potential

area, or farming systems. However, those characteristics
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are critically needed for yield assessment for developing

nations, considering the size of the farm holdings and the

wide variations in and nonuniformity of the farming systems.

Iechnisuflsed

The deterministic model was developed in two major

modules. The first module is the data entry/data edit man-

agement phase, which allows the user to enter and make

changes in the local and climate data set. This module is

totally menu driven and has user-friendly design character-

istics. The second module is the simulation model itself;

interaction with the user occurs on a conversational basis.

The user responds to the model prompts and changes parame—

ters according to specific requests. The C programming

language is used for the first module (Richie & Kerninghan,

1978), whereas the second module is programmed using Fortran

77 (Microsoft, 1984L

The yield-simulation model is designed to run on an

IBM—PC XT or compatible microcomputer, with a hard disk (one

needs 1.2 MB disk space), math co-processor 8087 to speed up

simulation runs, and a printer to obtain a hard copy of

yield-simulation results. The option of on-screen reporting

is also available.

To achieve the proposed objectives, the model is struc-

tured into four components, which permit execution on a
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microcomputer with at least 256KB RAM (Random Access

Memory).

The YIELD simulator consists of five phases:

Phase 1: Calculation of the maximum potential yield

Phase 2: Calculation of the maximum evapotranspiration

Phase 3: Calculation of the actual evapotranspiration

Phase 4: Calculation of the estimated yield

Phase 5: Estimated yield adjustment

The deterministic simulation model has data require-

ments and default values for the inputs to make it possible

to run the model for regions where data are not available or

where the expected data precision is low. A discrete time—

simulation approach (Forrester, 1961; Manetsch & Park, 1984)

is used in all four phases. The numerical integration and

differentiation technique (Hamming, 1962; Conte, 1980) is

used to implement the equations.

A computation sequence for continuous—flow simulation

models is used in the following format (Manetsch & Park,

1984; Chappelle, 1985):

A. I 'I' J' I' E]

1. Assign values to model parameters

N o Initialize state or level variables

81 (0), 82 (0), loo, Sn (0)

w o Initialize time T = 0

4. Specify characteristics such as length, number,

output, etc.
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B.Exe_cutinn_2hase

1. Compute rate variables for time T:

Rj (t) = gj (s1 (T), 52 (T) ,..., sn <T>)

j = 1,2 ,..., m

2. Print rate variables

3. Update time : T = T+DT

4. Compute state variables for time T+DT

i = 1,2 ’00., n

5. Print state variables

0
‘

0 Return to (1) if simulation run is not completed

\
I

o Terminate simulation run

The model structure is based on the equations developed

by Doorenbos and Kassam (1979) and Slabbers et a1. (1979),

which focus on the relationships between crop yield and

water availability. To accommodate the simulation structure

outlined above and to account for soil- and management-

practice parameters, modifications and additions were made

in the equations and procedures provided, and the results

were transferred into a simulation model and converted into

the C programming language.

The deterministic model relies on environmental vari—

ables value distributed annually (daily values or monthly

means) for selected target years.
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The stochastic or probabilistic model relies on the

shape of the distribution and moments (mean, variance, skew-

ness) of the agro-ecological data and parameters associated

with management practices. Those variables are then gen-

erated internally by the simulator for each day of the grow—

ing period and for each simulation run. An input data

preprocessing scheme, which uses statistical analysis to

determine the shape of the distribution and moments of the

agro-ecological variables, is required. A stochastic model

component was developed as a separate and independent module

that contains all the functions and equations used in the

deterministic model.

: . I' E I] E' l'

Chapter I was an introductory chapter. Chapter II is

mainly concerned with the definition of the regionalization

process as a precondition for model execution. Agro-

Ecological Zone (AEZ) determination procedures are pre-

sented, and model assumptions are stated.

The analytical framework for the deterministic yield

simulator, by phases, is shown in Chapter III. Model

assumptions, mathematical equations, and the data require—

ments are also presented.

Chapter IV contains the analytical framework for the

stochastic or probabilistic yield simulator. The use of

Statistical procedures, the random variable generator and



 

 

    



 

15

procedures, data requirements, and mathematical equations

are presented.

In Chapter V the simulation results of both approaches

are presented and discussed. Results are shown in the form

of tables and graphs.

Chapter VI contains an analysis of the results in terms

of policy decision tools for decision making and development

planning. Implications, a summary of findings, conclusions,

and suggestions for further research are also discussed.

 





 

CHAPTER II

AGRO-ECOLOGICAL ZONE DETERMINATION

A regionalization and an aggregation process must be

carried out in the study area to identify agro—ecological

zones (AEZs) with common physical characteristics, such as

soil, soil textural class, prevailing slope, and climate.

Two concepts in AEZ definitions were given by Schultink

(1984), which characterize an AEZ. They are:

— Resource Planning Unit (RPU), a geographically deline-

ated unit of land that is relatively uniform with respect to

land forms, soil types and patterns, climate, and natural

vegetation.

- Production Potential Area (PPA), an aggregate area of

individual soil types and associated climates within an RPU,

which is sufficiently homogeneous with respect to plant

adaptability, management requirements, and potential produc-

tivity to be reliably depicted by unique estimates of those

parameters to serve as an analytical reference for national

or regional analysis and planning.

16
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To accomplish the task of determining AEZs, a data-

acquisition process must be activated to collect the

required information from and for the study area. The type

of data required for AEZ determination will depend on the

study objectives, resources and technology available, and so

on. Data can be acquired through three main types of data-

collection procedures (Chappelle, 1985; Schultink, 1984):

— Primary data, which are data acquired to meet spe-

cific information requirements of the project, such as spe-

cial aerial surveys for topographic mapping, soil analysis,

and so on.

- Secondary data, which are existing data with charac—

teristics and format suitable to meet specific information

requirements with minor modifications, such as area calcula—

tion from vegetation maps, climatic data from meteorological

stations, and so on. Secondary sources are the most common

and the least expensive sources of data and are frequently

used in AEZ-determination processes.

- Derived data, which are existing data with charac-

teristics and format suitable to meet certain information

requirements with major modifications, such as reinterpreta-

tion of existing soil maps to assess crop-specific produc—

tion potential using vegetation indicator species and

special vegetation surveys and indicator species. In
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general, the process involves secondary data collection

followed by data transformation or derivation.

— Based on the user and project objectives identified,

data aggregation and regionalization is used to define and

spatially delineate homogeneous areas with respect to major

soil, topographic, and climatic characteristics. The pro-

cess makes it possible to differentiate relatively large

areas for which a specific crop-yield response can be pre—

dicted on the basis of homogeneous criteria.

The cost of a project is largely determined by its

data-collection procedures. Sometimes a tradeoff between

cost of data acquisition and resulting precision must be

made to accomplish the project objectives with minimum cost

and/or within the project budget.

The system or project design team must be mindful of

potential constraints on data availability, such as adminis—

trative obstacles, confidentiality obstacles, time and con-

tinuity constraints, cost constraints, and data-precision

problems. The accuracy of the digital representation of

spatial data is governed by both user requirements and the

inherent characteristics of the source document and the

instruments used to create it.
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C I l' 1 T ] E EEZ E | . I'

In general, a large amount of data must be collected

and manipulated to determine the AEZs. Existing maps and

data, survey observations, and applied remote sensing are

some of the methods used in the data-acquisition process.

The objective of this section is to describe a "state of the

art" technique, which uses computers as tools for AEZ deter-

mination.

Computers play a fundamental role in natural-resources

assessment today. Several software programs are being

developed with the objectives of processing data acquired

from remote sensing and other data-acquisition methods.

Those programs or systems are usually called Geographic

Information Systems (GIS) and have the capability of pro-

cessing large amounts of data in a spatial context. Examples

of such systems are the CRIES-GIS (Schultink et al., 1981)

and Canada Geographic Information System (CGIS) (Marble &

Peuquet, 1982).

A GIS represents a system, commonly computer-based, for

handling spatial data. A critical and unique property of

spatial data is that each entry must be definedixxterms of

its location in a two- or three-dimensional space. The GIS

is the main tool for handling spatial data. The major

objective of a GIS is to support the spatial decision—making

process in resource use and management. The most important
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functions of a GIS are as follows (Marble & Peuquet, 1982;

Schultink et al., 1981):

Data_input: Normally consists of a combination of

manual and automatic digitizing operations, together with

associated data cleaning and edit activities. By digitizing

is meant a process of data capture for spatial data—handling

purposes; the main source of data frequently is maps.

Manual digitizing has some advantages in terms of correct

data assessment, but it is slow and labor-intensive, and

errors may be generated by the digitizer operator. Auto—

matic digitizing is now being carried out by a number of

methods (Marble & Peuquet, 1982). The most common method is

the use of a large drum scanner, such as those employed in

graphic arts. Speed and reliability are the main advantages

of drum scanners.

Data_stgrass_and_retrieyal: Initial creation of the

spatial data base, together with subsequent update opera—

tions and query handling. A data base is defined as a

collection of interrelated data stored together with con—

trolled redundance to serve one or more applications in an

optimal fashion. The data are stored so that they are

independent of programs that use the data (Date, 1977;

Martin, 1977). Usually, construction of the data base that

contains the spatial indexed information is based on the

relational data base theory (Codd, 1970). It is important
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to keep in mind that the spatial—dimension characteristics

of the GIS require a data-base structure different from the

usually known data bases for business applications, such as

Data Base Management System (DBMS) and Management Informa-

tion System (MIS) (Date, 1977).

Data_manipulation: Creation of composite variables

through processing activities directed toward both spatial

and nonspatial attributes of system entities. Any GIS must

be capable of performing a series of manipulations on the

spatial data held in its files. Each system contains a

specific set of these procedures, determined by the require—

ments of the users of the system.

Analysis: The combination of the various resources'

attributes and their associated measurement scales in a set

of mathematical operations designed to derive indices relat—

ing to optimum-use aspects, given a complex set of physical

and socioeconomic criteria, e.g., suitability and effect

assessment, economic feasibility analysis, and optimum allo—

cation decisions, given distance parameters and infrastruc-

ture.

WWW: Creation of

both tabular (statistical results, tables, and so on) and

cartographic reports, maps, and pictures reflecting selec-

tivity retrieval and manipulation of entities within the

data base. Those functions or computer—aided procedures are
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designed to delineate AEZs, representing areas with physical

characteristics considered relatively homogeneous at a pre—

defined level of detail.

CBIES:§ISJ__AD.QxeLEieE

The Comprehensive Resource Inventory and Evaluation

System (CRIES) Resource Information System (RIS) has two

major components: the Geographic Information System (GIS)

and the Agro—economic Information System (AIS) (Figure 1).

The YIELD simulator and the AEZs are combined for the AEZ-

yield estimation.

The CRIBS-GIS provides the capability to store, edit,

and process digital map data and creates the master data

base (disk files) for subsequent analysis. The CRIES—GIS

(Schultink, 1981) has in its analysis module an important

phase, called raster OVERLAY. In this process one raster

file is superimposed upon another file web, and the

(weighted) concurrence of these two data sets and derived

indices are determined. The system can overlay up to ten

files in one operation.

The OVERLAY analysis of multiple attributes is shown in

Figure 2. Its output is a single layer of information with

attribute values resulting from a linear combination of the

attribute values from the other information layers. The

MATCH phase creates new attribute values for user—specified

co—occurrences of existing attributes values. The OVERLAY
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Figure 1. Agro-ecological zone YIELD assessment as a

component of CRIES-RIS.
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and MATCH phases ultimately provide the spatially defined

regions called AEZs.
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Figure 2. Geographic Information System--OVERLAY analysis.

Some data-manipulation functions included in the CRIES-

GIS are (Schultink et al.,1986):

Digitizing

Editing

Polygon conversion

Cutter (outline boundaries)



 

Histograms

Tally (windowing)

Cross—tabulation

E l H . ] I' --E J .

Erosion (soil erosion)

Grouping

Invert

Match

Normalize

Overlay

Search

Surface (three-dimensional analysis)

D I H . J . __ .

Character maps

Value maps

Locate

D l H . J l' --E . H

Choroline (map print capabilities)

E l M . ] . ——fl|']'|'

Reformat

Mosaic

Aggregate

Disaggregate

The GIS can be used to cross-reference the AEZs with major

land use to identify additional areas suitable for agricul—

tural expansion.

Examples of output (Schultink, 1986) from the CRIES—GIS

are a scaled character map of elevation for Choluteca

Department, Southern Honduras (Figure 3); a cross-tabulation

output portion of a Two—Way Cross-Tabulation Between Rain-

fall and Elevation, Choluteca Department, Southern Honduras
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(Figure 4); and a Choroline, dot—matrix printer map output

of land cover/use map derived from Landsat Satellite Data,

Choluteca Department, Southern Honduras (Figure 5).

Hardware required to run the CRIES-GIS is:

— IBM PC--XT or compatible microcomputer with

512KB of RAM

- hard disk

- MS—DOS operating system

— Calcomp map digitizer

- dot matrix printer

- Techmar color board

- monochrome and color-enhanced display

- color jet printer

- optional point or mouse system

The CRIES-AIS is designed to evaluate and derive bene-

fits from physical and socioeconomic variables such as

yields, input cost, and producer prices; to assess the

comparative advantage of land-use types in meeting food and

export crop demands, and to conduct related economic analy-

ses regarding agricultural policy alternatives. The AEZs

are the spatial units of analysis for the AIS system.

The AIS has several components that perform different

functions. Usually, the output or results accomplished by

one component are inputs to another component. The follow—

ing are the main components of the AIS system:

- Water balance

- Yield simulator

- Farm budget

Input/output model

Optimization model (linear programming)

- Statistical analysis
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Preoared bv: CRIES-GIS / Hichigan State University

Thursday April 10. 1986 Time 09:22

Crosstabulation Table

+ ————————— +

1Frequencv1

1 1 Frequencv in hectares

Format: 1 Col Pct

l

 

 

 

 

 

 

 

 

Row Pct 1

1 Tot Pct 1

+ ————————— +

Attribute

--------- Description: ELEVATION AND PRECIPITATION

CHOLRAIN.ras

Attribute

CHOLELEV.ras

Atr Val Atr Val Atr Val Atr Val

Row

Totals I 2 3 4

1 444469 11 89725 1 83275 1 184900 1 86569 :

Column 1 11 1 1 1 1

Totals 1 100.00 11 100.00 1 100.00 1 100.00 1 100.00 1

1 100.00 11 20.19 1 18.74 1 41.61 1 19.48 1

1 100.00 11 20.19 1 18.74 1 41.61 1 19.48 1

1 209056 11 1944 1 9969 1 125856 1 71287 1

Atr Val 1 11 1 1 1 1

------- 1 47.04 11 2.17 1 11.98 1 68.07 1 82.35 1

1 1 100.00 11 0.93 1 4.77 1 60.21 1 34.10 1

1 47.04 11 0.44 1 2.25 1 28.32 1 16.04 1

1 53113 11 10106 1 12494 1 24069 1 6444 1

Atr Val 1 11 1 1 1 1

------- 1 11.95 11 11.27 1 15.01 1 13.02 1 7.45 1

2 1 100.00 11 19.03 1 23.53 1 45.32 1 12.14 1

1 11.95 11 2.28 1 2.82 1 5.42 1 1.45 1

1 82425 11 25669 1 23531 1 26556 1 6669 1

At? Val 1 11 1 1 1 1

------- 1 18.55 11 28.61 1 28.26 1 14.37 1 7.71 1

3 1 100.00 11 31.15 1 28.55 1 32.22 1 8.10 1

1 18.55 11 5.78 1 5.30 1 5.98 1 1.51 1

1 98481 11 51512 1 36381 1 8419 1 2169 1

Atr Val 1 11 1 1 1 1

------- 1 22.16 11 57.42 1 43.69 1 4.56 1 2.51 1

4 1 100.00 11 52.31 1 36.95 1 8.55 1 2.21 1

1 22.16 11 11.59 1 8.19 1 1.90 1 0.49 1

1 1394 :1 494 1 900 1 0 1 O 1

Atr Val 1 11 1 1 1 1

------- : 0.32 1: 0.56 : 1.09 1 0-00 1 0-00 I

5 1 100.00 11 35.44 1 64.57 1 0.00 1 0.00 :

1 0.32 :1 0.12 1 0.21 1 0.00 1 0.00 1

 

Figure 4. Geographic Information System--two-way

cross-tabulation.
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The AIS data base is responsible for data manipulations,

data storage of agricultural and socioeconomic data, crop

requirements, and so on.

The main objective of this study is to develop a yield-

simulation model, as a component of the AIS system, that

will evaluate crop yield as a function of climatic and local

information, management practices, and soil information for

AEZs.



 

CHAPTER III

DETERMINISTIC YIELD SIMULATOR (DYS)

The deterministic or nonprobabilistic yield simulator

is designed to generate the maximum potential yield, irri—

gated yield, and rain-fed yield for different crops. The

term "deterministic" is used here to indicate that the

model's inputs and parameters have zero variance. This

means that they are known with certainty and that their

precision is not questionable. Chapter IV considers the

case where the variance isruM:zero for some inputs and

model parameters.

The DYS was developed largely based on equations and

procedures from the publication Xield_Besponse_t9_flater by

Doorenbos and Kassam (1979). Its main objective is to

estimate maximum potential yield, irrigated yield, and rain-

fed yield for the crops under study, based on the climatic

conditions, soil and slope characteristics, and management

practices of a single location or agro-ecological zone (AEZ)

under investigation. This yield assessment provides addi-

tional guidelines for decision makers in land-use planning.

Its secondary objective is to serve as an analytical tool

31



 

32

for decision makers and planners to evaluate agricultural

production systems in terms of yields, agricultural land

use, and natural-resource management in a posteriori

analysis.

The nomenclature and different system-input classes

that are part of the simulation model are described in

 

 
 

  

 

 

Figure 6.

9(1)

(exogenous

Inputs)

7

DETERMINISTIC

.———s YIELD

u('t) SIMULATOR

(decision (DYS)

/control

mputs)

p(‘t)

(model

parameters)

Figure 6. General input/output diagram for the deterministic

YIELD simulator with nomenclature.

Exogenous environmental inputs are represented by the

vector e(t), decision or control inputs are represented by
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u(t), the model's parameters are represented by p(t), and

the model response is denoted by y(tL

The model represents a procedure for estimating crop

yield based mainly on water availability, the dominant con-

straint in tropical environments. Water represents the

major variable in crop production, and optimum use of avail-

able water must be made for efficient irrigated crop produc-

tion to produce high yields. It is generally believed that

water, as an input to crop-production systems, represents 75

to 85 percent of the variation in crop yield. Doorenbos and

Kassam (1979) pointed out that:

the upper limit of crop production is set by the cli-

matic conditions and the genetic potential of the crop.

The extent to which this limit can be reached will

always depend on how finely the engineering aspects of

water supply are in tune with the biological needs for

water in crop production. Therefore, efficient use of

water in crop production can only be attained when the

planning, design and operation of the water supply and

distribution system is geared toward meeting in quan-

tity and time, including the periods of water short-

ages, the crop water needs required for optimum growth

and high yields.

The production relationships between crops, climate,

water, and soil are complex, and many biological, physio-

logical, physical, and chemical processes are involved.

Much research information is available on these processes in

relation to water. For practical applications, such knowl-

edge must be reduced to a manageable number of major compo-

nents to allow a meaningful analysis of crop response to

water.
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Modifications and additions were necessary to transform

the theoretical framework as presented by Doorenbos and

Kassam into a computer-simulation model that can be useful

in assessing potential, irrigated, and rain-fed yields for

30 different crops in a way that is easy and accessible for

decision makers in developed countries as well as developing

countries to use in planning and policy-analysis processes.

The simulation model was designed to minimize requirements

in terms of computational tools as well as computational

expertise.

Modalesumnticns

The 1979 FAO publication by Doorenbos and Kassam

entitled Xield.Besans£_tQ_flateL, from which this yield  
simulator was derived, assumes that the relationships

between crop, climate, water, and soil are very complex and

that they are also affected by other factors, such as crop

variety, fertilizer, salinity, pests and disease, and agro-

nomic practices.

The relationships presented in this model pertain to

high- producing varieties, well-adapted to the growing envi-

ronment, growing in large fields where optimum agronomic and

irrigation practices, including adequate input supply except

for water under rain-fed conditions, are present. The pre—

dictive accuracy of the model may be increased by adjusting
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the model parameters for site-specific conditions and

validation through adaptive research.

Local conditions other than climate, such as soil depth

and texture, availability of fertilizer, salinity, soil

slope, rooting depth, and management practices, will be used

to adjust the potential yield values based on AEZ and

cropping-system conditions. It is assumed that no post-

harvesting losses occur. However, these management-practice

parameters can easily be included in the model for site—

specific applications upon availability of data.

Crop requirements and crop coefficients are included in

the model in the form of tables and model parameters that

were derived from experimental crop research.

Socioeconomic factors, such as farmers' preference in

relation to market demand, storage facilities, and availa-

bility of farm machinery and labor, that are known to affect

farmer's management decisions such as selecting the crops to

be grown and length of growing season, are not considered in

the DYS. Pests and diseases, which are also known to

influence yield output, are not considered due to lack of

knowledge about explicitly mathematical relationships and

probability functions. Numerical relationships and func-

tional forms are requirements for inclusion in the numerical

simulation model.
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Surface runoff or internal drainage is assumed to be

adequate to prevent yield reduction under average climatic

conditions. Water logging or excessive water is known to

cause crop damage and to reduce yields. The model does not

consider damage due to excess water.

Yield adjustment due to soil fertility and fertilizer

limitations may be used in the model. If restrictions

apply, the user is given the option to adjust productivity

accordingly. Crop-rotation considerations and cropping

schemes are user-selected.

Micro relief~induced climatic effects on precipitation,

wind, and solar radiation and resulting changes in evapo-

transpiration are not assumed in this model.

We

In this section an overview of the DYS, its structure

with modifications and additions, and the computational

procedure are provided (Figure 7).

Five consecutive phases are needed to estimate the

yield value for a crop (Ye). They are:

Ehasg_l: Determine the maximum yield (Ym) of the

adapted crop variety, dictated by climate, assuming that

other growth factors (e.g. farm management, fertilizer,

pests and diseases, and so on) are not limiting.



 

37

 

 

 

 

 

 
 

   
 

 

 

  

   
 

 
      
 

 

 

 

   
 

 INPUTS

WWWB mmasnmnmrmv
-

1 W5 __ NUT ruw

run:

31'

mm

DRY MATTER

m

V 1 _

HASE a s: E 4 HASE s

REFERENCE ACTUAL rsrnuizn ESTIMATED

_"w__wmm _m_um- y me

(ETo) ‘57“) (Ye)

:

DECISIEN/CDNTRDL

Figure 7. Deterministic YIELD simulator--general diagram.

In the first phase, six steps must be performed in

order to determine (Ym).

Step

Step

Step

Step

Step

Step

They are as follows:

1: Computes gross dry matter production of a

standard crop (Yo).

2

3

Applies correction for crop species and

temperatures.

Applies correction for crop development

over time and leaf area (CL).

4: Applies correction for net dry matter

production (cN).

U
l

u

0
‘

 

Applies correction for harvested part (on).

Computes the maximum potential yield (Ym).
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Ehase 2: Calculate maximum evapotranspiration (ETm)

when crop requirements are fully met by available water

supply. In this phase, three steps are needed to compute

(ETm).

Step 1: Computes reference evapotranspiration (ETo)

based on the meteorological and crop data

available.

Step 2: Computes growing period and length of crop-

development stages and selects the crop

coefficient kc.

Step 3: Computes maximum evapotranspiration (ETm).

Bhase_3: Determine actual crop evapotranspiration (ETa)

based on factors concerned with available crop water supply.

Step 1: Determines total available soil water.

Step 2: Computes soil water depletion.

Step 3: Computes actual evapotranspiration (ETa).

Ehase__: Select the yield response factor (ky) to

evaluate relative yield decrease as related to relative

evapotranspiration deficit and obtain actual yield (Ye).

Bhase 5: Estimate crop-yield adjustment. In this

phase, the resulting estimated yield from Phase 4 is

adjusted for fertilizer availability, soil salinity, and

moisture content.
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Bha5e_l: Calculate Gross Dry Matter Production of a

Standard Crop (Yo).

To compute the gross dry matter production of a stand-

ard crop (Yo) for a given location or AEZ, the DeWit (1965)

method is used. This method is based on the level of incom-

ing active shortwave radiation for standard conditions,

modified after Doorenbos and Kassam (1979). Equation 1.1

provides the rate of change in gross dry matter production

of a standard crop as a function of time.

(1.1)

dYo(t)

------ = F(t) * yo(t) + [1.0 - F(t)] * yc(t)]

dt

where:

Yo(t) = total gross dry matter production for a

standard crop [kg/ha]

F(t) = fraction of daytime the sky is clouded

[fraction]

yo(t) = gross dry matter production rate of a

standard crop for a given location on

a completely overcast day [kg/ha/day]

yc(t) = gross dry matter production rate of a

standard crop for a given location on

a clear (cloudless) day [kg/ha/day]

t = time index [days]

Doorenbos and Kassam (1979) provided tables to deter—

mine the values of maximum active income shortwave radiation

(Rse in cal/cmZ/day) and gross dry matter production on
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overcast (yo) and clear days (yc) (in kg/ha/ day) for a

standard crop for time (t) and latitude in degrees. Numeri-

cal techniques for function interpolation such as Tablex and

Spline are presented (Appendix A) and are used to obtain

intermediate or interpolated results.

The total gross dry matter production for a standard

crop (in Kg/ha), from time t = to to t1 is Presented in

Equation 1.2:

(1.2)

t=tl

(t — ) = {F(t) * (t) + [1 0 - F(t)] * (t)}dtYo l to ft t yo . YC

= o

Numerical—integration techniques are applied to the

above equation to obtain an expression that can easily be

used in a simulation model (Forrester, 1961; Manetsch &

Park,1984L

Euler's approximation formula (Hamming, 1962; Conte,

1980) is used to find an approximate numerical solution to

Equation 1.2. Euler's method was derived from the Taylor

expansion series by setting the parameter k = 1. (Appendix

B shows that procedure in more detailJ Its general form is

given by:

dy(t) t=tl

if ————— = f(x,y) then, y(t) = ff(x,y)dt

dt t=to

and y(n + h) = y(n) + h * f(Xn,Yn)
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where:

h = fixed step size

y = f(x,y) is the functional relationship

Applying the above numerical approximation to Equation

1-2 and assuming to = 0 and t1 = t, results in Equation

1.3, which gives the cumulative total dry matter production

for a standard crop from time t = 0 to time t = t + dt.

' (1.3)

Yo(t + dt) = Yo(t) + dt * {F(t) * yo(t) +[1.0 — F(t)]

* yc(t)}

Equation 1.3 is corrected and adjusted to reflect dif-

ferent crop groups, according to De Wit's (1965) concept,

resulting in Equation 1.4:

(1.4)

Yo(t + dt) = Yo(t) + dt * {F(t) * [0.8 + 0.01 * ym(t)]

* yo(t) + [1.0 - F(t)]

* [0.5 + 0.025 * ym(t)]

* yc(t)}

for ym(t) > = 20.0kg/ha/hour; and

Yo(t + dt) = Yo(t) + dt * {F(t) * [0.5 + 0.025 * ym(t)]

* yo(t) + [1.0 - F(t)]

* [0.5 * ym(t)] * yc(t)}

for ym(t) < 20.0kg/ha/hour

where the ym(t) ternlis the production rate for crop>groups

and mean temperature, in kg/ha/day. The gross dry matter

production is crop-species and temperature dependent. The

production rate, ym(t), can be larger or smaller than 20.0
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kg/ha/hour as assumed for the standard crop. Doorenbos and

Kassam (1979) gave the production rates, ym(t), in kg/ha/

hour for crop groups and mean temperatures.

Additional corrections are applied to the gross dry

matter production computed above; they are:

— Crop Development over Time and Leaf Area (cL). The

model assumes, for the standard crop, an active leaf area

index of five times the ground surface. When leaf area is

smaller, a correction must be applied; when greater than

five, the effect is small and is not considered in the

model. Correction gives the correction values for different

leaf area indices, as supplied by Doorenbos and Kassam

(1979).

- Net Dry Matter Production (cN). Energy is required

by the plant to maintain dry matter production for the

within-plant growth processes (also called respirationL

Only the remaining energy fraction can be used to produce

new growth, which is, according to Doorenbos and Kassam,

about 0.6 for cool temperatures (mean < 20 degrees

Celsius) and 0.5 for warm temperatures ( > 20 degrees

Celsius).

- Correction for Harvested Part (CH). In most cases,

only a part of the total dry matter such as grain, sugar, or

oil produced is harvested. Doorenbos and Kassam provided

the ratio between net total dry matter production and the
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harvested yield for high-producing varieties under irriga-

tion.

Using these correction factors, Equation 1.5 gives the

potential yield of a high-producing, climatically adapted

variety grown under constraint—free conditions (Doorenbos &

Kassam, 1979):

(1.5)

Ym(t + dt) = Ym(t) + cL * cN * cH * dt * {F(t)

* [0.8 + 0.01 * ym(t)] * yo(t)

+ [1.0 - F(t)] * [0.5 + 0.025

* ym(t)] * yc(t)}

for ym(t) > = 20.0kg/ha/hour, and

Ym(t + dt) = Ym(t) + cL * cN * CH * dt * {F(t)

* [0.5 + 0.025 * ym(t)] * yo(t)

+ [1.0 — F(t)] * [0.5 * ym(t)]

* yc(t)}

for ym(t) < 20.0kg/ha/hour

A general system diagram, showing phase 1 of the deter-

ministic YIELD simulation model, is supplied in Figure 8.

Rhase_2: Maximum evapotranspiration (ETm).

Climate is an important factor in determining the crop

water requirements needed for unrestricted growth and opti-

mum yield. Crop water requirements are normally expressed

by the rate of evapotranspiration (ET), in mm/day. The

level of ET is related to the evaporative demand of the air,

which can be expressed as the reference evapotranspiration

 



Figure 8.
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(ETo), which, when computed, predicts the effect of climate

on the level of crop evapotranspiration. ETo represents the

rate of evapotranspiration of an extended surface of an 8 by

15 cm tall green grass cover, actively growing, completely

shading the ground and without water deficit (Doorenbos &

Kassam, 1979L

Several methods can be used to calculate ETo: the

Penman, Radiation, and Pan Evaporative methods shown in

Doorenbos and Kassam; the Thornthwaite method (Thornthwaite,

1948); the Hargreaves method (Hargreaves, 1977); and the

Priestley and Taylor method (Priestley & Taylor, 1972).

Selection of Penman's method (Penman, 1948) for use in the

model was based on worldwide validations of the method for

the computation of reference evapotranspiration (ETo)

(Hayes, 1982; Doorenbos & Pruitt, 1977; Todhunter, 1981;

Burt et al., 1980, 1981).

The basis for computation of evapotranspiration for

this model was Penman's (1948) equation. The equation was

successively modified to include the effects ofaivariety of

factors, such as crop type, crop growth stage, and site

factors (Doorenbos & Pruitt, 1977). These adjustments

include the influence of extreme climatic environments, crop

coefficients adjusting ET for specific growth stages, and

soil moisture budget considerations.
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Empirically determined crop coefficients (kc) can be

used to relate ETo to maximum crop evapotranspiration (ETm)

when water supply fully meets the water requirements of the

crop. The value of kc varies with crop, crop development

stage, and to some extent windspeed and humidity. Values of

kc for different crops were given in Doorenbos and Kassam

(1979).

The methodology has the advantage of applicability and

the fact that the mathematical relationships are well

defined for many crops applications.

For a given climate, crop, and crop development stage,

the:maximum evapotranspiration (ETm) is provided by Equation

  
1.6:

(1.6) "

ETm(t) = kC(t) * ETo(t)

where:

ETm(t) = maximuntevapotranspiration [mm/day]

kc(t) = crop coefficient [fraction]

ETo(t) = reference evapotranspiration [mm/day]

The reference evapotranspiration (ETo) is computed by

means of the Penman method (Penman, 1948), modified by

Doorenbos and Pruitt (1977), which provides Equation 1.7:

ETo(t) = C(t) * {W(t) * Rn(t) + [1.0 - W(t)] * f[U(t)]

* [ea(t) - ed(t)]}

(1.7)
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where:

f(U(t)) = 0.27 * [1 + U(t) / 100.0]

Rn(t) = 0.75 * Rs(t) - Rnl(t)

Rs(t) = 0.25 + 0.50 * [n(t) / N(t)] * Ra(t)

Rnl(t) = f[T(t)] * f(ed(t)] * f[n(t) / N(t)]

f(T) = 1.993-09 * Tk4(t)

ed(t) = ea(t) * RH(t) / 100.0

f(ed) = 0.34 + 0.044 * [ed(t)]1/2

f(n/N) = 0.1 + 0.9 * n(t) / N(t)

and

ea(t) = saturation vapor pressure [mbar]

ed(t) = actual vapor pressure [mbar]

U(t) = wind velocity measured at 2m height [km/day] ‘

n(t) = actual sunshine duration [hour/day] ‘

N(t) =maximum possible sunshine duration [hour/day]

Ra(t) = extra-terrestrial radiation at time t

[mm/day]

RH(t) = relative humidity at time t [percent]

Rnl(t) = net longwave radiation [mm/day]

W(t) = temperatureandaltitudedependent

weighting factor [fraction]

C(t) = adjustment factor [fraction]

T(t) = temperature in degree Celsius [C]

Tk(t) = temperature in degree Kelvins [K]
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Doorenbos and Kassam (1979) provided tables to deter-

mine the values of those parameters. In summary, they permit

determination of:

1. Saturation Vapour Pressure (ea) in mbar as a

Function of Mean Air Temperature (T) in Degrees Celsius.

2. Extra-terrestrial Radiation (Ra) Expressed in

Equivalent Evaporation in mm/day.

3. Mean Daily Duration of Maximum Possible Sunshine

Hours (N) for Different Months and Latitudes.

4. Values of Weighting Factors (W) for the Effect of

Radiation on Eto at Different Temperatures and Altitudes.

5. Adjustment Factor (c) in Presented Penman Equation.

All of these tables are included in the simulation model,

and an interpolation process is used to determine interme-

diate values.

A general system diagram of the second phase of the

YIELD simulation model is provided in Figure 9.

Bha5341: Actual Evapotranspiration ETa

Crop water demand in the root zone is met by available

soil moisture. The actual rate of water uptake by the crop

from soil moisture in relation to its maximum evapotranspi—

ration (ETm) is determined by whether the available water in

the soil is adequate or not. If not enough water is avail-

able, water-induced crop stress will occur.
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To compute the actual evapotranspiration (ETa), the

level of available soil water must be considered. First,

the available soil water index (ASI) is computed. This

index indicates when available soil water is adequate to

meet full crop requirements (ETa = ETm). .A combination of

A81 value, maximum evapotranspiration (ETm), and the remain—

ing available soil water [(1-p)*Sa(t)*D(t)1 provides an

estimate of the actual evapotranspiration (ETa) (Doorenbos &

Kassam, 1979).

The available soil water index (ASI) may be calculated

using Equation 1.8:

(1.8)

In(t) + Pe(t) + Wb(t) - [(1 - p) * Sa * D(t)]

ASI(t) = ---------------------------------------------

30 * ETm(t)

where:

In(t) = net monthly irrigation application [mm]

Pe(t) = monthly effective rainfall [mm]

Wb(t) = available soil water moisture [mm]

p = depletion factor [fraction]

Sa(t) = total soil water holding capacity [mm/m]

D(t) = root depth [m]

when ASI(t) > = 1.0, then ETa = ETm

ASI(t) < 1.0, then Eta is computed according to

Doorenbos and Kassam (1979)
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The growth and development of crops depend on water

availability. Sources of water include moisture stored in

the soil, rainfall, irrigation, and surface runoff. Pre-

cipitation and irrigation recharge soil moisture in succes-

sive soil layers from the surface downward. Precipitation

and irrigation in excess of that required to bring the crop

root zone up to water-holding capacity is removed by runoff,

which is a function of soil texture, slope, and infiltration

rate. For a short dry period, crop growth may not be

affected, even in the critical growth period, if there is

sufficient soil moisture to support the cropfls demand for

water.

Soil moisture is difficult to measure in the field.

Several methods have been proposed to estimate soil moisture

content. Thornthwaite's (1948) model is based on simple

water-balance equations for gains and losses within a single

soil layer. A more complex, two-layer soil-moisture budget

model was developed by Palmer (1965).

The soil—moisture model used in this study is a modi—

fied version of Thornthwaite‘s model, which includes an

evaporation-reduction factor to account for farm management

practices such as mulching and tillage, and a water-

depletion factor, which is crop specific. Adams (1976)

stated that, based on his research findings, it may be

inferred that management systems that combine trash mulch
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tillage and narrow-row spacing should add to the beneficial

effects of both plant canopy soil shading and mulch. In

addition, he stated that the use of mulch at a rate of 4,000

kg/ha with no soil shading reduces evaporation by as much as

58 percent as compared to potential evaporation measured

from a bare plate with no canopy, for first-stage drying.

Much more research is needed to determine the effect of

an evaporation-reduction factor and to make it practical for

direct implementation into a numerical simulation model.

One additional side effect of some evapotranspiration-

reducing management practices is the increased occurrence of

pests and diseases, which in some countries and/or regions

may cause a significant reduction in yield.

The computation of soil moisture is given at time t by

Equation 1.9:

(1.9)

Wb(t) = Wb(t-l) + [Pe(t) + Ir(t)] * Roff -

p * Wb(t-l) - ETa * (100.0 - Mu) / 100.0

where:

Wb(t) = soil moisture at time t [mm]

Wb(t-1)= soil moisture at time t-l [mm]

Pe(t) = precipitation at time t [mm]

Ir(t) = irrigation at time t [mm]

Roff = runoff coefficient [fraction]

p = water depletion factor [fraction]
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Eta(t) actual evapotranspiration at time t [mm]

Mu evapotranspiration reduction factor [percent]

The runoff coefficient (Roff) is a function of soil

slope and soil textural class. According to Beasley et a1.

(1984), adjustment in infiltration rate due to soil slope

and soil textural class may be accomplished using Table 1.

Table 1: Percentage of water that percolates into the soil

as a function of percentage slope and soil textural

 

 

classes

Slope Class Soil Texture

Coarse Fine Silty, Very

Loamy Fine Loamy & Fine Fine

0 - 4% 90% 80% 70%

4 - 8% 70% 60% 50%

8 - 12% 62% 52% 42%

12 - 15% 55% 45% 35%

15 - 20% 50% 40% 30%

20 - 30% 40% 30% 20%

30 - 50% 38% 25% 18%

> 50% 37% 27% 17%

 

Source: Beasley et al., 1984.

The water-balanced equation, adjusted for soil texture

and topology, is used to keep track of the moisture content

of the soil from time t to time t + dt.

A system diagram of phase 3 of the deterministic YIELD

simulation model is provided in Figure 10.
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Phase_4: Estimated Yield (Ye)

Soil water stress influences crop evapotranspiration

and yield. An index of water stress is the ratio of actual

to maximum evapotranspiration, ETa/ETm. Similarly, an index

of crop yield is the ratio of estimated to maximum possible

yield, Ye/Ym. The way the first ratio affects the second

(called yield response factor [ky]) varies with crop species

and crop—development stages or time. Under sufficient water

supply, ETa = ETm.

The rate of change of the estimated harvested yield, at

time t, is given by Equation 1.10, modified after Doorenbos

and Kassam (1979):

(1.10)

d[Ye(t)]

-------- = Ym(t) * [1.0 - ky(t) * [1.0 - ETa(t)/ETm(t)]]

dt

or

t=t

Ye(t) = f {Ym](t) * [1 — ky(t) *[1 - ETa(t) / ETm(t)]ldt

t=t0

Using Euler's numerical approximation formula and assuming

t0 = 0, results in Equation 1.11:

(1.11)

Ye(t + dt) = Ye(t) + dt * {Ym(t) * [1.0 - ky(t)

* [1.0 - ETa(t) / ETm(t)]}
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where:

Ye(t) = estimated harvested yield [kg/ha/day]

Ym(t) = potential yield [kg/ha/day]

ETa(t) = actual evapotranspiration [mm/day]

ETm(t) = maximum evapotranspiration [mm/day]

ky(t) = yield response factor [fraction]

t = time [days]

The deterministic YIELD simulation model system diagram,

Phase 4, is provided in Figure 11.

Phase;§: Estimated Yield Adjustment

The Ye(t) computed from Equation 1.11, above, may be

adjusted further if fertilizer (NPK) applications are less

than optimum, or for the sensitivity of the crop to saline  
soil conditions. A simplified assumption is made that

requirements are met if composite ratio equals 100 percent.

In fact, the amounts of N, P, and K requirements are crop  
specific, and each crop has a different response curve for

nutrient applications. Using Evans (1980) and Hayes (1982),

the NPK response curve (Figure 12) was derived to compute

the yield decrease factor due to fertilizer availability.

This represents the generalized yield adjustment due to

general fertilizer availability for all crops considered in

the model.
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Figure 12. Yield adjustment based on generalized fertilizer

availability for all crops. (From Evans, 1980

and Hayes, 1982.)

Future model refinements will require more elaborate

research for specific crops' responses to different levels

and types of fertilizer, including natural soil fertility.

The decision to use a generalized fertilizer curve for all

crops reflects the incomplete and inconclusive research of

effects of fertilizer availability and toxicity on varying

crops under a wide range of agro-ecological conditions (see

also Hayes et al., 1982).

Doorenbos and Kassam (1979) provided the optimum ferti-

lizer requirements (nitrogen-phosphorus-potassium combined)
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for all crops included in this simulation model. The user

should determine the actual deviation from the optimal fer-

tilizer requirements for each crop, considering soil fertil—

ity and fertilizer applications.

The effect of salinity levels on yields was compiled

from Doorenbos and Kassam (1979) for all crops included in

the simulation model. The results are summarized in Table 2

and incorporated into the model for interpolation.

A final conversion of predicted yield is provided to

the user. The option is provided to calculate estimated

yield as total harvestable biomass or dry matter. This

reflects the need to calculate the total harvest production

or the final yield amount as dry matter production.

The current model adjustment is made by calculating

total biomass from dry matter, based on ratios derived from

Doorenbos and Kassam (1979). If needed, crop-variety-

specific adjustments may be made via model modifications, and

these may be adjusted to the specific site.

In summary, the result is Equation 1.12, after incor-

porating all the adjustments:

(1.12)

Ye(t + dt) = Ye(t) + dt * {Ym(t) * [1.0 - ky(t)

* [1.0 - ETa(t) / ETm(t)]

* (1.0 - ydf) * (1.0 - yds / 100.0)

/cf}
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Crops, salinity levels in mmhos/cm, andTable 2.

percentage yield decrease values 

Percentage Yield Decrease.uu.u..

0.0

Crop Type

25.0 50.0 100.010.0 

Banana

5
5

6
6

Subtropical

Tropical

Bean

5
5
0
0
0
5

0
0
0
0
0
0

6
6
2
7
2
6

1
2
1

6
6
0
0
7
9

e
o

o
o

0

3
3
7
7
6
4

3
3
4
0
1
1

0
o

o
o

o
9

2
2
4
3
4
4

5
5
8
6
5
5

e
o

o
o

o
0

1
1
2
9
2
3

0
0
8
7
5
2

0
O

O
O

O
0

1
1
1
7
1
3

tu

e
n

n
9
n

.
.
0

e
a
o
e
n

e
t
h
P
u

r
r
b
t
a
O

G
D
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r
r

C
C
G
G

 

Maize
5
5

2
2

7
7

1
1

Sweet

Grain

Onion

5
5
5
5
0
5
5
0
0
0
6
0
0
5
0
0
5
0
0

o
o
o
o
o
o
o
o
o
o
c
o

0
0
0
0
0
0

0

7
7
6
8
0
1
4
8
0
4
8
3
0
2
0
3
5
8
0

1
1
1
1
1
2
1
1

1
1
1
1

.
l
.

7
7
6
1
9
2
9
0
5
5
4
0
0
6
3
0
8
8
0

4
4
3
5
5
7
9
1
7
5
0
0
0
7
6
0
8
4
9

l
1
1
1

l

8
8
3
3
8
1
6
2
2
0
0
5
0
0
4
5
4
3
0

2
2
2
3
3
5
7
7
6
1
6
9
0
5
4
9
5
3
8

l

8
8
5
2
5
8
2
1
5
7
3
5
0
5
3
4
4
3
0

L
L
1
2
2
3
6
5
5
8
3
4
0
3
3
7
3
2
7

2
2
0
5
7
0
3
0
0
0
7
0
0
5
5
0
0
7
5

L
L
1
1
L
3
5
4
5
7
L
0
0
2
2
6
2
L
4
.

h
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a
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m
r

t
e
r

6
e

e
n
e

l

M
r

w
m
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n
.
e
a
_
w
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e
a

n
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o
u
a
b
c
o
c
o
m

f
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e
g
t

l
h
e
r
r
l
c
t
r
t
l
u
e

y
e
I
p
a
e
f
g
b
a
a
f
a
a
e
a
a
r
v
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r
y
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Compiled from Doorenbos and Kassam (1979).Source:
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where:

ydf = yield decrease factor from fertilizer

usage [fraction]

yds = yield decrease factor from salinity

soil levels [percent]

of = correction factor for humidity

inclusion [fraction]

Wants

To run the deterministic YIELD simulator successfully,

the user must assemble a data base. As indicated before,

the model predicts yields for homogeneous agro-ecological

conditions based on agro-climatic criteria. The delineation

of AEZs involves data aggregation and area delineation.

Data aggregation is employed to assemble the data set for g

the local area or AEZ being considered. Primary weather  station and secondary weather station are the main source of

climatic data. Those weather stations should be located

 
inside the AEZ (optimal situation). Data collected outside

the AEZ boundaries may be interpolated in a trend surface

algorithm to obtain the best possible approximation for the

AEZ considered.

In the case of wind velocity and solar radiation, extra

precautions must be be taken in the data-collecting proce-

dure to account for shadow effects from elevation and for

air current resulting from systematic air flow.
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The data base must contain several data sets that

provide the information necessary to run the model. They

include:

A. LOCAL data set is needed to identify the location,

region, or AEZ for which the simulation will take place.

The local data set contains the following information:

1. Average altitude [m]

2. Average latitude [degrees]

3. Hemisphere (north or south)

4. Slope class specification (Table 1)

5 . Soil type and texture and associated moisture-

holding capacity (Table 1)

6. Soil moisture at sowing date [mm/m]

7. Soil salinity level [mmhos/cm]

8. AEZ parameters identification

— code

- name

B. FARM MANAGEMENT PRACTICES data set is required to

identify farming-system techniques. The growth period is

divided into five stages called crop stages. The duration

of the initial stage (first stage) is defined as the time

period, in days, from germination to 10 percent of ground

cover. The duration of the crop-development stage (second

stage) is defined as the time period, in days, from 10

percent to 80 percent ground cover. The duration of the

mid—season stage (third stage) is defined as the time

period, in days, from 80 percent ground cover to the start
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of ripening. The duration of the late season (fourth stage)

is defined as the time period, in days, from ripening to

harvest. The duration of the harvest stage (fifth stage) is

defined as the time period, in days, of the harvest.

1. Crop sowing date and harvesting date

- day

- month

- year

2. Crop first stage duration [days]

3. Crop second stage duration [days]

4. Crop third stage duration [days]

5. Crop fourth stage duration [days]

6. Crop fifth stage duration [days]

7. Fertilizer availability [percent] 9

8. Evaporation reduction factor [percent]

9. Irrigation parameters  - by crop development stages

C. CROP INFORMATION data set must contain the follow-  
ing information:

1. Crop type

2. Rooting depth for the first stage [m]

3. Rooting depth for the second stage [m]

4. Rooting depth for the third stage [m]

5. Rooting depth for the fourth stage [m]

6. Rooting depth for the fifth stage [m]

7. Crop production rate group

8. Crop water depletion group
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D. ENVIRONMENTAL-CLIMATE data set. Values are taken

as average for the AEZ considered.

1. Temperature in daily or monthly mean [C]

2. Precipitation in daily or monthly mean [mm]

3. Relative humidity in daily or monthly mean

[percent]

4. Solar radiation in daily or monthly mean

[hours/day]

5. Wind velocity and wind velocity day/night ratio

[m/s]

 

 

 
   



 

CHAPTER IV

STOCHASTIC YIELD SIMULATOR (SYS)

The stochastic or probabilistic yield simulator is

designed to estimate maximum potential yield, irrigated

yield, and rain-fed yield with its statistically derived

distribution densities (mean, variance, skewness, and so on)

for different crops. The word "stochastic" is used here to

indicate that the model's inputs and/or parameters (at least

one) have nonzero variance. This means that the model's

inputs and/or parameters (at least one) are not known with

certainty, but statistics and distribution densities can be

estimated from their sample data set.

The major objective of the SYS is to provide decision

makers and planners with information on potential, irri-

gated, and rain-fed yields in the form of descriptive sta-

tistics such as mean, variance, skewness, and quantiles, and

associated histograms. This information will provide

insight into stochastic behavior of the yield model and may

serve as an important tool in agricultural and land-use

planning, as well as natural resource management.
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Several sources of uncertainty and error are present in

models. Modeling error may be present because of uncer-.

tainty regarding a particular phenomenon or the difficulty

of expressing or modeling real-world behavior in mathemati-

cal expressions. Errors may be introduced into the simula-

tion model by its parameter-estimation procedures and the

data-collection technique used. Exogenous environmental-

variable inputs such as precipitation, temperature, and

relative humidity are probabilistic in nature. Besides,

data-collection methods may introduce variation and error

into the input data set that will be used by the simulation

model.

Stochastic models are useful under conditions in which

nonreliable estimates are available for the model's parame-

ters and a large amount of money and time is needed to

improve parameter estimates (Manetsch, 1986).

The stochastic yield simulator has an analytical struc-

ture similar to that of the deterministic yield simulator

(DYS) discussed in Chapter III. In the DYS, all the inputs  
and model parameters were assumed to be known with cer—

tainty, whereas in the SYS some degree of uncertainty is

included in the modeling process. From this point of view,

the SYS can enhance the contribution of the DYS model in the

 decision-making and planning process by accounting for some

inherent real-world randomness.
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The use of a simulation model for planning and policy

making in developing nations has frequently been described

in the literature (Manetsch et al., 1970; Manetsch, 1971,

1984, 1985; Rossmiller et al., 1978). The experience of

those models is sometimes characterized by the expression

"structure rich/data poor" (Manetsch, 1986), which means

that the structure of the problem under investigation is

available but time and money are required to provide good

estimates for many of the parameters included.

StochasfiLApnmach

There are two sources of uncertainty in the SYS model,

random exogenous model inputs and uncertainty in the values

of the parameters. Appropriate terminology for this mode

condition is introduced in Figure 13.

Following Manetsch (1986), the nomenclature used is:

u(t) = defined as control and/or input vector of

variables to the simulation model

e(t) = defined as vector of exogenous environmental

variables, whose values are given by probabil-

ity density functions

f1 (e1 (t)), f2 (e2 (t)), ..., fn (en (t))

p(t) = defined as vector of model parameters whose

values are given by probability density

functions 91 (p1 (t)), 92 (p2 (t)), n., gm

(pm (t))
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y(t) = defined as the simulation output vector, which

is also given in terms of its distribution .-

functionsl h (yl (t)), h (y2 (t), ..., bk

(Yk (t)), and statistics mean, variance,

skewness, eth

The sources of randomness for the simulation model are

e(t) and p(t). The term "control vector" is used here to

indicate variables that are totally under the decision

maker's control.

e(t)

I;

(exogenous Inpu‘t wl'th

density functions

   
 

 

   
 

geld», J = 1.2.....n) 7

model output wl'th

STDCHASTIC densl'ty Functions

a YIELD ..(yk('t)>. k = 1,2,...1)

u(t) SIMULATOR y(t)

(declslon (SYS)

/control 7 {7

Inputs)

‘ p(t)

(model parameters with

densrty functlons

g}. (p {(t», i = 1,2,...»

 

Figure 13. General input/output diagram for the stochastic

YIELD simulator with nomenclature.
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From the environmental data base, which contains infor-

mation for the environmental variables used in the model,

such as precipitation, temperature, solar radiation, rela-

tive humidity, and wind velocity, distribution shape and

statistics are determined.

To find the "correct" stochastic distribution for use

in the model, a frequency histogram is prepared. Such a

frequency distribution (Figure 14) will help to determine

the shape of the distribution density function that provides

a "best" fit with our data set or sample data set.  
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Expert assistance in providing information for estimat-

ing probability density functions for the most important!

parameters plays an important role in estimating the distri-

bution of a density function. Appropriate experts can and

do provide information from which approximate density func-

tions can be derived.

A manual method may be used to construct the frequency

histogram, but several software packages such as Plotit

(1985), SAS (1985), SPSS (1984), MSTAT (1984) do exist that

can be and are used to provide the statistics needed to run

the simulation model.

In determining the moments of the distribution func-

tion, such statistics as mean, variance, and skewness are of

concern. The skew factor, or skewness, is a descriptive

statistic that provides information on the tendency of the

deviations to be larger in one direction than in another.

The skew factor is computed by:

(3/2)

skewness = m3 / m2

where: N _

mj = 1:1 (xi - x)1 / N

mj = moment of order j (j = 1,2,3)

Xi = random variate value (i = 1,2, ..., N)

x = mean value

N = sample size
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For negative values of skewness, the distribution tail

is to the left; for positive values the tail is to the ‘

right. Values of the skew factor > 0.5 or < -0.5 correspond

to distributions with significant positive skewing (Figure

15). The distribution statistics computed are used in the

simulation model to generate random variates that are

approximated random variables drawn from distribution of the

variable's population.
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Figure 15: Stochastic YIELD simulator-~probability density

function skewing factor variation.
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The most common distributions used in the simulation

process for environmental variables are normal, gamma, tri-

angular, and uniform distribution. The choice of the dis-

tribution function will depend on the "goodness of fit" test

with the available data and/or the shape of histogram plot,

and the variable characteristics being modeled.

One especially important family of theoretical distri-

butions is the normal or Gaussian distribution. A normal

distribution is a smooth, symmetric function often referred

to as "bell-shapedfl' Its skewness is zero. A normal dis-

tribution can be completely specified by only two parame-

ters: mean and standard deviation. Approximately 68 percent

of the values in a normal distribution are within one stand-

ard deviation of the population mean; approximately 95

percent of the values are within two standard deviations of

the mean; and about 99.7 percent are within three standard

deviations.

The gamma distribution (Figure 15) is one of the most

useful continuous distributions available to the simulation

analyst. If the variables from some random phenomenon can-

not assume negative values and generally follow a unimodal

distribution, then the chances are excellent that a member

of the gamma.fami1y can adequately simulate the phenomenon.

The gamma.distribution is defined by two parameters, a and

k, where a is the shape parameter and k is the scale
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parameter. As the two parameters vary, the gamma density

can assume a wide variety of shapes, making it one of the‘

most versatile of distributions for simulation purposes

(Shannon, 1975).

The triangular distribution (Figure 16) is useful when

data are very limited. The parameters used for determining

the triangular probability density function are as follows

(Manetsch, 1985, 1986):

' a lower limit (A1) for the parameter value i

— an upper limit (Ci) for the parameter value i

- a most 11k91Y value (Bi ) for the parameter value i

‘F‘; (pt. )¢

2/(c — A)

 

  
Figure 16: Stochastic YIELD simulator-~triangular

probability density function.
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From this information a probability density function for a

triangular distribution can be used over the interval (Air

Ci) with mode Bi in thesimulation model.

The uniform distribution is a continuous probability

density function, which is constant over the interval from,

say, A to B, and zero otherwise. The uniform distribution

is useful for simulating random phenomena with little or no

strong variations.

W

Once the distribution that fits best in the sample data

set is known through its moments or statistics, one is in a

position to generate the random variates with the same

statistics. The inverse transformation method (Naylor,

1968; Shannon, 1975; Manetsch, 1984) is used to generate

random variates from a particular statistical population

 whose density function is given by f(x). (A more detailed

description is provided in Appendix CJ

The following formulas will be used in the inverse

transformation process to generate variates from gamma dis-

tribution f(x) with a given mean and variance (Naylor,

1968):

ak * xk-l * e*ax

a, k, x > 0
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mean(x)

a = """""""

variance(x)

[mean(x)]2

k = ---------------

variance(x)

One of the problems that limited the use of gamma

distribution in the past was the lack of a good generator if

k is not an integer. Phillips (1971) developed a two-

parameter gamma generator to overcome this problem.

Shannon (1975) provided the Fortran code for the Phillips

two-parameter gamma generator. Naylor (1948) used a simple

alternative method to generate gamma random variates when

the gamma distribution parameter k is not an integer.

An Erlang gamma distribution 0: is an integer) may be

generated by simply reproducing a process on which the

Erlang distribution is based. This can be accomplished by

taking the sum of exponential variates, x1, x2, ..., xn,

with identical expected value l/a.

Several probability distributions are related to gamma

variables. Two of the more important ones are the chi-

square and beta distributions (Naylor, 1968).

A view of the gamma-variates-generation process to be

used in the simulation model is provided in Figure 17.

  

 

 



Figure 17.
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ll . E !.|. . 3 C S . E J .

This section, compiled from Manetsch (1986), deals with

different combinations of sources of uncertainty in simula-

tion runs. As previously indicated, two sources of uncer-

tainty exist for any model, the exogenous inputs and

uncertainty in the values to be assigned to model parame-

ters.

From the results of the simulation runs, that is from

the histogram plot generated from the potential, irrigated,

and rain-fed yield values, the decision maker can determine

how much of the random variation observed in the final

results is due to poor data and how much is due to input-

parameters estimates. Random variation can be reduced by

further data collection, and associated time and cost can be

optimized based on that information.

To obtain that information, the simulation model must

be run with and without randomness in the model parameters.

When the simulation is run with model parameters set at most

likely values (parameters value assumed to be known with

certainty), the procedure is called "variance partitioning."

Variance partitioning is a valuable procedure in helping

decision makers evaluate the importance of poor model data

and the need for further data collection.

It may be necessary and/or desirable to carry out this

variance partitioning for individual parameters or subsets
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of parameters to provide better—defined data-collection

priorities.

A different but very useful simulation technique for

facilitating decision making under uncertainty is the "com-

mon scenario analysis." Manetsch (1986) provided examples

of this technique. Common scenario analysis is very useful

when different policy-input alternatives have to be com-

pared. Alternative policies are analyzed with the same

sequence of random numbers, which then specify a common

scenario for random exogenous inputs and parameter varia-

tions. In this manner, alternative policies are compared in

such a way that the only difference in the comparison is the

differing policy specifications.

The stochastic yield simulator developed in this study

deals with variance partitioning for selected environmental

variables. The model's parameters such as crop coefficient

(kc), yield response factor to evapotranspiration deficit

(ky), and so on, were given by Doorenbos and Kassam (1979)

as fixed values. The environmental variables used in the

model are the main source of randomness in the stochastic

yield simulator.

SI 1 I . 1:. 1 3 S' ] | (51:52 SI |

In this section, the simulation model structure for the

SYS is presented. The basic structure for the SYS is the
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same as that used in the deterministic yield simulator

(DYS), discussed in Chapter III.

The Monte-Carlo method is the basis for the SYS simu-

lator. In the Monte-Carlo technique, artificial experiences

or data are generated by the use of a random—number gen-

erator, resulting in the cumulative probability distribution

of interest. The random-number generator may be a table of

random digits, a computer subroutine or function, or any

source of uniformly distributed random digits. The proba-

bility distribution to be sampled may be based on empirical

data derived from past records, may result from a recent

experiment, or may be a known theoretical distribution such

as gamma distribution. The random-number generator, as seen

in the last section, is used to produce a randomized stream

of variates that will duplicate the expected experience,

based on the probability distribution being sampled.

Some changes in the deterministic yield simulator had

to be made to accommodate the stochastic characteristics of

the input variables and parameters.

A general flowchart for the simulation run with exoge-

nous input and randomness in the environmental inputs and/or

parameters is provided in Figure 18.

The stochastic yield simulator (SYS) structure follows,

with some modifications and additions, the equations and

procedures inWM(Doorenbos &
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flowchart of

Figure 18.

the simulation process.
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Kassam, 1979), used in the deterministic yield simulator

(DYS).

Mainly seven consecutive phases are needed to estimate

the probability density function statistics for the crop

yields. They are:

Ehase_l: Determination of the probability density

function and its statistics for the parameters and environ-

mental inputs. Three steps are to be followed in this phase

(see Figure 19):

 

( BEGIN SIMULATION)

PHASE h

  

mph

FHSTDGRAM

PLUT

 

  
 

‘STEP 3'

Gunnnzss or

FFT

 

  
 

tumuL______.

RANDOM

VARIATES

‘___ENEBAIDE_——     

Figure 19. Stochastic YIELD simulator--Phase 1 flowchart.
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Step 1: Identify the probability density function

using the histogram plot.

Step 2: Conduct a "goodness of fit" test to fit a

distribution density function and compute the

distribution statistics such as mean, variance,

skewness, and so on.

Step 3: Implement the random variates generator, using

the inverse transformation method.

Eha52_2: Determination of the maximum yield (Ym) of

the adapted crop variety, dictated by climate, assuming that

other growth factors «Lg. farm management, fertilizer,

pests and diseases, and so on) are not limiting. In the

second phase, six steps are needed to determine (Ym) (see

Figure 20):

Step 1: Computation of the gross dry matter

production of a standard crop (Yo).

Step 2: Application of the correction factor for

crop species and temperatures.  
Step 3: Application of the correction factor for

crop development over time and leaf area

(cL).

Step 4: Application of the correction factor for

net dry matter production (cN).

Step 5: Application of the correction factor for

harvested part (cH) .

Step 6: Computation of the maximum potential yield

(Ym).

 



Figure 20.
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PHASE 2:
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Stochastic YIELD simulator--Phase 2 flowchart.
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£hase_3: Calculation of the maximum evapotranspiration

(ETm) when crOp requirements are fully met by available

water supply. In this phase, three steps are needed to

compute ETm (see Figure 21):

Step 1: Computation of the reference evapo-

transpiration (ETo) based on the

meteorological and crop data available.

Step 2: Computation of the growing period and

length of crop-development stages and

selection of the crop coefficient kc.

Step>3: Computation of maximum evapotranspiration

(ETm).

DHASE 3:
 

TEPI'

COMPUTE

ETo

   
  
 

‘TEP 2|

SELECT

 

  
 

TEEL&_____—fi

COMPUTE

ETm

  
   
 

Figure 21. Stochastic YIELD simulator-~Phase 3 flowchart.
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Ebase 4: Determination of the actual crop evapo-

transpiration (ETa) based on factors concerned with the

available water supply to the crop (see Figure 22). This

includes:

Step 1: Determination of the total available soil

water.

Step 2: Computation of the soil water depletion.

Step 3: Computation of the actual evapotranspira—

tion (ETa).

Ebase 5: Selection of the yield response factor (ky)

to evaluate relative yield decrease as related to relative

evapotranspiration deficit, and calculation of the actual

yield (Ye) (see Figure 22).

Ehase 6: Estimation of crop-yield adjustment. In

this phase, the resulting estimated yield from Phase 5 is

adjusted for fertilizer usage, soil salinity, and moisture

content (Figure 23). Three steps are needed in this phase:

Step 1: Adjustment of the estimated yield for ferti-

lizer availability.

Step 2: Adjustment of the estimated yield for salinity

levels.

Step 3: Adjustment of the estimated yield for moisture

content.
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DHASE 4:
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Figure 22. Stochastic YIELD

flowchart.

simulator--Phases 4 and 5
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Figure 23. Stochastic YIELD simulator-~Phase 6 flowchart.

Rhase_l: Determination of the probability density

functions and computation of the final yield statistics.

The following three steps are needed (see Figure 24):

Step 1: Identify the probability density function

using the histogram frequency plot.

Step 2: Conduct "goodness of fit" test for selection

of the probability density function.

Step 3: Compute the distribution density function

statistics for potential, irrigated,

and rain-fed yields.
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Figure 24. Stochastic YIELD simulator--Phase 7 flowchart.
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The mathematical formulation of the stochastic yield

.o

simulator follows the procedures used in the deterministic

yield simulator. Repetition of the phases, equations, and

procedures involved in the deterministic yield simulator is

necessary for completeness, consistency, and clear identifi-

cation of the random factors included in the model and its

relationships with the other components.

Bhase_l. Determination of the probability density

function and its statistics for the parameters and environ-

mental inputs. The mathematical and statistical procedures

were discussed in the section on random-variates generation.

Ehase_2: Determination of the maximum yield (Ym) of

the adapted variety, dictated by climate, assuming that

other growth factors “Lg. farm management, fertilizer,

pests and diseases, and so on) are not limiting.

Refer to Equation 1.1, Chapter III, for the relation—

ship of dry-matter production for a standard crop.

F(t), fraction of daytime the sky is clouded, is deter-

mined from the following formulas (Equation 1.7, Chapter

III):

[Rse(t) — 0.5 * Rs(t)] / [0.8 * Rse(t)]F(t)

Rs(t) 0.25 + 0.50 * [n(t) / N(t)] * Ra(t)
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Randomness is entered, in Phase 2, through the environ-

mental variable n(t), number of sunshine hours a day. The

value of n(t) variable is generated for every time (t) from

the probability density function statistics derived from the

sample data set "number of sunshine hours a dayJ' The

parameters yo(t), yc(t) (Equation 1.1, Chapter III), Rse(t),

Ra(t), and N(t) are entered into the model by means of table

look-up function (tablex, spline) and are assumed to have

zero variance: that is, they are values known with cer-

tainty.

The variable ynflt) (Equation 1.4, Chapter III) depends

on the environmental variable temperature, which is a random

variable generated by a random variate generator.

In summary, Phase 2 of the stochastic yield simulator

has two different random variates: an environmental input,

number of sunshine hours a day--n(t), and dry matter pro-

duction rate-~ym(t), which is a function of the environmen-

tal input temperature. A third stochastic variable, which

is assumed to vary within a predefined range, is crop-growth

duration. In some cases, the sowing or planting date is not

known with certainty, and it changes from year to year. If

this is the case, a random variate can be defined in a

planting interval in days and generated in the model by

means of the random-variate generator.
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Computation of maximum evapotranspirationBha§s_3:

The stochastic environmental variables of Phase 3 of(ETm) .

the simulation model are as follows (refer to Equations 1J5

and 1.7, Chapter III):

Wind velocity U(t), an exogenous environmental variable

generated by a theoretical probability density function

whose statistics and shape are determined from the wind

velocity sample data set.

The number of sunshine hours a day n(t), an exogenous

environmental variable generated by a theoretical probabil-

ity density function whose statistics and shape are deter-

mined from the number of sunshine hours a day data set.

Mean daily temperature value T(t), an exogenous envi-

ronmental variable generated by a theoretical probability

density function whose statistics and shape are determined

from the temperature data set.

Relative humidity value RH(t), an exogenous environmen—

tal variable generated by a theoretical probability density

function whose statistics and shape are determined from the

relative humidity data set.

All other parameters in this phase are deterministic;

that is, their values are assumed to be known with cer-

tainty.

Bhassiiz Computation of actual evapotranspiration

In this phase (refer to Equations 1.8 and 1.9,(ETa).
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Chapter III), precipitation Pe(t) is an exogenous environ-

mental variable that is generated from a theoretical proba-

bility density function whose statistics are determined from

the precipitation data set. Other parameters considered in

this phase are assumed to be nonprobabilistic.

Phase 5: Computation of estimated yield (Ye). Equa-

tionslulO and 1JJ.(Chapter III)are usediJIthis phase.

The model parameter ky(t) is assumed to be known with cer-

tainty, making it a deterministic parameter.

Phase_§: Estimated yield adjustment. The model input

factors (refer to Equation 1.12, Chapter III) ydf and yds

and the model parameter cf are assumed to be known with

certainty, and their values are selected by the user.

Bhase_l: Yield statistics generation. Using the

results of Phase 6 after several simulation runs, the data

set is statistically analyzed to determine the probability

density function statistics and the histograms for the

potential, irrigated, and rain—fed yield. In this phase,

statistical—analysis software is used to provide the fre—

quency histogram shape needed to determine the probability

density function. The next step is to compute the distribu—

tion moments such as mean, variance, skewness, and so on, to

aid in the process of planning and decision making in eco-

nomic analysis, land-use planning, and natural resource

management.
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W5

To run the stochastic YIELD simulator successfully, the

user must assemble and analyze a data base. The data base

must contain several data sets, which will provide the

information necessary to estimate the probability density

function statistics to run the model. For more detailed

information on data requirements, refer to the section on

data requirements in Chapter III.

A. A LOCAL data set is required to identify the loca-

tion, the region, or the AEZ parameters where the simulation

will be done. All variables in the local data set are

deterministic.

B. A FARM MANAGEMENT PRACTICES data set is required to

identify farming-system techniques.

1. Crop planting data interval [days]

- a stochastic input variable

2. Crop first stage duration [days]

- a stochastic input variable

3. Crop second stage duration [days]

- a stochastic input variable

4. Crop third stage duration [days]

- a stochastic input variable

5. Crop fourth stage duration [days]

- a stochastic input variable

6. Crop fifth stage duration
[days]

- a stochastic input variable

7. Fertilizer availability
[percent]

- a stochastic input variable
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8. Evaporation reduction factor

- a deterministic input variable

9. Irrigation parameters

- by crop development stages, a

deterministic input variable

C. A CROP INFORMATION data set must contain

ministic exogenous variables described in Chapter

D. An ENVIRONMENTAL-CLIMATE data set, which

the stochastic exogenous environmental variables:

1. Temperature in daily or monthly mean

2. Precipitation in daily or monthly mean

3. Relative humidity in daily or monthly

mean

4. Solar radiation in daily or monthly

mean of sunshine hours

5. Wind velocity and wind velocity

day/night ratio

 

[percent]

the deter-

III.

contains

[C]

[mm]

[percent]

[hours/day]

[m/s]

 

 





 
CHAPTER V

MODEL VALIDATION AND SIMULATION RUNS

The objective of this chapter is to validate the deter-

ministic YIELD simulator (DYS) and the stochastic YIELD

simulator (SYS). According to Shannon (1975), model valida-

tion is a process of bringing to an acceptable level the

user's confidence that any inference about a system derived

from the simulation is correct. It is not possible to show

that a model is the exact representation of the system being

modeled. In the modeling process, one is, in general, not

concerned with the "truth" of the model, but how it provides

insights with a certain confidence in the results of the

simulation. In general, one can say that it is the opera-

tional utility of the model and its structure and not the

"truth" of its structure that is usually of concern.

To validate a model, Shannon (1975) indicated that it

has to pass three tests, called the "test of validation."

First, one must ascertain that the model has face validity;

iJe., one must ask if the model results appear to be reason-

able. This can be done by comparing the model's results

with the system's results--that is, the real-world results.

95
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Often, an expert opinion is needed to help analyze the

model's results. The second method of validation is testing

the model assumptions. The third test for model validation

involves testing input—output transformations.

Kaplan (1964) outlined model validation in terms of

norms of validation. He indicated that, to be considered

valid, the model must pass the norms of validation tests,

which he defined as the correspondence, coherence, and prag-

matic norms of validation.

Fisherman and Kiviat (1967) divided the evaluation of

simulations into three categories: verification, insuring

that the model behaves the way the experimenter intends;

validation, testing the agreement between the behavior of

the model and that of the system; and problem analysis,

drawing statistically significant inferences from the data

generated by the computer simulation. Schrank and Holt

(1967) proposed that "the criterion of the usefulness of the

model be adopted as the key to its validation, thereby

shifting the emphasis from a conception of its abstract

truth or falsity to the question of whether the errors in

the model render it too weak to serve the intended pur-

poses."

The validation process used in this study represents a

combination of all the above. The following means of vali—

dating the yield model are performed: First, for Jamaica,
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20 runs will be conducted on a yearly basis, for sugarcane

in the regions of Worthy Park, Caymanas, and Monymusk, using

the deterministic approach. These represent traditionally

rich sugarcane—producing regions. Observed yields are

available for a period of 20 years or 1963-1982, to evaluate

the model's performance.

Second, simulations will be conducted for tobacco and

sorghum for the same locationsm Observed yields are not

available on a year-by-year basis, but some statistics, such

as average tobacco and sorghum yield, are available for

Jamaica. The simulation runs will be made in the "average"

mode, with the deterministic model using average values of

the environmental variables precipitation, temperature,

relative humidity, solar radiation, and wind velocity. The

simulation results will be compared to the actual average

yield for tobacco and sorghum for the Worthy Park, Caymanas,

and Monymusk regions in Jamaica.

Third, 500 simulation runs will be made with the sto-

chastic YIELD simulator for sugarcane, tobacco, and sorghum

for the same location in Jamaica. ‘The probability density

functions for the environmental variables precipitation,

temperature, relative humidity, solar radiation, and wind

velocity will be computed and used to generate, in a Monte

Carlo simulation approach, the yield values. (The Monte

Carlo approach is a technique for generating random variates
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as input and/or parameters from a population described by

some probability function to be used in the simulation ~

processJ Yields resulting from those simulations will be

given in terms of yield probability density function statis-

tics. Comparisons will be made with observed yield data and

average yield data for Jamaica's Worthy Park, Caymanas, and

Monymusk regions to infer and measure the yield model's

performance. Results will be shown in tables, graphs, and

histograms and in the form of statistics such as means,

standard deviation, and quantiles. Graphics and summary

statistics such as histograms are valuable to decision

makers and planners in providing a better understanding of

the simulation results.

Fourth, 500 simulation runs will be made with the

stochastic YIELD model for rice, potato, fresh pea, onion,

and cabbage for the Agro-Ecological Zones (AEZs) in the

Dominican Republicfls Ocoa Watershed, which are called

Valdesia, Ocoa, and Azua. The AEZs were determined by the

use of the CRIBS-GIS Geographic Information System using the

OVERLAY and MATCH procedures (Schultink, 1986) and the spa-

tially referenced information on soil, slope, evapotranspi-

ration, temperature, and precipitation. In that simulation

process, the probability density function statistics for the

environmental variables precipitation, temperature, relative

humidity, solar radiation, and wind velocity will be
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computed using the Statistical Analysis System (1985) to

generate, in a Monte Carlo simulation approach, the values

of those environmental variables for each year. Yields

resulting from those simulations will be given in terms of

yield probability density function statistics. Comparison

will be made with observed yield data and average yield data

for the Dominican Republic's'Valdesia, Ocoa, and Azua AEZs

to evaluate the model's performance. Also, the simulation

results will be compared with the yield results and guide-

lines given by Doorenbos and Kassam (1979).

E I . . I' XIEIL S' J l E

Jamaicazlntmduction

For Jamaica, the DYS model was used to simulate crop

productivity for some of the most important "cash“ crops,

which are responsible for a large part of Jamaica's foreign

exchange earnings, such as sugarcane and tobacco. The model

was used to predict yields for sugarcane, tobacco, and

sorghum. Sugarcane simulation was done for every year from

1963 to 1982 for three known producing regions: Worthy Park

and Caymanas in the parish of St. Catherine and Monymusk in

the parish of Clarendon. Twenty years of observed yield

data are available for sugarcane, which is considered to be

a relatively well organized and primarily state-controlled

industry. For tobacco and sorghum, also important crops in
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the Jamaican economy, only average, no yield data were

available. The model was run for an “average" year.

1:! "I'IEIEIES'JI F.

W

The Jamaican national data base, put together by the

Comprehensive Resource Inventory and Evaluation System

(CRIES) at Michigan State University, was used to input the

environmental data into the simulation model. The required

environmental data used to run the simulations are:

1. monthly mean temperature values

. monthly mean precipitation values

. monthly mean relative humidity values

monthly mean solar radiation values

. monthly mean wind velocity values and day/night

wind ratio

t
h
N

Environmental and local data set, part of the CRIES—

Jamaica national data base, were used on a yearly basis for

AEZ conditions associated with Worthy Park, Caymanas, and

Monymusk for sugarcane, tobacco, and sorghum.

The model was designed to accept as input daily or

monthly mean values for the environmental variables

described above. It is difficult, if not impossible, to

obtain daily measurements for those variables for under—

developed or developing nations. However, the daily option

is included because it is more realistic to use daily values

when available.

  

 



Parameters for sugarcane, tobacco, and sorghum required

to run the model were supplied by the Jamaica Ministry of

Agriculture, Rural and Physical Planning Division (RPPD) and

complemented, when necessary, by the data set contained in

Doorenbos and Kassam (1979). The crop parameters used are:

1. average root size for each phase of the growing

period

. leaf area index (LAI)

. water depletion factor (p)

. production rate (ym)

. crop coefficient (kc)

. yield response factor (ky)O
fi
U
l
u
b
W
N

Crop parameters used in the simulation runs for the

Worthy Park, Caymanas, and Monymusk regions of Jamaica are

provided in Table 3.

In a year-by-year simulation run of the deterministic

YIELD simulator, the user enters values of crop parameters

at specific prompts during the simulation process. The

values for crop parameters (Table 3) were used for each of

the three regions where the simulation took place. Being

crop specific, they do not vary with location or time. They

do vary, however, from crop to crop.

E . . !' XIEIE S' 1 l I . __

WW

Several farm-management-practice parameters must be

available to the user to run the simulation model. The

parameter values used were provided by the Rural Physical
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Table 3. Deterministic YIELD simulator: Jamaica--crop

parameters-~sugarcane, tobacco, and sorghum for

Worthy Park, Caymanas, Monymusk

 

Crop

Parameter Type Sugarcane Tobacco Sorghum

 

Root Size Variation

(cm)a 20—120 10-150 10—175

Leaf Area Index

(LAI) 3 3 2

Water Depletion

Factor Variation

(p)b .400-3875 .400-3875 .400-.875

Production rate (ym

in kg/ha/day)C 0—65 0-35 0-65

Crop coefficient

(kc)d .40-1.3o .30-1.2o .30-1.15

Yield response

factor (ky)e .lO—.75 .20—1.00 .20—.55

 

Source: Doorenbos and Kassam (1979).

Note: The values separated by "-" represent ranges of

variation to be used by the numerical interpolation function

in the model. Crop stage was defined in the data require-

ments in Chapter III.

aAdjusted for local conditions according to RPPD data.

bETm-~-Maximum evapotranspiration dependent factor.

CTemperature dependent factor.

dDepend on crop stage, wind velocity, and relative

humidity.

eDepend on crop stage.
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Planning Division of the Jamaica Ministry of Agriculture.

.0

Additional parameter values were derived from Doorenbos and

Kassam (1979).

Farm-management-practice parameters vary from crop to

crop, from region to region, and from year to year. The

following farm-management-practice parameters.are considered

in the simulation model:

O
‘
U
‘
l
u
b
U
O
N
l
-
J

sowing or planting date

harvesting date

duration of each stage of the growth period

irrigation parameter and/or values

evaporation reduction factor

fertilizer usage

The values of farm-management-practice parameters used in

the simulation runs for sugarcane, tobacco, and sorghum for

the Worthy Park, Caymanas, and Monymusk regions of Jamaica

are listed in Table 4.

L I . . I' YIEIL S' 1 I I . __

W

Parameters that identify the location, region, AEZ, or

production potential unit are necessary to run the model.

Those parameters give very detailed and specific spatial

information for the simulation model. They are spatially

referenced parameters, which means that for each location a

specific set of parameters is used.

Information on the following specific local parameters

was collected from the CRIBS-Jamaica national data base.

Local parameters, by being local specific, do not vary from
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Table 4. Deterministic YIELD simulator: Jamaica--farm-

management-practice parameters for sugarcane, «

tobacco, and sorghum, for Worthy Park, Caymanas,

and Monymusk

 

Farm-Mamagem ent-

Practice Parameters Sugarcane Tobacco Sorghum

 

Sowing or Planting

Date MM/DD/YY 02/15/YY 02/15/YY 02/15/YY

Harvesting Date

MM—MM/YY+a 01—04/YY+1 05—06/YY 06-07/YY

Duration of Growth

Stages in Daysb

stage 1 30-80 10-15 15-20

stage 2 80—120 20-30 20-30

stage 3 100-220 30-35 15—20

stage 4 30—80 30—40 35-40

stage 5 30~60 10—20 10-15

Irrigation Parameter

or ValueC F F F

Evaporation

Reduction Factord N N N

Fertilizer Usagee 80—100 80-100 80-100

 

Source: Jamaica Ministry of Agriculture, Rural and Physical

Planning Division.

a+1 means following year.

bCompiled from Doorenbos and Kassam, (1979) and

adjusted with RPPD data. The deterministic model uses the

average value of the range identified.

f CFull irrigation was used. No data available on irri-

gation scheme or amount of water used in irrigated crops.

dNo evaporation reduction factor was used; information

not available.

eFertilizer usage expressed in percent relative to the

crop-requirement guidelines as defined by Doorenbos and

Kassam's (1979) crOp—requirement guidelines.
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crop to crop or from time to time. The average local-

specific parameters necessary to run the model are as fol-

lows:

1. altitude

2. latitude

3. location (northern or southern hemisphere)

4. slope class (Table 1, Chapter III)

5. soil type (Table 1, Chapter III)

6. soil textural class

7. soil moisture availability

8. soil salinity level

The local parameter values for Worthy Park, Caymanas,

and Monymusk to be used in simulation runs are provided in

Table 5. In spite of a possible variation in time of the

local parameters, no time variation was considered from run

to run because the local parameters do not change very much

in the short or medium time period and because no data are

available about changes in those local parameters, such as

variations in soil salinity levels, soil-moisture availabil-

ity at sowing date, and so on, from year to year.

. . . . . __

Dete1minisglc_¥lfLD_S§mnl?fQ£4.Jamalga__

Twenty simulation runs were conducted for sugarcane

from 1963 to 1982 for two areas in the parish of St.

Catherine and one area in the Clarendon parish. For tobacco

and sorghum, an ”average" year was simulated for each of

those locations, to permit a comparison with variations in

average observed yield for the country.
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Table 5. Deterministic YIELD simulator: Jamaica--local

parameters for Worthy Park, Caymanas, and

Monymusk

 

Crop Worthy

Parameter Park Caymanas Monymusk

 

Average Altitude

in Meters 381.00 27.75 9.15

Average Latitude

in Degrees 18.09 17.58 17.48

Location 1 1 1

Average Slope

Classa 0—4 0-4 0-4

Average Soil

Typea fine silty fine silty fine silty

Average Soil

Textural Class

mm/mb 115 125 125

Soil Moisture

mm/mC 90 90 90

Soil Salinity

Leve1d N/A N/A N/A

 

Source: Jamaica Ministry of Agriculture, Rural and Physical

Planning Division.

aTable 1, Chapter III.

bMoisture holding capacity.

CInitial soil moisture at sowing date.

dN/A--Data not available.
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Results of the yearly simulation runs for sugarcane for

irrigated yield and rain-fed yield are presented for the‘

Worthy Park region in Table 6.

Table 6. Deterministic YIELD simulator: Jamaica--

St. Catherine--Worthy Park. Sugarcane--observed

irrigated yield and simulated irrigated and rain-

fed yield, 1963-1982 (tons/ha)a

 

 

Observed Simulated Simulated

Year Yieldb Irrigated Yield Rain-fed Yield

1963 80.82 86.94 81.90

1964 76.00 85.39 82.67

1965 79.95 94.67 89.71

1966 81.06 97.59 80.89

1967 71.58 79.16 72.12

1968 86.55 102.95 95.17

1969 76.99 82.60 74.05

1970 89.31 94.48 86.30

1971 78.87 86.97 79.63

1972 90.97 93.98 83.93

1973 85.64 89.66 85.49

1974 82.50 82.15 71.78

1975 79.34 90.10 85.19

1976 85.31 91.11 76.30

1977 63.77 95.04 91.93

1978 95.49 93.86 90.75

1979 90.72 89.04 86.25

1980 79.31 100.43 99.00

1981 85.58 92.21 81.98

1982 77.73 91.66 85.46

 

aCompiled from simulation results.

bSource: Jamaica Ministry of Agriculture, Rural and

Physical Planning Division.



108

A time plot of the observed sugarcane yield and simu:

lated irrigated yield for Worthy_Park is presented in Figure

25. Yields for sugarcane from 1963 to 1982 are shown, and

comparisons can be made between them.
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Figure 25. Deterministic YIELD simulator: Jamaica-~Worthy

Park, observed irrigated yield and simulated

irrigated yield for sugarcane for the period

1963-1982(t/ha).

Simulated results represent the trend in observed

yield from 1963 to 1974. In those years (see Figure 25), an

almost cyclical yield trend occurred for observed irrigated
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yield and predicted irrigated yield. From 1975 to 1982,_

there was no clear relationship between simulated irrigated

yield and observed yield. This may be explained by several

reported changes in the government of Jamaica, affecting the

sugarcane industry. It has been reported that sugar mills

and sugar states were going through a process of nationali-

zation, and that process had a strong influence on sugarcane

yield. In addition, strikes took place during that period,

affecting the reliability of observed yield data for any

meaningful analysis.

The observed yield values are usually below the irri-

gated simulated values (Figure 25 and Table 6). That may be

an indication that, holding other factors constant, improved

water-management procedures may improve yields. The rela-

tionship between the sugarcane observed yield and simulated

rain-fed yield is also presented in Figure 26. In this case,

rain-fed production is simulated. It can be observed

(Figure 26) that the simulated rain-fed yield is much closer

to the observed yield as compared to irrigated yield for the

years from 1963 to 1974 (Figure 25). Again, the effects of

reported political and socioeconomic conditions related to

the sugarcane industry in Jamaica may account for a strong

variation in the observed-yield trend from 1975 to 1982.

Some simulated rain-fed yields (1964, 1965, 1968, and so on)

are larger than the observed yields, suggesting that other
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yield-reducing factors not included in the model, such as

pest and disease, or a major weather phenomenon such as ‘

storms, affected yields. Government policies in terms of

agricultural and economic policies and/or external market

conditions may affect variations, as well.
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Figure 26. Deterministic YIELD simulator: Jamaica-~Worthy

Park, sugarcane irrigated observed yield and

simulated rain-fed yield from 1963 to 1982

(t/ha).

For the period from 1975 to 1982, random variations are

present. It has been reported that political unrest and

government policy in the sugarcane industry were major
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factors responsible for the random behavior of observed

yields for the 1975 to 1982 period.  
Correlation coefficients were computed from the results

presented in Table 6 for a simple linear regression equation

and a logarithmic-inverse regression equation. For observed

yield and simulated rain—fed yield, using the total data set

 (20 years), the coefficients of correlation were very low

(R2 = .247 for the linear regression and .283 for the

logarithmic-inverse regression). Observed yield and simu-

lated irrigated yield correlation coefficients were also

very low (R2 = .153 and .243 for the linear and logarithmic

cases, respectively).

When the outliers were removed from the data set for

the regression analysis, the correlation coefficient for the

linear case changed to .436 and for the logarithmic—inverse

case to .497. The significance level of the F—test for the

linear case was .0398; for the logarithmic-inverse case, it

was .0268. For the simulated irrigated yield the correla-  
tion coefficient for the linear form was .578 and u629 for

the logarithmic-inverse form, with the significance levels

of the F-test .0432 and .0346, respectively.

In a multiple regression approach in which the depend-

ent variable is observed yield, and considering fertilizer

usage (N, P, K) (presented in Table 16) and simulated rain-

fed yield as independent variables, the correlation  
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coefficient for the linear functional form (taking out the

outliers) is .955, with significance of the F-test equal to

.1024. For the logarithmic-inverse functional form (taking

out the outliers), the correlation coefficient is 0.92, with

significance of the F-test equal to .1062.

When the simulated rain-fed yield was replaced by simu-

lated irrigated yield in the multiple regression equation,

the correlation coefficient changed to 0.85 for the linear

case and to 0.92 for the logarithmic-inverse case, with

significance levels of the F-test at .0873 and .0745,

respectively.

The degree of association between the observed yield

and the simulated rain-fed yield is, of course, increased

by entering the fertilizer variable in the regression equa-

tion.

A different perspective on the relationship between the

simulated sugarcane yield results and the observed sugarcane

yield is presented in the form of a scattergram in Figures

27 and 28. The sugarcane observed yield and sugarcane

irrigated yield results are clustered above the 45-degree

line (Figure 27). The 45—degree line indicates equal values

for both variables. The values of simulated irrigated yield

are in most cases greater than the values of the observed

yield.
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Figure 27. Deterministic YIELD simulator: Jamaica--Worthy

Park, sugarcane observed irrigated yield versus

simulated irrigated yield (t/ha).
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Figure 28. Deterministic YIELD simulator: Jamaica-~Worthy

Park, sugarcane irrigated observed yield versus
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The sugarcane observed yield is also plotted against

the rain-fed observed sugarcane yield (Figure 28). Here the

points are clustered along the 45-degree line. This is an

indication that the results of the rain-fed simulation are

closest to the observed sugarcane yield.

In both figures, some outlying values can be seen.

They represent the years for high and low values and unusual

conditions. If one views the cluster center location as one

of the performance measures of the model, it can be inferred

that the model results reflect, or are similar to, the

results of rain-fed yield.

The simulation results for the Caymanas region in the

parish of St. Catherine in Jamaica are presented in Table 7.

The results are from the simulated irrigated yield, the

simulated rain-fed yield, and the observed irrigated yield

for the 1963 to 1982 period.

A plot of the observed sugarcane yield and simulated

irrigated yield for Caymanas is shown. Yields for sugarcane

from 1963 to 1982 are presented in Figure 29.

The modelds performance as a measure of how the simu-

lated irrigated yield tracks the observed yield may be

considered very good (values are very close and the trend is

replicated) for the period from 1963 to 1976. In those

years, as one can observe from the data presented in Figure
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29, the repetition of the observed-yield trend is followed

by the irrigated-yield values.

Table 7. Deterministic YIELD simulator: Jamaica--

St. Catherine--Caymanas. Sugarcane--observed

irrigated yield and simulated irrigated and rain-

fed yield, 1963-1982 (tons/ha)a

 

 

Observed Simulated Simulated

Year Yieldb Irrigated Yield Rain-fed Yield

1963 95.39 101.91 72~17

1964 91.46 102.03 82.67

1965 93.46 111.35 80.74

1966 91.29 110.56 75.98

1967 94.18 111.55 82.15

1968 76.62 110.06 64.34

1969 77.48 97.59 57.55

1970 84.62 102.60 80.79

1971 79.63 97.81 75.66

1972 97.39 115.87 74.97

1973 84.18 96.55 75.26

1974 82.20 98.77 63.82

1975 92.28 106.51 73.38

1976 78.72 95.29 60.27

1977 63.75 101.99 56.96

1978 68.98 105.07 67.97

1979 67.67 96.72 68.67

1980 63.72 102.90 82.62

1981 61.91 104.51 81.02

1982 65.75 101.02 77.95

 

 

aCompiled from simulation results.

bSource: Jamaica Ministry of Agriculture, Rural and

Physical Planning Division.
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Figure 29. Deterministic YIELD simulator: Jamaica--

Caymanas, sugarcane observed irrigated yield and

simulated irrigated yield from 1963 to 1982

(t/ha).

For the period from 1977 to 1982, there is no clear

relationship between the simulated irrigated yield and the

observed yield. As pointed out before, for the Worthy Park

region, during that period several changes occurred in the

government of Jamaica in relation to the sugarcane industry.

Also, sugar mills and sugar farms were going through a

nationalization process, and that process had a great influ-

ence on sugarcane yield. Strikes, political unrest, crop

destruction by the farm's labor force, farm employees'
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refusal to harvest the crop, losses in harvesting and trans-

portation, and, in some cases, failure to record proper ‘

yield data left the sugarcane industry in chaos. -

Also, the observed yield values are below the irrigated

simulated values (Figure 29 and Table 7). Again, that may

be an indication that, holding everything else constant, a

better water-management procedure may improve sugarcane

yields.

The relationship between sugarcane observed yield and

simulated rain-fed yield is plotted in Figure 30. It can be

observed that the simulated rain-fed yield is closest to the

observed yield for the years considered. Observed sugarcane

yield values are in most cases above those for simulated

sugarcane rain-fed yield. This fact may suggest that some

irrigation was used, but not effectively, because crop-water

stress still occurred.

The results for Caymanas may also indicate that, every-

thing else being equal, better water-management procedures

may generate yield increases in sugarcane. Again, the

effects of political problems related to the sugarcane

industry in Jamaica are shown by a strong random variation

in the observed yield trend from 1975 to 1982.

There was no reported major disease outbreak or pest

infestation on sugarcane crop fields during the period

studied, which leaves the government interventions on the
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sugarcane farms and mills and associated factors as major

causes of the random behavior of observed yields for the“-

period from 1977 to 1982.
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Figure 30. Deterministic YIELD simulator: Jamaica--

Caymanas, sugarcane observed irrigated yield

and simulated rain-fed yield from 1963 to 1982

(t/ha).

A scattergram of the simulated sugarcane yield results

and the observed sugarcane yield is provided in Figures 31

and 32, which provides a different perspective for analysis

of the simulated results.
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Figure 31. Deterministic YIELD model: Jamaica--

Caymanas, sugarcane observed irrigated yield

versus simulated irrigated yield (t/ha).
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Figure 32. Deterministic YIELD model: Jamaica--

Caymanas, sugarcane observed irrigated yield

versus simulated rain-fed yield (t/ha).
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Sugarcane observed yield and sugarcane irrigated yield

results are clustered above the 45-degree line (Figure 31).

The values for both variables show, as seen before, that the

values of simulated irrigated yield are greater for all

studied years than the values of the observed yield. Sugar-

cane observed yields are also plotted against the rain-fed

observed sugarcane yields (Figure 32).

Essentially, three clusters can be seen (Figure 31).

It can be noted that, for this case, the model predicts

yields better for higher values than for lower values (clus-

ters of high values are closest to the 45-degree line).

Values are clustered mainly below the 45-degree line, an

indication that the yields of the rain-fed simulation are

smaller than the observed sugarcane yield. If the location

of the cluster center is taken as one of the performance

indicators of the model, one can infer that the model

reflects more the results of rain-fed yield than those of

irrigated yield. The result may also suggest that some

irrigation scheme was used.

Simulated irrigated, rain-fed, and observed sugarcane

yields for the Monymusk region in Clarendon parish for the

period from 1963 to 1982 are presented in Table 8.
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Table 8. Deterministic YIELD simulator: Jamaica--C1arendon

--Monymusk. Sugarcane--observed irrigated yield

and simulated irrigated and rain-fed yield, 1963-

1982 (tons/ha)a

 

 

 

Observed Simulated Simulated

Year Yieldb Irrigated Yield Rain-fed Yield

1963 92.35 118.66 87.29

1964 86.94 111.05 87.75

1965 83.76 108.25 80.39

1966 90.97 126.55 92.77

1967 76.68 108.28 81.63

1968 70.62 106.53 58.78

1969 78.03 115.05 77.65

1970 82.97 121.92 102.62

1971 71.21 106.28 83.29

1972 78.57 122.41 105.05

1973 62.15 104.16 81.39

1974 70.47 109.70 81.13

1975 71.18 107.99 77.61

1976 72.37 117.84 68.69

1977 54.43 110.33 68.84

1978 74.00 129.05 99.12

1979 67.23 116.88 85.06

1980 61.50 127.45 103.86

1981 55.55 120.31 93.31

1982 53.92 131.90 116.33

 

aCompiled from simulation results.

bJamaica Ministry of Agriculture, Rural and Physical

Planning Division.

A graphic representation of observed yields and simu-

lated irrigated yields for Monymusk from 1963 to 1982 is

shown in Figure 33.

Again, the model simulates fairly well the trend in

observed yield from 1963 to 1974. In those years, the data
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show a good association of the vacillations in the simu-

lated values when compared to the irrigated yield trend.“
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Figure 33. Deterministic YIELD simulator: Jamaica--Monymusk,

sugarcane observed irrigated yield and simulated

irrigated yield from 1963 to 1982 (t/ha).

From 1975 to 1982, there was no clear relationship

between simulated irrigated yield and observed yield. 'The

specific causes for this were explained before.

The fact that the observed yield values are approxi-

mately 20 to 40 percent below the simulated irrigated yield

values may be an indication that, everything else remaining

the same, better water-management procedures are needed to

improve sugarcane yields. The relationship between
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sugarcane observed yield and simulated rain-fed yield is

provided in Figure 34.
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Figure 34. Deterministic YIELD simulator: Jamaica-~Monymusk,

sugarcane observed irrigated yield and simulated

rain-fed yield from 1963 to 1982 (t/ha).

From the results presented, it may be observed that the

simulated rain-fed yield is closer to the observed yield, as

compared to the simulated irrigated yield, for the years

from 1963 to 1977. Observed sugarcane yield values are in

most cases below the simulated sugarcane rain-fed yield.

This fact may suggest that some other factor influenced the

decrease in sugarcane yield, such as pest and disease,

storms, and/or labor and market conditions.
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The observed sugarcane yield trend for Monymusk is -~

repeated by the simulated rain-fed sugarcane yield for the

years 1963 to 1973. Again, effects of a socio-political

nature may have caused strong variations in the observed

yield trend from 1974 to 1982, especially because there were

no reported cases of major disease outbreaks or pests on

sugarcane crop fields during the period studied.

i Scattergrams of the simulated sugarcane yield results

and the observed irrigated sugarcane yield are presented in

Figures 35 and 36.
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Figure 35. Deterministic YIELD simulator: Jamaica--Monymusk,

sugarcane irrigated observed yield versus

simulated irrigated yield(t/ha).
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Sugarcane observed yield and sugarcane irrigated yield

results (Figure 35) are clustered above the 45-degree line.

For all years studied, the values of simulated irrigated

yields were larger than the values of the observed yields.

Also, sugarcane observed yields were plotted against rain-

fed observed sugarcane yields (see Figure 36).
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Figure 36. Deterministic YIELD simulator: Jamaica--Monymusk,

sugarcane irrigated observed yield versus

simulated rain-fed yield (t/ha).

 

The yield data presented in this case are also clus-

tered slightly above the 45-degree line. This is an indica-

tion that the results of the rain-fed simulation are larger

than the observed sugarcane yield.
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From the location of the cluster center, it can be d

inferred that the model reflects more closely the results of

rain-fed yield than of irrigated yield when compared to

observed yield. The results also suggest that irrigation

scheme, in addition to other management practices, must have

been used to improve yields. One can also conclude from the

results that water deficit affected final yield.

The deterministic YIELD simulator model was also used

to simulate average yield values of two other crops in

Jamaica: tobacco and sorghum. For these crops, only

average and no yearly observed yield was available for the

study regions. The simulation model was run only once

through, to simulate yield for the "average" year; the

environmental variables were averaged on a month-by-month

basis to generate one year of average values for precipita-

tion, temperature, relative humidity, solar radiation, and

wind velocity to simulate the irrigated and rain-fed yields.

The results of the simulation run for the "average"

 
year for tobacco and sorghum for the Worthy Park, Caymanas,

and Monymusk regions are presented in Table 9.

The average yields for Jamaica were provided by the

Ministry of Agriculture. They are:

l. tobacco: 1.0 to 2.0 tons per hectare

2. sorghum: .297 to 1.028 tons per hectare;

under good management and cultivar, 1.136 tons

per hectare
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Table 9. Deterministic YIELD simulator: tobacco and sorghum:

Jamaica-—Worthy Park, Caymanas, and Monymusk. ’

Simulated ”average" yield results over the period

from 1963 to 1982 (tons/ha)

 

 

Region ......Tobacco...... .......Sorghum.....

Irrigated Rain-fed Irrigated Rain-fed

Worthy

Park 3.148 2.462 3.869 3.803

Caymanas 3.033 2.212 3.308 2.866

Monymusk 4.862 3.589 3.627 3.250

 

Source: Compiled from simulation results.

Doorenbos and Kassam (1979) indicated the following

yields of high-producing varieties adapted to the climatic

conditions of the available growing season under adequate

water supply and high level of agricultural inputs under

irrigated farming conditions for sugarcane, tobacco, and

sorghum:

1. sugarcane (cane) 100.00 to 150.00 tons/ha

2. tobacco (leaf) 1.50 to 2.50 tons/ha

3. sorghum (grain) 2.00 to 5.00 tons/ha

The deterministic YIELD simulator results for sugarcane

are within the yield value ranges given by Doorenbos and

Kassam (1979). For sorghum, the simulation results are

quite good when compared to Doorenbos and Kassam but very

high when compared to Jamaica's average, suggesting that
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there is room for improvement in Jamaicafls sorghum-

production system.

The simulation results in terms of yield average are

very high compared to the average Jamaica tobacco yield and

also very high when compared to Doorenbos and Kassanfls yield

values. That fact may be an indication that a refinement of

the model's parameters or an adjustment of the yield gen-

erated by the model may be necessary for tobacco, consider-

ing its unique production system. Tobacco is transplanted

to the crop field at a certain stage of the growing season,

and the harvesting technique is unique. The leaves are

harvested during a long period.

To summarize the discussion of the deterministic YIELD

simulator for agro-ecological conditions represented by the

Worthy Park, Caymanas, and Monymusk regions in Jamaica, as a

tool in formulating policy decisions regarding the produc-

tion of sugarcane, the results indicated that there is room

for improvement in the sugarcane—production system; more

effective water-management procedures may improve yields.

For sorghum, a complete review of Jamaica's production

system may be justified to improve yields. For tobacco,

some refinements in the model may be needed to improve

simulation results and to obtain a more significant rela-

tionship between observed yield and simulated results.
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Improvements in the tobacco-production system seem jus-

tified. ‘

The data set used in the deterministic YIELD model was

used to run the stochastic YIELD model (SYS). With the

stochastic YIELD model, some random variations are intro-

duced that are inherent in the exogenous environmental vari-

ables. Also, variations will be introduced to some control

inputs to the model. It is expected that the SYS will

provide insights into the yield variations as some of the

exogenous inputs are taken as random variables.

5! l I’ YIEIES' 1| 1 .__

Enviranmentallnauts

The CRIBS-Jamaica national data base was used to esti—

mate the probability density function statistics for the

environmental inputs. The Statistical Analysis System (SAS,

1985) software package was used for the statistical analy-

sis and to identify the probability density function and

distribution parameters to use in the simulation model.

Probability density function statistics for the envi—

ronmental variable precipitation for each month of the year

were used to run the simulation model. The statistics for

Worthy Park, Caymanas, and Monymusk are presented in Tables

10, 11 and 12, respectively.

Monthly mean precipitation was used because of the

sensitivity of the model to precipitation values. Also,
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seasonal rainfall distribution is important for agricultural

production systems and hence for yield production. No cdr-

relation between precipitation in different months was

assumed; that is, each month was considered independent of

the others.

Table 10. Stochastic YIELD simulator: precipitation

probability density function statistics for

Jamaica--Worthy Park, for the years 1963 to

1982 (mm/month)

 

 

Month of the Standard

Year Mean Deviation Skewness

January 88.900 91.766 2.521

February 52.211 39.146 1.554

March 44.027 38.751 1.370

April 97.084 68.330 1.304

May 186.831 116.363 0.377

June 124.178 89.878 1.673

July 111.478 28.973 0.610

August 181.751 116.140 2.107

September 199.249 117.639 1.921

October 197.838 110.303 1.534

November 94.262 60.328 0.838

December 52.776 24.289 0.705

 

Source: Compiled from CRIBS-Jamaica National Data Base

(CRIBS-MSU).
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Table 11. Stochastic YIELD simulator: precipitation

probability density function statistics for

Jamaica--Caymanas, for the years 1963 to 1982

 

 

(mm/month)

Month of the Standard

Year Mean Deviation Skewness

January 18.473 22.006 2.042

February 16.625 14.255 0.514

March 16.972 134608 0.631

April 41.679 51.519 2.975

May 107.026 108.403 1.296

June 51.954 61.014 1.663

July 44.681 42.362 0.882

August 87.053 77.524 2.211

September 113.492 135.541 3.463

October 166.254 141.858 1.947

November 76.200 66.545 2:737

December 42.603 40.639 1.280

 

Source: Compiled from CRIBS-Jamaica National Data Base

(CRIES-MSU) .

Variations in temperature, relative humidity, solar

radiation, and wind velocity are not as large as variations

in precipitation, and the available data values, mainly

solar radiation and wind velocity, allied to precision and

the assumption that water availability is the main factor in

biomass production, influence the decision to use annual and

not monthly distribution as was done with precipitation.

Minimum.and the maximum annual values for those variables

were taken to run the model.
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Table 12. Stochastic YIELD simulator: precipitation

probability density function statistics for

Jamaica--Monymusk, for the years 1963 to 1982“

 

 

(mm/month)

Month of the Standard

Year Mean Deviation Skewness

January 43.053 42.226 2.190

February 18.034 13.861 1.248

March 31.115 30.844 1.340

April 40.259 43.107 2.589

May 115.062 84.825 1.103

June 82.042 72.393 0.577

July 45.212 37.797 0.920

August 91.186 64.241 1.754

September 142.240 153.340 2.907

October 167.386 96.305 1.097

November 81.153 47.279 0.044

December 51.689 41.165 1.387

 

Source: Compiled from CRIBS-Jamaica National Data Base

(CRIES—MSU).

A uniform random number generator can be used to gen-

erate random variates for all environmental variables. The

values derived from the CRIBS-Jamaica national data base are

presented in Tables 13, 14, and 15.
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Table 13. Stochastic YIELD simulator: temperature, relative

humidity, solar radiation, and wind velocity-

probability density function statistics for

Jamaica—~Worthy Park for the years 1963 to

 

 

1982

Environmental

Variable Minimum Maximum

Temperaturea 20.44 30:78

Relative

Humidityb 75.50 91.50

Solar

RadiationC 4.00 7.60

Wind

Velocityd 0.00 2.50

 

Source: Compiled from CRIBS-Jamaica National Data Base

(CRIBS-MSU).

aTemperature units are in degrees Celsius.

bRelative humidity units are in percentage.

CSolar radiation units are in hours/day.

dWind velocity units are in meters/second, day/night

wind ratio assumed to be 1.
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Table 14. Stochastic YIELD simulator: temperature, relative

humidity, solar radiation, and wind velocity’

probability density function statistics for

Jamaicar-Caymanas for the years 1963 to 1982

 

 

Environmental

Variable Minimum Maximum

Temperaturea 25.06 29.44

Relative

Humidityb 52.00 87.00

Solar

RadiationC 1.00 8.00

Wind

Velocity d 0.00 2.50

 

Source: Compiled from CRIBS-Jamaica National Data Base

(CRIBS-MSU) .

aTemperature units are in degrees Celsius.

bRelative humidity units are in percentage.

CSolar radiation units are in hours/day.

dWind velocity units are in meters/second, day/night

wind ratio assumed to be 1.
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Table 15. Stochastic YIELD simulator: temperature, relative

humidity, solar radiation, and wind velocity

probability density function statistics for

Jamaica--Monymusk for the years 1963 to 1982.

 

 

Environmental

Variable Minimum Maximum

Temperaturea 23.89 29.33

Relative

Humidityb 61.00 93.00

Solar

RadiationC 5.20 9.60

Wind

Velocityd 0.00 2.50

 

Source: Compiled from CRIBS—Jamaica National Data Base

(CRIES-MSU).

aTemperature units are in degrees Celsius.

bRelative humidity units are in percentage.

CSolar radiation units are in hours/day.

dWind velocity units are in meters/second, day/night

wind ratio assumed to be 1.

Other stochastic inputs for sugarcane used to run the

simulation model are:

1. Sowing or planting date for sugarcane. This is

generated in the model by a uniformly distributed random

number in the interval from 01/30/YY to 03/25/YY for Worthy

Park, Caymanas, and Monymusk. Those values were derived

from the sowing or planting scheme given by the RPPD in
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Jamaica as a result of variations in sugarcane planting

dates.

2. Number of days for each growth stage of the growing

period for Worthy Park, Caymanas, and Monymusk was generated

for the model by a uniformly distributed random-number gen-

erator in the interval given by Doorenbos and Kassam (1979).

3. Fertilizer availability, in percentage, was used in

the intervals from 36.92 to 100 percent, 40 to 100 percent,

and 48468 to 80.69 percent for‘Worthy Park, Caymanas, and

Monymusk, respectively, derived from fertilizer-availability

data (Table 16, 17 and 18) and crop fertilizer requirements

as given by Doorenbos and Kassam (1979).

Other stochastic inputs for tobacco and sorghum used to

run the simulation model are:

1. The sowing or planting date for tobacco and sor—

ghum, derived from uniformly distributed random numbers in

the interval from 01/15/YY to 03/15/YY. Those values were

derived from the sowing or planting scheme given by the RPPD

in Jamaica as a result of variations in tobacco and sorghum

planting dates.

2. The number of days for each growth stage of the

growing period. This was generated in the model from a

uniformly distributed random-number generator in the inter-

val provided by Doorenbos and Kassam (1979).
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3. Fertilizer availability, in percentage. This was

assumed to vary in the interval from 50 to 100 percent. 1k)

data on fertilizer usage for tobacco and sorghum were avail-

able.

Table 16. Stochastic YIELD simulator: fertilizer usage for

sugarcane, Jamaica-~Worthy Park, for the years

1963 to 1982 (kg/ha)

 

  
Year ...............Ferti1izer Usage...................

Nitrogen(N) Potassium(P) Phosphorus(K)

1963 72.68 24.51 98.98

1964 74.50 26.54 105.96

1965 99.20 28.47 139.54

1966 75.92 27.03 110.05

1967 68.54 24.13 102.65

1968 66.84 22.56 96.06

1969 66.84 22.56 96.06

1970 84.93 23.94 99.73

1971 70.02 17.93 78.20

1972 82.87 27.00 106.67

1973 85.20 275.88 106.77

1974 96.94 41.18 139.44

1975 121.15 40.29 108.54

1976 94.31 24.18 119.17

1977 93.85 30.95 117.57

1978 99.03 31.15 138.88

1979 80.54 a 108.84

1980 89.84 32.29 121.48

1981 92.05 38.03 127.39

1982 95.69 18.43 143.57

 

  

Source: Jamaica, Ministry of Agriculture, Rural and Physi-

cal Planning Division.

aMissing data.
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Table 17. Stochastic YIELD simulator: fertilizer usage for

sugarcane, Jamaica--Caymanas, for the years 1963

to 1976 (kg/ha)

 

 

 

 

Year .................Fertilizer Usage.................

Nitrogen(N) Potassium(P) Phosphorus<K>

1963 95.11 94.37 128.22

1964 95.29 106.69 134.38

1965 94.71 69.05 163.88

1966 94.58 91.84 164.65

1967 94.61 89.19 162.01

1968 94.12 87.98 167.91

1969 94.12 87.98 168.44

1970 41.69 20.20 24.67

1971 43.15 20.04 22.67

1972 103.35 86.96 13.00

1973 46.28 19.36 18.55

1974 107.53 80.00 138.71

1975 101.20 81.78 129579

1976 110.42 76.03 137.80

Source: Jamaica, Ministry of Agriculture, Rural and Physi-

cal Planning Division.
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Table 18. Stochastic YIELD simulator: fertilizer usage for

sugarcane, Jamaica--Monymusk, for the years 1963

to 1976 (kg/ha) ‘

 

 
 

Year .................Ferti1izer Usage.................

Nitrogen(N) Potassium(P) Phosphorus(K)

1963 94.96 31.50 67.37

1964 93.91 38.23 70.69

1965 95.21 39.35 66.93

1966 95.35 42.14 66.57

1967 95.71 43.62 72.45

1968 98.79 51.23 71.75

1969 98.79 51.23 71.75

1970 99.19 53.69 88.17

1971 99.98 54.62 95.96

1972 99.97 54.33 110.77

1973 93.82 a 125.81

1974 94.34 a 45.13

1975 94.69 a a

1976 94.25 a a

 

 

Source: Jamaica, Ministry of Agriculture, Rural and Physi-

cal Planning Division.

aMissing data.

5! l l' 1115111 3' 1| I . __
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Five hundred simulation runs for sugarcane, tobacco,

and sorghum were made for Worthy Park, Caymanas, and

Monymusk. The resulting yield statistics were computed

using the Statistical Analysis System (SAS, 1985) software

 package for microcomputer.

Descriptive statistics for sugarcane potential yield,

sugarcane irrigated yield, and sugarcane rain-fed yield are

presented in Table 19.

 



 

Table 19. Stochastic YIELD simulator:
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sugarcane results,

Jamaica--Worthy Park, Caymanas, and Monymusk

 

 

(tons/ha)

Worthy

Statistics Park Caymanas Monymusk

Potential Yield

Mean 102.311 104.035 124.171

Std Dev 8.554 10.886 12.958

Skewness 0.005 0.141 0.068

Quantiles

100% 127.968 135.145 157.732

75% 107.931 111.700 133.765

50% 102.679 103.671 124.053

25% 96.181 95.978 115.044

0% 78.217 78.534 88.981

Irrigated Yield

Mean 84.511 86.969 99.724

Std Dev 7.058 9.107 10.451

Skewness -0.004 0.130 0.063

Quantiles

100% 106.044 112:709 127.279

75% 89.136 93.505 107.156

50% 84.782 86.760 99.621

25% 79.390 80.274 92.384

0% 64.736 65.197 71.370

Rain-fed Yield

Mean 75.984 59.519 68.574

Std Dev 6.846 6.099 6.846

Skewness -0.049 0.116 0.015

Quantiles

100% 97.210 77.518 87.363

75% 80.576 63.881 73.213

50% 76.206 59.444 68.795

25% 71.342 55.039 63.957

0% 57.001 43.088 49.317

 

Source: Compiled from stochastic YIELD simulator results.
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For each simulation representing a crop year, random

variates were generated by random-number generator for that

particular simulation.’ The exogenous environmental inputs

were generated and entered into the simulation model as a

random number derived from the probability density func-

tions. The planting date and duration of each stage were

also random variables entered into the simulation run and

were assumed to be uniformly distributed (equal chance of

being selected, replacing sample) in a given interval.

Fertilizer availability was also assumed to be uniformly  
distributed in an interval because data availability and  precision were very poor.

The model parameters were assumed to be known with

certainty, implying the use of the variance partitioning

approach discussed in Chapter IV.

The stochastic YIELD simulation results for sugarcane

in the Worthy Park, Caymanas, and Monymusk regions are

provided in Table 19. Probability density function statis-

tics for potential, irrigated, and rain-fed yield for those

regions, such as mean, standard deviation, skewness, and

quantile values, were computed and are included in the

 discussion. Once again, potential, irrigated, and rain-fed

results were within the FAO yield results presented in

Doorenbos and Kassam (1979).
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The standard deviation was somewhat expected. In

general, it was 8 to 10 percent of the mean value. Some"

skewness to the right, a positive but not very significant

skew factor, was noted in the results for Caymanas (Figure

38 a, b and c).

No significant skew factor (all skew factors computed

were close to zero) was computed for Worthy Park and

Monymusk, which indicates a tendency to cluster around the

mean value by the simulated yield. Quantiles also are

presented in Table 19, which includes the minimum (0 per-

 cent) and the maximum (100 percent) values for the simulated

yield.  
In general, the shape of the distribution function

generated from a simulation model resembles the Gaussian or

normal distribution (where the skew factor is zero). Con-

sidering that, it can be said (SAS, 1985) that in 68 percent

of the cases, the yield estimated is within one standard

deviation (std) of the population mean; that is:

P (mean+std <= yield <= mean+std) = 0.68

and that in 95 percent of the cases, the yield estimated is

within two standard deviations of the population mean; that

is:

 P (mean+2*std <= yield <= mean+2*std) = 0.95
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and that in 99.7 percent of the cases, the yield estimated

is within three standard deviations of the population mean;

that is:

P (mean+3*std <== yield <= mean+3*std) = 0.99

where: P(a <= X <= b) = p is the probability (p) of the

random variable X being greater than or equal to a and less

than or equal to b.

The results for Worthy Park indicated that:

For the irrigated sugarcane yield

P (77.453 <= yield <= 91.569) = .68

P (70.395 <= yield <= 98.627) = .95

P (63.337 <= yield <= 105.685) = .997

For the rain-fed sugarcane yield

P (69.138 <= yield <= 82.830) = .68

P (62.292 <= yield <= 89.676) = .95

P (55.446 <== yield <= 96.522) = .997

In a more general form, the probability of any yield

value can be computed from:

 

b

P (a <= X <= b) = f f(x)dx

a

where: x - mean 2

1 —1/2( ---------- )

f(x) = ---------- e std

, 1/2

‘lstd*[2pi]

or with the use of normal distribution tables.
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Histograms are provided for the three simulation

results--that is, potential, irrigated, and rain-fed yield—-

for sugarcane, for Worthy Park, Caymanas, and Monymusk

(Figures 37, 38 and 39, a, b, and c, respectively). The

histograms were plotted using the results of the 500 simula—

tion runs of the stochastic YIELD simulator, each with a

different scenario of 500 years of crop-growth simulation.

In the histogram plot, the horizontal axis shows, in

tons per hectare, the variation in yield results. The

vertical axis of the histogram plot represents the number of

occurrences for each yield value or group of values of the

simulation results and is called absolute frequency.

Clearly, the information displayed in Figure 37 can be

generated by a number of alternatives of interest to deci-

sion makers and policy planners by making changes in con—

trollable inputs such as planting date, fertilizer

availability, evaporation reduction factor, soil salinity

levels, and so on.

In addition to giving numerical results such as means,

standard deviation, skewness, and quantiles, histograms

facilitate assessment of the degree of risk involved or

associated with highly unfavorable outcomes. If the skew-

ness is toward the right, the probability of obtaining large

yield values is higher than if there is a negative skew

factor, with skewness to the left. 'Also, histograms and/or
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Sugarcane absolute frequency histogram for

potential, irrigated, and rain-fed yield.
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graphic representations are more readily understood and -

evaluated by decision makers than are such abstract concepts

as "standard deviation."

Comparisons can be made between the potential, irri-

gated, and rain-fed yields, and these comparisons can be

used as input to a feasibility study on investment in irri-

gation projects.

Results of the stochastic simulator for tobacco in the

Worthy Park, Caymanas, and Monymusk regions are provided in

Table 20. Potential, irrigated, and rain-fed yield statis—

tics such as means, standard deviation, skewness, and quan-

tiles are shown.

Yield for tobacco is quite high as compared to

Jamaica's average tobacco yield. As discussed before, some

model refinements may be justified, together with some more

reliable data-collection techniques, which would lead to

more precise data for inputs and also improve model results.

Also, the introduction of randomness into the model's

parameters might indicate which parameters are sensitive and

aid in the data-collection plan. The quantile statistics

indicate the minimum value and the maximum simulated value

of tobacco yield for potential, irrigated, and rain-fed con-

ditions.
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Table 20. Stochastic YIELD simulator: tobacco results,

Jamaica--Worthy Park, Caymanas, and Monymusk

 

 

(tons/ha)

Worthy

Statistics Park Caymanas Monymusk

Potential Yield

Mean 4.178 3.974 4.577

Std Dev 0.370 0.378 0.410

Skewness 0.015 0.069 0.002

Quantiles

100% 5.133 4.927 5.579

75% 4.443 4.236 4.862

50% 4.189 3.978 4.598

25% 3.913 2.969 4.283

0% 3.245 1.958 3.512

Irrigated Yield

Mean 3.625 3.325 3.966

Std Dev 0.326 0.317 0.356

Skewness 0.006 0.070 -0.008

Quantiles

100% 4.448 4.114 4.827

75% 3.868 3.537 4.216

50% 3.622 3.330 3.976

25% 3.395 3.080 3.712

0% 2.803 2.433 3.045

Rain-fed Yield

Mean 2.483 2.188 2.375

Std Dev 0.279 0.243 0.259

Skewness 0.107 0.112 -0.043

Quantiles

100% 3.317 2.831 2.956

75% 2.679 2.361 2.580

50% 2.477 2.187 2.371

~25% 2.278 2.006 2.173

0% 1.800 1.609 1.690

 

Source: Compiled from stochastic YIELD simulator results.
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The skew factor was not significant for tobacco for any

of the regions considered. For Caymanas, the skew factor

for tobacco was 0.112, which indicates some but not very

significant skewing to the right. The variation in tobacco

yield was quite large if one considers the minimum value

simulated, which is 1.609 t/ha for Caymanas rain—fed mini-

mum, and the maximum value simulated, which is 5.579 t/ha

for Monymusk potential yield.

Histogram plots for tobacco are shown for Worthy Park,

Caymanas, and Monymusk in Figures 40, 41, and 42, respec-

tively, which illustrate the potential, irrigated, and rain-

fed yield. The horizontal axes plot the simulated yield

values in tons per hectare, and the vertical axes show the

absolute frequency of each value. Histograms give decision

makers and planners a good perspective on yield variations.

The statistical results for sorghum, generated by the

stochastic YIELD simulator for Worthy Park, Caymanas, and

Monymusk, are presented in Table 21. Mean, standard devia-

tion, skewness, and quantiles are included. Sorghum yield

varied from a minimum value under rain—fed conditions in

Caymanas, which was 2.346 t/ha, to a maximum value of poten-

tial yield for Monymusk, which was 5.321 t/ha. The skewness

factor was very Small for all regions and under all condi-

tions.

i———_ __--, 
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Figure 40. Stochastic YIELD simulator: Jamaica--Worthy Park.

Tobacco absolute frequency histogram for

potential, irrigated, and rain—fed yield.
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Figure 41. Stochastic YIELD simulator: Jamaica--Caymanas.

Tobacco absolute frequency histogram for

potential, irrigated, and rain-fed yield.
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Figure 42. Stochastic YIELD simulator: Jamaica--Monymusk.

Tobacco absolute frequency histogram for

potential, irrigated, and rain-fed yield.
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Table 21. Stochastic YIELD simulator: sorghum results,

Jamaica--Worthy Park, Caymanas, and Monymusk

(tons/ha) ’

Worthy

Statistics Park Caymanas Monymusk

Potential Yield

Mean. 4.632 4.494 5.321

Std Dev 0.430 0.399 0.454

Skewness 0.006 0.028 -0.065

Quantiles

100% 5.691 5.733 6.520

75% 4.957 4.757 5.626

50% 4.622 4.514 5.327

25% 4.319 4.228 5.009

0% 3.368 3.391 3.861

Irrigated Yield

Mean 4.016 3.757 4.613

Std Dev 0.375 0.337 0.395

Skewness -0.011 0.013 -0.051

Quantiles

100% 4.967 4.805 5.648

75% 4.295 3.973 4.874

50% 4.010 3.773 4.615

25% 3.743 3.545 4.353

0% 2.909 2:762 3.363

Rain-fed Yield

Mean 3.570 3.200 3.814

Std Dev 0.363 0.287 0.329

Skewness -0.059 0.034 0.007

Quantiles

100% 4.470 4.161 45736

75% 3.827 3.386 4.022

50% 3.575 3.211 3.818

25% 3.324 3.009 3.596

0% 2.533 2.346 2.759

Source:

 
 

Compiled from stochastic YIELD simulator results.
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Some skew factors had negative values. 'This is an

indication that there was a tendency to skew toward the-

left, which shows a high probability of low yield values.

Observed yield values for Jamaica were very low, in terms of

average, as compared to the stochastic yield results and the

FAO yield values given in Doorenbos and Kassam (1979).

Again, although the results were within the yield range

given by Doorenbos and Kassam (1979), a suggestion for

further research would be to introduce some variance into

the model's parameters. This would permit evaluation of the

parameters' sensitivity and also guide future model refine-

ment as well as data-collection procedures.

Histogram plots for sorghum in the Worthy Park region

of Jamaica are presented in Figure 43. Three histograms are

shown (Figure 43 a, b, and c): potential sorghum yield,

irrigated sorghum yield, and rain-fed sorghum yield.

The histograms for stochastic yields resulted from the

simulator for the Caymanas region of Jamaica. Potential,

irrigated, and rain-fed yield are shown in Figure 44 a, b,

and c histograms, respectively.

Histogram plots for the Monymusk region of Jamaica,

derived from the stochastic YIELD simulator results (Figure

45 a, b, and c) represent the histogram for potential
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Figure 43. Stochastic YIELD simulator: Jamaica--Worthy Park.

Sorghum absolute frequency histogram for

potential, irrigated, and rain-fed yield.
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Figure 44. Stochastic YIELD simulator: Jamaica--Caymanas.

Sorghum absolute frequency histogram for

potential, irrigated, and rain-fed yield.
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sorghum yield, for irrigated sorghum yield, and for rainffed

yield.

Stccbasliz‘XIBID S' J l D . . E 11' __

W

The CRIES-Dominican Republic (DR) national data base

was used to estimate the probability density function sta-

tistics for the environmental inputs. The Statistical

Analysis System (SAS, 1985) software package was used for the

computation and statistical analysis to identify the distri—

bution parameters as inputs to the simulation model.

Probability density function statistics for the envi—

ronmental variable precipitation, for the Valdesia, Ocoa,

and Azua Ocoa Watershed AEZs, used to run the simulation

model, are provided in Tables 22, 23 and 24, respectively.

Monthly mean precipitation values were used because

the model is very sensitive to precipitation values. Also,

the seasonal rainfall pattern is important for agricultural

production systems, and large variation occurs with impor-

tant effects on yield response.

Variations in temperature, relative humidity, solar

radiation, and wind velocity were not as strong as varia-

tions in precipitation (Tables 25, 26, and 27). The availa-

bility of data for solar radiation and wind velocity is very

poor in comparison to the availability of data for precipi-

tation. The model's sensitivity to solar radiation and wind
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velocity inputs is not as significant as for precipitation,

and there is no important seasonal variation. These con-

siderations are taken into account, and the interval of

variation in those environmental variables is taken on an

annual basis and not on a monthly basis, as was done for the

precipitation inputs.

Table 22. Stochastic YIELD simulator: precipitation

probability density function statistics for

the Dominican Republic Ocoa Watershed's AEZ

Valdesia, for the years 1970 to 1984 (mm/month)

 

 

Month of the Standard

Year Mean Deviation Skewness

January 56.138 34.076 0.923

February 60.300 29.619 -0.384

March 58.100 50.932 1.950

April 90.946 71.414 1.442

May' . 219.708 207.483 2.006

June 233.085 165.796 0.368

July 142.561 83.638 0.733

August 199.531 96.655 0.653

September 186.354 66.737 0.084

October 192.577 76.736 0.581

November 84.169 45.014 1.076

December 68.162 43.388 1.141

 

Source: Compiled from CRIBS-Dominican Republic National

Data Base (CRIEs-MSU).
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Table 23. Stochastic YIELD simulator: precipitation

probability density function statistics for

the Dominican Republic Ocoa Watershed's AEZ

Ocoa, for the years 1970 to 1982 Cmm/month)

 

 

Month of the Standard

Year Mean Deviation Skewness

January 14.761 19.755 2.786

February 23.523 17.934 0.245

March 23.346 19.935 0.612

April 51.577 61.848 2.455

May 145.754 105.729 1.083

June 80.954 67.267 0.404

July 67.961 60.386 2.442

August 104.131 111.028 1.836

September 140.015 151.684 2.337

October 106.369 62.610 0.457

November 37.780 22.789 0.100

December 25.108 23.586 1.256

 

Source: Compiled from CRIBS-Dominican Republic National

(CRIES—MSU).Data Base
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Table 24. Stochastic YIELD simulator: precipitation

probability density function statistics for

the Dominican Republic Ocoa Watershed's AEZ

Azua, for the years 1970 to 1984 (mm/month)

 

 

 

Month of the Standard

Year Mean Deviation Skewness

January 11.707 28.495 3.615

February 7.313 10.912 1.613

March 16.320 26.873 2.946

April 14.880 15.229 1.554

May 78.926 76.947 0.867

June 55.193 71.649 1.395

July 28.400 35.197 1.191

August 55.087 37.823 0.111

September 84.507 124.418 3.056

October 88.247 62.215 0.762

November 19.547 26.655 1.754

December 17.647 38.000 3.215

Source: Compiled from CRIBS-Dominican Republic National

Data Base (CRIEs-MSU).
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Table 25. Stochastic YIELD simulator: temperature, relative

humidity, solar radiation, and wind velocity

probability density function statistics for the

Dominican Republic's Ocoa Watershed AEZ Valdesia,

for the years 1970 to 1984

 

 

Environmental

Variable Minimum Maximum

Temperaturea 23.90 27.80

Relative

Humidityb 64.90 34.70

Solar

RadiationC 7.30 9.60

Wind

Velocityd 0.70 5.50

 

Source: Compiled from CRIBS-Dominican Republic National

Data Base (CRIBS-MSU).

aTemperature units are in degrees Celsius.

bRelative humidity units are in percentage.

CSolar radiation units are in hours/day.

dWind velocity units are in meters/second, day/night

wind ratio assumed to be 1.
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Table 26. Stochastic YIELD simulator: temperature, relative

humidity, solar radiation, and wind velocity.

probability density function statistics for the

Dominican Republicis Ocoa Watershed AEZ Ocoa for

the years 1970 to 1984

 

 

Environmental

Variable Minimum Maximum

Temperaturea 21.40 24~80

Relative

Humidityb 65.00 87.90

Solar

RadiationC 5.00 9.00

Wind

Velocityd 0.10 4.50

 

Source: Compiled from CRIES-Dominican.Republic National

Data Base (CRIES-MSU).

aTemperature units are in degrees Celsius.

bRelative humidity units are in percentage.

CSolar radiation units are in hours/day.

dWind velocity units are in meters/second, day/night

wind ratio assumed to be 1.
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Table 27. Stochastic YIELD simulator: temperature, relative

humidity, solar radiation, and wind velocity-

probability density function statistics for the

Dominican Republic's Ocoa Watershed AEZ Azua for

the years 1970 to 1984

 

 

Environmental

Variable Minimum Maximum

Temperaturea 23.10 27.90

Relative

Humidityb 64.10 87.50

Solar

RadiationC
1.80 8.30

Wind

Velocityd
0.00 3.50

 

Source: Compiled from CRIBS-Dominican Republic National

Data Base (CRIES—MSU).

aTemperature units are in degrees Celsius.

bRelative humidity units are in percentage.

CSolar radiation units are in hours/day.

dWind velocity units are in meters/second, day/night

wind ratio assumed to be 1.

Crop parameters for the simulation of rice, potato, and

fresh pea yields for the Ocoa Watershed's Valdesia, Ocoa,

and Azua AEZs are given in Table 28. It was assumed that

there were no variations from region to region because those

regions are close together, and no detailed information on

differences among them is available. Values were derived
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Table 28. Deterministic YIELD simulator: Dominican Republic

--Ocoa Watershed crop parameters--rice, potato,

fresh pea for Valdesia, Ocoa, and Azua (Doorenbos

& Kassam, 1979) ~

 

Crop Parameter Fresh

Type Rice Potato Pea

 

Root Size

Variation

(cm) 0.0 -100.0 0.0 -50.0 0.0 -150.0

Leaf Area

Index (LAI) 3 4 3

Water Depletion

Factor (p)

Variationa- .300-.800 .175-.500 .225-«675

Production Rate

(ym in kg/ha/

day)b .0-35.0 .o-2o.o .o-2o.0

Crop

Coefficient

(kc) C .95 -1.15 .40 —1.20 .40 -1.20

Yield Response

Factor <ky)d ' .20-1.15 .20-1.1o .20-1.15

 

Source: Compiled from CRIBS-Dominican Republic National

Data Base (CRIES-MSU).

aETm-~Maximum evapotranspiration dependent factor.

bTemperature dependent factor.

CDepend on crop stage, wind velocity, and relative

humidity.

6Depend on crop stage.
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from Doorenbos and Kassam (1979) and adjusted for conditions

in the Dominican Republic, using information from the CRIES-

DR national data base. In the stochastic YIELD simulator,

those values are assumed to be known with certainty; that

is, they have zero variance.

Crop parameters used in the model for simulation runs

for onion and cabbage are presented in Table 29.

Farm-management parameters for rice, potato, and fresh

pea used in the stochastic yield simulator are provided

in Table 30.

For onion and cabbage, the farm-management-practice

parameters used in the stochastic simulation process are

given in Table 31.

Parameters that identify the locality, region, or AEZ

are presented in Table 32. Values are given for Valdesia,

Ocoa, and Azua, the three AEZs in the Ocoa Watershed.
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Table 29. Stochastic YIELD simulator: Dominican Republic

--Ocoa Watershed crop parameters-~onion and

cabbage for Valdesia,

& Kassam, 1979)

and Azua (Doorenbos

 

Crop Parameter

Type Onion Cabbage

 

Root Size

Variation

(cm)

Leaf Area

Index (LAI)

Water Depletion

Factor (p)

Variationa

Production Rate

(ym)b

Crop

Coefficient

(kc) C

Yield Response

Factor (ky)d

.175-.500

0-65

.40'-1.10

.30-1.10

.225-.675

0-20

.40-—1.10

.20 -.95

 

Source: Compiled from CRIBS-Dominican Republic National

Data Base (CRIES-MSU).

aETm—Maximum evapotranspiration dependent factor.

bTemperature dependent factor.

CDepend on crop stage, wind velocity, and relative

humidity.

6Depend on crop stage.
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Table 30. Stochastic YIELD simulator: Dominican Republic--

Ocoa Watershed farm-management-practice

parameters-~rice, potato, and fresh pea for

Valdesia, Ocoa, and Azua

 

Farm-Management? Fresh

Practice Parameters Rice Potato Pea

 

Sowing or Planting

date MM/DD/YY 08-09/YY 01-02/YY 07-08/YY

Harvesting date

Il’lll’I-JVIM/YYa 12-01/YY+1 05~O6/YY 12—01/YY

Duration of growth

stages in days

stage 1 15-20 20-30 10-25

stage 2 15-20 25-40 20-25

stage 3 40-80 25-45 15-20

stage 4 20-35 20-35 15-20

stage 5 5-8 0—8 0-5

Irrigation parameter

or valueC F F F

Evaporation

Reduction Factord N N N

Fertilizer Usagee 0—10 0-10 0—10

20-50 20-50 20-50

80—100 80-100 80—100

 

Source: Compiled from CRIBS-Dominican Republic National

Data Base (CRIES -MSU) .

6+1 means following year.

bCompiled from Doorenbos and Kassam (1979) and

adjusted to DR conditions.

CUnless rain-fed production, full irrigation was used.

No data available on irrigation scheme.

dNo evaporation reduction factor was used.

eFertilizer usage (Valdesia, Ocoa, and Valdesia, respec-

tively) in percentage relative to Doorenbos and Kassam's

(1979) crop-requirement guidelines.
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Table 31. Stochastic YIELD simulator: Dominican Republic--

Ocoa Watershed farm-management-practice

parameters--onion and cabbage for valdesia, Oéoa,

and Azua

 

Farm-Management

Practice Parameters Onion Cabbage

 

Sowing or Planting

date MM/DD/YY 09-10/YY 07—09/YY

Harvesting date

MM-MM/YYe1 12-01/YY+1 10—12/YY

Duration of growth

stages in days

stage 1 15—35 15-35

stage 2 25-35 20-30

stage 3 30—50 25-40

stage 4 10-30 10—30

stage 5 5-8 5-3

Irrigation parameter

or valueC F F

Evaporation

Reduction Factord N N

Fertilizer Usagee 0-10 0-10

20—50 20—50

80—100 80-100

 

Source: Compiled from CRIBS-Dominican Republic National

Data Base (CRIES-MSU).

a+1 means following year.

bCompiled from Doorenbos and Kassam (1979) and

adjusted to DR data.

CFull irrigation was used. No data available on

irrigation scheme.

dNo evaporation reduction factor was used.

eFertilizer usage (Valdesia, Ocoa, and Valdesia, respec-

tively) in percentage relative to Doorenbos and Kassam's

(1979) crop-requirement guidelines.
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Table 32. Stochastic YIELD simulator: Dominican Republic—-

Ocoa Watershed local parameters for Valdesia,-

Ocoa, and Azua.

 

Crop

Parameter Valdesia Ocoa Azua

 

Average altitude

in meters

Average latitude

in degrees

Location

Average slope

percent rangea

Average soil

typea

Average soil

textural class

in mm/m

Soil moisture

in mm/mb

Soil salinity

levelC

2000.0

18.0

1

20-30

fine silty

4O

40

N/A

1000.0 160.0

18.0 18.0

1 1

12-15 4-8

fine silty fine silty

78 109

78 109

N/A N/A

Source: Compiled from CRIBS-Dominican Republic National

Data Base (CRIBS-MSU).

aTable 1, Chapter III.

bMoisture at sowing date.

CN/A--data not available.

Doorenbos and Kassam (1979) provided the following

yields of high-producing varieties adapted to the climatic

conditions of the available growing season under adequate
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water supply and high levels of agricultural inputs under

irrigated farming conditions for rice, potato, fresh pea,

onion, and cabbage:

1. rice (paddy) 4.00 to 8.00 tons/ha

2. potato (tuber) 15.00 to 40.00 tons/ha

3. fresh pea (pod) 2.00 to 3.00 tons/ha

4. onion (bulb) 35.00 to 45.00 tons/ha

5. cabbage (head) 40.00 to 60.00 tons/ha

The average yields for Ocoa Watershed for rice, potato,

fresh pea, onion, and cabbage are as follows (compiled from

CRIBS-Dominican Republic National Data Base; CRIES-MSU):

1. rice (paddy) 3.79 to 4.94 tons/ha

2. potato (tuber) 7.55 tons/ha

3. fresh pea (pod) 1.89 tons/ha

4. onion - (bulb) 31.45 tons/ha

5. cabbage (head) 12.58 to 37.74 tons/ha

The yield values given by Doorenbos and Kassam (1979)

were much higher than the actual yield values known for the

Dominican Republic, whose crops are not, of course, grown in

optimal conditions as Doorenbos and Kassam assumed for their

yield values.

. . . . . __

SLQQhaSLl£_XlELETSL?H1aLQ£§_Dfl?fn1£an_B£Dnhllfl__

The results of the 500 simulation runs of the stochas-

tic yield simulator for onion are presented in Table 33.
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Table 33. Stochastic YIELD simulator: probability density

function statistics results for onion for the

Dominican Republic-~Ocoa Watershed--Va1desia,

Ocoa, and Azua AEZs (tons/ha)

 

Distribution

Statistics Valdesia Ocoa Azua

 

Potential Yield

 

Mean 60.347 43.332 56.716

Std Dev 4.651 3.523 4.672

Skewness 0.141 ~0.154 0.040

Quantiles

100% 73.846 51.773 69:70?

75% 63.447 45.703 59.831

50% 60.158 43.309 56.721

25% 57.191 41.083 53.467

0% 46.083 34.455 42.999

Irrigated Yield

Mean 15.468 37.566 53.883

Std Dev 1.197 3.086 4.424

Skewness 0.149 -0.l36 0.033

Quantiles

100% 18.886 45.245 66.170

75% 16.217 39.603 56.783

50% 15.457 37.588 53.826

25% 14.632 35.628 50.796

0% 11.778 30.081 40.872

Rain-fed Yield

Mean 9.887 24.058 38.571

Std Dev 0.767 1.952 3.299

Skewness 0.161 -0.078 -0.053

Quantiles

100% 12.127 28.899 47.172

75% 10.414 25.478 40.833

50% 9.834 23.976 38.577

25% 9.322 22.792 36.298

0% 7.568 19.059 28.394

Source: Compiled from the stochastic YIELD simulator

results.
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The table shows the statistics computed for the proba-

bility density functions derived from the simulated yield

values. The data show the potential, irrigated, and rain-

fed yields for the AEZs in the Ocoa Watershed. The results

are within the FAO and DR observed yield ranges.

Values for Valdesia are very low as a result of median

to steep slope conditions, reducing infiltration and

recharge of soil moisture. Higher onion yields are shown in

the Azua AEZ, which has a gentler slope and better condi-

tions for growing crops. The skew factors are not very

significant; some are negative and some are positive as a

result of wide variations in the exogenous inputs.

Histogram plots for the simulated yield for the Ocoa

AEZ in the Ocoa Watershed are displayed in Figure 46. The

plots illustrate the variations in the yield results for

onion resulting from variations in the exogenous inputs for

the simulation model in potential onion yield, irrigated

onion yield, and rain—fed onion yield results (Figure 46 a,

b, and 0).

Results for rice for the Valdesia, Ocoa, and Azua AEZs

in the Ocoa Watershed are presented in Table 34. Once

again, the values are close to those presented by Doorenbos

and Kassam (1979). As a comparison, the average yield

values for the Ocoa Watershed are generally quite low (3.79

to 4.94 tons/ha) .
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Table 34. Stochastic YIELD simulator: probability density

function statistics results for rice for the

Dominican Republic-~Ocoa Watershed--Valdesia,

Ocoa, and Azua AEZs (tons/ha) ’

 

Distribution

Statistics Valdesia Ocoa Azua

 

Potential Yield

 

Mean. 6.307 5.793 5.330

Std Dev 0.557 0.518 0.462

Skewness -0.040 0.049 -0.011

Quantiles

100% 7.623 6.965 6.465

75% 6.736 6.171 5.686

50% 6.328 5.804 5.336

25% 5.883 5.388 4.970

0% 4.883 4.553 4.172

Irrigated Yield

Mean 1.616 3.932 5.063

Std Dev 0.146 0.352 0.439

Skewness 0.016 0.057 -0.013

Quantiles

100% 2.005 4.742 6.123

75% 1.729 4.195 5.407

50% 1.617 3.930 5.074

25% 1.504 3.659 4.721

0% 1.282 3.060 3.972

Rain-fed Yield

Mean 1.018 2.672 3.742

Std Dev 0.078 0.215 0.303

Skewness 0.036 0.066 -0.041

Quantiles

100% 1.245 3.225 4.477

75% 1.075 2.822 3.983

50% 1.021 2.674 3.749

25% 0.959 2.514 3.506

0% 0.830 2.103 2.972

Source: Compiled from the stochastic YIELD simulator

results.
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A wide range of simulated yields exists as a result,of

the large variation among the AEZs. The skew factors are

small and therefore not significant, and they assume posi-

tive and negative values. The yield variation for rice is

from the minimum 0.83 tons/ha to the maximum 7.623 tons/ha.

This is largely caused by the steep slope conditions not

considered in potential yield.

Histograms for the rice-yield results for the Ocoa AEZ

are displayed in Figure 47.

Results for fresh pea for the Ocoa Watershed are shown

in terms of probability density function statistics (Table

35). The model fairly represents the average fresh pea

yield for the AEZs. Yields are slightly higher if compared

to the average observed yield for the Ocoa Watershed. The

range for fresh pea for the watershed is from a minimum of

1.492tons/ha for Valdesia rain-fed yield to a maximum of

5.642tons/ha for Ocoa potential yield.

The skew factors are not very significant, and they

have positive and negative signs. The range of variation is

from —0.027 to 0.123. Because of local conditions, among

other things, Valdesia has the most losses in yield among

the AEZs considered.
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Table 35. Stochastic YIELD simulator: probability density

function statistics results for fresh pea

results for Dominican Republic-~Ocoa Watershed--

Valdesia, Ocoa, and Azua AEZs (tons/ha)
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Distribution

Statistics Valdesia Ocoa Azua

Potential Yield

Mean 3.935 4.692 3.757

Std Dev 0.259 0.323 0.230

Skewness 0.073 0.069 -0.024

Quantiles

100% 4.674 5.462 4.314

75% 4.130 4.951 3.934

50% 3.932 4.674 3.763

25% 3.746 4.449 3.584

0% 3.303 3.867 3.089

Irrigated Yield

Mean 2.671 3.184 3.570

Std Dev 0.177 0.220 0.219

Skewness 0.077 0.063 -0.027

Quantiles

100% 3.209 3.721 4.101

75% 2.792 3.367 3.730

50% 2.668 3.167 3.573

25% 2.538 3.017 3.406

0% 2.197 2.620 2.921

Rain-fed Yield

Mean 1.857 2.372 2.799

Std Dev 0.157 0.203 0.217

Skewness 0.123 -0.017 -0.007

Quantiles

100% 2.292 2.824 3.345

75% 1.970 2.546 2.963

50% 1.845 2.371 2.795

25% 1.736 2.211 2.631

0% 1.492 1.883 2.185

 

Source: Compiled from the stochastic YIELD simulator

results.
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In Figure 48, histograms are presented showing the -

variations in the simulated yield for the Ocoa AEZ for fresh

pea. Histogram (a) displays the potential fresh pea yield,

(b) displays the irrigated fresh pea yield, and (c) displays

the rain-fed fresh pea yield. These histograms are useful

to decision makers and planners in visualizing the variation

involved in the simulation runs when the exogenous environ-

mental variables are stochastic.

The tabulated statistics of the simulation for potato

are provided in Table 36. Results are within the yield

range provided by Doorenbos and Kassam (1979) but are very

high compared to the average potato yield for the Ocoa

Watershed.

Considering the rain-fed results of the yield model, it

may be concluded that they represent fairly well the average

potato yield for the AEZs. Irrigated potato yields of the

model are, however, considerably higher.

The variations in the simulated yields range from a

Ininimum of 3.214 tons/ha for the Valdesia rain-fed yield to

a maximum ci'36.543 tons/ha for the Valdesia potential

yield.

The skew factors have negative and positive signs, but

the values are small for potential and irrigated yield and

larger, but not very significant, for rain-fed yield.
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Table 36. Stochastic YIELD simulator: probability density

function statistics results for potato for the

Dominican Republic--Ocoa Watershed--Valdesia,'  

 

Ocoa, and Azua AEZs (tons/ha)

 

Distribution

 

Statistics Valdesia Ocoa Azua

Potential Yield

Mean 29.915 14.177 25.297

Std Dev 2.269 1.393 2.283

Skewness -0.029 -0.094 -0.055

Quantiles

100% 36.543 17.914 30.671

75% 31.439 15.192 26.944

50% 30.021 14.219 25.320

25% 28.387 13.180 23.634

0% 23.598 10.506 19.104

Irrigated Yield

Mean 7.661 9.621 24.029

Std Dev 0.601 0.948 2.166

Skewness -0.012 -0.092 -0.051

Quantiles

100% 9.457 12.118 29.192

75% 8.057 10.315 25.593

50% 7.686 9.629 24.067

25% 7.245 8.956 22.488

0% 6.033 7.081 18.122

Rain-fed Yield

Mean 4.147 5.286 13.650

Std Dev 0.366 0.594 1.283

Skewness 0.153 0.111 0.092

Quantiles

100% 5.259 6.907 17.220

75% 4.369 5.693 14.491

50% 4.149 5.267 13.628

25% 3.891 4.871 12.729

0% 3.214 3.785 9.764

 

Source: Compiled from the stochastic YIELD simulator

results.
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In Table 37, the stochastic YIELD results for cabbage

are given in the form of their probability density function

statistics for the AEZs considered in this study. Variation

ranges from a:minimum.va1ue of 5.735 tons/ha for rain-fed

yield in Valdesia to a maximum of 49.233 tons/ha for poten-

tial yield in Ocoa. The skew factors vary from -0.106 to

0.191, which are not very significant (Figure 49 and Table

37).

The values that resulted from the stochastic model are

within the yield ranges specified by Doorenbos and Kassam

(1979). The average yields for the Watershed are fairly

well replicated by the model and are represented best by the

irrigated production system.

The histograms with the results of the stochastic yield

simulator are presented in Figure 49. Some skewness can be

noticed in histogram (c) for rain-fed yield simulated

results.
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Table 37. Stochastic YIELD simulator: probability density

function statistics results for cabbage for the

Dominican Republic--Ocoa Watershed--Va1desia,‘

Ocoa, and Azua AEZs (tons/ha)

 

 

 

Distribution

Statistics Valdesia Ocoa Azua

Potential Yield

Mean 33.563 39.871 31.526

Std Dev 2.841 3.294 2.596

Skewness -0.106 0.092 0.186

Quantiles

100% 41.219 49.233 40.021

75% 35.681 42.254 33.159

50% 33.654 39.687 31.455

25% 31.600 37.601 29.701

0% 26.244 31.321 24.952

Irrigated Yield

Mean 8.596 27.063 29.956

Std Dev 0.734 2.229 2.461

Skewness -0.097 0.070 0.191

Quantiles

100% 10.615 33.700 38.130

75% 9.118 285745 31.542

50% 8.593 26.988 29.864

25% 8.100 25.504 28.217

0% 6.680 20.888 23.641

Rain-fed Yield

Mean 7.323 23.053 26.148

Std Dev 0.623 1.868 2.131

Skewness -0.100 0.069 0.185

Quantiles

100% 8.991 28.474 33.010

75% 7.747 24.472 27.574

50% 7.333 23.051 26.153

25% 6.897 21.677 24.591

0% 5.735 17.715 20.983

Source: Compiled from the stochastic YIELD simulator

results.
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CHAPTER VI

SUMMARY, CONCLUSIONS, AND SUGGESTIONS

FOR FURTHER RESEARCH

 Summary

Agricultural economists, planners, decision makers, and

researchers quite often rely on crop yields for their work

and studies. Crop yields are very important for most

regional and interregional econometric, economic-

optimization projects involving the agricultural sector,

which for many countries is the main source of foreign

exchange.

Trade and sector analysis relies on past and projected

crop-yield values to forecast a nation's balance of trade

and to determine export/import goals. Developed and indus-

trialized nations use crop yield to study price tendencies

of international commodity markets. Developing nations are

interested in producing food and cash crops to satisfy

internal demand and to generate foreign exchange to pay for

the importation of industrial goods.

In summary, yield estimation.is essential for policy

analysis and planning in the agricultural sector. Within
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this context, governments are seeking ways to estimate yield

for various agro-ecological zone conditions and farming_sys-

tems to provide decision makers and planners with essential

information for economic planning. The lack of information

on past yield data is a common problem in most developing

nations. Time series data of reliable crop yield values by

location are practically nonexistent, making any study based

on yield time series data difficult or unreliable.

Several studies have been done that relied on time

series analysis of yield data to forecast yield (Vilas,

1975; Heady, 1964; Gibson, 1979). Most of the time, in

regional or spatial research, yields are derived from the

national average because of lack of better data.

Despite the existence of a relatively large number of

studies on crop-yield prediction for many different crops,

there exists a need for computational models that allow

decision makers and planners, with relative ease and with

‘minimum data requirements, to estimate crop yields for dif-

ferent production scenarios. Developing and underdeveloped

nations, in particular, are most interested in yield-

estimation procedures.

Technological advances in remote sensing, automated

cartography, image-processing technology: computer science,

 

and advances in modeling plant growth and biomass production

with a larger set of environmental variables make applied
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research in yield estimation and forecasting possible.

These technologies provide new ways to explore the intricate

world of mathematical cropvyield modeling in a time and

space domain.

This study was intended to provide decision makers and

planners with a reliable state-of—the-art tool for multiple

crop yield prediction, using some of the latest developments

in crop modeling and plant growth and computer simulation.

The use of a geographic information system improves the

reliability of estimates over space and time.

One of the prime objectives of this study was to pro-

vide potential users with computer software that permits the

incorporation of exogenous environmental variables such as

precipitation, temperature, wind velocity, solar radiation,

relative humidity, and local information to estimate yield

for a large variety of crops.

The crop-yield model developed here can, depending on

the data available for the homogeneous zones or locations,

be refined to represent accurately the local crop-growth

conditions. The simulation model can also be used to iden—

tify, for the location and/or crop selected, the inputs

and/or parameters responsible for strong yield variation and

aid in the allocation of scarce resources for data collec-

tion. The identification of critical input and/or model

parameters maximizes the use of research funds for data
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collecting. Through the simulation model developed here,

.-

this process can be carried out in a practical and useful

manner.

Policy and management decisions affecting the irriga-

tion scheme and water-use efficiency are some of the control

variables in the simulation model. By varying the water

quantities for irrigation, important insights may be

obtained to improve irrigation and water-management effi-

ciency, while optimizing crop yield.

Most developing countries rely on importing inputs such

as fertilizer to their production systems. Fertilizer

availability may be used as a policy and input variable into

the simulation model. The associated yield response effect

can then be measured within the context of price/cost sce-

narios.

Crop allocation and planting decisions are based on

numerous factors, such as domestic and international commod-

ity prices, government policies, transportation costs, input

availability and cost, and so on. The yield simulator

provides a useful and practical tool for yield estimation as

a function of exogenous inputs and can aid in the selec—

tion of the best planting scheme according to defined goals,

public or private. This includes the simulation of differ~

ent crop yields for different regions and agro-ecological

zones, based on a study of a broad range of possibilities of
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planting schemes to satisfy policy objectives such as price

supports, income or labor stabilization, regionalization of

production, and so on.

In a policy-analysis framework, the yield simulator can

aid in the analysis of intermediate stages of the simulation

process to identify the causal relationship of biomass pro-

duction. This is possible for a specific crop and a spe-

cific location under a variety of conditions representing

the exogenous environmental variables as well as model

parameters.

Economic benefits derived from improved crop informa-

tion, such as yield and area planted, are fundamental to

government policy analysis. In many countries, government

agencies play an active role in agricultural markets.

Information of this nature can be critical in ensuring an

orderly market, reasonable consumer prices, and adequate

farm income. Such knowledge permits public authorities or

large private enterprises to plan their inventory holdings,

sales, and commodity purchases and to deal with supply

fluctuations through identification and remedial action in

the prevailing market structure.

Crop—production forecasting may be undertaken during

the crop-growth period using information on current exoge-

nous environmental variables. Such "real time simulation"

may provide critical insights for policy makers and planners
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on the expected total production volumes for selected or

critical food or cash crops. -

Prediction of yield by region can provide government

officials with information needed to design plans with the

objective of coping with environmental disaster as well as

trade between and among regions. In that sense, the yield

simulator provides a useful and practical tool for inter—

regional and national policy analysis.

Conclusions

The following conclusions represent a brief summary of

the material presented in the preceding chapters.

The implementation of the YIELD simulator for Jamaica,

where sugarcane is one of the main export products, provided

insights into the sugarcane, tobacco, and sorghum production

systems. Observed sugarcane yields were available for 20

years for Worthy Park, Caymanas, and Monymusk, the main

sugarcane-producing regions in Jamaica. Predicted sugarcane

yield estimates were close to the observed yield for 14 of

the 20 years. Political changes in the sugarcane industry

in the mid- to late 19708 introduced some random variation

in observed yields that could not be "tracked” by the model.

Yield differences for sugarcane in irrigated production

systems for the three regions in Jamaica may be analyzed by

comparing the irrigated yield results and observed yield

values. Decision makers and planners may use this procedure
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for irrigation scheduling, irrigation investment, and

project planning. 'The model results may also be used by

decision makers and planners to evaluate crop-production

systems in use and to determine the economic feasibility of

further improvements.

Tobacco, another major crop in Jamaica's economy, was

also included in this study. No observed yield data were

available for tobacco, and the yield results were compared

to national averages. Simulated tobacco yields were very

high when compared to Jamaica's tobacco yield average. As

discussed before, lack of observed yield for tobacco in the

regions considered is a constraint to further discussion. A

comparatively high simulated yield for tobacco and a low

observed average suggests that further model refinement or

adjustment may be needed for agro-ecological and management

factors, as well as improvement in Jamaica's tobacco-

production system.

One additional crop, which is being considered as a

substitute grain crop in Jamaica, was the focus of the third

simulation. Sorghum yields were predicted for the three

regions considered in this study. Simulated yield results

were quite good when compared to the FAO yield values given

by Doorenbos and Kassam (1979), but were quite high when

compared to Jamaica's sorghum national average. Again, no

data were availabl; for observed sorghum yield, imposing a

/
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strong constraint on more complete analysis. The model

results, however, suggest that improvements are needed in

the sorghum-production system, such as improved crop manage-

ment and probably the use of a well-adapted sorghum variety

for the regions considered.

The simulation model provided consistent results for

all three crops for all three regions in Jamaica, when

compared to the scarce yield data available and to the FAO

yield values.

The simulation model was also used to simulate yield

for five food crops in the Dominican Republic (DR). Crops

simulated for the DR are totally different from those used

in Jamaica, but weather conditions and data availability

were very similar.

Yield predictions were made for three previously deter—

mined agro—ecological zones in the Ocoa Watershed: Val-

desia, Ocoa, and Azua. The crops simulated were rice,

onion, potato, fresh pea, and cabbage. Crop selection was

based on the demonstrated interest by the Dominican Repub-

lic's Department of Agriculture.

The simulation model was used to generate potential,

irrigated, and rain—fed yield estimates for rice, onion,

potato, fresh pea, and cabbage for all three agro-ecological

zones. Simulated rice yield was unusually high, when com-

pared to the national average. The results were consistent

 





194

with FAO guidelines for rice yields, which are very high_

compared to the DR rice-yield average. Again, this result

may suggest that rice-production systems in the DR should be

improved to obtain higher yields and that the model input

may be modified to include local rice species as well as

more specific farming-system parameters representative of

the Ocoa Watershed region in the Dominican Republic, such as

fertilizer inputs, row spacing, weed control, and pest and

disease control.

Simulated results for other crops were also consistent

with FAO yield results but also high when compared to Ocoa

Watershed yield averages.

In general, the lack of reliable yield data restricted

model validation for the countries and regions in this

study. The yield simulator, however, performed very well,

when compared to FAO yield results and guidelines. It

performed well when compared to observed yield data avail—

able for those regions.

As proved in this study, the simulation approach can be

very useful in presenting decision makers and planners with

relevant statistics and histograms that reflect the effect

on yield outcome of the uncertainty of agro-ecological con-

ditions inherent in exogenous environmental inputs.
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W.

As with any research, the present study was subject-to

a number of limitations. Some of those limitations repre-

sent areas in which research would be of considerable value

in improving yield estimation. The following suggestions

are intended for the benefit of individuals considering the

possibility of pursuing further research on crop-yield

modeling and plant growth.

Although the primary objective of the present study was

to simulate yield production for a wide variety of crops and

agro-ecological conditions rather than to simulate plant

growth in exact detail, it is desirable to design simulation

models that are able to approximate as closely as possible

real production systems. As indicated in Chapter V, the

results represent a reasonable degree of plausibility,

although the comparison of model results with actual

observed yield, where available, indicated that the model

has some limitations.

Some of the suggestions for the improvement of model

performance are related to site-specific conditions. This

means that an effort should be made to provide more precise

results through the incorporation of detailed model parame-

ters that can be adjusted for the zone or region for which

the simulation will be conducted. This is a basic property

of the current model because it is spatial-dependent. Also,
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the model results might be improved if crop parameters are

adjusted for specific crop species, adapted to agro-

ecological conditions.

Yield response to fertilizer is a function of, among

other things, the fertilizer-specific response curve, the

type of crop, crop species, and soil fertility. It would be

desirable to include in the model detailed, crop-specific

yield response functions, instead of using the generalized

fertilizer function. The inclusion of crop-specific

response functions would increase the model's performance

 
for single crops and regional differentiation. For those

countries where fertilizer availability is not known, a

generalized fertilizer response curve may be used as an

approximation.

An important improvement could be made by introducing

crop coefficients such as crop response to water deficit

(ky) for specific crop cultivars because the final yield

estimate is highly dependent on evapotranspiration rates.

 Research priorities should be directed to the derivation of

crop-specific coefficients for the crops involved in the

simulation model.

Harvest coefficients are important in determining what

fraction of the total biomass production is harvestable.

This coefficient is crop (variety) dependent; therefore, an

adjustment of that parameter for different crop varieties
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will likely improve the yield estimates. .Again, research

should be directed toward determining those values for dif-

ferent crop varieties, as well as for different cultivars.

The dry-matter production rate (ym), which is a

temperature- and crop-dependent factor, should also be

determined through agricultural research for the different

crop varieties. This procedure may generate more realistic

yield values for the varieties involved.

The use of evaporation-reduction techniques such as

mulching and minimum tillage, and their effect on the soil-

water balance, should also be studied in more detail. A

better understanding of this relationship may improve yield

estimates. Also, such farm—management practices as row

spacing in crop planting and intercropping should be

explored to establish relationships with yields. It is

known that optimum plant spacing will affect soil evapora-

tion, hence final yields.

A module to account for pests and disease in crop

fields and their effect on yields would help to improve

yield estimates and to improve the control of pests and

disease.

The water-balance component of the yield model, which

uses one soil type and layer, should be improved to include

multiple soil layers, increasing the precision of the water-

depletion and uptake mechanism through the root system.
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This would result in a better estimation of biomass pro-

duction.

Excessive availability of water is known to reduce

yield in many crops. Waterlogging effects on yield estimate

will improve the simulation model results. .Additional

research is needed to determine the functional form for the

effect of waterlogging on yields.

The use of the model as a policy tool could also be

increased if the model itself were included in a broader

study whose objective is to analyze food production, export

policies, land use, and agricultural zoning, as well as in

an economic-optimization
model. The repercussions of

selected policy decisions could be analyzed by running the

model under a broader range of assumptions.

Variance-partitioning
procedures make it possible to

readily assess the effect of parameters such as yield

response factor (ky), dry matter production rate (ym), and

other variables, if taken as uncertainty, on further data-

acquisition procedures to reduce variance in uncertain

parameter values.

As with most empirical studies, the results of the

present investigation were dependent on the quality of data

available. Moreover, the estimates reflect the prevailing

situation during the period under analysis. Yield estimates

would improve if precise data were available for the
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exogenous environmental variables such as precipitation,

temperature, relative humidity, solar radiation, and wind

velocity on a daily basis and not solely in monthly means.

Also, the location of the data-collection station for exoge—

nous environmental data should be carefully chosen to obtain

the most representative environmental data. This would

reduce spatial interpolation errors involved in the simula-

tion process and provide more realistic yield estimates.

The Operational YIELD model was developed with CRIES

project support funding and is copyrighted by CRIBS-Michigan

State University. Copies are available through a license

agreement with the CRIES Project, 302 Natural Resources,

Michigan State University, East Lansing, Michigan 48824.
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APPENDIX A

INTERPOLATING FUNCTIONS

 
The value of a function f(x) is sometimes known by a

set of points x1 , x2 ,..., Xn in a table format and not by

an analytical expression that enables the calculation of the

function value at an arbitrary point. For instance, the

hfi)'s might result from some physical measurement or from

a long numerical calculation that cannot be cast into a

simple functional form.

The task now is to estimate f(x) for arbitrary x by, in

some sense, drawing a smooth curve through, and perhaps

beyond, the Xi. If the desired x is in between the largest

and smallest of the xi '5 that is Xmin <= x <= xmax' the

problem is called interpolation; if x is outside that range,

it is called extrapolation.

A plausible functional form must be used to model the

function given by the table generated by the empirical

experiment to be useful in a simulation model.

Extensive mathematical literature is devoted to

theorems about what sorts of functions can be well approxi-

mated by which interpolating functions (Ralston, 1978;

Conte, 1980; Press, 1986), but for practical applications in
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a simulation model, one wants to look at some special fea-

tures of the interpolating procedure, such as the shape of

the data given in a table format, if there will be extrapo-

lated values.

An important feature that is considered to be the main

reason for the choice of an interpolating function is pro-

cessing time--that is, how long it takes to interpolate one

value. In most simulation programs, thousands of interpola-

tions are done, and the interpolation routines are the ones

that take a long time to accomplish. Another important

feature that should be considered is the error involved in

the interpolation procedure.

A trade off between size of the error produced by the

interpolation procedure and the time it takes to get the

interpolated value is often studied, as well as the impor-

tance or sensitivity of the variable to be interpolated in

the process of simulation in terms of affecting the model

response. Also, the availability of data and the precision

of the values in the functional table play a role in decid-

ing the functional form to be used in the interpolating

function.

Press (1986) presented several sophisticated polynomial

interpolating-function algorithms from which the cubic

spline interpolation was derived and used in this research.

The cubic spline use a cubic polynomial function whose
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coefficients are computed based on the tabulated functional

values. The cubic spline is a smooth curve that will go

through the points and behave well between observations.

Cubic spline approximation uses a piecewise third-

degree polynomial for each set of two adjacent points. The

data to be fitted must exhibit a functional relationship;

that is, there can be only one f(x) value for each x value,

and the x values must be in ascending order.

The computer routine for cubic spline for polynomial

interpolation used in this study was derived from Press

(1986). .A C language code was made and implemented in the

simulation model.

/*

** x = array of x values

** y = array of y values of function values

** n = number of data points

** ypl = first derivative of interpolating point at

** point 1

** ypn = second derivative of interpolating point at

** point n

:: y2 = array of points returned

*/

#define MAXDIM 100

spline(x, y, n, ypl, ypn, y2) /* generate vector y2 */

float xi], yi], ypl, ypn, y2[];

int n;

{

float uiMAXDIM], 519? p, qn, un;

int i;

if(yp1 > .99e+30)

{

y2[0] = 0.0;

uiO] = 0.0;

}

else
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{

y2[01 = -0.5;

u[0] = (3.0 / (xill - x[01)) * ((y[l] - yi01)

/ (xill - xiOi) - ypl);

}

for(i = l; i <= n-2; i++)

{

sig = (xiii - xii-1]) / (x[i+l] - xii-1]);

p = sig * y2[i—l] + 2.0;

y2[i] = (sig - 1.0) / p;

uli] = (6.0 * ((y[i+l] - yiil) / (x[i+l] - xiii)

- (yiii - yii-li) / (xiii - xii-11))

/ (xii+l] - xii-1]) - sig * uii—li) / p;

}

if(ypn > .99e+30)

{

qn = 0.0;

un = 0.0;

}

else

{

qn = -0.5;

un = (3.0 /(x[n-1]- xin-2])) *

(ypn - (yin-1] - yin-2]) / (xin-l] - xin-2]));

}

y2[n-1] = (un - qn * uin-21) / (qn * y2[n-2] + 1.0);

for(i = n—2; 1 >= 0; i--)

{

y2[i] = y2[i] * y2[i+1] + uii];

}

}

/*

** x = array of x values

** y = array of y values of function values

** n = number of data points

** y2 = array of interpolated coefficients

** yp = interpolated results

** xp = point to be interpolated

**

*/

splint(x, y, y2, n, xp, yp) /* generated point yp */

float xi], yi], y2[], xp, *yp;

int n;

{

int klo, khi, k;

float h, a, b;

klO 0;

khi n-l;
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while((khi - klo) > 1)

i

k = (khi+klo)./2;

iffxik] > xp)

khi = k;

}

else

{

klo = k;

i

}

h = xikhi] - xiklo];

if(h == 0.0)

{

printf("bad xi] input. xil's must be distinct");

exit();

}

a = (xikhil - xp)/’h;

b = (xp - xikloi) / h;

*yp = a*y[klo]+b*y[khi]+((a*a*a -a)*

y2[klo] +

(b * b * b - b) * y2[khi]) * (h * h ) / 6.0;

Also used in the simulation model are the table look-up

functions called Tablie and Tablex Manetsch (1984). Tablie

for table interpolation and tablex for table extrapolation

gave more speed to the simulation model (about five to eight

times faster), with some increase in the interpolation

error, but not to a point where the simulated results were

compromised.

Other types of errors, such as data input errors,

parameter-estimation error, and so on, overshadow in most

cases the error incurred by the choice of not using a more

sophisticated polynomial interpolation algorithm, such as

the time-consuming cubic spline interpolation function.
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The tablex table look-up function was derived from the

following relationship (Figure 50), where xp is the value to

be interpolated.

-Xe--:-¥i:l

yi ' Yi-l Xi - xi_1

 

     

F(x)

Y/—\

7' T

x ,- y.-.

>4. P _l_
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O
5

>§>1 XE :KC ><

Figure 50. Tablex: Algorithm for functional interpolation.
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The C language code for the tablex table look-up func-

tion is given as follows:

/*

**

4*

**

*4

**

4*

**

**

**

**

**

**

**

**

**

**

*/

TABLEX

This function does table look-up function through

interpolation. Extrapolation is also possible for values

of independent variables outside of the given vectors.

Input: y = vector of dependent variables

x = vector of independent variables

n = vector dimension

xp = independent variable to be interpolated

Output: yp = valor interpolated (or extrapolated)

tabCX(x' Y, n, xpl YP)

float xi], yil, xp, *YP:

}

{

int i;

for(i = 1; i < n; i++)

{

if(xp <= xiii)

{

*yp = (xp - xii-1]) * (yiil - yii-ll) /

(xiii - xii-1]) + yii—l];

return;

}

i

i = n - 1;
'

*yp = (xp - xii-1]) * (yiii - yii-ll) /

(xiii - xii—1]) + yii-l];

return;





APPENDIX B

NUMERICAL INTEGRATION AND DIFFERENTIATION

In Appendix A, some techniques for approximating a

given function, in a tabular format, by a polynomial by

interpolation were presented. Here, a major use of such

approximating polynomials is considered: a complicated or a

merely tabulated function by an approximating polynomial, so

that the fundamental operations of calculus can be performed

more easily, or can be performed at all.

Techniques of numerical differentiation and integration

are the main focus of almost all numerical calculus books

(Hamming, 1962; Conte, 1980; Press, 1986. A common tech—

nique used in most simulation models to numerically approxi-

mate a differential and integral equation is called numeri-

cal integration by Taylor series. The Taylor series about

the point x = x0 has thefollowing form:

(x - x )2

) * W ) + -----9;-- * ”(x ) + n.
y(x) = y0 + (x - xO y x0 2! y o

where:

Y' = f(x,y), and initial condition y(xo) = Yo
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The function f(x,y) may be linear or nonlinear and is

assumed to be differentiable with respect to both x and y.

To find an approximate solution to the differential

equation

y' = f(x,y)

y(a) = Yo

over the interval la, b], the following steps must be

followed:

1. Choose a step h = (b - a)/N

2, Set xn = a + n * h, for n = 0, 1, 2, ..., N

3. Generate approximations yn to y(xn) from the

recursion Yn+1 = yn + h * Tk (xn, Yn)' for n = 0,1,...,N-1

where Tk (xn, Yn) is the kth term of the Taylor series.

On setting k = l in the above algorithm, the Euler

method and its local error is obtained by the formulas

+ h * f(xn, Yn)’ and the local error term
Yn+1 = Yn

h2

E = ---- * y"(@)

2

The Euler method is the simplest and most commonly used

method in simulation work. Several other techniques can be

used with the Euler method to improve the interpolated value

at a desired precision level. For instance, the predictor-

corrector method is commonly used in simulation (Manetsch,
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1984) and can greatly improve the results, when needed, of a

numerical integration and differentiation numerical approxi-

mation.

Again, trade off between precision and time is a prob-

lem to be approached by the systems analyst and the model

user. The predictor-corrector method is time consuming, and

a number of interactions must be computed to achieve the

desired approximation level.





APPENDIX C

THE INVERSE TRANSFORMATION METHOD

If one wants to generate random variate xi's from

a particular population whose density function is given by

f(x), the cumulative distribution function F(x) must be

obtained (Figure 51).

F(x) = rnd

A.

LO..-___ ______

Phdo ______

 
X. XX

Figure 51. Cumulative distribution function.
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Because F(x) is defined over the range 0 to l, uni--

formly distributed random numbers (rnd) can be generated and

F(x) = rnd. It is clear that x is uniquely determined by

rnd = F(x). It follows, therefore, that for any particular

value 0f rnd, say, rndo, that is generated, it is possible

to find the value of x, in this case x0, corresponding to

rndo by the inverse function of F if it is known. That 15:

X0 = F-l (r1160)!

Where 15‘“1 (rnd) is the inverse transformation or mapping of

rnd on the unit interval into the domain of x.

This method can be summarized.mathematicall
y by saying

that if one generated uniform random numbers corresponding

to a given F(x),

x

rnd = F(x) = .ff(t)dt

-—00

then,

P(X<=x) = F(x) = Pir<=F(x)] = PiF'lirnd)<=x],

and consequently F’1(rnd) is a variate that has f(x) as its

probability density function.

The inversion method was applied for the uniform,

gamma, normal, and triangular distributions
and was used in

the simulation model.

The C language code that enables the generation of

those random variates is given below:

 

 





/*

*‘k

*‘k

*1:

*‘I:

*‘k

**

*1:

**

*‘k

*‘k

**

**

**

**

**

*/
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uniform variates

lower limit of the interval a < x < bInput: a =

b = upper limit of the interval a < x < b

seed= seed for the random number generator

Output: x = uniform random variate

Functions called from here: none

Main function must have: #include <mathJfi>

#include <1 im its.h>

uniform(a, b, seed, x)

float a, b, *X;

short seedi];

{

double rn, erand480;

rn = erand48(seed);

*x = (float)(a + (b - a) * rn);

}

/*

**

** gamma variates

**

** a = k parameter of the gamma distribution a >

0

0 e s

** b = alpha parameter of the gamma d1str1but10n

b > 0

*‘k

** Inputzmi = mean value

** var = variance value

** seed= seed for the random number generator

*1:

** mean = a / b

** variance = a / b**2

**
.

** Output: x = gamma random var1able

**

** Functions called from here: none

**
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** Main function must have: #include <math.h>

#include <1imits.h>

*/

gamma(mi, var, seed, x)

float mi, var, *x;

short seedi];

{

float a, b;

int i;

double rn, erand48(), lg, log(), tr;

a = mi*mi/var+0.5;

if(a < 1.0)a = 1.0;

b = mi / var;

tr = 1.0;

for(i = 0; i < (int)a; i++)

{

rn = erand48(seed);

tr = tr * rn;

}

lg = -log(tr);

*x = lg / b;

l

/*

**

**
normal variate

**

** Input: mi = mean value

** sigma = standard deviation

** seed = seed for the random number generator

*1:

** Output: x = normal random variable

**

** Functions called from here: none

**

** Main function must have: #include <math.h>

**
#include (limits.h>

**

**

*/

normal(mi, sigma, seed, x)

float mi, sigma, *x;

short seedi3];

{

int 1;

double rn, erand48(),
sum;





/*

*st

*7:

**

*1:

*5:-

**

**

*1:

**

**

**

*1:

**

*1:

*4:

**

*1:

*/

tr

fl

sh
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sum = 0.0;

for(i = 0; i < 12; i++)

{

rn = erand48(seed);

sum = sum + rn;

}

*x = sigma * (sum — 6.0) + mi;

}

triangular distribution

Input- a = minimum value

b = maximum value

c = mode

seed= seed for the random number generator

Output: x = triangular random number

Functions called from here: none

Main function must have: #include <math4h>

#include <1imits.h>

#include <dos.h>

#include <stdio.h>

iang(a, b,cn seed, x)

oat a, b, c, *X;

ort seedI];

{

double sqrt(), erand48(), rn;

rn = erand48(seed);

if(rn < (double)((c - a) / (b - a)))

{

*x = a + sqrt(rn * (c - a) * (b — a));

}

else

i

*x = b - sqrt((l - rn) * (b - c) * (b - a));
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