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ABSTRACT

A COMPUTER-BASED SIMULATION MODEL FOR
AGRO-ECOLOGICAL ZONE YIELD ASSESSMENT

By

Nilson Amaral

Computers and information systems are fundamental tools
for decision makers and planners. A computer-based simula-
tion model was developed in this study with the objective of
providing a practical and useful tool for decision makers
and planners to estimate crop yields in relatively large and
homogeneous regions, the so-called agro-ecological zones
The simulation model was developed in two modes: First, the
deterministic approach was used to analyze yield trends in
an a posteriori type of analysis. Second, a stochastic
approach, with random environmental inputs, was used to
provide decision makers with the yield-distribution parame-
ters necessary to make inferences about yield values, as
well as crop-yield prediction.

The technique used in the simulation model does not rely
solely on yield time series but on the process of biomass
production, where water deficit is a primary constraint.

The Monte Carlo approach was employed to generate random



Nilson Amaral

variates based on the distribution parameters of the popula-
tion data for the exogenous environmental inputs. A
variance-partitioning technique, which considers random
variation in the input parameter, was used with the Monte
Carlo approach.

The simulation results, using three regions in Jamaica
and three agro-ecological zones in the Dominican Republic as
data sources, showed the validity of the model when results
were compared with observed-yield data for those locations,
as well as with FAO yield guidelines. Results are presented
in the form of tables, scattergrams, and histograms to serve
as an aid to decision making and planning.

Limitations do exist in the simulation model and are
presented in the last chapter. Data completeness and preci-
sion pose some limitations to the final analysis, which
indicates a need to improve data collection.

Despite its limitations, the model shows the feasibil-
ity of the systems approach to crop-yield estimation and
opens new insights into the process of yield prediction for
use in decision making and planning, and as a linkage to

other models such as economic-optimization models.
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CHAPTER I

INTRODUCTION

For most developing countries, agricultural produc-
tivity has an important influence on economic development,
trade, and foreign exchange earnings. Developing nations
are seeking areas best suited for crop production to satisfy
internal demand, to keep food prices at affordable levels
for the large percentage of the population with low income,
and to generate foreign exchange to pay for the importation
of technology, goods, and services.

Past and predicted crop yields play an important role
in the decision-making process in many areas of a country's
economy. Information on harvest size is needed for a vari-
ety of purposes. Governments require information for admin-
istrative and planning purposes, possibly for measures to
regulate quantities imported and/or exported, to control
prices, and so on. Private firms are interested in approp-
riate data for their marketing and storage arrangements.
Farmers may use harvest data as the basis for their seasonal

purchases to obtain particulary favorable prices.







Researchers are interested in optimizing the regional
distribution of agricultural production patterns. Heady
(1964) used crop yields as a significant variable for a
linear optimization model for crop allocation. Vilas
(1975), who focused his Ph.D. research on the spatial equi-
librium analysis of the rice economy in Brazil, used crop
yield as one of the most important variables in the inter-
regional analysis. Heiss (1981) discussed the economic
benefits of improved crop information on wheat and all
cereals for European countries. He developed a model for
estimating the economic benefits of crop-yield assessment
for the European Community (EC) as well the benefits for

producers, consumers, and governmental agencies.

Obs : f the Stud

Answers are needed to questions asked by scientists,
decision makers, and planners regarding effects of agro-
climatic conditions and management practices on the agricul-
tural productivity of cash crops and basic food staples.
Answers are needed to such questions as:

1. How are yield values for the different farming
systems estimated? By farming system is meant "the complex
arrangement of soils, water sources, crops, livestock,
labor, and other resources and characteristics within an

environmental setting that the farm family manages in




accordance with its preferences, capabilities and available
technologies"™ (Shaner, 1982).

2. What are the tradeoffs between irrigation invest-
ment, the cost of farm management practices, and the
increase in productivity through other factors?

3. How can a developing nation, in need of foreign
exchange, improve land-use planning for agricultural produc-
tion?

Those questions demand the application of a new method
using computational procedures, preferably a computer-based
model, for evaluating responses of a broad range of agricul-
tural crops to agro-climatic (rainfall, temperature, soil,
slope, etc.) and farming-system parameters (fertilizer
usage, management practices, and so on).

The objective of the present research is to address
these questions in a microcomputer-based simulation model
that will aid the decision-making process in a "user
friendly" manner by predicting crop yields for a homogeneous
region or agro-ecological zone. These yield predictions are
most representative of relatively large-scale farming sys-
tems in mono cultivation.

A computer-based simulation model was developed for use
in a deterministic as well as in a stochastic or probabilis-
tic mode for farming-system yield assessment that can be run

in an interactive manner on a microcomputer.







The deterministic mode may help decision makers compare
the simulation results with the observed yield on a year-by-
year basis--a posteriori analysis--and evaluate the current
production systems and/or practices and their associated
yield response.

The stochastic mode may help decision makers deal with
the decision process under conditions of uncertainty. The
estimated probability-density statistics such as moments
(mean, variance, and skewness) and quantiles, computed from
the model's results, provide decision makers with a wealth
of information for assessing any uncertainty present in the
system.

The simulation model can simulate yield for the most
important crops responsible for generating foreign exchange
for developing nations, as well as crops responsible for
ensuring internal food security. It is also this
researcher's objective to use in the simulation model a
methodology that does not rely solely on time series of past
yield data because data availability and reliability due to,
among other things, government intervention are significant
constraints in most developing nations

It is hoped that the simulation model can eventually be
linked to an economic-optimization model that can be used to
optimize land use and help in determining the "best" land-

allocation scheme. The YIELD model developed herein is a




component of the Comprehensive Resource Inventory and Evalu-
ation System--Resource Information System (CRIES-RIS)
(Schultink, 1981, 1983, 1984).

The CRIES resource inventory and analysis approach to
integrated rural development planning and agricultural sec-
tor analysis has two major components: the CRIES-GIS (Geo-
graphic Information System) and the CRIES-AIS (Agro-economic
Information System). The YIELD simulator is a component of
the CRIES-AIS information system (Schultink, 1986).

Policy variables are not explicitly included in the
model at this stage, but model results can be analyzed and
changes made in the input parameters and variables to
reflect various policy scenarios. Alternative policies and
climatic, physical, and farming-system characteristics can
easily be examined in an interactive manner using a micro-
computer. The model is designed for use by those with
little or no computer experience. A series of menus and
system prompts provides the user interaction.

The simulation model developed herein can aid in
evaluating national and international strategies for
agricultural-production planning and take advantage of pre-
vailing agro-climatic conditions. The model could form the
basis for evaluating irrigation and pest-management deci-

sions during the growth season, evaluating investment







decisions, forecasting yields, or predicting the effects of
so0il erosion and water deficit during the growing season.

The model can determine the yield value on a seasonal
and spatial basis by Agro-Ecological Zone (AEZ) (the so-
called Resource Planning Unit or RPU [Schultink, 19831) for
major agricultural crops, including those termed cash crops,
such as bananas, sugar cane, soybean, tobacco, and wheat,
and food staples such as potato, rice, corn, tomato, bean,
and cabbage.

Findings of the study as intended neither as precise
descriptions of the real world nor as final predictions.
Instead, the model was designed to provide insight into
decision-making criteria associated with local, soil, envi-
ronmental, and management practices and their associated
variables used in estimating crop yields. The user should
realize that the model provides yield predictions for high-
yielding varieties, adapted to the agro-ecological condi-
tions represented. As such, variety-specific yields may
change by location and are affected by general crop adapta-

bility, incidence of disease, pests, and other factors.

Li Revi
The role of crop-weather models has become increasingly

important in assessing potential crop production based on

climate, monitoring crop prospects from current weather

data, evaluating the effect of natural or man-induced







climatic variability on crop yields, and interpreting the
effect of weather on yields

Much of the early modeling research on agricultural
production systems used statistical analysis as a modeling
technique (Smith, 1914; Buck, 1961; Gibson, 1979). Regres-
sion models (Botkin, 1969; Thompson, 1975; Vilas, 1979;
Bortoluzi, 1978; Heady, 1964) that are based on past crop-
yield values are often expressed in a functional format,
which contains linear, logarithmic, quadratic, or a combina-
tion of these terms involving price, fertilizer usage, and
so on, and data such as rainfall, temperature, and time.

The regression approach is one of the most common tech-
niques used in yield estimation. It has some serious limi-
tations due to a vast number of variables and the complexity
of the processes involved in plant growth. Before any
attempt is made to model a process, basic research is needed
to understand fully the theory involved.

Regression modeling was used by Sakamoto (1981) in his
paper entitled "Climatic-Crop Regression Yield Model: An
Appraisal.” He made it clear that despite its limitations,
regression analysis is a useful tool. He also indicated
that much of the utility of regression analysis is associ-
ated with its simplicity of application and the availability

of data.



In his paper "Methods of Crop Production Forecasting in
the EEC; Present and Expected Trends in Crop Production,"
Thiede (1981) briefly discussed the methods of estimating
harvests that are currently in use. According to Thiede,
the methods used to estimate harvests in the EC vary widely
from one member state to another, partly for historical
reasons and partly because of the differing fundamental
attitudes of farmers toward statistics. Thiede also pointed
out that, concerning the methods used, a distinction must be
made between pure estimates, objective measurements, and
calculations based on agricultural meteorological data.

In the late 1960s, researchers turned their attention
to understanding better the physical and chemical processes
involved in crop growth (DeWit, 1965; Ducan, 1967; Lake,
1967). Those theoretical developments gave rise to rela-
tionships that were tested in laboratories, "but they lacked
the dynamic properties of the plant systems" (Curry, 1975).

Computer modeling and simulation began to have a place
in agricultural production systems in the last decade or so.
Several simulation models for single crops were developed
for corn (Curry, 1971), soybean (Curry, 1975), and alfalfa
(Holt, 1978), based on temporal modeling, without any
attempt to have a temporal-spatial resolution for crop
yields in aiding the decision-making process. Curry (1971)

pointed out that serious limitations still may exist:



The ultimate computer model for the soybean plant would
be flexible enough to simulate growth and development
at any location for which climate and cultural informa-
tion is available. The expected results would be
reasonable yield estimates and understanding of the
physiological processes underlying these yields. Simu-
lations of this type are not limited by mathematical or
computer capabilities, but rather by lack of under-
standing of the interaction of the plant with its
environment.

One major use of crop-yield simulation is to improve
assessment of technology-transfer options based on regional
characteristics. By using the yield simulator, the agricul-
tural researcher can simulate environmental situations and
obtain critical information on future research priorities,
such as crop adaptation, the potential of introducing new
cultivars, and so on. This is only possible if the model is
designed to accommodate changes in the simulation process.

To permit this, the yield-simulation model must be capable
of evaluating the yield response for several sites with
different soils and climate characteristics, thereby provid-
ing a rapid and effective means of assessing and transfer-
ring crop-production technology to developed nations as well
as developing countries around the world.

The dynamics of the input variables, together with non-
availability of time series data and the spatial-dimension
requirements that affect crop yields, requires a more elabo-
rate procedure that goes beyond regression models.

Economic-development studies and policy analysis in

agriculture production and land-use planning make the usual
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regression technique for estimating crop yield less than
appropriate. This requires further research involving
dynamic simulation models that provide a more realistic
crop-yield assessment.

Essentially, such models exist for most of the world's
major economic crops, as Hayes (1982) indicated. Most of
these models take into consideration temporal and/or deter-
ministic modeling but do not attempt to assess yield on a
spatial or farming-systems basis.

Several attempts have been made to show spatial pat-
terns of photosynthesis or yield modeling at a regional
level for a specific crop (Monteith, 1972, Baier, 1976).
Hayes (1982) constructed a numerical crop-yield model
for 11 crops. The Hayes model is a deterministic model that
computes yields for crops that are grown mainly by developed
nations (spring wheat, winter wheat, spring barley, winter
barley, and so on). The Hayes model, besides focusing
mainly on cash crops for developed nations, has requirements
for its operation that are out of reach for most developing
nations (large mainframe computer, numerical calculus
libraries, expertise in computer programming, and so on).

The spatial dimension of the models described above
does not consider the yield evaluation for a micro-region
such as an agro-ecological zone, a production potential

area, or farming systems. However, those characteristics
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are critically needed for yield assessment for developing
nations, considering the size of the farm holdings and the

wide variations in and nonuniformity of the farming systems.

Technigue-Used

The deterministic model was developed in two major
modules. The first module is the data entry/data edit man-
agement phase, which allows the user to enter and make
changes in the local and climate data set. This module is
totally menu driven and has user-friendly design character-
istics. The second module is the simulation model itself;
interaction with the user occurs on a conversational basis.
The user responds to the model prompts and changes parame-
ters according to specific requests. The C programming
language is used for the first module (Richie & Kerninghan,
1978), whereas the second module is programmed using Fortran
77 (Microsoft, 1984).

The yield-simulation model is designed to run on an
IBM-PC XT or compatible microcomputer, with a hard disk (one
needs 1.2 MB disk space), math co-processor 8087 to speed up
simulation runs, and a printer to obtain a hard copy of
yield-simulation results. The option of on-screen reporting
is also available

To achieve the proposed objectives, the model is struc-

tured into four components, which permit execution on a
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microcomputer with at least 256KB RAM (Random Access
Memory) .
The YIELD simulator consists of five phases:

Phase 1l: Calculation of the maximum potential yield
Phase 2: Calculation of the maximum evapotranspiration
Phase 3: Calculation of the actual evapotranspiration
Phase Calculation of the estimated yield

Phase 5: Estimated yield adjustment

The deterministic simulation model has data require-
ments and default values for the inputs to make it possible
to run the model for regions where data are not available or
where the expected data precision is low. A discrete time-
simulation approach (Forrester, 1961; Manetsch & Park, 1984
is used in all four phases. The numerical integration and
differentiation technique (Hamming, 1962; Conte, 1980) is
used to implement the equations.

A computation sequence for continuous-flow simulation
models is used in the following format (Manetsch & Park,

1984; Chappelle, 1985):

A.  Initiali fon: By

1. Assign values to model parameters

N

Initialize state or level variables

§1 (0), S3 (0), ...y Sy (0)

w

Initialize time T = 0
4. Specify characteristics such as length, number,

output, etc.
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B. Execution Phase
1. Compute rate variables for time T:
Ry (£) = g5 (81 (D), S (T) ,..., Sy (T
j = 1,2 yeeer m
2. Print rate variables
3. Update time : T = T+DT
4. Compute state variables for time T+DT
Si (T+DT) = S; (T)+f; (Ry (T), Ry (T) ,..., Ry (T))

i=1,2,.0rn

5. Print state variables
6. Return to (1) if simulation run is not completed

7. Terminate simulation run

The model structure is based on the equations developed
by Doorenbos and Kassam (1979) and Slabbers et al. (1979),
which focus on the relationships between crop yield and
water availability. To accommodate the simulation structure
outlined above and to account for soil- and management-
practice parameters, modifications and additions were made

in the equations and procedures provided, and the results

were transferred into a simulation model and converted into
the C programming language

The deterministic model relies on environmental vari-
ables value distributed annually (daily values or monthly

means) for selected target years.
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The stochastic or probabilistic model relies on the
shape of the distribution and moments (mean, variance, skew-
ness) of the agro-ecological data and parameters associated
with management practices. Those variables are then gen-
erated internally by the simulator for each day of the grow-
ing period and for each simulation run. An input data
preprocessing scheme, which uses statistical analysis to
determine the shape of the distribution and moments of the
agro-ecological variables, is required. A stochastic model
component was developed as a separate and independent module
that contains all the functions and equations used in the

deterministic model.

c : i £ the Di .

Chapter I was an introductory chapter. Chapter II is
mainly concerned with the definition of the regionalization
process as a precondition for model execution. Agro-
Ecological Zone (AEZ) determination procedures are pre-
sented, and model assumptions are stated.

The analytical framework for the deterministic yield
simulator, by phases, is shown in Chapter III. Model
assumptions, mathematical equations, and the data require-
ments are also presented.

Chapter IV contains the analytical framework for the
stochastic or probabilistic yield simulator. The use of

statistical procedures, the random variable generator and
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procedures, data requirements, and mathematical equations
are presented.

In Chapter V the simulation results of both approaches
are presented and discussed. Results are shown in the form
of tables and graphs.

Chapter VI contains an analysis of the results in terms
of policy decision tools for decision making and development
planning. Implications, a summary of findings, conclusions,

and suggestions for further research are also discussed.







CHAPTER II

AGRO-ECOLOGICAL ZONE DETERMINATION

A regionalization and an aggregation process must be
carried out in the study area to identify agro-ecological
zones (AEZs) with common physical characteristics, such as
soil, soil textural class, prevailing slope, and climate.

Two concepts in AEZ definitions were given by Schultink
(1984), which characterize an AEZ. They are:

- Resource Planning Unit (RPU), a geographically deline-
ated unit of land that is relatively uniform with respect to
land forms, soil types and patterns, climate, and natural
vegetation.

- Production Potential Area (PPA), an aggregate area of
individual soil types and associated climates within an RPU,
which is sufficiently homogeneous with respect to plant
adaptability, management requirements, and potential produc-
tivity to be reliably depicted by unique estimates of those
parameters to serve as an analytical reference for national

or regional analysis and planning

16
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Data-Acquisition Process

To accomplish the task of determining AEZs, a data-
acquisition process must be activated to collect the
required information from and for the study area. The type
of data required for AEZ determination will depend on the
study objectives, resources and technology available, and so
on. Data can be acquired through three main types of data-
collection procedures (Chappelle, 1985; Schultink, 1984):

- Primary data, which are data acquired to meet spe-
cific information requirements of the project, such as spe-
cial aerial surveys for topographic mapping, soil analysis,
and so on.

- Secondary data, which are existing data with charac-
teristics and format suitable to meet specific information
requirements with minor modifications, such as area calcula-
tion from vegetation maps, climatic data from meteorological
stations, and so on. Secondary sources are the most common
and the least expensive sources of data and are frequently
used in AEZ-determination processes

- Derived data, which are existing data with charac-
teristics and format suitable to meet certain information
requirements with major modifications, such as reinterpreta-
tion of existing soil maps to assess crop-specific produc-
tion potential using vegetation indicator species and

special vegetation surveys and indicator species. 1In
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general, the process involves secondary data collection
followed by data transformation or derivation.

- Based on the user and project objectives identified,
data aggregation and regionalization is used to define and
spatially delineate homogeneous areas with respect to major
soil, topographic, and climatic characteristics. The pro-
cess makes it possible to differentiate relatively large
areas for which a specific crop-yield response can be pre-
dicted on the basis of homogeneous criteria.

The cost of a project is largely determined by its
data-collection procedures. Sometimes a tradeoff between
cost of data acquisition and resulting precision must be
made to accomplish the project objectives with minimum cost
and/or within the project budget.

The system or project design team must be mindful of
potential constraints on data availability, such as adminis-
trative obstacles, confidentiality obstacles, time and con-
tinuity constraints, cost constraints, and data-precision
problems. The accuracy of the digital representation of
spatial data is governed by both user requirements and the
inherent characteristics of the source document and the

instruments used to create it.
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Computational Tools for AEZ Determination

In general, a large amount of data must be collected
and manipulated to determine the AEZs. Existing maps and
data, survey observations, and applied remote sensing are
some of the methods used in the data-acquisition process.
The objective of this section is to describe a "state of the
art" technique, which uses computers as tools for AEZ deter-
mination.

Computers play a fundamental role in natural-resources
assessment today. Several software programs are being
developed with the objectives of processing data acquired
from remote sensing and other data-acquisition methods
Those programs or systems are usually called Geographic
Information Systems (GIS) and have the capability of pro-
cessing large amounts of data in a spatial context. Examples
of such systems are the CRIES-GIS (Schultink et al., 1981)
and Canada Geographic Information System (CGIS) (Marble &
Peuquet, 1982).

A GIS represents a system, commonly computer-based, for
handling spatial data. A critical and unique property of
spatial data is that each entry must be defined in terms of
its location in a two- or three-dimensional space. The GIS
is the main tool for handling spatial data. The major
objective of a GIS is to support the spatial decision-making

Process in resource use and management. The most important
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functions of a GIS are as follows (Marble & Peuguet, 1982;
Schultink et al., 1981):

Data input: Normally consists of a combination of
manual and automatic digitizing operations, together with
associated data cleaning and edit activities. By digitizing
is meant a process of data capture for spatial data-handling
purposes; the main source of data frequently is maps
Manual digitizing has some advantages in terms of correct
data assessment, but it is slow and labor-intensive, and
errors may be generated by the digitizer operator. Auto-
matic digitizing is now being carried out by a number of

methods (Marble & Peuguet, 1982). The most common method is

the use of a large drum scanner, such as those employed in
graphic arts. Speed and reliability are the main advantages
of drum scanners.

Data storage and retrieval: Initial creation of the
spatial data base, together with subsequent update opera-
tions and query handling. A data base is defined as a
collection of interrelated data stored together with con-
trolled redundance to serve one or more applications in an
optimal fashion. The data are stored so that they are
independent of programs that use the data (Date, 1977;
Martin, 1977). Usually, construction of the data base that
contains the spatial indexed information is based on the

relational data base theory (Codd, 1970). It is important
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to keep in mind that the spatial-dimension characteristics

of the GIS require a data-base structure different from the
usually known data bases for business applications, such as
Data Base Management System (DBMS) and Management Informa-

tion System (MIS) (Date, 1977).

Data manipulation: Creation of composite variables
through processing activities directed toward both spatial
and nonspatial attributes of system entities. Any GIS must
be capable of performing a series of manipulations on the
spatial data held in its files. Each system contains a
specific set of these procedures, determined by the require-
ments of the users of the system.

Analysis: The combination of the various resources'
attributes and their associated measurement scales in a set
of mathematical operations designed to derive indices relat-
ing to optimum-use aspects, given a complex set of physical
and socioeconomic criteria, e.g., suitability and effect
assessment, economic feasibility analysis, and optimum allo-
cation decisions, given distance parameters and infrastruc-
ture.

Report generation and information display: Creation of
both tabular (statistical results, tables, and so on) and
cartographic reports, maps, and pictures reflecting selec-
tivity retrieval and manipulation of entities within the

data base. Those functions or computer-aided procedures are
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designed to delineate AEZs, representing areas with physical
characteristics considered relatively homogeneous at a pre-

defined level of detail.

QBIES_SSIS- en Q}ZE[}ZI‘ ew

The Comprehensive Resource Inventory and Evaluation
System (CRIES) Resource Information System (RIS) has two
major components: the Geographic Information System (GIS)
and the Agro-economic Information System (AIS) (Figure 1).
The YIELD simulator and the AEZs are combined for the AEZ-
yield estimation.

The CRIES-GIS provides the capability to store, edit,
and process digital map data and creates the master data
base (disk files) for subsequent analysis. The CRIES-GIS
(Schultink, 1981) has in its analysis module an important
phase, called raster OVERLAY. In this process one raster
file is superimposed upon another file web, and the
(weighted) concurrence of these two data sets and derived
indices are determined. The system can overlay up to ten
files in one operation.

The OVERLAY analysis of multiple attributes is shown in
Fiqure 2. 1Its output is a single layer of information'with
attribute values resulting from a linear combination of the
attribute values from the other information layers. The
MATCH phase creates new attribute values for user-specified

co-occurrences of existing attributes values. The OVERLAY
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GIS AIS
Geographic Agro-Economic
Information Information

System System

AEZ YIELD

[ Overloy 1] [ Stmulator ]

Agro-Ecological
Zone
Yield
Estimation

ield Estimat

Figure 1. Agro-ecological zone YIELD assessment as a
component of CRIES-RIS.
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and MATCH phases ultimately provide the spatially defined
regions called AEZs.

Single Grid cell
or Location Element
in Data File

Soils

Land Cover Type

Precipitation

Slope Degree

Slope Length

1st Approximation
of Erosion Poten-
tial Index

Figure 2. Geographic Information System--OVERLAY analysis.

Some data-manipulation functions included in the CRIES-
GIS are (Schultink et al., 1986):

“a:a Hanjp’ atjon——lnp]t

Digitizing

Editing

Polygon conversion 3

Cutter (outline boundaries)
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Histograms

Tally (windowing)
Cross-tabulation

L Manipulation--Analysi
Erosion (soil erosion)
Grouping

Invert

Match

Normalize

Overlay

Search
Surface (three-dimensional analysis)

D Manipulation--Displ
Character maps

Value maps
Locate

D Manipulation--Pri

Choroline (map print capabilities)

D Manipulation--Utiliti

Reformat

Mosaic

Aggregate

Disaggregate
The GIS can be used to cross-reference the AEZs with major
land use to identify additional areas suitable for agricul-
tural expansion.

Examples of output (Schultink, 1986) from the CRIES-GIS
are a scaled character map of elevation for Choluteca
Department, Southern Honduras (Figure 3); a cross-tabulation

output portion of a Two-Way Cross-Tabulation Between Rain-

fall and Elevation, Choluteca Department, Southern Honduras
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Prepared bv: CRIES-GIS / Michigan State University
Thursday April 10. 1986 Time 09:16

File name: cholelev.ras
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CHOLUTECA ELEVATION RANGES

HONDURAS DATA BASE - REGIONAL LEVEL
ATTRIBUTE: ELEVATION. ATTRIBUTE VALUES: CONTOUR INTERVALS. VARIABLE

MAP SCALE SELECTED 1 : 500,000
Figure 3. Geographic Information System--character map of
elevation.
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(Figure 4); and a Choroline, dot-matrix printer map output
of land cover/use map derived from Landsat Satellite Data,
Choluteca Department, Southern Honduras (Figure 5).

Hardware required to run the CRIES-GIS is:

- IBM PC--XT or compatible microcomputer with

512KB of RAM

- hard disk

- MS-DOS operating system

- Calcomp map digitizer

- dot matrix printer

- Techmar color board

~ monochrome and color-enhanced display

- color jet printer

- optional point or mouse system

QBIES_BIS- en “Kerﬂjejﬂ

The CRIES-AIS is designed to evaluate and derive bene-
fits from physical and socioeconomic variables such as
yields, input cost, and producer prices; to assess the
comparative advantage of land-use types in meeting food and
export crop demands, and to conduct related economic analy-
ses regarding agricultural policy alternatives. The AEZs
are the spatial units of analysis for the AIS system.

The AIS has several components that perform different
functions. Usually, the output or results accomplished by
one component are inputs to another component. The follow-
ing are the main components of the AIS system:

- Water balance

- Yield simulator

- Farm budget
Input/output model

- Optimization model (linear programming)
Statistical analysis

1
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Prepared bv: CRIES-GIS / Hichigan State University
Thursday April 10, 1986 Time 09:22

Crosstabulation Table

Frequency in hectares
Format: ! Col Pct
Row Pct
Tot Pct
+

Attribute
_________ Description: ELEVATION AND PRECIPITATION
CHOLRAIN.ras

Attribute

CHOLELEV.ras

Atr Val  Atr val  Atr Val = Atr Val
Row
Totals 1  } 3 4
I 444469 89725 ! 83275 | 184900 86569 |
Column | H i H H
Totals ! 100.00 100.00 ! 100.00 : 100.00 ! 100.00 !
100.00 20.19 ¢ 18.74 ¢ 4l.61 ! 19.48 !
¢ 100.00 20.19 | 18.74 | 41.61 | 19.48 !
i 209056 @ 1944 9969 | 125856 ! 71287
H 47.04 ¢ 2.17 ¢ 11.98 | 68.07 82.35
1 { 100.00 0.93 4.77 ¢ 60.21 | 34.10
H 47.04 0.44 | 2.25 ¢ 28.32 | 16.04
53113 10106 ! 12494 | 24069 ! 6444
11.95 11.27 ¢ 15.01 | 13.02 | 7.45
100.00 19.03 ! 23.53 ¢ 45.32 | 12.14
11.9% 2.28 ¢ 2.82 ; 5.42 1.45
82425 25669 | 23531 26556 ! 6669
18.55 28.61 E 28.26 ! 14.37 | 7.71
100.00 31.15 § 28.55 | 32.22 8.10
18.55 5.78 8.30 § 5.98 | 1.51
98481 51512 36381 | 8419 ! 2169
22.16 57.42 ; 43.69 | 4.56 | 2.51
100.00 52.31 | 36.95 | 8.55 ! 2:2Y %
22.16 11.59 ¢ 8.19 ! 1.90 ¢ 0.49
H 1394 494 900 ! o o
Atr val ! g H H
—————— H 0.32 0.56 ! 1,89 4 0.00 ! 0.00
5 ! 100.00 35.44 |  64.57 ! 0.00 ! 0.00
! 0.32 0.12 ¢ 0.21 ¢ 0.00 ! 0.00

Figure 4. Geographic Information System--two-way
cross-tabulation.
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Figure 5. Geographic Information System--choroline
printer map.
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The AIS data base is responsible for data manipulations,
data storage of agricultural and socioeconomic data, crop
requirements, and so on.

The main objective of this study is to develop a yield-
simulation model, as a component of the AIS system, that
will evaluate crop yield as a function of climatic and local
information, management practices, and soil information for

AEZs.



CHAPTER III

DETERMINISTIC YIELD SIMULATOR (DYS)

The deterministic or nonprobabilistic yield simulator
is designed to generate the maximum potential yield, irri-
gated yield, and rain-fed yield for different crops. The
term "deterministic" is used here to indicate that the
model's inputs and parameters have zero variance. This
means that they are known with certainty and that their
precision is not questionable. Chapter IV considers the
case where the variance is not zero for some inputs and
model parameters.

The DYS was developed largely based on equations and
procedures from the publication Yield Response to Water by
Doorenbos and Kassam (1979). 1Its main objective is to
estimate maximum potential yield, irrigated yield, and rain-
fed yield for the crops under study, based on the climatic
conditions, soil and slope characteristics, and management
practices of a single location or agro-ecological zone (AEZ)
under investigation. This yield assessment provides addi-
tional guidelines for decision makers in land-use planning

Its secondary objective is to serve as an analytical tool

31
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for decision makers and planners to evaluate agricultural
production systems in terms of yields, agricultural land
use, and natural-resource management in a posteriori

analysis.

The nomenclature and different system-input classes

that are part of the simulation model are described in

Figure 6.
e(t)
(exogenous
mputs)
Vv
DETERMINISTIC
YIELD
ud SIMULATOR
(decislon (DYS
/control
Inputsd
Pty
(model
parameters)

Figure 6. General input/output diagram for the deterministic
YIELD simulator with nomenclature.

Exogenous environmental inputs are represented by the

vector e(t), decision or control inputs are represented by
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u(t), the model's parameters are represented by p(t), and
the model response is denoted by y(t).

The model represents a procedure for estimating crop
yield based mainly on water availability, the dominant con-
straint in tropical environments. Water represents the
major variable in crop production, and optimum use of avail-
able water must be made for efficient irrigated crop produc-
tion to produce high yields. It is generally believed that
water, as an input to crop-production systems, represents 75
to 85 percent of the variation in crop yield. Doorenbos and
Kassam (1979) pointed out that:

the upper limit of crop production is set by the cli-

matic conditions and the genetic potential of the crop.

The extent to which this limit can be reached will

always depend on how finely the engineering aspects of

water supply are in tune with the biological needs for
water in crop production. Therefore, efficient use of
water in crop production can only be attained when the
planning, design and operation of the water supply and
distribution system is geared toward meeting in quan-
tity and time, including the periods of water short-
ages, the crop water needs required for optimum growth
and high yields.

The production relationships between crops, climate,

water, and soil are complex, and many biological, physio-
logical, physical, and chemical processes are involved.
Much research information is available on these processes in
relation to water. For practical applications, such knowl-
edge must be reduced to a manageable number of major compo-
nents to allow a meaningful analysis of crop response to

water.
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Modifications and additions were necessary to transform
the theoretical framework as presented by Doorenbos and
Kassam into a computer-simulation model that can be useful
in assessing potential, irrigated, and rain-fed yields for
30 different crops in a way that is easy and accessible for
decision makers in developed countries as well as developing
countries to use in planning and policy-analysis processes
The simulation model was designed to minimize requirements
in terms of computational tools as well as computational

expertise.

Model Assumptions

The 1979 FAO publication by Doorenbos and Kassam
entitled Yield Response to Water, from which this yield
simulator was derived, assumes that the relationships
between crop, climate, water, and soil are very complex and
that they are also affected by other factors, such as crop
variety, fertilizer, salinity, pests and disease, and agro-
nomic practices.

The relationships presented in this model pertain to
high- producing varieties, well-adapted to the growing envi-
ronment, growing in large fields where optimum agronomic and
irrigation practices, including adequate input supply except
for water under rain-fed conditions, are present. The pre-

dictive accuracy of the model may be increased by adjusting
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the model parameters for site-specific conditions and
validation through adaptive research.

Local conditions other than climate, such as soil depth
and texture, availability of fertilizer, salinity, soil
slope, rooting depth, and management practices, will be used
to adjust the potential yield values based on AEZ and
cropping-system conditions. It is assumed that no post-
harvesting losses occur. However, these management-practice
parameters can easily be included in the model for site-
specific applications upon availability of data

Crop requirements and crop coefficients are included in
the model in the form of tables and model parameters that
were derived from experimental crop research.

Socioeconomic factors, such as farmers' preference in
relation to market demand, storage facilities, and availa-
bility of farm machinery and labor, that are known to affect
farmer's management decisions such as selecting the crops to
be grown and length of growing season, are not considered in
the DYS. Pests and diseases, which are also known to
influence yield output, are not considered due to lack of
knowledge about explicitly mathematical relationships and
probability functions. Numerical relationships and func-
tional forms are requirements for inclusion in the numerical

simulation model.
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Surface runoff or internal drainage is assumed to be
adequate to prevent yield reduction under average climatic
conditions. Water logging or excessive water is known to
cause crop damage and to reduce yields. The model does not
consider damage due to excess water.

Yield adjustment due to soil fertility and fertilizer
limitations may be used in the model. If restrictions
apply, the user is given the option to adjust productivity
accordingly. Crop-rotation considerations and cropping
schemes are user-selected.

Micro relief-induced climatic effects on precipitation,
wind, and solar radiation and resulting changes in evapo-

transpiration are not assumed in this model

Model Structure

In this section an overview of the DY¥S, its structure
with modifications and additions, and the computational
procedure are provided (Figure 7).

Five consecutive phases are needed to estimate the
yield value for a crop (Ye). They are:

Phase 1: Determine the maximum yield (Ym) of the
adapted crop variety, dictated by climate, assuming that
other growth factors (e.g. farm management, fertilizer,

pests and diseases, and so on) are not limiting.
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Figure 7. Deterministic YIELD simulator--general diagram.

In the first phase, six steps must be performed in

order to determine (Ym). They are as follows:

Step

Step

Step

Step

Step

Step

Ts

2

3

S:
6:

Computes gross dry matter production of a
standard crop (Yo).

Applies correction for crop species and
temperatures.

Applies correction for crop development
over time and leaf area (cL).

: Applies correction for net dry matter

production (cN).
Applies correction for harvested part (cH).

Computes the maximum potential yield (¥m).
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Phase 2: Calculate maximum evapotranspiration (ETm)
when crop requirements are fully met by available water
supply. In this phase, three steps are needed to compute
(ETm) .

Step 1l: Computes reference evapotranspiration (ETo)
based on the meteorological and crop data
available.

Step 2: Computes growing period and length of crop-
development stages and selects the crop
coefficient kc.

Step 3: Computes maximum evapotranspiration (ETm).

Phase 3: Determine actual crop evapotranspiration (ETa
based on factors concerned with available crop water supply.

Step 1: Determines total available soil water

Step 2: Computes soil water depletion.

Step 3: Computes actual evapotranspiration (ETa).

Phase 4: Select the yield response factor (ky) to
evaluate relative yield decrease as related to relative
evapotranspiration deficit and obtain actual yield (Ye).

Phase 5: Estimate crop-yield adjustment. 1In this
phase, the resulting estimated yield from Phase 4 is

adjusted for fertilizer availability, soil salinity, and

moisture content.



39

Mat} ical F lati

Phase 1: Calculate Gross Dry Matter Production of a
Standard Crop (Yo).

To compute the gross dry matter production of a stand-
ard crop (Yo) for a given location or AEZ, the DeWit (1965
method is used. This method is based on the level of incom-
ing active shortwave radiation for standard conditions,
modified after Doorenbos and Kassam (1979). Equation 1.1
provides the rate of change in gross dry matter production

of a standard crop as a function of time.

(1.1)
dYo (t)
—————— = F(t) * yo(t) + [1.0 - F(£)] * yc(t)]
dt
where:
Yo(t) = total gross dry matter production for a
standard crop [kg/hal
F(t) = fraction of daytime the sky is clouded
[fractionl
yo(t) = gross dry matter production rate of a
standard crop for a given location on
a completely overcast day [kg/ha/dayl
yc(t) = gross dry matter production rate of a
standard crop for a given location on
a clear (cloudless) day [kg/ha/day]
= = time index [days]

Doorenbos and Kassam (1979) provided tables to deter-
mine the values of maximum active income shortwave radiation

(Rse in cal/cm2/day) and gross dry matter production on
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overcast (yo) and clear days (yc) (in kg/ha/ day) for a
standard crop for time (t) and latitude in degrees. Numeri-
cal techniques for function interpolation such as Tablex and
Spline are presented (Appendix A) and are used to obtain
intermediate or interpolated results.

The total gross dry matter production for a standard
crop (in Kg/ha), from time t = t, to tj is presented in

Equation 1.2:

(1.2)
t=t;

Yo(t] - t5) = f{F(t) * yo(t) + [1.0 - F(t)] * yc(t)}dt
t=to

Numerical-integration techniques are applied to the
above equation to obtain an expression that can easily be
used in a simulation model (Forrester, 1961; Manetsch &
Park, 1984).

Euler's approximation formula (Hamming, 1962; Conte,
1980) is used to find an approximate numerical solution to
Equation 1.2. Euler's method was derived from the Taylor
expansion series by setting the parameter k = 1. (Appendix

B shows that procedure in more detail.) Its general form is

given by:
dy (t) t=ty
if eeee— = f(x,y) then, y(t) = ff(x,y)dt
dt t=t,
and y(n + h) = y(n) + h * £(Xn,¥n)
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where:
h = fixed step size
y = f(x,y) is the functional relationship

Applying the above numerical approximation to Equation
1.2 and assuming t, = 0 and t; = t, results in Equation
1.3, which gives the cumulative total dry matter production
for a standard crop from time t = 0 to time t = t + dt.
(1.3)
Yo(t + dt) = Yo(t) + dt * {F(t) * yo(t) +[1.0 - F(t)]
* ye(t)}
Equation 1.3 is corrected and adjusted to reflect dif-
ferent crop groups, according to De Wit's (1965) concept,

resulting in Equation 1.4:
(1.4)

Yo(t + dt) = VYo(t) + dt * {F(t) * [0.8 + 0.01 * ym(t)]
* yo(t) + [1.0 - F(t)]

* 0.5 + 0.025 * ym(t)]
* ye(t)}

for ym(t) > = 20.0kg/ha’/hour; and

Yo(t + dt) = Yo(t) + dt * {F(t) * [0.5 + 0.025 * ym(t)
* yo(t) + [1.0 - F(t)]
* [0.5 * ym(t)] * yc(t)}
for ym(t) < 20.0kg/ha/hour
where the ym(t) term is the production rate for crop groups
and mean temperature, in kg/ha/day. The gross dry matter

production is crop-species and temperature dependent. The

production rate, ym(t), can be larger or smaller than 20.0
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kg/ha/hour as assumed for the standard crop. Doorenbos and
Kassam (1979) gave the production rates, ym(t), in kg/ha/
hour for crop groups and mean temperatures.

Additional corrections are applied to the gross dry
matter production computed above; they are:

- Crop Development over Time and Leaf Area (cL). The
model assumes, for the standard crop, an active leaf area
index of five times the ground surface. When leaf area is
smaller, a correction must be applied; when greater than
five, the effect is small and is not considered in the
model. Correction gives the correction values for different
leaf area indices, as supplied by Doorenbos and Kassam
(1979) .

- Net Dry Matter Production (cN). Energy is required
by the plant to maintain dry matter production for the
within-plant growth processes (also called respiration).
Only the remaining energy fraction can be used to produce
new growth, which is, according to Doorenbos and Kassam,
about 0.6 for cool temperatures (mean < 20 degrees
Celsius) and 0.5 for warm temperatures ( > 20 degrees
Celsius).

- Correction for Harvested Part (cH). In most cases,
only a part of the total dry matter such as grain, sugar, or
0il produced is harvested. Doorenbos and Kassam provided

the ratio between net total dry matter production and the
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harvested yield for high-producing varieties under irriga-
tion.

Using these correction factors, Equation 1.5 gives the
potential yield of a high-producing, climatically adapted
variety grown under constraint-free conditions (Doorenbos &

Kassam, 1979):
(1.5)

Ym(t + dt) = ¥m(t) + cL * cN * cH * dt * {F(t)
* [0.8 + 0.01 * ym(t)] * yo(t)

+ [1.0 - F(t)] * [0.5 + 0.025
*ym(t)]l * yc(t)}

for ym(t) > = 20.0kg/ha/hour, and

¥Ym(t + dt) = ¥m(t) + cL * cN * cH * dt * {F(t)
* [0.5 + 0.025 * ym(t)] * yo(t)
+ [1.0 - F(£)] * [0.5 * ym(t)]
* ye(t)}

for ym(t) < 20.0kg/ha/hour

A general system diagram, showing phase 1 of the deter-
ministic YIELD simulation model, is supplied in Figure 8

Phase 2: Maximum evapotranspiration (ETm).

Climate is an important factor in determining the crop
water requirements needed for unrestricted growth and opti-
mum yield. Crop water requirements are normally expressed
by the rate of evapotranspiration (ET), in mm/day. The
level of ET is related to the evaporative demand of the air,

which can be expressed as the reference evapotranspiration




44

OLAR RADIATION -
n STANDARD CROP

N‘ oo TE]
) Rs

DiTve )

T{FE M

LT

LATITUDE aCdheAd
Praea N EQUATIDN
A 13
T

2%

DE_WIT’S CONCEPT

Yn
Kg/ha/day

CROP_GROUR
CG

Ko/ha/day

LA} 7\/

o1 naerm:
‘<1 o e [ X Intg
l:wu;twp Bl : £ §
<
v
Figure 8. Deterministic YIELD simulation model--Phase 1l:

general system diagram.
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(ETo), which, when computed, predicts the effect of climate
on the level of crop evapotranspiration. ETo represents the
rate of evapotranspiration of an extended surface of an 8 by
15 cm tall green grass cover, actively growing, completely
shading the ground and without water deficit (Doorenbos &
Kassam, 1979).

Several methods can be used to calculate ETo: the
Penman, Radiation, and Pan Evaporative methods shown in
Doorenbos and Kassam; the Thornthwaite method (Thornthwaite,
1948); the Hargreaves method (Hargreaves, 1977); and the
Priestley and Taylor method (Priestley & Taylor, 1972).
Selection of Penman's method (Penman, 1948) for use in the
model was based on worldwide validations of the method for
the computation of reference evapotranspiration (ETo)

(Hayes, 1982; Doorenbos & Pruitt, 1977; Todhunter, 1981;
Burt et al., 1980, 1981).

The basis for computation of evapotranspiration for
this model was Penman's (1948) equation. The equation was
successively modified to include the effects of a variety of
factors, such as crop type, crop growth stage, and site
factors (Doorenbos & Pruitt, 1977). These adjustments
include the influence of extreme climatic environments, crop
coefficients adjusting ET for specific growth stages, and

s0il moisture budget considerations
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Empirically determined crop coefficients (kc) can be
used to relate ETo to maximum crop evapotranspiration (ETm)
when water supply fully meets the water requirements of the
crop. The value of kc varies with crop, crop development
stage, and to some extent windspeed and humidity. Values of
kc for different crops were given in Doorenbos and Kassam
(1979) .

The methodology has the advantage of applicability and
the fact that the mathematical relationships are well
defined for many crops applications.

For a given climate, crop, and crop development stage,
the maximum evapotranspiration (ETm) is provided by Egquation

1.6:

(1.6)
ETm(t) = kc(t) * ETo(t)
where:
ETm(t) = maximum evapotranspiration [mm/day]
kc(t) = crop coefficient [fractionl
ETo(t) = reference evapotranspiration [mm/day])

The reference evapotranspiration (ETo) is computed by
means of the Penman method (Penman, 1948), modified by
Doorenbos and Pruitt (1977), which provides Equation 1.7:

ETo(t) = c(t) * {w(t) * Rn(t) + [1.0 - W(t)] * £lU(t)]
* [ea(t) - ed(t)]}

(1.7)




where:

and

f(U(t))
Rn (t)
Rs (t)
Rnl (t)
£(T)
ed(t)

f (ed)

f (n/N)

ea (t)
ed(t)
U(t)

n(t)
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= 0.27 * [1 + U(t) / 100.0]

= 0.75 * Rs(t) - Rnl(t)

= 0.25 + 0.50 * [n(t) / N(t)] * Ra(t)
= £IT(t)] * fled(t)] * £In(t) / N(t)]
= 1.99E-09 * Tk4(¢)

= ea(t) * RH(t) / 100.0

= 0.34 + 0.044 * [ed(t)11/2

= 0.1+ 0.9 * n(t) / N(t)

saturation vapor pressure [mbar]l
actual vapor pressure [mbar]
wind velocity measured at 2m height [km/day]l
actual sunshine duration [hour/day]

N(t) =maximum possible sunshine duration [hour/day]

Ra (t)

RH (t)
Rnl (t)

W(t)

c(t)
T(t)

Tk (t)

extra-terrestrial radiation at time t

[mm/day]
relative humidity at time t [percent]
net longwave radiation [mm/day]
temperatureand altitude dependent
weighting factor [fraction]
adjustment factor [fractionl
temperature in degree Celsius [C]

temperature in degree Kelvins (K]
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Doorenbos and Kassam (1979) provided tables to deter-
mine the values of those parameters. In summary, they permit
determination of:

1. Saturation Vapour Pressure (ea) in mbar as a
Function of Mean Air Temperature (T) in Degrees Celsius

2. Extra-terrestrial Radiation (Ra) Expressed in
Equivalent Evaporation in mm/day.

3. Mean Daily Duration of Maximum Possible Sunshine
Hours (N) for Different Months and Latitudes.

4, Values of Weighting Factors (W) for the Effect of
Radiation on Eto at Different Temperatures and Altitudes

5. Adjustment Factor (c) in Presented Penman Equation
All of these tables are included in the simulation model,
and an interpolation process is used to determine interme-
diate values.

A general system diagram of the second phase of the

YIELD simulation model is provided in Figure 9.

Phase 3: Actual Evapotranspiration ETa

Crop water demand in the root zone is met by available
soil moisture. The actual rate of water uptake by the crop
from soil moisture in relation to its maximum evapotranspi-
ration (ETm) is determined by whether the available water in
the soil is adequate or not. If not enough water is avail-

able, water-induced crop stress will occur.
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To compute the actual evapotranspiration (ETa), the
level of available soil water must be considered. First,
the available soil water index (ASI) is computed. This
index indicates when available so0il water is adequate to
meet full crop requirements (ETa = ETm). A combination of
ASI value, maximum evapotranspiration (ETm), and the remain-
ing available soil water [(1-p)*Sa(t)*D(t)] provides an
estimate of the actual evapotranspiration (ETa) (Doorenbos &

Kassam, 1979).

The available soil water index (ASI) may be calculated

using Equation 1.8:

(1.8)
In(t) + Pe(t) + Wbh(t) - [(1 - p) * Sa * D(t)]
ASI(t) = ~——cccmrmmcmmmrr e
30 * ETm(t)
where:
In(t) = net monthly irrigation application [mm]
Pe(t) = monthly effective rainfall {mml
Wb(t) = available soil water moisture [rom)
P = depletion factor [fractionl
Sa(t) = total soil water holding capacity {mm/m}
D(t) = root depth {ml
when ASI(t) > = 1.0, then ETa = ETm

ASI(t) < 1.0, then Eta is computed according to
Doorenbos and Kassam (1979)




51

The growth and development of crops depend on water
availability. Sources of water include moisture stored in
the so0il, rainfall, irrigation, and surface runoff. Pre-
cipitation and irrigation recharge soil moisture in succes-
sive soil layers from the surface downward. Precipitation
and irrigation in excess of that required to bring the crop
root zone up to water-holding capacity is removed by runoff,
which is a function of soil texture, slope, and infiltration
rate. For a short dry period, crop growth may not be
affected, even in the critical growth period, if there is
sufficient soil moisture to support the crop's demand for
water.

Soil moisture is difficult to measure in the field.
Several methods have been proposed to estimate soil moisture
content. Thornthwaite's (1948) model is based on simple
water-balance equations for gains and losses within a single
soil layer. A more complex, two-layer soil-moisture budget
model was developed by Palmer (1965).

The soil-moisture model used in this study is a modi-
fied version of Thornthwaite's model, which includes an
evaporation-reduction factor to account for farm management
practices such as mulching and tillage, and a water-
depletion factor, which is crop specific. Adams (1976)
stated that, based on his research findings, it may be

inferred that management systems that combine trash mulch
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tillage and narrow-row spacing should add to the beneficial
effects of both plant canopy soil shading and mulch. In
addition, he stated that the use of mulch at a rate of 4,000
kg/ha with no soil shading reduces evaporation by as much as
58 percent as compared to potential evaporation measured
from a bare plate with no canopy, for first-stage drying.
Much more research is needed to determine the effect of
an evaporation-reduction factor and to make it practical for
direct implementation into a numerical simulation model.
One additional side effect of some evapotranspiration-
reducing management practices is the increased occurrence of
pests and diseases, which in some countries and/or regions

may cause a significant reduction in yield.

The computation of soil moisture is given at time t by

Equation 1.9:

(1.9)

Wb(t) = Wb(t-1) + [Pe(t) + Ir(t)] * Roff -
p * Wb(t-1) - ETa * (100.0 - Mu) / 100.0

where:
Wb(t) = so0il moisture at time t [mm]
Wb(t-1)= soil moisture at time t-1 (Buiuy!
Pe(t) = oprecipitation at time t {mm]
Ir(t) = irrigation at time t [mm}
Roff = runoff coefficient [fractionl
P = water depletion factor [fraction)
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Eta(t)

actual evapotranspiration at time t [mm]

Mu evapotranspiration reduction factor [percent]l

The runoff coefficient (Roff) is a function of soil
slope and soil textural class. According to Beasley et al.
(1984), adjustment in infiltration rate due to soil slope

and soil textural class may be accomplished using Table 1.

Table 1: Percentage of water that percolates into the soil
as a function of percentage slope and soil textural

classes

Slope Class Soil Texture
Coarse Fine Silty, Very
Loamy Fine Loamy & Fine Fine
0 - 4% 90% 80% 70%
4 - 8% 70% 60% 50%
8 - 12% 62% 52% 42%
12 - 15% 55% 45% 35%
15 - 20% 50% 40% 30%
20 - 30% 40% 30% 20%
30 - 50% 38% 25% 18%
> 50% 37% 27% 17%

Source: Beasley et al., 1984.

The water-balanced equation, adjusted for soil texture
and topology, is used to keep track of the moisture content
of the soil from time t to time t + dt.

A system diagram of phase 3 of the deterministic YIELD

simulation model is provided in Figure 10.
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Figure 10. Deterministic YIELD simulation model--Phase 3:
system diagram.
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Phase 4: Estimated Yield (Ye)

Soil water stress influences crop evapotranspiration
and yield. An index of water stress is the ratio of actual
to maximum evapotranspiration, ETa/ETm. Similarly, an index
of crop yield is the ratio of estimated to maximum possible
yield, Ye/¥Ym. The way the first ratio affects the second
(called yield response factor [kyl) varies with crop species
and crop-development stages or time. Under sufficient water
supply, ETa = ETm.

The rate of change of the estimated harvested yield, at
time t, is given by Equation 1.10, modified after Doorenbos

and Kassam (1979)

(1.10)
dlye(t)]
———————— = ¥m(t) * [1.0 - ky(t) * [1.0 - ETa(t)/ETm(t)]]
dat
or
t=t
Ye(t) = f{Ym%t) * [1 - ky(t) *[1 - ETa(t) / ETm(t)]}dt

t=to

Using Euler's numerical approximation formula and assuming

to = 0, results in Equation 1.1
(1.11)

Ye(t + dt) = Ye(t) + dt * {¥m(t) * [1.0 - ky(t)
* [1,0 - ETa(t) / ETm(t)1}
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where:
Ye(t) = estimated harvested yield [kg/ha/day]
Ym(t) = potential yield [(kg/ha/day]l
ETa(t) = actual evapotranspiration [mm/day]
ETm(t) = maximum evapotranspiration [mm/day]
ky(t) = yield response factor [fraction]
t = time [days]

The deterministic YIELD simulation model system diagram,

Phase 4, is provided in Figure 11.

Phase-5: Estimated Yield Adjustment

The Ye(t) computed from Equation 1.11, above, may be
adjusted further if fertilizer (NPK) applications are less
than optimum, or for the sensitivity of the crop to saline
soil conditions. A simplified assumption is made that
requirements are met if composite ratio equals 100 percent.
In fact, the amounts of N, P, and K requirements are crop
specific, and each crop has a different response curve for
nutrient applications. Using Evans (1980) and Hayes (1982),
the NPK response curve (Figure 12) was derived to compute
the yield decrease factor due to fertilizer availability.
This represents the generalized yield adjustment due to

general fertilizer availability for all crops considered in

the model.
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Figure 12. Yield adjustment based on generalized fertilizer
availability for all crops. (From Evans, 1980
and Hayes, 1982.)

Future model refinements will require more elaborate
research for specific crops' responses to different levels
and types of fertilizer, including natural soil fertility.
The decision to use a generalized fertilizer curve for all
crops reflects the incomplete and inconclusive research of
effects of fertilizer availability and toxicity on varying
crops under a wide range of agro-ecological conditions (see
also Hayes et al., 1982).

Doorenbos and Kassam (1979) provided the optimum ferti-

lizer requirements (nitrogen-phosphorus-potassium combined)
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for all crops included in this simulation model. The user
should determine the actual deviation from the optimal fer-
tilizer requirements for each crop, considering soil fertil-
ity and fertilizer applications.

The effect of salinity levels on yields was compiled
from Doorenbos and Kassam (1979) for all crops included in
the simulation model. The results are summarized in Table 2
and incorporated into the model for interpolation.

A final conversion of predicted yield is provided to
the user. The option is provided to calculate estimated
yield as total harvestable biomass or dry matter. This
reflects the need to calculate the total harvest production
or the final yield amount as dry matter production.

The current model adjustment is made by calculating
total biomass from dry matter, based on ratios derived from
Doorenbos and Kassam (1979). If needed, crop-variety-
specific adjustments may be made via model modifications, and
these may be adjusted to the specific site.

In summary, the result is Equation 1.12, after incor-

porating all the adjustments:
(1.12)

Ye(t + dt) = VYe(t) + dt * {¥m(t) * [1.0 - ky(t)
* [1,0 - ETa(t) / ETm(t)]
* (1.0 - ydf) * (1.0 - yds / 100.0)
/cf}
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where:

ydf = yield decrease factor from fertilizer

usage [fractionl
yds = yield decrease factor from salinity

soil levels [percentl]
cf = correction factor for humidity

inclusion [fractionl

Data Requirements

To run the deterministic YIELD simulator successfully,
the user must assemble a data base. As indicated before,
the model predicts yields for homogeneous agro-ecological
conditions based on agro-climatic criteria. The delineation
of AEZs involves data aggregation and area delineation.

Data aggregation is employed to assemble the data set for
the local area or AEZ being considered. Primary weather
station and secondary weather station are the main source of
climatic data. Those weather stations should be located
inside the AEZ (optimal situation). Data collected outside
the AEZ boundaries may be interpolated in a trend surface
algorithm to obtain the best possible approximation for the
AEZ considered.

In the case of wind velocity and solar radiation, extra
precautions must be be taken in the data-collecting proce-
dure to account for shadow effects from elevation and for

air current resulting from systematic air flow.
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The data base must contain several data sets that
provide the information necessary to run the model. The§
include:

A. LOCAL data set is needed to identify the location,
region, or AEZ for which the simulation will take place
The local data set contains the following information:

1. Average altitude [m]

2. Average latitude [degrees]

3. Hemisphere (north or south)

4. Slope class specification (Table 1)

5. Soil type and texture and associated moisture-
holding capacity (Table 1)

6. Soil moisture at sowing date [mm/m]
7. Soil salinity level [mmhos/cm]
8. AEZ parameters identification

- code

- name

B. FARM MANAGEMENT PRACTICES data set is required to
identify farming-system techniques. The growth period is
divided into five stages called crop stages. The duration
of the initial stage (first stage) is defined as the time
period, in days, from germination to 10 percent of ground
cover. The duration of the crop-development stage (second
stage) is defined as the time period, in days, from 10
percent to 80 percent ground cover. The duration of the
mid-season stage (third stage) is defined as the time

period, in days, from 80 percent ground cover to the start
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of ripening. The duration of the late season (fourth stage)

is defined as the time period, in days, from ripening to

harvest.

The duration of the harvest stage (fifth stage) is

defined as the time period, in days, of the harvest.

l.

Crop sowing date and harvesting date

- day

= month

- year
Crop first stage duration [days]
Crop second stage duration [days]
Crop third stage duration [days]
Crop fourth stage duration [days]
Crop fifth stage duration [days]
Fertilizer availability [percent]
Evaporation reduction factor [percent]

Irrigation parameters
- by crop development stages

CROP INFORMATION data set must contain the follow-

ing information:

1.
2.
3.
4.
5.
6.
7.

8.

Crop type

Rooting depth for the first stage [m]
Rooting depth for the second stage [m]
Rooting depth for the third stage (m]
Rooting depth for the fourth stage [m]
Rooting depth for the fifth stage (m]

Crop production rate group

Crop water depletion group
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D. ENVIRONMENTAL-CLIMATE data set. Values are taken
as average for the AEZ considered.

1. Temperature in daily or monthly mean [C]

2. Precipitation in daily or monthly mean (mm]

3. Relative humidity in daily or monthly mean
[percentl

4. Solar radiation in daily or monthly mean
[hours/dayl

5. Wind velocity and wind velocity day/night ratio
[m/s])




CHAPTER IV

STOCHASTIC YIELD SIMULATOR (SY¥S)

The stochastic or probabilistic yield simulator is
designed to estimate maximum potential yield, irrigated
yield, and rain-fed yield with its statistically derived
distribution densities (mean, variance, skewness, and so on)
for different crops. The word "stochastic" is used here to
indicate that the model's inputs and/or parameters (at least
one) have nonzero variance. This means that the model's
inputs and/or parameters (at least one) are not known with
certainty, but statistics and distribution densities can be
estimated from their sample data set.

The major objective of the SYS is to provide decision
makers and planners with information on potential, irri-
gated, and rain-fed yields in the form of descriptive sta-
tistics such as mean, variance, skewness, and quantiles, and
associated histograms. This information will provide
insight into stochastic behavior of the yield model and may
serve as an important tool in agricultural and land-use

planning, as well as natural resource management.
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Several sources of uncertainty and error are present in
models. Modeling error may be present because of uncer-—
tainty regarding a particular phenomenon or the difficulty
of expressing or modeling real-world behavior in mathemati-
cal expressions. Errors may be introduced into the simula-
tion model by its parameter-estimation procedures and the
data-collection technique used. Exogenous environmental-
variable inputs such as precipitation, temperature, and
relative humidity are probabilistic in nature. Besides,
data-collection methods may introduce variation and error
into the input data set that will be used by the simulation
model.

Stochastic models are useful under conditions in which
nonreliable estimates are available for the model's parame-
ters and a large amount of money and time is needed to
improve parameter estimates (Manetsch, 1986).

The stochastic yield simulator has an analytical struc-
ture similar to that of the deterministic yield simulator

(DYS) discussed in Chapter III. In the DYS, all the inputs

and model parameters were assumed to be known with cer-
tainty, whereas in the SYS some degree of uncertainty is
included in the modeling process. From this point of view,

the SYS can enhance the contribution of the DYS model in the

decision-making and planning process by accounting for some

inherent real-world randomness.
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The use of a simulation model for planning and policy
making in developing nations has frequently been describéd
in the literature (Manetsch et al., 1970; Manetsch, 1971,
1984, 1985; Rossmiller et al., 1978). The experience of
those models is sometimes characterized by the expression
"structure rich/data poor" (Manetsch, 1986), which means
that the structure of the problem under investigation is
available but time and money are required to provide good

estimates for many of the parameters included.

Stochastic Approach
There are two sources of uncertainty in the SYS model,
random exogenous model inputs and uncertainty in the values
of the parameters. Appropriate terminology for this mode
condition is introduced in Figure 13.
Following Manetsch (1986), the nomenclature used is:

u(t) = defined as control and/or input vector of
variables to the simulation model

e(t)

defined as vector of exogenous environmental
variables, whose values are given by probabil-
ity density functions

p(t) defined as vector of modal parameters whose
values are given by probability density
functions g3 (py (t)), g2 (py (t)), ..., gp

(pp (t))
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y(t) = defined as the simulation output vector, which
is also given in terms of its distribution .
functions; h (y; (t)), hy (yg (&), «eur hy
(yx (t)), and statistics tmean, variance,
skewness, etc.)
The sources of randomness for the simulation model are
e(t) and p(t). The term "control vector" is used here to
indicate variables that are totally under the decision

maker's control.

e(t)

*

(exogenous Input with
density functions

£y Ce (1), J = 1,2..n) y

Kmodel output with
STOCHASTIC density functlons
. > YIELD W D K = 12,0,
uct) SIMULATOR y(t)
(declslon (SYS
/control
inputs> %7
p(td

(model parameters with
density functions
9. P 11, 1= 1,2.,m)

Figure 13. General input/output diagram for the stochastic
YIELD simulator with nomenclature.
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From the environmental data base, which contains infor-
mation for the environmental variables used in the model,
such as precipitation, temperature, solar radiation, rela-
tive humidity, and wind velocity, distribution shape and
statistics are determined.

To find the "correct" stochastic distribution for use
in the model, a frequency histogram is prepared. Such a
frequency distribution (Figure 14) will help to determine
the shape of the distribution density function that provides

a "best" fit with our data set or sample data set.

Continuous Data
45.0-
40.0
> 35.04
e
1
8 30.01 Z
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3 =
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=
n —
< ZZ
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’\’
ZZ
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10.0- ZZ
ZZ
ZZ
ZZ
"'" i Il
ZZ
5.0 ZZ
ZZ >
0. 12:2 =%
"0 6 12 18 24 30 36 42 48 54 60 66 72

Plont Height (cm)

Figure 14: Stochastic YIELD simulator--an example of
histogram plot.
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Expert assistance in providing information for estimat-
ing probability density functions for the most important
parameters plays an important role in estimating the distri-
bution of a density function. Appropriate experts can and
do provide information from which approximate density func-
tions can be derived.

A manual method may be used to construct the frequency
histogram, but several software packages such as Plotit
(1985), SAS (1985), SPSS (1984), MSTAT (1984) do exist that
can be and are used to provide the statistics needed to run
the simulation model.

In determining the moments of the distribution func-
tion, such statistics as mean, variance, and skewness are of
concern. The skew factor, or skewness, is a descriptive
statistic that provides information on the tendency of the
deviations to be larger in one direction than in another

The skew factor is computed by:

(3/2)
skewness = m3 / m2
where: N .
my = izl teg = %i* 4/ R
mj = moment of order j (j =1,2,3)
X; = random variate value (i = 1,2, ..., N)
X = mean value

N = sample size
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For negative values of skewness, the distribution tail
is to the left; for positive values the tail is to the )
right. Values of the skew factor > 0.5 or < -0.5 correspond
to distributions with significant positive skewing (Figure
15). The distribution statistics computed are used in the
simulation model to generate random variates that are

approximated random variables drawn from distribution of the

variable's population.

1.0+

Probability
o
(3]
L

0.0 <

-

~-

T T " 1 1 T
2 3 4 5 6
Gamma Distribution

Figure 15: Stochastic YIELD simulator--probability density
function skewing factor variation.
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The most common distributions used in the simulation
process for environmental variables are normal, gamma, tri-
angular, and uniform distribution. The choice of the dis-
tribution function will depend on the "goodness of fit" test
with the available data and/or the shape of histogram plot,
and the variable characteristics being modeled.

One especially important family of theoretical distri-
butions is the normal or Gaussian distribution. A normal
distribution is a smooth, symmetric function often referred
to as "bell-shaped." 1Its skewness is zero. A normal dis-
tribution can be completely specified by only two parame-
ters: mean and standard deviation. Approximately 68 percent
of the values in a normal distribution are within one stand-
ard deviation of the population mean; approximately 95
percent of the values are within two standard deviations of
the mean; and about 99.7 percent are within three standard
deviations.

The gamma distribution (Figure 15) is one of the most
useful continuous distributions available to the simulation
analyst. If the variables from some random phenomenon can-
not assume negative values and generally follow a unimodal
distribution, then the chances are excellent that a member
of the gamma family can adequately simulate the phenomenon.
The gamma distribution is defined by two parameters, a and

k, where a is the shape parameter and k is the scale
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parameter. As the two parameters vary, the gamma density
can assume a wide variety of shapes, making it one of thé‘
most versatile of distributions for simulation purposes
(Shannon, 1975).

The triangular distribution (Figure 16) is useful when
data are very limited. The parameters used for determining
the triangular probability density function are as follows
(Manetsch, 1985, 1986):

- a lower limit (A;) for the parameter value i
- an upper limit (Cj) for the parameter value i

- a most likely value (B; ) for the parameter value i

f. (DL. )

2/,¢c -4a>

Figure 16: Stochastic YIELD simulator--triangular
probability density function.
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From this information a probability density function for a

triangular distribution can be used over the interval (Ai:
C;) with mode Bj ih the simulation model.

The uniform distribution is a continuous probability
density function, which is constant over the interval from,
say, A to B, and zero otherwise. The uniform distribution
is useful for simulating random phenomena with little or no

strong variations.

Random-Variates Generation

Once the distribution that fits best in the sample data
set is known through its moments or statistics, one is ina
position to generate the random variates with the same
statistics. The inverse transformation method (Naylor,
1968; Shannon, 1975; Manetsch, 1984) is used to generate
random variates from a particular statistical population
whose density function is given by f(x). (A more detailed
description is provided in Appendix C.)

The following formulas will be used in the inverse
transformation process to generate variates from gamma dis-
tribution f(x) with a given mean and variance (Naylor,

1968) :

ak * gk-1 » o-ax

a, k, x>0
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mean (x)
a = eemes———oe—-
variance (x)
[mean(x)]2
k = e emmcee————-

variance (x)

One of the problems that limited the use of gamma
distribution in the past was the lack of a good generator if
k is not an integer. Phillips (1971) developed a two-
parameter gamma generator to overcome this problem.

Shannon (1975) provided the Fortran code for the Phillips
two-parameter gamma generator. Naylor (1948) used a simple
alternative method to generate gamma random variates when
the gamma distribution parameter k is not an integer.

An Erlang gamma distribution (k is an integer) may be
generated by simply reproducing a process on which the
Erlang distribution is based. This can be accomplished by
taking the sum of exponential variates, X3, X3/ «eey Xpv
with identical expected value 1l/a.

Several probability distributions are related to gamma
variables. Two of the more important ones are the chi-
square and beta distributions (Naylor, 1968).

A view of the gamma-variates—-generation process to be

used in the simulation model is provided in Figure 17.




76

MAIN PROGRAM

%4

CALL
GAMMA (K, A X

i

SUBROUTINE
GAMMA (K, A, X

GENERATE R

RETURN MAIN

Figure 17. Stochastic YIELD simulator--gamma-variates-
generation process.
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Vari partitioni 1 C 5 {0 Analvsi

This section, compiled from Manetsch (1986), deals with
different combinations of sources of uncertainty in simula-
tion runs. As previously indicated, two sources of uncer-
tainty exist for any model, the exogenous inputs and
uncertainty in the values to be assigned to model parame-
ters.

From the results of the simulation runs, that is from
the histogram plot generated from the potential, irrigated,
and rain-fed yield values, the decision maker can determine
how much of the random variation observed in the final
results is due to poor data and how much is due to input-
parameters estimates. Random variation can be reduced by
further data collection, and associated time and cost can be
optimized based on that information.

To obtain that information, the simulation model must
be run with and without randomness in the model parameters.
When the simulation is run with model parameters set at most
likely values (parameters value assumed to be known with
certainty), the procedure is called "variance partitioning.”
Variance partitioning is a valuable procedure in helping
decision makers evaluate the importance of poor model data
and the need for further data collection.

It may be necessary and/or desirable to carry out this

variance partitioning for individual parameters or subsets
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of parameters to provide better-defined data-collection
priorities.

A different but very useful simulation technique for
facilitating decision making under uncertainty is the "com-
mon scenario analysis." Manetsch (1986) provided examples
of this technique. Common scenario analysis is very useful
when different policy-input alternatives have to be com-~
pared. Alternative policies are analyzed with the same
sequence of random numbers, which then specify a common
scenario for random exogenous inputs and parameter varia-
tions. In this manner, alternative policies are compared in
such a way that the only difference in the comparison is the
differing policy specifications.

The stochastic yield simulator developed in this study
deals with variance partitioning for selected environmental
variables. The model's parameters such as crop coefficient
(kc), yield response factor to evapotranspiration deficit
(ky), and so on, were given by Doorenbos and Kassam (1979)
as fixed values. The environmental variables used in the
model are the main source of randomness in the stochastic

yield simulator.

Stocl tic Yield Simulat (SYS) St I
In this section, the simulation model structure for the

SYS is presented. The basic structure for the SYS is the
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same as that used in the deterministic yield simulator
(DYS), discussed in Chapter III.

The Monte-Carlo method is the basis for the SYS simu-
lator. 1In the Monte-Carlo technique, artificial experiences
or data are generated by the use of a random-number gen-
erator, resulting in the cumulative probability distribution
of interest. The random-number generator may be a table of
random digits, a computer subroutine or function, or any
source of uniformly distributed random digits. The proba-
bility distribution to be sampled may be based on empirical
data derived from past records, may result from a recent
experiment, or may be a known theoretical distribution such
as gamma distribution. The random-number generator, as seen
in the last section, is used to produce a randomized stream
of variates that will duplicate the expected experience,
based on the probability distribution being sampled.

Some changes in the deterministic yield simulator had
to be made to accommodate the stochastic characteristics of
the input variables and parameters.

A general flowchart for the simulation run with exoge-
nous input and randomness in the environmental inputs and/or
parameters is provided in Figure 18.

The stochastic yield simulator (SYS) structure follows,
with some modifications and additions, the equations and

procedures in Yield Response to Water Model (Doorenbos &




Figure 18.
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SET INPUTS’
DISTRIBUTION
STATISTICS

SET RANDOM
VARIATES
GENERATOR

.

SET NUMBER DF
SIMULATIDON
RUNS

INITIALIZE
STATE
VARIABLES

P

INITIALIZE

PARAMETERS
] VALUE

i

EXECUTE SIMULATION RUN

PHASES 2 - 6

OMPUTE STATISTICS
AND HISTDGRAMS
OR D

Stochastic YIELD simulator--general flowchart of
the simulation process.
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Kassam, 1979), used in the deterministic yield simulator
(DYS) .

Mainly seven consecutive phases are needed to estimate
the probability density function statistics for the crop
yields. They are:

Phase 1: Determination of the probability density
function and its statistics for the parameters and environ-
mental inputs. Three steps are to be followed in this phase

(see Figqure 19):

( BEGIN SIMULATIDN)

PHASE 1

TEP 1
HISTDGRAM
PLOT

TEP 2

GOODNESS OF
FIT

SIEP D
RANDOM
VARIATES

L GENERATOR |

Figure 19. Stochastic YIELD simulator--Phase 1 flowchart.
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Step 1: 1Identify the probability density function
using the histogram plot. -

Step 2: Conduct a "goodness of fit" test to fit a
distribution density function and compute the
distribution statistics such as mean, variance,
skewness, and so on.

Step 3: Implement the random variates generator, using
the inverse transformation method.

Phase 2: Determination of the maximum yield (Ym) of
the adapted crop variety, dictated by climate, assuming that
other growth factors (e.g. farm management, fertilizer,
pests and diseases, and so on) are not limiting. 1In the
second phase, six steps are needed to determine (¥Ym) (see

Figure 20):

Step 1l: Computation of the gross dry matter
production of a standard crop (Yo).

Step 2: Application of the correction factor for
crop species and temperatures.

Step 3: Application of the correction factor for
crop development over time and leaf area
(cL) .

Step 4: Application of the cor{ection factor for
net dry matter production (cN).

Step 5: Application of the correction factor for
harvested part (cH).

Step 6: Computation of the maximum potential yield
(Ym) .



Figure 20.
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PHASE 2!

TEP It

COMPUTE DRY
MATTER PRODUCTION
o>

JEP 2

CORRECTIDON
rpscrss AND TEMP
Cym

STEP 3

CORRECTION

LEAF AREA
(=)

CORRECTIDN
NET DRY MATTER

(cN>

TEP S

CORRECTIDN
HARVESTED PART
(cH>

TEP &

COMPUTE MAXIMUM
POTENTIAL YIELD

Ym

Stochastic YIELD simulator--Phase 2 flowchart.
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Phase 3: Calculation of the maximum evapotranspiration

(ETm) when crop requirements are fully met by available

water supply. In this phase, three steps are needed to

compute ETm (see Figure 21):

Step 1l: Computation of the reference evapo-
transpiration (ETo) based on the
meteorological and crop data available.

Step 2: Computation of the growing period and
length of crop-development stages and
selection of the crop coefficient kc.

Step 3: Computation of maximum evapotranspiration
(ETm) .

PHASE 3

TEP 1
COMPUTE
ETo

TEP 2

SEk(E:CT

STEP &
COMPUTE
ETm

Figure 21. Stochastic YIELD simulator--Phase 3 flowchart.
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Phase 4: Determination of the actual crop evapo- .
transpiration (ETa) based on factors concerned with the
available water supply to the crop (see Figure 22). This
includes:

Step 1: Determination of the total available soil
water.

Step 2: Computation of the soil water depletion.

Step 3: Computation of the actual evapotranspira-
tion (ETa).

Phase 5: Selection of the yield response factor (ky)
to evaluate relative yield decrease as related to relative
evapotranspiration deficit, and calculation of the actual
yield (Ye) (see Figure 22)

Phase 6: Estimation of crop-yield adjustment. In
this phase, the resulting estimated yield from Phase 5 is
adjusted for fertilizer usage, soil salinity, and moisture
content (Figure 23). Three steps are needed in this phase:

Step 1: Adjustment of the estimated yield for ferti-
lizer availability.

Step 2: Adjustment of the estimated yield for salinity
levels.

Step 3: Adjustment of the estimated yield for moisture
content.
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PHASE 4

TEP 1

COMPUTE
ASI

TEP 20
COMPUTE

FACTOR
D

3
COMPUTE
Ta

PHASE St

TEP It
SELECT
Ky

Figure 22. Stochastic YIELD simulator--Phases 4 and 5
flowchart.




Figure 23.

Phase 7
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PHASE 6!

P 1
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P2
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ADJUSTMENT
MDISTURE
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Stochastic YIELD simulator--Phase 6 flowchart.

Determination of the probability density

functions and computation of the final yield statistics.

The following three steps are needed (see Figure 24):

Step 1:

Step 2:

Step 3:

Identify the probability density function
using the histogram frequency plot.

Conduct "goodness of fit" test for selection
of the probability density function.

Compute the distribution density function
statistics for potential, irrigated,
and rain-fed yields.




Figure 24.
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Stochastic YIELD simulator--Phase 7 flowchart.




Mat} tical F lati

The mathematical formulation of the stochastic yield

simulator follows the procedures used in the deterministic
yield simulator. Repetition of the phases, equations, and
procedures involved in the deterministic yield simulator is
necessary for completeness, consistency, and clear identifi-
cation of the random factors included in the model and its
relationships with the other components.

Phase 1. Determination of the probability density
function and its statistics for the parameters and environ-
mental inputs. The mathematical and statistical procedures
were discussed in the section on random-variates generation.

Phase 2: Determination of the maximum yield (Ym) of
the adapted variety, dictated by climate, assuming that
other growth factors (e.g. farm management, fertilizer,
pests and diseases, and so on) are not limiting.

Refer to Equation 1.1, Chapter III, for the relation-
ship of dry-matter production for a standard crop.

F(t), fraction of daytime the sky is clouded, is deter-
mined from the following formulas (Equation 1.7, Chapter
III):

[Rse(t) - 0.5 * Rs(t)] / [0.8 * Rse(t)]

F(t)

Rs (t) 0.25 + 0.50 * [n(t) / N(t)] * Ra(t)
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Randomness is entered, in Phase 2, through the environ-
mental variable n(t), number of sunshine hours a day. The
value of n(t) variable is generated for every time (t) from
the probability density function statistics derived from the
sample data set "number of sunshine hours a day." The
parameters yo(t), yc(t) (Equation 1.1, Chapter III), Rse(t),
Ra(t), and N(t) are entered into the model by means of table
look-up function (tablex, spline) and are assumed to have
zero variance; that is, they are values known with cer-
tainty.

The variable ym(t) (Equation 1.4, Chapter II1) depends
on the environmental variable temperature, which is a random
variable generated by a random variate generator.

In summary, Phase 2 of the stochastic yield simulator
has two different random variates: an environmental input,
number of sunshine hours a day--n(t), and dry matter pro-
duction rate--ym(t), which is a function of the environmen-
tal input temperature. A third stochastic variable, which
is assumed to vary within a predefined range, is crop-growth
duration. In some cases, the sowing or planting date is not
known with certainty, and it changes from year to year. If
this is the case, a random variate can be defined in a
planting interval in days and generated in the model by

means of the random-variate generator.
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Phase 3: Computation of maximum evapotranspiration
(ETm). The stochastic environmental variables of Phase 3 of

the simulation model are as follows (refer to Equations 1.6

and 1.7, Chapter III):
Wind velocity U(t), an exogenous environmental variable

generated by a theoretical probability density function

whose statistics and shape are determined from the wind

velocity sample data set.
The number of sunshine hours a day n(t), an exogenous

environmental variable generated by a theoretical probabil-
ity density function whose statistics and shape are deter-
mined from the number of sunshine hours a day data set.
Mean daily temperature value T(t), an exogenous envi-
ronmental variable generated by a theoretical probability

density function whose statistics and shape are determined

from the temperature data set.
Relative humidity value RH(t), an exogenous environmen-

tal variable generated by a theoretical probability density

function whose statistics and shape are determined from the

relative humidity data set.
All other parameters in this phase are deterministic;

that is, their values are assumed to be known with cer-

tainty.
Phase - 4: Computation of actual evapotranspiration
(ETa). 1In this phase (refer to Equations 1.8 and 1.9,
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Chapter III), precipitation Pe(t) is an exogenous environ-
mental variable that is generated from a theoretical proba-
bility density function whose statistics are determined from
the precipitation data set. Other parameters considered in
this phase are assumed to be nonprobabilistic.

Phase 5: Computation of estimated yield (Ye). Equa-
tions 1.10 and 1.11 (Chapter III) are used in this phase
The model parameter ky(t) is assumed to be known with cer-
tainty, making it a deterministic parameter.

Phase 6: Estimated yield adjustment. The model input
factors (refer to Equation 1.12, Chapter III) ydf and yds
and the model parameter cf are assumed to be known with
certainty, and their values are selected by the user.

Phase 7: Yield statistics generation. Using the
results of Phase 6 after several simulation runs, the data
set is statistically analyzed to determine the probability
density function statistics and the histograms for the
potential, irrigated, and rain-fed yield. 1In this phase,
statistical-analysis software is used to provide the fre-
quency histogram shape needed to determine the probability
density function. The next step is to compute the distribu-
tion moments such as mean, variance, skewness, and so on, to
aid in the process of planning and decision making in eco-
nomic analysis, land-use planning, and natural resource

management.
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Data Requirements

To run the stochastic YIELD simulator successfully, the

user must assemble and analyze a data base. The data base
must contain several data sets, which will provide the
information necessary to estimate the probability density
function statistics to run the model. For more detailed
information on data requirements, refer to the section on
data requirements in Chapter III.

A. A LOCAL data set is required to identify the loca-
tion, the region, or the AEZ parameters where the simulation
will be done. All variables in the local data set are
deterministic.

B. A FARM MANAGEMENT PRACTICES data set is required to
identify farming-system techniques.

1. Crop planting data interval [days]
- a stochastic input variable

2. Crop first stage duration [days]
- a stochastic input variable

3. Crop second stage duration [days]
- a stochastic input variable

4. Crop third stage duration [days]
- a stochastic input variable

5. Crop fourth stage duration [days]
- a stochastic input variable

6. Crop fifth stage duration [days]
- a stochastic input variable

7. Fertilizer availability [percentl
- a stochastic input variable
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8. Evaporation reduction factor [percent]
- a deterministic input variable :
9. Irrigation parameters
- by crop development stages, a
deterministic input variable
C. A CROP INFORMATION data set must contain the deter-
ministic exogenous variables described in Chapter III.
D. An ENVIRONMENTAL-CLIMATE data set, which contains
the stochastic exogenous environmental variables:
1. Temperature in daily or monthly mean [cl
2. Precipitation in daily or monthly mean [mm]

3. Relative humidity in daily or monthly

mean [percent]
4. Solar radiation in daily or monthly

mean of sunshine hours [hours/day]
5. Wind velocity and wind velocity

day/night ratio [m/s]







CHAPTER V

MODEL VALIDATION AND SIMULATION RUNS

The objective of this chapter is to validate the deter-
ministic YIELD simulator (DYS) and the stochastic YIELD
simulator (SYS). According to Shannon (1975), model valida-
tion is a process of bringing to an acceptable level the
user's confidence that any inference about a system derived
from the simulation is correct. It is not possible to show
that a model is the exact representation of the system being
modeled. In the modeling process, one is, in general, not
concerned with the "truth" of the model, but how it provides
insights with a certain confidence in the results of the
simulation. 1In general, one can say that it is the opera-
tional utility of the model and its structure and not the
"truth” of its structure that is usually of concern.

To validate a model, Shannon (1975) indicated that it
has to pass three tests, called the "test of validation."
First, one must ascertain that the model has face validity;
i.e., one must ask if the model results appear to be reason-
able. This can be done by comparing the model's results

with the system's results—--that is, the real-world results.
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Often, an expert opinion is needed to help analyze the
model's results. The second method of validation is testing
the model assumptions. The third test for model validation
involves testing input-output transformations

Kaplan (1964) outlined model validation in terms of
norms of validation. He indicated that, to be considered
valid, the model must pass the norms of validation tests
which he defined as the correspondence, coherence, and prag-
matic norms of validation.

Fisherman and Kiviat (1967) divided the evaluation of
simulations into three categories: verification, insuring
that the model behaves the way the experimenter intends;
validation, testing the agreement between the behavior of
the model and that of the system; and problem analysis,
drawing statistically significant inferences from the data
generated by the computer simulation. Schrank and Holt
(1967) proposed that "the criterion of the usefulness of the
model be adopted as the key to its validation, thereby
shifting the emphasis from a conception of its abstract
truth or falsity to the question of whether the errors in
the model render it too weak to serve the intended pur-
poses."

The validation process used in this study represents a
combination of all the above. The following means of vali-

dating the yield model are performed: First, for Jamaica,
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20 runs will be conducted on a yearly basis, for sugarcane
in the regions of Worthy Park, Caymanas, and Monymusk, using
the deterministic approach. These represent traditionally
rich sugarcane-producing regions. Observed yields are
available for a period of 20 years or 1963-1982, to evaluate
the model's performance.

Second, simulations will be conducted for tobacco and
sorghum for the same locations. Observed yields are not
available on a year-by-year basis, but some statistics, such
as average tobacco and sorghum yield, are available for
Jamaica. The simulation runs will be made in the "average"
mode, with the deterministic model using average values of
the environmental variables precipitation, temperature,
relative humidity, solar radiation, and wind velocity. The
simulation results will be compared to the actual average
yield for tobacco and sorghum for the Worthy Park, Caymanas,
and Monymusk regions in Jamaica.

Third, 500 simulation runs will be made with the sto-
chastic YIELD simulator for sugarcane, tobacco, and sorghum
for the same location in Jamaica. The probability density
functions for the environmental variables precipitation,
temperature, relative humidity, solar radiation, and wind
velocity will be computed and used to generate, in a Monte
Carlo simulation approach, the yield values. (The Monte

Carlo approach is a technique for generating random variates
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as input and/or parameters from a population described by
some probability function to be used in the simulation -
process.) Yields resulting from those simulations will be
given in terms of yield probability density function statis-
tics. Comparisons will be made with observed yield data and
average yield data for Jamaica's Worthy Park, Caymanas, and
Monymusk regions to infer and measure the yield model's
performance. Results will be shown in tables, graphs, and
histograms and in the form of statistics such as means,
standard deviation, and quantiles. Graphics and summary
statistics such as histograms are valuable to decision
makers and planners in providing a better understanding of
the simulation results.

Fourth, 500 simulation runs will be made with the
stochastic YIELD model for rice, potato, fresh pea, onion,
and cabbage for the Agro-Ecological Zones (AEZs) in the
Dominican Republic's Ocoa Watershed, which are called
Valdesia, Ocoa, and Azua. The AEZs were determined by the
use of the CRIES-GIS Geographic Information System using the
OVERLAY and MATCH procedures (Schultink, 1986) and the spa-
tially referenced information on soil, slope, evapotranspi-
ration, temperature, and precipitation. 1In that simulation
process, the probability density function statistics for the
environmental variables precipitation, temperature, relative

humidity, solar radiation, and wind velocity will be
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computed using the Statistical Analysis System (1985) to
generate, in a Monte Carlo simulation approach, the values
of those environmental variables'for each year. Yields
resulting from those simulations will be given in terms of
yield probability density function statistics. Comparison
will be made with observed yield data and average yield data
for the Dominican Republic's Valdesia, Ocoa, and Azua AEZs
to evaluate the model's performance. Also, the simulation
results will be compared with the yield results and guide-
lines given by Doorenbos and Kassam (1979).
Det inistic YIELD Simulat R
Jamaica--Introduction

For Jamaica, the DYS model was used to simulate crop
productivity for some of the most important "cash" crops,
which are responsible for a large part of Jamaica's foreign
exchange earnings, such as sugarcane and tobacco. The model
was used to predict yields for sugarcane, tobacco, and
sorghum. Sugarcane simulation was done for every year from
1963 to 1982 for three known producing regions: Worthy Park
and Caymanas in the parish of St. Catherine and Monymusk in
the parish of Clarendon. Twenty years of observed yield
data are available for sugarcane, which is considered to be
a relatively well organized and primarily state-controlled

industry. For tobacco and sorghum, also impo