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ABSTRACT

DISTANCE PRESERVING TRANSFORMATIONS

BY

Allen Jay Beadle

Let (M1,d1) and (M2,d2) be two metric spaces. An

injective map Tully-"PM.2 is called distance transforming if

for some pair of positive numbers a and b, d1(x,y) a a

implies that d2(Tx,Ty) = b. If a = b, we call T

distance preserving and say that a is preserved by T.

In 1953, F.S. Beckman and D.A. Quarles proved that if

T:En-*En, 2:5n<oo, is distance preserving, then T is an

isometry. In 1973, R. BishOp gave a different proof.

In this thesis, we study a number of generalizations of

the Beckman-Quarles result. We show that, up to a point, it

can be extended to the classical non-Euclidean spaces and to

most Minkowski planes. Beckman and Quarles noted that their

theorem did not extend to Hilbert space but the example they

gave was not continuous. We have been unable to find a

continuous distance preserving self map of a Hilbert space

which is not an isometry. In the cases of 5", El, and a

wide class of Banach spaces (not strictly convex) we have

examples of continuous distance preserving self maps which

are not isometries.

The thesis is organized into six sections. In Section

1, we develope a few basic lemmas in a general setting.

Using methods similar to those of BishOp, we show in
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Section 2 that if M and M2 are two Minkowski planes
1

and M has no flat spots of length greater than I on
2

its unit circle, then the only distance preserving maps

T:M1-*>M2 are the isometries. It is shown that in any

Banach space with a flat spot of length 2 on its unit

sphere, this theorem is not valid. However, the situation

in Munkowski spaces of dimension more than 2 is unknown.

In diMension 2, the only known execption is the space

with max norm.

In Section 3, further exploiting the methods of BishOp,

we show that for hyperbolic spaces H“, 2 s n<oo , if

T:Hn---5>Hn is distance transforming then T is an isometry.

While the methods are similar to those used to prove the

corresponding result in E“, the computational detail is

much more involved.

Spherical and elliptic spaces are analyzed in Section

4. An example is given of a map Tzsn—-—>Sn which has two

preserved distances, v and %, but is not an isometry.

This leads us to impose the condition that the transformed

distance a must be “small enough". Specific bounds are

found which force the mapping to be an isometry, but they

may not be the “best possible“.

In Section 5, we attempt to improve on some of the

results of D. Greenwell and P. Johnson who considered some

directional restrictions on the set of preserved distances.

More specifically, let T:E2———’B2 be a map such that
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there is a set ,0 of unit vectors such that $537605 implies

that d(Tx,Ty) = 1. If .0 = S , the set of all unit

vectors, then T preserves the distance 1 and is thus an

isometry. The question considered in this section is how

small 43 can be and still force T to be an isometry. we

show that 43 can have arbitrarily small measure and still

force T to be an isometry, but this requires that the

interior of $3, in the relative tOpology of S, to be non-

empty and requires 45' to contain certain vectors.

In Section 6, we suggest a number of directions for

further research, describe a few partial results and give a

few examples of a rather negative character showing bounds

on the type of theorems to be expected.
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LIST OF SYMBOLS

c (c): the distance between the centroid of a

c-equilateral n-simplex and any of its vertices.

Cn(c): = cos(cn(c)) in elliptic or spherical spaces,

cosh(cn(c)) in hyperbolic spaces.

- l -
dn(c). - 2hn(c) cn(c).

D (c): = cos(dn(c)) in elliptic or spherical spaces,

= cosh(dn(c)) in hyperbolic spaces.

3“: n-dimensional Euclidean space.

8?: n-dimensional elliptic space.

H“: n-dimensional hyperbolic space.

hn(c): the distance between the two remaining points of

two c-equilateral n-simplices having n points

in common.

Hn(c): = cos(hn(c)) in elliptic or spherical spaces,

= cosh(hn(c)) in hyperbolic spaces.

5“: n-dimensional spherical space.

xn(c): the angle between two adjacent (n-l)-simplices

which are the faces of a c—equilateral n-simplex.

[xyz]: y is between x and 2.

vii



NOMENCLATURE

between: A point y in a metric space (M,d) is between

points x and y if d(x,y)+d(y,z) = d(x,z), and

this relation will be denoted by [xyz].

centroid: For n 21, the centroid of an n—dimensional

equilateral simplex in an elliptic, spherical,

hyperbolic, or Euclidean space is the intersection

point of the n+1 segments which have one end at a

vertex of the simplex and the other end at the centroid

of the (n-l)-dimension simplex which is the face

Opposite that vertex. For n = O, the simplex is just

one point which is its own centroid.

convex metric space: A metric space (M,d) is convex if

for every pair of points x,y in M, there is a point

z in M such that [xZY].

diameter of M: For a metric space (M,d), we will say

that the diameter of M is sup {d(x,yl}.

x,yeM

l—"’M2 between two metric

spaces (M1,d1) and (M2,d2) is distance preserving

distance preserving: A map T:M

if there is some distance a such that x,y in M1

and d1(x,y) = a implies d2(Tx,Ty) = b.

viii



distance transforming: A map T:M1-—-!>M2 between two metric

spaces (M1,d1) and (M2,d2) is distance transforming

if there are two distances a and b such that for

any x,y in M, d1(x,y) = a implies d2(Tx,Ty) = b.

r—equilateral n-simplex: A set of n+1 points in a metric

space is an r-equilateral n-simplex if the distance

between any two of them is equal to r.

equilateral unit lattice: A set of points in E2 is an

equilateral unit lattice if it consists of the points

_,

{31+nv2+m33} where n and m range over all integers,

61 is any vector, ani V? and 33 are two unit

vectors at an angle of 60° to each other.

extension property: A metric Space (M,d) has the exten-

sion pr0perty if for each two points x,y of M and

each distance r such that d(x,y)s rsédiameter of M,

there exists a point z in M such that [xyz] and

d(x,z) = r.

externally convex metric space: A metric space (M,d) is

externally convex if for any x,y in M, there is

some 2 in M such that d(x,y)+d(y,z) = d(x,z).

flat spot: A Banach space is said to have a flat spot on

its unit sphere if there is a segment of length greater

than 0 on any unit sphere.

ix



isometry: An injective map T:M1---a--M2 between two metric

spaces (M1,d1) and (M2,d2) is an isometry if for

all x,y in M1, d1(x,y) = d2(TX,TY).

length of a segment: If a segment in a metric space has

endpoints x and y, then the length of the segment

is d(x,y) .

local isometry: A map T:M1—erM2 between two metric spaces

(M1,d1) and (M2,d2) is a local isometry if for every

x in M1, there is a distance r(x)> 0 such that

y,z in M dl(x,y)<r(x) and d1(x,z)( r(x)
1,

implies that d2(Ty,Tz) = d1(y,z).

locgl:isosceles prOperty: A metric space has the local

isosceles prOperty if there is a p(M) > 0 such that

for any positive :1 less than p and any x,y in M,

with d(x,y)$'2A, there is a point 2 such that

d<x,z) = «2.1» = A.

Minkowski space: A Minkowski space is a finite dimensional

Banach space.

T :preserves a: A map T:M1—--I>M2 between two metric

spaces preserves a if for all x,y in M,

d1(x,y) = a implies d2(Tx,Ty) = a.

segment: A set of points in a metric space (M,d) is a

segment if it is the isometric image of a finite

closed interval of the real line.



segmentally connected: A metric space is segmentally

connected if every two points in it are the endpoints

of some segment.

I, transforms a into b: A map T:Ml~-—a>M2 between two

metric spaces (M1,d1) and (M2,d2) transforms

distance a into distance b if for any x,y in M

l

with d1(x,y) = a, it follows that d2(Tx,Ty) = b.

xi



DISTANCE PRESERVING TRANSFORMATIONS

maonucnON

In 1953, F.S. Beckman and D.A. Quarles [1] proved that

if T is a mapping of E“ into En for 25 n<0° which

preserves one distance, then T is an isometry. In 1973,

R. BishOp [3] gave a different proof.

The aim of this thesis is to extend this result to

other geometries. It will be shown that this theorem is

true in any n-dimensional hyperbolic space for 21En<cv ;

it is true in any n-dimensional elliptic or spherical

space if the preserved distance is small enough; and it is

true in any Minkowski plane whose unit circle does not have

a flat spot of length greater than 1. In hyperbolic and

spherical and elliptic spaces, a further generalization

will be shown: if T:M->M. such that there are two

distances a and b such that x,yéEM and d(x,y) = a

implies d(Tx,Ty) = b, then a = b and T is an isometry

(here again in the Spherical and elliptic spaces, a and

b must be small enough). Note that in Euclidean spaces

(and Minkowski spaces) any such map is the product of a

similarity and a distance preserving map.

As noted by Beckman and Quarles [1], this theorem is

not true for E1, the Euclidean line, or Eafl Hilbert

space. In E1 the map T defined by Tx = x+l if x is

an integer point and Tx = x otherwise is a counter-

example. In E“, a counterexample is found as follows:

1



2

let {yi} be a countable everywhere dense set of points.

Define R:E“¥—afyi} so that d(x,Rx) < %3 Define

S:{yi}**+{ai} so that Syi = a1 where ai is the point

in E” with coordinates (ail,a12,...) such that aij =

[ijA/E’ where Jij is the Kronecker delta. Then T = SR

is a map of E” into itself which preserves the distance

1. For if d(x,y) = 1, then Rx # Ry and hence Tx # Ty,

But T is not an isometry.

The theorem is also not true in particular Minkowski

spaces, such as any max norm space (see Section 2). It is

also untrue in spherical spaces for particular distances.

For example, in Sn, if T maps every point onto itself

except the north and south poles and maps these two points

onto each other, then it is clear that T is not an

isometry, but T does preserve the two distances w and

I.
2.



§l. PRELIMINARIES

Generally we will be concerned throughout this thesis

with an injective mapping, T, from one metric space

(M1,d1) to another, (M2,d2). Such a mapping is said to be

distance transforming and to transform distance a into b

if whenever dl(x,y) = a, then d2(Tx,Ty) = b. If a = b,

then T is called distance preserving and we say that T

preserves a. If T preserves ai for each term of the

null sequence {ai} then we will frequently say that T

preserves arbitrarily small distances. Analogously, if the

{ai} approach infinity, T is said to preserve arbitrar-

ily large distances.

Definition. A metric segment is the isometric image

of a real segment.

Definition. A metric Space is called segmentally con-

nected if every two points of the space are the endpoints

of some segment.

Definition. If in a metric space, d(x,y)+d(y,z) =

d(x,z), then y is said to be between x and z. This

relation is denoted by the symbol [xyz].

Definition. A metric space (M,d) has the extension

property if for each two points x,y in M and each real

number r such that d(x,y)< r:§diameter of M, there is a

point z in M such that [xyz] and d(x,z) = r.
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Definition. If in a metric space [xyz], [yzw] and

d(x,z)+d(z,w) is less than the diameter of the space,

imply [xzw], then the betweenness relation is said to be

externaly transitive in this space.

Definition. A metric space (M,d) has the local

isosceles prOperty if there is a p(M):> 0 such that for

any positive r less than p, and any x,y in M with

d(x, y) _<_ 2r, there is a point 2 such that d(x,z) =

d(Z,Y) = r.

Lemma 1.1. ;£_ (M1,d1) §gg_ (M2,d2) g£g_ggg_metric

spgces ghggg, (M1,d1) ig_seggentaly connected ggg_hgg_£hg_

lgggl_isosceles proggrty ggg_ T:M.1——-*M2 transforme a

ig£g_ b, ghgg_d1(x,y)§ ka implies Eggg. d2(Tx,Ty)£ kb,

for k any positive integer greater than 1.

Proof. Let zo,zl,...,zj be points on a segment with

endeints x and y such that x = 20 and d1(zi’zi+1)

a for osiéj-l, and a<d1(zj,y)s 2a. Since (M1,d1)

has the local isoscles property, there is a point zj+1

s dl(z = a. If we denote y

z3+1) j+1’ Y) 3..
=

(then d2(TX,TY) 62(T209sz+2)- 3362(Tzi’Tzi+l)to

such that d1(zj,

by zj+2’

= (j+2)b. But j+l< k-l, so j+2$k and d2(Tx,Ty)$ kb.0

The following is a generalization of a lemma of Bishop

[3].
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emma 1.2. ;£_ (M1,d1) and (M2,d2) are two metric

spaces such that (M1,d1) 'ig segmentaly connected, has the

local isosceles ppgperty and the extension property and the

 

 
  

diameter g§_ M1 i§_not less than that 9;, M2, and pg

T:M.1--—-=>M2 preserves 3 null segpence pg distances, then T

preserves all distances less than any preserved distance.

Proof. Let a be any preserved distance and let c
 

be less than a. Let x,y be in M with d1(x,y) = c.

1

Let 2 be in M such that [xyz] and d1(x,z) = a.
1

Such a point 2 exists by virtue of the fact that (M1,dl)

has the extension prOperty.

Let u = d2(Tx,Ty) and v = d2(Tx,Tz). We wish to

show that c = u. Let r be a preserved distance under T

such that r< min (c,a-c) and r< p(M Then there exist1).

integers k and m z 2 such that (m-l)r< c 5mr and

(k-l)r<a-c_<_ kr. By Lemma 1.1, we have ugmr and v.<_kr.

Therefore u-c < r and v-a+c< r. Now, by the triangle

inequality, we have a5;u+v and this combined with the

previous line gives: c-u_<_c+v-a< r. Therefore Ic-ul < r.

Since r can be arbitrarily small it follows that c = u.u

Lemma 1.3. ;£_ (M1,d1), (M2,d2) and T are pp ;p_

Lemma 1.2 and if. ip_addition, the betweenness relation ip_

(M2,d2) i§.externaly transitive, then T ig_gp.isometry.

Proof. Let c = sup{r: r is preserved under T}. If

c =¢x> then for any distance a, there is a preserved
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distance larger than a, so by Lemma 1.2, a is preserved.

Hence T is an isometry.

If (M1,d1) is bounded and c is its diameter, then

all distances less than c are preserved by Lemma 1.2. If

there is a pair of points x and y in M1 such that

c = d1(x,y), then for any 8 such that c > E > 0, there is

a point 2 such that d1(x,z) = E and d1(z,y) = c-E.

Both 8 and c-E are preserved.

From the triangle inequality we have that

d2(Tx,TY) 2 d2(Ty,Tz) - d2(Tz,Tx) = c-ze.

Now since 9 can be taken arbitrarily small and the

diameter of M2 is no greater than c it follows that

d2(Tx,Ty) = c and T is an isometry.

Now suppose (M1,d1) is bounded but c is less than

its diameter. Let r be a distance in (M1,d1) such that

2rW<c, Note that r and Zr are preserved by T because

f such thatof Lemma 1.2. Consider four points f ,f
3’ 4

and c <1

1’f2

f2 and f3 are both between f1 and f4

d1(f1,f4)< c+r, dl(f3,f4) = r and d1(f2,f4) = 2r.

Since all distances less than c are preserved, sz

is between Tfis between Tf and Tf . Similarly Tf3 2
1 3

4. Now the diameter of M2 is not less than that

so d2(Tf1,Tf3)+d2(Tf3,Tf4) is not greater than

and Tf

of M1,

the diameter of M2 since it is equal to d1(f1,f4)

d1(f1,f3)+dl(f3,f4). Since the betweenness relation in M2

is transitive, we have:
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d2(Tf1,Tf4) = d2(Tf1,Tf3) + d2(Tf3,Tf4)

d1(f1,f3) + dl(f3,f4)

= dl(f1,f4).

Therefore the distance d1(f1,f4), which is greater than

c, is preserved under T contradicting the definition of

c. Hence c equals the diameter of M1 and T is an

isometry. U



§2. MINKOWSKI PLANES
 

l and M2 will denote two

Minkowski planes such that the unit circle in M2 does not

have a flat spot of length > 1. Also. T will denote a

Throughout this section. M

mapping of M1 into M2 which preserves the distance 1.

The objective of this section is to show that T must be an

isometry. In this section the distance between points x

and y will be denoted by Hx-yH if they are in M1 and

tar MX-yul if they are in M and we will use the vector20

notation in M1 and M2. The method used here is similar

to that used by Bishop [3].

Lemma 2.1. If. x,y 6 M2 and “bead" = 1 then there
 

exists a_unique pair pf points a and b such that
  

IUX-alll = lily-am = lUy-bfll = Hx-bHI = 1- For these a and
 

b, [Ha-b!” > 1 and x -a =b -y.

ngpf, Let Ck and Cy be the unit circles in M

with centers x and y. Then Ox n Cy # ¢ so let

a E Ck 0 cy. and set b==x4-y-a. Then b E ck 0 cy and

the required norms are = 1.

To show uniqueness. suppose ck n cy contains at least

3 points. Since none of them can be on the line xy, two

of them must lie on the same side of line xy: call these

two points c and d. Then points y-—x+—c and y-x4-d

are on 6y. so the convexity of Cy requires that c.d,

y-x+-c, and y-x4-d be collinear. Then they are on a

segment of length > 1. Hence no such c and d exists.

8



 

   

 

x+a-b a y

x Y

Figure 2-1 Figure 2-2

Finally, IHa-bm > 1 since if Wa-bHI < 1, then

x4-a-b would be inside 6x, which cannot be since ex

is convex and a 6 OX, y 6 Ox; and if IHa-bm = 1, then

x4—a-b E Ox and hence the segment from y to x4—a-b

is a flat spot of length 2. 0

Lemma 2.2. If x,y 6 M and Hx-yH 1 then there
 

1

exists a and b 6 M1 such that Hx-aH

Hb-aH and b-a = x-y. Also, a and b depend continu-

Hy-aH = Hx-bH =
 

 

ously 93’ x if y ig held fixed.

Egggf. There are two points a, b on the unit circle

with center x such that b-a = x-y. Then linearity

gives that the needed norms = 1. Note that if a is

restricted so that triangle xya has positive orientation,

then a and b are unique by the same argument used in

Lemma 2.1. This implies that a and b are continuous
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b,,,/’*——-~—~\~,,e

x /y

Figure 2-3

functions of x if y is held fixed. 0

 

 

 

Lemma 2.3. 1;: a,b,x,y 6 M1, b 79 y, llx-yl = :y-all =

Hb-aH = Hx-bH = Hx-aH = 1, then there exists §,S,§ 6 M1

such that

IIy-L-Zu = Illa-'13“ = H’s—ml = His—2;“ = lib-Bu = ”SE-y” = 1.

II

|
-
‘

‘

Proof. By Lemma 2.2, for any § 6 M1 with Hx-yH

there is 3. b so that Ha-yH = Ha-bH = H3-§n = u§-Su II

I
-
‘

O

0
‘
)

-.
—— —..

 
Figure 2-4

But 3 is a continuous function of E and b = b when

rd

§ = x and b = b = 2y-b when § = 2y-x, then since



ll

Hb-bH = 0 and Hb-b“ 2Hb-yH 2 2, there is some choice

of E so that Hb-bH 1” a

Lemma 2.4. If T has arbitrarily large and arbitrarily
 

small preserved distances, then T ie ea isometry.
 

Proof. This is immediate from Lemma 1.2. 0

Lemma 22;. If a,b,c,d G M1 such that Ha-bH = Ha-cH =

Hd-bH = Hb-CH = Ha-dH = 1 then Tc # Td.

 

Proof. By Lemma 2.3 we have a,b,d 6 M1 so that

\J N N rV

HB-cll = H’b—dll = HIE—’5” = IIE—cll = Ila-bll = lld—a’ll = 1.

Now since T preserves the distance 1, we have

1 = mTa-TbHI = mTa-TCHI = WTb-TCHI = mTa-Tdm ==|HTb-Tdm

= IIITE-TB’III = IIIT'S—Tclll = HITS-Tell! = HITS-Tall! = HITS-T3“!

= lHTd-TEHI.

d b Tb

 

(
s
p
u
n

\
J
r

0 fi
i
i

0
)

a m

Figure 2-5

Then by Lemma 2.1, either Td = or Td = Tc (where

N

x

x = Ta+—Tb-Tc). Also either Td = x or Td = To (where
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32’ = T§+Tb-Tc).

But ud-En = 1 =¢’|HTd-Tam = 1 while Lemma 2.1==a

|”x-TCH| > 1 and mx-TCHI > 1. Also MTc-TCHl = 0. So

the only possibility for Td and Ta is Td = x and

T3 = fi.

Hence Tc # Td. o

  

 

Lemma 23g. .3: xl,x2,...,xn 6 M1 such that xl - x2 -

xk - xk+l for k = l,2,...,n-1 and Hxl-xZH = 1 then

MTxl-TXZHI = l and Txl - Tx2 = Txk - Txk+1 for

k: l,2,...,n-l.

2 6 M1 such that

bl - b2 = x1 - x2 and Hxl-bln = ”bl—b,” = “bl-X2“ =

Proof. By Lemma 2.2, there is b1,b

Hbz-XZH = 1. For k 2 3, define bk = bzi-(k-2)(b2-bl).

 

 

 

Figure 2-6

Then

ka-xk+lH = ka-ka = ku-xk+1H

= ”bk’bk+1“

”xk+1'bk+1“ 1

and



= Hb

kfor 1.2,:-

Then by Lemma 2

3 ‘ sz

and by induction on

Tx = sz - Tb

k = l,2,'--,n-l. 0

Mar “242 °

preserved by T.
 

Proof. This is

”X
_ I =

n+1 Xl‘

”n(TXZ—Tx1

Lemma_21§.

= ubk’bk+1H = HXk+1'bk+l*

k+1'xk+2~

.l,

1 O

)H

For any integer

13

H = uxk+l-xk+2H

H = 1

-,n-2.

Tb - Tb -
2 1 _

therefore

k: - TX

TXk+l

For every integer n 2 l,
 

immediate from Lemma 2.6 since

”n(XZ-X1)H = nHXZ—Xl H = nHsz-Txlu

—Tx

= HTXn+1
In.

1
n 2 l. is preserved
  

p1 T.

Proof. Let c

unit circles with centers

and b==y+-(n-l)(Y—c).

UnX—nYH

Hb-CH = n-

and Tc-—Tb

on-yH = 1

Therefore Lemma 2.6 implies

be a point of intersection of the two

x and y. Let a==x+-(n-l)(x—c)

Then Hc-yH = Hc—xu = 1, Ha-b“ =

, Ua—CU = an—nc“ = on—CH n,

Tc-—Ta n(Tc—Tx)

n(Tc-Ty).
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ya

x

c

Y

‘ b

Figure 2—7

Therefore "‘Tx-Tyul = %-“‘Ta—Tb"| = %- since Ha—bH = 1.

This gives us the main result of this section:

Theorem 1. If_ T: M1 -—9 M2 1 e_mapping between two
 

Minkowski planes M and M where the unit circle ip_ M
  

  

 

l 2 2

has pg flat spot pf length > 1 and T preserves the

distance 1, then T i§_pp_isomet£y.

Proof. This is immediate from Lemmas 2.4, 2.7, and

2.8. 0

This theorem is not true if M1 = M2 = 2m as the fol-

lowing example shows: let M1 = M2 = {(x,y) | x,y real}

and Wlth max norm, “(xl,yl)-(x2,y2)H = max(|x1-x2|,|y1-y2I).

Let T be defined by T(x,y) = ([x]+{x}2,[y]+{y}2) where

[z] is the largest integer s z and {z} = z - [2]. Then T

preserves all integer distances, but is not an isometry.

A similar example can be found in any Minkowski or

Banach space which has a flat spot of length 2. This

includes all £1 and 1m spaces.
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It is not known what the situation is in Minkowski

planes with a flat spot of length > 1 and < 2 or in

Minkowski spaces of dimension 2 3 without flat spots of

length 2.



§3. HYPERBOLIC SPACE
 

Let Hn be n-dimensional hyperbolic space and let

T: H“ + H“ be a mapping so that there are two distances a

and b such that d(x,y) = a =%:d(Tx,Ty) = b. The aim of

this section is to show that T must then be an isometry.

The method used here is similar to that used by Bishop [3]

in En for n z 3, especially the idea behind Lemma 3.6.

In this section, the following notation will be used:

hn(c) = the distance between the two remaining points of

two c-equilateral n-simplices having n points

in common;

example: n = 2

 

AC - h2(c)

Figure 3-1

Hn(c) = cosh(hn(c));

cn(c) = distance between the centroid of a c-equilateral

n—simplex and any of the vertices;

Cn(c) = cosh(cn(c));

d (C) = J'h (C) - c (c)-
n if n. n '

Dn(C) = cosh(dn(c));

xn(c) = the angle between two adjacent (n-l)-simplices

which are faces of a c-equilateral n-simplex.
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o — o = l o =
Note. c0(c) — 0, c1(c) 7c, so C0(c) 1, and

 

_ l + cosh c
 

When there is no ambiguity in the value of the argument

of the functions h , H , c , C , d , D , and X ; they
n n n n n nn

will be written without the argument.

= 2n(cosh c)2

l + (n-l)cosh c

 Lemma 3.1. Hn(c)
__.—..._. ’—_-

— 1 for n 2 1.

Proof. Let A = cosh G. Let fl,el,e2,...,en and

f2,e1,e2,...,en be two c-equilateral n-simplices with

f1 # f2. Let 91 be the midpoint of the segment flf2 and

let g2 be the centroid of the simplex f1,e1,e2,...,en.

example: n = 2
 

 

 

e2

Figure 3-2

Then gl is the centroid of the c-equilateral (n-l)-

simplex el,e2,...,en; and d(e1,gl) = Cn-l; d(el,gz)

_. -1. ___.
d(fl,g2) — on, d(f1,gl)- 71%“ d(g1,gz) dn' and angle

f is "/2.
19181

Hence
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Agzgle1 is a right triangle==e

 

cosh Cn = cosh cn_1 cosh dn =e:Dn = Cn/Cn-l’

Similarly

Af g e is a right triangle==¢
l l l 2

coshc=cosh£h coshc ==>H = 2A -1.
2 r1 n-l n C2

n-l

Therefore

(1 = —l-h -c
n 2 11 11

cosh-i-hn cosh cn - sinh%-hn sinh cn;

/H +1 /H -1

==% C /C = D = n C - n \/C2-l ;

n n-l n 2 11 2 n

1i 0 O U
)

D
“

Q
.

:
3

ll

  

  

  

 

 
 

H -l 2 H +1 1 V2'VH +1 2

==> n (C -1) ‘ n + ———— --—————9—— C ;
2 n 2 C2 Cn-l n

n-l

2 H -1 1 v2 x/rTTi
: C = n "1 _ + n

n 2 2 C

n-1
n-1

A2 _ 1

2 2 2

_ Cn-l _ A Cn-l

‘ 1 A " 2 ‘
‘1 "' 5-2-— + 2 ET- 2A "‘ Cn-l 1

n-1 n-1

Since 00 = O, CO = 1, by induction on n it follows

that:

C2 = nA+l for n > 0

n n+1 ’ ’

Then
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2 2

= 2A — :1: = .._._2__n_A_.—__ -- >
Hn 2 l 9’ Hn 1+(n-1)A 1 for n _ l. u

n-l

Hn(c)-l . .

Lemma 3.2. For all c, cosh<: _ 1 > 2, ‘ip_particular,

hn(c) > c.

2

Proof Let A = cosh c Then H = ——3§§——— - l==$

--———° ° n l+(n-l)A

Hn-l nA+l
 

.A-l =‘2 TEZITKII > 2'

So Hn > 2A-l > A, (since A > 1) hence

hn(c) > C. 0

Lemma 3.3. I£_ d(x,y) = a =%’ d(Tx,Ty) = b, then

d(x,y) = hn(a)==$' d(Tx,Ty) = hn(b).

Proof. Let fl,e1,e2,...,en and f2,el,e2,...,en be

two a-equilateral n-simplices with fl # f2. Then

hn(a) = d(f1,f2).

Now hn(a) > a implies that the (n-l)-sphere with

center fl and radius hn(a) has point f2 so that

d(f2,f2) = a. Then there exists points e1....,en such

that £1,31,32,...,En and 22.31.32,....En are a-

equilateral n-simplices.

Then Tfl, Tel, Te2,...,Ten and Tf2,Te1,Te2,...,Ten

are b—equilateral n-simplices, so d(Tfl,Tf2) = 0 or

hn(b) depending on whether or not Tf1 = sz. Likewise

Tfl,Tel,Tez,...,TEn and T?2,T31,TE2,...,TED are b-

equilateral n-simplices and d(Tf sz) = 0 or hn(b)
1!

depending on whether or not Tf = T? . But d(f2,f

1 2 ) = a2
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so d(Tf2,Tf2) = b. So it cannot happen that Tf1 = sz =

sz since then d(Tf2,Tf2) would be 0; also Tf = sz #
1

sz cannot be since then d(Tf2,Tf2) would be d(Tf1,Tfé)=

hn(b) > b; and similarly Tf1 = sz # sz cannot be, so

Tfl g Tf and Tfl e sz. Hence d(Tfl,Tf2) = hn(b). 0
2

Corollary 3.4. f T has e_preserved distance, then T
 

has arbitrarily large preserved distances.
 

Proof. Let a be a preserved distance of T and de-
0

fine ak k-l)

preserved distance of T for all k 2 l, and by Lemma 3.2;

= hn(a for k > 1. By Lemma 3.3, ak is a

0 -1)2k. Hence cosh ak + a as k + w.

Hence ak 4 w as k + w. 0

cosh ak - l > (cosh a

cosh c

(n-l) cosh c + l ‘

 

Lemma 3.5. cos xn(c)

Proof. ln(c) is the angle opposite the base of a

triangle whose sides are éhn-lw)’ %-hn_l(c), and c.

The law of cosines yields:

 

cosh c = cosh2%-hn_l(c) —sinh2%hn_l(c) cos ln(c).

Let A = cosh c, Hn-l = cosh hn_1(c); then

Therefore

H +1-2A

cos Kn = 3-1 -¥l_’ = TH:{%A:1" o



21

example: n = 3

in (c) =d(e e)
2 2 l' 3

= d(e2,e3)

c = d(el,e2)

 X3 = Lele3e2.

Figure 3-3

Lemma 3L6. If d(x,y) = a =e> d(Tx,Ty) = b, and

Zn . . N

x b) 15 223.22.1232EEEI then there are a and B suchn __

that d(x,y) = a =e d(Tx,Ty) = B’ and cosh 8—1 <

0.6(coshb-l) .

Proof. Let e1....,en_l,fo,f1 and el""'en-l’fl’f2

be a-equilateral n-simplices so that f0 # f and by2;

 
Figure 3-4
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induction let f be another such simplexel""'en-l’fk-l' k

50 that fk_2 F fk for k 2 2. Since d(x,y) = are»

d(Tx,Ty) = b; Te1,...,Ten_1,Tfk_1,Tf is a b-equilateral
k

n-simplex for all k 2 1. Then the angle between the

(n-l)-Simplices Tel,...,Ten_1,Tf and Tel,...,Ten_1,Tfk
0

is kxn(b). Now, if Xj¥b7 is not an integer, there exists

n

< 1
k so that 0< |2n-kxn(b)| _ 711nm).

Now, d(f0,f2) = hn(a), therefore d(Tfo,Tf2) = hn(b)

by Lemma 3.3. Likewise, for all i, 0 s i 5 k-2 we have

d(Tfi,Tfi+2)

Hence d(x,y) = d(f0,fk) =e> d(Tx,Ty) = d(Tfo,Tfk) for

= hum.

all x, y in Hn since any such x and y can be made

the f0 and fk points of some such e1,...,en_l,fo,...,f€

Let a = d(fo,fk) and B = d(Tfo,Tfk). Let B be the

(smallest) angle between the (n-l)-simplices

Te ,...,Te ,Tf and Tel"'°'Ten-1’Tfk' Then

1 0

0 < B = [211 -kxn(b)| .<_ é—an) and (3 is the angle oppo-

n-l

site the base of a triangle whose sides are %hn_1(b) ,

‘b‘ r Tfo

U
?

   

 

'ih
2 n_1(b) 0 Tf

Figure 3-5
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%hn_l (b) , and '15.

The law of cosines yields:

~ _ 21 _ . 21
cosh b - cosh 2hn—l(b) Slnh -2—hn_l(b) cosB .

Let B denote cosh b. Then:

~ _ . 2 1 _
cosh b 1 — (Slnh -2-hn_l(b)) (1 cos (3 )

N < ' 2 l .. lcosh b - 1 _ (Slnh 2hn-1(b)) (1 cos-z-ln (10))

 

 
 

Hn_l(b)-l 1 + cosln(b)

2 1" 2

2

2(n-l)cosh b

= 1—4 Th-2)c03h B'- 2 ( ._V/1.+-cos n(b))

’2

 

 

 

  

  

2

2
2(n-l)B _ 2 l + B

= l-tTn-2)B 1 _ l4-(n-1)B

2 2

 

  

_ (B—l)((n-l)B4-1) l _‘l; «f nBi-l

_ (n-2)B+1 V2 (n-l)B+-l °

Now if n > 2:

cosh b - 1 I
A

(B-l) :17};- (l -\/-;:) < (B-l)2(l -/-§)

< 0.6(3-1).

If n 2, then:
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(13-1) (B+l)(l - / % fig?)

(B-l) B + 1 — / %\/ZBZ+BB+1).

cosh b - 1 I
A

 

Define p(B) = B + l - / % V2B24-3B4-l. Then

= 1 _ 1 4B+3 .92

dB

2V5 7232+3b+1

Now: 1632 + 243 + 8 < 1632 + 24B + 9; so

8(ZBZ+BB+1) = (4B+3)27

from which it follows that

 

1 < 1 4B+l ,

2V2 VZB§+3B+1

hence %§-< 0 for all B > 0;

B>l=>p(B)<p(l)=2-/-;:V€=2-V3< 0.6;

therefore cosh b - l < 0.6(B-l). 0

Corollary 3.7. If d(x,y) = a =#:d(Tx,Ty) = b, then

N

either there i§_some a and 3 such that d(x,y) = a =e~
  

 d(Tx,Ty) = b, b s b and ip pp integer, 2; there
N

)‘n (b)

are arbitrarily small 3 and 3 such that d(x,y) = a =¢>
  

d (TXITY) = 15.

Proof. If we assume that there is no 3 and 3 such



25

 

that d(x,y) = a *9 d(Tx,Ty) = b, b .<_ b and 21L is an

xn(b)

integer, then we can define a sequence of ak's and bk's

by letting a0 = a and b0 = b and then define ak and

bk inductively for k 2 l by setting ak = ak-l and bk =

bk-l where ak-l and bk-l are the results obtained from

Lemma 3.6 using a and b in place of a and b.
k-l k-l

Then cosh b - 1 2 0.6(cosh bk - l) for k 2 1, so

k-l

cosh b - 1 < (0.6)k(cosh bk —l)l

0

hence

cosh bk - 1 + 0 as k + on; therefore bk + 0 as k + m.

For any k > 0, d(x,y) = a -#> d(Tx,Ty) = b Let x
k k'

and y be two points in Hn such that d(x,y) = a. Let ik

a ; then by Lemmabe the smallest integer greater than 5—

k

1.1, b = d(Tx,Ty) s ikbk.' and so

i 2-5L, which + w as k + w since b + 0 as k + w.

k bk k

But then

5L + w as k + m,

ak

therefore

ak also + O as k + w. a
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Lemma 3.8. If d(x,y) = a =%> d(Tx,Ty) = b > 0 and

. 2n 2n .
either or are integers, then a = b.

lnla) Xn(B)

2n . 2n
Proof. Let k = 1:737, i = XETBT° Then either k

or i (or both) is an integer. Let x,yo,yl,... 6 Hn such

that d(x,yj) = a for all j and d(yj’yj+l) = a and

yj # yj+2 for all j.

T

_, Y2 .1' 7/ 0 "Y&\
/2?/2i1\\\ //.' \,'Ty1

// \ , —
\ / h

/ Y1 /. /

T i

. “‘9’ K Tx TYi
X :1]

\ fyoayk \ ' YO\ ,.‘K /

\ “ a ,/

\‘\L_,’, 7 Yk-l \\-_2..-:—. ‘ TYi-i

Figure 3-6

We have two cases:

Case 1: i is an integer, k is not. Then Ty0 = Tyi and

Case 2: k is an integer. Then y0 = y and hence Ty0 =
kl

Tyk. Thus, 1 is an integer and i s k since i is the

minimum integer such that Tyo = Tyi. If i = k, then

a = b, since ln(c) is a monotonic function of c. If

i < k, then y0 # yi, but TyO = Tyi.

So in either case we have either a = b or for any two
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pOints yo and yi such that d(yo,yi) = d(yo,yi); Tyo =

T91, hence d(Tyo,T§i) = 0. But then by Lemma 1.1; for any

w,z e Hn, d(Tw,Tz) = 0, hence the image of T is one

point and hence b = 0. Therefore b > 0 =e>a = b. 0

Lemma 3.Q. If d(x,y) = a =e> d(Tx,Ty) = b, then the

image under T of a circle of radius -]2'-hn_1(a) i_s_ con-
 

(b).
 

I O I I 1

tained pp some Circle pf radius -—hn_
2 1

2 n 2
Proof. Let H C H be some plane, and let 6 C H be

a circle in that plane with center x and radius 2hn-1 (a) .

There are points e1,e2,...,e such that d(ei,ej) = a

n-l

for i % j, and point x is the centroid of the (n-2)-

simplex e1,e2,...,en_l, and plane H2 is normal to the

(n-2)~plane formed by el""'en-l’ Then C is the locus

of points which can be appended to e]_,...,en_._1 to form an

example: n = 3

 

 

  
Figure 3-7

a-equilateral (n—l)-simplex. But the image of an

a-equilateral (n-l)-simplex is b-equilateral (n-l)-

simplex, so the image of C under T is contained in the
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circle whose center is the centroid of the (n—2)-simplex

Te1,Te2,...,Ten_1, whose radius is b, and whose plane is

normal to the (n-2)-plane formed by Te ,Te ,...,Ten
1 2 -1' 0

Lemma 3.10. ‘1: there are two seguences pf distances
   

 

 

{ai}i=0' and {bi}i=0 such that for all i, d(x,y) = ai

==» d(Tx,Ty) = bi and ai + 0 and bi + 0 pg i + w,

sinh % hn_l (ai)

then is constant over i.
 . ll -——

811111 -2- hn—l (bi)

Proof. T is continuous since ai + O and bi + 0 as

i + a. Let x 6 Hn and let C be some circle with center

x and radius %hn_1(ai). Fix y E C. Consider the func-

tion given by f(w) = Lwa'Ty for w E C, where x' is

the center of circle TC. Then T continuous =%» f is

continuous. But for any y1,y2 6 C such that d(y1,y2)

ai, we have d(Ty1,Ty2) = bi’ so that f(yl) - f(yz) is

. = - ~ ~

always 2 LTylx Ty2 t(f(y1) f(y2)) as yl and y2 vary

over. C with L§1x§2 = Lylxyz. But continuity of f==s

f(y1)-—f(y2) = f(yl)-f(y2) for all such yl, y2. Hence if

y1,y2,y3,... is a sequence of points on C such that

d(yk,yk+1) = a1 and Lykxyk+1 = Lylxyz, then Tyl, Ty2,...

_. ' =are on TC such that d(Tyk'Tyk+1) - hi and LTka TYk+1

For any i 2 0, let y1,y2,...,ym. he points on C

i

such that for all k < mi, d(yk'yk+l) = ai, Lykxyk+l =

Lylxy2 and d(yl,yk) > ai, and d(y1,ym ) s ai; then

i

d(Ty1,Tym ) s 2b1 by Lemma 1.1.

i
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Figure 3-8

Figure 3-9

TY

TY3

Ty2
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Let

c = circumference of C = lim.m.a.

1+” i i

= 2n sinh-l-h (a)
:2 n-l O ’

and let

3 = circumference of TC = lim mibi

1+»

= 2n sinhl'h (b )
'2 nrl 0 '

. l

Slnhfh _l(ao) ai

So that 1 = lim 5_ ; likewise,

Slnhi-hn l(b0) 1+» 1

sinh%—hn_l(ai) a.

1 = lim 5; by using a1 and bi instead of

sinh-—h (b.) i+~ i
:2 nrl i . 1

511111 2hn-l (ai)

 

and b above. Therefore is constanta
O O . 1

811111 7 hn-l (bi)

over i. 0

Lemma 3.11. If there are two sequences 92 distances
  

such that for all i, d(x,y) = a.{a 1
i}i=1’ EEQ- {bi}i=l

=e> d(Tx,Ty) = hi and ai + 0 and bi + 0 pg 1 + ”I

 

then there lg pp integer N such that for i > N, ai = bi'
  

Proof. For any i 2 l, we have by Lemma 3.3 that

d(x,y) = hn(ai) =a: d(Tx,Ty) = hn(bi), so if we let

a0 = hn(ai)' bo = hn(bi)' the“ {ai}i=0’ {bi}i=0

satisfies the hypothesis of Lemma 3.10 so we have

. l
. l

Slnh2hn-l(ai) _ Sinh-z-hn_1(hn(ai)) Therefore
  

. l — . 1
Sinh-Z—hn_l (bi) Slnh 2hn-l (hn(bi))
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. l . l

sinh- h _ (a.) Sinh-h _ (b.)

. 12n2____11 = . lgnll forall i.

81.th hn-l(hn(ai)) Sinh-z-hn_1(hn(bi))

Let A = cosh a, and define p by

2

 

 

 

 

. l
p(A) = ( sinh-i-hn_l(a) = cosh hn-Jlja) -l .

sinh‘lz‘hn_1(hn(a)) cosh hn_1(hn(a)) -l

2(n-1)A2
By Lemma 3.1, cosh hn_1(a) = 1—: (n—2)A - l,

2

2 (rm-1) (3(a))
cosh hn_1(hn(a)) = 1 + (n-2)Hn(a) - 1, and

2nA2

Hn(a) = 1 + (n-1)A - 1, so it is easily seen that p(A)

is a rational fraction in A. There are only a finite

number of roots of %§ which are ) 1, so there is some A

such that p(A) is monotone in the interval (1,3). For i

sufficiently large, cosh a1 and cosh bi are in (1,3),

hence there is an N such that for i > N, p(cosh ai) =

p(cosh bi) only if cosh ai = cosh bi' Therefore ai =bi

for all i > N. D

Corollary 3, 2. _§, d(x,y) = a2==:’d(Tx,Ty) = b, then

there i§_p distance Sfiéa such that d(x,y) a 3' ===9

 

d (Tx, Ty) = 3’.

Proof. This is immediate from Corollary 3.7 and Lemmas

3.8 and 3.11. D

For the remainder of this section we assume that a is

a preserved distance, that is, that
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d(x,y) = a =e’ d(Tx,Ty) = a.

V

U
1

0 HCorollary 3.13. .2: T preserves a and n _
 

n = 3, then T ‘ig ep_isometry.

Proof. If n 2 5, by Lemma 3.5, cos xn(a)

 

1+-(:31?c:sh a . Now cosh a > 1, so 0 < %-< cos Xn(a) <

fiéf S %.. Then

%F' > Xn(a) > cos.1 % > %g .

Hence

4 < 2" < 5 for all a so 2" is non-inte er.

Therefore by Corollary 3.7 and Lemma 3.8, T has arbitrar-

ily small preserved distances. Then by Corollary 3.4 and

Lemma 1.2, T is an isoemtry.

 

- _ cosh a
If n — 3, then cos 13(a) - l4-2cosh a . So

1 1
'3' < COS X3 (a) < 72' .

So that

%; > cos.1 %- > 13(a) > cos-1 % = %g .

2n 2n . .

Therefore 5 < 13737 < 6, and 13737 is non integer.

Again T has arbitrarily small preserved distances and

is an isometry. 0

Lemma 3.14. If n = 4 and T preserves a, then T
 

£2.22 isometpy.
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Proof. For any 5: cos 14(5) = COShEi . Then

1-+3cosh a

% < cos 14(5) < %'

Hence

-1 1 . -l 1

cos 4 > 14(a) > cos 3.

Zn . . A 2n

SO that is an integer, x (a) = —— , and
. 4 5

MM!)

cos 14(5) .e 0.30902,

cosh a x 4.2361

5 e 2.1226.

Now if a < a, then by Corollary 3.7 and Lemma 3.11, T

has arbitrarily small preserved distances. Also if a 2 a,

then either T has arbitrarily small preserved distances or

T preserves 5.

But if 5 is preserved by T, then by Lemma 3.3,

h4(3) is preserved by T, and by using the construction of

Lemma 3.6 with h4(5) replacing a and b in the lemma,

we get a preserved distance 3 which by calculation is

about 0.241226. So 3 is a preserved distance smaller than

5, so by Corollary 3.7 and Lemma 3.11, T has arbitrarily

small preserved distances.

Therefore T is an isometry by Lemma 1.3. 0

Lemma 3.15. If n = 2 and a i§_preserved py T, and
 

ie pp integer, then T i§,ep.isomet£y.
 

2n

1 a)
n



 

Proof. Let k = .

. ~ _ 1.
Case 1. k is even. Let k- 3k. Let ei, fij he

points for i 2 l, l S j s k-l so that for all i, and

S k-l, e e f

1+1 11' ei+1ei+2

are equilateral triangles.

for 2 S f and

3 i ik-l’

ei+lfij-lfij

 

 

Figure 3-10

Then h2(a) is preserved by T=%>T is a motion on this

set of points. Also e1,e2,... are collinear since k is

even. Hence there exists a distance a (= a) such that

for any collinear set of points {ei} such that

d(ei,ei+1) = a, then T is a motion on the set {ei}; so

that m3 is a preserved distance for all positive integers

m.

I
V

|
-
‘

Case 2: k is odd. Let k: %(k+l). For i

i S j s k+1, let ei, fij be points so that e f f and

[\J

filfijfij+l for 2 E j S k, and ei+lfijfij+l for

k S j S k are a-equilateral triangles and ei+1 # fil'

Then h2(a) is preserved by T =e>T is a motion on

this set of points. Also k is odd w---—--=>el,e2,... are
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f f

f14 f24

_____ _____ez _____ e f28

e1 f11 fie -f31

f

f 21 f
example: 15 f 25 f2?

f 17 f 6

k = 7 16 2

Figure 3-11

collinear. Hence there exists a distance a (= a-th2(a))

such that for any collinear set of points {ei} with

N

d(ei,ei+l) = a, then T is a motion of the set {ei}.

So whether k is even or odd, there is a preserved dis-

tance a such that m3 is preserved by T for all posi-

tive integers m.

Consider five points e,f f such that
1' 2'91'92

d(erfl) = d(erfz) = d(gl'gz) = g and d(elgl) = d(ergz) =

mg and d(f1,gl) - d(f2,gz) = (m-l)'5 for an integer m22.

Then T is a motion on this point set, hence 3 =

d(f1,f2) is a preserved distance. Let B be the angle

Lglegz. The law of cosines for triangle eflf2 yields:

e 2rv . 2 ~
cosh a = cosh a - 31111"! a c038,

and applied to the triangle eglg2 it yields:

~ 2 rv . 2 .e
cosh a = cosh ma - Slnh ma cos B.
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Figure 3-12

 

So

cosh 3 - l = sinh2 m3 (1 — cos B)

and

cosh 3 - l = sinh2 S (l - cos 8).

Therefore

.. sinhz'a’ (cosh '5 - l)
cosh a = 1 + .

. 2 ~

Slnh ma

Now as m + w,

sinhza' (cosh '5 - 1)
1+ +1, 

O 2 N

Sinh ma

hence a + 0 as m + w, and T is an isometry by Lemma

1.3. D

gprollary 3:16. .1: n = 2 and a is e preserved
 

distance pf T, then T ig pp isometry.

Proof. By Corollaries 3.7 and 3.12, either T has
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arbitrarily small preserved distances (making T an isom-

etry by Lemma 1.3) or there is a preserved distance 3 such

 that. 21’ is an integer, again making T an isometry by

12(a)

Lemma 3.15. 0

Therefore:

Theo em 2. f n 2 2, Hn ig n-dimensional hyperbolic
_" —

 

h

 

space, T: H 4 H", and d(x,y) = a =€> d(Tx,Ty) = b # 0,

 

then a = b and T must pe pp isometry.



§4. SPHERICAL AND ELLIPTIC SPACES
 

11

Let T: M + M where M is either 8 the n-

dimensional sphere in En+1 (with the shortest arc metric),

or E“, the n-dimensional elliptic space. Let T have

the property that there are two distances a and b such

that d(x,y) = a =s> d(Tx,Ty) = b. Our aim in this section

is to show that T must be an isometry if is smalla

enough. Let a be restricted so that a S % if M is a

spherical space and a < % if M is an elliptic space,

then cos a 2 0 and a-equilateral n-simplices have unique

centroids.

In this section, the following notation will be used:

hn(c) = the distance between the two remaining points of

two c-equilateral n—simplices having n points

in common;

Hn(c) = cos(hn(c));

cn(c) = distance between the centroid of a c-equilateral

n-simplex and any of the vertices;

Cn(c) = cos(cn(c));

d (c) = in (c) - c (c)-
n 2 r) n ’

Dn(c) = cos(dn(c));

xn(c) = angle between two adjacent (n—l)-simp1ices which

are faces of a c-equilateral n-simplex.
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.. . — .1; e =

Note: c0(c) — 0, cl(c) — 2c, so C0(c) l, and

_ 1 + cos c

C1(C) ‘x/F 2 '

When there is no ambiguity in the value of the argument

 

 

of the functions hn' Hn, c , Cn' d , Dn’ and 1n, they
n n

will be written without argument.

2
2n(cos c) 1

= _ >

Lgmflg=ééi' Hn(c) 1-t(n-l)cos c £95 n ‘ 1'

 

_.- .__ ,.._,__

Proof. Let A = cos c and let f1,f2,gl,g2,el,...,en

be as in Lemma 3.1.

_ _ 2 2 _
Then Cn/Cn-l - DD and Hn — 2A /Cn-1 1, the same as

in Lemma 3.1.

 
  

   

Also

d == 111 - c
I) 2 n n

_ 1 . l .
==> cos d — cos-—h cos c + Sln-h Sin c ;

n 2 :1 r1 2 r: n

C H +1 1-H

-~—> n = D = / n C + n\/1-C2
C n 2 n 2 n

n-l

H-l n+1 V'z—VH +1
n 2 _ n 1 n 2

==e -———— (C -1) - + - C .
2 n 2 2 C n

C n-1

n-1

From this point on, the proof is the same as in Lemma

3.1. D

2
Lemma 4.2. ;£ 8n2A3 + (-n2+10n-1)A + (-2n+2)A - 1 2 0

h—“——  

then a circle of radius hn has two points pp distance c

from each other.
  



4O

 

 

Figure 4-1

Proof. What we need is a sufficient condition that

there exists an angle 8 such that

2 .
cos a = cos hn + Sin2 hn cos 8.

That condition is that -l 5 cos B S l where cos 8 =

2 .

 

 

cos a - cos h

n

sin2 hn

M:
Then cos B = ———§ so that H < l and A < 1==e

n
l-H

cos B < 1. Now

A-Hn

cos 8 = -———

1-32
n

A ___2_n£_-12
= l+(n-1)A

2nA2 2

1 - 1+(n-ISA - 1

2
-4n A4+(5n2—6n+l)A3+(—n +8n-3)A2+(-2n+3)A-l

‘ 2 4 *2
-4n A +(4n -4n)A3:+4nA2

2
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(l-A)(4n2A3+(-n2+6n-1)A2+(-2n+2)A—1)

(1-A)(4n2A3+4nA2)

All we need now is -1 5 cos 8.

But

0 s 8n2A3 + (-n2+10n-1)A2 + (-2n+2)A - 1

==e -4n2A3-4nA2 s 4n2A3-+(-h2+6n-1)A2-+(-2n+2)A—1

==> -l 5 cos B. 0

Remark: For any positive integer n > 1, the cubic (in

2 3 2
A): p(A) = 8n A +(-n +10n-1)A2+(-2n+2)A-1 has exactly one

positive root rn. For all n 2 2, “r > l and r < 31 .

n 8 n O

In fact: r2 m .2553, rn is monotone decreasing as n

increases, and lim r =-l.
n+~ n 8

Thus, p(A) 2 0 <=> A 2 rn. Therefore if n 2 2, a

sufficient condition that p(A) > 0 is A 2 r2 3 .2553,

that is, c S arccos r2 m 1.313.

For the rest of this section we assume that

a 5 arccos rn (s arccos %-m 1.445).

Lemma 522° lf' d(x,y) = a ==> d(Tx,Ty) = b and

a < arccos rn, then d(x,y) = hn(a) =2» d(Tx,Ty) = hn(b).

Proof. The proof is the same as that of Lemma 3.3,

using Lemma 4.2 in place of Lemma 3.2. D

COS C

Lemma-4;4. cos Xn(C) = 1-+(n—l)cos c-.~.—¢ ..———. 2...-
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Proof. Xn(c) is the angle opposite the base of a tri-

angle whose sides are %hn-l' 3hn-1' and c (see Figure

3.3 at Lemma 3.5).

The law of cosines yields:

  

cos c = cosz-l-h + sinzlh cos I

I! n-l 2 :1 r1

H +1 H -l

===e cos c = n 1 - n-l cos kn

2 2

H +l-2cos c

===>cos )‘n = n1 = cosc . D

Hn-l-l l-+(n-1)cos c

Lemma 4._5__. _I_f_ d(x,y) = a =9 d(Tx,Ty) = b and

a < arccos rn and T311153- i_s_ not _a_n_ integer, then there are

n
'V

a and 13 such that d(x,y) = 3 => d(Tx,Ty) = b and
 

(1 - cos b) < 0.6(1- cos b).

Proof. Constructing the points e1....,en_1,fo,...,fk

as in the proof of Lemma 3.6, we get 3 = d(fo,fk), b =

d(Tfo,Tfk) and the law of cosines yields:

~ _ 21 . 21
cos b — cos 2hn-l(b) + Sin 2hn-l(b) cos B

_ _ ~ _ . 21 _-2 1 cos b — Sln 2hn_1(b) (1 COS B)

1 - Hn_l(b)

s 2 (1 - cos%—ln(b)) 

=—e l - cos b

\

(l-cosb)(1+(n-l)cosb) (1__1__/ l+ncosb )

l + (n-2)cos b V? l + (n+l)cos b .
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Then just as in Lemma 3.6, we get:

if n > 2: (1-cos’f5) < (l—cosb)2(1-‘/-—;—) < 0.6(1-cosb);

if n = 2: cos b > 0 es>p(cos b) < p(O) = l —V/3 < 0.6;

therefore 1 - cos b < 0.6(1 - cos b). 0

Corollary 4.6. If. d(x,y) = a =e> d(Tx,Ty) = b and

a < arccos rn, then either there i5 some 3 229 3' such

Zn

In (’5)

pp there are arbitrarily small 3 222. 3 such that

 
 

that d(x,y) = 3 =e> d(Tx,Ty) = b and  ie pp integer

 

rJ

d(x,y) = ’5’ =3 d(Tx,Ty) = b.

Proof. The proof is the same as that of Corollary 3.7

with the 'cos' function replacing the 'cosh' function. 0

Lemma 4.7. If d(x,y) = a =e> d(Tx,Ty) = b and either
 

 

2n 2n .

or are integers, then_ a = b.
hula) —— ln(b)

Proof. The proof is the same as that of Lemma 3.8. 0

Lemma 4.8. If d(x,y) = a =e> d(Tx,Ty) = b, then the
 

image under T of a circle of radius %hn_1(a) _i_§_ con-
 

 

tained ip some circle g radius %hn_1(b).

Proof. The proof is the same as that of Lemma 3.9. 0

Lemma 4.9. If there are two sequences g£_distances
   

{ai}i=0' and {bi}i=0 such that for all i, d(x,y) = a

ea; d(Tx,Ty) = b1 and ai + 0 and bi + 0 pg 1 e w:
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. 1

Sin -2-hn_l(ai)

sin%—h

then
 i5 constant over i.
 

(bi)
n-l

Proof. The proof is the same as that of Lemma 3.10 with

the function 'sin' replacing the function 'sinh.‘ 0

Lemma 4.10. If there are two sequences pf distances
   

 

{ai}i=l' and {bi}i=1 such that fer all i, d(x,y) = ai

=e> d(Tx,Ty) = b1 and a1 + 0 and bi e 0 pg 1 e m,

then there pg 3p integer N such that for i > N, ai = bi'
  

Proof. The proof is the same as that of Lemma 3.11,

with 'sin' and 'cos' replacing 'sinh' and 'cosh' and noting

that g% has only finitely many roots < l. 0

Corollary 4.11. If d(x,y) = a =e» d(Tx,Ty) = b, and

 

o . N

a < arccos rn, then there pp 3 distance a s a such that
 

d(x,y) = '5 =9 d(Tx,Ty) = 'a’.

Proof. This is immediate from Lemmas 4.6, 4.7 and

4.10. D

For the remainder of this section we assume that a is

a preserved distance, that is, that d(x,y) = a =e> d(Tx,Ty)

=3.

Corollary 4.12. If_ n 2 4, a lg e preserved distance
 

under T, and a < arccos rn, then T is an isometry.

cos a .

l + (n-1)cos a’

 Proof. cos a < l and cos ln =



me 0<COSX<iS-]-'

n n 4

2n 2w

7" T>ln>s

n

211. .

Hence if. is not an integer.

n

So by Corollary 4.6 and Lemmas 4.7 and 4.10, T has

arbitrarily small preserved distances; hence T is an

isometry by Lemma 1.3. 0

Corollary 4.13. pp n = 3, a is p preserved distance
 

under T, and a < %-, then .T i a isometry.
 

 

 

cos 21

Egg.’ If a< 115" then COS a > COSH§=
5 2" _

1 - 2cos 1r

1 \/§ 1 1 _ cosa 2n_
-4- T. Then §>§>COSA3—l+§cosa>cos_§._

n
cos 3

. Therefore
 

1 + 2cos %

Also arccos r3 3 1.3396 > %' so a < arccos r3.

By Corollary 4.6 and Lemmas 4.7 and 4.10, T has

arbitrarily small preserved distances; hence T is an

isometry by Lemma 1.3. 0

Corollary 4.14. if n = 2, a i p preserved distance

cos %%

under T, and a < arccos 2 g 1.108, then T

l - cos 1%

 

 

 

pp pp isometry.
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Proof. If a < arccos 2" , then

1 ’ COS :-

2w Zn . .

7f > 12 > 7; and a < arccos r2 m 1.313; so T is again

an isometry by Corollary 4.6 and Lemmas 4.7, 4.10, and

1.3. 0

Then we get:

gheorem 3..£§ an Sn—+ Sn, and there are two distances
-_._._____.—-  

a and b such that d(x,y) = a =e> d(Tx,Ty) = b and
 

I
V

.
5

either n and a < arccos rn,

n

or n = 3 and a < E ,

T1

COS 2—

5
pp n = 2 and a < arccos 2" ,

l - cos 7?

 

then a II

G

I
n
:

:
3

Q
;

*
3

P U
)

.i_ pp isometry.
 

Since In > g , for all n 2 2, the following theorem

holds for elliptic spaces:

 

Theorem.4, If’ an pp_ n-dimensional elliptic space,

n 2 2, T: 8n-e-En, and a and b are two distances such
 

that d(x,y) = a fie» d(Tx,Ty) = b, and

either n = 3 and a <

U
1
|
:
l

‘

or n # 3 and a <

0
0
'
:

‘

then T pp pp isometry.

 

The situation for large values of a is not so clear.
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An example was given in the introduction to show that the

. fl .

theorem is not true for a = 5 or n in the case of

spherical spaces. However, these are the only distances

for which I have counterexamples in Sn. However, this

counterexample does not carry over to an. In elliptic

spaces, the situation for large distances is unknown.

At present, the only result I have concerning large

n

distances in S is the following:

Theorem 5. I_f_ T: Sn—VSnleZ. and a=1r(§1-E-L:T) is 2

preserved distance under T, then T pp pp_isometry for
 

 

positive integer k 2 5.
 

Proof. For any x in Sn, let 3 denote the point

antipodal to x. Let x 6 Sn, and let C be a great
0

circle passing through x Let x0,31,x2,33,...,x2k,3
0‘ 2k+1'

3o,x1,32,x3,...,32k,x2k+1 be points around C such that

x0 = x2k+1 and the distance between adjacent points in the

. . fl .

order listed above is 7k:l . Then for each 1, xi and

31 are antipodal and d(xi,x. = a for 0 s i 5 2k.
1+1)

Then: d(Tx.,Tx. = a for 0 s i 5 2k. Also
1 1+1)

0 S d(Txi,Tx.
fl .

1+1) < 2 m 210']. Sincefor 0 s i M

d(Txi,Txi+1) E d(Txi,Txi+1) + d(Txi+l'Txi+2)

S d(Txi’Txi+l) + d(Txi+1,Txi+2)

5 —1L— + —3L— .
2k+1 2k+1



 

‘.

.‘C

he



 
Figure 4-2

 Now d(x2k,x0) = d(XZk'x2k+l) = a, so d(x2k,x0) = 2k+l ,

 

_ _ fl ._ an .

hence d(x0,x2k) — n ikil — 2k:1 . But if for any even

. . T!

i, 0 S i < 2k-l, d(Txi,Txi+2) < 2 2k:l , then

an
d(Tx0,Tx2k) S . X d(Txi,Txi+2) < 2k+l ,

i even

OSiSZk-Z

. . . . , _ 2n _
which is a contradiction. Hence d(Txi,Txi+2) — 2k+1 - 

d(xi,xi+2) for all even i, 0 S i S 2k-2.

Hence 2331 is also a preserved distance under T. So

 by the previous theorems, if k 2 5, then a = 2k+1 is

small enough so T must be an isometry. a



§5. DIRECTIONAL RESTRICTIONS
 

Greenwell and Johnson [7] considered the question of

restricting the hypothesis so that if d(x,y) = l and vector

xy is in one of certain directions, then d(Tx,Ty) = 1. Let

£3 be any subset of S, where S is the set of all unit

vectors in En. Greenwell and Johnson [7] showed the follow—

ing two results:

_m

Thegrem. I; the cardinalitypp .0 .pp less than that pf
  

S, then there exists T: En e En such that T pp not pp
  

isometry, but for any x,y 6 En such that xy 6.0,
  

HTx-TyH = 1.

Theorgp. 1; the cardinality pp S-uD pp less than that
-—_._.—-———.

  

pp 3 then if T: En + En such that xy €4U==’”Tx-Ty” = 1,
  

then T is pp isometry.
 

This section gives a little more information on how small

#5 can be and still force T to be an isometry. For the

remainder of this section we consider E2 and assume that

D is a subset of 3 so that the interior of D is non-void

(in the topology of 3 relative to E2). Let L be an

equilateral unit lattice, for example the points n; + my

1 and 3

. -+ ->

where n and m are any integers and ”x” = My“

and § are at an angle of fi/3.
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Figure 5—1

~

Let D denote the interior of ,0.

Lemma 5.1. Let p lattice point 6 L pp chosen pp orighh
 

then the set pf unit vectors

8
V = {-—— I B E L and H8" is irrational}

IIBII

  

pp dense pp 3.

Proof. Consider 3 and § so that

-> -> ,

L = {nx-tmy I n, m are any integers}.

 

\/n2+nm+m2.Then ”n; + my”

2 2
Then if n 1 (mod 4), we get that n +nm+m am

 

3 (mod 4) hence VbZ-tnmntmz is irrational. It is clear

that any point in the plane is within distance 4 of a

point n§-tm§ with n s s 1 (mod 4).

<
4
3

Let any unit vector and any a > 0 be given.

Choose a point n§th§ such that n s m s 1 (mod 4) and

.’

-V
 

< 8’
 

||n§+m§- (4 + g) ‘6” < 4. Then
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since:

anz-tnmrtmz - (4 + g) < 4,

so

0 < \/n2+nm+m2-§8— < 8,

and

g < $3+hm+m2.

Therefore

->+ ->

nx my _ 3
 

 

 2

   fl/nz +nm+m

 

 

 

 

 

 

 

= 1 ”hi? + m3; - \/r12+nm+w;2 3”

\/n2+nm + m2

s g-“n'i + m3; - x/n2+nm+mj2 {I'll

_<_ EénniE-tmiF- ”+243”+-§—||(\/n2+nm+m2-4-§)VH

s §4+§—(\/n2+nm+m2-4-§)
6

s g-(Vbz-rnmmtmz - g)
8

E g 8. D

pemma 5.2. l: T restricted pp L pp the identity, and
  

a e t) then x E L and x-y = a implies Tx-Ty = a.

Proof. Let the point x 6 L be used as the origin, then

we must show that Ta = a. Assume the contrary, that Ta;£a.

Now a (,0' implies that "Ta" = 1. Let 2 be the foot

of the perpendicular to line xa passing through point Ta.
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Let b 6 L be chosen so that B = angle axb is small

enough so that any vector within an angle of 28 of a

will be in .D' and so that Ta is on the opposite side of

-> ->

xa as b, and Nb” .is irrational and ”b" > 2. This can

be done by Lemma 5.1 since .5 is open.

 
 

 

Figure 5-2

Let c be the point on line xb, # x so that H3-3H==l.

N-> -) -) 4 .p -) .

Let d = b/Hb”. Then c-a and d are in .D’ by our

I -. 4 -+ -’ I I o

chOIce of b. Let p = c-d, y = the intersection of line

xc and line zTa (if Ta = 2, this is just the perpen-

dicular to xa at z).

 

Then Hp" = (V2 - 2cos 28 - 1) and u?“ = Hszec B. In

particular, Ta # a==e z # a=ee y is on the same side of

p as x is for 8 small enough (since lim n?” = ”3”

9+0

and lim “E“ = ”3” = 1 and u?" < 1 unless E = -a).

3+0

Then p is between y and mb for any m 2 1. Let n

and m be positive integers such that %'< n§-§n and

_, -> _, 1 -> -> -> —> -> 1

"CH +n > mllbll > llCll HI -5 - Then ||C+nd|| > mllbll > ||C+nd|| ~11.- -

Let g be the point on segment xc such that

4+

Hmb-q" = n-tl. Then q is between y and p since:



SO

and

ele

the

on

im;

th

of

it

«
X

%
X



S3

”sum” < nan-Ln” = “sum-k
m m

.5

< mllbll < "Sum = IIEII+n+L

SO

+ -> ‘* —>

llyll = uyu+n+1-n-1 < mubn-n-l = 1an

and

-> ‘* 4 ->

uqn = mubn-n-l < npu+n+1-n-1 = up”.

Now ”mg-3N < H3+n3-3H < n-tl and mb-3 is a sum of

elements of .5, so "mg-T3" s n+1 hence Ta must lie on

the same side of the perpendicular to xc at q as does

mb. But the choice of b, n and m require that Ta be

on the other side of this line. Hence Ta ¢ a is

impossible. 0

Lemma 5.3. pp T restricted pp L pp the identipy,
  

then T pp the identipypp all pp E2.
 

gpppp. By Lemma 5.2, T is the identity on all points

of the form 3+3 where 3 E L and 3 6J5. Then replac-

ing the set L with the set a-tL = {3+3 I 3 6 L}, Lemma

5.2 gives us that T is the identity on all points

3+3+3' where 3 E L and 3,3' 6 .5. By induction we get

that T is the identity on all points of the form

3 + 22:1 3. where 3 6 L and 31 (,5.
i

It is easily seen that for any point b in the plane,

-+ -+ -> —) —) ~ . .

the set {b+a1+a2 I a1,a2 6,0} contains a disc. If the

radius of this disc is 6 and k is any integer larger
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~

than 1/0 . then the set {b+2i=l ai I ai 6 ,6} Will con-

tain a point y 6 L . Then there are 31 in B so that

~+ -> k

b = y + 21:1 (-é'i) . But from the definition of b it is

clear that 3 6 f7 implies —3 6 D , hence T is the iden-

tity on b. Therefore T is the identity on all of E2. D

Corollpg 2.3. _I_f_ T restricted pp any lattice _jp_ p

motion then T is a motion on all of E2 .
 

Proof. If T restricted to a lattice is the motion M,

then M- T is the identity on that lattice and so by Lemma

5.3. m" T is the identity on all of 32. Hence T=M. a

W. _I_p' ,D’contains pp Ojen set and there are

seven points a,b,c,d,e,f,g such that a—b 6 40’. a-g E 95,

b-g65,a—f€5.a-e€fl,e-fé fi.c-d€D, then

 

T _i___p_n isometpy.

Proof. The same argument as in Lemma 2.5 shows that
 

Ta # Tc, hence if T restricted to a,b,g is the motion

M, then “beg“ = “3+3“ = 1 requires that To = Me.

Repeating this argument on the equilateral rhombi contained

in the lattice which contains points a,b,c,g gives that T

restricted to this lattice is a motion, and hence by Corol-

lary 5.4, T is a motion and hence an isometry. a

It seems likely that a similar theorem can be found in

En for n 2 3‘, but the proof is likely to be more diffi—

cult since for n 2 3, equilateral n-simplices do not

tesselate as simply as triangles in E2.



§6. COUNTEREXAMPLES AND OPEN QUESTIONS
 

In the introduction, counterexamples were given to Show

that in the spaces El and E", a transformation with a

preserved distance need not be an isometry. But what hap-

pens if the mapping is required to be continuous?

In E1, the transformation x + [x] + {x}2 (where [x]

is the integer part of x and {x} = x - [x]) is continuous

and preserves the distance 1 but is not an isometry. How-

ever, in E“, it is not so clear what happens; it seems

that the additional restriction of continuity should force

the map to be an isometry but no proof is known.

Also, in the introduction an example was given in Sn

that preserved the distances %: and u but was not an

isometry. However, this transformation was not continuous.

It is easy to construct a continuous map Of Sn into itself

which preserves just the distance n, since preserving the

distance fl just means preserving the relation of two

points being antipodal and this can be done with a continu-

ous map. However, it is still not known whether or not the

distance % can be preserved by a continuous map which is

not an isometry. Also in spherical and elliptic spaces, it

is not known whether or not the additional requirement Of

continuity placed on a map which preserves large distances

forces that map to be an isometry.

The combination of continuity and distance preserving

seems to be powerful enough to make the following conjecture

seem likely:

55



56

CONJECTURE. If T: M—VM where M is a convex,

finitely compact metric space with unique segments and any

segment in M has a prolongation, and M has topological

dimension > 1 and T is continuous and preserves some

distance, then T is an isometry.

The following shows an example of a map T: M-4'M

where M is a convex, finitely compact metric space of

topological dimension 2 and T is continuous and preserves

all distances less than or equal to 2. M also has the

prOperty that segments haveprolongations, but they need not

have unique prolongations, nor are segments unique. Let

M c E3 be defined by:

M = {(X.y.0) IX.y real}U[(X.y.1) IX.y. real}

U U I(k,y,z) Iy real, O<z<l}

k=1

with the metric defined by the length of the shortest path

between two points which is contained in M. Let T be the

map T(x,y,z) = (x+1,y,z). Then in Figure 6—1,

«3.3) a! d(T3, TS) but it is clear that T is continuous

any distance 5 2 is preserved by T but T is not an

isometry.
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It does seem that the above conjecture would be very

difficult to show when M is not one of the special types

of spaces considered so far.

In spherical and elliptic spaces, it seems as if con-

tinuity combined with distance preserving yields an isometry

with the exception of the case when the distance n is

preserved in a spherical space, hence the following conjec-

ture seems reasonable:

CONJECTURE. If T: M + M where M is either a
 

spherical or elliptic space and T is a continuous map

which preserves some distance not = n, then T is an

isometry.

Once again, no proof is known.

The following conjecture would be an interesting

generalization of the results of Sections 3 and 4:

CONJECTURE. If M is a locally Euclidean manifold of
 

finite dimension 2 2, then there is a distance a such

that for any h < a, and any map T: M + M, T preserves

b implies that T is an isometry.

A few examples of the form T: M1 + M2 where M1 # M2

are of interest.

If M1 is the Euclidean line and M2 is the unit cir-

cle with are metric and T is the "wrapping" function Tx =

eix, then T preserves any distance 5 u, but is not an

isometry.
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If T: En + Em preserves some distance, then clearly

n E m (since Em has equilateral n-simplices if and only

if n S m). Beckman and Quarles [1] showed that T is an

isometry if 1 < n = m < w. But if n < m, T might not

be an isometry if m is too large.

Theorem 2. For any integer n 2 1, there exists an
  

integer M(n) such that m 2 M(n) implies that there
  

exists i_map T: En + Em which preserves the distance 1
 

but is not an isometry.

Proof. Let En be partitioned into a set of regions

{R }i=1
i such that each region Ri has diameter 5 l (with

the distance 1 not being assumed) and so that any closed

n—sphere of radius 1 intersects S k of these regions.

Then an integer M(n) can be found so that the regions R1

+

{s~}§(n’ 1
k k=1

that if x 6 Ri' y E Rj and R1 and Rj are in the same

can be partitioned into M(n)-+1 sets such

SN, then d(x,y) # 1. Then define T: En + Em for

k

m 2 M(n) by mapping each set UR ES Ri into a different

i
f‘.J

vertex of a unit equilateral M(n)-simplex in Em. Then

d(x,y) = 1 =s>x and y are not in the same set UR ES Ri

1 T6

hence d(Tx,Ty) = 1. Then T is a map from En to Em

which preserves the distance 1 but is not an isometry. o

Hadwige[8] gave the following partitioning of the plane

into hexagon shaped regions where each region has diameter

1 and contains only its lower boundary (see Figure 6-1A).
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Then let these regions be partitioned into 7 sets accord-

ing to the pattern shown in Figure 6-lB. It is then easily

seen that if d(x,y) = 1, then x and y are not assigned

to the same one of the seven sets. Hence, if {a1}:=1

an equilateral unit simplex in E6, then T defined by

is

 
Figure 6-2

Tx = a1 (where x lies in set number i) will preserve

the distance 1. However, T is not an isometry.

It is not known if M(2) = 6 is the smallest dimension

for which such a T exists. In particular, it is not even

known whether or not there is a distance preserving map

2
T: E 4 E3 which is not an isometry.

Also, it is still an open question whether or not there



b0

. . n . . .
is a continuous map T: E + Em for m > n which is dis-
 

tance preserving but not an isometry.

Another possible way to place an added restriction on

the mapping is to require it to preserve two distances. The

example of a mapping of 82 onto 82 given in the intro-

duction shows that in at least one case, preserving two

distances does not imply an isometry. However, the follow-

ing theorem does hold:

Theorem 8. if T: MI —> M2 where M1 2 are

is strictly convex, and T

and M

Banach spaces such that M
  

2

preserves the two distances a and ka for some integer
  

k 2 2, then T is an isometry.
 

Note that this theorem includes the case M1 = M2 = E ,

which is not true if T preserves only one distance.

grggf. Let x,y,z 6 M1 such that Hx-y” = Hx-z” = ka,

and lly-zll = a. Define w = 1%)! + ESLy and

v = %x + 533-2. Then llx-wll = llx-vll = a and llw-vll =

l-Jé-lly-zll = flea. Then T preserves a and ka =>|lTx-Tw|| =

HTx-Tv" = ”Ty-T2” = ka and HTx—Tw” = ”Tx-Tv” = "Ty-T2" = a.

Since Hy-w" = (k-l)a and Hz-v" = (k-l)a, then HTy-Tw" s

(k-l)a and HTz-Tv" s (k-1)a by Lemma 1.1. But since M2

is strictly convex, "Tx-Tyfl = ka, ”Tx-Twfl = a and

llTy-Twll s (k-1)a =~>Tw = jléTx + bi—lTy. Likewise, Tv =

%Tx + hl'Z—sz. Hence llTw-Tvll = i-llTy-Tzll = i—a. Hence T

1 . . 1
preserves Ea Since for any w, v With llw-vll = Ea,
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there are x, y, 2 as defined above. Then by induction, T

preserves (-]lE-)la for all integers i 2 O, and hence T is

an isometry by Lemma 1.3. o

The assumption that the two preserved distances have

integer ratio was important in the proof of this theorem.

However, when T preserves two distances with a non-integer

ratio and M1 and M2 are as above, it is not known

whether or not T must be an isometry, except for those

cases covered by the theorems of Section 2 or the work of

Beckman and Quarles [3], or the case when M1 = M2 has a

flat spot on the unit sphere of length 2 (when an example

similar to that given for a“ at the end of Section 2 gives

a counterexample).

CONJECTURE. If M2 is any Banach space without a flat

spot of length 2 on the unit sphere, or any elliptic or

 

hyperbolic space (including spaces of dimension on), and

T: M1 + M2 has two preserved distances, then T is an

isometry.

CONJECTURE. If T: Sn + Sn (where n may be m), and
 

and n, then T is an

N
I
:

T preserves two distances not

isometry.

A similar idea is to consider maps of the type

T: M1 -> M2 where d(x,y) < 1, x,y e Ml<=¢d('rx,'ry) < 1.

This type of map may come up in some types of psychological

or biological measurement where the quantity under
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consideration can only be measured indirectly, that is, only

after some transformation has been applied to it; and even

then the only measurement available is to determine whether

or not some threshold is equaled or surpassed.

For example, in an experiment where an individual is

asked to judge whether or not two given color samples are

the same color, the two colors must differ by some thres-

hold amount or they will be seen as the same color. Then

the responses of the subject are the result of transforming

the physical colors of the samples according to the charac-

teristics of the subject's eye. Now if there is a map

T: M1 + M2 where M1 is a metric space representing the

actual physical colors and M2 is a metric space repre-

senting the responses of the subject's eye to colors, such

that x,y E M d(x,y) < l<=>d(Tx,Ty) < l, but T is not
1'

an isometry, then the problem of deducing the nature of M1

from the responses of the subject can become more compli-

cated.

Similar restriction on T are:

(1) d(x,y) > l<==>d(TX.Ty) > 1.

(2) d(x,y) > 1 =>d(TX.Ty) > 1.

and d(x,y) < l =s>d(Tx,Ty) < l,

or even

(3) a < d(x,y) < 9 =9“ < d(Tx,Ty) < 5.
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The only progress on the question of preserving inequal-

ities is the following two lemmas:

Lemma 6.3. ii T: M1 4 M2 where M1 and M2 satisfy

the hypothesis 2i Lemma 1.1 and d(x,y) < 1, x,y 6 M1 =%’
 

d(Tx,Ty) < l and d(x,y) > 1 =#’d(Tx,Ty) > 1 and T is

onto, then .k < d(x,y) < k-tl, x,y 6 M =g>k S d(Tx,Ty) <
l

 

ki-l for integer k 2 0.
 

Proof. Clearly d(x,y) < k~+l =fi>d(Tx,Ty) < kttl by

an argument similar to Lemma 1.1. If d(Tx,Ty) < k, then

there eXlSt z0,zl,...,zk 6 M1 such that z = x, zk = y

0

i s k-l. ThenI
A

and d(Tzi,Tzi+1) < l for all i, 0

d(x,y) S Z§;$ d(zi,z ) S k contrary to the hypothesis.
i+l

Therefore k 5 d(Tx,Ty) < k-tl. D

n

Lemma 6.4. 'ii T: En + E for 2 S n < m and

d(x,y) = l ==>d(Tx,Ty) < l and d(x,y) > 1 ==ed(Tx,Ty) > 1

and T is onto, then T is is isometry.

gissi. If u,v 6 En and d(u,v) = l and T is onto

then there exists x,y 6 En such that u = Tx and v = Ty.

Then d(x,y) must be 1 by the hypothesis. Hence T‘lis

a (possibly multivalued) map from En to En which pre-

serves the distance 1 and is then an isometry (Beckman and

Quarles [1]). Therefore T is an isometry. 0

However, nothing seems to be known about the particular

inequality restriction that seems most relavent to the
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physics of perception theory: that is, d(x,y) < 1.¢=>

d(Tx,Ty) < l.
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