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ABSTRACT

AN ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF
CONTACT AREA STRESS DISTRIBUTION AND BUCKLING
STRENGTH OF LIGHT GAUGE PUNCHED METAL HEEL
PLATES FOR TIMBER TRUSSES

By
Isaac Sheppard, Jr.

The purpose of this investigation was to develop a
simple testing procedure and make a theoretical and experi-
mental study of the contact area stresses and buckling h
stresses of light gauge metal heel plates used on wood
trussed rafters.

A small, hand-operated hydraulic cylinder was mounted
in a specially designed jig to apply a concentrated load at
the peak of 8'-0" long triangular trusses. By mounting a
dial gauge on the joint, load-deflection data was obtained.

A theoretical investigation developed the theory of
contact area stresses in accordance with recent work on
nailed joints and other analyses that combine direct stresses
vectorially with eccentric, or rotational, stresses to get
critical combined stresses. Methods of computing tensile
stresses in heel plates, shear streses, and bending stresses

on small elements, are presented.
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An initial comparison of six plate sizes, shapes, and
orientations revealed that contact area stresses were not
significantly different for any of the plates studied at
0.015" heel joint deflection. At ultimate load, however,
those plates 2-3/4" to 3-3/4" wide, and lengths from two to
three times their width were best, and were 20% to 50%
stronger than the next three. These two strong joint types
were moref%han twice as good as the worst group, 5"x7",
placed the "wrong way."

A detailed study of surface strains using Stress-Coat
brittle lacquer revealed that the shear stress in the steel
is highest directly over the joint between members; that
corner teeth are initially stressed quite highly; but that
even at loads that cause buckling, large areas of wider
plates are not stressed significantly. It was concluded that
heel plates should be kept to a lesser width to better
utilize contact area strength and prevent an erroneous
feeling of confidence due to excessive width of the heel
plates.

In a first preliminary comparison of 24 matched
specimens (two repetitions each): 8'-0" vs. 24'-0";

Douglas fir vs. white fir; 3"x5", 3"x8", and 5'"x5" heel
plates; all evaluated at 0.015", 0.040", 0.080", and 0.150"
heel deflection; it was found that:

1. The heel joints for 8'-0'" specimens were 8%

stronger than those on 24'-0" matched trusses.



Isaac Sheppard, Jr.
3

2. The white fir heel joints were only 70% as strong
as Douglas fir joints.

3. The 3"x5" and 3"x8" plates were almost identical,
on a psi basis, but both were about 20% stronger than the
5"x5" plates.

4. Contact area stress was affected by several two-
way interaction effects.

A second preliminary comparison verified these conclu-
sions, plus showing there was no significant difference
between 8'-0" specimens tested on the hand-operated jig and
matched 8'-0" specimens tested on a Riehle mechanical testing
machine.

A final analysis of variance comparison, performed with
a least squares statistical routine on a Control Data Corp.
3600 computer, included the variables mentioned earlier, plus
moisture content and specific gravity, along with their
squares, as covariants, and was based on the load-deflection
data from 56 different test specimens. This final comparison
confirmed the earlier conclusions, plus finding that moisture
content affects contact area stress significantly. Multiple
correlation coefficients were computed that accounted for 91%
of the variance and a contact area stress prediction equation
was developed, with predicted stress being compared with
measured stress for four deflection readings on each

specimen.
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A comparison of the theoretical results with the experi-
mental tests showed that a simple axial stress calculation of
contact stress, in the P/A manner, is a better predictor of
test results than the theoretical method proposed. The
experimental work led to recommendations for heel joint

design that are also included.
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INTRODUCTION

The twenty year period, 1948-1968, has seen the use of
wood trussed rafters grow from an almost infinitesimal begin-
ning to a major market factor. Trussed rafters are now used
on about half of all single family residential construction,
as well as on a large share of agricultural, and a signifi-
cant share of commercial and industrial construction. The
trussed rafter has the advantages of greater strength, more
uniformity, and lower cost as opposed to conventional joist-
and-rafter construction. Greater spans without supports,
faster construction and other benefits are provided by
trussed rafters, too.

Trussed rafters, commonly called 'trusses,' may be
built with any structurally suitable joint system to attach
the wood framing members. Split-rings, nail-glued plywood
gussets, bolts, nails, light gauge metal gusset plates, and
other connector types have been used. The light gauge metal
gusset plate has essentially taken over the market now,
having displaced the other joint types due to its lower cost,
faster fabrication, and easier shipment of completed trusses.

Many tests have been performed to insure that the truss
plates have adequate tooth values or nail values and tensile
strength. Other tests have been performéd on completed
trusses to show the over-all truss design to have adequate

1
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strength. While both these sets of tests have shown struc-
tural adequacy, there have been only minor attempts to.
analyze the shear stresses, buckling stresses, and eccentric
forces that affect the heel joint, where the bottom chord
and top chord meet. Since this joint is subject to a more
complex set of forces and stresses than any of the other
truss joints, and since it requires more steel than any
other joint, a more elaborate study of it seems warranted.

This project is intended to answer that need.



CHAPTER 1
REVIEW OF LITERATURE

The design loads on trusses are usually specified by
local building codes or nationally recognized building codes
such as the "Basic Building Code'" (1965), the "Uniform
Building Code'" (1967), the '"Southern Standard Building Code"
(1967), or the ""National Building Code of Canada'" (1966).
Where no building code governs, the requirements of the
Federal Housing Administration (1966), the United States of
America Standards Institute, or, in the case of farm build-
ings, by the American Society of Agricultural Enginéers
(1967) may be used. Local climatological data is available
for more detailed study from the Dept. of Commerce (1968).

'The lumber used in trussed rafters has been standard-
ized as to grades and strength by the official grading
associations, Western Wood Products Association (1965) for
west coast woods, and the Southern Pine Inspection Bureau
(1968) for southern woods. These lumber allowable stresses,
plus connector values for bolts, split-rings, nails, etc.,
are all published in one booklet by the National Forest
Products Association (1968). The properties of individual
species are given in separate reports by'Littleford on
DOuglas‘fir (1967) and the Forest Products Laboratory on

3



4
western hemlock (1965) and southern pine (1966). Strength
and related properties of Canadian woods are summarized by
Kennedy (1965). Probably the most important thing, the
factor of safety, has been described in detail as a multi-
valued characteristic by Wood (1958).

The background testing for the lumber grading rules
and specifications has been performed under the American
Society for Testing and Materials (A.S.T.M.) Designation’

D 245-67T (1967). The "strength ratio'" related these tests
of small, clear specimens to structural size by allowing for
the reduction effect of knots, slope of grain, and other
strength-reducing characteristics. The "strength ratio” is
discussed by the Forest Products Laboratory in the '"Wood
Handbook" (1955).

Non-destructive testing of lumber has been described
by McKean (1962, 1963), Bolger (1962), Miller (1962), Sunley
(1962), Senft (1962), and Wood (1964). This non-destructive
testing, commonly called "machine grading,' permits more
uniform strength standards for timber based on a statistical
correlation of strength with flatwise stiffness.

Recent arguments of ''green'" (unseasoned) vs. ''dry"
(moisture content of 19% or less) lumber are being resolved
through a set of ''green' sizes and allowable stresses that
match the existing size standard, but a set of equivalent
"dry" sizes with smaller dimensions to account for shrinkage.
The ratio of dry to green clear wood properties has been

determined vy A.S.T.M. in D-2555 (1967). These equivalent



5
"dry" sizes were recommended by the Forest Products
Laboratory (1964) on the basis of stiffness and shrinkage
tests of green and dry joists.

The engineered use of nails for connections in wood
structural members, particularly trusses, has been exten-
sively reported by Stern (1952 through 1967). Nailed joint
rigidity was studied by L. L. Boyd (1959) and rotational
resistance of three-membered nailed joints was reported by
Perkins (1962).

The use of nail-glued plywood gussets for wood trusses
has been extensively investigated by Radcliffe (1954, 1956),
J. S. Boyd (1955), Countryman (1954), Angleton (1960), and
Suddarth (1961). A digital computer W-truss analysis pro-
gram was developed by Suddarth (1964) for symmetric trusses
with rigid joints (nail-glued plywood) or various combina-
tions of rigid and pinned joints.

’ The design of light gauge metal connector plates with
wood trussed rafters has been covered by the Truss Plate
Institute's (T.P.I.) "Design Specifications for Light Metal
Plate Connected Wood Trusses' in various editions (1962,
1965, 1966, 1968). These metal plates of every different
manufacturer have been subjected to a large number of tensile
tests, following either the T.P.I. procedure or the more
recent A.S.T.M. procedure Designation D 1761-68 (1968). A
tensile test has been proposed by Dudley, 1966, and A.S.T.M.,
1968, to help evaluate the net tensile strength of steel, in

addition to the strength of the truss plate teeth.
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Deflection and creep characteristics of trussed
rafters with metal plate fasteners were reported by Sliker
(1965). The effect of three different types of metal plates,
as compared to nail-glued plywood, as well as variations in
moisture content, was reported by Radcliffe (1964). Moisture
content cycling of trussed rafter joints was reported by
Wilkinson (1966). An extensive series of Canadian trussed
rafter tests to develop general performance criteria was
reported by Hansen (1963). The effect of member stiffness
and moisture content history on the deflection behavior of
trusses fastened with metal plates was reported by Kawal
(1965).

Suddarth (1963) reported on a detailed analytic study
of W-trusses made with metal gusset plates, including the
moment-rotation effect at the heel joint. This was his
initial study, and reported that

A workable formula for the rotational slippage-
resisting moment relationship has been devised and
tested for nailed joints with wood gussets by Perkins

(1962). (He was referring to Perkins' conclusion

that the torsion formula for the force on the extreme

nail is suitable.) As yet, unpublished pilot experi-
ments with short-tooth, long-tooth and nailed metal
gusset plates have shown that the same fundamentals
apply to the same degree. The rotation-moment formula

is derived from the load-slip characteristics of a

single fastener and considers the arrangement of the

fasteners about their centroid.
Suddarth continued his study to analyze a 26'-8'" span, 3/12
slope, 2"x4'" W-truss as if it had rigid joints, then as if
it had pinned joints but continuous chords and assumed that

actual member moments in this metal plate connected truss

lie between those obtained in these two cases.
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A second report by Suddarth (1964) also concerned the
fastener stresses, particularly the moment resisting capacity
of metal plate joints. He reiterated his earlier conclusion
(noted in the preceding paragraph). He also described a
heel plate reduction ratio, Pk/Fki, in which;

Py = unit nail, tooth, plug, or psi value of
connector,

Fki = extreme force on an individual fastener due
to moment being transferred at the joint.

Suddarth's reduction ratio for 24' trusses with short-tooth

metal plates varied as follows:

Top Bottom
Pitch Area Area Ave.
2%/12 .906 . 848 .877
4/12 1.045 .616 .732
6/12 1.113 .527 .820

These percentages of allowable heel plate connector values
were later adjusted to a uniform scale and adopted by the
Truss Plate Institute (T.P.I.) as a practical engineering
means'of heel plate design to account for loss in heel
strength due to moment transfer and eccentricity.

The Federal Housing Administration in its '"Trussed
Rafter Criteria" (1960) has always required a heel plate
analysis based on the net vertical'reaction, the distance
from the intersection of member centerlines, and the polar
section modulus of the heel plate. The FHA requirement is
described in more detail under '"Typical Calculations' and

illustrated in Figure 8.



8

Misra (1966) studied the stress distribution in the
punched metal plates at a straight tension joint and con-
cluded that even for this type of joint the tensile stresses
are not uniform. The maximum stress he calculated was 2.4
times the average, and was based on the distance from center-
line of joint to tensile area being considered, much like
rows of rivets at a riveted joint. He used a difference
equation, as well as the principle of minimum complementary
energy to predict stresses and got good agreement with
experimental results.

Der-chun Lee (1965) did an experimental analysis of a
king-post truss with semi-rigid joints, measuring the rela-
tive rotation of the top chord with respect to the bottom
chord by means of the Moire Fringe effect. He assumed the
rafter member is supported by a continuous elastic foundation,
i.e., by equally spaced nails, which yielded analytical
results reasonably close to those found experimentally.

Ivan Dah-Wu Chow (1965) worked along with Der-chun Lee
on the analytical work and reported that the analytic results,
using the assumption of sémi-rigid joints, were closer to

experimental results than the assumption of rigid joints.



CHAPTER 11

PURPOSE

The purpose of this investigation was to develop a
simple testing procedure and make a theoretical and experi-
mental study of the contact shear stresses and the buckling
stresses of light gauge metal heel plates used on wood
trussed rafters. The specimens tested were fabricated with
a variety of truss plate sizes from each of two manufac-

turers. Three different species of lumber were used.



CHAPTER III

THEORETICAL INVESTIGATION

The theoretical analysis of the heel joint was made by
first describing the types of failure known to occur. These
failure types are all caused by overstress. The next step,
therefore, was an attempt to develop a rational design
through prevention of premature failure by consideration of

the types of overstresses that resulted in failure.

Types of Heel Joint Failure

Assuming that the metal gusset plate is sufficiently
strong to be properly impaled, there are four types of

failure that can occur at the heel joint:

Tensiie Failure

Tensile failure can occur when the length of plate in
tension (and consequently the number of teeth) exceed the
""development length."

"Development length'" refers to primary tensile joints
and means the length of truss plate contact area necessary
on each side of the joint to balance the net steel section in
tension at the critical location.

The development length is similar to the minimum permis-
sible anchorage for reinforcing bars in reinforced concrete

10
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construction. Developmént length in that case refers to the
bar length that must be used to develop the strength of the
reinforéing bar. The concept has been described in detail
by Ferguson (1958).

When the contact area exceeds the development length, as
when a longer plate is used, no extra strength is gained
because the plate will fail in tension. The extra length,
beyond the '"development length'' may add to better appearance,
but can not increase the strength because the net tensile
strength limits the joint performance.

This concept of'development length is a means of assuring
that contact area and net tensile section are both considered
as possible limitations on joint strength. When riveted
joints are designed in steel construction, both shear area
of the rivets, as well as bearing area on the connected
parts, must be checked, with the more limiting factor gov-
erning design. In the case of punched metal truss plates,
connecting timber tension joints, both contact area on the
wood and net tensile section of steel must be considered and
the design is limited by the smaller valﬁe. Development
length is the minimum length required for the contact area
to develop the tensile capacity.

Truss plate areas shorter than the development length
will be limited by their contact area stress, whereas those
truss plate areas longer than the development length will be

limited by net tensile capacity. Development length, then,

i
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is a convenient expression of the maximum contact length
that may be used without being limited by the net tensile
strength of the steel.

The development length is affected by the truss plate's
thickness, pércentage of holes, and yield or ultimate tensile
stress of the steel being used. In addition, since the tooth,
nail, or plug value of the truss plate contact area is
dependent on the density, specific gravity and species of
lumber, these wood propettiés affect development length too.
Development length is a property of both the truss plate and
the lumber. The same connector plate will have a longer
development length in balsa wood, due to its lesser nail
holding power, than in white oak.

For a heel joint to fail in tension, the contact area
of the plate provides more strength than the tensile cross-
section. While this type of failure is much more common at
true tensile joints (such as lower chord splice joints), it
can be a factor in heel joints that are placed parallel to
the bottom chord. The triangular contact areas on the top
and bottom chord develop ihcreasingly large tensile stresses
in the small isthmus between teeth at the smallest end of the
triangular area. See Figure 1.

Tensile failures can be prevented by providing more net
section of steel, either by thicker or wider truss plates, or
by reducing the percentage of holes in the truss plate
surface, or by properly positicning the plate to prevent

excessive tensile stresses.

e
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Most likely location
of tensile tears.

Figure 1. Tensile failure at heel plate.
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\_3-Note ends of plate are no

longer true due to lateral
distortion.

Plate buckling along shear line.
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Tooth Failure

Tooth failure refers to withdrawal of the teeth from
the wood. Normally this occurs by progressive enlargement
or elongation of the entrance area of the hole which the
tooth makes in the wood during impalement. As this entrance
area of the hole becomes more and more elongated (due to
exceeding the bearing capacity of the wood) the tooth attempts
to follow the slope of the hole by bending. The further the
tooth bends, the more nearly it is loaded in withdrawal (as
opposed to its typical shear loading). Eventually, the tooth
is bent nearly 45° back from vertical and pulls out of the
hole entirely.

It has been found that teeth being bent back toward
their original hole in the parent steel are more vulnerable,
less rigid, and weaker than teetl which are being bent
further away from their original plane (within the parent
steel). However, that was outside the area of this research

and was not investigated further.

Wood Failure

Wood failure occurs when the truss plate teeth essen-
tially retain their original shape and direction, yet tear
through the wood fiber. Wood failure results from the tooth
exceeding the bearing capacity, and/or the shear parallel to
grain capacity, of the wood. It may be counteracted by
either choosing a denser species or by increasing the size
of the metal plate. Wood failure and tobth failure are

inter-related.
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Buckling Failure

Buckling failure occurs along the shear line (i.e., the
crack between the top and bottom chords) and is related to
truss plate thickness, size and shape of holes (or more
precisely, the isthmus size, shape, and thickness between
holes), orientation of holes to the shear line (i.e, paral-
lel to it, perpendicular, or some angle in between) and size
and shape of over-all truss plate contact area. See Figure

2.

Description of Stresses in the Heel Plate

It has already been established by Misra in a straight
tensiie test that the stresses in the isthmus between holes
in the surface of the plate vary approximately linearly with
each row of teeth from the end of the plate to the tensile
joint. This verifies the commoﬁly held belief that each
tooth provides equal value. However, this is only true
where it is a straight tensile joint with no eccentric
effect. Further, Misra showed that the teeth, holes, and
metal between holes of a thin truss plate behaved exactly
the same as the theory has always been for rivets making
tensile joints, as for example, relatively thick boiler
plate.

At a heel joint, there are both axial forces and
eccentric forces, due to the type of joint. The description
of these two types of forces, as they affect heel joints,

follows:
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Axial Contact Area Stresses

Axial contact area stresses which result from the direct
forces in the members must be contained and resisted by the
joints. These so-called axial forces, then, must move toward
the surface of the member in the vicinity of the truss plate.
They may move considerably away from the axis of the member.
It is possible to place a truss plate in such a position that
it fits less than half way onto one of the members, thereby
not even passing over the axis of the member. See Figure 3.

Since the members are mono-planar in a metal plate
connected wood truss, the heel gusset plate can not occur at
the intersection of center lines because the lower chord
butts into the bottom edge of the upper chord. It is essen-
tial that the direct forces in the members be taken by the
metal plate at this contact line between the members. By
keeping the metal plate essentially centered over the érack,
half the contact area will be on the top chord and half will
be on the bottom chord. Then, making the usual assumption,
thére will be a uniform load on the teeth due to these axial

forces.

Eccentric Contact Area Stresses

Eccentric contact area stresses are caused by the
eccentric force, or rotational moment, brought into play by
the fact that the two contact areas (one on the top chord
and the other on the bottom chord) each have their own
distinct centroids and that these centroids are separated

by a certain distance, e. See Figure 4.
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To determine the mégnitude of this rotational moment,
both the size and direction'of the forces must be‘known, as
well as the distance between centroids of their respective
contact areas. It would first appear that the magnitude and
direction of the axial forces could be used, but closer
inspection shows that these are not in fact equal or opposite
since the top chord is on a slope and has a larger force than
does the bottom chord.

a. The horizontal torsion component results from the
force in the bottom chord contact area. This force
must be paréllel to the chord since there is no
vertical component (except when the top chord is
birdsmouthed to bear on the support, letting the
bottom chord hang in such manner that any ceiling
load must be transmitted vertically into the top
chord by the connector plate). This means that the
force on the top chord contact area must be equal
and opposite, rather than parallel to the slope of
the top chord.

b. The vertical comﬁonent of the top chord force must
be transferred directly to the support from the top
chord by crushing on the very small feather end of
the scarf cut of the bottom chord. This is due to
the tight fit between chord members at the heel
joint. A tight fitting heel joint is the general

rule since it is the simplest joint to cut, easy to
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clamp together in a jig, easy to inspect, and the
wood-to-wood contact area is longer than other
joints. See Figure 5.

c. The rotational moment is due to the vertical dis-
tance, e, between the centroids (c.g.y) of the
upper chord contact area and the centroid (c.g.b)
of the bottom chord. This concept is illustrated

in Figure 6.

Shear Stress in the Steel

Shear stress exists in the steel, being a maximum
directly over the crack, since the top chord area is in com-
pression and the bottom chord in tension. The heel plate
must resist the entire axial force of both member, causing
these shear stresses. Since the members are very large and
stiff, compared to the plate, which results in the shear
stress being essentially uniform along the shear crack.

Proposed Heel Joint Contact Stress
Calculation Method

The direct stress, b, is found by dividing the axial
force, c, by the "effective'" contact area Ay .., ("effective"
area means that the nails within 1/4" edge distance or 1/2"
end distance, assumed too close to the crack to be useful,
have not been counted).

'The eccentric moment stress, c, is found by multiplying
the force under consideration by the distance, e, to the
opposite force, and dividing this quantity by the polar

section modulus, 2

P
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The direct stress, b, and the eccentric moment stress,
c, must be added vectorially, b ++ ¢ = a. The resultant, a,
therefore depends on the angle, A, between "b" and "c," as
well as on their relative quantities. This vectorial addi-
tion may be performed by the use of the Cosine Law,
a2 = b2 + c? - 2bc cos A. By noting which direction the
vectors '"b'" and '"c" point with respect to each other at each
corner, the critical corner can be located so the Cosine Law
solution need be applied only once, instead of at all four
corners. Normally, the critical corner will be the outer-
most toﬁ chord cornér, due to its having the largest angle,
A, between "b" and 'c" because of the effect of the top

chord slope. See Figure 7.

Comparison of Existing Heel Joint
Analysis Methods

There are several alternate procedures for determining

heel joint contact shear stress, as described below:

Genefal Method

The general requirement of heel joint analysis is that
the connections be designed to provide adequate capacity for
the direct axial forces at the joint involved. Normally the
effects of eccentricity would be neglected by most engineers
not familiar with the FHA or TPI requirements mentioned in

the Review of Literature.
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TPI Method
The Truss Plate Institute requires, in their'specifi-
cation, TPI-68 that:

To allow for moment effects at the heel joint,
design the heel plate to have sufficient capacity
to withstand the direct axial stress of the top and
bottom chords by their respective nail, tooth, or
plug groups, with the following reductions in allow-
able nail, tooth, or plug load:

Under 3/12 slope 85% of allowable

3/12 to less than 4/12 slope 80% of allowable

4/12 to less than 5/12 slope 75% of allowable

5/12 to and including 5%/12 slope 70% of allowable

Over 5%/12 slope 65% of allowable
FHA Method

FHA requires that the eccentric moment be found by
multiplying the net reaction, Rn’ at the support, by the dis-
tance, e, measured from the intersection of center-lines of
the top and bottom chord to the centroid of the connector
plate. Then eccentric moment stress is added vectorially to
direct axial stres§ to determine the critical stress. See

Figure 8.

Proposed Method

It is proposed that the eccentric moment be computed by
using the bottom chord axial tension force, T, multiplied by
the vertical distance, e, between the centroid, C.8eps of the
bottom chord contact area and the centroid, c.g.,, of the
upper chord contact area. This eccentric moment results in
an eccentric stress that must be added vectorially to the

axial stress to obtain the critical stress.
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The proposed method has several advantages:

a.

It includes the effect of eccentricity; an improve-
ment over the ''general method."

It includes, as does the FHA method, the increase
in rotational resistance of larger plates through
their vastly increased polar section modﬁli; an
improvement over the TPI method which has fixed
percentage factors based entirely on slope, rather
than plate size.

It considers an eccentric moment that is.not af-
fected by the size of the members, whereas the FHA
method results in a mucﬁ larger moment if the top
chord is larger thén the bottom chord, or a some-
what smaller moment if the bottom chord is larger
than the top chord. Since the axial forces are
dependent on pitch, span, configuration of wébs,
and loads; but are not affected by member size, it
would seem that the eccentric moment should not be
affected by differences in the top vs. bottom chord
member size. Fof example, using the FHA analysis,
assume a truss is designed with a 2'"x6" top chord
but a 2"x4" bottom chord and an appropriately se-
lected heel plate size. If the design is changed
to a 2'"x6" bottom chord (usually a stronger, more
expensive truss), the FHA analysis permits a
smaller heel plate than with the 2"x4" bbttom chord,
due to the reduction in the distance from the plate

centroid to the intersection of member center lines.
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Typical Calculations

Typical heel joint calculations shown here afe all for
the same plate, 3-11/16" x 9", shown in Figure 9. They give
a comparison of the different methods. A further comparison
of 3"x5", 3"x8", and 5"x5'" plates is given in Table 1.

General method:

b= _C = 3,160 1bs. = 119 psi
t o, ZTxI3.25 in®
TPI method:

b = C = 3,160 1bs. = 127 psi

A(gross) .x 75% 33.2 in.2 x 0.75

FHA method:
R, = 1,000 1bs. e = 64%"
b = 3,160 1bs. = 95 psi

2 x 16.6 1n.?

c =Ry® = 1,000 1bs. x 6.25 in. = 58 psi

ZZP 2 plates x 54 1n.3 each

22.3% (plate) + 90° + 18.4° (4/12 slope)
130.7°

LA

cos A = cos 130.7 = -sin (130.7° - 90°) = -0.65

Cosine Law: a? = b? + ¢c? - 2bc cos A

(95)2 + (58)2 - 2(95)(58)(-0.65)
19,570 (psi)?
140.4 psi

Iy
"
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Try C = 3,000 1bs. (top chord force)
M= 3,000 x 1.42" + 3,000 x I% x 0.98"

1033 70335
M = 4040 + 930 = 4970 1b.in.

Combined stress equation (FHA)

P+ M= 3,000# + 4040#"

+

930

2K 285 7x%¥x3x25 2 x 14.6 1n.?3
= 200 + 138 + 31.8 = 369.8 psi

2 x 14.6

The direct stress is 200 psi and the torsional moment

adds 85% to total 370 psi.

Figure 9(b). Typical Heel Plate Contact Stress

Calculations for 3''x5" Plate.
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Try C = 4,800 1bs. (top chord force)

M=4,800 x 1" + 4,800 x 4 x 1.00"

M= 4,500 + 1,517 = 6,067 1b.in.
Combined stress

P+ M= 4,800 1bs. + 4,550 1lb.in. + 1,517
2 725 7 x%5x3x8 272x 34.16 in.s 2 x 34.16

= 200 + 66.5 + 22.2 = 288.7 psi

The direct stress is 200 psi and the torsional moment
adds 44% to total 288 psi.

Figure 9(c). Typical Heel Plate Contact Stress
Calculations for 3''x8" Plate.
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gl
>
%

'l;
3

f
4

= %g b2 + d2 = 29.45 in.?

Try C = 5,000 1bs. (top chord force)

Sp

M =.5,000 x 2.33" + 5,000 x T% x 0.6" = 11,050 + 950

1053 1,055

Combined stress:

P+ M= 5,000 + 11,050 + 950

2K 728 72 xL%5 x5 x5 Tx 29.45 I x 29.45

= 200 psi + 188 + 16 = 404 psi

The direct stress is 200 psi but the torsional moment
adds 102% to total 404 psi.

Figure 9(d). Typical Heel Plate Contact Stress
Calculations for 5'"x5" Plate.



Proposed method:

b = C = 3,160 1bs. = 119 psi
Anet 2 x 13.25 1n.2
c = 3,000 1bs. x 1.25 in. = 34.7 psi

2 X 54 1n.$ each

Cosine Law:

a? (119)2 + (34.7)% - 2(119)(34.7)(-0.65)

143 psi

a

Shear stress:
Assume the critical shear section is approximately

50% holes: S _ = C
s
dt
3,160 1bs.

9" x v(4)* + (12)? x 0.035 in.
12

= 9,550 psi
where 1 = length of plate along shear line
t = thickness of plate

A comparison of these four theoretical heel joint
calculation methods for 3"x5", 3'"x8'", and S"xS”‘heel plates
(See Figures 9(b), 9(c), and 9(df) yielded the results shown
in Table 1. These three plate sizes were later studied
experimentally, too.

Calculation of Tensile Stresses within
the Bottom Chord Cgntact Area

Assumptions
It is assumed that the plate is positioned parallel

to the bottom chord, with equal "effective'" teeth into both
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top and bottom chords, allowing 1/4" edge distance at top
chord and 1/2" end distance (measure perpendiculaf to crack)
for bottom chord, as shown hatched in Figure 10. Further,
it is assumed that area within the crack allowance does not
carry its share of tensile stress, except as required by

shear from the adjacent areas.

Notation
The numbers and letters on Figure 10 denote the
following:
a. Numbers across top of the plate denote that column
of teeth, the areas between columns being denoted
11-1/2 (for the group of isthmuses between 11 and
12), 14-1/2 (for the solid parent steel between 14
and 15), etc. Note: unless specifically noted,
the numbers refer only to the top chord portion of
the column, or bottom chord portion, rather than
entire column.
b. Letters down the side mean the strips (or isthmus
lines) between holes, and letters with the "T"

subscript denote the rows of teeth.

Shear Stress Calculations
The following steps were taken to arrive at shear stress:
a. Neglecting the effects of eccentricity, the direct
force (3,000 1lbs.) may be divided by the total
number of teeth (2 sides x 44 teeth per side), 88,

to get the axial load per tooth = 3000/88 = 34.1 1b.
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Assume uniform shear along the crack line; which is
assumed further to have only 50% effectiQe area
(the other 50% holes). The shear per lineal inch
will be 3,160 1bs. = 332 1bs./in.

I X 2 sides x 50%
(166 1bs./in. = Gross Shear).
Assume 50% net tensile area at all sections with
teeth cut out.
Assume allowable shear stress is 2/3 of allowable
tension stress, and that the net shear area is 2/3
as effective, per inch, as the net tension area due
to this 2/3 relationship.
Tension section A-A (3 effective teeth € 34.1 1bs.
per tooth, |
{(7 x 13/32") + 6/32"} x 0.036" x 50% = 0.054 in.?

net section in tension, 3/16" net shear line length.

Section A-
3 teeth x 34.1 1b./each =
(7% tensile strips @ 0.0073 in.%) + 0.0045
=1,730 psi
Section B-
10 teeth x 34.1 1b. = 5,600 psi

(6% strips x 0.0073) + (1% x 0.009)

' Sectioh C-

16T x 34.1 1b. = 8,240 psi
(6 x 0.0073) x (2% x 0.009)
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Section D-

21 x 34.1 = 10,000 psi
(5% x 0.0073) x (3% x 0.0009)

Section E-

26 x 34.1 = 12,100 psi
(4% x 0.0073) + (4% x 0.009)

Section F-
30 x 34.1 = 13,000 psi
X R x 0.
Section G-
‘34T x 34.1 = 13,800 psi

(3% x 0.0073) + (6% x 0.009)

Improvements to Calculations
Since the '"slip'" is uniform along the shear line

(crack between the top and bottom chord), the shear stress
must also be uniform along the crack, rather than different
in each section as indicated in the preceding set of compu-
tations. If the shear stress is in fact uniform, then the
amount of shear force at each strip may be subtracted from
the tooth value tensile force to determine the effective
tensile force to be carried by net tensile section of the
isthmuses between the holes. This concept is used in the

following calculations for the same sections used before:

Shear force per strip 332 1bs./in. (net x 3/8'" strip)

125 1bs./strip
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Section A-

3 x 34.1 1b, - % x 125 1b. = 730 psi
74 strips x 0.0073 in.?

Section B-

341 1b. - 1% x 125 1b. = 3,200 psi
6% x 0.0073 in.?

Section C-

545 1b. - 2! x 128 = 5,300 psi
6 x 0.0073
Section D-
715 1b. - 5% x 125 = 6,920 psi
5% x 0.0073
Section E-
886 1b. - 4% x 125 = 9,850 psi

0.0328

oection F-

1023 1b. - 5% x 125 = 11,500 psi
0.292

Section G-

1160 1b.- 6% x 125 = 13,550 psi
0.0256

Buckling and Shear Stresses in the Steel

Investigation of the Cause of Buckling
A small element centered over the shear line will be in

a state of pure shear. The element may come from the area
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12% - Et’ or that vicinity, on the truss plate shown in
Figure 10. Figure 11 is a blown-up view of this element.
Since pure shear can exist only in one particular plane
through a two-dimensional element, there also exist tensile
and compressive stresses on other planes through the point.
The maximum and minimum normal (principal) stresses occur as
shown in Figures 12(b) and 12(c) on planes that bisect fhe
angles between the planes on which the given shearing
stresses act, and these principal stresses are equal in
magnitude to the shearing stresses. The shearing stresses
on these 45° (principal) planes are equal to zero.
The principal stresses at a point are used to compute
the shearing stress as follows;
T =% (%pax ~ %nind
in which a principal stress is considered to be positive if
it is a tensile stress and negative if a compressive $tress.
Furthermore, this maximum shearing stress occurs on each of
the two planes that bisect the angles between the planes on
which the maximum and minimum principal stresses occur.
Compressive buckling, applying this concept to the
truss plate, is caused when the compressive stresses that
result from the shear exceeds the Euler formula critical
level. The direction of the buckling can be determined,
prior to its occurrence, from the slope of the shear line,

rotating 45° to get to the maximum compressive stress.
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Slope of
shear line

Element 12-1/2-Ep, subjected to
pure shear along the plane of the
shear line.

Figure 11. Element on shear line.

Figure 12. Free-body diagrams of shear element.
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Discussion of Shear Stress in the Steel

The shear stress in the steel at the crack is uniform
along the plate. If the truss plate is oriented parallel to
the shear line and centered over it, the equal contact areas
will provide an approximately equal number of effective
teeth into each chord member. Since the '"parallel to shear
crack' orientation keeps fhe eccentricity of the two contact
area centroids (see Figure 13) approximately the same as
the ''parallel to bottom chord" orientation, the effect of
the eccentric moment will be minimized.

The "parallel to crack" orientation permits a more
precise determination{of cross-sectional area at the shear
crack than does the ''parallel to bottom chord" orientation.
Since the tooth hole punch-outs are located in uniform rows
(in one of the types of plates investigated), in line with
each other, the net steel area parallel to either the '"die
direction'" of the plate (b, which is always equal to some
multiple of 2-1/4") or the '"across die direction" (h, which
is equal to 2-7/8'", 3-11/16", or 5-5/16") is about 50% of
surface area, at the critical section of that particular
plate type.

For orientations of the plate other than '"parallel to
crack” or "perpendicular to crack," it is much more difficult
to precisely compute effective net shear area, due to the
unequal way the rows of teeth cross the shear line. This
can be easily seen in Figure 10, which is shown for a 4 in

12 pitch.
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Since the net steel area exactly parallel or exactly
perpendicular to the plate, measured along the critical line,
is 50% (for this particular manufacturer’s plates), no other
plate orientation results in a shear line of less than 50%.
For design purposes, it could be assumed that the net steel
was 50% of the shear line length. This assumption is

conservative.

Calculation of Shear Stress at Critical Section
The calculation of shear stress at the critical
section uses the conventional formula:

S = c = C
Z(plates)Lt 50%(net) Lt

where C = top chord compressive force (which
acts parallel to the shear line)
L = length of plate along shear line
t = thickness of plate

From Figure 9:

S = 3,160 1bs. = 9,550 psi
S 9m x Y(4)?2 + (12)% x 0.035"
12

For a similar plate parallel to the crack:

S¢ = 3,160 1bs. = 10,050 psi
X

This shear stress must be transferred through eleven
full size steel sections, 0.375 in. x 0.035 in., and two half
sections 0.1875 x 0.035 per plate. These sections are

approximately 13/64 in. high (0.203 in.). See Figure 14.
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rFigure 14. Critical shear stress (buckling) area.

S =P = 131.8 1bs.
S KX 3 X 0. ®

= 10,050 psi

Figure 15. Free body diagram at shear line.
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Analysis of Section A-B-C-D (shown hatched in Figure

a. Shear force on line E-F =

L}

3,160 1bs. 3,160
22 full sections + 4 halt sections 22 + 2

131.8 1bs. per section
b. Shear stress on a full section, such as E-F =

S =

s = 131.8 1bs. = 10,050 psi

P

A P
(This checks with the general calculations on the
preceding page.)

c. From Figure 15, the stress at the line C-D can be
computed by assuming that C-D-E-F is a short canti-
level beam, 3/8" deep, 13/128" long, 0.035"
thick, with a concentrated load of 1,318 1lbs. at
the end.

d. Section Modulus, S, at section C-D =

bd? = (0.035 in.)(.375 in.)? = 0.00082 in.?
6 6
e. £f=M-=Pl =131.8 lbs. x 13/128 in. = 16,300 psi
=S S 0.00082 in.?3



CHAPTER 1V
EXPERIMENTAL ANALYSIS

General

A variety of heel plate sizes and shapes were.used to
test the proposed heel joint analysis method. A small 8'-0"
test specimen and corresponding jig were developed and used
to permit a large number of different specimens to be tested
quickly and cheaply. Each type of plate could have several
repetitions very easily to confirm results. A second set of
8'-0" specimens was built and matched to 24'-0" trusses to
correlate the load-deflection data with full scale trusses.
Lastly, Stress-Coat brittle lacquer was used to determine

location and direction of the principal stresses.

Test Specimens

The initial set of tést specimens were built using 20
ga. TroyTrus plates of various sizes of the type shown in
Figure 10. The lumber was all 1500f Industrial Light
Framing West Coast Hemlock. All the plates and lumber were
supplied, and specimens fabricated,by Troy Steel Corp. using
a press assembly similar to that shown in Figure 19. All the
lumber was kiln dried, but no attempt was made to determine
moisture content or specific gravity. See Table 2.

47
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Table 2. List of Specimens Tested.
No Size Mfr.| Lg. | Pitch | Species.| Grade |Remarks
1| 3x10 [tw | 8" |4/12 |Doug. | 1500f
2 3 x 8 " " " " " 18
313.7 x 6.7 |TR " " Hem. "
4 Sx 7 TW " " Doug. "
5 5x 5 " " " " " 18
6 [2.9x 6.8 TR | " |6/12 |Hen. 1500f (1)
7 ﬁx 4.5 " " " " "
8 " " " " " " " (1)
9 z- 9 x 9 " " " " "
10{3.7x2.2] " | " 5 3 " (0 (5)
11 2.9 x 6.8 " " " " "
].ZL ZLX 2.2 " " " " " (6)
13 [5.3 x 4.5 [ " | " |4/12 m "
14 |13.7 x 6.8 " " " " "
15 12.9 x 9 " " " " "
16 [5.3 x 4.5 [ " | " 3 N 3 (1)
17 " " " " " " " (2)
18 " " " " " " " (3)
'Tg 5.3 x 6.8 " " " " "
20 12.9 x 9 " " " " "
21 13.7 x 6.8 " " " " "
22 [3.4 x 5.1 |[DU_| " N N N (3)
23 |3.7 x 6.8 |TR | " " " " s
24 5.3 x 6.8 | " | " " " (3
S (3T x 45 [T T 7 q EREORO
26 [5.3x 4.5 | " | . " " (2)
27 5.3 x 6.8 " " " " "
28 " " " " " " "
29 |3.7 x6.8 " | " . " (1)
30 12.9 x 9 " " " " "
31 [5.3x 4.5 " | " g " g (2)
32
33 13.4 x 5.1 |DU " " " "
34 12.9x 9 TR " " " "
35 13.7 x 6.8 " " " " "
36 13.4 x 7.6 |DU " " v "
37 " " " " " " " (3)
38 3 x5 TW " " Doug. Const.
39 " " " " " " "
40 x 8 " " " " "
41 " (1] " 1] n 1] "
42 5x 5§ " " " " " (7)
—-&3 " " " " " " " (7)
44 3 x5 " 24" " " "
45 " " " " " " "
46 ﬁs X " " T " "
47 " " " " " " "
4L § X 5 " " " " "
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Table 2. (cont'd.)
No. Size Mfr. | Lg. | Pitch | Species [Grade |Remarks
49 5x 5 TW 24' | 4/12 Doug. Const.
51 3 x5 " 8' " Wh.Fir. |1650f
52 ”" " ” " " " ”"
r—sg ﬂ 8 " ™ " " T
54 ”" 1] " 11] " ” "
55 5 x 5 11} " " " "
56 " 11} n LLJ 1" " "
57 " " " " " Doug. Stand.
58 " 11} ”"” " 1] " ”"”
59 3 x5 " 24" " Wh.Fir.
60 ” ”" 1" " 1] [1] "
61 3 x 8 ”n " n" " "
62 LLJ " " " " " 1L
63 S x 5 1] " 1] n "
64 " 1] ”"” ”"n " " "
65 | 55/16x41/2 TR 8! " W.Hem. n (2)
66 | 311/16x63/4 " " " " "
67 |311/16x41/2 " " " " "
68 n " LL LA} 7 AL W
69 | 55/16x41/ " " " " " (2)
70 " 11} ”" " " ” " (2)
‘_71 " 1] " " [} ”" " (2)
72 | 55/16x63/4 " " " " " (3)
73 7" " ”" " " ”" ”"
74 " " " " " [1] 11
75 " " 7" ”" " (1] ” (1)
76 7" (1] (4] (1] (4] " lsoof (1)
77 ”n " (1] " [} " [ (1)
78 I3 xS TW " " Doug. 1500f
79 ”"” ” ”" ”" " 1] ”"
80 ”" " [} " " " "
81 " ”"” 1] 11) ”" 1] "
82 ” ”" " 24 L " 1] "
83 ” 7" " " (1] " "
84 ” " " " " " "
5 " " " ”" 1A] " "
86 3 x 8 " 8 ] ”" " " (4)
87 11} (1] ”" " " 1] "
88 ” ”" " " 1] " "
89 " 7" " " 1] (1] (1]
90 5 x 5 ”" " " " ”"n
91 1" 11] " " " " "
92 [1] " " (1] " " "
93 " ” 11] 11] ”" 11] 11
94 I x 8 " " " Wh.Fir. | 1500f
95 " " " " " " "
96 ”"” ”"” 11} " ”"n " "
_'9t7 " (I ™ T T T i}
98 3 x5 " " " Doug. "
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(cont'd.)

No.

Mfr.| Lg.| Pitch | Species

Grade

Remarks

99
100

" "

W 8" | 4/12

Doug.
"

1500f

101
102
103

" "
" "
" "

Wh.Fir.

(4)

104
105
1106

"
”"
”"n

107
108
109

”"
"
"

"Lg." in Table denotes length of test specimen.
"Mfr." in Table denotes manufacturer of truss plates as
follows: :
TW stands for TrusWal Systems

TR stands for Troy Steel Corporation
DU stands for Duratile.

parallel to crack

perpendicular to bottom chord
perpendicular to bottom crack

testing machine

Two plates each side
Three plates each side

Remarks"
(1) Plates
(2) Plates
(3) Plates
(4) Riehle
(5)

(6)

(7)

Plates not impaled properly




51

The second set of test specimens, including 24'-0"
trusses, were built using truss plates of 3'"x5", 3'"x8",
and 5'"x5" of a second type, shown in Figure 39. The lumber
was of Coast Region Douglas Fir for one set, both 8'-0"
specimens and matched 24'-0" trusses, and white fir for a
second matched set, both 8'-0" and 24'-0". Truss plates of
20 gauge steel were applied without nails, using a roller
press. Moisture content and specific gravity at time of
test were determined for the top and bottom chords of each

test specimen and are recorded in Table 3.

Test Jig

For the first series of tests, a small 8'-0" long test
jig with single hand-pumped hydraulic cylinder (Blackhawk
Mfg. Co., Milwaukee, Wis., 53227, Model R159 Porto-Power
10 ton capacity, 6" travel, 1.688" diameter ram with Model
P76 pump) was built as shown in Figure 17. The actual jig
is shown in Figure 20 with a test specimen in place.

For the second series of tests, a wall mounted full
scale hydraulic test jig located in the Michigan Building
Components plant on Decker Road, Walled Lake, Michigan, was
used to test the 24'-0" trusses. It is shown in Figure 21.

For the third series of tests, an old Riehle Testing
Machine located in the Forestry Building, Michigan State
University, was used to test 8'-0" specimens. It is shown

in Figure 22.






52

. . 8 LST 02°09 | £8°69 o L S
L9 ¥ 279t L95°0 $2°91 € 8YT SS°pS | £5°€9 u g S
<o . 081 7970 $7°61 S 8T 0v %9 | 08°9¢L " 1SS
v 9%£° 0 $0° 81 S'sST | Lz°9% | 09°S y g €5
0p ¢ 601 ¥8€ 0 $8°L1 Vo LST TL°2S | L0°29 9y A
cov 0Z%°0 $0°9T L ThT $6°6S | 25°69 " g 2§
0Ty s 0 61 7L 0 59761 8 8s 1 9.°15 | 68°19 y 115
197°0 $7°81 8°¢ST 19°19 | S6°24 21TYM g 1§
) ) S5 0 $6° L1 S el Tv T | 8T ¢8 0 L 6%
SLYS 358741 025°0 $8°91 S SYI 0S'v. | 86°98 " g 6
15 . 8 /1 8550 $T 81 0°0ST 0,708 | ¢£°S6 : 1 8%
26%°0 $p° L1 I ARTA ZL°19 | svizeL " 4 8%
. . LIV 0 §8° L1 A 65°59 | SL VL " 1l
85 ¥ 304791 0tt°0 $6°ST 2° 251 80°8S | S£° 49 u 4 Ly
<09 coc 61 ZL9°0 3022 9 151 7S 88 | VL LOT y 1 9%
b 8SS°0 $L°9T 2°SHI 00°8L | £0°16 } 4 9%
) . 0550 $C L1 Vvl L9°SL | ZL 88 " 1S
0TTS $ST°LT 26¥°0 $0° LT 1°LST Svp° L9 | 16°8L u 4 S
: . $9t° 0 $S° L1 RIS 8L L9 | 89 6L " 1 vy
Se8 $0€° LT 205°0 $1°L1 L7gST 9T°£9 | 19°8L s g b
o5 . 78I 7550 $9761 C611 v6 %9 | 89 LL | L 1¥
065°0 $7° LT 9°IST Sy LL | SL 06 s 4 Tv
. . 6750 3§57 81 YA T9°L9 | 80°08 " L0
0155 857" 81 £55°0 $7°8T 0°251 8T°S. | 99°98 " 4 0%
) ) 627 0 $8° L1 97651 S6°LS | L2 89 " 1 6%
sTvy $5v LT pSt°0 $T°LT 8°LST L0729 | 0S°§L u 4 65
} . 025°0 $. 81 0°0sT S9°.9 | 82 08 " 1 8%
5¢0S $51°0¢ $8%°0 $9°1Z $*Z¢1 979 | z1°8¢4 - 8noq g 8¢
(%) (%) (22) (3) (3)
A311ARIY Juajuo) A3tARIY juajuo) ‘1ds1q *IM IM
d13j1dadg 9In1sioy | or1jyroadg 9IN3SION IaleMm A1q uaaQ 1S3 satrdadg *ON °Jadg
93BIJAY
*L11ARI9 DOTJTID00dg pue JUdIUO) 9INISION ¢ d3[qel




53

861 ° 0 $ £°52 $6S°0 $€°6¢ 2 891 ST°00T| TIS°62I " L 08

I10v°0 $2° LT S'TLT 08°89 IS°'08 W g 08

€550 a.m.am 86S°0 $2°2¢ 0°9.LT 82°SO0T| L9°87I " L 6L
89¢°0 $L°0¢ AR A 69°18 8S °86 " g 6L

687°0 $ 8°61 0Lv°0 $6° LT L°0LT 12°08 0T ¥6 m L 8L
8050 $2°22 S L9T Z1°S8 | S0°#01 “3nog g 8. |

$65°0 $ 9°6T LOV° 0 $8°L1 T°SST 02°¢9 0S°vL " L %9
6L5°0 $v° 12 2°891 28°5€9 | S¥°LL " g4 $9 |

S0Y°0 § 9°61 LSV O $1°81 0°19T1 Iv°0L 61°¢8 " L €9

: $18°0 $7°12 6°9ST 85°8S | 86°0¢ u g €9

S6£°0 § 7°02 89¢°0 $L°81 ¢ v8I1 ZL° ¢S €L°¢9 " L 29

442\ $v- 22 §°991 L2°0L | T0°98 m g 29

90%°0 $SS°61 A% 2] $9°81 S°69T 80°0L 61°¢8 m L 19
865°0 $5°02 8181 9T°2, | 10°48 u g 19 |

085°0 $ °12z 99¢°0 $0°0¢ €°9ST ¢TI LS 56°89 m L 09

$6£°0 $8°22 L 191 £€5°¢9 v0°"8L m 4 09

. . ve’o $8°81 TI°091 06°¥S vZ°S9 " L 69§
S9ve°0 | ¥ST°0Z 1S§°0 §5° 12 P 6L1 06°29 | 6£°9Z °1TYyM g 6S |

SSTS* 0 $ 9°02 €250 $.°0¢ €971 LT°99 I6°6L " L 8S

ecm.w $5°02 L 281 00°£9 | 9,°08 |- g 8S

. . 8¢S ” | ARAN 08°L9 m L LS

v8Y°0 | % L°61 0St° 0 Mh.mﬁ‘ 8° ST 29°LS | $6°89 - 8nog 4 LS

. . 8¢tv° 0 -%$v°81 9°L¢T 91°09 ST'TIL " L 9§
26£°0 | 356791 9§ 0 Nm.mﬂ LoshT | Tv6y | zz7LS y g 95 |

. . 8S¢°0 61 L°8¢T 6S°6V 976§ " L SS§

S6L8°0 | % Z°8T 10t°0 $6°91 8°SST LS S | £5°59 91TyN g SS

(%) (%) (22) (3) (3)
A31TARIY Juajuo) AL31ARIY Juajuo) *1ds1q *IM “IM
513123dg 9IN3ISTION d1j10adg 9IN3ISTON I93eM L1qg uaaQ 1S9 sat1oadg *ON °DJadg
93BIQAY
(*p,3u0d) ¢ a1qe]




54

oo P—— IS5°0 3551 £ 071 65 Zv | Zs 8¢b " 176

S0%° 0 $5° €1 1°SST 89°%S | 01°29 93TYM g v6

: ; 79770 38752 T°071 05785 | 15 °2L y 156
0vy°0 $E°12 SIp°0 $.° 8T ¢ Z1l 95°9% | £z°SS " g £6 |

: : $7570 30751 67 0TT ST 10 | <L 0L m 126

005°0 ¥ 0781 LLY"O $9°02 9°$0T 0v° 6% | 1S°6S : 4 26

: , 58770 367 L1 C0z1 Sy vs | 16°89 " 116

29v°0 ¥ 9761 859°0 $2°12 9° 40T 60°Ly | 21°LS s g 16

: : 750 3¢ LT Z 25t 6569 | Zv 18 o 106

60570 ¥ 3761 £69°0 §9°2¢ 2 221 82709 | 6.°5/ ) g 06

: , L9570 3,81 T4 TST0. | zL <8 o 168
£v5°0 v 2702 025°0 $6° 12 p LTI L0°T9 | Sp ¥y ) 468

0 P TR 3¢°1¢ 9 TSt 89750 | €2 LL 9y 188
797" 0 €752 pL21 90°6S | 187/ N g 383 |

o0 s 902 5050 5661 RTA 05 29 | 89 vL : 1 L8
£0S°0 3§12 1'611 S6°65 | 28°s/ : g .8 |

950 P 82070 3,752 8611 127G, | 10°56 y 108
S50 $6° 12 8 P11 2s°29 | zz°9¢ ) g 98

; : 6870 3751 97971 S6°19 | 8¢ 1L y 158

64770 8 0791 89% 0 $5°9T S°Z¢T 90°29 | 8224 ) g 58

: : 7970 30781 R 15729 | 4L 5L " 178

66v°0 v 2781 T£5°0 3-8 9°57T v.°99 | 46°8L | © .. g ¢8
— : TS50 6.1 HIA 0v T. | 6T %8 » 158

615°0 VeI L8 0 $.°901 6°SST s2°99 | 1§°4L ) g ¢8
: ) Zev°0 | " 8S vl 8 Z5T 0V LS | ZL°S9 9y 128

sy 0 3 0°SI 9Lb"0 $v°ST 0°621 Zv°19 | £870L ) g 28

050 - 92570 VAR STV 08°16 | v8 p0T » 118

LLY"0 §T ¢1 1891 ST'08 | 6416 +8noq g 18

(%) (%) (22) (3) (3)
£311ARIY Jua3u0) £311ARIY 3ua3uo0) *1dstq “IM “IM
[pt3108dsg 9IN3ISTION d13J109dg 9IN3STION IaiepMm A1q usaQ 31s9], sat1oadg *ON °Dadg
38E19AY A
(*p,3uod) ¢ |1qel



55

. . 26¢°0 $L°V1 JARTA! L9° LY 89° S " L 60T
00v°0 t 8°¢1 60t 0 $6°21 JARZA Q0°1S | 89°LS 93TYM g 601
$95°0 $ [°V1 68¢°0 $v°o1 A 0s°6¢ £€9°LS " L 8

6££°0 $6°¢1 S"Z¢st 6" vv ¢£L°'0S " 4 80T

8650 $ ¢ Pl A $9°¥1 L°S¢el 8S°vS €5°29 " I L0T
¥6£°0 $6°¢1 P 61 96 " ¢S 6S°29 " g4 L0T

/SS°0 $ L b1 98¢°0 $8°S1 ¢ ICT 69°0S 89°8S " L 90T
82¢°0 $S°¢1 6°SYT 6Ly 0y " ¢S 0" g4 90T

65S°0 $ 0°9T TL€°0 $6° L1 S°SIIT 98° ¢ £€5°0S " L SOT
Ly 0 $0°¢1 £°8T1 0T 1¢ I8°9¢¥ . g S0T

9450 $ 7°¢1 6¢£°0 $v°¢cl 8°StvI LY 6V 60°9S " L $0T
£5¢°0 $0°¢T P gST ST'#S 81 19 u g4 $01

8¢ 0 § €61 0Z¢°0 $¢°91 T°0¢vT i8°'vd I1°2S " L ¢0T
ovv-o $v 22 9°2Z¢1 62" 8S vE 1L 0" 4 ¢0T

vhb 0 $ 6°97 98%°0 $T°61 S°IZ1 90°6S 2¢°0. " L 701
20v°0 $L V1 S$°2Z¢1 1Z2°¢S 10° 19 93TYM 4 201

1.5°0 $ L°6¢C S9S°0 $9°C¢ |ANAAS Z1°69 €9°16 " L T0T
84S5°0 $6°9¢ 0°2¢tT I1£°94 LO°ZIT u 4 10T

v6v°0 S 1°62 I¥v°0 $0°9¢ 0°¢Z1 0Z°¥S 8C°89 " L 001
8¥S°0 $2°¢C¢ IARAA! I16°LL | 00°¢01 m 4 001

. . Z1v°0 $L°27 9°StI £6°6S vSs° gL " L 66
£5V°0 b 0792 Svv'0 $£°62 I°vZ1 L¥°T9 LY 6L i g 66
S8%°0 $ 8°/2 9Lv° 0 $S°¢C AN Z1°¢9 L6°LL " L 86

v6v°0 $1°2¢ 9°I¢T ¥0°S9 68°S8 " 3noq g 86
1Ss°0 $ $°ST 91¢°0 $¢°¢T T°02T 267 L¢E L6° Y " L L6
98¢ °0 $G°LT 8°SZ1 6S°8¢v 0T LS i d L6
5S¢0 % 6°SI Sve 0 36 ¢l S79¢T vo LY 95°¢S " L 96
S9¢°0 $6° L1 0°9¢1 S¢€°'¢S 1629 " d 96
96¢€ 0 S L bl 95¢70 19 vl v SZ1 0L ¥ ZZ° 1S " L S6
LEY'O $8° VI 6°971 €v°SS €9°¢ 91TYM 4 S6

() (3) (32)~ (3) —(3)

£31ARIY JUd3U0) £31ARIY jusjuo) | *1dsiq “IM “IM

d1312adg @xn3sIoW | or3yIdadg 3INISTOW| JI33eM AL1q uaaQ 1S9l sa129dg ON °Dadg
90BIOAY
("p,3uod) ¢ a1qel



56

‘usuwrtoads 3s93 ,,0-,8 9T {in3dty

‘patpnis Butaq jurofl

199y 9yl 3e 2InIIeJ 92INSUI 03
padxojurax ST jurofl [93y sSty]
\\w (pxoy> wo33zoq 3Jo yiduay)

*s1Tem ojernurs o3 31l 3sa3 jo
pua yoea 3e jxoddns paxty ¢-¢]¢

—. :O...w

(7

~<_ y WPXn? =
Swy| =
-rd%—v&\
*S9TIRA :uuﬁm_
1 T

*19pUTTAD peOTl OIINneIpPAY 10F

Sutaeaq waoyTun ‘TaAdT aptAoxd 03 3eT4g nb

~— "puUs s1iyl
U0 ST paipnis
aq 03 jurol 1asH



31 31s93 ,0-,8

MIIA INOYA

uauwrdads 3s93

"LT @an3ty

MIIA
4dI1s

(tTre3sp 103 8T aindtg 29S)

v-8]Jot1
Y

98ne8 uor3oo

.|| r_=
———— e ——————— =
T -4
-
—~
~ —~
peoT Aanmm/// //_.ﬂll\.\.\ Pt uU0T318507 ssnif—"
01 )D01q 1991S ///,rl”ﬁlu _ -
~ a8ned orTneapLy xﬂ\\l.mcmsﬁumam yos31d jusxayyIp
L jtwasad o3 Buryo01q pooy —
{

‘dund otIneapdy

paiexado puey
- .

‘uauwrdads jo yead
3e aanssaxd sorydde
I9pUTTAD OSTIneIpAY “/

*978ue d11d> 3surede paseiq ST IApUITL)

w'3Ino FuTYITY,, INOYIIM

auIl owes ayl Suore
8utioe aspurydo sdesoy
I9PTIOY TBIUSISJUNDITY)

918ue driy)



58

Instrumentation

A Starrett dial gauge, accurate to 0.001", was mounted
at one heel joint as shown in Figure 18. It was mounted with
screws on the centerline of the top chord. Its plunger was
against a steel angle which was screwed symmetrically over
the bottom chord center line.

A hydraulic gauge on the R159 Porto-Power was used to
read the pressure on the peak of the initial 8'-0'" specimen.
The gauge had marks for every 400 psi and was read to 200
psi accuracy. This gauge was calibrated on the Instron
machine at the Forestry Building, Michigan State University,
and the calibration data is given in Table 4, page 64.

A hydraulic gauge on the wall-mounted full scale test
jig was installed in the hydraulic line at the peak of the
24'-0" trusses as shown in Figure 21. It was marked in 25
psi increments and read in 10 psi increments. This gauge
was also calibrated on the Michigan State University
Forestry Department Instron machine. The calibration data
is given in Table 5, page 65.

The Riehle testing machine used for the last series of
8'-0" specimens is mechanically operated and has a balance
scale accurate to 5 1lb. increments. The heel deflection was
read every 200 1lbs. of peak force, at the instant the balance

arm hit the top. See Figure 22, page 63.

Test Procedure

For the initial series of- 8'-0" tests, on the hand-

pumped hydraulic test jig, the heel deflection was read
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(a) Test apparatus for 8'-0" specimens.

(b) Close-up of gauges.

Figure 20. Small test jig for 8'-0" specimens.



(b) Close-up of heel, showing gauge.

Figure 21. Test jig for 24'-0" trusses.
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Table 4. Calibration Data for
Blackhawk Hydraulic Gauge.

Instron Reading

Act. Press.
Press. Read. #1 #2 #3 #4 Ave.
0 0 0 0 0 0 0
37 25 85 88 83 75 82.75
58.2 50 135 132 128 125 130.00
80.6 75 185 183 180 172 180.00
102.3 100 232 232 229 221 228.50
124.8 125 282 283 280 270 278.75
147.3 150 335 332 328 322 329.25
176.9 175 400 398 397 385 395.00]
200 200 446 452 448 437 446.75
218.5 225 487 497 493 482 489.75
240.5 250 537 542 541 532 538.25
264 275 592 595 591 581 589.75
286 300 638 645 642 631 639.00
312 325 693 705 698 687 696.75
335 350 745 757 747 742 747.75
356 375 794 802 797 790 795.75
379 400 845 852 850 838 846.25
400 425 887 902 897 890 894.00
422 450 937 948 946 938 942.25
450 475 1007 1017 1013 1000 1009.25
472 500 1057 missed 1063 1053 1057.67
495 525 1109 1115 1110 1105 1109.75
518 550 1153 1163 1162 1155 1158.25
540 575 1202 1215 1212 1208 1209.25
562 600 1255 1263 1260 1262 1260.00

Blackhawk Porto-Power hand operated hydraulic pump
Model R159
Serial #A21233
Area: 2.2365 sq. in.
0il capacity: 13.419 cu. in.
6'" travel
1.688" diameter cylinder
8950 psi maximum pressure @ 103 1b. handle pressure
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Table 5. Calibration Data for
Full Scale Test Jig.

Instron Reading

Hyd. I
|Press. #1 #2 #3 #4 #5 Ave.
0 0 0 0 0 0 0
500 510 575 - 575 535 560 551
1000 975 1065 1050 1040 1035 1033
1500 1485 1540 1540 1505 1530 1520
2000 1910 2025 2055 2000 1985 1995
2500 2440 2520 2530 2500 2490 2496
3000 2935 2970 2960 9240 2910 f 2943
3500 3410 3450 3430 3425 3400 3423
4000 2910 4065 3960 3920 3915 3956
4500 4455 4290 4405 4410 4390
5000 4900 5000 4950 4900 4938
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approximately every 400 1lbs. of peak pressure. This gave a
minimum of five readings and a maximum of ten, depending on
specimen type. It was necessary to use both hands to take
the deflection data, which necessitated releasing the hydrau-
lic pump handle. This in turn allowed a slight relaxation
in the pressure, reducing the measured deflection. As a
result, it was believed that the load-deflection data from
these initial 8'-0" specimens indicated too much stiffness.
To counteract this possibility, later tests were performed
on the Riehle testing machine. Duration of tests varied
from five to ten minutes for these tests and all tests were
performed indoors at 60° to 65° F, on this hand jig.

The second set of tests, performed on the 24'-0" full-
scale wall mounted hydraulic jig, took twenty to twenty-five
minutes per test. Pressure was applied 24" o.c. using a
motor driven pump which maintained constant pressure. The
heel deflection gauge was allowed to stabilize before each
reading, and readings were made about every 50 psi, for a
minimum of six per test specimen. These tests, also inside,
were performed at temperatures ranging from 65° to 85°.

The third set of tests, performed on Michigan State
University Forestry Department's Reihle machine, involved
readings at every 200 1lbs. of peak loading. The load was
mechanically applied at a uniform speed of 1/16" per minute
and readings were made each time the balance arm hit the

top. About twenty readings were made per test specimen.
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In all cases, the deflection gauge at the heel had to
be removed when failure appeared imminent to prevent damage
to the gauge. This meant that deflection data could not be
taken in the neighborhood of ultimate load. Should further
research by others be continued on this type of joint, the
dial gauge should be mounted to read by extension rather
than by compression, to eliminate the danger of damage and

permit the full range of readings to be made.

Test Results

Types of Failure ofAExperimental Specimens

During the testing program, all the types of failure

described earlier were observed. A record of type of failure

was made of most of the specimens, with the following results:

a. All 3"x5" and 3"x8" in both white fir and Douglas

fir, and all 2-7/8"x9", 3-11/16"x4-1/2", and

3-11/16"x6-3/4“ in western hemlock failed by the

tooth withdrawal associated with the highest
stresses. See Figure 23 for photographs of this
type of failure.. Very little rotation was noticed
in the 3"x5" and 3-11/16"x4-1/2" sizes, and no

rotation was seen in the three longer sizes. This

amount of rotation, or lack of it, was in accordance

with the proposed theoretical analysis which

predicts less rotation in longer plates due to their

higher polar section modulus (higher resistance to

eccentric forces).
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All the 5"x5" plates (which had teeth oriented in
all four directions, every 900) showed considerable
rotation, as well as some S-shaped distortion, prior
to failure. See Figure 24 for photographs of this
S-shaped distortion, though of a different, heavier
gauge plate. The rotation was less pronounced but
somewhat similar to that shown for the nailed plate
in Figure 25. Ultimate failure of these 5'"x5"
plates was the result of tooth withdrawal, which
always started essentially simultaneously at the

upper left.and lower right corners as they lifted

out of the wood first, due to that diagonal

dimension of the plate stretching as the plate
became S-shaped.

All the 5-5/16"x6-3/4'" plates which were equally

applied on top and bottom chords failed by buckling,
regardlesé of their orientation. Those placed
perpendicular to the crack (see photo sequence in
Figures 26 and 27) failed at lower loads than those
placed parallel fo the bottom chord (see photo
sequence in Figures 29 and 30). This showed the
higher shear value and greater buckling resistance
when the long dimension of tooth holes is oriented
approximately parallel to the crack.

All the 5-5/16"x4-1/2" plates (which had teeth and

holes pointed perpendicular to the bottom chord)

showed both buckling and rotation, as seen in the
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(a) Right-hand heel joint.
(Note S-shape of ends of plate.)

(b) Left-hand heel joint.

Figure 24. Distortion of 18 gauge heel plates.
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(a) Original location, showing
deflection gauge.

Siady

(b) Deflected position.

Figure 25. Photos of nailed plate distortion.



(a) Initial set-up. (b) 0.019" deflection.

(c) 0.045" deflection. (d) 0.075" deflection.
(Note initial buckling (Initial buckling is
along shear line.) more severe.)

E \

(e) 0.088" deflection. (f) 0.162" deflection.

Figure 26. Initial buckling of Specimen 26.



(a) 3/16" deflection. (b) 1/4" deflection.

(c) 5/16" deflection. (d) 7/16'" deflection.

(e) 9/16" deflection. (£) 9/16" deflection.
(No rotation. All (Close-up.)
buckling failure.)

Figure 27. Progressive buckling of Specimen 26.



(a) 1/4" deflection. (b) 3/8" deflgction.
(Note rotation of plate.) (Hole enlargement at
upper right.)

(c) 1/2" deflection. (d) 5/8" deflection.
(Pulling of teeth at pencil.) (Lifting of teeth at pencil.)

(e) 3/4" deflection. (£) 1" deflection.
(Buckling severely.) (Holes enlarged on adjacent
corners, showing rotation.)

Figure 28. Buckling sequence of 5-5/16" x 4-1/2" plate.
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photo sequence in Figure 28, prior to ultimate
failure by tooth withdrawal. Close inspection of
the corner teeth in Figure 28 reveals the hole
enlargement, especially at the upper right behind
the tooth at the pencil, and at the lower left.

e. The 3"x10" piates on one of the earliest specimens
tested failed in tension, rather than by either
buckling or tooth withdrawal. The tensile joint
had already been studied by Misra and was only of
marginal interest to this study as an additional
limiting féctor, rather than a part of the main
study of contact area stresses and buckling strength,
As. a result, it was not studied in more detail.
Shorter heel plates were selected to prevent this

type of failure in the main protion of the tests.

Stress-Coat Analysis

A Stress-Coat analysis was made of several sizes of
plates, on both 8'-0" specimens and full size 24'-0" trusses.
Both showed the same pattern of stress cracks.

The Stress-Coat crack pattern development sequence has
been photographed (Figure 29) for specimen 27, a 5-5/16'"x
6-3/4" plate applied in the normal position. Since the
cracks were too small to show up in the photos, red dye
etchant was painted over the increasing area that had Stress-
Coat cracks, for each new level of loading. By following the
sequential photos, Figures 29(a) through 29(e), the spreading

Stress-Coat pattern indicates that the strains are greatest



(a) 0.037" Deflection, (b) 0.056" Deflection
(Stress-Coat cracks painted.)

(c) 0.072" Deflection. (d) 0.105" Deflection.

(e) 0.214" Deflection. (f) 0.401" Deflection.
(Some areas still have (Entire plate painted to
no stress cracks.) show buckling.)

Figure 29. Photos of Stress-Coat cracks on Specimen 27.
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(a) 3/8'" deflection. (b) 1/2" deflection.

(c) 5/8'" deflection. (d) 3/4" deflection.

(e) 3/4" deflection. (f) 1" deflection.

Figure 30. Progressive buckling of Specimen 27.
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in the area of the shear crack, with just a few teeth at the
upper right and lower left beginning to show high strains in
Figure 29(d) at 0.105" deflection. Even in Figure 29(e), at
0.214" deflection, just prior to the start of buckling, the
top three rows of teeth (about 1-1/4") and bottom three rows
(another 1-1/4" strip'of plate) still showed very few Stress-
Coat cracks. This means that for a 5-5/16" wide plate,
almost 2-1/2", or 50%, is not contributing its full value to
joint strength. The joint apparently would have been just
as strong, in terms of total top chord axial force, had a
somewhat smaller heél plate been used.

The entire surface of the plate has been painted in
Figure 29(f) to better illustrate the buckling sequence by
showing the light reflection off the ripples.

A small-scale sequence of crack pattern development on
a 5-5/16"x6-3/4" plate is shown in Figure 31, followed by
larger scale drawings in Figures 32, 33, and 34. It should
be noticed in Figure 32 that the Stress-Coat cracks between
teeth start in the vicinity of the shear crack between top
and bottom chord members. At the same time, initial Stress-
Coat cracks also occur at the bases of teeth located in the
ex treme upper right and lower left corners. This verifies
two important predictions:

- a. Shear stress in the steel is greatest along the
joint between chords.

b. Tooth stresses are highest, initially, on corner

teeth.
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No stress cracks Buckling has just started
in any of this all along shear line;
area. Stress-Coat is crazing
off in that area.
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Figure 34. Large scale of Stress-Coat cracks
at start of buckling of 5-5/16" x 6-3/4'" plate.
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Close inspection of Figure 33 reveals that stresses and
strains are definitely increasing rapidly along the shear
line, due to these increased top chord forces. There is
very little indication of new Stress-Coat cracking at the
upper right and lower left corner teeth, indicating that the
plate, or teeth, is slightly distorted or undergoing relaxa- §1
tion, and tooth forces are being redistributed. !

Figure 34 shows very dramatically that large areas of .
this 5-5/16" wide plate are not stressed highly enough to

cause Stress-Coat cracking, despite forces high enough to U

initiate buckling aiong the shear line between top and bottom
chords. Load-deflection data showed that the initiation of
buckling precluded higher loadings. Large areas of the plate
just weren't very highly stressed, even at ultimate load.
Figure 35 shows drawings of the Stress-Coat crack
development for a 3-11/16"x6-3/4" plate applied with its
centerline directly over the crack between top and bottom
chords (the so-called ''parallel to crack'" orientation).
Figure 36(a) indicates that initial stresses at the
base of the teeth are highest for teeth nearest the crack,
and that one tooth at the upper right corner is also stressed
about the same amount (apparently due to rotation, or
attempted rotation, of the plate). Figures 36(b) and (c)
show the progressive development of stress cracks at higher
top chord forces, indicating the higher strains at the shear

line, and one tooth base at the lower left corner. Since
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at failure of 3-11/16" x 6-3/4" plate.
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this plate has only nine rows of teeth, instead of thirteen,
as in the 5-5/16" width, stress cracks would be expected to
cover a larger percentage of total plate surface area.

Figures 37 and 38 follow the sequential increase in
stress cracks at increasing loads on this same plate. They
indicate, in Figure 38(a), that even at a top chord force of
6,920 1bs. (278 psi axial contact area stress), while the
holes behind the teeth are considerably elongated and one
corner of the plate is lifting, that there are still no
stress cracks in the outermost row of teeth, either top or
bottom of plate. Tﬁis same observation is verified in
Figure 38(b) even at ultimate load (7270 1lbs. total,- equiva-
lent to 292 psi contact stress).

Figure 38(b) indicates the approximate distortion of
the plate at ultimate load, and shows why the corners at
the upper left and lower right 1lift up first and pull out
their teeth. Those two corners are trying to become further
apart, extending that diagonal dimension and pulling those
teeth first. The other diagonal is shortening and imposing
still higher forces on thé upper right and lower left teeth,
but not pulling them because they are being forced closer
together, in the early stages of S-shaped distortion, or
plate buckling.

Nailed plates were also subjected to the Stress-Coat
analysis in an attempt to get a clearer picture of plate
stresses. Figure 39 shows the Stress-Coat cracks that had

occurred in a 3-3/8'"x5-1/16", 20 gauge plate at 0.260"

TSR

ST e
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|
¥
Plate Location

Very few cracks at
lower right or upper
left corner nails.

This plate is 3-3/8"x5-1/16" - 20 ga., a flat, nailed plate

shown full-size, with the Stress-Coat cracks that had
occurred by 0.260 in. deflection.

Figure 39. Stress-Coat cracks in nailed plate specimen 44.
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deflection. Note that very féw cracks had occurred at the
upper left and lower right extreme nails, verifying the
earlier analytic and Stress-Coat work.

Figure 40 shows the stress pattern for a larger plate,
3-3/8" x 7-5/8" with 24 holes, half of which had 1-1/2" 1long,
8d, screw type nails located as shown. The stress cracks
indicate the distribution of strains near each nail, in
accordance with the najl's push against the plate, and its
attempt to buckle the 20 ga. plate.

Figure 41 shows the same size plate as Figure 40, but
oriented roughly at rigﬁt angles to the crack. This drawing
verifies that the stress cracks form}at lower loads when a
plate is oriented perpendicular to the crack than when its
long dimension is parallel to the crack. Keeping the plate
parallel to the crack (or parallel to the bottom chord in
the standard orientation) reduces the eccentricity and
increases the joint's over-all strength since a higher
portion of the truss plate's capacity is available for axial

load resistance.

Determination of Top Chord Axial Force
The top chord axial force was determined as follows:
a. The total load applied on the test specimen was
computed, being corrected for the hydraulic gauge

discrepancies noted in the calibration data, Table

4, page 64 and Table 5, page 65.
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} Top chord force

o © @i’\:

Plate location

L

This plate is 3-3/8"
x 7-5/8" with 24
holes, but only 12
nails shown full
size. Stress-Coat
cracks were traced
and labelled at 1890
1bs. (.240" defl.)
and 2520 1bs. (0.368"
defl.) top chord
force.

Figure 41. Stress-Coat cracks in nailed plate specimen 37.
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The total load was divided by two to get the value
of the two equal reactions. All loadings were
applied symmetrically.
For the 24'-0" trusses, cohtinuity was counted at
the quarter panel points since the 2'"x4" chords
were continuous members across those joints. The
peak, heel, and bottom chord splice joints were
assumed as pin-connected. To account for the two-
span continuity of the chords, 5/8 of the top chord
load on each side was assumed to act at the quarter
point (for'a two-span continuous beam on unyielding
supports) rather than 1/2 as in the case of. pin-
connected joints. The vertical heel panel load,
then, was only 3/16 of the top chord load instead
of 1/4 as for pih-connected designs. This analysis
resulted in the net reaction being 13/16 of fop
chord load, rather than 3/4 for pin-connected,
increasing the calculated axial force in the top
chord by about 8-1/3% over a pin-connected analysis.
The 8'-0" speciméns were assumed pin-connected
throughout.
Top chord axial forces were computed using the
geometrical relationship of forces at the heel joint

after the net reaction had been computed.
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Determination of Contact Stress and Shear Line Stress
The contact area stress was determined by dividing the
top chord axial force by the area of the heel plate. The
area of one plate equals one-half the area of the front and
xrear plates. This was a straight P/A stress calculation.
No allowance was made for end distance or edge distance and
none for eccentricity.
The shear line stress in the steel was computed by
d aviding the top chord axial force by the length of one
trxruss plate measured along the shear line crack. To get
the stress per inch on one plate, these values would have to

be divided by two, for the front and rear plates.

Comparison of Six Plate Types

The load-deflection data for the initial series of 8'-0"
test specimens are given in the Appendix in Tables 27 through
32. The results of repetitive tests on six different 20 ga.
Plates manufactured by Troy Steel Corp. were compared
Statistically using Duncan's New Multiple Range Test. -
Duncan's Test compares all possible pairs of means to deter-
Mine whether the differences are significant.

The six truss plates used for this evaluation were all
impaled in kiln-dried western hemlock (tsuga Heterophylla).

a. 3-11/16" x 4-1/2" - 2 specimens

b. 3-11/16" x 6-3/4" 5 specimens

c. 2-7/8" x 9"

5 specimens

d. 5-5/16" x 4-1/2" l 5 specimens
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e. 5-5/16" x 6-3/4" - 3 specimens

f. 65-5/16" x 6-3/4" 1-a specimens (perp. to crack)
The three 5-5/16" x 6-3/4" plates in group e were applied
parallel to the crack, rather than p‘arallel to the bottom
chord (the usual position). They were applied off-center,
and had only four rows of teeth (about 1.84 inches) instead
of six rows (about 5.31"/2 = 2.65") as normally required.
The contact area calculations were based on actual area,
1.84" x 6.75", rather than the expected area. This group,
then, had actual contact area about equal to that of the
3-11/16" x 6-3/4" pl.ates in group b.

The statistical comparison of these 8'-0" specimens,
done in part on Michigan State University's CDC 3600 Computer
using the AES Stat Series, Description 13, was performed
using the cards and daté given in Table 8. The output for
€ach of four levels of deflection (0.015'", 0.040'", 0.080",
0.150") and ultimate load is given in Table 9 along with

the Duncan Table of Mean Differences for each level.

Inijitial Comparison of 8'-0" vs. 24'-0" Test Specimens

The load-deflection data for the 8'-0" and 24'-0"
Matched specimens are given in Tables 33 through 38. The
Teésults of repetitive tests (two in each cell) were analyzed
With the M.S.U. CDC 3600 Computer using AES Stat Description
14

> Analysis of Variance with Equal Frequency in Each Cell,

In  two separate preliminary analyses as follows:
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a. 8'-0" vs. 24'-0" specimens - See Table 6, next page.

b. 8'-0" small jig tests vs. 8'-0" Riehle tests - See
Table 7, page 98.

These preliminary analyses indicated that the following
factors had a significant effect on strength (stress level):

a. Species of lumber - Douglas fir was stronger than
white fir.

b. Size of heel plate - The 3'"x5" plates were strongest,
3"x8'" next, and 5"x5" weakest, in terms of contact
area stress.

c. Length of test specimen - The 8'-0" specimens were
significantly stronger than the 24'-0" trusses,
all other factors being equal.

d. Species and plate size had a significant inter-
action.

e. Species and deflection level had a significant
interaction.

f. Plate size and deflection level had a significant
interaction.

It was also found that the repetitions (whether the
Sample was No. 1 or No. 2 of a matched pair) were not signif-
icant in either preliminary analysis. The level of deflec-
tion had a highly significant effect on contact area stress,
@S would certainly be expected. The location of the test jig
Used, whether the small 8'-0" hand hydraulic jig used at home,
Or the Riehle mechanical testing machine at M.S.U., had no

significant effect on results.
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Final Statistical Comparison of Matched 8' and 24' Specimens

A final statistical analysis was prepared, after the
preliminary results were available as a guide to the inter-
action effects, combining all the specimens, plus the extras
that had been deleted earlier from the initial comparisons
t o make all the cells equal. This final statistical analysis
used the M.S.U. AES Stat Series Description 18, Analysis of
Covariance and Analysis of Variance with Unequal Frequencies
Permitted in the Cells (Least Squares Routine).

This LS routine permitted the inclusion of moisture
content and specifié gravity as covariants along with the
Category variables of species, length of test specimen,
Plate size, and deflection level. It required the creation
of twenty "indicator variables'" as described in Description
18 for all these categories and the two-way inter-actions
mentioned preQiously. The transformation instructions for
the creation of those indicator variables are given near the
be ginning of Table 17 followed by the data cards. Two addi-
tional covariants were created, (a) the square of the mois-
ture content and (b) the square of the specific gravity, as
Vflriables nos. 29 and 30, with the transformation sub-deck.

The computer output from this analysis is reprinted,
after slight abridgement to reduce unnecessary material, as

Table 18. Statistics on Transformed Variable.

Table 19. Analysis of Variance for Over-All Regression.

Table 20. Simple Correlation Coefficients.

Table 21. Measured Stress vs. Predicted Stress.



CHAPTER V
DISCUSSION OF RESULTS

General

This section presents load-deflection curves of each
set of plates evaluated experimentally to permit quick,
convenient visual comparison of the data. These load-deflec-
tion curves are grouped according. to their purposé, and |
include a small drawing of the plate size, orientation, and
other pertinent data. These load-deflection curves can be
c&:mpafed in terms of top chord axial force (Graph A for each
figure), contact area stress in 1lbs. per sq. in. (Graph B for
each figure), or shear on the joint in 1lbs. perllineal inch
(Graph C for each figure).

The statistical analysis of the experimental results i$
Presented in more detail in this chapter for each comparison
Studied. The raw data input, the computer statistical output,
Other comparison calculations, and a discussion of the sig-
Nifjcance of the findings is included.

A prediction equation for the contact area stress is
I”reéented, along with a table comparing the predicted contact
Stress with the "experimentally measured contact stress.
Fi-nally, the results of the theoreticalland experimental

ANnajlyses are compared.

100
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Initial Study of Effect of Size, Shape, and Orientation
on Contact Area Strength

Description

Six different types of heel joints, using ZO_gé. truss
plates manufactured by Troy Steel Corporation impaled in
western hemlock were compared. The plate sizes, orientation,
and load-deflection curves are shown in Figures 43 through

47. The raw data for these plates is in the Appendix, Tables

27 through 32.

Statistical Comparison

This data was prepared as the computer input given in
Table 8, for comparison of the contact area stress af 0.015",
O0.040", 0.080", 0.150", and ultimate load. The results,
irlcluding Duncan's Multiple Range Comparison of Mean

Di fferences, are given in Table 9 (a) through (e).

Analysis of Results
An analysis of Tables 9 (a) through (e) yields the
following:
a. From Table 9(a), for 0.015" deflection, there are
no significant differences between the plates
tested. This is reassuring since truss plate design
values are based on strength at 0.015" deflection,
as well as on ultimate. Any plate size, shape, and
orientation can be used at the same relative

efficiency for this low level of load.
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From Table 9(b), both 2-7/8"x9" and 3-11/16"x6-3/4"
heel plates are significantly stronger than 5-5/16"x
6-3/4" plates applied perpendicular to the top
chord, at 0.040" deflection.
From Table 9(c), 2-7/8"x9", 3-11/16"x6-3/4",
5-5/16"x6-3/4" (parallel.to the crack), and 5-5/16"x
4-1/2" plates perpendicular to the bottom chord
are all highly significantly (at 0.01 level)
stronger than the weakest ones, 5-5/16"x6-3/4"
plates applied perpendicular to the crack. It might
be noted that these range from 55% to 88% stronger
than the weakest ones.
From Table 9(d), at 0.150" deflection, the same
results as in c above, plus the fact that both
2-7/8"x9" and 3-11/16"x6-3/4" plates are signifi-
cantly stronger than the 3-11/16"x4-1/2" plates.
From Table 9(e), at ultimate load, all plates were
significantly stronger than the 5-5/16"x6-3/4"
applied perpendicular to the crack. Also, the
2-7/8"x9" and'3-li/16"x6-$/4" were the strongest,
and were significantly better than all the others.
(The 5-5/16"x6-3/4" plates applied parallel to the
top chord were not positioned uniformly over the
two members, which made their results, based on the

lesser contact area, appear better than normal.)
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110

*S92UdIAFFTP IUBDTITUSTS ON 00°99 14 wb/€-9 X ,,9T1/S-S ‘9
S°¢ 1sd 0S5°69 Z wl/I-v X ,9T/T1-¢ *q
ANA L°¢T 1sd 0z°¢8 S wb X u8/L-2 i 7
v ¢z 6°61 Z°9 1sd 0v°68 S H we/I-v X ,91/S-S "¢
0°SZ S°1¢ 8L 9°T 1sd 00°16 S wb/€-9 X ,9T/T1I-¢ °Z
L 67 2°92 S ¢*9 LY 1sd £9°S6 ¢ wb/€-9 x ,,9T/S-S T
9=d S=d v=d ¢=d ¢=d uespy *boaaxy 9Z1S Juey
S9JUQIS9FFTI(J UBSK JO 9Iqe]
IOV ¥eE gllddqqqqq«qjq]g.mu T 0c0ul0 <Uc¢ 7/5-0 X ..01/5-%
008000°06 9LYSTLS 980000°22SLT (99999 LT~ 00000000°99 » 060200 °P9¢ wh/E-9 X :oﬁ\m S
gjﬂq. [} 900000 %1% 000000 o
0006000°ULYL T0SHIZ Y 900000°GL08Y £eeeee L 00000000°T6 S VoU0N"uGY :e\m 9 X :eg\ﬁﬁ <
L LLL A 3 5 AN 4 24 'L A N L L1 LM Y4 2 3 ¥ 3 3 Y o L L L VLT LA 1] 4 000v00 Lby ~ . Z2/1-% X .91/5-S
000000°2090 (31334 M1} 9800p0°HT0LY L99999°0= 00000002°¢% 3 000000°YTy w6 X uB/L-2
A A¥0931vD
1144 {3941 [ 2NN 2143 A SRR LL L LM Z 113} Z99999%9°¢%% v 060900 s0ue TTIva3aA0)
SNVIx JHi wbud §1ua|llwmj~ NV3IR NVIW LELE] "D
SNOILVIASD QYVANYLS

aduvnns 30 kns

T9AST UOTIDATFAQ ,STO'0 3IE
$9z1g 93e[d XIS Jo uostxiedwo) a8uey oydr3inw s,uedung (e)e 919elL



111

o T

*TOAST S0°0 3 9OUBDTFTUSTIS [EBOTISTIBIS SOI0Ud(J

1sd §.°80T v T .#/€-9 X ,,9T/5-S ‘9

SZ L2 1sd 0°9¢T Z wZ/T-% X 9T/T1-€ °S
1 A 0°L2 1sd 0°¢91 ¢ wb/€-9 X ,91/S-S iR
T°8S 8°0¢ 8°¢ 1sd §°9971 S H wZ/1-v X ,91/S-S ‘¢
¥£°99 0°6¢ 0°21 Z°8 1sd 0°S.T S w6 X ,8/L-2 *Z
xV° 9. ' 6V YA A4 V°8I1 201 1sd 7°S81 S wb/€-9 X ,9T/11-¢ ‘1
9=d S=d v=d ¢=d Z=d UBIN *baxyg 9Z1S yuey
S9OUd19FJI( UBSN JFO 9Iqe],
USTFO0 9282 L2 74 15 M43 LLLL LM 3344 'LLE T4 3 4 DU0G0000° ¢9Y T 0c0u0U 68¥ /59 x :oa\\\1
0000s.°vs 200242°y 090000°398Lh 200548°0¢5= 000000S2°20°T » 000000 9Ly T
qgjqﬂj% v ] T ? 0v0ub0 cle ..-<x..£:n
66666L°0U166 00594L°6y 9060000°9G$T0} 00645°62 00000002°G8T [ V60U00°v26
R4 I 1 S 7130 SO 141125 IO I A 0
A X el
&Wﬂﬁﬁ?lﬁ
L1 FIMITEL] \TITA M) [LLLL LA £1T14] LLL L EA M ve T LI T (B RITELVM
SNVIw BNL wWlud NOTIVIA3G SIYVIES JU WhS ~~  EINSWIUINT KV3IW NVIA 5383 AAS

SNOILVIA3O QuYUNYLS
d34vn0dS 40 kNS

T9AS3T UOTIDATISA .,0%0°0 3®
S9Z1S 33eld XIS jo uostaedwo) a3uey S7dI3Tn s,uedung

"(q) 6 °1qel



R - L5 S & 0 . ¥ 8§ " FN T 4 "7 7 =7 =2F2F

’ « -7 7 0 4T




112

*19A3T T0°0 3® 95uUedTITUSTS TEDTIISTIBIS SII0UD([ ¢
*I9A3T §0°0 3B 9DOUBDTFTUSTS TEOTISTIBIS SB3I0U(Q
\

1sd §°9¢T b T .v/€-9 X ,91/5-S ‘9

0" T¥ 1sd §° /LT z WZ/1-% X ,9T/T1-€ 'S

¥xS°SL S ¥s Isd 0°Z12 S T wz/1-% X ,9T/S-6 ¥

#x6°80T 6°L9 AKX 1sd ¢ 5427 S w6 X u8/L-1 ‘¢

xS VIT  S°SL  0°6% 9§ 1sd 0°1S2 3 ub/€-9 X ,91/S-S "z

¥xL 61T  xL'8L vy 80T z's 1sd 2°957 S Wb/€-9 X ,,9T/11-¢ T
9=d 5=d y=d ¢=d Z=d ueap *baiyg CEASY yuey

S9OUSI3FITI(J UBSK JO 9[qeL

LLLLILAL) 142432 TUOVEV EEUEHT TOOTTH IT
00n000°62 92160%°¢C 900080°8<G¥YL £ECLU0 IO~ 00000005°9€T DHO0VOO0°YPS

I3 ’ - Q 11
£00000°960%6 £9L8CL° 0 960000°689LS8 4999190 00900002°9s2 3 060000 °48¢T Wb/€-9 X ,9T/1T-¢€
TIPSO 0CEY (124 {1 M43 UUOUPU UPYILe  SELrek & vgOgoOoOUese & OCUUOUU W90T ¥ .Z/1-¢ X .91/S-S
600002°19¢€6 LY99L0° QY peO0PO°L9¥OTR (999%0°L2 0090000¥°GH2 [ 000000°c2¢eT ﬁm x 1mnn.n
122444 M 12174 1173 24 0 1 3L LLL L LM L1 7414 3 ELT
SNVIR BWI wOud  NOUZVIASd  S34V0US 30 WOS  INJWJUONT NVawW NVIN ECK] Tik]

SNOlILvIA30 GYYANYLS
@3¥Vnos 40 WnS

T9AST UOT3IOST¥aQ ,080°0 3®
S9zTS 93BId XIS Jo uostiedwo) o3uey S7drITNW S,uedung °(5)e 9TqBL



113

*I9AS9T T0°0 3® 9OUBDTJTUSTS T[BOTISTIBIS SII0UI( 4y
*19A9T S0°0 3® 9oUBOTITUSTS [BOTISTIBIS SII0Ud(] 4

1sd 0°SST ) T w#/€-9 X ,,9F/S-S ‘9

0°SS 1sd 0°802 4 wl/T-% X LOT/T1-€ *S
v¥8° V6 g6 - tsdgupz S T .z/T-v X .9T/S-S ‘¥
30" YIT 0°6S 2°61 1sd 0,97 ¢ wb/€-9 X ,,91/S-S ‘e
»¥8°¢SPT ¥8°88 0°6¢v 8°62 1sd 8°962 S wb/€-9 X ,9T/11-¢€ A
v0°¢ST »0°86 Z°8S 0°6¢ Z°6 1sd 0°90¢ S wb X ,8/L-2 1
9=d S=d v=d ¢=d Z=d ‘:moz *baxg 9Z1S§ Jyuey
SOOUdIaIFT(Q UBSN FJO 9Iqel
L LM AL L emvﬁjg««.j T 000000 10w w9/5-9 X .91/5-S
000900°932 900§0°25056 £99919°00%" 00900000°SST v eeeeeg.ua“ -9 X -
ng.."...uue. 985039 ° 086 .uee 0°939040 LEEEOE LY 00000000°962 $ "”u“““..-.“ -9 X -5
{3 . 0 » tC0o00 ofe wl/T-9 X ,91/S-S
000800°9638 2VL862° 92 980090 ¥.STLR SELEUE° 26 . 00Q00000°90¢ S 060000°ufsT L6 X (VI
I M O 123 IS A 2 L L1 LM ZA 33 ) Z09090T¥°Lee v To0000°Cy 09 vE3A0)
SNVaW ORI WO§d  NOIIVIAIT  SWUVOOS J0 W05 IN3KIUONT AVIW NVIN t3u3 W nS
SNOL4AVIA3D GuVaNYLS

a3yvnos 40 Wns

T9A9T UOT3II9T33Q ,,0ST°0 3® _
$azTg @3BTd XIS JO uostaiedwo) o8uey a7dTITnW s,uedunq *(p)g I[qeL



114

*I9AST T0°'0 3® 95UEDTIJFTUSTS [BOTISTIBIS SOI0Ud(] 4y
*I9A9T S0°(Q 3B 9OUBDIJTUSTS [BOTISTIBIS SII0UI(Q

1sd 52291 ¥ T .p/€-9 X ,9T/S-S °9
«€°95 1sd 0'61Z 7  .Z/TI-¥ X ,9T/1I1-¢ 'S
#¥6°L0T 9°1s tsdo'ozz s T .z/t-v x .91/5-§ °
¥¥9°L2T #S°TL L°61 tsd ¢:06Z ¢  ub/S-9 X .,9T/S-S -
#¥59°99T  xxP OTT %8°8S 1°65s 1sd p°6Z€ S  u¥/S-9 X 9T/TI-€ °C
¥¥SV ZLT  ¥¥Z°9TT  4¥S°19 6" v 8°S 1sd z°5¢€ S w6 X u8/L-7 1
9=d §=d p=d €=d z=d ueop "baxyg az1g Yuey

S9OUSIdFIT(Q UBSN JO 9a[qe]

LA OAMB T LIk 14 M 13 T M LT [ {33 M [Y4
00005Z°29¢ $3¢966°0% v00000°CTIE9-S C0005L°CTT 000006,°29T

0e0v00 tZe ...\w 9 & w9175-%
2:...: .no T X ,91/S- m

[
»
[ 2 %
L6666T°C1T LT3L90° Nr 000000°55 9999 00006°2% 00900000 °62¢8 $ 2::.3.:3 wh/S- o x ..3\2 [y
E1LLIXALI1 T (74N ! - :
£000090° 99985 ooo.ac.on 0U0000°0945£95 Ou.. ‘°08 00g00002°6Ee $ 000u00°'9L9T x -
¥0951y
1 1120 )10 SRR 17 74 hd | Jmm——1 111 1 0d 11147 ) A TOFSITUS 922 ¥ GIVOUTTIESY TTY783A0)
SNYIn UR1 w0ud  NOTLIVIA3d  S3av0US JU0 WOS  ANJWIUONT NVaW NVIR 9344 [}
SNOI4VIA3D0 GUVANYLS

a3yvnos 40 WNS

peoT 93BUTIIIA 3B
s9z1S 93eTd XIS Fo uostiedwo) aBuey S7dIITNW s,uedunqg °(a)g 9T9qel



Summary

115

The over-all conclusions from this series of tests and

statistical comparisons of six plate sizes and orientations

were that:

a.

b.

At 0.015" deflection, any plate size may be used.
At high levels of deflection (and high loads),
plates ranging in width from 2-3/4" to about 4" and
in length from two to three times their width are
the most efficient, being about twice as strong as
the nearly square plates applied in the weakest
possible difection.

The comparison of load-deflection curves is-shown
in Figure 47 for the average values of these six

plate sizes, shapes, and orientations.

-Comparison of Matched Specimens

Description

Fifty-six specimens were tested to evaluate the effect

of each of the following factors on contact area stress:

a.
b.

C'

Size of truss plate (3"x5", 3"x8", or 5"x5").
Length of test specimens (8'-0" or 24'-0").
Species of lumber (Douglas fir or white fir).
Level of deflection (0.015", 0.040", 0.080", 0.150").
Moisture content.

Specific gravity.

Location of 8'-0" tests (at home on small jig, or at

M.S.U. on Forestry Dept.'s Riehle Testing Machine).
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The plate size, specimen length, species, load-deflec-
tion curve, and other pertinent data for each group of
specimens is given in Figures 48 through 59. The raw data

is given in the Appendix, in Tables 33 through 46.

Comparison of 8'-0" vs. 24'-0" Specimen Length

The results of an initial comparison of 24 matched
specimens was reported in "Test Results' of the chapter on
"Experimental Analysis.'" Load-deflection curves comparing
8'-0" specimens with full-scale 24'-0" trusses are given in
Figures 48 through 53.

The load-deflection curves for the 24'-0" trusses are
shown with solid lines, while the 8'-0'" specimens and curves
are shown dashed. The 8'-0" specimens had higher values
than the 24'-0" trusses for all cases except the 3"x5'" plates
in Douglas fir (Figure 48). However, by taking the average
ultimate contact stress from the data Tables 33 through 38

in the Appendix, the comparison in Table 10 can be made:

Table 10. 8'-0" vs. 24'-0" Specimens at Ultimate Load.

Description Average Ultimate Contact Stress]
Plate 8'/24!
Size Species g8'-o" 24'-0" Ratio
3'"x5" D. fir 301 322 93%%
g"xs" " " 317 422 75

T'x5" " " 287 290 99
3TTX5T Wh. fir 232 233 100
g"x8" noon 225 193 116%
3" x5 nooon 220 202 109 |

6)553 3

8' average = 99% of 24'
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This means the 8'-0" specihen average was almost identical
to the 24'-0" average at ultimate load. Ultimate load data
was not included in the statistical analysis.
A similar comparison at the other loads is given in
Table 11.

Table 11. 8'-0" vs. 24'-0" Specimens at Four
Deflection Levels.

Deflection Comparison
0.015" 8'-0" specimen is 8%% stronger than 24'-0"
0'040" 8!_0" 1] 1" 21 % " " 24'_0"
0‘080" 8'_0" 1" 1" 9 % ”n (1) 24!-0"
0.150" gr-o" " " 4 % " " 24'-0"
Ultimate 8'-0" " " 1 % weaker " 24'-0"

Over-all 8'-o" sgecimen is 8 §% stronger than.24'-0"

Comparison of Small 8'-0'" Jig Results with
Riehle Machine Results

As a result of concern over the data from the 8'-0"
specimens tested on the small hand operated hydraulic test
jig, an additional set of 24 specimens 8'-0" long was built,

listed in Table 12.

Table 12. Riehle Machine 8'-0" Test Specimens

Group Quan. Heel Plate Species

3"xs" D. fir
" " " 1"
gllig” 1] "
35" Wh. fir
3llx8" 11] "
Sllell " "

[« W 003 (V0 SN
P s

Two samples, the first two tested, were selected from
€each group and matched in a Preliminary Analysis of Variance

to compare the effect of test location. The results are
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SHEAR ON JOINT - LBS PER SQ IN.OF AREA
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Figure 48. Load-Deflection Curves for 8' vs. 24' -
3"x5" - Douglas Fir.



SHEAR ON JOINT - TOTAL LOAD IN POUNDS

SHEAR ON JOINT - LBS PER SQ. IN.OF AREA

it

i l/ QY
l" fr
Vo o) 'l
3800 ! ' :
3900 ';
1 "‘
2p00|—+
1,800 !
[}
1000}
800

mmswmwnﬁ?ﬁﬂ

HEEL JOINT DEFLECTION

119

tAa)

]

P =
, e
I, A\; -‘*’-
/) A
Il s
/ ,"
HU

4

)
!
U

4

00 02 o4 08 08 JO J2 J4 J6 8 20

HEEL JOINT DEFLECTION
(8)

" ]
PLATE SIZE: 3 X 8
Con:act area, each member = 24.0 sq. in.
Shear line length,lineal inches of plate=845"
Species of lumber =Douglas Fir
Grade of lumber = Gonstruction

8-0' Specimen is shown dashed
to correspond with its data
which is dashed in the

By

I 24- !
TEST NO.403 41 TEST NO.463 47
S Lt
% 311
\ e A
z y > 25
’
« ’/’ - i-‘-LF'
&’ T 17
1§
4 + ,,'
@ ’ 4
! 4
) 5 ™ =
)
- '
3 "
o ,’
S M)
< "l !
© 2oy —
% 'll l !
w100 -
b i
T H

DO 02 N4 D6 DB O J2 M 46 8 20

HEEL JOINT DEFLECTION
(c)

Figure 49. Load-Deflection Curves for 8' vs. 24' -
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Figure 53. Load Deflection Curves for 8' vs. 24' -
5"x5" - White Fir.



shown in Table 7 which showed there was no significant effect

due to location.
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The tests performed on the small 8'-0"

hand-operated jig were just as valid, and essentially the

same, as the tests performed on the Riehle testing machine.

Comparison of Douglas Fir vs. White Fir

The same specimens were compared for the difference

in species, and the load-deflection curves are shown in

Figures 54 through 59. The Douglas fir trusse$ are shown

with solid lines, while the white fir specimen curves are

shown dashed.

than the white fir. in all cases.

The Douglas fir specimens had higher values

By making the comparison

of average ultimate contact stress from the data Tables 33

through 38 in the Appendix, the species comparison in Table

13 can be made:

Table 13. White Fir vs. Douglas Fir at
Ultimate Load.

Description Average Ultimate Contact Stress
'Plate White/Doug.
Size Length White Fir Doug. Fir Ratio
3"x5" 8' 232 301 77 %
3"x8" 8' 225 317 71
S"x5" 8' 220 287 76%
3'"x5" 24" 233 322 72%
31'x8™ 24" 193 422 45%
5'"xS" 24' 202 290 69%

6)412 %

White fir averaged 69% of the ultimate value of Douglas
fir.lr’==—
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A similar comparison of the other loads is given in

White Fir vs. Douglas Fir at
Four Deflection Levels.

Comparison

Table 14.
Table 14.

Deflection
0.015"

0.040"

0.080"

0.150"

Ultimate
Over-all

White fir averages
11 ”n "

"
"
"

of Dou

glas fir
1" "

Comparison of 3"x5", 3'"x8'", and 5'"x5" Plates

White fir averages 68% of Douglas fir

Using the same data, the average ultimate loads, based

on plate sizes are shown in Table 15.

Table 15.

3'"x5", 3"x8", and 5“x5" Plates
Compared at Ultimate Loaa.

Averagp Ultimate Contact Stress
Length Specie 3nxs" 3"x8" 5"x5"
8'-0" Doug. fir 301 317 287
8'-0" White fir 232 225 220
24'-0" Doug. fir 322 422 290
24'-0" White fir 233 193 202

i

4)1157

4) 999

The 3"x5'" plates fail at 94% of the ultimate stress of

3"x8" .

The 5'"x5'" plates fail at 86%% of the ultimate stress of

3"x8" .

in Table . 16.

Similar comparisons were made and the results given
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Table 16. 3"x5", 3"x8'", and 5"x5'" Plates
Compared at Four Deflection Levels.

Average Contact Stress
x5 3")1’8". 5"x5"
psi % psi % psi %
0.015" 82 124 66 100 67 101
0.040" 163 110 148 100 130 88
0.080" 223 104 215 100 187 87
0.150" 256 100 257 100 229 89
Ultimate 272 94 289 100 250 86%
Ave. % of 3"x8" value = 106% . 100% | 90%

Final (4-way) Comparison, including Moisture
Content and Specific Gravity

Description

A final comparison of contact area stress, involving all
fifty-six specimens, was made on a lest squares statistical
routine on the M.S.U. CDC 3600 Computer using A.E.S. Stat
Description 18, "Analysis of Covariance and Analysis of
Variance with Unequal Frequencies Permitted in the Cells."
This tomparison was more complete than the preliminary com-
parison of 8'-0" vs. 241 -0" (Table 6), or the comparison of
the 8'-0" jig vs. the Riehle testing machine (Téble 7), since
it included all the specimens, plus evaluating the effect of
moisture content and specific gravity. It was not necessary
to delete Specimens just to keep all cells equal. It was
possiblé to include moisture content and specific gravity as
covariants, and even to include the square of moisture

content and specific gravity.
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Data

The load-deflection data from Tables 33 through 46 in
the Appendix was used, for 0.015", 0.040", 0.080", and 0.150"
deflection. The actual data input for the computer program
is given in Table 17. A part of that program is the'trans-
formation sub-deck described further under the sections on

"Creation of Indicator Variables."

Results ‘

The computer output from this program, after slight
abridgement, is included in Tébles 18, 19, 20, 21, and 22.
It should be noted. in Table 19, that for the 224 observations,
R? = .9104, which means that this set of variables accounted
for 91% of thé variance, a relatively high pércentage for

this type of research.

Summary of Final Analysis of Variance Comparison

By construction of an analysis of variance table from
the data output, Table 22, the following conclusions could
be drawn:

a. Species had a highly significant effect on strength
witﬁ Douglas fir being about 59% stronger than
white fir. This is a crucial factor since equiva-
lent grades of the two species are often used inter-
changgably. That is a dangerous practice unless
appropriately reduced tooth values (i.e., larger

plates) are used.
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Table 17. Data Input for Final Analysis of Variance.

CAEMANN T 27 R7 2112 6IDARYAL
CLINDAPITINE TOANMC Y (W) 2a A7 21120 1GEDNACEAN
CAMMON/AMND G MT o [C o [ND . D < NIUENC IAM X (D2AN)

NALYRLF POECISIAN vy A0 A7 21 127AIDAARCAY
IF(X(2)eFNeleIX(O)=1, an  £7 DPL1PGIPAGEAN
IF(X(2)eFNePe)X(O)==1, Al Q@A 1121 TIP27M7a
IF(X(A)eFQele)X(10)=1,4 A2 RA 1)1 12216022A74
TEAIX( ) eFNePe )X 1N Y)==1, A AA 712217/ A024 74
X(12)=X(11)=2en=¥(a) YL R IREYE LI E L VE
TE (X1 1) eNMFa=14)Y(12)=14=%(11) A AA A112) OADAIRAN
X(1)=Y(1a)=X(1S)="gn AR a0 A1 1221AADPADEAN
IE(Y(S)oFNeaIX(1)=X(14)=X(1K)=w] N a7 RN .a)123137annpEa
wv=X(&) A® RO Al 12448 DNDExN
IFIX(S)el. TeaIX (124 )= e" a0  fa 12121 TP1627)
XO16) =X *X11) sn 04 1212711813537
XE17)=X(0) ¥t 12) =1  ns 121p7R01787)

X(1R)Y=X(O)#X (1) s fa 121242771597

X109y =X(0)¥x(1a) =2 A5 2212 711a70a
X(2N)=X(O) %X (1<) ) =a O 221221 NE147704
Xt21y=x11)8xX17) se 08 2517717014704
X(’?):Xlll)lx(!d) =A (914 ﬁ"pnoﬁ“aqu‘
(22X 11)#X(15) =7 a& 912) asjenanc
X(2a)=X(12)#X(1) =a ng 1219212 1€N A=
X(2R)=X(12)#X(14a) A 0/ 21PNk ENEE
X(2A)=X(1P2)#X(15) AN 0O/ D1240R4 150G
X(P7)sX(10)#X(11) A1 07 42121 6015a3=)
X(28)=X(10)#X(12) A2 Q7 421221101848
X(2Q)=X(7)#X(7) A1 07 a21p1AN KRG
X(3IN)=X(R)#X(A) A4 O7 A2124P2R 1848
PETURN AR ON 11131 7A10A€AN

FND AA QN 111732147]17RRAG
TONUITINF L2 A7 ON 1]13710010A88n0
TDIMIG 1eINe2 1NN g2 AQ ON 1]17423n)10REA0
NeRy224 67 Q1 21171 RA1NKAR?
SSCPIX(A)eaeX(AN)NX(K) ) TRANS] «PFC® TA 91 211321621064A2
FODMAT(AXeSF 1 ¢NeFTeNeFTe] oFe3) 71 01 21177214 10K8AD
1 98 1111110127R4AS 72 A1 211742484 1064K2

2 OA 111121R727Rans 73 &2 131114180500

U QR 1111022 7RARS 74 a2 191701000
4 98 11114 nSP7RARS 7S Q2 1A IR IANEAN
S Q9 2111) 9R”RPANARS 76 Q2 A1 133422A1A05NnAN
A 09 2111217pRNARE 77 03 a113) 072134an
7 00 2111720 2ANARE 7R Q3 A113216A21 344N

] Q9 2111427A2604R7 760 02 ar117pysp) M40

Q@ 1NN 3111] RaPO140a an 97 alt1a2ann1l3aan
1" 17N 1112160201404 A1 176 12131 In14a7?
11 17" 211 17°2R29Q 14048 a? 17/ 121121201477

AR 176 1217171AN 14717
Q4 10A 121342221477
RE 1N7 221731 S7143108
15 1101 411132320757 R6 117 2213211014700
16 171 4111420R3Q0787> a7 1A7 2217717714370R
17 102 12111 OR1694aaa } AR 117 22113421714%7177
1A 172 12112180169%4aa ‘ A0 1NA 1213] 6R147RA
1O 172 121121801K/9a44 AN 17"B P 1321251473K4
28 172 121142 1N 160N Q] 1NR I2173M1A2147Ra
21 1/ 22111 7P107InA 02 10Q 121734%2414 73R4
22 177 22112137103 2an 072 1"Q a21] AN INANN
54 1h2 2311717710760 Q4 1AO AP 212K 1RAAA
24 177 2211422110370 08 170 4213717712 ”4AAA
28 1ma 22111 TA1127a5 A/ 1170 a217Aa272712RAAN

12 17" 211142002014a04
17 101 a11111003977)
14 101 4111219510757

26 174 2112134113236 Q7 R?2 11211 RN1&NaA=4
2T 104 211310513276 aa AP 1121216N 1844k
PR 104 3211422013246 an  AR2 112172a1170aca
20 1N% 42111 KAIKNIKO 17N A2 1121420016068 4
AN 108 AP21172121160R9 1M A3 2121111017310
1) 1= 421121116078 Q 172 A3 2121214017720
2 (1N& ar1142218N 180 1~ A3 2121707173510
27 ag 11121 AAD22ARAT 17"a R 212142AN177x10
24 A 111222n2p2A%aY 1°& RAAa 1211 RRI1APANN
A& _R& 11 1.2NAPPARSAT 1A K& NMN2121711RPA0O

A6 A6 1112AR&PPAREAT 177 R4 1217261 1R24N0
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Table 17. (cont'd.)

_1nA R4 3121471A182400 P5R 4" 11124764 |ARES]
tne AR 41211 RI160470 220 a4l 21121 7V 1Rack?
110 RS A41212170160476 20 41 2112210R1R4S67
111 RS a1217242160479 211. 4] 21123P4R1RQSRT?
1127 RS A4121471R160479 P22 41 211242721Ra%AK7
113 SS9 12211 60202347 241 S4 12121 €2162767
114 SO0 1221217A02N207 242 Sa 1212722127162 R7
118 =0 122171 7%2n27247 247 g4 172127101 1/AP2RY
116 &9 1221821520247 Paa =4 1212472&1627K7
117 &° 22211 742147 AN 248 &7 22121 ANAGANS
11R A" 22p212110214°AN0 246 & 221231 7K1AKANE
110 67 2221316121873RN 247 &7 »21271aP1RKAE
120 AL 222142NK2147R0 P48 &3 221242101R6ANS
1270 46 11221 7219460% 257 58 11131 70206514
130 a6 112221K194ANS 258 58 11132162206514
11 a6 11222451046Nn5 ARQ &A 1112282206514
112 45K 117224716 1046N0K 260 S8 1113405206514
17 47 21221 7R1674SR 261 S7 21171 =njoTana
174 a7 212721417458 262 &7 211321831074a04

178 a7 21223272081674%A P67 &7 211372221074Ra

178 A&7 2122472816 7T4aER 264 &7 2111a2%4a)107aR4
148 &P 12221 KNP0 277 ‘&" 12173)] ES1R”27INN
146 A2 1222211420270 274 S5 1213721011827AN
147 62 1222716320273 0% A7 &8 121377 1A2A0
148 62 12224200202395 ’ 276 S5 1213a4173182%9R0
149 61 22221 37196406 277 S6 22131 RA17T0ROP
15N 61 22222 RI136406 27R &6 22132173R170702
1=1 61 2222717201964NA 270 &6 22137 7717N202
182 61 222724158719640¢ 2RO &6 272134217170702
161 49 11231 75174%a¢ 293 38 11111 63202507
162 49 11237214%174%aR P04 3R 1111218820250
163 49 11233213174%5a8 - PO 537 1111721820260 7
164 49 1127342K7174%4R 206 1A 1111423220250
16% 4R 2123)1 772178518 207 120 21111 an175aa?
166 AR 2123214217AR & Po0R 19 21112164175447
167 48 21233211178515 299 139 211137248A175442
16R AR 212347801 7AK & N0 N9 21111473161 7Sa48>
181 63 22231. 40196405 A7) 44 11211102173487
1R2 63 22232 R7196478 N2 44 1121223617348
183 63 2723312616640% 1A 44 11213P0R1734R7
1R4 63 22234167196473% ana a4 11214°10173a87
185 ~ 64 32231 70196393 NS a5 2121112717211
1R6 64 3223211219603 T ang 48 P1212PPR1T7PS1}
187 64.32233157196302 a~T7  as 21217711728
1AR 64 3I2234102106307 37 48 212147181 72%11
193 78 11111120198489 X(AR)=PIX(7)e0eX(AIN) )DFC \RES

1904 TR 1111222410820
195 78 11112271198489
196 78 11114205]10R8489
197__79_.211111777215%27
108 79 2111226421581
199 . _79_21113278215533
2P0 79 2111472072215%77
2n1  80_3111]1 95233408
2n2 80 311121R7233408
2n3 80 _31113746223360A8
na AN 1 11427R273340R8
2ns  A1.4111114714258n02
216 A1 a11122%01a2%0>
277 A1 4111331114202
PAA Al a111477a142%N07
209 _51_121111131904)7 _
210 S1 121121464190417
211 . S1 12113169190417
212 S1 12114197190417
213 52 22111 90169402
214 =2 22112161169402
218 82 22113207169402
216 Wp 2211a7411694732
22% __an_11121 o0185%=]
226 40 11127243 1R%Sx]
227 4N 1117320 1A%Ka]

RZ(X(Q))IRLO*
QZ(X(10))IRL_O%*
RZ(X(11)¢X(12))IRLO%
RZ(X(13) eeeX(1S)IRLOS
RZIX(16) «X(17)IRLO*
RZ(X(1R) ee e X(2N))IRLOH
D7(X(P1)eeeX(26))PLO*
R7IX(27) «X(PR)IRL.O®
R7ZI(X(T7))IOLO*
RZ(X(A)IRNO*
RZIX( T X(R)IRLO*
END OF BUN
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The length of test specimen (whether 8'-0" or 24'-0"

long) also had a highly significant effect on
strength with the 8'-0" specimens generally about
15% better test values than the 24'-0" trusses in
the 0.015" to 0.150" range. Despite numerous re-
tests, calibration of gauges, and careful re-
evaluation of the test procedure, this difference
could not be explained. Strengths of 8' and 24'
specimens were essentiaily identical at ultimate
load. Ultimate load was not included in the statis-
tical analysis to premit study of interactions with
deflectioﬁ.

The heel plate size had a highly significant effect
on strength with the 3"x5" and 3"x8'" plates being
approximately 45% and 39% respectively, stronger
than the 5'"x5" (based on axial contact area stress,
pPsi).

Level of deflection had a highly significant effect
on stress level, as would certainly be expected.
Higher levels of deflection result from higher loads,
which certainly cause higher stresses.

Plate size interacts significantly with species.

The 3'"x8'" plates tested almost 90% better in Douglas
fir, whereas the 3"x5'" plates were 40% better and
the 5'"x5" plates only 25% better. This can be
explained by the theory fhat it takes a wider

"development width" in white fir to balance the
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buckling strength of the steel plate; i.e., a 5"
wide plate which almost always buckles in Douglas
fir will come closer to that same strength in white
fir where buckling distortion is not a problem, than
will 3" wide plates which never buckle in Douglas
fir.

Plate size interacts with deflection. See Table 23
for values. The 3"x5" plates performed signifi-
cantly better in the lower ranges, but the larger
plates did better at.the higher deflection levels.
Moisture content had a significant effect on
strength with the lower moisture content lumber
giving better heel plate test results, as would be
expected.

Specific gravity did not have a significant effect
on contact area strength, in the range included in

the study.

Stress Prediction Equation

The use of M.S.U. A.E.S. Stat Description 18, Analysis

of Covariance and Analysis of Variance with Unequal

Frequencies Permitted in the Cells (Least Squares Routine),

resulted in the computer developing a regression equation of

best fit to accommodate the data from all the 56 specimens

tested.
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Table 2].

- Measured Stress vs. Predicted Stress.
(224 Data Points)

Final (4-way) Comparisom

RESIDUALS

QTR

. 08 Yesx( 6 ESTIMATED Y Y = ESTIMATED Y
17 oa 1 1 101,00000000 88,91892031 12,08107969
2 _on 2 2 187,00000000 176,56%06897

2 oA 3 3 223,70000000 239,95038510 =16.95038540
a4 on 4 4 305,70000000 278,88726760 . 08,11273240
s 0n 1 L] 98,r0000000 88,03487169 296512834
g 0o 2 6 173,40000000 179,701682034 = _2,70182034
-+ oo 3 7 232,10000000 239,06633647 *7,06633647
A__ne 4 8 276,00000000 274,98944642 1,010

a 100 1 9 84,A0000000 91.,09824499 v?,09824499
1A _yAn 2 10 169,00000000 178,76549364 ©9,76%519365
11 189 3 11 23R8,00000000 242,12970978 v4,12970978
12 107 4 12 299,00000090 284,

17 1M 1 13 109,n0000000 134,4694595%2 «25,469459%2
18 101 2 14 185,00000000" 222,13640817 =37 f

1% 101 3 15 232,00000000 285,50092430 ~$%,50092430
16 17 4 16 296,00000000 324,37917394 *28,3794739%
17 112 1 17 93,n0000000 99,20268192 02,20288192
1R 172 2 148 - 150,00000000 149, i

12 11?2 3 19 189,70000000 168.60740309 039259601
21 372 4 20 210,70000000 3020778 -

21302 1 21 72,n0000000 74.76643042 02076643042
22 171 2 22 133,00000000 128,6

21 111 3 23 177,n00080000 168,33%543894 1%,66456105
24 103 4 24 224.00000000 204,8

= 1na 1T 25 76,n0000000 94,41348684 -$8,41348681
26 174 2 26 134,00000000 14 £4,30893089
22 100 3 27 195,n00000090 187.81800799 7.,18199201
A 1na 4 28 220,00000000 224,91268272 ; 273
20 105 1 29 6A,n0000000 82.,721175%1 $4,72117554
an 0= 2 30 121.00000000 136,61661929 *16,61661929
a1 1N% 3 31 113,n0000000 176.12569648 “§3.12569668
12 0= 4 32 223,7p000090 242.82037142 t0,179628%8
3386 1 33 66,00000000 90,40593336 “04,40%593336
14__RA 2 34 203,00000000 09,1666858 $,83331420
s A6 3 35 306,n0000000 278,09334408 38,90665592
6 A& 4 36 386,70000000 327.71%%090% $8,28449003
a7 A7 1 W 97,n0000000 90,47204144 0452795855

2

1a__ A7 38 196,00000000 19%.23279388 2,797gn§33
qo0___A7 39 303.,n0000000 2081.15945216 25484054784

3

a0 _R7? 4 40 363.n00060000 333.7816%743 29,21838287
a4y AR 1 4 73.,n0000000 90.9238902 «$Y192389023
42 _RA 2 42 160,00000000 189,68464267 “99,68464267
41 AR 3 a3 263,n0000000 279461130094 «$2,611300904
aa._ AR . 4 44 35n0,n0000000 328,23346594 22,76653408
ax " Aan 1 45 96,00000000 98.,02919697 ©2,02919698
a6__pa, 2 46 186,10000000 198.78994944 *$8,78994944
47 Ra I 47 278,n0000000 28271660768 *4,71660749
A8 RQ. 4 48 345,00 0.66122734
a0  na 1 49 72,n0000000 74491332691 ©2,91332694
sa .04 2 %0 118,n0000000 139,90257448 *23,90257448
=y Qa 3 s1 189,n0000000 1 0 1.8

&2 .94 4 82 237,nr0000000 2%52,35375122 *45435375123
s o= 1 53 71,n0000070 78,6628437% 3

sa__0=. 2 54 125%,10000000 138,65209134 «23,6520913%



143

Table 21. (cont'd.)

200.7233108%

= 05 3 55 172,00000000 -28,72331085%
S, o= 4 &6 231,10000000 251.,10326806 = =28,10326806
5 1 87 83,n0000000 57.98649930 2%5,01350070
=A aA 2 s8 163,170000000 122.97574686 40,02425314
8006 3§ 59 23A, 00000000 188,04696640 $0,95303360
&0.. 96 4 A0 264,10000000 23%,42692361 88,5730763%
61 97 1 61 60,n0000000 59,37547923 0,62452077
A2 07 2 62 118,10000000 124,36472680 v8,36472
63 07 3 63 180,00000000 186,43594634 06, 43594634
fa Q7 4 64 226,70000000 236,815903%54 -10,81%90388
55 20§ 6% 76,00000000 76,96205353 «0,9620%53%3 -
6620 2 46 143,100000090 156,971744 - 7174

&7 _an 3 67 199,n0000090 228,69972491 . *04,69972491
& on 4 o8 230,00000090 263,64556812 -33,64%54812
&8 o1 { &Y g4, nc00n0q0 74,20548589 9,71451411
70 o 2 20 162,n00p0090 1%4,295127223 2.20482226
1921 3 1 214,170000090 221.02315727 05,02315727
22 & 72 244,70000090 2

22 1 73 114,00000090 82,62646846 31,37353153
74 92 §V 74 17A,.np000000 1 4
7505 75 216,00000000 zzq.f%%%%ogﬁ -13.36413985
6. op 4 26 228,n0000090 269,30998306 ~  «~44,3099R306
27 3 1 77 93,00000000 67,16896448 25,811035%52
2203 2 78 166,00000000 142,19865583 $£8,80134447
3603 § 79 - - 21%,n0000000 213,92663586 1,07336414
an a3 4 80 240,00000000 253,87247908 «$3,87247908
a1 176 1 8l 70,00000090 78,03708749 «4,037007149
‘a5 _1N& 2 82 128,n0000090 122,27%27366 5,72472634
a3 176 3 83 189,00000000 16%,14781496 28,.85218504
Ra 106 4 84 223,00000000 202,85145041 21,148549%9
A= 107 1 85 57,00000000 87,67846496 «30,67846496
Rs N7 2 a6 110,n0000000 138,91665143 «23,91665143
A7 1n7 3 &) 173.,nc000000 178,7891%9273 Y, 78919273
AR 107 4 s _2317,n0080000 214.49282818 2,%0717182
ac 178 {89 66,n0000000 %7.5?565837 *${,82865887
an 1 nA 2 90 125,nc00n000 124.06684534 _0,93315469%
PYERLY 3 91 182,n0000000 166.93938664 15.06061336
A2 17a 4« 92 224,10000000 204.64302209 943569779
23120 { o3% 68,n0000000 90.91743824 -%5.51713§§%
aa 170 2 94 124,n0000000 137.15562472 ~11.,15562472
as 1no 3§ 9% 177,00000000 180.02816601 «$.02816602
ag 119 4 96 237,70000000 217.73180147 9,268198%3
a2 B2 { 97 — 83,nC00000N 113,95883684 «30,958683684
e Aap 2 98 169,70000090 199.5733197¢ -;3,573§;97;
ee A2 ¥ 9 241,n0000000 264,99030162 -25,9903016
An A2 4 100 298,00000090 303,92718412 v5,92718443
a8y § 104 11%,00000000 107.353006%3 4,36699326
Ap A3 2 102 149,00000090 19%,42178575 «46,42178575
a3 _Al 3 109 o * L1

na A7 4 104 269,00000000 297.6013%402 «28,6013%5402
P T 1% 8&, 1" I, ~17,4286

~n Ra 2 106 171,00000000 191,09382464 «26,09382464
az2__8a4 S 107 Zéi,nomb'ﬂ 254, 45834078 . Y%

An Ra 4 198 318,00000000 293,39522327 24,60477673
pa_as 1 109 63,n0000000 111,41952262 «28,41952262
11n_As 2 110 __170,10000040 199,08647127 -zo,oas4712g
i as 3 111 L KM ‘ N 87410 -20,4509

1?7 AS & 112 31R,70000000 301,38786991 t6,61213009
na_sg9 T 113 60,n0000000 64,21084801 v4,21084801
nHa so 2 114 100,060000"0 118,10629179 -$8,10629179
s a9 3§ 11% 17%,70000000 157,61536918 $17,384630A2
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‘Table 21. (cont'd.)

La o 4 196 215,°0000000 194,31004392 20,68995608
N7 e 1 117 740000010 69.58105617 4,418943A3
gia.an .9 1198 119,70000020  128,47649

e a3 11: 161,70000070 162.98557

120 A0 & 120 206,70000000 199,68025208 6431974791
170 a6 1 121 72.70n00040 63.77853090 R,22146910
10 a6 2122 134,00000000 162,53928333 -~ =26.53928333
171 a6 3 123 24580000 24K,46594161 146594161
122 a6 4124 316,10000000 301.08810658 $4,91189342
1A a7 1 175 77.70000070 73.78769764 3,21230236
1na_a7 2 126 148,00000030 172.54845008 =£4,54845008
1a= a7 3 127 233,70000000 258.47510836 =20.47510836
176 a7 4 3128 325,r0000000 311.09727333 13,90272667
1a= A2 1 129 53,70000090 18,46345244 34,53654756
1a6 6> 2 130 114,00000000 88.45270000 30,54730000
1a7 62 3 131 163,00000000 145,52391955 17,47608045
1aR_ A2 4 332 200,00000000 19890387675 4,09612325
1a0 A1 1 133 37,70000000 22.34638011 14,65361989
150612 134 83,00000000 87,33562767 v4,33562767
1=1 &1 3 135 130,70000000 149,40684721 «19,40684721
152 61 4 136 157,00000000 199.78680442 _*42,78680442
181 a0 1 137 75.,00000000 70,79456051 4,20543949
162 _ao__2 138 145,000000¢0 150,80425185  +5,80425185
187 an 3 139 213,A0C00000 217,53223189 53223189
1ha_ao 4 140 267,10000000 257,47807510 9452192490
1A= am I 131 77,7 0T0000T TTT69.17035978  2,B2964023
. gmos 9T 4427 142,00000000  149,18005111  =7,18005111
187 am 3 143 211,00000000 21%,90803114 *4,90803115
168 an 4 144 259,00000000 25%.85387436  3,14612564
TR A 1 145 47,70000000 51,52939993 ~41,52939993
18> A1 2 146 _ 87,r0000090  102,78456386" =15,78456386
TR e 3 147 126,00000090 151,85293449 ~£5,85293449
1na 63 _4 148 167,10000090 183.36074061 =46,36074061
1Ae 6a 1 149 70,n0000000 49,14691198 20,85308802
P o BT ] 112,00000090 95.;;5;0;4; 16,61490155
T VS b ! 157,70000000 138,2576397 1847423602
e R L] 192,00000000 17%,96127520 16,038724R0
e a1 153 120,00000090 97.1765541% 2,82344584
P 11 224,00000090 184,84350281 39,15649719
A= a3 15 271,0000000 248,20801894 22,79198106
10678 4 156 295,10000000 287,14490144 7485509856
e 78 1 157 177,00000000 94,29459159 92,70540841
1on 7o 2 158 2 264,A0000000  181,96154024 - 2,03845975
tan 70 3 159 278,00000000 24%,32605637 32,67394362
2nc 70 4 140 202,0000090 284,26293887 - 388,
A1 AA 1 161 95,10000000 90,41633948 4,58366052
f2 Ao 2 162 187,00000090 178,08328813 8,91671187
T 18y 7k n000000T  241.44780426 4.55219574
29 An 4164 278,00000000 _280,38468677 =2,38468677
e a1 1 165 147,00000000 121,77798858 25,22201142
2ne a2 166 250,n0000000  209,44493723  40,55506277
337 AT 3 167 311,70000090 272,80945336 38,19054663
208 A1 4 168 334,00000000  311,74633586  22,25366443
5r0 51 1 169 113,70000070 88,10992687 29,89007313
210 s 2 170 144,10000000 137,00537065  6,99462935
1 &1 3 171 169, 70000000 176,51444805 v7,51444805
21> =1 4 172 197,00000000 213,20912278 -16,20912279
17 s 1 173 90,70000000 u.usnn; d.:::guo:»
ja_s2 2 174 163,00000000 142,2624057" 47375942
:|q = 3 .175 207,7C000000 181,77148315 25,22851685

218 s> 4 176 241,00000000 223461731283 17438268717
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Table,ZJ}

99,n0000090
?43 ngndoodn
__329,n0000090

" 354,ngc00n000
_73,n000n00"0

198,n0000020
248,n0000020

228 4% 1 177
226 an 2 178
227 an 3 179
220  an 4 180
229 a1 {1 181
2an  ay 2 1R2
231 a1 3 183
272 a) 4 184
241 %a 1 185
2a> =4 2 186
P47 =4 3 137_
248 Sa 4 188
2aa &7 1 189
san wa 2 160
Pa7 =3 3 191
28  5- 4 192
257 _s8 1 193
a2ep  &A 2 194
250 8. 3 195
26N &8 4 196
=7 4 197

?7’.00000000
52,n0000000

’”'Téf;noonooOO"'

181,nr000n000

1226,70000000

63.n000n0000

{38, h0000000
182,00000000

21n,n0000000

79.70000000
163,10000090
252,n00000000

-305,n0000000

59,00000000

"153 npoononn

(cont'd.)

103,18512199

201,94587443

287.87253270

T 340.494659768

.-102.90210978

201.66286221
287.58952049

340.21168546

59,63200791
124.62125547
186.,69247501
237.07243222

58.13548803
123.124735%9
190,212932%8
23%,57591234

74,93337070

154,94306204

221.67104208

261,61688529
79,92698202

T7159,93667336
222,66465339

262,61049664

192,60700586

.. 69079264264
112,03082911
154,90337043

78,18115083

119,41933734
. 162,29187860
199.99551405

96,80170267

286.77004996
100,49343286
71688,16038151
25
397.90409330

108.95998451

198,62693316
256,99144929
29%.92833179

107.84280646
195.50975512

25R,87427124

297.81115375

SS(Y « MEAN'Y)

Pe1 &7 3 199 __.22?,/np000000
sen w7 4 200 254, 00000000
273 s 1 2n1 ~_5%,n0000000
274 &= 2 202 101,n0000000
27 _=a 3 203 137,n0000000
274 &= 4 204 173,n0000000
277 s 1 205 _ .86,n00000°0
s7R &4 2 206 138,70000000
270 _=6_ 3 207 ) _ULZZJBQBQRQQQ.'
san =5 4 208 217,n0000000
202 a1 1 209 63,n0000090
saa 1A 2 @10 T 14’ np000030
s a3 214 21%,nr0000000
2nk 1A 4 212 232,n0000000
sa7  an 1 213 4n,n00000c0
20a 20 2 214 T 164,n0000000
200 19 3 218 _..24s,n0000000
ArA Aa 1 216 T431.n0000000
N aa 1217 102,n0000000
> aa 2 218 234,00000000
3r3 a4 3 219 298,n0000000
3Ina aa 4 220 310,n0000090
s 45 1 221 . 127,np0000090
e as 2 222 T 22R,np000000
N7 as 3 223 313,n0000000
Qra ge 4 224 335.ﬂ00000ﬁ0
SIM Y
40190,n0000000
sy
86RB879A8,00000000
P2

N,01087437

1477922,5535%835

DiwWe ST‘T
1.,07256554

'184,46865133
. 247,83316746

1,52489765

v4,18512199
41,05412557
41,12746729

T 4%.50530232
_=29.9024r978

*3,66286222
«39,58952049

=68,21168546

©7,63200791
2.37574453
*5069247501
egfen7243222
4,86451197
$2,87526441
*8,21293258
“25,57591234
4,06662930
8,05693796
!6.32395792
63,38311471
=46,92698202
©2,93667336
©0,66465340
8,61049661
$0,79264264
eg{,03082911
©$7,90337043
-£9,60700586
$2,81884917
$8,58066269
$4,70812139
$£7,00448594
~38,80170267

. eJ8,46865133

-’4 77004996
-00,49343286
'.4.16038132
_=5,52489765
33-09590670
*3,95998451

T 42.37306684

41,00855071
$4,07166821
£9,157193%3
32,49024488
54,12572875
37,18884625

_SUM RES
9,00000000

SS RES

131728,78106308

" §S(R = PREV R)
141279,17008209
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Table 23. Interaction of Plate Size and Deflection.
Deflection

0.015" 0.040" 0;080" 0.150"

.§ 3"x5s" 101.5 172.3 223.7 261.5

z 3"x8" 73.2 155.1 229.1 280.6

E S5"xS5" 76.9 140.1 194.9 233.7

All other variables and covariates are held constant at

their means.
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Categories Studied

In order to describe the regression equation more detail,
the data used in the analysis must be moré completely
explained. In punching the originai cards for the Stat
Description 14, Analysis of Variance, preliminary an#lysis
for Tables 6 and 7, the following categories were used:

Category Description Value

A (X2) Species Doug. fir =
White fir

B (X3) Length g;:o;" -

C (Xy) Plate Size 3Nx5" =
7" "
| gllig"

D (Xg) Level of Defl. 0.015"
: ' 0.040"
0.080"

0.150"

E (Xl) Repetitions Spec. #1
Spec. #2
Spec. #3
Spec. #4

BLUNKF SUNHE WNHE N N

By using equal number in the cells, that is, the same
number of repetitions and all factors matched, the following
number of data points must be used:

Species (2) x Length (2) x Plate Size (3) x

Deflection (4) x Repetitions (2) = 96
So 96 separate data cards must be used so that each point

may be unique.

Creation of Indicator Variables for Categories
To use the Unequal Frequencies (Least Squares Routine)

to perform an Analysis of Variance, the distinct category



149

variables described above must be converted to Indicator
Variables, denoted I.V., by use of a matrix, where each I.V.
may have a value of 1, o, or -1. |

. For example, if the category has just two possibilities,
(such as either Douglas fir or white fir), then.just.one I.V.

is required, as follows:

Value of Xg (I.V. for Species)
Douglas fir = 1
White fir -1

Similarly, X;5 (I.V. for test specimen length) = 1 for 8'-0"
specimens and -1 for 24'-0"'sﬁecimens. If the category
contains three possibilities, such as 3"x5'", 3"x8", or 5'"x5"
plate sizes, two I.V.s are required in a matrix as follows:

Plate Size X, X

11 12
3'x5" 1 0
3"x8" 0 1
5"x5" -1 -1

This same type matrix may be used for the levels of
deflection (4 choices in the category) by using three I.V.s;

Level of Defleétion X13 X134 X15

0.015" 1 0 0
0.040" 0 1 0
0.080" 0 0 1
0.150" -1 -1 -1

Creation of Indicator Variables for Interactions
To accommodate interactions, such as plate size (2
I.V.s) with level of deflection (which has 3 I.V.s),

2 X3 =6mew I.V.s must be created as follows:
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I.V. for Plate Size

I.V. for Level of Deflection xll, X12
X13 X21 X24
X14 X22 X25
X5 X23 X26

Each of these Level of Deflection - Plate Size interaction

indicator variables will have values as shown in the matrix

following:
Plate Deflection Interaction
Indicator Variables

Description le X22 Xz3 X24 X25 X26
3"x5" @ 0.015" defl. 1 0 0 0 0 0
3"xS5" @ 0.040" defl. 0 1 0 0 0 0
3"x5'" @ 0.080" defl. 0 0 1 0 0 0
3"x8'" @ 0.015" defl. 0 0 0 1 0 0
3"x8" @ 0.040" defl. 0 0 0 0 1 0
3"x8" @ 0.080" defl. 0 0 0 0 0 1

It is not necessary to include the third plate size
(5"x5") or the fourth level of deflection (0.150'") since
these are handled with the -1 values.

The Indicator Variables described in this section were

created by the computer by use of a transformation sub-deck.

Regression Equation

After creation of the appropriate indicator variables,
(indicator variables must be used not only for all the main
categories to be studied, but also for all the interactions
which are of interest), the Least Squares Prediction Equation

for stress can be written in terms of these indicator
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variables (along with the continuous variables used as co-
variants), by using the regression coefficients given in
Table 19.

- Y(stress) = 112.69 - 12.43 x Moist. Cont. + 793.29 x
Spec. Grav. + 25.67 x Species (Indicator
Variable) + 7.85 x Length (I.V.) + 11.21 x
3"x5" Plate (I.V.) + 5.94 x 3"x8'" Plate
(I.V.) - 94.66 x 0.015" Defl. (I.V.) -
22.74 x 0.040" Defl. (I.V.) + 37.34 x
0.080" Defl. (I.V.) - 2.73 x 3"xS5" - Fir
Interaction .Indicator Variable (I.I.V.) +
9.69 x 3"x8" - Fir (I.I.V.) - 18.90 x
0.015" - Fir (I.I.V.) - 2.02 x 0.040" Fir
(I.I.V.) + 9.90 x 0.080" - Fir (I.I.V.) +
6.40 x 3"x5" - 0.015" (I.I.V.) + 5.26 x
3"x5" - 0.040" (I.I.V.) - 3.38 x 3"x5" -
0.080" (I.I.V.) -~ 16.62 x 3"x8" - 0.015"
(I.I.V.) - 6.67 x 3"x8" - 0.040" (I.I.V.) +
7.25 x 3'"x8" - 0.080" (I.I.V.) - 8.05 x
8' - 3"x5" (I.I.V,) + 8.51 x 8' x 3"x8"
(I.I.V.) - 0.24 x (Moist. Cont.)? -

745.43 (Spec. Grav.)?2. '

The predicted stress of the particular sample can be
computed by just putting in the appropriate values for
moisture content, specific gravity, and a +1, 0, or -1 as
required for each of the Indicator Variable (I.V.) and
Interaction Indicator Variable (I.I.V.) terms. The computer
has already done this for all the data used in the analysis
and compares the measured stress (Y = Xg) with the estimated
stress, plus giving the differences (residuals, which equal

measured stress minus predicted stress). See Table 21.
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Theoretical vs. Experimental Analysis

General

The contact area stresses derived in the theoretical
section were based, in the main, on a standard engineering
analysis of eccentricity, with just two modifications;
(a) teeth closest to the crack were not counted due to edge
or end distance, and (b) the vertical component of top chord
axial force was neglected in the eccentricity calculations
since it is believed to act directly on the support through
crushinngf the feather ena of the bottom chord, without
being transferred by the heel plate.

The theoretical contact area stress, for each of the
three sizes studied most closely in the experimentallphase
is given in Table 24.

Table 24. Theoretical Contact Stress
for 3"x5", 3"x8", and 5'"'x5'" Plates

Plate Axial , Eccentric

Size Stress™ Stress = Total Proportion
3"xsS" 200 +» 138 = 323 130.2%
3'"x8" 200 +~» 66 = 248 100 %
5"x5" 200 +»> 188 = 378 152.5%

Theoretical vs. Experimental Results at 0.150" Deflection
Comparing these results with those contained in Table
23 (using stress at 0.150" deflection as the reference
level), and assuming that the 3"x8" plates are equal experi-
mentally and theoretically, the percentage comparison values

are in Table 25.
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Table 25. Comparison of Theoretical vs.
Experimental Results @ 0.150'" Deflection.

Plate

Size Experimental Theoretical Difference
3"x5" 107.3% 130.2% 21.3%
3"x8" 100.0% 100.0% -
5"x5" 121.0% 152.5% 26 %

If the theoretical results are exactly right for the
3"x8'" size, then they are 21.3% and 26% too conservative for
the 3"x5" and 5"x5" plates, respectively. The experimental
stresses for both the 3"x5" and 5'"x5'" plates were much closer
to the simple axial stress computation (no eccentricity
considered) than either the proposed method of heel plate
analysis or the FHA method.

When comparing experiméntal results at 0.150" deflection,
the simple axial stress method is more accurafe, especially

for plates of the same width, than the more elaborate methods.

Theoretical vs. Experimental Results at 0.015" Deflection.
If the experimental results at 0.015" deflection (which
is the design deflection) from Table 23, are compared with

the theoretical values, Table 26 results:

Table 26. Comparison of Theoretical vs.
Experimental Results @ 0.015'" Deflection.

Plate

Size Experimental Theoretical Difference
3"xS" . 72.0% 130.2% 80.7%
3"x8" 100.0% "~ 100.0% -
5'"x5" 95.0% 152.5% . 60.5%
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Summary

This means that at the lower deflection levels, due to
the considerably better performance of the 3'"x5" and 5'"x5"
plates, the more elaborate theoretical methods are even
worse predictors than at the higher deflection levels. The
simple P/A éontact stress calculation method was more
accurate for the plate sizes tested than the proposed method

of analysis.






CHAPTER VI
CONCLUSIONS

A statistical comparison of average stress at ultimate
load for repetitive tests of six different heel plate sizes
yielded the following conclusions:

1. Plates proportioned three times as long as their
breadth are stronger by about 2%, but this is not
significantly stronger, than those two times their
breadth.

2. Plate lengths ranging from two to three times their
breadth are from 13%% to 50% stronger (statistically
significant) than those nearly square (one and one-
quarter times their width).

3. All plates applied with their long dimension paral-
lel to the bottom chord are significantly stronger
than those applied perpendicular to the bottom
chord.

A check of the Stress-Coat crack patterns on several

plates indicated the follbwing:

4. The shear stress in the steel plate is highest near

the crack between the members.
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5. The contact area remote from the crack is still
flat and is not stressed to the buckling point even
when the plate is destroyed at the shear crack if
the plate width exceeds the ''development width" for
shear.

6. Shear stresses in the steel, as well as buckling
stresses, are lower in plates applied with the
teeth oriented parallel to the bottom chord than in
those with teeth oriented perpendicular to the
bottom chord.

Inspection of the photographs (confirmed by visual

inspection of numerous specimens during failure) reveals:

7. The nearly square plates undergo rotation or side-
ways distortion dufing deflection of the heel joint,
showing the effect of torsional forces.

8. Buckling resistance is higher when the entire plate
area is backed up by wood than when a portion of the
truss plate is over the triangular air space between
members.

Comparison of matched 8'-0" and 24'-0" specimens showed

the following factors to be statistically significant.

9. Douglas fir had about 42% stronger heel joints than
white fir. This emphasizes the need to specify the species.
10. The length of heel plate had no effect on joint
strength, for plates 3" wide. The 3"x5" plates had

3% more strength per square inch than 3"x8" heel

‘plates.
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12.

13.

14,

15.

16.

17.
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Narrower heel plates are stronger than wider heel
plates. The 5'"x5'" plates were only 82% as strong,
on a per square inch basis, as~fhe 3"x5" plates,
which was a significant reduction.

Small plates are significantly better at the lower
levels of deflection (0.015" to 0.040") whereas
the larger plates were better at higher levels
(0.080" to 0.150"); an inter-action effect of plate
size with level of defiection.

Moisture content had a highly significant effect
on results. The lower moisture content specimens

gave better test values.

There was no significant effect of specific gravity

on stress values. This was an unusual finding
since all connector values for mechanical fasteners
are based on species groupings by specific gravity.
The 8'-0" specimens tested better than the 24'-0"
trusses by a significant amount which cannot be
explained. The 24'-0" truss heel plates are about
92% as strong as the same plates on the 8'-0"
specimen based on the statistical correlation.

The small 8'-0" hand-operated test jig provides an
accurate heel test not significantly different

from results obtained on the Riehle test machine.
Wider truss plates are weaker, due to their buck-

ling in the steel, but provide a much more uniform,






18.

19.

20.

21.
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predictable load-deflection pattern and greater
total deflection than narrower plates. This may be
of benefit where a known safety factor is essential.
Where two plates are used on each side of the heel
joint, both should be oriented the same direction,
or their design strengths adjusted in accordance
with load-deflection data relating theif stiffness.
Average ultimate contact area stresses, figured on

the straight P/A basis of gross area, were:

Plate Size Doug. Fir White Fir
3x5 315 226
3x8 374 281
5x5 264 227
2-7/8x9 (Hem.) 335
3-11/16x6-3/4 330
3-11/16x4-1/2 309
5-5/16x6-3/4 290 (Unequal areas--see text)
5-5/16x4-1/21 271
5-5/16x6-3/41 163

Twenty gauge plates with all teeth parallel to
bottom chord buckled at loads of about 575 1bs.
shear per inch of plate (1150 pli on joint), and 500
pli shear if teeth were perpendicular to crack.
Twenty gauge plates with teeth in four directions
did not buckle at loads of 675 pli shear (1350 pli

on joint), but failed by tooth withdrawal.



CHAPTER VII
RECOMMENDATIONS FOR HEEL JOINT DESIGN

The following recommendations are based on this research:

1. Provide sufficient truss plate contact area to accom-
modate the top and bottom chord axial forces, using the TPI
reduction factors for slopé effect. An aaditional reduction
factor of 20% is recommended for plates over 4" wide, to
account for eccentricity.

2. Twenty gauge heel plates placed parallel to the
bottom chord should be kept short enough (probably not
éxceeding 9" in most cases) to prevent tensile failures in
‘the steel.

3. Twenty gauge heel plates should be kept narrow
enough (probably not over -1/2" in most cases) to prevent
buckling failure in the steel. If wide plates are used,
they should be designed on the basis of their buckling
resistance rather than their contact area.

4. Heel plates should be proportional from two to
three times as long as their breadth, whenever possible, to
increase their rotational resistance to eccentric forces.

5. Tooth values and plate sizes are highly dependent

on species of lumber. Care in specifying the species on the

159
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drawings must be followed in the actual production of the
trusses, or larger plates used if a less desirable species
is substituted in the design.

6. Heel plates should be positioned with the longest
possible amount of plate over the crack to resist rotation,
with equal contact areas on both members.

7. Heel plates should not be positioned pefpendicular
to the crack if avoidable, or, if this positioning is
unavoidable, appropriately reduced tooth values should be
used in the design, plus checking the buckling resistance of
the reduced steel shear line.

8. Large sized heel plates, when used for girder
trusses, widely spaced trusses, or other trusses with high
axial forces, should be checked for buckling strength and
tensile strength to prevent a misplaced feéling of confidence

.based on contact area size.



CHAPTER VIII
RECOMMENDATIONS FOR FURTHER RESEARCH

Bracing (Bridging) Methods and Requirements for Flat
Trusses.

Load-Sharing (and Its Stress Increases) aé It Applies
to Trussed Rafters.

Top Chord Column Buckling Resistance Provided by 2"x4"
Roof Boards 24'" 0.C., or 3/8'" Plywood Sheathing.

Study Methods of Improving Stiffness of Long Span -
Shallow Depth Flat Trusses.

Long Term Deflection Characteristics of Flat Trusses.
Suitability of Metal Plates in Making Joints in

Continuous Floor Joists.

161
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APPENDIX

LOAD DEFLECTION DATA

This appendix contains the tabular test data obtained

experimentally. The tables are grouped as follows:

Tables
27 through 32
33 through 38

390  and 40

41 through 46

Purpose
Comparison of Six Plate Sizes.

Initial Comparison of Plate Size
Specimen Length, Species, and
Level of Deflection.

Substantiating Tests for Table
33.

Tests of 8' Specimens on Riehle
Testing Machine to Verify
Suitability of Small Hand
Hydraulic Jig.

162

Pages

163-168

169-174

175-176

177-182
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