== =
uﬁnﬁ%&m@m‘ﬁu =
= =

—— = e

WAL wmm

S 3 1293 10753 9284

LEZiA
| SR TE *’-te
Unives uty l\

This is to certify that the
dissertation entitled

SURFACE ASSESSMENT USING
COLOR GRAPHICS

presented by
Martin John Vanderploeg

has been accepted towards fulfillment
of the requirements for

__Ph.D. degreein_DMechanical Fngineering

(\/W,w fﬁww/

Major professor

MSU

RETURNING MATERIALS:
Place in book drop to

LIBRARIES remove this checkout from
a—— your record. FINES will
be charged if book is
returned after the date
d below.
2 stamped below
SN1EHRE
24 K328
[K
JiN3 B
o p?5h
M‘o"‘“\“‘-ﬁ
crpag o
R7 - LI

SURFACE ASSESSMENT USING
COLOR GRAPHICS

By

Martin John Vanderploeg

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Mechanical Englineering

1982

~

o) (_‘)5 (. >

€|

-

ABSTRACT

SURFACE ASSESSMENT USING COLOR GRAPHICS

By
Martin John Vanderploeg

Modern techniques for the design and production of smooth skins,
such as car bodies and aircraft wings and fuselage, depend upon the
development of a database which accurately represents the surface.
Before the database can be used for production, it must be checked for
possible errors. Such errors may result from bad raw data, as fram
errors introduced in a digitizing process, or fram designer errors.
Typically these databases are very large, making the checking process
tedious and expensive. Current checking methods include inspection of
flow lines or sections, and may include building prototypes.

This dissertation develops a method for surface checking using
shading and raster graphics. This method uses a scan line method which
1s based on improved numerical techniques and takes advantage of the
rapidly decreasing cost of camputer memory. These developments have
resulted in a fast and accurate check procedure.

The dissertation illustrates the ability of the algorithm to detect
specific surface flaws using a small test database. The ability of
the algorithm to "assemble" objects on the screen is also demonstrated
using a large database for an alrplane fuselage and canopy.

ACKNOWLEDGEMENT'S

I would like to extend special thanks to the people at General
Dynamics for funding this work. Specifically, I thank Mr Bernard Breen
and Mr. Larry Tucker for thelr technical assistance and support.

I also wish to thank the other members of my camnittee Drs. Erik
Goodman and Ronald Rosenberg for their guldance and technical support.

Special thanks go to my parents, Marvin and Joarm Vanderploeg for
their loving support throughout my graduate work.

Finally, I would like to extend sincere thanks to my major profes-
sor and good friend Dr. James Bernard, for his guidance, constant
encouragement, ard especially for his extreme patience.

TABLE OF CONTENTS

I‘ISI‘OFTABIE ooooo © 0000000000000 000000000000000000000 ececsccseceV
LISI‘OFFIG[M. oooooo LGB I 0000000000000 000000000000000000000 ..Vi

Chapter
I INIRODUCIION ® 0 0 000 00000 00O OO OO OO OO0 OO OO OO N OSSOSO NDN OSSN ...001
IT CURVE AND SURFACE DEFINITIONS .eeccocccovscscoccccnsscscsnss 2

2.0 Generalized Curve and Surface Definitions .cececee. cesel
2.1 Parametric Curves ard Surfaces eeeeeeeee cececsssscsssene 5
2.2 Bilcubic Parametric SUrfaceS cececeseccsccocccsssccscseed

ITT DATABASE ERRORS AND METHODS OF DETECTION ccecececcccecccccane 8

3.0 Database Structure ..eeceeceececes R <
3.1 Surface CheCKINg cccecececesscccccsocccesse ceccecssscsssd
3.2 Types of Database Errors ..ceceeeccececscsscescessccsessed
3.3 Surface Checking Using Shading .cccceccceeccceccccscseeell

IV INTRODUCTION TO SURFACE SHADING AND DISPLAYc.. ceecesene 14

Design Envirorment Requirementscceeceeecceseccssessll
Raster GraphliCsS ceeeceececccececcececcscscocoscsasoosseoslld
Raster Display of SUrfaces ccceeecececcescccccssscsseesald
Previous Work in Surface Shading and Display .ecececesol7

i g —
wWMhHHO

4,3.1 Display Techniques for Polygon Surfaces17
4.,3.2 Display Methods for Parametric Surfaces22

V ASURFACE SHADING ALGORITHM FOR DESIGN ceeeececcccsss cessesesl9

Introduction cceeceeecees cecsse 24 |
The Patch Preprocessor cccceecee cseccsssseccssanee cencns 29
The X SCAN ceeececseccsccssssccsocccss ceesssescccensana 33
The Hidden Line Problem cesccccsncseanse S L
Solutions of Nonlinear Equations .eeeeeccecceccsccceeses3d
Approximate Methods ceesecee cecescene ceccccscsans 42

ISTD 1111721 ¢ 0 T

~onmEswWwMhhH-HO

ARG R RAC A R0 B8 |
L] o L]

i1

VI Algorithm Evaluation ...ceceeecceee. cecesecscons cescecsnenas L5

OANONOYONON
sWMHHO

6.

Introduction O |1
Error DeteCtlon teeeeeesecccscccscscssscsssssssscscncesldd
Image Generation for a New Light SOUPCE eceeeccscceess.48
COmMPULE THIMES eeeeececcccoccccccaccssccscscsocccsecsssesd
Object ASSEMDlY eeecceccerccccccsccccnsns cecscssssssssssedl
Surface Checking SCheMe ..cceececscccsscccscsccoscscssessdl

VII CONCHJSIONS 000'oooo0t.'oo.000.0'00000-0'..00-000.0'.'.'0..055

APPENDICES .oooo.ooonoooooo.‘oo..oooo.oolooooo000000000000000000056

REFmENCES c'ooooooooto.00oooooooooooooooo.c0.0000.00.0....00.00086

iv

LIST OF TABLES

l. Caﬂpute Tj-tms © 0000 0000000000000 000000000000000cce000 00 CRCRC I) 50

\OGJNIO\%!'IJ‘:UJND—‘

[
o

12.
13.
14,

15.
16.
17.

18.

19.
20,

LIST OF FIGURES

Flow Line Display Of BUMD ccecececcccscccccccccscnsccncccnsse 10
Gross Error In BUD ceeeecccccecccccccscssscscossssscccsossssll
Missing Data in BUMD cececeececcccocccocscocscscscsccsseeesell
Slope Discontinuity In BUMD cceececceccscceccacsssosscssecsesld
Magnified End View, Slope Discontinuity in Bump ..ceceeeees.13
Viewing Screen and Screen Coordinates cceeeeececescassccssesld
Polygon Approximation of Bicubic PatCh seceeeeccccccecceesssl8
Scan Plane and Intersection Curvecceevecececcccccccesssld
Number of Intersection Curves on & PatCh seeeececcecccscecsss2l

Effect of Silhouette Edge on the Number of
Ir]te:‘section CuI’VeS‘....'....0..0...'...'00..0..00...26

Typical Intersection Curve Endpoints .cceecececscecescescessldl
Illustration of Active Curve Updating ...ceececececcescceess3b
Interiormtersectim ofmoPatCms .l.'l......0..'..00....38

Division of Intersection Curves for Interior
Inter’sectim l..................QOQ...C...OOQ.‘O..'0......0"0

Shaded B.an otco..-.oo.o.oo...'00000.000o.oo...ot.coooo'.ooou6
Sl‘ad& &mp with Slope Discmtj-rmity o.ooooooo'ov'.oooovooocu7

Shaded Bump with Slope Discontimnuity,
Appmxmte mthmI....Ol....'.Q...'.00...0....'....”7

Shaded Bump with Slope Discontimuity,
Differ‘ent m@t Source ..'0..0.'.....0.....0...........0..."48

Aircm wing © 00000000000 000000000000000000000060000600000000 51
Shaded Ajrcr.aﬁ wir]g, Lower ooo0000000ooocooo.oo"ooooo.o00051

vi

21.
22.

23.

Bl.
B2.
B3.
Bl,
B5.
B6.
BT.
B8.
Cl.

Dl.
D2.

Shaded Aircraft Wing, Lower plus Half of Upper B Y
Shaded Aircraft Wing, Entire Surface ..ceeececscscscscscsessd3
Shaded Aircraft .cceecececessescccccneas cocvas cecessasesssscens 53
Definition of Patch Boundaries e Y 4
Calculation of Boundary ENApOINtS ceeeeececcccccccscsccsscsssd3
Critical Points on a Silhouette EQZE eececeessscccccssssseesbdd
Method of Calculating Silhouette EndpoiInts ...ceeceeeeese «e 67
Simple Pairing Cases .68
Pairing with One Silhouette Endpoint .eeeeeeeccccsceccscesssbd9
Single Boundary ENAPOINt eeeeececesescsccecsosescscncssesssTl
Determination of Leading or Tralling StatusS ...cececeececses??

Pairing Example ..eceec.. ceeecesccssccecctescesccscsennsnns -

A Comparison of Newton's Direction and the
&cmt Dj-r.eCtion ‘...Q.........'."..0'......0..0...0'...'..76

The Ratio ds/dt Along the Intersection CUI'VE U .cecceeeeesse83
Relationship of the u and X DIrections .eeeeeececcecccceses 8l

CHAPTER I
Introduction

Modern techniques for the design and production of smooth skins,
such as car bodies and aircraft wings ard fuselage, depend upon the de-
velopment of an accurate mathematical representation of the surface.
Before the surface definition can be used for analysis or production, it
must be checked for possible errors. Such errors may result from bad
raw data, as fram errors introduced in a digitizing process, or fram de-
signer errors. Typically, the checking process 1is tedious and expen-
sive.

This thesis develops a method for surface checking using surface
shading and raster graphics that can reduce both cost and time required
to check a surface. The next chapter discusses the mathematical repre-
sentation of surfaces. Chapter 3 presents several categories of sur-
face errors and current methods of surface checking. Chapter U reviews
current methods of surface shading and display, and Chapter 5 presents
an algoritim developed in this thesis especially for the purpose of sur-
face checking. Chapter 6 then presents some examples, and Chapter 7

presents conclusions.

CHAPTER IT
Curve and Surface Definitions

2.0 Generalized Curve and Surface Definitions
One way to define a curve in space consists of two transendental
equations of the form:

Fl(x,y,z) =0
(2.0.1)

F2(x,y,z) =0

where X, y, and z are three independent spacial coordinates. The curve
consists of the locus of points which simultaneously solve these two
algebrailc equations.

Curves can also be defined parametrically. The curve becames the
locus of polnts whose coordinates are functions of a single independent

parameter. The parametric form of a curve is:

X = fl(s)
y= f2(s) (2.0.2)
zZ = f3(s)

The two forms may be illustrated using a straight line. The alge-
braic form consists of the equations for two planes, which form a line

where they intersect. The algebraic form of the line is:

"
o

Fl(x,y,z) =Ax+Bx+Cz+D

(2.0.3)

n
o

F2(x,y,z) = Ax + B2y + sz + D,
The parametric form of the line is:
x=Es+G
y = E;s + G, (2.0.4)
z=Es +G
For simple curves it is possible to transform from one form to the
other. As the equations became more camplicated it is difficult or
impossible to make this transformation.

Analogous forms also may be written to define surfaces. The alge-
bralc form consists of one algebraic equation.

G(x,y,2) = 0 (2.0.5)

The surface is defined by the locus of points that solve this equation.

The parametric form defines the surface as the locus of points whose

coordinates are functions of two independent parameters, s and t.

»
|

= g,(s,t)

<
I

= g,5(s,t) (2.0.6)

N
I

= 83(s,t)

A plane may be used to illustrate the two different equation forms
of a surface. The algebraic form is:

G(X,y,2) =Ax +By+Cz+D=0 (2.0.7)
The parametric form is:

x='=E1s+Glt+H1

y = E2s + G2t + H2 (2.0.8)

= + +
z E3s G3t H3
Again, transformations between the two forms are possible only for sim-
ple surfaces. The next section discusses the advantages of the para-

metric form, which will define surfaces throughout this thesis.

2.1 Parametric Curves and Surfaces

When producing shaded images from mathematical surface definitions,
it is convenient to use the parametric form (1,2,3). One favorable pro-
perty of the parametric form is the one-to-one mapping of spatial coor-
dinates x, y, and z to the parametric coordinates s and t. A second
advantage 1s the existence of well-behaved partial derivatives every-
where on the curve or surface. The importance of well-behaved partial
derivatives will became evident as surface shading algoritims are dis-
cussed.

Throughout this thesis, the vector normal to the surface will be
used for shading purposes. The normal vector of a parametric surface
at a point 1s camputed by taking the cross product of two vectors tan-
gent to the surface at that point. A convenient pair of tangent vec-

tors are:
V=145, (2.1.1)
V%=%%1+§%3+§—:1; (2.1.2)
The expression for the normal vector 1s then:
N=% x T (2.1.3)

] t

Complex curves are typically broken up into several segments to
facilitate fitting the curve with a series of low order polynomials.

In a similar way, camplex surfaces are often broken up into several

patches to facilitate fitting the surface with low order polynomials.
The boundaries of a patch are usually determined by limits on the

parametric values s and t. A camon conventlion allows these parameters

to vary from zero to one.

2.2 Bicubic Parametric Surfaces

A popular surface representation is the bicubic polynamial (4).
Although the ideas and analysis which are the basls of this thesis
require only that the surface is parametrically defined, the bicubilc
surface is used throughout for illustrative purposes.

Equations for bicubic surfaces appear in many different forms. A
general form of the equation is:

3 3
x(s,t) = I I X, st ¢J (2.2.1)
1=0 j=0

where XZU are constants. There are similar equations for y and z.
Each patch is then delineated by 48 constants.

Equation 2.2.1 is often written in matrix form. The constants
are contained in three 4-by-4 matrices, one for each equation. The
matrix form is:

x(s,t) = [1t t° £33[x] [1] (2.2.2)

where the matrix [X] contains the constants XZU .

Bicubic parametric surfaces may also be represented in an alter-
native form which have been derived so that the constants defining the
patch have geametric meaning. This form is

Loy

x(s,t) = 121 Jil *F; (s)*F, (t) (2.2.3)
where Fi(s), so-called blending functions, are cubic polynomials. In
this case the constants Xi,j are geametric properties of the surface
patch, such as spatial values or tangent vectors at various points on
the patch. Similar equations are written for y and z.

One specific bicubic surface is the Coons surface. Coons surfaces
are presented in detail in (4) and (5). Figures 1 and 2 are examples
of surfaces defined by Coons patches.

CHAPTER III
Database Errors and Methods of Detection

3.0 Database Structure

A typical surface description is camprised of multiple surface
patches. The database defining the surface consists of the constants
which define the patches. For example, the bicubic patch 1s defined
by 48 constants. The surface database for a bicubic surface then
contains N blocks of 48 constants, where N is the rumber of patches
camprising the surface.

When generating a database, errors may be introduced by the
designer, or by the hardware. For example, mating parts may be de-
signed by different people, introducing interference problems and
slope mismatches along boundaries. Hardware related problems such as
round off and hardware conversions may also create errors. In addi-
tion, design changes may create unexpected flaws. Detecting these
errors, or so called, surface checking 1s an important design problem.

3.1 Surface Checking

There are three basic surface checking techniques which are
camonly used.

One method is manual Inspection of the constants defining the sur-
face. This requires knowledge of the surface being modeled, and an

understanding of how much each constant affects the shape of the patch.

8

This method is time consuming and inefficlent for surfaces with a
large number of patches, and considered impractical for production
enviromments.

The second method of surface checking uses sections and flow lines
to visually inspect the surface. Flow lines are constant s and t lines
drawn at glven intervals over a patch. They are easlly camputed and
displayed. A viewpoint 1s chosen and the spatial coordinates of the
constant s and t lines are projected onto a plane and displayed on a
plotter or a graphics terminal. Figures 1 and 2 1llustrate surfaces
displayed using flow lines. Section cuts may also be displayed. Sec-
tions, which are more tedious to campute than flow lines, are useful
for detecting surface flaws since they can be cut 1n any desired
direction. However, 1t 1s usually not practical to make enough sectlon
cuts to properly check the surface.

A third method, which is often used serially with visual inspec-
tion via flow lines or sections, produces a three dimensional repre-
sentation of the surface. This method uses the mathematical surface
representation to drive a numerically controlled milling machine which
produces'a model of the surface. The model can then be inspected for
flaws. This method 1s effective, but far more expensive than other

techniques.

3.2 Types of Database Errors

When camparing the usefulness of different surface checking
techniques, it is helpful to classify different types of errors that
can exist in a database. The "bump" database, displayed in Figure 1,
will be used to 1llustrate the different types of errors. The bump

10

TN N NG N

< L 27 7

Figure 1. Flow Line Display of Bump

Figure 2. Gross Error in Bump

1

is made up of four patches which are based on 192 separate data entries
in the database.

The first class of database errors contains gross errors. These
errors are easily detected using flow lines. Figure 2 presents a gross
error in the "bump", caused by one incorrect entry in the database.

The second error classification is missing data. Again, these
errors are easlly detected using flow lines. An example of missing
data is presented in Figure 3, where one of the patches has been left
out.

More difficult errors to detect are small slope discontinuities
between patches. Figure 4 is an example of a surface containing an
uwanted slope discontinuity. From this view 1t 1s lmpossible to
visually detect the problem. With prior knowledge of the discontinuity
location it 1s possible to choose a view looking down the patch bound-
ary where the slope discontimuity exists. After magnification, this
view is displayed in Figure 5, which is a closeup view of the patch
centerline area as seen from the direction of arrow A in Figure 4.

The slope discontinuity is now apparent, but finding the proper view
depended on knowing the location of the slope discontimuity. For
surfaces with many patches, the location of slope discontimuities are
generally unknown. This makes identifying them with flow lines
difficult, thus detection of this kind of error is often delayed until

a model or prototype 1s constructed.

3.3 Surface Checking Using Shading
To avoid delays and costly proofing runs on numerical controlled
machines, it 1s very desirable to facilitate detection of errors in

4

< <L rood \\\:

Figure 3. Missing Data in Bump

Figure 4. Slope Discontinuity in Bump

Figure 5. Magnified End View, Slope Discontinuity in Bump

the database using camputer graphics. One pramising technique is
surface shading. By displaying the shaded surface on a variable
Intensity raster terminal, it is possible to locate subtle errors. The
idea originates from the abllity of the human eye to detect small
deviations on smooth reflective surfaces. As an example, surface-re-
lated flaws on a car body are easily detected by the human eye, yet
they are very difficult to find using only engineering drawings of
sections or flow lines. If the surface can be represented visually by
a camputer as a reflective surface, these subtle errors can be detected.

The next sectlon will introduce terminology and concepts concern-
ing camputer-generated pictures. Previous work done on surface shading
will then be discussed.

CHAPTER IV
Introduction to Surface Shading and Display

4.0 Design Envirorment Requirements

When computer surface shading techniques are used for surface
checking, the visual display must represent the surface properties
accurately so that flaws may be identified. Shading algorithms often
use approximations which make shading calculations easier, but these
approximations may hide subtle flaws on the original surface. On the
other hand, accurate processing of the details of the surface may
require tedious calculations.

Since interactive programs are ideal for a design envirorment,
fast shading algorithms are desirable so that a designer 1s not
required to walt long periods of time for each image. The questlon of
whether high accuracy or rapid calculation should have higher priority
wlll be addressed in later chapters.

The next sectlon describes how lmages are produced on a raster
device. Basic concepts of surface display will then be presented,

followed by a discussion of previous work done in the area of surface
shading.

4,1 Raster Graphics
The raster screen 1s an Increasingly popular method of displaying

computer generated lmages. A common example of a raster device is the

14

15
television. Raster screens are made up of many small units called
raster units or pixels. For a gray scale device, the user has control
over the intensity of each pixel ranging from white to black. For
color raster vdevices , the color and intensity of each pixel can be
controlled.

The resolution of a raster device refers to the number of pixels
on the screen. A screen with a large number of pixels 1s sald to have
good resolution, meaning each individual pixel is hard to discern, and
the edges of objects being displayed appear smooth.

4.2 Raster Display of Surfaces

To aid in the discussion of surface display techniques, it is con-
venient to define a set of screen coordinates. Figure 6 illustrates
the orientation of screen coordinates used in this discussion and
throughout this thesis.

To display the color of surface on a raster screen requires that
the intensity and color of each pixel be camputed. This requires
projecting a three dimensional surface to the viewing screen. Each
pixel is then mapped to a point on the surface. The properties of the
surface at that point are then used to campute the intensity of the
pixel.

Typically, the mapping of a pixel to a point on the surface
requires the construction of a sightline from the viewpoint through the
pixel being mapped. All patches Intersected by the sightline are
determined. These patches are compared to determine which patch is
visible along the sightline.

16

AY

Scan Line

Figure 6. Viewing Screen and Screen Coordinates

17
Methods used to campute the sightline-patch intersection and
normal vector at that intersection point depend on the type of surface
| patch. Existing algoritims for solving these problems will be dis-
cussed in the next section.

4.3 Previous Work in Surface Shading and Display
Literature in the area of computer-generated surface shading
started appearing in the late 60's and early 70's. Since then the
topic has been well represented in the literature. A good review of
current literature in surface shading is presented in Reference 6.
Early shading techniques were based on surfaces consisting of flat

patches (polygons).

4,3.1 Display Techniques for Polygon Surfaces

Curved surfaces may be approximated using many small polygons.
For example, Figure 7 illustrates an approximation of a bi-cubic patch
using polygons. Surface representations consisting of polygons are
called polygon-type surfaces. The advantages and disadvantages of
three well known polygon type surface display methods will be presented
here,

The Warnock method (7) uses a depth priority algorithm to display
surfaces constructed of polygons. This algoritim uses windows, or
areas of the screen, which are successively subdivided into four
smaller windows until the window 1s campletely covered by a visible
polygon. The window is then displayed. The subdivisions can continue
until the windows are the size of one pixel. The major drawback of
this method is that the pixels are not assigned in an orderly fashion,

an inconvenient procedure for a raster device.

18

i

Filgure 7. Polygon Approximation of Bicubic Patch

The method developed by Newell, Newell, and Sancha (8) determines
z priority of all polygons in a scene by comparing the z coordinate at
the centroid of each polygon. Of the polygons which are potentially
visible at a given pixel, the polygon with the highest priority is
assumed visible. This method works well for surfaces comprised of
many small polygons. Problems arise when polygons penetrate each
other, and when cyclic overlaps of polygons occur. Cyclic overlap
involves polygons that are both in front and behind of another polygon.
An extended algorithm was developed to handle these problems (8).

Watkins developed a scan line method for polygon display. This 1is
the most widely used of the three methods and is avallable in cammer-
cial software (9,10). A general overview of the algorithm is presented
below. Additional detail is presented in (11) and (12).

19

To aid in the diécussion of scan line techniques, it 1s convenient
to define several associated terms. A scan line is a constant y line
representing a row of pixels (see Figure 6 and 8). The screen is cam-
prised of many scanlines. The associated scan plane is defined by the
viewpoint and the scan line. The scan plane cuts constant y sections
through objects in the scene to determine what 1s potentially visible
on the scan line, as shown in Figure 8. A sightline, passing through
the viewpoint and the pixel, 1s defined for each pixel along the scan
line. Intersections between the sightline and objects in the scene
determine what 1s potentially visible at that pixel.

The scan line algoritim developed by Watkins (11) efficiently
determines polygon sightline intersections by orderly processing of
the sightlines. This makes possible the use of information about

Sightline

Intersection
Curve

Viewing Screen Viewpoint

Figure 8. Scan Plane and Intersection Curve

20

intersections fram the previous sightline when calculating intersec-
tions for the present sightline. This orderly processing, or scamming
of sightlines, is the basls of scan line methods.

Scan line methods use two nested scans, the x scan and the y scan.
The x scan, which is the Inner loop, starts at the end of a scan line
and steps along the scan line computing sightline polygon intersections
for each sightline along the scan line. The y scan, starting at the
top of the screen, steps through each scan line on the screen
calling the x scan at each step.

When camputing sightline polygon intersections, many calculations
can be saved by knowing which polygons are intersected by the sight-
line. It 1is in the determination of the Intersected polygons that the
scan line methods derive thelr efficlency. This is done using a list
of active polygons associated with each scan line, and a list of
active line segments assoclated with each sightline.

The active polygon list contains all polygons intersected by a
scan plane, therefore this list is updated for each scan :}ine , or at
each step of the y scan. The active polygon list is updated by using
a list of maximm and minimm y values of polygons in the scene. The
list of maxima are ordered such that they are decreasing in magnitude.
A pointer is used to indicate the maximum or minimm of the next poly-
gon to be encountered and added on the list, for a maximum, or dropped
off the 1list for a minimum. Thus, as the y scan progresses, the y
value of the scan line, Yscan, is campared to the next maximum or
mintmum. When Yscan 1s less than the current maximum or minimum, the
assoclated polygon 1s added or deleted fram the active polygon list,

and the pointer i1s advanced to the next maximum or minimum. At this

21

point the active polygon list is updated for the scan line at Yscan,
and the x scan can be initiated.

Once the active polygon list 1s established for a scan plane, the
x scan for that scan line can begin. For each x scan, the intersection
of the scan plane with the active polygons create straight line seg-
ments which are defined by their endpoints. An active line segment
list contains the subset of these line segments which are intersected
by a given sightline. The active line segment list 1s updated for
each sightline using a list of line segment endpoints. The list is
sorted starting with the endpoint with the smallest x coordinate. A
pointer 1s used to indicate the next line segment endpoint to be
encountered, or so-called current endpoint. When the x value of the
sightline, Xscan, 1s incremented for the next sightline, it is compared
to the current endpoint. If Xscan is greater than the current endpoint,
the active line segment list 1s updated.

The z coordinates of the intersections between the sightline and
the active line segments are compared to determine which polygon is
visible. The normal vector assoclated with the visible polygon is
then used to campute the intensity of the pixel defining the sightline.

Scan line methods applied to polygons have proven very time-
effective 1n producing shaded images. But if these methods are to be
applied to contoured surfaces, the surfaces must be approximated by
polygons before shading begins. For applications where flat surface
approximations are unacceptable, direct shading of contoured surfaces
may be required. The next section will examine methods of directly
shading parametric surfaces.

22

4,3.2 Display Methods for Parametric Surfaces

Parametric surfaces were first displayed using polygon techniques.
A curved parametric surface can be approximated by many small polygons
as shown in Filgure 7. The polygons may then be displayed using techni-
ques discussed in the previous section. This method 1s effective for
visualizing gross surface characteristics, but detalled slope and
curvature information is lost in the image. To maintain exact slope
and curvature information at each pixel, a direct method of shading
parametric surfaces 1s required. Three methods of direct parametric
surface display will be discussed here.

In 1974, Catmull developed one of the first algorithms for the
direct display of parametric curved surfaces (13). This algorithm
subdivlides each patch untill each subdivision covers only one pixel.
The large number of subdivisions required éan be time consuming.
Catmull developed an efficient method to subdivide one specific surface
type, the parametric bi-cubic patch. The subdivisions are made along
flow lines. To test if the subdivided patches are the size of one
pixel, an approximating polynomial is constructed using the four
vertices of the patch. This method effectively handles patches with
little curvature, but problems may be encountered with highly curved
patches or patches with poor orientation. These problems arise fram
the fact that the polygon constructed may not totally contaln the
patch subdivision.

Lane and Carpenter (12) modified this method into a scan line
type method. As patches are subdivided, pleces which do not fall on°

the scan line are placed in an inactive patch list. Subdivision

23

continues until the patch is within a set tolerance of being a
four-sided planar polygon. The active patches along the scan line may
then be processed using the x scan fram the polygon scanline method.
Sweeping in this fashion 1s convenient for raster display.

In 1978, Blinn developed a scan line method (11) for displaying
curved parametric surfaces. The scan line algoritim used is similar to
the one developed by Watkins (11) discussed earlier in this chapter,
but the complexity of the algoritim 1s increased when polygons are
replaced by curved parametric patches. The algorithm contains the y
scan and x scan typical of scan line methods, with the addition of a
patch preprocessor.

The preprocessor finds and orders local y maxima/minima for each
patch. Unlike polygons, for which maximum and minimum values occur at
the corners, maxima and minima for contoured surfaces can occur on the
boundary or on the interior of the patch. The local maxima and minima
of contoured surfaces contain the corners and solutions to the

following equations:

)
35(8,) = 0

(4.3.1)
?
_&at 8,t) = 0

Obtaining the solutions of these nonlinear equations requires an itera-
tive technique. Blinn uses Newton's method for equations of this type.
Curved parametric patches create additional camplications dtiring

the y scan. Intersections of the scan plane, defined by the scan line

24

and viewpoint, with a parametric patch results in a curve rather than
the straight line which must result from polygons. We will refer to
these curves as intersection curves.

Another camplication results fram the fact that the scan plane
may Intersect the patch in more than one place, as shown in Figure 9.
Therefore more than one intersection curve may come from a single patch.

The number of intersection curves on each patch can be determined
as a function of local minima and maxima. When a maximm or minimum
of a patch 1s encountered during the y scan, the number of intersection
curves assoclated with the patch 1s Increased or decreased. This
method 1s 1llustrated in Figure 9. The ith scan line has zero inter-
sectlon curves assoclated with the patch. Moving fram the ith scan
line to the itht+l scan line a global maximum is encountered at the
point A, therefare the number of intersection curves on the patch

ith

A

/ ith+l

ith+2

ith+3

Figure 9. Number of Intersection Curves on a Patch

25

Increases to one. Moving to the ith+2 scan line a second local maximum
i1s encountered at point B increasing the number of intersection curves
to two. The next scan line passes the local minimum at C, reducing
the number of intersection curves to one.

Another problem assoclated with curved patches is the so-called
silhouette edge. Silhouette edges are defined as curves on the surface
where the z component of the normal vector is zero (see Figure 10).

An Intersection curve that Intersects a silhouette edge is not single-
valued in z. This problem may be handled by dividing the intersection
curve at the sllhouette edge into two intersection curves. Thus as
the y scan progresses, the end of the silhouette edge implies a change
in the number of intersection curves assoclated with the patch. This
1dea 1s illustrated in Figure 10. As the y scan moves from the ith
scanline to the ithtl scan line, the begimning end of a silhouette
edge 1s encountered at A, therefore the number of intersection curves
increase from one to two.

To facilitate the x scan, the endpoints of each intersection
curve must also be camputed. Endpoints can occur at the patch bound-
aries or at silhouette edges. If endpoints occur at patch bourdaries,
they may be fourd from one of these four equations.

1) y(0,s) = Yscan
2) y(1,s) = Yscan
(4.3.2)

3) y(t,0) = ¥Yscan

4) y(t,1) = Yscan

26

¢ ith

A

back curve

ith+l
— front curve

\

* silhouette
edge

Figure 10. Effect of Silhouette Edge on the Number
of Intersection Curves

27

Endpoints at silhouette edges are obtained by simultaneously solving:

y(s,t) = Yscan

(4.3.3)
Nz(s,t) =0

where Nz is the z component of the normal vector. These endpoints are
then used during the x scan to update the active curve list.

During the x scan, the visible intersection curve is determined by
comparing the z coordinates of intersections between the sightline and
the active intersection curves. Intersections of each sightline with
the intersection curves are found by simultaneously solving:

x(s,t) = Xscan

(4.3.4)

Yscan

y(s,t)

Typically, equation 4.3.4 is solved using Newton's method, but Blimn
notes that singularities or cusps in the patch may occur, and that for
these cases Newton's iteration is not appropriate.

Blinn also notes that, although the technique 1s accurate and
avolds polygon approximations, the x scan portion of the algoritim 1is
slow, and he developed an alternative algoritim. Along the visible
intersection curve, Blinn camputes sightline intersections only at
so-called key visual points and uses linear interpolation to compute
the normal vectors between them. This reduces the mumber of times

equation 4.3.4 is solved, thus improving camputation time. A

28

description of key visual points and how the algorithm works can be
found in Reference 14.

Another method of directly displaying curved surfaces was
developed in 1980 by Whitted (15). This algorithm, which was developed
specifically for the bil-cublc surface, is a scan line algoritim
similar to Blinn's, with modifications to handle silhouette edges.
Silhouette edges, which are usually of a higher order than cubics, are
approximated by one or more cubics. A patch containing a silhouette
edge 1s then divided along the silhouette edge Into two patches having
boundaries which are cubics in one variable. The preprocessed patches,
whose edges are cubics in one variable, are displayed using a scan line
technique similar to Blinn's algorithm without having to compute sil-
houette edges at every scan line.

Each of the surface shading algoritims discussed has its advan-
tages, elther in accuracy or speed. But the demands of the designer
required both speed and accuracy. The next chapter presents an algori-
thm developed to apply color graphics to surface checking and explains
the steps taken to retain both speed ard accurary.

CHAPTER V
A Surface Shading Algoritim for Design

5.0 Introduction

Since surface checking as defined here has the purpose of finding
subtle flaws 1n the data base, it 1s clear that approximations to the
surface must be scrutinized carefully. If the surface approximation
washes out the sought-after flaws, all hope for successful surface
checking 1s lost. On the other hand, exact methods lead to an in-
creased camputing burden, perhaps rendering the check process so time
consuming as to rule out the kind of interactivity so desirable to the
designer.

To attain the desired accuracy, the algoritim developed in this
thesis bullds on ideas developed by Blirm (14). This type of algorithm
1s referred to as an exact algorithm because the normal vectors are
camputed at each pixel. The algoritim 1s basically a scan line method
with several modifications to help fulfill the dual needs of the design
envirorment, namely, rapid calculation and accuracy. The three major
camponents of this algorithm, the patch preprocessor, the y scan, and
the x scan, are presented in the following sectilons.

5.1 The Patch Preprocessor
A major difference between the algoritlm developed here and the
algorithm developed by Blinn is that many of the calculations done by

Blinmn during the y scan are replaced by careful patch preprocessing.
29

30

The first calculation done by the patch preprocessor is finding
global maxima and minima in x, y, and z for each patch. Conservative
approximations are used, meaning that the patch is always contained by
the approximate extrema. The algoritlm developed to approximate these
extrema is much faster than solving for the exact extrema, and errors
are small for most patches. Appendix A presents a detailed description
of this algoritim.

The x and y extrema are used to determine which patches are on the
screen. These patches are then placed in an active patch list, allevi-
ating any search involving patches not on the viewing screen. As an
example, consider an instance when small areas of an object are magni-
fied and displayed, leaving the majority of the patches outside of the
viewing screen. The preprocessing saves work with patches that are
not on the screen.

From this point on, calculations discussed are for active patches
only. The z extrema for these patches are stored to be used later
during the x scan.

The second calculation done during patch preprocessing is the
calculation of all scan plane intersections with patch edges, including
both patch boundaries and silhouette edges. These intersection points
are the endpoints of intersection curves. The algoritim developed to
compute these endpoints uses Newton's method to solve equations 4.3.2
and 4.3.3 presented by Blirm. But unlike Blimn's algoritim which com-
putes all the endpoints on one scanline, this algorithm camputes all of
the intersection curve endpoints for each patch. Appendix B presents
a detalled discussion of this algorithm. The endpoints camputed for a
typical patch are illustrated in Figure 11.

31

*

-
=

L

Figure 11. Typical Intersection Curve Endpoints

32

After all endpoints are camputed for each patch, endpoints of the
same intersection curve are paired. Pairing methods are also discussed
in Appendix B. As the patches are processed, endpoint pairs are sorted
by their y values and placed in vectors assoclated with each scan line.
After all active patches are processed, the endpoints are then ordered
in x in preparation for the x scan. At this point, any effects of the
approximation used to calculate global patch maxima and minima have
been corrected. No "search" beyond exact patch boundaries has been
done.

A disadvantage of this method is the large amount of memory re-
quired to store the endpoints of the entire screen, as opposed to
Blinn's method which requires memory for only one scan line at a time.
But camputing intersection curve endpoints a patch as a time eliminates
the need for the exact local minima and maxima which are required by
Blinn to campute intersection curve endpoints a scan line at a time, a
calculation similar to cutting constant y sections for each y value in
turn. Another advantage of storing all endpoints arises fram the
desire of the designer to "assemble" an object on the screen. Display-
ing objects a plece at a time may enable the designer to detect how
well pieces are mating and possible interference. In such applications,
patches already displayed need not be processed again by the prepro-
cessor, and the scans need only cover areas where new patches have
been added. Also, single patches may be corrected or altered and the
entire scene can be displayed by only preprocessing the altered patch,
deleting the original patch, and scanning in the neighborhood of the
altered patch. In both of these instances there are large camputational

savings.

33

Since memory cost has been raplidly decreasing to current rather
nominal levels, the time saving fram this technique more than offsets
the large memory requirements. In the case of a camputer with virtual
memory, there is, in fact, no trade-off at all since paging delays for
memory access are very much smaller than the time saved by this prepro-
cessing.

The next section will discuss the y scan. Subsequent sections
glve a detalled explanation of the x scan.

5.2 The Y Scan

Recall that the patch preprocessor has camputed the endpoints of
intersection curves for the entire scene. The endpoints are stored in
vectors representing each scan line. The endpoints in each wvector are
stored in order of increasing x.

The y scan steps through all scan lines on the screen. At each
scan line, the y scan calls the x scan and supplles the assoclated
endpoints. The x scan camputes the visible intersection curve and the
point where the sightline intersects it for each pixel on the scan line.
The y scan then moves on to the next scan line until all scan lines
are displayed.

5.3 The X Scan

The x scan must determine, for each sightline along the scan line,
which intersection curve is visible at the pixel. This problem is
usually called the hidden line problem. After the visible curve has
been identifled, the iIntersection point between the sightline and the

visible curve 1s camputed. Because the intersection curves are not

34

linear, an iterative method such as Newton's method is required to
solve for the intersection point. Solving nonlinear equations in the
context of this task willl be examined in a later section. The next
section will discuss the hidden line problem.

5.4 The Hidden Line Problem

The hidden line problem refers to the identification of visible
Intersection curves or portions of intersection curves. This is done
at each pixel as the x scan sweeps across a scan line.

The first step in determining which curve is visible is to find
all intersection curves intersected by the sightline. (For the re-
mainder of this chapter, the word curve will refer to an intersection
curve.) This is accamplished using an active curve list which contains
curves mfersected by the sightline. The active curve list is updated
for each pixel as the x scan moves across the scan line. The updating
1s done using a pointer and the ordered list of curve endpoints
supplied for each scan line by the y scan and the patch preprocessor.
“The pointer is used to indicate the next endpoint to be encountered
during the x scan. This endpoint will be called the current endpoint.
As the x scan progresses, the x value of the pixel, Xscan, is compared
with the x value of the current endpoint. If Xscan is greater than the
x value of the endpoint, a curve is added or deleted fram the active
curve list, depending on whether the endpoint encountered is a leading
or traliling endpoint of the curve. The pointer is then advanced to
the next endpoint in the list, which 1s again coampared to Xscan, and

the process continues.

35

An example 1s presented in Figure 12. The example contains two.
patches A and B. Patch B contains one silhouette edge. The scan line
has three associated intersection curves, a, b, and c. Curve a lies in
patch A, and curves b and ¢ lie in patch B. The ordered list contain-
ing the x values of the curve endpoints is glven beside the figure,
and lines Jjoining endpoints indicate a pair of endpoints on the same
curve. The first endpoint of a pair appearing in the list is the
leading endpoint of the curve and the second endpoint 1s the trailing
endpoint.

The x scan starts at the left end of the scan line. At this point
no patches are intersected by the sightline. Therefore there are no
active curves when the x scan begins. The pointer starts at the top of
the endpoint list, pointing at Xl1. As the x scan progresses and the
value of Xscan is incremented, it is compared to the endpoint pointed
at by the pointer, or the so-called current endpoint. Note that X1 is
a leading endpoint, therefare when Xscan becomes greater than X1, curve
a 1s intersected by the sightline, and therefore is placed in the
active curve list. The pointer 1s then advanced to the next endpoint,
X2, arnd Xscan 1s compared to X2. Because Xscan is less than X2, no
additional changes are made to the active curve list. The x scan
continues until Xscan becomes greater than X2, at which point curve b
1s added to the active curve list. The pointer is advanced to X3, but
X3 1is still greater than Xscan, so no additional cha.ng_es are made to
the active curve list, which now contains curves a and b. Because X3
is a trailing endpoint, when Xscan becomes larger than X3, curve a is
removed fram the active curve list. The pointer 1s then advanced to

X4, which 1s also less than Xscan, and therefore curve c is added to

36

Patch B

Zz 7 7

\\\

Patch A

Figure 12. Illustration of Active Curve Updating

37

the active curve list. The pointer then advances to X5, which is
greater than Xscan, and therefore, at this point the active curve list
contains b and ¢c. As the x scan continues, it then passes endpoint
values X5 and X6, both tralling, leaving the active curve list empty.

After determining all curves intersected by a given sightline, it
must be determined which curve is first intersected by the sightline,
or, in other words, which curve is visible at the sightline. The
algorithm which determines the visible curve uses two steps. The
first is a global depth camparlison of patches from which the active
curves originate. This step may determine if some curves carmot be
visible. The second step determines which of the remaining curves is
visible. The global depth comparion of patches will first be discussed.

Recall that global z extrema were camputed for each patch during
patch preprocessing. The z limits of patches containing active curves
are campared to determine if any are globally behind others. This is
typical for most objects being modelled, for example, solid objects
generally have two disjoint sides. Active curves lying on patches
globally behind others must be béh:lnd curves lying on the other patches.
Such curves are immediately eliminated when determining the visible
curve. Note that the global patch check 1s required only when there
is a change in the active curve list.

Fram this point, determination of which active curve is visible 1s
broken into two classifications, depending on whether or not patches
Intersect each other on their interiors. For example, Figure 13
11lustrates two patches which intersect on their Iinterilors.

The more general case, where Intersecting patches may be present,

requires a depth check at each pixel. The z coordinate of

38

Line of Intersection

Figure 13. Interior Intersection of Two Patches

intersections between the sightline and the active curves are computed
to determine which curve is vislble at the pixel. Camputing the 2z
value of the intersection point requires solving the nonlinear equations
4.3.4 for parametric values s and t, given x and y of the pixel.
(This solution is discussed in detail in the next section). The values
of s and t are then used to compute z. Doing this calculation for all
active curves is compute intensive, thus savings fram the global z
check, which reduces the number of active curves, is evident.

The more restrictive case, where patches are assumed not to inter-
sect each other, requires a depth check only when the active curve list
1s changed. This is: due to the fact that once a curve 1s determined to
be in front of another, it remains in front. In fact, when a new curve

is added to the active curve list it need only be compared to the

39

current visible curve to determine which curve is visible, and only
when the visible curve 1s deleted fram the active curve list is the
depth camparison required.

It 1s also possible to convert cases with Intersecting patches
into those without. This is done by dividing the intersected patch
into two patches by camputing the intersection of the two patches,
and dividing the assoclated intersection curves into two curves. This
idea is illustrated in Figure 14. In this case, two intersection
curves are divided into four curves which only intersect at thelr ends,
thus the faster algorithm can be used to display these patches.

Clearly, if 1t can be assumed that patches do not have interior
intersections, calculations are significantly reduced. Of course,
such assumption precludes the detection of unwanted interference.

The next section will discuss solution methods for finding

intersections of a sightline and an intersection curve.

5.5 Solutions of Nonlinear Equations

Up to this point, the algoritim has determined which curve is
visible for a given sightline. The curve is identified by which patch
it 1s in and its endpoints. The next step is to campute normal vectors
for the assoclated pixels along the visible curve. The s and t values
of each sightline intersection point are needed to compute the normal
vectors. Therefore, an iterative technique is required to solve equa-
tion 4.3.4 for s and t.

Blinn suggested bivariate Newton's method (16,17) for solving
the equations. Newton's method requires the s and t values of a

starting point for the iteration. Faster convergence is achleved when

ko

N AL
e N\ 3 4
N\
\
\
' 1
Original Intersection Curves a [g
4
1
a (2-
-3
i
r5
\33’4’5:6] g‘
2| B \\\ ¢ 7 8 8
X \ d
\

Newly Formed Intersection Curves

Figure 14. Division of Intersection Curves for
Interior Intersections

LY

the starting point is near the solution. Good initial starting points
are avallable from the x scan. Interior to a visible curve, the s and
t values from the previous pixel are used as a starting point for the
present pixel. When the visible curve changes, a starting point 1is
required on the new curve. In this case, the s and t values of the
endpoint of the new visible curve closest to the x value of the sight-
line 1s used as the starting point.

It i1s also important to note a singularity that may prevent con-
vergence of Newton's method. Consider a situation.wherein s and t for
a pixel on a visible curve are known, ard the ds and dt to arrive at
the next pixel are sought. The following equation is solved for ds

and dt
- - - - -l
X x|l
ds sg -a-t- dx
= (5.5.1)
9 9
o [5]

where dx is the known x distance to the next pixel and dy is the known
y distance to the next pixel. Solutions exist only when the matrix of
partial derilvatives is nonsingular, i.e., when the determinant is
non-zero. The determinant of this particular matrix is proportional

to the z camponent of the normal vector at the point. Therefore,
Newton's iteration will fail on areas of the patch where the z camponent
of the normal vector 1s near zero. This corresponds to normal vectors
lying in the plane of the screen, i.e., to silhouette edges. Therefore,
Newton's method must be modified in these areas.

42

In the neighborhood of a silhouette edge, an absolute maximum on
4s and At is Imposed so that the iteration stays in the region of the
patch where it started. Convergence can be obtained for most pixels
near silhouette edges by heavily damping Newton's method, but still
retaining the As/At ratio. As the number of iterations increases, the
step size 1s increasingly reduced. In the event that the 1lteration
does not converge after a limited number of 1terations, the pixel is
assigned the same normal vector as the neighboring pixel.

Another class of methods, the generalized secant methods, can be
used to solve this type of nonlinear equations. The advantage of these
methods 1s that the partial derivatives used in equation 5.5.1 of
Newton's method are not used after the first step of the iteration.
Obtalning these derivatives requires numerous calculations. Although
the convergence rate for secant methods 1s slower than Newton's method,
extra iterations using secant methods are offset by the savings incurred
from not having to compute partial derivatives at every iteration step.
One particular generalized secant method, Broyden's method (16), which
i1s used in thls thesls, is discussed in detail in Appendix C.

5.6 Approximate Methods

A method was developed for approximating the normal vectors along
a visible curve between its endpoints similar to the method of key
visual points developed by Blinn. At key visual points, Blirnn computes
the exact normal vector. For points on the visible curve between key
visual points, he linearly interpolates between the normals at the key
visual points. One method used by Blinn to determine the location of
key visual points i1s to compute a key visual point every time the normal

43

vector rotates a given number of degrees in the scanplane. This
procedure was apparently derived to avold the burden of calculating the
s and t values to go with each pixel.

The approximating algorithm developed in this thesis also computes
exact normals only in a few prescribed planes along the visible curve.
But instead of linearly interpolating, a third order interpolation, or
so-called blend, is used between the points. (This method preserves
the slope at the endpoints of the curve, which 1s necessary if slope
discontinuities between patches are to be visible.) The following

equation is used to blend the normal vector:
= N ¥ * * ¥
N = Ny*F;(x) + N *F(x) + N, g F3(x) + N, *F), (x) (5.6.1)

where N0 is the normal vector at the leading endpoint of the curve and

Nlisthenonmlatthetrailjngendpoint. AlsoNx and N_, are the

0 x1

partial derivatives of the normal vector with respect to x at the
leading and trailing endpoints, and Fl(x) through F)(x) are third order
blending functions (5). These blending functions guarantee that the
normal and the derivative of the normal with respect to x is maintained
at the ends.

Since the normal vector is a camplicated function of s ard ¢,
camputing the derivative with respect to x is not straightforward.
Appendix D presents the derivation for Nx'

It is usually sufficlent to blend between the endpoints of the
visible curve, thus no interior points need be camputed. But for
sharply curved patches 1t may be necessary to break the curve into

shorter segments. It is also Important to note that Nx i1s undefined

Ly

along silhouette edges. For this case, the blend is started a slight
distance in fram the silhouette edge, and points near the silhouette
edge are camputed exactly.

This approximating technique has been shown to be much more
accurate than linear interpolation, with only a slight increase in
camputation time. When campared to exact techniques, a large time
savings is realized.

5.7 Summary

A tradeoff of time versus accuracy is evident for all of the
methods discussed. The most accurate technique, the exact method,
requires calculation times which may be prohibitive for extensive use
in an interactive envirorment. However, it is possible, through a
cambination of exact and approximate methods developed in this thesis,
to create a practical design tool.

The next section will present results. Accuracy ard calculation
time will be coampared for several algoritlms. The effectiveness of
each technique for detecting surface flaws will also be discussed.

Finally, a possible surface checking scheme will be outlined.

CHAPTER VI
Algorithm Evaluation

6.0 Introduction

In the followlng section, comparisons are made between the exact
and the approximate methods presented in this thesis. First the
ability of the algorithm to detect surface flaws 1s examined. The
calculation time is then campared for each algorithm. Finally, a large
data base with many patches is used to 1llustrate the overall effec-

tiveness of the modified y scan developed in this thesis.

6.1 Error Detection

An evaluation of the algoritim's ability to detect surface flaws
makes use of the bump presented in Chapter 2. The bump with no slope
discontinuities is shown in Figure 1. Figures 4 and 5 show the bump
after a slope discontinuity was introduced.

' The following examples campute the intensity for each pixel based
on the absolute value of the dot product of the normal vector and the
light vector. Taking the absolute value Implies the light wvector 1s
in both directions, therefore all surfaces are illuminated. Although
this is not realistic, it is effective when looking for surface
Irregularities.

The exact algorithm 1s used to shade the bump with and without the

slope discontimuity. Figure 15 presents the bump without the slope

L5

46

Figure 15. Shaded Bump

discontinuity. The color discontinuity in Figure 16 clearly indicates
the slope discontinuity along the patch boundary. This could easily
be detected by a designer who could then correct the error.

The approximate method can also be used to identify the slope
discontinuity. The image of the bump computed by the approximate
method is shown in Figure 17. Again, a color discontinuity is apparent
along the patch boundary containing the slope discontinuity. It should
be noted that since the interpolation scheme is accurate at patch
boundaries, flaws on the interior of the patch may not be as accurately
represented by the approximate method as those near the patch boundary.

It is of interest to note that not all views of the bump, or all
light sources will highlight the slope discontinuity. For example,

Figure 18 presents the same view of the bump as displayed in Figure 16,

47

Figure 16. Shaded Bump with Slope Discontinuity

Figure 17. Shaded Bump with Slope Discontinuity,
Approximate Method

48

Figure 18. Shaded Bump with Slope Discontinuity,
Different Light Source

but the light source has been moved. The slope discontinuity is not
apparent in Figure 18. This is due to the fact that the change in
the normal vector across the discontinuity is in the plane normal to
the light vector. Thus the angle between the light vector and the
normal does not change, and no color discontinuity is generated.
Therefore, when checking a given view of a surface, it is necessary to
observe images produced from several different light sources. The
next section will discuss an efficient method of recomputing the image

for each light source.

6.2 Image Generation for a New Light Source
Computing an image for a new light source without changing the
viewpoint is a straightforward calculation. Surface normal vectors

49

camputed for a given view remain the same for any light source.
Therefore, moving the light source requires only the computing of the
pixel intensity using the known normal vector and new light vector.
This 1s a simple calculation, orders of magnitude less burdensame
than camputing the normal vectors themselves.

In this thesis, pixel intensity is camputed by taking the dot
product of the normal vector and the light vector. Therefore, moving
the light source requires calculation of one dot product for each
pixel. Such a calculation is potentially simple enough to be inter-
active. It is conclevable that with the help of an array processor,
the light source could be hard wired to a joy stick, and new light
source locatlions could be viewed almost contimuously. In contrast,
changing the viewpoint necessitates recalculation of the normal vectors,
with attendant silhouette and hidden surface problems.

The next section will benchmark several of the images presented

above.

6.3 Compute Times

Calculation times for the bump are indicated in Table 1. Note
that two different numerical techniques are listed for the exact method.
These indicate that Broyden's method results in a significant time
savings campared to Newton's method. As expected, the table also
indicates that the approximate method requires less time than either
of the exact methods. Finally, the time required to compute Figure 18
using normal vectors camputed for Figure i6 , Which amounts to moving
the light source, 1s listed to 1llustrate the simplicity of this

procedure.

50

TABLE 1
Campute Times

Exact method (Newton's) 42 sec
Exact method (Broyden's) 37 sec
Approximate method ..ccceceeee.. 19 SeC

All routines used in these camparisons are in Fortran and are
being run on a Prime 750.

6.4 Object Assembly

The following example 1s used to demonstrate how objects can be
assembled on the screen without reshading the entire scene. Data
representing an aircraft wing are used for the example. A flow line
representation of the wing is shown in Flgure 19.

The following 1s a possible scenario for a designer checking the
wing. Assume portions of the wing were designed by two different
designers. Thus, the designer may first choose to inspect the lower
half of the wing. The resulting lmage 1s shown in Figure 20. At this
point many different light sources would be used to Inspect the

Figure 20. Shaded Aircraft Wing, Lower

52

surface. Upon completion of this check, the designer may want to add
a portion of the wing as shown in Figure 21. Again, many different
1light sources are used to inspect the newly added portion and to check
how it fits with the lower half. At this point he may choose to
camplete the assembly as shown in Figure 22 and continue the checking.
Later, while checking the fuselage, the wing could be added to insure
a proper fit. The total aircraft is shown in Figure 23.

6.5 Surface Checking Scheme

A possible surface checking scheme could entail the following
steps. A designer may start the surface check by displaying the
surface using flow lines. This would be used to check for missing

data or gross errors in the database. During this procedure, the

Figure 21. Shaded Aircraft Wing, Lower
plus Half of Upper

Figure 22. Shaded Aircraft Wing, Entire Surface

54

designer would note which views clearly display areas of interest. At
this point he may choose to examine a view more carefully. This view
would then be shaded using either the approximate method or the exact
method. From a time standpoint, it is advantageous to use the approxi-
mate method whenever possible, but which algorithm should be used
would depend on several other considerations.

For example, the type of surface flaws which are to be identified
would affect the cholce of the algoritlm. If the slopes along patch
boundaries are being checked, the approximate method would be very
effective. On the other hand, if flaws involving curvature inflections
on patch interiors are suspected, the exact method would better identify
these errors.

The designer may also have prior knowledge of possible problem
areas on the surface, or may have located possible problem areas using
the approximate method. In this case, these problem areas could be
magnified and viewed using the exact method.

Regardless of which algorithm i1s used, each view is then inspected
using many different light sources. A cambination of these procedures
and the assembly procedure would be used repeatedly until the designer

i1s satisfied that the surface is correct.

55

CHAPTER VII

Conclusions

Surface display methods developed prior to this work were primarily
aimed at producing aesthetically pleasing images. The goals of this
thesis, to develop a display algoritlm to be used for surface checking,
required a different approach to the problem.

The algorithm developed in this theslis has proven to be effective
at locating surface flaws, and has been shown to be time effective
from a designer's standpoint, facilitating a much more efficient check
procedure than using various views from line drawings.

Future work should include speedup of the exact method through the
use of better hardware. For example, many of the shading calculations
can be done in parallel, lending themselves to array processing. Also,
improvements in the accuracy of the approximate method may be possible
through the use of higher order interpolation schemes. Other shading
techniques could also be investigated, such as shading by curvature,
which could highlight different types of surface flaws.

APPENDICES

APPENDIX A

Calculation of Approximate Patch Extrema

Patch extrema are approximated by expanding the matrix expressions
for the spatial coordinates, and summing maxima of terms. The expres-
sions for the z extrema will be derived in the following discussion.
Identical expressions exist for x ard y.

Figure Al 1llustrates a typical patch. Parametric varlables s
and t run fram zero to one. The patch boundaries, which are curves of
one parametric variable, are numbered from one to four as shown in the
figure. For example, Ll(s) is the boundary curve at t = 0. The
following discussion specifically deals with Coons surface definitions,
but similar techniques can be applied to other parametric surface
definitions.

The matrix equation for z as a function of s and t on the surface

is:
2 = (F.(s)F,(s)F.(s)F,(s)) [z 2 20 20 ||r.t)
1 2 3 Y 00 01 at ot 1
0Z 92
Z10 Zy; 320 =1 F2(t)
2Z5y 224 2z 00 2z a1 [F.t)| (a.1)
3s 9s 3sat asat 3 *
2 2
0Z)4 4 9 2
_a_slo 3501 38EL0 asatll_ _Fll(t)J

where Fl through Fll are cubic blending functions, and data subscript

appearing in the matrix related to the patch corners, 1.e., ZOl is the

56

57

(1,1)

Figure Al. Definition of Patch Bourdaries

58

z value at the corner s=0, t=1. Partially expanding equation A.l
yields:

z = Ll(s)Fl(t) + L2(s)F2(t)

+ -g%OO*F3(t)Fl(s) + 3501*1?”(1:)1? (s) (A.2)

92 92
+ -a—t—lo*F3(t)F2(s) + ﬁll*Fu(t)Fz(s)

where Ll(s) and L2(s) give the z coordinates on the bourdaries 1 and 2
respectively. If Gl(t) and GZ(t) are defined as the following:

Gy (£) = a—ZOO*F3(t) + 2Z01#F) () (A.3)
= _3_ .a_z. #*
G,(t) a,§10*~F3(1:) + SZLIMF, ()
Then equation A.2 becames:
Ll(s)Fl(t) + L2(s)F2(t) (A.b4)
+ Gl(t)Fl(s) + G2(t)F2(s)
The first two terms are associated with t blending of the s varying
boundaries, while the last two terms represent s blending of additional
surface contours due to partial derivatives with respect to t (see

Figure Al). Using the fact that max(a+b) < max(a) + max(b), equation

A.5 becames:

59

max(z) <_max(L1(S)F1(t) + L2(S)F2('c)) (A.5)
+ max(Gy (£)F; (s) + G,(£)F,(s))

Also note that since F, + F, = 1 the max(aFl + bF2) = max (a, b), 1l.e.,

1
the larger of the two values a and b. Therefore the approximate

maximum of z can be written as:

max(z) <_max(L1(S), L2(S)) + mx(Gl(t), Gz(t)) (A.6)

Equation A.6 is easily solved. The expressions Ll, L2 s Gl’ and

G, are cubics of one variable, therefore locations of local extrema

2
can easily be found by differentiation and solving of the resultant

quadratics. Local extrema located between 0 and 1 are then compared
to end values to obtain global extrema over the range of 0 to 1. A

similar derivation can be done to determine a lower bound for the

minimm z.

APPENDIX B

Calculation and Pairing of Intersection Curve Endpoints

B.0 Calculation of Intersection Curve Endpoints

All intersection curve erdpoints of a patch are computed at one
time. Endpoints can occur on patch boundaries or on silhouette edges.
Calculation of endpoints on patch boundaries will be discussed first.

B.0.1 Patch Boundaries
Patch boundaries are functions of one parametric variable. End-
points are camputed using Newton's method to solve the following

equation:

Y(s) = Yscan

X (B.1)

where Y(s) is the expression for the y value of the patch boundary,

and Yscani

lines may cross a patch boundary, therefore this calculation must be

is the y value of the ith scan line. Any number of scan

performed for all intersections. There may also be more than one
intersection of a patch boundary with a given scan line. Both of these
difficulties are handled using the following algorithm.

The algorithm starts at the end of the patch boundary representing

the lower limit of the parametric value. For this discussion the

60

61

parametric value will be s and therefore the search starts at s=0.
Both y and dy/ds are camputed at the starting point. The value of
Yscan is then incremented in the direction of dy/ds, starting next to
the y value of the starting point, until the upper limit of the para-
metric value 1s encountered. Each solution of equation B.l1l uses the
solution of the previous Yscan as a first guess for Newton's method.
If anytime during the Newton iteration the sign of dy/ds changes, the
iteration is stopped and Yscan 1s incremented in the new direction,
and Newton's iteration is continued.

These ideas can be 1lllustrated in the example presented in Figure
Bl. Due to the positive derivative at s = 0, the first Yscan value
greater than YO, Yscani, is used in equation B.1l to solve for endpoint
1. The derivative at point 1 is also positive, therefore Yscan is
incremented to Yscan

i+1
mented to Yscan:l +29 but the first step of Newton iteration moves s

to campute endpoint 2. Yscan is again incre-

past s ..

i1s decremented to Yscani +1° and Newton's method 1is resumed, using as a

and a derivative sign change 1s detected. Therefore Yscan

starting point the last s value camputed during the aborted iteration.
Because s was already incremented past Smax? Newton's iteration
converges to endpoint 3. This process is continued until s =1 is
encountered. This operation is performed for all four sides of the

patch.

B.0.2 Silhouette Edges

The algorithm used to campute intersection curve endpoints along
a silhouette edge 1s based upon two assumptions: 1) all silhouette
edges came in contact with a patch boundary In at least one point, and

63

Yscani +2
Yscani +1
Yscani

s=1, Y=Y

Figure Bl. Calculation of Boundary Endpoints

64
2) each silhouette edge has no more than one sign change in dy/dx, or
so—-called inflection point, along the silhouette edge. Figure B2
11lustrates both of these conditions.

The algorithm first locates intersections between silhouette
edges and patch boundaries. A silhouette edge 1s defined as the locus
of points on a patch whose z camponent of the normal vector 1s zero.
Therefore points on the boundaries whose z component of the normal
vector 1s zero can be thought of as silhouette edge starting points.
The z component of the normal vector on a patch boundary can be
expressen in terms of one parametric value, therefore zeros can be
found using one-dimensional Newton's method. These points are stored
for the next step of the algoritim.

Using a silhouette edge starting point, the algoritim increments
Yscan and camputes the intersection points. Using partial derivatives
at the starting point, the direction to increment Yscan is determined.
For example, on a constant t edge, t=0, if dy/dt is positive, ¥Yscan
would be incremented in a positive direction. The initial ¥Yscan is
determined by the y value of the starting point and the increment
direction. Intersection points are found using bi-variate Newton's

method to solve the following simultaneous equations:

Nz(s,t) =0
(B.2)

Y(s,t) = Yscan,

where N z 1s the z component of the normal vector. Good initial values
for Newton's l1teration are supplied by the solution at the previous

Yscan.

65

Inflection Point on
/ Silhouette Edge

Silhouette Edge
Starting Point

Figure B2. Critical Points on a Silhouette Edge

66

Yscan is incremented until one of two termination criteria is met:
1) Newton's iteration does not converge. This condition occurs when a
silhouette edge has ended, or an inflection point has been passed.
Endpoints that exist past the inflection point are computed when the
opposite silhouette edge starting point 1s used. This idea is illus-
trated in Figure B3. Starting at point A, endpoints 1 and 2 are
camputed and termination occurs when Newton's iteration does not con-
verge for Yscan,,,. Simillarly, endpoints 3 and 4 are computed when
starting fram point B. 2) A limit on s or t is exceeded, meaning the
sllhouette edge reaches a patch boundary. When this criterion is met,
the starting point associated with the termination point is removed

from the starting point list to avoid duplicate calculations.

B.1l Pairing of Intersection Curve Endpoints

After all intersection curve endpoints are camputed for a patch,
endpoints of the same intersection curve are paired. Endpoints are
sorted by scan line and pairing is done far each scan line. The logic
used to palr the endpoints deperds on the mumber and type of endpoints
for the given scan line, l.e., whether the scan line originates from a
patch boundary, or fram a silhouette edge. The majority of pairing
results from several simple cases discussed below.

Two common cases, two or four boundary endpoints, are 1llustrated
in Figure B4. In these cases the pairing is straightforward. Another
camon case, two boundary endpoints and one silhouette endpoint, 1s
presented in Figure B5. Note that the silhouette endpoint actually
plays the role of two endpoints. Pairing 1s again straightforward.

67

Figure B3. Method of Calculating Silhouette Endpoints

68

B
T
s

Figure B4. Simple Pairing Cases

69

Filgure BS.

Yscani

Pairing 1 - 2
1-3

Pairing with One Silhouette Endpoint

70

When only one bourndary endpoint exists on a scanline, it is assumed
to be at a patch maximm or minimum, as shown in Figure B, and the
endpoint is deleted. Because these cases make up the majority of
pairing, the time required for palring is small.

More camplicated cases are paired by determining if each endpoint
is a leading or trailing endpoint. The algorithm which defines the
leading or trailing status uses the ldea that once the status of the
patch boundary is defined, it retains that status until: 1) a sil-
houette edge starting point 1s passed, or 2) a change in the sign of
dy/ds occurs along the boundary. These ldeas are 1llustrated in Figure
B7. At s=0, the boundary is a leading edge, but after the first
critical point, i.e., the silhouette edge 1s passed, the patch bound-
ary becames a tralling edge. Note that the silhouette edge takes on
the status the patch boundary had before 1t crossed the silhouette
edge, thus the silhouette edge in Figure B7 1s leading. When the
second critical point, i.e., the sign change in dy/ds, is passed the
patch boundary becomes a leading edge.

Therefore the status of endpoints 1s defined leading or trailing
and they are stored as they are being computed. The algoritlm starts
by computing the status of the four patch boundaries at their begin-
nings. Next the sllhouette edge starting points are computed. As
endpoints of the patch boundary are computed, thelr status remains the
same as the begimning until an 1) inflection point 1s passed, which
corresponds to a change in the Yscan increment direction, or 2) a
silhouette edge starting point is passed. In the second case, the

silhouette edge starting point 1is assigned the same status as the

71

Endpoint 1 Deleted

Figure B6. Single Boundary Endpoint

T2

Patch Boundary Leading ~ S=

/- Yscan, .4

Silhouette Edge
Starting Point

Yscani
Patch Boundary Trailing” atch
Boundary
/ weadine
Silhouette Edge Leading Inflection
Point

Figure B7. Determination of Leading or Tralling Status

73

boundary it started from. Silhouette edge endpoints then have the
same status as their starting points.

Pairing endpoints is done by pairing leading endpoints in the
order they occur from left to right with the closest trailing end-
points, until all endpoints are used. As endpoints are used they are
deleted fram the list so they willl not be paired twice. Silhouette
endpoints are paired twice. Figure B8 illustrates this process.
Unpaired endpoints are displayed in the figure after each pairing.

Beginning Endpoint List; L-leading, T-trailing
1L, 2L, 2L, 3T, 3T, 4T

First Pairing 1L-3T

2L, 2L, 3T, 4T

Second Pairing 2I~3T

2L, 4T

Third Pairing 2L-4T

Figure B8. Pairing Example

APPENDIX C
The Generalized Secant Method
for Solving Nonlinear Equations

Newton's method, which is a popular technique for solving non-
linear equations, is addressed in detail in (16) and (17). In general,
for the one-dimensional case, a solution ts’ is sought for the

nonlinear equation:
X(t) =0 (C.1)

Given a starting value t., t is incremented each iteration according to

0]
the equation:

dx(t) -1

n
tyy = bty - (55— * X(tn) (c.2)

An example of Newton's method 1s graphically illustrated in
Figure Cl. The iterations are continued until x(tn) 1s less than some
prescribed error, and then tn is assumed to be a solution.

The secant method, which is similar to Newton's method, uses one
i1teration of Newton's method to start the sequence, ard then increments
t using the following equation:
tn -t

=t -[n-1

Sl = ' IRy - X(E_ 00 ¢ X (c.3)

75

76

f£(t)
f(to) e e e o e e e e e = o o — —
|
|
|
|
|
|
|
f(tl) [r——— e ———— :
Newton :
Direction '
! t

ct
t
o

Figure Cl. A Comparison of Newton's Direction and
the Secant Direction

7

Note that the secant method approximated dx/dt with a finite difference,
which 1s referred to as the secant direction. The secant direction 1s
contrasted with Newton's direction in Figure Cl. The figure indicates
a decreased convergence rate for the secant method. The convergence
rate for the secant method is (1 + v5)/2 which is less than the
quadratic convergence rate of Newton's method. The major advantage of
the secant method 1s that derivatives are not required after the first
step. The cholce of the better method depends on the relative diffi-
culty of camputing the needed derivative.

Newton's method is easlly extended to an N~dimensional space. In

this case, there are N nonlinear equations of N variables of the form:
Xk(tl, ts t3.....t.N) =0 k=1,2,3,...N (c.4)
or in vector form:
X®) =0 (c.5)

where X and t are N vectors. The equation which updates the T vector

becomes:

- - - -]l =,—
Cw1 = - J(tn) X(tn) (C.6)

where 3(tn) 1s the Jacoblan matrix defined below.

78

axl axl axl
atl -at2 a"cN
|
{
~ oX 9X |
2 2
Jt) =|lem — | (c.m
n a.tl 81:2 :
{ |
| |
Xy Xy
-81:1 E)’CNd
t

The vector 'fn converges quadratically toward Fs, the solution vector.
Generalization of the secant to N dimensions is more difficult.
A matrix én 1s desired such that:
£, =% -BXT) (c.8)
converges to a solution vector Es' By definition of the secant

direction, én must also solve the equation:
ot =X (c.9)

where At =t -t . and X = X(tn) - X(tn_l). There are many B s

which solve equation C.9, but the assumption 1s made that én i1s close
to the previous Bn-l’ and the difference between them is Cn_lz

-~ -~

B =B_.+C

n n-1 n-1 (C.10)

Generalized secant methods are classified by the rank of the
updating matrix, én’ The discussion that follows deals with rank 1

79
updating methods, in particular Broyden's method (17). The derivation
1s as follows.
Substituting equation C.10 into equation C.9 yields:
(B _q +Cyq) 8t = aX (C.11)

- J_
Choosing a vector W, such that Wat n is not equal to zero, multiplying
both sides of equation C.11 by W, and rearranging yields:

- 1 -
Cpy = () * (8%, - B a8 ® W (c.12)
n
A comon choice for W is:
W= Afn (C.13)

This choice of W minimizes the change in én‘ Another choice for W,
=1

which minimizes the change in ;1 , 1s:

W= Bn_lA’& (C.14)

The effect of W on the convergence rate depends on the application.

It is useful to campare Newton's method and Broyden's method in
the context of the x scan. The nonlinear system of equations being
solved at each pixel 1is:

X(s,t) = Xscan; (C.15)

Y(s,t) = Yscan,

80

The starting point used for each iteration is the solution at the
previous pixel. The first step of Newton's method, which is required
by both solution methods, is readily available fram the known partial
derivatives camputed when finding the normal vector at the previous
pixel. Therefore, camparisons of the two methods will begin after the
first step.

The majority of the calculations required for solving equation
C.15 using Newton's method arise fram solving for x, y, and the
Jacoblan matrix at each step of the iteration. The Jacobian matrix
consists of the four partial derivatives, dx/ds, dy/ds, dx/dt, and
dy/dt. Computing each of these six values requires multiplication of
three matrices, a 1x4 containing blending functions in s, times a 4x4
containing patch data, times a U4x1l containing blending functions in t.
This product can be thought of as five vector dot products of length
four, but the calculation of x and y has camnon intermediate products
with two of the partial derivatives, therefore after camputing x and
¥y, only two addition dot products are required to obtain two partial
derivatives. The remaining two partial derivatives cost five dot pro-
ducts each, therefore the approximate cost of Newton's method for one
step 1s 22 dot products. On the other hand, Broyden's method only
requires calculation of x and y at each iteration, along with calcula-
tions for the matrix updating approximately equal to two of the dot
products discussed earlier. Thus the approximate cost for one step of
Broyden's method is 12 dot products.

A direct camparison of the two methods for a given problem then
depends on the average number of lterations required for each solutlon.

Several test cases have indicated that for each pixel Newton's method

81

uses an average of .8 additional steps after the initial step, while
Broyden's method required an average of one additional step. This

indicates an approximate savings of 30 percent for solving equation
C.15 during the x scan.

APPENDIX D

Calculation of %

The normal vector is a function of the parametric values s and t,
therefore derivatives with respect to s and t are easily obtained.
(see eq. 2.1.3) Camputing derivatives of the normal vector with
respect to x 1s not straightforward.

The first step in camputing 3N/3x 1s to compute the derivative of
the normal vector along the Intersection curve cut by the scan plane.
The intersection curve 1s a constant y curve, therefore the following

equation 1s true along the curve:
= 21 # ﬁl =
dy = L% ds+ - *dt =0 (D.1)

This equation gives the ratio of ds to dt to move along the curve, as
illustrated in Figure Dl.

The derivative of the normal along the curve can be found using
the following equation:

aN _ 2N 2s , 3N 3t

3u @S ou = 9t au (D.2)
where u 1s the arch length along the curve.

But the u direction contains components of x and z as shown in Fig-
ure D2. From Figure D2, dx and du are related by the following expres-

sion:

82

83

Intersection
Curve u

Figure D1. The Ratlo ds/dt Along the Intersection Curve u

84

Intersection
Curve u

Figure D2. Relationship of the u and x Directions

85

dx = du * cos(e) (D.3)
where

8 = arctan (%z(-) (D.4)
where

g_)?% = g_i g_ﬁ (D.5)

and

9X ., 39X 38 ., 3X 3t
ou 9s s3u 9ot aJu

9Z 9Z 98 9z ot
ﬁ'ﬁ'?ﬁ 3T 3u (D.6)

Thus, equation D.3 ylelds:

.a_l\.l. = .aﬁ %* 1
3X 9Ju cos(e) (D.7)

LIST OF REFERENCES

10.

11.

12.

LIST OF REFERENCES

Struik, D.J., "Differential Geametry", Addison-Wesley, Cambridge,
1950.

Weatherburn, C.E., "Differential Geametry", University Press, Cam-
bridge, 1927.

Osserman, R., "A Survey of Minimal Surfaces", Van Nostrand Reinhold,
1969.

Forrest, A.R., "On Coons and Other Methods for the Representation
of Curved Surfaces", Computer Graphics and Image Processing, 1972,
pp. 341-359.

Rogers, D.F. and Adams, J.A., "Mathematical Elements for Camputer
Graphics", McGraw-Hill, 1976.

Coviak, R.A., "Color Graphics in Engineering Design", Masters
Thesis, Dept. of Mechanical Engineering, Michigan State University,
E. Lansing, MI., 1981.

Warnock, J.E., "A Hidden Surface Algoritim for Camputer Half-Tone
Generated Pictures", Computer Science Dept., University of Utah,
TRU4-15, June 1969.

Newell, M.E., Newell, R.G., and Sancha, T.L., "A Solution to the
Hidden Surface", 1972.

"Graphics Utah Style = 80", Manual, University of Utah, Salt Lake
City, Utah, 1980.

Sutherland, I.E., Sproull, R.F., and Schumacher, R.A., "A Charac-
terization of Ten Hidden Surface Algoritmms", Camputing Surveys,
Vol. 6, No. 1, March 1974, pp. 1-55.

Watkins, G.S., "A Real-Time Visible Surface Algoritm", Camputer
Science Dept., UTECH-CSC-70-101, June 1970.

Lane, J.M., Carpenter, L.C., Whitted, T., and Blimn, J.F., "Scan

Line Methods for Displaying Parametrically Defined Surfaces",
Camunications of the A.C.M., Vol. 23, No. 1, Jan. 1980, pp. 23-34.

86

13.

14,

15.

16.

17.

87

Catmull, E., "A Subdivision Algorithm for Computer Display of
Curved Surfaces", UIEL~-CSC-T4=-133, 1974.

Blinn, J.F., "Computer Display of Curved Surfaces", Ph.D. Diss.,
Can%uter Science Dept., Unlversity of Utah, Salt Lake City, Utah,
197 .

Whitted, T., "An Improved Illumination Model for Shaded Display",
Cﬁmmmications of the A.C.M., Vol. 23, No. 6, June 1980, pp. 343~
349.

Ortega, J.M. and Rheinbolt, W.C., "Iterative Solutions of Non-
linear Equations in Several Variables", Academic Press, London and
New York, 1971.

Conte, S.D. and deBoor, C., "Elementary Numerical Analysis",
McGraw-Hill, New York, 1980.

18I

MICHIGAN STATE UNIV. LIBRARIES
MR
31293107539284

