

WWW!WWI!IIWHIWW
THESis

310753 9234

. _-.. .-

L”“‘7’ 3'3;‘2?

E§:£.;;,.4.,i~3.3
:3“Stet:

Um:33;:tyJ

mismcertif
ythathe

dissertation
enfifled

SURFACE ASSESSMENT USING

COLOR GRAPHEcs

pmted by

Martin John Vander'ploe
g

hasbeenac
ceptedmsfi

nfinmmt

“mem‘luilunemsf
or

PhLDL
inW

Engineering

“M3m
M‘ijl'ofcsu

l’

MUM/92>

/ /

"Su
i-W

m-01mm
‘ _ _

0‘27“

MSU

RETURNING MATERIALS:

P1ace in book drop to

LJBRARJES remove this checkout from

” your record. FINES W111

be charged if book is

returned after the date

stam ed be1ow.

2:\ p

23 K328

‘F-‘x’j’x A"; . ‘M‘
L'Q’.’ 5‘9 Lgfi‘

2&0 n’5{l

“flag. "QM

, L1,) ’11". 7

3’7 ; i ?7}3

SURFACE ASSESSMENT USING

COLOR.GRAPHICS

By

martin John Vanderploeg

A DISSERTATION

Smeitted to

Michigan State University

in partial fulfilJment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Mechanical Engineering

1982

5
(
”
c
-
"
3
*

A
L
“
)

9
1
‘

-

®
l

ABSTRACT

SURFACE ASSESSMENT USING COLOR GRAPHICS

By

Martin John Vanderploeg

Modern techniques for the design and production of smooth skins ,

such as car bodies and aircraft wings and fuselage, depend upon the

development of a database which accurately represents the surface.

Before the database can be' used for production, it must be checked for

possible errors. Such errors may result fran bad raw data, as from

errors introduced in a digitizing process, or fran designer errors.

Typically these databases are very large, maldng the checking process

tedious and expensive. Current checking methods include inspection of

flow lines or sections, and any include building prototypes .

This dissertation develops a method for surface checking using

shading and raster graphics. This method uses a scan line method which

is based on improved numerical techniques and takes advantage of the

rapidly decreasing cost of computer memory. These developments have

resulted in a fast and accurate check procedure.

The dissertation illustrates the ability of the algoritrm to detect

specific surface flaws using a small test database. The ability of

the algorithn to "assemble" objects on the screen is also demonstrated

using a large database for an airplane fuselage and canopy.

ACIQJCMIEDGEMENI’S

I would like to extend special thanks to the people at General

Dynamics for funding this work. Specifically, I thank Mr Bernard Breen

and Mr. Larry Tucker for their technical assistance and support.

I also wish to thank the other members of my cannittee Drs. Erik

Goodmn and Ronald Rosenberg for their guidance and technical support .

A Special thanks go to my parents, Nbrvin and Joann Vanderploeg for

their loving support throughout an; graduate work.

Finally, I would like to extend sincere thanks to my major profes-

sor and good friend Dr. James Bernard, for his guidance, constant

encouragement, and especially for his extreme patience.

11

TABLE OF CONTENPS

HSTOFTM 0.0....OOOOOOOOOOOOOOOO.............OOOOOOOOOOOOOOV

HSTOFMGMo 000000 0.00.000000000000000...OOOOOOOOOOOOOOOOOOOVj.

Chapter

I

II

INIRODUCIIONOOOOOOOOOOOOOOO0....0.00.00.00.000000000001

CURVE AND SURFACE DEFINITIONS 2

2.0 Generalized Curve and Surface Definitions2

2.1 Parametric Curves and Surfaces 5

2.2 BiCUbic Pmtric SWfaceS 00.0.0000...00.0.00000000006

(
I
)

DATABASE ERRORS AND METHODS OF DETECTION

3.0 Database Structure8

3.1 Surface Checking8

3.2 Types of Database Errors9

3.3 Surface Checking Using Shading11

INTRODUCTION TO SURFACE SHADING AND DISPLAY 1n

0 Design.Environment Requirements1A

1 Raster Graphics1A

2 mmaDEMwof&me.NHHHHNHHHHHHHJS

3 Previous work in Surface Shading and Display17

4.3.1 Display Techniques for Polygon Surfaces17

I4.3.2 Display Methods for Parametric Surfaces22

ASURFACE SHADING ALGORITHM FOR DESIGN29

Introduction29

The Patch Preprocessor29

The Y Scan ..33

The X Scan ..33

The Hidden Line Problem3A

Solutions of Nonlinear Equations39

Approximate MethodsA2

:innmmnyUA

O

«
l
o
u
n
z
w
m
l
-
l
o

U
'
I
U
'
I
U
1
U
'
I
U
'
I
U
'
I
U
l
m

iii

VI Algoritm Evaluation 145

6.0 Introduction .. A5

6.1 Error Detection 115

6.2 Image Generation for a New Light Source A8

6.3 Compute Times ... A9

6.4 Object Assembly 50

6.5 Surface Checking Scheme2. . .52

VII CONCLUSIONS55

APPENDICES .. 56

REFERENCES .. 86

iv

LIST OF TABLES

l. Canpute Times50

\
O

(
I
)
N

0
\

U
1

.
1
?

L
A
)

N
H

O
O

O

5
.
:

O

11.

12.

13.

1A.

15.

16.

17.

18.

19.

20.

LIST OF FIGURES

Flow Line Display ofBump 10

Gross Error inBump10

Missing Data inBump12

Slope Discontinuity ianp12

Magnified End View, Slope Discontinuity in Bump 13

Viewing Screen and Screen Coordinatesl6

Polygon Apprexirration of Bicubic Patchl8

Scan PlaneandIntersection Curve19

Number of Intersection Curves onaPatch21!

Effect of Silhouette Edge on the Number of

Intmection mes O0.00.00.......OOOOOOOOOOOOI0.0...00.00.26

Typical Intersection Curve Endpoints31

Illustration of Active Curve Updating36

Interior Intersection of 'IVwo Patches 38

Division of Intersection Curves for Interior

Intersectims I................OOOOOOOOOOOOOOO......OIOOOOOIHO

smed ampOOOOOOO00.00.00.000.........OOOOOOOOOO....“6

Shaded Bump with Slope Discontirmity147

Shaded Bump with Slope Discontirmity,

Appmxjmte mthOd O......OOOOOOOOOOOOOOOOO0.00.00.00.000000u7

Shaded Bump with Slope Discontinuity,

Different LigIt SourceOOOOOOOOOOOOOOOO..OOOOOOOOOOOOOL‘B

Alrcraf‘tWing... 51

SMdamcmWi—Ig, lower OO......OOOOOCOOOOCO0.000000000051

Vi

21.

22.

23.

A1.

B1.

B2.

BB.

BA.

B5.

B6.

B7.

B8.

Cl.

D1.

D2 0

Shaded Aircraft Wing, Lower plus Half of Upper52

Shaded Aircraft Wing, Entire Surface ..53

Shaded Aircraft 53

Definition of Patch.Boundaries57

Calculation.of Boundary Endpoints63

@nmdemsmaSflmwmemg.unnnnuuuunnfi

Method of Calculating Silhouette Endpoints 67

Simple Pairing Cases68

Pairing with One Silhouette Endpoint69

Single Boundary Ehdpoint71

Determination of Leading or'I‘railing Status72

Pairing Example 7A

A Comparison of Newton's Direction and the

secarlt DireCtion OOOOOOOOOOOOOOOOO0.00000000000IOOOOO0.00.0076

The Ratio ds/dt Along the Intersection Curve u83

Relationship of the u and x Directions8A

CHAPTER I

Introduction

Modern techniques for the design and production of smooth skins ,

such as car bodies and aircraft wings and fuselage, depend upon the de-

velopment of an accurate mathematical representation of the surface .

Before the surface definition can be used for analysis or production, it

must be checked for possible errors. Such errors nay result from bad

raw data, as from errors introduced in a digitizing process, or fran de-

signer errors. Typically, the checking process is tedious and expen—

sive.

This thesis develops a method for surface checking using surface

shading and raster graphics that can reduce both cost and time required

to check a surface. The next chapter discusses the mathematical repre-

sentation of surfaces. Chapter 3 presents several categories of sur-

face errors and current methods of surface checking. Chapter A reviews

current methods of surface shading and display, and Chapter 5 presents

an algorithn developed in this thesis especially for the purpose of sur-

face checldng. Chapter 6 then presents sane examples, and Chapter 7

presents conclusions.

CHAPTERH

Curve and Surface Definitions

2.0 Generalized Curve and Surface Definitions

One way to define a curve in space consists of two transendental

equations of the form:

Fl(x,y,z) = 0

(2.0.1)

F2(x,y,z) = 0

where x, y, and z are three independent spacial coordinates. The curve

consists of the locus of points which simultaneously solve these two

algebraic equations.

Curves can also be defined parametrically. The curve becomes the

locus of points whose coordinates are functions of a single independent

parameter. The parametric form of a curve is:

x = fl(s)

y = f2(s) (2.0.2)

2 = f3(s)

The two forms may be illustrated using a straight line. The alge-

braic form consists of the equations for two planes, which form a line

where they intersect. The algebraic form of the line is:

ll

0Fl(x,y,z) Alx + le + Clz + D1

(2.0.3)

II

0F2(x,y,z) A2x + B2y + C22 + D
2

The parametric form of the line is:

(2.0.1!)

For simple curves it is possible to transform fran one form to the

other. As the equations became more complicated it is difficult or

impossible to make this transformation.

Analogous forms also may be written to define surfaces. The alge-

braic form consists of one algebraic equation.

G(x,y,z) = 0 (2.0.5)

The surface is defined by the locus of points that solve this equation.

The parametric form defines the surface as the locus of points whose

coordinates are functions of two independent parameters, 5 and t .

X = sl(s,t)

y = g2(s,t) (2.0.6)

2 = g3(s,t)

A plane may be used to illustrate the two different equation forms

of a surface. The algebraic form is:

G(x,y,z) = Ax + By + Cz + D = 0 (2.0.7)

The parametric form is:

E15 + Glt + H1M

II

‘
< ll

E23 + G2t + H2 (2.0.8)

= + +2 E38 G3t H3

Again, transformations between the two forms are possible only for sim-

ple surfaces . The next section discusses the advantages of the para-

metric form, which will define surfaces throughout this thesis .

2 . l Parametric Curves and Surfaces

When producing shaded images from mathematical surface definitions ,

it is convenient to use the parametric form (1,2,3). One favorable pro-

perty of the parametric form is the one—to-one mapping of spatial coor-

dinates x, y, and z to the parametric coordinates s and t. A second

advantage is the existence of well-behaved partial derivatives every-

where on the curve or surface. The importance of well-behaved partial

derivatives will become evident as surface shading algorithms are dis-

cussed.

Throughout this thesis, the vector normal to the surface will be

used for shading purposes. The normal vector of a parametric surface

at a point is carputed by taking the cross product of two vectors tan-

gent to the surface at that point. A convenient pair of tangent vec-

tors are:

-T a: 3x " By " 82 "

-T a 3x " By " az "

_ —'I'
N-VS xvi (2.1.3)

Complex curves are typically broken up into several segments to

facilitate fitting the curve with a series of low order polynomials .

In a similar way, complex surfaces are often broken up into several ,

patches to facilitate fitting the surface with low order polynomials .

The boundaries of a patch are usually determined by limits on the

parametric values s and t. A cannon convention allows these parameters

to vary from zero to one.

2. 2 Bicubic Parametric Surfaces

A popular surface representation is the bicubic polynamial (A) .

Although the ideas and analysis which are tre basis of this thesis

require only that the surface is parametrically defined, the bicubic

surface is used throughout for illustrative purposes.

Equations for bicubic surfaces appear in many different forms. A

general form of the equation is:

3 3

x(s,t) = 2 2 X13 51 tJ (2.2.1)

i=0 J-o

where XiJ are constants. There are similar equations for y and 2.

Each patch is then delineated by 148 constants.

Equation 2.2.1 is often written in matrix form. The constants

are contained in three A-by-ll matrices, one for each equation. The

matrix form is:

x(s,t) = [1 t t2 t3][x] 1‘ (2.2.2)

where the matrix [X] contains the constants XZU .

Bicubic parametric surfaces:may also be represented in an alter-

native form which have been derived so that the constants defining the

patch have geometric meaning. This form is

A A

x(s,t) = 1:1 3:1 “Fi(s)*F3(t) (2.2.3)

where Fi(s), so—called blending functions, are cubic polynomials. In

this case the constants Xij are geometric properties of the surface

patch, such as spatial values or tangent vectors at various points on

the patch. Similar equations are written for y and 2.

One specific bicubic surface is the Coons surface. Coons surfaces

are presented in detail in (A) and (5). Figures 1 and 2 are examples

of surfaces defined by Coons patches.

CHAPTER III

Database Errors and Methods of Detection

3.0 Database Structure

A typical surface description is comprised of multiple surface

patches. The database defining the surface consists of the constants

which define the patches. For example, the bicubic patch is defined

by A8 constants. The surface database for a bicubic surface then

contains N blocks of A8 constants, wrere N is the number of patches

ccnprising the surface .

When generating a database, errors may be introduced by the

designer, or by the hardware. For example, mating parts may be de-

signed by different people , introducing interference problems and

slope mismatches along boundaries. Hardware related problems such as

round off and hardware conversions may also create errors. In addi-

tion, design changes may create unexpected flaws. Detecting these

errors , or so called, surface checking is an important design problem.

3.1 Surface Checking

There are three basic surface checking techniques which are

commonly used.

One method is manual inspection of the constants defining the sur-

face. This requires knowledge of the surface being modeled, and an

understanding of how much each constant affects the shape of the patch.

8

This:method is time consuming and inefficient for surfaces with a

large number of patches, and considered impractical for production

environments.

The second method of surface checking uses sections and flow lines

to visually inspect the surface. Flow lines are constant s and t lines

drawn at given intervals over a.patch. They are easily computed and

displayed. A viewpoint is chosen and the spatial coordinates of the

constant 5 and t lines are projected onto a plane and displayed on a

plotter or a graphics terminal. Figures 1 and 2 illustrate surfaces

displayed using flow lines. Section cuts may also be displayed. Sec—

tions, which.are:more tedious to compute than flow lines, are useful

for detecting surface flaws since they can be cut in any desired

direction, Hewever, it is usually not practical to make enough section

cuts to properly check the surface.

A third method, which is often used serially with visual inspec-

tion via flow lines or sections, produces a three dimensional repre-

sentation of the surface. This method uses the mathematical surface

representation to drive a numerically controlled milling machine which

produces a model of the surface. The model can then.be inspected for

flaws. This method is effective, but far more expensive than other

techniques.

3.2 Types of Database Errors

When comparing the usefulness of different surface checking

techniques, it is helpful to classify different types of errors that

can exist in a database. The "bump" database, displayed in Figure 1,

will be used to illustrate the different types of errors. The bump

10

Figure 1. Flow Line Display of Bump

Figure 2. Gross Error in Burrp

11

is made up of four patches which are based on 192 separate data entries

in the database.

The first class of database errors contains gess errors. These

errors are easily detected using flow lires. Figure 2 presents a gross

error in the "bump", caused by one incorrect entry in the database.

The second error classification is missing data. Again, these

errors are easily detected using flow lines. An example of missing

data is presented in Figure 3, where one of the patches has been left

out.

More difficult errors to detect are small slope discontinuities

between patches. Figure A is an example of a surface containing an

unwanted slope discontinuity. From this view it is impossible to

visually detect the problem. With prior knowledge of the discontinuity ‘

location it is possible to choose a view looking down the patch bound-

ary wrere the lepe discontinuity exists. After magdfication, this

view is displayed in Figure 5, which is a closeup view of the patch

centerline area as seen from the direction of arrow A in Figure A.

Tine slope discontinuity is now apparent, but finding the proper view

depended on knowing the location of the slope discontinuity. For

surfaces with many patcres , the location of slope discontinuities are

generally unknown. This makes identifying them with flow lines

difficult, thus detection of this kind of error is often delayed until

a model or prototype is constructed.

3.3 Surface Checking Using Shading

To avoid delays and costly proofing runs on numerical controlled

machines, it is very desirable to facilitate detection of errors in

l2

Figure 3. Missing Data in.Bump

\\\

‘
K

1

Figure A. Slope Discontinuity in Bump

Figure 5. Nagnified End View, Slope Discontinuity in Bump

the database using computer graphics. One promising technique is

surface shading. By displaying the shaded surface on a variable

intensity raster terminal, it is possible to locate subtle errors. The

idea origirates from the ability of the human eye to detect small

deviations on smooth reflective surfaces . As an example, surface-re-

lated flaws on a car body are easily detected by the human eye, yet

they are very difficult to find using only engineering drawings of

sections or flow lines. If the surface can be represented visually by

a carputer as a reflective surface, these subtle errors can be detected.

The next section will introduce terminology and concepts concern-

ing computer-generated pictures . Previous work done on surface shading

will then be discussed.

CHAPTER IV

Introduction to Surface Shading and Display

A . 0 Design Environment Requirements

When computer surface shading techniques are used for surface

checking, the visual display must represent the surface properties

accurately so that flaws may be identified. Shading algorithms often

use approximations which make shading calculations easier, but these

approximations may hide subtle flaws on the original surface . Ch the

other hand, accurate processing of the details of the surface may

require tedious calculations.

Since interactive programs are ideal for a design environment ,

fast shading algorithms are desirable so that a designer is not

required to wait long periods of time for each image. The question of

whether high accuracy or rapid calculation should have higher priority

will be addressed in later chapters.

The next section describes how images are produced on a raster

device . Basic concepts of surface display will then be presented,

followed by a discussion of previous work done in the area of surface

shading.

A.l Raster Graphics

The raster screen is an increasingly popular method of displaying

computer generated images. A common example of a raster device is the

1A

15

television. Raster screens are made up of many small units called

raster units or pixels. For a gray scale device, the user has control

over the intensity of each pixel ranging from white to black. For

color raster (devices, the color and intensity of each pixel can be

controlled.

The resolution of a raster device refers to the number of pixels

on the screen. A screen with a large number of pixels is said to have

good resolution, meaning each individual pixel is hard to discern, and

the edges of objects being displayed appear smooth.

A.2 Raster Display of Surfaces

To aid in the discussion of surface display techniques, it is con-

venient to define a set of screen coordinates. Figure 6 illustrates

the orientation of screen coordinates used in this discussion and

throughout this thesis.

To display the color of surface on a raster screen requires that

the intensity and color of each pixel be canputed. This requires

projecting a three dimensional surface to the viewing screen. Each

pixel is then mapped to a point on the surface. The properties of the

surface at that point are then used to canpute tre intensity of the

pixel.

Typically, the mapping of a pixel to a point on the surface

requires the construction of a sightline frcnn tre viewpoint through the

pixel being mapped. All patcl'es intersected by the sightline are

determined. These patches are compared to determine which patch is

visible along the sightline.

l6

Scan Line

Figure 6. Viewing Screen and Screen Coordinates

17

Methods used to compute the sightline-patch intersection and

normal vector at trat intersection point depend on the type of surface

patch. Existing algorithms for solving these problems will be dis-

cussed in the next section.

A . 3 Previous Work in Surface Shading and Display

Literature in the area of computer-generated surface shading

started appearing in the late 60's and early 70's. Since then the

tOpic has been well represented in the literature. A good review of

current literature in surface shading is presented in Reference 6 .

Early shadirng techniques were based on surfaces consisting of flat

patches (polygons) .

A.3.1 Display Techniques for Polygon Surfaces

Curved surfaces may be approximated using many small polygons.

For example, Figure 7 illustrates an approximation of a bi-cubic patch

using polygons . Surface representations consisting of polygons are

called polygon-type surfaces . The advantages and disadvantages of

three well known polygon type surface display methods will be presented

here .

The War-nook method (7) uses a depth priority algorithm to display

surfaces constructed of polygons. This algorithm uses windows , or

areas of the screen, which are successively subdivided into four

smaller wirndows until the window is canpletely covered by a visible

polygon. The window is then displayed. The subdivisions can continue

until the windows are the size of one pixel. The major drawback of

this method is trat the pixels are not assiged in an orderly fashion,

an inconvenient procedure for a raster device.

18

W

Figure 7. Polygon Approximation of Bicubic Patch

The method develOped by Newell, Newell, and Sancha (8) determines

2 priority of all polygons in a scene by comparing the z coordirate at

the centroid of each polygon. Of the polygons which are potentially

visible at a given pixel, the polygon with the highest priority is

assumed visible. This method works well for surfaces comprised of

many small polygons . Problems arise when polygons penetrate each

other, arnd when cyclic overlaps of polygons occur. Cyclic overlap

involves polygons that are both in front arnd behind of another polygon.

An extended algorithm was developed to handle these problems (8) .

Watldns developed a scan line method for polygon display. This is

the most widely used of the three methods and is available in commer-

cial software (9,10) . A general overview of the algorithm is presented

below. Additional detail is presented in (.11) and (12) .

19

To aid in the diScussion of scan line techniques, it is convenient

to define several associated terms. A scan line is a constant y line

representing a row of pixels (see Figure 6 and 8). The screen is com-

prised of many scanlines. The associated scan plane is defined by the

viewpoint and the scan line. The scan plare cuts constant y sections

through objects in the scene to determine what is potentially visible

on the scan line, as shown in Figure 8. A sightline, passing through

the viewpoint arnd the pixel, is defined for each pixel along the scan

line. Intersections between he sightline and objects in the scene

determine what is potentially visible at that pixel.

The scan line algorithm developed by Watkins (11) efficiently

determines polygon sightline intersections by orderly processing of

the sightlines. This makes possible tre use of irnformatien about

 Sightline

Intersection

Curve

Viewing (Screen Viewpoint

Figure 8. Scan Plane and Intersection Curve

2O

intersections from the previous sightline when calculating intersec-

tions for the present sightline. This orderly processing, or scanning

of sightlines, is the basis of scan line methods.

Scan line methods use two nested scans, the x scan arnd the y scan.

The x scan, which is the inner loop, starts at the end of a scan line

and steps along the scan line computing sightline polygon intersections

for each sightline along the scan line. The y scan, starting at the

tOp of the screen, steps through each scan line on the screen

calling the x scan at each step.

When ccnputing sightline polygon intersections , many calculations

can be saved by knowing which polygons are intersected by the sight-

line. It is in the determination of the intersected polygons that the

scan line methods derive treir efficiency. This is done using a list

of active polygons associated with each scan line, and a list of

active line segnents associated with each sightline.

The active polygon list contains all polygons intersected by a

scan plane, therefore this list is updated for each scan line, or at

each step of the y scan. The active polygon list is updated by using

a list. of maximum and minimum y values of polygons in the scene. The

list of maxima are ordered such that trey are decreasing in magnitude.

A pointer is used to indicate the maximum or minimum of the next poly-

gon to be encountered and added on the list, for a maximum, or dropped

off the list for a minimum. Thus, as the y scan progresses, the y

value of the scan line, Escan, is compared to the next maximum or

minimum. When Yscan is less than the current maxirmmm or minimum, the

associated polygon is added or deleted from the active polygon list,

and the pointer is advanced to the next maximum or minimum. At this

21

point the active polygon list is updated for the scan line at Yscan,

and the x scan can be initiated.

Once the active polygon list is established for a scan plane, the

x scan for that scan line can begin. For each x scan, the intersection

of tre scan plane with the active polygons create straight line seg-

ments which are defined by their endpoints. An active line segment

list contains the subset of these line segrents which are intersected

by a given sightline. The active line segrent list is updated for

each sightline using a list of line segment endpoints. The list is

sorted starting with the endpoint with the smallest x coordinate. A

pointer is used to indicate the next line segment endpoint to be

encountered, or so-called current endpoint. When tre x value of the

sightline, Xscan, is increnented for the next sightline, it is compared

to the current endpoint. If Xscan is geater than the current endpoint ,

the active line segment list is updated.

The z coordinates of the intersections between the sightline and

the active line segments are compared to determine which polygon is

visible. The normal vector associated with the visible polygon is

then used to ccnpute the intensity of the pixel defining the sightline.

Scan line methods applied to polygons have proven very time-

effective in producing shaded images. But if these methods are to be

applied to contoured surfaces, the surfaces must be approximated by

polygons before shading begins . For applications where flat surface

approximations are unacceptable , direct shading of contoured surfaces

may be required. The next section will examine methods of directly

shading parametric surfaces .

22

A.3.2 Display Methods for Parametric Surfaces

Parametric surfaces were first displayed using polygon techniques .

A curved parametric surface can be approximated by many small polygons

as shown in Figure 7. The polygons may then be displayed usirng techni-

ques discussed in the previous section. This method is effective for

visualizing gross surface characteristics, but detailed slope and

curvature information is lost in the image. To maintain exact slope

and curvature information at each pixel, a direct method of shading

parametric surfaces is required. Three methods of direct parametric

surface display will be discussed here.

In 197A , Catmull developed one of the first algorithms for the

direct display of parametric curved surfaces (13) . This algorithm

subdivides each patch until each subdivision covers only one pixel.

The large number of subdivisions required can be time consuming.

Catmull developed an efficient method to subdivide one specific surface

type, the parametric bi—cubic patch. The subdivisions are made along

flow lines. To test if the subdivided patches are the size of one

pixel, an approximating polynomial is constructed using the four

vertices of the patch. This method effectively randles patches with

little curvature, but problems may be encountered with highly curved

patches or patches with poor orientation. These problems arise from

tlre fact that the polygon constructed may not totally contain the

patch subdivision.

Lane and Carpenter (12) modified this method into a scan line

type method. As patches are subdivided, pieces which do not fall on ‘

the scan line are placed in an inactive patch list. Subdivision

23

continues until the patch is within a set tolerance of being a

four-sided planar polygon. The active patches along the scan line may

then be processed usirng the x scan from the polygon scanline method.

Sweeping in this fashion is convenient for raster display.

In 1978, Blinn developed a scan line method (11) for displaying

curved parametric surfaces. The scan line algorithm used is similar to

the one developed by Watkins (11) discussed earlier in this chapter,

but the complexity of the algorithm is increased when polygons are

replaced by curved parametric patches. The algorithm contains the y

scan and x scan typical of scan line methods, with the addition of a

patch preprocessor.

The preprocessor finds and orders local y maxima/minima for each

patch. Unlike polygons, for which maximum and minimum values occur at

the corners , maxima and minima for contoured surfaces can occur on the

boundary or on the interior of the patch. The local maxima and minima

of contoured surfaces contain the corners and solutions to the

following equations:

3%(s,t) = O

(A.3.l)

3%(s,t) = 0

Obtaining the solutions of these nonlinear equations requires an itera-

tive technique. Blinn uses Newton' s method for equations of this type.

Curved parametric patches create additional corplications during

the y scan. Intersections of the scan plane, defined by the scan line

2A

and.viewpoint, with a parametric patch results in.a curve rather than

the straight line which must result from polygons. We will refer to

these curves as intersection curves.

Another complication results from the fact that the scan plane

may intersect the patch in.more than.one place, as shown in Figure 9.

Therefore more tran one intersection curve may come from a single patch.

The number of intersection curves on each patch can be determined

as afimction of localminimaandmaxima. Wtenamaxirmmmorminimum

of a patch is encountered during the y scan, the number of intersection

curves associated with the patch is increased or decreased. This

method is illustrated in Figure 9. Tina ith scan line ms zero inter-

section curves associated with the patch. Moving from he ith scan

line to the ith+l scan line a global maximum is encountered at the

point A, therefore the number of intersection curves on the patch

ith

A

/{ ith-l-l

__ ith-+2

ith+3

Figure 9. Number of Intersection Curves on a Patch

25

increases to one. Moving to the ith+2 scan line a second local maximum

is encountered at point B increasing the number of intersection curves

to two. The next scan line passes the local minimum at C, reducing

the number of intersection curves to one.

Another problem.associated with curved patches is the so—called

silhouette edge. Silhouette edges are defined as curves on the surface

where the 2 component of the normal vector is zero (see Figure 10).

An intersection curve that intersects a silhouette edge is not single-

valued in z. This problem may be handled by dividing the intersection

curve at the silhouette edge into two intersection curves. Thus as

the y scan progresses, the end of the silhouette edge implies a change

in the number of intersection curves associated with the patch. This

idea is illustrated in Figure 10. As the y scan moves from the ith

scanline to the ith+1 scan line, the beginning end of a silhouette

edge is encountered at A, therefore the number of intersection curves

increase from one to two.

To facilitate the x scan, the endpoints of each intersection

curve must also be computed. Endpoints can occur at the patch bound-

aries or at silhouette edges. If endpoints occur at patch boundaries,

they may be found from one of these four equations.

1) y(0,s) Yscan

2) y(l,s) Yscan

(A.3.2)

3) y(t,0) = Yscan

A) y(t,l) = Yscan

26

A \, ith

A back curve

ith+l

~———front curve

\
‘ silhouette

edge

Figure 10. Effect of Silhouette Edge on the NUmber

of Intersection Curves

27

Endpoints at silhouette edges are obtained by simultaneously solving:

y(s,t) = Yscan

(14.3.3)

Nz(s,t) = 0

where N2 is the z component of the normal vector. These endpoints are

then used during the x scan to update the active curve list.

During the x scan, the visible intersection curve is determined by

comparing the z coordinates of intersections between the sightline and

the active intersection curves. Intersections of each sightline with

the intersection curves are found by simultaneously solving:

x(s,t) = Xscan

(A.3.A)

y(s,t) = Yscan

Typically, equation A.3.A is solved using Newton's method, but Blirnn

notes that singularities or cusps in the patch may occur, and that for

these cases Newton' s iteration is not appropriate .

Blinn also notes that, although the technique is accurate and

avoids polygon approximations, the x scan portion of tre algorithm is

slow, and he developed an alternative algorithm. Along the visible

intersection curve, Blinn computes sightline intersections only at

so—called key visual points and uses linear interpolation to compute

the normal vectors between then. This reduces the number of times

equation A.3.A is solved, thus improving conputation time. A

28

description of key visual points and how the algorithm works can be

found in Reference 1A.

Another method of directly displaying curved surfaces was

deveIOped in 1980 by Whitted (15). This algorithm, which was develOped

specifically for the bi-cubic surface, is a scan line algorithm

similar to Blinn's, with modifications to handle silhouette edges.

Silhouette edges, which are usually of a higher order than cubics, are

approximated by one or more cubics. A patch containirng a silhouette

edge is then divided along the silhouette edge into two patches having

boundaries which are cubics in one variable. The preprocessed patches,

whose edges are cubics in one variable, are displayed using a scan line

technique similar to Blinn' s algorithm without having to compute sil-

houette edges at every scan line.

Each of the surface shading algorithms discussed has its advan-

tages, eitrer in accuracy or speed. But the demands of the designer

required both speed and accuracy. The next chapter presents an algori-

thm developed to apply color graphics to surface checking and explains

the steps taken to retain both speed arnd accurary.

CHAPIER V

A Surface Shading Algorithm for Design

5 . 0 Introduction

Since surface checking as defined here has the purpose of finding

subtle flaws in the data base, it is clear that approximations to the

surface must be scrutinized carefully. If the surface approximation

washes out the sought-after flaws, all hope for successful surface

checking is lost. 0n the other hand, exact methods lead to an in—

creased computing burden, perhaps rendering the creek process so time

consuming as to rule out the kind of interactivity so desirable to the

designer.

To attain the desired accuracy, the algorithm developed in this

thesis builds on ideas developed by Blimn (1A) . This type of algorithm

is referred to as an exact algorithm because tre normal vectors are

corputed at each pixel. The algorithm is basically a scan line method

with several modifications to help fulfill tl'e dual needs of the design

environment, namely, rapid calculation and accuracy. The three major

conponents of this algorithm, the patch preprocessor, the y scan, arnd

the x scan, are presented in the following sections.

5 . l The Patch Preprocessor

A major difference between the algorithm developed rere and the

algorithm developed by Blirnn is that many of the calculations done by

Blinn during the y scan are replaced by careful patch preprocessirng.

29

30

The first calculation done by the patch preprocessor is finding

global maxima and minima in x, y, and z for each patch. Conservative

approximations are used, meaning that the patch is always contained by

the approximate extrera. The algorithm developed to approximate these

extrema is much faster than solving for the exact extrema, arnd errors

are small for most patches. Appendix A presents a detailed description

of this algorithm.

The x and y extrema are used to determine which patches are on the

screen. These patches are then placed in an active patch list, allevi-

ating any search involving patches not on the viewing screen. As an

example, consider an instance when small areas of an object are magni-

fied arnd displayed, leaving the majority of tie patches outside of the

viewing screen. The preprocessing saves work with patches that are

not on the screen.

From this point on, calculations discussed are for active patches

only. The z extrema for these patcres are stored to be used later

during the x scan.

The secornd calculation done during patch preprocessing is the

calculation of all scan plane intersections with patch edges, includirng

both patch boundaries and. silhouette edges. These intersection points

are the endpoints of intersection curves. The algorithm developed to

compute these endpoints uses Newton' 8 method to solve equations A.3.2

and A.3.3 presented by Blirnn. But unlike Blinn's algorithm which con-

putes all the endpoints on one scanline, this algorithm computes all of

the intersection curve endpoints for each patch. Appendix B presents

a detailed discussion of this algorithm. The endpoints conputed for a

typical patch are illustrated in Figure 11.

31

Figure 11. Typical Intersection Curve Endpoints

32

After all endpoints are corputed for each patch, endpoints of the

same intersection curve are paired. Pairing methods are also discussed

in Appendix B. As the patches are processed, endpoint pairs are sorted

by their y values and placed in vectors associated with each scan line.

After all active patches are processed, the endpoints are then ordered

in x in preparation for the x scan. At this point, any effects of the

approximation used to calculate global patch maxima and mninima have

been corrected. No "search" beyond exact patch boundaries has been

done.

A disadvantage of this method is the large amount of memory re-

quired to store the endpoints of the entire screen, as opposed to

Blinn's method which requires memory for only one scan line at a time.

But corputing intersection curve endpoints a patch as a time eliminates

the need for the exact local minima and maxima which are required by

Blinn to compute intersection curve endpoints a scan line at a time, a

calculation similar to cutting constant y sections for each y value in

turn. Another advantage of storing all endpoints arises from the

desire of the designer to "assemble" an object on the screen. Display-

ing objects a piece at a time may enable the designer to detect how

well pieces are mating and possible interference. In such applications,

patches already displayed need not be processed again by the prepro-

cessor, and the scans need only cover areas where rew patches have

been added. Also, single patches may be corrected or altered and the

entire scene can be displayed by only preprocessing the altered patch,

deleting the original patch, and scanning in the neighborhood of the

altered patch. In both of these instances there are large computational

savings .

33

Since memory cost has been rapidly decreasing to current rather

nominal levels, the time saving from this technique more than offsets

the large memory requirements. In the case of a corputer with virtual

memory, there is, in fact, no trade-off at all since paging delays for

memory access are very much smaller than the time saved by this prepro-

cessing.

The next section will discuss the y scan. Subsequent sections

give a detailed explanation of the x scan.

5.2 The Y Scan

Recall that the patch preprocessor has corputed the endpoints of

intersection curves for the entire scene. The endpoints are stored in

vectors representing each scan line. The endpoints in each vector are

stored in order of increasing x.

The y scan steps through all scan lines on the screen. At each

scan line, the y scan calls the x scan and supplies the associated

expoints. The x scan computes the visible intersection curve and the

point where the sightline intersects it for each pixel on tre scan line.

The y scan then moves on to the next scan line until all scan lines

are displayed.

5. 3 The X Scan

The x scan must determine, for each sightline along the scan line,

which intersection curve is visible at the pixel. This problem is

usually called the hidden line problem. After the visible curve has

been identified, the intersection point between the sightline and the

visible curve is corputed. Because the intersection curves are not

3A

linear, an iterative method such as Newton's method is required to

solve for the intersection point. Solving nonlinear equations in the

context of this task will be examined in a later section. The next

section will discuss the hidden line problem.

5.A The Hidden Line Problem

The hidden line problem refers to the identification of visible

intersection curves or portions of intersection curves. This is done

at each pixel as the x scan sweeps across a scan line.

The first step in determirning which curve is visible is to find

all intersection curves intersected by the sightline. (For the re-

mainder of this chapter, the word curve will refer to an intersection

curve.) This is acconplisl‘ed using an active curve list which contains

curves intersected by the sightline. The active curve list is updated

for each pixel as the x scan moves across tl'e scan line. The npdating

is done using a pointer and the ordered list of curve endpoints

supplied for each scan line by he y scan and the patch preprocessor.

[The pointer is used to indicate the next endpoint to be encountered

durirng the x scan. This endpoint will be called the current endpoint.

As the x scan progresses, the x value of the pixel, Xscan, is compared

with the x value of the current endpoint. If Xscan is greater than the

x value of the endpoint, a curve is added or deleted from the active

curve list , depending on whether the expoint encountered is a leadirng

or trailing endpoint of the curve. The pointer is then advanced to

the next endpoint in the list, which is again corpared to Xscan, and

the process continues.

35

An example is presented in Figure 12. The example contains two.

patches A and B. Patch B contains one silhouette edge. The scan line

has three associated intersection curves, 5, b, and 3. Curve 5 lies in

patch A, arnd curves 5 and 'c' lie in patch B. The ordered list contain-

ing the x values of the curve endpoints is given beside the figure,

and lines joining endpoints indicate a pair of endpoints on tre same

curve. The first endpoint of a pair appearing in the list is the

leading endpoint of the curve and the second endpoint is the trailing

endpoint.

The x scan starts at the left end of the scan line. At this point

no patches are intersected by the sightline. Therefore there are no

active curves when the x scan begins. The pointer starts at the top of

the endpoint list, pointing at X1. As the x scan progresses arnd the

value of Xscan is incremented, it is corpared to the endpoint pointed

at by the pointer, or the so-called current endpoint. Note that XL is

a leading endpoint, therefore when Xscan becores geater than Xl, curve

'a' is intersected by the sightline, and therefore is placed in the

active curve list. The pointer is then advanced to the rext endpoint,

X2, and Xscan is corpared to X2. Because Xscan is less than X2, no

additional changes are made to the active curve list. The x scan

continues until Xscan becomes greater than X2, at which point curve ‘6

is added to the active curve list. The pointer is advanced to X3, but

X3 is still greater than Xscan, so no additional changes are made to

the active curve list, which now contains curves 5 and ‘6. Because X3

is a trailing endpoint, when Xscan becores larger than X3, curve 5 is

removed from the active curve list. The pointer is then advanced to

XA, which is also less than Xscan, and therefore curve '6' is added to

36

Patch B

\
V

0
0

M
0
‘

m
a
t
h

I 7 1 I

Patch A

Figure 12. Illustration of Active Curve Updating

37

the active curve list. The pointer then advances to X5, Which is

greater than Xscan, and therefore, at this point the active curve list

contains B'and.EI As the x scan.continues, it then passes endpoint

values X5 and X6, both trailing, leaving the active curve list empty.

After determining all curves intersected by a given sightline, it

must be determined which curve is first intersected by the sightline,

or, in other words, which curve is visible at the sightline. The

algorithm which determines the visible curve uses two steps. The

first is a global depth conparison of patches from which the active

curves originate. This step may determine if sore curves cannot be

visible. The second step determines which of the renainirng curves is

visible. The global depth comparion of'patches will first be discussed.

Recall that global z extrema were computed for each.patch.during

patch.preprocessing. The 2 limits of patches containing active curves

are compared to determine if any are gldbally behind others. This is

typical for most objects being modelled, for example, solid Objects

generally have two disjoint sides. Active curves lying on patches

gldbally behind others must be behind curves lying on the other patches.

Such curves are immediately eliminated when determining the visible

curve. NOte that the global patch check is required only when there

is a change in the active curve list.

From this point, determination of which active curve is visible is

broken into two classifications, depending on whether or not patches

intersect each other on their interiors. For example, Figure 13

illustrates two patches which intersect on their interiors.

The more general case, where intersecting patches:may be present,

requires a depth check at each pixel. The z coordinate of

38

 Line of Intersection

Figure 13. Interior Intersection of Two Patches

intersections between the sightline and the active curves are conputed

to determine which curve is visible at the pixel. Corputing the 2

value of the intersection point requires solving the nonlinear equations

A.3.A for parametric values 3 and t, given x and y of the pixel.

(This solution is discussed in detail in the next section). The values

of s and t are then used to corpute 2. Doing this calculation for all

active curves is compute intensive, thus savings from the global 2

check, which reduces the number of active curves, is evident.

The more restrictive case, where patches are assumed not to inter-

sect each other, requires a depth check only when the active curve list

is changed. This is due to the fact that once a curve is determined to

be in front of another, it retains in front. In fact, when a new curve

is added to the active curve list it need only be compared to the

39

current visible curve to determine which curve is visible, and only

when the visible curve is deleted from the active curve list is the

depth corparison required.

It is also possible to convert cases with intersecting patches

into those without . This is done by dividing the intersected patch

into two patches by computing the intersection of the two patches,

and dividing the associated intersection curves into two curves. This

idea is illustrated in Figure 1A. In this case, two intersection

curves are divided into four curves which only intersect at their ends,

thus the faster algorithm can be used to display these patches.

Clearly, if it can be assumed that patches do not rave interior

intersections, calculations are significantly reduced. Of course,

such assumption precludes the detection of unwanted interference.

The next section will discuss solution methods for finding

intersections of a sightline and an intersection curve.

5. 5 Solutions of Nonlinear Equations

Up to this point, the algorithm has determined which curve is

visible for a given sightline. The curve is identified by which patch

it is in and its endpoints. The next step is to conpute normal vectors

for the associated pixels along the visible curve. The s and t values

of each siglntline intersection point are needed to conpute the normal

vectors . Therefore, an iterative technique is required to solve equa-

tion A.3.A for s and t.

Blinn suggested bivariate Newton's method (16,17) for solving

the equations. Newton's method requires the s and t values of a

starting point for the iteration. Faster convergence is achieved when

no

\\ b

21 ‘\ 3 I"

‘\

‘\

\

' l

3

L}

l

5 [2

3 b

)4

5

\3,A,5,6 U 5

A - 7] a
2 \ c 7 8 8

a \ a
\..

Newly Formed Intersection Curves

Figure 1A. Division of Intersection Curves for

Interior Intersections

Al

the starting point is near the solution. Good initial starting points

are available from the x scan. Interior to a visible curve, the s arnd

t values from the previous pixel are used as a starting point for the

present pixel. When the visible curve changes, a starting point is

required on the new curve. In this case, the s and t values of the

endpoint of the new visible curve closest to the x value of the sight-

line is used as the starting point.

It is also important to note a singularity that may prevent con-

vergence of Newton' 3 method. Consider a situation. wherein s arnd t for

a pixel on a visible curve are known, and the ds arnd dt to arrive at

the next pixel are sought. The following equation is solved for ds

arnd dt

.. -..1

3x 3x F
d8 “5's- 51E OX

a
(5.5.1)

El 31

f“. ..as M .dyl

where dx is the known x distance to the next pixel arnd dy is the known

y distance to the next pixel. Solutions exist only when the matrix of

partial derivatives is nonsingular, i.e. , when the determinant is

non-zero. The determinant of this particular matrix is proportional

to the 2 component of the normal vector at the point. Tierefore,

Newton's iteration will fail on areas of the patch where the z conponent

of the normal vector is near zero. This corresponds to normal vectors

lyirng in the plane of the screen, i.e. , to silhouette edges. Therefore,

Newton's method must be modified in these areas.

A2

In the neighborhood of a silhouette edge, an absolute maximum on

As and At is imposed so tl'at the iteration stays in the region of the

patch where it started. Convergence can be obtained for most pixels

near silhouette edges by heavily damping Newton' 8 method, but still

retaining the As/At ratio. As the number of iterations increases, the

step size is increasingly reduced. In the event that the iteration

does not converge after a limited number of iterations, the pixel is

assigned tre same normal vector as the neighboring pixel.

Another class of methods, the generalized secant methods, can be

used to solve this type of nonlinear equations. The advantage of these

methods is that the partial derivatives used in equation 5.5.1 of

Newton's method are not used after the first step of the iteration.

Obtaining these derivatives requires numerous calculations . Although

the convergence rate for secant methods is slower than Newton' s method,

extra iterations using secant methods are offset by the savings incurred

from not having to corpute partial derivatives at every iteration step.

One particular generalized secant method, Broyden' s method (16) , which

is used in this thesis, is discussed in detail in Appendix C.

5 . 6 Approximate Methods

A method was developed for approximating the normal vectors along

a visible curve between its endpoints similar to the method of key

visual points developed by Blirnn. At key visual points, Blinn conputes

tre exact normal vector. For points on the visible curve between key

visual points, be linearly interpolates between the normals at the key

visual points . One method used by Blinn to determine the location of

key visual points is to compute a key visual point every time the normal

A3

vector rotates a given number of degrees in the scarplane. This

procedure was apparently derived to avoid the burden of calculating the

s and t values to go with each pixel.

The approximating algorithm developed in this tresis also conputes

exact normals only in a few prescribed planes along the visible curve.

But instead of linearly interpolating, a third order interpolation, or

so-called blend, is used between the points. (This method preserves

the SIOpe at the endpoints of the curve, which is necessary if slope

discontinuities between patches are to be visible.) The following

equation is used to blend the normal vector:

= ‘N * ‘N ‘I’N N0 Fl(x) + N1 F2(x) + Nxo F3(x) + le rue) (5.6.1)

where NO is the normal vector at the leading endpoint of the curve and

N1 0arrilearetl'e

partial derivatives of the normal vector with respect to x at the

is the normal at the trailing endpoint. Also Nx

leading and trailing endpoints, and Fl(x) through Fu(x) are third order

blendirng functions (5) . These blending functions guarantee that the

normal and the derivative of the normal with respect to x is maintained

at the ends.

Since the normal vector is a conplicated function of s arnd t,

conputing the derivative with respect to x is not straightforward.

Appendix D presents the derivation for Nx .

It is usually sufficient to blend between the endpoints of the

visible curve, thus no interior points need be corputed. But for

sharply curved patches it may be necessary to break the curve into

shorter segnents. It is also important to note that Nx is undefined

AA

along silhouette edges. For this case, the blend is started a slight

distance’in from the silhouette edge, arnd points near the silhouette

edge are corputed exactly.

This approximating technique has been shown to be much more

accurate than linear interpolation, with only a slight increase in

corputation time. When corpared to exact techniques, a large time

savings is realized.

5. 7 31111111311)!

A tradeoff of time versus accuracy is evident for all of the

methods discussed. The most accurate technique, the exact method,

requires calculation times which may be prohibitive for extensive use

in an interactive enviroment. However, it is possible, through a

combination of exact and approximate methods developed in this thesis,

to create a practical design tool.

The next section will present results. Accuracy and calculation

time will be corpared for several algorithms. The effectiveness of

each technique for detecting surface flaws will also be discussed.

Finally, a possible surface checking scheme will be outlined.

CHAPTER VI

Algorithm Evaluation

6 . 0 Introduction

In the following section, comparisons are made between the exact

and the approximate methods presented in this thesis. First the

ability of the algorithm to detect surface flaws is examined. The

calculation time is then compared for each algorithm. Finally, a large

data base with many patches is used to illustrate the overall effec-'

tiveness of the modified y scan developed in this thesis.

6.1 Error Detection

An evaluation of the algorithm' 8 ability to detect surface flaws

makes use of the bump presented in Chapter 2. The bump with no slope

discontinuities is shown in Figure 1. Figures ’4 and 5 show the bump

after a slope discontirmity was introduced.

' The following examples compute the intensity for each pixel based

on the absolute value of the dot product of the normal vector and the

light vector. Taking the absolute value implies the light vector is

in both directions, therefore all surfaces are illuminated. Although

this is not realistic , it is effective when looking for surface

irregularities .

The exact algorithm is used to shade the bump with and without the

slope discontinuity. Figure 15 presents the bump without the lepe

145

A6

Figure 15. Shaded Bump

discontinuity. The color discontinuity in Figure 16 clearly indicates

the slope discontinuity along the patch boundary. This could easily

be detected by a designer who could then correct the error.

The approximate method can also be used to identify the slope

discontinuity. The image of the bump computed by the approximate

method is shown in Figure 17. Again, a color discontinuity is apparent

along the patch boundary containing the slope discontinuity. It should

be noted that since the interpolation scheme is accurate at patch

boundaries, flaws on the interior of the patch may not be as accurately

represented by the approximate method as those near the patch boundary.

It is of interest to note that not all views of the bump, or all

light sources will highlight the slope discontinuity. For example,

Figure 18 presents the same view of the bump as displayed in Figure 16,

N7

Figure 16. Shaded Bump with Slope Discontinuity

Figure 17. Shaded Bump with Slope Discontinuity,

Approximate Method

148

Figure 18. Shaded Bump with Slope Discontinuity,

Different Light Source

but the light source has been moved. The slope discontinuity is not

apparent in Figure 18. This is due to the fact that the change in

the normal vector across the discontinuity is in the plane normal to

the light vector. Thus the angle between the light vector and the

normal does not change, and no color discontinuity is generated.

Therefore, when checking a given view of a surface, it is necessary to

observe images produced from several different light sources. The

next section will discuss an efficient method of recomputing the image

for each light source.

6.2 Image Generation for a New Light Source

Computing an image for a new light source without changing the

viewpoint is a straightforward calculation. Surface normal vectors

“9

corputed for a given view remain the same for any light source.

Therefore, moving the light source requires only the computing of the

pixel intensity using the known normal vector and new light vector.

This is a simple calculation, orders of magnitude less burdensore

than corputing the normal vectors themselves.

In this thesis, pixel intensity is computed by taking the dot

product of the normal vector and the light vector. Therefore, moving

the light source requires calculation of one dot product for each

pixel. Such a calculation is potentially simple enough to be inter-

active. It is concievable that with the help of an array processor,

the light source could be hard wired to a Joy stick, and new light

source locations could be viewed almost continuously. In contrast,

changing the vievpoint necessitates recalculation of the normal vectors,

with attendant silhouette and hidden surface problems.

The next section will benchmark several of the images presented

above .

6.3 Compute Times

Calculation times for the bump are indicated in Table 1. Note

trat two different numerical techniques are listed for the exact method .

These indicate that Broyden' s method results in a significant time

savings compared to Newton's method. As expected, the table also

indicates that the approximate method requires less time than either

of the exact methods. Finally, the time required to corpute Figure 18

using normal vectors corputed for Figure l6, which amounts to moving

the light source, is listed to illustrate the simplicity of this

procedure .

5O

TABLEl

Compute Times

Exact method (Newton's) 112 sec

Exact method (Broyden’s) 37 sec

Approximate method 19 sec

Light source charge 5 see

All routines used in these corparisons are in Fortran and are

being run ona Prime 750.

6.1-I Object Assembly

The following example is used to demonstrate how objects can be

assembled on the screen without reshading the entire scene. Data

representing an aircraft wing are used for the example. A flow line

representation of the wing is shown in Figure 19.

The following is a possible scenario for a desiger checking the

wing. Assume portions of the wing were designed by two different

designers. Thus, the designer may first choose to inspect the lower

half of the wing. The resulting image is shown in Figure 20. At this

point many different light sources would be used to inspect the

51

Figure 19. Aircraft Wing

Figure 20. Shaded Aircraft Wing, Lower

52

surface. Upon completion of this check, the desiger may want to add

a portion of the wing as shown in Figure 21. Again, many different

light sources are used to inspect the newly added portion and to check

how it fits with the lower half. At this point he may choose to

corplete the assembly as shown in Figure 22 and continue the checking.

Later, while checking the fuselage, the wing could be added to insure

a proper fit. The total aircraft is shown in Figure 23.

6.5 Surface Checking Scheme

A possible surface checking scheme could entail the following

steps. A designer may start the surface check by displaying the

surface using flow lines. This would be used to check for missing

data or gross errors in the database. During this procedure, the

Figure 21. Sladed Aircraft Wing, Lower

plus Half of Upper

53

Figure 22. Shaded Aircraft Wing, Entire Surface

Figure 23. Shaded Aircraft

514

designer would note which.views clearly display areas of interest. At

this point he may choose to examine a view more carefully. This view

would then be shaded using either the approximate method or the exact

method. Mom a time standpoint, it is advantageous to use the approxi—

mate method whenever possible, but which algorithm.should be used

‘would depend'on several other consideratidns.

For example, the type of surface flaws which are to be identified

would affect the choice of the algorithm. If the slopes along patch

boundaries are being checked, the approximate:method.would be very

effective. On the other hand, if flaws involving curvature inflections

on patch interiors are suspected, the exact method would better identify

these errors.

The designer may also have prior lcnowledge of possible problem

areas on the surface, or’may have located possible problem areas using

the approximate method. In this case, these problem areas could be

'magnified and viewed using the exact method.

Regardless of which algorithm is used, each view is then inspected

using many different light sources. A.comhination of these procedures

and the assembly procedure would be used repeatedly until the designer

is satisfied that the surface is correct.

55

CHAPIERVII

Conclusions

Surface display methods developed prior to this work were primarily

aimed at producing aesthetically pleasing images. The goals of this

thesis, to develop a display algorithm to be used for surface checking,

required a different approach to tl'e problem.

The algorithm develOped in this thesis ras proven to be effective

at locating surface flaws, and has been shown to be time effective

from a designer's standpoint, facilitating a much more efficient check

procedure than using various views from line drawings.

Future work should include speedup of the exact method through the

use of better hardware. For example, many of the shading calculations

can be done in parallel, lending themselves to array processing. Also,

improvements in the accuracy of tl'e approximate method may be possible

through the use of higher order interpolation scheres. Other shading

techniques could also be investigated, such as shading by curvature,

which could highlight different types of surface flaws.

APPENDICES

APPENDIX A

Calculation of Approximate Patch Extrema

Patch extrema are approximated by expanding the matrix expressions

for the spatial coordinates, and summing maxima of terms. T're expres-

sions for the z extrera will be derived in the following discussion.

Identical expressions exist for x and y.

Figure Al illustrates a typical patch. Parametric variables s

and t run from zero to one. The patch boundaries, which are curves of

one parametric variable, are numbered from one to four as shown in the

figure. For example, L1(s) is the boundary curve at t = 0. The

following discussion specifically deals with Coons surface definitions,

but similar techniques can.be applied to other parametric surface

definitions.

The matrix equation for 2 as a function of s arnd t on the surface

is:

z = (F (Sm (Sm (Sm—r <s)> Fz z 93:00 3—201 - r (t;
l 2 3 A 00 01 at at 1

82 32

3500 9301 —o"‘2Zo —-o3221 F (t) (A l)
as as asat asat 3 °

2 2
32 82 a z a z

9:10 all ratio rate my

where Fl through F“ are cubic blending functions, and data subscript

appearing in the matrix related to the patch corners, i.e. , Z01 is the

56

57

Figure Al. Definition of Patch Boundaries

58

2 value at the corner s=O, t=l. Partially expanding equation A.l

yields:

L1(S)Fl(t) + L2<snm2<t>

+-g-,§00*F3(t)Fl(s) + a201*‘fi‘u('c)1'+‘l(s) (A.2)

82 32+ filmF3(t)F2(S) + ‘a'fll*Fu(t)F2(s)

where Ll(s) and L2(s) give the z coordinates on the boundaries 1 arnd 2

respectively. If Gl(t) and G2(t) are defired as the following:

—-00*FG(t) = g (t) + g—zorrum (a3)
13 3

a a
92m - 3%1w3m + 5%11‘Fu“)

Then equation A.2 becomes:

Ll(S)Fl(t) + L2(S)F2(t) (A.A)

+ Gl(t)Fl(s) + G2(t)F2(s)

The first two terms are associated with t blending of the s varying

boundaries, while the last two terms represent 8 blending of additional

surface contours due to partial derivatives with respect to t (see

Figure Al). Using the fact that max(a+b) s max(a) + max(b), equation

A. 5 becores:

59

max(Z) <_max(L1(S)Fl(t) + L2(S)F2(t)) (A5)

+ max(Gl(t)Fl(s) ..
..

G2<t)F2<s>)

Also note that since Fl + F2 1 the max(aF:L + bF2) = max (a, b), i.e.,

the larger of the two values a and b. Therefore the approximate

maximum of 2 can be written as:

max(Z) gmax(Ll(S), L2(S)) + max(Gl(t), G2(t)) (A.6)

Equation A.6 is easily solved. The expressions L1, L2, G and1,

G2 are cubics of one variable, therefore locations of local extrema

can easily be found by differentiation and solving of the resultant

quadratics. Local extrena located between 0 and l are then corpared

to end values to obtain global extrema over the range of 0 to l. A

similar derivation can be done to determine a lower bound for the

minimumz.

APPENDIX B

Calculation and Pairing of Intersection Curve Endpoints

B.O Calculation of Intersection Curve Endpoints

All intersection curve endpoints of a patch are conputed at one

time. Endpoints can occur on patch boundaries or on silhouette edges.

Calculation of endpoints on patch boundaries will be discussed first.

8.0.1 Patch Boundaries

Patch boundaries are functions of one parametric variable . End—

points are conputed using Newton' s method to solve the following

equation:

Y(s) = Yscan (8.1)
i

where Y(s) is the expression for the y value of the patch boundary,

and Yscan
1

lines may cross a patch boundary, therefore this calculation must be

is the y value of the ith scan line. Any number of scan

performed for all intersections. There may also be more than one

intersection of a patch boundary with a given scan line. Both of these

difficulties are harndled using the following algorithm.

The algorithm starts at the end of the patch boundary representing

the lower limit of the parametric value. For this discussion the

60

61

parametric value will be s and therefore the search starts at s=0.

Both y and dy/ds are conputed at the starting point. The value of

Yscan is then increrented in the direction of dy/ds, starting next to

the y value of the starting point, until the upper limit of the para-

metric value is encountered. Each solution of equation B.1 uses the

solution of the previous Yscan as a first guess for Newton' 5 method.

If anytime during the Newton iteration the sign of dy/ds changes, the

iteration is stopped and Yscan is incremented in the new direction,

and Newton's iteration is continued.

These ideas can be illustrated in the example presented in Figure

B1. Due to the positive derivative at s = O, the first Yscan value

greater than YO, Yscani, is used in equation B.1 to solve for endpoint

l. The derivative at point 1 is also positive, therefore Yscan is

increnented to Yscani+1 to compute erndpoint 2. Yscan is again incre-

mented to Yscan1+2, but the first step of Newton iteration moves 8

past Smax and a derivative sign change is detected. Therefore Yscan

is decrerented to Yscan1+1, arnd Newton's method is resumed, using as a

starting point the last s value corputed during the aborted iteration.

Because s was already incremented past smax’ Newton' s iteration

converges to endpoint 3. This process is continued until s I l is

encountered. This operation is performed for all four sides of the

patch.

B.0.2 Silhouette Edges

The algorithm used to corpute intersection curve endpoints along

a silhouette edge is based upon two assnmptions: 1) all silhouette

edges come in contact with a patch boundary in at least one point, and

63

 / \

Figure Bl. Calculation of Boundary Endpoints

6A

2) each silhouette edge has no:more than one sign change in dy/dx, or

so-called inflection point, along the silhouette edge. Figure B2

illustrates both of these conditions.

The algorithm first locates intersections between silhouette

edges and patch boundaries. A silhouette edge is defined as the locus

of points on a patch whose 2 component of the-normal vector is zero.

Therefore points on the boundaries whose 2 component of the normal

vector is zero can.be thought of as silhouette edge starting points.

The 2 component of the normal vector on a patch boundary can be

expressen in terms of one parametric value, therefore zeros can be

found using one—dimensional Newton's method. These points are stored

for the next step of the algorithm.

Using a silhouette edge starting point, the algorithm increrents

Yscan and computes the intersection points. USing partial derivatives

at the starting point, the direction to increrent Yscan is determined.

For example, on a constant t edge, t=0, if dy/dt is positive, Yscan

would be incremented in a positive direction. The initial Yscan is

determined by the y value of tie starting point and the increment

direction. Intersection points are fOund using bi-variate Newton's

method to solve the following sinmnltaneous equations:

Nz(s,t) = O

(13.2)

Y(s,t) = Yscani

where N2 is the 2 component of the normal vector. Good initial values

for Newton' s iteration are supplied by tre solution at the previous

Yscan.

65

Inflection Point on

{Silhouette Edge

 Silhouette Edge /

Starting Point

Figure B2. Critical Points on a Silhouette Edge

66

Yscan is increrented until one of two termination criteria is met:

1) Newton's iteration does not converge. This condition occurs when a

silhouette edge has ended, or an inflection point has been passed. '

Endpoints that exist past the inflection point are corputed when the

opposite silhouette edge starting point is used. This idea is illus-

trated in Figure B3. Starting at point A, endpoints l and 2 are

computed and termination occurs when Newton' 8 iteration does not con-

verge for Yscan“? Similiarly, endpoints 3 and A are computed wren

starting from point B. 2) A limit on s or t is exceeded, meaning the

silhouette edge reaches a patch bourndary. When this criterion is met,

the starting point associated with the termination point is removed

from the starting point list to avoid duplicate calculations.

B.1 Pairing of Intersection Curve Endpoints

After all intersection curve endpoints are corputed for a patch,

endpoints of the same intersection curve are paired. Endpoints are

sorted by scan line and pairing is done for each scan line. Tre logic

used to pair the endpoints depernds on tre rmmber and type of endpoints

for the given scan line, i.e. , whetlrer the scan line originates from a

patch boundary, or from a silhouette edge. The majority of pairing

results from several simple cases discussed below.

Two common cases, two or four boundary endpoints, are illustrated

in Figure BA. In these cases the pairing is straightforward. Another

common case, two boundary endpoints and one silhouette endpoint , is

presented in Figure B5. Note that the silhouette endpoint actually

plays the role of two endpoints. Pairing is again straightforward.

Figure B3.

67

Method of Calculating Silhouette Endpoints

68

\

\u

/ \

Figure BA. Simple Pairing Cases

69

Yscan1

Pairing 1-2

1-3

Figure B5 . Pairirng with One Silhouette Endpoint

70

When only one boundary endpoint exists on a scanline, it is assumed

to be at a patch maximum or minimum, as shown in Figure B6, and the

endpoint is deleted. Because these cases make up the majority of

pairing, the time required for pairing is small.

More corplicated cases are paired by determining if each endpoint

is a leading or trailing endpoint. The algorithm which defines the

leading or trailing status uses the idea that once tre status of the

patch boundary is defined, it retains that status until: 1) a sil-

houette edge starting point is passed, or 2) a change in the sign of

dy/ds occurs along the boundary. These ideas are illustrated in Figure

B7. At s=0, the boundary is a leading edge, but after the first

critical point, i.e. , the silhouette edge is passed, the patch bound-

ary becores a trailing edge. Note that the silhouette edge takes on

the status the patch boundary had before it crossed the silhouette

edge, thus the silhouette edge in Figure B7 is leading. When the

second critical point, i.e. , the sign change in dy/ds, is passed the

patch boundary becores a leading edge.

Therefore the status of endpoints is defined leading or trailing

and they are stored as they are being computed. The algorithm starts

by conputing tre status of the four patch boundaries at their begin-

nings. Next the silhouette edge starting points are corputed. As

endpoints of the patch boundary are corputed, their status remains the

same as the beginning until an 1) inflection point is passed, which

corresponds to a change in the Yscan increment direction, or 2) a

silhouette edge starting point is passed. In the second case, the

silhouette edge starting point is assigned the same status as the

71

Endpoint 1 Deleted

Figure B6 . Single Boundary Endpoint

72

Patch Boundary Leading\ 5‘0

fl Yscani+1

Silhouette Edge

Starting Point

Yscani

Patch Boundary Trailing/ atch

Boundary

M
leading

Silhouette Edge Leading Inflection

/

Figure B7. Determination of Leading or Trailing Status

73

boundary it started from. Silhouette edge endpoints then have the

same status as their starting points.

Pairing endpoints is done by pairing leading endpoints in the

order they occur from left to right with the closest trailing end-

points, until all endpoints are used. As endpoints are used they are

deleted from the list so they will not be paired twice. Silhouette

endpoints are paired twice. Figure B8 illustrates this process.

Unpaired endpoints are displayed in the figure after each pairing.

Beginning Endpoint List; L—leading, T-trailing

1L, 2L, 2L, 3T, 31', AT

First Pairing lip-3T

2L, 2L, 31‘, AT

Second Pairing 2L-3T'

2L, AT

Third Pairing 2L,-AT

Figure B8. Pairing Example

APPENDIX C

The Generalized Secant Method

for Solving Nonlinear Equations

Newton's method, which is a popular technique for solving non-

linear equations, is addressed in detail in (16) and (17). In general,

for the one—dimensional case, a solution ts , is sought for the

nonlinear equation:

x(t) = o (0.1)

Given a starting value t t is increrented each iteration according to
O 3

the equation:

axon) -1

} * X(tn) (0.2)

1: =1:
n+1 n '{ (it

An example of Newton's method is graphically illustrated in

Figure Cl. The iterations are continued until x(tn) is less than some

prescribed error, and then tn is assumed to be a solution.

The secant method, which is similar to Newton's method, uses one

iteration of Newton' 8 method to start the sequence, arnd then increments

t using the following equation:

- tn-l
t

__ n

1:n+1 - tn -[7((tn) - X(t 17] * X(tn) (0'3)

75

76

f(t)

f<t

ml) w

Figure Cl. A Corparison of Newton's Direction arnd

the Secant Direction

77

Note that the secant method approximated dx/dt with a finite difference,

which is referred to as the secant direction. The secant direction is

contrasted with Newton's direction in Figure C1. The figure indicates

a decreased convergence rate for the secant method. The convergence

rate for the secant method is (l + /'5-)/2 which is less than the

quadratic convergence rate of Newton' s method. The major advantage of

the secant method is that derivatives are not required after the first

step. The choice of the better method depends on the relative diffi-

culty of computing the needed derivative.

Newton's method is easily extended to an N-dimensional space. In

this case, there are N nonlinear equations of N variables of the form:

Xk(tl, t2, t3 tN) = o k = 1,2,3,...N (0.14)

or in vector form:

mt) = 0 (0.5)

where 3(- and t are N vectors. The equation which updates the '5 vector

becores :

.. _ ~ -1 ._ -

tn+1 = tn - J(tn) x(tn) (0.6)

where 3(tn) is the Jacobian matrix defined below.

78

3x1. 3x1 . 8x17

31:1 -3t2 8|tN

I

I

.. 3x 8x .
2 2

J(t) . — — l (0.7)
II 3:21 3132 :

g n

I i

“N axN

_atl a _.

t

n

The vector tn converges quadratically toward Es , the solution vector.

Generalization of the secant to N dimensions is more difficult.

A matrix Bn is desired such trat:

em = tn - n1X<tn> (0.8)

converges to a solution vector ts . By definition of the secant

direction, Bn must also solve the equation:

BnA = xn (0.9)

where Atn = tn - tn-l and AXr1 = x(tn) - x(tn—l)‘ There are new an

which solve equation 0.9, but the assumption is made that Bn is close

to the previous én- and the difference between them is 6n-
1’ 1‘

Bn=B +CM n-l (0.10)

Generalized secant methods are classified by the rank of the

updating matrix, On. The discussion that follows deals with rank 1

79

updating methods, in particular Broyden's method (17) . The derivation

is as follows.

Substituting equation 0.10 into equation 0.9 yields:

(En-l + 0n_l) AEn = A791 (0.11)

_ J_.

Choosing a vector W, such that WAtn is not equal to zero, multiplying

both sides of equation C.ll by W, and rearranging yields:

6M = < 1_) * (Al-(n - én-lAE-n) * WT (0.12)

W Atn

A common choice for W is:

W = A? ((3.13)

This choice of W minimizes tre change in Bn. Another choice for W,

which minimizes the change in Bgl, is:

. ”T .

W.Bn-1Axn (C.lA)

The effect of W on the convergence rate depends on the application.

It is useful to conpare Newton's method and Broyden's method in

the context of the x scan. The nonlinear system of equations being

solved at each pixel is:

x(s,t) = Xscani (0.15)

Y(s,t) = Yscan,L

80

The starting point used for each iteration is the solution at the

previous pixel. The first step of Newton's method, which is required

by both solution methods, is readily available from the known partial

derivatives corputed when finding the normal vector at the previous

pixel. Therefore, comparisons of the two methods will begin after the

first step.

The majority of the calculations required for solving equation

0.15 using Newton's method arise from solving for x, y, and the

Jacobian matrix at each step of the iteration. The Jacobian matrix

consists of the four partial derivatives, dx/ds, dy/ds, dx/dt, and

dy/dt. Computing each of these six values requires multiplication of

three matrices, a le containing blending functions in s, times a AxA

containing patch data, times a Axl containing blending fimnctions in t.

This product can be thought of as five vector dot products of length

four, but the calculation of x arnd y has common intermediate products

with two of the partial derivatives, therefore after corputing x and

y, only two addition dot products are required to obtain two partial

derivatives . The retaining two partial derivatives cost five dot pro-

ducts each, therefore the approximate cost of Newton' 3 method for one

step is 22 dot products. On the other hand, Broyden's method only

requires calculation of x and y at each iteration, along with calcula—

tions for the matrix updating approximately equal to two of the dot

products discussed earlier. Thus the approximate cost for one step of

Broyden' s method is 12 dot products.

A direct corparison of the two methods for a given problem then

depends on the average number of iterations required for each solution .

Several test cases rave indicated that for each pixel Newton' s method

81

uses an average of . 8 additional steps after the initial step, while

Broyden' s method required an average of one additional step . This

indicates an approximate savings of 30 percent for solving equation

0.15 during the x scan.

APPENDIX D

Calculation of 2%

The normal vector is a function of the parametric values s and t,

therefore derivatives with respect to s and t are easily obtaired.

(see eq. 2.1.3) Computing derivatives of the normal vector with

respect to x is not straightforward.

The first step in corputing aN/ax is to corpute the derivative of

the normal vector along the intersection curve cut by the scan plane.

The intersection curve is a constant y curve, therefore the following

equation is true along the curve:

a .31 § 21 * =dy 38 ds 4- at dt 0 (D.l)

This equation gives the ratio of ds to dt to move along the curve, as

illustrated in Figure D1.

The derivative of the normal along the curve can be found using

the following equation:

aN . aa AN. 22
5'6 as au at au 03'”

where u is the arch length along the curve.

But the u direction contairns corponents of x and 2 as shown in Fig-

ure D2. From Figure D2, dx and du are related by the followirng expres-

sion:

82

83

 ds Intersection

! Curveu

Figure D1. The Ratio ds/dt Along the Intersection Curve u

8A

Intersection

Curve u

Figure D2. Relationship of the u and x Directions

dx:

where

e:

where

(
”
'
0
2

N
N

I
I

and

Thus, equation D.3 yields:

du * cos(6)

az

arctan.(5§9

a a
811 Bu

iii§+2£ii
as an at an

3233 32 at
+__

T5 au at an

flag} 1

3X 311 COS! 65

85

(D.3)

(v.14)

(D.5)

(D.6)

(13.7)

LIST OF REFERENCES

10.

ll.

12.

LIST OF REFERENCES

Struik, D.J . , "Differential Geometry", Addison-Wesley, Cambridge,

1950.

Weatherburn, C.E. , "Differential Georetry", University Press, Cam-

bridge, 1927.

Osserman, R. , "A Survey of Minimal Surfaces", Van Nostrand Reinhold,

1969.

Forrest, A.R. , "Qn Coons and Other Methods for the Representation

of Curved Surfaces", Corputer Graphics and Image Processing, 1972,

Rogers, D.F. and Adams, J .A., "Mathematical Elements for Corputer

Graphics", McGraw-Hill, 1976.

Coviak, R.A., "Color Graphics in Engineering Design", Pasters

Thesis, Dept. of Mechanical Engineering, Michigan State Urniversity,

E. Lansing, ML, 1981.

Warnock, J . E. , "A Hidden Surface Algorithm for Conputer Half-Tone

Generated Pictures", Corputer Science Dept. , University of Utah,

TRA-15, June 1969.

Newell, M.E., Newell, R.G., and Sancha, T.L., "A Solution to the

Hidden Surface", 1972.

"Graphics Utah Style - 80", Manual, University of Utah, Salt Lake

City, Utah, 1980.

Sutherland, I.E., Sproull, R.F., and Schmacher, R.A., "A Charac-

terization of Ten Hidden Surface Algorithms", Conputing Surveys,

Vol. 6, No. 1, March 197A, pp. 1-55.

Watkins , G.S. , "A Real-Time Visible Surface Algorithm", Corputer

Science Dept., UI‘ECH-CSC—70-lOl, June 1970.

Lane, J.M., Carpenter, L.C., Whitted, T., and Blinn, J.F., "Scan

Line Methods for Displaying Parametrically Defined Surfaces",

Communications of the A.C.M., Vol. 23, No. 1, Jan. 1980, pp. 23-3A.

86

13.

1A.

15.

l6.

17.

87

Catmull, E. , "A Subdivision Algorithm for Corputer Display of

Curved Surfaces", UIEL—CSC-7A-l33, 197A.

Blinn, J .F., "Corputer Display of Curved Snm'faces", Ph.D. Diss.,

Conputer Science Dept. , Urniversity of Utah, Salt Lake City, Utah,

1978.

Whitted, T. , "An Improved Illumination Nbdel for Shaded Display",

Communications of the A.C.M., Vol. 23, No. 6, June 1980, pp. 3A3-

3‘49-

Ortega, J .M. and Rheirnbolt, W.C. , "Iterative Solutions of Non-

linear Equations in Several Variables", Academic Press, London and

New York, 1971.

Conte, S.D. arnd deBoor, 0., "Elementary Numerical Aralysis",

McGraw-Hill, New York, 1980.

nrcwran STnTE UNIV. LIBRQRIES

mWWII?"I"MlWIHIWIIWMINIMUM“
31293107539284

