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ABSTRACT
STRESS-INDUCED ABSCISIC ACID BIOSYNTHESIS IN HIGHER PLANTS
By

Robert Arthur Creelman

In water-stressed leaves, levels of abscisic acid (ABA)
can increase 10- to 40-fold over those in turgid ones. Turgor
Toss is the crucial parameter of cell water relations
governing the accumulation of ABA. Spinach leaf slices
incubated in the presence of ethylene glycol, a penetrating
solute, did not accumulate ABA, while slices incubated in
non-penetrating solutes, such as mannitol or Aquacide III,
did.

Two hypotheses have evolved concerning ABA biosyn-
thesis: ABA is formed (i) directly from farnesyl pyrophos-
phate, or (ii) indirectly from a carotenoid, with xanthoxin
as an intermediate in the pathway.

The immediate precursor(s) to ABA must be a Cy5 com-
pound. Three Cjs5 compounds with structures similar to ABA
were synthesized. The biological activity of -ionylidene
acetic acid was greater than that of ABA, indicating that it
was active per se and not a precursor, while 17,2 -epoxy-io-
nylidene acetic acid had less biological activity than
ABA. When the deuterated analogue of 1,2 -epoxy-ionylidene
acetic acid was fed to Xanthium leaves, deuterium was
incorporated into ABA. However, this compound is not endogen-
ous in Xanthium. Radioactive 17,2 -epoxy-ionylidene acetal-

dehyde was metabolized by piant tissues (spinach Tleaves,



tomato shoots, and tomato fruits), but no incorporation

into ABA or xanthoxin was detected.

Inhibitors of carotenoid biosynthesis decrease ABA
accumulation. While levels of carbohydrates and organic
acids were also changed, this result supports the hypothesis
that ABA is derived from a carotenoid.

The biosynthesis of ABA requires molecular oxygen. When
stressed leaves of Xanthium were incubated in the presence of
1802 for six hours, the majority of the 189 present in ABA
was found in the carboxyl group. With longer incubations (12
and 24 hours), increasing amounts of 180 were found in the
ring oxygen atoms of ABA. However, with stressed Xanthium
roots, 180 was already present in the ring oxygen atoms after
only six hours. Incorporation of 180 into phaseic acid, a
catabolite of ABA, was also detected. These data are consis-

tent with the indirect pathway for biosynthesis of ABA.



Knowledge is good (Emil Faber)
The struggles you survive make you stronger (F. Nietzsche)

It is by the solution of problems that the strength of the
investigator is hardened; he finds new methods and new
outlooks and gains a freer horizon (D. Hilbert)

The thing that hath been is that which shall be; and that
which is done is that which shall be done; and there is no
new thing under the sun (Ecclesiastes)

The more things change, the more they remain the same
(Montaigne)

I write my book, whether it be read by the present age or
posterity imports Tittle...has not God waited six thousand
years for an observer of his works? (J. Kepler)

For we do not think that we know a thing until we are
acquainted with its primary conditions or first principles
and have carried our analysis as far as its simplest elements
(Aristotle, Physics, book 1)

I have yet to see any problem, however complicated, which
when you looked at it the right way did not become more
complicated (P. Anderson)

Some day you will tax it (M. Faraday, on being asked by
P.M. Gladstone what was the use of electricity)

Where there is a great deal of light, the shadows are
deeper (Goethe)

It is the task of science to turn the impossible into the
boring (R. Ornstein)

Wherever you go, there you are (Buckaroo Banzai)

Vegetables are organized bodies, which extract from the
earth jucies proper to their nature. Vegetable substances
are much more compound than mineral. Their analysis is
consequently more difficult; certain principles, of too
great tenuity or volatility, escape us entirely (Beaume)
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CHAPTER 1
INTRODUCTION



2
1.1. ISOLATION AND IDENTIFICATION OF ABSCISIC ACID

The discovery of abscisic acid (ABA, Figure 1.1) stemmed
from investigations performed during the 1950’s and early
1960’s by three groups working on unrelated problems. One
group, led by Addicott at the University of California at
Davis, purified an active compound (abscisin II) from cotton
bolls which accelerated petiole abscission in explants from
young cotton seedlings (Ohkuma et al., 1963; Ohkuma et
al., 1965).

At Aberystwyth, Wareing’s group was investigating
the cause of dormancy in trees. An active extract (termed
dormin) was obtained from leaves of sycamore (Acer pseudo-
platanus) which induced dormancy in buds of sycamore seed-
Tings (Robinson and Wareing, 1964; Wareing et al., 1964).
Cornforth et al. (1965) later showed that dormin was identi-
cal to abscisin II.

Rothwell and Wain (1964) isolated a compound which
appeared to accelerate fruit and flower drop in yellow
lupin, later identified as abscisin II (Cornforth et al.,
1966b; Koshimizu et al., 1966; Porter and Van Steveninck,
1966). As a compromise, abscisin II (dormin) was renamed
abscisic acid and is abbreviated ABA (Addicott et al.,
1968). Recently, the numbering system of ABA was extended to
include previously unnumbered methyl groups (Boyer et al.,

1986).



Figure 1.1. Structure of abscisic acid.






1.2. OCCURRENCE IN PLANTS

ABA has been identified in angiosperms (both monocots
and dicots), gymnosperms, two ferns, a horsetail, and a
moss (Milborrow, 1978; Bearder, 1980), and several genera
of fungi (Assante et al., 1977; Ichimura et al., 1983;
Dorffling and Peterson, 1984; Marumo et al., 1984). ABA has
been detected in every major (and minor) plant organ from
shoot to root apices (Milborrow, 1978). ABA tends to occur
in highest concentration in young leaves, buds, fruits, and

seeds (Milborrow, 1978).

1.3. CHEMICAL PROPERTIES

ABA (MW 264 g/mole) is a sesquiterpenoid and contains
a carboxyl, keto, and hydroxyl group (Figure 1.1). It is a
weak acid (pk, 4.8) and partitions into organic solvents,
such as diethyl ether, dichloromethane, and ethyl acetate
(but not hexane), at low pH. The molecule has one chiral
center at C-1". The naturally occurring enantiomer is dextro-
rotary and has a sinister (S) configuration. ABA has high
optical activity, with extrema at 289 nm (positive) and 246
nm (negative) (Cornforth et al., 1966a). ABA absorbs in the
UV, with its maximum varying with the pH of the solution

(Dorffling and Tietz, 1983). UV, infrared, NMR, ORD, CD, and
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mass spectra are presented in Dorffling and Tietz (1983).

The configuration of the side chain at C-2 can be either
cis or trans. By convention, 2-cis,4-trans-ABA is ABA, and
the 2-trans,4-trans isomer t-ABA (Addicott et al., 1968).
Strong 1ight catalyzes the isomerization at the 2,3 double
bond to establish an approximate 1:1 ratio of ABA:t-ABA in
solution.

In several biological assays the unnatural (-) enantiomer
was as active as natural (+)-ABA (Sondheimer et al., 1971).
However, (-)-ABA was much less active than (+)-ABA in closing

stomata of barley leaves (Cummins and Sondheimer, 1973).

1.4. BIOSYNTHESIS IN FUNGI

The discovery that the fungus Cercospora rosicola
produced large amounts of ABA (Assante et al., 1977) initiat-
ed studies on the biosynthetic pathway in that organism. When
3H-MVA was applied to C. rosicola mycelia it was incorporated
into two major fractions, ABA and 1 -deoxy-ABA (IV, Figure
1.2; Neill et al., 1981; Neill et al., 1982). Later it was
shown that a-ionylidene ethanol (I), a-ionylidene acetic acid
(IT), and the epimeric 4 -hydroxy- a -ionylidene acetic acids
(III) were also incorporated into ABA (Neill and Horgan,
1983; Horgan et al., 1983). Of these compounds, only III and
IV are endogenous in C. rosicola (Horgan et al., 1983). Com-
pounds with a B-ionylidene type structure are not converted

to ABA (Neill and Horgan, 1983). Recently, Ichimura et
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al. (1983) reported similar results with C. cruenta.

Interestingly, only the 2-cis,4-trans isomers of I and II
were metabolized to ABA, while the 2-trans,4-trans isomers
were converted only as far as 2-trans,4-trans-IV (Neill and
Horgan, 1983). This implies that the early oxidizing enzymes
are rather nonspecific, but the final hydroxylating enzyme
has high specificity for the geometry of the side chain.

In summary, labeling studies with C. rosicola and
C. cruenta suggest that ABA in these fungi is formed from
a-ionylidene type compounds. Several possible intermediates
are also converted to ABA, but only two of them (III and 1IV)
appear to be endogénous. The final step in the biosynthetic
pathway appears to be the hydroxylation of IV at the 1°
carbon to give ABA. Nothing is known about the steps from MVA

to the first cyclized intermediate.

1.5. BIOSYNTHESIS IN HIGHER PLANTS

In order to understand the physiology of ABA it is essen-
tial to understand how the ABA level is regulated. This
requires information about how ABA is biosynthesized and
catabolized. Suprisingly for this youngster of the plant
growth substances, nothing is known about the biosynthetic
precursors to ABA. Reasons for this are the low levels of ABA
in plant tissues and lack of specific inhibitors of its
formation. As ABA contains 15 carbons and fits the isoprene

rule, it is considered to be a sesquiterpenoid. However, the
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structure of ABA is radically different from any of the known
sesquiterpenoids (Loomis and Croteau, 1980). Research has
focused on two pathways: (a) the direct pathway involving a
Cis precursor derived from farnesyl pyrophosphate, and (b)
the indirect pathway involving a precursor derived from a
carotenoid (Figure 1.3). The relative contribution of each
pathway is unknown, and the possibility exists that both may
be operating in higher plants at the same time. In either
case, MVA would be the ultimate precursor.

1.5.1. The Direct Pathway. Little evidence exists for the
immediate biosynthetic precursors of ABA, yet there is
evidence that MVA is a precursor. Label from MVA (or MVL)
has been incorporated into ABA on several occasions (Noddle
and Robinson, 1969; Milborrow and Robinson, 1973). However,
even though large amounts of radioactivity were supplied,
the amount of label found in ABA was a small fraction of
the total fed. Possible reasons for low incorporation are
competition for MVA by other terpenoid pathways (such as
sterols), or that the applied radioactive MVA is extensive-
1y diluted by a (large) precursor pool to ABA.

Results from feeding experiments with labeled MVA
indicate that three residues of the natural 3-R enantiomer
are incorporated into ABA (Robinson and Ryback, 1969). In
addition, the pro-4-R hydrogen of MVA is retained at carbons
2 and 5° of ABA (Robinson and Ryback, 1969), the pro-5-S
hydrogen at carbon 5 (Milborrow, 1972), and a preponderance

of the pro-2-R hydrogen at carbons 4 and 3~ (Milborrow,
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1974b).

Similar retention of hydrogens from MVA has been observed
with carotenoid biosynthesis. This similarity suggests that
the same enzymes involved in carotenoid biosynthesis are also
used in ABA biosynthesis, or that different enzymes (in
different compartments?) operate with the same mechanism.

An in vitro plastid system from avocado fruit that
synthesized ABA from MVL has been described (Milborrow,
1974a), although the amount of radioactivity recovered in ABA
was very low. Recently, Hartung et al. (1981)‘presented data
indicating that no biosynthesis of ABA occurred when isolated
spinach chloroplasts were fed MVA. Incorporation into ABA was
detected, however, when protoplasts or cytoplasmic fractions
were incubated with MVA.

1.5.2. The Indirect Pathway. Once ABA had been identified,
similarities between its structure and many xanthophylls,
e.g. lutein, antheraxanthin, and violanxanthin, were noted
(Figure 1.4). Taylor and Smith (1967) discovered that a
mixture of carotenoids irradiated in vitro were degraded to
an inhibitor with physiological properties similar to
ABA. The greatest amount of inhibitor was obtained when
violaxanthin was degraded. Later work showed that Tlolio-
lide, butenone, and an isomeric mixture of xanthoxins (Figure
1.5) were produced when violaxanthin was photooxidized, and
that 2-c¢cis,4-trans-xanthoxin was the active ingredient
causing growth inhibition in this mixture (Taylor and Burden,

1970; Burden and Taylor, 1970). Soon after this, Firn and
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Friend (1972) showed that treatment of violaxanthin with
soybean lipoxygenase could produce butenone and xanthoxin in
yields similar to those when violaxanthin was photo-oxidized,
indicating that 1ight was not needed for xanthoxin pro-
duction. In all instances more 2-trans,4-trans-xanthoxin was
produced than the 2-cis,4-trans isomer. Interestingly, the
pheromone trisporic acid, which regulates sexual reproduction
in the Mucorales, has been shown to be a breakdown product of
B-carotene (Figure 1.6; Gooday, 1974) However, it should be
noted that endogenous xanthoxin has never been shown to be
derived from violaxanthin in vivo. Futhermore, xanthoxin
could also be an intermediate in the direct pathway.

Studies on xanthoxin indicate that 2-cis,4-trans-xan-
thoxin is more active in bioassays than 2-trans,4-trans-
xanthoxin (Taylor and Burden, 1972). Only 2-cis,4-trans-
xanthoxin was converted to ABA and PA when fed to tomato
and dwarf bean plants (Taylor and Burden, 1973). When 2-
cis,4-trans-xanthoxin was applied through the transpiration
stream to leaves of several plants, stomata closed as fast
as when ABA was used (Raschke et al., 1975). However, when
applied to isolated epidermal strips it was ineffective.
Raschke et al. (1975) suggested that xanthoxin was convert-
ed to ABA during its passage to the epidermis when intact
Teaves were used. However, if xanthoxin was converted to
ABA it should not act as fast as it did.

An attempt to differentiate between the indirect and

direct pathways was performed by D.R. Robinson (cited in
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Milborrow, 1983). The first colorless carotenoid, phytoene
(labeled with 14C), was fed to avocado fruit slices along
with 3H-MVA. When the ABA isolated from this tissue was
analyzed, only 34 was found in ABA, yet both 34 and l4C were
detected in carotenoids. This work is inconclusive because
phytoene would have to penetrate to chloroplasts and then be
further metabolized to a xanthophyll. It is not known whether
this occurred, because a detailed account of this work has
never been published.

1.5.3. Mutants Deficient in Abscisic Acid. Several mutants
of higher plants have been found which appear to have an
ABA minus phenotype. The recognition of an ABA deficient
phenotype is based on excessive wilting or vivipary (prema-
ture germination). These mutants can be divided into two
classes, those that are green and contain carotenoids,
and those that are albino. It should be noted that are no
known mutants which produce no ABA at all. Perhaps this
genotype is lethal.

Green ABA-deficient mutants are found in potato (Quarrie,
1982), pea (Wang et al., 1984), tomato (Tal and Nevo, 1973),
and Arabidopsis (Koornneef et al., 1982). Of these, the only
well documented mutants are the wilty mutants of tomato,
flacca (flc), sitiens (sit), and notabilis (not). The
tomato mutants are recessive and are located at three
separate loci (Stubbe, 1957; Stubbe, 1958; Stubbe, 1959). ABA
levels in the three mutants range from 12-15% of wild type

for sit, 17-26% for flc, and 31-49% for not (Tal and Nevo,
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1973; Neill and Horgan, 1985). Since the decreased ABA
contents are not due to increased catabolism (Nevo and Tal,
1973), the lesions must be in enzymes involved in ABA
biosynthesis.

Normal water stress induced accumulation of ABA does
not occur in droopy (potato, Quarrie, 1982), sit and flc
(tomato, Neill and Horgan, 1985) and wilty (pea, Wang et al.,
1984). It is possible that these mutants are already stressed
and have reached their maximum accumulation of ABA, or these
mutants may not be able to accumulate stress-induced ABA. If
the latter case is true, the implication is that in higher
plants two pathways exist, one operating in turgid and the
other operating in water-stressed leaves.

Examples of mutants in the second class are the maize
viviparous mutants (viviparous 2, 5, and 9 [vp2, vp5, vp9],
pink scutellum [ps=vp9], white seedling [w3], and yellow
{y9]). A11 maize viviparous mutants are characterized by
pale yellow endosperms and white or almost white seedlings
(Robertson, 1975). The primary lesion in these mutants is
defective carotenoid biosynthesis (Fong et al., 1983a). All
carotenoid deficient mutants of maize have reduced levels
of ABA in the embryos, from 7-70% of wild type (Brenner et
al., 1977; Smith et al., 1978). It is possible that some of
the ABA has a maternal origin. No ABA was detected in
seedlings and roots of w3, vp5, and vp7 (Moore and Smith,
1985), although the method used to detect ABA was rather

insensitive.
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Although not conclusive, the biochemistry of the vivip-
arous maize mutants suggests the involvement of the indirect
pathway. However, it is also possible that the decreased ABA
Tevels in these mutants could simply be a secondary effect of
carotenoid deficiency. If the indirect pathway is indeed
operating, then the green wilty mutants represent blocks in
the pathway after xanthophylls, since Nevo and Tal (1973)
showed that fJc had slightly higher levels of carotenoids
than the wild type ‘Rheinlands Ruhm’.

1.6. CATABOLISM OF ABSCISIC ACID

While nothing is known about the intermediates in the
ABA biosynthetic pathway in higher plants, much more is
known about how ABA 1is degraded. ABA is rapidly catabolized
in plants by either conjugation to water soluble catabol-
ites or by oxidation to more polar compounds (Figure 1.7).
This subject has recently been reviewed (Loveys and Mil-
borrow, 1984). This section will deal with catabolites
that have been fully characterized. See Loveys and Milbor-
row (1984) or Walton (1980) for a discussion of other Tess
rigorously identified catabolites.

A major pathway in higher plants involves ihe hydroxyla-
tion of ABA at the 8 -geminal methyl group to give the
unstable intermediate HM-ABA, which rearranges to form
PA, and the subsequent reduction to DPA. This pathway

has been shown to operate in several plants, including beans
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(Harrison and Walton, 1975), ash seeds (Sondheimer et al.,
1974 ), and castor bean (Zeevaart, 1977). In spite of many
attempts to isolate it, 8 -OH-ABA has only been reported once
(Milborrow, 1969). Its presence as an intermediate in the
conversion of ABA to PA in a cell-free system was inferred
from a product which was acetylated (Gillard and Walton,
1976). The epimer of DPA has also been reported (Zeevaart
and Milborrow, 1976).

In addition to catabolism to PA and DPA, conjugation
of ABA also occurs. ABA-GE appears to be widely distributed
in plants, but has been unequivocally identified only a few
times (Hirai et al., 1978; Boyer and Zeevaart, 1982b).
Other conjugates of PA (PA-GE; Boyer and Zeevaart, 1982a)
and DPA (DPA aldopyranoside; Setter et al., 1981) have been
reported.

Many studies dealing with the catabolism of ABA have
involved the use of radioactive (%)-ABA. Determination of
whether the catabolites are natural or not is difficult
unless the stereochemistry of the catabolite is report-
ed. When 14C—(t)—ABA was fed to plants, only the (+) enantio-
mer was converted to PA and DPA, whereas hydrolysis of the
ABA-GE gave predominantly (-)-ABA (Milborrow, 1978; Zeevaart
and Milborrow, 1976). Another catabolite, 7 -hydroxy (-)-ABA
has recently been reported (Boyer and Zeevaart, 1986). Thus,
all studies dealing with ABA catabolism should state the

stereochemistry of ABA fed and of the catabolites isolated.
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1.7. PHYSIOLOGY

Numerous theories on the involvement of ABA as a plant
growth regulator have been proposed, including, but not
limited to, root gravitropism (Wilkins, 1978, 1984), seed
and bud dormancy (Addicott and Lyon, 1969; Wareing, 1978),
and stomatal closure (Raschke, 1975). However, Wareing
(1978) and Walton (1980) have concluded that too little is
known about the events occurring during any physiological
process to state unequivocally that ABA is involved in its
control.

Root gravitropism is thought to involve the asymmetric
redistribution of a‘'growth inhibiting substance. Although the
identity of the growth inhibiting substance is unknown, ABA
has been proposed to be the agent causing inhibition. How-
ever, recent evidence (Moore and Smith, 1984, 1985) argues
against a role for ABA in gravitropism. Using carotenoid
deficient mutants of maize (which have non-detectable levels
of ABA), Moore and Smith (1985) demonstrated that gravitropic
curvature still occurred. In addition, Moore and Smith (1984)
showed that curvature also was present when ABA biosynthesis
was inhibited using carotenoid biosynthetic inhibitors.

The best evidence, although still correlative, for the
involvement of ABA in a physiological process has been
obtained with experiments on water stress. Detached or
attached leaves will accumulate ABA (usually 10 to 40 times

that found in a turgid leaf) upon the imposition of a water
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stress. When ABA is given to epidermal strips or fed to
intact leaves through the transpiration stream, stomata
close rapidly (Mittelheuser and Van Steveninck, 1969;
Tucker and Mansfield, 1971). The stomatal response is
specific for the naturally occurring (+) enantiomer and is
reversible (Cummins and Sondheimer, 1973; Cummins et al.,
1971).

Thus, a role for ABA in controlling water deficit through
regulating stomatal closure seems reasonable. ABA is clearly
made during water stress, it will then travel to the guard
cells via the transpiration stream and cause stomatal
closure. However, stomata have been shown to close before a
measurable increase in bulk leaf ABA occurs (Henson, 1981b).
The results of Henson (198la, 1981b) could be explained if
ABA were compartmentalized as a Targe inactive pool and a
small active one. Evidence exists for the compartmentation of
ABA in Tleaves (Cummins and Sondheimer, 1973; Raschke et al.,
1976; Raschke and Zeevaart, 1976). In addition, following
loss of turgor a sufficient amount of ABA moves into the
apoplast to cause stomatal closure (Cornish and Zeevaart,
1985) .

The effect of ABA on stomata is rather rapid compared
to its effect on protein synthesis, as in the control of
@-amylase production in barley aleurone layers (Higgins et
al., 1982; Mozer, 1980). In this tissue, ABA inhibits the
gibberellin induced synthesis of a-amylase, which is needed

for the hydrolysis of endosperm starch during germination
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(Ho and Varner, 1976). This inhibition is not due to competi-
tion for a common site of action, because high concentrations
of gibberellin do not overcome the effect (Ho and Varner,
1976). The effect of ABA can be prevented by cordycepin
indicating that continued protein or RNA synthesis is needed
for the response to occur (Ho et al., 1985). ABA applied
alone also appears to induce the synthesis of several
proteins in barley aleurone layers (Higgins et al., 1982;
Mozer, 1980). The function of these proteins is unknown.

ABA has been proposed to be an inhibitor of vivipary
(precocious germination; see section 1.5.3) and a promoter
of embryo maturation. Vivipary occurs normally in mangroves
(Rhizophora mangle) and it has been shown that embryos of
this species are insensitive to ABA (Sussex, 1975). The vp
mutants of corn (see section 1.5.3) also have decreased
levels of ABA. Addition of fluridone, a carotenoid biosyn-
thetic inhibitor, induces vivipary in developing maize
kernels (Fong et al., 1983a, Fong et al., 1983b).

In several other studies, it has been shown that exogen-
ous ABA application to excised dicot embryos will inhibit
both germination and the appearance of germination-specific
proteins, and promotes embryo-specific proteins and mRNAs
(Ihle and Dure, 1970; Dure et al., 1983; Crouch and Sussex,
1981; Crouch et al. 1984). Bray and Beachy (1985) showed
that the B-subunit of B-conglycinin, a storage protein,
accumulated when excised soybean cotyledons where treated

with ABA. Addition of fluridone decreased B-subunit product-
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jon. The accumulation of wheat germ agglutinin (a lectin
found in wheat embryos, shoots, and roots) is also induced
by ABA (Raikhel et al., 1986; Quatrano et al., 1983). Ap-
plication of fluridone to wheat leaves decreases the amount
of lectin present (Raikhel et al., 1986).

ABA appears to be necessary for other processes. An
example is the biochemical, physiological and morphological
changes that occur in the tomato mutants flc and sit (see
section 1.5.3). These mutants appear shorter, produce
adventitious roots on stems, and the leaves show epinasty
compared with wild type (Tal et al., 1979). In addition,
levels of auxinlike substances and ethylene are higher than
normal (Tal et al., 1979). Even though ABA is present
(although in lower amounts than wild type) application of ABA
will cause reversion to the wild phenotype (Imber and Tal,
1970; Bradford, 1983).

Thus, there appears to be several different roles for ABA
in higher plants. One is a rapid response associated with
stomatal closure. Here the site of action of ABA appears to
be the plasmalemma (Hartung, 1983) where it appears to
inhibit proton extrusion (Shimazaki, et al., 1986). Another
role is associated with the regulation of protein accumu-
lation, such as that found in barley aleurone layers with
a-amylase or in wheat with wheat germ agglutinin. However,
the effects of ABA on ion transport and gene expression
cannot explain the phenotypes seen in the ABA deficient

mutants flc and sit.
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1.8. STATEMENT OF PURPOSE

Earlier it was mentioned that ABA levels increased upon
the imposition of water stress, and that ABA appears to
ameliorate the stress by closing stomata. The increase in ABA
is apparently regulated by loss of turgor (Pierce and
Raschke, 1980). Environmental conditions other than water
stress have also been reported to cause ABA accumulation
although to a lesser degree. Examples of this are Tow
relative humidity (Wright, 1972), flooding of soil (Wright,
1972), salinity or osmotic stress of roots (Mizrahi et al.,
1970), mineral deprivation (Mizrahi and Richmond, 1972), and
chilling (Raschke et al., 1976). While the tissue did not
appear to be visibly stressed in any of these cases, each of
these conditions can be expected to change the water status
or reduce translocation. Thus, the accumulation of ABA
appears to be a situation where a physical phenomenon (loss
of turgor) controls a biochemical pathway. I was interested
in understanding how this occurs. Unfortunately, there is
very little known about the intermediates of the ABA biosyn-
thetic pathway. Therefore, I wanted to determine how ABA is
made in higher plants. Specifically, I wanted to:

1. Determine which pathway, the indirect or
direct one, operates during water stress;
2k, Determine the role of xanthoxin in the pathway,

and the intermediates between it and ABA and;
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3. Confirm that loss of turgor regulates the accum-

ulation of stress-induced ABA.
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2.1. INTRODUCTION

If ABA is synthesized via the indirect pathway, then
inhibition of carotenogenesis with specific inhibitors
should also prevent the accumulation of ABA. Pyridinone
(such as fluridone, 1l-methyl-3-phenyl-5-[3-(trifluoro-
methyl)phenyl]-4(1H)pyridonone) and pyridazinone (such as
norflurazon, a]so-known as SAN-9789, 4-chloro-5-(methyl-
amino) -2 (a,o,a-trifluoro-m-tolyl)-3-(2H)pyridazinone) herbi-
cides block the desaturation of phytoene to phytofluene, the
first two colorless carotenoids (Bartels and Watson, 1978).

These inhibitors also have a number of effects aside
from inhibiting carotenoid synthesis. When plant tissue
lacking carotenoids is grown in light, chlorophyll, chloro-
plast proteins, and plastid ribosomal RNA do not accumulate
(Bartels and Watson, 1978; Quarrie and Lister, 1984). In
addition, alterations in the fatty acid composition of
galactolipids also occur (St. John, 1976). How these alter-
ations in plant metabolism might affect ABA accumulation is
unknown. These non-specific effects require the measurement
of primary metabolites to determine if they might be in-
directly affecting ABA accumulation.

The effect of these inhibitors on ABA accumulation was
determined using seedlings of Zea mays. Sugar (soluble and
insoluble) and organic acid levels were also measured. This
was done to determine if the inhibitors had a non-specific

effect on primary cell metabolism.
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2.2. MATERIALS AND METHODS

2.2.1. Plant Material. Seeds of corn (Zea mays, hybrid MS
WFg x Bear 38, Custom Farm Seed, Decatur, IL, gift of
Dr. K. Poff) were imbibed overnight in solutions of norflura-
zon, fluridone or distilled water. In most experiments the
inhibitor concentration was 104 M. They were then planted in
vermiculite and watered with the appropriate solutions. Flats
were kept in darkness, except for a daily 2 h period when red
Tight was given to inhibit mesocotyl growth. After 9 to 10 d,
seedlings were harvested by clipping just above soil Tlevel.
For experiments involving measurement of ABA, seedlings were
either stressed until they lost 13% of their fresh weight,
followed by storage in a plastic bag for 8 h, or placed
immediately in a plastic bag. For analysis of primary
cellular metabolites leaves were frozen immediately in liquid
nitrogen (organic acids or sugars), or extracted in methanol
(carotenoids). A1l experiments were repeated at least once,
with two replicates per treatment.

2.2.2. Abscisic Acid Analysis. After the experimental
period, the tissue was frozen and lyophilized. Extraction
and quantitation were performed exactly as described in
Zeevaart (1980).

2.2.3. Organic Acid Analysis. The procedure used was basic-
ally that of Stumpf and Burris (1979). Approximately 1 g of
tissue was frozen, lyophilized, and powdered. This powder was

placed in a 50 ml Erlenmyer flask to which 15 ml 95% ethanol
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was added. The ethanolic solution was boiled for 10 min. The
extract was centrifuged and the supernatant was taken to
dryness. The residue was redissolved in one ml of distilled
water.

The extract was then subjected to ion exchange chromato-
graphy. Dowex 1 and 50 (Dow Chemical Co.) were both washed
with acetone, methanol, and toluene to remove colored
contaminants. Dowex 1 was converted to the formate form by
washing with 1 N formic acid until the pH of the eluate was
less than 2. The resin was back-washed with distilled water
until the pH was greater than 5. Dowex 50 was used as
provided by the manufacturer.

An aliquot (0.3-0.5 ml) of the aqueous residue was
applied to a Dowex 50 column (H*, bed volume 0.3 ml) on top
of a Dowex 1 column (formate, bed volume 0.1 ml). The Dowex
50 column was washed with 2 ml of distilled water, removed,
and the Dowex 1 column similarly treated. The organic acids
were eluted from the Dowex 1 column with 4 ml 2 N HC1 and
dried. They were then redissolved in 400 pl distilled
water, transferred to a small vial, and dried.

The samples were resuspended in 50 ul pyridine to which
25 ul BSA was added 10 min prior to analysis. GLC-FID
analysis was performed with a 3% SE-30 (2 m, 80-120 mesh,
gas-chrom Q, 30 ml/min He flow) temperature programmed from
80 C to 240 C at 5 C per min. Quantitation was performed by
comparison with known amounts of malonic, succinic, malic,

and citric acids.
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2.2.4. Soluble and Insoluble Sugar Analysis. The procedure
used was basically that of McCready et al. (1950). Lyophil-
ized leaves were finely powdered and extracted four times
with 25 ml of hot 80% ethanol to give the soluble sugar
fraction. Distilled water (5 ml) was added to the residues,
followed with, after cooling in an ice bath, 6.5 ml of 53%
perchloric acid. The mixture was stirred for 20 min after
which 20 ml of distilled water- was added. The mixture was
next centrifuged. This was repeated once and the supernatants
combined to give the insoluble carbohydrate fraction. Both
fractions were lyophilized to dryness and known amounts of
distilled water were added.

Aliquots were analyzed by the phenol-sulfuric acid method
(Ashwell, 1966). To 2 ml of the sugar solution was added 50
ul 80% phenol followed by 5 ml of sulfuric acid. After 15
min, the absorbance was read at 488 nm. Quantitation was
performed by construction of a standard curve with known
amounts of sucrose. To take into account water lost during
the biosynthesis of starch, the value obtained from the
standard curve was multiplied by 0.9.

2.2.5. Carotenoid Analysis. The procedure used was that
described in Davies (1976). After harvesting, leaves were
immediately extracted in methanol. Following filtration,
the filtrate was added to an equal volume of diethyl ether
to which three volumes of aqueous 20% NaCl were added. The
diethyl ether phase was washed three times with distilled

water and dried over NajS04. The ether was removed by
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rotary evaporation and the residue dissolved in methanol to
which a solution of 60% KOH in methanol was added to give a
final concentration of 6% KOH in methanol. The solution was
placed under nitrogen and stored in the dark at 4 C over-
night. The saponified extract was added to an equal amount of
diethyl ether to which three volumes of aqueous 20% NaCl was
added. The ether phase (containing carotenoids) was washed
four times with distilled water and the aqueous phase
(containing degraded chlorophyll) was discarded.

If total carotenoids were to be determined, suitable
aliquots were analyzed according to Davies (1976). If
phytoene was to be measured, a small aliquot was subjected
to silica gel TLC using hexane:acetone 9:1 as solvent. The
zone containing phytoene (Rg 0.97), which fluoresces under
UV as a weak violet zone, was eluted with hexane and quanti-

fied according to Davies (1976).

2.3. RESULTS

2.3.1. Carotenoid, Organic Acid, and Sugar Levels in Control
and Inhibitor Treated Corn Seedlings. Seedlings grown in the
presence of inhibitor concentrations greater than 103 M were
stunted and generally had an abnormal appearance. At concen-
trations less than 1076 M seedlings had the same appearance
as control plants. At a concentration of 10-% M seedlings
were slightly shorter than control plants (Figure 2.1), but

were suitable for experimental use. Both inhibitors caused a
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CONTROL

NORFLURAZON

Figure 2.1. Corn seedlings watered with either nutrient

solution or 104 M norflurazon.
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decrease in total carotenoid content and increased phytoene
levels at a concentration of 10°4 M compared with control
seedlings (Table 2.1). Organic acid levels were increased in
the inhibitor treated plants (Table 2.2), indicating that the
tricarboxylic acid cycle was perturbed. Insoluble carbohy-
drates (starch) were slightly decreased, whereas soluble free
sugars were slightly increased (Table 2.3) in seedlings grown
in the presence of inhibitors.

2.3.2. Effects of Carotenoid Biosynthetic Inhibitors on
Abscisic Acid Accumulation. ABA levels in turgid, inhibitor
treated tissue, were decreased compared to green tissue
(Table 2.4). In addition, the ability to accumulate water-
stress-induced ABA was reduced in inhibitor-grown seed-

lings (Table 2.4).

2.4. DISCUSSION

2.4.1. Inhibition of Abscisic Acid Accumulation by Norflur-
azon and Fluridone. The results presented above show that the
accumulation of ABA was drastically reduced when corn
seedlings were grown in the presence of inhibitors of
carotenoid biosynthesis. This result has been observed by
other workers (pearl millet, Henson, 1984; barley, Quarrie
and Lister, 1984; corn, Moore and Smith, 1984). Interest-
ingly, fluridone induces vivipary when applied to developing
maize seeds 11 d after pollination (Fong et al., 1983a; Fong
et al., 1983b).
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Table 2.1. The effect of norflurazon and fluridone on
levels of phytoene and total carotenoids in corn seedlings.
The data presented are from different experiments, and
are the average of two replicates per treatment. The values
in parenthesis are the per cent of control.
R SR Control  Norflupazon  Fluridone
(10-4 M) (10-% M)
T ag fresh we. T
Phytoene 25(100) 63(252) 68(672)

Total carotenoids 62(100) 4.1(7) 0.8(2)

Table 2.2. The effect of norflurazon and fluridone on
organic acid Tevels in corn seedlings.
The data presented are from different experiments, and

are the average of two replicates per treatment.

pg/g fresh wt.

Malonic 21 nd* 63
Succinic 75 92 360
Malic 790 1890 2430
Citric 1000 1230 1520

* not detected
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Table 2.3. The effect of norflurazon and fluridone on
levels of soluble and insoluble sugars in corn seedlings.
The data presented are from different experiments, and

are the average of two replicates per treatment.

Sugar Control Norflurazon Fluridone
(10-4 M) (10-% M)
"""""""""""""""""" ng/g fresh wt.
Soluble 26 38 54
Insoluble 5%7 3013 2.8

Table 2.4. The effect of norflurazon and fluridone on ABA
levels in corn seedlings. 1
The data presented are from different experiments, and

are the average of two replicates per treatment.

ug/g fresh wt.

Control
Turgid 15
Stressed 307
Norf]zrazon
(10-4% M)
Turgid 1
Stressed 15
Fluridone
(10-4 M)
Turgid 0.5

Stressed 13
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When green leaves (which already have a Targe carotenoid
pool) were treated with norflurazon, stress induced ABA
accumulation was not inhibited (Henson, 1984). In green bean
leaves labeled with 14C02 and then water-stressed, the
specific activities of ABA and xanthophylls were similar on
a per carbon basis. However, when green leaves of bean were
treated with norflurazon prior to 14COZ labeling, the
specific activities of ABA and xanthophylls were reduced to
the same extent, but total ABA biosynthesis was not affected
(Walton et al., 1985). Thus, the effect of norflurazon on ABA
accumulation in green leaves must be on the biosynthesis of
new carotenoids. These results (Henson, 1984; Walton et al.,
1985) are consistent with the idea that ABA arises from a
pool of carotenoids.
2.4.2. Non-Specificity of Carotenoid Biosynthetic Inhibi-
tors. Clearly, the experiments described in section 2.4.1
are strong evidence for the indirect pathway of ABA biosynth-
esis. However, the fact that these inhibitors have strong
effects on primary metabolism imply that the conclusions
should be interpreted cautiously with regard to ABA accumula-
tion. In addition to being grown in the presence of in-
hibitors, the seedlings were also grown in darkness to avoid
photo-bleaching. Because of these factors, the primary
metabolism of corn seedlings grown under these conditions is
different from plants grown under normal conditions. These
facts lead to the conclusion, that while the inability to

accumulate ABA is associated with carotenoid deficiency, it
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cannot be separated from an indirect effect of altered
primary metabolism on ABA biosynthesis.

Quarrie and Lister (1984) used a mutant of barley (albos-
trians) which has green, chimeric, and white leaves, and
norflurazon-treated barley plants in studies dealing with ABA
biosynthesis. These workers concluded that plastid ribosomes
were needed for stress ABA and that the enzymes for ABA
biosynthesis are encoded in nuclear DNA (Quarrie and Lister
1984). They stated that the decreased ability to accumulate
stress-induced ABA in the mutant and norflurazon treated
plants was not due to decreased levels of NADPH, ATP, or
carbohydrate because dark-grown etiolated plants accumulated
ABA just as well as green plants. However, it should be noted
that functional mitochondria are present in etiolated plants,
and these organelles could substitute for chloroplasts with
regard to energy production.

Quarrie and Lister (1984) also state that small amounts
of ABA are produced during stress in the absence of plastid
ribosomes, indicating that the nuclear genome codes for
enzymes in ABA biosynthesis. However, the data they present
are barely above the detection 1imit and they mention that
there was a impurity which co-chromatographed with MeABA
which made quantitation difficult. Since the data were
obtained with the mutant albostrians the variability observed
could simply represent ABA that was transported into the leaf

before the stress period began.
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3.1. INTRODUCTION

Regardless of whether ABA is synthesized via the direct
or indirect pathway, the immediate precursor(s) to ABA must
be a Cy5 compound. I decided to synthesize three compounds
structurally related to ABA, @-ionylidene acetic acid, 17,2 -
epoxy-ionylidene acetic acid, and 1,2 -epoxy-ionylidene
acetaldehyde, to determine if any of them would serve as a
precursor to ABA.

One of these compounds, a-ionylidene acetic acid, has
been shown to be a precursor to ABA in fungi (Neill and
Horgan, 1983; Oritani et al., 1982; Ichimura et al., 1983).
In several bioassays, this compound has greater biological
activity than ABA (Walton, 1983). However, it has been shown
that many plants can catabolize w@-ionylidene acetic acid to
1°-deoxy-ABA and conjugates, but not to ABA (Lehmann and
Schitte, 1976). Only with Vicia faba has any conversion to
ABA been demonstrated (Walton et al., 1985). Lack of convers-
ion in many other plants could be due to a failure of the
compounds to reach the proper compartment for metabolism to
ABA. It could also be that the results with V. faba are
anomalous because an enzyme is present in this plant that is
Tacking in others.

The only Cj;5 compounds known to be converted to ABA
are 17,2 -epoxy ionylidene acetic acid (Milborrow and
Noddle, 1970) and xanthoxin (Taylor and Burden, 1973). How-

ever, in both cases only l4c incorporation into ABA was
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demonstrated instead of an unequivocal proof showing heavy-
isotope incorporation by GC-MS.

In some bioassays (such as stomatal closure, rice
seedling growth, and lettuce hypocotyl growth) 17,2 -epoxy-
ionylidene acetic acid had less biological activity than
ABA, whereas in others (lettuce seed germination and Avena
coleoptile growth) it had the same or greater activity
(Walton, 1983), depending on the concentration used. Xan-
thoxin was highly active in all biological assays, except
when stomatal closure in epidermal strips was tested (Walton,
1983). Higher plants can convert 17,2 -epoxy ionylidene
acetic acid to xanthoxin acid and ABA and other unknown
catabolites (Milborrow and Noddle, 1970; Milborrow and Garms-
ton, 1973). Similar results have been obtained with the
funqus C. cruenta (Oritani and Yamashita, 1985). I decided to
synthesize this compound and confirm that it is indeed
converted to ABA.

Since the chemical synthesis of xanthoxin is very
laborious and difficult (Kienzle et al., 1978), I decided to
synthesize a compound very similar to both 17,2 -epoxy-io-
nylidene acetic acid and xanthoxin, namely 1,2 -epoxy-io-
nylidene acetaldehyde. This compound is identical to xanthox-
in except that there is no hydroxyl group at C4 . Since it is
known that higher plants can insert a hydroxyl group at this
position with o-ionylidene type structures (Lehmann and
Schitte, 1976; Walton et al., 1985), it seemed reasonable to

assume that this would occur when 1,2 -epoxy-ionylidene
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acetaldehyde was fed. If xanthoxin was made, further metabol-
ism to ABA would occur. Incorporation of tritium and deuter-
ium into this compound would allow for purification by HPLC

and subsequent identification by GC-MS.

3.2. MATERIALS AND METHODS

3.2.1. Synthesis of 24 Labelled a-Ionone (V, Figure 3.1)
Deuterium was exchanged into a-ionone by dissolving a-ionone
(8.8 g, 25 mmol) and 2HZO (1 ml, 99% atom excess) in 12 ml of
dg-acetone and adding about 1 mg of Na metal. After stirring
at room temperature for 24 h the acetone was removed with the
aid of a rotary evaporator. Chloroform (2 ml) was added and
the mixture was partitioned against 3 ml zH20 twice and 3 ml
H20 twice. Analysis by NMR and GC-MS indicated that the
deuterium was located in the side chain methyl group of
a-ionone (V) and had an isotopic composition, [ZHO]:[ZHl]:
[2Hp1:[%H3], of 2:3:21:75 (2.69 deuterium/molecule).
3.2.2. Synthesis of 2H and 3H Labelled B-Ionone. Tritium
was exchanged into B-ionone in a custom synthesis by Amersham
Corporation by a method similar to that used by Walton et
al. (1977). The exchange was performed by mixing B-ionone,
alumina, anisole, and 3H20 (25 Ci) for 25 min at 120 C.
Deuterium was exchanged into B-ionone in a manner
identical to that done with a-ionone. NMR and GC-MS analysis
indicated that the deuterium was located in the side chain

methyl group of B-ionone with an isotopic composition of
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1:200:1800:8000 (2.77 deuterium/molecule).
3.2.3. Synthesis of a-Iony'lidene Acetic Acid (X, Figure
3.2). A mixture of deuterated a-ionone (V, 2 g, 12.5 mmol)
and carbethoxymethylenetriphenylphosphorane (VI, 8.8 g, 25
mmol) was heated at 170 C for 90 min. After cooling, the
red viscous product was triturated with hexane and stored
at 20 C overnight. Any triphenyiphosphine oxide (VII) which
precipitated was removed by filtration. The filtrate was
concentrated to an oil by rotary evaporation. GLC-FID
analysis (3% SP-2100, 140 C to 240 C at 5 C/min, 30 ml/min
He flow) of the crude mixture indicated a 1:2 ratio of
cis,trans- (VIII, retention time 4.96 min) and trans,trans-
ethyl a-ionylidene acetate (IX, retention time 5.61 min).

The isomers were separated by silica gel chromatography
yielding 110 mg pure cis,trans- (VIII) and 260 mg trans,trans
ethyl a-ionylidene acetate (IX); both compounds were Tlight
yellow oils. The cis,trans isomer was saponified overnight in
1 ml 10% KOH/methanol. After acidification with 6 N HC1 a
white flocculate resulted which was partitioned into diethyl
ether. The solvent was removed with a stream of nitrogen to
give 96 mg of pure cis,trans-a-ionylidene acetic acid (X,
3-methyl-5-(2°,6 ,6 -trimethyl-2 -cyclohexen-1"-yl)-cis,
trans-2,4-pentadienoic acid).

Methylation of a small aliquot of X with ethereal diazo-
methane gave a single peak with GLC-FID. The fragmentation
pattern of X obtained by GC-MS was similar to that of Neill

and Horgan (1983), except that no molecular ion was present
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Figure 3.2. Synthesis of deuterated a-ionylidene acetic

acid (X).
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because in this study a higher ionization potential was
used. MS (GC-MS, Figure 3.3), methyl X, m/z (rel. int.):
252(M*,0), 220(M*-32,3), 219(4), 195(4) (M*-56), 194(4),
193(3), 163(15), 162(20), 161(12), 160(8), 136(38), 135(55),
134(32), 133(18), 128(97), 127(100), 126(38), 125(6),
115(28), 114(19), 113(9), 112(5), 108(14), 107(31), 106(14),
105(16). The isotopic composition in the side chain methyl
group was 2:16:41:40 (2.2. deuterium/molecule), indicating
that some exchange occurred during the Wittig reaction
[compare with 2.69 deuterium/molecule in a@-ionone (section
3znd) %

3.2.4. Synthesis of 17,2 -Epoxy-lonylidene Acetic Acid
(XV, Figure 3.4). A mixture of deuterated B-ionone (XI,
0.7 g, 3.6 mmol) and carbethoxymethylenetriphenylphos-
phorane (VI, 1.5 g, 4.3 mmol) was heated at 155 C for 2.5
h. The product, a red oil, was triturated with hexane as
described above in section 3.2.6. GLC-FID analysis indicat-
ed that 60% of the B-ionone present was used in the re-
action. The crude mixture of isomers was purified as describ-
ed above (section 3.2.4) to give pure ethyl cis,trans-B-io-
nylidene acetate (XII). UV XII A max nm: 309, 260;v MS
(GC-MS, Figure 3.5), XII, m/z (rel. int.): 265(M*,57),
264(42), 263(14), 262(2), 250(M*-15,13), 249(12), 248(5),
247(5), 236(8), 235(6), 234(2), 233(1), 220(34), 219(33),
218(15), 217(34), 204(32), 203(25), 202(9), 201(5), 181(11),
180(12);, 179(12),. JT78(13), 177(26), 176(59); 175(54);
174(20), 173(9), 165(18), 164(38), 163(47), 162(68), 161(57),
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Figure 3.4. Synthesis of deuterated 17,2 -epoxy-ionyl-
idene acetic acid (XV).
In both XI and XV the deuterium is located in the side

chain methyl group.
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160(31), 159(16), 125(6), 124(18), 123(31), 122(100),
121(95), 120(49), 119(46). The side chain methyl group had
an isotopic composition of 2:12:37:50 (2.3 deuterium/mol-
ecule), indicating that some exchange of deuterium present in
the precursor B-ionone occurred during the Wittig reaction
[compare with 2.77 deuterium/molecule in B-ionone (section
3.3.2)].

The epoxide was inserted by adding dropwise m-chloro-
perbenzoic acid (XIII, 322 mg in 1.5 ml CHClp, 1 M) to
ethyl cis,trans-B-ionylidene acetate (XII, 396 mg in 1.5 ml
CH2C12, 1 M) cooled in an ice bath. After stirring at room
temperature for 45 min the reaction mixture was washed
sequentially with 10% sodium bisulfite, water, 10% sodium
bicarbonate, and finally water. The solvent was removed
with a stream of nitrogen. GLC-FID analysis indicated 100%
conversion of the starting material into ethyl cis,trans-
1°,2 -epoxy-ionylidene acetate (XIV). The ester was sapon-
ified as described above in section 3.2.7 to give cis,
trans-1",2 -epoxy-ionylidene acetic acid (XV; 3-methyl-
5-(1°,2 -epoxy-2 ,6 ,6 -trimethyl-1"-cyclohexyl)-cis,
trans-2,4-pentadienoic acid). UV XV X max nm: 266; metﬂy]
XV: 266; ethyl XV: 266; MS (GC-MS, Figure 3.6), methyl
XV, m/z (rel. int.): 267(M*,6), 266(1), 252(M*-15,12),
251(5), 250(2), 249(2), 235(M*-32,18), 234(8), 233(3),
232(1), 224(35), 223(12), 222(4), 221(6), 192(20), 191(12),
190(6), 189(5), 183(15), 182(55), 181(23), 180(12), 179(13),
178(22), 177(27), 176(19), 150(53), 149(38), 148(22),
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147(10), 126(100), 125(45), 124(29), 123(19), 122(26),
121(20), 120(14), 119(13). There was an isotopic composition

of 10:10:17:63 (2.3 deuterium/molecule) in the side chain
methyl group.

3.2.5. Synthesis of 17,2 -Epoxy-Ionylidene Acetaldehyde
(XV1I, Figure 3.7). This compound was first synthesized
without deuterium to provide material for GC-MS and NMR
analysis. A mixture of B-ionone (XI) and carbethoxymethyl-
enetriphenylphosphorane (VI) was reacted and purified
as described in section 3.2.7 to give ethyl cis,trans-8-io-
nylidene acetate (XII). UV XII Amax nm: 311, 257; MS (GC-MS,
Figure 3.8) XII, m/z (rel. int.): 262(M*,15), 247(M*-15,6),
233(2), 217(10), 189(8), 173(27), 161(14), 159(29), 145(20),
133(59), 119(100), 107(20), 105(54), 91(59), 77(48), 69(46),
67(22), 55(43).

The epoxide was inserted at the 17,2  double bond as
described in section 3.2.7 to give ethyl cis,trans-1",2 -
epoxy-ionylidene acetate (XIV). UV XIV aAmax nm: 266; MS
(GC-MS Figure 3.9) XIV, m/z (rel. int.): 278(M*,1), 263(M*-
15,4), 235(12), 217(6), 193(16), 174(13), 165(24), 161(31),
159(24), 147(32), 133(29), 123(100), 121(35), 119(33),
105(56), 95(27), 93(36), 91(77), 79(44), 77(65), 69(66),
67(35), 65(45), 55(59), 53(41); lH NMR: 0.94(3H, s),
1.10(3H,s), 1.18(3H,s), 1.25(3H,s), 1.96(3H,s), 4.05(2H,q),
5.5(1H,s), 6.15(1H,d), 7.3(1H,d).

Ethyl cis,trans-1",2 -epoxy-ionylidene acetate (XIV)
was reduced with LiAlHg in ether at 0 C for 30 min. After
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Figure 3.7. Synthesis of 17,2 -epoxy-ionylidene acet-

aldehyde (XVII).
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ecomposition of the excess LiAlTHg with ethyl acetate and
aturated ammonium chloride, the alcohol (XVI) was par-
itioned into ether. The starting material was converted
00% into cis,trans-1",2 -epoxy-ionylidene alcohol (XVI).
/ XVII X max nm: 239; MS (GC-MS, Figure 3.10) XVI, m/z
rel. dint.): 218(M*-18,4), 203(M+-33,5), 193(2), 185(1),
'5(5), 145(36), 133(23), 123(91), 121(32), 119(31), 109(44),
)7(37), 105(57), 95(48), 93(37), 91(66), 85(22), 81(44),
)(58), 77(58), 71(38), 69(100), 67(43), 55(84), 53(51); IH
IR: 0.95(3H, s), 1.10(3H,s), 1.17(3H,s), 1.90(3H,s),
30(2H,d), 5.55(1H,s), 6.47(1H,s).

A solution of cis,trans-1",2 -epoxy-ionylidene alcohol
VI) in chloroform was vigorously stirred with active MnOp
repared by the method of Attenburrow et al., 1952) at room
mperature for 24 h. Filtration and removal of solvent gave
e expected product, cis,trans-1",2 -epoxy-ionylidene
etaldehyde (XVII, 3-methyl-5-(1",2 -epoxy-27,6 ,6 -tri-
thyl-1"-cyclohexyl)-cis,trans-2,4-pentadienal). XVII
acted positively with 2,4-dinitrophenyl hydrazine, giving a
Tlow spot indicative of an aldehyde or ketone function
aylor and Burden, 1970). UV XVII A max nm: 282; MS (GC-MS,
jure 3.11) XVI, m/z (rel. int.): 234(M*,15), 219(M*-15,12),
5(M*+-29,6), 201(M+*-33,5), 191(8), 161(31), 149(66),
1(45), 105(56), 95(100), 93(37), 91(64), 82(46), 79(46),
(49), 71(16), 69(57), 67(42), 65(29), 55(37), 53(24),
(12); 1H NMR: 1.00(3H,s), 1.15(3H,s), 1.25(3H,s), 2.05(3H,
, 4.00(2H,m), 5.70(1H,d), 6.30(1H,d), 7.20(1H,d), 9.90(1H,
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)euterium labeled XVII was prepared from deuterium
led B-ionone by identical methods as described above in
section. MS (GC-MS, Figure 3.12) deuterated XVII, m/z
int.): 237(M*,6), 236(7), 222(M*-15,4), 221(5), 207(4),
9), 193(4), 192(4), 164(16), 163(13), 162(11), 161(10),
49), 151(36), 150(14), 149(12), 126(41), 125(26),
33), 123(23), 122(14), 121(14). The isotopic composition
he side chain methyl group was 1:11:38:50 (2.4 deuter-
molecule).
Tritium labeled XVII was prepared from tritium labeled
ynone by identical methods as described above. The final
ific activity of tritiated XVII was 1.6 mCi/mmol.
.6. Spectrometry. Mass spectra were obtained with a
lett-Packard 5985 quadrupole mass spectrometer connected
a Hewlett Packard 5840A gas chromatograph. GLC con-
ions were: 3% SP-2100 on 100-200 mesh Gas Chrom Q in a
anized glass column (2 m x 0.2 cm) temperature pro-
nmed from 120 C to 240 C at 5 C/min. The ionizing poten-
1 was 70 eV. To detect incorporation of deuterated
thetic analogues the base peak of ABA (m/z 190) in
ition to m/z 191, 192, and 193 was monitored by GC-
. The dwell time for each ion was 140 ms. GLC condi-
ns were as described above, except that the initial
perature was 190 C.
NMR spectra were obtained with a Varian EM-360 NMR (60

) spectrometer. Sample concentration was 5% in CDCl3
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1ining 1% TMS as internal standard.

IV spectra were obtained with a Perkin-Elmer Lambda 7
[S spectrophotometer. Compounds were dissolved in 95%
ol and scanned from 340 nm to 200 nm.

. Plant Material. The metabolism of radioactive com-
s was investigated with either spinach leaves (Spinacia
cea L., cv Savoy Hybrid 612), young tomato shoots
persicon esculentum L., cv Moneymaker, 20-25 cm tall),
its of tomato (breaker stage). Compounds (usually 50 to
g of the deuterated analogues plus 106 dpm of the
ctive compound) were administered to leaves through the
iration stream or injected directly into fruits. Only
ated analogues of 17,2 -epoxy-ionylidene acetic acid
sed in feeds.

Extraction and Purification Procedures. After applica-
" radioactive compounds there was an incubation period
6 h. The tissue was extracted with methanol containing
'L BHT. The extract was reduced to an aqueous residue
ary evaporation, frozen, and lyophilized. A small
was subjected to semi-preparative Cjg reverse phase
0% to 80% ethanol in aqueous 1% acetic acid in 1 h,
te 2.5 ml/min). Radioactivity in the column effluent
itored with a RadioAnalytic HP Flo-One radioactive
ector.

oactive peaks from tomato fruit were analyzed further
[Silica gel, 0.25 mm, hexane:ethyl acetate 1:1 (1X

2d), or hexane:ethyl acetate (3X), or hexane:ethyl
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etate:acetic acid 1:3:0.1, (1X)]. One cm zones were removed
1d radioactivity was measured by liquid scintillation count-
1g. To determine if the catabolites were conjugates, small
iquots were subjected to either basic hydrolysis with 2 N
140H (2 h, 60 C), or they were treated with pectinase AC
ohm and Haas, 0.1 M potassium phosphate, pH 4.7). These
~eatments distinguish between ester or glycosidic conjuga-
s, respectively. To determine if a carboxylic acid group
s present, the Rf before and after treatment with ethereal
azomethane was compared.
To confirm that XV was converted to ABA, ABA from leaves
d XV was purified as described in chapter 4. In an attempt
 determine if XV was endogenous in X. strumarium, leaves
00 g fresh weight) were extracted in methanol. The methanol
s removed with the aid of a rotary evaporator to an aqueous
sidue to which was added phosphate buffer (1 M, 50 ml, pH
5). The pH of the solution was Towered to 2.5 and parti-
oned four times against petroleum ether (B.R. 40-60 C). In
is system, standard XV was partitioned into the petroleum
her. After removal of petroleum ether, the residue was
ssolved in ethanol to which KOH was added to give a final
ncentration of 6% KOH. The saponified extract was kept at 4
overnight. Distilled water was added, and after removal of
e ethanol, the pH was lowered to 2.5. The aqueous residue
s partitioned three times against petroleum ether (B.R. 40-
C). The petroleum ether was removed by rotary evaporation

d the residue applied to a silica gel column (hexane:ethyl
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acetate:acetic acid 7:3:0.1). Using this solvent system
standard XV eluted in the early fractions. Thus, after
application of the residue, the identical fractions were
pooled and dried. These combined fractions were dried and
subjected to semi-preparative reverse phase Cjg HPLC (20% to
80% ethanol in 1% aqueous acetic acid, gradient time was 25
min). The fraction which eluted between 23 and 26 min
(determined using standard XV) was collected, dried, and
methylated with ethereal diazomethane. This fraction was then
analyzed by GC-MS.

3.2.9. Biological Activity Assay. The biological activity
of X and XV was determined using the IAA-induced Avena
coleoptile elongation bioassay (Milborrow, 1978). In this
bioassay ABA, or compounds structurally related to it,
inhibit elongation (Milborrow, 1978). IAA must be added to
cause significant elongation.

Oats (Avena sativa L., cv Korwood) were soaked in water
for 2 h, exposed to red light for 4 h, and then sown, embryo
side up, on moist Kimpack. After 3 d, coleoptiles were cut
three mm below the tip into 10 mm sections and floated on 1
mg/L MnSO4 for three h. Sections were then placed in one ml
of the solution to be tested [IAA alone, IAA plus ABA (0.4
uM), or IAA plus synthetic compound (0.4 puM) containing 2%
sucrose, 1.8 g/L KpHPO4 and 1.0 g/L citric acid, pH 5.0). Co-
leoptiles were measured to the nearest mm after an incubation

period of 24 h at room temperature.
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3.3. RESULTS

3.3.1. Biological Activity of a@-Ionylidene Acetic Acid (X)

and 17,2°-Epoxy-Ionylidene Acetic Acid (XV).The biological
activity of X and XV was measured with the IAA Avena coleop-

tile elongation assay. In this assay, at the concentration

used, X had greater biological activity than ABA and XV had

Tess (Figure 3.13).
3.3.2. Incorporation of 17,2 -Epoxy-lonylidene Acetic Acid

(XV) into Abscisic Ac.id. After 24 h incubation, analysis

of Xanthium leaves fed XV indicated that approximately 5%

of the starting material was still present. No apparent

degradation of XV occurred when standard material was

subjected to the purification procedure used with plant

tissue. The SIM response of ABA isolated from leaves fed XV

showed that an isotope shift of the molecular ion had

occurred (Table 3.1), confirming that higher plants can
convert XV into ABA (Milborrow and Noddle, 1970).

However, it appears that XV is not endogenous in higher

Jants, at least not in X. strumarium. A compound which

>-chromatographed with standard XV is clearly not identical

XV as determined by GC-MS (compare Figures 3.14 and 3.6).
3.3. Metabolism of 17,2 -Epoxy-Ionylidene Acetaldehyde

yI11) by Higher Plant Tissue. Extensive metabolism of

"I was observed, with little or no starting material

)aining after 24 h (Figures 3.15, 3.16, and 3.17).<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>