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ABSTRACT

DYNAMIC ANALYSIS OF

NONLINEAR SPACE FRAMES

BV
.-

Fereydoon Farhoomand

In this thesis, a matrix formulation is presented

for the analysis of dynamically loaded space frames. The

effects of both material and geometric nonlinearities are

taken into consideration. These effects are restricted,

respectively, to the case of linearly elastic-perfectly

plastic materials and the case of small rotati01s, i.e.,

the case in which the rotation angles are negligible with

respect to unity.

The analysis begins with specifying two yield

condition equations for a typical member cross-section.

Then, the incremental force-displacement relations for

a space-frame member are derived for several cases.

Firstly, these relations are summarized for a linearly

elastic member with the effects of geometric nonlinearities

taken into account. Secondly, the relations for a member

whose end cross-sections are yielding are derived again

with the latter effects accounted for. Finally, the
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incremental force-distortion relations are derived for an

elastoplastic discrete model under geometrically linear

conditions.

The analysis is further carried on by describing a

mass lumping procedure that considers rotary inertia.

Then, the equation of motion for a typical "free" joint

is derived. Following that, the criterion by which a mem-

ber cross-section is ruled to be yielding is described.

It is shown next that the force vector acting on a

yielding cross-section is prevented from proceeding beyond

the yield surface. Finally, the steps of the numerical

procedure employed to determine transient response are

described. I

A computer program is prepared for the implementa-

tion of the analysis. Three numerical problems are con-

sidered: a cantilever beam, a six-member space frame, and

a two-bay two-story building frame. Dynamic loading is

either provided by concentrated loads applied to free

joints, or generated by ground motions due to earthquake.

Several comparative studies on the numerical prob-

lems mentioned above are presented. These studies show

that good agreements exist between the results provided

by the geometrically linear formulation and those given

in a published report in which a different method was

used. This may be construed as evidence for the
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validity of the present analysis. The method given here,

however, requires significantly less computer time.

The comparative studies also show that plastic

displacements as predicted by the geometrically nonlinear

formulation are generally larger than those resulting

from the geometrically linear version. But, on the whole,

when axial loads are small (as compared to the corre-

sponding Euler loads), the influence of geometric non—

linearities on numerical results does not seem significant.

However, as axial loads increase, such influence rapidly

grows.
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CHAPTER I

INTRODUCTION

This chapter presents the objective of the present

work, previous related studies, and assumptions and limita-

tions of the analysis develOped. It also gives an outline

of the investigation carried out and certain general defi-

nitions needed in the subsequent analysis.

1.1 Objective
 

Two types of nonlinearities occur in structural

problems. The first type may be referred to as "geometric

nonlinearities." They occur when deflections are large

enough to cause significant changes in the geometry of the

structure. In this case the equations of equilibrium must

be formulated for the deformed configuration. The second

type may be referred to as "material nonlinearities" which

include any deviation from linear elasticity, such as non-

linearly elastic, or plastic, or viscoelastic behavior of

the structural material.

The objective of this thesis is to develop a

numerical method for the dynamic analysis of space frames,

taking the effects of geometric and certain material
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nonlinearities into consideration. In order to accomplish

the objective, a matrix formulation of the problem is de-

rived. Furthermore, a computer program is prepared for

the implementation of the analysis. Finally, numerical

results of certain problems are obtained in order to demon-

strate the validity and practicality of the method.

It seems hardly necessary to point out that the

problem under consideration is a broad, and hence, diffi-

cult one. However, as it will become apparent later, the

present work has had the advantage of using several earlier

works as "building blocks." These earlier works will be

described briefly in the following section.

1.2 Previous Studies

Recent advances in the field of computer technology

have provided the necessary tools for the development of

the analysis of geometrically nonlinear frames. Many

papers concerned with such developments have appeared in

recent years. Among these perhaps the pioneering works

by Saafan (12),*Idvesley (7), Argyris (l), and Johnson

and Brotten (6) deserve special attention.

In a recent paper, Jenning (5) has incorporated

the effects of change of geometry into certain displace-

ment transformation matrices for members of plane frames.

 

*Numbers in parentheses refer to entries in the

list of references.





He considered the axial shortening due to member inclina-

tion as being the only important nonlinear term in cases

where displacements are not exceedingly large. However,

he mentioned that accurate transformation matrices can be

adopted in cases in which very large deformations are to

be dealt with. Based on Jenning's formulation, Iverson

(4) has derived stiffness coefficients for space-frame

members. He applied his geometrically nonlinear formula-

tion to elastic frames under dynamic loads.

Connor, Logcher, and Chan (2) have also derived

a geometrically nonlinear formulation for the three dimen-

sional case. Their derivation is restricted to the small

rotation case, i.e., a case in which the squares of rota-

tion angles are negligible with respect to unity. Zarghamee

and Shaw (15) have given a similar formulation independently.

They presented a more comprehensive expression for axial

force than the one given by Connor, Logcher, and Chan.

The area of inelastic behavior of frames under

static and/or dynamic loads has been of great interest

in the past decade. Almost all published works on this

subject have been partially based on the plastic potential

theory. In a recent report, Morris and Fenves (9) have

studied the inelastic behavior of space frames under static

loads. They derived the incremental force-deformation re-

lations for a member having any number of plastic hinges.

In their report, they also derived the approximate yield



surface equations for certaincommonly used cross-sections,

considering the interaction between bending moments, tor-

sional moment, and axial force.

Nigam (11) has recently presented an elastoplastic

formulation to study the response of dynamically loaded

space frames. He derived the incremental force-displacement

relations for a member whose one or two end cross-sections

are yielding. His equations are basically the same as the

ones derived by Morris and Fenves, although they apparently

seem different. He then extended his formulation to the

dynamic case. But, in this extension, he did not discuss

such important questions as: how to handle the mass; how

to prevent the force vector acting on a yielding cross-

section from proceeding beyond the yield surface; and how

to solve the equations of motion.

Wen (13) has also studied the elastOplastic be-

havior of space frames under dynamic loads. His formula-

tion is based on dividing a yielding member into an

elastic member with continuous flexibility and an elasto-

plastic member with lumped flexibility.

1.3 Assumptions and Limitations

The assumptions and limitations employed in this

study are divided into the following five categories:

(1) Material

(a) The material is assumed to be linearly elastic——

perfectly plastic.



(b) All stress-strain characteristics of the

material are assumed to be time-independent.

(c) Strain-hardening effects of the material are

neglected.

(2) Cross sections

(a) All cross-sections are assumed to have two

axes of symmetry.

(b) Yielding is assumed to occur at individual

cross-sections with no "spread length."

(c) A shape factor of 1.0 is assumed for all

cross-sections. That is, cross-sections are

assumed to make an abrupt transition from a

completely elastic state to a state where

unrestricted plastic flow can occur.

(d) It is assumed that cross-sections are free

to warp under torsional loads, i.e., the case

of "pure" torsion prevails.

(3) Members

(a) All members are assumed to be prismatic.

(b) The usual engineering theory of bending is

assumed to be applicable.

(c) Torsion-flexure coupling effects are neglected.

(d) Members may have uniformly distributed gravity

loads only. Concentrated loads at points

other than the ends of members are not per-

mitted.
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(4) Joints

(a Joint loads, which are necessarily concentrated,

may be statical and/or dynamical.

(5)FTmM3

RN Changes in the geometry of the frame are re-

stricted to the "small rotation" case, i.e.,

a case in which the squares of rotation angles

are negligible in comparison with unity.

1.4 Outline of Present Study
 

In this study, two yield condition equations for

a member cross-section, as used in Reference 13, are first

specified. Then a series of incremental force-displacement

relations for a member, taking the effects of geometric

onlinearities into account, are derived. Firstly, these

elations are summarized for a linearly elastic member,

; fornuLLated by Connor, Logcher, and Chan (2). Secondly,

:e case of a member whose end cross-sections are yielding

studied. Finally, the incremental force-distortion

lations for a discrete model, taken from Reference 13,

2 derived.

TTue dynamic analysis begins with a mass lumping

:edure (see References 4 and 13) that accounts for

try inertia. Then, the motion equation for a typical

(ungrounded) joint is derived. In the dynamic solu-

, the criterion by which a member cross-section is
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ruled to be yielding is described first. It is shown

next that the force vector acting on a yielding cross-

section is prevented from proceeding beyond the yield sur-

face. Finally, the transient response {of the frame to

dynamic loading is obtained by integrating the equations

of motion numerically. Dynamic loading is either pro-

vided by concentrated loads applied to free joints, or

generated by ground motion due to an earthquake.

Three numerical examples taken from Reference 13

are considered: a cantilever beam subjected to a pulse

type of loading; a six-member space frame subjected to a

step-function type of loading; and a two-story two-bay

building frame subjected to the 1940 El Centro earthquake.

These examples, on the one hand, illustrate the applications

of the numerical method developed. On the other hand, they

will provide a basis for comparing the numerical results

of the present method with those reported in the above-

mentioned reference.

1. 5 General Definitions

Figure 1-1 illustrates a threebdimensional frame

whose joints and members are all numbered. The joint

count is separate from the member count. For convenience

of computer programming, free joints are always numbered

first.



Each member is arbitrarily assigned an orientation

by specifying one of its ends as the positive end and the

other as the negative end. Consider a member framed be-

tween two joints. It is then said that the member is

positively incident to the joint at its positive end and

negatively incident to the joint at its negative end. For

example, in Figure 1-1, the member 2 is positively incident

on the joint 1 and negatively incident on the joint 3.

Two classes of right-handed Cartesian coordinate

systems are used. The origin of each coordinate system

is either clear from context or specifically pointed out.

The first class consists of a single joint (global) coor-

dinate system arbitrarily chosen. The second class con—

sists of all member (local) coordinate systems chosen in

the following manner. The first axis of each member coor-

dinate system coincides with the undeformed centroidal

axis, and is directed from the positive end to the negative

end of the member. The other two axes are coincident with

the principal axes of inertia of a generic cross-section

of the member .

In the next two chapters, force and displacement

transformation matrices will be needed. These are given

below for the sake of completeness. Referring to Figure

1-2, let olxlylzl and ozxzyzz2 denote two coordinate systems

whose axes are parallel and oriented in the same fashion.

The force transformation matrix from the first system to
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the second is then given by

(1-1)

H I .

where I is the third order identity matrix, and

F—

  

0 Z -Y

H = -Z X (1-2)

a

iJi vfluich X, Y, and Z are the coordinates of the center 02

veitfi respect to the system lelylzl. The corresponding

displacement tranformation matrix is given by

-1 t

D = (T ) _
1 2 0201 (1 3)

Referring again to Figure 1—2, let Ozxéyézé denote a third

coordinate system rotated with respect to the system

02x2y222. The force transformation matrix from the second

system to the third is given by

 

r 0

R = (1—4)

0 r

where

12g5(xé,x2) cos(xé,y2) cos(xé,22)

_ I l _
r — cos(y2,x2) cos(yé,y2) cos(y2,22) (l 5)

I O O

L:os(zz,x2) cos(22,y2) cos(zz,22) _J
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in which the parenthesized quantities denote the angles

between the axes indicated. The matrices R and r will

be referred to as the "rotation" matrices. In this case,

the displacement transformation matrix is also given by

the matrix R. For example, the incremental member end

displacement AU and the incremental displacement AX of

the joint, connected to the member end being considered,

are related by

AU = RAX (1-6)

where AU and AX are expressed, respectively, in the member

and joint coordinate systems, and R is the rotation matrix

from the second system to the first.
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CHAPTER II

FORCE-DEFORMATION RELATIONS FOR A MEMBER

In this chapter, two yield condition equations for

a member cross-section, to be employed for obtaining nu-

merical solutions, are first specified. Then a series of

incremental force-displacement relations for a member,

considering the effects of geometric nonlinearities, are

derived. Firstly, these relations are summarized for a

linearly elastic member. Secondly, the case of a member

whose end cross-sections are yielding is studied. Finally,

the incremental force-distortion relations for a discrete

model, as used in Reference 13, are derived.

2.1 Yield Condition Equation

In frame analysis, it is convenient (perhaps even

necessary) that the yield condition equation for a member

cross-section be formulated in terms of stress resultants.

These resultants will be hereafter referred to as "force

components" for short. EXpressed in these terms, the

yield condition equation defines the combination of the

force components necessary to initiate yielding at a

cross-section. Since a shape factor of 1.0 is assumed

for all cross-sections, the initiation of yielding will

11
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coincide with the start of unrestricted plastic flow.

Thus, the yield condition equation represents the relation

among the force components for the initiation of unre—

stricted plastic flow. Finally, for an elastic-perfectly

plastic material as assumed in this study, the yield con-

dition equation remains the same as yielding progresses.

In the case of three-dimensional frames, the yield

condition equation for a cross-section may be written

symbolically as

¢(FX,MX,My,MZ) = 1 (2-1)

where 4 is the so-called yield function, Fx is the axial

force, Mx is the torsional moment, and My and M2 are the

bending moments. Equation (2-1) represents a hypersurface

in the four-dimensional force space spanned by the Cartesian

coordinates FX, Mx’ My' and M2. This hypersurface is called

the yield surface.

The derivation of the exact yield condition (or

yield surface) equation for a given cross-section is gen-

erally quite difficult. Numerical solutions are available

only for a square cross-seciton. Morris and Fenves (10)

have derived approximate lower bound yield surface equa-

tions for commonly used cross—sections, using a procedure

suggested by Hodge (3) along with simplifying assumptions

on the neutral axis position. Even those equations appear

rather unwieldy for general application to frames with

many members.
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In this study, for the sake of simplicity, two

particular forms of yield functions taken from Reference

13 are employed. These functions do not correspond exactly

to any commonly used cross-section. However, considering

the assumptions made and uncertainties involved in applying

the theory of plasticity to this problem, they may be re-

garded as reasonable approximations for obtaining numerical

solutions.

The first function is given by  

(
u
'

 

[FX 1 Mx 2

¢p = EFr—' + (M——)

I XP XP

’M _ Mz

+ :M-L: + _M = l (2_2)

i YP, ' 2P

 

in which Fxp' M , M , and sz are the fully plastic

YP

force components corresponding to Fx, Mx’ My' and M2,

respectively. The function ¢p will be referred to as the

"parabolic" yield function. The second function is given

by

F 2 M 2

—_’_‘_ .3‘__ee-(P>+(M>

XP xP

fr. 2 M2 2
+ (M l + (571—) = 1 (2-3)

YP 2P

the function @e will be referred to as the "elliptic"

yield function.
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It is apparent that the parabolic yield surface

is enclosed by the elliptic one. Therefore, for engineering

analysis, it is a more conservative one to use as it would

normally indicate an occurrence of yielding before the

elliptic yield function would do so.

2.2 Incremental Force-Displace-

ment Relations for a

Geometrically Nonlinear

Member

 

 

 

The incremental force-displacement relations for

a typical member can be derived by considering the statics,

member geometry, and stress-strain characteristics of the

material. Connor, Logcher, and Chan (2) derive these

relations for an elastic member, considering the effects

of geometric nonlinearities. This derivation will be

outlined briefly in the next subsection for the sake of

completeness.

When a member end cross-section yields, an un-

known vector, namely, the plastic end displacement incre-

ment, is introduced in the incremental force-displacement

relations. This unknown is determined, up to a scalar

parameter, i.e., the "flow constant," by applying the

plastic potential theory. (This theory is described in

several textbooks among which the one by Malvern (8) is

perhaps the most recent.) The flow constant, and con-

sequently the force-displacement relations, can be
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determined by applying the condition that the force incre-

ment--to be theoretically correct, of infinitely small

magnitude--acting on a yielding cross-section is tangent

to the yield surface.

2.2.1 Elastic Member
 

Figure 2-1 shows the initial and deformed positions

of a typical member PN. The x axis coincides with the un-

deformed centroidal direction and the y and z axes are

coincident with the two principal axes of inertia. These

axes constitute the local coordinate system for the member.

MFThe internal forces (F M , M2) and displace-

y’ X' y

wz) are referred to in this

2!

ments u u u( x! Y, 2' (0X, (Dy!

coordinate system, and so are the end forces FP and PN

Fwith components FP etc., and end displacements UP'
Nx’

and UN with components U

x!

U etc.

Px' Nx'

Figure 2-2 shows the initial and deformed positions

of a differential element AB. The centroidal point B is

displaced to the point B‘. Based on the assumption of

small rotations (w; << 1, w: << 1), the longitudinal strain

e at the point B', in the direction of the tangent to the

deformed centroidal axis, is expressed by

du

_ x 2 2 _
e — di— + 0.5 my + 0.5 oz (2 4)



{at 0‘0

£1.01!  

 



with

du

w _..__z.
y dx

du

wz = dx

where u , u , and u

X Y

the point B. The second and third terms in Equation

16

(2-5a)

(2-5b)

z are the translational displacements of

(2-4)
. -q, -_, ,-~

introduce the effects of geometric nonlinearities in the

”A in-..“ :4 .- —~.-.-' urn - "

present formulation. If these terms are neglected the

.. ~_r-

formulation

“#0” -~- - Mo-—-_.-M~. .. c,.

returns to the geometrically linear case.

With reference to Figure 2-2, the force (stress

resultant) tangent to the deformed centroidal axis is

denoted

used to

meaning

obvious

related

by

by N.

denote the negative

in every case where

Thefrom context.)

to the strain e and

(Note that the same symbol N has also been

end of the member. But the

the symbol N appears should be

force N and the moment Mz are

displacement uy, respectively,

(2-6)

(2-7)

in Which E is the modulus of elasticity, AX is the cross—

seCtional area, and I2 is the cross-sectional moment of

inertia about the z axis. Note that Equation (2-7) is
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based on the usual engineering theory of bending which

neglects the effects of shearing deformations.

The equilibrium equations consistent with the

present geometric approximation (w; << 1” w: << 1) can

be obtained by applying the principle of virtual work.

The details are omitted since the procedure is quite

straightforward. The final equations are then listed as

§§.= o (2-8)

2

d M

Equation (2-8) states that the axial force N is constant

along the entire length of the member. Consequently,

Equation (2-6) can be integrated over the length of the

member. This leads to

EAx

N = - -L— (qu-uNx) + EAx (6y+62) (2-10)

in which L is the length of-the member and

..1__ IL 2
5y 2L 0 “zdx

(2-11)

L
= 1. I 2

52 ‘21. o “’d"
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The governing equation for the displacement uy is

obtained by substituting Equations (2—5b) and (2—7) into

Equation (2-9). Thus

 

d4u ¢2 d2u

+ 2y 22: 0 (2—12)

dx L dx

where

0.5
2

NL

¢y - if” (2-13)

axial force parameter

Note that the parameter ¢y is a function of the axial

force N which in turn depends on the displacement uy

Rigorous solution of the differential equation (2-12) for

the displacement uy would require using iterative schemes.

To avoid that, the latter equation should be solved under

the assumption that the parameter ¢Y (or axial force N)

is known. The solution should then be introduced into

Equations (2-7) and (2—10). The discrepancy between the

assumed axial force N in solving Equation (2-12) and the

one obtained in Equation (2-10) is of course a source of

inaccuracy in the procedure. This point would be brought

up again in later sections.

It is evident that Equations (2-7), (2—9), and

(2-12) are associated with bending in the x-y plane.

Similar equations can readily be written for bending in
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the x-z plane. The force-displacement relations are ob—

tained by assembling the equations associated with flexure

in the x-y plane, flexure in the x-z plane, and finally,

twisting about the x axis. The end forces are then deter-

mined in terms of the end displacements from the latter

equations by enforcing the prOper boundary conditions.

The lengthy details of this procedure are omitted. Only

the relevant equations in matrix form will be given below.

The end force-end displacement relations are now

expressed as

P PP P PN N G

t (2-14)

FN = SPN UP + SNN UN + FG

' ' ll ° ll '

in which SPP' SPN' and SNN are the elastic stiffness

matrices, and FG is a column matrix containing the non-

linear terms due to the rotations wy and wz. These

matrices are all expanded in Appendix I. Note that the

effects of torsion-flexure coupling and warping restraint

have been neglected in Equations (2-14). In addition,

it has been assumed that the member does not have any

releases. However, it will be shown later (see Appendix

II) that end releases may be considered in the incre—

mental form of the latter equations.

Later, the end force-end displacement relations

in incremental form will be needed. To derive these, it
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S and Sis assumed that the stiffness matrices S PN’ NN

P P '

are constant within the increments (of forces and dis—

placements). This assumption is a reasonable one since

the elements of S S and S vary slowly with oi
PN' NN

(i = y,z) when ¢i is not close to Zn. (¢i = 2n corresponds

PP'

to N = the Euler load.) The incremental relations are

thus expressed as

AFP = SPP AUP + SPN AUN - AFG

AFN = SPN AUP + SNN AUN + AFG

where the increment AFG can be expanded as

AFG = SG (AUP - AUN) (2-16)

The matrix SG may be interpreted as the "geometric" stiff-

ness matrix. The approximate form of this matrix used

in the present analysis is developed in Appendix I.

Introducing Equation (2-16) into Equations (2—15),

the approximate incremental relations are finally written

as

AFP = KPP AUP + KPN AUN

t (2-17)

AFN = KPN AUP + KNN AUN



s as”
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in which

KPP = SPP + SG

KPN = SPN - sG (2-18)

KNN = SNN + so

It follows from the symmetry of the stiffness

matrices S S and S that the generalized stiffness
PP' NN' G

matrices K and KNPP are also symmetric.
N

If the member happens to have end releases, its

incremental force-displacement relations must be modified

accordingly to account for such releases. This modifica—

tion can be carried out easily in a fashion quite similar

to that presented in Reference 9. However, for the sake

of completeness, an outline of the latter modification

is given in Appendix II.

2.2.2 Elastoplastic Member
 

The assumption that the member is elastic is now

dropped. It is instead assumed that both end cross-

sections of the member are yielding. The end displace-

ment increment AU can be decomposed into an elastic part

and a plastic part. These two parts will be denoted by

the superscripts e and p, respectively. Thus
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AU = AU
8 P

P P + AUP

(2-19)

AU = AU
9 P

N N + AUN

The above decomposition is a basic assumption of the theory

of plasticity.

Based on the plastic potential theory, the flow

law adapted to the present problem is expressed by

P = = A
AUP bP V¢ (FP) vaP

(2-20)

p _ _
AUN - bN V¢ (FN) — vaN

in which b is the flow constant (a positive scalar parameter),

V is the so-called "del" (gradient) Operator, ¢ is the yield

function, and V is the outward normal to the yield surface

at the point where the end force F meets the yield surface.

A geometrical interpretation of the flow law is illustrated

in Figure 2-3 for a simpler case in which the yielding

condition depends on only two stress resultants. It is

seen from this figure that the plastic end displacement

increment AUp is normal to the yield surface. Thus, the

direction of the increment AUp is determined by the plastic

potential theory. However, the magnitude of that incre-

ment still remains to be determined.

During yielding, the end force vector F must stay

on the yield surface represented by the equation<b(F) = l.

(The latter equation remains fixed since the effects of
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work hardening are neglected.) This is specified analyti-

cally by

A¢ (FP) = 0

(2-21)

A4 (FN) - 0

These equations can be rewritten as

[VcMF Ht AF = o
P P

t (2-22)

[V¢(FN)] AFN = 0

or,

t _
VP AFP — 0

t (2-23)

VN AFN = 0

Equations (2-23) will be used shortly to determine the

magnitude of the incremental plastic end displacement AUP.

These equations state that the end force increment AF is

tangent to the yield surface.

Since the material is assumed to be elastic--

perfectly plastic, the end force increment AF is governed

by the elastic and displacement increment AUe only. There—

fore, Equations (2-17) can be written as

_ e e

APP ‘ KPP AUP + KPN AUN

(2-24)

_ t e e

AFN ‘ KPN AUP + KNN AUN
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Considering Equations (2—19) and (2-20), the above

equations can be rewritten as

AFP = KPP AUP + KPN AUN

‘ KPP VP bp ' KPN VN bN

t (2-25)

AFN = KPN AUP + KNN AUN

- Kt v b - K v b
PN P P NN N N

At this point, it is convenient to define two

6x2 matrices GP and GN by

I

GP ‘ [KPP VP 1 KPN VN]

t | (2-26)

GN z [KPN VP I KNN VN]

If now the flow constants bP and bN are assembled into a

column matrix B, Equations (2-25) can be expressed as

AFP = KPP AUP + KPN AUN - GP B

(2-27)

AFN = KPN AUP + KNN AUN - GN B

Substitution of these equations into Equations (2—23)

furnishes

t t t _
VP KPP AUP + VP KPN AUN VP GP B — O

t t (2-28)

v t AU _ t =
N KPN P + VN KNN AUN VN GN B 0
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These equations are now combined into the following single

equation:

"t - t - r-t -

VP KPP FY? KPN VP GP

AU + AU - B = 0 (2—29)

vt Kt P vt K N vt G

LN P12 -N Na -N 1!.      

Solution of Equation (2-29) for the (flow constant)

matrix B yields

t t
B = E GP AUP + E GN AUN (2-30)

in which

r- -1 ‘1

t

VP GP

N N

L. _J  

Equation (2—30) is finally substituted back into Equations

(2-27) whereby the incremental force-displacement relations

become

AF = (K - G E Gt) AU

P PP P P P

+ (K - G E Gt) AU

PN P N N

(2—32)

_ _ t t
AFN — (KPN GP E GN) AUP

+ (K - G E Gt) AU

NN N N N
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The reduction to the case where only one end cross-

section of the member is yielding is quite straightforward

and thus omitted.

2.2.3 Elastic Return
 

When a cross-section reaches its yielding condition,

a "plastic hinge" is said to form there (following the

terminology in the simple plastic theory of structures).

It frequently happens that a plastic hinge "unloads" and

the corresponding cross-section becomes elastic again.

This phenomenon is referred to as an "elastic return.“ It

occurs whenever there is a reversal in the direction of

the incremental plastic displacement at a yield hinge.

It thus follows from Equations (2-20) that the elastic

return at a plastic hinge is signalled by a negative flow

constant.

To test for elastic returns, the column matrix B

for each elastoplastic member is first calculated. The

sign of each of the elements (one or two) of the matrix

B is tested. Any yield hinge at which an elastic return

is detected is then removed; in other words, the corre-

Sponding member end cross-section is considered to be

elastic.



2.3

I
t
fi
n
n
‘
l
_
L
1
|
*
4

   

  

  

  
  

menbe

direc1

hwevé

cally

this 1

disto

 

isd

to t1-

 



27

2.3 Incremental Force-

Distortion RéIatIEns for

a Discrete_Model ofia 530-

metricaIly Linear MemBer

 

It is evident that for a "geometrically linear"

member the force-deformation relations can be obtained

directly from the previous results. These relations are,

however, rederived in the present section for a geometri-

cally linear discrete model taken from Reference 13. To

this end, the derivation will have to be made in terms of

distortions rather than displacements.

Figure 2-4 shows a model PN which is to replace a

typical geometrically linear member PN whose P1 and N1

sections are yielding. It is assumed that each of the

segments PPl, Ple, NNl' and NlN2 (of the member) are

infinitely rigid and of length BL where 3 is a nondimen-

sional parameter to be chosen between zero and some

fraction, say 1/8. Furthermore, it is assumed that the

flexibility of the portion PP is lumped at its midsection
2

P The same assumption is also made for the portion NNZ'1.

The remainder of the model, namely, the portion PZNZ is

assumed to be continuously elastic.

The distortion of the model referred to the end P

is defined to be the displacement of the end P relative

to the end N. In incremental form, it is given by

= AU - D AU (2-33)
AW P PN NPN
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in which DPN denotes the displacement transformation matrix

from the local coordinate system through N to the same

system through P.

Analogous to Equations (2-19), the incremental

distortion AW can be decomposed into
PN

= e P _
AWPN AWPN + AWPN (2 34)

The plastic distortion increment AWPN can be expressed as

P - _
AwPN — DPP1 VII bpl + D v b (2 35)

If the flow constants bP and b are assembled into a

l 1

column matrix B, Equations (2-35) can be written as

N

P 3 _
AWPN GB (2 36)

in which

G = [D v I D v ] (2-37)

The elastic distortion increment AWe can be given as a
PN

summation of

6 e e

AW = D AW + D AW
PN PPl PlPl PP2 PZNZ

+ D Awe
PN N N (2-38)

1 1 l
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The flexibility of the portion PP2 is lumped at its mid—

section Pl; therefore, the elastic distortion increment

Aw: P is determined by

l l

e
AW = AP AP = AP T AF (2-39)

P1P1 1Pl P1 lPl P1P P

in which AP P is the lumped flexibility matrix for the

l 1

portion PP2, and TP P is the force transformation matrix

1

from the local coordinate system through P to the same

system through P1. The main diagonal elements of the

matrix AP P (which is diagonal) are given by

l 1

_ 28L _ 28L

C1 ‘ EA C2 ‘ GA

X Y

_ 28L _ 28L _

C3 ‘ 3A2 C4 - SJ (2 40)

_ 28L _ 28L

C5 ‘ E C6 ‘ EI

Y z

in which G is the modulus of shear, Ay and A2 are the

effective areas of shear, and J is the constant of torsion.

The increment AW: N is similarly determined by

e

AW = AF = T AF (2—41)
NlNl ANlNl Nl “NlNl NlP P

where

AN = A (2—42)

1N1 P1P1
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Since the segment P2N2 is elastic, the superscript e can

be omitted from the increment AWe This increment is

P2N2

readily given by

AW = aw

P2N2 P2N2

= AF

APzpz P2

T AF (2—43)
AP2P2 P2P P

where AP P is the ordinary flexibility matrix for the

2 2

continuously elastic segment P referred to the section
2N2

P Note that the effects of shearing deformations may be2.

included in the matrix AP P

2 2'

Equations (2-39), (2—41), and (2—43) are substituted

back into Equation (2-38). This leads to

e

AWPN = APP AFP (2-44)

or,

_-le _
AFP — APP AWPN (2 45)

(2-46)
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Considering Equations (2-34) and (2—36), Equation (2-45) is

cast into

_ -l _
AFP — APP (AwPN GB)

Analogous to Equations (2-23), the

force increments AFP

1

surface is expressed by

and AF

(2-47)

condition that the

are tangent to the yield

1

- GB)

These two equations can be combined into

Gt Ag; (AWPN - GB)

from which

B EGt Ag; AWPN

where

1
E = (Gt Ag: G)-

0

0

(2-48)

0

(2-49)

(2-50)

(2-51)

Equation (2-50) is substituted back into Equation (2-47)

to furnish

AFP =

-l -1

(APP ’ APP G E G

t

APP

) AW (2-52a)
PN
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The incremental force-distortion relations are finally

completed by having

AFN = --TNP AFP . (2-52b)



CHAPTER III

DYNAMIC ANALYSIS AND SOLUTION

In this chapter, the joint mass matrix is first

constructed. The equation of motion for a given joint is

derived next.' Finally, the numerical procedure employed

to determine the dynamic response is presented.

3.1 Dynamic Analysis
 

The dynamic analysis begins with the formulation

of the equation of motion for a typical free (ungrounded)

joint in the global coordinate system. This requires that

a mass matrix be constructed for the joint. Such a con-

struction may be carried out by lumping, at the joint,

the "contributory" masses from all the incident members.

The mass lumping could be done in a reasonable manner as

long as there is no coupling between the various joint

mass matrices. However, the more realistic the lumping

procedure is, the more accurate the numerical results will

be.

In this study, the joint mass matrix is constructed

in a manner described by Iverson (4). The rotary inertia

is taken into account in this construction. A nondimen-

sional parameter, as introduced in Reference 13 to control

the moments and products of inertia, is also included.

33
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3.1.1 Joint Mass Matrix
 

To formulate the joint mass matrix, it is convenient

to envisage a rigid body associated with the joint. To this

end, each member with its length multiplied by a will be

called a "branch," where a is a dimensionless parameter, to

be chosen between zero and 1/2. The joint rigid body is

then defined to be the collection of all the branches incident

to the joint being considered. To keep the total mass of

the rigid body independent of a, the density p of the

material is divided by 0. Furthermore, it is recalled

that each member may have a uniformly distributed gravity

load with a mass u per unit length. Then each u is also

divided by a. It follows that a is introduced to modify

the moments and products of inertia of the joint rigid

body while leaving the rigid body mass the same.

The mass mB of a typical branch B is presented

readily by

mB = 0.5 L (Ax p+u) (3-1)

The mass m of a generic joint J is obtained by summing the
J

masses of all the incident branches. Thus

mJ = E’mB (3-2)

It is seen that a does not appear in Equations (3-1) and

(3-2).
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Referring to Figure 3-1, the position vector

 

(Xj, Yj’ Zj) = Wj of the joint mass center j in the joint

J coordinate system is determined by

Em X
X. = mB b

3 J

Zm Y

y. ==——35133 (3-3)

3 J

2m Z

Z. = mB b

3 J

in which (Xb, Yb' Zb) = W5 is the position vector of the

branch mass center b in the same coordinate system, and

each summation is to be taken for all the branches incident

to the joint J. The vector W5 is given by

wb = e 0.25 o (P - F) (3-4)

in which P and N are, respectively, the position vectors

of the positive and negative ends of the member B in the

global coordinate system. The positive or negative sign

in Equation (3-4) is to be chosen according as the member

B is positively or negatively incident to the joint J.

The branch inertia tensor Ib with respect to the

local coordinate axes through b is determined next. Note

that these axes are coincident with the principal axes

of inertia for the branch B. Thus

1b = 0 C2 0 (3-5)

_. C111  
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where

C = I”p (y2 + 22) dx dy dz

F
‘

_ 0
-7 (1y + 12) (3-6a)

C = 1110 (z2 + d2 xz) dx dy dz

+11.) (0.2 X2) dX

2 3
a L

C = 111p (y2 + a2 x2) dx dy dz

+ Iu(a2 x2) dx

2 3

a L 0L _
—-—-96 (p Ax + p) + I (3 6C)

7 y

The tensor Ib is now transferred to the joint

mass center j by using the theorem of parallel axes. This

  

leads to

I] = Ib

ryz + z2 -x y -x z-fl

j j j j J J

2 2
+ m z. + x. - . 2. (3-7)

B J J y] 3

X2 + 2

symmetric j yjj

L—

where (xj, yj, zj) = Wj is the position vector of the joint

mass center j in the local coordinate system through b.
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This vector is determined by

W. = r (W. - W

in which r is the rotation matrix (3x3) from the joint J

coordinate system to the member B coordinate system. The

definition of the matrix r is given by Equation (1-5).

Each branch inertia tensor Ij at the joint mass

center j is now rotated to the global coordinate system

through j. They are then summed to obtain the joint

inertia tensor Jj at the joint mass center j. Thus

J. = Z r I. r (3—9)

Finally, the mass matrix for the joint J with

respect to the global coordinate system through j is

assembled as

M. = (3-10)

where I is the third order identity matrix.

3.1.2 Equation of Motion for

a Joint Rigid Body

 

 

Considering again the joint J and its mass center

j in Figure 3-1, the equation of motion for the corre-

sponding rigid body in the global coordinate system

through j is eXpressed as

Mj x. = F (3—11)
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in which Xj is the acceleration (vector) of j and P3. is

the resultant of all non-inertial forces acting on j.

This equation can be rewritten as

-1 t .. _

Mj (TjJ) XJ - TjJ PJ (3 12)

in which TjJ is the force transformation matrix from the

global coordinate system through J to the same coordinate

system through j. Premultiplying Equation (3-12) by

T71, it follows that
jJ

MJ XJ = PJ (3-13)

in which

t
g -1 -l

The inverse of MJ may be referred to as the "re-

sponsiveness" matrix. This inverse is denoted by ZJ and

given by

L. _

-l -l
I/mJ - HJ. H --HJj

-1
Z = M : _ _ (3‘15)

J J Jj1H le

L J  

where H, as defined by Equation (1-2), contains the

coordinates (xj'Yj' Zj) of the joint mass center j in

the global coordinate system through J (see Figure 3-1).

The force PJ acting on the joint J, in the global

coordinate system through J, may be written as
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P = P + P (3-16)

where PI is the internal force (vector) acting on J and

I

P is the external load (vector). The force PE in terms
II

of the member end forces in their corresponding member

coordinate systems, is given by

(P) (N)

PI=-ZRFP-ZRFN (3-17)

in which the first summation is to be taken for all the

members positively incident to the joint J, the second

summation is to be taken for all the members with negative

incidence, and R is the rotation matrix (6x6) from the

apprOpriate member coordinate system to the joint J co-

ordinate system.

Summarizing, the acceleration of the joint J is

given by

X = Z (PI + PE) (3-18)

in which all the quantities are in the global coordinate

system through J. The responsiveness matrix Z and the
J

force PI are determined by Equations (3-15) and (3—17),

respectively. The external load P is to be prescribed.
E

If the foundation is subjected to translational

motion (e.g., due to earthquakes or blasts), it can readily

be shown (see Reference 13) that the equation of motion

becomes

+ P ) — M (3—19)
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where i3 is now the acceleration of the joint J relative

to the foundation and i0 is the acceleration of the founda-

tion.

3.2 Dynamic Solution

The numerical method used to obtain the dynamic

solution will be outlined in this section. First, the

criterion by which a member cross-section is ruled to be

yielding is described. It will be shown next that

the force vector acting on a yield hinge is prevented from

proceeding beyond the yield surface. Finally the steps

of the solution procedure are described and the choice of

time increment is discussed.

3.2.1 Insertion of a Plastic

Hinge at a Cross-SectIon

It is presumed that a given cross-section is

initially elastic. This presumption is expressed analyti-

cally by

¢(F) < 1 (3-20)

in which 4 is the yield function and F is the force

acting on the cross-section. As the frame is deformed,

the force F may become so large that although Inequality

(3-20) holds, yet

0(F + AF) > 1 (3-21)
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where AF is the force increment (say, corresponding to a

small time increment) computed under the assumption that

the cross-section is elastic.

If the above conditions hold, the cross—section is

ruled to be yielding. A yield hinge is inserted at the

cross—section and the force increment AF is recomputed

accordingly, i.e., with the newly inserted plastic hinge

taken into consideration.

3.2.2 Force Containment at

a Plastic Hinge

 

 

Let it be assumed that for some cross-section, a

situation as represented by Inequalities (3-20) and (3—21)

prevails, i.e., the cross-section is yielding. With ref—

(1)
erence to Figure 3-2, the unit normal V is determined

by

(l) - V¢(F) (3—22)
V ‘ |v¢(P)r

where V is the gradient operator. This unit normal is

used to compute the force increment AF. If the force

F + AF does not reach the exterior of the yield surface,

i.e., ¢(F + AF) 3 1, then the force increment AF is ruled

to be acceptable and no further action is taken. On the

other hand, if ¢(F + AF) > 1, then "force containment"

becomes necessary since it is physically impossible for

the force F + AF to proceed beyond the yield surface.
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To this end, the unit normal V(2) is determined by

V(2) _ v<I>(P + AF)

|V¢(F + AFN (13—23)

The force increment AF is then recomputed by using an

"average" normal V as given by

v = (1 - y) v”) +‘y V(2) (3-24)

where y is a scalar parameter to be chosen between zero

and unity. The choice of a value for y is discussed next.

Starting from zero, y is advanced by a finite value

up to the point where ¢(F + AF) is no longer greatern than

one. Limited numerical experience on the problems pre-

sented in the next chapter indicated that numerical results

were quite insensitive to the value of y. Thus, y was taken

to be either zero or one; in other words, if the unit nor-

(2)
mal V‘l) was not acceptable, the unit normal V was.

3-2.3 Numerical Procedure

of Solution

 

Assume that the state of the frame is known at a

given time t1. This includes: the joint displacements,

velocities, and accelerations; the member end forces;

and the list of the existing plastic hinges. It is then

desired to determine the state of the frame at the time

t = t + At where At is a finite time increment. To

2 1

this end, the following procedure is employed:
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(1) Compute the incremental displacement of each free

(2)

(3)

(4)

(5)

joint from some numerical integration formula such

as

AX = [X(tl) + 0.5 X(tl) At] At (3-25)

Compute the incremental displacement of each member

end by rotating the proper joint displacement incre-

ment from the global coordinate system to the appro-

priate local coordinate system.

If the solution is to be geometrically linear, com-

pute the incremental distortion of each member from

Equation (2—33).

If the solution is to be geometrically nonlinear,

compute the stiffness matrices for each member

(elastic or elastoplastic) from Equations (A—l—8),

(A-1-9), and (A-l-lO). In this computation, the

unknown axial force of a member at the time t2 is

approximated by the known axial force of that mem—

ber at the time t1. It will be shown, in the first

example of the next chapter, that elimination of

such an approximation would not affect the numerical

results significantly.

Compute the incremental member end forces from

Equations (2—52) or (2—32) depending on whether

the solution is to be geometrically linear or

nonlinear. Then, increment the member end forces

by the values just obtained.



(6)

(7)

(8)

(9)

(10)

(ll)
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Compute the yield-function value for each member

end force if the corresponding cross-section is

elastic (not yielding), by using such equations as

Equations (2-2) or (2-3). If this value happens

to be greater than unity, insert a plastic hinge

at the cross-cross being considered and return to

Step (5). (See Subsection 3.2.1.)

Remove every plastic hinge at which an elastic

return is detected. At this point, it seems

logical to return to Step (5) in order to recom—

pute the member end forces if necessary. But, to

avoid the possibility of removing and inserting a

particular plastic hinge repeatedly within a single

time-step, the return to Step (5) is neglected.

Compute the internal force acting on each free

joint from Equations (3-17).

Compute the acceleration of each free joint from

Equations (3-18) or (3-19) depending on the

absense or presence of the foundation motion.

Use such a numerical integration formula as

+ 0.5 [x(tl) + X(t2)] At (3-26)

to determine the velocity of each free joint.

Increment the free-joint displacements by the

values obtained in Step (1).
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The state of the frame is thus completely determined at

the time t2. The same procedure is repeated for advancing

from the time t2 to the time t2 + At, and so on.

3.2.4 Choice of Time Increment
 

It is well known that a numerical procedure, as

applied to a linearly elastic structure, is stable if the

time increment used is smaller than a certain fraction

(say, l/n) of the smallest period of natural vibration.

This remark has to be ignored in the following discussion

since the system being considered is not linearly elastic.

However, knowledge of the smallest period is useful to the

extent that it serves as a guide in choosing the time incre—

ment. In general, the problem of determining the smallest

period is quite time—consuming. This problem becomes more

complicated by the fact that the smallest period will change

whenever a plastic hinge is inserted or removed. It would

thus appear more appropriate that the smallest period be

roughly estimated rather than rigorously computed. For

this purpose, the following procedure suggested by Iverson

(4) is employed.

The total mass of each free joint and the largest

axial stiffness of all the members incident to this joint

are used to compute

 

free-joint mass

axial stiffness

 T = 2n
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The smallest value of T for all free joints is taken as an

estimate for the smallest period. This estimate is then

used as an initial try for the time increment. In subse-

quent tries, increases or decreases are made if necessary.

In general, the largest tolerable time increment (that

yields a stable solution) should be used. Such a time

increment is normally so small that the corresponding

numerical results would not be significantly different

from those using smaller time increments.

3.3 Computer Program
 

A general computer program is prepared to imple-

ment the formulation presented. The program is written

in FORTRAN IV for the use on the CDC 3600 digital computer

at Michigan State University. It is described and also

listed in Appendix III.



’
J



CHAPTER IV

APPLICATIONS

This chapter presents three numerical examples

taken from Reference 13. These examples, on one hand,

illustrate the applications of the analysis developed in

the preceding chapters. On the other hand, they provide

a basis for comparing the present numerical results with

those reported in the above-mentioned reference. The

first example is a cantilever beam subjected to a pulse

type of loading with a short duration. The second one is

a three-dimensional rigid frame with a triangular plan-

form subjected to a step-function type of loading. The

final example is a two-story two-bay building frame sub—

jected to the 1940 El Centro earthquake.

In the examples presented, forces are expressed

in kips, and moments in kip—inches. The material is

assumed to be structural steel having the following prop-

erties: density = 490 pounds per cubic inch, Young's

modulus = 30,000 ksi, shear modulus = 12,000 ksi, normal

yield stress = 33 ksi, and shear yield stress = 18 ksi.

Linear displacements are expressed in inches, and rota-

tional displacements in radians.
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4.1 Cantilever Beam
 

Figure 4-1 shows a cantilever beam which has a

uniform cross-section of 12WF53. The web of the beam is

vertical (in the X-Y plane). The fully plastic stress

resultants are 504, 275, 275 kips, and 73, 997, 2706 kip-

inches, respectively. Each of these values represents

the corresponding carrying capacity of the beam cross-

section if the cross-section is subjected to that one

stress resultant only. The external loads, in addition

to the weight of the beam, are given in the figure. Note

that the dynamic disturbance is supplied by a pulse type

of loading with a duration of 0.01 seconds. The graphs

to be presented in this example correspond to the elliptic

yield function, a value of a = 0.5, and a time increment

of 0.0005 seconds.

To compare the results in Reference 13 with the

present ones, the tip displacement of the beam in the Z

direction is plotted versus time in Figure 4—2. Either

graph in this figure corresponds to a value of B = 0.0625.

It is clearly seen that a good agreement exists between

the graph in the above—mentioned reference and the one

furnished by the present formulation (geometrically linear).

It is now of interest to study the axial force

effects on the response of the beam in both geometrically

linear and nonlinear cases. To this end, the
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maximum absolute value of the tip displacements in the X

and Z directions are plotted against the axial load (static,

compressive) in Figure 4-3. Both graphs furnished by the

geometrically linear formulation correspond to a value of

8= 0. These two graphs are nearly straight while the a

I

graphs provided by the geometrically nonlinear formulation

are highly nonlinear, particularly, where the axial load

If the axial load exceeds 200 kips

 

approaches 200 kips.

(say, by 50 kips or more) the numerical results correspond-

ing to the latter formulation indicate that the beam would

collapse. It is to be noted that the axial load of 200

kips is equal to 40% of the axial carrying capacity (504

kips) of the beam cross-section and 26% of the Euler load

(771 kips, for the cantileVer case, of course) of the beam.

The numerical results based on the geometrically

linear formulation (not presented here) indicated that

the beam would collapse with an axial load between 400 and

500 kips. These loads are considerably larger than the

200 kip load indicated by the geometrically nonlinear

formulation. Thus, it may be concluded that when members

:arry substantial axial loads, the geometrically nonlinear

’ormulation, which is certainly more accurate, should be

sed.

To study the time-displacement response of the

the tip displacement in the axial (X) direction isearn,

Both graphs plotted-otted versus time in Figure 4-4.
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correspond to an axial load of -30 kips as shown in Figure

In addition, the graph provided by the geometrically4'10

Thislinear formiation corresponds to a value of B = 0.

graph exhibits a permanent set of -0.002 inches which is

It also shows that there is no Aentirely due to yielding.

Thisapparent physical vibration in the axial direction.

can be explained by noting that the axial shortening

 

effects do not enter the geometrically linear formulation.

(The high-frequency oscillations appearing in the above- ‘

mentioned graph are probably due to imperfections of the ._

numerical integration technique employed in the solution

procedure.) The graph furnished by the geometrically

nonlinear formulation shows a much larger permanent set

of -0.010 inches. This is partly due to the force inter-

action effects (-0.002 inches) and partly due to the axial

shortening effects considered in the geometrically non-

linear formulation.

The period of axial vibration predicted by the

geometrically nonlinear formulation is roughly 0.078

This period can be measured directly from theseconds.

It is of somerelevant graph presented in Figure 4-4.

interest to compare this period with the one approximated

. 03y vaifiBIJEAx where ZmB is the mass of the beam

recording to the data chosen for the beam, the latter

>eriod is calculated to be 0.087 seconds. This period

lgrees fairly well with the one mentioned earlier.



51

inns comparison would thus mean that the beam appears to

respond.in the axial direction like a single-degree-of—

freedom system if the geometrically nonlinear formulation

is used.

It is recalled that in obtaining geometrically

nonlinear solutions, the axial force in a given time-

step, is approximated by the one obtained at the end of

the previous time-step. The question may be raised that

how much this approximation affects the accuracy of the

resulting solutions.

To consider such effects, a geometrically non-

linear solution of the beam was obtained without using

the above-mentioned approximation. This was accomplished

by performing iteration on the axial force within each

time-step. An axial load of 200 kips in compression was

applied as a part of the static loading in order to create

a more critical situation. The numerical results so ob-

tained (not shown here) did not indicate any noticeable

difference from those obtained with the approximation.

For example, the resulting displacements differed by less

Hunt 3% in the axial direction and 2% in the transverse

iirections. It is thus concluded that the performance

>f iteration on the axial force would not significantly

iffect the numerical results. The advantage of using the

Lpproximation, of course, lies in a significant saving of

:omputer time .
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4.2 Triangular Frame
 

The frame to be considered as a second example is

the one shown in Figure 4—5. The horizontal members

(girders) and the vertical members (columns) are fabricated

from 12WF53 and 12WF40 sections, respectively. The webs

of the girders are vertical. The webs of the columns lie Ei

in the vertical planes containing the bisectors of the i a

triangular planform. The external loads, in addition to

 the weight of the girders, are shown in the figure. A

step-function type of dynamic loading is applied. The

value of a employed is the same as the one used in the

preceding example, that is, 0.5.

For the purpose of comparing the results in Refer-

ence 13 with the present ones, the displacement in the Z

direction of the joint 1 is plotted versus time in Figures

4-6 and 4-7. These two figures correSpond to the elliptic

and parabolic yield functions, respectively. The value

of 8 used in both cases is 0.125.

From Figure 4-6, it is seen that for the elliptic

yield function, a reasonably good agreement exists between

the two graphs. For the parabolic yield function, the two

graphs shown in Figure 4—7 are also quite similar. As far

as the displacement magnitudes are concerned, they differ

by approximately 7%.

In order to compare the geometrically linear and

nonlinear responses, the displacement of the joint 1 in
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the Z direction is plotted against time in Figure 4—8.

The graphs presented in this figure correSpond to the

elliptic yield function. In addition, the graph furnished

by the geometrically linear formulation corresponds to a

value of B = 0 and a time increment of 0.001 seconds.

For the time increment just mentioned, the geometrically

nonlinear response turned out to be unstable. The largest

time increment for which the geometrically nonlinear

response became stable was 0.00005 seconds, i.e., 1/20

times 0.001 seconds.

It is seen that, the geometrically nonlinear

solution indicated a larger response than that given by

the geometrically linear solution. It should be remem—

bered, however, that the axial loads in this case are

rather moderate. As seen from the preceding example on

the cantilever beam, if the axial loads were sufficiently

large, the difference between the two solutions would be

much more drastic.

4.3 Building Frame

As a final example, a two-story two-bay building

frame, as shown in Figure 4-9, is considered. The member

9 (girder) of the frame has a 12WF53 cross-section. The

other girders and the columns are made from 8WF4O and 8WF17

sections, respectively. The webs of the columns are

marallel.to the south-north direction while the webs of

:he girders are vertical.
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The static loading, in addition to the weight of

the girders, consists of a load of 1.50 kips per foot on

Umenember 9 and a load of 0.75 kips per foot on the rest

of the girders. The mass of these loads is lumped at

the relevant joints in the same manner as the mass of p

the members themselves. The dynamic loading is supplied he.

by subjecting the foundation of the frame to all three

components of the 1940 El Centro earthquake. The sketches

 to be given in this example correspond to the elliptic .

yield function, a time increment of 0.0008 seconds, and

a value of a = 0.5.

Figure 4-10 shows a plan view of the distorted

shape of the frame as predicted by the geometrically

linear formulation. The solution corresponds to a value

of B = 0. In Figure 4-11 are shown similar results ob-

tained from a solution with the geometrically nonlinear

formulation. The distortions in both figures are based

on the member plastic displacements recorded at the end

of two seconds of the ground motion. It is seen that the

two distortions, suffered by the frame and computed by

the two formulations, are comparable as far as the general

appearance is concerned. However, as expected, the dis-

tortion magnitudes given by the geometrically nonlinear

formulation are greater than those of the linear version.
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4.4 Cbmputation Time

In concluding the present chapter, it is instructive

‘U3cmnsider the computation time for the method given in

Reference 13 and that develOped in the present work. To

this end, for the three examples presented, the time incre—

ment, execution time, and real time interval of the several

solutions are listed in Table 4-1. (In all cases, the com-

puter execution time refers to the CDC 3600 digital com-

puter at Michigan State University.) It is seen from this

table that the execution time for the method presented in

Reference 13 depends on the value of 8, whereas for the

present method (geometrically linear), they do not. It

is also seen that the present method requires considerably

less computation time. This is perhaps the most signifi—

cant improvement of the present work over that reported

in Reference 13.
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CHAPTER V

SUMMARY AND CONCLUSIONS

In this study, a matrix formulation has been pre—

sented for the dynamic analysis of space frames. In the

analysis, the effects of both geometric and material non-

linearities have been taken into account. A computer

program has been prepared for the implementation of the

analysis. Numerical results of three problems were ob—

tained in order to demonstrate the validity and practicality

of the formulation. These problems were: a cantilever

beam subjected to a pulse type of loading; a six-member

space frame subjected to a step-function type of loading;

and a two-bay two-story building frame subjected to the

1940 El Centro earthquake.

Comparative data with and without the effects of

geometric nonlinearities taken into consideration were

shown in.the form of graphs. Based on these graphs the

following observations were found to be noteworthy:

(1) The geometrically nonlinear formulation developed

in this work is obviously applicable to geometri—

cally linear problems. Good agreements were found

to exist between the numerical results obtained in

56



(2)

(3)
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such applications and those reported in Reference

13 in which a different method was used. This may

be construed as an evidence for the validity of

the present analysis .

Plastic displacements as predicted by the geometri-

cally nonlinear formulation were generally larger

than those resulting from the geometrically linear

version. But, when axial loads were small, the

influence of geometric nonlinearities on the

numerical results presented herein did not seem

significant. However, as axial loads increased,

the influence rapidly grew. For the cantilever

beam problem, the beam would collapse with an

axial load equal to approximately 26% of the Euler

load. This axial load is practically equal to

only one half of the magnitude corresponding to

a geometrically linear solution.

The numerical results of the cantilever beam problem

based on using the axial force of the previous time-

step, for the calculation of the member stiffness

matrices, differed only insignificantly from those

resulting from the more accurate approach of iterat-

ing on the axial force. The advantage of not per-

forming any iteration lies, of course, in a con-

siderable saving of computer time.

 

L
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Natural extensions of this work may include the

incoquation of more accurate yield surface equations in

thecxmputer program, and an investigation into the possi—

kfiJJty of reducing the number of degrees of freedom in

order to facilitate applications to even larger structural

systems such as high-rise building frames.
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Tabhe4-l Comparison of Computer Time between Reference 13

and Present Work

 

Computer . "Real Time"
. . Time Increment .

Execution Time . of Solution

. in Seconds .

in Seconds in Seconds

 

Cantilever Beam

 

 

Reference 13 (B=l/8) 11 0.0004 0.06

Reference 13 (B=3/32) 14 0.0004 0.06

Reference 13 (B=l/l6) 170 0.0004 0.06

Present Work 4 0.0005 0.08

Triangular Frame

Reference 13 (8:1/8) 153 0.0005 0.4

Present Work 23 0.001 0.

Building Frame

Reference 13 (8:1/8) 998 0.0005 2.0

>resent Work 315 0.0008 2.0
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igure 3-2 Treatment of Force Vector during Yielding
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Figure 4-1 Cantilever Beam and Loading
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Figure 4-3 Effects of Axial Load

200

Axial Load (Static, Compressive) in Kips

 -—-o-_ ___..

p
0
1
5
‘

u
s

o
f

T
i

u
t
e

V
a
l

I
n
c
h
e
s

x
D
i
r
e
c
t
i
o
n

i
n

0

M
a
x
i
m
u
m

A
b
3
°
1

t
3
v
a
l
u
e

O
f

T
i
p

D
l
s
-

p
l
a
c
e
m
e
n
t

i
n

-
u

”
a
X
L
m
u
m

A
b
3
0
1

a
c
t
i
o
n

i
n

I
n
c
h
e
s

p
l
a
c
e
m
e
n
t

i
n

Z
D
i
r

 

C o O .
b

T

0

w
0

o
9

.
o

o
m

T
T

 
 
 
 
 
 
 

 
 
 
 
 

 

Geometrically

Nonlinear

Geometrically

Nonlinear

Geometrically Linear

- Geometrically Linear

 

 
 

 

70



smpuI u; uorioerra x u; quemeoetdsrq d1;

  

 

/

4
—
—
—
—
-

G
e
o
m
e
t
r
i
c
a
l
l
y

N
o
n
l
i
n
e
a
r

,
/

/ ‘
—
—
'
G
e
o
m
e
t
r
i
c
a
l
l
y

L
i
n
e
a
r

M
W

 

 
 

F
i
g
u
r
e

4
-
4

A
x
i
a
l

D
i
s
p
l
a
c
e
m
e
n
t

o
f

C
a
n
t
i
l
e
v
e
r

B
e
a
m

v
e
r
s
u
s

T
i
m
e

 

71



 

72

 

 

   

 

 

   
 

    
 

   

    
 

   

 
 

   

 

 
 

Y

$1 Global 2

Coordinate

System

j> x

g/ ) 60 60

Z / I 3

5

11ijan 10,

'<cs 14' a:

FWHHTn nTHTn1

4 6

Joint Axis Static Dynamic Duration of

Load Load Dynamic Load

1 Y -30 kips -- --

1 z 1 kip 20 kips 0 to w sec.

1 Y 6 kip-in. 120 kip-in. 0 to a sec.

2 Y -30 kips -- --

3 Y -30 kips -- --

     
 

Figure 4-5 Triangular Frame and Loading
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APPENDIX I

STIFFNESS MATRICES

In this appendix, the elastic stiffness matrices

are expanded, and the geometric stiffness matrix is de-

rived.

A.1.1 Elastic Stiffness Matrices

The terms employed in the elastic stiffness matrices

S etc., are first defined. The matrices themselves are
PP’

expanded next. The expanded form of the matrix FG is also

given.

3 = Y: Z

k = y, z (A-l—l)

3'7! k

i. 2" 0.5

_ I FNXL 1 2(1)3.- L— T (A- ")

C. == c s .

3 0 (DJ

(A—1—3)

S. == sin ¢-

3 J
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¢-(¢. - S ) .

hjy '3 fi-ijag-yT-g-T (3-1-4)

:
3
"

II

{
T

+ 5
'

(A—l-S)

(py and pz are the member chord rotations in the x—z and

x-y planes, respectively.)

(A—l-S)

 

 

  

 

 

  

t

FG [EAx(6y+6z), oz FNX, py FPX, o, o, 0] (A-l 7)

EAx;

L .. L. n...—

‘ Eiz EI

2h 2 -_5 h -§Y’ L ”fly” _ yz L

EI EI

S :- thz L -1122 L

PP

cg

L

EI

11 .;JL

zx L

symmetric h BI;

yx L      
(A-l-B)

 s
~
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I
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-EA3

"E"

312 EIz

‘Zhvz? “an?
El E1

”hm—55 ”22—55
SPN ' -— _GJ

_1111_ f-

I E1 E1

I hzz L! hzy L a

_h EIz EIz :

2“?” LL. Y L I yy _J

(A-l-9)

L I I
I Witt, .. ., .4 .- ...-_- ,

312 I 312

“w? ' ‘52?
I E1 1‘ ’EI ””””“‘”
I

I2h I h -—%§
V i 22 L A 22 L I

SNN " ' elf ‘
- 1__. A.-- _ML.__L_.-_._-.._.,.-

I EI

“_“mmg I hzx L

I EIz

symmetric I hYXT

_, I ._

(A-l—lO)

IA.1.2 Geometric Stiffness Matrix

To arrive at the geometric stiffness matrix sG

used in this study, the incremental rotations due to

flexure are neglected, that is,
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Am = A

y py

(A-l-ll)

sz = Apz

The incremental chord rotations Apy and Apz are constant

along their corresponding member. The approximation men-

tioned above is consistent with neglecting the change in kt

the elastic stiffness matrices SPP’ etc., when forming the

increments.

 Consider now the matrix PG produced in the previous

section. Its increment is given by

AFG = [EAX (A6y + A62).

Px Px'

t

0, 0, O] (A-1-12)

in which

_ l L

Aéy - '11: 6 (Dz sz dX

Apz IL du

= _L— 0 dx

= 0z ADz

O

z (A—1—13a)u I

r'
I S
T 5

.
<

I

D

2
?

<
V

P



and similarly,

A6 =
z

and also,

AF =
PX

and

AFNX =

It is now easy

into
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D

‘LXI(AuPz - AUNz)

EAX

L (Aqu - AuNx)

- EA (A6 + A6 )
x y z

EAx

L (Aqu _ AuNx)

EAx

+ L (AuP Au‘Ny) pz

EAx

- L (mfiz-A%M)py

-AF
PX

to show that the increment AF

-S (AUP - AUN)

(A-l-l3b)

(A-1-14a)

(A-l-14b)

can be cast

(A-1-15)

(A-1-16)
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APPENDIX II

INCREMENTAL FORCE-DISPLACEMENT RELATIONS

FOR A GEOMETRICALLY MEMBER

WITH END RELEASES

‘
2
‘

Assume that a geometrically nonlinear member PN,

‘
3
“
:

‘
.

as shown in Figure 2-1, has a total of R releases at its

negative end. Corresponding to the Ith release, assume

a column matrix V defined by
I

vI = [0, o, o, 1, o, 0]t (A-Z-l)

in which the only nonzero element is a "1" corresponding

to the released force component (at the negative end of

the member). For instance, the matrix VI shown above

corresponds to a released torsional moment.

The negative-end displacement increment AUN can

be decomposed into an elastic part Au; and a part AU;

due to the releases being considered. Thus

e _ _ r _ _
AUN — AUN AUN (A 2 2)

The increment AU; may be written as

R

= 2 v b (A-2-3)
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in which bI is a scalar factor which gives the magnitude

of the displacement increment at the Ith release. It is

now convenient to define a 6xR matrix G by

,v ] (A—2-4)

If the factors bI (I=l, ..., R) are assembled into a k~

column matrix B, Equation (A—2—3) reduces to

AU; = GB (A-2-5)

 
Substitution of Equation (A-2-5) into Equation (A-2-2)

furnishes

e- - ——AUN — AUN GB (A 2 6)

The latter equation is now introduced into the incremental

force-displacement relations given by Equations (2-17).

This leads to

AFP = KPP AUP + KPN (AUN-GB) (A—2-7a)

_ t _ _ -
AFN - KPN AUP + KNN (AUN GB) (A 2 7b)

The condition that the negative-end force component

increment in the direction of any release I is zero is

expressed by

VI AFN = 0 (A-2-8)
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Substituting Equation (A-2-7b) into Equation (A-2—8) and

considering all the releases, it follows that

 

t t t _
VI KPN AUP + VI KNN (AUN-GB) — O

I = 1, ..., R (A-2-9)

These equations can be combined into the following single

equation:

t t t _ _. _. _
G KPN AUP + G KNN (AUN GB) — 0 (A 2 10) E;

from which

_ t t t _ _
B — E G KPN AUP + E G KNN AUN (A 2 11)

where

_ t -l I _ _
E - (G KNN G) (A 2 12)

Finally, substituting Equation (A—Z-ll) back into Equations

(A—2-7) , the following incremental force-displacement re-

lations are obtained:

AFP = (KPP - KPN G E G KPN) AUP

+ (K - K G E Gt K ) AU
PN PN NN N

(A-2-l3)

_ t _ t t
AFBq — (KPN KNN G E G KPN) AUP

+ (K - K G E Gt K ) AU
NN NN NN N

a ”
a
n
y
“
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The extension to the case where the positive end

of the member has also releases is straightforward and

thus omitted.
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APPENDIX III

COMPUTER PROGRAM

For the sake of completeness, the computer program

written for the present study is outlined in this appendix.

'Dhe routines which constitute the program are briefly

described. The important identifiers used in the program

are defined; and finally, a listing of the program is

presented.

A.3.1 Description of Routines

The computer program developed consists of a main

routine called DYNAMIC and four subroutines named IN-

VERSE, RMATRIX, FMATRIX, and SMATRIX. The first sub-

routine INVERSE, taken from the M.S.U. computer laboratory,

is used to invert square matrices as needed in the program.

It is the only subroutine written in COMPASS (CDC 3600

machine language); therefore, its listing will be omitted.

The second subroutine RMATRIX is used to compute the

responsiveness matrix for a given joint.

The third subroutine FMATRIX has two versions.

One of the two corresponds to the geometrically linear

fonmfletion (of a discrete model as described in Section

2.3)vmile the other is concerned with the geometrically

91
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nonlinear formulation. The linear version is used to

compute the stiffness matrix for a given member. Note

that the eight nonzero elements of the latter matrix are

the only ones which are actually computed. The non—

linear version of the subroutine is used to compute cer-

tain factors (a total of eight) that appears in the elements L

of the elastic stiffness matrices for a given member.

These factors are independent of the axial force. The

effects of the latter force are considered in the sub-  
routine SMATRIX.

Analogous to the subroutine FMATRIX, the fourth

subroutine SMATRIX has also two versions. Both linear and

nonlinear versions of this subroutine are used to perform

the same task, namely, to compute the member end forces.

They are also capable of inserting and/or removing plastic

hinges when necessary. Each version of this subroutine

has in turn two versions depending on the (type of) yield

function to be used. In the listing, to be presented

shortly, the linear version of the subroutine SMATRIX

corresponds to the parabolic yield function while the

nonlinear version corresponds to the elliptic yield func-

tion.

In the main routine DYNAMIC, the initial static

sohnfion is first read in as a part of the input. This

sohndon is conveniently obtained by using the program

STATIC written by Wen and Iverson (l4) . The rest of the
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input is read in next and immediately printed out. The

identifiers are then initialized as necessary. In the

following portion, the output of the program is monitored

for printing and plotting. If the integration time exceeds

the time limit specified, the program stOps. The incre-

mental joint displacements are computed next. The rest L

«of the program.is concerned with computing: the joint

forces due to the member end forces, the ground accelera-

 tion if applicable, and the joint accelerations and veloci-

ties. The control is then sent back to the portion where

the output is monitored.

A.3.2 Definition of

Important Identifiers

The important identifiers used in each routine are

defined below in alphabetical order. Any identifier which

appears in more than one routine but maintains the same

meaning is defined only once.

PROGRAM DYNAMIC

ACC(I,J) = Ith component of joint J acceleration

ALPHA = a

AMPLIFY = amplification factor times acceleration

of gravity

AREAX(M) = cross-sectional area of member M

AREAYUH = effective shear area of member M in y

direction



AREAZ (M)

BETA

COMP (I ,M)

DATA A(I,J)

DATA T(I,J)

DDIS(I,J)

DEADM (M)

DENSITY

DIS(I,J)

DPLT

DPRT

DT

E

FNN (I ,M)

FORCE(I,J)

FPP(I,M)

G

GLINEAR

94

effective shear area of member M in

z direction

8

projection of member M on Ith global

axis

Ith component of foundation acceleration

in Jth reading

time correSponding to DATA A(I,J)

increment of DIS(I,J)

uniformly distributed mass per unit

length of member M

density of material

Ith component of joint J displacement

time interval for plotting

time interval for printing

time increment

modulus of elasticity

Ith component of force on negative end

of member M

Ith component of force on joint J

exerted by incident members

Ith component of force on positive end

of member M

modulus of shear

true, if geometrically linear response

desired; false, otherwise
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IXX(M) = torsional constant for member M

cross-section

IYY(M) = moment of inertia about y axis for

member M cross-section

IZZ(M) = moment of inertia about 2 axis for  
member M cross-section

 

JFREE = number of free joints

JN(M) = number, identifying negative joint of

member M

JOINTS = number of joints

JP(M) = number, identifying positive joint of

member M

LENGTH(M) = length of member M

MEMBER(I,J) = number, identifying Ith incident member

on joint J; it is signed according to

incidence

MEMBERS = number of members

MLINEAR = true, if material nonlinearity effects

ignored; false, otherwise

NMEM(J) = number of memebers incident on joint J

PEXT(I,J) = Ith component of dynamic load on joint J

QUAKE = true, if earthquake applied; false,

otherwise

QTIME = time lag

RESPON(I,J,K) = element in Ith row and Jth column of

joint K responsiveness matrix   



RM(I,J,M)

ROT(1)

ROT(2)

SLIMIT(I,M)

STLOAD(I,J)

T(K)

TIME

TLIMIT

VEL(I,J)

xo ACC(I)

x0 DIS(I)

X0 VEL(I)

96

element in Ith row and Jth column of

rotation matrix (3x3) associated with

member M

cose, in which 6 = angle measured clock-

wise from east—west axis to global X axis

sine (see above for definition of 6)

Ith fully plastic stress resultant for

member M cross-section

Ith component of static load on joint J

Kth component of foundation acceleration

time

time limit

Ith component of joint J velocity

Ith component of foundation acceleration

Ith component of foundation displacement

Ith component of foundation velocity

SUBROUTINE SMATRIX
 

(linear version)

33(1)

33(2)

CHI(1)

plastic-flow constant corresponding to:

either section x = BL, or section x =

(l —B)L if section x = BL not yielding

plastic-flow constant corresponding to

section x = (1 - B)L if section x = BL

yielding also

yield—function value for force on

section x = 8L

 

“
i
r

 W
K

 



CHI (2)

ITV(I)

FP (I)

GG(I ,J)

ITERATE

LOOP

PDISP(I,M)

PHI (l,M)

PHI(2,M)

PLASTIC(1,M)

PLASTIC(2,M)

sum

SS (I,J)

V(I,l)
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yield-function value for force on section

x = (1 - B)L

Ith component of member distortion

Ith component of positive-end force

element in Ith row and Jth column of

matrix defined by Equation (2-37)

false, initially; true, if member end

force not acceptable

identifier to prevent endless lOOping

Ith component of plastic distortion of

member M

CHI(1), if section x = BL of member M

not yielding; constant, otherwise

CHI(2), if section x = (l - 8)L of

member M not yielding; constant, other—

wise

true, if section x = BL of member M

yielding; false, otherwise

true, if section x = (l - B)L of

member M yielding; false, otherwise

Ith stiffness element for member M

element in Ith row and Jth column of

member stiffness matrix

Ith component of yield surface normal

corresponding to: either section x = BL,

or section x = (l - B)L if section x =

BL not yielding
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V(I,2)

YIELDED(1,M)

SUBROUTINE SMATRIX

98

Ith component of yield surface normal

corresponding to section x = (1 - B)L

if section x = BL yielding also

false, before first yielding occurs in

 member M; true, afterwards L

 

(nonlinear version) p
 

BB(J)

CHI(J)

DUN(I)

DUP(I)

ENDN

ENDP

ENDS

FN(I)

GP(I,J)

plastic-flow constant; J = 1 corresponds
g

 to positive-end cross-section, J = 2 34‘

corresponds to negative-end cross-section

yield-function value; J = l correSponds

to positive-end force, J = 2 corresponds

to negative-end force

Ith component of negative—end diSplace—

ment increment

Iflicomponent of positive-end displacement  increment

true, if only negative-end section yield-

ing; false, otherwise

true, if only positive—end section yield—

ing; false, otherwise

true, if both end sections yielding;

false, otherwise

Ith component of negative-end force

element in Ith row and Jth column of

matrix defined by Equations (2-26)
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GN(I,J)

H21, ..., H33

P

PDISN(I,M)

PDISP(I,M)

RHOZ, IdHMB

S(I,M)

SNN(I,J)

SPN(I,J)

SPP(I,J)

VN(I)

VP(I)

YIELDED(l,M)
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element in Ith row and Jth column of

matrix defined by Equations (2-26)

stiffness factors

axial force

Ith component of negative-end plastic

displacement of member M

Ith component of positive-end plastic

displacement of member M

py and pz, respectively

Ith common factor of elements of elastic

stiffness matrices for member M

element in Ith row and Jth column of

direct stiffness matrix, referred to

negative end

element in Ith row and Jth column of

cross stiffness matrix,referred to

positive end

element in Ith row and Jth column of

direct stiffness matrix, referred to

positive end

Ith componenent of yield surface normal

corresponding to negative—end section

Ith component of yield surface normal

corresponding to positive-end section

false, before first yielding occurs in

positive-end section of member M; true,

afterwards

 

  



lOO

YIELmMM2,M) = false, before first yielding occurs in

negative-end section of member M; true,

afterwards

SUBROUTINE RMATRIX
 

BIM(K,L) = element in Kth row and Lth column of

branch inertia matrix

JIM(K,L) = element in Kth row and Lth column of

joint inertia matrix

MMASS(I) = mass of branch I

UX, UY, UZ = coordinates of joint mass center with

respect to local coordinate system

through branch mass center

WX, WY, WZ = coordinates of joint mass center with

respect to joint coordinate system
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A. 3.3 Listing of Prggram

PROGRAM DYNAMIC

LOGICAL QUAKE. GLINEAQO -MLINEAR9 GNONLIN

DIMENSION ACC(6050)0 VEL(6950). PEXTIécSO)! FORCEI60‘30)

DIMENSION DATA T(39800)o DATA A(39800)o ROT(2)9 T(B)

DIMENSION XO ACC(3)9 X0 VEL(3). XO DIQIZBIQ INDEXIB)

DATA (X0 DIS = 3(0)). (XO VFL = 3(“))

DATA (X0 ACC = 3(0)). (INDEX = 3(1))

COMMON REQPONIéQéoQO)

COMMON/ TIME/ TIMF’Q DT

COMMON/ STIFF/ 9(Rolnfi)o B(?OIOO)

COMMON/ PLASTIC/ PLAGTICIZQIOO) $ LOGICAL PLASTIC

COMMON/ YIELDFD/ YIELDEDI29100) 5% LOGICAL YIELDFD

COMMON/ DIS/ DIS(fio‘SO). DDIQIGQSO).

I pDI§p(6QIOOIQ pDIgNIGOIOO’

C I

c IDENTIFIERS WHOSE VALUE: TO BE READ IN

c FROM INITIAL STATIC SOLUTION

0

COMMON/ TYPE/ DENSITY. E. G

COMMON/ QI7E/ MFMRFRQQ JOINTfio JFRFF

COMMON/ ARFA/ ARFAXI 100) 9 ARFAYI 100). ARFAZI 100) o

I Ixxunn). IYY(IOO)9 I77I100) $ QFAL IXX. IVY. I77

COMMON/ DFADM/ DF'ADMIIOO)

COMMON/ COMP/ COMDCBQIOD)

COMMON/ SLIMIT/ QoLIMI'IWFnIOO)

COMMON/ LENGTH/ LENGTH(IOO) 5 PEAL LENGTH

COMMON/ FORCE/ FPPIfioIOOIv FNNI6OIOO)

COMMON/ JPJN/ Jp(100)0 JNIIOO)

COMMON/ DM/ RM(303QIOO)

COMMON/ MFM/ NMEMCRO)Q MFMRFPIIOQRO)

COMMON/ STLOAD/ 9TLOADI6Q'3O.)

C—-----------------C

C PDOGQAM INPUT C

C —————————————————C

LUN = '3‘;

CALL SKIPF’ILEI LUN )

CALL SKIPFILEI LUN I

READ(LUN) MEMBERS. JOINTQO JFREE. DENQITYQ E9 6

DO 505 M 2: IOMFMBEPS

505 READCLUN) AREAXUW). AREAYIM). AREAZHMI). IXX(M)9 IYY(M)0

IZZ(M). DFADMIM)9 (COMPIIQM). I=193)9

(SLIMIT(I0M)0 I=lo6)o LFNGTHUW).

(FPPIIQM)0 I=106)9 (FNNIIQM)9 I=I.6)9

JPN“). JN(M). ((RMIIQJQM)9 1:193). J=1g3)

DO :15 J = IQJOINTS

=51; PFAD¢LUNI NMEM(J)9 (MEMRERIIQJIQ I=I¢IOIQ

I (STLOADIIQJ)9 I=106)
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PQTIME - OPTIME' + DPDT

RTHW'= TIMFF(4)

PDHW'?OOIQ TIME. DTIME

FOWWWW*IDYNAMIC VAQIAHLFS AT TIME =*F805975X2001

1 *ELAPSED TIME =*-3PF702)

IFI QUAKE ) PRINT 2002. X0 0150 X0 VEL. XO ACC

20mg FORMAT(*OGROUND MOTION*30X*X*ISX*Y*15X*Z*//

I I8X*DISPLACFMFNT*RX3F16.8/

2 18X*VELOCITY*1PX3F16.R/

3 19X*ACCFLERATION*RX3F16.R)

PDINT 9003

fififiq FORMATI*-FORCF* 5x*<1*14x*<?*14x*<1*14x

*sa*14x*ss*14x*86*14X*Sl1*11X*SI?*I

(Mo (FPP(I9M)0 I=106)o

FNNISQM). FNN(69M)9 M=10MFMREPS)

1

PR INT 2004 o

I

2004 FORMAT(/I498F1608)

2008 FORMATI I406F1608)

C

PQINT 2006

?006 FOPMAT(*-DISPLACEMENT*)

PRINT 20079 (Jo (DIS(IoJIQ I=196)o J=19JFPEFI

2007 FORMAT(/I496F1608)

C

IF( GLINFAR ) POINT ?012

IF( GNONLIN ) PRINT 2013

FOPMAT(*-PLASTIC DIQTOPTION*)

FORMAT(*-pLASTIC DIQPLACFMFNT*/)

DO 2016 M = IQMEMBFPQ

L =-M

IF( YIELDEDI1.MI ) PRINT 2004. M. (PDISP(I.M)9

IFI YIELDEDI2.M) ) PRINT 2005. L. IPDI5N<1.MI. I=l~6)

?016 CONTINUE

C

P030 IF( TIMF oLTo PLTIMF ) GO TO 2040

20]?

ZOIB

1:196)

PLTIMF.’ = DLTIMF + DPLT

WDITEKLUNQPOS?) TIMEQ ((DISIIOJIQ I=196)o J=19JFQFF)

203? FORMAT(F'R.60 6F1708/(8X 6F1208))

2040 IF( TIME .65. TLIMIT ) QETURN

c----------------------------------------r

C I NCREMENTAL FREE-JO I NT 0 ISPLACEMENTS C

C----------------------------------------F

1001 J = loJFREE $ DO 1001 I = 196

)*DT

DO

IFMDI IDDISS(I¢J) = (

TIA": = TIMF + DT

c—-—---—-------------------------------------c

c Foss—JOINT FORCES our- TO MEM. FND FORCES c

c—--_—-———-----------------------------------r

CALJ. SMATRIX( BETA . MLINEAR. GLINFAR )

Do 1506 J = loJF’QEE

on 1501 I = 1.6

VELII.J) + 0.s*ACC(I.J)*DT
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C

C GROUND ACC. IN GLORAL COORD. SYSTEM

C

GARB = ROTI1I*T(1I + ROTI2I*T(3)

T(3) =-ROT(2I*T(1I + ROT(1I*T(3I

T(I) = GARE

C

C GDOUMD VELOO ACCoo AND DIS.

C

I

Do 1750 K 1.1 ;

X0 VFLIK) = xn VEL(KI + 0.s*I x0 ACCIK) + T(K) )*nT

x0 ACCIK) = T(K)
r

1760 x0 DIS(K) = x0 DIS(KI I

+ I XO VFLIKI + 005*XO ACC(K)*DT )*DT I

1700 CONTINUF
P

 I
”
'
i
.

‘
1
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‘
1
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D I I I I I I I I I l I I l I I I I I I I I I I I I I I I I I I I I l I I I I I I I I D

T
l
_

c FREE-JOINT ACCELERATIONS AND VELOCITIES c '

c------------------------------------------c

00 1612 J = IIJFRFF 5 no 1612 I = 1.6 s GARR = 0

on 1611 K = 1.6

1611 GARE = GARB + REspoNII.K.JI*

1 I FORCE(K9J) + GTLOADIKqJI + RFXT(K¢JI I

IF( I 0LT. 4 I GARE = GARR - X0 ACCIII

VEL(IoJ) = VEL(IqJI + 005*( ACCIIOJ) + GARE )*DT

ACCIIQJ) CARR

1612 DIS(IQJI

GO TO ?DDD

END

DISIIOJI + DDISIIQJI

susRourINF RMATDIYI J. ALPHA I

IDIMENSIFWJ’WWAQRIID)Q FQUW(391I9 \J““(193I0 ICCX(391I

DIMENSION HI3.3I. HJIa.31. HJHI3.3I

RFAL MMAss. JMAss. JIM

COMMON RESPONI6.6.sDI

COMMON/ TYPF/ DENSITY. E. G

COMMON/ RM/ RMI3.3.100)

COMMON/ DEADM/ DEADMI100)

COMMON/ COMP/ COMRI3.100>

COMMON/ LENGTH/ LENGTHIIDDI s REAL LENGTH

COMMON/ AREA/ ARFAXIIOO). AREAYI100). AREAZIIOOI.

1 IXXIIDDI. IYVIIDDI. 172(100) s REAL IXX. IYY. I72

C0MM0N/ MFM/ NMEMIsn). MEMRFRI10.sn)

c

C wx. wY. AND wz

c

JOINT COORDINATFS OF JOINT MASS CFNTFR

JMASK§I= VXM = VH“4:= VZM = (I

IN = NMEM¢UH
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C HIZI = DIS. RFTWFEN DIFGo-FND YIFLD HINGF [\le DOS. FND

C

H(1I = OoG*X(II

H(2I = RIIOMI + 9(79MI - 00‘*X(?I

HI3I = XIII

C

C FLEX. MATRICES FOR RLAQTIC PORTIONS

C

DO 402 I = 10?

FLFXI79II = FLFX(R¢I) = O

TFMP = XIII/E

FLEX(19I) = TFMP/AREAX(MI

FLFXIEOII = TEMP/IYYIMI

FLFXIGQII = TFMp/I7Z(MI

TEMP = XIII/G

FLEXIEOII = TEMP/ARFAYIMI

FLFXI3OII = TEMP/ARFAZ(MI

40? FLEXIdvII = TEMP/IXXIMI

C

C FLEX. MATRIX FOR PLASTIC PORTION

C

TEMP = X(3I/E

FLFXIIQQI : TFMP/ARFAXIMI

FLFX(591) = TFMp/IYYIMI

FLFXI603) = TEMP/I77(MI

FLFXI403I = XI3I/I G*IXX(M) I

FLEXI2¢3I = X(3I**?*FLEX(603I/300

FLEX(303I = XI3I**?*FLFX(503I/Bon

FLEX(713I =-OoQ*X(3I*FLFX(6o3I

FLEXIBQB) = 003*X(3I*FLEX(593I

C

C FLEX. MATRICES RFFERRFD TO POSITIVE FND

C

DO 404 J = 193

FLFX(2¢JI = FLFX(?9JI

1 + H(J)*( H(J)*FLFX(69JI — P.0*FLFX(7.J)

FLFXIB-J) = FLFXI3¢JI

I + HIJI*( H(JI*FLEX(59JI + PaO*FLFX(HoJI

FLEXI79JI = FLFXI70J) - H‘JI*FLFX(69JI

404 FLFXIRQJI = FLFXIBQJI + HIJI*FLFX(R¢JI

C

C FLEXIBILITY MATRIX

C

DO 406 I = 108

406 FLFXIBIII = FLEXIIQI) + FLFX(IQ?I + FLFX(I91I

C

C QTIFFNFGS MATRIX

C

S(IOMI = IoO/FLEXIRIII

S(AOMI = IoO/FLEXIHIAI

I

I
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TEMP = FLEXIB(?I*ELEXIB(6I - FLEXIRI7)**?

S(PcMI = FLLXIRI6I/TEMP

$169M) - FLEXIHIPI/TFMP

S(79MI =-FLEXIB(7I/TFMP

TEMP = FLEXIB(3I*FLEXIBIEI - FLEXIR(8)**2

S(3QM) = FLEXIBISI/TFMR

SISQMI - FLEXIR(3I/TFMP

S(RqMI =-FLFXIR(RI/TFMP

END

SURROUTINE FMATRIXI M I

c -----------------------------------c

c GEOMETRICALLY NONLINEAR VREsION c

c-----------------------------------c

COMMON/ TYPE/ DENSITY. F. G

COMMON/ STIFF/ S(RoIOOIo RIPQIOOI

COMMON/ AREA/ AREAXIIOOIQ AREAY(IOOIQ AREAZ(IOOI0

1 IXXIIOOI. IYYIIOOIO IZZ(IOnI $ REAL IXX. IYY.

C

C CONSTANT FACTORS OF ELEMENTS OF ELASTIC STIFFNESS MATRICES

C

X = RIIQMI + 9(POMI $ TEMP = F/X

S(SoM) = TEMP*IYY(MI $ S(BoMI = S(SoMI/X

S(6qMI = TEMP*IZZ(M) s S(7oMI = S(6IMI/X

S(loM) = TEMP*AREAXIMI

S(ZoM) = 2.0*S(79M)/X

S(BoMI = ?oO*S(BoMI/X

S(aoM) = G*IXXIMI/X

END

SURROUTINE SMATRIX( PETA. MLINFAR. GLINFAR )

c--------------------------------------------—----------c

C GEOMETRICALLY LINEAR VERSION. PARAB. YIELD FUNCTION C

c-------------------------------------------------------c

LOGICAL MLILEAR. GLINEAR. ITERATE

DIMENSION DWIGI. FRIGI. VI6.2I. HIE)

DIMENSION RHII2.IOO). CHIIp). 88(2). EEI2.2I. XNI6)

DIMENSION 55(606I9 GG(692I9 SGI602I¢ XXI206IQ YYC696I

DATA (SS = 36(0)). IGG = 12(0))

COMMON/ TIME/ TIME. DT

COMMON/ RM/ RMI3.3.InnI

COMMON/ SLIMIT/ sLIMITIG.IOOI

COMMON/ JDJN/ JRIIOOI. JNIIOOI

COMMON/ STIFF/ S(e.1001. 8(2.1001

 ‘I“I
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SI7F/ MEMBERS. JOINTS. JFREE

FORCE/ FPPIéoIOOI! FNNIfiOIOOI

LENGTH/ LENGTHIIOOI 3 REAL LENGTH

PLASTIC/ PLASTIC(2OIOOI $ LOGICAL pLASTIC

COMMON/ YIELDED/ YIELDEDIPQIOOI S LOGICAL YIELDED

COMMON/ DIS/ DIS(6QROI9 DDISI6QROI0

1 PDISPIfioIOOIo PDISNI691OO)

DO BRO M: IQMEMRFDQ

c-------------------~-------------c

INCREMENTAL MEMBER DISTORTION

C -------------‘-------------------C

JP¢MI

JNM JN(M)

DO 305 I

DWIII

DO 305 J

XN(I+3I =

DWII+3I =

1 + RMII.J0M)*I DDISIJ+30JPMI~DDISIJ+39JNMI )

DWIII DWIII + RM(I¢J9MI*( DDIS¢J0JPMI‘DDIS(J9JNMI I

DW(?I DWI?) + LENGTHIMI*XN(6I

DW(3I DWIOI m LENGTHIMI*XN(QI

c -------------------------------------------c

C pan-FND IF MFMRFR M NOT VIFLDING

COMMON/

COMMON/

COMMON/

COMMON/

103

DWII+3I

103

XNII+3I

DWII+3I

XNII+3I O

+ RMIIOJQMI*DDIS(J+39JNMI

10G

OCR. pLASTICIEoMI I

OANDO pLASTICIszI I

GO TO 440

PLASTICIIQMI

PLASTICIIoMI

N oGTo O I

IFI

IF(

IF(

N

FRIII

FP(2I

FRI3)

FPIAI

ERIE)

FPPIIQMI

FPPIEOMI

FDPI39MI

Fpp(49M)

FPP(59M)

sIIoM1*Dwt1)

SI?.M1*DwI2)

st1.M)*DWI3I

sIA.MI*DwI41

S(QQMI*OW(QI

+

+

+

S(70MI*OW(6I

SIBQMI*DW(5I

S(RoM)*DW(1)

+
-
+
-
+
4
-
+

+

FPRIficMI + c(79MI*OW(?I

a 19?

AHSIFPI1))*SLIMIT(IOM) + (FPI4I*SLIMIT(49MII**?

1 + ARSIFPIEI + RIJQMI*FP(3))*SLIMIT(59MI

+ ABS(FP(6I R(J9MI*FR(?II*SLIMIT(60MI

IFI MLINEAR I ROD. 7OO

CONTINUE

C---------------------------------------C

C DOSO~FND FORCE IF MEMBER M YIELDING

c---------------------------------------c

FRIfiI SIAQMI*DW(6I

DO A?O

CHIIJI

J

420

1.0

R(?0MI

oAND. PLASTIFI29MI I

RIIOMI G HI?)

ONOTOPLASTICIIOMI H(1) HIP)

YIFLD SURFACF NORMAL:
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IF! PLASTIC(JoM) ) GO TO 780

IF! CHI(J) .LTo o ) GO TO 760

PLASTIC(J.M) = YIFLnFD(1.M) = .TPUF.

IF( BETA .GT. 0 ) CALL FMATRIX( M )

L = M 5 IF( J .FQ. P ) L = -M

PQINT 7?4. L. TIMF. lecJ.M)

7pa FORMAT(*-MEMBEP*13* YIELDS TIME=*FR.R* PHI=*F1?08)

GO TO ann

760 PHI(J¢M) = CHI(J)

van CONTINUF

c---------------------c

c MFMBEP END FODCES c

c—————————————————————c

800 FPP(R¢M) = IP(R)

FPP(6¢M) = FP(6)

FNN(G¢M) =-FP(=) - LFNGTH(M)*FP(3)

FNN(60M) =-FP(6) + LFNGTH(M)*FP(2)

DO 830 I = 194

FPP(IOM) = FP(I)

810 FNN(IoM) =~FPKI)

BRO CONTINUF

FND

SURROUTINF SMATRIX( RFTA. MLINEAQo CLINFAR )

c --------------------------------—-------------------------c

C GFOMETRICALLY NONLINEAR VRESION. ELLIP. YIELD FUNCTION c

c ----------------------------------------------------------c

LOGICAL ENDP. ENDN. ENDS. MLINEARQ GLINEARQ ITERATE

DIMENSION DUP(6)Q DUNI6). FPIfi)! FN(6)0 Vp(6)o VN(6)

DIMENSION PHI(?0100)9 CHII?)9 98(2). FE(?9?)9 XNIG)

DIMFNSION GP‘éoZ). GN(69P)0 FGPT(206)9 FGNT(?06)

DIMENSION GPEGPT¢696)0 GDFGNTCévé). GNFGNT(6q6)

DIMENSION SPPCfioG). QDN(696)0 9NN¢606)

DATA (999 = 36(0))9 (QPN = 16(0)). (SNN = 36(0))

COMMON/ TIME/ TIME. DT

COMMON/ PM/ RM(3039100)

COMMON/ SLIMIT/ SLIMIT(6QIOO)

COMMON/ JPJN/ JP(IOO)Q JN(IOO)

COMMON/ STIFF/ SCBOIOO)9 B(?0100)

COMMON/ 5125/ MEMBERS. JOINTS. JFRFE

COMMON/ FOPCE/ FPP¢69100)0 FNN(6QIOO)

COMMON/ LENGTH/ LENGTH(100) 5 REAL LENGTH

COMMON/ PLASTIC/ PLA§TIC(EOIOO) $ LOGICAL pLASTIC

COMMON/ YIFLDFD/ YIFLDFD(?OIOO) $ LOGICAL YIFLDFD

COMMON/ OIS/ DIEI6030)0 DOIQI6QQOIQ

1 PDI$P(60100)0 PDISNI6QIOO)

DO 880 M I IOMEMREPS
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DO 83: I = 105

GPFGPT(IQK)

GPFGNTIIOKI

Q13 GNFGNTIIOK)

GO TO Gan

‘40 DO '34? K = 1‘6

EGPTIIQK) EFIIOI)*GP(K01)

EGPT(29K) EFI201)*GP(K01)

EGNTIIOK) EFIIOI)*GN(KQII

EGNTIQOK) EF(?QII*GN(KQI)

DO 545 I = 106

GPEGPTIIQK)

GPFGNTIIQK)

54? GNFGNTIIQK)

GPIIIJ)*FGDT(J9K)

GPIIIJ)*FGNT(J0K)

GN(IOJ)*FGNT(JOK)

FEIIQ?)*GP(K9?)

FF(?Q?I*GP(K0?I

FFIIQP)*GN(K9?)

FFI?9?)*GN(KI?I

"
I
!
”

+
+
+
+

GP(IQI)*FGDT(IIK) + GPII02I*FGPTI?QKI

GP(191)*FGNT(10K) + GPCI02)*EGNT(20K)

GN(IQII*EGNT(10K) + GNIIO2)*EGNTI?QKI

C

C FNO FOQCEQ

C

5G0 00 5‘2 I = 106

FPII) = FN(I) = 0

DO 551 J = 106

FP(I) FPII)

1

551 FNII)

l

SPDIIOJ)-GPEGPTIIQJ) I*DUP(J)

SPN(I9J)-GPEGNT(I¢J) )*DUN(J)

SPN(JJI)-GPEGNT(J0I) )*DUP(J)

SNN¢I¢J)-GNEGNT(IQJ) )*DUN(J)A
A
A
“

+

+

FNII) +

+

+
FDII) = FPII) FDPIIoM)

SR? FN(I) = FNII) + FNNIIOM)

CHIIII = IFPII)*SLIMITIIQM)I**? + (FP(4)*SLIM1T(4.M))**P

l — 1.0 + (FP(8)*SLIMITIGIM)I**? + (FPI6)*§LIMIT(6IM))**2

CHIIp) = (FNI1)*SLIMIT(1.MI)**2 + (FNI4)*SLIMITI40M))**?

l - 1.0 + (FN(€)*SLIMITIS.M))**? + (FNI6)*SLIMITI6OM))**?

IFI pLASTICIIOM) .AND. (CHI(1) .GT. 0) ) ITERATE = .TRUE.

IFI PLASTICIZIM) oANDo (CHI(2) oGT. 0) ) ITERATE = oTRUE.

C

C YIELD SUPFACF NOQMALQ

C

IF( ITFQATE ) 570. 890

570 LOOP = LOOP + 1

IF( FNDN ) GO TO ‘71

VPIII = FPIII*SLIMITIIOMI**?

VD(4) = FP(4)*§LIMIT(49M)**?

VPIQ) = FDI5)*€LIMITIRIM)**P

VP(6) = FD(6)*9LIMIT(69M)**2

IF( ENDP ) GO TO R7?

571 VN(I) = FN(1)*SLIMIT(10M)**?

VN(4) FN(4)*SLIMIT(4IM)**?

VN(S) FNIS)*§LIMIT(EIM)**2

VN(6) = FN(6)*SLIMIT(6IM)**P

572 IF! LOOP .LT- 4 ) Go TO 805

PQINT 581. TIMF % CALL EXIT

58! FORMAT(*-LOOP IS TOO LARGE AT TIMF :*FR.Q)
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500 CONTINUF

c---------------------------c

c TEST FOP ELASTIC pETupN c

c---------------------------c

DO 640 J = 1!?

IF( PLASTICIJQMI I 6109 640

610 RBIJI = 0 .

DO 620 K = 106

6?0 BB(J) = RRIJI + FGPTIJQKI*DUP(KI + FGNTIJQK)*DUN(K) l -

IF( BB(J) .GT. n I GO TO 640 “‘

pLASTICIJQMI = oFALgpo fi

L=M$IFIJ0FOO?IL="M f

PPINT 6?49 Lo TIMFQ CHI¢JI

624 FORMAT(*—MEMBEP*I3* QFTUQNS TIME=*F8.5* CHI=*F1208)

640 CDNTINUF

C

C PLASTIC MEMBER END DISPLACEMENTS IN GLOBAL COORD. SYSTEM

C

 I
'
l
'
I
-
"
I
‘
(
I
!

I
.
“

-.
'

IFI ENDN I 6600 6:0

6QO DO 6G; I = 193

PDISPIIQMI

DO 6:? J = 193

6;? PDISPII+3QMI = PDIQPII+1QMI + QM(JQI0MI*PR(II*VDIJ+3I

IFI ENDP I 67D. 66“

660 DO 663 I = 103

PDISNIIQM) = pDISNIIQMI + QMIIOIQM)*RRI2I*VNIII

DO 665 J = 103

66; PDISNII+39MI = PDISNII+39MI + RMIJOIOM)*RR(2)*VNIJ+3I

670 CONTINUE

PDISPIIIM) + QMI1IIIM)*QR(1)*VD(1)

c------------~--------c

c TEST FOR YIELDING c .

c---------------------c

700 DO 780 J = 192

IF( PLASTICIJQMI ) GO TO 780

IF( CHI(J) .LT. n ) GO TO 76“

YIFLDEDIJOMI : DLACTICIJIM) : .Tnuc.

L = M % IFI J DEG. 7 I L = ‘M

PQINT 724. L0 TIMFQ PHIIJoMI

794 FORMAT(*~MEMBEQ*I1* YIELDS TIME=*FR.G* PHI=*F1?oR)

GO TO 400

760 PHIIJQM) = CHI(JI

780 ’ CONTINUE

c--—------------------c

c MEMBEP END FORCES c

c---------------------c

800 Do 930 I = 196

FppII.MI = FPIII

810 FNNIIQMI

BRO CONTINUE

END

FN(II
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