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ABSTRACT

DYNAMIC ANALYSIS OF
NONLINEAR SPACE FRAMES

By

Fereydoon Farhoomand

In this thesis, a matrix formulation is presented
for the analysis of dynamically loaded space frames. The
effects of both material and geometric nonlinearities are
taken into consideration. These effects are restricted,
respectively, to the case'of linearly elastic-perfectly
plastic materials and the case of small rotatiois, i.e.,
the case in which the rotation angles are negligible with
respect to unity.

The analysis begins with specifying two yield
condition equations for a typical member cross-section.
Then, the incremental force-displacement relations for
a space-frame member are derived for several cases.
Firstly, these relations are summarized for a linearly
elastic member with the effects of geometric nonlinearities
taken into account. Secondly, the relations for a member
whose end cross-sections are yielding are derived again

with the latter effects accounted for. Finally, the
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incremental force-distortion relations are derived for an
elastoplastic discrete model under geometrically linear
conditions.

The analysis is further carried on by describing a
mass lumping procedure that considers rotary inertia.
Then, the equation of motion for a typical "free" joint
is derived. Following that, the criterion by which a mem-
ber cross-section is ruled to be yielding is described.

It is shown next that the force vector acting on a
yielding cross-section is prevented from proceeding beyond
the yield surface. Finally, the steps of the numerical
procedure employed to determine transient response are
described.

A computer program is prepared for the implementa-
tion of the analysis. Three numerical problems are con-
sidered: a cantilever beam, a six-menber space frame, and
a two-bay two-story building frame. Dynamic loading is
either provided by concentrated loads applied to free
joints, or generated by ground motions due to earthquake.

Several comparative studies on the numerical préb-
lems mentioned above are presented. These studies show
that good agreements exist between the results provided
by the geometrically linear formulation and those given
in a published report in which a different method was

used. This may be construed as evidence for the
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validity of the present analysis. The method given here,
however, requires significantly less computer time.

The comparative studies also show that plastic
displacements as predicted by the geometrically nonlinear
formulation are generally larger than those resulting
from the geometrically linear version. But, on the whole,
when axial loads are small (as compared to the corre-
sponding Euler loads), the influence of geometric non-
linearities on numerical results does not seem significant.
However, as axial loads increase, such influence rapidly

grows.
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CHAPTER I

INTRODUCTION

This chapter presents the objective of the present
work, previous related studies, and assumptions and limita-
tions of the analysis developed. It also gives an outline
of the investigation carried out and certain general defi-

nitions needed in the subsequent analysis.

1.1 Objective

Two types of nonlinearities occur in structural
problems. The first type may be referred to as "geometric
nonlinearities." They occur when deflections are large
enough to cause significant changes in the geometry of the
structure. In this case the equations of equilibrium must
be formulated for the deformed configuration. The second
type may be referred to as "material nonlinearities" which
include any deviation from linear elasticity, such as non-
linearly elastic, or plastic, or viscoelastic behavior of
the structural material.

The objective of this thesis is to develop a
numerical method for the dynamic analysis of space frames,

taking the effects of geometric and certain material
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nonlinearities into consideration. In order to accomplish
the objective, a matrix formulation of the problem is de-
rived. Furthermore, a computer program is pfepared for
the implementation of the analysis. Finally, numerical
results of certain problems are obtained in order to demon-
strate the validity and practicality of the method.

It seems hardly necessary to point out that the
problem under consideration is a broad, and hence, diffi-
cult one. However, as it will become apparent later, the
present work has had the advantage of using several earlier
works as "building blocks." These earlier works will be

described briefly in the following section.

1.2 Previous Studies

Recent advances in the field of computer technology
have provided the necessary toois for the development of
the analysis of geometrically nonlinear frames. Many
papers concerned with such developments have appeared in
recent years. Among these perhaps the pioneering works
by Saafan (12) ,* Livesley (7), Argyris (1), and Johnson
and Brotten (6) deserve special attention.

In a recent paper, Jenning (5) has incorporated
the effects of change of geometry into certain displace-

ment transformation matrices for members of plane frames.

*Numbers in parentheses refer to entries in the
list of references.






He considered the axial shortening due to member inclina-
tion as being the only important nonlinear term in cases
where displacements are not exceedingly large. However,
he mentioned that accurate transformation matrices can be
adopted in cases in which very large deformations are to
be dealt with. Based on Jenning's formulation, Iverson
(4) has derived stiffness coefficients for space-frame
members. He applied his geometrically nonlinear formula-
tion to elastic frames under dynamic loads.

Qanor, Logcher, and Chan (2) have also derived
a geometrically nonlinear formulation for the three dimen-
sional case. Their derivation is restricted to the small
rotation case, i.e., a case in which the squares of rota-
tion angles are negligible with respect to unity. Zarghamee
and Shaw (15) have given a similar formulation independently.
They presented a more comprehensive expression for axial
force than the one given by Connor, Logcher, and Chan.

The area of inelastic behavior of frames under
static and/or dynamic loads has been of great interest
in the past decade. Almost all published works on this
subject have been partially based on the plastic potential
theory. In a recent report, Morris and Fenves (9) have
studied the inelastic behavior of space frames under static
loads. They derived the incremental force-deformation re-
lations for a member having any number of plastic hinges.

In their report, they also derived the approximate yield



surface equations for certaincommonly used cross-sections,
considering the interaction between bending moments, tor-
sional moment, and axial force.

Nigam (11) has recently presented an elastoplastic
formulation to study the response of dynamically loaded
space frames. He derived the incremental force-displacement
relations for a member whose one or two end cross-sections
are yielding. His equations are basically the same as the
ones derived by Morris and Fenves, although they apparently
seem different. He then extended his formulation to the
dynamic case. But, in this extension, he did not discuss
such important questions as: how to handle the mass; how
to prevent the force vector acting on a yielding cross-
section from proceeding beyond the yield surface; and how
to solve the equations of motion.

Wen (13) has also studied the elastoplastic be-
havior of space frames under dynamic loads. His formula-
tion is based on dividing a yielding member into an
elastic member with continuous flexibility and an elasto-

plastic member with lumped flexibility.

1.3 Assumptions and Limitations

The assumptions and limitations employed in this
study are divided into the following five categories:
(1) Material
(a) The material is assumed to be linearly elastic--

perfectly plastic.



(b)

(c)

All stress-strain characteristics of the
material are assumed to be time-independent.
Strain-hardening effects of the material are

neglected.

(2) Cross sections

(a)

(b)

(c)

(d)

All cross-sections are assumed to have two
axes of symmetry.

Yielding is assumed to occur at individual
cross-sections with no "spread length."

A shape factor of 1.0 is assumed for all
cross-sections. That is, cross-sections are
assumed to make an abrupt transition from a
completely elastic state to a state where
unrestricted plastic flow can occur.

It is assumed that cross-sections are free
to warp under torsional loads, i.e., the case

of "pure" torsion prevails.

(3) Members

(a)
(b)

(c)
(d)

All members are assumed to be prismatic.

The usual engineering theory of bending is
assumed to be applicable.

Torsion-flexure coupling effects are neglected.
Members may have uniformly distributed gravity
loads only. Concentrated loads at points
other than the ends of members are not per-

mitted.
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(4) Joints
(a) Joint loads, which are necessarily concentrated,
may be statical and/or dynamical.
(5) Frame
(a) Changes in the geometry of the frame are re-
stricted to the "small rotation" case, i.e.,
a case in which the squares of rotation angles

are negligible in comparison with unity.

1.4 Outline of Present Study

In this study, two yield condition equations for
a member cross-section, as used in Reference 13, are first
specified. Then a series of incremental force-displacement
-elations for a member, taking the effects of geometric
onlinearities into account, are derived. Firstly, these
clations are summarized for a linearly elastic member,
s formulated by Connor, Logcher, and Chan (2). Secondly,
e case of a member whose end cross-sections are yielding
studied. Finally, the incremental force-distortion
lations for a discrete model, taken from Reference 13,
 derived.
The dynamic analysis begins with a mass lumping
~edure (see References 4 and 13) that accounts for
1ry inertia. Then, the motion equation for a typical
(ungrounded) joint is derived. In the dynamic solu-

», the criterion by which a member cross-section is
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ruled to be yielding is described first. It is shown

next that the force vector acting on a yielding cross-

section is prevented from proceeding beyond the yield sur-

face. Finally, the transient response of the frame to

dynamic loading is obtained by integrating the equations

of motion numerically. Dynamic loading is either pro-

vided by concentrated loads applied to free joints, or

generated by ground motion due to an earthquake.

Three numerical examples taken from Reference 13

are considered: a cantilever beam subjected to a pulse

type of loading; a six-member space frame subjected to a
step-function type of loading; and a two-story two-bay
building frame subjected to the 1940 E1l Centro earthquake.

These examples, on the one hand, illustrate the applications

of the numerical method developed. On the other hand, they

will provide a basis for comparing the numerical results

of the present method with those reported in the above-
mentioned reference.

1.5 General Definitions

Figure 1-1 illustrates a three-dimensional frame

whose joints and members are all numbered. The joint

count is separate from the member count. For convenience

of computer programming, free joints are always numbered
first.



Each member is arbitrarily assigned an orientation

by specifying one of its ends as the positive end and the

other as the negative end. Consider a member framed be-

tween two joints. It is then said that the member is

positively incident to the joint at its positive end and
negatively incident to the joint at its negative end. For
example, in Figure 1-1, the member 2 is positively incident

on the joint 1 and negatively incident on the joint 3.

Two classes of right-handed Cartesian coordinate

systems are used. The origin of each coordinate system

is either clear from context or specifically pointed out.

The first class consists of a single joint (global) coor-

dinate system arbitrarily chosen. The second class con-

sists of all member (local) coordinate systems chosen in

the following manner. The first axis of each member coor-

dinate system coincides with the undeformed centroidal

axis, and is directed from the positive end to the negative
end of the member. The other two axes are coincident with
the principal axes of inertia of a generic cross-section

of the member.

In the next two chapters, force and displacement

transformation matrices will be needed. These are given
below for the sake of completeness. Referring to Figure
1-2, let 0,X,Y,2 and 0,X,Y,2, denote two coordinate systems

whose axes are parallel and oriented in the same fashion.

The force transformation matrix from the first system to
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the second is then given by

(1-1)
H I

wherxre I is the third order identity matrix, and

0 2 -y
H= |-Z2 0 X (1-2)
Y -X O

in which X, ¥, and 2 are the coordinates of the center 0

2
with respect to the system lelylzl’

The corresponding
displacement tranformation matrix is given by

-1 t
D = (T ) _
0102 0201 (1-3)

Referring again to Figure 1-2, let Ozxéyézé denote a third

coordinate system rotated with respect to the system

ozxzyzzz. The force transformation matrix from the second

system to the third is given by

r 0
R = (1-4)
0 r
where
cos(xé,xz) cos(xé,yz) cos(xé,zz)
r =

cos(yé,xz) cos(yé,yz) cos(yé,zz) (1-5)

cos(z),x,) cos(z),y,) cos(z},z,)

—
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in which the parenthesized quantities denote the angles
between the axes indicated. The matrices R and r will

be referred to as the "rotation" matrices. In this case,
the displacement transformation matrix is also given by
the matrix R. For example, the incremental member end
displacement AU and the incremental displacement AX of

the joint, connected to the member end being considered,

are related by
AU = RAX (1-6)

where AU and AX are expressed, respectively, in the member
and joint coordinate systems, and R is the rotation matrix

from the second system to the first.
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CHAPTER II

FORCE-DEFORMATION RELATIONS FOR A MEMBER

In this chapter, two yield condition equations for
a member cross-section, to be employed for obtaining nu-
merical solutions, are first specified. Then a series of
incremental force-displacement relations for a member,
considering the effects of geometric nonlinearities, are
derived. Firstly, these relations are summarized for a
linearly elastic member. Secondly, the case of a member
whose end cross-sections are yielding is studied. Finally,
the incremental force-distortion relations for a discrete

model, as used in Reference 13, are derived.

2.1 Yield Condition Equation

In frame analysis, it is convenient (perhaps even
necessary) that the yield condition equation for a member
cross-section be formulated in terms of stress resultants.
These resultants will be hereafter referred to as "force
components" for short. Expressed in these terms, the
yield condition equation defines the combinatibn of the
force components necessary to initiate yielding at a

cross-section. Since a shape factor of 1.0 is assumed

for all cross-sections, the initiation of yielding will

11
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coincide with the start of unrestricted plastic flow.
Thus, the yield condition equation represents the relation
among the force components for the initiation of unre-
stricted plastic flow. Finally, for an elastic-perfectly
plastic material as assumed in this study, the yield con-
dition equation remains the same as yielding progresses.
In the case of three-dimensional frames, the yield
condition equation for a cross-section may be written

symbolically as
¢(Fx,Mx,My,Mz) =1 (2-1)

where ¢ is the so-called yield function, Fx is the axial
force, Mx is the torsional moment, and My and Mz are the
bending moments. Equation (2-1) represents a hypersurface
in the four-dimensional force space spanned by the Cartesian
coordinates Px' Mx’ My' and Mz. This hypersurface is called
the yield surface.

The derivation of the exact yield condition (or
yield surface) equation for a given cross-section is gen-
erally quite difficult. Numerical solutions are available
only for a square cross-seciton. Morris and Fenves (10)
have derived approximate lower bound yield surface equa-
tions for commonly used cross-sections, using a procedure
suggested by Hodge (3) along with simplifying assumptions
on the neutral axis position. Even those equations appear
rather unwieldy for general application to frames with

many members.
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13

In this study, for the sake of simplicity, two

particular forms of yield functions taken from Reference

13 are employed. These functions do not correspond exactly
to any commonly used cross-section. However, considering
the assumptions made and uncertainties involved in applying
the theory of plasticity to this problem, they may be re-
garded as reasonable approximations for obtaining numerical
solutions.

The first function is given by

’Fx | Mx 2
= | e —
¢p T + (M )
|”xp Xp
M M,
+ :ﬁx_; + T = 1 (2-2)
i YP, ©2Zp

in which Fxp’ Mxp' M __, and sz are the fully plastic

YP
force components corresponding to Fx’ Mx’ My, and Mz,

respectively. The function ¢p will be referred to as the
"parabolic" yield function. The second function is given

by
F 2 M 2

O = (==1) + (=29
e Fxp Mxp

+ (1\4—3’-—)2 + (—Mz 2 -1 (2-3)
M M -
Yp zp

the function ¢e will be referred to as the "elliptic"

yield function.
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It is apparent that the parabolic yield surface
is enclosed by the elliptic one. Therefore, for engineering
analysis, it is a more conservative one to use as it would
normally indicate an occurrence of yielding before the
elliptic yield function would do so.
2.2 Incremental Force-Displace-
ment Relations for a

Geometrically Nonlinear
Member

The incremental force-displacement relations for
a typical member can be derived by considering the statics,
member geometry, and stress-strain characteristics of the
material. Connor, Logcher, and Chan (2) derive these
relations for an elastic member, considering the effects
of geometric nonlinearities. This derivation will be
outlined briefly in the next subsection for the sake of
completeness.

When a member end cross-section yields, an un-
known vector, namely, the plastic end displacement incre-
ment, is introduced in the incremental force-displacement
relations. This unknown is determined, up to a scalar

parameter, i.e., the "flow constant," by applying the
plastic potential theory. (This theory is described in
several textbooks among which the one by Malvern (8) is

perhaps the most recent.) The flow constant, and con-

sequently the force-displacement relations, can be
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determined by applying the condition that the force incre-
ment--to be theoretically correct, of infinitely small
magnitude--acting on a yielding cross-section is tangent

to the yield surface.

2.2.1 Elastic Member

Figure 2-1 shows the initial and deformed positions
of a typical member PN. The x axis coincides with the un-
deformed centroidal direction and the y and z axes are
coincident with the two principal axes of inertia. These
axes constitute the local coordinate system for the member.
F

The internal forces (Fx, F M M, Mz) and displace-

y' x' Ty
wz) are referred to in this

z’

r Q_, Ww

2 w

ments (ux, uy xr Wy

coordinate system, and so are the end forces FP and FN

with components F F etc., and end displacements Up

Px'’ "Nx'

and UN with components U U

Px’ "Nx'
Figure 2-2 shows the initial and deformed positions

etc.

of a differential element AB. The centroidal point B is
displaced to the point B'. Based on the assumption of
small rotations (w§ << 1, wi << 1), the longitudinal strain
e at the point B', in the direction of the tangent to the

deformed centroidal axis, is expressed by

du, 2 2
e = 32— + 0.5 wy + 0.5 w, (2-4)
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with
du
w = - ———z- (2-5a)
y dx
du
w, = afx (2-5b)
where u, . uy, and u, are the translational displacements of

the point B. The second and thlrd terms 1n Equatlon (2-4)

1ntroduce the effects of geometrlc nonllnearltles in the

present formulatlon. If these terms are neglected the

fornulatlon returns to the geometrlcally llnear case.

With reference to Figure 2-2, the force (stress
resultant) tangent to the deformed centroidal axis is
denoted by N. (Note that the same symbol N has also been
used to denote the negative end of the member. But the
meaning in every case where the symbol N appears should be

obvious from context.) The force N and the moment Mz are

related to the strain e and displacement uy, respectively,

by
N = EAx e (2-6)
d2u
M, = EI, ;51 - (2-7)

in which E is the modulus of elasticity, Ax is the cross-
Sectional area, and Iz is the cross-sectional moment of

inertia about the z axis. Note that Equation (2-7) is



1
hased ¢

neglect

present
% bt
The de*

straigh

Iuatid

along ¢

fquati

enber,

in whj,



17

based on the usual engineering theory of bending which
neglects the effects of shearing deformations.
The equilibrium equations consistent with the

present geometric approximation (wi << 1, wi

<< 1) can
be obtained by applying the principle of virtual work.
The details are omitted since the procedure is quite

straightforward. The final equations are then listed as

g% =0 (2-8)
dzMz 4
;T - 3= (Nmz) =0 (2-9)

BEquation (2-8) states that the axial force N is constant
along the entire length of the member. Consequently,
Equation (2-6) can be integrated over the length of the

member. This leads to

EA
= - X - -
N = T (Upy~Uyy) *+ EA, (8.46)) (2-10)

in which L is the length of the member and

=1 D2
Sy = 3L 0 w9
(2-11)
L
=1 1 2
§, = 3L o Yy
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The governing equation for the displacement uy is
obtained by substituting Equations (2-5b) and (2-7) into

Equation (2-9). Thus

92 [0} v d"u

+ ——7X =0 (2-12)
dx4 L2 dx
where
0.5
5 .
NL

¢y - BT (2-13)

axial force parameter

Note that the parameter ¢y is a function of the axial
force N which in turn depends on the displacement uy.
Rigorous solution of the differential equation (2-12) for
the displacement uy would require using iterative schemes.
To avoid that, the latter equation should be solved under
the assumption that the parameter ¢y (or axial force N)
is known. The solution should then be introduced into
Equations (2-7) and (2-10). The discrepancy between the
assumed axial force N in solving Equation (2-12) and the
one obtained in Equation (2-10) is of course a source of
inaccuracy in the procedure. This point would be brought
up again in later sections.

It is evident that Equations (2-7), (2-9), and
(2-12) are associated with bending in the x-y plane.

Similar equations can readily be written for bending in
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the x-z plane. The force-displacement relations are ob-
tained by assembling the equations associated with flexure
in the x-y plane, flexure in the x-z plane, and finally,
twisting about the x axis. The end forces are then deter-
mined in terms of the end displacements from the lattef
equations by enforcing the proper boundary conditions.
The lengthy détails of this procedure are omitted. Only
the relevant equations in matrix form will be given below.
The end force-end displacement relations are now

expressed as

P PP 7P PN N G
FN = SPN UP + SNN UN + FG
in which SPP' SPN’ and SNN are the "elastic" stiffness

matrices, and FG is a column matrix containing the non-
linear terms due to the rotations wy and w, . These
matrices are all expanded in Appendix I. Note that the
effects of torsion-flexure coupling and warping restraint
have been neglected in Equations (2-14). 1In addition,
it has been assumed that the member does not have any
releases. However, it will be shown later (see Appendix
II) that end releases may be considered in the incre-
mental form of the latter equations.

Later, the end force-end displacement relations

in incremental form will be needed. To derive these, it
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and S

is assumed that the stiffness matrices bpp, pr, NN

are constant within the increments (of forces and dis-
placements). This assumption is a reasonable one since
S

the elements of S and SNN vary slowly with ¢i

PP’ “PN'
(i = y,z) when ¢i is not close to 2m. (¢i = 2m corresponds
to N = the Euler load.) The incremental relations are

thus expressed as

AFP = SPP AUP + SPN AUN - AFG
AFN = SPN AUP + SNN AUN + AFG
where the increment AFG can be expanded as
AFG = SG (AUP - AUN) (2-16)

The matrix SG may be interpreted as the "geometric" stiff-

ness matrix. The approximate form of this matrix used

in the present analysis is developed in Appendix I.
Introducing Equation (2-16) into Equations (2-15),

the approximate incremental relations are finally written

as

AFP = KPP AUP + KPN AUN
£ (2-17)
AFN = KPN AUP + KNN AUN
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in which
Kpp = Spp * 5S¢
Kpy = Spy ~ Sg (2-18)
Kaw = San + Sg

It follows from the symmetry of the stiffness

matrices S S and S_, that the generalized stiffness

NN’ G
PP and KNN are also symmetric.

If the member happens to have end releases, its

PP’
matrices K

incremental force-displacement relations must be modified
accordingly to account for such releases. This modifica-
tion can be carried out easily in a fashion quite similar
to that presented in Reference 9. However, for the sake
of completeness, an outline of the latter modification

is given in Appendix II.

2.2.2 Elastoplastic Member

The assumption that the member is elastic is now
dropped. It is instead assumed that both end cross-
sections of the member are yielding. The end displace-
ment increment AU can be decomposed into an elastic part
and a plastic part. These two parts will be denoted by

the superscripts e and p, respectively. Thus
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AU, = AU

e 1%
p p t AU

(2-19)

AU, = AU

e p
N N * AUN

The above decomposition is a basic assumption of the theory
of plasticity.
Based on the plastic potential theory, the flow

law adapted to the present problem is expressed by

P _ = |
AUP bP Vo (FP) vaP
(2-20)
P _ _
AUy = bN Vo (FN) = bNVN

in which b is the flow constant (a positive scalar parameter),
V is the so-called "del" (gradient) operator, ¢ is the yield
function, and V is the outward normal to the yield surface
at the point where the end force F meets the yield surface.
A geometrical interpretation of the flow law is illustrated
in Figure 2-3 for a simpler case in which the yielding
condition depends on only two stress resultants. It is
seen from this figure that the plastic end displacement
increment AUP is normal to the yield surface. Thus, the
direction of the increment AUP is determined by the plastic
potential theory. However, the magnitude of that incre-
ment still remains to be determined.

During yielding, the end force vector F must stay

on the yield surface represented by the equation ¢ (F) = 1.

(The latter equation remains fixed since the effects of
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work hardening are neglected.) This is specified analyti-

cally by
A (FP) =0
(2-21)
A (FN) =0
These equations can be rewritten as
[Ve(F,) 1% aF, = 0
P P
£ (2-22)
[V@(FN)] AFg = 0
t =
VP AFP =0
& (2-23)

2<
>
'z
n
o

Equations (2-23) will be used shortly to determine the
magnitude of the incremental plastic end displacement AUP.
These equations state that the end force increment AF is
tangent to the yield surface.

Since the material is assumed to be elastic--
perfectly plastic, the end force increment AF is governed
by the elastic end displacement increment Au® only. There-

fore, Equations (2-17) can be written as

e e
AFP KPP AUP + KPN AUN

(2-24)

_ ot e e
AFy = Kpy AUp + Ky AUy
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Considering Equations (2-19) and (2-20), the above

equations can be rewritten as

AFP = KPP AUP + KPN AUN
- Kpp Vp bp = Ky Vg by
t (2-25)
AFN = KPN AUP + KNN AUN
-kt V. b _ -K. V.b
PN P P NN N N
At this point, it is convenient to define two
6x2 matrices GP and GN by
]
Cp [Kpp Vp 1 Kpy Vil
(2-26)
= (kS v. k.. Vo]
GN [ PN 'P NN N
If now the flow constants bP and bN are assembled into a

column matrix B, Equations (2-25) can be expressed as

AFP = KPP AUP + KPN AUN - GP

AFN = KPN AUP + KNN AUN - GN
Substitution of these equations into
furnishes

VS Ky, AU, + Vp K, AU - VE

Uy Ky 8Up + vy Kyn AUy = V§

B

(2-27)
B
Equations (2-23)
GP B =20

(2-28)
GN B =20
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These equations are now combined into the following single

equation:

t t

t
Vp Kpp Ve Kon Vp
AU + AU -
p N
t .t t t
N Kpn N Kan N

Solution of Equation (2-29) for

matrix B yields

_ t t
B =E GP AUP + E GN AUN
in which
-1
t
VP GP
E =
t
VN Gy

B =0 (2"29)

the (flow constant)

(2-30)

(2-31)

Equation (2-30) is finally substituted back into Equations

(2-27) whereby the incremental force-displacement relations

become
AF, = (Ko, - G, E Go) AU
P PP P P P
+ (K. - G_ E GY) AU
PN P N N
_ _ t,t
AFN = (KPN GP E GN) AUP
t
+ (KNN - GN E GN) AUN

(2-32)
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The reduction to the case where only one end cross-
section of the member is yielding is quite straightforward

and thus omitted.

2.2.3 Elastic Return

When a cross-section reaches its yielding condition,
a "plastic hinge" is said to form there (following the
terminology in the simple plastic theory of structures).
It frequently happens that a plastic hinge "unloads" and
the corresponding cross-section becomes elastic again.
This phenomenon is referred to as an "elastic return." It
occurs whenever there is a reversal in the direction of
the incremental plastic displacement at a yield hinge.

It thus follows from Equations (2-20) that the elastic
return at a plastic hinge is signalled by a negative flow
constant.

To test for elastic returns, the column matrix B
for each elastoplastic member is first calculated. The
sign of each of the elements (one or two) of the matrix
B is tested. Any yield hinge at which an elastic return
is detected is then removed; in other words, the corre-
sponding member end cross-section is considered to be

elastic.
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2.3 Incremental Force-
Distortion Relations for
a Discrete Model of a Geo-
metrically Linear Member

It is evident that for a "geometrically linear"
member the force-deformation relations can be obtained
directly from the previous results. These relations are,
however, rederived in the present section for a geometri-
cally linear discrete model taken from Reference 13. To
this end, the derivation will have to be made in terms of
distortions rather than displacements.

Figure 2-4 shows a model PN which is to replace a
typical geometrically linear member PN whose P1 and Nl
sections are yielding. It is assumed that each of the
segments PPl, P1P2, NN, , and NlN2 (of the member) are
infinitely rigid and of length gL, where g is a nondimen-
sional parameter to be chosen between zero and some
fraction, say 1/8. Furthermore, it is assumed that the
flexibility of the portion PP2 is lumped at its midsection

P The same assumption is also made for the portion NNZ'

1.
The remainder of the model, namely, the portion P2N2 is
assumed to be continuously elastic.

The distortion of the model referred to the end P

is defined to be the displacement of the end P relative

to the end N. In incremental form, it is given by

= AU, - D . AU (2-33)

AW p ~ Dpy AUy

PN
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in which Dp denotes the displacement transformation matrix

N
from the local coordinate system through N to the same
system through P.

Analogous to Equations (2-19), the incremental

distortion AWPN can be decomposed into

AW... = AWS

p -
PN PN + AWPN (2-34)

The plastic distortion increment AW, can be expressed as

AWP.. = D V. b. + D V. b (2-35)

PN PP1 P1 P1

If the flow constants bP and b are assembled into a
1 1l

column matrix B, Equations (2-35) can be written as

N

Ang = GB (2-36)

in which

G = [DPP \Y/ 5 D v, ) (2-37)

The elastic distortion increment AWS_ can be given as a

PN
summation of

(-] e (-]
AWS. = D AW + D AW
pN = Ppp, 8¥pop. * Ppp, M n,
(-]
+ Dpy. 0¥y § (2-38)
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The flexibility of the portion PP, is lumped at its mid-

section Pl; therefore, the elastic distortion increment

Awg p is determined by
11
e
AW = Aj AF, = Aj T AF (2-39)
PlPl lPl P1 lPl PlP P

in which A, p is the lumped flexibility matrix for the
11

portion PPZ’ and TP p is the force transformation matrix
1

from the local coordinate system through P to the same
system through Pl‘ The main diagonal elements of the

matrix A, p (which is diagonal) are given by
1

1
_ 28L _ 28L
C1 = £a C, = aa
x %
_ 28L _ 28L )
Cy = GA_ Cy = G5 (2-40)
28L 28L
C=— C-_-..._..
5 = ET, 6 - EI,

in which G is the modulus of shear, Ay and Az are the
effective areas of shear, and J is the constant of torsion.

The increment AWS N. 1s similarly determined by

AWy N. T Pyon. OFy. = Ay n. Ty.p AFp (2-41)

where

Ay.N, = A (2-42)
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Since the segment PN, is elastic, the superscript e can

be omitted from the increment AWS This increment is

P,N,°

22
readily given by
e
AW = AW
PoN2 PN
= AF
%e,p, "p,
= T AF (2-43)
Ppp, Tpp 4Fp

where Ay o is the ordinary flexibility matrix for the
272
continuously elastic segment P2N2 referred to the section

P2. Note that the effects of shearing deformations may be

included in the matrix AP p
2°2°

Equations (2-39), (2-41), and (2-43) are substituted

back into Equation (2-38). This leads to

Ang = A, AF, (2-44)
or,

AF, = A;; Ang (2-45)
in which

(2-46)
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Considering Equations (2-34) and (2-36), Equation (2-45) is

cast into

-1
AF, = Ao (AW, - GB) (2-47)

Analogous to Equations (2-23), the condition that the

force increments AFP and AFN are tangent to the yield

1 1
surface is expressed by
t -1 _
Vp. Tp p Bpp (AWpy - GB) =0
1 1
& -1 (2-48)
YN, Tn.p Ppp (AWpy - GB) =0
1 1
These two equations can be combined into
t -1 - -
G~ Ay, (AW, - GB) =0 (2-49)
from which
B = EG® A;; MWL (2-50)
where
E= (c*ajl 67! (2-51)

Equation (2-50) is substituted back into Equation (2-47)

to furnish

1
P

_ -l -1 t .- 3
AF, = (Ao = Ao G E G- Ans ) AW, (2-52a)
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The incremental force-distortion relations are finally

completed by having

AFN = -TNP AFP . (2-52Db)



CHAPTER III

DYNAMIC ANALYSIS AND SOLUTION

In this chapter, the joint mass matrix is first
constructed. The equation of motion for a given joint is
derived next. Finally, the numerical procedure employed

to determine the dynamic response is presented.

3.1 Dynamic Analysis

The dynamic analysis begins with the formulation
of the equation of motion for a typical free (ungrounded)
joint in the global coordinate system. This requires that
a mass matrix be constructed for the joint. Such a con-
struction may be carried out by lumping, at the joint,
the "contributory" masses from all the incident members.
The mass lumping could be done in a reasonable manner as
long as there is no coupling between the various joint
mass matrices. However, the more realistic the lumping
procedure is, the more accurate the numerical results will
be.

In this study, the joint mass matrix is constructed
in a manner described by Iverson (4). The rotary inertia
is taken into account in this construction. A nondimen-
sional parameter, as introduced in Reference 13 to control

the moments and prcducts of inertia, is also included.

33
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3.1.1 Joint Mass Matrix

To formulate the joint mass matrix, it is convenient
to envisage a rigid body associated with the joint. To this
end, each member with its length multiplied by o will be
called a "branch," where a is a dimensionless parameter, to
be chosen between zero and 1/2. The joint rigid body is
then defined to be the collection of all the branches incident
to the joint being considered. To keep the total mass of
the rigid body independent of a, the density p of the
material is divided by a. Furthermore, it is recalled
that each member may have a uniformly distributed gravity
load with a mass u per unit length. Then each u is also
divided by a. It follows that a is introduced to modify
the moments and products of inertia of the joint rigid
body while leaving the rigid body mass the same.

The mass my of a typical branch B is presented

readily by
my = 0.5 L (Ax o+ u) (3-1)

The mass my of a generic joint J is obtained by summing the

masses of all the incident branches. Thus

my = I my (3-2)

It is seen that o does not appear in Equations (3-1) and

(3-2).
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Referring to Figure 3-1, the position vector

(Xj, Yj' Zj) = Wj of the joint mass center j in the joint

J coordinate system is determined by

Im_X
% = mB b
J J
Im_ Y
Y, = -Egill (3-3)
J J
rm_2Z
— mB b
J J

in which (Xb, Yb' Zb) = Wb is the position vector of the
branch mass center b in the same coordinate system, and
each summation is to be taken for all the branches incident

to the joint J. The vector Wh is given by

W, = * 0.25a (P - N) (3-4)

in which P and N are, respectively, the position vectors
of the positive and negative ends of the member B in the
global coordinate system. The positive or negative sign
in Equation (3-4) is to be chosen according as the member
B is positively or negatively incident to the joint J.
The branch inertia tensor Ib with respect to the
local coordinate axes through b is determined next. Note
that these axes are coincident with the principal axes

of inertia for the branch B. Thus

. 0 0
I,= (0 ¢ 0 (3-5)
o o
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where
c, = "o (y* + 2% ax ay az
= 9% (Iy + Iz) (3-6a)
Cc, =1J5Ip (z2 + az x2) dx dy dz

+ Iy (a2 xz) dx

a2L3
= S5 (p A _+ ) +2L 1 (3-6b)

c, =1IlIlip (y2 + a2 x2) dx dy dz
+ Iu(a2 x2) dx

2.3
a L pL _
T (p A, + u) + = Iy (3-6¢)

The tensor Ib is now transferred to the joint

mass center j by using the theorem of parallel axes. This

leads to
IJ = Ib
-;2 + 22 -X. Y -X z-H
J J 373 33
2 2
+ m z. + x. -y. 2. (3-7)
B s I Y5 %3
x2 + 2
symmetric J gﬂ
where (xj, yj, zj\ = Wj is the position vector of the joint

mass center j in the local coordinate system through b.
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This vector is determined by

w. = r°t (W. - W

5 ;7 W) (3-8)

in which r is the rotation matrix (3x3) from the joint J
coordinate system to the member B coordinate system. The
definition of the matrix r is given by Equation (1-5).
Each branch inertia tensor Ij at the joint mass
center j is now rotated to the global coordinate system
through j. They are then summed to obtain the joint

inertia tensor Jj at the joint mass center j. Thus
J.=Y r I.r (3-9)

Finally, the mass matrix for the joint J with
respect to the global coordinate system through j is

assembled as

M. = (3-10)

where I is the third order identity matrix.

3.1.2 Eqguation of Motion for
a Joint Rigid Body

Considering again the joint J and its mass center
j in Figure 3-1, the equation of motion for the corre-
sponding rigid body in the global coordinate system

through j is expressed as

Mj X. =P (3-11)
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in which ij is the acceleration (vector) of j and Pj is
the resultant of all non-inertial forces acting on j.

This equation can be rewritten as

_lt.. _
Mj (TjJ) XJ = TjJ PJ (3-12)

in which TjJ is the force transformation matrix from the

global coordinate system through J to the same coordinate

system through j. Premultiplying Equation (3-12) by

T;i' it follows that

My X o= P (3-13)
in which

M. = TS M, ('r'.l)t (3-14)

J jJ 3 jJ

The inverse of M. may be referred to as the "re-

J

sponsiveness" matrix. This inverse is denoted by Zy and

given by
-1 -1
I/m_. - HJ. H -HJ.
L /My J J
VA = M_ = _ _ (3_15)
J J leH le
_ |

where H, as defined by Equation (1-2), contains the

coordinates (Xj,Yj, Zj) of the joint mass center j in

the global coordinate system through J (see Figure 3-1).

The force P, acting on the joint J, in the global

J
coordinate system through J, may be written as
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P.=P_ + P (3-16)

where PI is the internal force (vector) acting on J and
14

PE is the external load (vector). The force PI’ in terms
of the member end forces in their corresponding member
coordinate systems, is given by

(P) (N)

PI=-ZRFP-ZRFN (3-17)

in which the first summation is to be taken for all the
members positively incident to the joint J, the second
summation is to be taken for all the members with negative
incidence, and R is the rotation matrix (6x6) from the
appropriate member coordinate system to the joint J co-
ordinate system.

Summarizing, the acceleration of the joint J is

given by
X.=2_ (P, + P_) (3-18)

in which all the quantities are in the global coordinate
system through J. The responsiveness matrix ZJ and the
force PI are determined by Equations (3-15) and (3-17),
respectively. The external load PE is to be prescribed.

If the foundation is subjected to translational
motion (e.g., due to earthquakes or blasts), it can readily

be shown (see Reference 13) that the equation of motion

becomes

X. =2 (PI + PE) - X (3-19)
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where iJ is now the acceleration of the joint J relative
to the foundation and io is the acceleration of the founda-

tion.

3.2 Dynamic Solution

The numerical method used to obtain the dynamic
solution will be outlined in this section. First, the
criterion by which a member cross-section is ruled to be
yielding is described. It will be shown next that
the force vector acting on a yield hinge is prevented from
proceeding beyond the yield surface. Finally the steps
of the solution procedure are described and the choice of
time increment is discussed.

3.2.1 Insertion of a Plastic
Ainge at a Cross-Section

It is presumed that a given cross-section is
initially elastic. This presumption is expressed analyti-

cally by
®(F) < 1 (3-20)

in which ¢ is the yield function and F is the force
acting on the cross-section. As the frame is deformed,
the force F may become so large that although Inequality

(3-20) holds, yet

®(F + AF) > 1 (3-21)
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where AF is the force increment (say, corresponding to a
small time increment) computed under the assumption that
the cross-section is elastic.

If the above conditions hold, the cross-section is
ruled to be yielding. A yield hinge is inserted at the
cross-section and the force increment AF is recomputed
accordingly, i.e., with the newly inserted plastic hinge
taken into consideration.

3.2.2 Force Containment at
a Plastic Hinge

Let it be assumed that for some cross-section, a
situation as represented by Inequalities (3-20) and (3-21)
prevails, i.e., the cross-section is yielding. With ref-

(1)

erence to Figure 3-2, the unit normal V is determined

by

(1) _ Yo (F) (3-22)

Vo T ey

where V is the gradient operator. This unit normal is
used to compute the force increment AF. If the force

F + AF does not reach the exterior of the yield surface,
i.e., ¢(F + AF) < 1, then the force increment AF is ruled
to be acceptable and no further action is taken. On the
other hand, if ¢(F + AF) > 1, then "force containment"
becomes necessary since it is physically impossible for

the force F + AF to proceed beyond the yield surface.
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To this end, the unit normal V(2) is determined by
V(2) - VO (F + AF)
Vo (F + AF)]| (13-23)

The force increment AF is then recomputed by using an

"average" normal V as given by
v=(1-v) viD+y y(@ (3-24)

where y is a scalar parameter to be chosen between zero
and unity. The choice of a value for y is discussed next.
Starting from zero, y is advanced by a finite value
up to the point where ¢(F + AF) is no longer greatern than
one. Limited numerical experience on the problems pre-
sented in the next chapter indicated that numerical results
were quite insensitive to the value of y. Thus, y was taken
to be either zero or one; in other words, if the unit nor-

(1) (2)

mal Vv was not acceptable, the unit normal V was.

3.2.3 Numerical Procedure
of Solution

Assume that the state of the frame is known at a
given time t. This includes: the joint displacements,
velocities, and accelerations; the member end forces;
and the list of the existing plastic hinges. It is then
desired to determine the state of the frame at the time
t, = t, + At where At is a finite time increment. To

2 1
this end, the following procedure is employed:



(1)

(2)

(3)

(4)

(5)
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Compute the incremental displacement of each free
joint from some numerical integration formula such

as
AX = [i(tl) + 0.5 i(tl) At] At (3-25)

Compute the incremental displacement of each member
end by rotating the proper joint displacement incre-
ment from the global coordinate system to the appro-
priate local coordinate system.

If the solution is to be geometrically linear, com-
pute the incremental distortion of each member from
Equation (2-33).

If the solution is to be geometrically nonlinear,
compute the stiffness matrices for each member
(elastic or elastoplastic) from Equations (A-1-8),
(A-1-9), and (A-1-10). 1In this computation, the
unknown axial force of a member at the time t2 is
approximated by the known axial force of that mem-
ber at the time tl‘ It will be shown, in the first
example of the next chapter, that elimination of
such an approximation would not affect the numerical
results significantly.

Compute the incremental member end forces from
Equations (2-52) or (2-32) depending on whether

the solution is to be geometrically linear or
nonlinear. Then, increment the member end forces

by the values just obtained.
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(7)
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(10)
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Compute the yield-function value for each member
end force if the corresponding cross-section is
elastic (not yielding), by using such equations as
Equations (2-2) or (2-3). If this value happens
to be greater than unity, insert a plastic hinge
at the cross-cross being considered and return to
Step (5). (See Subsection 3.2.1.)

Remove every plastic hinge at which an elastic
return is detected. At this point, it seems
logical to return to Step (5) in order to recom-
pute the member end forces if necessary. But, to
avoid the possibility of removing and inserting a
particular plastic hinge repeatedly within a single
time-step, the return to Step (5) is neglected.
Compute the internal force acting on each free
joint from Equations (3-17).

Compute the acceleration of each free joint from
Equations (3-18) or (3-19) depending on the
absense or presence of the foundation motion.

Use such a numerical integration formula as

+ 0.5 [Sé(tl) + X(t,)] at (3-26)

to determine the velocity of each free joint.
Increment the free-joint displacements by the

values obtained in Step (1).
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The state of the frame is thus completely determined at

the time tz. The same procedure is repeated for advancing

from the time t2 to the time t2 + At, and so on.

3.2.4 Choice of Time Increment

It is well known that a numerical procedure, as
applied to a linearly elastic structure, is stable if the
time increment used is smaller than a certain fraction
(say, 1/m) of the smallest period of natural vibration.

This remark has to be ignored in the following discussion
since the system being considered is not linearly elastic.
However, knowledge of the smallest period is useful to the
extent that it serves as a guide in choosing the time incre-
ment. In general, the problem of determining the smallest
period is quite time-consuming. This problem becomes more
complicated by the fact that the smallest period will change
whenever a plastic hinge is inserted or removed. It would
thus appear more appropriate that the smallest period be
roughly estimated rather than rigorously computed. For

this purpose, the following procedure suggested by Iverson
(4) is employed.

The total mass of each free joint and the largest
axial stiffness of all the members incident to this joint

are used to compute

free-joint mass
axial stiffness

T = 27
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The smallest value of T for all free joints is taken as an
estimate for the smallest period. This estimate is then
used as an initial try for the time increment. In subse-
quent tries, increases or decreases are made if necessary.
In general, the largest tolerable time increment (that
yields a stable solution) should be used. Such a time
increment is normally so small that the corresponding
numerical results would not be significantly different

from those using smaller time increments.

3.3 Computer Program

A general computer program is prepared to imple-
ment the formulation presented. The program is written
in FORTRAN IV for the use on the CDC 3600 digital computer
at Michigan State University. It is described and also

listed in Appendix III.
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CHAPTER IV

APPLICATIONS

This chapter presents three numerical examples
taken from Reference 13. These examples, on one hand,
illustrate the applications of the analysis developed in
the preceding chapters. On the other hand, they provide
a basis for comparing the present numerical results with
those reported in the above-mentioned reference. The
first example is a cantilever beam subjected to a pulse
type of loading with a short duration. The second one is
a three-dimensional rigid frame with a triangular plan-
form subjected to a step-function type of loading. The
final example is a two-story two-bay building frame sub-
jected to the 1940 El1l Centro earthquake.

In the examples presented, forces are expressed
in kips, and moments in kip-inches. The material is
assumed to be structural steel having the following prop-
erties: density = 490 pounds per cubic inch, Young's
modulus = 30,000 ksi, shear modulus = 12,000 ksi, normal
yield stress = 33 ksi, and shear yield stress = 18 ksi.
Linear displacements are expressed in inches, and rota-

tional displacements in radians.

47
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4.1 Cantilever Beam

Figure 4-1 shows a cantilever beam which has a
uniform cross-section of 12WF53. The web of the beam is
vertical (in the X-Y plane). The fully plastic stress
resultants are 504, 275, 275 kips, and 73, 997, 2706 kip-
inches, respectively. Each of these values represents
the corresponding carrying capacity of the beam cross-
section if the cross-section is subjected to that one
stress resultant only. The external loads, in addition
to the weight of the beam, are given in the figure. Note
that the dynamic disturbance is supplied by a pulse type
of loading with a duration of 0.0l seconds. The graphs
to be presented in this example correspond to the elliptic
yield function, a value of o = 0.5, and a time increment
of 0.0005 seconds.

To compare the results in Reference 13 with the
present ones, the tip displacement of the beam in the 2
direction is plotted versus time in Figure 4-2. Either
graph in this figure corresponds to a value of B = 0.0625.
It is clearly seen that a good agreement exists between
the graph in the above-mentioned reference and the one
furnished by the present formulation (geometrically linear).

It is now of interest to study the axial force
effects on the response of the beam in both geometrically

linear and nonlinear cases. To this end, the
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maximum absolute value of the tip displacements in the X

and 7 directions are plotted against the axial load (static,

compressive) in Figure 4-3. Both graphs furnished by the

geometrically linear formulation correspond to a value of

B = 0. These two graphs are nearly straight while the

graphs provided by the geometrically nonlinear formulation
are highly nonlinear, particularly, where the axial load

approaches 200 kips. If the axial load exceeds 200 kips

(say, by 50 kips or more) the numerical results correspond-

ing to the latter formulation indicate that the beam would

collapse. It is to be noted that the axial load of 200

kips is equal to 40% of the axial carrying capacity (504
kips) of the beam cross-section and 26% of the Euler load

(771 kips, for the cantilever case, of course) of the beam.

The numerical results based on the geometrically

linear formulation (not presented here) indicated that
the beam would collapse with an axial load between 400 and

500 kips. These loads are considerably larger than the

200 kip load indicated by the geometrically nonlinear

formulation. Thus, it may be concluded that when members

~arry substantial axial loads, the geometrically nonlinear

ormulation, which is certainly more accurate, should be

sed.
To study the time-displacement response of the
the tip displacement in the axial (X) direction is

am,
Both graphs plotted

_.otted wversus time in Figure 4-4.

3




50

correspond to an axial load of -30 kips as shown in Figure

In addition, the graph provided by the geometrically

4'1-
This

linear formulation corresponds to a value of 8 = 0.

graph exhibits a permanent set of -0.002 inches which is

It also shows that there is no B

entirely due to yielding.
This

apparent physical vibration in the axial direction.
can be explained by noting that the axial shortening

effects do not enter the geometrically linear formulation.

(The high-frequency oscillations appearing in the above-
mentioned graph are probably due to imperfections of the -
numerical integration technique employed in the solution

procedure.) The graph furnished by the geometrically

nonlinear formulation shows a much larger permanent set

of -0.010 inches. This is partly due to the force inter-

action effects (-0.002 inches) and partly due to the axial

shortening effects considered in the geometrically non-

linear formulation.
The period of axial vibration predicted by the

geometrically nonlinear formulation is roughly 0.078
This period can be measured directly from the

seconds.
It is of some

relevant graph presented in Figure 4-4.
interest to compare this period with the one approximated

i L]
)% 21nfﬁBL7EAx where 2mB is the mass of the beam

\ccoxrding to the data chosen for the beam, the latter

eriod is calculated to be 0.087 seconds. This period

\grees fairly well with the one mentioned earlier.
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This comparison would thus mean that the beam appears to
respond in the axial direction like a single-degree-of-
freedom system if the geometrically nonlinear formulation
is used.

It is recalled that in obtaining geometrically
nonlinear solutions, the axial force in a given time-
step, is approximated by the one obtained at the end of
the previous time-step. The question may be raised that
how much this approximation affects the accuracy of the
resulting solutions.

To consider such effects, a geometrically non-
linear solution of the beam was obtained without using
the above-mentioned approximation. This was accomplished
by performing iteration on the axial force within each
time-step. An axial load of 200 kips in compression was
applied as a part of the static loading in order to create
a more critical situation. The numerical results so ob-
tained (not shown here) did not indicate any noticeable
jifference from those obtained with the approximation.
"or example, the resulting displacements differed by less
-han 3% in the axial direction and 2% in the transverse
lirections. It is thus concluded that the performance
f iteration on the axial force would not significantly
ffect the numerical results. The advantage of using the

pproximation, of course, lies in a significant saving of

omputer time.
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4.2 Triangular Frame

The frame to be considered as a second example is
the one shown in Figure 4-5. The horizontal members
(girders) and the vertical members (columns) are fabricated
from 12WF53 and 12WF40 sections, respectively. The webs
of the girders are vertical. The webs of the columns lie
in the vertical planes containing the bisectors of the
triangular planform. The external loads, in addition to
the weight of the girders, are shown in the figure. A
step-function type of dynamic loading is applied. The
value of o employed is the same as the one used in the
preceding example, that is, 0.5.

For the purpose of comparing the results in Refer-
ence 13 with the present ones, the displacement in the Z
direction of the joint 1 is plotted versus time in Figures
4-6 and 4-7. These two figures correspond to the elliptic
and parabolic yield functions, respectively. The value
of B used in both cases is 0.125.

From Figure 4-6, it is seen that for the elliptic
yield function, a reasonably good agreement exists between
the two graphs. For the parabolic yield function, the two
graphs shown in Figure 4-7 are also quite similar. As far
as the displacement magnitudes are concerned, they differ
by approximately 7%.

In order to compare the geometrically linear and

nonlinear responses, the displacement of the joint 1 in
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the 2 direction is plotted against time in Figure 4-8.

The graphs presented in this figure correspond to the
elliptic yield function. 1In addition, the graph furnished
by the geometrically linear formulation corresponds to a
value of 8 = 0 and a time increment of 0.001 seconds.

For the time increment just mentioned, the geometrically
nonlinear response turned out to be unstable. The largest
time increment for which the geometrically nonlinear
response became stable was 0.00005 seconds, i.e., 1/20
times 0.001 seconds.

It is seen that, the geometrically nonlinear
solution indicated a larger response than that given by
the geometrically linear solution. It should be remem-
bered, however, that the axial loads in this case are
rather moderate. As seen from the precéding example on
the cantilever beam, if the axial loads were sufficiently

large, the difference between the two solutions would be

much more drastic.

4.3 Building Frame

As a final example, a two-story two-bay building
frame, as shown in Figure 4-9, is considered. The member
) (girder) of the frame has a 12WF53 cross-section. The
>ther girders and the columns are made from 8WF40 and 8WF1l7
sections, respectively. The webs of the columns are

yarallel to the south-north direction while the webs of

he girders are vertical.

>
e EIRTS
e
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The static loading, in addition to the weight of
the girders, consists of a load of 1.50 kips per foot on
the member 9 and a load of 0.75 kips per foot on the rest
of the girders. The mass of these loads is lumped at
the relevant joints in the same manner as the mass of
the members themselves. The dynamic loading is supplied
by subjecting the foundation of the frame to all three
components of the 1940 E1l Centro earthquake. The sketches
to be given in this example correspond to the elliptic
yield function, a time increment of 0.0008 seconds, and

0.5.

a value of a

Figure 4-10 shows a plan view of the distorted
shape of the frame as predicted by the geometrically
linear formulation. The solution corresponds to a value
of B = 0. In Figure 4-11 are shown similar results ob-
tained from a solution with the geometrically nonlinear
formulation. The distortions in both figures are based
on the member plastic displacements recorded at the end
of two seconds of the ground motion. It is seen that the
two distortions, suffered by the frame and computed by
the two formulations, are comparable as far as the general
appearance is concerned. However, as expected, the dis-
-ortion magnitudes given by the geometrically nonlinear

formulation are greater than those of the linear version.

f’s
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4.4 Computation Time

In concluding the present chapter, it is instructive

to consider the computation time for the method given in

Reference 13 and that developed in the present work. To

this end, for the three examples presented, the time incre-

ment, execution time, and real time interval of the several

solutions are listed in Table 4-1. (In all cases, the com-

puter execution time refers to the CDC 3600 digital com-

puter at Michigan State University.) It is seen from this

table that the execution time for the method presented in

Reference 13 depends on the value of B, whereas for the

present method (geometrically linear), they do not. It

is also seen that the present method requires considerably

less computation time. This is perhaps the most signifi-

cant improvement of the present work over that reported

in Reference 13.
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CHAPTER V
SUMMARY AND CONCLUSIONS

In this study, a matrix formulation has been pre-

sented for the dynamic analysis of space frames. In the

analysis, the effects of both geometric and material non-
linearities have been taken into account. A computer
program has been prepared for the implementation of the
analysis. Numerical results of three problems were ob-
tained in order to demonstrate the validity and practicality

of the formulation. These problems were: a cantilever

beam subjected to a pulse type of loading; a six-member
space frame subjected to a step-function type of loading;
and a two-bay two-story building frame subjected to the

1940 E1 Centro earthquake.

Comparative data with and without the effects of

geometric nonlinearities taken into consideration were

shown in the form of graphs. Based on these graphs the

following observations were found to be noteworthy:
(1) The geometrically nonlinear formulation developed

in this work is obviously applicable to geometri-

cally linear problems. Good agreements were found

to exist between the numerical results obtained in

56



(2)

(3)
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such applications and those reported in Reference

13 in which a different method was used. This may

be construed as an evidence for the validity of

the present analysis.

Plastic displacements as predicted by the geometri-

cally nonlinear formulation were generally larger

than those resulting from the geometrically linear

version. But, when axial loads were small, the

influence of geometric nonlinearities on the

numerical results presented herein did not seem

significant. However, as axial loads increased,

the influence rapidly grew. For the cantilever

beam problem, the beam would collapse with an

axial load equal to approximately 26% of the Euler

load. This axial load is practically equal to

only one half of the magnitude corresponding to

a geometrically linear solution.

The numerical results of the cantilever beam problem
based on using the axial force of the previous time-
step, for the calculation of the member stiffness

matrices, differed only insignificantly from those

resulting from the more accurate approach of iterat-

ing on the axial force. The advantage of not per-

forming any iteration lies, of course, in a con-

siderable saving of computer time.
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Natural extensions of this work may include the
incorporation of more accurate yield surface equations in
the computer program, and an investigation into the possi-
bility of reducing the number of degrees of freedom in
order to facilitate applications to even larger structural

systems such as high-rise building frames.
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Table 4-1 Comparison of Computer Time between Reference 13
and Present Work

It

Computer . ' "Real Time"
Execution Time Tl?ﬁ égg;igznt of Solution
in Seconds in Seconds
Cantilever Beam
Reference 13 (B=1/8) 11 0.0004 0.06
Reference 13 (R=3/32) 14 0.0004 0.06
Reference 13 (BR=1/16) 170 0.0004 0.06
Present Work 4 0.0005 0.08
Triangular Frame
Reference 13 (B=1/8) 153 0.0005 0.4
Present Work 23 0.001 0.5
Building Frame
Reference 13 (B=1/8) 998 0.0005 2.0

’resent Work 315 0.0008 2.0
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Figure 2-2 Free-Body of a Differential Element
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Figure 2-3 Geometrical Interpretation of Flow Law
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Yield Surface ¢= 1
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igure 3-2 Treatment of Force Vector during Yielding
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Figure 4-3 Effects of Axial Load
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Figure 4-6 Response of Triangular Frame

(Elliptic Yield Function)
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APPENDIX I
STIFFNESS MATRICES

In this appendix, the elastic stiffness matrices

are expanded, and the geometric stiffness matrix is de-

rived.

A.l.1 Elastic Stiffness Matrices

The terms employed in the elastic stiffness matrices

SPP' etc., are first defined. The matrices themselves are

expanded next. The expanded form of the matrix Fe is also

given.

] =Y, 2

k =y, 2 (a-1-1)

j # k

i FNXLZ 0.5

. = =g (A-l_z)
5 i ET,
C. = .

3 cos ¢J

(a-1-3)

S. = sin ¢.

J ]
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=3
]
=3

(A-1-4)

(A-1-5)

(p.. and p, are the member chord rotations in the x-z and

4
x-y planes, respectively.)

F. = [EAx(6y+62), P, F

(A-1-6)

' py pr' o0, 0, O]t (A-1-7)

G Nx
EAxg
T
, ETz _ —r
2h,, 73 h __§
Y_ L N 1 Yz
EI EI
2h ——§ -h
- z2 2z
Spp L L
GJ
L
EI
h —X
zx L
symmetric h EIz
yxX L

SoenfTN T
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-EAx
7
_ EIz N EIz
¥z 3 yz 12
EI EI
=2h,, L§ “h,z LE
SPN = N N _GJ o
N L
EI EI
hzz L* hzy L
_ _ i 7l
_ EIz EIz 3
z L
B Yz 2 | vy T |
(A-1-9)
EAx | ]
L ! §
* ot R R
EIz | EIz
hyy 3 e
% T
X EI % EI
|
ithz L§ ! ho2 L E
I T T
EI
l Y
"-“L**' ! hzx L
i ! EI,
symmetric l | hyx_f_
| i ]
(A-1-10)

A.l.2 Geometric Stiffness Matrix

To arrive at the geometric stiffness matrix sG
used in this study, the incremental rotations due to

flexure are neglected, that is,
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Aw = A
y - “Py

(A-1-11)

AU.)Z = Apz

The incremental chord rotations Apy and Apz are constant
along their corresponding member. The approximation men-
tioned above is consistent with neglecting the change in
the elastic stiffness matrices SPP' etc., when forming the

increments.

Consider now the matrix Fe produced in the previous

section. Its increment is given by

AFG = [EAx (Aéy + Adz),

FNx A%'+ Ps AFNx'

FPx Ap + py AFPx'
t
in which
_ 1 L
AGy =1 6 w, sz dx
Ap L du
= 2
T 0 dx
= Py Apz
p
2 (A-1-13a)

1
[}

"l
=
=]

8.

1
>
o
<v

P



and similarl

AS =
z

and also,

AFpy

and

AFNx

It is now ea

into
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Y

L"ko

EAx
= I (Aqu - dug)

- EA_ (AS _ + A8 )
X vy z

EA

= = -
T L (Aqu AuNx)
EAx
+ T (AuPy - AuNy) pz
EAx
- —L—- (AuPz - AuNz) Dy (A-l-14a)
= -AFPx (A-1-14Db)

sy to show that the increment AFG can be cast

(A-1-16)

(AuPz - AuNz) (A-1-13b)

- AU.) (A-1-15)






where

K

symmetric
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Py
pZ + FNx
A EAx

(A-1-17)

TSR .u—-'




APPENDIX II

INCREMENTAL FORCE-DISPLACEMENT RELATIONS

FOR A GEOMETRICALLY MEMBER

WITH END RELEASES

Assume that a geometrically nonlinear member PN,

as shown in Figure 2-1, has a total of R releases at its

negative end. Corresponding to the Ith release, assume

a column matrix V. defined by

I

v; = [0, 0,0, 1, 0, 0]t

(A-2-1)

in which the only nonzero element is a "1l" corresponding

to the released force component (at the negative end of

the member). For instance, the matrix VI shown above

corresponds to a released torsional moment.

The negative-end displacement increment AU

be decomposed into an elastic part AUS and a part AU§

due to the releases being considered.

e _ _ anE
AUN = AUN AUN

The increment Au; may be written as

87

Thus

can

(A-2-2)

(A-2-3)

b4
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in which bI is a scalar factor which gives the magnitude
of the displacement increment at the Ith release. It is

now convenient to define a 6xR matrix G by
V.1 (A-2-4)

If the factors bI (I=1, ..., R) are assembled into a

column matrix B, Equation (A-2-3) reduces to

AU;; = GB (A-2-5)

Substitution of Equation (A-2-5) into Equation (A-2-2)

furnishes

e = - - -
Aug = AU, -GB (A-2-6)

The latter equation is now introduced into the incremental
force-displacement relations given by Equations (2-17).

This leads to

AFP = Kyp AUP + KPN (AUN-GB) (A-2-7a)
S - -9
AFN = KPN AUP + KNN (AUN GB) (A-2-7b)

The condition that the negative-end force component
increment in the direction of any release I is zero is

expressed by

V. AF, = 0 (A-2-8)
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Substituting Equation (A-2-7b) into Equation (A-2-8) and

considering all the releases, it follows that

t t t _
Vi Koy Aug + VL Koy (AUN—GB) =0
I=1, ..., R (A-2-9)

These equations can be combined into the following single

equation:
t t t _ — -
G KPN AUP + G KNN (AUN GB) =0 (A-2-10)
from which
_ t t t -2-
B=EG KPN AUP + E G KNN AUN (A-2-11)
where
_ t -1 -0
E = (G KNN G) (a-2-12)

Finally, substituting Equation (A-2-11) back into Equations
(A-2-7), the following incremental force-displacement re-

lations are obtained:

AF, = (Ko - Kpy G E G° kD) Ay
+ (K. - K.. GEGYK_.) AU
PN PN NN N
(A-2-13)
et t Ut
AFy = (Kgy - Ky G E GT Kp) AU,
+ (K. -K.. GE GE K__) AU
NN~ Kun NN N




S IEESNT
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The extension to the case where the positive end
of the member has also releases is straightforward and

thus omitted.

-




APPENDIX III
COMPUTER PROGRAM

For the sake of completeness, the computer program
written for the present study is outlined in this appendix.

The routines which constitute the program are briefly

described. The important identifiers used in the program

are defined; and finally, a listing of the program is
presented.

A.3.1 Description of Routines

The computer program developed consists of a main

routine called DYNAMIC and four subroutines named IN-

VERSE, RMATRIX, FMATRIX, and SMATRIX.

The first sub-
routine INVERSE, taken from the M.S.U. computer laboratory,
is used to invert square matrices as needed in the program.
It is the only subroutine written in COMPASS (CDC 3600
machine language); therefore, its listing will be omitted.

The second subroutine RMATRIX is used to compute the

responsiveness matrix for a given joint.

The third subroutine FMATRIX has two versions.
One of the two corresponds to the geometrically linear
formulation (of a discrete model as described in Section

2.3) while the other is concerned with the geometrically

91
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nonlinear formulation. The linear version is used to

compute the stiffness matrix for a given member. Note

that the eight nonzero elements of the latter matrix are

the only ones which are actually computed. The non-

linear version of the subroutine is used to compute cer-

tain factors (a total of eight) that appears in the elements }~4

of the elastic stiffness matrices for a given member.

These factors are independent of the axial force. The

effects of the latter force are considered in the sub-

e

routine SMATRIX.

Analogous to the subroutine FMATRIX, the fourth

subroutine SMATRIX has also two versions. Both linear and

nonlinear versions of this subroutine are used to perform
the same task, namely, to compute the member end forces.

They are also capable of inserting and/or removing plastic

hinges when necessary. Each version of this subroutine

has in turn two versions depending on the (type of) yield

function to be used. In the listing, to be presented

shortly, the linear version of the subroutine SMATRIX
corresponds to the parabolic yield function while the

nonlinear version corresponds to the elliptic yield func-

tion.

In the main routine DYNAMIC, the initial static

solution is first read in as a part of the input. This

solution is conveniently obtained by using the program

STATIC written by Wen and Iverson (14). The rest of the
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input is read in next and immediately printed out. The

identifiers are then initialized as necessary. In the

following portion, the output of the program is monitored

for printing and plotting. If the integration time exceeds

the time limit specified, the program stops. The incre-

mental joint displacements are computed next. The rest

of the program is concerned with computing: the joint

forces due to the member end forces, the ground accelera-

tion if applicable, and the joint accelerations and veloci-

ties. The control is then sent back to the portion where

the output is monitored.

A.3.2 Definition of
Important Identifiers

The important identifiers used in each routine are

defined below in alphabetical order. Any identifier which

appears in more than one routine but maintains the same

meaning is defined only once.

PROGRAM DYNAMIC

ACC(1,J) Ith component of joint J acceleration

ALPHA = q

AMPLIFY = amplification factor times acceleration
of gravity

AREAX (M) = cross-sectional area of member M

AREAY (M) =

effective shear area of member M in y

direction
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AREAZ (M) = effective shear area of member M in

z direction

BETA = B

COMP (I ,M) = projection of member M on Ith global
axis

DATA A(I,J) = Ith component of foundation acceleration

in Jth reading

DATA T(I,J) time corresponding to DATA A(I,J)

DDIS(I,J) = increment of DIS(I,J)

DEADM (M) = uniformly distributed mass per unit

length of member M

DENSITY = density of material

DIS(I,J) = Ith component of joint J displacement
DPLT = time interval for plotting

DPRT = time interval for printing

DT = time increment

E = modulus of elasticity

FNN (I ,M) = Ith component of force on negative end

of member M

FORCE (I,J) = Ith component of force on joint J
exerted by incident members

FPP (I ,M) = Ith component of force on positive end
of member M

G = modulus of shear

GLINEAR = true, if geometrically linear response

desired; false, otherwise






IXX (M)

IYY (M)

127 (M)

JFREE

JN (M)

JOINTS

JP (M)

LENGTH (M)

MEMBER (I ,J)

MEMBERS

MLINEAR

NMEM (J)
PEXT(I,J)

QUAKE

QTIME

RESPON (I ,J,K)

95

torsional constant for member M
cross-section

moment of inertia about y axis for
member M cross-section

moment of inertia about z axis for
member M cross-section

number of free joints

number, identifying negative joint of
member M

number of joints

number, identifying positive joint of
member M

length of member M

number, identifying Ith incident member
on joint J; it is signed according to
incidence

number of members

true, if material nonlinearity effects
ignored; false, otherwise

number of memebers incident on joint J
Ith component of dynamic load on joint J
true, if earthquake applied; false,
otherwise

time lag

element in Ith row and Jth column of

joint K responsiveness matrix




RM(I,J ,M) =

ROT (1) =

ROT(2)

SLIMIT(I M)

STLOAD(I,J)

T (K)

TIME =
TLIMIT =
VEL(I,J) =
X0 ACC(I) =
X0 DIS(I) =

X0 VEL(I) =
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element in Ith row and Jth column of
rotation matrix (3x3) associated with
member M

cosf, in which 6 = angle measured clock-
wise from east-west axis to global X axis
sin6 (see above for definition of 6)

Ith fully plastic stress resultant for
member M cross-section

Ith component of static load on joint J
Kth component of foundation acceleration
time

time limit

Ith component of joint J velocity

Ith component of foundation acceleration
Ith component of foundation displacement

Ith component of foundation velocity

SUBROUTINE SMATRIX

(linear version)

BB (1)

BB (2) =

CHI (1)

plastic-flow constant corresponding to:
either section x = BL, or section x =
(1 -B)L if section x = BL not yielding
plastic-flow constant corresponding to
section x = (1 - B)L if section x = BL
yielding also

yield-function value for force on

section x = RL

‘t‘ﬂ-..- Eaeia - . "
s




CHTI (2)

DV(I)

FP (I)

GG(I1I,J)

ITERATE

LOOP

PDISP (I ,M)

PHI(1,M)

PHI (2 ,M)

PLASTIC(1,M)

PLASTIC(2,M)

S(I,M)

SS(1,J)

vV(I,l)
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yield-function value for force on section
x=(1-8)L

Ith component of member distortion

Ith component of positive-end force
element in Ith row and Jth column of
matrix defined by Equation (2-37)
false, initially; true, if member end
force not acceptable

identifier to prevent endless looping
Ith component of plastic distortion of
member M

CHI(l), if section x = BL of member M
not yielding; constant, otherwise
CHI(2), if section x = (1 - B)LL, of
member M not yielding; constant, other-
wise

true, if section x = BL of member M
yielding; false, otherwise

true, if section x = (1 - B)L of
member M yielding; false, otherwise

Ith stiffness element for member M
element in Ith row and Jth column of
member stiffness matrix

Ith component of yield surface normal
corresponding to: either section x = gL,
or section x = (1 - B)L if section x =

BL not yielding




v(I,2)

YIELDED(1,M)

SUBROUTINE SMATRIX
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Ith component of yield surface normal
corresponding to section x = (1 - B)L
if section x = BL yielding also

false, before first yielding occurs in

(nonlinear version)

BB (J)

CHI (J)

DUN (I)

DUP (I)

ENDN

ENDP

ENDS

FN(I)

GP(1,J)

plastic-flow constant; J = 1 corresponds

to positive-end cross-section, J = 2 A
corresponds to negative-end cross-section
yield-function value; J = 1 corresponds
to positive-end force, J = 2 corresponds
to negative-end force

Ith component of negative-end displace-
ment increment

Ith component of positive-end displacement
increment

true, if only negative-end section yield-
ing; false, otherwise

true, if only positive-end section yield-
ing; false, otherwise

true, if both end sections yielding;
false, otherwise

Ith component of negative-end force
element in Ith row and Jth column of

matrix defined by Equations (2-26)

member M; true, afterwards L

Lppreime.

e







GN(I,J)

P

PDISN (I, M)

PDISP (I,M)

RHO2 , RHO3

S(I,M)

SNN (I,J)

SPN(I,J)

SPP(I,J)

VN (I)

VP (I)

YIELDED(1,M)
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element in Ith row and Jth column of
matrix defined by Equations (2-26)
stiffness factors

axial force

Ith component of negative-end plastic
displacement of member M

Ith component of positive-end plastic
displacement of member M

py and i respectively

Ith common factor of elements of elastic
stiffness matrices for member M
element in Ith row and Jth column of
direct stiffness matrix, referred to
negative end

element in Ith row and Jth column of
cross stiffness matrix,referred to
positive end

element in Ith row and Jth column of
direct stiffness matrix, referred to
positive end

Ith componenent of yield surface normal
corresponding to negative-end section
Ith component of yield surface normal
corresponding to positive-end section
false, before first yielding occurs in
positive-end section of member M; true,

afterwards




100

YIELDED(2,M) = false, before first yielding occurs in
negative-end section of member M; true,

afterwards

SUBROUTINE RMATRIX

BIM(K,L) = element in Kth row and Lth column of
branch inertia matrix

JIM(K,L) = element in Kth row and Lth column of
joint inertia matrix

MMASS (I) = mass of branch I

ux, Uy, UZ = coordinates of joint mass center with
respect to local coordinate system
through branch mass center

WX, WY, W2 = coordinates of joint mass center with

respect to joint coordinate system

-

K e
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A.3.,3 Listing of Program

PROGRAM DYNAMIC

LOGICAL QUAKEs GLINEARs MLINEARs GNONLIN

DIMENSION ACC(6¢S50)¢ VEL(6+50)e PEXTI6+450) s FORCE(6+50)
DIMENSION DATA T(3.800)s DATA A(3+800)¢ ROT(2)e T(3)
DIMENSION XO ACC(3)e XO VEL(3)e XO DIS(3)e INDEX(3)
DATA (XO DIS = 3(0))e (XO VFL = 3(0N))

DATA (XO ACC = 3(0))se (INDEX = 3(1))

CNHMMON RESPON(6¢6+¢50)

COMMON/ TIME/ TIMF, DT
COMMON/ STIFF/ S(R«1NN)e B(2+100)
COMMON/ PLASTIC/ PLASTIC(2+4100) $ LOGICAL PLASTIC
COMMON/ YIELDFD/ YIELDED(2+4100) $ LOGICAL YIELDFD
COMMON/ DIS/ DIS(6¢8N)e DDIS(6450) o
1 PDISP(6+10N) s PDISN(6+1N0D)
C
C INDENTIFIERS WHOSE VALUES TO BE READ IN
C FROM INITIAL STATIC SOLUTION
C
COMMON/ TYPE/ DENSITYs Es G
COMMON/ <S17E/ MFMBRFRSs JOINTS, JFRFF
COMMON/ ARFA/ ARFAX(1NDN)e ARFAY(10N)s ARFAZ(100) .,
1 IXXC10NY)Ye TYY(IND)y 1Z7C(10NY & RFAL IXXe IVYYs 177
COMMON/ DFADM/ DFANM(10N)
COMMON/ COMP/ COMP(34,100)
COMMON/ SLIMIT/ SLIMIT(6K410N)
COMMON/ LENGTH/ LENGTH(100) $ REAL LENGTH
COMMON/ FORCE/ FPP(6+4¢100)s FNN(64100)
COMMON/ JURPJN/ JP(100)s UIUN(100)
COMMON/ RM/ RM(343,100N)
COMMON/ MFEM/ NMEM(&0) s MFMBFR(1045N)
COMMON/ STLCGCAD/ STLOAD(6K+50N)
Cmmmmm—m e e = C
C POOGRAM INPUT C
Cmmmm—m e e = C
LUN = 135
CALL SKIPFILE( LUN )
CALL SKIPFILF( LUN )
RE AD (LUN) MEMBERS s JOINTSs JUFREE. DENSITYs Es G
DO SN05 M = 1 MFMRBRERS
505 READ(LUN)Y AREAX(M)y, AREAY(M)¢ ARFAZ(M) o IXX(M)e IYY(M),
1 1ZZ(M)es DFEANM(M)es (COMP(TeM)s T1=1e3)
> (SLIMIT(IeM)s I=1e6)s LFNGTH(M)
3 (FPP(1eM)s I1=146)e (FNN(TeM)y I=1e6)
aqa JP(MYe UN(MYe ((RM(ToaJeM)e TI=10e3)e J=143)
DO S15 U = 1¢JOINTS
515 RF AD (LUN)Y NMEM(J)e (MEMRER(TsJ)e I=141Nn),

—

(STLOAD(1eJ)s I=146)

B

Y ]
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READ 531+ QUAKF s QTIMEs AMPL IFY
READ 531+ GLINFARs BFTAs DPRTe DPLT
READ 5§31+ MLINEAR, ALPHA, DTIME, TLIMIT
531 FORMAT(L1Ns3FE1NeSesa0X)
IF{ QUAKE ) READ(LUN) ROTe XO ACCes DATA Tos DATA A
PRINT S37¢« QUAKEs QT IMF s AMPLIFY,
1 CLINEARs RETAs DPRTs DPLT

2 MLINEARs ALPHAs DTIME, TLIMIT
537 FORMAT (#1QUAKF =#_2% QTIME=%F7,4% AMPL IFY=%F7,2/ r
I¥OGLINEAR=%¥L 2% RBFTA=#F7.4% DPRT=#F8,5% DPLT=#F8.5/ ;df

PAOMLINEAR=XL2% ALPHA=#F5,2% DTIMF=%#FR,5% TLIMIT=%#F8,5)

0
Zz
-
>
-
—
N
>
-4
2
Z
O
'

TIME = 0 &« DT = DTIME
PRTIME = PLTIME ==0e&%DTIME
GNONL IN = oNOTGL INEAR

DO 640 M = | «MFMBERS

B(1eM) = BETAXL_ENGTH(M)
B(2eM) = LENGTH(M) —~ Bl M)

)
|
|
!
|
|
|
!
|
|
]
|
|
l
|

!
|
|
|
@}
{!wk

3

PLASTIC(1eM) = PLASTIC(24+M) = FALSFe
YIELDED(14M) = YIFLDED(P M) = oFALGF.
CALL FMATRIX( M )
DO 640 I = 146
PDISP(I«M) = PDISN(TIM) = N

640 SLIMIT(IeM) = 1¢0/SLIMIT(I M)

C

C EXTERNAL DYNAMIC LOADS AT TIME = 0

(o}

DO 670 U = 1+JFREE % DO 670 I = 1.6
670 PEXT(IsJ) = O :

C
C JOINT ACCee¢ VELes AND DIiSe AT TIME = N
C

DO 680 U = 1+JOINTE & DO 6RN | = 1 6
683N DIS(1esJ) = N

DO 690 JU = 1 +JFRFFE

CALL RMATRIX( JUs ALPHA )

DO 690 1 = 146

ACC(TIeJ) = VEL(IsJ)Y) = O

DO 68S K = 146

6R5 ACCI(I D) ACC(T1eJ) + RESPON(TsKsJ)¥PEXT(K )
IFC I oLTe 4 ) ACC(I4J) = ACC(IsJ) = XO ACC(I)

690 CONT INUF

C PROGRPAM OUTPUT C
Cmmrmm e e e —————C
LUN = 25
WRITE (LUN«200S) JUFRFF
2000 IF( TIME (LTe PRTIME ) GO TO 2n13n
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PRTIME = PRTIME + DPRT

RTIMF = TIMFF(4)
PRINT 2001s TIME, RPTIME
FORMAT(#1DYNAMIC VARIABLFS AT TIME =%#F845¢75X

2001
1 *ELAPSED TIME =%=3PF7.2)
IF( QUAKE ) PRINT 2002+ XO DISs XO VELs XO ACC
2002 FORMAT(*OGROUND MOT JON*30X%X# 1 SX¥Y*1SXRZ*//
1 18X#D ISPLACFMENT#8X3F 1648/
2 1BX¥VELOCITY#12X3F 168/ L
3 1AX*ACCFLFRAT ION*¥AX3IF 1648) -
PRINT 2007
2NN FORMAT (#-FORCF* AX*S|¥14X*QD%]14X%Q3I# 14X
1 HCARTAXRCSER 1 AXRSHH 14XHS] | ¥ ] IXNS ] O*)
PRINT 200484 (Ms (FPP(1eM)s I=146)
1 FNN(&SM)e FNN(H6sM) e M=1 ¢ MFMRFRS)
2004 FORMAT(/14+8F16.8) L.
2006 FORMAT( 14.6F16e8)
c
PRINT 2006
2006 FORMAT(#-<DISPLACEMENT*)
PRINT 2007+ (Js (DIS(IeJ)e I=146)e J=14JFREF)
2007 FORMAT(/144+6F1668)
c
IF( GLINFAR ) PORINT 2017
IF( GNONLIN ) PRINT 2013
2012 FORMAT(*=~PLASTIC NISTORT ION%*)
2013 FORMAT(%*=PLASTIC DISPLACFMENT*/)
DO 2016 M = 1 +MEMBFRS
L ==-M
IF( YIELDED(14M) ) PRINT 2004+ Ms (PDISP(IsM)s I=146)
IF( YIELDED(2sM) ) PRINT 2005¢ Ls (PDISN(IeM)s 1=146)
2016 CONTINUE
c
2N30 IF( TIME +LTe PLTIMF ) GO TO 20an
PLTIME = PLTIMF + DPLT
WRITE(LUNI2032) TIMEs ((DIS(1eU)e I=146)s J=14+JIFRFF)
2032 FORMAT(FB.6¢ 6F12R/(8BX 6F1268))
2040 IF( TIME GEe TLIMIT ) RETURN
g g g S s
C INCREMENTAL FREE-JOINT DISPLACEMENTS C
Cmmmm e e ————————— ———————— —————————C
= 1sJFREE $ DO 1001 I = 146

DO 1001 J

1001 DDIS(1+sJ) = ( VEL(IsJ) + 0DeS¥ACC(I4J)*DT ) *DT

TIME = TIMF + DT
C-——-—————-—- —————————————————————————————————— C
C FRFE-JOINT FORCES DUF TO MFMe FND FORCES C
S S —————————————— c

ML INEAR, GL INFAR )

CALL SMATRIX( BETA
DO 1506 J = 1+JFREF

DO 1501 1 = 146
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RM( 141 MYXFPP (1 M)

1801 FORCF(l4J) = O
N = NMEM(J)
DO 1505 L = 1N
M = MEMBFR(L +J)
IFC M «oLTe O ) GO TO 1503
c
C POSITIVE INCIDENCF
c
DN 1502 1 = 147
FORCF(14J) = FORCF (T 4J) -

1

2
1502 FORCFE(I43¢J) = FORCE(1+3,

1

2
Gnh ToO 1505
C
C NFGATIVF INCIDFNCF
c
1503 M ==M
DO 1804 1 = 143
FORCF(14J) = FORCF(14sJ)

1

?
1504 FORCE(1+34J) = FORCF(I+34J) = RM(1,431eM)X¥FNN(4sM)
1 - RM(2¢1eM)RFNN(S M)
2 - RM(3s1eM)%FNN(E M)
1505 CONTINUE
1506 CONTINUE
Commrme e e c
C GROUND ACCFLFRATION C
Cmm e —————— -C
IF( OQUAKF ) 1710s 1790
1710 XTIMF = TIMF + QTIMF
DO 178N ¥ = 143
C
C INDEX(K)Y TO BE DFTERPMINFN SUCH THAT
C DATA T(Ks INDEX(K)=1) oLTe XTIME oLEe DATA T(Ke INDFEX(K))
C
1720 IF( XTIME JLEe DATA T(Ks INDEX(K)) ) GO TO 1730
INDEX(K) + 1

INDEX(K) =
GO TO 1720

C
(o GROUND ACC.
L INEARLY BY

IN EAST=-UP-SOUTH COORDe
TWO SUITARLF CONSFCUTIVE RFADINGS

PMID g1 M) XFPP (2 4M)
RM(3el1eMyX¥FPP(3+M)
J) = RM(1es1eM)RFPP(44M)
- RM(2¢s1aM)RFPP(5eM)
-~ RM(34s1eM)XFPP(6eM)

“ RM(1eloeM)XFNN(T1 M)
- PM(2¢1 eM)XFNNI(2 M)

- RM(3¢1MIXFNN(3 M)

SYSTEM INTFRPOLATED

C
(e
1730 T(k) = ( XTIMF = PDATA T(Ke INDFX(K)-1) )I*
1 ( DATA A(Kes INDEX(K)) - DATA A(Ke INDEX(K)=-1)
2 ( DATA T(Ks INDEX(K)) = DATA Ti(Ks INDEX(K)=1)
1750 T(K) = ( T(K) + DATA A(Ks INDEX(K)=1) )*AMPLIFY

)/
)

U L T

-
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c

C GROUND ACCe IN GLORAL COORDe SYSTFM

C
GARB = ROT(1)#T(1) + ROT(2)%#T(3)
T(3) ==ROT(2)#T(1) + ROT(1)*T(3)
T(1) = GARR

C

C GPOUND VELes ACCes AND DIS.

C

DO 1760 K
X0 VFL(K)
X0 ACC(Kk)
1760 XN DIS(Kk)

143 ‘d%

XO VEL(K) + DeS*( XO ACC(KY) + T(K) )I*NT
T(K) )
X0 DIS(K) '
( XO VFL(K) + 0e5%#X0O ACC(K)*DT )»#DT

nan

+

1790 CONTINUF

a
|
|
|
|
|
|
|
I
|
|
|
|
|
|
l
|
|
]
|
I
|
|
|
l
|
|
|
|
|
]
|
|
|
1
|
l
|
|
|
|
|
|
]

e e e e e c
PO 1612 JU = 14JFRFF & DO 1612 | = 146 $ GARR = 0
DO 1611 K = 146

1611 GARB = GARB + RESPON(T+K.J)*

1 ( FORCE(KesJ) + STLOAND(KsJ) + PFEXT(KeJ) )
IF(C I oLTe 4 ) GARR = GARR = XO ACC(1)

VEL (T o) = VEL(14J) + NeSH( ACC(I,4J) + GARB )¥DT
ACC(14J) = GARR

1612 DIS(1eJ) = DIS(IeJ) + DDIS(10J)
GO TO 2000
END

SURROUTINF RMATRIX( Js ALPHA )

DIMENSION MMASS(1N)ey RIM(343)e JIM(A33) e XXX(3e7)
DIMENSION H(3e¢3)e HJ(e3)e HIH(3+3)

RFAL MMASS, UMASS, JIM

COMMON RESPON(64:64¢50)

COMMON/ TYPF/ DENSITYs Fo G

COMMON/ RM/ RM(34+:3¢100)

COMMON/ DEADM/ DEADM(100)

COMMON/ COMP/ COMP(3410N0)

COMMON/ LENGTH/ LFNGTH(100) $ REAL LENGTH
COMMON/ AREA/ ARFAX(1N0)s ARFAY(10N)s AREAZ(100) .
1 IXX(10N)Ys IYY(1ON)e 177(10N) & PFAL IXXs 1YY 177
COMMON/ MFM/ NMEM(SN) e MFMRFR(1045N)

WXe WYs AND WZ

JOINT COORNDINATFS OF JOINT MASS CFNTFR

aO0n

JMASS = VXM
N = NMEM(J)

VYM = yZM = 0O
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DO 15 I = 14N
M = MEMRER(T +J)
TEMP = SIGN( O¢PGSHALPHAs M )
M = TABS( M )
MMASS(1) = 0eS%*( DENSITY#AREAX(M)+DEADM(M) H*LENGTH(M)
VXM VXM 4+ TEMPXCOMP (] «M)¥MMASSI(T)
VYM = VYM + TEMP#COMP (2 M) *MMASS( 1)
VZM = VZM 4+ TEMP#COMP (3 4M)#MMASS( 1)
JMASS = UMASS 4+ MMASS(1)
JMASS = | (0/JIMASS
WX = VXM¥JMASS
WY = VYM#JMASS
= VZM%* JMASS

C BIM = BRANCH INERTIA MATRIXs JIM = JOINT INERTIA MATRIX

(o

20

25

an

DO 20 L = 143 $ DO 20 K = 1,43
JIMIKSL) = O

DO 30 1 = 14N

M = MEMBER(I+J)

TEMP = SIGN( 0¢25%ALPHAs M )
M = TABS( M )

VX = WX = TEMPX*COMP(1 M)
VY = WY = TEMPX*COMP(2+M)
VZ = WZ -~ TEMPX#COMP(«M)
UX = RM(1+1eMIRVYX 4+ RM(1¢2eMIRVY + RM(]143:M)XVZ
UY = RM(241eMIXVUX 4 RM(242M)¥VY 4+ RM(243:M)¥Vv2
UZ = RM(341MI¥VUX + RM(34,2eM)RVY + RM(343M)¥V2Z

BIM(142) = BIM(241) =—MMASS(1)#UX*UY

BIM(2+43) = BIM(342) ==MMASS(1)*UY*UZ

BIM(341) = BIM(143) ==MMASS(])#UZ*UX

TEMP = 0OS*DENSITY*LFENGTH(M)

BIM(3.3) TEMP®1Z22Z(M)

BIM(2+2) TEMP®#IYY(M)

BIM(141) = BIM(343) 4+ RIM(2,2)

TFMP = ALPHA®®DH#LFNGTH(M) *#%¥3%

1 ( DENSITY#ARFAX(M)+DFADM(M) ) /9640
BIM(3.3) BIM(3¢3) + MMASS(I)*( UX*X24UY*%¥2 ) + TFMP
BIM(2+.2) RBIM(24¢2) + MMASS(1)%( UZEX24UX¥%2 ) 4+ TFMP
BIM(1+1) BIM(1e1) + MMASS(I)%( UYRXD24UZHRD )
DO 30 K = 143

DO 25 L = 143

XXX (KoL) = RM(14KoM)XBIM(1,4L)

1 + RM( 24K sM)XBIM(24L)
2 + RM(3 4 aM)XRIM(3,4L)

DO 30 L = 1,3

JIMIKWL) = JIMIKIL) + XXX(Ke1)I¥RM(] oL oM)

1 4+ XXX (Ke2)HRM( 2oL oMY
2 + XXX(Ke3)HRM( 3L oM)

[}
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C JIM = INVERSE OF JOINT INFRTIA MATRIX

C

CALL INVERSE( JUIMe3e3eH(1901)91 e0FE=9¢JReH(142)sH(1+3)
o
C RESPON = JUOINT RESPONSIVENESS MATRIX
C

H(1e1) = H(2¢2) = H(3¢3) =0

H(2¢3) = WX € H(3¢2) ==WX

H{3e¢1) = WY % H(1e¢3) ==WY

H(1e2) = WZ & H(241) ==WZ

DO 80 K = 1,3

DO 40 L = 143 € HJU(KeL) = 0 $ DO 40 I = 143
40 HJU(K L) = HIIKIL) + HIKe1I®JIMIT WL

DO SO L = 1¢3 & HJH(KsL) = 0 $ DO 50 I = 1.3

S0 HUH(KoL) = HUH(K L) + HI(KoT)XH( T L)
DO 65 K = 1,43
DO 60 L = 1,3
RESPON(KilLeJ) ==HUH(K L)
RESPON(Kesl.+3¢J) = RESPON(L43¢KeJ) =—HJI (KoL)

6n RESPON{K+3:L4+34J) = JIM(KIL)
65 RESPON(KsKeJ) = RESPON(K KeJ) + JIMASS

PRINT 80+¢ Je¢ ALPHAs ((RESPON(KsL sJ)e K=1e6)e L=146)
8n FORMAT (#*ORESPONSIVENESS MATRIX FOR JOINTH*I13

1 #*# AND ALPHA =%#FSePs 6(/BXEE17.8))

END

SUBROUTINE FMATRIX( ™M )

Cmmmmmmmm e —————————- c
C GFOMETRICALLY LINEAR VERSION C
Commm e e e e e e e e c

DIMENSION X(3)s H(3)e FLEX(8¢3)s FLEXIB(8)

COMMON/ AREA/ ARFAX(100)s AREAY(100)s AREAZ(100).

1 IXX(10N)e 1YY(100)s 17Z(100) S REAL IXXe 1YY,
COMMON/ PLASTIC/ PLASTIC(24+100) & LOGICAL PLASTIC
COMMON/ STIFF/ S(8¢100)s B(24100)

COMMON/ TYPE/ DENSITYs Es G

Cc
C X(1) = LENGTH OF POSITIVE=~FEND PLASTIC PORTION
C X(2) = LENGTH OF NEGATIVE=~END PLASTIC PORTION
C X(3) = LENGTH OF ELASTIC PORTION
Cc
X1y = X(2) = O
IF( PLASTIC(1sM) ) X(1) = 2,0%B(1sM)
IF( PLASTIC(2sM) ) X(?2) = 2,0%B(1 M)
X(3) = B(1sM) + A(24M) = X(1) = X(?)
C
C H(1) = DISe. BETWEEN POS«~END YIELD HINGE AND POSe END

)

122
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C H(2) = DISe RFTWFEN NFGe-FNN YIFLD HINGF ANMD POSe FND
C
H(1) = 05%#X(1)
H(2) = R(1sM) + R(PsM) = DeEXX(2)
H(3) = X(1)
Cc
C FLEXe MATRICES FOR PLAGSTIC PORTIONS
C
DO 402 1 = 142
FLEX(7e1) = FLFX(8s1) =0
TFMP = X(1)/E
FLEX(1+41) = TEMP/AREAX (M)
FLFX(Ss1) = TEMP/IYY (M)
FLFX(6+s1) = TFMP/17Z (M)
TEMP = X(1)/G
FLEX(2+1) = TEMP/ARFAY (M)
FLFX(3es1) = TEMP/ARFAZ(M)
407 FLEX(4+1) = TEMP/IXX (M)
(of
C FLEXe MATRIX FOR FLASTIC PORTION
C
TEMP = X (3)/E
FLFX(1¢) = TFMP/ARFAX (M)
FLFX(S5+s3) = TEMP/IVYY (M)
FLFX(6+¢3) = TEMP/177Z (M)
FLFX(4+3) = X(3)/( GHIXX(M) )
FLEX(2e¢3) = X(3)%##2RFLFX(6:¢3)/3e0
FLEX(343) = X(3)%R2XFLEX(S5¢3)/3e0
FLEX(T793) ==0eS¥X(3)*¥FLFX(643)
FLEX(8e¢3) = OeSHX(3)NFLEX(S4¢3)
(o}
C FLEXe MATRICES RFFERRFD TO POSITIVE FEND
C
NO 404 J = 143
FLEX(24J) = FLFX(24))
1 4+ HUJIR( HJ)RFLFX(HBeJ) = PsOHFLFEX(T7eJ)
FLFX(3eJ) = FLFX(3+sJ)
1 4+ HJUYR( H(JIHFLEX(SeJ) 4+ PeO¥FLEX(84J)
FLEX(7eJ) = FLFX(T7sJ) = HIJI¥FLFX(6+J)
404 FLFEX(BesJ) = FLFX(B8¢J) + HIJ)XFLFX(54J)
C
C FLEXIBILITY MATRIX
Cc
DO 406 1 = 148
a06 FLFXIB(T) = FLEX(141) 4+ FLEX(142) + FLFEX(14+3)
C
C STIFFNFSS MATRIX
Cc
S(1eM) = 1N/FLEXIR(1)
S(AasM) = 10/FLEXIR(4)
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TFMP = FLFXIB(2)XFLEXIR(6) = FLEXIR(7)*%2
S(2«M) FLEXIB(6) /TFMP

S(6sM) FLEXIB(2)/TEMP

S(7«M) ==FLEXIB(7)/TFMP

TEMP = FLEXIB(3)*%FLEXIB(5) - FLEXIR(R8)*%*2
S(3«M) FLEXIR(S)/TFMP

S(S«M) FLFEXIR(3)/TFMP

S(8e«M) ==FLFXIR(R)/TFMP

FND

SUBROUTINFE FMATRIX( ™M )
e c
GEOMETRICALLY NONLINEAR VRESION C

COMMON/ TYPE/ DENSITVY. Fos G

COMMON/ STIFF/ S(R«1NN)s B(2410N)

COMMON/ AREA/ ARFAX(100)s AREAY(100)s AREAZ(100),

1 IXX(10N) s 1YY(100)e 1Z7Z(100) % REAL IXXe 1YYs 177

CONSTANT FACTORS OF FLFMFNTS OF ELASTIC STIFFNFSS MATRICFES
X = B(1+sM) 4+ R(2¢M) & TEMP = F/X

S(SsM) = TEMPXIYY(M) F S(8«sM) = S(5.M)/X
S(6+M) = TEMP*1ZZ(M) & S(T7eM) = S(6+M) /X

S{1eM) = TEMP*ARFAX(M)
S(2eM) = 2,0%S(T7TeM) /X
S(3eM) = 2.0%¥S(BM)/X
S(4eM) = GHRIXX(M)/X
FEND

SURROUTINE SMATRIX( RFTAs MLINFAR. GLINFAR )

LOGICAL ML INEARs GLINEAR. ITERATE

DIMENSION DW(6)Ye FP(B)s V(6e2)e H(?2)

DIMENSION PHI(24100)s CHI(2)s BB(2)s FE(2¢2)e XN(6H)
DIMENSION SS(6¢6)e GG(HBs2)s SG(Hs2)e XX(2e6)s YY(646)
DATA (SS = 36(0))e (GG = 12(0))

COMMON/ TIME/Z TIMFs DT

COMMON/ PM/ RM(3434100)

CAMMON/ SLIMIT/ SLIMIT(6.1NN)

COMMON/ JURPUN/ JUP(1NN)Ye UN(C1IND)

COMMON/ STIFF/ S(R«10N)e B(24s1N0)
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COMMON/
COMMON/
COMMON/
COMMON/
COMMON/
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SI17F/ MFMRFRR, JDOINTS, JFRFF

FORCE/ FPP(6+.100)e FNN(&K1NN)

LFNGTH/ LENGTH(100) $ RFAL LENGTH
PLASTIC/ PLASTIC(24+4100) $ LOGICAL PLASTIC
YIELDED/ YIELDED(2+4100) $ LOGICAL YIELDFED
DIS/ DIS(6«50)e NDDIS(6:50)

PHISP(6A«¢10NY)Y e PDISN(6+4100D)

DO A/ARO M= 1 MEMRFEDPS
T — ——————— —————— ————— c
C INCREMENTAL MFMBER DISTORTION C
Cmmmm = ———— e e e e ————— c
JPM = JP(M)
JNM = N(M)
DO 305 1 = 1.3
DW(I) = DW(I+3) = XN(I+3) = 0
DO 305 U = 13
XN(T43) = XN(I4+3) + RM(T e J.MIXDDIS(JI+34INM)
DW(I+3) = NDW(I+3)
1 + RMTsJoMIR( DNDIS(J+3¢JPMY=DNIS(JI+3+sJINM)Y )
308 DW(TI) = DW(TI) + RM(1eJoMI¥( DNIS(JeIPMI=DNIS(JIeINM) )
DW(P) = DW(2) + LFNGTH(M)*XN(6)
DW(3) = DW(3) - LFNGTH(M)XXN(X)
C e e —————— ————r
C PNOSe—FND FORCF [IF MFMRFPR M NOT VYIFLDING ¢
O e ——— —————— ———————— ~
ann N = 0
IF(C PLASTIC(14M) (ORe PLASTIC(2sM) Y% N = 1
IF( PLASTIC(1eM) oANDe PLASTIC(2:M) ) N = 2
IF(C N «GTe O ) GO TO 440
FP(1) = FPP(1eM) + S(1sM)XDWI(1])
FP(2) FPP(2eM) + S(P«MIXNW(2) + S(7«MIXDWI(6)
FP(3) = FPP(3sM) 4+ S(IMI¥DWI(3) + S(BMIXDW(S)
FP(4) = FPP(4+M) 4+ S(aM)EDW(A4)
FP(S) = FPP(S«M) 4+ SU(S MI¥NDW(S) 4+ S(R MIXNW(3)
FR(6H) = FPP(HsM) 4+ S(AMIXDWIA) + S(74MIXDW(P)
DN 420 J = 12
420 CHI(J) = ARS(FP(1))IHSLIMIT(1eM) + (FP(Q)HSLIMIT(4eM) )X%D
1 4+ ARS(FP(S) + RIJ«MIRFP(I))XSLIMIT(S M)
? 4+ ABS(FP(8) = R(JsMIXFP(2))IXSLIMIT(6sM) = 160
IF¢( MLINEAR ) BON, 70N
a4n CONT INUF
e e e c
C PNSe~FND FORCE IF MEMRED M YIELDING C
G e e e c
LOOP = 1
H(1) = B(1eM) & H(P2) = R(2«M)
IF( «eNOTPLASTIC(1sM) «ANDPDe PLASTIC(2:sM) Yy H(1) = H(2)
C
C VYIFLD SURFACF NORMA(L S
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DO S02 J = 1N

V(1eJ) = SIGN( SLIMIT(1«M)e FPP(1eM) )

V(AsJ) = 2,0¥FPP (4 MIXSLIMIT(AM)%%D

VISeJ) = SIGN( SLIMIT(S:M)e FPP(S:MY4+H(JI¥FPP(3:M) )
502 V{(6+¢J) = SIGNU SLIMIT(6«M) s FPP(6M)=HIJIXFPP(24M) )
Cc
C STIFFNESS MATRIX
C

DO 503 1 = 146
503 SS(I1e1) = S(1eM)

SS(642) = SS(246) = S(7 M)

SS(8¢3) = SS(345) = S(AM)

GG MATRIX

ns ITERATE = oFALSE.
DO S10 U = 1N
GG(1eJ) = V(1)
GG(2e¢J) ==V(6E¢JI)RH(Y)
GG(34J) = V(SeJYRH(Y)
DO 510 I = 4+6

510 GG(leJd) = V(IJ)

c

C gG = SS*GG

c
DO 511 1 = 146 DO S11 J = 1sN & SG(14J) = 0O
DO S11 K = 146

511 SG(IsJ) = SG(1eJ) + SS(I+KIRGG(KeJ)

C EE = INVERSE OF T(GG)*SS*GG T MEANS TRANSPOSE
DO 512 1 = 1sN $ DO S12 J = 1sN & FE(14J) = O
DO 512 K = 146

512 EFE(14J) = EE(14J) + GG(Ks1IRSG(KeJ)
CALL INVERSE( EEs Ne No XNC1)s 1e0F=9 Lo XN(3)s XN(S) )

Cc
C XX = FE®*T(SG) = EE®*T(GG)*T(SS)
C

n
2

DO 514 1 = 1N $ DO &14 J =2 1¢6 & XX(1eJ))
DO S14 K = 1N
514 XX(1eJd) = XX(1eJ) + FF(1sKIRSG(JsK)

C YY = SGH#XX = SS*GGRFEXT(GG)I*T(SS)

DO S18 1 = 146 € DO 518 JU = 146 & YY(]eJ) =0
DO 518 K = 1N

51R YY(1eJd) = YY(TeJ) + SGUTiK)IEXX(KJ)

c

C POSITIVF=-END FORCF

C
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DO 852 | = 1+6

FP(l) = 0O

NO 551 U = 146
551 FPII) = FP(I) 4+ ( SS(I1s)=YY(IsJ) )XDW(I)
552 FP(IY = FP(I) + FPP(1«M)

Do 553 = 142

J
CHI(J) = ABS(FP(1))#SLIMIT(1eM) + (FP(A)XSLIMIT(4.M))%%2
1 + ABS(FP(S) + B(JMIXFP(3))%SLIMIT(S.M)
2 + ABS(FP(6) — B(JMIRFP(2))#SLIMIT(6sM) = 1eN
IF( PLASTIC(JsM) (ANDe ( CHI(J) «GTe O ) ) ITERATF = «TRUF.
583 CONT INUF

YIELD SURFACF NORMALS

000

IF( I1TERATE ) S70, S9n0
570 LOOP = LOOP + 1
DO S72 J = 1N

Vi1eJ) = SIGN( SLIMIT(1M)s FP(1) )
V(4sJ) = 2.0%FP(A)XSLIMIT(4 M) R%2
V(SeJ) SIGN( SLIMIT(S5eM)es FP(S)+H(J)¥FP(3) )

S7? V(6+J) SIGN( SLIMIT(6sM)e FP(B6)=H(JIXFP(2) )
IF( LOOP +LTe 4 ) GO TO 505
PRINT 581+ TIME & CALL FXIT

581 FORMAT(#~=LOOP 1S TOO LARGE AT TIME =#F8,5)

590 CONT INUF

S —— —— -c
C TEST FOR ELASTIC RETURN C
Cammee - -c
DO 640 J = 1N
BR(J) = O

DO 620 K = 146
620 BB(J) = BB(J) + XX (JKI¥DW(K)
IF( BB(J) «GTe 0 ) GO TO 640
IF( eNOTePLASTIC(1eM) <ANDe PLASTIC(2:M) ) J =2
PLASTIC(JsM) = oFALSFe
IF( BETA «GTe 0O ) CALL FMATRIX( M )
L =2 MS$S IF( J FQe 2 ) L = =M
PRINT 624+ Le TIME,2 CHI (D)
624 FORMAT(#~-MEMBER*I3% RFTURNS TIMF=#F8.5% CHI=%#F12.8)
640 CONT INUFE
(]
C PLASTIC MFMBER DISTORTION
(]
DO 660 1 = 146
DO 660 U = 1N
660 PDISP(1sM) = PDISP(TI«M) + GG(I14JI*BR(Y)

Commmm e —— e ————————C
C TFST FOR YIELDING C
Cmmrme e —————————————

700 DO 780 U = 142



Cmmmm e -
MFMBFR FEND FNRCES

- - - —— ——— ———— - ————— — ——

8130
8anN

1

| —— . ——

Cc GFOMETRICALLY NONL INEAR VRESION,

—— T T n ————— — — ———— T o T —————— —— — — — — T —— —— ——— - — " ——— T — —— —————

IF( PLASTIC(JeM)

IF( CHI(
PLASTIC(
IF( BETA
L =MSs

PRINT 724,
FORMAT (#-MEMBFR*13% YIELDS
ann

GO TO
PHI(JeM)
CONT INUF

FPP(5«M)
FPP (6 4M)
FNN(S M)
FNN(6 «M)
DO 830 1
FPP(T M)
FNN(T M)
CONT INUF
FND

SURROUT 1

LOGICAL

DIMENSION
DIMENS ION
DIMFNSION
DIMENSION
DIMENSION
(sPP

DATA
COMMON/
COMMON/
COMMON/
COMMON/
COMMON/
COMMON/
COMMON/
COMMON/
COMMON/
COMMON/
COMMON/

DO 880 M
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)y GO TO 780
0 )y GO TO 760
YIFLNFN(1 M)
0 ) CALL FMATRIX(
oFNe 2 ) L -M
TIMF, PHI(JeM)

J) oLTo
J«M)
eGToe
IF(C J
Lo

e TRUF o
M)

TIME=%FB65% PHI=%F128)

CHI (D

D

e

FP(6K)
==FP(5)
==FP(6H)
14

FP(1)
==FP( 1)

- LFENGTH(M)*FP(3)
+ LFNGTH(M)*FP(2)

GLINFAR )

YIELD FUNCTION C

NFE SMATRIX( RFTA.

ML INF AR«
ELLIP.
ENDP+ ENDNs¢ ENDSe MLINEAR, GLINEARs ITERATE
DUP(B)Ye DUN(BE)e FP(6B)e FN(B)s VP(B)e VUN(6)
PHI(24100) ¢ CHI(?2)s BB(2)Ye FE(2+2)s XN(6)
GP(6+42)e GN(H4P)s EGPT(246)e FGNT(2:6)
GPEGPT(646)e GPFGNT(6+6) ¢ GNFGNT(6+6)
SPP(6¢6)e SPN(BKBIA)e SNN(A L)
36(0))e (SPN I6(0))Ye (SNN
TIME/ TIMEF. DT
RM/ RM(3434100)

SLIMIT/ SLIMIT(64100)

JPIN/Z UP(100)e UNC100)

STIFF/ S(84s100)s B(2e¢100)

SI1ZE/ MEMRERSs JOINTSs JFRFE
FORCE/ FPP(6+100)s FNN(64+100)
LENGTH/ LENGTH(100) $ REAL LENGTH
PLASTIC/ PLASTIC(24100) & LOGICAL PLASTIC
YIFLDFD/ YIFLDFEN(24100) & LOGICAL YIFLDFN
DIS/ DIS(A+SN)e DDISIE4S0) o
PDISP(A.10N) ¢ PDISN(B+100)

= 1 +MEMBERS

A6(0))
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e e r
C INCREMENTAL. MEMBER END DISPLACEMENTS C
e e ————————— c
JPM = P (M)
JNM = UN(M)
DO 105 1 = 143
DUP(T)Y = DUP(TI4+3) = NDUN(CTL) = DUN(I+3) = 0
DO 1085 U = 143
DUP(1) = DUP(I])Y + RM(TeJoMYXDDIS(J ¢ IPM)
DURP(T+3) = DUP(TI4+3) + RM(T1eJaMIXDNIS(U+30JPM)
DUN(T) CUN(T1) 4+ RPMUToJoMIXDNTIS(JeINM)
+

108 DUN(1+73)

C FACTORS NEFD

= DUN(14+3)

ED

RM(TeJoMIXDNIS( I+ ¢ INM)

IN MEMBER STIFFNESS MATRICEs C

e ——— —————————C

AR ) GO TO 26n

M)
S( P )

C TFMP = 1| PER CENT OF SMALLEST FULFR LOAD

NP2S5%#S (84M)
o.,Te TFMP )
RT( ARSP/Q(

GO TO 260
TeM) )

PHI3 = SQRT( ARSP/S(8.M) )

220¢ 2604 240

PHI2 ) & S2 = SIN( PHIP? )
PHI3 ) € 89 = SIN( PHI3 )

IF( GLINE
P = FNN(1
ABSP = AR
C
C
TEMP = N,
IF( ARSP
PHI?2 = Q0
IF(C P )
220 C?2 = COS¢
C3 = COSt(
GO TO 250
240 Co2 = NDesH
C3 = Des*
C2 = C? +
C3? = C3 +
250 TFMP = =S
GARB = TFE
H21 = GAR
H2?2 = GAR
H23 = H21
GARB = TF
H31

H32 GAR
H33 = H31
RHO2 = (

+
> +
RHO3 = (
+
+

2

EXP( PHI2 )
FXP( PHIA )

% S2 = EXP(=PHI? )
¢ 83 = EXP(=-PHI3 )

DeS*#S2 & S2 = C2 - S?
Ne5%#S3 & 87 = €3 - S§3
IGNC 1406 P )

1e0=C? )/PHI? - TEMP*S2 )
B#( S2 = Co%PHIZ )

MP/( 2e0%(

AX( PHI? -
+ HP?
MP/( 2s0%(

B*( PHI3 -
+ H32
RM(3e1eM)*(
RM(3e2eM) % (
RM(3e3¢M)¥#(
RM( 241 eM)*(
PM(2e2eM)*(
RM(2¢e3eM) % (

TEMP = PAFENGTH(M)

GO TO 280

]S?2 )

1¢0-C3 Y/PHI3 - TFMP#%*S3

GARB#( S3 = C3%PHI?A )

s3 )

DIS(14JPM)=DIS(14¢JINM)
NDIS(2¢JPM)=DIS (2 ¢ INM)
NIS(3+JPM)=DIS(3¢JNM)
DIS(1eJNMYI=DIS( ] ¢ JPM)
DIS(2¢INM)=NTIS(2 s JPM)
DIS(3¢JNM)=DIS(3+UPM)

)

) /LENGTH (M)

Y ZLFNGTH (M)

lué

L

™



115

P60 CONT INUF
H31 = H21 = 4¢0 % H3I2 = HP? = 20 % H33 = H23 = 640
RHO3 = PHO?2 = TEMP = 0
2830 CONT INUF
Cormmmr e e e e C
C MFMBFR STIFFNESS MATRICFS C
Commmmrre e e = C
SPP(1e1) = SNN(1es1) = S(1 M)
SPP(Asa)Y = SNN(AsA) = S(A4A«M)
SPP(S+¢5) = SNN(S548) = HU (5 M)
SPP(6¢6) = SNN(B646) = HOIXS(6 M)
SPP(1e¢2) = SPP(241) = SNN(14¢2) = SNN(241) = RHO¥SPP(141)
SPP(1+3) = SPP(341) = SNN(1e3) = SNN(341) =—RHO>2*SPP(14+1)
SPP(2+3) = SPP(342) = SNN(2+¢3) = SNN(3+¢2) = RHO3%SPP(14+3)
SPP(2¢2) = SNN(2¢2) = TEMP + RHO3#SPP(1¢2) + H23XS(2+M)
SPP(3e¢3) = SNN(3e¢3) = TEMP — RHOZ2%#SPP(1+¢3) + H33%S(3«M)
DO 310 U = 13 & DO M0 1T = 143
310 SPN(TeJ) ==SPP(1,4J)
SPN(4+4) ==-SPP(4,4)
SPN(K &) = HI32PAS((E M) & TFMP = H2ARS(74M)
SPN(AR«B) = HP2XS (A M) $ GARR = H3AXS(AM)
SPPR(246) = SPP(642) = SPN(2P¢6) = TFMP
SNN(2+46) = SNN(64?2) = SPN(A?P) ==TFMP
SPP(3¢5) = SPP(S5¢3) = SPN(3:5) =-GARB
SNN(3+5) = SNN(Ses3) = SPN(5:3) = GARB
e ————— e c
C FND FORCES IF MEMBER M NOT YIELDING C
Cmmmmr e e e e e —————————— ———-C
400 CONT INUF
ENDP = FNDN = FNDS = oFAI_SFoe
IF( PLASTIC(1eM) (ANNe PLASTIC(2:M) ) FNDS = «TRUF
IF( «NOTeFNDS o¢ANDe PLASTIC(1 M) ) ENDP = +TRUF .
IF( oNOTFNDS (ANDe PLASTIC(2esM) ) ENNN = ,TRUF,
IF( ENDS ¢ORe ENDP NRe FNDN ) GO TO 480
DO 440 1 = 146
FP(I) = FN(T1) = n
DO 420 JU = 146
FP(I) = FP(1) 4+ SPP(1«)¥DUP(J) + SPN(T+J)*DUN(J)
420 FNOT)Y = FNCOI) 4+ SPN(JU«II®NDUP(J) + SNN(T +J)¥DUNCJ)
FP(I)Y = FP(1) + FPP(1 M)
aan FNCT)Y = FN(T) 4 FNN(TeM)
CHI(1) = (FP(1)RSLIMIT(1eM))X%D 4 (FP(A)XSLIMIT(4+M) )¥%D
1 = 1e0 4+ (FP(SHIASLIMIT(S M) ) ®RD 4 (FP(R)IXSLIMIT(K«M) ) %¥D
CHI(2) = (FNO1)I®SLIMIT(1  M))XRD 4+ (FN(Q)IHSLIMIT(4eM) ) ¥*%>
1 = 10 4+ (FN(S)HSUIMIT(SMIIXRD 4+ (FN(AR)XSLIMIT(AIM) ) *%D
IF( MLINFAR ) 8nn,g 70N
4R0 CONT INUF
Commmmrre e (ot

C FND FORCES IF MEMRER M YIFLDING C
Cmm e e e e ———C
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LOOP =
(o}
(o YIFLD SURFACF NORMALS
C

IF(C FNDN ) GO TO &0y
VP(1) = FPP(l1«M)XSLIMIT(]1 e M)%%?
vP(4) FOPR(4MIXSLIMIT(Q M) %%p>
VR (S5) FPP(S«M)XSUIMIT(S M) *%D
VP(6) = FPPIH6 M)XRSLIMIT(SE M) ¥%2
IF( ENDP ) GO TO &s0S5

501 VN(1) = FNN(1eM)IXSLIMIT(] «M)R%D
VUN((4) = FNN(QG MIRSLIMIT(4 M) RRD
VN(S) = FNN(SM)IXSLIMIT(S M) %%
VN(6) = FNN(G6EsM)RSLIMIT(6E M) #%D

c

C  GPs GNs AND FF MATRICFS
c

5n& ITERATFE = JFALSF,

IF¢( FENDN ) GO TOH &1
DO 810 U = 16

GP(Js1) = SPP(JW1I*¥VP (1) + SPP(Jsa)*VP(4)
1 + SPP({J«S)XVP(5) + SPP(J:6)%*VP(6)
510 GN(Jesl1) = SPN{1eJ)XVP(1) + SPN(4a+J)*VP(4)
1 + SPN(S+J)*VP(5) + SPN(6+J)*VP(6)
EF(1e1) = GP(1e1)%VP(1) 4+ GP(4+1)Y%VP(4)
1 + GP(RW1INVP(S) + GP(6+1)Y*VP(6K)
IFC FNDP ) GO TO s213
513 DO S20 U = 146
GP(Je?) = SPN(JU1)I*VYNI(1) + SPN(Js4)*VN(4)
1 + SPN(J«S)I®VYN(S) + SPN(JHK)*¥VYN(A)
520 GN(Je?) = SNN(Js1I*¥UN(1) + SNN(Js4)*¥VYN(AQ)
1 + SNN(J«S)IHVUN(S) + SNN(J«B)YXVYN(HE)
EF(24¢2) = GN(1+2)%UN(1) + GN(A+2)%¥VUN(A)
1 + GN(S2)HVUNIS) + GN(6+2)¥VUNI(B)
IF( FNDN ) GO TO s33
EE(142) GP(1e2)%VP (1) + GPR(44+.2)%VP(4)

1 + GP(S¢2)%#VP(S) + GP(6+2)%VP(6)
EF(241) = FE(142)
CALL INVERSE( FEs 24 2¢ XN(1)s 1e0F=94 Las XN(3)4y XN(5) )

523 IF( FNDP ) EF(141) = 1e0/FF(141)
533 IFC ENDN ) FEF(2e2) = 16N/FF(242)
C

C GPFGPT = GP*EEx*T(GP) T MEANS® TRANSPOSF
C GPEGNT = GP*FF*T(GN) GNEGNT = GN¥FEXT(GN)
c

IF( ENDS ) GO TO &a4n
J=1% IF( ENDN Y U = 2
DO 535 K = 146

EGPT(JeK) = EF(JeJIXGP(KJ)
EGNT(JeK) = EF(JeJ)XGN(KJ)



nno s38 1 =
GPFGPT(14K)
GPFGNT(TeK)

1
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)

GP (1 4J)YXEGPT(JeK)
GP(IsJIXFGNT(JeK)

R

535 GNFGNT(1eK) GN(T s JIXFGNT(Je)
GO TO ssN
sS40 DO 548 K = 1 +6
EGPT(lekk) = EF(141)%GP(Kesl1) + FE(12)RGP(Ks?)
EGPT(2¢K) = EF (241 )%GP(Kes1) + FE(242)%GP(K+?)
EGNT(1eK) = EF(1+s1)%GN(Ke1) + FF(1+s2)%GN(K?)
EGNT(2¢K) = EF (241 )%GN(Ke1) + FF(242)%#GN(K2)
DO Ss45 1 = 146
GPEGPT(TeK) = GP(141)X*FGPT(1¢K) 4+ GP(1:2)¥FGPT(2+K)
GPFGNT(1eK) = GP(T41)XFGNT(1¢K) + GRIT+2)IXEGNT(2¢K)
545 GNEGNT(TsK) = GN(T41)IXEGNT(1eK) 4+ GN(1+2)%EGNT (24K
C
C FND FORCES
C
580 DO G652 1 = 146
FP(T)Y = FN(1) = 0
00 551 U = 146
FP(I) = FPII) 4+ ( SPP(1+J)=GPEGPT(1sJ) Y®¥DUP(J)
1 + ( SPN(I +J)=GPEGNT(1+sJ) )*¥DUN(J)
551 FNC(I)Y = FN(T1) + ( SPN(JsI)=GPEGNT(J«1) I¥DURP(J)
1 4+ ( SNN(I+J)=GNEGNT(TsJ) I®DUN(I)
FP(I)Y = FP(1) 4+ FPP(1«M)
562 FN(I)Y = FN(T) + FNN(T1JM)
CHI(1) = (FPU1)#SLIMIT(1 M)IXRXD 4+ (FP(Q)XASLIMIT(4 M) ) ¥RD
1 = 1e0 + (FPISHIRASLIMIT(SM))##2 4 (FP(6IXSLIMIT(6«M) ) *%D
CHI(2) = (FNO1)IRSLIMIT(] «M))%%2 4 (FN(Q)RSLIMIT(4 M) )*%D
1 = 160 4+ (FN(SHIRSL_IMIT(ESM))IHRD 4 (FN(KIRSLIMIT(6eM) ) R%D
IF( PLASTIC(1eM) oANDe (CHI(1) ¢GTe 0) ) ITERATE = .TRUE.
IF( PLASTIC(2:M) ¢ANDe (CHI(2) «GTe 0) ) ITERATE = «TRUE.
(o]
C VYIELD SURFACF NORMALS
Cc
IF( ITFRATE ) S70+ 590
570 LOOP = LLOOP + 1
IF( FNDN ) GO TO =71
VP(1) = FPI1)*SLIMIT(1 M) ¥%D
VP (&) = FP(4)%*SLIMIT(4eM) ¥%D>
VRP(S) = FPR(S)RSLIMIT(S M) *%D
VR (6) = FP(6)IXSLIMIT(6:M) *¥%D
IF( ENDP ) GO TO 877
571 VN(1) = FNOL1)Y¥SLIMIT(1 M) *%2
VN(4) = FN(Q)IXSLIMIT(4:M) %¥%D2
VN(S) = FN(S)XSLIMIT(S M) *%2
VN(6) = FN(H6IXRSLIMIT(EIM) ¥xD>
572 IF( LOOP «LTe 4 ) GO TO S05
PRINT SR1e TIMF & CALL EXIT
581 FORMAT(*=LLOOP 1S TOO LARGE AT TIMF =%#FR,5)
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590 CONT INUF
Commmmr e e e C
C TEST FOR ELASTIC RETURN C
T c
DO 640 U = 12
IF( PLASTIC(JeM) ) 610+ 640
610 RB(J) = 0O
DO 620 K = 146
620 BR(J) = BRIJ) + FGPRT(JK)*¥NDUPI(K)
IF( BB(J) ¢GTe N ) GO TO 640
PLASTIC(JUeM) = (FALSFe
L =MG& IF( J ¢FNe 2 ) L = =M
PRINT 624+ Le TIMFy CHI(J)
624 FORMAT(#=MFMBER*13% RFTURNS TIME=%#F8.5%
640 CONT INUF
C
C PLASTIC MEMBER END DISPLACEMENTS IN GLOBAL COORDe
C
IFC ENDN ) 66N« 650
650 DO 655 1 = 143
PDISP(I«M) = PDISP(1«M) +
DO 655 J = 13
655 PDISP(14+34M) = PDIGP(I+3,M) +
IF( ENDP ) 67Ns ARN
660 DO 665 |1 = 13
PDISN(T M) = PDISN(I«M) +
DO 665 J = 13
665 PDISN(I4+3+M) = PDISN(I+3:M) +
670 CONT INUE
Commmm e m ————————-— Cc
C TEST FOR YIELDING C .
Commmm e m e = C
700 DO 780 JU = 142
IF( PLASTIC(JeM) ) GO TO 780
IF( CHI(J) «LTe N GO TO 76N
YIFLDED(JsM) = PLASTIC(JeM) = (TRUF,
L =M S [F( J ENe 2 )L = =M
PRINT 724+« Lo TIMFe PHI(JUWM)
724 FORMAT (#-MEMBER#*#11% YIFLDS TIMF=%FR.5%
GO TO 400
760 PHI(JeM) = CHI(J)
780 CONT INUE
Cmmmmm e e = C
C MEMBER END FNORCES C
Commm e e e C
800 DO 830 1 = 146
FPP(1eM) = FP(1)
8130 FNN(TeM) = FN(I)
880 CONT INUE

END

+ FGNT (JsKH)*DUNI(K)

CHI=%#F12.8)

| e o ey
El

SYSTEM

RM(1eToeMyXRR(1)XVP( 1)

RM(JelT o M)XRA (1) *VP(J+3)

RM(1+TeM)*RR(2)%VNI( 1)

RM(Jesl oMy %XBR(2)#VN( J+3)

PHI=%F1728)



]

i



