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ABSTRACT 

CONSERVING AVIAN BIODIVERSITY ON MANAGED FOREST LANDSCAPES: THE 

IMPORTANCE OF PATTERN AND SCALE 

 

By 

Andrew Donald Crosby 

The shift in forest management goals over the last several decades to meet societal 

demands for more non-timber benefits has led to a move towards ecosystem-based approaches to 

management, with biodiversity conservation being a major objective. Within this context, 

maintaining the richness and diversity of bird species on working forest landscapes has 

continued to be a priority in sustainable forest management. Ecosystems are heterogeneous in 

space and time, and regional species diversity is maintained by spatial patterns of heterogeneity 

at multiple scales. Understanding how patterns of heterogeneity in forest composition and 

structure influence species diversity is crucial to sustainable forest management. However, 

despite a great deal of research on habitat relationships of forest bird species, there is little 

understanding of how patterns of heterogeneity across scales influence regional bird species 

diversity. Therefore, my research goal was to investigate the relationship of bird species diversity 

to patterns of forest composition and structure across multiple spatial scales on a managed forest 

landscape. The first chapter investigates how patterns of heterogeneity in stand-level attributes 

impact patterns of bird community diversity across multiple spatial scales. Chapter 2 

demonstrates a novel application of the conservation filters strategy to maintaining avian 

diversity on managed forests by working at 2 different operational scales. The third chapter looks 

at monitoring beta diversity in bird communities at multiple spatial scales as an alternative 

paradigm to species-level strategies for tracking changes in regional biodiversity. 



 

 

The research in these chapters draws several conclusions that are fundamental to the 

problem of maintaining regional biodiversity on managed forest landscapes. The first is that the 

relationship of environmental heterogeneity to bird community diversity changes across spatial 

scales. The second conclusion is that uncommon vegetation community types have a greater 

relative contribution to regional diversity, and the importance of specific compositional and 

structural attributes changes among types. Third, quantifying beta diversity of bird communities 

(differences among spatial units within a region) across multiple scales, using a hierarchical 

cluster sampling design, reflects environmental heterogeneity and offers an efficient and 

effective system for monitoring changes in regional biodiversity.  

The research presented in this dissertation offers an expanded and integrated view of the 

problem of maintaining biodiversity on managed forests. I have demonstrated that large-scale 

management systems must explicitly address how forest planning will impact patterns at multiple 

scales simultaneously, and maintain both homogenous and heterogeneous landscapes at the 

appropriate scales. My work offers an integrated set of guidelines for biodiversity conservation 

on managed forests that explicitly accounts for the multiple scales at which biodiversity is 

generated and maintained. I believe that this research provides ecologists, land managers, and 

planners with an improved framework for managing forests under the ecosystem management 

paradigm. 
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PROLOGUE 

 

Over the past several decades there has been a shift in the focus of natural resource 

management towards a more holistic, ecologically-based approach generally referred to as 

ecosystem management (Christensen et al., 1996; Fuhlendorf et al., 2012). Ecosystem 

management is a landscape-level approach to planning for the management of natural resources 

that emphasizes a central goal of maintaining the sustainability of the ecological system 

(Christensen et al., 1996; Haufler et al., 2002). The ecosystem management paradigm can be 

traced back to the writings of Aldo Leopold, who developed the idea of conservation as a way of 

utilizing natural resources while still maintaining the integrity of the biotic community (Leopold, 

1949; Fuhlendorf et al., 2012). Leopold viewed conservation as a scientifically-based form of 

management that preserved all of the constituent parts of the system (Leopold, 1949). Leopold’s 

view underlies one of the central goals of ecosystem management, which is the conservation of 

biological diversity.  

Ecosystem management and the conservation of biodiversity is central to the practice of 

sustainable forestry (Carey and Curtis, 1996). As such, the importance of maintaining 

biodiversity is reflected in the standards of sustainable forestry certification programs such as the 

Sustainable Forestry Initiative (SFI, 2015) and the Forest Stewardship Council (FSC, 2010). 

Regional biodiversity is driven by many ecological factors that can be affected by management 

across a range of spatial and temporal scales (Levin, 2000; Bestelmeyer et al., 2003). Therefore, 

if sustainable forestry certification standards are to be met it is vital that forest managers 

understand how ecosystems respond to management decisions across multiple scales 

(Bestelmeyer et al., 2003).  



2 

 

Ecosystems are heterogeneous in space and time, and ecosystem composition and 

structure are determined by processes occurring at multiple spatial and temporal scales (Levin, 

2000; Fuhlendorf et al., 2006). The dynamics of these processes impact the diversity and 

complexity of the ecosystem as well as the amount and distribution of resources that species 

depend on for survival (Wiens, 1976). Ecologists recognize that patterns of spatial and temporal 

heterogeneity are critical factors determining ecosystem function and sustainability, and provide 

the underlying basis for maintaining biological diversity (Christensen, 1997; Levin, 2000; 

Fuhlendorf et al., 2006). The fact that processes determining these patterns of heterogeneity 

operate at multiple scales means that diversity patterns change across scales as well (Levin, 

2000; Crist et al., 2003) which has important implications for landscape-scale conservation 

planning when biodiversity conservation is a goal. 

Biodiversity is a complex idea encompassing many aspects of the ecosystem, but 

generally refers to the variety of species and the interactions among them across all scales and 

levels of biological organization (Noss, 1990; Hooper et al., 2005). In concrete terms, changes in 

biodiversity involve changes in the distribution and abundance of organisms at any scale. These 

changes can have profound effects on ecosystem properties, functioning, and resilience, and so 

the human-induced alteration of biodiversity is of primary concern for the continuing production 

of ecosystem goods and services (Folke et al., 2004; Hooper et al., 2005). The importance of 

maintaining biodiversity to the functioning and resilience of ecosystems makes it vital to the 

sustainability of managed forests (Lindenmayer et al., 2000).  

In ecosystem management, conservation of biodiversity is usually thought of in terms of 

preventing reductions in species richness and changes in composition across a region of concern 

(Carey and Curtis, 1996). Within this context, maintaining the richness and diversity of bird 
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species on managed forest landscapes has been a continuing focus in forest conservation (Hansen 

et al., 1991; Sallabanks and Arnett, 2002; Mahon et al., 2016). Birds provide many ecologically 

and economically important functions in forested ecosystems, such as nutrient transfer, insect 

control, and seed distribution (Sekercioglu, 2006), as well as being important indicators of 

ecological conditions and ecosystem integrity (Canterbury et al., 2000; O'Connell et al., 2000). 

The distribution of bird species and communities across a forested landscape is partly determined 

by spatial patterns of forest composition and structure (Verschuyl et al., 2008; Mahon et al., 

2016), and forest management systems impact these patterns across multiple spatial and temporal 

scales (Boutin and Hebert, 2002). Therefore, forest management affects bird community 

diversity at multiple scales, which is an important aspect of sustainable forest management 

planning.  

The effect of pattern and scale on our understanding of how species diversity is 

established and maintained is a longstanding problem in ecology (Wiens, 1989; Levin, 1992; 

Levin, 2000). Whittaker (1960) first articulated the link between spatial scale and species 

diversity by defining alpha (𝛼; within-unit), beta (𝛽; among-unit), and gamma (𝛾; total) diversity 

(Gering et al., 2003). The relative contributions of these components to regional diversity can 

change at different spatial scales, reflecting differences in ecological patterns across scales (Crist 

et al., 2003). Because patterns of diversity change across scales, the way we define and measure 

species diversity, and at what spatial scales, is central to our understanding of how management 

will affect biodiversity. This means that managing forests with the objective of maintaining 

regional biodiversity (gamma diversity) requires knowledge of how species and communities 

respond to landscape patterns across multiple spatial scales; from stand-level forest conditions 

(alpha diversity) to the distribution of community types and successional stages among 
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landscapes, ownerships, and ecoregions (reflecting beta diversity across multiple spatial scales). 

Despite this need, there is little research on how patterns of forest conditions across multiple 

scales affect regional species diversity.  

My overall research goal was to investigate the response of bird community diversity to 

patterns of forest composition and structure across multiple spatial scales on a managed forest 

landscape. I estimated avian distribution and abundance and forest composition and structure 

across a range of ecosystem types present in the western Upper Peninsula of Michigan, USA. At 

the stand level, I focused on attributes of the vegetation that described forest community type and 

successional stage. At the landscape level, I focused on patterns of heterogeneity in those 

attributes. The results of my research are presented in 3 separate chapters. 

The first chapter investigates how patterns of heterogeneity in stand-level attributes 

impact patterns of bird community diversity across multiple spatial scales. The problem of 

pattern and scale pervades our understanding of ecological relationships (Wiens, 1989; Levin, 

1992), and different patterns and drivers of diversity emerge at different spatial scales (Levin, 

2000; Crist et al., 2003). Therefore, understanding the drivers of regional species diversity 

requires disentangling the effects of environmental conditions, landscape pattern, and spatial 

scale. My objective was to investigate how regional bird community diversity was impacted by 

spatial patterns of vegetation composition and structure across four spatial scales in a managed 

forest landscape. Specifically, I looked at which spatial scales had the biggest influence on 

diversity and how environmental heterogeneity within and among spatial units at different spatial 

scales affected their contribution to regional bird species diversity.  

The second chapter demonstrates a novel application of the conservation filters strategy 

to maintaining avian diversity on managed forests. The coarse filter conservation strategy 
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focuses on retaining the full range of vegetation community types on the landscape as a way to 

conserve the vast majority of species, while the mesofilter strategy seeks to maintain important 

structural features of ecosystems to increase biodiversity on managed areas (Hunter, 2005). 

Coarse filters and mesofilters are 2 of the primary strategies used by planners to aid in managing 

for biodiversity conservation (Schulte et al., 2006). However, these strategies operate at different 

spatial scales and are traditionally applied independently. In chapter 2 I proposed applying an 

integrated coarse filter-mesofilter conservation strategy to the problem of maintaining regional 

bird diversity on a managed forest landscape. This application uses the diversity contribution 

approach of Lu et al. (2007) to prioritize ecosystem types for conservation (the coarse filter 

scale) and estimate the compositional and structural attributes of forest stands that have a high 

relative contribution to regional diversity (the mesofilter scale). My objective was to evaluate a 

strategy for multi-scale management planning that would aid in the maintenance of biodiversity.   

The third chapter looks at monitoring beta diversity in bird communities as an alternative 

paradigm to species-level strategies for tracking changes in regional biodiversity. Approaches to 

biodiversity monitoring have typically been focused at the species level, with a great deal of 

controversy over which species can act as indicators of regional biodiversity (Manley et al., 

2004; Noon et al., 2012). Monitoring of beta diversity at multiple scales offers an alternative that 

focuses on how patterns of diversity change across scales, reflecting environmental changes that 

drive these patterns (Marsh and Ewers, 2013). I propose a system that focuses on species-level 

monitoring of bird communities for the estimation of beta diversity using a hierarchical sampling 

design. More specifically, I investigate the link between beta diversity and environmental 

heterogeneity and compare the abilities of different sampling designs to estimate patterns of beta 

diversity across scales. Being able to effectively monitor changes in diversity patterns across 
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scales is a key to understanding if management systems are accomplishing the objective of 

maintaining regional diversity.  

Collectively, these chapters address questions that are fundamental to the problem of 

maintaining regional biodiversity on managed forest landscapes. The research presented here 

represents a step forward in our understanding of how forest management decisions might 

impact regional bird species diversity. By improving our understanding of how forest patterns at 

multiple scales impact biodiversity, I have begun to address a critical knowledge gap for making 

management decisions under the ecosystem management paradigm.  
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CHAPTER 1 

DIFFERENTIAL IMPACTS OF LANDSCAPE PATTERN ON BIODIVERSITY 

ACROSS MULTIPLE SPATIAL SCALES 
 

ABSTRACT 

Addressing the issue of pattern and scale is critical to our understanding of the factors 

governing the maintenance of biodiversity across the landscape. I examined how patterns of bird 

species diversity changed across spatial scales in a managed northern forest landscape and 

investigated how heterogeneity affected the contribution of individual spatial units at multiple 

scales to regional diversity. I estimated bird community occupancy and abundance for individual 

sampling plots within a 4000 km2 area in the western Upper Peninsula of Michigan, USA. Using 

a hierarchical sampling design, I applied additive partitioning of species diversity at 4 nested 

spatial scales: 50-m-radius sampling plots, ecological neighborhoods (1–3 km2), management 

areas (100–1000 km2), and ecoregions (1000–3000 km2) to determine the scales most important 

for driving regional diversity. I further estimated the relative contribution of individual spatial 

units to regional diversity across scales and analyzed how within-unit environmental 

heterogeneity related to diversity contribution and bird community beta diversity. I found that 

beta diversity among plots and neighborhoods provided the largest relative contribution to 

regional diversity. Uniqueness of a sampling plot relative to mean conditions, in terms of 

vegetation structure and composition, had a significant positive correlation with diversity 

contribution. Within-neighborhood heterogeneity was positively correlated with beta diversity 

but showed no relationship to diversity contribution. Conversely, heterogeneity within 

management areas was positively correlated with diversity contribution. My results illustrate that 

the effect of landscape pattern on regional species diversity changes across scales, and that 
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variation in pattern as well as in habitat conditions is important to the maintenance of regional 

biodiversity.  

1.1 INTRODUCTION 

The problem of pattern and scale in ecology has long presented challenges to our 

understanding of how species diversity is established and maintained across the landscape 

(Wiens, 1989; Levin, 1992; Levin, 2000). The primary issue is that the patterns observed in 

ecology depend to a large degree on the scales at which they are viewed (Wiens, 1989). 

Ecosystems are heterogeneous in space and time, and patterns of heterogeneity are determined 

by processes operating at multiple spatial and temporal scales (Fuhlendorf et al., 2006). The 

dynamics of these processes determine the amount and distribution of resources that species 

depend on for survival, and so provide the underlying basis for maintaining biological diversity 

(Levin, 2000; Fuhlendorf et al., 2006). Because the processes that drive patterns operate at 

multiple scales, diversity is not distributed evenly across space or time and different patterns and 

drivers of diversity emerge at different spatial and temporal scales (Levin, 2000; Crist et al., 

2003). As a result, addressing the issue of pattern and scale is critical to our understanding of the 

factors governing the distribution of biodiversity across landscapes (Wiens, 1989; Bestelmeyer et 

al., 2003). 

Whittaker (1960) first articulated the link between spatial scale and species diversity by 

defining alpha (𝛼; within-unit), beta (𝛽; among-unit), and gamma (𝛾; total) diversity (Gering et 

al., 2003). Gamma diversity can be additively partitioned into the alpha and beta components 

(𝛼 + 𝛽 = 𝛾) so that the contributions of each can be directly compared (Lande, 1996). This 

approach treats alpha diversity as the average within-unit diversity at a given scale and beta as 

the average diversity among all units (Lu et al., 2007), and makes it possible to estimate the 
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relative contributions of alpha and beta diversity across multiple spatial scales (Fig. 1.1; Lande, 

1996; Gering et al., 2003). Beta diversity, then, represents the spatial component of diversity and 

describes the proportion of gamma diversity contributed at a given scale (Gering et al., 2003; 

Marsh and Ewers, 2013). This means that spatial scales with greater beta diversity have a greater 

contribution to overall (gamma) diversity, and so heterogeneity among units at those scales 

should be an important driver of regional diversity. However, diversity is not distributed evenly 

among units and so the contributions of individual units to total diversity at any scale are not 

equal (Wagner and Edwards, 2001; Lu et al., 2007).  

 

Figure 1.1. Diagram of additive partitioning of species diversity across multiple scales. At the 

smallest scale, 𝛼1 is the mean within-point diversity and 𝛽1 is diversity among points. Points are 

nested into landscapes, and so 𝛼2 is the mean within-landscape diversity and 𝛼1 + 𝛽1 = 𝛼2. The 

relative contribution of each scale to overall diversity is described by 𝛼1 + 𝛽1 + 𝛽2 = 𝛾. Adapted 

from Gering et al. (2003). 

 

The relative contribution of a spatial unit at a given scale to regional (gamma) diversity 

depends in part on species richness within that unit (an index of alpha diversity) and in part on 

how distinct the species composition is from other units at the same scale, which is an aspect of 

beta diversity (Lu et al., 2007). At the smallest spatial scales, marginality of a spatial unit in 

terms of habitat conditions may have a large impact on diversity contribution. Marginality refers 
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to how different the habitat conditions are relative to average conditions among all units. 

Marginal habitats are likely to support more uncommon species (Wagner and Edwards, 2001; 

Heino and Gronroos, 2014), thus making them more distinctive in terms of species composition 

(Fig. 1.2A). At larger scales, there are two potentially contradictory hypotheses about how 

patterns of heterogeneity influence regional diversity (Fig. 1.2B). On one hand, past research has 

shown that there is a positive correlation between within-unit environmental heterogeneity and 

beta diversity (Fuhlendorf et al., 2006; Astorga et al., 2014), and so more heterogeneous units 

may contribute more to regional diversity through increased niche diversity and greater overall 

species richness. On the other hand, homogeneous landscapes have been shown to support more 

specialist species (Devictor et al., 2008; Katayama et al., 2014), which may increase their 

diversity contribution through greater distinctiveness. It is also possible that the effect of 

environmental heterogeneity on diversity contribution is scale-dependent, and so different 

relationships may emerge at different scales. Therefore, understanding the drivers of regional 

species diversity (gamma diversity) requires disentangling the effects of environmental 

conditions, landscape pattern, and spatial scale. 

The goal of my research was to investigate the impacts of landscape pattern and spatial 

scale on regional biodiversity. Specifically, I investigated how regional bird community diversity 

was impacted by spatial patterns of vegetation composition and structure across four spatial 

scales in a managed forest landscape. My objectives were to examine how regional bird species 

diversity was partitioned across scales, and investigate how patterns of heterogeneity influenced 

the contributions of individual spatial units to overall diversity at multiple scales. I hypothesized 

that marginality of a spatial unit in terms of habitat conditions would be positively correlated 
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with diversity contribution. I also examined two competing hypotheses (Fig. 1.2B) about the 

effect of environmental heterogeneity on diversity contribution at 2 different spatial scales.   

 

Figure 1.2. Hypotheses about the effect of environmental conditions and heterogeneity on the 

contribution of a spatial unit to overall regional diversity, where diversity contribution is an 

additive result of species richness and distinctiveness. A: at the point level, greater distance from 

mean environmental conditions may increase distinctiveness, leading to higher diversity 

contribution. B: Competing hypotheses, (1) more heterogeneous landscapes are more diverse, 

leading to higher species richness and therefore increased contribution, and (2) homogeneous 

landscapes favor more specialist species, leading to higher distinctiveness and therefore 

increased diversity contribution.  

 

1.2 METHODS 

1.2.1. Study area and sampling design 

My study was conducted in a 4000-km2 area in the western upper peninsula of Michigan, 

USA (Fig. 1.3). This is an ecologically-diverse northern forest landscape, with variability driven 

by glacial topography, soil, and differences in deer browse and forest management across 

ownerships (Laurent et al., 2005). The region is dominated by upland northern hardwood forests, 

and also includes upland and lowland conifer, early-successional, and upland mixed forest types 
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(Millington et al., 2011). Dominant tree species include sugar maple (Acer saccharum) in the 

northern hardwood types, red pine (Pinus resinosa) and white pine (Pinus strobus) in the upland 

conifer types, northern white cedar (Thuja occidentalis) in lowland forest areas, and aspen 

(Populus spp.) and white birch (Betula papyrifera) in the early-successional areas. The majority 

of the land is state-owned or private industrial forest managed for timber production. The most 

prominent management practice is selective cutting of northern hardwoods, primarily sugar 

maple, however plantation management for pine and clear-cut management of aspen also occur 

(Millington et al., 2011).  

 

Figure 1.3. Location of the 4000 km2 study area in the western Upper Peninsula of Michigan, 

USA, where bird community and vegetation data were collected in 2001─2003.  

 

I used data on bird species and vegetation variables collected in 2001-2003 from a 

regional study of bird species in forested habitats (Laurent et al., 2005; Millington et al., 2011). 

Sample plots were selected according to what was known as the GRAIN protocol (Laurent et al., 

2005), where the landscape was gridded into ~1,000 ha sections and 2-8 plots were placed within 
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randomly selected sections. See Laurent et al. (2005) for more detail on the plot selection 

protocol. This plot selection system allowed me to impose a hierarchical study design on the data 

(Fig. 1.4). In this design, individual plots were clustered into ecological neighborhoods where 

each plot was ≤1000 m from at least one other plot. Neighborhoods were nested into 

management areas defined by the state management system or by private industrial landowners, 

and management areas were further nested into ecological subsections as defined by McNab et 

al. (2007), hereafter referred to as ecoregions.  

 

Figure 1.4. Hierarchical cluster sampling design used for estimating bird community diversity 

across four spatial scales: 50-m-radius sampling plots; ecological neighborhoods where each plot 

is ≤1000 m from at least one other plot; management areas defined by the Michigan Department 

of Natural Resources or private industrial forest owners; and ecological subsections (here 

referred to as ecoregions) defined by McNab et al. (2007) nested within the 4000 km2 study area. 

 

1.2.2. Bird community data 

To characterize bird communities, I used data from fixed-radius point counts (Ralph et 

al., 1995) collected from all sampling plots in 2001–2003. Each plot was sampled 3–4 times 



14 

 

between June 4 and July 3 (1 plot was visited twice) in either 2001, 2002, or 2003 between 

sunrise and 5 hr post-sunrise. All birds detected within a 10-min timeframe were recorded to 

species. I limited my analysis to birds that were detected within 50m of the plot center. Because 

my objective was to model resident species that could be indicative of community structure and 

habitat conditions within a plot, I excluded large raptors (families Accipitridae, Cathartidae, 

Falconidae, Strigidae), and large corvids (Corvus corax and C. brachyrhynchos), because their 

large home ranges and ubiquitous distributions make their status as residents questionable 

(Crosby et al., 2015). I also considered species that were detected at <1% of plots, as well as 

waterfowl (family Anatidae) to be incidentals and excluded them from the analysis (Crosby et 

al., 2015; Mahon et al., 2016). 

1.2.3. Forest composition and structure data 

I characterized forest composition and structure within each plot using 11 variables 

derived from measurements taken at the plots concurrent with the bird data and from remotely-

sensed elevation data. Basal area (BA; m2/ha) for trees ≥10 cm diameter at breast height (DBH) 

was measured using a 10-factor prism at 3 subplots within each plot located at the vertices of an 

equilateral triangle surrounding the plot center. The first point of the triangle was placed 15 m 

from the center at a random azimuth, and the succeeding points were 25 m from the initial point 

and 15 m from the center (Laurent, 2005). From the prism measurements I also estimated 

proportion of BA in conifers, proportion of BA in deciduous trees other than maple, and stem 

density (trees/ha) of snags ≥25 cm DBH and large trees ≥50 cm DBH (sensu McGee et al., 1999; 

Millington et al., 2011). Canopy openness was measured at each of the three subplots using a 

spherical densitometer and calculated as the average of measurements taken while facing in each 

of 4 directions (north, south, east, and west) (Comeau et al., 1998). Stem density of trees <10 cm 



15 

 

DBH was measured using 5-tree distance sampling (Lessard et al., 2002) at 9 subplots spaced on 

a 3x3 grid centered on the plot center, with subplots 16 m apart (Laurent, 2005). From this I 

calculated stems/m2 of seedlings (trees ≥25 cm tall and <1.5 m tall) and canopy recruits (trees 

≥1.5 m tall and <10 cm DBH), and the proportion of seedlings that were conifers. To 

characterize size structure of the stand, I calculated an index of diameter distribution as the 

departure from an idealized even size class distribution of 20 trees per hectare in each 5-cm size 

class, where the value was the log-transformed chi-square value measuring departure from the 

idealized distribution (Tyrrell and Crow, 1994). Finally, I indexed soil moisture in each plot 

using a modification of the topographic wetness index called the SAGA wetness index (SWI; 

Olaya and Conrad, 2009), where topography was derived from the U. S. Geological Survey 

National Elevation Dataset 1/3 arc-second 2013 maps (https://lta.cr.usgs.gov/NED; accessed 

August 21, 2016).  

1.2.4. Data analysis 

To describe patterns of bird diversity, I estimated the occupancy probability and 

abundance of each species at each plot using a multi-species occupancy-abundance model 

(Appendix A). Multi-species models have been developed recently as a way to account for 

detection probability while retaining information on rare species and thus improve estimates of 

community-level parameters such as species richness (Zipkin et al., 2010; Yamaura et al., 2016). 

Previous versions of such models have either estimated only occupancy or used global 

occupancy estimates to account for undetected species and estimated site-level occupancy as a 

derived parameter based on the assumed mathematical relationship with abundance (Wenger and 

Freeman, 2008; Yamaura et al., 2016). The model that I developed, however, treats occupancy 

and abundance as separate but related processes and estimates them individually. There are three 
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important reasons for doing this. The first is that occupancy patterns and local abundance can 

arise from separate processes operating at different scales (Wenger and Freeman, 2008), and so 

may not follow assumed mathematical relationships. The second is that it allows the model to 

account for the covariance between global occupancy and abundance as a way to improve 

estimates (Royle and Dorazio, 2009). Finally, estimating occupancy explicitly allows the model 

to take advantage of spatial correlation in occupancy in order to discriminate between plots 

(Hines et al., 2010; Mattsson et al., 2013), given that no habitat variables were used in the 

estimation process. Through this method, I modeled occupancy explicitly at each plot using the 

spatial correlation among plots within 1000 m to improve estimates (sensu Mattsson et al., 

2013). I modeled survey-specific detection probability as a linear function of standardized 

covariates for Julian day (linear and quadratic) and time as measured in minutes from sunrise 

(Zipkin et al., 2010).   

I fit the model in a Bayesian framework with programs R (Version 3.3.0) and JAGS 

(Version 4.2.0; Plummer, 2003) using the package runjags with parallel chains, with 

uninformative prior distributions for all parameters and hyperparameters. I ran 3 chains of 

300,000 iterations with a burn-in of 50,000 and a thinning ratio of 10, and assessed convergence 

using the Gelman and Rubin R-hat statistic (Brooks and Gelman, 1998). The occupancy-

abundance analysis was performed using data from all sample plots where point counts were 

done. However, for the additive partitioning and beta diversity analyses described below I 

limited the data set to plots within neighborhoods containing ≥3 plots within management areas 

containing ≥3 such neighborhoods (Anderson, 2006; Marsh and Ewers, 2013).   

To meet my first objective of examining how bird species diversity is partitioned across 

scales, I used additive diversity partitioning of species richness, Shannon diversity, and Simpson 
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diversity. Lande (1996) showed that an index of biodiversity can be additively partitioned across 

scales provided the index is strictly concave, meaning the value of the index for a pooled set of 

units is equal to or greater than the average value within those units (Gering et al., 2003). The 

overall regional diversity of an area is the sum of alpha and beta diversity when alpha is the 

average within-unit diversity and beta is diversity among units (Lande, 1996). If partitioning is 

across multiple scales, then alpha diversity at a given scale is the sum of alpha and beta diversity 

at the next lowest scale. In terms of my study, this means that 𝛼1represents the average bird 

species diversity within all plots, 𝛽1is the diversity among plots, 𝛽2 is the diversity among 

neighborhoods, 𝛽3 is diversity among management areas, and 𝛽4 is diversity among ecoregions. 

Therefore, overall bird species diversity of my study area is equal to 𝛼1 + 𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 

(sensu Gering et al., 2003). The 3 indices used in my analysis give information on different 

aspects of diversity, where richness looks at the pure effect of species and the Shannon and 

Simpson indices look at combined richness and relative abundance (Gering et al., 2003).  The 

Shannon and Simpson indices are dominance measures that differ in their sensitivity to rare 

species, where the Shannon index is weighted equally between common and rare species and the 

Simpson index is weighted towards common species (Gering et al., 2003).  I used occupancy 

estimates to calculate species richness and abundance estimates for Shannon and Simpson 

Diversity 

Lu et al. (2007) extended this additive partitioning approach to calculate the contribution 

of each spatial unit to regional diversity at each scale. They did this by decomposing diversity 

contribution into 2 separate components: within-unit diversity (𝛼𝑆(𝑘)) and distinctiveness of the 

species within the unit (𝛽𝑆(𝑘)) for the kth unit at each spatial scale so that 𝛼𝑆(𝑘) + 𝛽𝑆(𝑘) = 𝐶𝛾𝑆(𝑘) 

where 𝐶𝛾𝑆(𝑘) is the contribution of the kth unit to overall species diversity (Lu et al., 2007). 
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Because of the additive partitioning approach, ∑ 𝐶𝛾𝑆(𝑘) at each scale is equal to overall regional 

diversity. Using this approach, I estimated the contribution of each spatial unit to overall regional 

diversity across all scales used in my sampling design using occupancy estimates.  

To meet my second objective of investigating factors that make spatial units at different 

scales important contributors to biodiversity, I used multivariate dispersion analysis to estimate 

marginality of habitat conditions, environmental heterogeneity, and bird community beta 

diversity. Multivariate dispersion arranges environmental or species data in principal coordinate 

space around a group centroid, where the distance from the centroid acts as a measure of 

dissimilarity (Anderson, 2006). This allows environmental heterogeneity or beta diversity to be 

estimated as the average distance of individual units to the group centroid and provides a robust 

test for differences in beta diversity among spatial units (Anderson et al., 2006). 

To test the hypothesis that diversity contribution is positively correlated with the habitat 

marginality of a plot, I estimated multivariate dispersion among all plots and calculated 

marginality of a plot as the distance of that plot from the overall centroid. I used linear regression 

to test for a significant relationship between ln(distance to centroid) and ln(diversity 

contribution). At the neighborhood and management area levels, I used multivariate dispersion 

analysis to estimate environmental heterogeneity and bird community beta diversity within 

spatial units and test for significant differences among units. I estimated environmental 

heterogeneity using the Euclidean distance for the normalized forest composition and structure 

variables, and beta diversity of bird communities using the Bray-Curtis index for multi-species 

abundance estimates (Anderson et al., 2006). I then used linear regression to test the 

hypothesized relationships of environmental heterogeneity with beta diversity and diversity 

contribution at the neighborhood level. My data did not meet regression assumptions at the 
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management area level due to a small sample size, so I calculated the correlation coefficients 

between the variables at this level. Correlation assumes a linear relationship between the 

variables and that they are drawn from a bivariate normal distribution. Because there may be a 

relationship between within-unit sample size and the unit’s environmental heterogeneity, beta 

diversity, and diversity contribution I removed any possible effect by using residuals from 

regressions of each of the 3 estimates against the number of plots within the unit (Veech and 

Crist, 2007). I performed all analyses using program R. The multivariate dispersion analyses was 

done using the betadisper function in package vegan with type = “centroid” specified. Statistical 

significance was assessed at the 𝛼 = 0.1 level. 

1.3. RESULTS 

1.3.1. Bird community analysis 

A total of 433 sample plots were surveyed for bird species in this study, and 59 species 

met my criteria for being included in the analysis. The distribution of occupancy rates among all 

species was strongly right-skewed, ranging from 0.015─0.823 with a median of 0.182, showing 

few common species and a large number of uncommon species. Mean estimated species richness 

among all sites was 13.869 (variance = 5.306). The subset of the data that was used for the 

additive partitioning and beta diversity analyses included 232 plots nested within 36 ecological 

neighborhoods and 5 management areas. Neighborhoods ranged from 105─313 ha with a mean 

of 174 ha. Management areas ranged from 12,428─75,850 ha with a mean of 45,343 ha.  

1.3.2. Additive partitioning 

Additive partitioning of species richness indicated that the majority of diversity was 

contributed at smaller spatial scales (Fig. 1.5). The largest amount of diversity in species richness 

came from diversity among plots (𝛽1; 37%), followed by diversity among neighborhoods (𝛽2; 
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34%) and within-plot diversity (𝛼1; 23%). For both the Shannon and Simpson indices the 

majority of diversity was accounted for by within-plot diversity, although there were differences 

between the indices with the Simpson index attributing a greater percentage to diversity within 

plots (Fig. 1.5).  

 

Figure 1.5. Percentages of total bird species diversity contributed by the alpha and beta 

components across 4 spatial scales, estimated by additive diversity partitioning, for species 

richness, Shannon diversity, and Simpson diversity. The number at the top of the richness bar is 

the total number of species detected (gamma diversity).  

 

1.3.3. Heterogeneity and diversity 

There was a significant positive relationship between the marginality of habitat 

conditions within a plot and the contribution of the plot to overall regional diversity (df = 230, β 

= 0.186, P < 0.001; Fig. 1.6), although marginality explained only a small amount of the 

variability in the model (R2 = 0.07). The tests of multivariate dispersion showed significant 

differences in environmental heterogeneity among neighborhoods (df = 35, F = 2.886, P < 0.001) 

but not among management areas (df = 4, F = 1.774, P = 0.135). Bird community beta diversity, 
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on the other hand, showed significant differences in multivariate dispersion both among 

neighborhoods (df = 35, F = 2.151, P = 0.001) and among management areas (df = 4, F = 3.278, 

P = 0.012).  

 

Figure 1.6. Scatterplot and best-fit line showing the relationship between the ln distance from 

mean vegetation conditions (dispersion distance) for 50-m-radius plots in a multivariate 

dispersion analysis and the ln of the contribution of the plot to regional bird diversity. Dispersion 

distance is a measure of how marginal a plot was in terms of vegetation composition and 

structure, relative to all measured plots.  

 

As expected, there was a significant positive correlation between environmental 

heterogeneity and beta diversity within units at the neighborhood level (df = 34, β = 0.024, P  = 

0.003) and a strong correlation at the management area level (r = 0.796) (Fig 1.7). There was no 

apparent relationship between environmental heterogeneity and diversity contribution at the 

neighborhood level (df = 34, β = -0.007, P  = 0.938). However, at the management area level 

there was a moderately strong positive correlation (r = 0.668) (Fig 1.7).  
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Figure 1.7. Scatterplots with best-fit lines showing the relationship of within-unit environmental 

heterogeneity with bird community beta diversity and the contribution of a unit to regional 

diversity.  

 

1.4. DISCUSSION 

Understanding how patterns of heterogeneity interact across scales to influence regional 

species diversity is fundamental to deciphering the processes that generate and maintain 

biodiversity. My study showed that regional bird species diversity is most strongly influenced by 

beta diversity at smaller spatial scales (among sampling plots and ecological neighborhoods), 

and demonstrated the scale-dependent effects of landscape pattern on regional diversity. In 

particular, there were differential effects of spatial heterogeneity in forest structure and 
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composition at different scales, illustrating how variation in heterogeneity patterns helps to 

maintain regional diversity.  

The tests of my competing hypotheses, asking whether homogeneous or heterogeneous 

areas contribute more to regional biodiversity, seemed to show that it depends on the scale at 

which the heterogeneity is measured. This should not be considered surprising, as scale plays a 

powerful role in the patterns observed in ecology (Wiens, 1989; Levin, 1992). In my analysis, I 

did not explicitly define areas as either homogeneous or heterogeneous, but rather estimated the 

level of heterogeneity as a continuous variable using multivariate dispersion. As such, areas with 

low heterogeneity were considered more homogeneous and I tested for a correlation between 

diversity contribution and the level of heterogeneity within a spatial unit. Previous studies of the 

effects of heterogeneity on biodiversity have used different metrics, such as beta diversity 

(Fuhlendorf et al., 2006; Astorga et al., 2014), species richness (Morelli et al., 2013; Katayama et 

al., 2014), or abundance of individual species (Julliard et al., 2006; Devictor et al., 2008), and 

have tended to view diversity at only a single scale (but see Veech and Crist, 2007). To my 

knowledge, this study is the first to look at how heterogeneity affects diversity contribution 

across multiple scales, and illustrates the importance of pattern and scale in the maintenance of 

biodiversity.  

At the smallest scale used in this study, that of an individual survey plot, the relative 

marginality of a plot in terms of its habitat had a significant impact on its contribution to regional 

bird species diversity. This is consistent with the results of Wagner and Edwards (2001) who 

found that habitat specificity values (an alternative measure of diversity contribution) were 

consistently higher for the least common habitat types in an agricultural matrix. The habitat types 

used by Wagner and Edwards (2001) were discreet classifications rather than continuous 
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measures, as in our study. The conclusion, however, is the same: the more marginal the habitat 

conditions in a spatial unit, the greater it tends to contribute to regional diversity. The fact that 

marginal habitat conditions support more distinctive species is also consistent with the work of 

Heino and Gronroos (2014) on the relationship between niche position and occupancy rates of 

stream invertebrates. Heino and Gronroos (2014) found that stream invertebrates that relied on 

more marginal habitat conditions also had much lower occupancy rates, meaning that the areas 

they occupied were likely to have a more distinctive species composition. This relationship 

between occupancy rate, habitat marginality, and diversity contribution is logically intuitive but 

to my knowledge has not been examined until now.  

The explanatory power of the regression model of the relationship between habitat 

marginality and diversity contribution was low, however this is not unexpected because of the 

way diversity contribution is defined and estimated. This is because habitat marginality only 

speaks to the 𝛽𝑆(𝑘) component of diversity contribution, which describes the distinctiveness of 

species in that unit (Lu et al., 2007). The other component of diversity contribution is 𝛼𝑆(𝑘), or 

species richness within the unit. While species distinctiveness is related to habitat marginality, 

species richness of an equal-sized area may not be (Wagner and Edwards, 2001; Lu et al., 2007), 

Therefore, it is likely that a large part of the unexplained variability in this model comes from the 

species richness component of diversity contribution. 

 At intermediate scales (~1–3 km2; the ecological neighborhoods in this study), within-

unit heterogeneity had the expected positive correlation with beta diversity but seemed to have 

no effect on the contribution of a spatial unit to overall regional diversity. This means that high 

within-unit beta diversity did not necessarily equate with high diversity contribution at the 

neighborhood scale. There are two possible explanations for this. One is that there is simply no 
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relationship between within-unit environmental heterogeneity and diversity contribution at the 

neighborhood scale. On the other hand it may indicate the opposite: that both heterogeneous and 

homogenous units are important for maintaining biodiversity. This post-hoc hypothesis fits with 

my finding that beta diversity among neighborhoods had one of the highest impacts on regional 

diversity in the additive partitioning analysis. The hypothesis is also consistent with the findings 

of Julliard et al. (2006) and Devictor et al. (2008), showing that specialist and generalist species 

are spatially segregated between homogenous and heterogeneous landscapes, respectively. This 

suggests that having both homogenous and heterogeneous units at the neighborhood scale should 

have a positive impact on regional species richness. If true, this would show that among-unit 

heterogeneity in landscape pattern at certain scales may be as important as within-unit 

heterogeneity in habitat conditions. 

In contrast to the neighborhood scale, within-unit heterogeneity at the management area 

scale (~100–1000 km2) appeared to have a positive correlation with diversity contribution. While 

the lack of a statistical test due to the small sample size did not offer definitive evidence for this, 

the high correlation coefficient is noteworthy nonetheless. The fact that the relationship between 

the two patterns appears to change at different scales speaks directly to the scale-dependent 

nature of many relationships in ecology (Wiens, 1989; Levin, 1992; Levin, 2000). These results 

may represent an example of separate domains of scale, as proposed by Wiens (1989). Domains 

of scale are areas of the scale continuum along which a pattern remains constant or changes 

monotonically, bounded by sharp transitional zones between adjacent domains (Wiens, 1989). 

Such domains are defined by the scale at which the landscape changes as well as the scale at 

which species respond to the landscape (Wheatley, 2010). My results suggest that neighborhoods 
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and management areas may represent separate scale domains in terms of the effect of 

heterogeneity on bird community diversity contribution.  

The fact that I found a difference in bird community beta diversity among management 

areas, but not in environmental heterogeneity, suggests that there are environmental differences 

driving species composition among management areas unaccounted for in my analysis. My 

estimate of heterogeneity using multivariate dispersion examined heterogeneity among plot-level 

compositional and structural features, which represents only one aspect of landscape pattern. The 

spatial arrangement of these features relative to each other is likely to have an impact on 

community composition within management areas (Fahrig, 2003), and this arrangement is not 

accounted for in the multivariate dispersion analysis. Another possibility is that differences in 

climate and landform between ecoregions impacted bird community composition enough to 

create differences that were not reflected in plot-level vegetation measurements.  

Similar to Gering et al. (2003), my additive partitioning analysis reflected the differing 

influences of rare and common species on driving within-unit versus among-unit diversity. 

Specifically, the fact that the Shannon and Simpson indices were dominated by within-plot 

diversity while species richness was dominated by beta diversity suggests that common species 

are the primary drivers of alpha diversity while uncommon species drive beta diversity among 

units (Crist et al., 2003). Gering et al. (2003) and Crist et al. (2003) found similar patterns for 

beetle diversity while sampling over a much larger area with substantial differences among 

ecoregions at the largest scale. The ecological implication of this is that biodiversity is driven by 

patterns of heterogeneity that maintain common species while creating diversity in uncommon 

species among sites (Gering et al., 2003). This pattern maintains species richness as well as the 

functional roles driven largely by common species (Gering et al., 2003).  
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Variation in patterns across multiple spatial scales provides the underlying foundation for 

maintaining biological diversity by magnifying underlying patterns of environmental variability 

(Levin, 2000). Historically, however, studies of biodiversity have focused on alpha and gamma 

diversity at a single spatial scale with little research on how patterns occurring at different scales 

impact regional diversity (Marsh and Ewers, 2013). My research shows that the environmental 

patterns contributing to diversity change across scales, and that variability in patterns of 

heterogeneity is important to the maintenance of regional biodiversity.  
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CHAPTER 2 

APPLYING CONSERVATION FILTERS TO CONSERVING BIRD 

DIVERSITY ON MANAGED FORESTS 

 

ABSTRACT 

Maintaining the richness and diversity of bird species on working forest landscapes has 

long been one of the major themes in sustainable forest management. However, managers face a 

great deal of uncertainty as to the impacts of management decisions on species diversity because 

of the difficulty of accounting for all species simultaneously. This difficulty has led to the 

development of conservation strategies to be used as tools in the decision-making process. 

Among these strategies, the use of conservation filters has been prominent over the last several 

decades. I demonstrate a novel application of the conservation filter strategy to the problem of 

maintaining bird species diversity on managed forest landscapes utilizing a diversity contribution 

approach. Using data on bird community composition, I estimated the relative contributions of 

individual plots to regional bird species diversity on a 4,000 km2 area in the western Upper 

Peninsula of Michigan managed primarily for timber production. At the coarse filter level I was 

able to identify community types and areas that were priorities for conservation. At the 

mesofilter level, I described compositional and structural attributes of high value sites within 6 

different community types relative to average sites. I identified bird species that were positively 

associated with high-contribution sites as well as indicator species for high value sites within the 

community types. I found that the conservation value of a community type was inversely 

proportional to its representation on the landscape. There were differences among community 

types in the relationship between diversity contribution and forest composition and structure 

variables, but the commonality was an increase in structural complexity within high value plots. 
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There was a significant negative relationship between species overall abundance and the 

probability of being positively associated with high value sites. Managers can use this 

application of the conservation filter strategy as a planning tool in the face of uncertainty about 

how management decisions affect regional biodiversity.  

2.1 INTRODUCTION 

The shift in forest management goals over the past several decades to meet societal 

demands for more non-timber benefits, such as wildlife habitat and biodiversity conservation, 

has led to a move towards ecosystem-based approaches to management (Zollner et al., 2008). 

Ecosystem management is a landscape-level approach to planning for the management of natural 

resources that emphasizes a central goal of maintaining the sustainability of the ecological 

system (Christensen et al., 1996; Haufler et al., 2002). One of the primary ecological goals of 

ecosystem management is the maintenance of regional biodiversity, which is typically defined as 

preserving the full complement of native species and biological processes within the area of 

interest (Haufler et al., 2002). Meeting this objective in forests managed for timber production, 

however, is a complex process that requires long-term planning at multiple scales (Haufler et al., 

2002; Crous et al., 2013). A large part of the difficulty of planning for the conservation of 

multiple species across a heterogeneous landscape is that managers are often charged with 

making decisions in the face of incomplete information on how those decisions might impact 

biodiversity (Schulte et al., 2006). 

Within the ecosystem management context, maintaining the richness and diversity of bird 

species has continued to be one of the major themes in sustainable forest management (Hansen et 

al., 1991; Sallabanks and Arnett, 2002; Mahon et al., 2016). Birds provide many ecologically and 

economically important functions in forested ecosystems, such as nutrient transfer, insect 
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control, and seed distribution, as well as being important indicators of ecological conditions (e.g. 

vegetation composition and structure, landscape composition) (Canterbury et al., 2000; 

O'Connell et al., 2000; Sekercioglu, 2006). The distribution of bird species and communities 

across a forested landscape is determined by spatial patterns of forest composition and structure 

(Verschuyl et al., 2008; Mahon et al., 2016), and forest management systems impact these 

patterns across multiple spatial and temporal scales (Boutin and Hebert, 2002).  

A great deal of the literature on how forest management impacts species diversity focuses 

on forest fragmentation and species richness (e.g. O'Connell et al., 2000; Zipkin et al., 2009), or 

uses coarse-resolution cover types to predict occupancy (e.g. Schwenk and Donovan, 2011; 

Mahon et al., 2016). As a result, there is little information on how the majority of species 

respond to forest composition and structure across a range of forest community types (but see 

Cushman and McGarigal, 2004). This lack of information makes it impossible to account for 

each species individually in management planning (Noss, 1987), and leads to a great deal of 

uncertainty about how management decisions will impact regional species diversity. 

Consequently, planners and managers have developed a number of scientifically-based 

conservation strategies that can be used as tools for conservation planning in the face of this 

uncertainty (Noss, 1987; Schulte et al., 2006; Zenner et al., 2010). 
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Figure 2.1. Operational scales of the conservation filter concept. The coarse filter seeks to 

conserve most species by retaining the full range of community types within a region. The 

mesofilter increases the conservation value of community types by retaining structures and 

processes that may be overlooked at the coarse filter level. The fine filter consists of species-

level conservation efforts aimed at rare or highly specialized species that may fall through the 

higher-level filters (adapted from Zenner et al., 2010). 

 

The coarse filter–fine filter approach to conservation (Fig. 2.1) has been one of the 

primary conservation strategies in North America since being introduced by The Nature 

Conservancy (TNC) in the 1980’s (Noss, 1987; Schulte et al., 2006; Beier et al., 2015). The 

original conception of this strategy (Noss, 1987) is based on the idea that a majority of species 

can be conserved by creating a reserve network that retains the full complement of native 

community types within a region (Hunter et al., 1988). The reserve network represents a coarse 

filter, and is the most commonly-applied strategy in large-scale forest conservation planning 

(Schulte et al., 2006). Even then, a certain number of rare or endangered species fall through this 

coarse filter, and thus require specialized management practices to maintain their populations 

(Noss, 1987). This specialized management represents the fine filter, and extends to areas outside 

the coarse filter network to protect vulnerable species (Hunter, 2005). Hunter (2005) introduced 
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the complementary idea of mesofilter conservation, which requires conserving important 

structural features within managed areas outside of the coarse filter reserve network. The 

mesofilter is seen as a way of extending coarse filter efficiencies to many species that do not 

warrant fine filter treatment by maintaining features and processes that increase species richness 

of areas within the matrix. In managed forests, these strategies are traditionally applied 

independently, with coarse filters applied at the regional level to ensure that all native 

community types are represented and the mesofilter strategy applied to stand-level structural 

retention (Lindenmayer et al., 2006; Villard and Jonsson, 2009). However, explicitly combining 

2 or more of these strategies may offer advantages for conservation planning on managed forests. 

In working forest landscapes, where the majority of the land is managed for timber 

production under multiple ownerships, creating a connected reserve network representing all 

native community types may not be a realistic goal. To address this issue, Haufler et al. (1996) 

proposed an alternative approach to the coarse filter as providing adequate distribution of all 

community types across the landscape based on their historical range and variability. The ability 

to maintain desired distributions of all community types within a region, however, might not be 

possible in regions where there are multiple, fragmented ownerships with differing priorities and 

management objectives. In such a case, a modified version of this coarse filter approach might be 

more appropriate. Because some community types may have a larger impact on biodiversity, 

either because of their relative scarcity or because they support higher species richness 

(Lindenmayer and Cunningham, 2013), the coarse filter can be re-conceived as a system of 

prioritizing community types in terms of their conservation value. Similarly, mesofilter strategies 

can go beyond simple structural elements to incorporate multiple compositional and structural 

attributes that increase the conservation value of an area through increased complexity or 
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ecological distinctiveness (Crosby, chapter 1 this dissertation; Lindenmayer et al., 2006). 

Implementing a strategy that combines these modified coarse filter and mesofilter concepts 

requires a method for estimating the value of individual community types or areas.  

Lu et al. (2007) proposed a method for estimating the contribution of individual areas to 

overall regional diversity as a combination of the number of species in that area (species 

richness) and how uncommon those species are throughout the region (distinctiveness relative to 

other plots). The diversity contribution approach uses data on community composition from a 

given taxon to estimate the additive contributions of all sampled areas to regional diversity of 

that taxon (Lu et al., 2007). In practice, this approach provides a quantitative method for ranking 

specific areas according to their importance for regional diversity. Explicitly applying the 

diversity contribution approach within the context of the combined filter strategy can, therefore, 

be used as a tool for maintaining bird species diversity on working forest landscapes. 

My goal was to apply an integrated coarse filter-mesofilter conservation strategy to the 

problem of maintaining bird species diversity on a managed forest landscape. At the coarse filter 

level, my objective was to compare the conservation value of the primary community types on 

the landscape. At the mesofilter level, my objective was to investigate the compositional and 

structural features of sites with a high contribution to regional diversity relative to other sites 

within the same community type. Finally, at the species level my objective was to examine 

which species had the strongest relationship with high-contribution sites, and if any species could 

act as indicators of high-contribution sites within ecosystem types.  
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2.2 METHODS 

2.2.1. Study area and plot selection 

To investigate the use of the combined filter approach in forest management, I used data 

from a 4000-km2 area in the western upper peninsula of Michigan, USA (Fig. 2.2). This is an 

ecologically-diverse northern forest landscape, with variability driven by glacial topography, 

soil, and differences in deer browse and forest management across ownerships (Laurent et al., 

2005). The region is dominated by upland northern hardwood forests, and is interspersed with 

upland and lowland conifer, early-successional, and mixed upland forest types (Millington et al., 

2011). Dominant tree species include sugar maple (Acer saccharum) in the northern hardwood 

types, red pine (Pinus resinosa) and white pine (Pinus strobus) in the upland conifer types, 

northern white cedar (Thuja occidentalis) in lowland forest areas, and aspen (Populus spp.) and 

white birch (Betula papyrifera) in the early-successional areas. There are also small amounts of 

non-forested areas throughout the region.  

  

Figure 2.2. Study area in the western Upper Peninsula of Michigan, totaling 4000 km2, sampled 

for bird species and forest composition and structure in 2001–2003. 
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The majority of the land is state-owned or private industrial forest managed for timber 

production, and northern hardwood stands are primarily mature second-growth. The most 

prominent management practice is selective cutting of northern hardwoods, primarily for sugar 

maple, although plantation management for pine and clearcut management of aspen also occurs 

(Millington et al., 2011). I used data on bird species and vegetation variables collected in 2001-

2003 from a large-scale study of bird species in managed forests (Laurent et al., 2005; Millington 

et al., 2011). Sample plots were selected according to what was known as the GRAIN protocol 

(Laurent et al., 2005), where the landscape was gridded into ~1,000 ha sections and 2-8 plots 

were placed within randomly selected sections. 

2.2.2. Bird community and forest data 

Data on bird community composition at each plot were collected using fixed-radius point 

counts (Ralph et al., 1995). Each plot was sampled 3–4 times between June 4 and July 3 (1 plot 

was visited twice) in either 2001, 2002, or 2003. Point counts were conducted between sunrise 

and 5 hr post-sunrise, and all birds seen or heard within a 10-min period were recorded and 

assigned to distance bands of 30 m, 50 m, 100 m, and >100 m from the plot center. I limited my 

analysis to birds recorded within 50 m of the plot center to coincide with the scale at which 

vegetation data were collected. Because the purpose of my analysis was to describe bird 

community composition of resident species that would be indicative of habitat conditions within 

a plot, I considered species that were detected at <1% of plots, as well as waterfowl (family 

Anatidae), to be incidental detections and excluded them from the analysis (Crosby et al., 2015; 

Mahon et al., 2016). I also excluded large raptors (families Accipitridae, Cathartidae, 

Falconidae, Strigidae) and large corvids (Corvus corax and C. brachyrhynchos) because their 
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large home ranges and ubiquitous distributions make their status as residents difficult to verify 

(Crosby et al., 2015). 

To characterize environmental conditions within each plot I estimated 6 variables 

describing forest composition and structure derived from measurements taken at the plots 

concurrent with bird surveys. Basal area (BA; m2/ha) by species for trees ≥10 cm diameter at 

breast height (DBH) was measured using a 10 basal area factor prism at 3 subplots within each 

plot located at the vertices of an equilateral triangle surrounding the plot center. The first point of 

the triangle was placed 15 m from the center at a random azimuth, and the succeeding points 

were 25 m from the initial point and 15 m from the center (Laurent, 2005). From the prism 

measurements I estimated total BA, proportion BA in conifers, stem density (trees/ha) of snags 

≥25 cm DBH and large trees ≥50 cm DBH (sensu McGee et al., 1999; Millington et al., 2011). I 

also estimated the proportion of BA in species of trees used to describe specific community types 

(see below). Stem density of trees <10 cm DBH was measured using 5-tree distance sampling 

(Lessard et al., 2002) at 9 subplots spaced on a 3x3 grid centered on the plot center, with 

subplots 16 m apart (Laurent, 2005). From this I calculated stems/m2 of seedlings (trees ≥25 cm 

tall and <1.5 m tall). To characterize size structure of the stand, I calculated an index of diameter 

distribution as the departure from an idealized even size class distribution of 20 trees per hectare 

in each 5-cm size class. where the value was the log-transformed chi-square value measuring 

departure from the idealized distribution (Tyrrell and Crow, 1994). This metric is an index of the 

distribution of trees in different size classes within the stand, and is strongly correlated with 

stand age among northern hardwood stands in Michigan (Tyrrell and Crow, 1994). 
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2.2.3. Bird species analysis and plot-level diversity contribution 

I estimated the occupancy probability and abundance for each species at each plot using 

an integrated, multi-species occupancy-abundance model. These estimates provided plot-level 

occupancy and abundance estimates without the use of habitat variables (Appendix A). Previous 

versions of such models have either estimated only occupancy or used global occupancy 

estimates to account for undetected species and estimated plot-level occupancy as a derived 

parameter based on its assumed mathematical relationship with abundance (Wenger and 

Freeman, 2008; Yamaura et al., 2016). My model treats occupancy and abundance as separate 

but related processes, and incorporates the covariance between occupancy and abundance 

directly into the model (Royle and Dorazio, 2009). Through this method, I modeled occupancy 

explicitly at each plot using the spatial correlation among plots within 1000 m to improve 

estimates (sensu Mattsson et al., 2013). I modeled survey-specific detection probability as a 

linear function of standardized covariates for Julian day (linear and quadratic) and time as 

measured in minutes from sunrise (Zipkin et al., 2010).   

I fit the model in a Bayesian framework with programs R (Version 3.3.0) and JAGS 

(Version 4.2.0; Plummer, 2003) using the package runjags with parallel chains, with 

uninformative prior distributions for all parameters and hyperparameters. I ran three chains of 

300,000 iterations with a burn-in of 50,000 and a thinning ratio of 10, and assessed convergence 

using the Gelman and Rubin R-hat statistic (Brooks and Gelman, 1998). The occupancy-

abundance analysis was performed using data from all sample plots where point counts were 

conducted. However, for further analyses we used only the subset of plots where vegetation data 

were collected. 
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To estimate the relative contribution of each plot to overall regional bird diversity, I 

applied my estimates of occupancy probability to the method developed by Lu et al. (2007). This 

method estimates the contribution of plots to regional diversity by decomposing diversity 

contribution into 2 separate components: within-unit diversity (𝛼𝑆(𝑘)) and distinctiveness of the 

species within the unit (𝛽𝑆(𝑘)) for the kth unit so that 𝛼𝑆(𝑘) + 𝛽𝑆(𝑘) = 𝐶𝛾𝑆(𝑘), where 𝐶𝛾𝑆(𝑘) is the 

contribution of the kth unit to overall species diversity (γ; gamma diversity) (Lu et al., 2007). This 

is an additive approach, so that 𝛾 = ∑ 𝐶𝛾𝑆(𝑘), meaning that 𝐶𝛾𝑆(𝑘) represents the diversity 

contribution relative to all other plots within the sample. I then designated high-contribution 

plots as those above the third quantile in diversity contribution scores (i.e. the top 25% of plots in 

terms of diversity contribution). 

2.2.4. Coarse filter: identifying high-value community types 

To meet my first objective of estimating the relative conservation value of different 

community types, I designated each plot as one of 8 primary community types found in the 

region. These types were derived from definitions from the Michigan Department of Natural 

Resources (MDNR) in the Integrated Forest Monitoring Assessment and Prescription (IFMAP) 

protocol (Space Imaging Solutions, 2001) as: Non-forested, Northern Hardwood Association, 

Upland Conifer, Upland Mixed, Early-successional, Cedar, Lowland Conifer, and Other. Non-

forested areas were those with <25% canopy cover of trees. Northern Hardwood Association was 

defined as having a combination of maples (Acer spp.), American beech (Fagus grandifolia), 

basswood (Tilia americana), white ash (Fraxinus canadensis), cherry (Prunus spp.), and yellow 

birch (Betula alleghaniensis) >60% of the basal area. Upland conifer was defined as having a 

combination of balsam fir (Abies balsamia), European larch (Larix decidua), white spruce (Picea 

glauca), jack pine (Pinus banksiana), red pine (Pinus resinosa), white pine (Pinus strobus), and 
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eastern hemlock (Tsuga canadensis) >60% of the basal area. Upland Mixed forest contained 

between 40% and 60% conifers. Early-successional forest had >40% of the basal area in aspen 

(Populus spp.) and white birch (Betula papyrifera). Cedar consisted of >50% of the basal area in 

Northern White Cedar, and Lowland Conifer had >50% of basal area in Tamarack (Larix 

laricina) and Black Spruce (Picea glauca). Other was defined as forested areas that did not fit 

any of the other categories.  

To estimate the relative conservation value of each community type, I created an index 

from the ratio of the proportional representation of each community type among high-

contribution plots to the proportional representation among all plots: 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥𝑖 =
𝑝𝑟𝑜𝑝𝑖(𝐻𝑖𝑔ℎ)

𝑝𝑟𝑜𝑝𝑖(𝐴𝑙𝑙)
 

where “High” refers to the high-contribution plots and “All” refers to all plots, for community 

type i. If the value of the index was 1, the proportional representation of that ecosystem type 

among high-contribution plots was equal to its proportional representation among all plots, and it 

could be thought of as neutral in terms of conservation value. An index value greater than 1 

would suggest an ecosystem type with high conservation value, and vice versa.  

2.2.5. Mesofilter: attributes of high-contribution plots 

To meet my objective of identifying important compositional and structural attributes at 

the mesofilter level, I compared forest measurements between high-contribution plots and the 

remaining plots within the 6 forested community types (Northern Hardwood, Upland Conifer, 

Upland Mixed, Early Successional, Cedar, and Lowland Conifer). I did not perform formal 

statistical tests for differences in mean values because 4 of the 6 community types were 

represented by fewer than 20 plots, leading to small sample sizes for comparison and a 

subsequent inability to meet statistical assumptions. Instead I compared medians and 
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interquartile ranges between high-contribution plots and the remaining plots for the 6 measured 

variables representing stand compositional and structural attributes. I considered there to be a 

strong relationship between a variable and diversity contribution if interquartile ranges did not 

overlap between average and high-contribution plots, and a moderate correlation if at least one of 

the interquartile ranges did not overlap with the median of the other category. 

2.2.6. Bird species relationships to high-contribution plots 

To examine the species-level relationship of birds to high-contribution plots, I tested 

which species had higher abundances in high-contribution plots and examined whether any 

species could act as indicators of high-contribution plots within each ecosystem type. I tested for 

a significant difference in individual species abundances between high-contribution plots and 

average plots using a Student’s t-test with unequal variances. I also used logistic regression to 

test for a relationship between overall mean abundance among plots for each species and the 

probability of having a higher mean abundance in high-contribution plots.  

 To examine if species could be used as indicators of high-contribution plots within 

forested community types, I used indicator analysis with two-species combinations (De Cáceres 

et al., 2012). This technique allows for the possibility that the joint occurrence of ≥2 species may 

be a more reliable indicator than the target plot is a member of a discreet group, but includes 

single species in its rankings of indicator values as well (De Cáceres et al., 2012). Within each 

forested community type, I tested which species or combinations of species might act as 

indicators of high-diversity plots relative to average plots.  

 

 

 



41 

 

2.3 RESULTS 

2.3.1. Bird community composition  

A total of 433 sample plots were surveyed for bird species in this study, and 59 species 

met the criteria for being included in the analysis. There were 335 plots at which vegetation data 

were collected to be used in our diversity contribution analysis. The distribution of occupancy 

rates among these plots was strongly right-skewed, ranging from 0.007─0.894 with a median of 

0.170, showing few common species and a large number of uncommon species. Mean estimated 

species richness among all plots was 13.767 (variance = 5.081).  

2.3.2. Coarse filter: identifying high-value community types 

The coarse filter analysis found large differences among community types in terms of 

their conservation value (Fig. 2.3). The dominant ecosystem type on the landscape was Northern 

Hardwoods, representing 48% of all plots in the dataset. Besides Early-successional, no other 

ecosystem type constituted >7% of the dataset, with the least common being Cedar (2.7%) and 

Lowland Conifer (2.4%). The contribution index values for each ecosystem type were inversely 

proportional to their representation on the landscape, although this was not a constant 

relationship (Fig. 2.3). Upland Conifer, Upland Mixed, Cedar, and Non-forested all had 

contribution index values >2, which corresponded with their low occurrence rates in the dataset. 

Northern Hardwoods and Early-successional both had contribution indices of <1.  

The total number of high-contribution plots was not evenly distributed across community 

types either, however the relationship was less consistent then with the contribution index. 

Despite its low relative conservation value, Northern Hardwoods supplied the greatest number of 

high-contribution plots at 25. Early-successional, Upland Conifer, and Non-forested areas 
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supplied 10, 11, and 11 high-contribution plots, even though they represented 20.3%, 5.7%, and 

6% of the plots, respectively.  

2.3.3. Mesofilter: attributes of high-contribution plots 

The comparison of forest compositional and structural attributes between high-

contribution plots and the remaining plots showed a great deal of variation among community 

types (Table 2.1; Fig. 2.4). On the whole, high-contribution plots tended to have lower basal area 

than average, with the effect being most pronounced among Northern Hardwood, Cedar, and 

Lowland Conifer community types (Fig. 2.4). For the proportion of basal area in conifer, the 

only community type that showed a moderate difference was Northern Hardwoods, where the 

median value among average plots was 0.0 and among high-contribution plots was 0.02. 

Community types that had a strong conifer component showed moderate negative relationship, 

suggesting that greater numbers of deciduous trees had a positive effect on diversity contribution 

in these community types.  
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Figure 2.3. Comparison of conservation index values between forested community types in the 

western Upper Peninsula of Michigan relative to bird species diversity. The light gray bars 

represent the proportional representation of each community type in the dataset, pink bars 

represent their proportional representation among plots in the upper 25% of diversity 

contribution. Conservation value is represented by the green bars as the contribution index 

calculated by dividing the pink bar by the gray bar. 
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Community Type 

Total 

Count 

High-

Contribution 

Count 

Total 

Basal 

Area 

Proportion 

BA in 

Conifer 

Large 

Tree 

Density 

Snag 

Density 

Seedling 

Density 

Diameter 

Distribution 

Northern 

Hardwood 
162 26 

─ 

Moderatea 

+  

Moderate 
+ 0 + ─ 

         

Upland Conifer 19 11 ─ 
─ 

Moderate 
0 ─ 

+ 

Moderate 

+ 

Moderate 

         

Upland Mixed 15 8 ─ 
─ 

Moderate 

+ 

Moderate 
0 

+ 

Moderate 
+ 

         

Early-successional 68 10 + 0c 0 0 + ─ 

         

Cedar 9 4 
─ 

Strongb 

─ 

Moderate 

+ 

Moderate 
+ 

+ 

Moderate 
+ 

         

Lowland Conifer 8 3 
─ 

Strong 
+ 0 0 

+ 

Strong 

─ 

Strong 

Table 2.1. Total number of plots among six primary forested community types, number of plots with a high contribution to overall 

regional diversity, and the direction (+ or ─) and strength of the relationship between forest compositional and structural variables and 

diversity contributions†.  
†Based on the difference between median and interquartile range between high-contribution plots and average plots.  
aIndicates that at least one of the interquartile ranges did not overlap with the median of the other category. 
bIndicates that interquartile ranges did not overlap between high-contribution plots and average plots. 
cMedians of both categories were equal to zero. 
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Figure 2.4. Median (bars) and interquartile range values (black lines) of forest compositional 

and structural variables between plots with high relative contribution to regional bird diversity 

(the top 25%; green bars) and remaining plots (gray bars) within the same community type. 

Community types are coded as: NH = Northern Hardwood; UC = Upland Conifer; UM = Upland 

Mixed; ES = Early-successional; C = Cedar; and LC = Lowland Conifer. Basal area (BA) is 

measured in m2/ha. Large trees (≥50 cm diameter) and snags (standing dead trees ≥25 cm 

diameter) are measured in trees per hectare. Seedling density (trees ≥25 cm tall and <1.5 m tall) 

is measured in stems/m2. Diameter distribution is the ln chi2 departure from an idealized even 

distribution of 20 trees per hectare in each 5-cm size class. 

 

The density of large trees ≥50 cm DBH showed a positive relationship with diversity 

contribution among the Northern Hardwood, Upland Mixed, and Cedar ecosystem types, 

however the relationship was weak in Northern Hardwoods and only moderate in the 2 others 

(Table 2.1). These large trees were not common in any of the community types, and median 



46 

 

values were 0 in 3 of the 6 types. The upper end of the interquartile range was substantially 

higher in high-contribution plots among all community types except Lowland Conifer (Fig. 2.4). 

The density of snags ≥25 cm DBH was lower than that of large trees (Fig. 2.4), and showed 

almost no relationship with diversity contribution in any of the community types. The median 

value was 0 in all but 2 instances and interquartile ranges showed little variation between 

average and high-contribution plots in any of the community types. The only exceptions were in 

Upland conifers, where snag density was much higher among average plots, and Cedar, where 

snag density was much higher among high-contribution plots, with both relationship being weak. 

Seedling density showed a positive relationship with diversity contribution among all 

community types. The relationship with diversity contribution in Lowland Confer was 

considered strong, and all others were moderate except for Early-successional and Northern 

Hardwoods. Median values of seedling density were, on average, 1.8 times higher in high-

contribution plots and the low end of the interquartile range averaged 2.2 times higher. Finally, 

diameter distribution did not vary greatly between average and high-contribution plots, with the 

only real exception being among Lowland Conifer plots. The Lowland Conifer plots showed that 

high-contribution plots had smaller departure from the low-density, even-age-class distribution 

as measured by the chi-square value. Upland Conifer also showed a moderate effect, with high-

contribution plots showing a greater departure from the idealized distribution.
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Species   Mean Abundance 

AOU 

Code Common Name Scientific Name   

Average 

Plots 

High-

contribtion 

Plots 

ALFL Alder Flycatcher Empidonax alnorum  0.090 0.600 

AMGO American Goldfinch Spinus tristis   1.662 2.545 

AMRE American Redstart Setophaga ruticilla  0.683 1.828 

AMRO American Robin Turdus migratorius   2.139 2.220 

AMWO American Woodcock Scolopax minor   0.024 0.551 

BAOR Baltimore Oriole Icterus galbula   0.208 0.318 

BAWW Black-and-white Warbler Mniotilta varia  0.528 1.088 

BBCU Black-billed Cuckoo Coccyzus erythropthalmus   0.121 0.286 

BLWA Blackburnian Warbler Setophaga fusca  0.655 1.124 

BCCH Black-capped  Chickadee Poecile atricapillus   2.763 3.831 

BTBW Black-throated Blue Warbler Setophaga caerulescens   0.273 0.780 

BTNW Black-throated Green Warbler Setophaga virens  2.365 2.052 

BLJA Blue Jay Cyanocitta cristata   2.642 3.194 

BHVI Blue-headed Vireo Vireo solitarius  0.671 0.858 

BWWA Blue-winged Warbler Vermivora cyanoptera  0.121 0.339 

BWHA Broad-winged Hawk Buteo platypterus  0.402 0.569 

BRCR Brown Creeper Certhia americana   1.545 1.555 

BRTH Brown Thrasher Toxostoma rufum  0.132 0.427 

CEDW Cedar Waxwing Bombycilla cedrorum   1.555 2.389 

CSWA Chestnut-sided Warbler Setophaga pensylvanica  1.423 2.713 

CHSP Chipping Sparrow Spizella passerina  0.341 0.864 

COYE Common Yellowthroat Geothlypis trichas  0.203 1.255 

Table 2.2. Bird species used in diveristy contribution analysis from the western Upper Peninsula of Michigan, USA. Average plots are 

those below the third quantile of diversity cotribution scores. High-contribution plots are those above the third quantile. Species in 

bold are those that had a significanlty higher abundance in high-contribution plots (P < 0.05). 
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Table 2.2 (cont’d) 

Species   Mean Abundance 

AOU 

Code Common Name Scientific Name   

Average 

Plots 

High-

contribtion 

Plots 

DEJU Dark-eyed Junco Junco hyemalis  0.253 0.843 

DOWO Downy Woodpecker Picoides pubescens  0.446 0.342 

EABL Eastern Bluebird Sialia sialis  0.187 0.397 

EAKI Eastern Kingbird Tyrannus tyrannus  0.107 0.533 

EAWP Eastern Wood-Pewee Contopus virens   1.337 1.402 

GCKI Golden-crowned Kinglet Regulus satrapa  0.464 1.541 

GCFL Great-crested Flycatcher Myiarchus crinitus  1.049 1.385 

HAWO Hairy Woodpecker Picoides villosus   0.838 0.888 

HETH Hermit Thrush Catharus guttatus   2.318 2.262 

INBU Indigo Bunting Passerina cyanea  0.970 1.949 

LEFL Least Flycatcher Empidonax minimus  1.298 1.227 

MAWA Magnolia Warbler Setophaga magnolia  0.707 0.985 

MODO Mourning Dove Zenaida macroura  0.323 0.552 

MOWA Mourning Warbler Geothlypis philadelphia  1.210 1.533 

NAWA Nashville Warbler Oreothlypis ruficapilla  2.445 3.533 

NOFL Northern Flicker Colaptes auratus  1.043 1.162 

NOPA Northern Parula Setophaga americana  0.375 0.956 

NOWT Northern Waterthrush Parkesia noveboracensis  0.193 0.343 

OVEN Ovenbird Seiurus aurocapilla   3.777 2.895 

PIWO Pileated Woodpecker Dryocopus pileatus   0.182 0.301 

PIWA Pine Warbler Setophaga pinus  0.199 0.613 

PUFI Purple Finch Haemorhous purpureus   0.331 0.619 

RBNU Red-breasted Nuthatch Sitta canadensis  0.651 1.009 

 



49 

 

Table 2.2 (cont’d) 

Species  Mean Abundance 

AOU 

Code Common Name Scientific Name   

Average 

Plots 

High-

contribtion 

Plots 

REVI Red-eyed vireo Vireo olivaceus   3.853 3.171 

RBGR Rose-breasted Grossbeak Pheucticus ludovicianus   3.063 2.614 

RTHU Ruby-throated Hummingbird Archilochus colubris   0.300 0.532 

RUGR Ruffed Grouse Bonasa umbellus   0.597 0.618 

SASP Savannah Sparrow Passerculus sandwichensis  0.019 0.098 

SCTA Scarlet Tanager Piranga olivacea  0.896 0.743 

SOSP Song Sparrow Melospiza melodia   0.191 1.004 

SWSP Swamp Sparrow Melospiza georgiana  0.121 0.759 

VEER Veery Catharus fuscescens  0.584 0.807 

WBNU White-breasted Nuthatch Sitta carolinensis  0.659 0.947 

WTSP White-throated Sparrow Zonotrichia albicollis  0.817 1.466 

WIWR Winter Wren Troglodytes hiemalis  0.603 1.015 

YBSA Yellow-bellied Sapsucker Sphyrapicus varius  2.192 2.083 

YRWA Yellow-rumped Warbler Setophaga coronata   1.535 2.449 
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2.3.4. Species-level relationships 

The Student’s t-tests identified 35 of 59 species that had significantly higher mean 

abundance in high-diversity plots than average plots (Table 2.2). There was a significant 

negative correlation between the probability of having a higher mean abundance in high-

contribution plots and overall mean abundance (β = -0.804; P = 0.015), meaning that less-

common species tended to be better represented in high-contribution plots. In the indicator 

species analysis, 5 of the 6 forest types had single species as either the best or second-best 

indicator of high-contribution plots (Table 2.3). The species acting as indicators were not 

necessarily uncommon (e.g. Red-eyed Vireo) or strongly associated with those forest types (e.g. 

Eastern Kingbird in Northern Hardwoods). Positive predictive value, or the probability that the 

plot belonged to a specific group given that the species was found there (also called specificity), 

ranged from very high (>0.9 in high-contribution Lowland Conifer plots) to moderate (0.6 for 

high-contribution Upland Mixed plots) (Table 2.3).  
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Ecosystem Type 1 2 3 4 5 

Northern Hardwoods 

EAKIa 

(0.850) 

OVEN+EAKI 

(0.850) 

REVI+EAKI 

(0.850) 

BTNW+EAKI 

(0.850) 

HETH+EAKI 

(0.829) 

Upuland Conifer 

CSWA 

(0.851) 

NAWA+CSWA 

(0.849) 

OVEN+CSWA 

(0812) 

RBNU 

(0.811) 

NAWA_RBNU 

(0.794) 

Upland Mixed 

OVEN+YBSA 

(0.621) 

OVEN 

(0.603) 

BRCR 

(0.584) 

OVENI+BRCR 

(0.584) 

REVI+BRCR 

(0.584) 

Early-successional 

LEFL+NOOR 

(0.898) 

LEFL+CSWA 

(0.888) 

LEFL+MOWA 

(0.877) 

SCJU 

(0.867) 

OVENA+SCJU 

(0.867) 

Cedar 

BHVI+BLWA 

(0.813) 

VEER 

(0.807) 

REVI+VEER 

(0.807) 

NAWA+VEER 

(0.807) 

BLJA+VEER 

(0.807) 

Lowland Conifer 

CEDW 

(0.906) 

NAWA+CEDW 

(0.906) 

CEDW+BLJA 

(0.906) 

REVI+CEDW 

(0.875) 

OVEN+CEDW 

(0.875) 

Table 2.3. Top 5 indicator species or combinations for high-contirbution plots within 6 ecosystem types in the western Upper 

Peninsual of Michigna, USA. Numbers in parantheses are the probabilities of being a high-contribution site, given that combination of 

species is found there. See Table 2 for species associated with four-letter codes. 
aStandardized species codes used by the American Ornithologist’s Union (AOU).  

 



52 

 

2.4. DISCUSSION 

My research demonstrates that a novel application of the conservation filter strategy can 

be used for the prioritization of ecosystem types and habitat conditions that are critical to the 

maintenance of species diversity in managed landscapes. My work focused on bird community 

conservation in areas that are actively managed for timber production, however this method is 

easily applicable to other taxa and other systems. In particular, the diversity contribution 

approach can be used to identify areas and ecosystem types that are important for maintaining 

regional species diversity and provide guidelines for site-level management that will enhance 

biodiversity value. Combining coarse filters and mesofilters in this way facilitates the multi-scale 

planning that is an integral part of the ecosystem management paradigm and the effort to 

conserve species diversity across managed landscapes. Therefore, this novel approach provides 

an additional tool that managers can use in making management decisions in the face of 

uncertainty about the effects on biodiversity.  

The diversity contribution approach I employed here was proposed a decade ago (Lu et 

al., 2007), and is an extension of the concept of habitat specificity (Halvorsen and Edvardsen, 

2009). The idea behind habitat specificity is that individual species will be dependent to a degree 

on individual spatial elements (i.e. habitats) within the landscape, with specificity being 

measured as the proportion of occurrences of that species that fall into that spatial element 

(Wagner and Edwards, 2001). Thus, the contribution of an individual unit to regional diversity is 

the sum of the specificity scores of the species that occur there (Wagner and Edwards, 2001). Lu 

et al. (2007) extended this idea by decomposing diversity contribution into richness and 

distinctiveness components within an additive framework so that spatial units are described 

according to their relative contribution to regional diversity, thus providing a robust method for 
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ranking and prioritizing areas for conservation. To date, these methods have been applied 

primarily to plants and invertebrates in terrestrial systems (e.g. Halvorsen and Edvardsen, 2009; 

Saraiva et al., 2015), and I know of no instances where they have been employed in planning or 

management decisions.  

My finding that the conservation value of a community type, as defined by my 

contribution index, is inversely proportional to its representation on the landscape (Fig. 2.3) is 

logically intuitive, and aligns with the idea of habitat specificity (Wagner and Edwards, 2001). 

This effect of proportional representation is because diversity contribution is largely determined 

by the distinctiveness of species within a site (Lu et al., 2007), which is strongly associated with 

the distinctiveness of the environmental conditions relative to the rest of the landscape (Crosby, 

chapter 1 this dissertation). The strong influence of uncommon species on regional diversity is an 

aspect of the beta component of diversity (the difference among spatial units within a region; 

Whittaker, 1972), which has been shown to be a major driver of diversity among birds and other 

taxa (Crist et al., 2003; Veech and Crist, 2007). The effect of proportional representation, 

however, was not constant. My results show that Upland Mixed and Upland Conifer forests both 

had a higher conservation value than Cedar and Lowland Conifer, even though Upland Mixed 

and Upland Conifer were nearly twice as common. Although I did not examine the relative 

influences of richness and distinctiveness on the diversity contribution scores, it is possible that 

Cedar and Lowland Conifer support fewer species on average. Species richness as reflected in 

alpha diversity is a component of diversity contribution (Lu et al., 2007), and so it is possible that 

lower species richness may have accounted for the lower conservation value of these community 

types. 
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It was clear at the mesofilter level that different compositional and structural attributes 

affected diversity contribution within different community types (Fig. 2.4), however the 

commonality seemed to be that they created more structural complexity within plots. For 

example, the proportion of BA in conifer had a positive correlation with diversity contribution in 

Northern Hardwood community types, but a negative correlation in Upland Conifer and Upland 

mixed community types (Fig. 2.4B). Similarly, high-contribution plots among Northern 

Hardwoods and Cedar community types had lower total basal area while basal area seemed to be 

neutral in Upland Conifer and Upland Mixed plots, which had lower basal area on average to 

begin with. The relationship between structural complexity and diversity was first demonstrated 

by MacArthur and MacArthur (1961), and has guided some forest conservation efforts under the 

concept that “diversity begets diversity” (Schulte et al., 2006; Hunter and Schmiegelow, 2011). 

My research suggests that increasing the compositional and structural complexity of forest stands 

increases not just species richness, but also the contribution to overall regional diversity, by 

increasing habitat specificity within those stands.  

The fact that the abundance of less-common bird species was more likely to be positively 

related to high-contribution plots also corresponds to the idea of habitat specificity. Heino and 

Gronroos (2014) showed that niche marginality among stream invertebrates, which is akin to 

habitat specificity, had a significant negative relationship with occupancy rates. This relationship 

between specificity, occupancy, and diversity contribution is important for our understanding of 

the drivers of regional species diversity (Crosby, chapter 1 this dissertation). Knowing which 

species rely more strongly on high-contribution sites is important for managers in determining 

monitoring and habitat conservation priorities. Because these species tend to be less common 

regionally, they have increased importance for the maintenance of regional diversity.  
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In my application, the coarse filter strategy is not focused on creating reserves, as it 

traditionally has been (Noss, 1987; Hunter, 2005), or on maintaining a certain distribution of 

ecosystem types as suggested by Haufler et al. (1996). Rather, my application focuses on 

prioritizing community types throughout the landscape in terms of their conservation value and 

identifying sites of high conservation value among all community types. I then integrate the 

mesofilter with the coarse filter by describing those high-value sites in terms of compositional 

and structural attributes that set them apart from other sites within the same community type. 

This approach is distinctly different from the traditional practice of prioritizing areas for 

conservation based on species richness (Lu et al., 2007), which is problematic for a number of 

reasons (Palmer and White, 1994). The key here is that conservation value is defined not in terms 

of species richness but rather in the contribution to overall regional diversity (i.e. gamma 

diversity), and so emphasizes uncommon species and community types within the context of the 

broader biological community (Wagner and Edwards, 2001; Lu et al., 2007).  

My application is based on the idea that, while all ecosystem types are important, some 

sites have scarcity value because of their low occurrence rates on the landscape (Wagner and 

Edwards, 2001). Within all ecosystem types, however, there will always be some that support 

more or different species because of specific compositional and structural attributes (Hunter, 

2005; Crous et al., 2013). Taken together, this represents the integration of coarse filter and 

mesofilter strategies, and the diversity contribution approach provides a quantitative method for 

applying this combined strategy on managed forest landscapes.    

2.5. MANAGEMMENT IMPLICATIONS 

At the coarse filter operational scale, it is important to be able to identify high-value 

ecosystem types on the landscape and ensure that these are maintained in suitable amounts. The 
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actual amount and distribution of such types needs to be guided by the biophysical template, as 

well as some sense of historical range and variability (Haufler et al., 2002; Keane et al., 2009), 

however forest production goals and other objectives can also play a role and may even be 

advantageous to both biodiversity and timber production (Zenner et al., 2010). For example, pine 

plantations have high economic value, bur are often considered to have low value in terms of 

biodiversity (Bremer and Farley, 2010). In my study area, however, pine forests were relatively 

rare and so had high conservation value. Therefore, maintaining pine plantations in this study 

area could have a positive impact on regional biodiversity. This illustrates the importance for 

managers of recognizing and maintaining native community types that are regionally uncommon, 

but also shows how economic and ecological interests can be sometimes serve a common goal.  

At the mesofilter scale, understanding the compositional and structural attributes of high-

contribution plots within a specific community type may hold the key to increasing the overall 

biodiversity value throughout a region. When supplied with this knowledge, managers can use it 

to modify management prescriptions to increase the conservation value of forest harvesting 

activities and maintain diversity across the landscape. Because specific attributes, such as total 

basal area or percent conifer, have differential impacts among community types, it is critical for 

managers to understand this and be able to adjust harvest and retention guidelines based on the 

community type of a particular area to be harvested.  
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CHAPTER 3 

MONITORING BETA DIVERSITY OF BIRD COMMUNITIES AS AN 

ALTERNATIVE PARADIGM FOR TRACKING CHANGES IN REGIONAL 

BIODIVERSITY 

 

ABSTRACT 

Regional monitoring of biodiversity is consistently recognized as one of the primary 

requirements of any long-term conservation program. Despite this recognition, examples of 

monitoring programs that can link changes in biodiversity to environmental changes at scales 

relevant to land management and conservation planning (1–1000 km2) are uncommon. To 

address this issue, I propose a monitoring system based on beta diversity of bird communities at 

multiple spatial scales. Beta diversity has been shown to reflect environmental heterogeneity in 

several systems, and bird community diversity in particular is reflective of ecological conditions. 

My proposed system focuses on species-level monitoring of bird communities for the estimation 

of beta diversity using a hierarchical sampling design. I analyzed bird community and habitat 

data from the western Upper Peninsula of Michigan collected using a hierarchical sampling 

design to test the link between beta diversity and environmental heterogeneity at different spatial 

scales. I then used simulations of species and landscapes to compare capabilities of different 

sampling designs for detecting patterns of diversity across multiple spatial scales. My results 

show a positive relationship between heterogeneity and diversity at 2 management-related scales 

(1–3 km2 and 100–1000 km2). The hierarchical sampling design was superior to systematic, 

random and stratified random sampling designs because it is able to detect patterns at finer 

spatial scales. The fact that bird communities are relatively easy to monitor, are reflective of 

ecological conditions at multiple scales, and generate so much interest with the general public 

makes them the most appropriate taxon for regional biodiversity monitoring. The system I 
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propose here can provide a baseline monitoring program that is logistically feasible and 

ecologically useful for assessing and guiding regional conservation policy. 

3.1. INTRODUCTION 

Regional monitoring of biodiversity is consistently recognized as one of the primary 

aspects of any long-term conservation program (Yoccoz et al., 2001; White et al., 2013). Despite 

this recognition, examples of landscape scale species-level monitoring programs are uncommon 

because of the high costs of surveying a large and diverse group of species (Manley et al., 2004; 

Noon et al., 2012). The few broad-scale monitoring programs available, such as the North 

American Breeding Bird Survey (Sauer et al., 2003) or state-level breeding bird atlas programs 

(Zuckerberg and Porter, 2010), are too coarse-grained in both space and time to track the way 

typical land management activities impact biodiversity. As a result, there is little geographically 

extensive information that can link changes in species diversity to environmental changes at 

spatial and temporal scales at which management and conservation planning typically occur (1–

1000km2; Bestelmeyer et al., 2003; Noon et al., 2012).  

To date, most biodiversity monitoring schemes have focused on determining which few 

species offer the best indices of environmental conditions, and therefore may be useful as 

surrogates for tracking biodiversity at large spatial scales (Manley et al., 2004). While this 

strategy is intuitively appealing, the assumption that the status of one or a few species is 

indicative of broad-scale ecological conditions has often been challenged (Manley et al., 2004; 

Wiens et al., 2008). On the other hand, ecologists recognize that spatial and temporal patterns of 

heterogeneity in the environment at multiple scales are the precursor for biological diversity 

(Christensen, 1997; Levin, 2000), and research suggests that maintaining patterns of 

environmental heterogeneity should be the focus of ecosystem management and conservation 
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efforts (Fuhlendorf et al., 2006; Veech and Crist, 2007; Fuhlendorf et al., 2012; Astorga et al., 

2014). Therefore, a monitoring system for tracking biodiversity and environmental heterogeneity 

across scales while still providing valuable species-level data would provide important 

information for our understanding of land-use impacts on biodiversity and long-term 

conservation planning. 

Species diversity is traditionally partitioned into three components related to spatial scale, 

where 𝛼 is within-unit diversity, 𝛽 is the diversity among units, and 𝛾 as the overall regional 

diversity (Whittaker, 1960). Among these, 𝛽-diversity represents a useful spatial component of 

diversity, and can provide information about how diversity is distributed across the landscape 

(Marsh and Ewers, 2013). 𝛽-diversity of specific taxa has been shown to reflect compositional 

and structural heterogeneity within ecosystems (Fuhlendorf et al., 2006; Astorga et al., 2014), 

suggesting that species diversity within selected groups can act as an index of environmental 

heterogeneity. Lande (1996) showed how 𝛼-, 𝛽-, and 𝛾-diversity can be additively partitioned at 

multiple spatial scales to investigate how diversity patterns are distributed across scales (Gering 

et al., 2003). Monitoring of 𝛽-diversity at multiple scales, then, offers an alternative to traditional 

surrogate-species approaches for tracking ecological conditions and indexing biodiversity at 

regional scales. 

I propose that measuring beta diversity of bird communities at multiple spatial scales 

offers an efficient and effective way to monitor regional biodiversity. Bird community 

composition has been used in the past as an indicator of ecological conditions (Canterbury et al., 

2000; O'Connell et al., 2000) and environmental heterogeneity (Fuhlendorf et al., 2006; Veech 

and Crist, 2007), and birds are known to respond strongly to land-use change (DeGraaf et al., 

1998). Additionally, monitoring bird species is relatively easy and efficient compared to most 
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other taxa, and there is a great deal of interest within the general public for bird species 

conservation. My goal was to evaluate a hierarchical sampling design intended to characterize 

regional beta diversity at multiple spatial scales. My objectives were to test the hypothesis that 

bird community diversity reflects environmental heterogeneity across spatial scales and evaluate 

the effectiveness of different sampling designs for estimating beta diversity at multiple spatial 

scales. I used bird community and environmental data within a hierarchical sampling design to 

investigate the relationship between heterogeneity and beta diversity, and simulated landscape 

and community data to evaluate sampling designs. My approach demonstrates the 

appropriateness of birds as biodiversity indicators and offers insights into the impact that 

sampling designs can have on biodiversity estimates. 

3.2. METHODS 

3.2.1. Study area and data acquisition  

To meet my first objective, I tested the link between beta diversity of bird communities 

and environmental heterogeneity across scales using bird community and forest data from a 

4000-km2 area in the western upper peninsula of Michigan, USA. This is an ecologically diverse 

northern forest landscape, with variability driven by glacial topography, soil, and differences in 

deer browse and forest management across ownerships (Laurent et al., 2005). The majority of the 

land is state-owned or private industrial forest managed for timber production. Upland northern 

hardwood forests make up the majority of the landscape, interspersed with upland and lowland 

conifers and areas of early successional forest. The primary species in northern hardwood stands 

is sugar maple (Acer saccharum), while red pine (Pinus resinosa) and white pine (P. strobus) 

dominate the upland conifer communities. Northern white cedar (Thuja occidentalis) is the main 
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tree species in lowland areas, and aspen (Populus spp.) and white birch (Betula papyrifera) cover 

most of the early-successional areas.  

I used data on bird species and vegetation variables collected in 2001–2003 from a large-

scale study of bird species in forested habitats (Laurent et al., 2005; Millington et al., 2011). 

Sample plots were selected according to what was known as the GRAIN protocol (Laurent et al., 

2005), where the landscape was gridded into ~1,000 ha sections and 2–8 plots were placed 

within randomly selected sections. This plot selection system allowed me to impose a 

hierarchical study design on the data (Fig. 3.1). Individual plots were clustered into ecological 

neighborhoods where each plot was no more than 1000 m from at least one other plot. 

Neighborhoods were nested into management areas defined by the state forest management 

system or by private industrial landowner, and management areas were further nested into 

ecological subsections defined by McNab et al. (2007).  

 

Figure 3.1. Study area and study design map showing: (A) sampling plots within ecological 

neighborhoods; (B) neighborhoods within management areas; (C) management areas within 

ecological subregions; and (D) study area location within the Upper Peninsula of Michigan, 

USA.  
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I used data from all birds detected within 50 m of the plot center during standard 10-min 

point counts (Ralph et al., 1995). Each plot was sampled 3–4 times between June 4 and July 3 (1 

plot was visited twice) in either 2001, 2002, or 2003 between sunrise and 5 hr post-sunrise. I 

estimated the abundance for each species at each site using a multi-species occupancy-abundance 

model that provided site-level abundance estimates without the use of habitat variables 

(Appendix A). This model estimated occupancy and abundance as separate but related processes, 

and accounted for spatial correlation in occupancy within a neighborhood distance of 1000 m 

(sensu Mattsson et al., 2013). I modeled survey-specific detection probability as a linear function 

of standardized covariates for Julian day (linear and quadratic) and time as measured in minutes 

from sunrise (Zipkin et al., 2010). Because my purpose was to sample resident species indicative 

of community structure and habitat conditions, I regarded species that were detected at <1% of 

plots, as well as waterfowl (family Anatidae), as incidental detections and excluded them from 

the analysis (Crosby et al., 2015; Mahon et al., 2016). I also excluded large raptors (families 

Accipitridae, Cathartidae, Falconidae, Strigidae) and large corvids (Corvus corax and C. 

brachyrhynchos) because their large home ranges and ubiquitous distributions make their status 

as residents difficult to verify (Crosby et al., 2015). I fit the model in a Bayesian framework with 

programs R (Version 3.3.0) and JAGS (Version 4.2.0; Plummer, 2003) using the package runjags 

with parallel chains, with uninformative prior distributions for all parameters and 

hyperparameters. I ran three chains of 300,000 iterations with a burn-in of 50,000 and a thinning 

ratio of 10, and assessed convergence using the Gelman and Rubin R-hat statistic (Brooks and 

Gelman, 1998). The multi-species occupancy-abundance analysis was performed using data from 

all sample plots where point counts were done. However, for the beta diversity analyses 
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described below I limited the data set to plots within neighborhoods containing ≥3 plots within 

management area containing ≥3 such neighborhoods (Anderson, 2006; Marsh and Ewers, 2013).   

I characterized forest composition and structure within each plot center using 11 variables 

derived from measurements taken at the plots concurrent with bird surveys and from remotely-

sensed elevation data. Total basal area (BA; m2/ha) for trees ≥10 cm diameter at breast height 

(DBH) was measured using a 10-factor prism at 3 subplots within each plot located at the 

vertices of an equilateral triangle surrounding the plot center. The first point of the triangle was 

placed 15 m from the center at a random azimuth, and the succeeding points were 25 m from the 

initial point and 15 m from the center (Laurent, 2005). From the prism measurements I also 

estimated proportion BA in conifers, proportion BA in deciduous trees other than sugar maple, 

and stem density (trees/ha) of snags ≥25 cm DBH and large trees ≥50 cm DBH (sensu McGee et 

al., 1999; Millington et al., 2011). Canopy openness was measured at each of the three subplots 

using a spherical densitometer and calculated as the average of measurements taken while facing 

in each of 4 directions (north, south, east, and west) (Comeau et al., 1998). Stem density of trees 

<10 cm DBH was measured using 5-tree distance sampling (Lessard et al., 2002) at 9 subplots 

spaced on a 3x3 grid centered on the plot center, with subplots 16 m apart (Laurent, 2005). From 

this I calculated stems/m2 of seedlings (trees ≥25 cm tall and <1.5 m tall) and canopy recruits 

(trees ≥1.5 m tall and <10 cm DBH), and the proportion of seedlings that were conifers. To 

characterize size structure of the stand, I calculated an index of diameter distribution as the 

departure from an idealized even size class distribution of 20 trees per hectare in each 5-cm size 

class, where the value was the log-transformed chi-square value measuring departure from the 

idealized distribution (Tyrrell and Crow, 1994). Finally, I indexed soil moisture in each plot 

using a modification of the topographic wetness index called the SAGA wetness index (SWI; 
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Olaya and Conrad, 2009), where topography was derived from the U.S. Geological Survey 

National Elevation Dataset 1/3 arc-second 2013 maps (https://lta.cr.usgs.gov/NED; accessed 

August 21, 2016).  

3.2.2. Environmental heterogeneity and beta diversity 

I evaluated the appropriateness of my chosen environmental variables for modeling 

community composition by estimating the correlation among variables and testing for their 

influence on niche separation among species in an outlying mean index (OMI) analysis. OMI is a 

constrained ordination technique that estimates the niche position of species relative to average 

environmental conditions, and total inertia reflects the influence of the environmental variables 

on the species’ niche separation (Dolédec et al., 2000). To test whether the chosen variables 

described niche separation, I employed a permutation test of the total inertia calculated from the 

OMI analysis using species abundance estimates at each plot for the analysis. The permutation 

test randomizes the communities among sites and tests the null hypothesis that the species niche 

separation is not influenced by the environmental variables (Dolédec et al., 2000). I ran 1000 

permutations and compared the average marginality from the randomized data to the observed 

average marginality and evaluated significance as the proportion of permutation values higher 

than the observed value.  

To describe the influence of environmental heterogeneity on diversity, I measured 

environmental heterogeneity and bird community beta diversity across scales using multivariate 

dispersion analysis (Anderson et al., 2006). Multivariate dispersion estimates the ecological 

distance of each point to a group centroid based on species composition or environmental 

variables, and the mean of these distances within a group can be used as a measure of beta 

diversity or environmental heterogeneity, respectively (Astorga et al., 2014). I estimated 
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environmental heterogeneity at the neighborhood and management area scales using Euclidean 

distance for the normalized environmental variables, and to estimate beta diversity of bird 

communities using the Bray-Curtis index at the same scales (Anderson et al., 2006). Because 

there may be a relationship between beta diversity and sampling area, I used the residuals 

obtained from linear regressions of beta diversity and environmental heterogeneity against the 

number of points in the unit for which the estimate was obtained for neighborhoods and 

management areas (Veech and Crist, 2007). I used linear regression to test for a relationship 

between environmental heterogeneity and beta diversity at the neighborhood level. Due to small 

sample size, my data did not meet regression assumptions at the management area level so I 

looked at correlations between variables among management areas. I performed all analyses 

using program R. The multivariate dispersion analyses was done using the betadisper function in 

package vegan with type = “centroid” specified.  I considered tests to be statistically significant 

at p < 0.1.  

3.2.3. Landscape and species simulation 

To meet my second objective of evaluating sampling designs for monitoring beta 

diversity, I simulated a landscape to represent 2 separate, large-scale primary gradients, each 

following a different direction and changing at a different spatial scale. Within these large-scale 

directional gradients were small-scale secondary gradients changing in random directions at 

varying spatial scales, where the spatial scale was dependent on the level of aggregation within 

that subsection of the landscape. The full simulated landscape was 500x750 pixels. I simulated 

the composition of the first 2 primary gradients according to probability density functions 

determined by a beta distribution and configuration specified as the H-value in the midpoint 

displacement method (sensu Holland et al., 2009). The first primary gradient was composed of 3 
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separate 500 x 250 pixel landscapes increasing in average value and spatial aggregation from 

west to east according to the increasing H-value (Table 3.1). In this method, an H-value of -2.0 

would represent a random landscape, but because such a landscape would be highly unlikely in 

nature smallest H-value used in my simulations was -0.2. The second primary gradient was 

composed of 4 separate 125x750 pixel landscapes decreasing in average value from north to 

south and unchanging in spatial aggregation (Table 3.1). The simulation of spatial aggregation 

created the secondary gradients, where a low level of spatial aggregation caused the secondary 

gradients to change over a smaller spatial scale relative to areas with higher spatial aggregation 

(Fig. 3.2).  

Primary Gradient 𝛼 𝛽 H-value 

1: West to East 3.0 3.0 -0.2 

5.0 3.0 0.0 

7.0 2.5 2.0 

    

2: North to South 

 

4.0 1.0 0.0 

3.0 2.0 0.0 

2.0 3.0 0.0 

1.0 4.0 0.0 

Table 3.1. Parameters used for simulating landscape gradients, where pixel values are randomly 

drawn from a beta distribution with parameters 𝛼 and 𝛽, and spatial correlation in parameter 

values specified by the H-value in the midpoint displacement method. 
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Figure 3.2. Simulated ecological gradients used for simulating species occurrence based on 

randomly generated beta distributions. Landscape dimensions were 500x700 pixels. 

 

I populated the landscape by simulating 100 species with differing responses to the 

environmental gradients according to randomly generated beta distributions using the 

coenocliner package in program R version 3.1.1. The coenocliner package simulates species 

occurrence or abundance data along gradients according to Gaussian or beta response curves 

(Simpson, 2016). I drew species response parameters from random distributions to reflect a 

range of responses from rare to common and generalist to specialist (Table 3.2). I increased all 

probabilities by a factor of x = 100 million using the equation 1 − (1 − 𝑝𝑠𝑖)𝑥 to approximate a 

realistic range of occupancy probabilities in a natural bird community. I also simulated a 

response resembling a climate effect, where some species had a reduced occupancy probability 

in the northern half of the landscape. To do this, I randomly chose which species would be 

affected with a 0.5 probability. I then randomly assigned the strength of the effect by multiplying 

the initial occupancy probability by a random draw from a uniform (0.1, 0.9) distribution. 
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  Response parameter Distribution 

 

Max psi 

 

  

Species set 1 beta (5, 2) 

  

Species set 2 beta (7, 1) 

    
Gradient 1 Modal abundance uniform (min, max)† 

Range of occurrence uniform (0.01, 0.5) 

𝛼 uniform (0.5, 7.0) 

𝛽 uniform (0.5, 7.0) 

    
Gradient 2 Modal abundance uniform (min, max) † 

Range of occurrence uniform (0.01, 0.9) 

𝛼 uniform (0.5, 7.0) 

𝛽 uniform (0.5, 7.0) 

Table 3.2. Parameters used to simulate species occurrence probabilities along 2 environmental 

gradients using the package coenocliner in program R. Parameters for each species were drawn 

randomly from probability distributions. Max psi represents the maximum occurrence 

probability, modal abundance represents the point on the gradient where maximum occurrence is 

achieved, and range of occurrence represents the limits of occurrence along the gradient. 
†min and max are the minimum and maximum gradient values, respectively. 

 

3.2.4. Sample design comparisons 

I compared the effectiveness of different sample designs in estimating beta diversity 

across scales using additive partitioning of diversity components (Gering et al., 2003). Additive 

partitioning separates diversity into 𝛼, 𝛽, and 𝛾 components where 𝛼 + 𝛽 = 𝛾 provided that the 

diversity metric is strictly concave, meaning that the value of the metric for a pooled set of 

communities is ≥ the average value within those communities (Lande, 1996; Gering et al., 2003). 

Such metrics can be partitioned across multiple scales when 𝛾 for a level is measured as the 
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average 𝛼-diversity at the next higher level. I used species richness as my diversity measure and 

separated the landscape into 5 levels corresponding to those typically used in management (Fig. 

3.3). From highest to lowest levels: I vertically separated the landscape into 2 climatic zones 

measuring 250 x 750 pixels; each climatic zone was split into 3 regions of 250 x 250 pixels; each 

region was separated into 25 management areas of 50 x 50 pixels, and each management area 

was separated into 100 neighborhoods of 5 x 5 pixels. Each pixel was considered an individual 

plot.  

 

Figure 3.3. Hierarchical partitioning of simulated landscape used to compare the effectiveness of 

different study designs for estimating species diversity across scales.  

 

I first calculated the known diversity at all levels using all 375,000 plots. I then estimated 

diversity by sampling 450 individual pixels using 4 different sampling designs: systematic, 

random, stratified random, and a hierarchical cluster sampling design (Thompson, 2012). The 

systematic sampling design was based on an 18x25 grid spaced evenly across the landscape. For 
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the random sample, I randomly chose plots without replacement from across the entire 

landscape. In the stratified random sample I randomly chose 75 plots from within each of the 6 

regions. In the hierarchical cluster design, I randomly selected 5 management areas from within 

each region, 5 neighborhoods from within each of the management areas, and 3 plots from each 

of the neighborhoods. I drew 100 individual samples using each design (except for the 

systematic design) and compared the results at each level using means and 95% confidence 

intervals. 

3.3. RESULTS 

3.3.1. Bird community and beta diversity 

The bird community analysis estimated occupancy and abundance from 433 plots. The 

hierarchical dataset included 232 point count plots within 36 ecological neighborhoods divided 

among 5 management areas and 2 ecological subsections. Neighborhoods ranged from 105─313 

ha with a mean of 174 ha. Management areas ranged from 12,428─75,850 ha with a mean of 

45,343 ha. There were 3 moderate correlations among the environmental variables: total BA with 

canopy openness (-0.542); total BA with sapling density (-0.494); and density of seedlings with 

density of saplings (0.437). All other correlations were between -0.4 and 0.4. The permutation 

test showed that the environmental variables increased total inertia by 2.33/1 over random. This 

increase was significant (P = 0.003). Bird community beta diversity was significantly correlated 

with environmental heterogeneity in the linear regression at the neighborhood level (df = 34, β = 

0.024, P  = 0.003) and showed a strong correlation at the management area level (r = 0.796) (Fig. 

3.4).  
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Figure 3.4. A: Linear regression of the relationship between environmental heterogeneity and 

bird community beta diversity within ecological neighborhoods (all points ≤1000 m from at least 

1 other point). B: Correlation of the same relationship for forest management areas as defined by 

the Michigan Department of Natural Resources or private industrial forest landowners.  

 

3.3.2. Simulation analysis 

The simulation analysis showed that the hierarchical cluster design performed better than 

any of the other sampling designs in estimating diversity across scales. In particular the 

systematic, random, and stratified random designs were all unable to detect beta diversity among 

plots. These designs also captured an average of only 21% of the beta diversity among 

neighborhoods and overestimated beta diversity among management areas by an average of 

2.086/1. The hierarchical cluster design gave the most accurate estimates of beta diversity at the 

beta.1, beta.2, and beta.3 levels and gave similar estimates to the other sampling designs for 

beta.4, beta.5, and gamma (Fig. 3.5). All 4 designs were able to accurately estimate plot-level 

alpha diversity (alpha.1), and all of them overestimated diversity at large scales (beta.4, beta.5) 

and underestimated gamma diversity (Fig. 3.5).  



72 

 

 

Figure 3.5. Comparison of the estimates from 4 different sampling designs to known 

contribution of alpha and beta components of diversity to overall gamma diversity across 5 

hierarchically-partitioned spatial scales in a simulated landscape. Each design contained 450 

sampling points. The systematic sample was an 18x25 grid of points spread evenly across the 

landscape, the stratified random sample was stratified at the beta.4 level, and the cluster sample 

was hierarchically partitioned across all scales.  

 

3.4. DISCUSSION 

The foundation of ecosystem management is the conservation of pattern and process, 

which maintains the spatial and temporal patterns of heterogeneity that underlie biodiversity 

conservation (Fuhlendorf et al., 2012). These patterns of diversity change across scales because 

the processes that drive them operate at multiple spatial and temporal scales (Levin, 

2000).Therefore, the key to measuring and monitoring biodiversity at large spatial extents is  

using metrics that reflect heterogeneity across multiple scales. My findings show that bird 

community diversity reflects environmental heterogeneity at multiple spatial scales relevant to 

forest management, and that a hierarchical cluster sampling design estimates diversity across 



73 

 

scales much more accurately than the random, stratified random, and systematic sampling 

designs that are used more commonly in large-scale sampling. These findings illustrate the 

advantages of using communities rather than individual species as surrogates for biodiversity 

monitoring, which is that they can be used to index environmental differences among spatial 

units across scales. My results also show the advantage of using hierarchical sampling designs in 

large scale biodiversity monitoring rather than the classical designs more commonly employed 

by researchers.  

The application of a hierarchical cluster sampling design for large-scale monitoring 

systems derives from 2 complementary ideas: that cluster sampling is much more efficient for 

sampling in large landscapes (Hines et al., 2010; Aing et al., 2011); and that a cluster-based 

sampling design is optimal for estimating beta diversity across multiple spatial scales (Marsh and 

Ewers, 2013). Cluster sampling is more efficient because it reduces travel time between 

sampling sites (Aing et al., 2011), and it is often done by default in monitoring programs in an 

effort to overcome logistical difficulties (Hines et al., 2010). Hierarchical cluster designs are 

better able to estimate beta diversity across scales because they naturally sample processes 

occurring at multiple spatial scales (Marsh and Ewers, 2013), thus providing greater resolution 

and accuracy of diversity patterns (Fortin et al., 1989). As in my analysis, Marsh and Ewers 

(2013) showed that the spatial configuration of sampling points can have a large impact on beta 

diversity estimates at different scales. When compared to more-common sampling designs, their 

fractal-based cluster design gave better estimates of beta diversity and was the only design that 

could successfully partition diversity at all scales (Marsh and Ewers, 2013). What my results 

show is that a fractal-based design is not necessary for sampling multi-scale beta diversity as 

long as some form of hierarchical, cluster-based design is employed.  
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My landscape simulation created a complex landscape with multiple gradients changing 

in different directions, and the scale of the gradients changing in different parts of the landscape. 

Such a simulation is likely to be more reflective of natural ecological conditions than the 

simplified, single directional gradients simulated by Marsh and Ewers (2013). Therefore I 

believe my analysis to be a more realistic evaluation of the ability of different sampling designs 

to estimate diversity at multiple scales. Given that, my additive partitioning results were not 

dissimilar from Marsh and Ewers (2013) with all sampling designs underestimating small-scale 

diversity and overestimating large-scale diversity. This result is to be expected because of the 

inability of any sampling design to detect all species within a region. Because the estimates are 

additive, any overestimation in one part must inevitably lead to an underestimation in another 

part. Although such inherent deficiencies can never be entirely overcome, it is likely that they 

can be mitigated using models that account for unobserved species in the samples such as multi-

species occupancy or abundance models (Yamaura et al., 2016). 

Other factors that may affect the accuracy of diversity estimates across scales are the 

multiple scales and directions at which ecological gradients change across the landscape. 

Because ecological patterns change in different directions and at different scales (Levin, 1992), 

and species respond to conditions individually (Taper et al., 1995), there is little possibility that 

any sampling design can estimate changes in diversity across large spatial scales with complete 

accuracy. This does not, however, preclude the benefits of obtaining the best possible estimates 

for use in ecological investigations, conservation planning, and management decision-making.  

The link between heterogeneity and biodiversity has been investigated before with other 

taxa and at different scales. The hypothesis that heterogeneity is the precursor to biodiversity, 

and therefore should be the basis for conservation has been around for some time (Christensen, 
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1997; Ostfeld et al., 1997). Astorga et al. (2014) showed that habitat heterogeneity was the 

biggest factor driving the geographic distribution of beta diversity of stream invertebrates in New 

Zealand. Veech and Crist (2007) drew the link between beta diversity of bird communities and 

habitat and climate heterogeneity at large spatial scales (across large landscapes and ecological 

provinces). My analysis is also similar to the work of Fuhlendorf et al. (2006) which showed that 

managing for heterogeneity in rangeland systems increased bird community diversity over 

standard management systems, although theirs was not an explicit measure of beta diversity and 

did not consider multiple spatial scales. The difference in my work is that I show the usefulness 

of the heterogeneity-biodiversity relationship at multiple scales appropriate to management (1–

1000km2; Bestelmeyer et al., 2003), using compositional and structural variables affected by 

management. Monitoring bird communities in this way can help researchers and managers draw 

the explicit link between biodiversity, forest management systems, and large-scale conservation 

planning. 

Using bird community composition as an index of ecological conditions is not new either. 

Bird communities have been used in the past as indicators of biotic integrity (O'Connell et al., 

2000; Glennon and Porter, 2005), and individual species have often been seen as surrogates for 

specific habitat types: e.g. spotted owls in the northwestern United States, (Caro and O'Doherty, 

1999) or white-backed woodpeckers in Europe (Roberge et al., 2008) as indicators of old-growth 

forest. Bird communities have several characteristics that make them the best choice among taxa 

for this type of monitoring system:  

1. They are known to respond to commonly-measured variables that are affected by 

management (DeGraaf et al., 1998). 



76 

 

2. Communities respond to conditions at multiple spatial scales relevant to management 

(Cushman and McGarigal, 2004). 

3. Breeding birds are easy to monitor relative to other taxa, and can be monitored non-

invasively (Ralph et al., 1995; O'Connell et al., 2000). 

In addition to these advantages, there is expertise and enthusiasm among the general public for 

surveying birds. This is evinced by the many citizen science programs that use volunteers to 

collect scientifically-defensible bird community data such as the North American Breeding Bird 

Survey (Sauer et al., 2014) and many state-level and national breeding bird atlas projects (e.g. 

McGowan and Corwin, 2008; Balmer et al., 2013). Combining this expertise and enthusiasm 

with the proper sampling design and survey protocol could provide the most reliable and cost-

effective biodiversity monitoring system available.  

Under the monitoring system suggested here, changes in the amount of diversity 

explained within levels would indicate changes in landscape pattern. For example, if proportion 

of diversity explained among neighborhoods was reduced while that explained among 

management areas increased, that could indicate homogenization at the neighborhood levels but 

greater variability among management areas as a consequence of management decisions (Zollner 

et al., 2008). Management for contiguous areas of specific habitat types might result in such a 

pattern, and be beneficial to area-sensitive species such as many forest interior birds and 

mammals (Robbins et al., 1989; Zollner et al., 2008). On the other hand, higher diversity at small 

scales coupled with low diversity at large scales would suggest a highly fragmented landscape 

that does not change much over a large area, as in a heavily-managed area undergoing short-

rotation timber harvest. Understanding these dynamics can help managers estimate how 

management alternatives at different scales interact to influence regional biodiversity. 
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While the diversity metrics described here show how bird communities can act as 

indicators of environmental heterogeneity, and thus as an index biodiversity, alternative analyses 

using the same type of data can give more specific information. For example, ordination 

techniques can be used to investigate which species are most vulnerable as well as which 

environmental conditions are most important for maintaining those species at the appropriate 

scales (e.g. Thuiller et al., 2005; Mahon et al., 2016). A contribution-diversity approach (Lu et 

al., 2007) can be applied to find which areas contribute the most to diversity across scales and 

what the characteristics of such areas are (Crosby, chapter 2 this dissertation). Ordinations can 

also be applied to data from different time periods to gauge how conditions have changed and 

investigate the drivers of those changes (e.g. Coppedge et al., 2001).  

The appropriateness of using surrogate species for monitoring biodiversity has been 

debated in the literature for several decades, and the limitations of this approach are well-known 

and documented (Caro and O'Doherty, 1999; Lindenmayer et al., 2000; Manley et al., 2004). 

There are two primary issues with the use of surrogate species. First, species respond to changes 

in environmental conditions individually, and so the use of a few indicator species as an index of 

the broader community is not a viable strategy (Taper et al., 1995). Second, it cannot be assumed 

that the status of a few species indicates the condition of the ecosystem (Manley et al., 2004). 

Therefore, rather than suggesting the use of a few surrogate species whose relationship to 

ecological conditions is presumed to be known, we propose the use of bird community beta 

diversity as an efficient and effective alternative. The general monitoring system proposed here 

can provide regional managers with a set of metrics that act as reliable indices of environmental 

heterogeneity over a range of relevant spatial scales. These metrics can then be used to make 
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inferences about how management affects biodiversity, which is a fundamental question under 

the ecosystem management paradigm (Christensen et al., 1996).  

It is not known how reliably bird community diversity can predict diversity in other taxa, 

but the few studies that have examined this question so far have shown promise (Vielliard, 2000; 

Aslan et al., 2015). It must be understood, though, that bird communities cannot possibly act as a 

perfect index of biodiversity but only of a few important aspects of it. Other information must be 

brought to bear if we are to better understand and predict how land management decisions will 

affect biodiversity conservation at large scales. The status of rare or endangered species and the 

continued functioning of vital ecosystem processes are other important aspects of conservation. 

However, monitoring bird communities using a hierarchical sampling design across appropriate 

spatial scales represents an ecologically sound and logistically feasible alternative to traditional 

approaches to biodiversity monitoring for large scale management and conservation planning.  
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EPILOGUE 

 

The purpose of this dissertation was to address the problem of maintaining biodiversity 

on managed forest landscapes. More specifically, my goal was to investigate the response of bird 

communities to patterns of forest composition and structure across multiple spatial scales. In the 

first chapter, I investigated how patterns of heterogeneity in stand-level attributes impact patterns 

of bird community diversity across multiple spatial scales. In the second chapter, I demonstrated 

a novel application of the conservation filters strategy to maintaining avian diversity on managed 

forests. In the third chapter, I looked at monitoring beta diversity in bird communities as an 

alternative paradigm to indicator-based strategies for estimating changes in regional biodiversity.  

The research in these chapters draws several conclusions that are fundamental to the 

problem of maintaining regional biodiversity on managed forest landscapes. The first is that the 

effect of environmental heterogeneity on bird community diversity changes across spatial scales.  

This conclusion is important to understand because forest management systems affect spatial 

patterns at multiple scales. Therefore, sustainable forest management planning requires an 

understanding of how spatial patterns at multiple scales will impact regional diversity. The 

second conclusion is that uncommon ecosystem types have a greater relative contribution to 

regional diversity, and the importance of specific compositional and structural attributes changes 

among types. This has important implications for how different areas are prioritized for 

conservation and how structural retention guidelines are written because it underlies the patterns 

that maintain diversity at different operational scales. Finally, quantifying beta diversity of bird 

communities (differences among spatial units within a region) across multiple scales, using a 

hierarchical cluster sampling design, reflects environmental heterogeneity and offers an efficient 
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and effective system for monitoring regional biodiversity. Bird community beta diversity, then, 

provides an alternative to species-based strategies for indexing biodiversity, and can provide an 

important contribution to our understanding of how and why biodiversity changes through time.  

The first chapter addressed the issue of how pattern and scale impact our understanding 

of the factors governing the maintenance of biodiversity across the landscape. I examined how 

patterns of bird species diversity changed across spatial scales in a managed northern forest 

landscape and investigated the effect of environmental heterogeneity on the contributions of 

individual spatial units at multiple scales to regional diversity. I found that beta diversity at 

smaller spatial scales (1–300 ha) provided the largest relative contribution to regional bird 

diversity. Uniqueness of a sampling plot relative to mean conditions, in terms of vegetation 

structure and composition, had a significant positive correlation with diversity contribution. At 

medium scales (100–300 ha), within-unit heterogeneity was positively correlated with beta 

diversity but showed no relationship to diversity contribution. Conversely, within-unit 

heterogeneity was positively correlated with diversity contribution at large scales (100–1000 

km2). Thus I were able to show the differential effects of heterogeneity patterns on diversity 

across scales.  

Chapter 2 addressed the issue of management planning for regional bird diversity on 

managed forest landscapes. There is usually a great deal of uncertainty about how management 

decisions will impact biodiversity, and so scientifically-based strategies are often employed as 

tools in the planning process (Schulte et al., 2006). The coarse filter and mesofilter strategies 

(Hunter, 2005) are two of the most common strategies, however they are traditionally employed 

independently. I showed that integrating coarse filter and mesofilter conservation strategies can 

help prioritize ecosystem types for conservation and enhance management prescription 
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guidelines to increase the contribution of managed areas to regional diversity. Specifically, I 

employed the diversity contribution approach of Lu et al. (2007) to prioritize ecosystem types for 

conservation, and described compositional and structural attributes of high-contribution sites 

relative to other sites within the same ecosystem type. This represented a novel application of the 

conservation filter strategy in managed forests where reserve designation is not a viable option. 

My application is an extension of the approach proposed by Haufler et al. (1996), which viewed 

the coarse filter as maintaining the historical distributions of ecosystem types within a region. 

My application is more appropriate in working forest landscapes with multiple ownerships and 

diverse management objectives, as is the case in many regions. 

In chapter 3, I addressed the issue of regional biodiversity monitoring. Historically, 

biodiversity monitoring recommendations have focused on using one or a few species as 

indicators of overall species diversity (Manley et al., 2004; Noon et al., 2012). Estimating beta 

diversity (differences among spatial units), on the other hand, can be used as an indicator of 

patterns of heterogeneity at multiple scales, which is strongly linked with biodiversity (Benton et 

al., 2003). I proposed a monitoring system that focuses on species-level monitoring of bird 

communities for the estimation of beta diversity using a hierarchical cluster sampling design. I 

showed that beta diversity in bird communities is correlated with environmental heterogeneity 

across multiple scales. Additionally, using simulated data, I were able to show that the 

hierarchical sampling design is superior to more traditional designs for estimating beta diversity 

across multiple scales.   

The research presented in this dissertation offers an expanded and integrated view of the 

problem of maintaining biodiversity on managed forests. In the first place, I demonstrated that 

maintaining the mix of generalist and specialist species that leads to high regional diversity 
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requires maintaining heterogeneity at multiple scales. This means that large-scale management 

systems must explicitly address how forest planning will impact patterns at multiple scales 

simultaneously, and maintain both homogenous and heterogeneous landscapes at the appropriate 

scales. Secondly, I showed the utility of using the diversity contribution approach to the 

application of an integrated conservation filter strategy for maintaining regional bird diversity on 

a managed forest landscape. Such an approach can be very important for making management 

decisions in the face of uncertainty about how those decisions will impact biodiversity. Third, I 

showed that monitoring bird communities using a hierarchical cluster sampling design offers a 

viable alternative to traditional indicator species approaches to monitoring regional biodiversity. 

My work offers an integrated set of guidelines for biodiversity conservation on managed forests 

that explicitly accounts for the multiple scales at which biodiversity is generated and maintained. 

I believe that this research provides ecologists, land managers, and planners with an improved 

framework for managing forests under the ecosystem management paradigm. 
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APPENDIX A  

 

MULTI-SPECIES OCCUPANCY-ABUNDANCE MODEL 

 

Model description for a zero-inflated multi-species occupancy-abundance model accounting for 

spatial correlation in occupancy by incorporating an autologistic parameter into the probability of 

occupancy (sensu Mattsson et al., 2013). The model utilizes an augmented dataset (a set of all-

zero encounter histories) to account for unobserved species, and accounts for the covariance 

between occupancy and abundance (sensu Royle and Dorazio, 2009).  

 

 

Ecological model for occupancy: 

 

Parameters: 

𝜓𝑖𝑗= the probability that species i occurs at site j 

 

𝑙𝑜𝑔𝑖𝑡(𝜓𝑖𝑗) = 𝜑𝑖 + 𝛼𝑖𝐴𝑖𝑗 

 

𝑤𝑖 = {
1, 𝑖𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖 𝑖𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑖𝑡𝑒𝑠 (𝑤𝑖𝑙𝑙 𝑎𝑙𝑤𝑎𝑦𝑠 𝑏𝑒 1 𝑓𝑜𝑟 

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑒𝑠) 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝑤𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(Ω) 
 

𝜑𝑖= logit intercept for species i, representing the mean probability of occupancy for that species 

among all sites. 

𝜑𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑢, 𝜎𝑢
2) 

 

𝛼𝑖 = the spatial weights parameter, representing the change in the logit occupancy probability   

conditional on the spatial weight assigned to species i at site j. 

𝛼𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼, 𝜏𝛼) 
 

𝐴𝑖𝑗 =
∑ 𝑧𝑖𝑟𝑟

𝑅𝑗
 where 𝐴𝑖𝑗 is the proportion of sites r neighboring j that are occupied by 

species i. 

 

 

𝑧𝑖𝑗 = {
1, 𝑖𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑡 𝑠𝑖𝑡𝑒 𝑗 (𝑤𝑖𝑙𝑙 𝑎𝑙𝑤𝑎𝑦𝑠 𝑏𝑒 1 𝑓𝑜𝑟 

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑎𝑡 𝑠𝑖𝑡𝑒 𝑗) 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

𝑧𝑖𝑗|𝑤𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓𝑖𝑗) 

 

Hyperparameters: 

Ω~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) This parameter describes the inclusion probability of any species 

randomly chosen form the augmented dataset. The probability will be ≥ 
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n/nspec, where n is the number of observed species and nspec=n+the 

number of added zeros in the augmented dataset.  

 

 

𝜇𝑢~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.001) The mean and variance of the mean logit occupancy probability  

𝜎𝑢~𝑈𝑛𝑖𝑓𝑟𝑜𝑚(0, 10) across all species 

𝜏𝑢 = 1/ 𝜎𝑢
2 

 

𝜇𝛼~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.0001) The mean and variance of the spatial weights parameter across  

𝜏𝛼~𝐺𝑎𝑚𝑚𝑎(0.1, 0.1)  all species 

 

 

Ecological model for abundance: 
 

Parameters: 

𝜆𝑖𝑗= the mean abundance of species i at site j. 

 

*𝑙𝑜𝑔(𝜆𝑖𝑗) = 𝛿𝑖 

 

𝛿𝑖 = the log abundance intercept for species i, representing the mean abundance for that species 

among all sites. 

 

 

Covariance between occupancy and abundance: 

To account for the known relationship between occupancy and abundance, we specify the 

covariance between these 2 parameters. We let 𝑢𝑖 = 𝑙𝑜𝑔𝑖𝑡(𝜓𝑖) and 𝑣𝑖 = 𝑙𝑜𝑔(𝜆𝑖) and specify 

heterogeneity in the parameters among species with a bivariate normal distribution: 

(
𝑢𝑖

𝑣𝑖
) ~𝑁𝑜𝑟𝑚𝑎𝑙 ((

𝛽

𝛼
) , 𝚺) 

where 𝚺 is a 2 x 2 matrix with diagonal element 𝜎𝑢
2 and 𝜎𝑣

2 and whose off-diagonal elements, 𝜎𝑢𝑣 

is the covariance between the diagonal elements (Royle and Dorazio, 2009). Parameters 𝛽 and 𝛼 

represent the logit- and log-scale mean probability of occupancy and mean abundance, 

respectively, among all species.  

 
†𝜐𝑖 = 𝜇𝑣 + (𝜌 × 𝜎𝑣 𝜎𝑢⁄ ) × (𝜑𝑖 − 𝜇𝑢) 

𝛿𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜐𝑖, 𝜎𝜂
2) 

†Equations drawn from Kéry and Royle (2009) 

 

𝑁𝑖𝑗 = The abundance of species i at site j  

𝑁𝑖𝑗|𝑧𝑖𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗)    The zero-inflated abundance estimate 

 

Hyperparameters: 

𝜇𝑣~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.0001) The mean and variance of mean log abundance across all  

𝜎𝑣~𝑈𝑛𝑖𝑓𝑟𝑜𝑚(0, 10)  species 

𝜏𝑣 = 1/ 𝜎𝑣
2 
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𝜌~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1)  The covariance parameter between 𝜓 and 𝜆 

𝜎𝜂
2 = 𝜏𝑣/(1 − 𝜌2)   The variance of 𝛿𝑖 (the log mean abundance for species i) 

 

 

Detection model 
 

Parameters: 

𝑝𝑖𝑗𝑘 = the probability of detection species i at site j. 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑘) = 𝜋𝑖 + 𝜷𝑖𝑥′𝑗𝑘 

 

𝜋𝑖 = the logit detection probability intercept for species i, representing the mean probability of 

detection for that species among all sites. 

𝜋𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑦, 𝜎𝑦
2) 

 

𝑥′𝑗𝑘 = the covariate values at site j during survey k that affect detection probability. 

𝜷𝑖 = the covariate coefficients for species i affecting detection probability during a survey. 

𝜷𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛽 , 𝜎𝜷
2) 

 

 

𝑌𝑖𝑗𝑘 = the number of individuals of species i detected at site j during survey k. 

𝑌𝑖𝑗𝑘~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖𝑗, 𝑝𝑖𝑗𝑘) 

 

Hyperparameters: 

𝜇𝑦~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.0001) The mean and variance of mean logit detection probability across  

𝜎𝑦~𝑈𝑛𝑖𝑓𝑟𝑜𝑚(0, 10) all species 

𝜏𝑦 = 1/ 𝜎𝑣
2 
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APPENDIX B 

 

MULTI-SPECIES OCCUPANCY-ABUNDANCE MODEL CODE 

 

# -------------------------------------------------------------------------------------- 

# Zero-inflated Poisson-binomial Multi-species Abundance Model (ZIP-MSAM), where  

# occupancy and abundance are modeled seperately and there is spatial correlation in 

# the probability of occupancy for each species at each site. Correlation is specified 

# with an autologistic parameter based on the number of sites within a 1km neighborhood 

# of the site where the sepecies was detected . 

# Author: Andrew D. Crosby 

#     Quantitative Wildlife Center 

#     Michigan State University 

#     480 Wilson Road, Room 13 NR 

#     East Lansing, Michigan 48824 

# Date:   10 April 2016 

# -------------------------------------------------------------------------------------- 

 

# The point count data is a 3-dimensional array of sampling points x surveys x species 

# nstats is the number of sampling points 

# nspec is the number of species (including the augmented all-zero encounter histories) 

# K is a vector of the number of surveys done at each sampling point 

# day is Julian day, day2 is day-squared, time is minutes from sunrise 

# weights is a sample points x species matrix of the proportion of sample points within the  

#  neighborhood surrounding each sample point where the species was detected 

 

 

# The code for the initial values was derived from Zipkin et al. (2010), and is very important 

#  for model performance and convergence 

 

data = list(nstats=nstats, Y=bird.comm.data, nspec=nspec, K=nsurvs, 

            day=day, day2=day2, time=time, weights=as.matrix(weights_aug)) 

    

params = c("N", "z", "Ntot", "zmean", "psi", "alpha")   

Nst <- matrix(nrow=nstats, ncol=nspec) 

for (j in 1:nstats) { 

  for (i in 1:nspec) { 

    Nst[j, i] <- max(bird.comm.data[j, ,i],na.rm=T) 

  } 

} 

 

zinit <- matrix(nrow=nstats, ncol=nspec) 

for (j in 1:nstats) { 

  for (i in 1:nspec) { 

    zinit[j, i] <- min(1, max(bird.comm.data[j, ,i],na.rm=TRUE)) 

  } 
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} 

 

inits = function() { 

  omegaGuess = runif(1, n/(nspec), 1) 

  psi.meanGuess = runif(1, .25,1) 

  lambda.meanGuess = runif(1, .25,1) 

  pi.meanGuess = runif(1, .25,1) 

  rhoGuess = runif(1, 0,1) 

  sigma.uGuess =  runif(1,0,1.5) 

  sigma.vGuess =  runif(1,0,1.5) 

  sigma.piGuess =  runif(1,0,1.5) 

  list(omega=omegaGuess, mu.u=psi.meanGuess, mu.v=lambda.meanGuess, 

       mu.pi=pi.meanGuess, sigma.u=sigma.uGuess, 

       sigma.v=sigma.vGuess,sigma.pi=sigma.piGuess, 

       rho=rhoGuess, w=c(rep(1, n), rbinom(nz, size=1, prob=omegaGuess)), 

       z=zinit, N=Nst, phi=rnorm(nspec, psi.meanGuess, sigma.uGuess), 

       delta=rnorm(nspec, lambda.meanGuess, sigma.vGuess), 

       pi=rnorm(nspec, pi.meanGuess, sigma.piGuess), 

       alpha=rnorm(nspec), beta1.pi=rnorm(nspec), beta2.pi=rnorm(nspec), 

beta3.pi=rnorm(nspec)) 

} 

sink("zip_msam_spatial.txt") 

cat(" 

model{ 

 

# ------------------------------------# 

# Hyper-priors on community parameters# 

# ------------------------------------# 

 

 # The ecological process 

 # ---------------------- 

# Hyper-parameter for inclusion probability 

omega ~ dunif(0, 1) 

 

# Hyper-parameter for occupancy random species effect 

mu.u ~ dnorm(0, 0.0001)I(-5, 5) 

sigma.u ~ dunif(0, 10) 

tau.u <- pow(sigma.u, -2) 

 

# Hyper-parameter for abundance random species effect 

mu.v ~ dnorm(0, 0.0001)I(-5, 5) 

sigma.v ~ dunif(0, 10) 

tau.v <- pow(sigma.v, -2) 

 

# Hyper-parameter for detection probability random species effect 

mu.pi ~ dnorm(0, 0.0001)I(-5, 5) 
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sigma.pi ~ dunif(0, 10) 

tau.pi <- pow(sigma.pi, -2) 

 

# Hyper-parameters on the covariance matrix of psi and lambda 

rho ~ dunif(-1,1) 

var.delta <- tau.v/(1-pow(rho,2)) 

 

# Priors on the spatial weights parameter 

mu.alpha ~ dnorm(0, 0.001) 

tau.alpha ~ dgamma(0.1, 0.1) 

 

 

 # The detection process 

 # --------------------- 

mu.beta1.pi ~ dnorm(0, 0.001) 

mu.beta2.pi ~ dnorm(0, 0.001) 

mu.beta3.pi ~ dnorm(0, 0.001) 

 

tau.beta1.pi ~ dgamma(0.1, 0.1) 

tau.beta2.pi ~ dgamma(0.1, 0.1) 

tau.beta3.pi ~ dgamma(0.1, 0.1) 

 

for(i in 1:nspec){ 

  # Species-specific priors drawn from the hyper-priors 

  # --------------------------------------------------- 

   

  # Priors on the ecological processes 

  w[i] ~ dbern(omega)     # Inclusion paramter for species i 

  phi[i] ~ dnorm(mu.u, tau.u)   # Mean species occupancy probability 

  alpha[i] ~ dnorm(mu.alpha, tau.alpha) # Spatial weights parameter 

   

   

  # Priors on the covariance matrix of psi and lambda 

    mu.delta[i] <- mu.v + (rho*sigma.v/sigma.u)*(phi[i]-mu.u) 

    delta[i] ~ dnorm(mu.delta[i], var.delta) 

 

  # Priors on the detection process 

  pi[i] ~ dnorm(mu.pi, tau.pi) # Mean species detection probability 

  beta1.pi[i] ~ dnorm(mu.beta1.pi, tau.beta1.pi) 

  beta2.pi[i] ~ dnorm(mu.beta2.pi, tau.beta2.pi) 

  beta3.pi[i] ~ dnorm(mu.beta3.pi, tau.beta3.pi) 

 

  # Ecological model for occupancy and abundance 

  for (j in 1:nstats) { 

    lpsi[j,i]<-phi[i]+alpha[i]*weights[j,i]    # logit occupancy probability 

 psi[j,i]<-exp(lpsi[j,i])/(1+exp(lpsi[j,i]))   # occupancy probability 
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 mu.psi[j,i]<-min(0.999, max(0.001, psi[j,i]))*w[i] # occupancy probability conditional 

on species inclusion probability 

    z[j,i]~dbern(mu.psi[j,i])       # Occupancy 

indicator (1 or 0) 

 

    log(lambda[j,i])<-delta[i]       # log mean abundance 

    lam.eff[j,i]<-z[j,i]*lambda[j,i]     # mean abundance 

conditional on occupancy 

    N[j,i] ~ dpois(lam.eff[j,i])      # Abundance estimate 

  

    # Detection process model 

 for (k in 1:K[j]) { 

   lp[j,k,i]<-pi[i] + beta1.pi[i]*day[j,k] + beta2.pi[i]*day2[j,k] + beta3.pi[i]*time[j,k] 

   p[j,k,i]<-min(0.999, max(0.001, exp(lp[j,k,i])/(1+exp(lp[j,k,i])))) 

   Y[j,k,i]  ~ dbin(p[j,k,i],N[j,i]) 

   }   

 } 

  Ntot[i]<-sum(N[,i]) 

  zmean[i]<-mean(z[,i]) 

  } 

 

} 

",fill=TRUE) 

sink() 

 

ni<-2000 

nc<-3 

nb<-10000 

nt<-50 

 

system.time({ 

zip_msam_spat1000_full_parallel<-run.jags(model="zip_msam_spatial_full.txt", 

monitor=params,  

  data=data, n.chains=nc, inits=inits, burnin=nb, sample=ni, 

  thin=nt, method="parallel", n.sims=3) 

  }) 
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APPENDIX C 

 

PYTHON CODE FOR LANDSCAPE SIMULATION 

 

# Python code for simulating landscapes with spatially correlated pixel values  

#  according to the diamond-square improvement on the midpoint displacement 

#  method. Code was generously supplied by: 

 

# Dr Pen Holland 

# Ecology Teaching Fellow 

# Department of Biology 

# University of York 

# Heslington 

# York 

# YO10 5DD 

# UK 

# Tel: work 01904 328734 

# pen.holland@york.ac.uk 

 

# For an example of the application of this code, see: 

# Holland, E.P., Aegerter, J.N., Dytham, C., 2009. Comparing resource representations and  

#  choosing scale in heterogeneous landscapes. Landscape Ecology 24, 213-227. 

 

# This version of the code creates landscape value according to the beta distribution  

 

# H is the value for the level of spatial correlation 

 

# ------------------------------------------------------------------------------------------------------------------ 

# ------------------------------------------------------------------------------------------------------------------ 

 

# Python code for running the landscape simulation code (see below) 

import diasq_beta 

reload(diasq_beta) 

 

H = 0.2 

N = 7 

 

maxdim = 50 

ydim = 100 

a = 7.0 

b = 2.5 

 

folder = str(maxdim) + "_" + str(a) + "_" + str(b) + "_" + str(H) 

 

surface = diasq_beta.make_landscape(H, N, maxdim, ydim) 

pixellandscape = diasq_beta.revalue(surface, a, b) 
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diasq_beta.save_landscape(pixellandscape, maxdim, ydim, "for_age_" + folder + ".txt") 

 

# ------------------------------------------------------------------------------------------------------------------ 

# ------------------------------------------------------------------------------------------------------------------ 

 

# Code for simulating the landscape; referred to as “diasq_beta” in the code to run the simulation 

#  (see above) 

import math, random 

 

def randomdisplace(disheight): 

 return random.random()*disheight-0.5*disheight 

 

def displacevals(p, disheight): 

 if len(p)==4: 

  pcentre = 0.25*sum(p)+randomdisplace(disheight) 

 elif len(p) == 3: 

  pcentre = sum(p)/3 + randomdisplace(disheight)  

 return pcentre 

 

def check_diamond_coords(diax,diay,dim,i2): 

    if diax < 0 or diax > dim or diay <0 or diay > dim: 

        return [] 

    if diax-i2 < 0: 

        return [(diax+i2,diay),(diax,diay-i2),(diax,diay+i2)] 

    if diax + i2 >= dim: 

        return [(diax-i2,diay),(diax,diay-i2),(diax,diay+i2)] 

    if diay-i2 < 0: 

        return [(diax+i2,diay),(diax-i2,diay),(diax,diay+i2)] 

    if diay+i2 >= dim: 

        return [(diax+i2,diay),(diax-i2,diay),(diax,diay-i2)] 

    return [(diax+i2,diay),(diax-i2,diay),(diax,diay-i2),(diax,diay+i2)] 

 

#hlist = [-2.0, -1.0, -0.71, -0.43, -0.14, 0.0, 0.14, 0.28, 0.43, 0.71, 1.0, 2.0] 

 

 

def make_landscape(H, N, maxdim, ydim): 

     

    displacementheight = 2.0 

 

    dim = 2**N + 1 

 

    if H == -2.0: 

            surface={} 

            for x in xrange(dim): 

                    for y in xrange(dim): 
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                            surface[x,y] = random.random() 

    else: 

         

            surface={} 

            for x in xrange(dim): 

                    for y in xrange(dim): 

                            surface[x,y] = randomdisplace(displacementheight) 

 

            inc = dim-1 

            while inc > 1: 

                     

                    i2 = inc/2 

                    #print 'inc', inc, 'i2', i2 

             #       print 'square' 

                    for x in range(0,dim-1,inc): 

                            for y in range(0,dim-1,inc): 

                                    # this fills in the centre of the square  

                                    surface[x+i2,y+i2] = 

displacevals([surface[x,y],surface[x+inc,y],surface[x+inc,y+inc],surface[x,y+inc]],displacement

height) 

                     

                    #print 'diamond' 

                    for x in range(0, dim-1, inc): 

                        for y in range(0, dim-1,inc): 

                            #print '*****', x, y, '*****' 

                            #print x+i2,y 

                            diaco = check_diamond_coords(x+i2,y,dim,i2) 

                           # print diaco 

                            diavals = [] 

                            for co in diaco: 

                                diavals.append(surface[co]) 

                            surface[x+i2,y] = displacevals(diavals,displacementheight) 

 

                           # print x,y+i2 

                            

                            diaco = check_diamond_coords(x,y+i2,dim,i2) 

                          #  print diaco 

                            diavals = [] 

                            for co in diaco: 

                                diavals.append(surface[co]) 

                            surface[x,y+i2] = displacevals(diavals,displacementheight) 

 

                           # print x+inc, y+i2 

                            diaco = check_diamond_coords(x+inc,y+i2,dim,i2) 

                          #  print diaco 

                            diavals = [] 
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                            for co in diaco: 

                                diavals.append(surface[co]) 

                            surface[x+inc,y+i2] = displacevals(diavals,displacementheight) 

 

                           # print x+i2, y+inc 

                            diaco = check_diamond_coords(x+i2,y+inc,dim,i2) 

                         #   print diaco 

                            diavals = [] 

                            for co in diaco: 

                                diavals.append(surface[co]) 

                            surface[x+i2,y+inc] = displacevals(diavals,displacementheight) 

                             

                    displacementheight = displacementheight*2**(-H) 

                    inc = inc/2 

 

             

  #  maxdim = 40 

    if dim < maxdim: 

            maxdim =dim 

   

    trimmedsurf = {} 

    for x in xrange(ydim): 

            for y in xrange(maxdim): 

                   # print x, y 

                    if surface.has_key((x,y)): 

                            trimmedsurf[x,y] = surface[x,y] 

##    fileout = open("surfconf.txt",'w',-1) 

##    for x in xrange(maxdim): 

## thisline = '' 

## for y in xrange(maxdim): 

##  if surface.has_key((x,y)): 

##   thisline = thisline + str(surface[x,y]) + '\t' 

##  else: 

##   thisline = thisline + '0\t' 

## thisline = thisline + '\n' 

## fileout.write(thisline) 

##    fileout.close()    

 

    return trimmedsurf 

 

def save_landscape(surface, maxdim, ydim, fileoutname): 

    fileout = open(fileoutname,'w',-1) 

    for x in xrange(ydim): 

            thisline = '' 

            for y in xrange(maxdim): 

                    if surface.has_key((x,y)): 
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                            thisline = thisline + str(surface[x,y]) + '\t' 

                    else: 

                            thisline = thisline + '0\t' 

            thisline = thisline + '\n' 

            fileout.write(thisline) 

    fileout.close() 

 

 

def revalue(surface,a,b): 

         

 oldvals = surface.values() 

 oldvals.sort() 

         

 newvals = [random.betavariate(a,b) for i in xrange(len(oldvals))] 

 newvals.sort() 

 

 newsurface = {} 

 for k in surface.keys(): 

  newsurface[k] = newvals[oldvals.index(surface[k])] 

        return newsurface 

 

 

# ------------------------------------------------------------------------------------------------------------------ 

# ------------------------------------------------------------------------------------------------------------------ 
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APPENDIX D 

 

R CODE FOR SPECIES SIMULATION 

 

library(raster) 

library(coenocliner) 

library(reshape2) 

 

 

memory.limit(size=20000) # This program can use a great deal of memory 

 

 

# Create the location matrix from the text files representing the ecological gradients (i.e. raster  

# maps) 

matrix1<-as.matrix(read.table("TABLE_NAME.txt")) 

matrix2<-as.matrix(read.table("TABLE_NAME.txt")) 

 

matrix1.vec<-sort(matrix1, index.return=TRUE) 

matrix2.vec<-sort(matrix2, index.return=TRUE) 

loc1<- matrix1.vec$x 

loc2<- matrix2.vec$x 

 

 

# Simulate 50 spp using beta distribution 

M<-50      # Number of species 

A0 <- rbeta(M, 0.5, 1)    # max occupancy rate 

m <- runif(M, min(loc1), max(loc1)) # location on gradient of modal abundance 

r <- runif(M, 0.01, 0.5)   # species range of occurence on gradient 

alpha<-round(runif(M, 0.5, 7), 1) # shape parameter 

gamma<-round(runif(M, 0.5, 7), 1) # shape parameter 

alpha 

gamma 

pars<-list(A0=A0, m=m, r=r, alpha=alpha, gamma=gamma) 

 

pbern<-coenocline(loc1, responseModel = "beta", params = pars, countModel = "bernoulli", 

    expectation=TRUE) 

pbern 

 

## plot 

plot(pbern, type = "p", pch = 1) # a random realisation 

lines(pbern, lty = "solid") # probability of occurrence 

 

# Save the output as a matrix 

trial.out<-pbern[1:length(loc1),1:M] 

 

prob<-cbind(loc1, trial.out) 
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data<-matrix(0, length(loc1), M) 

for(i in 1:dim(data)[1]){ 

  for(j in 1:dim(data)[2]){ 

    data[i,j]<-rbinom(1, 1, trial.out[i,j]) 

    } 

  } 

 

 

# Add the second gradient 

# ----------------------- 

m2 <- runif(M, min(loc2), max(loc2))# location on gradient of modal abundance 

r2 <- runif(M, 0.01, 0.9)   # species range of occurence on gradient 

alpha2<-round(runif(M, 0.5, 7), 1) # shape parameter 

gamma2<-round(runif(M, 0.5, 7), 1) # shape parameter 

pars2<-list(m=m2, r=r2, alpha=alpha2, gamma=gamma2) 

 

params2<-list(px=pars, py=pars2) 

 

 

# Create the location points for the individual grid sections 

maxdim<-50 

xdim<-dim(matrix1)[2]/maxdim 

ydim<-dim(matrix1)[1]/maxdim 

d<-f<-0 

for(i in 1:xdim){ 

  d<-0 

  for(j in 1:ydim){ 

    assign(paste("loc1.", j, i, sep=""), sort(matrix1[(d+1):(d+maxdim),(f+1):(f+maxdim)], 

index.return=TRUE)) 

    assign(paste("loc2.", j, i, sep=""), sort(matrix2[(d+1):(d+maxdim),(f+1):(f+maxdim)], 

index.return=TRUE)) 

    d<-d+maxdim 

    } 

  f<-f+maxdim 

  } 

 

# Run the simulations on each individual grid section 

system.time({ 

for(i in 1:xdim){ 

  for(j in 1:ydim){ 

    locs<-expand.grid(x=get(paste("loc1.", j, i, sep=""))$x, y=get(paste("loc2.", j, i, sep=""))$x) 

    assign(paste("pbern2.", j, i, sep=""), coenocline(locs, responseModel = "beta", params = 

params2, 

      countModel = "bernoulli", expectation=TRUE)) 

    } 

  } 
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}) 

 

pbern2.11 

 

 

# ------------------------------------------------------------------------------ 

# Return values to matrix  

# ----------------------- 

 

# Re-cast all of the simulation output into arrays indexed by loc1 and loc2 values 

for(i in 1:xdim){ 

  for(j in 1:ydim){ 

    t<-cbind(expand.grid(x=get(paste("loc1.", j, i, sep=""))$x, y=get(paste("loc2.", j, i, 

sep=""))$x), get(paste("pbern2.", j, i, sep=""))) 

    t.m<-melt(t, id=c("x", "y"), measured=seq(1, 10, 1)) 

    assign(paste("t.cast_", j, i, sep=""), acast(t.m, x~y~variable)) 

  } 

} 

 

f<-0 

for(i in 1:xdim){ 

  d<-0 

  for(j in 1:ydim){ 

    mat1<-matrix1[(d+1):(d+maxdim),(f+1):(f+maxdim)] 

    mat2<- matrix2 [(d+1):(d+maxdim),(f+1):(f+maxdim)] 

    g<-array(NA, dim=c(maxdim, maxdim, M)) 

    for(l in 1:maxdim){ 

      for(m in 1:maxdim){ 

        x<-which(dimnames(get(paste("t.cast_", j, i, sep="")))[[1]]==mat1[l,m]) 

        y<-which(dimnames(get(paste("t.cast_", j, i, sep="")))[[2]]==mat2[l,m]) 

        for(k in 1:M){ 

          z<-get(paste("t.cast_", j, i, sep=""))[x,y,k] 

          g[l,m,k]<-z 

        } 

      } 

    } 

    assign(paste("bird.comm_", j, i, sep=""), g) 

    d<-d+maxdim 

  } 

  f<-f+maxdim 

} 

 

 

# Save all of the arrays 

for(i in 1:xdim){ 

  for(j in 1:ydim){ 
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    x<-get(paste("bird.comm _", j, i, sep="")) 

    save(x, file=paste("bird.comm _", j, i, ".Rdata", sep="")) 

  } 

} 

 

 

# Re-load all of the tables 

for(i in 1:xdim){ 

  for(j in 1:ydim){ 

    load(paste("bird.comm_", j, i, ".Rdata", sep="")) 

    assign(paste("bird.comm_", j, i, sep=""), x) 

  } 

} 

 

 

# Combine the individual arrays into the entire map 

library(abind) 

 

 

birds.north<-abind(bird.comm_11, bird.comm_12, bird.comm_13, along=2) 

birds.south<-abind(bird.comm_21, bird.comm_22, bird.comm_23, along=2) 

birds.psimap<-abind(birds.north, birds.south, along=1) 

dim(birds.south) 

dim(birds.psimap) 

 

 

# Create occupancy map 

birds.zmap<-array(NA, dim=c(dim(birds.psimap)[1], dim(birds.psimap)[2], 

dim(birds.psimap)[3])) 

for(i in 1:dim(birds.zmap)[1]){ 

  for(j in 1:dim(birds.zmap)[2]){ 

    for(k in 1:dim(birds.zmap)[3]){ 

      birds.zmap[i,j,k]<-rbinom(1, 1, birds.psimap[i,j,k]) 

    } 

  } 

} 

hist(apply(birds.zmap, 3, sum)/15000) 

 

# Increase occupancy probabilities 

birds.psimap_new<-1-(1-birds.psimap)^100000000 

hist(birds.psimap_new) 

 

 

 

# Create occupancy map 
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birds.zmap_new<-array(NA, dim=c(dim(birds.psimap)[1], dim(birds.psimap)[2], 

dim(birds.psimap)[3])) 

for(i in 1:dim(birds.zmap)[1]){ 

  for(j in 1:dim(birds.zmap)[2]){ 

    for(k in 1:dim(birds.zmap)[3]){ 

      birds.zmap_new[i,j,k]<-rbinom(1, 1, birds.psimap_new[i,j,k]) 

    } 

  } 

} 

apply(birds.zmap_new, 3, sum)/15000 

hist(apply(birds.zmap_new, 3, sum)/15000) 

 

birds.zmap<-birds.zmap_new 

 

# Add in the north/south climate gradient 

C<-0.5    # The probability that the species is not affected by the gradient 

clim<-rep(0, M) 

for(i in 1:M){ 

  clim[i]<-1*(runif(1) < C) 

} 

clim 

clim.eff<-round(runif(M, 0.1, 0.9), 1) 

clim.eff 

 

 

 

# Re-do the north-half occupancy matrix using the climate filter 

birds.north.zmap<-array(NA, dim=c(dim(birds.north)[1], dim(birds.north)[2], M)) 

for(i in 1:dim(birds.north)[1]){ 

  for(j in 1:dim(birds.north)[2]){ 

    for(k in 1:M){ 

      birds.north.zmap[i,j,k]<-birds.zmap[i,j,k]*1*(runif(1) > clim[k]*clim.eff[k]) 

    } 

  } 

} 

 

 

birds.clim.zmap<-abind(birds.north.zmap, birds.zmap[51:100,,], along=1) 

dim(birds.clim.zmap) 

apply(birds.clim.zmap, 3, sum)/15000 

hist(apply(birds.clim.zmap, 3, sum)/15000) 

 

 

 

save(birds.clim.zmap, file="birds.clim.zmap_1.Rdata") 
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# ---------------------------------------------------------------------------------- 

# Create a new map using both data frames 

# ---------------------------------------------------------------------------------- 

 

# Bring in both arrays 

load("birds.clim.zmap_1.Rdata") 

load("birds.clim.zmap_3.Rdata") 

 

hist(apply(birds.clim.zmap_1, 3, sum)/15000) 

hist(apply(birds.clim.zmap, 3, sum)/15000) 

 

 

# Combine both species arrays 

birds.clim.zmap_full<-abind(birds.clim.zmap_1, birds.clim.zmap, along=3) 

dim(birds.clim.zmap_full) 

apply(birds.clim.zmap_full, 3, sum)/15000 

hist(apply(birds.clim.zmap_full, 3, sum)/15000) 
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