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ABSTRACT

A STUDY OF SUBHARMONIC SOLUTIONS OF
SECOND ORDER EQUATIONS

By
Whei-Ching Chang Chan

Consider a second order differential equation

X + g(x) = -\x + uf(t)
with small damping and periodic forcing. We will
investigate the condition on the parameters (Nent) to

ensure the existence of subharmonic solutions of order k
by deriving the bifurcation equation. We find in the
(r,u)-plane there are two disjoint regions such that the
equation has at least 2k k-periodic solutions 1in one
region and none on the other region. The stability of
these solutions 1is also discussed by computing the
characteristic multipliers. Finally, some numerical
experiments, such as locating those periodic solutions and
increasing parameters to obtain period doubling phenomena,

are performed on the forced pendulum problem.
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SECTION 1. INTRODUCTION

In (6], D'Humieres, Beasley, Huberman, and Libchaber
presents a series of numerical experiments on the forced
pendulum problem, which includes the period-doubling
cascades which lead to chaotic motions. They also indicate
that there is a non period-doubling case which also leads
to chaotic states. A. Ito [9] also gave some evidence of
successive subharmonic bifurcations which lead to chaos.
Other experiments may be found in [7], [8]. However, in
many cases it is not clear how these motions are created.
Here we attempt to explain some of these phenomena.

Consider the 2nd order differential equation

[ 1)) X + g(x) = -Ax + uf(t)
where f(t) has least period 1, \,u are parameters and
g(x) is a function such that when (x\,u) = (0,0),

equation (1.1) has either a homoclinic orbit or heroclinic
orbit r. Inside the orbit T, it is well-known that
there exist periodic solutions with least periods tending
to infinity as these periodic solutions tend to T.

For each periodic orbit Tk with least period k, we
will investigate the condition on the parameters (x,x) to

ensure the existence of subharmonic solutions of (1.1) of




order k. To do this, we first invert a differential
operator, whose inverse is denoted by Gk. Next, we derive
the bifurcation equation for these subharmonic solutions in
order to find the bifurcation diagram. We find that in the
(A,u)-plane there are two disjoint regions such that (1.1)
has at least 2k k-periodic solutions in one region, none
on the other region, and exactly one on the curve. The
above phenomena are called the saddle-node bifurcations,
i.e., two periodic solutions coalesce and then disappear.

To prove that, we need to discuss the stability of the
solutions by computing their characteristic multipliers.
We also find a neighborhood of (A,u) = (0,0) such that
the stability arguments holds uniformly for each k.

Chow, Hale, and Mallet-Paret (3] indicated that if
there is a neighborhood U of (\,u) = (0,0), such that
for (A,u) € U there exist k-periodic solutions of any k,
then there exist infinitely many periodic solutions which
are derived from successive subharmonic bifurcation. Such
neighborhood would exist if the operator Gk, as mentioned
above, is uniformly bounded in k. We prove in Section 5
that Gk is uniformly bounded on the subspace of symmetric
periodic functions.

Finally, we give a continuation method for finding the
periodic orbits numerically. We will use the Runge-Kutta
method to solve the initial value problem and Newton's
method to 1locate the periodic orbit. Our numerical

exper iments are performed on the forced pendulum problem.



SECTION 2. BIFURCATION EQUATION

Consider the equation

(2.1) X + g(x) = -Ax + uf(t)
where Aok are real parameters, 8(x) is 3-times
continuously differentiable and f£(t) is periodic with

period 1. For X = u = 0, assume the system
(2.2) X+ g(x) =0
has a nontrivial periodic solution p(t) with least period
k, where k is an integer. Let r = {(p(t),b(t);
0=t <Kk}. The problem is to find periodic solutions of
(2.1) with least period k in a sufficiently small
neighborhood of r for small Aok. If such solutions
exist, they are called subharmonic solutions of order k
since their period is k times the period of f(t).

For this discussion, it is convenient to use a
different coordinate system near TI'. Let G : R4 » R2 be

defined by

G(a,a,x,y) = (p(a) + ab(a) - x,p(a) - ap(a) - y)
since G(ag,0,p(@y) ,p(ag)) = (0,0) and

det 50355 (@,,0,p(a,) Bla,)) = Bla)? + Bla)? # 0 .
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It follows from Implicit function theorem that there exists
8(ag) > 0, a(ag) > 0 and two functions a&*(x,y), a*(x,y)
with  a*(p(eg).P(ag)) = @ , a*(p(ag),P(ag)) = 0, such
that G(a*(x,y),a*(x,y),x,y) = 0 for Ix - p(ag)! < 8(ag),
ly - ﬁ(an)l < 6(ag) and these solutions are unique for
la =  agl < a(ag)., lal < a(ag) . This defines a
diffeomorphism from a neighborhood of (p(au),é(au)) to a

neighborhood of (ag,0). We can apply the above argument

to every point of T, then by compactness of T, there
exists ag > O and a diffeomorphism F from a
neighborhood of I onto [o,k) x {a : lal < ag}-. In

summary, for any (x,y) near r, there exists unique
(a,a), where a@ shows the position on T and ap(a)
indicates the distance between the orbit I and the point

(x,y), such that
x = p(a) + ap(a)

y = p(a) - ap(a)

If x(t) is a k-periodic solution of (2.1) in a
small neighborhood of T, then there exists a unique

(a,a) such that

x(0) = p(a) + ap(a)

x(0) = p(a) - ap(a)
Therefore we can write x(t) in the form

(2.3) x(t) = p(t + a) + z(t + a)




where z(t + a) has small magnitude, (z(a),é(a)) is
orthogonal to (b(a),ﬁ(a)) and a is determined by the
initial condition.

Let (2.3) be applied to (2.1), we get

Z(t + a) + g'(p(t + a))z(t + a)

= -az(t + @) - \p(t + a) + uf(t) + G(t + a,z)

where G(t + a,z) = -g(p(t + a) + z(t + a)) +
g'(p(t + a))z(t + a ) + g(p(t + a)), therefore G(-,z) =
O(lzl12). Here we let v," denote the derivative with
respect to x. Replace t + a by t, we obtain the

following equation
(2.4) Z 4+ 8'(pP)z = - Az - Ap + ufq(t) + G(t,z)

where fqu(t) = f(t - a). Hence the problem now is to find
k-periodic solutions of (2.4) with (z(a),i(a)) orthogonal
to (p(a),p(a)).

Without 1loss of generality, suppose b(O) = 0 and
assume that

(H1l) Every k-periodic solution of the homogeneous equation

(2.5) z + g'(p)z =0

is a constant multiple of b(t).

Note that equation (2.2) is Hamiltonian. Hence p(t) must
be embedded on a one-parameter family of periodic solutions
of (2.2). Let the parameter be denoted by b and the

corresponding period be T(b). Assume that T(bg) = k.
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Proposition 2.1. Let T(b) be the period function as

above. Then hypothesis (Hl) is equivalent to T'(bg) # O.

Proof. For simplicity, let's assume that b is the
place where the periodic orbit crosses the positive
x-axis, therefore 5(0) = 0, p(0) = bg.

Let p(t,b) be the periodic solution of (2.2) with

period T(b), then
(2.6) p(t + T(b),b) = p(t,b)
and p(t,bo) = p(t). Let

(2.7) a(t) = o plt,b)l
1]

then q satisfies (2.5) with initial condition qg(0) = 1,
&(0) = 0. Take the derivative with respect to b of both

sides of (2.6) and set b = bg. We obtain
(2.8) P(E)T' (b)) + q(t + T(b)) = q(t)

Set t = 0, we get q(k) = 1. Take the derivative with
respect to t of both sides of (2.8) and set t = 0, and
we get q(k) = -p(0)T'(bg)- If T'(bg) = O, then
&(k) = 0 which implies q(t) 1is a k-periodic solution of

(2.5), therefore (Hl) does not hold. If T'(bg) # 0, then

q(t) 1is not a k-periodic solution . Let
(t)
(2.9) r(t) = 222
p(0)

then



[ q(t) r(t) ]
(2.10) X(t) =

q(t) r(t)
is a fundamental matrix solution of (2.5), that is the
solution of (2.5) is a linear combination of g and r.
This shows that the only k-periodic solution of (2.5) is a

constant multiple of b(t). Q.E.D.

We now apply the method of Liapunov-Schmidt ¢to
equation (2.4). Let Pyt be the space of r-times
continuously differentiable periodic function with period
k with Ifly = sup{I£(})(t)l : i = 0,1,...,r,t € [0,k)}.

For any y € Px?2 let

(2.11) Ay =y + g'(p)y

Ay — Ap + ufqu(t) + G(t,y)

Ny

where fo and G(t,y) are the same as in (2.4). Then A
is a continuous linear operator from Px2 » Px® and N is
a continuous operator from Px2 » Pyx0. (Hl) implies that

the null space of A is one dimensional. Def ine

P : Px®° » Px° by

- k -
(2.12) Py = npfo pydt
where

k
(2.13) n = (f p? at)™*

0

Then P 1is a continuous projection.



Lemma 2.2. Assume (Hl) holds. Let X(t) be the
fundamental matrix of (2.5). For any $ € P9, def ine

G : (I - P)Px® » Px® by

Go(t) w t 0
(2.14) - =xe)| ° | +x) [ X 1(s)[ ] ds
Go(t) 0 0 $(s)
where
k
1
wo = q(s)¢(s)ds
°  _4q(x) J‘0
and q(t) is given by (2.7). Then G is a continuous

linear operator, and G¢p(t) 1is a solution of

zZ + g'(p)z = ¢(t)

(2.15) z 1is k-periodic
z(0) = O
Proof: It follows from the variation of constants

formula that the solution of (2.15) can be written as

[ z(t) ] l w0
= X(t)

£ ) 0
] + X(t) j X (s)[ ] ds
2 (t) 0 0

#(s)

Then z(t) is a k-periodic solution if and only if

-r(s)¢(s)ds

+ X(k) f:

q(s)¢(s)ds






W, k -r(s)¢(s)ds
(I - X(k)) [ ] = X(k) fo [

0 d(s)¢(s)ds

i.e.,

.y
—a(k)w,

[ JE -r(s)e(s)as

q(k) [§ r(s)s(s)as + [ a(s)e(s)as

[ -I% r(s)p(s)as

X a(s)s(s)as

Therefore ft r(s)¢(s)ds = 0, and

k
Yo T 55 [ asrssras

Q.E.D.

Note that since both G and P are continuous linear
operators, therefore the operator G(I - P) has continuous
second Freéchet derivative.

We obtain the following Lemma by adding an appropriate

constant multiple of b(t).

Lemma 2.3. Let ¢ € Px® . Then

zZ + g'(p)z = ¢(t) - P(t)

z 1s k-periodic
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has a unique solution G(I - P)¢ which has continuous
second Frechet derivative with respect to ¢ and
P(G(I - P)¢) = O.

It follows from Lemma 2.3 that AG = 1 on (I - P)Pg°

and GA =1 - U on Px?2 where

U=Plp,

For this definition of G, (2.1) will have a solution of
the form given in (2.3) if and only if the following two

equations are satisfied.

(2.16) w = G(I - P)N(z)
= G(I - P)[-xz — x\p + ufqg + G( ,2)]
(2.17) PN(z) = p[-\z - \p + weE, + G( ,2)] =0

where z =w + ap and Pw = 0. Let B : Px2 x R x [0,k) X

R X R » Pk? be defined by
B(w,a,a@,A\,i) = w - G(I = P)[-Az - Ap + ufqg + G( ,2)]

Since B(0,0,a,0,0) = 0 and

dB

3w (0,0,a,0,0) =1

on Pk?; by the Implicit function theorem there is a
neighborhood U c Px? of zero and a neighborhood V c R3
of (a,\,u) = (0,0,0), such that (2.16) has a solution
w*(a,a,x,u) for (a,\,) €V, 0 = a < k. This solution

is unique and has continuous second derivative with respect
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to a,a,\,# and w*(a,a,0,0) = 0 for all a. Therefore
(2.1) will have k-periodic solutions if and only if
(a,a, N, 1) satisfies equation (2.17) with z replaced by

w*(a,a,k,u) + ab.

Proposition 2.4. Let

(2.18) Cla,a,\,u)

n Ik b[—kw*(a,a,x,u) - Ap + ufg(t)
0

+ G(t,w*(a,a,\,u))]ldt

-\x + h(a)u + h.o.t.

where
k -
h(a) = 17 f p(t)f(t - a)dt and
0

h.o.t. = 0(IxI% + 11?2 + lal) as \,u,a » O

Then (2.1) has a k-periodic solution for some small X\, u,

a if and only if there exists an & such that
(2.19) C(a,a,\,n) =0

Remark 2.5. Equation (2.19) is often called the

bifurcation equation.

Remark 2.6. Since w*(a,a,x,u) is a solution of
(2.16) and f(t) is l-periodic, it follows that
C(a,a + 1l,\,u) = C(a,a,\,u), that is C is l-periodic

in a with x u fixed.




SECTION 3. EXISTENCE

To obtain the complete picture of the existence of
k-periodic subharmonic solutions of (2.1), it remains to
analyse the bifurcation equation (2.19). The procedure is
similar to Chow and Hale [3]. Since a in the definition
of the bifurcation equation is not important, we drop its
dependence in our analysis.

Let h(a) be defined by (2.18) which has period 1.

Assume that

(H2) There are only finitely many numbers aj € [0,1] i =

l1,...,N, such that h'(aj) = 0 and h"(aj) # O.

For any wu« # 0, (2.19) is equivalent to

A A
- — + !'—le = 0
h(a) m G(a m 7y
where
Mmoo G(ar%r)\lﬂ-) =\ - h(a)ll- - C(a,)\'#)
and

G(a,8,0,0) =0, B =

Hence to finding all possible solutions of (2.19) for small

A, 4, 1is equivalent to finding all possible solutions of

12
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(3.1) F(a,8,1) = h(a) - 8 + G(a,8,8u,4) =0

for all 0 = a ( k, B ¢e R and & near O. It follows
from Remark 2.6 that F(a,8,u4) is 1l-periodic in a with
At fixed. For 0 <= a <1 and u = 0, the only solution
of (3.1) is (agrBg) which satisfies h(ag) = Bp- If

h'(ag) # 0, then

daF
a—'a (aO'BO'O) 7‘ 0o .

The Implicit function theorem implies that there exists
8(ag,B8p) > 0 and a unique solution a*(8,u) such that
F(a*(B,u),8,8) = 0 for 18 - Bgl < 8(@g,Bg), Iul <
6(ag,B8) and a*(B8g,0) = ag.

If h'(ag) = 0 then (H2) implies

2
d°F o
2 (aO’BO'O) = h (ao) # 0o .
da
By the Implicit function theorem there exists &(ag,8p) > O

and a unique solution a*(B,u) such that

dF * _
’a_a (a (ﬁl#)lﬁlﬂ) =0

for I8 - Bgl « 6(ag,Bg) lul < 6(ag.Bg)- Hence
F(a*(ﬁ,u),ﬁ,u) is a maximum or minimum of F(a,8,4) with
respect to a for B, u fixed. For fixed B,u, let
g(a) = F(a,B8,u) then
g"(a) = Qi% (a,B, 1)
da

In particular
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"(ax(8_,0)) = 2F (a8 ,0) = h"(a_) # 0
8 o' 2 0’ "o’ (i -
da
1f h"(ag) > O then for (B, ) near (Bo:0),

g"(a*(8,1)) > 0 therefore F(a*(8,1),8,1) is a minimum.
If h"(ag) < 0 then by the same argument F(a*(8,u),8,4)
is a maximum. The number of solutions of (3.1l) will depend

on the sign of F(a*(ﬂ,u),ﬁ,u). Let
(3.2) ¥(B,u) = sign h"(e ) - F(a*(8,u),8,4)

Then the following holds
(1) vY(8.,) > 0O => there are no solutions of (3.1)
(2) v(B.,u) = 0 => there is only one solution of
(3.1)
(3) v(B.,u) < 0 => there are exactly two solutions

of (3.1)
Let H(B8,u) = F(a*(8,1),8,1) = 0. Since

o (8,0 = (3T 2%+ (e, .8,.0) = -1
and H(B8¢.0) = O, it follows from the Implicit function
theorem that there exists 6(8g) > 0 and a unique solution
BX(w), such that H(B8*(u),u) = 0 for lul < 8(Bg)-
Therefore F(a* (8" (u),u),8%(w),k) = 0 or ¥71(0) = ((8,n)
: B = B*(u),lul < 8(Bg)}- We conclude that there are two
solutions of (3.1) near ag on one side of the curve

B = ﬁ*(u) and none on the other side. In terms of the
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coordinates (N, i), the curve becomes A = B*(u)u which
is tangent to 1\ = h(ag)u at X = u = 0.

The above argument can be applied to each ag + J,
j=1l,...,k - 1. Since F(a + 1,\,u) = F(a,\,un), hence
the curve we obtain will be the same for each ag + j-
This shows that altogether there are 2k solutions on one

side of 1\ = B*(u)u and none on the other side. Let

h(a*) = max h(a) and h(a,) = min h(a)
ae(0,1) ae[0,1)
and two curves A= C*(u) A = Cx(u) which are
respectively tangent to A= h(a*)u, AN = h(a, )u at

AN =u = 0. We obtain the following theorem.1l

Theorem 3.1. If hypotheses (H1) and (H2) are

satisfied, then there are neighborhoods U of T, V of A
=4 =0 and a finite number of curves Cj € V defined by
A = Cj(u) which is tangent to the straight line
A = h(aj)u at AN = u =0, j = 1,...,N. The number of
k-periodic subharmonic solutions of (2.1) in U changes by

2k as each curve Cj is crossed. Moreover if
S = {(hu) €V : C¥(u) <X < Cyplu)}

then there are no solutions of (2.1) in U for (x,u) £ S

and at least 2k in S
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Proof. It remains to find the neighborhood \Y of
A= u = 0. For each aj in Hypothesis (H2), by the same
argument as before, there exists O(Bj),e(aj) and
bifurcation curve A = ﬁﬁ(u)u such that there are two

solutions of (3.1) on one side of 1\ = BE(#)# and none on

the other side for Ixl, lul < O(Bj) and
la - ajl < e(aj). Let B be the complement of the union
of {a;la - ajl < e(aj)}, j = 1,2,---,N then B is
compact in [0,1] and h'(a) # O on B. Therefore no
further bifurcation will take place. By the same argument
as before, for each a3 € B, there exists &6(ag.8p) > O,

€(ag,Bg) > O such that equation (3.1) has exactly one
solution for INl,lul < 6(ag,Bg) and la - agl < €(ag,Bg)-

The sets (a:la - agl < €(ag:,B8y)} as ay varies over B,

serves as an open covering of B. By the compactness of
B, there exists a finite covering, {a;la - agjl <
€(agirBoi)} 1 =1,2,---,M, of B. Let
6 = mln {a(aollﬁol)lb(ﬁj)} 4

i=l,---,M

j=lr ---,N
then V = {(A,u);IX, lul < 8} will be the required
neighborhood.

Remark 3.2. The above result can be generalized to a

two dimensional systems

x = g(x) + f(t,x,u)






where
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g : R2 5, R2, f(t,x,u4) : R x R2 x R2 - R2 are

r-times continuously differentiable and f(t + l,x,u) =

f(t,x,u). Assume
x = g(x)
has a periodic solution p(t) of least period k. Let
q(t) be a nontrivial k-periodic solution of the equation
y = -y-A(t)
where

A(E) = 32 g(p(t))

Then the bifurcation equation becomes

k
(3.2)  Clam) = [ q(t) - F(t,z*(a,u)(t),k,@)dt = 0

0
where F(t,z,u,a) = f(p(t) + z) - f£(p(t)) - A(t)z + g(t -
a,p(t) + z,x) and "-" 1is the inner product. Finding the

solutions of (3.2) is equivalent to finding the solutions

of

(3.3)

where

Apply

B(a,B8,() = B - h(a) + Bo(arBIC)

L =R8L, BeR2, 18l =1, {( € R and
k
h(a) = [ q(t) - [3f(t - a,p(t),0)/3uldt
0

the proof of Theorem 3.1 to (3.3). We obtain a

result similar to that of Theorem 3.1.
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Remark 3.3. For those (a,x,u) such that

C(a,x,) = X\ - h(a)u + h.o.t = 0 ,
since

ac _
'a‘i‘ (aoforo) =1 f 0 ’

the Implicit function theorem implies there exists &6 > O
and a unique function x*(a,u) such that if lwl,

la - agl < 6 then C(a,\*(a,u),u) = 0.



SECTION 4. STABILITY

Assume (H1) holds, we will discuss the stability of
the subharmonic solution of (2.1) by computing the
characteristic multipliers of the linearized equation.

It follows from Lemma 2.3 that for small 2,2 and 0 <€

a < k there exists a unique solution z of

z+g'(p)z = -2z - \p + uf(t-a) + G(t,z) - C(a,\,u)p
(4.1) z 1is k-periodic

z(a)p(a) + z(a)p(a) = O
where G is given by (2.4) and C(a,x, u) is the
expression given by (2.18). Note that the solution
z(t,a,\, 1) has continuous second derivatives with respect
to a, N M. Let p(t,a,x, ) = p(t) + z(t,a,x,u). Then

¢(t,a,x,u) 1is a k-periodic subharmonic solution of
X + g(x) = -Ax + uf(t-a) - C(a,X.#)b

Note that ¢(t,a,0,0) = p(t). We will find the information
needed to decide the stability of ¢(t,a,x,u).

Consider the linearized equation around ¢(t,a,\,u)

(4.2) X + 8'(4)x + \x = O

which can be rewritten as

19
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e SR

(4.3) = A(t) [ x ]
X
Let
[ yi(t,an,u) ya(t,a,\,u)
(4.4) Y(t,a')"ﬂ-) = . yl(t,a')‘,u) yz(traixiﬂ-)

1 0
Y(O,a,\, 1)
L O 1

be the fundamental matrix of (4.3). Note that

q(t) r(t)
Y(rar0,0) =1 gt £(t)
where q and r are given by (2.7) and (2.9). The

characteristic multipliers of the 1linearized equation are
the eigenvalues of Y(k,a,x,u). Therefore, the charac-

teristic multipliers satisfy

02 - A(a,\,u)o0 + D(a,x,u) =0

where A(a,\,u) = tr Y(k,a,x,u), D(a,x,u) = det Y(k,a, , u).

Lemma 4.1. D(a,\,u) = exp(-ik).

i

Proof: D(a,x,u) det Y(k,a,\,u)

k -
det Y(O,a,\,u) - exp J tr A(s)ds
0

[l

exp(—-ik).
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Lemma 4.2. If (Hl) holds, then

(4.5) A(a,\,u) = aj(a) + az(a)x + az(a)sw + h.o.t.
where
- - - ' - _4(k)
a(a) = 2, az(a) = -k, azg(a) = - (h'(a), ( = —=
' ’ ? ‘) B(0)?2
h.o.t. = 0(IXNIZ + (ul2), as A, » 0

d(k) 1is given by (2.7) and

k _l k o
n = (fo pz at) ', h'(e) = [ B()f(t-arat.
0

Proof: Since both y; and y, are solutions of (4.4)
and ¢(t,a,x,u) is twice continuously differentiable with
respect to a, N\, L, A(a,z,u) = yi(k,a,\,un) + §2(k,a,x,u)
is twice continuous differentiable with respect to a,\,u.
Hence A(a,\,u) has Taylor series expansion as in (4.5)

with X,u4 in a neighborhood of A= u = 0.

a,(a) = A(a,0,0) = y,(k,@,0,0) + y,(k,a,0,0)

q(k) + (k) =1 + 1

I

2.

Let Db;(t) = g% (t,a,0,0) then b;(t) 1is a solution

of the problem

n
o

hence b, (t)
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Let b,(t) = 5% ¢(t,a,0,0) then b,(t) satisfies
[ Z + g'(p)z = f(t-a) - h(a)p
z(a)p(a) + z(a)p(a) = 0O

where h(a) 1is given by (2.18). Let P be the projection

operator as in (2.12), since P(f(t-a) - h(a)b) = 0, it

follows from Lemma 2.2, that b, (t) is a k-periodic
solution.

Let by(t) = 32 y,(t,a,0,0), then by is a solution
of

{ z + g'(p)z = -4
z(0) = 2(0) = O

The variation of constants formula implies

t t
ba(t) = q(t) jo r(s)d(s)ds - r(t) jo a(s)§(s)ds

Let b,(t) = 5% y2(t,a,0,0) then b, satisfies

[ Z +q'(p)z = -t
z(0) = z(0) =0

k
since | p(-f)ds = 0, b, is a k-periodic solution.
0
Again by the variation of constants formula

t t
by(t) = q(t) Jo r(s)r(s)ds - 1(t) fo q(s)r(s)ds

Therefore

az(a) 5{ (aroro)

3y 3y,

1
"_a"i (kraroro) + "ﬁ (klaroro)
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by (k) + bg(k)

1}
—
~

Q
Q,
0]

|
—
£
[0
Q,
]

0
|
[} %‘
2
=3
|
=
Nol
Q,
[0

dy
Let bg(t) = —— (t,a,0,0), then bg is a solution
] u

of

[ Z + 8'(p)z = -8"(p)baq
z(0) = 2(0) = 0

Applying the variation of constants formula, we have

t t
bs(t) = q(t) forg"(p)bzqu - r(t) foqg"(p)bzqu

ay
Let bg(t) = —— (t,a,0,0), then bg satisfies
6 u

[ Z + g'(p)z = -8"(p)b,r
z(0) = 2z(0) =0

by the variation of constants formula

t ) t
be(t) = q(t) jo rg"(p)b,rds - r(t) fo q8" (p)b,rds

Therefore
as(a) = g—‘AL (aloro)
3y, ay

[
~
R
o
(=}
-+
o
=K
-
R
(=}
(=}
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bs(k) + bg(k)

[

q(k)

k
8" (p)byads + ¢(k) fo rg" (p)byrds
k
- [ ag"(prpyras
8]

k
[ re"pypyras
0

B(O

& n[f

k
1 [, & @pbaas

Kk k . i3
- (8" (p)Pby |0» fog'(p)pbzds - Iog'(p>pbads1

k . k
g8' (p)Pbyds + [ g'(p)pb,as]

0 0

k

0

» k k ..
<t g (p)Poads + g(p)B, |0 - IO 8(p)b,ds]

3 . k
-n[jo g' (p)Bbyds + fo 8(P) (8" (P)D; ~ fa

+ h(a)plds

k =
- n[jo g' ()b, [P + 8(p)1ds

k k
- Jo g(p)fads + fo n(a)g(p)pds]

K 2 k
- n[jo Bfads - h(a) jo Bpds]

- atf Beads]
0
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Since

h(a)

k
7 Io P(t)f (t-a)dt

-a
n fk p(s+a)f(s)ds

4

it follows that

¢ 4
7 p(k)f(k-a) - 7 Pp(O)E(-a) + jk p(s+a)f(s)ds

h'(a) =
-a
-a
= p(s+a)f(s)ds
-
= fk p(t)f(t-a)dt
0
= fk P(t)fg(t)dt
0 Q.E.D.
Lemma 4.3. If h'(ag) = O, then for every small

Moo that satisfy the bifurcation equation, we have that
1 is a characteristic multiplier of the 1linearized

equation of o(t,ag,\guQ) -

Proof: Suppose p(t,a,x,n) = ¢(t,a,x\,u,x,y) and
O<a < 1, where (x,y) is the 1initial condition of
¢(t,a,\,u), and ¢(t,a,rx,u) 1is a solution of (4.1).

- 9¢

Let w;(t) = 3x

(t,ag- g #0,%X0:Y0)r then w;(t) is

the solution of

"
o

{ X + g8'(9)x + \x
x(0) =1, x(0)

[l
o
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3
Let w,(t) = % (t,@0, A0, L0,X0,Y0), then  wy(t)

satisfies

[ X+ 8'(p)x + Ax =0
x(0) =1, x(0) =1
Let
w;(t) wa(t)
W(t) =
w;(t) wa (t)

then W(t) 1is the fundamental matrix of
X +Ax + g'(¢)x =0
If none of the characteristic multipliers of ¢ 1is one,
then
det (W(k) - I) # 0
Let H(X'y,a,)\.ﬂ-) = (¢(kral)\1#1x1}') - X,
¢(k,a,\, L, x,¥y,) - y). Since H(xg.ygrag-rg-#0) = 0 and

H

3
det(éT;‘Ty—) (xo,yo,ao,ko,uo)) = det(W(k) —I) # 0 ’

it follows from the Implicit function theorem that there

exists 65 > O and three unique solutions AX(xX,y),
R*(X,Y) ., and a*(x,y). such that H(x,y, a*(x,y),
AX(X,¥), u*(x,y)) = 0 for Ix - xg! < 8, ly - yg! < 6.
Therefore, for (a,\,u) near (ag,NQrH&Q) » there 1is a

unique k-periodic solution of (2.1), which contradicts the
result we obtained above which says that near (ag-XQraQ)

either there are at least two solutions or no solutions.
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Therefore, 1 must be the characteristic multiplier of the

linearized equation. Q.E.D.

Without loss of generality, assume q(k) > O, then

¢ > 0. So we have the following theoremn.

Theorem 4.4. Let X and M be small. Let

¢p(t,a,\,u) be the k-periodic solution of (2.1) from
Theorem (3.1) and loyl € 1oyl be its characteristic

multipliers. We have,

(1) If h'(a)u > 0, then
(i) 1if X > 0, then either 0 < o; < 0, < 1
(stable node) or |o;!l = loal < 1 (stable focus)
(ii) 1if X ¢ 0, then either 1 < o; < o,
(unstable node) or lo;l = lo,l > 1 (unstable focus)
(iii) if X = 0, then both characteristic multi-

pliers are complex and simple and have modulus 1.
(II) If h'(a)u < 0, then 0 <( o; < 1 < o, (saddle)

(III) If h'(a) = 0, then the characteristic multi-

pliers are 1 and e MK,

Proof: Let o0,,0, be the characteristic multipliers
of the 1linearized equation, then by Lemma 4.1 and 4.2,

they are the solutions of the following equation.

02 - A(a,\,u)o + exp(-rk) = O.

A(a,\,u) = \/(A(d,k,ﬂ))z - 4-exp(-ik)
2

Therefore o,,0, =
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Case I. If h'(ag)w > 0, then there exists a

6(ag) > 0, such that if Ixl,lul < 8(ag), we have either

-2k
2 exp(—i—) C A(a,x\,n) < 1 + exp(-rk) or

-k

A(a, ,n) < 2 exp( _5_) for la - ag! < e€(ag). If

-Ak
2 exp(—z—) C A(a,x,u) < 1 + exp(-rk), then o; < o, <1
for AN >0 and 1 < o; < o, for XA < 0. if
A(a,x,un) < 2 exp(:%E), then o0,,0, are complex conjugate

with modulus greater than one or less than one according to

AN <0 or x> 0. The above argument holds for la - ag! <

e(ag) -

Case 1II. If h'(ag)xe < O, then there exists a
6(ag) > 0 such that if INt,lul € 6(ag) we have A(a,\,u)

> 1 + exp(—-rk) for |la - ag! < €(ag). Then o; < 1 < 0O,.

Case 1I1I1. If h'(a) = 0, Lemma 4.3 shows that

6.0, = 1, exp(—-Ak).

The way to find a neighborhood Vg of X = x4 = 0 such
that the stability arguments hold uniformly is similar to
the proof of Theorem 3.1. It follows from Remark 3.3. that
for (a,\, 1) in the region of existence, 1\ can be

written as a function of u,a, say i*(u,a). Let

H(a,u) = A(a, \*(a,u),u) - (1 + exp(-rA*(a,u)k))
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- ¢ h'(a)e + O(lul?2)

I

k-(=¢ h'(a) + 0(Clul)).

Let G(a,un)

- ¢ h'(a) + O(lul). For those aj‘s in

Hypothesis (H2) we have G(aj,u) = 0. Since
3G _ "
3gl@4) = - ¢ h"(a) + 0(lul)

and h"(aj) # 0. Choose e(aj) > 0, such that h"(a) is
bounded away from zero for la - ajl < e(aj), then there

exists a a(aj) > 0 such that if lul < 5(aj) then

3G
Ja (a,u) # 0,
in particular

3G _
ﬁ (aJr”—) # 0.

Which shows that G(a,#) changes sign as a varies from
one side of aj to the other side of aj. That is
A(a,\,u) < 1 + exp(-rk) ( => node) on one side of ay and
A(a,x,n) > 1 + exp(—-ik) ( => saddle) on the other side of

aj. Let

c
I

{0,1] - {a; la - ajl < e(aj)}

ncZz

j=1

then U 1is compact and h'(a) # 0 in U. Apply the same

argument as in Theorem 3.1. There exists &g > O such

that the stability result holds in

Vo = {(x,u) 5 IXI,lul < 80}
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Remark 4.5. By continuity of the eigenvalues of the
matrix Y(k,a,\,u), we can see that when h'(a) is near
0, we have a node and when h(a) is near 0 we have a

focus.

To 1illustrate the theorem, consider the following

example.

Example: Suppose h(a) has one maximum and one
minimum on {0,1] which occurs at aM and am
respectively. Since h(a) has period one, that identify
1 with O. It follows from Theorem 3.1, there are two
curves A = C*¥(uw), A = Cx(u) which are respectively
tangent to A = h(aM)#, X = h(ag)u at X = x4 = 0, and
which divide a neighborhood of A = a4 =0 into two
disjoint open sets S; and S, (see Fig. 1), such that
(2.1) has two solutions if (N,1) € S,;, no solution if

(\,u) € S and one solution if (\,#) 1is on either curve

Fig. 1 Fig. 2
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Fix a4 > 0, 1let 1\ vary from greater than C*(u) to
less than Cx(u) then the number of solutions of (2.1)
varies from 0,1 then 2 and back to 1 then 0. Let
y = 8 (we used A = Bu 1in section 2.3) be a horizontal
line in the parameter plane, as B8 varies from greater
than h(ay) to 1less than h(an) ., the number of
intersections of the line y = 8 and h(a) changes again
from 0 to 1 then 2 and back to 1 then 0. We can
see how the two solutions of (2.1) change by looking at

when B8 changes from h(ayq) to less than h(ay).

To see how the characteristic multipliers of the
linearized equation move when a moves along h(a). Let
loyl € loyl be the characteristic multipliers and label
some points on h(a), see Fig. 2. Then we obtain the
corresponding o0,,0, situated near the unit circle in the

complex plane (see Fig. 3).

( (B)

-
NI

|O'1| = lazl = 1 |01| = lOz' <1

e
N
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©) (D)

I
’al

-
N

ah
Y,

0, ¢ o <1 o, = e MK o = 1

14

(E) (F)

o, <1< o, o, =1, o = e MK
(G) (H)
/\ K b S
e
l<01<02 'O]J"Ozl)l

Fig. 3

Remark 4.6. Note that the above results hold only when

A, 4 are small. If A K are not small, then some
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interesting phenomena might occur which will be illustrated

later by numerical experimentation.

Remark 4.7. We have analyzed the stability of the

solution of X + g(x) = -xx + ufqu(t). To discuss the
stability of the solution of X + g(x) = -2k + uf(t),

let's consider the following two systems

(1) x

A(t)x

(2) y = A(t+a)y
where A(t) 1is periodic with least period k. Let X(t,s)
be the matrix solution of (1) with X(0,0) =1, and let
Y(t) = X(t+a,0). Then Y(t) is a matrix solution of (2)
with Y(0) = X(a,0). Define Z(t) = Y(t)X(0,a). Then
Z(t) 1is a matrix solution of (2) with 2Z(0) = I.

First, we claim that X(k+a,k) = X(a,0). Let W(t,s) =
X(t+k,s+k). Then W(0,0) = I and W = A(t+k)W = A(t)W.
Therefore W(t,s) = X(t,s) for any t,s, in particular

X(at+k, k) = X(a,0).

Since Z(T)

Y(k)X(0,a)

I

X(k+a,0)X(0,a)

X(kta,k)X(k,0)X(0,a)

I

X(a,0)X(k,0)X(0,a)
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and X(a,0) = X(0,a)1, it follows that Z(k) is similar
to X(k,0). In particular they have the same eigenvalues.

Thus the stability result of (1) can be applied to (2).



SECTION 5. UNIFORMITY

By Theorem 3.1, for each integer k > 1, we obtain a
neighborhood Vx of X = u = 0 such that if (A, ) € Vg,

there exists at least 2k k-periodic solutions of

(5.1) X + g(x) = -Ax + uf(t)

where g(x) is defined as before and f(t) has least
period 1. It is interesting to know whether there exists
a neighborhood V <€ n Vx such that the existence theorem
holds. In other words, is there a neighborhood V such
that if (AN,) €V, there exists k-periodic solution of
(5.1) for every k? If the operator G as defined in
Lemma 2.3 1is uniformly bounded for every k, then such
neighborhood exists. We will show that sometimes this is
true (Theorem 5.4) and in some other cases, it is not true
(Theorem 5.1). To discuss this, we first consider the

following equation

(5.2) X =

x
|
»
x
14
|

35
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Let ék be the operator as in Lemma 2.2 corresponds to

pPk(t), where pkg(t) 1is the k-periodic solution of (5.2).

Theorem 5.1. The Green's function Gk for equation

(5.2) satisfies

o k -—
(5.3) UGkI > cosh() 1

for all k =1,2,---

Proof: Let p(t) be any k-periodic function, it

follows from Lemma 2.2 that ék¢ is the solution of

X - x = ¢(t)
x 1is k-periodic
X(0) =0

Since X - x = 0 has cosh t and sinh t as linearly

independent solutions, we obtain (see (2.7) and (2.9)),

sinh t Osts};‘

_ e _k k _ . 3k

r(t) sinh(t 3) T<t==

sinh(t - k) 3% <= t = k

and

cosh t 0 = t = %
_ _ _k, . _k k _ . 3k
q(t) = cosh(t ;) c1 sinh(t ;) il t = Y
cosh(t - k)+ C sinh(t - k) 35 = t = k



37

where

2 cosh — 4 cosh Y
C1 » A ’ Cz = = ok
sinh T sinh e

Take ¢ -1 and 0 <t <X Then
s
Gp(r) = 2SR E ([T cosh as
2 0
3k
+ J L (-cosh(s - %) - c1 sinh(s - %))ds
T
+ I:E (cosh(s - k) + c2 sinh(s - k))ds)
4
t t
- cosh t I (sinh s ds + sinh t I cosh s ds)
0 0
cosh t

; k . k 2 k k
*Cz (sinh = 0 slnh(:) + sinh( ‘) c1 cosh(‘)

+ c cosh(—E) + 0 - sinh(—E) + ¢c_. - ¢c_ cosh 5)
a 0 1 2 2 N
- cosh t(cosh t - 1) + sinh t-sinh t
= =-cosh t(1 - cosh %) + cosh t -1

= cosh t cosh ? A

Set t = 0, then E&k¢= > cosh % - 1, therefore
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" ™ k—
|Gkﬂ > cosh = - 1

Next, it follows from Lemma 2.3 that
G # = G + a (d)p,

where

k.- k 2 -1
a, ($) = -n fo PyG$ dt and 7 = (fo pr dt)

Set t = 0, we obtain Gk¢(0) = G~k¢(0) + ak(@)pk(0) =

dk¢(0), therefore Gk satisfies (5.3). Q.E.D.

On the otherhand, consider the following equation

——
x
»”
IN

-

(5.4) X =

For equation (5.4), the equilibrium point (0,0) is a
saddle and the other equilibrium point (2,0) 1is a center.
Also, the global stable and unstable manifolds of (0,0)
coincide. That is equation (5.4) has a homoclinic orbit

which crosses the x-axis at (0,0) and (4,0).

Let pPk(t) be the k-periodic solution of (5.4) with
Pk(0) = bx and px(k/2) = cx. Since equation (5.4) admits

the first integral
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S X
E = !5x2+_[ g(s)ds
- 5 x* - g x? if x = 1
J,iz+l§xz—2x if x > 1

Therefore the period of the periodic orbit pkx(t) 1is given

by the formula

dx P .[CK dx ,

7 R A A o
& 7 1 oy(x - 2)7 + 4 - by

i
T(by) = 2(f
by vx® - bg

where ck = 2 + /Z_: bﬁ , therefore

1+v1-b2 ok e
(5.5) T(b) =2 1n —p—= + 7 - 2 sin (———)
k V& - bE
= 2‘rk + ZOk

Lemma 5.2. a = ci(k) > 2, as k o o,

Proof: It follows from Proposition 2.1 that q(k) =

T'(bk)-g(bk). Hence

—Zbk 2 4bk

ack) = ( i
VI - bg (1 + v1 - bf) K Va4 - bf v3 - bg

) (=by)

2( 2 3 4 )y + 2.

- b
k' T— — — ——
V1 - bk (1 +V1 - bg) V4 - bg V3 - bj
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As by -» 0, q(k) -» 2. Q.E.D.

Note that pk(t) 1is given precisely by the following

(5.6)
bk cosh t 0=t =~
pk(t) = cozén? ;in ocos(t - g) + 2 T=t =k-7T=17+ 20
bk cosh(t - k) k-7=¢t =k
where, byx cosh 7 = 1.
Lemma.5.3. dk¢ is uniformly bounded in Kk, where

¢ € P = {¢- is a k-periodic characteristic function and is

symmetric with respect to k/2}.

Proof: For simplicity, we will drop the subscript k.
First choose k 1large enough, such that 37/4 < o < 5m/6,
where o] is given by (5.5). Let r(t), q(t) be the

solutions of the linearlized equation (see also (2.7) and

(2.9)):
x -x =0 0 =t = 71
X +x =20 7T =t =k -7
X -x=20 k-7 <t =k

It follows from (5.6) and p(t) = br(t) that
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sinh t 0=t =17
(5.7) r(t) = { F(t) S T L
sinh(t - k) k-7=<t =k
_ sinh 7 _. 2K
where F(t) = i sin(t ;) and
cosh t 0=t s
(5.8) q(t) = Q(t) T<t=<k-71

cosh(t - k) + asin h(t -~ k) k-7t =k
where a = Li(k) and

2 cosh 7 - a sinh 7 k a sinh 7

Qt) = =——F5 555 —cos(t - —2—) - =in o sin(t -

“\LW

It follows from Lemma 2.2, that
= (t) k t
(5.9) Gty = L [ g(s)p(srds - ack) [ r(s)p(s)ds
0 0
t
+r(t) fo a(s)p(s)ds

For ¢ € P, there exist constants g8;, B;, B3 such that

1 B, stsa, k-8, «t<<k-8
$(t) =11 dy B K,
0 otherwise

Therefore we only have to consider the following forms of

[






1 2 ' k-8, «<t<k-8
(5.10) ¢(t) =

0 otherwise

where 8, < 8, = 7, and

IN

1 B, t k -8

IN

(5.11) p(t) =

4] otherwise

where 71 = B, =

N

Substitute (5.7), (5.8) and (5.10) into (5.9),

we
obtain the following, for 0 = t = g8,
~ 2
Gop(t) = EQEE—E [IB cosh s ds
-a
B,
_Bl
+ (cosh(s - k) + a sinh(s - k))ds
k_Bz
_ cosh t . _ _ .
= ——a [{(2 sinh Bz) a cosh Bz 2 sinh Bl
+ cosh Bl]
- %ht (2 - a)ef2 - (a+ 2)e7F2 + (a - 2)ef
+ (a + 2)e By
It follows from Lemma (5.2) that a - 2 = 0(e™27) and
t =8, < B, = T. Hence, there exists M; > 0 such that

IGp(t)! < M; for 0 =t = 8,. Next, for B, = t = 8,, we
have
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- cosh t
-a

Go(t) [2 sinh 8, - a cosh g, - 2 sinh 8,
+ a cosh Bl] - cosh t(cosh t - cosh Bl)

+ sinh t(sinh t - sinh Bl)

:é [(2 - a)et*®2 4+ (a - 2)e™#1 _ (2 + a)et 42

+ (2 - a)e'ez—t
+ (a - 2)ef17t = (a + 2)e7 (F¥A2)
+ (a + 2)e (t¥A1),

+ (:é + et 81 4 26817t

Since a - 2 = 0(e™27) and B8, =t = 8, = 7, there exists

M, > 0, such that IGg(t)l =M, for B, =t = B,.

Consider now the interval 8, = t = k - B8,. We have

Go(t) = Q(t) [;%(sinh 8, - sinh g ) + (cosh 8, - cosh £)]

- Q(t) (cosh Bz - cosh Bl)

+ F(t) (sinh Bz - sinh Bl)

k
cos(t - 5)

[(2 cosh T - a sinh T) -

—a Cos O

sin(t - %)
- (2 sinh 7 - a sinh 1)

]

sin o
(sinh Bz - sinh Bl)
since a - 2 = 0(e 27), 37/4 = 0 < 5n/6 and -0 = t -

k/2 <= o, there exists M,; = O, such that IGp(t)!l = M,

for Bz = t = k - Bz.
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For k - B8, =t « k -8, and k - 8; = t < k, the
computations are similar to the first two cases by
replacing cosh t by cosh(t - k) + a sinh(t - k) and
sinh t by sinh(t - k). We obtain for some M = O

IGp(t) 1 = M‘ . k- Bz =t =k .

One can see that the constants M;, M, M;ju and M, can

be chosen independent of k.

Now, repeat the above procedure for ¢ defined by

(5.11), for 0 =t = 83 and B3 = 7, we have

- k"B3
Goe) = L ([ 77 q(s)as)
B3

= [ cosh t(2 cosg 7 __asinh T(-2 cos 0)) t =71
-2a cos ©
Q(t) (2 cosh 71 ; a sinh 1) r <t = Ba
Again, since a - 2 = 0(e”27), there exists N; > 0, such
that
IGp(E)1 <N, for O <t =g .
For B3 =t = k - 83 , we obtain
ot 2 cosh 7 - a sinh 71 t
Go(t) = Q(t)(— a ) - Q(t) _f F(s)ds
B3

t
+ F(t) I Q(s)ds
B3
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2 cosh 7 - a sinh T)

o 2 cosh 7 - a sinh 7
= Q(t)( "y )+ ( > cos o
inh x
GID Ty (-1 + cos(t - Byeosis, - 5

+ sin(t - %)sin(ﬂs = %)]

Since a - 2 = 0(e™2T), -0 =t - k/2 < 0 and 37n/4 = 0 =
5m/6, there exists N, > 0, such that lé@(t)l < N, for
B3 =<t = k - B3. For k- B3 =t = k, by the similar
arguments, we can choose N3 > 0 which is independent of
k such that Ge¢(t) is bounded by N;.

It follows that there exists M > 0 independent of k

such that

max |&¢(t)| =M .
O=t<k

Since

1

. . Xk b t
Gh(t) = a() [ IO a(s)#(s)ds] - a(t) fo r(s)#(s)ds

5 t
+ 1) [ a(s)es)as |
0

one can see by similar arguments that there exists N > 0

which is independent of k such that

max IGP(t)l < N
O=t=k
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Since
G - -8 (0IGH + 9
we have
max lé}l <= max Ig'(p)! max I&@I + 1
O=t=k O=t<k O=t=k
<= JM + 1
where J = 0m:xklg'(p)l. Since p(t) 1is uniformly bounded,
<£T <

therefore J can be chosen independent of k.

We have shown that

logl < max(N,M,jM + 1) = K_

Q.E.D.

Theorem 5.4. The operator Gk 1is uniformly bounded in

Ps, where Gx 1is defined by Lemma 2.3 and Pg = {¢ 1is a
cont inuous k-periodic function and is symmetric with

respect to k/2}.

Proof: We first show that Gk is uniformly
bounded in Pg. For simplicity, we will drop the subscript

k. For any ¢ € Pg, there exist ¢; € 5, where P is

defined by Lemma 5.3, such that

N
r ai¢i(x) » ¢(x) uniformly in [O0,k]
i=1
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Let Ei = {x : ¢ij(x) = 1}. Then i(x) = XEi- the
characteristic function of Ej. Let x € Ej be fixed. We

have

é¢(x) - é

A al¢l(x) = G¢(x) - a1G¢l(X)

"Mz

1

It follows from Lemma 5.3, that

hesl < x_lol .

where K, 1is independent of k.
For any ¢ € Pg, since ¢ is symmetric with respect

to k/2, P¢ = 0. It follows from Lemma 2.3, that

Gp = G + ap ,

such that P(é¢ + ab) 0. Therefore

-P(Gg)

a(e)

-7p fk P(E)GP(E)dL
0
k ., . - .

where 7 = (jo p°dt)~ 1. Since, p,p,p are uniformly bounded
and is near 0 for very long time, hence 7 1is uniformly
bounded too. Similarly

k -
j Ip(t)1dt ,

0

is bounded. Therefore
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laco)l < x IGsl
= KK el

hence af(¢) is a uniformly bounded operator.

that G is a uniformly bounded operator.

This shows

Q.E.D.







SECTION 6. NUMERICAL STUDY

In this section, we will give a numerical scheme to
find the periodic solutions of (2.1). Let p(t,x,y) be
the solution of (2.1) with initial condition (x,y) at
t = 0. In order for o(t,x,y) to be a k-periodic
solution of (2.1), the following equations have to be

satisfied.

p(k,x,y) = x
p(k,x,y) =y .
Let
p(k,.x,y)
(6.1) F(x,y) = .
p(k,.x,y)

The problem 1is reduced to finding the fixed points of

F(x,y). We apply the Newton's method to find the zeros of

X
(6.2) G(x,y) = F(x,y) - [ v ]

We obtain the following scheme:

49
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*n+1 [ X | .
(6.3) = - DG(x,/y,) "G(x,.y,)
yl'\'i'l L yn
xn
_ _ _ -1
= (DF(xn,Yn) I) G(Xn,yn)
L yn J
where
d¢ a¢
‘a_x (err}') W (kIXIY)
(6.4) DF(X,y) = 2; ] '
2 a¢
‘§§ (kUXIY) a_}; (kIXIY)

and Jd¢(t,x,y)/dx, 38¢(t,x,y)/dy satisfy respectively

{i+g'(¢)x=0

(6.5)

x(0) =1, x(0) =1
and

X + g'(¢)x =0
(6.6) )

x(0) = 0, x(0) =1

Let
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[z () | o(t,x,y)
z,(t) p(t.x,y)
ZS(t) %% (trXIY)
Z(t) = - - .
2‘(t) g% (t,.x,y)
z_(t) 3 (t.x,y)

then it follows from (6.3), (6.4), (6.5) that

(6.7)

[z, (t) ] [ x,
—8(z (t)) - Nz (t) + uf(t) Yo
z,(t) 1

z(t) = with z(0) =
-g'(z,(t))z (t) - Az (t) 0
zs(t) 0
| -8'(z,(t))z (t) - Az (£) | 1

Now we use Runge-Kutta method to solve the above initial

value problem. We obtain

(6.8)
X4s I X, | z, (k) -1 z_(k) I’I[ z (k) - x_ I
A v ] Lz 00 z (k) -1 z, (k) -y,
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Note that if p(t.x,y) is the k-periodic solution of
(2.1), then the characteristic multipliers of ¢ are the
eigenvalues of the Jacobian matrix DF(x,y). Hence, if
both eigenvalues of DF(x,y) have modulus less than 1,
then the fixed point (x,y) or the periodic solution
through (x,y) 1is stable and if one of the eigenvalues has
modulus greater than 1 then it becomes unstable.
Therefore, when we compute the fixed points, we determine
the characterist multipliers simultaneously.

Our experiments will be performed on the forced
pendulum problem. Let pg(t) be the k-periodic solution

of
(6.9) X + sin x = 0O

Consider the perturbed system:
(6.10) X + sin x = -Ax + uf(t)

where f(t + 1) = f(t). Since the initial conditions of a
k-subharmonic solution of (6.10) are near (p(a),ﬁ(a)) and
A~ h(a)u for small A and u (see Section 2), we can
choose our initial guess to be (p(a),p(a)) with h(a) =0
and x = 0.

In Figures 6.1 and 6.2, we show the Poincare map under
iterations for (6.10) with f(t) = sin 2#nt, \ = 0, u = .2.
Note that in Figure 6.2, we easily observe the subharmonic

motions. Figure 6.3 is the magnification of the square box
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in Figure 6.2. We observe that there are saddle
connections and the stable periodic solutions are enclosed
by invariant tori.

For fixed AN = 0 and f(t) = sin 27t, we increase u
and follow numerically the subharmonics of order 3. We do
not observe bifurcations of these solutions. See Table
6.1.

In order for us to observe bifurcation phenomena for

these solutions, we let f(t) cos(.67t) and look for
subharmonic solution of order 1. For this f(t) =

.61681. i1t follows from

cos(.67t), we have maxth(a)l
Theorem 3.1, we can only have periodic solutions if A
lies between -.61681 and .61681. Table 6.2 shows how

the characteristic multiplies of the periodic solution vary

as A goes from -.61681 to .61681 and u = .2. In
Figure 6.4, we fixed u = .2 and plot X against r,
where r = VXg2+yg2  and (Xg:Yo) is the initial

condition of the periodic solution.

From now on we would like to consider the Poincare map
F(x,y) defined in (6.1). First, we will show how the
stable fixed point of F loses 1its stability through
period doubling. Again we fixed X = 0 and vary u. At
each stage, we apply (6.7) and (6.8) to obtain the fixed
point for the next ux by using the present fixed point as
the initial guess. We continue this process - until one of
the characteristic multipliers of the fixed point passed

through -1. Let's assume it occurs at u = ug, and the
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fixed point is (XyorYuo) - Let (X e Yu) be the fixed
point of F(x,y) for u slightly larger than ug, then
(Xy,Yu) is a unstable fixed point of F2(x,y). There are
also two stable fixed points of F2(x,y) which are not the
fixed point of F(x,y).

We find numerically the unstable fixed points (XpeYu)
by our scheme (6.7), (6.8). To find the stable fixed
points, we first locate numerically the saddle connections

and choose an 1initial guess in the interior of the

connections. The method allows us to continue and to
detect the bifurcation points. In Figure 6.5 we fixed
A=0 and increase M, one can see how the periodic

solution changes from one loop to two loops then 4 loops in
the sinx x-plane. This shows the period of the solution
doubles and doubles again. Figure 6.6 shows the same
pheonomena with graph x against r, where r = ¢§;?I§§5
and (%xg.,Yg) 1s the initial data.

Now we start with the fixed point (XgorYuo) and
increase A to obtain the period-doubling curve, see
Figure 6.7. That is if (\,u) goes through the curve with
increasing ux then the stable periodic solution loses its
stability and another stable periodic solution is created,

with least period 2 times the original one.



O 0 NJ O v & W N = O

el il i ol i i v
N OO W N~ O

2.18106292
2.18093417
2.18036890
2.17940921
2.17805323
2.17629843
2.17414159
2.17157875
2.16860526
2.16521572
2.16140393
2.15603471
2.15248489
2.14736114
2.14178208
2.13573716
2.12921478
2.12220229
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-.28080103
-.35920429
-.51601111
-.67282215
-.82964198
-.98647512
-1.14332606
-1.30019926
-1.45709914
-1.61403012
-1.77099662
-1.96726143
-2.08505389
-2.24215356
-2.39930658
-2.55651749
-2.71379091
-2.87113151

TABLE 6.1

01'

.99483581
.98968713
.97947406
.96943533
.95964335
.95016770
.94107458
.93242616
.92428013
.91668919
.90970662
.90187488
.89769104
.89273472
.88850988
.88503265
.88231246
.88035202

H B K H H H H H H H H H H H K H H W

o2

.101497251i
.14324583i
.20157020i
.245346941i
.28121990i
.31173919i
.33819909i
.361360541i
.38171485i
.399600941i
.415264611
.43199732i
.440625441i
.450582631
.45885745i1
.465528941i
.470664121
.474320891







Xg

-12336274 .28465940

.1233624

.123361

.123330

.12320

.12315

-12314

.12313

.123

.12

.11

.10

.05

.0
-.05
-.10
-.11
-.115
-.12
-.123
-.1231
-.1232
-.1233
-.123361
-.1233626

.27953712
.27177950
.22472892
.14854213
.12855802
.12484698
.12121602
.07952532
-.36144268

-1.01698498
-1.40960328
-2.30221653
-2.50801521
-2.30221653
-1.40960328
-1.01698498

-.74595905
-.36144268
.07952532
.11075522
.14854215
.20103788
.27177964
.28169078
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Yo

1.77898547
1.78025094
1.78213926
1.79286449
1.80758616
1.81090718
1.81149919
1.81207094
1.81810551
1.82265190
1.63434569
1.41440422

.56463577
-.00000000
-.56463577

-1.41440422
-1.63434569
-1.73982553
-1.82265190
-1.81810550
-1.81367677
-1.80758616
-1.79779243
-1.78213923
-1.77972067

TABLE 6.2

O3

.99789666,
.98806257,
.97491078,
.88629559,
.70526800,
.62271744,
.59330936,
.56012761
.53627383
.29791170
-.02793731
-.21776604
-.69586196
-.95303355

-1.11214486

-.55624572
-.07837704
.30663149
.91795078
1.69956093
1.75775532
2.39334066,
2.66166160,
3.10016907,
3.15658155,

H H H H H H H H H H H H W ®W

o2

.31512796
.31802605
.32256313
.35491738
.44656136
.50599698
.53112713
.03754078i
.167173761i
.485580651
.596378411i
.586575201
.376124661
.302864731
.60113230i1
1.49830499i1
1.673116151
1.687043851
1.49621223i
.529807621i
.287181371
1.41790061
1.19404065
1.02573461
1.00741843
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Figure 6.5

Ficure 6.6
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