0)

MSU

%\\\\\\\%\\\H 1m

1078

RETURNING MATERIALS:
Place in book drop to
remove this checkout from

LIBRARIES

A ——— your record. FINES will

be charged if book is
A returned after the date
T stamped below.
o AT el
~%
’ 35@ [
| S Lotaren v

IGEC 0 S 195F

354

THE DESIGN OF TESTABLE PROGRAMMABLE LOGIC ARRAYS

BY

Tsin-Yuan Chang

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Electric Engineering
and Systems Science

APRIL 1987

THE DESIGN OF TESTABLE PROGRAMMABLE LOGIC ARRAYS

BY

Tsin-Yuan Chang
Department of Electric Engineering

and Systems Science
Michigan State University

Abstract

The key to easily testable programmable logic array (PLA) is the
ability to activate any arbitrary one product line during the test.
Based on this activation mechanism, two testable PLA designs for both
function-independent and function-dependent tests are presented in
this study. In the former, the design of the product line activator
is proposed to reduce the complexity of the test pattern generation.

In the latter, methéds to generate the test sets for both Growth
faults and Disappearance faults from the product term specification
of the PLA, "are presented. The proposed algorithm can be applied not
only to generate the test patterns, but also to detect the redundant

crosspoints in a PLA.

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to his
major advisor, Dr. Chin-Long Wey, for the guidance and encouragement
in the course of this research.

He also wishes to thank the committee members Dr. P. D. Fisher

and Dr. M. A. Shanblatt, for giving valuable suggestions and comments

in this work.

TABLE OF CONTENTS

LIST OF TABLESttt

LIST OF FIGURES0ttiuiniiiiinnetennnnneecnnneennnneennns

I. Introduction ittt ennenns
II. Fault Modelsiiiiiiiiit ittt eennenanennn
III. Test Methodsc.it ittt ittt ennnenns

1 Test Generation,
2 Testable Designs,
A. Special Codingcoiiiiiiiiiiiininnenn
B. Parity Checkingo,
C. Divide-and-conquer and Signature Analysis

3.
3.

IV. The Design of Easily Testable PLAs

Design and VLSI Implementation of the PAC
Chip Area Overheadccoiiiiiiiiiiiinnnnn.
Implementation ittt
A. Area Overheadt
B. TesSt SeqUeNCesc.ccueireuirnnnonennnenns
4.4 Discussion i i i e

S
w N =

V. Test Pattern Generationcciiiiiinenennanns

5.1 Detecting Redundant Crosspoints Using K-maps
5.2 Test Pattern Generation,
A. Test set for D-faultsciiiiuiinnn..
B. Test set for G-faultscctiirruoennns
5.3 Simulation Resultsciiuiniiiirnnnnnnennnns

VI. Conclusions.ciii ittt ieianreennseenass

LIST OF REFERENCES iiiitttintnentninnnnnonensnns

il

iii

iv

List of Tables

Table Page
1. Cubical motation.ititiiiiiinieetnnnnnnanneaens 1
2. Test set for G-faults. 65
3. Comparison of the number of test patterns. 73
4. The number of test pattens required in some PLAs. 73
5. Test set for Figure 18. 77

iii

List of Figures

Figure
1. A general structure of PLA and its Cubical notation.
2. Crosspoint faults. iiiiiiiiiiinennnnnn
3. Bridging faults. i
4, A concurrent testable PLA design.
5. A testable PLA with universal test set.
6. A testable PLA with cumulative parity comparison.
7. Testing @ PLA by BILBOS.iiiuiumumreirreeneennnnn
8. A testable PLA design [BoM84].cciuuun...
9. A testable PLA design [HaR85].ciirnnnnn..
10. A testable PLA design with decoder structure.
11. A testable PLA design with product line activator (PA).
12. The 3-bit input decoder.
13. A schematic diagram of PA design.
14. The floor plan of the proposed PA design.
15. The floor plan of a testable PLA design with SR.
16. Chip area overhead. i,
17. Cumulative parity comparison scheme.
18. A schematic diagram of PLA and its K-maps.

iv

10

16

18

19

22

25

25

30

30

32

34

36

36

38

39

45

CHAPTER I

Introduction

Programmable logic arrays (PLAs) have become increasingly popular
for implementing control logic in Very Large Scale Integration (VLSI)
systems. Although PLA implementation of such function requires larger
chip areas than the random logic implementation, the simplicity of the
design and regularity of the structure of PLAs reduce the complexity
of the overall chip design. Because of these advantages, a trend
toward manufacturing larger PLAs is expected. The testing of such
PLAs thus becomes a rather difficult problem.

Figure 1(a) shows the general structure of a PLA, and Figure 1(b)
is the cubical notation of Figure 1(a). Table 1 summarizes the

cubical notation:

Table 1. Cubical notation.

AND plane OR plane

1: connect to connect to output
complement input

0: connect to no connect to output
uncomplement input

X: no connection not used

1o

Q, MISSING Q4 MISSING
4 EXTRA

Q
] %
ozsﬁrni
P .
3 5 %
lo L 1z 13 03 O O
(a)
 lgl 1303 040,0z
Bt 1 0x 100
R1 00! 1 10
ROOIx 00!
ROJ x| 291
(b)

Figure 1. (a) A general structure of PLA, and
(b) its Cubical notation.

A typical PLA is formed by an AND plane, accepting the true and
complement bits of the input 1lines (IO - I3), and an OR plane,
providing the output lines (00 - 02). The output of the AND plane 1is

fed to the OR plane through product lines (P0 - P Pull-down

30
transistors or crosspoints are formed at the intersections of the
input 1lines and output lines with the product lines to implement the
desired logic function. In NMOS technology, both AND and OR planes
are built by NOR functions.

In recent years, research has extensively dealt with the test
generation and fault detection of PLAs. The optimum design to
minimize the test pattern generation cost is achieved by eliminating
the expensive stage of test generation. Enhancement in testability is
accomplished through the use of additional logic to control individual
product lines in test mode. Typically, such a control is achieved by

using either a shift register (or shift register with multiplexer), or

using extra bit lines to form a decoder (or decoder-like structure).

Redundancy has been wused extensively by semiconductor
manufacturers to enable the repair of partially defective memory chips
[Sch78] [Moo86], multiprocessor systems [KoP86], and processing arrays
[SasS86]. It has been proved that the yield of integrated circuits
using redundancy has been enhanced significantly

[Moo86] [KoP86][SaS86] [SMD80] [CCH79]. Recently, a novel design of

fault-tolerant PLA has been proposed [WVL86], in which the redunancy
is used to repair the defective PLAs. It has been shown that the
yield of such design is significantly improved [WCV86]. However, this
significant yield improvement could be offset if the hardware overhead
is increased due to the redundancy required for the testing of PLAs.
Therefore, the issue of hardware overhead reduction is of significant

importance to the design of fault-tolerant PlAs.

In Chapter II, the physical failures in a PLA are discussed.
Three types of faults are considered: crosspoint faults, bridging
faults, and stuck-at faults. Considerable research efforts which are
being devoted to the testing of PLAs can be divided into two classes:
test generation and testable design. The existing techniques in both
approaches are reviewed in Chapter III. Note that the techniques
considered are by no means exhaustive. However, the additional

information can be found from [Zhu86].

In order to reduce the hardware overhead for the design of fault-
tolerant PlAs, the designs for both the function-independent and
function-dependent tests are investigated here. The wuse of extra
logical circuitry to design a product line activator for an
alternative decoder structure PLA is presented in Chapter 1IV. The
product line activator is employed to activate only one product line

at a time so that the observability in the output lines is increased.

Since this acivation mechanism is independent of the function the PLA
realize the test is referred to as function-independent. The proposed
design offers the following salient features: (1) homogenous and
regular structure; (2) 1less chip overhead than the shift register
approach; (3) no performance degradation during the normal operation
due to the added hardware; (4) no additional I/0 pins required; and

(5) no extra test sequence needed.

As far as the hardware overhead reduction is concerned, the use
of no extra logic to the test of PLAs is studied in Chapter V for the
further reduction. Based on the activation mechanism developed 1in
Chapter IV, methods to generate the test sets from the product terms
specification of the PLA under test, are presented. Since the test
sets are determined by the logic functions realized by the PLA, this
test approach is referred to as function-dependent. The proposed
algorithm can be applied not only to generate the test patterns, but
also to detect the redundant crosspoints in a PLA. The algorithm has

been implemented on a VAX 11/780 in FORTRAN.

The conclusions and futher research directions are given in

Chapter VI.

CHAPTER II

Fault Models

The fault models considered in the design of NMOS PLAs are:

crosspoint faults, bridging faults, and stuck-at faults [SGM84].

A crosspoint fault is caused by the unintentional presence (or
absence) of a transistor. Crosspoint faults can be subdivided into
two classes: missing crosspoint faults and extra crosspoint faults.
The former is due to a missing contact at the crosspoint in the AND
plane or the OR plane; the latter is due to the unwanted presence of a
contact at the crosspoint.

According to the 1location of the crosspoint faults, it is
possible to distinguish four types of faults: growth faults, shrinkage
faults, disappearance faults, and appearance faults. A growth fault
is caused by a missing crosspoint in the AND plane resulting in the
disappearance of an input variable from a product term. A shrinkage
fault is caused by an extra crosspoint in the AND plane resulting in
an additional input variable in a Boolean product term. A
disappearance(appearance) fault is due to a missing (extra) crosspoint

fault in the OR plane.

The four types of crosspoint faults in the PLA of Figure 1 are
shown in Figure 2 with their effects on the corresponding product
terms. For example, if the contact at Q1 is missing, it is equivalent
to the product term Po growing in size (Figure 2a). On the other
hand, 1if there 1is a spurious contact at Q2, this has the effect of
shrinking the product term P2 (Figure 2b) [AbF86]). When there 1is a

is

missing device in the OR plane, for example Q3, the product turm PO

disappeared from the output O1 (Figure 2c). However, when an extra

device appears at Qa, the extra product term P, will appear the output

0
02 (Figure 24d).

In practice, the "extra device" fault model in modern VLSI
circuits has much less significant than the other fault models
normally considered for PLAs. It has been shown that extra devices

represent less than 0.5% of faults mapped from physical failures

[KhB85].

A bridging fault is a short between two adjacent or crossing
lines. This fault forces the same logic value to appear in both the
lines. A bridging fault can occur either in the AND or the OR plane.

If a bridging fault is present between two adjacent metal lines,
it will cause either a logical AND, or a logical OR, of the bridged
product terms in the plane of occurrence. If a bridging fault makes a
bridge between the drain diffusion line and the grounded diffusion

line, it 1is a stuck-at-0 fault. Alternately, if a bridging fault

) o)

e I I
Pg\Ff\ 03 0! %\pf\ 00 0 9
00 °0 Ak
91 0!

Nele .

(a) Growth fault.

(b) Shrinkage fault.

B o 110

P*;f’oc o1 1119 B H
0 00 5 | 7

o1

W :
o E] 19

(c) Disappearence fault.

(d) Appearence fault.

 Figure 2. crosspoint faults.

occurs between two transistor drain diffusion lines, it will turn into
a metal line bridging fault.

Consider a bridging fault occured at B1 of the AND plane (Figure
3), if high dominates, it will result in logical OR of the two bridged
product lines, so that the output functions are changed as shown in
Figure 3a. Nevertheless, 1if low dominates, a logical AND of the two
bridged product lines is resulted, and then the bridged product lines
in the AND plane are altered as in Figure 3b. Consider a short
between two output lines and assume that high dominates, so that both
outputs will be at logical 1 in the faulty PLA if at least one output

is at logical 1 in the fault free PLA, as shown in Figure 3c [SoG86].

A stuck-at fault is the simplest type of fault that can occur in a
PLA. A stuck-at fault is the result of a metal (or diffusion) 1line
opened, or shorted to ground or VDD. A single break in the line can
result in the line stuck-at-zero [FKH80], [FuK81l]. This corresponds
to a metal 1line which 1is opened in either the AND plane or the OR
plane. If the opening occurs at the diffusion line of a transistor,
the same scenario of the missing crosspoint applies. When a metal
line is shorted to ground in the AND (OR) plane, then this is
equivalent to a stuck-at-zero (one) fault. Finally, 1if a metal line
is shorted to VDD, then a stuck-at-one fault is present.

All single stuck-at faults in a PLA, except output stuck-at-one,

are equivalent to crosspoint defects [SoG86].

10

b —

—~

%i';

s
i

(a) Bridging fault at B

H

———(Xi}"

f

1’ High dominates.

—

AN

ERaRASEN

‘{Y

(b) Bridging fault at B., Low dominates.

4|

1’

3

(c) Bridging fault at B

ﬁ:} B

2 High dominates.

Figure 3. Bridging faults.

11

The various fault models which may occur in a PLA can make test
generation a complex process. However, analysis of the relationship
between different types of faults reduces the complexity of the
problem. A complete test set for single crosspoint fault also covers
most single stuck-at faults in input decoders and output 1lines, as
well as many shorts and a large portion of multiple faults
[Smi79][0sh79]. Any stuck-at fault or bridging fault (of AND type) is
equivalent to multiple crosspoint fault [Min 84). It has been verified
that 98% of all multiple crosspoint faults of size 8 and less are
inherently covered by every complete single crosspoint fault test set
in a PLA [Agr80]. These results indicate that single crosspoint faults
should be of primary concern in testing. In case other classes of
faults are considered significant, special effort must be made to

ensure for their high fault coverage.

CHAPTER III

Test Methods

A PLA corresponds to a two-level sum-of-product combinational
circuit. To test the PLA one may simply convert the PLA into a two-
level gate and then find tests for stuck-at faults using the existing
test generation algorithm, such as D-algorithm. However, as far as
the fault behavior 1is concerned, the faults such as an extra
crosspoint fault in the AND plane can not be modeled as a stuck-at
fault in the gate circuit. Therefore, high fault coverage 1is not
guaranteed. On the other hand, traditional test generation algorithms
are not always effective for PLAs because PLAs have high fan-in, fan-
out, redundancy and special fault models. Although exhaustive testing
and random testing approaches are effective on some combinational
circuits, they are impractical as the size of the PLA increases.

Considerable research efforts have been devoted to the testing of
PLAs could be divided into two classes: test generation and testable

designs.

12

13

3.1. Test Generation

Most of the earlier approaches fall in this class. Regularity of
the structure is exploited to derive optimal or near optimal test sets
to detect different types of faults in PLAs. However, the basic idea
behind most PLA test generation algorithms is path sensitization, to
select or deselect a product 1line and then sensitize the chosen
product 1line through one of the output lines. Knowing a PLA's
personality, tests of this nature can be easily found.

In [SGM83],[SGM84], the well-known Shannon’s expansion theorem

F(x,y) = xF(1,y) + xF(0,y)
is employed to find the test patterns of all possible faults.
Consider the example of Figure 1. Suppose a test is generated for a
missing device fault at transistor Ql' it checks
1,1,1,I, 0.0.0 1,1,1,I, 00,0

0717273 07172 0717273 07172

100x 100 with P2 1001 110

P3 001x 001

P4 00x1 001

and rules out P3 and P4 because the input bit Io is different. The

problem reduces to:

1o % 9 Ip 9 0y

does P2 1 1 1 cover x 1 O

14

By applying Shannon’s theorem with x = 0 and checking F(0,y), the
following question is posed:

0 I

15 % % 0 % %1

does P2 1 1 1 cover O 1 O
Clearly, the test pattern (1000) can be selected to detect the
fault considered here. Test patterns for other crosspoint faults can

be obtained in the similar way.

The test generation methods provide a software solution for the
PLA testing problem. They do not require any hardware modification to
the PLA. However, as PLAs increase in size, a larger number of test
patterns haveA to be generated and stored. Sophisticated automatic
test equipment (ATE) is needed to execute the test process. Hence the
testing becomes a time-consuming and expensive task. To alleviate
this problem, more hardware oriented approaches have been developed
in which the extra built-in self-test (BIST) circuitry is addded to

the original PLA such that the modified PLA can be more easily

tested.

3.2. Testable designs

Most of testable design techniques proposed to date fall into one
of the following categories: special coding, parity checking, divide-
and-conquer, and signature analysis. Some techniques are combinations

of these design philosophies.

15

A. Special coding:

A technique proposed by [KhM81] makes use of the following fact

about a PlA.

- The input bit lines in the AND plane naturally form a two-rail
code.

- For a non-concurrent PLA, during normal operation the signals
on the m product 1lines forms a l-out-of-m code.

- The fault-free output patterns are determined by the PIA's
personality matrix. They can be coded into some error detection

code by adding extra output lines to the OR plane.

The proposed testable PLA with concurrent error detection
capability, as shown in Figure 4, employes three checkers: Cl is a
totally-self-checking (TSC) 1l-out-of-m checker on all product lines,
and can detect any non-concurrent fault, such as product line stuck-
at-1(0), or any missing and/or extra crosspoint faults in the AND
plane. C2 is a TSC two-rail code checker which detects all single
stuck-at faults in the input lines. C3 is an output code checker whose

complexity depends on how the outputs are coded.

16

Figure 4., A concurrent testable PLA design [KhM81],

17

B. Parity Checking

Since PLAs have a regular array structure, they can be designed
to test by a small set of deterministic tests which are function-

independent. This is based on following important observations:

- One can add extra lines (product lines or output lines) to make
the connections of each 1line "odd (even). Then any single
crosspoint fault will change the parity and can be dectected
by the parity checker.

- In order to easily test a PLA, it must individually control each
input line and product 1line, and sensitize each product 1line

through the OR plane.

In ([FuK8l], two parity checkers are employed, one in product
lines and the other in output lines. In order to make the odd parity,
the following additional circuits are added (Figure 5): a product term
selector, a modified input decoder, and some extra product lines and
output lines. The parity checker 1is composed of XOR gates. The
purpose of using the product term selector and the modified input
decoder 1is to activate one row and one column in the PLA, so that
every crosspoint can be uniquely selected and tested. Usually the
product term selector is a special designed shift register whose size

is the width of product line.

18

Product Term Selector S

q. S,
",‘:g"f,'“ Syl *** |Sm | Smer
decoder

Yy

Xy extr
. pr]
n / line
p °
u .
' .
s

g
u v

outpuls ; OR . c
A

E

‘.“ R I J ?

T‘ N

2

Ljo—— Parity Chain ®1

extra
output
ling

Figure 5. A testable PLA with universal test set [FuK8l],

19

aang oraduct 'inels)
e ANO
arey pawy

fod B '
v i
F
ow:':n F : A 4
td E || C
R [1%e cdd) 2
| p—— T
} N
estva assut lre for e P b
o. aQreay penty o an e © @ ® w w oo -

e

S LT b b

 Figure 6. A testable PLA with cumulative parity comparison [Fuj8s],

20

A more efficient design has been proposed [Fuj84], 1in which the
parity check method (Figure 6) 1is replaced by a cumulative parity
comparison method, the value of the accumulated parity signals in a
flip-flop 1is compared with the expected value at specific times to
detect the faults. Two control signals Cl and C2 are added which act
just the same as the modified input decoder. One or two extra product
lines are used to make every input bit line contain the odd number of
used and unused crosspoints in the AND plane. The same is done for
the OR plane by adding extra output lines. Only one parity chain is
used at outputs.

An interesting property of this scheme is that the sequence of
cumulated parity bits at 2n+2m+l selected check points is simply a
sequence of alternative 0’s and 1l's. Hence it is very easy to
generate the expected value on-line. It has been proven that the
fault coverage of this scheme is very high; all single and (1-
2-(m+2n)) of all multiple crosspoint, stuck-at and bridging faults are
covered, where m and n are the number of product 1lines and output

lines, respectively.

21

C._Divide-and-conquer and signature analysis

In the divide-and-conquer strategy a suitable testable design
methodology is selected for each testable part such that every part
can be embedded in a testable structure.

In the signature approach, a set of input patterns is applied and
the results are compressed to generate a "signature". When the test
is invoked, this signature is compared with a known correct value to
determine if the PLA is faulty.

A design of BIST PLA architecture, as shown in Figure 7, has been
proposed by Daehn and Mucha [DaM8l}, in which the combination of
divide-and-conquer and signature analysis strategies 1is employed.
This design implements the non-linear feedback shift registers as both
test pattern generators and output response compressers. Such
registers are basically a modified form of what is known as a built-in
logic block observer, or BILBO. Basically the PLA is partitioned into
four blocks: input decoder, AND plane; OR plane, and output buffer.
Then, three BILBOs are inserted between these blocks. Testing of each
block is done as follows: let the input BILBO of that block operate as
a test generator and the output BILBO of that block operate as a
signature analyzer. The result is shifted out for inspection. These

blocks are tested one by one.

000 O —

0000 -~

| 000 ~ 0O

(b)

00~ 00

--~0-0 00

l—-0 000 -~

—&0 00~

O O~ -

8IL8O 2

| BUFFER

@) m

II'°.||-°

(e)

7. Test a PLA by BILBOs.

Figure

23

After partitioning, the AND plane and the OR plane are just
arrays of NOR gates. All inputs are controllable and all outputs are
observable, thus testing becomes a very simple task. It is known that

a k-input NOR gate can be fully tested by a simple sequence such as

000O0. 0
100. 0
010. 0
001. 0
000O0. 1

A NOR gate array can be tested by the same pattern. The test
generator can be achieved by a non-linear feedback shift register as
shown in Figure 7(b), which produces above patterns. It has been
shown that all single stuck-at faults, crosspoint faults and bridging
faults in AND plane and OR plane are detectable using this sequence

[DaM81].

Input decoder is tested by a similar sequence generated by the

non-linear feedback shift register shown in Figure 7(c).

For the testable PLA designs, it has been recognized that the key
concept in enhancing PLA testability has been the provision of means
to control individual product 1lines [BoM84]. Most of the current
testability designs accomplish this goal by incorporating shift

registers in the PLA design [FuK8l]. The data stored in the shift

24

register is used to control the product lines. Unfortunately, the
area of the shift register added generally cannot match with the
compact PLA layout and thus is significant overhead [HJA84].

In [BoM84], some extra input lines, as shown in Figure 8, are
added to the original AND plane so that the augmented AND plane acts
as a decoder that wuniquely selects each product 1line. In this
approach, a set of main test patterns and the corresponding auxiliary
test patterns are employed to detect the faults. A main test pattern
is generated in a way that one and only one product line is selected
at a time. The auxiliary test patterns are generated by flipping the
bits in the main test pattern, one at a time, for each main pattern.
The purpose of an auxiliary pattern is to disable the chosen product
line while maintaining the deselection of other product lines. An
algorithm has been proposed to assure the Hamming distance between
every pair of main test patterns to be two [BoM84]. 1In order to
satisfy the Hamming distance requirement, a heuristic is implemented
to increase the number of input lines, or crosspoints in the chosen
input lines. It has been proved in [BoM84] that all multiple stuck-at
faults, as well as all multiple extra and multiple missing device
faults, are detected.

Later in [KhB85], a method was proposed to reduce the extra
hardware overhead. The algorithm is based on the fact that as long as

the effect of deselecting a product 1line with an auxiliary test

Figure 8. A testable PLA design [BoM84)

A ND O R

| |
o .rr' :rl % BUFFER
I
QUTPUT
INTPUT

Figure 9. A testable PLA design [HaR85].

26

pattern is propagated to at least one output line, the distance of two
is not necessary. In addition, it was claimed that "extra device"
fault model is not significant in modern VLSI circuits. Therefore,
the requirement of choosing a main test pattern is relaxed by the
following fact. It is not necessary to find a vector that uniquely
selects a product line if the collective output response of the other
selected product terms do not cover the observability of the chosen
product line. A modified algorithm of [BoM84] was then proposed to
take these advantages and reduce the number of input lines added.

One major disadvantage in adding new input 1lines 1is that the
number of input lines needed for providing testability is not a
constant and depends on the functions implemented by the PLA. 1In
addition, the extra input lines have to be disabled during normal

operation.

One unique feature of PLAs is that the input lines feed their
true and complement bits into the AND planes This fact places an
important restriction on the applicable test patterns as mentioned
before.

In fact, a Hamming distance of one between each pair of main test
patterns 1is sufficient to assure the existence of main test patterns.
This can be demonstrated by the PLA shown in Figure 1. "1101" is a good
main test pattern for Po even though the Hamming distances between P

0

and all other product lines but p, are only one. However, if the

27

Hamming distance between two main test patterns is less than two, there
is always the possibility of accidentally selecting another product line
when a bit of the main test pattern is flipped to generate an auxiliary
test pattern. In the above example test pattern for selecting PO, if
the leftmost bit is switched, the auxiliary test pattern, "1001l", will
accidentally select Pl' This is due to the fact that the distance
between P0 and P1 is less than two. ([KhB85] pointed out the special
conditions when this dilemma can be tolerated.

In essence, it is not necessary to add any extra input line for an

irredundant PLA, even if two product lines have zero Hamming distance

and the same outputs. This motivates the study of Chapter V.

Recently, a new testable PLA design has been proposed by Ha and
Reddy, as shown in Figure 9, in which the normal PLAs are augmented with
the addition of pass transistors in the input decoder [HaR85]. The
transistors are used to temporarily disconnect the true bits of the
inputs, so that their previous values can be retained for a short period
by the line parasitic capacitances, and new values can then be applied
to the complement bits. As a result, arbitrary test patterns can be
applied to all true and complement bits. In other words, each true or
complement bit of an input line can be controlled independently. This
significantly enhances the testability of PlAs.

One shortcoming of this method is that two phases are required to

apply a test pattern which the values of the true bits are assigned in

28

the first phase and the values of the complement bits are assigned in
the second phase. A more severe disadvantage is that a test pattern
can only be maintained for a brief time due to the small parasitic
capacitances available on the lines.

To improve the deficiency of the above approaches, an alternative

design of easily testable PLA is presented in the next chapter.

CHAPTER IV

The Design of Easily Testable PLAs

The key to easily testable PLA design is the ability to activate
one and only one product line. This activation mechanism enhances the
observability in the OR plane, and it is usually achieved by adding
shift registers to select the product lines. The data stored in the
shift registers are used to operate the activation mechanism.
However, a shift register cell is wider than a product term. This
makes the shift register wider than the PLA, with cells extending
beyond either end. This mismatch wastes area and distorts the
floor plan of the PLA [BHM84].

Recently, a decoder structure has been proposed by Sato and Tohma
[SaT82] to achieve the same activation mechanism. In this approach,
Figure 10, two control lines C1 and C2 are used either to deactivate
all AND word lines or to acivate only one AND word line of the input
decoder, and another control 1line C0 is applied to disable the PA
(Product line Activator) during the normal operation. It has been
shown that the proposed design structure is more homogenous than that
of shift register. However, the need for extra input pins and

performance degradation due to the modified input decoder, 1limits its

applicability.

30

co C1 ca
PA input ' normal input | output

[1
TN
¢ |

AND | OR

Plane Plane

Figure 10. A testable PLA design with decoder structure.

PA AND arR

= Plane [Plane

| | 11

| Decoder | | Buffer |

[l T]
PA Input normal Input output

Figure 11. A testable PLA design with product line activator (PA).

31

The objective of this chapter 1is to propose an alternative
decoder-like structure that performs the same activation mechanism,
and requires less chip area and almost no performance degradation.

Instead of adding the extra shift registers into the AND plane, a
product line activator (PA) is employed to operate the same activation
mechanism (Figure 11). The PA consists of two parts: product line

activator circuit (PAC) and code sequence generator (CSG).

4.1. Design and VLSI Implementation of the Product Line Activator

Consider a conventional 3-bit input 1line decoder with PLA
implementation as illustrated in Figure 12. A product line can be
activated according to the decoded input bits. For example, if a
sequence of the numbers from O to 7 (represented in binary form) is
applied one at a time, then only one product line is activated in the
order from the top to the bottom. This activation mechanism in the
decoder is much easier than that of the shift register. However, the
only disadvantage behind this decoder structure is the need of the
extra input pins. Therefore, in order to reduce the extra pins, the
code sequence must be generated and applied internally.

The code sequence generation can be accomplished by using a
linear feedback shift register (LFSR). In fact, a LFSR implemented

with EX-NOR gate consumes less chip area than that with EX-OR gate

—{
— F-
3y —>0 > 7‘ ﬂ—, p-
4 J\ 33
2 —{>3 >‘: ~\ A
L/ "2
. D °3
% —x0 >0 g
> D pundl->}
— 2,
-4) > Po
vad
T —_ ;_l 5
= 7
ay-_l—-!_.k 1: +~— pe
——= — ps
— == + P2
—— 93
= ; {* P>
=1 Lé : (l)
%

02 Q'

Figure 12. The 3-bit input decoder.

33

A four-bit modified LFSR 1is shown in Figure 13(a). With the
seed, (b3b2b1bo)-(0000), a total of 15 (24-1) code sequences is
generated in Figure 13(b). On the other hand, when a seed (111l1l) is
applied, the modified LFSR will generate the same pattern (1111). The
design of PAC with PLA implementation is illustrated in Figure 13(c).

Since the length of the cyclic code sequence generated by the
modified LFSR may not coincide with the number of product lines in a
PLA, a control signal is needed to restart the operation of the
modified LFSR, so that the code sequence can be applied periodically.
As shown in Figure 13(c), the extra product line, BMPLI, is employed
as the control line. In this implementation, BMPLI is programmed as
same as the logic function of the bottom-most product line.

In fact, the PA is used only when the test process is performed,
and it must be disabled during the normal operation. The D-line is
use to control this operation, where D=0(l) for normal operation mode
(for test mode). During the test mode, D = 1, the code sequence is
generated by the modified LFSR with a seed of (D D D D) or (0000).
This sequence 1is continously generated until the corresponding
sequence of the bottom-most product line is recognized. Once the code
bits stored in the shift registers match with this corresponding
sequence, the BMPLI are set to 1. When the test mode is completed,
the D-line 1is then set to 0 for the normal operation. As a result,

the seed (D D D D) becomes to (1111) and will be 1loaded to the

shift registers to disable the PA.

3h

OO0OO0O0OAO0OAO0OO0AAO~~AAN0O
OCO0OO0OAOAOCOAAODOAALO00
CO0OAO0OAOCOAAOOAAALNOOO

OAO0OAO0O0AAOODAAANDODOOO

\
A 4 bits LSFR scheme.

(a)

Code sequence.

(b)

BMPLI

CSG
e e e ===

(¢) ' The design of PAC and CSG-

Figure 13. A schematic diagram of PA design.

35

4.2. Chip Area Overhead

A floor plan of the PA design is illustrated in Figure 14. all
dimensions are in the units of lambda ,\A, [MeC80]. The number of bits
required for the PA design depends on the number of product lines in
the PLA. For a PLA with m product lines, a k-bit PA is needed, where
k = [Log, (m+l)]. The chip area required to design the PAC is
essentially the same as the area required for the k input lines in a
standard PLA. According to Mead and Conway's design rules and
[NeM83], a product or output line requires 8X in width, while an input
line consumes 16\ in width. Therefore, the chip area for PAC is
approximately 128mkA2, or (8m))(16kr). In addition, each bit of CSG
may approximately consume 16X x 155A. In other words, the chip area

required for the entire PA design is

Ap, = (8 xm+155) x 16 x [Log, (m+D)] »? (1)

36

PAC

AND | OR

CSG

16

Figure 14. The

155>

Parity
Argumentedl | Checker
Input R
Decoder
le

floor plan of the proposed PA design.

—

SR

AND | OR

F——l?O,\——)‘
"éxr T Parity E
Ar guncntcd‘ Checker i‘_
Input g
Decoder

e —

181

Figure 15. The floor plan of a testable PLA
design with a shift register.

8.

37

4.3. Implementation

In order to demonstrate the effectiveness of the PA design for
BIST PLA design, the implementation of the PA design into TRPLA

[TFA85] is presented.

A, Area Overhead

A floor plan of TRPLA is illustrated in Figure 15. The chip

2

area for the shift register consumes A R ™ 1360m A~, or 170X x 8m\.

S
Figure 16(a) plots the areas required for both PA and SR design versus
the number of product 1lines. It 1is obvious that the PA design
requires 1less chip area than thaé of shift register (SR) in a
reasonable PLA design. The fraction of area reduction in the PA

design calculated by (ASR - APA) / ASR is illustated in Figure 16(b).

The curves show that the area reduction can be up to 25%.

B, Test sequences
The test sequences employed in TRPLA design are listed in Figure

17. It has been proved that the test sequences can detect all single
faults and almost all multiple faults [Fuj84]. In fact, the PA design
has the same mechanism as the SR design, these test sequences can also

be applied to the PA design without requiring any extra test

XZ

Area required

Asp - Ap,) / A,

)

38

Shift register

The proposed PA

100 <

° 2 222228800002 0ARRAARAARRRARALARRAAARRAAAAESARA220222000002020 0000200000)

100 190 200 290
The number of product lines

(a) Chip area.

0.3

0.3 ~

Q.1 =

0.1 ~

-0.3

-0.3

*" 122828220 RRARSRAAARREAARARAARASAREAAMRAAAANAL22220220200000200222RARAA2RAS

100 199
The number of product lines

(b) The fraction of area reduction in the PA design.

Figure 16. Chip area overhead.

39

\U—&om panty mts—w

Xi.. Xa Sy...8a Qutout vector Cumulative
1" 0...0 1.1 0 0
9
0 1] ! .
|3| 0'000 ... : m“ .‘.
1 0} ¢ HH
EEE—— 'o.mmz
. (since m i oven)
pEE— —r W
*1e(Mme! 2
1 0ff°., ! 0aa # e +1)moe
i otrs . .
1 0 .
|4|‘ . B | . ml:“ . (m:w)mool
LIl N HE
.o. :“i,' * (men)mod 2
0 1 0 ' =n mod 2
R ———— J
pE—— * (RO\)IMI
fo 1] P
13 Teeod ‘. e Jmris : (n:mulz
[]
-‘—l. 1 * (ﬂ:mm;‘
=nmea §
(ne1)mes 2
[]
H
1%y (0 #i)mes 2
[]
[]
[]
(nen)mos 2,
‘@G

.~

Figure 17. Cumulative parity comparison scheme.

40

sequences. The only problems remain are how to test the PA itself
and whether or not extra test sequences are needed to test it.

Consider the stuck-at faults and/or bridging faults which occur
on the product line(s) of the PAC. These are the same as the product
line faults in the AND plane and can be detected by appling the test
sequence Il. On the other hand, if these types of faults occur on the
input line(s) of the PAC, then they can be observed from the signal of
the shift-out pin in the CSG. In the meanwhile, the crosspoint faults
occur on the PAC may result the following error cases:

(1) The activation of the product lines is not in order, but one

and only one product line is activated at a time;
(2) No product line is activated;
(3) Even number of product lines are activated; and

(4) 0dd number of product lines are activated.

According to the activation mechanism in the PA design and the
characteristics of the universal test sequences, as long as one and
only one product line is activated, the order of activation is not
really important. Therefore, the case (1) does not harm the
activation mechanism. In other words, the proposed PA design can
tolerate the crosspoint faults, as the case (1), in the PAC. The

fault tolerant capability is one of the positive features.

41

If the parity bit detector gives the correct signal for the test
sequences, 11, 12, and 13, then the detector 1is sure that the
activation mechanism be functioned properly. On the other hand, if no
product line or multiple product 1lines are activated due to the
crosspoint faults, then these faults can be detected as follows.

The single crosspoint fault may cause either no product line in
the PAC to be activated, or two product lines to be activated
simultaneously, for a certain code sequence generated from the CSG.
For example, if a crosspoint is missed at the PQ and A3, it will
change the function from (100) to (-00). When the code sequence (100)

is applied, P, is the only activated product line. On the other hand,

4
when the code sequence (000) 1is applied, the lines Po and Pa are
activated simultaneously. In either case, the even parity signal is
detected, therefore, the use of the test sequence 12 can detect that
fault.

For the multiple faults, the combination of crosspoint faults may
result in the error cases (2), (3), and (4). The crosspoint faults in
the error cases (2) and (3) can be detected in a manner similiar to
the case of single fault. Due to the odd parity design, the proposed
PA design may fail to detect the faults if the crosspoint faults on
these activated product lines pass both parity checkers. Specifically,
«a’

a) to pass I2) test, the crosspoints in the OR plane and in

33

these odd number of product lines activated by the j-th pattern must

42

enable an odd number of output lines; and

b) to pass I4 (I5) test, the number of crosspoints of Xi-line (X', -

b b i
line) in these product lines activated by the j-th pattern must be
odd, and the crosspoints in the activated product lines and the OR
plane enable only odd number of product lines.

In fact, it has been shown that the probabilty of having these

failures is very low and negligible [TFA85]. Therefore, it 1is not

necessary to increase the test sequence in the use of PA design.

4.4 Discussion.

The salient features of the proposed PA design are (1) homogenous
and regular structure; (2) less chip overhead; (3) no performance
degradation during the normal operation due to the added hardware; (4)
no additional I/0 pins required; and (5) no extra test sequence
needed. The proposed design can be implemented on any testable PLA
designs wusing the shift registers so that the chip area overhead can

be reduced.

CHAPTER V

Test Pattern Generation

Consider an AND-OR PLA with n input lines, p output lines, and m
product 1lines. The functions realized by this PLA are represented as
arrays L:(C,D) [Smi79], or cubes. A k-tuple a-(al,az,..,ak), where a;
is one of the items (0,1,x), is defined to be a cube. Here the "don't
care" term x takes value O or 1. The array L has two parts: an input
part (C-array, n columns and m rows) and an output part (D-array, p

columns and m rows). Each cube/row C, of the C-array represents a

i

product term of one or more functions realized by the PLA.

Example 1:
A simple schematic diagram of a PLA, as shown in Figure 18,

implementing five 4-variable switching functions:

0p = IoIyI;

01 - 1011 + 1
o, = 1011 +I.I,I, +I.1I,I
03 - 101213 + 1113

04 - 101213

44

The cubical representation of this PLA is

Io I1 12 13 O0 O1 O2 O3 04
Co: 0 x 1 1 Do: 1 0 0 1 0
Clz 1 0 x x D1: 1 1 1 0 0
C2: x 0 0 1 D2: 1 1 1 0 0
C3: x 0 x O D3: 0 1 0 1 0
CA: 1 x 1 1 DQ: 0 0 1 0 1

and the corresponding Karnaugh-map (K-map) is also shown in Figure 18.
It should be noted that the notation C1 in the cubes of the K-map

represents the l-cube that is produced by the product term Ci'

Definitions:

1. A crosspoint-irredundant PLA is one in which all the crosspoint
faults are detectable.

2. A G-D-irredundant PLA 1is one in which all G and D faults are
detectable.

3. Let a and b be any two cubes. If a has 1 in every minterm in
which b has 1, then a is said to cover b. If neither a covers b,
nor b covers a, then, a and b are said to be unordered.

4. A product term C1 is said to be non-isolated (with respect to a
given output function), 1if there is at least one other product
ternm Cj (i»j), in the functional specification, such that C, and

i

C cover one or more common minterms. Otherwise, it is said to

3

be isolated product term.

45

co 4 s % = Tolyly +IyT,
0, =1
c2 1 Ofl * LI,
c3 - 9 = gLy + L T,I; + 1y
C4 T - =
& & 03 101213 + t113
YV 0, = I,1,1,
I. I, I, I o Q 0 0 0
cubical 0 "L "2} 0 1 2 3 4
represencacion go 2 : : i go t 2 g é g
C%:xOOl D’z':ltl.oo
63: x 0 x 0 03: 0 1L o0 1 O
CA: 1 x 1 1 DQ: o 0 1 o0 1
% o %
eojoerjfrrjre eojoerjir}re eojotLjii}re
» “le wl|® | @ ! o G
[1} c. [1Y n
1 119 119 ¢
7Y » wle ‘::'
4 ‘;’ LA ,:1 “;l % “jj ‘;,
‘L 0)‘
L K AN R RN X eejortjrijre
[] [N € [
[} < [}
u ul c
(Y
.. T
G’ C, 1

Figure 18 A schematic diagram of PIA and its K-maps.

46

5. For a given output function, a minterm covered by a product term
is said to be free if it is not covered by any other product term
of the function under consideration. Otherwise, it is said to be
bound.

6. Two minterms covered by a product term are said to be adjacent if
they differ in only one bit.

7. The number of bit positions in which two product terms differ is
called the Hamming distance.

8. Let Rj' j=1,2,...,p, be the columns of D-array. A column Rk is
said to be minimal if Rk does not cover any other columns. On the
other hand, a column Rt is said to be maximal if Rt is not
covered by any other columns. Note that neither minimal nor
maximal column is unique.

9. Two rows of D-array, D, and D,, are said to bit-disjointed, if

i]
there does not exist a bit q such that diq-djq-l’
Notations:
Consider two product terms Ci-(cil'ciZ""cin) and
C,=(c,7,C3n,-.,C . Let
373100520 %40

ci/cjk-(cil’c12’"’cjk"”cin)’
i.e., substituting the k-th bit of Ci by the complement of the

k-th bit of Cj“ Similarly,

Ci/e™(C11:C190 **C4 (k-1)"Cik’ S (k+1)* " - *Cin’

47

5.1 Detecting Redundant Crosspoints from K-Maps

In this section, the objective is to derive a set of rules to
detect the redundant crosspoints in both the AND and the OR planes.
The removal of such redundant crosspoints will make the designed PLA
G-D-irredundant. Therefore, all the G and D faults in the PLA can be
detected. These detection rules are initially derived from the
observations in the K-maps. A systematic derivation will be further
discussed in the next section.

As mentioned in Chapter II, the "extra device" fault model in
modern VLSI cifcuits has much 1less significance than other fault
models normally considered for PLAs. Therefore, the test pattern
generation process discussed in this chapter, is concentrated on both
the Disappearance faults (D-fault) and Growth faults (G-faults).

As it 1is shown in Figure 2(a) and 2(c), a G-fault causes the
additional minterms expand to its adjacent terms, while a D-fault
makes some minterms disappear from the K-map.

Consider the irredundant crosspoints in the OR plane. As its
name implied, the removal of an irredundant crosspoint will affect the
output functions. In other words, some minterms are missing in the K-
map. Conversely, the removal of a redundant crosspoint will not
affect the output function at all and the K-map is unchanged. Based

on this observation, it is easy to conclude that a crosspoint is not

48

redundant if its corresponding minterms are free. However, if the

corresponding minterms are bound, the determination is discussed as

follows.
Example 2:
Consider a PLA and its K-maps
Io I1 12 0o 01 02
CO: 0 1 x DO: 01 1
Clz 0 0 1 D1: 0 0 1
C2: 01 0 D2: 1 01
C3: 1 0 x D3: 0 1 O
00 01: 02:
00] 01] 11} 10 00} 01| 11{ 10 [00] 01] 11| 10
0 02 0 C0 CO 0 C1 C0 C0
C
2
1 1 03 C3 1

From the above K-maps, it is easy to check that all minterms are

free, except that the minterm (010) in O, is bound by the product

2
terms C0 and 02. The redundancy is determined if there exists an
order between the bound product terms. In other words, for an output
function, 1if a product term associated with one of the bound terms is
covered by any others’ corresponding product terms, then the removal

of such term won’'t affect the output function. Therefore, the

corresponding crosspoints in the covered term are redundant.

49

Specifically, since the product term Co-(le) covers Cz-(010), the
exclusive of the product term Co in O2 may miss the minterm (0l1l). On

the other hand, the exclusive of the term 02 in 02, no minterm is

missing. In this example, since C0 covers C the minterm (010) in O

2’

is covered by CO regardless of the existence of C

2

2 hence, the

crosspoint in C2 and 02, or d22’ is detected as redundant.
Rule RCD1l: (Detecting the redundant crosspoints in the OR plane)

If a minterm in Oj is bound and a bound product term Ci is covered
by other bound product terms, then the corresponding crosspoint, dij
is redundant.

When an irredundant crosspoint occurs in the AND plane, then the
removal of this crosspoint is equivalent to producing a G-fault. In
other words, the additional minterms are created in the K-map when
that crosspoint is removed. On the other hand, the created minterms
due to the removal of the redundant crosspoints will be always bound
by the other product terms. Based on this observation, if the
corresponding adjacent minterms are free in, at 1least, one output
function (or, K-map), then the corresponding crosspoint is

irredundant. Otherwise, it is redundant.

50

Example 3:
Consider the same PLA in Example 2, except remove the redundant

crosspoint d22 from the OR plane. The corresponding K-maps are

Oo: 01: 02:
00} 01} 11| 10 00| 01} 11} 10 00| 01} 11} 10
0 C2 0 C0 Co 0 C1 C0 C0
1 1 C3 C3 1
From K-maps for both 0o and 01, the adjacent minterms of these
minterms covered by Co, C2, and C3, are free. According to the

definition, the corressponding crosspoints are irredundant. On the

other hand, consider the minterm (001) in the K-map for O the free

2’
adjancent minterms at (000) and (101) guarantee that the corresponding
crosspoints 10 and c12 are irredundant. However, due to the fact
that the adjacent minterm at (011l) is covered by Co, it is concluded

that the corresponding crosspoint c,, is redundant.

11
Rule RCD2: (Detecting the redundant crosspoints in the AND plane)

A crosspoint in the AND plane is redundant if the adjacent
minterms of the corresponding minterm in all output functions (or, K-

maps) are all covered by any other product terms.

51

With the redundancy detection process, the redundant crosspoints
in both planes are removed to assure the PLA under test is a G-D-

irredundant PlA.

5.2 Test Pattern Generation

In this section, the ways to select the minimum number of test
patterns for detecting the G and D faults are discussed. As it is
shown by Smith [Smi79], 1if Ts is the test set for detecting single G
or D faults, then any detectable combination of G and D faults in a G-
D irredundant circuit, is detected by Ts. Therefore, we only consider
the test pattern generation for detec¢ting single G and D faults.

In order to simplify the explanation of the test pattern
generation process for both D-faults and G-faults, the basic concepts

are introduced with K-maps.

A, Test Set for D-faults

Based on the following two observations: a D-fault makes some
minterms disappear from the output functions (or, K-map), and the PLA
under test contains no redundant crosspoint. A D-fault at the
corresponding crosspoint is detected by simply examining if there

exists a free minterm with respect to all output functions.

52

Specifically, from the K-maps, the test set for detecting a D-fault

can be generated as follows:

Case DF1l:

Case DF2:

Case DF3:

if a product term is isolated, i.e. the minterms covered by
the isolated product terms are free, then the product term

is chosen as the test set;

if a product term is non-isolated, but there exists at
least one common free minterm, then the common free

minterms are chosen as the test set; and

if there is no common free minterm in a non-isolated
product term, then the test set is formed by the minimum

number of minterms which are free in all output functions.

Applying these three generation rules, the test set for D-faults

in the K-maps of Figure 18 are generated in the following example.

Let PGD(Di) be the test set for detecting the D-faults at D

Example 4:

i

The PLA of Example 1 can be easily shown as G-D-irredundant by

the redundancy detection rules. Since the product term C0 is isolated

as illustrated in the K-maps, according to the case DF1l, the test set

53

is found to be PGD(DO)-CO, that is ((0011),(0111)}. 1In other words,
either test pattern in these test sets can be applied to detect the D-

faults at Do. For the non-isolated product terms C2, C3, and CA' by

the case DF2, the common free minterms (0001), (00x0), (11l1l1l) can be
chosen as the test sets for DZ’ D3, and DA’ respectively. Thus

PGD(DZ) = ((0001))

PGD(D3) = ((0000), (0010)}

PGD(DA) = {(1111)).

Although the non-isolated product term C1 has no common free

minterm, it can be found from the K-maps that the minterm (1000) is

free in the output functions O0 and 02, but bound in 01, while the

minterm (1011) is free in O, and 01, but bound in 02. In other words,

0
while the minterm (1000) can detect the D-faults at the corresponding
crosspoints at Oo and 02, the blind point at O1 can be detected by the
minterm (1011). Therefore, with the use of these two test patterns
the D-faults at D1 can be detected. Alternately, another pair (1010)

and (1011) can also be used as the test set. Therefore,

PGD(DI) = {{(1011),(1000)}),{(1011),(1010)}}.

The key to easily testable PLA design is the ability to select
any arbitrary one product line during the test. If the only product

line, say Ci’ is activated, then the status of Di is observable and

the D-faults at Di can be identified. Based on this concept, the test

pattern generation problem is then turned to how to choose a test

54

pattern that can separate the product term Ci from other product

terms.

As illustrated in the case DFl, if the product term Ci is
isolated, then the minterms of Ci are free in all output functions of
occurrence. This implied that the product term Ci has no common
minterms with any others, or Ci is seperated from the others. In
other words, the Hamming distance of any pair (Ci’cj)’ for any other
C.,'s, 1s at least one. Therefore, the case DFl 1is essentially

3

equivalent to the case of Hamming distance of at least one.

Theore

If dH(Ci'Cj) > 1, for all Cj's, then PGD(Di)-Ci.

Lemma 1:
If there exists a test pattern that selects only the product
line, C
Proof:

Since only the product line Ci is selected, the status of the

g then this pattern can detect the D-faults at Di'

crosspoints at Di is observable. Thus this test pattern can

detect the D-faults at Di'

55

eor

's, applying a test pattern of Ci

Since dH(Ci’Cj) 21, for all Cj
will only select the line Ci and deselect the others. Thus, by
Lemma 1, the test patterns of Ci form the set PGD(Di), i.e.
PGD(Di)-Ci‘

Example 5:

Consider the same PLA as in the Example 1, it is easy to derive
that
dH(CO’Cj)-l’ for j=1,2,3, and 4,
Thus, the test set PGD(DO)-CO-(Oxll), or {((0111),(0011)). This is the

same as the test set generated in Example 4.

Consider the case of zero-Hamming distance. dH(Ci,Cj)-O implies

that C, and C, contain at least one test pattern in common. In other

i 3

words, applying the common test patterns may activate the product

lines C, and C, simultanously. Therefore if the test patterns are

i]

chosen to separate the product term Ci from Cj’

patterns must be excluded. In fact, the determination of the

the common test

exclusive test patterns depends on the crosspoints in the output

functions. The test set generated for detecting the D-fault at Di in

the case of zero-Hamming distance should be derived from the test

patterns generated for detecting D-fault at each crosspoint at Di' For

56

notational simplicity, dH(Ci,Cj)-O is assumed for all Cj's in the PLA

under test. Let R,’'s, j=1,2,..,p, be denoted as the columns of the

]

array D, and

S, = C C,,C.)=0 and d =d, =11).
1q~ U G5 | 44(Cy.Cy) iq = %4q " 1)

Corollary 1.1:
If siq-(ci), then PGD(diq)-Ci.
Proof:

siq-{ci) implies that either dH(C 1, or d, 1is the only 1

i'Cj) Z ’ 1q
in the column Rq. In the former case, by Theorem 1, PGD(dlq)-Ci'

In the latter case, since C1 is the only product term in the
output function Oq’ it is obviously isolated, hence, from case

DF1, PGD(diq)-ci'

If the set S
iq

1q may be masked by djq's, unless Ci can be seperated from

the other Cj's in siq' For the purpose of simplicity and clarity, the

case of S-(Ci,Cj} is first considered in Theorem 2, and the general

case will be presented in Theorem 3.

contains more than one product term, then the D-

fault at d

Theorem 2:
1f siq-{c

=x and c » X).

), then PGD(d,) = g (Ci/p | eqp Tk

1'%

57

Lemma 2:
If Ci is covered by Cj’ then Di and Dj are big-disjointed.

Proof:
Assuming that D1 and Dj are not bit-disjointed, there exists a
bit k such that dik-djk-l' Since Ci is covered by Cj’ applying
any test pattern to activate Ci would also activate Cj' This
results in a redundant bit at d1k and contradicts the assumption
of irredundancy. Therefore, Di and Dj are bit-disjointed.

In essence, the crosspoint at d1 is detected as redundant if Ci

is covered by Cj’ and diq-djq-1° This is exactly the same as the

redundancy detection rule RCD1.

Lemma 3:
If D1 and Dj are not bit-disjointed and dH(Ci’Cj)-O’ then there
exists a bit k such that Cig ~ X and cjk " X.

Proof:
Assume that there exists no such k, 1i.e. Ci is covered by Cj'
By Lemma 2, Di and Dj are bit-disjointed, contradict the
assumption.

Lemma &:

If siq-(ci’cj” then there exists a bit k such that the test

pattern from Ci/ can detect the D-fault at d

jk iq’

58

Since Siq-(Ci,Cj), i.e. dH(Ci’Cj)-o and diq-djq-l’ or, Di and Dj
are bit-disjointed, by Lemma 3, there exists a bit k such that

CiyX and cjk » X, Applying a test pattern from Ci/cjk will

activate only the line Ci and deactivate the others. By Lemma 1,

the D-faults at d, can be detected by this pattern.

iq

P eorem

From Lemma 4, Ci/Ejk is one of the PGD(diq) at bit k. Therefore,

x and c * X).

PGD(d;)= U (Ci/ey | o5y = ik

Example 6:
Consider the following PLA,

Clz 1 0 x x Dlz 1 1 1 0 0
CZ: x 0 0 1 D2: 1 1 1 0 0
C3: x 0 x O D3: 0 1 O 1 0
Ca: 1 x 1 1 DA: 0o O 1 0 1.

This PLA 1is the same as the PLA in Example 1, except the first
product line is removed. It is easy to check that dH(Cl,Cj)-O, for

j=2,3,and 4, and S The test set PGD(dll) is generated as

117Gy Cp)-

follows:

(1) Since ¢y5=X and c23-0 » x, the test patterns are selected

from Cl/c23-(c11 €15 So3 014)-(101x)’ or {(1010),(1011)}.

59

(2) Since cla-x and c24-l » x, the test patterns are selected

from Cl/c24 (c11 12 13 24) (10x0), or {(1000),(1010)).

By Theorem 2, the test set is the union of the test patterns generated

in the both cases, or

PGD(dll)-TPl-(101x)U(10x0)-((1000),(1010),(1011)).
Theore
1f Si dH(C) =0 and diq djq-l), and s = Isiql > 1, then
PGD(diq) - TPl a] TP2 n...n TPs

where each TPk’ as shown in Theorem 2, is the test set generated
for the pair (Ci'ck)'

Prior to the proof of Theorem 3, we consider Lemma 5.

Lemma 5:

If TP1 and TP2 are any two sets of test patterns generated for

the pairs j) and (C Ct)' respectively, then TP1 and TP2
have common test pattern(s).
Proof:
By Theorem 2, TP;= U { Ci/Ejk | ¢;,~x and Cip ™ X) and
TP,= U { ci/Etr | ey =x andc__ »#x).

Consider ci/cjk and ci/ctr subsets of TP1 and TPZ'

respectively. If k < r, then

Tp = (c11’°i2""cjk"'ctr""cin)

In other words, TP, and

is a subset of both Ci/c and C 1

jk 1/Etr'

60

TP, have common test patterns. The same result can be obtained

2
for k > r. On the other hand, for k = r, Iif cjk - Etr is
assumed, then the "don’t care" term Cix is a logical OR of cjk
and Cop- Since for all other bits, ciy is covered by both cj
and cty' Thus Ci is covered by Cj U Ct' resulting that the bit
diq is redundant. Therefore, cjk-ctr’ i.e., ci/cjk is the

common subset of both TP1 and TPZ’

Proo eore

Since each TP, is a test set for the pair (C this set

'C H
h| i j)
consists of the test patterns which can seperate Ci from Cj’

Therefore, the test pattern used to seperate C, from others will

i

be the intersection of the test sets TPI’ TPZ"” and TPS. From

Lemma 5, it can be shown that this intersection is not empty.

Example 7:
Consider the PLA in Example 6. Since 812-(01,02,03) and s=2,

there exist two don’'t cares in Cl' Therefore, the PGD(dlz) is

generated as follows:
(1) From Example 6, TPl-(101x)U(10x0)-{(1000),(1010),(1011)).
(2) Similarly, for (cl'CS)’ TP2-(10x1)-{(1001),(1011)).

By Theorem 3, PGD(dll) = TP. N TP2 = ((1011)).

1
Similarly, PGD(dlz)-(IOxO)-((IOOO),(1010)}.

61

The test set PGD(d consists of the test patterns which are

1q)
used to detect the D-fault at diq’ where diq-l' Thus, the test set

PGD(DI) is a collection of the test sets that consist of a test
pattern from each PGD(diq), for all q. However, due to the
relationship among the test sets PGD(diq)'s, the generation process

for the test set PGD(Di) can be simplified as follows.

Lemmg 6:

If the column Rq covers R then PGD(d is a subset of

j ’ iq)

PGD(dij)'

Proof:
Since Rq covers Rj' in other words, every pair of l-valued

entities in R, will also be 1in Rq’ then the test patterns

h|

generated for diq are always for dij’ i.e., PGD(diq) is a subset
of PGD(dij).

Example 8:
Since D1 contains only three crosspoints at le' dll’ and d12,

the test set PGD(Dl) is determined by the test sets PGD(dlj), j=0, 1,
and 2. Among the corresponding columns R, Rl and R2 ,it 1is found
that the columns Rl and R2 are maximum, 1i.e. PGD(dlo) is a subset of

both PGD(dll) and PGD(dlz)‘ Therefore, PGD(Di) is determined by these

two subsets. Specifically, from Example 8,

62

PGD(d (1011))

110"

and PGD(dlz)-(10x0)-{(1000),(1010)}.

then the element of the test set PGD(Di) is formed by selecting a

pattern from both PGD(dll) and PGD(dlz)' or

PGD(Dl)-({(loll),(IOOO)),((1011),(1010))}

This is exactly the same as the test set generated in the case DF3.
In fact, if the generated test sets, PGD(diq)'s, are the same for

each diq in Di' i.e., PGD(Di)-PGD(diq), then this is equivalent to

the case DF2.

The test set for detecting the D-faults can be summarized in the

following theorem,

Theorem &4:

Consider Si-{Cj| dH(C)=0), and s = |Si|.

1’Cj
(1) If s = 1, then PGD(Di)-Ci, or
(ii) If s > 1, then the test set

PGD(Di)-((pl,..,pk) | each pj, j=1,2,., .k, is selected from
). (1)

PGD(d,,) for all maximum columns R

i) h|

Proof:
If s=1, then either Si-{ci} or dH(ci’Cj)Zl' By Theorem 1,
PGD(Di)—Ci. On the other hand, if s>1, then the test set PGD(Di)
is generated from the test sets PGD(diq)'s that correspond to the

maximal columns. The test set PGD(Di) is expressed as Equation

(1).

63

Based on Theorem 4, the test pattern generation for D-fault is

summarized in Algorithm PGD.

Algorithm PGD:

Step 1: (Test pattern generation)
DO i=1 tom (m is the number of product lines)
BEGIN
IF s-lS |=1, THEN PGD(D)—C ELSE
BEGIN
Determine the maximum columns
PGD(D) is generated by equation (1}
END
END

Step 2: (Test pattern compaction)
Eliminate the duplicated test patterns from PGD(Di) for all
i.
Example 9:
Consider the PLA in Example 1. Applying the Algorithm PGD, the

test set for D-faults are generated as follows:

PGD(DO) = (0x1l1) = {(0011),(0111)},

PGD(Dl) = ({(1011),(1010)), {(1011),(1000))}},
PGD(DZ) = {(0001)),

PGD(D3) = (00x0) = ((0000),(0010)), and
PGD(DA) = ((1111)).

Thus, ((0011),(1011),(1010),(0001),(0000),(1111)) is one of the test sets.

64

B, Tes et fo -faults
Let PGG(cik) be the test set for a G-fault at the crosspoint

c,,%X. As shown in the K-maps, a G-fault at c

ik

additional logics to expand toward the corresponding direction,

jk may cause the

Cik’

or to the adjacent minterms Ci/c In fact, these adjacent minterms

ik’

must be free. Otherwise, the corresponding crosspoints are redundant.
Consequently, if an additional term is presented in one of these

adjacent minterms, a G-fault at Cix is detected. Specifically, the

test set for detecting the G-fault at c,, is generated as follows:

ik

Case GFl: If the term Ci/z s 1isolated with respect to any given

ik 1

output function, then Ci/ is chosen as the test set for

Cik

cik

Case GF2: If the term Ci/Eik is non-isolated, then the free minterms

of Ci/cik are chosen as the test set for Cipr

Example 10:
Consider the same G-D irredundant PLA and its K-maps (Figure 18).

From the K-map for O the minterms CO/EOO-(lxll) are all free. 1In

3'
other words, CO/Eoo is isolated with respect to 03. Thus, by the case

GFl, these minterms can be chosen as the test set to detect G-fault at

or PGG(c = (1x11). On the other hand, from the K-

00" 00’ =~ Co/00

maps for Oo, 01, and 02, although the non-isolated minterms

65

CI/EOO-(OOxx) has some bound minterms, it still contains several free

minterms, such as (0000) and (0010) in O (0011) in 01, and (0000),

09

(0010), and (0011l) in O Thus, PGG(clo)- { (0000), (0010), (0011)).

2°
Similarly, the remaining PGG(cik)'’s are generated as shown in

Table 2.

Table 2. Test Set for G-faults.

PGG(Cik)
k: 0 1 2 3
i:
(1] (1x11) -- (0x01) | (0x10)
(00x0)
1 (11xx) -- --
(001x)
2 -- (x101) | (0011) | (0000)
3 -- (x1x0) -- (x0x1)
4 (0x11) -- (1x01) | (1x10)

66

Similar to the test set generation process for D-faults, the
concept of Hamming distance is also applied here. The case GFl is

equivalent to the following theorem.

Theorem 5:
If dH(Ci/cik'Cj) > 1, for all Cj's, then PGG(cik)=Ci/cik.
Proof:

If dH(ci/cik’cj) > 1, for all C,’s, then the minterms Ci/cik are

3

all free in all output functions. Consequently, PGG(cik)=Ci/Eik.

Note that, 1if the crosspoint diq is the only one in the output
function Oq, then the K-map with respect to 0q may contain only the

product term C Obviously, the adjacent minterms of C1 in the K-map

g
are all free. In this special case, the test set is chosen as

follows.

Theorem 6:
If diq is the only crosspoint in Oq, then PGG(cik)-Ci/cik’ for

all Cike
Proof:
Since the minterms Ci/zik’ for all cik’ are all free, they can

be chosen as test patterns, thus, PGG(cik)- Ci/cik’

67

Consider the case of dH(Ci/E)=0, this is equivalent to the

ik’
case GF2. For notational simplicity, dH(Ci/Eik,Cj)-O is assumed for

all C.’'s in the PLA under test. R,'s, j=1,2,..,p, are again denoted

J J

as the columns of array D. The PGG(c is denoted as the test set

ik)q
generated with respect to the output function 0q (or column Rq) for a
G-fault at Sk This test set can be generated in a manner similar to

Theorem 3.

L!;eo;gm 2 .
Let T;p = (€5 | 4y(C;/c;y,C) =0). If €= [Ty | >0, then

PGG(cik)q - TP1 n TP2 ~ ... N TPt
where TPj is the test set generated for the pair (Ci/Eik,Cj).
proof: It is the same as Theorem 3 by looking Ci/Eik as C1 and t as s,
respectively.
Example 11:

Consider the test set PGG(clo) of the PLA in Figure 18. It can

be easily check that dH(Cl/E)=0, for j=0, 2, and 3. The cubical

10'%j

notation is rewritten as follows:

0 1 2 3 4
C,/c.n: 0 0 x x D, 1. 1 1 0 O
1col°: 0 x 1 1 Dé: 1 0 0 1 0
02 x 0 0 1 D2: 1 1 1 0 0
C3 x 0 x O D3: 0 1 0 1 0.

68

In 00, the test sets for the pairs (Cl/clo’co) and (Cl/CIO’CZ)

are TPl- { (000x), (00x0)) and TP2- { (001x),(00x0)), respectively.

Thus, PGG(c = TP. N TPZ-((OOOx),(OOxO))n((OOIX),(00x0))-((00x0)}.

10°0 1

From the K-map for 00, the adjacent minterms (0000) and (0010) of C1

are free. They can be chosen as the test set regardless other

adjacent minterms (0001) and (0011) are bound by 02 and CO’

respectively.
Similarly, from either Theorem 7 or the K-maps, we can generate

PGG(c = {(001x), (00x0)}n {(00x1l)} = {(0011l)) for O,, and

101 1’

PGG(c = {(001x),(00x0)) for O

1072 2

Because each individual test pattern in PGG(c can detect the

ik)q
the test set PGG(cik) is then a collection of all

D-fault at ik’

elements in PGG(c Therefore,

1k)q'
PGG(c PGG(c U PGG(c

U PGG(c = {(001x),(00x0)},

100~ 10°0 101 1002

and we conclude that the test set PGG(cik) = U { PGG(cik)q }.

It 1is 1inefficient and impractical to derive all poosible test
sets for the corresponding outputs without simplification. In fact,
from the above example,

PGG(clo) = {(001x),(00x0)) = PGG(CIO)Z'

This 1is due to the fact that the column R2 covers both columns Ro and

Rl'

69

Lemma 8:

If column Rq covers R,, then PGG(c

3 is a subset of PGG(c

iKq i

Proof:

Since the set PGG(c is the generated test set with respect to

ik)r
the output function Or. The test set 1is generated by
intersecting the test sets of pairs. If Rq covers R,, in other

3

words, the bits in R, are also in Rq, then the more intersection

J

is performed, the smaller set is obtained. Therefore, PGG(cik)q

is a subset of PGG(cik)j'
Based on the relationship derived in Lemma 8, the test set can be
simplified as

PGG(cik) = U (PGG(c | Rq's are the minimum columns }. (2)

ik)q
Theorem 8:
Consider Tik - Cj] dH(Ci/cik’cj)_o }, and t = ITikI’
(1) if t = 0, then PGG(cik)-ci/cik’ or
(ii) if t 2 1, then PGG(cik) is expressed in (2).
Proof:
If t=0, then dH(Ci/cik’cj) 2 1, by Theorem 5, PGG(cik)-Ci/cik’
Ift>21, by Lemma 8, PGG(cik) can be expressed as the union of

the test sets generated with respect to the minimum columns.

70

Corollary 8.1:
If diq is the only crosspoint in column Rq, then
PGG(cik)-ci/cik'
Proof:

If diq is the only crosspoint in column Rq’ then Rq is minimum, by

Theorems 6 and 7, PGG(cik)-PGG(cik)q-Ci/cik°

Based on the above discussions, the test generation for G-faults

is summarized in Algorithm PGG.

Example 12:

Consider the PLA in Example 1, applying the Algorithm PGG, the
test set for D-fauls at each ¢y are the same as in Table 2. The test
compaction process will eliminate the duplicated patterns. Therefore,

a test set for both D-faults and G-faults in the PLA of Figure 18 is

{ (0000), (0001), (0011),(0110),(1010),(1011),(1101),(1111)).

71

Algorithm PGG:

Step 1: EIGEN(i)=false, i=1,2,..,m (m is the number of product lines)

Step 2: DO j=1 to p (p is the number of output lines)
BEGIN (Theorem 6)

IF d, 1is the only crosspoint in O , THEN
BEGINY 4
EIGEN(i)=true.
DO k=1 to n (n is the number of input lines)
BEGIN
ENDIF cik » x THEN PGG(cik)-ci/cik’
END

END

Step 3: DO i=1 tom
BEGIN (Theorem 8)
IF (EIGEN(i)=false) THEN

BEGIN
DO k=1 to n
BEGIN
IF (cik » x) THEN
BEGIN
IF t=|T, | = O_ THEN
PGG(c,,)=C./c
ELSE ik’ "i’"ik
BEGIN _
determine the minimum colums R 's
PGG(c,,) is dereived as the equationq(Z).
ik
END
END
END
END
END

Step 4: (Test Pattern Compaction)
Eliminate the duplicated test patterns from PGG(c
PGD(Di).

ik) and

72

5.3. Simulation Results

The Proposed test pattern generation algorithm has been
implemented on a VAX 11/780 in FORTRAN. In order to demonstrate the
effectiveness of the proposed algorithm, the ten PLAs in [BoM84] have
been simulated and a comparison of the number of test patterns
required with other techniques [FuK81][SKF81][Kha83)[SaT82][BoH84] are
given in Table 3. The test length for each example shown in Table 3
is derived according to the heuristic that the test set is comprised
by choosing every first test pattern of the test sets PGD(Di) and
PGG(cik) and eliminating the duplicated test patterns. Therefore, the
test length presented in Table 3 for the proposed algorithm can be
improved if a better heuristic algorithm for test generation and
compaction process is applied.

To collect experimental data, we also used testable versions of
49 PLAS that were used earlier in collecting data on efficacy of a PLA
minimization program called ESPRESSO [BHM84]. After the PLA raw data
are processed by ESPRESSO, the minimized PLAs with the test lengths
are listed in Table 4, and these minimized PLA data are supposed to be
irredundant. In fact, some redundant PLAs, as the entries marked with
‘%" in Table 4, are detected by our program. For example, 29
redundant crosspoints have been detected in the PLA ’'cps’ which has 29

input lines, 162 product lines, and 109 output lines.

73
Table 3. Comparison of the number of test patterns

Nape ____Puiiwara Salula _Khakbaz Decoder McCluskev Chang

Master 104 902 515 594 540 51
New alu 102 871 496 572 520 83
bar new 95 598 398 528 462 62
recur 44 168 101 117 90 16
traffic 36 113 74 88 72 9
alu test 119 1108 650 792 684 87
cond 83 549 338 408 312 58
bar 87 530 350 435 337 64
rimp 119 1028 626 780 663 104
Cerber 159 1927 1102 1300 1150 160

Table 4. The number of test patterns required in some PlAs

Nape Ni _ Np No Test Pattern Name Ni _ Np No TesC Patcexn

adré 8 75 S 90 root 8 57 S 101
alul 12 19 8 8 sqn 7 38 3 68
alu2 10 68 8 73 sqré 6 S0 12 46
aluld 10 66 8 70 ti 47 213 72 346 »
ala 10 2 12 57 tial 146 579 8§ 1179 *
becO 26 179 11 451w vg2 2 110 8 178
beca 26 180 46 1448 win 4 9 7 8
beb 26 156 39 1270 xldn 27 110 6 194
bee 26 137 45 1143 x6dn 139 8l 5 209
bed 26 117 38 977 x9dn 27 120 7 194
chim 29 140 7 508 z4 7 59 4 68
cols 14 14 1 106 ind s 74 29 140 *»
cps 26 162 109 919« inG 32 212 20 394 *
del 4 9 7 13 inS 2% 62 14 214
de2 8 39 7 71 iné 33 54 23 183
dist 8§ 120 S 175« in7 26 s& 10 82
dk27 9 10 9 17 misg 56 69 23 43
dk4a8 15 21 17 3 mish 94 82 43 17
exl 4 7 7 9 nlplé 8 127 8 164
£Sla 8 76 8 74 opa 17 79 69 223
gary 15 107 11 345% raddl 8 75 S 90
in0 1 107 11 347 rckl 32 32 7 529
inl 16 106 17 478 rdSs3 s - 131 3 32
in2 19 135 10 342 rd73 7 127 3 128

risc 8 28 31 39

Ni: the number of input lines.
Np: the number of product lines.

No: the number of output lines.

CHAPTER VI

Conclusion

Two testable PLA designs for both function-independent and
function-dependent tests, have been presented.

The key to easily testable PLA design is the ability to select
any arbitrary one product line during the test. This key concept has
been implemented to design a product line activator in Chapter IV. It
has been shown that the proposed design has the following salient
features: (1) homogenous and regular structure; (2) 1less chip
overhead; (3) no performance degradation during the normal operation
due to the added hardware; (4) no additional I/0 pin required; and (5)
no extra test sequence needed.

The above key concept is also used to the test pattern generation
in Chapter V. One of the major contributions in this approach is the
introduction of the concept of Hamming distance to the test pattern
generation. The test pattern generation problem is, therefore, turned
in to the problem of how to choose a test pattern so that a product
term can be seperated from others.

Based on the proposed algorithm, a software program has been
implemented on a VAX 11/780 in Fortran. This program provides not
only the generated test set, but also the information of redundant

crosspoints in the PLA under test.

74

75

Since the "extra device" fault model in modern VLSI circuits has
been less significant than other fault models normally considered for
PLAs [KhB85], in Chapter V, the emphasis of the test pattern
generation is on the detection of G and D faults. Also, as it has
been shown, if 'I's is the test set for detecting single G and D faults,
then any detectable combination of G and D faults in a G-D irredundant
PLA, 1is detected by Ts [Smi79]. Therefore, the proposed test
generation for the single fault detection can essentially be applied
for the multiple fault detection.

Although the proposed approach concentrated on the G and D
faults, the same principle can be extended to the shrinkage and
appearance faults, if necessary. However, this extension is held only
if the combination of G and D faults and the combination of S and A
faults do not occur simultaneously [Smi79].

As mentioned earlier, the motivation of doing this work is to
reduce the hardware overhead for the test purpose in the design of
fault-tolerant PLAs. Since the extra hardware overhead may offset the
yield improvement, thus, the test generation approach that requires no
hardware overhead may be superior to the testable design approach for
this purpose. The development of an efficient test generation process
with the minimal test length is of significient importance that leads
to a future research direction.

In essence, the proposed pattern generation provides a potential
to derive the near-minimal test length. Unlike the heuristic process

applied to generate the test set in the existing generation

76

algorithms, the proposed algorithm 1is capable of generating all
possible test patterns for each fault. Therefore, the derivation of
the minimal test length can be accomplished by a method applied to
derive the minimal covering set of fault-detection tests for the
combinational circuits. Table 5 shows that all possible test patterns
for each fault of the PLA in Example 1 are listed. The test set
generated in Example 12 is essentially the minimal covering set of
this table.

One of the most important issues in the design of fault-tolerant
PLAs is fault-location. The faults must be located so that the spares
can be efficiently allocated to repair the partially defective chips
[WeL87]. The fault 1location problem had been overlooked for years
until the fault-tolerant PLA being recently proposed. Research
efforts have been devoted to the fault location problem.

It is possible to develop a fault location algorithm based on the
proposed test generation approach. Again, since all possible test
pattern(s) are generated, if the fault-location experiments [Koh78]
developed for the combinational circuits are implemented, it is
possible to generate the test set and set schedule to 1locate the

fault which leads to an another future research direction.

Table 5. Test set for Figure 18.

77

ooanO

NOO

won

or O

NN O

w N O

—-wo

wwO

orn

(SN e)

w s O

0000
0001
0010
0011
0100
0101
o110
o111
1000
1001
1010
1011
1100
1101
1110
1111

-

el e

[AbF86]

[BHM84]

[BoM84)

[CCH79]

[Cha78]

[DaM81]

(EiL80]

[FKHS0]

[FuH86]

[Fuj84]

[FuK81]

LIST OF REFERENCES

Abraham, J. A. and W. K. Fuchs, "Fault and Error Models for
VLSI", Proceedings of IEEE, Vol. 74, No. 5, pp. 639-654, May
1986.

Brayton, R.K., Hachtel, G.D., McMullen and A.L. Sangiovanni-
Vincentelli, Logic Minimization Algorithm for VLSI Synthesis,
Kluwer Academic Publishers, Hingham, MA, 1984.

Bozorgui-Nesbat, S. and E. J. McCluskey, "Lower Overhead
Design for Testability of Programmable Logic Arrays", 1984
International Test Conference, pp. 856-865.

Cenker, R.P., Clemons, D.G., Huber, W.R., Petrizzi, J.B.,
Procyk, F.J., and G.M. Trout, "A Fault-tolerant 64k Dynamic
RAM", IEEE Trans. on Electr. Dev., Vol. ED-26, No. 6, pp. 853-
860, June 1979.

Cha, C. W., " A Testing Strategy for PLAs", Proc. 15th Design
Automation Conference, pp. 326-334, 1978.

Daehn, W. and J. Mucha, "A Haredware Approach to Self-testing
of Large Programmable Logic Arrays", IEEE Trans. on Computers,
Vol.C-30, pp. 829-833, Nov. 1981.

Eichelberger, E. B. and E. Lindbloom, "A Heuristic Test-
pattern Generator for Programmable Logic Array", IBM J. Res.
& Dev., pp. 15-22, Jan. 1980.

Fujiwara, H., Kinoshita, K. and H. 0Ozaki, "Universal Test
Sets for Programmable Logical Array", Proc. International
Symposium on Fault-tolerant Computing, pp. 137-142, 1980.

Fung, H.S. and S. Hirschhorn, "An Automatic DFT System for the
Slic Silicon Compiler”, IEEE Design and Test, pp. 45-47, Feb.
1986.

H. Fujiwara, "A New PLA Design for Universal Testability",
IEEE Trans. on Computers, Vol. C-33, No. 8, pp. 745-750, Aug.
1984,

Fujiwara, H. and K. Kinoshita, "A Design of Programmable

Logic Arrays with Universal Test", IEEE Trans. on Computers,
Vol. C-30, No. 11, pp. 823-828, Nov. 1981.

78

[HaR85]

[HJA84]

[Kha83]

[KhB85]

[KhM81]

[Koh78]

[KoP86]

[MAD82]

[MeC80]

[Min84)

[Moo86]

[NeM83]

79

Ha, D.S. and S.M. Reddy, "On the Design of Testable Domino
PLAs", 1985 International Test Conference, pp. 567-573, 1985.

Hua, K.A., Jou, J.Y. and J.A. Abraham, "Built-In Tests for
VLSI Finite-State Machines", Digest, Proc. 1l4th International
Symposium on Fault-Tolerant Computing, pp. 292-297, 1984.

Khakbaz, J., "A Testable PLA Design with Low Overhead and High
Fault Coverage", Proc. 13th International Symposium on Fault-
Tolerant Computing, pp. 426-429, 1983.

Khakbaz, J. and S. Bozorgui-Nesbat, "Mimimizing Extra Hardware
for Fully Testable PLA Design", International Conference on
Computer Aided Design, pp. 102-104, 1985.

Khakbaze, J. and E. J. McCluskey, "Concurrent Error
Detection and Testing for Large PLAs", CRC Tech. Rep. 81-14,
Stanford Univ., Oct. 1982.

Kohavi, Z., Switching and Finite Automata Theory, McGraw-Hill,
1978.

Koren, I. and D.K. Pradhan, "Yield and Performance Enhancement
through Redundancy in VLSI and WSI Multiprocessor Systems",
Proceedings of the IEEE, Vol. 74, No. 5, pp. 699-711, May
1986.

Mak, G. P., Abraham, J. M. and E. S. Davidson, "The Design
of PlLAs with Concurrent Error Detection", Proc. 1982
International Test Conference, pp. 303-310.

C. Mead and L. Conway, Introduction to VLSI system, Addison-
Wesley, 1980.

Min, Y., "A PLA Design for Ease of Test Generation", Proc.
14th International Symposium on Fault-Torelant Computing,
PP. 436-442, June 1984,

Moore, W.R., " A Review of Fault-Tolerant Techniques for the
Enhancement Integrated Circuit Yield", Proceedings of the
IEEE, Vol. 74, No. 5, pp. 684-689, May 1986.

J. Newkirk and R. Mathens, The VLSI Designer'’s Library,
Addison-Wesley, 1983.

[OsH79]

[SaS86]

[SaT82])

[Sch78]

[SGM83]

[SGM84]

[SKF81]

[SMD8O]

[Smi79]

[SoG86]

[SoP80]

80

Ostapko D. L. and S. J. Hong, "Fault Analysis and Test
Generation for Programmable Logic Array", IEEE Trans. on
Computers, Vol. C-28, pp. 617-626, Sep. 1979.

Sami, M. and R. Stenfanelli, "Reconfigurable Architectures
for VLSI Processing Arrays", Proceedings of the IEEE, Vol. 74,
No. 5, pp. 699-711, May 1986.

Sato, T. and Y. Tohma, "A New Configuration of PLA with
Functional Independent Test", Tech. Rep., Dept. of Computer
Science, Tokyo Inst. of Technology, Tokyo, Japan, Oct. 1982.

Schuster, S.E., "Multiple Word/Bit Line Redundancy for
Semiconductor Memories", IEEE J. Solid-State Circuits, SC-13,
No. 5, pp. 698-703, 1978.

Somenzi F., Gal S., Mezzalama M. and P. Prinetto, "A New
Integrated System for PLA Testing and Verification", IEEE 20th
Design Automation Conference, pp. 57-63, 1983.

Somenzi, F., Gai S., Mezzalama M. and P. Prinetto,
"PART:Programmable Array Testing Based on a Partitioning
Algorithm", IEEE Trans. on Computer Aided Design, Vol. CAD-3,
No. 2, pp. 142-149, April 1984.

Saluja, K.K., Kinoshita, K. and H. Fujiwara, "A Multiple
Fault Testable Design of Programmable Logic Arrays", Proc.

11th International Symposium on Fault-Torelant Computing, pp.
44-46, 1981.

Stapper, C.H., Mclaren, A.N., and M. Dreckmann, "Yield Model
for Productivity Optimization of VLSI Memory Chips with
redundancy and parially good product", IBM J. Res. Dev.,
Vol.24, pp. 398-409, May 1980.

Smith, J. E., "Detection of Faults in Programmable Logic
Arrays", IEEE Trans. on Computers, pp. 845-853, Nov. 1979.

Somenzi, F. and S. Gai, "Fault Detection in Programmable
Logic Arrays", Proceedings of the IEEE, pp. 655-667, Vol. 74,
No. 5, May 1986.

Son, K. and D. K. Pardhan, "Design of Programmable Logic
Arrays for Testability", Proc. 1980 International Test
Conference, pp. 163-166.

[Tas84]

[TFA85]

[WCV86]

[WeL86]

[WVL86]

[Zhu86]

81

Tamir, Y. and C. H. Sequin, "Design and Application of Self-
Testing Comparators Implemented with MOS PLA’s", IEEE Trans.
on Computer, Vol. C-33, No. 6, pp. 493-505, June 1984,

Treuer, R., Fujiwara, H. and V.K. Agrawal, "Implementing a
Built-In Self-Test PLA Design", IEEE Design & Test, pp. 37-48,
April 1985.

Wey, C.L., Chang, T.Y., and M.K. Vai, "On the Design of Fault-
Tolerant Programmable Logic Arrays", Proc. of International
Computer Symposium, Tainan, 1986, pp. 298-304.

Wey, C.L., and F. Lombardi, "On the Repair of Programmable
Logic Arrays (RPLA)", Proc. 1986 IEEE International Symposium
on Circuits and syatems, pp. 649-652, San Jose, CA. May 5-7,
1986.

Wey, C.L., Vai, M. K., and F. Lombardi, "On The Design of A
Reduntant Programmable Logic Arrays (RPLA)", IEEE J. of Solid-
State Circuits. (in press).

Zhu, Xi-an, "A Knowledge-Based System for Testable Design
Methodology Selection", Tech. Rep. CRI-86-23 U.S.C., Ph.D.
dissertation.

