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A partially balanced incomplete block (PBIB) design is an arrange-
ment of a set of experimental treatments into smaller subsets, or blocks,
in accordance with a certain definition, Except for an iantroductory
section ia which the role of PBIB designs in the statistical analysis of
oxperiments is discussed, tnls thesis is concermed with the combinator-
ial problems that arise in the construction of the designs. The defini-
tion stutes requirements for a relation of association between any two
treatments, and the term Massociation scheme® is used for any method by
which a relation of the kind specified can be set up. A considerable
portion of the thesis is devoted to the study of association schemes
rather than actual designs. Incidence matrices are used throughout the
thesis to study the properties of designs and association schemes by al-
gebralc methods,

A method of enumerating combinatorially possible PBIB designs with
two classes of associates is outlined, based on both mew and old methods,
¥hile tables of known designs have been published, no exhaustive tables
of all possible PBIB desizns have appeared herestofore., Am extensive
table of the possible parumeter values of association schemes is compiled,
along with tables of possible parumeter values of the designs taemselves
in the cases of special intersst ia this study.

Known PBIB designs with two classes of associates have beem class-
ified according to the mature of their assoclation schemes, and desigas
of Latin square type with g comstraimts, ia which the mumber of treat-
asnts is a square 2? and the assoclation relatioa nay be defined by a
set of g mutuslly orthogomal a x a s8quares, are simgled out for spe-
clial stixly hers. .. A related class of new designs.is introduced and givea
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the name "aegative Latin square®™., While association schemes for the
new designs cannot be comstructed from Latin squares, a metiod based om
finite lields is developed and used to construct some schemes of both
types, including four in the new series. A fifth is constructed by
other methods. Several new designs are constructed trom the new associa-
tion schemes.

Some examples are given to show the possibility of association
schemes which have exactly the same parameter values as those of Latin
square type with g constraints but in which the association relation
cannoi be defined by a set; of g orthogonal squares. It is them proved
that for a fixed value of g, this can be the case only for a less
than a certain valus, which is expressed as a function of g, and that
for larger values of n the Latin square type association scheme is
unique., The proof is based on a series of theorems on the structure of
incidence matrices, some pertaining only to association schemes and
others applying more generally. Some other applications of the methods
are suggested.
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PREFATORY NOTE

Chapter I is introductory in naturs. The next three chapters, tak-
up special aspects of this study, are long and somewhat complex. For
this reason a detailed summary or synopsis has been included as Chapter V.
The reader may find it useful to appraise the scope and metaods of Chap-

ters II, III and IV by a preliminary reading of the summary,






I. GENERAL PROPERTIES OF PARTIALLY BALANCED
DESIGNS AND ASSOCIATION SCHEMES

1.1 Introduction

Statisticul anplysis of many types of experimental data may be
facilitated by proper planning of the experiment. Partially balanced
incomplete block (PBIB) designs are a particular class of arrangements
for this purpose. A definition of PBIB designs will be preceded by a

simple example which illustrates the concepts inwvolved.

An Illustrative Example with Historical Remarks. The average ylelds

of seven new varieties of hybrid corn are to be compared in a field
experiment, A possible plan is to divide the available land into seven
plots and to plant one variety in each plot, as indicated in the follow-
ing figure. (Throughout this example, varieties will be indicated by

numbers from 1 te 7.)

 —

1 4 3 4 ) 6 7

i
!
[
L

Under conditions of strict control of soil fertility, water supply and
drainags, and other extiraneous factors, this might furnish the desired
information on the varietal differences, but in experiments in the
biological and social sciences such control is not usually pessible. It
will be impossible with this arrangement to know whether un observed
difference between two plots can be attiributed to differences in the two



varieties or whether it is due to differences between tae plots of ground.
If the effects of extruneous factors cannot be controlled, the next best
thing is to estimate their importance. This can be done by planting
sevaral plots to each variety and observing the variation umong them. It
is intuitively reasonable and proves to simplify analysis of the data to
plant the same number of plots to each variety so that in effect we have
a number of repetitions, or replications, of the original experiment.
Three replications will be used in this example. Cemparison of varieties
‘gro\m under similar conditions will be easier if the 21 plots are grouped
into blocksof seven plots, each block to contain a complets replication.
Soil conditions are likely to be more homogeneous within a block than
over the entire experimental area and will have a correspondingly smaller
effect on comparisons made withain a block. The blocks mey or may not bs
contiguous in the field. Tnis design is indicated in the following dia-
gran, with blocks inclesed by heavy lines.

1}2 S 4 ) 6 7

1. 2 5| 4 5 6 7

1 2 3 4 $ 6 7

-
R
|

A defect of this plan is that the same arrangement of varieties is used
in each block, so that effects of lecation within blocks may be impossible
to distinguish from differences between varieties. For instance, an ob-
served difference between varieties 1 and 7 could have been caused by a
gradient in soil fertility from left to right. Other extraneous sources

of variation which are less obvious may introduce a similar bias in favor



of certain varieties. To insure that no variety or group of varieties
will be systematically favored in all replications of the experiment, s
device known as randomization myy be used. In our example tais would
mean assigning the numbers from 1 to 7 to each block in such a way that
each of the 7! possible arrangements is equally likely to result. In
addition, the three blocks might be assigned to the taree positions in
the field in a random menner. The effect is that in each replication,
each variety has an equal chance of being tested under favorable condi-
tions. mi- tae results of any particular randomization may favor cer-
tain treatments, thia happens only to an extent that can bes allowed for
in the analysis and interpretation of the data.

The plan that results is called a randomized black design. It might

appear as follows.

( |
| ' N
5615 7]1*432

| §
i |

Re A. Figher was the first to realize the importance ef randomization
as a scientific technigue and te introduce it into designs for experiments.
It 1s discussed in his book "The Design of Experiments” [7 ?_7 with some
illuminating examples.

It frequently happens that, within a bleck which includes an entire
replication of an experiment, thers is too much variability of conditions

to allow useful measurements te be made. This may make it necessary to



arrange the experimental plots in blocks of smaller size, with direct

comparisons to be made only between varieties in the same block., In our
example we shall suppose that it 13 necessary te cut down the block size
to three plots. Thers is some loss of information hers, as suggested by

the fact that the numbsr of possible direct comparisons is reduced from
5(7) = 6% to 7(5) = 21, but the gain in precision ef compari-

sons may more than offset this. If some of the comparisons are less
important than others, it may be pessible to arrange the blocks so that
the unimpertant information is lost and the important information is
uostl; retained., However, in meny situations all comparisons msy be con-
sidered equally important; it will be assumed in tals example that infor-
mation is desired on the comparative yields of each pair of varieties.
The tera incomplate block design covers any experimental design in which
the blecks are of size smaller than the number of treatments, whils the
term balanced incomplete block (BIB) design is used fer the important
special case in which an equal amount of information is retained on each
pair ef treatments. A BIB design muy be defined as an arrangemeﬁt of
v varieties or treatments into b blocks each containing k distinct
varieties, each variety being used the sume nunber of times r, and each
pair of distinct varieties occurring together in the same block the same
number A of times. It is easily verified that the following arrange-
ment of our example satisfied these requirements, with v =b = 7,

r =k =3, A=1, (Blocks are enclosed by heavy lines.)
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Randomization would be applied to this design by assigning tfhe numbers
1, 2, ¢oso » 7 to the varieties at raendom, assigning the three numbers in
each block to the three plots in a random way, and assigning the blocks

to the seven positions in the field by a third random procedure.

Balanced incomplete block designs were introduced by Yates in 1936
[3 Q] The construction of a BIB design for a given set of vulues of
v, b, r, k, A, 18 a combinatorial problem which may be considered apart
from the analysis of experimental data. It is clear that the five para-
metors ars not all independent. Considering the total number of plots we
have

(1.1) v = ¥,
and by counting peirs of varietiss two ways we obtain

A(F) = (f)

These two results muy be combined to give a more useful form of the latter.



(1.2) A= r%:—i'-

Other necessary conditions for the existence of these designs have been
obtained, alomg 'wit.h some methods for comstructing large classes of them.
In 1938, Fisher and Yates [é L7 published all tae BIB designs then
imown, with a 1list of tane possible parameters of other designs of prac-
tical interest. (A design is of practical interest if it does not re-
quirs more experimental material than the experimenter can afford: for
a given number of treatments, this means "for r sufficiently small.®)
The construction of many of these designs was made possible by methods
introduced by R. C. Bose in 1939 /4 /.

The set of constructible BIB designs was soon found to be inadequate
for the needs of experimenters. A simple case in which no convenient
balanced design is available is obtained from the first example by con-
sidering eight varieties of hybrid corn uotéad of seven, again to be
planted in blocks of three plots. With v = 8 amd k = 5, the smallest
valus of r which can be used in (1.1) and (1.2) to give integral values
of b and A 1is found to be 21, and the blocks of the design are all
the combinations of the eight varieties three at a time. It was to pro-
vide useful designs for such values of v aend k that arrangements
like the following were introduced.



1| 2| 83
1| ¢ | 8
|
1, 7!l8
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2| 4|7
2| 5|8
5! 4|6
5 6 8
|
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Figure 1. Example of PBIB design.

This is not a balanced design because the pairs of distinct varieties
do not all occur equally often. Every pair occurs once with the excep-
tions (1,5), (2,6), (5,7), (4,8), which do not appear at all in the same
block. The remaining roquirgmts for a balanced design are satisfied.
This is an example of a partially balancsd incamplete bhlock .(PEIB) desigm.

Partially balanced incomplate block designs were introduced by
R. C. Bose and K, R, Nair in 1959 /8 /. They are a generalization of
balanced incomplete block designs and include theam as a special case,
along with certain other incomplete block designs which were alrsady knmown.
Their analysis is somewhat more difficult than that of balanced desigms,
though conditions are specified (paragraph iii, c, of the definition which
follows) which simplify it greatly. They have not been studied as



extensively as balanced designs. Some of the literature on the subject
will be discussed in later chapters.

Combinatorial properties of partially balanced incomplets block
designs will be the principal subject of this thesis. The problems of
analysis and interpretation of experimental data will not be taken up.
For our purposes from now on, a PBIB design is an arrangement of objects
known as varieties or treatments into blocks according to certain rules.
A definition of PBIB designs will now be given.

An incomplete block design is said to be partially balanced if it
satisfies the following conditions:

(1) The treatments or varieties being tested are grouped
into b blocks, each consisting of k distinct treatasnts.

(11) There are v treatments, esach of which occurs in r
blocks.

(m). There can be established a relation of association
between any two treatments satisfying the following requirements:

(a) Two treatments ars either 1st, 2nd, . . . , or mth
associates.

(b) Each treatment has exactly n;, ith associates.

(c) Given any two treatments which are il agsociates,
the number of treatments common to the j1R associates of the
first and the k'R associates of the second is pik and is
independent of the pair of treatments with which we start.
Also p}k = ph-

(iv) Two treatments which are ith associates occur together
in exactly A; blocks.



It should be noted from (1ii) that the association relation is
symmetric but not necessarily transitive.
It was proved by Bose and Nair / 8/ that the following relations

hold among the parameters.

(1.%) bk = v,

(1.4) 3, +e,+ c.. + D ® V-1

(1.5) n1A1+32A2+- . '+3-A. = rk-1) ,
B

(1.68) kZl P}k = 3 (i 1 2 3J) ’

Rj‘l i i = J),

.7 apdy = Py = oy -

For fixed i the parumeters p}k are conveniently displayed in an
mxm matrix with j and k as row and colum indices, denoted by Pi’
By the final remark of (iii)(c), these matrices are symmetric.

It 18 easily verified that the example given in Figure 1 is a PBIB
design with two associats classes and the parameters

v=b=28, r=k=3 1 =1, n, =6, >\1=o, A, 21,

2
00 01
Pl'[ ]o Pz’[ ]-
0 6 1 4

It may also be verified that these parameters satisfy relations (1;5) to
(1.7).
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1.2 pssociation Schemes and Incidence Matrices. The definition of the

previous section is not in the same form as originally given by Bose and
Nair, but follows closely several papers around 1952, notably Bose and
Shimamoto, "Classification of PBIB designs with two associate classes” [i1o/.
The definitions are logically very ai.m:l.lar,l but as pointed out by Bose

and Shimamoto, the association relations among the treatments do mot depend
on how they are distributed in blocks. In this form of the definition the
association relations ars completely specified in paragreph (iii). 'fhoy

may be taken up without considering the parameters b, r, k, }\1. :

An association scheme is a convenient device for describing the
assocliation relations of a design. It is a table or other arrengement
listing for each treatment its 18%, 204, . . . a'h aggocilates. The
treatments may be assigned the numbers from 1 to v in any convenient
order for such a table. Bose and Shimamoto found it possible to classify
the association schemes of all known designs with m = 2 association
schemes into five types, some of which can be set down very concisely.
Perhaps the sinplest type of scheme is the group divisible (GD), in which
v e mn end the treatments are divided into m groups of n each, treat~
ments in the same group are first associates and treatments in different
groups are second associates. A compact form for the association scheme
isan m by n rectangle, with the n tireatments in a row constituting
a group. The example given in Figure 1 is a GD design with the

following association scheme.

1. The original definition contained the specification that the A; be
distinct. This was dropped in a 1942 paper by Nair and Rao [28 s generali-
zintbt.he class of PBIB designs somewhat. Their definition is equivalent

to the one given here.



1 5
2 6
S 7
4 8
Figure 2., Example of Group Divisible association scheme.

The first associate of treatment 1 is treatment 5, etc. It is natural
to attempt to generalize this by taking two treatments as first aassociates
if they appear in the same row or the same column, but if m Zn it is
easy to ses that condition (iii)(c) of the definition is violated. For
exanple, the nunmber ph of treatments common to the first associates of
treatments 1 and 5 would be O; the number for treatments 1 and 2
would be 2. If m=n so that v = n%, this generalization leads to an
association scheme described by Bose and Shimamoto as of Latin square type.
The following array is given as an illustration.

1 2 3
4 5 6
7 8 9

Figure S. Example of Latin square association scheme.

|
This array defines a GD association scheme in which treatment has as its
first associates treatments 2 and 3; it also defines a Latin square
type scheme in which the first assoclates of treatment 1 are 2, 3, 4, 7.



12

The various types of assoclation schemes will be discussed further in
Section 2.1.

It may be noted that for a group divisible scheme the relation for
first associates is transitive as well as symmetric; that is, the first
assocliates of a treatment are pairwise first associates. This is a
sufficient condition for the scheme to be GD, for it implies that the
trnt.unt.g may be divided into groups such that two treatments in the
same group are first associates and two treatments not Ain the same group
are second assoclates, while the condition that each treatment have o,
first associates requires that the groups be of equal size. The Latin
square scheme described above illustrates that in general two treatments
which are first assoclates of the same treatment may not be first

associates of each other.

There may be several designs for any one association scheme. The
following is another design using the GD association scheme of Figure 2.

7'8’ 1‘:3, k'4’ b=6’ Al-‘-s, Azzlb

=

ammww“.—»

IO N[ IS ||

Figure 4. Another PBIB design.
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A nunber of possible designs for the Latin square association scheme of
Figure § will be enumerated in Table IV of the Appendix,
The portion of an assoclation scheme corresponding to ith associates,

i=4i, . . ., m, may be represented by a v x v matrix

b= ()

where a’;w has the value 1 or O according as treatments ;. and vV
are or are not i associates. A, will be called the jncidence matrix
for i associates, or simply the 1™ agsociation matrix. It follows
from paugrabh (1i1) of the definition that it is a symmetric matrix with
exactly o, 1's in each row and column. Before further propertieg of
the A, are derived, a connection will be pointed out with another
incidence matrix perta.i.ning to the design.

The incldence matrix for treatments and blocks of a PBIB design is a

‘= o)

= 1 1if treatment pr occurs in block v ,

vxb matrix

where
(1.8) By
= 0 otherwise.
That is, positions of 1's 1in row A of the matrix indicate the blocks
of the design which contain treatment ¥ . We shall consider the product
of N on the right by its transpose N'. This product NN' will be a

symnetric v x v matrix. Let

(1.9) NN* = (b'uv)-
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The diagonal element b, u of NN' is equal to the number of 1's in
row /¢ of N, or the number of blocks of the desizn which contain treat-
ment o . For M £V , buv 1s equal to the inner product of rows u
and v taken as vectors, or the nuqber of blocks which contain both of
treatments 4 and 7 . For a PBIB design we have by paragraphs (ii)
and (iv) of the definition,

(1.10) bup = T,
buv = A 4 when f## V and treatments M eand v
are 1% associates.
That is,
)
(1.11) NN' = rI, + i§=1 Ai Aj , where I is the vxv

identity matrix.

The matrices N and NN' have been used extensively since about 1950
in various studies of balanced and partially balanced designc.l The

matrices Ai do not seem to have received much attention.

There follow as examples matrices N and NN' for the design given
in Figure 4, preceded by the matrix Aq for the association scheme of
this design, given in Figure 2.

1. The following papers referred to in this dissertation make substantial

use of N, NN' and related matrices: [7./, [is/, [i6/, [1_7] [30].
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o 0 O

0

0

1

o O

NN =
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1.3 Applications and Algebraic Properties of the Matrices A, .
Consider the product of two of the association incidence matrices,

not necessarily distinct.

(1.12) hshy = (cdk ) ,

whers
ik M Ik
(1.13) c}w = ¥ o, "oy
o=1

In (1.13), each term of the sum has the value O or 1 and is equal to
1 only if treatment O is a jth associate of treatment P and a kb
associate of treatment 2/ . Thus c}fv is equal to the mumber of treat-
ments which have this property. From (iii)(c) of the definition, page 8,

we have

(1.14) cf{‘; = p}k when 4 # 7 end p and Vv ere 18 assoclates.

A disgonal element c}{],“ of the product is equal to the number of treat-
ments which are simultaneously jt'h associates and k™ associates of

treatment /A o« Thersfore

(1.15) c){j;‘ z éjk 5,

where § ix is the Kronecker function defined as 1 if j =k and O if
J # k. Statements (1.12 to 1.15) lead to the following theorem.

Theorea 1l.1l. If Ai denotes the incidence matrix for i'D associates
in a PBIB design with = associate classes, then

n
= = Z i
i=1
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where & ik is the Kronecker delta function end I_ is the vx v
identity matrix.

Proof: Statements (1.12) to (1.15) show that AjAk has the indicat?d
form. The statement, in (1i1)(c) of the definition, that p,jj'k = p}( j
then implies that the product is commutative.

The statement that produ?ts of the A, are commutative is equivalent
to the statement that the products are symmetric, for if A and B are

symmetric matrices, then
BA = B'A' = (AB)!
and (AB)* is equal to AB 1if and only if AB is symmetric.

Formula (1.16) for forming products is almost a sufficient as well
as a necessary condition that the matrices Ai satisfy the conditions of
partial balance. The sufficient conditions are stated in the following
theorem.

Theorem 1.2. If Ai’ i=1,2, ..., m, are a set of symmetric
v x v incidence matrices whose sum is the matrix with 0's on the main
diagonal and 1l's elsewhere, and if there exist non-negative integers n,
and p}k such that (1.16) holds for j, k=1, 2, . « . , m , then the
A; are the association matrices of an association scheme satisfying the

conditions of partial balance.

Proof:
It must be verified that parts (iii) (&) , (b) and (c) of the defi-

nition on page 8 are satisfied. The statement that the sum of the
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incidence matrices is a matrix with 1's in all off-diagonal positions
shows that every pair of distinct treatments are 1¥  ussociates for
some i , which is equivelent to (iii)(a). The number of j¥  associates
of treatment = is equal to the number of 1's 1in row f‘ of 4, ,
which is in turn equal to the element in the /L ) M position of the
product matrix A.A.' . By symmetry of Aj , this is identicel with

373

4,% and mey be computed by (1.16), which shows thet all diagonel elements

3
of Ajz are equal to nj . Therefore each treutment has ny jta

J
associetes and (iii)(b) is satisfied. The set of jtB  gssocistes of
treatment /u. is determined by the positions of the 1*s of row M
of Aj , and the set of kW associates of 7/ is determined in the same
wey by row 7V of Ak « The number of treatments common to these sets is
equal to the inner product of these two rows taken as vectors and appears
&s the element in the @ , 7 position of the product AjAk' » which

by symmetry of A is identicel with A.A  &nd has the form of (1.16).

J

m
The only term of the sum :E p}k Ai which contributes to the element
i=1

in the Mo 7/ position is the term with 1 such that W and Z are
1Y ggsociates. Therefore the number is egual to p}k when /L and
are eny pair of i'® associetes, proving most of (iii)(c). The final
statement follows from the fact that AjAk = AkAj , and the proof is

complete.

The stipulation thet the A, are incidence matrices is necessary in

i
Theorem 1.2. It is possible to construct matrices having elements other

then 0's and 1l's which satisfy all the other hypotheses of the theorem,
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but &re of course not essociation matrices. An example with m =2 1is

the following.

0 0001 01110
00010 1 0101
A, 100100 , A =1 1-111f.
01000 1 0101
10000 01110

A typical product is A22 = 31+ 3Al+ A, .

Next consider matrices which are linear combinations of the identity

I, &and the assoclation matrices Ai s 88y

(1.17) A It >\1A1+ ce et A A,

where the )\ i are scalarg. A product of two such matrices will be a
and A A
i

Theorem 1.1 will reduce to the form (1.17). Thus the set of matrices of

linear combination of terms of the form I,, A

this form is closed under multiplicetion., Some consequences of this are
mentioned below. Among the products of matrices which are readily com-
puted by application of (1.16) are integrel powers of the A, matrices
end of the matrix NN'. The square and cube of the matrix % for first
associates in a design with m = 2 associate classes will now be given

a8 1llustrations.

2 _ 1 2
(1.18)  A) = oI+ppd) + 04,

s 1.2, 2
Ay = A +p A+ P48,
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(2:29) A:l.3 = mEpl, + (¥ "112"' pizpil’ ht (p:lupil #2595, -

It was pointed out that the set of matrices of the form (1.17) is
closed under multiplication. It is obviously also closed under additionm,
end if negative coefficients are allowed, under subtrection. It follows
from these remarks end from general properties of metrices that the set
forms & commutative ring of matrices with a unit element. This has &
nunber of interesting consequences, of which one mey be mentioned. The
matrices Iv ’ Al > o o oy A- are easily seen to be linearly inde-
pendent snd form a basis of m 41 elements for the ring. For any
metrix C 1n the ring, the set I_, C, c® , o o oy C®*Ll containe
m 4+ 2 elements which must be linesarly dependent. Therefore C satis-
fies an equation with scalar coefficients of degree at most m + 1.
This means that the minimum equation of C has degree at most m + 1 ,
or that any matrix of the form (1.17) has at most m + 1 distinct
characteristic roots. In particuler, this applies to NN'. It is
possible to use methods bused on the commutative ring to find the char-
ucteristic roots end their multiplicities. The same results on the
number of distinct characteristic roots of NN' , together with a com-
putation of the values and multiplicities of the roots, eppeer in a
paper of Connor and Clatworthy [riz7'which does not use the Ai matrices.
This psper was published before the present work on the association
metrices was completed. Several theorems of /1 7/ will be used in

Chapters II and III.

Credit is &lso due to R. C. Bose for some work on the association

matrices A, , including the equivalent of Theorem 1.1, which has not
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been published but was presented &t & meeting of the Institute of Mathe-
matical Stetistics at Ann Arbor, Michigen on September 2, 19565. The
portions of this research msking use of the &ssoclation matrices had
alreedy been completed at that time.

Another possible interpretation of association schemes is by means
of linear graphs. (A lineer graph mey be defined for our purposes as a
finite set of points, certain pairs of which are joined by non-directed
lines.) The associztion scheme for i'B associates in a PBIB design may
be identified with & linesr graph on v points by identifying points
with treatments and joining points which are 1¥  agsocistes. Since
each treatment has n, ith associstes, each point of the graph will
lie on n, lines. Since any two treatments which are 1% associstes

have as common il associates ph other treatments, each line of the

i
ii

graph joins points A and B then there are just p}k

graph will 1ie on p
th

trisngles. More generally, if an arbitrary line
of the 1
other points which are joined to A by a line of the jth graph and

to B by a point of the k¥ graph. In the cuse of PBIB designe with
two associaute classes the graphs mey be described more simply. Each of
the two graphs is the complement of the other &nd it is sufficient to
describe the one for first associates. In this gruph there are nl lines
on each point, each line lies on pil trisngles, and each pair of points

not joined by a line is joined by chains of two lines.

)
The incldence matrix A, of 1Y associates m&y also be interpreted

i
as the incidence matrix of the ith graph, a 1 in the /,c ,V position of
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the matrix mdicating thut points (¢ and v of the graph are joined
by & line. Incidence matrices are useful in anslyeis of the structure
of graphs. The terminology of linear grapha will be used in parts of
Chapter IVfor the investigation of the structure of sssociation schemes.



II. ENUMERATION OF POSSIHELE DESIGNS AND ASSOCIATION SCHEMES
WITH TWO ASSOCIATE CLASSES

2.1 The Class of PBIB Designs with Two Associste Classes

In this chepter, attention will be confined to partielly balanced
incomplete block designs with two associate clesses. Bose snd Shimamoto
discussed these designs thoroughly in 19852 [T Q7 and introduced & clessi-
fication of them into five types acco‘rding to the form of the associction
scheme. An extensive set of tebles of these designs wus compiled by Bose,
Clatworthy &nd Shrikhande end published in 1954 / ¢ 5_7,’ following the
classificetion of Bose and Shimemoto., Over 570 designs are listed, ebout
three-fourths of them of group divieible type. The anthors etate that the
compiletion includes all designs that were known &t that time, btut do not
cleim that additional designs cannot be constructed. The classification
of associution schemes seems also to be a summary of known types, end is
not repregented as a listing of all possible schemes. Some new association
schemes to be constructed in Chapter III fall outside the classification,
showing that it is not exhaustive. The classification is described leter
in this section.

A computing procedure developed from some known necesssry conditions
on association schemes is introduced in Section 2.2 end used in Tables I
and II of the Appendix to list the perameters of sll possible association
schemes with two associate clesses and not of group divisible type, for

all numbers of treatments v < 100. Severul new necessary conditions are
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also proved in Section 2.2. Nececsary and sufficient conditions for the
existence of an association scheme are not known. Of 101 sets of parameters
tabulated in the Appendix, 56 correspond to schemes which ere already kmown
or congtructed in this dissertation, and 4 are proved impossible. These
schemes are identified in Table II1. There remain 41 sets of parameters

for which the existence or non-existence of an associetion scheme is
unimown. Such & list was frequently promised by the early writers on

PBIB designs, but sppears never to have been compiled and is offered here
@8 an original contribution, along with the computing scheme and the

necessary conditions of Section 2.2.

The next logical step is to list all combinatorially possible designs
for each association scheme, identifying those known to exist or to be im-
possible. The counterpart of this list for BIB designs was nentiqned on
page 6; it was published by Fisher snd Yates in 1938 and revised in 1949
and 1947 /217. It includes 16 sets of parameters about which nothing was
known in 1938 but which were subsequently attucked so assiauously by
various writers that by now 1l but two (at most) have either been con-
structed or shown impossible. Such & 1list for PBIB designs would be much
longer, even for the assocletion schemes so far cbnstmcted, and its com-
pilation has perhaps been deterred by the fact that enough PBIB designs
are already available to satisfy most of the needs of experimenters. The
parameters of all possible designs with r £ 10, k <10 will be listed
for the schemes under specisl study in this dissertstion, mostly of Latin
Square type. The list appears in Tables III eand IV of the Appendix
and the method by which it is constructed is developed in Section 2.3,
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using known theorems for the most part. The parameters of schemes which
bave been constructed or proved impossible are identified in Table IV.
Some new designs and impossibility proofs are included for reference in
SectionA3of the Appendix. It is believed thet this list has not appeared
before.

The paremeters for deeigns with m = 2 essocicte classes are

v, by k, T, Al’ Az’ nl' nz,
B 17 F2 2]
rh P2 Ml Ppp
P, = ) Py = .
2 2
"%2 ‘%2 P12 ng

These parameters satisfy reletions (1.3) to (1.7), which are restated

here for this special case.
(2.1) bk =w
(2.2) nl'i- nz s vl
(2.8) LA+ A, = r(k-1)

(2.4) TR TR L

1.1 - 2 . 2 -
Plgt Py Sldp,+p, =1,
1 - .
(2.5)  m ey, T mef;

1 - 2
o) Pae Do Pyp
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The clessification by Bose and Shimemoto of association schemes for
PBIB designs with two associate classes will now be taken up. This
clessificetion was introduced by Shimamoto in a master's thesis written
under the direction of Bose, was first published in a joint paper in
1952 /107, end has been used, with minor chenges, in later papers by the
same authors snd others. The five types of designs are Group Divisible
(GD), Trisnguler, Simple, Cyclic and Latin Square (Lg) and will be
described separsately.

Group Divigible designs ere defined when the number of treatments v
mey be expressed as a product mn. The treatments are divided into m
groups of n treatments each, treatments in the same group being taken as
first associates while those in different groups are second assoclistes.
GD designs have been mentioned with some exemples in Chapter 1. They form
the most important class of partislly belanced designs and the largest
knowmn class, and have been studied more extensively than any other
pertially balenced designe. In 1952 Bose and Connor / 7/ published
several results on these designs, one of which will be generalized to
Latin square type designs in Chapter IV. Ome feature of / 77 was the
division of the designs into three subclasses, essentially on the basis
of the runk of the matrix NN', though the connection with the character-
istic roots of NN' was not brought out clearly until 1954 in a paper by
Connor and Clatworthy [7 7_7. A similar clessification of Latin square type
designs will te mentioned in Sectioh 2.5. Some other importent publi-

cations on GD designs ere /167, [io/, [17.
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Trisngular designs are defined when v is equal to a trisngulsr
nunber Blo-4) . The association scheme is an array of n rows and

n columns with the following properties:

(i) The positions in the main diegonal are left blank.
(i1) The 2i2-=4) positions above the main diagonal are filled

with the numbers” 1, 2, « « « Bi-‘é‘-’» corresponding to the
treatments.

(1i1) The positions below the main diagonal are filled so that the
array ie symmetric.

(iv) For any treatment @ the first associetes ere those treat-

ments which lie in the same row (or in the same column) as © .

&_p;g designs include designs with various values of v. In the
1939 paper /8.7 in which PBIB designs were first introduced, Bose and
Nair gave some examples of designs obtained by dualizing BIB designs,
that is, interchenging the roles of treatments and blocks. The treatments
in one particular block of the dual design then correspond to the blocks
of the originul design which contein & particular treatment. The duals
of some BIB designs fail to satisfy the conditions of partial balance,
ut in any case the dual design will have the property that any two blocks
will have the same number of treatments in common. This led to the
designation "linked block" for such designs /39/. The duals of several
clesses of EIB designs were shown by Shrikhande /3!/ to be partislly
balanced with two associate classes. Some of these designs fall within
the trienguler cless discussed above; the others have the property that



Ay =1, Az = 0. In the classificution by Bose and Shimamoto in
their 1952 paper [T Q7 , these were listed &s a separate "linked block"
type of designs. In the tables published by Bose, Clatworthy and
Sarikhande in 1954 /6_/ this classificetion is enlarged somewhat to
include some designs which are not obtained by duelization and do not
have the linked block property, but which do have the property that

Ay # 0, A, = 0. They are referred to as simple designs. The
clessificetion wes enlarged a little too much in the 1954 tables, as the
three designs listed for v = 19 are not partially belanced. Table II
and Theorem 2.2 will each show the impossibility of a PBIB design with

two associste classes and v = 19,

In Cyclic designs the first associates of treatment @ are the
02 * o + dnl, reduced modulo v, for
a suitably chosen set of integers d, . The associetion matrix Al thus

J
has the special property that each row is a cyclic permutation of the

t.reatnentae-l-dl, 0 + 4

first row. In every kmown design of thie type v 1is a prime of the form
4t +1 and the set of d's may be teken either as the set of quadratic

residues of v or as the set of quadratic non-residues.

Latin Square type designs are defined when v is equal to a square
nz. The association scheme congists of an n x n array of the numbers
1,2, ¢ ¢« o nz, possibly with an orthogonal set of one or more n x a
Latin squares superimposed. Two treatments are teken as first associates
if they occur in the same row or columf:if they coincide with the same

letter in any of the Latin squares. A acheme of this type using g-2 Latin



gquares is said to be of Latin square type with g constraints end is
denoted briefly by the symbol Lg o« This type of designs will be treated
in some deteil in this dissertetion. Parameters of possible I.g designs
will be enumerated in Section 2.5 and tabulated in Tables III and IV of
the Appendix, and a number of properties of the association schemes will

be investigated in Chapters III and IV.

An n xn Latin square is an arrungement of n letters into the
cells of an n x n array in such a way that every row and every column of
the array conteins every letter exactly once. A Latin square may be con-
structed for every n, for example by taking each row &s a cycsl.ic per-
mutetion of the first, as in this example.

[~ NN, B 4
o0 Ww
We o0
QwWk o

Two Latin squares are said to be orthogonal if, when one is superimposed
on the other, every ordered pair of letters occurs exactly once in the

resulting square. Thus the following 3 x § Latin squares ere orthogonal.

ABC ABC
BCA CAB
CAB BCA

On the other hand, there exists no 4 x 4 Latin square orthogonel to the
example above. It has been shown that at most n-l mutually orthogonal
n xn Latin squares can be constructed, and that the construction of such
a set, called a complete orthogonal set, cuan actually be accomplished if
o is & prime or a power of a prime /2¢] [3.‘;7,[5]. The following three
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squares form a complete orthogonal set for the case an = 4.

A B CD A BDGC A B COD
B ADGC C D AB D CB A
C D AB D CB A B ADC
D C B A B ADC C D AB

Knowledge about sets of orthogonal Latin squares whem n is not a prime
power iS rether sketchy. In no such case has a complete set been con-
structed, though methods are known for constructing a smaller number in
certain ceses (e.g. two orthogonal 12 x 12 squeres). For n satiafying
certain conditions it is known that the maximum number of squares in an
orthogonal set is less then n-l [l- ﬂ, while in the cese n = 6, enumersa-
tion methods have been used to show that no orthogonal pair exists. This
cagse was mentioned by Euler /187 but not finally settled until 1900 /357
(see also /2 o/). The existence of a complete orthogonal set of n xn
Latin squares is equivalent to the existence of a finite projective plane
geometry in which each line conteins n +1 points. Either of these
systems can be constructed from a finite field of‘ order n , # that a
sufficient condition for their existence is that n be & prime power, but
this condition is not known to be necessary. An open question at present
is whether any set of two or more 10 x 10 orthogonal ~Lat1n squares exists.

Orthogonal squares which are not Latin squares can be useful in the
construction of association schemes. The two following squares are ob-
viously not Latin squares but they are orthogonal; that is, when they are

superimposed every ordered pair of letters occurs exactly once.



A A A A A BCOD
BB B B A BCOD
Rs cccece C: A BCOD
D DDOD A BCOD

An gssocistion scheme obtained by superimposing them on an array of the
numbers 1, 2, . « « , 16 and teking numbers as first associates if they
occur with the same letter in either square will be identical with the
scheme L2 in which assocliates are defined by rows and columns of the
array. Moreover, any 4 x 4 La&tin square is orthogonul to each of them,
and any 4 x 4 square which is orthogonal to both must be a Latin square.
The analogous statement for n x n squares is clearly true. Therefore a
set of g-2 orthogonal Latin squares is equivalent to a set of g orthogo-
nal squeres of which two are R and C.1 If the n2 cells of each of g
orthogonal squares are subjected to the same permutation, the resulting
squares will still be orthogonal, though not necessarily Latin, Given any
get of orthogonal squares, simulteneous permutation of the cells can be
used to place any two of the squares in the form of R and C, still
preserving orthogonality. The association scheme Lg may now be redefined
by e set of g n xn orthogonal squares superimposed on an array of the
numbers 1, 2, « « « nz, taking numbers as first associates if they
occur with the same letter in any of the squares. Permutation of the num-
bers of the array together with the cells of the superimposed array will

_ preserve all association relations, so that any such association scheme is

equivelent to one in which two of the squares are R and C and any

l. The notion of non-Latin orthogonal squares is not new. In at least
one recent publication /137 there is a description of the squares R and
C and their relation to Latin squares.
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remaining squares are necessarily Latin. In particular this shows that

for a given n, all pairs of n xn orthogonal squares lead to L2 schemes
which are equivalent except for numbering of treatmente. It may be noted
that an l.l scheme 18 a special case of a group divisible scheme.

It is convenient to use this definition of the I.8 scheme to derive
expressions for the parameters n, and p}k and to show that they
satisfy the requirements for a PBIB design. This derivetion will be
illustrated with an exumple of an Ls scheme for 1€ treatments besed on
the squares R, C, and & Latin square of the orthogonal set. These
squares are listed below for easy reference, along with the arrsy of num-
bers with which they are to be superimposed. Thé orthogonal squares are

numbered from 1 to 3 for identification in the discussion.

1 2 3 4 A A A A A B CD A B CD
S 6 7 8 B B BB A B CD B A DGC
9 10 11 12 c cCGC A B CD C D A B
13 14 15 1€ D DDUD A B CD D CB A

Arrey Square 1 Square 2 Square 3

Figure 5. Exemple of I‘S association scheme for 16 treatments.

It follows from the orthogonality of the squares that two celle occupied
by the same letter in one square must be occupled by different letters in
each other square. Thus the n-l assoclates of a particular treatment
in one square will be distinct from its associates in each other squere,
and the treatment will have as the number of its first associates

(2.6) 2, = g(u-1).
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In the example, treatment 10 has as its first associates 9, 11, 12 in
square 1; 2, 6, 14 in square 2; and 4, 7, 13 in square 3, for a
totel of 9 first associates.

Let two treatments @ and @ occur with letters e and bk

respectively in the kB square, k=1, . . ., g a ead b will
bte distinct for all values of k if the two treatments are second
associates, and equal for just one value of k if they are first associ-
ates, If O and @ occur with distinct letters in the h¥ and kb
squares, so that a, 7 b, and & F b, » eand if these two squares are
superimposed, the pair of letters &, » b, will occur in just one cell.
The treatment in this position will be & common first associate of @ and
# . The total number of such treatments will be equal to the number of
ordered pairs h, k such that ‘s, # b, and & H b . The number of pairs
may be expressed u(u-l1l), where u is the number of squares in which @
and # occur with distinct letters. If O and @ are second associstes
they occur with distinct letters in &ll g squares, u = g , and the num-

ber pfl of first associates the treatments have in common is

(2.7) P4, = eg-1) .

In the example, let @ = 5 and § = 10 . Then

a = B, b =G
32.5’ b2=B;
ag = B, by = D;

and since a # b, for all k, treatments 5 and 10 are second associates.

The puirs of letters a5 hk obtained when squares are superimposed and



the corresponding common first associates of the two treatments are as

follows.
Pair of super- Ordered pair Cell in which the peir
imposed squares of letters of letters occurs
h, k ah,b
k
1, 2 B, B 6
2, 1 A, C 9
1, 8 B, D 7
5 1 B, C 12
2, 8 A, D 13
3, 2 B, B 3

The s8ix cells singled out represent the six common first associates of
treatments S5 and 10,

If 0 and P are first associates, occurring with the same lstter
in one square, say the first, then u = g-1 . In addition to the
(g-1)(g-2) common first associetes found by superimposing pairs of dis-
tinct squares, © and @ will have es common first associates the n-2
other treatments occurring with the same letter in the first square. No
additionel first associates are found by superimposing the first square

with any of the others, for the pair a , b in this case is a_, b ,

h”™ k 1" 'k

which i8 identicel with bl’ bk’ and this pair of letters occurs in the
position of  itself rather than any distinct treatment. The number

p{l of common first associates of the two treatments is therefore
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(2.8) pil = (g-1){g-2) +n-2 = g% - 3g +n.

In the example, let @ =9 and F =10 . Then

a1=C, b1=C;
zA’ b2=B;
a5=‘-c, b5=D;

and since a, s L o treutments 9 and 10 are first associates. They
occur with distinct letters in syuares 2 and 3 . The pairs of letters
s bt obtained when these squares arse superimposed and the corresponding

coamon first associates of the two treatments are as follows.

Pair of super- Ordered pair Cell in whica the pair
imposed squarses of letters of letters occurs

h, k L bk

2, 3 A, D 13

3, 2 C, B 14

Treutments 9 and 10 occur with the same letter C in syuare 1, and the
other n-2 = 2 cells of the sguare which also contain the letter C are
11 and 12 . The four cells singled out represent the four common first

associates of treatments 9 and 10 .

The remaining parameters are quickly computed from n,, and

2
M
P%l to give the following set.
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=n?, |
(2.9) v “( | . g -3g+n (g-1)(n-g +1)
n, = g(n-1) , =
1 & 1 (g-1)(n-g+1) (n-g) (n-g"'l.)J ’
n, = (n-g +1)(n-1) , .
"g(g-1) g(n-g)
P_= 2 :
2 | elo-g) (o-g)" + &-2 ]

The non-negative nature of n,_ implies the ineqguality

4

(2.10) g < n+1l,

proving the statement previously made that the maximum number of Latin
squares in an orthogonal set is n-l1 . If a complete set of n +1
orthogonal squures is constructed and if g of them are used to define
an L g association scheme, then second associates are precisely those
treatments which occur with tie same letter in one of the n-g+ 1 re-
maining squures. It will be convenient later if the letter f is intro-

duced to represent this number:

(2.11) f n-g+1.

It i8 clear that if the designation of first and second -associates is

interchanged in the Lg association scheme, the result will be the I.f

scheme based on the f remaining squares. A scheme with the parameter

values and properties of Lf g

scaeme, whether or not the f orthogonal squures are actually constructed.

can be obtained in this way from any L

Some examples will be given in Chapter IV of schemes of this kind for which

the orthogonal squares can be shown not to exist. Since the schemes L g

and I.f are equivalent for any value of g , each I.g scheme is
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equivalent to one in which g ¢ .“_..;:..l » and in particular the L scheme
is equivalent to Li s which is simply a group divisible scheme. The dual
roles of g and f are most clearly seen from the following expressions

for the parameters.

(2.12) n = (g+f-1), - ° =
(e-1)° + f-2  £(g-1)
v = n? ’ Pl = ’
Lf(g—l) £(£-1)
n, = g(n-1) , -
n, = f(a1) o [en wen
2 g(£-1) (£-1)% + g-2 | )

These expressions give the values of parameters of Lg schemes if
g and f are positive; if group divisible schemes are to be excluded,
g and f must be taken as 2 2. |

It mey be verified that certain negative values for g and f (and
hence n) lead to values for the above parameters which are non-negative
and different from those obtained with positive g and f . Conditions
(2.2), (2.4) and (2.5) are algebraic identities in g and f and are
satisfied in either case, so the new values represent the parameters of a
possible new series of association schemes. Some connections of the new
schemes with the ordinary Lg series will be discussed in Chapter III,
and several of them will be constructed. They are found to fall outside
the five known classes of association schemes. The name "negutive Latin

square” will be used for the series of schemes whose parameter values are

«
(4

g negative, will be used as an abbreviation. Parameter values of schemes

given by (2.12) with g, f and n negative, and the symbol L_ , with

in the L; series are identified in Table II of the Appendix, and possible



designs for the new schemes will be listed in Table IV. It should be
mentioned that the ordinary Latin square, or Lg » series was defined to
include only schemes in which first associates can be defined by means
of a set of g orthogonal n xn squares., The term "scheme with L g
parsmeter valuea® will include the Lg schemes and any other schemes
whose parameter values are given by (2.12) with positive values of g,

f and n.
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2.2 FEnuperation of Asspciation Schemes.

The parameters by which an association scheme 18 specified are v,
nj, Pjy + A procedurs will be developed in this section for the con-
struction of a table of all possible sets of values of these parameters
for PBIB designs with two associate classes. For a given value of v,
a unique group divisible (GD) scheme exists for each pair of integers
m22, n22, such that mn = v; that is, there is one GD.usociation
scheme for eaca proper divisor of v. The construction of these associ-
ation scheamesis trivial and it is not considered necessary to list their
parameters. The enumeration of poséible .asaociatién éqﬁcﬁea of other

types will be carried out for all values of v < 100.t

Theorea 2,0, due to Connor and Clatworthy [T 27, defines parumeter
values of one series of possible association schemes in terms of a para-
meter t . Theorem 2.1 uses two parameters s and t 1in the deriva-
tion of expressions for the parameters of all possible schemes not given
by Theorem 2.0. Several necessary conditions on the parameters are also
derived. Table Ia of the Appendix lists the sets of parameters given by
Theorsm 2.0. Table Ib also makes use of Theorem 2.5. Tables Ia and Ib
give 101 possible sets of parumetera for v< 100. These are listed in
Table II. The necessary conditions applied in constructing these tables

are by no means sufficient for thoe exiastence of sn association scheas and

l.< An easy computation shows that there are 285 GD schemes for values of
v< 100. .
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it is easy to derive additional necessary conditions applying to certain
classes of the parameters. Taeorems 2.2 to 2.8, which are of this nature,
show the impossibility of four of the schemes in Table II and place
restrictions on sevsral others, as well as giving some general information
on the structure of association schemes. The achemes which are proved
impossible are indicated by the letter X in Table II, followed by a
reference by number to the applicable theorem. Parameters of kmown
schemes are indicated by the letter C , followed by a reference. The
remaining 41 schemes have neither been constructed nor proved impossible.
Further explanation of the tables precedes tiem in the Appendix.

Several necessary conditions satisfied by the parameters of a PBIB
design are derived by Conmor and Clatworthy /177 by using the matrix NN',
They show that this matrix has only three distinct characteristic roots,
obtaining expressions for the roots and their multiplicities. The same
results may be obtained rather easily by methods mentioned in Section 1.3.

In their notation,

rk is a root with multiplicity 1,

r -z 1sa root with maltiplicity o(1 ,

r -3z, isa root with multiplicityO(Z .

The X i depend only on the parameters of the association scheme, and are
thus the same for all designs having a given association scheme. The 2'1
depend in addition om A 1 and )g 2 and will not be needed in this

section. Equations (5.9) and (5.10) of [f 7/ give
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(v-1)(-Y+ VA +1) -2y

(2.13) A =
1 2R
(2.14) <, = (v-L)(Y+ VA +1) -2,
AV
where
- .2
(a) . Y- 912 - p}.2 »
(2.15) (b) f= o, + 5%,
(c) A=Y 2% + 28 + 1.

Useful necessary conditions on the parameters may be obtained from the
fact that the multiplicities <X L and 0(2 must be non-negative
integers. They are of course not independent; (A " °<2 = v-l.
Connor and Clatworthy in their theorems 5.3 to §.5 investigate the nature

of A . One of their results will be stated as a theorem.

THEOREM 2.0. (Conmnor end Clatworthy) /17/. If A\ is not a square,

it is necessary that

(a) piz = piz = t’
(226) (B = = m, = o(l z o(2 = 2t,
() v = A = at+1,

where t 18 a non-negative integer defined by (R.16) (c).

This series of possible association schemes is easily enumerated.

The possible parameters are listed in Table Ia. In every other case



A is an integral aquare. This will be used to develop a method of
systematic enumeration of other possible association schemes. From

(2.15) (¢c),

2
(2.17) ,9 = ._A_:.\.fz_..::_l.». .

Solving (2.15) (s) and (b) for the pl, , then using (2.17),

. 1 = f-Y = D-Y2 _2Y-1 = A-(Y+1?
(2.18) P12 2 4 4

T

Lﬂ-g =1) 'L‘IA_*zY"';)_.

(2.19) pR. = Pry - A-YRPHoY-1 A-(Y -1
"2 ry 4

P12

(Ya. ﬁ-zY:tj.) ( Té-—:‘*‘zY =) -

Statement (2.17) shows that tae integers L and Y must be of opposite
parity. Therefore YA T Y must be odd integers, YA Tt Y * 1 must
be even integers for all choices of signs, and 8 and t defined as
follows will be integers.

(2.20)

t:E-;Y‘lo

Equations (2.18) and (2.19) may now be rewritten us follows.

(2.21) piz = s(t+1),
(2.22) pfz = (s + 1)t .
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Also,

(223) VA= s+ t +1.

2
12

reduces to the listing of pairs of integers s, t and application of

A preliminary enumeration of possible pairs of values piz s P now
(2.21) and (2.22). Bose and Connor /7_/ show that a PBIB design with two

associate classes is of GD type if and only if 911.2 =0 for i=1 or 2.
This case will be excluded by requiring &8 and t to be positive integers.

For each pair 9%2 , pfa , it 18 next desired to enumerate possible
sets of the remaining perameters, particularly n, and 1, . It will be
convenient to do this by finding values of p%z and pfl o Multiplying
equations (2. 5), we obtain

nlnzpizpfz = “1“2"%2?%1 >
(2.24) Py o8, = pp, BE) -

Pairs of possible values of 1%2 and pfl may thus be obtained by ex-

pressing tae product p]i2 p:la_2 in every possible way as the product of
two positive integers 9%2 and pfl « Relations (2.4) then give values
of the remaining parameters, including

- . - 2 2
np = Pt Py m = Rt

To avoid duplication, we make the restriction

1 2 1 - 2
(2.25) P, £ P, 3 if pp, Py » then ny £ o .
1 2 1 - .2
A design for which Pip > pl2 or pl, Pls and n, > n,
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reduced to one for which (2.25) holds by changing the designations of
first and second associates.

The enumeration will be carried out only for values of v < 100,

Since v = ., + n

p*t B+ 1=yt R, tRp T1,

2

2 2
this means +pn+pi2+p1 < 99,

P12 22 =
implying
31, + 05, + 0, + 05 ) < 25,

Since the geometric mean of any set of positive numbers is < their

arithmetic mean,
1 2 1 2.} < 25
(pyp PYp P2z POy) 25 .
Using (2.24) we obtain
(2.26) (pt, p2.)3 25
. P12 P)o) .

Only finitely many values of pi‘z and pfz satisfy (2.21), (2.22) end
(2.26). A convenient form for listing them is a table of vulues of the
function o (YA- 6 ), where o~ is an integer. The following portion
of the table will illustrate its form.

glo 1 2 5 4
0|0 -1 -4 -9 -16
1]/0 0 -2 -6 -12
2|/|0 1 o -3 -8
310 2 2 0 -4
4j{o0 3 4 3 O
510 4 6 6 4
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The table is most easily constructed by noting that the diagonal antries
are 0's and that the entries in column o form an arithmetic progres-

sion with difference o6~ . In the row of the table corresponding to a

fixed value of YA = s +t +1, the consecutive entries for o

e -

and ¢ = 8 +1 ars precisely s(t +1) = P]iz end (8 + 1)t
For example, for YA = 4, the possible pairs of values of pi'z ’ pfz
are 0, 3; 3, 4; 4, 5; 3, O. All values of the pia satisfying
0<pt, & b2, ;5 (pl, pEo)¥ (25 are given in the portion of the
table in Figure 6.

Thus the sets of parameters to be listed in Table Ib include only .
31 possible pairs of values of piz and piz « For a given peir, the
number of values for the remaining parameters depends in part on the
number of divisors of the product p]iz pfz « The relation

n, = p%z + pfa 4+ 1 and the non-negative nature of 922 lead to

2 . - 1 .1 |
Plg £ 85 = 1 2 pot+ppy - 1,

1 2 1
Pige 2 Plp - Ppt1l-

1
(2.27)  py, 2 Y +1.

This restriction on the valus of p%z will be used to shorten the
Computation somewhat. A similar restriction on pfl turns out to be
vYacuous in view of (2.25). It will be shown in Theorem 2.5 that at

least one of n, and né must be an even number. If both are odd in a



Figure 6.

YA 1 2 3 4 5
s 2 2
4 5 4
5 4 6 6
6 5 8 9
7 6 10 12 12
8 7 12 15 16
9 8 14 18 2 20
10 9 16 2 24 25
1n |10 18 2
12 |1 20 o7
15 ) 12 22
14 | 15 24
15 | 14 26
16 [ 15 28
17 | 16
18 | 17 s2
19 | 18 ™

Array glving possible values of 9%2 and piz .

46
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line of Table Ib, their values are omitted and the rest of the line is
left blank, further ghortening the computation.

The full strength of the positive integral condition on K 1 and
Ao has not yet been imposed. Using v-1 = n, + n, , expression (2.13)
may be written

(2.28) o(l = p (YA-Y + 1)*“1(TZ'Y -1) 3241 +1}4n,8
2r5‘ | V—A-

The value of this quotient is readily computed for each set of values of
piz , piz » B » m, in Table Ib. If it is not an integer, no association
scheme exists and the letter f is entered in columa A y Of the table,
1f K , 18 an integer, it is entered and followed by the value of
v = n1+ n, + 1.

The results that have been obtained for the construction of Table Ib

are collected for convenience and stated as the following theorem.

THEOREM 2.1. An association scheme for a PBIB design with two
associate classes and not of group divisible type must have parameter
values given either by the expressions stated in Theorem 2.0 or by the
following conditions.

VA is a positive integer,
8 and t are positive integers satisfying (2.28): s +t+ 1=VA
1 . _

(2.21) Plp s(t +1) ,

(2.22) p%, = (s +1)t,
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1 1l 2 .
Pgo 1is a divigor of P12 Pl satisfying (2.27):

pg2 2 Y+ 1 =98 -t r1,

2
B = ii_igzﬁ_a (obtained from (2.24) ),

= o2 L o2
o Ppthpe
(2.4)
= ol
"2 Ppo * Flp »

(2.28) (BFL) By+8D) - o Lot be an integer;

T 1

moreover, if the requirements

1 2 . 1 - 2
(2.25) Plo £p if pp, Plp » then n, < D,

are imposed, then pi, , p§2 must be a pair of consecutive entries in
row Y/\ of the array in Figure 6.

The proof of Theorem 2.1 has already been completed. One additional
lecessary condition used in Table Ib will appear as Theorem 2.5. This
condition is a special case of (2.28) but seems to be of sufficient
interest to be stated separately. It may be remarked that taking negative
integral values for s and t (which is equivalent to using the negative
Square root of £\ ) leads to parameter values which are positive but no
different from those already obtained.
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The enumeration in Tables Ia and Ib gives 101 sets of possible
parameter values for association schemes. These are reproduced in
Table II, in order of increasing values of v, and numbered serially.
These serial numbers are given for reference in Tables Ia and Ib.
Table II gives values of v, ny, p;'k ’ o(1 and YA . The parameter
‘FE will be found convenient in locating particular sets of parameters
in Table Ib, which is arrenged in order of increasing values of YA .
Table II is standardized by listing only association schemes for which
ny < n, . In some cases tnis requires that designations of first and
second associates be interchanged in the corresponding scheme of Table Ib.

The same parumeter values occur, but with the indices 1 and 2 inter-

changed wherever they appear.

Ingpection of Table II suggests a number of remarks about the
possible association schemes. Their abundance when v is a square is
somewhat striking; so is their scarcity when v is a prime. nl and D,

have a factor in common in every scheme in the 1ist; o . and K 2

1
have a common factor in many cases but not all; there seems to be a high
proportion of cases in which at least one of the X ; bas a factor in
common with v. The following theorems, same of which were suggested by
this gort of observation, show that at least part of the apparent
regularity is a result of general propertiés of association schemes.
Proofs of impossibility of several association schemes are obtained as

Particular results of some of the theorems.



THEOREM 2.2, In a PBIB design wita two associate classes, if the
nunber of treatments v is a prime, then v must have the form 4t + 1

and the parumeters of the association scheme must satisfy (2.16).

PROOF: Except in the case specified in (2.16), the values of the
association scheme parameters are given by Theorem 2.1. The following
makes use of (2.2), (2.4), (2.21), (2.22) and (2.24).

- = ol 2 4 o2
v n, + o, +1 p22+pi'2+912+9u+1

Ppo + 8(t +1) + (s +1)t+1+”(°"‘:%;"""1)

(9%2)2-;- (28t +8 +t +1) p%z +8t(s +1)(t +1)

P22

[p%z +_8}1_[p]éz + (s + 1)(t ~+ l)]
P22

(2.29) v

The greatest common divisor of two integers f and g will be denoted
by the usual notation (f, g). Define ¢ and d by

(P%g » 8Y) ,

[¢]
|

cd p]2'2 .

Pzp + st 1is then divisible by c. Since d is & divisor of ph, , it

1 2 |

P

mst be prime to st. But—}-z—-i-}-:E = 8e +L(t *1) 4, o snteger pil’
P22 .
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80 d must be a divisor of (8 +1)(t +1) and heace of

P%z'i' (8 +1)(t +1). We may therefore write

(2.50) v = [P%z: st] [v%z * (s: 1)(¢ + 1)]’

where both factors in the right member are integers. If & and t are

both positive, (2.29) shows that both factors are greater than 1; v is
then composite. If 8 or t is equal to O , it has been shown that if
the design exists, it must be of group divisible type, which is defined

only for composite values of v . This completes the proof of Theorem 2.2.

THEOREM 2.3. If a PBIB design with two associate classes is not of
group divisible type, then the number of treatments v cannot be of the

form p+ 1 for any prime p.

PROOF: This theorem is a particular result of some general relations
connecting the parameters o, » D, » piz and pfz » Which will now be
developed. Using (2.4),

Phtey = omy,
Applying (2.5),

1 e =
(2.51) n, Po+ B, PIp = B1 By .

The following form of (2.31) was found useful as a check during the con-
struction of Table Ib.
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(2.32)

-_— = 1.

(1.
e ohe
nz nl

Next introduce the greatest common divisor (nl ’ nz) of n, and B,

and define a,m ,m, by

(nl’nz) = a,

(2.33)

Then (nl,nz) = 1. (2.31) may now be written
3‘19%2*'“‘29%2 s azmlmz,
(2.34) m p{'z-}-nz pfz = am m .

Equation (2.34) in integers, with B and m,

that pl, 1is divisible by m, and pf, 1s divieible by m . Say

relatively prime, implies

1

(2.35) Plp = UMy,
2 -
Pla = "o o

Substituting (2.35) in (2.54)_ and simplifying,
(R.36) u+t+w = a,

If the design 1s not to reduce to a balanced design, both n, and n,

le  This admits a geometric interpretation if pi'a and -pfz are taken as
Tectangular coordinates of a point in a plane. Then the point (pia R pfa )

M18t 1ie on the straight line with intercepts n, and n, .
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must be non-zero, so that m, and m, are non-zero (tucitly assumed in
some of the preceding statements). If the design 1s not of GD type, piz
and pfz must also be positive, so that each of u and w is 2> 1.
Then (2.36) shows that a 2> 2, so that n, aud n, have a proper
divisor a in common. Their sum nl+ B, = v- 1l 1is also divisible
by a , completing the proof of Theorem 2.3.

Relations (2.33), (2.35) and (2.36) can be used as the basis for an
enumeration of possible sets of values D; » B, , p}z » pfz « It appears

to be considerably less efficient than the method based on Theorem 2.1.

THEOREM 2.4. In a PBIB design with two associate classes, if
ph 2 1, then p}_j £ ¥ -1,vwhere i and j are equal to 1 and

2 1in some order.

PROOF: The proof will be carried out for i =1 and j =2 . The
other case is similar, Let © and @ be two treatments which are first
associates. Since ph 2 1, there is at loast one treatment which i8 a
first associate of both. Denote one such treatment by T1. Of the
n, first associates of TT, ph are first associates of @ and pil
are first associates of # . At most 29]1-1 of them are first.associates

of @ or @ or both. At least n, - 2‘%1 are first associates of
el ther, and thus are second associates of both. But © and @ are

firat associates and the number of treatments which are second associates

of both is precisely péz . This proves the inequality

1
n, - 21 £ gy



Using the relations pil = - pi‘g -1 and P%_z = n, - Piz ’

from (2.4),
n, -2a + 2pfp + 2 £ nz-piz,
Sp{zﬁ n, +0,-2 = v-3,
2,57 1l <« ¥
(R.37) P2 £ -1,

The following sets of parameters from Table II violate Theorem 2.4

and are thus impossible.

1

# v P P2
36 50 4 16
0 56 5 18

The following theorems make use of the association matrices Ai .
The details will be carried through for Al » the incidence matrix of
first associates. Let the numbering of the treatments be chosen so that
the treatment 1 hes treatments 2, 3, « « o , n, + 1 &sits first
88sociates. Treatment @ corresponds to row and column 0 of Al .

The natrix may then be partitioned as follows.



55

1
(2.38) 0/1 . « 10 . . .0

»-._.:_-._.—--__'_ ______ - - =--=-
lI |
ol ]
o R : s n, Tows
.I '

- ll L P

A1 *r-r—— "~ —-° T

0, |
ol ]
. : St | T n, Tows
.I '

|2, ! B

R is a symmetric n_ =xn matrix;

1 1 2
both have O's on the miin diagonal. S' is the transpose of S. The

matrix; T is a symmetric o, xn

rows and columns of A will be taken as vectors. The inner product of
row 1 with row 0 1is equal to the number of common first associates of
treatments 1 and @ , and is equal to ph or pfl according as
treatments 1 and O are first or second associates, respectively. This
shows tanat each row of block R contains P}.l 1's and each row of
block S' contains pil 1l*s . Each row of Al contains n, 1'sg, and
by subtraction the number of 1's 1in each row of S 1s equal to

- - - 1 .
n, 1l p%l Py, 3 the number in each row of T i3 equal to

3y -#h = P -

If the matrix A, 1s partitioned in an analogous way, blocks R and

2
T are n, x n, and n, x nl matrices respectively, and the row totals
of ' 3 2 1
R,S,S'" and T are Po, » Plp » Poy and p{z respectively.

THEOREM 2.5. In any PBIB design with two associete claeses, the

following statements ere equivelent end true.
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1 2 2
(a) The products n; pil » By pl2 » By Poo s and n2 py, are all even.

(b) n, eand n, cennot both be odd numbsrs.

PROOF: Each of the n, Trows of submatrix R of Al contains ph

1's , and R therefore contains n, ph 1l's, Since R is symmetric
with 0O's on the main diagonal, it containa 1l's only in symmetrically

located pairs and nl ph must be even, Similar reasoning applied to T

shows that n2 pfz is even. The argument mey be repeated for the matrix
Az to show that o, p%z and n, pgz are even. (An eguivalent argument
using Al is based on the remark that n, p{a and n, pgz are ejual to
the numbers of off-diagonal O's in R and T respectively.) This

completes the proof of (a). Since both terms in the left member of (2.31)

are even, n, n, must be even, proving (b). It remains to show that (b)

implies (a). Let (b) be true. If both n, and n, are even, (a) 1is

'S

true trivially. If ome is odd, say n, , then nl is even, and
1 . 2 2

nl Pop = n2 P12 is even, implying P ie even. Therefore

-1 -p® = o 2 2
n, -1 pl2 Poo is even and the products n, Pl» and n, Pyo

both even, as well as o, pil and n, p]l.2 o A similar argument is used

are

when n, 1is odd, completing the proof that (b) implies (a).

Statement (b) 4is used in the construction of Table Ib. It can be
shown that it is weaker than (2.28), a condition which is also used,
bat 14 is used because it shortens the computation.

Additional information is now needed about the partitioned matrix Al .

Squaring according to the rule for products of partitioned mutrices,

( ['J’ p. 24),
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(2.39) n

RS + ST

o
11}
-
I
|

4—

|
I
1
I
|
I
l
|
i
|

S'R + TS!

whare U is e matrix all of whose elements are 1l's. By (1.18), Alz has

diagonal entries n‘L » entries pil in the positions of 1's of Al , and

entries pfl in the positions of off-diagonal O's of Al o This proves

LEMMA 2,1t If R, S, S' and T are the submatrices of Al
depicted in (2.38),

1
1 1 , entries Pl 1l

in any positions occupied by 1's in matrix R, and entries

pil - 1 elsewherse;

(a) R® + SS' nas diagonal entries n

(b) S'S + T% has diagonal entries n, , entries pil in any

positions occupied by 1l's in T , and entries 912.1 elsewhere.
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THEOREM 2.6. A necessary condition for the existence of an associ-
ation scheme for a PBIB design with two assocliate classes and pii =0, is
the existence of a BIB design with parameters v =n; , r = B, - 1,
k= pjn, bn, , A =p{;-1,were i and j are equal to 1 and
2 1in some order. Moreover, given any block of the BIB design, taers
exist at least pi j other blocks which have no treatments in common with
the given block. |

PROOF: The proof will be carried out for the case 1 =1, j=2,

using the matrix L.L o A similar proof using A, applies in the other
case.

Waen pl. = 0, the submatrix R containsmo 1's and R* isa
Zexo matrix. According to statement (a) of Lemma 2.1, SS*' then has
sntries nl - 1 on the main diagonal and entries 912.1 - 1 elsewhere,
S 15 thus an D, X 0, matrix with uniform row totals p}.2=nl-1 ,
uni form column totals equal to tae row totals pfl of 8* , and uniform
TOw inner products pfl - 1, identifying it as the incidence matrix of the
BXI B design described in the Theorem. The number of treatments which a
&1 ven block of the design has in common with another block is equal to the
Ilaner product of the two corresponding columns of S , which in turn is
©®Qual to an off-diagonal entry in the given row of S'S , and is < the
©ntry in the same position of S'S + T . The number of 1's in a row
OFf T is equal to pfz and by statement (b) of Lemma 2.1, an equal

Rumber of entries in the same row of S'3 + T° are equal to p:]l:l = 0.
Thus the given row of S'S must have at least pfz entries equal to O,

Proving the final statement of the theorem.
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There are nine sets of pearameters in Table II with p:tl 20, five
of which belong to constructed association schemes. The others are
schenes #15, 34, 59, 50, None of the balanced dessigns specified by the
theorea are known to be impossible; the first three are know;x designs
and the other has not been studied. Existence of the BIB design does not
imply the existence of the association scheme, though it may give ussful
infornmation about the structurs of the scheme if it does exist. Whether
oxr mnot the BIB design exists, the condition on blocks may be impossible,
a fact which will now be used to show the impossibility of schemes 15
and 59,

Let s rY denots the number of treatments which blocks U and 1 of
an Iincomplete block design have in common. Where N 13 the incidence
matrix of the de;ign, spv will be the value of the element in the
ft»> 7V position of the b x b matrix N'N. Let f(n) denote the number
Of Dblocks of the design which have precisely n treatments in common with
& chosen block, say the first. f(n) wmay be interprsted as the number of
indices 7/ for which 8,y = n, or as the number of occurrences of the
SnQtry n in the first row of N'N (disregarding the entry in the 1,1
Position). In the case of a BIB design, Hussain /2 4/ .proves the follow-
Ang identity in the integers x and y.

k

(2.40)  xy(b-1)-k(x + y - 1)(r-1) + k(k=1)(A-1) = > (x-n)(y-n)f(n).

n=o

s‘tting x=y=d we obtain
k
(2.41) k(r-1)+k(k-2)( A-1) = Z ? £(n).

n=0



Setting x =0, y =1 we obtain

k
k(k - 1)(A-1) = Z (22 - 2) £(n),
nsQ ‘

leading to
k

(2.42) k(r-1) = z n f(n) .

n=0

Statenents (2.41) and (2.42) give expressions for the sum and the sum of
Squares of the b - 1 off-diagonal entries of a row of N'N ,

These results, valid for all BIB designs, will be applied to the
Parxr-ticular designs introduced in Theorsa 2.6. For these designas, at least
912.2 of the b - 1 entries are equal to O. The remaining b -1 - pfz
entries are integers n satisfying 0 £ n £ k, with sum and sum of
8qQuares still given by the left members of (2.41) and (2.42). In some
Cases it may be impossible to find such a set of integers. This will be
Qemonstrated in the cases of schemes #15 and 50 by computing the vauriances

OFf the proposed sets of integers. The pertinent parumeter values are
These.
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Using (2.41) and (2.42) these lead to the following values.

# Number of Sua Sum of . Variance

integers squarss
15 12 28 52 12 - 52 - 28% _ -160
144 144
50 50 190 910 30 ~ 910 - 190° - =880
900 900

Since negative values of variance are impossible, no such sets of integers

Ccan eoxist. This proves the impossibility of schemes 15 and 0.

TAEOREM 2.7. & necessary condition for the existence of an associ-
atilion scheame for a PBIB design with two associate classes and pi'i =1 is
the existence of a PBIB design of GD type with parameters v = B,

l‘tni-z,RSpii, b’nj, Al=0,)\2-p'1 - 1, based on an

ii
0 0
&association scheme with parameters n‘{ =1, 03 =n, -2 P, =
] n; - 2
0 1l
922 s Where i, j are equal to 1 and 2 in some order

and starred quantities refer to the GD design. Morsover, given any block

OFf the GD design, there exist at least Pjij blocks which have at most one
Treatment in common with the given block.

PROOF: The proof will be carried out for i =1 and j =2, using
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the matrix ‘1 e A similar proof using ‘2 applies in the other case.

1f Ph"l: then in (2.38) R has a single 1 1in each row and
colum and is a symmetric permutation matrix, R® is equal to I , the
1identity matrix. It is easily verified that R has the necessary pro-
pexrties for the incidence matrix of first associates in the GD scheme
specified in the theorsm. By Lemma 2.1, SS* has diagonal entries equal
to n - 2, entries equal to p{l -1 =0 in the off-diagonal positions
that are occupied by 1's in block R, and entries equal to pi; - 1
el sewhere. All the requirements are now satisfied for S to be the
incidence matrix of the GD design specified in the theorem. The number
of <treatments which a given block of the design has in common with another
block is equal to the inner product of the two corresponding colums of S,
wWhich in turn is equal to an off-diagonal entry in the given row of §'S,
and is < the entry in the same position of 8'S + T2. The number of
13 inarowof T 1is equal to piz and by statement (b) of Lemma 2.1,
&n equal number of entries in the same Tow of 8'S + T¢ are equal to
plll.l 31, Thus the given row of S'S must have at least piz entries

< 1, proving the final statement of the theorea.

Seven schemes of Table II have pl = 1, including schemes #4l, 45

1
@nd 90 which are unknown. The GD designs to which thase lead do not seem
To have been investigated and will not be taken up here. It is therefore
Aot clear whether Theorem 2,7 can be used to prove the impossibility of
@ny of these schemes.

A remark which will be used in the proof of the next theorsm will

Qow be stated as a lemma.
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LEMMA 2.2. Sufficient conditions for a v x v matrix A]. of Ofs
and 1l's to be the incidence matrix for first associates in a PBIB design
with two associate classes are

(a) Al is symmetric,

(b) the diagonal elements of A, are 0's,

2 - 1 S (U-I-.
(c) ‘1 nlI+puA1-rpn(UIAl) s Where I 4is the
identity matrix, U ias a matrix all of whose elements are 1l's , and

n, , p:JI'_1 » pfl are non-negative integers.

PROOF: Define A2=U-I-Al « Then Al and ‘2 are symmetric
incidence matrices whose sum is the matrix with 0's on the main diagonal
and 1's elsewhere. By Theorem 1.2, they are the association matrices
Of . PBIB design with two associate classes if the products 2, a0,
Azal ’ Ag have the form of (1.16) , where the comstant coefficients
Dy and p}k are non-negative integers. By hypothesis-this is true for
Ai « It is easy to compute the remaining products, but not necessary for
this proof. The equality of the diagonal elements of Af inplies that

A has equal row and column totals n, , implying
- - 2 _

Each of the products Ah; veduces to a linear combination of I, A, ,
Az send U=I+A+ ‘2 , with constant coefficients. Since the elements
in any product of incidence matrices must be non-negutive integers, tae
Coefficients are of this form and the proof is complete. The values of

the coefficients are easily computed by (2.2) and (2.4).
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THEOREM 2.8. The existence of an association scheme with two associ-
ate classes and peransters v, n, , p}k satisfying the condition given
in (a) or (b) below is equivalent to the existence of the BIB design with
v  treatments described in (a) or (b) respectively. 1 and j are equal

to 1 and 2 in some order.

. ot =
(a) Condition: pj, pii .
EIB designt v = b; r = k = n,; A= p{1(= pju); the
incidence matrix N is symmetric with O's on the main diagonal.

(b) Condition: ph-rz = piu .
b r =k =+ A= pht2(=p);

BIB design: v
the incidence matrix N is symmetric with 1's on the main diagonal.

PROOF: The proof will be carried out for the case 1 =1 and j = 2.
The other case is similar.
Case (a) The treatments in block @ of the design will be taken as
the first associates of treatment O in the association scheme. Then
N =4 , ad vy 1.28)
R TR NSRRI P Ve

Defining r and A as in (a),
MN' = I+ A(ﬁ-i-Az) = rI+A@U-1I) .

Thus N isa v xv incidence matrix with uniform row and column totals r
And uniform row inner products A s identifying it as the incidence matrix
Of the BIB design described in (a). Conversely, let N be the incidence
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matrix of such a design. Defining Al = N , the conditions (a) and (Db)

of Lemna 2.2 are satisfied immediately and condition (c) follows from the
expreasion for NN' which holds for all BIB designs.

NN' = rI+ A(U=-I) = rI+AN+A(U=-I-N).

Case (b). The treatments in block O of the design are taken as
treataent O and its first associates. Thea N = A1+ I and

MW= (M +DA+D T (A +D2 = AP+
. (n1+1)1+(p}1+z)ﬁ+p§lA2
Defining r and A as in (b) ,
MN' = rI+}\(A1+A2) = r1+2\(u-1).

Thus N is the incidence matrix of the design described in (b). Con-
Varsely, let N be the incidence matrix of such a design and define

A, = N-I. Aguin conditions (a) and (b) of Lemma 2.2 are satisfied
and we have

32 = (B =-1)2 2 Now 2+ = MN'= N+ I=r I+A(U ~I) - 2N 41
= (r-1)I+(A-2)(N-I)+A(T-N) .

Therefore by Lemma 2.2, A, so0 defined leads to the reyuired association
8chems. This completes the proof of Theorem 2.8.

Parts (a) and (b) of Theorem 2.8 are not independent. If either of

them applies to the matrix Al of an association scheme the other applies
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to ‘2 « The two BIB designs will be complementary, a given block of one
con taining exactly the treatments not occurring in the corresponding block
.of the other. The conditions ph 3 pil and pgz +2= pﬁz are easily
shown to be equivalent, either by direct application of (2.4) or by the
dewvice of applying one part of Theorem 2.8, taking the complement of the
resulting BIB design, taen applying the converse of the other part of the
theorea.

The conditions of Theorem 2.8 are satisfied by 18 of the sets of para-
meters listed in Table II, of which 11 belong to known association schemes.
Thexs remain schemes #22, 39, 84, 85, 92, 100, 10l. These lead to § dis-
tinct BIB designs, all of which have r >10 and have not been studied so
faxr. Schems #22 is equivalent to & design with v=b =36, r = k = 15,

A= 6, N symmetric with 1's on the main diagonal. A design with these
Paxameter values is constructible from the known scheme #28, but with an
incidence matrix N having 0's on the main diasgonal. These designs all
fall within the class of ssymmetric® BIB designs which have the property
that v = b; syametric BIB designs have been investigated more thoroughly
T hen any others. However, none of the known necessary conditions exclude
@&ny of the designs in question. In particular, some deep conditions due to
Shrikhande /307 are satisfied automatically whemever r - A is a perfect
8guare, which it is for all of these designa.l Therefore Theorem 2.8 does

ot furnish conclusive information about any unknown association schemes.

L]
———

1. We remark without proof that the value of r - A 1is a perfect square
for all the BIB designs specified by Theorem 2.8. This is a fairly direct
Tesult of the conditions of the theorem and the expressions given in
Theorem 2.1.
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Theorems 2.2 to 2.8 prove the impossibility of four association
schenes of Table II and may provide the basis for other such proofs.
They do not represent an exhaustivs list of theorems on the structure of
asaociation schemes, but they show taat such theorems may be proved
rather easily, and illustrate some methods of proof. Most of them make
use of algebraic properties of the expressions for parumeter values of
the schemes, or of properties of the association incidence matrices. It
18 not illustrated here but deserves to be mentioned that empirical
atteapts to construct an association scheme may lead quickly to a con-
structed scheme or to a proof that the scheme is impossible. This method
requires too much enumeration to be practicable for most schemes with more
than 20 treatments, but there are exceptions. Some empirical proofs of
impossibility of designs will be mentioned in Section 2.5 , and two
assgociation schemes ars constructed in Section 5.3 by methods which are
largely empirical.
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2.3 Enumeratiom of Possible Designs for Particular Association Schemes.

If a balanced or partially balanced design is to be used in an ex-
periment, the first parameters to be specified by the experimenter are
likely to be v end k , which are determined by the number of treat-
ments and the variability of the experimental muterial. From the desigus
awvailable for the particular v and k , he will try to choose one for
which the nunber of replications r is large enough to provide the pre-
cision desired but not too large to be economically feasible. This will
deteraine the value of b and will leave 1little or mo choice in the

values of the other parameters.

A somewhat different procedure is used for our purpose of enumerating
Po@asible designs. [t has been coanvenient to classify designs first by
assaociation scheme, so that tae first parumeters specified are v, n,; »
%K » leaving the paremeters b, r, k, A, and )\2~. Since these
five parameters must satisfy relations (2.1) and (2.5) , at most three of
thea may be chosen independently. The requirement that all be non-negative
integers is also a considerable restriction. The existence of any design
implies the existence of an infinite elass of other designs obtained by
Using each block r times , r =2, 5, «ce The parameters v and
K  will be unchanged for designs obtained in this way, while the para-
meters r, b,A andAz will be multiplied by r . Ouly a finite num-
ber of these will be useful to experimenters, since there are practical
linits to the amount of experimental material that can be used. Fisher

and Yates /2 |/ enumerated only designe for which r { 10 , and other
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writers have followed their example. Extremely large block sizes are
likkely to defeat the purpose of having homogeneous experimental conditions
wi tain blocks, and some limitation on k is also desirable. It is a
property of balanced designs that k < r , so . that no qualification was
necessary for Fisher and Yates. k is somewhat larger-than. r in some
PBIB designs, and Bose, Clatworthy and Shrikhande [ 6_7~enunerat.e only
designs for which k£ 10 also. The same restrictions will be adopted
heres, admitting only a finite number of designs for a given association

achene.

A fairly efficient enumeration of the possible designs for an asso-
ciation scheme may be begun by choosing a pair of values- for A , wd
A » then computing the quamtity n, A1+ n, Az""w (R.3) , this
is equal to r(k-l) and by factoring it in every possihle way as the
Product of two integers, possible pairs of values for r and k may be
obtained. By (2.1) , the fraction vr/k is equal to b and must be
integer valued. This, along with upper bounds on r and k , will
©lininate some sets of values. Some sdditional restrictions depend on the
Characteristic roots of the matrix NN' , which have been mentioned in
Sections 1.5 and 2.2. In the notation of Connor and Cletworthy /777,

rk is a root with multiplicity 1,
. r- 3 is a root with multiplicity o(l ’

r- 2, 1s a root with multiplicity 0(2 ,

Where the X g mey be obtained froa the paramoters of the association

Scheme and the =, dependnadditionon)\l and )\2. Since NN' 4is the
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product of a real matrix by its transpose, it is positive semi-definite,
meaning that each of its roots must be non-negative. This gives the

results

r-zi_zo , or

(2.45) r)zi, j.:]., 2 .

If both of the multiple roots are positive, the v x v matrix NN' is
non-singular and has rank v , meaning that the v x b matrix N has
rank at least v , which is impossible if b< v . Therefore in this
case b2v . This is identical with Fisher's inequality for balanced
designs and is equivalent to the following statement.

(2.44) If r>2,, 11 and 2, then T k.
i

If one of the multiple roots r-z; is equal to 0, the rank of NN'
is v-&; , meaning that K has rank at least v-Xs which is im-

Possible if b< v-X, . This leads to the following statement.
(2.45) If r=2;, 4=1 or 2, then b2v -X, .

The situation that both z and z, are equal to r does not arise,

8ince it can bse shom that any design for which 3 = zzv will be a

bal anced design.

Attention will now be restricted to association schemes of the I.g
&nag L* series. The following expressions for parameter values, which
USse the notation of (2.12), apply to both series. For the Lg schemes,

€ , f and n are all positive integers; for the Lg* » they are all

Regative integers.
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n s g + f - 1 »
nz = f(n - 1) .

For the L‘ schemes, in the same notation,
0§1 = g(n-1),

X, « £(n-1),
3 = (l-f)Al+f)\2,
8, = g)\l+(1-g)A2.

The expressions of (2.46) apply to schemes of both series, but for reasons
which will be stated in Section 5.1, the designation of the multiple roots

is reversed for Lg* schemes, giving the following expressions inatead
of (2.47).

Ay = fan-1),
0(2 < gn-1),
(2.48)
2y = G>\1""(1“8)A29

z, = (1-f)A1-rf7t2 .

It will be noticed that for either series, the multiplicities oA i
Of the characteristic roots of MNN' are equal in some order to the
Qumbers o, of treatments in the associate classes. This relation holds

-Onmldy for certain classes of association schemes and will be discussed in
Section 5.1.
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The work of enumsrating design parameters is shortened by some pre-
liminary restrictions placed on A , end A o » Which will be described
first for the L case. Teklag r €10 and k€10 implies r(k-1) £90.
Using (2.43) end (2.47),

(1- t))\1+t7\2 {1,
gAT(L-9A, L1,

and from (2.8),
nl)\l+ n2>\2 {9% .

Solution for A , leads to the following inequalities, which define the

quantities m , M and M' for I.g schenes.
(249) A 2555, - Ao =0,
10 -1 -
(2.50) A S +EL=R, =,

(2.51) 2,420 -2 = w .
n;
In the I.g* case, g and f are negative, leading to the following
inequalities and different definitions for m and M . Inequality (2.51)

&nad the definition of M' hold without change.

(2.52) A >-89. 8.:...1_}\2 ’

10 =

(2.58) A, << L -

For 4 particular set of association scheme parameters g , f , nl and
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n, , the lower bound m and the upper bounds M and M' for A , &re
quickly listed for each non-negative value of A o *

The enumeration which has been outlined in this section is carried
out in Table III of the appendix. The section of the table for each
asaociation scheme is preceded by a 1list of the values of g, £, nl and
D, and the expresslons for m , M, M', 2 , 2z,, end r(k-1).

In the table, values of A 2 are listed, followed by the value of m if
it is positive and the value of the smaller of M and M' . The possible
values of A 4 &re then listed. The value A 1 = A 2 is omitted, since
it leads only to balanced designs. Also if 2, =n,, values A 1> A 2
are omitted since they lead to designs which can be obtained from designs
with A 1( }\2 by i.nt;erchanging the designation of first and second
asaociates. For each pair Al R }\2 » the quantities z, , z, and
r(k-1) are entered in ‘the next columns of the table for use in computing
values of r and k . Only values r<£ 10 and k {10 consistent with
(2.43) end (2.44) are 1listed. The value of b is then computed and
@ntered in the table if it is integrael. Finally, in case r = Zy
is applied, eliminating a few more sets of parameters. Table III is in-

(2.45)

tended as an illustration of the computations and is presented only for a

Tepresentative sample of the association schemes.

Table IV is a list of those parameter values waich satisfy all the
conditions applied in Table III. The designs for each association scheme
are listed togetaer, preceded by a list of the scheme parumeters for

reference. Design parameters &ére identified by the numbers given to the
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scheme in Teble II, end by a serial numbering of the designs for each
scheme. All known schemes of the I.g and Lg* series are included, and

valuesof v, r ,k, Db ’Al ,}\2 » 2y and gz, are listed. Designs

2
which are lmown to have been constructec or have been proved impossible
&reo marked by the letter C or X respectively, followed by an explena-

tory remark or reference.

Severel methods which are frequently of use in constructing designs
will now be listed in the form of theorems. These &re presented here for
easy reference &nd no claim is made thet they are new, although the author

is not aware of any putlicetions which include theorems 2.12 to 2.14.

THEOREM 2.9. A PBIB design with k = 2 trestments per block may be
formed from any essociation scheme by tuking as the blocks &ll puirs of

jth

associates. The paremeter velues will be v, r =n k=2,

1 ?
b=jm , A;=1, Aj=0. i eand j represent 1 and 2 in
Some order.

PROOF: Since each pair of ith  gssociates occurs together in a
block exactly once end since no treatments which are not ith  agsociates

QOccur together in any block, the design satisfied the requirements
Specified.

THEOREM 2.10. In a Latin square type association scheme with v = n?

trestments end g constraints, & PBIB design with parameter values
Y v - n

» =g, k=n, b=ng, Al-’l, )\2=0

may be formed by taking as blocks the sets of n treatments occurring in
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the rows of the g orthogoneal squares. If there exists a set of

f “n-g+1 additional squares which mey be edjoined to form & complete

orthogonal set, & PBIB design with parumeters
v=n®, r=f, k=n, b=nf, Al‘=0, )\2=1

mey be formed by taking as blocks the sets of n treatments occﬁrring in
the rows of the f additionul orthogonal squares.

PROOF: These sre square lattice designs, whose properties are
well known. They are discussed, for example, in Chapter 10 of [7 4_-7 « By
the orthogonality property of the n x n squares, no pair of treatments
occurs together more than once in & row of any of the squares. By definition
of the I.8 assoclation scheme, the treatments occurring together are
PTrecisely those treeatments which are first associates in the case of the
first design described, or second é,ssociates in the second.

All designs of either of these types will be identified in Table IV
of the appendix by the word "Lattice",

THEOREM 2.11. Let two PBIB designs based on the same association
8cChene have the same number k of treatments per bldck, so that their

Paxsameter values mey be representec by

V,r*, k’ b*’ xl*’ Az*

v, rf |k, v, Al**, 7\2**

Tegpectively. Then & design with paremeter values
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V,r= r*-!-r**, k, b= b*"'b**p Al =Al‘5'xi*’A2 :A2$¢

msy be formed by taking each block of the two original designs as a block
of the new design.

PROOF: It is obvious that the set of blocké obtained in this way
leads to the values specified for b and r and that the total number of
occurrences within blocks of & given pair of treatments is equal to the
sum of the numbers of occurrences in the two original designs. Since the
two designs have the same associetion scheme, the number of occurrences
of a pair of treatments is Ai"-ﬂ- A i" when they are iYW associates,
1 =10 2.

It is an immedicte extension of the theorem that three or more com-
Ponent designs with the same association scheme and the same value of k
may be combined in the same way. The designs need not all be distinct.
In Teable IV, & design which may be formed in this way from other designs
for the same association scheme will be identified by the letter R,
followed by the seriel numbers of the other designs.

THEOREM 2.12. Given any association scheme with 2 associate classes,

@& PBIB design with the parameter values

- = :i =
veb, rrk=n, AR, AR

Where i eand j are equal to 1 and 2 in some order, may be formed

by tuking block @ as the set of il associates of treatment @ .
PROOF: If the design is formed in this way, its incidence matrix

W11l be identicael with the association matrix Ay of ith &ssocisates,
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giving the result

' = t = 2 = .
NN AyA 'Y nI+ ph&i + piiAd

This shows that each treuatment occurs in n, blocks and each pair of

i
trestments occurs together in ph or pii blocks, according as the
two treatments are first or second assoclates. Each block contuins n,
treatments, end all the reguirements for & PBIB deaign are therefore
satisfied.

In Table IV, & design which may be formed by applying this theorem

is identified by the statement
N=a,(=1o0 2).

THEOREM 2.15. Given any association scheme with 2 associate clesses,

& PBIB design with the parameter values

= =k= = pl
v=b, r=k=n,+1, 7\1 Pt 2, A2=p{i,

Where i and j are equal to 1 and 2 in some order, may be formed by
taking block O as the set of treatments consisting of trestment O and
ite 1¥W ggs0cictes.

PROOF: 1If the design is formed in this way, its incidence maetrix N
W1i211 have the form A+ I, giving the result

' = (4 + ' = 22,2
NN (Ai I)(Ai+I) (Ai-i-I) A1+2Ai+1

i
= (o, + 1)1+ (pl, +2)a, + piiAj .
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This shows that each treatment occurs in n, + 1 blocks and each pair of

treatments occurs together in pi-i

two treatments are first or second assoclates. Each block contains

+ 2 or p{i blocks, according as the

n,+ 1 treztments, and &ll the requirements for & PBIB design ere there-

-
fore satisfied.

In Table IV, a design which mey be formed by applying this theorem
is identified by the statement

R = a+1,(121 or 2).

THEOREM %.14, In e Latin square type association scheme with v = n2
txestments and g constraints if a balanced incomplete block design with

Parameter values
van, *, &*, , }\*’

is constructed on each of the sets of n treatments in the rows of the g

Oxrthogonal squares, the result is a PBIB design with parameter values
veav*=n? , r=g®* ,k=k", b= gth, A, = ,\*,Azzo .

If there existe a set of f = n - g+1 additional squares which may be
®djoined to form a complete orthogonal set, and the same BIBLC is constructed

On each of the nf rows, the result is a PBIB design with parameter velues
v:nz,r=fx*,k=?,b=fnb*,A1=0,A2=A* .

PROOF: The proof will be stated for the first case. The necessary
Chenges in wording for the second case sre inserted in parentheses. Since



B™ blocks are constructed from the trestments of each of the n rows
of each of the g (or f ) squares, the total number of blocks will be
gnt* (or MMmb* ) and each block will contain k treatments. Since
each treetment occurs in just one row of each square, it will occur r
times in the design formed from each of the g (or f) .squares, leading
to the stated velue for r . By definition of the association scheme,
each pair of first (or second) associates occurs together in just one
row of one of the g (or f ) sguares, so that the number of occurrences
within blocks of the PBIB design of the pair of treatments is equal to
the number A* of blocks of the BIB design in which two treatments occur
together. Two treatments which are second (or first) associates do not
occur together in any rows of the squares used and will not occur together

in the PEIB design, which means that A , (or }\1 ) is equal to O.

THEOREM 2.15. In a Latin square type associetion scheme with v = n2
trecstments and g cohstraints, if the rows of each of the g orthogonal
BqQuares are identified with the treatments of a BIB design with the para-

meter values

then & PBIB design may be constructed with b* blocks formed from each of
the 1 xn squares by replacing the treatments in each block of the
baleanced design by the sets of n treatments in the corresponding rows
Of the square. The parameter values of the partially balenced design
Will be



v=nv*=n2,r=gr*,k=nk*,b=gb*,

AL TR DAY, A, e X

If there exists a set of f = n-g+1 additional squares which may be
adjoined to form a complete orthogonal set, and the rows of the f squares
are used in the same way with the same BIB design, a PBIB design is ob-
tained with the parameter values

v=p?, r=o*, k=", b=1b*,

PROOF: The proof will be stated for the first case. The nocéssary
changes in wording for the second case are inserted in parentheses. Since
t* blocks ere formed from each of the n x n squares, the total number
of blocks is gb® (or fb%) . Since each treatment of a block of the
balanced design is repleced by n treatments of the partially balanced
design, the block size is nk™ . Each row of an n xn square occurs in
™ blocks end each pair of rows occurs together in )\* blocks. Since
each treatment occura in just one row of an n x n square, it occurs in
™ of the blocks formed from each square, for & total of gr* (or fr*)
occurrences. If two treatments are in the same row of & square, they will
occur together in r* of the blocks formed from that square; if they
occur in different rows of a square, they will occur together in A * of
the blocks formed from that square. First associctes occur in the same
row of one square and in different rows of the remaining g-1 squares,

while second associates occur in different rows of &1l g squares. (In

the case of f squares, first associates occur in different rows of all
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f squares, while second associates occur in the same row of just one
8qQuare.) The total numbers of occurrences of pairs of treatments are

therefore equal to the values given for A , ond A 2 ®

The method of construction outlined in Theorem 2.15 is a rather
direct extension of a construction given by Bose and Connor [ 7_7 for
&xoup divisible designs, and of a generalization by Zelen B QZ « There
2xe other general methods of generating PBIB designs, but the ones just
&1iven furnish constructions for most of the known designs of Table IV,
wWhich is sufficient for the purpose of this section. Of the remaining
known designs, some are tabulated by Bose, Clatworthy and Shrikhende end
&re identified in Table IV by & reference to / 6_7 o Others that have
been conatmcte& by miscellaneous methods are listed in Section A.3 of
the Appendix.

It is kmomn for many incomplete block designs and is probably true
for many of those listed in Table IV that two or more solutions exist
Which are distinct under permutation of treatments or tlocks. This is
Certauinly the case for those designs which cen be constructed from either
Of two inequivalent associution schemes. The question of unigqueness of
Qesigns based on the same associstion scheme will not be taken up in
this dissertation.

Proofs of impossibility of designs, which are givenm for severeal parti-
Cular designs in Section A.% of the Appendix, may involve the guestion of
Uniqueness of sssociation schemes. Design #7.3 furnishes a useful example.

The design is in the I.2 series with v = 16 , and when the associetion
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S8cCheme is based on a pair of orthogonul 4 x 4 squares, is easily showmn
to be impossible. Hawever, the design can be congtructed by using a
Aifferent association scheme with the same parameter values, which will
be used as an exsmple in Section 4.1. This shows that different associ-
ation schemes with the same parameter values may have different properties
&and that any proof of impossibility of a PBIB design must cover all asso-
cistion schemes with the appropriate parameter values. It will be showm
in Section 4.2 that for L, designs with n # 4 , the association scheme
defined by n x n squares is unique, so that the squares may be assumed
in any discussion of these designs. This is & necessary step in the proof
©Of impossibility of designs such as #20-2, #30-2, and #93-1l. On the other

hand, design #12-2 in the L_Z series may be shown impossible with an

3
asggociation scheme based on three § x § squares, but another example in

Section 4.1 will Vahow that the scheme is not unique and the existence of
the design remains in doubt.

A singuler incomplete block design is one for which the matrix NN!
is singular, and for PBIB designs with two associate classes, this means
& design for which one of the values 3 and 3,
1 & easy to verify that Lattice designs, designs constructed by the method

is equal to r . It

OFf Theorem 2,15, and designs formed by replicating a desigm of either of
these types, are singular. These designs all have the property that the
blocks may be partitioned into subsets of n treatments which are the
8ets occurring in the rows of the orthogonal squares. It is conjectured
by the author that every singulsr design based on an &ssociation scheme

©f the Lg series has this property and may be formed in ome of the ways
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described. This would be an extension of results proved by Bose and
Connor /77 on the structure of singular group divisible designe. If
this conjecture were proved, a necessary condition for the existence of a
Latin square type design with the parsmeter values stuted in Theorem 2.15
would be the existence of the BIB design described in the theorem. This
would prove the impossibility of designs #7-20 and #12-8 of Table IV,
s8ince the BIB designs involved would iuu frﬁctiona.l values for some of

the parameters r , k and b and are obviously.i.npossihle.

Table II gives parameter values of 20 schemes in the Latin square
8eries, of which 18 are imown and are listed in Table IV. 167 sets of
design parumeters are listed for these schemes, designs are constructed or
indicated for 125, and three are proved impossible by enunmeration methods.
There remain 39 unknown designs.

Table II gives paremeter values of 10 schemes in the negative Latin
Square series, aside from schemes which are also in the Lg series. Five
Of these schemes will be comstructed in Chapter III and are included in
Table IV. 22 sets of design parameters are listed, and designs are con-
Structed for nine. The remaining 1% designs are unknown. The constructed

Schemes and designs of the Lg" ‘geries are believed to be new.

In all, Table IV gives paremeter vulues of 189 designs, of which 134

&re constructed, three are shown to be impossible, and 52 &re unknown,.



III. NEGATIVE LATIN SQUARE TYPE ASSOCIATION SCHEMES

S.l Relastionships between Latin square and negative Latin square

association schemes.

It was pointed out in Section 2.1 that formulas (2.12), developed
for Latin square type (Lg) associstion schemes, give parameter vulues of
& possible new seriees of association schemes when the erguments n , g,
£ were given negative integral values. This new series of "negative
Latin square® type (L;) schemes will be the principal topic of this
Chapter. Five of the achemes will be constructed in Sections 5.2 and 8.3,
&and have already been included in the tables discussed in Chapter II. In
the present section it will be shown that the family resemblance in the
parameter values is not the only thing the new series has in common with
I.8 schemes. A property releted to the characteristic roots of NN' ,
where N 1s the incidence matrix of a design, is shown to be shared by
both series of association schemes and to come close to characterizing

tThem, holding for only one other class of schemes.

Formules (2.185) and (2.14), due to Connor and Clatwortny //7/, for
the multiplicities X g of the characteristic roots of NN' are easily
aged to find general expressions for the A N for any family of designs
Tor which general expressions for the other parameters are available, When
the formulas are applied to Latin squere designs it is found that the ex-

Pressions for o 1 and X 5 ore identical with those for the parameters
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o, and B, given in (2.9). This 1s not true for group divisihle or
txisngular designs exéept in speciel cases, showing that it does not hold
in generul. On the other hand, reference to Table II of the Appendix
shows that about half of the non-group-divisible schemes with v < 100 ,

including all L_ and Lg* schemes, have one of the two following

g
PXxoperties.
° O( = .
Property A 1 n1
Property B: o(1 = ‘2 .

Since o(l-n-o(z = ll+‘2 =v-1, property A or B implies that Oﬁz

is equal to n, or m, respectively. In this section we determine the

1
Class of designs which have either property A or property B .

First it will be shown that the two properties are practically iden-
tical, snd that basically the difference between them is one of notation.
n, and n, denote the numbers of other treatments which are first and
second associates respectively of a treatment in the design. The two
classes of as;ociatea pley dual roles in many respects and nothing more
than & choice of notation is involved in designating one class as the
first. Once the choice is made for a particular design, the values of D,
™, , Ap }\2 , and the p}k are uniquely determined. The designation
of A , ead A , » however, depends in addition on the designation of
the two characteristic roots r - 3, and T -3, of NN' . These are
©Qbteined as the two roots of a quadratic equation whose coefficients are
Tunctions of r , )\1 y A 09 p{z and p]z.2 o Solution of the equation

leads to



86

(5.1) 2 = (A1+A2 + (A2 = A(Y VA
2

where

= o2 _ ol = 2 _ .12 2
Y= 9%, -, A (p3, = Pr) "+ 2(pl,+ P2 )+ 1.

This result for the two 2, is given in [17/ . The expressions for 2,

and 3z, differ only in the sign of the terms involving A , which is a

2
symmetric function of p}.z and pfz end is thus independent of the desig-

nation of associate classes. Connor and Clatworthy denote by 2, the root

o btained by taking the + sign, giving the expressions

(.2) s = 3A,-Y-B)+iA0+Y+VA),

(3.5) 2

o = AN YY)+ 5D, (1+Y -VA) .

This smounts to designating the i¥® characteristic root r - Z, as the
one in which the coefficient of A 1 is positive. It needs to be empha-
81zed that this convention is arbitrary and does not identify =z N with
the it'h associate class. An expression which involves & positive
multiple of >\l and a negative multiple of }\2 is not thereby more
Closely relcted to one than to the other. While it is convenient to be
able to refer to r -~ 2 and r - 2, without ambiguity, this does not
Teveal any intrinsic connection between the designation’ of these two char-
8.cteristic roots and the designation of the two associate classes, and none
Should be {nforred. One choice for the designation of 2, and Z, Seens
to be as good as another, and it is sensible to stick to the choice already

made by Connor and Clatworthy. The values of X 1 and K o, &re then
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uniquely determined. This is the notation used in Tables I to IV of the
Appendix., If the other choice of notation were made for any scheme of

Table II which has property B , it would have property A instead.

It is now possible to clear up a discrepancy in the notation which
has been used in this disgsertation for association schemes of the negative
Latin square (Lg*) series. It was stated at the beginning of this
section that; schemes of the ordinary Latin square (Lg) series have
pProperty A . It 1s stated in section 2.1 that the expressions for the
peremeter values of the I.g and Lg* schemes are identicel, which would
imply that the Lg* schemes &lso have prqperty A . However, the schemes
of this series listed in Tables II, III, and IV have property B . The
pearaneter values of the Lg* schemes are given by the expressions (2.1%2)
usged fot the L‘g schemes provided the parameters m , g, f of those
expressions are taken &s negative integers. PFor both classes, A = n?
and VK = n ; taking n as a negative integer means using the negative
Square root of [\ in the expressions for 3, and 3z, . If this is
done, these schemes have property A . But this is the ol;posite of the
sign convention agreed on in the previous paragreph and used in the tables,
explaining why they appear there with property B . This concludes the
discussion of the nature of properties A and B and we now return to
the problem of finding the class of designs which heave ﬁmpertw A or
property B .

For group divisible designs the values of n, and oki , which are

i
given, for example, in /7 2_7 » are as follows,
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o, n-1 , n, n(m -1) ,

Cxl m-1 ,0(2 a(n - 1) ,

where m and n are positive integers. It is easily verified that these
Adeasigns have property B only if m =1 or n =1, in which cases the
design reduces to a balenced design., They have property A only if m=n ,
A group divisible design with m = n 41is the simplest case L. of a Latin

1
8quare type design.

All pertially balanced designs with two associate clusses and not of
sZyoup divisible type have associution schemes whose paremeter velues may
be determined by the conditions of one of Theorems £.0 and R.1. For all
8chemes of the class defined by Theorem 2.0, n, =1, =0(l = 0(2 » 8O
that both of properties A and B hold. These schemes are defined only
for v of the form v = 4t 4+ 1 ; a scheme of the cless may be comstructed
for each such value of v which is a prime or prime power, for example by

the method to be described in Section 3.2. No schemes of this class are

Imown at present for other values of v .

We now turn to the schemes specified by Theorem 2.1, in which ex-
Pressions for the pareumeter values are given terms of positive integers

@ and t . Some of these expressions are now repeuted for reference.

(2.21) p% =s(t+1),

4

(2.22) piz = (s+ 1)t ,

(2.28) Ay * (8 +1)n, + m)

m ’
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using (2.23) ,

O( =(8+1)n2+sn1 .

s+t+1l

1l

First assume that property A holds. It may be stated

(s +1)n, +&n
(5.4) 2 l :nl »
s+t +1l

leading to
nl(t+ 1) = n2(s +1) .
This is now multiplied by t , followed by application of (2.22) and (2.5) s

= = 2 = 1
ny t(t +1) nz(s + 1)t n, Pfy ¥ B, Ppo »

Therefore,
1 = +
(3.5) Ppp = Bt +1) .
Using (2.24) ,
R = +1) .
(3.6) L s(s +1)

The remaining association scheme parumeters are now easily determined. In

particuler,

2 z(s+lt+s(s+l) =(s+1)(s+t),

= ne
(3.7) n p12+' Py

1

(3.8) n, = piz'i‘ pgz =g(t+1l)+t(t+1) = (t+1)(s+t),

(3.9) v=nl+n2+1=(s+t+1)2: A .
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The notation will now be changed by defining new paremeters n, g, f

as follows.

"
L]
!
-

-

. s+l=g , s
t+1=f¢f , t=f-1,
s+t+l=g+f-1=n .

In terms of these paremeters we have, for example,
v =12,
a, = ga-1),

1l -
Zf(g-1) .
Plo (g - 1)

These and the other expressions in n , g and f are identical with

those given in (2.12) for schemes in the Latin square (Lg) series. There-

fore every scheme specified by Theorem 2.1 which has property A must

have the paremeter values of the Lg series.
Next assume that property B holds. It may be stated

(s +1)n, 4+ &n
(5.10) 2 l=a, ,
s+t +1

leading to
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This is now multiplied by (s +1) , followed by application of (2.22)
end (2.5) : '
- | = 2 =
n, s(s+1) = n, (s +1)t n, PJ, = B, péz .

Therefore,

' 1
3.11 =s8s+1) .
(3.11) gy, = 8(s +1)
Computing other paremeter values as in the case of Property & ,

(3.12) pil = t(t +1) ,

= o2 2
(3.12) n, =pS +pp, t(t+1) +t(s+1l) =t(s+t+2) ,

(3.14) n2=p1 +pl =s(s+1)+s(t+1l)=s(s+t+2 ,

2 12

(3.18)  vIn +n,+1=(s+t +1)°= A .

In order to make use of (2.12) , the notation will now be bused on negative

integers n%* , g* , f*, defined as follows.

€+,

t=-g, t+1

s=-f*, s+1=-f*+1,
B+t +l=-gt-f*_1=%.

In terms of these paremeters we have, for example,
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v = (“ *)2 = (n*)z ]
n, = -g*-a*+ 1) = g@* -1),
Plp = (g +1) = £(g" - 1) .

These and the other expressioas in n* , g* , f* ure of the form of (2.12),
identifying the present series of schemes as the negative Latin sauare
series. Therefores evsry scheme specified by Theorem 2.1 which has property

B must be in the Lg% series.

In some work with Lg* schemes it is convenient to have expressions
for the parameters as functions of positive integers. The letters n ,
g » £ will still be used, but with the following relation to the para-

meters of Theorem 2.1l.

(3.16)

B
"
w
4+
ct
+
[

In this notation the expressions for the parameter values are the

following.
n=g+f+1
2 ’ (g +1)? -c+2 f(s-l'l)T
v=n P =
(3.17) ( ’ ) 1 lee+1) £(£+ 1)
2,=-gn+1 -
* ' [g(g+1) a(f+1)
n, = f(a+ 1) , P, =

2 lets+1) (£ +1)? -g +2]

The classes of association schemes which have been characterized by
properties A and B are not disjoint. When n is odd, say n =2 +1,

the design with parameter values
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v=n® =42 +4a+1, raz-ra-l 22+ a |
P, = S
n1=n2=232+2a, L a?+ a el + a
(3.18) - -
(a2 +a a?+a |
P2=

__a2+ a a2+ a-1

is in the class defined by Theorem 2.0, with t = a°+ a . It is also an
Lg scheme viith g=f=a+1, and an L& scheme with g=f = a ,
There are no other duplications. There are clearly no other Lg or Lg*
scnemes which have the property n1 = n2 of Theorem 2.0 , and for a
scheme with v = n® treutments to be simultaneously en Lg and an Lg*

scheme, it is necessary that n, be simultaneously a multiple of n-1 and

1
n+ 1 . The only possible value less than n? -1 is é(nz-l) s with n

odd.

The results that have been proved in this section will now be stated

as a theorem.

THEOREM 3.1. Let N be the incidence matrix of a partially balanced
incomplete block design with two associate classes. In order for the
miltiplicities & , od A , Of the multiple charscteristic roots of MNN'
to be equal in some order to the numbers a, and n, of treatments in
the associate classes, it is necessury and sufficient that tpe design be

in one of the following classes.

(1) The class specified by Theorem 2.0 ;
(11) fThe <Lg series, Latin square type designs with g constraints,

g 21, or other schemes with the same parameter values: -
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(ii1) The Lg* series, negative Latin square type designs, intro-
duced in Section 2.1, with parameter values given by (3.17) .

For v an odd square there is one possible association scheme with
n, = n, which falls in all three of these classes; otherwise they have

no schemes in common.

The specificétion of Lg* schemes in terms of the negative integers
oy ’ g’ s gl s 18 not very helpful in suggesting posesible ways of con-
structing the schemes. The parameters g and n in the Lg series are
related to a set of g orthogonal n x n squares, and there seems to be
o analog to this for negative integers g and n* . Expressions (3.17)
in terms of positive arguments are a little more promising, at least in
any case in which a complete set of orthogonal syuares exists. This is
more easily described in terms of the finite Buclidean plane geometry
which may be constructed from such a set of squures. -Tais geometry has
n2 points, any two of which determine a line; there are n points on
each line and n + 1 1lines on each point. For an association scheme the
v = n? treatments are identified with the points of the geometry. If
the scheme is of Lg type, each traatment has n, = g(n-1) first asso-
clates, which for a gives point may be taken as the n-1 remaining points
on each of g suitably chosen lines through tae point. This is discussed
in further detail in the following section. If the scheme is of Lg% type,
the value g(a +1) for the number n of first associutes suggests that
the first associates of a particular point might be g suitably chosen
points on each of the n <+ 1 1lines through the given point. It appears

that it would be a difficult combinatorial problem to select these points
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in a way that would satisfy all the reyuirements of partial balance,
although two schemes constructed by another method in the following section
have precisely this geometrical interpretation.l

It should be remarked that mot all Lg schemes are associated with
finite geometries. They may be constructed from sets of g orthogonal
squares which cennot be extended to a complete set of n +1 , and there
are examples of association schemes which have the parameter values of
the Lg series but which correspond to no set of g orthogonal squares.
Some examples of tais kind will be given in Section 4.1, while an exumple
appeared in Section 2.1 of a8 4 x 4 Lat;p square not belonging to a com-
plete orthogonal set, which is equivalent to a set of g = 8 ortaogonal
syuares wﬁich cannot be extended to a set of n +1 . Such squares are
knowa for many values of n and presumably exist for all values of n >3 .
By analogy with this, there is no reason to expect all schemes of the Lg*
series to be related to complete sets of orthogonal squares or to finite
geometries. On the other hand, there is at least the possibility of such
a relation for each of the five schemes of the series which are known at
present. The four which are constructed in tae next section are all based
on finite fields of order n® , and in every case where such a field
exists, the geometry and set of squares elso exists. The one constructed
in Section $.% is for v = 100 treatments, and while no field of this
_ order exists, it has never been proved that the geometiry amnd orthogonal

squares do mot exist.

1. These are schemes #6 and 51, for 16 and 64 treatments respectively.
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3.2 Construction of Negutive Latin Sguare Type Association Schemes

—— — S et 0.

A method is developed in this section for the construction of an
infinite class of assoclation schemes with two or more associate classes.
The method is applied to the construction of four schemes of the negative

Latin square, or Lg* , series.

The method is applicable when the number of treatments is equal to &
power of a prime, v = pd , so that there exists a finite field with v
elements, denoted by the standard notation GF(p9) . The treatments will
be identified with the field elements or marks in any cowienint. order.
It is well known that the multiplicative group of non-zero marks of the
field is cyclic; denote a generét.or of this group by 2z . The merks of
the field may be represented by O, 1, 2z, 2%, ... , 2°% , where
a?q"l' =1 . Each non-zero marx X may be represented unigquely in the
form x =z¥, 0<kx<p%2 . The integer k 8o defined is usually
called the index of x relative to the base 2z and will be denoted by
the symbol imd x , but the term "exponeat® will be used in discussion, in

order to reserve the term "index" for u different use.

Express the order of the multiplicative group as the product of two

integers ¢ and 4,
pl-1 = cd,

and define a field mark e by e = 2° ., Then e is the gemerator of a

subgroup of order d , with elements
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=1, e, 2,.,., edl,

Since the group is cyclic, the subgroup of order d is unique. This sub-
group and its cosets provide a peartition of the mon-zero field marks into

¢ sets, each containing d marks. The ju‘ set contains the marks
s » ezl . &%z s see ed-lgl N

and j may have the values 0, 1, ¢eo , ¢=1 . It will be necessary
to impose the condition that a coset contain with each element its addi-
tive inverse. It 18 easily seen that an equivaleat condition is that the
subgroup have this property, and that this reduces to the requiremeant that
this (multiplicative) subgroup contain the additive inverse of the element
1, denoted by -1 . If the prime p is equal to 2, 1 1is self-
inverse (as is every other mark) and the condition is satisfied for every
subgroup. If p is odd, 1 and -1 are the two solutioas of the

equatioa x?-1 =0 . The corresponding exponents are the solutions of

2 1pd x = 0 mod p&-1 .

The solutiom corresponding to -1 is ind(-l) = 2.2:1 = &d , Weaning

-1 = acd/2 .

A neceusary and sufficieant condition that this be in the subgroup is that
it is an integral power of the generator e = z® , or equivaleatly, that
d 1s an even integer. Accordingly it will be required that the chosen
subgroup be of even order if the order of the field is odd.
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We now define an association relation by suying that a mark 92 is

a jt'h associate of 01 if their difference 02 - 0]. is a mark of the

¥ coget. In tals case, 01 - 02 is in the same coset by the condition
Just imposed, so that the association relation is symmetric. In order to
show that it satisfies the definition of the association relatiom in a

PBIB design it remains to show that condition iii(c) of the definition is

setisfied. Let 01 and 02 be ith associates, so that for some t’o ’

02-01 = e%0zl . The jfh associates of 91 are of the form Ol + otz »

tlso, 1 , ee0, d=1 . The k2 associates of 02 are of the fora

O+ 6", £,20, 1 , ..., d-1. It1is necessary to show that

the number p of marks in the imtersection of these two sets is inde-

i
i%
pendent of the particular pair of 1t associates chosen as Ol and 02 .

This mumber is equal to the number of pairs tl ’ t2 for which

t = 2 .k
01+01zj 02+o 2k |

This reduces to

92—-01=et131‘—.t2z1 ,

(3.19) oetogl = gtigk - gt2g] ’

I I N P S .

Now &3 ¢, (or tz),, runs over all the values 0, 1, ... , d-1
modulo d , t)-t, (or to- to) ruas over the same values, so tae mumber

of solutioms p}k is the same as the number of solutions of the equatiom



This number p1 is independent of the pair of ith  ggsociates chosen
Jk :
t2

as 0, and O, . Moreover, e'2 and -e%® run over the same set of

valueg, 8o we may replace the previous equation by
(5.20) 2 2 o' 2J 4 o¥2 K,

Since this equation is symmetric in j and k , we have p;k - pij .

This is the last condition necessary for the assoclation relation for a
PBIB design with ¢ associate classes. The classes are of equal size,

ni3d, 1=0, 1’.0.’ c-'lo
The standard relations (1.7) hold and reduce in this case to
(5.21) p}kzpik=p§j » 1, 5, K20, 1, ees, c-1.

Multiplying (35.20) by z gives the following equivalent equation, which

must hrave the same number of solutions t’l ’ t2 ’

g+l zotl jj 41 gt2 k1l
This proves the relations
(5.22) p}kzpiii k:O 9 1 9 o0 c-l .

In applying (3.22), the indices may be reduced modulo c if necessary.

The method used for the construction of these schemes has led to a
sotation in which the ¢ associate classes are numbered from 0 to c-1,

rather than inthc usual way from 1 to ¢ . The matrices Pi will be
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numbered in the same way, and in particular their rows and columns will

be indexed from O to c¢-1 . A change of notation would be easy enough,
but would necessitate another definition and more symbols; instead, the
reader is asked to bear with minor inconveniences such as referring to the
0% row of a matrix. These association schemes will be used only in the
present section, and only for the purpose of constructing schemes with two

assoclate classes, for which the usual notation will be resumed.

The addition table of the field will serve as a convenient form for
the association scheme if the first row is arranged with O as the leading
mark and the marks of each coset in adjacent positioms. The associates of
any mark O are read from the row of the table containing @ in the first
colum, The j*‘h associates are tae marks appearing in the colummns corres-

ponding to the j'™ coset.

If @ and §# are any two i associates, then pi'i'k is by defi-

nition equal to the number of treatments which are jth agsociates of O

and k¥ associates of @ . In determining the value of p}k there is

no loss of genmerality in taking # =0 and O any mark of the it coset;

the x%2 associates of # are then the marks of the k™ coset. p}'k

is then equal to the number of marks of the k' coset in the set obtained
by adding © to each of the marks in the j'® coset. With a fixed value
of O , using only one row of the addition table, and assigning all of

the valuss 0, 1, «ee, C-1 to J and k , all the elements of the

K

matrix P:l may be determined for a particular i1 . The eleaents of PO

may be determined by using only the row of the table corresponding to
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9220=1. when tae values p(j)k are obtained, the remaining p?k
values are easily obtained from (3.22) without further use of the addition
table. Equations (3.21) and tae symmetry relation p;'k = pf‘-j may be
used to shorten the work and check the values.

The derivation of tnis association scheme has mede use of & parti-
cular primitive mark 2 and the subgroup of order d generated by the
mark o = 3€., Since this subgroup is unique, any other primitive mark
y will lead to the same subgroup and hence to the same ¢ cosets. The
use of y leads to a notation in which the jth coset is the one con-
t.d.nin[ yj s Trather tham zd . The numbering of the cosets, other than
the ot , Wwhich is the subgroup itself, may thus be different. This
means that the ¢ classes of associates may be numbered differently for
different choices of the primitive mark, but are otherwise identical,

That is, the association scheme is unique except for numbering of the

associate classes,

The results that have been obtained in this section will now be
stated as a theorenm.

THPOREM 3.2: For any number v of treatments of the form v = p9
for p aprims and q a positive integer, identify the treatments with
the marks of the finite field of order p% . Let a divisor d of pi-1
be chosen subject to the requirement that d be even if p 1is odd, and
define . - 22_3—__ . Let a subgroup of order d of the multiplicative
group of the field, and the cosets of the subgroup, be used to partition
the p% - 1 group marks into ¢ disjoint sets, each containing d marks.
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For any primitive field mark z refer to the coset containing zi as
the i*® coset, 120, 1, ..., c-l . Let the set obtained by
adding the field mark @ to oaéh of tne marks of the 1'® coset be de-
fined as the set of 1% associates of @ . This defiues an association

scheme with ¢ associate classes, with n, =d, 1=0, 1, ¢e0 , 01,

i
and satisfying all the conditions of partial balance. The value p}k is
equal to the number of marks of the k'' coset in the set obtained by
adding a fixed mark of the 10 coset to each of the d marks of the
jﬂ‘ coset. The following special relations hold for the p}'k » 1, 3§,
k=0, 1, ¢es, c-1.

1 =
(8.21) Py = ":J ,

5.22 L zpi+l .
(8:22) PR TP L1, kv
For particular values of p9 and d , the scheme is unique except for

numbering of the associate classes .

An example will now be given to illustrate the procedure just des-
cribed. An association scheme which will be useful later is based on
the fleld of order v=pd=24=16, with d=6, ¢ =3 . The field
marks will be represented by the integers 9 , 1, «eo , 15 . Rules
for forming sums and products in this field are easily stated but it will
suffice here to give ths addition and multiplication tables.
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ABDITION TABLE
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The multiplication table is in a cyclic foram besed on the primitive

In the notation of this section,

element 3 as a geaerator.
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z=3,

sc=35=215,

and the subgroup of order d = § consists of themarks 1, 15, 10,
12, 8 . Note: 8ince the order of the field is even, it 1s not necessary
that d be even. The subgroup and its cosets are displayed in the horizon-
tal rows of the following array, which is formed by filling in ome colum
at a time with the entries of the first row of the multiplication table
in order.

Subgroup (O-coset) 1 15 10 12 8
lecoset - $ 2158 7T 11

2-coset § 6 4 9 14

We can now define an associatiom scheme with three associate classes by
saying that two field marks are jta associates, 1=0, 1, 2, if
their difference is a mark of the i-coset. The following is the addition

table rearranged to serve as a table of the association scheme.

O-cosget l-coset 2=coset
0 1 15 10 12 8 § 215 7 1 5§ 6 4 9 14
) O 14 11 15 9 2 &% 12 6 10 4 T 5 8 16
15 14 0 & 8 17 12 18 2 8 4 10 9 11 6 1
10 11 6§ 0 6 2 9 8 7 13 1 156 12 14 3 4
12 13 838 6 0 4 15 14 1 11 7 9 10 8 &5 2
8 8 7T 2 4 O 11 10 § 156 3§ 13 14 12 1 6
3 2 12 9 15 1 0O 1 14 4 8 6 5§ 7 10 18
2 $§ 13 8 14 10 1 015 &6 9 7 4 6 11 12
15 12 2 7 1 6§ 14 16 0 10 6 8 11 9 4 B
7 6 8 13 11 16 -4 § 10 0 12 2 1 8 14 9
1 10 4 1 7 § ‘8 9 6 12 O 14 1% 15§ 2 §
5 4 10 15 9 13 6 7T 8 2 14 0O 8 112 1
6 7 9 12 10 1¢ 5 4 11 1 1% $§ 0 2 15 8
4 5§ 11 14 8 12 7 6 9 8 15 1 2 0 1% 10
"9 8 6 8§ 5 1 10 1 ¢ 14 2 12 15 18 O 7
14 16 1 4 2 6 18 12 8 9 § 11 8 19 7 O
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For use in obtaining the values p?k the coset designation of each
of the J'B associates of treatment 1 will be moted, first for j§ =0 .

oth asgociates of 1: 0 14 11 15 9,

coset designation: - 2 1 1 2.

The frequencies of marks of the oth s first and second cosets are O ,

2 and 2 respectively, giving the values pgo'O, pgl=2, pgz'?..

The remaining pgk are obtained similarly.

18 gssociutes of 1z 2 5 12 6 10 ,

coset designations 1 1 0 2 o0,
0
giving p *2, B, =2, ), =1.

ond agsociates of 13 4 7 5 8 16 ,

coset depignation: g 1 2 0 O,
0 - 0 = 0 =
giving Pog 2, 921‘ 1, Poo 2 . (5.22) gives such results as
0 = 2 R
Po1 "iz P20
end the following set of matrices P, = (p}k) is obtained.
0 2 2 2 21 21 2
Po=221 ,P1=202 ,P23122 .
2 1 2 1 2 2 2 2 0

The set of field marks consisting of O and the multiplicative sub-
gtoup 1, e, o? 9 cee p ed-1 has some of the properties of an addi-
tive group. Addition is simply field addition and is commutative and
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associative, and the condition that the element -1 is included insures
that the set contains with each element its additive inverse. The set is
not necessarily closed under addition. This is the only remaining require-
meat for the set to be an additive abelian group, and will be satiafied
if and only if the set is a finite field. It follows from general pro-
perties of finite fields that this must be a subfield of the original
field of - pl elements, containing p® elements, where s 1is a divisor
of q « This case has been studied rathoi‘ ;xtona:lnly :l.n coﬁﬂoction with
a variety of combinatorial problems; a recent application to inco-pleto
block designs will be mentioned at the end of this section., In 1938
Singer /327 showed ua;t 1t may be used to generats finite projective
geometries, in particular projective planes. In the present setting we
make use instead of the finite Buclidean plane which may be obtained from
the projective. pl;no by designating one line as the line at infinity and
deleting 1t witih the points en it. The nuaber of remaining points is a
square, say n? » Wwhere n is the number of points on a line and in
every known case is a prime power, say n = p® . Two particular associ-
ation schemes will now be discussed for v = n® = p2® treatments. The
first scheme will be showmn to bes equivalent to this geometry and leads to
association sohcioa of the I.‘ series. The second scheme is used in con-
structing the new schemes of the L; series. In the finite field with
p2® = n2 marks, the order of the multiplicative group is

p?-1= (a-1)(n + 1) . The first association scheme, leading to the
finite geometry, uses d =n-1 and c=2n +1 ; in the other scheme the
same values are used in the opposite order.
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An arbitrary treatment O in either schéme will nuw be considered.
An arbitrary pair of distinct i¥h agsociates of @ may be represented
by

0 + %15l y © +o¥241 » Where o'l and e%2 are distiact .

We investigate whether these two treatments are 1B asgociates. This
will be the case if and only if tae difforenco between the field marks
is a mark of the 1B coset.

0 +e'lzd - (0 + o¥2sl) = si(el - o¥2) ,

This expression represents a mark of the it¥h  coset if and only if
o'l - ¢%2 1s an element of the multiplicative subgroup generated by e .
Since o1 and ¢'2 are distinet, their difference is not O .

The additive iaverse of otz is an element of the subgroup, say et"’ ’

giving
ol - o2 = o'l 445 |

This sua will be an element of the subgroup for all choices of e'l # o2
it_and only if the set consisting of O and the subgroup is closed under
addition, or equivalently if and only if the set is a field. Therefore
the it assoclates of an arbitrary treatment 0 are pairwise ith_
associates if and only if the subgroup used in defining the association
scheae is the multiplicative group of a subfield. This roqart is used in
the discussion of both association schemes for a® treatments.

Waile praperties of the Euclidean geomstry are well known and closely
similar constructions of it have been pwblished /5.7 , /27 , enough of
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the derivation of it will be presented here te be ‘uud in describing the
association scheme, This will be useful for comparison with the second
scheme. The marks of the finite field will be identified with the treat-
ments of the desiga as for all of the association schemes treated in this
section; for the present scheme they will also be identified with the
points of the geometrical system. The set counsisting of a treatment and
1ts 1% associates will be identified with the n..points on & line. In
order for this line to be well-defined it is necessary to show that.the
treatments in such a set are pairwise il associates. The subgroup of
order d = n-1 may be taken as the multiplicative group of the subfield
of order n = p® . Therefore, by the previous paragraph, the treatments
are peirwige 1l associates. Since each of them has the-same number

n-1 of 1% assoclates, each of them determines the same set of n marks,
and the line is well-defined. Every mark of the field must lie in such a
set of n marks related as 1%8  associates and defined as a line. This
implies that the n? points of the system may be divided into m disjoint
sets, each containing the n points of a line determined by the itb
association relation. §8ince the lines have no points in common, they will
be called parallel lines and will be described for convenience as lines

in the 1%® direction. Corresponding to the n + 1 associate classes
there are n +1 systems of parallel lines in as many different directions,
euch system containing .n i:lnes of n poinis each and oﬁ:hauating the

set of nz. polnts.

8ince any two distinct treatments are 1% associates for some 1 ?
any two distinct points of the geometrical system deteraine a unique line.



109

This implies that the number of pointq common to two distinct lines can-
not be as large as 2 , and must be either O or 1 . The n points
of a line in direction 1 -must be distributed over the n.  1lines of the
set of lines in direction j inm such a way that not more than one point
fells on each line. Singe the nmbqr of points is equal to the number of
lines, this means that a lime of direction i intersects each line of
direction j in just one point , 1 Fie. This completes the proof of
the relevant propértioe of the geometricel system, showing that it is
indeed a finite Buclidean geometry, and furnishing a convenient m of

computing the paremeter values of the association scheme.

The parameter o, has the geowstrical interpretation of the number
of additional points on the line through an initial point in the 1%
direction, and it is clear from the geometry or general properties of the
association schemes under discussion that n; =n -1 for all i . The
parameter p}k may be defined by means of any two points O and §#
joined by a 1ine of the 1% direction. p}k 18 equal to the number of
points other than possibly O and @ themselves, common to the line
through O in direction j and the line through @ in direction k .
It is clear from geometrical reasoning that

Pii'n'zo

i = = =
(3.28)  py, pi‘ pii 0 whea 1#3j,
p}k‘!'l when 1, jJ, k are all distinct.

In view of the inown relations among the p}k » particularly for the
class of association schemes of the present section, the three preceding

—



110

statements are far from independent. Straightforward use of (1.6) and
(3.21) shows that each of the first two implies the other, while the third
implies both of the first two. Finally, the firét two may be shown to im
imply the geometric structure and hence the third statement.

In the second schems a subgroup of order d=n +1=p%+1 of the
field multiplicative group is used. This subgroup and its cosets deter-
mine ¢ = n-1 associate classes. The zero element of the field and the
subgroup form a set of n + 2 = p® + 2 marks which will not be a sub-
field, and the set of treatments consisting of an element and its gt
associates will accordingly mot be pairwise il associates. It is
therefore -not possible to use association relations in this case to define
lines in a plane geometry, and there is no obwvious way to compute the
pg'k values. However, direct éunputation gives the values fairly easily
in a particular case. The example already given for n? = 16 is an
association scheme of this class and illnetmt.os‘the computation involved.

The values for several other cases will be given later.

P
The association schemes constructed by Theorem 5.2 have in general
more than two assoclate classes. In most cases where schemes with two
classes are derived, it will be by the device of combining classes, that
is, by forming a set (:l of ohe or more of the associate classes of the
original scheme, and defining two treatments to be firat associates in
the new scheme if and only if they are associates of one of the clesses
of the set C. . An association scheme formed in this way does not

1
necessarily satisfy the conditions of partial balance. Conditions that -
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it will do so, in a.- more general setting, are derived in the next theo-
rem. It will then be easy to show that the schemes related to the

Buclidean plane lead to a wide class of scaemes of the I.8 series. The
second family of schemes is more difficult to deal with but will be used

to construct several schemes of the L: series.

THEOREM 5.5. Let an association scheme with m classes of associ-
ates be formed from a scheme with a larger number of classes by parti-
tioning the classes of the original scheme into m disjolint sets c1 »
ses» C , with two treatments defined as ok W associates in the new
scheme if in the originel scheme they are associates of ome of the classes
of set Cy . The notation Cg will be used interchangeably for- the set
of associate classes and for the set of indices by which they are identi-
fied. Parameter values will be denoted by n, , p}k in the original
scheme and by a, , p(;y in the new scheme. Then

(5.24) ny = Z n,
iec,

and a necessary and suff:lcignt. condition that the new scheme satisfy the

conditions of partial balance is

(5.25) p;; = ;: Zp;'k for al11 A\ , P » Y » and
€

Cs %€, uniformly for each 1€ ( R

PROOF: The associetion matrices of the original scheme will be
denoted by Bi o It may be recalled that the B:l are sympetric matrices
of O's and 1's whose sum is the matrix with O's on the main diagonal

and 1's elsewhere, and that they satisfy relation (1.16) ,
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= i =
BB gjknjx i—; P (BB .

For fixed i , the matrix wita p;k in the j , k poeitiom will be

denoted as usual by Pi o The definition of the new scheme implies that
its association matrices, demoted by A, , *=1, ..., m must have

the form

(5.26) A= Z B .
1eC,

It follows from Theorems 1.1 end 1.2 that in order for the mew scheme to
satisfy the conditions of partial balence, it ie necessery end sufficient
that the association matrices A, satisfy (1.16), that is, that there
exist constants n, and p:‘,, such that

m
- - o
(3.27) A A, Sa b, = 6,,n’1+§ Py A o

Since B, has the interpretetion of the uniform row totel of Ay and

ni is the uniform row total of B1 ’

is satisfied. Using (5.26), the product Ag A, may be written

(3.28)  Agq (Z B)( S Bk)-ZZ BB,
Jj€C, keC, Je G Ke CY

Since B Bj = jBk » 1t is clesar at this stege that Ap - Ay‘p » and

only AgA y will be discussed. Using (1.16) , (3.28) may be written

(5.29) A A => 3 5.3 I+ Zp B

JGC’ KQCy
Since the sets C, are disjoint, j and k can be equal in this sum-

it is clear from (35.26) that (3.24)

mation only if F = Y , in which case the first term in the parentheses

leads to ny I . By (8.24) , this is equal to nPI and (8.29) may

be written “Co
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(8:30)  hoa, = §mgl + 53 3 PlicBy -

J€Cp keCy i
This expression for the product A p Y will now be compered with the

following, obtained from (85.27) when A, is written in the form given

(5.81) g -8, I+Zp”Z B,
ieC,
Since the B1 and the identity matrix I are linearly independent,

(3.30) reduces to the form of (3.51) if and only if the coefficients of
By in the two expressions are equal for a1l i . The coefficient of Bi
in (3.51) recduces to the single term p?Y , and the necessary &nd
sufficient condition is identical with (5.25) , completing the proof of

Theorem 3.3,

Thus in order for the matrices A, defined by (8.26) to multiply

in accordance with (1.16), it is necessery and sufficient that each p:Y
value be equal to the mjn of the elements in the submetrix of Pi deter-
mined by the row indices j belonging to the set c' and the column
indices k belonging to the set Cy , where 1 1is a member of set C, .
The crucial condition is that the sume total be obteined from every Pi
matrix for which 1 €C . Because of the relations (1.6) emd (1.7) satis-
fied by the parameter velues of every PBIB design, it is not necessary to

verify (8.25) for all of the p‘;Y . In the special case of & scheme with

two associate clusses, the values p‘}l and pfl » with ny and n, , ere
sufficient to determine the remaining pjk values, and the following

corollary results.
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COROLLARY 8.8, If m =2 in Theorem 3Z.5, condition (3.25) may be

replaced by the simpler condition

(3.%2) prl =Z Z p,ji.k for X =1 or 2 and uniformly
JeC, KEC, for each 1€C 1 .

If the new scheme has m = 2 classes, set 02 is the complement of set

C1 » and the association relation is most simply defined by saying that

two treatments are first essocictes in the new scheme if in the original

scheme they ere associates of one of the classes of set 01

treatments are second associates otherwise. In the applicetion of the

s and the two

corollery, the same symmetric submatrix, determimed by the rows emd colums
whose indices are in set (J1 s 18 used in each of the original Pi
matrices. The necessary and sufficient condition that the new scheme

satisfy the conditions of partial balance is that the sum of &ll the ele-

ments of the subtmatrix be the same for all P, with i€cl , the common

i
value being taken &s pil for the new scheme, and the same for all P:I.
with 1 ¢ Cl » the common velue being taken &as p.‘fl for the new scheme.

Equations (3.22) show that for the schemes with n + 1 classes,
obteined frpn the Buclidean plene, esch P:l matrix may be obtained by &
cyclic permutation of rows and colums of the matrix P, , .which is an
(n +1) x (n + 1) matrix with the following form.
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n-2 0 0 [ ) [ ] ) 0 0 '

o 1 1 . + . 0 1

LO 1 1 . . . 1 O

-

In the matrix Pi » the diasgonel element P:i‘..i is equal to p-2 , the
remaining entries in row i and column i are O's , end the remaining
diagonal entries are O's . Application of Corollary 3.5 to find the
valueg of ph and pfl requires finding the sum of the elements of the
symmetric sutmatrix of each P

i

indices are in class Cl « Suppose that g classes of the original scheme

are to be combined into set cl ; then the symmetric submatrix will be of

determined by the rows and columns whose

order g x g + If the diagonal element n-2 is not in the subtmatrix, the
g(g-1) off-diagonal elements will ell be 1's ; if the diagonal element
n-2 is in the submatrix, them (g-1)(g-2) off-diagonel elements will be
1's and other elements will be O's . This means that the sum is

n-2 + (g-1)(g-2) = 32-5g+ n whenever the index i of the matrix P:l is
in the cless C, vhich determines the submatrix, and the sum is g(g-1)
for all Pi with 1 ¢ 01 « But thie is precisely the requirement of
Corollary 3.5, proving that the association scheme defined by teking two
treatments as first sssociates if they are essociates of one of the g
classes of set C. of the original, Fuclidean geometry, scheme, satisfies

1
the conditions of partial balence with two assoclate classes. There was
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no reatriction on the value of g . The expressions obteined for
n , p}_l and pfl are identical with those derived in Section 2.1 for

Latin square type schemes with g constraints,

Some of the special features of the association schemes constructed
by Theorem 3.2 mey be used to simplify the application of Theorem 5.% and
Corollary Z.5. This will be discussed in the case of Corollary 5.3 for
the present purpose of constructing schemes with two associate classes.
In the schemes of Theorem 5.2, the ¢ associate classes all have equal

nunbers of treatments n, = d , so that if first essocietes are defined in

i
the new scheme by a set cl of g of the original sssoclate classes, the

number of treatments in the first &ssoclate class of the new scheme is

n1 = gd , regardless of the particuler set of g classes chosen for set

cl « Suppose that a set cl is known to satisfy conditions (5.32) of

Corollary 5.5; define a new set cl' ty edding 1 to each index in the

set C that 1is,

18
1+1€C," if end only if 14 € c,

1 +1 48 reduced modulo ¢ if necessary. The following equalities are

)

obtained by successive use of (5.22), of the definitionm of set C, ,

and of a change of notation in the indices of summation.

ij Z Z +1.k+1 Z Z%”ﬁ,ku ’Z Z'P%k .
KEC,

JEC. KEC, Je(, JFEC, knec, JEC,
Since the first sum is equal to the same value pll uniformly for iec

end oqual to p%, umiformly for 1fC, , the lest sum will be equal to . .

9
ph uniformly for 16(‘.1' and equal to pla.l uniformly for 1;01 .
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Thus the set cl' satisfies conditions (3.32) of Corollary 3.3, giving

the sume values for the parameters n, , pil and pfl » and hence for
the remaining association scheme parameters as well, as ere given by the
set C, . The operation of incressing by unity the index of each associ-
ate cless in (.3:l may evidently be repeated as often as desired, giving
in each instence a scheme equivalent to that obtained with cl o A suffi-
cient number of repetitions will result in a set whici; contains the 0%

cless of assoclates.

Therefore, in applicetion of Corollery 3.5 to scheme constructed by
Theorem 3.2, it may be assumed without loss of generality that the set cl
of classes which are combined to form the class of first associates in the
new scheme contains the O} class of associates in the original scheme.
The submatrix determined by set cy
element of each P, matrix. This fact may be used to reduce the amount

i
of empiricel search necesssry to find e suitsble set C although it was

1 »
not needed in discussion of the schemes related to the finite geometry.

will then coatain the leading diagonal

The search muy also be simplified if the parameter values of the possibdle
new scheme are knomm. In the second family of schemes discussed for

v = n? treutments, each sssociate cless has d =n +1 treutments, snd
the only schemes which can be formed by combining clesses sare those in
which n, is a multiple of n + 1 . . Inspection of Table II of the Appen-
dix shows that most of the schemes with appropriate velues of v and nl
ere in the L * series, and thet in this case the number of classes to be

['4

combined in set cl s which is equal to the order of the symmetric sub-

matrices of the Pi matrices specified in Corollary 3.8, is given by the
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Jumerical value of the subscript g . For a particular possible scheme,
the values of p}; end pZ, may also be obtsined from Table II, The
sur of the elements of the submatrix of Po must be equal to ph ) 8
condition which is eusily checked for any subtmatrix and mey eliminate

nuny of the possible sutmatrices.

Corollary 3.5 and the remarks which have just been made will now be
uged to attempt to construct schemes with two associate classes from the
second femily of schemes constructed by Theorem 3.2 for v = n? = po8
treatments. For v = 9 , the scheme of this family has only two classes
of associates and there is no need to combine classes. The scheme is
ligted in Table II as #2, and is also in the I.8 series. For v =16,
the scheme has three associete clﬁ;us of 6 treatments each ahd has been

given a«s an example. The Pi matrices are repeated here for reference.

022 221 212
p =|l221|, P, =|202|, P . =|122] .
°© le12 1 J122 2 la2z20

The only scheme of Table II in which o, is a multiple of 5§ is scheme

#6, in which n, = § , If this scheme is to be formed by combining

1

assoclate classes, the set C. must consist of a single associate class

1

th

and will be taken as the O class. The submetrix in this case is the

single element pé'o » and isequal to O for 1 =0, and 2 for
1=1 or 2. These are the required values for pil and pfl in
scheme #6, proving that the scheme can be constructed by this method.
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Table I1 includes no association schemes for v = 25 treatments

which cennot be constructed by other methods. Scheme #22 is an L_z*
scheme but the number of treatments is 36 , which is not a prime power,

and the present method is not applicable.

The scheme constructed by Theorem §.2 with v = 49 treatments has
six assoclate classes, each contuining 8 treatments. The schemes of
Table II with v = 49 and n, a multiple of 8 are schemes #851 snd

#55. The latter is a knows L, scheme. Scheme #51 is an L‘_’_z scheme

with pi‘l =8 . The set cl must therefore determine a symmetric 2 x 2
submatrix which may be assumed to contain the leading diagonal element

of each P, matrix, and the sum of the four elements of the submatrix

i

of PO must be 3 . Matrix PO » computed by the methods already illus-

trated in the example with v = 16 , 1is as follows.

(002212
022202
P.={221012 .
0 |220220

101222
222020

If the elements of & symmetric matrix are integers and their sum is odd,

it is clear that a disgonal element must be odd. The only odd diagonal
element of P 1is pgz= 1, which mst b; ;n the 2 x 2 submatrix.
This determines & submetrix with the form 2 1 , which has sum S5 instead
of the required 35 . It is therefore impossible to choose a set cl of
assoclate classes which satisfies all the conditioms of Corollary 5.%, amd

scheme #31 cannot be constructed by the method of this section.
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The next scheme constructed by Theorem 3.2 has v = 64 treatments,
with seven associate clesses, each conteining 9 treatments-. The schemes
of Table II with v = 64 ‘and nl a pultiple of 9 are schemes #48 and
#51.

Scheme #48 is an L_* scheme with P, =2 . The set C, therefore
must determine a symmetric 2 x 2 submatrix containing the leading dia-
&onal element of each P1 matrix, and the sum of the four elements of
the submetrix of Po must be 2. The matrices Pi are listed below and
it is easily verified that no submatrix of Po satisfies these require-
ments. Therefore scheme #48 cannot be conat.mcted by the method of this

section.

Scheme #51 is an I._s* scheme with p}_l =10 and p%l =12 . The

Set C, must contein three associate clesses whose indices determine a
S x 5§ submatrix of each of the seven P:I. natrices. The sum of the

elements of the submatrix must be 10 or 12 , according as the index
1 of the matrix is or is not the index of a claess in the set C, « The

8even matrices will now be listed.
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5 satisfies the requirements and leads to a construction of scheme

It is not difficult to verify that the set C

B §

#51.

The association

The seven 35 x 8 submatrices are the following.

scheme is given in section A.4 of the Appendix.
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The next scheme constructed by Theorem 3,2 has v = 81 treutaments,
with eight associate classes, each containing 10 treatments. The schemes
of Teble II with v = 81 and B, a multiple of 10 are schemes #68 and

#70 in the L" series, #75, a known scheme of the L series which is

also in the L; series, and #72, in neither series.

Scheme #68 is an L_; scheme with pil =1 end pi.l =6 . The set

C, must contain two of the eight associcte classes and determine a 2 x 2

1

submatrix of each of the eight P, matrices; the sum of the elements of

i
the submatrix must be equal to 1 if 1 is the index of either cless in

set C and equal to €6 if 1 ias any of the six other imdices. The

1 ’

usual assumption that cl contains the oY associate class means that

the submatrix of each Pi matrix includes the leading diagonal elemeant
Pgo ’
sutmatrices have the required totals, showing that the conmstruction of

and the set C; = (0, 4) 1s quickly determined. The 2 x 2
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the scheme is poseible. The eight 8 x 8 P, matrices appesr below,
with the 2 x 2 submatrices. The associsation scﬁemo is given in Section
A.4 of the Appendix.

Scheme #70 is an L} scheme with pl =9 and pf) =12 . The
set c1 must contain three of the eight essociate clessees and determine
a 3x 8 sulmatrix of each of the eight Pi matrices; the sun of the
elenents of the submatrix must be equal to 9 if 1 is the index of any
of the three classes in set c1 » and equal to 12 if i 1is any of
the five other indices. The set 01 (0, 1, 6) is found to be
satisfactory. The 8 x 3 submatrices sppear below and the association

scheme appears in Section A.4 of the Appendix.
No construction has been found for scheme #72.

The P1 matrices for the scheme with 81 treatments and eight

associate claaseé are the following.
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The 2 x 2 sulmatrices used in the comstruction of scheme #68

&re the following.
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The 5 x & submatrices used in the construction of scheme §70 are

the following,

o

H

e

]

o ¢

e

i=8:

5

i=7:

o

2

0

2

i=2:
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~ Theorem 8.2 is not-applicable to &ny schemes with v = 100 , since
there is no finite field of order 100 .

The schemes for which a comstruction by the method of this section
has been discussed thus far have all been in the L and L: series.
It has been shown that no more schemes of these series with v < 100 can
be constructed in this way. Most of the suthor's attempts to construct
new schemes for which v is & prime power but which are not in these
series have been inconclusive. When the number of treatments' v = p is
of the form 4t +1 , Theorem 3.2 may be used directly with d = 2¢ and
c =2 to form an association’ scheme with two classes. When q =1 this
is the known scheme of the cyclic series in which the first associates of
0 are the quadratic residues of p ; when q is even, the scheme is in
the I.‘- meries. For odd q 2 3 the scheme is not of cyclic or Latin
square type, but the first example is for v = 125. This example illus-
trates that the methods of Theorems 5.2 and 3.5 are not limited to the
cyclic, Letin square and negative Latin square association cchemé, but
it does mot seem likely that they will provi&e a;iutioha to any more

schemes within the ramge of Table II.

It was pointed out in Section 3.1 that if the Euclidean plane geo-

metry with n? points and the Lg" association scheme with n? treat-

ments both exist, the number of first assoclates of a treatment of

n

1
the scheme is equal to |gfn + 1) , where (a +1) 1is equal to the number
of lines through a point of the geometry and the numerical value of the

negative integer g is used. It could therefore be conjectured that for
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some correspondence between the treatments of the scheme and the points
of the geometry, the first associetes of & given treatment would corres-
pond to Ig‘ points on each of the . (n + 1) 1lines through the given point.
The treatments of the four Lg* schemes which have been comstructed in
this section are already identified with the elements of & finite field,
which in turn are identified with the points of the Euclidean plane‘ geo-
net:y,‘giving & very natursl one-to-one eo:rospondonco between treatments
and points. It will be shown that with this correspondence, schemes #6

and #651 have the geometric property described.

It will be convenieat to discuss both the scheme and the geometry in
terms of the finite field. For any element @ , the first associetes of
@ in the Lé' scheme are obtained by adding © to each of the first
associates of the additive identity O . The points of the line through-
@ 1in direction i are obtained by adding © to each of the points of
the line in direétion i through O . There is therefore a one-to-one
correspondence between the first associates of O which lie on the line
through O in direction i , and the first associates of © which lie
on the line through © in direction i . The distribution of the first
associates of any treatment © in the Lé* scheme over-the n +1 1lines
through @ in the plane geometry is therefore the same for any element
@ as it is for the element O and it ie sufficient to consider the
element O . The first associates of 0O and the remaining points on
any line through O all correspond to non-zero field elemente and will
be replaced for the rest of the discussion by thelr indices or exponents

with respect to & primitive element of the field.



The remaining points on the line through O in direction 1 have
exponents which are congruent to i modulo n +1 . The firat associates
of 0O in the L: scheme have the ]g‘n + 1) exponents obtained by com-
bining the sets of (n + 1) exponents which are congruent to j modulo
n-1 , for |g| suitably chosen values of § o A typicel set of this kind
will be considered and may be written

J+U(n-1), u:o’il,.o.’ o .
Suppose that two exponents in this set are congruent modulo n+1 .

jt ul(n-l) =i+ uz(n-l) mod (n +1) ,

ul(n-l) uz(n-l) mod(n + 1) .

Only the case in which n is even will be considered. In this case, n-1
is prime to n +1 and may be cencelled; since v and u2 ere both
between O and n this gives the result lﬁ = uz s 8howing that no two
of the exponents of the set fall into the same residue class modulo n+1,
and that the n + 1 points corresponding to the set lie one eaeh oa the
n +1 1lines through O . Since the same is true for each of the |gl| sets
of first associates of 0 , exactly |g| of the first associates of 0
must lie on each of the n-+ 1 1lines through O . PFinally, this shows
that if an I.g* association scheme with n® treatments is obtained by
the method of this section, and if n is even (meaning that n is a
power of 2), then the |g{n + 1) first associates of any treatment ©
correspond to |g| points on each of the n + 1 1lines through the point

corresponding to @ in the finite Euclidean plane geometry with n® points.
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In the cese of scheme #6, n =4 and g=-1, and the 5 first
associateés of any treatment O 1ie one each on the five lines through
the point 0 . In the case of scheme #51, n =8 and g = -5, and the
27 first associates of any treatment © 1lie three each on the nine lines

through o .

If n is odd, it is etill true that the distribution of the first
associates of a treatment O over the n + 1 1lines through the corres-
ponding point is the seme for all choices of 8 , but the distribution
is not necessarily uniform. It proves not to be uniform for the schemes

constructed for 81 treatmeats.

The results of Theorem 5.2 have also been found by D. A. Sprott and
were published in two papers /33//34/. The second of these, which is
the only one deeling with partially balanced designs, appeared in 1955,
efter the present work had been completed. The first article appeered in
1954 but did not come to this author's attention until after the second
had been published. Both articles are on the construction of incomplete
block designs from finite fields and make use of sets of field elements
equivalent to the subgroup used in Theorem 35.2. The designs described in
sections 4 and § of the second paper have associlation schemes which are
1dentical with those constructed in Theorem 3.2. Theorem 3.2 was moti-
vated by the desire for a class of association schemes for v = 2% treat-
meats in which the numbers of treatments in the associate classes are
multiples of n+ 1 , and the method of proof was originally sugzested
by some work published by Bose in 1942 /5 /. The author 1s indebted to
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Sprott's papers, however, for the realization taet the final statement of
Theorem 3.2 was necessary in the proof that schemes such as #31 and #48
cannot be comstructed by the present methods. Sprott's work is differeat
from that appearing here in many cietails. The preseat diacnaeion is
limnited to ugdciation schemes, while Sprott comstructs actual desigas,
including some classes of them whose aaaoc;iaﬁon schemes are not related
to Theorem 5.2, He treats a field es an instance of a module and bases
his construction on a general theorem of Bose and Nair /8 7 on the con-
struction of partially bslanced designs from a mMe. The proof of
Theorem 5.2, dealing directly with properties of the finite field, is
self-contained, may be simpler in some respects, and is certainly different
in its arrangement. Sprott does not consider combining associate classes
to form designs with fewer classes, and the only designs of the I.g or
Lg* series obtained ere those with v=pl=4t+1, d=2t and c =2

In particular, the new schemes #6, #51, #68 and #70 are not obtained.
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3.3 Construction of a Negative Latin Square Type Scheme with 100
Treatments by Enumeration.

It is possible to solve some combinatorial problems by making syste-
matic trials of possible solutions until a solution is found or all
possibilities are shown to fail., This method entails too much compu-
tation to be usable in the' construction of most incomplete block designs
or association schemes, but it will be used in this section to construct
the Lg* scheme waich appears in Table II as #34. The parameter values

of the scheme are

v=10,
0o 2 6 16
=22, P = , P = .
1 1 a1 s6 2 lis 0
n2=77,

Since no Galois field of order 100 exists, the methed of Section 3.2
cannot be applied here. The scheme would seem to have some special interest
because of its possible connection with the unsolved question of the
existence of ortmogonal 10 x 10 Leavin squares. The reason this problem
is amenuble to empirical study is the parameter value pll.l =0, which

pernits use of Theoream 2.6,

In this section the symbol Uc will be used to demote &8 ¢ x d
4

d
matrix all of whose elements are 1l's . The subscripts will sometimes be
omitted when the order is clear from the context. The orders of matrices
and matrix products occurring in certain equations will be indicated in

parenthetic statements which appear to the right of the equations.
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If scheme #94 exists, let an arbitrary treutment be designated as
treutment O , and its 22' first associates numbered from 1 to 22 . Then
the matrix Al of first associates mey be partitioned in the form of
(2.58.), with submatrix R a zero matrix.

0'100.1'0.000
w—'———-—-—-v——'—-—-——-' —————— -
l. I
. |
) 0 | s 22 rows ,
i
, I

(5.83) A=\—l| ....... e e e~ - ——— e ——

1 ol i

.! |
o ! St ! T 77 rows .
o | ]
| |
19, ! i |

Theorem 2.6 may be applied to show tast submatrix S is the incidence

matrix of a BIB design with parameter values
(5.84) wv=22, r=21, k=6, b=77, A=5,

Moreover, each row of the 77 x 77 matrix S'S must have at least

p%z = 16 off-diagonal elements equal to O . By (2.42) and (2.41) tae
60 remeining off-diagonal elements of each row of S'S must have sum
k(r-1) = 6(20) = 120 and sum of sguares k(r-l) + k(k-1)(A-1) =

6(20) + 6(5)(4) = 240 . The variance of this set of 60 numbers is then
.2_3 - (l%%)z = 0, showing that they must all be equal to their mean
value 2 « Thus each row of S'S contains a 6 on the main diagonal, 16
O's and 60 2's . This means that each block in the balanced design

has no treatments in common with 16 of the other blocks, and exactly 2
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treatments in common with each of tie remaining 603 blocks. The
existence of such a BIB degigm i therefore a necessary condition for the

existence of scheme #94.1'

As pointed out in the discussion accompanying (2.83), each row of
submatrix T contains 1's in pfz = 16 off-diagonal positions. By
statement (b) of Lemma 2.1, S'S + T% must aave entries pil =0 in
these positions and entries pfl = 6 in tne other 60 off-diagonal
positions of eacn row. Since T° hes non-negative elements, the 60
2's 1in each row of S'S must fall in these same 60 positions. By
difference, the element of T2 in each of these positions must be a 4 .

This determines the following structure for ™ .
T =16 T + 0T + 4(U-I-T) , (77 x 77 matrices) .

Lemma 2.2 may now be applied to show that T is the matrix Al of first
assoclates in an association scheme with two classes of associates and

the parameter values

=60, pt. =0, pt =4,

n, = 16 , n,

This is scheme #64 of Table II . Thus the existence of scheme #64 is

snother necessary gondition for the existence of scheme #94.1

Either of submatrices S or T would presumably be easier to inves-

tigate than the 100 x 100 matrix, and it will be shown below that the

12 In other cases in Table II wnere Theorem 2.6 applies, either matrix
T¢ 1is not determined or T is not an association metrix of any scheme
with two classes.
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balanced design corresponding to S can actually be constructed. It is
therefore important to show taat the existence of § is sufficient as well
as necessary for the existence of scheme #94. This will now be done.

Let S be the incidence matrix of & BIB design with parameter values

(3.84)., This implies that SS!' has the form
(3.35) SS* =16 I +50 , (22 x 22 matrices) .

Also, let S have the property that each column has inner product O
with each of 16 other columms. This was shown to imply that it has inner

2 with each of the 60 remaining columns. Then S'S nas the form

(77 x 77 matrices) ,

(8.56) S's=61+ 0'81 + 282 ’

where B2 is a symmetric matrix with 0's on the main diagonal, 60

1*s in each row, and O's elsewhere, and Bl is defined by

(8.37) Bl SU-I-B, (77 x 77 matrices) .

The following useful equations are easily derived from the fact that S

has uniform row totals 21 and unitorm column totals € .

3.38 SU =210 .
( ) 77,d 22,4

(3.39) Uc’228 =0 Uc,?? .

(S'S)2 will now be computed in two ways. From (3.36) ,

(3.40) (S'8)® = 36 I +24B_ + 4B.° .
2 2
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The next chain of equalities uses (3.35), (5.36), (3.39) and (3.37) in

the order stated.

(8'8)% = s1(ss')s
= §1{16 I + SU)S = 165'S + 55'US
= 16(6 I + 2B,) + 180 U
2961+ 528,+ 180(I + B, +B,) ,

(5.41) (8's)2 =276 1 + 1808, + 2128, .

Solution of (5.40) and (8.41) for 322 gives

2 -
By” = 60 I +45B, +47B, .

1

Applicatioa of Lemma 2.2, with the designations of first and second
associates interchanged, shows that 32 is the incidence matrix of second
assoclates in scheme #64. An incidental result is that S' is the inci-
dence matrix of a PBIB design with this association scheme. This is the
dual of the BIB design represented by S and is obtained by inter-

changing the roles of treatments and blocks.

So far, it has been shown that tne existence of S with the given
properties implies the existence of a matrix with the properties required
for T, defined by T = B, . It remains to show that if 8§ and T 80
defined are used as the submatrices in (3.%3), then Al will meet the
requirements for the uaoc;qtion mstrix of scheme #94. Using A.l in

this form, and squaring according to the rule for partitioned matrices,
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-22:0---0|6...6 o
DR
Lousss | sB 22 rows ,
ol :
! |
(3.42) e 20 _____ R
. Al 6|
ol :
o' [} [ ] 2 .
. B,S | §'s +B,° 77 rows
|
g | |
- ]

The forms of the submatrices of A12 will be computed separately.
(3.43) U+8S' =0 +186I+SU =221 +6(U-1), (22x22.

The value of .‘?oB1 may be obtained by solving (3.36) amd (85.57) for Bl .

then multiplying by S .

8!8=GI+2(0-I-BI) .

31=21+u-}s's, (77 x 77 matrices) .
SBI = 28 + SU - 4SS'S (22 x 77 matrices.)

= 284210 - (16 I + SU)8
= 28 + 210 - 85 - 180
(8.44) SB, = 6(0 - 8) .

The value of 312 1s easily obtained from (1.16), recelling that B

is the incidence matrix of first associates in scheme #64. Then
58 +312 =(61+2B) + (161 +4B) =221 +6B, ,

(5.45) S's + 312 =221+6(0-I-B), (77 x 77 matrices) .
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Using equations (3.43), (5.44), (3.45), equation (8.42) may be written

112=221+6(U-I-A1)=22I+6L2, (100 x 100) ,

and by Lemma 2.2, Al and Az are the assoclation matrices of scheame
#94. Thie completes the proof that the existence of the BIB design
implies the existence of scheme #94., It will also furnish an easy way

of constructing the scheme from the design.

The existence of scheme #94 is therefore equivalent to the existence
of the specified BIB design. This does not mean that the number of dis-
tinct designs is equal to the number of schemes. For any matrix Al in
scheme §34, there are 100 possible choices of the treatment to be desig-
nated a8 treatment 0 , each leading to a differeat set of rows and
columns in the subtmatrix S . These determine BIB designs which have
the same parsmeter values, but which are nmot necessarily all equivxleat
under persmutation of treatments and blocks. ﬂonver, any given matrix 8
determines the rest of matrix ‘1 uniquely, showing that the number of
solutions of Al is at most equal to the number of solutions of S .

It will appear below that there are at most 4 solutionms for § , 8o
that if the solution for scheme §94 is not unique, there are certainly no
more than 4 solutions distinct under permututions of treatments. The
question of unigueness might be of interest if a connection is found

between scheme #94 and sets of orthogonal 10 x 10 Latin squares.

The structure of S will now be taken up. S is the incidence
matrix of a BIB design with 77 blocks, each conteining € of treat-
Repts 1, 2, ¢se , 22 . Each treatment occurs 21 times and each
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pair of treataents occurs together in the samé block 5§ times. The -
design satisfies the additional requirement that for any choice of amn
initial block, there are 1€ blocks which have no treatments in common
with the initial block; this was shown to imply that each of the €0
remaining ilockz has exactly 2 treatments in common with the initisl
block. There is no loss of generality in assigning numbers 1, 2, 35,
4, 5, 6 to the treatments in the initial block, then considering
separately the set of 60 blocks each of which contains 2 of the treat-
ments 1-68 and the set of 1€ blocks which contaia only treatments 7-22.
Denote these by Set I and Set II respectively. In what follows the number
of special cases will be reduced grestly by showing that certain cases

are equivalent under changes of notation, that is, umder persutation of
treatments and/or permutation of blocks. The reader may verify that the
only treatments or blocks involved in any of these permutations are those
which play symmetrical roles in the pert of the desiga which has been
previously specified. At the present stege this permits any permutation
of treatments 1-6 among themselves and any permutation of treatsents
7-22 , but no interchange of treatments not in the seme set. Similarly,
blocks may be renumbered within Set I or Set II but the sets of blocks
will be left intact.

Repeated use will be made of the fect that the number of trestments
common to any two blocks of this design must be either 2 or 0.

Each of the 15 pairs of treatments 1-6 occurs once in the initial
block, not at all in the 16 blocks of Set II, and A = § times in all,
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so that it must occur in exactly four of the 60 blocks of Set I. Since
none of the 60 blocks cen contain more then 2 of treatments 1-6 .
the blocks must fall into 15 sets of 4 , blocks in different dets coa-
taining different pairs of treatments 1-6 , and the - 4 blocks of each
set containing the same pair. No two blocks in .the same set of 4 can
have more than 2 treutments in common, meaning that no two of them can
contain the sume treatment of set 7-22 . Therefore .each of the 16
treatments in this set must occur just once in each of the 15 sets of 4
blocks. It will be convenieat to identify the sets of 4 blocks by the
pair of numbers of set 1-6 which they have in common. The symbol
[isl/ will be used to demote the set of 4 blocks containing the treat-
ments 1 and j of set 1-6, Since each trsatment must occur 21 times
in the BIB design and 15 occurrences of each of treatments 7-22 have

been accounted for, sach must occur just 6 times in the 16 blocks of

Set II.

Let M denote the submatrix of S whose rows are deterained by
treatments 7-22 and whose columns correspond to the blocks of Set II.
M is a 16 x 16 inclidence matrix whose row t.ota_ls are all 6 by the
final sentence of the preceding paragraph, whose column totals are all
equal to 6 , the number of treatments in a block, and whose column
dinner products are at most equal to 2 . This means that the symmetric
matrix M'W has diagonal emtries equul to 6 and 15 off-diagonal
entries in each row which are at most equal to 2 . It is not difficult
to show that (2.42) holds for any incidence matrix with equal row totals
r and equal column totals k , whether it is the matrix of a BIB desiga
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or not. This shows in the present example that the sum of the 15
off-diagonal entries of each row of M'M is 30 , proving that each of
these elements is equal to 2 . This proves that M' is the matrix of a
BIB design with perameters v=b =16, r=k=6, A =2, Since this
is a symmetric design, a well-known result originally obtained by Fisher
shows that the columm inner products of M' are also all equal to 2,
the same as the row inner products. This is the same as saying that M
is the matrix of an equivalent BIB design. This is useful in the con-
struction of Set II-of 16 blocks, Also, since each pair of treatments
7-22 occurs 2 times in Set II and must occur 5 times in all, each
pair must occur exactly 3 times in the €0 blocks of Set I, a fact
which is helpful in the comstruction of Set I. The fact is not essential,
and rather than digress to prove that (2.42) can be applied, the construc-
tion of Set I will be based on the fact that mo two blocks of the set can
have more than 2 treatments in common. The fact that Set II determines
a BIB design then follows without any appeal to (2.42).

The numbering of treatments 7-22 will be chosen so that /1,2/ has

the fora

7 8 9 10
11 12 13 14
15 16 17 18
19 20 21 22

e
PPN

Next consider the sets /3,4/ , /5,5/ » /4,5/ . Each contains the treat-
ments 7-22 once each, and the rows of each must have either 2 treat-

ments or no treatments in common with the blocks of 41,2/ o This means
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that the last 4 numbers of any row of /1,2/ must occur in pairs in two
of the rows of each of /3,4/ , /3,5/ , /4.5/ . Rearrsnge rows of each of
these sets if necessary so that the first blocks of each set contain
treatments 7, 8, 9, 10, with 7 in the first row, The blocks
S 47 _ , 5 5 1 _, 4 5 7 _

- alrsady have the
maximum number of treatments in common, so they must contain the treat-
mentsa 8, 9, 10 in some order. Renumber thess treatments if mecesseary

so that they occur in the order given. This detorhi.naa the following

portioas of sets /5.4/ , [5.5/ » [4,5/

7
8 10

[ < J N
» bbb
{ o~
[
| o
LI I I
|
NN NR
Tt n
P
[ I
[ W
A on
@
©
[ I
(I |

Renumber treatments 11-22 1if necessary so that the remaining treutments
inblock 3 4 7 8 _ _ are 11 and 12 . Then a repetitiom of the
reasoning used for treatmeats 7 , 8 , 9 , 10 shows taat the pairs of
treatments 11 13 and 11 14 must occur in sets /3,5/ end /4,5/ ;
reaumber treatments 1% and 14 if necessary so that 11 13 occurs in
/5,5/ . 8Since no block can have more than 2 treatments in common with
the block 5 4 7 8 11 12, no other block can have an 11 or 12
along witha 3 or 4 anda 7 or 8 . This determines the following.

34 7 81112 355 7 9 _ _ 465 710 _ _
54 9 10 55 810 _ _ 45 8 9 _ _
5 4 _ _ _ - 855115 _ " 451 14 _ _
5 4 5512 14 _ _ 4 5 12 15 _ _
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There i3 now a choice of placing the pair 13 14 in the second block of
set /3,4/ or im amother block, say the third. The latter case will be
investigated first. Renumbering treutments of the sets 15, 16 , 17,
18 and 19, 20 , 21 , 22 if necessary and remembering that not more
than two treatments of either of these sets can occur in the same block
of /3,4/ , the following is obtained.

5 4 7 8 11 12

5 4 9 10 15 16

3 4 13 14 19 20

S 4 17 18 21 22
Since neither 15 nor 16 can now fall in a block of /3,5/ which con-
tains a 9 or 10, the set 15, 16 , 17 , 18 must fall in the last
two blocks of /3,5/ , in the following arrangement after renumbering
them if necessary.
s 7 9
$ 8 10 _ _
$§ 11 15 15 17
$ 12 14 16 18

O OV O R

The pair 15 18 must now occur in some block of /4,5/, but it is easy

to verify that any such block would then have 5 treatments in common

with some block of /5.4/ or /5,5/ , showing that this case is impossible,
and that treatmsnts 13 14 must occur in the second block of /3,4/ .
Treutments 7-14 , which occur in blocks 127 8 910 and 1 211 12 13 14
of /1,2/ , have now been assigned to the blocks of /5,4/ . Notation was
Chosen so that treatments 7 , 8 , 11 and 12 all occurred in the same
block. This was found to imply that treatments 9 , 10 , 13 and 14 all
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occur in the same block. By symmetry, this shows that if treatments from
any two blocks of set /1,2/ occur in the same block of any of sats
[8.4/ » [8.5/ o [84s5/ » them all eight treatments (other than 1 and 2)
of those two blocks must occur in the same two blocks of the set. This
fact is useful in completing the f:locka of [3,4/ , [5.5/ and [a&,5/ .

Treatments 15-22 may be renumbered if necessary so that mumber 15
is given to one of the remaining treutments in block 3 5§79 _ _ . Then
after possible further changes of notation, the following is quickly

obtained.
$§4 7 81112 §86 7 91517 45 7101922 or 2021
54 91013 14 556 810 16 18 45 8 92021 or 19 22
541516 19 20 55111319 21 4 511 141518 or 16 17
5417 18 21 22 53512 14 20 22 4 5§12 13 16 17 or 15 18

The blocks of /4,5/ may be complated in any of four ways. There seems to
be no immediate way of reducing this number of cases by choice of motationm,
and from this poiat on only the first case will be considered (for each
block, the first pair of the two possible pairs listed). It may be veri-

fied that the other three cases give similar results. '

The mext blocks to be constructed are those in sets /3,8/ , /4,68/ ,
/[548/ « The block containing treatments 5 € 7 must contain another
treatment of set 7 , 8 , 9 , 10 ; comparison with blocks 5 4 7 8 11 12
and 557 9 15 17 shows that the treatment must be 10 . Further com-
parison with the blocks already constructed shows that the block must also
contain treatments 20 and 21 . This sort of argument quickly deter-
nines that the three sets of blocks are as follows.
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36 71020 21 46 7:91618 5§6 7 81514
56 8 919 22 46 8101517 §6 9101112
3611 14 16 17 4 611 15 20 22 561516 21 22
3612131518. - 46121419 21 5617 1819 20

Zach block of setvs /1,8/ , /1,4/ , /1.5/ 5 [1a8/ » £2.3/ » 2.4/ ,
[225/ » [2,8/ alrsady has treatment 1 or 2 .in common with each block
of set /1,2/ , and must contain just one treatment of the set 7 , 8,
9 , 10, one treatment of set 11 , 12 , 15 , 14 and.so or. Comparisca
with either block 5 4 7 8 11 12 or 6§ 6 7 8 1% 14 shows that
treatments 13 and 14 , in some order, must oceur in bloeks
1 57 _ _ _ ad 2 85 7 _ _ _e+ Treatments 1 and 2 occupy

symmetrical positions in the part of the design which has been specified
80 far, and they may be infterchanged if necessary to give the blocks

1 57 15 _ _sand 2 5 7 14 _ _ .

Purther comparison with blocks containing treatments & , 7 and 13
deteraines the following.

15 16 22
14

—_ _ B

14 18 19
22

R TN
- o o1 enen
cCo®m
l

®
o MN
COo®=3
I 1

-

o

. OV CN R R

Comparison with blocks already containing the puirs 5 14 , 8 18 or
3 19 then determines the remaining treatments. munusﬁuucm-

siderations deteraine the blocks of sets /1.,4/ , /1.5/ , /1,6/ , [2.4/ ,
[2.8/ » [2.8/ » complating the construction of all the blocks of Set I.

Each pair of treatments must occur together in exactly A=5
blocks. Enumeration shows that each of the pairs of treatments 7 to 22
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has occurred together 8 times in the blocks of Set-I, meaning that each
pair must occur twice in the 16 blocks of Set II. It has already been
noted that each of treatments 7 to 22 occurs 6 times in the set.
This vorifies. that the blocks of Set II form a BIB design with parameter
values

v=bz=216, r=xk=6, Az2.

Consider the two blocks of Set II which contain treatments 7 and 8,

Comparison with blocks of Set I which contains treatments 7 and 8 shows
that the remaining eight treatments in these two blocks must be treatments
15 to 22 1in some order. Comparison with block 4 § 11 14 15 18
shows that tae pair 15 18 must occur in the same one of these two
blocks. Comparison with block 3 4 15 16 19 20 shows that block

7 8 15 18 _ _ must contain either 19 or 20 ; comparison with
block 2 3 7 14 18 19 shows that it cannot contain 19 ; comparison
witablock 5§ 6 7 10 20 21 , for instance , then shows that the re-
maiaing treatment in the block must be 22 , deteraining the structure

7 8 15 18 20 22
7 8 16 17 19 21 .

A similar procedure determimes the remaining blocks of Set II. This coe-
pletes the construction of the 77 blocks of the BIB design desired. The
blocks are listed on the following page:
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The following are the blocks of the balanced incomplete bleck design

just constructed, with parameter values v=22, r=21, k=6,

be77, A=5.
Initial block:
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This design was required to have the property that each block be
disjoint from 16 other blocks. It may be verified that this is satis-
fied. Therefore matrix 8 exists and may be taken as the incidence
matrix of this design. The columns of metrix 8 fall in columns 23 +to
99 of the association matrix ‘1 s and for discussion of scheme #94 it
is convenient to number the blocks of the BIB design from 25 to 99 . Then
for any 0 from 25 to 99 the six treatments in block @ correspond
to six of the first associates of O . The remaining 16 first associ-
ates correspond te the 16- blocks of the design which have no treatments
in commoa with block @ . In this way the first associates of all of
treatments 23-89 are specified. The first associates of trsatment O
are treatments 1 to 22-. The first associates of smy treatment g
from 1 to 22 are O and the 21 treatments corresponding te the
blocks of the design which contain @ . Since it was shown tnat the pro-
perties of matrix S implied that Al had the properties required for
scheme #94, furtaer examination of the 100 x 100 utrix'ia unnecessary.

This completes the consgtruction of scheme #94. There are at most
four solutions to the association scheme, corresponding to the four choices
for the structure of the blocks of set /4,5/ . It 1s not known whether
any of the four solutions are equivaleat vhder some permutation of treat-

ments.

For the construction of scheme #64, the blocks of the BIB design may
be numbered from 1 to 77 . The first associates of treatment @ then
correspond to the 16 blocks which have no treatment in common with
block O . |
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Because of the sase with which they may be comstructed from the BIB
design, schemes #94 and #64 will not be listed explicitly.

If there exists a finite FPuclidean plane with 10 points on a line
and 11 1lines on each point, it is comceivable that scheme #94 has a geo-
metrical interpretatiom similar to that discussed in Sectiom 5.2 for
schemes #6 and #51. If so, the 22 first associates of a point O would
be two sultably chosem points on each of the 1l 1lines through 8 . The
choice of the two points om each line might.-be a difficult problem. Of
considerable interest if true, but presumably even more difficult to
prove or disprove, are the- conjectures that the existsnee of the geometry
is a necessary-condition for the existence of the asseciation scheme, -or
that the geometry cam be coastructed from the scheme., It thus appears
that there is a possibility, but omly that, that scheme #94 will shed
some light on the unsolved problem of constructing orthogonal 10 x 10
syuares. BSeveral by-products of the scheme will now be mentioned. It
has been pointed out that any of the 100 possible ¢hoices of an initial
treatment im the assoclation scheme leads to a-different submatrix T
which 18 an association matrix for scheme #64 amd a different submatrix
8 which is a solution of the balanced desigm with 77 blocks. The 77
blocks correspend to the second associates of the initiel treatment. Any
cholice of en initial colums of § to be taken as an initial block leads
to a different submatrix M which was shown to give a solution of the
BIB dosign with v=16 and r =6 . A distinct submatrix M of Al is
determined by every choice of a pair of second associates, and there are
3850 pairs of second associates. There are an equal number of sets of 60
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blocks with the properties of Set I. The blocks of Set I may be parti-
tioned into the 16 sets denoted by /i,]/ . In discussing these blocks
the treatments will be numbered as in the constructed example. The 16
treataeuts from 7 to 22 fall by fours into the & blocks of each set
/isl/ - If the cells of a-square 4 x 4 array-are numbered from 7 to
22 , an arrey of the letters A, B, C , D may be formed from each

set /i,]/ by assigning the same letter to cells which correspond to treat-
ments in the same block. -There are five sets /i,}/ for eny fixed velue
of i, for example /1,8/ , /2.8/ , [5.4/ , [5.5/ » [3:6/ « If the
arrays formed from /i,]/ and /i, x/, where j # k , are superimposed,
the number of cells in which a particular ordered pair of letters occurs
is equal to the number of treatments of the set -7-22 which the corres-
ponding blocks of /i,j/ end /i,k/ have in common. The two blocks are
not disjoint, having treataent i in common, so must have exactly 2
treatments in common, including one treatment of the set 7-22 . -Each
pair of letters therefore occurs in exactly one cell when the two squares
are superimposed, meaning that the squares are orthegonal. The five sets
[is)/ for a fixed value of i form a complete orthogonal set of 4 x 4
squares. The fifteen squares defined by the €0 blocks of Set I include
six complete orthogonal sets, each square ocourring ia two of the ortho-
gonal sets. To the best of the authorts knowledge, this configuration is
new, and it is included in Section A.s' of the appendix,



IV, THE STRUCTURE OF LATIN S8QUARE TYPE ASSOCIATION SCHEMES

4.1 Prelininary Diacussion of Unijueness,-with Counter-Examplssz

By definition, the terms ®Latin square type® and "Lg" apply
only to association schemes in which first associates may be defined by
the rows of a set of g ortaogonal squares. Aam association scheme with
the paremeter wvalues of an I.g scheme but eongtructed by some other -
method does not necessarily satisfy this requirement. Some of tae pro-
perties of assoclation schemes of the Latin square series which have been
treated in the previous chapters depend on the existence of the set of
orthogonal squares; other properties hold as a consequence of the- numeri-

cal values of the parameters of the schemes. For example, a scheme con-

i
N and plz- are the

same as for an I.g scheme will have tae property OX N = a, which was

discussed in Section §.1. On the other hand, if an association scheme

atructed by any method for which the values of v , n

with these parameter values 1s constructed by any method otaer than the
actual orthogonal squares, the compact representation of the scheme by
meang of the square array of numbers may not be available. If there are
different constructions of the same scheme which are.not equivalent under
some permutation of treatments, there may be designs wnich are impossible
with one scheme but can be construgted with enother. Design #7-3 is an
example., Important results on the existence of some types of incomplete
block designs have been obtained by use of the Hasse-Minkowsiki invariants

of the symmetric matrix NN' /30 /, /15 /. In order to compute these
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invariants it is necessary to compute certain minor determinants of the
matrix, and designe corresponding to ineguivalent association schemes
would have to be treated as separats special cases. (Tne Hasse~Minkowski
invariant is not taken up in this thesis.) For these reasons it may be
important to know whether association schemes are unique, and in parti-
cular, whetaer the existence of an association scheme with the parameter
values of the Lg series implies the existence of a get of g ortho-
gonal squares by whica first associates in the scheme may be defined., 1In
other words, does the set of Lg association schemes with a particular
set of parameter values exhaust the set of all association schemes with
the same parameter values? If this is the case, the Lg scheme will be

said in this chapter to be unigue.

The analogous question for group divisible designs was answered in
the affirmative by Bose and Connor /7 /. The definition of a group
divisible scheme for v = mn treatments uses an arrangement of the treat-
ments into m groups of n treatuments each and leads to & certain set
of parameter values; it is showmn in [ 7_7 that the existence of & scheme
wita these parameter values implies the partitien of the treatments into
the m groups. This includes the special case Ll of the present question.
It will appear in this chapter that the question is more complicuted for
the L8 schemes in general. Some wmﬁramples to be presented in
this section will show that the analog of the Bose-Connor theorem cannot
be true in full generality. It will be proved in Section 4.2 that with a
single exception a scheme with the parameter values of an L? scheme

implies the existence of the two orthogonel squeres. In section 4.3 the
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result is extended to Latin square type schemes with 2 or more con-
straints, with a larger number of possible exceptions. The theorem for
g 2 4 mekes the exlistence of the scheme equivelent to the existence cf
o get of two or more orthogonal Latin squares, & connection which could
be useful in the study of such sets. Some of the results of the chepter
&epply to assocletion schemes of any type or to hore general incidence

matrices.

A proof of the unigueness of an Lg association scheme in that
first sssociates can be defined only by the rows of some set of orthogonel
squares has no bearing on the question of uniqueness of the set of ortho-
gonal squares. It was shown in Section 2.1 that ell pairs of mn xn
orthogonal squeres &are equivelent except for numbering of treatments,
settling the question i the case of L2 « For g2 3, the number of
sets of g mutuelly orthogonal squeres which can be used to comstruct

L, schemes depends on the enumeration of Latin squares end sets of ortho-

14
gonal Latir squares, and will not be considered here. Alsc omitted from
any direct consideration will be any differences in the properties of

solutions of the same association scheme based on distinct sets of ortho-

gonal squares.

The interpretstion of an association scheme or its incidence matrix
in terms of & linear graph was mentioned in Section 1l.3. Any symmetric
incidence matrix with O's on the mein diagonal mey be used to define a
graph by identifying points with rows and columns, then joining points M
and p of the graph if end only if the elements in the M,V and ¥y, U

positions of the metrix &re 1's . In the cause of the incidence matrix
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of first essociates of an association scheme, the points of the greph are
identified with the trectments. A pair of points which ere joined by a
line is identified with a peir of first associutes, either pair being
indicated in the matrix by a peir of 1's symmetrically located with
respect to the mein diagonal. In this chapter, terms such as point &nd
line will be used interchangeebly with the correspending terms for associ-
etion schemes. A set of k treatments which are paeirwise first &ssociates
will be identified with a set of k points each pair of which is joined
by a line. This configuration in the graph will be termed a complete con-
figuration on k points, a complete k-point, or simply & k-point. Many
of the properties of the associztion scheme correspond to anelogous pro-
perties of the greph, &s hus been menticned in Section 1.2. Therefore
some theorems proved in this dissertetion for partially balenced designs
have applications to lineuar graphs., Meany of the known theorems of graph
theory are potentially useful in the study of designs, btut no &pplications
of them will be mede in this chapter. The graphs encountered here are
highly speciel, owing to the properties of partial balance in the desigms,

and do not seem to have received much attention,

Examples will now be given of association schemes which have the

parumeter values of L2 s L, eand L4 schemes but in which it is not

5
possible to define first associates by any set of orthogonal squares. The

construction of these schemes is based on the following remerk, elready

mede in Section 2.1,

Remerk 1l: If the designation of first and second associutes is

interchanged in a Latin square type scheme with g constraints on v = n?
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treatments, the resulting association scheme has the parameter values of
& Latin square type scheme with £ = n-g + 1 constraints. The associ-
ation matrix Al in the Lr scheme mey be tuken as the matrix A2 of
the Lg scheme,

The demonstretion that first associates in the schemes constructed

cannot be defined by orthogonal squares mekes use of the following remerk.

Remark 2: If first associates in an association scheme are those
trestments which occur with the ssme letter in one of & set of nxn
orthogonal squares, them every pair of first associates is contained in a

complete n-point.

Example 1 . Let &n L5 scheme for v = 16 treatments be defined
by rows, columns snd letters of the following 4 x 4 Latin square, which
was used es an example in Section 2.1. The arrsy of numbers is also given

for reference,

1 2 & 4 A B C D
5 6 7 8 B C D A
9 10 11 12 C D A B
15 14 15 16 D A B C

Dualize to form a scheme in which first associetes are the same &s the
second associastes of the original scheme, namely those treetments not
occurring in the geme row, the seme column, or with the seme letter of the
Latin square., Thus in the dual scheme the first associates of treatment

l ere 6, 7,10, 12 , 16 , 16 and the firast agsociates of treatment
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6 ere 1,4,1 ,12, 15, 15 . By remerk 1 , this scheme has the
parameter values of em L 2 scheme. Treatments 1 and 6 &re first
associates and if the scheme corresponds to any set of two orthogonel
squares, then by Remerk & , tresctments 1 and 6 must be contained
in a set of n = 4 trectments which are pairwise first associates. The
remaining two treatments in such a set would have to be the two trest-
mente which are the common first associeates of treatments 1 and 6 .
These are treastments 12 and 15 . But trectments 12 and 15 are not
first associates in the dual scheme, hence the first associates 1 and
6 &re not contained in any set of 4 pairwise first essociates and by
remerk 2 the L2 scheme cannot correspond to any set of two orthogonal

squares.

Example 2. Let an LS scheme for v = 25 trectments be defined by
Tows, columns, end letters of the following § x § Latin square. The

array of numbers is also given for reference.

—

2 3 4 5

»

7 8 9 10
11 12 13 14 15
16 17 18 19 20

m O OO w >
Qo = OO > W
» w ™M ©O O
w Q > N O
O > w O ™

Q1 22 25 24 25

Form the dual scheme by interchanging the designation of first and second
associates. The new scheme will have the parumeter values of en Ls
scheme, by Remerk 1 . First associates in the new scheme are those treat-

ments not occurring in the same row or column or with the same letter of
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the Latin square. Thus treatments 1 and 8 are first associetes in
the new scheme, If first associstes in this scheme can be defined bty a
set of three 5 x § orthogonal equares, then by Remark 2 treetments 1
end 8 must be included in a complete 5-point. The remairing three
trestments in the S-point must be first associates of both of treatments
1l and 8 . The common first sssociates of treatments 1 &end 8 are
treatments 15 , 17 , 19 , 22 , 24 . In order for three of these to form
with 1 and 8 a complete §&-point, it is necessery and sufficient that
they be pairwise first associates. The sutmatrix of the incidence matrix
of first associates corresponding to the five treatments is the following.

1§ 17 19 22 24
18 l1 1 1
17 1 0 0 0 1
19 1 0 0 0 o0
2 1 0 0 0 o
24 O 1 0 0 o0

It is easily verified that there is no set of three pairwise first associ-
ates among the five treatments. Therefore remsrk 2 1is vioclated and
there exists no set of three orthogonal 6§ x £ squares by which first

assocletes in the scheme may be defined.

Exumple 8. Let an I..5 scheme for v = 36 treatments be defined by
rowg, columns and letters of eny 6 x 6 Latin square. Now dualize by
interchunging the designation of firast and second associsates, obtaining
& scheme which by Remerk 1 has the parsmeter values of am 1.4 schenme
for 36 treatments. If this scheme corresponded to any set of four 6 x 6

orthogonal squares, it would imply the existence of two orthogonal 6 x 6
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Latin squares, which hes been proved impossible /85 / /20 / . Therefore

the scheme cannot correspond to any set of orthogonal squares.
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4,2 On the Unigueness of L, Associstion Schemss -

The proof of unigueness of certain Lg schemes is begun in this
section and will be completed in the case of I.2 schemes. Lemmas 4.1
and 4.2 and Theorem 4.2 are proved for schemes having the parameter values
of Latin square schemes with any number of constraints, showing what the
existence of one or more complete n-points im the scheme implies for the
rest of the scheme, Lemm& 4.5, epplying to the incidence mutrix of &
scheme of any type with two associate clesses, brings out a useful fact
about the structure of a certein sutmeztrix. In Theorems 4.2 and 4.2
these results are specislized to the case of Latin square type schemes
with two constraints and with the exception already noted in the preceding
section they are shown to be unique in the sense being used in this chap-
ter. It is shown that edditional neihods must be used in the cese of

three or more constraints.

The parameter values of L8 schemes, given in (2.2), are repested

here for easy reference.

v=n?, _[#-%+n (Vg + 1)

n, = gla-d) 7 [(eeer ) @eaern|’

n, = (n-g + 1)(a-1) , b = [ e(g-1) g(n-g) 7] .
¢ Le(n-8) (n-g)%+ g2

LEMMA 4.1. In any aessocieticn scheme for v = n? treatments which
has the parameter values of a Latin square type scheme with g constraints,
if there is a set of n treatments which form a complete n-point, then

each of the remaining n%-n treatments is a first associete of exactly
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g-1 treatments of the set of n .

PROOF: The get of n treatmentz specified in the theorem will be
celled a complete n-point. -Treetments may be numbered so that the
treatments in the n-point correspond to the first n rows and n colummns
of the incidence matrix Al of first associetes; then the leading n x n
principal minor, denoted by B , will have 1l's in all off-diegonal
positions. Sublmatrices C , C' , and D are defined by the following

diagrem of Al in partitioned form.

B C n rows

The n 1rows of C correspornd to the n treatwents in the n-point. The
n%-n columng of C correspond to the remaining treatments.

The row totels of . Al are equal to n, = g(n-1) , while the inner
product of a pair of rows corresponding to first associates 1s equal to
pil s 32-5g + 0., B has rov totals n-1 and row inner products n-2 .
By difference, C has row totels (g-1)(n-1) and row inner products
gz-Sg +1n - (n-2) = gz-Sg + 2 . The totel number of 1's 4in all n rows
of C ie n(g-l)(n-1) = (n®-n)(g-1) . The total of the u'l colum of
C will be denoted by ku and the mean column totel by X Clearly
k= g1 . The sum of the inmer products of all pairs of distinct rowe of
C will now be computed in two ways. The number of such pairs of rows is

(:) snd each inner product has the velue g°-5g + 2 , glving the total

( g)(gz-Sz + 2) . The contribution of the elements of a single column to
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the totel is equal to the number( ;\l) of pairs of 1's in the column &nd
the totel may be obtained by summing over all columns. Equating the two

expressions for the total,

%(2) '(2)(82-58 +2)

2 wfox) = R - serr)

21 > k% -k = g-osgrz

2 _ - (A
;2}.: S ok g -2+ 2 +(g1) = (e-1)°.
- u
The variance of the ku will now be computed.
Ver(k) = Lo > x? . @*
u n“~-n “u u

= (&% - (g-D)% = 0 .

Therefore the column totels ku of C must all be equal to their mean
value g-1 . This has the interpretation that each of the n%-n  treat-
ments corresponding to the columns of C is the first associate of
exuctly g-1 of the n treatments corresponding to the rows of C .

This completes the proof of Lemme 4.1.

COROLLARY 4.1. No associstion scheme with [ parameter values,
-4

g< n , contains a complete configuration with more than n treatments.

It is naturel to attempt to prove comparable results from the hypo-
thesis of a complete configuration with fewer than n points, in particuler
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n-l . The author has found that the method used in the proof of the
lexme is much wesker in this case, and has been unable to demcnstrate

any regularity in the column totels of submatrix C on this hypothesis.

LEMMA 4.2. If an association scheme with the parameter values of
the Latin square series with g constraints conteins a complete n-point

end a complete h-point which is not a subgraph of the n-point but has
at least two points in common vith it, then h< (g-1)% .

PROOF: By Lemme 4.1, each of the n%-n treatments not in the n-point
is a first associste of just g-1 treatments in the n-point. No set of
pairwise first assoclates which contains treatmente outside of the n-point

can contein more than g-1 treatments of the n-point.

Congider two treatments which are in both the n-point and the h-point.
Bach other treatment of the h-point must be a common first associate of
these two. In all the two treutments have pi'l s 32-5g +n common first
associates. Of these, n-2 are in the n-point, leaving gz-Sg + 2 which
are outside of the n-point. Therefore at most 32-5g 4+ 2 treatments of

the h-point are outside of the n-point.

The largest possible number of treatments which the h-point cen con-
tain, in the n-point and outside of it, is therefore
(g-1) + (32-5g+ ) = (g-l)2 , completing the proof.

This lemme shows that any set of h > (g-l)2 treatments which form
a complete configurstion cannot have more than one treatment in common with
eny complete n-point unless all h <treatments are contained in the

n-point .
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THEOREM 4.1. If ean association scheme has the paremeter values of
the Lg series, if euch pair of treatments is conteined in & set of n
treatments which ere pairwia.e first associates, and if n > (g-l)z, then
there exists a set of g orthogonel n x n squeres which may be used to
define first associates in the scheme,

PROOF: The language of linear graphs will be used. Trestments will
be referred to as points, pairs of first associctes &s lines, and & set
of k treatments which are pairwise first associates will be t.efmed a

"complete k-point" , or briefly a "k-point" .

By hypothesis, each line on an arbitrary initial point of the graph
is contained in a complete n-point. Each such n-point conteins exuctly
n-1 1lines through the initial point. By Lemma 4.2, since n ) (g--l)2 ’
no line through the initial point car be in more than one n-point, and
by Corollary 4.1, no complete configureation cen contein more them n-1
lines through the initial poirt. Therefore the set of n, < g(n-1) first
associates of the initial point must fall into disjoint sets of n-l1l ,
each forming a complete n-point with the initial point. Therefore there
are just g n-pointe containing the initial point; it was an ardbitrary

point and the same remark applies to each of the n?

points. From this
or from the remark that there is just one n-point on each line, it

follows that there are exactly ng n-points in the entire graph.

Denote en arbitrary initiel n-point by A . Each point of A 1lies
on g-1 additional n-points, for & total of n(g-l) n-points inter-
secting A . If any of these were counted twice, for different points of
A , 1t would have more then one point in common with A , which is
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impossible by Lemma 4.2. Therefore A intersects exactly n(g-1) of
the remaining ng-l n-points, leaving n~1 of them with which it has no

points in common.

Take any n-point B disjoint from A . By Lemma 4.1 , a particuler
point of B is joined by lines to g-1 points of A . Each of these
lines lies on an n-point. If two of them lie on the same n-point, then
that n-point would have more than omne point im common with A , which is
impossible, so the g-1 1lirces determine the remeining g-1 n-points
through the point of B, for a total of n(g-l) n-points intersecting
A and B and distinct from both. If any of these were counted twice,
for different points of B, it would have two points in common with B,
which is impossible. Therefore the n(g-l1) n-points are all distinct,
and must be the entire set of n-points which intersect B . Therefore
the n-1 n-points disjoint from B must be A and the other n-2 in
the set of n-points disjoint from A . B was any one of the n-l
n-points disjoint from A , 80 each of these n-points is disjoint from
all the others, and the whole set of n are mutually disjoint, exhausting

the a® points.

The argument carried out for A applies to any of the g n-points
through ean arbitrary point of the graph, showing that there are g
systems of B "parallel® n-points. n-points in the same system are dis-
joint; eny two in different systems have just one point in common. Let
the n° points be identified in & l-to-1 manner with the cells of an

p x n square array. Identify the m "parallel® n-points of one of the
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g systemg with n distinct letters, and form a square arrey of these

n letters by assigning each letter to those cells of the erray corres-
ponding to the points of the n-point., The g squares which may be
formed in this way satisfy the requirements of a set of g orthogonal

n xn squares, and may be used to define first associates in the associ~

ation scheme.

Some terminology to be used in the next lemma and in some of the
theorems of this chapter will now be introduced. In &ny association
scheme with two associate classes, choose notation so that treatments 1
and 2 are first associetes and number the remaining treatments so that
the treatments in each of the following sets have consecutife numbers and

the four sets are numbered in the order listed.

Set 1: pil common first associates of treatments 1 and 2,
Set 23 p}z treatments which are first associates of treatment

1 and second assoclates of treatment 2 ,
Set &: 9%2 treatments which are first associates of treatment
2 and gecond associates of treatment 1 ,

Set 4: 9%2 common Second associates of treatments 1 and 2 ,

In the incidence matrix Al of first associates, the treatments of each
set correspond to a set of consecutive rows and columms, and the four sets
of treatments determine sixteen swmeatrices, which are indicated in the
diegram below. Orders of the submatrices are shown in the margins of the
diegrem. The notation A/*‘V will be used for the submatrix with rows

corresponding to Set # and columns corresponding to Set I/ .
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(4.1) A = . o! A

The number of 1l's in a row of A/,V will be denoted by t/”/; the row
totels of e submatrix are not necessarily equal but the symbol will be
used only in statements which are true for all rows. The symbols 'l',,”/

and 2 will be used, respectively, for the total number of 1's in .

‘ny
A/“V and the total number of 0's in Auy which are not on the main

disgonal of Al .

LEMMA 4.3. If the incidence matrix Al of first associates in an
assoclation scheme with two assoclate classes is partitioned in the form
of (4.1) , then the number 2

11
satisfies the following inequality.

of off-diegonal O's in submatrix All

(42) 2, <pLlehy - 1) .

PROOF: Since All is a pil x pi‘l matrix whose diagonal elements

are O0's of the main diagonal of Al »
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- 1,1
(4.%) ‘1‘11+ Zll pn_(p11 1) .
Considering inner products of row 2 with rows of Set 1 ,

-l
Yh+Yz=pp -1

Summing over the ph Tows of Set 1 ,

(4.4) T.,+T

_ 1,1
nt Tyl -1 .

From (4.3) and (4.4) ,

] = .
(4.5) 7, =T,

Considering inner products of row 1 with rows of Set 3 ,
tor 4 te, = P =14
21t Yz2 TP T

Sunming over the piz rows of Set 3 ,

4.6 T - - Y
(4.€) Tyt Tap = Pp(P), - 1)

By symmetry of Al ’

.7 : L]
(4.7) TlS TSl

Combining (4.5) , (4.6) and (4.7) ,

Z. =T

=ol (0% - 1) -
11" Tgy T PplP -1 - T

3
1,2 _

This completes the proof of the lemma.
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THEOREM 4.2. If an association scheme hus two associuste classes and
v = nz treatments, n # 4 , then necessery and sufficient conditions

that it be & Latin square type scheme with 2 constraints are

(4.8) nl 2 -1),

1 . -
(439) pll n 2.

If n=4, the condition is necessary but not sufficient.
PROOF: Necessity is proved by the generasl expressions (2.9) for the
parumeter velues of Latin square type association schemes with g con-

straints, which reduce in the case of g =2 to
- B 7
n = 2(n-1) , n-2 n-l

P ’
1 | n-1 (n-l)(n-gl

ny = (a-1)%
{” 2 2n-4 R

| 20-4 (n-2)°

Also, the parsmeters specified in (4.8) and (4.9) determine the remaining

values, so that any of them mey be essumed in the sufficiency proof.

The sufficiency proof will make use of the incidence matrix Al ’
partitioned in the form of (4.1) . An importent step will be to show that
eny peir of first essociates and their pil = n-2 common first associates
form a set of n treatments which are pairwise first associates. In the
notation of (4.1), this amounts to showing that submatrix All has 1's
in all off-diagonal positions or equivalently, that le =0 . Lemma 4,3
provides an upper bound for le which reduces in the present case to

<Ln - .
(4.10) z,,&n 1
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Suppose that 211‘370 , meaning that among the n-2 treatments of
Set 1 there is at least one pair of second essociutes. For convenience,
number treatments so that numbere 3 eand 4 are second associetes. Then
the entries in the 3,4 and 4,3 positions of Al will be O's. Since
treatments 3 and 4 are second associates, the inner product of rows
3 and 4 of Al must be equal to pfl = 2 , meaning that the submatrix
congisting of these two rows must contein exactly 2 columms with 1's

in both positions. But colums 1 and 2 are of this form, wmeaning that

each of columns 5, 6,,.., n2 of this submatrix must contain at least one O,

Since n-4 of these columns are in submatrix All s it must contain
at least n-4 O0's in rows 3 and 4 1in addition to the two Ot's
originally assumed. By symmetry of the matrix there are also at least
n-4 additional O0's in columms 3 and 4 , for a total of at least

2n-6 off-diagonal O0's in A Therefore,

ll.
(4.11)  if 2)>0, then 2, >2n-6.

The latter inequality contradicts (4.10) for n > 6 , proving that for
n>6, le =0+ For n=3, A is 4 1 x1 matrix which trivially
has no off-diagonal O's . For n =5, it will be proved below that
le =0 . Therefore for all n #4 , the n xn submatrix of Al whose
rows and columns are determined by a pair of first associates and their
n-2 common first associates has all off-diagonal elements equal to O ,

which meens that the n treatments of this set are pairwise first associ-

atese.



169

This completes a proof that for n # 4 , every pair of first
associates is in a set of n treatments which are pairwise first associ-
ates. By Theorem 4.1 , there exists a set of g = 2 orthogonal squares
which may be used to define first assoclates in the scheme, which means

precisely that it is a Latin square type scheme with two constreints.

In the special case n = 4, Counter-example 1 of Section 4.1
shows the existence of & scheme whose paremeter values satisty conditions
(4.8) and (4.9) but in which it is not possible to define tirst associ-
ates by a set of two orthogonal sguares. ‘Therefore the conditions are

not sufficient in this case,

1t remains to prove that le =0 whem n=5. (4.10) and (4.11)

show that if lej> C , then zll = 4 . Assume that for some choice of

"

two first assoclates as treatments 1 and 2, 2Z 4 . That is, the

11

3x 3 sutmatrix A, determined by the set of pil

associates of treatments 1 and 2 has 4 off-diagonal elements equal

]

3 common first

to O . After assigning the numbers 3 , 4 , § in a suitable order to
these thres treatments, the leading 5 x 5 principal minor of Al will

have the form

O

O

OHOMM

OO MM

COOKHM
.

Since treatments 1 and 3 are first associates, they must aave pil zs
first associates in common, of which two are treatments 2 and 4 .
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Number the remeining one as treatment 6 and adjoin row and column 6
to the sulmetrix, remembering that no further treatments can be common

first associates of treatments 1 and 2 .

H O
OrFHMFOW
HOMFOMM
HOOKMHM
<COoOOOKHKM
OY M O

Treatments 2 and 6 are second assoclates and the inner product of
rows 2 and 6 cannot exceed pil = 2 . Therofore the letters x and
y must represent 0O's . Treutments 1 and 4 are first associates
and must have taree first associates in common, of which two are treut-
ment3 2 and 3 . Number the remaining one as treatment 7 and adjoin

row and colum 7 to the submetrix, remeabering that no further treat-

ments can be common first associates of treatments 1 and 3 .

RO
COrMFMOK
OHOMFOKF~
HFOOO MMM
NOOOOKH
£ OO0OOKHOK
OCE¥nNrHOOK

Treatment 7 is a second associate of treatments 2 and 3 and the

inner product of row 7 with either of rows 2 and 3 cannot exceed 2 .
Therefore the letters 2z and w must represent 0's . Treatment 1 has
n, = 8 first associates, of which the remaining two may be numbered 8
and 9 . Then the next two elements of the row 1 of Al will be 1's

and the remaining elements will be O's . Treatments 5 , 6 and 7 are
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first assoclates of 1 and rows S , 6 and 7 must have inner product

3 with row 1 , meaning that each of these rows must have 1l's in the
next two positions. Then the inner product of any two of rows 5 , 6

and 7 will be 3 , which is impossible since these treatments are
pairnise second associates. This contradiction disproves the assumption
that ZL1:> 0 for some pair of first associates and proves that every
palr of first associates is contained in a set of n = § treatments which

ars peirwise first associates. This completes the proof of Theorem 4.2.

The principal object of the remainder of this chapter is to prove as
much as possible of the stztement that if an association scheme has the
parameter values of a Latin square type scheme with g constraints,
€2 3 , there must exist a set of g mutually orthogonal squarss which
may be used to define first associates in the scheme. The counter-examples
of Section 4.1 show that this statement is not true without exception,
but. it will be shown in Section 4.3 that for any g , the statement is
trae except for a finite number of values of n . When it is attempted
to prove tais by the methods used in the proof of Theorem 4.2, difficulties
are encountered whicn will be described in the case g=3 . For g>4,

the difficulties are of the same kind but more severe.

The proof of Theorem 4.2 hinged on showing that an arbitrary pair
of first associates, corresponding to an arbitrary line of the graph, was
contained in a complete n-point., This was equivalent to showing that
hy» an (n-2) x (n-2) submatrix, contained no off-diagonal 9's , and

was accomplished by showing that if any such 0°'s were present, the
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restrictions on the inmer product of rows corresponding to second associ-

ates implied the existence of enough additional O's in All to violate

inequality (4.2) . In the case of g = 3 constraints, A, isan

n x n submatrix, and rather than prove that it has no off-diugonal O's ,
1t 1s desired to show that it has an (n-2) x (n-2) principal minor which

is of this form. The symbol s to be used in the next section, will

10
be borrowed for the sake of brevity. In this sectiom, 8, will denote
the maximum order for a principal minor of All which has no off-diagonal
d's . If any contradiction to.inequality (4.2) is to be obtained, it
must be on the assumption that 3113 n-3 . Inequality (4.2) is weaker in

the case g = 3 , reducing to

[ < - °
(4.12) z,, <100 - 20

Tais is consistent with forms of All suca as the following, in which
the leading (n-5) x (n-5) principel minor has 1l's in all off-diagonal

positions and the other submatrices have O0's in all positions.

o111l .. .100000

101 .. .¥00000

110.. .1:00000

e o o otcooto n-5 Trows

111 0;0 00 00 L
A= |00 0 .S 0000070 T T
11 000 .. .0,000 0900

000 . . .« 000 0 0 0| 5 rows

000 .. . 0,000 0029

000 . . 0'00000

000 . . .0'00000

The number of off-diagonal O's is 10n-30, sutisfying (4.12), and
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sl = n-5 ., Moreover, it appears that s, can be still smaller without

giving any easy proof taat 2Z is large enough to contradict (4.12).

1l

The principal tool used in showing that 2 is large is the restriction

11
on the inmer product of rows of All corresponding to second associates,
and this restriction is also weaker than in the case of Theorem 4.2. With
two constraints, the inner product of such rows was necessarily O ; with
three constraints, the maximum value for the inner product is pfl-z 4.
It mey be possible with the methods used in Theorsm 4.2 to prove thae
existence of a complete k-point on each line of order 8, 4+ 2 = n=3 but
no better result than this can be hoped for. This falls short of the

Wypothesis of Theorem 4.1l.

If it is not possible to prove the existence of a complete n-point on
every line of a graph, it may still be possible to prove the existence of
one n-point, somewhere in the graph. It will now be shown that this
weaker result would actually have been sufficient in the case of Theoren
4.2 for a proof of the remainder of the Latin squars structure. In other
words, an association scheme with Lz parametor values either has a com~
plete n-point on each line, implying the existence of the orthogonal
squares, or it has no n-points at all. It will be possible in Section
4.3 to extend this part of a uniqueness proof to some L5 schemes not
covered by the mein theorem of tnat section. The present result, while
vacuous for L2 schemes with most values of n , does show taat for
0 = 4, the one case in which a non-Latin square schems can have L2

parameter values, the graph of such a scheme cannot contain any complete

4-pointes. It was verified for the first counter-example of Section 4.1
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that a particular line was not contained in any complete 4-point; the
following theorem shows that the same is true for each of the 48 lines

of the grapn.

THEOREM 4.3. If an association scheme with two associate classes
has parameter values v = n% , n, = 2(n-1) , p]l_l = n-2 eand there exists
a set of n treatments which are pairwise first associates, then every
pair of first associates 18 in such a set.

PROOF: Denote the set of n treatments in an n-point by A and
an arbitrary treatment of A by @ . Of the 2(n-1) first associates of
Q , n-1 are in A ; denote the set of the remaining n-l first associ-
etes of O by B and an arbitrary treatment of B by F . It follows
from Lemma 4.1 that @ has no first associates in set A except O ,
so the n-2 first associates waich P has in common with © must be the
remaining n-2 treatments of set B . Since P was an arbitrary treat-
ment of set B , it follows that each trsatment of the set must be a
first associate of each of the others, meaning that the set consisting of
O and its first associates not in A form a complete n-point. @ was
an arbitrary treatment of set A and tne same argument applies to each of
the n treatments of A , proving the existence of n additional
n-points, each having one treatment in common with A . Since any treat-
ment in two of the additional n-points would be a first associate of two
treatments of A , Lemma 4.1 shows that these n-points are disjoint,
exhausting the n® treatments of the scheme. They mey be called parallel

n-points. The same reasoning applied to the original n-point A mey
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now be applied te any one of the mew ones to show the existence of another
set of n parallel n-points, of which one is A . This shows that each
treatment of the scheme is in two complete n-points, the 2(n-l) other
treatments of the two n-points being first assoclates of the treatment.
The first associates of all treatments are accounted for by the two sets
of n-points, showing taat every pair of first associates is contained in

an n-point,

This completes the proof of the theorem. Theorem 4.1 may then be

applied to show that the scheme must be of L2 type.
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4.3 On the Unigueness of _I_.z Association Schemes, g2>3 .

In this section metaods will be developed by which Theorem 4.2 can
be extended to an infinite class of Latin square type association schemes
with 5 or more construints. Theorsms 4.4 to 4.6 are devoted to ob-
taining a lower bound analogous to (4.1l) for the number le of off-
diegonal O's in the submetrix All defined by (4.1) . The bounds ob-
tained apply to a wider class of incidence matrices and are in a form
which gives direct information on the value of k for which a complete
k-point is known to exist. Theorem 4.7 applies tne results to association
schemes. Theorem 4.8 and Lemma 4.5, ulso concerned with association
schemes and valid for all schemes with two associate classes, introduce a
different line of reasoning concerning the existence of complete k-points
in association schemes and are somewhat similar to Lemma 4.2, Finally in
Theorem 4.9 the case of association schemes with parameter values of the
Latin square series is tuken up and it is shown taat for a fixed number
g of conmstraints and sufficiently large n , the Latia square type
scheme is unique in the sense used in this chapter; tnat is, the scheme
can only be constructed by the use of some set of g mutually orthogonal
n xu squares to define first associates. In Corollary 4.9 the suffi-
ciently large values of a are stated explicitly. Theeorem and.Corollary
4.9 are the muin results of the section and the chapter. The chapter is
concluded by a discussion of some extensions and possible extensions.

The most important of these, Theorem 4.10, is analogous to Theorem 4.3.

Some ideas to be used in Theorem 4.4 to 4.6 will now be given in two
definitions.
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DEFINITION 4.l1. An incidence matrix A will be said to satisfy
this definition if it isa t x t symmetric matrix with O's on the main
diagonal and if it satisfies the requirement that if any two rows contain
a pair of 0's which are symmetrically located with respect to the main
diagonal, then the inner product of those two rows must not exceed D .

Z will denote the number of off-diagonal O's in A .

If A 1is the incidence matrix of a linear graph, the rows being
identified with points, then two rows containing a pair of symmetrically
located 0's represent two points not joined by & line, and the require-
ment on inner products has the interpretation that twoe- such points are
joined by at most D 2-chains, If A 1is a principal minor submatrix of
an association matrix of & PBIB design, the rowa being identified with
treatments, then two rows containing a pair of symmetrically located O0's
represent treatments which are not associates, while the inmner product of
two rows is equal to the number of treatments (of the set corresponding to

the submatrix) which are common associates of the two treatments.

DEFINITION 4.2. This paragraph constitutes the definition of a set

of integers 8) 28,5 ce0, 8 and a set of submatrices Qi.1 of a

2 f
symetric incidence matrix A with 0's on the main diagonal. 81 will
denote the maximum order for a principal minor submatrix of A which has
1's in all off-diagonal positions. If there are no 1l's , 81 =1l.
Denote an 8, x 8, minor of this form by this form Qu « The value of
5 is uniquely determined but possibly not the set of rows and columns

in Q, + It is not essential but will simplify the later discussion of
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rows and columns of A are permutad (simultaneously) so that Qll is
the leading principael minor. In the remaining principal minor submatrix,

determined by the remaining b-sl rows and t-sl columns, let 82

denote the maximum order for a principal minor submatrix with 1's in all
off-diagonal positions, denote such a submatrix by sz s &nd permute

these rows and columas so that Q22 is in the next diagonal position.
Cleerly s, 2 8, - Different choices of Qll may lead to different values

of 8, ; for a particular choice of Qll » the value of 8, i3 determined

but possibly not the 82 x 32 submatrix Q22 o Repeat for the remaining

diagonal submatrix, and so om until A has diagonal blocks of order
>
‘1 "32

the maximal property described for ‘l and 8, »

elements of each block ars 1's . The i} diagonal block will be denoted

2852...Zaf, where ol+az+...+er=t, each 8, has
and all off-diagonal

by Qii. 3 the submatrix determined by the rows of Q11 and the columns

of will be denoted b .
Q 13 y Qi I
in the following diagram.

This partitiomn of A 4is illustrated

G e ]y e,
% G| %
- 1 '
(4015) A - -o—o.o—:o—o- o— .1.-. o-::l:.o—o- o : -o’o.-
Uy ¢+ Qg o v e Qg Bp TOWS .

It is desired to investigate the possible values of Z in the matrix
A specified ia Definition 4.1. A matrix with Z = t(t-l) , containing
O's everywhers or a matrix with 2 =0, with 1's in all off-diagonal

Positions, satisfies the requirement, but there may be intermediate values
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of Z which are impossible. If the matrix is partitioned according to
Definition 4.2, the fact that the diagonal blocks Qi L contain no off-
diagonal Ofs will provide an upper bound for Z . On the other hand,

it is evident that the off-diagonal blocks Qi must contain some O's,

J
or it would be possible to form some larger diagonal blocks full of 1's ,

violating the maximal property of the &8 4 ° This type of reasoning is
put into a definite form in the following theorem.

THEOREM 4.4. If A is an incidence matrix satisfying definitiom

4.1 and 8 32 s ese » 8_ are determined according to Definition 4.2 ,

f
then the total number Z of off-diagonal 0's of A satisfies the

following inequality.

£ F
(4.14) ZJZ o Max( s, +8,-D , 28,-2D , 2 )
= =4 f

< - - °

< z < t(t1) E 8, (5,-1)
=

PROOF: The partition of A depicted in (4.13) will be used.

Take any submatrix Qj.j with 1<j, en s1 x sj matrix, and con-

sider any m x k submatrix of Qij which contains 1's everywhers.

This submatrix, the symmetrically located portion of Q.i g an mxm

submatrix of Qii end a k x k submatrix of Qﬁ can be combined to

form a symmetric (m + k) x (m +k) matrix with no off-diagonal O's .
By the maxinal property of 8 » it is necessary that m + k< 8

Next consider the set of 8; TowWs of Q and for each column define

ij ?
a subset consisting of all the rows which contain 0's in that colum,

There are 8 3 subgsets in all. Take any k of these subsets, corresponding
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to a k-columned submatrix of qij o By the inequality just proved for

submatrices containing 1's everywhere, at most si-k rows of tais

submatrix contain 1l's everywhere, meaning that at least k rows contain
O's . This means that any k of the subsets of rows of Qi 3 contain
between them at least k distinct rows. This is true for

k=1, 2, .., sj . By the theorem of P. Hall /22 {,/27 ] on represen-

tatives of subsets, there exists a system of distinct representatives of

the sj subsets. That is, there are sj distinct rows of Qii which

th

nay be ordered so that the /“th row contains a O in the /4 column

of Qij .

So far we have shown that Qij containg at least sj 0's no two

of which are in the same row or column. This seems to be about the best

possible result using notaing but the condition that the s tre maximal,

i
but the condition on inner products of A still has not been applied.

This will be done next.

We will use the submatrix consisting of the blocks Q'i » Qij ’
i
jS ’ ij s 8till with 1< j . This is a symmetric

(a1 + aj) x (ai-i— 'j) matrix., It has been showm that Qij containg a
set of sj 0's , no two of which are in the same row or column, Con-
sider one of these O0's and its symmetrically placed O in Qj 1 ° The
two rows containing these rows must have innmer product < D . Therefore
at most D 1's may occur in the remaining cells of these two rows of
Qij and jS » meaning that there are at least s, + 8 -D=2 additional

i
O's in these two rows. This can be repeated for each of the initial Of's ,
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and since they were in distinct rows and columns, the additional O's
@ll fall in different rows and are therefore distinct. This proves the

existence of at least

8 s, -D-2
O*s in blocks Qij and jS » in addition to the 2sj already
discussed. If 8, + sj <D+2, this is vacuous, but in any case the

existence of the 2sj O's has been proved.

Therefore a lower bound for the number of O0's in blocks Q1j and

jS is

(4.15)  max( (s, + 8,°D) , 28, ) -

Again considering the initial O in Qij s note that the number of
additional O's in the row of Q which contains the symmetrically

Ji
placed initial O is by symmetry equal to the number of additional Ots

in the column of Qi containing the initial O . There are therefore

3

at least si-k sj-n_2 additional O's 4in the row and columm of Qij
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containing any of the sj initial O's. If these aj totals are com-
bined, some of the additional O0's may be counted more than once, but
since no two of the initial O's were in the same row or columan, none
are counted more thamn twice, and the number of duplications is at most
equal to the number of cells of the submatrix which are in the same row
as one of the initial O's and in the same column as another. The num-
ber of such cells is sj(aj—l) « A lower bound for the number of addi-
tional 0Ofs in Qij is obtained by subtracting this from the combined

total,
sj(si-+ sj—D-a) - sj(sj-l) = sj(si-D-l) .

If 81

initial O's in Qi

<D +1 this is vacuous, but in any case the existence of the SJ

i has been proved. The number of 0's in jS is

equal to the number in Qi giving as a lower bound for the number of

j ]
0's in both blocks

(4.26)  Mex( s,(28,-20) , 233.) .

This may be combined with (4.15) to show that blocks Qi and Q

J Ji

contain at least
sj lla.x( 8, + aj—D » 28,-2D , 2)

O*s. Summation over all the off-diagonal sutmatrices Qi glves the

J
lower bound stated in the theorem. The upper bound ia the theorem is the
total number of cells in the submatrices Qij » since all the off-diagonal

O's are in these submatrices. This completes the proof of Theorem 4.4.
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The set of values of Z satisfying (4.14) includes the set of
possible values of Z for all matrices A satisfying Definition 4.1 and
for which the procedure described in Definition 4.2 leads to a particular.
partition of t into positive summands 81 e The union of the sets ob-
tained from (4.14) for all admissible partitions of t then includes all
possible values of 4 for a given order t x t of matrix A and a given
value of D . The class of admissible partitions of t may be restricted,
For example, if A is the incidence matrix of a graph which is knowm to
contain coniplete 3-points but no complete configurations with as many as
t-1 points, then 3¢ 8, € t-2 . On the other hand, if restrictions on
the value of Z are known, this theorem may restrict the possible parti-

tions of t and in particular the value of 8 -

It may be possible to obtain & slightly better lower bound than that
given by the theorem. OUne of the lower bounds for the number of O0's in

submatrices Q and Q which is twice the number of O's in Q
1) i

e 1§
and is therefore an even numberyis sj(si + sJ-D) o If this product is
odd in any term of the sum, it may therefore be replaced by the next larger

even number,

The following numerical examples illustrate the theorem and the
remark just made.

NUMERICAL EXAMPLES

Each term of the double sum in the lower bound given by (4.14) is a

function of D and of two of the s, values, and is independent of ¢t .

i
A preliminary teble of values of s:j Iax( 8, +8 j'D ’ 251—2D » 2) ’
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computed for a fixed value of D and a suitable range of values 8, 25
J

is convenient for use in evaluating the sum and can be used for any value

of t . A table of this kind follows, computed for the case D = 4 .,

851 1 2 3 4 5
!
1 2 - - - -
2 2 4 - - -
3 2 4 6 - -
4 2 4 10 1 - The underlined entries in this
5 2 6 12 20 30 table replace the computed values
6 4 8 16 24 36 9,15 and 35,

For a particular value t and partition 5 + 82+ cee + af me summation
over pairs 81 » aj », 1< j 1is quickly carried outs For t =7 and the
partition 3 + 3 +1 , the sum includes three terms. The term resulting
from the pair si,s‘1 = 3,5 1s €6 ; the pair 35,1 occurs twice, each
time contrituting the term 2 ; and tae total is 6 +2(2) = 10 . There-
fore if the process described in Definition 4.2 leads to diagonal blocks

of the following form in a 7 x 7 matrix, the number 2

of off-diagonal O's in the matrix must be at least 10 . The upper

bound given by (4.14) is 30 , the total number of cells in the off-
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diagonal blocks. Similar bounds for &ll of the partitions of 7 are

listed as further examples.

Partition Lower bound Upper bound
of t on 2 on 2
7 0 _ o
61 4 12
52 6 20
§11 2(2) +2=68 22
4 5 10 24
421 44+ 2+ 2=8 28
4111 5(2) + 3(2) =12 30
331 6 +2(z) =10 50
322 2(4) +4 =12 52
5211 4 +2(2) + 2(2)+2=14 34
51111 4(2) + 6(2) = 20 36
2221 3(4) + 5(2) = 18 56
22111 4 +6(2)+ 3(2) =22 38
211111 5(2) + 10(2) = 30 40
1111111 21(2) = 42 42

Of the conclusions which cen be drawn from these results, the
following are typicel.

(a) The velue Z = 2 is impossible.

(b) If the graph contains no 4-points, meaning 8 < 8, then
Z 210 , Note thet the proof of this requires consideration of the lower

bounds for all partitions with slg 5 , and does not follow from the

particular result obtuined for the partition 3 31 .
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(c) If Z 4is known to satisfy Z< 8 , then 3125 s Pproving
that the graph conteins a complete 6-point. The restriction on inner
products is essentic«l, &s shown by the following example, in which
Z=6 end s, = 4 but ioper products such as that of rows 1 and &5

1
are not <4 .

011101 T
1011101
1101110
1110111
0111011
1011101
1101110

The lower bound on Z given by Theorem 4.4 is rather compliceted,
depending as it does on all the terms sl ’ 32 9 see sf in & parti-
tion of t , and it suffers from the disudvantage thet it upplies only
to & particuler pertition. In order to get a lower bounc which depends
only on t and D it is necessery to minimize over & cluss of parti-
tions of t which mey be very large. Four lower bounds will now be de-
rived which involve N tut none of the other 8y o It is simple to
apply these formulas &and take the maximum of the values obtuined &s & lower
bound on 2 , valid for «ll partitions in which the largest term is s1 .
2 lower bound which depends only on t &nd D may then be obteained by
minimizing over admissible velues of s1 « Lower bounds which are inde-
pendent of By 3 see s sg are not only simpler but more useful. In the
present aupplicetion of Theorem 4.4 and the following theorems, the object
will be to prove that the linear gruph formed from the incidence matrix

A has a complete subgraph whose order exceeds & certein minimum velue.
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The vulue sl is importent here, since it may be interpretec as the
meximum order of a complete subgraph, The velues 52 N .... s 8 N will
be of less interest end their interpretation is not so simple.

The first simplified lower bound on Z follows directly from Theorem

4.4,

COROLLARY 4.4. If an incidence matrix A satisfies Definition 4.1
and if 8, is defined by Definition 4.2, then the total number Z of

off-diagonal O's in A satisfles the inequality
(4.17) zZ2 2(b—sl) (sl—D) .

PROOF: This inequelity is obtained from (4.14) by tuking only the
terms of double sum corresponding to i = 1 and taking the second of the

three expressions in parentheses. The sum then reduces to
f
Zs (2s.-2D) = 2(s_-D) Za_ .
L)1 1 ~7 9
=2 =z

Since 8 + 32+ cees + sf =t , the sum in the right member reduces to

t-s, and the result is proved.

1

The O's enumerated in this corollsery asre those in the first 81
rows of A , that is, in submetrices le ’ le 9 ese Qlf s éand the
symmetrically located 0's in the first sl columns of A . If sl is
nearly as large as t , these rows and columns will contain most of the
off-diugonel 0's , and inequality (4.17) may be nearly as strong &s
(4.14) + For smell values of 8 » it becomes much weaker, collepsing

completely for s, <pn.



188

The two lower bounds for Z given in Theorem 4.5 do not follow from

the stetement of Theorem 4.4 but use some of its proof.

THEOREM 4.5. When A is an incidence matrix satisfying Definition
4,1 and s1 ’ 82 9 soe sf are determined according to Defirition 4.2,
then the total number Z of off-diagonal O's of A satisfies both of

the following ineqgualities.

(4.18) z22 é(t-n)(t-sl) ;

(4.19) z> 4t - sl)(t +s - 2D) .

PROOF: The symbol !i will be used to denote the total number of
off-diegonal Ot's in the 8, X t submetrix of A consisting of blocks
Qil ’ Q12 9 ees Qif « In this notation the proof of Corollary 4.4

implies the statement
(4.20) 112 (t - al)(el -D) .

If two rows of A contain & pair of 0's which are located sym-
metricelly with respect to the main diagonel, themn by the restriction on
inner products of rows, there can be &t most D columns of A which
contain 1's in both of these rows, end the two rows together must con-
tain at least t-D off-diegonal O0's , including the original pair. In
the proof of Theorem 4.4 it was shown that for 1< j , submatrix Qij
contained a set of sj O's , no two of which were in the same row or
column, These O's and the symmetricelly located 0's in jS there-

J
satisfying the inner product condition and containing at least t-D

fore 1lie in Zsj distinct rows, forming s, pairs of rows, each pair
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off-diagonal 0O's . The 28, rows &re all contained in the (si-p sj) xt

J
submatrix whose rows are determined by sutmsatrices Qij end @ giving

it’
the result

. > - ’ .
(4.21) 11+Yj_sj(t D), 1< j

Several inequalities of this kind will now be added.

Y +Y >8(t-D)
1l 2 2
T, + T2 8g(t - D)

Y+ Y28 (t-D)
£

Adding, end noting that Yi =z,

(4.22) 22-7Y - !fz (t-8)(t-D).

Dropping the non-negative terms Il and !f strengthens the inequality

and leads at once to (4.18) . Adding (4.20) and (4.22) gives
(4.28) 22 -¥ >(t-=a)(t+s -2D) .

The term Yf is dropped again and (4.19) is obteined, completing the

proof.

The two inequalities of this theorem are weaker tham (4.17) for large
values of '1 » but give better results when ‘l is smell. The expres-
sion in the right member of (4.19) has its maximum value for 81 =D, the
velue for which (4.17) gives the triviel lower bound O . For 8, <p,

(4.18) is the strongest of the three inequalities.
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These three lower bounds on Z fill the needs of the present section,
but may fall far short of the actual minimum velue of Z for many values
of sl o For exemple, when 81 =1 , the best result obtained from eny
of the three is Z > 3(t-1)(t~-D) , a very conservetive underestimate,

since 8, =1 means that A contains no 1l's and the actual value of 2

1
is t(t-1) . A fourth lower bound, which will be given in Theorem 4.€, is
stronger for very smell values of 81 s but makes no use of the restric-
tion on inner products and is of little use for large values of '1 « It
is closely releated to a known result in graph theory which will be men-

tioned following the proof.

THEOREM 4.6, If A is a symmetric iccidence matrix with 0O's on
the main disgonal, and if 81 is determined according to Definition 4.2,
then the total number Z of off-disgonal O0's of A satisfies the
inequality

(4.24) zzl"f- -t .
5

PROOF: Imequality (4.14) of Theorem 4.4 is used, taking the third
of the three expressions in parenthesec. The inequality reduces to
f £
(4.25) z222) D s .
j=l Js,‘;' J
This sum is represented graphically by the sum of the arees of the rect-
angles in the figure below, which is located with reference to a rectengular

coordinate system with origin O .
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Qq

Q.

Vertex l".1 has coordinates

vertex Qi has coordinetes

In particular, the coordinates of P, and P

1

respectively. Rectangle PiQi then has alti
F3

sumn 8, »
25, °

to the double sum in (4.25) . It will be con

£ 1
of the polygon OP1 >

rectangles by exactly &t , the combined are

are equal to 1 and the sum of whoge bases i

i
( EZ 8, , 1) ;
J=t J
(t,1-1) .

o ave (al

tude 1 and area equal to the

» 1) and (t, £),

and the sum of the arees of all the rectengles ig equal

venient to deal with the ares

| ) PfQ1 , which exceeds the combined aree of the

& of triangles whose altitudes

8 t.
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f f

(4.26) 8 = Aree OPP . .P QG -3t.
&5 tend

Since s. > 8 > ..¢e 28 the polygonal line QPP . . P 1is con-
1= fp =t =B polye 12 £

cave upward and the area of the polygon is not less than the aree of

triangle ORQI s where R 1lies on OPl extended. le = t and by

gimiler trisngles 019. =1 , giving the result
8
1

A ORQl t’z
ree& S e 9
231

which is emough to prove the theorem. However, it will be of interest
to prove (4.28) below, & slightly stronger result which calls for closer

study of the figure.

Qla cannot exceed the integrel length f of the segment Qle ;

if ¢t is written in the form

=asl-b, a and b integers , 0£b<ll,

then

-t - b
W Te T T

implying £ 2 a . For & fixed value of 51 s the minimum possible vulue

of £ is achieved if 32-353...=sa_1= 1 0 f=a eand e‘=sl-b.

Then for 1 =1, 2, «¢s , @1, the vertices Pi will have coordi-
nates (ial , 1) and will lie on the line OR , and the only portion of

the polygon which lies outside of triengle ORQ,1 will be the amell tri-

angle P&-].PaR which h‘a b‘se k ’ altihlde S. - b’ and area b( 81-1‘-) .

5
281




193

(t.a)

(t:aS,-b, O.-Sb—')

R.
((o.-u) 5, @~ l)

For the same value of 8]. and any other choice of 32 ’ 85 s see 5 B,

f
additional vertices of the polygon will lie ebove the line OR &nd a

greeter area of the polygon will lie outside the trisngle. Therefore

2  b(e; - b)
. 17 1 .
(4.27) Area 0P1P2 Pfql .>. '2-8-1'*' ——;-;]-.'*

Combining (4.25) , (4.26) and (4.27) ,

e -

(4.28) z2% -ty b(s, - b)
8 8

When the non-negetive final term is dropped for simplicity, Theorem 4.6

ie proved. The lower bound in (4.28) may be written in either of the

forms in the following statement.
(4.29) z22(a-~ 1)(ul -2b) S(e-1)(t-1) .

When metrix A is taken as the incidence matrix of a linesr graph
on t points, each pair of off-disgonal O0's corresponds to & pair of
points of the graph which are not joined by & line. The number of lines

in the graph is(;’)- 32 . 5, is the maximal number of points in a
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complete subgraph. A problem of consideruble interest in graph theory is
to find the meximal number of lines for a graph on t points which does
not conteain any complete subgraph with 81 + 1 points. Turun solved
this problem in 1941 /36_/ /87 7 by deriving en upper bound for the number
of lines, then constructing an example in which the number of lines is
equal to the upper bound. His upper bound is equivalent to the lower
bound (4.29) for Z , which is therefore very nearly & new proof of his
result. The remuining step im such a proof is to show that the lower
btound of (4.29) or (4.28) is monotone decressing in sl , 80 that the
number of off-diesgonal O's cen be less than the bound only if there

is a complete subgraph with more than '1 points. The proof is mot
difficult but is not needed here and will be omitted. In the graph con-
structed by Turan, the points are divided into s, disjoint sets, b

1

sets having a-1 points and s.-b sets having a points, then &ll pairs

1
of points in different sets are joined. Any subgraph with 8 +1 points
must contain two points which are in the same set and are therefore not
joined. The number of pairs of points not joined is b(a;l) +(sl-b)(;) .
The number of off-diagonal O's in the incidence matrix is twice this

totel and reduces to 2 = (a—l)(asl-zb) , the expression &ppearing in (4.29) .

The minimum value of 2, given t , D, and 81 s Will be denoted
by m(t, D, pl) o To summarize, Z denotes the number of off-diagonal
0's in &n incicence matrix, and m(t , D, sl) is the value obtained by
minimizing 2 over the class of all symmetric t x t incidence matrices
with O's on the main diagonal, satisfying the condition that any two rowg

conteining a pair of symmetrically located off-diegonal 0's must have inner
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product £ D, and havimg en s, x 8, Principal minor submatrix with 1's
in all off-diagonal positions but no such submatrix of any larger order.
Since there are only finitely many t x t incidence matrices, this
minimum value exists. The value of m(t , D, 8,) 1is not known in
general, though it wes pointed out in the previous parugraph that when
the restriction on inner products is relaxed, which may be done by teking

D 2t-2 , the exact value is given by
(4.30) m(t , D= t-2 , al) = (a=1)(t=b) .

It was also remerked that in this cece and for fixed t , the function

1 Not even this is known for most values

of D, though it may be conjectured that increasing the order of the

is monotone decreasing in s

lergest complete subgruph of a graph will necessitute an increase in the
total number of lines. The lower bounds on Z derived in Corollery 4.4,
Theorem 4.5 end Theorem 4.6 &re of course lower bounds on m(t , D, sl) .

The following notation will be useful in discussing these bounds.

(4.51) B(t, D, sl) = 2(t - al)(sl -D),
(4.32) 132(t » D, sl) = é(t-sl)(t +8 - 2p) ,
(4.28) Bt , D, 8)=4t-D(t-82),

(4,54) B(t’D’B):‘_tf."t'.
4 1l 31

Then the fact that these four expressions are lower bounds on Z may be
expressed

(4.35) ﬂ(t,D,Bl)ZBi(t,D,Bl), 1=1,2,3%5,4.

The dependence of the four bounds on sl for fixed ¢t and D 18 showm

schematically in the following figures.
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As indicated by the figures, for fixed t the bounds Bl ’ !32 and
Bs become weeker as D 1is increased. It is probably to be expected
that an increase in D will permit an increase in the inmer product of
some pairs of rows of the incidence matrix, allowing some O's in such
rowe to be replaeced by 1's and decreasing the velue of Z . In the
extreme case D > t-2 , the bound B 4 is the only one needed, as men-
tioned above., In the cases shown in the figures, each of the four bounds
ie stronger than the others for certsin values of sy, The figures indi-
cate that for 8; = -2—‘"%19, the lower bound for Z is %(t-D)g, and that
Z can be lees than this value only for 51>§_§,51’_.2 « This observation is

essential im the proof of the mext lemma. The information meeded to show

that it 1s true in general is conteined in the following tatle.

RANGE OF VALUES " LOWER BOUND ON  VARIATION OF BOUND (mono-
OF 8 n(t , D, al) tone within each interval)
1< 8 <D (1.) B, Decreuses from #(t~D)(t-1)
to #(t-D)?
p< s < 1‘-—}2'9 B, Decreases from #(t-D)%
to g-(t.-d)‘e
t+2 g <ttd 4 <
5 S8t Bl Increases from 3( t-D)
i to 3(t-0)°
t+D < g <2t%D B " Decresses from #(t-D)%
-% T 1-7 3 1 D)
; i 4(1- 2
! ; to '5( D)
2t +D < s <t : B ' Decreases from 2(t-D)%
! ! to 0 .

1. This line of the teble is omitted in the case D =0 .
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The table show that m(t , D, al) can be less than .;-(t.-D)2 only for

8 >3-§3I-2 , and that for 8 in this range, m(t , D, el) is bounded
telow by Bl(t » D, al) , which is monotone decreasing in 8 - This
implies the following lemma.

LEMMA 4.4, If A is an incidence matrix satisfying Definitiom 4.1
end for some o > &@.}D the number Z satisfies the inequality

(4.36) zéal(t. sy Dy )=2(t-c)(oc-D ,

,> .
then sl_cr

The known lower bounds on m(t , D, al) admit the possibility that
Z 1s less than %(t-D)2 , (but not less than %(t.-l))“2 ) for
D <81<3-2—2 « If m(t, D, sl) were known to be monotone decreasing
in 8 » Z would be known to be at least equal to 3(’(.-D)2 for all 8,
in this intervel and the restriction on 0~ in the statement of the lemma

could be weakened to o ) 3-2"'—2 .

The purpose of Theorem 4.4, Corollsary 4.4, Theorem 4.5 and Theorem
4.6 has been to provide methods of proof strong emough to extend Theorem
4.2 to Latin square type association schemes with more than two constraints.
It may be recalled that it was desired to prove that the submatrix All ’
shown in (4.1) , contains & complete (n-2)-point. The proof that thic ie
true for most Lg schemes will be completed in the next 3 theorems, the
first of which requires Lemma 4.4. The other theorems and corollery which
have been proved in this section will not be used explicitly. Submatrix

All was defined by (4.1) but it will be convenient to recell the
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definition here. Where Al is the matrix of first associstes in an
assoclation scheme with two classes, and two initial treutmente which are
first associsates &are chosen, All is the sutmatrix whose rows and columns
are determined by the pil common first associates of the two chosen

xpl

treatments. It is a pl 1

n symmetric matrix with O's on the main

diegonal.

THEOREM 4.7. In any association scheme with two associete classes,

define
- 1 2 _ 1 2 2 1l .. 2
(6.5 o7 = 4(ph +of) - 2 +3\fel, - B2 + 2% - 2l - 1)
end
1 2
(4.38) o :an+Pu—2

8
Then if O, isreel and 0, > o, , each pair of first associates in
the scheme is contained in a set of k treatments which are pairwise first
associates, where k 2 0, +2 .

PROOF: Lemma 4.4 will be epplied to submatrix All of the incidence
matrix Al of first assoclates in the scheme. Two rows of All con-
teining a pair of symmetrically located off-diagonal O0's correspond to
two second associates, and there must be exactly pfl columsg of Al
which contain 1's in both of the two rows. Columns 1 and 2 are of
this form. Therefore there can be at most pfl - 2 such colums in A

11 °

end A satisfies the conditions of Definition 4.1, with t= pil ,

D:p§1-2°
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By Lemma 4.3, the number 2 of off-diagonal O0's in All satis-

11
fies inequality (4.2),

2 .
ZnSpiz(pll 1 .

oy ill be defined by setting B (t, D, 0r)) = p%z(p]z_l - 1) , where-
upon (4.2) assumes the form of (4.36) in the statement of Lemma 4.4.
Using the given values for t and D , the definition of o 1 may be

written
26y - TN T, -5+ 2) = pha(ed) - 1)

and solved for o~ 1 to give the definition (4.37) in the stetement of
this theorem. The other root of the quadratic equation, if real, will

be less than -:"-{-Df and cennot meet the conditions of Lemma 4.4.

Definition (4.38) for ¢ . 1is equivalent to O . .2.12,8112 and the

2
hypothesis o 1 > a o of this theorem is identical with the condition
pleced on (¢~ in Lemma 4.4, where 0‘1 here plays the role of ¢~ in
the lemma. The lemmua may then be applied to show that All contains a

principal minor submatrix of order s, 2 o with 1's in all off-

1
diggonal positions. The 81 corresponding treatments of the association
scheme, together with treatments 1 and 2 , form a set of

k = sl+ R 2 0"1+ 2 treutments which are pairwise first assoclates.
Since treatments 1 and 2 were teken as an &rbitrury pair of first
associates in the definition of the submatrix All » this completes the

proof of the theorenm.
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The inequality a—l > 0-2 cen be transformed by straightforward

algebra to the form

(4.388) 3 \ﬁph - P +2)% - ZPiz(pfl -1 D>ry -5 +2

Squaring both sides gives the following inequality, which is true only

1

if (4.38e) is true, is equivalent to it if Py - p§1+ 220, &ndis

somewhat simpler to apply.
2
(4.89)  4(p}, - P2 +2)% - opl,(p%, - 1) Do

It will be shown later that for fixed g , association schemes with
paremeter velues of the Latin square type with g constraints satisfy
the conditions of Theorem 4.7 if the number n? of treatments is suffi-
ciently large, proving the existence of a complete k-point on every line
of the graph, with each k 2 a’l + 2, However, for g2 3, T, is too
small for the existence of a complete n-point to be proved by this

theorem elone. The next theorem anc lemma bridge the gap in the argument.

THEOREM 4.8. In any association scheme with two associate clesses,
let. there be a set A of k.l. treatments which are pairwise first associ-
ates, and a set B of l;:a treatments which are pairwise first associates,

and let the intersection of the two sets contain u treatments.
(1) If u>2, then
1
4,40 kK +k -u< +2 .
( ) l.+ 2 __911

(1) 1If there is & treatment im either set which is a second associ-

ate of s treatment in the other set, them
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2
(4.41) u< P11 -

(1i1) If ﬁ+kz>@l+ﬁl+z,tmaumu-mglorul

trestments in the umion of sets A and B are pairwise first associates.

PROOF: If u> 2 , them there are at least two treatments which are
in both of sets A amd B, meaming that each is the first associzte of
each of the Ik; + kz - u -2 remaiming treatments im the union of A
and B, But mo two first associates caen have more than pi'l first as-

sociates im common, Therefore kl+ kz- u-2< p]1‘1 , proving statement (i).

If there is a treatment @ in set A and & treatment @ in set B
which are second associates, they can have at most p:fl first associates
in common, But © is & first associate of all the remaining treatments
in set A, P is a first associate of all the remaining treatments in
set B, and the u treutments which are in both sets are common first

essociates of both @ and @ . Therefore u< pfl s proving statement (ii).

If the hypotheses of both of statements (i) and (ii) are satisfied,

then inequalities (4.40) and (4.41) are both true and may be added to give

1 2

If the contrary is true, then one of the hypotheses of statements (i) and
(11) must be false, meaning either that u< 1 or that each treatment in
each set is a first associate of all treatments in both sets, which means
that all treatments in the union of the two sets are pairwise first

assoclates. This proves statement (iii) .



203

In terms of the linear gruaph whose incidence metrix is Al , state-
ment (iii) of Theorem 4.8 means that if the greph contains two complete
configurations, or k-points, of orders kl and k2 , and if
kk + k2 > pi’l + pfl-f- 2 , then either the two configuretions have no
line in common or the greph contains a complete configuration of which

both are subgrephs.,

LEMMA 4.5. In any association scheme with two classes, if for any

treatment @ there exists an integer ko satisfying
ofnl 2
k| > s(pn T e+ 2)

such that every pair of first associates including @ is conteined in a
set of k2 ko treatments which are pairwise first assocliates, then the
nl first associutes of @ fall into disjoint sets, each set together
with O forming a complete configuration with at least ko treatments.,
PROOF: Each of the nl first associates of © forms with @ a
pair of first associates which by hypothesis are conteined in a complete
configuration of k2> ko treatments. Form one such configurstion on @
and each of its first assoclates and consider the sets of treatments in
the nl configurations. These are subsets of the set consisting of ©
and its first associates. If any of the sets are identical, drop the
duplicetes. Since each set contaeins more thean 5(9%.1 +P]2.l +2) treat-
ments, any two of them satisfy the hypothesis of stutement (iii) of
Theorem 4.8. O 1is in each of the sets, and if any first associate is in
two of the sets, the two sets have u > 2 first associetes in common &nd

by Theorem 4.8 their union forms & complete configuration. In this case,
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drop both sets and use their union instead. This process may be repeated
as long as eany of the first associctes of © are in more then one set.
After a finite number of repetitions the result will be a set of disjoint
sets of first assoclates, each set together with O forming a complete
configuration. Each configuration contains at least ko treatments,

gince it is formed by union of sets having at least k° treatments.

THEOREM 4.9. If an associastion scheme with two associate classes
and v = n° treatments has the paremeter values of a Latin square type
scheme vith g constreints, and if n exceeds the larger root of each

of the equations
(4.42)  4n? - (g-1)(9g2-9g + T)n + (g-1)%(9g%-9¢ +7) = 0 ,
(4.43) 2gn? - (g5-2g4-+5g5-g2-2g-bl)n -‘(36-5g54-3g4ﬂ-2g5-5g2+-g+1 =0,

then there exists a set of g maatually orthogonal n x n squares which
may be used to define first associates in the scheme, and the scheme is
of Latin square type.

PROOF: The parumeters of a Latin sqguare type scheme with g con-

straints include the following.

nl = 8(n-1) »

P%l “n +'82 -3 ,

2 = g2 _
pl, = (g-)(n - g+1) .

o and 0‘2 will be defined as in Theorem 4.7 and ch has the form
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\
| = bn+2et-ag-2) + 4 Un-2g +2)% - 2(g-1) (a-g +1)(g%--D)

Statenent (4.42) will be neceded in tae application of Theorem 4.7
and Lemma 4.5, while (4.43) will be needed in the final part of the
proof. As a preliminary step, it will now be shown that the hypotheses
imply n> 2g , a fact which will be used to simplify the application of

Theorem 4.7. When n = 2g , the expression in equation (4.43) reduces to
-3g6 + 7g5-934 + Bgs + 732-53-1 »

which is easily shown to be negative for all g > 2 , showing that the
larger root of (4.43) is greater tamn 2g for all g2>2 . It is no
restriction to take n > 2 1in the special cuse g =1 . It may there-
fore be assumed for any g that n 2> 2g. Since p}l - 912.1+2 = n-2g+2 ,

this implies
(4.44) pr -p2 +2 >0
. 11 11 .

It was pointed out following the proof of Theorem 4.7 that if (4.44)
holds, the ineqguality T, > 0'2 is equivalent to (4.39). In the present

case, (4.39) has tae form

(4.45)  4(n - 2g+2)%- 9(g - 1(n - g+1)(g° -g-1) DO,
reducing to

(4.46)  4n® - (g-1)(9g°-9g + 7)n +(g-1)%(9g°-9g+7) >0 .

If n exceeds the larger root of (4.42) , this inequality will be satis-

fied, implying 0‘1 > 0‘2 , @and by Theorem 4.7 sach pair of first
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associates in the scheme is contained in a set of k pairwise first

associates for some k2 k = 7 + 2 ., The relations O~ L >,

and (4.44) are used in the following inequalities on ko .

k
o

< 1 g
g TR 7 T,t2= 29}1‘;911*‘4 =411 tep 8 =
6

1 2 1 2 1 2
3p),+ 3P+ 6 N Py~ P11t 27 3p11+3p11+6

6 6 6

(4.47) k7 i +P5 +2) .

Therefore the conditions of Lemma 4.5 are met for any treatment 9 ,

proving that the n, first associates of any treutment 9 fall into

1
disjoint sets, which will be referred to as special sets, each special set
containing at least 0"1 + 1 treatments and forming with @ a complete
configuration of at least ¢ 1 + 2 treatments. O _ will now be re-

1
quired to satisfy the condition

n -1
(4.48 g +1 1 _=£g2 .
) 1 >g+1 g+l

This reduces to

(g+1) V (n-2g+2)% - 2(g-1)(n-g +1)(g®~g-1) > (g-1) n-2g"+ 2g°-2

end is satisfied if the following inequality, obtained by squaring and

simplifying, is satisfied.

5

2gn2— (g5-2g4+ 5g5-g2-2g+1)n - (gs-Sg + 5g4+ 2g5—5g2+ g+l)> 0.

This in turn is satisfied if n exceeds the larger root of (4.43), so

that the hypothesis of the theorem implies (4.48) . It follows from (4.43)
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that (g +1)( (7’l + 1) > nl . Since the number of treatments in each
special set is at least a‘l-k 1 and the sum of the numbers of treat-

ments is n this implies that the number of sets must be less than

l b4
g +1 . By corollary 4.1 , O does not lie in any complete configu-
ration with more than n treatments and none of the special sets can
contain more than n-1 treatments, and in order for the sum of the num-

bers to be n, = g(n-l) thers must be at least g special sets. There--

1
fore thers must be exuctly g speciul sets, each containing exactly

n-1 treatments, meaning that & , which was an arbitrary treatment,

lies in exactly g complete configurations of n treatments, and each
pair of first associates lies in such & configuration. Then by Theorem
4,1, there exists a set of g mutually orthogonal n x n squares which
may be used to define first associates in the scheme, completing the proof
that the scheme is of Latin square type. The requirements placed on n

by Theorem 4.9 will now be examined more closely, in a few cases by using

the exact solutions of equations (4.42) end (4.43) .

2 _25n +25 =0 and the

When g = 2 , equation (4.42) becomes 4n
larger root is n = 5 ; equation (4.43) beconmes 4n° - 17n - 43 =0 end
the larger root is n = 6,03 ; the theorem applies for n > 7 . A better

result has already been obtained in Theorem 4.2.

When g = 3 , equation (4.42) becomes 4n° - 122n + 244 = 0 and the
larger root is n = 28,3 ; equation (4.43) becomes 6n° - 148n - 319 = 0

and the larger root is n = 26.6 ; the theorem applies for n 2> 29 .
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When g = 4, equation (4.42) becomes 4n® - 3450 4 1035 = 0 and
the larger root is n = 83.2 ; equation (4.43) becomes
8n® - 68ln - 1957 = 0 and the larger root is n = 87,9 ; the theoren

applies for n 288 .

When g = 5, equation (4.42) becomes 4n° - 748n +2992 = 0 and
the larger root is n = 182.9 ; equation (4.43) becomes
100 - 2216n - 8431 = 0 and the larger root is n = 225.3 ; the

theorem applies for n> 226 .

For use with larger values of g , the general solution of (4.4R)

is easily obtained, giving the inequality

| VioZoan om? 2
(4.43) >ig-12§932-9g +7) +(g-1) : (9g°-9g +7)° - 16(9g"-9g +7) -

For g> 2, the expression 9g° - 9g+7 1is positive and dropping the
second term in the radicand increases the value of the right member of

(4.49), showing that it is sufficient for n to satisfy
3 2
a~> (g=1)(9g% - 9g+7) - 9g° - 18g°+16g - 7
:> 4 4
Still for g > 2 , an even stronger rejuirement on n is
9 3
(4.53) n >-§- .
The general solution of (4.43) leads to

(4.5)) =n >

6

g° - (eg*-38%+ &+ 2g-l)+Vgl° - (4g°-10g8+ 6g" + 15g8-28g°-g*-26¢5-10g%-43-1)

4
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For 322 2 , the two expressions in parentheses are easily shown to be
positive, and a sufficient condition for n to satisfy (4.51) is obtained

by dropping them, giving
(4.52) nD>ig?

Thersfore, for g>2 , any n satisfying (4.50) and (4.52) will excesd
the larger root of each of the equations (4.4%) and (4.43), permitting

the theorem to be applicd. For g_>5 , (4.5J) is a weaker requirement
than (4.52) and may be dropped if (4.52) is used. The results of the last

few paragraphs are summarized in the following corollary.

COROLLARY 4.9. If an association scheme with two associate classes
and v = n2 treatments has the parameter values of a Latin square type
scheme with g constraints, then the following conditions are sufficient

that the scheme be of Latin square type.

If g=3, n>29;

if g=4, n>88;

N

if g
if g26, n>-§g4.

5, n> 226;

Theorem 4.9 shows that for any fixed g and for all values of n
except a finite number of possible exceptions, the Latin squere type associ-
ation scheme is unijue in the sense thet it can be constructed only by |
means of a set of g orthogonal squares. Corollary 4.9 gives explicit
upper bounds below which any exceptional values of n must lie. It may

be noted that in the cases g=2 , 3, 4 and 5 the bound given by the
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simplified inequalities (4.5)) and (4.52) is considerably larger taan the
one obtained from the original equations (4.42) and (4.43). The bounds
approach each other in an asymptotic sense, as illustrated by two more

special cases.

"

When g = 10 , 4g* = 5000 and the larger root of (4.43) is 4152.9 .

5 x 107 and the larger root of (4.43) is 4.90 x 107,

(1]

When g = 100, 334

The difference between the bounds is unimportant in any study of desigus
within the useful range, since no Latin square type designs used in any
ordinary statistical experiment at the present time require a value of n
larger than 20 . For g> 3 the question of exactly which values of n
admit non-Latin square type designs wita Latin square p&remeter values is
still far from solved. For g = 3 , the scheme with n = 4 1is easily
shown to be unique, it was shown in counter-example 1 of section 4.1 that
the scheme with n = 5 is not unique, and the question of unigueness has

not been answered for the schemes with 6< n< 28,

In each of the three examples in Section 4.1, 8econd associates could
be defined by a set of orthogonal squares, suggesting that in any scheme
with Lg parsmater walues, elther first or second associetes cun be so de-
fined. No proof or disproof of this statement is kmown, but its implications
mey be illustrated by a numerical example. If a scheme with L4 parameter
values exists in which first associates cannot be defined by any set of 4
orthogonal squares, end if the statement is true,:then second associates
can be defined by a set of n-3 orthogonal squares, meaning that a set

of n-5 orthogonal Latin squares exists, end showing incidentally that
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I.g schemes exist for all g< n-3 . This is far more than is known for

any values of n > 10 which are not prime powers.

A number of methods have been employed by the writer in an attempt to
find a better result thun Theorem 4.9, but witnout much success. The
nature of some of these methods will be mentioned as a guide to possible
future work on the problem. The crucial step in the proof is to show
that each pair of first associates, together with n-2 of taeir common
first associates, form a set of n treatments which are pairwise first
associates. This means for the incidence matrix Al of first associates
that the submatrix A defined in (4.1), contains an (n-2) x (n-2)
submatrix with 1's in all off-diagonel positions, or in terms of linear
graphs, that in the graph whose incidence matrix is Al s every line is
contained in a complete n-point. This step of the proof, which took one
paragraph in the case of Theorem 4.2 and L2 schemes, has occupied most

of the present section in the general case, and has been divided into
three phases, as follows.

Part 1: Lemma 4.3, The number le of off-diagonal 0's in All
is small.

Part 2: Theorem 4.7; Lemme 4.4 and Theorems 4.4 to 4.6. If le
1s small, then each line is contained in a complete k-point, whers k
is fairly large.

Part 3 Theorén 4.8 and Lemma 4.5; parts of proof of Theorem 4.9.
If the k-points are s«fTiciently large, they can fit into the graph only

if the scheme has Latin squure structure.
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Tae remarks to be made about Parts 2 and 3 are brief and will precede the

discussion of Part 1.

The principal result used in Part 2 is Lemma 4.4, wnich mekes use of
tae lower bounds on m(t , D, sl) developed in Theorems 4.4 to 4.6. If
a proof along the lines used in Theorem 4.9 is to be improved at this
point, it would seem that the thing to look for is a stronger lower bound.
As pointed out following the proof of Lemma 4.4, & proof that m(t , D, sl)
is monotone decreasing in sl would immediately permit a stronger state-
ment of the lemma. While there is considerable literaturs on linear
graphs and their incidence matrices, the case in which there is a restric-
tion om the inner product of rows of the matrix does not seem to have

received much attention and it is possible that more information on the

number of O's in A could be obtained.

In Part 3, it is shown without difficulty that the first associates
of each treatment fall into disjoint sets, each forming with the given
treatment a set corresponding to a complete k-point of the graph. Then
in the proof of Theorem 4.9 the condition (4.48) is imposed. This insures
that each of the disjoint sets of first associates is large enough that
the nuaber of sets can be at most g , making it easy to prove that the
number of sets must be exactly g . It turns out that (4.48) requires
much larger values of n for all g> 4 than any of the other conditions
imposed. If additional information could be obtained about the k-points
in the gruph, or about the nunber of disjoint sets of first associutes,

it might be possible to replace condition (4.48) by some weaker requirement.
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Most of the writer's attempts to generalize Theorem 4.9 were concen-
trated on Part 1, the derivation of an upper bound for the number le
of off-diagonal 0's in submatrix A __ , or equivalently, of a lower

11
bound for the number Tll of 1's in A, + The definition of an
assoclation scheme for a PBIB design is enough to determine the number of
lines ia the corresponding graph, the number of triangles on a line, and
the nunber of occurrences of other configurations which involve taree
points of the graph. The definition does not determine the frequencies
with which any subgraphs having four or more points occur. The number of
complete 4-points which include treatments 1 and 2 in (4.1) is iden-
tical with the number of pairs of symmetrically located 1's in submatrix

A and is therefore very closely related to the problem. In an effort

ll ,
to determine the total number of complete 4-points in the graph, the more
2
general problem of classifying the (2 ) 4 x 4 principal minor submatrices

of All » which determine the subgraphs having 4 points, was begun,

Apart from permutations of rows and columns, thers are 1l distinct symmetric
4 x 4 incidence matrices with 0's on the mein diagonal, corresponding

to the 11 distinct graphs on 4 points.
L ] ® S r—- [ e V 1——‘
L 2 L] ° [ ] L 4 C—— L] J——.
X X Z N

Several equations were found in the 11 frequencies with which the 4 x 4

submatrices occurred in Al , for example by computing the total number
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of triangles of the graph in terms of the frequencics of the 4-graphs
containing triangles, and equating it to the known total number of tri-

4
is equal to a known coefficient of the charucteristic equation of Al

2
angles in the graph. The sum of the determinants of the (n )suhmtricos

and led to another equation. The 11 frequencies are expressible in
terms of the total numbers T SV of 1's in the subtmatrices A o of
Al and it was found advantageous to set up all the equations in terms of
the 'r/u,, « There are 16 submatrices but symmetry of Al glves 6
equations of the form Tuy = Ty e and reduces the number of independent
T/uv to 10 . Other methods were used to obtain equations in the T/u )
in particular an enumeration of the 3-chains joining pointe 1 and 2 of
the graph. The number could be expressed in terms of certain of the T/‘"V
and could be computed directly in terms of products and other operations
on the matrix Al , using metnods of Katz /25_/ &nd Ross and Harary ﬁQJ.
A similar enumeration of chains of 4 or more lines was investiguted. In
all, over 20 equations were obtained, reducing to & set of 9 indepen-
dent linear equations in the 10 toteals 'r,,,y » and a one-parameter
family of solutions was obtained. For reasons which will be stated in the
following paragraph, it was not to be expected that a tenth independent
equation could be determined, but the non-negutive nature of the T ey
provides some inequalities and leads to upper &nd lower bounds on the
totals 'r/uv and on the frequencies of the 11 types of 4 x 4 sub-
matrices. No relations loading to further inequalities were found, and
the best result obtained for 'rn was equivalent to inequulity (4.2) of
Lemma 4.3, The other information obtained on the T M7y @eppears to con-

tribute nothing to the problems of tais thesis, and will not be discussed.
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All of these results apply to any association 3cheme with two classes.

A comparison of inequality (4.2) with the situation in an actual
association scheme will show why an improved inequality was hoped for, as
well as a possible reason why one.was not found., The case of an L5
scheme with 25 treatments will be taken as an example.

Suppose that the treatments are represented by the numbers in the
following arruy, and that first associates are defined by rows and columns
of the array and the letters of a § x § Latin square with ABCDE

as its first row.

1 2 3 4 65
6 7 8 9 1]
11 12 13 14 15
16 17 18 19 20

21 22 23 24 25

The pil = & common first associates of treatments 1 and 2 are treat-

ments 3 , 4 and 5 , the treatment occurring with the letter A in
column 2 and the treatment occurring with the letter B in columm l».
Treatments 3 , 4 and 5 are pairwise first associates, accounting for
six 1's in the 5 x § submatrix All « Neither of the two remaining
treatments is a first assocliate of uny of treatments % , 4 and 5 . If
they are first associates of each other they lead to two more 1l's in

A and Tll =8 ; 1if they are second associates, T . = 6 ., The value

11 11
of Tll depends on whether or not the array g i occurs in the first
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two columns of the Latin square. The following two examples show that

either situation is possible.

A B C D E A B C D E
B A E C D B E A C D
C E D A B C A D E B
D C B E A D C E B A
E D A B C E D B A C

Both structures can occur in n x n Latin squares for many values of n ,
and probably for all n >3, and it is easy to show that in the two
possible cases the number Tll of 1's in the n xn submatriXx All is
either n%-5n + 6 or n°-5a0+ 8 . The number Z,, of off-diagonal 0's
is then 4n-6 or 4n-8 respectively. Thus Tll is not determined uni-
quely by the parameter values of the association schemes, and no system
of equations can lead to a unigue vualue for it. On the other hand, the
assertion of Leuna 4.5 in an L. scheme is 2, < 10n-20. This upper
bound is considerably larger than either of the possible values. In view
of the large discrepancy between this upper bound and either of the
possible values, there appear to be good grounds to be dissatisfied with
it, at least until a thorough search has been mede for a better one. The

efforts of the writer to improve Lemma 4.3 have already been described.

While the proof of Theorem 4.9 included a demonstration that in the

schemes involved, every pair of first associates is contained in an
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n-point, the weaker result that one n-point exists in the scheme would

have been sufficient in the case of some schemes. This was shown for L

2
schemes in Theorem 4.5, and is shown for a class of L5 schemes in the
following theorem. The pareameter values of LS schemes will now be
listed for easy reference.

v =%, K 2n-4
P, = ’
- 1
n, = 8(n-1) , | 2n-4 (n-2) (n-3) |
n_ = (n-l)(n-R) , 6 3n-9 ]
2 P.= .
2 l2m-9  n®-6n +10
L —
THEOREM 4.10. If an association scheme with two associate classes
has parameter values v = n® » By = 3(n-1) , pi‘l =n, vwhere n>1l4,

and there exists a set of n treatments which form a complete n-point,
then every pair of first associates is in such a set and the scheme is of
L5 type.

PROOF: Relations (2.2) to (2.5) may be used with the given parameter
values to show taat the remaining parameter values are those of an L3
scheme, Number treatments so that the set of treatments in the complete
n-point receives numbers 1 to n , with an arbitrary treatment of the
set designuted &s treatment n . Let © be a first associate of treat-
ment n which is not in the n-point but is otherwise arbitrary. Next
congider the piz = 20-4 +treatments which are first associates of treat-
ment n and second associates of O . Fewer taan n of these can be in

the n-point, so that (for n > 4) one such treatment not in the n-point

can be chosen. A treatment chosen in this way will be numbered n + 1 .
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The pair of first associates n , n +1 will now be used in an indirect
method of obtaining information about treatment © . The first step is a
classification of the treatments other than 1, 2, ... , n+1 into
four mutually exclusive sets. Choose notation so that the treatments in
each set have consecutive numbers and the four sets are numbered in the

order listed.

Set 1: common first associates of treatments n and n+1,
Set 2: the remaining first associates of treatment n (including @) ,
Set 3: the remaining first associates of treatment n + 1 ,

Set 4: common second associates of treatments n and n +1 .

By Lemma 4.1, treatment n + 1 has exactly g-1 =2 first associates in
the n-point, of which one is treatment n and the other must be one of
the common first associate of treatments n and n+ 1 . Set 1l consists
of the rest of the pil = n common first associates. Therefore Set 1

contains n-l1 treatments.

Treatment n has n1 = 3(n-1) first associates, of which n-1 are
in the n-point, one is treatment n +1 , &and n-l are in set 1 . By

difference, Set 2 contains n-2 treatmenta.

It may be shown that Sets 3 and 4 coatain 2n-4 and n%-50 + 6

treatments respectively, but these facts will not be used.

The rows and columns corresponding to Sets 1 to 4 determine sub-
matrices which will be denoted by D, as indicated in (4.53) below.

§/‘v and 3},7 will denote the number of 1l's and the number of



off-diagonal 0O's , respectively, in & row of Duy ; Tpy and %#1/
will denote the number of
respectively, in the entire submatrix D, . Unless otherwiss specified,

statements made for t#z/

(4.53) 'y

e o Ol
e o OWK
[ ] [ ]
L] L]

1's and the number of off-diagonal O0's ,
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and Zuy will be true for each row involved.

By Lemma 4.1, any treatment not in the n-point is the first associate

of exactly two treatments of the n-point.

one of these two treatments is treatment n ,

1 to n-1 .

exactly one 1 .

This implies that every row of E

If it is in Set 1 or Set 2,

1

and E2 contains

The inner product of two rows of Al is equal to pil =n or

2 _
Py = €

ates.

ment of Sets 1 to 4 may be expressed in terms of the row totals t

My
Among the first n-l1 elements in row n + 1 1is a single 1 which may

and one is among treatments

according as the two rows correspond to first or second associ-

The inner product of row n with the row corresponding to a treat-

Il,o'. e o o o osle o 0.0 o 01
1 !
by ‘ Treatments
er ‘ | 1 to n-1.
'l._'_.,..'._- ____:_..- - e - = e ® ® e-
0,11.11.10.03% 04; Treatment n_.
;101 .10.01. 10,0/ Treatment n+1.
11 : , ‘
‘eie' D . D D ) ! Set 1.
Ly MR8 a1 rows,
10! ! ! ‘
'e;e' D, D D ' Set 2

[ . a | .
1.0, ?l VS ?§ :_- __].D-% rows., _
.O:l' [} '
‘o'oh D | D \ D - ! Set 50
oy BL,ERES |
|0.0: | !
no:o. ! L Set 4.
1910, ! !
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contribute to the inner product of this row with other rows, and the
inner product cannot be expressed exactly in terms of the t%rV o How-
ever, inequalities can be obtained. The following relations are obtained

in this way.
Using inner products of row n with rows of Set 2,

L ] t = -l.
(4.54) t2.l+ 9o =8

Using inner products of row n +1 with rows of Set &,

Each row of Dz? has n-2 elements, or vhich n-3 e&re not on the mein

ciagonal of Al s giving

(4.56) t._+2z2 _=n-3,

) o
<e 2L

Statements (4.54), (4.55) end (4.5€) may be solved simulteneously to give

(4.57) z22<_ 3,

& statement which holds for every row of submetrix D”a .
<

Assume that 22”)> 0 , which is equivelent to seying that submetrix

&
Do
metrically located with respect to the diagonal. The rowe of Al

containg off-diagonul O's . Consider two such 0!'s which sre sym-
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conteining these O0's correspond to a pair of second &ssociates and have
inner product equel to €6 , meaning that exactly 6 columns of Al con-
tain 1's in both of these columns., Column n 1is one such column.
Therefore at most § columns of 022 contain 1's in both of these

TOWE. D22 contains n-2 columns, and each of the remaining n-7 columns
must contain a O in &t least one of the two rows. This total includes
the two 0O's first considered. One of the rows must contain at least

helf of this total, which mey be expressed 55-9 » where [x] denotes

the grestest integer < x . Therefore, under the assumption that

— S—e——— o -

(4.58) 2222 l-:n_;‘i] .

This violetes (4.57) for &ll n > 14, Therefore for n >14 , D,, Con-

tains 1's in ell cff-diagonal positions. The treatments of Set & to-

Zoo >0 , there rust be at least ome row for which

gether with treetment n e&re therefore puairwise first associates and form
& complete (n-l1)-point, Treetment @ 1is therefore contained with treat-
ment n in & complete (n-1l)-point. PBut © is an arbitrary treetment of
the set of first essociates of treatment n which are not in the initial
n-point., Therefore every first associate of trectment n is contained

with trestment n in & complete configuration with at least n-l treect-

2
11

and for such values of n , Lemma 4.5 mey be applied to show that the

ments. n-1 exceeds 3(pil+ P, +2) =4(n+6+2) forell n21l,
n-3 first essociates of treetment n full into disjoint sets of &t
least n-2 trectments, each set forming & complete configuretion with

trectment n . By lemme 4.1, none of the disjoint sets can contain more
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then n-1 treatments. It is easily verified that these conditions can
be satisfied only if there are 3 sets, each with exactly n-1 first
associates of treetment n . Therefore treatment n 1is in 3 n-points
which have no other treetment in common, and is contained with every one
of its first essociates in a complete n-point. But in the numbering of
trectments, treztment n was takén as an arbitrary trectment of the
given n-point., Therefore every treatment of the given n-point is con-
tained with each of its first associates in a complete n-point. Every
one of the n®-n treatments not in the initial set of n is a first
associate of two treetments of the set &nd is therefore in at least one
complete n-point. Finally, since every treatment in the scheme is con-
tained in an n-point, the argument used here shows that every trectment
is contained with each of its first associates in an n-point. Theorem
4.1 then shows that the scheme is of Latin square type and the proof is

complete.

Theorem 4.10 is vacuous for &ll values of n > 29 , for which
Theorem 4.9 gives the stronger result that any scheme with L5 parameter
velues must have Ly structure. Theorem 4.10 shows that for 14<n< 28,
if the existence of one n-point in an association scheme with L3 paru-
meter values can be demonstrated, the scheme must have L5 structure.
The possibilities for extending Theorem 4.1C to Latin square type schemes
with more than three constraints or to smeller values of h in the case
of three constraints appear to be about as good as the possibilities alreedy
discussed for the extension of Theorem 4.9. Exemple 2 of Section 4.1,

which shows that non-L3 schemes with L5 parameter values can exist, is
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not known to be & counter-example to Theorem 4.10, because it is not
known whether the associetion scheme contains any complete S-point, It
was verified that & particular pair of first associates was not contained
in a S5-point, but the scheme contains 150 peirs of first essocisates,

most of which have not been invectigated.

A1l of the theorems and lemmas of this section except Theorems 4.9
and 4.10 apply to eny association scheme with two associate classes. The
same is true of Lemma 4.2 in the previous section., It is possible to use
them to investigate the structure of association schemes not in the Latin
square series. Theorem 4.7 provides & sufficient condition for the
existence of a complete k-point, or set of k treatments which are pair-
wise first assoclates, and is easily epplied to any associztion scheme.
This was done with the schemes listed in Tetle II and it was found that

in most cases g~ is imaginary and the theorem proves nothing. How-

1
ever, Cr]. is real and satisfies the required inequality for schemes
of the Trienguler series with 66 or more treatments. It is possible to
use Theorem 4.7 as the basis of a proof that for n 212 , the only
essociation scheme with v = (%) treatments and the parameter values of
the Trienguler series is the scheme whose construction wes described ir
Section 2.1. It is not known vhether this is & new result. In eny case,
the proof will not be given here. Speesking rather loosely, the thing
which is needed to meke Theorem 4.7 work is a large value of pil and a
small velue of p%l « A smell velue of pil meuns & smell value for
the inner product of two rows of the association matrix which correspond

to second associates and is closely related to the restriction om such
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inner products steted in Defirition 4.1 and used in several theorems of
this section, In most of the schemes of Teble II which are not in the
Triangular or Latin Square series, pfl is at least as lerge as p%l
end it can probably not be expected that the methods of this section
will show the existence im these schemes of k-points for amy large k .
A more significant fact for meny associstion schemes may be the non-

existence of k-points., The methods of this chapter were not designed

to prove this.



V. SUMMARY

CHAPTER I. GENERAL PROPERTIES OF PARTIALLY BALANCED DESIGNS AND
ASSOCIATION SCHEMES

Section 1,1, Introduction,

This section gives some simple examples of incomplete block designs
and partially balanced incomplete block designs im particular, fellowed
by a formal definition of PBIB designs and a basic list of relatioms

satisfied by the parameters of the designs,

Section 1,2, Association Schemes and Incidence Matrices,

In this sectiom association schemes are defined with some simple
examples, andi the incidence matrices of association schemes, demoted
by Ay, are introduced, The relation of these matrices to the more
familiar incidence matrix N of the blocks of the design is discussed
briefly,

Sectiem 1,3, Applications and Algebraic Properties of the Matrices A;.
Theorem 1.1 gives a rale (1.16) for forming products of the
matrices Aj. This result is used im several parts of Chapters II and
1II, and has other applicatioms which are not treated in this disserta-
tiom, Theorem 1,2 shows that any set of matrices satisfying (1.16)
and a few light restrictioms may be used to define an asseciatiom scheme
satisfying the conditioms of partial balance, This theorem is used in

the proef of Theorem 3,3,
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Association incidence matrices do not seem to have received much
study, Nearly all of the results presented or mentioned in this
section were obtained as original results by the writer, but some of
them have recently been ebtained by others, to whom credit is givea in

the discussion following Theorem 1,2,

CHAPTER II. ENUMERATION OF POSSIBLE DESIGNS AND ASSOCIATION SCHEMES
WITH TWO ASSOCIATE CLASSES |

Section 2,1, The Class of PBIB Designs with Two Associate Classes,
The general expressions given im Chapter I for partially bal-
anced designs are specialized im (2,1) to (2,5) to the important
special case of designs with two associate classes, It is cemvenieat
te classify PBIB designs according to the method of defining the
association relation, and a classification due to Bese and Shimamoto ef
the known association schemes with two classes is adopted here, Pour
of the types, group divisible, triangular, simple, and cyclic, are
described briefly, and the fifth type, Latin square, is discussed in
considerable detail, The association scheme of a design of Latin square
type with g constraints, briefly denoted by Lg s 1s ordinarily defined
in temms of a set of g-2 mutually orthogonal Latin squares; the
present treatment is based instead on a set of g mutually orthogonal
squares which do not necessarily have the lLatin square property, The
symnetry of an Lg association scheme is emphasized by this point of
view, which is not new but does not seem t0 have been discussed much
in the available literature, Expressions for the parameter values of

Lg schemes are derived, first in expressions (2,9), then in a new
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notation in (2,12) for use in Chapter III, It is pointed out that
for certain negative values of the arguments, these expressions give
sets of parameter values which are different from those for any of the
schemes classified by Bose and Shimamoto, The possible new schemes are
given the name "negative Latin square" and the brief notation L;,
where g 1is a negative integer, and are studied at some length‘in
Chapter III,

This section is primarily a collection of known results, with the
addition of some new notatiom and the definitiom ef megative Latin

square designs,

Section 2,2, Emumeration of Association Schemes,

An enumeration of association schemes may be considered a pre-
liminary step in the exumeration of combinatorially possible PBIB
designs and is carried out in this sectiom for desigms with twe
assoclate classes, Group divisible schemes are easily enumerated and
are omitted from the present list, The enumeratiom is arbitrarily
limited to schemes with v < 100, a figure which was chesen to include
most of the schemes withim the range useful to experimenters, and teo
include schemes related to 10 x 10 Latin squares,

Some notation of Connor and Clatworthy is adopted and ome of their
results is listed as Theorem 2,0, This theorem specifies a one-
parameter family of non-group-divisible schemes, whose parameter values
are listed in Table Ia of the Appendix, All other nom-group-divisible
schemes are shown in Theorem 2,1 to be contained in a larger family
whose parameter values can be listed systematically, Table Ib of the
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Appendix is a working table in which this listing is carried out, This
list is shortened semewhat by omitting the complement of each scheme
listed, that is, the scheme obtained by changing the designatioms of
first and second associates, Table II collects the results of
Tables Ia and Ib im an orderly arrangemsnt, The parameter values
of known association schemes are identified in this table, along with
sene which are proved impossible by later thecrems of this sectiom,
Table II 1lists 101 sets of parameter values, of which four are
shown to be impossible, 50 were already known, 6 are constructed for
the first time in this dissertation, and the remaining 41 are still
unknown,

Theorems 2,2 and 2,3 shew that if the number of treatments in
a PBIB design with two asseciate classes is of the form p+1l eor
p for any prime p, then the only pessible association schemes are ef
greup divisible type or the type specified by Theorem 2,0, respectively,
Theorems 2,4k te 2,8 state additional necessary cenditioms fer the
existence ef associatien schemes with two associate classes, The
condition stated im Theorem 2.5 is used te shertem the cemputatiom of
Table Ib, The other theorems provide the four impossibility proofs
mentioned in cennection with Table II, and give some infermation abeut
the structure ef any peesible scheme im approximately 12 eof the um-
known cases, Lemma 2,2, used in the proof of Theerem 2,8, specializes
Theorem 1.2 to the case of twe associate classes, giving a simple
cenditien that a given matrix be the incidence matrix of first asseciates,
It is used again im Section 3.3,

An exhaustive list of possible partially balanced designs was often
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premised by the earlier writers in the field but does net seem te have
appeared, altheugh Bese, Clatworthy and Shrikhaande have published
tables which include virtually all designs withim the practical range
kmewa up to 1953, The present tabulation is believed to be new, It
sheuld be of seme use in the applicatien ef PBIB designs to experiments,
and of further use in later studies of the structure of designs amd
associatien schemes, Alse new in this section are mest ef the details
of Theerem 2,1 and all ef Theerems 2,2 te 2,8, Several immediate
additions to the tables given here are pessible, including am extensien
te seme values of v > 100, and further investigatien ef the Al
schemss which are unknewn, Anether questiem te be discussed in seme
aspects fer Latin square type designs in Chapter IV but comsidered
only incideatally fer ether designs, is the questieom of the number ef

solutiens of a censtructible asseciatien schems,

Sectiom 2,3, Enumeratien ef Pessible Designs fer Particular Asseciaitiem
Schemes,

Several knewn facts absut PBIB designs are reviewed and used te
develep a systematic methed ef emumerating all pessible designe for a
given asgseciatien scheme, The methed is eutlimed im this sectiom and
carried eut im Tables III and IV ef the Appemdix, The enumeratiem
is limited te censtructed asseciatiem schemes ef the L8 and Lg’ series,
and fer each asseciatien scheme is limited te desigms with r < 10 and
k €10, Many eof the designs im Table IV are easily cemstructed amd
a few are easily shewn te be impessible; all designs either cemstructed
or kmown te be impessible are identified im the table, Minay of theam
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are easily enumerated by a few methods which are listed for convenience
as Theorems 2,9 to 2,15 in this section, Two designs which have been
constructed by the author by other methods are listed in Section A.3 of
the Appendix, Enumeration proofs of impossibility of three designs
appear in the same section, Section 2,3 concludes with a brief men-
tion of singular designs,

The author is not sure that any of the material in Section 2,3 is
new, though no 1list of possible designs as inclusive as Table IV seems
to have appeared and Theorems 2,12 to 2,14 may be new, Tables III and
IV could easily be extended to designs with assoclation schemes of>othor
types, and to designs with r >10 The latter extension would be of
dubious value to experimenters but might give a useful background for
further theoretical studies, The large number of unknown designs in
any list such as Table 1V suggests a comparably large collection of
potential theorems on the construction or impossibility of designs,

CHAPTER III, NEGATIVE LATIN SQUARE TYPE ASSOCIATION SCHEMES

Section 3,1, Relationships Between Latin Square and Negative Latin

Square Association Schemes,

It is pointed out that the Negative Latin square schemes share
with the ordinary Latin square schemes the property that the multi-
plicities O(l and 0(2 of the characteristic roots of NN! are equal
in some order to the numbers ng and n, of first and Asecond
associates of a treatment, It is shown in Theorem 3,1 that the only other
schemes with this property are the one-parameter family specified by
Theorem 2,0, There is some discussion of two alternate notations for

the parameter values of the negative Latin square series, In one
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notatien, negative integer parameters are used, n* the negative square
reet of v= a2 and ﬂ" . the negative integer which is used as a sub-
script in the symbel Lg*, Im this netatien, the expressiens fer the
parameter values have the same form as these fer the Latin square series,
The ether netatien is based en the pesitive square reet of v and the
aunerical value ef the subscript in the symbel Lg* and dees net lead
te expressiens ef the same ferm but is more cenvenient fer seme purpeses,
The sectien cencludes with some remarks abeut the relatiom between
negative Latin square schemes and finite Euclidean plane geemetries,

The e:d.st.énce of the geometry is a sufficient but net a necessary con-
ditien fer the existence of an erdinary Latin square schems, The
existence of a cennection either way between the geometry and the nega-
tive Latin square scheme has net been preved or disproved,

The cemputation of the multiplicities X i of the characteristic
reots of NN! was first carried out for Lg designs by Cenner and
Clatwerthy, using a methed which immediately applies te Lg* designs,
The class of negative Latin square designs and associatien schemes was
defined in Section 2,1 and the study of the cennectien between the

(o4 4 and the n; 1is new im this sectien,

Sectien 3.2, Censtruction ef Negative Latin Square Type Association
Schemss by a Method Based en Finite Fields,
Theorem 3,2 provides a methed of constructing a wide class of
association schemes from finite fields, In general the schemes have
more than two asseciate classes, Methods are described for setting

dewn the asseciation scheme and fer cemputing the values ef the par-

ameters n; and p&k . PFollowing an illustrative example using the
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field with 16 elements there is a discussion of two families of schemes
vwhich can be constructed when the order of the finite field is a perfect
square n2 (which requires that it be an even power of some prime),
The simpler of these two schemes is shown to be equivalent to the finite
Euclidean plane with n points on a line, and the parameter values are
computed, The same computation for the later scheme is completed later
in the section for several particular values of n , but is not carried
out in general,

An association relation defined by combining associate classes in a
scheme with three or more classes will not in general satisfy the condi-
tions of partial balance, Theorem 3,3 states necessary and sufficient
conditions for a relation defined in this way to satisfy the definition
of an association scheme, 1In Corollary 3.3 a simplified form of the
conditions is stated for the case in which the new scheme has two classes,
The proof of the theorem makes use of association matrices and applies
Theorems 1,1 and 1,2, )

The method of Corollary 3,3 is then applied to the schemes constructed
for n2 treatments by the method of Theorem 3,2, It is shown that Lg
schemes for any g < n can be constructed in this way from the schemes

of the first family for each value of v = n2

vhich is a prime power,
The second family of schemes is related to negative Latin square schemes,
four of which are constructed in this section, The method either fails

or is not applicable to the remaining L * schemes taken up in the pres-

g
ent study, As a result of their common origin from a finite field, the
Lg* scheme with n2 treataents constructed here and the finite Euclid-

ean plane with n2 points are related in a way which is shown to permit
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a geometrical interpretation of the scheme,

Theorems 3,2 and 3,3 both have applications beyond those developed
in this section, Both theorems were derived by the writer but the equiv-
alent of Theorem 3,2 was published independently by Sprott in 1955, be-
fores the writing of this dissertation was completed, A comparison of
the present work with that of Sprott appears in the coneluding paragraph
of the section, The Lg* schemes constructed here are believed to be

new,

Section 3,3, Construction of a Negative Latin Square Type Scheme
with 100 Treatments by Enumeration,

In this section a detailed study is made of a particular association
scheme with 100 treatments, The 100 x 100 incidence matrix A, is
studied in detail and because of results proved in earlier chapters of
this dissertation and because of some simplifying circumstances for the
particular schems, it' is possible to obtain rather complete information
about properties of certain submatrices of Ay . It is shown in partic-
ular that one 22 x 77 submatrix S 1is the incidence matrix for the
blocks of a balanced incomplete block (BIB) design and that if the design
is constructed the entire matrix A can be constructed from it, The
construction of the balanced design is the part of the section which uses
empirical methods, and even though some effective shortcuts are used,
the reader has to put up with the individual examination of about half of
the 77 blocks of the design, following some of them through several
stages of incompletion and false starts, Once the design is constructed,

the association matrix Al can be constructed in short order, The
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balanced design itself is a by-product, and not the only one, The dual
of the design, obtained by interchanging the notions of treatment and
block, is found to be a PBIB design with a previously unknown association
scheme whose matrix of first associates appears as another submatrix of
A; and which is constructed here for the first time, Other submatrices
of Al are related to still other designs and to some interesting ar-
rangements of L x 4 orthogonal squares,

This section applies several methods of Chapters I and II which may
be new, results in two association schemes which are believed to be new,
and gives constructions of several other incomplete block designs and
other combinatorial arrangements which may be of interest, The scheme
with 100 treatments is in the negative Latin square series and cannot
be constructed by the method of Section 3,2 because there is no finite
field with 100 elements, The scheme may possibly have a connection
with the unsolved question of the existence of orthogonal 10 x 10
squares, but the author has no conjecture as to what sort of connection

there might be,
CHAPTER IV, THE STRUCTURE OF LATIN SQUARE TYPE ASSOCIATION SCHEMES

Section 4,1 Preliminary Discussion of Uniqueness, and Some
Counter-examples,
Given any set of g mutually orthogonal n x n squares, an Lg
scheme can be constructed by using rows of the squares to define first

associates, It is not obviously true that all schemss with the
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parameter values of the Latin square series can be constructed in this
way, If it is true for a particular pair of values of n and g, so
that the existence of a scheme with the appropriate parameter values
implies the existence of the set of orthogonal squares, we shall say

that the L8 scheme for n2

treatments is unique, The term unique
will be used in this situation whether or not the set of orthogonal
squares is unique, and questions of emumeration of Latin squares are not
taken up here, An ILg association scheme will be said not to be
unique if there exists a scheme having the same parameter values but no
set of orthogonal squares exists by which first associates in the scheme
can be defined, Three examples are given in this section of Lg
schemes which are not unique,

If first associates in a scheme cannot be defined by orthogonal
squares, it may be that second associates can; in fact, this is the
case in each of the three examples, It may be conjectured that in any
scheme with Latin square parameter values, either first or second
associates may be defined by a suitable set of Latin squares, No proof
or disproof of this conjecture is attempted in this chapter, Instead
it 1s proved in Sections 4.2 and 4,3 that for a fixed mumber g of
constraints and sufficiently large n, the L8 scheme for n? treat-
ments is unique in the sense defined above, An alternate statement is
that for a fixed number n? of treatments and a sufficiently small
number g of constraints, the existence of the association scheme is
equivalent to the existence of the set of orthogonal squares, For a
comparison of these results with the conjecture just stated, the reader

is referred to the discussion following Corollary 4.9 in Section 4.3.
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Section 4.1 contains a statement of some terminology of linear graphs

which is used throughout Chapter IV and in this summary,

Section 4.2, On the Uniqueness of L, Association Schemes,

The uniqueness of Latin square type association schemes with two
constraints is taken up in this section, though some of the theorems
and lemmas apply more generally, The uniqueness of an Lg association
scheme for n2 treatments is proved if it can be shown that each treat-
ment is contained in g complete n-points which have no treatments in
common in addition to the initial one, In Theorem 4,1 it is proved
that for n 3 (g-l)2 it is sufficient to show that each pair of
first associates is contained in one complete n-point, This is pre-
ceded by two lemmas, If a scheme with the parameter values of the
Latin square series contains n treatments forming a complets con-
figuration, then Lemma 4,1 reveals a good deal of uniformity in the
association relations of the n treatments with the remaining nz-n
treatments, It is an immediate corollary that no complete configura-
tion having more than n points can occur in a scheme with Latin square
parameter values, Both Lemma 4,1 and its corollary are repeatedly
useful in this chapter, Lemma 4,2 deals with the number of treatments
which two complete configurations can have in common in an I.8 scheme,
and is slightly stronger in this case than Theorem 4,8 and Lemma 4.5,
which apply to a wider class of schemes,

Unlike the other theorems and lemmas of this section, Lemma 4,3 is
not restricted to schemes with Lg parameter values, It states an

upper bound for the number of off-diagonal O's in a specified submatrix
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of the association matrix Ay in any scheme with two associate classes,
This of course is equivalent to a lower bound on the number of 1's,
In Theorem 4.2, the principal result of the section, the same submatrix
is examined in the case of L, schemes, and it is shown that with the
single exception of the scheme with 16 treatments, the lower bound of
Lemma 4,3 1s inconsistent with the presence of any off-diagonal O's
in the submatrix, The portion of the linear graph corresponding to the
submatrix is then a complete configuration and it follows easily that
every pair of first associates is contained in a complete n-point,
Theorem 4,1 then shows that the L, scheme is unique, The scheme
with 16 treatments had already been shown by one of the examples of
Section 4,1 not to be unique, Additional information in this excep-
tional case is given by Theorem 4,3,

In a passage following the proof of Theorem 4,2 it is shown that
unless the methods used in this section can be improved, it will not
be possible to generalize Theorem 4,2 to other I.g schemes, The

new methods and the generalization appear in Section 4.3,

Section 4.3, On the Uniqueness of L, Association Schemes, g 2 3.

The principal results of this section are Theorem and Corollary L4,9,
in which are established the uniqueness of an infinite class of Latin
square type association schemes, The preparation for this theorem is
long and somewhat indirect, involving five theorems and two lemmas in
this section, as well as some of the material of Section 4,2,

Theorems 4,4 to 4,6 and Lemma 4.4 are general results on the
structure of incidence matrices, all with a bearing on the existence of

complete configurations, or equivalently the existence of principal
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minor submatrices with 1l's in all off-diagonal positions, These
theorems are arranged in order of decreasing generality, Lemma A.A
stating a particular fact which is used in Theorem 4,7,

A property of association matrices of PBIB designs and of their
submatrices is that the inner products of rows'or colunns taken as
vectors are subject to restrictions, 1In this series of theorems the
requirement is imposed that certain inner products must not exceed a
fixed value D, While rectangular incidence matrices can be studied
from this point of view, the present investigation is limited to
symmetric incidence matrices with O's on the main diagonal, which will
be taken in the applications to be principal minor submatrices of
association matrices, The pairs of rows subject to the restriction omn
inner products are those which contain a pair of off-diagonal O's
symmetrically located with respect to the main diagonal; in the matrix
Al of first associates in an association scheme, such a pair of rows
corresponds to a pair of second associates, and the inner product of the
two rows of A; 1is equal to p]2_1. The imner product of the same two
rows of any submatrix cannot be larger than pil and may be known in
some cases to be bounded by some definite smaller value, In this
application of Theorems 4,4 to 4,6 the least upper bound that can be
established for the inner product of such rows is taken as the value D,

This series of theorems takes up the connection between the nunber
of 1l's in a matrix of the form considered and the order of submatrices
which have 1l's in all off-diagonal positions, When the matrices are
interpreted as linear graphs, this becomes a connection between the
number of lines in the guph and the order of complete subgraphs,
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Numerous theorems of this kind are already known but not for the case in
which row imer products are restricted, Theorem 4.6 is very closely
related to one of these theorems, A number of other approaches to the
study of incidence matrices having restrictions om row inner products
are possible, and some are discussed in a passage following Corellary
4.9,

Definition 4.2, applying to symmetric incidence matrices with O's
on thé main diagonal, describes a certain permutation of rows and columns
and a partition of the matrix into blocks in such a way that the blocks
lying on the main diagonal are square and contain no other O0's, No-
tation is introduced including notation for the orders of the 'diagonal
blocks, For a matrix partitioned in this form, Theorem 4,4 expresses
upper and lower bounds for Z, the total number of off-diagonal O's, as
functions of the orders of the diagonal blocks, the order t of the
matrix, and the upper bound D on the restricted inner products, Ap-
plication of this theorem is complicated by the fact that a particular
partitior may involve a large mumber of diagonal blocks and by the fact
that to obtain results of any generality it may be necessary to consider
a large number of possible partitions, Some numerical examples illus-
trate the application of the theorem,

The lower bounds on Z are the ones of greatest interest in this
study, and more useful lower bounds are obtained im Corollary 4.4,
Theorem 4.5 and Theorem A.6. Im each of these the lower bound is
expressed in terms of the order t of the matrix, the bound D on inner
products, and the maximum order sy for a principal minor submatrix with-

out off-diagonal O's, The minimum value of Z for given ¢, D and
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8; 1is denoted by n(t , D, al) and is primarily considered for fixed
t and D , in which case it is a function of s; . The lower bounds
found for 2 may &lso be regarded as functions of s, ; and are lower
bounds for m(t , D, al) . They are illustrated for two typical cases
in two figures, The exact nature of m(t , D , sy) is not known, It
may be conjectured that it is monotone decreasing in s . If this funec-
tion or a lowervbound for it which is a function of s, is monotone de-
creasing, then certain inequalities on Z are sufficient to imply cer-
tain inequalities on s . In Lemma 4,4, which applies to matrices
satisfying certain specified conditions and is used directly in the proof
of Theorem 4,7, an implication of this kind is used to establish a lower
bound on 3 . This amounts to a lower bound on the order of the maximal
complete configuration of the graph, The proof of the lemma includes a
demonstration that the lower bounds on Z are monotone decreasing for a
certain range of values of sl .

Theorem 4.7, the first theorem of this section which applies only
to the incidence matrices of association schemes, defines a quantity di
in terms of the parameters of the association scheme and states sufficient
conditions that the scheme contain a complete k-point of order k 2> aqgt2,
The proof deals with a submatrix All of the incidence matrix Al and
makes use of Lemmas 4.3 and 4.4b, o0y plays the role of the lower bound

on s, in Lemma 4.4, and is defined in such a way in  (4.37) that

1
the result of Lemma 4,3 provides the inequality on Z needed as a

hypothesis, The other hypotheses of Theorem h.? guarantee that sl
falls in the range for which Lemma 4.4 1is valid, It can be shown that
Theorem 4,7 applies to many association schemes with L.g parameter

values and to some schemes of other types, The conclusion of the theorem
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for these schemes is that every pair of first associates is contained in
a complete configuration of order at least equal to a value which is
specified,

Theorem 4,8 applies to complete configurations in an association
scheme, The principal result is that if two complete configurations
have at least two treatments im commom and if the numbers of treatments im .
the sets are sufficiently large, then all of the treatments in their
union form a complete configuratiom, This theorem may be described inm
another way by borrowing a term used in the sociometric applications of
linear graphs and referring to a complete configuration as a clique, 1Im
this terminology, Theorem 4,8 states that if two sufficiently large
cliques have more than one member im common, they must merge, Lemma 4,5
states a further result which in the same language has the following word-
ing: if all of an individual's associates are fellow members with him in
cliques having more tham a specified critical number of members, them none
of the associates are menmbers of more than one of the cliques, (Two
people who meet in a certain clique never meet anywhere ols-.) The proofs
of Theorem 4,8 and Lemma 4,5 make use of properties of associationm
schemes and would of course apply to a social group only if they met the
rather stringent requirements of partial balance, as defined im Sectiom 1,1.

Theoren 4,9, applying several of the preceding results, finally
establishes that for amy fixed mumber g of constraints and for all ex-
cept a fimite number of possible exceptional numbers n2 of treatments, the
association scheme of Latin square type with g comstraints is unique
in the semss that there exists mo other type of scheme havimng the same

parameter values, Corollary 4,9 uses numerical computatioms to give
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explicit lower bounds below which any exceptional values of n nmust
lie, The proof of Theorem 4.9 is summarized and discussed in some
detail in a passage following the proof of Corollary 4.9,

Theorem 4,10 furnishes some additional information about some of
the excepticnal cases not covered by Theorem 4.9, Applying to L3
schemes, it is analogous to Theorem 4.3, The proof is more difficult
than that of Theorem 4.3, 1illustrating the increasing complexity of
Latin square type association schemes as the number of constraints in-
creases,

The section concludes with a statement without proof of a unique-
ness theorem very similar to those of this chapter, applying to a class
of triangular type association schemes, It appears that the methods
of this chapter will not apply to the remaining types of association
schemes without some modification , Reference has already been made
to a passage following Corollary 4.9 in which possible further results
are discussed, The opening paragraph of Section 4,1 contains some re-
marks on the significance of the uniqueness proofs of this chapter, The

writer believes that most of the theorems and proofs are new,






APPENDIX

A,1 Tables of Parameter Values of Association Schemes,

The tables in this section are constructed by methods developed in

Section 2,2, Table II glves values of the parameters v , ny , p}k

and K 4 for all PBIB designs with two associate classes, not of group
divisible type, and having v< 100 , The parameter values listed are
determined by the association scheme of a design and are independent of
the values of r , k , b and A 4 + Tables Ia and Ib show the pre-
liminary computation used in constructing Table II, Each table is pre-
ceded by an explanation of the notation used,

TABIE Ia, PRELIMINARY COMPUTATION OF THE PARAMETER VALUES OF
ASSOCIATION SCHEMES BY MEANS OF THEOREM 2,0, Theorem 2,0, due to
Connor and Clatworthy / 17/, specifies a class of association schemes
vwhose parameter values may all be expressed in terms of a positive inte-
gral parameter t , Values of ¢ from 1 to 2, are listed in the
first colum of this table, The values in the next eight colums are

obtained from the following equations, stated in Theoream 2,0,

1 -2 _1 .2 _
Pl2"Pl2=PR2 =M1 =t ,
nImpyz Xy=2,

voLltt+1l

The final colum of the table, headed # , gives the serial number by
which the scheme is identified in Tadble 1II,
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TABIE Ia

PRELIMINARY COMPUTATION OF PARAMETER VALUES OF ASSOCIATION
SCHEMES BY MEANS OF THEOREM 2,0

T 2 1 2
t P, P Py Py By B, Xy v #
1 1 1 1 1 2 2 2 5 1
2 2 2 2 2 'y L & 9 2
3 3 3 3 3 6 6 é 13 h
& 'y b & 4 8 8 8 17 8
5 5 5 5 5 10 10 10 21 10
6 6 6 6 6 12 12 12 25 12
7 7 7 7 7 14 1 14 29 17
8 8 8 8 8 16 16 16 33 18
9 9 9 9 9 18 18 18 37 24
10 10 10 10 10 20 20 20 L1 26
11 11 11 11 1 22 22 2 45 29
12 12 12 12 12 2l 24 24 49 33
13 13 13 13 13 26 26 26 53 37
1, bV 1k 1, 14 28 28 28 57 h3.
15 15 15 15 15 30 30 30 61 &b
16 16 16 16 16 32 32 32 65 5k
17 17 17 17 17 3% 34 3k 69 57
18 18 18 18 18 36 36 36 73 59
19 19 19 19 19 38 38 38 Vo' 65
20 20 20 20 20 4O 4O 40 81 73
21 21 2 2 2 L2 &2 W2 85 78
22 22 22 22 22 A kb Lk 89 80
23 23 23 23 23 hb hb L6 93 82
2l 24 24 2 24 A8 48 48 97 89



TABLE Ib, PRELIMINARY COMPUTATION OF THE PARAMETER VALUES OF
ASSOCIATION SCHEMES BY MEANS OF THEOREM 2,1, Theorem 2,1 specifies all
association schemes with two associate classes which are not of group di-
visible type and are not given by Theorem 2,0, The additional restric-
tion (2,25),

FosMe 3 1f FaTR,, the mn
is imposed to avoid duplication in the table, The schemes are listed in
order of increasing values of \/'Z)_, a parameter which was intreduced in
[17] and is used in this dissertation, For the schemes being tabulated
and s fixed value of VA s 8ll possible pdn of values 9}2 » piz
appear as consecutive entries in row VO of the table of Figure 6 in
Section 2,2, The consecutive values of the celumn index ¢ in the same
table are denoted by 8 and s+1 and are used in the computation ef
columns 9 and 10 ef Table Ib, The values p{z and piz are listed
incolumns 2 and 3,

The parameter Y appearing in column 4 4is defined by

Veshoods

The paramsters péz and pil, appearing in celumms 5 and 6 ,

satisfy (2,24),

12 -1 2
P22P1) - P12R12 -

The value Py must therefore be a divisor ef the product of the entries
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incelnme 2 and 3, It is also required to satisfy (2,27),

P 2Y+1 .

Values of pzz and pil satisfying these requirements but for which

1, 2 .1 42 -
ot P2 Y P TR TV -1299

are also omitted and the omission is indicated by a row of dashes, Fi-

mally, if pj, = pfz » ‘the restriction n, < n, implies p33 Py; s
and values such that p]2‘2 > pil are emitted in this case,

The values of n, and ny , appearing in the next eolums, are
deternined by (2,4),

If n; and n, are both odd, Theorem 2,5 shows that no association
scheme can exist, 1In this case, the word "odd" is entered in each of
the two colums and the rest of the row of the table is left blank,

The quantities (s +1)1a2 and sn, , listed in the next colums of
the table, are used in the computation of X, ,

The parameter X 1 which appears in columm 11 is computed by (2.28),

o(la(l-rl)izﬁ-v-al
N

and must be a positive integer for any association scheme, If A  is
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fractional the letter "f" is listed in colunm 11 and the rest of the
row is left blank,

Ir X 1 1s an integer, the value v 1is listed in the next column,
It is determined by (2.2),

v=11+n2+1 .

The final column of Table Tb, headed # , lists for each cemplete
set of paramster values the serial mmber by which the set is identified
in Table II,
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TABLE Ib

PRELIMINARY COMPUTATION OF PARAMETER VALUES OF ASSOCIATION
SCHEMES BY MEANS OF THEOREM 2,1

n, m(sl)n, ey X,

2N

-~

16

nogo o

3 3

O T\N~
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TABLE Ib (continued)

p%l n, n, (s+1)n2 snl a(l v #

lﬁgﬁgsqm KQQO\PUMI

11 22 2 22
12 20 2 20
16 16 32 16
18 15 36 15
21 U 4 1
26 13 52 13
36 12 72 12
66 11 132 1

13 52 39 104
L2 84
15 36 45 72
16 32 48 b4
18 27 5k Sk
20 2, 60 48
22 2 66 kb

36 21
L9 30

9 31

BRGBREE rrnwrunabh
F
13
Brannrnanin wBronnen
3
E

8 25 20 75 40

6 30 18 9 36 9 32
5 34 17 102 34 4

L Lo 16 120 32 f

3 50 15 150 30 4

2 7 1, 210 28 3 85 75
72 1 84 56 252 L, 99 90
B 15 60 60 180 f

36 16 L8 64 1 £

24 18 36 72 108 f

18 20 30 80 90 f

16 21 28 8, 8, 2, 50 35
12 2, 2, 9 72 24 L9 33
1 13 26 26 26 ¢

12 14 24 2”8 2 £

7 edd odd

6 21 18 L2 18 4

4 28 16 56 16 9 45 28
3 35 15 70 15 f

2 9 L 98 1 L, 64 47



TABLE Ib (centinued)

My M m (sdny ey oy

L5 16 60 48 120 21

1
P22
N
5 36 edd edd
6 30 18 45 54 90 18
9 20 odd odd
10 18 22 33 66 66 4
12 15 2, 30 72 6 £
15 12 odd odd
18 10 30 25 90 50 f
20 9 32 2 9% 4 18
30 6 LK 21 126 K2 2
36 5 L8 20 Uy 40 a3
45 L, odd odd
60 3 72 18 26 136
L 60 19 76 76 228 138
5 L8 2 64 8 192 3
6 40 2 56 8, 168 o
8 30 23 L6 92 138 f
10 2, 25 40 100 120 f
12 20 27 36 108 108 27
15 16 30 32 120 96 27
16 15 odd odd : -
20 12 35 28 1,0 8, 28
2, 10 139 26 156 178 f
30 8 45 2, 180 72 4
40 6 55 2 220 66 4
L8 5 odd odd
60 4 75 20 300 60 45
7 16 15 30 30 30 f
8 1, 16 28 132 28 f
1 8 22 22 4 22 £
16 7 2l 2 48 2 4
28 L 36 18 72 18 10
56 2 b4 16 128 16 16

&3
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TABIE Ib (continued)

p:Z pll n, n (s-&l)n2 s, 0(1 vv

) L2 20 60 60 120 20 81 68
7 36 2 Sh 63 108 19 76 61
9 28 23 46 69 92 f

12 21 26 39 7 78 £

1, 18 28 36 8 72 b 4

18 1, 32 32 96 6l o

21 12 135 30 105 60 4

28 9 42 27 126 54 20 70 58
36 7 5 25 150 50 £

L2 6 56 2, 168 48 2, 8 69
63 b 77 22 231 Li £

8 L5 26 45 304 135 f

9 W 2 60 108 180 32 88 79
10 36 =28 56 112 168 L 4

12 30 30 50 120 150 30 8L 170
15 2, 33 L 132 132 f

18 2 36 40 14 120 f

20 18 38 38 152 114 b4

24 15 &2 35 168 105 f

30 12 48 32 192 96 32 8l 7
36 10 54 30 216 90 34 8 ™
&0 9 58 29 232 87 f

45 8 63 28 252 85 4

8 50 28 70 1,0 280 £

10 L 30 60 150 240 f

16 25 36 L5 180 180 40 82 74
20 20 &40 40 200 160 W 8l 73
8 18 17 34 3, 34 f

9 16 18 32 36 32 £

12 12 21 28 42 28 7 50 36
16 9 odd odd

18 8 27 2, 54 2l 4

2k 6 33 22 66 22 £

36 b &5 20 90 20 11 66 55
48 3 odd odd

72 2 8 18 162 18 18 100 9N



TABEE Ib (continued)

1l
V—A— P, pfz p;z pil n, n (s+1)n, en, 0(1 v #
10 16 21 6 56 22 ™ 66 154 22 100 Ok
7 48 eodd odd
8 &2 24 63 72 126 b ¢
12 28 28 49 8l 98 b 4
14 24 30 45 90 90 18 76 é2
16 21 32 L2 9% 84 18 75 60
21 16 odd odd
2% 1 40 3§ 120 70 19 76 63
28 12 by 33 132 66 b 4
L2 8 58 29 174 58 £
48 7 64 28 192 56 4
56 6 72 27 26 56 27 100 95
10 2 2 -——-
12 2 33 66 132 198 33 100 98
1k 36 35 60 140 180 32 96 86
18 28 39 52 156 156 b ¢
21 2l L2 A8 168 144 L 4
2 21 odd odd
28 18 &9 Wk 196 126 ¢
36 14 57 38 228 114 b 4
LR 12 63 36 252 108 36 100 99
10 24 25 -—- - -
20 30 Ly 55 220 220 L4 100 100
2 25 L8 50 240 200 hiy 99 92
25 26 odd odd
30 20 S5h 4% 270 180 45 100 101
11 10 18 9 20 19 38 38 38 L g
10 18 20 36 Lo 36 L ¢
12 15 22 33 hh 33 7 56 4O
15 12 25 30 50 30 b ¢
18 10 28 28 56 28 b 4
20 9 30 27 60 27 ¢
30 6 40 24 80 24 [ 4
36 5 46 23 92 23 ¢
A5 b 55 2 10 22 12 78 66
60 3 70 21 140 21 b ¢



TABIE Ib (continued)
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m P}z Piz Y P%z P:]a_l np ny (s+1)ny sy 0(1 v #
11 18 24 6 - - -

9 L8 27 72 81l ik f

12 36 30 60 90 120 i ¢

16 27 34 51 102 102 b 4

18 24 36 w8 108 96 ¢

24 18 L2 K 126 8, b4

27 16 LS L 135 80 4

36 12 5k 36 162 72 b ¢

W8 9 66 33 198 66 2,4 100 97
12 11 20 9 10 22 21 W2 W2 L2 7 6k 50

n 20 22 40 Lk Lo 7 63 L5

20 11 odd edd

22 10 33 30 66 30 8 64 53

Ly 5 55 25 110 25 f

55 h 66 2, 132 2l 13 91 81
12 20 27 7 - -~

15 36 odd odd

18 30 38 57 14 114 19 96 87

20 27 40 54 120 108 19 95 83

27 20 odd edd

30 18 50 45 150 90 20 96 88

36 15 56 2 168 8l 21 99 91
13 12 22 10 11 26 23 K A Wb f

12 22 2, 44 L8 [N 4

22 12 34 3k 68 34 f

2 1 36 33 72 33 4

33 8 45 30 90 30 f

LA 6 56 28 112 28 b ¢
1k 13 2, 11 12 26 25 50 50 50 b ¢

13 24 26 A8 52 4L8 b 4

2% 13 odd edd

26 12 39 36 78 36 4

39 8 52 32 104 32 b ¢

52 6 65 30 130 30 f



TABLE Ib (continued)
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JA p}z p]2_2 ')’ 1%2 p%l n n) (stl)n; sny 0(1 v #
15 1, 26 12 13 28 27 546 S5h 54 £
15 26 28 52 56 52 ¢
26 1, &0 40 80 L0 8 81 72
28 13 42 39 8 39 £
52 7 66 33 132 133 11 100 96
16 15 28 13 14 30 29 58 58 58 ¢
15 28 30 56 60 56 b ¢
20 21 odd odd
21 20 36 48 T2 L8 f
28 15 odd odd
30 1l 45 42 9 A2 4
35 12 50 40 100 KO b 4
A2 10 57 38 114 38 £
17 16 30 14 15 32 31 62 62 62 b g
16 30 32 60 64 60 £
20 2 36 5 72 54 ' 4
24 20 40 50 80 50 b o
30 16 W K6 92 46 £
32 15 LB A5 96 45 f
L 12 56 K2 12 §2 ¢
18 17 32 15 16 34 33 66 66 66 4
17 32 3, 64, 68 6a 4
32 17 odd odd
3 16 51 48 102 48 b q
19 18 3, 16 --—
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TABLE II, PARAMETER VALUES OF ASSOCIATION SCHEMES NOT OF GROUP
DIVISIBLE TYPE, This table is restricted to schemes in which the
number of treatments v does not exceed 100, Schemes are listed in
erder of increasing values of v, and for fixed v, increasing

values of nj. Duplication is avoided in this table by the condition

np { ng; if nj=ny, then p}_z < piz.

Because this differs from condition (2,25) used in Table Ib, it has
been necessary to change the designation of first and second associates
in about A0 sets of parameter values, The same values occur, but
with the indices 1 and 2 interchanged wherever they appear, The
entries in most columns of Table II are copied directly from Tables

Ja and Ib, The remaining numerical values are obtained by the

relations

- mo-oeh- 1,
2 2
Pypp = D2 - P2~ 1,

dz-_-v—“l-l,

and by the remark that for the schemes listed in Table Ia , /\ = v .
The paraneterv—A— will be found convenient in locating a particular set
of parameter values in Tables Ia and Ib, which are arranged in order
of increasing values ofVE . Non-integral values ofVZ— occur

only in Table Ia,
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Two columns of Table II are included under the heading "remarks",
In the first of these, schemes which are known to have been constructed
or to have been proved impossible are indicated by the letter *“C" or
"X" respectively, In the second, schemes of triangular, sinmie"and
or cyclic types are identified by name, and schemes in the Latin square
gseries are identified by the symbol Lg , vhere g is the number of
constraints, The schemes of these classes which have been constructed
are either tabulated by Bose, Connor and Clatworthy, or are easily
constructed, Schemes of the negative Latin square series introduced
in Section 2,1 are identified by the symbol Lg* and, if constructed,
by a reference to the section in which the construction is described,
One constructed scheme, #64, does not fall in any of the categories
mentioned and is identified simply by a reference to the section in
which it is constructed, The four schemes whose impossibility has
been proved by theorems in Section 2,2 are identified by the numbers

of the theorens,
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TABLE II
2 2
#|v | n2 [Pl Plp P32 [P1 Pl2 P32 (%4 % |V |Remarks
1; 512 2{ 0 1 1|1 1 of2 2]|YV5[c cCyelic
2 914 4} 1 2 212 2 14 4| 3[C Ly
3.10/3 610 2 4|1 2 3|58 4 C Triangular
4,13} 6 6} 2 3 3|3 3 2|6 6 1acCyc11ch_
5 151 6 8 1 4 4] 3 3 4|19 5 hCT:iangurz
6 1|5 10{0 4 6| 2 3 6|10 5| 4|c L*, Sec, 3.
7 16| 6 9 2362aa69v_zlc12.
811718 8| 3 L 4{ & 4 3|8 8|17|C Cyclic
9 22410 10}y 5 4 6| &4 6 3 6MN'5'C Triangular
10 {22410 10 &4 5 5| 5 5 4|10 10 N2
1125181613 4L 2|2 6 9|81 5|c Ly ,
12 725(12 12} 5 6 6| 6 6 5|12 12| s|c 13, L,
13 126110 15{ 3 6 9| & 6 8|13 12| 5|c Simple
1, 127110 16 | 2 8 &{ 5 5 10|20 6| 6{C Simple
15 1 28| 9 18 0O 8 10 4 5 12|22 6 6 |X Theorem 2,6
16 | 28112 15 6 5 10 L 8 6| 7 2 6 {C Triangular
17 ;29| | 6 7 7 776M1A1:3_2‘9_00yc11c
18 {3316 16| 7 8 a&a| 8 8 7[16 16 |\33
19 (3516 18| 6 9 9 8 8 9120 14 | 6|C Simple
20 {3610 25 | 4, 5 20] 2° 8 1610 25| 6|c I
21 136114 20| 7 6 15| 4 10 10| 8 27 | 7C Triangular
2 (361, 2| 4 9 12] 6 8 12|21 W | 6 *.>
23 136 {15 20 6euié9lzlszo 61C 1,
2% 137118 18| 8 9 91 9 9 8|18 18 |\37 {C Cyclic
25 | O {12 27 2 9 18 A8182h15ricsimp1e
26 14120 20| 9 10 10 110 10 9|20 20 a1 {C Cyclic
27 145112 32 | 3 8 2 { 3 9 22|20 24 6csimplch
28 (4516 28| 8 7 21 { H 12 15| 9 35 | _8{C Triangular
29 (K522 22 {20 11 1 {11 11 10!22 22 &5
30 (49012 36| 5 6 30 2 10 25|12 36| 71iC Lo
31 169 (16 321 3 12 20} 6 10 21132 16| 7| LA
32 (4918 30 | 7 10 20| 6 12 1718 30| 7lc Ly
33 (A9 12k 2 |11 12 12 |12 12 {24 24| 7)c L, L3
34, |50 | 7 42 0 6 36 1 6 35128 A 5
35 {5021 28 | 8 12 16 ] 9 12 15)25 24 708imp132
36 |50 |22 28 h 16 12 12 9 18142 7 |10 |X Theorem 2.4
37 |53 |26 26 {12 13 13 |13 13 12}26 26 53 {C Cyclie
38 | 55 |18 36 9 8 28} 4 14 2110 4| 9[C Triangular
39 |56f10 5| 0 9 36| 2 8 36|35 20| 6
Lo |56 (22 33 | 3 18 15 |12 10 22|48 7 |11 |X Theorem 2,4
Ll |57 |14 42 | 1 12 30 &4 10 31|38 18 ) 7



TABIE II (continued)

&8

# | v m n |oh ol ok [l s BB, Pu O, |5 Remarke
2|57 |2 32|11 12 20| 9 15 16|18 38 | 8|C Simple
K3 | 57 |28 28|13 14 14 |1k b 13 |28 28 |\57

Ly | 61 [ 30 30|14 15 15 |15 15 14|30 30 C Cyclie
A5 | 63|22 0| 1 20 20 |11 11 28|55 7 |12

| 63|30 32|13 16 16 |15 15 16|35 27 | 8|c simple
K7 | 66 | L A9 | 6 7 K2 | 2 12 36|14 49 | 8|C Ly

48 | 64 |18 45| 2 15 30| 6 12 32|45 18 | 8] 1¥,
K9 | 64 |22 2| 8 12 30| 6 15 26|22 42 ecx.g' '
50 | 64 | 22 42| 0 20 22 |10 11 30|56 7 |12 |X Theorem 2,6
51 | 6k | 27 36|10 16 20 |12 15 20|36 27 | 8|C L¥_3 Sec, 3.2
52 | 64 | 28 35]12 15 20 |12 16 18|28 35 | 8|c I,

53 | 66|30 33|18 11 22 |10 20 12| 8 55 |12

sh| 65|32 32{15 16 16 | 16 16 15|32 32 V&5 '
55 166|2 45]10 9 36| & 16 28|11 54 |10 |¢ Triangular
56 | 69|20 8| 7 12 36 51532231.5ra

57169 |36 36| 26 17 17 |17 17 16134 3k N69 '
58 |70 | 27 42|12 14 28| 9 18 23|20 &9 | 9[|C Simple
59|73 |36 36! 17 18 18 |18 18 17|36 36 N73 |c Cyelic
60175 |32 4210 20 21 |16 16 25|56 18 | 10

6L |76 |21 541 2 18 36 | 7 1k 39|56 19| 9
(76|30 45! 8 22 25 |14 16 28|57 18 | 10

63 | 76|35 40| 18 16 24 |1 20 18{19 56 | 10 Lo
b | 77116 0] 0 15 45 | & 12 A7|55 A | 8|C See, 3.3
65 | 77|38 38| 18 19 19 {19 19 18|38 38 N77 s
66 | 78 | 22 55 {11 10 45| & 18 36)12 65 | 11 |C Triangular
67 | 81|16 6| 7 8 56| 2 1 K9[16 64 903"'
68 | 81|20 60 1 18 k2| 6 14y L5({60 20| 9|C L¥ ,Sec, 3.2
69 | 81 | 24 56} 9 14 A2 | 6 18 37}2h S6 9c1.1 T
7018130 50| 9 20 3012 18 31|50 30| 9 |C L*_4Sec, 3.2
71|81 |32 48|13 18 30 [12 20 27{32 48| 9|c L,

72 | 81 | 40 40} 25 14 26|14 26 23] 8 72} 18 o
73 | 81| 40 40} 19 20 20|20 20 19|40 40| 9ic L., L*
7% |82 |3 45)15 20 25 [16 20 24|41 40| 9lc stuple
75 {85 ]| 1 70! 3 10 0] 2 12 57134 S0} 7

76 | 85| 20 64} 3 16 48] 5 15 #8150 34{ 8 {C Simple
77 1 85|30 55} 11 18 36|10 20 33§34k 50| 9

78 | 85|42 42} 20 21 22|22 22 20}42 K2 |\ES

79| 88|27 60} 6 20 40 918u5532v% |

80 | 89 | ah uh| 20 22 22 | 22 22 21|4n Ab C Cyclic
81 | 91|24 6612 11 55] & 20 45113 771 12 {C Triangular




TABLE II (continued)

289

#] v m m[eh ol P[Pl $ R[4 0 IS [Renaric
82| 93| 46 46| 22 23 23| 23 23 22|46 W6 N3

83| 95| 40 56| 12 27 27| 20 20 33|75 19| 12

84| 9% | 19 76 2 16 60 h 15 60|57 38 8

85| 96| 20 78| & 15 60| & 16 s8|A5 50| 8

86| 96| 35 60| 10 2 36| 1, 22 38|63 32| 10

87| 9% | 38 87] 10 27 30| 18 20 36176 19} 12

88| 96| 45 SO} 24 20 30 18 27 22120 75| 12 )
89| 97| a8 48| 23 2% 24| 2 2% 23|a8 48 |Y97 |c Cyclic
90| 99| w4 an| 1 12 72| 2 12 71|58 wA{ 7

91| 99| K2 S56] 22 20 36| 15 27 28|22 77| 12

92| 99| 48 50| 22 25 28| 24 24 25|54 44| 10
931100 | 18 81 8 9 72 2 16 64}18 8 10012 o
941100 | 22 7™ 0 21 s6 6 16 O|7TT 100L_280c.3.3
951100 | 27 72| 10 16 86 6 20 50|27 72 1001.3
961100 | 33 66 18 14 52 7 26 39|11 88| 15
971100 33 66] 1, 18 8| 9 2o mj2a 5] 11 .
98 {100 | 33 66 8 24 k2] 12 24 K4l 66 33] 10 L_3
9911001 36 63} b 21 42| 12 24 38|36 63 10 L
100 {100 | &4 55| 18 25 30} 20 2% 30|55 ] 10 4
0L 100 | A5 541 20 24 30| 20 25 28145 54} 10 L,
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A.2, Tables of Prrameter Values of Possible Designs for Particular

Association Schemes,

The tables in this section are constructed by methods developed in
Section 2,3, Table IV gives values of the parameters v, r, k, b,
Aia.nd 2Z; for all possible designs with v €100, r £10and k<10
and having known association schemes in the Latin square or negative
Latin square series, Table III 4illustrates the preliminary computa-
tion used in the construction of Table IV, ©Each table is preceded by
an explanation of the notation used,

TABLE III, PRELIMINARY COMPUTATIONS OF THE PARAMETER VALUES OF
POSSIBLE DESIGNS ILLUSTRATED FOR SEVLRAL ASSOCIATION SCHEMES, The
method of computation used here requires a separate section of the table
for each association scheme, and is presented in this table for schemes
#2 and 32 and a portion of #6, For use in the computation, numer-
ical values of several parameters of the association scheme are listed
at the beginning of the section, along with expressiens for the quan-
tities m, M, M', z;, 3z and r(k-1). These expressions are given
in (2.47) to (2.53) and (2.3) in Chapter II.

Non-negative integral values of ) 5 are listed in numerical order
in the first column of the table, For a particular value of >\2, the
lower bound m on >\1 is listed if positive, and the smaller of the
upper bounds M and M! is listed, Values of ’Al between the

bounds are then listed in columm 5, with the omission of the value

A1 = 7\2 and of values 7\1 > )\2 in case n; =n,., When a value of

A 2 is reached for which the bounds admit no integral value of 7\1, a
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row of dashes is entered in the R 1 colunm, Because the quantities
m, M, M' are linear in )\2, no further values of )\2 need to be
considered, For each pair of values Ay, ‘A, the quantities 2,5

2
and r(k-1) are listed in the next columns, When the last of

z
2
these is expressed in every possible way as the product of two positive
integers, the two factors may be taken as values of r amd k-1 and
lead to all possible pairs of values of r amd k, which are then

listed in the next columns, The list is shortened by the restrictions
r<i100, x <110,

and by conditions (2,43) and (2,44) ,
r>gz, i1, 2,

if r >z i = land 2, then r2k.

i 14
Factorizations of r(k-1) which violate any of these conditions are
omitted without comment, The last one is illustrated by the row near
the end of the computations shown for scheme #6 , with the entries

1l 3 -1 25 - -~ . For each pair
r, k, the value of b is ecomputed from (2,1), b =VF/, , and
entered in the next column if integral; fractional values of b are in-

dicated by the letter f, Finally, if b is integralycondition (2,45)

if r=z , 1=1lor2, then b>v -,

is imposed in cases where it applies, eliminating a few more sets of

parameter values,



TABLE 1II
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PRELIMINARY COMPUTATIONS OF PARAMETER VALUES OF POSSIBLE DESIGNS

ILLUSTRATED FOR SEVERAL ASSOCIATION SCHEMES

Scheme #2, Iy, n =3, v=9,g®2, f=2,m = 43Xy, n, =4 =X,

m=2A; - 10, M= A *+5, W =220 - A,

313 =A% 2%, 252223 A, , r(k-1) T LA +AA,
A,y m M M A, 3y sy r(kl) r k b
1 - 53 - 0 2 -1 A 2 3 6 >v-
L 2 18 g
2 - 6 - 0 4 -2 8 4 3 12>v-
8 2 36 ¢
1 3 o0 12 3 5 f
A 4 9
6 3 18
3 - 6 - 0 6 -3 1 6 3 18>v-04
1 5 -1 1B 8 3 24
2 4 1l 20 b 6 6 >v—0(1
5 5 9
10 3 30
b == 7 - 0 8 -4 16 8 3 2A>vX
1 7 -2 20 10 3 30
2 6 o0 24 6 5 ¢
8 4 18
3 5 2 28 7 5 £
5 = 7% -~ 0 10 <5 20 10 3 30>v-X;
1 9 =3 2 - -
2 8 -1 28 - -
3 7 1 32 8 5 ¢
L 6 3 36 6 7 £
9 5 4
6 2 8 - 2 10 =2 32 - -
3 9 ©0 3% 9 5 f
10 5 18
5 7 b b - -

, OK.

, OK,

9 OK.

» OK.

» OK.

» OK.

OK.

-



TABIE III
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PRELIMINARY COMPUTATIONS OF PARAMETER VALUES OF POSSIBLE DESIGNS
ILIUSTRATED FOR SEVERAL ASSOCIATION SCHEMES

Scheme #2, I, n=3,v=9,g%2, £=2,n =4=Xy, n, =4 =Xy,

m=2A, - 10, M= 3A 5, M = 223 - A,

31 T =0 *2,, 2y 222 A5, r(k-l) = AA HAA,

A, m MM 7\1 3, 53 r(k-1) r Kk b
1 - 5 - 0 2 -1 IN 2 3 6 >v-04 , OK,
L 2 18
2 - 6 - 0 L =2 8 L 3 12 >v-04 , OK,
8 2 36 !
1 3 0 12 3 5 4
& 4 9
6 3 18
3 = 63 - 0 6 -3 12 6 3 18>v-X , 0K,
1 5 <1 16 8 3 2
2 A 1 20 L 6 6 >v-0 , OK,
5 5 9
10 3 30
L .- 7 -- 0 8 -4 16 8 3 24 >v-X; , OK,
1 7 <2 20 10 3 30
2 6 o 24 6 5 £
8 L, 18
3 5 2 28 7 5 f
5 - "% — 0 1 -5 2 10 3 30>v-%;,0K,
1 9 =3 2 - -
2 8 -1 28 = @
3 7 1 32 8 5 £
L 6 3 36 6 7 £
9 5 ¢
6 2 g8 -- 2 10 =2 32 -~ -
3 9 0o 36 9 5 f
L 8 2 40 8 6 12 >v-oq , OK,
10 5 18
5 7 b bh - -



TABLE III (continued)
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7\2 m *M M}' '}\1 %, : zé r(k-1) r k b
7 L 8% - L 10 1 W - -
5 9 3 B - -
6 8 5 52 - -—
8 6 9 - 6 10 L 5 - -
7 9 6 6 10 7 £
9 8 9% == 8 10 7 68 a= -
10 10 10 -— -

Scheme #6, LYy, n= <4, v=16, g3 <1, £ = =2, n) = 5=, n, 21030,

2
n=2)\2-1o,u=-57\2+3%., M 18 - 24, ,

g T agt2R,, 5,730 - 22, , rlk-l) T 5A; 4104,

XZ m M
o = %
1 - 4

2
2 - “3

MAy

N O W

S AV

51

-1
-2

z; r(k-l) r k b
3 5 5 2 40
6 10 10 2 80
9 15 - -
-2 10 2 6 f
5 3 f
4 20 I 6 b4
5 5 16
10 3 ¢
7 25 - -
10 30 10 L 40 >v-, , OK,
-4 20 A 6 £
5 5 16
10 3 f
-1 25 -— -
5 35 5 8 10 < v=Xy
impossible,
7 6 4
8 40 8 6 b o
10 5 32
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TABIE III (continued)

Scheme #32, L3, n =7, vz 49, g =3, £=5,n =18 =X, ny = 30 =X,,
2
m= {-)\2 -2, M =3-}2+3%'-, M =5 - ;12 ,
zl = ‘1-}7\2"'5)\2 ’ 22 s 311 - 2)2 » r(k—l) - 18X1+30).2 o

As n M M 7\1 2, z, r(k-1) r k b

- r—— ———
- e e e ——e e

0 — % — 1 -4 3 18 3 7 2A>-Xp,0K
6 IN 4
9 3 7
2 -8 6 36 6 7 1&2>V-°(2 s OK,
9 5 £
3 -12 9 5, 9 7 63)v=0, , OK,
1
1 - - 33 0 5 -2 30 5 7 35> v- OK,
3 A (A
0 4t
2 3 L 66 -- -
3 1 7 8 - -
2
2 - =~ 1= 0 10 -, 60 10 7 70>v- oK.
3 1 6 a1 78 - - ek
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TABLE IV, PARAMETER VALUES OF POSSIBLE DESIGNS, This is a list
of those~parameter values which satisfy all the conditions'applied in
Table III, The table is limited to designs with known Latin square and
negative Latin square association schemes and with v <100, r<10
and k< 10. If np =n2, duplication is avoided by the restriction
<Az 5 designs with 23O, can then be obtained by changing the
designation of first and second associates, The design parameters for
each association scheme are listed together, preceded by a list of
parameter values of the scheme, Designs are identified by the numbers
given to the scheme in Table II, and by a serial numbering of the designs
for each scheme, Designs which are known to have been constructed or
have been proved impossible are marked by the letter C or X respec-
tively, followed by an explanatory remark or reference,

The phrase "Pairs of first associates" indicates that all such pairs
of treatments are taken as blocks; designs of this kind are described
in Theorem 2,9, The word "Lattice" indicates a well-known type of
design whose structure is stated in Theorem 2,10, Some of the designs
may be formed by replicating other designs, The procedure is justified
in Theorem 2,11 and the designs are identified by the letter "R" ,
followed by the serial numbers of the other design or designs used., The
statement "N = A;" or "N = Aj + I" indicates a way in vhich the inci-
dence matrix of the design may be formed from the association matrix,
Further details are given in Theorems 2,12 and 2,13, Some designs
are identified as the complements of other designs in the table, Two
designs are complements if each block of one contains exactly the treat-

ments not contained in the corresponding block of the other, In some
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cases there is a direct reference to a theorem of Section 2,3 or a

section of the Appendix in which the design is constructed,
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Schems #6,

269
TABEE IV (continued)

#

6-1
6-2
6-3
6-4

6-5
6-6
6-7
6-8
6~9
é-10

6-11

6-12
6-13

6<14 10
6-15 _ 10

6=16

L RVIV R IV TR ) U U Ol I

0,0 03 03 O~ O
A W \W
BEREREVRER

z) 3, Remarks
-1 3 C Pairs of first associates,
-2 6 C R: 131,
2 =2 C Pairs of second associates,
6 <6
=2 _10____ __._.
h "’0 N = °
0 4L c Appen&ix A3,
8 -8 C R: 636,
I O C R: 637,
..... 0O___8 _C R: %5
6 =6
7 =5
5 =3 C Appendix A.3.
6 2
- 2.0 _ - __.
10 =2
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TABIE IV (continued)

Schene

NNt = rk(r - 51)6(r - 22)9 .

Remarks

b )\1 Az z, %,

k

C Peirs of first associates,

es
C Equivalent to LS4 of / 6 /.
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TABLE IV (continued)

g®*2, n =8,

Scheme #11, L2,n=5,v=25, 3 L
Pa =
£t=4, n; =16, 1

’
L 12

MY = rk(r - 2)%(r - 5,2,
# r k b Al >\2 Z2, 2, Remarks
11-1 8 2 100 l1 0 =3 2 C Pairs of first associates,
11-2 8 4 50 3 0 =9 6 C Theorem 2,14,
11-3 2 5§ 10 l1 0 =3 2 C Lattice,
11-4 L 5 20 2 0 =6 4L C Rs 3;3,
11-5_ 4 5 20 0_1__k _=1__C._Lattice.
1I-6" "6 5 30 3 0 -9 6 C R: 3;3;3.
11-7 8 5 W 4 0 -12 8 C R: 3;3;3;3.
11-8 8 5 K 2 1 =2 3 C R: 3;3;5.
11-9 8 5 4 O0 2 8 =2 C R: 535,
11-10 10 _5_50 _ 5 _0 -15_ 10__C_ R: 3;3;3;3;3,
11-11 10 5 50 3 1 =5 5 C R: 3;3;33;5.
11-12 10 5 50 1 2 5 0 C R: 3;5;5.
11-13 8 8 25 3 2 <1 N C N= Al .
11-14, 9 9 25 5 2 <7 8 C N=Aj+1,
11-15 8 10 20 5 2 7 8 C Theorem 2,15,
Scheme #12 , Ly, n=5, v=25, 5 6 6 6
g=3,n1-12,P1: ,P2- »
£=3, ny=12, 6 6 6 5
NN' = rk(r - z )12(1' - zz)lz .
# r k b )\1 7&2 Z) 2, Remarks
12-1 6 35 1 o0 -2 3 C Lsl,/6/.
12-2 4 4 25 1 0 -2 3
12-3 8 4 5 2 0 =4 6
12-4 3 515 1 O =2 3 C Lattice,
12-4a 3 5. 15__0 1 _3_=2 _ C lattice,
12-5 6 5730027 0 =4 6 TC R: h;k.
12-6 9 5 45 3 0 =6 9 C R: A4j3bsh.
12-7 9 5 45 2 1 =1 4 C R: U4j;h;ha,
12-8 L, 10 10 2 1 -1 &4
12-9 8 10 20 4 2 -2 8

. S

————— o —
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TABIE IV (continued)

Schame#ZO,Lz,n=6,v=36, L 5 2 8
8=2’ nl.lo, P1= ,P2= »
£f=5, n,=25, 5 20 8 16

EROSPT Snpep——

0
NN! = rk(r - zl):L (r - 22)25 .
# r k b A A z) 2, Remarks
20-1 10 2 180 1 0 =4 2 C Pairs of first associates,
20-2 5 3 60 1 0 -4 2 X Appendix A.3,
20-3 10 3 120 2 0 -8 L C Theorem 2,14,
20~} 10 L 9 3 0 -12 6
20-5__5__5_3__.2 0_-8__4 ______ _
20-6 10 5 72 4 0 =16 8 C Theorem 2,14,
20-7 2 6 12 1 0 =4 2 C Lattice,
20-8 4 6 24 2 0 -8 &4 C R: 737
20-9 5 6 30 0 1 5§ =1
20-10_ 6 6 3 3 0 -12 6 C R TT5l.
20-11 8 € L8 4 0 =16 8 " C R: 7;7:7:7.
20-12 9 6 54 2 1 <3 3
20-13 10 6 60 0 2 10 =2
20-1) 10 6 60 5 0 =20 10 C R: 17;7:7:7;:7.
20-15 10__9_ 40 _ 3_.2 _=-2__L4__ ___ _ __ .
20<16" 710710 36 4 2 -7 76 C N=ag,

e e o —



Scheme #23 , L,

TABLE IV (continued)

6, v=136, 6 ﬂ 6
3 ny =15 Py = P, =
L, np=20, T (8 13" 279

M= rk(r - 7)) (r - 2)%0

o B
wauan

1

7%

# r k b Al Az 2, 2, Remarks

23-1 10 3 120 o 1 L =2

23-2 5 L4 45 1 0 =3 3

23-3 10 4L 90 2 0 =6 6

23-4 5 5 36 o 1 L =2

23-5_10 _5 72 0 _2_ .8 _ =4  __ . _

23=6 3 6 18 1l 0 =3 3 C Lattice,

23-7 hk 6 24 0o 1 L =2

23-8 6 6 36 2 0 =6 6 C R: 636,

23-9 8 6 48 0 2 8 -4

23-10 9 6_ 54 3 _0_=~9 _9 _C_R: 6;6;56,

23-11 10 6 60 2 1 -2 4

23=12 10 9 LO 4 1 -8 10

23-13 10 10 36 2 3 6 0

Scheme #30 , 1, ,n =7, v=149, 5 6 2 10
g=2, n =12, P = y Pp= ,
£=6, n,=36, 6 130 10 25

NN' = rk(r - zl)]‘z(r - 22)30 .

# r k b Al )2 zl z2 Remarks
30-1 6 3 98 1l 0 =5 2 C Theorem 2,14,
30-2 4L L 49 1 0 -5 2 X Appendix A.3,
30-3 8 L 98 2 0 <10 L C Theorem 2,14,
30-4 2 7 14 l1 0 =5 2 C Lattice,
30-5 4 7 28 2 0 =10 & _C R: bLih. _
30-6 & 7T KR 3 0 =15 6 C R: bh;h;h.
30-7 6 T &2 o 1 6 =1 C Lattice,
30-8 8 7 56 L, 0 =20 8 C R: Ub;34sh;h,
30-9 10 7 70 5 0 =25 10 C Re: Lih;hshsh,
30-10_10 __7_70 _ .2 _1 _ =4 __3__C R:_ b;34i7,.
30-11 9 9 49 3 1 =9 5

AN TR T AT A LT SIS TN



TABIE IV (continued)

Scheme #32 , L, n=7, v =49, 7 10 6 12
- 3 g=3, n1=18, Pll » P2= ’
f=5, n,=30, l10 20 12 17

# r k b >\1 32_ 3, 7, Renrkg o

32-1 9 3 17 1 0 =4 3 C Theorem 2,1k,

32-2 6 6 49 O 1 § -2 )

32-3 3 7 24 1 0 -4 3 C Lattice,

32-) 5 7 35 0 1 5 -2 C Latticse,

32=5 6 7T 4 2 0 -8__6 C Rt 3;3, .

32-6 9 7 63 3 0 -12 9 C R: 3;3;3.

32-7 10 7 70 O 2 10 -4 C R: &4;4,

Scheme #33 » Ly» n=7, vsL9, 11 12 12
gs l} » nl = 2‘) » Pl = » P2 = »
£=24, ny=2, 12 12 12

# r k b >\1 >\2 2 2, Remarks -

33-1 8 L 98 O l L =3

33-2 L 7 28 O 1 L =3 C Lattice,

33-3 8 7 5 0 2 8 -6 C R: 2;2.

33-4 9 9 49 1 2 5 =2

Scheme #47 , L,, n=8, v =64, 6 7 2 12
g =2 9 n1 = llo 9 Pl [ ] ’ P2 = 'Y
=7, ny=49, 7T W 12 26

NN' = rk(r - al)u'(r -3 )l"9 .

_F s ok v NN my oz, Remrs

7<x 7 7 64, 3 o0 -18 6

472 2 8 16 1 0 -6 2 C Lattice,

47-3 L 8 32 2 0 =12 4 C R: 2;2,

47-y 6 8 48 3 0O -18 6§ C R: 2;2;2,

47-5 7 8 5 O 1l 7 <21 C Lattice,

476 8 8 64 & 0 -2, 8 C R: 2;2;2;2,

47-7 10 8 8 5 0 =30 10 C R: 2;2;2;2;2,

F R ourre !

IR Tt B VD D e



TABIE IV (continued)
Scheme #49 , L3 R

75

# r k b Al }\2 2, 3, Remarks

49-1 7 & 112 1 0 -5 3

49-2 7 7 64 o 1 6 =2

49-3 7 17 64 2 0 =10 6

4L9=4 3 8 24 1 0 =5 3 C Lattice,
L9-5 6 _8_ 48 2 0 -10_ _6 _C R: A4jb,
L9-6 "8~ 8 48 0 1 6 =2 C Lattice,
197 9 8 72 3 0 <15 9 C R: Aihih.

Scheno#51,L3, n--8,v=6

:2.7, 10 16 12 15
8:-3 n P: P, =
r--z.:nl-a 171 20|” % |15 20|

NN®* = rk(r - z1)36(r - z2)27 .

# r k b Al Az 2) 2, Remarks

51-1 9 4 l4 1 O -3
5.2 9 9 64 O 2 8

odw

51-3 10 10 64 2 1 <=2

Schem#52,LA,n=8, v =6, 12 15

EE— gL, ng=28, P = ,
£=5, n; =35, 15 20

NN* rk(r - 21)28(1' - z‘?)35 .

# r k b >‘1 Az _zl zZ, Remarks
52-1 L, 8 32 1 0 -4 4L C Lattice,
52-2 5 8 40 o 1 § =3 C Lattice,
52-3 8 8 64 2 0 -8 8 C R: 1;l,
52, 10 8 80 0 2 10 -6 C R: 2;2,




Scheme #67 , Ly »

TABIE IV (continued)

v=28l,

n2=6h

n1=l6,P1=

7 8
8 56|

NNt = rk(r - 21)16(r - 22)6" .

276

# r k b )\1 ’XZ Zy 2y Remarks
-—6.';;]1_ 8” 3 é16 "'1"“"0 ”-:7 2ﬁ T
67-2 2 9 18 1 O -7 2 C Lattice,
67-3 L 9 36 2 0 -l 4 C R: 2;2,
671 6 9 56 3 0 =21 6 C R: 2;2;2,
67-5 _8_9 _T2 _4 _0_-282 _ 8 _C R: 2;2;2;2,
67-6 g8 9 72 0 1 8 =1 C Lattice,
67-7 10 9 9 5 0 =35 10 C R: 2;2;2;2;2,
Schems #68 , L', , n=-9 , v =81, 1 18 6 14
g - "2 9 nl - 20 'y Pl = 9 Pz: 9
£=-6,n,=60, 18 42 1 &5
NN* = rk(r - zl)éo(r - z2)20 .
o Frk Ay ey Remne
68=-1 10 3 270 1 0 =2 7
Scheme#69,L3,n=9,v=81, 9 14 6 18
g=3, np =24,P = » Po = ’
£t=17, n2=56, 42 18 37
MW= k(e - 2) % - 2)%° .
B # r | k_ b 7\1 12 zl z:‘2 Remar}cs— ]
69-1 8 L 162 1 0 <6 3
69-2 8 8 81 0 1 7 =2
69-3 3 9 27 1 0 -6 3 C Lattice,
69-1 6 9 5, 2 0 =12 6 C R: 3;3.
69-5__ 7 __.9 _63_ 0 _1 _7 =2 C_Lattice,
$9-6 9 9 "8l 3 0 -18° 9 € R: 2;3;3,
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Scheme #70 , L_, , n

¢
f
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TABLE IV (continued)

-9,v=281, 9 20 12 18
-3’n1:30,p1= ’P2= »
-5 , 0, =50, 20 30 18 31

NN' = rk(r - zl)so(r - 22)30 .
# r k b Al Az 2, 2, Remarks
701 10 3 270 1 O =3 6
70-2 10 5 162 0 1 4 =5
Scheme£7l,1.h, n=9, v=281, 13 18 12 20
g=4, np=232,P = » Pr= ’
f=6, n;=18, 18 30 20 27
M= mk(r - 20)3%(r - 2)48 .
# r k b >\1 )\2 2 2z, Remarks ) -
-1 4 9 36 1 0 -5 A C Lattice,
71-2 6 9 5. 0 1 6 =3 C Lattice,
71-3 8 9 72 2 0 =10 8 C R: 1;1,
Scheme#’?B,Ls,n=9,v=81, 19 20 20 20
g=5, n]‘:hO’Pl: ’P2= ’
£f=5, n;=40, 20 20 20 19
NN' = rk(r - zl)l‘o(r - zz)l‘o .
# r k b >‘1 )\2 2, 32 Remarks
73-1 10 5 162 1 0 <4 5
73=2 5 9 W 1 0 =4 5 C Lattice,
73-3 10 9 9 2 0 -8 10 C R: 2;2.







TABIE IV (continued)

Schemo#?B,Lz,n=10,v=100, 8 9 2 16
882’ n1=18’P1= ’P2= F)
f=9, n;=81, 9 172 16 64

NN! = rk(r - zl)la(r - 22)81 .
N I ———
# r kb A , %, 3%, Remarks ‘
93-1 9 3 300 0 1 -8 2
93-2 6 & 150 0 1 -8 2
9B-3 9 5 180 0 2-16 &4 ;
93"‘6 9 9 100 0 4 "32 8 "
9-5 210 20 0 1 -8 2 C_Lattice,
93=6 " "4 10 WO 0 2-16 " 4 ~ R: 5;5, i
$B-7 6 10 60 0 3-2, b R: 535;5. i
B-8 8 10 8 O L-32 8 R: 5;35;5;5.
93-9 9 10 9% 1 0 9 =1
93-10 10 10 100 O 5 <40 10 R: 535353535,
Scheme #94 .

No designs possible with r < 10,

Scheme#95,L3, ns10, v=100, 10 1 6 21
g=3, n1=27:P1= ’P2= ’
f=8, n 16 56 21 50

- Y N P
NN? rk(r zl) (r zz) .

# -.r_,_k.,. "“13‘ Al ;\2 z, 2, Remarks
95-1 9 L4 225 1l 0 <7 3
95-2 9 9 100 0 1 8 =2
95-3 3 10 30 1 0 <7 13 C Lattice,
%k 6 10 6 2 O -4 & C R: 3;33.
9%-5___8 10 _80 O0 1 8 -2
95-6 9 10 % 3 0 =2 9 C R: 3;3;:3.
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A3, Construction of Two Particular Designs; Impossibility Proofs of

Particular Designs,

CONSTRUCTION OF DESIGNS #6-7 and 6-13

Reference is made to these designs in Section 2,3 and Table IV,
The construction of these designs involved a good deal of mu-ratioﬁ of l -
possible blocks and will not be described in detail, Both designs de-

——m e s

pend on negative Latin square association scheme #6, which is con-

-

structed in Section 3,2 and is reproduced here for reference,

"~!

Treatment First associates

10 12 15
1 13 L
10 13 14

12 15
12 14
13 15
12 1
15
9
8
11
10
13
12
15
1

-
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Design #6~7 has parameter values

v=<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>