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A partially balanced incomplete block (PBIB) design is an arrange-

ment of a set of experimental treatments into smaller subsets, or blocks,

in accordance eith a certain definition. Except for an introductory

section in which the role of P913 designs in the statistical analysis of

experiments is discussed, this thesis is concerned with the combinator-

ial problems that arise in the construction of the designs. The defini-

tion states requirements for a relation of association between any two

treatments, and the term "association scheme" is used for any method by

which a relation of the kind specified can be set up. A considerable

portion of the thesis is devoted to the study of association schemes

rather than actual designs. Incidence matrices are used throughout the

thesis to study the properties of designs and association schemes by al-

gebraic methods.

A method of enumerating combinatorially possible PBIB designs with

two classes of associates is outlined, based on both new and old methods.

While tables of known designs have been published, no exhaustive tables

of all possible PBIB designs hare appeared heretofore. An extensive

table of the possible parameter values of association schemes is compiled,

along eith tables of possible parameter values of the designs themselves

in the cases of special interest in this study.

Known PBIB designs eith tee classes of associates have been class-

ified according to the nature of their association schemes, and designs

of Latin square type eith g constraints, in ehich the number of treat-

ments is a square I? and the association relation maybe defined by a

set of g mutually orthogonal n x n squares, are singled out for spe-

cial etndyherea - _ tnlatechlass of new designst introduced and given

V



the name .'negative Latin square“. While association schemes for the

new designs cannot be canstructed from Latin squares, a method based on

finite fields is developed and used to construct some schemes of both

types, including four in the new series. A fifth is constructed by

other methods. Several new designs are constructed from the new associa-

tion schemes.

Some examples are given to show the possibility of association

schemes which have exactly the same parameter values as those of Latin

square type with g constraints but in which the association relation

cannot be defined by a set of g orthogonal squares. It is then proved

that for a fixed value of g, this can be the case only for a less

than a certain value, which is expressed as a function of g, and that

for larger values of n the Latin square type association scheme is

unique. The proof is based on a series of theorems on the structure of

incidence matrices, some pertaining only to association schemes and

others applying more generally. Some other applications of the methods

are suggested.
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PREFATORI NOTE

Chapter I is introductory in nature. The next three chapters, talc-

up special aspects of this study, are long and somewhat complex. For

this reason a detailed sumary or synopsis has been included as Chapter V.

The reader may find it useful to appraise the scope and methods of Chap~

ters II, III and IV by a preliminary reading of the summary.



 



I. GENERAL PROPERTIES OF PARTIALLY BALANCED

DESIGNS AND ASSOCIATION SCHEMES

1.1 Introduction

Statistical analysis of many types of experimental data may be

facilitated hy proper planning of the experiment. Partially balanced

incomplete block (PBIB) designs are a.particuler class of arrangements

for this purpose. A definition of PBIB designs will be preceded by a

simple example which illustrates the concepts involved.

Ag Illustrative Example gith,gistorical Remarks. The average.yields

of seven new varieties of hybrid corn are to be compared in a field

experiment. A possible plan is to divide the available land into seven

plots and to plant one variety in each plot, as indicated in the follow-

ing figure. (Throughout this example, varieties will be indicated hy

numbers from 1 ts 7.)

 f

1 2 5 4 5 6 7

       

i

I
n

L
 

Under conditions of strict control ef soil fertility, eater supply and

drainage, and other extraneous factors, this might furnish the desired

information on the varietal differences, but in experiments in the

biological and social sciences such control is not usually possible. It

will be impossible with this arrangement to know whether an observed

difference between two plots can be attributed to differences in the two



varieties or whether it is due to differences between the plots of ground.

If the effects of extraneous factors cannot be controlled, the next best

thing is to estimate their importance. This can be done by planting

several plots to each variety and observing the variation among them. It

is intuitively reasonable and proves to simplify analysis of the data to

plant the same number of plots to each variety so that in effect we have

e.number of repetitions, or replications, of the original experiment.

Three replications will be used in this example. Cemparison of varieties

.grown under similar conditions will be easier if the 21 plots are grouped

into blockSof seven plots, each block to contain a complete replication.

Soil conditions are likely to be more homogeneous within a block than

over the entire experimental area and will have a correspondingly smaller

effeCt on comparisons made withtn a block. The blocks may er'may not be

contiguous in the field. This design is indicated in the following die.

gram, with blocks inclesed by heavy lines.
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A defect of this plan is that the same arrangement of varieties is used
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in each block, so that effects of location within blocks may be impossible

to distinguish from differences between varieties. For instance, an ob-

served difference betueen varieties l and 7 could have been caused hy a

gradient in soil fertility from left to right. Other extraneous sources

ef variation which are less obvious may introduce a similar bias in favor



of certain varieties. To insure that no variety or group of varieties

will be systematically favored in all replications of the experiment, a

device known as randomization may be used. In our example this would

mean assigning the numbers from I to 7 to each block in such a way that

each of me 7! possible arrangements is equally likely to result. In

addition, the three blocks might be assigned to the three positions in

the field in a random manner. The effect is that in each replication,

each variety has an equal chance of being tested under favorable condi-

tions. While the results of any particular randomisation may favor cer-

tain treatments, this happens only to an extent that can be allowed for

in the analysis and interpretation of the data.

The plan that results is called a randomized .p_l_g_¢_:_k_ m. It might

appear as follows.
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R. A. Fisher was the first to realize the importance ef randomisation

as a scientific technique and to introduce it into designs for experiments.

It is discussed in his book I"The Design of Experiments" [7 27 with some

illuminating examples .

It frequently happens that, within a block which includes an entire

replication of an experiment, there is too much variability of conditions

to allow useful measurements te be made. This may make it necessary to

Q



arrange the experimental plots in blocks of smaller size, with direct

comparisons to be made only between varieties in the same block. In our

example we shall suppose that it is necessary te cut down the block size

to three plots. There is some loss of information here, as suggested by

the fact that the number of possible direct comparisons is reduced from

5(;) : 65 to 7(2) 3 21, but the gain in precision ef compari-

sons may more than offset this. If some of the comparisons are less

important than others, it may be possible to arrange the blocks so that

the unimportant information is lost and the important information is

mostly retained. However, in many situations all comparisons may be con-

sidered equally important; it will be assumd in this example that infor-

mation is desired en the comparative yields of each pair of varieties.

the termW£935 1953 covers any experimental desigi in which

the blocks are of size mailer than the number of treatments, while the

term balanced ,incoggeteM (BIB) 929.32% is used for the important

special case in which an equal amount of information is retained on each

pair ef treatments. A BIB design may be defined as an arrangement of

v varieties or treatments into b blocks each containing 1: distinct

varieties, each variety being used the same number of times r, and each

pair of distinct varieties occurring together in the same block the same

number A of times. It is easily verified that the following arrange-

ment of our example satisfied these requirements, with v 8 b = 7,

r 8 k = 5, A- 1. (Blocks are enclosed by heavy lines.)
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Randomization would be applied to this design by assigning the numbers
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“l

1
   

l, 2, ... , 7 to the varieties at random, assigning the three numbers in

each block to the three plots in a random way, and assigning the blocks

to the seven positions in the field by a third random procedure.

Balanced incomplete block designs were introduced by Iates in 1936

[36], The construction of a BIB design for a given set of values of

v, b, r, k, A, is a combinatorial problem which may be considered apart

from the analysis of experimental data. It is clear that the five para-

meters are not all independent. Considering the total number of plots we

have

(1-1) vr 3 ha ,

and by counting pairs of varieties two ways we obtain

Am ' at)

These two results may be combined to give a more useful form of the latter.



(1.2) A: rfii—

Other necessary conditions for the existence of these denials have been

obtained, along .with some methods for constructing large classes of them.

In 1938, Fisher and Yates [E g] published all the BIB designs then

known, with a list of the possible parameters of other designs of prac-

tical interest. (A desigi is of practical interest if it does not re-

quire more experimental material than the experimenter can afford: for

a given number of treatments, this means “for r sufficiently small.')

The construction of many of these designs was made possible by methods

introduced by a. C. Bose in 1959 [4].

The set of constructiblo BIB designs was soon found to be inadequate

for the needs of experimenters. A simple case in which no convenient

balanced design is available is obtained from the first example by con-

sidering eight varieties of hybrid corn instead of seven, again to be

planted in blocks of three plots. With v 3 8 .d k =- 3, the smallest

value of r which can be. used in (1.1) and (1.2) to give integral values

of b and A is found to be 21, and the blocks of the design are all

the combinations of the eight varieties three at a time. It was to pro-

vide useful designs for such values of v and k that arrangements

like the following were introduced.
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Figure 1. Example of PBIB design.

This is not a balanced design because the pairs of distinct varieties

do not all occur equally often. Every pair occurs once with the excep-

tions (1,6), (2,6), (5,7), (4,8), which do not appear at all in the same

block. The remaining requirements for a balanced desip are satisfied.

This is an example of aMywe;new“ £133 -(PBIB) deal...

Partially balanced incomplete block designs were introduced by

a. 0. Boss and x. a. an: in 1939 [a]. They are a generalization of

balanced incomplete block designs and include them as a special case,

along with certain other incomplete block designs which were already known.

Their analysis is somewhat more difficult than that of balanced designs,

though conditions are specified (paragraph iii, 0, of the definition which

follows) which simplify it greatly. They have not been studied as



extensively as balanced designs. Some of the literature on the subject

will be discussed in later chapters.

Combinatorial properties of partially balanced incomplete block

designs will be the principal subject of this thesis. The problems of

analysis and interpretation of experimental data will not be taken up.

For our purposes from now on, a PBIB design is an arrangement of objects

know: as varieties or treatments into blocks according to certain rules.

A definition of P313 designs will now be given.

An incomplete block design is said to be partially balanced if it

satisfies the following conditions:

(i) The treatments or varieties being tested are grouped

into b blocks, each consisting of 8 distinct treatments.

(ii) There are v treatments, each of which occurs in r

blocks.

(iii). There can be established a relation of association

between any two treatments satisfying the following requirements:

(a) Two treatments are either 1st, 2nd, . . . , or mth

associates.

(b) Each treatment has exactly n1, 1'“ associates.

(c) Given any two treatments which are ith‘associates,

the number of treatments common to the 3th associates of the

first and the a“ associates of the second is 931; and is

independent of the pair of treatments with which we start.

Also pa = 9%.

(iv) Two treatments which are 1th associates occur together

in exactly A 1 blocks.



It should be noted from (iii) that the association relation is

symmetric but not necessarily transitive.

It was proved by Bose and Hair [8] that the following relations

hold among the parameters.

(1.5) bk = vr ,

(1.4) n1+n2+- ... +n-3 v-l,

(1e5) HA1+32A2+0 0 0+3-A. 3 r(k’1) ,

m

(1.6) F19}; : ‘33 (if 1 i J) ,

“1-“ (if i = j) ,

(1'7) “19%;: z “191: = "1:91;: '

For fixed 1 the parameters pi are conveniently displayed in an

m x m matrix with J and k as row and column indices, denoted by Pi'

By the final remark of (iii)(c), these matrices are synetric.

It is easily verified that the example given in Figure l is a PBIB

design with two associate classes and the parameters

y:b:3, r:k=5s “1:1, ”2:6: A1:os Azzle

oo 01

P1'[ ]oP2'[ ]
06 14

It may also be verified that these parameters satisfy relations (1.5) to

(1.7).
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1.2 Association Schemes 9313 Incidence Iatricesi The definition of the

previous section is not in the same form as originally given by Bose and

Nair, but follows closely several papers around 1952, notably Bose and

Shimamoto, «Classification of P318 designs with two associate classes" [I 0].

The definitions are logically very similar} but as pointed out by Bose

and Shimamoto, the association relations among the treatments do not depend

on how they are distributed in blocks. In this form of the definition the

association relations are completely specified in paragraph (iii). They

may be taken up without considering the parameters b, r, 1:, A1. —

in association scheme is a convenient device for describing the

association relations of a design. It is a table or other arrangement

listing for each treatment its 1”, 23d, . . . , nth associates. The

treatments may be assigned the numbers from 1 to v in any convenient

order for such a table. Bose and Shimamoto found it possible to classify

the association schemes of all known designs with m = 2 association

schemes into five types, some of which can be set down very concisely.

Perhaps the simplest type of scheme is the group divisible (GD), in which

v - In and the treatments aredivided into m groups of n each, treat»

ments in the same group are first associates and treatments in different

groups are second associates. A compact form for the association scheme

is an m by n rectangle, with the n treatments in a row constituting

a group. The example given in Figure l is a GD design with the

following association scheme .

l. The original definition contained the specification that the 1 be

distinct. m: was dropped in a 1942 paper by stir and Rao [is ,generali-

singhthe class of P318 designs somewhat. Their definition is equivalent

to a one given here.



.
0
0
1
0
.
“

5

6

7

8

Figure 2. Example of Group Divisible association scheme.

The first associate of treatment 1 is treatment 5, etc. It is natural

to attempt to generalize this by taking two treatments as first associates

iftheyappearinthesameroworthesamecolumn, butifmfln itis

easy to see that condition (iii)(c) of the definition is violated. For

example, the number 9&1 of treatments common to the first associates of

treatments 1 and 5 would be 0; the number for treatments 1 and 2

would be 2. If m = n so that v = n2, this generalisation leads to an

association scheme described by Bose and Shimamoto as of Latin square type.

The following array is given as an illustration.

1 2 3

4 5 6

7 8 9

Figure 5. Example of Latin square association scheme.

1

This array defines a GD association scheme in which treatmentfihas as its

first associates treatments 2 and 3; it also defines a Latin square

type scheme in which the first associates of treatment 1 are 2, 5, 4, 7.
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Tu various types of association schemes will be discussed further in

Section 2e1e

It may be noted that for a group divisible scheme the relation for

first associates is transitive as well as symmetric; that is, the first

associates of a treatment are pairwise first associates. This is a

sufficient condition for the scheme to be GD, for it implies that the

treatments may be divided into groups such that two treatments in the

same group are first associates and two treatments not in the same group

are second associates, while the condition that each treatmentihave n1

first associates requires that.the groups be of equal size. The Latin

square scheme described above illustrates that in general two treatments

which are first associates of the same treatment may not be first

associates or each other.

There may be several designs for any one association scheme. The

following is another design using the GD association scheme of Figure 2.

vsm rza ksg b=m A1=m A2=L

 

dis

1 5

L1 5
I} 6]

[2 6

re 7

1E
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#
0
0
0
0
0
0

   

Figure 4. Another PBIB desip.
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A number of possible designs for the Latin square association scheme of

Figure 3 will be enumerated in Table IV of the Appendix.

The portion of an association scheme corresponding to 1th associates,

i-i,...,m,meyberepresentedbya vxv matrix

at ... (a, v)

where a1 v has the value 1 or 0 according as treatments ,1. and 1/,o

are or are not it!1 associates. A1 will be called the incidence atr__i_x_

for it"h associates, or simply the ith association matrix. It follows

from paragraph (iii) of the definition that it is a symmetric matrix with

exactly n1 1's in each row and column. Before further properties of

the A1 are derived, a connection will be pointed out with another

incidence matrix pertaining to the design.

The incidence matrix for treatments and blocks of a PBIB design is a

.. ... (3,”)

= 1 if treatment Pi occurs in block 1/ ,

vxb matrix

where

(1.8) an

'3 0 otherwise.

That is, positions of 1's in row ’4. of the matrix indicate the blocks

of the design which contain treatment v . We shall consider the product

of N on the right by its transpose N'. This product NN' will be a

symetric v x v matrix. Let

(1.9) Ni" = (b/W).
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The diagonal element b PP of NW is equal to the number of 1's in

row [4 of II, or the umber of blocks of the design which contain treat-

ment In . For ,4 it v , b,” is equal to the inner product of rows ,u

and v taken as vectors, or the number of blocks which contain both of

treatments P- and v . For a PBIB design we have by paragraphs (ii)

and (iv) of the definition,

(1.10) bft’s = r ,

bray =A 1 when pqév andtreatments ,0. andv

are ith associates.

That is,

m

(1.11) mm : ”Iv + 12:1 A1A1,where Iv is the vxv

identity matrix.

The matrices N and NN' have been used extensively since about 1950

in various studies of balanced and partially balanced designs} The

matrices A1 do not seem to have received much attention.

There follow as examples matrices N and NN' for the design given

in Figure 4, preceded by the matrix A1 for the association scheme of

this desim, given in Figure 2.

 

1. The following papers referred to in this dissertation-ekemakesubstantial

use of N, RN' and related matrices: [7].. figs 1.75 71-127 [327
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1.5 Applications and Algebraic grogrties 9_i_‘_ _t_h_§_ Matrices A1 .

Consider the product of two of the association incidence matrices,

not necessarily distinct.

(1.12) AjAk = (ch) ,

where

v

(1.15) cf: 3 : aJ a.k

In (1.18), each term of the sum has the value 0 or 1 and is equal to

1 only if treatment 0’ is a 1th associate of treatment [A and a km

associate of treatment 7/ . Thus cikv is equal to the number of treat-

ments which have this property. From (iii)(c) of the definition, page 8,

we have

(1.14) cliky = p‘h‘ when ,u 1: v and ’u and 1/ are it‘1 associates.

A diagonal element (:3: of the product is equal to the number of treat-

ments which are simultaneously 1th associates and km associates of

treatment ,u . Therefore

(1.15) c/j‘kf‘ 3 51]: n),

where 5 j]: is the Kronecker function defined as 1 if j = k and 0 if

.1 f k. Statements (1.12 to 1.15) lead to the following theorem.

Theorem _l_._,_]_... If ‘1 denotes the incidence matrix for 1th associates

in a PBIB design with m associate classes, then

I

- .. Z i

i 3 l



 

 

l
l
l
l
i
n
j
l
.
T
I
.
’
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where S it is the Kronecker delta function and Iv is the v x v

idea“t, matrixe

Proof: Statements (1.12) to (1.15) show that AjAk has the indicated

form. The statement, in (iii)(c) of the definition, that p3}: =- p?”

then implies that the product is commutative.

The statement that products of the 11 are commutative is equivalent

to the statement that the products are symetric, for if A and B are

symetric matrices, then

BA = B'A' =- (AB)‘

and (AB)' is equal to AB if and only if AB is symetric.

Formula (1.16) for forming products is almost a sufficient as well

as a necessary condition that the matrices A1 satisfy the conditions of

partial balance. The sufficient conditions are stated in the following

theorem.

Theoremlég. If A1 , i=1, 2, . . . ,m,areasetofsymmetric

v x v incidence matrices whose sum is the matrix with 0's on the main

diagonal and 1's elsewhere, and if there exist mom-negative integers m1

and p}k such that (1.16) holds for 1, k = 1 , 2 , . . . , m , then the

‘i are the association matrices of an association scheme satisfying the

conditions of partial balance.

Proof:

It must be verified that parts (iii) (a) , (b) and (c) of the defi-

nition on page 8 are satisfied. The statement that the sum of the
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incidence matrices is a matrix with 1's in all off-diagonal positions

shows that every pair of distinct treatments are ith associates for

some i , which is equivalent to (iii)(a). The number of jth associates

of treatment I“ is equal to the number of 1's in row lu. of A ,

which is in turn equal to the element in the f‘ , ,4. position of the

product matrix Ajbj' . By symmetry of Aj , this is identical with

if and may be computed by (1.16), which shows that all diagonal elements

of A12 are equal to nj . Therefore each treatment has nj Jth

associates and (iii)(b) is satisfied. The set of 1th associates of

treatment la. is determined by the positions of the 1's of row IU-

of A: , and the set of kth associates of 7/ is determined in the same

way by row 2/ of Ak . The number of treatments common to these sets is

equal to the inner product of these two rows taken as vectors and appears

as the element in the ,M , 7/ position of the product Ajak' , which

by symmetry of Ak is identical with Ajhk and has the form of (1.16).

m

The only term of the sum 2 pg]: A1 which contributes to the element

1 s l

in the [u , 7/ position is the term with i such that /4. and 'U are

1”“ associates. Therefore the number is equal to pit When fl- and

are any pair of ith associates, proving most of (iii)(c) . The final

statement follows from the fact that AJ. A]: 3 AKAJ , and the proof is

complete.

The stipulation that the A are incidence matrices is necessary in

1

Theorem 1.2. It is possible to construct matrices having elements other

than 0'8 and 1's which satisfy all the other hypotheses of the theorem,
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but are of course not association matrices. An example with m = 2 is

memnwmg

 

0000 111

0001. 010

A130010 1-11 .

0100 010

L1000 111

l
o
o
o
o
o
—
q

.

3
’ u

b
H
H
H
o
i

   '
O
H
H
H
O
I

A typical product is 122 = 3 I + “1+ A2 .

Next consider matrices which are linear combinations of the identity

Iv and the association matrices Ai , say

(1.1?) onvt- >‘1A1+ ...+ AnAm,

where the )\1 are scalars. A product of two such matrices will be a

linear combination of tonne of the form Iv , A and AiAj , and by
1

Theorem 1.1 will reduce to the form.(l.17). Thus the set of matrices of

this form is closed.under multiplication. Some consequences of this are

mentioned below. Among the products of matrices which are readily com-

puted by application of (1.16) are integral powers of the A1 matrices

and of the matrix NN' . The square and cube of the matrix A1 for first

associates in a design with m = 2 associate classes will now be given

as illustrations.

2 .. 1 2

(1°13) A1 ’ ”11¢ p11“1 "' p11‘s '

s 1 2 2

‘1 " n1“1"'1’11*1 + l’119‘1“2
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(1'19) ‘13 : n1911“ + (”1 + p112+ p1:83:95 + (911911 +9119? A:2 ‘

It was pointed out.that the set of matrices of the form (1.17) is

closed under multiplication. It is obviously also closed under addition,

and if negative coefficients are allowed, under subtraction. It follows

from these remarks and from general properties of matrices that the set

forms a commutative ring of matrices with a unit element. This has a

number of interesting consequences, of which one may be mentioned. The

matrices Iv , A1 , . . . , An are easily seen to be linearly inde-

pendent and form a basis of m +-l elements for the ring. For any

matrix c in the ring, the set 1‘, , c , 02 , . . . , 0“1 contains

m +-2 elements which must be linearly dependent. Therefore 0 satis—

fies an equation with scalar coefficients of degree at most m +-1.

This means that the minimum equation of C has degree at most m + 1 ,

or that any matrix of the form (1.17) has at most m +-l distinct

characteristic roots. In particular, this applies to NN'. It is

possible to use methods based on the commutative ring to find the char-

acteristic roots and their multiplicities. The same results on the

number of distinct characteristic roots of NN' , together with a com-

putation of the values and multiplicities of the roots, appear in a

paper of Connor and Clatworthy D Z7 which does not use the A1 matrices.

This paper was published before the present work on the association

matrices was completed. Several theorems of [717 will be used in

Chapters 11 and III.

Credit is also due to R. C. Bose for some work on the association

matrices A1 , including the equivalent of Theorem 1.1, which has not
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been published but was presented at a meeting of the Institute of Mathe-

matical Statistics at Ann Arbor, Michigan on September 2, 1955. The

portions of this research making use of the association matrices had

already been completed at that time.

Another possible interpretation of association schemes is by means

of linear graphs. (A linear graph may be defined for our purposes as a

finite set of points, certain pairs of which-are joined by non-directed

lines.) The association scheme for it‘h associates in a PBIB desim m

be identified with a linear graph on v points by identifying points

with treatments and joining points which are it“ associates. Since

each treatment has 111 itb associates, each point of the graph will

lie on n1 lines. Since any two treatments which are i"h associates

have as common 1th associates ph other treatments, each line of the

graph will lie on ,pi’i triangles. Ilore generally, if an arbitrary line

of the 1th graph joins points A and B then there are just p3]:

other points which are joined to A by a line of the 3th graph and

to B by a point of the kth graph. In the case of P318 designs with

two associate classes the graphs may be described more simply. Each of

the two graphs is the complement of the other and it is sufficient to

describe the one for first associates. In this graph there are nl lines

on each point, each line lies on p11 triangles, and each pair of points

not joined by a line is joined by pil chains of two lines.

The incidence matrix A1 of 1th associates may also be interpreted

as the incidence matrix of the it'h graph, 5. 1 in the ft ,v position of
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the matrix indicating that points F. and V of the graph are joined

by a line. Incidence natrices are useful in analysis of the structure

of graphs. The terminology of linear graphs will be used in parts of

Chapter IVfor the investigation of the structure of association schemes.



II. ENUIERATION 0F POSSIBLE DESIGNS AND ASSOCIATION SCHEMES

WITH no ASSOCIATE CLASSES

2.1, The Class of PBIB Desigs with 130 Associate Classes

In this chapter, attention will be confined to partially balanced

incomplete block designs with two associate classes. Bose and Shimamoto

discussed these desigls thoroughly in 1952 [397 and introduced a classi-

fication of them into five types according to the form of the association

scheme. An extensive set of tables of these desigls was compiled by Bose,

Clatworthy and Shrikhande and published in 1954 [a], following the

classification of Bose and Shimoto. Over 570 designs are listed, about

three-fourths of them of group divisible type. The authors state that the

compilation includes all designs that were known at that tine, but do not

claim that additional desims cannot be constructed. The classification

of association schemes seems also to be a summary of known types, and is

not represented as a listing of all possible schemes. Some new association

schemes to be constructed in Chapter III fall outside the classification,

showing that it is not exhaustive. The classification is described later

in this section.

A computing procedure developed from some known necessary conditions

on association schemes is introduced in Section 2.2 and used in Tables I

and II of the Appendix to list the parameters of all possible association

schemes with two associate classes and not of group divisible type, for

all numbers of treatments v 5 100. Several new necessary conditions are
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also proved in Section 2.2. Necessary and sufficient conditions for the

existence of an association scheme are not known. Of 101 sets of parameters

tabulated in the Appendix, 56 correspond to schemes which are already known

or constructed in this dissertation, and 4 are proved impossible. These

schemes are identified in Table II. There remain 41 sets of parameters

for which the existence or non-existence of an association scheme is

unknown. Such a list was frequently promised by the early writers on

PBIB designs, but appears never to have been compiled and is offered here

as an original contribution, along with the computing scheme and the

necessary conditions of Section 2.2.

The next logical step is to list all combinatorially possible designs

for each association scheme, identifying those known to exist or to be imp

possible. The counterpart of this list for BIB designs was mentioned on

page 6; it was published by Fisher’snd Iates in 1958 and revised in 1945

and 194? [i J. It includes 16 sets of parameters about which nothing was

known in 1938 but which were subsequently attacked.so assiduously by

various writers that by now all but two (at most) have either been con-

structed or shown impossible. Such a list for PBIB designs would be much

longer, even for the association schemes so far constructed, and its cam-

pilation has perhaps been deterred by the fact that enough PBIB designs

are already available to satisfy most of the needs of experimenters. The

parameters of all possible designs with r 5 10, k 5 10 will be listed

for the schemes under special study in this dissertation, mostly of Latin

Square type. The list appears in Tables III and IV of the Appendix

and the method by which it is constructed is.developed.in.Section 2.3,
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using known theorems for the most part. The parameters of schemes which

have been constructed or proved impossible are identified in Table IV.

Some new designs and impossibility proofs are included for reference in

SectionA3 of the Appendix.

before.

It is believed that this list has not appeared

The parameters for desips with m = 2 associate classes are

v, b, k, r, Arlyn

'- H

1

2

  

vi

a a

’ n2,

2 2

  
P P
-12 22-4

These parameters satisfy relations (1.5) to (1.7), which are restated

here for this special case.

(2.1)

(2.2)

(2.5)

(2.4)

(2.5)

n+n - v—l

n1>\l+n2x2= r(k’l).

2
1+Pi1+Pizz Pn+P§2=

1+p1 : 2 2

pm a l+fi2+p22

1 z .

nl p12 n2p§l

l : 2

nl p22 n2 p12

n

1

n2
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The classification by Bose and Shimamoto of association schemes for

P818 designs with two associate classes will now be taken up. This

classification was introduced by Shimamoto in a master's thesis written

under the direction of Bose, was first published in a joint paper in

1962 [is], and has been used, with minor changes, in later papers by the

same authors and others. The five types of designs are Group Divisible

(GD) , Triangular, Simple, Cyclic and Latin Square (Lg) and will be

described separately .

£1332 Divisible designs are defined when the number of treatments v

may be expressed as a product an. The treatments are divided into n _

groups of n treatments each, treatments in the same group beingtaken as

first associates while those in different groups are second associates.

GD designs have been mentioned with some examples in Chapter I. They form

the most important class of partially balanced designs and the largest

known class, and have been studied more extensively than any other

partially balanced design. In 1952 Bose and Connor [7] published

several results on these designs, one of which will be generalized to

Latin square type designs in Chapter IV. One feature of [7] was the

division of the designs into three subclasses, essentially on the basis

of the rank of the matrix NN' , though the connection with the character-

istic roots of mm was not brought out clearly until 1954 in a paper by

Connor and Clatworttnr [71.7. A similar classification of Latin square type

designs will be mentioned in Section 2.5. Some other important publi-

cations on CD designs are [TS], [7 9]. D L7.
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Trium. designs are defined when v is equal to a triangular

number n n- . The association scheme is an array of n rows and

n colunnswith the following properties:

(i) The positions in the main diagonal are left blank.

(ii) The n 3" . positions above the sain diagonal are filled

. with the nunbers“.l, 2, . . . , 9.1-3:le- eorresponding to the

treatments.

(iii) The positions below the nain diagonal are filled so that the

array is syIIIetric. *

(iv) For any treatment 0 the first associates are those treat-

nentswhichlieinthesanerow(orinthesanecolunn)as 0.

gap}; designs include designs with various values of v. In the

1959 paper [a] in which PBIB designs were first introduced, Bose and

Hair gave some examples of designs obtained by dualising BIB design,

that is, interchanging the roles of treatments and blocks. The treatments

in one particular block of the dual design then correspond to the blocks

of the original design which contain a particular treatment. The duels

of some BIB designs fail to satisfy the conditions of partial balance,

but in any case the dual desigl will have the property that any two blocks

will have the same number of treatments in com. This led to the

designation "linked block“ for such designs [327. The duals of several

classes of BIB designs were shown by Shrikhsnde [3;] to be partially

balanced with two associate classes. Sons of these designs fall within

the triangular class discussed above; the others have the property that



A1 = 1, A2 = o. In the classification by Bose and Shimamoto in

their 1952 paper [T Q7, these were listed as a separate "linked block"

type of designs. In the tables published by Bose, Clatworthy and

Shrikhande in 1954 [a] this classification is enlarged somewhat to

include soae designs which are not obtained by dualization and do not

have the linked block property, but which do have the property that

Al 3‘ 0, A2 = 0. They are referred to as simple desims. The

classification was enlarged a little too much in the 1954 tables, as the

three designs listed for v 3 19 are not partially balanced. Table II

and Theorem 2.2 will each show the impossibility of a PBIB design with

two associate classes and v = 19.

In Cyclic designs the first associates of treatment 0 are the

treatments 0 -I- d1, 9 + d2, . . . , O +dn1, reduced modulo v, for

a suitably chosen set of integers d1 .

has the special property that each row is a cyclic permutation of the

The association matrix A1 thus

first row. In every know design of this type v is a prime of the form

4t + l and the set of d's may be taken either as the set of quadratic

residues of v or as the set of quadratic non-residues.

{£3.15m type designs are defined when v is equal to a square

n2. The association scheme consists of an n x n array of the numbers

1, 2, . . . , n2, possibly with an orthogonal set of one or more n x n

Latin squares superimposed. Two treatments are taken as first associates

if they 'occur in the same row or colunn’Iif they coincide with the same

letter in any of the Latin squares. A scheme of this type using 3-2 Latin
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squares is said to be of Latin square type with g constraints and is

denoted briefly by the symbol I.g . This type of designs will be treated

in some detail in this dissertation. Parameters of possible L design

Will be enumerated in Section 2.5 and tabulated in Tables III algld IV of

the Appendix, and a number of properties of the association schemes will

be investigated in Chapters III and IV.

An n x n Latin square is an arrangement of n letters into the

cells of an n x n array in such a way that every row and every column of

the array contains every letter exactly once. A Latin square may be con-

structed for every n, for example by taking each row as a cyclic per-

mutation of the first, as in this example.

U
G
O
)
?

m
u
c
u
s

U
P
U
O

o
n
u
s
-
u

Two Latin squares are said to be orthogonal if, when one is superimposed

on the other, every ordered pair of letters occurs exactly once in the

resulting square. Thus the following 3 x 5 Latin squares are orthogonal.

ABC ABC

BCA CAB

CAB BCA

On the other hand, there exists no 4 x 4 Latin square orthogonal to the

example above. It has been shown that at most n—l mutually orthogonal

n x n Latin squares can be constructed, and that the construction of such

a set, called a complete orthogonal set, can actually be accomplished if

n is a prime or a power of a prime [fig], [3.7.],[5]. The following three
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squares form a complete orthogonal set for the case n a 4.

ABCD ABDC ABC D

BADC CDAB DC BA

CDAB DCBA BADC

DCBA BADC C DAB

Knowledge about sets of orthogonal Latin squares when n is not a prime

power is rather sketchy. In no such case has a complete set been con-

structed, though methods are known for constructing a smaller number in

certain cases (e.g. two orthogonal 12 x 12 squares). For n satisfying

certain conditions it is known that the maximum number of squares in an

orthogonal set is less than n-l [72], while in the case n = 6, enumera-

tion methods have been used to show that no orthogonal pair exists. This

case was mentioned by mile:- 53] but not finally settled until 1900 [5.17

(see also [a 9]). The existence of a complete orthogonal set of n x n

Latin squares is equivalent to the existence of a finite projective plane

geometry in which each line contains n +1 points. Either of these

systems can be constructed from a finite field of. order n , so that a

sufficient condition for their existence is that n be a prime power, but

this condition is not known to be necessary. An open question at present

is whether any set of two or more 10 x 10 orthogonal Latin squares exists.

Orthogonal squares which are not Latin squares can be 'useful in the

construction of association schemes. The two following squares are ob-

viously not Latin squares but they are orthogonal; that is, when they are

superimposed every ordered pair of letters occurs exactly once.



AAAA ABCD

,ssss sacs

R: cccc 0: sacs

DDDD ABCD

An association scheme obtained by superimposing them on an array of the

numbers 1, 2, . . . , 16 and taking numbers as first associates if they

occur with the same letter in either square will be identical with the

scheme L2 in which associates are defined by rows‘and columns of the

array. Ioreover, any a x 4 Latin square is orthogonal to each of them,

and any 4 x a square which is orthogonal to both must be a Latin square.

The analogous statement for n x n squares is clearly true. Therefore a

set of g—2 orthogonal Latin squares is equivalent to a set of g orthogo-

nal squares of which two are R and C.1 If the n2 cells of each of g

orthogonal squares are subjected to the same permutation, the resulting

squares will still be orthogonal, though not necessarily Latin. Given any

set of orthogonal squares, simultaneous permutation, of the cells can be

used to place any two of the squares in the form of R and C, still

preserving orthogonality. The association scheme Lg may now be redefined

by a set of g n x n orthogonal squares superimposed on an array of the

numbers 1, 2, . . . , n2, taking numbers as first associates if they

occur with the same letter in any of the squares. Permutation of the num-

bers of the array together with the cells of the superimposed array will

. preserve all association relations, so that any such association scheme is

equivalent to one in which two of the squares are R and C and any

-h‘ 4 __—_A

... fl __..~_———— '—

1. The notion of non-Latin orthogonal squares is not new. In at least

one recent publication [F1!] there is a description of the squares R and

C and their relation to Latin squares.
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remaining squares are necessarily Latin. In particular this shows that

for a given n, all pairs of n x n orthogonal squares lead to L2 schemes

which are equivalent except for numbering of treatments. It say be noted

that an L1 schene is a special case of a group divisible scheme.

It is convenient to use this definition of the L8 scheme to derive

expressions for the parameters n1 and pgk and to slaw that they

satisfy the requirements for a PBIB design. This derivation will be

illustrated with an example of an L scheme for 16 treatments based on

5

the squares R, C, and a Latin square of the orthogonal set. These

squares are listed below for easy reference, along with the array of ma-

bers with which they are to be superimposed. The orthogonal squares are

numbered from 1 to s for identification in the discussion.

1254 AAAA ABCD ABCD

5 6 7 8 B B B B A B C D B A D 0

9101112 0000 ABCD CDAB

15141516 DDDD ABCD DCBA

Array Squarel Squarez Squares

Figure 5. Example of L5 association scheme for 16 treatments.

It follows from the orthogonality of the squares that two cells occupied

by the same letter in one square must be occupied by different letters in

each other square. Thus the n-l associates of a particular treatment

in one square will be distinct fron its associates in each other square,

and the treatment will have as the nunber of its first associates

(2-6) n1 7- g(n-1) .
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In the example, treatment 10 has as its first associates 9, ll, 12 in

square l; 2, 6, 14 in square 2; and 4, 7, 15 in square 5, for a

total of 9 first associates.

Let two treatments 0 and ‘p occur with letters at and oh

respectively in the 1:“ square, k = l, . . . , g'. ak and bk will

be distinct for all values of k if the two treatments are second

associates, and equal for Just one value of k if they are first associ-

ates. If 0 and [6 occur with distinct letters in the nth and l:tn

squares, so that ‘h # hh and at f bk , and if these two squares are

superimposed, the pair of letters ah , bk will occur in just one cell.

The treatment in this position will be a common first associate of 0 and

fl . The total number of such treatments will be equal to the number of

ordered pairs h, k such that 1113 it ch and at i bk . The number of pairs

may be expressed u(u—l), where u is the number of squares in which 0

and fl occur with distinct letters. If 0 and [d are second associates

they occur with distinct letters in all g squares, u = g , and the num-

ber pfl of first associates the treatments have in common is

(2.?) oil = c<s-1> .

In the example, let 9 = 5 and £6 3 10 . Then

a1 = B, b1 3 C;

32 . A, b2 = B;

as = 13, b5 = D;

and since ak # bit for all 1:, treatments 5 and 10 are second associates.

The pairs of letters ah, bk obtained when squares are superimposed and



the corresponding common first associates of the two treatments are as

 

follows.

Pair of superb Ordered pair Cell in which the pair

imposed squares of letters of letters occurs

h, k ab, bk

1, 2 B, B 6

2, l A, C 9

l, 5 B, D 7

5, 1 B, C 12

2, 5 A, D 15

5,2 3,3 2

The six cells singled out represent the six common first associates of

treatments 5 and 10.

If 0 and fl are first associates, occurring with the same letter

in one square, say the first, then u 3 g—l . In addition to the

(g—1)(g-2) common first associates found by superimposing pairs of dis-

tinct squares, 0 and fl will have as common first associates the n-2

other treatments occurring with the same letter in the first square. No

additional first associates are found by superimposing the first square

with any of the others, for the pair a , b in this case is a , b ,

h k l k

which is identical with bl’ bk, and this pair of letters occurs in the

position of ¢ itself rather than any distinct treatment. The number

1 .

Pll of-common first associates of the two treatments is therefore
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(2.8) PL 3 (g-l)(g-2)+n-2 3 g2- 33+n.

In the example, let 0 3 9 and i = 10 . Then

a1 3 C, b1 3 C;

a5 = 0, b5 3 D;

and since a1 3 b1 , treatments 9 and 10 are first associates. They

occur with distinct letters in squares 2 and 5 . The pairs of letters

an, bk obtained when these squares are superimposed and the corresponding

common first associates of the two treatments are as follows.

 

Pair of super- Ordered pair Cell in which the pair

imposed squares of letters of letters occurs

h, k ah,bk

2, 5 A, D 15

5, 2 C, B 14

Treatments 9 and 10 occur with the same letter (3 in square 1, and the

other n-2 3 2 cells of the Square which also contain the letter C are

11 and 12 . The four cells singled out represent the four common first

associates of treatments 9 and 10 .

The remaining parameters are quickly computed from n1, pil and

9&1 to give the following set.
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(2.9) v 3 n2 ,

( ) 82 - 53 r n (s-l)(n-g +1)

n 3 g n-l , P 3

1 1 (g-1)(n-g+1) <n-g)(n-g+1)

u2 2' (n-g+1)<n-1> .

' s(s~1) 8(n-s)

P2 3 2 .

son-g) (n-s) + 3-2

The nondnegative nature of n2 implies the inequality

(2.10) g _<_ n +1 ,

proving the statement previously made that the maximum number of Latin

squares in an orthogonal set is n-l . If a complete set of :1 +1

orthogonal squares is constructed and if g of them are used to define

an L8 association scheme, then second associates are precisely those

treatments which occur with the same letter in one of the n-g + 1 re-

maining squares. It will be convenient later if the letter 1' is intro-

duced to represent this number:

(2.11) f =n-g+l.

It is clear that if the designation of first and second associates is

interchanged in the L8 association scheme, the result will be the Lf

scheme based on the f remaining squares. A scheme with the parameter

values and properties of I.f can be obtained in this way from any Lg

scheme, whether or not the f orthogonal squares are actually constructed.

Some examples will be given in Chapter IV of schemes of this kind for which

the orthogonal squares can be shown not to exist. Since the schemes L

8

and Lf are equivalent for any value of g , each Lg scheme is
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equivalent to one in which g g 2...}; , and in particular the Ln scheme

is equivalent to Ll , which is simply a group divisible scheme. The dual

roles of g and f are most clearly seen from the following expressions

for the parameters.

(2.12) n 3 (g «Pf-l) , . 2

(g—l) + r-2 an)
v 3 n2 , P1 =

f(g-l) r(£-1)

n1 3 8(331) 9 .—

n2 = f(n-l) , _ 3(3-1) s(f-l)

92 - 2 .

8(f-l) (f-I) + 3-2

These expressions give the values of parameters of L8 schemes if

g and f are positive; if group divisible schemes are to be excluded,

g and 1‘ must be taken as 2 2. .

It may be verified that certain negative values for g and f (and

hence n) lead to values for the above parameters which are non-negative

and different from those obtained with positive g and f . 'Conditions

(2.2), (2.4) and (2.5) are algebraic identities in g and f and are

satisfied in either case, so the new values represent the parameters of a

possible new series of association schemes. Some connections of the new

schemes with the ordinary Lg series will be discussed in Chapter III,

and several ofthem will be constructed. They are found to fall outside

the five known classes of association schemes. The name "negative Latin

square" will be used for the series .of schemes whose parameter values are

1!

8

g negative, will be used as an abbreviation. Parameter values of schemes

given by (2.12) with g, f and n negative, and the symbol L , with

in the L; series are identified in Table II of the Appendix, and possible



desips for the new schemes will be listed in Table IV. It should be

mentioned that the ordinary Latin square, or L8 , series was defined to

include only schemes in which first associates can be defined by means

of a set of g orthogonal n x n squares. The term "scheme with Lg

parameter values” will include the L8 schemes and any other schemes

whose parameter values are given by (2.12) with positive values of g,

fand n.
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2.2 Motion 9‘; uggciation Sch-sea.

The parameters by which an association scheme is specified are v,

n1, pg], . A procedure will be developed in this section for the con-

struction of a table of all possible sets of values of these parameters

for P318 designs with two associate classes. For a given value of v ,

a unique group divisible (GD) scheme exists for each pair of integers

m 2 2, n 2 2, such that mm = v; that is, there is one GD‘association

scheme for each proper divisor of v.. The construction of these associ-

ation schemes is trivial and it is not considered necessary to list their

parameters. The enmeration’ of possibledsssociation schemes of other

types will be carried out for all values of v s 100.1.

Theorem 2.0, due to Connor and Clatworthy 52], defines parameter

values of one series of possible association scheees in terms of a para-

meter t . Theorem»2.1 uses two parameters s and t in the deriva-

tion of expressions for the parameters of all possible schemes not given

by Theorem 2.0. Several necessary conditions on .the parameters are also

derived. Table Is of the Appendix lists» the sets of parameters given by

Theorem 2.0. Table Ib also makes use of Theorem 2.5. Tables Ia and lb

give 101 possible sets of parameters for '$ 100. These “are listed in

Table II. The necessary conditions. applied in. constructing these tables

are by no means sufficient for the existence of n association scheme and

v w

1.< An easy computation shows that there are 285 GD schemes for values of

v 100. .
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it is easy to derive additional necessary conditions applying to certain

classes of the parameters. Theorems 2.2 to 2.8, which are of this nature,

show the impossibility of four of the schemes in Table II and place

restrictions on several others, as well as giving some general information

on the structure of association schemes. The schemes which are proved

impossible are indicated by the letters x in Table II, followed by a

reference by number to the applicable theorem. Parameters of known

schemes are indicated by the letter C , followed by a reference. The

remaining 41 schemes have neither been constructed nor proved impossible.

Further explanation of the tables precedes them in the Appendix.

Several necessary conditions satisfied by the parameters of a PBIB

design are derived by Connor and Clatmorthy [T Z] by using the matrix NN' .

They show that this matrix has only three distinct characteristic roots,

obtaining eXpressions for the roots and their multiplicities. The same

results may be obtained rather easily by methods mentioned in Section 1.5.

In their notation,

rk is a root with multiplicity l,

r - 21 is a root with multiplicity 0(1 ,

r - zz is a root with multiplicity0<2 .

The 0(1 depend only on the parameters of the association scheme, and are

this the same for all designs having a given association scheme. The mi

depend in addition on A l and A2 and will not be needed in this

section. Equations (5.9) and (5.10) of [[2] give
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(2.15) 0Q : (V—l)(—Y+—W + 1) “an;

1 2 \FE

(2.14) 0(2 2 (v~l)(Y-: TA— +- l) -2n2 ,

W 2 FE"

where I

(a) . Y 3 piz " p12 s

(2.15) (b) F: p12 + pf, .

(c) A = Y 2 + 25 + l .

Useful necessary conditions on the parameters may be obtained from the

fact that the multiplicities 0< 1 and 0(2 must be non-negative

integers. They are of course not independent; 0(1 + o<2 = v—l .

Connor and Clatworthy in their theorems 5.3 to 5.5 investigate the nature

of A . One of their results will be stated as a theorem.

THERE}! 2.0. (Connor and Clatworthy) 517. If A is not a square,

it is necessary that

(a) pig 3 pig. 3 t!

(2.16) (b) h1 = h2 = 0(1 = 042 = 2t,

(c) v = A = 4t+1 ,

where t is a non-negative integer defined by (2.16) (c) .

This series of possible association schemes is easily enumerated.

The possible parameters are listed in Table In. In every other case
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A is an integral square. This will be used to develop a mettnd of

systematic enumeration of other possible association schemes. From

(2015) (c):

2.

(2.17) p = A-i 211 -

Solving (2.15) (a) and (b) for the pig , then using (2.17),

(2.18) pl 3 LL: MA-YZA-2Y-1 : A-;Y+1)2

12 2 4 4

 

(l2: -VY' - l) {1Y7§-+'V’1';J.se

2 2

 (2.19) 2 : fir. .-. A-Y2+gr-1:é_
‘x ~le

4 4
912 . 2

 (W (ILL?! L1). .

Statement (2.17) shows that the integers A and Y must be of opposite

parity. Therefore W 1' Y must be odd integers, V3- 1 Y 3"— 1 must

be even integers for all choices of signs, and s and t defined as

follows will be integers.

s 3 :12:;_52\{’ ’4;. o 

(2.20) -

tzfltY‘l-

Equations (2.18) and (2.19) may now be rewritten as follows.

(2.21) pig == s(t + 1) ,

(2.22) p; = (s + 1)t .
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Also,

(2e23) E = 8 + t + 1 e

A preliminary enumeration of possible pairs of values pig , piz now

reduces to the listing of pairs of integers s, t and application of

(2.21) and (2.22). Bose and Connor [7] show that a PBIB design with two

associate classes is of GD type if and only if piz '3 0 for i = 1 or 2.

This case will be excluded by requiring a and t to be asitive integers.

For each pair 9&2 , pig , it is next desired to enumerate possible

sets of the remaining parameters, particularly n1 and n2 . It will be

convenient to do this by finding values of 13:2 and pi . lultiplying

equations (2.. 5), we obtain

2

n1 ll‘2 Pi2 1"12
n1

(2'24) Pia p:122 922 932.1 °

Pairs of possible values of 922 and pfl may thus be obtained by ex-

pressing the product piz 93.2.2 in every possible way as the product of

two positive integers 922 and pfl . Relations (2.4) then give values

of the remaining parameters, including

2; 1 e = 2 2 .

“2 p12 + 922 ’ 111 p12 + p11

To avoid duplication, we make the restriction

1 2 . 1 : 2(2.25) p12 5 p12 , if 1312 912 . then n2 _<_ 9, .

1 2 -1 2:: 2A design for which p12 > P12 01' 912 912 and ”a. > a! may be
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reduced to one for which (2.25) holds by changing the designations of

first and second associates.

The enumeration will be carried out only for values of v s 100.

Simv=n+n+1-pf2+p§1+p{2+912+1.
1 2 2

thisaeans pig + pi]. +pi2 +1922 S 99,

implying

apt, + pf, 4- pg, + p21) < 25.

Since the geometric scan of any set of positive numbers is 5 their

aritlnetic mean,

(1 92 Pl pa“ <25-
1)12 12 22 11

Using (2.24) we obtain

(2.26) (p1 92% < 25 .
12 12

Only finitely any values of p12 and piz satisfy (2.21), (2.22) and

(2.26). A convenient fern for listing them is a table of we. of the

function a- (YK- 0' ), where 0' is an integer. The following portion

of the table will illustrate its form.

0"

 

0
‘

O
-

0
!

N
H

O

O
O

O
O

O
O

O

.
.
.
o

O

I 3
'
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The table is most easily constmcted by noting that the diagonal entries

are 0's and that the entries in column a- forn an arithaetic progres-

sion with difference a" . In the row of the table corresponding to a

fixed value of VT = s + t +1, the consecutive entries for 0' 3 s

and o- - s +1 are precisely s(t +1) = p}, and (s+l)t = pfz .

For example, for TX 2 4, the possible pairs of values of pie , p§2

are 0, a, s, 4; 4, s; 3, o. 1111 values or the pig satisfying

0 (pig S Pig 3 (Pig P3242)i < 25 are given in the portion of the

Thus the sets of parameters to be listed in Table 1b include only .

51 possible pairs of values of pig and 9&2 . For a given pair, the

number of values for the remaining parameters depends in part on the

nuaber of divisors of the product p12 pig . The relation

n2 = p52 + p§2 + l and the non.negative nature of p22 lead to

2 _ - 1 1 .

I’12 5 "2 1 " l’12""P22 ' 1'

1 2 1

P22 3 I’12 " p12"‘1'

1
(2.27) p22 2 Y + 1 .

This restriction on the value of p?22 will be used to shorten the

°°nputation sonewhat. A similar restriction on pil turns out to be

Vacuous in view of (2.25). It will be shown in Theorem 2.5 that at

13881; one of n1 and né must be an even number. If both are‘odd in a



Figure 6.

 

V23 1 2 5 4 5

5 2 2

4 5 4

5 4 6 6

6 5 8 9

7 6 10 12 12

s 7 12 15 16

9 8 14 18 20 2o

10 9 16 21 24 25

11 10 18 24

12 11 20 27

15 12 22

14 15 24

15 14 26'

16 15 28

17 16 so

18 17 52

19 18 54

Array giving possible values of p12 and pie .

  
l
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line of Table Ib, their values are omitted and the rest of the line is

left blank, further shortening the computation.

The full strength of the positive integral condition on 041 and

0K2 has not yet been imposed. Using v-l = n1+ n2 , expression (2.15)

may be written

(2.28) o<1 = “ZWZ’Y + 1)+nl(V—- Y '1) =52;('+1)+9fi

2V7)— . V7:

 
 

The value of this quotient is readily computed for each set of values of

piz , pig , 111 , 112 in Table Ib. If it is not an integer, no association

scheme exists and the letter f is entered in column “I of the table.

If 0( 1 is an integer, it is entered and followed by the value of

v = n1+ n2 4- l. ,

The results that have been obtained for the construction of Table Ib

are collected for convenience and stated as the following theorem.

THEOREM 2.1. An association scheme for a PBIB design with two

associate classes and not of group divisible type must have parameter

Values given either by the expressions stated in Theorem 2.0 or by the

fallowing conditions.

V7: is a positive integer,

s and t are positive integers satisfying (2.25): s. + t + l 3 TX

(2.21) 11:2 ‘ e(t +1) ,

(2.22) p122 - (s +l)t ,
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l 1 2 .
p22 is a divisor of p12 p12 satisfying (2.27).

P222Y+1=P§2’Pi2*1:

”)2 9&2
(obtained from (2.24) ),

9&2

pi

= 2 2

n1 p11 + 912 '

(2.4)

g 1

n2 922 + ’12 ’

(2.28) (' + 1) n2 + ' nl = d must be an integer;

m“ l

moreover, if the requirements

1 2 , 1 : 2
(2-25) 912 S 912 2 if 912 912 s then a; S n,

vSlOO

are imposed, then 9&2 , p12.2 must be a pair=of consecutive entries in

1‘01! A of the array in Figure 6.

The proof of Theorem 2.1 has already been completed. One additional

necessary condition. used in Table Ib will appear as Theorem 2.5. This

condition is a special case of (2.26) but seems to be of sufficient

1Interest to be stated separately. It may be remarked that taking negative

inhgral values for s and t (which is equivalent to using the negative

‘q‘uu‘e root of A ) leads to parameter values which are positive but no

different from those alreachy obtained.
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The enumeration in Tables Ia and lb gives 101 sets of possible

parameter values for association schemes. These are reproduced in

Table II, in order of increasing values of v, and numbered serially.

These serial numbers are given for reference in Tables Ia and lb.

Table II gives values of v, n1, 9:1: , 0(1 and m . The parameter

TE will be found convenient in locating particular sets of parameters

in Table Ib, which islarranged in order of increasing values of V7: .

Table II is standardized by listing only association schemes for which

al 5 n2 . In some cases this requires that desigiations of first and

second associates be interchanged in the corresponding scheme of Table lb.

The same parameter values occur, but with the indices 1 and 2 inter-

changed wherever they appear.

Inspection of Table II suggests a number of remarks about the

possible association schemes. Their abundance when v is a square is

somewhat striking; so is their scarcity when v is a prime. 111 and n2

have a factor in'comon in every scheme in the list; 0( and O< 2

l

have a common factor in many cases but not all; there seems to be a high

proportion of cases in which at least one of the d 1 has a factor in

common with v. The following theorems, some of which were suggested by

this sort of observation, show that at least part of the apparent

r'zi-fldlrity is a result of general properties of association schemes.

More of impossibility of several association schemes are obtained as

Particular results of some of the theorems.



THEOREII 2.2. In a PBIB design with two associate classes, if the

number of treatments v is a prime, then 17 must have the form 4t + l

and the parameters of the association scheme must satisfy (2.16).

PROOF: Except in the case specified in (2.16), the values of the

association scheme parameters are given by Theorem 2.1. The following

makes use of (2.2), (2.4), (2.21), (2.22) and (2.24).

= = l 2 2
v n1+n2+l p22+p%2 +912+pn+l

 p12‘2+s(t+l)+(s+l)t+1+£tLa+:)£:t+l)

(pé2)2+ (2st + s + t +1) 9:2 +st(s + 1)(t + 1)

 

P122

[Iéz + 8?] [912.2 + (s+ 1)(t -+- 1)]

922
(2e29) V

The greatest common divisor of two integers f and g will be denoted

by the usual notation (f, g). Define c and d by

O N

(9&2 s 3t) 9

Cd 3 p%2 e

9&2 + at is then divisible by c. Since (1 is a divisor of pi, , it

1 2 '
P

mstbeprimeto st. But-Lag??- = “8+1 ‘34, isaninteger Bil

P22 -
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so d must be a divisor of (s +1)(t +1) and hence of

pig-+- (s + 1)(t + 1). We may therefore write

(2.30) v : [p%2+ st] [pig-)- (8+ 1)(t-#1)],

 

 

c d

where both factors in the right member are integers. If s and t are

both positive, (2.29) shows that both factors are greater than 1; v is

then composite. If s or t is equal to O , it has been shown that if

the design exists, it must be of group divisible type, which is defined

only for composite values of v . This completes the proof of Theorem 2.2.

THERE]! 2.5. If a PBIB design with two associate classes is not of

group divisible type, then the number of treatments v cannot be of the

form p+1 foranyprime p.

PROOF: This theorem is a particular result of some general relations

connecting the parameters 111 , n2 , p12 and 9&2 , which will now be

developed. Using (2.4), ‘

2 2 =

.911‘H’12 n1 V

2 2 ..
n2 pu+n2 912 - n1 ‘2 e

Applying (2.5),

1 2 '-

The following form of (2.51) was found useful as a check during the con-

Strucuon of Table Ib.
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(1.)2

(2.52) £3 + 31—2- 1 .

n2 “1

Next introduce the greatest common divisor (nl , n2) of nl and n2

anddefine 8,fll,n2 by

(“l n '12) = a 9

(2.33)

Then (m1 , m2) = l . (2.31) may now be written

1 2 .. 2
am1p12+am2p12 - a m1m2,

(2.34) m1 ph-f-mz 932.2 = a m1 m2 .

Equation (2.54) in integers, with 'l and m relatively prime, implies
2

that pk is divisible by 1:12 and pfz is divisible by m1 . Say

(2.55) piz a um
2 9

2 -

I’12 " " “'1 °

Substituting (2.35) in (2.54) and simplifying,

(2.56) u+w 8 a.

If the desigi is not to reduce to a balanced design, both n1 and n2

 

4..-

l- This admits a geometric interpretation if p12 and pig are taken as

rectengular coordinates of a point in a plane. Then the point (pi2 , p§2 )

mat lie on the straight line with intercepts n2 and n1 .
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must be non-zero, so that m1 and m are non-zero (tacitly assumed in
2

some of the preceding statements). If the design is not of GD type, piz

and pfz must also be positive, so that each of u and w is _>_ 1.

Then (2.56) shows that a _>_ 2, so that ml and n2 have a proper

divisor a in common. Their sum nl + n2 If v - l is also divisible

by e , completing the proof of Theorem 2.5.

Relations (2.55), (2.55) and (2.56) can be used as the basis for an

enumeration of possible sets of values :11 , n2 , 5&2 , 9&2 . It appears

to be considerably less efficient than the method based on Theorem 2.1.

THEOREM 2.4. In a PBIB design with two associate classes, if

1&1 2 1, then ph _<_ .1; —l,where i and j areequalto 1 and

2 in some order.

PROOF: The proof will be carried out for i = l and j = 2 . The

other case is similar. Let 0 and fl be two treatments which are first

associates. Since ph _>_ 1, there is at least one treatment which is a

first associate of both. Denote one such treatment by 1T. Of the

111 first associates of TT , ph are first associates of O and pil

are first associates of ¢ . At most 2p11-1 of them are firstassociates

01' 9 or ¢ or both. At least n1 - th are first associates of

neither, and thus are second associates of both. But 9 and fl are

first associates and the number of treatments which are second associates

of both is precisely péz . This proves the inequality

_ 1 1

”1 2p11 3 p22 '
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Using the relations p1 3 n1 - 912 - 1 and 9&2 - 32 "' Pig 1

from (2.4),

l l
n1-2n1+2p12+2 S n2"1312’

spi-zfi n1+n2-2 = v-5,

7
(2.57) pi, 5 3-1 .

The following sets of parameters from Table II violate Theorem 2.4

and are thus impossible.

 

1 1

# v p11 p12

56 so 4 16

40 56 5 1e

 

The following theorems make use of the association matrices A1 .

The details will be carried through for A1 , the incidence matrix of

first associates. Let the numbering of the treatments be chosen so that

the treatment 1 has treatments 2, 5, . . . , 111 + l as its first

afiscaciates. Treatment 0 corresponds to row and column 9 of A1 .

The matrix may then be partitioned as follows.
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F— l '

i

(2.58) 0.1 . . . 1'0 . . . o

L..._.L..._._...-__.;_. ______
---..-_._

1} .

e. I ’

'I R : S n1 rows

'1 I

.. ll 1 ____________

a -b-r ------.--
O. I

eI |

e: S. | T n2 rows

0| I

_O| ' ..  
R is a symmetric 11 mm matrix; T is a symmetric n2 1: n matrix;

1 l 2

both have 0's on the main diagonal. S' is the transpose of S. The

rows and columns of Al Will be taken as vectors. The inner product of

row 1 with row .9 is equal to the number of common first associates of

treatments 1 and 0 , and is equal to pi]. or pfl according as

treatments 1 and O are first or second associates, respectively. This

shows that each row of block R contains I’ll 1's and each row of

block 8' contains pil 1's . Each row of A1 contains :11 1'5, and

by subtraction the number of 1's in each row of S is equal to

- . 1 : 1 .
n1 1 p11 p12 , the number in each row of T is equal to

-2 g 2
"1 p11"1:2°

If the matrix A is partitioned in an analogous way, blocks R and

2

T are n2 3: ha and n1 x ml matrices respectively, and the row totals

°f R , S , S' and T are p22 , pig , p.122 and 912 respectively.

THEOREM 2.5. In any PBIB desigl with two associate classes, the

f0llewing statements are equivalent and true.
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(a) The products 111 pi]. , nl pl2 , n2 p22 , and n pig are all even.

1 2

(b) n and 11 cannot both be odd numbers.
1 2

1
PROOF: Each of the :11 rows of suhnatrix R of A1 contains pll

1's , and R therefore contains :11' pi]. l's. Since R is symmetric

with 0's on the main diagonal, it contains 1's only in symmetrically

1

1 pll

shows that 112 9&2 is even. The argument may be repeated for the matrix

located pairs and n must be even. Similar reasoning applied to T

A2 to show that :11 912 and n2 p22 are even. (An equivalent argument

using A1 is based on the remark that :11 pig and n2 p22 are equal to

the numbers of off-diagonal 0's in R and T respectively.) This

completes the proof of (a). Since both terms in the left member of (2.51)

are even, must be even, proving (b). It remains to show that (b)ml 32

implies (a). Let (b) be true. If both ml and n are even, (a) is
2

true trivially. If one is odd, say n2 , than n is even, and

l

n pl = n p2 is even implying 2 is even Therefore
1 22 2 12 ’ p12 '

2- .. 2 z: 2 2
n2 1 pl2 p22 is even and the products n2 pl2 and n2 p

22

both even, as well as n1 ph and n1 pig . A similar argument is used

are

When n1 is odd, completing the proof that (b) implies (a).

Statement (b) is used in the construction of Table Ib. It can be

Bhown that it is weaker than (2.28), a condition which is also used,

but, it is used because it shortens the computation.

Additional information is now needed about the partitioned matrix A1 .

squaring according to the rule for products of partitioned matrices,

([L]: Do 24),
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(2.59) I n

“

RS+ST

.
7
4
»
-

‘.- . " ... _ —— —.—- -‘ .—

.
J
’
z
o

H T
—

l l

.
4 i I l l l I I l l

.
J

s'a + rs: s's + T2

 —
—

.
-

.
-
-

.
-
_
—
_
—

~

_J 
where u is a matrix all of whose elements are 1's. By (1.18), 112 has

diagonal entries n1 , entries pi]. in the positions of 1's of A1 , and

entries pil in the positions of off-diagonal 0's of A1 . This proves

LENA 2.1: If R, S, S' and T are the submatrices of A1

depicted in (2.58),

(a) 112 - 1 , entries 1 1
1 p11 "

in any positions occupied by Its in matrix R, and entries

p121 - 1 elsewhere;

+ 58' has diagonal entries 11

(b) S'S + T2 has diagonal entries :11 , entries pi]. in any

positions occupied by 1's in T , and entries 912.1 elsewhere.
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mm: 2.6. A necessary condition for the existence of an associ-

ation scheme for a PBIB design with two associate classes and p11 = O, is

the existence of a BIB desigi with parameters v 3 n1 , r = :11 - l ,

1:: p111, bznJ , A =pii-1,wbere i and j areequalto 1 and

2 in some order. loreover, given any block of the BIB desigi, there

exist at least pj other blocks which have no treatments in common with

1.1

the given block.

PROOF: The proof will be carried out for the case i = l , j -"-' 2 ,

using the matrix Ll . A similar proof using A2 applies in the other

case.

When 9111 - o , the submatrix it contains no 1's and 32 isa

zero matrix. According to statement (a) of Lemma 2.1, 88' then has

entries :11 - l on the main diagonal and entries pil - l elsewhere.

3 1s thusan nlxn2 matrix with uniformrow totals pig-sal-l,

“niform column totals equal to the row totals 9&1 of S' , and uniform

”0‘ inner products 912.1 - l , identifying it as the incidence matrix of the

318 design described in the Theorem. The number of treatments which a

314nm block of the design has in common with another block is equal to the

1Jitter product of the two corresponding columns of S , which in turn is

Name to an off-diagonal entry in the given row of 8's , and is _<_ the

entry in the same position of S'S + T2 . The number of 1's in a row

or T is equal to pi? and by statement (b) of Lemma 2.1, an equal

number of entries in the same row of 3's 4- 1'2 are equal to p1 = o.
1.1

Thus the given row of 8's must have at least pfz entries equal to O ,

Proving the final statement of the theorem.
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There are also sets of parameters in Table II with p11 8 O , five

of which belong to constructed association schemes. The others are

schemes #15, 54, 59, 50. None of the balanced designs specified by the

theorem are known to be impossible: the first three are known designs

and the other has not been studied. Existence of the BIB design does not

imply the existence of the association scheme, though it may give useful

information about the structure of the scheme if it does exist. Whether

or not the BIB design exists, the condition on blocks may be impossible,

as fact which will now be used to show the impossibility of schemes 15

and 50.

Let 'ft 7 denote the number of treatments which blocks [4 and v of

an incomplete block design have in cannon. Where N is the incidence

Matrix of the design, spy will be the value of the element in the

P, 1/ position of the b xb matrix N'N. Let f(n) denote the number

01‘ blocks of the design which have precisely :1 treatments in common with

a Chosen block, say the first. f(n) m be interpreted as the number of

1“slices ‘V for which s“, = n, or as the number of occurrences of the

entry :1 in the first row of BM! (disregarding the entry in the 1,1

Position). In the case of a BIB design, Bussain [Effproves the follow-

ing identity in the integers x and y.

k

(2.40) xy(b-l)-k(x + y - 1)(r-l) + k(k-l)(/\-1) '3 Z (x-n)(y-n)f(n).

n = o

s‘tting x=y=0 weobtain

k

(2.41) k(r - 1) + k(k - 1)(1- 1) = Z n2 :(n).

n=O



Setting x80, y=1 eeobtain

k

“hum-1) :- Z (n2~n)r(n).

n'O '

loadingto

k

(2.42) k(r-1) = Z nf(n) .

n20

Statements (2.41) and (2.42) give expressions for the sum and the sum of

aquares of the b - 1 off—diagonal entries of a row of NW .

These results, valid for all BIB designs, will be applied to the

Particular designs introduced in Theorem 2.6. For these designs, at least

932.2 of the b - 1 entries are equal to O. The remaining b - l - pie

entries are integers n satisfying 0 _<_ n f k, with cum and sum of

8Queues still given by the left members of (2.41) and (2.42). In some

cases it may be impossible to find such a set of integers. This will be

demonstrated in the cases of schemes #15 and 50 by computing the variances

or the proposed sets of integers. The pertinent parameter values are

these.

3 :2 g .. 2- 2
# b n2 1: p11 r 11:L 1 A-pn 1 p12

50 42 10 20 9 11
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Using (2.41) and (2.42) these lead to the following values.

I} Number of Sun Sun of ~ Variance

 

 

 

integers squares

15 12 28 52 .112 . 52 : €82 3 --160

144 144

50 50 190‘ 910 50 ~ 910 - 1902 = ~880

900 900

Since negative values of variance are impossible, no such sets of integers

can exist. This proves the impossibility of schemes 15 and 50.

THEORm 2.7. A necessary condition for the existence of an associ—

ation scheme for a PBIB design with two associate classes and pi}. = l is

the existence of a PBIB design of GD type with parameters v = “i ,

1‘ 8n1-2,k=pii, bSnJ, )(1=0,)(2Cpii-1, basedonan

  

7) o '

aBsociation scheme with parameters n; = l, n; = 111 ~ 2, P1 3 s

- q _0 11:1 - 2-1

0 1

Pa: ,Ihere i,jareequa1toland21nsomeorder

; _1  

find starred quantities refer to the GD design. Ioreover, given any block

of the GD design, there exist at least p311 blocks which have at most one

treatment in common with the given block.

PROOF: The proof will be carried out for i 3 l and j = 2, using
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the matrix 11 . A similar proof using A2 applies in the other case.

If ph 3 1, then in (2.88) R has a single 1 in each row and

column and is a synetric permutation matrix. 32 is equal to I , the

idontity matrix. It is easily verified that B has the necessary pro-

parties for the incidence matrix of first associates in the GD scheme

specified in the theorem. By Lens 2.1, 83' has diagonal entries equal

to :11 - 2, entries equal to pil - l = O in the off—diagonal positions

that are occupied by 1's in block it , and entries equal to pi1 - 1

elsewhere. All the requirements are now satisfied for S to be the

incidence matrix of the GD design specified in the theorem. The number

01' treatments finish a given block of the design has in common with another

block is equal to the inner product of the two corresponding colums of S,

which in turn is equal to an off-diagonal entry in the given row of 8'8,

and is $ the entry in the same position of 8'8 + T2. The number of

1' I in a row of T is equal to pig and byustatement (b) of Lemma 2.1,

‘31 equal number of entries in the same row of svs + T2 are equal to

PL 3 1. Thus the given row of 3's must have at least pi2 entries

S. l, proving the final statement of the theorem.

Seven schemes of Table II have p1 = 1, including schemes #41, 45
ll

and 90 which are unknom. The GD design to which these lead do not seem

to have been investigated and will not be taken up here. It is therefore

tlot clear whether Theorem 2.7 can be used to prove the impossibility of

any of these schemes.

A remark which will be used in the proof of the next theorem will

now be stated as a lemma.
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LENA 2.2. Sufficient conditions for a v x v matrix A1 of 0's

and 1's to be the incidence matrix for first associates in a PBIB design

with two associate classes are

(a) A1 is symetric,

(b) the diagonal elements of A1 are 0's,

(c) 112 = al I + p11 A1 -)- Film-I’LL) , where I is the

identity matrix, 0 is a matrix all of whose. elements are 1's , and

n1 , p11 , pil are non—negative integers.

PROOF: Define A2:U-I-kl' Then ‘1 and A2

incidence matrices whose am is the matrix with 0's on the main diagonal

are symmetric

and 1's elsewhere. By Theorem 1.2, they are the association matrices

01‘ a PBIB denim with two associate classes if the products ‘12. , A112 ,

‘2‘]. , A: have the form of (1.16) , where the constant coefficients

“1 and pi;k are non-negative integers. By hypothesis -this is true for

A? . It is easy to compute the remaining products, but not necessary for

this proof. The equality of the diagonal elements of A: implies that

Al has equal row and column totals n1 , implying

.. _, 2 _

110 - 0A1 - n10 . Also U - v0 .

_Each of the promicts Ail: reduces to a linear combination of I , A1 ,

A2 , and u = 1 + 11+ 12 , with constant coefficients. Since the elements

in any product of incidence matrices must be non-negative integers, the

c=<>efficients are of this form and the proof is complete. The values of

the coefficients are easily computed by (2.2) and (2.4) .
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THERE 2.8. The existence of an association scheme with two associ-

ate classes and parameters v, n1 , pg} satisfying the condition given

in (a) or (b) below is equivalent to the existence of the BIB desiy with

7 treatments described in (a) or (b) respectively. ~i and J are equal

to l and 2 in some order.

s i "

(a) Condition. p11 - p11 . ‘

BIB design: v 3 b; r = k a B1; A‘ Fifi = Pin); “10

incidence matrix N is symetric with 0's on the main diagonal.

(b) Condition: pig-)2 = p1 .

«
)
1

BIBdesign= v b; r k 3 n1+1; A: Ph'fN-‘Piih

the incidence matrix I is symmetric with 1's on the main diagonal.

PROOF: The proof will be carried out for the case i 3 1 and j = 2.

The other case is similar.

Case (a) The treatments in block 0 of the design will be taken as

the first associates of treatment 0 in the association scheme. Then

1“ =51, sndby(1.18)

m' ' a“; = 112 ' anvilwvil‘w

DQi'ining r and A asin(a),

1111' = rI+ Mala-12) = rI-rAw—I) .

Thus I! is a v x v incidence matrix with uniform row and column totals r

and uniform row inner products A , identifying it as the incidence matrix

or the BIB design described in (a). Conversely, lets N be the incidence
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matrix of such a design. Defining A1 =- N , the conditions (a) and (b)

of Lemma 2.2 are satisfied imediately and condition (c) follows from the

expression for Ni" which holds for all BIB designs.

M" = rI+A(U-I) = r1+AN+ 1(0-1-1!) .

Case (b). The treatments in block 0 of the desigi are taken as

treatment 0 and its first associates. Then I! 8 A1+ I and

me = (11+1)(11+ I)‘ = (11+ n2 = A12+2A1+I

‘ (n1+1)I+(pL+2)A1+p§112

Defining r and A asin(b) ,

mm = r1+?\(11+a2) = rI+A(U-I).

Thus N is the incidence matrix of the design described in (b). Con-

“reely, let I be the incidence matrix of such a design and define

A1 a a - 1, . Again conditions (a) and (b) or Lena 2.2 are satisfied

and we have

112 = (s-1)2sw2-2w+1 sum- 2w+I-r1+l(u-1) -2s+1

- (n-1)1+(A-2)(n-1)+A(o-n) .

Therefore by Lemma 2.2, A1 so defined leads to the required association

Scheme. This completes the proof of Theorem 2.8.

Parts (a) and (b) of Theorem 2.8 are not independent. If either of

them applies to the matrix A1 of an association scheme the. other applies
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to la . The two BIB design will be complementary, a given block of one

containing exactly the treatments not occurring in the corresponding block

or the other. The conditions ’11 a pfl and p22 + 2 2 pie are easily

shown to be equivalent, either by direct application of (2.4) or by the

device of applying one part of Theorem 2.8, taking the complement of the

resulting BIB desig, then applying the converse of the other part of the

theorem.

The conditions of Theorem 2.8 are satisfied by 18 of the sets of para-

Deters listed in Table II, of which 11 belong to known association schemes.

There remain schemes #22, 39, 84, 85, 92, 100, 101. These lead to 5 dis-

tinct BIB design, all of which have r >10 and have not been studied so

far. Scheme #22 is equivalent to a design with v = b =- 36, r II k 8 15,

A: 8, N sy-netric with 1's on the main diagonal. A desig with these

Parameter values is constructible from the known scheme #28, but with an

incidence matrix I having 0's on the main diagonal. These designs all

1‘all within the class of 'eymmetric" BIB desigs which have the property

tlint v = b; symmetric BIB design have been investigated more thoroughly

the any others. However, none of the known necessary conditions exclude

any of the design in question. In particular, some deep conditions due to

Shrikhende [597 are satisfied automatically whenever r - A is a perfect

Square, which it is for all of these design.1 Therefore Theorem 2.8 does

not furnish conclusive information about any unknown association schemes.

.

‘

w—

1. _Weremarh without (proof that the value) of r - A is a perfect square

1‘or all the BIB design specified by Theorem 2.8. This is a fairly direct

I‘esult of the conditions of the theorem and the expressions given in

Theorem 2.1.
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Theorems 2.2 to 2.8 prove the impossibility of four association

schemes of Table II and may provide the .basis for other such proofs.

They do not represent an exhaustive list of theorems on the structure of

association schemes, but they shes that such theorems may be proved

rather easily, and illustrate some methods of proof. lost of them make

use of algebraic properties of the expressions for parameter values of

the schemes, or of properties of the association incidence matrices. It

is not illustrated here but deserves to be mentioned that empirical

attempts to construct an association scheme may lead quickly to a con-

structed scheme or to a proof that the scheme is impossible. This method

requires too much enmeration to be practicable for most schemes with more

than 20 treatments, but there are exceptions. Some empirical proofs of

inpossibility of design will be mentioned in Section 2.5 , and two

association schemes are constructed in Section 5.5 by methods which are

largely empirical.
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2. a Inneratim 2; Possible Design £21; Particular Association Schemes.

If a balanced or partially balanced desig is to be used in an ex-

periment, the first parameters to be specified by the experimenter are

likely to be v and k , which are determined by the number of treat-

ments and the variability of the experimental material. From the design

available for the particular v and k , he will try to choose one for

which the number of replications r is large enough to provide the pre-

cision desired but not too large to be economically feasible. This will

determine the value of b and will leave little-or no choice in the

Values of the other parameters.

a somewhat different procedure is used for our purpose of enumerating

Possible design. It has been convenient to classify design first by

useciation scheme, so that the first parameters specified are v , n1 ,

Park , leaving the parameters b , r , k , A1 and A2- . Since these

fin parameters must satisfy relations (2.1) and (2.5) , at most three of

them may be chosen independently. The requirement that all be non-negative

1Integers is also a considerable restriction. The existence of any design

1|nplies the existence of an infinite class of other design obtained by

uBing each block r1 times , r1 = 2 , 5 , ... The parameters v and

It will be unchanged for design obtained in this way, while the para-

Ietara r , b , A1 and A2 will be multiplied by r1 . Only a finite num-

ber of these will be useful to experimenters, since there are practical

limits to the amount of experimental material that can be used. Fisher

and Yates 15 L7 enumerated only design for which r g 10 , and other
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writers have followed their example. Extremely large block sisee are

likely to defeat the purpose of having homogeneous experimental conditions

within blocks, and some limitation on k is also desirable. It is a

property of balanced design that k _<_ r , , so -thatho- qualification was

necessary for Fisher and Yates. k is somewhat larger-then r in some

PBIB design, and Bose, Clatworthy and Shrikhande [6J‘enumerate only

design for which k S 10 also. The same restrictions will be adopted

here, admitting only a finite number of design for a given association

scheme.

A fairly efficient enumeration of the possible design for an asso-

ciation scheme may- be begun by choosing a pair of values- for A1 and

A2 , then computing the quantity n1 Al-r- n2 2.2-...By (2.5) ,, this

is equal to r(k-l) and by factoring it in every possible way as the

Product of two integers, possible pairs of values for r and k may be

Obtained. By (2.1) , the fraction “7k is equal to b and must be

integer valued. This, along with upper bounds on r and k , will

eliminate some sets of values. Some additional restrictions depend on the

characteristic roots of the matrix M" , which have been mentioned in

Sections 1.5 and 2.2. In the notation of Connor and Clatmrthy [77],

rk is a root with multiplicity l ,

1

r - 22 is a root with multiplicity 0&2 ,

~ r - z is a root with multiplicity 0(1 ,

Where the o<1 may be obtained from the parameters of the association

Scheme and the 21 depend in addition on A1 and A2 . Since ml is the
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product of a real matrix by its transpose, it is positive semi-definite,

meaning that each of its roots must be non-negative. This gives the

results

r-zizo , or

(2.45) r2z1, i=1, 2.‘

If both of the multiple roots are positive, the v x v matrix NN' is

non-singular and has rank v , meaning that the v x b matrix N has

rank at least v , which is impossible if b < v . Therefore in this

case b 2 v . This is identical with Fisrer's inequality for balanced

design and is equivalent to the following statement.

(2.“) If r>zi, 1:1 and 2, than rgk.

If one of the multiple roots r—si is equal to O , the rank of NN'

is v-O(1 , meaning that R has rank at least v-o<1 , which is im-

possible if b < v--O(:l . This leads to the following statement.

(2.45) If r=s, i=1 or 2, then b2v-O( .
1 1

The situation that both 21 and 22 are equal to r does not arise,

alace it can be shown that any desig for which zl = 22? will be a

balanced desig.

Attention will now be restricted to association schemes of the L8

and 1.; series. The following expressions for parameter values, which

“39 the notation of (2.12), apply to both series. For the 1.8 schemes,

‘ e f and n are all positive integers; for the L; , they are all

“gative integers.
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n g+f-1,

(2.46) :11 = 201-1) .

n2 3 f(n - 1) e

For the L3 schemes, in the same notation,

8(3'1) s

“2 . f(fl-l) p

p

I
I

(2.47)

z .3 (l-f)Al+f32 ,

$2 = gAl'i’u- g)A2 .

The expressions of (2.46) apply to schemes of both series, but for reasons

Which will be stated in Section 5.1, the desigation of the multiple roots

is reversed for L; schemes, giving the following expressions instead

of (2.47) .

d1 = f(n " 1) ,

0‘2 : 8(n ‘ 1) e

(2.48)

21 = gxl+(l-3)A2,

22 8 (l-f)A1+fA2e

It will be noticed that for either series, the multiplicities 0&1

or the characteristic roots of him are equal in some order to the

nunborn m1 of treatments in the associate classes. This relation holds.

. Onlq for certain classes of association schemes and will be discussed in

SQCtion 5.1.
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The work of enumerating desig parameters is shortened by some pre-

liminary restrictions placed on k 1 and A 2 , which will be described

first for the L8 case. Taking r $10 and k_<_10 implies r(k—l) _<_90.

Using (2.45) and (2.47),

(l .- f)A1+f>\2 $10 ,

8A1+(1’8))\2 $.10 9

and from (2.5),

nlAl-i- n2>\2 $90 .

Solution for A 1 leads to the following inequalities, which define the

quantities m , I and I' for L8 schemes.

f 10 :

(“9’ A12 7372 ' Tr: “‘ '

10 - c-

(2050) A1 h -g- +374), " I ,

<2-51) Alsw = I' -

“1

In the L; case, g and f are negative, leading to the following

inequalities and different definitions for m and I . Inequality (2.51)

and the definition of 10 hold without change.

(2.52) Algl§+aidgz = m,

f -
(2.5s) Alsf-1)2 -39... - a. 

For a particular set of association scheme parameters 8 s f 9 “l and
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n2 , the lower bound m and the upper bounds I and I' for A l are

quickly listed for each non-negative value of A 2 .

The enumeration which has been outlined in this section is carried

out in Table III of the appendix. The section of the table for each

association scheme is preceded by a list of the values of g , f , 211 and

:12 and the expressions for m , I , I' , ”l , 22 , and r(k-l).

In the table, values of A 2 are listed, followed by the value of m if

it. is positive and the value of the smaller of I and' I' . The possible

Values of A 1 are then listed. The value A l = A2 is omitted, since

' it leads only to balanced design. Also if n1 = n2 , values A 1) A2

are omitted since they lead to design which can be obtained from design

with A l< )(2 by interchanging the designation of first and second

associates. For each pair Al , A2 , the quantities zl , 22 and

P(k—l) are entered in 'the next columns of the table for use in computing

values of r and k . Only values r 5 lo and 1: $10 consistent with

(2.45) and (2.44) are listed. The value of b is then computed and

entered in. the table if it is integral. Finally, in case r = 21 ,

is applied, eliminating a few more sets of parameters. Table III is in-

(2.45)

tended as an illustration of the computations and is presented only for a

representative sample of the association schemes.

Table IV is a list of those parameter values which satisfy all the

conditions applied in Table III. The designs for each association scheme

are listed together, preceded by a list of the scheme parameters for

reference. Design parameters are identified by the numbers given to the
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scheme in Table II, and by a serial numbering of the designs for each

scheme. All known schemes of the Lg and Lg* series are included, and

values of v , r , k , b ’Al ,A2 , zl and z are listed. Designs
2

which are known to have been constructed or have been proved impossible

are marked by the letter C or X respectively, followed by an explana-

tory remark or reference.

Several methods which are frequently of use in constructing designs

will now be listed in the form of theorems. These are presented here for

easy reference and no claim is made that they are new, although the author

is not aware of any publications which include theorems 2.12 to 2.14.

THEOREM 2.9. A PBIB design with k = 2 treatments per block may be

formed from any association scheme by taking as the blocks all pairs of

1th
associates. The parameter values will be v , r = n k = 2 ,i 1

b=ivni, A1=l, 31:0. i and 3 represent 1 and 2 in

Ekmme order.

PROOF: Since each pair of 1th associates occurs together in a

1flock exactly once and since no treatments which are not 1th associates

Occur together in any block, the design satisfied the requirements

Specified.

THEOREM 2.10. In a Latin square type asSociation scheme with v = n2

treatments and g constraints, a PBIB design with parameter values

. v=n , r=g, k=n, b=ng, Al=l, A230

may be formed by taking as blocks the sets of n treatments occurring in
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the rows of the g orthogonal squares. If there exists a set of

f '-'-' n — g + 1 additional squares which may be adjoined to form a complete

orthogonal set, a PBIB design with parameters

vznz, r=f, k=n, b=nf, Al‘zo, A2=l

may be formed by taking as blocks the sets of n treatments occurring in

the rows of the 1‘ additional orthogonal squares.

PROOF: These are m lattice designs, whose properties are

well known. They are discussed, for example, in Chapter 10 of [71-]. By

the orthogonality property of the n x n squares, no pair of treatments

occurs together more than once in a row of any of the squares. By definition

Of the I.g association scheme, the treatments occurring together are

precisely those treatments which are first associates in the case of the

first design described, or second associates in the second.

All desigs of either of these types will be identified in Table IV

of the appendix by the word "Lattice".

THmREI 2.11. Let two PBIB desigs based on the same association

a(theme have the same number k of treatments per block, so that their

Parameter values may be represented by

Vs”: ks 13*, Al‘.’ A2*

v, r“, k, b“, A1“, A2“

I‘etspectively. Then a desig with parameter values
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v , r = r*+r**, k , b = b*+b**, Al =A13-XI‘,A2 3A3)?

may be formed by taking each block of the two original designs as a block

of the new desig.

PROOF: It is obvious that the set of blocks obtained in this way

leads to the values specified for b and r and that the total number of

occurrences within blocks of a given pair of treatments is equal to the

sum of the numbers of occurrences in the two original designs. Since the

two designs have the same association scheme, the number of occurrences

of a pair of treatments is liti- X i“ when they are 1th associates,

1 = l or 2 .

It is an immediate extension of the theorem that three or more com-

Ponent desigs with the same association scheme and the same value of k

new be combined in the same way. The designs need not all be distinct.

In Table IV, a desig which may be formed in this say from other designs

for the same association scheme will be identified by the letter R ,

fonoved by the serial numbers of the other designs.

THmRDl 2.12. Given any association scheme with 2 associate classes,

a PBIB desig with the parameter values

V'be r'k3nia Al-‘Piio A2zpii’

“here i and j are equal to l and 2 in some order, may be formed

by taking block 0 as the set of 1th associates of treatment 0 .

PROOF: If the desig is formed in this way, its incidence matrix

w35-11 be identical with the association matrix A1 of 1th associates,
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giving the result

: : 2 :.NN' Alai' A n11 + p1

This shows that each treatment occurs in n1 blocks and each pair of

treatments occurs together in p'h or pii blocks, according as the

two treatments are first or second associates. Each block contains ni

treatments, and all the requirements for a PBIB design are therefore

satisfied.

In Table IV, a design which may be formed by applying this theorem

is identified by the statement

N=Ai,(i =lor 2).

THEDBEI 2.15. Given any association scheme with 2 associate classes,

a PBIB design with the parameter values

-.- = = :1v b, r k ni+1, Al pii+2' A2=pii,

Where i and J are equal to l and 2 in some order, may be formed by

taking block 9 as the set of treatments consisting of treatment 9 and

its 1th associates.

PROOF: If the design is formed in this say, its incidence matrix N

“111 have the form A1+ I , giving the result

0 = + o : 2 : 2NN (A1 1)(Ai+ I) (5.1+ I) 81 + 2A1 ‘1' I

g 1
(ni+ 1): + (p11 + 2):;i + piiaj .
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This shows that each treatment occurs in n1 4- 1 blocks and each pair of

treatments occurs together in p11

two treatments are first or second associates. Each block contains

4- 2 or p11 blocks, according as the

111+ 1 treatments, and all the requirements for a PBIB design are there-

fore satisfied.

In Table IV, a design which may be formed by applying this theorem

is identified by the statement

a = 31-4-1 ,(izl or 2).

THERE] 2.14. In a Latin square type association scheme with v n n2

treatments and g constraints if a balanced incomplete block design with

parametervalues

”‘39 1": k*s bi.» A*s

is constructed on each of the sets of n treatments in the rows of the g

Orthogonal squares, the .result is a PBIB design with parameter values

v=nv*=n2,r=gr*,k=k*,b=g1b*, Al=A*,A2=O.

If there exists a set of f =- n - g+l additional squares which may be

fidjoined to form a complete orthogonal set, and the same BIBD is constructed

0!! each of the nf rows, the result is a PBIB design with parameter values

v=n2,r=fr',k=k*,b=fnb*,A1=O,A2=A* .

PROOF: The proof will be stated for the first case. The necessary

Changes in wording for the second case are inserted in parentheses. Since



15" blocks are constructed from the treatments of each of the n rows

of each of the g (or f ) squares, the total number of blocks will be

9113* ( or an." ) and each block will contain 1: treatments. Since

each treatment occurs in just one row of each square, it will occur r*

times in the desig) formed from each of the g (or f ) squares, leading

to the stated value for r . By definition of the association scheme,

each pair of first (or second) associates occurs together in just one

row of one of the g (or f ) squares, so that thenumber of occurrences

within blocks of the PBIB desig; of the pair of treatments is equal to

the number A“ of blocks of the BIB design in which two treatments occur

together. Two treatments which are second (or first) associates do not

occur together in any rows of the squares used and will not occur together

in the PBIB design, which means that A 2 (or A1 ) is equal to 0.

THEOREM 2.15. In a Latin square type association scheme with v- = n2

treatments and g constraints, if the rows of each of the g orthogonal

Squares are identified with the treatments of a BIB design with the para-

theter values

1Eben a PBIB design may be constructed with b* blocks formed from each of

the n x n squares by replacing the treatments in each block of the

balanced desig: by the sets of n treatments in the corresponding rows

01‘ the square. The parameter values of the partially balanwd desig:

‘111 be



v=nv*=n2,r=gr*,k=nk*,b=gb*,

A1 8 r*+(s-1)A* . A2 = 23* -

If there exists a set of f = n—g+l additional squares thich may be

adjoined to form a complete orthogonal set, and the rose of the f squares

are used in the same way with the same BIB design, a PBIB design is ob-

tained with the parameter values

v=n2, r=fr*, k=nk*, b=fb*,

PFDOF: The proof will be stated for the first case. The necessary

changes in wording for the second case are inserted in parentheses. Since

b" blocks are formed from each of the n x n squares, the total number

of blocks is gb" (or rb‘i) . Since each treatment of a block of the

balanced design is replaced by n treatments of the partially balanced

design, the block size is nk* . Each row of an n x n square occurs in

r" blocks and each pair of rows occurs together in A" blocks. Since

each treatment occurs in Just one row of an n x n square, it occurs in

r* of the blocks formed from each square, for a total of gr* (or fr*)

occurrences. If two treatments are in the same row of a square, they will

occur together in r* of the blocks formed from that square; if they

occur in different rows of a square, they will occur together in A * of

the blocks formed fmm that square. First associates occur in the same

row of one square and in different rows of the remaining g-l squares,

while second associates occur in different rows of all g squares. (In

the case of f squares, first associates occur in different rows of all
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f squares, while second associates occur in the same row of just one

square.) The total numbers of occurrences of pairs of treatments are

therefore equal to the values given for A 1 and A 2 .

The method of construction outlined in Theorem 2.15 is a rather

direct extension of a construction given by Bose and Connor [7] for

group divisible designs, and of a generalization by Zelen 5397 . There

are other general methods of generating PBIB designs, but the ones Just

given furnish constructions for most of the known designs of Table IV,

which is sufficient for the purpose of this section. Of the remaining

hioun designs, some are tabulated by Bose, Clatuorthy and Shrikhande and

are identified in Table Iv by a reference to [6] . Others that have

been constructed by miscellaneous methods are listed in Section LS of

the Appendix.

It is known for em incomplete block design and is probably true

for many of those listed in Table IV that two or more solutions exist

Which are distinct under permutation of treatments or hlocks. This is

certainly the case for those designs which can be constructed from either

or two inequivalent association schemes. The question of uniqueness of

desigis based on the same association scheme will not be- taken up in

this dissertation.

Broofs of impossibility of designs, which are given for several parti-

cular designs in Section A.3 of the Appendix, may involve the question of

Uniqueness of association schemes. Design {7.5 furnishes a useful example.

The design is in the L2 series with v = 16 , and when the association
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scheme is based on a pair of orthogonal 4 x 4 squares, is easily shown

to be impossible. However, the design can be constructed by using a

different association scheme with the same parameter values, which will

be used as an example in Section 4.1. This shows that different associ-

ation schemes with the same parameter values may have different properties

and that any proof of impossibility of a PBIB. design must cover all asso-

ciation schemes with the appropriate parameter values. It will be shown

in Section 4.2 that for L2 denials with n f 4- , a the association scheme

defined by n x n squares is unique, so that the. squares may be assumed

in any discussion of these desips. This is a necessary step in the proof

of impossibility-of designs such as #20-2, #50-2, ande#95~l. 0n the other

hand, desig) #12-2 in the L series may be shown impossible with an

5

association scheme based on three 5 x 5 squares, but another example in

Section 4.1 will show that the scheme is not unique and the existence of

the desig remains in‘doubt.

A singular incomplete block design is one for which the matrix NW

is singular, and for PBIB designs with two associate classes, this means

a design for which one of the values :1 and $2 is equal to, r . It

13 easy to verify that Lattice designs, designs constructed by the method

of Theorem 2.15, and designs formed by replicating a design of either of

these types, are singular. These desigis all have the property that the

blocks may be partitioned into subsets of n treatments which are the

8ets occurring in the rows of the orthogonal squares. It is conjectured

by the author that every singular design based on an association scheme

of the Lg series has this property and may be formed in one of the ways
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described. This mould be an extension of results proved by Bose and

Connor [7] on the structure of singular group divisible design. If

this conjecture were proved, a necessary condition for the existence of a

Latin square type design, with the parameter values stated in Theorem 2.15

would be the existence of the BIB design described in the theorem. This

would prove the impossibility of designs #7-20 and (12-8 of Table IV,

Since ttm BIB denials involved would have fractional values for some of

the parameters r , k and b and are obviously impossible.

Table II gives parameter values of 20 schemes in the Latin square

series, of which 18 are known and are listed in Table IV. 167 sets of

design parameters are listed for these schemes, designs are constructed or

indicated for 125, and three are proved impossible by enumeration methods.

There remain 59 unknown designs.

Table II gives parameter values of 10 schemes in the negative Latin

Square series, aside from schemes which are also in‘the 1.8 series. Five

of these schemes will be constructed in Chapter III and are included in

Table IV. 22 sets of desig parameters are listed, and designs are con-

Structed for nine. The remaining 15 desips are unknown. The constructed

schemes and designs of the L; " series are believed to be new.

In all, Table IV gives parameter values of 189 designs, of which 154

are constructed, three are sham to be impossible, and 52 are unknom.



III. NEGATIVE LATIN SWARE TYPE ASSOCIATION SCHEMES

5 .1 Relation s between Latin guare and negative Latin square

association schemes.

It was pointed out in Section 2.1 that formulas (2.12), developed

1‘or Latin square type (Lg) association schemes, give parameter values of

a. possible new series of association schemes when the arguments n , g ,

1‘ were given negative integral values. This new series of "negative

Latin square' type (Lg) scheme will be the principal topic of this

Chapter. Five of the schemes will be constructed in Sections 8.2 and 5.8,

and have already been included in the tables discussed in Chapter II. In

the present section it will be shown that the family resemblance in the

parameter values is not the only thing the new series has in common with

1'8 schemes. A property related to the characteristic roots of NH' ,

Where It is the incidence matrix of a design, is shown to be shared by

both series of association schemes and to come close to characterizing

them, holding for only one other class of schemes.

Formulas (2.15) and (2.14), due to Connor and Clatworthy [:2], for

the multiplicities ok 1 of the characteristic roots of HIV are easily

used to find general expressions for» the 0&1 for any family of designs

for which general expressions for the other parameters are available. lhen

the formulas are applied to Latin square designs it is found that the ex—

pressions for 0k 1 and at 2, are identical with those for the parameters
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Di and n2 , given in (2.9). This is not true for group divisible or

triangular designs except in special cases, showing that it does not hold

in general. an the other hand, reference to Table II of the Appendix

shows that about half of the non-group-divisible schemes with v5 100 ,

including all L and L; schemes, have one of the two following

8

properties.

3 0< = 0Property A 1 n1

Property 8: (X1 = 112 .

Since dl+ok2=n1+n2= v-l , property A or 8 implies that 0K2

is equal to n or m respectively. In this section we determine the
2 1

Class of designs which have either property A or property 8 .

First it will be shown that the two properties are practically iden-

tical, and that basically the difference between them is one of notation.

ml and n2

second associates respectively of a treatment in the design. The two

denote the numbers of other treatments which are first and

Classes of associates play dual roles in many respects and nothing more

than a choice of notation is involved in designating one class as the

first. Once the choice is made for a particular desig, the values of :11 ,

n2 , A1 , A2 , and the pig-k are uniquely determined. The designation

of OK 1 and 0&2 , however, depends in addition on the designation of

the two characteristic roots r - 21 and r - “2 of RN; . These are

obtained as the two roots of a quadratic equation whose coefficients are

functions of r , X1 , A 2 , p12 and pie . Solution of the equation

leads to
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(5.1) z =- Q1 +123} (‘Ag jinx/i WK)

2

 

where

z: 2 .. 1 = 2 - 1 2 2

Y p12 p11>. and A (912 912) + “912+ 912) + 1 °

This result for the two 2.1 is given in [7 Z7 . The orpreseions for zl

and z differ only in the sign of the terms involving A , which is a

2

symmetric mnction of ph and pi? and is thus independent of the desig-

nation of associate classes. Connor and Clatworthy denote by 21 the root

obtained by taking the + sign, giving the expressions

(5.2) . Mlu-v-vzwilzch-WE).

(3.5) 22 — Min -Y+\fZ)+ flan-FY 475) .

This anounts to desigiating the ith characteristic root r - '21 as the

one in which the coefficient of A 1 is positive. It needs to be empha-

sized that this convention is arbitrary and does not identify 21 with

the it'h associate class. An expression which involves a positive

multiple of X1 and a negative multiple of A2 is not thereby more

closely related to one than to the other. While it is convenient to be

able to refer to r - 21 and r - 22 without ambiguity, this does not

reveal any intrinsic connection between the designation' of these two char-

ficteristic roots and the designation of the two associate classes, and none

Should be inferred. One choice for the designation of z1 and 22 seems

to be as good as another, and it is sensible to stick to the choice already

'made by Connor and Clatworthy. The values of 0( l and (X 2 are then
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uniquely determined. This is the notation used in Tables I to IV of the

Appendix. If the other choice of notation were made for any scheme of

Table II which has property B , it would have property A instead.

It is now possible to clear up a discrepancy in the notation which

has been used in this dissertation for" association schemes of the negative

Latin square 0.8") series. It was stated at the beginning of this

section that schemes of the ordinary Latin square (Lg) series have

property A . It is stated in section 2.1 that the expressions for the

parameter values of the 1.3 and L; schemes are identical, which would

imply that the L; schemes also have property A . However, the schemes

of this series listed in Tables II, III, and IV have property B . The

parameter values of the L * schemes are given by the eXpressions (2.12)

8

used for the L‘ schemes provided the parameters 11 , g , f of those

8

expressions are taken as negative integers. For both classes, A = n2

and m— = n ; taking n as a negative integer means using the negative

square root of A in the expressions for 2.1 and 22 . If this is

done, these schemes have preperty A . But this is the opposite of the

sign convention agreed on in the previous paragraph and used in the tables,

explaining wry they appear there with property B . This concludes the

discussion of the nature of properties A and B and we now return to

the problem of finding the class of designs which have property A or

property 8 .

For group divisible designs the values of n and 041 , which are
1

given, for example, in [l- Z7 , are as follows.
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n1 n-l , n2 n(m-1) ,

(X1 m-l ,0(2 m(n-l) ,

where m and n are positive integers. It is easily verified that these

designs have property B only if m = l or n = l , in which cases the

design reduces to a balanced design. They have preperty A only if m = n .

A group divisible design with m = n is the simplest case Ll of a Latin

square type design.

All partially balanced designs with two associate classes and not of

group divisible type have association schemes whose parameter values may

be determined by the conditions of one of Theorems 2.0 and 2.1. For all

schemes of the class defined by Theorem 2.0, ml = n:2 =0(l =- 0‘2 , so

that both of properties A and B hold. These schemes are defined only

for v of the form v 8 4t 4- l 5 a scheme of the class may be constructed

for each such value of v which is a prime or prime power, for example by

the method to be described in Section 5.2. No schemes of this class are

known at present for other values of v .

We now turn to the schemes specified by Theorem 2.1, in which ex-

pressions for the parameter values are given tenns of positive integers

a and t . Some of these expressions are now repeated for reference.

(2.21) pi- : s(t + 1) ,
2

(2.22) piz = (s + l)t ,

 

(2.2a) 0(1 -.— (s + ”“2 + 3'11 °W D



89

using (2.25) ,

O<l=(8+1)nz+sfl_ .

s+t+l

 

First assume that property A holds. It may be stated

(s +l)n + an

(3e4) 2 l = n1 ,

8 +‘t *‘1

leading to

nl(t+ l) = n2(s +1) .

This is now multiplied by t , followed by application of (2.22) and (2.5) :

2 :; 2 : 1
n1 t(t + l) n2(s + 1)t me plz n1 pa2 .

Therefore,

1 g +
(5.5) p22 t(t 1) .

Using (2.24) ,

(5.6) 13:1 = 8(8 + 1) .

The remaining association scheme parameters are now easily determined. In

particular,

(3.7) n 8p2 +p2 =(s+l)t+s(s+l)l 12 ll (s+l)(s+t) ,

(5.8) n2 = pi2+ [€23 3(t+1)+ t(t+1) " (t+l)(8 +13) 9

we) v=fi+nf+1=b+w+dfiz A .
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The notation will now be changed by defining new parameters :1 , g , f

as follows.

~ s+l=g, s N

m

|

H

b

t'f 1 H H
:

U

6
' H ”
a

I

.
.
a

‘

s+t+1=g+f-l=n .

In terms of these parameters we have, for example,

v = n2 ,

n1 : 8(n - l) 3

1 -
- r - 1 .912 (a )

These and the other expressions in n , g and f are identical with

those given in (2.12) for schemes in the Latin square (Lg) series. There-

fore every scheme specified by Theorem 2.1 which has preperty

have the parameter values of the L8 series.

Next assume that property B holds. It may be stated

(8 +l)n +sn

(5.10) 2 - 1 = n2 ,

s +t +1

 

leading to
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This is now multiplied by (s + l) , followed by application of (2.22)

and (2.5) :

2’ = 2 = 1

n1"“""“ ”2(8+1)t n21312 “1"22'

Therefore ,

' 1 ..
5.11 - s s + l .( ) 922 ( )

Computing other parameter values as in the case of Property A ,

(5.12) pfl = t(t + 1) ,

(5.15) nl = p2 + p2 t(t +1) + t(s +1)ll 12 t(s+t+2) ,

(5.14) n2=p1+pl s(s+l)+s(t+l) s(s+t+2) ,
22 12

(5.15) vznl+n2+1 :- (s +t +1)2= A .

In order to make use of (2.12) , the notation will now be based on negative

integers n* , g" , f“ , defined as follows.

-€+1,t=-g*., t+l

e+t+1=-g*-r*_1=-n*.

In terms of these parameters we have, for example,



92

v=(-*)2=(n*>2.

nlz‘8*(‘*+1)=8*(n*’l) 9

pig = -f*(-s*+ 1) =f"(a* -1) .

These and the other expressions in n* , g* , f* are of the form of (2.12),

identifying the present series of schemes as the negative Latin souare

series. Therefore every scheme specified by Theorem 2.1 which has property

B must be in the Lg" series.

In some work with Li schemes it is convenient to have expressions

for the parameters as functions of positive integers. The letters 11 ,

g , f will still be used, but with the following relation to the para-

meters of Theorem 2.1.

t, f=s,

(5.16)

s+t+l.I
3 H

In this notation the expressions for the parameter values are the

following.

n = g+ f + l , 2 .

(a +1) - f+ 2 f(g+1)

V =3 n2 P a

' l
(5.17) f(g + 1) f(f + 1)

n1: g(n + l) ,

h2 = f(n+ 1) ,

[a(a+ 1) g(f+ 1)

92 = 2

a(f+1) (£+1) -g +2

The classes of association schemes which have been characterized by

properties A and B are not disjoint. When n is odd, say n = 2a+ l ,

the design with parameter values
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v=n2=4a2+4a+l, a2+a-l a2+a

a2+a a2+an sn=2a2+2a
2 ’

(5.18) 1

a2+a a2+a

p :-

a2+a a2+ a-l

is in the class defined by Theorem 2.0, with t = nz-r a . It is also an

Lg scheme with gs f = a+l , and an Lgfl scheme with g= f = a .

There are no other duplications. There are clearly no other Lg or Lg*

schemes which have the property 111 = oz of Theorem 2.0 , and for a

scheme with v = n:2 treannents to be simultaneously an Lg and an L?

scheme, it is necessary that n be simultaneously a multiple of n-1 and
1

n-+ 1 . The only possible value less than n2 -1 is é(n2-l) , with n

odd.

The results that have been proved in this section will now be stated

as a theorem.

THEDREII 5.1. Let N be the incidence matrix of a partially balanced

incomplete block design with two associate classes. (In order for the

multiplicities O( l and OK 2 of the multiple characteristic roots of RM

to be equal in some order to the numbers ml and n2 of treatments in

the associate classes, it is necessary and sufficient that the desig: be

in one of the following classes.

(1) The class specified by Theorem 2.0 ;

(ii) The L3 series, Latin square type designs with g constraints,

3 21 , or other schemes with the same parameter values:'
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(iii) The LgIt series, negative hatin square type designs, intro-

duced in Section 2.1, with parameter values given by (5.17) .

For v an odd square there is one possible association scheme with

n1 2 n2 which falls in all three of these classes; otherwise they have

no schemes in common.

The specification of Lg’ schemes in terms of the negative integers

of , g' , f” , is not very helpful in suggesting possible ways of con-

structing the schemes. The parameters g and n in the Lg series are

related to a set of g orthogonal n x n squares, and there seems to be

no analog to this for negative integers g* and n* . Expressions (3.17)

in terms of positive arguments are a little more promising, at least in

any case in which a complete set of orthogonal squares exists. This is

more easily described in terms of the finite Euclidean plane geometry

which may be constructed from such a set of squares. ~This geometry has

n2 points, any two of which determine a line; there are n points on

each line and n +~l lines on each point. For an association scheme the

v = n2 treatments are identified with the points of the geometry. If

the scheme is of Lg type, each treatment has n = g(n-l) first asso-
l

ciates, which for a given point may be taken as the n-l remaining points

on each of g suitably chosen lines through the points This is discussed

in further detail in the following section. If the scheme is of Lg, type,

the value g(n +-l) for the number n1 of first associates suggests that

the first associates of a particular point might be g suitably chosen

points on each of the n e-l lines through the given point. It appears

that it would be a difficult combinatorial problem to select these points
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in a way that would satisfy all the requirements of partial balance,

although two schemes constructed by another method in the following section

have precisely this geometrical interpretation.1

It should be remarked that not all .Lg schemes are associated with

finite geometries. They may be constructed from sets of g orthogonal

squares which cannot be extended to a complete set of n +-l , and there

are examples of association schemes which have the parameter values of;

the Lg series but which correspond to no set of g orthogonal squares.

Some examples of this kind will be given in Section 4.1, while an example

appeared in Section 2.1 of a 4 x 4 Latin square not belonging to a come

plete orthogonal set, which is equivalent to a set of g = 8 orthogonal

squares which cannot be extended to a set of Vn+-l . Such squares are

known for many values of n and presumably exist for all values of n >~3 .

By analogy with this, there is no reason to expect all schemes of the Lg*

series to be related to complete sets of orthogonal squares or to finite

geometries. On the other hand, there is at least the possibility of such

a relation for each of the five schemes of the series which are known at

present. The four which are constructed in the next section are all based

on finite fields of order n2 , and in every case where such a field

exists, the geometry and set of squares also exists. The one constructed

in Section 3.3 is for v 8 100 treatments, and while no field of this

order exists, it has never been proved that the geometry and orthogonal

squares do not exist.

 

1. These are schemes #6 and'Sl, for 16 and 64 tregpments respectively.
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5.2 Construction 22 Negative Lgtin Square 22 2 Association Schemes

“flaw-.4-

A.method is developed in this section for the construction of an

infinite class of association schemes with two or more associate classes.

The method is applied.to the construction of four schemes of the negative

Latin square, or Lg* , series.

The method is applicable when the number of treatments is equal to a

power of a prime, v = pq , so that there exists a finite field with v

elements, denoted by the standard notation GF(pq) . The treatments will

be identified with the field elements or marks in any conrenieat order.

It is well known that the multiplicative group of non—zero marks of the

field is cyclic; denote a.generator of this group by z . The marks of

the field may be represented by c , 1 , z , 32 , , qu‘Z , where

399“} = l . Each non-zero mark. x may be represented uniquely in the

form x = 2k , 0 _<_, k _<_, pq‘z . The integer I: so defined is usually

called the index of x relative to the base 2 and will be denoted by

the symbol ind x , but the term 'exponent' will be used in discussion, in

order to reserve the term "index" for a different use.

Express the order of the multiplicative group as the product of two

integers c and d ,

pq - l = cd ,

and define a field mark e by e - 2° . Then e is the generator of a

subgroup of order d , with elements
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e0 = l , e , e2 , ...., ed‘l .

Since the group is cyclic, the subgroup of order d is unique. This sub-

group and its coasts provide a partition of the non-zero field marks into

c sets, each containing d marks. The 1th set contains the marks

31 , ezj , 0223 , ... , ed'lsj ,

and 3 may have the values 0 , l , ... , c-l . It will be necessary

to impose the condition that a coset contain with each element its addi-

tive inverse. It is easily seen that an equivalent condition is that the

subgroup have this property, and that this reduces to the requirement that

this (multiplicative) subgroup contain the additive inverse of the element

1 , denoted by -l . If the prime p is equal to 2 , l is self-

inverse (as is every other mark) and the condition is satisfied for every

subgroup. If p is.odd, l and -l are the two solutions of the

equation xz-l = O . The corresponding exponents are the solutions of

21ndx§0modp3-1.

The solution corresponding to -l is ind(-l) =12§=L-= c

7'2"

"’1 = Zed/2 e

n
.

, leaning

A.necessary and sufficient condition that this be in the subgroup is that

it is an integral power of the generator e 3 2° , or equivalently, that

d is an even integer. Accordingly it will be required that the chosen

subgroup be of even order if the order of the field is odd.
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We now define an association relation by saying that a mark 9 is

2

a 3th associate of 01 11‘ their difference 02 - 01 is a mark of the

1th coeet. In this case, 91 - 92 is in the same coset by the condition

just imposed, so that the association relation is symmetric. In order to

shoe that it satisfies the definition of the association relation in a

PBIB design it remains to show that condition iii(c) of the definition is

satisfied. Let G and 0» be ith associates, so that for some to ,

l 2

0 ~91 = etoz1 . The J?“ associates of 01 are of the form, 01'+-et1z3 ,
2

8 0 , l , ... , dpl . The kfih associates of 02 are of the form

= O , l , ... , 691 . It is necessary to show that

t1

Oz'r'etzsk , t2

the number p of marks in the intersection of these two sets is inde—
i

it

pendent of the particular pair of 1th associates chosen as 91 and 06 .

This number is equal to the number of pairs t1 , t2 for which

t1 : tZK
01+e 33 02+e z .

This reduces to

92 ~ 01 ’- etlzk - otzzj ,

(5.19) ems1 3 stick - .t2,j ,

21 ’ etl‘t°zj - etibtozk .

Now as t1 (or t2) , rwns over all the values 0 , l , ... , d-l

modulo d , tl-to (or t2- tb) runs over the same values, so the number

of solutions pix is the same as the number of solutions of the equation



99

This number pit is independent of the pair of 1th associates chosen

as 91 and 02 . loreover, et'2 and -et2 run over the same set of

values, so we may replace the previous equation by

(3.20) z1 8 et'1 zj .+ at2 zk .

1:1.

11:ka

This is the last condition necessary for the association relation for a

Since this equation is symmetric in j and k , we have p

PBIB desig: with c associate classes. The classes are of equal size,

313d,1=0,1,oao, 3-1.

The standard relations (1.?) hold and reduce in this case to

(5.21) pik3pik=p§1, 1, j, kzo, 1,..., c-l.

lultiplying (3.20) .by z gives the following equivalent equation, which

must have the same number of solutions t1 , t2 ,

21*13et1zj*1 etzzk+1.

This proves the relations

1 - 1 + l -
5.22 " 1 k "’ 0 1 see C"1 e

( ) pjk pj + 1’k + 1 , , J , , ’ ,

In apphing (5.22), the indices may be reduced modulo c if necessary.

The method used for the construction of these schemes has led to a

notation in which the c associate classes are numbered from ‘0 to c-l ,

ratherthsnin‘thsusualwayfrom l to c . The matrices P willbe
i



100

numbered in the same way, and in particular their rows and column will

be indexed from O to c-l . A change of notation would be easy enough,

but would necessitate another definition and more symbols; instead, the

reader is asked to bear with minor inconveniences such as referring to the

0th row of a matrix. These association schemes will be used only in the

present section, and only for the purpose of constructing schemes with two

associate classes, for which the usual notation will be resumed.

The addition table of the field will serve as a convenient form for

the association scheme if the first row is arranged with 0 as the leading

mark and the marks of each coast in adjacent positions. The associates of

any mark 0 are read from the row of the table containing 0 in the first

column. The 1th associates are the marks appearing in the columns corres-

ponding to the 1th coast.

If 0 and fl are any two it'h associates, than pk is by defi-

nition equal to the number of treatments which are 3“ associates of 0

and kth associates of ¢ . In determining the value of pg-k there is

no loss of generality in taking {1 = 0 and 0 any mark of the. ith coast;

the kt". associates of ii are then the marks of the kth coset. p?k

is than equal to the number of marks of the kth coast in the set obtained

by adding 0 to each of the marks in the a“ west. with a fixed value

of O , using only one row of the addition table, and assigning all of

thevalues 0, l,‘..., c-l to j and k, alltheelementsofthe

...

matrix P1 may be determined for a particular 1 . The elements of P0

may be determined by using only the row of the table corresponding to
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9 8 so 8 l . When the values pgk are obtained, the remaining pg-k

values are easily obtained from (5.22) without further use of the addition

table. Equations (3.21) and the symmetry relation p5,} = pi, may be

used to shorten the work and check the values. J

The derivation of this association scheme has made use of a parti-

cular primitive mark a and the subgroup of order d generated by the

mark e 3 3°. . Since this subgroup is unique, any other primitive mark

y will lead to the same subgroup and hence to the same a coasts. The

use of y leads to a notation in which the 1th coset is the one con-

taining .,’J , rather than 23 . The numbering of the cosets, other than

the 0th , which is the subgroup itself, may thus be different. This

means that the c classes of associates may be numbered differently for

different choices of the primitive mark, but are otherwise identical.

That is, the association scheme is unique except for numbering of the

associate classes.

The results that have been obtained in this section will now be

stated as a theorem. .

THEOREM 5.2: For any number v of treatments of the form v 3 pg

for p a prime and q a positive integer, identify the treatments with

the marks of the finite field of order pq . Let a divisor d of p‘1 - l

be chosen subject to the requirement that d be‘even if p is odd, and

define c = g1? . Let a subgroup of order d of the multiplicative

group of the field, and the coasts of the subgroup, be used to partition

the p‘l - 1 group marks into c disjoint sets, each containing d marks.



102

For any primitive field mark 2 refer to the coast containing :1 as

the 1th coset, i = o , 1 , , c-l . Let the set obtained by

adding the field mark 0 to each of the marks of the 1th. coset be de-

fined aspthe set of 1th associates of O . This defines an association

scheme with c associate classes, with n = d , i =0 , l , ... , c-l ,
i

and satisfying all the conditions of partial balance. The value pix is

equal to the number of marks of the kth coast in the set obtained by

adding a fixed mark of the it“ coast to each of the (1 marks of the '

3th coset. The following special relations hold for the pit , i , j ,

1:30, 1,..., c-l.

1 z
(5021) Pix 3 9:1 9

5.22 1 = i + 1 .
( ) 9.11: p: + 1, k + 1

For particular values of p(1 and d , the scheme is unique except for

numbering of the associate classes .

An example will now be given to illustrate the procedure Just des-

cribed. An.association scheme which will be useful later is based on

the fieldoforder v=p<1=24=1e , with d=5 , c=5 . The field

marks will be represented by the integers O , l , ... , 15 . Rules

for forming sums and products in this field are easily stated but it will

suffice here to give the addition and multiplication tables.
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2:5,

inc-55:15,

and the subgroup of order d 8 5 consists of the marks 1 , 15 , 10 ,

12 , 8 . Note: Since the order of the field is even, it is not necessary

that d be even. The subgroup and its cosets are displayed in the horizon-

tal rows of the following array, which is formed by filling in one column

at a time with the entries of the first row of the multiplication table

in owl's

Subgroup (o-coset) 1 15 10 12 8

l-scoset . 5- 2 ' 15 7 11

z-coset 5 6 4 9 14

We can now define an association scheme with three associate classes by

saying that two field marks are 1‘11 associates, i = 0 ,‘ 1 , 2 , if

their difference is a mark of the i-coset. The following is the addition

table rearranged to serve as a table of the association scheme.

 

    
 

O-coset l-eoset 2-coset

0 11510129 5215711 564914

1 0141115 9 2 512 610 4 7 5 615

15 14 0 5 5 7 12 15 2 6 4 10 9 11 6 1

10 11 5 0 6 2 9 e 7 15 1 15 12 14 5 4

12 15 5 6 0 4 15 14 1 11 7 9 1o 6 5 2

s 9 7 2 4 o 11 10 5 15 5 15 14 12 1 6

5 2 12 9 15 11 o 1 14 4 e 6 5 7 10 15

2 5 15 s 14 1o 1 0 15 5 9 7 4 6 11 12

15 12 2 7 1 5 14 15 0 10 6 e 11 9 4 5

7 6 e 15 11 15 W4 5 10 0 12 2 1 5 14

11 10 4 1 7 5 s 9 6 12 o 14 15 15 2 5

5 41015915 676214 0511211

6 79121014 5411115. 50215 er

4 51114812 76951511201510

‘9 e 6 5 5 1 10 1 4 14 2 12 15 15 o 7

14 15- 1 ., 4 2 6 15 12 5 9 5 11 8 10 7 o
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ler use in obtaining the values pgk the onset designation of each

of the 1th associates of treatment 1 will be noted, first for 1 = o .

oth associatesof 1: o 14 11 15 9,

coset designation: - 2 1 l 2 .

The frequencies of marks of the 0th , first and second coasts are 0 ,

2 and 2 respectively, giving the values p30 - o ,

his remaining pg: are obtained similarly.

0; 0

p01 2’ I’02'2’

l'tassociatesof 1: 2 5 12 6 10 ,

coset domination: 1 l O 2 O ,

0

shine 910'25 921'29 92231-

2ndassociatesof 1: 4 7 5 8 15 ,

coeet desipstion: 2 l 2 0 0 ,

1 0 = o : o = . .

giving 920 2 , 921‘ l , p22 2 (5 22) gives such results as

0 3 a 2

p01 p11.2 I’20

and the following set or matrices 91 2 (pk) is obtained.

0 2 2 2 2 1 2 1 2

90:221,rl=202,92=122.

2 1 2 1 2 2 2 2 O

The set of field marks consisting of O and the multiplicative sub-

group 1 , e , 02 , ... , ed‘l has some of the properties of an addi-

tive group. Addition is simply field addition and is commitative and
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associative, and the condition that the element -1 is included insures

that the set contains with each element its additive inverse. The set is

not necessarily closed under addition. This is the only remaining require-

ment for the set to be an additive abelian group, and will be satisfied

if and only if the set is afinite field. It follows from general pro-

parties of finite fields that this met be a subfield of the original

fields of -p‘1 elemente,-containing p3 elements, where s is a divisor

of q . This case has been studied rather extensively in connection with

a variety of combinatorial problems; a recent application to incomplete

block designs will be mentioned at the end of this section. In 1958

Singer [527 showed that it may be used to generate finite projective

geometries, in particular projective planes. In the present setting we

make use instead of the finite Mplane which may be obtained from

the projective-p12” by' designating one line as the line at infinity and

deleting it withethe points-en it. The number of- remaining points is a

square, say n2 , where n is the number of points on a line and in

every known case is a prime power, say u = p’ . Two particular associ-

ation schemes will now be discussed for v 2 n2 = p23 treatments. The

first scheme will be shown to be equivalent to this geometry and leads to

association schemes of the I.“ series. The second scheme is used in con-

structing the new schemes of the 58* series. In-the finite field with

pa 8 n2 ‘marks, the order of the multiplicative group is

n2... 1 = (n-l) (n + l) . The first association scheme, leading to the

finite geometry, uses (1 = n-1 and c I n + 1 3 in the other scheme the

same values are used in the opposite order.
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in arbitrary treatment 0 in either schsme will new be considered.

in arbitrary pair of distinct it‘h associates of 0 may be represented

by .

O -f-etls1 , 0 +et221 , where on and et'2 are distinct .

we investigate uhether these two treatments are i"h associates. This

will be the case if and only if the difference between the field marks

is a mark of the 1th coset.

0 +3121 - (O + etzzi) = 21(et1 - eta) .

This expression represents a mark of the ith coset if and only if

etl - at? is an element of the multiplicative subgroup generated by e .

Since etl and et2 are distinct, their difference is not 0 .

The additive inverse of et2 is an element of the subgroup, say eta ,

shins

etl - etg = etl +et5 .

This sum will be an element of the subgroup for all choices of 31¢ et2

“.9“ only if the set consisting of 0 and the supr is closed under

addition, or equivalently if and only if the set is.a field. Therefore

the 1th associates of an arbitrary treatment 0 are pairwise 1th-

associates if and only if the subgroup used in defining the association

scheme is the mltiplicative group of a subfield. This remark is used in

the discussion of both association schemes for m2 treatments.

lhile properties of the Euclidean geometry are well known and closely

similar constructions of it have been piblished [SJ , [a] , enough of
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the derivation of it will be presented here to be used in describing the

association scheme. This will be useful for comparison with the second

scheme. The marks of the finite field will be identified with the treat-

ments of the desig as for all of the association schemes treated in this

section; for the present scheme they will also be identified with the

points of the geometrical system. The set- consisting of a treatment and

its i"h associates will be identified with the n...-points.on. a line. In

order for this line to be well-defined it is necessary to show that-the

treatments in such a set are pairwise 1th- associates- The subgroup of

order d I n-l may be taken as the multiplicative group of the subfield

of order n 8 p' . Therefore, by the previous paragraph, the treatments

are pairwise ith associates. Since each of them has theesame number

n-l of 1th associates, each of them determines the same set of it marks,

and the line is well-defined. Every mark of the field must lie in such a

set of n marks related as it” associates and defined as a line. This

implies that the n2 points of the system m _be divided into n disjoint

sets, each containing the n points of a line determined by the i"h

association relation. Since the lines have no points in common, they will

be called parallel lines and will be described for convenience as lines

in the ith direction. Corresponding to the n + l associate classes

there are n +1 systems of parallel lines in as many different directions,

each system containing ‘21 lines of. n points each and eidiausting the

set of n? points.

Since any twodistinct treatments are 1“ associates for some i ,

any two distinct points of the geometrical system determine a unique line.
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his implies that the number of points canon to two distinct lines can-

not be as large as 2 , and must be either -0 or 1 . The n points

of a line in direction 1. --must be distributed over the n- lines of the

set of lines in direction 3 in such a way that not more than one point

falls on each line. Since the number of points is equal to the number of

lines, this means that a line of direction i intersects each line of

direction 1 in Just one point , i 7 J . This completes the proof of

the relevant properties of the geometrical system, showing that it is

indeed a finite niclidean geometry, and furnishing a convenient way. of

computing the parameter values of the association scheme.

The parameter u1 has the geometrical interpretation of the amber

of additional points on the line through an initial point in the 1“

direction, and it is clear from the geometry or general properties of the

association schemes under discussion that n1 8 n - 1 for all i . The

parameter p:k may be defined by means of any two points 0 and fl

Joined by a line of the i9 direction. pg} is equal to the amber of

points other than possibly 0 and fl themselves, common to the line

through 0 in direction 1 and the line through d in direction I: .

It is clear from geometrical reasoning that

Pil'nvzs

(5.2s) pi" 3’113911'0 when ifij,

phi-l when 1,1, k arealldistinct.

In view of the known relations among the pit , particularly for the

class of association schemes of the present section, the three preceding

fl..-
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statements are far from independent. Straightforward use of (1.6) and

(3.21) shows that each of the first two implies the other, while the third

implies both of the first two. . Finally, the first two new be shown to im

imply the geometric structure and hence the third statement.

In the second scheme a subgroup of order d = n +~l = p‘ +'1 of the'

field multiplicative group is used. This subgroup and its cosets deter-

mine c = n-l associate classes. The zero element of the field and the

subgroupformasetof n+2=p‘+2 markswhichwillnotbeasub—

field, and the set of treatments consisting of an element and its 1th

associates will accordingly not be pairwise 1th associates. ~It is

therefore~not possible to use association relations in this case to define

lines in a plane geometry, and there is no obvious way to compute the

p§k: values. However, direct computation gives the values fairly easihy

in a particular case. The example already given for n2 = 16 is an

association scheme of this class and illustrates-the computation involved.

The p§k values fer several other cases will be given later.“

The association schemes constructed by Theorem 5.2 have in general

more than two associate classes. In most cases where schemes with two

classes are derived, it will be by the device of combining classes, that

is, by forming a set C1 of one or more of the associate classes of the

original scheme, and defining two treatments to be first associates in.

the new scheme if and only if they are associates of one of the classes

of the set C . in association scheme formed in this way does not

1

necessarily satisfy the conditions of partial balance. Conditions that'-
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it will do so, in a: more general setting, are derived in the next theo-

rem. It will then be easy to show that the schemes related to the

Euclidean plane lead to a wide class of schemes of the 1.8 series. The

second family of schemes is more difficult to deal with but will be used

to construct several schemes of the 1.: series.

THERE] 5.5. Let an association scheme with m classes of associ-

ates be formed from a scheme with a larger number of classes by parti-

tioning the classes of the original scheme into n disjoint sets Cl ,

... , cm , with two treatments defined as OK th associates in the new

scheme if in the original scheme they are associates of one of the classes

of set C“ . The notation Cu will be used interchangeably for- the set

of associate classes and for the set of indices by which they are identi-

fied. Parameter values will be denoted by hi , pix in the original

scheme and by 30‘ , pry in the new scheme. Then

no,

and a‘ necessary and sufficient condition that the new scheme satisfy the

conditions of partial balance is

(5.25) p; 3 ; Zp§k forallOK,P ,Y, and

‘
Cp keC‘y uniformly for each i E C 0g .

PROOF: The association matrices of the original scheme will be

denoted by B1 . It may be recalled that the Bi are symetric matrices

of 0's and 1's whose sum is the matrix with 0's on the main dilzonal

and 1's elsewhere, and that they satisfy .relation (1.16) ,
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BJBK'SSjunIi'Zkafii (szBj). .

Forfixed 1. thematrixwith pik inthe 1,1; positionwillbe

denoted as usual by Pi . The definition of the new scheme implies that

its association'matricee, denoted by A, , 0‘2 l , ... , a must have

the form

(5.26) A“: Z 81 .

“C.

It follows from Théorems 1.1 and 1.2 that in order for the new scheme to

satisfy the conditions of partial balance, it is necessary and sufficient

that the association matrices A, satisfy (1.16), that is, that there

exist constants no. and p2; such that

m

- - W

(5.27) A‘B A1r - A? A, - 5,, n'I +022. p" A.‘ .

Since not has the interpretation of the uniform row total of Ag. and

n:l is the uniform row total of Bi ,

is satisfied. Using (5.26), the product A; AY may be written

(5.28) is =(Z B)(ZBk)=Z:BJkB

JG C, KeCY J; CF [(5ch

Since BkBj == 53: , it is clear at this stage that AP),A =dyAfi , and

only ‘9 Av will be discussed. Using (1.16) , (5.28) may be written

(5.29) AflAY =ZZ(§HnI+Zp§ki.B)

JeC, secy

Since the sets 0. are disjoint, J and k can be equal in this sum-

it is clear from (5.26) that (8.24)

nation only if F = Y ,, in which case the first term in the parentheses

leads to n31 . By (5. 24) , this is equal to nPI and (5. 29) may

be written C,



(5.30) AFAY = éflnal + ZZZp}kBi .

'5‘ Cp KGCy i

This expression for the product A flAY will now be compared with the

following, obtained from (5.27) when A“ is written in the form given

m ct
(5.51) ApAY - spynpr + 2 p" 2: Bi .

“=1 ist

Since the B1 and the identity matrix I are linearly independent,

(3.50) reduces to the form of (3.51) if and only if the coefficients of

131 in the two expressions are equal for all i . The coefficient of B1

in (5.31) reduces to the single term p2} , and the necessary and

sufficient condition is identical with (5.25) , completing the proof of

Theorem 5.5.

Thus in order for the matrices A“ defined by (5.26) to multiply

in accordance with (1.16), it is necessary and sufficient that each ptv

value be equal to the sum of the elements in the submatrix of Pi deter-

mined by the row indices 1 belonging to the set of and the column

indices k belonging to the set CY , where i is a member of set Cog .

The crucial condition is that the same total be obtained from every P1

matrix for which i 6004 . Because of the relations (1.6) and (1.7) satis-

fied by the parameter values of every PBIB design, it is not necessary to

verify (5.25) for all of the ng . In the special case of a scheme with

two associate classes, the values plil and pil , with 111 and n2 , are

sufficient to determine the remaining 1 values, and the following

corollary results.
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COROLLARY 5.5. If m = 2 in Theorem 5.5, condition (3.25) may be

replaced by the simpler condition

(5.52) pr]. =2 Z pi'i'k forok =1 or 2 and uniformly

jec'l REC: for each iECog.

If the new scheme has m = 2 classes, set C is the complement of set
2

C and the association relation is most simply defined by saying that
1 D

two treatments are first associates in the new scheme if in the original

scheme they are associates of one of the classes of set 01 ,- and the two

treatments are second associates otherwise. In the application of the

corollary, the same symmetric suhmatrix, determined by the rows and columns

whose indices are in set Cl , is used in each of the original P

1

matrices. The necessary and sufficient condition that the new scheme

satisfy the conditions of partial balance is that the sum of all the ele-

ments of the sutnatrix be the same for all P1

value being taken as pil for the new scheme, and the same for all P1

with iic1 , the common value being taken as 9:1 for the new scheme.

with 1€01 , the common

Equations (5.22) show that for the schemes with n +- 1 classes,

obtained from the mclidean plane, each P1 matrix may be obtained by a

cyclic permutation of rows and columns of the matrix Po , .which is an

(n + l) x (n + 1) matrix with the following form.
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n-Z O 0 . . e 0 0'

'
0 l
l

0 1 l . . e O 1

  L011...10 d

In the matrix P1 , the diagonal element 9:1 is equal to n-2 , the

remaining entries in row i and column i are 0's , and the remaining

diagonal entries are 0's . Application of Corollary 3.5 to find the

values of pi and pil requires finding the sum of the elements of the

symmetric sutnatrix of each P determined by the rows and columns whose
i

indices are in class C Suppose that g classes of the original scheme1 .

are to be combined into set cl 3 then the symmetric submatrix will be of

order g x g . If the diagonal element n-2 is not in the euhmatrix, the

g(g-l) off-diagonal elements will all be 1's 3 if the diagonal element

n-2 is in the suhmatrix, then (g-l)(g1-2) off-diagonal elements will he

1's and other elements will be 0's . This means that the sum is

n-2 + (g-l)(g-2) = g2-3g+ n whenever the index i of the matrix P1 is

in the class 61 vehich determines the sumtrix, and the sum is g(g—l)

for all P1 with 1 ¢ (31 . But this is precisely the requirement of

Corollary 5.5, proving that the association scheme defined by taking two

treatments as first associates if they are associates of one-of the g

classes of set C of the original, Euclidean geometry, scheme, satisfies

1

the conditions of partial balance with two associate classes. There was
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no restriction on the value of g . The expressions obtained for

n1 , oh and pfl are identical with those derived in Section 2.1 for

Latin square type schemes with g constraints.

Some of the special features of the association schemes constructed

by Theorem 5.2 may be used to simplify the application of Theorem 5.5 and

Corollary 5.5. This will be discussed in the case of Corollary 5.5 for

the present purpose of constructing schemes with two associate classes.

In the schemes of Theorem 5.2, the c associate classes all have equal

numbers of treatments 11 = d , so that if first associates are defined in
i

the new scheme by a set CI of g of the original associate classes, the

number of treatments in the first associate class of the new scheme is

cl = gd , regardless of the particular set of g classes chosen for set

1 . Suppose that a set 01 is known to satisfy conditions (5.52) of

Corollary 5.5; define a new set C

C

1' hy'adding 1 to each index in the

set Cl 3 that is,

i+l€C1' if and only if 1601

1 +1 is reduced modulo c if necessary. The following equalities are

I

obtained by successive use of (5.22), of the definition of set C 1 ,

and of a change of notation in the indices of sit-ation.

ijk ‘2 ZPia-1.1”].Z:9}j+l,k+l ”Z Zap): °

JEZC, REC. 16C 3+!e'c,' (met. J.‘=C

Since the first sum is equal to the same value p11 uniformly for 1 £01

and equal to oil uniformly for i¢c1‘, the last am will be equal to _

!

ph uniformly for 1601' and equalto pil uniformly for iFCl .
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Thus the set 01' satisfies conditions (5.52) of Corollary 5.5, giving

the same values for the parameters n1 , pil and 9:1 , and hence for

the remaining association scheme parameters as well, as are given by the

set C1 . The operation of increasing by unity the index of each associ-

ate class in C1 may evidently be repeated as often as desired, giving

in each instance a scheme equivalent to that obtained with C1 . A suffi-

cient number of repetitions will result in a set which.contains the 0th

class of associates.

Therefore, in application of Corollary 5.5 to scheme constructed by

Theorem 5.2, it may be assumed without loss of generality that the set C1

of classes which are combined to form the class of first associates in the

new scheme contains the 0th class of associates in the original scheme.

The submatrix determined by set C will then contain the leading diagonal
1

element of each P1 matrix. This fact may be used to reduce the amount

of empirical search necessary to find a suitable set C although it was
1,

not needed in discussion of the schemes related to the finite geometry.

The search may also be simplified if the parameter values of the possible

new scheme are known. In the second family of schemes discussed for

v = n2 treatments, each associate class has. d = n +-l treatments, and

the only schemes which can be formed by combining classes are those in

which n1 is a multiple of n +-l . .Inspection of Table II of the Appen-

dix shows that most of the schemes with appropriate values of v and 111

are in the L" series, and that in this case the number of classes to be
8

combined in set C1 , which is equal to the order of the symmetric sub-

matrices of the Pi matrices specified in Corollary 5.5, is given by the
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numerical value of the subscript g . For a particular possible scheme,

the values of ph and 9&1 may also be obtained from Table II. The

sumof the elements of the submatrix of P mustbeequalto pi, e
0

condition which is easily checked for any animatrix and may eliminate

many of the possible submatrices.

Corollary 5.5 and the remarks which have just been made will now be

used to attempt to construct schemes with two associate classes from the

second family of schemes constructed by Theorem 5.2 for v = n2 = p2s

treatments. For v = 9 , the scheme of this family has only two classes

of associates and there is no need to combine classes. The schem is

listed in Table II as #2, and is also in the Lg series. For v 8 16 ,

the scheme has three associate classes of 5 treatments each and has been

given as an example. The P1 matrices are repeated here for reference.

022 221 212

P =221 ,P =202 ,p =122 .

° 212 1 122 ”2 220

The only scheme of Table II in which n1 is a-multiple of 5 is scheme

#6, in which n = 5 . If this scheme is to be formed by combining
l

associate classes, the set C must consist of a single associate class
1

th
and will be taken as the 0 class. The submatrix in this case is the

single element p30 , and is equal to O for i = O , and 2 for

i = l or 2 . These are the required values for pil and pi]. in

scheme {6, proving that the scheme can be constructed by this method.
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Table II includes no association schemes for v 8 25 treatments

which cannot be constructed by other methods. Scheme #22 is an IL;

scheme but the number of treatments is 56 , which is not a prime power,

and the present method is not applicable.

The scheme constructed by Theorem 5.2 with v = 49 treatments has

six associate classes, each containing 8 treatments. The schemes of

Table II with v = 49 and n1 a multiple of 8 are schemes #51 end

#55. The latter is a known 1.:5 scheme. Scheme #31 is an 1:2 scheme

with I’ll = 5 . The set C must therefore determine a symmetric 2 x 2

l

311me which may be assumed to contain the leading diagonal element

of each P1 matrix, and the sum of the four elements of the submatrix

of P0 must be 5 . latrix PO , computed by the methods already illus-

trated in the example with v = 16 , is as follows.

—
I

M
H
N
N
O
O

N
O
N
M
N
O

.

Po

N
H
O
H
M
N

o
w
m
o
m
m

N
M
N
P
O
H

L
g
m
o
m
m
m

  

If the elements of a symmetric matrix are integers and their sum is odd,

it is clear that a diagonal element must be odd. The only odd diagonal

element of Po is p22 = 1 , which must b; 12m the 2 x 2 sub-atrix.

This determines a submatrix with the form 2 l , which has sum 5 instead

of the required 5 . It is therefore impossible to choose a set c1 of

associate classes which satisfies all the conditions of Corollary 5.5, and

scheme #51 cannot be constructed by the method of this section.
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The next scheme constructed by Theorem 5.2 has v = 64 treatments,

with seven associate classes, each containing 9 treatments. The schemes

of Table II with v = 64 and 111 ‘a multiple of 9 are schemes #48 and

#51.

m l g
2 scheme with p11 2 . The set Cl therefore

must determine a synetric 2 x 2 subatrix containing the leading dia-

Scheme #48 is an I.

gonel element of each 14’1 matrix, and the sum of the four elements of

the submatrix of P0 must be 2. The matrices P1 are listed below and

it is easily verified that no submatrix of P0 satisfies these require-

ments. Therefore scheme #48 cannot be constructed by the method of this

section .

Scheme #51 is an 125* scheme with pi = 10 and pfl = 12 . The

set c1 must contain three associate classes whose indices determine a

5 x 5 submatrix of each of the seven P1 matrices. The sum of the

elements of the submatrix must be 10 or 12 , according as the index

1 of the matrix is or is not the index of a class in the set 01 . The

Seven matrices will now be listed.
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It is not difficult to verify

#51.

1

that the set 0

Beheme is given in section A.4 of the Appendix.

1

The seven 5 x 5 submatrices are the following.
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202 021

i = 0 z 0 2 l 3 i 3 1 z 2 2 0 ;

210 102

022_ 202

i=2: 202 ; 1:3: 002 ,

. 220 222

020 210

i=4: 222 3 i=5: 102;

022 022

222

i=6: 220 '

200

The next scheme constructed by Theorem 3.2. has v = Bl treatnents,

with eight associate classes, each containing 10 treatments. The schemes

of Table II with v = 81 and n1 a multiple-of 10 are schemes #68 and

#70 in the 1.; series, #75, a know scheme of the Lg series which is

also in the L; series, and #72, in neither series.

Scheme #68 is an L3; scheme with pil = l and pi: = e . The set

c lust contain two of the eight associate classes and determine a 2 x 2
1

sutuatrix of each of the eight P matrices; the sun of the elenents of

i

the suhnatrix must be equal to 1 if i is the index of either class in

set 0 and equal to 6 if i is any of the six other indices. The
1 I

usual assumption that 01 contains the 0th associate class means that

the sub-atrix of each P1 utrix includes the leading diagonal element

P30 e

whats-ices have the required totals, showing that the construction of

andtheset 013(0,4)isquicklydeternined. The 2x2



125

the scheme is possible. The eight 8 x 8 P matrices appear below,

1

With the 2 1.2 submatrices. The association scheme is given in Section

A.4 of the Appendix.

Scheme #70 is an L;; scheme with pil 1 9 and pfl = 12 . The

set 01 must contain three of the eight associate classes and determine

a 5 x 5 sub-atrix of each of the eight P matrices; the sum of the

i

elements of the submetrix.must be equal to 9 if i is the index of any

of the three classes in set 61 , and equal to 12 if i is any of

the five other indices. The set 01 3 ( O , l , 6 ) is fbund to be

satisfactory. The 3 x 5 sub-atrices appear below and the associatihn

scheme appears in Section A.4 of the Appendix.

we construction has been found for scheme #72.

The P1 matrices for the scheme with 81 treatments and eight

associate classes are the following.
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The 2 x 2 suhmatrices used in the construction of scheme #68

.
d

9

1
A

z
Z
O
I
Z
I
O
Z

0
0
3
3
3
9
0
7
9
0

3
0
3
1
3
0
7
0
.
.
.
.

3
3
0
0
0
3
7
9
8

0
3
3
3
0
1
3
.
]
.

3
9
0
0
3
0
8
7
9
0

0
1
8
3
3
0
0
3

7
3
0
3
0
3
3
0
3
.

e
d

I
n

e

 

a

0
2
.
0
3
3
0
3
3
.

3
0
.
1
3
1
0
3
2

0
3
3
3
,
0
3
0
0

0
3
.
1
3
0
s
z
3

3
0
0
0
3
7
4
3
3

z
a
z
o
r
a
t
o

3
0
7
4
0
3
3
0
3

t
h
z
z
o
o
z
o
_

.
o
n
e
-
6
0
3
7
5
3
0
9
0

d
g

’
z

i

_
J

_
_

3
1
3
0
3
-
1
3
0

0
1
.
3
1
0
3
3
3

3
3
3
3
0
0
0
3

0
3
,
4
0
3
3
0
3

7
a
t
°
~
6
~
6
3
0
~
l

z
o
o
z
o
v
l
z
a

z
o
z
z
o
fl
fi
o
z

3
3
0
7
9
3
0
3
0

o
a
o
r
a
z
z
o

a
t
o
a
z
z
o
t

0
3
3
0
3
0
3
3

3
3
3
0
0
0
3
3

o
a
a
z
o
r
z
r

a
o
z
o
l
z
o
z
'
l

.
.
‘
z
o
o
o
z
z
z
z
l
—

_
i
m
z
z
z
z
z
o
o

‘
e

‘
e

e
d

t
o

9
c
a

.
1

0
0
0
3
3
3
3
3
_

fi
z
z
z
z
z
o
o
w

1
3
1
.
0
3
3
3
0

3
3
0
3
3
0
7
9
0

0
0
3
0
1
3
3
3

3
0
3
3
0
3
0
3

1
0
3
3
3
0
1
3

3
3
0
0
0
3
3
3

r
m
Z
I
z
o
a
t
a
r
e
.

 

3
3
7
4
3
0
0
0
3
3

t
o
z
a
z
O
I
Z

0
2
3
0
7
4
0
3
3

3
0
1
3
3
3
0
0

0
3
0
2
0
3
2
0

.
3
3
3
0
T
Z
I
O
L

‘
0

‘
e

 

r
o
z
o
z
a
o
z
z

d

o

:
.

3
3
3
0
0
3
0
1
.

3
0
3
3
0
3
3
0

0
1
3
1
0
3
3
3

3
3
7
9
3
3
0
0
0

Z
I
Z
O
Z
I
Z
O

0
0
0
3
3
9
0
3
3

Z
Z
O
T
Z
I
O
Z

‘
0

d
T
.

 

_
»

3
0
3
3
0
3
3
0
.

3
3
0
0
3
0
I
3

0
3
3
0
3
3
0
3

I
Z
I
O
Z
Z
Z
O

3
3
3
3
0
0
0
3

1
3
0
3
1
3
0
3

0
0
3
3
3
3
3
0

3
0
1
3
1
0
3
3
.

‘
0

1%



182:

 

2

2

0

L
?

2 O 2 ~i=5:

 

O 2

th. following.

The 5 x 3 “mamas“! 1n the construction of scheme #70 are

125 .



126

\ Theorem 5.2 is not/applicable to any schemes with v = 100 , since

there is no finite field of order 100 .

The schemes for which a construction by the method of this section

has been discussed thus far have all been in the L8 and 1.: series.

It has been shown that no more schemes of these series with v_<_ 100 .can

be constructed in this way. lost of the author's attempts to construct

new schemes forwhich v is 'a prime power but which are not in these

series have been inconclusive. When the number of treatments' v ‘6 pq is

of the form 4t + l , Theorem 3.2 m be used directly with d 2 2t and

c = 2 to form an association' scheme with two classes. When q 8 1 this

is the known scheme of the cyclic series in which the first associates of'

0 are the quadratic residues of p ; when q is even, the scheme is in

the I.“ series. For odd q 2 3 the scheme is not of cyclic or Latin

square type, but the first example is for v = 125. This example illus-

trates that the methods of Theorems 5.2 and 8.5 are not limited to the

cyclic, Latin square and negative Latin square association schemes, but

it does not seem likely that they will provide solutions to any more

schemes within the range of Table II.

It was pointed out in Section 5.1 that if the Euclidean plane geo-

metry with n2 points and the L; association scheme with n2 treat-

ments both exist, the number of first associates of a treatment ofn
l

the scheme is equal to W + 1) , where (n +1) is equal to the number

of lines through a point of the geometry and the numerical value of the

negative integer g is used. It could therefore be conjectured that for
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some correspondence between the treatments of the scheme and the points

of the geometry, the first associates of a given treatment would corres-

pond to lg‘ points on each of the .(n‘+-l) lines through the given point.

The treatments of the four Lé’ schemes which have been constructed in

this section are already identified with the elements of a finite field,

which in turn are identified with the points of the Euclidean plane geo-

metry, giving a very natural one-to-one correspondence between treatments

and points. It will be shown that with this correspondence, schemes #6

and #51 have the geometric property described.

It will be convenient to discuss both.the scheme and the geometry in

terms of the finite field. For any element 0 , the first associates of

e in the L: scheme are obtained by adding a to each of the first

associates of the additive identity 0 . The points of the line through‘

0 in direction 1 are obtained by adding 0 to each of the points of

the line in direction 1 through. 0 . There is therefore a one-to-one

correspondence between the first associates of O which lie on the line

through 0 in direction 1 , and the first associates of 9 which lie

on the line through 9 in direction 1 . The distribution of the first

associates of any treatment 9 in the Lg? scheme over the ‘n +-1 lines

through 0 in the plane geometry is therefore the same for any element

9 as it is for the element 0 and it is sufficient to consider the

element 0 . The first associates of O and the remaining points on

any line through 0 all correspond to non-zero field elements and will

be replaced for the rest of the discussion by their indices or exponents

'With respect to a primitive element of the field.



The remaining points on the line through 0 in direction 1 have

exponents which are congruent to i modulo :1 1‘ l . The first associates

of 0 in the L; scheme have the '4“ + l) exponents obtained by com-

bining the sets of (n + l) exponents which are congruent to j modulo

n—l , for Ig| suitably chosen values of j . A typical set of this kind

Will be considered and may be written

J+u(n-l) , u'-’O,*' l , ... , n.

Suppose that two exponents in this set are congruent modulo n + l .

j + u1(n-l) = j + u2(n-l) mod (n + l) ,

u1(n-l) E u2(n-l) mod(n + l) .

Only the case in which n is even will be considered. In this case, n-l

is prime to n + l and may be cancelled; since u1 and u2 are both

between 0 and n this gives the result “1 = u2 , showing that no two

of the exponents of the set fall into the same residue class modulo n + l ,

and that the n + 1 points corresponding to the set lie one each on the

n + 1 lines through 0 . Since the same is true for each of the lgl sets

of first associates of 0 , exactly Ig‘ of the first associates of 0

must lie on each of the n+ 1 lines through 0 . Finally, this shows

that if an 11.; association scheme with n2 treatments is obtained by

the method of this section, and if n is even (meaning that n is a

power of 2), then the Igtn + 1) first associates of any treatment 0

correspond to lg] points on each of the n + 1 lines through the point

corresponding to O in the finite Euclidean plane geometry with n2 points.
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In the case of scheme #6, n = 4 and g = -l , and the 5 first

associates of any treatment 0 lie one each on the five lines through

the point 9 . In the case of scheme #51, n = 8 and g = -5 , and the

27 first associates of any treatment 9 lie three each on the nine lines

throng! 0e

If n is odd, it is still true that the distribution of the first

associates of a treatment 9 over the n-+ 1 lines through the corres-

ponding point is the same for all choices of 9 , but the distribution

is not necessarily uniform. It proves not to be uniform for the schemes

constructed for 81 treatments.

The results of Theorem 5.2 have also been found by D. A. Sprott and

were published in two papers [3175327. The second of these, which is

the only one dealing with partially balanced designs, appeared in 1955,

after the present work.had been completed. The first article appeared in

1954 but did not come to this author's attention until after the second

had been published. Both articles are on the construction of incomplete

block designs from finite fields and make use of sets of field elements

equivalent to the subgroup'used in Theorem 5.2. The designs described in

sections 4 and 5 of the second paper have association schemes which are

identical with those constructed in Theorem 5.2. Theorem 3.2 was moti-

vated by the desire for a class of association schemes for v = n2 treat-

ments in which the numbers of treatments in the associate classes are

multiples of n +-l , and the method of proof was originally suggested

by some work published by Boss in 1942 [5']. The author is indebted to
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Sprott's papers, however, for the realisation that the final statement of

Theorem 3.2 was necessary in the proof that schemes such as #51 and.#48

cannot be constructed by the present methods. Sprott's work is different

from that appearing here in many details. The presentrdiscussion is

limited to association schemes, while Sprott constructs actual designs,

including some classes of them whose association schemes are not related

to Theorem 5.2. He treats a field as an instance of a module and bases

his construction on a general theorem of Bose and Hair [8] on the con-4

struction of partially balanced designs from a module. The proof of

Theorem.5.2, dealing directly with properties of the finite field, is

self-contained, may be simpler in some respects, and is certainly different

in its arrangement. Sprott does not consider combining associate classes

to form designs with fewer classes, and the only designs of the L8 or

t; seriesobtainedsrethosewith v=p9=4t+1, =2t and c=2 .

In particular, the new schemes #6, #51, #68 and #70 are not obtained.
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3.5 Construction of _a_ Negative Latin Sguare ms. Scheme with Leg

Treatments fl Emotion.
 

It is possible to solve some combinatorial emblems by making syste—

matic trials of possible solutions until a solution is found or all

possibilities are shown to fail. This method entails too much compu-

tation to be usable in the. construction of most incomplete block designs

or association schemes, but it will be used in this section to construct

the L; scheme which appears in Table II as #94. The parameter values

of the scheme are

v=100,

o 21 6 16

11222, P: , Pa .

1 1 21 56 2 16 so

n2=77,

Since no Galois field of order 100 exists, the method of Section 3.2

cannot be applied here. The scheme would seem to have some special interest

because of its possible connection with the unsolved question of the

existence of orthogonal 10 x lo Latin squares. The reason this problem

is amenable to empirical study is the parameter value pi]. = O , which

permits use of Theorem 2.6.

In this section the symbol He will be used to denote a c x d

3
d

matrix all of whose elements are 1's . The subscripts will sometimes be

omitted when the order is clear from the context. The orders of matrices

and matrix products occurring in certain equations will be indicated in

parenthetic statements which appear to the right of the equations.
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If scheme #94 exists, let an arbitrary treatment be designated as

treatment 0 , and its 22 first associates numbered from 1 to 22 . Then

the matrix A1 of first associates may be partitioned in the form of

(2.3g),‘with submatrix R a zero matrix.

' I

0'1 0 e e 1.0 e e e 0

war-—-—~—-r--—--——1I———-—-—

1 l

e. I

. i 0 l S 22 rows ,

I

° l

(353) A = 1' -----I -------- -- --I-I'-—-

1 0' I

.' I

~ ' 3' ' T 77 rows .

el '

. i

no! ' .JL  
Theorem 2.6 may be applied to show that submatrix S is the incidence

matrix of a BIB design with parameter values

(5.34) v=22, r=2l, 1:36, b=77, A25.

Moreover, each row of the 77 x 77 matrix S'S must have at least

p§2 3 16 off-diagonal elements equal to 0 . By (2.42) and (2.41) the

60 remaining off-diagonal elements of each row of S'S must have sum

k(r-l) = 6(20) = 120 and sum of squares k(r-l) + k(k-—l)(7\-l) 3:

6(20)~+ 6(5)(4) = 240 . The variance of this set of 60 numbers is then

Egg...(l%g,2 = 0 , showing thatrthey must all be equal to their mean

value 2 . Thus each row of S'S contains a 6 on the main diagonal, 16

0'3 and 60 2'8 . This means that each block in the balanced design

has no treatments in common with 16 of the other blocks, and exactly 2
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treatments in common withheach of the remaining 60 blocks. The

existence of such a BIB design is therefore a necessary condition for the

existence of scheme #94.1'

As pointed out in the discussion accompanying (2.58), each row of

submatrix '1' contains 1's in pig = 16 offodiagonal positions. By

statement (b) of Lemma 2.1, s's + T2 must have entries ph = o in

these positions and entries 0:1 = 6 in the other 60 off—diagonal

positions of each row. Since T2 has non-negative elements, the 60

2's in each row of svs must fall in these same 60 positions. By

difference, the element of 12 in each of these positions must be a 4 .

This determines the following structure for T2 .

1‘2 = 16 I + on + 4(U-I-T) , (77 x 77 matrices) .

Lemma 2.2 may now be applied to show that T is the matrix A1 of first

associates in an association scheme with two classes of associates and

the parameter values

:60, 1 “o, 2 =4.v 8 77 , p11 — pllu1 = 16 , n2

This is scheme #64 of Table II . Thus the existence of scheme #64 is

another necessary condition for the existence of scheme #94.1

Either of submatrices S or T would.presumably be easier to inves—

tigate than the 100 x 100 matrix, and it will be shown below that the

lé In other cases in Table II where Theorem 2.6 applies, either matrix

T is not determined or *T is not an association matrix of may scheme

with two classes.
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balanced design corresponding to S can actually be constructed. It is

therefore important to show that the existence of S is sufficient as well

as necessary for the existence of scheme #94. This will now be done.

Let S be the incidence matrix of a BIB design with parameter values

(3.34). This implies that 88' has the form

(5.55) 38' a 16 I + so , (22 x 22 matrices) .

Also, let 8 have the property that each column has inner product 0

with each of 16 other columns. This was shown to imply that it has inner

2 with each of the 60 remaining columns. Then S'S has the form

(5.56) 8'8 8 6 I‘+ 0°B +'ZB1 2 , (77 x 7? matrices) ,

where 82 is a symmetric matrix with 0's on the main diagonal, .60

1's in each row, and 0's elsewhere, and B1 is defined by

(5.37) 751 = o - I - 132 , (77 x 77 matrices) .

The following useful equations are easily derived from the fact that S

has uniform row totals 21 and uniform column totals 6 .

3.38 so = 21 u .
( ) 77,d 22,d

(5.39) Uc,228 - 6 Uc,77 .

(s-S)2 will now be computed in two ways. From (5.56) ,

(5.40) (sis)2 2 as 1 + 2432 + 41322 .



155

The next chain of equalities uses (5.55), (5.56), (5.59) and (5.57) in

the order stated.

(S'S)2 = s'(ss')s

= S'(16 1 + so)s = 163's + some

316(61+282)+1800

3961+ 5232+ iso(x+nl +32) ,

(3.41) (S'S)2 2 27s I + 180131 + 212132 .

Solution of (5.40) and (5.41) for 322 gives

2
32 =601+458 +47B2 .

1

Application of Lemma 2.2, with the designations of first and second

associates interchanged, shows that B2 is the incidence matrix of second

associates in scheme #64. An incidental result is that S' is the inci-

dence matrtx of a.PBIB design with this association scheme. This is the

dual of the BIB design represented by S and is obtained by inter-

changing the roles of treatments and blocks.

So far, it has been shown that the existence of S with the given

properties implies the existence of a matrix with the preperties required

for T , defined by T - B1 . It remains to show that if 8 and T so

defined are used as the submatrices in (5.55), then A1 will meet the

requirements for the association matrix of scheme #94. Using A1 in

this form, and squaring according to the rule for partitioned matrices,
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The forms of the suhnatric‘es of A12 will be computed separately.

(5.45) U+SS'=U+161+SU=221+6(U-I), (22x22).

The value of 881 may be obtained by solving (5.56) and (5.57) for Bl .

then multiplying by S .

898=BI+2(U-I-Bl) .

81821+U-§S'8, (77x77matrices) .

SB1 = 28 + SD - $8.98 (22 x 7? matrices.)

=28+210-§(161+5U)8

=28+210-88-150

(5.44) 351 = 6(0 - s) .

The value of 312 is easily obtained from (1.16), recalling that Bl

is the incidence matrix of first associates in scheme #64. Then

s's +3 2 + = +61 (GI-+282) (1614-432) 221 82,

(5.45) s's + 312 22 I + 6(0 - 1 - Bl) , (77 x 77 matrices) .
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Using equations (5.45), (5.44), (5.45), equation (5.42) may be written

52:221+G(0-1-A1)=221+6L2, (100x100),

and by Lemma 2.2, A1 and A2 are the association matrices of scheme

#94. This completes the proof that the existence of the BIB design

implies the existence of scheme #94. It will also furnish an easy way

of constructing the scheme from the design.

The existence of scheme #94 is therefore equivalent to the existence

of the specified BIB design. This does not mean that the number of dis-

tinct designs is equal to the number ofschemes. For any matrix Al in

scheme #94, there are 100 possible choices of the treatment to be desig-

nated as treatment 0 , each leading to a different set of rows and

colums in the sutmatrix 8 . These determine BIB designs which have

the same parameter values, but which are not necessarily all equivalent

under permutation of treatments and blocks. However, any given matrix 8

determines the rest of matrix A1 uniquely, showing that the number of

solutions of A1 is at most equal to the amber of solutions of S .

It will appear below that there are at most 4 solutions for S , so

that if the solution for scheme I94 is not unique, there are certainly no

lore than 4 solutions distinct under permutations of treatments. The

question of uniqueness might be of interest if a connection is found

between scheme #94 and sets of orthogonal 10 x 10 Latin squares.

The structure of S will now be taken up. S is the incidence

Detrix of a BIB desig: with 77 blocks, each containing 6 of treat—

IIlents l , 2 , ... , 22 . Each treatment occurs 21 times and each
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pair of treatments occurs together in the same block 5 times. The ‘

design satisfies the additional requirement that for any choice of an

initial block, there are 16 blocks which have no treatments in common

with the initial block; this was shown to imply that each of the 60

remaininghlocks has exactly 2 treatments in cannon with the initial

blocks There is no loss of generality in assigning numbers 1 , 2 , 5 ,

4 , 5 , 6 to the treatments in the initial block, then considering

separately the set of 60 blocks each of which contains 2 of the treat-

ments 1-6 and the set of 16 blocks which contain only treatments 7-22.

Denote these by Set I and Set II respectively. In what follows the number

of special cases will be reduced greatly by showing that certain cases

are equivalent under changes of’notation, that is, under permutation of

treatments and/or permutation of blocks. The reader may verify that the

only treatments or blocks involved in any of these permutations are those

which play syn-atrial roles in the part of the design which has been

previously specified. it the present stage this permits any permutation

of treatments 1-6 among themselves and any permutation of treatments

7-22 , but no interchange of treatments not in the same set. Similarly,

blocks may be renumbered within Set I or Set II but the sets of blocks

Will be left intact.

Repeated use will be made of the fact that the number of treatments

common to any two blocks of this design must be either 2 or 0 .

Each of the 15 pairs of treatments 1-6 occurs once in the initial

block,notatallinthe 1c blocksofSetIl,andA-‘-’5 timesinall,
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so that it must occur in exactly four of the 60 blocks of Set I. Since

none of the 60 blocks can contain more than 2 of treatments 1-6 .

the blocks must fall into 15 sets of 4 , blocks in different dots con-

taining different pairs of treatments 1-6 , and the .4 blocks of each

set containing the same pair. No two blocks in .the same set of 4 can

have more than 2 treatments in cannon, meaning that no two of them can

contain the same treatment of set 7-22 . Therefore each of the 16

treatments in this set must occur just once in each of the 15 sets of 4

blocks. It will be convenient to identify the sets of 4 blocks by the

pair of numbers of set 1-6 which they have in common. The symbol

[_141/ will be used to denote the set of 4 blocks containing the treat-

ments i and j of set 1-6. Since each treatment must occur 21 times

in the BIB design and 15 occurrences of each of treatments 7-22 have

been accounted for, each must occur just 6 times in the 16 blocks of

Set II.

Let I denote the sub-atrix of 8 whose rows are determined by

treatments 7-22 and whose columns correspond to the blocks of Set II.

II is a 16 x 16 incidence matrix whose row totals are all 6 by the

final sentence of the preceding paragraph, whose column totals are all

equal to 6 , the number of treatments in a block, and whose column

inner products are at most equal to 2 . This means that the symmetric

matrix I'll has diagonal entries equal to 6 and 15 off-diagonal

entries in each row which are at most equal to 2 . It is not difficult

to show that (2.42) holds for any incidence matrix with equal row totals

15’ and equal column totals k , whether it is the matrix of a BIB design
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or’not. This shows in the present example that the sun of the 15

off-diagonal entries of each row of -I'l is 30 , proving that each of

these elements is equal to 2 . This proves that l' is the matrix of a

BIBdesignwithparameters vzbzie, rzkss, A=2. Since this

is a symmetric design, a well~known result originally obtained hy Fisher

shows that the column inner products of I' are also all equal to 2 ,

the same as the row inner products. This is the same as saying that I

is the matrix of an equivalent BIB design. This is useful in the con-

struction of Set II-of 16 blocks. Also, since each pair of treatments

7>22 occurs 2 tines in Set II and must occur— 5 tines in all, each

pair nust occur exactly 3 times in the 60 blocks of Set I, a fact

which is helpful in the construction of Set I. The fact is not essential,

and rather than digress to prove that (2.42) can be applied, the construc-

tion of Set I will be based on the fact that no two blocks of the set can

have more than 2 treatments in common. The fact that Set II determines

a BIB design then follows without any appeal to (2.42).

The numbering of treatments 7-22 will be chosen so that [1,2/ has

the for-

2 7 8 9 10

2 11 12 15 14

2 15 16 17 18

2 19 20 21 22P
H
H
H

llext consider the sets [5,4/ , [5,5/ , [4,5/ . Each contains the treat-

ments 7-22 once each, and the rows of each must have either 2 treat.

nRents or no treatments in common with the blocks of [1,2/ . This means
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that the last 4 numbers of any row ofM nust occur in pairs in two

of the rows of each of [5,3] , M ,M . Rearrange rows of each of

these sets if necessary so that the first blocks of each set contain

treatments 7 , 8 , 9 , 10 , with 7 in the first row. The blocks

347______, 5 5 7____, 4 57.___alreadvhavethe

maximum nunber of treatments in common, so they must contain the treat-—

nents 8 , 9 , 10 in some order. Renunber these treatments if necessary

so that they occur in the order given. This determines the folloning
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Renumber treatmnts 11422 if necessary so that the remaining treatments

inblock 3 4 7 8 _ __ are 11 and 12 . Then a repetition of the

reasoning used for treatments 7 , 8 , 9 , 10 shows that the pairs of

treatnents 11 13 and 11 14 must occur in sets [55;] and [2:5] 3

renunber treatments 15 and 14 if necessary so that 11 15 occurs in

M . Since no block can have more than 2 treatments in common with

the block 5 4 7 a 11 12 , no‘other block can have an 11 or 12

along with a 5 or 4 and a 7 or 8 . This determines the following.

347811.12_5579__45710__

54910 sseio__4sse___

54____551115__451114__

s4 551214__451215__
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There is now a choice of placing the pair 13 14 in the second block of

set M or in another block, say the third. The latter case will be

investigated first. Renusbering treatments of the sets 15 , 16 , 17 , .

18 and 19 , 20 , 21 , 22 if necessary and remembering that not more

than two treatments of either of these sets can occur in the same block

of M , the following is obtained. '

3 4 7 8 11 12

5 4 9 10 15 16

5 4 15 14 19 20

3 4 17 18 21 22

Since neither 15 nor 16 can new fall in a block of M which con-

tainsa9or10,theset15,16,17,18nustfallinthelast

two blocks of [Lg/ , in the following arrangement after renumbering

them if necessary.

7 9

8 10

11 15 1'5 1?

12 14 16 180
1
0
1
0
!
“

(
”
0
1
0
0
“

The pair 15 18 must now occur in some block of [34;], but it is easy

to verify that any such block would then have 5 treatments in common

with some block of M or [_5_,_§/ , showing that this case is impossible,

and that treatments 15 14 must occur in the second block of M .

Treatments 7-14 , which occur in blocks 1 2 7 8 9 10 and 1 2 11 12 15 14

0f [Lg/ , have now been assigned to the blocks ofM . Notation was

chosen so that treatments 7 , 8 , 11 and 12 all occurred in the same

block. This was found to imply that treatments 9 , 10 , 1s and 14 m
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occur in the same block. By symmetry, this shows that if treatments from

any two blocks of set 043/ occur in the same block of any of sets

M , Q‘s/1 . M] , than elLsight. treatments (other than 1 and 2)

of those two blocks must occur in the same two blocks of the set. This

fact is useful in completing the blocks of M ,M and - [3.1.57 .

Treatments 15—22 may be renumbered if necessary so that number 15

is given‘ to one of the remaining treatments in block 5 5 7 9 _ _ . Then

after possible further changes of notation, the following is quickly

obtained.

54781112 55791517 45 7101922 or 2021

54 9101514 558101618 45892021 or 1922

5415161920 5511151921 4511141518 or 1617

5417182122 5512142022 4512151617 or 1518

The blocks of Mm be completed in any of four ways. There seems to

be no insdiate way of reducing this number of cases by choice of notation,

and from this point on only the first case will be considered (rez- each

block, the first pair of the two possible pairs listed). It may be veri-

fied that the other three cases give similar results. .

The next blocks to be constructed are those in sets [w ,M ,

M . The block containing treatments 5 6 7 must contain another

treatmentof set 7,8,9, 10; comparisonwithblocks 54781112

and 5 5 7 9 15 17 shows that. the treahnent mist be 10 . Further com-

parison with the blocks already constructed shows that the block mist also

contain treatments 20 and 21 . This sort of argument quickly deter-

mines that the three sets of blocks are as follows.
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56 7102021 46 7E91618 56781514

56891922 468101517 56 9101112

5611141617 4611152022 5615162122

5612151518 ~4612141921 5617181920

hwu°¢°fuu M.M.An§/.M.LW.M.

Lag/.159] alreadyhasjreatmentel or. 2.in column with each block

of net [1.3! , unmet contain Just one treatment of the set 7 , s ,

9,10,onetreatmentofset 11,12,15,14-and-soon. Comparison

witheitherbloek547811120r56781514ehowsthat

trestlnents 15 and 14 , in some order, must occur in blocks

157__-and257___.Treatments1andzoccupy

synetrical positions in the part of the design which has been specified

so far, and they may be interchanged if necessary to give the blocks

15715__and25714___.

Further comparison with blocks containing treatnents 5 , 7 and 15

determines the following.

157151622 257141819

15814 25815 __

158__18___ 259_1e___

1s1o_____1e 251o_____22

Comparison with blocks alreazh' containing the pairs 5 14 , 5 18 or

5 19 then determines the remaining treatments. Entirely similar con-

siderations determine the blocks of sets (1.4] ,M ,. (1,6/ ,124/ ,

[2.5/ , Aw , completing the construction of all the blocks of Set 1.

Each pair of treauaents must occur together in exactly A = 5

blocks. Enumeration shows that each of the pairs of treatments 7 to 22
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has occurred together. 5 times in the blocks of Set-I, meaning that each

pair must occur twice in the 16 blocks of Set 11. It has already been

, noted that each of treatments 7 to 22 occurs 6 times in the set.

This verifies. that the blocks of Set 11 form a BIB desig: with parameter

values

v: :16, r=k=6, 1:2.

Consider the two blocks of Set II which contain treatments 7 and 8 ,

Comparison with blocks of Set 1 web contains treatments 7 and a shows

that the remaining eight treatments in these two blocks must be treatments

15 to 22 in some order. Comparison with block 4 5 11 14 15 18

shows that the pair 15 18 mist occur in the same one of these two

blocks. Comparison with block 5 4 15 16 19 20 shows that block

7 8 15 18 _ _ must contain either 19 or 20 ; comparison with

block 2 5 7 14 18 19 shows that it cannot contain 19 3 comparison

withblock s s 7 '10 so 21, forinstance , thenshows thatthers-

meining treatment in the block must be 22 , determining the structure

7815182022

7816171921.

A similar procedure determines the remaining blocks of Set 11. This con-

pletes the construction of the 77 blocks of the BIB design desired. The

blocks are listed on the following page:
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This design was required to have the properw that each block be

disjoint from 16 other blocks. It may be verified that this is satis-

fied. Therefore matrix 8 exists and may be taken as the incidence

matrix of this design. The columns of matrix S fall in columns 25 to

99 of the association matrix A1 , and for discussion of scheme #94 it

is convenient to number the blocks of the 913 design from 25 to 99 . Then

for any 9 from 25 to 99 the six treahsents in block 0. correspond

to six of the first associates of 9 . The remaining 16 first associ-

ates correspond te the 16. blocks of the design which have no treatments

in common with block 0 . In this way the first associates of all of

treatments 23-99 are specified. The first associates of treatment 0

are treatments 1 to 22» . The first associates of any treatment ¢

from 1 to 22 are 0 and the 21 treatments corresponding to the

blocks of the design which contain {5 . Since it was sham that the pro-

parties of matrix S implied that Al had the properties required for

scheme #94, further examination of the 100 x 100 matrixis unnecessary.

This completes the construction of scheme #94. There are at most

four solutions to the association scheme, corresponding to the four choices

for the structure of the blocks of set M a. It is not known whether

any of the four solutions are equivalent under some permutation of treat.-

ments.

For the construction of scheme #64, the blocks of the BIB design may

be numbered from 1 to 77 . The first associates of treatment 9 then

correspond to the 16 blocks which have no treatment in common with

block 0 . ’
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Because of the ease with which they may be constructed from the BIB

design, schemes #94 and #64 will not be listed explicitly.

If there exists a finite Euclidean plane with 10 points on a line

and 11 lines on each point, it is conceivable that scheme #94 has a geo-

metrical interpretation similar to that discussed in Section 5.2 for

schemes #6 and #51. \If so, the 22 first associates of a point 0 would

be two suitably chosen points on each— of the 11 lines through 9 . The

choice of the two points on each line might-be a difficult problem. Of

considerable interest if true, but presumably even .e more difficult to

prove or disprove, are the- conjectures that the existence of the geometry

is a necessary~cendition for. the existence of the'asseciation scheme, -or

that the geometry can be constructed from the scheme. ~It thusappears

that there is a possibility, but only that, that scheme #94 will shed

some light on the unsolved problem of constructing orthogonal 10 L10

squares. Several lay-products of the scheme will now be motioned. It

has been pointed out that any of the 100 possible choices of an initial

treatment in tin association scheme leads to a-different sub-atria! T

which is an association matrix for scheme #64 and a different submatrix

S which is a solution of the balanced design with 77. blocks. The 77

blocks correspond to the second associates of the initial treatment. Any

choice of an initial column of S to be taken as an initial block leads

to a different submatrix I which was shown to give a. solution of the

BIB design with v 3 l6 and r = 6 . A distinct mhnatrix I of Al is

determined by every choice of a pair of second associates, and there are

5850 pairs of second associates. There are an equal number of sets of 60
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blocks with the properties of Set I. The blocks of Set I may be parti-

tioned into the 15 sets denoted by [341/ . In discussing these blocks

the treatments will be numbered as in the constructed example. The 16

treatments from 7 to 22 fall byst into the 4 blocks of each set

A.” . If the cells of a-square 4 x 4 array-are numbered from 7 to

22 , an arrayof the letters A , B , C , B may beformed from-each

setM by assigning the same letter to cells which, correspond to treat-

ments in the same block. There are five sets M for any fixed value

of i, forexample [_1.J_5/,[_2‘_§/,L5_,_y,L5_,_§/,[§,_6/.Ifthe

arrows formed from [341/ and M , where 311: ,- are superimposed,

the number of cells in which a particular ordered pair of letters occurs

is equal to the number of. treatments. of the set -7-22 which the- correse

parading-blocks of [_iJj/ and M have in common. The two blocks are

not disjointrhaving treatment 1 in common, so wet have exactly 2

treatments in coma, including one treatment of the set 7-22 ,, -Each

pair of letters therefore occurs in- exactly-one cell when the two squares

are superimposed, meaning that the squares are orthogonal. The five sets

M for a fixed value of 1 form a complete orthogonal set of 4 -x 4

squares. The fifteen squares defined by. the 60 blocks of Set I include

six complete orthogonal sets, each square seeming in two of the ortho-

gonal sets. To the best of the author's knowledge, this configuration is

new, and it is included in Section A.5. of the appendix.



IV. THE STRUCTURE OF LATIN MARE TYPE ASSOCIATION SCHHES

4.1 wDiscussion _o_t: .Unigueness,~.with Center-W

By definition, the terms "Latin square type“ and ”Lg" apply

only to association scheme in which first associates-may be defined by

the rows of a set of g orthogonal squares. in association scheme with

the parameter values of an 1.3 scheme but constructed by some other -

method does not necessarily satisfy this requirement. Some of the pro-

perties of association schemes of the Latin square series which have been

treated in the previous chapters depend on the existence of the set of

orthogonal squares; other properties hold as a consequence of the-minori-

cal values of the parameters of the schemes. For example, a scheme can--

i
1 and p12- are the

same as for an LS scheme will have the property (X1 3 n1 which was

discussed in Section 5.1. On the other hand, if an association scheme

structed by any method for which the values of v , n

with these parameter values is constructed by any method other than the

actual orthogonal squares, the compact representation of the scheme by

means of the square array of numbers may not be available. Ifthere are

different constructions of the same scheme which are..not equivalent under

some permutation of treatments, there may be designs which are impossible

with one scheme but can be constructed with another. Design #7-5 is an

example. Important results on the existence of some types of incomplete

block designs have been obtained by use of the Hasso-Iinkowski invariants

of the symmetric matrix NM [30], [15]. In order to compute these
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invariants it is necessary to compute certain minor determinants of the

matrix, and designs corresponding to inequivalent association schemes

would have to be treated as separate special cases. (The Hesse-Minkowski

invariant is not taken up in this thesis.) For these reasons it may be

important to know whether association schemes are unique, and in parti-

cular, whether the existence of an association scheme with the parameter

values of the L8 series implies the existence of a set of g ortho-

gonal squares by which first associates in the scheme may be defined. In

other words, does the set of L8 association schemes with a particular

set of parameter values exhaust the set of all association schemes with

the same parameter values? If this is the case, the L8 scheme will be

said in this chapter to be unique.-

The analogous question for group divisible designs was answered in

the affirmative by Bose and ConnoryZTT;7. The definition of a group

divisible scheme for v 3 mn treatments uses an arrangement of the treat-

ments into m groups of n treatments each and leads to a certain set

of parameter values; it is shown in‘Z-ZJ7 that the existence of a scheme

with these parameter values implies the partition of the treatments into

the m groups. This includes the special case L1 of the present question.

It will appear in this chapter that the question is more complicated fer

the L8 schemes in general. Some counter-examples to be presented in

this section will show that the analog of the Bose-Connor theorem cannot

be true in full generality. It will be proved in Section 4.2 that with a

single exception a scheme with the parameter values of an L0 scheme

implies the existence of the two orthogonal squares. In section 4.3 the
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result is extended to Latin square type schemes with 3 or more con-

straints, with a larger number of possible exceptions. The theorem for

g?_ 4 makes the existence of the scheme equivalent to the existence of

a set of two or more orthogonal Latin squares, a connection which could

be useful in the study of such sets. Some of the results of the chapter

apply to association schemes of any type or to more general incidence

matrices.

A proof of the uniqueness of an Lg association scheme in that

first associates can be defined only by the rows of some set of orthogonal

squares has no bearing on the question of uniqueness of the set of ortho-

gonal squares. It was shown in Section 2.1 that all pairs of n x n

orthogonal squares are equivalent except for numbering of treatments,

settling the question in the case of L2 . For g2 25 , the number of

sets of g mutually orthogonal squares which can be used to construct

L schemes depends on the enumeration of Latin squares and sets of ortho-
3

zonal Latin squares, and will not be considered here. Also omitted from

any direct consideration will be any differences in the properties of

solutions of the same association scheme based on distinct sets of ortho-

gonal squares.

The interpretation of an association scheme or its incidence matrix

in terms of a linear graph was mentioned in Section 1.3. Any symmetric

incidence matrix with 0's on the main diagonal may be used to define a

graph by identifying points with rows and columns, then joining points [A

and 7 of the graph if and only if the elements in the [I , ‘V and y, [u

positions of the matrix are l's . In the case of the incidence matrix
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of first associates of an association scheme, the points of the graph are

identified with the treatments. A pair of points which are Joined by a

line is identified with a pair of first associates, either pair being

indicated in the matrix by a pair of 1's symmetrically located with

respect to the main diagonal. In this chapter, terms such as point and

line will be used interchangeably with the corresponding terms for associ-

ation schemes. A set of k treatments which are pairwise first associates

till be identified with a set of k points each pair of which is Joined

by a line. This configuration in the graph will be termed a complete con-

figuration on k points, a complete k-point, or simply a kbpoint. Iany

of the properties of the association scheme correspond to analogous pro-

perties of the graph, as has been mentioned in Section 1.3. Therefore

some theorems proved in this dissertation for partially balanced designs

have applications to linear graphs. Iany of the known theorems of graph

theory are potentially useful in the study of designs, but no applications

of them will be made in this chapter. The graphs encountered here are

highly special, owing to the properties of partial balance in the designs,

and do not seem to have received much attention.

Examples will now be given of association schemes which have the

parameter values of L2 , L and. L4 schemes but in which it is not

5

possible to define first associates by any set of orthogonal squares. The

construction of these schemes is based on the following remark, already

made in Section 2.1.

Remark 1: If the designation of first and second associates is

interchanged in a Latin square type scheme with g constraints on v = n2
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treatments, the resulting association scheme has the parameter values of

a Latin square type scheme with f = n-g-+ 1 constraints. The associ-

l

the Lg scheme.

ation matrix A in the L1. scheme may be taken as the matrix A2 of

The demonstration that first associates in the schemes constructed

cannot be defined by orthogpnal squares makes use of the following remark.

Remark 2: If first associates in an association scheme are those

treatments which occur with the same letter in one of a set of n x n

orthogonal squares, than every pair of first associates is contained in a

complete n-point.

Example 1 . Let an L3 scheme for v = 16 treatments be defined

by rows, columns and letters of the following 4 x 4 Latin square, which

was used as an example in Section 2.1. The array of numbers is also given

for reference.

1 2 5 4 A B C D

5 6 7 8 B C D A

9 10 11 12 C D A B

15 14 15 16 D A B C

Dualize to form a scheme in which first associates are the same as the

second associates of the original scheme, namely those treatments not

occurring in the same row, the same column, or with the same letter of the

Latin square. Thus in the dual scheme the first associates of treatment

1 are 6 , 7 , 10 , 12 , 15 , 16 and the first associates of treatment
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6 are 1,4,11,12,13,15. Byremarkl, thisschemehasthe

parameter values of an L2 scheme. Treatments 1 and 6 are first

associates and if the scheme corresponds to any set of two orthogonal

squares, then by Remark 2 , treatments 1 and 6 must be contained

in a set of n = 4 treatments which are pairwise first associates. The

remaining two treatments in such a set would have to be the two treat.

ments which are the common first associates of treatments 1 and 6 .

These are treatments 12 and 15 . But treatments 12 and 15 are not

first associates in the dual scheme, hence the first associates 1 and

6 are not contained in any set of 4 pairwise first associates and by

remark 2 the L2 scheme cannot correspond to any set of two orthogonal

squares.

Ekample 2. Let an L25 scheme for v 8 2.5 treatments be defined by

rows, columns, and letters of the following 5 x 5 Latin square. The

array of numbers is also given for reference.

.
.
.
:

2345

O
)

7 8 9 10

11 12 15 14 15

16 17 18 19 20

M
U
O
I
'
D
D

O
N
C
E
-
C
l
!

D
N
M
U
O

G
O
D
M
U

a
b
s
c
e
s
s

21 22 25 24 25

Form the dual scheme by interchanging the designation of first and second

associates. The new scheme will have the parameter values of an L:"

scheme, by Remark 1 . First associates in the new scheme are those treat-

ments not occurring in the same row or column or with the same letter of
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the Latin square. Thus treatments l and 8 are first associates in

the new scheme. If first associates in this scheme can be defined by a

set of three 5 x 5 orthogonal squares, than by Remark 2 treatments 1

and 8 must be included in a complete S-point. The remaining three

treatments in the 53-point must be first associates of both of treatments

1 and 8 . The common first associates of treatments 1 and 8 are

treatments 15 , l7 , 19 , 22 , 24 . In order for three of these to form

With 1 and 8 a complete 5-point, it is necessary and sufficient that

theybe pairwise first associates. The submatrix of the incidence matrix

of first associates corresponding to the five treatments is the following.

15 17 19 22 24

15 F0 1 1 1 6‘

17 1 o o o 1

19 1 o o o o

22 1 o o o o

24 L_<_) 1 o o g  

It is easily verified that there is no set of three pairwise first associ-

ates among the five treatments. Therefore remark 2 is violated and

there exists no set of three orthogonal 5 x 5 squares by which first

associates in the scheme may be defined.

Example 5. Let an L5 scheme for v 3 56 treatments be defined by

rows, colullns and letters of any 6 x 6 Latin square. Now dualize by

interchanging the designation of first and second associates, obtaining

a scheme which by Remark 1 has the parameter values of an 1.4 scheme

for 56 treatments. If this scheme corresponded to any set of four 6 x 6

orthogonal squares, it would imply the existence of two orthogonal 6 x 6
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Latin squares, which has been proved impossible [55] [50] . Therefore

the scheme cannot correspond to any set of orthogonal squares.
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4.2 93. 212 Uniqueness 3; L2 Association Scheme

The proof of uniqueness of certain Lg schemes is begun in this

section and will be completed in the case of L2 schemes. Lemmas 4.1

and 4.2 and Theorem 4.2 are proved for schemes having the parameter values

of Latin square schemes with any number of constraints, showing what the

existence of one or more complete n-points in the scheme implies for the

rest of the scheme. Lemma 4.5, applying to the incidence matrix of a

scheme of any type with two associate classes, brings out a useful fact

about the structure of a certain submatrix. In Theorems 4.2 and 4.5

these results are specialized to the case of Latin square type schemes

with two constraints and with the exception already noted in the preceding

section they are shown to be unique in the sense being used in this chap-

ter. It is shown that additional methods must be used in the case of

three or more constraints.

The parameter values of L8 schemes, given in (2.9), are repeated

here for easy reference.

v = n2 , _ 32 ~ 5g + n (g-l)(n-g + 1)

111 = g(n-1) . P1 - (8-1) (n-s + 1) (n-an-s + 1)

m2 = (n-s + 1) (n-l) . P = [dz-l) g(n-s) J .

2 g(n-s) (n-s)2+ 3-2

LBIMA 4.1. In any association scheme for v = n:8 treatments which

has the parameter values of a Latin square type scheme with g constraints,

if there is a set of n treatments which form a complete n-point, then

each of the remaining n2—n treatments is a first associate of exactly
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g—l treatments of the set of n .

PROOF: The set of n treatments specified in the theorem will be

called a complete n-point. ‘Treatments may be numbered so that the

treatments in the n-point correspond to the first n rows and n columns

of the incidence matrix ‘1 of first associates; then the leading n x n

principal minor, denoted by B , will have 1's in all off-diagonal

positions. Subnatrices C , C' , and D are defined by the following

diagram of Al in partitioned form.

,1. .......................

  
M

The n rows of C correspond to the n treatments in the n-point. The

nz-n columns of C correspond to the remaining treatments.

The row totals of. A1

product of a pair of rows corresponding to first associates is equal to

are equal to nl = g(n-1) , while the inner

p; = gz-Sg + n . B has row totals n-1 and row inner products n—2 .

By difference, 0 has row totals (g-l)(n-1) and row inner products

gz—Sg + n - (n-2) '-‘ g2-5g + 2 . The total number of 1's in all n rows

of C is n(g-l)(n-l) 2 (ma-n)(g-l) . The total of the nth column of

c :111 be denoted by kn and the mean column total by E . Clearly

:- : g-l . The sum of the inner products of all pairs of distinct rows of

C will now be computed in two ways. The number of such pairs of rows is

(2) and each inner product has the value 32-5; + 2 , giving the total

(‘21)(g2-5g + 2) . The contribution of the elements of a single column to
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the total is equal to the number( 1;“) of pairs of 1's in the column and

the total may be obtained by summing over all columns. Equating the two

expressions for the total,

;C“) “(flag-58 +2) 9

4:- as,"2 - k“) = (nag-um“ - 5g +2) .

 

1 Z]: -;=g2—33+2 ,

13‘»- : 15,2 -'-‘ 82-3€+2+(8~1) = (8-1)?”-

u

The variance of the kn will now be computed.

Ver(k) =_2._.1. 2: k2- (92

u n -— n u u

=(z-1)2 - (8-1)?‘ = o .

Therefore the column totals kn of C must all be equal to their mean

2-n treat-value g-l . This has the interpretation that each of the n

meats corresponding to the columns of C is the first associate of

exactly g-l of the n treatments corresponding to the rows of C .

This completes the proof of Lemma 4.1.

COROLLARY 4.1. No association scheme with L8 parameter values,

gs n , contains a complete configuration with more than n treatments.

It is natural to attempt to prove comparable results from the hypo-

thesis of a complete configuration with fewer than n points, in particular
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n-l . The author has found that the method used in the proof of the

lemma is much weaker in this case, and has been unable to demonstrate

any regularity in the column totals of subletrix C on this hypothesis.

LEMMA 4.2. If an association scheme with the parameter values of

tin Latin square series with g constraints contains a complete n-point

and a complete h—point which is not a subgraph of the n-point but has

at least two points in common with it, then as (g-l)2 .

PROOF: By Lama 4.1, each of the n2—n treatments not in the n-point

is a first associate of just g-l treatments in the n-point. No set of

pairwise first associates which contains treatments outside of the n-point

can contain more than g-l treatments of the n-point.

Consider two treatments which are in both the n-point and the h-point.

Each other treatment of the h-point must be a common first associate of

these two. In all the two treatments have pi]. "-’ 32-5g + n common first

associates. of these, n-2 are in the n-point, leaving g2~5g + 2 which

are outside of the n-point. Therefore at most g2~5g + 2 treatments of

the h-point are outside of the n—point.

The largest possible number of treatments which the h-point can con-

tain, in the n-point and outside of it, is therefore

(g—l) + (g2~3g+ 2) = (g--l)2 , completing the proof.

This lemma shows that any set of n > (g--1)2 treatments which form

a complete configuration cannot have more than one treatment in common with

any complete n-point unless all h treatments are contained in the

n-polnt e
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THEOREH 4.1. If an association scheme has the parameter values of

the L8 series, if each pair of treatments is contained in a set of n

treatments which are pairwise first associates, and if n ) (g-l) 2, then

there exists a set of g orthogonal n x n squares which may be used to

define first associates in the scheme.

PROOF: The language of linear graphs will be used. Treatments will

be referred to as points, pairs of first associates as lines, and a set

of k treatments which are pairwise first associates will be termed a

“complete kbpoint' , or briefly a 'k—point' .

By hypothesis, each line on an arbitrary initial point of the graph

is contained in a complete n-point. Each such n-point contains exactly

n—l lines through the initial point. By Lemma 4.2, since n )(g-l)2 ,

no line through the initial point can be in more than one appoint, and

by Corollary 4.1, no complete configuration can contain more than n-l

lines through the initial point. Therefore the set of n1 3 g(n-l) first

associates of the initial point must fall into disjoint sets of n-l ,

each forming a complete n-point with the initial point. Therefore there

are just g n-points containing the initial point; it was an arbitrary

2 points. From thispoint and the same remark applies to each of the n

or from the remark that there is just one n-point on each line, it

follows that there are exactly ng n-points in the entire graph.

Denote an arbitrary initial n-point by A . Each point of A lies

on g-l additional n-points, for a total of n(g~l) n-points inter-

secting A . If any of these were counted twice, for different points of

A , it would have more than one point in common with A , which is



165

impossible by Lemma 4.2. Therefore A intersects exactly n(g-1) of

the remaining ng-l n-points, leaving n-l of them with which it has no

points in comon.

Take any n-point B disjoint from A . By Lemma 4.1 , a particular

point of B is joined by lines to g-l points of A . Each of these

lines lies on an n-point. If two of them lie on the same n-point, then

that n-point would have more than one point in common with A , which is

impossible, so the g-l lines determine the remaining g-l n-points

through the point of B , for a total of n(g-l) n-pointe intersecting

A and B and distinct from both. If any of these were counted twice,

for different points of B , it would have two points in common with B ,

which is impossible. Therefore the n(g-l) n-pointsare all distinct,

and must be the entire set of n-points which intersect B . Therefore

the n—l n-points disjoint from B must be A and the other n-2 in

the set of n-points disjoint from A . B was any one of the n-l

n-points disjoint from A , so each of these n-points is disjoint from

all the others, and the whole set of n are mutually disjoint, exhausting

the n2 points.

The argument carried out for A applies to any of the g n-points

through an arbitrary point of the graph, showing that there are g

systems of n "parallel“ n-pointa. n-points in the same system are dis-

joint; any two in different systems have just one point in common. Let

the n2 points be identified in a 1—to-1 manner with the cells of an

n x n square array. Identify the n “parallel“ n-points of one of the
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g systems with n distinct letters, and form a square array of these

n letters by assigning each letter to those cells of the array corres-

pending to the points of the n-point. The g squares which.may be

formed in this way satisfy the requirements of a set of g orthogonal

n x n squares, and may be used to define first associates in the associ-

ation scheme.

Some terminology to be used in the next lemma and in some of the

theorems of this chapter will now be introduced. In any association

scheme with two associate classes, choose notation so that treatments 1

and 2 are first associates and number the remaining treatments so that

the treatments in each of the following sets have consecutive numbers and

the four sets are numbered in the order listed.

Set 1: p11 common first associates of treatments 1 and 2 ,

Set 2: pig treatments which are first associates of treatment

1 and second associates of treatment 2 ,

Set 5: p%2 treatments which are first associates of treatment

2 and second associates of treatment 1 ,

Set 4: 9&2 common second associates of treatments 1 and 2 .

In the incidence matrix A1 of first associates, the treatments of each

set correspond to a set of consecutive rows and columns, and the four sets

of treatments determine sixteen submatrices, which are indicated in the

diagram belowu Orders of the submatrices are shown in the margins of the

diagram. The notation Ar‘V will be used for the submatrix with rows

corresponding to Set/Il and columns corresponding to Set 1/ .
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F0 1; 1 e o 1:]. e 0 1:0 e e 0' 0 e o 0‘”,

_i__o_. _1_,_.,1_i_o_._._o_ ._1_._._1_; 9_._._9_ ,_ _ __, _ _

1 1: : : s

. . ' I A I

; A11 . A12 ; 13 AM ii" 11.3%

-i__i.=.-_---i _____ .........1.1--. '
1 0: : T :

4e : e e' ‘ A ' t 2

( 1) 51 ' A21 : A22 : 23 ‘ A24 Si ’
e e. : . : p12 rows.

1 0' I t

’6'I;”“" ’f” ‘ ”:’"""g"' "” """“

. . i ' A t 5

. : ‘51 I 52 : as : 54 ,3“
O. : : ' 12 0

-3-%,:----«.- ------ :r ----------------
l

. . A . t 4

2 A41 : 42 . ‘43 i ‘44 :3 ,3“
e e. I ' J 22 e

0 0' n   
The number of 1's in a row of if”, will be denoted by tfly; the row

totals of a submatrix are not necessarily equal but the symbol will be

used only in statements which are true for all rows. The symbols Tluy

and Z
[w

A/“V and the total number of 0's in A/uy which are not on the main

will be used, respectively, for the total number of 1's in -

diagonal of A1 .

LEMMA 4.3. If the incidence matrix A1 of first associates in an

association scheme with two associate classes is partitioned in the form

of (4.1) , then the number 211 of off-diagonal 0's in submatrix All

satisfies the following inequality.

(4.2) 211$ Pizu’il " 1) o ’

x 9:1

are 0's of the main diagonal of A1 ,

PROOF: Since ‘11 is a p11 matrix whose diagonal elements
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- 1 1.

Considering inner products of row 2 with rows of Set 1 ,

t t = 1 - 1
11'+ 15 p11 '

Summing over the pi rows of Set 1 ,

(4.4) T + '1‘
- 1 1

11 13 ’ p11(911 ' 1) ’

From (4.5) and (4.4) ,

5 = .(4. ) z11 T13

Considering inner products of row 1 with rows of Set 3 ,

t t - 2 1 ‘
zl't 52 ‘ p11 ’ '

Summing over the pig rows of Set 3 ,

. 1 2

4.6 T T - - o

( ) 31+ 52 "12(p11 1)

By symetry of A1 ,

.7 3 .

(4 ) T15 T31

Combining (4.5) , (4.6) and (4.7) ,

= : 1 2 .. ..

211 T51 p12(911 1) T52 '

1 2
< " o

This completes the proof of the lemma.
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THERE}! 4.2. If an association scheme has two associate classes and

v = n2 treatments, n f 4 , then necessary and sufficient conditions

that it be a.Latin square type scheme with 2 constraints are

(4.8) u1 = 20! - l) .

(4.9) p11 - n - 2 .

If n 2 4 , the condition is necessary but not sufficient.

PROOF: Necessity is proved by the general expressions (2.9) for the

parameter values of Latin square type association schemes with 3 con-

straints, which reduce in the case of g = 2 to

n = 2(n..1) , Vn-z n-l j

1 P = ,

n2 = (11-1)? , 1 Ln-l (n-l)(n-2)

2 2n-4 ‘

p = V -
2 L2n-4 (n-2)2   

Also, the parameters specified in (4.8) and (4.9) determine the remaining

values, so that any of them may be assumed in the sufficiency proof.

The sufficiency proof will make use of the incidence matrix ‘1 ,

partitioned in the form of (4.1) . An important step will be to show that

any pair of first associates and their 911 3 n-2 common first associates

form a set of n treatments which are pairwise first associates. In the

notation of (4.1), this amounts to showing that submatrix All has 1's

in all off-diagonal positions or equivalently, that Zll = O . Lemma 4.5

provides an upper bound for 211 which reduces in the present case to

. .<: - 1 .(4 10) Z11 _ n
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Suppose that 21170 , meaning that among the n-2 treatments of

Set 1 there is at least one pair of second associates. For convenience,

number treatments so that numbers 3 and 4 are second associates. Then

the entries in the 5,4 and 4,3 positions of A1 Will be 0's. Since

treatments 3 and 4 are second associates, the inner product of rows

5 and 4 of A1 must be equal to pil = 2 , meaning that the submatrix

consisting of these two rows must contain exactly 2 columns with 1's

in both positions. But columns 1 and 2 are of this form, meaning that

each of columns 5 , 6,..., n2 of this sub-atria: must contain at least one 0.

Since n-4 of these columns are in submatrix All , it must contain

at least n—4 0's in rows 5 and 4 in addition to the two 0's

originally assumed. By symmetry of the matrix there are also at least

:14 additional 0's in columns 3 and 4 , for a total of at least

2n-6 off-diagonal 0's in A Therefore,ll.

(4.11) if zll>o, then 211221145.

The latter inequality contradicts (4.10) for n 2 6 , proving that for

n26, 211:0 . For n=3, All isa 1x1 matrixwhich trivially

has no off-diagonal 0's . For n = 5 , it will be proved below that

Z11 3 O . Therefore for all n i 4 , the n x n suhnatrix of Al whose

rows and columns are determined by a pair of first associates and their

n—2 common first associates has all off-diagonal elements equal to 0 ,

which means that the n treatments of this set are pairwise first associ-

81:88.
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This completes a proof that for n f 4 , every pair of first

associates is in a set of n treatments which are pairwise first associ-

ates. By Theorem 4.1 , there exists a set of g = 2 orthogonal squares

which may be used to define first associates in the scheme, which means

precisely that it is a Latin square type scheme with two constraints.

In the special case n 3 4 , Counter-example 1 of Section 4.1

shows the existence of a scheme whose parameter values satisfy conditions

(4.8) and (4.9) but in which it is not possible to define first associ-

ates by a set of two orthogonal squares. Therefore the conditions are

not sufficient in this case.

it remains to prove that 211 = 0 when n = 5 . (4.10) and (4.11)

show that if lej> O , than 211 3 4 . Assume that for some choice of

two first associates as treatments 1 and 2 , 211 3 4 . That is, the

1

p11

associates of treatments 1 and 2 has 4 offodiagonal elements equal

3 x 5. submatrix All determined by the set of = 3 common first

to 0 . After assigning the numbers 3 , 4 , 5 in a suitable order to

these three treatments, the leading 5 x 5 principal minor of Al will

have the form

0 1 1 1 l

1 0 1 1 1

1 1 O 1 O .

1 1 l 0 0

1 1 0 0 0

Since treatments 1 and 3 are first associates, they must have p11 3 5

first associates in.common, of which two are treatments 2 and 4 .
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Number the remaining one as treatment 6 and adjoin row and column 6

to the suhnatrix, remembering that no further treatments can be common

first associates of treatments 1 and 2 .

H
H
H
H
H
O

O
H
H
H
O
P

H
O
H
O
H
H

H
O
O
H
H
H

u
o
o
o
w
w

O
M
H
H
O
H

Treatments 2 and 6 are second associates and the inner product of

rows 2 and 6 cannot exceed pil = 2 . Therefore the letters x and

y must represent 0': . Treatments 1 and 4 are first associates

and must have three first associates in common, of which two are treat-

ments 2 and 3 . Number the remaining one as treatment 7 and adjoin

row and column 7 to the submatrix, remembering that no further treat—

ments can be common first associates of treatments 1 and 3 .

0 11 11 ll

1 01 11 00

1 10 10 10

ll 10 00 1

ll 00 00 z

10 10 00 w

l 00 12 wO

Treatment 7 is a second associate of treatments 2 and 5 and the

inner product of row' 7 with either of rows 2 and 5 cannot exceed 2 .

Therefore the letters 2 and w must represent 0's . Treatment 1 has

nl = 8 first associates, of which the remaining two may be numbered 8

and 9 . Then the next two elements of the row 1 of A1 will be 1's

and the remaining elements will be 0's . Treatments 5 , 6 and 7 are
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first associates of l and rows 5 , 6 and 7 must have inner product

5 with row' 1 , meaning that each of these rows must have 1's in the

next two positions. Then the inner product of any two of rows 5 , 6

and 7 will be 6 , which is impossible since these treatments are

pairwise second associates. This contradiction disproves the assumption

that le:> O for some pair of first associates and proves that every

pair of first associates is contained in a set of n = 5 treatments which

are pairwise first associates. This completes the proof of Theorem 4.2.

The principal object of the remainder of this chapter is to prove as

much as possible of the statement that if an association scheme has the

parameter values of a Latin square type scheme with g constraints,

32 5 , there must exist a set of g mutually orthogonal squares which

may be used to define first associates in the scheme. The counter-examples

of Section 4.1 show that this statement is not true without exception,

but it will be shown in Section 4.5 that for any g , the statement is

true except for a finite number of values of n . When it is attempted

to prove this by the methods used in the proof of Theorem 4.2, difficulties

are encountered which will be described in the case g = 5 . For g 2 4 ,

the difficulties are of the same kind but more severe.

The proof of Theorem 4.2 hinged on showing that an arbitrary pair

of first associates, corresponding to an arbitrary line of the graph, was

contahned in a complete n-point. This was equivalent to showing that

All , an (n-2) x (n-2) submatrix, contained no off-diagonal 0's , and

was accomplished by showing that if any such 0's were present, the
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restrictions on the inner product of rows corresponding to second associ-

ates implied the existence of enough additional 0': in All to violate

inequality (4.2) . In the case of g = 3 constraints, All is an

n x n submatrix, and rather than prove that it has no off-diagonal 0's ,

it is desired to show that it has an (n-2) x (n-2) principal minor which

is of this form. The symbol 3 to be used in the next section, will1 t

be borrowed for the sake of brevity. In this section, sl will denote

the maximum order for a principal minor of All which has no off-diagonal

0's . If any contradiction to inequality (4.2) is to be obtained, it

must be on the assumption that slf§_n-5 . Inequality (4.2) is weaker in

the case g - 5 , reducing to

o < "’ e(4 12) 2:ll __ lOn 20

This is consistent with forms of All such as the following, in which

the leading (n-S) x (n-S) principal minor has 1's in all off-diagonal

positions and the other submatrices have 0's in all positions.

  

011...1:ooooo

101...i.ooooo

110...1aooooo

eee eteeeee n-5I'OVI8

_1__11 o;oooo-g g

A = o6'0".".”.""o’!'0‘o"0'6o‘ ““

11 ooo...o.ooooo

ooo...o'ooooo 5rows

ooo...otooooo

ooo....o:ooooo

ooo...o;ooooo

The number of off—diagonal 0's is IOn-SO, satisfying (4.12), and
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el = n-S . Moreover, it appears that s1 can be still smaller without

giving:any easy proof that z is large enough to contradict (4.12).

11

The principal tool used in showing that Z is large is the restriction

11

on the inner product of rows of All Corresponding to second associates,

and this restriction is also weaker than in the case of Theorem 4.2. With

two constraints, the inner product of such rows was necessarily O 5 with

three constraints, the maximum value for the inner product is pfl-Z = 4 .

It may be possible with the methods used in Theorem 4.2 to prove the

existence of a complete krpoint on each line of order sl-+ 2 = n-5 but

no better result than this can be hoped for. This falls short of the

hypothesis of Theorem 4.1.

If it is not possible to prove the existence of a complete n-point on

every line of a graph, it may still be possible to prove the existence of

one n-point, somewhere in the graph. It will now be shown that this

weaker result would actually have been sufficient in the case of Theorem

4.2 for a proof of the remainder of the Latin square structure. In other

words, an association scheme with L parameter values either has a com-

2

plots n—point on each line, implying the existence of the orthogonal

squares, or it has no n—points at all. It will be possible in Section

4.5 to extend this part of a uniqueness proof to some L3 schemes not

covered by the main theorem of that section. The present result, while

vacuous for L2 schemes with most values of n , does show that for

n = 4 , the one case in which a non-Latin square scheme can have L2

parameter values, the graph of such a scheme cannot contain any complete

4-points. It was verified for the first counter-example of Section 4.1
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that a particular line was not contained in any complete 4-point; the

following theorem shows that the same is true for each of the 48 lines

of the graph.

THEORDI 4.3. If an association scheme with two associate classes

2 ’ n1 : 2(3.1) , pil = n-2 and there existshas parameter values v 3 n

a set of n treatments which are pairwise first associates, then every

pair of first associates is in such a set.

PROOF: Denote the set of n treatments in an n-point by A and

an arbitrary treatment of A by 0 . Of the 2(n-l) first associates of

0 , n-l are in A ; denote the set of the remaining n-l first associ-

ates of 0 by B and an arbitrary treatmsnt of B by fl . It follows

from Lemma 4.1 that fl has no first associates in set A except 0 ,

so the n92 first associates which fl has in common with 0 must be the

remaining n-2 treatments of set E . Since ¢ was an arbitrary treat—

ment of set B , vit follows that each treatment of the set must be a

first associate of each of the others, meaning that the set consisting of

9 and its first associates not in A form a complete n-point. O ‘was

an arbitrary treatment of set A and the same argument applies to each of

the n treatments of A , proving the existence of n additional

appoints, each having one treatment in common with A . Since any treat-

ment in two of the additional n-points would be a first associate of two

treatments of A , Lemma 4.1 shows that these n—points are disjoint,

exhausting the n2 treatments of the scheme. They may be called parallel

n-points. The same reasoning applied to the original n—point A may
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now be applied to any one of the new ones to show the existence of another

set of n parallel n-points, of which one is A . This shows that each

treatment of the scheme is in two complete n-points, the 2(n-l) other

treatments of the two n-points being first associates of the treatment.

The first associates of all treatments are accounted for by the two sets

of n—points, showing that every pair of first associates is contained in

an n-point.

This completes the proof of the theorem. Theorem 4.1 may then be

applied to show that the scheme must be of L2 type.
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4.5 933.15 Uniqueness 91: Lg _A_ssociation Schemes, g > .

In this section methods will be develOped by which Theorem 4.2 can

be extended to an infinite class of Latin square type association schemes

with 5 or more constrabnts. Theorems 4.4 to 4.6 are devoted to ob-

taining a lower bound analogous to (4.11) for the number 211 of off-

diagonal 0's in the submetrix All defined by (4.1) . The bounds ob-

tained apply to a wider class of incidence matrices and are in a form

which gives direct information on the value of k. for which a complete

kepoint is known to exist. Theorem 4.7 applies the results to association

schemes. Theorem 4.8 and Lemma 4.5, also concerned with association

schemes and valid for all schemes with two associate classes, introduce a

different line of reasoning concerning the existence of complete kppoints

in association schemes and are somewhat similar to Lemma 4.2. Finally in

Theorem 4.9 the case of association schemes with parameter values of the

Latin square series is taken up and it is shown that for a fixed number

g of constraints and sufficiently large n , the Latin square type

scheme is unique in the sense used in this chapter; that is, the scheme

can only be constructed by the use of some set of g mutually orthogonal

n xzn squares to define first associates. In Corollary 4.9 the suffi-

ciently large values of a are stated explicitly. Theorem and Corollary

4.9 are the main results of the section and the chapter. The chapter is

concluded by a discussion of some extensions and possible extensions.

The most important of these, Theorem 4.10, is analogous to Theorem 4.5.

Some ideas to be used in Theorem 4.4 to 4.6 will now be given in two

definitions.
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DEFINITION 4.1. An incidence matrix A will be said to satisfy

this definition if it is a t x t symmetric matrix with 0's on the main

diagonal and if it satisfies the requirement that if any two rows contain

a pair of 0's which are symmetrically located with respect to the main

diagonal, then the inner product of those two rows must not exceed D .

Z will denote the number of off-diagonal 0's in A .

If A is the incidence matrix of a linear graph, the rows being

identified with points, then two rows containing a pair of symmetrically

located 0's represent two points not joined by a line, and the require-

ment on inner products has the interpretation that two-such points are

joined by at most D 2—chains. If A is a principal minor submatrix of

an association matrix of a PBIB design, the rows being identified with

treatments, then two rows containing a pair of symmetrically located 0's

represent treatments which are not associates, while the inner product of

two rows is equal to the number of treatments (of the set corresponding to

the submatrix) which are common associates of the two treatments.

DEFINITION 4.2. This paragraph constitutes the definition of a set

of integers s , s , ... , er and a set of submatrices Qi.1 of a

1 2

symmetric incidence matrix A with 0's on the main diagonal. 31 will

denote the maximum order for a principal minor submatrix of A which has

1's in all off-diagonal positions. If there are no 1's , s1 3 l .

Denote an 31 x sl minor of this form.by this form. Q11 . The value of

81 is uniquely determined but possibly not the set of rows and columns

in 011 . It is not essential but will simplify the later discussion of
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rows and columns of A are permuted (simultaneously) so that Q11 is

the leading principal minor. In the remaining principal minor submatrix,

determined by the remaining t~s1 rows and t~s1 columns, let s2

denote the maximum order for a.principal minor submatrix with 1's in all

off-diagonal positions, denote such a submatrix by , and permute

Q22

these rows and columns so that Q22 is in the next diagonal position.

Clearly s1 2 s2 . Different choices of Q11 may lead to different values

of 32 ; for a particular choice of Q11 , the value of a2 is determined

but possibly not the 52 x 32 submatrix Q22 . Repeat for the remaining

diagonal submatrix, and so on until A has diagonal blocks of order

s .> s

l " 2

the maximal property described for s1 and s2 ,

elements of each block are 1's . The ith diagonal block will be denoted

.> ... where s s ‘+-... +~s = e ch h

...-.852 23f, 1+ 2 f t, a 81 38

and all off-diagonal

by Q11 ; the submatrix determined by the rows of Q11 and the columns

of _ij ‘will be denoted by Qij . This partition of A is illustrated

in the fellowing diagram.

Q11 5 Q12 ’ . . . : Qlf s1 rows ,

__ -_._.— _ ...-..- ..-— — -- 4 .......

-921. -1- .2? - - 11:1. - -8. ."_°‘I’.’
(4.15) A: O C 0:. O O 0:. O O O 0:. O O O O C

- _ - -.- _ - 7 - -..- -.- -..- .......

Qfl 1 Qrz . ' ' ° ' fo 3r r°ws ’  
It is desired to investigate the possible values of Z in the matrix

A specified in Definition 4.1. A matrix with Z = t(t-l) , containing

0‘s everywhere or a.matrix with Z 3 0 , with 1's in all offediagonal

Positions, satisfies the requirement, but there may be intermediate values
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of Z which are impossible. If the matrix is partitioned according to

Definition 4.2, the fact that the diagonal blocks Qii contain no off-

diagonal 0's will provide an upper bound for Z . 0n the other hand,

it is evident that the off-diagonal blocks Q1 must contain some 0's,

3

or it would be possible to form some larger diagonal blocks full of 1's ,

violating the maximal property of the s1 . This type of reasoning is

put into a definite form in the following theorem.

THEOREI 4.4. If A is an incidence matrix satisfying definition

4.1 and s1 , s2 , ... , s are determined according to Definition 4.2 ,

f

then the total number 2 of off-diagonal 0's of A satisfies the

following inequality.

F P

(4.14) :1: sJ Iax( s1 + sj-D , 281.2D , 2 )

"' =i+l ‘F

_<_ z s t(t-l) - 28551-1) .
.g'

PROOF: The partition of A depicted in (4.13) will be used.

Take any subatrix Q1 with i<5 s an s x 31 matrix, and con-

J i

sider any m x k submatrix of Q1.1 which contains 1's everywhere.

This submatrix, the symetrically located portion of jS , an m x m

submatrix of Q11 and a k x k submatrix of Q.“ can be combined to

form a symmetric (m + k) x (m +k) matrix with no off-diagonal 0's .

By the maximal property of 8i , it is necessary that m + k3 s1 .

Next consider the set of si rows of Q and for each column define

ij ’

a subset consisting of all the rows which contain 0's in that column.

There are 8.1 subsets in all. Take any I: of these subsets, corresponding
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to a k-columned submatrix of 011 . By the inequality just proved for

submatrices containing 1's everywhere, at most si-k rows of this

submatrix contain l's everywhere, meaning that at least 1: rows contain

0's . This means that any I: of the subsets of rows of QM contain

between them at least k distinct rows. This is true for

k = l , 2 , . . , s.1 . By the theorem of P. Hall [521,[2—7] on represen-

tatives of subsets, there exists a system of distinct representatives of

the s subsets. That is, there are 81 distinct rows of Q which

J 1.1

may be ordered so that the luu‘ row contains a 0 in the fit“ column

of Qij .

So far we have shown that Q1.1 contains at least s1 0's no two

of which are in the same row or column. This seems to be about the best

possible result using nothing but the condition that the s are maximal,

i

but the condition on inner products of A still has not been applied.

This will be done next.

We will use the suhnatrix consisting of the blocks Qii , Q13 ,

Q11 , Q” ,. still with i < j . This is a symmetric

(s1 + s1) x (81+ s3) matrix. It has been shown that Q“ contains a

set of 83 0's , no two of which are in the same row or column. Con-

sider one of these 0's and its symmetrically placed 0 in q.11 . The

two rows containing these rows must have inner product fl D . Therefore

at most D 1's may occur in the remaining cells of these two rows of

Qij and jS , meaning that there are at least a + s ~D-2 additional

1 J

0's in these two rows. This can be repeated for each of the initial 0's ,
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r_o' . g . _

'. :Qii: :Qn

11.i51.1:...5...

ee | 0

e e | e

-----:_--91-_-.°-_-_

. IO .

jQJiI “,1an

....0000:1.101.1

I | I'.

O ‘ C 0

L . J  
and since they were in distinct rows and columns, the additional 0's

all fall in different rows and are therefore distinct. This proves the

existence of at least

8 s s - D - 2J(i+j )

0's in blocks Qij and 051 , in addition to the 2sj already

discussed. If si-+ sJ $_D +-2 , this is vacuous, but in any case the

existence of the 2sj 0's has been proved.

Therefore a lower bound for the number of 0's in blocks Qi and

J

jS is

( ) ax( 8j(8i J ) , sj)

Again considering the initial 0 in Qij , note that the number of

additional 0's in the row of Q which contains the symmetrically

ji

placed initial 0 is by symmetry equal to the number of additional 0's

in the column of Qi containing the initial 0 . There are therefore

3

at least si-+'sj-D—2 additional 0's in the row and column of Qij
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J

bined, some of the additional 0's may be counted more than once, but

containing any of the sJ initial 0's. If these s totals are com-

since no two of the initial 0's were in the same row or column, none

are counted more than twice, and the number of dupliCations is at most

equal to the number of cells of the submatrix which are in the same row

as one of the initial 0's and in the same column as another. The num—

ber of such cells is sj(sj-l) . A lower bound for the number of addi-

tional 0's in Qij is obtained by subtracting this from the combined

total,

sj(si+ s -D-2) - sj j(sJ-l) = sj(si-D—l) .

If s _<_ D + 1 this is vacuous, but in any case the existence of the SJ
1

initial 0's in has been proved. The number of 0's in jS isQ“

equal to the number in (:11 giving as a lower bound for the number of
j ’

0's in both blocks

(4.16) lax< 31(231-2D) , Zsj) .

This may be combined with (4.15) to show that blocks Qij and Q51

contain at least

sJ llax( Bi + sj-D , 231‘2D , 2)

0'8. Summation over all the off-diagonal suhnatrices Q1 gives the

1

lower bound stated in the theorem. The upper bound in the theorem is the

total number of cells in the submatrices Qij , since all the off-diagonal

0's are in these submatrices. This completes the proof of Theorem 4.4.
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The set of values of Z satisfying (4.14) includes the set of

possible values of Z for all matrices A satisfying Definition 4.1 and

for which the procedure described in Definition 4.2 leads to a particular.

partition of t into positive summands s1 . The union of the sets ob-

tained from (4.14) for all admissible partitions of t them includes all

possible values of Z for a given order t x t of matrixv A and a given

value of D . The class of admissible partitions of t may be restricted.

For example, if A is the incidence matrix of a graph which.is known to

contain complete 3-points but no complete configurations with as many as

t—l points, then 5 _<_ s1 3 t-2 . 0n the other hand, if restrictions on

the value of Z are known, this theorem may restrict the possible parti-

tions of t and in particular the value of s1 .

It may be possible to obtain a slightly better lower bound than that

given by the theorem“ One of the lower bounds for the number of 0's in

submatrices Q11 and Qi which is twice the number of 0's in Q

J ’ 13

and is therefore an even number, is 81(81 + sjeD) . If this product is

odd in any term of the sum, it may therefore be replaced by the next larger

even number.

The following_numerical examples illustrate the theorem and the

remark just made.

NUMERICAL EXAMPLES

Each term of the double sum in the lower bound given by (4.14) is a

function of D and of two of the s values, and is independent of t .
i

A preliminary table of values of 8 Max 3 + s.—D , 28 -2D , 2 ,

J i J 1
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computed for a fixed value of D and a suitable range of values 85. 2 s. ,

J

is convenient for use in evaluating the sum and can be used for any value

of t . A table of this kind follows, computed for the case D 3 4 .

 

 

sj 1 2 5 4 5

51

l 2 - - - -

2 2 4 — - ..

5 2 4 6 - -

4 2 4 l_0_ lD - The underlined entries in this

5 2 6 12 20 50 table replace the computed values

6 4 8 y; 24 £6 9 , 15 and 55 ,

For a particular value t and partition 31 + 82+ ... + ef the summation

over pairs s1 , s.1 , i < j is quickly carried out. For t = 7 and the

partition 5 + 5 + 1 , the sum includes three terms. The term resulting

from the pair 81,3J = 5,5 is 6 ; the pair 5,1 occurs twice, each

time contributing the term 2 ; and the total is 6 + 2(2) = 10 . There-

fore if the process described in Definition 4.2 leads to diagonal blocks

of the following form in a 7 x 7 matrix, the number Z

  
of off—diagonal 0's in the matrix must be at least 10 . The upper

bound given by (4.14) is so , the total number of cells in the off-
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diagonal blocks. Similar bounds for all of the partitions of 7 are

listed as further examples.

Partition Lower bound Upper bound

of t on Z on Z

7 0 _ 0

6 1 4 12

5 2 6 20

5 l 1 2(2) + 2 -‘-'- 6 22

4 5 10 24

2 1 41+ 2-+ 2 i s 28

4111 5(2)+3(2)1l2 50

5 5 l 6 + 2(2) 3 10 50

522 2(4)+4=12 52

3211 4+2(2)+2(2)+2=14 34

31111 4(2)+6(2)=20 56

2 2 2 l 5(4)-+ 5(2) = 18 56

22111 4+6(2)+5(2)=22 58

211111 5(‘2)+19(2)=30 40

1111111 21(2)=42 42

0f the conclusions which can be drawn from these results, the

following are typical.

(a) The value 2 = 2 is impossible.

(b) If the graph contains no 4-points, meaning s1 _<_ 3 , then

Z 2 10 . Note that the proof of this requires consideration of the lower

bounds for all partitions with s13 5 , and does not follow from the

particular result obtained for the partition 5 3 1 .
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(c) If Z is known to satisfy Z<8 , then e125 , proving

that the graph contains a complete 5-point. The restriction on inner

products is essential, as shown by the following example, in which

Z = 6 and s = 4 but inner products such as that of rows 1 and .5'

l

are not €344 .

"6111011‘

1011101

1101110

1110111

0111011

1011101

_1101119,  

The lower bound on 2 given by Theorem 4.4 is rather complicated,

1 , 32 , eee ’ 8f in a part1-

tion of t , and it suffers from the disadvantage that it applies only

depending as it does on all the terms 8

to a particular partition. In order to get a lower bound which depends

only on t and D it is necessary to minimize over a class of parti-

tions of t which may be very large. Four lower bounds will now be de-

rived which involve ‘1 but none of the other 81 . It is simple to

apply these formulas and take the maximum of the values obtained as a lower

bound on 2 , Valid for all partitions in which the largest term is 51 .

A lower bound which depends only on t and D may then be obtained by

minimizing over admissible values of sl . Lower bounds thich are inde—

pendent of 82 , ... , 88 are not only simpler but more useful. In the

present application of Theorem 4.4 and the following theorems, the object

will be to prove that the linear graph formed from the incidence matrix

A has a complete subgraph whose order exceeds a certain minimum value.
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The value 51 is important here, since it may be interpreted as the

0

maximum order of a complete subgraph. The values s2 , ... , sf will

be of less interest and their interpretation is not so simple.

The first simplified lower bound on 2 follows directly from Theorem

4.4.

COROLLARY 4.4. If an incidence matrix A satisfies Definition 4.1

and if 81 is defined by Definition 4.2, then the total number 2 of

off~diagonal 0's in A satisfies the inequality

(4.17) 222(t-sl)(sl-D) .

PROOF: This inequality is obtained from (4.14) by taking only the

terms of double sum corresponding to i 3 l and taking the second of the

three expressions in parentheses. The sum then reduces to

f‘

:5 (2s -2D) = 2(s -D) 28, .

. J 1 1 - J

4:2 m.

Since sl-+ 32-+ ... +-sr = t , the sum in the right member reduces to

t-s and the result is proved.
1

The 0's enumerated in this corollary are those in the first 31

rows of A , that is, in submatrices Q12 , Q15 , ... , Qlf , and the

symmetrically located 0's in the first 61 columns of A . If s1 is

nearly as large as t , these rows and columns will contain most of the

off-diagonal 0's , and inequality (4.17) may be nearly'as strong as

4.14) . For small values of 81 , it becomes much weaker, collapsing

mmthfw fiSD-
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The two lower bounds for 2 given in Theorem 4.5 do not follow from

the statement of Theorem 4.4 but use some of its proof.

THEOREM 4.5. When A is an incidence matrix satisfybng Definition

4.1 and s1 , 82 , ... , sf are determined according to Definition 4.2,

then the total number 2 of off-diagonal 0's of A satisfies both of

the follOWing inequalities.

(4.18) z 2 §(t-D)(t-sl) ;

(4.19) 22%“. - sl)(t + 31 - 2n) .

PROOF: The symbol Ii will be used to denote the total.number of

off-diagonal 0's in the 81 x t submatrix of A consisting of blocks

Q11 , Q12 , ... , Qif . In this notation the proof of Corollary 4.4

implies the statement

(4.20) 112 (t - sl)(sl - D) .

If two rows of A contain a pair of 0's which are located symp

metrically with respect to the main diagonal, then by the restriction on

inner products of rows, there can be at most D columns of A which

contain 1's in both of these rows, and the two rows together must con-

tain at least t—D off-diagonal 0's , including the original pair. In

the proof of Theorem 4.4 it was shown that for i<(.J , submatrix Q15

contained a set of 31 0'8 , no two of which were in the same row or

column. These 0's and the symmetrically located 0's in jS there-

fore lie in 23j distinct rows, forming 8 pairs of rows, each pair

1

Satisfying the inner product condition and containing at least t-D
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off—diagonal 0's . The 28 rows are all contained.in the (si-p 8)) x.t

.1

submatrix whose rows are determined by submatrices Q15 and Q giving

11’

the result

(4.21) 11+ niacin-n) , i<j .

Several inequalities of this kind will now be added.

I -+ I ;2’s (t - D)

1 2 2

12+ 152 s5(t - n)

.p

Adding, and noting thatZ I
w

-

i:

(4.22) 2z~1r1 -xf 2(t-al)(t-n) .

Dropping the non-negative terms 11 and If strengthens the inequality

and loads at once to (4.18) . Adding (4.20) and (4.22) gives

0 “ > "’ "‘ e(4 25) 22 If _, (t sl)(t + 81 21))

The term Yf is dropped again and (4.19) is obtained, completing the

proof.

The two inequalities of this theorem are weaker than (4.1?) for large

values of 81 , but give better results when 31 is small. The expres-

sion in the right member of (4.19) has its maximum value for s1 3 D , the

value for which (4.1?) gives the trivial lower bound 0 . For 81 < D ,

(4.18) is the strongest of the three inequalities.
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These three lower bounds on 2 fill the needs of the present section,

but may fall far short of the actual minimum value of z for many values

of s1 . For example, when 81 = l , the best result obtained from any

of the three is Z 2 §(t-l)(t-D) , a very conservative underestimate,

since 31 - 1 means that A contains no 1's and the actual value of Z

is t(t-l) . A fourth lower bound, which will be given in Theorem 4.6, is

stronger for very small values of sl , but makes no use of the restric-

tion on inner products and is of little use for large values of ‘1 . It

is closely related to a known result in graph theory which will be men-

tioned following the proof.

THEOREM 4.6. If A is a symmetric incidence matrix with 0's on

the main diagonal, and if 31 is determined according to Definition 4.2,

then the total number Z of off-diagonal 0's of A satisfies the

inequality

(4.24) 221‘?- -t .

‘1

PROOF: Inequality (4.14) of Theorem 4.4 is used, taking the third

of the three expressions in parentheses. The inequality reduces to

F F

(4.25) 222: :3 .

1"] Jsigl J

This sum is represented graphically by the sum of the areas of the rect-

angles in the figure below, which is located with reference to a rectangular

coordinate system with origin 0 .
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1'

Vertex Pi has coordinates ( Z sj , i ) 5

J”

vertex Qi has coordinates ( t , i-l ) .

In particular, the coordinates of P1 and P1. are (s1 , l ) and (t , 1‘),

respectively. Rectangle Pic;1 then has altitude l and area equal to the

5

sun Z 33 , and the sum of the areas of all the rectangles is equal

Fifi

to the double sum in (4.25) . It will be convenient to deal with the area

of the polygon OF P . . Pfql , which exceeds the combined area of the

l 2

rectangles by exactly it , the combined area of triangles whose altitudes

an equal to l and the sun of whose bases is t .
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r r

(4.26) s=Area opp ..PQ-gt.

:2: 12 ‘1

Since 3 >8 >...>s the o onalline OPP ..P iscon-

1 ‘- 2 '- " r ’ p I” 1 2 r

cave upward and the area of the polygon is not less than the area of

triangle ORQl , where R lies on 0Pl extended. 0Ql '- t and by

similar triangles Q18 2 I: , giving the result

3
1

A one)1 ‘2r35 = u- ,

281

which is enough to prove the theorem. However, it will be of interest

to prove (4.28) below, a slightly stronger result which calls for closer

study of the figure.

Q18. cannot exceed the integral length f of the sealant Qle 5

if t is written in the form

=asl-b, a and b integers, o£b<s1,

then

-t - b

ca .1 .1

implying f 2 a . For a fixed value of 51 , the minimum possible value

of f isachievedif 82-35-'"-8a-l: 1, f=a and s‘=sl-b.

Then for i = 1 , 2 , ... , a-l , the vertices P1 Will have coordi-

nates (isl , i) and will lie on the line OR , and the only portion of

the polygon which lies outside of triangle ORQ1 will be the small tri-

angle Pa_1PaR , which has base 2- , altitude SKID: and area “31’1"
5.

251
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(ta)

 
(hag-b, (In-gr)

R.

((0.4) 5., Q - I)

For the same value of 81 and any other choice of 82 , as , ... , s ,

f

additional vertices of the polygon will lie above the line OR and a

greater area of the polygon will lie outside the triangle. Therefore

2 b(s - b
e e t l )

1

Combining (4.25) , (4.26) and (4.27) ,

2

(4.28) z 2}... - t + M81 ‘ b)

1 31

When the non-negative final term is dropped for simplicity, Theorem 4.6

 

is proved. The lower bound in (4.28) may be written in either of the

forms in the folloflng statement.

(4.29) z 2 (a - 1)(ne1 - 2b) = (a - 1)(t - b) .

When matrix A is taken as the incidence matrix of a linear graph

on t points, each pair of off-diagonal 0's corresponds to a pair of

points of the y'aph which are not Joined by a line. The number of lines

in the graph is (z) - 52 . 51 is the maximal number of points in a
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complete subgraph. A problem of considerable interest in graph theory is

to find the maximal number of lines for a graph on t points Which does

not contain any complete subgraph with s1 + 1 points. Turan solved

this problem in 1941 [56] [57] by deriving an upper bound for the number

of lines, then constructing an example in which the number of lines is

equal to the upper bound. His upper bound is equivalent to the lower

bound (4.29) for Z , which is therefore very nearly a new proof of his

result. The remaining step in such a proof is to show that the lower

bound of (4.29) or (4.28) is monotone decreasing in 81 , so that the

number of off-diagonal 0's can be less than the bond only if there

is a complete subgraph with more than 131 points. The proof is not

difficult but is not needed here and will be omitted. In the graph con-

structed by Turan, the points are divided into s disjoint sets, b

1

sets having a-l points and s -b sets having 'a points, then all pairs
1

of points in different sets are joined. Any subgraph with s1 + 1 points

must contain two points which are in the same set and are therefore not

2

The number of off-diagonal 0's in the incidence matrix is twice this

joined. The number of pairs of points not joined is b(a"1) +(sl~b)(g) .

total and reduces to Z = (a-l)(as1-2b) , the expression appearing in (4.29) .

The minimise value of Z , given t , D , and 81 , will be denoted

by m(t , D , s1) . To sumarize, Z denotes the number of off-diagonal

0's in an incidence matrix, and m(t , D , 81) is the value obtained by

minimizing 2 over the class of all symmetric t x t incidence matrices

with 0's on the main diagonal, satisfying the condition that any two rows

containing a pair of symmetrically located off-diagonal 0's must have inner
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producté D, and having an 51 x51 principal minor submatrix with 1's

in all off-diagonal positions but.no such submatrix of any larger order.

Since there are only finitely many t x t incidence matrices, this

mdnimum value exists. The value of m(t , D , 81) is not known in

general, though it was pointed out in the previous paragraph that when

the restriction on inner products is relaxed, which may be done by taking

[>21t-2 , the exact value is given by

(4.50) m(t , D = t—2 , 31) = (a-1)(t-b) .

It was also remarked that in this case and for fixed t , the function

is monotone decreasing in s . not even this is known for most values

1

of D , though it may be conjectured that increasing the order of the

largest complete subgraph of a graph will.necessitate an increase in the

total number of lines. The lower bounds on 2 derived in Corollary 4.4,

Theorem 4.5 and Theorem 4.6 are of course lower bounds on m(t , D , sl) .

The following notation will be useful in discussing these bounds.

(4.51) Bl(t , D , 31) = 2(t - s1)(s1 - D) ,

(4.32) 82(t , D , s1) = g(t-slxt + 31 - 20) ,

t(t - but - a1) .

2.2...

8J.

(4.55) 85(t , D , s1)

(4.54) s4(t , D . 81)

Then the fact that these four expressions are lower bounds on Z may be

expressed

(4.35) n(t,D,el)231(t,D,al), i=1,2,5,4.

The dependence of the four bounds on sl for fixed t and D is shown

schematically in the following figures.



 

I96
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As indicated by the figures, for fixed t the bounds Bl , 32 and

85 become weaker as D is increased. It is probably to be expected

that an increase in D will permit an increase in the inner product of

some pairs of rows of the incidence matrix, allowing some 0's in such

rows to be replaced by 1's and decreasing the value of Z . In the

extreme case D Z t-2 , the bound B4 is the only one needed, as men-

tioned above. In the cases shown in the figures, each of the four bounds

is stronger than the others for certain values of 31- The figures indi-

cate that for s1 = 333:9, the lower bound for Z is “at-mg, and that

Z can be less than this value only for s1)? . This observation is

essential in the proof of the next lemma. The information needed to show

that it is true in general is contained in the following table.

 

 

 

was or VALUES ' towns BOUND ON ' VARIATION OF BOUND (mono-

or 31 m(t , n , s1) tone within each interval)

1 _<_ 81 g D (1.) ; 85 Decreases from fi(t-D)(t-l)

' to fi(t-D)2

D _<_ “is t ; 2D 82 Decreases from t(t-DY?

- to g-(t-d)2

t ‘2: 2D 3 s13 3—3213 X Bl ‘ Increases from g(t-D)2

i to aha-ma

t+D <s<2t+D; B EDecreasesfrom t-D2

"2" " l " 3 1 fl )

i i to 4 tpp 2

i g '5‘ )

ELLE _<_ s < t g B ‘ Decreases from flit-D):a

5 1 ‘ ; 1 i 9

E 1 to o .

-- ~— -‘ ,fi “fit—..—.-_——4_ _._ ...

1. This line of the (table—ishiomitgd‘iathe case D = 0 .
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The table show that m(t , D , s1) can be less than {Stu-me only for

s1 >333 , and that for 81 in this range, m(t , D , 81) is bounded

below by Bl(t , D , s1) , which is monotone decreasing in el . This

implies the following lemma.

LEMMA 4.4. If A 18 in incidence matrix satisfying Definition 4.1

and for some a‘ > £L§LD the number Z satisfies the inequality

(4.36) zsalu . D . er ) = 2(t-r)(o*-D) .

.> .

then sl_cr

The know lower bounds on m(t , D , sl) admit the possibility that

z is less than g(n-n)2 , (but not less than gun-O)2 ) for

D <81<-t-'--2~2 . If m(t , D , 81) were known to be monotone decreasing

in 81' , Z would be known to be at least equal to t(t-D)2 for all 31

in this interval and the restriction on (7' in the statement of the lam

could be weakened to r > 34-32 .

The purpose of Theorem 4.4, Corollary 4.4, Theorem 4.5 and Theorem

4.6 has been to provide methods of proof strong enough to extend Theorem

4.2 to Latin square type association schemes with.more than two constraints.

It may be recalled that it was desired to prove that the submatrix All ,

shown in (4.1) , contains a complete (n-2)-point. The proof that this is

true for most Lg schemes will be completed in the next 3 theorems, the

first of which requires Lemma 4.4. The other theorems and corollary which

have been proved in this section will not be used explicitly. Submatrix

All was defined by (4.1) but it will be convenient to recall the
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definition here. Where A1 is the matrix of first associates in an

association scheme with two classes, and two initial treatments which are

first associates are chosen, All is the submatrix whose rows and columns

are determined by the pi]. con-non first associates of the two chosen

treatments. It is a ph x ph symmetric matrix with 0's on the main

diagonal.

THEDREI 4.7. In any association scheme with two associate classes,

 

define

.. 1 2 1 2 2 1 2
0" .. .. - . - -

(4.37) . t(pn +911 2) +3W11 911+” 2p12(pn 1)

and

2 1 + 2

(4.58) a‘ —_‘.’l-.1..3.1.1_.:.3
1 p

3

Then if 0'. is real and 0', > <7; , each pair of first associates in

the scheme is contained in a set of k treatments which are pairwise first

associates, where k 2 0". 4' 2 .

PROOF: Lama 4.4 will be applied to sutmatrix All of the incidence

matrix Al of first associates in the scheme. Two rows of All con-

taining a pair of symmetrically located off-diagonal 0's correspond to

two second associates, and there must be exactly pfl columns of A1

which contain 1's in both of the two rows. Columns 1 and 2 are of

this form. Therefore there can be at most PEI - 2 such columns in A

11’

and All satisfies the conditions of Definition 4.1, with t = pil ,

=p§1-20
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By Lemma 4.5, the number 2 of off-diagonal 0's in A].1 satis-

11

fies inequality (4.2) ,

2 .

Z11gpi2(pl1 1) °

(71 Will be defined by setting B1“ , D , 0-1) = p}2(pfl - 1) , where-

upon (4.2) assumes the form of (4.56) in the statement of Leanna 4.4.

Using the given values for t and D , the definition of 0'1 may be

written

mph - 0'1)( 0'1 - p§1+ 2) = pimpil — 1)

and solved for 0' 1 to give the definition (4.5?) in the statement of

this theorem. The other root of the quadratic equation, if real, will

be less than L}; and cannot meet the conditions of Lemma 4.4.

Definition (4.58) for a- is equivalent to 0- 2 = 3593112 and the
2

hypothesis 0'1 > 0’2 of this theorem is identical with the condition

placed on 0“ in Lemma 4.4, where 0’1 here plays the role of 0' in

the lemma. The lemma may then be applied to show that All contains a

principal minor suhnatrix of order 8 Z a- with Us in all off-
1 l

diagonal positions. The s1 corresponding treatments of the association

scheme, together with treatments 1 and 2 , form a set of

= sl+ 2 Z 0'14- 2 treatments which are pairwise first associates.

Since treatments 1 and 2 were taken as an arbitrary pair of first

associates in the definition of the submatrix All , this completes the

proof of the theorem.
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The inequality 0.1 > 0-2 can be transformed by straightforward

algebra to the form

 

(4.58s) 5 Wail - tail + 2)2 - ZPiJPfl " 1) > Pil " P§1+ 2

Squaring both sides gives the following inequality, which is true only

1 2
if (4.58s) is true, is equivalent to it if p11 - p11 + 220 , and is

somewhat simpler to apply.

2
(4.39) 4(1)}1 - pfl + 2) - episzl - 1) > O .

It will be shown later that for fixed g , association schemes with

parameter values of the Latin square type with g constraints satisfy

the conditions of Theorem 4.7 if the number n2 of treatments is suffi-

ciently large, proving the existence of a complete k-point on every line

of the graph, with each 1: 2 0'1 + 2 . However, for g 2 3 , 0'1 is too

small for the existence of a complete n-point to be proved by this

theorem alone. The next theorem and lemma bridge the gap in the argument.

THmREII 4.8. In any association scheme with two associate classes,

let there be a set A of k1 treatments which are pairwise first associ-

ates, and a set D of k2 treatments which are pairwise first associates,

and let the intersection of the two sets contain u treatments.

(1) If u _>_ 2 , then

1

4.40 k k - u< + 2 .( ) 1‘? 2 __Pll

(ii) If there is a treatment in either set which is a second associ-

ate of a treatment in the other set, then
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2

(4o 41) u S- p11 0

(iii) If 5+ k2 > 9h + p§1+ 2 , then either n51 or all

treatments in the union of sets A and B are pairwise first associates.

PROOF: If u_>_ 2 , then there are at least two treatments which are

in both of sets A and B , meaning that each is the first associate of

each of the k1 + k2 - u - 2 remaining treatments in the union of A

and B . But no two first associates can have more than p; first as-

sociates in common. Therefore k1+ k2- u-2fi I’ll , proving statement (1).

If there is a treatment 0 in set A and a treatment 95 in set B

which are second associates, they can have at most pil

in common. But 9 is a first associate of all the remaining treatments

first associates

in set A , O is a first associate of all the remaining treatments in

set D , and the u treatments which are in both sets are common first

associates of both 0 and ¢ . Therefore u_<_ pil , proving statement (ii).

If the hypotheses of both of statements (i) and (ii) are satisfied,

then inequalities (4.40) and (4.41) are both true and may be added to give

1 2
kl-t- lszgpl1 +pu+ 2 .

If the contrary is true, then one of the hypotheses of statements (1) and

(ii) must be false, meaning either that “S l or that each treatment in

each set is a first associate of all treatments in both sets, Which means

that all treatments in the union of the two sets are pairwise first

associates. This proves statement (iii) .
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In terms of the linear graph whose incidence matrix is Al

ment (iii) of Theorem 4.8 means that if the graph contains two complete

, State-

configurations, or k-points, of orders kl and k2 , and if

k1‘ + k2 > ph + pili- 2 , then either the two configurations have no

line in common or the graph contains a complete configuration of which

both are subgraphs .

LEMMA 4.5. In any association scheme with two classes, if for any

treatment 0 there exists an integer k0 satisfying

- l 2

k0 > :(pu + 911+ 2)

such that every pair of first associates including 9 is contained in a

set of k _>_ k0 treatments which are pairwise first associates, then the

111 first associates of 0 fall into disjoint sets, each set together

with 9 forming a complete configuration with at least to treatments.

PROOF: Each of the :11 first associates of 0 forms with 0 a

pair of first associates which by hypothesis are contained in a complete

configuration of k 2 k0 treatments. Form one such configuration on 0

and each of its first associates and consider the sets of treatments in

the m1. configurations. These are subsets of the set consisting of 9

and its first associates. If any of the sets are identical, drop the

duplicates. Since each set contains more than f(Pil +p§l 4’ 2) treat-

ments, any two of them satisfy the hypothesis of statement (iii) of

Theorem 4.8. 9 is in each of the sets, and if any first associate is in

two of the sets, the two sets have u _>_ 2 first associates in common and

by Theorem 4.8 their union forms a complete configuration. In this case,
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drop both sets and use their union instead. This process may be repeated

as long as any of the first associates of 9 are in more than one set.

After a finite number of repetitions the result will be a set of disjoint

sets of first associates, each set together with 0 forming a complete

configuration. Each configuration contains at least to treatments,

since it is formed by union of sets having at least he treatments.

THEOREM 4.9. If an association scheme with two associate classes

and v = n2 treatments has the parameter values of a Latin square type

scheme with g constraints, and if n exceeds the larger root of each

of the equations

(4.42) 4n2 — (g-l)(9g2-9g +-7)n +-(g-l)2(9g2-9g +—7) = O ,

(4.45) .‘Bgn‘a - (gs-2g4 + figs-g2-2g +l)n - '(gG-Sgs + 334 + ng—ng + g+l 1' 0 ,

then there exists a set of g mutually orthogonal n x.n squares which

may be used to define first associates in the scheme, and the scheme is

of Latin square type.

PROOF: The parameters of a Latin square type scheme with 3 con-

straints include the following.

P&1 ’ n +'82 ' 53 9

2

p11

pig -(g-1)(n - a +1) .

82 ' 8 9

t

67‘ and 47'2 will be defined as in Theorem 4.7 and 671 has the form
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\

n L 2
0-1 = 2‘01 +2g‘-4g-2) + 5 V(n-Zg +2) - 2(8-1) (ii-'8 +1)(82-g’l) -

Statement (4.42) will be needed in the application of Theorem 4.7

and Lemma 4.5, while (4.43) will be needed in the final part of the

proof. As a preliminary step, it will now be shown that the hypotheses

imply n2 2g , a fact which will be used to simplify the application of

Theorem 4.7. When n = 2g , the expression in equation (4.45) reduces to

-5g6 + 7g5—9g4 + 8g3 + 732-534. ,

which is easily shown to be negative for all g 2 2 , showing that the

larger root of (4.43) is greater than 2g for all g _>_ 2 . It is no

restriction to take 11 2 2 in the special case g =-' l . It may there-

fore be assumed for any g that n 2 2g. Since ph - p§l+2 = n-2g+2 ,

this implies

(4 44) p1 «- p2 + 2 > 0e 11 n e

It was pointed out following the proof of Theorem 4.7 that if (4.44)

holds, the inequality 0"1 > 0’2 is equivalent to (4.59). In the present

case, (4.39) has the form

(4.45) 4(n - 2g+2)2- 9(g - l)(n - g+l)(g2 - g - 1) >0 ,

reducing to

(4.46) 4:12 - (g-l)(9g2-9g+7)n +(g-l)2(9g2-9g+7) >0 .

If n exceeds the larger root of (4.42) , this inequality will be satis-

fied, implying 0"l > 0‘2 , and by Theorem 4.7 each pair of first
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associates in the scheme is contained in a set of k pairwise first

associates for some kg k0 : 0'1 +- 2 . The relations 0-1 > 0.2

and (4.44) are used in the following inequalities on he .

k

0

 

2 1 2

0.1% > <72”. 2 2112911” = ....491.1+2911+8 :

6

1 2 1 2 1 2

51)11+ 3911+ 6 + {311‘ 91le ? 5911+59A11f§ .

6 6 6

 
 

 

(4.47) Re) $(ph-r- pil-l- 2) .

Therefore the conditions of Lemma 4.5 are met for any treatment 9 ,

proving that the n first associates of any treatment 9 fall into

1

disjoint sets, which will be referred to as special sets, each special set

containing at least 0‘1 + 1 treatments and forming with 9 a complete

configuration of at least 0”l + 2 treatments. 0" will now be re-

1

quired to satisfy the condition

I! -1
(4.43 7+1 1 = n .

) l >g+1 3+1

 

This reduces to

(s + 1) V (rt-2s + 2) 2 - 2(sol) (n-s + 1) (82-3-1) > (3-1) n-2s54- 282-2

 

and is satisfied if the following inequality, obtained by squaring and

simplifying, is satisfied.

5
2gnz- (gs-2g4+ 5g5-g2-2g+l)n - (gs-5g + 5g4+ 2g5~5g2+ g +1) > O .

This in turn is satisfied if n exceeds the larger root of (4.45), so

that the hypothesis of the theorem implies (4.4.8) . It follows from (4.43)
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that (g + 1)( 0’1 + 1) ) nl . Since the number of treatments in each

special set is at least UPI-t l and the sum of the numbers of treat-

ments is n this implies that the number of sets must be less thani 9

g +-l . By corollary 4.1 , 9 does not lie in any complete configu-

ration with more than n treatments and none of the special sets can

contain more than n-l treatments, and in order for the sum of the num-

bers to be n1 3 g(n-l) there must be at least g special sets. There~'

fore there must be exactly g special sets, each containing exactly

n-l treatments, meaning that 9 , which was an arbitrary treatment,

lies in exactly g complete configurations of n treatments, and each

pair of first associates lies in such a configuration. Then by Theorem

4.1, there exists a set of g mutually orthogonal n x n squares which

may be used to define first associates in the scheme, completing the proof

that the scheme is of Latin square type. The requirements placed on n

by Theorem 4.9 will now be examined more closely, in a few cases by using

the exact solutions of equations (4.42) and (4.45) .

When g 3 2 , equation (4.42) becomes 4n2 — 25m +'25 = O and the

larger root is n = 5 ; equation (4.43) becomes 4n2 - l7n - 43 = O and

the larger root is n = 6.05 3 the theorem applies for n 2 7 . A better

result has already been obtained in Theorem 4.2.

When g = 5 , equation (4.42) becomes 4n2 - 122n'+-244 = 0 and the

larger root is n = 28.5 ; equation (4.45) becomes 6n2 - l48n — 319 = 0

and the larger root is n = 26.6 ; the theorem applies for n 2 29 .
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When g 3 4 , equation (4.42) becomes 4112 - 54511 + 1055 = O and

the larger root is n = 85.2 ; equation (4.45) becomes

8n2 - ssin - 1957 = o and the larger root is n a 87.9 ; the theorem

applies for n 2 88 .

When g 8 5 , equation (4.42) becomes 4n2 - 748n + 2992 = 0 and

the larger root is n = 182.9 ; equation (4.45) becomes

10h2 - 2216n - 84.31 a o and the larger root is n = 225.5 3 the

theorem applies for n? 226 .

For use with larger values of g , the general solution of (4.42)

is easily obtained, giving the inequality

 

 

(4.49)

For g 2 2 , the expression 9g2 - 9g +7 is positive and dropping the

second term in the radicand increases the value of the right member of

(4.49), showing that it is sufficient for n to satisfy

5 2
n > (g—l)(9& - 9g+7) ,3 9g - 18g iris; - 7

4 4'

Still for g2 2 , an even stronger requirement on n is

9 3

(4.59) n>—§-— .

The general solution of (4.45) leads to

(4.51) n >
 

g5 - (234-3334 82+Zg-l)+Vglo - (439-1cg8+6g7+1536-23gs-g4.26g5-1032-4g-1)
4“

4E
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For g2 2 , the two expressions in parentheses are easily shown to be

positive, and a sufficient condition for n to satisfy (4.51) is obtained

by dropping them, giving

(4.52) n > its“

Therefore, for g2 2 , any n satisfying (4.50) and (4.52) will exceed

the larger root of each of the equations (4.42) and (4.45), permitting

the theorem to be applied. For g25 , (4.53) is a weaker requirement

than (4.52) and may be dropped if (4.52) is used. The results of the last

few paragraphs are summarized in the following corollary.

COROLLARY 4.9. If an association scheme with two associate classes

and v = n2 treatments has the parameter values of a Latin square type

scheme with g constraints, then the following conditions are sufficient

that the scheme be of Latin square type.

If g 5, n229;

if g=4, n288;

Mif g 5, n2226;

if g26 , n>§g4 .

Theorem 4.9 shows that for any fixed g and for all values of :1

except a finite number of possible exceptions, the Latin square type associ-

ation scheme is unique in the sense that it can be constructed only by .

means of a set of g orthogonal squares. Corollary 4.9 gives explicit

upper bounds below which any exceptional values of n must lie. It may

be noted that in the cases g = 2 , 5 , 4 and 5 the bound given by the



210

simplified inequalities (4.53) and (4.52) is considerably larger than the

one obtained from the original equations (4.42) and (4.45). The bounds

approach each other in an asymptotic sense, as illustrated by two more

special cases.

HWhen g a lo , §g4 5000 and the larger root of (4.43) is 4152.9 .

4
When g = 100, 5g 75 x 107 and the larger root of (4.45) is 4.90 x 10 .

The difference between the bounds is unimportant in any study of designs

within the useful range, since no Latin square type designs used in any

ordinary statistical experiment at the present time require a value of n

larger than 20 . For g;3 5 the question of exactly which values of n

admit nonéLatin square type designs with Latin square parameter values is

still far from solved. For g 3 5 , the scheme with n 2 4 is easily

shown to be unique, it was shown in counter-example l of section 4.1 that

the scheme with n = 5 is not unique, and the question of uniqueness has

not been answered for the schemes with 6 g 113 28.

In each of the three examples in Section 4.1, second associates could

be defined by a set of orthogonal squares, suggesting that in any scheme

with Lg parameter values, either-first or'secondlassociates can be so de-

fined. No proof or disproof of this statement is known, but its implications

may be illustrated by a.numerical example. If a scheme with L4 parameter

values exists in which first associates cannot be defined by any set of 4

orthogonal squares, and if the statement is true, then second associates

can be defined by a set of n-5 orthogonal squares, meaning that a set

of n-S orthogonal Latin squares exists, and showing incidentally that
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L8 schemes exist for all BS n—5 . This is far more than is known for

any values of n2 10 which are not prime powers.

A number of methods have been employed by the writer in an attempt to

find a better result than Theorem 4.9, but without much success. The

nature of some of these methods will be mentioned as a guide to possible

future work on the problem. The crucial step in the proof is to show

that each pair of first associates, together with n-2 of their common

first associates, form a set of n treatments which are pairwise first

associates. This means for the incidence matrix A1 of first associates

that the submetrix All , defined in (4.1), contains an (n-2) x (n-2)

suhmatrix with 1's in all off-diagonal positions, or in terms of linear

graphs, that in the graph whose incidence matrix is Al , every line is

contained in a complete n-point. This step of the proof, which took one

paragraph in the case of Theorem 4.2 and L schemes, has occupied most
2

of the present section in the general case, and has been divided into

three phases, as follows.

Part 1: Lemma 4.5. The number 211 of off-diagonal 0's in All

13 small.

Part 2: Theorem 4.7; Lemma 4.4 and Theorems 4.4 to 4.6. If 211

is small, then each line is contained in a complete kfpoint, where k

is fairly large.

Part 5: Theorém 4.8 and Lemma 4.5; parts of proof of Theorem 4.9.

If the k-points are sufficiently large, they can fit into the graph only

if the scheme has Latin square structure.
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The remarks to be made about Parts 2 and 5 are brief and will precede the

discussion of Part 1.

The principal result used in Part 2 is Lemma 4.4, which makes use of

the lower bounds on m(t , D , s1) developed in Theorems 4.4 to 4.6. If

a proof along the lines used in Theorem 4.9 is to be improved at this

point, it would seem that the thing to look for is a stronger lower bound.

As pointed out following the proof of Lemma 4.4, a proof that m(t , D , 81)

is monotone decreasing in 31 would immediately permit a stronger state—

ment of the lemma. While there is considerable literature on linear

graphs and their incidence matrices, the case in which there is a restric-

tion on the inner product of rows of the matrix does not seem to have

received much attention and it is possible that more information on the

number of 0's in A could be obtained.

In Part 5, it is shown without difficulty that the first associates

of each treatment fall into disjoint sets, each forming with the given

treatment a set corresponding to a complete k—point of the graph. Then

in the proof of Theorem 4.9 the condition (4.48) is imposed. This insures

that each of the disjoint sets of first associates is large enough that

the number of sets can be at most g , making it easy to prove that the

number of sets must be exactly g . It turns out that (4.48) requires

much larger values of n for all g}: 4 than any of the other conditions

imposed. If additional information could be obtained about the kppoints

in the graph, or about the number of disjoint sets of first associates,

it might be possible to replace condition (4.48) by some weaker requirement.



215

Most of the writer's attempts to generalize Theorem 4.9 were concen-

trated on Part 1, the derivation of an upper bound for the number 211

of off-diagonal 0's in submatrix A11 , or equivalently, of a lower

bound for the number T11 of 1's in A The definition of an
11 '

association scheme for a PBIB design is enough to determine the number of

lines in the corresponding graph, the number of triangles on a line, and

the number of occurrences of other configurations which involve three

points of the graph. The definition does not determine the frequencies

with which any subgraphs having four or more points occur. The number of

complete 4-points which include treatments 1 and 2 in (4.1) is iden-

tical with the number of pairs of symmetrically lecated 1's in submatrix

A and is therefore very closely related to the problem. In an effort
1]. i

to determine the total number of complete 4-points in the graph, the more

2

general problem of classifying the (2 ) 4 x 4 principal minor submatrices

of All , which determine the subgraphs having 4 points, was begun.

Apart from permutations of rows and columns, there are 11 distinct symmetric

4 x 4 incidence matrices with. 0's on the main diagonal, corresponding

to the ll distinct graphs on 4 points.

0 o .——-o [—4 0—0 V 1———o’

o e e e o o——~ e J—e

Several equations were found in the 11 frequencies with which the 4 x 4

 

  

      
 

submatrices occurred in Al , for example by computing the total number
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of triangles of the graph in terms of the frequencies of the 4-graphs

containing triangles, and equating it to the known total number of tri-

2

angles in the graph. The sum of the determinants of the (2 )submatrices

is equal to a known coefficient of the characteristic equation of A1

and led to another equation. The 11 frequencies are expressible in

terms of the total numbers T of 1's in the submatrices Alu-V of
fv

A1 and it was found advantageous to set up all the equations in terms of

the T/uv . There are 16 submatrices but symmetry of A1 gives 6

equations of the form T/u'y = T],/,. and reduces the number of independent

T/M/ to 10 . Other methods were used to obtain equations in the Ta.” ,

in particular an enumeration of the 5-chains Joining points 1 and 2 of

the graph. The number could be expressed in terms of certain of the Tflv

and could be computed directly in terms of products and other operations

on the matrix A using methods of Rats [2'5] and Ross and Harary [29].l s

A similar enumeration of chains of 4 or more lines was investigated. In

all, over 20 equations were obtained, reducing to a set of 9 indepen-

dent linear equations in the 10 totals T,“ y , and a one-parameter

family of solutions was obtained. For reasons which will be stated in the

following paragraph, it was not to be expected that a tenth independent

equation could be determined, but the non-negative nature of the T/“ 1!

provides some inequalities and leads to upper and lower bounds on the

totals T/uy and on the frequencies of the 11 types of 4 x 4 sub-

matrices. No relations loading to further inequalities were found, and

the best result obtained for T11 was equivalent to inequality (4.2) of

Lemma 4.5. The other information obtained on the Tfly appears to con-

tribute nothing to the problems of this thesis, and will not be discussed.
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All of these results apply to any association scheme with two classes.

A comparison of inequality (4.2) with the situation in an actual

association scheme will show why an improved inequality was hoped for, as

well as a possible reason why one was not found. The case of an L5

scheme with 25 treatments will be taken as an example.

Suppose that the treatments are represented by the numbers in the

following array, and that first associates are defined by rows and columns

of the array and the letters of a 5 x 5 Latin square with A B C D E

as its first row.

1 2 5 4 5

6 7 8 9 13

ll 12 15 14 15

16 17 18 19 2O

21 22 25 24 25

The pil = 5 common first associates of treatments 1 and 2 are treat-

ments 5 , 4 and 5 , the treatment occurring with the letter A in

column 2 and the treatment occurring with the letter B in column 1..

Treatments 5 , 4 and 5 are pairwise first associates, accounting for

six 1's in the 5 x 5 submatrix All . Neither of the two remaining

treatments is a first associate of any of treatments 5 , 4 and 5 . If

they are first associates of each other they lead to two more 1's in

All and T11 = 8 3 if they are second associates, Tll = 6 . The value

of Tll depends on whether or not the array 2 2 occurs in the first'
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two columns of the Latin square. The folloWing two examples show that

either situation is possible.

A B C D E A B C D E

B A E C D B E A C D

C E D A B C A D E B

D C B E A D C E B A

E D A B C E D B A C

Both structures can occur in n x n Latin squares for many values of n ,

and probably for all n )>5 , and it is easy to show that in the two

possible cases the number T11 of 1's in the n x n submatrix All is

either n2-5n + 6 or n2-5n-+ 8 . The number 211 of off-diagonal 0's

is then 4n-6 or 4n-8 respectively. Thus T11 is not determined uni-

quely by the parameter values of the association schemes, and no system

of equations can lead to a unique value for it. On the other hand, the

assertion of Lemma 4.5 in an L5 scheme is le S lOn-20. This upper

bound is considerably larger than either of the possible values. In view

of the large discrepancy between this upper bound and either of the

possible values, there appear to be good grounds to be dissatisfied with

it, at least until a thorough search has been made for a better one. The

efforts of the writer to improve Lemma 4.5 have already been described.

While the proof of Theorem 4.9 included a demonstration that in the

schemes involved, evegy pair of first associates is contained in an
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n-point, the weaker result that one n-point exists in the scheme would

have been sufficient in the case of some schemes. This was shown for L

  

2

schemes in Theorem 4.5, and is shown for a class of L5 schemes in the

following theorem. The parameter values of L3 schemes will now be

listed for easy reference.

2 9— “‘1

v 3 n , n 2n-4

P '1' 9
- 1

n1 - 501.1) , L2n-4 (n-2)(n—3)_J

n2 .-. (n-l)(n-2) , P = 6 52-9 1 .

2
Lfin-9 n -6n +-1Q_

THEOREM 4.10. If an association scheme with two associate classes

has parameter values v = n2 , n1 = 3(n-l) , pil = n , where n 2 l4 ,

and there exists a set of n treatments which form a complete n-point,

then every pair of first associates is in such a set and the scheme is of

L3 type.

PROOF: Relations (2.2) to (2.5) may be used with the given parameter

values to Show that the remaining parameter values are those of an L5

scheme. Number treatments so that the set of treatments in the complete

n-point receives numbers 1 to n , with an arbitrary treatment of the

set designated as treatment n . Let 0 be a first associate of treat-

ment n which is not in the n-point but is otherwise arbitrary. Next

1

l2

ment n and second associates of O . Fewer than n of these can be in

consider the p = 2n-4 treatments which are first associates of treat-

the n-point, so that (for n 2 4) one such treatment not in the n-point

can be chosen. A treatment chosen in this way will be numbered n.+ l .
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The pair of first associates n , n +-l will now be used in an indirect

method of obtaining information about treatment 9 . The first step is a

classification of the treatments other than 1 , 2 , ... , n +~l into

four mutually exclusive sets. Choose notation so that the treatments in

each set have consecutive numbers and the four sets are numbered in the

order listed.

Set 1: common first associates of treatments n and n +’l ,

Set 2: the remaining first associates of treatment n (including 0) ,

Set 3: the remaining first associates of treatment n«+ l ,

Set 4: common second associates of treatments n and n +.1 .

By Lemma 4.1, treatment n +-l has exactly g-l = 2 first associates in

the n—point, of which one is treatment n and the other must be one of

the common first associate of treatments n and n-+ l . Set 1 consists

of the rest of the 9&1 = n common first associates. Therefore Set 1

contains n-l treatments.

Treatment n has n1 3 3(n-l) first associates, of which n-l are

in the n-point, one is treatment n +-l , and n-1 are in set 1 . By

difference, Set 2 contains n-2 treatments.

It may be shown that Sets 3 and 4 contain 2n-4 and n2-5n +~6

treatments respectively, but these facts will not be used.

The rows and columns corresponding to Sets 1 to 4 determine sub-

matrices which will be denoted by D/‘V as indicated in (4.55) below.

t/rv and s*py will denote the number of 1's and the number of
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off-diagonal 0's , respectively, in a row of 9p], ; T/pv and %”Z/

will denote the number of 1's and the number of off-diagonal 0's ,

respectively, in the entire submatrix Dfiuv . Unless otherwise Specified,

statements made for t#z/

(4.53)
A1
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l O . . l
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and z/‘II will be true for each row involved.

-} Treatments

1 to n-l e

on..- ---‘u

Set 2.

n-l rows: __

- -- J - 912-}???.....

Set 5.

Set 4.

 

By Lemma 4.1, any treatment not in the n-point is the first associate

of exactly two treatments of the n-point.

one of these two treatments is treatment n ,

l to 11.1 e

exactly one 1 .

This implies that every row of E

The inner product of two rows of Al

2 3

p11

ates.

ment of Sets 1 to 4 may be expressed in terms of the row totals t

6 :

If it is in Set 1 or Set 2,

and E

l 2

is equal to p

and one is among treatments

contains

1
11-13 or

according as the two rows correspond to first or second associ-

The inner product of row n with the row corresponding to a treat-

fl‘V’

Among the first n-l elements in row‘ n +-l is a single 1 which may
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contribute to the inner product of this row with other rows, and the

inner product cannot be expressed exactly in terms of the tflj/ . How-

ever, inequalities can be obtained. The following relations are obtained

in this way.

Using inner products of row n with rows of Set 2,

4054 t +t 3 "le

( ) 21 22 ’1

Using inner products of row n +~1 with rows of Set 2,

tnl+ t S 5 e

a 25

Because the row totals t are non-negative, the last statement implies
/“V

4.55 t <5.( ) 21-

Each row of D2? has n-2 elements, or vhich n-S are not on the main

diagonal of Al , giving

(4.56) t -+ z = n — 5 .
(‘0 on,

(.4 (of.

Statements (4.54), (4.55) and (4.56} may be solved simultaneously to give

(4.57) Z223 5 ,

a statement which holds for every row of submatrix Dn2 .

4

Assume that Z2“:> 0 , which is equivalent to saying that submatrix

C.

D22

metrically located with respect to the diagonal. The rows of Al

contains off-diagonal 0's . Consider two such 0's which are sym-
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containing these 0's correspond to a pair of second associates and have

inner product equal to 6 , meaning that exactly 6 columns of Al con-

tain 1's in both of these columns. Column n is one such column.

Therefore at most 5 columns of D22 contain 1's in both of these

rows. D22 contains n-2 columns, and each of the remaining n-7 columns

must contain a 0 in at least one of the two rows. This total includes

the two 0's first considered. One of the rows must contain at least

half of this total, which may be expressed LEE] , where [x] denotes

the greatest integer S x . Therefore, under the assumption that

222 > O , there must be _a_t_ least 992 row for which

(4.58) 2222 [2%.] .

This violates (4.57) for all n 214. Therefore for n214 , D22 con-

tains 1's in all off-diagonal positions. The treatments of Set 2 to-

gether with treatment n are therefore pairwise first associates and form

a complete (n-l)—point. Treatment 0 is therefore contained with treat-

ment n in a complete (n-l)-point. But 9 is an arbitrary treatment of

the set of first associates of treatment n which are not in the initial

n-point. Therefore every first associate of treatment n is contained

with treatment n in a complete configuration with at least n-l treat—

2

11

and for such values of n , Lemma 4.5 may be applied to show that the

ments. n—l exceeds g(pil+ p + 2) =- 5(n + 6 + 2) for all n 2 ll ,

Sn—S first associates of treatment n fall into disjoint sets of at

least n-2 treatments, each set forming a complete configuration with

treatment n . By lemma 4.1, none of the disjoint sets can contain more
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than n-l treatments. It is easily verified that these conditions can

be satisfied only if there are 5 sets, each with exactly n-l first

associates of treatment n . Therefore treatment n is in 5 n-points

which have no other treatment in common, and is contained with every one

of its first associates in a complete n-point. But in the numbering of

treatments, treatment n was taken as an arbitrary treatment of the

given n-point. Therefore every treatment of the given n-point is con-

tained with each of its first associates in a complete n—point. Every

one of the n2-n treatments not in the initial set of n is a first

associate of two treatments of the set and is therefore in at least one

complete n-point. Finally, since every treatment in the scheme is con-

tained in an n-point, the argument used here shows that every treatment

is contained with each of its first associates in an n-point. Theorem

4.1 then shows that the scheme is of Latin square type and the proof is

complete.

Theorem 4.10 is vacuous for all values of n2 29 , for which

Theorem 4.9 gives the stronger result that any scheme with L5 parameter

values must have L3 structure. Theorem 4.10 shows that for 143 né 28 ,

if the existence of one n-point in an association scheme with L3 para-

meter values can be demonstrated, the scheme must have L5 structure.

The possibilities for extending Theorem 4.10 to Latin square type schemes

with more than three constraints or to smaller values of’ n in the case

of three constraints appear to be about as good as the possibilities already

discussed for the extension of Theorem 4.9. Example 2 of Section 4.1,

which shows that non-L5 schemes with L5 parameter values can exist, is
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not known to be a counter—example to Theorem 4.10, because it is not

known whether the association scheme contains any complete 5-point. It

was verified that a particular pair of first associates was not contained

in a 5-point, but the scheme contains 150 pairs of first associates,

most of which have not been investigated.

All of the theorems and lemmas of this section except Theorems 4.9

and 4.10 apply to any association scheme with two associate classes. The

same is true of Lemma 4.5 in the previous section. It is possible to use

them to investigate the structure of association schemes not in the Latin

square series. Theorem 4.7 provides a sufficient condition for the

.existence of a complete kppoint, or set of k treatments which are pair-

wise first associates, and is easily applied to any association scheme.

This was done with the schemes listed in Table II and it was found that

in most cases (7' is imaginary and the theorem proves nothing. How-

1

ever, (7.1 is real and satisfies the required inequality for schemes

of the Triangular series with 66 or more treatments. It is possible to

use Theorem 4.7 as the basis of a proof that for n 2 l2 , the only

association scheme with v 3 (3) treatments and the parameter values of

the Triangular series is the scheme whose construction was described in

Section 2.1. It is not known whether this is a new result. In any case,

the proof will not be given here. Speaking rather loosely, the thing

which is needed to make Theorem 4.7 work is a large value of pil and a

small value of pil . A small value of pil means a small value for

the inner product of two rows of the association matrix which correspond

to second associates and is closely related to the restriction on such



224

inner products stated in Definition 4.1 and used in several theorems of

this section. In most of the schemes of Table II which are not in the

2 1
11 is at least as large as p11

and it can probably not be expected that the methods of this section

Triangular or Latin Square series, p

will show the existence in these schemes of k—points for any large k .

A more significant fact for many association schemes may be the non-

existence of k—points. The methods of this chapter were not designed

to prove this.



V. SWEY

CHAPTER I. GMERAL PROPERTIES OF PARTIAILY BALANCED DESIGNS AND

ASSOCIATION Ell-Elms

Section 1.1. Introduction.

This section gives some simple examples of incomplete block designs

and partially balanced incomplete block designs in particular, followed

by a formal definition of PBIB desigas and a basic list of relations

satisfied by the parameters of the designs.

Section 1.2. Association Schemes and Incidence Matrices.

In this section association schemes are defined with some simple

examples, and the incidence matrices of association schemes, denoted

by A1, are introduced. The relation of these matrices to the more

familiar incidence matrix R of the blocks of the design is discussed

briefly.

Section 1.3. Applications and Algebraic Properties of the Matrices A1.

Theorem 1.1 gives a rule (1.16) for forming products of the ‘

matrices A1. This result is used in several parts of Chapters II and

III, and has other applications which are not treated in this disserta-

tion. Theorem 1.2 shows that any set of matrices satisfying (1.16)

and a few light restrictions may be used to define an association scheme

satisfying the conditions of partial balance. This theorem is used in

the proof of Theorem 3.3.
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Association incidence matrices do not seem to have received much

study. Nearly all of the results presented or mentioned in this

section were obtained as original results by the writer, but some of

them have recently been obtained by others, to whom credit is given in

the discussion following Theorm 1.2.

CHAPTER II. ENUMERATION or POSSIBLE DESIGNS AND ASSOCIATION SCHEMES

WITH NO ASSOCIATE CLASSES ’

Section 2.1. The Class of PBIB Designs with Two Associate Classes.

The general expressions given in Chapter I for partially bal-

anced designs are specialized in (2.1) to (2.5) to the important

smial case of designs with two associate classes. It is convenient

to classify PBIB designs according to the method of defining the

association relation, and a classification due to Bese ani Shimanoto ef

the known association schemes with two classes is adopted here. Four

of the types, gnup divisible, triangular, simple, and cyclic, are

described briefly, and the fifth type, Latin square, is discussed in

considerable detail. The association scheme of a design of Latin square

type with g constraints, briefly denoted by L8, is ordinarily defined

in terms of a set of g—2 mutually orthogonal Latin squares; the

present treatment is based instead on a set of g mutually orthogonal

squares which do not necessarily have the Latin square property. The

symetry of an 1.8 association scheme is emphasized by this point of

view, uhich is not new but does not seem to have been discussed much

in the available literature. Expressions for the parameter values of

Lg schemes are derived, first in expressions (2.9), then in a new
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notation in (2.12) for use in Chapter III. It is pointed out that

for certain negative values of the arguments, these expressions give

sets of parameter values which are different from those for any of the

schemes classified by Bose and Shimamoto. The possible new schemes are

given the name "negative Latin square" and the brief notation Lg,

where g is a negative integer, and are studied at some length‘in

Chapter III.

This section is primarily a collection of knom results, with the

addition of some new notation and the definition of negative Latin

square designs .

Section 2.2. Enumeration of Association Schemes.

An enumeration of association schemes may be considered a pre-

liminary step in the enumeration of combinatorially possible PBIB

designs and is carried out in this section for designs with two

associate classes. Group divisible schemes are easily enumerated and

are omitted from the present list. The enumeration is arbitrarily

limited to schemes with v S, 100, a figure which .was chosen to include

most of the schemes within the range useful to experimenters, and to

include schemes related to 10 x 10 Latin squares.

Soul notation of Connor and Clatworthy is adopted and one of their

results is listed as Theorem 2.0. This theorem specifies a one-

parameter family of non-group-divisible schemes, whose parameter values

are listed in Table Ia of the Appendix. All other non-group-divisible

schemes are shown in Theorem 2.1 to be contained in a larger family

whose parameter values can be listed systematically. Table Ib of the
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Appendix is a working table in which this listing is carried out. This

list is shortened somewhat by omitting the complement of each scheme

listed, that is, the scheme obtained by changing the designations of

first and second associates. Table II collects the results of

Tables Ia and Ib in an orderly arrangement. The parameter values

of known association schemes are identified in this table, along with

some which are proved impossible by later theorems of this section.

Table II lists 101 sets of parameter values, of which four are

shown to be impossible, 50 were already knovm, 6 are constructed for

the first time in this dissertation, and the remaining kl are still

unknown.

Theorems 2.2 and 2.3 show that if the number of treatments in

a PBIB design with two associate classes is of the form p+l or

p for any prime p, then the only possible association schemes are of

group divisible type or the type specified by Theorem 2.0, respectively.

Theorems 2.1. to 2.8 state additional necessary conditions for the

existence of association schemes with two associate classes. The

condition stated in Theorem 2.5 is used to shorten the computation of

Table Ib. The other theorems provide the four impossibility proofs

mentioned in connection with Table II, and give some information about

the structure of any possible. scheme in approximately 12 of the un-

known cases. Low 2.2, used in the proof of Theorem 2.8, specializes

Theorem 1.2 to the case of two associate classes, giving a simple

condition that a given matrix be the incidence matrix of first associates.

It is used again in Section 3.3.

An exhaustive list of possible partially balanced designs was often
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promised by the earlier writers in the field but does not seem to have

appeared, although Bose , Clatworthy and Shrikhande have published

tables which include virtually all designs within the practical range

known up to 1953. The present tabulation is believed to be new. It

should be of some use in the application of PBIB designs to experiments,

and of mrther use in later studies of the structure of designs an!

association schemes. Also new in this section are most of the details

of Theorem 2.1 and all of Theorems 2.2 to 2.8. Several immediate

additions to the tables given here are possible, including an extension

to some values of v > 100, and further investigation of the u

schemes which are unknown. Another question to be discussed in some

aspects for Latin square type designs in Chapter I? but considered

only incidentally for other designs, is the question of the number of

solutions of a constructible association scheme.

Section 2.3. Enumeration of Possible Designs for Particular Association

Schemes.

Several known facts about PBIB designs are reviewed and used to

develop a systematic method of enumerating all possible designs for a

given association scheme. The method is outlined in this section and

carried out in Tables III and IV of the Appendix. The enumeration

is limited to constructed association schemes of the L8 and L8., series,

and for each association scheme is limited to designs with r _<_ 10 and

k _<_ 10. Many of the desigts in Table IV are easily constructed and

a few are easily shout to be impossible; all designs either constructed

or known to be impossible are identified in the table. Many of them
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are easily enumerated by a few methods which are listed for convenience

as Theorems 2.9 to 2.15 in this section. Two designs which have been

constructed by the author by other methods are listed in Section A.3 of

the Appendix. Enumeration proofs of impossibility of three designs

appear in the same section. Section 2.3 concludes with a brief men-

tion of singular designs.

The author is not sure that any of the material in Section 2.3 is

new, though no list of possible designs as inclusive as Table IV seems

to have appeared and Theorems 2.12 to 2.11. may be new. Tables III and

IV could easily be extended to designs with association schemes ofother

types, and to designs with r>10 . The latter extension would be of

dubious value to experimenters but might give a useful background for

further theoretical studies. The large number of unknown designs in

any list such as Table 1V suggests a comparably large collection of

potential theorems on the construction or impossibility of designs.

CHAPTER III. NEGATIVE LATIN SQUARE TYPE ASSW IA'I‘ION SCHEMES

Section 3.1. Relationships Between Latin Square and Negative Latin

Square Association Schemes.

It is pointed out that the Negative Latin square schemes share

with the ordinary Latin square schemes the property that the multi-

plicities 0‘1 and 0‘2 of the characteristic roots of NW are equal

in some order to the mmbers hi and n2 of first and second

associates of a treatment. It is shown in Theorem 3.1 that the only other

schemes with this prOperty are the one-parameter family specified by

Theorem 2.0. There is some discussion of two alternate notations for

the parameter values of the negative Latin square series. In one
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notation, negative integer parameters are used, 11* the negative square

root of v: n2 and i, the negative integer which is used as a sub-

script in.the symbol Lg*. In this notation, the expressions for the

parameter values have the same form as those for the Latin square series.

The other notation is based on the positive square not of v and the

numerical value of the subscript in the symbol 1.; and does not lead

to expressions of the same form but is more convenient for some purposes.

The section concludes with some remarks about the relation between

negative Latin square schemes and finite Euclidean plane geometries.

The existence of the geometry is a sufficient but not a necessary con-

dition for the existence of an ordinary Latin square scheme. The

existence of a connection either way between the geometry and the nega-

t_.j._\_r_e_ Latin square scheme has not been proved or disproved.

The computation of the multiplicities O( 1 of the characteristic

roots of 1%“ was first carried out for Lg designs by Connor and

Clatworthy, using a method which immediately applies to L: designs.

The class of negative Latin square designs and association schemes was

defined in Section 2.1 and the study of the connection between the

0‘ 1 and the “i is new in this section.

Section 3.2. Construction of Negative Latin Square Type Association

Schemes by a Method Based on Finite Fields.

Theorem 3.2 provides a method of constructing a wide class of

association schemes from finite fields. In general the schemes have

more than two associate classes. Methods are described for setting

down the association scheme and for computing the values of the par-

ameters “i and pfik . Following an illustrative example using the
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field with 16 elements there is a discussion of two families of schemes

which can be constructed when the order of the finite field is a perfect

square n2 (which requires that it be an even power of some prime).

The simpler of these two schemes is shown to be equivalent to the finite

Euclidean plane with n points on a line, and the parameter values are

computed. The same computation for the later scheme is completed later

in the section for several particular values of n , but is not carried

out in general.

An association relation defined by combining associate classes in a

scheme with three or more classes will not in general satisfy the condi-

tions of partial balance. Theorem 3.3 states necessary and sufficient

conditions for a relation defined in this way to satisfy the definition

of an association scheme. In Corollary 3.3 a simplified form of the

conditions is stated for the case in which the new scheme has two classes.

The proof of the theoremtmakes use of association matrices and applies

Theorems 1.1 and 1.2.

The method of’Corollary 3.3 is then applied to the schemes constructed

for n? treatments by the method of’Theorem 3.2. It is shown that L8

schemes for any g4g,n can be constructed in this way from.the schemes

2
of the first family for each value of ‘v : n which is a prime power.

The second family of schemes is related to negative Latin square schemes,

four of which are constructed in this section. The method either fails

or is not applicable to the remaining Lg* schemes taken up in the pres-

ent study. As a result of their common origin from.a finite field, the

L3* scheme with n2 treatments constructed here and the finite Euclid-

ean plane with n2 points are related in a way which is shown to permit
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a geometrical interpretation of the scheme.

Theorems 3.2 and 3.3 both have applications beyond those developed

in this section. Both theorems were derived by the writer but the equiv-

alent of Theorem 3.2 was published independently by Sprott in 1955, be-

fore the writing of this dissertation was completed. A comparison of

the present work with that of Sprott appears in the concluding paragraph

of the section. The L; schemes constructed here are believed to be

11“.

Section 3.3. Construction of a Negative Latin Square Type Scheme

with 100 Treatments by Enumeration.

In this section a detailed study is made of a particular association

scheme with 100 treatments. The 100 x 100 incidence matrix A1 is

studied in detail and because of results proved in earlier chapters of

this dissertation and because of some simplifying circumstances for the

particular scheme, it is possible to obtain rather complete information

about’ properties of certain submatrices of A1 . It is shown in partic-

ular that one 22 x 77 submatrix S is the incidence matrix for the

blocks of a balanced incomplete block (BIB) design and that if the design

is constructed the entire matrix A1 can be constructed from it. The

construction of the balanced design is the part of the section which. uses

empirical methods, and even though some effective shortcuts are used,

the reader has to put up with the individual examination of about half of

the 77 blocks of the design, following some of them through several

stages of incompletion and false starts. Once the design is constructed,

the association matrix A1 can be constructed in short order. The
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balanced design itself is a bybproduct, and not the only one. The dual

of the design, obtained by interchanging the notions of treatment and

block, is found to be a PBIB design with a previously unknown association

scheme whose matrix of first associates appears as another submatrix.of

A1 and which is constructed here for the first time. Other submatrices

of A are related to still other designs and to some interesting ar-
1

rangements of h.x.h orthogonal squares.

This section applies several methods of'Chapters I and II which may

be new, results in two association schemes which are believed to be new,

and gives constructions of several other incomplete block designs and

other combinatorial arrangements which may be of interest. The scheme

with 100 treatments is in the negative Latin square series and cannot

be constructed by the method of Section 3.2 because there is no finite

field with 100 elements. The scheme may possibly have a connection

with the unsolved question of the existence of orthogonal 10.x.lO

squares, but the author has no conjecture as to what sort of connection

there might be.

CHAPTER IV. THE STRUCTURE OF LATIN SQUARE TYPE ASSOCIATION SCHEMES

Section h.l Preliminary Discussion of’Uniqueness, and Some

Counterbexamples.

Given any set of g mutually orthogonal n x.n squares, an L8

scheme can be constructed by using rows of the squares to define first

associates. It is not obviously true that all schemes with the
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parameter values of the Latin square series can be constructed in this

way. If it is true for a particular pair of values of n and g, so

that the existence of a scheme with the apprOpriate parameter values

implies the existence of the set of orthogonal squares, we shall say

that the L8 scheme fOr n2 treatments is unique. The term unique

'will be used in this situation whether or not the set of orthogonal

squares is unique, and questions of enumeration of Latin squares are not

taken up here. in L3 association scheme will be said not to be

unique if there exists a scheme having the same parameter values but no

set of orthogonal squares exists by which first associates in the scheme

can be defined. Three examples are given in.this section of L8

schemes which are not unique.

If first associates in a scheme cannot be defined by orthogonal

squares, it may be that second associates can; in fact, this is the

case in each of the three examples. It may be conjectured that in any

scheme with Latin square parameter values, either first or second

associates may be defined by a suitable set of Latin squares. No proof

or disproof of this conjecture is attempted in.this chapter. Instead

it is proved in Sections L.2 and h.3 that for a fixed number g of

constraints and sufficiently large n, the L8 .schems for n2 treat—

ments is unique in the sense defined above. An alternate statement is

that for a fixed number' n2 of treatments and a sufficiently small

number g of constraints, the existence of the association scheme is

equivalent to the existence of the set of orthOgonal squares. For a

comparison of these results with the conjecture just stated, thereader_

is referred to the discussion following Corollary h.9 in Section h.3.
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Section h.1 contains a statement of some terminology of linear graphs

which is used throughout Chapter IV and in this summary.

Section h.2. 0n the Uniqueness of L2 Association Schemes.

The uniqueness of Latin square type association schemes with two

constraints is taken up in this section, though some of the theorems

and lemmas apply more generally. The uniqueness of an L8 association

scheme for n2 treatments is proved if it can be shown that each treat-

ment is contained in g complete n-points which have no treatments in

common in addition to the initial one. In Theorem h.l it is proved

that for n > (g-l)2 it is sufficient to show that each pair of

first associates is contained in one complete n-point. This is pre-

ceded by two lemmas. If a scheme with the parameter values of the

Latin square series contains n treatments forming a complete con-

figuration, then Lama h.l reveals a good deal of uniformity in the

association relations of the n treatments with the remaining n2-n

treatments. It is an imediate corollary that no caplete configura-

tion having more than n points can occur in a scheme with Latin square

parameter values. Both lemma l..l and its corollary are repeatedly

useful in this chapter. Lemma L.2 deals with the number of treatments

which two complete configurations can have in common in an L8 scheme,

and is slightly stronger in this case than Theorem 1+.8 and Lenma h.5,

which apply to a wider class of schemes.

Unlike the other theorems and lemmas of this section, Leanna h.3 is

not restricted to schemes with Lg parameter values. It states an

upper bound for the number of off-diagonal 0's in a specified submatrix
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of the association matrix A1 in any scheme with two associate classes.

This of course is equivalent to a lower bound on the number of 1's.

In Theorem h.2, the principal result of the section, the same submatrix

is examined in the case of L2 schemes, and it is shown that with the

single exception of the scheme with 16 treatments, the lower bound of

Leanna h.3 is inconsistent with the presence of any off-diagonal 0's

in the submatrix. The portion of the linear graph correSponding to the

submatrix is then a complete configuration and it follows easily that

every pair of first associates is contained in a complete n-point.

Theorem 4.1 then shows that the L2 scheme is unique. The scheme

with 16 treatments had already been shown by one of the examples of

Section h.l not to be unique. Additional information in this excep-

tional case is given by Theorem h.3.

In a passage following the proof of Theorem [“2 it is shown that

unless the methods used in this section can be improved, it till not

be possible to generalize Theorem L.2 to other L schemes. The
8

new methods and the generalization appear in Section h.3.

Section 4.3. On the Uniqueness of Lg Association Schemes, g 2 3.

The principal results of this section are Theorem and Corollary n.9,

in which are established the uniqueness of an infinite class of Latin

square type association schemes. The preparation for this theorem is

long and somewhat indirect, involving five theorems and two lemmas in

this section, as well as some of the material of Section l..2.

Theorems ink to l..6 and Lemma 5.1. are general results on the

structure of incidence matrices, all with a bearing on the existence of

complete configurations, or equivalently the existence of principal



258

miner’submatrices with 1's in all off-diagonal positions. These

theorems are arranged in order of decreasing generality, Lemma h.h

stating a particular fact which is used in Theorem h.7. '

A property of association matrices of PBIB designs and of their

submatrices is that the inner products of rows or columns taken as

vectors are subject to restrictions. In this series of theorems the

requirement is imposed that certain inner products must not exceed a

fixed value D. ‘While rectangular incidence matrices can be studied

from.this point of view, the present investigation is limited to

symmetric incidence matrices with 0's on the main diagonal, which will

be taken in the applications to be principal minor submatrices of

association.matrices. The pairs of rows subject to the restriction on

inner products are those which contain a pair of off-diagonal 0's

symmetrically located with respect to the main diagonal; in the matrix

A1 of first associates in an association scheme, such a pair of rows

corresponds to a pair of second associates, and the inner product of the

two rows of A1 is equal to pit. The inner product of the same two

rows of any submatrix cannot be larger than pil and may be known in

some cases to be bounded by some definite smaller value. In this

application of’Theorems h.h to h.6 the least upper bound that can be

established for the inner product of such rows is taken as the value D.

This series of theorems takes up the connection between the number

of 1's in a matrix of the form considered and the order of submatrices

which have 1's in all off-diagonal positions. When the matrices are

interpreted as linear graphs, this becomes a connection.between the

number of lines in the graph and the order of complete subgraphs.
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Numerous theorems of this kind are already known but not for the case in

which row inner products are restricted. Theorem l..6 is very closely

related to one of these theorems. A number of other approaches to the

study of incidence matrices having restrictions on row inner products

are possible, and some are discussed in a passage following Corollary

h.9.

Definition h.2, applying to symmetric incidence matrices with 0's

on the main diagonal, describes a certain permtation of rows and columns

and a partition of the matrix into blocks in such a way that the blocks

lying on the main diagonal are square and contain no other 0's. No-

tation is introduced including notation for the orders of the diagonal

blocks. For a matrix partitioned in this form, Theorem Li expresses

upper and lower bounds for Z, the total number of off-diagonal 0's, as

functions of the orders of the diagonal blocks, the order t of the

matrix, and the upper bound D on the restricted inner products. Ap-

plication of this theorem is complicated by the fact that a particular

partition may involve a large number of diagonal blocks and by the fact

that to obtain results of any generality it may be necessary to consider

a large number of possible partitions. Some numerical examples illus-

trate the application of the theorem.

The lower bounds on Z are the ones of greatest interest in this

study, and more useful lower bounds are obtained in Corollary thh,

Theorem 1.. 5 and Theorem L6. In each of these the lower bound is

expressed in toms of the order t of the matrix, the bound D on inner

products, and the maximum order :1 for a principal minor submatrix with-

out off-diagonal 0's. The minim value of Z for given t, D and



240

s1 is denoted by m(t , D , s1) and is primarily considered for fixed

t and D , in which case it is a function of s1 . The lower bounds

feund for Z may also be regarded as functions of s1 , and are lower

bounds for m(t , D , s1) . They are illustrated for two typical cases

in two figures. The exact nature of m(t , D , s1) is not known. It

may be conjectured that it is monotone decreasing in s1 . If this func-

tion or a lower bound for it which is a function of s1 is monotone de-

creasing, then certain inequalities on Z are sufficient to imply cer—

tain inequalities on s1 . In Lemma h.h, which applies to matrices

satisfying certain specified conditions and is used directly in the proof

of Theorem.h.7, an implication of this kind is used to establish a lower

bound on s1 . This amounts to a lower bound on the order of the maximal

complete configuration of the graph. The proof of the lemma includes a

demonstration that the lower bounds on Z are monotone decreasing for a

certain range of values of sl .

Theorem 4.7, the first theorem of this section which applies only

to the incidence matrices of association schemes, defines a quantity 61

in terms of the parameters of the association scheme and states sufficient

conditions that the scheme contain a complete k-point of order k 2. 01+2 .

The proof deals with a submatrix All of the incidence matrix. A1 and

makes use of Lemmas h.3 and h.h. oi playsihe role of the lower bound

on s in Lemma h.h, and is defined in such a way in (h.37) that
l

the result of Lemma h.3 provides the inequality on Z needed as a

hypothesis. The other hypotheses of Theorem.h.7 guarantee that s1

falls in the range for which Lemma h.h is valid. It can be shown that

Theorem.h.7 applies to many association schemes with L.g parameter

values and to some schemes of other types. The conclusion of the theorem
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for these schemes is that every pair of first associates is contained in

a complete configuration of order at least equal to a value which is

specified.

Theorem. h.8 applies to complete configurations in an association

scheme. The principal result is that if two complete configurations

have at least two treatments in common and if the numbers of.traatments in~.

the sets are sufficiently large, then all of the treatments in their

union form a complete configuration. This theorem may be described in

another way by borrowing a term.used in the sociometric applications of

linear graphs and referring to a complete configuration as a clique. In

this terminology, Theorem h.8 states that if two sufficiently large

cliques have more than one member in common, they must merge. Lemma A.5

states a norther result which in the same language has the following word-

ing: if all of an individual's associates are fellow members with him in

cliques having more than a specified critical number of members, them none

of the associates are members of more than one of the cliques. (Two

peOple who meet in a certain clique never meet anywhere else.) The proofs

of Theorem. h.8 and Lemma h.5 make use of properties of association

schemes and would of course apply to a social group only if they met the

rather stringent requirements of partial balance, as defined in Section 1.1.

Theorem. n.9, applying several of the preceding results, finally

establishes that fOr any fixed number 3 of constraints and for all ex-

cept a finite number of possible exceptional numbers n? of treatments, the

association scheme of Latin square type with g constraints is unique

in the sense that there exists no other type of scheme having the same

parameter values. Corollary h.9 uses numerical computations to give



242

explicit lower bounds below which any exceptional values of n must

lie. The proof of Theorem 4.9 is summarized and discussed in some

detail in a passage following the proof of'Corollary h.9.

Theorem.h.10 furnishes some additional information about some of

the exceptional cases not covered by Theorem.h.9. Applying to L3

schemes, it is analogous to Theorem h.3. The proof is more difficult

than that of Theorem.h.3, illustrating the increasing conplexity of

Latin square type association schemes as the number of constraints in-

creases.

The section concludes with a statement without proof of a unique-

ness theorem very similar to those of this chapter, applying to a class

of triangular type association schemes. It appears that the methods

of this chapter will not apply to the remaining types of association

schemes without some modification . Reference has already been made

to a passage following Corollary h.9 in which possible further results

are discussed. The Opening paragraph of Section h.l contains some re-

marks on the significance of the uniqueness proofs of this chapter. The

writer believes that most of the theorems and proofs are new.





APPENDIX

A.l Tables gt; Parameter Values o_f_ Association Schemes.

The tables in this section are constructed by methods deveIOped in

Section 2.2. Table II gives values of the parameters v , n1 , p§k

and OK 1 for all PBIB designs with two associate classes, not of group

divisible type, and having v_<__ 100 . The parameter values listed are

determined by the association scheme of a design and are independent of

the values of r , k , b and A 1 . Tables Ia and lb show the pre-

liminary capitation used in constructing Table 11. Each table is pre-

ceded by an explanation of the notation used.

TABLE Ia. PRELDENARY COMPUTATION OF THE PARAMETER VALUES OF

ASSOCIATION SCENES BY MEANS OF THEOREM 2.0. Theorem 2.0, due to

Connor and Clatworthy [I7], specifies a class of association schemes

whose parameter values may all be expressed in terms of a positive inte-

gral parameter t . Values of t from 1 to 2A are listed in the

first colum of this table. The values in the next eight columns are

obtained from the following equations, stated in Theorem 2.0.

1- 2 .. 1 - 2 -

m-m-m-m-t’

v=At+1 .

The final colum of the table, headed # , gives the serial number by

which the scheme is identified in Table II.
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TABIE Ib. PRELIMINARY COMPUTATION OF THE PARAMETER VAIDES OF

ASSOCIATION 331181433 BI MEANS OF THEOREM 2.1. Theorem 2.1 specifies all

association schemes with two associate classes which are not of group di-

visible type and are not given by Theorem 2.0. The additional restric-

tion (2.25) .

vies»; : 1r denim e... “as”:

is imposed to avoid duplication in the table. The schemes are listed in

order of increasing values of \FZS, a parameter which was introduced in

[n 7] and is used in this dissertation. For the schemes being tabulated

and a fixed value ofVA_ , all possible pairs of values p}; , 9&2

appear as consecutive entries in row {ZS}: the table of Figure 6 in

Section 2.2. The cemecutive values of the cola-I index 6‘ in the same

table are denoted by s and s +1 and are used in the computation of

column 9 and 10 of Table 11:. The values 1&2 and 9:2 are listed

in celnms 2 and 3 .

The parameter V appearing in colon I. is defined by

v: a we .

The parameters 922.21 and 9&1 , appearinginoelmmxs 5 and 6 ,

.‘tnf’ (2.216):

1 2 .. 1 2

papu-oplzplz e

met therefore be a divisor ef the product of the entriesThe value p22
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in column 2 and 3 . It is also required to satisfy (2.27),

pig 2.le .

Values of p22 and pil satisfying these requirements but for which

1 2 1 2 -

P12+1’12""22“hi-””1””

are also omitted and the mission is indicated by a row of dashes. Fi-

1 - ' 1 2
holly, it p12 .. piz , the restriction n1 3 :12 implies p22 3 p11 ,

and values such that p352 > pil are omitted in this case.

The values of 132 and n1 , appearing in the next eolums, are

detemined by (2.1.),

If n1 and n2 are both odd, Theorem 2.5 shows that no association

scheme con exist. In this case, the word "odd" is entered in each of

the two columns and the rest of the row of the table is left blank.

The quantities (s +l)n2 and sn1 , listed in the next colossus or

the table, are used in the computation of OK 1 ,

The parameter 04 1 which appears in colum 11 is computed by (2.28),

13(s+1)n2+sn1

US

and must be a positive integer for any association scheme. If 0K 1 is

o(
 



247

fractional the letter "f" is listed in column 11 and the rest of the

row is left blank.

If 0( 1 is an integer, the value v is listed in the next column.

It is determined by (2.2),

v=n1+n2+1 .

The final column of Table Ib, headed # , lists for each complete

set of parameter values the serial number by which the set is identified

in Table II.
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1 2 it

W: P12 I’12 7 p22 P11 u2 n1("*1)"2 '“1 “1 ' #

3 2 2 o 1 I. 3 6 6 6 h 10 3

2 2 h h 8 It It 9 2

z. 3 I. 1 2 6 5 10 1o 10 5 16 6

3 h 6 8 12 8 5 15 5

1. 3 odd odd

6 2 9 6 18 6 6 l6 7

12 1 odd odd

5 L 6 2 3 8 7 15 1!» ll. f

L 6 8 12 16 12 t

6 h 10 10 20 1o 6 21 9

8 3 12 9 21¢ 9 f

12 2 16 8 32 8 8 25 11

21. 1 28 7 56 7 f

5 6 6 o 1 36 7 1.2 21 8:. 21 5o 31

2 18 8 21. 21. 1.8 r

3 12 9 18 27 36 f

z. 9 10 15 30 3o 12 26 13

6 6 12 12 36 21. 12 25 12

6 5 8 3 h 10 9 18 18 18 6 28 15

5 8 1o 16 20 16 6 27 11.

8 5 odd odd

10 t. 15 12 3o 12 7 28 16

20 2 25 1o 50 10 1o 36 20

1.0 1 £5 9 90 9 f

6 8 9 1 2 36 10 1.5 30 9o 20 56 39

3 21 odd odd

h 18 12 27 36 51+ 15 #0 25

6 12 16 . 21 62 1.2 1h 36 22

8 9 16 18 68 36 1h 35 19

9 8 odd odd

12 6 20 15 60 3o 15 36 23

18 z. 26 13 78 26 r

21. ' 3 32 12 96 2h 20 £15 27

36 2 2.1. 11 132 22 r

72 1 80 10 21.0 20 r
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TABLE Ib (continued)
 

 

 

2
n 3+1 n on v

p22 2 n1( )2 1 041 #

5 12 11 22 22 22 f

6 10 12 20 21. 20 f

10 6 16 16 32 16 r

12 5 18 15 36 15 f '

15 l. 21 1h 1.2 11.. 8 36 21

20 3 26 13 52 13 f

30 2 36 12 72 12 12 119 30

60 1 66 11 132 11 f

3 60 13 52 39 10!. f

1 30 IL L2 1.2 81. 18 57 kl

5 26 15 36 #5 72 1'

6 20 16 32 1.8 6h 16 A9 31

8 15 18 27 5A 5h 1‘

10 12 20 21. 60 68 f

12 10 22 22 66 M f

15 8 25 20 75 #0 f

20 6 30 18 ‘90 36 18 A9 32

21. 5 3h 17 102 3h 1'

30 h 1.0 16 120 32 f

to 3 50 15 150 30 f

60 2 70 11. 210 28 3h 85 75

2 12. 8h 56 252 M 99 90

3 15 60 60 180 f

h- 16 £18 6:. 11.1. 1’

6 18 36 72 108 f

8 20 3O 80 90 f

9 21 28 81. ea 2h 50 35

12 24 2h 96 72 2h A9 33

6 ll. 13 26 26 26 f

7 12 11. 2h 28 21. f

12 7 odd odd

ll.‘ 6 21 18 82 18 1'

21 I. 28 16 56 16 9 #5 28

28 3 35 15 70 15 1'

le2 2 49 1h 98 1h 11. 6h 1.7
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{5 p12 82 v 82 81 n2 91<°+1>nz 3.1 as
8 12 15 3 h 65 16 6o 28 120 21

5 36 edd edd

6 30 18 65 5!. 9O 18

9 20 odd odd

10 18 22 33 66 66 t

12 15 21. 30 72 6o 1'

15 12 odd odd

18 10 3o 25 9o 50 r

20 9 32 21. 96 1.8 18 57

3o 6 1.2 21 126 1.2 21 66

36 5 1.8 20 w. 10 23 69

65 h odd odd

6o 3 72 18 216 36 r

8 15 16 1 - - - -

h 60 19 76 76 228 38

5 1+8 20 6h 80 192 31.

6 no 21 56 81. 168 r

8 3o 23 1.6 92 138 r

10 21. 25 1.0 100 120 r

12 20 27 36 108 108 27

15 16 3o 32 120 96 27

16 15 odd odd - '

20 12 35 28 11.0 81. 28

21. 1o 39 26 156 78 r

30 8 1.5 21. 180 72 r

60 6 55 22 220 66 I

1.8 5 odd odd

60 A 75 20 300 60 1.5

9 8 u. 6 7 16 15 30 3o 30 r

8 11. 16 28 32 28 r

12. 8 22 22 u. 22 r

16 7 22 21 68 21 r

28 z. 36 18 72 18 10

56 2 61. 16 128 16 16
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1 2 1 2
E 12L2 p12 p22 911 ng n1(s+l)n2 ml 0(l v #

9 11 18 6 12 20 6o 60 120 20 81 68

7 36 21 56 63 108 19 76 61

9 28 23 a6 69 92 t

12 21 26 39 78 78 r

11 18 28 36 8k 72 r

18 11 32 32 96 61 r

21 12 35 30 105 60 r

28 9 1.2 27 126 56 20 70 58

36 7 50 25 150 50 r

12 6 56 21 168 68 26 81 69

63 z. 77. , 22 231 u. r

9 18 20 8 115 26 115 10!. 135 f

9 50 27 60 108 180 32 88 79

10 36 28 56 112 168 r

12 30 30 50 120 150 30 81 70

15 21; 33 M 132 132 1'

18 20 36 10 111 120 r

20 18 38 38 152 111 r

26 15 62 35 168 105 f

30 12 LB 32 192 96 32 81 71

36 10 56 30 216 90 32 85 77

60 9 58 29 232 87 f

15 8 63 28 252 81 f

9 20 20 - - - -

8 50 28 70 110 280 r

10 to 30 60 150 240 r

16 25 36 1.5 180 180 1.0 82 7h

20 20 1.0 1.0 200 160 1.0 81 73

10 9 16 8 18 17 3h 3h 3h 1‘

9 16 18 32 36 32 r

12 12 21 28 12 28 7 50 36

16 9 odd add

18 8 27 2!. Sh 26 f

21 6 33 22 66 22 r

36 It 115 20 9O 20 11 66 55

68 3 odd add

72 2 81 18 162 18 18 100 93
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1

VA— p12 piz p22 p; n2 n1 (s+1)n2 on1 0(1 v I

10 16 21 6 56 22 77 66 15k 22 100 9b

7 138 odd Odd

8 [.2 2‘. 63 72 126 f

12 28 28 159 36 98 f

15 21¢ 30 #5 90 90 18 76 62

16 21 32 [.2 96 8h 18 75 60

21 16 Odd Odd

25 1‘6 ’60 35 120 70 19 76 63

28 12 “I 33 132 66 f

1.2 8 58 29 176 58 f

1.8 7 6h 28 192 56 f

56 6 72 27 216 55 27 100 95

10 21 2h - - - -

12 62 33 66 132 198 33 100 98

1‘ 36 35 60 1120 180 32 96 86

18 28 39 52 156 156 f

21 210 162 ‘13 168 1“. 1’

2‘ 21 Odd Odd

28 18 59 ’02 196 126 f

36 11. 57 38 228 111 1

L2 12 63 36 252 108 36 100 99

10 2h 25 - - - -

20 30 u» 55 220 220 M. 100 100

210 25 198 50 2160 200 M 99 92

25 26 Odd Odd

30 20 5‘ ‘05 270 180 1‘5 100 101

11 10 18 9 20 19 38 38 38 f

10 18 20 36 1.0 36 f

12 15 22 33 u 33 7 56 1+0

15 12 25 30 50 30 f

18 10 28 28 56 28 f

20 9 30 27 60 27 f

30 6 150 2’4» 80 2‘ f

36 5 106 23 92 23 1

L5 13 55 22 110 22 12 78 66

60 3 70 21 160 21 f
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m Pig 9&2 Y Pglgz Pil :12 n1 (3+1)n2 8111 0<1 v #

11 18 21 6 - - - -

9 [.8 27 72 81 w. r

12 36 30 6o 90 120 r

16 27 31. 51 102 102 r

18 2!. 36 1.8 108 96 f

2). 18 62 62 126 81. r

27 16 1.5 60 135 80 1’

36 12 5!. 36 162 72 r

1.8 9 66 33 198 66 21 100 97

12 11 20 9 10 22 21 1.2 1.2 1.2 7 6:. so

11 20 22 60 u. 60 7 63 as

20 11 odd odd

22 10 33 3o 66 3o 8 6:. 53

M 5 55 25 110 25 f

55 h 66 21. 132 2t. 13 91 81

12 20 27 7 - - - -

15 36 add add

18 30 38 57 m 111. 19 96 87

20 27 60 56 120 108 19 95 83

27 20 odd odd

3o 18 so as 150 90 20 96 88

36 15 56 1.2 168 86 21 99 91

13 12 22 1o 11 21. 23 16 66 1.6 r

12 22 26 u. 1.8 u. r

22 12 3h 36 68 36 f

21. 11 36 33 72 33 f

33 8 as 30 9O 30 f

1.1 6 56 28 112 28 r

u. 13 21 11 12 26 25 so so 50 r

13 21 26 68 52 1.8 r

21. 13 odd odd

26 12 39 36 78 36 r

39 8 52 32 101 32 r

52 6 65 30 130 30 t
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2

 

p12 p12 'Y p22 pm 112 :11 (s+1)n1 8111 0(1 v #

15 16 26 12 13 28 27 5h 56 56 f

1!. 26 28 52 56 52 f

26 11. 60 60 80 1.0 8 81 72

28 13 1:2 39 8h 39 f

52 7 66 33 132 33 11 100 96

16 15 28 13 110 30 29 58 58 58 f

15 28 30 56 60 56 f

20 21 add odd

21 20 36 h8 72 £8 f

28 15 Odd add

30 16 1.5 1.2 90 62 f

35 12 50 I60 100 60 f

‘02 10 57 38 116 38 f

17 16 30 1h 15 32 31 62 62 62 f

16 30 32 60 66 60 t

20 216 36 56 72 56 1'

21 2O ho 50 80 50 f

30 16 1.6 66 92 1.6 r

32 15 1.8 65 96 AS I

160 12 56 62 112 212 f

18 17 32 15 16 Sh 33 66 66 66 f

17 32 36 6h 68 66 f

32 17 Odd odd

3!. 16 51 1.8 102 68 f

19 18 36 16 - - - -
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TABLE II. PARMKE‘I'ER VARIES OF ASSOCIATION SCHEMES NOT OF GROUP

DIVISIBLE TYPE. This table is restricted to schemes in which the

number of treatments v does not exceed 100. Schemes are listed in

order of increasing values of v, and for fixed v, increasing

values of n1. Duplication is avoided in this table by the condition

n1 _<_ n2; if Illa-.112, then P12 S 1312‘

Because this differs from condition (2.25) used in Table Ib, it has

been necessary to change the designation of first and second associates

in about 60 sets of parameter values. The same values occur, but

with the indices 1 and 2 interchanged wherever they appear. The

entries in most columns of Table II are copied directly rm Tables

Ia and Ib. The remaining numerical values are obtained by the

relations

P11 ' n1 ' P12- 1’

P32 '3 n2 " pfi‘ 1’

“2:? -O(1-1,

and by the remark that for the schemes listed in Table Ia , A = v .

The parameterv-A- will be found convenient in locating a particular set

of parameter values in Tables Ia and Ib, which are arranged in order

of increasing values otVA— . Non-integral values of VE occur

only in Table Ia.



256

Two columns of Table II are included under the heading "remarks".

In the first of these, schemes which are known to have been constructed

or tothave been proved impossible are indicated by the letter “C" or

"I” respectively. In the second, schemes of triangular, simple and

or cyclic types are identified by name, and schemes in the Latin square

series are identified by the symbol L8 , where g is the number of

constraints. The schemes of these classes which have been constructed

are either tabulated by' Bose, Connor’and. Clatworthy, or are easily

constructed. Schemes of the negative Latin square series introduced

in Section 2.1 are identified by the symbol 18* and, 1t constructed,

by a reference to the section in which the construction is described.

One constructed scheme, #66, does not fall in any of the categories

mentioned and is identified simply by a reference to the section in

which it is constructed. The four schemes whose impossibility has

been proved by theorems in Section 2.2 are identified by the numbers

of the theorems.
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TABIEII _

2 V

# V n1 n2 P11 P12 P22 P11 P12 1’22 0‘1 “‘2 M Remarks

1 5224011 11022f580yc11c

29116112222161.3012
3.1036102]. 123 5‘1 CTriangular

11.1366 233 332661300yclich.

511568 lhlt 331195 ltCT')1;i.8ngV-lr2

616 510 01.2 1222212; half/24,3».3.

7‘1669123 .

8j1788 31.1 11.388717700376111:

921101015116 A63616N_iCTriangular
101211010 1.55 551101021

11:25 816 311121269816 58121

12§251212 5666651212 50 ,L_2

13:261015 369 1.681312 SCSnple

11.?2771016 188 5 510206 6CSimple

15;28 918 o 810 1. 51221 6 6XTheorem2.6

1672871215 6 510 1.86720 6CTriangular

17;29u.11 677 776mu¢§ccwue
18i33l616 788,8871616 3

19 351618 6 9 9 88 92011. 6‘0 Simple

20361025 152028161025 601.2

2173611121 7 615 111010 827 7CT£iangular

22‘361121 1912 68122111. 6 1.2

23 361520 6812 69121520 6013

21371818 899.9981818737‘ccye11e
25101227 2918 181821.15 CSimple

26 1120 20 9 10 10 10 10 9 20 20 1.1 0 Cyclic

271151232 3826 39222026 6:031!!!)10

28 .15 16 28 8 7 21 I. 12 15 9 35 8 AC Triangular

29'15222210111111111022221131
30191236 5630 210251236 7701.2

31691632 31220 610213216 711*?

32191830 71020 612171830 7013*

33 1.921211112121212112121. 7CLh,L.3
36 50762 0636 16352821 5

357502128 81216 912152526 7OSimP1e2

36 502128 6161212918627101Thsorem.6
37532626121313131312262675300yc11e
38 55 18 36 9 8 28 1. IA 21 10 u. 9 8 181111311111-

39 56 10 1+5 0 9 36 2 8 36 35 20 6

1.0 56 22 33 3 18 15 12 10 22 1.8 7 11 X Theorem 2.1.

111571662 11230 110313818 7
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1' v 1‘1112 211212912 9119129320109 TAX-Rm?”

1.2572132111220915161838'08imple

63572828131616161613282857

1.1. 61 30 30 ll. 15 15 15 15 16 30 30 C Cyclic

1.563221101202011112855712 '

1.6 63 30 32 13 16 16 15 15 16 35 27 8 c Simple

1761.11.69 671.2 2123616119 8012

1.8 61. 18 1.5 2 15 3o 6 12 32 1.5 18 8 1.4114..

1.9612112 81230 6152621112 801,2 '

50 61. 211.2 02022 101130 56 7 12XTeorem2.6'

51 61. 27 36 lo 16 20 12 15 20 36 27 8 c 1*.3800. 3.2

52 61. 2835 121520 1216182835 80 1..

53 61. 30 33 18 ll 22 10 20 12 8 55 12

51. 65 32 32 15 16 16 16 16 15 32 32 T65 "

55 66 20 1.5 10 9 36 1. 16 28 ll 51. 10 c Triangular

56692018 71236 515322315v1 .

57 69 31. 31. 16 17 l7 l7 l7 16 31. 31. 69 . _

58702762121128 9182320119 9035-1111310

59 73 36 36 17 18 18 18 18 17 36 36 73 c cyclic

6o 75 32 1.2 10 21 21 16 16 25 56 18 10

61 76 21 56 2 13 36 7 u 39 S6 19 9

62 76 30 65 821211 1616285718 10

63 76 35 to 18 16 21. 11. 21 18 19 56 lo ‘ '

61. 77 1660 0151.5 1121.7 5521 80883.3

65 77 38 38 18 19 19 19 19 18 38 38 N77

66 78 22 55 ll 10 1.5 1. 18 36 12 65 ll 0 Triangular

6781166117856 2111691661. 9013"°

68 81 2060 1181.2 6161.5 6020 9c ,2Sec.3.2

698121.56 9111.2 6183721156 9012 "

7o 81 30 50 9 20 3o 12 18 31 50 30 9 0 1-35». 3.2

718132181318301220273218901,‘

72 81 1.0 1.0 25 11. 26 11. 26 13 8 72 15 - *

73 81 1.01.0 192020 20201960110 901,1...

71. 82 361.5 15 2025 16 202111110 9‘0 Simple

758511170'3106021257311507

76 85 2061.1 3161.8 515185031. 81081....10

77 85 30 56{11 18 36 102033 31150 9

78 85 1.21.2 202121 21212012121133“

79882760‘62060 918u5532V§<21

80 89 1.1.1.1. 212222 22221.11.“ 40 Cyclic

81 91 21.66 121155 1.20 1.51377 12.0 Triangular     
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1 .v .. 6 818261 6688061312666

82936616 222323 23232211666135

83956056122727202033751912

81.961976 21660 615605738 8

85 96 20 75 6 15 60 1. 16 58 1.5 50 ‘8

86 96 35 6o 10 21. 36 11. 21 38 63 32 10

87963857102730182036761912

88 96 1.5 50 21. 20 30 18 27 22 20 75 12 '

899711868 232626 2626236868W00yc1ic

909911.86 11272 2127156111.?

91996256212036152728217712

929968502225252112625511111110

931001881 8972 21665188110013-

91100 2277 02156 616607722 1001,2866.3.3

95 100 2'! 72 10 16 56 6 21 SO 27 72 10 c

96100 3366181652 72639118815

97100 3366 11618118 92161112167511 *

981003366 8211212211166” 10 1.3

99100 36631121121221.383663 10 L-

1001001155182530202130551610 ....

101100 1.551. 2021.30 2025286551. 10 1.5



260

11.2. Tables g: Perameter Values 31; Possible Designs Lo; Particular
  

Association Schemes.

The tables in this section are constructed by methods deveIOped in

Section 2.3. Table IV gives values of the parameters v, r, k, b,

Aiand 21 for all possible designs with v S. 100, r 510 and k S. 10

and having known association schemes in the Latin square or negative

Latin square series. Table III illustrates the preliminary computa-

tion used in the construction of Table IV. Each table is preceded by

an explanation of the notation used.

TABLE III. PRELIIUNARY COMPUTATIONS OF THE PARAMETER VALUES 0F

POSSIBLE DESIGNS ILLUSTRATED FOR SEVERAL ASSOCIATION SCENES. The

method of computation used here requires a separate section of the table

for each association scheme, and is presented in this table for schemes

#2 and 32 and a portion of #6. For use in the computation, numer-

ical values of several parameters of the association scheme are listed

at the beginning of the section, along with expressions for the quan-

tities m, M, 14', 21, 22 and r(k-l). These expressions are given

in (2.117) to (2.53) and (2.3) in Chapter II.

Non-negative integral values of k 2 are listed in numerical order

in the first mlumn of the table. For a particular value or )2, the

lower bound m on 3.1 is listed 1: positive, and the smaller of the

upper bounds M and M' is listed. Values of X1 between the

bounds are then listed in colunn 5, with the omission of the value

_>\ 1 z 12 and of values k1 ) x2 in case 111 : n2. When a value of

7\ 2 is reached for which the bounds admit no integral value of X1, 8
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row of dashes is entered in the R 1 column. Because the quantities

m, H, M' are linear in )‘2, no further values of X2 need to be

considered. For each pair of values l1, ’A , the quantities 21,

2

and r(k-l) are listed in the next columns. When the last ofz
2

these is expressed in every possible way as the product of two positive

integers, the two factors may be taken as values of r and k-l and

lead to all possible pairs of values of r 8111 k, thich are then

listed in the next oolums. The list is shortened by the restrictions

r s. 10 , k _<_ 10 ,

andbyconditions (2.1.3) and (2.1.1.) ,

ifr>z i=land2,then 121:.i r

Factorizations of r(k-l) which violate any of these conditions are

omitted without coment. The last one is illustrated by the row near

the end of the computations shown for scheme #6 , with the entries

1 3 -l 25 - -- . For each pair

r , k , the value of b is compited from (2.1), b = “7k , and

entered in the next column if integral; fractional values of b are in-

dicated by the letter 1. Finally, if b is integral, condition (2.1.5)

if r=z- , i=lor2, then bzv-O‘
1 i

is imposed in cases where it applies, eliminating a few more sets of

parameter values .
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PRELIMINARY COMPUTATIONS 0F PARAMETER VALUES 0F POSSIBLE DESIGKS

ILLUSTRATED FOR SEVERAL ASSCXI IATION SCHEMES

SCh°m#2,1,2,n:3,v=9’g-2,f:2
,n1=h=d1'n28hga2,

m a 27k2 - 10, M .1 pug-5, w = 22; — 9&2,

21 = -)\1+2'A2L 22 = 2R1 -22 , r(k-1) = nal-1.12 ,
 
 

 

 

)2 m M 14' 7:1- 21 :2 r(k-1) r k b

1 - 55 -- 0 2 -l 1. 2 3 6 >v-Dkl , ox.

1. 2 18

2 -- 6 -- o 1. -2 8 1. 3 12>v- .01.

8 2 36 03

1 3 0 l2 3 5 r

h It 9

6 3 18

3 -- 6; -- o 6 -3 12 6 3 18 >v-0<1 , 011.

l 5 -1 l6 8 3 21.

2 1. l 20 1. 6 6 >v-0(1 , 011.

S 5 9

10 3 3o

1. -- 7 -- o 8 -1. 16 8 3 21. > v-0<1 , 01.

1 7 -2 20 10 3 30

2 6 0 21. 6 5 r

8 1. 18

3 5 2 28 7 5 r

5 .- 75 —. 0 10 -5 20 10 3 30 7 v-21 , on.

1 9 -3 21. - --

2 8 -1 28 -- --

3 7 l 32 8 5 f

1. 6 3 36 6 7 r

9 5 f

6 2 8 .- 2 10 -2 32 .. ..-

3 9 0 36 9 5 r

1. 8 2 1.0 8 6 12 >v-O<1 , 0K.

10 5 18

5 7 h M -- -
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PRELIMINARY COMPUTATIONS 0F PARAMETER VALUES 0F POSSIBLE DESIGNS

ILLUSTRATED FOR SEVERAL A3803 IATION SCHEMES

 

 

 

Scheme#2, L2,n=3,v=9,g-2, 1:2, n1=1.=0<1, nzcisdz,

m =- 27\2 - 10, M 2 9‘2”, 11' = 225 - 32,

31 = -Rl‘.’ 222, $2 3 2A1 -12 , t(k-l) 3 h>\1+kk2 .

)2 m H H' 7\1 81 :2 r(k-l) r k b

1 - 5; -- 0 2 -1 1. 2 3 6 >v-03 , ox.

l. 2 18

2 -- 6 -- 0 I. -2 8 l. 3 12 > v- 0K.

8 2 36 08‘ '

1 3 0 12 3 5 r

h 11 9

6 3 18

3 -- 6; -- o 6 -3 12 6 3 18 >v-0<1 , OK.

1 5 -1 l6 8 3 21.

2 l. l 20 l. 6 6 >v--(><:L , 0K.

5 5 9

10 3 30

1. -.. 7 -- o 8 -1. 16 8 3 21. > v-0(1 , 01.

1 7 -2 20 10 3 30

2 6 0 21. 6 5 I

8 1. 18

3 5 2 28 7 5 f

5 .- 75 —- 0 lo -5 20 10 3 30 > v-cxl , 01:.

1 9 -3 211 -- -

2 8 -1 28 .. ...

3 7 1 32 8 5 r

1. 6 3 36 6 7 i'

9 5 t

6 2 8 .- 2 10 .2 32 -- --

3 9 0 36 9 5 f

1. 8 2 1.0 8 6 12 >v--c><1 , 0K.

10 5 18

5 7 h 116 -- ...
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7(2 11 M 11' 9(1 31 N 22 r(k-l) r k b

7 1. 83 .- 1. 10 l 1.1. ' -- ..

'5 9 3 118 -- -.-

6 8 5 52 .. .;..

8 6 9 -- 6 10 h 56 -- --

7 9 6 60 10 7 f

9 8 93 -- 8 lo 7 68 -- --

lo 10 lo .. ..

Scheme #6, Lil, n = .1, v = 16, g = .1, r = -2, u1 = 5 :05, n2 = 10 =0‘1.

2
113212-10 ,u=;7\2+3%., m =18-2R2 ,

3.2 m 11 14' 7x]; 21 22 r(k-l) r k b _ .

o - 3} ..- 1 -1 3 5 5 2 1.0

2 -2 6 10 10 2 80

3 -3 9 15 - --

1 -- 1. - o 2 -2 10 2 6 r

5 3 f

2 0 1. 2o 1. 6 r

5 5 16

10 3 r

3 -1 7 25 -- -
1. -2 10 3o 10 1. 1.0 > v- o<2 , 0K.

2 .. 1:;- -- o 1. -1. 20 1. 6 r

5 5 16

lo 3 r

1 3 -1 25 .- ..

3 1 5 35 5 8 10 < v- 0‘2 ,

impossible.

7 6 r

1. 0 8 1.0 8 6 1'

10 5 32
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TABLE III (continued)

SChOIO #32, 13’ n 3 7, v : 1.9, g I 3, f 2 5, n1 3 18 3061, [12 2'. 30 20(2,

2

n : EAZ - 2%, M =3A2+3%, M. - 5 - g12 5

21 = -h>\2+5A2 , 22 = 3A1 " 212 , r(k"’1) : 18A1+30A2 .

 

 

-‘.--.—--—.-.a-... w~m~ ....- “——

 

 

anhw-11.“. ”1311..---.2}--- 22 r(k-l) r k b

o - 3%- —- 1 -1. 3 18 3 7 21>v-O(2 , 08.

6 1. t

9 3 11.7

2 -8 6 36 6 7 1.2>v-<><2 , OK.

9 5 r

3 -12 9 51+ 9 '7 63) v— (X2 , 0K.

1
1 -- -- 3- 0 5 -2 3o 5 7 35 >v— 0K.

3 6 6 1.9 0‘1 ’

10 1. r

2 -3 1. 66 -- ..

3 -7 7 8h - -—

2

2 -- -- 1" 0 10 -lo 60 10 7 70 > v- OK.

3 l 6 -1 78 -- - 0(1 ’
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TABLE IV. PARAMETER VALUES 0F POSSIBLE DESIGNS. This is a list

of those parameter values which satisfy all the conditions applied in

Table III.. The table is limited to designs with known Latin square and

negative Latin square association schemes and with v S 100 , r g 10

and k g 10. If n1 = 82 , duplication is avoided by the reetriction

9.10.2 ; designs with 9.912 can then be obtained by changing the

designation of first and second associates. The design parameters for

each association scheme are listed together, preceded by a list of

parameter values of the scheme. Designs are identified by the numbers

given to the scheme in Table II, and by a serial numbering of the designs

for each scheme. Designs which are known to have been constructed or

have been proved impossible are marked by the letter C or X respec-

tively, followed by an explanatory remark or reference.

The phrase "Pairs of first associates" indicates that all such pairs

of treatments are taken as blocks; designs of this kind are described

in Theorem 2.9. The word "Lattice" indicates a well-known type of

design whose structure is stated in Theorem. 2.10. Some of the designs

may be formed by replicating other designs. The procedure is justified

in Theorem 2.11 and the designs.are identified by the letter "R" ,

followed by the serial numbers of the other design or designs used. The

statement "N '-"- A1" or "N = A1 + I" indicates a way in mich the inci-

dence matrix.of the design may be formed from the association matrix.

Further details are given in Theorems 2.12 and 2.13. Some designs

are identified as the complements of other designs in the table. Two

designs are complements if each block of one contains exactly the treat-

ments not contained in the corresponding block of the other. In some
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cases there is a direct reference to a theorem of Section 2.3 or a

section of the Appendix in which the design is constructed.
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TABIE IV (continued)

 

 

 

# r k b A1 A2 z1 22 Remarks

6—1 5 2 1.0 1 O -1 3 C Pairs of first associates.

6-2 10 2 so 2 o ..2 6 c a: 1;1.

6-3 10 2 80 O 1 2 -2 c Rairs of second associates.

6-6 10 I3 I30 0 3 6 -6

--5 -.19--lt -.59” .13- -l- r2..-lo.- -- _ - - --

6—6 5 5 16 o 2 1. -1. c n = A .

6-7 5 5 16 2 1 0 l. C Appen :Lx A.3.

6-8 10 5 32 0 l. 8 -8 C R: 6;6.

6-9 10 s 32 2 3 l3 0 C R: 6:7.

6219. .1Q --5. - 32-- -4 - 2 - - .0. - -8. - _C. .31 -732.

6-11 6 6 16 O 3 6 -6

6-12 9 6 213 1 h 7 -5

6-13 5 8 10 1 3 5 -3 C Appendix A.3.

6-11. 10 8 20 I. 5 6 2

9:12-49- -3. -20.. -6- .13-- .2--1.0- _ - - - - -..-

6-16 10 10 16 h 7 10 -2
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o
L
o
’
o
’
+

.
I

o
o
l
m
3
m
e
o
7
8
7
7
7
8
8
7
7

m
m

a
e
o
’
e
c
c
.
’

o
J
o
fi
o
’
o
’
o
’
o
J
0
9
0
’
1

a
2

m
m
u
w
3
.
W
fi
fi
7
3
_
7
7
7
7
8
.
n
/
7
A
r

.
n
O
A
A

n
u
m
e
L
M
t
t

.
.
m
=

P
P
E
m
fi
T
M
M
R
R
R
R
R
R
E
R
R
N
M
.
T
N

C
C
C
C
Q
C
C
C
C
Q
C
C
C
C
Q
C
C
C
C
.
C
C

.
.

.

2
4
2
L
fi
4
2
4
h
fl
6
3
8
0
j
5
0
6
6
2
1
8

.

2
3
2
k

5
2
3
&
6

1
h
9
.
3
0
2

9
0

.
.
.
4
_
2

.
$
.
4

.
.
1
.
2
3

0
1
0
0
0
2
0
1
0
2
6
1
0
2
2
1
0
2
2
3
5
5

.
.

1
0
1
2
3
1
1
0
2
9
3
2
h
1
9
3
5
h
h
§
3
6

.
..

.

2
6
2
8

w
7
1
3
a
m
a

.
.

.

2
2
3
3
3
3
h
h
h
h
i
h
h
h
h
.
h
h
7
8
§
8
9

.
.

6
9
3
6
9
§
2
3
h
6
3
7
8
8
2
9
0
7
6
9
9
9

_

_
.

.

.
.

.
.

m
a
fl
a
z
z
6
%
w
1
3
3
m
m

.

4
4
3

7
7

3
A
5

7
9
0

.
.
r
fl
.
4

.
1
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3

hum:

m: = rk(r — 21)8(r - 22)“ .

z2z1

TABLE IV (continuad)

b A1 A21‘

   

Scheme #11, 

I
.

.

‘
‘

.
1
.
I
.
“

.
.
.
,
l

I
"
1
.
‘
J
‘
L
a

o

aO

t

a

.
1

C033a

t
o

O
o

m
u

.
3
.

H
.
1

o
3

3
5

o
0

f
2

0
.
,

o
o
)
.
.
.

o
1
2

3
3
5

3
3
5

f
c
o
o
-
9
.
3
.
9
0
o
)
0
2
0
9
0
+

o
w
e
3
9
3
3
3
5
§
3
5

n

r
m
m
n
w
m
n
m
n
h
m
n
m
z
m
u
m
n
A
A
l
m

3

R
a
m

m
:
-
w

g
n
u

m
2
:
.

m
P
m
.
.
.

R
R
R
R
R
R
R
R
N
N

.
.

C
C
C
C
Q
C
C
C
C
C
F
U
C
C
C
C

.c

.

2
6
2
h
fl
6
8
3
4
m
3
0
h
8
8

6

4

6

%

h

a. “Ix-"fl" r..—“ _____
’—

Mumsz
221

r k b A1 7&2#

   
Scheme #12 , L3 , 

0
0
0
0
1
0
0
1
1
2

1
1
2
1
0
2
3
2
2
4

..

5
5

5
5

W
3
W
1
1
fi
h
h
m
m

.

5
5
5

3
1
4
1
4
5

.
5
m
m

,

6
&
8
3
3
0
9
9
h
8



272

TABIE IV (continued)

SCheme #20 , L2 , “=6: !

332,111.10,

{25,11

=36 It 5 2 8

P =. P =

1 5 20’ 2 8 16 '

 

 

  

2 3 25 ’

W! = rk(r - zl)lo(r - 22)25 .

# r k b A1 A2 2.1 22 Remarks

20-1 10 2 180 1 0 -l. 2 C Pairs of first associates.

20-2 5 3 60 1 0 -l. 2 X Appendix A.3.

20-3 10 3 120 2 0 -8 h C Theorem 2.11..

20-1. 10 h 90 3 0 -12 6

30:5- - -5.--§ -3.6.-3- -9- :.._It ........

20-6 10 5 72 l. 0 --16 8 C Theorem 2.11..

20-7 2 6 12 1 0 -£. 2 C Lattice.

20-8 1. 6 21. 2 O -8 l. C R: 7;7.

20-9 5 6 30 0 1 5 -1

29-.19_-_6---6 _,3_6-,3__q_-.12 A 6-1.2-1: - 7:37.
20.11 8 6 1.8 1. o -16 8 c a: 7;7;7;7.

20-12 9 6 5h 2 1 -3 3

20-13 10 6 60 O 2 10 -2

20-11. 10 6 60 5 O -20 10 c R: 7575737;7.

320215-_-19--9--u9, --2.-.-3--- -.. - - - - - - ..
20—16 10 10 36 l. 2 -6 6 C N 8 A1.

’
W

.
1
9
1
3
)
:

:
r

[
fi
r
-
T
r
h
r
'

'
3
5
:
:
‘
1
1
"

*
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275

TABLE IV (continued)

v=36, 6 8] 6 9

P: P:

:12 20, 1 8 12' 2 9 10'

NN' = rk(r - zl)ls(r - 22)20 .

6

3

hN
W

D

I
I

I
I

a
t
»

:
3

1.
..

:

“
l
l ..
..
1

U
!

:
-

 

 

 

 

# r k b A1 A2 21 22 Remarks

23-1 10 3 120 0 1 l. -2

23-2 5 h 1+5 1 0 '3 3

23-3 10 I. 90 2 0 -6 6

23-1. 5 5 36 o 1 1. -2

€3.75 -10.--5--72---0---2- 8--.?!1 .........

23-6 3 6 l8 1 0 -3 3 C Lattice.

23-7 5» 6 2h 0 1 h -2

23.8 6 6 36 2 0 -6 6 C R: 656.

23-9 8 6 1.8 0 2 8 --1;

93:99 - -‘2- .§- -5h_ _ ‘3. - Q - :9 1 - .9- - 9 - 13:- .6J6,6.

23-11 10 6 60 2 1 -2 11

23-12 10 9 ho I: 1 -8 10

23-13 10 10 36 2 3 6 0

Schene#30,L2,n=7,v'-=h9, 5 6 2 10

g . 2 , HI = 12 , Pl 8 , P2 = ,

f=6,n2=36, 6 30 10 25

NN' = rk(r -— zl)12(r - 22)30 .

 

 

 

# r k b A1 )12 21 22 Remarks

30-1 6 3 98 1 0 -5 2 C Theorem 2.11..

30-2 h z. 1.9 1 o -5 2 11 Appendix 1.3.

30-3 8 L 98 2 0 ~10 h 0 Theorem 2.11..

30-h 2 7 1h 1 O -5 2 C Lattice.

20:5- -h_-'l-2_8- _ :2- -0. :19- -a --c. B: as»..-
30—6 6 7 L2 3 0 ~15 6 C R: 11316611.

30-? 6 7 L2 0 1 6 -1 c Lattic

30-8 8 7 56 h 0 -20 8 C R: h; :5h; 6.

30-9 10 7 7o 5 o -25 10 c R: 1.;1;1.;1.;1.

3Qr'10-10__-.7-70---2--]--:4---3---C .33 11395-7.-

30-11 9 9 119 3 1 -9 5

‘
V
W
W
‘
.

a
s
"
I
A
—
A
—
‘
X
r
"
‘

"
7
.
,
E
V
E
-
“
2
'
!
-



 

 

TABIE IV (continued)

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Schene#32,L,n=7,v=h9, 710' 612

3 3:3,n1=18,1=1. ,P2= ,
f85,n2=30, _10 20 1217

NN' = rk(r - z1)18(r - z )30 .

# ' k b 11-3;- 21 Bah-l???“ __
32-1 9 3 M7 1 O ~A 3 C Theorem 2.11..

32-2 6 6 I19 0 1 5 ~2 .

32-3 3 7 21 1 0 ~l. 3 C Lattice.

3 2~h 5 7 35 O 1 5 ~2 C Lattice.

32:5-__6---7- 112-.2--9-'§--6 0-11: 313.-

32-6 9 7 63 3 0 12 9 C R: 3;3;3.

32-7 10 7 70 0 2 10 ~11 C R: 11:11.

Scheme#33,Lh, n87, v=h9, 1112 12

8 . ‘5 ’ n1 8 2h , P1 8 , P2 = ,

£21.,n2=21., 1212 1211

NN' : rk(r - 21)2h(r ~ 22):“ .

_ 14 r k b 11*12 21 22 Remarks

33-1 8 h 93 0 1 h --3

33-2 I; 7 28 O 1 L ~3 C Lattice.

33-3 8 7 56 o 2 8 —6 c a: 2;2

33-1: 9 9 1:9 1 2 5 ~2

SChene#h7,L2,n=8,v=-'6A, 6 7 212

8 = 2 ’ n1 - u , P1 ' , P2 = ,

f=7,n2=h9, 7 £2 12 2§_

NN' = rk(r ~ zl)u(r ~ 2 )l‘9 .

1f 1' -_ k, 1? >‘1 _>_‘2_,,__ “1 z2 Rw’ki-W- .-.-.....-...-

h7~1 7 7 61. 3 0 ~18 6

117-2 2 8 l6 1 0 ~6 2 C Lattice.

167-3 A. 8 32 2 0 ~12 h C R: 2;2.

47-1. 6 8 1.8 3 0 --18 6 c a: 2;2;2.

117-5 7 8 56 O 1 7 ~1 C Lattice .

17—6 3 8 6:. 1. o -21» 8 C R: 232;st-
117-7 10 8 80 S 0 ~30 10 C R: 2;2;23232.

I
_
‘
y
a
g
m
w
'

€
m
’
fi
'
3
‘
u

-
:
"
Q
C
-
W
o
-
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TABIE IV (continued)

 

 

 

Scheme#h9,L3,n=8,v=6h, 812 615

- 833,313219P1' 2P2: 2

£36,n2=h2, 1230 15 26

um: mu-zfiau-zgm.

# r k 1) A1 A2 21 :2 Remarks

h9-1 7 A 112 1 0 '5 3

1.9-2 7 7 6h 0 1 6 -2

h9-3 7 7 61» 2 0 -1O 6

69-6 3 8 2h 1 0 -5 3 C Lattice.

19:5 _ 6 - .8418- _ -2. _ 9 ~10- -é - 9 .8; 38,.

69-6 6 8 68 o 1 6 2 c Lattice.

1.9-7 9 8 72 3 0 -15 9 C R: 1.3161».

Scheme #51 , 1:3 , n = -8 , v = 61. , _ 10 16 12 15

8=’3931=279P1‘ 9P2: a

f=-h,n2=36, 1620 1520

mm: = rk(r - 21)36(r - 22)27 .

 

 

 

 

 

 

 

# r k b A1 A2 21 22 Remark:

51-1 9 6 1M 1 0 -3 5

51-2 9 9 6h 0 2 8 -8

51—3 10 10 6h 2 1 -2 6

Scheme#52,LA,n=8,v=6h, 1215 1216

g=h,tu=28 P1' .22: ,

f = 5 , n2 = 35 , 15 20 16 18

NN' = rk(r - zl)28(r - z )35

_~# :- k b )1 A2 #2; 22 Remarks _

52-1 1. 8 32 1 0 -h It C Lattice.

52-2 5 8 1.0 0 1 5 -3 C Lattice.

52-3 8 8 6h 2 0 -8 8 C R: 1;l.

52-1 10 8 80 o 2 10 -6 c a: 2;2.

‘
1
”
!
.
W
.
.
m
.
“
“
2

.
.
2
.

‘
-
'
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TABLE IV (continued)

Schene#67,L2,n=9, 11:81, 7 8 122 ll:

8:2'n1316,P1= ,Pza ,

f88,n2=6h, 856 11. 1.9

NN' 8 rk(r - zl)16(r - 2:96“ .

Au‘ -”‘o——n --_—.¢”mn*W" 0 -
 

 
 fl

 

# r k b M 7&2 21 22 Remarks

67-1 8 3 216 1 0 .7 2

67-2 2 9 18 1 0 -7 2 C Lattice.

67-3 h 9 36 2 0 --1l. 1: C R: 2;2.

67-1. 6 9 55 3 0 -21 6 C R: 2;2;2.

.6775. - - .8 - 9 1 -72- -h. -0- :28. _. .8 - C. 81 252.1212.

67-6 8 9 72 O 1 8 -1 C Lattice.

67-7 10 9 90 5 0 -35 0 C R: 2;2;2;2;2.

 

Schene#68,Lf2,n=-9,v=81, 118 61!;

83‘2231=209P1= 9P2: 9

f=-6,n2=60, 1

N1“ = rk(r - zl)6o(r - 2:920 .

————_._—_—_.—.__— -..- . . ”<1...- - -- -uH‘--romc . ., o-u ...

 
 

 

”w“..- -- . .- 1 2-..1 _ .. -.-. .. -

68-1 10 3 270 1 0 -2 7

Scheme#69,L3,n=9, v=81, 9 11. 6 18

8:3, “1:21;,P1-
P2: ’

f=7, 1:12:56, L2 18 37

--- # r. _ k‘ b 7x1 X2 21 2 Remarks“ * -

69-1 8 1‘: 162 1 0 -6 3

69-2 8 8 81 O 1 7 --2

69-3 3 9 27 1 0 -6 3 c Lattice.

69-h 6 9 51. 2 o -12 6 c R: 3:3.

69-5 7 9 63 0 1 -2 C Lattice2
......--..——..-—..o.

7 . -_

69-6 9 9 81 3 0 :181'9' ‘0“ R: 33333.

.
-
_
.
_
_
.
.
_

J

.
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TABLE IV (continued)

Scheme #70 , Li, , -9 , v = 81 , 9 20 12 18

J '3 2 n1 = 30 2 P1 3 2 P2 = 2

-5 ’ n2 3 50 , 20 30 18 31

NN' = rk(r - zl)so(r - z2)30 .

 

H
O
Q
S
’

 

# r k b A1 A2 Z1 22 Remarks ‘1:

 

70-2 10 5 162 0 1 h -5

Scheme#71,Lh,n=9,v-81, 1318

3:1,,n1=32,p1: ,

{-6,n2=h8, 18 30_

 

70-1 10 3 270 1 0 -3 6

12 20

P :

2 2o 27 ’

NNI : rk(r - zl)32(r - z2)h8 .

 

 

 
 

 

# r k b )1 kg— 21 22 Remarks ...

71-1 A 9 36 1 0 -5 h C Lattice.

71-2 6 9 5h 0 1 6 -3 C Lattice.

71-3 8 9 72 2 0 -10 8 C R: 131.

Scheme#73,L5,n=9,v=81, 1920 20 20

8 = 5 2 n1 = no 2 P1 = 2 P2 = 2

r = s , n2 = no , 20 20 20 121

NN' 1' rk(r - zl)l‘o(r - 22)“) .

 —.—_——_.-'—— . -,_.-,_.- .-r-..4-«---- —--..—.-_fi ...—.1 ,_ 1‘ _____,...A__.

Own-.....-1 ---.”o-—...—-— ... o - « - - —— -« ..._- . - - - o~ .. *-—-—- --.-   

....-. ....“ T". 51-3.2131 _‘2- 4 33’9”"

73-1 10 5 0

73-2 5 9 LS 1 O -h 5 C Lattice.

73-3 10 9 o -8 10 c a: 2;2.

- _..._.._---c —--..~ .—.._....'~-'—.-—a-..—a.-—-~<~.~~s

 





TABLE IV (continued)

Scheme#93,L2,n=10,v=100, 8 9 216

g=2,n1=18:P1= ,P2=1 ,

 

 

 
 

 

I II 9 , n21: 81, _9 72 6 61.

RN' 8 rk(r - zl)18(r - 22)81 .

# r k b >i )2 21 22 Remarks -

93-1 9 3 300 0 1 —8 2

93-2 6 h 150 0 1 -8 2

93-3 9 5 180 0 2-16 1:

93-4 9 9 100 0 h-32 8

93-5 __2 1o_ “29- o‘_1_-.-8__2_ _ c Lattice.

93—6 z; 10 1.0 o 2 -16 I. ‘8: 535‘.”

93-7 6 10 60 0 3 -26 6 R: 5:5;5.

93-8 8 10 80 0 h -32 8 R: 5535”.

93-9 9 10 90 1 0 9 -1

93-10 10 10 100 0 5 ~60 10 R. 5;5;5;5;5.

Scheme #91. .
 

No designs possible with r S. 10.

Scheme #95 ,L3 , n=10.,v=100, 10 1 6 21

8 = 3 2 “1 = 27 2 P1 = 2 P2 = 2

{-8.112372, 6 2

 

= _ 27 _ 72
NN' rk(r 21) (r 22) .

-————.__.--_._. -_—

 

 

# r k b )1 )2 zl 22 Remarks

.-~~~—_ -..-‘4. .-..

 

 

95-1 9 I: 225 1

95-2 9 9 100 0

95-3 3 10 30 1 ~7 3 C Lattice.

95-1. 6 10 60 2 -11: 6 C R: 3:3.

%fi__ _8 m m 0

395-6 9 10’96“"' d
w
o
o
w
o

21 9. ’ C" 1153333..

 

t
r
q
‘
c
F
T
V
-
w
'

'

 



A.3. Construction 2; Two Particular Designs; Impossibilitz'Proofs 2;

Particular Designs.
 

CONSTRUCTION OF DESIGNS #6-7 and 6-13

Reference is made to these designs in Section 2.3 and Table IV.

The construction or these designs involved a good.deal of enumeration of

possible blocks and will not be described in detail. Both designs de-

pend on negative Latin square association scheme #6, which is con-

structed in Section 3.2 and is reproduced here for reference.

 

Treatment First associates
 

m R U

n B M

m D u

n R U

n R M

10 13 15

m R M

n B U

h 7 9

6 8

6 n

7 m

6 U

7 u

6 H

7 M0
H
H
O
H
O
H
O
O
‘
Q
P
’
W
N
W
O
H

 H
H

“
F
u
S
B
S
e
m
q
a
m
r
m
e
o

w
m
m
u
u
w
u
m
m
o
o
m
o
m
o
m

m
r
m
r
r
m
m

Design #6—7 has parameter values

v=16,r=5,k-'-5,b-'-'16, A =2, 1 =1.

The blocks of the design are the following:
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0 1 2 12 13 2 3 7 14 15

0 1 3 10 11 2 2 8 9 13

0 A 8 12 1h 2 h 5 8 10

O 5 9 10 15 2 6 10 11 16

0 6 7 8 15 3 h 11 12 15

1 h 6 9 lb 3 5 6 9 12

1 5 13 lb 15 h 5 7 11 13

1 7 8 911 6 7101213 __1

a

Design #6-13 has parameter values ;

I!

v-16,r=5,k=8,b=1o,11=1,12-3. L;

The blocks of the design are the f6110wing:

0 1 2 3 A 5 6 7

0 2 h 6 9 11 13 15

0 2 5 7 9 11 12 1h

0 3 h 7 9 10 13 16

0 3 5 6 8 11 13 16

1 2 h 7 9 10 12 15

1 2 5 6 8 11 12 15

1 3 h 6 8 10 13 15

1 3 5 7 8 10 12 lb

8 9 10 11 12 13 16 15

PROOF OF IMPOSSIBILITY 0F DESIGN #20-2

This design has parameter values

v=36,r=5,k=3,b=60, 21:1: A2=o.

The design is based on an L2 association scheme which by Theorem h.2

is unique and may be assumed to be defined by the flollowing array,

 treatments occurring in the same row or the same column.being taken as

first associates.
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1 23 A 5 6'

7 89101112

13 14 15 16 17 18

19 20 21 22 23 21

25 26 27 28 29 3o

31 32 33 31: 35 36

It follows from the values of Al and A 2 that each block containing

treatment 1 must contain a pair of its first associates which are first

associates of each other. Notation may be chosen so that two of the

b1ocks are 1 2 3 art! 1 l. 5 . The pair of first associates 1 , 6

must then occur together in a block. It is impossible to choose a third

treatment for this block which is a cannon first associate of treatments

1 and 6 and has not already been used in a block with treatment 1.

Therefore the design cannot be constructed.

PROOF OF IMPOSSIBILITY 0? DESIGN #30-2

This design has parameter values

v-h9,r=h,k=h,b=h9, AIM, 12=0.

The design is based on an L2 association scheme Which by Theorem l..2

is unique ani may be «em-be- assumed to be defined by the following

array, treatments occurring in'the same row of the same column being taken

as first associates.
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1 2 3 h 5 6 7

8 9 10 11 12 13 ll.

15 16 17 18 19 20 21

22 23 21 25 26 27 28

29 30 31 32 33 3h 35

36 37 38 39 to M £2

#3 65 k5 #6 h? h8 #9

Treatments 1 to 7 are pairwise first associates, and no two treatments l“

of this set have common first associates which are not in the set. It 1

follows from the values of 11 and X 2 that the four treatmaits in i't

a block must be pairwise first associates and that no two first associates .

can occur tagether in more than one block. Notation can be chosen so

that two of the blocks containing treatment 1 are 1 2 3 k and

1 5 6 7 . The pair of first associates 2 , 5 must then occur to-

gather in a block. It is impossible to choose further treatments for

this block mid: are common first treatments of treatments 2 and 5

and have not already been used in a block with one of them. Therefore

the design cannot be constructed.

PROOF OF IMPOSSIBILITY 0F DESIGN #93-1

This design has parameter values

v=100,r=9,k=3,b=300,)\1=1, 12:0.

The design is based on an L2 association scheme which by Theorem 11.2

18 unique and may be assumed to be definedby a 10 x 10 array of the

int'Ogers from 1 to 100 , treatments occurring in the same row or the

same column being taken as first associates. The first row may be taken

to contain the numbers from 1 to 10; these treatments will then be
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pairwise first associates and no two of them will have any common first

associates not in this set. It follows from the values of A] and

A 2 that each treatment containing treatment 1 met contain a pair

of its first associates which are first associates of each other.

Notation may be chosen so that four of the blocks are l 2 3 ,

11.5,167 andl89. Thepairoffirstassociatesland L

10 must then occur together in a block. It is impossible to choose a

:
-

V
r
c

.
‘

i
_
.

-

third treatment. for this block which is a connon first associate of

fi
t
-

.
’

1
‘
,treatment 1 and 10 and has not already been used in a block with

treatment 1. Therefore the design cannot be constructed.

DISCUSSION OF DESIGNS #7-3 AND 12-2

Design #7-3 has parameter values .

v=16,r=3,k=3,b-16,A1=1, 12:0.

The design may be based on an L2 association scheme defined by the

array

W
O
W
!
“

p
l
“ C
O
N

.
.
.
:

“
t
h
a
t
;

H
P

O
‘
N
C
D
P

and if so is easily shown to be impossible, using the method applied to

designs #20-2 and #93-1 . However, it is shown in Section 11.1 that

the association scheme is not unique and a reference is given in Table IV

to a published design which differs from this one only in the designation

of first and second associates.
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Design #12—2 has parameter values

v=25,r=h,k=h,b=25,)\1=l, Azzo.

The association scheme of this design has L3 parameter values and may

be defined by a 5 x.5 array of the numbers from 1 to 25 , super-

imposed on a 5 x.5 Latin square. A proof’that the design is imp

possible with this association scheme must include an investigation of

different possible Latin squares, and is longer than the preceding

proofs of impossibility. The proof can be carried out but will not be

presented here. It is shown in Section 4.1 that this L3 association

scheme is not unique, and is pointed out in Section 2.3 that this

proof of impossibility is therefore not conclusive.
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A.L.. -I_.i_g_t_ of Negative 9.23.“. 5.99.11! Association Schemes.

Five association schemes of Negative Latin square type are

constructed in Chapter III. The first of these, #6 of Table II, is

described fully in Section 3.2 and repeated in Appendix A. #3. Another ,

#91; of Table II , is described in Section 3.3 and may be constructed from

data given there. A simple method of constructing the remaining schemes

will now be given.

ASSOCIATION scum; # 51

The parameter values of scheme #51 include v 3 6L and a1 = 27 .

The treatments will be represented by pairs (at , y) of marks of the

finite field of order 8 . The addition table of the field follows.
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Addition of pairs of marks is defined by

(xsy)+(z .w) : (DH-2 ,y+w) .

The first associates of any treatment (x , y) are obtained by adding

(1 , y) to each of the first associates of (0 , O) . The 27 first

associates of (O , O) are listed below, with commas and parentheses

omitted for brevity.
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01 02 05 06 07 13 11

22 21 26 27 32 31 36

37 10 1.7 50 57 61 61

6 5 6 7 7 O 7 2 7 3 7 6

ASSOCIATION SCHEMES #68 and #70

Each of these schemes is based on 81 treatments, which will be . !

represented by pairs (at , y) of marks of the finite field of order 9 .

The addition table of the inLd follows.

‘
F
fl
l
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(
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r
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a '1
'

 

  

4012315678

0012315678

1120153786

2201531867

3315678012

1153786120

5531867201

6 6 7 8 O 1 2 3 h 5

7786120153

_8__8_6_7_2_Q_1_5._3_ 1.,

Addition of pairs of marks is defined as for Scheme #51.

Each treatment in scheme #68 has 111 _-_ 20 first associates. The

first associates of any treatment (x , y) are obtained by adding

(2: , y) to each of the first associates of (0 , O) , which are given

in the following list.

0 l O 2 0 A O 8 1 5 1 7 2 5

2 7 3 1 3 7 h 1 h 7 5 2 5 6

6 2 6 5 7 1 7 3 8 2 8 5

Each treatment in scheme #70 has nl : 30 first associates. The

first associates of any treatment (x 5 Y) are obtained by adding

(at. , y) to each of the first associates of (O , 0) , which are given



in the following list.

0 1

2 1

h 6

7 6

02
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78
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25

5h

80
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27

56

83

12

37

57
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15
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65

88

16

AA

73
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17

15

75
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 res with S cial Orthogonalitl Properties.FflumsA05.

square arrays which have a commonAwtmofmeRHWMghxh

number in their identifying symbols [1,3/ are orthogonal. That is,

every ordered pair of the lettersif the two squares are superimposed

A , B , C and D occurs in exactly one of the sixteen positions.

The construction of these squares is described in Section 3.3, ”91W.
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