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ABSTRACT

A KIEFER-WOLFOWITZ TYPE

STOCHASTIC APPROXIMATION PROCEDURE

By

Thomas Edward Obremski

In considering both the Robbins-Monro (RM) and

Kiefer-Wolfowitz (KW) stochastic approximation procedures,

Abdelhamid (1973) has shown that if the density g of

the errors in estimating function values (RM case), and

differences of function values (KW case) is known, then

a transformation of observations leads to methods which

under mild conditions have desirable asymptotic properties.

Fabian (1973) obtained the same asymptotic results in the

(RM) case without assuming knowledge of the density g. We

study the analogous problem in the (KW) case, and obtain

the same asymptotic results as Abdelhamid.
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CHAPTER ONE

INTRODUCTION

Consider the stochastic approximation procedure

given by

(1.1) Xn+1 = Xn - ancn Yn , n = 1,2,...,

where Xh, Yn are random variables and an, cn are

positive numbers. Included in (1.1) are both the Robbins-

Monro (1951) procedure (RM), and the Kiefer-Wolfowitz

(1952) procedure (KW).

Abdelhamid (1973) and, independently, Anbar (1973)

investigated the possible effect that transforming the

observed random variables Yn might have on the almost

sure convergence and the asymptotic normality. Abdelhamid's

investigation included both the RM and KW cases, Anbar's

only the RM case.

Specifically they studied the asymptotic behavior

of the procedure given by

- -1 _
(1.2) _ Xn+1 — Xn - anon h(Yn) , n - l,2,...,

where h was assumed to belong to a class C of Borel

measurable functions which preserve both the almost sure

convergence of Xn to 6 and the asymptotic normality of
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nB(Xn - e), where in the RM case, 6 is the unknown root

of the function f and 8 = k, and in the KW case, 6 is

the point of minimum of f and 8 lies in the interval

[1/4, 1/3], depending on the assumptions on f. Denote

by Fn the sigma-algebra generated by X1,X2,...,Xn. The

following conditions were assumed for the random variables

F

_ _ n . . . _
Vn - Yn E (Yn)' Vn are conditionally (given Fn) dis

tributed according to a symmetric distribution function

G admitting density g; g has derivative almost every-

where with respect to G; O < I(g) =

I(g'(V)/g(V))2dG(V) < +w.

Within the class C, they sought that function

h* which would minimize the second moment of the asymptotic

distribution. It was known that in the case where g is

normal, such an h was given by the identity function,

that is, when g is known to be normal, (1.1) cannot be

improved upon by transformation of observations. They

found in general that within the class C, h*(v) =

(-g'/g)(v), unique up to multiplicative constant. So for

example if g is double exponential, then (-g'/g)(v) =

C sign(v) with a constant C > 0, and the optimal pro-

cedure is

_r '1

(1'3) Xn+1 _ kn ' a cn
n sign(Yn), n = 1,2,...,

first suggested by Fabian (1960 and 1964).



Abdelhamid also suggested improvements in some

cases where G is known but fails to satisfy all of the

assumptions above.

Without assuming knowledge of the distribution G,

Fabian (1973a) constructed a RM-type procedure which per-

forms asymptotically as well as the transformed RM pro-

-1
cedure (1.2) does when G is known. With an = an ,

CD = l in the RM case and cn-Y in the KW case, a and

c positive numbers, and y in the interval [1/6, 1/4],

Abdelhamid had derived values of a and c optimal in

the sense of minimizing the second moment of the asymptotic

distribution. In the RM case the optimal choice of a is

(f'(6)I(g))-1. Fabian suggested methods of estimating

I(g), -g'/g, and f'(6) and pointed out some of the prob-

lems inherent in such estimation.

The main purpose of this paper is to achieve

asymptotic results in the KW case with. G unknown which

are as strong as those obtained by Abdelhamid. Much of

the direction for this present paper is provided by

Fabian's 1973 paper which we shall refer to henceforth as

I. In some places we were able to apply results obtained

in I directly to the KW case. These places are indicated

in the text. .Much of the actual estimation of unknown

parameters that is outlined in our main result, Theorem

(4.1) is carried out as in I.



But, as in previous cases, when properties were

obtained first for the RM case, the proofs for the

analogous properties in the KW case had to be changed at

several points to cover the more difficult situation. The

paper gives detailed treatment only to the new parts of

the proof and refers to I for the other parts, to an

extent that leaves the paper readable.

The same speeds of convergence (Theorem (2.11))

and asymptotic normality result (Theorem 3.1)) as those

obtained by Abdelhamid (Theorems (4.4) and (4.5)) are

achieved. The main result, Theorem (4.1), is a realiza-

tion of the procedure suggested, indicating how to estimate

the optimal values of a and c, as well as I(g),

-g'/g, f"(6), and f"‘(6) . As in the RM case there is

more freedom in estimating -g'/g than in estimating

‘B

I(g). This is reflected in the conditions an > n 1

‘8 '-

in (4.2.vi) and an 3 (log n) 0 in (4.2.111).

In Abdelhamid's treatment of the KW case, and

in many of the earlier treatments, the following two

assumptions have appeared: First, there exist constants

A and B such that

(1.4) |f(x+l) - f(x)| < Alx - 6| + B, for every x in R,

and, secondly,

' Fn 2 2
(1.5) E (Vn) i o , for every natural number n,



F

for a number 0 and Vn = Yn - E n(Yn). The latter

assumption may be omitted here if in the truncation of

the Yn giveE-ig (2.6.4), yn are chosen to be

(log (n v 2)) 1. The use of truncation in (2.6.4)

also enables us to weaken the assumption (1.4) to f

being bounded on bounded intervals. Without the

truncated term in the recursion relation (2.6.3) we would

need to assume not only (1.4) but also a similar type of

condition for E n(-g'/g)(Yn).



CHAPTER TWO

ALMOST SURE CONVERGENCE OF THE

PROPOSED STOCHASTIC APPROXIMATION PROCEDURE

2.1 Basic Notation
 

A11 random variables are assumed to be defined on

a probability space (Q,F,P). Relations between random

variables, including convergence, are meant to hold almost

surely, unless specified otherwise. The set of real

numbers is denoted by R, positive reals by RT, and the

class of all Borel subsets of R by B. The indicator

function of a set S is denoted by X Let E denoteS'

expectation, and EF conditional expectation, given the

o-algebra F. If 21,...,Zn are random variables, then

F(Zl,...,Zn) denotes the o-algebra induced by 21,...,Zn.

If {bn} is a sequence of numbers and {Zn} a

sequence of random variables, then we write 2n = 0(bn)

if lim sup Ib;12n(w)| < +m for almost all m. Similarly

we write Zn = 0u(bn) if there exists a K in R and

an integer n0 with Ibglan i K, for all n 3 no.

“If m is a function on R and a is in Rf,

then for each x in R, ¢a(x) denotes the difference-

w(x+a) - ¢(x-a); if k is a natural number, ka(x) de-

notes the kth derivative of m at x.
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2.2 Remark

The following assumptions are listed for reference

later. Assumptions (2.6) and (2.7) appear in the con-

vergence results in this chapter, Assumption (2.8) in

the asymptotic normality result, Theorem (3.1). Only

Assumptions (2.3) and (2.4) appear in the main result,

Theorem (4.1).

2.3 Assumption
 

Both 6 and y belong to R. We assume that f

is a function on R such that either

sz exists, is continuous in a neighborhood of e, and

Y = 1/4.

or

D3f exists, is continuous in a neighborhood of e, and

Y = 1/6.

We further assume that f is bounded on bounded intervals,

, that D2f(6) = M > O, and that for every natural number k,

(2.3.1) sup 1 D f(x) < 0; 1 inf 2 f(x) > 0,

-k<x-6<- k E<x-e<k

where D f(x) and 2 f(x) denote respectively the upper

and lower derivatives of f at x.

2.4 Assumption
 

Assumption (2.3) holds. We assume that X1,X2,...

and Y1,Y2,... are random variables, that Fn is a



non-decreasing sequence of o-algebras such that for each

n, Fn contains the o-algebra F(X1,...,Xn,Y1,...,Yn_1).

For each n, Cn is a positive Fn-measurable random

. . = -y n - - _variable w1th cn Cnn , and f (Xn) IS the Fn measur

able random variable whose value at w is

f(Xn(w) + cn(w)) - f(Xn(w) - cn(w))

For each n, Yn - fcn(Xn) is conditionally, given Fn’

distributed according to a distribution function G which

is symmetric, has zero expectation, has a density g which

has a continuous derivative Dg everywhere on R. The

density g is non-increasing on [0,w) and 0 < I(g) =

f(g-1D(g))2dG < +m.

2.5 Remark

The assumption of symmetry of G is a natural one

in a Kiefer-Wolfowitz type of procedure, where Yn is an

unbiased estimator of an(Xn). This requirement is

satisfied, for example, if the errors in estimating

f(Xn + CD) and f(Xn - cm), respectively, are independent

and identically distributed, given n.

2.6 Assumption
 

Assumption (2.4) holds and hn are measurable

functions on‘ (O x R, Fn x B) such that for each m,

hn(w,-) are odd, and are non-negative on [0,+m). ‘For

each 'n, DD is a non-negative Fn-measurable random

variable and
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E

(2.6.1) lhn(w.t)| : n 1x(_n,n)(t).

‘60 El

(lo n) < C < (lo n) O D < n81
g _n_ g ’ n—

with numbers €0.61 satisfying 0 < 51 < y/2 and

0 < to < 51/2. Note that for both possible values of

y, we can (and will) select a u such that

(2.6.2) 1/2 - y - 251 > ”Y > 0.

We shall write hn(t) for hn(-,t), and hn(Yn)

for hn(-,Yn(-)).

The random variables X1,X2,... satisfy

1 -l+e
1~

[Dnhn(Yn) + log(n v 2) Y 1(2.6.3) xn+1 = xn - (men) n

where

(2.6.4) in = (Yn v <-yn)) A yn

c

with yn = n 1 if G has finite second moment and

l-2€
l

Yn = (log(n V 2)) otherwise.

2.7 Assumption
 

Assumption (2.6) holds. For almost all m,

hn(w,-) + -g'l(Dg) on the set it; g(t) > O} and

(2.7.1), an + (2M I(g))‘l.

2.8 Assumption
 

Assumption (2.7) holds and

(2.8.1) [[hn(t + nn(c)) + g'1(Dg)]2dG + o
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for every sequence {nu} of functions on O x R with

c

Innl g If n(xn)| and such that, for almost all m,

hn(w, t + nn(w,t)) are Borel measurable with respect to

t. The random variables Cl,C2,... satisfy

t<§><n3fle))'21‘1<g)Jl/6 if v = 1/6

(2.8.2) cn s and D3f(e) + o

C otherwise,

where c is in R+.

2.9 Remark

Suppose Assumption (2.6) holds. In the proof of

Theorem (2.10) we shall require expressions for

F

E nhn(Yn) and E nYn. If k is a Borel measurable func-

F

tion,tflunithe conditional expectation E nk(Yn), pro-

vided it exists, is equal to K(E nYn) where K(A) =

[k(t + A)g(t)dt. For k = hn and k(t) = (t v (-yn)) v yn’

several properties of K were established in I under

the same conditions on g and on hn as we assumed in

(2.6). So using the results (I3.1.l), (13.1.2), and

(13.1.9) we have

Fn an FTP” Cn

(2.9.1)- E hn(Yn) = wn(f (xn)), a Yn = f (xn).<n

where Wn are functions satisfying

(2.9.2) Awn(A) 3 O for all A in R,



11

E

(2.9.3) h'lwn(h) 3 kn 1 with a k in R1, for all A ¢ 0,

and Kn (equal to ¢$(An) in I) are non-negative

Fn-measurable random variables with Kn + l on the set

of all m for which {f n(X'n(w))} is a bounded sequence.

2.10 Theorem

If Assumption (2.6) holds, then (log n)B(Xn - e) + 0,

for every 8 > 0.

Assume without loss of generality that e = 0.

Let s > 0. It is easy to see that there is a function m

on R such that ¢(x) = ¢(-x) for all x, m = 0 on

[0,5] and m > 0 on (e,+w), m has a bounded second

derivative and first derivative 9 satisfying

|D(x)| 3 |x| for all x, and g(x) = x for x > 25.

€1'Y

We have c = C n"Y i n by (2.6.1) and it
n n

suffices to consider n so large that cn < 5/2. Then

by (2.9.1)

F

n~

(2.10.1) g(xn)E Yn 3 0,

c

since Kn 3 0 and sign f n(x) = sign x for |x| > cn

F

= -1 n y
by (2.3.1). Define Bn (cn g(Xn)E Yn)2. Write (2.6.3)

F

- _ = n .

as Xn+l - Xn - Un’ and Nn E Un' Then With

'1+€1 2

n , we have Q(Xn)Nn = An + aan,

where by (2.9.2), An 3 0. So

a = n-1(log n)



12

2
(2.10.2) 12(Xn)Nn 3 01an

Also, by (2.6.1), (2.6.2), and (2.6.4)

F 2 -l-2u
n = y . '

(2.10.3) E Un 0u(n ) With “Y > 0.

Relations (2.10.2) and (2.10.3) show that conditions (2),

(3), and (4) of Lemma (3.3), Fabian (1971), are satisfied

280 -l-2u

with yn = En = o, and an = k (log n) (n 7) with a

k in R+. Hence a subsequence {Bn } of {Bn} converges

i

to 0 and the sequence {¢(Xn)} converges to a random

variable.

Let m be a point at which both properties hold.

Since ¢(Xn.(w)) converges, Xn (w) is bounded, and then

c i i

n

so is f i(Xn (m)). Therefore K (m) + 1 and so

1 Hi

cn.

c-1(w)D(X (w))f 1(X (m)) + 0. The latter convergence,

r1i ” ni ni

the properties of D, and (2.3.1) imply that

lim sup IXni(w)| i 6. But, since m(Xn(w)) converges,

¢(Xn(w)) + 0 and lim sup lxn(w)| i e. The final relation

holds for all m in a set of probability one. Since 8

was chosen arbitrary and positive, Xn + 0. (Note that as

a consequence, Kn + 1.)

Now suppose that N is a neighborhood of x = 0

in which sz exists and is continuous if y = 1/4, and

in which D3f exists and is continuous if y = 1/6.
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c

Expanding f n(Xn) in powers of cn in N we obtain,

with a proper choice of an, that

C
- n _

(2.10.4) cn f (X) - a X + 5 CH ,

where a and En are Fn-measurable random variables,
n

with

2 0 if y = 1/4

(2.10.5) on + M, in + 50 = 1

L3 f (0) if y = 1/6 .

Using expression (2.10.4) we obtain

_1 -1+ 21—;

(2.10.6) Nn = n (aan + gncn ).

C11 -1 cn -1+€1
[Dn(f (Xn)) Wn(f (Xn)) + (log n) Kn].

For 50 as in (2.6.1), we obtain from (2.10.6) and (2.9.3)

that

_1 -1+€O -1+ %7

(2.10.7) Nn = n (log n) (an)!n + Encn )dn,

with

(2.10.8) 0 i 5n = 0u((1og n) n ), 6n + +w.

_1 -1+eO

Then X.n - Nn = Xn(l - n (log n) anén) - Rn’

_1 ‘l+€o ‘1‘1” %"

where Rn = n (log n) Encn st. Note that from
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(2.10.5), (2.10.8), (2.6.1) and (2.6.2) we have that

-1-u

= Y
(2.10.9) Rn 0(n ), DY > 0.

Now, eventually, depending on w,

_ '1+€
- —1+€

0 g 1 - n 1(log n) Oanén : 1, (l-n 1(log n) Osman)2 :

-1+e -1+€

1 - n-1(1og n) Oandn i l - n-1(log n) O, and

-l+e

(2.10.10) (xn - Nn)2 3 x§(1 - n-1(1og n) O)

+ 21X R l + R2 .
nn n

Writing Xn+1 = (Xn - Nn) - (Un - Nn) we obtain

from (2.10.10)

2 2

(2.10.11) Xn+1 ; (l - An)X.n - 2Vn + Wh + Tn

with

_1 -1+e0

(2.10.12) A ; n (log n) ,

n

(2.10.13) vn = (xn - Nn)(Un - Nn), wn = (Un - Nn)2

_ 2
Tn - ZIXanl + Rn .

Suppose now 8n are positive numbers satisfying

(eventually)

-1 - = Y-

(2.10.14) an 8n+l(l An) ; 1, Bn+1xn 0(n ).

2n -n

BnénY forann>0.
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We shall show that under these conditions

(2.10.15) 2 8 < +m
8n+1Tn

Bn+1Vn < m

This, (2.10.14),and (2.10.11) then easily imply

2 _
(2.10.16) ann - 0(1)

The first relation in (2.10.15) follows from

(2.10.3) since EWh ; EUfi. The second relation follows

2 -2-2U

since by (2.10.9), Rn = 0(n Y) and 8n+1|Xn||Rn| =

u -n -1-u

0(n Y )0(n Y). 1 2

F - - u
n 2 _ 2 y

From (2.10. 3), E Vn - (Xn - Nn) 0 (n )

2 2
But (Xh - Nn) ; Xn + Tn by (2.10.10) and

m 2 T l0 < 'l'qualZ 8 n 3

=1 n+1 n u — n 1

"
M
8

n Bn+lTn < +m as we have

already shown. Concerning the other term, we have

-1-2u
2 2 y _ -l-n

8n+1xnoum ) - o (n ) .

co
F

2

E nVn < +m and nil Bn+lvnThis shows that nil éh+l

converges by the generalized Borel-Cantelli Lemma

(Lemma 10, Dubins and Freedman (1965)). Thus (2.10.15)

holds.
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Choose now 8n = (log n)b so that (2.10.14) is

satisfied and (2.10.16) holds. This proves the theorem.

2.11 Theorem

If Assumption (2.7) holds, then nB(Xn - 0) + 0

for every 0 < B < k - y - 281.

Relation (I3.1.l6) can be rewritten as

(2.11.1) lim inf ”n 3 I(g)

with “n = f‘1(xn)9n(f(xn)). This relation holds also in

c c
. _ n -1 n .

our case With “n — [f (Xn)] WnEf (Xn)]. So we obtain

from (2.10.6) and (2.7.1) a strengthening of (2.10.7) to

_1 ”1+ %—'-Y-

(2.11.2) Nn = n kn(anXn + ancn )

2E

with lim inf kn 3 (2M)'1, kn = 0u(n 1). Then, (2 10.11)

holds with (2.10.12) strengthened to

-la k'

(2.11.3) A ; 2n n n
n

with kn - kn + 0.

> 0 f . 01n .

We know this is true at least for 80 = 0. Choose a B

B+BO

in (Bo,uy) and set 8 = n . These 8n satisfy
n

(2.10.14) and thus, also, (2.10.16). Thus ann + o for

every 8 < “y; but since “Y can be chosen as any number

less than k - y - 261 (see (2.6.2)), the assertion of

the theorem holds.



CHAPTER THREE

ASYMPTOTIC NORMALITY OF THE PROPOSED PROCEDURE

To obtain the following asymptotic normality

result for the procedure proposed in (2.6.3) we use a

one—dimensional version of Theorem (2.2), Fabian (1968).

3.1 Asymptotic Normality Theorem

If Assumption (2.8) holds, then ng-YOCn - 9)

is asymptotically normal with

mean = 0,

variance = [6 I(g)M C ]

Fmean = 0, if y = 1/6

and

variance = [(16/3)1(g)M20‘-1'1 D3f(e) = 0,

(11}

mean = -(Q/128)1/3, if y = 1/6

and

Lvariance = (0/211/2)2/3, 03£(e) a 0, 

where Q = 3D3f(e)M-3I'1(g).

"Assume without loss of generality that e = 0.

Suppose Assumption (2 8) holds. As in I, proof of

Theorem (3.1,iii), use (2.8.1) and the Schwarz inequality

17
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c c

to obtain lim sup [f n(Xn)]-1‘Pn[f n(Xn)] i I(g). This,

along with (2 11.1) gives

c c

n -1 n +
(3.1.1) . [f (Xn)] WHEf (Xn)] I(g),

and from (2.10 6)

1 + l—
_ -1 ' ZY

(3.1.2) Nn - n (aan + Encn )An,

. cn _1 cn -l+e1

Wlth An = DnEf (Xn)] WHEf (Kn)] + (log n) Kn,

where in the proof of Theorem (2.10), it was shown that

Kn + 1. So by (3.1.1) and (2.7.1) we have

(3.1.3) in s (210'1 .

F

Denoting conditional variance, given Fn’ by Var n,

we have

r- c c
, n _ 2 n _ 2 n +

Var [hn(Yn)] - fhn(t + f (Xn))dG(t) intf (Xn)1 I(g)

C

by (2.8.1) and since WnEf n(xn)1 + 0. Therefore

F

2 n -2 -1
(3.1.4) Dn Var [hn(Yn)] + (2M) I (g).

Fn -l+e1~

Now consider Var [(log n) Yn]. If yn in (2.6.4)

- 1-261 251

are (log n) , this variance is bounded by (log n)

a

0n the other hand, if yn = n 1 then G has finite
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second moment, say 02, and Var nYn i E nYfi i E nYfi i

2 Cn 2 Fn~
o + [f (Xn)] . So on the set {Xn + 0}, Var Yn + 0.

In either case then we have

Fn -1+e1~

(3.1.5) Var [(1og n) Yn] + 0

The random variables hn(Yn) and Yn are not independent,

but by the Schwarz inequality it follows from (3.1.4)

and (3 1.5) that

2

F

(3.1.6) (ncn)2E n(un - N ) s 1'1(g)(2M)'2 .
11

Now we set 2n = ncn(Un - Nn) and suppose r

e 25

1).
is in R+. By (2.6 1), 2n = 0u((log n) 0n So

{2: > rn} is eventually empty and

2
(3.1.7) E an 2 + 0 .

{Zn 1 rn}

Writing Xn+1 as (Xn - Nn) - (Un - Nn) we obtain

1 -1c-l+l/(27)= -1 -1 -

Xn+1 (1 ' n anAn)Xn ' n 0n 2n ' n n gnxn'

Using this, (3.1.3), (3.1.6), (3.1.7), and the measurability

properties of an, A and an we obtain the desired
n,

result by applying Theorem (2.2), Fabian (1968) with

Un in Theorem (2.2) replaced by Xn here, Pn by

-l
anAn, Vn by Zn, 0n by - Cn

_ -1+1/(27)
Cn gnx

, and Tn by
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For the case y = 1/4, by (2.8.2), (2.10.5), and

(3.1.3) we have, 0 = -c"1 and T = 0. Similarly for the

case when 7 = 1/6 and D3f(0) = 0. Finally, if

1/6 and D3f(0) # 0, 9 is -[(2/3)[D3f(0)]21(g)]1/6Y:

and T is -(6M)‘1[(3/2)[03f(0)11'1(g)11/3.

In all cases, F = l, a = l, B = 8+ = 1 - 2y,

and by (3.1.6), 2 = I‘1(g)(2M)‘2.



CHAPTER FOUR

THE MAIN RESULT

In this chapter we state and prove the main result,

a realization of the procedure given in (2.6.3). Only

(2.3) and (2.4) are assumed to hold. This result is given

in the following theorem.

4.1 Theorem

Suppose Assumptions (2.3) and (2.4) hold with Fn

as defined below. Let {kl} be an increasing sequence

of positive integers such that 2/k£ + 0. Suppose {U1}

and {V } are sequences of random variables such that
l

with

Fn = F({X1,Yl,...,Yn_l} U {U,; k, < n} U {V,; kg < n}>»

we have

r’r

kg -2 d2 d2
E U - (2d ) (f ) (X ) .

1 1 k,

Fk Fk

E 2(U - E 2U )2 - 0 (d'4)
‘ 2 2 u 2 ’

(4.1.1)~ Fkl 3 d, d1 d2

E v2 = <2d,) ((f > > (xk1)’

rk Fk

E IL(v - E 2V )2 = 0 (d-6)
k l l U l ’ 

21
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with d2 of the form

(4.1.2) d, = d1' , d in R+, 0 < a < 1/6 .

Then the sequence {Kn} as defined in (4.2) below con-

verges to 6 and tE'Y(Xh - 6) is asymptotically normal

with mean and variance as given in Theorem (3.1), (i)

and (ii), where 2tn = 2n + 7 card {2; kg < n} is the

number of observations needed to construct Xn.

4.2 The Procedure
 

(i) Estimation of D2f(e):
 

Set Uh equal to the arithmetic mean of all

U2 with kl < n. Then set

(4.2.1) un = (0 v Un).

(ii) Estimation of D3f(8):

Set vn equal to the arithmetic mean of all

V2 Wlth k2 < n.

(iii) Estimation of I(g):
 

-B

Let 80 > 0 and choose an 3 (log n) 0. Then this

estimation is carried out precisely as it is in (I4.2.b),

that is by a sequence {wh} with

- _ o 2
(4.2.2) “n - f(hn) dGn-1

where Gn is the empirical distribution function of

o
Y1,Y2,...,Yn, and hn is defined in (14.2.3).
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(iv) The sequence On:

Set

-e

(4.2.3) Cn = [(3/2)v:12wI-11)1/6 v (log n) O] A (log n)

if y = 1/6 and D3f(e) = 0

C , otherwise

with 60 as in (2.6.1), C as in (2.8.2), vn as in

(4.2.ii) and'wn as in (4.2.2).

(v) The sequence Dn:

Set

(4 2 4) 0 = (2u w )’1 A n61
‘ ' n n n '

(vi) The functions hn:

-81

Choose a 3 n for n = 2,... Then the
n

80

estimators are constructed precisely as in (I4.2.c), but

 

for O < 81 < % - y - 261, with y

(2.3) and 51 as (2.6.1).

(vii) The sequence Xn:

The recursion relation for

(2.6.3).

Proof of Theorem (4.1):

We shall prove the theorem by verifying Assump-

tions (2.3), (2.4), (2.6),

as in Assumption

Xn is given in

(2.7), and (2.8).
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First, Assumptions (2.3) and (2.4) are assumed to

hold in the theorem. The measurability conditions on

Cn' Dn' and hn and condition (2.6.1) are obvious from

their definitions. Relation (2.6.3) holds by assumption.

Thus Assumption (2.6) holds, and by Theorem (2.10),

(log n)8(Xn - e) + 0, for every 8 > 0.

2
To show that un converges to D f(e), it suffices

—- _ 2

to show that Un does. Let Wfi — U,L - E U2. Then

W2 is an orthogonal sequence,

2 (log 2)2£-2E WE i Cld-4 2 (log 1)

i=1 i=1

for a C1 in R+. So by Theorem (33.1.B.ii), Loeve, we

2 Fk2 2

X Wj + 0. Also E U2 = D f(xkl + 0%), where

2£-2+46 < +m

have 1-1

|v 1 2di' 80 eventually, depending on m, we obtain

F

k2.

using Assumption (2.3) that E U2 + D2f(e) and

Un+D2fl6). The convergence of Wu to I(g) follows

Q I

from Theorem (2.2), Fabian (1973b). Verification of the

assumptions of this theorem are given in (14.3.ii).

Therefore Assumption (2.7) holds, and by our Theorem

(2.11), nB(Xfi - e) + o, for every 0 < 3 < s - y - 2c1.

,Finally, (2.8.1) follows from.Extension (2.3),

Fabian (1973b). Details and verification of the assump-

tions of this extension are given in (14.3.iii). The



25

convergence of vn to D3f(6) follows by an argument

similar to that used to show an +D2f(6). Therefore

Assumption (2.8) holds, and by our Theorem (3.1), Xn

has the properties asserted in Theorem (4.1) since

tn/n + 1 because i/kl + 0.
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