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ABSTRACT

NON-DESTRUCTIVE EVALUATION USING GUIDED WAVES IN PIPE-LIKE
STRUCTURES

By

Jingjun Shen

For the last hundred years, rapid development in economy andengineering have accelerated

the construction of large amount of different types of civilstructures, machines, and airplanes. As

time goes by, those structures and machines have deteriorated and become unable to perform their

designed functions due to the defects generated during their service lives. To test the integrity

of structures and evaluate their health states, in the past several decades, many methods has been

developed and utilized. Ultrasonic guided waves have been utilized for accurate diagnosis of the

structures that have thin structural components because oftheir good performance in long distance

propagation and sensitivity to defects in the structures. In this thesis, wave propagations excited

by surface-mounted instruments such as PZT and transducer rings attached on an infinite isotropic

hollow cylinder are investigated. A mathematical model of the wave propagation system is studied

both analytically and numerically. A detailed derivation of the characteristic equation for pipes

is conducted, and the development of waves is simulated using the finite element method (FEM).

Compared with the analytical results, the accuracy of the numerical modeling is verified, and Lamb

wave propagation in pipes with defects is studied as well. By parametric study, the influence of the

defect depth on the received signals is investigated.
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Chapter 1

Introduction

On August 1st, 2007, during the evening rush hour, I-35W Mississippi River Bridge collapsed

suddenly, and killed 13 people. According to the report fromNational Transportation Safety Board

[20], the disaster was caused by failure of the undersized gusset plate, which was not able to carry

the increased concrete surface load. Back to history, hundreds of structural failures like I-35W

Bridge collapse happened in the world, and most of them were caused by poor maintenance and

lacking of inspection. On August 1st 1976, a road bridge withtrams in Australia failed due to

column fracture; On July 17th 1981, a double-deck suspendedfootbridge in Hyatte collapsed at

Kansas City, Missouri because of overload and weak joints; OnMay 12th 2002, the Buran hangar

in Kazakhstan collapsed due to structural failure caused bypoor maintenance. All these disas-

ters sounded an alarm that more attention is needed to be paidon the health states of the existing

structures. Structural damages and failures threaten human lives and at the same time cause great

financial losses. The United States spends a huge amount of money, more than 200 billion dollars

per year, just for the maintenance of aircrafts, civil structures and mechanical engines. Struc-

tural Health Monitoring (SHM) emerges as an important engineering technique since it enables

a cost-effective way to inspect structural health and provides basis for condition-based structural

maintenance.
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1.1 Structural Health Monitoring and Non-Destructive Evalu-

ation

Before the review of structural health monitoring, it is important to introduce the definition of

damage. In terms of structural health, damage is defined as the change introduced to the original

system, which can cause adverse effects to its designed function or performance. All damages

begin from the material level and grow to the components or the structure level when the structures

undertake different kinds of loadings [34]. The adverse effects caused by damages might come

immediately or in the future, and even a very small local damage may cause global collapse of

the structures eventually, just as the collapse of I-35W Bridge. Therefore, our goal is to develop

structural health monitoring systems which are sensitive to different kinds of damages, and it will

enable us to avoid sudden failures of the structures by predicting the possible long term failures.

(a) (b)

Figure 1.1: Possible areas to apply SHM systems: (a) the Golden Gate Bridge [21], and (b) an
airplane [1]. (For interpretation of the references to color in this and all other figures, the reader is
referred to the electronic version of this thesis.)

Structure Health Monitoring refers to a wide rang of techniques, which include sensors, smart
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materials, data transmission, signal processing and analysis, and so on. It is an integrated process,

which aims to diagnose damages, defects and flaws in structures by collecting data of structural

responses under certain excitations or surrounding environments and analyzing those data. By

conducting SHM, it is possible to determine the ’state’ of the structural health and to predict the

failure of the structures. There are five main objectives of SHM [25], which are defect detection

and location, defect identification, defect assessment, defect monitoring, and failure prediction. On

the other hand, SHM is usually conducted during the operation of the structures. It provides the

real-time structural behavior under different excitations, which could be valuable information for

better design and management of structures. Figure 1.1 shows the possible areas to apply SHM.

However, there are two main challenges in SHM techniques. One of the most significant chal-

lenges is signal interpretation. During the vibration-based SHM, the received signals are influenced

not only by the damages in the structures, but also by the environmental conditions, the operational

variabilities, and so on. Because of the complexity of the surrounding environments, diagnosis of

the defects might be inaccurate. Another challenge is that SHM is often carried out by low fre-

quency global vibration tests. This means typical local-based damages/defects might not be able to

influence the result of the vibration test. Therefore, immediate structural collapse caused by local

damages might not be predictable using the conventional techniques.

Non-Destructive Evaluation (NDE) is also developed to detect the flaws/faults in structures.

One of the main difference between SHM and NDE is that in an SHMsystem, the locations of

sensors, and the instrumentations are fixed from measurement to measurement, while in an NDE

system the sensors and instrumentations are movable and theevaluation results of structures vary

[9]. High flexibility makes NDE capable to be conducted at different locations of the structures

and detect damages which might not be detected by SHM. Another difference between SHM and
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NDE is that for NDE, evaluation of the remaining lifetime is usually not a goal of NDE.

Compared to SHM, NDE is conducted more locally and emphasizesmore on the characteristics

of the defects, such as orientation and size, or the severityof the damages [14]. There are mainly

two types of NDE system, passive NDE and active NDE. The passive NDE systems use sensors to

record the loads, stress in the structures and the influence of surrounding environments to the struc-

tures [17]. The passive NDE listens to the behavior of the structures under different load scenarios

and environmental conditions. Active NDE uses transmitters to emit signals to the structures, and

detects the presence and the characteristics of the damagesby analyzing the responses given by the

structures.

With the development of new materials and computational capacity, NDE techniques are rapidly

developed in the past several decades. There are several major methodologies to conduct non-

destructive evaluation. One of them is ultrasonic testing.For ultrasonic testing, transducers are

applied to excite waves (vibrations) to propagate along thedesigned path. The signals passing

through the materials or structures will be reflected when they meet the cracks, corrosions, or

flaws in the materials, and received by the applied sensors. After that, the collected data will be

analyzed to find out the locations and the sizes of the defects. Figure 1.2 shows the schematic of

ultrasonic NDE.

Another commonly used method is performed by using dye penetrant. The method applies a

penetrating liquid over the surface of the structure which needs to be detected. The liquid will

enter to the discontinuities of cracks on the structures. The limitation of this method is that it is

time consuming and usually used to detect surface flaws.

There is another non-destructive evaluation method calledradiography method. It is used for

most projects over a century. The industrial radiography uses an X-ray device as a source of
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Figure 1.2: (a) Angular sweep with angle wedge, and (b) B-scan[13]

radiation. When the radiographic image taken by the X-ray device is processed, the image of

varying density in the structure is obtained. By analyzing the image, the location and size of

material imperfection can be identified.

In this thesis, we investigate NDE using Lamb waves in pipe-like structures. Lamb wave

inspection is recently developed and utilized in non-destructive evaluation for plates and pipe-like

structures due to its good performance in detecting the defects in thin-walled structures.

1.2 PZT and MFC Transducers

In order to excite Lamb waves in thin-walled structures, transducers are needed to be mounted on

the surfaces of the structures and to emit different types ofsignals. In this section, we introduce two

different transducers, which are the PZT actuator-sensor and the MFC transducer. The mechanisms

of how they work are explained and their advantages and disadvantages are discussed.
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Voltage

applied

Voltage

not appliedPZT

Figure 1.3: Schematics of PZT actuator.

1.2.1 Piezoelectric Effect and PZT Actuator-Sensor

PZT is the abbreviation of Piezoelectric ceramic Lead Zirconate Titanate. It uses the piezoelectric

effect to measure the stress or strain in a structure by converting them to electrical charge or vice

verse. Figure 1.3 shows the piezoelectric effect of a PZT sensor.

Piezoelectric effect is discovered by Pierre Curie in late nineteenth century, however its first

application in sensing was 70 years later in 1950s. Within several decades, PZT has become one of

the most commonly used piezoelectric materials because of its high piezoelectricity and sensitivity

to stress and strain change. However, it is brittle and is notable to work in harsh environments

for long time. Another disadvantage of PZT is that its flexibility is not good enough for curved

surfaces such as surfaces of pipelines. Therefore, a more flexible actuator-sensor which can be

perfectly mounted at the surface of pipe-like structures isdeveloped.
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Figure 1.4: Schematic of MFC transducer [33].

1.2.2 MFC Transducers

The Macro-Fiber Composite (MFC) is an innovative, low-cost piezoelectric device developed by

NASA in 1999 for controlling vibration and noise. The MFC is an actuator-sensor in the form of a

thin patch. It consists of unidirectionally rectangular piezoceramic rods sandwiched between two

layers of films, which containing tiny electrodes that can transfer a voltage directly to and from

ribbon-shaped rods. Just like PZT, the MFC will stretch whenit is subjected to a voltage. Figure

1.4 shows the schematic of the components of MFC. Compare to traditional piezoceramics, there

are several advantages of MFC. Firstly, it is flexible and can be perfectly mounted at curved-shape

structures, such as aircraft wings, pipelines, etc. Secondly, fine ceramic fibers provide higher

strength and energy density over monolithic piezoceramics[27]. This makes MFC have higher

durability to the harsh surrounding environments.
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1.3 History of Non-Destructive Evaluation Using Guided Waves

Lamb waves, different from ultrasonic bulk waves, exist in free plates and pipes, and the Lamb

wave particles move in two-dimensional vibration modes: the direction of wave propagation and

the normal direction of the plate or pipe surface. Lamb wavespropagate in plates of thickness less

than 5λ, whereλ is the Rayleigh wavelength [2]. When the plate thickness is greater than5λ, the

waves behave like Rayleigh waves, which are the surface wavesexisting on the boundary of a free

half space.

1.3.1 Theory of Lamb Waves

Lamb waves are named after a British mathematician, Horace Lamb [22], to acknowledge his

work on investigating the characteristics of vibration of aplate, the thickness of which is much

smaller than the wavelength. His research demonstrated thedifference between Lamb waves and

bulk waves, and described the Lamb waves in mathematical equations. There are several reasons

which make Lamb wave to be a relatively ideal tool to detect the defects in thin-walled waveg-

uides. Firstly, Lamb waves can propagate for a longer distance than bulk waves. This makes

lower cost non-destructive evaluation possible, since forlonger pipelines fewer devices are needed

for exciting and receiving Lamb wave signals. Secondly, Lamb waves are sensitive to defects in

the waveguides. By selecting different wave modes, defects with different characteristics can be

detected. Thirdly, due to the reflection by the boundaries, Lamb waves propagate through the

thickness of the waveguides. It means Lamb wave inspection is able to detect defects not only on

the surfaces of the waveguides but also inside the waveguides [7].

The propagation of guided waves has been studied for over a century. In 1889, Pochhammer
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and Chree [8] first investigated the wave propagation in a freeinfinite long cylindrical rod. At

the same time, Lord Rayleigh [28] and Horace Lamb considered the problem of wave propagation

in an elastic solid bounded by two parallel surfaces, the distance of which is much smaller than

the wavelength. In the following few decades, theories of wave propagation in solid materials

were fully developed by many researchers, such as Graff [18], Miklowitz [24], etc. Based on

the theory developed by Pochhammer and Chree, Gazis [15] derived the characteristic equation

of the guided waves propagating in a hollow isotropic cylinder, and calculated the solutions of

the equation numerically [16]. Since then, dispersion curves of wave propagation in a hollow

cylinder were developed, and the characteristics of guidedwave modes were interpreted. After

Gazis’s work, a great deal of research has been conducted to investigate the wave motions in more

complicated systems such as pipelines with multilayers [26], cylindrical structures surrounded by

different environments [3, 31], and pipelines filled with flows.

1.4 Lamb Wave Inspection in Industries

Although the theoretical analysis of Lamb wave propagationin pipe-like structures has been well

developed, there were few practical applications of guidedwaves for the inspection of pipes before

1990 due to the limitation of computational calculations [30]. From 2000, with rapid improvement

of computational capacity, the techniques of guided wave inspection in pipelines were significantly

improved, including transducer design and signal analysis. A typical NDE method used for pipe-

like structures is shown in Figure 1.5 (a) [35]. A transmitter ring, which acts as a receiver as well, is

mounted on a pipe, and different types of signals are emittedfrom the elements. Once Lamb waves

are excited, the waves travel through the pipeline. When these waves meet defects in it, the waves

change the modes and get reflected or diffracted. Therefore,the locations and sizes of defects can
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be diagnosed by analyzing the received signals. In this thesis, an analytical solution is developed

based on the mathematical model as shown in Figure 1.5 (b), and the solution is compared with

numerical results.

(a)

z

r
θ

(b)

Figure 1.5: (a) Cylindrical phased array [35] and (b) mathematical model for longitudinal wave
propagation.

1.5 Motivations and Objectives of the Research

There are million miles of pipelines across the world, carrying important resources such as wa-

ter, oil, gas, etc., and meanwhile they are exposed to harsh environments. Those pipelines are

threatened by corrosion, weathering, or mechanical impact, which may cause the leakage of the

transported materials. Therefore, it is urgently requiredto evaluate the integrity of the pipelines

and ensure safe transportations of the resources.

As mentioned in the previous section, for thin-walled pipelines, the most commonly used non-

destructive evaluation tool is Lamb wave. It overcomes the disadvantages of traditional ultrasonic

testing, and the development of industrial techniques alsoaccelerates the application of Lamb wave

inspection.
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In this thesis, our objectives are to:

• Study Lamb wave propagation in pipe-like structures both analytically and numerically;

• Compare the analytical and numerical results to verify the accuracy of numerical simulation;

• Simulate Lamb wave propagation in pipes with defects;

• Investigate the received signals by parametric study for different defect depths.

The calculated analytical solution is used as a reference signal to verify the accuracy of numer-

ical simulation. On the other hand, once the accuracy of the numerical model is verified, it is used

to simulate the wave behaviors in pipes with different sizesof defects, and provides a reference

to track the development of the defects and investigate the influence of defect size on the received

signals.
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Chapter 2

Lamb Wave in Plates

A thin plate has two paralleled surfaces which form a guide tothe Lamb waves and guide

the direction of wave propagation in the plates. For practical application, the materials used in

structures, such as steel and aluminum, have low damping inside the materials and the energy

losses of the Lamb waves are very limited [12]. This is the reason for the long distance propagation

of Lamb waves.

There are two basic types of wave modes existing in a plate, which are the symmetric modes

Si and the antisymmetric modesAi, respectively. For symmetric wave modes, the particles vibrate

symmetrically with respect to the mid-plane of the plate, while for antisymmetric modes, the wave

modes are antisymmetric to the mid-plane of the plate. The schematics for the two modes are

shown in Figure 2.2. The subscripti denotes the order of the wave mode, and it is assigned

following the order of the cutoff frequency of each wave mode. As the frequency increases, the

number of wave modes in a plate increases as well, thus it is possible that infinite number of wave

modes might exit in a plate.

In order to utilize Lamb waves for plate inspection, a large amount of work has been done

to investigate the characteristics of wave propagation analytically. In this chapter, the derivation

of dispersion equations of Lamb wave propagation in plates is outlined. Detailed investigation of

elastic wave propagation in solid materials can be found in many textbooks [4, 18, 32].
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Figure 2.1: Schematic of Lamb wave in a plate.

A comprehensive solution of Lamb waves was developed by Mindlin in 1950, and Viktorov

gave the detailed investigations of Lamb waves in plates, including dispersion curves and mode

shapes in 1967 [37].

2.1 Characteristic Equations

The mathematical model of Lamb wave propagation in a plate isshown in Figure 2.1. Consider a

plate with infinite extent in x and y directions, and thickness of 2h. It is assumed that the plate is

made of an isotropic material and is placed in vacuum. The wave equations [37] of longitudinal

and shear Lamb wave are expressed as:

∂2φ

∂x2
+
∂2φ

∂z2
+
ω2

c21

φ = 0

∂2ψ

∂x2
+
∂2ψ

∂z2
+
ω2

c22

ψ = 0

(2.1)

wherec1 =

√

λ+2µ
ρ , c2 =

√

µ/ρ are the longitudinal and shear wave speeds respectively.

Here,λ andµ are Laḿe’s constants,ρ is the mass density of the material.φ, ψ are the scalar and
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Antisymmetric

Symmetric

Figure 2.2: Lamb wave modes in a plate.

vector potential functions which are given as:

φ = [A1sin(pz) + A2cos(pz)]i(ξx− ωt),

ψ = [B1sin(qz) + B2cos(qz)]e
i(ξx−ωt).

(2.2)

wherep2 = ω2/c21− ξ2, q2 = ω2/c22− ξ2. A1,A2,B1 andB2 are the unknown constants which

are determined by boundary conditions,ω is the angular frequency, andξ is the wavenumber.

For a free plate, by applying the boundary conditions that the components of stress fields are

zero atz = h andz = −h. The characteristic equations are obtained as:

tan(qh)

tan(ph)
= −

4ξ2qp

(ξ2 − q2)2

tan(qh)

tan(ph)
= −

(ξ2 − q2)2

4ξ2qp

(2.3)

Eq. (2.3) are for symmetric and anti-symmetric wave modes, respectively.
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2.2 Dispersion Curves

Although Lamb waves have unparalleled advantages in long distance structural inspection, signal

interpretation is a major issue which makes the developmentof the application of Lamb wave

inspection much slower than its theory. As discussed above,with high frequency excitation, a

large number of Lamb wave modes exist in a plate. Those modes are of different amplitudes

and phase velocities and this make it difficult to distinguish the incident signals and the signals

reflected/refracted by the defects. On the other hand, Lamb waves are dispersive when they travel

through the waveguides. It means that when the distance the wave traveling is larger, the amplitudes

of the wave modes decreases, which also increases the difficulty to find the flaws in the structures.

Therefore, one of the goals is to limit the number of wave modes in the plate and find a wave mode

which is suitable for the inspection.

Dispersion curves contain the information of the characteristics of each wave mode and thus

is important for selecting proper wave modes for damage detection. In order to calculate the

dispersion curves in a certain plate, the material properties are chosen as shown in Table 2.1.

Figure 2.3 shows the dispersion curves for a plate of 1 mm thickness. It is generated by a free

software PACshare DispersionPlus Curves (Physical Acoustics Corporation, Princeton Junction,

NJ, USA) [10]. From Figure 2.3, we can see two different ways to present dispersion curves.

Figure 2.3 (a) shows the dispersion curves in wavenumber projection. Wavenumber projection

comes from the solutions of dispersion equations, showing the possible wave modes in the wave

guide. Compared to dispersion curves displayed in phase velocity, the wavenumber dispersion

curves have higher linearity and are selected because of easier calculation. Another common way

to display dispersion curves is in the form of phase velocityas shown in Figure 2.3 (b). Phase
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Table 2.1: Material Properties of the Steel Plate

Young’s Modulus Poisson’s Ratio Mass Density
(GPa) (Kg/m3)
206 0.3 7850

Table 2.2: Material Properties of The Aluminum Plate

Young’s Modulus Poisson’s Ratio Mass Density
(GPa) (Kg/m3)

70 0.33 2700

velocity is the velocity at which the phase/crest travels. The relationship between phase velocity

and wavenumber isvph = 2πf/ξ. Actually, Figure 2.3 (b) is most commonly used since it is easy

to read the characteristics of each wave mode.

From Figure 2.3 (b), we can see that for the plate of 1 mm thickness there are two wave modes

existing under frequency of 1 MHz: theS0 andA0 modes.S0 is the fundamental wave mode,

which has almost constant phase velocity through out the frequency range. Because of the stability

of S0, it is usually selected as an relatively ideal mode for non-destructive evaluation in plates.

2.3 Case study of Lamb wave propagation in an aluminum plate

In this section, finite element simulation is employed to study the Lamb wave behavior in an

aluminum plate using FEAP [36], and the results are comparedwith published experimental data

provided by D. W. Greve,et al [19]. The material properties of the aluminum plate are shown in

Table 2.2.

In the experiment, two PZT transducers are attached to the aluminum plate by silver epoxy. The

thickness of the plate is 1.59 mm, and the distance between the transducers is 20 cm. By applying

voltage on the PZT transducers, shear force is introduced tothe plate due to the piezoelectric
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effect. Based on the experiment, a numerical model is created, and the geometry of which is set to

be 0.8 m in x-direction, 0.5 m in y-direction and 1.59 mm in z-direction. The mesh sizes in x, y,

and z directions are 1 mm, 1 mm and 0.795 mm, respectively. To simplify the numerical model,

a point shear force is applied atx = 0.3 m, and the signals are measured atx = 0.5 m, which is

20 cm away from the excitation. The shape of excitation is shown in Figure 2.4. It is given by a

windowed sinusoidal signal expressed as:

V (t) =















V0 sin(ωt)

(

sin(ωt)
10

)2
t < 10π

ω

0 otherwise

(2.4)

Comparison is conducted between the numerical and the experimental results to verify the

accuracy of the finite element model. Figure 2.5 shows the comparison between the two results.

From the figure, we observe that,S0 mode travels faster than theA0 mode. In addition, slight

differences in arrival time are observed for bothS0 andA0 modes in the comparison. It is noticed

that the magnitude of theA0 mode is much larger than that obtained from the experimentalstudy.
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Figure 2.3: Dispersion curves for (a) wavenumber; (b) phasevelocity.
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Chapter 3

Analytical Calculation of Wave Propagation
in Pipe-like Structures

In this section, the characteristic equation of Lamb wave propagating in the pipe shown in

Figure 1.5 (b) is derived. The characteristic equation, also called dispersion equation, is obtained

from finding the possible wave modes in a given wave guide [29]. The dispersion curves contain

information of the geometry, the material properties of thewaveguide, and the frequency of the

input excitation. At a specific frequency, solutions of the characteristic equation might be obtained

numerically, and each solution corresponds to the wave speed of each wave mode. By tracking the

frequency, solutions can be plotted as continuous curves which are called the dispersion curves.

From the dispersion curves, the fundamental modes for a configuration might be estimated, and

the corresponding wave velocities can be calculated.

3.1 Derivation of Characteristic Equation

3.1.1 Mathematical Model

Figure 1.5 (b) shows the mathematical model of the problem tobe solved. An infinite hollow

cylinder of a single layer made of an isotropic material is placed in vacuum. The shear traction is

applied on the circumference of the pipe atz-coordinatesl and−l. The inside and outside radii
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of the pipe are denoted asci andco, respectively. For the surface excitation, the Morlet wavelet

which contains a wide range of frequencies, is given as the input tangential traction. The steady

state solution for a sinusoidal excitation is obtained, andis utilized to express the transient solution

by the wide-band excitation.

3.1.2 Governing Equation

The governing equation of wave propagation in an isotropic material, known as Navier’s displace-

ment equation of motion, is written as [27]

(λ+ 2µ)∇∇ · u+ µ∇2
u = ρ(

∂2u

∂t2
), (3.1)

whereλ andµ are Laḿe constants of the material,ρ is the mass density,u is the displacement

vector, and∇ is the three dimensional differential operator. Using Helmholtz decomposition, we

can express the displacement fields in terms of the scalar potentialφ and the vector potentialH as

u = ∇φ+∇×H. (3.2)

Substituting Eq. (3.2) into Eq. (3.1), we have

∇[(λ+ 2µ)∇2φ− ρ
∂2φ

∂t2
] +∇× [µ∇2

H− ρ
∂2H

∂t2
] = 0. (3.3)
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To satisfy Eq. (3.3) in any condition, we have

c21∇
2φ =

∂2φ

∂t2
,

c22∇
2
H =

∂2H

∂t2
,

(3.4)

whereH consists ofHr, Hθ andHz , and the longitudinal velocityc1 and the shear velocityc2

are given, respectively as

c1 =

√

λ+ 2µ

ρ
c2 =

√

µ

ρ
. (3.5)

Rewriting Gazis’s [15] potential field in exponential forms,we have

φ = f(r)cos(nθ)ei(ξz−ωt),

Hr = gr(r)sin(nθ)e
i(ξz−ωt),

Hθ = gθ(r)cos(nθ)e
i(ξz−ωt),

Hz = gr(r)sin(nθ)e
i(ξz−ωt),

(3.6)

whereω is the radial frequency,ξ is the wave number,n indicates the number of waves in the

circumferential direction. It should be noted that the applied shear traction excites waves that

propagate only along the axial direction of the pipe. Therefore,n = 0, andHr andHz are zeros

as well. The Laplacian operator∇2 for scalar potentialφ can be expressed in the cylindrical

coordinate system as

∇
2φ =

∂2φ

∂r2
+

1

r

∂φ

∂r
+
∂2φ

∂z2
, (3.7)

while for the vector potentialH, the Laplacian operator can be rewritten as:

∇
2
H = ∇ · (∇H), (3.8)

22



where the gradient ofH, ∇H is expressed as:

∇H =
∂Hr
∂r

er ⊗ er +
1

r
(
∂Hr
∂θ

−Hθ)er ⊗ eθ +
∂Hr
∂z

er ⊗ ez

+
∂Hθ
∂r

eθ ⊗ er +
1

r
(
∂Hθ
∂θ

+Hr)eθ ⊗ eθ +
∂Hθ
∂z

eθ ⊗ ez (3.9)

+
∂Hz
∂r

ez ⊗ er +
1

r

∂Hz
∂θ

ez ⊗ eθ +
∂Hz
∂z

ez ⊗ ez.

Denote Eq. (3.10) in matrix form as:

S =















∂Hr
∂r

1
r (
∂Hr
∂θ

−Hθ)
∂Hr
∂z

∂Hθ
∂r

1
r (
∂Hθ
∂θ

+Hr)
∂Hθ
∂z

∂Hz
∂r

1
r
∂Hz
∂θ

∂Hz
∂z















(3.10)

HereS is a second-order tensor. Divergence ofS can be obtained as:

∇ · S =

{

∂Srr
∂r

+
1

r
[
∂Srθ
∂θ

+ (Srr − Sθθ)] +
∂Srθ
∂z

}

er

+

{

∂Sθr
∂r

+
1

r
[
∂Sθθ
∂θ

+ (Sθr + Srθ)] +
∂Sθz
∂z

}

eθ (3.11)

+

{

∂Szr
∂r

+
1

r
[
∂Szθ
∂θ

+ Szr] +
∂Szz
∂z

}

ez.

Since in our case, only longitudinal wave modes are considered, Eq. (3.12) in circumference di-

rection can be obtained as:

∇
2Hθ =

∂2Hθ
∂r2

+
1

r

∂Hθ
∂r

+
∂2Hθ
∂z2

−
Hθ
r2
. (3.12)
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Table 3.1: Bessel functions in different regions [26]

whenξ < ω
c1

when ωc1
< ξ < ω

c2
whenξ > ω

c2

α1 =
√

α2; β1 =

√

β2 α1 =
√

−α2; β1 =

√

β2 α1 =
√

−α2; β1 =

√

−β2

γ1 = 1; γ2 = 1 γ1 = −1; γ2 = 1 γ1 = −1; γ2 = −1
Zn(αr) = Jn(αr) Zn(αr) = In(αr) Zn(αr) = In(αr)
Wn(αr) = Yn(αr) Wn(αr) = Kn(αr) Wn(αr) = Kn(αr)
Zn(βr) = Jn(βr) Zn(βr) = Jn(βr) Zn(βr) = In(βr)
Wn(βr) = Yn(βr) Wn(βr) = Yn(βr) Wn(βr) = Kn(βr)

To simplify the derivation, the spatial Fourier transform along z-direction is applied to Eq. (3.4).

With the property of Fourier transform∂f̂
∂x

= iξf̂ , Eq. (3.4) can be written as

∂2φ̂

∂r2
+

1

r

∂φ̂

∂r
+

(

ω2

c21

− ξ2

)

φ̂ = 0,

∂2Ĥθ
∂r2

+
1

r

∂Ĥθ
∂r

+

(

ω2

c22

− ξ2 −
1

r2

)

φ̂ = 0.

(3.13)

The general solutions of Eq. (3.13) are

φ̂ = [AZ0(αr) + BW0(αr)]e
−iωt,

Ĥθ = [CZ1(βr) +DW1(βr)]e
−iωt.

(3.14)

whereα2 = ω2/c21 − ξ2, β2 = ω2/c22 − ξ2, the notationsZ0, Z1, W0 andW1 are four different

types of Bessel functions. Table 3.1 shows how to choose appropriate parameters and Bessel

functions to make the solution stable. In Table 3.1,Jn andYn are the Bessel functions of the first

kind and the second kind, respectively, andIn,Kn are the modified Bessel functions.
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3.1.3 Displacement Field

With only longitudinal modes excited, the displacement fields can be obtained as

ur =
∂φ

∂r
−
∂Hθ
∂z

,

uz =
∂φ

∂z
+

1

r

∂(Hθr)

∂r
.

(3.15)

Taking the Fourier transform of Eq. (3.15) and substitutingEq. (3.14), we have

ûr = −γ1α1Z1(α1r)A− α1W1(α1r)B − iξZ1(β1r)C − iξW1(β1r)D,

ûz = iξZ0(α1r)A+ iξW0(α1r)B + β1Z0(β1r)C + γ2β1W0(β1r)D.

(3.16)

Here, the terme−iωt is omitted for simplicity, and it will be brought back in the final expressions

of ur anduz .

3.1.4 Stress Fields in Cylindrical Coordinate

The relationships between strains and displacements are expressed as

ǫrr =
∂ur
∂r

,

ǫrz =
1

2
(
∂ur
∂z

+
∂uz
∂r

),

(3.17)

and the stress-strain relations are given by Hooke’s Law as

σrr = λ∇2φ+ 2µǫrr,

σrz = 2µǫrz.

(3.18)
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Stress fieldsσrr andσrz are obtained by substituting Eq. (3.17) to Eq. (3.18) as

σrr = (λ+ 2µ)(
∂ur
∂r

) +
λ

r
ur + λ

∂uz
∂z

,

σrz = µ(
∂ur
∂z

+
∂uz
∂r

).

(3.19)

By taking the Fourier transform of Eq. (3.19) and substituting Eq. (3.16) to Eq. (3.19), the terms

σ̂rr andσ̂rz are written as

σ̂rr = [(ξ2 − β2)Z0(α1r) + γ1
2µα1
r

Z1(α1r)]A+ [(ξ2 − β2)W0(α1r) +
2µα1
r

W1(α1r)]B

+ 2µ[−iξβ1Z0(β1r) +
iξ

r
Z1(β1r)]C + 2µ[−iγ2ξβ1W0(β1r) +

iξ

r
W1(β1r)]D,

σ̂rz = −2iγ1ξµα1Z1(α1r)A− 2iξµα1W1(α1r)B + µ(ξ2 − β2)Z1(β1r)C

+ µ(ξ2 − β2)W1(β1r)D.

(3.20)
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3.1.5 Boundary Conditions

As shown in Figure 1.5 (b), a set of shear traction is applied at the coordinatesz = l andz = −l

on the outer surface of the pipeline. The boundary conditions can be expressed as

σrr(r = co) = 0,

σrz(r = co) = [δ(z − l)− δ(z + l)]e−iωt,

σrr(r = ci) = 0,

σrz(r = ci) = 0.

(3.21)

By replacingr in Eq. (3.20) withco andci, respectively, and by applying Fourier transform to the

boundary condition [27], we obtain

M























A

B

C

D























=























m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44













































A

B

C

D























= −2isin(ξl)























0

1

0

0























, (3.22)

whereM is the coefficient matrix, and the components are written as

m11 = (ξ2 − β2)Z0(α1co) + γ1
2µα1
co Z1(α1co),

m12 = (ξ2 − β2)W0(α1Co) +
2µα1
co W1(α1co),

m13 = 2µ[−iξβ1Z0(β1r) +
iξ
coZ1(β1co)],

m14 = 2µ[−iγ2ξβ1W0(β1co) +
iξ
coW1(β1co)],

m21 = −2iγ1ξµα1Z1(α1co),

m22 = −2iξµα1W1(α1co),

m23 = µ(ξ2 − β2)Z1(β1co),

m24 = µ(ξ2 − β2)W1(β1co).

(3.23)
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The expressions ofm31 to m44 in the matrixM can be obtained by replacingco with ci. Then,

the constants A, B, C, and D might be solved by applying Cramer’s rule as

A =
a

∆(ξ)
, B =

b

∆(ξ)
, C =

c

∆(ξ)
, D =

d

∆(ξ)
, (3.24)

where

a = −i2sin(ξl)det























0 m12 m13 m14

1 m22 m23 m24

0 m32 m33 m34

0 m42 m43 m43























, ∆ = det(M). (3.25)

Similarly, the expressions forb, c andd might be obtained by substituting[0 1 0 0]T to the second

column, third column, and fourth column ofM, respectively. Here, the dispersion equation is

written as∆ = 0.

3.1.6 Residue Theorem

Once the constants A, B, C and D in Eq. (3.22) are calculated, the displacement fieldsurr andurz

might be obtained by applying inverse Fourier transform to Eq. (3.16) as

ur =
1

2π

+∞
∫

−∞

ei(ξz−ωt)

∆(ξ)
[−γ1α1a(ξ)Z1(α1r)− α1b(ξ)W1(α1r)

− iξc(ξ)Z1(β1r)− iξd(ξ)W1(β1r)]dξ,

uz =
1

2π

+∞
∫

−∞

ei(ξz−ωt)

∆(ξ)
[iξa(ξ)Z0(α1r) + iξb(ξ)W0(α1r)

+ β1c(ξ)Z0(β1r) + γ2β1d(ξ)W0(β1r)]dξ.

(3.26)
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The next step is to evaluate the integration above by carrying out residue theorem. Residue

theorem [23] is one of the most important tool employed in general wave propagation problems

[18]. It is effective to calculate the line integrals of analytical functions in complex domain, and

has been utilized popularly to obtain analytical solutionsfor various kinds of waves.

Before applying residue theorem, we rewrite Eq. (3.26) as:

ur =
1

2π

+∞
∫

−∞

ei(ξz−ωt)

∆(ξ)
f(ξ)dξ,

uz =
1

2π

+∞
∫

−∞

ei(ξz−ωt)

∆(ξ)
g(ξ)dξ.

(3.27)

Since the two expressions in Eq. (3.27) are similar, we use the expression ofur to show the

application of residue theorem. Rewriteur as:

1

2π

+∞
∫

−∞

ei(ξz−ωt)

∆(ξ)
f(ξ)dξ =

1

2π

∫

C

ei(ξz−ωt)

∆(ξ)
f(ξ)dξ −

1

2π

∫

C′

ei(ξz−ωt)

∆(ξ)
f(ξ)dξ (3.28)

whereC is the closed contour in the complex plane, andC′ is the semicircle ofC. There are two

main aspects we need to consider in applying residue theorem. The first issue is to select the closed

contour in the complex plane, which could be the upper or lower contour as shown in Figure 3.1.

Choose the upper closed contour for example, letξ = Reiθ, and denote the integration along

the semicircleC′ asI. Then,I can be expressed as:

I = lim
R→∞

π
∫

0

f(Reiθ)ei(Rzcosθ−ωt)e−Rzsinθ

∆(Reiθ)
iReiθdθ, (3.29)
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The important term in Eq. (3.29) ise−Rz sin θ. In our problem, we are interested in the

displacement fields atz > a. From Eq. (3.29), it is easy to find that in order to make the integration

along the semicircle to be zero,sin θ is required to be positive. Therefore, we select the upper side

closed contour to evaluate the integration.

The second issue we need to consider is the poles located on the real axial of the complex plane.

Based on the previous description of the integration on the semicircleC′, rewrite Eq. (3.28) in the

form of residues, we have:

+∞
∫

−∞

ei(ξz−ωt)

∆(ξ)
f(ξ)dξ = 2πi

∑

Res, (3.30)

where the residues are expressed as:

Res =
ei(ξ̂z−ωt)

∆′(ξ̂)
f(ξ̂), (3.31)

Due to the physical meaning of the wave number,ξ’s are set to be positive. Therefore, we excluded

the negative poles and have the outward propagating waves inthe form ofei(ξ̂z−ωt). Similarly,

we evaluate the integration ofuz . Finally, the expressions ofur, uz are given as

ur =
∑

ξ̂

iei(ξ̂z−ωt)

∆′(ξ̂)
[−γ1α1a(ξ̂)Z1(α1r)− α1b(ξ̂)W1(α1r)− iξ̂c(ξ̂)Z1(β1r)− iξ̂d(ξ̂)W1(β1r)],

uz =
∑

ξ̂

iei(ξ̂z−ωt)

∆′(ξ̂)
[iξa(ξ̂)Z0(α1r) + iξ̂b(ξ̂)W0(α1r) + β1c(ξ̂)Z0(β1r) + γ2β1d(ξ̂)W0(β1r)],

(3.32)

whereξ̂ is the solution of the dispersion equation, and Eq. (3.32) describes the response under
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a steady state excitation. To get the response under a transient excitation, it is required to apply

Fast Fourier Transform (FFT) [6] to decompose the input signal into a set of sinusoidal inputs

with different frequencies and amplitudes, and then superpose the calculated displacement by each

input to get the final response.

3.2 Dispersion Curves

3.2.1 Name of Dispersion Curves

There are three types of modes in a cylindrical system, whichare the longitudinal (L), the flexural

(F) and the torsional (T) modes. Figure 3.2 shows the three types of modes. For each mode

type, a two index system, e.g. L (M,N), is used to indicate thewave modes. The first integer M

denotes the circumferential order of the mode, while the second integer N is the counter value

[26]. The modes spanning from zero frequency are named as thefirst mode, and the others are

given the names consequently in the order of their cutoff frequency. All the longitudinal modes of

circumferential orderM = 0 are axisymmetic.

3.2.2 Dispersion Curves for Pipes with Different Radius and Wall Thickness

In the previous section, we have obtained the expression of the dispersion equation∆ = 0. By

numerical calculations, the solutions of the equation might be plotted. To obtain the solutions of the

dispersion equation, we fix the frequency and search the wavenumbers that satisfy det(M ) = 0.

Due to the nature of Bessel functions, the determinant ofM is sensitive to the wavenumber.

Therefore, it is not trivial to find the wavenumbers to make the determinant to vanish. In this

thesis, the wavenumber step is set to be∆ξ = 0.3 to calculate the determinants of the coefficient
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matrixM . Then, the linear interpolation technique is used to obtainzeros when the determinants

change the sign.

Figure 3.3 shows the dispersion curves for pipes that have the outer radius of 136 mm with

the wall thicknesses of 1 mm, 2 mm, 4 mm and 6 mm, respectively.It is observed that dispersion

curves are sensitive to the geometry of the pipe. More wave modes exist under a certain frequency

if the thickness is larger. Another important observation is that the dispersion curves show the

dispersion of velocity versus frequency. In NDE techniques, excitation signals usually consist of a

wide range of frequencies. During the wave propagation, theshape of the response might change

since the wave velocities depend on the frequency, and some waves travel faster than the others

[7]. If the velocities are too close, waves cannot be identified clearly. Therefore, it is important to

excite wave modes which have distinct phase and group velocities.

Figure 3.4 shows the dispersion curves for pipes have same wall thicknesst = 1 mm and

different outer radius, which are 13 mm, 25 mm, 50 mm and 136 mmrespectively. From Figure 3.4,

it is observed that the first longitudinal wave mode L(0,1) has the wave velocity close to the wave

speed
√

E/ρ [26] in a bar, which is 5159 m/s in this case. With the frequency increasing, the

wave velocity of L(0,1) decreases, then gradually increaseand approach to a certain velocity. With

the increasing of the outer radius of the pipe, L(0,1) drops at lower frequency and the dispersion

curves for the pipe get closer to that for plates of the same thickness. From Figure 3.4, we can see

that the dispersion curves are not sensitive to the change ofradius if the outer radius is larger than

50 mm.
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3.3 Analytical Solution

By numerical calculation, dispersion curves for a pipe that has the outer radius of 136 mm and

the thickness of 1 mm are obtained as shown in Figure 3.5. As mentioned above, for a hollow

cylinder, the fundamental longitudinal modeL(0, 1) begins at zero frequency, and as the frequency

increases, the phase velocity increases and converges to a certain value. The second modeL(0, 2)

begins at a certain frequency with an infinite phase velocity. For higher frequency, the velocity

significantly reduces to Young’s velocity
√

E/(ρ(1− ν2)) [26]. As shown in Figure 3.5, the

L(0, 2) mode velocity approaches to Young’s velocity in the frequency range from 0 to 1 MHz,

while L(0, 1) is more dispersive in the same frequency range. In addition,as an axisymmetric

mode in pipe-like structures, theL(0, 2) mode wave travels through the thickness of the pipe wall,

which makes it useful for detecting the circumferential defects [11].

A pipe structure is considered as shown in Figure 1.5(b). Tangential surface traction is applied

on the outer surface of the pipe atz = 0.1 m andz = −0.1 m, respectively, and a Morlet signal

is applied as an input as shown in Figure 3.6 (a). The amplitudes of Fourier coefficients of the

input are plotted in Figure 3.6 (b). The temporal response iscalculated analytically atz= 0.2 m

(0.1 m away to the excitation coordinate atz = 0.1 m). By substituting the wavenumbers for each

excitation frequency to Eq. (3.32), the displacement fieldsare calculated, and the longitudinal and

radial displacements are plotted in Figures 3.7 (a) and 3.7(b), respectively.
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Figure 3.3: Dispersion curves for pipes of the outer radiusco = 136 mm with the thicknesses (a)
t = 1 mm and (b)t = 2 mm, (c)t = 4 mm and (d)t = 6 mm, respectively.
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Figure 3.4: Dispersion curves of pipes of the thicknesst = 1 mm with the outer radii (a)co =
13 mm and (b)co = 25 mm, (c)co = 50 mm and (d)co = 136 mm, respectively
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Chapter 4

Numerical Simulation

4.1 Finite Element Formulations

The finite element formulation for the wave propagation system is expressed by the equation of

motion as [5]:

σij,j + fBi = ρüi (4.1)

whereσij is the stress component,fBi is the body force,ρ is the mass density andui is the

displacement component.

The stress boundary condition and the displacement boundary condition are expressed respec-

tively as:

σijnj = F
Sf
i ,

ui = uSui .

(4.2)

Applying principle of virtual work on Eq. (4.1), we have

∫

V
(σij,j + fBi − ρüi)ūidV = 0. (4.3)
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By applying divergence theorem, which is expressed as:

(σijūi),j = σij,j ūi + σijūi,j . (4.4)

Eq. (4.3) is rewritten as:

∫

S
σijūinjdS +

∫

V
fBi ūidV −

∫

V
ρüiūidV −

∫

V
σijūi,jdV = 0. (4.5)

Substituting Eq. (4.2) to Eq. (4.5), the weak formulation isobtained as:

∫

S
F
Sf
i ūidS +

∫

V
fBi ūidV −

∫

V
ρüiūidV −

∫

V
σijūi,jdV = 0. (4.6)

By applying Hook’s Law,

σij = Cijklǫkl (4.7)

and considering the symmetries of the stress tensor, we have

∫

S
F
Sf
i ūidS +

∫

V
fBi ūidV −

∫

V
ρüiūidV −

∫

V
CijklǫklǭijdV = 0. (4.8)

The displacement fieldu and strain vectorǫ is expressed by introducing the shape functionHu

and the strain-displacement matrixB as:

u = HuU,

ǫ = BU.

(4.9)
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whereU is the nodal displacement matrix. Then, we have Eq. (4.8) in the matrix form as

Ū
T
∫

S
H
T
uF

SdS + Ū
T
∫

V
H
T
u f
BdV − Ū

T
∫

V
ρHTuHudV Ü− Ū

T
∫

V
B
T
CBdVU = 0.

(4.10)

By eliminatingŪT , we have

∫

S
H
T
uF

SdS +

∫

V
H
T
u f
BdV −

∫

V
ρHTuHudV Ü−

∫

V
B
T
CBdVU = 0. (4.11)

Rewriting Eq. (4.11) as:

MÜ+KU = F, (4.12)

whereM is the mass matrix,K is the stiffness matrix andF is the force vector. They are expressed

respectively as:

M =

∫

V
ρHTuHudV,

K =

∫

V
B
T
CBdV,

F =

∫

S
H
T
uF

SdS +

∫

V
H
T
u f
BdV.

(4.13)

4.2 Comparison of Numerical and Analytical Results

Numerical simulations are carried out using the finite element method. A pipe of the lengthL =

3 m, the inner radiusci = 0.135 m, and the thicknesst = 1 mm is discretized with eight-node solid

elements. The material is linear elastic, Young’s ModulusE = 206 × 109Pa, and Poison’s Ratio

ν = 0.3. The excitations are applied atz = 0.1 m andz = -0.1 m, and the measuring point is located
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at z = 0.2 m.

Figure 4.1 (a) shows an example of discretized finite elementmodel and Figure 4.1 (b) shows

an element of the model. There are two sets of mesh sizes used in this study. Figure 4.1 (b)

demonstrated the smaller sizes, which in the longitudinal,circumferential, and radial directions

are 0.25 mm, 10.7 mm, and 0.5 mm, respectively. Another set ofmesh sizes are 1 mm in axial

direction, 10.7 mm in circumferential direction and 0.5 mm in radial direction. The time step is

selected to be 3E-8 s to confirm the stability of the solution.Figure 4.2 shows the comparison of

the analytical and numerical results using two different mesh sizes. From the figure, we observe

that the result from smaller mesh sizes matches better with the analytical solution than that from

the larger sizes. In both Figure 4.2 (a) and (b), the first two wave packages of L(0,2) and L(0,1)

modes, respectively, are developed by the excitation atz = 0.1 m, while the following two waves

are from excitation atz = −0.1 m. It is observed that L(0,1) mode waves are more dispersive and

the magnitudes are smaller than those of L(0,2) mode waves.

Note that the mesh size in the circumferential direction dose not influence the magnitude and

the arrival time of the signal significantly. It is because that the excitations are applied symmetri-

cally in circumference, which makes the excited waves do notpropagate in that direction. How-

ever, the arrive times of waves are quite sensitive to the mesh size in axial direction. Different mesh

sizes, 1 mm and 0.25 mm, were used to enhance the accuracy of arrival time. For 1 mm mesh size,

the arrival times of L(0,2) from the numerical simulation are close to those from the analytical

solution, while the arrival times of L(0,1) from the two methods vary by about 5% for the signal

excited atz = −0.1 m. For 0.25 mm mesh size, the wave packages of L(0,2) from analytical

and numerical methods are well matched for both signals camefrom near and far excitations. In

Figure 4.2 (b), the calculated arrival times ofL(0, 1) mode waves by the excitation atz = −0.1 m
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Figure 4.1: (a) An example of discretized FE model, and (b) anelement of the model.

45



are about122.8 µs and122 µs, respectively by the analytical and numerical calculations, and the

variation in group velocity of L(0,1) mode is less than 1%.

4.3 Lamb Waves in Pipes with Defects

Due to the higher accuracy of the smaller mesh sizes, it is used for the simulations in this section.

For the investigation of the defects in pipe-like structures, the comparison of the signals from an

intact structure and a damaged structure might enable the quantitative estimation of the damage.

As shown in Figure 4.3, a defect is modeled by deleting ten elements along the circumferential

direction atz = 0.4 m. The defect is through the thickness of the pipe, and the defect width is

1 mm in the axial direction of the pipe. Excitations are applied atz = 0.1 m andz = −0.1 m, and

the signals are measured at 3 different locations, which arez = 0.25 m, z = 0.45 m andz = 0.6 m.

Figure 4.4 shows the received signals from the intact pipe and the damaged pipe. The waves

measured at a point (z = 0.25 m) between the excitation location (z = 0.1 m) and the defect

(z = 0.4 m) are plotted in Figure 4.4 (a). It is observed that the wavesare reflected from the

defect, and the magnitudes of the reflected waves are similarto the magnitudes of the incident

waves in the intact pipe. The waves shown in Figure 4.4(b) aremeasured atz = 0.45 m (0.05 m

away from the defect). Compared with the waves measured in theintact pipe, the magnitudes are

reduced significantly although the times-of-flight are of slight difference. The waves still can reach

to the measuring point, but the reflection and diffraction around the defect reduce the wave energy

significantly. Figure 4.4 (c) shows the displacements measured atz = 0.6 m (0.2 m away from the

defect). The influence of the defect is reduced, compared to the result shown in Figure 4.4 (b). The

magnitudes of the displacements still decrease, but the ratio of the signal from the damaged pipe

to the signal from the intact pipe is larger than the ratio observed atz = 0.45 m.
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Figure 4.2: Comparison of displacement fielduz on the outside surface of a pipe withco= 136 mm
andt= 1 mm using mesh size in z direction of: (a) 1 mm, and (b) 0.25 mm.
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Figure 4.3: Schematic of a pipe with a defect atz= 0.4 m.

4.4 Parametric Study of Responses for Different Defect Sizes

In this section, we use the finite element method to simulate Lamb wave propagation in damaged

pipes with different sizes of defects, including the differences in defect width and depth. Our goal is

to investigate how the defect size influences the response signals. Figure 4.5 shows the comparison

of the signals resulting from pipes with defect widths of 2 mmand 1 mm, respectively. Both

defects span through the wall thickness of the pipes, and their sizes in circumferential direction

are 107 mm. The FE model used in this comparison is the same as the model used in the previous

section. The signal is recorded at the locationz = 0.6 m. It is observed that the width of the defect

has negligible influences on the arrival times as well as on the magnitudes of the waves. Although

the width of the defect increases, the dimension is still very small compared with the distance

between the measuring point and the defects, thus the changeis not large enough to induce any

changes into the received signals.
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Figure 4.6 shows the comparison of the signals obtained fromintact pipes, and the pipes with

different defect depth of 0.25 mm, 0.5 mm, 0.75 mm and 1 mm respectively. In order to investigate

the waves from defects of different depths, the thickness ofthe pipe is needed to be divided into 4

layers. Smaller mesh sizes require more time and computer memory to conduct the simulations.

Therefore, a pipe of smaller size in the longitudinal direction is used in this section: the thickness

of the pipe is 1 mm, while the length of the pipe is modified to 1.4 m. The mesh sizes of the

model are 0.25 mm in radial direction, 0.25 mm in axial direction and 10.7 mm in circumferential

direction. The defect is located atz = 0.2 m, and the measuring point is atz = 0.35 m.

From Figure 4.6, we observe that the depth of the defect is inversely proportional to the mag-

nitude of the received incident signals. It is easy to understand that the deeper the defect, more

waves are interfered and the magnitudes of the signals are decreased. Meanwhile, we observe that

the depth of the defect does not have much influence on the arrival times of the signals. Another

interesting thing is that when the depth of the defect is smaller than the thickness of the pipe, ad-

ditional wave modes are generated in the pipe walls. Those wave modes might be generated by

the diffractions of the incident wave modes on the defects. Figure 4.6 (d) shows the comparisons

between the 4 signals from pipes with defects of different depths on them. It is observed that the

magnitudes of refracted signals increase a lot when the defect depth gets deeper from 0.25 mm to

0.5 mm, while they remain almost the same when the defect depth goes from 0.5 mm to 0.75 mm.

The possible reason is that the particle vibration on the surface of the pipe is much smaller than

the vibration inside the pipe wall, which makes the signals larger when they are refracted in the

middle of the pipe wall.
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Figure 4.4: Comparison of displacements measured in pipes (one is intact, and the other is dam-
aged): Displacementsuz are measured (a) atz= 0.25 m, (b) atz= 0.45 m, and (c) atz= 0.6 m.

50



0 0.4 0.8 1.2 1.6 2

x 10
−4

−6

−4

−2

0

2

4

6
x 10

−12

Time (s)

U
z (

m
)

 

 

1 mm width
2 mm width

Figure 4.5: Comparison of displacements measured atz = 0.6 m on the outer surface of pipes with
defect width of 1 mm vs 2 mm.

51



0 0.2 0.4 0.6 0.8 1
x 10

−4

−6
−4
−2

0
2
4
6x 10

−12

Time (s)

U
z (

m
)

 

 

Intact
0.25 mm

(a)

0 0.2 0.4 0.6 0.8 1
x 10

−4

−6
−4
−2

0
2
4
6x 10

−12

Time (s)

U
z (

m
)

 

 

Intact
0.5 mm

(b)

0 0.2 0.4 0.6 0.8 1
x 10

−4

−6
−4
−2

0
2
4
6x 10

−12

Time (s)

U
z (

m
)

 

 

Intact
0.75 mm

(c)

0 0.2 0.4 0.6 0.8 1
x 10

−4

−6
−4
−2

0
2
4
6x 10

−12

Time (s)

U
z (

m
)

 

 

Intact
1 mm

(d)

0 0.2 0.4 0.6 0.8 1
x 10

−4

−6
−4
−2

0
2
4
6x 10

−12

Time (s)

U
z (

m
)

 

 

0.25 mm
0.5 mm
0.75 mm
1 mm

(e)

Figure 4.6: Comparison of displacements measured atz = 0.35 m on the outer surface of pipes
with: (a) non-defect vs defect depth of 0.25 mm; (b) non-defect vs defect depth of 0.5 mm; (c)
non-defect vs defect depth of 0.75 mm; (c) non-defect vs defect depth of 1 mm; (e) defect depth
of 0.25 mm, 0.5 mm, 0.75 mm and 1 mm.
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Chapter 5

Summary and Conclusions

This thesis focuses on investigating the characteristics of Lamb wave propagation in pipe-like

structures. Both theoretical analysis and numerical simulation are conducted to study the Lamb

wave behavior under wide-band excitations which are symmetrically applied on the outer surface

of a pipe in circumferential direction. The analytical and numerical results are compared, and the

accuracy of the finite element model is verified for further investigation of Lamb waves in damaged

pipelines.

In Chapter 1, a brief introduction of Structural Health Monitoring and Non-Destructive Eval-

uation is conducted, and the motivation and objectives of this thesis are elaborated as well. The

detailed contents of Chapter 1 include:

• Define the concept of damage in structures;

• Explain the necessities of SHM and DNE methodologies;

• Introduce three commonly used NDE methods;

• Present the advantages of Lamb wave as a relatively ideal tool for ultrasonic testing;

• Introduce the developments of the theories and the applications of Lamb waves in NDE area;

• Explain the motivation and objectives of this research.
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Lamb wave propagation in plates is studied in Chapter 2. The main work conducted in Chapter

2 includes:

• Introduce two types of Lamb wave modes in plates;

• Explain two criteria of choosing proper wave modes for structural integrity inspection;

• Outline the derivation of characteristic equations of Lambwaves in plates;

• Plot the dispersion curves of a steel plate of 1 mm thick usingPACshare DispersionPlus

Curves;

• Verify the accuracy of the numerical simulation of wave propagation in an aluminum plate

by comparing with published experimental data.

Chapter 3 and Chapter 4 investigated wave propagation in pipe-like structures both analytically

and numerically. Main contents in these two chapters are shown as following:

• Show the detailed derivation of dispersion equation of Lambwaves in pipe-like structures;

• Plot the dispersion curves of Lamb waves in pipelines, and compared them between pipes

with different wall thicknesses and outer radii;

• Calculate the displacement fields on the outer surface of an intact pipeline;

• Simulate Lamb wave propagation in an intact pipeline and compared the numerical results

with the analytical results;

• Conduct parametric study to investigate the influences of defect sizes on Lamb wave behav-

iors in pipe-like structures.
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The derivation of dispersion equation of Lamb waves in pipe-like structures is followed the

initial work conducted by Gazis in 1959. After the dispersion equation is derived, the dispersion

curves are plotted for pipes with different geometries by solving the dispersion equations. The

comparisons show the sensitivity of the dispersion curves to the geometry of the pipelines. It is

observed that, as the outer radius of a pipe increases, the wave velocity of L(0,1) mode decreases

at lower frequency and the dispersion curves of a pipe get closer to those of a plate with the same

thickness and material properties. On the other hand, as thewall thickness of a pipe increases,

more wave modes exist in the pipe. To obtain the displacementfields generated by Lamb waves

in an intact pipe, a steel pipe with 1 mm wall thickness is selected for analytical calculation and

numerical simulation. Excitations are applied as shear tractions atz = -0.1 m andz = 0.1 m on

the outer surface of the pipeline and the received signals, which are the displacement fields, are

measured at locationz = 0.2 m, wherez denotes the coordinate in axial direction of the pipe.

The excitation is a wide-band shear traction with center frequencyfc= 500 kHz. The comparison

between the results from the two methods shows good agreement, especially for the wave mode

L(0,2), and the accuracy of the numerical model is verified.

After the accuracy is confirmed, finite element simulations are carried out to study Lamb waves

in damaged pipelines, and the results are compared with the waves calculated in the intact pipe.

From the comparison, it is observed that waves are reflected from the edges of the defects. The

magnitudes of the waves are more sensitive to the defect thanthe time delays, and the effect is less

eminent when the distance from the defect to the measuring point increases. A parametric study

is conducted to compare the signals from damaged pipes with different defect widths and depths.

The signals obtained from the damaged pipes with defect widths of 1 mm and 2 mm are studied

in this thesis. From the signals, it is observed that the longitudinal modes in the pipeline are not
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sensitive to the widths of the defects, and the signals resulting from the two defects have trivial

difference both in magnitude and arrival time. On the other hand, signals from pipes with different

defect depths show significant differences. The magnitudesof the incident waves are inversely

proportional to the depths of defects. In addition, from thecomparisons one can observe that more

wave modes are introduced to the damaged pipelines due to thediffractions by the defects. The

magnitudes of the waves generated inside the pipe walls are larger than those generated near the

surface of the pipes.
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