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ABSTRACT

NON-DESTRUCTIVE EVALUATION USING GUIDED WAVESIN PIPE-LIKE
STRUCTURES

By

Jingjun Shen

For the last hundred years, rapid development in economyeagiheering have accelerated
the construction of large amount of different types of cstiuctures, machines, and airplanes. As
time goes by, those structures and machines have detedaatl become unable to perform their
designed functions due to the defects generated during gbherice lives. To test the integrity
of structures and evaluate their health states, in the pasta decades, many methods has been
developed and utilized. Ultrasonic guided waves have békred for accurate diagnosis of the
structures that have thin structural components becaubeioigood performance in long distance
propagation and sensitivity to defects in the structureshis thesis, wave propagations excited
by surface-mounted instruments such as PZT and transdogsrattached on an infinite isotropic
hollow cylinder are investigated. A mathematical modehaf tvave propagation system is studied
both analytically and numerically. A detailed derivatiohtiee characteristic equation for pipes
is conducted, and the development of waves is simulated) tisanfinite element method (FEM).
Compared with the analytical results, the accuracy of thearigal modeling is verified, and Lamb
wave propagation in pipes with defects is studied as well. @pmetric study, the influence of the

defect depth on the received signals is investigated.
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Chapter 1

| ntroduction

On August 1st, 2007, during the evening rush hour, 1-35W Idssgpi River Bridge collapsed
suddenly, and killed 13 people. According to the report fidational Transportation Safety Board
[20], the disaster was caused by failure of the undersizedejplate, which was not able to carry
the increased concrete surface load. Back to history, hdedsestructural failures like 1-35W
Bridge collapse happened in the world, and most of them warsethby poor maintenance and
lacking of inspection. On August 1st 1976, a road bridge wigéms in Australia failed due to
column fracture; On July 17th 1981, a double-deck suspefumt®tridge in Hyatte collapsed at
Kansas City, Missouri because of overload and weak jointsyiayn 12th 2002, the Buran hangar
in Kazakhstan collapsed due to structural failure causeddoy maintenance. All these disas-
ters sounded an alarm that more attention is needed to b@pdite health states of the existing
structures. Structural damages and failures threatenmilives and at the same time cause great
financial losses. The United States spends a huge amountr@&ymmore than 200 billion dollars
per year, just for the maintenance of aircrafts, civil stmoes and mechanical engines. Struc-
tural Health Monitoring (SHM) emerges as an important eegiimg technique since it enables
a cost-effective way to inspect structural health and plesibasis for condition-based structural

maintenance.



1.1 Structural Health Monitoring and Non-Destructive Evalu-

ation

Before the review of structural health monitoring, it is inn@amt to introduce the definition of
damage. In terms of structural health, damage is definedeashéinge introduced to the original
system, which can cause adverse effects to its designetidnrar performance. All damages
begin from the material level and grow to the components@sthucture level when the structures
undertake different kinds of loadings [34]. The adverse&# caused by damages might come
immediately or in the future, and even a very small local dgenanay cause global collapse of
the structures eventually, just as the collapse of I-35W dgxidTherefore, our goal is to develop
structural health monitoring systems which are sensitwdifferent kinds of damages, and it will

enable us to avoid sudden failures of the structures by giadithe possible long term failures.

(b)

Figure 1.1: Possible areas to apply SHM systems: (a) theedalhte Bridge [21], and (b) an
airplane [1]. (For interpretation of the references to caiahis and all other figures, the reader is
referred to the electronic version of this thesis.)

Structure Health Monitoring refers to a wide rang of teclweis, which include sensors, smart
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materials, data transmission, signal processing and sisagnd so on. It is an integrated process,
which aims to diagnose damages, defects and flaws in steschyr collecting data of structural
responses under certain excitations or surrounding emviemts and analyzing those data. By
conducting SHM, it is possible to determine the 'state’ ad #tructural health and to predict the
failure of the structures. There are five main objectivestég25], which are defect detection
and location, defect identification, defect assessmefectimonitoring, and failure prediction. On
the other hand, SHM is usually conducted during the operaifadhe structures. It provides the
real-time structural behavior under different excitatipwhich could be valuable information for
better design and management of structures. Figure 1.1ssih@ypossible areas to apply SHM.

However, there are two main challenges in SHM techniqueg. @the most significant chal-
lenges is signal interpretation. During the vibrationdsthSHM, the received signals are influenced
not only by the damages in the structures, but also by the@mwiental conditions, the operational
variabilities, and so on. Because of the complexity of theaurding environments, diagnosis of
the defects might be inaccurate. Another challenge is thiM & often carried out by low fre-
guency global vibration tests. This means typical locadobdamages/defects might not be able to
influence the result of the vibration test. Therefore, imiatdstructural collapse caused by local
damages might not be predictable using the conventionahiqaes.

Non-Destructive Evaluation (NDE) is also developed to detke flaws/faults in structures.
One of the main difference between SHM and NDE is that in an Siysem, the locations of
sensors, and the instrumentations are fixed from measutémereasurement, while in an NDE
system the sensors and instrumentations are movable aegahmtion results of structures vary
[9]. High flexibility makes NDE capable to be conducted afetiént locations of the structures

and detect damages which might not be detected by SHM. Andifierence between SHM and



NDE is that for NDE, evaluation of the remaining lifetime isually not a goal of NDE.

Compared to SHM, NDE is conducted more locally and emphasipes on the characteristics
of the defects, such as orientation and size, or the sewdrttye damages [14]. There are mainly
two types of NDE system, passive NDE and active NDE. The pa$$DE systems use sensors to
record the loads, stress in the structures and the influgrstgrounding environments to the struc-
tures [17]. The passive NDE listens to the behavior of thecstires under different load scenarios
and environmental conditions. Active NDE uses transndtteremit signals to the structures, and
detects the presence and the characteristics of the datmagaalyzing the responses given by the
structures.

With the development of new materials and computationaacityy NDE techniques are rapidly
developed in the past several decades. There are sever@ majhodologies to conduct non-
destructive evaluation. One of them is ultrasonic testiRgr ultrasonic testing, transducers are
applied to excite waves (vibrations) to propagate alongdiésigned path. The signals passing
through the materials or structures will be reflected wheay ttneet the cracks, corrosions, or
flaws in the materials, and received by the applied sensaditer fhat, the collected data will be
analyzed to find out the locations and the sizes of the defé&ugsire 1.2 shows the schematic of
ultrasonic NDE.

Another commonly used method is performed by using dye pametThe method applies a
penetrating liquid over the surface of the structure whiebkds to be detected. The liquid will
enter to the discontinuities of cracks on the structurese [irhitation of this method is that it is
time consuming and usually used to detect surface flaws.

There is another non-destructive evaluation method cadldbgraphy method. It is used for

most projects over a century. The industrial radiographgsusn X-ray device as a source of



Angle
Wedge %

(b)
Figure 1.2: (a) Angular sweep with angle wedge, and (b) B-§tah

radiation. When the radiographic image taken by the X-rayiogeis processed, the image of
varying density in the structure is obtained. By analyzing iftlnage, the location and size of
material imperfection can be identified.

In this thesis, we investigate NDE using Lamb waves in pipe-structures. Lamb wave
inspection is recently developed and utilized in non-desive evaluation for plates and pipe-like

structures due to its good performance in detecting thectiefie thin-walled structures.

1.2 PZT and MFC Transducers

In order to excite Lamb waves in thin-walled structuresy$ducers are needed to be mounted on
the surfaces of the structures and to emit different typsgyofals. In this section, we introduce two
different transducers, which are the PZT actuator-sensbttae MFC transducer. The mechanisms

of how they work are explained and their advantages and hsaages are discussed.
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Figure 1.3: Schematics of PZT actuator.

1.2.1 Piezodectric Effect and PZT Actuator-Sensor

PZT is the abbreviation of Piezoelectric ceramic Lead Ziate Titanate. It uses the piezoelectric
effect to measure the stress or strain in a structure by ctimgehem to electrical charge or vice
verse. Figure 1.3 shows the piezoelectric effect of a PZ§@en

Piezoelectric effect is discovered by Pierre Curie in lateeteéenth century, however its first
application in sensing was 70 years later in 1950s. Withiese decades, PZT has become one of
the most commonly used piezoelectric materials because loigh piezoelectricity and sensitivity
to stress and strain change. However, it is brittle and isabt# to work in harsh environments
for long time. Another disadvantage of PZT is that its fleliiypiis not good enough for curved
surfaces such as surfaces of pipelines. Therefore, a meibléectuator-sensor which can be

perfectly mounted at the surface of pipe-like structureteigeloped.

6



Acrylic

. / Copper
}’ZT \/Epoxy Electrodes

Fiber

Figure 1.4: Schematic of MFC transducer [33].

1.2.2 MFC Transducers

The Macro-Fiber Composite (MFC) is an innovative, low-cosizpelectric device developed by
NASA in 1999 for controlling vibration and noise. The MFC s actuator-sensor in the form of a
thin patch. It consists of unidirectionally rectangulaggnceramic rods sandwiched between two
layers of films, which containing tiny electrodes that caansfer a voltage directly to and from
ribbon-shaped rods. Just like PZT, the MFC will stretch whés subjected to a voltage. Figure
1.4 shows the schematic of the components of MFC. Compareditidraal piezoceramics, there
are several advantages of MFC. Firstly, it is flexible and aapdrfectly mounted at curved-shape
structures, such as aircraft wings, pipelines, etc. Sdgpfide ceramic fibers provide higher
strength and energy density over monolithic piezoceraf@ég This makes MFC have higher

durability to the harsh surrounding environments.
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1.3 History of Non-Destructive Evaluation Using Guided Waves

Lamb waves, different from ultrasonic bulk waves, existrieef plates and pipes, and the Lamb
wave particles move in two-dimensional vibration modeg direction of wave propagation and
the normal direction of the plate or pipe surface. Lamb warepagate in plates of thickness less
than 5\, where) is the Rayleigh wavelength [2]. When the plate thickness iatgraharb ), the
waves behave like Rayleigh waves, which are the surface vexigting on the boundary of a free

half space.

1.3.1 Theory of Lamb Waves

Lamb waves are named after a British mathematician, Horacebll22], to acknowledge his
work on investigating the characteristics of vibration gblate, the thickness of which is much
smaller than the wavelength. His research demonstratediffeeence between Lamb waves and
bulk waves, and described the Lamb waves in mathematicaltieqs. There are several reasons
which make Lamb wave to be a relatively ideal tool to deteetdkfects in thin-walled waveg-
uides. Firstly, Lamb waves can propagate for a longer distdhan bulk waves. This makes
lower cost non-destructive evaluation possible, sincéoiager pipelines fewer devices are needed
for exciting and receiving Lamb wave signals. Secondly, hamaves are sensitive to defects in
the waveguides. By selecting different wave modes, defetttsdifferent characteristics can be
detected. Thirdly, due to the reflection by the boundariesnh waves propagate through the
thickness of the waveguides. It means Lamb wave inspeiable to detect defects not only on
the surfaces of the waveguides but also inside the waveg{iijle

The propagation of guided waves has been studied for oventarge In 1889, Pochhammer

8



and Chree [8] first investigated the wave propagation in a ifréeite long cylindrical rod. At

the same time, Lord Rayleigh [28] and Horace Lamb considéregtoblem of wave propagation
in an elastic solid bounded by two parallel surfaces, theadee of which is much smaller than
the wavelength. In the following few decades, theories ofevaropagation in solid materials
were fully developed by many researchers, such as Graff f&{lowitz [24], etc. Based on

the theory developed by Pochhammer and Chree, Gazis [15fdettie characteristic equation
of the guided waves propagating in a hollow isotropic cyindand calculated the solutions of
the equation numerically [16]. Since then, dispersion esrgf wave propagation in a hollow
cylinder were developed, and the characteristics of guwlade modes were interpreted. After
Gazis’s work, a great deal of research has been conductaddstigate the wave motions in more
complicated systems such as pipelines with multilayerg [@6indrical structures surrounded by

different environments [3, 31], and pipelines filled withvita

1.4 Lamb Wave Inspection in Industries

Although the theoretical analysis of Lamb wave propagaitiopipe-like structures has been well
developed, there were few practical applications of guidlades for the inspection of pipes before
1990 due to the limitation of computational calculation@][3~rom 2000, with rapid improvement
of computational capacity, the techniques of guided waspeaugtion in pipelines were significantly
improved, including transducer design and signal analysitypical NDE method used for pipe-
like structures is shown in Figure 1.5 (a) [35]. A transnmitieg, which acts as a receiver as well, is
mounted on a pipe, and different types of signals are enfitted the elements. Once Lamb waves
are excited, the waves travel through the pipeline. Wherethases meet defects in it, the waves

change the modes and get reflected or diffracted. Therdfardocations and sizes of defects can

9



be diagnosed by analyzing the received signals. In thisghas analytical solution is developed
based on the mathematical model as shown in Figure 1.5 (b)thensolution is compared with

numerical results.

(b)

Figure 1.5: (a) Cylindrical phased array [35] and (b) mathgzabhmodel for longitudinal wave
propagation.

1.5 Motivationsand Objectives of the Research

There are million miles of pipelines across the world, cagyimportant resources such as wa-
ter, oil, gas, etc., and meanwhile they are exposed to hamglhoements. Those pipelines are
threatened by corrosion, weathering, or mechanical impetich may cause the leakage of the
transported materials. Therefore, it is urgently requiedvaluate the integrity of the pipelines
and ensure safe transportations of the resources.

As mentioned in the previous section, for thin-walled pipes$, the most commonly used non-
destructive evaluation tool is Lamb wave. It overcomes ibadlantages of traditional ultrasonic
testing, and the development of industrial techniquesadselerates the application of Lamb wave
inspection.

10



In this thesis, our objectives are to:

e Study Lamb wave propagation in pipe-like structures botiditally and numerically;

o Compare the analytical and numerical results to verify tloeigary of numerical simulation;
e Simulate Lamb wave propagation in pipes with defects;

e Investigate the received signals by parametric study fiterdint defect depths.

The calculated analytical solution is used as a referemgekio verify the accuracy of numer-
ical simulation. On the other hand, once the accuracy of timenical model is verified, it is used
to simulate the wave behaviors in pipes with different siaedefects, and provides a reference
to track the development of the defects and investigatentteeince of defect size on the received

signals.
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Chapter 2

Lamb Wave in Plates

A thin plate has two paralleled surfaces which form a guidéhto Lamb waves and guide
the direction of wave propagation in the plates. For pratipplication, the materials used in
structures, such as steel and aluminum, have low dampingeitise materials and the energy
losses of the Lamb waves are very limited [12]. This is theoedor the long distance propagation
of Lamb waves.

There are two basic types of wave modes existing in a platehndre the symmetric modes
S; and the antisymmetric model, respectively. For symmetric wave modes, the particlesa
symmetrically with respect to the mid-plane of the plateil@for antisymmetric modes, the wave
modes are antisymmetric to the mid-plane of the plate. Thersatics for the two modes are
shown in Figure 2.2. The subscriptdenotes the order of the wave mode, and it is assigned
following the order of the cutoff frequency of each wave mode the frequency increases, the
number of wave modes in a plate increases as well, thus issilple that infinite number of wave
modes might exit in a plate.

In order to utilize Lamb waves for plate inspection, a largeoant of work has been done
to investigate the characteristics of wave propagatioty&iaally. In this chapter, the derivation
of dispersion equations of Lamb wave propagation in platesitlined. Detailed investigation of

elastic wave propagation in solid materials can be foundanyrextbooks [4, 18, 32].
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Figure 2.1: Schematic of Lamb wave in a plate.

A comprehensive solution of Lamb waves was developed by hind 1950, and Viktorov
gave the detailed investigations of Lamb waves in plateduding dispersion curves and mode

shapes in 1967 [37].

2.1 Characteristic Equations

The mathematical model of Lamb wave propagation in a plaséasvn in Figure 2.1. Consider a
plate with infinite extent in x and y directions, and thickee$2h. It is assumed that the plate is
made of an isotropic material and is placed in vacuum. Theevemuations [37] of longitudinal

and shear Lamb wave are expressed as:

92 02
6, R0 P
E)xz 022 % 2.1)
1
82w + 82w + w =0
8$2 822 %

wherecy = t L cyg = +/p/p are the longitudinal and shear wave speeds respectively.

Here, A andy are Lang’s constantsy is the mass density of the material, 1) are the scalar and

13



Symmetric

Figure 2.2: Lamb wave modes in a plate.

vector potential functions which are given as:

¢ = [Aysin(pz) + Agcos(pz)]i(fx — wt),

(2.2)

Y = [Bysin(qz) + BQCOS(qz)]ei(gx_wt),

wherep? = w2/c% —¢2,42 = w2/c% —¢2. Ay, Ay, By andB, are the unknown constants which

are determined by boundary conditionsis the angular frequency, aigds the wavenumber.

For a free plate, by applying the boundary conditions thatdbmponents of stress fields are

zero atz = h andz = —h. The characteristic equations are obtained as:

tan(gh) 4€2qp
tan(ph) (§2 — q2)2

2.3
tan(gh) _ (€% —¢%)> 23
tan(ph) 4§2qp

Eq. (2.3) are for symmetric and anti-symmetric wave modespectively.
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2.2 Dispersion Curves

Although Lamb waves have unparalleled advantages in lostgmite structural inspection, signal
interpretation is a major issue which makes the developrokttie application of Lamb wave
inspection much slower than its theory. As discussed abwith, high frequency excitation, a
large number of Lamb wave modes exist in a plate. Those madesfaifferent amplitudes
and phase velocities and this make it difficult to distinguise incident signals and the signals
reflected/refracted by the defects. On the other hand, Laavesvare dispersive when they travel
through the waveguides. It means that when the distanceaietraveling is larger, the amplitudes
of the wave modes decreases, which also increases the Ithftictind the flaws in the structures.
Therefore, one of the goals is to limit the number of wave nsadehe plate and find a wave mode
which is suitable for the inspection.

Dispersion curves contain the information of the charasties of each wave mode and thus
is important for selecting proper wave modes for damagectlete In order to calculate the
dispersion curves in a certain plate, the material properdire chosen as shown in Table 2.1.
Figure 2.3 shows the dispersion curves for a plate of 1 mnknieiss. It is generated by a free
software PACshare DispersionPlus Curves (Physical Acau§tarporation, Princeton Junction,
NJ, USA) [10]. From Figure 2.3, we can see two different waypresent dispersion curves.
Figure 2.3 (a) shows the dispersion curves in wavenumbgegiron. Wavenumber projection
comes from the solutions of dispersion equations, showiegobssible wave modes in the wave
guide. Compared to dispersion curves displayed in phaseitelthe wavenumber dispersion
curves have higher linearity and are selected because ief eatculation. Another common way

to display dispersion curves is in the form of phase veloagyshown in Figure 2.3 (b). Phase
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Table 2.1: Material Properties of the Steel Plate
Young's Modulus Poisson’s Ratio Mass Density
(GPa) (Kg/n¥)

206 0.3 7850

Table 2.2: Material Properties of The Aluminum Plate
Young's Modulus Poisson’s Ratio Mass Density
(GPa) (Kg/n?)

70 0.33 2700

velocity is the velocity at which the phase/crest travelbe Telationship between phase velocity
and wavenumber rsph =27 f/&. Actually, Figure 2.3 (b) is most commonly used since it isyea
to read the characteristics of each wave mode.

From Figure 2.3 (b), we can see that for the plate of 1 mm tl@skrhere are two wave modes
existing under frequency of 1 MHz: th; and Ay modes. S is the fundamental wave mode,
which has almost constant phase velocity through out tlggiénecy range. Because of the stability

of Sy, itis usually selected as an relatively ideal mode for nestdlictive evaluation in plates.

2.3 Casestudy of Lamb wave propagation in an aluminum plate

In this section, finite element simulation is employed todgtihe Lamb wave behavior in an
aluminum plate using FEAP [36], and the results are compartdpublished experimental data
provided by D. W. Greveet al[19]. The material properties of the aluminum plate are show
Table 2.2.

In the experiment, two PZT transducers are attached to timeimalim plate by silver epoxy. The
thickness of the plate is 1.59 mm, and the distance betwesinahsducers is 20 cm. By applying

voltage on the PZT transducers, shear force is introducdte@late due to the piezoelectric
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effect. Based on the experiment, a numerical model is createtithe geometry of which is set to
be 0.8 m in x-direction, 0.5 m in y-direction and 1.59 mm iniedtion. The mesh sizes in X, y,
and z directions are 1 mm, 1 mm and 0.795 mm, respectivelyimpliéy the numerical model,
a point shear force is applied at= 0.3 m, and the signals are measured:at 0.5 m, which is
20 cm away from the excitation. The shape of excitation iswshim Figure 2.4. It is given by a

windowed sinusoidal signal expressed as:

. 2
Vi sin(wt) (sa_n&w%)) t< 1()7%

0 otherwise

V(t) = (2.4)

Comparison is conducted between the numerical and the exgetal results to verify the
accuracy of the finite element model. Figure 2.5 shows thepemison between the two results.
From the figure, we observe thdfy mode travels faster than thé, mode. In addition, slight
differences in arrival time are observed for bofhand Ay modes in the comparison. It is noticed

that the magnitude of thé; mode is much larger than that obtained from the experimsnialy.
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Chapter 3

Analytical Calculation of Wave Propagation
In Pipe-like Structures

In this section, the characteristic equation of Lamb wawepagating in the pipe shown in
Figure 1.5 (b) is derived. The characteristic equatiorg atdled dispersion equation, is obtained
from finding the possible wave modes in a given wave guide. [Z8E dispersion curves contain
information of the geometry, the material properties of weveguide, and the frequency of the
input excitation. At a specific frequency, solutions of tham@cteristic equation might be obtained
numerically, and each solution corresponds to the wavedspiesach wave mode. By tracking the
frequency, solutions can be plotted as continuous curveshvdre called the dispersion curves.
From the dispersion curves, the fundamental modes for agroation might be estimated, and

the corresponding wave velocities can be calculated.

3.1 Derivation of Characteristic Equation

3.1.1 Mathematical M odel

Figure 1.5 (b) shows the mathematical model of the problefetsolved. An infinite hollow
cylinder of a single layer made of an isotropic material eceld in vacuum. The shear traction is

applied on the circumference of the pipezatoordinated and—/. The inside and outside radii
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of the pipe are denoted ag andco, respectively. For the surface excitation, the Morlet vietve
which contains a wide range of frequencies, is given as tpetitangential traction. The steady
state solution for a sinusoidal excitation is obtained, iandilized to express the transient solution

by the wide-band excitation.

3.1.2 Governing Equation

The governing equation of wave propagation in an isotromtemal, known as Navier’s displace-

ment equation of motion, is written as [27]

92
A+ 20)VV - u+ pV2u = p(aT;), (3.1)

where\ andy are Lang constants of the material,is the mass density is the displacement
vector, andV is the three dimensional differential operator. Using Haditz decomposition, we

can express the displacement fields in terms of the scalantialiy and the vector potentidil as

u=Ve+VxH. (3.2)

Substituting Eq. (3.2) into Eqg. (3.1), we have

0’H
ot2

026

V[ +20) V2 — R (uV2H — pZ ] = 0. (3.3)
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To satisfy Eq. (3.3) in any condition, we have

)
C%Vngﬁ = 8—;5,
gg (3.4)
22 H
5V H = ——,
2 ot2

whereH consists ofH, Hy and 1, and the longitudinal velocity; and the shear velocity,

c1 =1/ A —I—pQ,u cy = \/g (3.5)

Rewriting Gazis’'s [15] potential field in exponential formes have

are given, respectively as

6 = f(r)cos(nf)e!(E#—wt),
Hy = gr(r)sin(ng)e (&2 —wt),
‘ (3.6)
Hy = gp(r)cos(nd)e!(&2—wH),

Hy = gr(r)sin(ne)ei(gz_wﬂ,

wherew is the radial frequency is the wave number, indicates the number of waves in the
circumferential direction. It should be noted that the aaplshear traction excites waves that
propagate only along the axial direction of the pipe. Theneest» = 0, and H and H are zeros

as well. The Laplacian operat&‘2 for scalar potential) can be expressed in the cylindrical

coordinate system as
_d% 109 9%

2
— AT 3.7
vee o2 ror 92’ (37
while for the vector potentidH, the Laplacian operator can be rewritten as:
V2H =V - (VH), (3.8)
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where the gradient dfl, VH is expressed as:

VH = 88HTT€T®€T+%(8(§§T _H8)€T®6Q+ 8H2r6r®62
—I—aHee ®e +1(%—I—H Jeg @ 0y
or 0 Y rjeg ©eq - 0z €9 ez
OH 10H~ 0H»
T T I Tg 20T, r e

Denote Eq. (3.10) in matrix form as:

o, 1,0H OH
o g —He) 5
oH, 1 OH oH
S_ |9Hg 1,0Hy 0
o rlgg T
OHy 10H, OHy
| Or T 00 0z |

HereS is a second-order tensor. Divergenceéafan be obtained as:

_ [3Spr 1,08 95,9
V.S = {ar +;[ 2 + (Srr — Spg)] + 9, (€

839r 1 @S@e 3892,
+{ o ;[ %0 + (Sg;- + S,9)] + 5. (0
aSzr 1 6520 aSzz
+{ or Trlap Tty

(3.9)

(3.10)

(3.11)

Since in our case, only longitudinal wave modes are consifjefq. (3.12) in circumference di-

rection can be obtained as:

0°Hy 10Hy 9°Hpy Hp
+-—C4 -4
or2 r or 022 2

23
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Table 3.1: Bessel functions in different regions [26]

when¢ < é"—l When—1 <é< ¥ 2 when¢ > %
041—\/?751—@ 041—\/——(12;61—\/@ al—\/——aQ,Bl—\/—ﬁz
1 =Lv= 11=-Lrn=1 1 =-Ly=-1
Zn(ar) = Jnp(ar) Zn(ar) = In(ar) Zn(ar) = Inp(ar)
Whn(ar) = Yp(ar) Whn(ar) = Kp(ar) Whn(ar) = Kp(ar)
Wn(Br) = Yn(Br) Wn(Br) = Yn(Br) Wn(Br) = Kn(fr)

To simplify the derivation, the spatial Fourier transfortaray z-direction is applied to Eq. (3.4).

With the property of Fourier transfor% = i¢f, Eq. (3.4) can be written as

27 2 R
6 195, (__§>¢_
“q

or2  ror
82HQ 1 0H9 n w2 §2 1 =0 (3.13)
or2 +7’ or c%_ 2 »=0.
The general solutions of Eq. (3.13) are
b= [AZy(ar) + BWO(ar)]e_Mt,
(3.14)

Hy = [CZ1(Br) + DWy(Br)]Je ™.

wherea? = wQ/C% — 5‘2, BQ = w2/c% — 52, the notationsZy, Z1, W(; and¥/; are four different
types of Bessel functions. Table 3.1 shows how to choose pppte parameters and Bessel
functions to make the solution stable. In Table 3,andY}, are the Bessel functions of the first

kind and the second kind, respectively, dpd Ky, are the modified Bessel functions.
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3.1.3 Displacement Field

With only longitudinal modes excited, the displacementBatan be obtained as

06 OH,
Ur = - — —7_
e — % n 18(H9r)
T o ' r or

Taking the Fourier transform of Eq. (3.15) and substitutiing (3.14), we have

Uy = —’yla/lZl (alr)A — 041W1 (0417")3 — ZfZl (ﬁlr)c - ZEWl (517‘)D, (3 16)

Uy = i€Z0(ayr)A + i€Wy(aqr) B + B1Zp(B17)C + 98, Wy (B17) D.

Here, the terme— ‘@ is omitted for simplicity, and it will be brought back in the&l expressions

of ur andu.

3.1.4 StressFieldsin Cylindrical Coordinate

The relationships between strains and displacements pressed as

¢ a’LLr
Tr = 3>
or (3.17)
_ L Our | Ouz,
TETVe: T o
and the stress-strain relations are given by Hooke’s Law as
orr = >\V2¢ + 2perr,
(3.18)

Orzy = 2pery.
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Stress fieldgrr andoy-» are obtained by substituting Eq. (3.17) to Eq. (3.18) as

0 A 0
orr = (A 20) () + Supr + A2,
(Qur | Ouz,
orz =4 0z or

By taking the Fourier transform of Eq. (3.19) and substigitig. (3.16) to Eq. (3.19), the terms

orr andoy» are written as

o = [(€2 =~ B9 Z(01r) + 71 L 2y 0y A + (€2 — 52 Wplarr) + L iwy (g )] B
+ 2u[—1€B1 Zp(B17) + %21 (B17)]C + 2pu[—iv9€ By W (B17) + %Wﬂﬁﬁ)]D,
61z = —2in1épar Z1(ayr) A — 2iuay Wi (a1r)B + p(€2 — %) 2 (51r)C

+ (€2 = B2YW(Byr)D.

(3.20)
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3.1.5 Boundary Conditions

As shown in Figure 1.5 (b), a set of shear traction is appliddercoordinates = [ andz = —I

on the outer surface of the pipeline. The boundary conditaan be expressed as

0'7’7“(7“ = Co> = O,

or2(r = co) = [6(z = 1) = 3= + e,

orr(r=c¢;) =0,

orz(r=c¢;) =0.

(3.21)

By replacingr in Eq. (3.20) withc, andc;, respectively, and by applying Fourier transform to the

boundary condition [27], we obtain

S Q & =

mip mi2
ma1 m22
m31 m32

M4l M42

mi3 mi4
m23 ma4
m33 m34

m43  Mm44

o Q & =

= —2isin(&l) , (3.22)

whereM is the coefficient matrix, and the components are written as

mi1
mi2
mi3

miq

= (&2 - 82) Zg(a1co) + 11 2!

= (€2 — B%)Wy(a1Co) +

Co

20

Co

a1

Wl (04100),

= 2N[—i§ﬁ120(ﬁ17“) + %Zl (5100”;

= 2u[—iv9€B1 Wy (B co) + %Wl (B1co)l,

27

Z1(aqco),

ma21

m22

m23

m24

= —2im &pay Z1(aqco),
= —2i§puag Wy (aqco),
= u(€2 — 82) 71 (Byco),

= (€2 — B2)W1(Byco)-
(3.23)



The expressions ofig; to myy in the matrixM can be obtained by replacing with ¢;. Then,
the constants A, B, C, and D might be solved by applying Cramelésas
a b c

NG RN 3k NGERENG) (3:29)

where
0 my9g my3 myy

1 m m m
0= —i2sin(eldet | 22 TEL A Ger(m). (3.25)

0 mgo m33 m34

0 myp my3 my3]|
Similarly, the expressions fdt ¢ andd might be obtained by substitutirg 1 0 O]T to the second
column, third column, and fourth column &, respectively. Here, the dispersion equation is

written asA = 0.

3.1.6 ResdueTheorem

Once the constants A, B, C and D in Eq. (3.22) are calculatedjigplacement fields, andu,

might be obtained by applying inverse Fourier transformdo(B.16) as

+00

1 o (z—wt)
w5 [ g e 2ierm) - e W)
— i€e(€) 24 (B1r) — €W (rrlde,
i (3.26)
1 cl(Ez—wt) .
w= g | el Zoforn) + iEHEOWo(orr)

+ B1c(&) Zo(B17) + v281d(E)Wo(B17)]dE.
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The next step is to evaluate the integration above by cayrgirt residue theorem. Residue
theorem [23] is one of the most important tool employed inegahwave propagation problems
[18]. It is effective to calculate the line integrals of aytadal functions in complex domain, and
has been utilized popularly to obtain analytical solutitarsvarious kinds of waves.

Before applying residue theorem, we rewrite Eq. (3.26) as:

+00

1 ei(&z—wt)
w=g [ Rt

—0

(3.27)

Uy =

+o00 .
1 ez(éz—wt)
= | “xw

—0o0

Since the two expressions in Eqg. (3.27) are similar, we useexipression ofi- to show the

application of residue theorem. Rewrite as:

1 +Ooei(fz_Wt) 1 H(Ez—wt) 1 o (§z—wt)
FCn o 5w [

=5 | " SOk 5 A Ok 629

whereC is the closed contour in the complex plane, @fds the semicircle of”. There are two

main aspects we need to consider in applying residue thedreefirst issue is to select the closed

contour in the complex plane, which could be the upper or imeatour as shown in Figure 3.1.
Choose the upper closed contour for examples let Rew, and denote the integration along

the semicircle”’ asI. Then,I can be expressed as:

£( Rez@ i(Rzcostl—wt) ,— Rzsin
= lim /

iR dp. 3.29
NG (3.29)

R—o0
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The important term in Eq. (3.29) is 1'% sind - n our problem, we are interested in the
displacement fields at> a. From Eq. (3.29), itis easy to find that in order to make thegrdtion
along the semicircle to be zerdn 6 is required to be positive. Therefore, we select the upoler si
closed contour to evaluate the integration.

The second issue we need to consider is the poles located ozethexial of the complex plane.
Based on the previous description of the integration on theceele C’, rewrite Eq. (3.28) in the

form of residues, we have:

+Ooei(§z—wt) .
_/ Wf(g)dg =27i »  Res, (3.30)

where the residues are expressed as:
Res = ——— f(&), (3.31)

Due to the physical meaning of the wave numlgisrare set to be positive. Therefore, we excluded
the negative poles and have the outward propagating waués iform ofet(§2—wt), Similarly,

we evaluate the integration of. Finally, the expressions af-, u; are given as

it (Ez—wt) ) . O P
=Y A/—(é)[_fnala(f)Zl(oqr) — a1b(E)Wy (ayr) — ife(€) 21 (Byr) — i€d(§)Wy (Br)],

iei(éz—wt) . o R A
uz =Y A,—@[iéa(ﬁ)zo(av‘) +i€b(E)Wy(aqr) + B1c(€) Zo(B17) + v2B81d(E) Wi (B17)],

(3.32)

Whereé is the solution of the dispersion equation, and Eqg. (3.33fdees the response under
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a steady state excitation. To get the response under adrargsicitation, it is required to apply
Fast Fourier Transform (FFT) [6] to decompose the inputaigmo a set of sinusoidal inputs
with different frequencies and amplitudes, and then sugssrphe calculated displacement by each

input to get the final response.

3.2 Dispersion Curves

3.2.1 Name of Dispersion Curves

There are three types of modes in a cylindrical system, wéietthe longitudinal (L), the flexural
(F) and the torsional (T) modes. Figure 3.2 shows the thrpestyf modes. For each mode
type, a two index system, e.g. L (M,N), is used to indicatevla@e modes. The first integer M
denotes the circumferential order of the mode, while theisédanteger N is the counter value
[26]. The modes spanning from zero frequency are named a#shenode, and the others are
given the names consequently in the order of their cutofffemcy. All the longitudinal modes of

circumferential ordef/ = 0 are axisymmetic.

3.2.2 Dispersion Curvesfor Pipeswith Different Radiusand Wall Thickness

In the previous section, we have obtained the expressioheoflispersion equatioA = 0. By
numerical calculations, the solutions of the equation rrivgtplotted. To obtain the solutions of the
dispersion equation, we fix the frequency and search the wawders that satisfy dgvZ) = 0.
Due to the nature of Bessel functions, the determinandbfis sensitive to the wavenumber.
Therefore, it is not trivial to find the wavenumbers to make tteterminant to vanish. In this

thesis, the wavenumber step is set tage= 0.3 to calculate the determinants of the coefficient
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matrix M. Then, the linear interpolation technique is used to oltanos when the determinants
change the sign.

Figure 3.3 shows the dispersion curves for pipes that haz@titer radius of 136 mm with
the wall thicknesses of 1 mm, 2 mm, 4 mm and 6 mm, respectilialy.observed that dispersion
curves are sensitive to the geometry of the pipe. More wawdeexist under a certain frequency
if the thickness is larger. Another important observatisrhat the dispersion curves show the
dispersion of velocity versus frequency. In NDE techniqessitation signals usually consist of a
wide range of frequencies. During the wave propagationskiage of the response might change
since the wave velocities depend on the frequency, and sawesnaravel faster than the others
[7]. If the velocities are too close, waves cannot be idesditilearly. Therefore, it is important to
excite wave modes which have distinct phase and group vielsci

Figure 3.4 shows the dispersion curves for pipes have sarighicknesst = 1 mm and
different outer radius, which are 13 mm, 25 mm, 50 mm and 13&espectively. From Figure 3.4,
it is observed that the first longitudinal wave mode L(0,19 tiee wave velocity close to the wave
speed\/E/p [26] in a bar, which is 5159 m/s in this case. With the freqyeincreasing, the
wave velocity of L(0,1) decreases, then gradually increagkapproach to a certain velocity. With
the increasing of the outer radius of the pipe, L(0,1) drddswaer frequency and the dispersion
curves for the pipe get closer to that for plates of the samc&ribss. From Figure 3.4, we can see
that the dispersion curves are not sensitive to the changdafs if the outer radius is larger than

50 mm.
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3.3 Analytical Solution

By numerical calculation, dispersion curves for a pipe thes the outer radius of 136 mm and
the thickness of 1 mm are obtained as shown in Figure 3.5. Agiomed above, for a hollow
cylinder, the fundamental longitudinal modg0, 1) begins at zero frequency, and as the frequency
increases, the phase velocity increases and converge®ttamao/alue. The second modg0, 2)

begins at a certain frequency with an infinite phase velodiyr higher frequency, the velocity

significantly reduces to Young's veIocity/E/(p(l — 1/2)) [26]. As shown in Figure 3.5, the
L(0,2) mode velocity approaches to Young’s velocity in the frequerange from 0 to 1 MHz,
while L(0,1) is more dispersive in the same frequency range. In addiiergn axisymmetric
mode in pipe-like structures, tHg0, 2) mode wave travels through the thickness of the pipe wall,
which makes it useful for detecting the circumferentialesé$ [11].

A pipe structure is considered as shown in Figure 1.5(b)g&atial surface traction is applied
on the outer surface of the pipeat= 0.1 m andz = —0.1 m, respectively, and a Morlet signal
is applied as an input as shown in Figure 3.6 (a). The am@#waf Fourier coefficients of the
input are plotted in Figure 3.6 (b). The temporal responsmlsulated analytically at= 0.2 m
(0.1 m away to the excitation coordinatezat 0.1 m). By substituting the wavenumbers for each
excitation frequency to Eqg. (3.32), the displacement fial@scalculated, and the longitudinal and

radial displacements are plotted in Figures 3.7 (a) and3.éspectively.
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Chapter 4

Numerical Simulation

4.1 Finite Element Formulations

The finite element formulation for the wave propagation eysts expressed by the equation of
motion as [5]:

0ij.; + FB = pii; (4.1)

whereol-j is the stress componenff is the body forcep is the mass density and; is the
displacement component.

The stress boundary condition and the displacement boyicdadition are expressed respec-

tively as:
S
UZ]TL] = Fi f,
(4.2)
u; = uf“
Applying principle of virtual work on Eq. (4.1), we have
B NG gy =
/V(UZ]"] + f;7 — pii;)u;dV = 0. (4.3)
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By applying divergence theorem, which is expressed as:

(0357),j = 035, + 0T 5

Eq. (4.3) is rewritten as:

- B_ . ~
a~-u~n~dS—|—/ f; u'dV—/ pu~u~dV—/ o;:u; dV = 0.
/S ij Uiy vl Pt v 1t

Substituting Eq. (4.2) to Eq. (4.5), the weak formulatioolgained as:

S
= B . -
/S 7 T ugas + /v i wdv — /v piju;dV — /v 0;jti; jdV = 0.
By applying Hook’s Law,
935 = Cijkikl

and considering the symmetries of the stress tensor, we have

S
— B- .o 3
/SFZ. fuids-i- /VfZ uidV — /V puiuidv — /V Cijkleklﬁijdv = 0.

(4.4)

(4.5)

(4.6)

4.7)

(4.8)

The displacement field and strain vectot is expressed by introducing the shape functép

and the strain-displacement matiias:

u = HuU,

e = BU.

42

(4.9)



whereU is the nodal displacement matrix. Then, we have Eq. (4.8)emtatrix form as

ol /S HIFS4s + 07 /v ultBqy — ol /v pHLIHyav s — o1 / B cBavU = 0.

v
(4.10)
By eIiminatinngT, we have
/ HIFS4s + / HItBqy — / pPHLIHyudv U — / B cBdvU = 0. (4.11)
S V V V
Rewriting Eq. (4.11) as:
MU + KU =F, (4.12)

whereM is the mass matriXK is the stiffness matrix anH is the force vector. They are expressed

respectively as:

M — / pHEIT,av,
1%
K = /v BL CcBav, (4.13)

F— /S HLFods + /v HltBay.

4.2 Comparison of Numerical and Analytical Results

Numerical simulations are carried out using the finite eleihnmeethod. A pipe of the length =
3 m, the inner radius; = 0.135 m, and the thickness- 1 mm is discretized with eight-node solid
elements. The material is linear elastic, Young’s Modulus- 206 x 109 Pa, and Poison’s Ratio

v = 0.3. The excitations are appliedat 0.1 m and: =-0.1 m, and the measuring point is located
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atz=0.2m.

Figure 4.1 (a) shows an example of discretized finite elemmarttel and Figure 4.1 (b) shows
an element of the model. There are two sets of mesh sizes ngbdsistudy. Figure 4.1 (b)
demonstrated the smaller sizes, which in the longitudiciatumferential, and radial directions
are 0.25 mm, 10.7 mm, and 0.5 mm, respectively. Another setesh sizes are 1 mm in axial
direction, 10.7 mm in circumferential direction and 0.5 nmradial direction. The time step is
selected to be 3E-8 s to confirm the stability of the solutieigure 4.2 shows the comparison of
the analytical and numerical results using two differensimsizes. From the figure, we observe
that the result from smaller mesh sizes matches better hatlanalytical solution than that from
the larger sizes. In both Figure 4.2 (a) and (b), the first tvavevpackages of L(0,2) and L(0,1)
modes, respectively, are developed by the excitatian-at).1 m, while the following two waves
are from excitation at = —0.1 m. It is observed that L(0,1) mode waves are more dispersitle a
the magnitudes are smaller than those of L(0,2) mode waves.

Note that the mesh size in the circumferential directionedost influence the magnitude and
the arrival time of the signal significantly. It is becausattthe excitations are applied symmetri-
cally in circumference, which makes the excited waves dgonopagate in that direction. How-
ever, the arrive times of waves are quite sensitive to thdrsize in axial direction. Different mesh
sizes, 1 mm and 0.25 mm, were used to enhance the accuracivaf tame. For 1 mm mesh size,
the arrival times of L(0,2) from the numerical simulatiore arlose to those from the analytical
solution, while the arrival times of L(0,1) from the two metls vary by about 5% for the signal
excited atz = —0.1 m. For 0.25 mm mesh size, the wave packages of L(0,2) fronmytceil
and numerical methods are well matched for both signals deanenear and far excitations. In

Figure 4.2 (b), the calculated arrival timeslofo, 1) mode waves by the excitationat= —0.1 m
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(b)

Figure 4.1: (a) An example of discretized FE model, and (bglament of the model.



are aboutl22.8 us and122 us, respectively by the analytical and numerical calculagjand the

variation in group velocity of L(0,1) mode is less than 1%.

4.3 Lamb Wavesin Pipeswith Defects

Due to the higher accuracy of the smaller mesh sizes, it id fiigehe simulations in this section.
For the investigation of the defects in pipe-like structythe comparison of the signals from an
intact structure and a damaged structure might enable thetitptive estimation of the damage.
As shown in Figure 4.3, a defect is modeled by deleting temefds along the circumferential
direction atz = 0.4 m. The defect is through the thickness of the pipe, and thectlgfidth is
1 mm in the axial direction of the pipe. Excitations are agghlatz = 0.1 m andz = —0.1 m, and
the signals are measured at 3 different locations, which ar®.25 m, 2 = 0.45 m andz = 0.6 m.
Figure 4.4 shows the received signals from the intact pigkthe damaged pipe. The waves
measured at a point (= 0.25 m) between the excitation location & 0.1 m) and the defect
(z = 0.4 m) are plotted in Figure 4.4 (a). It is observed that the waresreflected from the
defect, and the magnitudes of the reflected waves are sitildre magnitudes of the incident
waves in the intact pipe. The waves shown in Figure 4.4(bjregasured at = 0.45 m (0.05 m
away from the defect). Compared with the waves measured imthet pipe, the magnitudes are
reduced significantly although the times-of-flight are aftst difference. The waves still can reach
to the measuring point, but the reflection and diffractioouaid the defect reduce the wave energy
significantly. Figure 4.4 (c) shows the displacements nreakatz = 0.6 m (0.2 m away from the
defect). The influence of the defect is reduced, compardtetoetsult shown in Figure 4.4 (b). The
magnitudes of the displacements still decrease, but tieeahthe signal from the damaged pipe

to the signal from the intact pipe is larger than the raticeobsd at: = 0.45 m.
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Z 1, 2, 3 are observing points

Figure 4.3: Schematic of a pipe with a defectat0.4 m.

4.4 Parametric Study of Responsesfor Different Defect Sizes

In this section, we use the finite element method to simulateth wave propagation in damaged
pipes with different sizes of defects, including the diéfleces in defect width and depth. Our goal is
to investigate how the defect size influences the respogealsi Figure 4.5 shows the comparison
of the signals resulting from pipes with defect widths of 2 ranmd 1 mm, respectively. Both

defects span through the wall thickness of the pipes, andgdlees in circumferential direction

are 107 mm. The FE model used in this comparison is the sanme asddel used in the previous

section. The signal is recorded at the locatioa 0.6 m. Itis observed that the width of the defect
has negligible influences on the arrival times as well as emthgnitudes of the waves. Although
the width of the defect increases, the dimension is stiliy\®@nall compared with the distance
between the measuring point and the defects, thus the cheumge large enough to induce any

changes into the received signals.
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Figure 4.6 shows the comparison of the signals obtained intext pipes, and the pipes with
different defect depth of 0.25 mm, 0.5 mm, 0.75 mm and 1 mme&sgely. In order to investigate
the waves from defects of different depths, the thicknesbepipe is needed to be divided into 4
layers. Smaller mesh sizes require more time and computeronyeto conduct the simulations.
Therefore, a pipe of smaller size in the longitudinal dil@atis used in this section: the thickness
of the pipe is 1 mm, while the length of the pipe is modified t¢ th. The mesh sizes of the
model are 0.25 mm in radial direction, 0.25 mm in axial di@tiand 10.7 mm in circumferential
direction. The defect is located at= 0.2 m, and the measuring point is at= 0.35 m.

From Figure 4.6, we observe that the depth of the defect exsly proportional to the mag-
nitude of the received incident signals. It is easy to urtdedsthat the deeper the defect, more
waves are interfered and the magnitudes of the signals areaked. Meanwhile, we observe that
the depth of the defect does not have much influence on thaktimes of the signals. Another
interesting thing is that when the depth of the defect is En#tan the thickness of the pipe, ad-
ditional wave modes are generated in the pipe walls. Those wedes might be generated by
the diffractions of the incident wave modes on the defeciguré 4.6 (d) shows the comparisons
between the 4 signals from pipes with defects of differemptiae on them. It is observed that the
magnitudes of refracted signals increase a lot when thetdépth gets deeper from 0.25 mm to
0.5 mm, while they remain almost the same when the defechdgas from 0.5 mm to 0.75 mm.
The possible reason is that the particle vibration on th&asarof the pipe is much smaller than
the vibration inside the pipe wall, which makes the signatger when they are refracted in the

middle of the pipe wall.
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Chapter 5

Summary and Conclusions

This thesis focuses on investigating the characterisfitsumb wave propagation in pipe-like
structures. Both theoretical analysis and numerical sitimaare conducted to study the Lamb
wave behavior under wide-band excitations which are symaoadlyy applied on the outer surface
of a pipe in circumferential direction. The analytical andwerical results are compared, and the
accuracy of the finite element model is verified for furtheestigation of Lamb waves in damaged
pipelines.

In Chapter 1, a brief introduction of Structural Health Manihg and Non-Destructive Eval-
uation is conducted, and the motivation and objectives igfttiesis are elaborated as well. The

detailed contents of Chapter 1 include:

Define the concept of damage in structures;

Explain the necessities of SHM and DNE methodologies;

Introduce three commonly used NDE methods;

Present the advantages of Lamb wave as a relatively idddbtoaltrasonic testing;

Introduce the developments of the theories and the apioliitsabf Lamb waves in NDE area,;

Explain the motivation and objectives of this research.
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Lamb wave propagation in plates is studied in Chapter 2. The wiark conducted in Chapter

2 includes:

e Introduce two types of Lamb wave modes in plates;

Explain two criteria of choosing proper wave modes for strcad integrity inspection;

Outline the derivation of characteristic equations of Lan#ves in plates;

Plot the dispersion curves of a steel plate of 1 mm thick uslAGshare DispersionPlus

Curves;

Verify the accuracy of the numerical simulation of wave @gation in an aluminum plate

by comparing with published experimental data.

Chapter 3 and Chapter 4 investigated wave propagation inlgpstructures both analytically

and numerically. Main contents in these two chapters arestas following:

Show the detailed derivation of dispersion equation of Lavales in pipe-like structures;

Plot the dispersion curves of Lamb waves in pipelines, amdpeaoed them between pipes

with different wall thicknesses and outer radii;

Calculate the displacement fields on the outer surface oftantipipeline;

Simulate Lamb wave propagation in an intact pipeline andpamed the numerical results

with the analytical results;

Conduct parametric study to investigate the influences aaesizes on Lamb wave behav-

iors in pipe-like structures.
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The derivation of dispersion equation of Lamb waves in pike-structures is followed the
initial work conducted by Gazis in 1959. After the dispersgguation is derived, the dispersion
curves are plotted for pipes with different geometries blyiag the dispersion equations. The
comparisons show the sensitivity of the dispersion curgethé geometry of the pipelines. Itis
observed that, as the outer radius of a pipe increases, treewetocity of L(0,1) mode decreases
at lower frequency and the dispersion curves of a pipe gseclo those of a plate with the same
thickness and material properties. On the other hand, awadhlehickness of a pipe increases,
more wave modes exist in the pipe. To obtain the displacefields generated by Lamb waves
in an intact pipe, a steel pipe with 1 mm wall thickness is delé for analytical calculation and
numerical simulation. Excitations are applied as sheatitnas atz = -0.1 m andz = 0.1 m on
the outer surface of the pipeline and the received signdigshware the displacement fields, are
measured at location = 0.2 m, wherez denotes the coordinate in axial direction of the pipe.
The excitation is a wide-band shear traction with centegdfemcyf-= 500 kHz. The comparison
between the results from the two methods shows good agréceasgpecially for the wave mode
L(0,2), and the accuracy of the numerical model is verified.

After the accuracy is confirmed, finite element simulatiamscarried out to study Lamb waves
in damaged pipelines, and the results are compared with #vesicalculated in the intact pipe.
From the comparison, it is observed that waves are reflected the edges of the defects. The
magnitudes of the waves are more sensitive to the defectliesgime delays, and the effect is less
eminent when the distance from the defect to the measurimgj pareases. A parametric study
is conducted to compare the signals from damaged pipes Wigneht defect widths and depths.
The signals obtained from the damaged pipes with defechwidt 1 mm and 2 mm are studied

in this thesis. From the signals, it is observed that theitadgal modes in the pipeline are not
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sensitive to the widths of the defects, and the signals tiaguirom the two defects have trivial
difference both in magnitude and arrival time. On the otlaTd) signals from pipes with different
defect depths show significant differences. The magnitadeke incident waves are inversely
proportional to the depths of defects. In addition, from¢benparisons one can observe that more
wave modes are introduced to the damaged pipelines due ttiftfections by the defects. The
magnitudes of the waves generated inside the pipe wallsaggerlthan those generated near the

surface of the pipes.
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