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ABSTRACT

STRATIGRAPHIC ANALYSIS OF THE PRAIRIE DU CHIEN GROUP
LOWER PENINSULA, MICHIGAN

By
Steven Anthony Rohr

The Lower Ordovician Prairie du Chien Group of the Michigan Basin
has become a realistic target for hydrocarbon exploration since the
discovery of natural gas in the sandstones of this Group beneath the
Falmouth Field, Missaukee County.

The New Richmond sandstone equivalent of the Prairie du Chien
Group is an extensive, thick sheet sand that extends well southward
into the Lower Peninsula of Michigan. Several distinct lithofacies
are observed in these sandstones including lagoonal, near-shore,
offshore, and barrier-bar facies. An offshore barrier-bar facies
model is interpreted to best represent the depositional environment
for these sands.

Thus far, Prairie du Chien production has been limited to struc-
tural traps. However, sandstone porosity does not appear restricted
to structure as previously believed. Porosity in the Prairie du Chien
sandstones appears to be entirely retained primary depositional porosity
that escaped silica cementation. Porosity is not secondary in nature
and is not related to the post-Knox erosional episode or to ascending

basinal fluids.
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INTRODUCTION

Since the discovery of natural gas in late 1980, in the deep Lower
Ordovician--Prairie du Chien Group sandstones of the Michigan Basin
(Figure 1), exploration for hydrocarbons in this interval has been
sporadic at best. The sandstones, and dolomites of the Prairie du
Chien Group had previously been considered too tight to produce good
petroleum reservoir rocks (Syrjamaki, 1977). Consequently, the Prairie
du Chien Group had remained relatively untested for its hydrocarbon
potential especially in the northern counties of the Lower Peninsula.
However, the discovery of natural gas in Prairie du Chien sands beneath
the Falmouth Field of Missaukee County, Michigan has changed the
exploration attitude towards the deep strata of the Michigan Basin.

The Dart 0i1 and Gas/PPG Industries--Edwards 7-36 discovery well
(SW, NE, NE, Sec. 36, T22N, R7W, Reeder Township) in Missaukee County
was originally intended as a deeper pool test beneath the Falmouth
Field (Mississippian and Devonian production). Much to the surprise
of the operator, however, dry, sweet natural gas was encountered with
an initial production rating of 12.3 Mmcfgd (Bricker, 1982). The
Edwards 7-36 produces from the sandstone facies of the Prairie du Chien
in an interval ranging in depth from 10,548 to 10,695 feet (Bricker,
1982). Production was confined to the top 150 feet of the Prairie du

Chien, directly below the "Lower Glenwood" formation [also known as the
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"Zone of Unconformity" (Bricker et al., 1983)]. Following the discovery
at the Edwards 7-36, exploration and testing of the Prairie du Chien
increased rapidly because of the initial excitement of other deep play
possibilities. However, exploration diminished rather rapidly as
follow-up drilling was rather disappointing. Some workers in the
Michigan Basin considered that the Edwards 7-36 discovery was a fluke
and not representative of the hydrocarbon potential of the deep basin
[Montgomery (ed.), 1984].

During the initial stages of exploration for Prairie du Chien gas
reservoirs the "highly variable and unpredictable porosity" [Montgomery
(ed.), 1984] of the Prairie du Chien sands was considered to be the
major cause of the very low wildcat success rate. Sandstone porosities
range from essentially zero to approximately 15%, with these extremes
being observed in the same well.

Later, during the years 1981-82, following the Edwards 7-36, more
than 30 Prairie du Chien test wells were drilled with only three dis-
coveries, one of them significant. Hunt Energy's Winterfield Deep Unit
1-A (NE, SE, NW, Sec. 30, T20N, R6W, Winterfield Township), in Clare
County was initially completed at 190 Mcfgd producing from the Prairie
du Chien sands. Like the Edwards 7-36 discovery, the Winterfield 1-A
test was drilled on a shallow, younger productive structure. This well
was later abandoned as dry.

A third discovery was made in 1982 by WainocoOil and Gas in Otsego
County at the Johannesburg 3-16 (SW, SW, SE, Sec. 16, T30ON, R1W,

Charlton Township). This well also produced from the sandstone facies



of the Prairie du Chien and was initially rated at 625 Mcfgd plus
30 bcpd and 3 bwpd. The Johannesburg 3-16 has also recently been
abandoned.

Following these discoveries, Jennings Petroleum made a significant
discovery in Newaygo County. The Anderson 1-8A (NE, NE, SE, Sec. 8,
T14N, R11W, Goodwell Township) was initially rated at 10 Mmcfgd plus
26 bcpd, also producing from the Prairie du Chien sandstone interval.
These latest discoveries confirmed that there is indeed good potential
for commercial quantities of hydrocarbons in the Prairie du Chien Group
sandstones and that the Edwards 7-36 discovery was not a fluke.

Most recently, Amoco Production Company has made a significant
discovery in Gladwin County in the South Buckeye Field (Devonian pro-
duction) at the Letts Unit 2-36 (SE, SE, SW, Sec. 36, T18N, RIW,
Buckeye Township). Again natural gas was encountered in the Prairie
du Chien rated at 4.4 Mmcfgd plus 72 barrels of condensate per day
(rated at 60 degrees API) from the interval 11,218 to 11,252 feet,
making the well Michigan's deepest producing gas well. Again, the
Prairie du Chien production is closely related to structure (L.
Tolletson and M. Przywara, 1984) and beneath a shallow, productive
structure. Surprisingly, however, this well has produced condensate
even at the great depth of discovery. This illustrates that condensate
may be discovered in the deep basin and is not restricted to shallower
Prairie du Chien production like that at the Anderson 1-8A and

Johannesburg 3-16.



Even though several significant and encouraging discoveries have
been made in the Prairie du Chien Group sandstones of the Michigan
Basin (Table 1), the possibilities of hydrocarbons in this and deeper
intervals are still poorly understood. Many operators are taking a
very tentative approach to the deep Prairie du Chien plays considering
that not enough is yet known about the deep basin to justify the cost
of exploratory wells on the basis of the lTow wildcat success rate.

Many have taken the approach to let more data become available before
an enthusiastic exploration strategy can be developed for the Prairie
du Chien reservoirs.

Overall, the variable porosity of the sands is believed to be the
main problem with which to be concerned when testing the Prairie du
Chien interval. In general, the porosity of the Prairie du Chien sands
"appears" to be closely associated with deep structures, with production
being confined to the uppermost 100 to 150 feet of the sands.

It is hoped that this study may add to the understanding of the
Prairie du Chien interval. However, it is believed that it will be a
matter of time before enough data have been accumulated before conclu-
sive information is available concerning the variable porosity of the
Prairie du Chien sands and the potential for hydrocarbons in this and

other deeper strata of the Michigan Basin.
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PURPOSE AND METHODOLOGY OF STUDY

As mentioned previously, the major problem encountered by
explorationists searching for Prairie du Chien hydrocarbon reservoirs
has been the highly variable and unpredictable porosity of these sands.
Many theories have been proposed concerning the development of porosity
in these sands (these theories will be discussed later), but to-date a
concerted effort has not been made to bring together as much information
as possible to test these theories. The purpose of this study, there-
fore, is to attempt to bring together these data in an effort to draw
some conclusions about the origin of porosity in the Prairie du Chien
sands of the Michigan Basin. A structural, stratigraphic and petro-
graphic approach is being used in this study to determine if any
relation exists between porosity, structure, and stratigraphy.

Several types of data were collected for this study. First, more
than 220 electric logs were studied at the Michigan State Geological
Survey, Petroleum and Subsurface Division in Lansing, Michigan. From
these logs formation tops were picked for the Trenton Group, Black
River Group, Glenwood formation, "Lower Glenwood" formation (also
known as the "Zone of Unconformity" by Bricker et al., 1983), Prairie
du Chien Group and Trempealeau Formation. Typically, the best results
were achieved when gamma ray--lithodensity logs were studied together.

However, many of the older well logs studied possessed only gamma-ray



logs. In these instances drillers logs were also used to determine the
best formation top pick. From these data, isopachous and structure
contour maps were prepared for each of the above formations. Also,
lithofacies distribution of the Prairie du Chien was mapped in an
effort to understand the lateral relationships of the Group. Sandstone
isopachous and clastic ratio maps were also prepared for this study.
Formation top picks are listed in Appendix D of this thesis.

The second form of information gathered for this study was the
description of 14 Prairie du Chien cores stored at the Western Michigan
University, Department of Geology Core Laboratory. Dr. William Harrison
made these cores available for this study along with sample chips from
these cores. Descriptions of the cores are also included in Appendix B.
Figure 2 illustrates the distribution over the study area of the cores
examined for this study. Also, shown is the location of cuttings
samples donated by Mr. Stuart Jennings of Jennings Petroleum, Flint,
Michigan.

Third, selected samples from the described Prairie du Chien cores
were thin sectioned for petrographic study. Over 50 thin sections were
prepared and studied for this thesis. These thin sections were point
counted (150 counts per slide) to determine the type and percent of
framework grains, percent porosity, and percent clay matrix. Also
determined were cement types and abundance, grain sizes and shapes,
and pore geometry and type (i.e., primary versus secondary porosity).

Representative thin section descriptions appear in Appendix C.
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In an effort to better determine clay mineral types present in
the sands, clay was separated from the matrix of several porous and

friable sand samples and studied by the x-ray diffraction technique.



AREA OF STUDY

The northern two-thirds of the Lower Peninsula was delimited as
the area of study for this thesis. An arbitrary southern limit for
the study area was chosen along the Township and Range system base-line
for Michigan. This base-line trends east-west from Lake St. Clair to
the shore of Lake Michigan and forms the southern boundary for Allegan,
Barry, Eaton, Ingham, Livingston, Macomb, and Oakland Counties. The
study area is shown in Figure 3.

There are several reasons for choosing this study area. As the
sandstone facies of the Prairie du Chien Group is best developed in
this area and some impressive production from a few wells would likely
lead to further testing of the deeper section, this appeared the ideal
part of Michigan to focus this study.

Preliminary investigation indicated that the sands of the Prairie
du Chien pinch out north of the base-line defined above. Well distri-
bution in the study area was sufficient to enable the mapping of the
distribution of the sandstone and omitting the area of distribution
of the carbonate facies as much as possible. The study area also was
designed to include the known Prairie du Chien sandstone productions
up to the time of this study.

The most concentrated well distribution in the study area is along

the southern and southeastern edge (Figure 3) where the Prairie du Chien

n
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is found at fairly shallow depths. Along the south and southeast areas
of the study location the Prairie du Chien is dominated by carbonate/
shale lithologies. Therefore, it was concluded that extending the

area any farther south into the region of carbonate facies would be
beyond the immediate scope of this study. However, work in progress

by Nelson (1985) is being directed toward a detailed study of the
Prairie du Chien carbonates of the southern shelf area in an effort

to determine the hydrocarbon potential of the Group in this portion

of the Michigan Basin. Excluding the shelf area, the concentration

of wells in the central and northern portions of the Basin is scattered
and generally sparse. The enormous cost of the deep test wells pre-
cludes the drilling of a large number of exploratory wells in the
deeper basin. Furthermore, the deep Michigan Basin had not been
considered worth testing for its hydrocarbon potential, until recently.
But with the Devonian strata of Michigan well within the "stripper"
stage of production and the northern Silurian Reef trends production
leveling out, explorationists are beginning to look toward and test

the deeper strata of the basin like the Ordovician Trenton, Black River
and Prairie du Chien Groups. The near future should see numerous wells
being drilled to these strata, and possibly to the basement, adding to
our knowledge of the hydrocarbon potential and structure of the deep

Michigan Basin.



PREVIOUS WORK

Owing to the lack of deep-well control in the Lower Peninsula
of Michigan, the work dealing with Ordovician stratigraphy has been
sparse in previous years.

Cohee (1945, 1946, and 1948) was one of the earliest workers to
study the Ordovician system in the Michigan Basin. He was the first
to recognize and, on the basis of lithology and subsurface stratigraphy,
subdivide the Prairie du Chien Group in the Lower Peninsula into the
Oneota dolomite, New Richmond sandstone, and Shakopee dolomite, in
ascending order. Cohee (1945, 1947, and 1948) made numerous corre-
lations to the strata in areas surrounding the Michigan Basin. Much
of the nomenclature that he introduced is still used today. Using
gamma-ray logs and similar lithologies between wells, E11s (1967) was
able to prepare a stratigraphic cross-section of Cambro-Ordovician
strata in the Upper and Lower Peninsulas of Michigan.

Syrjamaki (1977) made a regional study of the Lower Ordovician
Prairie du Chien Group in the Lower Peninsula of Michigan. Based on
well samples, and geophysical logs he was able to determine the Prairie
du Chien boundary contacts and define the extent, distribution, and
1ithology of the Group in the Southern Peninsula. Syrjamaki divided
the Oneota dolomite into a lower sandy dolomite unit and an upper

argillaceous dolomite unit. Because of difficulties in recognizing
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individual units, Syrjamaki believed that the New Richmond sandstone
and Shakopee dolomite should be combined in this area into the New
Richmond-Shakopee Interval.

The Oneota dolomite is described (Syrjamaki, 1977) as a buff to
brown, fine to coarsely-crystalline dolomite with white chert and
floating sand grains. The Oneota is more argillaceous and sandy at
its base where it is interbedded occasionally with green, red, and
gray, mottled shales and sandstones. The New Richmond-Shakopee Interval
is described as a fine-to-medium-grained, subrounded to rounded, frosted
to slightly frosted to clear, gray sandstone, often stained pink, with
silica and dolomite cement.

According to Syrjamaki (1977) the sandstones of the Interval are
best developed in northwest Michigan and basinward are often associated
with chert, green to gray shale, buff to tan siltstone, limestone, and
dolomite. The dolomites are commonly buff to brown, very finely-to-
finely-crystalline and sandy, alternating with beds of sandstone and
thin shale. A brown, very fine-to-finely-crystalline, silty and
argillaceous limestone is found basinward.

The Prairie du Chien group ranges in thickness from zero in
southeast Michigan to approximately 1050 feet in the west central
portion of the Lower Peninsula according to Syrjamaki (1977). However,
more recent well data indicate that the Prairie du Chien Group is
greater than 1300 feet in the middle-basin area (Figure 6, of this

report).
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At the time of Syrjamaki's work (1977) the Prairie du Chien Group
as a whole had not proved to be a significant hydrocarbon producer.
Overall, the Prairie du Chien sandstones and dolomites appeared to
be too tight to have sufficient porosity for a good reservoir, although
a few scattered porosity zones had been found toward the edges of the
basin (Syrjamaki, 1977). However, his restored section of the Prairie
du Chien north-south across the Lower Peninsula showing the increased
quartz sand content apparently created considerable interest to the
explorationists.

Stelzer (1982) reported on studies of samples from Missaukee
County deep tests and suggested that hydrocarbon occurrences in the
Prairie du Chien are related to clay mineral content of the sandy
dolomite, with clay believed to coat quartz grains thereby curtailing
silica overgrowth development which would tend to close pores decreasing
porosity.

Bricker et al. (1983) have recently published a set of cross-
sections indicating Upper Cambrian and Lower Ordovician correlations
in the Michigan Basin based on the most up-to-date mechanical logs
available.

Zwicker (1983) used over 200 well logs to analyze the distribution
of Cambro-Ordovician sandstones, the deeper (Ordovician) structure of
the Michigan Basin, and the possible relationship of the deeper petro-
leum occurrences to structure. Zwicker concluded that future explora-
tion for Prairie du Chien (for "Knox Sandstone") gas is good and will
depend not only on finding structural highs, but also on findings

favorable zones of porosity.



STRUCTURE OF THE MICHIGAN BASIN

The Michigan Basin is a circular to ovate sedimentary basin
located in the Central Interior physiographic province of the United
States. It is approximately 122,000 square miles in areal extent and
encompasses all of Michigan, and portions of the States of Wisconsin,
I11inois, Indiana, Ohio, and the western portion of the province of
Ontario, Canada. Geologically, the Michigan Basin is surrounded by
several well-known framework structures (Figure 4) including: the
Kankakee Arch to the south and southwest; the Findlay Arch to the
southeast; the Algonquin Arch to the east; the Canadian Shield to
the northeast and north; the Wisconsin Dome to the northwest; and
the Wisconsin Arch to the west. Workers in the Michigan Basin have
tried previously to relate the surrounding framework structures to
the occurrence, origin, and predominant NW-SE trend of many smaller
intra-basin structures (the producing anticlines and fractures)
(Figure 5). It is believed that an understanding of the origin
of the large framework structures may aid in understanding the
origin and occurrence of the smaller intra-basin structures.

Robinson (1923) proposed that the structural features observed
in the Michigan Basin are the result of vertically directed forces
and not the result of horizontal compressional forces. He describes

five types of folds that are the result of vertically acting forces:

17
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(1) domes and quaquaversal folds; (2) radial linear folds;

(3) concentric terrace folds; (4) linear terrace folds; and

(5) monoclinal folds related to deep-seated faulting. Of these
five types only one, the dome or quaquaversal fold, is typically
due to an upward acting force.

Pirtle (1932) believed that the Michigan Basin probably originated
in Precambrian time and its sedimentary and structural history is
closely related to the large framework structures surrounding it
(the Cincinnati, Kankakee, and Wisconsin Arches).

Pirtle postulated that the Wisconsin and Kankakee arches are the
remnants of large Precambrian mountains. These mountains were base-
leveled before the Paleozoic with the sediment accumulating in a
proto-Michigan Basin that paralleled the Precambrian mountains in
an elongate, trough-like manner. He suggested that old lines of
structural weakness in the basement (probably Precambrian in age),
with accompanying vertical acting forces and subsequent periodic
horizontal compressions through time, could account for the development
of the folds in the Michigan Basin. These lines of weakness probably
closely paralleled the trend of the adjacent Precambrian mountains and
therefore produced sufficient basin subsidence in Precambrian time to
accommodate sediment from erosion of the mountains.

Lockett (1947) also believed that the structural features
surrounding the Michigan Basin are underlain by the cores of Precambrian
mountains. He also stated that these features remained more or less

positive and that the principal movement during the Paleozoic was the
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continued subsidence of the basin into which the sediments from erosion

of these mountains were deposited. During the Paleozoic, three sides

of Michigan Basin were more or less held stationary by the surrounding

framework structures, however, the southeast side of the basin, in the

vacinity of Lake St. Clair, continued to subside. Lockett considered

that this condition produced a system of lines of weakness (or frac-

tures) in the basement through the unsupported ehd of the basin parallel

to the northeast and southwest sides which remained positive. With

increasing sediment load, differential basin subsidence was initiated

along these lines of basinal weakness. Sediment accumulation was

believed to be greater on the basinal side of these faults forming

a stepfaulting situation into the central portion of the basin.

Lockett (1947) further considered that the parallel trends of struc-

tures in the Michigan Basin were due to movements along these lines

of weakness in the basement under the basin and that the structures

are to be considered the result of basinal subsidence. Compressional

orogenic forces were believed to have played little or no role in the

development of anticlinal structures or fractures in the Michigan Basin.
Rudman et al. (1965) postulated that much of the strata in

the midwestern United States is underlain by basement that is highly

faulted. They suggest that the prominent NW-SE trend of structures

in the Michigan Basin is similar to trends of gravity anomalies in

the basin, i.e., the mid-Michigan gravity anomaly, further indicating

some kind of basement control over the development of these structures.
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Fisher (1969) postulated that faults have controlled the
development of many of the large structures in the Michigan Basin,
including the Howell Anticline, Lucas-Monroe Monocline, and Albion-
Scipio Field. He also suggested that the rectilinear fault pattern
observed on the surface of the Canadian Shield could be a model for
that of the basement of the Michigan Basin which may also exhibit this
same type of rectilinear fault pattern and that this was probably
developed during the Precambrian and was subjected to periodic
movements through the Paleozoic era.

On the basis of systematic isopachous mapping of successive strata,
Fisher (1969) postulated that the Michigan Basin was created in Ordo-
vician time with the major subsidence occurring in the Middle Ordovician
(Mohawkian Series) and Upper Ordovician (Cincinnatian Series) time.
Catacosinos (1972) suggested that the Michigan Basin was initially
created in Cambrian time, at least.

The data assembled in this study indicate that, indeed, a proto-
basin was developed in early Ordovician time and was undergoing very
active susidence. More than 1300 feet of Prairie du Chien sediments
occupy the depocenter (Figure 6). This supports the suggestion of
Catacosinos (1972) that the Michigan Basin was initiated by Late Cambrian
time, at the latest. However, as pointed out by Fisher (1969), it was
not until Middle Ordovician time that the basin configuration with which
we are most familiar became evident (Figures 7 and 8). The position of
the basin center during Ordovician time was northwest of the Saginaw Bay

area (Figures 9, 10, and 11).
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Figure 9. Structure contour map of Prairie du Chien Group.
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Structure contour map of Black River Group.

Figure 10.



28

g

N DRELTS

1
e

o

LadNL. LoD

LL]

Structure contour map of Trenton Group.

Figure 11.



29

E11s (1969) prepared an excellent summary of the information
available on the architecture and origin of the Michigan Basin. Because
of the lack of deep well control and geophysical data, he was, however,
not able to draw any conclusive answers about the basement structure
over the entire Michigan Basin, the persistence of folds with depth,
and the presence of Howell-type structures in the mid-basin area.

Prouty (1970) summarized the notable trends in the Michigan Basin,
including: (1) the predominant northwest--southeast and northeast--
southwest folds, both sets of folds exhibiting evidence of lateral
faulting; (2) a fairly definite radial fold pattern; (3) a rather
persistent joint pattern; (4) a shift in structural and isopach basin
center in each system up to the Mississippian System. He also suggested
that basement lineations (fractures) are inherited from the Precambrian
basement.

On the basis of LANDSAT satellite imagery studies, Prouty (1976
and 1980) concluded that: (1) lineaments in the Michigan Basin are
shear faults which show lateral offset in some cases; (2) shear faults
have formed shear folds; (3) the principal faulting and folding was
pre-Marshall (Mississippian) time; (4) the depocenter shifted west
to its present position in post-Osage Mississippian time, coincident
with the time of the major compression; (5) north-northwest elliptical
shape of the basin.is the result of simple shear (strain ellipse);

(6) faults were the channelways for the migration of hydrocarbons
and ascending dolomitizing fluids; (7) basement shear fault patterns

are attributed to stresses from a general east-southeast direction
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(Appalachian orogen). Even more recently, Prouty (1984) showed that
lineaments (shear fractures and faults) in the Presque Isle County,
Michigan area have controlled the development of Karst topography

and surface drainage patterns. Prouty's summary includes pre-LANDSAT
detection of Michigan Basin structures, the development and use of
LANDSAT imagery in mapping of intrabasin structures, and development
of a simple shear model in the Michigan Basin which can account for
the folds and fractures in the basin. Prouty believes that the
wrenching model for the Michigan Basin is a valuable tool for future
exploration of hydrocarbons in the Basin.

Other hypotheses about the origin of structures within the Michigan
Basin also have been proposed in recent years. They include: (1) fault
block tectonics with associated drape sediments over the blocks (Fisher,
1983) and (2) deep seated faulting produced during an episode of
Keweenawan rifting in the Michigan area, now interpreted to be
represented by the mid-Michigan gravity high (Chase and Gilmer,

1973). Like other hypotheses these must address the problems of:
(1) channelways for petroleum migration and ascending dolomitizing
fluids; (2) lateral offset observed along many folds and faults in
Michigan, etc. As more drill data becomes available these theories
may be further tested.

From the previous discussion it is evident that the hypotheses
concerning the geology of the Michigan Basin have developed at a slow,
methodical pace. Until 1980, deep drilling was a very rare occurrence

in Michigan because of the belief that deep strata were economically
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unimportant as they were thought to be barren of hydrocarbons.
However, with the recent natural gas discoveries in the deeper
strata of the Michigan Basin more of these data will become

available.



PRAIRIE DU CHIEN STRATIGRAPHY

Regional Stratigraphy

The regional stratigraphic nomenclature dealing with strata of
Lower Ordovician (Canadian) age is fairly well accepted. Syrjamaki
(1977) summarized the evolution of this nomenclature. Therefore,
this report will only briefly discuss the regional stratigraphic
correlates of the Michigan Basin Prairie du Chien Group.

Lower Ordovician sedimentation in the eastern half of the
United States was dominated by widespread carbonate deposition.

Lower Ordovician carbonate lithologies are observed from the
Appalachians west to Missouri, northwest to Wisconsin and Michigan,
and north to New York. Both dolomite and limestone lithologies are
observed. Some structural control over lithofacies appears to be
present in the Appalachian Valley and Ridge Province. Prouty (1948)
demonstrated that the Chepultepec dolomite (basal formation of the
Canadian Series in Virginia and Tennessee) is predominantly a limestone
facies to the southeast of the Adirondack Arch. On the other hand,
however, dolomite is the predominant 1ithology northwest of the Arch,
and persists to the west, northwest, and north to Missouri, Wisconsin,
and New York, respectively. The facies control by structure is also
observed to the north along the Adirondack Arch into Pennsylvania.

Prouty (1948) suggested that the area northwest of the Adirondack Axis

32
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was restricted from the circulating waters of the geosynclinal

area to the southeast. The restriction of ocean waters west of

the Adirondack Arch allowed evaporation to concentrate these waters.
Penecontemporaneous replacement of the deposited limestone by dolomite
therefore occurred. The area of restricted ocean waters is presumed
to have extended throughout the eastern half of the United States,
westward of the Adirondack Axis. This is suggested by the great
volume of dolomite lithologies observed in Lower Ordovician strata.

The 1ithology of the Beekmantown Group (Lower Ordovician) of
Virginia and Tennessee was described by Butts (1940) and Prouty (1948).
The Beekmantown is described as a thick bedded, bluish-gray, fine to
medium grain crystalline dolomite. Chert is abundant and is usually
brown, soft, coarse, and cavernous. White chert, similar to the chert
in the Oneota dolomite of Wisconsin (Prouty, 1985) is occasionally
observed. Siliceous oolites and oolitic chert is common in the lower
portion of the Beekmantown. Thin limestone units are occasionally
seen in the Tower Beekmantown also. Well-rounded grains are observed,
and in some cases sandstones lenses are present, but rare. The
Beekmantown weathers to a light to dark brown color.

Prouty (1948) described two thin sandstone beds near the contact
of the Copper Ridge Formation (Upper Cambrian) and Chepultepec dolomite
(Lower Beekmantown) in northwest Virginia and Tennessee. These sands
are three to ten feet thick and separated by 15 to 20 feet of dolomite.
Prouty observed a steady westward and northwestward increase in the

median sand grain size of these two sandstones which suggested a
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west-northwest source for the sand, possibly the Wisconsin Dome area.
A similar source has been suggested for the Upper Cambrian sandstones
(Prouty, 1948). As suggested previously (Syrjamaki, 1977), the sands
of the Prairie du Chien Group in the Michigan Basin also have a
north-northwest source.

Several distinct fossil assemblages are observed in the Beekmantown
Group, which are useful in stratigraphic correlation throughout the
region. Generally, fossils in the dolomites of Lower Ordovician strata
are completely obliterated by processes of dolomitization. However,
some very well-preserved fossils are recovered from the cherts.
Lecanospira beds have been correlated largely on the gastropod fauna
with the Nittany dolomite of Pennsylvania, the Longview dolomite of
Alabama, and the Roubidoux Formation of Missouri (Prouty, 1948).

Helicotoma uniangulata is the chief guide fossil for the

Chepultepec dolomite of Alabama, Gasconade Formation of Missouri,
Oneota dolomite of Wisconsin, and a cherty zone considered to be the
top of the Little Falls dolomite in New York (Butts, 1940).

Other paleontologic evidence indicates that these strata are
correlates. A Ceratopea zone in the Beekmantown has been shown to
have common fossils in the Newala limestone of Alabama and southeast
Tennessee; to the Jefferson City and Cotter formations of Missouri;
to the Shakopee dolomite of the Upper Mississippi Valley; and to the
Bellefonte (and possibly Axemann) formation of central Pennsylvania

(Prouty, 1948).
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The general stratigraphic correlations are shown in Table 2.
Throughout the entire area, the Lower Ordovician lithologies remain
strikingly similar which further supports these stratigraphic
correlations.

Following Lower Ordovician time a eustatic drawdown of the
Ordovician seas caused the development of a worldwide erosion surface.
The post-Knox Unconformity, as it is often referred to, is developed
on the Beekmantown and other regional correlates (Table 2). The post-
Knox Unconformity is often marked by a very masked contact with the
overlying Chazyan strata, extensive solution features and erosional
relief of 200-300 feet in some instances (Cooper and Prouty, 1943,
and Prouty, 1948). Locally up to 600 feet of strata are missing in
parts of central Pennsylvania, where transitional beds may occur at
the contact when the missing units are present (Chafets, 1967 and
1969). Following development of the post-Knox Unconformity, a massive
transgression of Middle Ordovician seas brought about deposition of

Champlanian sediments.

Michigan Basin Stratigraphy

Lower Ordovician stratigraphy in the Michigan Basin is fairly well
established. The Prairie du Chien type section in Wisconsin (Bain,
1906) (Appendix A; after Stark, 1949) is divided into three units.

In ascending order they are: the Oneota dolomite (McGee, 1891),
New Richmond sandstone (Wooster, 1878), and Shakopee dolomite
(Winchell, 1874). The Michigan Basin Geological Society (1964;
Figure 1 of this report) accepts this terminology in the Michigan

Basin.
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Carbonate Tithologies of the Prairie du Chien have been known
to be present in the Michigan Basin for some time (Cohee, 1945, 1947,
and 1948). However, the lack of well data in the center of the Michigan
Basin precluded Cohee from making the correlations of Lower Ordovician
strata there. More recently, several deep tests showed that not only
are the dolomite lithologies present, but a very thick, massive sand
was also developed in the Prairie du Chien Group. This massive sand
is probably equivalent to the New Richmond. This sandstone has become
the target of many wells over the past few years, and more information
about its distribution and character is, therefore, available.

A widespread transgression during New Richmond time resulted in
a large amount of sand being deposited in the Michigan Basin. Con-
comitant with this sand influx, the Michigan Basin was undergoing
an episode of active subsidence. The sediment influx kept pace with
or slightly exceeded the rate of basin subsidence and, therefore, the
sand spread into the southern portion of Michigan instead of being
restricted to accumulation in the continually deepening basin. Over
1000 feet of sand plus sandy dolomites are observed in the Lower
Ordovician depocenter (Figure 13 of this report). The deposition
of the sand was the dominant sediment accumulating in the middle
and northern Michigan Basin area through the end of Prairie du Chien
time. However, carbonate and shale deposition was taking place
contemporaneously in the southern part of the Basin as sand deposition
thinned southward. A series of small scale transgressions and regres-

sions produced an interfingering of sand, shale, and carbonate near the
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margin of the sand deposition. Elsewhere, carbonate and shale
deposition took place exclusive to the deposition of sand.

The Prairie du Chien Group will differ lithologically depending
on location within the Michigan Basin. Therefore, geologists must
recognize the various lithologic characters of the different facies
of the Prairie du Chien in order to identify top (and bottom) of this
unit.

In the deep basin area, the top of the Prairie du Chien is placed
below the Glenwood Shale or below the "Lower Glenwood" formation (Zone
of Unconformity, Bricker et al., 1983) when it is present. The massive
sand of the Prairie du Chien possesses a very distinct and distinguish-
able gamma-ray signature compared to the Glenwood and "Lower Glenwood"
(Figure 12). Generally, the top of the Prairie du Chien is placed at
the first clean sand below the Glenwood or "Lower Glenwood." In the
south and southeast portion of the study area the assignment of the
Prairie du Chien top is a bit more problematical. The carbonate and
shale Tithologies of the Group are more prevalent here than in the
north and thus the contrast with the overlying Glenwood Shale is not
as distinctive. However, as the Glenwood is found at the base of the
Black River Group the top of the Prairie du Chien can still be identi-
fied with confidence directly below the Glenwood Shale (Figure 13).

Even though the Prairie du Chien Group and underlying Trempealeau
Formation are similar lithologically, the bottom of the Praier du Chien
is also identified with confidence. It is generally accepted that the

top of the Trempealeau is placed below the lower most highly radioactive
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Bettle Creek Gas Co.
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Figure 13. Gamma-ray log of Battle Creek Gas Company BD #153
(TIN R8W Sec. 14), Barry County. This illustrates
the characteristic log response of the Prairie du
Chien Group in the southern portion of the study
area (from Bricker et al., 1983).
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zone of the Prairie du Chien and above the cleaner and less radioactive
sand of the Trempealeau (Lilienthal, 1978).

As mentioned previously, a eustatic lowering of sea levels occurred
following Lower Ordovician time which produced the post-Knox erosional
surface in eastern North America. The eustatic sea-level lowering may
have been, in part, associated with the Blountian Disturbance in the
southern Appalachians. The effect of this erosion is easily recognized
in the Michigan Basin. It is generally accepted that the top of the
Prairie du Chien is marked by the post-Knox Unconformity. In the
southern portion of the Basin, cut and fill channel deposits are present
in the Prairie du Chien carbonates. In one instance approximately
230 feet of sand has been observed to fill one of these channels
(Nelson, John, oral comm., 1985).

The presence of the post-Knox Unconformify in the mid-basin region
appears to be more problematic, however. In several of the cores
described in this study (Appendix B), the position of the post-Knox
Unconformity was not recognized by a clearly demarcated contact at
the top of the Prairie du Chien sandstone. The transition always
appeared gradational in the wells studied, with interfingering
relations often observed. The lack of evidence for the presence
of the post-Knox Unconformity in the mid-basin area suggests that:

(1) the Michigan Basin was not sufficiently drained by the lowered
sea-level to cause subaerial exposure with intense erosion of the
Prairie du Chien; or (2) the deep basin topography was highly irregular

with only higher provinces being affected by post-Knox erosion. In the
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southeast portion of the study area, intense erosion, coupled possibly
with some small amount of tectonic activity along the northern portion
of the Findlay Arch, did take place, totally removing the Prairie du
Chien (Figure 7). A similar situation is reported for the Northern
Ohio Platform area, where the Lower Ordovician strata has been totally
removed by erosion and hydrocarbon production is related to the post-
Knox Unconformity and Copper Ridge erosional "knobs" (Whiting, 1965;
Stelzer, 1966; Benedict, 1967; and Dolly and Busch, 1972).

In the middle Michigan Basin area, a series of carbonate, shale,
and sand facies exists between the Glenwood and Prairie du Chien. This
body of sediments has been informally named the "Zone of Unconformity"
by workers at the Michigan State Geological Survey, Petroleum and Sub-
surface Division (Bricker et al., 1983). This "Zone" is considered to
represent sediments accumulated from the erosion of units on the basin
rim during the development of the post-Knox Unconformity. The area of
accumulation may not itself have been exposed to the erosional effects
at the end of Prairie du Chien time. Rather, the drawdown of the seas
in the Michigan Basin may not have occurred in the middle basin area
where these sediments later accumulated. The nomenclature used by
Bricker et al. (1983) does not, however, appear to be very useful and
therefore should be rejected. The writer prefers the use of the term
"Lower Glenwood" formation for the unit between the Glenwood Shale and
Prairie du Chien. This nomenclature was also used by Zwicker (1983).

It is interesting to speculate about the actual stratigraphic

relationship of the "Lower Glenwood" to the Glenwood Shale and Prairie
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du Chien Group. Does the "Lower Glenwood" represent the youngest
Prairie du Chien strata or the oldest Glenwood? Because the presence
of the Shakopee dolomite in the middle basin is problematic, Syrjamaki
(1977) grouped the New Richmond sandstone and Shakopee dolomite into
the New Richmond-Shakopee Interval because of difficulties in distin-
guishing between them on the geophysical logs. The writer concurs with
this because strata with recognized Shakopee-type 1ithology was not
found in every core described. The "Lower Glenwood" perhaps could
represent atypical Shakopee sedimentation in a basin that was possibly
slowly becoming very restricted and stagnant from the eustatic lowering
of sea level that was beginning to occur towards the close of the Lower
Ordovician. The "Lower Glenwood" depocenter was located to the north-
west of Saginaw Bay. If this were the case, the post-Knox Unconformity
might have occurred (timewise) between the "Lower Glenwood" and Glenwood
formations. Transitional beds similar to these of the "Lower Glenwood"
are observed on top of the Beckmantown Group of Pennsylvania (Chafetz,
1967 and 1969). He further concluded that this transitional zone
represents continuous sedimentation between Lower and Middle Ordovician
strata on the basis that no physical evidence was observed above, below,
or within these transitional beds to mark the position of the post-Knox
Unconformity. Another possibility is that the "transitional beds"
represent uneroded beds of uppermost Prairie du Chien which are in
other areas eroded along the Unconformity. Alternatively, however,

the "Lower Glenwood" sediments may simply represent older Glenwood
strata that filled erosional channels on top of the Prairie du Chien

and post-Knox Unconformity.
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Following the development of the post-Knox Unconformity Middle
Ordovician seas advanced on the craton and began sedimentation of the
St. Peter sandstone (in the southwestern part of the basin and farther

west) and then Champlanian carbonates.

Sand Source

Syrjamaki (1977) believed that several areas might be the source
of the Prairie du Chien sands. First, the Canadian Shield may be the
principal source. The exposure of the gneissic and granitic rocks
there would have permitted weathering and erosion to produce the sand.
A second source could be the Wisconsin Dome which had rock similar to
those of the Canadian Shield. A third source to be considered would
be the exposed Precambrian and Cambrian sandstones in the Lake Superior
and Upper Peninsula region (i.e., the Jacobsville Sandstone; Munising
Formation, and possibly, Trempealeau Formation). These could have been
eroded and reworked to form the sands of the Prairie du Chien.

Study of Recent sands as indicators of provenance (Blatt, 1967;
Basu et al., 1975; Young, 1976) suggest that source rock determinations
may be made on the nature of quartz grains, proportion of feldspar and
rock fragments, and heavy mineral types. Sands derived from plutonic
sources are believed to contain higher proportions of monocrystalline,
non-undulose quartz grains, while sands from metamorphic sources are
believed to contain significant amounts of polycrystalline, undulose
quartz. Feldspar and rock fragment types may also be used as

provenance indicators by use of composition and nature.
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The sands of the Prairie du Chien Group appear to be multi-cycle
in nature, derived possibly from pre-existing sandstones. The quartz
grains are predominantly monocrystalline, non-undulose grains. However,
undulose and polycrystalline quartz is also occasionally observed.
Feldspar comprises less than 1% of the framwork grains. Rock fragments,
likewise, make up less than 1% of the framwork grains. Unstable ferro-
magnesian and other ingenous/metamorphic minerals are conspicuous by
their absence from the non-quartz mineral suite. Some such grains are
observed to possess a high degree of rounding. These characteristics
indicate that a pre-existing sandstone was the most likely source for
the Prairie du Chien sands. The Precambrian Jacobsville and Cambrian
Munising and Trempealeau Formations of the Lake Superior/Upper Peninsula
of Michigan are the most 1ikely sources. The Wisconsin Dome and
Canadian Shield may have contributed small amounts of sand to the
Prairie du Chien sediments. Further work on this topic is still

needed.



PRAIRIE DU CHIEN FACIES

There are two aspects with which to deal when considering the
facies relationships of the Prairie du Chien sands. First, the gross
lateral facies changes are important to understand in the southern
portion of the Michigan Basin where sandstones thin, interfingering,
or are replaced in their distribution by correlative shale and carbonate
facies; and second, developed within the massive sand of the Prairie du
Chien Group are smaller, micro-facies. These relationships should also

be studied.

Gross Lateral Facies Relations

At the beginning of Lower Ordovician deposition in the Michigan
Basin, a widespread regional carbonate shelf existed with deposition
occurring from the Appalachians to Wisconsin. This inundation of the
Canadian Shield, Lake Michigan and Lake Superior regions, and Wisconsin
Highlands progressed to the north and northwest across the Michigan
Basin area depositing the Oneota dolomite. A lowering of the sea level
brought New Richmond sands to the southeast of the craton, followed by
transgression toward the source area in Upper New Richmond and Shakopee
time. Although this sand is not continuous across the continent, it is
well developed in Wisconsin and in the Michigan Basin. The New Richmond
sandstone in the Michigan Basin exists as a massive sand, in places

appearing greater than 1000 feet thick (Figure 14). At the southern
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Figure 14. Sandstone isopach map of Prairie du Chien Group.
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edge of sand deposition in the Basin, shale and carbonate sediments
were deposited. Apparently, a series of small scale transgressions
and regressions occurred producing an interfingering relationship
between sands, shales, and carbonates. This is best illustrated in
the south and southeast portion of the study area (Figure 15). Still
farther to the south and southeast the Prairie du Chien lithologies
become dominated by carbonate lithologies (Figure 15).

Following the extensive New Richmond sand deposition in the
Michigan Basin, much of the area became the site of carbonate deposition
again which is represented by the Shakopee dolomite. However, many
places of the deep basin do not appear to possess typical Shakopee
dolomite perhaps owing to its removal by post-Knox erosion, simply
lack of deposition everywhere in the basin, or an interfingering with
sands giving a mixed facies not readily distinguished from the New
Richmond. The uncertainty of recognizing a distinct New Richmond, as
mentioned earlier, led Syrjamaki (1977) to speak of a New Richmond/
Shakopee interval.

Several gamma-ray log cross-sections illustrating the contact
relationships and log response of the Prairie du Chien Group and Upper
Cambrian have been published (Lilenthal, 1978; and Bricker et al.,
1983). Several of these sections are located in this study to

illustrate these relationships (Figures 16, 17, and 18).



49

L

SHALE!

EDDE!

DOLOMITE with INTE

wbadadodods

AL SN0

Facies map of Prairie du Chien Group.

Figure 15.



Jom Paroleum Cox

dom Petsioum Corp

SO

e

Zobe of
Unconformity

Prairie du Chien

0§

NN e

|

W
e Y Sy P o

T (n\ﬂﬂmww"”ﬂ VAN | Ao

|

!

[N

(R AN

T ) P

"

V
H

PLATE 2

{
¢
¢
$
22

STRATIGRAPHIC
CROSS SECTION C-D
ST soseon comTY

e AN e\ PO AN

v
§

B ONTY
MIDOLE _ORDOVICIAN
THROUGH

(B A | £
5 ;
§
e
¢

Figure 16. Gamma-ray cross-section in Michigan Basin.

ITlustrates lithologic changes in Prairie du
Chien Group (from Bricker et al., 1983).




B

Yy T

o

Prairie du Chien

LS

T Den e
"

i

Wy

Tempealeau

e
}L_

P Y VS

A A WAy~ e

AN A

L
X
i |
PLATE 3 § /
| STRATIGRAPHIC g i
| CROSS SECTION E-F i o
| shcxsoN canTr !

oeBoraan CanTY
MIDDLE_ORDOV ICIAN
THROUGH

s

PRECAMBRIAN

Figure 17. Gamma-ray cross-section in Michigan Basin. Also illustrates Tithologic changes in the Prairie

du Chien Group (from Bricker et al., 1983).



. T i

Hunt Enargy Corp.

Trempealesu|

— Lt
A
@R

\

T N e P

|

PLATE 8

STRATIGRAPHIC
CROSS SECTION J-1

e A
\

]

PRPPVETE e

": a00 ;{ s
) 8
; }
| -
-
e é - ‘E Ptairie du Chien
; {
- ; =
i |
! i
2 ? i 13
a SR
> z 4
;
!

Figure 18. Gamma-ray cross-section in Michigan Basin. Again, illustrates the lithologic changes in the

Prairie du Chien Group (from Bricker et al.,

1983).




53

Facies Within the Prairie du Chien Sand

Elsewhere in the Michigan Basin the sandstones of the Prairie du
Chien Group exhibit several interesting micro-facies developed within
the massive sand sheet. Based on the characteristics of lithologies,
sedimentary structure, trace fossils, etc., the most reasonable facies
model for these micro-facies in the Prairie du Chien appears to be an
offshore barrier-bar system.

During the extensive deposition of the New Richmond sandstone,
sand influx into the Michigan Basin was very great. The currents were
apparently strong enough to preclude the development of deltaic facies
to the north closer to the sand source. Rather, a widespread massive
sand sheet formed over the Michigan Basin.

Presumably sediment influx into the Michigan Basin kept pace with
the subsidence of the Basin producing an equilibrium situation. Water
depth was therefore probably fairly shallow with restricted to normal
marine depositional environment indicators present in the Prairie du
Chien sands. In some instances, the sands are extensively bioturbated,
with the feeding movements of organisms completely obliterating any
depositional sedimentary structures. These burrows are typically
horizontal feeding burrows, but other burrow types are present.
Vertical Scolithus burrows have been observed (Plate 1) and in one

instance a Diplocraterion burrow (Plate 2) was observed. These vertical

burrow types suggest that very shallow water organisms were present and
in the case of Scolithus burrows an intertidal setting may be even

suggested. On the other hand, horizontal burrows suggest deeper water
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Plate 1. Scolithus burrows in Prairie du Chien sandstone.
Sample is from Glide 1-25 well core, Missaukee
County, from approximately 10,573' 6" in depth.



Plate 2.
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Diplocraterion burrow, in Visser 3-35 well core,
Missaukee County. Approximate depth of sample
is 10,879'. Also note Scolithus burrows and
well indurated nature of the sample.
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environments (Rhoads, 1975). Typically, the vertical burrows are more
extensively cemented with silica overgrowths than the surrounding sand.
These burrows are readily distinguished from the surrounding sediment
by their lighter, whitish color and well indurated character.

Sedimentary structures also suggest that the sands were deposited
in a shallow, restricted to normal marine depositional setting. In
places, the Prairie du Chien sandstones are horizontally laminated while
other sandstones possess low to medium angle cross beds. Shallow, high
energy depositional environments could probably create these kinds of
bed forms.

Figure 19 illustrates how the lithofacies observed fit into the

suggested facies model for the Prairie du Chien sands.

Lagoonal Facies. Lagoonal Facies are consistently greenish to

green-gray to green-brown sands. These sediments are usually greatly
bioturbated, with Scolithus burrows commonly observed. The sediments
are fine-to-coarse-grained owing to the low energy depositional envi-
ronment plus spillover from barrier-bars. These sands are typically
glauconitic, with some finely disseminated pyrite observed occasionally.
The typical lithologies of the lagoonal facies are siltstones and

silty-sandstones (Plate 3).

Near-shore Facies. The near-shore facies is fine-to-coarse-

grained, also a consequence of normal sedimentation, sorting, and
spillover from barrier-bars. However, they are light in color, usually

white to yellow to beige and extensively indurated with silica cement.
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Plate 3.

Glauconitic sandstone in Prairie du Chien Group.
This sand is interpreted to represent a restricted
lagoonal depositional environment. Note abundant

Scolithus burrows and some pyrite. Sample from

Roseville Gun Club "B" 1-17, Roscommon County
from approximately 11,644' depth.
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The 1light color and lack of glauconite suggests that they are not
restricted lagoonal sediments, but rather they were deposited on the
oceanward side of a barrier-bar in contact with open marine waters.
Again, Scolithus burrows are observed and low to medium angle cross
beds are present. The lithologies of the nearshore facies range from
silty sandstones to quartz arenites. Orthoquartzities may also be

observed (Plate 4).

Offshore Facies. This facies is believed to represent the typical

Prairie du Chien sediment when it was deposited in the Basin prior to
the effects of reworking and sorting. These sands are generally fine-
to-medium-grained but some coarse grains are observed occasionally.
These sediments are light colored, white to yellow to beige, and again,
greatly indurated with silica. Sedimentary structures are generally
absent but some sand laminations are present. Also, no trace fossils
are evident in this environment. The lithologies of the offshore

facies (Plate 5) range from silty sandstone to orthoquartzities.

Barrier-bar Facies. This facies is characteristically coarser

than the offshore facies. The higher energy depositional environment
has winnowed most of the fine sediments while reworking the coarse
sediments. The residual sand is better rounded, sorted, and coarser
than any other sediments. These sandstones are generally without
traces of fossils. High-energy, medium-angle cross-beds are also
observable in this facies. The lithologic composition includes quartz

arenites.
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Plate 4.

Near-shore sandstone in Prairie du Chien Group.
This sand is interpreted to represent near-shore
sedimentation of an open marine environment.
Note Scholithus burrows. Sample from Gernaat
2-19, Clare County, from approximately 10,475'
depth.
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Plate 5.

Tight, fine-grained sandstone of Prairie du Chien
Group. This sand is interpreted to represent off-
shore, open marine sedimentation. Note small,
black "dead" oil blobs. Sample from Dalrymple 1-16,
Roscommon County, from approximately 11,070' depth.
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It is interesting to note that there may be some sort of basin
(tectonic) influence upon the development of certain types of Prairie
du Chien sandstone facies. However, with the sparse amount of data
present any discussion would be speculative in nature. As more data
become available some relation between Prairie du Chien sandstone

facies and structure might be tested.



PRAIRIE DU CHIEN PETROLOGY

Mineralogy and Lithology

The lithologies of the Prairie du Chien Group sandstones are
highly variable ranging from siltstone, silty sandstones, quartz
arenites, orthoquartzites, dolomitic sandstones to sandy dolomites.
However, some outstanding petrologic characteristics can be described
in the sands.

The sands of the Prairie du Chien are mineralogically dominated
by the presence of quartz grains. The quartz grains are typically
monocrystalline exhibiting unit extinction. However, some undulose
quartz grains and occasional polycrystalline quartz grains are present.
Overall, quartz ranges in abundance from 43% to 95%, this was determined
through point counting of over 50 thin sections. The dolomitic sands
and sandy dolomites contain floating quartz grains in a dolomitic matrix
(Plate 6). On the other hand, many examples of orthoquartzites are
observed. These sands contain greater than 90% quartz grains with
silica cement completely closing pore space (Plates 7, 8, and 9).
Other framework grains include feldspar plus gneissic and schistose
rock fragments. These framework grains generally comprise less than
1% of the matrix.

Grain shapes are also highly variable in the Prairie du Chien

sands. Grain sphericity ranges from oblong and ovate to nearly
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Piate 6. Photomicrograph of sandy-dolomite sample from McCormick 2-27
well core, Osceola County. From an approximate depth 9841°'.
Photograph frame is 2.5 mm x 3.8 mm. Some grains are
identified as follows: q=quartz grain; d=dolomite matrix.
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Plate 7. Photomicrograph of tight sandstone from Visser 3-35 well
core, Missaukee County, and from approximately 10,843' 7"
depth. Photograph frame is 2.5 mm x 3.8 mm.
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Plate 8. Photomicrograph of tight sand with syntaxial silica
overgrowths from Fruedenberg 1-31 well core, Osceola County,
and from approximately 9657' depth. Photograph frame is
1.0 mm x 1.5 mm. Labelled grains are indicated by:
q=quartz grain; 0=syntaxial silica overgrowth.
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Plate 9. Photomicrograph of tight sandstone sample from Roseville
Gun Club "B" 1-17 well core, Roscommon County, and from
approximately 11,772' depth. Photograph frame is 1.0 mm
x 1.5 mm. Quartz grains are indicated by the letter q.
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spherical, with most grains ovate to nearly spherical. Grain roundness
ranges from angular to rounded, with most from subangular to subrounded.

Grain sizes are also highly variable, depending on: (1) distance
from source; (2) facies; and (3) diagenetic processes. As expected,
farther south in the study area (Newaygo County) the sand grains are
generally smaller than to the north. Here, the sand grains occur in
the fine sand size fraction, however some medium size grains are also
observed. To the north, however, grains are observed to range mostly
from fine to medium sand sizes. In a few instances, some cross-bedded
sandstones were observed to possess 2 mm sand grains.

The type of depositional facies, as described earlier, also appears
to effect grain size through differences in energy of the depositional
environment. The lagoonal and offshore facies described already gen-
erally have poorly sorted sediments with a wide range of grain sizes.
These depositional environments charagterized by lower energy condi-
tions would not have been winnowed by strong water currents. On the
other hand, the near shore and barrier-bar facies would leave coarser
sediments reflecting their higher energy conditions.

Extensive silica cementation in the Prairie du Chien sandstones
has produced grains which appear coarser because of syntaxial
overgrowth.

Heavy minerals in the Prairie du Chien sands are infrequently
observed. The most often observed heavy mineral is rutile, occurring
in a needle-like form. Other observed heavy minerals include tourmaline

and an occasional biotite flake.
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Prairie du Chien sandstone matrix is also highly variable in
abundance and mineralogy. Clay is present between the framework grains
in many of the sandstones observed. The overall abundance of clay,
determined by point counting, ranges from 0% to 35%. Typically,
however, clay constitutes 5% to 10% of the clastic matrix. Clay is
observed in some instances to be associated with presence of pressure
solution and sutured framework grain contacts. In other instances,
clay is observed as authigenic clay rims on framework grains.

Clay mineralogy is also variable. X-ray diffraction data reveal
that several clay minerals are present in the Prairie du Chien sand-
stones. Clay separations were prepared from several of the porous
and friable sand samples. In each sample, il1lite was present in some
quantity. However, kaolinite and chlorite were sometimes observed to
be present with the illite. The depths and temperatures from where
the Prairie du Chien sandstone samples were taken preclude the existence
of smectite and vermiculite type clay.

Several cement types are present in the Prairie du Chien sand-
stones. The most abundant cement type is syntaxial silica overgrowths
(Plate 8 and 10). In many instances, silica cementation is very perva-
sive and produces very dense, tight sandstones. In these sandstones,
effective porosity has been reduced essentially to zero. Typically,
fine-grained poorly sorted, quartz sandstones have been observed to
be more extensively cemented than are the coarser sandstones. The
reasons for this are not altogether clear, but probably are related
to the initiation of pressure solution in fine-grained lithologies,

as previously suggested by Heald (1956) and Thomson (1959).
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Plate 10. Photomicrograph of Prairie du Chien sandstone with syntaxial
silica overgrowths. Sample from Dowker 2-21 well core,
Otsego County, from approximately 7908' depth. Photograph
frame is 1.0 mm x 1.5 mm. Labelled are: q=quartz grains;
0=syntaxial silica overgrowths.
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Clay minerals also appear to have acted as cement in some of the
sandstones, but such sandstones are very friable and possess good
porosity.

Dolomite cement is also present in the Prairie du Chien sandstones.
Its distribution is erratic and somewhat problematic as it is usually
observed in the upper portion of cores, close to the top of the Prairie
du Chien. However, when dolomite cement is present it completely fills
the pore spaces. Such dolomite cement is commonly coarsely crystalline,
anhedral and is characterized by undulose extinction. The dolomite
crystals are usually interlocking and very tight, with no observable
porosity between them (Plate 11).

The distribution of dolomite cement in the Prairie du Chien sand-
stones suggests several possible origins for the dolomite. First, the
dewatering of the overlying Glenwood and/or "Lower Glenwood" formations
may represent a local source for the carbonate. Second, during sand
deposition, some carbonate may have been forming also, filtering into
the sands and becoming cement. And third, the dolomite cement may
represent remnant Shakopee dolomite that was later significantly
reduced in volume by pressure solution, and therefore is observed
as dolomite between grains. Further work is needed here.

The porosity in the Prairie du Chien sandstones is highly variable.
Overall, the growth of silica cement has the most influence on the loss
of sandstone porosity. The porosity observed in the sandstones is
exclusively intergranular and appears associated with the presence

of clay minerals. Pores are typically less than 0.25 mm in diameter.
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Plate 11. Photomicrograph of Prairie du Chien sandstone with dolomite
cement, from Gilde 1-25 well core, Missaukee County, from
approximately 10,547' depth. Photograph frame is 1.0 mm
x 1.5 mm. Dolomite cement is indicated with the letter d,
while q indicates quartz grains.



73

Lithologic Descriptions

A number of selected representative thin section descriptions
are presented in Appendix C of this report. These demonstrate a wide
variety of lithologies present in the Prairie du Chien Group sandstones.
Four types of sandstones based on these thin sections are described
below: (1) a sandstone tight with syntaxial silica overgrowths;

(2) a sandstone showing pressure solution; (3) a sandy dolomite;
and (4) a sandstone with some porosity.

Sandstones tight with syntaxial silica overgrowths are a very
common lithology in the Prairie du Chien Group. A representative
sample of this is illustrated in Plate 12. This sample is from the
Roseville Gun Club "B" 1-17 well core, Roscommon County, from a depth
of approximately 11,772'. Quartz is the predominant framework grain
and comprises over 95% of the sample. Other framework grains include
feldspar and rock fragments, but together they account for less than 1%
of the sand. The remaining portion of the sample is silica cement.
Mean grain size is 0.20 mm. Grain shapes range from subangular to
subrounded. A rounded tourmaline grain is observed. Abundant silica
cement is observed. This sample has no observable porosity.

The effects of pressure solution are also observed in some of the
sandstones of the Prairie du Chien (Plates 13 and 14). This sample is
from a depth of 10,166' 8" 1in the Bruggers 3-7 well, Missaukee County.
Quartz predominates the framework grains comprising 90% of the sample,
and is obse;ved to be mostly monocrystalline, non-undulose in nature.

Rock fragments and feldspar make up less than 1% of the framework



Plate 12.
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Photomicrograph of sandstone tight with syntaxial silica
overgrowths from Roseville Gun Club "B" 1-17 well core,
Roscommon County, from approximately 11,772' depth.
Photograph frame is 2.5 mm x 3.8 mm. The grains are
predominantly quartz, with one tourmaline grain
observed in the center of the photomicrograph.
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Plate 13. Photomicrograph of sandstone in the Prairie du Chien Group
illustrating pressure solution. Sample from Bruggers 3-7
well core, Missaukee County, from approximately 10,167'
depth. Photograph frame is 1.0 mm x 1.5 mm. Note clay
between grains and the sutured grain contacts of framework
grains. Quartz grains are indicated by the letter q.
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Plate 14. Photomicrograph of Prairie du Chien sandstone framework
grains with sutured contacts because of pressure solution.
Sample from Brinks 1-3 well core, Missaukee County, from
approximately 10,785' depth. Photograph frame is 1.0 mm
x 1.5 mm. The letter q indicates quartz grains. Note
clay between framework grains.
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grains. Mean grain size is 0.32 mm, and the sorting is considered to be
poor. Sand grains are subangular to subrounded. There is no observable
porosity. Clay is abundant, constituting 10% of the sample. Grain
edges appear sutured probably due to pressure solution.

The most interesting lithologies in the Prairie du Chien sandstones
are the sandy dolomites (Plate 6). A good example of this is from 9841’
depth in the McCormick 2-27 well, Osceola County. Monocrystalline, non-
undulose quartz is the most abundant grain type. However, these grains
are "floating" in a dolomite matrix. Quartz makes up only 34% of this
sample. The mean grain size is 0.26 mm, and they are subangular to
subrounded in shape. The dolomite is medium to finely-crystalline,
anhedral, and tightly interlocking, with no observable porosity pres-
ent. This lithology might be interpreted by some to represent typical
Shakopee dolomite of the Prairie du Chien Group. The only other exam-
ples of this type lithology were observed in the Fruedenberg 1-31 and
Gray 1-31 well cores (also in Osceola County). Cuttings samples of the
Anderson 1-8A and Michigan Consolidated Gas Co. 1-9 (Newaygo County)
indicate that dolomite lithologies are also present.

Porous sandstones are also observed in the Prairie du Chien Group.
Plate 15 is an example of this. This sample is from 10,831' in the
Workman 1-31 well core, Missaukee County. Quartz is the predominant
framework grain making up 93% of the sample and is observed to be
mostly monocrystalline, and non-undulose. Mean grain size is 0.35 mm.
The sorting is considered to be fair. Grains are subangular and sub-

rounded. Porosity is measured by point counting to be 3%, however,
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Plate 15A. Example of isolated, clay-lined pores in Prairie du Chien
sandstones. Sample is from Workman 10-31 well core,
Missaukee County, from approximately 10,831' depth.
Photograph frame is 1.0 mm x 1.5 mm.

Plate 15B. Same as above, except under uncrossed nicols. Labelled
are: q=quartz grains, p=pore. Note clay rims on
framework grains.

4
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this figure appears to be low. Pores appear to be clay-lined. Some
dolomite cement is observed in this sample. Plate 16 illustrates
clay-line pores and this sample is also from the Workman 10-31

well core, but from approximately 10,963' depth.

Sedimentary Structures

Many sedimentary structures are observed in the Prairie du
Chien sandstones. These features include: (1) low angle cross-beds
(Plate 17); (2) laminations (Plate 18); (3) cross-laminated sandstone

(P1ate 19); and (4) some graded bedding.
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Plate 16A. Example of isolated, clay-lined pores in Prairie du Chien
sandstones, from Workman 10-31 well core, Missaukee County,
from approximately 10,963' depth. Photograph frame is
1.0 mm x 1.5 mm.

Plate 16B. Same as above, except under uncrossed nicols. Labelled
are: q=quartz grains, p=pore. Note clay rims on
framework grains.
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Plate 17. Example of low angle cross beds from the Prairie
du Chien Group. Sample is from Gilde 1-25 well
core (Missaukee County), and from approximately
10,636' depth.
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Plate 18. Example of laminated sandstone in the Prairie du
Chien Group. Sample is from Gilde 1-25 well core
(Missaukee County), and from approximately 10,598'
depth.
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Plate 19. Example of cross-laminated sandstone in the Prairie
du Chien Group. Sample is from Gilde 1-25 well
core (Missaukee County), and from approximately
10,598' depth.



PRAIRIE DU CHIEN SANDSTONE POROSITY

Sandstone diagenesis has been the topic of much study in recent
years, with most emphasis being placed on porosity retention, destruc-
tion, and development in relation to hydrocarbon reservoirs. Schmidt,
McDonald, and Platt (1977) and Schmidt and McDonald (1979a, 1979b, and
1980) have stated that the amount of primary porosity in sandstones has
been greatly overestimated because of the lack of recognition of secon-
dary porosity in sandstones. The recognition of porosity types is of
utmost importance in petroleum geology in order to understand reservoir
history characteristics and quality.

The origin of porosity in the sandstone facies of the Prairie du
Chien Group in the Michigan Basin is extensively debated at present.
Because little previous work has been done on these sands, opinions
concerning the Prairie du Chien sandstone porosity have been divided
between two groups [Montgomery (ed.), 1984]. One group believes that
the sandstone porosity is entirely retained depositional (primary)
porosity. The primary porosity has escaped the detrimental effects
that some types of diagenetic processes (compaction, pressure solution,
and cementation) have on sedimentary rock pores. Another group, how-
ever, believes that secondary porosity development has produced the
Prairie du Chien hydrocarbon reservoirs. Secondary porosity is here

defined (Schmidt, McDonald, and Platt, 1977; Schmidt and McDonald,
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1979a and 1980) as porosity produced by the removal of soluble rock
constituents (mostly carbonate minerals) by acidic surface and ground
water before effective burial began or after effective burial ended.

Between the above two groups, several theories concerning how
the Prairie du Chien sandstone porosity was developed, have remained
relatively untested. It is hoped that this study might be able to
develop some conclusive information to explain the porosity of these
sands, and from this an improved exploration strategy might be
developed and implemented.

The first theory states that the porosity is secondarily developed
and is directly related to the downward leaching effects of surface
waters during the development of the post-Knox Unconformity [Montgomery
(ed.), 1984].

The second theory (Syrjamaki, 1977) states that basinal fluids
ascending along fractures also produced secondary porosity through
leaching of the Prairie du Chien sands.

A third theory, somewhat similar to the first (above), contends
that porosity may be secondarily developed by descending leaching
fluids during the post-Knox erosional event but that production is
limited to erosional "knobs" similar to the Copper Ridge (Cambrian)
production in Morrow County, Ohio (Whiting, 1965; and Dolly and Busch,
1972).

These three theories require the presence of soluble sedimentary
rock constituents and the movement of fluids with sufficient acidity

to dissolve these constituents.
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A fourth theory (Stelzer, 1982) postulated that porosity in the
Prairie du Chien sands is retained depositional (primary) porosity
which was preserved by the presence of clay minerals presumably
inhibiting the nucleation and/or growth of pore-occluding silica
cement.

A fifth theory [Montgomery (ed.), 1984] suggests that detrital
chlorite rims (girders) hold apart the quartz sand grains thereby
reducing the effects of silica cementation by pressure solution.

In order to establish which theory (or theories) is/are correct
and to ascertain what geologic factors controlled the origin of the
present porosity, it is necessary to first characterize the porosity
as either primary or secondary. Following this, one may attempt
to explain porosity development and distribution using geological

phenomena which is considered to be most reasonable.

Discussion of Secondary Porosity

In recent years, secondary porosity has been considered more
prevalent in sandstones than previously thought. In some instances
secondary porosity forms the predominant type of porosity in hydro-
carbon reservoirs. Schmidt and McDonald (1979a and 1980) have clas-
sified secondary sandstone porosity types into five classes, each of
which can be recognized in thin-section. The five genetic-textural
classes of secondary sandstone porosity can be differentiated on the
basis of process of origin and textural relations (Schmidt and McDonald,

1980; Figure 20 of this report):
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porosity created by fracturing--this type includes any newly

formed fractures including those created by stresses resulting
from the shrinkage of rock constituents or whole rocks;

shrinkage porosity--this porosity type is formed through the

dehydration and/or recrystallization of a number of minerals
such as glauconite and hematite. Shrinkage fractures are not
included here, but in the above textural class. Shrinkable
constituents occur in rocks as framework grains, parts of
grains, matrix, authigenic cement, or authigenic replacement.
It perhaps should be mentioned here that shrinkage porosity
which occurs in the epigenetic dolomitization process of
limestone according to some workers is not under consideration
here as the Prairie du Chien dolomite (matrix here) is consid-
ered early diagenetic in origin and therefore preconsolidation
where any potential shrinkage would not be manifest as voids
in the non-rigid carbonate muds;

porosity created by dissolution of sedimentary material--this

type of porosity results from the selective removal of soluble
grains and/or soluble matrix. The dissolution of carbonate
constituents is by far the most common form of this type of
secondary sandstone porosity;

porosity originating from dissolution of authigenic cement--

this type of porosity is possibly the most important textural
class of secondary porosity developed in sandstones. The
majority of dissolved cements consist of the mineral calcite,

dolomite, and siderite;
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Figure 20. Genetic classes of secondary sandstone porosity
(after Schmidt and McDonald, 1980).
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porosity resulting from dissolution of authigenic replacive

minerals--this type also forms a significant portion of
secondary porosity in sandstones. It is formed by the
selective dissolution of soluble minerals, dominantly calcite,
dolomite, and siderite that previously had replaced sedimentary

framework constituents, matrix, and/or authigenic cements.

Combinations, or hybrids, of these pore classes may also occur in

sandstones (Figure 21; Schmidt and McDonald, 1980).

Schmidt and McDonald (1979a and 1980) further recognize five types

of secondary sandstone porosity textures. These pore textures can be

differentiated in sandstones and was based, in part, on the nomenclature

used to describe carbonate pore textures (Choquette and Pray, 1970).

These groups include the following (Schmidt and McDonald, 1979a and

1980):

1.

intergranular pore textures--this includes pores between

grains. The pores may be lined by cement. Three types of
intergranular pore texture are observed: (a) regular
intergranular; (b) reduced intergranular; and (c) enlarged
intergranular.

oversized pore textures--this includes pores that are larger

than adjacent grains by a factor of 1.2. This does not
include fracture porosity. Two types of oversized pore
textures are described: (a) oversized fabric-selective;

and (b) oversized cross-cutting.
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3. moldic pore textures--this pore class shows the outline

of dissolved rock constituents. Three types of moldic pore
textures are recognized: (a) grain molds; (b) cement molds;
and (c) replacement molds;

4. intra-constituent pore textures--this includes all pores

contained within the sedimentary rock constituents. Four
types have been recognized: (a) intragranular; (b) intra-
matrix; (c) intra-cement; and (d) intra-replacement;

5. fracture pore textures--this includes all parting or separation

by fracturing of a rock. Three types of fracture pore textures
are recognized: (a) open rock fractures; (b) open grain

fractures; and (c) open intergranular fractures.

Recognition of secondary sandstone porosity is very critical in
determining what factors controlled porosity development. However, as
stated previously, secondary porosity has been little recognized in
sandstones possibly owing to its misidentification as primary porosity
(Schmidt, McDonald, and Platt, 1977; and Schmidt and McDonald, 1979a,
1979b, and 1980). As a consequence, Schmidt and McDonald developed a
list of criteria used to recognize secondary sandstone porosity
(Figure 22; Schmidt and McDonald, 1980). To help in recognition
of these criteria, Schmidt and McDonald recommend vacuum impregnation
of sandstone samples with blue stained epoxy.

The carbonate minerals calcite, dolomite, and siderite are the
most commonly affected sedimentary rock constituents. Feldspar dis-

solution also occurs but plays a subordinate role by volume to the
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Petrographic criteria for recognition of secondary
sandstone porosity (after Schmidt and McDonald,

1980).

Figure 22.



amount of carbonate dissolution in secondary sandstone porosity.

Most other minerals are not dissolved significantly enough to produce
an appreciable amount of secondary sandstone porosity (Figure 23;
Schmidt and McDonald, 1980).

Secondary sandstone porosity may occur anywhere in the Earth's
crust. Following the nomenclature of Choquette and Pray (1970),
Schmidt and McDonald (1979a and 1980) described three diagenetic
environments, which include: (1) diagenesis before effective burial
in the environment of deposition (eogenetic); (2) diagenesis of any
depth of burial above the zone of metamorphism (mesogenetic); and
(3) diagenesis during exposure following a period of burial (felo-
genetic). Further, Schmidt and McDonald (1979a, 1979b, and 1980)
pointed out that most secondary sandstone porosity is developed during
the deep burial of rocks (mesogenetic environment) and is possibly
closely related to the maturation and migration of hydrocarbons. It
has been shown empirically (Tissot and Welte, 1978) that during hydro-
carbon generation, significant amounts of carbon dioxide may also be
produced. Additional CO2 in subsurface brines would adjust solution
pH's significantly enough to cause the dissolution of carbonate and
feldspar minerals. In this way, the migration of hydrocarbons and
development of secondary sandstone porosity may occur simultaneously.

To test the role that secondary sandstone porosity may have played
in the development of Prairie du Chien Group reservoirs, one must first
determine séndstone petrology. This subject has been discussed in the

previous section. Then, after rock constituents are identified and
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their abundances determined (identifying constituents that would have
most likely been affected by dissolution, shrinkage, or fracturing),

it may be able to assess the significance of secondary sandstone
porosity development. Using the criteria for the recognition of
secondary porosity it should be possible to determine if secondarily
formed pores are present and what relations pores have with surrounding
rock constituents. If these criteria cannot be observed, i.e., those
which indicate the presence of secondary sandstone porosity, then some
alternative geologic interpretation must be considered to explain
porosity in the sands, suggesting what factors may have controlled

porosity development.

Discussion of Data

The presence of secondary porosity in the Prairie du Chien
sandstones was evaluated in this study in order to test several of
the theories concerning porosity in these sands (already discussed).
Several of these theories were based on the presumption that porosity
is secondarily formed by either descending or ascending fluids leaching
dissolvable rock constituents. Rock constituent shapes, grain edges
and contacts, and observable diagenetic effects were observed to test
the possibility of secondary porosity development in the Prairie du
Chien sands.

The framework constituents of the Prairie du Chien sands are
predominantly quartz grains with minor amounts of feldspar grains.

No detrital carbonate clasts were observed. These framework grains

are observed to vary in roundness from angular to rounded; however,



9¢

most occur in the range of subangular to subrounded. These grain
shapes appear to be the result of: (1) transportation; (2) compaction;
(3) pressure solution; and (4) silica cementation. These processes
also have affected grain sphericity ranging from bladed and oblong

to oval.

Several diagenetic processes are observed to affect the Prairie
du Chien sands. The most pervasive process is the cementation of
sand grains with syntaxial silica overgrowths. Silica cementation
is observed in many instances and appears to be the process that has
the most destructive effects on Prairie du Chien sandstone porosity.
Other diagenetic processes include cementation by dolomite cement with
occasional embayment of quartz grains by dolomite, and formation of
authigenic clay rims of framework grains. No dissolution phenomena
were observed to have affected the framework grains of the sands.

In all instances, grain edges are very distinct forming sharp
contacts with the surrounding rock constituents.

In several instances, dolomitic sands and sandy dolomite
lithologies were observed. The dolomite crystals are anhedral,
tightly interlocking and coarsely, crystalline with undulose extinc-
tion. Overall, these lithologies are very tight with no visible
porosity. Dissolution of the dolomite was not observed.

Several cement types are observed in the Prairie du Chien sands.
As previously mentioned, silica cementation has produced in some
lithologies, a very dense, tight sandstone. In many instances, the

sandstone porosity has been completely occluded by silica cement.



Dolomite cement is also observed in the sands; however, it is secondary
in abundance to silica cement. Dolomite cement, when present, is also
observed to completely occlude sandstone porosity. A third cement type
is clay cement. Some lithologies contain a significant amount of clay
between grains with little or no silica or dolomite cement present.
Clay mineral species observed in the Prairie du Chien sands include
illite (glauconite), kaolinite, and chlorite. The clay cement is
presumed to be authigenic in nature. Again, dissolution is not
observed to have affected the cements in the Prairie du Chien sands.

The amount of porosity in the Prairie du Chien sands is highly
variable. Point counting reveals that porosity ranges from 0 to 8%.
However, on compensated neutron porosity logs sand porosity is observed
to be as high as 20%. Intergranular porosity is the only type observed
in thin-section. The pore shapes and sizes are controlled by compac-
tional effects and the shapes of surrounding framework grains and the
presence of clay minerals and other types of cements. Pores appear to
be clay lined (Plates 15 and 16). Pore size is variable, however
usually less than 0.25 mm in diameter.

From the grain shape, grain edge, pore geometry and pore location
data, secondary sandstone porosity does not appear to be important in
the development of the Prairie du Chien sandstone reservoirs. The
Prairie du Chien sand constituents are dominated by the presence of
quartz framework grains, with significant amounts of syntaxial over-
growths present. These two constituents are not soluble enough to

appreciably dissolve forming secondary porosity. Carbonate cement,
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when present, shows no evidence of dissolution. Also the dolomitic
sands and sandy dolomites likewise show no secondary porosity devel-
opment. Overall, porosity in the Prairie du Chien sands does not
appear to have been formed by the dissolution of sandstone constit-
uents. It appears that the presence or non-presence of syntaxial
silica overgrowths in the Prairie du Chien sands is what determines
whether the sands are dense, tight and non-porous or friable and porous.
As porosity is found entirely as intergranular porosity, and appears
to be closely associated with the presence of clay minerals, the data
suggest that the Prairie du Chien sand porosity is retained primary
(depositional) porosity that escaped the pore occluding effects of
silica cementation (Stelzer, 1982). Stelzer believed that clay
minerals inhibited the growth of silica cement.

Several factors have apparently acted to destroy or retain primary
porosity in the Prairie du Chien sandstones.

First, compactional effects in the Michigan Basin cannot be
overlooked. As overburden stresses increased from sediment loading,
the sandstones of the Prairie du Chien were subjected to mechanical
and chemical porosity reduction processes. Mechanical compaction,
pressure solution and cementation are processes that can significantly
alter the amount of primary porosity retained or destroyed in a sand-
stone (Houseknecht, 1984). Primary porosity may be reduced through
mechanical compaction by one-third in some quartzose sandstones from
an original porosity of 35% to 50% (Pryor, 1973). The two processes

of mechanical compaction that reduce porosity are the reorientation



101

and repacking of competent (brittle) framework grains and the plastic
deformation of ductile grains like lithic fragments. As the sediment
load increases, pressure solution and cementation may close pores,
further reducing effective porosity to nearly zero. The process of
pressure solution is well documented by Sibley and Blatt (1976).

Pressure solution has been studied extensively for some time.
Taylor (1950) showed that the number of grain contacts increased with
increasing depth of burial as a result of pressure solution. Heald
(1956) illustrated that laminae of fine-grained clastic sands are more
susceptible to pressure solution than are laminae of coarser-grained
sands. It was suggested further that a small amount of clay between
framework grains may promote the process of pressure solution (Heald,
1956; and Thomson, 1959). Maxwell (1964) suggested a decrease in
quartzose sandstone perosity, with increasing burial depth and further
suggested that the porosity loss was in part due to intergranular
pressure solution.

Pressure solution had been considered for years to be a viable
source of silica that precipitated as cement in some sandstones.
However, Sibley and Blatt (1976) demonstrated that only one-third
of the volume of silica cement in the Tuscarora sandstone of Pennsyl-
vania can be accounted for by pressure solution. On the basis of that
study, many workers have considered pressure solution to be a small
contributor of silica to the cementation of sands, and therefore, many
have 1ooke& elsewhere for cement sources.

As observed in many of the samples of the Prairie du Chien sand-

stones, the sandstones are highly indurated with silica cement in the
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form of overgrowths. Still, some effective porosity is observed in
some of the sandstones.

Compactional differences, even from the sparse sample distribution
in this study, can be suggested for the Prairie du Chien snads based on
the depth of burial. The sandstones of the Jennings Petroleum discovery
well (Anderson 1-8A) in Newaygo County show less compactional effects
than those sandstones in the deeper basin. Porosity is reported to
reach 20% in the Anderson 1-8A, with 240 milidarcies permeability
[Montgomery (ed.), 1984]. Stuart Jennings (oral communication, 1985)
has suggested that silica cementation (and perhaps pressure solution)
is less pervasive in the sands of Newaygo County compared to the deeper
basin sands. These differences may not be so much related to burial
pressure as to the temperature and time of burial. Houseknecht (1984)
postulated that for a given grain size, porosity is higher in sandstones
of lower thermal maturity. As the Newaygo County Prairie du Chien sands
are shallower than the deeper basin sands they should be expected to be
less thermally mature (this is of course, assuming a fairly constant
geothermal gradient over the Michigan Basin). The effect of pressure
solution in these sands is presumed here to account for the difference
observed in deeply buried versus shallower sands. It has been proposed
(Houseknecht, 1984) that temperature exerts a fundamental influence on
the occurrence of pressure solution in sandstones and, hence, porosity
loss. Thus, a dichotomy of opinion could exist when this last observa-
tion is contrasted to the observation of Schmidt and McDonald (1979a,

1979b, and 1980) mentioned previously that secondary sandstone porosity
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is developed during deep burial. In any event the silica produced by
pressure solution may remain locally in the sand and become a source
for the silica overgrowths observed in the Prairie du Chien sandstones.
Pressure solution effects are frequently observed in the Prairie du
Chien sandstones (Plates 13 and 14) and may represent the silica source
for the syntaxial overgrowths also observed in the sandstones (Plate 8).

Grain size, is a second factor that must be considered important
for pore retention in the Prairie du Chien sandstones. Houseknecht
(1984) has proposed that at any given sample locality, coarser sands
will retain higher amounts of primary porosity than finer-grained sands,
even though the coarser-grained sands contained a greater volume of
cement. In general, this appears to be the case in the Prairie du Chien
sands. The offshore facies recognized in this study are generally
characterized by fine-to-medium-grained sands which have porosity
greatly reduced by pressure solution and silica cementation. On the
other hand, the coarser-grained lithologies, 1ike barrier-bar facies
and some lithologies of near-shore facies are less cemented, more
friable and less indurated with silica.

If less thermally mature, coarser-grained sandstones are more
porous than thermally more mature or finer-grained sandstones, an
ideal region in which to explore for good Prairie du Chien reservoir
rocks would be in the northwest portion of the study area. In this
region, the sandstones are closer to their source and, therefore,
coarser than distal sands, and they are less deeply buried and therefore

less thermally mature. The sands in this area would be expected to have
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retained a significant portion of their primary porosity, escaping
some of the pore reduction effects of pressure solution. Also, the
southwest portion of the study area offers an excellent area in which
to explore for Prairie du Chien reservoirs based on present production
in the area and that these sandstones are also expected to be thermally
less mature than deeper buried sandstones.

A third factor that has apparently played a role in retaining
porosity, especially in the deep basin sandstones, is the presence
of authigenic clay rims on the sand grains. As noted before, porosity
appears closely associated with the presence of clay minerals. On the
basis of x-ray diffraction data illite, chlorite, and kaolinite are
found to be the only clay minerals present. Clay usually appears as
clay rims on framework grains. Stelzer (1982) was the first to con-
clude that the porosity observed in the Prairie du Chien sandstones
was related to the presence of clay minerals, and this report concurs
with that conclusion. The clay rims have apparently acted to preclude
the pore reduction effects of silica concentration by inhibiting the
nucleation and/or growth of silica overgrowth (Plates 20 and 21).

Fourthly, the presence of hydrocarbons in the sands has also acted
to inhibit the pore destroying effects of silica cementation. As the
clay rims "coated" framework grains, hydrocarbons also "coated" some
grains and inhibited the nucleation and/or growth of silica overgrowths
(Plates 22 and 23). The early migration of hydrocarbons along shear
fractures (Prouty, 1970, 1976, 1980, and 1984) into shear folds in

the basin might account for production being limited to the uppermost
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Plate 20A. Close-up photomicrograph of isolated clay lined pore in
Prairie du Chain sandstone. Sample is from Dalrymple 1-16,
Roscommon County, and from approximately 11,155' depth.
Photograph frame is 0.39 mm x 0.60 mm.

Plate 20B. Same as above, except under uncrossed nicols. Frame is
slightly rotated compared to above photomicrograph.
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Plate 21A. Close-up photomicrograph of isolated clay-lined pore in
Prairie du Chien sandstone. Sample is from Dalrymple 1-16
well core, Roscommon County and from approximately 11,155'
depth. Photograph frame is 0.39 mm x 0.60 mm.

Plate 21B. Same as above, except under uncrossed nicols.
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Plate 22A.

Plate 22B.
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Example of inhibiting effects on diagnesis of the presence
of hydrocarbons in Prairie du Chien sandstones. Sample is
from Dalrymple 1-16 well core, Roscommon County, from
11,057' 4" depth. Note the high degree of angularity of
some of the grains, likely brecciated along a fault and
offering a porous reservoir rock for the hydrocarbons.
Photograph frame is 2.5 mm x 3.8 mm.

Same as above, except under uncrossed nicols. The
hydrocarbon is located beneath sand grains on the
right hand side of the photomicrograph.
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Plate 23A. Example of hydrocarbon inhibition on diagenesis of Prairie
du Chien sandstone. Sample is from Roseville Gun Club "B"
1-17, Roscommon County, from approximately 11,723'. Note
brecciated zone of angular fragments also a "reservoir
rock" for hydrocarbons as observed in Plate 22A and B.
Photograph frame is 2.5 mm x 3.8 mm.

Plate 23B. Same as above, except under uncrossed nicols. The
hydrocarbon between grains is best observed in the
upper right hand portion of the photomicrograph.
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150 feet of the Prairie du Chien sandstones [Bricker et al., 1983 and
Montgomery (ed.), 1984]. The hydrocarbons may have migrated into these
structures before the time of extensive pressure solution and silica
cementation of the Prairie du Chien sandstones in other areas.

As this study represents a reconnaissance study of the few avail-
able samples of the Prairie du Chien sandstones of the Michigan Basin,
it is not intended to provide definitive answers regarding the porosity

of the Prairie du Chien sandstones.



SUMMARY AND CONCLUSIONS

The theories about the origin of porosity in the Prairie du Chien
sandstones can be tested by observing petrographic character of pore
types and geometry, framework grains and their margins, and rock matrix
and cement. On a larger scale the observation of cores can also help
examine these theories.

From these observations it appears that secondary sandstone
porosity does not play a principal role in the development of porosity
in the Prairie du Chien sands.

In the Gilde 1-25 well (the only producing-well core studied), the
post-Knox Unconformity was not observed. No clear cut discontinuity
was seen between the Prairie du Chien and overlying "Lower Glenwood"
formation. Therefore, there does not appear any support for the con-
cept that sandstone reservoir porosity is related to the post-Knox
erosional event here, or secondary porosity development by leaching
of descending fluids.

To date, Prairie du Chien production has been restricted to the
uppermost 150 feet of the sand, and is closely associated with structure
(Figures 24, 25, and 26). However, porosity is not restricted to
structure as previously thought. In 13 of the 14 cores examined,
good zones of porosity were observed. The possibility that these
sands might also have been hydrocarbon producers if on structure must

be considered.
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The porosity observed in the Prairie du Chien sands appears to
be retained primary depositional porosity that escaped the detrimental,
pore destroying effects of silica cementation. Porosity appears
entirely intergranular and is closely associated with the presence
of clay minerals, 1ike illite, chlorite, and kaolinite. The clay is
observed as authigenic clay rims on framework grains. This association
suggests that clay minerals have inhibited the nucleation and/or growth
of pore-occluding silica cement, as first suggested by Stelzer (1982).
This report strongly supports Stelzer's work. Other factors that may
have affected the retention of porosity in the Prairie du Chien sands
include compactional effects, grain size, and the presence of
hydrocarbons.

In conclusion, the hydrocarbon potential of the Prairie du Chien
sandstones of the Michigan Basin appears good. More data will continue
to accumulate with further testing of these strata. Deeper testing of
shallow producing structures will remain the exploration strategy
employed by explorationists until more data have accumulated to

develop another technique.
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APPENDIX A

A DETAILED DESCRIPTION OF THE TYPE
PRAIRIE DU CHIEN GROUP

A detailed measured section aften Stank, 1949 is
shown in Michigan Basin Geological Society
Annual Field Excurnsdion, 1960,

C. E. Prouty led.)

A description of the Prairie du Chien Group type section, exposed in
a quarry on north side of County Highway X in the NW4% NW% Sec. 31,
T.6N., R.6W., Elkader Quadrangle, Wisconsin.

Description modified after George Stark, 1949, Master's Thesis,
University of Wisconsin.

Canadian Series
Prairie Du Chien Group
Shakopee dolomite Feet Inches

Dolomite gray massive dolomite with some stringers
of sandstone; gnarled appearance; in well developed
one foot beds . . . . . . . . ... 0000 ... 10 --

Dolomite, gray, massive, brecciated throughout . . . . . -- 1N

Dolomite, gray, very fine grained, in thin beds
separated by green shale partings . . . . . . . . . .. 1 --

Dolomite, gray with buff mottling, in beds
six inches thick and separated by gray shale . . . . . . 4 6

Dolomite, fine grained, light gray with orange-
stained areas . . . . . . et et e e e e e e e e e e -- N

Dolomite, gray, fine grained, thinly bedded and

with green shale partings; floating grains of

quartz sand . . . . L L L e e e e e e e e e e e e e 12 --
Dolomite, green, glauconitic, coarse grained . . . . . . -- 6

Dolomite, gray to reddish, fine grained; weathers
to irregular surface . . . . . . . . ¢ ¢ e e v e e e . 7 --
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New Richmond sandstone:

Sandstone, white, weathers brown, in beds
4 inches to 1% feet thick with interbedded

fine grained dolomite . . . . . . . . . . ... ...

Oneota dolomite:

Dolomite, 1ight buff with dark specks throughout,
in beds 3 to 6 inches thick separated by green

clay partings . . . . &« & i i i e e e e e e e e e e

Dolomite, gray, fine grained, weathers to

irregular surface; some algal structures . . . . . . .

Dolomite, buff, relatively soft; algal structures
profusely developed; in beds 3 to 4 feet thick
with stringers of chert throughout; basal foot

is weathered chert . . . . . . . . ¢ . . . o oo 0.

Dolomite, conglomeratic with dark gray pebbles
embedded in buff colored matrix; well bedded with
some green shale partings and some clean white

quartzose beds several inches thick . . . . . . . ..

Sandstone, white, clean quartz grains of medium

size; some green specks . . . . . . . .. e 0 e e

Dolomite, gray, non-cherty, relatively soft, very
massive; encloses some areas up to 15 feet in

diameter of fine grained, gray-buff dolomite . . . . .

Dolomite, very fine grained, undulating beds;

includes white, gray, and black chert; cavernous . . . .

Dolomite, gray to buff, coarse grained; in

4 inch beds . . . . . . & v v v i e e e e e e e e

Dolomite, gray to buff to orange colored, massive;
includes some white chert and near the top some

clay pockets . . . . . . . . . 0 e e e e e e e e e

Feet Inches
4 4
2 2
2 -

29 4
20 --
1 8
54 --
3 4
1 6
25 2
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APPENDIX B

PRAIRIE DU CHIEN SANDSTONE
CORE DESCRIPTIONS

Brinks 1-3

PN 36786

Sun Exploration

T2IN R6W Sec. 3 CNNENE

Very sharp contact exists between Prairie du Chien and overlying
“Lower Glenwood" formation; top of the Prairie du Chien is picked
in the core at 10,783' 5".

10,783' 5" to 10,818' 3"

sandstone, green to green-gray to gray to orange to orange-brown;

fine to coarse grained; quartz sand; silica cement present; friable
sand with some porosity; scattered glauconite (?) throughout, but very
glauconitic at 10,787' 11" to 10,790' 8", 10,794' 7" to 10,799' 3",
and 10,812' 11" to 10,814' 1"; laminated in places; vertical burrows
observed; iron staining throughout; pyrite is observed at top of
Prairie du Chien sand probably associated with erosional event.

Bruggers 3-7

PN 34078

JEM Petroleum Corp.
T24N R6W Sec 7 NESWNE

Top of Prairie du Chien picked in core at 10,157'. The contact with
the overlying "Lower Glenwood" formation is gradational.

10,157' to 10,160’

sandstone, gray to black to brown to orange; fine to medium grained;
coarse grained in places; quartz sand; tight with silica cement; no
observable porosity; vertical burrows present; pyrite in top 1 inch
of sand.

10,160' to 10,166' 6"

sandstone, gray to gray-pink to tan to brown; fine to medium grained;
quartz sand; tight sand with silica cement; no observable porosity;
vertical burrows present.
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10,166' 6" to 10,170' 4"

sandstone, green to green-gray to gray to brown; fine to medium
grained; quartz sand; silica cement; glauconitic (?); laminated;
vertical burrows present; shale partings also present.

10,170' 4" to 10,202"

sandstone, green to green-gray to gray to pink to orange; fine to
medium grained quartz sand; tight with silica cement; little observable
porosity; finely disseminated glauconite (?) in places; laminated and
cross bedded sand; some shale partings; vertical burrows and bioturba-
tions present; iron staining also observed.

Dalrymple 1-16

PN 34537

JEM Petroleum Corp.
T22N R4W Sec. 16 NWNESE

11,012' to 11,052’

sandstone, green to green-gray to gray to white to pink to tan; fine
to coarse grained; quartz sand; little cement; fair porosity; very
glauconitic (?) from 11,012' 9" to 11,046' (corresponds to gamma-ray
Kicks on log); some sand lamination present; some shale partings;
burrowed and bioturbated sand; possible dead oil present.

11,052' to 11,157°

sandstone, white to yellow to tan to pink to rust/red to maroon; fine
to medium quartz sand; well indurated with silica cement; little
porosity; no observable clay; good cross bedding observed; some sand
laminations also present; burrowed sand; heavily iron stained in
places.

Dowker et al. 2-21

PN 35922

Reef-West Bay-Wainoco
T30N RIW Sec. 21 NWSWSE

Top of Prairie du Chien picked at 7891' in core, but has gradational
contact with overlying "Lower Glenwood" formation.

7891' to 7902'

sandstone, green to gray-green to yellow to orange to tan; fine to
medium grained; quartzose sand; tight sand (in places) with silica
cement; fair porosity elsewhere; some clay present; laminations
observed, also some low angle cross beds are present; bioturbation
is observed.

7902' to 7928'

sandstone, white to white-yellow to yellow to tan; fine to medium
grained; quartz sand; tight with silica cement, however some scattered
porosity is observed; laminated and cross bedded.
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Fruedenberg 1-31

PN 34558

JEM Petroleum Corp.
T17N R8W Sec. 31 SENENE

Top of Prairie du Chien picked in core at 9589' 11" (9590'); however,
this is not a sharp contact, rather it appears very gradational with
the overlying "Lower Glenwood" formation.

9590 to 9595'

sandstone, green to green-gray; fine to medium grained; quartz sand;
little cement; friable sand; some porosity; glauconiteic (?) (corre-
sponds well with gamma-ray Kicks on logs); some lamination present;

burrowed and bioturbated; disseminated dead oil observed.

9595' to 9647'

sandstone to dolomitic sand to sandy dolomite, white to yellow-white

to gray to brown; fine to coarse grained, very coarse in places; quartz
sand; little porosity; fairly tight, clean sand; very well indurated
with silica cement; scattered porosity appears associated with the
presence of clay (glauconite ?); cross bedded and laminated in places;
vertical burrows throughout and better cemented than surrounding
sediment; some dead oil observed; dolomitic sand in places.

9647' to 9693' 3"
sandstone, green to green-gray to green-pink to pink; fine to medium
quartz sand; little cement, friable sand; porosity throughout; clay
present (glauconite ?); laminated sand; some burrows; traces of iron
staining present.

9693' 3" to 9703' 8"

sandstone, pink to pink-green to green; very fine grained lithology,
sandy in places; sand is quartzose; cement type is undifferentiable;
no porosity is observed; scattered glauconite (?) and glauconitic
chips; laminated in places.

9703' 8" to 9726'

sandstone, white to yellow-white to tan-yellow; fine to coarse grained;
quartz sand; no observable porosity; fairly tight, clean sand; very
well indurated with silica cement; cross bedded and laminated; vertical
burrows observed.
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Gernaat 2-19

PN 35781

ROM Energy

T20N R6W Sec. 19 SWSWNE

Prairie du Chien top 10,434' on drillers log

10,435' to 10,438' 6"
siltstone, black to gray-black to gray; very fine grained; bioturbated
in places; shale partings in places.

10,438' 6" to 10,471

sandstone, gray to gray-green to tan mottled sand; fine to coarse
grained; quartz sand; not very indurated, friable sand; some silica
cement; scattered porosity, associated with glauconite (?); glauco-
nitic (?) from 10,445' 6" to 10,449'; bioturbated and well indurated
burrows; shale interbeds and partings present.

10,471' to 10,533'

sandstone, yellow to brown to pink, white and gray; fine to medium
grained; quartz sand; fairly tight sand with silica cement; some low
angle cross beds; laminated in places; well indurated burrows.

Gilde et al. 1-25

PN 35899

Patrick Petroleum

T22N R7W Sec. 25 SESESW

10,540' to 10,542' 4"

sandstone, green-gray to gray to grapy-ink; fine to medium grained;
quartz sand; tight with silica cement; no observable porosity; finely
disseminated glauconite (?); bioturbated; patchy iron staining; possible
pressure solution seams.

10,542' 4" to 10,545'
sandstone, green-gray to gray to pink-gray to pink to tan; fine grained;
quartz sand; finely disseminated glauconite (?); bioturbated.

10,545' to 10,545' 5"

sandstone, green to green-pink to pink-gray to pink; fine to coarse
grained; quartz sand; silica cement; disseminated glauconite (?);
bioturbated.

10,545' 5" to 10,547'

sandstone, gray-green to gray to gray-black; fine to medium grained;
occasionally coarse grained; quartz sand; silica cement; tight, with
no observable porosity; disseminated glauconite (?), sometimes patchy;
bioturbated; some iron staining observed.



10,547' to 10,547' 11"

sandstone, gray to brown; coarse grained; quartz sand; friable sand
with little silica cement; good porosity; vertical burrows are well
indurated.

10,547' 11" to 10,549' 4"

sandstone, green to green-gray to pink; fine to medium grained quartz
sand; silica cement; fair porosity; glauconitic (?); burrowed and
bioturbated.

10,549' 4" to 10,550' 9"

sandstone, gray to gray-brown to borwn; medium to coarse grained;
quartz sand; silica cement; good porosity; vertical burrows are tightly
indurated with silica.

10,550' 9" to 10,551' 5"
Absent section.

10,551"' 5" to 10,552' 10"

sandstone, green to green-gray to gray; fine to medium grained quartz
sand; silica cement; tightly indurated, no visible porosity; glauco-
nitic (?) in places (especially from 10,552' to 10,552' 11");
bioturbated and burrowed.

10,552' 10" to 10,553' 1"

sandstone, green to green-gray to green-orange; medium grained; quartz
sand; silica cement; tightly indurated with no observable porosity;
disseminated glauconite (?); bioturbated; finely disseminated iron
staining observed.

10,553' 1" to 10,554'
same as above, but green to green-gray to gray.

10,554' to 10,556' 7"

sandstone, gray; fine to coarse grained; quartz sand; very tightly
induated with silica; friable in places; no observable porosity;
finely disseminated glauconite from 10,555' 8" to 10,556' 2";
vertical burrows; iron staining observed.

10,556' 7" to 10,565'

sandstone, green to green-gray to orange-green to pink; fine to medium
grained; quartz sand; fairly tightly indurated with silica cement; no
observable porosity; disseminated glauconite (?); burrowed and
bioturbated.

10,565' to 10,568' 6"

sandstone, gray to brown-gray to brown; fine to coarse grained; quartz
sand; silica cement; fair porosity; slightly glauconitic (?); vertical
burrows are well cemented with silica; bioturbated also; iron stain
occurs as blobs.
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10,568' 6" to 10,575' 10"

sandstone, gray to brown; medium to coarse grained; quartz sand; silica
cement; good porosity in places; vertical burrows are observed;
disseminated iron staining.

10,575' 10" to 10,576' 6"

sandstone, green to green-orange; fine to medium grained quartz sand;
tightly indurated with silica cement; slightly glauconitic (?);
laminated sand; bioturbated.

10,576' 6" to 10,589’

sandstone, green to green-orange to gray to pink-gray to pink; medium
to coarse grained; quartz sand; silica cement; some porosity; patchy
glauconite (?); burrowed and bioturbated.

10,589' to 10,596'

sandstone, green to gray-green to gray to gray-pink to pink to brown;
medium to coarse grained; quartz sand; silica cement; tightly cement
in places, friable and porous elsewhere; disseminated glauconite (?);
laminated; burrowed.

10,596' to 10,658'

sandstone, white to yellow-white to yellow to orange to pink to pink-
gray; fine to medium grained; quartz sand; silica cement; very tightly
indurated; no observable porosity; finely disseminated glauconite (?);
laminated and cross bedded; vertical burrows observed.

Gray 1-31

PN 35800

Willmet 0i1 and Gas
T17N R8W Sec. 31 NENWNW

9564' to 9586'

dolomite sand to sandy dolomite; gray to gray-green to pink to white;
fine to medium grained; quartz grains; no observable porosity;
bioturbated and burrowed; disseminated dead oil observed.

Koetje 1-25

PN 34927

JEM Petroleum Corp.
T22N R7W Sec. 25 SENWNW

Prairie du Chien top picked at 10,653' in core with gradational contact
with overlying "Lower Glenwood" formation.

10,653' to 10,679'

sandstone, green to green-gray to yellow to pink; fine to medium
grained quartzose sand; some silica cement; some porosity observed;
glauconite (?) present; bioturbated with well induated burrows.
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10,679' to 10,692'

sandstone, white to yellow-white to yellow to tan; fine to medium
grained; quartz sand; tightly cemented with silica; no observable
porosity; finely disseminated glauconite; laminated sand; some iron
staining present.

McCormick 2-27

PN 34536

JEM Petroleum Corp.
TI8N R8W Sec. 27 SWSENW

9725' to 9773'

sandstone, green to green-gray to gray to black to pink; fine to
medium quartzose sand; little cement present; friable sand;
glauconitic (?) (corresponds well with gamma-ray log response);
some shale partings; burrowed and bioturbated; some disseminated
dead o0il present.

9773' to 9878'

sandstone to dolomitic sand to sandy dolomite, green to gray-green

to gray to white to yellow-white to tan to pink; fine to medium
grained; quartz sand; generally tightly indurated with silica cement
but some scattered porosity is observed; some dolomite observed;
slightly glauconitic (?); solution seams observed; laminated and cross
bedded; some shale partings present; burrowed and bioturbated.

Roseville Gun Club "B" 1-17
PN 37409

Newport Petroleum

T2IN RIW Sec. 17 ESSWNW

11,631' to 11,704' 6"

sandstone, green to green-brown to green-gray to gray; fine to coarse
grained sand; very coarse in places; quartz sand; little cement;
generally friable; good porosity; abundant clay (glauconitic ?);

some low angle cross beds; bioturbated and burrowed; disseminated
pyrite; some dead oil present; very glauconitic (?) from 11,636' 8"
to 11,640' 6" and 11,644' to 11,645.

11,704' 6" to 11,772'

sandstone, yellow to white to yellow-white to yellow-green; fine to
medium grained; quartz sand; heavily cemented with silica; very tight
sand (1ittle or no porosity); little observable clay, however some
glauconite scattered, with associated porosity low and medium angle
cross beds; some laminations present; very intensely burrowed; some
bioturbation.



128

Visser 3-35

PN 34606

JEM Pet., Woods Pet., & Joutel Pet.
T22N R6W Sec. 35 NWSESE

10,836' 1" to 10,967'

sandstone, white to white-yellow to yellow-tan to tan-gray to pink;

fine to medium grained; some coarse grained sections; quartz sand;

tight sand; well indurated with silica cement; no observable porosity;
scattered occurrence of glauconite (?); some laminations and cross beds;
vertical burrows and bioturbation; Diplocraterion burrow observed at
10,879'; some shale partings present; finely disseminated iron staining
throughout.

Weingartz 1-7

PN 34611

JEM Petroleum Corp.
T17N R4W Sec. 7 HENENE

10,747' to 10,795'

sandstone, green to green-black to tan; fine to medium grained; quartz
sand; generally friable; spotty porosity with silica cement; glauconitic
in places, especially from 10,776 to 10,787; laminated; some shale
partings present; burrowed.

10,795' to 10,848'

sandstone, white to pink; fine to medium grained; quartz sand; heavily
cemented with silica; little or no porosity, tight sand; some shale
partings; bioturbated and burrowed.

10,848' to 10,855’

sandstone, green to green-gray to tan-gray to gray; fine to medium
grained; quartz sand; friable porous sand; little silica cement;
glauconitic in places; burrows present and well cemented with silica.

Workman 10-31

PN 34357

JEM Petroleum Corp.
T22N R6W Sec. 31 SWNENE

Top of Prairie du Chien picked in core at 10,738'. Contact with
overlying "Lower Glenwood" formation.

10,728' to 10,733'

sandstone, green to green-gray to pink-gray; fine to medium grained;
quartz sand; fairly tight with silica cement; finely disseminated
glauconite (?); burrowed; some finely disseminated iron staining
observed.
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10,733' to 10,783
Absent section.

10,783' to 10,838'

sandstone, gray to yellow to tan to pink; fine to medium sand; quartz
sand; fiarly tight and dense with silica cement; porous and friable
section from 10,801' 6" to 10,810'; few shale partings observed; some
lamination present; vertical burrows and some bioturbation.

10,838' to 10,842'
Absent section.

10,842' to 10,956'

sandstone, white to gray-white to gray-yellow to yellow to pink-gray
to pink; fine to medium grained; quartz sand; silica cement present;
highly variable porosity in this section; fairly friable and porous
sands; laminated sands; some thin shale partings; vertical burrows
observed; finely disseminated iron staining.

10,956' to 10,971'
same as above but becomes very rust colored.

10,971' to 11,018'
sandstone, same as above, however, loses rust color becoming yellow
to white to yellow-green again; some cross-bedding.
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APPENDIX C

DESCRIPTION OF REPRESENTATIVE THIN SECTIONS
OF PRAIRIE DU CHIEN GROUP SANDSTONES
OF THE MICHIGAN BASIN

Well: Brinks 1-3 Sample Depth: 10,785'3"

Grain Mineralogy: predominantly quartz with unit extinction;
monocrystalline

Grain Size: X = .54 mm o = .23 mm

Sorting: poor

Rounding: subangular to subrounded (mostly subangular)
Porosity: no observable porosity

Sedimentary Structures: some compactional alignment of grains

Accessory Minerals: clay present between grains

Comments: tight sand; pressure solution effects present; silica

overgrowths observed; sutured grain contacts; small
amount of dolomite cement present; possibly some
"dead" o0il; less than 1% feldspar + rock fragments;
92% quartz grains (+ silica) + 8% clay.
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Well: Brinks 1-3 Sample Depth: 10,793’

Grain Mineralogy: quartz predominantly, with unit extinction;
monocrystalline

Grain Size: X =.24mm o= .10
Sorting: poor to fair

Rounding: subangular to subrounded
Porosity: fair porosity

Sedimentary Structures: vague lamination, possibly compactional in
nature

Accessory Minerals: some clay present
Comments: small amount of dolomite cement present; silica overgrowths
observed; clay in pores appears to have inhibited silica

cementation; 84% quartz (+ silica) + 6% clay + 3% dolomite
cement + 7% porosity.

e o o o o

Well: Bruggers 3-7 Sample Depth: 10,166' 8"

Grain Mineralogy: quartz predominates with unit extinction;
monocrystalline

Grain Size: X =.32mm o= .19

Sorting: poor

Rounding: subangular to subrounded

Porosity: no observable porosity

Sedimentary Structures: none evident

Accessory Minerals: some clay present

Comments: some pressure solution observed; few silica overgrowths;

less than 1% feldspar + rock fragments; 90% quartz grains
(+ silica) + 10% clay.
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Well: Dalrymple 1-16 Sample Depth: 11,057' 4"

Grain Mineralogy: quartz predominates; unit extinction; monocrystalline

Grain Size: X =.38mm o = .2]

Sorting: --

Rounding: subangular to subrounded

Porosity: no observable porosity

Sedimentary Structures: none evident

Accessory Minerals: none observed

Comments: very tight sand; silica overgrowths present; some pressure
solution with sutured grain contacts; very small amount
of "dead" oil observed, appears to have inhibited silica

cementation; less than 1% rock fragments; 100% quartz
grains + silica.

Well: Dowker et al. 2-21 Sample Depth: 7897'

Grain Mineralogy: quartz predominantly; unit extinction and
monocrystalline

Grain Size: X = .13mm o = .08

Sorting: poor

Rounding: angular to subrounded

Porosity: no observable porosity

Sedimentary Structure: vague lamination, possibly due to compaction
Accessory Minerals: 1lots of clay present

Comments: clay appears to choke pores; less than 1% feldspar;

possible "dead" oil along solution seam; 65% quartz
grains + 35% clay.
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Well: Fruedenberg 1-31 Sample Depth: 9596'

Grain Mineralogy: predominantly quartz grains with unit extinction;
monocrystalline

Grain Size: X = .48 mm o = .34

Sorting: poor to fair

Rounding: subangular to subrounded

Porosity: no observable porosity

Sedimentary Structures: none evident

Accessory Minerals: none observed

Comments: sandy dolomite lithology, possible "dead" oil present;
most often quartz grains are observed to be "floating"

in a dolomite matrix; 47% quartz grains + 53% dolomite
matrix.

Well Gilde 1-25 Sample Depth: 10,598' 11"

Grain Mineralogy: quartz grains predominate; monocrystalline quartz
with some undulose grains

Grain Size: X = .45mm o = .15

Sorting: --

Rounding: subangular to rounded

Porosity: tight sand, no observable porosity

Sedimentary Structures: none evident

Accessory Minerals: no clay observed

Comments: very tight sand; highly compacted; quartz overgrowths

present; less than 1% feldspar; 99% quartz grains
(+ silica) + 1% rock fragments.
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Well: Gray 1-31 Sample Depth: 9566'

Grain Mineralogy: quartz grains, with unit extinction; monocrystalline
Grain Size: X = .25mm o = .10

Sorting: fair

Rounding: subangular to subrounded

Porosity: no observable porosity

Sedimentary Structures: none evident

Accessory Minerals: none observed

Comments: sandy dolomite to dolomitic sand lithology; 58% quartz
grains + 42% dolomite matrix.

Well: McCormick 2-27 Sample Depth: 9766'

Grain Mineralogy: quartz predominates, with unit extinction and
monocrystalline

Grain Size: X = .41mm o = .31

Sorting: fair to poor

Rounding: subangular to subrounded

Porosity: some porosity observed

Sedimentary Structures: some compactional alignment of grains

Accessory Minerals: small amount of clay

Comments: some dolomite cement present; some silica overgrowths
observed, with possible pressure solution and suturing

of grains; overall, sand appears fairly porous;
90% quartz grains (+ silica) + 6% dolomite cement.
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Well: McCormick 2-27 Sample Depth: 9841'

Grain Mineralogy: quartz; monocrystalline, unit-extinction
Grain Size: X = .26mm o = .11

Sorting: poor to fair

Rounding: subangular to subrounded

Porosity: no observable porosity

Sedimentary Structures: none observed

Accessory Minerals: none evident

Comments: dolomitic sand to sandy dolomite; 347 quartz grains +
66% dolomite matrix.

e o o o o

Well: Roseville Gun Club "B" 1-17 Sample Depth: 11,772'

Grain Mineralogy: quartz exclusively; unit extinction;
monocrystalline quartz

Grain Size: X =.20mm o = .10

Sorting: --

Rounding: subangular to subrounded

Porosity: no observable porosity

Sedimentary Structures: compactional lamination

Accessory Minerals: tourmaline grain

Comments: very tight sand; silica overgrowths observed; sutured grain

contacts, less than 1% feldspar plus rock fragments; less
than 1% tourmaline; 99% quartz (+ silica) + 1% feldspar.
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Well: Workman 10-31 Sample Depth: 11,083' 10"

Grain Mineralogy: predominantly quartz, with unit extinction;
monocrystalline

Grain Size: X =.35mm o = .14
Sorting: fair

Rounding: subangular to subrounded
Porosity: fair amount of porosity
Sedimentary Structures: none evident

Accessory Minerals: some clay present, in the form of rims on
framework grains

Comments: some pressure solution observed; sutured contacts; silica
overgrowths present; small amount of dolomite cement
observed; 90% quartz grains (+ silica) + 2% clay +
5% dolomite cement + 3% porosity.



Depth to
Depth to
Depth to
Depth to
Depth to
Depth to

APPENDIX D

WELL LOG DATA

top
top
top
top
top
top

of Trenton Group

of Black River Group

of Glenwood shale

of "Lower Glenwood" formation
of Prairie du Chien Group

of Trempealeau formation

*Indicates producing well.
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