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ABSTRACT

THE ESTIMATION AND HYPOTHESIS TESTING OF

TREATMENT EFFECTS IN NONEQUIVALENT CONTROL GROUP

DESIGNS WHEN CONTINUOUS GROWTH MODELS ARE ASSUMED

BY

CAROL JOYCE BLUMBERG

The class of continuous growth models, where it is

assumed there is a correlation of +1 between true scores

at any two time points within each group, serves as the

basis of discussion for the dissertation. This class can

be expressed symbolically

Yij(t2) = gj(t2)°Y:j(tl) + hj<t2) + aj(t2>

and

Y..(t) = Yf.(t) + e..(t),
13 1] 13

where t1 and t2 are any two time points:

Y:j(t) and Yij(t) represent the true and observed

scores, respectively, on the measure of interest,

for the ith individual in the jEE group;

eij(t) represents the errors of measurement;

gj(t) and hj(t) are continuous functions;

and aj(t) represents the population treatment effect.



CAROL JOYCE BLUMBERG

The set of designs considered is that where there is one

or more treatment groups with or without the presence of

one or more control groups.

The various approaches that have been suggested for

data analysis for these designs were examined under the

given class of growth models. Appropriate procedures for

the estimation and hypothesis testing of differences in

treatment effects exist under these approaches when

(i) gj(t) is identical for all j and hj(t) is

identical for all j;

(ii) no errors of measurement are present and

h.t 50;J( )

r "' . t = b.’ t4— t + l d h. t = .° t - to (111) 93‘ ) 3 ( 1) an 3( ) cJ ( l)

for bj, cj real-valued constants.

New methods of data analysis are developed which pro-

vide consistent estimates of treatment effects and differ-

ences in effects and appropriate procedures for the

hypothesis testing of nonzero treatment effects and nonzero

differences in effects under the entire class of growth

models. These methods require only that either the func-

tional forms of the hj(t)'s are known or that hj(t) is the

same, but unknown, for all j. When no errors of measure-

ment exist, algebraic and numerical analysis techniques



CAROL JOYCE BLUMBERG

are used. When errors of measurement exist, the methods

developed are several-stage procedures using numerical

analysis techniques and the statistical techniques of

maximum likelihood estimation and jackknifing. The ad-

vantage of these new methods is that they are applicable

under a wider class of growth models than are the existing

approaches.
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CHAPTER 1

INTRODUCTION

In many educational settings, a true experimental

design is not possible when a researcher wants to evaluate

the effects of different treatments. Thus, quasi-experi-

mental designs are employed. One of the more commonly used

quasi-experimental designs is the nonequivalent control

group design (Campbell & Stanley, 1966; Campbell, 1969).

Campbell and Stanely define this design as having two

groups, a control group and a treatment group, which are

formed by some method other than random assignment. They

then require that both a preobservation and a postobser-

vation be made on each individual on some measure of

interest. Campbell (1969) extends the definition of a

nonequivalent control group design to include any number

of observations occurring at times before the treatment

begins, during the treatment and after the treatment. More

generally a nonequivalent control group design can include

multiple-group designs, with or without the presence of one

or more control groups, and can involve the investigation

of interactions through the use of crossed factors.

There has been much discussion in the literature of

the analysis strategies that are appropriate for use in

connection with nonequivalent control group designs. The

basic problem is to identify analysis strategies which will



provide unbiased estimates of the treatment effects. This

problem has come to be known as the problem of measuring

change. Both Lord (1967) and Cronbach and Furby (1970)

have argued that unless some assumptions are made,

there is no way of knowing which analysis strategy is

appropriate for use with any particular application of a

nonequivalent control group design.

While the literature on the problem of measuring

change is voluminous, considerable confusion remains as

to appropriate solutions. One of the reasons for this

confusion is that different authors have made different

assumptions when making recommendations for the methods of

analysis to be used with data arising from nonequivalent

control group designs. Some of the more popular assump-

tions will now be discussed.

Kenny and Cohen (Kenny, 1975; Kenny & Cohen, 1980)

and others (e.g., Cochran & Rubin, 1973) have taken as their

assumption that the method of selection of the individuals

into the treatment and control groups is known. They

discuss various methods of selection and based on each

method of selection they recommend a specific method of

data analysis. Another popular assumption is the fan

spread hypothesis (Bryk & Weisberg, 1977; Campbell &

Erlebacher, 1970; Kenny, 1975; Olejnik, 1977). The fan

spread hypothesis states that the ratio of the differences

of population means to the standard deviation common to the



populations of interest is constant over time. The fan

spread hypothesis will be discussed further in Chapter 3.

There it is described under what conditions data collected

using a nonequivalent control group design will conform

to the fan spread hypothesis. Campbell and Boruch (1975),

Kenny (1975), and Olejnik and Porter (1981) have given

examples of data sets which seem to conform to the fan

spread hypothesis. Hence, evidence exists that the fan

spread hypothesis may occur for some data sets arising

from educational research settings.

A third group of assumptions are stated in terms of

continuous growth models. The idea of continuous growth

models dates back to at least 1964 (Potthoff & Roy, 1964).

But, it was not until 1976 that the idea of applying

continuous growth models to aid in the analysis of data

from nonequivalent control group designs was born (Bryk &

Weisberg, 1976).

Continuous Growth Models
 

Let J represent the number of groups in a particular

design. Let qj + 1 represent the number of time points

at which observations for group j are made on the measure

of interest. Let Yij(t1j), Yij(t2j), ... , Yij(tqj), and

Yij(tqj+l) represent the observations for the ith



individual in the jth group, where t1 , t2 , ... , t
. . .+1
3 3 q:

represent the qj + 1 time points at which the observations

* t

are made. Let Y:ij(tlj ), Yij(t2j)' ... , Yij(tqj)'

*

ei (t ) represent the true scores and errors of measure-
j qj+1

ment, respectively, for the i§§_individual in the jth

treatment group at the q3. + 1 time points. The most gen-

eral form for a growth model that will be considered here

is that where classical measurement theory assumptions are

made and where the functional relationships

*

Y..(t1] qj+l) ij(Yiju:l )Y:jctz ).

j 3

(1-1)
*

ooo'Yo (t )'t It 'ooo't )

i . l. 2. .+1

j q: 3 3 q:

hold, where the fij's are continuous functions, which may

be different for each individual in each of the J groups.

The classical measurement theory assumptions of particular

interest are, for each time t and for each j;



and

o - * .

(l) '11th) "" Yij (t) + eij (.t) 1

(ii) E(eij(t)) = 0 ;

(iii) Cov(Y;j(t), eij(t)) = o ;

(iv) Cov(eij(t), eij(t')) = 0 for any time

t' f t .

The models considered by Bryk, Strenio, and weisberg

(1980), Strenio, Weisberg, and Bryk (in press), Olejnik

(1977), and the models that will serve as the basis of the

remainder of this dissertation can all be seen as special

cases of the above general model. The most general model

considered by Bryk, Strenio, and Weisberg (1980) is when

equation (l-l) reduces to

Y* *

ij‘tzj) 3 Yij(tl
)+b. (t -t )+a.(_t ) (1-2)

j lj 23' 1:1 3 23'

where bij is some constant for the ith individual in

and

the jth group and aj(t) is the treatment effect

for group j at time t ;

*

Yij(tl.) + bi.(t2 — t1.) represents natural

3 3 j 3

growth (i.e., growth which occurs in the absence

of any treatment effects or errors of measurement).

For this model and for all other continuous growth.models

to be discussed, the assumption is made that treatment



effects are additive. That is, the treatment causes an

increase or decrease of exactly the same amount for all

individuals in the same group over the amount of growth

accounted for by natural growth. The assumption of addi-

tive treatment effects is standard in the experimental

design literature (e.g., Cox, 1958). Notice that this

model states that each person's true growth over time is

linear, albeit possibly a different line for each person.

Strenio, Weisberg, and Bryk (in press) describe a

more general model of natural growth than that considered

in equation (1-2). In this more recent paper they extend

their model of natural growth.to

L.

3 2
j(t )= 2 1r.. -(t -t ) j(1:. ). (1-3)

Zj i=1 131 23 13. 1j

where the Lj's are predetermined integers and the "iji's

are undetermined constants. The reason for the absence of

any treatment effects in the model given by equation (1-3)

is that in the paper they were only concerned with the

estimation of natural growth curves. Notice that this

model allows for natural growth over time which is a

polynomial of any degree. Additionally, the coefficients

of the various terms in the polynomial need not be the

same for each person.



Olejnik (1977) discusses two different models of

natural growth. One of his models assumes that each in-

dividual's natural growth.over time is linear, that there

is a correlation of +1 between true scores at any two

points in time and that the fan spread hypothesis holds.

Although he never explicitly expresses this model in terms'

of individual growth curves, the model can be expressed as

a: a:

Yij(t) = [b(t —-tlj) + ll‘Yij(tlj) + C(t -tlj)

+ aj (t) r

where b and c are positive constants and t is any point in

time. Also, this model requires that the within groups

standard deviation is the same fOr all J groups at any time

point. Even though the expression given here is in terms

of any number of groups, it should be pointed out that

Olejnik only deals with two-group designs in his disser-

tation. Olejnik's other model will be discussed briefly

in Chapter 3.

The growth models to be considered here are an exten-

sion of the model of Olejnik (1977) just described. As

will be discussed later, this extension is both more and

less general than the model considered by Strenio, Weis-

berg, and Bryk (in press). These models assume only

three things:

(1) Classical measurement theory holds.



(2) The correlation within each group between true

scores at any two points in time is +1.

and

(3) Treatment effects are additive.

These growth models can be expressed symbolically as

* *

Yij(t) = gj(t)'Yij(t1j) + hj(t) + (ll-(t)

and (1-4)

*

Yij (t) a Yij (t) + eij(t) for all t,

where gj(t) and hj(t) are continuous functions;

*

gj(t)'Yij(t1 ) + hj(t) represents natural growth:

3

and aj(t) represents the population treatment effect.

Let T be the time at which the treatments are initiated.

Notice that aj(t) E O for all t £.T- Further, notice that

gj(t) > 0 for all t, since a correlation of +1 is being

assumed.

There are several reasons for considering the class of

growth models represented by equation (1-4). First, as

will be shown in Chapter 3 these models are more general

than the fan spread hypothesis. As mentioned earlier,

Campbell and Boruch (1975) and others have stated their

belief that in many actual situations, data conform to the

fan spread hypothesis. Hence, they and others (e.g.,



Kenny, 1975; Olejnik, 1977) have mainly restricted their

attention to situations where the fan spread hypothesis

holds when discussing the problem of measuring change.

Since the growth models being assumed for this disserta-

tion are more general than the ones considered by others

who have worked on the problem of measuring change, they

are an important class of models to study. Second, as

will be shown in Chapter 2, these growth models allow for

a variety of different functional forms for individual

growth and hence for group growth. They are not restricted

to linear growth or even to polynomial growth as has been

done in the past literature on the problem of measuring

change (e.g., Kenny, 1975; Olejnik, 1977; Strenio, Weis-

berg & Bryk, in press). Finally, these models of natural

growth have led to the development of very different ap-

proaches to data analysis than heretofore considered.

Nevertheless, it is recognized that the models under study

in this dissertation are only a small subset of all pos-

sible growth models.

Overview
 

This dissertation has three purposes. The first pur-

pose is to explicitly show what types of individual growth

are possible under the growth model given by equation (1-4).

This will comprise Chapter 2. The second purpose is to
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explore the relationships between the growth models of

equation (1-4). the fan spread hypothesis, and the various

methods of data analysis that have been suggested in the

past with respect to the nonequivalent control group

design. This will comprise Chapter 3. Consistent with

the models described by equation (1-4), the discussion of

methods of data analysis will be restricted to those

methods which do not require the use of additional in-

formation such as background variables, covariates other

than the measure itself, nor replicates of the measure of

interest within a point in time. As will be seen, cur-

rently proposed methods of data analysis are not suffi-

ciently general as to apply to the full set of growth

models represented by equation (1-4). Hence, new methods

of data analysis must be found. The third and main purpose

of this dissertation is to describe the data analysis pro-

cedures which have been developed. These data analysis

procedures will be described in Chapters 4 through 6. The

basic idea behind these new methods is to collect data at

enough pretest time points so that one is able to estimate

the natural growth patterns. Next, the estimated natural

growth patterns are projected into the future. Point esti-

mation and hypothesis testing methods are then developed

which are based on the projected natural growth and the

observed posttest data. Chapter 7 will provide a summary
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of the results from Chapters 3 through 6 and will also con-

tain a discussion of some directions for further research.



CHAPTER 2

EXAMPLES OF NATURAL GROWTH

In this dissertation the term natural growth will be

used to denote the relationship between true scores at

time tlj and at any other time, t, that would have occur-

red if no treatments were applied. There are an infinity

of different continuous natural growth curves represented

by the models given in equation (1-4). The purpose of

this chapter is to illustrate the flexibility of the model

by discussing several specific examples. These examples

were chosen because they model growth curves found in the

educational and behavioral science research literature.

For simplicity of presentation, initial discussion

is limited to a single group and hence, the j subscript

will be dropped temporarily. Further, without loss of

generality, it can be assumed that t1 = 0. Hence,

3'

natural growth under equation (1-4) can be expressed for

a one-group design as

'k *

Yi(t) = g(t)-Yi(0) + h(t) . (2-1)

Some specific examples of natural growth are:

(1) Parallel growth. Parallel growth is defined by

‘k t 7

g(t) E 1, so that, Yi(t) = Yi(0) + h(t), where h(t) is any

12
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continuous function. Figure 1 provides a pictorial repre-

sentation of an example of parallel growth. For ease of

illustration, Figure 1 and all remaining figures will only

show the growth curves for three individuals in the group.

?

 

*

Yi (t)

Person 3

Person 2

Person 1

._1 .—D

t

 
Figure 1. An example of parallel growth.



(2) Differential linear growth. Differential linear

* *

growth is defined by Yi(t) = (b-t + l)-Yi(0) + C't, where

b and c are real-valued constants with b # 0. Figures 2

through 4 provide pictorial representations of examples

of differential linear growth.

*

Q
Yi(t)

Person 2

Person 3

Person 1 

 (
u

1
?

r
r

 
Figure 2. Differential linear growth

when b < 0 and c 3 0.
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4
v

*

Yi(t1

a t

Person

 

Person

Person

 
'6

Figure 3. Differential linear growth

when b < 0 and c = 0.



l6

 

 
 

Y*

i(t)

Person 1

Person 2

V

t— s—ot

Person 3

v
 

Figure 4. Differential linear growth

when b > 0 and c < 0.

(3) Exponential growths Exponential growth is de-

t
*

fined by Yi(t) = [b°c + (l — b)]°Y;(O), where b and c are

real-valued constants with c > 0. (Since measures of

growth take on only real values, values of c < O, which



17

*

yield complex values for Yi(t) are not allowed.) Figures

5 through 8 provide pictorial representations of examples

of exponential growth.

. * T TPerson 3

Yi(t)

 
Person 2

Person 1

 

 

 i

Figure 5. Exponential growth

when b = 1 and c > 1.
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*

vim

4
9

Person 3

    

Person 2

Person 1

1't 

 
Figure 6. Exponential growth when

0 < b < 1 and c > 1.



19

Person 3

Person 2 . *
Yi(t)

  

Person 1

 

 

 

 J.
Figure 7. Exponential growth when

0 < b < l and 0 < c < l.
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9

*

Yi(t)

\ 

3"---" -"'""' "" """""“"

\

F I 

 c at

Person 1

  Person 3i

Y Person 2

Figure 8. Exponential growth when

b < 0 and c > 1.

The inclusion of monotone decreasing functions (see

e.g., Figures 3, 7, and 8) as representatives of natural

growth was motivated by learning theorists interest in

forgetting curves. Other forms of natural growth included

under equation (2-1) are:
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(4) Logarithmic growth. Logarithmic growth is de-

fined by

t *

Yi(t) - [logc(b-t + C)]°Yi(0).

where b and c are real-valued constants with c > 0 and

c i l .

(5) Cumulative normal (Normal Ogive) growth. Cumula-

tive normal (Normal Ogive) growth is defined by

t

2;”) = 2.4.3....
2 *

'eXP(-%v ) dv}°Y.(0)
1r 1

(6) Logistic growth. Logistic growth (Lord & Novick,

1968) is defined by

(1 + cm:t *

° Y-(O),

1 + c-dt 1

 

* —

Yi(t)

where c and d are real-valued constants with c > 0 and

d > 1 .

(7) Polynomial growth. Polynomial growth is defined

by

a» P
n * q k

cn't )-Yi(0) + Z dk't ,

n k=11

where the cn's; n = 1,2, ... , p and the dk's; k = 1,2, ...

q are real-valued constants with cp # 0 and dq # 0

I
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Figures 9 through 12 provide pictorial representations

of logarithmic growth. Figure 13 provides a pictorial

representation of Cumulative normal and Logistic growth.

Figure 14 provides a pictorial representation of polynomial

growth when p = 2, q 8 1, c2 > 0, c1 > O, and d1 < 0.

As stated previously the examples given here represent

only a small fraction of the types of natural growth allowed

under equation (2—1). Continuous functions of any form

are allowed for g(t) and h(t), with the only restrictions

being that g(t) > 0 (because, it is being assumed that the

correlation of true scores at any two points in.time is +1)

and that g(O) = l and h(O) a O. The reason for the restric-

tions g(O) = l and h(O) = 0 is consistency. For equation

(2-1) to hold at time t = 0, it is necessary to have Y:(0)

*

g(O)°Yi(O) + h(O) for each individual. Consequently, g(O)

l and h(O) = 0.

All of the types of growth possible for single-group

designs are also possible for multi-group designs. For

multi-group designs, the natural growth curves may be

1) exactly the same for all the groups

2) of the same form for all the groups, but with

different constants specifying the functions. For example,

a three-group design where all three groups follow exponen—

tial growth patterns would be expressed as



and

where

and cl,

or 3)

23

* - t 1 b * o

t . t y*

* b - t y* 0

b1' b2, and b3 take on possibly distinct values

c2, and c3 take on possibly distinct values.

of different forms for each group (e.g., group 1

follows logarithmic growth, group 2 follows exponential

growth, group 3 follows polynomial growth, etc.).
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Figure 9.

 
J.

Logarithmic growth.when

c > 1 and b > 0.
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Figure 10. Logarithmic growth when

c > 1 and b < 0.
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I I 3‘11””)

 

 
Figure 11. Logarithmic growth when

0 < C < 1 and b > 0.

Person 1

Person 2

Person 3



27

*

T Yi(t)
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Person 1

Person 2

Person 3

 

\

Figure 12. Logarithmic growth when

0 < c < l and b < 0.
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Figure 13. Cumulative Normal or Logistic growth.
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T.

Yi(t) Person 1
Person 2

Person 3

 
 

Figure 14.

\

 
An example of polynomial growth when

Y:(t) = (c °t2 + c

*

2 l't + l)°Yi(0) + d

with c2 > 0, c1 > 0, and d1 < 0.

l
°t



CHAPTER 3

REVIEW OF THE LITERATURE

In this chapter the various methods that have been

suggested for the analysis of data arising from the

application of nonequivalent control group designs are

discussed. Following the lead of Campbell and Stanley

(1966) most of the literature on the problem of measuring

change has restricted its attention to designs having only

two groups--a treatment group and a control group. This

sole attention to two group designs is unfortunate. Meth-

ods of data analysis should be discussed in the context of

designs with any number of treatment groups and with or

without the presence of a control group. For the remainder

of this dissertation the discussion will usually be in the

context of both one-group and multi-group designs where

random assignment has not taken place. For multi-group

designs, the presence of a control group will not be

assumed. The discussion here will be restricted to two-

group designs only when absolutely necessary.

The literature on the problem of measuring change is

very confusing, in that each author(s) makes different

assumptions and oftentimes the assumptions are implicit,

rather than explicit. The attempt here is to clarify the

literature by separately discussing many of the methods of

data analysis that have been suggested in the literature.

30
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The discussion for each analysis method will include an

explicit statement of the assumptions being made and a

short description of the method.

Since the fan spread hypothesis is the most widely

made assumption in the past literature on the problem of

measuring change (e.g., Bryk & Weisberg, 1977; Campbell,

1971; Kenny, 1975; Kenny & Cohen, 1980; Olejnik, 1977), a

discussion of the relationship between the fan spread

hypothesis and the growth models defined by equation (1-4)

is offered first. This discussion will help to clarify

the motivation for and the appropriateness of some of the

analysis strategies to be discussed later in this chapter.

Relationship Between the Fan Spread Hypothesis
 

and Natural Growth Models

In the previous literature the fan spread hypothesis

has only been discussed in the context of two-group designs.

For those designs the fan spread hypothesis states that at

the population level the ratio of the difference of the

group means to the standard deviation common to the popula-

tions is constant over time when there are no treatment

effects (Kenny, 1975). In the past literature it is not

made clear whether the standard deviation is that for the

true scores or that for the observed scores. The discussion
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here will be in terms of both true scores and observed

scores.

Symbolically, the fan spread hypothesis on the true

scores can be expressed

«g ‘ * * _;*

u

Y1 2
  

0;“:1) 0*(t2)

where t1 and t2 are any two points in time;

i

”Y (tk) is the population mean for group j on

i

the measure of interest at time tk; j=l,2; k=1,2;

*

and 0Y(tk) is the standard deviation common to both

populations for the true scores on the measure

of interest at time tk; k = 1,2 .

An extension of the fan spread hypothesis to multi-

group designs is straight-forward by assuming that at the

population level the fan spread hypothesis holds for every

pair of two groups chosen without replacement from the J

groups. Hence, the extended fan spread hypothesis for

true scores will be defined as

* * * *

J 3 3 3 (3-1)
  

*

o;(t1) oY(t2)

where j, j' represent any two of the J groups.
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Recall that natural growth on latent variables was

defined in the system of equations (1-4) by

Y* (t) (t) 1* (0) + h (t) (2 1)
ij ’ 93 ij j '

By deriving the means and variances for these variables, it

can be seen under what conditions natural growth satisfying

equation (2-1) conforms to the fan spread hypothesis.

First, taking the variance of both sides of equation

(2-1) yields

* 2 2 * 2

[CY (t)] = [9.(t)] '[°y (0)] . (3-3)
. 3 .

J 3

But as stated, the fan spread hypothesis requires that the

variances for any time, t, be the same for all groups.

That is, it is required to have

* *

CY (t) = oY(t) for all j.

1

Hence, by equation (3-3) it is necessary to have gj(t) 5

g(t), for all j at each time t, and to have a; (0) E 0;(0)

J

for all j in order for the fan spread hypothesis on true

scores to hold.

Consequently, equation (3-3) can be rewritten as

[o;<t)12 = [g(t)]2'[0;(0)]2 . (3-4)
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Second, by taking the means on both sides of equation (2—1),

* *

“Y3. (t) = g(tIIle (.0) + hj (t) (.3-5)

and

* *

“Y..(t) = g(t)uY.'(0) + hjv(t) . (3-6)

J 3

Substituting equations (3-4), (3-5), and (3-6) into equa-

tion (3-1) shows that for the fan spread hypothesis for true

scores to hold under the growth model being considered it

is necessary to have

* *

[9‘t1’9y.‘°’ + hj(t1)1 — [9(t1)uy.'(0) + hj:(t1)1

 

 

J J

*

g(t1)oY(0)

(3-7)

* *

[9(t2)uyj(0) + hj(t2)] - [g(t2)qu'(0) + hj.(t2)]

= *

g(t2)oY(0)

By simple algebra, equation (3-7) reduces to

  

g(tl) g(tz)

for any two times, t1 and t2. In particular, for times

t1 = 0 and t2 = t,
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hj (t) - hj‘..(t) h.j.(0) - hj . ('0)

. (3-8)  

g(t) 9(0)

But, by definition, hj(0) = 0, hj,(0) = 0, and 9(0) = 1.

Consequently by equation (3—8) " = 0.

g(t)

 

Therefore, hj(t) E hj.(t) for each t. Hence the fan spread

hypothesis for true scores holds when natural growth under

equation (1-4) reduces to

'k *

Yij (t) = g(t)Yij(0) + h(t)

and when

Y

t _ 'k

U j(0) - OY(0) .

The definition of the fan spread hypothesis for

observed scores is obtained by simply replacing the common

to all groups standard deviation for true scores by the

common to all groups standard deviation for observed scores.

The numerators in equation (3-1) need not be changed since

it

under classical measurement theory “Y (t) = “Y (t) for all

j 3'

j and for each t. Also, under classical measurement theory

2

Y

_ * 2 2
(t) - [O'Y.(tI] + 0e.

3 J

o (t)
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* * .

Hence, if OY (t) = cY(t) and o (t) = o (t), at each time

t, then a: (t) a 03(t) for all j, where oe(t) denotes the

j

common to all groups standard deviation of the errors of

measurement and oY(t) denotes the common to all groups

*

standard deviation of the observed scores. But for aY (t)

j

'k

to be equal to oY(t), it was previously shown that gj(t)

*

must be equal to g(t). Further, by equation (3-4), oY(t)

g(t)'o;(0). Hence,

o§(t) = [g(t)]2~[o;(0)]2 + 02(t) . (3-9)

The fan spread hypothesis on observed scores can be

expressed as

3 J j j

. (3-10)  

oY(t1) 0Y(t2)

Substituting equations (3-4), (3-5), and (3-9) into equa-

tion (3-10) yields
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[g(tl)uyj(o> + hj<t1)1 — [g(t1)uyj.<0) + hj'(tl)]

 

 

92(t1)[a;(o)12 + o:(t1)

<3-11)

[g(t2)uyj(0) + hj(t2)1 — [g(t2>uyj'(0) + hj.(t2>1

 

 

/ 92(t2) to;<0)12 + 0:“:2)

If, in addition o:(t) = [g(t)]z-O:(0) for each t, then

equation (3-11) simplifies to equation (3-8). Hence,

hj(t) E hj.(t). Therefore, the fan spread hypothesis for

observed scores holds when natural growth under equation

(1-4) reduces to

*

Yith)

*

g(t)-Yij(0) + h(t)

and when

o;j(0) = o;(0) and oej(e = g(t)'oe(0).

The statement that oe (t)

J

g(t)oe(0) is equivalent to

requiring that the reliability of Y be constant over time

and across groups.

Olejnik (1977) has asserted that the fan spread

hypothesis for either true scores or observed scores can

hold even when there is not a correlation of +1 within

each group between true scores at any two points in time.
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Although he gives no mathematical formulation of individual

growth in this case, Figure 15 shows the example he gave

in his dissertation. For this example, he has assumed that

at the population mean level both groups (he deals only

with two-group designs) follow the same differential linear

growth pattern, and hence, he has only drawn growth curves

for individuals from one group. It should be noted that

Olejnik's restriction to differential linear growth is not

necessary. Figure 16 gives a sketch of an example where

the fan spread hypothesis holds for an exponential type

model for group mean growth and where a correlation of +1

between true scores within each group is not assumed. For

simplicity, only two groups have been drawn. In Figures 15

and 16 the solid lines represent population mean growth and

the dotted lines indicate the growth curves for some

selected individuals.

 
  

Figure 15. Olejnik's example.
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*

Yij (t) 4

  >1: 

Figure 16. Exponential group growth under

the fan spread hypothesis.
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In summary, the fan spread hypothesis for true scores holds

when equation (1-4) reduces to

* *

Yij‘t’ g(tIYij(0) + h(t) + aj(t)

*

and (3-12)

*

o (t) = 0Y(t) .

The fan spread hypothesis for observed scores holds for

those growth models where the system of equations (3-12)

are fulfilled and, in addition, a (t) = g(t)-ae(0).
e

3

Further, both the fan spread hypothesis for true scores and

for observed scores can hold for some models of individual

growth where there is not a correlation of +1 within each

group. No mathematical formulation of these models has

yet to be developed.

Relationship Between the Fan Spread Hypothesis

and Differential Linear Growth

A discussion of the relationship between the fan spread

hypothesis and differential linear growth is needed since in

the past literature the distinction between these two con-

cepts has been blurred. The concepts of differential linear
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growth and of the fan spread hypothesis are, however,

distinct concepts. In the previous two sections it was

shown that the fan spread hypothesis holds for many forms

of natural growth other than differential linear growth.

Hence, linear growth that conforms to the fan spread

hypothesis is a subset of all natural growth that conforms

to the fan spread hypothesis. Further, differential linear

growth conforms to the fan spread hypothesis only in rare

cases. Differential linear growth is represented in

g Y

Y O C C t I 1 Y . . O I c I t ’

That is, when gj(t) = bj-t + 1 and.hj(t) = cj-t . But, for

the fan spread hypothesis (either for true scores or ob-

served scores) to hold it is necessary to have gj(t) 5 g(t)

and hj(t) E h(t) . Hence, the fan spread hypothesis does

not hold under differential linear growth unless all of the

bj's are equal to some common value and all of the cj's

are equal to some common value.

Analysis Strategies
 

For the remainder of this dissertation the only con-

tinuous growth models that will be considered are those

represented by the system of equations (1-4)
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* *

Yij(t) 9j(t)'Yij(tlj) + hj(t) + aj(t)

and. (1-4)

(t)

*

Yij(t) + e..(t) -Y..

13 13

Recall that aj(t) represents the amount of growth for

group 3: over that which would have occurred under natural

growth. Let “a(t) represent the mean of the aj(t)'s.

Then, Yj(t), as defined by Yj(t) = aj(t) ~ ua(t), represents

what has traditionally been called a treatment effect under

comparative experiments.

The past literature on the problem of measuring change

has been divided into two groups with respect to the dis-

cussion of treatment effects. The majority of the litera—

ture has been concerned with treatment effects as defined

by the Yj(t)'s. A small subset of the literature has been

concerned with treatment effects as defined by the ej(t)'s.

Those analysis strategies which deal with treatment effects

as defined by the Yj(t)'s will be discussed first and with

respect to three criteria:

(1) Under what additional conditions over those of

equation (1-4) does the analysis strategy provide unbiased

point estimates of the differences between treatment effects?

(2) If under certain conditions the analysis strategy

provides unbiased point estimates of the differences between
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treatment effects, than how are interval estimates of the

differences constructed?

and (3) How is the hypothesis testing of

J 2
Ho: 2 (Y.(t)) = 0

i=1 3

(i.e., Ho; All of the Yj(t)'s are equal)

versus

J 2
H1: 2: (Y.(t)) #0

i=1 3

(i.e., H1: All of the Yj(t)'s are not equal)

accomplished?

Before describing the analysis strategies it should be

pointed out that, by definition,

Yj (t) "" Yjv(t) = [OI-j (t) " Ua(t)] "' [ajl(t) " ua(t)]

Hence, Yj(t) — Yj.(t) = aj(t) — aj,(t). Since the growth

models described by the system of equations (1-4) are in

terms of the aj(t)'s rather than the Yj(t)'s, the discussion

of the three criteria will be in terms of the aj(t) —

aj.(t) 5.

ANOVA of Index of Response

Analysis of Variance (ANOVA) of Index of Response re-

fers to a group of analysis strategies, rather than a single
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method. Much of the literature on the problem of measuring

change has considered various forms of ANOVA of Index of

Response as approaches to data analysis for nonequivalent

control group designs. A general discussion of ANOVA of

Index of Response will be given first. Then, specific

forms of ANOVA of Index of Response will be discussed. A

description of ANOVA of Index of Response is also being

included here since the methods of data analysis to be

developed in Chapters 4 through 6 can be thought of as

generalizations of this group of approaches.

To employ ANOVA of Index of Response it is only neces-

sary to have scores on the measure of interest at two points

in time for two or more groups. Taking data at the first

point in time as a pretest, without loss of generality, it

can be assumed that the pretest observations are taken at

time t1 8 0 for all j. The second time point is considered

3'

to be a posttest,_given at some time, t, past when the

treatments have been initiated. It is assumed here and

throughout the remainder of the dissertation that all indi-

viduals in all of the treatment groups start receiving the

treatment at the same time. A new score is formed, defined

by zij(t) = Yij(t) - K'Yij(0), where K is some known con-

stant (Cox, 1958; Porter, 1973). The method of data

analysis then used is an ANOVA with the Zij(t)'s as the
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dependent variable. Notice that ANOVA of Index of Response

with K = 0 reduces to an ANOVA of the Yij(t)'s.

(The linear model for ANOVA of Index of Response is as

for ANOVA,

Zij (t) = “2“” + (1111):] + (fIR)j-jr

where uz(t) = uY(t) — K-uY(0) (3-13)

is the population grand mean for Z(t);

uY(t) is the population grand mean for Y(t);

(TIR)j = uzj(t) —'uz(t): (3-14)

IR denotes Index of Response;

and (fIR)ij is the error term for an individual.

First, notice that

“z.(t) = “Y.(t) —- K°uY0(0) . (3-15)

3 J 3

Second, by substituting equations (3-13) and (3-15) into

equation (3-14)

(TIR)j = “Y.(t) —-uY(t) —-K(uY.(0) —-uY(0)) . (3-16)

3 3

Consequently, for any two groups j and j':

(3-17)

RWY. (0) - uY .(0))

J j
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Next, taking the means on both sides of the system of

equations (1-4) yields

uyj(t) = ngt)uyj(0) + hj(t> + ath) .

Solving for aj(t) gives

aj(t) = “Yj (t) — [gj(t)qu(0) + hj(t)] . (3-18)

So,

aj(t) - aj.(t) {my (t) — [gj(t)uY.(0) + hj(t)1} —

J 3

({HY. ' (t) "" [gj I (t) HY (0) + hj.(t)]} .

J 1'

Therefore,

ath) — aj.(t) uY (t) — uY.'(t) - {[gj(t)uY.(0) +

3 3 3 (3-19)

hj(t)] ‘ [gjdtII-lqu) 7" hjt(t)]} .

3

Hence, by comparing equations (3-17) and (3-19), ANOVA of

Index of Response theoretically provides correctly defined

differences in treatment effects between groups j and j'

if and only if

[gj (t)uyj(0) 4" hj (t)] "' IngItmyj'm) + hjv(t)]

= K(“Y.(0) - ”Y. (0)).

J J'
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That is, if and only if

[gj (t)qu (0) + hj (t)] - [SJ-.(tII-lyj'W) + hju(t)]

 

(3-20)

I: (0) - u (0)
Yj Yj,

Hence for two—group designs ANOVA of Index of Response with

[91(t)uyl(0) + hi‘t’l“ [92(t)uY2(0) + h2<t)1

 

uY1(0) - uY2(0)

provides correctly defined differences in treatment effects.

For designs with more than two groups, it is required that

equation (3-20) hold simultaneously for all possible pairs

of groups if ANOVA of Index of Response is to provide

correctly defined treatment effects. Equation (3-20) will

hold simultaneously for all possible pairs of groups when

gj(t) 5 g(t) and hj(t) E h(t), which previously was shown

to be equivalent to the fan spread hypothesis on true

scores. Also, the fan spread hypothesis on observed scores

will result in this being satisfied, but recall that the

fan spread hypothesis on observed scores requires even more

than this. When gj(t) g(t) and hj(t) E h(t), equation

(3-20) simplifies to K = g(t). Further, there are, however,

rare cases where equation (3-20) holds simultaneously for

all possible pairs and gj(t) i g(t) and/or hj(t) I h(t).
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No mathematical formulation of these rare cases has yet to

be developed.

In summary, ANOVA of Index of Response always provides

correctly defined differences in treatment effects for two-

group designs by setting

[glumylcm + hlctn — {92(15):}, (0) + hzctn
2

 

u (0) - u (0)

Y1 Y2

Further, ANOVA of Index of Response with K a g(t) provides

correctly defined differences in treatment effects for

designs with two or more groups when the system of equa-

tions (1-4) reduces to

* 'k

Yij (t) = g(t) ‘Yij(0) + h(t) + Olj(t).

and (3-21)

*

Yij(t) = Yij(t) + eij(t) .

Under ANOVA of Index of Response, estimates of differ-

ences in treatment effects are given by

W) = Zj(t) "' juzt)

3

e???) -75) —K[Y—(0'j)—“'T‘j.on.
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By elementary algebra and statistics it can be shown that

under a variety of statistical distributions

A

E(aj(t) "’ aju(t)) = (1)-(t) "' ajl(t) o

The interval estimation and hypothesis testing procedures

are those of a traditional analysis of variance, but now

performed on the zij(t)'s.

ANOVA of Gain Scores

ANOVA of Gain Scores (Bereiter, 1963) is the special

case of ANOVA of Index of Response where K a 1. Hence, by

applying the results of the previous section, ANOVA of Gain

Scores yields correctly defined (i.e., unbiased) differences

in treatment effects and a correct test of the null hypoth-

esis of nonzero differences in treatment effects when

t *

Yij(t) = Yij(0) + h(t) + oj(t). That is, ANOVA of Gain

Scores provides correctly defined differences in treatment

effects and correct hypothesis testing procedures for de-

signs where random assignment has not occurred when natural

‘growth takes the form of parallel growth. This same result

was proved by Porter (1973) and Kenny (1975) using differ-

ent methods of proof.
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ANOVA of Standardized Change Scores
 

ANOVA of Standardized Change Scores was introduced

by Kenny (1975) to provide a method of data analysis which

will correctly test for differences in treatment effects in

nonequivalent control group designs where the fan spread

hypothesis holds. Although Kenny only discussed ANOVA of

Standardized Change Scores in terms of two-group designs,

the discussion here will be in terms of designs with any

number of groups. Kenny does not clearly distinguish

between those cases where errors of measurement are present

and not present. Further, he does not distinguish between

the sample and population values for the variances. Hence,

ANOVA of Standardized Change Scores can really be considered

as three separate variations of an ANOVA of Index of

 

 

Response:

*

aY (t)

(l) K 3 I

*

0Y(0)

aY(t)

(2) K = I

0Y(0)

and

SY(t)

(3) K =
 

SY(0)
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where S§(t) is the pooled-within groups variance of Y(t)

for t Z 0. The first two of these, which use population

values, will be discussed presently.. The third one, which

uses sample values, will be discussed later in this chapter.

*

oY(t)

When K a the analysis strategy is called ANOVA of

*

OY(0)

Standardized Change Scores with reliability correction

. 0Y(t)

(Kenny & Cohen, 1980). When K a the analysis strategy

on)

will be called ANOVA of Observed Standardized Change Scores

SY(t)

and when K a the analysis strategy will be called

SY(0)

ANOVA of Estimated Standardized Change Scores.

ANOVA of Standardized Change Scores with reliability

correction

Since ANOVA of Standardized Change Scores with reli-

*

0Y(t)

 ability correction uses K = , the assumption is being

*00Y()

made that there is a common variance for true scores at any

point in time for all J groups.' In the section on the fan
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spread hypothesis it was shown that the J groups would have

t

a common true scores variance, [oY(t)]2, at time t, when

t *

Yij(t) = g(t) YijIOI + h(t) + aj(t)

and

(0) a a;(0) for all j .

3

O!

Further, it was shown in that section that

t *

[oY(t)]2 = [g(t)]2'[ay(0)]2 . (3-22)

Hence,

* *

°Y(t) g(t)°oY(t)

a 2 g(t) .

t *

OY(0) aY(t)

K:  

So ANOVA of Standardized Change Scores with reliability

correction is the special case of ANOVA of Index of Response

with K a g(t) and where there is a common variance known to

exist at each time t. Consequently, ANOVA of Standardized

Change Scores with reliability correction provides correctly

defined differences in treatment effects and tests for non-

zero differences in treatment effects when
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t *

Yij(t) = g(t)°Yij(0) + h(t) + aj(t)

and

”k t

(0) a oY(0) for all j .
“Y

3

ANOVA of Observed Standardized Change Scores

ANOVA of Observed Standardized Change Scores is the

oY(t)

special case of ANOVA of Index of Response where K = .

a (0)
Y

 

Recall that ANOVA of Index of Response yields correctly

defined differences in treatment effects and correctly

tests for nonzero differences in treatment effects when

K = g(t). Hence, ANOVA of Observed Standardized Change

Scores yields correctly defined differences in treatment

effects and correctly tests for nonzero differences when

 

 

o (t)
Y

g(t) a . In the section on the fan spread hypothesis

0Y(0)

aY(t)

it was shown that g(t) = when

oY(0)

Y* (t) (t) 2* (0) + h(t) + (t) (3 23)
ii ‘ 9 ij “j

*

Yij (t) = Yij (t) + eij (t) (3-24)
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cej(t) = g(t)°oej(0) (3-25)

and

an(t) = 0Y(t) . (3-26)

Hence, ANOVA of Observed Standardized Change Scores yields

correctly defined differences in treatment effects and tests

for nonzero differences when equations (3-23) to (3-26)

hold. It should be noted that there are conditions where

the system of equations (1-4) holds and under which ANOVA

of Observed Standardized Change Scores yields correctly

defined differences in treatment effects and correctly

tests for nonzero differences that have not been included

in the set of conditions delineated by equations (3-23) to

(3-26). No mathematical formulation of these other condi-

tions has yet to be developed.

ANOVA of Residual Gain Scores

ANOVA of Residual Gain Scores has been widely suggested

in the past literature on the problem of measuring change

as being a possible method of data analysis for nonequi-

valent control group designs (Cronbach & Furby, 1970; Linn

& Slinde, 1977; Porter & Chibucos, 1974). ANOVA of Residual

Gain Scores actually represents three different methods.

The first, which is called ANOVA of True Residual Gain

Scores, is defined by K = BY*(t)-Y*(0)' where By*(t)-Y*(0)
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* *

is the slope of the Y (t) on Y (0) regression line (Cronbach

& Furby, 1970). The second, which is called ANOVA of Raw

Residual Gain Scores, is defined by K = BY(t)-Y(0)' where

BY(t)-Y(0) is the slope of the Y(t) on Y(0) regression line

(Cronbach & Furby, 1970). The third, which will be called

ANOVA of Estimated Residual Gain Scores, is defined by

K 8 BY(t)°Y(0)' where BY(t)-Y(0) is the least squares

estimate of the slope of the Y(t) on Y(0) regression line

A

 

BY(t)-Y(0) .

or by K a A , where pY(0)Y(0) is some estimator of

”Y(onum

the reliability of Y(0). ANOVA of True Residual Gain

Scores and ANOVA of Raw Residual Gain Scores will be dis-

cussed presently. The discussion of ANOVA of Estimated

Residual Gain Scores will be postponed until later in this

chapter.

ANOVA of True Residual Gain Scores
 

Recall that ANOVA of True Residual Gain Scores is

defined by K 3 BY* (t) 'Y*(0) . BY definition, BY* (t) °Y*(0)

*

OY(t)

= * * o ——

0Y(0)
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considered here, pY*(t)Y*(0) = 1. Hence, BY*(t)-Y*(0)

*

°y(t)

a . Consequently, for the class of growth models

a;(0)

under consideration ANOVA of True Residual Gain Scores is

identical to ANOVA of True Standardized Change Scores.

ANOVA of Raw Residual Gain Scores
 

ANOVA of Raw Residual Gain Scores is defined by K =

BY(t)'Y(0)° It is well known from classical measurement

theory that BY(t)-Y(0) is equal to py(0)Y(0)'BY*(t)°Y*(0)'

where °Y(o)y(o) is the reliability of Y at time 0. Further,

*

oY(t)

- —————. But, by
*

oY(0)

by the previous section, BY*(t)oY*(0)

equation (3-3), o;(t) = g(t)-a;(0). Hence,

BY*(t)-Y*(0) = g(t). (3-27)

Whence, BY(t)-Y(0) = pY(0)Y(0)°g(t)° Consequently, ANOVA

of Raw Residual Gain Scores only provides correctly defined

differences and tests of nonzero differences when there are

no errors of measurement present (i.e., when py(o)y(o) = l)

and for each time t, gj (t) 5 g(t) and hj (t) E h(t) for

all j.



57

True Difference Scores

In their 1966 paper, Tucker, Damarin, and Messick

(1966) introduced the concept of a true difference score.

A true difference score, Dij(t)’ is defined by

pY<t)Y(0)'°Y(t)

 Dij(t) = Yij(t) —- .Yij(0),

pY(0)Y<0)"’Y(°)

which is in the form on an index of response. But,

pYIt)Y(0).OY(t) BY(t)-Y(0)

py<o>2<0)'°Y‘°’ °Y(0)Y(0)

  
8* *

Y (t)-Y (0) . Further,

by equation (3-27), BY*(t)-Y*(0) is equal to g(t). There-

fore, the Dij(t)'s are the same as the zij(t)'s as defined

in the ANOVA of Index of Response with K = g(t). Thus,

True Difference Scores provides correctly defined differ-

ences in treatment effects and correctly tests for nonzero

differences in treatment effects when

*

Yij(t)

*

g(t)-Yij(0) + hj (t) + “j (t)

and

Yij(t)

*

Yij (t) + eij (t) .
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ANOVA of Estimated Standardized Change Scores

ANOVA of Estimated Standardized Change Scores (Kenny,

1975; Olejnik, 1977) is the analysis strategy in which an

ANOVA is performed on the zij(t)'s as defined by

SY(t)

 Zij(t) = Yij(t) - ~Yij(0) .

SY(0)

ANOVA of Estimated Standardized Change Scores is an attempt

to develop a method of data analysis when oY(0) and oY(t)

are not known, which is analogous to ANOVA of Observed

Standardized Scores. There are, however, several problems

which arise when trying to go from observed standardized

change scores to estimated standardized change scores.

The first problem is that the distribution of the

zij(t)'s may not be a normal distribution, even if the

vector (Y(0),Y(t)) has a bivariate normal distribution. The

second problem is that in order to decide whether ANOVA of

Estimated Standardized Change Scores yields correctly de-

fined differences in treatment effects at the population

level, it is first necessary to derive an expression for

E(zij(t)). Unfortunately, the problem of finding E(Zij(t))

is an unsolved problem, even for the case when it can be

assumed that the vector (Y(0),Y(t)) has a bivariate normal

distribution. So, one can not determine theoretically
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under what conditions the E(Zij(t))'s lead to correctly

defined differences in treatment effects.

For large enough sample sizes (i.e., N 3 30) it has

been shown that ANOVA is robust with respect to the viola-

tion of the assumption of a normal distribution for the

zij(t)'s (Glass, Peckham, & Sanders, 1972). Further,

asymptotically

aY(t)

 u (1:) =11 (t) - -u (0) .
zj Yj oY(0) Yj

Hence, asymptotically, ANOVA of Estimated Standardized

Change Scores provides correctly defined differences in

treatment effects and correctly tests the hypothesis of

nonzero differences in treatment effects under the same

conditions as does ANOVA of Observed Standardized Change

Scores. Until the problem of finding the expected value

of the Zij(t)'s has been solved and a test statistic has

been defined with known distribution, it is recommended

that ANOVA of Estimated Standardized Change Scores not be

used as a method of data analysis, even for true experi-

ments, when small sample sizes are present.
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ANOVA of Estimated Residual Gain Scores

ANOVA of Estimated Residual Gain Scores (Manning &

Dubois, 1962; Olejnik, 1977; Porter & Chibucos, 1974) is an

analysis strategy in which an ANOVA is performed on either

the Vij(t)'s or Wij(t)'s (depending on the particular

reference) as defined by

A

Vij(t) = Yij(t) — BY(t)-Y(0)°Yij(°)

A

. 8Y(.t.) «(0)

wij(t) = Yij(t)'_
 

A .Yij(0)'

panama)

where BY(t)-Y(0) is the least squares estimate of the slope

of the Y(t) on Y(0) regression line and where °Y(0)Y(0) is

some estimator of the reliability of Y(0).

Two problems arise when one performs the ANOVA pro-

cedures on the Vij(t)'s or Wij(t)'s. These problems

parallel the problems discussed in the section on ANOVA of

Estimated Standardized Change Scores. The first problem

is that neither E(Vij(t)) nor E(Wij(t)) is known (Draper &

Smith, 1981). The second problem is that the distributions

of the Vij(t)'s and Wij(t)'s may not be normal, even if the
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vector (Y(0),Y(t)) has a bivariate normal distribution.

Asymptotically, however,

and

IBY(t)'Y(0)

"w (t) = my (t) — -uY(0) .

j 3 “Y(omm

 

Hence, asymptotically, ANOVA of Estimated Residual Gain

Scores using the Vij(t)'s provides correctly defined treat-

ment effects and correctly tests the hypothesis of nonzero

differences in treatment effects under the same conditions

as does ANOVA of Raw Residual Gain Scores. Recalling that

BY(t) «(0)
BY*(t)-Y*(O) = , then asymptotically, ANOVA of

panama)

 

Estimated Residual Gain Scores using the Wij(t)'s provides

correctly defined treatment effects and correctly tests the

hypothesis of nonzero differences under the same conditions

as does ANOVA of True Residual Gain Scores. As with ANOVA

of Estimated Standardized Change Scores, it is recommended

that ANOVA of Estimated Residual Gain Scores not be used

when small sample sizes are present.
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Analysis of Covariance

Analysis of Covariance is a method of data analysis

where the slope of the Y(t) on Y(0) regression line is

estimated, as in ANOVA of Estimated Residual Gain Scores,

but where the statistical difficulties involved in doing an

ANOVA of Estimated ReSidual Gain Scores are eliminated.

The methodology involved in performing an Analysis of Co-

variance (ANCOVA) is well-known (see e.g., Glass & Stanley,

1970; Seber, 1977; or Winer, 1971) and will not be repeated

here.

As with ANOVA of Index of Response, ANCOVA requires

that the observations be taken at the same time points for

all J groups. Without loss of generality, assume that there

are a pretest and a posttest, given at times 0 and t,

respectively. For the models under consideration here Y(0)

is the covariate and Y(t) is the dependent variable for

the ANCOVA. In general, when deriving the Sum of Squares

to be used for an ANCOVA, the assumption is made that the

covariate is fixed. In many settings such as those assumed

in this dissertation it is unreasonable to assume that the

covariate is fixed. In these settings, the covariate must

be considered as a random variable. DeGracie and Fuller

(1972) have shown, however, that ANCOVA still works when

the covariate is taken as a random variable. A second

assumption of ANCOVA is that the covariate is measured
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without error. Since the covariate and the dependent var-

iable here are the same measure taken at two different time

points, it will be assumed here that both Y(0) and Y(t) are

measured without error. A further assumption made for

*

ANCOVA is that there is a linear relationship between Y (t)

*

and Y (0) when all of the subjects are considered as coming

from one population. That is, ANCOVA can only be used for

the models under consideration in this dissertation when

* t

The linear model for ANCOVprith a random covariate is

Yij(t) = uY(t) + (rm)j + By(t,.Y(o)(Yij(0) - “Y(0),

+ (fAC) ij

where AC denotes Analysis of Covariance;

(TAC)ij = [uyj'(t) - uY(t)]

and (f )AC is the error term for an individual.

13'

In the section on ANOVA of Raw Residual Gain Scores it was

shown that BY(t)-Y(0) is well-defined only when, for each

time t, CY (t) a oY(t) for all j. Hence, ANCOVA provides

2)

correctly defined differences in treatment effects and
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correctly tests for nonzero differences in treatment effects

if and only if, for each time t,

(i) no errors of measurement are present in the

data;

0 o *
*

, I 0

(ii) Yij(t) = g(t) Yij(0) + h(t) + aj(t) ..

. . * t

and (iii) OYj(t) = oY(t) .

The estimates of the treatment effects under ANCOVA

are given by

A 4 A

(Seber, 1977).

a- '

It has been shown that E(TAC)j = (TACIj

./\

Further, by simple algebra it can be shown that E[(1:AC)j -

A

(tAC)j'] = aj(t) - aj,(t) . Consequently, (TAC)j -(TAC)j.

provides an unbiased estimator of aj(t) — aj,(t). The

procedures for interval estimation and for the testing for

nonzero differences in treatment effects are given in

Glass 8 Stanley (1970) and Winer (1971).

Estimated True Scores Analysis of Covariance

Estimated True Scores Analysis of Covariance was

developed by Porter (Porter, 1967; Porter & Chibucos, 1974)

as an extension of Analysis of Covariance techniques to
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situations where a random covariate is used which contains

A

errors of measurement. Estimated true scores, Tij's, are

defined by

Tij = jlaj I ”Y(0)Y(0)'(Yij(°) ‘ jIGS),

where pY(0)Y(0) is the reliability of the measure, Y(0),

which is assumed the same for all J groups. An Analysis of

Covariance is then performed using the Tij's as the covar-

iate and the Yij(t)'s as the dependent variable. In addi-

tion to assuming that the reliability of Y(0) is the same

for all J groups, Estimated True Scores ANCOVA makes all

of the usual ANCOVA assumptions. The assumption of equal

reliability, combined with the usual ANCOVA assumption that

t

OY (0) = o;(0) for all j, implies that o (0) = oY(0) for

j i

all j. Hence, Estimated True Scores ANCOVA can be used

Y

for the growth models under consideration in this disser-

tation only when

*

Y. O

l]

*

(t) g(tI'YijW) + h(t) + aj(t)

oyj(0) = oycoz

*

Yij(t) + eij(t)
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and

* *

.(0) = OY(0) .
OY

J

The linear model for Estimated True Scores ANCOVA is

given by

A

Yij (t) = “Y(t) + (TEAC)j + BY(t) “g(tij — 1,1,3) + (fEAC)ij ;

where EAC denotes Estimated True Scores ANCOVA;

(TEACH =- qu (t) - uY(t) -— BY(t) ,.’1‘.(u.’1‘.j — LIE.) ;

A

“T represents the population mean for the

j

A

l ' o

Tij s for group J I

u; represents the population grand mean for the

f.

'0

ijs'

BY(t)-T is the slope of the Y(t) on T regression

line;

and

(fEAC)ij is the error terms for an indiv1dual .

Treatment effects are estimated using

where BY(t)-T = BY(t)~Y(O)/°Y(0)Y(0)' USing Monte Carlo
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A

Simulations Porter (1967) showed that (IEAC)j — (TEAC)j'

..(t), for any two groupsprovides an estimator of oj(t) — 013

j and j', which contains no identifiable bias. He further

showed that the resulting test statistic from an ANCOVA on

the Yij(t)'s using the Tij's as a covariate is approximately

distributed as an F statistic with J — l and N —’J — 1

degrees of freedom when there is an equal number of indi-

viduals in each group. The properties of the test statistic

have not been studied for those situations where there is

an unequal number of individuals in the groups.

The remaining analysis strategies are concerned with

the direct assessment of treatment effects (i.e., the

aj(t)'s) as well as differences in treatment effects.

These remaining analysis strategies will be discussed with

respect to the estimation of treatment effects and the

testing of the hypothesis of nonzero treatment effects, as

well as testing differences in treatment effects.

Rogosa's Method
 

Rogosa (1980) has developed a method for estimating

treatment effects for two-group designs in those situations

where no errors of measurement are present, hj(t) E 0, and

the observations are taken at the same time points for both

groups. Rogosa's method is included here because the
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methods to be developed in Chapter 4 can be thought of as

generalizations of this method. Under Rogosa's assump-

tions the system of equations (1-4) reduces to

Rogosa rewrites the set of equations (3-28) as

Yij(t) = Y1 + yz-T.. + Y3-Yij(0) + Y4-Yij(0)-Ti. ,

13 3

where 1 if j = 1

T.. 8 3

13 o ifj=2

Y1 = 32(t) 3

Y2 = 0-1 (t) "' “2 (t) 3

Y3 = 92(t) ;

and Y4 = gl(t) - gz(t) .

Next, he computes the least squares estimates of Y1: Y2:

A A

Y3' and 74- Call these least squares estimates Y1: Y2:

Y3! and Y4.

Rogosa assumes, as is done in traditional regression

analysis, that the only values of Y(0) which are of interest

are the observed values from the sample used. Hence, the

A

Yi's are unbiased estimators of the Yi's. But, the deri-

vations given in DeGracie and Fuller (1972) can be applied
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here to show that the 71's are unbiased estimators of the

71's even when Y(0) is taken to be a random variable.

Hence, 71 + 72 provides an unbiased estimate of a1(t), Y1

provides an unbiased estimate of a2(t), and 72 provides an

unbiased estimate of al(t) — a2(t). Rogosa does not dis-

cuss how to test whether the difference in treatment

effects is nonzero or how to test whether the treatment

effects themselves are nonzero. Notice that Rogosa's

method can provide unbiased estimates of treatment effects

and differences in treatment effects for designs with any

number of groups, as long as the assumptions detailed in

the first paragraph of this section hold, by repeating

his procedure for each combination of two groups chosen

from the J groups.

Adjusted Gain Scores
 

Olejnik (1977) developed a method of data analysis for

those two-group designs where it is assumed that mean group

growth at the population level is linear over time when no

treatment effects are present. The reason for including

Adjusted Gain Scores here is that the methods to be de-

veloped in Chapters 4 and 5 can be thought of as general-

izations of this method. Olejnik requires that two pretest
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observations and one posttest observation are taken on the

measure of interest. The pretest observations are taken

at times 0 and t2 and the posttest observations are taken

at time t3. Figure 17 provides a pictorial representation

of Olejnik's model.

M

     
   

(ter-IY (t2))

 

    
  

I
‘ 1 22

(0.1: (on I I ..
Y (t :11 (t )

/ 1 I ' 3 Y2 3

I (t :u (t )) I

(o (0)) ' 2 Y2 2 ' (12(5))
/ 'uYZ I I ‘

I I

l l at
‘i_  

I

Figure 17. Olejnik's model.
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Olejnik defines an Adjusted Gain Score by

t

He shows that the WthI's provide unbiased estimates of

the treatment effects (i.e., the aj(t)'s).

It should be noted here that the development of the

estimates for treatment effects using Adjusted Gain Scores

does not depend upon having exactly two groups in the

design. Hence, unbiased estimates of treatment effects can

be found using Adjusted Gain Scores for any growth situa-

tion for which

* *

Y..t -"= b.'t+l °Y.. 0 + .°t+ ..tl:’( ) ( J I 13( ) cJ °j( )

and

*

Yij(t) = Yij(t) + eij(t) ,

where the bj's and cj's are real-valued constants with

bj # 0. The hypothesis of nonzero treatment effects is

tested by performing a one-sample t-test, separately, on

the Wij(t)'s for each of the J groups. The hypothesis of

nonzero differences is tested by performing an ANOVA on

the W1j (t) ' s.
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Empirical Bayes Estimation

Strenio, Bryk, and Weisberg (Bryk, Strenio, & weisberg,

1980; Strenio, weisberg, and Bryk, in press) have applied

the ideas of empirical Bayes estimation (Fearn, 1975) in

order to estimate treatment effects when certain types of

continuous growth models are assumed. The most general

continuous growth model assumed by Strenio, weisberg, and

Bryk (in press) is

Li* 2 k

)

i=1 3 lj

and (3-29)

*

Yij (t) a Yij (t) 4" eij (t) I

where the kiji's are unknown real-valued constants, the

Lj's are predetermined positive integers, and t is the
1.

3

time of the first observations for the jth group. The

reason for the absence of a treatment effect in equation

(3-29) is that Strenio, Weisberg, and Bryk consider only

natural growth in their paper. The model given by equation

(3-29) and the models of growth given by the system of

equations (1-4) overlap only in the case where, for each

j, the k.
I

ijl s are equal to some common value (say ka)

across individuals. That is, (3-29) and (1-4) overlap

only when
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L.

( ) 1 i k (t t )£g.t = + -' -

3 i=1 3“ 1j
and hj(t) 0 . (3-30)

The idea of empirical Bayes estimation, in general, is

to obtain estimates for the kijz's for each person by using

a weighted sum of the information available for that person

and the information available about the remainder of the

individuals in the group. One of the requirements of the

empirical Bayes method is that the variance-covariance

* t * *

matrix of the vector Y. a Y. t , Y. t , ... Y. t__1 (3(2j) 3( 3j) I J(ij

be nonsingular, where t2 , t3 , ... , tp are the times of

j j j

the additional observations on the measure of interest.

*

    

* .

Th ' - ' t ' f Y., V Y. , under (3-30) ise variance covariance ma rix o .1. (.1)

" '1 r T
g.(t )g.(t ) ... g.(t ) g.(t )

J 2j 3 3j J Pj 3 2j

g.(t )g.(t ) g.(t ) g-(t )

J 2j J 3j J pj J 3j

2
- - - -[o (t )1

Y3. lj

g.(t _ I

J Pj l

L 3 JJ L- J .JI
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'k *

Notice that, Rank (V(Yi)) = 1. Hence, V(Yj) is nonsin-

gular. Consequently, the method of empirical Bayes

estimation cannot be used for the models being considered

in this dissertation.



CHAPTER 4

RESULTS FOR CASES WHEN NO ERRORS OF

MEASUREMENT ARE PRESENT

In Chapter 3 it was shown that presently available

methods of data analysis can be used.to estimate and test

for differences in treatment effects for the growth models

under consideration (see equation 1-4) when one of the

following conditions hold:

. * *

(1) Yij(t) = g(t)-Yij(0) + h(t) + aj(t);

(ii) There are only two groups in the design and the

values of gl(t), 92(t), hl(t), h2(t), ”Y (0), and uY2(0)

1

are known;

_.. t . . t .

or (iii) Yij(t) - (bj t + 1) Yij(o) + cj t + oj(t) .

For designs where condition (i) holds, Classical ANCOVA can

be used if there are no errors of measurement present and

CY (t) = oY(t) for all j. Estimated True Scores ANCOVA

3

(Porter, 1967) can be used when errors of measurement are

0 a * _ * 0

present if pY(0)Y(0) is known, OYj(t) - oY(t) for all j,

and CY (t) = 0Y(t) for all j. If the values of g(t) are

3'

known, then ANOVA of Index of Response with K set equal to

75
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g(t) can be used. For designs where condition (ii) holds

an ANOVA of Index of Response with

[91(t)qu(0) + hl(t)] — [92(tIuY2(0) + h2(t)]

 

qum) - uY2(0)

can be used. For designs where condition (iii) holds,

Olejnik's (1977) Adjusted Gain Scores can be used.

Further, in Chapter 3 it was shown that point esti-

mates of treatment effects as defined in equation (1-4) can

be found by presently available methods of data analysis

only when

no. * - . . * . .

(iii) Yij(t) - (bj t + l) Yij(0) + cj t + aj(t) ,

or (iv) There are no errors of measurement present in

the data and hj(t) : 0 for all t and for all j.

For designs where condition (iv) holds, Rogosa's (1980)

method is appropriate. For designs where condition (iii)

holds, Adjusted Gain Scores is appropriate. Finally, it

was shown in Chapter 3 that an appropriate test of nonzero

treatment effects (i.e., Ho: aj(t) = 0 versus H1: aj(t)

# 0) exists only when condition (iii) holds, by using

Adjusted Gain Scores.

Hence, new methods of data analysis need to be devel-

oped which provide estimates and hypothesis tests for
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treatment effects and differences in treatment effects for

data sets conforming to equation (1-4) and where conditions

other than (i), (ii), (iii), and (iv) hold. The remainder

of this dissertation is devoted to the discussion of new

methods of data analysis developed by the author.

As has already been illustrated, the development of

methods of data analysis can be facilitated through placing

various constraints on the parameters in equation (1-4).

First, since the hj(t) and aj(t) terms are confounded, some

information about the hj(t)'s is necessary. Three possible

types of available information are:

(a) the exact natures of the hj(t)'s are known (e.g.,

.. -.2 .8 -
hl(t) — 3 t, h2(t) — 4 t + 3 t , ... , hJ(t) —

loglo(5°t3 + l):

(b) the functional forms of the hj(t)'s are known

°t, h2(t) = k °t2 + k -t*, ... , hJ(t) =(e.g., h1(t) = k 2 3
l

loglo(k4°t3 + 1), where k k2, k3, and k4 are unknown
1!

real-valued constants);

and

(c) for each time t, the hj(t)'s are equal to some

common value, say h(t) (i.e., for each t, hl(t) = h2(t) =

--- = hJ(t) = h(t)).
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In this chapter and in Chapters 5 and 6 methods of data

analysis are developed under each of these types of infor-

mation. The discussion of methods of data analysis under

each type of information is further broken down into six

cases according to whether the exact natures of the gj(t)'s

are known, the functional forms of the gj(t)'s are known, or

nothing is known about the gj(t)'s and according to whether

or not errors of measurement are present (see Figure 18).

Cases where errors of measurement are present in the

data are more important for educational research and so

will receive greater attention in this dissertation. Never-

theless, a discussion of those cases where errors of mea-

surement are not present will also be included, since there

are educational and behavioral research settings in which

it can be assumed that there are no, or perhaps negligible,

errors of measurement present (e.g., settings where elapsed

time, weight, or height is the measure of interest). The

results for those cases when no errors of measurement are

present are discussed in the remainder of this chapter.

The results for those cases when errors of measurement are

present are discussed in Chapters 5 and 6.

Case 1

For Case 1 there are no errors of measurement present

in the data and the exact natures of the gj(t)'s and hj(t)'s
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*

are known. Notice that Yij(t) = Yij(t) in this case and

for the remaining cases where no errors of measurement are

present. Hence, the system of equations (1-4) reduces to

.) + tht) + aj(t) (4-1)Yij(t) = gj(t)oYij(tlj

; i = 1,2,..., Nj

j = 1,2,..., J ,

where gj(t) and hj(t) are known continuous functions and Nj

represents the number of individuals in the sample from

group j. Notice that the pretests for the different groups

need not occur at the same time. Solving equation (4-1)

f . t ,or aj( )

Otj(t) = Yij(t) '- [gj (t)‘Yij(tlj) + tht)]. (4-2)

Hence, only a sample of size equal to one from each group

is necessary in order to determine the aj(t)'s. No esti-

mation or hypothesis testing procedures are necessary,

since equation (4-2) determines the aj(t)'s exactly.

Cases 3 and 5
 

For Cases 3 and 5 there are no errors of measurement

present in the data and the exact natures of the hj(t)'s

are known. In Case 3 the functional forms of the gj(t)'s
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are known while in Case 5 nothing is known about the

gj(t)'s. Under equation (4-1) any two individuals from

the jth group are represented by

Ylj(t) a gj(t)-Ylj(tlj) + hj(t) + aj(t) (4-4)

and

yszt) = gj(t)°Y2j(tlj) + hj(t) + aj(t) . (4-5)

Subtracting equation (4-4) from equation (4-5) gives

Y2j(t) - Ylj(t) = gj(t)°[Y2j(tlj) -‘Ylj(t1j)] .

Hence,

gj(t) = . (4-6)
 

So, for Cases 3 and 5 the values of the gj(t)'s are easily

derived solely from knowledge of the pretest and posttest

scores of two individuals. Once the values of the gj(t)'s

have been determined using equation (4-6), Cases 3 and 5

reduce to Case 1. Nothing is gained by knowing the func-

tional forms of the gj(t)'s. Further, if one assumes

incorrect exact expressions for the gj(t)'s, then the values

computed for the oj(t)'s will, consequently, be incorrect.

Hence, it is recommended that when no errors of measurement
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are present, no assumptions be made about the gj(t)'s, but

instead equation (4-6) should be used to determine the

values of the gj(t)'s at the time points at which obser-

vations have been collected. For those cases where errors

of measurement are present, however, the distinction

between those cases where the exact natures are known, the

functional forms are known, or nothing is known about the

gj(t)'s will be important.

Cases 7, 9, and 11
 

For Cases 7, 9, and 11 there are no errors of measure-

ment in the data and the functional forms of the hj(t)'s

are known. The general functional forms of the hj(t)'s

are given in terms of undetermined constants, the values

of which must be calculated. The method used to calculate

the estimates for these constants is a generalization of

Olejnik's (1977) Adjusted Gain Scores to nonlinear growth.

Following Olejnik's lead, the presence of multiple pretests

is introduced. For group j, let tl , t2 , ... , t

J 3' pjrj

represent the times at which the pj pretests are adminis-

tered, where pj denotes the number of pretests. Let

tp +1 j represent the time of the posttest for the jth

j I

group. Again, the times of the pretests and posttest need
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not be the same for the different groups. For simplicity,

the j subscript will be dropped because the aj(t)'s are

computed separately for each group.

Consider any two individuals from the jth group, say

individuals 1 and 2. By equation (4-1) [and droPping the

j subscript]

Y1(tk) g(tk)'Yl(tl) + h(tkI

and. (4-7)

Y2(tk) g(tk)'Y2(t1) + h(tk) ; k = 2,3,...,p ,

since a(t) 0 for all t : tp. Solving the system of equa-

tions (4-7) for g(tk) and h(tk) in terms of Y1(tl), Y2(t1),

Y1(tk)’ and Y2(tk) yields

g(tk) = (4-8)

Y1(t1)'- Y2(t1)

 

and

=
0 (4‘9)

 

h(tk)

Hence, the values of h(tk) for k = 2,3, ... , p can be

determined from knowledge of the pretest scores for only

two individuals.
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Once the values of the function h are derived at the

time points t2, t3, ... , and, tp, the values of the un-

known constants in the general expressions for h(t) can be

determined. The method for determining the values of the

constants is, however, dependent on the functional form

of h(t). To illustrate the method for determining the

values of the constants, the following two examples will

be used:

3 d
a polynomial form: h(t) = 1 + I cd-(t — t1) (4-10)

d=l _

and

an exponential form: h(t) = b-c(t't1’ + (1 —-b) . {4-11)

Polynomial Form

The object of the method to be described is to deter-

mine the values of cl, c2, and c in the polynomial from
3

knowledge of the h(tk)'s; k = 2,3, ... , p. For simplicity,

assume that p = 5, t1 = 0, t2 = 1, t3 = 4, t4 = 5, and

t5 = 7. The method to be described will work for any p Z 4

and for any set of values for the tk's. Substituting

t1 = 0, t2 = 1, t3 = 4, t4 = 5, and t5 = 7 into equation

(4-10) yields
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h(l) = 1 + cl + c2 + c3,

h(4) = 1 + 4cl + 16c2 + 64c3,

h(5) = l + 5cl + 25c2 + 125c3, (4—12)

and

h(7) = 1 + 7c1 + 49c2 + 343c3.

The system of equations (4-12) is then solved for cl, c2,

and c3 in terms of h(l), h(4), h(5), and h(7). This can be

done since the values of h(l), h(4), h(5), and h(7) have

already been determined using equation (4-9).

Exponential Form
 

The object of the method to be described in this sub-

section is to determine the values of b and c in (4-11)

from knowledge of the h(tk)'s. The method to be described

will work for any p‘: 3 and for any set of values for the

t Recall that the values of h(t2), h(t3), h(t4), ... ,k's.

h(tp) were already determined by using equation (4-9).

Next, the values of the t 's and h(tk)'s; k = 2,3, ... , p
k

are substituted into equation (4-11) to yield a new system

of equations analogous to (4-12). This new system is then

solved for b and c. For the sake of illustration, assume

that p = 4, t = 0, t = l, t = 4, and t = 5.
1 2 3 4
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Substituting these values into equation (4-11) yields the

system

h(l) = 1m: + (1 - b), (4-13 i)

h(4) = 1m:4 + (1 — b), (4-13 ii)

and

h(S) -- b°c5 + (1 - b) . (4-13 iii)

Since these equations are not linear in the parameters, b

and c, they cannot be solved algebraically. One must take

the different possible subsystems of two equations each

and see if the same solutions for b and c are found. If

the solutions agree, then b and c have been found. If the

solutions do not agree, then no general solution exists

for the system (4-13). Contradictory solutions could have

arisen for one of several reasons. A discussion of those

situations where contradictory solutions occur will be

postponed until the end of this chapter.

The method for obtaining the actual solutions for b

and c will be described using equations (4-13 ii) and

(4-13 iii). This same method can be applied if instead

the pair of equations (4-13 i) and (4-13 ii) or the pair

of equations (4-13 i) and (4-13 iii) is used. Solving

equations (4-13 ii) and (4-13 iii) for c gives
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h(4) - (,l.-b) 1“

c a (4-14) 

and

h(S) - (1-b) 1’5
c = , respectively. (4-15)

b

 

Equating (4-14) and (4-15) gives

h(4) - (1 -»b) 1/4 h(5) —.(1 -)b) 1/5

b b

  

which must now be solved for b.

There is, however, no algebraic method for directly

solving equation (4-16) for b. Hence, numerical analysis

techniques must be used. (e.g., Newton-Raphson method

[Froberg, 1965; Thomas & Finney, 1979]).

From the preceding discussion the general approach

should be apparent. First, the values of the h(tk)'s;

k = 2,3, ... , p are determined using equation (4-9). A

system of equations analogous to (4-12) or (4-13) is then

generated which relates the values of the h(tk)'s to the

parameters involved in the general expression for h(t).

This system of equations is then solved for the parameters

using algebraic techniques (when possible) or numerical

analysis methods. The minimum number of pretest time

points required in order to obtain the values of the unknown
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parameters is mh + l, where mh is the number of unknown

parameters in the functional form expression for h(t).

By substituting the computed values of the parameters

into the functional form expressions for each of the

hj(t)'s, the exact natures of the hj(t)'s are determined.

For Case 9, where the functional form expressions of the

gj(t)'s are known, and for Case 11, where nothing is known

about the gj(t)'s, the values of the gj(t)'s are determined

using the method described for Cases 3 and 5. For Case 7,

the gj(t)'s are already known.

Knowing both the gj(t)'s and hj(t)'s, the aj(t)'s are

determined by

oj(t) = Yij(t) - Igj(t)-Yij(0) + hj(t)].

where i is any individual from the jth_group. As with Cases

1, 3, and 5, since assumptions about the gj(t)'s are unnec-

esary and may even lead to incorrect values for the aj(t)'s,

it is recommended that for Cases 7 and 9 the assumptions

on the gj(t)'s be ignored and that these cases be treated

as if they were part of Case 11.

Since the determination of the values of the treatment

effects is done separately for each group, the groups in

a design need not all belong to the same case. All that is
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necessary is sufficient information to place each of the

J groups into one or the other of Cases 1, 3, 5, 7, 9,

or 11.

Cases 13, 15, and 17
 

For Cases 13, 15, and 17, hj(t) E h(t) with h(t) un-

known and no errors of measurement are present in the data.

For these three cases only differences in treatment effects

can be calculated since the h(t) and aj(t) terms are con-

founded. For Case 13 the exact natures of the gj(t)'s are

known, while for Case 15 only the functional form expres-

sions for the gj(t)'s are known and for Case 17 nothing is

known about the gj(t)'s. For all three cases the system

of equations (1-4) can be rewritten as

Yij(t) = gj(t)°Yij(tlj) + h(t) + aj(t) . (4'17)

Case 13

Pick one person from group j, say person i, and one

person from group j', say person i', where j and j' are

two distinct treatment groups. Then by equation (4-17),

for the i'Eh person from group j',

Yi'j'(t) = gjs(t)°Yitjl(tlj') + h(t) + aju(t) . (4‘18)
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Subtracting equation (4—18) from equation (4—17) yields

3 gj(t).Yij(tlj) + (1)-(t) -' gjl(t) 'Yiojl(tlj') - aja(t) .

Hence,

“j (t) - aj,(t)

3 Yij(t) - Yiljl(t) ’ [gj(t)°Yij(tlj)

- gjl(t) 'Yiujl(tlj')]o

So, the exact value of aj(t) — aj,(t) can be determined by

taking a subsample of size equal to one from each of the

groups. Notice that no interval estimation or hypothesis

testing procedures are needed since the exact values of the

aj(t) - aj,(t)'s have been determined.

Cases 15 and 17
 

Define new functions, Hj(t)'s, by Hj(t) = h(t) + aj(t).

Then, for these two cases the system of equations (4-17)

can be rewritten as

Yij(t) = gj(t)°Yij(tlj) + Hj(t) . (4-19)
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Consider two individuals from the jth group, say individuals

1 and 2. Then, by equation (4-19)

Y1j(t) = gj(t)-Ylj(tlj) + Hj(t)

and (4-20)

‘Y2j(t) = 9j(t)'Y2j(tlj) + Hj(t) .

Solving the system of equations (4-20) for gj(t) and Hj(t)

in terms of Y1j(tl ), Y2j(tl.)' Ylj(t), and Y2j(t) yields

3 J

Ylj(t) -'Y2j(t)

 

gj(t) =

and

Y2j(t)°Ylj(tlj) — Y2j(tlj)-Ylj(t)

H(t) = . (4-21) 

Similarly, for group j', consider a subsample of size two

from that group, say individuals 1' and 2'. By a deriva-

tion analogous to that for group j,
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Yltjn (t) "’ thjt (t)

 

gj'm ( ) ( )Y . . .t - Y ... t

and (4-22)

Yz'j"t"Y1'3'(tlj'i " Yz'j"tlj-’°Y1'j"t’
 Hj.(t)

Y1.j,(tlj') - Yz'j'(t1j.)

Subtracting equation (4-22) from equation (4-21) yields

1j(t1j) - Y2j(t1j) -Y1j(t)

.._.
(4-23)

Y2,j,(t)°Y1,j,(tl

Y2j(t)°Y

 

)"Yc 0(t )°YI°I(t)

j. 2 j lj. 1 J

 

chjt(tlj') "' qujv(tlj')

But, by definition

Hj(t) - Hju(t) [h(t) + oj(t)] - [h(t) + aj.(t)]

SO,

Hj(t) — H.,(t)J 03. (t) - aj , (t) . (4-24)
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Consequently, by equating equations (4-23) and (4-24)

Y2j(t)'Ylj(tlj) - Y2j(tlj)°Ylj(t)

Y .(t ) -‘Y .(t )
l] lj 23 lj

YZ'j' (t) 'Y10j1(tlj') - Y20j1(tlj')'ylcju(t)

 

 

Yl'j'(t1ju) _ Yz'j'(tljc)

Since this is the exact value of aj(t) — aj.(t), no interval

estimation or hypothesis testing procedures need be dis-

cussed. Notice that here, as with Cases 3 and 5, there is

no advantage in having knowledge of the functional forms

of the gj(t)'s.

Contradictory Solutions
 

Each of the methods for computing the aj(t)'s con-

sidered thus far has required data for only two subjects

per group, except for Cases 1 and 13, where only one sub-

ject per group was needed. If the conditions describing

the cases hold exactly, then the solutions for the aj(t)'s

will be invariant across pairs of subjects. Thus, if using

different pairs of subjects yields contradictory solutions



94

for aj(t), then one or.more of the conditions describing

the cases must be false. That is, either

(i) Errors of measurement are present in the

data ;

(ii) There is not a correlation of +1 between

true scores at two points in time within group j ;

and/or (iii) For Cases 1, 3, 5, 7, 9, and 11, depending

on the case, either the exact nature or the general func-

tional form of hj(t) has been misspecified.

Also, when discussing the methods for Cases 7, 9, and 11

it was mentioned that different, and hence contradictory,

solutions may arise when different combinations of time

points are used for the pretest observations. The possible

reasons for these different solutions are the same as those

just listed.

The problem, however, is that one does not know which

of the reasons caused the contradiction. If only reason

(i) is the cause, then the results to be derived in Chap-

ters 5 and 6 should be used. If only reason (iii) is the

cause, then the correct exact nature or functional form

expression for hj(t) must be determined. If both reasons

(i) and (iii) are the case, then the results of Chapters

5 and 6 should be used, but first the correct expression

for hj(t) must be determined. If reason (ii) is the case,

then the methods developed in this dissertation are not
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applicable. It should be noted here that the methods of

data analysis developed by Strenio, Bryk, and Weisberg

(Bryk, Strenio, and Weisberg, 1981; Strenio, Weisberg, and

Bryk, in press) seem very promising for some of the situa-

tions where there is not a correlation of +1 between true

scores .



CHAPTER 5

POINT ESTIMATION WHEN ERRORS

OF MEASUREMENT ARE PRESENT

In this chapter point estimation procedures for those

cases where errors of measurement are present in the data

are discussed. The interval estimation and hypothesis

testing procedures for these cases will be given in

Chapter 6.

Case 2 Estimators

For Case 2 the exact natures of both the gj(t)'s and

hj(t)'s are known and errors of measurement are present.

Recall that the general growth model is

* *

Yij(t) = gj(t)°Yij(tlj) + hj(t) + oj(t)

and (1—4)

at

Yij(t) = Yij(t) + eij(t) .

Taking the population mean on both sides of equation (1-4),

uyj(t) = gj(t)°uyj(tlj) + hj(t) + aj (t) . (5-1)

96
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Hence '

aj(t) = uyj(t) — Igth)-uyj(tlj) + hj(t)1 . (5-2)

If ”Y.(tl.) and qu(t) are known then equation (5-2) gives

3 J 3

aj(t) exactly. If, as is usually the case, the population

means are not known, then for a wide variety of statistical

distributions, a point estimator of aj(t) is given by

a"~

aj(t) = Yth) — [gj(t)°Yj(t1j) + hj(t)] . (5-3)

Overview of the Procedures

for the Remaining Cases
 

Each of the procedures to be discussed is a variation

of a several stage method. At the first stage, for Cases

4, 8, 10, 12, 14, and 16, estimates are obtained for the

unknown constants (i.e., parameters) in the functional

form expressions for the gj(t)'s and hj(t)'s. The method

used to obtain the estimates of the parameters in the func-

tional form expressions is the same whether the parameters

for the gj(t)'s, the hj(t)'s, or for both are being esti-

mated. Hence, the discussion of the first stage will be

done in general. The second stage concerns the estimation

of treatment effects (i.e., the oj(t)'s in equation (1-4))



98

given the estimates obtained at the first stage and the

particulars of the case of interest. Hence for the second

stage, each of the cases must be discussed separately. For

Cases 6 and 18, the first and second stages are replaced

by a process which directly estimates the ej(t)'s. The

third stage concerns methods for interval estimation and

hypothesis testing of both treatment effects and differ-

ences in treatment effects. These third stage methods

are the same for all the cases, once estimates of the

a.(t)'s have been obtained, and are described in Chapter 6.

3

Stage 1: Estimation of the gj(t)'s and hj(t)'s

 

Stage 1 is divided into two substages. At the first

substage, estimates of the gj(tk )'s and hj(tk )'s are

3' 3'

obtained, where the tk 's; k = 1,2,3,...,pj are the times

3'

of the pj pretests for the jth group. At the second sub-

stage, these estimates of the gj(tk )'s and hj(tk )'s are

3' 3'

used to obtain estimates of the unknown constants in the

functional form expressions of the gj(t)'s and/or hj(t)'s.

For simplicity, the j subscript will be dropped since

the estimation of the unknown constants in the functional

form expressions for the gj(t)'s and hj(t)'s is done

separately for each of the J groups. Dropping the j
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subscript and considering only the pretest time points,

equation (1-4) becomes

* *

Yi(tk) = g(tk)°Yi(tl) + h(tk) (5-4)

and

*

Some of the decisions made at substage l are dependent

upon the context of what is to be done at substage 2. Since

the second substage provides the motivation for the methods

chosen to complete the first substage, it will be discussed

first.

Substage 2: Estimation of the unknown parameters in

g(t) and h(t)

Once the substage 1 estimates of the g(tk)'s and

h(tk)'s are calculated, estimates of the unknown parameters

in the general functional form expressions for g(t) and

h(t) can be computed. For simplicity, the discussion here

will be in terms of g(t). The procedures to be used for

h(t) are analogous.

The second substage of Stage 1 begins by setting up

a system of equations similar to the systems (4-12) and

(4-13) which relates the estimates of the g(tk)'s to the
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unknown parameters. For example, if g(t) = logc[b°(t — t1)

+ c] then the system of equations would be

)
g(tz) = logc[b'(t2-tl) + c] ,

z"*
g(t3) = logclb'(t3-tl) + C] r

. (5-6)

A
g(t ) = logCIb'(tp-tl) + c] .

In general, define mg to be the number of unknown

parameters in the general expression for g(t). If p :_mg

then estimates of the unknown parameters can not be found.

If p = mg + 1 then the system of equations is solved for

the unknown parameters using the appropriate algebraic and

numerical analysis techniques, as was done in Chapter 4.

It should be remembered, however, that the resulting

answers for the unknown parameters in the general expres-

sion of g(t) are now estimates of the parameters rather

than their exact values.

When p > mg+1 the method of least squares can be used

to provide estimates of the parameters. The methods de-

veloped in Chapter 4 for the situations where p was greater

than mg can not be used here because errors of estimation
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are present. Once errors of estimation are present, sys—

tems of equations such as (5-6) usually become contra-

dictory simply because of the presence of these errors

and not for the reasons discussed at the end of Chapter 4.

The method of least squares resolves this contradiction

by finding the estimates for the unknown parameters which

minimize the inconsistency. For example, consider g(t) =

logc[b°(t-tl) + c] and let p = 5. Let 57:3), 57:37: 572:):

”*\

and g(ts) denote the estimates of the g(tk)'s which were

computed using one of the substage 1 methods to be described

later in this section. The quantity,

5 ‘,a\ 2

L =k:2[g(tk) - logc(b‘(tk-tl) + c)]

represents the inconsistency, in the least squares sense,

inherent in the system of equations (5-6). The method of

least squares finds the values of b and c which minimize

L. These values are considered to be the estimators of

b and c. In general, for any differentiable function g(t),

the estimates of the unknown parameters are found by find-

ing the vector of values for the parameters for which the

minimum value of the expression

a"~

L =k§2[g(tk) - g(tkn2

occurs .
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Notice that the method of least squares can be used

to find estimates of the unknown parameters whenever p is

at least two greater than the number of unknown parameters.

Further, in general, the precision of least squares esti-

mates improves as the number of pieces of available infor-

mation used increases. Here, the pieces of information

are the g(tk)'s; k a 2,3,..., p. Hence, the greater the

number of pretest time points, the better the precision

of the estimators of the unknown parameters.

Substage 1: Estimation of the g(tk)'s and h(tk)'s

 

Equation (5-4) represents a linear structural (Madane

sky, 1959; Moran, 1971) or functional relation (DeGracie &

Fuller, 1972; Lindley, 1947), where g(tk) and h(tk) are

*

the slope and intercept of the Y*(tk) on Y (t1) regression

line. The general problem of how to estimate the slope

and intercept of a linear structural relation is known as

the errors-in-variables problem and has been widely dis-

cussed in the literature, especially in the area of econo-

metrics (e.g., Johnston, 1972; Madansky, 1959; Moran, 1971;

Sprent, 1966). The econometrics literature deals mostly

with those situations where there is only one independent

variable and one dependent variable.
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The maximum likelihood structural equations approach

developed most notably by J6reskog (Goldberger & Duncan,

1973; J6reskog, 1969; J5reskog, 1977; Magidson, 1979;

W. Schmidt, 1975), however, allows for any number of inde-

pendent and dependent variables. Also, as has just been

shown, in order to complete the second substage of the

process for determining the unknown parameters, it is

necessary to have at least one more pretest time point

than the number of unknown parameters. So, if the func-

tional form under consideration has two or more parameters,

then the necessary number of pretests is three or greater.

For these situations, only the maximum likelihood approach

can be used. Further, since the more pretests used, the

better the precision of the substage 2 estimators, it is

recommended that pretest observations be collected at as

many time points as possible. It is realized that the

number of pretest time points is, however, constrained in '

educational settings by the amount of money and investi-

gator time available. Also, in most settings, the number

of tests is constrained because the subjects can only take

a certain number of tests without either reactivity,

fatigue, or attrition occurring. Finally, as will be

shown later in this section, when only two pretest obser-

vations are available, additional assumptions must be made

before estimates of the g(tk)'s and h(tk)'s can be deter-

mined. Hence, it is recommended that observations always
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be collected at three or more pretest time points, for

those cases where Stage 1 is implemented, and that maximum

likelihood estimation be used to estimate the g(tk)'s and

h(tk)'s. Since the maximum likelihood approach is appli—

cable in a wider variety of situations than the other

approaches, it will be discussed first.

Maximum Likelihood Approach

For a design with p pretests, the system of equations

represented by equations (5-4) and (5-5) can be described

pictorially as in Figure 19.

 

*

Y (t2) 0 e(t2)
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Figure 19. Pictorial representation of

the structural relation.
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The system can be written in vector form as

 

* *

Yi(tk) = g(tk)-Yi(tl) + h(tk) (5-7)

and

*

Yi(tk) = Yi(tk) + ei(tk) . (5-8)

Maximum likelihood requires expressions for the means,

variances, and covariances of the observed variables under

consideration. Taking the mean on both sides of equation

(5-7)

uYItk) = g(tk)°uY(tl) + h(tk) (5-9)
I

 

where u (t ) is the vector of means. The variance of Y(t )

.Z_;E_
1

is given by

03(t1) = [0;(t1)12 + 02(t1) . (5-10)

where 02(t) represents the variance of the errors of mea-

surement at time t. The variance of Y(tk) is given by

2 _ 2, * 2 2 _
0Y(tk) - [g(tk)] [0Y(tl)] + 06(tk) . (5 11)

for k=l,2, ... , p. The covariance of Y(tk) and Y(tl) is

given by

°Y<tk)Y(t1) = g("'1<’°[‘J';:("'1)]2 ' (5'12)
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The covariance of Y(tk) and Y(tk.). where k,k' = 2,3, ... ,

p and k # k', is given by .

. * 2

°Y(tk)Y(tk.) ' g(tk) g(tk')'[°')z“‘1” ' (5’13)

Consider the systems of equations (5-9), (5-10),

(5-11), (5—12), and (5-13) as one large system of equa-

tions. The maximum likelihood approach requires that this

large system be identifiable. A system of equations is

said to be identifiable if and only if each of the unknown

parameters on the right hand side of the system can be

expressed in terms of the unknown parameters on the left

hand side of the system. For identifiability only the

existence of expressions is required; the expressions need

not be unique. For the models of continuous growth being

considered here, the unknown parameters on the left hand

- +
Side are uY(tl), uY(t2),..., “Y(tp) and the —E£§—£L— para-

meters in the variance-covariance matrix of Y(tl), Y(tz),

... , Y(tp). The unknown parameters on the right hand side

are g(tz). g(t3). ooo , g(tp). h(t2)' h(t3), --- I h(tp),

* 2 2 2 2 2
[oY(t1)] , oe(tl), oe(t2), ... , oe(tp_l), and oe(tp). In

Appendix A it is shown that the system of equations (5-9)

to (5-13) is identifiable if and only if p 3 3. Hence,

for the remainder of the discussion of the maximum likelihood
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approach it will be assumed that p 3’3. Those designs for

which p a 2 are exactly those designs where the system of

equations (5-7) reduces to a single equation with one

independent variable, Y*(t1), and one dependent variable,

*

Y (t2). When p = 2, the general maximum likelihood approach

must be modified slightly or methods other than maximum

likelihood can be used.

* t *

Assume that the variables Y (t1), Y (t2), ... , Y (tp)

have a multivariate normal distribution and that classical

measurement theory assumptions hold. It follows that Y(tl),

Y(tz), ... , Y(tp) have a multivariate normal distribution.

From elementary statistics (Mood, Graybill and Boes, 1974)

it can be shown that the maximum.likelihood estimates of

the means are given by Y(tl), Y(tz), ... , (tp). The

maximum likelihood of the variances, 03(t1), 03(t2), ... ,

2 . 2 2 2
°Y(tp)' are given by SY(tl)' SY(t2), ... , SY(tP) where

l N

2 - s .. i 2 —

: k = 1,2,...,p .

The maximum likelihood estimates of the covariances, the

I ‘ I

cY(tk)Y(t s, are given by the SY(tk)Y(t s, where

k.) k.)
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s
Y(tk)Y(tk')

1 N

Tsillyi (tk) — Yi'T'tkH [Yi(tk,) ._Ttk'” (5_15)

:k'k' = 1,2, as. p p s

The goal of the maximum likelihood structural equations

approach is to find the maximum likelihood estimates of the

parameters on the right hand side of the system of equations

(5-9) to (5-13) in terms of the maximum likelihood estimates

of the means, variances, and covariances of the observed

scores. J5reskog (1969) has derived expressions for the

first and second derivatives which need to be used in order

to determine the maximum likelihood estimates for systems

of structural equations and has written a computer program,

LISREL (J6reskog and Scrbom, 1978), which evaluates these

expressions in order to find the estimates of the para-

meters of interest. The LISREL output gives the maximum

*

likelihood estimates for the g(tk)'s, [oY(tl)]2, and the

02(tk)'s. The estimates of the h(tk)'s are computed using

h(tk) = Y—_(tk) - g(tk)Y_(_—tl) .

where g(tk) is the maximum likelihood estimate of g(tk).

The method just described requires p Z 3 in order to

estimate the g(tk)'s and h(tk)'s. Since pretests are



109

expensive, the situation when p = 2 is important to con—

sider, even though p a 2 can only be used if the number of

unknown parameters in the functional form expression for

h(t) is equal to 1. The reason why there need not be a

restriction on the number of parameters in g(t) will be

explained in the section covering Stage 2.

When p a 2, the system of equations (5-7) to (5-13)

reduces to

'k *

Yi(t2) = g(t2)°Yi(tl) + h(tz) (5-16)

from (5-7);

*

Yi(tl) I Yi(tl) + ei(tl)

and

Yi(t2) = Y;(t2) + ei(t2) from (5-8):

“Y(tl) = “Y(tl) (5-17)

and

“Y(tz) = g(t2)uY(tl) + h(tz) (5-18)

from (5-9);

2 _ * 2 2 _
°Y(t1) — [0Y(tl)] + oe(tl) (5 19)

from (5-10);

o§(t2) = [g(t2)]2[0;(tl)]2 + oi<t2) (5-20)

from (S-ll):
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and

UY(t1)Y(t2) ' g(tz’ [aY(t1)J (5 21)

from (5-12).

The maximum likelihood structural equations approach can

still be used for the system (5-17) to (5-21), but an addi-

tional assumption must be made to insure identifiability.

Some of the possible additional assumptions are:

Assumption 1: is known

pY(t1)Y(t1)

Assumption 2: o:(t1) is known

Assumption 3: 02e(t2) is known

02e(t2)

Assumption 4: The ratio -———-——— is known

02e(t1)

Assumption 5: pY(t1)Y(tl) = Dy(t2)y(t2)

and

Assumption 6: is known .D
Y(t2)Y(t2)

Assumptions 1 to 4 are included because they are

assumptions that have appeared in the errors-in-variables

literature (Johnston, 1972; Moran, 1971). Assumption 5

is included because it is an assumption which is often

made in educational settings. Assumption 6 is included
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because of its similarity to Assumption 1. The maximum

likelihood estimates for Assumptions 1 to 3 are given in

many places (see e.g., Johnston, 1972; Moran, 1971). The

maximum likelihood estimates for g(tz) under Assumptions 1

to 3 are:

under Assumption 1,

S

A Y (1:1)Y (t2) j

g(tz) = 2 ;

-SY(t1)

 

p

Y(tl)Y(tlI

under Assumption 2,

S
Y(t1)Y(t2)

 fit?)
2 2 '

and under Assumption 3,

2 2

S
Y(t1)Y(t

 

2)

Under all three assumptions,

a/A\\ ’/’\\

h(t ) = Y(t ) — g(t )-Y(t ) .
2 2 2 l

Assumption 4 has been widely discussed in the litera-

ture on the errors-in-variables problem (Johnston, 1972;

Madansky, 1959; Moran, 1971; Mullet & Murray, 1976).

Johnston and Mullet and Murray give multiple estimates
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under this assumption and then describe ad-hoc methods for

choosing between these estimators. But, both Madansky and

Moran have pointed out that none of these estimates is a

maximum likelihood estimate. When it can be assumed, how-

ever, that g(t2) > 0, as is being assumed for the growth

models under consideration here, then maximum likelihood

estimates of g(tz) and h(tz) exist and are given by

 

 

z"\

g(tz) =

(t) —Asz(t) + ‘52 (1:) Wu) +4HS )2
2 y 1 2 N K 1 Y(tl)Y(t2)

ZS

Y(tl)Y(t2)

and

’f‘\ ‘

2
oe(t2)

where l = ————————-. Appendix B provides a derivation of

o2e(tl)

/\ A . .

g(tz) and h(tz) under Assumption 4. Appendix B also pro-

vides derivations of the maximum likelihood estimates under

Assumptions 5 and 6, since a search of the literature did

not reveal any place where the estimates under these

assumptions are discussed.
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The maximum likelihood estimate of g(tz) under Assump-

tion 5 is

SY(t2)

SY(tl)

Under Assumption 6,

2
SY(t2)

g(t ) = -p .
2 s Y(t2)Y(t2)

Y(tl)Y(t2)

 

1"~ a"~

Under both assumptions, h(tz) = Y(tz) -g(t2)'Y(El) .

Other Approaches
 

When p a 2, there are also approaches other than maxi-

mum.likelihood available to estimate g(tz) and h(tz). When

an independent estimates of 02(t1) is available DeGracie

and Fuller (1972) have suggested using
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’/"~ SY(tl)Y(tk)

g(tk) = 255,77

.zf””a~‘:‘\e 1 //’\‘ Mtl)

SY (tl)Y (t1) + N- 2°2e‘ti) + _,—+-'*-~1
S a a

Y (t1)Y (t1)

4\
2oe(t1)

+

A

q.S * *

Y (t1)Y (t1)

as the estimator for g(tk), where

N

SY(1:1)Y(tk)"fi=l-'I £1”; <1: I - Y‘T‘MY“‘k’ “‘YT‘k“ ;

//’~‘~

o:(t1) represents the independent estimate of 0: (t1) ;

N

SY(t1)Y(tl)' N=I 2 (Y1(t1) ‘iYZt1)’2’
i=1

’,,a/’”‘-.\~

S * * .-

~ /2\ {\
SY(tl)Y(tl) ‘ °2e(t1) if SY(t1)Y(tl) ‘ °e(t1)

1 2

> at: Ge(tl)

.x”‘~

N31 02e(t1) otherwise:

and q is the number of degrees of freedom for the x2
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/\

distribution of which the distribution of o:(t1)

is a multiple.

The estimator for h(tk) can then be defined as

/\

h(tk) = Y(t? — @«T‘tfi .

Notice that DeGracie and Fuller's method is only con-

cerned with two time points. Any number of pretests can

be used, however, but the determinations of the estimates

for g(tk) and h(tk) are done separately for each k;

k=2,3, ... , p.

Another approach for estimating the g(tk)'s is given

by Spiegelman (1979). Spiegelman's approach requires a

knowledge of real analysis on the part of the data analyst.

Even though Spiegelman's technique is a possible method

for estimating the g(tk)'s, it will not be discussed here

because of its complexity.

Several other approaches discussed in the literature

are variations of the techniques of instrumental variables

or method of grouping (Johnston, 1972; Madansky, 1959;

Wald, 1940). The methodology of the instrumental variables

and method of grouping techniques requires that the errors

of measurement in the independent variable be statistically

independent of the instrumental variable or grouping
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variable. As has been pointed out by P. Schmidt (1978)

and Madansky (1959), unless there is information available

besides the pretest and posttest scores, the errors of

measurement will be correlated with any instrumental or

grouping variable used. Hence, these methods should not

be used in the data collection situations considered here.

The discussion so far in this chapter has been focused

on single-group designs. For multi-group designs the

methods developed here can be applied to each group

separately to find the estimates of the unknown parameters

in the expressions for the gj(t)'s and hj(t)'s. Treating

each group separately will suffice except in those instances

where it is assumed that gj(t) E gj,(t) and/or hj(t) E

hj,(t) for two distinct groups, j and j'. If it is assumed

that 92)“) E gj'(t)l 113-(t)E hjc(t)r Pj a Pjur and tkj =

tk,' for k 3 1:2: --- , Pj(=Pj.), then the two groups j and

J

j' should be combined and considered as one group for the

purposes of this first stage. If gj(t) gj.(t), but

hj(t) i hj.(t), and still pj = pj, and tkj = tkj' for

k = 1,2,...,pj , then the two groups should be combined when

A A .

the gj(tk)'s (and hence, the gj,(tk)'s) are determined and

when the estimates of the unknown parameters in the expres-

sion for gj(t) (and hence, gj.(t) ) are calculated. Call
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. A

the common estimate of gj(tk) and gj.(tk) by gj,j'(tk) ,

.r"\~

for k a 2,3,..., Pj' Then determine the values of hj(tk)

,1’"‘~

and hj'(tk) separately using

a/"\
a”"“‘~

hj(tk) = Y57tk) - gj'j.(tk)-?;Tti) (5-22)

and

A A

The values of the unknown parameters in the expressions for

hj(t) and hj.(t) are computed separately using the values

of the estimates given by equations (5-22) and (5-23),

respectively.

If gj(t) E gj.(t) and if for some k, tk. # tk.. then

3 J

the methods just described can not be used. Methods need

to be developed which will insure that the estimates of the

unknown parameters in the expressions for gj(t) and gj,(t)

are the same in these situations. The development of these

methods is left as an open question. Further, if gj(t) Z

gj.(t) and hj(t) E hj,(t), something should be done to

insure that the estimates of the unknown parameters in

hj(t) and hj,(t) are the same. How this should be accom-

plished is also left as an open question.
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Stage 2: Point Estimation of Treatment Effects

The discussion of the determination of the point

estimators of treatment effects will be discussed separately

for each case, since the process is slightly different in

each case.

Case 4

In Case 4 the exact natures of the hj(t)'s are known

but only the functional forms of the gj(t)'s are known. For

this case, there are two methods possible for determining

z/“\ .

the aj(t)'s. For the first method, recall that at Stage 1,

estimates were obtained for the unknown constants in the

functional form expressions for the gj(t)'s. For the jth

group, let gj(t) denote the function formed by substituting

these estimates of the constants into the general functional

form expression for gj(t). For example, if gj(t) =

0
‘
)

logCIb-(t - t1) + c], b = 1.2, and c = 4.17, where and

c are the Stage 1 estimates of b and c, then gj(t)

log4 l7[l.2(t — t1) + 4.17]. Point estimators of treatment

effects are then given by

fi

33' (t) = Yj(t) - [gj(t)‘Yj(tlj) + hj(t)] .
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Define mg to be the number of unknown parameters in the

3'

functional form expression for gj(t). The method just

described will work only if p3. > mg .

J'

The choice of Yj(tl ) as the pretest to be used as the

J'

exogenous (i.e., independent) variable for estimating aj(t)

was arbitrary. The general growth model could have been

stated alternatively as

t * h 2

Yij(t) - gjk(t) Yij(tkj) + jk(t) + aj(t) , (5- 4)

where the gjk(t)'s and hjk(t)'s are some continuous func-

tions and where k is set equal to either 1, 2, ... , pj-l’

or pj. Notice that equation (1-4) is the special case of

(5-24) when k = 1. For a fixed k, then, Y;(tk ) can be

. i

thought of as the exogenous variable and the remaining

* * t *

pretGStS Yj(tlj)l Yj(t2j)' on. ' Yj(tk-1j)' Yj(tk+lj)l

*

... , Yj(tp ) can be thought of as the endogenous variables

2')

in a structural equations causal model. It is now possible

to generate pj different point estimates of aj(t), one from

each of the pj different versions of equation (5-24), where

each time a different pretest becomes the exogenous variable.
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It is left as an open question as to how point estimators

of the aj(t)'s can be developed, which are improvements in

the sense of increased precision over the pj separate

estimates, by using some function, such as the mean or

median, of the pj separate estimates of aj(t).

For the second method, define a new variable, Wij(t) =

Yij(t) - hj(t). The system of equations (1-4) can then be

rewritten as

Wij (t)

*

gj(t) wij(tlj) + aj(t)

and (5-25)

*

Notice that the system of equations (5-25) is, for each j,

a linear structural relation with a slope of gj(t) and an

intercept of aj(t). Hence, for any particular time t,

estimates of gj(t) and aj(t) can be obtained directly by

using the techniques described for substage l of Stage 1,

with Wj(t1 ) as the independent variable and Wj(t) as the

3'

dependent variable. It should be recalled here that in

order to compute the estimates in situations where there is

only one independent and one dependent variable, it is

necessary to make one of the assumptions listed in substage l
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(or some other assumption that will make the system iden-

tified). These direct estimates of the aj(t)'s are

considered to be the Stage 2 estimates and are labelled

as the‘5;(t)'s. Notice that Stages 1 and 2 are combined

for this method. This is possible because the exact natures

of the hj(t)'s are known.

As with the first method, the use of Wj(tl ) as the

3'

independent variable is arbitrary. Rewriting equation

*

(5-25) in terms of W.(tk ) yields

3 j

'k *

Wij(t) = gjk(t)-Wij(tkj) + aj(t) . (5-26)

*

Equation (5-26) is a linear structural relation with Wj(tk )

3'

as the independent variable and w;(t) as the dependent

variable. Hence, pj different estimates of aj(t) can be

calculated, one for each of the pj pretests, using the

techniques described for substage l of Stage 1, once one

of the additional assumptions is made. As with the first

method, it is left as an open question as to how point

estimators of the aj(t)'s can be developed, which are

improvements, in the sense of increased precision, over the

pj estimates of aj(t) generated separately using only one
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pretest at a time, by using some function, such as the mean

or median, of these pj different estimates.

Since two methods have been proposed when Case 4 holds,

the question of when each method is appropriate needs to be

discussed. The first method has the advantage over the

second method in that no additional assumptions need be

made in order to implement it. The disadvantages of the

first method are that it is computationally more complex

than the second method and that a minimum of mg + l

J

pretest time points is needed. Hence, when observations

are available for at least mg + 1 time points and the data

j

analyst is not willing to make any additional assumptions,

the first method must be used. Further, when mg or fewer

j

pretest time points are available then the second method

must be used and one of the additional assumptions made in

order to insure the identifiability of the system. When

there are at least mg + l pretest time points available

1

and one of the additional assumptions seems reasonable,

then a choice must be made between the two methods. The

method of choice should be that method which leads to the

smallest standard error of estimate (i.e., the better

precision). It is left as an open question as to which

method possesses better precision.
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Case 6

In Case 6 the exact natures of the hj(t)'s are known

and nothing is known about the gj(t)'s. For this case, the

'aj(t)'s are determined using the second method described

for Case 4 situations.

Case 8

In Case 8 the exact natures of the gj(t)'s are known

but only the functional forms of the hj(t)'s are known. For

this case estimators of the hj(tk )'s are given by

J

,r"‘~ ___—___ ‘,/~\_

hj(tkj)_= Yj(tkj) — gj(tkj)-Yj(tlj). The hj(tkj)'s are

then used, exactly as was described for the second substage

of Stage 1, to provide estimates of the unknown parameters

in the functional form expressions of the hj(t)'s. A new

function, called hj(t), is formed by substituting the

estimates of the unknown parameters that were obtained in

Stage 1 into the functional form expression for hj(t).

Recall that in order for this method to be implemented it

is necessary to have at least mh + 1 pretest time points,

3'

where mh is the number of unknown parameters in hj(t).

j



124

Point estimators of treatment effects are then given by

z/‘\- A

aj(t) 8 Yj(E) — [gj(t)-Yj(tlj) + hj(t)] .

Case 10

In Case 10 the functional forms of both the gj(t)'s

and hj(t)'s are known. The point estimation method for

this case begin by using substage l of Stage 1 to generate

/\ .

the hj(tk)'s. Substage 2 is then used to find the estimates

of the unknown parameters in the functional form expres-

sions for the hj(t)'s. The hj(t)'s are then formed by

substituting the estimates of the unknown parameters into

the functional form expressions for the hj(t)'s. The method

then proceeds as in Case 4, except that the hj(t)'s of

Case 4 are replaced by the hj(t)'s.

Case 12

Case 12 occurs when only the functional forms of the

hj(t)'s are known and when nothing is known about the

gj(t)'s. In this case a new variable is formed by defining

Uij(t) = Yij(t) — hj(t), where hj(t) is defined as in Case
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10. The method described for Case 6 is then used to obtain

the 5;?t)'s by replacing the Wij(t)'s of Case 6 with the

Uij(t)'s.

In developing the point estimators of the treatment

effects it was assumed that for any particular nonequiv-

alent control group design, the known information about

the growth curves for each of the J groups belonged to the

same case. Since the determination of the point estimators

is done separately for each group, insisting that all of

the groups belong to the same case is overly restrictive.

Hence, it should be assumed that for each of the J groups,

the known information about the growth curves allows the

data analyst to place each of the groups into one of the

o O A

cases 2,4,6,8,10, or 12. Once this is done, the aj(t)'s

are derived separately for each group by using the methods

given in this chapter for the case to which the group's

growth curves belong.

Case 14

For Case 14 the exact natures of the gj(t)'s are known

and hj(t) E h(t), with h(t) unknown. In this case, the

system of equations (1-4) can be rewritten as
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i *

Yij(t) = gj(t)'Yij(t1j) + h(t) + aj(t)

and (5-27)

*

For this case, and for Cases 16 and 18, only differences

in treatment effects can be estimated since the h(t) and

aj(t) terms are confounded. Taking the population mean on

both sides of equation (5-27) yields

uyj(t) = gj(t)'uyj(tlj) + h(t) + Gj(t) . (5-28)

Similarly, for any other group, j',

uyj (t) = gj.(t)'uyj'(tlj') + h(t) + aj.(t) . (5'29)

Subtracting equation (5-29) from equation (5-28) yields

“Y.(t) ' “Y.
(t) =

J 3'

Hence '

aj(t) " ajl(t) =

HY (t) -’uY '(t) - [gj(t)uy_(tl )

J :3 3 3

gj.(t)qu'(tlj')] . (5-30)
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If the values of “Y.(tl ), “Y. (t1. ), “Y.(t)’ and “Y. (t)

J j 3' 3' J J'

are known, then equation (5-30) determines the value of

.,(t) exactly, and no interval estimation oraj(t) —'a3

hypothesis testing procedures need be discussed. It is,

however, rarely the case that uY (tl ). "Y (tl ). “Y (t),

j j j' j' j

and "Y '(t) are known. When these populations means are

3

unknown, a point estimator of aj(t) — aj,(t) is given by

,z””'~““~

aj(t) _ aj|(t) a

3'

Case 16

For Case 16 the functional forms of the gj(t)'s are

known and hj(t) a h(t), with h(t) unknown. Define Hj(t)

to be h(t) + aj(t). The system of equations (5-27) can

then be rewritten as

'k *

Yij(t) = gj(t)°Yij(tlj) + Hj(t)

and (5-31)

*

Yij (t) = Yij (t) + eij(t)
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The two methods described under Case 4 for estimating aj(t)

can now be used here to estimate Hj(t), simply by replac-

ing aj(t) by Hj(t) in the Case 4 discussion. Once the

A o o D

Hj(t)'s have been determined, point estimates of the aj(t) —

aj,(t)'s, for any two groups j and j', are formed by using

/\ /\

Case 18

For Case 18 nothing is known about the gj(t)'s and

hj(t) E h(t). The second method for estimating aj(t) under

Case 4 can be used here to estimate each of the Hj(t)'s

in the system of equations (5-31), simply by replacing the

aj(t)'s by the Hj(t)'s in the Case 4 discussion. Once the

A

Hj(t)'s have been determined the point estimates of the

differences in treatment effects are determined as in Case

16.

Bias of the Point Estimators

The point estimation techniques introduced in this

chapter lead almost always to biased estimates of treatment

effects. The discussion of this bias will be broken down

into three categories according to the information available
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about the gj(t)'s. The cases where the exact natures of

the gj(t)'s are known will be discussed first, followed by

those cases where the functional forms of the gj(t)'s are

known and then by those cases where nothing is known about

the gj(t)'s.

Cases 2, 8, and 14 comprise those cases where the exact

natures of the gj(t)'s are known. For Cases 2 and 14, the

formulas given in the previous section provide unbiased

estimates of treatment effects and differences in treatment

effects, respectively, since for all t, E(Yj(t)) = “Y (t)

3'

under a wide variety of statistical distributions. For

Case 8, however, the aj(t)'s almost always provide biased

estimates of the aj(t)'s. The Case 8 estimation method

begins by finding estimates for the hj(tk )'s, where the

3'

tk 's are the pretest time points. These estimates are

:i

. /\ -—___ — .

given by hj(tk.) = Yj(tk.) - gj(tk.)'Yj(t1.)' Notice that

J J J J

A

these hj(tk )'s are unbiased estimates of the hj(tk )'s

j 3'

under a wide variety of statistical distributions. In

order to find estimates for the parameters in the functional

form expressions of the hj(t)'s, a system of equations
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analogous to (5-6) is set up which relates the hj(tk )'s

j

to the unknown parameters. This system is then solved for

the unknown parameters. Hence, expressions are obtained

which are estimates of the unknown parameters in terms of

the hj(tk )'s. That is, estimates of the unknown parameters

3'

are given as functions of the letk.)'s and gj(tk.)'s;

J J

k = 1,2,...,pj. Even though the sztk )'s are unbiased

3

estimators of the "Y (tk )'s, it is rarely the case that

j 1

functions of the sztk )'s are unbiased estimators of the

3'

corresponding functions of the “Y (tk )'s (Bickel & Doksum,

J J

W) uyj(t1j)

1977). For example, E ——————— # -————-—— , when a bivar-

Y.(t ) u (t )
2. Y. 2.

3 3 3 3

iate normal distribution is assumed for Yj(t1 ) and Yj(t2 )

j 3'

(Cochran, 1977). Hence, the estimates of the unknown

parameters are usually biased. Therefore, the hj(t)'s,

which were formed by substituting the estimates of the un-

known parameters back into the functional form expressions

of the hj(t)'s, are biased estimates of the hj(t)'s. Con-

sequently, the aj(t)'s, as defined by,
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A

A

aj(t) = Yj(t) — [gj(t)-yj(tlj) + hj(t)]. are almost always

biased estimators of the aj(t)'s.

Since the aj(t)'s are functions of the letk )'s, by

3

taking limits as the sample sizes approach infinity, one

can see that the aj(t)'s are, however, consistent esti-

mators, provided that the limits exist. It should be

pointed out here that it is an accepted technique in the

applied statistics literature when a point estimator is

desired of a quantity which is a function of several

parameters, to first find unbiased, or even just consistent,

point estimators of the parameters. These estimates of the

parameters are then substituted into the original function

to yield a useable point estimate of the desired quantity.

 

2

°Y SY

For example, a point estimate of is given by ———— .

OX S2

X

Since in many instances in the past literature the tech-

niques used for Case 8 lead to point estimators with an

acceptable amount at bias, it is conjectured that the Case 8

techniques will also lead to point estimates with an accept-

able amount of bias. Further study of this bias is needed.

For Cases 4, 10, and 16, where only the functional form

expressions for the gj(t)'s are known, maximum likelihood
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techniques are first used to generate estimates of the

gj(tk )'s. It is well known that maximum likelihood tech-

3'

niques often lead to biased estimation (Bickel & Doksum,

1977: Mbod, Graybill, and Boes, 1974). Maximum likelihood

estimators are, however, usually consistent (Patel,

Kapadia, & Owen, 1976). Further, maximum likelihood esti-

mation is probably the most widely used and accepted esti-

mation technique, since it has been found in a wide variety

of situations to produce estimators which have a negligible

amount of bias and which are asymptotically efficient when

compared to a large class of possible estimators (Zacks,

1971).

The maximum likelihood estimates of the gj(tk )'s are

3'

then used to generate estimates for the unknown parameters

in the functional form expressions of the gj(t)'s, in a

manner analogous to that just described for finding esti-

mates of the unknown parameters in the expressions for the

hj(t)'s in Case 8. Further, for Case 10, maximum likeli-

hood estimates of the hj(tk )‘s are generated using

3'

/\ /\

= —- o 'hj(tkj) Yj(tkj) gj(tkj) Yj(t1j), where the gj(tkj) s

are the maximum likelihood estimates of the gj(tk )'s.

3'

These maximum likelihood estimates of the hj(tk )'s are

3'
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then used to replace the unbiased estimates of the hj(tk )'s

3

used in Case 8, and the hj(t)'s are then generated as in

Case 8. Hence, for Cases 4, 10, and 16 maximum likelihood

estimation along with the techniques from Case 8 are used

to generate estimates of treatment effects and differences

in treatment effects. Consequently, these estimators are

usually consistent estimators. Since both the maximum

likelihood estimation and the Case 8 techniques have been

found to lead to acceptable levels of bias, it is conjec-

tured that a combination of these two methods will still

lead to estimators with an acceptable amount of bias. The

nature of the bias needs to be studied further.

For Cases 6 and 18 maximum likelihood techniques are

used to directly arrive at estimates of the treatment

effects and/or differences in treatment effects. Case 12

combines the maximum likelihood techniques used in Case 6

with the techniques used in Case 10 to find the hj(t)'s.

The hj(t)'s are then used as in Case 8, to find estimates

of the treatment effects and differences in treatment

effects. Hence in these three cases the estimators used

are also almost always biased, although usually consistant,

estimators. In these cases, also, the nature of the bias

of the estimators still needs to be investigated. For

these cases, as well as for Cases 4, 8, 10, and 16 computer
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simulation techniques appear to be the only feasible method

for further study of the bias.



CHAPTER 6

INTERVAL ESTIMATION AND

HYPOTHESIS TESTING PROCEDURES

In Chapter 5 methods were developed for the point esti-

mation of treatment effects for those cases where errors of

measurement were present and where either the exact natures

or the functional forms of the hj(t)'s were known. The

beginning of this chapter is concerned with the interval

estimation of treatment effects and with the testing of

the hypotheses of nonzero effects (i.e., Ho: aj(t) = 0

versus H1: aj(t) # 0). Next, procedures for the interval

estimation and hypothesis testing of differences in treat-

ment effects are developed.

In order to develop interval estimates and hypothesis

testing procedures it is necessary to have estimates of the

variance of the Egjtx's. Since the probability distribu-

. z”‘\

tions of the aj(t)'s are unknown, except in Case 2, tradi-

tional methods can not be used to estimate the variances

a’”‘~

of the aj(t)'s. Two techniques which have been suggested

in the literature for estimating variances when nothing is

known about the probability distributions are the 6-method

(Bishop, Feinberg, and Holland, 1975) and jackknifing

(Tukey, 1958). The 6-method quickly becomes computationally

135
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intractable in many cases. Moran (1971) has shown that

this intractableness occurs for the growth models and de-

signs being considered here when even only two pretest

observations are available. Because of its computational

difficulties, it was decided not to use the 6-method to

a"\

find estimates of the variances of the aj(t)'s. The method

of jackknifing, however, avoids the computational diffi-

culties inherent in the 6-method. Further, jackknifing

was originally designed as a bias reduction method

(Quenouille, 1956). Hence, besides providing estimates

0 A o I o o o

of the variances of the aj(t)'s, jackknifing will also in

most cases (Gray & Schucany, 1972) provide a reduction in

the bias of the point estimators of the treatment effects

and differences in effects.

The technique of jackknifing begins by drawing a random

sample from a specified population. Let N denote the number

of subjects in the sample. The N subjects are then divided

N

into m disjoint subsets, each of size ——— . Let Y be the

m

parameter of interest and Y be an estimator of Y. Further,

AT A

let Y be the value of Y when all N subjects are used, and

.(i) A

let Y be the value of Y when the subsample of size

N

N - ———, where the £th_subset has been deleted, is used.

m
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Next define J£(Y) by

AT A(1)

J2”) = m-Y - (In-1W ; k=l,2,..u m

and define J(Y) by

A l . m A

J(Y) = -—— 1: J (Y) .
m i=1 2

An estimate of the variance of J(Y) is given by (Tukey,

1958)

"
N
a

Ugh?) — J(Y)]2

 

m — 1

Think of m as being fixed. Gray and Schucany (1972) have

5- [J(Y) - Y]

shown that is asymptotically distributed

JSJ

N

(as ———-—+ co) as a t-random variable with m —'1 degrees of

m

 

freedom. An open problem is to determine how m should be

man?) -— v]
chosen so as to allow to be distributed

2

SJ

 

approximately as a Student's t random variable and at the

same time allow for enough degrees of freedom so that the

power of the test is not too low (Miller, 1974).
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A

The estimators of interest here are the aj(t)'s from

Cases 2, 4, 6, 8, 10, and 12. It should be kept in mind

here that once the aj(t)'s have been determined it is no

longer important to consider which of the cases the growth

curves belong to. To apply the jackknifing technique,

first divide the Nj subjects from the jth_group into mj

disjoint subsets. Next define a§£)(t) to be the value of

al"~

the estimator, aj(t), when the ith subset is deleted from

the sample for the jthgroup. Notice that the values of

the estimates of the gj(tk)'s and hj(tk)'s change when the

2§h_subset is deleted, and hence also the values of the

estimates of the unknown parameters in the expressions for

gj(t) and hj(t) will change once the 25g subset is deleted.

/\

Hence, in order to compute all of the a§£)(t)'s, the

entire two-stage process described in Chapter 5 must be

/\

repeated mj times for the jth group. Once the a§£)(t)'s

have been computed, new estimators of the aj(t)'s are

given by
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J(@)) a-Tt—mj 3,671») .
j 221 3

where (6-1)

A /\ fl?
J£(aj(t)) = mj-aj(t) - (mj - 1)'aj (t) .

,/’\~

These new estimators, the J(aj(t))'s, have two advan-

A

tages over the original estimators, the aj(t)'s. The first

advantage is that in most situations the bias of the

A

J(aj(t))'s as estimates of the aj(t)'s is less than the

a"\

bias of the aj(t)'s. There are, however, situations in

a"~

which the bias of J(aj(t)) is greater than the bias of

A '

aj(t) (Gray & Schucany, 1972). Gray and Schucany (1972)

discuss various conditions under which jackknifing increases,

decreases, or does not affect the bias of the estimator of

interest. The conditions, however, demand knowledge of some

of the properties of the distribution of the estimator.

But, for the estimators of interest here (i.e., the aj(t)'s)

nothing is known about their distributions, so one can not

know for sure whether jackknifing increases, decreases, or

does not affect their biases.
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/\ /\

The second advantage of J(aj(t)) over aj(t) is that

A /\

once the J£(aj(t))'s and J(cj(t))'s are computed, interval.

estimation and hypothesis testing procedures are available

by observing that

af“\

511-3” [J(aj(t)) - aj(t)]

/<s§(t>)j

is asymptotically distributed as a random variable with a

 

Student's t distribution with m.‘— 1 degrees of freedom

 

3

z [J,<a.(t>> — J(a.(t))]2
2.21 3 3

where (53(t)). = .

3 m. — l

3

An approximate (l - a)% confidence interval for aj(t) (and

hence, an a-level test for nonzero aj(t)) is then given by

2

. A a /<sJ(t))j

J(aj (12)) i tm.—l(l - T) .

3 ij

 

The estimation and hypothesis testing of differences in

treatment effects are also of interest. A point estimator

of aj(t) — aj.(t), for two groups j and j', can be given by

J(aj(t)) - J(aj.(t)) where J(aj(t)) and J(aj,(t)) are
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defined by equation (6-1). An approximate (l — a)% test of

the hypothesis of nonzero differences in treatment effects

,’*N.

is accomplished by performing an ANOVA on the J2(aj(t))'s.

Notice that the unit of analysis for the ANOVA being per-

formed here is the disjoint subsets formed in order to do

the jackknifing and that the dependent variable is

J£(cj(t)). These procedures can be used as long as all of

the growth curves under consideration belong to either

Case 2, 4, 6, 8, 10, or 12.

For Cases 14, 16, and 18 jackknifing can be used to

provide estimation and hypothesis testing procedures for

differences in treatment effects. For these cases, the

growth models under consideration are written as

* *

Yij(t) - gj(t)'Yij(tlj) + Hj(t) I . (5-31)

where Hj(t) = h(t) + ath). For Case 14, where the exact

a/‘~

natures of the gj(t)'s are known, Hj(t) is given by

let) — gj(t)-Yj(t1 ). For Cases 16 and 18, the procedures

3

/\

for obtaining the Hj(t)'s were described in Chapter 5. The

estimation and hypothesis testing techniques discussed in

.z’“\

the previous paragraph can be applied to the Hj(t) — Hj,(t)'s
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to provide point and interval estimates for the aj(t) —

aj.(t)'s and tests of Ho: aj(t) = aj.(t) versus H1:

a/“~

aj(t) # cj,(t), for any two groups j and j', since Hj(t) -

,¢’\~

Hj,(t) is the point estimator of aj(t) - aj,(t) derived in

Chapter 5. The problem arises here that each of the differ-

ences between treatment effects for each pair of two groups

is tested separately. But, what is needed is an ANOVA type

J

procedure which tests the hypothesis Ho: 2 (aj(t) - ua(t))2

i=1

J 2
= 0 versus H1: 2 (a.(t) — u (t)) f 0, where u (t) is the

j=l j a a

grand mean of the aj(t)'s. The development of this hypoth-

esis testing procedure is left as an open question. Recall,

however, that if gj(t) g(t) for each t and if pY(t

Inn-.1)

is known, then Estimated True Scores ANCOVA (Porter, 1967)

J

provides a test of Ho: 2 (aj(t) — ua(t))2 = 0 versus

i=1

J 2
H1: 2 (aj(t) — “e(t)) # 0. Notice that the use of Esti-

i=1

mated True Scores ANCOVA requires that t1 5 t1.

3

Several generalizations of jackknifing have been pro-

posed in the literature: the generalized jackknife (Gray &

Schucany, 1972), the infinitesimal jackknife (Jaeckel, 1972),
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and bootstrapping (Efron, 1979). All three of these

methods require information about the distributional prop-

erties of the estimator on which the jackknife is to be

performed. For the estimators being considered here (i.e.,

/\ /\

the cj(t)'s and Hj(t)'s), the information about their

distributions that is needed to use any of the three

methods is not available.

Since one of the benefits of jackknifing is that

usually the amount of bias in the estimators that have been

jackknifed is less than that of the original estimators

(Quenouille, 1956; Gray & Schucany, 1972), the nature of

A A

the bias of the J(aj(t))'s (the J(Hj(t))'s in Cases 14,

16, and 18) needs to be studied. As with the 537:3'3, it

appears that the only feasible method for studying this

bias is through the use of computer simulation techniques.

A

If it is found, as expected, that the bias of the J(aj(t))'s

. . A A

is less than the bias of the aj(t)'s, then the J(ej(t))'s

should be used as the point estimators of treatment effects

a/~‘~

and the J(aj(t))'s, or J(Hj(t))'s, should be used to form

the point estimators of differences in treatment effects,

depending on the case. For those situations, if any, where

it is found that jackknifing leads to an increase in bias,

0 o A

the original estimators, the aj(t)'s, should be used as the

point estimators. Finally, since the jackknifed estimators
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are linear functions of the original estimators, it follows

from the previous discussion of the aj(t)'s that the jack-

knifed estimators will also usually be consistent point

estimators.



CHAPTER 7

DISCUSSION

In this chapter a summary of the major results from

Chapters 2 to 6 and a discussion of directions for further

research are provided. The implications of this disser-

tation for the analysis of data collected using quasi-

experimental designs are also discussed.

Summary

In this dissertation point estimation, interval esti-

mation, and hypothesis testing procedures for the assessment

of treatment effects and differences in treatment effects

have been described for the class of growth models where a

correlation within each group of +1 between true scores at

any two points in time is assumed. In Chapter 2 it was

shown that this class includes an infinite variety of types

of growth over time, and not just linear growth. The set of

designs allowed under this class of models includes single-

group and multi-group designs with or without the presence

of one or more control groups. The techniques described

here can easily be extended to designs which involve the

investigation of interactions through the use of crossed

factors.

145
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In Chapter 3 it was shown that for this set of designs

the existing methods of data analysis rarely result in

adequate estimation and hypothesis testing procedures under

the class of growth models being considered. In Chapters 4

through 6 methods of data analysis were developed which

were consistent with the class of growth models. The only

additional assumptions made in developing these new methods

were:

(i) Classical measurement theory holds;

(ii) Treatment effects are additive:

and (iii) Either hj(t) E h(t) or for each of the J groups,

either the exact nature of or the functional form of hj(t)

is known.

For those cases where no errors of measurement are

present, methods were developed under which the exact values

of the treatment effects (for those cases where either the

exact natures of the hj(t)'s or their functional forms were

known) or differences in treatment effects (for those cases

where hj(t) E h(t)) were computed. Even though these

methods have the advantage that they provide the exact values

of the treatment effects and differences in treatment effects,

they have the disadvantage that they can rarely be applied

to analyze data arising in educational settings, since it is

usually the case that errors of measurement are present.
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For the cases where errors of measurement are present

and either the exact natures or the functional forms of

the hj(t)'s are known, point estimation, interval estima-

tion, and hypothesis testing procedures were developed for

both the assessment of treatment effects and differences in

treatment effects. For those cases where hj(t) E h(t)

estimation and hypothesis testing procedures were developed

for the assessment of differences in treatment effects.

Except for the cases where the exact natures of the gj(t)'s

are known and either hj(t) E h(t) or the exact natures of

the hj(t)'s are known, the point estimation procedures used

almost always lead to biased estimates of treatment effects.

As indicated in Chapter 5, the nature of the bias needs to

be studied further. It should be remembered that the esti-

mation methods used are methods which are frequently used

by applied statisticians. It is well known that these

methods lead to biased estimates, but whose bias is generally

at an acceptable level. Despite being biased, these esti-

mators are usually consistent. Thus, these estimators have

the advantage, over the estimators generated using existing

methods suggested in the past literature, that they are

consistent whereas, except in rare cases, the existing

estimation methods do not yield consistent estimators.
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Directions For Further Research
 

In Chapters 5 and 6, when developing the methods for

the estimation and hypothesis testing of both treatment

effects and differences in treatment effects when errors

of measurement are present, several directions for further

research were mentioned. This section provides a synthesis

of these directions plus additional directions for further

research. As mentioned above, one direction for further

research is the study of the bias and other statistical

properties of the point estimators. Further, for those

cases where the functional forms of the gj(t)'s are known,

two different methods were suggested for determining point

estimators of treatment effects and differences in treat-

ment effects. It is left as an open question for further

study to determine which of the two methods provides better

precision. Besides comparing these two methods with respect

to precision, they should also be compared with respect to

the amount of bias inherent in each method. Once more is

known about the precision and bias of each of the two

methods, then a decision can be made as to which method

should be used for those cases where the functional forms

of the gj(t)'s are known.

The technique of jackknifing was used to generate in-

terval estimation and hypothesis testing procedures. There

are still several open questions which need to be explored
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with respect to jackknifing. First, it is known that the

method of jackknifing can either reduce, increase, or not

affect the amount of bias of an estimator. It is important

to determine whether for the models of growth considered

here there is an increase or a decrease in the amount of

bias as a result of the jackknifing procedure. If the

Stage 2 estimators have less bias then the jackknifed

estimators, then they should be retained as the point esti-

mators of treatment effects. But, as is suspected, if the

jackknifed estimators have the lesser amount of bias, then

they should be used as the point estimators of treatment'

effects. A second direction for further research is the

determination of the best way to form the disjoint subsets

which are used to perform the jackknifing. Finally, a test

J J

o _ 2 — o _

of Ho. j31(oj(t) ua(t)) - 0 versus H1. j:1(aj(t)

ua(t))2 # 0 still needs to be developed for Cases 14, 16,

and 18.

Implications for Data Analysis and Collection

When confronted with a data set collected using the

generalized nonequivalent control group designs considered

here, the data analyst must be careful when applying one

of the existing methods of data analysis since, except

under rare conditions, these existing methods lead to
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incorrect estimates of treatment effects. For data sets

which do not conform to these rare conditions, the methods

developed in this dissertation should be seriously

considered.

The methods of data analysis developed here depend

heavily on having observations at several pretest time

points. Hence, when planning and collecting data in future

studies using nonequivalent control group designs, it is

important to have available observations from as many time

points as is possible given the constraints of the research

setting. Further, the methods developed here depend on

having some a priori knowledge of the nature of the natural

growth curves. Hence, attention should be focused on

collecting data in the absence of any treatment which could

then be used to determine the functional forms of the

hj(t)'s or, in some situations, to convince the data analyst

that it is reasonable to assume that for all j, hj(t) E

h(t) .

Finally, it should be remembered that these new data

analysis techniques were shown to be applicable only when

a correlation within each group of +1 between true scores

exists at any two points in time. Hence, these techniques

should be used cautiously when one suspects that the actual

correlation is not approximately equal to +1, until robust-

ness studies have been carried out to determine the extent
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to which the assumption of a correlation of +1 can be

violated. The development of methods when a correlation

of less than +1 exists has been virtually ignored. The

notable exception is the work of Strenio, Bryk, and

Weisberg (Bryk, Strenio, & Weisberg, 1980; Strenio,

Weisberg, & Bryk, in press). Hence, even though the tech-

niques developed in this dissertation are applicable only

in a limited number of data analysis situations, they are

still potentially important techniques to consider since

they are applicable in a wider variety of situations than

the previously available techniques.
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IDENTIFIABILITY

This appendix provides a demonstration that the system

of equations (5-9), (S-lO), (5-11), {5-12), and (5-13) is

identifiable if and only if p 3 3.

First, for k = 2, equation (5-12) can be written as

- I * 2 -

°Y(t2)Y(tl) ’ g“‘2’ [OY(tl)] ° (A 1)

For k' = 2, equation (5-13) can be written as

— O * 2

oY(tk)Y(t2) _ g(tk)-g(t2) [°Y(tl)] ' (A-Z)

Hence, by equations (A-1) and (A-2)

OY(t )Y(t ) (t )- (t )°[o*(t >12
k 2 9 k 9 2 Y 1

 
 

°Y(t2)Y(tl) g(t2)-[o;(tl)12

g(tk) for k=3,4,...,p .

That is,
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U

Y(t3)Y(t2)

g(t3) 3 I

0'

Y(tz) Y(tl)

 

O

Y(t4)Y(t2)

g(t4) = , I (A-3)

OY(t2)Y(t

 

1)

o
Y(tP)Y(t2)

 

g(tp) =

O'

Y(t2)Y(t1)

By interchanging the roles of t2 and t3, it can be seen

that

c
Y(t3)Y(t2)

a

Y(t3)Y(t1)

 

Substituting equation (A-4) into equation (A-l) gives

0

Y(t3)Y(t2)

 

* 2
o = . [o (t )1 . (A-S)

Y(t2)Y(t1) 0Y(t3)Y(tl) Y 1



154

Solving equation (A-S) for [0;(tl)]2 yields

0 '0'

* 2 Y(t2)Y(tl) Y(t3)Y(t1)

O’

 

Next, solving the set of equations (5-9) for the h(tk)

yields

F W) - ‘ r W)

h(tz) uY(t2) g(tz)

h(t3) uY(t3) g(t3)

= o — o 0UY(tl) . (A’7)

h(t ) “Y(t ) g(t )      
Substituting the system of equations (A—3) and equation

(A-4) into the set of equations (A-7) yields
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1r "'[ P ‘7 ‘

r"¥(t-.3)x(t2)mH

h(tz) uY(t2)

°Y(t3)Y(tl)

°Y<t3)Y(t2)

h(t3) uY(t3)

°Y(t2)Y(t1)

°Y(t4)Y(t2)

Y(t2)Y(t1)

OY(tD)Y(t2)

h(tp) uY(tp a

J Y(t2)Y(t1)

. t _ jb   
Further, solving equation (5-10) for o:(tl) gives

2 _ 2 * 2 _

oe(tl) — 0Y(tl) — [0Y(t1)] . (A 9)

Substituting equation (A-6) into equation (A-9) yields

0 '0
Y(t2)Y(t1) Y(t3)Y(t1)

2 _ 2 _

oe(t1) - °Y(t (A 10)
 

1) ‘

OY(t )Y(t )
3 2
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Finally, by rewriting equation (5-11),

2 2 2, * 2
oe(tk) a oY(tk) - [g(tk)] [0Y(tl)] .

Substituting equations (A-4)

equations (A-ll) yields

2
Oe(t2)

2

°e(t3)

2

°e(t4)

F’ '1)

  

F. _

2

oY(t2)

2

aY(t3)

2
oY(t4)

2
cY(tp) 

P

  

(A-11)

and (A-3) into the set of

0'

Y(t3)Y(t2)

 

0'

Y (t3)Y (t1)

0

Y(t3)Y(t2)

 

c
Y(t2)Y(tl)

o
Y(t4)Y(t2)

 

°Y(t2)!(tl)

o
Y(tP)Y(t2)

 

GY(t2)Y(t1)  
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a o

Y(t2)Y(t1) Y(t3)Y(t1)

where K = . Hence, by inspecting

“Y(t2)Y(t3)

 

equations (A-3), (A-4), (A-6), (A-8), (A-lO), and (A-12)

it can be seen that the parameters on the right hand side

of equations (5-9) through (5-13), namely “Y(tl)’ [0;(t1)]2,

g(tz). g(t3>, ... , g(tp), h(t2)' h(t3). ... . h(tp),

2 2 2 2 .
oe(tl), oe(t2), ce(t3), ... , and ce(tp) can be written

in terms of the parameters on the left hand side, namely

P(P + 1)

2

 

parameters in the variance-covariance matrix of Y(tl),

Y(tz), Y(t3), ... , and Y(tp). Consequently, the system

of equations (5-9) through (5-13) is identifiable whenever

p Z 3-

When p = 2 there are 6 parameters on the right hand

side of equations (5-9) through (5-13) [namely, uY(tl),

[0*(t )]2 (t ) h(t ) 02(t ) and 02(t )1 and 5 para-
Y 1 ' g 2 ’ 2 ' e l ' e 2

meters on the left hand side [namely, uY(t1), uY(t2).

03(t1), 03(t2), and 0 Since the number of1.
Y(tl)Y(t2)

parameters on the right hand side is greater than the num—

ber on the left hand side the system is automatically under—

identified.
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APPENDIX B

DERIVATION 0F MAXIMUM LIKELIHOOD ESTIMATES

UNDER ASSUMPTIONS 4, 5, AND 6

Assumption 4: The ratio of 02(t2) to c:(t1) is known

 

Let A represent the ratio of o:(t2) to 02(t1). Hence

equation (5-20) can be rewritten as

o§(t2> = [g(t2)]2'[0;(t1)]2 + A-c:(t (B-1)
1’ '

Solving the system of equations (5-17), (5-18), (5-19),

(B-l), and (5-21) for g(tz) in terms of “Y(tl)’ uY(t2).

OY(tl), GY(t2), and OY(t1)Y(t2) gives

'2
((1.12( (t2) — Aoy(tl) i

‘ 2 2 2
4/?% (t2) - Aay(t1)) + 4AIOY‘t1’Y‘t2’],)

20

Y(tl)Y(t2)

 

 9(t2) =

*

Since g(tz) > o and [oY(t1)]2 > 0, then by equation (5-21)

oY(tl)Y(t2) > 0. Consequently,
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2
(02Y(t2)- AaY(t1) +

2 2 2

K = > O

20

Y(t1)Y(t2)

 

and

(02(t)—Aa§(t)-
Y 2 1

‘ 2 2 2 2
J(cY(t2) — AoY(tl)) + 4)‘[°Y(tl)Y(t2)] )

K 2 < 0 o

20

Y(t1)Y(t2)

 

 

Hence, since g(tz) > 0, K2 can never be a solution for

g(tz). Consequently, Kl provides the unique solution for

g(tz) in terms of uY(t1), uY(t2), 03(tl ), 02Y(t2) and

°Y(t1)Y(t ). Therefore, a one-to-one transformation exists

between the set of parameters uY(t1), uY(t2), 02(t1),

2
0Y(t2), and °Y(tl)Y(t ) and the set of parameters ”Y(tl)’

[0*(t >12 (t ) h(t ) and 02(t ) as defined b
Y 1 ' g 2 ' 2 e 1 Y

“Y(tl) = uY(t1) :
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2[°Y(t1)Y(t2)]
* 2 .

[oy(t1)] 2 .

}(Y(t2)- AoY(t1) +

 

 

*2 2 **2‘ 2
d/(OY(t2) - AoY(t1) + 4A[cy(tl)y(t2)] J)

2 2
(oy(t2)i— 10Y(t1) +

 

 

2

(OY(t2)W(t1) + 4A[0Y(tl)Y(t2)] .)

g(tz) = ,1 ;

20Y(t )Y(t )
1 2

 

(B-2)

h(tz) = uY(t2) - g(t2)uY(tl) ;

and

2[a ]
2 2 Y(tl)Y(t2)

2
(02 (t2)— AcY(tl) +

2 2 2 2

\/Q°Y(t2)" A°Y(t1)) + 4A[OY(t1)Y(t2)] L)

 

 

One of the properties of maximum likelihood estimation

is that if one set of parameters is related to another set

of parameters by a one-to-one transformation, say f, so

that f(2) = X where §_and 1 represent the first and second

A

sets of parameters respectively, then X = f(g) where g and

A

‘2 represent the maximum likelihood estimates of g and g
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(Mood, Graybill, & Boes, 1974). Under assumption 1, g =

2 2 _

* 2 2

(uY(t1), [0Y(t1)] , g(tz), h(tz), Oe(t2)). Assuming that

the distribution of the vector (Y(ti), Y(t2)) is multi-

variate normal, the maximum likelihood estimator of g is

A 2 2 2
given by g = (Yltl), Yltz), SY(tl), SY(t2), SY(tl)Y(t2))'

2 2 .
where SY(t1), SY(t2), and SY(t1)Y(t2) are given by equa-

tions (5-14) and (5-15). Substituting 2 into the system

of equations (8-2) gives the maximum likelihood estimates

of 3. That is,

//’\~

uY(t1) = YZtl) ;

2

,/:"‘- 2[SY(t1)Y(t2)]

[oyulnz = ;
2 2

(Sy(t2) - st(t1) +

2 2 2 2)
J(SY(t2) - ASY(tl)) + 4l[Sy(tl)Y(t2)]

 

 

2 2
(SY(t2) - ASY(t1) +

 

2 2 2
(SY(t2) — XSY(tl)) + 4A[SY(t1)Y(t2)] >

o

I
 g(tz) [ 1

2 S

Y(tl)Y(t2)
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/\ /\

h(tz) = thZ) - g(t2)th1) 3

and

’2/\\ 2 ’/:’~\\‘2
oe(t1) = 52(t1)" [aY(t1)l .

 

  

Assumption 5: p = p

Y(t1)Y(t1) Y(t2)Y(t2)

The assumption that p = p can be

Y(tl)Y(tl) Y(t2)Y(t2)

rewritten as

* 2 * 2

[0Y(t1)] [GY(t2)]

=
0 (3'3)

* *

[0Y(tl)]2 + °:‘t1’ l°y‘t2’12 + “:‘tz’

But, recall that

[a;(t2)]2 = tg<t2)12-[o;(tl)12 . (3-4)

Hence, by substituting equation (B-4) into equation (8-3)

 
 

[°;‘t1’12 gz<t2)to;<tl>12

=
o (3.5)

* *

[oY<t1)12 + 02(tl) 92(t2)[oy(t1)12 + o§<t2)

Solving equation (B-S) for 02(t2) gives

2 ‘ _ 2 2 _oe(t2) — g (t2)ce(tl) (B 6)
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The system of equations (5-17), (5-18), (5-19), (5-20),

(5-21), and {3-6) is then solved for uY(tl), [0;(t1)12

g(tz), h(tz), and o:(tl) in terms of uY(t1), uY(t2),

2 2 .
aY(tl), °Y(t2)' and °Y(tl)Y(t2)' USing the property that

one-to-one transformations of maximum likelihood estimates

are themselves maximum likelihood, the maximum.likelihood

. * 2 2
estimates of uY(tl), [oY(tl)] , g(tz), h(tz), and oe(t1)

are then given by substituting Yltl), Yitz), S§(t1),

$2Y(t2), and SY(t1)Y(t2) in place of uY(tl), uY(t2),

2 2 .
oY(tl), aY(t2), and °Y(tl)Y(t2) respectively. These

estimates are

A

) = thl) ;

,,”“~e S'Y(t1)Y(t2 )SY(tl)

 

[0*(t )]2= °

Y 1 sY(t2) '

/\ SY(tz)

g(tz) = --- ;

SY(tl)

A SY(tz)
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and

 

SY (t )
SY(t1)Y(t2)Y 1

ae2(t ) a $2 (t ) -
1 Y 1

SY(t2)

Assumption 6: is known0

Y(t2)Y(t2)
 

By definition,

* 2

[oY(t2)]

 p =

Y(t )Y(t)
2 2 * 2 2

I0Y(t2)] + ae(t2)

So, by equation (B-4),

[g(t2)]2 [°Y‘t1)]2

e . (B-7)

[g(t2)]2'[o;(t1)]2 + oi<t2)

 

pY(t2)Y(t2)

Solving equation (B-7) for 02(t2) gives

2, * 2.
[g(t2)1 [0Y(t1)] [1 - pY<t2)Y(t2)1

 

2 - .—
oe(t2) - . (B 8)

pY(t2)Y(t2)

The system of equations (5-17), (5-18), (5-19), (5-20),

(5-21), and (8-8) is then solved for uY(tl), [0;(tl)]2

g(tz), h(tz), and o:(tl) in terms of uY(tl), HY(t2),
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2 2 .
oY(t1), oY(t2), and °Y(t1)Y(t2)° USing the property that

one-to-one transformations of maximum likelihood estimates

are themselves maximum likelihood, the maximum likelihood

. * 2 2
estimates of uY(tl), [°Y(tl)] , g(tz), h(t2), and oe(t1)

are then given by substituting Yitl), YZtZ), S§(tl), 53(t2),

. 2 2
and SY(t1)Y(t2) in place of uY(t1), uY(t2), oY(tl), 0Y(t2):

and a respectively. These estimates are

Y(t1)Y(t2)

’,/*s

“Y(tl) = Yltl) ;

2

[S ]

t 2 _ .

[Oy(tl)] " I
 

 

 

 

2

S (t )'O
Y 2 Y(t2)Y(t2)

32(1: )

g(t ) = -D .;

2 SY<t )Y(t ) Y(t2)Y(t2)
1 2

32(t >
//~\ _T__ Y 2 ‘-T——

h(t ) = Y t ) - p Y t ) ;
2 2 S Y(t2)Y(t2) l

Y(0)Y(t2)

and

[s 32
./;fl\\ Y(tl)Y(t2)

2

52(t )'p
Y 2 Y(t2)Y(t2)
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