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ABSTRACT
A STUDY OF CONTINUOUS FOAM FRACTTONATION

b Kenneth Fdward Hastings

In order to develop a method or predicting tie separalioas acaroeved

roa foaw I'rac. iosa_ion column, the concept of the seiunt o a traonsteor

unit was applicd to thie continuous foawn fraciiorarios of aqueons sodi

our bosullate solulileon inoa columa wita o enricoiae asd sirippine sect ions

The column was firs. operated as a one-sia ¢ Separa:or witi no strippiag

or ex:ternal retfluxice so that equilibrivm data could e obtaiaed. I

this vne-stawe separatoeor. liquid in the botton of tie colunn was cassed

Lo produce a risine foam bed and bottom product Tiquid. The rising foam

was coalesced overhead  and pumped to a tank woere it was mixed witn ool
tomn product.  Feed, withdrawn trom (inis tank, entercd coe coivnn below
the foan-liguid interface. At steadv state. sampies of coalesced toam
and bo.tom product were wvithdrawn and the concentrations were measurcd.
The effec: s of foan drainaze, internal retfinx, and countercurrent
mass transfer were scparated by showing that tfeoan drainace and internal

reflux were nevlicinie, and hence all incremental separations above one-

stave separations were caused by countercurrent mass (ranster. Paricnioz

and stripping sections of various heiviits were exaun ocd to find out wiat

IS

variables aftfect tae heicht of a transter unit. The neizht of a transter

urit for either an enrichine or a strippinz section was found to correta

empiricallv with the flow numbcr.
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Flow Number = TQ
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I"TRCDUCTICH

Although many techniguss are availables for separating homogeneous
solutions, only a few of them are economical at low concentratiors. One
of the most recent tecliniques is {foam fractionation which concentrates
surface active agents by foaming them. Foam fractionation utilizes a Qquan-
tity of feed solution which is gassed to produce a rising foam bed and re-
sidual solutione This foam is collectad overhead and coalesced to form a
solution of higher surfactant concentration than the orizinal feed solution.
This fractionation process can be made more efficiznt by countercurrant
mass transfer in the column of foam which produces a multi-staged effect.

Foam 1s essentially a honeycombed arrangemert of gas bubbles separated
by liquid lam=llae. Some types of foams, for examrle Lhe head on beer, are
uniform and statle; whilz others, such as sea foam produced in the surf,
are composed of a wid2 range of bubble siz=3 and are quite unstable. Some
foams are rigid and contain very little liquid, while others are fluids with
thick liquid walisz. The most stacle configuration of fo-m has been theor-
ized (L45) ané found to be one where all 1liquid lamellae intersect at angles
of 120°. These points of intersection forrm "Plateau's borders™ where
ligquid films are the thickest. Most of tﬁe liquid drains cown through the
foam by way of Plateau's borders, because of a pressure differential (6)
between liquid lamellae and Plateauts borders. This pressure differential
is caused by the amount of surfacc curvature existing at different points
along a polyhedron shaped bubble, Pressures in liquid films are the lowest

at Plateau's borders wvhere the air-water interface is the most concave
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vowards the air phase. This effect of curvature ceuses smallor cubbles
to have a higher gas pressur= than largsr bubblzs; therefore foam will
always coalesce into larger bubbles.

Gas bubbles ar: found in mary different shapes and sizes. Spheri-
cally shaped bubbles (k = 6.0) are formed if larse amounts of liquid are
srtrainad in the foam (wet foam). But as liquid lamellac kscome extramely
thin and accordingly the fraction of 1liguid in the foam decreases, the
gas bubbles are distorted to polyhedral shapes (dry foam). Dry foams have
been found Lo consist wuainl; of dodecahadron shaped butbles (13) with I =
6.59. Where k is ecual to the area constants dividz! by the voluze con—
stants (area constants = area of bubble/Df, volwie corstants = volure of
bubble/D_g),

Lrea of Eubkles
Volume of Bubtles

(1)

1]

e
) =]
4»-,3>7\)

= Area averagad bubble diamester

@)
x>
I

= Volume averaged bubble diameter

@)
<
[

4 study of surface chemistry explains why foazm fractionation is econori-
cal at low concantrations. Interaction forces between molscules are zreat-
er for a 1iquid than for a gase. Molecules in the liquid which are within
a few molecular diamesters of thc gas-liquild interface are subject to dif—
ferent environmental forces than molecules well within the bulk of the
liquid. These envirommental surfacs forces decrease with the zddition of
a positively adsérbed surface active agent, which conecantretes at the irter-

face. Surface active agents (surfactants) may either bz positively or
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negatively adsorbed at the surface. f they ars adscrbad at the inter-

[

ace, then a partial separation can be achievad by removing the surface
from the tulk liquid by some means. For instance, a knifz edge could be
usad as a mechanical means for sxkimming off the surface of a liquid, but
this is not practical. The simple process of genereting a foam 13 an ex-
cellant way of producing a largs amount of surface arez ana removing this
generated surfacs from the bulk of the liquid in the sams operation.

Foam fractionation is diffarent from froth flotation although both
involve the gassing of a liguid. Froth flotation is an established pro-
cedure in mineral dressing where th2 surface charactzristics of or=z solid
are modified so that the particles will reedily attach themselves to air
bubbl=s. Froth flotation involvss thc gassing of 2 1liquid which contains
suspended solids, while foam fractionation involves the gassing of a homo-
geneous lijuid which has surfactant dissolved in it.

A one stage foam fractionation colwan can be transformed into a multi-
stagad column by the application of any or all of the following factors;
external reflux, internal reflux, central feed, and drainage. IExternal re-
flux is caused by coalesced overh=ad foam being added back to the top of
the columne. This results in the upper part of the column acting as an en-
riching section. Internal reflux is caused by poor foam stebility with
bubbles coalescing in the coluan, and this effact reduces the amount of
surface area and forces some of the surface active agemt back into the
bulk of the 1liquid. The feed stream entering into the middle of a foam bad
causes the lower section of the colunn to act as a stripping sectione Down-

flow in a stiripping section is usually corposed of either the feed stream



L
or a mixture of the fead and external reflux. ODrainage results from ex—
cess 1iguid being entrained in the foam and draining down through Plateau's
bordsrs as the liquid lamellas become thinnere.e The external reflux and
feed flow rates ars quite casy to measure experimentally, but the other tuo
factors are rather difficult to taks into account.

Statle foams are produced by a combination of urniform bubble diameter
and a high elasticitye. Uriform bubble diameter: decrease the chance of bub-
ble coal=scence due to a gas pressure driving force, FElasticity, as defined
by Gibubs (17), is important because it determines how well foam will resist

coalescence.

E=2A§3£ ' (2)

Where:
E = Gions?! elasticity
A = Area of the liquid film

b

Foam persists only as long as liguid lamellae exist. A surfactant that is

Surface tension

positively adsorkted at the interfacec causes the surface tension to be smaller
at the interfacz than in the bulk of the solution. If the surface lay=sr is
damaged and the underlying liquid is exposed, then ths greater surfacz ten-
sion ¢of the underlying layer pulls the edges of the wound together and thus
causes corplete h=aling of the surface. A stable foam should therefore
have a large positive elasticity.

Foam stability may also be affected by the application of other less
common conditions. High viscosity liquid lamellas resic. drainage and hence

22 surface area are lsss

erhance foam persistence. Liquid filiis with a lar

stable than those with a small surfacz arza. This causes small bubblzs to
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have a longer life than large bubbles. Foam stability usually dacrzases
with increasing tarmperature and this is prim:rily dus to decreased liquid
viscosity and increased gas pressure within the buvtles. The pH of a
surfactant solution does not affect the stability of fosm:, except for
those produced by colloidal agertis. Ieither pure liguids ror saturated
solutions usually have apprecilakle foam persistence. Detersents are the

exception to this rule and have considerable foam stability =zt saturation.

The present interest in foam fractionation has increased over the

3

ast ten years because of the increased usage of synthetic detergents.

Liolegradakble as well as non-tiodegradable detergents are widely used in
large quantitiss in industry and in the home, and these destergents pollute
the country's streams, river, and lakes. In some cases, the nation's
water supplies are polluted faster than bacterisl action can break down
tiodegrada>li=> detergents. Foam fractionation might s=rvs as an excellent
means for removing these surface active contaminates. Foam fractionation
is presently used in the sugar industry to removs color contaminates which
are surface active. Another possible use for foam fractionation is in ths
separation of non-surface active ious (44, 46). A detergent sometimes has
an affinity for a particular ion and forms a surface active coaplex with th
.non—surface active ion. This corplsx can then be separated from other

ions in the bulk solution by foam fractionation.

a
=
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There have been many papers publishad in ths field of foam
fractionation, but only a few have contributed sigznificantly to
the state of the art. Most researchers have taken an empiriczl
approach in solvinz foam fractionation‘problems. This leaves a
reseazrcher at a loss when trying to scale-up the already studied
system or in looking at a new one. The folleowing review of past
work has supplied this author with the necessary basis upon which
to build a more theorstical approach.

Lemlich and Lavi (31) studisd foam fractionation of dilute
ajueous solutions of Aresket-300 (monobutyl diphenyl sodium moro-
sulfonate) in an enriching column. They cathered data on the
separavions achieved as the external reflux ratio was varied from
zero to infirity. Their results have shown that at various gas
flow rates and bottom product cormpositions, increasing the exter-
rel reflux ratio improves the separation. ¥vhile they apparently
have shown the above, they have not serarated the effects of inter-
nal reflux and drainage from the effect of external refluxe

Larlich ard Erunner (8) developed a mathemaztical model for
th2 foam fractionation of aqueous Aresket-300 in an enriching col-
umne. Data were gathered on a one theoretical stage foam column and

an etuilibrium ezuation was presented



where

CT = Top product concentration of Aresket-300 (mg. moles/ml.)
C_ = Bottom product concentration of Aresket-300 (mg. moles/ml.)
S = Bubble surface area per volune of gas (cmz/ml.)
G = Gas flow rate (ml./min.)
T, = Surface excess of Aresket-300 based on Cy (mg. moles/cm?)
L = Overhead liquid flow rate (ml./min.)
Their experimental results indicated that surface excess 1s constant
over part of the concentration rezion. They chose this concentra——
tion region for a study of a multi—staged'enricher. This enriching

column model assumes drainage tc occur but neglects internal reflux.

Cnr
Cr _ (Roy +1) G S T . Cop . (Rzp + 1)Ig(1 - o5) 2)
Cg Lo C3 Cx Io
Where
REX = External reflux ratio

7

= Concentration of downflow stream draining into the liguid
pool at the bottom of the column (mg. moles/ml.)

Upflow liquid flow rate from the bottom pool (ml./min.)

&

For an infinitely tall enricher with low reflux ratios, CHp 1is as-
sumed to be squal to C. which is another way of saying that the

driving force at the bottom of the enriching section is zero.

Cn (R’:‘X +1)GS TE
(== )max, = — + 1 (3)
Cs Lo Cp

Their experimental results have shown that E:uation 3 overestimates
the separation achieved for R7(> 1, and bacomes more accurate as

Rzy epproaches zero.



method foir studying the ellect
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Jallirg (49) has develored
of column helzht on foam density for a cne-staze ssnarator. TFrom
his foam density profiles, it iz pessible to qualitatively pradict

Fow nuch foam drainace is takirg plac=. Wallin: measursd overheald

L)
;
oL
@
=
'Jc
o+
’_J.
[

s for acuscus sodiwr lauryl sulfatz as w2ll as fou

other systams, four different cclwnn heights, and various drainage

Lo}

times. The drainagz {imes can be arproximatad by dividing the vol-
wa2 of the colwan of foam by the overhead foam ratz, and thic is
2xact for the case of n2zlizibls drainaze. Thes2 experimental date
were then cross-plotted for differart constart foam flow ratzs to

yield a plot of foam density versus colwmn hei

4

tte Wzlling found
that sodium lauryl sulfate exhiibited & foam flow rats rezion where
foam density did not vary with colwmn hsizht, and hence foam drain-
age was negligible. tot all of tl.e systems that he studied had such

a reglione

%
)

Lemlich and Leonard (32) have develop=2l an esuation fo

o]

predict-
ing the overhead liquid flow ratz for a siripping cclunn with neg-
1izible foam coalescence. Thelr model is th=2 solution of a differ-
ential momertun ba%ance for interstitial flow in Platszu's borders
which ars of noncircular cross ssctions This solution assumes lami-
ney flow and Newbtonian surface viscosity, and the velocity profiles
had to be intezratzd numsrically. Their medel prelicts foam density
to b2 constant throushout a colwnn section and this is contrery to
a great deal of literature data. L2onard?s cclwnn was not constructe

.properly to handle moving foam beds and so stationary foam bads were
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studiad in order to verify this equation. A great deal mors work
re=ds to b2 done in this area bzfors reliable overhead liguid flow
rat=s can bes calculated
Haas anl Johnson (23) calculatad heizhts of a transfer unit,
basad on the downflow stream, for a stripping section which concen-
tratad the Sr-89 (sodiun dodecylbonZ?nesulfOﬁaua)9 complaxe Their

-

colurmn had a drainage section dirsctly over the stripping section

3 R]

drainage model was devaloped to predict the amount of licuid

joN

and a
drainazs =nterirg the top of the stripping section. FMany differert
liguid feed distributors were examined and the sirmple proczss of
adding liquid through one tube at the column axis was found to be
adeduate for column diameters equal to or less than two inches. They
gatherad data on eight different 1lijuid distributors for a six inch
colunn and two different distributors for a 24 inch columr. These
studiss indicated that downflow ligquid channeling was the bizzes
problsm in scaling-up column diameters above two inches. Six differ-
ent types of gas spargers were testad and the importance of producing
a uniform foam with small bubble diameters was obszrved. For the same
set of conditions, stripping sections from 10 to 28 cm gave approxi-
mately the same height of a transfer unit, but strippinrg sections
from 50 to 85 cm did not even yield the same order of magnitude heizht
of a transfer urit as the shorter columnse These discrepancies wvesre
blamed on inaccuracies in measuring more than 8 to 10 transfer units,
1ijuid channeling in columns greater than two inches in diamster,
and inaccuracies in estimating the amount of drainage. This pagper

izs the first step in trying to calculate heights of a transfer unit,

vut the rasults were too inconsisternt to develop a correlation.
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This section presents the mathematical solutiors of proposed

models for estimatirz the samarations achisved in a fomm fractiona-

tion cclurn which is composed of enriching and stri;ring cectiors.
Unless otherwise »-ferral to, these sams models ard eiuatlions were

derived 5y the author of this thesis by using the svardard dofini-
tions of surface excess, a one stage separastor, rwiber of transfor

units, amd the heisht of a transfar urit.

»
)
o
W
5
a}
=
}

Foam is mad2 up of a larse amount of surfacs are
volurme of lisuide Th2 concantration of surfactant in the lizuid is
constant up to a couple of molecular diam>ters from the air—uztor
interfacs wher2 it increases to a hizhar valuzs duz to surfac2 2xcess.

n

Surface excess 1s the =zacunt of

w
cr
t

surfactant he solution surface
in excess of what would be »nresent if the bulll ¢concentrzation were

exbendad to th: surface, ani is expressedi as excess surlacltant per

unit erea of surfacz., hic z2jpdlibriwn surlace exces:c 1s doscricoid
1

surfactant.
c it 14
T = S — =~——,___ -
* pri dC ort <lrcC (1)
“he above eshustion was derived from thermodyramic corcliderztions of
a solution in static ejuilitriw: and should only b2 appiied to hihly

rurs surfactant colutions w2ll bolow the critical micellecorncartration.
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In this region, the surfactant molecules exist as independent entities.
They only fe21 the effects of environmental water molzculzss and ars
not influenced by other surfactant molecules.

Adamson (1) has reviewad research which was performed by Erady
on the sodiwn lauryl sulfate and water systeme. Frady was able to
show that trace amounts of lauryl alcohol will greatly affect the
surface tersion data for this systeme The Gibbs surface excess equa-
tion may not be used to predict surface excess in this thesis because
the surface tension data taken by this author were similar to those
taken by Brady for sodium lauryl sulfate solution contaminated with
a trace of lauryl alcohol.

A. Eguilibrium EqQuation

An equilibrium expression relating the concentration of coalzssced

foam to the concentration in the bulk

of the liquid may be derived by study-

A

[¢]

ing the mathematics of a one-stage sep- 0

C L
arator. The surfactant which is car- Ty ™

ried up into the foam column will be

C
: B
treated mathematically as two separate .
G

contributions.s The first contribution
Figure 1 A Cne-Stags
is the surfactant which would have been Separator
carried up in the bulk solution if no
surface excess were present and the second is surface excess. A material
balance may now be written around the column of foam in Figure 1.

Inpae - Cutput = Accwaulalion

it s%2ady state conditions, the accurmlacvion term is zero.
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Surfactant entering [gurfactant entering Surfactant

dues to liguid en- + jdue to surface ex- - | 1l=zavirg in =
trained in the ris- cess at the gas-liquid the top

ing foam I l}nterface of the foam |I product 0

The first term, LCCE’ takes into account surfactant which is carrizd
alongz in the bulk solution around the bubbless The second term ac-
counts for surface excess surfactant which exists as a monomolecular

layer at the interface, and is calculated by teking the product of
D

D¢
flow rate G, and the surface excess Tpe The third term, LCCT’ repre-—

the arza to volume ratio of dodecahedron shaped bubbles k=&, the gas

serts the rate of surfactant leaving the overhoad foau bresxer.
2
k Dy G Ty )
—A—2 _1c.=0 (2)
Dé CT

Equation (2) may be rearranged into the following form

LCCE +

2 m
k D, G Tp

Cp =05+ —Sgﬁiz;——— (3)

Similarly for Y., the above equation is divided by C which is

T’ Solne.

the total gm moles of solute and water per cm3 of solution.

26T
N
C;  _ G ., %—L-/A——f)B— (4)
Csolr.  CSoln. Soln.l¢ Lo
Therefore,
2
k DF G Tp
= 1y S (5)

Cso1n.Dd Lg
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Let us assw:e that the surface excess T can ve expressed as a

lirnear function of the bulk liquid mecle fraction.
TB=a)\_E+b (6)

Ey substituting Zqustion (6) into (5)

2 2
2 kD, G b k D5 G o)
Yot Tty Xt T iT3 7
I Coan b4 B Ysoin. o7

The assumptions used in deriving Ejuation (7) are the following:
1) The liquid b=low the foam-liguid interface is thoroughly
mixad and of concertration XE'
2) If internsl drainage does exist, then the bulk liquid that
drains down from the column of foam has the same concentra-

ticn as bottom product X This assumption implies:

B
a) Liquid entrained in the foam has the same concan-
tration as bottom product Xpe
b) Eubbles do not coalesce to form internal reflux
as they rise throuzh the column, since this would
decreadse the surface area and increase the con-
centration of bulk liquid in the foam.
3) Fubbles are dodecahedrally shaped with k = 6.59.
4) The gas-liquid interface of a budble comes to equilibrium
with the bulk liquid around it before the bubble leaves

the pocl of liquid and enters the column of foam.

Ee Definiticn of g Transfer Unit

A foam fractionation colwin is analogous to a packed distilla-

tion or gas atsorption columne They all are continuous countsrcurrent
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mass transfer'OPeratiOﬁs and the bubolos 1n & cclwan ol foam sarva
as rising packinge Zxperisnce in distillation ard :as absorption
theory (48) has shown that the concapt of th= heisht of a thesorsti-

cal plate should orly be arplied to step-wis= opsrations such as a

plate colwmn, and the concept of ths h=isht o a transfar unit should

0
&)
o
Q
)
[e5)
)
@&
1)
Q
[ON

orly be applied to contirucus contact op 2ration

toviare

L Toam Iractionation colwmn of cross-sectiorzl ar=a A4 and

Ub

R P . . ST T . L
heivht Z is shown in Fig Top (“D)T | A( U)m
Plane | X N
ure 2. The differential XDT ' fUT
material balance for the
X YU
volume clement AdZ cquates ;
L
| B TuA
the rate of mass transtfer to [ 3
——t -] - - 1 dz
D ST SR SR
the product of the over-all '
mass transter coclficient,
concentration driving force, N Y VN
Bottom (In ) }(LU)E
&t 1) ‘
and the area for mass Plane ] i
_{h ~ ! ’ Y
|

transfer
Figure 2 Enrichirg or Strinping

Saction

a(Ly¥Cs01r, ) = Ky = Yy) Cyep,ahid (8)

sal

the upflow rate LU is approximetzly constant bzcauc2 the mole
fraction of surfactant YU is very small and internal foam drein-
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Rearranging terms and irtegrating

dvy  _ koah
(Y.Ur - YJ/

Y

UT

az = PV

c (10)

Let us define certain groups of variables in the customary vey:

dYU
Number of transfer units = N —
(IU - Yu)
Ly

Leight of a transfer unit = H =

ky-amA
Therefore,

Z = HN (11)

Ce DNumber of Transfer Units In An Enrichins Section

The enriching section shown below is assumed to have constant

e SN~

upflow and down- ,5;____4§. v
L, {

Lo
flow liquid flow L

Tyr )R Tur
ratese Tha nun— v

|

ber of transfer
.

‘\

|

‘\\\ |/
Wwﬁl.“‘____\ R

units is given by

Figure 3
Upper Section of an Enriching Column
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Where:
Ly = Lo

5

I
4
3

Y = Experimentally measured top product concentration =

UT "T
x D2 G b k D2 G
YUB = XB + a A XB F ——————
Coo1n. L7t Cso1n.lu 29
#* 25 2
v = s a k D% Jﬁ X + b k DR G
CSoln.LU“é 0301n,LU39 (13)
YU3<;YU<;YUT
oK

XB = Experimentally msasured bottom product concentration

Material talances are given below for ary arbitrary section of foam
colurn at steady state.

Input - Output = Accwmletion = O
The material balance for the total amount of material is

LUCSoln. - I:C0s01n. = L10so1n. = 0

or
and for surfactant

LUlUCSoILn. B LDXDCSoln. = Lr¥yr CSolrt. -

or

. Lr ¢

lU I%XD + fﬁlUT (15)
The aboves Iinzar equilibriw: sguation, 13, and linear operating lirz

equation, 15, indicate {48), as derived bolow, that the logerithmic

rean driving force is the correct average driving force to be usad
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in calculating the number of transfer uritse

Rearranging Equation 15

gy _I
Xy ==Yy - =Y
U ’
D i I, UT
and then, 2
% Ly Lt a kD) G b k Df G
Ty = ('T_YU-E_YT)(E__%"’]—) * Cano LiD3
LD n U Solne é Solne UD'é (16)
Succztituting into Zguation 12
/
'YUT
) dYy
LE LU

Ly a k Df G b k Df G
ﬁlo fu - Ip YUT)(CSOln.ﬁﬁDg )+

CsolnalyDg ~ ©

U=
(17)
and integrating by observing that Yy 1is the only variable
‘ Yy = Tyn 1 (rir - V)=
Me = T i - o v
B (Fr - Yyplg — (03 - Yyplg (Tyg - Yyple (18
or
Tyr - YuB
Ny = =7 (19)
EQu-Yow

ransfer Unit in an BEnrichings Saction

The height of a transfer unit in an enriching section is calcu-

lated from experimental data by using the following expression:

(20)

of Trensfer Units in a Stripping Section

The general expression for the number of transfer units in a

stripving section with constant upflow and downflow liquid flow



18

C Lo
rates is sinrdilar to that )
of an enriching section, XD
Equation 12. ///

v
d LI?
ASaiy jo

(21) 6

Flzure 4
Lower Section of a Stripping Colwan

ere:
Tur = Tyt
LD = LF

Yyp = Experimentally measured top product concentration

2
a k Dy G b k D€ G
Y.ooo= Xy o+ 2KV X+
B =
* TR B S

v - Xy + 2 kDFG y , bxDZGC
U —_—Tﬂ - U = N3 5
Cso1n. Py “Solne LUD'\I (22
YUB\<YU \<YUE‘
:{U ;\<’{D\<’<DFE

XB = Experimentally measured bottom product stream

A material balance for water and surfactant around any arbitrary

lower section of a stripping section is given by

LrDCSoln. - LUCSoln. = Ly%o1n, = ©



(il
J

and for surfactant

~

LAz -LZC - LY C. = C
‘JD(DCSO]_T‘.- I} 3] S01Te U U"Scln.

Xy - =X (23)

g

=L 3
XD _IDU YU + g Xvw
ard substituting into the equilibrium Eauation 22

<0 1) b kDES (24)
e T + .
Cso1n. g Cs01r. LTy

2L into Equetion 21

ayy

L Lp a k ¢ G o k DS G
(A y, + By (e 1) + B
[. U Lp "B Co 0y, I3 Cs01:.. Ly~

(25)
and integrating by observing that YU is the only variable
Yy - Yye (Ygr = Yyr)s
s T (10 - Tupls™ (s - Yupls 17 (Y - Yug)s (26)
or
b = T (27)

Fe Haisht of a Transfer Unit in a Striprinz Saction

.

he height of a transfer wnit in a stripping section is calcu-

lated from experimental data with the help of the following expression:
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|5
~~
N
o
N

fs = i
5]
Ge Total Rate of Surfactzrt Exchangaed by Mass Trancsfer in Fither
an Enriching or Stripping Section
N = YF - . z 29
b = ka2 (Y = Yyl Csornlt (29)

The above expression for the rate of surfactant mass transfer
in a foam fractionation column is the irtegration of Equation 8
which was derived for a differential s=ction of the column.

He Test of the Assumption that the Upflow and Downflow Iiquid Flow

Rates are Constant

Rogers and Olver (41) have pointed out that in order to obtain
neaningful results from enriching or stripping sections, the effects
of foam drainage and internal reflux must be separated from the effects
of the downflow and upilow st£;ams. Internal reflux may be assumai
negligible by observing the absence of bubble coalescence. Drainage
may only be neglected if the upflow and downflow streams have constant
flow rates. Walling (49) developed a method, which was discussed pre-
viously (page 8), for cross-plotting experimental data in order to
find the =ffect of colunn heizht on overhead foam density at constant
foam ratess If the overhead foam density can be shown to be constant
for var;ying column heights at a fixed foam rate, then the upflow liquid
flow rate is constante The downflow liquid flow rate, which is com-
posed of the external reflux stream, feed stream, or both streamns, is

assuned to be independent of the upflow stream and hence constant.

I. ir Infiritely Tall Enriching Section with a Low External Reflux
——————————— R —

Patio
UL
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An Infinitely tall enriching s=ction allows sufficiznt contact

time for the downflow and upflow stre=ams to come to eGuilibrium in

the lowsr part of .
L= —
the foam colwine A T ?’ l; C
YUT § "R v
low reflux ratio { ; Ut
allows sufficient \‘ o
capacity in the up- H
flow strean to re- N A
3 Ly
Aiee +1 dovm " ~
duce the downflow ~ YUE
trea trati X
strean concentration [53 KUB
fronm X“E to XB. A L TUE
Y Figure 5
material talance Infinitely Tall Ernriching Section

around the entire enriching s=ction for water and surfactant gives
LUCSolr.. - It CSolr. LDCSoln. =0
or
Ly = Ly + Ly (30)
and & material bglance for only surfactant yi=lds
Lyt U:s Solne L.)X‘DD 3oln. LmYUFC”Olr. =0
Lot Xop = X5

fol

Subtract the guantity LUXB + LTXB from both sides of Equation 31
LYy = Lu¥e = s = Indp = Lg¥p + Lo¥yp — DXy (32)

Rearranging terns and noticing that the first term on the rignt hand
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sid2 of Eduation 33 is zero according to Tquation 30.

O
Ly(Yyp = X5) = (Lt - Lylip + Lo(Yyp — X;) (33)
Rearranging terms and eliminating LU
11'__’_\(_\: \ m
Gociy i ke, b (30
fun - 4y Ly Ly ~T

Since the downflow rate in the colwmn is constant, therefors Lq = 1p

and
Tor - Xp LR
-~ - LD ,n EPN

.

Equation 35 relatzs the nuabar of stages of separation to the ex-
ternzl reflux ratio.

Je CTeriving Twpressions for the Driving Forces in an Unricking

Section

1) Drivinz force at the top of an enrichinz saction - This

driving force is sirply described by noticing that YST

is in eaullitcrium with Xp ard that XT =Y

k Dg G

(Yo7 - Yypdg = Xp + Tr - Yyr
Ut t CSoln.LOD§

uT*®

(v ) = KRS I, (36)
= s G L0J
SQlneCYy

vhere Lg = LU and TT = aXT+b.

2) Driving force at the bottom of an ernriching saction - This

riodel separates the surfactant in the upflow foam into

two contricutions which ars calculated by assuming XUi = X

and Tym = T.e The total material btalance is the sane as
UE u
P
cefore.

LiCso1n. ~ M0%o1n. ~ LCso1n, = ©
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or
=1, + L, (37)
In the raterial balance for surfactant, surface excsss and

bulk sclution zre shovm as two terms.

)e k D? GT -— - =
LU“UECSoln.+ ___;?;3__Q§ XDBLDCSoln. *UTLTCSoln. 0

I L Io]
R k D2 G T= -
— = + - L
oZ I . D uT=7
U Soln.~d

Usirg Fouation 37 to eliminate LU and solving for XDE

L1 kD2C Ty 1,
~ =x +—X_ + .L:_\-: ——“‘Y'n
~ Iy 5 Cso1n. u“% Ly Uz

vyl

and since Ty = aXE + b

2 2
a kD, G b k DA G

X = X, + ZL X + An + 4 -2y
R Coorn 59 7 Tsorn.l v vz

The nathematical expression which describes the driving force

ts_' I»-t?

at the bottom of an enriching s=ction is given by

2 2
akD G b ok

(Y{;O -Y ):1 =[~.“‘_“ t =3 X * ]
A "R TS R oxt A CSoll Csolr.=C-7

l'>

; a kDy G .
o P X A’ i]
[du ooln. CJG UI: bo.._r’. ‘?

Since XUB = 1L

2 3!

(ze)

(3¢)

ks 1- i
YUD -7 ?>7 =[‘;‘“T1 + -—————-»a = D_ (_} X“‘:J"l?' X]\ iy
ST © Cselr.cp < Csolr.
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Elimirating X~ from Eiuction 41 ©y coubirins vith Ezuation

PIt
39 yields

For the specizal case of an

terral reflux, Fauation 36

enriching sections Since L

a kDTG
=)

T ' : =
I R R C Lo

Solne 27T Solr. 0¥

(42)

enriching section in the state of total =u-

gives the driving force at the top of the

= 0, Equation 42 for the driving forcs at

the bottom of the enriching section reduces to the following expression:

A
"5

(Yyg = Yyg)g =

n
pai

wlere LD = LC.

x D2 a kD% 0
5 G 5 TE(l + C_._‘%_,; (43)

T P IN ~

Csoln‘J.JDAJV uO.a.A.. C ]

Fe A Stripping Saction of Firite Heizsht

y 2 stripping s=action of finite hei ne am strean
In tripp tic T h t, the fo t

" brium with the feed

strean XF‘ An excell-

ert erpiricel approxi-

mation to this non-ezuili-
riw foaxn concentration

is to asswne that the

bulk of the licuid is at

concentration X, aad the
F

1 Y.
UF
L
C
L R Nl
F /7 o A
__¢_)‘
X L
F ~

Figure 6
A Stripping Section of Finite Height

surface excess is ejual to T_, A materizl talance around the entire

stripping section for water and surfactant results in
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L C - L C - L c,“ = O
F 301, 0 solr. 5 Soln.
or

Ip = Ig + L, (44

and just for surfactant

-— 0 - T =
Xelelso1n. = FlurSsoln. EXECSOlp. 0
- 7 ]
LX, = Xply = L¥n (45)
Substituting Ezuation 44 into Bauation 45 and eliminating LF
Ky =X, (R 1) -y (D) (46)
3 L UF 'Ly

Rerlacing YUF with its equilivrium expression where Xyp = XF ard

IT..=T

e ! 2 2
xB=xF(%9+1)—(xF+CakDAG3x ka“G LC
F Soln. C” Solr. O g
or
2
Solne C b

The total number of stages in this stripping section is the total

separation (Y, - X;~) divided by the one stage s2paracion (YU: - %=)

UF

a k DE G

+ N b k D2¢ G _
Y”E - XB X:: \Jif.]v‘-LC/Dg B CC‘O]Y‘A.LOD

Tun - Lo . ,
UB-X5 yx 4 2kDgG y . bkDEG _y

It —’—3’ E ~ 3 i
CSOlthC Vv uSoln.LO :)V
oo 2 ~
a ki G ﬁZC
- b k

S e ’]/)(B+-T_‘—9 -Xp
‘UF “"'E _ .z usoln._: JL '7v—
Yup = Lz T“TU Y

Cooln.“Of; C“olr*.*‘ ﬂ; (48)
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Substituting XB from Equation 47 into the fourth term in the numera-

tor of Equation 48 yields

K DAG bKDAG _ a_.K_(béz bKDAG VLo
XF+9_A_3X5+—1(_6@ XF +é$o\v\.‘~o Xp +Cs°\“L° Le

T =% 0P Gonlo DY Gsan.
YUB - KE £\I< E>BS§ )QB 1_ th([jégi:
CS*\_LO Dv C'So\n.LoDv
and this reduces upon simplification to
- X L

Equation 49 for a finite stripping section is identical in form
to Eauation 35 for an enriching section since the ratio LO/LE is
analogous to the external reflux ratio R = LR/LT’

L. ZIxpressions for the Driving Forces in = Strioping Section

1) Driving force at the top of a stripping section — Ihis

expression is similar to Equation 36 and is derived by
noticing that YSF is in equilibrium with XF'
2
k D) G

3% A
(Yyp = Yur)g =Xp+ o LDo Tr - Y (50)
UF = YURs =X ¥ Gggp LoPy T T YUF

where TF = a.XF + b

2) Driving force at the bottom of a stripping section - This

driving forceis AL
U
derived by oc- &D Y
UB
serving that T
BE UB
the foam which Xyg
|~
\L\-\-M
leaves the pool P LB ttom
<x XB Plane
of liquid is in B
equilibrium with Figure 7 Lower Section of a Stripping

Column



o
ite Thus in calculatinz the concentration of the foan as

it leaves the liguid pool, X _ =Xy and T = =T..
Us s E

US

The materiazl calance around the liquid pool for water and

or

L. =1Ly + L. (51)

and just for surfactant

2
‘ . . 1 k Dy G Typ _
L8501, ™ %815%01n. ™ FustuCso1n. T 5} =0

D

<

5

Rzarrangirng terms and replacing XUB by Xp ard Typ by Tz

k Df G Tx
oLy = (Lp + Iylis + E"‘A"“I‘)‘l}i
Solne V

Since Ly = Iy + LU and TE = a_'zL[3 + b, then

L

2k 20 ¢ x D2 ¢
XDE = X‘ + e X-,: + ————T_T.- (52)
. CSoln. 9 A CScln. D3

The expression for the driving force at the tottom of a

stripping section is written by observing that YU: is

in equilicrium with )L_)_‘

po e

2 : 2
(V-x- v ) _E L & kD G L0 kDTG -
L . T L T/ il B452Y ) Lo —ﬁ_ - /“l'i'
UE U=Ts B Csorn o 90 Csolre*o7 -
a k3G t k0
A - Y;UE + C Pxd -
CSoln.LC‘)V Solne 07V (53)
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Surstituting Fouation 52 into Equation 53 to eliminate Xop
SR DOF

and replacing XUB ty XB results in

¥ 2 S
" k D% T 3 <~
(fyn = Yyp)e e 2 (14 2K DRC (54)
=Tl G D3 R
Soln.LD v Solne OV

At the state of totzl overhead, the expressions for the driving
forces in a stripping section are identical to Equations 50 and 54.
The only difference bteing that since LB = 0, then the upilow rate LO
is ecual to the downflow rate LD'

lie A Fozr Colw:n with Enriching and Stripping Sections

lost of the equations derived previously may be applied to the
combined foam fractionation colurre The only exceptions are that
the bottom of the enricning sectionr now rests upon the top éf the
stripping sectvlion instead of a pool of liguid of concentration X,
and the downflow ertering the stripping section 1s a miztture of ex—
tracted reflux and feed instead of Just feed.

Ecuations 12 and 18 may not be used to calculate the nurber
of transfer units in the enriching section k~cause the limits of
integration are wrong for the comtine. colurn. The correct expres-

sions zre:

Yyr
N = L. (55)
(1U - XU)
Tur

and therefores

) TuT - Yur Cur = Yyp)s
B (5 - Tundz - Cp - tup)s - (g - Ygp)o

Ul

(55)
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L'I‘ L"“!
X o= (=+1)7. =Y. (= (59)
Iz R F U LR

The =:pression for the driving force at the btottom of an errich-
ing section in a caabined column may te written by observing that

is in equilitriw: with Xnype

Yop T Yoy = (gp e __E_E§L2,3 Top) = Yo (40)
Cso1n. ey
wnere

1

Y = Dxgerinentslly unknown foam concantration at the f==4

Tpp = afgp * ®

Substituting Sauation 59 irto Equaticn 60 to eliminste KD and T-nm

F )

Lo k D; G

st T B , a I
- 3 — 1 - < —
(Y = yplz - (L,) (Fyr = Typ) * Cooin Tood

2

e, - @[t @)

I f e T Ly VT jbolu.LCJ% .

In tke stripping éection, Ecuation 26 may be used to calculate
the nwiver of transfer units and Ziuation 54 describes the driving
force at the bottom of the stripping section with LD = LR + Lpe
Ecuation 50 nmay not be used to calculate tie driving force at the
top of this section cteczuse the downflow liquid stream enters the
top of the stripping section at concentration XDFE instead of con-
certration XF or X P

0

Tre moterial talance for water and surfactant in the downilow

T



£3)

Y
point is ¥

given Cy )

22d Polnt in 2 Combined Column

or

L =1y + Lo (62)

or
Infyo = L2 _+ LXK (43)

uFLJ I :Jr I F

tliminating I from Ecuation 63

e
“DF3

the expression for the driving forcs at the top of the stripring
section in a combined column is written by noticinz that Yip is in

equilitriw: with ')’D e

3% oDy G
(I ond Yyr:\)s = X.Dr + —‘-_'——r'

UF FE ¢,

= Foperinertally unkrnowm fozn corcentration at the fead

point
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TDFB aknpp *+ + b
Combining Equations 64 and 65 in order to eliminate X“F“ and T Topn
% a x D70 bk 2% G
(Yo = Yyp)s (EKDR E” +_A__Lj>+U——_£“'Y
UF Cso1n. 0 Solr.Cy U
(66)

Le Summary
The ecuations given atove, unless otherwise referrzd to,.usre
derived by the author in an effort to present a mathematical modsl

for a continuous foam fractionator. Some of the gbove equations ware

used to cezlculate driving forces for rass transfzr in a colwun of
foame The logaritnidc mean driving force was calculated from these
driving forces and it was divided into the foam coluwin separation
in order to calculate the number of transfer units. 7The helght of
a transfer unit was found by dividing the nwiber of trarsfer units
into the height of an enricking or a stripping sectione This height
of a transfer unit is a measure of how efficient a countercurrent
mass transfer section is in utilizing the aveilable driving force
under a given set of conditions. A correlation for these experinen—
tal heights of a transfer unit versus sore group variacles would
£lve a means of predicting separations. The following sections of

this «thesis are presented in order to show tre experimentsl justifi-

cation of this model.



SXPERTIENTAL ETHCDS

Standard solutions of sodium lazuryl sulfatz or potassiwm chloride
were preprared by wélzshing out the salt on e Sartorius Selecta talance
and adding it to a measured volwne of distilled water.

Surface tensions of the air—water interface were determined at
varicus concantrations of sodium lauryl sulfzte cy the use of a
Cero-Duwouy Tensiometer with a four certimeter platinum ring. The
2xperimental surface tension of water distilled in mstal was found
to ke 70.7 d;nes/cm and this compars. favoraily to the literature
value for hignly distilled water of 71.9 dynes/cm.

A vlatinw: electrode cell in conjunction wit.. a conductivity

tridge (Industrizl Instruments Inc., model Ri-18) was used to mea-

sure tre cottom product, feed, and top product conductances. Figure

10 is the calitretion curve of specific conductance as a function

of sodiwun lauryl sulfate concertration. Specific conductance is de-
fined as the product of conductance and the cell constante. A corre-
lation for specific conductancze was necessary in order to‘calculato
the concentrations of product streams from the foazm Ifractionztore
Specicl care was taken in measuring conductance readingse. The cell
vas alwa,s filled with distilled weter when it was storsde The cell
constant was determined at regular intervals with a standard potassium
chloride solution (0.0200 moler a.rieous KCl, specific conductance =

- -1\ . LR P \anc~ec Al O
0.002768 ohn:l e 1')1n order to correct for slisht changese Unknoun
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solutions were used to rinse the cell as many as six times before
a reading wess taken., This method Was repeated until successive
readings remained constante.

Gas flow rates were measured with o ticl test meter and elec-
tric timer. Tne wet test reter was checxed by positive displace-
ment and found to e accurate to within 2-3%. Tre relative hwridity
of the air used to generate foan was assumed to te 1009 because the
relative hwiddity was 987 at one hundred times the normal sgas flow
rave. Liuid flow rates were neasured with a graducsted cylinder and
timer, as well as with Brook!s precision rotameters (R-2-15A and
F=-2-15C)e Fe2ed and reflux solution were pumped into different parts
of thz column by diaphragm puips and flow rates were adjusted with
Eck2 precision metering valvas. Each 1lijuid distributor was made
up of a singla glass tube discharging ligquid along ths vertical axis
of the colwmne Li:uid lsvals were cortrollad by gravity and Hcke

pracision metering valves. Gas bubbles were producad by forcing air

throush four sintered glass spargers and the fcam was coalesced by

i

cantrifugal force in a stainless steel screen basket.

o4

A Tikon F Reflex Camera was usad to take pictures of a ons

were

w

sguare centinetzr s=ction of wall bubbles, and the negative

enlarged tc three and ons-half by four and one-half inch pictures.

These pictures werz then enlargad on a Kodagraph Microprint Reader.

The overall magrification of the process was 200 times. In order

to determins the area averazed (DA) and volune averaged (DV) tuntle
<

diar=tsrs, the bubbles diamsters of a randorly selzacted zone of bub-

blas warse nmeasursd.
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The combin=d column axperimental eguipment and accessories

were set up as shown in Fi-ure 1l. This foam fractionation cclumn
.

was studiesd as a on2 staz=s ssparator, an snriching section, a strip-
ping szction, and a combined colwin. Prescrioed amounts of sodium
lauryl sulfate and distill~ad water were addsed to the feed tank.
Air which was hu:ilified with water was buobtled into thes cclwun for
2 to 14 hcurs vhile colwin variables were adjusted and time was
allowed to reach steady state. Repstitive samples were taken from
each stream until successive readings remained constant. Then all

of the other important variablss such as gas flow rate, bubble dia-

meters, and liguid flow ratss were measur=d.
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The developrent of the ecuilibrium equation which was used to
pradict multi-staged separations in this thesis can b2 tracad by ex-
amining the first four figures in this sactione.

ks previously explained in the Theory section, surface excess
could not be predicted from the Gibbs ecuation and the surface ten-
sion data for acueous sodium lauryl sulfate solutions as shown in
Figurs 12, &tecause the surface excess was never zero or negative in
the model region as the Giubs ejuation would indicate. ZExperimental
data from a one-stage separator have shown that positive surface ex-
cess do2s axist up to a concentration of 10-5 gm moles taC, .H ,SC,/cm3

12 25 4
solution.

The diameters of bubtles formed at a sparger are a function of
system geometry, bubble formation pressure, and the surface tension
of surfactant solution. Since gll thrze of these do not vary over
the mod=1l region, the area and volum2 avaraged bubble dilameters ares
constant as shown in Figure 13.

In this same mod=l region, the surface excess for a one-staze

.
separatorwas found to be a linear function of the bottom product
mole fractions A least sguarss fit to the data is shown in Figure 14.
This surface excess ezuation was then substituted into the equili-
briun expression and an ejuation which rslates foam concentration to

bulk 1isuid concentration was derived. Fizure 15 is a comparison
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between czlculated ssparations Irom this equilibrium expre

(f}
9]
[
Q
o

experimental separations for a ons-staje sesparatore Th2y arzs in
agrzemernt within T 15,

In the next group of Iisurss (10-10)’ svidenc2 1s given which
surports the asswiption of constant fcam density in the column of
foam of this thesise. ™Mxperivental foam densitizes were plotted in
Figures 16 and 17 according to th2 method of Wallirz (49). Th=2 tub-
ble residence time which is used in thes2 illustrations is Just an-
other exprassion for wWalling's foan drainese tine. Figures 18 and
19 are cress-plots of the two previcus fisures et verious censtant

foam ratese Fothh of th=se fisures indicatz that ovarhead foom der-

sity is not affactad appreciably iy chanies 1. colwwin heicht, and

o

)
]
=
W

|
6}
ct+
o

O 1
(4]
[

hence foam drainzg=s may be nezlacted in
tore This result was then carried over to erriching and stripping
sectlons by asswming the upflow and dowrflow streams to b2 indepen-
d2nt of one another.

A comparison of experimentel data with a modsl for an infinitely
tall enriching sesction is shown in Fizure 20. Since the axperimertel
data points follow the theorstical curve so clos=l;, ths driving force

N

can bz cssured to be nearly zero at the bottom ard finite at the top

©

of an enriching szctlon taller than 42.5 inches. The charp incr=ase

in the slope of this curve displeys the merit of using reflux to in-
creas2 the separation over thet obtainad with a single stage. As the

top product rate approach2s zero, i. 2. - at total r=flux, the exp-=ri-

mental data indicate an increasz in the deviation from this modal.
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4 corr=zlation for the height of a transfer unit in an enriching
section as a function of the downflow to upflow ratio is shown in
Figure 21. Consistent results were obtainad at various gas flow rates

and heights of an enriching s=ction in comparison to those of Haa

w

(24) for a stripping section.

The driving forcss for mass transfer in a stripping section
were fourd to be very finite at both ends of the columne The curve
shown in Figure 22 was calculatew asswiing that the bulk lisuid around
the bubbles comes to esullibrium with the f2ed stream at the feed

‘C

point, and surface excess, TB’ rermains unchanged from its value vhen
it entered the bottom of the column of foame All other concentrations
and driving forces are treated similarly to those derived in the sec-
tion on theory.

The height of a transfer unit in a stripping section did not

J

correlate with the upflow o downflow ratio as it did for data from
a rectifying column. However, the height of a transfer unit divided
by the fesd licuid flow rate does correlate with the upflow to down-
flow ratio for short strippinrg colunrg, as shom in Figure 23. For
taller colunns, the dete ¢ic¢ not correlate very well and this is in
agreement with Haas (24), who found data for taller stripping ssctiors
to te mere irnconsistert than for shorter sections.

Figure 24 is an attampt to correlate height of a transfer unit
data for both enriching and stripping columrs on one fizure. The
flow nurber was discovered bty a trial and srror procsss, and the in-

termingling of data points on the V shapad curve is a good indication

that there may ke sonme thecrstical significance to this rlot.

’
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Figure 2, Height of a Transfer Unit Correlatior,
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An attempt was made to corrslat2 the overhzad 11 mid flow rate

to the gas flow rates and other varisblzse. 10 accurate correlztion

<4

could k= found and s0 th2 overhead liquid Ilow rats was assw:ed to

b2 another independent variavle. Fizurss 25 and 26 are rrecsrtad

>

her= tc indicate sore of th~ difficultiss ercourtarad ard to ive

a basis for sizing any future reilux purpse A vory erproximate cor-
rzlation bestwean overhead foarm density and gas flow rete vas discovera?
for a one-staze separator as shown by Ficure 25. Fizure 26 is t
arproximete correlation for overh=ad foam d=nsity as a function of

ne

the foam density nwiver. This last fizure utiliz~.s data from ax

6]

erriching section, 2 stripring scction, and a combined column.

A

A grepnical solution was daveloped for calculating top and bottom
product concentrations in a continucus foan fractionation colw:n with
enriching and stripping s2ctions. Tha solution was found fron tie
over-zll material kalance, and th= top ard bottom yproduct concentra-

tions for a set of assumad foan concertrations at the f22d point.

These assumed corcantrations werz used to calculate drivi forca

O]

nZ
in the column which in turn permittad the calculation of a sot of pos-
sible top and bottom product corcermtrations for run /4 e Fizurs 27

is the grarhical solution to this s=t of =quatiors. The CI'C Digital(}éOCﬂ
Computer was us2d to nake th2 calculations for a sat of runs (Iazbl> 3C)
and the resvlic -2 given in Takle 31, This Jisital Corputsr was zlsce
us=d to calculate tn2 slopzs arnd irtercoent of the ovor-zil material bel-
anc2 for the_combined columne A swiiery of ejuetions, which were de-

rived in the section on thezory and used in thz co:puter prograiz, is siven

below,
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The top product, LT’ and reflux liquid, L_, flow rate=s were cal-

culated from the definition of external reflux and a materisl balance.

Ro, = ==& (1)

pos} LT

Ly = Ly + Ip (2)
The bottom product liquid flow rats, LB’ was calculated from the
over-all material balance.

Lp = LT + LE (3)

.
Lm
The slops Lm/LD ard intercept XF(—-L + 1) of the over-all materizl

palance for surfactant were calculated from known quantities

)

L . L
Xy = xF(I% +1) - KT(T%) | (4)

The solution to the avove equation is known to exist for one coreina-
tion of X ard XT. The correct corbination was determined by using

th2 folloving procedure. The flow nunbers for the enriching and strip-
plng s=ctions were calculatad and their corresponding heights of a
transfer unit w2r> read from Figure 24. The number of transfer units

was calculated for each section because the height of =ach ssction

was knowme.

T _ Yy = Yyr - (yp = Yyplg
r = = (7T pia n 7y
BT (7 - Yup)z - (Op - Yypde — (Ogp - Yyp)g (5
Lz Yyr = YuB . (Y0 - Yypls
e = 5 EENEYES - kS < n 7o _ v /
5Ty T (gp = Yypls = (g = Yypls = (g = Tyndg (6)
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The concertration of the foam at the feed point YUF was asswned zlon,

with the followire set of driving forces for rass transizr:

k 3% G T- a k0?6
(Y{p =7y = ; 3 L+ =3 ) (7)
us’s CSoln.(“R * LF)”V Cso1n. "y
v k D2 G IT\“‘.:
(Ve - Yue)s = Fops +C__*___:)_§u - vy (e)
g Lo o000 Soln...ac V
wWhere
v = “pkp * Lpksp
DFE L+ 1
F " R
ana
TLFE = aij_ +
y D% G T
(Tgp = Yyplz = Xpp * Coorn.lc0g | UF (¢)
Also,
Lf'l Lrn
LR UF T LR
oy S | (10)
DD = - T 10
Litm s 7 —I—'j L
uT uT CSoln. ODV t

These driving forces were calculated by assuming bottom and top pro-
duct concentrations and comparing trial numbers of transfer units to
those calculated from the height of a transfer unit correlation. The
circled experimental data point, shown in Fijure 27, indicates how

accurate this technicus is., In Figure 28, the calculated bottom pro-

+ -
duct mole fractions were in agreement to within - 6% and the calculatad

(=)
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. . cips o ¥
top product mole fractions were in agreement to within - 7.5% of the

experimental valuese Iiost of the calculated mole fractions were well

within these linzdtse
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JI3CUSSION CF ZREECRS

The final test of the heizht of a transfer urit model, which
was shown in Figure 28, was a pleasant surpris2 considering the
amount of scatter in the e~suilibriunm relationshipe. liany error con-
tricutors, such as drainage and internzl reflux, wers partially can-
celled out by the us: of the height of a transfer urlt correlation,
Figire 24 This correlation was determined by experimental data
ard then it was used to predict exgerimental data, and hence much
of the inherent error was wvoided.

Trternal reflux apparently had a negligible effect, since col-
umn operating conditions were adjusted so as to produce a urifornm
foan thfoughout the column and liquid distributors in the foam did
not appear to coalesce the foam rising arourd them. If appreciavcle
internal reflux had taken placz, then it would have teen accompanied
by drainage because of the decreased amount of surface film area.
“he overall effect of this inmternal refluxing and its associated
drzirage would have teen to increass th=2 separations in the enrich-
irg and stripping sections. If this effect had taken placs, it would
have been less prevalent in the combined column than in the indivi-
dual studies because of the thicker liquid films in ths foam and short-
er column sactions in the combined colunne

Sxperimental evidenca indicates that drainage was tie loast

negligible error encountered. Drainage can take place in the absence
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of internal reflux Ly the thinning of foam liquid films without
changing their surface areae. Th=2 upflow liquid flow rate could
have varied t; as ruch as 20% due to foam drainage as shown in
Figures 18 and 19. This effect would have bezn more pronouncad
in the individual studies than in the combined coluwnn, and hence

the calculatad separations should be oin the averasze smeller than
P g

ct

the experimental ones for a combined columne. This last erffec
was otserved in Figure 28; the experimental topo vproduct concen-
trations were mostly higher and the bottom product concertrations

mostly lower than the corresponding calculated ores.
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FUTURE WCRK

Cther two component surfactant systems should te studied in
order to find out how the theory devaloped in this thesis aprlies
to theme A general height of a transfer unit correlation rdzht
then be derivavle which would predict the heizht of a transfer urit
from the flow nwiber and surfactant propertisse.

A hizh purity two corponent surlactant system should be foar
Iractionated in ordzr to determine the concerntration ragions vhere
the Gicks equation can be used to calculate surface excess from
surface tension data. This would permit the calculation of =cuili-
briwa data from surface tension data.

A three corponent surfactant system should be examined to s=e
whether the height of a transfer unit or the helght ecuivalent to
a theoretical plate is the best concept to apply to thes foam frac-
tioration of rmulti-corponent systems. The height of a transfar unit
concept rest approximestes the comtinuous countercurrent mass trans-
fer in & foam fractionation colw:in but the mathenatics may become
unwield;s In thet case, the height ecuivalent to a theoretical plate
would be tre only usatle concept even though thes height of z trans-

fer unit 1s niore theoretically correct.
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CCICLUSIO!S

The h2ight cf & tronsfer undt rodel was founi to be an accuratz
method for pradicting separations in a foan fractionation colwin with

enricking and stripping s=2ctionz., Th2 surfac2 tercion deta gathered

in this thesis were that of sodium laurvl sultatce contaminated with

N

lauryl alcchol and therefore, the Cibuos eiuation could not be usad

to calculat= suriac? 24C25Se

on the followl.. s experimental observabtlons. Area and volure averased

Surface excess was a linear function cf the culk liquid concertrstion
and accordingly the eauilibriut ecustion tacams & linecar functiorn te-
tween bulk 1liguid and foam concertratiorse.

The kaight of a trarsfer urit in an erriching or & stripping sec-
tion for all downflow to upflow ratios cerrelateod ompiricelly with the

flow muwacer

53]

I,
N LU oo+ T, + Le

ihis correlation was successfully used to pradict top and tottom rro-

duct concentrations in a colurm with centar 223 and rofluwce Foam

drainzge caused experimental conbine=d colw:n seraratiors to te sligh

Py

~

larger than thosz calculated from the heisht of o Uransfor urit mocs

vhich us2d individusl studizs of enriching anl strirring saciionse
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NCIENCLATURE

Empirical constant from the surface excess equation (1.15 x

Interfacial area for mass transfer (cm2/cm3)
Area of the column (15.52 cn?)

Empirical constant from the surface =xcess ecuation (0.814 x

—6 gm 1molas
10 cml )

e moles

Concentration of sodium lauryl sulfate in water (3 ¢o1p )
£ Loles
Concentration of bottom product str-am (593 '
1 cr” soln,
on noles
Concentration of feed stream (g3 soln.)
= Gram moles of sodium lauryl sulfate and water per e of solu-~
g1 moles
tion ( 3
cri’ soln.

Concentration of top product stream (éﬁﬁgiifi.)
Area averaged bubble diameter (cm)

Driving force at the bottom of the column
Logarithric mean driving force

Driving force at the top of the colurn

Correction factor for scale readings from the Ceno-Dulouy T=n-
siometer .
Ln Iy

Plow:nmber(ra Ef:?;f:EE )

Gas flow rate (cm3/min.)
Height of a transfer unit (cm, in.)

Height of a transfer unit in an enriching ssction (cm, in.)
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Height of a transfer urnit in an enriching section at total re-
flux (cm, in.)

Height of a transfer unit in a stripping section (cm, in.)

Height of a transfer unit in a stripping section at total
overhead (cm, in.)

Area to volune cénstant for dodecahedron shaped bubbles (645%)
Conductivity cell constant (cm_l)

Over-all mass transfer coefficient (em/min.)

Lisuid flow rate (cm3/uin. )

Eottom product liquid flow rate (cm3/min.)

Downflow liquid flow rate (cmB/min.)

Feed licuid flow rate (cmB/min.)

Cverhead liquid flow rate (cm3/ﬁin.)

Reflux licuid flow rate (cm3/min.)

Top product liquid flow rate (cr3/min.)

Upflow liouid flow rate (cmB/min.)

Number of transfer units

Mumber of transfer units in an enriching section

iumber of transfer units in an enriching section at total reflux
llass transfer rate of sodium lauryl sulfate ( ‘mﬁg%es)

Mumber of transfer units in a stripping section

Hlumber of transfer units in a stripping section at total over-
head

Average nunber of ions that sodium lauryl sulfate dissociates
into
ergs

Universal gas constant (843144 x 107
O K gn role

External reflux ratio

Scale readirg (dynes/cm)
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SC = Specific conductance of sodium lauryl sulfate in weter (ricrom—
hos /c1:)
m © s Oy,
t = Temperature of the 1i:uid surface (K)
T = Surface excess of sodiwa lauryl sulfate (cm moles/cmz)
m —_ QO 1 . N ; 2)
I = Surface excess based on XB (sm molas/cm
2.
TDF = Surface excess based on XDF (zm moles/cm™)
T = Surface excess bvased on % . (am moles/cmz)
DFB DFB
2
Tx = Surface excess based on Xp (gm moles/cm™)
" o . 2
2 = Surfacs excess basad on X; (gm molss/cn”)
- . 2
Tyg: = Surface excess based on Xyg (gm moles/cm®)
X = lole fraction of sodium lauryl sulfate
Xy = Mole fraction of the bottom product stream
XD = lMole fraction of the downflow stream
Loy = Mole fraction of downflow stream at the bottom of the column
of foanm
np = Mole fraction of dowiflow stream just above the feed point
XDFD = liole fraction of downflow stream just below the feed point
XF = Mole fraction of reed stream
Lo = Yo7 = liole fraction of the top product stream
XUf = liole fraction of bulk liquid in the upflow stream at the bottom

of thz colum

= Mole fraction of sodium lauryl sulfate in broken dowm foan

U
YUB = llole fraction of foam at the bottom of the column
Yur = liole fraction of foam at the feed point
YUT = X; = HMole fraction of foam at the top of the column
YS = ?quilibrium mole fraction of sodiwm lauryl sulfate in broksn
down foan
v = Mols fraction of foas in equilitriws with X_

UR oL
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Mole fraction of foam in equilibrium with either X... or X

-
1

)
]

Mole fraction of foam in equilibrium with X

yA = Height of column of foam (cm, in.)
Z = Height of enrig¢hing section in thz colwnn of foza (cm, in.)
Zg = Height of stripping section in the colwan of foam (cm, in.)

Greek Symbol

4 = Surface tension (dynes/cm)

Subscripts

B = Plane at the bottom of a foam section
KX = Enriching s=ction

I = Irput term (material balance)

C = Quiput term (material oalance)

S = Stripping section

T = Plane at the top of a foam section
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