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ABSTRACT .

ELASTIC-PLASTIC RESPONSE OF BEAMS

INCLUDING EFFECTS OF SHEAR AND ROTATORY INERTIA

by B. Nurel Beyleryan

In this investigation a physical model is constructed in which

the shear deformation and rotatory inertia of a continuous beam, in

addition to the bending deformation and lateral displacement inertia,

are lumped at a discrete number of points. The model thus consists

of rigid panels connected by shear and moment Springs. The inter-

action between moment and shear on the material behavior at yield is

taken into account. The mass, rotatory inertia, and external loading

of the panels are lumped at the center of each panel.

Solutions are obtained by numerical techniques, which have

been programmed in the Fortran language for use on the CDC3600

system of Michigan State University. The convergence of the discrete

model is indicated by the increasing degree of agreement of the

numerical results as the beam is divided into larger numbers of

panels.

Numerical results are then obtained for simply supported

and fixed-fixed beams subjected to a blast type loading. Taking the

web thickness and the beam length of an I-beam as parameters, the
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influence of the interaction between moment and shear is studied. It

is shown that, as expected, as the web thickness or the span length is

increased, the elastic-plastic solution including shear and rotatory

inertia effects (the "Timoshenko" model) approaches that of the simple

theory (the "Euler" model).

For steel I-beams of usual preportions, the influence of shear

and its interaction with moment was found to be quite significant for

fixed-fixed beams and to a lesser extent for simply supported beams.

The discrete model is also reduced, for the elastic case, to

lesser forms such as one that excludes the effect of rotatory inertia.

However, it is found that, rather unexpectedly, the computer time

required when using the complete model is no more than any of the

reduced models. The latter, therefore, do not seem to offer any

practical advantage.



 

ELASTIC-PLASTIC RESPONSE OF BEAMS

INCLUDING EFFECTS OF SHEAR AND ROTATORY INERTIA

by

B. Nurel Beyle ryan

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Civil and Sanitary Engineering

1965



 

 



 

 

ACKNOWLEDGMENTS

The author wishes to acknowledge the valuable guidance of

Dr. R. K. Wen, under whose direction this study was conducted.

Thanks are also extended to the members of the author's Guidance

Committee, Dr. C. E. Cutts, Dr. L. E. Malvern, Dr. G. E. Mase,

and Dr. C. P. Wells, for their interests and help during the course

of the author's studies at Michigan State University.

The author wishes to express his special appreciation to

the Chairman of the Civil Engineering Department, and the Head of

the Engineering Research Division, for their support of the author's

doctoral program.

ii



TABLE OF CONTENTS

ACKNOWLEDGMENTS

LIST OF FIGURES

I.

III.

IV.

INTRODUCTION

1.1. General

1.2. Notations

BASES OF ANALYSIS

2. l. Continuum Theory

2. 2. Discrete Theory

2. 3. Boundary Conditions

METHOD OF NUMERICAL SOLUTION

. General

. The "Timoshenko" Model

. The "Shear" Model

. The "Rotary" and "Euler" Models

. Time Increment

. Use of the Computerw
w
w
p
u
w
w

l

2

3

. 4

. 5

. 6

RESULTS IN THE ELASTIC RANGE

Introduction

Convergence of the ”Euler” Model

"Apparent" Convergence of the ”Rotary, "

"Shear, " and "Timoshenko" Models

4. 4. Relative Importance of Shear and Rotatory

Inertia

“
H
“
?

w
N
o
-
v

 

Page

ii

19

21

Z6

Z7

29

30

31

31

31

33

34



 

 

 

 
 



 

V. ELASTIC-PLASTIC BEHAVIOR OF THE

"TIMOSHENKO" MODEL

5. 1. Introduction

5. 2. Convergence of the "Timoshenko" Model in

the Elastic-Plastic Range

5. 3. Response of Simply Supported I—Beams with

Different Lengths and Web Thicknesses

5. 4. Response of Fixed-Fixed I-Beams with

Different Lengths and Web Thicknesses

VI. CONCLUSION

BIBLIOGRAPHY

FIGURES

APPENDIX

36

36

37

38

41

43

46

51

77



 

 

 

-
w
.

.
I

-
.

‘
A

a
-

l

I
I
.
.
I
I
|
L
I
I
I
I
H
I
.
I
E
I
I
I
1
I
I
H
I
I
I
I
I
I
I
I
.
I
I
I
£
.

I



Figure 2. I.

Figure 2. 2.

Figure 2. 3.

Figure 2. 4.

Figure 2. 5.

Figure 3. 1.

Figure 4. 1.

Figure 4. 2.

Figure 4. 3.

Figure 4. 4.

Figure 4. 5.

Figure 4. 6.

Figure 4. 7.

Figure 4. 8.

Figure 4. 9.

LIST OF FIGURES

Forces Acting on an Element of Continuum

Plastic Potential Function

Discrete Beam Model

Deformed Configuration of the Discrete Beam

Forces Acting on a Typical Panel of the

Discrete Beam

Finite Increment Treatment of Plastic

Yielding

Cros s -Sectional Preperties

Convergence of the ”Euler" Model

--Def1ection at Mid-span

Convergence of the "Euler" Model

--Moment at Mid-span

Convergence of the ”Euler" Model

--Shear at the Support

”Apparent" Convergence of the "Rotary"

Model--Deflection at Mid-span

"Apparent" Convergence of the "Rotary"

Model--Moment at Mid-span

”Apparent" Convergence of the ”Rotary"

Model—-Shear at the Support

"Apparent" Convergence of the "Shear"

Model--Def1ection at Mid-span

"Apparent" Convergence of the ”Shear"

Mode1--Moment at Mid-span

 

Page

51

51

52

52

53

53

53

54

55

56

57

58

59

6O

61



 

 

 

 
I
1
3
1

.



Figure 4. 10.

Figure 4. 11.

Figure 4. 12.

Figure 4. 13.

Figure 4. 14.

Figure 4. 15.

Figure 5.1.

Figure 5. 2.

Figure 5. 3.

Figure 5. 4.

Figure 5. 5.

Figure 5. 6.

Figure 5. 7.

Figure 5. 8.

"Apparent” Convergence of the ”Shear"

Model--Shear at the Support

"Apparent" Convergence of the "Timoshenko"

Mode1-—Deflection at Mid-span

"Apparent" Convergence of the "Timoshenko"

Model--Moment at Mid-span

"Apparent” Convergence of the ”Timoshenko"

Model--Shear at the Support

Mid-span Moment Responses

Influence of Shear, and Shear and Rotatory

Inertia in the Elastic Range

Shea r-Moment Inte raction Curves

"Apparent" Convergence of "Timoshenko"

Model in Elastic-Plastic Response

--Moment at Fixed End

”Apparent" Convergence of ”Timoshenko"

Model in Elastic-Plastic Response

--Shear at Fixed End

Locus of Stress State for Problem in

Figures 5‘. 2 and 5. 3

Regions of Plastic Response for Simply

Supported I—Beams with Different Lengths

Deflections, Permanent Sets, and Permanent

Slides for Simply Supported I-Beams with

Different Lengths

Deflections, Permanent Sets, and Permanent

Slides for Simply Supported I-Beams with

Diffe rent Thickness es

Fixed-End Moment and Shear Responses of

I-Beams with Different Lengths

vi

 

62

63

64

65

66

67

68

69

70

71

71

72

73

74





Figure 5. 9.

Figure 5. 10.

Deflections, Permanent Sets, and Permanent

Slides for Fixed-Fixed I-Beams with Different

Lengths

Deflections, Permanent Sets, and Permanent

Slides for Fixed-Fixed I-Beams with Different

Web Thicknesses

 

75

76



1
.
1
.

a
.

fl
u

.
“
a

i
.
I
‘
l
l
y
y
v

.
I

.
.

W
I
I
I
”

i
l
fl

,
r

.

__
_-

 

 



 

 

1. INT RODUCTION

1. 1. General

It is well known that the usual engineering theory of beam

vibrations is based on the assumptions that deformations are caused

by bending only, and only transverse inertia forces need be

considered. In particular, the theory neglects the effects of shear

deformations and rotatory inertia.

The first modification of the theory by including the above

mentioned effects was given as early as 1859, by Bresse (8); but,

apparently it went unnoticed. Rotatory inertia effects were also

discussed by Raleigh (36) in 1877. Today, for the more exact theory

that includes shear deformation and rotatory inertia effects, the

presentation of Timoshenko (41) is usually quoted. In fact, it is

known as the "Timoshenko" beam theory. A derivation of this will

be given in Section 2. 1.

For several decades, after Timoshenko's contribution,

work was generally directed towards obtaining estimations of the

error introduced if effects of shear deformation and rotatory inertia

were neglected. Solutions obtained with substantial rigor for various

Special cases of the problem have appeared since 1948. Two

approaches seem to dominate the literature covering the elastic



 

 

 

 

 
 



 

 

vibrations of the Timoshenko beam: the wave method (7, 12, 21. 7-7).

and the mode method (1, 4, 10, 20, 40, 43). The former usually employs

Laplace transform techniques to yield solutions in closed form. The

complicated superposition required, in order to accommodate various

loading and boundary conditions, makes the method rather!unwieldy

to apply. The mode method, presented in full in Referencel, has

also proven to be inconvenient for applications to actual problems.

Furthermore, convergence of the solution is not always guaranteed.

While the preceding discussion applies to the linearly elastic

case, the literature on the inelastic case is rather scarce. Two

articles, by Salvadori and Weidlinger (38), and Karunes and Onat (22)

dated 1957 and 1960, respectively, have considered the rigid-plastic

response of beams. It is found in the former work that, in case of

a simply supported beam, "plastic shear hinges" may deve10p at

the supports in addition to a moment hinge at the mid-span of the

beam. In the latter study, a free-free, rigid—plastic beam subjected

to a concentrated load at the mid-span is investigated. In both

references, the methods used can not deal with the interaction effects

between the bending moment and shear when the material goes into

the plastic range. Yet, this interaction is known to exist, and its

effects on beam vibrations have not been ascertained.



 
The previous paragraphs point out clearly what has been

missing so far; namely: a method of analysis which can be used to

calculate the elastic-plastic vibrations of beams, including shear

deformation and rotatory inertia effects, with any usual boundary

conditions, and subjected to any usual loading. This will be the

general purpose of the present investigation.

Thus, the first objective of the present work is to develop

such a method. The second objective is to use the method to study

the significance of the effects of shear deformation and rotatory

inertia on the beam response in the inelastic range.

Recognizing the intrinsic difficulties of the problem,

particularly from a continuum point of view, the present work uses

the discrete model approach. Briefly, the model used to represent

the beam consists of rigid panels connected by moment and shear

springs. The force-deformation characteristics of these springs

interact when the deformations are in a plastic state. At the

middle of the panels, there are lumped masses on which the external

loads act. This model is amenable to analysis and numerical

results are conveniently obtainable from a computer.

Of course, it is not sufficient that the model produces

results. It is also necessary to show that such results are trustworthy.

To this end, the obvious way is to compare the model results with the
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4

exact analytical solutions (of the continuum). But exact solutions

are not readily available. Hence, the credibility of the model is

examined by comparing the numerical results yielded by models

with different degrees of fineness (analogous to the mesh size in

a formal finite difference approach). If the results seem to

converge (referred to later as "apparent" convergence), then the

model is regarded as reliable.

There is an exception to the above approach. For one

of the "reduced forms” of the model, exact solutions are avail-

able-~and used for comparison. Furthermore, the reliability of

the model is also judged from a physical point of view in that the

behavior, as exhibited by the model results, must make good

physical sense.

In pursuit of the second major objective of this thesis,

the model is used to obtain numerical results that would reflect

the significance of shear deformation and rotatory inertia in

elastic-plastic response. The data cover both simply supported,

and fixed-fixed beams. In order to highlight the shear effects,

I-beams alone are considered. The variables considered are the

total permanent deflection, the permanent deflection due to shear

effects alone, as well as the maximum deflection. Parameters

considered are the web thickness and span length. The web



 

thickness will be varied from 20% to 3% of the flange width and the

length will be varied from 6 to 20 times the beam depth.

In the remaining chapters of this thesis, the theoretical

bases of this work are presented in Chapter II, and the numerical

technique is presented in Chapter 111. Chapter IV and Chapter V

contain, respectively, the elastic and elastic-plastic numerical

results. Concluding remarks are made in Chapter VI.



 

 

 

 

 



 

 

1. Z. Notations

The notation listed below has been adOpted in this

investigation.

a = Lumped change of curvature;

Ge = Elastic part of a;

up 2 Plastic part of a;

0. = Elastic change of curvature, correSponding to a

Y

change of moment A M=My;

E = a a

/ Y

[3 = Shear displacement (slide);

De = Elastic part of [3 ;

(3p 2 Plastic part of (3 ;

(3 = Elastic change of shear slide, corresponding to a

Y _ .
change of shear AS-Sy,

B - 13/5},

[5' = (3 divided by its tributary length;

A = Prefix denoting "increment";

p = Density of material;

7 2 Time in plastic range;

4) == SIOpe of a panel of the model;

CI) = Change of <1) with respect to time;

Rate of change of (I) with reSpect to time;6
:

ll
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7

Cross-sectional area of the beam;

Half of the flange width;

A boundary constant;

Arbitrary coefficient pertaining to applied load;

Vector with components A; and A3;

Elastic modulus of the material;

Plastic potential function;

Shear modulus of the material;

Gravitational constant;

Half of the beam depth;

(Subscripted or not) Length of a panel;

Moment of Inertia;

Variable subscript to denote a point or a segment

on the beam;

The highest value of i;

Constants;

A cross-sectional constant;

Length of beam;

Moment;

Maximum moment at yield;

Non-dimensional moment M/My;

Lumped mass;

Number of panels into which a beam is divided;
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8

Lumped external loads acting on panel i;

Shear;

Maximum shear at yield;

Non-dimensional shear S/Sy;

Flange thickness of I-beam;

Period of the fundamental mode of vibration;

Period of the n-th mode of vibration;

Time;

Initial time;

Web thickness;

Non-dimensional time t/Tl;

Non-dimensional web thickness tw/(ZB);

Minimum stationary loading that will cause yield

for a simply supported beam;

Loading as a function of position and time;

Length coordinate;

Static deflection caused by a uniformaly distributed

load of W;

Vertical direction (unsubscripted);

Deflection of the beam (subscripted);

Velocity;

Acceleration;

SloPe;

Non—dimensional deflection y/ Yy'



 
II. BASES OF ANALYSIS

2. 1. Continuum Theory

For the sake of completeness, a derivation of the more

exact beam equations including the effects of shear deformation

and rotatory inertia will be given below for a physical continuum (41).

- EX I
When a beam deforms, its slope d (or y ) may be

x

considered to consist of two parts: 4; , the lepe due to bending

29 . - -only, and dx (or [3 ), an additional slope due to shear ([5 denotes

the shear deformation or "slide”). Therefore,

y'=¢+B' 2.1

The kinetic equations can be obtained from D'Alembert's

principle by summing the vertical forces and the moments.

Referring to Figure 2. 1, one can write:

8
3%”. —w(x,t) 2.2

t

2
8M 6

S = -—8—){— + pI 2.3

at

where t is time, A is the cross-sectional area, p is the

density, and I is the moment of inertia; the other symbols are

defined in the figure.
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Equation 2. l is obtained from a consideration of geometry,

and Equations 2. 2 and 2. 3 from equilibrium. Thus, they are general

and valid for all materials. Further relations needed for an analysis

must be obtained from the prOperties of the material.

For an elastic and isotropic material one can write,

M = — Eig—‘l’ 2.4
X

s = Gk'Ap' 2.5

where E is the elastic modulus, G is the shear modulus, and k'

is a sectional constant. For elastic beams, Equations 2. 1 through

2. 5 can be combined into a smaller number of equations, as various

investigators have done (if combined into one fourth order partial

differential equation, it becomes the "Timoshenko" beam equation (41)).

However, since plastic as well as elastic cases will be treated

herein, the equations will not be combined at this point.

Equations 2. 4 and 2. 5 must be replaced by suitable relation-

ships when the deformations go beyond the elastic range. When this

happens, the material is assumed to be perfectly plastic. The term

"perfectly plastic" is used here to mean that no work-hardening effects

are considered. (As long as the material is not strained excessively,

most mild steel can be assumed to be perfectly plastic.)

The inelastic behavior will be assumed to be governed by the

"plastic potential theory" (19), which is briefly explained below for



 
the problem under consideration.

Associated with a given cross-section there is a plastic

potential function f(M, S). The curve in the M-S plane:

f(M, S) = 0 2.6

is known as the "yield curve" or the "interaction curve. " This is

illustrated in Figure 2. 2 for the positive quadrant.

When the values of M and S acting at the section are such

that f(M, S) < 0, the laws of elasticity apply. When f(M, S) = 0,

the section is in a plastic state, and yielding or plastic deformation

takes place. The value of f(M, S) can never be positive.

When plastic deformation occurs, it is governed by the

following rule: the rate of the plastic deformation corresponding

to M (or S) is proportional to the M-component (or S-component)

of the gradient Vf, or the normal to the interaction curve; see

Figure 2. 2. Expressed mathematically, yielding is to follow the

relation:

8f(M, S) 3f(M, S)

3M - S K 2 7

5 (1‘35) _ a «55) 1 '
3T axp .57 ‘a—xp

in which the subscript p denotes the plastic component of the

deformations, and K1 is a scalar.

A simultaneous solution of the preceding equations, even

for the elastic case, has proven to be very difficult. For the
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elastic-plastic case, an analytical solution seems almost impossible.

One could try the usual finite difference approach. However, he

would soon encounter difficulties in the treatment of boundary

conditions and the changing material properties.

2. 2. Discrete Theory

In order to obtain an approximate solution of the problem,

the present author suggests the use of a discrete model for the

beam. It is understood that changing a continuous beam into a

discrete model inevitably involves a loss in "resolution'' and even

some distortion. However, it is believed that the essential features

of the beam have been kept in the model.

Figure 2. 3 illustrates the discrete beam in an undeformed

state, and Figure 2. 4 shows the deformed configuration of the

model. The various prOperties of continuum are retained in a

manner as given below.

a) The continuous beam is divided into a discrete number

of panels, N. These panels may, in general, be of different lengths,

hi‘

b) The panels are assumed rigid at all times. However,

in order to account for the deformations and rotations that a

continuous beam undergoes, moment and shear springs are inserted

between the rigid panels. The sections where these Springs are
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placed are called the ”force points. "

c) The rotation of a moment spring corresponds to the sum

of the curvature within a length of h/2 on either side of the panel

point; that is, the flexibility of a panel is lumped apally at the Springs

to the left and right of a panel. At a typical spring i, the lumped

elastic flexibility is ZEI/ (hi-1+hi)'

d) Similarly, a shear Spring lumps the shear flexibility

from a tributary length of h/2 on either side of the panel point.

For example, the flexibility of the i-th shear spring is

2Gk'A Bi/ (hi-1+hi)'

e) In inelastic action, when interaction is considered

between shear and moment, the moment and shear Springs are made

to obey laws that are direct generalizations of the plastic potential

theory described earlier for a cross-section of the continuous beam.

Detailed description of the procedure is given in Section 3. 2.

f) The mass and rotatory inertia within each panel are

lumped at the center of the panel, which is referred to as a "mass

point .. " The external Loading will be similarly lumped. In

Figure 2. 4 the symbols mi,(P Ih)i’ Pi' denote, respectively, the

lumped mass, rotatory inertia, and load.

Some of the implications of this model may be noted here

as follows. The characteristic of rigid panels gives the beam a
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discontinuous look. In particular, the deflections are discontinuous

at the shear springs. Consequently, the apparent slope of a segment

is given by ¢i , which is the slope due to flexure alone.

Since equations of motion will be written for the mass points,

deflections are defined only at mass points; stress resultants are

defined only at the force points. It is also apparent that concen-

trated external loads must be applied at mass points. As a

consequence of the lumping, one might expect that the displacements,

moments, and shears essentially represent the values of the

corresponding quantities in the continuum, averaged over appropriate

lengths.

Relations regarding boundary conditions between the model

and continuum will be dealt with in Section 2. 4.

The equations governing the motion of a discrete beam

system are written in the same way as for a continuous beam.

However, the infinitesimal increment along the beam is replaced

by a segment of finite length, hi'

Writing the equation of motion in the vertical direction

for a typical panel 1, (Figure 2. 5) one obtains,
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Similarly, the equation for rotatory motion becomes

824). h.

1 - - _1_

(pIh)i at2 " M1 M1+1+ 2 (51+Si+
 11 2.9

If elasticity prevails, the constitutive equations are,

in discrete form

*2EIai

M1 = ET'TT— 2°10
1 1-1

and

s = Gk'As ———Z——— 211
1 1 hi+hi_1 '

where 0’1 and Bi denote, reSpectively, the deformations of

the moment and shear springs. They are related to yi and (bi

by geometry and the relations are given in Section 3. 2.

When plastic yielding is considered, Equations 2. 6 and

2. 7 are applied to the springs of the discrete beam. At a force

point, the yield curve is given by

f(M,,S.) = O 2.12
1 1

This is similar to Equation 2. 6 which pertains to a cross-section

of the continuum. Since the curvature and the shear slide are

lumped at the force points, Equation 2. 7 can be generalized for

a typical force point as



 

 

 

 

 

 



 

 

 

  

3f(Mi, Si) 3f(Mi, Si)

3Mi BSi

magi ’ 8113p)i " (KN-1 2'13

T T

in which (up)i and (13p)i are the plastic components of o.i

and [ii , respectively.

It must be pointed out that the governing equations of

the discrete model are spacewise discrete, but the linear and

angular accelerations, yi and (Iii , are continuous in the time

dimension. Therefore, temporally continuous solutions of

these equations could be sought. However, these equations,

as discussed later, will be integrated herein numerically.

2. 3. Boundafl Conditions
 

In the use of the model, supports will be made to

coincide with force points. However, in the prototype (continuous)

problem, boundary conditions are not always given in terms of

stress resultants. Thus, whenever a boundary condition is

given in terms of displacement in the prototype problem, it is

necessary to interpret this condition as a stress resultant

condition for the model.

Since the stress resultants are directly related to the

deformations of the moment and shear Springs, the prototype
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displacement conditions must be used to compute these deforma-

tions. As will be shown later, this can be done through geometry.

But first, the following relations at a boundary point should be

noted.

singly.

2 3y
_ Z shear

[Y1 model ’ [Y + f0 5; ] continuum 2' 14

£1. 53¢)

= 2
[CID] model [CID + f0 5'; dx] continuum 2. 15

If y = O for the continuous case, Equation 2. 14 reduces to

h

8yshear
= E 6

[Y] model [ f0 5x dx] continuum 2' 1'

If (I) = O for the continuum, Equation 2. 15 will yield

[<1] = [ IE ggdx] 2.17
continuum

The usual types of boundary conditions can now be taken

Simple Supports: The condition that moment vanishes

is straightforward and needs no further remark. The other condition

of vanishing (total) displacement for the prototype implies, by

Equation 2. 16, that the model will have some shear deformation at

the support representing the shear deformation of the continuum



 
l8

lumped from a tributary length of h/2 adjacent to the support. For

the model, the value of this shear deformation can be determined

from considerations of geometry.

If j (j=N+l) denotes a support at the right end of a beam,

then the lumped shear deformations at the two ends of a Simply

supported beam are given by

Knowing the deformation (or its increment), the shear

force (or its increment) at the support can be computed.

MSupports: In this case, Equation 2. 17 gives the

fixed end slope of a model as the lumped curvature due to bending,

contributed by a length of h/2 adjacent to the support. From

geometry, the rotations of the moment springs at the two fixed

supports are given by

a. :—¢ 2. 19

Knowing the rotation (or its increment ), the moment (or

its increment) at the support can be computed. Shears at fixed

ends are found in precisely the same way as for simple supports.

mm: Since both boundary conditions correspond

to specifying stress resultants--moment and shear vanish--no

special interpretations are necessary.



 

 

 



 

 

III. METHOD OF NUMERICAL SOLUTION

3. 1. General

The method essentially consists of a step-by-step numerical

integration of the system of equations presented in the foregoing

chapter. The problem here may be formulated as follows: at some

given time t=to, the system is known to be in an elastic state, and

the values of all the displacements yi:yi(to) (and (bi = (bi (to)) and

their first derivatives vine) (and ((51 (to)) are known. Furthermore,

the external loading Pi(t) is completely prescribed. It is required

to determine the displacements and stress resultants at time

tl=to+ At, where At is a small time increment.

For easy reference, the model presented earlier which

contains the mechanism of shear deformation and rotatory inertia

will be referred to as the "Timoshenko" model. Obviously, the

model can be reduced to lesser forms. Thus, the ”Shear" model

refers to the case in which shear deformation is considered but

rotatory inertia is neglected. The "Rotary” model refers to the

case in which rotatory inertia is considered but shear deformation

is neglected. Finally, when both effects are neglected, the model

reduces to the ”Euler" model.

The symbols T(N) will be used to denote: "Timoshenko

model; beam divided into N equal panels. " The symbols S(N),

l9
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R(N), and E(N) are defined in a similar fashion. The analytical

solution of the continuum case will be referred to as the ”Exact"

solution. The term "continuous beam” will be used to mean the

continuum case; it does not refer to a multi-span beam structure,

which is not treated here.

Theoretically, it is possible to obtain solutions of the

"Shear, " Rotary, ” and "Euler" models directly from the

"Timoshenko" model. A solution of the ”Shear" model could be

obtained if the shear stiffness is taken as infinity. However,

since this is not practical for numerical work, C may be assumed

to be very large, thus letting the ”Timoshenko" model approach the

"Shear" model. Similarly, if the rotatory inertia term is taken

close to zero, the "Rotary" model could be approached. By

simultaneously using a large value for G and a small value for

(pIh) the ”Euler" model can be approached.

This approach was not used here mainly due to technical

difficulties. First, it is not clear how big or how small G and

(p Ih) have to be in order to lead to satisfactory results; and secondly,

the time increment needed for stability in the numerical integration

has proven to be very sensitive to changes of these quantities (G and

p Ih I. In one instance, approaching the "ShearH model from the

"Timoshenko" model required a time increment almost 10 times

smaller than the ”Shear” model requires.
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In order to avoid these difficulties, it was found more

convenient to deve10p the ”Shear, ” ”Rotary, " and ”Euler" models

individually even though the numerical procedure of solution differs

slightly from one model to another.

The procedure of solution for the different models will

thus be described separately in the following. It should be noted

that while the procedure is given for the "Timoshenko” model for

both the elastic and the plastic range, for the other models, only

the elastic case is considered.

3. 2. The ”Timoshenko” Model
 

Elastic RanLe
 

1. From geometry (see Figure 2. 4), the initial (t=to)

deformations of the shear and moment springs can be computed

from known initial displacements (assuming 4) to be sufficiently small):

ciao) = w 1 - 1,41%) 3.1
1 0

two) = yi<to1 - 33-1“.) - % (Wine) + h1-1¢1-1(to>> 3.2

2. So long as elasticity prevails, one can compute the

moments Mi(to) and shears Si(to) from Equations 2. 10 and 2. 11.

3. Knowing Mi(t0), Si(to)' and the loading Pi(to), the

accelerations y'i(to), and 5p.i(to) can be computed from Equations

2. 8 and 2. 9, respectively. Thus, all quantities that enter into

the problem are known for t=to.

4. The changes in the displacements at t=t1 can now be

determined by a forward numerical integration procedure. The
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formula used in this thesis is:

o l 2

vial) = yiuo) + (tl-to)yi(to) + EItrto) Vino) 3. 3

and similarly for ¢i(tl) (see Reference 32).

5. Knowing the displacements, one goes through the same

procedure as outlined in steps (1) through (3) and obtains yi(t1) and

¢1“1L

6. The velocities at time t1 can be computed by a

numerical integration. The formula used here is

'(t)—'(.)+l(t t)<"(t)+”(t)) 34
Yil_yio 21'oyio yi1 ‘

and similarly for ‘I’iItlI’

7. Thus, one is ready to repeat the process to solve for

the re5ponse at t2=t1+ At, etc.

Elastic-Plastic Range

Successive applications of the cycle of integration in the

elastic range will, at some time, yield values of M and S that

violate the plastic potential theory; that is to say, f(M, S) will become

positive. Smaller time increments will then be tried until a time To

is found when f(M, S) = 0 (within a prescribed degree of accuracy).

The numerical method, representing a finite incremental

form of the plastic potential theory, is given below for one step of

integration in the plastic region.
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Let plasticity start at time ti: To. Since Equations 3. 1

through 3. 3 apply, the increments A0. and A13 are known for the

next time increment A71 ; however, the material property Equations

2. 10 and 2. 11 can not be applied to the whole of Au. and M3. There-

fore, the problem becomes one of splitting A0- and 136 into elastic

and plastic portions, of which Age and Afie (the elastic portions of

Au and A13 ) will produce changes in the stress resultants, but the

plastic portions, Aap and App do not affect the stress resultants.

A graphical representation of the necessary technique is

given in Figure 3. 1 for a typical force point. The yield curve is not

specified, indicating that the method is general, and it applies to any

plastic potential function.

In Figure 3. 1 the ordinate is assigned the dual scales of m

(the non-dimensional moment M/My) and AE(the non-dimensional

angle change AQ/Gy , where ay is the change of rotation

corresponding to a totally elastic change of moment AM=My at the

particular force point). Similarly, the abscissa is assigned 5 (s=S/Sy)

and AE(A3=AB/(3y 1 where fly is the shear slide corresponding to a

totally elastic change of shear AS=S at the force point). It is

Y

important to note that, this scaling has made possible a direct

graphical correspondence betwen AM and Ade , and similarly for

shear.
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Let A (Figure 3. 1) be the position of the stress state at

time To . The vector d (with components A; , AE- ) is laid on the

graph with its tail at A (AD). Next, a circle is constructed with

AD as a diameter to intersect the yield curve at B (and of course, A).

Then, Bis the stress state at time To + A'rl . Moments and shears

are read directly from the graph at point B. Furthermore, the

components of AB on the Ad and A3 scales are the elastic parts

of these quantities. The components of BD (the perpendicular to AB)

are the plastic parts of A; and A3 . The validity of the preceding

statements is explained in the following.

There are three conditions to be satisfied by the division of

AG- and AB into the elastic and plastic parts. First,

A0. = Ade + A0.

A = +:5 Ase Asp

secondly, the new stress state at time 7°+A71 computed from Ace

and Ape (using Equations 2. 10 and 2. 11) must satisfy the yield

condition, i. e. . Equation 2. 12; and thirdly, the plastic flow rate

vector must be normal to the yield curve (Equation 2. 13).

The first condition is satisfied here from simple geometry

considerations. The second one is obviously satisfied since point

B is on the yield curve. As for the third ., since Figure 3. 1 is

constructed for a very small time interval, the vector quantities

Adp and AEP essentially represent the rates of the plastic
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deformations. Therefore, the flow rule of Equation 2. 13 is satisfied

on a finite increment basis.

When the vector AD points inward, elasticity is resumed and

Equations 2. 10 and 2. 11 are validated for the whole of A0, and AB .

It must be noted that, while one or more force points may go plastic

and require the treatment described above, other points that remain

elastic will, or course, be handled according to the elastic rules.

Conceptually, the graphical procedure outlined above is

simple and straightforward. However, the programming of it on a

computer, though feasible, is not convenient. Therefore, to

facilitate programming, the further assumptions are made that the

arc AB can be approximated by a circle whose curvature, and

center of curvature are those of the actual yield curve at point A,

as shown in Figure 3. 1. Since the length AD can be controlled by

the size of AT, the error introduced due to the above approximation

can be kept as small as needed by using a sufficiently small A7.

The method is, in general, consistent with the forward integration

method used throughout this study. Note that, so far as the flow

rule of Equation 2. 13 is concerned, the procedure incurs no error

except that of approximating an arc by a chord, which is inherent

in the numerical integration method.
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3. 3. TE "Shear"M

The "Shear" model differs from the "Timoshenko" model in

that the rotatory inertia is neglected. Thus Equation 2. 9 assumes

the form

h.

0=M.-M. +7‘(si+s. 3.6
1 1+1 1+1)

In case of the "Timoshenko" model both yi and (pi are

independent quantities. For the "Shear" model they are not

independent and the relationship is to be obtained as follows:

a) By substituting (3 i's from Equations 3. 2, Equations

2. 11 are written out for Si in terms of Vi and ¢i .

b) Equations 2. 10 are written out for Mi in terms of 4’1 .

c) The expressions for shear from (a) and the expressions

for moment from (b) are then related by Equation 3. 6. Thus the

following relationship between (pi and Vi is obtained (taking hi=h

for all i):

th

(b)<1>1 + (-1 +—2) <1», = K2Y2+K2Y1

th th th

('1 "I" _2 )(IZ‘1+(2 + —2 I‘I’Z +('1+ —2 N53 = sz3-K2Y1

th

('1 +‘ Z N’n-l +(b) ¢n = - KZYn-l—szn

3. 7

_ k'AGh _ . .
where KZ -—TEI— , b depends on the boundary conditions, for
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Simple supports b=l+l. 5K2h, for fixed supports b=3+,.l.5K2h. The

second equation from the top is typical.

Except for the step that dai's are obtained from Equation 3. 7

(instead of by numerical integration) the numerical procedure for

the "Shear" model is the same as the one outlined in Section 3. 2 for

the "Timoshenko” model.

3. 4. The ”Rotary" and "Euler" Models
 

The "Rotary" model differs from the "Timoshenko" model in

that the shear deformation is neglected. Hence, the displacement of

the "Rotary" model does not exhibit any jumps due to shear.

Consequently, for a beam with N panels, there can be only N-l

independent displacements yi. Similarly, all ¢i's are fixed by

geometry once the yi's are determined.

The supplementary geometry equations may be taken as,

yn=yn_1-yn_z+yn_3-... 3.8

and, by setting (3i: 0 in Equation 3. 2 and solving, one obtains,

_ l

¢i — E(Zyi’_ 4yi_l+4yi_2....)

3. 9

¢n = — T

The numerical procedure for this case differs from that for

the ”Timoshenko" model in another aspect. Since (31 = 0 and G =0

Equation 2. 11 can no longer be applied to calculate the shears which

are now governed only by the kinetic equations.
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Using Equations 3. 8 and 3. 9, Equations 2. 8 and 2. 9 can

be combined to eliminate all the second time derivatives so that

the shears S 1, . . . Sn are related only to the bending moments

and the external loads. (Note that the moments are computed

from Equation 2. 10 as previously.)

The resulting system of equations appears as,

      

l+K3 l-K'3 0 0 S1 Cl—I

-2K3 1+3K3 l-K3 0 0 S2 C2

2K3 -4K3 l+3K3 l-K3 0 0

-2K3 +4K3 -4K3 1+3K3 l-K3 0 . =

_:I:(1+K3) -2-2K3 2+2K3 -2—2K3 3+K§J Sn Cn

‘ I. .1 _ L

where K3 = 4:121) by taking equal hi's. A typical Ci is given 3' 10

by

2
Ci — K3P.1 - 2K3Pi-l + 2K3Pi-2 - . . . - E(Mi - Mi+l)

but

2
Cn — Pn-(1+K3)Pn_1+(l+K3)Pn_z-... -E(Mn-Mj)

The set of simultaneous Equations 3. 10 are solved to obtain

the shears.

Equation 2. 7.

The shear at the last force point, Sj’ is obtained from

The shears can now be used in Equation 2. 8 to

calculate Vi which are, in turn, used to compute the displacements
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Vi for the next time interval. The cycle is then completed.

The ”Euler" model differs from the "Rotary" model in that

the rotatory inertia is neglected. The numerical procedure is the

same as that for the "Rotary" model except that, in arriving at

Equation 3. 10, Equation 3. 6 is us ed instead of Equation 2. 9.

3. 5. Time Increment
 

Mathematically, the method used here is analogous to a

numerical integration of a system of partial differential equations

which are, in general, nonlinear. The size of the time increment

for each step of integration obviously plays a dominant role.

Unfortunately, there seems to be no rigorous method in

existence of estimating the apprOpriate values of At to use. A

trial method, therefore, was used to determine a satisfactory time

increment. The following is a conservative listing of the time

increments in terms of T1, which is numerically equal to the

fundamental period of vibration of a simply supported, elastic

continuous Euler beam.

a) "Timoshenko" and ”Shear" models:

T

At = g- —12 for Issections and all values of N; for N > 20,

N

At can be based on N = 20.

r
-
l

At = 1— 1 for rectangular cross-sections and all values
10 N2

of N.

b) ”Rotary'l and ”Euler" models:



 

 

 



 

 

3O

_1— TT

_ l _ l . .

At - 10 .1? or At — 1:1—3 whichever is smaller.

It must be emphasized that the preceding is based on the

numerical experience of the present study which has dealt with a

rather simple kind of loading. The above listing may not apply if

the loading is substantially different.

3. 6. Use _cg the Computer
  

The computer work for this study was conducted on the

digital computer CDC3600 at Michigan State University. The

Fortran language was used.

It is found that the time of comPilation, loading, etc. , is

about one minute. For N = 10 and for a length of time t = 3T1

the execution of the program takes somewhat less than a minute.

For the problems solved, the maxima are usually reached at

t < 0. 5T1 (but it may be necessary to carry the solution as far

as t = 3T1 in order to estimate the permanent set).

For larger values of N, the time needed is slightly more

than that calculated according to the square of the ratios of N.

The time corre3ponding to the "Shear, ” ”Rotary, " and

”Euler" models can be estimated using the information given in

Section 3. 4.
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IV. RESULTS IN THE ELASTIC RANGE

4. 1. Introduction

The results presented in this chapter deal exclusively with

response in the elastic range. The convergence of mid-span

moments, end shears, and maximum deflections are shown for

the four models considered here. Also investigated is the

relative importance of shear and rotatory inertia in elastic

vibrations.

According to the notations in Figure 4. l the example beam

has the following cross-sectional dimensions: B = 5", H = 6",

?w = o. 0346, T = o. 577. The beam is simply supported at both

ends, and divided into panels of equal length. Except for the data

presented in Section 4. 4, the length of the beam is 10 ft.

A blast type loading, applied uniformly on the beam, is

given by the expression

-2t/Tl

w(x, t) = cW e 4.1

where c is a parameter representing the load intensity, and

W = 8My/ L2 is the load necessary to cause yield in the mid-span

of the beam.

4.2. Convergence ELIE "Euler" M1

The "Euler" model is the simplest of all the models studied.

31
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In fact, it can be considered to be a special case of each of the

other models. For this model, an exact analytical solution is

obtainable, and can rightly be regarded as the true limit to which

the discrete model should converge. Strictly speaking, the

convergence to the true limit of a special case does not necessarily

imply similar convergence of more general cases. However, it

should certainly strengthen the case for the other models (for

which there are no exact analytical solutions available for

comparison). It is essentially in this regard that the study of the

convergence of the ”Euler" model is significant for the purpose of

the present work.

The "Exact” solutions (see Appendix), as well as the ”Euler"

model solutions for various values of N are plotted in Figures 4. 2,

4. 3, 4. 4 for the center deflection, center moment, and end shear,

respectively.(The deflections are scaled by Yy, the maximum static

deflection. ). For more precise comparisons, the values of the

maximum responses and their times of occurrence are also noted

in the figures. As expected, the deflection converges to the "Exact"

solution considerably faster than the moment and the Shear. For

N = 21, the deflection is so close to the exact solution that they are

represented by a single curve in Figure 4. 2. (That odd number of

panels is necessary for mid-span deflection is a consequence of the
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c0nstruction of the model: the deflections are defined only at mass

points, and the supports are made to coincide with force points;

see Chapter II. ) For N = 20 the moment values still have noticeable

differences from the ”Exact" curve at some intervals. Although the

exact maximum moment is approximated well even by using the small

value of N = 4, it is important to note that the comparison should be

viewed for the entire range of response. Thus, it is seen that

overall agreement increases with larger values of N.

The preceding is also generally true for end shear. In order

not to clutter the illustration, shear responses are shown in

Figure 4. 4.only for N = 10 and the exact solution. The agreement

is seen to be good, and it improves with larger values of N (not

shown).

4. 3. "Apparent" Convergence _cgth_e ”Rotary, " "Shear, " fl

”Timoshenko" Models
 

Since exact analytical solutions for the limiting cases (N = cl3)

of these models are not available, the "convergence'l is considered

by comparing numerical results using different values of N.

Results for the "Rotary" model are shown in Figures 4. 5,

4. 6, and 4. 7 for deflections, moments, and shears. Results for

the "Shear'l model are shown in Figures 4. 8, 4. 9, and 4. 10 for the

same quantities. Data illustrating the apparent convergence of the

"Timoshenko" model are presented in Figures 4. ll, 4. 12, and 4. l3,
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respectively, for deflection, moment. and shear. From an

examination of all these data it may be reaSOnably concluded that

the results converge to some limit, and are trustworthy.

From a comparison of the shear reSpOnses by the ”Rotary"

and "Shear" models (see Figures 4. 7 and 4. 10) it is of interest to

note that by considering shear deformations the shear response

becomes appreciably smoother.

 
4. 4. Relative Importance ng_he_a_r_a£d Rotatory Inertia

A comparison of the moment and shear response curves

presented in the preceding sections will show that neither the

maximum moment nor the maximum shear varies appreciably from

one model to the other. Particularly, the maximum stresses shown

by the "Rotary" model and the ”Euler" model are well within 1% of

each other, whereas the "Shear" and "Timoshenko" models exhibit

almost identical behavior in all cases.

This is illustrated, for the moment, in Figure 4. 14. The

differences between the "Rotary” and "Euler" models or between

the ”Timoshenko" and ”Shear" models represent the influence of

the rotatory inertia. It is seen that this influence is small indeed.

The differences between the "Shear" and ”Euler" models or between

the ”Timoshenko" and ”Rotary" models represent the influence of

shear deformations. This influence is seen to be appreciable.



 

    

  

    

   



 

35

The preceding data pertain to a beam with a 10 ft. span.

Additional data for Shorter Spans are presented in Figure 4. 15

for considerations of the effects of rotatory inertia and shear

deformations. All curves plotted in the figures represent the

differences between the results given by the discrete models

(N = 10) and those correSponding to an exact solution of the

continuous Euler beam.

As expected, the influence of shear deformations on

deflections is to increase the deflections with decreasing Span

length. The effect of the shear deformations is to decrease both

the midspan moment and end shear. For moment, the reduction

stays essentially constant for span length greater than 6 ft. For

shorter spans, the reduction increases. The shear reduction

exhibits an oscillatory pattern.

The differences between the pairs of graphs are obviously

due to rotatory inertia. It is seen that the qualitative effects of

rotatory inertia are to decrease the deflection and the moment,

but to increase the end shear. However, the magnitudes of these

effects are very small.

In addition to the preceding, a number of beams with different

cross-sectional prOperties and lengths were also solved to see whether

the contributions due to rotatory inertia could be significant. It was

found that neither the stresses nor deflections were affected appreciably

by rotatory inertia. Hence, the data are not presented herein.



 

       

 



 

V. ELASTIC-PLASTIC BEHAVIOR OF THE "TIMOSHENKO'l MODEL

5. 1. Introduction

In this chapter, the apparent convergence of the elastic-plastic

response of the "Timoshenko" model is considered first. Then, the

inelastic behavior of simply supported and fixed-fixed I-beams is

studied. The parameters considered are the web thickness and the

span length. The variables are'the maximum deflection, permanent

set (permanent total deflection), and permanent shear slide.

Except for varying length or web thickness, the beams

analyzed in this chapter are generally the same as described in

Section 4. l. The ranges of the parameters are, in the notation of

Figure 4.1, 0.2 > t_w >0. 025, and 6' < L < 20'.

The loading used is the same as given by Equation 4. 1. How-

ever, the parameter c is set equal to unity in order to carry the

problem into the plastic range. Furthermore, after all the maximum

reaponses have been reached, and elasticity resumed, the external

loading is removed in order to obtain the permanent set from the

subsequent free vibration.

As described in Chapter II, for an analysis in the plastic

range, it is necessary to define a yield or interaction curve. (This

cross-sectional prOperty will be generalized for the discrete model

36
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as a discrete joint prOperty. ) Though a considerable amount of

theoretical work has been reported on this subject (13, 19, 25, 29, 30,

31), experimental data is very scarce (9, 15). For the numerical

work here, two yield curves will be used:

mlz + e2 = 1 5.1

m2 + s‘2 = l 5. 2

where m and s are, respectively, the non-dimensional moment

M/My, and shear S/Sy. The moment capacity, M , is computed
Y

for the cross-section by assuming that the whole section has

yielded at 433000 psi. The shear capacity, Sy, is obtained as

k'A (the "active shear area") times the shear yield stress, taken

to be 18000 psi.

The relationship of Equation 5. 1 may be regarded as a good

approximation to the actual behavior of I-sections, and agrees well

with certain relationships which were formulated with some

experimental basis (9, 15). On the other hand, Equation 5. 2 under-

estimates the strength of the section; thus, it should be considered

to be a lower bound. Figure 5. 1 illustrates the interaction relation-

ships of Equations 5. 1, 5. 2, and the one given in Reference 9.

5. 2. Convergence _ci the ”Timoshenko" Model 3291—9 Elastic-Plastic

Range

In Chapter IV the convergence of the "Timoshenko" model in

the elastic range was shown. Here, an elastic-plastic example is
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treated. The beam is a 12WF53 (I-beam), 10 ft. IOng, and fixed

at the ends. The yield criterion of Equation 5. 2 is assumed.

As before, the deflection converges very rapidly, therefore,

it is not presented. The moment and the shear at the support are

plotted, respectively, in Figures 5. 2 and 5. 3 for several values of

N.

In the case of the moment, N = 20 and N = 40 give results

that are very close to each other. As for the shear, one may note

that the convergence is even more satisfactory than for the elastic

case! (Compare Figures 4. 10 and 5. 3. ) (Seemingly, plastic yielding

serves to attenuate the higher modes' effects. )

It is of interest to trace the locus of the stress state of the

elastic-plastic response. This is shown in Figure 5. 4. Numerals

on the locus correspond to those times similarly noted in Figures 5. 2

and 5. 3. Of course, the ranges between points (3), (4), and (5) are

plastic, while the rest of the locus is elastic.

5. 3. Response o_f_ Simply Supported I-Beams fl Different Length!

Em Thicknesses

It is reasonable to expect that, for shorter beams, yielding

would start first at the supports, then spread toward the mid-span.

For longer beams, yielding would start at the mid-span, then spread

outward. This behavior is illustrated in Figure 5. 5 for beams with
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constant non-dimensional web thickness t—W = 0. 0346 but with

spans varied from 6 ft upwards. The yield curve of Equation 5. 2

is used. Further dividing lines are placed in this figure to show the

degree of interaction. (For instance, the region between the 80%

and 95% lines, has yielded at values of maximum shear that are

only 80% to 95% of the shear capacity. This is, of course, caused

by the small amount of moment present in this region.)

In Figure 5. 6 are plotted, for the same parameters as above,

the maximum deflection, the permanent set, and the permanent

slide. Full lines correSpond to the data obtained by use of Equation

5. 2 as the yield curve; dotted lines correspond to Equation 5. 1.

It is noted that the displacements are scaled by the maximum

(elastic) static deflection. For the present set of parameters, the

elastic-plastic "Euler" model gives the maximum non-dimensional

deflection as a constant equal to l. 56 for all span lengths. (Indeed,

the choice of the external loading and the scaling of the deflections

are reSponsible for this constancy.) Therefore, it is apparent that

the difference between the maximum deflection curves and the

constant ”Euler" solution is entirely due to the effects being considered

here: rotatory inertia, and shear. (The latter, of course, is mostly

responsible for the difference.) For longer beams, the maximum

deflection curves are seen to approach the ”Euler" case, indicating

that shear and rotatory inertia effects become less important.
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A similar observation can be made for the permanent set

curve. Although the numerical data from the "Euler” solution

have not been obtained, it is seen that for longer beams increasing

the length did not change the essentially constant behavior of the

sets. Also, as expected, the permanent slide converges to zero

as the beam length is increased. On the other hand, as the beam

becomes shorter, the permanent slide constitutes a higher portion

of the permanent set.

It is seen that the two yield criteria used give results that

show little difference from each other. This can be explained by

the fact that, for simply supported beams, yielding is dominated

by either moment (mid-span region) or shear (support region).

For these stress conditions the two yield curves used are quite

close (see Figure 5. 1).

Figure 5. 7 shows a set of curves similar to those just

discussed. In this case, the beam length is held constant at 10 ft,

and the web thickness is varied. It is seen that these curves have

shapes similar to those in the previous figure. Recognizing that,

so far as shear effects are concerned, a decrease in span length

has the same qualitative effect as a decrease in web thickness, one

can make observations about these data analogous to those made in

connection with the preceding figure. It may be noted that, in this

case, most structural I-beams, except for those with very thin webs,
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are not greatly affected by shear, if they are simply supported.

In the following section, it is shown that such is not the case for

fixed-fixed beams.

5. 4. ResEonse 2f Fixed-Fixed I-Beams with Different Lengths
 

and Web Thicknes 3 es
 

A feature of fixed-fixed beams is that, at the supports both

moment and shear can be large and thus strong interaction would

take place in the plastic response.

The moment and shear forces at the fixed end are shown in

Figure 5. 8 for an I-beam with t—W = 0. 0346 and a varying length

(as marked on the curves). The yield curve of Equation 5. 2 is used.

It is seen that for longer beams yielding takes place due to relatively

higher values of the moment; for shorter beams yielding is mostly

due to shear.

This is further illustrated in Figure 5. 9 which shows the

maximum deflections, permanent sets, and permanent slides.

Unlike simply supported beams (see Figure 5. 6), the results

corresponding to the two interaction curves are quite distinct. This

can be explained by referring to Figure 5. 1 and noting that there is

an appreciable difference between the two yield curves in the region

where both moment and shear play a substantial role.

In Figure 5. 10 the maximum deflection, permanent set, and

permanent slides are presented for a constant length of 10 ft and
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varying web thickness. Together with the results shown in

Figure 5. 9, the graphs in Figure 5. 10 indicate that, similar to

the case of the simply supported beams, as the Span length or

web thickness is increased, the reaponse curves seem to level

off, indicating a decrease in the shear (and some rotatory inertia)

effects and an approach to the "Euler" case. On the other hand,

Figure 5. 10 indicates that at a length of 10 ft, most I-beams are

very sensitive to shear effects.



 

 

           



 

VI. CONC LUSION

In this thesis a method of analysis of the elastic-plastic

vibrations of beams has been presented. The analysis has

included the effects of shear deformations, rotatory inertia, as

well as the interaction of moment and shear forces on the yield

behavior.

The method employs a discrete physical model. This,

together with the use of a numerical procedure, makes it possible

to handle beams with different loading and boundary conditions

which have, in general, limited the practicality of the continuum

approach to this type of problems.

In the absence of exact analytical solutions, the reliability

of the model is established essentially empirically by the ”apparent

convergence" of the deflections, moments, and shears, as the beam

is divided into larger numbers of panels. (An exception is the ”Euler"

model in the elastic range, which has yielded solutions that converge

to an exact analytical solution. )

Extensive numerical results have been obtained to study the

influence of the web thickness and span length of I-beams on the

relative importance of shear deformation. It is shown that as the

length (or web thickness) is increased, results given by the

”Timoshenko'l model converge to that of the (elastic-plastic) ”Euler"
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model. As expected, this analysis indicates that shear and rotatory

inertia effects become negligible for longer (or thicker webbed)

beams. However, it is also shown that the shear effects are

substantial, and hence should be considered, even for beams of

quite usual proportions. For example, for a 10 ft. long simple

span (typical I-section), the permanent shear slide accounts for

35% of the total permanent displacement. The percentage could

be much higher, depending on the form of the interaction curve,

if the beam is fixed at the ends. It is further indicated that the

interactions between shear and moment on the yield behavior play

a significant role in the inelastic response. This is particularly

true for beams with fixed ends.

From experience gained in the numerical work of this

investigation, the following observation regarding the relative

merits of the different models considered herein is noteworthy:

The efficiency of a model seems to improve as its number of

degrees of freedom (for equal values of N) is increased. Thus,

the "Timoshenko" model is seen to converge the fastest, that is,

it yields sufficiently accurate results for lower values of N and

for larger values of the time increment! Consequently, it is

concluded that, even in the elastic range and when shear and

rotatory inertia effects are not sought, the ”Timoshenko" model

will yield more accurate results with less computer time.
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As possible items of future work on the subject, it is

suggested that experiments be carried out so that the validity of

the method of analysis could be examined. So far as the theory

is concerned, it seems feasible that the method of analysis could

be extended to consider the strain hardening case. Finally, a

more rigorous mathematical treatment of the choice of the time

increment in the integration procedure for the problems

considered here should prove worth while.
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Figure 2. 3. Discrete Beam Model

I hi/2 I hi/2 I h1+1I I I 1
.
.
.

+x
 

i+1’%+l

+y1+1

“1+1

\

 

   

  

 

\

 J   

 

+

6
-

H
I

+ D
—
l

S

i h Segment i+l t Segment

—
-
—
—
—
-
-
-
_
—
-
_

  

 

I

  
Segment

+Y

 
Figure 2. 4. Deformed Configuration of the Discrete Beam.



 

 

 

 



 

53

 

 

Figure 2. 5. Forces Acting on a Typical Panel of the

Discrete Beam.
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Figure 4. 13.
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Reference (9)
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Figure 5. 1. Shear-Moment Interaction Curves.



 

y
)

(
M
/
M

N
o
n

-—
D
i
m
e
n
s
i
o
n
a
l
M
o
m
e
n
t
m

69

 

 

/ .

/ x

1 13
//| FLA \STIC

I i \

“40) / | RAN GE

 

 

\

l/ \ I
/ \

\ f\\_ /

l T 10 ‘ \

/ ' ‘

/

/

/

/ . 2 2
/ Yield Curve: 8 + m = l

l l l J l

.1 . 2 . 3 4 . 5

Non-Dimensional Time t— (t/Tl)
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Figure 5. 3. "Apparent" Convergence of "Timoshenko" Model in
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Figure 5. 6. Deflections, Permanent Sets, and Permanent Slides for

Simply Supported I-Beams with Different Lengths.
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Figure 5. 7. Deflections, Permanent Sets, and Permanent Slides

for Simply Supported I-Beams with Different Thicknesses.
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__ Yield Curve: 3 +m -
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Figure 5. 9. Deflections, Permanent Sets, and Permanent

Slides for Fixed-Fixed I-Beams with Different

Lengths.
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— Yield Curve: s2 + m = 1

--- Yield Curve: 5 +m
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Figure 5. 10. Deflections, Permanent Sets, and Permanent Slides

for Fixed-Fixed I-Beams with Different Web

Thicknesses.





 

APPENDIX

"EXACT" ELASTIC SOLUTION OF EULER BEAM

For a uniform, simply supported beam subjected to a uniformly

 
 

. -2t T
applied load cW e / l, the deflection is readily found to be

-2t/T1 2

y(x t) = 1: 4W6 5111325 pie -picos(pit)+T1 sm(pit)

’ 1=1,3, . , "pA L ( )

. 2 4

l

The bending moment M, and the shear S can be computed,

respectively, from the second and third derivatives of the

deflection function.

If the loading W is written in terms of the yield moment

(W = 8 My/ L2), the responses can be made non-dimensional as

follows,

WC t—) _ g 1536 sin in? (e-Zt— eoszniZF+ sin21TiZt—)

' ‘ -_ —_2’4— ' "T—.
1—1, 3 5103(0 1 +1) in

M
8

-— Sizn3c —

m(§nt): T Y(étt)

p
—
a

, 3i:

3 3m . M _

s16?) = 1223 %J M»)

where t—= t/Tl, 1’, = x/L.
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It is of interest that through this non-dimensionalization

process, no material and physical prOperties appear in the

expressions for deflection and moment. (Indeed, the choice

of W = 8 My/ L2 made this possible in the case of the moment.)

It may be noted that all of these expressions are convergent.

The deflection converges at 1/15, the moment converges as l/i3.

and shear converges as l/iz.
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