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ABSTRACT .

ELASTIC-PLASTIC RESPONSE OF BEAMS
INCLUDING EFFECTS OF SHEAR AND ROTATORY INERTIA

by B. Nurel Beyleryan

In this investigation a physical model is constructed in which
the shear deformation and rotatory inertia of a continuous beam, in
addition to the bending deformation and lateral displacement inertia,
are lumped at a discrete number of points. The model thus consists
of rigid panels connected by shear and moment springs. The inter-
action between moment and shear on the material behavior at yield is
taken into account. The mass, rotatory inertia, and external loading
of the panels are lumped at the center of each panel.

Solutions are obtained by numerical techniques, which have
been programmed in the Fortran language for use on the CDC3600
system of Michigan State University. The convergence of the discrete
model is indicated by the increasing degree of agreement of the
numerical results as the beam is divided into larger numbers of
panels.

Numerical results are then obtained for simply supported
and fixed-fixed beams subjected to a blast type loading. Taking the

web thickness and the beam length of an I-beam as parameters, the
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influence of the interaction between moment and shear is studied. It
is shown that, as expected, as the web thickness or the span length is
increased, the elastic-plastic solution including shear and rotatory
inertia effects (the '""Timoshenko' model) approaches that of the simple
theory (the '""Euler' model).

For steel I-beams of usual proportions, the influence of shear
and its interaction with moment was found to be quite significant for
fixed-fixed beams and to a lesser extent for simply supported beams.

The discrete model is also reduced, for the elastic case, to
lesser forms such as one that excludes the effect of rotatory inertia.
However, it is found that, rather unexpectedly, the computer time
required when using the complete model is no more than any of the
reduced models. The latter, therefore, do not seem to offer any

practical advantage.
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I. INTRODUCTION

1.1. General

It is well known that the usual engineering theory of beam
vibrations is based on the assumptions that deformations are caused
by bending only, and only transverse inertia forces need be
considered. In particular, the theory neglects the effects of shear
deformations and rotatory inertia.

The first modification of the theory by including the above
mentioned effects was given as early as 1859, by Bresse (8); but,
apparently it went unnoticed. Rotatory inertia effects were also
discussed by Raleigh (36) in 1877, Today, for the more exact theory
that includes shear deformation and rotatory inertia effects, the
presentaticn of Timoshenko (41) is usually quoted. In fact, it is
known as the '""Timoshenko' beam theory. A derivation of this will
be given in Section 2. 1.

For several decades, after Timoshenko's contribution,
work was generally directed towards obtaining estimations of the
error introduced if effects of shear deformation and rotatory inertia
were neglected. Solutions obtained with substantial rigor for various
special cases of the problem have appeared since 1948. Two

approaches seem to dominate the literature covering the elastic






vibrations of the Timoshenko beam: the wave method (7, 12, 21, 27),

and the mode method (1, 4, 10, 20, 40, 43). The former usually employs
Laplace transform techniques to yield soluticns in closed form, The
complicated superposition required, in order to accommodate various
loading and boundary conditions, makes the method ratherlunwieldy
to apply. The mode method, presented in full in Referencel, has
also proven to be inconvenient for applications to actual problems.
Furthermore, convergence of the solution is not always guaranteed.
While the preceding discussion applies to the linearly elastic
case, the literature on the inelastic case is rather scarce. Two
articles, by Salvadori and Weidlinger (38), and Karunes and Onat (22)
dated 1957 and 1960, respectively, have considered the rigid-plastic
response of beams. It is found in the former work that, in case of
a simply supported beam, ''plastic shear hinges' may develop at
the supports in addition to a moment hinge at the mid-span of the
beam. In the latter study, a free-free, rigid-plastic beam subjected
to a concentrated load at the mid-span is investigated. In both
references, the methods used can not deal with the interaction effects
between the bending moment and shear when the material goes into
the plastic range. Yet, this interaction is known to exist, and its

effects on beam vibrations have not been ascertained.



The previous paragraphs point out clearly what has been

missing so far; namely: a method of analysis which can be used to
calculate the elastic-plastic vibrations of beams, including shear
deformation and rotatory inertia effects, with any usual boundary
conditions, and subjected to any usual loading. This will be the
general purpose of the present investigation.

Thus, the first objective of the present work is to develop
such a method. The second objective is to use the method to study
the significance of the effects of shear deformation and rotatory
inertia on the beam response in the inelastic range.

Recognizing the intrinsic difficulties of the problem,
particularly from a continuum point of view, the present work uses
the discrete model approach. Briefly, the model used to represent
the beam consists of rigid panels connected by moment and shear
springs. The force-deformation characteristics of these springs
interact when the deformations are in a plastic state. At the
middle of the panels, there are lumped masses on which the external
loads act. This model is amenable to analysis and numerical
results are conveniently obtainable from a computer.

Of course, it is not sufficient that the model produces
results, It is also necessary to show that such results are trustworthy.

To this end, the obvious way is to compare the model results with the
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exact analytical solutions (of the continuum). But exact solutions
are not readily available. Hence, the credibility of the model is
examined by comparing the numerical results yielded by models
with different degrees of fineness (analogous to the mesh size in
a formal finite difference approach). If the results seem to
converge (referred to later as ""apparent' convergence), then the
model is regarded as reliable.

There is an exception to the above approach. For one
of the ""reduced forms'' of the model, exact solutions are avail-
able--and used for comparison. Furthermore, the reliability of
the model is also judged from a physical point of view in that the
behavior, as exhibited by the model results, must make good
physical sense.

In pursuit of the second major objective of this thesis,
the model is used to obtain numerical results that would reflect
the significance of shear deformation and rotatory inertia in
elastic-plastic response. The data cover both simply supported,
and fixed-fixed beams. In order to highlight the shear effects,
I-beams alone are considered. The variables considered are the
total permanent deflection, the permanent deflection due to shear
effects alone, as well as the maximum deflection. Parameters

considered are the web thickness and span length. The web



thickness will be varied from 20% to 3% of the flange width and the

length will be varied from 6 to 20 times the beam depth.

In the remaining chapters of this thesis, the theoretical
bases of this work are presented in Chapter II, and the numerical
technique is presented in Chapter III. Chapter IV and Chapter V
contain, respectively, the elastic and elastic-plastic numerical

results. Concluding remarks are made in Chapter VI.






1. 2. Notations
The notation listed below has been adopted in this
investigation,
a = Lumped change of curvature;
a, = Elastic part of a;
°h = Plastic part of a;
a, = Elastic change of curvature, corresponding to a
change of moment A M=My;
a = a/a v
B = Shear displacement (slide);
Be = Elastic part of B ;
‘Sp = Plastic part of B ;
§] = Elastic change of shear slide, corresponding to a
y change of shear AS=SY;
B = B/By
p' = P divided by its tributary length;
A = Prefix denoting '"increment'’;
P = Density of material;
T = Time in plastic range;
¢ = Slope of a panel of the model;
<.i> = Change of ¢ with respect to time;

Rate of change of &) with respect to time;
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Cross-sectional area of the beam;
Half of the flange width;

A boundary constant;

Arbitrary coefficient pertaining to applied load;
Vector with components Aa and AB;
Elastic modulus of the material;
Plastic potential function;

Shear modulus of the material;
Gravitational constant;

Half of the beam depth;

(Subscripted or not) Length of a panel;
Moment of Inertia;

Variable subscript to denote a point or a segment
on the beam;

The highest value of i;
Constants;

A cross-sectional constant;
Length of beam;

Moment;

Maximum moment at yield;
Non-dimensional moment M/My;
Lumped mass;

Number of panels into which a beam is divided;






-l

£ ¢!

w(x, t)

»®

Lumped external loads acting on panel i;

Shear;

Maximum shear at yield;
Non-dimensional shear S/Sy;

Flange thickness of I-beam;

Period of the fundamental mode of vibration;
Period of the n-th mode of vibration;
Time;

Initial time;

Web thickness;

Non-dimensional time t/Tl;
Non-dimensional web thickness tW/(ZB);

Minimum stationary loading that will cause yield
for a simply supported beam;

Loading as a function of position and time;
Length coordinate;

Static deflection caused by a uniformaly distributed
load of W;

Vertical direction (unsubscripted);
Deflection of the beam (subscripted);
Velocity;

Acceleration;

Slope;

Non-dimensional deflection y/ Yy'



II. BASES OF ANALYSIS

2.1. Continuum Theory
For the sake of completeness, a derivation of the more
exact beam equations including the effects of shear deformation
and rotatory inertia will be given below for a physical continuum (41).
When a beam deforms, its slope :lx (or y') may be
considered to consist of two parts: ¢, the slope due to bending

only, and %% (or B'), an additional slope due to shear (P denotes

the shear deformation or ''slide''). Therefore,

v o= b4p 2.1

The kinetic equations can be obtained from D'Alembert's
principle by summing the vertical forces and the moments.

Referring to Figure 2.1, one can write:

2
%:FA"’ ol 2.2
at
aM 2
S = W+ pl ;t—‘;- 2.3

where t is time, A is the cross-sectional area, p is the

density, and I is the moment of inertia; the other symbols are

defined in the figure.
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Equation 2. 1 is obtained from a consideration of geometry,
and Equations 2.2 and 2. 3 from equilibrium. Thus, they are general
and valid for all materials. Further relations needed for an analysis
must be obtained from the properties of the material.

For an elastic and isotropic material one can write,

M = -Elg—¢ 2.4
5S

S = Gk'Ap' 2.5
where E is the elastic modulus, G is the shear modulus, and k'
is a sectional constant. For elastic beams, Equations 2.1 through
2.5 can be combined into a smaller number of equations, as various
investigators have done (if combined into one fourth order partial
differential equation, it becomes the '"Timoshenko' beam equation (41)).
However, since plastic as well as elastic cases will be treated
herein, the equations will not be combined at this point.

Equations 2.4 and 2.5 must be replaced by suitable relation-
ships when the deformations go beyond the elastic range. When this
happens, the material is assumed to be perfectly plastic. The term
""perfectly plastic' is used here to mean that no work-hardening effects
are considered. (As long as the material is not strained excessively,
most mild steel can be assumed to be perfectly plastic.)

The inelastic behavior will be assumed to be governed by the

""plastic potential theory" (19), which is briefly explained below for



the problem under consideration.

Associated with a given cross-section there is a plastic
potential function £(M, S). The curve in the M-S plane:

f(M,S) = 0 2.6
is known as the 'yield curve' or the '"interaction curve." This is
illustrated in Figure 2.2 for the positive quadrant.

When the values of M and S acting at the section are such
that £(M, S) < 0, the laws of elasticity apply. When £(M, S) = 0,
the section is in a plastic state, and yielding or plastic deformation
takes place. The value of f(M, S) can never be positive.

When plastic deformation occurs, it is governed by the
following rule: the rate of the plastic deformation corresponding
to M (or S) is proportional to the M-component (or S-component)
of the gradient Vf, or the normal to the interaction curve; see
Figure 2.2. Expressed mathematically, yielding is to follow the

relation:

9f(M, S) 9f(M, S)

oM S
3 (?) = 3 ’ap) = K1 2.7
at x'p 3t ‘Hp

in which the subscript p denotes the plastic component of the
deformations, and K1 is a scalar.
A simultaneous solution of the preceding equations, even

for the elastic case, has proven to be very difficult. For the






12

elastic-plastic case, an analytical solution seems almost impossible.
One could try the usual finite difference approach. However, he
would soon encounter difficulties in the treatment of boundary
conditions and the changing material properties.

2.2. Discrete Theory

In order to obtain an approximate solution of the problem,
the present author suggests the use of a discrete model for the
beam. It is understood that changing a continuous beam into a
discrete model inevitably involves a loss in ''resolution'' and even
some distortion. However, it is believed that the essential features
of the beam have been kept in the model.

Figure 2. 3 illustrates the discrete beam in an undeformed
state, and Figure 2.4 shows the deformed configuration of the
model. The various properties of continuum are retained in a
manner as given below.

a) The continuous beam is divided into a discrete number
of panels, N. These panels may, in general, be of different lengths,
h;.

b) The panels are assumed rigid at all times. However,
in order to account for the deformations and rotations that a
continuous beam undergoes, moment and shear springs are inserted

between the rigid panels. The sections where these springs are
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placed are called the "force points. "

c) The rotation of a moment spring corresponds to the sum
of the curvature within a length of h/2 on either side of the panel
point; that is, the flexibility of a panel is lumped eqally at the springs
to the left and right of a panel. At a typical spring i, the lumped
elastic flexibility is 2EI/ (hi-l+hi)'

d) Similarly, a shear spring lumps the shear flexibility
from a tributary length of h/2 on either side of the panel point.

For example, the flexibility of the i-th shear spring is
2Gk'A ﬁi/(hi_1+hi).

e) In inelastic action, when interaction is considered
between shear and moment, the moment and shear springs are made
to obey laws that are direct generalizations of the plastic potential
theory described earlier for a cross-section of the continuous beam.
Detailed description of the procedure is given in Section 3. 2.

f) The mass and rotatory inertia within each panel are
lumped at the center of the panel, which is referred to as a ''mass
point., " The external loading will be similarly lumped. In
Figure 2. 4 the symbols mi,(PIh)i, P;, denote, respectively, the
lumped mass, rotatory inertia, and load.

Some of the implications of this model may be noted here

as follows. The characteristic of rigid panels gives the beam a
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discontinuous look. In particular, the deflections are discontinuous
at the shear springs. Consequently, the apparent slope of a segment
is given by ¢i , which is the slope due to flexure alone.

Since equations of motion will be written for the mass points,
deflections are defined only at mass points; stress resultants are
defined only at the force points. It is also apparent that concen-
trated external loads must be applied at mass points. As a
consequence of the lumping, one might expect that the displacements,
moments, and shears essentially represent the values of the
corresponding quantities in the continuum, aweraged over appropriate
lengths.

Relations regarding boundary conditions between the model
and continuum will be dealt with in Section 2. 4.

The equations governing the motion of a discrete beam
system are written in the same way as for a continuous beam.
However, the infinitesimal increment along the beam is replaced
by a segment of finite length, hi'

Writing the equation of motion in the vertical direction

for a typical panel i, (Figure 2.5) one obtains,
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Similarly, the equation for rotatory motion becomes

8%, h,

Lo_ - L
(pIn); vl M - Mt 5 (545,

D29

If elasticity prevails, the constitutive equations are,

in discrete form

"‘ZEIQi
O T 2.10
i i-1
and
S. = Gk'AB, —2——— 2.11
i i b Th_ .

where a, and ‘31 denote, respectively, the deformations of
the moment and shear springs. They are related to Yy and ¢i
by geometry and the relations are given in Section 3. 2.

When plastic yielding is considered, Equations 2.6 and
2.7 are applied to the springs of the discrete beam. At a force

point, the yield curve is given by

f(M.,,S.) = 0 2. 12
i’7i
This is similar to Equation 2. 6 which pertains to a cross-section
of the continuum. Since the curvature and the shear slide are
lumped at the force points, Equation 2, 7 can be generalized for

a typical force point as
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3f(Mi, Si) 8f(Mi, Si)

i B i _
Jownalini onne T (X)), 2.13

_'c’)'t——_FE_l

in which (ap)i and (ﬁp)i are the plastic components of a,
and Bi , respectively.

It must be pointed out that the governing equations of
the discrete model are spacewise discrete, but the linear and
angular accelerations, y1 and ¢1 , are continuous in the time
dimension. Therefore, temporally continuous solutions of
these equations could be sought. However, these equations,

as discussed later, will be integrated herein numerically.

2. 3. Boundary Conditions

In the use of the model, supports will be made to
coincide with force points. However, in the prototype (continuous)
problem, boundary conditions are not always given in terms of
stress resultants. Thus, whenever a boundary condition is
given in terms of displacement in the prototype problem, it. is
necessary to interpret this condition as a stress resultant
condition for the model.

Since the stress resultants are directly related to the

deformations of the moment and shear springs, the prototype
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displacement conditions must be used to compute these deforma-
tions. As will be shown later, this can be done through geometry.

But first, the following relations at a boundary point should be

noted.
h 5
- y
_ P shear
[y] model [y + fo x ] continuum 2. 14
hoy 5
= 2
[] model Lo+ fo x dx] continuum 2.15
If y = 0 for the continuous case, Equation 2. 14 reduces to
h 5
= y
- 2 shear 6
[v] model [ fo 0x dx] continuum 2R
If ¢ =0 for the continuum, Equation 2. 15 will yield
2 )
= 2 2%
[4] model [ fo ox dx] continuum 2. 17
The usual types of boundary conditions can now be taken
singly.

Simple Supports: The condition that moment vanishes

is straightforward and needs no further remark. The other condition
of vanishing (total) displacement for the prototype implies, by
Equation 2. 16, that the model will have some shear deformation at

the support representing the shear deformation of the continuum
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lumped from a tributary length of h/2 adjacent to the support. For
the model, the value of this shear deformation can be determined
from considerations of geometry.

If j (j=N+1) denotes a support at the right end of a beam,
then the lumped shear deformations at the two ends of a simply

supported beam are given by

Knowing the deformation (or its increment), the shear
force (or its increment) at the support can be computed.

Fixed Supports: In this case, Equation 2.17 gives the
fixed end slope of a model as the lumped curvature due to bending,
contributed by a length of h/2 adjacent to the support. From
geometry, the rotations of the moment springs at the two fixed

supports are given by

a. ==¢ 2.19

Knowing the rotation (or its increment ), the moment (or
its increment) at the support can be computed. Shears at fixed
ends are found in precisely the same way as for simple supports.

Free Ends: Since both boundary conditions correspond
to specifying stress resultants--moment and shear vanish--no

special interpretations are necessary.






III. METHOD OF NUMERICAL SOLUTION

3.1. General

The method essentially consists of a step-by-step numerical
integration of the system of equations presented in the foregoing
chapter. The problem here may be formulated as follows: at some
given time t=t ., the system is known to be in an elastic state, and
the values of all the displacements Yi:yi(to) (and 4>i = ¢i (to)) and
their first derivatives iri(to) (and a)i (t,)) are known. Furthermore,
the external loading P;(t) is completely prescribed. It is required
to determine the displacements and stress resultants at time
t1=t°+ At, where At is a small time increment.

For easy reference, the model presented earlier which
contains the mechanism of shear deformation and rotatory inertia
will be referred to as the '""Timoshenko' model. Obviously, the
model can be reduced to lesser forms. Thus, the ""Shear' model
refers to the case in which shear deformation is considered but
rotatory inertia is neglected. The '"Rotary' model refers to the
case in which rotatory inertia is considered but shear deformation
is neglected. Finally, when both effects are neglected, the model
reduces to the '""Euler'' model.

The symbols T(N) will be used to denote: '"Timoshenko

model; beam di‘vided into N equal panels.'" The symbols S(N),

19
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R(N), and E(N) are defined in a similar fashion. The analytical
solution of the continuum case will be referred to as the '"Exact'
solution. The term ''continuous beam' will be used to mean the
continuum case; it does not refer to a multi-span beam structure,
which is not treated here.

Theoretically, it is possible to obtain solutions of the
""Shear, "' Rotary,' and '""Euler' models directly from the
""Timoshenko'' model. A solution of the ''Shear'' model could be
obtained if the shear stiffness is taken as infinity. However,
since this is not practical for numerical work, G may be assumed
to be very large, thus letting the "Timoshenko'' model approach the
"'Shear' model. Similarly, if the rotatory inertia term is taken
close to zero, the '"Rotary' model could be approached. By
simultaneously using a large value for G and a small value for
(pIh) the "Euler'" model can be approached.

This approach was not used here mainly due to technical
difficulties. First, it is not clear how big or how small G and
(pIh) have to be in order to lead to satisfactory results; and secondly,
the time increment needed for stability in the numerical integration
has proven to be very sensitive to changes of these quantities (G and
pIh ). In one instance, approaching the ""Shear' model from the
""Timoshenko' model required a time increment almost 10 times

smaller than the ""Shear'' model requires.



21

In order to avoid these difficulties, it was found more
convenient to develop the ''Shear, ' '""Rotary, ' and '""Euler' models
individually even though the numerical procedure of solution differs
slightly from one model to another,

The procedure of solution for the different models will
thus be described separately in the following. It should be noted
that while the prccedure is given for the "Timoshenko' model for
both the elastic and the plastic range, for the other models, only
the elastic case is considered.

3.2. The "Timoshenko' Model

Elastic Range

1. From geometry (see Figure 2. 4), the initial (t=tg)
deformations of the shear and moment springs can be computed
from krown initial displacements (assuming ¢ to be sufficiently small):

a,(t) = &f(t) -6, (t) 3.1
Bilt,) = vy(t) = y;_)(t) =3 (ho(t ) +h 1o, (£ ) 3.2

2. So long as elasticity prevails, one can compute the
moments Mi(to) and shears Si(to) from Equations 2,10 and 2,11,

3. Knowing Mi(to)’ Si(to)’ and the loading Pi(to)’ the
accelerations yi(to), and &;i(to) can be computed from Equations
2.8 and 2.9, respectively. Thus, all quantities that enter into
the problem are known for t=t .

4. The changes in the displacements at t=t; can now be

determined by a forward numerical integration procedure. The
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formula used in this thesis is:
1 2
yilt)) = yilt)) + (b=t )yylee) + 5t -t5) ¥ilt) 3.3

and similarly for ¢i(t1) (see Reference 32).

5. Knowing the displacements, one goes through the same
procedure as outlined in steps (1) through (3) and obtains .y'i(tl) and
o5t

6. The velocities at time t; can be computed by a

numerical integration. The formula used here is
) = ) 43t ) ) 3.4
Yk = Wl T e W el B s

and similarly for :ti(tl).

7. Thus, one is ready to repeat the process to solve for
the response at ty=t,+aAt, etc.

Elastic-Plastic Range

Successive applications of the cycle of integration in the
elastic range will, at some time, yield values of M and S that
violate the plastic potential theory; that is to say, f(M, S) will become
positive. Smaller time increments will then be tried until a time 7
is found when (M, S) = 0 (within a prescribed degree of accuracy).

The numerical method, representing a finite incremental
form of the plastic potential theory, is given below for one step of

integration in the plastic region.
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Let plasticity start at time t;=7 . Since Equations 3.1
through 3. 3 apply, the increments Aa and AB are known for the
next time increment ATy however, the material property Equations
2.10 and 2. 11 can not be applied to the whole of Aa and AB. There-
fore, the problem becomes one of splitting 4@ and AP into elastic
and plastic portions, of which Ao and AB, (the elastic portions of
Aa and AP ) will produce changes in the stress resultants, but the
plastic portions, Aap and Aﬁp do not affect the stress resultants.

A graphical representation of the necessary technique is
given in Figure 3.1 for a typical force point. The yield curve is not
specified, indicating that the method is general, and it applies to any
plastic potential function.

In Figure 3.1 the ordinate is assigned the dual scales of m
(the non-dimensional moment M/My) and AT (the non-dimensional
angle change Au/ay ,» where o,y is the change of rotation
corresponding to a totally elastic change of moment AM=My at the
particular force point). Similarly, the abscissa is assigned s (s=S/Sy)
and AE(A—ﬁ:Aﬂ/ﬁy » where ﬁy is the shear slide corresponding to a

totally elastic change of shear AS=S_ at the force point). It is

Yy
important to note that, this scaling has made possible a direct

graphical correspondence betwen AM and sa ., and similarly for

shear.
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Let A (Figure 3. 1) be the position of the stress state at
time T The vector d (with components Aa , AR ) is laid on the
graph with its tail at A (AD). Next, a circle is constructed with
AD as a diameter to intersect the yield curve at B (and of course, A).
Then, Bis the stress state at time TS -2 AT . Moments and shears
are read directly from the graph at point B. Furthermore, the
components of AB on the Aad and AB scales are the elastic parts
of these quantities.. The components of BD (the perpendicular to AB)
are the plastic parts of Aa and AB . The validity of the preceding
statements is explained in the following.

There are three conditions to be satisfied by the division of
Aa and AR into the elastic and plastic parts. First,

Aa = Aue o+ Aup

AR = Aﬁe + Aﬁp
secondly, the new stress state at time ToHAT, computed from Aa
and AP, (using Equations 2. 10 and 2. 11) must satisfy the yield
condition, i.e., Equation 2.12; and thirdly, the plastic flow rate
vector must be normal to the yield curve (Equation 2. 13).

The first condition is satisfied here from simple geometry
considerations. The second one is obviously satisfied since point
B is on the yield curve. As for the third, since Figure 3.1 is
constructed for a very small time interval, the vector quantities

A;p and Ab_p essentially represent the rates of the plastic
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deformations. Therefore, the flow rule of Equation 2. 13 is satisfied
on a finite increment basis.

When the vector AD points inward, elasticity is resumed and
Equations 2. 10 and 2. 11 are validated for the whole of Aa and Af .
It must be noted that, while one or more force points may go plastic
and require the treatment described above, other points that remain
elastic will, or course, be handled according to the elastic rules.

Conceptually, the graphical procedure outlined above is
simple and straightforward. However, the programming of it on a
computer, though feasible, is not convenient. Therefore, to
facilitate programming, the further assumptions are made that the
arc AB can be approximated by a circle whose curvature, and
center of curvature are those of the actual yield curve at point A,
as shown in Figure 3. 1. Since the length AD can be controlled by
the size of AT, the error introduced due to the above approximation
can be kept as small as needed by using a sufficiently small AT.
The method is, in general, consistent with the forward integration
method used throughout this study. Note that, so far as the flow
rule of Equation 2. 13 is concerned, the procedure incurs no error
except that of approximating an arc by a chord, which is inherent

in the numerical integration method.
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3.3. The "Shear' Model

The "Shear' model differs from the '""Timoshenko'' model in
that the rotatory inertia is neglected. Thus Equation 2.9 assumes
the form

h,
0 = M -M, +7‘(si+s. 3.6

i i+l 1+l)

In case of the '""Timoshenko' model both Yi and ¢i are
independent quantities. For the ""Shear' model they are not
independent and the relationship is to be obtained as follows:

a) By substituting B ;'s from Equations 3.2, Equations
2. 11 are written out for S; in terms of y; and 9 -

b) Equations 2.10 are written out for M, in terms of ¢i ¢

c) The expressions for shear from (a) and the expressions
for moment from (b) are then related by Equation 3. 6. Thus the

following relationship between ¢, and y; is obtained (taking h;=h

for all i):
K,h
{Bligy H d=lhiSyr)id, =RV
K,h K,h K,h
((l+—=) o) +(2+ =), +{-1+ =3 "= Kyy3-Kyy,
: K,h
(-1+—=)p _;+(B) & =-Kyy Ky
37

_ k'AGh | o
where KZ =—7ET b depends on the boundary conditions, for
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simple supports b=1+1, 5Kh, for fixed supports b=3+, 15K,h. The
second equation from the top is typical.

Except for the step that ¢i's are obtained from Equation 3.7
(instead of by numerical integration) the numerical procedure for
the '"'Shear'' model is the same as the one outlined in Section 3. 2 for
the '"Timoshenko'' model.

3.4. The "Rotary' and '"Euler' Models

The "Rotary'' model differs from the '"Timoshenko'' model in
that the shear deformation is neglected. Hence, the displacement of
the "Rotary' model does not exhibit any jumps due to shear.
Consequently, for a beam with N panels, there can be only N-1
independent displacements yi- Similarly, all ¢i's are fixed by
geometry once the yi's are determined.

The supplementary geometry equations may be taken as,

Yo = Vai1 " Vn2 ¥ ¥z = 3.8

and, by setting P ;= 0 in Equation 3.2 and solving, one obtains,

i
& = g &ty ey e

3.9

e
The numerical procedure for this case differs from that for
the "Timoshenko'' model in another aspect. Since f;=0and G ==

Equation 2. 11 can no longer be applied to calculate the shears which

are now governed only by the kinetic equations.
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Using Equations 3.8 and 3.9, Equations 2.8 and 2.9 can

be combined to eliminate all the second time derivatives so that

the shears Sl’ P Sn are related only to the bending moments

and the external loads. (Note that the moments are computed
from Equation 2. 10 as previously.)

The resulting system of equations appears as,

1+K3 1—K3 0 0 51 Cl—l
»ZK3 1+3K3 l—K3 0 0 S2 CZ
ZK3 -4K3 1+3K3 l—K3 0 0 .
-ZK3 ‘!‘4}(3 —4K3 11'3}(3 I-K3 0 . Sl
1(1+K3) eoe s s -2-2K3 2+ZK3 —Z—ZK3 3+K3 Sn Cr1
where K, = 4:’“:‘) by taking equal h;'s. A typical ci is given a0
by
2
C, = K,P, - 2K,P, | +2K,P, , - ... S My - M)
but
- 2
Cn = Pn-(l+K3) Pn_l+(1+K3)Pn_Z-... -F(Mn-M.)

The set of simultaneous Equations 3.10 are solved to obtain

the shears. The shear at the last force point, S., is obtained from

Equation 2. 7. The shears can now be used in Equation 2.8 to

calculate y1 which are, in turn, used to compute the displacements
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y; for the next time interval. The cycle is then completed.

The ""Euler' model differs from the '"Rotary' model in that
the rotatory inertia is neglected. The numerical procedure is the
same as that for the '""Rotary' model except that, in arriving at
Equation 3. 10, Equation 3. 6 is used instead of Equation 2. 9.

3.5, Time Increment

Mathematically, the method used here is analogous to a
numerical integration of a system of partial differential equations
which are, in general, nonlinear. The size of the time increment
for each step of integratién obviously plays a dominant role.

Unfortunately, there seems to be no rigorous method in
existence of estimating the appropriate values of At to use. A
trial method, therefore, was used to determine a satisfactory time
increment. The following is a conservative listing of the time
increments in terms of T, which is numerically equal to the
fundamental period of vibration of a simply supported, elastic
continuous Euler beam.

a) '""Timoshenko' and '""Shear'' models:

T
At = l 71 for I=sections and all values of N; for N > 20,
> N
At can be based on N = 20,
1 h

At = for rectangular cross-sections and all values
10 1\_12'

of N,

b) "Rotary'' and '"Euler'' models:
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1 T

T
_ 1 _ 1 . .
At = 10 EZ or At = 1\73- whichever is smaller.

It must be emphasized that the preceding is based on the
numerical experience of the present study which has dealt with a
rather simple kind of loading. The above listing may not apply if
the loading is substantially different.

3.6. Use of the Computer

The computer work for this study was conducted on the
digital computer CDC3600 at Michigan State University, The
Fortran language was used.

It is found that the time of compilation, loading, etc., is
about one minute. For N = 10 and for a length of time t = 3T,
the execution of the program takes somewhat less than a minute.
For the problems solved, the maxima are usually reached at
t < 0.5T; (but it may be necessary to carry the solution as far
as t = 3T in order to estimate the permanent set).

For larger values of N, the time needed is slightly more
than that calculated according to the square of the ratios of N,

The time corresponding to the ''Shear, ' '""Rotary, ' and
""Euler' models can be estimated using the information given in

Section 3. 4.






IV. RESULTS IN THE ELASTIC RANGE

4.1. Introduction

The results presented in this chapter deal exclusively with
response in the elastic range. The convergence of mid-span
moments, end shears, and maximum deflections are shown for
the four models considered here. Also investigated is the
relative importance of shear and rotatory inertia in elastic
vibrations.

According to the notations in Figure 4.1 the example beam
has the following cross-sectional dimensions: B = 5", H= 6",
t_w =0.0346, T = 0.577. The beam is simply supported at both
ends, and divided into panels of equal length. Except for the data
presented in Section 4. 4, the length of the beam is 10 ft.

A blast type loading, applied uniformly on the beam, is
given by the expression

-2t/ T

w(x,t) = cW e 4,1

where ¢ is a parameter representing the load intensity, and
W= SMy/ L2 is the load necessary to cause yield in the mid-span
of the beam.

4.2. Convergence of the "Euler' Model

The "Euler' model is the simplest of all the models studied.

31
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In fact, it can be considered to be a special case of each of the
other models. For this model, an exact analytical solution is
obtainable, and can rightly be regarded as the true limit to which
the discrete model should converge. Strictly speaking, the
convergence to the true limit of a special case does not necessarily
imply similar convergence of more general cases. However, it
should certainly strengthen the case for the other models (for
which there are no exact analytical solutions available for
comparison). It is essentially in this regard that the study of the
convergence of the "Euler' model is significant for the purpose of
the present work.

The "Exact' solutions (see Appendix), as well as the ""Euler"
model solutions for various values of N are plotted in Figures 4.2,
4,3, 4.4 for the center deflection, center moment, and end shear,
respectively.(The deflections are scaled by Yy, the maximum static
deflection. ). For more precise comparisons, the values of the
maximum responses and their times of occurrence are also noted
in the figures. As expected, the deflection converges to the ""Exact'
solution considerably faster than the moment and the shear. For
N = 21, the deflection is so close to the exact solution that they are
represented by a single curvein Figure 4.2. (That odd number of

panels is necessary for mid-span deflection is a consequence of the
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construction of the model: the deflections are defined only at mass
points, and the supports are made to coincide with force points;
see Chapter II.) For N = 20 the moment values still have noticeable
differences from the ""Exact' curve at some intervals. Although the
exact maximum moment is approximated well even by using the small
value of N = 4, it is important to note that the comparison should be
viewed for the entire range of response. Thus, it is seen that
overall agreement increases with larger values of N,

The preceding is also generally true for end shear. In order
not to clutter the illustration, shear responses are shown in
Figure 4. 4.only for N = 10 and the exact solution. The agreement
is seen to be good, and it improves with larger values of N (not
shown).

4.3. "Apparent'" Convergence of the ''Rotary, " ""Shear, ' and

"Timoshenko' Models

Since exact analytical solutions for the limiting cases (N =®)
of these models are not available, the ''convergence'' is considered
by comparing numerical results using different values of N.

Results for the '"Rotary' model are shown in Figures 4.5,
4,6, and 4. 7 for deflections, moments, and shears. Results for
the ''Shear'' model are shown in Figures 4.8, 4.9, and 4. 10 for the
same quantities. Data illustrating the apparent convergence of the

""Timoshenko' model are presented in Figures 4. 11, 4. 12, and 4. 13,
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respectively, for deflection, moment, and shear. From an
examination of all these data it may be reasonably concluded that
the results converge to some limit, and are trustworthy.

From a comparison of the shear responses by the "Rotary"
and "'Shear' models (see Figures 4. 7 and 4. 10) it is of interest to
note that by considering shear deformations the shear response
becomes appreciably smoother.

4.4. Relative Importance of Shear and Rotatory Inertia

A comparison of the moment and shear response curves
presented in the preceding sections will show that neither the
maximum moment nor the maximum shear varies appreciably from
one model to the other. Particularly, the maximum stresses shown
by the ""Rotary' model and the ""Euler' model are well within 1% of
each other, whereas the ""Shear' and '"Timoshenko'' models exhibit
almost identical behavior in all cases.

This is illustrated, for the moment, in Figure 4.14. The
differences between the ""Rotary'' and ""Euler' models or between
the '"Timoshenko'' and ''Shear'' models represent the influence of
the rotatory inertia. It is seen that this influence is small indeed.
The differences between the '"Shear' and '"Euler'' models or between
the ""Timoshenko'' and '"Rotary' models represent the influence of

shear deformations. This influence is seen to be appreciable.
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The preceding data pertain to a beam with a 10 ft. span.
Additional data for shorter spans are presented in Figure 4. 15
for considerations of the effects of rotatory inertia and shear
deformations. All curves plotted in the figures represent the
differences between the results given by the discrete models
(N = 10) and those corresponding to an exact solution of the
continuous Euler beam.

As expected, the influence of shear deformations on
deflections is to increase the deflections with decreasing span
length., The effect of the shear deformations is to decrease both
the midspan moment and end shear. For moment, the reduction
stays essentially constant for span length greater than 6 ft, For
shorter spans, the reduction increases. The shear reduction
exhibits an oscillatory pattern.

The differences between the pairs of graphs are obviously
due to rotatory inertia. It is seen that the qualitative effects of
rotatory inertia are to decrease the deflection and the moment,
but to increase the end shear., However, the magnitudes of these
effects are very small.

In addition to the preceding, a number of beams with different
cross-sectional properties and lengths were also solved to see whether
the contributions due to rotatory inertia could be significant. It was
found that neither the stresses nor deflections were affected appreciably

by rotatory inertia. Hence, the data are not presented herein,






V. ELASTIC-PLASTIC BEHAVIOR OF THE "TIMOSHENKO' MODEL

5.1, Introduction

In this chapter, the apparent convergence of the elastic-plastic
response of the ""Timoshenko' model is considered first. Then, the
inelastic behavior of simply supported and fixed-fixed I-beams is
studied. The parameters considered are the web thickness and the
span length, The variables al"e the maximum deflection, permanent
set (permanent total deflection), and permanent shear slide.

Except for varying length or web thickness, the beams
analyzed in this chapter are generally the same as described in
Section 4. 1. The ranges of the parameters are, in the notation of
Figure 4.1, 0.2 > Fw >0.025, and 6' < L < 20",

The loading used is the same as given by Equation 4. 1. How-
ever, the parameter c is set equal to unity in order to carry the
problem into the plastic range. Furthermore, after all the maximum
responses have been reached, and elasticity resumed, the external
loading is removed in order to obtain the permanent set from the
subsequent free vibration.

As described in Chapter II, for an analysis in the plastic
range, it is necessary to define a yield or interaction curve. (This

cross-sectional property will be generalized for the discrete model

36
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as a discrete joint property.) Though a considerable amount of
theoretical work has been reported on this subject (13,19, 25, 29, 30,
31), experimental data is very scarce (9, 15). For the numerical
work here, two yield curves will be used:

ml2 442 = 1 5.1

mé +s% = 1 5.2
where m and s are, respectively, the non-dimensional moment
M/My, and shear S/Sy. The moment capacity, My, is computed
for the cross-section by assuming that the whole section has
yielded at £33000 psi. The shear capacity, Sy, is obtained as
k'A (the "active shear area'') times the shear yield stress, taken
to be 18000 psi.

The relationship of Equation 5.1 may be regarded as a good
approximation to the actual behavior of I-sections, and agrees well
with certain relationships which were formulated with some
experimental basis (9, 15). On the other hand, Equation 5.2 under-
estimates the strength of the section; thus, it should be considered
to be a lower bound. Figure 5.1 illustrates the interaction relation-
ships of Equations 5.1, 5.2, and the one given in Reference 9.

5.2. Convergence of the '""Timoshenko' Model in the Elastic-Plastic

Range

In Chapter IV the convergence of the '"Timoshenko' model in

the elastic range was shown. Here, an elastic-plastic example is
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treated. The beam is a 12WF53 (I-beam), 10 ft. long, and fixed
at the ends. The yield criterion of Equation 5.2 is assumed.

As before, the deflection converges very rapidly, therefore,
it is not presented. The moment and the shear at the support are
plotted, respectively, in Figures 5.2 and 5. 3 for several values of
N.

In the case of the moment, N = 20 and N = 40 give results
that are very close to each other. As for the shear, one may note
that the convergence is even more satisfactory than for the elastic
case! (Compare Figures 4.10 and 5.3.) (Seemingly, plastic yielding
serves to attenuate the higher modes' effects.)

It is of interest to trace the locus of the stress state of the
elastic-plastic response. This is shown in Figure 5.4. Numerals
on the locus correspond to those times similarly noted in Figures 5.2
and 5.3. Of course, the ranges between points (3), (4), and (5) are
plastic, while the rest of the locus is elastic.

5.3. Response of Simply Supported I-Beams with Different Lengths

and Web Thicknesses

It is reasonable to expect that, for shorter beams, yielding
would start first at the supports, then spread toward the mid-span,
For longer beams, yielding would start at the mid-span, then spread

outward. This behavior is illustrated in Figure 5.5 for beams with
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constant non-dimensional web thickness t—W = 0, 0346 but with

spans varied from 6 ft upwards. The yield curve of Equation 5.2

is used. Further dividing lines are placed in this figure to show the
degree of interaction. (For instance, the region between the 80%
and 95% lines, has yielded at values of maximum shear that are
only 80% to 95% of the shear capacity. This is, of course, caused
by the small amount of moment present in this region. )

In Figure 5. 6 are plotted, for the same parameters as ahove,
the maximum deflection, the permanent set, and the permanent
slide. Full lines correspond to the data obtained by use of Equation
5.2 as the yield curve; dotted lines correspond to Equation 5. 1.

It is noted that the displacements are scaled by the maximum
(elastic) static deflection. For the present set of parameters, the
elastic-plastic '""Euler' model gives the maximum non-dimensional
deflection as a constant equal to 1,56 for all span lengths. (Indeed,
the choice of the external loading and the scaling of the deflections
are responsible for this constancy.) Therefore, it is apparent that
the difference between the maximum deflection curves and the
constant '"Euler'' solution is entirely due to the effects being considered
here: rotatory inertia, and shear. (The latter, of course, is mostly
responsible for the difference.) For longer beams, the maximum
deflection curves are seen to approach the ""Euler' case, indicating

that shear and rotatory inertia effects become less important.
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A similar observation can be made for the permanent set
curve. Although the numerical data from the "Euler' solution
have not been obtained, it is seen that for longer beams increasing
the length did not change the essentially constant behavior of the
sets. Also, as expected, the permanent slide converges to zero
as the beam length is increased. On the other hand, as the beam
becomes shorter, the permanent slide constitutes a higher portion
of the permanent set.

It is seen that the two yield criteria used give results that
show little difference from each other. This can be explained by
the fact that, for simply supported beams, yielding is dominated
by either moment (mid-span region) or shear (support region).
For these stress conditions the two yield curves used are quite
close (see Figure 5. 1).

Figure 5.7 shows a set of curves similar to those just
discussed. In this case, the beam length is held constant at 10 ft,
and the web thickness is varied. It is seen that these curves have
shapes similar to those in the previous figure. Recognizing that,
so far as shear effects are concerned, a decrease in span length
has the same qualitative effect as a decrease in web thickness, one
can make observations about these data analogous to those made in
connection with the preceding figure. It may be noted that, in this

case, most structural I-beams, except for those with very thin webs,






41

are not greatly affected by shear, if they are simply supported.
In the following section, it is shown that such is not the case for
fixed-fixed beams.

5.4. Response of Fixed-Fixed I-Beams with Different Lengths

and Web Thicknesses

A feature of fixed-fixed beams is that, at the supports both
moment and shear can be large and thus strong interaction would
take place in the plastic response.

The moment and shear forces at the fixed end are shown in
Figure 5.8 for an I-beam with t = 0.0346 and a varying length
(as marked on the curves). The yield curve of Equation 5,2 is used.
It is seen that for longer beams yielding takes place due to relatively
higher values of the moment; for shorter beams yielding is mostly
due to shear.

This is further illustrated in Figure 5. 9 which shows the
maximum deflections, permanent sets, and permanent slides.
Unlike simply supported beams (see Figure 5. 6), the results
corresponding to the two interaction curves are quite distinct. This
can bé explained by referring to Figure 5.1 and noting that there is
an appreciable difference between the two yield curves in the region
where both moment and shear play a substantial role.

In Figure 5. 10 the maximum deflection, permanent set, and

permanent slides are presented for a constant length of 10 ft and
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varying web thickness. Together with the results shown in
Figure 5.9, the graphs in Figure 5. 10 indicate that, similar to
the case of the simply supported beams, as the span length or
web thickness is increased, the response curves seem to level
off, indicating a decrease in the shear (and some rotatory inertia)
effects and an approach to the '""Euler' case. On the other hand,
Figure 5,10 indicates that at a length of 10 ft, most I-beams are

very sensitive to shear effects.






VI. CONCLUSION

In this thesis a method of analysis of the elastic-plastic
vibrations of beams has been presented. The analysis has
included the effects of shear deformations, rotatory inertia, as
well as the interaction of moment and shear forces on the yield
behavior.

The method employs a discrete physical model. This,
together with the use of a numerical procedure, makes it possible
to handle beams with different loading and boundary conditions
which have, in general, limited the practicality of the continuum
approach to this type of problems.

In the absence of exact analytical solutions, the reliability
of the model is established essentially empirically by the ""apparent
convergence'' of the deflections, moments, and shears, as the beam
is divided into larger numbers of panels. (An exception is the ""Euler"
model in the elastic range, which has yielded solutions that converge
to an exact analytical solution. )

Extensive numerical results have been obtained to study the
influence of the web thickness and span length of I-beams on the
relative importance of shear deformation. It is shown that as the
length (or web thickness) is increased, results given by the

"Timoshenko'' model converge to that of the (elastic-plastic) "Euler'
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model. As expected, this analysis indicates that shear and rotatory
inertia effects become negligible for longer (or thicker webbed)
beams. However, it is also shown that the shear effects are
substantial, and hence should be considered, even for beams of
quite usual proportions. For example, for a 10 ft. long simple
span (typical I-section), the permanent shear slide accounts for
35% of the total permanent displacement. The percentage could
be much higher, depending on the form of the interaction curve,
if the beam is fixed at the ends. It is further indicated that the
interactions between shear and moment on the yield behavior play
a significant role in the inelastic response. This is particularly
true for beams with fixed ends.

From experience gained in the numerical work of this
investigation, the following observation regarding the relative
merits of the different models considered herein is noteworthy:
The efficiency of a model seems to improve as its number of
degrees of freedom (for equal values of N) is increased. Thus,
the "Timoshenko' model is seen to converge the fastest, that is,
it yields sufficiently accurate results for lower values of N and
for larger values of the time increment! Consequently, it is
concluded that, even in the elastic range and when shear and
rotatory inertia effects are not sought, the "Timoshenko' model

will yield more accurate results with less computer time.
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As possible items of future work on the subject, it is
suggested that experiments be carried out so that the validity of
the method of analysis could be examined. So far as the theory
is concerned, it seems feasible that the method of analysis could
be extended to consider the strain hardening case. Finally, a
more rigorous mathematical treatment of the choice of the time
increment in the integration procedure for the problems

considered here should prove worth while.
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APPENDIX

"EXACT'" ELASTIC SOLUTION OF EULER BEAM

For a uniform, simply supported beam subjected to a uniformly

& -2t/T
applied load cW e / 1, the deflection is readily found to be
-2t/T
@ 4We imx Pi® l-picos(pit)+_i.— sin(pit)
yix, t) = '1=1,E3,...,m sin 7~ ( 1 )

. 2 4
lPi(Pi + ?2' )
1

The bending moment M, and the shear S can be computed,
respectively, from the second and third derivatives of the

deflection function.

If the loading W is written in terms of the yield moment

(W=28 My/ LZ), the responses can be made non-dimensional as

follows,

= in int T st o 2
(L, ©) = oz 15336 sin imt (e-Zt -cosZwilt_+ sin2mi ‘T )
=13 sin(n%i%) wi
= L 5i2n3c &
m(L,t)= 2 —gg— vt
i=1,3
3.3 M
T = 5i"m ¢ <2
stt.t) = . F ()
(L, t) T3 3 yL y

where t = t/Tl, t =x/L.

1T
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It is of interest that through this non-dimensionalization
process, no material and physical properties appear in the
expressions for deflection and moment. (Indeed, the choice
of W=28 My/ LZ made this possible in the case of the moment. )

It may be noted that all of these expressions are convergent.
The deflection converges at 1/i5, the moment converges as 1/13.

and shear converges as 1/i2.
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