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ABSTRACT

AN ANALYTICAL AND EXPERIMENTAL STUDY OF

HEAT AND MOMENTUM TRANSFER IN TURBULENT

SEPARATED FLOW PAST A RECTANGULAR CAVITY

by Ronald L. Haugen

The study given here presents results of an analytical and

experimental investigation aimed at describing the turbulent heat and

momentum transfer mechanism in the separated flow region of a trans-

verse rectangular cavity facing an oncoming boundary layer.

A flow model of the mixing region in the slot postulated on

the basis of eddy diffusion gives values of velocity, temperature, drag,

and heat transfer in good agreement with experimental measurements.

In each case, experiments were conducted with air at Reynolds num-

bers up to 1.3 x 106, cavity height to width ratios from O. 2 to 4. 5, and

with aspect ratios exceeding 10. The results further point to the sig—

nificant effects exerted by the oncoming boundary layer on transfer

rates from the slot.

It was found that the average Stanton number is represented

by the semi -theoretical correlation equation

St = 0.0365 (6/b)-0'1367i 15% for 6/b (ratio of boundary

layer thickness to slot width) ranging from 0.1 to 0.8.
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1. INTRODUCTION

Separated flows occur, for example, where indentations

or proturbances are present on flow surfaces. In view of the impor-

tance of such related flows to the design of aerodynamic surfaces,

considerable attention has been drawn to the mechanism of flow

separation. The boundary layer separation is characterized by the

formation of reverse flows and vortices. Fox (1) showed that a

shear layer like that of a free jet boundary forms over the cavity and

borders the external flow. It widens from the front to the back of

the cavity and part of this free shear layer is deflected into the notch

at the back edge, giving rise to the flow within the cavity. In particular,

the boundary layer (laminar or turbulent) separating at the leading

edge of a cavity subsequently reattaches itself either at the recom-

pression corner or at the base. This, as discovered by Charwat (2 ),

depends largely upon the depth to width ratio, the oncoming boundary

layer thickness, and the relative heights of the forward and rear steps.

In the case of a fairly narrow slot, evidence suggests that the boundary

layer "bridges" the notch. Charwat's data reveal that the oncoming

boundary layer thickness and the free stream Mach number are im-

portant parameters, primarily in the case of the cavity closure. The

pressure and thermal measurements presented by Charwat were for

l



the bottom of rectangular cavities with height to length ratios (h/b)

smaller than four. Pressures in the turbulent subsonic flow were

shown to rise above the free stream pressure in the downstream end

of the cavity and to be little affected in the upstream end.

Larson (4) measured the average heat transfer coefficients

for both laminar and turbulent flow in cavities substantially rectangular

in shape and having height to length ratios of 0. 208 and less. For

laminar flow, the average heat transfer coefficient was found to be

about 56% of the average coefficient that was measured on equivalent

models with a straight heated portion replacing the cavity. For

turbulent flow, the average coefficient was proportional to (poo um)o° 6.

However, no simple ratio (as the 56%.for laminar flows) exists

between this flow and that of the straight heated portion.

Some additional quantitative results are reported in papers

by Wieghardt (5) and by Tillman (6 ) . Their studies of flow past

cavities consisted of measuring the overall drag coefficients, these

being obtained by subtracting the drag values with and without a sur-

face cutout.

Flow measurements in a rectangular cutout were also

made by Roshko (7) . His results consist of pressure, velocity, and

skin friction measurements on the cavity walls with emphasis on the

effects of varying the cavity depth-breadth ratio. Roshko's work,



completely experimental in nature, gives rise to a number of tentative

conclusions regarding the prominent aspects of the flow in slots.

Most importantly:

l. The pressures and forces due to the flow may be ex-

pected to depend on the state of the boundary layer ahead of the cavity.

2. The drag increment due to a cavity is almost entirely

accounted for by the pressures on the walls.

Tani (8) also presents the results of an experimental

investigation of flow separation related to a step or a groove. As

Roshko, Tani found that the shear stress developed in the mixing or

shear zone is balanced, primarily by pressure forces exerted on the

solid surface of the slot. Additionally, the base pressure is essen-

tially the same for different values of step height and boundarylayer

thickness and the pressure rise by flow reattachment increases as

the step height is increased or the boundary layer thickness is reduced.

It is Tani's viewpoint that the turbulent shear stress is necessarily

set up in the mixing region in such a way that the forces acting on the

fluid form a system of equilibrium, and that the most essential and

intriquing part of the problem is concerned with the mixing process

between the dissipative cavity flow and the non-dissipative main flow.

Seban, §_t_3_1. (9), Seban and Fox (10), and Fox (1) pre-

sented measurements of surface pressure, recovery factors, and

heat transfer coefficients on the bottom of two rectangular notches.



Here, the heat transfer coefficient was proportional to (poo um) 0' 8,

with the coefficient being greatest at the rear or downstream portion

of the cavity. Fox (1) made additional measurements for a number

of narrow notches having height to length ratios (h/b) from 4 to 4/7

and again found the heat transfer coefficient to be proportional to

(p00 uoo) 0' 8. Turbulent flow was ascertained in the notch region

adjacent to the subsonic free stream, and vortex flow was observed

within the cavity.

Concerning the analytical study of flow in a cavity, a

number of distinctly different models are advanced. Chapman's

model (11) treats the cavity as an isothermal low-velocity “dead-air"

sink to which heat and momentum is trans fered through the shear

layer. In essence, it is a solution for an infinitely thick laminar

shear layer with the boundary conditions at infinity represented by

the conditions at the base of the slot. The shear layer is postulated

to be the sole transfer—rate controlling mechanism disregarding the

resistance between the inner wall and the fluid cavity. For laminar

flow, these results compare very favorably with the experimental

results of Larson (4).

Charwat (3) proposes a pulsating shear layer type model

in which the fluid moves periodically in and out of the cavity, thus

governing a transport of heat and momentum. Charwat's model

depends on the unsteadiness of the flow at the exclusion of the other



mechanisms. The theory predicts the 0. 6 power dependence of the

heat transfer coefficient upon the mass velocity poo u00 that was

measured by Larson in turbulent flow, and the corresponding 0. 5

power in laminar flow. In this model, the cavity shape enters but

incidentally with an allusion to a vortex located in the downstream

corner.

Burggraf (12) however takes the cavity shape fully into

account. In his model, Batchelor's (15) proposal of constant vorticity

is assumed within the cavity. The vortex flow within the cavity is

then coupled to the (laminar) external flow. However, for turbulent

flow the velocity distribution along the separating streamline must

be previously found by some other theory before this model can be

utilized.

None of these analyses is adequate to explain the results

in turbulent flow, particularly when the external flow is boundary

layer in nature.

Thus, the present analytical and experimental study was

undertaken and is aimed at delineating the turbulent momentum and

heat transfer mechanism in the mixing zone of a cavity. A flow model

of this zone is postulated on the basis of the well known concepts of

mixing length and eddy diffusion yielding a rather satisfactory corre-

lation with the experimental data.



2.. EXPERIMENTAL STUDIES

2.1 Description of Test Equipment
 

A schematic diagram and photograph of the test rig employed;

for these tests are presented in Figures 1 and 2 respectively. The

unit consists of a fan driven by a 3 horse-power variable speed motor,

adjustable length flow channel, and a rectangular cavity. The channel

was 2. 5 in. wide and had an aspect ratio of 10 assuring substantially

two-dimensional flow. The cavity width was varied from 1. O to 2. 5

inches and its depth was varied in 0. 5 in. increments up to 4'. 5 inches.

The flow channel (Figure 3) was varied in length from 13 to. 29 inches.

thus assuring a wide range of boundary layer thicknesses. The flow

channel was connected to the fan by a second rectangular channel 3. 5

in. wide x 21 in. high. Flow straighteners were placed within this

ductyOork approximately 85 inches upstream from the flow channel.

The straighteners consisted of 3 inch long sections of 24 ga. sheet

metal formed into a mesh having 1/2 in. squares. Turbulence screens

were placed immediately upstream from the flow channel. These

screens, which consisted of wire in various diameters and. mesh

sizes, effectively controlled the scale and intensity of the free stream

turbulence .
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The cavity was heated by means of electric Calrod

heaters placed within the copper cavity walls . The quantity of heat

required to keep the walls at constant temperature was measured by

means of a watt meter (Model 432 by Weston; Electrical Instrument

Corporation), placed in the circuit of the heating rods. The heat

losses were measured by two separate methods. First, thermo-

couples were buried within the cavity walls and the surrounding

insulation. The heat losses were then estimated from local conduc-

tion losses. Radiation heat transfer was neglected due to the small

temperature differences associated with the various tests. Secondly,

the heat losses were measured directly for various wall temperatures

using the wattmeter while the free stream velocity was held at zero.

An estimate of the free convection losses within the cavity show them

to be quite small (~' 5%) compared to the total heat loss. The two

methods compare quite closely and remained within 8% for all tests.

Local heat transfer rates were also measured. To do this,

a. second cavity was employed (Figure 5) and which had 36 evenly

spaced 0.005 x l/8 inch series-connected nichrome ribbons. These

ribbons were then attached over a 2 inch thick phenolic cavity. The

heat rate was deduced from the measured power which was used to

heat the cavity walls while the local temperature was measured with

thermocouples attached to the underside of each ribbon. Further,

the error in the temperature measurements was estimated to be within

0.4%.
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2.2 Instrumentation and Measurements
 

Shown in Figures 2 and 5 are the various instruments

used in this study. The probes used for sensing velocity, turbulence,

and temperatures were placed on a traverse mechanism that could be

moved longitudinally, parallel to the mean flow, and transversely

across the mixing region. A micrometer, accurate to :l: O. OOTI inches,

was used for actuating the movement and measuring the transverse

probe positions. The longitudinal probe positions were controlled by

locating blocks as shown in Figure 3.

The temporal -mean velocity and the turbulent intensities

were measured by means of a constant-current hot -wire anemometer

(Model HWB ser. no. 216 by Flow Corporation, Arlington, Mass. ) ,

in accordance with the Flow Corporation hot -wire manual.

In measuring the turbulent shear, a single hot -wire probe

was placed in two angular positions for each probe location. The tur-

bulent shear was then calculated as described by Hinze (13) .

Figure 2 shows the various instruments used in conjunction

with the hot -wire anemometer. The signal from the hot -wire anemome'ter

amplifier was fed through a 7KC low pass filter to a true-root-mean-

square voltmeter (Model No. 320 by Ballantine Laboratories, Boonton,

N. J. ), using a response time of 2.5 seconds.



I. '3

THERMOCOUPLE

 
 

 

      
 

 

LOCATIONS

. f . . 17 .

0 &\ Q I)

. \.\

'\

T \\ Q CALROD

GP; HEATERS

 
 

A. SCHEMATIC OF CAVITY USED FOR MEASURING

AVERAGE HEAT TRANSFER RATES

 

 

 
 

 

 

 

 

 
 

      

' ° J I I l ' '

,, I I . A

I ]A I L 1’
I___________I__ I

I A 0

SECTION AA

36 (0.005 x we")

NICHROME RIBBONS

B. SCHEMATIC OF CAVITY USED FOR MEASURING

LOCAL HEAT TRANSFER RATES

FIGURE 4



F
i
g
u
r
e

5
.

 
T
e
s
t

R
i
g

13



14

The general procedure used was first to balance the

bridge cold, using the bridge null variable resistor. The value of the

bridge balance was recorded and the current turned on. Again the

bridge was balanced, and the value of the bridge balance was recorded.

The wire current "I" was measured by means of the galvanometer

and meter balance resistor and recorded in units of four times the

current in milliamperes. The square wave was then turned on and

the compensation frequency adjusted until the oscilloscope pattern was

a perfect square wave. The square-wave and wire current were then

switched off and the r. m. s. voltage measured. The r. m. 3. value

corresponding to this reading was Mn, which is a measure of the

noise level. The current was then turned on again and the r. m. 5.

value again recorded using the designation Mn + v. The square wave

was turned on again and the r. m. 5. reading repeated thereby ob-

taining Mn + v + 5. With this procedure and the appropriate equation

suggested by the Flow Corporation (1 6), the turbulent measurements

were repeated for each location of the hot-wire probe. The resis-

tance ratio was kept constant at l. 6 throughout the tests.

The hot-wire anemometer was also used for measuring

the temporal-mean velocity. The 0.00035 in. diameter tungsten hot-

wire with 1/8 inch diameter probe stem was calibrated against a

Prandtl pitot tube in a free stream directed normally to the hot wire

2 12

and probe stem. For each filament used, a calibration curve I vs U/
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was obtained. To obtain a velocity profile, the hot -wire was located

at a number of positions and the filament currents recorded. From

these known values of current at various locations the corresponding

velocities were obtained through the most recent calibration curve

for the particular filament in use. A typical calibration curve for the

hot -wire anemometer probe is shown in Figure 6.

The air stream temperature was sensed by means of a

copper -constantan (24 B ¢ S gauge) thermocouple located on the

traverse mechanism. The EMF from the thermocouple was measured

with a millivolt potentiometer (No. 8686 by Leeds and Northrup Corp.

of Philadelphia, Pa.) with an expected error of t 0.05% . The milli-

volts measured were then converted to temperature by means of tables

available with the instrument. The thermocouple was first calibrated

with an accurate mercury in glass thermometer.

The static pressure was sensed by static holes, 0.030

inches in diameter, drilled through the cavity walls, and was measured

by means of a micromanometer (Model MM3 by Flow Corporation)

which had n -butyl alcohol as its manometer fluid and a nominal

accuracy of :I: 0. 0002 inches of manometer fluid. Since this manometer

had a slow response, only temporal mean values of total head could

be measured. Additionally. static pressure measurements were

made within the shear layer (y = 0).. In view of the uncertainty in the

direction of flow within the shear layer, the accuracy of the static
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pressure distribution at y =0 is questionable. But, since the flow

is essentially two dimensional, the static pressure probe, held

normally to the xy plane, is expected to yield reasonably accurate

results. In an attempt to balance any flow component present which

was normal to the xy plane, pressure distributions were taken with

the static pressure tap held in both directions of the xy planes normal.

The differences in pressure readings were negligible in this case and

the associated measurements were considered satisfactory.

For flow visualization studies, it was found convenient to

construct another cavity model. The model (shown in Figure 7) ’Was

subjected to flow of water approximately simulating the dynamic con-

ditions ,in terms of the flow Reynolds number and the relative boundary

layer thickness (6/b) . The streamlines Were made visible by strew-

ing aluminum powder over the water surface illuminated by light.

Figures 16 and l7,represent the photographs of the flow patterns.
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3. ANALYTICAL STUDIES

3.1 Analytical Flow Model
 

Many studies have been made of turbulent free plane jets,

and in each case the flow was considered to consist of a uniform semi-

infinite, plane-parallel jet issuing from a. wall with a velocity of uoo

and merging with a motionless fluid (Figure 1).. Under such conditions

the oncoming fluid becomes completely turbulent within a very short

distance from the wall. Because of this, turbulent mixing occurs

between the jet and the surrounding fluid at rest. Particles of fluid

from the surroundings are entrained by the jet so that the mass flow

increases, while the total momentum remains constant.

Further, when dealing with such problems of turbulent

jets it is assumed that this mixing is confined to a "shear zone, " the

width of this zone being proportional to the longitudinal distance from

the point where the jet begins. Outside this zone, the flow is con-

sidered to be completely unaffected by the mixing process, while

within the zone the flow is considered to be boundary layer in nature.

That is, the solution being sought does not extend far in the transverse

direction and only the transverse gradient of shear predominates. In

our description of the cavity flow model, we have treated the shear

l9
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layer portion of the flow as a two-dimensional plane jet and accord-

ingly applied the boundary layer equations of momentum and continuity.

The turbulent shear stress and heat transfer terms are approximated

by various phenomenological theories, e. g., mixing length, eddy

diffusion, etc. With this, satisfactory solutions have been found.

3. 2 Basic Equations
 

The equation of motion for a two dimensional flow can be

written as:

2 2

Bu Bu Bu 8P Bu au

P (B‘s-i" ua—X+v_3;- - - ax+p( 2+ 2) (3.1)

3v

2 2

8v 8v 8v 8P 3 v 3v

P(——+u—+v—)= -—+p(""—+——Z') (3.2)

89 6x 8y 8y 8x 3y

Making estimates of the order of magnitude of the various

terms, it is found that for a steady state turbulent flow in a boundary

layer, Prandtl's approximation of Reynold's equation applies, namely: ‘

—33 —33' dP 31-
—+ — = -—+— 3.3p(u3X v y) dx 8y I I

p
and 9— : o (3.4)

3y

where T = u-Qi -p u'v' (3.5)

8y

and where the bars over the symbols indicate temporal mean values.
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The equation of energy can be written as:

Z 2

pc (gmggwgl) . 41;... 9...} I...)
p y ,k 3y

 

which simplifies, with the same approximations as before to read as

 

follows:

— 3T — 3T 1 so

u 8x v 8y pC By (3.7)

P

3T .
where Q = k-—- - C v'T' (3.8)

3y p p

In addition to the equations of motion and energy, the equation of

continuity must apply:

8:39qu + 8(3):” = 0 (3.9)

3. 3 Solution of Momentum Equation
 

According to the experimental evidence (Figure 19) , the

pressure was found to remain relatively constant along a substantial

portion of the shear layer. Thus, the pressure term in equation (3. 3)

is neglected, giving:

2£.+;;§i.=.L.EL (3Jm

3x Y 9 3y

‘
3

|

Upon assuming constant density, the continuity equation becomes:

a; a?
__ + —-—— : (3.11)

8x 8y 0
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Boussinesq (17) suggested the coefficient e (eddy diffu-

m _

sivity of momentum) for momentum transfer by turbulence. Using

this theory, the turbulent shear stress may be expressed as:

‘3
'

I

3

-r :96 — (3.12)
m

<

Assuming the turbulent effects are considerably larger

than the molecular effects, equation (3.10) becomes:

Q
3
0
?

:
4
5
:

- — Bu 1 8 Bu

u v 3y p 8y (p 8y) (3.13)

The overall transfer of momentum from the cavity to the

free stream takes place through a mixing region as depicted in

Figure l (b). For the purpose of this analysis, the flow region over

the cavity was divided into three different zones.

In the first zone [Figure l (b)] the flow remains unaffected

by the mixing process within the shear layer. Thus, for the case of

an oncoming turbulent boundary layer of thickness 6, the flow above

the shear zone is assumed to obey the usual 1/7 power law.

Within the second zone, the shear stress term is postu-

lated to obey the identical relationship as for the free plane jet as

discussed by Abramovich (14). The shear zone is postulated to be

symmetrical about y = 0 with its growth rate proportional to x. The

equation used for the boundaries of this zone was y = i 0. 08829 x.

This value was chosen as it corresponds to the line which describes
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the growth rate of a free plane jet. Also,the plot of u'v'/32 (Figure 8)

is seen to justify this choice. Thus:

3 _ _

a 2 Bu Bu

 

 

where "a" is an empirical constant characterizing the structure of

the flow of a jet. Its value for free jets is 0.09 (14) . However, for

the shear layer of the cavity a value of 0.12 yields a better correlation

with the experimental data. The momentum eddy diffusivity is ex—

pressed by:

_l 328u

Em — 2 a X By (3.15)
 

Then equation (3.13) becomes:

_ _ _ 2_

1-1- Bu + ; Bu _ a3x2 8n 8 u

28x 8y 8y 8y

  

(3.16) 

Choosing the coordinate system (x, n) as in the free jet case (14)

where:

n ___y_ (3.1?)

and letting the stream function

([1 2 an xf(n) (3.18)

00

equation (3.16) becomes

f"'+f = 0 (3.19)
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The solution of equation (3.19) is (14) .

_u_ : f'(n) :k e_n+k en/Zcos(

u l 2.

3 11/2 3

2 n) +k3e n)
 

 

sin(

00

(3. 20)

To evaluate the three constants k , k , and k1 2 3 the boundar y

conditions utilized were:

1. The velocity is continuous from zone 1 to zone 2.

2. The velocity gradient is continuous from zone 1 to zone 2.

3. The turbulent shear stress has a maximum at y = 0.

The latter condition is justified by experimental evidence

(see Figure 8 and Reference 1).

For a zero oncoming boundary layer thickness, the velo-

city in zone 1 is uniform. Thus, at the edge of zones 1 and 2 f‘ = l

 

   

and f" = O. In this case, equation (3.20) becomes:

{fi— = 0.0684e_n+0. 79415en/2cos J: T) +0.28854 en/Zsin [3:77)

00

(3.21)

However, for a finite oncoming boundary layer thickness,

the zone 1 velocity obeys the usual 1/7 power law. Boundary conditions

I and 2 will then vary with x. and the similarity of solutions implied by

equation (3.19) no longer exists.
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Proceeding with these varying boundary conditions, while

acknowledging that the assumption of similarity must be violated some-

where, we obtained the following approximate but satisfactory solution.

W

I
I

0.06840 g(x) + 1.1610 g' (x)

1

k2 = 0. 79415 g(x) - 0.47552g' (x) (3.22)

k3 = 0.28854 g(x) + 0.71076 g' (x)

Where, g(x) denotes the local velocity ratio at the edge of zones 1 and

2 and g'(x) its gradient.

. k , andk must,For similarity to hold, the values of k1 2 3

of course, be constant. The extent of this violation is shown in

Figure 9, where these k's are plotted versus x/b.

Then, since g(x) and g'(x) come directly from the usual

1/7 th power law, the entire solution may be expressed in terms of a

constant term and the Reynolds number which describes the turbulent

boundary layer thickness .

Finally, for the third zone the flow velocity and shear

stress cannot be taken as zero as for the free plane jet. However,

experimental evidence indicates that within this third zone the quantity

 

 

 

”1‘; remains approximately uniform (independent of y) .

u E?"
Thus, ___,2 = constant.

u __ .

Then, since T~ u'v' (bar indicates time -averaged quantity)

we have T~ u
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, 1 -2

Hence we write T = 7 P ku , where k = constant, and the

expression for the eddy diffusivity in this zone is

- _1_ .2 3i
6m - 2 ku /(8y) (3.23)

Equation (3.13), applied to this zone becOmes:

 

—-a§ -aE — a;
— + = k ——

u 8x v 3y u 8y (3°24)

Again letting

W = k umeW) (3.25)

where ¢ =—L- we obtain,

kx

F'(¢)+F(<I>)=0 (3.26)

with the solution as:

-C
-4, 27)

F(<I>) = C16 = Cle (3.27)

where as before:

n = —L (3.28)

The boundary conditions employed here for obtaining Cl and C2 were:

1. The velocity is continuous from zone 2 to zone 3.

2. The velocity gradient is continuous from zone 2 to zone 3.

The velocities in this zone are readily calculated from

5 "C2"
= F' (4)) = ~C1e (3.29)

 

00

Typical values for C and C2 are shown in Figure 10.

l
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It must be noted that at the edge of zone 2 and 3, the

velocity and its gradient are forced to be continuous by choice of an

appropriate number of constants, whereas the assumed shear distri-

bution [in view of equations (3.15) and (3. 23)] is discontinuous .

3. 4 Solution of Energy Equation
 

Similarly, the energy equation becomes:

 

 

 

— 3T — 3T 3 3T
__ + __ : —_ e —_

u x v y 8y ( h y) (3. 30)

- v'T' d
2 —--=-——— : d ' ' ' .

where eh ( BT/ 8y) e y diffuswity of heat

. 1

Assuming the turbulent Prandtl number to be constant, B-

E

l
prt : ELI: ___ _

h

Then, for the shear zone:

3 2 35
= C —— 3. 316h a X By ( )

Equation (3.30) , applied to this zone, becomes

— 3T —8T 323— BZ'T 3T 32;
u a +v r: Cax LSE— 7+3— 2) (3.32)

X Y Y 3Y Y 8y

Measured temperature distributions within the cavity

(Figures 26-31) show that the temperature gradient is very large

across the shear zone. But, outside this zone and within the inviscid
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core, the temperature remains uniform. For deeper cavities, the

temperature increases again for locations deeper than y/b = -1, thus

again indicating secondary vortices.

Burggraf has shown similar behavior, with a nearly con-

stant temperature over the inviscid core. Although his analysis does

not consider secondary vortices, his results for predicting this core

temperature agree quite well with experiment. _Burggraf gives:

T -Too 1

_____° = ____ (3.33)

Tw-Too (’(l+-)A

h

Where, for laminar flow A = 2 and To is the average core tempera-

ture. With this temperature, we are now in a position to solve the

energy equation ( 3. 32)..

T-Tm

let 9 = TIT-T?—

o co

and TI ___ _L

. ax

assuming 9 ‘—' 9(1))

equation (3. 32) becomes:

Cf"9"+C0'f"'+f0'=0 (3.34)

But, from the momentum equation we have:

f"'+f =0 (3.35)
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Therefore,

Cflll eI+CfII 9H _fIII 9'30 (3.36)

_0_'_: _ l—C f'” 3 3

9' C f” I ° 7)

Integrating l-C

C

9' = KM") (3.38)

Where K is an arbitrary constant.

Similarly, for the third zone the energy equation becomes:

 

 

— 3T — 3T 3 3T
__ __ z __ E _—

u x + v y 8y (hay) (3.39)

Once again assuming Eh = C 6m, we obtain for the third zone,

6 _ CkEZ

h ‘ 2 _ag (3.40)

Y

— 8T — 3T 3 CkE aT/ay
__._+ _ = -— _ .41

Thus, u x v 8y 8y( 2 8u/8y (3 )

T-T

A ain let 9 = ————93— (3 42)
g ’ T -T ’

o OD

and, 4: = l— (3.43)
kx

Equation (3.41) reduces to:

2

C d f' 0'
- I =_ _f0 2 d4) f" (3.44)
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However, from the momentum analysis, we have:

f' = ~f (3.45)

Thus, (3.44) becomes:

 

C d
lel : __ __ IeI

f 2 d¢ (f ) (3.46)

12.2
. . C

Integrating f' 0' = Boe (3.47)

But, from equation (3. 29)

f' = Cle‘¢ (3.43)

C-2

C <I>

Therefore, 0' = Ble (3.49)

Integrating, and combining constants yields

B317

9(n) = Be +13 (3.50)
2 4

where B2 and B4 are arbitrary constants, while

B3 = C C2 = 0.72116
 

Equation (3.38) was now integrated numerically, giving

values for 0( 77) over the shear zone. These values were then used

to calculate the constants B2 and B4, with the assumption that 0( n)

and its gradient 0'(n) are continuous through zones 2 and 3. The

constant K was next readjusted from initial "guesses" so as to
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satisfy equation (3. 33). Based upon best agreement with experimental

results, the constant C was taken to be 1.4. For this value K2: 0. 5

for all x/b and 6/b although it increases slightly with increasing x/b

and decreases with increasing O/b. Representative values of K are

plotted in Figure 15.

The total heat flux was given as:

 

3T
: 6 C -— .q hp pay (3 51)

To-Too dB

or q = C6 p C

m p ax (17')

Substituting for E and 9—9- for zone 2 gives:

m (11')

NC
:

- ll

Cl Cap uOO(T0 Tm)K[f (11)] (3.52)

or at n = Owhere

kI J3
II : : _ _—

f (n 0) 2 k2 + k3

k

_ 1 L3 l/C

and q — CapCp uoo(TO-TOO)K(Z+ 2 k2+k3) (3.53)

Defining an average heat flux as:

_ “C x

q: 1qd(—)=apCp Cum (To-COT)OK(—+—kz+k3) d(b-)

i:

b

(3. 54)
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The average Stanton number becomes:

 

_ - a _

St - pC u (T -T) - Ca; (3.55)

p 00 o oo

1 k

where I, = [K(—;—+ 3743- k2+k3)1/Cd()bi) (3-56)

0

It should also be noted that the Stanton number, as de-

fined in equation (3.55), is independent of cavity depth and follows

the equation:

-0.l367

St = 0.0365(-E) (3.57)

Ifhowever the heat transfer is desired in terms of the

more conventional (Tw-TOO) , equation (3. 33) may be used. Defining

_ q( (3.58)

Then,

_ ‘Caé (3.59)



4. ANALYTICAL AND EXPERIMENTAL RESULTS

4.1 Flow Patterns
 

The flow patterns protrayed in Figures 16 and 1? reveal

interesting effects of the height to width ratio of the slot on the

structure of the vortices inside the cavity. For h/b = 1, there is a

single vortex and it is. stable, resembling almost a solid-body rotation.

Around h/b of l. 75 there appear secondary vortices in transition and

at a value of h/b = 2 one observes a rather well-defined double -vortex

structure (presumably stable) . Transition again seems to take place

around h/b = 2. 5 when the number of vortices oscillates between two

and three. Finally, for h/b of approximately 3, we see three cells

with vortices stacked on top of each other. The vortices were observed

in a state of counter-rotation to each other.

4. 2 Pressure
 

Pressure is represented for the notch surfaces as a

pressure coefficient C that is defined by

P-Poo

CP:_1_ uz

2poooo

where P is the reference surface pressure which was measured

00

41
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0. 25 inches ahead of the cavity. p00 is the density as given for air

at the free stream temperature and pressure.

Figures 18 and 19 represent the measured pressure dis-

tribution along the cavity walls and along the shear layer. As pointed

out by Roshko (7) , lower pressures near the center of the walls and

bottom and high pressures at the corners are typical of a single,

stable vortex. Near the top surface of the downstream edge, the

pressure suddenly rises. This rather abrupt change is apparently

caused by the boundary layer separating at the front edge and imping-

ing on the downstream wall. It is noteworthy that the pressure dis-

tribution at the walls is rather sensitive to changes in depth. Also,

the tendency to form a single vortex in the cavity with h/b = 1 is

seemingly unaffected by the state of the boundary layer ahead of the

cavity. However, the pressures and forces due to the flow do indeed

depend on the state of the boundary layer.

The pressure distribution longitudinally along the shear

layer evidently remains uniform except near the recompression

corner. As remarked before, use was made of this fact in neglecting

the pressure gradient in the momentum equation. Roshko (7) has

shown the shear stress acting on the cavity walls to be of two orders

of magnitude lower than the pressure coefficients and the pressure-

drag coefficient. The difference between the integrated mean-value

of C over the upstream and downstream walls, and made dimension-

2

less by the dynamic pressure -2!-p um , is plotted in Figure 20.
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The cavity flow is maintained chiefly by the turbulent shear stress

which is set up within the mixing region. Thus, the turbulent shear

stress developed in the mixing or shear zone is balanced, primarily

by the pressure forces exerted on the cavity walls. The compari-

son is made between this measured value and the integrated average

shear stress (at the mean dividing streamline, i. e. , y =' 0) from the

analysis. It is clear that the influence of the relative oncoming

boundary layer thickness (O/b) is quite substantial on the drag due to

the slot. The data points are for different h/b values ranging between

0.5 and 2.0.

4. 3 Velocity

The velocity data are presented in a form of a ratio of the

local velocity to the free—stream velocity measured at mid-channel

immediately upstream of the cavity. The ratio is presented as IT/ uoo

where no attempt is made to correct for temperature effects, because

of the small temperature differences.

In Figures 21, 22, and 23 the data from the velocity

measurements are compared with the results of the equation:

_3_
u

(I)

= [0.06840 g(x) + 1.1610 g'(x)]e’"

+[0.79415 g(x) 047552 g'(x)]cos(_J;_,3—n erI/z

+[0.28854 g(x) + 0.71076 g'(x)]sin( 23 n)en/2 (4.1)
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This function contains the constant "a" which was chosen

to be 0.12. Velocity profiles from the tests, each at three distances

from the cavity origin (x/b = .15, . 50, and .85) , are presented as

data points in Figures 21, 22, and 23. The solid line represents

equation (4.1) . This line is seen to correlate the data reasonably well.

Furthermore, streamlines calculated from these equations are

shown in Figure 24, and again appear to be reasonable when compared

with the observed pattern of Figure 16.

4. 4 Turbulence
 

Figure 25 shows the transverse distributions of the tur-

bulent intensity and the shear stress as measured by the hot-wire

anemometer. The solid line in Figure 25 (b) represents the theoretical

shear stress and is seen to correlate the experimental data adequately.

From the figure it is quite apparent that both the local shear stress

and the turbulence are maximum at a point coinciding with the dividing

streamline (y = 0); and they are quite sensitive to changes in the

relative thickness of the approaching boundary layer (6/b) .

In Figure 8, transverse distributions of the quantities

—— -2 /— 2 — . .
- u'v' / u and u' /u are shown. The relative Size of the turbulent

boundary layer once more appears to have significant effects on the

. —- —2 . .
latter quantity whereas the former u'v' /u remains relatively un-

. — —2 .
affected. It must also be noted that the quantity ' u'v' / u remains
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fairly constant for y/b below -0.1 in the cavity. The cavity depth

appears to have insignificant effects upon these four quantities when

they are compared for similar values of O/b.

4.5 Temperature
 

Temperatures that were measured at x/b = 0.15, 0. 50,

and 0.85 from the frontside of the notch are shown in Figures 26.

through 31. The temperatures are presented in the dimensionless

ratio (T - TOO)/(TW- Too) . The temperatures TW and T00 were

established as the average cavity wall temperature and the mid-channel

free stream temperature respectively. A major temperature increase

occurs across the shear layer. The temperature then remains nearly

constant over the inviscid core with a second major temperature

increase occuring near the surface. For deeper cavities, the in-

fluence of secondary eddies becomes noticeable. For the case of h/b

= 1.5, the core temperature remains approximately uniform until

reaching y/b = ~— 1 . O, at which time the temperature begins increasing.

Because of the cavity size, this increase is hidden by the thermal

boundary layer formed along the cavity floor. However, when the

cavity depth is increased to h/b = 2.0, the sudden increase in tempera-

ture is easily seen. Again it is seen to occur at y/b= -l. 0 indicating

the formation of flow cells within the cavity. Burggraf, neglecting

the influences of secondary eddies (with Pr = l and constant pressure)
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gives for the average inviscid core temperature T ,

o

To-Too 1

Tw " Too Jzu + b/h)

 

 

This value has been shown (analytically) to agree very well for

laminar flow and h/b = l. 0 (12) . For the present case (turbulent flow

and variable h/b) a comparison between measured and predicted values

is shown in Figure 32. Although the predicted values are consistently

high, the correlation is adequate. However, as shown in Figure 32 a

closer correlation is found using the equation:

TO-T 1

J3(1+b/h)

8

 

 

T-T

w 00

Using this expression for To’ equations (3. 38) and (3. 50) were

solved. The resulting expressions for 9(n) are shown in Figures 33

through 36 where they are seen to correlate closely with the experi-

mental data .

4. 6 Heat Transfer
 

The results from the measurements of the average heat

transfer from a heated cavity are shown in Figure 38. The form of

the heat-transfer coefficient was taken as
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To correlate the data, reference is made to equation (3. 55) where

the semi-theoretical expression describing the heat transfer is

derived. Since the Stanton number is defined in terms of the tempera-

ture difference (TO - Too) rather than (TW - Too) , the results are

independent of cavity depth. This result is confirmed reasonably

well by the experimental data (Figure 38) .

Additional heat transfer data is presented in Figures 37 and 39.

Here local heat transfer rates measured along the cavity walls are

given with the heat transfer coefficient taken as:

q

pC u (T -T)

poo w 00

St =

q is the heat liberated per unit time and per unit exposed surface

area of the ribbon heating elements. The heat rate was deduced from

the measured power which was used to heat the series -connected

ribbons. The heat transfer rates are greatest at the top of the down-

stream side, most probably due to the impinging external flow. The

heat transfer rates decrease rapidly through this zone remaining

somewhat uniform along the remainder of the downstream wall.

Secondary peaks appear along the bottom and upstream walls, with,

these rates then decreasing slightly along the direction of flow. The

relative size of the oncoming boundary layer also influences the local

heat transfer rates and is most pronounced in the impingement region

of the downstream wall.
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5 . C ONCLUSIONS

1. The expression for the predicted velocity distribution

as given by equation (3. 20) correlates the data reasonably well with

a maximum deviation of 20 percent within a substantial portion of the

flow. The coefficient V"a" was taken as 0.12. For a plane free‘jet,

a value for "a" of 0.09 has been established (14) . Evidently, this

increase in "a" is due to the additional shear layer turbulence caused

by the cellular flow within the cavity.

2. The experimental distribution of percent turbulence

and turbulent shear stress (Figure 24) have maximum values at a

point coinciding with the dividing streamline (y =._ 0) and are both

quite sensitive to changes in the relative size of the approaching

' boundary layer.

The predicted distribution for the turbulent shear distri-

bution (Figure 24) is compared with the hot- wire measurements well

within :1: 20 percent. .

3. The time -averaged temperature distribution described

by equatiOns (3. 38) and (3. 50) correlates the data reasonably well

with the coefficient C taken as 1.4 giving the best correlation with

experiment. The average inviscid core temperature T is seen to be

0

72
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adequately determined by Burggraf's equation:

 

o-oo l

w 00 \IA(1+‘b/h)

 

However, the present study indicates that for turbulent flow a value

of 3.0 for the constant A gives better agreement with experiment.

With this temperature difference (To -- Too) used in this

definition, the average Stanton number is seen to be independent of

the relative cavity depth. The average heat transfer in the cavity

(Equation 3. 56) was confirmed within :1: 15 percent by experiment

and is closely approximated by the correlation:

_ -0.1367

St = 0.0365 (g)
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Table l.--Velocity data, h/b = 1.0.

 

 

H, x-component of time mean velocity (ft./sec.)

  
 

 

Z13 x/b = 0.15 x/b = 0.50 x/b i 0.85

5/b .19 4.10 50 .I9 .30 .50 .IO .30 .50

0.60 99.5 100.1 105.0

0.55 99.5 100.3 10u.8

0.50 99.5 100.0 10u.8

0.u5 97.0 100.0 , 10u.8

0.u0 99.2 95.0 100 0 96.9 105.0 102.0

0.35 99.3 100 0 10u.8 97.6

0.30 99.3 92.0 100.0 9u.0 105.0 97.5

0.25 95.8 102.5 9u.0

0.20 100.0 93.0 87.5 100.3 95.8 89.u 105.0 98.2 92.2

0.15 100.0 100.0 90.5 10u.8 9u.8 86.3

0.10 100.0 87.0 81.5 100.3 86.0 77.3 105.1 89.u 83.0

0.05 88.5 78.0 70.0 91.5 75.7 9u.5 80.2 73.5

0 6u.0 63.5 55.5 56.1 60.5 56.1 71.2 6u.6 63.0

-0.05 25.5 29.5 18.0 33.6 27.2 28.u ul.5 H1.6 H2.3

—0.10 25.0 22.5 13.5 29.u 21.2 20.7 31.3 31.5 31.u

-0.15 22.5 20.0 26.5 20.3 2u.u 23.0 23.3

—0.20 21.0 16.0 12.5 22.8 18.7 1u.2 2u.6 19.6 21.1

-0.25 10.0 15.u 13.3 21.3 17.5 2u.5

-0.30 19.5 10.0 11.5 12.u 11.2 8.1 20.u 16.7 22.u

-0.u0 17.5 10.0 11.0 11.u u.8 u.6 15.7 1n.7 19.9

—0.50 16.0 5.0 10.0 8.1 u.1 A 13.3 1u.7 19.1
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Table 2.--Velocity data, h/b = 2.0.

 

  

 

E, x-component Of time mean velocity (ft./sec.)

{:3 X/b = 0.15 X/b = 0.50 X/b = 0.85

5A; .I9 .30 .So .19 .30 .50 .IO 3o .50

0.60 100.0 100.5

0.55 99.5 100.3 100.5

0.50 99.7 100.3 100.5

0.95 101.9

0.40 100.0 95.5 100.3 97.7 104.8 100.0

0.35 99.7 100.3 105.0 96.9

0.30 100.0 92.0 100.3 91.9 105.0 95.3

0.25 97.9 102.5 93.7

0.20 100.0 92.5 88.0 99.7 9“.“ 86.9 98.7 89.6

0.15 100.0 100.1 92.6 105.0 99.7 86.4

0.10 100.0 83.5 78.5 100.3 85.0 76.5 104.7 88.0 81.5

0.05 87.0 76.5 69.5 90.4 77.8 96.3 80.9 69.6

0 50.0 56.5 50.0 60.1 57.6 51.9 74.2 61.6 59.6

-0.05 20.1 19.5 22.0 30.0 22.8 23.7 “2.0 36.2 36.7

-0.10 19.5 16.5 15.0 25.5 22.2 19.1 38.2 25.9 26.4

-0.15 15.1 19.2 20.“ 19.2 31.8 20.9 25.2

-0.20 13.5 12.5 8.0 15.3 18.“ 17.9 27.7 17.0 22.“

-0.25 12.5 11.6 22.7 15.1 20.“

-0.30 12.5 12.5 10.5 10.6 10.1 22.7 13.9 20.4

-0.90 11.5 .5 7.5 9.7 7. 17.3 12.9 18.9

-0.50 10.5 .9 5 5.5 8.7 5. 14.1 12.3 16.5
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Table 3.——Turbulence data.

 

 

 
 

 
 

 
 

 

(h/b = 1.0) (h/b = 2.0)

y g. —u'v' -u'v' u;__ —u'v' -u'v' 2L3

b b 1112 -—2 u2 I_L_u2 {I2 u2

2 a) a) 2 a) a)

0.10 0.10 .060 .061

0.075 .005 .0109 .084 .004 .010 .080

0.050 .010 .0244 .148 .010 .024 .150

0.025 .019 .0579 .205 .018 .059 .215

0 .021 .108 .223 .023 .115 .225

-.025 .015 .174 .200 .017 .185 .215

-.050 .006 .169 .178 .007 .173 .180

-.-75 .003 .090 .114 .004 .090 .124

-.100 .003 .099 .077 .003 .110 .115

-.125 .0025 .090 .057 .0025 .090 .075

—.150 .003 .107 .002 .110 .070

-.175 .0025 .102 .0025 .100

0.10 .060 .060

0.075 .005 .0117 .098 .005 .012 .110

0.050 .008 .0275 .138 .009 .029 .143

0.025 .0125 .0412 .182 .013 .041 .182

0 .016 .0885 .198 .017 .091 .203

-.025 .010 .124 .190 .011 .125 .193

—.050 .006 .173 .161 .007 .184 .172

—.075 .003 .096 .114 .005 .097 .115

-.100 .0025 .089 .077 .003 .092 .082

-.125 .0025 .092 .057 .002 .092 .057

-.150 .0025 .099 .002

0.075 .005 .0124 .089 .005 .0125 .090

0.05 .006 .0192 .127 .005 .019 .126

0.025 .010 .0355 .148 .010 .040 .152

0 .011 .066 .152 .012 .069 .155

-.025 .008 .109 .141 .009 .110 .141

-.050 .005 .170 .100 .005 .170 .110

-.075 .003 .106 .077 .003 .106 .074

-.100 .0025 .096 .057 .003 .090 .050

-.125 .0025 .105 .057 .002 .110 .050

-.150 .0020 .0925 '
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Table 4.-—Temperature data (x/b = 0.5).

 

 

    

 

h/b = 1.0 h/b = 1.0 h/b = 2 0 h/b = 2 0

(a/b = 0.28) (es/b = 0.58) (0/1') = 0 38) (0/1) = 0 76)

x T T-TOO T T-TOO X T T-TOO T T-T

b OF Tw—QD TW-Tx> b TW-Tn Tw-Tn

.25 80.0 .0044 76.0 0.0 .3 76.0 0.0 75.0 0.0

.20 80.0 .0044 76.0 0.0 .2 76.0 0.0 75.0 0.0

.15 80.1 .0055 78.0 .020 .1 78.2 .0022 77.4 0.24

.10 80.1 .0055 79.2 .032 0 84.6 .086 88.6 .136

.05 82.1 .0277 80.6 .046 —.1 98.9 .229 108.7 .337

0 83.1 .0388 83.2 .072 —.2 107.6 .316 110.0 .350

—.05 102.3 .251 109.6 .336 -.3 108.6 .326 113.7 .387

-.10 110.4 .341 114.3 .383 -.4 109.6 .376 115.6 .406

—.15 113.4 .374 117.0 .410 —.5 115.0 .390 116.0 .410

—.20 115.7 .400 117.7 .417 -.6 115.1 .391 117.0 .420

-.25 116.7 .411 118.5 .425 -.8 116.5 .405 117.7 .427

—.30 117.4 .418 118.0 .420 -1.0 118.5 .425 118.2 .432

-.40 117.0 .414 118.7 .427 -1.2 122.6 .466 123.2 .482

-.50 117.1 .415 119.1 .431 -1.4 126.8 .508 130.4 .554

-.60 117.5 .419 119.7 .437 -1.6 130.6 .546 133.0 .580

-.70 118.4 .429 119.6 .436 -1.8 133.1 .571 138.4 .634

—.80 117.9 .423 119.7 .437

-.90 118.0 .425 122.6 .466

 



Table 5.—-L00al cavity heat transfer (h/b
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1.0).

 

 

.2 0

 

 

h = g/A (BTU/hr.ft F)

Tw_T00

Upstream Wall y/b 6/b=0.16 6/b=0.28 6/b=0.36

—.0492 23.8 19.9 18.0

-.1311 23.8 19.7 17.7

-.2l31 22.8 18.1 16.8

-.2951 22.4 16.4 16.0

-.3770 20.7 17.4 16.1

-.4590 20.6 18.1 16.5

-.5410 21.3 18.7 16.9

-.6230 22.7 20.3 17.2

-.7049 24.7 22.1 18.4

-.7869 25.8 22.1 19.8

-.8689 25.6 21.5 20.0

-.9508 24.0 20.3 19.6

Bottom x/b

.0492 22.4 19.0 18.4

.1311 21.6 18.1 17.6

.2131 21.6 18.1 17.8

.2951 21.8 18.4 18.4

.3770 22.2 19.0 18.8

.4590 23.6 19.9 20.0

.5410 24.4 21.5 22.0

.6230 25.2 22.6 22.4

.7049 26.5 24.1 24.0

.7869 28.0 25.0 24.2

.8689 26.6 24.5 22.0

.9508 26.0 23.1 20.6

Downstream Wall y/b

—.9508 24.0 53.5 38.2

-.8689 23.7 49.2 33.9

-.7869 23.8 42.6 29.0

—.7049 24.0 30.4 28.5

-.6230 24.5 26.9 26.0

—.5410 26.4 24.3 24.3

-.4590 31.6 22.4 23.4

-.3770 35.3 21.5 22.6

-.2951 48.4 20.8 20.0

-.2131 54.3 20.3 19.8

-.1311 62.1 20.0 19.0

-.0492 63.4 20.8 19.0
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Table 6.--Average cavity heat transfer.

 

 

Stanton N0.

 

 

Based on

(To'TaQ

h uaa 6 Ta) Tw To Q —E = q/A

b ft/Sec.b 0F OF 0F BTU/HR 0CD uoo(To-T03)

0.50 70.6 .296 77.0 251.0 137.0 3460 .0483

0.50 76.0 .297 77.7 244.4 134.5 3210 .0447

0.50106.0 .278 78.5 206.8 120.5 3175 .0416

0.50 71.5 .444 77.0 272.8 144.6 3320 .043

0.50 78.3 .446 77.0 270.0 143.2 3117 .0395

0.50107.0 .417 77.0 232.5 129.4 3040 .0365

1.0 80.3 .559 76.5 272.0 156.1 3125 .0432

1.0 86.5 .572 76.5 273.7 158.3 3070 .039

1.0 92.1 .586 76.5 273.5 155.3 2985 .038

1'0 103'” .373 77.5 208.2 134.5 3005 .0398

1.0 86.4 .386 77.5 229.8 143.0 2950 .0407

1.0 70.5 .400 77.5 249.2 152.0 2730 .0453

1.0 112.0 .161 77.0 157.6 108.5 2535 .0416

1.0 77.2 .173 77.0 194.7 120.0 2765 .0489

1.0 87.2 .162 77.0 182.5 116.0 2800 .0513

1.5 71.8 .60 78.0 293.4 160.5 1965 .0402

1.5 89.8 .574 78.0 218.8 135.8 2250 .044

1.5 110.3 .550 78.0 195.3 126.5 1740 .0378

1.5 84.3 .80 76.5 235.6 143.3 2170 .038

1.5 89.7 .78 76.5 237.7 142.7 2015 .036

1.5 104.3 .75 76.5 210.1 132.7 1875 .0365

 


