l
I i}
) y T

it

. T

C.2

This is to certify that the
thesis entitled

Computation Design Alternatives
with
Microprocessor-Based Systems

presented by

Sigurd Leland Lillevik

has been accepted towards fulfillment
of the requirements for

Ph.D. degreein Electrical
Engineering

W P,

Major professor

%4 Doy /74

0-7639

LIBRARY

Michigan Stage
University

| é L (S8

COMPUTATIONAL DESIGN ALTERNATIVES
WITH
MICROPROCESSOR-BASED SYSTEMS

By
Sigurd Leland Lillevik

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
Department of Electrical Engineering

and
Systems Science

1978

‘1)

ABSTRACT
COMPUTATIONAL DESIGN ALTERNATIVES

WITH
MICROPROCESSOR-BASED SYSTEMS

By
Sigurd Leland Lillevik

For a microprocessor-based system, the computational section
reduces to combinations of four elemental computational design alter-
natives (CDA's). The described research examines and characterizes
these CDA's and develops a structured approach to computational section
design which incorporates a rigorous, theoretic foundation.

The DIRECT CDA incorporates a single microprocessor (uP) and
memory, so it executes adds and multiplies in software. Next, the sec-
ond CDA contains a uP, memory, and arithmetic unit (AU). This AU CDA,
then, performs multiplies in hardware. For the third, a uP, memory,
and calculator chip (CALC) comprise the CALC CDA, and it executes adds
and multiplies with the CALC chip. Finally, several uP's and memories
in a Master/Slave arrangement implement the multiple-pyP (muP) CDA. It
applies the concept of parallel execution, but performs all adds and
multiplies in software (like the DIRECT).

A common set of attributes facilitates comparison of CDA's.
Using such attributes, Multiattribute Utility Theory (MUT) assesses a
numeric quantity, the utility, to represent each CDA's usefulness.

Thus, design involves selecting the CDA with the greatest utility.

Sigurd Leland Lillevik

When attributes satisfy eight axioms plus utility and preferential inde-
pendence definitions, utility assessment embodies an additive utility

function; i.e.,

N
u(x) = I kiui(xi) = utility
i=]1
X = (xl, Xys Xgseees xN) = consequence
N = number of attributes

ui(xi) = marginal utility of attribute x

N

ki = gcaling constants, where I k, = 1.
=1 L

i

Application of MUT to three examples--linear regression, matrix
inversion, and fast Fourier transform computations--illustrated the use
of the additive utility function and led to CDA characterization. Here,
a consequence consists of an ordered-triplet whose components correspond
to the precision, execution-time, and cost of a CDA; thus, N = 3, For
ingtance, the first example produced the following marginal utilities:
DIRECT = (60, 00, 100), AU = (00, 100, 53), CALC = (100, 19, 00), and
myP = (33, 97, 62). The above function with weight vector k=
(0.3, 0.3, 0.3) finds a weighted average of marginal utilities; DIRECT =
55, AU = 51, CALC = 40, and muP = 64; hence, the '"best" design consists
of the muP CDA. In characterizing the CDA's, the examples revealed that
the AU exhibited fastest execution-time. Also, the muP's parallel execu-
tion surpassed the DIRECT's speed even though they both implement com-
putations entirely in software. But this increase varies significantly
with the type of example and the severity of the Master's overhead pro-
gram. The CALC executes slower than the DIRECT or muP for single/double-

precision, but faster for triple/quadruple-precision. All costs climb

Sigurd Leland Lillevik

with greater problem dimensions due to increased data (not program)
memory, yet the muP costs grow more rapidly because of repetitive hard-
ware and software. Finally, costs vary little with changes in precisionm.
So designers will be able to synthesize more advanced uP-based
systems through judicious use of these elemental CDA's, their character-
istics, and MUT. Also, these characteristics indicate that new LSI
devices should include enhanced computational features. With MUT method-
ology developers can now examine and characterize future uP-based systems

as technology advances.

ACKNOWLEDGMENTS

No single individual has influenced my professional growth and
development more than Dr. P. David Fisher, my major professor. For the
past several years he has guided and motivated my career through his
exemplary enthusiasm, hard work, aggressiveness, and superior knowledge
of the field. Mere words can not express my appreciation. Perhaps I
can best thank him by extending this type of friendship to others
throughout my professional career.

Also, I wish to express my gratitude to my committee members
for their guidance of my doctoral program: Dr. S. R. Crouch, Dr. J. J.
Forsyth, Dr. J. B. Kreer, and Dr. D. K. Reinhard. And to my wife,

Sandi, I extend my appreciation for her typing of the dissertation.

ii

TABLE OF CONTENTS

Chapter Page

Il ImODUCTION..Q..'I..I....‘..l........l.l...‘..‘....... 1

»

II. CHARACTERISTICS OF COMPUTATIONAL DEVICES.....ccceeeeene

1 MiCrOprOCeSS0rS..ccceccccesccccacccvaconcncononnes
2 Solid-state memOrieS.....ccccceevecccesccccoscccscs
3 LSTI support ChipS.ccceecsceccccccccccccsscsscccccns
4 SUMMATY...cceeeecscecscccosssccssssccassscscconcans

O o &

III. COMPUTATIONAL DESIGN ALTERNATIVES.....cccccoeccccccccncs 11

1 Elemental CDA'S..cccecececcccncecncoceoscoaosannoen 11
2 AttribULeS8...ccveccecccccccescsscccsocccnesncncsns 16
e3 Precision....ccecercccccccccsccccccscsesscsccoccess 17
4 Executlon=time.....ccceccecesccccoccscrccccccccccce 17
5
6

Costlo--0...000..00.0uo-.o'.oouc.occo..nao.ooc-.cc 28

sm&ry.-..o-o-..-.-.--....-.......--............;. 31
Iv. MULTIATTRIBUTE UTILITY THEORY...cccceeeeccccccccccncees 33

4.1 Multiattribute utility theory definitioms......... 33
4.2 Utility existence axiomS.....ceeceeecccccccccccnss 35
4.3 Additive utility functionS......ccceceeccccncccans 37
4.4 Marginal utility functionsS....ccceeeececosccccnnas 41
4.5 SUMMATY...cceeeceoscsccosccasarssssccsssscssscscsnss 43

v: APPLICATIONS-.......oocoooac-on-oo--oo.--ooc..o.uc-oaoc 44

5.1 General appProacCh.....ececeececeececcccsscsancceess 44
5.2 Linear regression eXample....cec.eeeeeeecooacocens 48
5.3 Matrix inversion exXample.......coeeeecveccccconess 67
5.4 Fast Fourier transform example........cecececenoes 76
5.5 Additional design considerationS...........ceese.. 107
5.6 SUMMATY...veeeeeensococcccccocnanscsocsoonnsnnness 108

VI. coNCLUsIONS.‘...-....I.......'.O..'...I....C..l..‘.l... 114

REFERENCES.....cc00vnee ceeesccctcccccceesescccnsonasans 121

1idi

LIST OF TABLES

Table ’ Page
2.1 Representative characteristics of computational
devicesS..iccecrecerrececccrccccccccrcccccsscscansccnccnse 10
3.1 Add and multiply execution-times for various CDA's...... 32
3.2 Estimates of C.q for various CDA'S....ccviveeencsccccsss 32
5.1 Estimates of Ai’ Mi (1 # 4) for Example-=l....cceceeecess 50
5.2 Estimates of A4, M.4 for Example-l...cccocceccccccccccans 50
5.3 Estimates of Pi’ D1 (1 # 4) for Example-l...cceeeeennens 56
5.4 Estimates of P4’ D4 for Example=l...cccceveveecccscnscnans 56
5.5 Typical consequence set and utilities for
Example=1 (107 SAMPLES) . veenennnnnnnnnnnnnnnnnnnnnnns 65
5.6 Typical consequence set and utilities for
Example-1 (105 SAMPleS) ccvceececcaccccccoooasonssssnnnas 66
5.7 Estimates of Ai’ Mi (1 # 4) for Example-2........... oo 70
5.8 Estimates of A4, M4 for Example=2....cc00cccccesccccnccs 70
5.9 Estimates of Pi’ Di (1 # 4) for Example=2....cc0cccecees 75
5.10 Estimates of Pa, D4 for Example=2....cc0000cecsccsonccce 75
5.11 Typical consequence set and utilities for
Example=2 (2nd OFder).cceccccecccocoosccosossensasscsccss 85
5.12 Typical consequence set and utilities for
Example=2 (5th Oorder)..ccccceeccecccceccccocscccccccnsss 86
5.13 Estimates of Ai, Mi (1 =1, 2) for Example=3....ccc0ceuee 90
5.14 Estimates of A, M3 for Example=3....ccccececncccccacans 90
5.15 Estimates of A,, M, for Example-=3.....c0000ccccccncss . 90

4
iv

Table Page

5.16 Estimates of P Di (1 # 4) for Example-3....ccceeecceace 95

i’
5.17 Estimates of P&’ D4 for Example=3....cccceeecrcccanncnane 95

5.18 Typical consequence set and utilities for

Exmple-3 (23 samples)......l..l.‘.......'.‘....‘.‘.....‘ 105

5.19 Typical consequence set and utilities for
Example~3 (27 8AMPleS) cccceeercosscccssssccsacscnssssanas 106

5.20 Typical consequence set and utilities for
example-2(2nd order, improved multiply algorithm)........ 111

LIST OF FIGURES

Figure Page

3.1 Block diagram of a generalized microprocessor-
based systm'..ll.l....‘.l'...’.......‘................ 12

3.2 Block diagram of the DIRECT computational
design alternative...ccceeceecrscccsscsccccscccccccccana 14

3.3 Block diagram of the AU computational
design alternative..ccccceccceccrccossscsccssssssccnccs 14

3.4 Block diagram of the CALC computational

design alternative‘l‘."'.I....C.‘I"l...."....‘.‘.‘.‘ 14
3.5 Block diagram of the multiple-microprocessor
computational design alternative...ccccececcenccccccces 15
3.6 Multiple-precision addition flowchart.......cceecoeeee. 19
3.7 "Operation" flowchart for CALC CDA.c.cccevcccceconcaanne 20
3.8 "Number-entry" flowchart for CALC CDA..ceececcccccacans 21
3.9 Multiple-precision addition time for various CDA's..... 23
3.10 Multiple-precision multiply flowchart for
DIMCT CDA.'...".I'.'.'.....'.'...........C..'.QQ.I... 24
3.11 Multiple-precision multiply flowchart for
AU CDA..QI.....'..'.‘l'-.'....‘..‘..‘....QQ...C........ 26
3.12 Multiple-precision multiply time for various CDA's..... 27
4.1 Indifference curves for computational
design altemativesl.........Q‘...l‘.'.l.....‘.... 40
5.1 General approach to selecting a computational
design alternative...cccceeeeccssscccsccsosososcsssascnnas 45
5.2 Linear regression series flowchart........cccceceeeecee 49
5.3 Relation between Master and Slaves for
Example-l‘ll-.‘I.......Il..............CQ........IQIC.. 52

vi

Figure Page

5.4 Linear regression parallel flowchart: Master........... 53
5.5 Linear regression parallel flowchart: Slave-2.......... 54
5.6 Single-precision execution-time versus sample
size for kample-l'.'.l.......‘....“.l.Q.......Q 57
5.7 Double-precision execution-time versus sample
size for kample-l.........0.'.I..................0...'. 58
5.8 Triple-precision execution-time versus sample
size for Example-l.'....QC....I.."..".....‘I..'....'.l 59
5.9 Quadruple-precision execution-time versus sample
size for mmple-li..I'......Q.-l'l...".............l.. 60
5.10 Single-precision costs versus sample
Size for Example-l........................-.......-..... 61
5.11 Double-precision costs versus sample
size for kample-lﬂli..................‘O.....'OO.Q.OI.. 62
5.12 Triple-precision costs versus sample
Size fOt Example-l...............-...-..-.-.....-...--.. 63
5.13 Quadruple-precision costs versus sample
size for Examle-l.‘....C...I..Q....................'... 64
5.14 Matrix inversion series flowchart......ccceeevccccccccss 68
5.15 Relation between Master and Slaves for
Example-z‘.‘...'..l.."'.'..‘..O...."......I...O.....O. 71
5.16 Matrix inversion parallel flowchart: Master.......ccc.. 72
5.17 Matrix inversion parallel flowchart: Slave=J.....cccc.. 73
5.18 Single-precision execution-time versus matrix
order for Example—zl.........‘......'..'....I..O..‘...C' 77
5.19 Double-precision execution-time versus matrix
otder for Emple-zC.....Q.I.......-.'.I...'........l‘.. 78
5.20 Triple-precision execution-time versus matrix
order for Example=2....ccccccecceescccscccoccsccnccccccas 79
5.21 Quadruple-precision execution-time versus matrix
Order fOl’ Example-z..................-..-..........--... 80
5.22 Single-precision costs versus matrix order
for Example-le...I.ll'....l.....‘.l...'........I....... 81

vii

Figure Page

5.23 Double-precision costs versus matrix order

for Example-zll...........‘l..'.l.l.....l.....‘...l..... 82
5.24 Triple-precision costs versus matrix order

fOt Example-z..o----.-..........-.........----o........ 83
5.25 Quadruple-precision costs versus matrix order

for Exam‘ple-z.....-..-......a-o..--.................... 84
5.26 FFT series flowchart...ceeeeeeecscsesccoscesssscasannas 88
5.27 Relation between Master and Slaves for

Example-3l.IQQ..'I.....“'.....................l....... 91
5.28 FFT parallel flowchart: Master.........ceceeveccccccce 92
5.29 FFT parallel flowchart: Slave=M.....cccececcccccccccss 93
5.30 Single-precision execution-time versus sample

Size for Example-3..................................... 97
5.31 Double-precision execution-time versus sample

size for Example=3....ccccceeveccccccccccccscssccsncans 98
5.32 Triple-precision execution-time versus sample

Size for Example—3.......-.............-.....--........ 99
5.33 Quadruple-precision execution-time versus sample

Size for Example-3.....-.-............................. 100

5.34 Single-precision costs versus sample
size for Emple-S......l.......l.."............‘..Q.. 101

5.35 Double-precision costs versus sample

size for Example=3...cccccccecccsccccscscscassossccssans 102
5.36 Triple-precision costs versus sample

size for Emple-3.............l‘....l.l..... * o 00 103
5.37 Quadruple-precision costs versus sample

size for mple-3..I.ll..'l..............I...........l 104
5.38 Multiple-precision multiply time for various CDA's..... 109

5.39 Triple-precision execution-time versus
matrix order for Example=2....ccccccceccccccccccscccnes 110

viii

CHAPTER I INTRODUCTION

Technological advances made within the electronics industry
during the early and mid 1970's stimulated the rapid development and
broad acceptance of microprocessor-based systems. Today, these systems
span a wide range of applications with considerable variation in compu-
tational requirements. To meet these requirements, the electronics in-
dustry introduced a host of large-scale integrated (LSI) devices that
perform diverse computations; for example, linear regression, matrix
inversion, and fast Fourier transform computations. Even though a plethora
of hardware/software computational design alternatives confront today's
system designer, no structured approach exists for theﬁ to sythesize
optimal computational sections. So the purpose of the research reported
here is to investigate and characterize computational design alternatives
(CDA's), and to develop a more rigorous and structured approach to de-
sign which incorporates a firm, theoretic foundationm.

Using the resﬁlts of this research, designers of micfoprocessor-
based (uP-based) systems will be able to synthesize advanced systems with
improved performance. Second, these results will benefit LSI chip design-
ers by influencing what properties they will embody in the next generation
of devices. Since some features assist computations while others detract,
these new LSI devices will contain the desirable characteristics and min-
imize the action of the undesirable ones. Third, the results of this
study will assist developers of uP-based systems by providing them with

1

the methodology to investigate and characterize future systems as tech-
nology advances. Because the theoretic development begins at the axiom
level, they may easily modify the methodology to fit their particular
goals.
Throughout the research reported here the study achieves several
objectives as delineated below:
1) survey the present semiconductor market for LSI devices that
facilitate computations,
2) generalize the properties of such devices,
3) identify a basic set of elemental computational design alter-
natives,
4) determine common attributes for each member in the set,
5) find techniques to evaluate such attributes,
6) develop a decision mechaniém for comparing CDA's which uses
these attributes,
7) 1illustrate the use of this decision mechanism with represen-
tative and contemporary engineering applications, and
8) use the examples to characterize the properties of each CDA
in the elemental set. |
To meet these objectives, the study only considers elementary hardware/
software tradeoffs because of straightforward and tractable -analysis.
But since the overall methodology remains the same with optimal, or
advanced, hardware devices and software algorithms, no loss in general-
ity occurs.
In Chapter II a survey of today's semiconductor market identifies
those devices and their characteristics that facilitate computations.

Specifically, the discussion focuses on uP's, solid-state memories, and

LSI support chips. These results establish the motivation and rationale
for the entirelinvestigation. With these devices, Chapter III defines a
basic set of elemental CDA's which when combined may realize the computa-
tional section of a generalized uP-based system. To facilitate comparison
of each member in this set, it determines attributes common to the members
that reflect the important features, qualities, and characteristics of
each CDA, and it describes techniques to evaluate them. Next, Chapter IV
presents a decision mechanism for selecting the "best'" CDA which uses the
attributes found in the previous chapter. And this involves eight axioms
upon which the theoretic foundation rests, several independence definitioms,
and a central theorem which delineates a specific decision functionm.
Finally, the three examples in Chapter V--linear regression, matrix inver-
sion, and fast Fourier transform computations--use the results of the pre-
vious two chapters to clarify the techniques used to evaluate attributes,
and to elucidate the specifié decision function in selecting the '"best"
CDA. Additionally, this chapter explores the effect of altermative algbr-
ithms. Not only do these examples typify representative and contemporary
engineering problems, but they vary widely in their mathematical complex-
ity. During this process the applications exemplify the overall proced-
ure of this investigation and, moreover, they lead to conclusions which

characterize each CDA.

CHAPTER II CHARACTERISTICS OF COMPUTATIONAL DEVICES

Recent advances in processing technology led to LSI devices
that exhibit enhanced features at low cost. Consequently, uP-based sys-

tems now function in a myriad of applications which range from medicine(l)

) 3) (6) And other ex-

to communications to agricultu§;(3_ to business.
amples abound. Many uP-based systems require advanced mathematical cap-
abilities and a multitude of computational design alternatives may accom-
plish these calculations. In this chapter a survey of today's semicon-
ductor market identifies those LSI devices and their characteristics that
facilitate computations. Specifically, the discussion focuses on the per-
formance trends of uP's, solid-state memories, and LSI support chips in
the light of present technology. These results establish the rationale

and motivation for the investigation reported in the remaining Chapters.
2.1 Microprocessors

In 1972, the Intel Corp. introduced a 4-bit word length, 10

7 Other

usec. cycle-time, p-channel uP to the electronics industry.

firms soon followed suit with uP's of their own. This original device

required three distinct power-supplies and a two-phased clock to exe-

cute its 45 instructions, and a complete microcomputer entailed about

4 chips. Soon, a second generation device entered the semiconductor

market which exhibited nearly twice the performance of its predeces-
(8)

sor. By using the then recently developed n-channel technology,

4

which achieved higher density and increased speed, it displayed a 5 usec.
cycle-time, an 8-bit word length, and an instruction set of 80. Further
advantages included single power-supply operation, and only a single-
phase clock. And a mere 2 chips configured a complete microcomputer.
Presently, the semiconductor market maintains a third generation uP

9, 10) This circuit

which, again, doubles its forerunner's performance.
uses advanced n-channel or integrated-injection logic (IZL) technology,
attains a 1 usec. cycle~-time for an 8 or 16-bit word length, and sells

for about $10.00; it includes an instruction repertoire of a minicomput-
er (well over 100). Yet a more important addition involves on-chip mem-
ory and input/output (I/0) logic which significantly reduces package count
and, thus, costs. Consequently, today's semiconductor market truly sup-
ports a "one-chip" microcomputer with many advanced features.

An analoguous trend which parallels these metal-oxide semiconduc-
tor (MOS) advances saw bipolar "bit-slice" uP's exploit the speed-power
characteristics of low-power Schottky transistof-transistor logic (TTL).
Unlike MOS uP's these devices do not contain a microprogram programmable
logic array (PLA) and, hence, the user provides the microprogram;(ll-13)
this allows the use of any desired instruction set. With pipelined arch-
itectures they produce 125 nsec. cycle-~times, and many small computer
firms now offer bit-slice, uP-based minicomputers as either new products
or upgraded replacements.(la)

From this discussion it becomes clear that the uP business is
extremely competitive, which generally forces product lines to expand

rapidly. Often, by the time a uP-based system reaches the marketing

phase it contains obsolete parts and components.

2.2 Solid-State Memories

As with pP's and bit-slice devices, technological advances have
remarkably altered both the price and performance of solid-state memor-
ies. Over the past several years average prices (millicents-per-bit)
dropped at an annual rate of 35% and densities (bits-per-chip) increas-

ed 602 annually.(ls’ 16)

For example, memories cost about $0.01 per bit
and a typical chip contains from 1,000 to 8,000 bits. Consequently, mem-
ory system prices plunged while speed increased (e.g., 1 usec. access
times). Memories fall into two main divisions depending on the "access-
ibility" of an arbitrary location. Random access (or parallel) implies
that any memory address may follow the other, but for sequential (or ser-
ies) memories each address occurs in a specific order.(17’ 18) For se-
quential memories, the CCD and bubble show much promise and may eventu-
ally replace the electromechanical serial memories such as disks, tapes,
drums, etc. Although they now cost-slightly more than the others, they
contain no moving parts to wear out and exhibit faster access times.(lg)
Three additional subdivisions further classify memory types:
ROM/RAM, static/dynamic, and MOS/bipolar. First, ROM stands for read on-
ly memory and RAM for random access memory but, unfortunately, common
terminology connotes RAM with read/write memory. So both ROM and RAM
consist of random access memories where a yP can only read from a ROM,
and can either read from, or write to, a RAM. Also, ROMs differ from
RAMs in that they retain their contents during power-down (nonvolatile),
whereas RAMs lose their contents (volatile). Additionally, ROMs occur

in both mask and field programmable types.(zo)

For the first, before man-
ufacturers "cook" the semiconductor they alter the circuit to contain the

correct contents. With field programmable ROMs the end user applies

specific voltages and currents to the chip that define its contents.
In general, this process purposely destroys part of the circuit, but

ROMs with a new kind of FAMOS memory cell can be reprogrammed.(ZI)

They
contain a quartz window which when exposed to the correct ultra Violet
(uV) light resets the memory for the next programming cycle.

Second, with static memories information remains in bistable
flip-flops, but with dynamic memories information becomes the charge, or
lack of charge, on a semiconductor capacitor and, hence, needs continued
refresh due to nonideal leakage resistance. Although dynamic memories
operate at higher speeds and consume less power than statics, still they
may necessitate more costly auxiliary components such as multiple power
supplies or critical clock circuits.(zz) Third, the MOS/bipolar class-
ification refers to the process technology used to manufacture the mem-
ory. With p-channel MOS memories their characteristics include low cost,
excellent packing density, but slow speed; n-channel MOS properties basic-

ally differ in speed; i.e., slightly faster.(23)

Another MOS technology,
complementary-metal-oxide semiconductor (CMOS), employs both p and n-chan-
nel transistors and exhibits reduced power consumption with an increased
speed-power product, but at the expense of less density and greater costs.
As with all bipolar processes, Schottky TTL enjoys fast circuit operation

and plays a dominant role in the digital 1ndustry.<24)

But it dissipates
considerable power and occupies much silicon area for decreased densities
and high cost. Perhaps an excellent compromise technology, bipolar 12L
reveals good speed and density at less power dissipation and cost than
Schottky TTL.(ZS) Therefore, many types of solid-state memories exist
with widely differing characteristics, and to select one for an applic-

ation involves careful consideration of several tradeoffs.

2.3 LSI Support Chips

The uP's described in Section 2.1 offer only general purpose in-
struction sets that often contain few sophisticated (or specialized) op-
erations: particularly, I/0 and arithmetic. To incorporate these auxil-
iary functions would require additional pins on the chip, and most manu-
facturers limit themselves to 40 (for economical yields) which eliminates
such special operations (time-multiplexing the pins causes reduced speed
and complex timing). Yet some firms concentrate on standard '"support
‘chips" that facilitate these external functions; e.g., data communica-
tion, data conversion, operator interaction, computation, etc.

Specifically, computational support chips deal with the arith-
metic and trigonometric functions not found in uP's today. For example,
new and creative algofithms(26’ 27) helped semiconductor firms produce
multiply circuits with 8-bit, 100 nsec., 1W operation that sell for about

(28, .29)

$100.00, And with an eye toward floating-point formats and oper-

ations, a 24-bit, 200 nsec., 5W multiply chip obviates the need for mult-

iple-precision algorithms.(Bo)

A remarkably versatile support chip con-
tains both 16 and 32-bit, fixed and floating-point, arithmetic and trig-
onometric functions where all transfers occur over an 8-bit, Sidirection-
al bus and in one 24-pin package.(31)
The ubiquitous calculator chip, when interfaced to a uP, pro-
vides extremely powerful processing power with literally no software dev-
elopment.(32’ 33) Additionally, they incorporate both fixed and floating-
point formats, but function slowly (typically 50 msec. for an add). Be-
cause they often require multiple power supplies, logic-level shifting
circuits, and special encoding/decoding hardware, implementation costs

involve around $200.00.(34)

The support chips for computations just described only illus-
trate the wave of new LSI function modules created by technology advan-
ces. Furthermore, many people predict the concept of LSI software where
ROMs contain complete program packages tailored for some specific

(35, 36)

goal. Here, program ROMs matched with unique hardware arrange-

ments drastically reduce software development time.

2.4 Summary

From the preceding survey of today's semiconductor market it
becomes clear that many LSI devices facilitate computations. Represent-
ative characteristics of uP's, solid-state memories, arithmetic units,
and calculator chips (see Table 2.1) illustrate the enhanced features and
low cost of present devices. So with these characteristics a designer of
uP-based systems may synthesize CDA's to perform advanced mathematical
computations. Thus, this table of specific values defines the character-

istics of LSI devices used throughout the remaining chapters.

10

Table 2.1 Representative characteristics of computational devices

a) uP's b) Solid-state memories
8-bit word length 1-8k bits/chips
8 usec. cycle-time 1 usec. assess-time
$10.00 cost $0.01/bit cost

c) Calculator devices d) Arithmetic units
multiple-precisiﬁn 8-bit word length
word-length
50 msec. execution-time 100 nsec. execution-

) time

$200.00 cost $100.00 cost

CHAPTER III COMPUTATIONAL DESIGN ALTERNATIVES

With the numerous LSI devices available to designers today, syn-
thesis of advanced CDA's involves careful and tedious evaluation of sev-
eral tradeoffs. This chapter defines a basic set of elemental CDA's
which use the representative devices delineated in Chapter II. To fac-
ilitate comparison of each member in this set, it determines attributes
common to each member that reflect the important features, qualities,
and characteristics of each CDA, and it develops techniques to evaluate
them. So synthesis of advanced CDA's now reduces to judicious combina-

tions of these basic members.

3.1 Elemental CDA's

A generalized uP-based system may consist of several sectionms,
each with specific and unique responsibilities (see Fig. 3.1). In such
a system each section communicates to the others over a common system
bus. The "computation" section functions to accomplish some distinct
arithmetic calculation which the particular application requires. Be-
cause of technological progress, various combinations of hardware and
software may implement the needed computation. Thus, a computational
design alternative (CDA) represents: the specific combination of hard-
ware and software required to accomplish a particular computation.

All "computational" sections of a yP-based system can be decom-

posed into four "elemental" CDA's, each with their own different

11

12

‘ma318£S poseg-10883001dOIdOTK PazF[eiauad ® jo weaBeyp }ooyd T°€ dan3fJ

snd WALSXS
—
-
] ! I ¥ I f I ¥ I
X4OWAN NOILOVYAINI NOISYAANOD
NOILVINdWOD Y108 VL0 Suae
YATTIOULINOD N20T10 »mm% ﬂmﬁoo S.Emm
WALSAS AWLL-TVEY dano

13

combination of hardware and software to accomplish computations. First,
the DIRECT CDA consists of only a yP and memory connected via the sys-
tem bus as shown in Figure 3.2. This CDA describes the simplest tech-
nique to execute arithmetic operations. Since the memory contains arith-
metic (add, subtract, multiply, and divide) subroutines, the DIRECT CDA
performs all computations in software. Next, the second CDA employs a
uP, memory, and an arithmetic unit (AU) (see Fig. 3.3), all joined by the
system bus. The AU CDA differs from the DIRECT CDA in how it achieves
multiplies and divides. For the AU CDA it writes the two operands (num-
bers) into AU buffers, starts the multiply or divide operation, and simply
reads back the result. But the AU CDA, like the DIRECT CDA, performs
both add and subtract instructions totally in software. The third CDA
incorporates a calculator chip to accomplish arithmetic computations as
depicted in Figure 3.4. Here, the CALC CDA consists of a uP, memory,

and the calculator chip, all linked by the system bus. Within the mem-
ory its program must simulate depressing the keys as with a hand held
calculator; it must also read back the results and decode them when the
requested function finishes.

The final elemental CDA applies the concept of simultaneous, or
parallel, execution: it executes sections of the problem simultaneous-
1y, then adds the partial results together for the completed an-
swer.(37-40) Because of this concept the multiple-microprocessor (muP)
CDA involves several uP's and memories in a Master-Slave arrangement as
i1llustrated in Figure 3.5. Each Slave memory contains a replica of the
DIRECT CDA memory, arithmetic subroutines, and performs all computatiomns

in software (like the DIRECT CDA). Yet the Master's memory includes no

arithmetic subroutines; instead, it holds an '"overhead" program

14

uP Memory

SYSTEM BUS

Figure 3.2 Block diagram of the DIRECT computational design altermative.

Arithmetic
WP Memory Unit
< 3 I I -
SYSTEM BUS

Figure 3.3 Block diagram of the AU computational design alternative.

HP Memory Calculator
- I 1 1 i
SYSTEM BUS

Figure 3.4 Block diagram of CALC computational design alternative.

15

*aaTIRUID]TE UuBTsop TvuOTIRINdWOD (Jrim)

10889001d0IdTK ATdTITNH 3yl jo wealerp Woorg ¢°¢ 2andty

N-2A®TS ¢-2ABTS T-2Aa®eTS
/\ /\ /\
7/ AN 7 N\ 7 \
LaowsR |G———P an o o0 Kxoway an % o)1 =) NI 5 E— an
I i)
Y ((Y Y
-)3 i SN WALSAS >
y
Kiows)y |- an

16

responsible for routing data and preliminary results from Slave to Slave,
and for forming the completed result.

The above muP CDA Master/Slave arrangement does not necessarily
produce optimal results; an architecture designed for a unique problem,
or class of problems, can potentially decrease execution-time and reduce
costs. But the proposed mpyP CDA does present a simple, general-purpose
architecture that solves many problems well and, additionally, lends it-
self to straightforward analysis.

For each elemental CDA a unique mixture of hardware and soft-
ware accomplish computations. Thus, the properties of each CDA vary con-
siderably. So judicious combinations of the four CDA's (DIRECT, AU, CALC,

and muP) will realize the computation section of a uP-based system.

3.2 Attributes

Comparison of a group of objects occurs through evaluation of
a common subset of characteristics, or properties. Moreover, the select-
ed subset of attributes must reflect the important features and qualities
of each member. When comparing a set of CDA's, several attributes sat-
isfy these requirements: precision, execution-time, cost, power dissi-
pation, circuit complexity, programming language, circuit reliability,
packaging demands, maintenance schedule, etc. Too few attributes res-
ults in incomplete examination of the objects while too many attributes
may cause unnecessary confusion. For the above list, all but the first
three attributes depend strongly on the remainder of the uP-based sys-
tem and, thus, fail to depict attributes indigenous to the CDA's. But
precision, execution~-time, and cost represent convenient and illustra-

tive attributes for demonstrating the principal characteristics of CDA's.

17

3.3 Precision

Two common number representations, fixed-point and floating-
point, both identify discrete values on the real-number line. For the
fixed-point format an implied binary-point always lies between two spe-
cific bits in the word, and with floating-point numbers the binary-point
varies (this requires storage of the position). In the research reported
here, all numbers conform to the fixed-point format. Thus, precision in-
volves the quantity of 8-bit memory words used to form a particular num-
ber; e.g., p = 1 for single~precision, p = 2 for double precision, etc.
Since the uP's perform two's complement arithmetic, all numbers corre-

spond to multiple-precision, fixed-point, two's complement quantities.

3.4 Execution-Times

Execution-time determines the number of seconds needed to com-
plete a specific computation. Since addition/subtraction and multipli-
cation/division both correspond to complementary arithmetic and digital
logic functions, the execution-time of an addition roughly equals a sub-
traction and a multiplication roughly equals a division. These assump-
tions greatly facilitate analysis of execution-times. Thus, if the num-
ber of adds and multiplies can approximate the execution-time of an ap-
plication program, then these values multiplied by the time to perform
an add and multiply sum to give the execution-time. Symbolically, let

A, = number of adds

b
M1 = number of multiplies
a, = add time
m, = multiply time

Ti - Aiai + Mimi = execution-time (3.1)

18

where,

1, DIRECT CDA

2, AU CDA

3, CALC CDA, and

4, myP CDA.

In Equation 3.1 the specific CDA architecture dictates expressions for

a, and m,, while the algorithm of the application program configures con-
stants Ai and Mi'

Multiple-precision arithmetic operates on each word of the num-
ber individually to prodﬁce the final result; e.g., consider the mult-
iple-precision add floﬁchart in Figure 3.6. Here, corresponding words
of the two operands add to produce the partial sum and the carry ripples
through from word to word. Since each pass through the loop involves
about 10 instructions, then for

to = cycle-time (8 usec.)

P = precision, and

a = lOpto. (3.2)
Also, the AU and mpP CDA's employ identical add algorithms, so

a, = 10pto, and (3.3)
a, = 10pto. (3.4)
But with the CALC CDA each operand requires decoding and encoding from
binary to BCD formats, and each arithmetic operation demands "digit en-
try" (simulation of key depresses) and "function" time (see Fig. 3.7
and 3.8). Decoding/encoding tasks and the answer reads occur in usecs.,
but when compared to the digit entry and function delays (msecs.) they
contribute no significant time to the add, or multiply, execution-times.
To determine the approximate number of digits sent to the calculator

chip each two's complement number roughly ranges in magnitude * 28p-1,

19

ComD
'

CARRY=0, I=0, L=-p, 0V=0

R = (A+I)

'

!

!

CARRY=0V, OV=0

'

(C+I) = R

!

I=I+1, L=L+1

NO

L = 0?

YES

(i EXIT :)

R = R+(B+I) m—

R = R+CARRY =

Single-precision
addition.

Add
previous Carry.

Figure 3.6 Multiple-precision addition flowchart.

20

(: ENTER :)

Write A

Write B

l

Write
Function

~— [~ [~
~d J T

YES Busy?

NO

Read C

(: EXIT :)

Figure 3.7 '"Operation'" flowchart for CALC CDA.

21

(o=)

L=-P

Write
SIGN

Write
Digits

~ |
~

L=L+1

L =0?

(j EXIT :)

Figure 3.8 "Number-entry" flowchart for CALC CDA.

22

and on the average the number decoded falls in the middle, 28p-2. For

1 < p < 4 these numbers contain around 2p decimal digits; e.g., if p =

8p-2 = 26 = 64, then the uP sends 2 decimal digits to the calcu-

1l and 2
lator chip. With these ideas the execution-time of a multiple-precision
add instruction for the CALC CDA becomes

t, = digit entry time (40 msecsg.)

ta = "add" function time (90 msec.), and

a; = 2(2p + l)te + t. (3.5)
Equations 3.2 through 3.5 yield estimates for the multiple-precision
add times of all CDA's and Figure 3.9 illustrates these values for var-
ious precisions. In this figure the most noticable observation concerns
the difference in add-time "magnitudes': nearly an order of 3.

By reducing the mathematical operation of multiplication to re-
petitive adds, the product becomes the multiplicand added to itself the
multiplier number of times. For a p-precision, two's complement, fix-
ed-point binary number multiplied by another, the result yields a 2p-
precision product. Thus, the DIRECT CDA (without a hardware multiply)
can use the algorithm depicted in Figure 3.10. The 2p-precision adds
contribute, using Equation 3.2, 20pt° time and on the average (see the
development of Eq. 3.5) this occurs 281’-2 times each multiplication;
i.e., the multiple-precision multiply

m = (20pt) (2°P7%)

4p-lt

= 80p2 o (3.6)

And since the muP CDA uses the same software,

- 4p-1
m, 80p2 to. 3.7)

With the AU CDA the problem changes dramatically due to its 8-bit by

10

10

10

10

EXECUTION-TIME (SECS.)

10

10~

Figure 3.9 Multiple-precision addition time for various CDA's.

23

—Q
9
¢
X
X i
X
1 3 5

X - DIRECT, AU, muP

O- CALC

PRECISION

24

C==D)

L=-Multiplier

Product=0

Product = Product + Multiplicand

L=L+1

NO L =0?

YES

Cnxu)

Figure 3.10 Multiple-precision multiply flowchart for DIRECT CDA.

25

8-bit hardware multiply. If the uP needs two I/0 instructioms to write
the parameters into the AU, one to wait for the multiply to finish, and
two to read the 16-bit product, then one single-precision multiply re-
quires (Sto) time. But for multiple-precision numbers the task becomes
much more difficult; consider the notation:

A= (ap + a + ... + al) = multiplier

p-1

B = (bp + bp_ + ... + bl) = multiplicand, and

1
C = AB

+ ... +ab
p p-1 P 1)

+ (ap_lbp + ap-lbp-l + ... + ap_lbl) + ...

+ (albp 4+ a + ... + albl),

= (ab +a
PP

lbp-l
= product.
Thus, multiple-precision multiplies for AU CDA involve p2 single-preci-
sion multiplies (partial products) and p2 2p-precision adds (see Fig.
3.11); combining,
m, = p>(5t.) + p>(20pt)
2~ P o P P%
= 5p2(+ 4p)t,. (3.8)
For the CALC CDA the analysis of Equation 3.5 directly applies to find-
ing the multiple-precision multiply time; only the "multiply" function
replaces the "add" function time; i.e.,
te = digit entry time (40 msec.)
tm = "multiply" function time (120 msec.), and
m, = 2(2p + 1)te + tm. (3.9)
So Equations 3.6 through 3.9 give estimates for the multiple-
precision multiply times of all CDA's, and Figure 3.12 illustrates

these values for various precisions. From this figure the most strik-

ing feature pertains to the rapid rise of the DIRECT multiply time;

26

-
'

IA=0, IB=0, Ll=-p, L2=-p, P=0, PP=0

- —

Single-
PP=(A+IA)* (B+IB) — — =—precision
¢ multiply.
Shift PP
‘i
2p-precision
P=P+PP — T T T laddition.

IA=TA+1, IB=IB+1

NO

L1 = 0?

YES

Ll=-p, IA=0, IB=IB+l, L2=L2+1

L2 = 07

YES

(: EXIT :)

Figure 3.11 Multiple-precision multiply flowchart for AU CDA.

27

10
10°
X
102
~ 1
4 10 X
8
“a‘ 10°
: A A A
=
< A X
B 107t
=
e
1072 S — i
(0]
-3
10)
A Q
10
1 2 3 4 5
PRECISION
w - DIRECT, miP A- CALC
o - AU

Figure 3.12 Multiple-precision multiply time for various CDA's.

28

for p = 1 it lies below the CALC, by p = 2 it equals the CALC, and for

P > 3 it exceeds the CALC considerably. Such action results from the
repetitive adds which comprise the DIRECT multiply time. Also, the AU
multiply time remains the fastest because of its hardware multiply, but
it increases quicker than the CALC. This event occurs due to the larger
number of AU multiplies required with greater precision, than the incre-
ment in digit entries for the CALC CDA. Now, once the constants Ai and
Mi have been found for an application, Equation 3.1 with Table 3.1 can
give an estimate of the execution-time for each CDA.

In this section the flowcharts for various multiple-precision
add and multiply instructions provide only the basic outline. Among the
functions added to an implemented algorithm include initialization, zero
and sign checks, overflow/underflow detection, etc. But these extra du-
ties do not contribute significantly to the overall execution-time, nor

do they represent more than second and third-order terms in the execu-

tion-time Equations 3.2 to 3.9.
3.5 Costs

The monetary expense incurred with each CDA could include sev-
eral components, many of which depend on the remainder of the uP-based
system, so this development focuses on the semiconductor parts cost.
For all CDA's two principal terms add to give the total cost, one cor-
responds to an elemental (or basic) CDA cost and the other to an appli-
cation dependent cost:

C = elemental CDA cost

ei
Cai = agpplication cost, and
Ci = Cei + Cai; 1<1i<4; (3.10)

= total cost (in $'s).

29

First, the elemental cost term Ce relates to the basic expense of pro-

i
curing a CDA and its mathematical subroutine's memory. And three main

factors comprise C

ei’
IOi = I/0 device cost
R1 = mathematical subroutine's cost
CPUi = yP cost, and
Cei = IOi + Ri + CPUi; 1 <1ic<a. (3.11)

Second, the application cost term Cai pertains only to the added ex-
pense of the application memory. This involves two terms, one for pro-

gram memory and one for data storage:

0o = cost per word ($0.08)

P, = program memory

o
"

data memory, and

Q
[

wo(Pi + pDi); 1<1c<a4. (3.12)

Because term Ce in Equation 3.10 does not depend on the application it

i

can be determined now, yet term Ca must be deferred until an applica-

i

tion program is defined. Hence, the three terms 101, R,, and CPUi in

i’
Equation 3.11 need evaluation for each CDA.
For the DIRECT CDA the I/0 devices and uP costs involve simple

estimates; since no I/0 devices reside on the bus IO, = $0.00 and, to-

1
day, an estimate for CPU1 = $10.00. But estimating R. involves much more

1
analysis and approximation. From Figure 3.6, the multiple-precision add
flowchart, if each step involves about 1 word of memory, then 30 words
corresponds to a reasonable estimate of the number of words for the in-
struction. Similarly, the multiply instruction illustrated in Figure 3.10

uses the add instruction so the number of words roughly equals 20. A

summation of these values yields 50 words and doubling this to account

30

for the subtract and divide subroutines results in 100 words. So 100
words at a cost of w, = $0.08 per word gives R1 = lOOw° = $8.00.

With the AU CDA the expense of the AU changes I0,; today, a

2

reasonable estimate of IO2 = $100.00. sStill, CPU, remains the same

2
as CPUl, or CPU2 = $10.00. Following the procedure which determined R,
the add instruction contributes 30 words while the AU multiply instruc-
tion (see Fig. 3.11) attaches an addition 45 words. Together, they sum
to 75 words which when doubled for the subtract and divide subroutines

give 150 words; this sets R, = 150“6 = $12.00.

2

Next, the CALC CDA, like the AU CDA, embodies an expensive I/0
device (the calculator chip) and a contemporary estimate for this term
assigns 10, = $200.00. Yet the CPU estimate continues at CPU3 = $10.00.
With this CDA the exact same flowchart, see Figure 3.7 and 3.8, can acc-
complish all arithmetic subroutines because only the function code (a
parameter) need change from instruction to instruction; e.g., from add
to multiply. These figures suggest that about 50 words can retain the
program, and R3 = SOWb = $4.00.

Analysis of the last CDA, the muP alternative, for the Ce4 term
parallels the DIRECT CDA except in quantity. Since the muyP CDA repli-
cates the DIRECT CDA hardware and software, and if it engages S Slaves,
then IOA = $0.00, R6 = SRl’ and CPU4 1 The CPU4 term mult-
by (S + 1) because the Master uP creates an additional term.

= (S + 1) CPU

iplies CPU1

Thus, Table 3.2 delineates the estimates for IOi, Ri’ CPUi, and

C,q for all CDA's, 1 < 1 < 4, based on 1978 device costs. From this
table the elemental cost of the muP CDA grows rapidly as the number of
Slaves increases. It surpasses the AU CDA by S = 6 and the CALC CDA by

S = 12, Also, the contribution of R, to Cei for the AU and CALC CDA's

i

is insignificant because of the expensive IOi term.

31

3.6 Summary

The preceding sections defined a basic set of four elemental

CDA's: DIRECT, AU, CALC, and muP. In addition, they identified three
important attributes--precision, execution-time, and cost--which facil-
itate comparison of these elemental CDA's. Precision involves the quan-
tity of 8-bit words used to represent a number, execution-time the num-
ber of seconds to complete a computation, and cost the dollar value of
LSI devices used. Equations 3.1 and Table 3.1 determine execution-time,
while Equation 3.10 and Table 3.2 specify cost (both use precision as a
parameter). For execution-time and cost, these values result from terms
indigenous to each CDA and from application derived terms. Using elemen-
tary multiple-precision flowcharts for arithmetic operations, the chapter
estimates these indigenous terms. Such an approach offers straightforward
and tractable analysis. In Chapter V, the text presents techniques to
estimate these application terms, and illustrates the effect of alterna-
tive algorithms on the DIRECT and muP CDA's performance; but first, Chap-

ter IV presents a decision mechanism for selecting the "best" CDA.

32

Table 3.1 Add and Multiply execution-times for various CDA's.

i 1
4p-1

10pt _ 80p2*P e

10pt 5pZ (1+p) t

pt_ P (1+4p)E_

2(2p+1)te + t

2(2p+1)te + t

4p-1
10pto 80p2 t,
Table 3.2 Estimates of Ce for various CDA's.
IOi Ri CPUi Cei
. $8.00 $10.00 $18.00
$100.00 $12.00 $10.00 $122.00
$200.00 $4.00 $10.00 $214.00
- $(s8)9.00 $(S+1)10.00 $(s8)19.00

+ 10.00

CHAPTER IV MULTIATTRIBUTE UTILITY THEORY

Using the attributes--precision, execution-time, and cost--this
chapter describes a decision mechanism for selecting the "best'" CDA en-
titled Multiattribute Utility Theory (MUT). This begins with several
definitions that explain the notation used throughout the remaining sec-
tions. Next, the chapter presents eight axioms upon which the theoretic
foundation of MUT rests, and it shows that the above attributes satisfy
these axioms. In addition, it verifies that the attributes also fulfill
the assumptions of a specific decision function; i.e., an additive util-
ity function. Finally, this chapter describes techniques to assess this
specific decision function. Thus, these concepts provide a decision
mechanism for selecting the "best' CDA using attributes precision, exe-

cution-time, and cost.

4.1 Multiattribute Utility Theory Definitioms

As a guide to notation several definitions are explained that

will be used in the sections that follow.(al)

Definition 4.1l: Consequence Space

Let consequence space, denoted X = xl

represent a rectangular subset of a finite N-dimensional

X Xz x X3 XeooX XN,

Euclidean space.

Definition 4.2: Consequence

Let the consequence x, denoted x = (xl, Xps Xgseees xN),

depict a specific point in consequence space where

33

34

belongs to X,.

5 i

Definition 4.3: Attribute

Let the attribute x, correspond to a particular value of

i

dimension Xi; e.g., X, belongs to Xi'

Definition 4.4: Consequence Set

Let the consequence set C, denoted C = {El, 22’ §3,..., xM},

consist of the set of M consequences.

Definition 4.5: Relation

For consequences x, and x,, the relation X, > X, means that x

i 3 —_— 1 3 i
is preferred to Ej' Similarly, ii < Ej means ii is not prefer-
red to Ej’ and ;i = Ej means ;1 is equally preferred to ;j'

Definition 4.6: Operation

1 and ;j and probability a,

0 <a <1, the operation w = aﬁi + (1 - u):-::l

consequence Ei with probability o and consequence x, with

3

For mutually exclusive consequences x

represents the

probability (1 - a).

Definition 4.7: Utility

Let the utility of consequence x, denoted u(x), describe a

scalar quantity which indicates the usefulness of consequence

X.

Definition 4.8: Marginal Utility

Let the marginal utility of attribute X denoted ui(xi), des-

ignate a scalar quantity which indicates the usefulness of

attribute xi.

35

4.2 Utility Existence Axioms

The theoretic structure of MUT rests on a foundation composed

(42)

of eight axioms. Von Neumann and Morgenstern have shown that if a

consequence set satisfies these axioms, then there exists a numerical
utility for each member of the set. Formally, let ;i’ ij’ and ;k denote
any three members of the consequence set, and for 0 < a,B8 < 1:
Axiom 4.1

One and only one of the following three relations must hold;

X, > X,, X, <X,, OT X, = X_ .

i j° 1] i h
Axiom 4.2
1f x; > xj and xj > X then X, > X .
Axiom 4.3
If xy > xj, then Xy > ax, + (1 - a)xj.
Axiom 4.4
1f x, < xj, then X, < ax, + (1 - a)xj.
Axiom 4.5
If x, > x, > ik’ then there exists an & such that ax, +

i
Q- 0.);k > ij'
Axiom 4.6

I1f x1 < x:l < xk, then there exists an a such that axi +

a - a)ik < ij.
Axiom 4.7

= (1 - a)x, + ax,.

+ 1 - a)x 3 1

The operation ax

i 3

Axiom 4.8

The operation a(B:-ci + (1 - B)Ej) + (1 - a);ij = a8§i + (1 - aB)ij.

36

Theorem 4.1
If a consequence set satisfies the preceding eight axioms,

then a numeric utility exists for each member of the set.

When MUT is applied to selecting CDA's the consequence set con-
tains exactly four members (one for each CDA) with three common attri-
butes (precision, execution-time, and cost). Thus, M = 4 and N = 3,
Axiom 4.1 deals with the "completeness" of the consequence set. This
assumption rules out the possibility that; i) neither of two CDA's is
preferred, while ii) both CDA's are undesirable. In Axiom 4.2 the as-
sertion considers the "transitivity" of preferences; e.g., if one CDA
is preferred to a second which is preferred to a third, then the first
CDA is preferred to the third. This property is quite plausible and
commonly accepted. For Axiom 4.3 if CDA one is preferred to two, then
it will always be preferred to the combined event because CDA two can
occur with probability (1 - o) (Axiom 4.4 states the dual of Axiom 4.3).
Now, if CDA one is preferred to two and two is preferred to CDA three as
in Axiom 4.5, then for some o (sufficiently large) the combined event is
preferred to CDA two. Here, a provides a likely base for the numerical
estimate of the preference for CDA one to two, over CDA two to three
(Axiom 4.6 states the dual of Axiom 4.5). These Axioms, 4.5 and 4.6,
provide credible "continuity" assumptions. In Axiom 4.7 the statement
claims that the order of combined events may vary; this follows, accord-
ingly, since the constituents result from alternate events. Finally,
Axiom 4.8 states that combination events composed of CDA constituents
may proceed in two successive steps or one complete operation. Such a

"distributive" property is usually accepted as standard practice.

37

4.3 Additive Utility Functions

Axioms 4.1 through 4.8 guarantee that utilities exist for all
members of the consequence set C, still the exact functional form remains
unknown. In general, a utility function involves multidimensional oper-
ations on the attribute values, but under certain conditions this func-
tion reduces to a much simpler form composed of many unidimensional
functions; symbolically,

ux) = f {ul(i), uz(i), u3(§),..., uN(i)}. (4.1)

Consider the following definition:

Definition 4.9: Utility Independence

Let XI = Xl Xeo.X xi—l X x1+l XeooX XN’ and let x7 be a member

of ii. Then,<§i is utility independént of ii if ones prefer-

ence order over lotteries on i; with fi-held fixed does not

depend on the fixed amount p

i
(43) has shown that if'ii is utility independent of X

Keeney n

for all dimensions, then Equation 4.1 takes a '"quasi-additive'" form.
Theorem 4.2

If X, is utility independent of i? for i=1, 2, 3,..., N, then

i
_ N N N
u(x) = k 44 (x)+ L z u, (x)u (x,)
1=1 1=1 j=i+l F13%1 0%
N N N
+Z z z ij (x)uj(xj)u (x) +..., (4.2)
i=]1 j=i+l m=j+1
where k s+.+ are scaling constants.

ij ijm
For the three attributes--precision, execution-time, and cost--lotter-
ies over any attribute will not vary as the specific values of the

remaining attributes change; e.g., more precision is always preferred

38

to less, less execution-time to more, and less cost to more. Thus,

since ii is utility independent of i? for all dimensions, then Equation

4.2 holds.
Yet in Equation 4.2 seven scaling constants must be evaluated,
many of which represent the affect of '"cross-product" terms between

(44) has shown that under an additional con-

dimensions. Again, Keeney
dition these "cross-product" terms drop out.

Definition 4.10: Preferential Independence

Let XIT = Xl XeooX xi—l x xi+l XeeoX Xj_1 X xj+l XeooX XN’

and let EEE be a member of ii?' Then ii x'§3 is preferentially
independent of ii; if ones preference order over lotteries on ii b4
—j with ii? held fixed does not depend on the fixed amount of
*13°
Theorem 4.3
If ii is utility independent of<i? for omne 1, and‘ii X is is
preferentially independent of‘iij for all j # 1, then
_ N
u(x) = I
{=1 kiui(xi) (additive), or (4.3)
N
1+ ku(x) = 7 {1+ kkiui(xi)} (multiplicative), (4.4)
i=1
where k and the ki are scaling constants, 0 < ki <1 and k > -1.
N N
In Equation 4.3 I k, =1, and in Equation 4.2 if I k, > 1 then
i i
i=1 i=1
N
-1 <k<0 and if ¥ k, <1 then k > 0,
1=1 1

Equation 4.3 represents an additive utility function since the

39

utility equals a weighted sum of marginal utilities, while Equation 4.4
depicts a multiplicative utility function because the utility equals a
weighted product of marginal utilities. To distinguish between these

(45)

two equations Keeney offers the following corollary:

Corollary 4.1

1 -2 -1

Let ;1 s X5 s xj , and X 2 be distinct values of X, and X,,

h| i h|
and let x— take on some constant value. Define Gamble A as

1]
-1 -1 2 =2

(xi s X, ;IE) or (;1 s X, » ;IE) each with probability 0.5,
-1 -2 - -2 -1 =

and Gamble B as (xi s X, sz) or (xi s Xy » ng) each with

probability 0.5. If one is indifferent to Gamble A and B,

then Equation 4.3 holds (additive).

For use of either Equation 4.3 or 4.4 the consequence set must
satisfy the preferential independence assumption in addition to the util-
ity independence assumption of Theorem 4.2. The preferential indepen-
dence assumption states that the indifference curves between two dimen-
sions do not vary as the other dimensions change. With indifference
curves(46) a contour runs through a reference point which indicates the
boundary between desired and undesired attribute pairs as in Figure 4.1.
As the fixed amount ;IT changes the other attributes change, but the
indifference curve remains constant. Hence, both conditions of Theorem
4.3 hold and the utility function adheres to the form of Equation 4.3
or 4.4. .

In Corollary 4.1 assume x 1, Eiz and ijl > §j2, then Gamble A

i
is between a preferred consequence (§11, §j1’

consequence (212, x 2, ;IS) which both occur with probability 0.5. Sim-

EEED and a non-preferred

ilarly, Gamble B is between two consequences that both contain a prefer-

red and non-preferred attribute and which occur with probability 0.5.

40

*89ATIRUIIITE® USFSop TPuOTIEINdWOD I0J S9AIND IJUIIIIIFPUI T°H 2andfyg

‘uofsyoaad pue swfl-uofindaxyg (2

(3W3-uoTINOIXI)

T o
L
- 1

— 1
-l
H
2 -7 8
[T
n
=
.Imm

Y

*31800 pue UOoIsSTOdid (q

(3802)
)
J
M |

T

uogrstoaad

*31800 pu® SWFI-UOTINOIXY (e

(3800)
L
0
- —
®
%
o
(¢}
e
[nd
[N
()
8
[
"t
B
®
o’
|
[}

-

41

For attributes precision, execution-time, and cost neither Gamble A nor
Gamble B represent a preferred wager and, consequently, Corollary 4.1
specifies the additive utility function of Equation 4.3. Thus, the util-
ity function for the CDA's of Chapter III consist of a weighted sum of
individual marginal utilities.

In this section the use of an additive utility function assumed
both utility and preferential independence: two strong assumptions.

Fortunately, Dawes, et al.(47) (48)

and Einhorn, et al. point out that
even modest deviations from utility and preferential independence rarely
affect the ultimate number u(x) and, even iess, the rank ordering of the
u(x) values (utilities). They report that with monotonic attributes—
where more is preferred to less, or less is preferred to more--the two
independence assumptions cause little trouble. So for monotonic attri-
butes precision, execution-time, and cost, the utility and preferential

independence assumptions are plausible and, if not to an approximation,

acceptable.
4.4 Marginal Utility Functions

As with the utility of a consequence, the marginal utility of
an attribute indicates its usefulness relative to the other attribute
values. Since the precision attribute describes a discrete variable ;ts
marginal utility must consist of a discrete function. And for the exe-
cution-time and cost attributes, both continuous: variables, the marginal
utilities require continuous functions. Other qualities desirable of
marginal utility functions include a common numerical range; any inter-
val will suffice but a convenient choice is 0 f_ui(xi) < 100. Finally,

marginal utility functions should preserve the proportional distance

42

between attribute points; e.g., values twice as far apart should denote
marginal utilities twice as far apart.

Using the previous ideas Edwards(ag)

has proposed the follow-
ing procedure for determining marginal utility functions. First, the
most and least desirable values and attribute are found and, then, a
simple straight line is defined which yields 100 for the most desirable
attribute and 0 for the least desirable attribute. This procedure yields
the marginal utility functions for the attributes precision, execution-
time, and cost.
Precision

Let p denote the precision where p = 1 for single-precision,

p = 2 for double-precision, etc;

u = (p-1) 333 1<pc<s. (4.5)

Execution-time

Let T signify the execution-time, and Tmax and Tmin the maxi-

mum and minimum values, respectively;

(T -7
max
u, = 100. (4.6)
(Tmax - Tmin)

Cost

Let C indicate the cost, and C and C
B max

nin the maximum and

minimum values, respectively;

(Cmax -0
u. = 100. 4.7)

Hence, for any set of CDA consequences Equations 4.5 through 4.7 convert
the attribute values to marginal utilities, and Equation 4.3 forms the

utility of each consequence as a weighted sum of its marginal utilities.

43

So the best member, or members, of the consequence set consist of those
alternatives with the largest utility.
Not all attributes possess linear marginal utility functions as

(50)

suggested in this section, and Raiffa presents several techniques to

(51) shows that

assess nonlinear marginal utility functions. But Edwards
for monotonic attributes the straight-line procedure produces a close,
first-order approximations to the nonlinear approach with sample correl-
ation coefficient 0.99. Since precision, execution-time, and cost all

represent monotonic attributes, the linear approximation in this Section

is credible and acceptable.
4.5 Summary

In this chapter, Multiattribute Utility Theory (MUT) adapted
to selecting the "best" CDA, provides a decision mechanism which uses
the attributes precision, execution-time, and cost. Here, MUT assigns
a numeric quantity to each CDA which indicates its usefulness with
respect to the other alternatives in the consequence set. Since the
above attributes satisfy Axioms 4.1 through 4.8, Theorem 4.1 guarantees
that utilities exist for all consequences. Furthermore, because the
attributes also fulfill the utility and preferential independence assump-
tions of Theorem 4.3, the additive utility function holds which forms
the utility of a CDA as a weighted sum of its marginal utilities (Egs.
4.5 through 4.7 convert attributes to marginal utilities). In the next
chapter, three examples illustrate the procedure for obtaining marginal
utilities and, moreover, the use of this additive utility function. So

the "best" alternative consists of the CDA with the largest utility.

CHAPTER V APPLICATIONS

In this chapter, three examples illustrate the results of the
previous two chapters; they clarify the techniques used to determine
attribute values and for typical consequence sets they elucidate use of
an additive utility function. These examples-—-linear regression, matrix
inversion, and fast Fourier transform computations--exemplify the over-
all procedure of this investigation and, moreover, they lead to conclu-
sions which characterize each CDA. Not only AO these applications typi-
fy representative and contemporary engineering problems, but they vary
widely in their mathematical sophistication. First, a discussion of

the general approach follows below.
5.1 General Approach

The general approach to using MUT applied to selecting CDA's
involves five principal steps (see Fig. 5.1). First, the application
must be defined; this includes stating all assumptions and conditions
under which the computation remains valid. Then, the computation is
expressed using detailed and complete notation. Since some parameters
may vary their potential effect upon the computation must be considered.
Next, the most difficult step in Figure 5.1 concerns determining-the
attribute values; i.e., precision, execution-time, and cost. To accom-
plish this, begin by preparing a program flowchart which implements the
computation using a series approach. And by examining it for sections

44

45

(j ENTER j)

Define
the
Application

l

Determine
Attribute
Values

'

Find the
Marginal
Utilities

Form the

Utilities

'

Select
the
Alternative

Q CEXIT)

Figure 5.1 General approach to selecting a computational design alternmative.

46

which may be executed simultaneously, or in parallel, construct a second
program flowchart which implements a parallel approach (Master and
Slaves). All but the muP CDA uses the parallel approach to assist in
finding attribute values. From these flowcharts the total number of
eleﬁentary operations; e.g., adds/subtracts and multiplies/divides, or
constants Ai and Mi’ can be estimated for each CDA. By multiplying
these terms by the multiple-precision add and multiply times (see Eq.

3.1 and Table 3.1), a, and m,, the execution-times are found as follows:

i
'I'i = Aiai + Mi mi.
Again, the two flowcharts can be used to estimate both the program and

data-storage memory requirements, Pi and D, respectively, for each CDA.

i
They yield the application cost term (see Eq. 3.12), Cai’ as follows:

Cai = wb(Pi + pDi)’

and together with the elemental CDA cost term (see Eq. 3.1 and Table
3.2), Cei’ give the total cost of each alternative:

Ci - cei + Ca

i'
To determine program storage memory requirements consider the contribu-

tions of an arbitrary loop and subroutine call:

loop
LDR COUNT /REG = COUNT
NEG /REG = -COUNT
LOOP —-—

INC /REG = REG + 1

47

JNZ LOOP /REG = 0?7, NO JMP LOOP

subroutine call

LD1 AD1 /OPERAND 1 ADR
LD2 AD2 /OPERAND 2 ADR
LD3 AD3 /RESULT ADR
CALL SUB

Thus, for estimating P, each loop and each subroutine call contribute

i
four words.

In the third step of Figure 5.1 the attribute values are con-
verted to marginal utilities as explained in Chapter IV. Precision, a
discrete variable, obeys a discrete function, while execution-time and
cost, both continuous variables, follow a linear transformation. And
for all attributes the marginal utilities lie within the same interval;
i.e., [0, 100]. The next step invokes an additive utility function
(shown to be valid in Chapter IV) upon the marginal utilities; it forms
the utility of each CDA as a weighted sum of it's marginal utilities.
Hence, prior to the use of this function a "Decision Maker'" must assess
the value of the weights, or ki's, subject to the condition that
N
151 ki = 1, Finally, the last step of Figure 5.1 concerns selecting the

CDA with the largest total utility. Or if more than one alternative is

48

to be selected, then choose those with the greatest utility. By varying
the consequence set, some alternatives may result in equal utilities
which indicate the "break-even" point between those CDA's. Also, dif-

fering values of the k,6's produce new utility values which illustrate

i
the "sensitivity" of a CDA to each attribute dimension; thus, the util-

ities in the dimension of emphasized ki increases, while the others

decrease.
5.2 Linear Regression Example

In this example a set of N ordered pairs {(xi, yi)l i=1, 2,

(52)

3,...,N} are fit by the method of least-squares to a straight line

y = b° + blx. The solutions to the normal equations

nbo + b1 Exi = Zyi,

2
bo in + bl in = inyi,

yield the unknown constants b and bl; i.e.,

n Ixy, (in)(zyi)
bl) NI 2 _ (Zx)2
X 1
b -z_yj.‘. - bz—xl
o N 1 N°

For this example it is assumed the x's are fixed variables and the y's

independent random variables having normal distributions and with com-
2

mon variance o .

The series program flowchart contains six principal steps and
no major loops (see Fig. 5.2). To estimate the total number of adds and
multiplies, A1 and Mi’ the contributions of each step can be summed as
shown in Table 5.1. These terms, when multiplied by the multiple-pre-

cision add and multiply times, combine to give the series execution-time

49

<: ENTER ;)

<:> EXIT :)

A= in —
B = inz —
C =1y, __
D= inyi
Bl= H -
BO= c—n;*A

Step-1

i Step-3

Step-4

Step-6

Figure 5.2 Linear regression series flowchart.

50

Table 5.1 Estimates of Ai’ Mi (1 # 4) for Example-l.

Step Adds- Multiplies
1 N -

2 N N

3 N -

4 N N

5 2 5

6 1 2

Totals Ai = (4N + 3) Mi = (2N + 7)

Table 5.2 Estimates of A,, M, for Example-l.

4 4

Step Adds Multiplies
1 3N -
2 2N -—
3 N N
4 4 -
5 2 5
6 1 2

Totals A4 = (6N + 7) M4 = (N+7)

51

Ts = Ti = (4N + 3)ai + (2N + 7)mi; i# 4. (5.1)

By examining Figure 5.2 it is possible to identify those sections of the
series flowchart which can be executed simultaneously, or in parallel.
Specifically, four slaves can perform Steps 1 to 4 once they receive
the correct x's and/or y's. The responsibility of the Master then be-
comes data routing, not data computing as shown in Figure 5.3 and 5.4.
Again, the total number of adds and multiplies can be found by summing
the contribution of each step in the parallel flowchart as detailed in
Table 5.2. By multiplication of these terms by the multiple-precision
add and multiply times the parallel execution-time is found as

Tp =T

4 " (6N + 7)a4 + (N + 7)m4. (5.2)

(Note: the "SLAVES BUSY" term can be deduced from Figure 5.5)
An important result occurs by defining R, the ratio of series
to parallel execution-time as

T

- —
R=7
P

(53)

and assuming m, = 8a,. From Equations 5.1 and 5.2

i i

(4N + 3)a, + N+ 7) (8a) ,
R=Ton + Ta, + (N + 7) (8a,)

_ 20N + 59,
14N + 63

and as N grows large

1im R = 22 = 1.43;

N+ w 14
this represents a maximum decrease in execution-time by a factor of 1.43

due to simultaneous, or parallel, execution. Although the Slaves

52

- 1-a7dwexg 10J S9ARIS pue 193SBR U99MI3Q UOFIBT3Y ¢€°G In31g

SWTYE],

YL

€L

[41

1%

fe—

s3Tnsay peay

LIVM 7 1¢ [4 1

—>}—

ITEM |'_.l| 93TaM .|'_

y-aneTs

g—-oARTS

7-9ABTS

T-9A®TS

193SEl

53

(_om=)

/Sl, s2, SS-xyZ — — Step-1
/:3, S4=y, /L — =] Step-2

Slaves
Busy?

A=S1, B=S2, -
C=S3, D=S4 — 1 step-4

N*D - A*C

NB - AR~ — —]SterS

—Bl%
BO-Q%]'—A p— — —1Step-6

(mr)

Figure 5.4 Linear regression parallel flowchart: Master.

54

<:7 ENTER :)

L=-N, I=0
B=20

B= (x+I)2 + B

I=I+1

L=L+1

NO

L = 0?

YES

<: EXIT j)

Figure 5.5 Linear regression parallel flowchart: Slave-2.

55

execute in parallel, the Master's overhead involves vast data routing
and, thus, a limit to the reduction in execution-time. If the sampled-
data originated with the Slaves, then R would decrease.

When determining the application memory cost, Cai’ all sub-
routine calls (adds/subtracts and multiplies/divides) require four words
of program storage and each loop demands an additional four words of
program storage. As with execution-time, the series and parallel pro-
gram flowcharts (Fig. 5.2, 5.4) assist in estimating the application
memory cost. Similarly, the contributions of each flowchart step add
together to yield the final result. Table 5.3 outlines the steps and
their contributions for the series flowchart; these terms combine as
follows:

Cai =W [80 + p(2N + 6)]; 1 # 4. (5.3)

But for the muyP CDA (i = 4) the slaves create additional terms of pro-
gram and data memory storage. Figure 5.5 depicts a worst-case slave
flowchart, Slave Two, which illustrates the additional contributions due
to the four slaves. Adding these terms to the Master's terms gives (see

Table 5.4) the application memory cost Ca4; i.e.,

C, 6= v, [112 + p(7N + 6)]. (5.4)

a4

Combined with the results of Chapter III Equations 5.1 through
5.4 produce the set of attribute values for this example (see Fig. 5.6
through 5.13). Similarly, the techniques of Chapter IV convért these
values to marginal utilities and, finally, to utilities as shown in
Tables 5.5 and 5.6.

From inspection of the figures and tables, several conclusions
become clear. First, the AU CDA always possesses the fastest execution-

time due to its hardware multiply and divide. For all cases, the muP

Table 5.3 Estimates of P

56

Di (i # 4) for Example-l.

i’
Step Program Data
1 8 N+1
2 12 1
3 8 N+1
4 12 1
5 28 1
6 12 1
Totals Pi = (80) Di = (2N + 6)
Table 5.4 Estimates of P4’ for Example-l.
Step Program Data
1 16 N
2 12 N
3 -— -
4 4 4
5 28 1
6 12 1
Slaves (4) 40 5N
Totals

P4 = (112)

D6 = (IN + 6)

57

108
10° A
10% VY
103 A X
g; W
@ 102 2 X
T Jo)
E 1]
> 10! A X
5 ! ¢
g 10°
m (0]
1071 X
Q (0]
1072
(¢
1073
10* 102 10° 10% 10
SAMPLE SIZE
X - DIRECT A- caLc
o- AU O- =P

Figure 5.6 Single-precision execution-time versus sample size for

Example-1.

58

108
10°

A
10%

A X
~ 10 -
(/2]

Q
=
2
2
2 10 e A
&
g ¢
[
5 4
2]
o
10°
o
1071
()]
102
10% 102 10° 10®
SAMPLE SIZE
X - DIRECT A - CALC
O - AU 0O - myP

Figure 5.7 Double-precision execution-time versus sample size for
Example-l.

EXECUTION-TIME (SECS.)

59

Figure 5.8 Triple-precision execution-time versus sample size for

Example-1.

106 jt
(11]
10°
X
A
1]
10®
X
Vi
m
10° o
X
A
01}
102 (0]
X
A
101 @ (]
© 10° i
o
1071
10* 102 10° 10 10
SAMPLE SIZE
y - DIRECT A - CALC
o - AU o- muP

EXECUTION-TIME (SECS.)

60

107
X
6
10 i1
5 X A
10 ——
X A
10
A ¢
103 X
(0]
102 a&
(0]
10t A
)
10°
(o}
1071
10t 102 10° 10% 10°
SAMPLE SIZE
X - DIRECT A - caLc
O - AU O - myp

Figure 5.9 Quadruple-precision execution-time versus sample size

for Example-l.

COST ($'s)

61

10°
1]
A
Q
)'
10* ‘
(1]
:
10° X
(1]
102 é §
X
10t
10t 102 103 10 10°
SAMPLE SIZE
X - DIRECT A - carc
O- AU 0 - mpP

Figure 5.10 Single-precision costs versus sample size for
Example-1.

COST ($'s)

62

10

10

10* Q

10

10

10t 102 10° 10* 10°
SAMPLE SIZE
X - DIRECT A - CALC
o - AU O - myP

Figure 5.11 Double-precision costs versus sample size for
Example-1.

COST ($'s)

10

10

10

10

10

10

Figure 5.12 Triple-precision costs versus sample size for

63

(1]
a
(11]
X
10t 102 103 10® 10
SAMPLE SIZE
X - DIRECT A ~ CALC
o~ AU O - mppP

Example-l.

COST ($'s)

64

10°
@
10°
10°
o ;
D
) u1]
10 X
X
10t
10% 102 103 10 10°
SAMPLE SIZE
X - DIRECT A ~ CALC
O- AU g - mP

Figure 5.13 Quadruple-precision costs versus sample size for
Example-1.

65

-
Awoo aHoo QHQOV I mul aAHoo awnc aHoov . Nul nA.Hoc a.ﬂoo Awoov ' ﬁv—. aﬂﬁoc .moc aﬁoov u & nmuoz

29 ZaTT T
29 L8 T %9 L6 0aT°Z y
€€ z
0 2aTY T
4l sz z8 oY 61 TavL"s €
00T Y
€5 240€° T
s <8 ST 15 00T €-3%8°8 z
0 1
00T 1490°€
L8 (1 €9 sS 0 1480° L 1
99 €
¢1 Fon (%1 Fon (f1 Fxn "1 Mn (x)fn . R

*(sopdwes (1) T[-°9Tdwexe 103 SIFITTTIN pue 3Ia9s aouanbasuod [ed7dL] G°¢ arqel

T

66

(8°0 ‘1°0 ‘1°0) = wm ‘(1T°0 ‘8°0 ‘1°0) = mm ‘(T'0 ‘1°0 ‘8°0) = Hw,.Am.o

‘€°0 ‘€*0) = A :o30N

0 GaCI'T
€T 18 9¢ VA4 86 yave't K
£t [4
0S aey 9
1s 0¢ 98 [4Y 9 SAT6 Y £
001 /
001 %a19°1
06 06 (114 L9 001 T1d02°¢L [4
00 1
L9 vd08° Y
09 €T 09 Yy 00 SaAYT*s T
99 €
t1 Hxyn %1 Koyn ("1 Hon 1 Moyn (x) o x R
*(so1dues (1) 1-°oT7dwex® 103 SO9FITTFIN pue 398 aduanboesuoo TedydL] 9°¢ arqel

S

67

CDA shows reduced execution-time when compared to the DIRECT CDA even
though they perform multiplies and divides in software. Here, R = 1.5
which agrees well with the calculated value and, thus, confirms the
validity of the m, = Bai assumption. Also, the DIRECT/muP CDA's for

P = 1, 2 execute faster than the CALC, yet for p = 4 this reverses
because of the repetitive adds associated with the software multiplies
and divides. All costs rise with larger N due to additional data-stor-
age memory, especially after 103 samples, but the muP costs go up high-
er (more memory needed). From Table 5.5, for weight vector E;, the mu?
CDA represents the "best'" CDA for the typical consequence set and small
problem dimensions (i.e., 101 samples). Similarly, Table 5.6 reveals
that the AU CDA depicts the "best" CDA for large problem dimensions (i.e.,
10S samples). As the k,'s vary, the CDA's with strong marginal utilities

i

in the dimension of the emphasized k, show increased utility, and the

i
rank ordering of the CDA's changes accordingly. For example, in Table
5.5 the CALC CDA exhibits the greatest "sensitivity" to the precision
dimension as the weight vector changes from E; to'Ei; i.e., its utility
varies from 40 to 82, respectively. Also, the DIRECT and muP CDA's

(for E;) in Table 5.6 correspond to "break-even" alternatives.

5.3 Matrix Inversion Example

For the second application a square, nonsingular matrix A of

order N is inverted. A standard approach, that of Guassian elimina-

(54)

tion is used; this technique performs a sequence of elementary row

1]:

operations on the partitioned matrix [A, I] to yield the matrix [I, A”
where I is the identity matrix.
The series flowchart for this technique includes two principal

steps imbedded within two major loops as shown in Figure 5.14. Here,

68

(o=)
‘

I=0

-

I=I+1, J=0

Y —

R(I)= e — -
R(I)/a(1,I)

Step-1

J=J+1

YES

R(J)=
R(I)-a(I,J)R(I= — —]Step-2

(: EXIT :)

Figure 5.14 Matrix inversion series flowchart (Gaussian Elimination

technique).(ss)

69

Step-l replaces row I with itself divided by the pivot entry a(I, I):
hence, the pivot entry becomes unity. Once completed, Step-2 uses row

I to reduce the remainder of column I to zeros. Together with the two
loops, Steps 1 and 2 transform the left submatrix to the identity matrix

1

and the right submatrix to the inverse of A; i.e., [I, A]. To estimate

the total number of adds and multiplies, A, and Mi’ sum up the contri-

i
bution of each step and multiply this by the number of times through
each loop (see Table 5.7). These terms, when multiplied by the multi-
ple-precision add and multiply times, combine to give the series execu-
tion-time

3

2
'1‘s Ti 2N"(N - l)ai + 2N"m,; 1 # 4. (5.5)

i;
Equation 5.5 agrees with published results.(56)
By examining Figure 5.14 it is possible to identify those sec-
tions of the series flowchart that can be executed simultaneously, or
in parallel. Since Step-2 only requires the results of Step-l, N slaves
can perform Step-2 simultaneously and the Master flowchart now involves
just one loop (see Fig. 5.15 and 5.16). Again, to find the total number
of adds and multiplies sum the contribution of each step in the parallel
flowchart as detailed in Table 5.8. (Note: for an estimate of the
"SLAVE BUSY" term use Figure 5.17) Multiplying these results by the
multiple-precision add and multiply times yields the parallel execution-

time

2 2
Tp 'I‘4 = 2N" (N + l)a4 + 2N m, . (5.6)

Again, the ratio of series to parallel execution-times produces an indi-
cation of the decrease in execution-time due to simultaneous, or paral-
lel, execution. Using Equations 5.5 and 5.6 with the assumption

o, = 8ai

70

Table 5.7 Estimates of Ai’ Mi (1 = 4) for

Example-2.
Step Adds Multiplies
1 - 2N2
2 PN - 1) NN - 1)
2 3
Totals Ai = 2N“(N - 1) Mi = 2N

Table 5.8 Estimates of A4, M4 for Example-2.

Step Adds Multiplies

1 2N? —

2 28 (N - 1) -

3 ZNZ 2N2
Totals A4 = 2N2(N + 1) M = 2N2

71

OWT]

*Z-9Tdwexy 103 S9ABIS puB 13318E UI9MIDQ UOFIBTAY GT°G 2anBfjg

L T |

e

(T + 1) moy

IIVM I 1 Jelzlx

_
le— a7en |'T| siran —
lle Zs_ Iv_

N-9A®TS

g-2ABTS

g-9aeTs

T-9ABTS

19388l

72

(o)

I=I+1

'

R(I) = S(I)/Z' — —{Step-1

S(J) = R(I) —
J#1I = T |Step-2

Slaves
Busy?

—= = Step-3

CEXIT)

Figure 5.16 Matrix inversion parallel flowchart: Master

73

=)

K=K+1

a(k, J)_-

a(kK, J)
-a(I, J)a(I, K)

NO
K = 2N?

YES

(:7 EXIT :)

Figure 5.17 Matrix inversion parallel flowchart: Slave-J.

74

NN - 1), + 2N3(8a1)

Ts
R'— - .
T 2 2

P 2N (N + l)ai + 2N (8ai)

_18N -2 .
2N + 20

And as N grows large,

1imr =289,

N+ o 2
the execution-time decreases, at best, by a factor of 9. Since this
problem yields a greater R than Example-1l, it exhibits greater parallel
traits and, thus, better fits simultaneous execution concepts. Again,
the Master's overhead must pass a new row to (N - 1) Slaves for each
column and, eventually, this action becomes more time consuming than the
parallel execution of the Slaves.

In determining the application memory cost, Cai’ all subroutine
calls (add/subtract and multiply/divide) require four words of program
storage and each loop demands an additional four words of program stor-
age. By using the flowcharts of Figures 5.14 through 5.17 the estimates
for the program and data storage can be determined by summing the con-
tributions of each step. Table 5.9 delineates the steps and their con-
tribution for the series flowchart; combining terms

2
Cai wb(28 + p2N7); 1 ¥ 4. (5.7)

But for the muyP CDA (i = 4) the N slaves create additional program and
data storage requirements. When added to the Master's terms (see Table
5.10) they sum to give the muP application memory

c, = v, [4(3N + 5) + p2N(N + 1)]. (5.8)

a4

Finally, the results of Chapter III and Equations 5.5 through

75

Table 5.9 Estimates of Pi’ Di (1 # 4) for Example-2.

Step Program Data
1 12 an%
2 16 —
Totals P, = 28 D, = 2N°
i i

Table 5.10 Estimates of P4’ D4 for Example-2.

Step Program Data
1 8 2N
2 12 -
3 — -
2
Slaves (N) 12N 2N

Totals P4 = 4(3N + 5) D" = 2N(N + 1)

76

5.8 combined to produce the set of attribute values for this example
(see Fig. 5.18 through 5.25). Additionally, the techniques of Chapter
IV convert these values to marginal utilities and, lastly, to utilities
as shown in Tables 5.11 and 5.12.

Again, these figures and tables expose several important CDA
features. The AU CDA continues to perform the task fastest while the
muP CDA always beats the DIRECT CDA. But as N increases the last two
execution-times separate and for even small N, R = 5 already. Similar-
ly, for p = 1, 2 the CALC CDA shows the slowest speed and for p = 4 the
order changes; i.e., the CALC CDA finishes before either the DIRECT or
myP CDA's. With respect to costs, they do not change as dramatically
as in Example-l because the program and data-storage memory require-
ments do not rise as sharply. Still the muP costs grow exceedingly
fast as N changes due to the increased number of Slaves as reflected in
the elemental cost term ce&' For both typical consequence sets and
weight vector E;, the tables reveal that the muP CDA represents the
overall, '"best" CDA. In Table 5.11 for Es, the DIRECT and muP CDA's
illustrate "break-even" utilities; i.e., 87 and 86, respectively. Thus,
these CDA's correspond to equally useful alternatives. And finally,
Table 5.12 for weight vector Eé, shows the "sensitivity" of the AU CDA
to emphasis in execution-time; it increases from 52 (with i;) to 86, or

by 34.
5.4 Fast Fourier Transform Example

In this final example an input sequence x(n) is transformed

from the discrete time domain to the discrete frequency domain X(m)

(57)

using the fast Fourier transform (FFT) algorithm of the discrete

EXECUTION-TIME (SECS.)

10~

77

A
A
A
A
A X
1]
X o
X Q
¢> (0]
é (1] o
(1))
o
1 2 3 4 5
MATRIX ORDER
X - DIRECT A _ cac
O- AU O - mp

Figure 5.18 Single-precision execution-time versus matrix order for

Example-2.

10°

102

10t
»
Q
=]
&
2]

= 100
g
=
(@]
-
[
5

= 10-1

102

1073

78

A
X
4 X
X 0
(11
L 4
(1]
(0]
25 (0]
(0]
(0]
()
1 2 3. 4 5
MATRIX ORDER
X - DIRECT A - caLc
O- AU g - mpP

Figure 5.19 Double-precision execution-time versus matrix order for

Example-2.

79

EXECUTION-TIME (SECS.)

103
X
102 1]
és
X J
10t é}
i
10° —9
(1))
Lo
1071
(0]
1072 —
1073
1 2 3 4 5
MATRIX ORDER
X - DIRECT A- caLc
(o) AU O- mpP

Figure 5.20 Triple-precision execution-time versus matrix order for
Example-2.

80

10°

10° X
p 4 1 11}

10°

; A
8 10 A
3 A
0
=
S 10t 4
3]
&
o
10° A o)
Q
- D
107} b
D
1072
1 2 3 4 5
MATRIX ORDER
X - DIRECT A- caLc
<>-AU EJ"m“P

Figure 5.21 Quadruple-precision execution-time versus matrix order for
Example-2.

COST ($'s)

81

103
ﬁ& A A 4 i
¢ 9 () Y
102 a8
1]
m
* X X ’f
10%
1 2 3 4 5
MATRIX ORDER
x-— DIRECT A— CALC
o- AU 0O muP

Figure 5.22 Single-precision costs versus matrix order for
Example-2.

82

10°
A A lk it
a) o) o)
e 102
(3]
3
© aQ
11}
Q
X X X X
10% f -
1 2 3 4 5
MATRIX ORDER
X - DIRECT A - caLc
OA - AU O - mwP

Figure 5.23 Double-precision cost versus matrix order for
Example-2.

COST ($'s)

83

10°
A a I
() (0]
102
Q
o
SR S S
10*
1 2 3 4
MATRIX ORDER
X - DIRECT A- caLc
O - AU O- muP

Figure 5.24 Triple-precision costs versus matrix order for
Example-2.

COST ($'s)

84

10°
A A A A
o (¢ (] ¢
10>
1]
11]
@
i1 X X ¥ i
1(
10t
1 2 3 4 5
MATRIX ORDER
X - DIRECT A - caLc
O- AU g - muP

Figure 5.25 Quadruple-precision costs versus matrix order for
Example-2.

85

e
Q.o;.o.ﬂ.eu mw .:.o.w.c..ﬁeu Nw .:.o.a.o.m.ov- M .S.o.n.o.m.ovuxuﬂoz

16 Ta60°Y
98 16 Sy YL 86 1-4.8°6 /
£t 4
00 /448 4
ST [49 68 139 139 Ta66T1 £
00T K4
189 aiase 1
18 S8 ST 0s 00T €-a98°¢t [4
00 T
00T Taee’e
(8 91 €9 SS 00 Ta61'Y T
99 €
]
1 Hon “1 Fon (1 Hon "1 on () 'n " H

* (29p10 puz)z-o1dwexs 103 SITIFIFIN pue 39s aduanbasuod TeITdAL T1°S °TqElL

86

®e
(8°0 “T°0 “T°0) = % “(T°0 *8°0 ‘T°0) = %1 “(T°0 ‘T°0 ‘8°0) = "1 ‘(€70 ‘€70 ‘€°0) = A 370N

89 Z410°T
L9 68 € L9 66 046T°9 Y
€€ z
00 Zavy T
Y1 Y 48 8y €Yy ZATL E 3
00T Y
S r4:CTAR
%S 98 91 43 00T Z-309°9 z
00 1
00T 1422°€
L8 LT €9 SS 00 73559 1
99 €
*1 Hon ¢ Pon "1 Fon "1 Fon (fofa g H

*(19pao yig)z-oTduexa 103 SOTITTIIN puv 398 souanbasuod Teorddy ZT1°¢ @219el

87

Fourier transform (DFT). If it is assumed that the input sequence is real

and even, then the DFT yields

N-1 2mmn
X(m) = I x(n) cos { N }, (5.9)
n=0
X
N-1
= I x(@W", where (5.10)
n=0
N = number of samples,
x(n) = input sequence, and
X(m) = transform sequence.
Using matrix notation Equation 5.10 becomes
X = Wx;
but if N = ZL, then W can be factored into L terms,
— L — -
X = (= Wi) X. (5.11)
i=]1

This feature éreatly reduces the execution-time of the DFT by minimiz-
ing the number of multiplies. Figure 5.26 illustrates the series pro-
gram flowchart.

The series flowchart contains three principal steps within three
basic loops. Much of the algorithm deals with altering loop control
variables which do not demand a large part of the total execution-time.
Additionally, the process defined in Step-l must find the weight coeffi-
cient WIE which involves a cosine function as in Equation 5.9. A Mac-

laurin series expansion of the cosine yields

x2 x4 x6
cosX'l--i-i-+z-!-+a+Rn, (5.12)
Rn = remainder.

Thus, Step-l1 can use this expansion to determine the weight coefficient

88

(om)
Y

IA=N/2, IB=1, J=1

1

IC = 0, ID = TA, K=1

i

TE=IC/IA, 2=WE, M=1C [~ — —Etep‘l
-
A =Y(M), B = Z*XY(M + IA) — — —Eep-Z
'
IM) = A+ B, Y(M+ =AB [_Eep-3
M=M+1

IC=IC+2*IA, ID=ID+2*IA, K=K+l

0
K=IB?
YES

IA=IA/2, IB=2*IB, J=J+1

<:EE§E:::>

(EXIT
y. 8

Figure 5.26 FFT series flowchart (Cooley, Tukey technique).

89

WIE. To complete the matrix multiplication of Equation 5.11, Steps 2 and

3 perform the required multiplies and adds. As with the other examples,
the contributions of each step sum to give the total number of adds and

multiplies (terms A, and Mi)° But since the CALC CDA contains the cosine

i
function in hardware, the contributions of Step-1 (or Eq. 5.12) reduces
to a simpler form. Table 5.13 outlines the steps and their contribution

for A Mi; i =1, 2. When multiplied by the multiple-precision add and

i’
multiply times these terms produce

'1‘s = Ti =- [2N1032N + 6(N - 1)]ai

+ [NlogzN + 18(N - l)]mi; i=1, 2. (5.14)

(59)

Equation 5.14 agrees with published results. Similarly, Table 5.14

depicts the estimates of A3 and M3 which give
Ts - T3 = [2NlogzN + 27.2(N - l)]a3

+ [NlogzN]ms. (5.15)

By examining Figure 5.26 it is possible to determine those sec-
tions of the series flowchart that can be executed simultaneously, or in
parallel. Since Steps 2 and 3 only require the weight WIE, N slaves can
perform these tasks and the Master flowchart now contains far less mult-
iplies (see Fig. 5.27 and 5.28). Again, to find the total number of adds
and multiplies sum the contribution of each step in the parallel flow-
chart as detailed in Table 5.15. (Note: for an estimate of the '*SLAVES
BUSY" term use Fig. 5.29) Multiplying these results by the multiple-pre-

cision add and multiply times yields the parallel execution-time

Tp - T4 = [(6N + l)logzN + 6(N - 1)]a4

+ [1ogzN + 18(N - 1)]mh (5.16)

90

Table 5.13 Estimates of Ai’ Mi (1 =1, 2) for Example-3.
Step Adds Multiplies
1 6(N - 1) 18(N - 1)
2 - NlogzN
3 2N1032N -
)
Totals Ai = 2N1032N + 6(N - 1) Mi = NlogzN + 18(N - 1)

Table 5.14 Estimates of A_, M, for Example-3.

3’ 73
Step Adds Multiplies
1 27.2(N - 1) -
2 - NlogzN
3 2N1032N -
Totals A3 = 2N1032N + 27.2(N - 1) M3 = NlogzN

Table 5.15 Estimates of A,, M, for Example-3.

4> 4
Step Adds Multiplies
1 6(N - 1) 18(N - 1)
2 2N1032N -
3 4N1032N -
4 logzN logzN

Totals A4 = (6N + l)logzN + 6(N-1) M4 = logzN + 18(N - 1)

91

oWl

g-97dwexa 103J S9ARTS PuUB 133I8BK UI3MIIQ UOFIBTAY ([Z°G 2and14

tl

cL

1L

(I + r) sseqd

L

LIVM

[& |

| e]Jz |1

T' ITEM _

—f—

r ssegq

9ITIM

—
—

N-°A®RTS

€-9ABTS

{—9ARTS

T-°9A®eTS

19318eK

C ENTER)
v

IA=N/2, IB=1, J =1

IE

IE = IC/IA, 2 = W ~, M = IC — — Step-1
L _A=SM,B=Ss(M+ IA) — Step-2
| |
S(M) = Z, B; SM+IA) =2, A p— — Step-3
|
M=M+1
NO M=
ID-1?
YES

IC=IC+2*IA, ID=ID+2*JA, K=K+l

NO

K=IB?
YES

IA = TA/2, IB = 2*IB, J = J+1

YES [
NO aves — Step-4
usy

NO J= YES

& }
C EXIT)

Figure 5.28 FFT parallel flowchart: Master.

93

(em)

|

Y(M)=
Y(M) + B*Z

(i EXIT :)

Figure 5.29 FFT parallel flowchart: Slave M.

94

When the ratio of series to parallel execution-times is determined, it
gives an indication of the decrease in execution-time due to simultaneous

execution. Using Equations 5.14 and 5.16 with the assumption m, = 8ai

Ts [2N1032N + 6(N - 1)]a + [NlogzN + 18(N - 1)](Sa)
[(6N + l)logzN + 6(N - l)]a + [(1032N + 18(N—l)](8a)

R=s —

10Nlog,N + 150(N - 1)
= (6N + 9)Iog,N + 150(N - 1)

For large N,

lim R _ 10 = 1.66,

N> 6
the execution-time decreases, at best, by a factor of 1.66. Like
Example-1l, parallel execution does not reduce the execution-time consi-
derably because the Master's overhead demands much time. But if it did
not calculate weight coefficients, i.e., the number of samples is known
a priori; then the Master's overhead would lessen for a larger R.

When determining the application memory cost, Cai’ all sub-
routine calls (add/subtract and multiply/divide) require four words of
program storage and each loop demands an additional four words of program
storage. As with execution-time, the program flowcharts (Fig. 5.26
through 5.29) assist in estimating the application memory cost. Simi-
larly, the contributions of each flowchart step add together to yield
the final result. Table 5.16 outlines the steps and their contribution
for the series flowchart; these terms combine as follows:

Cai = W6[44 + p(N+8)]); 1 # 4. (5.17)

But for the muyP CDA (i = 4) the N slaves create additional program and
data storage requirements. When added to the Master's terms (see Table

5.17) they sum to give the muP application memory

95

Table 5.16 Estimates of P,, D, (1 = 4) for Example-3.

b S §

Step Program Data

1l 24 N+ 8

2 12 -—

3 8 -
Totals Pi = 44 Di =N+ 8

Table 5.17 Estimates of P,, D, for Example-3.

4’ 74

Step Program Data

1 24 8

2 4 -

3 4 -

4 - -
Slaves (N) 8N N

Totals Pi = 8(N + 4) D, =N+ 8

96

c, = Wo[(32 + 8N) + p(N + 8)]. (5.18)

a4

Lastly, the-results of Chapter III and'Equations 5.14 through
5.18 combine to produce the set of attribute values for this example
(see Fig. 5.30 through 5.37). Using the techniques of Chapter IV, these
values are converted to marginal utilities and, moreover, to utilities
as shown in Tables 5.18 and 5.19.

As with the other examples, these figures and tables illustrate
several points. Again, the AU CDA displays the fastest speed and the
muP always exhibits quicker execution-time than the DIRECT CDA. And for
N= 27, R = 1.6 which agrees well with the prediction. Similarly, the
DIRECT/muP CDA's lag behind the CALC CDA in speed for p=1, 2; still
it surpasses them for p = 3, 4. With respect to costs, the muP CDA
begins high and for modest N ends up extremely high due to all the
additional Slaves (term Cea). Costs for the DIRECT CDA climb faster
than the AU and CALC CDA's because the application memory term (Cal)
begins to dominate the elemental cost term (Cel). In Table 5.18 for
weight vector E;, the DIRECT and CALC CDA's correspond to "break-even"
utilities; i.e., 55 and 56, respectively. Also, for the typical conse-
quence set in Table 5.19 the CALC CDA depicts the overall, "best'" CDA
k = E;) by quite a large score (by 20 utility values). This results
from the large expense of the mpP CDA and large problem dimensions (27
samples). Finally, Table 5.18 illustrates the "seﬁsitivity" of the
DIRECT CDA to the cost attribute; as i'changes from'E; to §5’ the DIRECT

CDA's utilities vary from 55 to 87, or by 32.

97

104
103
A
iy
102
» A
8
Z
]
= X
é 0
B X
5 { i
10 £
o
o
-1
10
o
@
1072
23 2% 2° 25
SAMPLE SIZE
X - DIRECT A - CALC
O - AU O - muP

Figure 5.30 Single-precision execution-time versus sample size for
Example-3.

10%
103
o 2
8 10
L
5
=
S
5 10
3]
2]
10°
1071

98

A
Ji N
T 3
A 1]
A 3
X
{ (11
m
(0]
P
(0]
()
,3 ,)5 26)7
SAMPLE SIZE
X - DIRECT A ~ CALC
o - AU g - mwP

Figure 5.31 Double-precision execution-time versus sample-size for

Example-3.

99

10°
10% {%
X
(1]
X
5 o 4
10 i i
n
2 X A
& Q A
2
5 10 A
3
P
B
(0]
=] 1ot
(1))
(0]
(0]
10°
o
1071
23 24 27 2% 2’
SAMPLE SIZE
X - DIRECT A - CALC
O - AU g - =P

Figure 5.32 Triple-precision execution-time versus sample size for
Example-3.

100

108
X
10° i
X
(1]
X
X @
1]
ot X
A
=l
)
23
Z 10 A
=] A A
[
3]
5]
B 102
(0}
10* ¢
Q
(0]
100 Q .
23 2% 2° 26 2
SAMPLE SIZE
X - DIRECT AT e
o- AU o- muP

Figure 5.33 Quadruple-precision execution-time versus sample size for
Example-3.

COST ($'s)

101

10*
M
a
103
M
4 A A A
() o (0 ﬁ)
102
X X X
10t ,
53 24 25 26)7
SAMPLE SIZE
X - DIRECT A- caLc
O- AU O- muP

Figure 5.34 Single-precision costs versus sample size for
Example-3.

COST ($'s)

102

104
(1]
10°
(11]
11}
A A 4 4
g; [0 Lo} Q
]
102
X
X
X X
10t
23 2% 2’ 2%
SAMPLE SIZE
X - DIRECT A\ - CALC
O - AU O - mypP

Figure 5.35 Double-precision costs versus sample size for

Example-3.

COST ($'s)

103

10
u1]
10° @
(1]
11}
A A 4
o) o) ¢
102
X
)P
X i
10t ,
23 2% 2’ 28 2’
SAMPLE SIZE
X - DIRECT A- CALC
O - AU O- myP

Figure 5.36 Triple-precision costs versus sample size for
Example-3.

COST ($'s)

104

10
11]
10 it
aQ
1- A A
i (o) o) ¢
102
X
X
X
10t
23 2% 2’ 26 2’
SAMPLE SIZE
X - DIRECT A - caLc
O - AU O - owP

Figure 5.37 Quadruple-precision costs versus sample size for

Example-3.

105

Awoo Q.Hoc QHOQV - mx .AH-O QQ.O Q.Hoov - Nx .A.Hco nﬂoo Qwoov - .ﬂx .Aﬂlo unco

‘€°0) = mx $330N

8¢ aaeL1
St £8 6t [49 96 Tae1°e ¥
tt [A
00 ACS T A4
LT %9 (8 9s 89 ¢aT6°T €
00T /
0s (A VAN
0s G8 ST 0s 00T ¢-azL'e [4
00 T
00T Tays°e
L8 L1 £9 SS 00 2306°S T
99 1)
B
*1 Fx)n 1 Fon (f1 Fon 1 Moo (') "x H

* (so1dwes vanlaHnswxu

103 SITIFIFIN pue 33s aduanbasuod TedrdL] 8T°S 21q®l

106

(8°0 ‘1°0 ‘1°0) = mx ‘(1°0 ‘8°0 ‘1°0)

= Nm QA.HOO QH.O Awocv = .Hw aﬂﬁoo chc

e
‘€°0) = A :93I0N

00 gdey°¢
€T 18 9¢ ty L6 caLL’ e K4
133 4
16 ¢399°¢
06 L 96 98 99 €40y 13
00T Y
L6 [ACCI N
L8 06 0¢ 99 00T 1-41%°8 <
00 T
00T Td¢%°S
L8 LT €9 GS 00 %46T°1 T
99 €
¢1 Hon ¢x Fon ("1 Hon °x Moyn Fx) " R

* (sodues nuvmlmaaamxu X103 SITITTITIN pue 3198 dduanbasuod TedrdLl 6T1°G 3198]

107

5.5 Additional Design Considerations

For the previous three examples, the overall results depend on
both the specific software algorithms used and the hardware devices and
architectures selected. Because the research project reported here con-
siders only nominal values for the above, the overall results of these
examples may shift dramatically with alternate approaches. But design
engineers need only combine their specific approaches with the methodology
to discover the changes. In this section, an alternative software
algorithm illustrates this procedure.

Often, several algorithms may implement a specific task and each
displays widely differing characteristics; e.g., execution-time, memory

demand, hardware overhead, etc.(60)

Consider the effect of an improved
multiply algorithm to reduce execution-time for the DIRECT and muP CDA's
(terms n, and ma). Only a reduction in add times or the number of adds
will decrease multiply times, and since a reduced add time only requires
a faster puP, the standard 'shift-and-add" algorithm improves the number

of adds.(Gl)

For a p-precision number this requires approximately 8p
shifts and an average of 4p, 2p-precision adds. Using Equation 3.2 as
the 2p-precision add time and assuming that the p-precision shifts

require p cycle-times,

m = 4p(20pt) + 8p(pt)

= 88p2t°, and (5.19)

o = 88p2t°. (5.20)

4

These equations reveal a dramatic improvement in the multiple-precision

108

multiply times for the DIRECT and muP CDA's as shown in Figure 5.38.
Here, the decrease varies with precision; i.e., the greater the precision,
the greater the improvement. And by p = 5 the DIRECT CDA actually
executes faster than the AU CDA. |

To illustrate the overall improvement in execution-time with
an application, the above equations used with Equations 5.5 and 5.6
form the series and parallel execution-times for matrix inversion (see
Fig. 5.39). This figure demonstrates a decrease in execution-time by
roughly three orders of magnitude for triple-precision. Finally, the
techniques of Chapter IV convert these attribute values to marginal
utilities and utilities as depicted in Table 5.20. Comparison of this
with Table 5.11 (the original table) shows great increase in the DIRECT
and myP CDA's marginal utilities due to improved execution-time. Conse-
quently, the marginal utilities of the CALC CDA drop because it now
possesses the slowest execution-time. As before, the "best'" CDA varies

as the weight vector k changes.
5.6 Summary

From careful analysis of the attribute values for the preceding
three examples, several trends and conclusions can be deduced. With
respect to execution-time, the AU CDA always performs the task the fastest
because it contains a hardware multiply and divide. But the results of
Chapter III predicted this would occur.

Next, the muP CDA invariably surpasses the DIRECT CDA in execu-
tion-time yet they both accomplished adds and multiplies in software.
Although this decrease varies significantly from example to example, it

primarily depends on the degree of ''parallelism' indigenous to the

EXECUTION-TIME (SECS.)

109

104
103
102 X
10t
X
0
10 iy
Q VN
107t ‘F
1072
Pae
1073
1074
1 2 3 4
PRECISION
X - DIRECT, mpP A- caic
O - AU 3¢- DIRECT, muP (improved)

Figure 5.38 Multiple-precision multiply time for various CDA's.

EXECUTION-TIME (SECS.)

110

10° l
102
I & ¢
1]
10t
0
10 dﬁ*
>
. (0] & - 8
10 &
il
8-
1072 ’
SF
1073
1 2 3 4 5
| MATRIX ORDER
% - DIRECT - CALC £-- muP (improved)
O- AU O- mP 3 - DIRECT (improved)

Figure 5.39 Triple-precision execution-time versus matrix order for

Example-2.

111

(8°0 ‘1°0 ‘1°0) = mu ‘(1°0

‘8°0 ‘1°0) = Nu ‘(T°0 ‘1°0 ‘8°0) = Hu ‘(€°0 ‘€70

-]

‘€°0) = Y :930N

16 T4s0° Y
98 ¢6 9% 09 66 ¢-4€S°¢ Y
123 [4
00 /4§ § 4
ot 0T 08 o¢ 00 TI66°T £
. 00T 4
149 [ACCYA |
189 c8 ST 1%/ 00T £-avs°t 4
00 T
00T Tdee ¢
L6 Le 4 08 66 ¢-dTL°6 T
99 £
*1 Fon CROL (fx Fon "1 Fon (%) Fn & 0

* (uy3tao8t1e Aydyaynu pasoaduy ‘iapao puz)z-ordwexa 103j S3FIF[FIN pue 338 aduanbasuod Ted1dL] (7°G 9T19EL

112

specific computation and the severity of the Master's overhead. By extend-
ing the idea of parallel (or simultaneous) operation, even the AU CDA can
realize a decrease in execution-time.

For single-precision problems the CALC CDA computes its tasks
the slowest. Now, as precision increases the CALC CDA execution-times
fail to grow as fast as the other CDA's (specifically, the CDA's with
software multiplies); thus, it becomes faster than the DIRECT/muP CDA's.
Since the CALC CDA Qlways finds the answer to a fixed number of digits,
greater precision only requires additional digit entries, and this con-
tributes little to the execution-time.

As the problem dimensions increase the total costs grow for all
CDA's due to the extra data memory (not program memory) demands. And
for the muP CDA costs enlarge dramatically faster than the other CDA's
because of repeated hardware and software. Thus, parallel execution can
potentially create enormous costs. |

This chapter provides typical consequence sets, marginal utili-
ties, and utilities for various'weight vector E; i.e., Ea =
(0.3, 0.3, 0.3), k; = (0.8, 0.1, 0.1), k, = (0.1, 0.8, 0.1), and k, =
(0.1, 0.1, 0.8). The first does not emphasize any attribute and, thus,
corresponds to the average, while the other three emphasize one attribute
at a time. For all examples, the typical consequence sets contain alter-
natives with equal utilities (for some k), or "break-even" CDA's. These
CDA's represent equivalent alternatives with respect to the others in the
consequence set. When the weight vector k varies, the utility of CDA's
with strong marginal utilities that correspond to emphasized k dimensions
increase, while CDA's with weak marginal utilities decrease. This fol-
lows mathematically since the "sensitivity'" of the additive utility func-

tion to a change in k, yields the marginal utility; i.e.,

i

Finally, this chapter explores the overall effect of an alterna-
tive multiplication algorithm for the DIRECT and muP CDA's. As precision
increases, the degree of improvement increases; e.g., for p = 1 the
instruction execution-time magnitudes differ by roughly two orders of
magnitude, but for'p = 5 it increases to five orders of magnitude. When
applied to the matrix inversion example, this algorithm reduces the
computation execution-time by three orders of magnitude for triple-
precision. With respect to utilities, the improved multiplication
instruction increases the utilities of the DIRECT and muP CDA's, while
it decreases the CALC CDA's utility because of slow speed. So the overall

effect involves shifting the DIRECT and muP CDA‘s utilities higher.

CHAPTER VI CONCLUSIONS

Continued advances in semiconductor device processing technol-
ogy led to LSI devices with enhanced performance at reduced cost. Con-
sequently, microprocessor-based (uP-based) systems now function in a
myriad of application areas with widely differing computational complex-
lities. Since numerous LSI devices may accomplish these advanced calcula-
tions, ﬁany designers follow ad hoc approaches to synthesizing computa-
tional sections. So the purpose of the research reported here was to in-
vestigate and characterize these computational design alternatives (CDA's)
and ﬁo develop a more rigorous and structured design approach which in-
corporates a firm, theoretic foundation.

Using the results of this study, designers of uP-based systems
will be able to create advanced systems with increased performance.

For example, careful use of these CDA characteristics may lead to in-
creased execution-time at lower costs. Second, these results will benefit
LSI chip designers by influencing what properties the next generation of
devices will possess. Because some properties aid computations and

others hinder, the new devices will contain the desirable traits and min-
imize the action of undesirable ones. Third, the methodology developed in
this study assists developers of uP-based systems by providing them the rig-
orous theoretic foundation to investigate and characterize future systems

as technology advances. Since this development begins at the axiom level,
they can easily modify the methodology to suit their specific orientation.

114

115

Within the research reported here, the investigation attained
several objectives. First, it surveyed the present semiconductor market
for LSI devices which facilitate computations and it generalized their
key properties. With these devices, it defined a basic set of elemental
CDA's which may be combined to realize the computation section of a gen-
eralized yP-based system. To provide for comparison of these members,
it determined common attributes and techniques to evaluate them. Next,
the investigation developed a decision mechanism for selecting the "best"
CDA using these attributes. Finally, through three representative and
contemporary engineering examples, it illustrated the use of this deci-
sion mechanism; in the process, it characterized the properties of each
CDA. By satisfying these objectives, the investigation achieved the
overall purpose of the research project.

During this investigation the research project reached several
principal results. First, it defined a basic set of four elemental CDA's:
DIRECT, AU, CALC, and muP. The DIRECT CDA consisted of a uP and memory
connected via the system bus. This CDA described the simplest technique
to execute a calculation because the memory contained all arithmetic sub-
routines. Next, the second CDA employed a uP, memory, and an arithmetic
unit (AU) all joined by the system bus. It differed from the DIRECT CDA
in that it performed multiplies and divides with the AU. The third CDA
incorporated a uP, memory, and calculator chip to accomplish arithmetic
operations. With this memory, the program must simulate depressing the
keys as with a hand held calculator, and it must read back the answers
and decode them when the requested function finishes. Finally, the mpP
CDA applied the concept of simultaneous, or parallel, execution: here,

a Master uP directs several Slave uP's to execute sections of the

116

problem together, then it adds the partial results for the completed an-
swer. Thus, each Slave memory contained a replica of the DIRECT CDA
memory, yet the Master's memory held an "overhead" program.

To facilitate comparison of these CDA's, the investigation
identified and used three common attributes: precision, execution-time,
and cost. Precision involves the quantity of 8-bit words used to repre-
sent a number; hence, all numbers corresponded to a multiple-precision,
fixed-point, two's complement format. For execution-time, this value
gave the number of seconds needed to complete the requested computation.
If the number of add and multiply instructions indicates the execution-
time, then these values, multiplied by the time to perform each instruc-
tion, add to give the execution-time. With costs, this quantity repre-
sented the dollar value of LSI devices used in a CDA. Two terms combined
to produce the total cost; one resulted from the basic expense of pro-
curing a CDA, and the other pertained to the additional expense of the
application memory. For both execution-time and cost, these values oc-
curred from terms indigenous to each CDA and from application derived
terms. Multiple-precision flowcharts for arithmetic operations assist-
ed in estimating these indigenous terms. The CALC CDA add time exceed-
ed the other CDA's (all the same) by three orders of magnitude; i.e.,
msecs. compared to psecs. For multiplies the CALC CDA exhibited roughly
1 sec. operation, while the AU CDA functioned in about 1 msec. But the
DIRECT and muP CDA's varied considerably with precision since repetitive
adds implemented the multiply; i.e., they ranged from msecs. to 3.5 mins.

With respect to indigenous costs, the DIRECT CDA differed from
the AU and CALC CDA's by roughly one order of magnitude less ($100's com-

pared to $10's), and the muP CDA varied dramatically with the number of

117

Slaves. For more than 12 Slaves, the muP CDA represented the largest
indigenous cost.

Next, the investigation considered a viable decision mechanism
to select the "best" CDA which used the above attributes: Multiattri-
bute Utility Theory (MUT). Here, MUT assigned a numeric quantity, the
utility, to each CDA which indicated its usefulness with respect to the
other alternatives. Because the attributes satisfied eight axioms, and
utility and preferential independence definitions, the decision mechanism
reduced to an additive utility function; i.e.,

3

u(x) = I k,u, (x,) = utility (6.1)
gmy 1171

N

= (x;, %X,, X;) = consequence

= execution-time, x, = cost

= precision, x 3

2
ui(xi) = marginal utility function

k, = scaling constant, where g k, = 1,
i=1
Here, marginal utility functions converted specific attributes of a dim-
ension to a numeric quantity which represented its usefulness. So, the
utility of a CDA involved a weighted sum of their marginal utilities, and
the "best" CDA consisted of the alternative with the greatest numeric
utility.

By analyzing three examples, the investigation clarified the tech-
niques used to evaluate attributes, and it elucidated use of the additive
utility function. These applications--linear regression, matrix inver-
sion, and fast F;;rier transform computations--exemplified the overall

procedure of this research project and, moreover, led to conclusions that

characterized each CDA.

118

For the linear regression example, a typical consequence set in-
cluded the following marginal utilities: DIRECT = (60, 00, 100), AU =
(00, 100, 53), CALC = (100, 19, 00), and muP = (33, 97, 62). With the
weight vector k = (0.3, 0.3, 0.3), Equation 6.1 formed the utility of
each CDA as the average of its marginal utilities; i.e., DIRECT = 55,

AU = 51, CALC = 40, and muP = 64. Since the mpP CDA possessed the larg-
est utility, it represented the '"best" CDA in the above consequence set.
As the values in the weight vector changed, the utility of CDA's with
sumgmmmduuudutthnmetom&mn&Edmmumsm-
creased, while the others decreased, and the "best" CDA varied accord-
ingly. So determining the weight vector k involves important evaluation.
Similarly, the other examples strengthened these results.

In characterizing the CDA's, the three examples revealed that
the AU CDA always exhibited the fastest execution-time because of its
hardware multiply and divide instructions. For the DIRECT and muP CDA's,
which both perform adds and multiplies in software, the muP's speed in-
variably surpassed the DIRECT CDA due to its simultaneous, or parallel,
execution. But this increase varied significantly from example to exam-
ple, and it primarily depended on the degree of "parallelism" found in
the specific example and the severity of the Master's overhead. With
respect to precision, the CALC CDA represented the slowest CDA for sin-
gle-precision, yet as precision increased it becomes faster than the
DIRECT and muP CDA's and still slower than the AU CDA. Since the CALC
CDA always finds the answer to a fixed number of digits, greater preci-
sion only requires extra digit entries and this contributes little to
the execution-time. As the problem dimensions grew, so did the total

cost of all CDA's because of additional data (not program) memory demands.

119

For the mpyP CDA, costs enlarged dramatically because of its repeated hard-
ware and software. Finally, precision changes did not alter the costs
significantly since the memory requirements of the problem dimensions
dominate those of added precision.

As with any research project, the investigation reported here
points toward several areas of additional study. For example, rather
than characterize CDA's through three specific applications, perhaps a
generalized algorithm would induce broader conclusions. If integer N
measures the size, or dimension, of a generalized algorithm, then the
time complexity, T(N), expresses the number of seconds required to com-
plete the task. Similarly, the space complexity of the algorithm, S(N),
denotes the number of memory words needed to execute the task (this
quantity relates closely to the attribute cost). So for fixed execution-
interval and memory size, such expressions could give limits to the pro-
blem dimensions for an entire class of problems.

Besides extending this research project to match technological
growth, the fundamental concepts of MUT could be used to investigate and
characterize various muP systems in detail. With enhanced throughput,
improved reliability, increased system response, and modular expansion
capabilities, the muyP arrangement deserves much attention. Still a
flock of problems exist which need careful research before implementa-
tion progress can occur. But MUT paves the path since it can facilitate
analysis of both hardware and software.

Finally, since the methodology developed in this research pro-
ject does not assume any specific hardware devices or software algorithms,

it could aid a parametric study of either these two topics. Such

120

investigations may lead to optimal design strategies for uP-based

systems which consider both hardware and software tradeoffs.

REFERENCES

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

REFERENCES

R. K. Jurgen, "Electronics in medicine,'" IEEE Spectrum, vol. 15,
PpP. 68-72, Jan. 1978.

H. L. Van Trees, E. V. Hoversten, '"Communications satellites:
Looking to the 1980s," IEEE Spectrum, vol. 14, pp. 42-51, Dec.
1977.

S. L. Lillevik, P. D. Fisher, and A. L. Jones, "A predictive CMOS-
based instrument for agriculture," Microcomputer Design and Appli-
cations (ed. S.C. Lee). New York: Academic Press, 1977, pp. 275-
286.

P. D. Fisher and S. L. Lillevik, "Monitoring system optimizes
apple-tree spray cycle," Electronics, vol. 50, pp. 125-127, Nov.
24, 1977.

S. L. Lillevik, P. D. Fisher, and A. L. Jones, "A predictive field
instrument for agricultural production," Proc. IEEE Microcomputer
177 Conf., pp. 137-142, Apr. 1977.

R. K. Jurgen, "Electronic funds transfer: Too much, too soon?,"
IEEE Spectrum, vol. 14, pp. 51-54, May 1977.

C. C. Foster, "Something new--The Intel MCS-4 microcomputer set,"
Comp. Arch. News, vol. 1, pp. 16-17, Apr. 1972.

J. L. Ogdin, "Survey of 8-bit microprocessors reveals wide choice
for users," EDN, vol. 19, pp. 44-50, June 20, 1974.

R. L. Petritz, "The pervasive microprocessor: Trends and pro-
spects," IEEE Spectrum, vol. 14, pp. 18-24, July 1977.

P.W.J. Verhoftstad, "Technology for microprocessor hardware,"
Proc. IEEE Spring COMPCON, pp. 277-282, Apr. 1976.

S. Y. Lau, "Design high-performance processors," Electronic Design,
vol. 25, pp. 86-95, Mar. 29, 1977.

S. Y. Lau, "Bit-slice microprogramming saves software compatibil-
ity," EDN, vol. 23, pp. 42-46, Mar. 5, 1978.

J. Nemec, G. Sim, and B. Willis, "A primer on bit-slice processor,"
Electronic Design, vol. 25, pp. 52-60, Feb. 1977.

G. F. Muething Jr., "Designing the maximum performance into bit-
slice processors," Electronics Design, vol. 25, pp. 52-60, Feb. 1977.

121

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

28)

29)

30)

31)

122

G. C. Feth, '"Memories: Smaller, faster, and cheaper," IEEE
Spectrum, vol. 13, pp. 36-43, June 1976.

N. Lindgren, "Semiconductors face the '80s," IEEE Spectrum, vol.
14, pp. 42-48, Oct. 1977.

T. S. Bush, "Local memory for a high-speed digital test system,"
IEEE Trans. Instr. and Meas., vol. IM-26, pp. 217-220, Sept. 1977.

P. Franson, "Special report: Semiconductor memories," EDN, vol.
22, pp. 46-58, June 20, 1977.

E. A. Torrero, "Bubbles rise from the lab," IEEE Spectrum, vol.
13, pp. 28-31, Sept. 1976.

P. Franson, "IC's and semiconductors--suppliers rush to perfect new
processes,'" EDN, vol. 22, pp. 88-95, Dec. 15, 1977.

R. Greene, G. Perlegos, P. J. Salsbury, and W. L. Morgan, "The big-
gest erasable PROM yet puts 16,384 bits on a chip," Electronics,
vol. 50, pp. 108-111, Mar. 3, 1977.

R. Proebsting, "Dynamic MOS RAM's: An economic solution for many
system designs," EDN, vol. 22, pp. 61-66, June 20, 1977.

E. A. Torrero, "Solid-state devices," IEEE Spectrum, vol. 15, pp.
36-40, Jan. 1978.

E. R. Hnatek, "Current semiconductor memories," Computer Design,
vol. 17, pp. 115-126, Apr. 1978.

E. A. Torrero, "The multifacets of IZL," IEEE Spectrum, vol. 14,
pPp. 28-36, June 1977.

L. G. Gardner, "A survey of some recent contributions to computer
arithmetic," IEEE Trans. Comp., vol. 25, pp. 1277-1282, Dec. 1976.

S. Sanyal, "An algorithm for nonrestoring division," Computer
Design, vol. 16, pp. 124-127, May 1977.

S. Waser and A. Peterson, '"Real-time processing gain ground with
fast digital multiplier," Electronics, vol. 50, pp. 93-99, Sept.
29, 1977.

"Multiplier integrates accumulator, provides 175-nsec multiply-
accumulate," EDN, vol. 22, p. 92, Aug. 5, 1977.

"24-bit single-chip multiplier eases floating-point computationms,"
EDN, vol. 23, p. 156, June 5, 1978.

"Am9511: Arithmetic processing unit," prepared by Advanced Micro
Devices, Inc. (Sunnyvale, Calif.), 1977.

123

32) "Number-processing controller cuts cost of software development,"
Computer Design, vol. 16, pp. 128-129, Aug. 1977.

33) P. D. Fisher and S. M. Welch, "Wedding calculators and instruments,"
Electronics, vol. 47, pp. 100-109, May 16, 1974.

34) W. W. Moyer, "Interfacing calculator chips as microcomputer pre-
processors," Computer Design, vol. 17, pp. 187-191, May 1978.

35) T. P. Hughs, D. H. Sawin III, and D. R. Hadden Jr., "LSI Software,"
Proc. IEEE Microcomputer '77 Conf., pp. 46-53, Apr. 1977.

36) P. Franson, "Advent of standard chip software sure to ease system
implementation," EDN, vol. 22, pp. 21-22, Oct. 5, 1977.

37 J. L. Baer, "Multiprocessor systems," IEEE Trans. Computers, vol.
25, pp. 1271-1277, Dec. 1976.

38) A. J. Weissburger, "Analysis of multiple-microprocessor system
architectures," Computer Design, vol. 16, pp. 151-163, June 1977.

39) J. W. Bowra and H. C. Torng, '"The modeling and design of multiple
function-unit processors," IEEE Trans. Computers, vol. 25, pp. 210-
221, Mar. 1976.

40) P. M. Russo, "An interface for multi-microcomputer systems,'" Proc.
IEEE Fall COMPCON, pp. 277-282, Oct. 1976.

41) W. C. Giauque and T. C. Peebles, "Application of multidimensional
utility theory in determining optimal test-treatment strategies
for streptococcal sore throat and rheumatic fever,'" Opns. Res.,
vol. 24, pp. 933-950, Sept. 1976.

42) J. Von Neumann and O. Morgenstern, Theory of Games and Economic
Behavior. Princeton, N.J.: J. Wiley and Sons, 1967, pp. 15-31.

43) R. L. Keeney, "Quasi-separable utility functions," Naval Res. Log.
Quart., vol. 15, pp. 367-390, 1968.

44) R. L. Keeney, "Multiplicative utility functions," Opns. Res., vol.
22, pp. 22-34, Jan. 1974.

45) itbid., p. 24.

46) K. R. MacCrimmon and M. Toda, 'The experimental determination of
indifference curves," The Review of Economic Studies, vol. 36, pp.
433-451, 1969.

47) R. M. Dawes and B. Corrigan, 'Linear models in decision making,"
Pgychological Bull., vol. 81, pp. 97-106, Feb. 1974.

48) H. J. Einhorn and R. H. Hogarth, "Unit weighting schemes for deci-
sion making," Organizational Behavior and Human Performance, vol.
13, pp. 171-192, Apr. 1975.

124

49) W. Edwards, "How to use multiattribute utility measurement for soc-
ial decision making," IEEE Trans. Sys. Man and Cybern., vol. SMC-7,
PP. 326-340, May 1977. .

50) H. Raiffa, Decision Analysis: Intro. Lectures on Choices Under
Uncertainty. Reading, Mass.: Addison-Wesley, 1968.

51) W. Edwards, "Social utilities," The Engineering Economist, Sum.Sym.
Ser., vol. 6, pp. 119-129, 1971. v

52) J. M. H. Olmsted, Advanced Calculus. New York: Appleton-Century-
Crofts, 1961, pp. 524-525.

53) R. Grossman and J. Conway, "Minicomputer Systems Directory,'" EDN,
vol. 21, wall chart, June 5, 1976.

54) C. G. Cullen, Matrices and Linear Transformations. Reading, Mass.:
Addison-Wesley, 1967, pp. 188-192.

55) T. M. Walker, An Introduction to Computer Science and Algorithmic
Processes. Boston: Allyn and Bacon, 1971, pp. 324-325.

56) D. G. Moursund and C. S. Duris, Elementary Theory and Application
of Numerical Analysis. New York: McGraw-Hill, 1967, p. 64.

57) J. W. Cooley and J. W. Tukey, "An algorithm for the machine compu-
tation of complex Fourier series," Math. Computation, vol. 19, pp.
297-301, Apr. 1965.

58) W. D. Stanley, Digital Signal Processing. Reston, Virginia: Pren-
tice-Hall, 1975, p. 270.

59) ibidc [p. 259.

60) A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms. Reading, Mass.: Addison-Wesley, 1974, pp.
2-33 .

61) F. J. Hill and G. R. Peterson, Digital Systems: Hardware Organ-
ization and Design. New York J. Wiley and Soms, 1973, p. 159.

