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ABSTRACT

MODAL-COHERENT EQUIVALENTS DERIVED FROM

AN RMS COHERENCY MEASURE

BY

Jack Stewart Lawler

The modal and coherency analysis techniques have domi-

nated the substantial research efforts which have been de-

voted to developing dynamic equivalents that may be used to

reduce the complexity of power system transient stability

studies. The equivalents derived from these two techniques

have distinctly different structures and properties. Although

both approaches have desirable features, each approach has

been the subject of criticism and neither technique has

gained complete acceptance. The objective of this research

is to show that a dynamic equivalent which combines the best

features of both modal and coherent equivalents can be de—

rived based on a coherency analysis using the rms coherency

measure.

An algebraic formula is derived which relates the expect-

ed value of the rms coherency measure, evaluated over an

infinite observation interval, to the parameters of the power

system state model and the statistics of the system

disturbance. This expression is used to establish an important

link between the modal and coherency analysis approaches to



Jack Stewart Lawler

power system dynamic equivalents by showing that the inertial-

ly weighted synchronizing torque coefficients, which determine

the system modes, are also the basis of coherency aggregation

when a particular probabilistic disturbance, called the modal

disturbance is used to identify coherent groups for coherency

based aggregation. This result allows a coherent equivalent

to be derived which closely approximates a general purpose

modal equivalent based on the same coherency measure and

disturbance. An example system is used to show that the ei-

genvalues of the coherent equivalent derived from the modal

disturbance closely approximate the system eigenvalues retain-

ed by the corresponding modal equivalent and that both of

these equivalents are excellent general purpose equivalents,

suitable for studying many different system contingencies.

The coherent equivalent based on the rms coherency mea-

sure and the modal disturbance is called a modal-coherent

equivalent. This equivalent has the theoretical soundness and

general purpose applicability of a modal equivalent and the

power system component structure of a coherent equivalent.

An efficient computational algorithm, applicable to large

scale systems is developed for constructing the modal-coherent

equivalent. It is shown that the computational effort re-

quired to construct the general purpose modal-coherent equiva-

lent is competitive with the total effort required to construct

the set of coherent equivalents which would be needed for a

transient stability study of a relatively small number of dis-

tinct system disturbances.
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CHAPTER 1

INTRODUCTION

The extensive research efforts to develop dynamic equiva-

lents suitable for use in simulations of power system response

to disturbances have been dominated by the modal and coher-

ency analysis approaches [l,2]. These two techniques have

developed independently and appear to be distinctly different

concepts, although both approaches have the common goal of

reducing the complexity of power system analysis. Each ap-

proach has been the subject of criticism and neither tech—

nique has gained complete acceptance. This thesis explores

the relationship between these two approaches and proposes

a new approach to power system dynamic equivalents which

combines the best features of modal and coherency analysis.

In order to define some relevant terminology, the tran-

sient stability problem for large scale systems and the need

for dynamic equivalents are briefly reviewed. An overview

of modal and coherency analysis is also given in order to

provide a perspective for the contribution of this research.

The specific objectives of the thesis are then discussed.

The Need for Dynamic Equivalents in Transient

Stability Studies

 

 

Consider a large geographical area where the electric

power needs are served by many interconnected utilities.



Let one particular utility be designated as the internal

system an: study area) and let the remaining utilities in

the interconnected network be designated as the external

system. The transient stabilityyproblem is to determine how
 

well-behaved the generators in the internal system will be

when a disturbance occurs in the internal system. The types

of disturbances considered in transient stability studies

fall into four basic categories; generator dropping, load
 

shedding, line switching or electrical faults.
   

Recognizing that the internal-external system model may

contain several hundred interconnected generating units,

each of which is characterized by nonlinear differential

equations, it is apparent that the determination of the

transient behavior of the internal system generators for any

particular disturbance will entail the solution of hundreds

of nonlinear, coupled, differential equations. Thus, the

transient stability problem for modern power systems is

characterized by a severe dimensionality problem. Histori-
 

cally, transient stability analysis was performed using the

classical, second order, synchronous machine equations, which

model only the rotor dynamics of the synchronous machine, to

represent each generator in the system. This model was used

in order to minimize the number of differential equations to

be solved. More recently, it has become apparent that there

is a need to increase the level of generator modelling to in-

clude the exciter dynamics and the effects of the turbine-

governor system, in order to improve the accuracy of transient



stability results. An increase in the level of generator

modelling naturally aggravates the dimensionality problem.

Since the number of generators in the internal system

model is generally a relatively small percentage of the total

number of generators in the composite internal-external

system, it is clear that the study area of interest contrib-

utes only fractionally to the over-all complexity of the

transient stability problem. Put another way, the bulk of

the computational effort expended by a particular utility

in performing a transient stability study is consumed in

computing the impact that the large external system has on

the behavior of the much smaller internal system.

A crude approach to ease the dimensionality problem

would be to simply neglect the external system and perform

the transient stability study on the isolated internal system.

In general, the coupling which exists between the internal and

external systems, due to tie lines, is not sufficiently weak

to permit such an approach. In fact, one of the reasons for

installing the tie lines which couple neighboring utilities

is to improve system performance under disturbed conditions

and to neglect these lines in contingency analysis would ig-

nore their important function.

A more reasonable solution to the dimensionality problem

is to find some method to reduce the size of the external sys-

tem model. Ideally, the reduction would be done in such a way

that the impact that the external system has on the behavior

of the internal system, would be preserved with respect to



disturbances that occur inside the study area. A reduced

order model of the external system which meets this objec-

tive is called a dynamic equivalent (or simply an equivalent).
 

Two approaches that have been developed for constructing

dynamic equivalents for power systems are the modal and coher-

ency analysis approaches. The characteristics of these two

techniques are now discussed.

The Modal Analysis Approach to Dynamic Equivalents
 

The modal analysis approach [1] assumes that a reason-
 

able simplification of the transient stability problem would

be to use a linearized model of the external system. The

linearization can be justified, since the response of the

external system to remote internal system disturbances would

be at most weakly nonlinear. The order of the linearized

model is then reduced by performing a modal reduction based

on controllability and observability considerations. The re-

duced order linear model of the external system is called the

modal equivalent. The procedure for constructing the modal
 

equivalent is

1. Establish the linearized model of the unre-

duced external system.

2. Compute the eigenvalues and eigenvectors of

the linear model.

3. Put disturbances at the boundary between

the internal and external systems and use

rules of mode elimination [1] based on the

eigenvectors and eigenvalues to eliminate

any mode of the external system model

which



i) is relatively unexcited by any

boundary disturbance (uncon-

trollable modes).

ii) is relatively undetectable at

the boundary (unobservable

modes).

With respect to the coherency analysis approach which

will be discussed later, the modal approach has two signifi-

cant advantages. These are

1. The approach is theoretically sound.

2. The modal equivalent is general purpose and

may be used to study any disturbance in the

internal system.

The disadvantages of the modal approach (with respect to co-

herency analysis) are

l. The eigenvalues and eigenvectors required

to perform mode reduction are expensive to

compute for large systems and are virtually

impossible to compute for system models

larger than one hundredth order.

2. The mode reduction process destroys power

system structure, that is, the reduced

order linear model obtained with the modal

procedure is no longer recognized as a

linearized power system model. Because the

modal equivalent is not represented in terms

of power system components, present tran-

sient stability programs would have to be

modified to accept the linear model

representation.

To overcome the difficulty in computing the eigenvalues

of a very large system model, it has been proposed that the

external system be divided into several computationally
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manageable "multiple external system" models [3]. Such an

approach is undesirable unless weakly coupled regions in

the external system can be easily identified, otherwise

there would be no guarantee that the eigenvalues of the

multiple external system models would be the same as the

eigenvalues of the undivided system model. A general pro-

cedure for producing modal equivalents which preserve a

meaningful physical structure is presently being pursued [4].

At this time, it appears that any approach to power system

dynamic equivalents which requires eigenvalue calculations

is not practical.

The Coherency Analysis Approach to Dynamic Equivalents

The coherency analysis approach to power system dynamic
 

equivalents is based on the coherency phenomena associated

with the behavior of synchronous machines. Coherency is a

disturbance-dependent phenomena and for a particular system

disturbance, two generators are said to be coherent if the

coherency measure between them, evaluated for that distur-
 

bance, is less than some prescribed threshold. There are

various ways of defining the coherency measure between two

generators all of which are a function of the difference be-

tween the voltage angles (swing curves) at the internal gen-

erator buses of the two generators. Two or more mutually

coherent generators define a coherent group and the genera-
 

tors in a coherent group are said to "swing together" in

response to the system disturbance for which the coherency

measure was evaluated. More than one coherent group may be

observed for a single disturbance.



It has been shown [5] that the coherent groups cor-

responding to a particular system disturbance may be accu-

rately identified from a coherency analysis of the response

to that disturbance of a simplified, linearized model of the

internal-external system. Once coherent groups have been

identified, a coherent equivalent is constructed using the

coherency-based aggregation technique [2] to form one equiva-

lent generator per coherent group observed in the external

system. Although coherent groups are identified with a

simplified, linear model, the aggregation technique is applied

to the full nonlinear system model and the coherent equivalent

obtained is a reduced order, nonlinear model. The transient

stability study for the disturbance used to identify coher-

ent groups is then performed using the coherent equivalent

identified for that disturbance.

There is no theoretical justification for power system

model aggregation based on a coherency measure dependent

only on voltage angle. The foundation of the coherency analy-

sis approach rests on the intuitive appeal of the concept that

generators which swing together function as essentially a

single generator and may therefore be aggregated.

Although the coherency analysis technique lacks the sound

theoretical basis of modal analysis, it offers significant

advantages.

1. Eigenvalues and eigenvectors are not required

to construct the coherent equivalent, and the

overall computational procedure has been shown

to be efficient and applicable to very large

systems [5].



2. The form of the equivalent obtained is

a reduced set of equivalent generators

and lines and may therefore be used

with existing transient stability

programs.

The coherency based aggregation technique presently uses

a max-min coherency_measure to identify coherent groups. The
 

technique has been criticized because

1. The max-min coherency measure used to

identify coherent groups has not been

shown to be proportional to system

parameters and thus the coherency mea-

sure must be determined by simulation

[6].

2. The equivalent produced using the

max-min measure is dependent on the

particular disturbance used to iden-

tify coherent groups for aggregation

such that a unique equivalent must

generally be constructed for each

disturbance to be studied [7].

Satisfactory responses to these criticisms have not yet been

given.

One additional criticism is directed at both modal and

coherency analysis. Quite often there are alternative solu-

tion approaches for solving a given engineering problem, but

when this is the case, the various solution techniques are

related and the solutions which are obtained are essential-

ly identical. Dynamic equivalents derived from the present

modal and coherency analysis techniques [1,2] have such dif-

ferent structures and characteristics that it is reasonable



to question whether or not these approaches are mutually

consistent.

The rules of mode elimination, based on controllability

and observability considerations, used in modal analysis [1]

are designed to preserve the states of the internal system

model. Mode reduction based on preserving states, and not

a coherency measure, does not guarantee that intermachine

behavior is preserved and may also be sensitive to the choice

of reference generator used to establish the state model.

Thus, if present modal equivalents are also coherent equiva-

lents, they are coherent equivalents by accident and not by

design. Similarly, the present coherency approach [2] makes

no effort to insure that system modes are preserved. The

fact that coherent equivalents must be recomputed each time

the location of the system disturbance is significantly

changed is sufficient evidence to indicate that coherent

equivalents do not preserve system modes. Thus, the present

modal and coherency analysis approaches are not mutually

consistent.

Neither modal nor coherency analysis has gained complete

acceptance by the power industry. The criticisms of these

approaches shed considerable light on the properties of a

dynamic equivalent which the industry would find highly

desirable. The characteristics of an "ideal" dynamic equiva-

lent are now discussed.
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The Ideal Dynamic Equivalent
 

An ideal equivalent should be a general purpose equiva-

lent, that is, a single ideal dynamic equivalent would be

suitable to study any disturbance which might occur within

the study area for which the equivalent is derived.

Therefore, the ideal equivalent should be based solely on

system structure and not on the type or location of any

particular system disturbance.

In addition to the general purpose property, an ideal

equivalent should be both a modal and a coherent equivalent.

Coherency is an important power system phenomena which is

strongly related to transmission line power flows and pecu-

liar to the behavior of synchronous machines. Any approach

to power system model aggregation which produces an equiva-

lent which significantly alters the coherency measure between

generators would upset the power transfer characteristics of

the system and neglect the essential nature of synchronous

machine interaction. The characteristic modes of oscillation

are similarly important. If an equivalent does not closely

preserve system modes, then there is little chance that the

equivalent can accurately predict the time response of the

full system modeliknra large class of disturbances. Thus, an

ideal dynamic equivalent should preserve system modes and the

coherent behavior of generators.

Two final characteristics that an ideal equivalent

should have are dictated by practical considerations. First,

the equivalent shouldkxarepresentedixiterms of normal power

system components so that it can be used with existing
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transient stability computer programs. And second, the

approach for deriving the equivalent must be computation-

ally efficient and applicable to large scale systems.

The discussion of the characteristics of an ideal power

system dynamic equivalent indicates that such an equivalent

should be a general purpose equivalent which is both a

modal and a coherent equivalent, which can be derived from

an efficient procedure that preserves power system component

structure. Neither modal analysis nor coherency analysis

leads to an equivalent which has all of these properties.

However, the characteristics of an ideal equivalent are a

composite of the most desirable features of present modal

and coherent equivalents. This suggests that a unified ap-

proach to dynamic equivalents which is consistent with the

objectives of both modal and coherency analysis may result in

a dynamic equivalent with ideal or nearly ideal properties.

An early effort to unify modal and coherency analysis is now

briefly reviewed.

A Coherent-Modal Approach to Dynamic Equivalents
 

Recognizing the need to insure that modal equivalents

preserve the coherent behavior between generators, a recent

paper [8] established rules of mode elimination for construct-

ing modal equivalents based on a modal analysis of an rms co-

herency measure evaluated over an infinite interval. The
 

rules of mode elimination are designed to eliminate modes

which do not significantly change the rms coherency measure

between any two generators by more than some arbitrary amount.
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Modal equivalents which are derived to preserve a coherency

measure may also be considered coherent equivalents and the

approach suggested by [8] may be termed a coherent-modal
 

approach. The coherent-modal approach would not lead direct-

ly to an ideal equivalent, since eigenvalues are required and

since the equivalent does not retain power system component

structure. However, the approach does provide some indica-

tion of how an ideal equivalent might be obtained.

The rules of mode elimination based on the rms coherency

measure [8] were derived for both deterministic and probabil-

istic system disturbances. In a companion paper [9], those

rules were applied to an example system, and modal equivalents

were constructed for various step disturbances in mechanical

input power. It was observed that when the step disturbance

in the mechanical input powers on the system generators were

zero mean, independent and identically distributed (ZMIID),

that the process of mode reduction closely resembled a

coherency-based aggregation since, the only modes eliminated

by the rules of mode elimination were associated with the

intermachine oscillations within a coherent group. It was

further observed that the rules of mode elimination applied

to deterministic disturbances did not resemble a coherency

aggregation. Two hypotheses were proposed based on these

observations. The first was that dynamic system structure

can be identified through an rms coherency measure if proba-

bilistic disturbances are used to identify coherent groups.

The second hypothesis was that the eigenvalues of the coherent

equivalent derived using the coherency-based aggregation
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technique to aggregate the coherent groups identified by

the rms coherency measure and the ZMIID disturbance should

closely approximate the system eigenvalues retained by a

modal equivalent based on the same coherency measure and

disturbance.

The above hypotheses, based on empirical observations

of the behavior of coherent-modal equivalents, provides a

major direction for this research. The specific objective

of this thesis is now described.

Thesis Objective
 

The objective of this thesis is to develop the justifi-

cation and the means for constructing a modal-coherent equiv-
 

alent whose properties closely approach those of an ideal

dynamic equivalent. It is emphasized that the term "ideal"

is meant to be taken in the context of the preceding

discussion.

The modal-coherent equivalent proposed in this research

is constructed using the coherency-based aggregation tech-

nique [2] to aggregate the coherent groups identified by the

infinite interval rms coherency measure and a particular

probabilistic step disturbance in mechanical input powers

called the "modal disturbance". Two properties of an ideal

equivalent are realized by the modal-coherent approach as a

natural consequence of the use of a coherency analysis and

coherency-based aggregation to identify and construct the

equivalent. These are
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l. The coherent behavior of generators

is preserved by the equivalent.

2. The equivalent is represented in

terms of normal power system

components.

It will be shown, that two additional properties of an ideal

equivalent are achieved by the modal-coherent equivalent be-

cause the rms coherency measure and the modal disturbance

can identify coherent groups which reflect the dynamic

structure of the system. These properties are

3. System modes are closely preserved by

the equivalent.

4. The equivalent is general purpose and

may be used to study a large class of

disturbances.

It will also be shown, that the final property of an ideal

equivalent is realized by the modal coherent approach because

5. The infinite interval rms coherency

measure can be evaluated for the prob-

abilistic modal disturbance using an

efficient technique which is applicable

to large scale systems.

Thus, this thesis will develop a modal-coherent equivalent

which is a general purpose coherent equivalent and an approx-

imate modal equivalent that may be derived from a computa-

tionally efficient procedure which preserves power system

component structure.

The justification for the modal-coherent equivalent is

developed in Chapters 3 and 4. In Chapter 3, an algebraic

relationship is derived relating the expected value of the
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rms coherency measure, evaluated over an infinite interval,

to the parameters of the state model and the statistics of

the system disturbance. This relationship is used to show

that the rms coherency measure and a particular probabilis—

tic system disturbance can reflect dynamic system structure.

Thus, the first hypothesis proposed in [9]ij;verified

theoretically. Using the same example system as [9], it is

shown in Chapter 4, that the eigenvaluescflfthe coherent

equivalent constructed using the coherency-based aggregation

technique to aggregate the coherent groups identified by

the rms coherency measure and a particular probabilistic

system disturbance closely approximate the system eigen-

values retained by the modal equivalent based on the same

coherency measure and disturbance. It is further shown that

both the modal and the coherent equivalent derived from this

probabilistic disturbance are suitable for studying the ef-

fects of any disturbance which might occur outside the areas

of the system aggregated to form these equivalents. Thus

it is shown that a general purpose coherent equivalent which

is an approximate modal equivalent can be derived from the

rms coherency measure when an appropriate probabilistic

disturbance is used to identify coherent groups. The appro-

priate probabilistic disturbance is shown to be the modal

disturbance. The example system used is shown to be a special

case where the above results apply to the ZMIID disturbance as

well as the modal disturbance and thus the second hypothesis

proposed in [9] is empirically verified.
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Chapter 5 discusses the need for an approach to dynamic

equivalents which is consistent with the objectives of both

modal and coherency analysis and retains the structure of a

coherent equivalent. The modal-coherent equivalent is

proposed to meet this need.

The means for constructingtflmamodal—coherent equivalent

is developed in Chapter 6. An efficient method for evaluat—

ing the infinite interval rms coherency measure for the

probabilistic modal disturbance is developed which is appli-

cable to large scale systems. It is shown that the computa-

tional effort required to construct the general purpose modal-

coherent equivalent is competitive with the total effort re-

quired to construct the set of coherent equivalents which

would be needed to perform a transient stability study for

a very modest number of distinct system disturbances.

The final chapter summarizes the contribution of this

thesis and proposes topics for future investigation based on

this research.



CHAPTER 2

POWER SYSTEM MODEL, GENERALIZED DISTURBANCE MODEL,

AND THE RMS COHERENCY MEASURE

The objective of this chapter is to present the mathe-

matical models used in the development of the modal-coherent

equivalent. The linearized power system model, generalized

disturbance model and rms coherency measure used for coher-

ency analysis are defined, and the mechanism by which co-

herent groups are aggregated to form a coherent equivalent

is briefly discussed.

2.1 Linearized System Model

Recent work on coherency-based dynamic equivalents at

System Control Incorporated (SCI) has shown that a simpli-

fied model for coherency analysis can be derived with the

following assumptions

1. The coherent groups of generators are inde-

pendent of the size of the disturbance.

Therefore, coherency can be determined by

considering a linearized system model.

2. The coherent groups are independent of the

amount of detail in the generating unit

models. Therefore, a classical synchronous

machine model is considered and the excita-

tion and turbine-governor systems are

ignored.

l7
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3. The effect of a fault may be reproduced

by considering the unfaulted network and

pulsing the mechanical powers to achieve

the same accelerating powers which would

have existed in the faulted network.

The first assumption may be confirmed by considering a fault

on a certain bus, and observing that the coherency behavior

of the generators is not significantly changed as the fault

clearing time is increased. The second assumption is based

upon the.observation that although the amount of detail in

the generating unit models has a significant effect upon

the swing curves particularly the damping, it does not radi-

cally affect the more basic characteristics such as the

natural frequencies and mode shapes. The third assumption

recognizes that the generator accelerating powers are approx-

imately constant during faults with typical clearing times.

The above assumptions and their justifications are quoted

from [11].

A linear model can be obtained by starting with the

classical synchronous machine representation for each generator

Mi 5% wi(t) = PMi(t) - PGi(t) - Diwi(t) (2-la)

i=l,2,...,N

EL 6.(t) = w.(t) i=1 2 ... N (2-1b)
dt 1 1 ' ' ' '

where,

i a subscript for generator i

N the number of generators in the system

Mi inertia constant (p.u.)

Di damping constant (p.u.)

mi generator speed (rad/sec)

Si generator rotor angle (rad)
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PMi mechanical input power (p.u.)

PGi electrical output power (p.u.)

mo nominal synchronous generator speed (rad/sec)

Equations (2-1) are nonlinear due to the nonlinear relation-

ship between PGi and the bus angles in the interconnected

network. For a lossless transmission network, the system

network equations can be written as

§

PG. =
l j=1

j#i

7
!

+

‘
l
L
I
I
M
W

where,

Iv.l.lvjl

IVklprQI

Ivillv.l
-—————l— sin(6.-6.)

X.. 1 j

1]

i=l'2'OOO'N

Ivillv

X

2| .
. $1n(6i-6£)

12

(2-2)

IVKIIV-I
———l— sin(6 -s.)

Xk. k j

J

k=l,2,...,K

Ivkllv I
x Q sin(6 —e )
k2 k 2

magnitude of the complex voltages at

generator buses i and j

magnitude of the complex voltages at

load buses k and 2

voltage angle at load buses k and 1

is the number of load buses

is the impedance of the line directly

connecting any two specified buses

The synchronous machine equations may be linearized

using a first order Taylor series expansion, by introducing

the deviations Adi, Ami, APMi, APGi about the nominal load
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flow conditions 5:, w , PMi' PGE. The resulting linear model
0

has the form

6 _ . - _ _Mi 5? Awi(t) — APAi(t) APGi(t) DiAwi(t) (2 3a)

i=l,2,...,N

d _ -_ -
3E AS;(t) - Awi(t) , 1-l,2,...,N (2 3b)

The network equations may also be linearized with real and

reactive powers decoupled and written in polar form as

APG BEG/SQ BEG/36 AR
——— =

(2-4)

APL BEL/86 BEL/36 99

where,

PG = (PG PG PG )T

—— l’ 2""' N

T

BE = (PLl,PL2,...,PLK)

_ T
g — (61,62,...,6N)

T

g = (81,62,...,6K)

K is the number of load buses

APLj deviation in power injection at load bus j

Aej deviation in voltage angle at load bus j

The decoupling of real and reactive powers is justified for

transmission systems which exhibit high X/R ratios (i.e. low

loss networks). Line losses should have little impact on co-

herent behavior between generators and for the purpose of co—

herency analysis a lossless network will be assumed.

The power-angle Jacobian matrix in the network equations

(2-4) is a sparse, symmetric and singular matrix. The network

equations are not of full rank since the entries in any row,

or column, sum to zero (the diagonal elements are the nega-

tive of the sum of the off-diagonal elements in any row or

column). Thus a unique solution for AR and £9! given APG and
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APL, cannot be obtained. This minor dilemma is solved by an

angle referencing scheme which is discussed shortly.

Equations (2-3) and (2-4) are said to be a synchronous
 

frame model since the deviations in bus angles and generator

speeds are measured with respect to an external reference

rotating at the nominal system speed, mo. If a step input in

mechanical input powers, which is not balanced by an equiva-

lent change in load, is applied to the synchronous frame

model, the speed of the generators in the model will change.

The deviations in generator angles in response to such a dis-

turbance will appear as ramp functions when measured with

respect to a reference that always rotates at the nominal

synchronous speed, mo. Thus, the synchronous frame model has

an eigenvalue at the origin (step input, ramp output). The

analysis presented in this thesis requires a model which has

all nonzero eigenvalues. Such a model may be obtained by

referencing all of the bus angles in the system to the angle

of an arbitrarily chosen reference generator. Referencing

angles is a common practice in power system analysis and re-

sults in no loss of generality. Selecting generator N as the

system reference, equations (2-3b) and (2-4) may be rewritten

in the machine N reference frame as
 

d_ A d d
. - a-E AOi(t) - a—t— A6N(t) (2'5)D 0

'
)

p

(
'
1
' l

Awi(t) - AwN(t) , l=1,2,.1.,N-l

and,
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AFC BEG/3g BEE/32 A_

= A A A (2"6)

APL BEL/36 BEL/86 _g

where,

6i = 6i - 6N , 1=l,2,...,N-l

ej = ej - 6N , j=l,2,...,K

In addition to eliminating the eigenvalue at the origin, the

angle referencing scheme allows the network equations, in the

generator N frame, to be uniquely solved for £2 and £2 given

the values of APE and 92L.

When each of the generators in the system is character-

ized by the same damping to inertia ratio, that is

Mi .
57 = o (a constant) , 1=l,2,...,N (2-7)

1

then the differential equations describing the generators may

be written as

d A _ -l -1
5E Awi(t) — Mi (APMi(t) - APGi(t)) - MN (APMN(t)

- APGN(t)) - OAwi(t) (2-8a)

i=l'2'ooo'N-l

d A _ “ ._ _

3E A6i(t) — Awi(t) , 1—1,2,...,N l (2 8b)

where,

(Di = (Di - (UN ' 1=l,2,...,N-l

Equations (2-8) are referred to as a uniform machine N
 

frame model. The uniform damping assumption, (2-7), does re-

sult in some loss of generality. However, the assumption is

partially justified by recognizing that damping to inertia

ratios are typically small and in general the value of the
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damping constant is not accurately known. A thorough dis-

cussion of the synchronous frame, machine N frame and uni-

form machine N frame models may be found in [10].

A state variable model may be derived by writing the

2N-2 equations in (2-8) in vector form and using the network

equations (2-6) to eliminate APE from the expression. The

resulting model has the form

 

  

int) = A 3<_(t) + g yt) (2-9)

where,

[9: _A___PM

x = A 3: (2-10)

E_g. APL

9 _ 9 9

A = r E =

“E I ’01 E E E

and,

V'- 1 l—

_l _

M1 1 —MN (2-11)

-1 -1

M2 : ’MN

M = . '

“ l

l

l

-1 ‘ -1

MN-l: -M'N
L. ..a

g; = egg/3g; - (agg/ag) [3111/3ng (egg/as)

g = 483/39) [ail/82H”L

The synchronizing torque coefficient matrix, T, and the re-

flection matrix, L, are found in the process of solving the

network equations for APG in terms of Ag and APL with the

result

APG i g 6 + p APL (2-12)
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A linearized power system model has been developed and

attention is now focused on a generalized disturbance model.

The disturbance model will be shown to model deterministic

as well as probabilistic system disturbances. The model was

developed by Schlueter, in [8], and the presentation here

follows that development.

2.2 Generalized Disturbance Model

The initial conditions of the linear model (2-9) are

assumed random with

E{§(O)} 9 (2-13)

E{§(O) _T<0)} = yxm)

since the expected deviations from any operating state is

zero but the variance of such deviations is nonzero. The

rms coherency measure will be shown to depend on the covari-

ance matrix yx(0). The initial conditions are included not

to reflect any specific type of disturbance but rather the

effects on the state from some hypothetical disturbance

whose statistics (2-13) may be inferred from internal and ex-

ternal operating conditions.

The input, composed of the deviations in the mechanical

input power, AEM, and the deviations in load power, AAA, can

be used to model

i) loss of generation due to generator dropping

11) loss of load due to load shedding

iii) line switching

iv) electrical faults
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These contingencies can be modelled In? an input 3(t) that

has the following form

3(t) = 31(t> + 32(t) <2-14)

The vector function

21 t
31m = (2-15)

9 t<0

I
V

0

represents

1) the loss of generation due to generator dropping

ii) the loss of load due to load shedding

iii) changes in load injections due to line switching

The modelling of these three disturbances requires deter-

mination of E and possible modification of the network before

1

determination of matrices A and A. The procedure used[ll] for

each disturbance type is discussed below:

generator dropping - the transient reactance of
 

the generator dropped is omitted from the net-

work and the deviation in the generator output

PMi of the generator dropped is set equal to

the loss of generation.

load shedding - the load deviation PLk for all

buses k where load is shed should be set equal

 

to the change in load caused by the load shed-

ding operation.

line switching - the network is modified to re-
 

present the system after the line switching

operation is performed. The load deviations,

PLk and PLm, at buses to which this line is

connected, are set equal to the changes at that

bus which occur due to the particular line

switching operation.
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Note that in each case above all variables in 31 are

zero unless otherwise specified and the operating point used

to obtain matrices A and A is that obtained from the base

case load flow even if network changes are made. The re-

sults obtained without finding the post disturbance load

flow conditions is apparently satisfactory because the ef-

fects due to changes in the load flow are assumed to be con-

fined to the study system and thus should not affect the

coherency of the external system being equivalenced.

The vector function

A t>Tl

32(t) 32 OStSTl (2-16)

A ‘t< 0

represents the effects of electrical faults where T1 repre-

sents the fault clearing time and

ABM

32 — 0 (2-17)

represents the step change in generation output equivalent to

the accelerating powers due to a particular fault. The

change of mechanical powers, ABM, which corresponds to the

accelerating powers on generators due to a particular fault

is calculated by an ACCEL program [11], and has been shown to

adequately model the effects of that fault when a linearized

model based on pre-fault load flow conditions is used. Again

the results obtained neglecting faulted and post fault load

flow conditions is apparently satisfactory due to the fact

that the effects due to changes in load flow conditions are
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assumed to be confined to the study system and should not

effect the coherency of the external system being

equivalenced.

The above model can be generalized to model the uncer-

tainty of any particular disturbance and yet handle specific

deterministic disturbance as a special case. If the size

and location of an electrical fault is not known and if the

clearing time T1 for this fault is known, then a probabilis-

tic description of this electrical fault is

m

E{u } — "21 - m (2-18)
-2 —2

0

R O
T —21

MHz-1221 [22-1221 }- O 0 ‘52

where AZIand BZldescribe the uncertainty in accelerating power

on all generators due to this electrical fault. This mean

and variance should be determined based on observed histori-

cal records or hypothesized based on the present network and

present internal and external conditions. If 32 = g, and

m21==A§M for a specific fault, this generalized model then

reverts to the deterministic model of a specific electrical

fault.

The uncertainty due to a generator dropping, line switch-

ing, and load shedding disturbance can be modelled by

m

E{gl} = ’11 = $1 (2-19)

I312

R o
T _ —11 — _

E{[El 51] [31 ' 91] } ‘ 0 R ’ B-1
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where

all and all can describe the uncertainty

in generation changes due to generator

dropping when the particular station,

the generator in the station, and the

power produced on the generator are

unknown.

512 and 322 describe the uncertainty in

the location and magnitude of the load

being dropped by any manual or automatic

load shedding operation.

r1‘12 and 322

the location and the change in injections

describe the uncertainty in

on buses due to any line switching

operation.

It should be noted that APM and APL are assumed uncorre-

lated because this model is to represent only one specific

type of contingency at a time. For the same reason 31 and

32 are assumed uncorrelated with initial conditions and

E{§(O) HI} = 9 (2-20)

E{§(0) 3?} = g

The uncertain model of 31 can handle the case of a spe-

cific deterministic disturbance by setting 51 = A and £1 = 31

for the particular disturbance.

The probabilistic descriptions of generator dropping and

line switching are made assuming the network changes associ-

ated with the deterministic disturbances of these types can

be omitted. This assumption seems valid since the effects of

retaining these elements in the network should be confined to
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the study system and should not seriously effect coherency

of the external system being equivalenced.

2.3 RMS Coherency Measure

Early work by SCI [2] was aimed at identifying the par-

ticular coherency measure of voltage angle differences that

would produce the best dynamic equivalent when the generator

buses classified as coherent by each measure were equivalenced.

Two particular measures compared at that time were the max—min

and rms coherency measures

 

CkR = max{5k(t) - 6£(t)} - min{6k(t) - 6£(t)} (2-2l)

t€[O,T] t€[0.Tl

2 1 2

Ck2 =J/T 1? [A6k(t) — A6£(t)] dt

where

A6k(t) = 6k(t) - 6k(0)

The max-min coherency measure was shown to produce bet-

ter dynamic equivalents than those constructed based on an

rms measure of coherency when both measures are compared

based on the same short observation interval. The result is

not unexpected because the max-min measure should insure

there are no large deviations between the equivalent and the

unreduced model whereas the rms measure should only insure

that average energy in the deviations is small over this short

observation interval. Another way of viewing this difference

in the two measures is that a max-min measure of coherency

tends to measure the sum of the amplitudes of dominant modes

of the system dynamics where rms coherency tends to measure
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the sum of the energy in dominant modes of angle differences

6k(t) - 6 (t) k, 2 = l,2,...,N. The max-min measure of

2

coherency is thus clearly a better measure over a short ob-

servation interval when a dynamic equivalent for one partic-

ular contingency occurring in one location is desired.

However, if an equivalent is desired that best reflects the

overall dynamics of the external system, the rms measure

will be shown to be superior.

The rms measure of coherency between generator internal

buses k and 2 based on the uncertain description of distur-

bances is defined by

 

_ 1. t _ 2 _
Ck2(t) —J/;5 1) E{[A6k(r) A5£(T)] }dT (2 22)

The integer n is chosen to be one if a load shedding, line

switching, or generator dropping contingency occurs and zero

if an electrical fault occurs. This integer is chosen as zero

or one so that the above integral will be finite and non-zero

for an infinite observation interval.»

The computation of the rms measure is facilitated by

constructing the intermediate quantity, §X(t), which is a 2N-2

dimensional symmetric matrix which is defined in terms of the

state vector of the linear model as

s (t) = 3; ft E{X(T)XT(T)}dT (2-23)
—x tn () - —

The coherency measure between any pair of generators k and 2,

defined by (2-22), depends only on the generator angles.

Therefore, the value of any Ck2(t) will be determined by the



31

upper left (N-l))<(N-1) submatrix of §X(t). Defining the

upper left (N-l))<(N-l) submatrix of §x(t) to be §X(t),

the coherency measure Ck2(t) is related to the entries in

 

 

§x(t) by

/{§X(t)}kk - {§-x(t)}k2 - {§X(t)}gk + {§x(t)}u

A
k,2#N

Ck2(t) = J1§x(t)}kk k#N. £=N

(2-24)
 

\fisxunM 2%N, k=N

The matrix §X(t) can be computed for the disturbance 3(t),

given by (2-14), by substituting the solution to the state

      

 

equation

EAT §(O) + [T eév dv A (Al + AZ) T<Tl

0

§<T) = eéT 5(0) + IT 65V dv E 21 (2—25)
0

+ €§(T-TI)IT1 AV dV E 9—2 '1‘ 2 T1

0

into equation (2-23), and taking the expectation term by term.

The resulting form of §X(t) was derived in [8] and shown to be



T T AV

1 l — T T T T

+ 7; I [l0 6 dv .12] [Bfifif’fllmflflzrflz+T1T2+E2T]

O

1_ T T Av T T Av T

+ “H f f e dv A E191 + Al I e dv A dT

T' T1 0 0

T A(T-T ) T Av

+ 3; f e_ l f e— dv B m mT+R
n — —2—2 —2

T‘ T1 0

A(T-T1) Tl Av T

x e I e dv A dT

0

T A(T-T ) T Av T Av T

+ A; f e l f 16 dv B m mT f e dv B dT
n ._ —2—l —

T‘ T1 0 0

T T Av A(T-T ) T Av T

+ iL-f [I e_ dv B] [m mT [a l f 16 dv B dt
n — —l—2 —

T‘ T1 0 0

(2-26)

Once the matrix Ax(t) is computed for a particular dis—

turbance, the coherency measure between any pair of generators

may be computed using (2-23). Based on the computed coherency

measures, coherent groups of generators are identified (the

identification procedure is discussed later in the thesis)

and then aggregated using the coherency-based aggregation

technique [2]. A short discussion of the aggregation technique

is now presented.
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2.4 Coherency-Based Aggregation Technique

A coherent equivalent is derived by aggregating coherent

groups using the coherency-based aggregation technique [2].

Although coherent groups are identified using a simplified,

linear power system model, the aggregation technique is gen-

erally applied to the nonlinear system description. Thus,

the coherent equivalent derived for use in a particular

transient stability study is a reduced order, nonlinear ver-

sion of the complete system model. It is possible to use the

coherency-based aggregation technique to aggregate the lin-

earized model and obtain a simplified, linearized coherent

equivalent. Comparisons between the system behavior observed

with the unreduced, linear system model and the reduced order,

linearized coherent equivalent for various disturbances are

useful in inferring how well the nonlinear coherent equiva-

lent will predict the behavior of the full nonlinear system

model. The procedure for aggregating the linear system model

using the coherency-based aggregation technique is now pre-

sented and the discussion will closely parallel the presenta-

tion in [12] for aggregating the nonlinear model.

A power system model consisting of N generators, N in-

ternal generator buses, N generator terminal buses, K load

buses and L transmission lines is converted by the lineariza-

tion process to a small signal model containing N generators,

N internal generator buses and N(N-l)/2 equivalent lines.

One equivalent line connects each possible pair of internal
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generator buses. The objective of coherency-based aggrega-

tion is to represent each group of coherent generators by

a single equivalent generator and reduce the number of

equivalent lines in the network to correspond to the number

of generators retained in the aggregated model. The aggre-

gation problem is to determine the parameters which charac-

terize the equivalent generators and the reduced set of

equivalent lines.

Consider the problem of aggregating a single coherent

group containing m generators (m<:N). The aggregation of

multiple coherent groups can be accomplished by repeat ap-

plications of the procedure for aggregating a single coherent

group. For convenience, let the generators be numbered such

that the indices of the generators in the coherent group run

from one to m. Each generator in the simplified linear model

used to identify coherent groups is represented by the lin-

earized classical synchronous machine equations (2-3). In

order to determine the parameters which describe the equiva-

lent generator, representing the coherent group in the re-

duced order linear equivalent, consider summing the synchro-

nous machine equations of the members of the group,

m d m

2 M. 5? Am. = 2 ARM. - APG. — D.Aw.

j=1 3 J j=l J 3 3 3

(2-27)

m I'll m

= Z ARM. - Z APG. - Z D.Aw.

j=l J j=l J j=l J 3

By definition, coherent generators swing together, therefore

each ij in (2-27) may be replaced by an equivalent speed

deviation, Awg, which is characteristic of all the generators
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in the group. Replacing each ij by Awg, (2-21) may be

rewritten as

m m

ARM. - 2 ARC. - ( 2

"
b
a
g

2

l
o

5 u

"
m
a
y

D.) Am

3 9

(2-28)

It is immediately recognized that (2-28) is the synchronous

machine representation of the desired equivalent generator

since that equation may be written in the form

M 5L Aw = APM - APG - D Aw (2-29)

9 dt 9 9 9 9 9

Comparing (2—29) and (2-28) it is clear that the parameters

which describe the equivalent generator are

1. an inertia equal to the sum of the inertias

of the members of the coherent group.

2. a damping constant equal to the sum of the

damping constants of the members of the

coherent group.

3. a deviation in mechanical input power equal

to the sum of the deviations in mechanical

input power on the individual generators in

the coherent group.

4. a deviation in electrical output power equal

to the sum of the deviations in electrical

output power of the generators in the co-

herent group.

The parameters which describe the reduced set of equiva-

lent lines can be determined from item four above. Each

equivalent line in the unreduced linear model is character-

ized by a synchronizing torque coefficient which is deter—

mined from (2-11). The synchronizing torque coefficients

may be used to compute the deviation in power flow from any
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internal generator bus j to another internal generator bus k,

which is defined as

A = Tjk(A5j-A6k) (2-30)ij

The total deviation in the electrical output power produced

by generator j is found by summing (2-30) over all possible

choices of k,

N N

APG. = AP. = T. (Ad.-—A6 ) 2-31

3 kgl 3k kgl 3k 3 k ( )

kfj k7‘j

Item four above may be expressed as

m

APG = APG. (2-32

9 E a ’

Substituting (2-31) into (2-32)

N

APG = Z T. (A6.-A6 (2-33)

1 k=l 3k 3

R753

W
5
4
5

k)

3

Recognizing that the coherent generators are assumed to have

the same deviation in rotor angle, each Adj in (2-33) may be

replaced by an equivalent rotor angle deviation, A69, and

(2-33) may be rewritten as

m N

APG == 2 Z T. (A6 -A6 ) (2-34)

9 j=l k=m+l 3k 9 k

where the summation interval on the index k has been changed

to drop terms which are zero. Reversing the order of summa-

tion, (2-34) may be written as

N

APG = 2 (A5 -A6 )

g k=m+l g k j

T

1

jk (2-35)

I
I
M
B

Defining
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m

-gk = jgl Tjk (2-36)

and substituting Tgk into (2-35),

N

APG = FEM Tgk (Adg- Adk) (2-37)

Thus, Tgk is the synchronizing torque coefficient of the

equivalent line which connects the equivalent generator re-

presenting the coherent group to the generator k which is

external to the group. From (2-36), Tgk is the sum of the

synchronizing torque coefficients in the unreduced linear

model which connects external generator k to the individual

generators of the coherent group.

Equations (2-33) through (2-37) provide considerable

insight into the network aggregation mechanism of the co-

herency-based aggregation technique. The transition from

(2-33) to (2-34) is accomplished by replacing the individual

rotor angle deviations of the generators in the group by an

equivalent deviation in rotor angle which is said to charac-

terize all of the generators in the group. This step is

equivalent to shorting together the internal generator buses

of the members of the group. Once this is done, the m

equivalent lines which used to connect a generator external

to the group to the individual generators in the coherent

group appear as m parallel connections between the external

generator and the equivalent generator. Synchronizing torque

coefficients of parallel lines add and thus equation (2-36)

is obtained.
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The coherency-based aggregation technique for aggregat-

ing a coherent group, as applied to the linear model (2-9),

may be summarized as

1. Determine the parameters of the equivalent

generator by comparing (2-28) and (2-29)

to obtain

m

Mg: E M.

I'll

D = 2 D. (2-38)

II

II
M
3

APM APM.

g 3

2. Compute the synchronizing torque coeff-

cients of the lines which connect the

equivalent generator to the other gener-

ators in the system using (2-36).

It should be pointed out that the aggregation technique

has no impact on the parameters of generators external to

the coherent group or the equivalent lines connecting such

generators.



CHAPTER 3

THE RMS COHERENCY MEASURE

AND DYNAMIC SYSTEM STRUCTURE

Two criticisms of the coherency analysis approach to

power system dynamic equivalents based on the max-min co-

herency measure were referenced in Chapter 1. The first

criticism is that the max-min coherency measure has not been

expressed in terms of system parameters and as a result simu-

lation is required to determine the coherency measure. The

second criticism is that coherent equivalents derived from

the max-min approach are disturbance—dependent and conse-

quently a separate equivalent must be derived for each dis-

tinct system disturbance to be studied. The objective of

this chapter is to show that these criticisms can be answered

when the rms coherency measure, rather than the max—min

measure, is used to identify coherent groups.

This chapter is divided into two sections. Section 3.1

will show that simulation is not required to evaluate the

infinite interval rms coherency measure since the rms measure

can be algebraically related to system structure and the

statistics of the system disturbance. The second section

discusses the relationship between the infinite interval rms

coherency measure and dynamic system structure for the par-

ticular case of step disturbances in mechanical input power.

39
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Two specific probabilistic step disturbances in mechanical

input power are shown to leave the rms measure as a func-

tion of system structure alone, a result which suggests that

disturbance-independent coherent equivalents may be derived

from the rms measure.

3.1 Algebraic Relationship Between Ax(w), System Structure

and Disturbance Statistics

In the following discussion, specific types of disturb-

ances such as generator dropping, load shedding, and line

switching will be referred to as step input disturbances

while electrical faults will be called pulse disturbances.

The dependence of the infinite interval rms coherency measure

on system structure and disturbance statistics will be shown

by evaluating the matrix §x(t)’ defined by (2-23), over an

infinite observation interval for step, initial condition and

pulse disturbances. In the case of step disturbances, Ax(m)

will be shown to be an explicit function of generator iner-

tias, synchronizing torque coefficients and disturbance

statistics, and a clear dependence on the same parameters will

be shown for initial condition and pulse disturbances. The

three types of system disturbances are now analyzed separately.

Random Initial Conditions
 

A simplified form for Ax(t) can be derived when only

initial conditions are to be considered by substituting

=9 (3-1)

into equation (2-26) with the result,
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AT ATT

(t) = It 5’ yx(0)e‘ dT (3-2)
§x

0

Differentiating the integrand of (3-2) with respect to T, the

right hand side (RHS) of (3-2) becomes

t d 133 ATT t AT ATT
I a- (e V (0): )dt = A f e v (0)€ dt (3-3)

T ”X
—- _X

0 o

t AT ATT T
+ f e V (0)8 th

o ’X ‘

Evaluating the left hand side (LHS) of (3-3), and substitut-

ing Ax(t) as defined in (3-2) into the RHS of (3-3)

At ATt T
e yx(0)e - yx<0) A §X<t) + §X<t) A (3-4)

If all the eigenvalues of A have strictly negative real parts

then as t approaches infinity, the first term on the LHS of

(3—4) vanishes and §x(w) will be found as the solution to the

Lyapunov equation

- co co T -{Am-Agg)+§<)A <3m

The solution to the Lyapunov equation, Ax(m), and therefore

the infinite interval rms coherency measure, will depend on

system structure (through the dependence of the solution on

the coefficient matrix A) and on the statistics of the random

initial conditions, YX(O).

Pulse Input Disturbance
 

The appropriate form of §x(t) for a pulse input can be

obtained by substituting

n=0: yx<0>=9. T1=9v El=9 <3-6>
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into equation (2-26), in which case §x(t) becomes

T '1' 5V T T 5" T
s (t) = f 1 [I e dv B] [R +m m ] [f e dv B] dT
—x 0 0 — -2 —2—2 0 —

A(T-T ) AV

t — l T — T

+ I [e f l e dv A] [A2+m2m2 ]

T 0

l

A(T-T ) Av

[€_ 1 [T1 6 dv A]T dT (3-7)

0

Since the coefficient matrix A of the linear system model is

nonsingular, the interior integrals may be evaluated as

T AV -1 QT
[ e dv = A (e -A) (3-8)

0

Defining

_ T T _
E2 ’ §[52+Ezflz ]§ (3 9)

and substituting (3-8) and (3-9) into (3-7)

 

/ W

T AT ATT AT Air

{)1 [5 A28 -e AZ-er +A2]dr

T
t AT A T A(T-Tl) A T

+ f [5 W28 -6 wze

l T " — -1T

sx<t> — A < 1 >3:

AT AT(T-Tl)

- e— W E—
—2

T

§(T-Tl) é (T-Tl)

\ + 8 A25 ]dT (3-10)  
I

Combining the first term in the first integral of (3-10) with

the first term of the second integral, evaluating the remain-

ing terms of the first integral, and making the change of

variable s='r-Tl in the remaining terms of the second integral

(3-10) becomes



 

  

t AT ATI -1 ATl W

I e w e dT-A ( -I)W
—2 — — —2

0

AT
-1 — T

- E2[A (E -l)] HflzTl

It-T as 5T5 §TT1 T
_ -l - l e E 8 ds 8 -l _

§X(t) — A < 0 2 >5 (3 11)

an m As .198
- e f l e fizz ds

0

t-T 5 5T5
+ f l e E25 ds

L 0

J

Defining,

t a a%
y = lim f e EZE dv

tmw ()

T (3-12)

t-T 5V 5 V
= lim I l E E26 dv

t+00 (3

which satisfies the Lyapunov equation

_ T I

‘82 - A X + Z a (3-13)

and substituting (3-12) and (3-13) into (3-11), §X(m) becomes

\

3
’

P
3

_
_
1

  

2+EH€11H52+2§>

AT

—1 + (A y + y A?)[A 1(6— 1-;)1T 1T

gxm = A < T >A (3-14)

T 5 T1
-@y+y§>q-ye

AT

- €_ 1 V + V

K — _ x
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Using the series expansion

5 = Z _i_ 5 (3-15)

equation (3-14) may be written as

3

  

’ ooT
\

v + [ Z —% An'l] [A v + v AT]
_. n.— —— ——

n=1

T m T1n n-l T

1 + [A Y + Y a 1 I 21 jfr'é; 1 1T

_ - n= -
_X<)-A< >5

-<Ay+y§>a

m T n n T m T n n

' Y[ Z Tfi’ A 1 ‘ [ Z 75— 5 12 + Y
n=0 ' n=0 °

\ /

(3-16)

which, after cancellation of terms, may be written as

n
0° T T

(w) = Z —%— (An-2V + v A“’2 ) (3-17)

—X n=2 1" _’ — - ’

If the fault clearing time, T1’ is sufficiently short, only

the first term in the series will be required, and under this

assumption

(w) = 3 T12 (3-18)

Since 2 is the solution to the Lyapunov equation (3-13), 2

will depend on system structure due to the dependence of the

solution on A and A and on the statistics of the pulse dis-

turbance (32 and m2) and the same conclusion will hold for

§x(m) and the rms coherency measure.
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Step Input Disturbances
 

For step inputs, an explicit formula will be derived re-

lating the rms coherency measure to system structure and the

statistics of the step input. Substituting

:Q’R =0
(3’19)n=1:\_7x(0)=_grlfl _2 _

2

into (2-26) the desired expression for Ax(t) is

AV
1 T — T

g (t) =.EOIT1 [IOT e—AVdv B]][Rl+mlmlT ] [£)€ dv A] dT

AV AV T

+ i It [fTe— dv B] [R +m m T] [ITE— dv B] dT
t — —1 —1—1 —

T 0 0
1

(3-20)

Defining

_ T T _
El §[Bl+rfllr_“_l “.3. (3 21)

and evaluating the interior integrals of (3-20) using (3—8)

1 -l t AT ATT AT ATT

Sx(t) = E A fl) [a Ale -6 W1-file +fl1]dTA

-1T

(3-22)

As t approaches infinity, the first three terms in the time

averaged integral (3-22) vanish, since the system model is

asymptotically stable, leaving

T

s (00) = A [TA-l = [5'1g] [R+m [g'lng (3-23)
1mlT]

For the form of A given by (2-10), A.1 becomes

-o(g T)'1 -(g T)'1

A = <3-24)

; o

and using the form for A also given in (2-10)
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1 w 9%. 494. TF1»: a
g’ g = (3-25)

0 o

For simplicity, step disturbances in mechanical input power

and load bus power injection will be considered separately.

For step disturbances in mechanical input power, A and A as

1 1

defined by (2-19) become

m R 0

T1 = —11 I 31 = -11 — (3-26)

9 9 9

where 911 is the mean value of the step disturbance in mechan-

ical input power and All is the covariance of the disturbance.

Substituting (3-26) and (3-25) into (3-23), Ax(w) for step

disturbances in mechanical input power is given by

-l T -l T

SM): HEP wigfigflnllml)fll 9

’X 9 9.

(3-27)

For step disturbances in load bus power injection, m1 and Al

become

9 9 9
m = , R =

(3‘28)

12 9 512

Substituting (3—28) and (3-25) into (3-23), §x(m) for step

disturbances in load bus power injection becomes

-1

[(M T)-1M L] [R12+m12m12T] [(M T) M L]T o

S (m) = ’ — ’ ’ ’ ‘ - — “ — - —

‘X 9 9

(3-29)

Thus, for step input disturbances, an explicit formula has

been derived which relates the rms coherency measure, through

its dependence on Ax, to the parameters of the linear system
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model and the statistics of the disturbance, eliminating the

need for simulation to determine the coherency measure as is

required to determine the max-min coherency measure.

It has been shown that the matrix Ax(w), which defines

the infinite interval rms coherency measure, can be related

algebraically to system structure and disturbance statistics.

For random initial conditions and the pulse type disturbance,

the determination of Ax(w) was shown to entail the solution

of Lyapunov equations. For step inputs, an explicit formula

for Ax(m) was derived. In the next section, the significance

of the relationship between the rms coherency measure and

system structure for step disturbances in mechanical input

power is discussed.

3.2 Disturbance-Independent Coherent Equivalents Derived

from the RMS Coherency Measure

The relationship between the infinite interval rms coher-

ency measure and dynamic system structure is now discussed

for the special case of step disturbances in mechanical in-

put power. It will be shown that if the step input is a

ZMIID disturbance then the rms measure is determined strictly

by the synchronizing torque coefficients of the linear system

model. When the disturbance in mechanical input power at

each generator bus is zero mean, independent of the distur-

bance at every other generator bus, and has a variance pro-

portional to the square of the generator inertia, it is shown

that the rms coherency measure is dependent solely on the

inertially weighted synchronizing torque coefficients. These
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results indicate that coherent equivalents which depend on

system structure, and not on the location of any particular

system disturbance, may be derived by using one of the

above disturbances and the rms coherency measure to identify

the coherent groups for aggregation.

Ax(w) and Dynamic System Structure

 

The significance of Ax(w) for step disturbances in me-

chanical input power is now discussed. From equation (3—27),

the upper left quadrant of Ax(m) which determines the coher-

ency measure between any pair of generators is defined as

Ax(w) and is given by

A

§X(w)==[(g T)’lg] [ 1+R T
ElllflllT ~11] [(M Z)- If] (3'30)

This expression is valid for both probabilistic and determi—

nistic disturbances. For probabilistic disturbances

_ . — _ — T —Ell — E[APM], Rll — E[(APM mll)(APM Ell) ] (3 31)

and for deterministic disturbances

T11 —11

As noted previously, equation (3-30) eliminates the need for

simulation to evaluate the coherency measure as is required

in the max-min approach.

The coherency aggregation procedure has been criticized

because the equivalents derived using the max-min coherency

measure are dependent on the disturbance used to identify co-

herent groups for aggregation. Inspection of equation (3-30)

shows that the rms coherency measure will be a function of only

system structure for any disturbance which satisfies
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T _ _.
T111311 + 311 " LI- (3 33)

This condition is clearly met when the disturbance in APM is

ZMIID, that is

T11 = 9’ 511 = I (3'34)

Substituting (3-33) into (3-30)

1 T

s (w) = [(g T)'lg] [(g T)’ g] (3-35)
—x

Since

”A 9'19. T. = .1. 0-36)

equation (3-35) shows that when the disturbance in mechanical

input power is ZMIID that the rms coherency measure is a gen-

eralized inverse function of synchronizing torque coefficients,

such that the coherent groups are determined by line stiffness.

Another disturbance of interest is the disturbance which

causes

T T _ _

l31313111311 +511”? ’ l (3 37)

in which case

(w) = [(g T)’l] [<g T)’1]T <3-38)
—x

and thus the coherency measure is determined by generator

inertias and synchronizing torque coefficients and the coher-

ent groups identified for aggregation are determined by line

stiffnesses weighted by the inertias of the generators at the

ends of the lines. The disturbance which satisfies (3-37) is

_. _ 22 2 _
Til — g, 311 — DIAG(M2 ,M2 ,...,Mn_l ,0) (3 39)
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This disturbance is clearly dependent on the choice of

reference generator used to establish the state model. For

applications with a preferred choice of reference, such as

a system containing an extremely large generator, aggrega-

tion based on (3-39) may be satisfactory. A reference inde-

pendent result can be obtained by allowing the covariance of

the disturbance in APM to be

_ 2 2 2 2 _

311 — DIAG(Ml ,M2 ,...,MN_l ,MN ) (3 40)

The use of (3-40) may be viewed as solving (3-37) for all of

the N possible choices of reference generator.

Since the inertially weighted synchronizing torque coef-

ficients also determine the modal structure of the system,

the modal and coherent equivalents derived from the rms coher-

ency measure and the disturbance (3-40) will be nearly

identical. They will not be exactly the same unless the co-

herent generators are so tightly tied to each other that the

coherency measure between them is zero. Thus, the rms coher-

ency measure and the disturbance (3-40) can capture both modal

and coherent structure of the system. This further justifies

the use of an rms coherency measure, which is dependent only

on voltage angle, as a basis for aggregation. The disturbance

defined by (3-40) shall be called the modal disturbance.
 

Deterministic step disturbances in mechanical input power

which will satisfy (3-33) or (3-37) do not exist. This is

due to the fact that for any real vector, y, the product 1 2?

cannot be an identity matrix. However, it will be shown in

Chapter 6 that the square root of the sum of the squares of
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the coherency measures observed for a sequence of N deter-

ministic disturbances, where each of the N generators is, in

turn, subjected to a step disturbance proportional to its

inertia is mathematically equivalent to the expected coher-

ency measure observed with the modal disturbance. A similar

sequence of N deterministic disturbances where each generator,

in turn, experiences a step disturbance of l p.u. would du-

plicate the effects of the ZMIID disturbance. Thus, to con-

struct a coherent equivalent based solely on system structure

using a single disturbance to identify coherent groups, a

probabilistic disturbance is required. This result explains

why the present coherency approach using a max-min coherency

measure and a single deterministic disturbance to determine

coherent generators has not been able to produce a coherent

equivalent based on system structure.

In the next chapter it will be shown, using an example

system, that when an appropriate probabilistic disturbance

is used to identify the coherent groups for aggregation, that

the resultant coherent equivalent has eigenvalues which close-

ly approximate the system eigenvalues retained by a general

purpose modal equivalent. It is also shown that this coher-

ent equivalent is useful for studying many different system

disturbances. The inability of a single deterministic dis-

turbance to produce a good general purpose coherent equiva-

lent is demonstrated by constructing the coherent equivalent

for the location independent uniform deterministic (UD) dis-

turbance where a l p.u. perturbation in mechanical input
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power occurs at each generator bus. It is shown that the

eigenvalues of this coherent equivalent do not closely

match the eigenvalues of the modal equivalent based on the

same disturbance and that neither of these equivalents is

well suited for studying other system disturbances.



CHAPTER 4

COMPARISON OF MODAL AND COHERENT EQUIVALENTS

DERIVED FROM THE RMS COHERENCY MEASURE

In this chapter, the properties of modal and coherent

equivalents derived from the rms coherency measure are in—

vestigated for an example system. Equivalents are construct-

ed for two step disturbances in mechanical input powers which

apply uniform excitation to the system generators. The first

disturbance is the probabilistic ZMIID disturbance defined

by (3-34) and the second is the uniform deterministic (UD)

disturbance where a l p.u. disturbance occurs on each

generator. The UD disturbance was suggested in [13] as a

possible basis for constructing a general purpose coherent

equivalent that would be useful for studying many different

system contingencies. The ZMIID disturbance was proposed for

the same purpose in [9].

Modal equivalents in this discussion are derived from

the rules of mode elimination developed in [8,9] to preserve

the rms coherency measure throughout the system model. These

rules of mode elimination allow system modes to be eliminated

which do not change the infinite interval rms coherency

measure between any two generators by more than some arbitrar-

ily established 6. Any coherent equivalent derived in this

chapter is a linearized version of the nonlinear coherent

53
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equivalent which is obtained by aggregating coherent groups

in the unreduced, nonlinear system model using the coherency—

based aggregation technique [2]. The coherent groups to be

aggregated for a particular disturbance are identified, using

the unreduced linear system model, by evaluating the infinite

interval rms coherency measure for that disturbance. A gen-

erator belongs to a coherent group whenever the rms coherency

measure between that generator and each other member of the

coherent group is less than some established threshold. The

performance of an equivalent is judged by the ability of the

equivalent to preserve the infinite interval coherency mea-

sure observed with the unreduced linear model of the example

system.

The linearized, seven machine model of the Michigan

Electric Coordinated System [14], used as the example sys-

tem in [9] is the basis of discussion in this section. The

linear model matrices, A and A A, for this system are

  

F—72.75 17.65 15.26 13.79 33.47 31.24-—1

11.77 112.69 13.79 11.99 29.22 26.85

M T = 3.11 14.31 169.65 -6.71 13.62 9.06

24.44 19.69 5.66 97.78 21.88 18.49

21.37 17.09 5.05 .76 175.52 -9.76

__20.20 16.71 2.96 -.81 -7.95 177.13__

_—l.28 0.00 0.00 0.00 0.00 0.00 -3.63-_

0.00 5.42 0.00 0.00 0.00 0.00 -3.63

0.00 0.00 4.76 0.00 0.00 0.00 -3.63

T = 0.00 0.00 0.00 3.63 0.00 0.00 -3.63

0.00 0.00 0.00 0.00 3.63 0.00 -3.63

__0.00 0.00 0.00 0.00 0.00 3.63 -3.63  
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The eigenvalues of the system model are [9]

11,2 = -.087 1 3 7.415; 17,8 = -.087 i 3 14.304

13,4 = -.087 i 3 9.481; 19 10 = -.087 i 3 12.756

15,6 = -.087 i 3 10.389; All 12 = -.087 i 3 13.614

Modal equivalents of the ZMIID and UD disturbances for

this example system were previously constructed in [9]. The

modal equivalent of the ZMIID disturbance was derived using

the rule of mode elimination for probabilistic disturbances,

equation (20) of [9]

'=1 2 . N+K
T T23 3 I I 0'!

e T r.B [R +m m ] }- < 6

A3' -k£—3—3‘ ’1 "1’1 3 4 k,8=1,2,...,N

(4-1)

where Tj and Ej are the right and left eigenvectors of the

matrix 5 associated with the jth eigenvalue. It was shown in

[9] that A A A A A and A could be eliminated
7' 8’ 9' 10' ll 12

since their effects on the rms coherency measure were small.

The coherency measure between each pair of generators k and

2, C observed with the unreduced system model and with the
ki'

modal equivalent obtained by eliminating A through A is
7 12

given in the first two columns of Table 4-1.

Using a coherency threshold of 0.0373, the data for the

unreduced system in Table 4-1 shows that generators 3, 5, 6

and 7 for a single coherent group for the ZMIID disturbance.

Although the coherency measure between generators l and 7 is

0.0360, generator 1 is not considered part of the coherent

C and Cgroup since C are greater than the prescribed
13' 15 16

threshold. A coherent equivalent for this disturbance was

constructed using the coherency-based aggregation technique
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Table 4-1 Coherency Measure Ck2 for the Unreduced System

and the Modal and Coherent Equivalents Obtained

with a ZMIID Disturbance in Mechanical Input

 

 

Power.

ZMIID DISTURBANCE

Coherency Measure Ck2

unreduced modal coherent

k-l system equivalent equivalent

- .0633422 .0629925 .0659853

- .0431537 .0328371 .0372406

- .0552152 .0551852 .0583934

- .0435705 .0406859 .0372406

-6 .0430098 .0400304 .0372406

-7 .0360426 .0330797 .0372406

-3 .0648643 .0574771 .0596469

— .0736876 .0734757 .0764275

- .0637336 .0623392 .0596469

- .0634330 .0618677 .0596469

- .0556143 .0506651 .0596469

—4 .0471674 .0364979 .0420465

-5 .0373198 .0113935 0.0

-6 .0365226 .0102275 0.0

- .0339855 .0078583 0.0

- .0457239 .0434552 .0420465

- .0450240 .0423694 .0420465

— .0448l9l .0417165 .0420465

-6 .0277408 .0012357 0.0

- .0285475 .0135124 0.0

—7 .0283460 .0127177 0.0
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[2] to aggregate the coherent group. The reduced order system

matrices of the resultant coherent equivalent are given in

Table 4-2 along with a comparison of the eigenvalues of this

coherent equivalent and the system eigenvalues retained by

the modal equivalent.

Table 4-2 System Matrices and Eigenvalues of the Coherent

Equivalent Derived from the ZMIID Disturbance.

 

  

 

71.288 0.000 0.000 -0.965'1

M = 0.000 5.422 0.000 -0.965

b0.000 0.000 3.630 -0.965_

59.14 5.91 16.99

M T = 1.10 96.91 15.72

16.74 8.77 98.15

Eigenvalues of the Retained Eigenvalues of

Coherent Equivalent the Modal Equivalent

-0.087 i j 7.288 -0.087 i j 7.415

-0.087 t j 9.351 -0.087 1 j 9.481

-0.087 i j 10.659 -0.087 t j 10.389

In order to compare the coherency measure that would be

observed with the coherent equivalent to the measure observed

with the unreduced system model and the modal equivalent, an

equivalent disturbance must be derived for the machine which

represents the aggregation of generators 3, 5, 6 and 7 in

the coherent equivalent. The disturbance



’b

III

will be analogous to the original ZMIID disturbance of the

unreduced system because the variance of the disturbance on

the equivalent generator should be the sum of the variances

of the independent disturbances on the individual generators

in the coherent group.

with the coherent equivalent and the equivalent disturbance

defined by (4-2),

1
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= 9; fi = DIAG(1,1plI4); B = 9.—ll 12

Tables 4-1 and 4-2 show that

1. the eigenvalues of the coherent equivalent agree

closely with the system eigenvalues retained by

the modal equivalent.

the behavior of the generators external to the

coherent group (generators l, 2 and 4) is well

preserved by both the modal and the coherent

equivalent. This is indicated by the close

k2; k=1,2,4 and £=1,2,...,7;

observed with the unreduced system model and

agreement of the C

the corresponding values observed with the two

equivalents.

neither the modal nor the coherent equivalent

preserves the coherency measure between mem-

bers of the coherent group (generators 3, 5,

6 and 7). The modal equivalent has discarded

modes which contribute primarily to the inter-

machine behavior in the coherent group and

consequently cannot reproduce exactly this as-

pect of the system response. Coherent gen-

erators are aggregated to form a single equiv-

alent generator in the coherent equivalent

and thus the coherency measure between members

of the group is constrained to be zero for the

coherent equivalent.

The rms coherency measure determined

is given in the third column of Table 4-1.
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4. the overall performance of the coherent

equivalent in reproducing the effects of

the ZMIID disturbance compares favor-

ably with the performance of the modal

equivalent.

A modal equivalent of the example system for the UD

disturbance was constructed in [9] using the rule of mode

elimination for deterministic step disturbances, equation

(19) of [9]

J; eT T r.B u. < a k 2:1 2 N (4-3)Aj —k£—j—j‘ ‘3 I I too-I

It was shown in [9] that A5 through A12 could be eliminated

since their effects on the rms coherency measure between any

pair of generators were small for this disturbance. The co-

herency measure, C observed with the unreduced system mod-

kl'

el and the modal equivalent formed by eliminating A5 through

A12 are given in the first two columns of Table 4-3.

Using a coherency threshold of 0.0057 the C observed
k2

with the unreduced system show that generators 3, 4, 5, 6 and

7 form a single coherent group for this UD disturbance. These

generators were aggregated to obtain a coherent equivalent

using the coherency-based aggregation technique [2]. The re-

duced order system matrices of the resultant coherent equiva-

lent are given in Table 4-4 along with a comparison of the

eigenvalues of this coherent equivalent and the system eigen-

values retained by the modal equivalent of this disturbance.
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Table 4-3 Coherency Measure Ck£ for the Unreduced System and

the Modal and Coherent Equivalents Obtained with a

UD Disturbance, g? = (l,1,l,l,1,l,1), in Mechanical

Input Power

UNIFORM DETERMINISTIC DISTURBANCE

Coherency Measure Ckz

unreduced modal coherent

k-l system equivalent equivalent

-2 .0590053 .0571079 .0570579

-3 .0474613 .0402162 .0560142

-4 .0473871 .0458444 .0560142

-5 .0450963 .0481081 .0560142

-6 .0449203 .0475732 .0560142

-7 .0417129 .0427413 .0560142

-3 .0115440 .0168917 .0010436

-4 .0116182 .0112636 .0010436

-5 .0139091 .0089998 .0010436

—6 .0140850 .0095347 .0010436

-7 .0172924 .0143667 .0010436

-4 .0000741 .0056281 0.0

-5 .0023650 .0078918 0.0

-6 .0025409 .0073570 0.0

- .0057483 .0025250 0.0

-5 .0022980 .0022636 0.0

-6 .0024668 .0017288 0.0

-7 .0056741 .0031031 0.0

-6 .0001759 .0005348 0.0

- .0033833 .0053667 0.0

-7 .0032073 .0048319 0.0
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Table 4-4 System Matrices and Eigenvalues of the Coherent

Equivalent Derived from the UD Disturbance.

 

 

1.288 0.000 -0.763

M:

0.000 5.422 -0.763

45.08 -1.77

M21:

-26.77 102.74

Eigenvalues of the Retained Eigenvalues of

Coherent Equivalent the Modal Equivalent

-0.087 t j 6.653 -0.087 t j 7.415

-0.087 t j 10.176 -0.087 1 j 9.481

The disturbance for the coherent equivalent which is

analogous to the UD disturbance for the unreduced system mod-

el is

13:1 = (1,1,5)T (4-4)

since the disturbance on the aggregated equivalent generator

should equal the sum of the disturbances on the individual

generators in the coherent goup. The coherency measure deter-

mined with the coherent equivalent and the equivalent distur-

bance, fil’ is given in the third column of Table 4-3.

Tables 4-3 and 4-4 show that

1. there is much less agreement between the

eigenvalues of the two equivalents than was

demonstrated previously for the equivalents

based on the ZMIID disturbance.

2. neither equivalent preserves the coherency

measure between members of the coherent
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group (generators 3, 4, 5, 6 and 7) for the

same reasons as given in the case of the

ZMIID disturbance.

3. the modal equivalent outperforms this co-

herent equivalent in preserving the behavior

of the generators outside the coherent group

(generators 1 and 2). This is shown by com-

k2; k=1,2 and l=1,2,...7; ob-

served with the equivalents to the corres-

paring the C

ponding values observed with the unreduced

system model.

4. the overall performance of the coherent

equivalent in reproducing the effects of

the UD disturbance is not as good as that

demonstrated by the modal equivalent.

One drawback in using coherent equivalents produced by

the present coherency procedure has been that to accurately

preserve the coherency measure between generators, a unique

equivalent must generally be constructed for each particular

contingency to be studied. Constructing an equivalent is

usually expensive and it is desirable to find a single gen-

eral purpose equivalent. Such an equivalent must be based

on system structure and independent of any particular dis-

turbance so that it can be used repeatedly to study many dif—

ferent contingencies. Thus, the disturbance used to identify

a general purpose coherent equivalent must be able to excite

all system modes such that the coherency measure identifies

groups that are truly structurally coherent. If the distur-

bance cannot excite all system modes the coherency measure

between generators may be artificially small such that an
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erroneous indication of coherency results and the coherent

equivalent derived from the disturbance is over-aggregated

and unsuitable for general purpose use.

As noted previously, it has been suggested that the co-

herent equivalents based on the UD and ZMIID disturbances

might be good general purpose equivalents. To investigate

the suitability of these equivalents for general purpose use,

the modal and coherent equivalents derived for the example

system for these two disturbances were used to determine the

coherency measure between generators for several different

deterministic disturbances. The results for two of these

disturbances are presented in Table 4-5. The first distur-

bance is a 1 p.u. disturbance in generator one and the second

is a 1 p.u. disturbance on both generators one and two.
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Table 4-5 Comparison of the Coherency Measure C of the

Unreduced System and the Modal and Coherent

Equivalents Obtained with the UD and ZMIID

Disturbances for Two Particular Deterministic

Disturbances in the Mechanical Input Powers of

Generators 1 and 2.

l DISTURBANCE ON GENERATOR l

Coherency Measure C

ZMIID ZMIID UD UD

unreduced modal coherent modal coherent

k-l system equivalent equivalent equivalent equivalent

-2 .0212364 .0213576 .0224942 .0218728 .0213435

-3 .0209738 .0199320 .0228720 .0197697 .0288660

-4 .0250668 .0251325 .0268080 .0257062 .0288660

-5 .0234050 .0238083 .0228720 .0233674 .0288660

-6 .0232658 .0235698 .0228720 .0231615 .0288660

-7 .0208011 .0201603 .0228720 .0199900 .0288660

-3 .0002625 .0014256 .0003777 .0021031 .0075224

-4 .0038304 .0037748 .0043137 .0038333 .0075224

-5 .0021686 .0024506 .0003777 .0014945 .0075224

-6 .0020293 .0022122 .0003777 .0012887 .0075224

-7 .0004352 .0011973 .0003777 .0018828 .0075224

-4 .0040929 .0052005 .0039359 .0059365 0.0

-5 .0024311 .0038762 0.0 .0035977 0.0

-6 .0022919 .0036378 0.0 .0033918 0.0

-7 .0001726 .0002283 0.0 .0002203 0.0

-5 .0016617 .0013242 .0039359 .0023388 0.0

-6 .0018010 .0015626 .0039359 .0025446 0.0

-7 .0042656 .0049722 .0039359 .0057162 0.0

-6 .0001392 10002384 0.0 .0002058 0.0

-7 .0026038 .0036479 0.0 .0033774 0.0

-7 .0024646 .0034095 0.0 .0031715 0.0
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Table 4-5 (con't.)

1 p.u. DISTURBANCES ON GENERATORS 1 AND 2

Coherency Measure Ckl

ZMIID ZMIID UD UD

unreduced modal coherent modal coherent

k-l system equivalent equivalent equivalent equivalent

-2 .0376040 .0368366 .0386318 .0260029 .0298829

-3 .0182530 .0162779 .0184463 .0128650 .0309562

-4 .0251251 .0252339 .0266943 .0372978 .0309562

-5 .0210830 .0226476 .0184463 .0133778 .0309562

-6 .0209007 .0221993 .0184463 .0136140 .0309562

-7 .0141176 .0099643 .0184463 .0063831 .0309562

-3 .0558570 .0531145 .0570781 .0388679 .0608392

-4 .0627291 .0620705 .0653261 .0633008 .0608392

-5 .0586869 .0594842 .0570781 .0393807 .0608392

-6 .0585046 .0590360 .0570781 .0396169 .0608392

-7 .0517215 .0468009 .0570781 .0323861 .0608392

-4 .0068721 .0089559 .0082479 .0244329 0.0

-5 .0028299 .0063696 0.0 .0005128 0.0

-6 .0026476 .0059214 0.0 .0007490 0.0

-7 .0041354 .0063135 0.0 .0064818 0.0

-5 .0040421 .0025863 .0082479 .0239200 0.0

-6 .0042244 .0030345 .0082479 .0236839 0.0

-7 .0110076 .0152696 .0082479 .0309147 0.0

-6 .0001822 .0004482 0.0 .0002361 0.0

-7 .0069654 .0126832 0.0 .0069946 0.0

-7 .0067831 .0122350 0.0 .0072308 0.0
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The results in Table 4-5 show that both the modal and

the coherent equivalent derived from the ZMIID disturbance

consistently outperform the equivalents based on the DD dis-

turbance in preserving the coherency measure observed with

the unreduced system model. In one of the cases investigated

but not presented here, the coherent equivalent based on the

ZMIID disturbance was found to be superior to the coherent

equivalent derived from the UD disturbance in reproducing the

effects of the UD disturbance.

The UD disturbance does not identify a good general pur-

pose coherent equivalent because it is not sufficiently robust

to excite all system modes. Although this disturbance is not

location dependent it correlates the disturbance between gen-

erators and apparently has difficulty exciting some inter-

machine modes. The problem is made clear by considering a

similar deterministic case where the disturbance in mechani-

cal power at each generator bus is proportional to the iner-

tia of the generator, that is where the disturbance in mechan-

ical input power is given by

APM = (M M M )T (4-5)
— 1' 2' ' N

In this case, the input to the linearized state equation will

be zero and no intermachine modes will be excited since

T— _N) —9_ (46)24—(M1'M2'. o 0 [b4

Thus, when the UD disturbance is used to identify coherent

groups, generators that are of approximately the same inertia

are likely to be found coherent regardless of the relative

stiffness of the lines connecting them.
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During the process of constructing the modal equivalent

of the ZMIID disturbance for the MECS example system, it was

noted in [9] that for the n=4 generator coherent group con-

sisting of generators 3, 5, 6 and 7, that 2n-2=6 eigenvalues

could be eliminated without seriously affecting the rms coher-

ency measure. It was further observed that as each pair of

eigenvalues identified for elimination was removed that the

generators within the coherent group became more coherent

until they practically oscillated as a single generator when

all six eigenvalues were eliminated. Based on the observation

that the process of mode elimination was essentially a coher-

ency aggregation for this particular disturbance, it was con-

cluded that the coherent equivalent would be nearly identical

to the modal equivalent based on the same disturbance. The

results in this section support this conclusion but a quali-

fication must be mentioned. In general, the modal distur-

bance defined by equation (3-40) rather than the ZMIID dis-

turbance would be required in order to obtain a coherent

equivalent whose eigenvalues would approximate those of the

corresponding modal equivalent. It was shown in Chapter 3

that the coherent groups identified by the modal disturbance

are based on the inertially weighted synchronizing torque

coefficients, which determine the modes of the system response,

whereas coherent groups based on the ZMIID disturbance are

identified solely by the synchronizing torque coefficients.

When all generators in the system have the same inertia there

is no real difference between the modal disturbance and the

ZMIID disturbance. For the MECS example system, there is
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little variation in generator inertias and it will be shown

in Chapter 6 that the coherent group consisting of genera-

tors 3, 5, 6 and 7 is also identified by the modal

disturbance.

The example system has shown that the coherent equiva-

lent derived by aggregating the coherent group identified by

the rms coherency measure and a ZMIID disturbance is a good

general purpose equivalent and closely approximates the

modal equivalent based on the same disturbance. This is a

significant result because it allows an approximate modal

equivalent, which retains power system component structure,

to be constructed without the need for computing eigenvalues

as required by other approaches to generating modal

equivalents.



CHAPTER 5

A MODAL-COHERENT EQUIVALENT

In Chapter 1 it was noted that the present modal and

coherency approaches [1,2] have developed independently.

Perhaps it was assumed that modal equivalents would preserve

coherent system behavior and that coherent equivalents would

likewise preserve system modes. Since this is not the case,

it is reasonable to question whether or not the present

modal and coherency approaches are mutually consistent.

Good engineering judgment indicates that while there may be

several solution techniques for solving a specific engineer-

ing problem, that all legitimate problem solutions should be

related to each other and in essence, identical. In this

chapter, a procedure which combines modal and coherency

techniques in order to obtain a general purpose dynamic

equivalent consistent with the objectives of both modal and

coherency analysis is discussed and justified.

The value of stiff interconnections to improve system

stability has long been recognized by power system planners

and operators. Any approach to power system dynamic equiva-

lents which might destroy coherent behavior would clearly be

ignoring power system structure. The system modes are simi-

larly important. If an equivalent is constructed which

69



70

significantly alters the system eigenvalues, there is little

possibility that the time response with the equivalent model

will closely match the response of the unreduced system

model for a large class of disturbances. Thus, it is impor-

tant that an equivalent preserve both modal and coherent

system properties.

Mode reduction with the present modal approach is based

on preserving the magnitude of the internal system states

while eliminating modes of the external system which are not

controllable or observable with respect to the internal

system. Since the system states are dependent on the refer-

ence generator chosen to establish the state model, equiva-

lents that are derived to preserve state, and not a coherency

measure, may not preserve coherent behavior and may also be

reference dependent. In recognition of the need to eliminate

any sensitivity to the system reference and to insure that

coherent behavior is preserved,a modal approach based on a

coherency measure was presented in [8]. The modal method

presented there, derived rules of mode elimination based on

preserving the infinite interval rms coherency measure be-

tween any two generator buses. Those rules may be viewed as

analogous to the controllability and observability consider-

ations developed in [1] since the coherency measure is used

as the criterion for deciding which modes are controllable

and observable. The modal approach based on preserving a

coherency measure represents a conceptual rather than a com-

putational advance over the modal method based on preserving

system states. Both procedures require that system eigenvalues
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be calculated and neither method results in an equivalent

which retains power system component structure. However,

modal equivalents derived to preserve a coherency measure

are also coherent equivalents and thus the modal analysis

approach based on the rms coherency measure is more easily

related to coherency analysis than the modal approach based

on preserving system states.

The present coherency analysis approach uses the coher-

ency aggregation technique [2] to aggregate the coherent

groups identified by the max-min coherency measure for any

single deterministic disturbance. Because a single determi-

nistic disturbance cannot identify structurally coherent

groups, the equivalents derived from this procedure are dis-

turbance dependent, and might not closely preserve system

modes. The inability to produce a general purpose, coherent

equivalent based on dynamic system structure is a significant

drawback for the coherency approach and is in contrast to the

modal procedure which can generate a general purpose equiva-

lent. The most important advantage of the coherency aggrega-

tion technique is that the form of the equivalent produced is

a reduced set of equivalent generators and lines, that can be

used directly in present transient stability programs.

The results in Chapters 3 and 4 suggest that a modal-

coherent equivalent can be constructed which combines the best
 

features of modal and coherent equivalents. This equivalent

would be constructed using the coherency aggregation tech-

nique to aggregate the coherent groups identified by the

infinite interval rms coherency measure for the modal
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disturbance defined by (3—40). The properties of the modal-

coherent equivalent are

l. the system eigenvalues will not be required

in order to construct the equivalent.

the eigenvalues of the equivalent will close-

ly approximate the system eigenvalues retain-

ed by the modal equivalent based on the same

disturbance and rms coherency measure.

the equivalent will be useful for studying

any disturbance which might occur outside

the coherent groups aggregated to form the

equivalent.

power system component structure is retained

and the equivalent can be used with existing

transient stability programs.

Thus, the modal-coherent equivalent has properties which make

it more desirable than pure modal or coherent equivalents.

An efficient computational procedure for constructing

a modal-coherent equivalent for large scale systems is pre-

sented in the next chapter.



CHAPTER 6

COMPUTATIONAL ALGORITHM

FOR CONSTRUCTING THE MODAL-COHERENT EQUIVALENT

Computational difficulties associated with the construc-

tion of modal equivalents for large scale systems have pre-

vented the modal analysis approach to dynamic equivalents

from gaining widespread acceptance in the power industry,

even though the modal technique is theoretically sound. The

most critical difficulty is that the number of generators

which can be accommodated (%50) is severely limited by the

necessity of computing the eigenvalues and eigenvectors of

the linear system model. In addition, when thousands of load

buses are involved it is expensive to perform the network re-

duction essential to the construction of the coefficient

matrices of the linearized model. On the other hand, the co-

herency analysis approach based on the max-min coherency

measure has become popular in spite of its lack of a solid

theoretical justification because the procedure is computa-

tionally efficient and capable of handling very large systems.

The coherency approach avoids the computational difficulties

associated with the modal approach since eigenvalues are not

required, and since the integration scheme used to simulate

the response of the linearized system model and compute the

73
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max-min coherency measure for any given disturbance does not

require that the A and g matrices of the linear model be ex-

plicitly computed. In the previous chapter, it was shown

that the modal-coherent equivalent has properties which make

it more desirable than either a pure modal or a pure coherent

equivalent in the study of power system response to distur-

bances. However, the ultimate acceptance and usefulness of

the modal-coherent approach clearly depends on whether or not

the construction of the modal-coherent equivalent is computa-

tionally competitive with the procedure for deriving a coher-

ent equivalent from the max-min coherency measure. In this

chapter, an efficient algorithm for constructing the modal-

coherent equivalent is proposed. The algorithm does not re-

quire that the eigenvalues or the matrices of the linear sys-

tem model be computed and it is well suited for large system

applications.

The procedure for constructing the modal-coherent equiv-

alent consists of the following three steps:

1. the evaluation of the rms coherency measure,

over an infinite interval, between each pair

of system generators for the modal disturbance.

2. the identification of coherent groups based on

the computed coherency measures.

3. aggregation of the coherent groups using the

coherency-based aggregation technique [2].

Three completely analogous steps are followed to construct a

coherent equivalent from the max-min coherency measure.
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This thesis does not propose any change in the coherency-

based aggregation technique [2] which is used to aggregate

coherent groups once they have been identified. Thus, step

3 is identical for both approaches and is not discussed

further. The major point of competition between the two tech-

niques, besides which one produces the most accurate and use-

ful equivalent, is the manner in which the coherency measures

are evaluated.

The remainder of this chapter is divided into three

sections. The first section develops steps 1 and 2 of the

algorithm for constructing the modal-coherent equivalent. In

the second section, the procedure developed to evaluate the

rms coherency measure is compared and contrasted with the

procedure used to evaluate the max-min measure; and finally,

the third section presents some computational examples to

illustrate the algorithm.

6.1 Evaluation of the RMS Coherency Measure and Identifica-

tion of Coherent Groups

The modal-coherent equivalent is constructed by aggre-

gating the coherent groups identified from the expected value

of the rms coherency measure evaluated over an infinite inter-

val for the modal disturbance. The modal disturbance, defined

by equation (3-40), is a probabilistic step disturbance in

mechanical input powers which is zero mean with the covari-

ance matrix

2_ 2 2 2 _
511 — DIAG(Ml ,M2 ,...MN_l ,MN ) (6 1)
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The infinite interval rms coherency measure between any pair

of system generators may be easily computed using equation

(2-24) once the matrix §X(w) is known. As shown previously,

the form of §X(w) for the modal disturbance is given by

l1 T

U
3
)

(9) = [(M g)" g] [511] [(M 1)‘ g] (6—2)

Although equation (6-2) provides a useful insight into the

coherency mechanism by relating the rms measure to the para-

meters of the linearized system model, it does not suggest an

A

efficient approach for computing §x(m).

A

An efficient computational procedure for computing §x(w)

for the modal disturbance will be developed by showing

1. that the expected value of the rms coherency

measure observed with the modal disturbance

is equal to the square root of the sum of the

squares of the coherency measures computed

for a particular sequence of N deterministic

step disturbances.

2. for any deterministic step input disturbance

the rms coherency measure when evaluated over

an infinite interval, depends only on the

steady state response of the generator angles

to that disturbance.

3. that steady state generator angles may be

efficiently computed using a well-known

technique.

The Modal Disturbance Sequence
 

To demonstrate that the expected value of the rms coher-

ency measure for the probabilistic modal disturbance can be

expanded in terms of the coherency measures observed for a
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sequence of deterministic disturbances, let the covariance

of the modal disturbance, R be written as

11’

N T

= 2 APMk APMk (6-3)R
—11 k=l ———

where each APMk is an N dimensional column vector whose ith

entry is defined by

{APMk}i = APM? = , k,i=l,2,...,N (6-4)

Substituting (6-3) into (6-2) the matrix §X(w) can be rewrit-

ten as

. N T

§X<w> = [<8 :>’181 [ Z 499k 429k 1 [<9 1>'181T <6-5>
k=l

N A

= Z §:(w)

k=l

where,

“k -1 k kT -1 T
§x(m) = [(M I) E] [93% ARE 1 [(M I) 51 (6'6)

The significance of equations (6-5) and (6-6) is that the

A

§x(w) matrix for the modal disturbance can be constructed by

summing a sequence of Ex matrices, {é:(w) : k=l,2,...,N},

which corresponds to the sequence of N deterministic step dis-

turbances, {APMR : k=l,2,...,N}, where each generator, in

turn, is subjected to a disturbance in mechanical input power

proportional to its inertia. Alternatively, it can be said

that the expected value of the rms coherency measure for the

modal disturbance is equal to the square root of the sum of

the squares of the rms measures computed for the N deterministic
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disturbances, {APMk}. The sequence of disturbances defined

by (6-4) is referred to as the "modal disturbance sequence".
 

Steady State Generator Angles and the Infinite Interval RMS
 

CoherencyiMeasure
 

It will now be shown that for any deterministic step

input disturbance uk(t) given by

uk(t) g for t< O

k (6-7)
k APM

u = k for t220

APL

that the matrix §:(W) depends solely on the steady state gen-

erator angles exhibited by the linear system model in response

to the step input. This result will allow the rms coherency

measure for the modal disturbance to be computed from the

steady state angle response of the system generators to each

of the disturbances in the modal disturbance sequence.

For the deterministic step input disturbance 33(t) given

by (6-7) the matrix, §:(w) is by definition

k l
T

§X(w) = lim T [T xk(t) Ek (t) dt (6-8)

T+w 0

where xk(t) is the system state vector and the solution to

the state equation for the step disturbance uk(t). If the

linear system model is asymptotically stable and the magni-

tude of each of the step inputs in the input vector, Bk, is

bounded, then the system states will be finite for all time

and will eventually converge to some finite steady state

values, xk(w). Recognizing that the entries in the matrix

integrand of equation (6-8) are well-behaved, finite functions

of time, each of which converges in time to some constant
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value governed by xk(W), §:(w) may be written as

T

§:(w> = 33(9) 3k (w) (6-9)

’By definition,

g_

E = A (6-10)

Ag

therefore,

7 _

k A_<S_k(oo) 45‘ (0°) 43%» _A_w_k (co)
(m) = (6-11)

7" A . T ,. ,. T

43km 43k (co) 40km) 40" (co)
  

The rms coherency measure between any pair of generators is

determined by the upper left (N-l))((N-l) submatrix of §x'

that is by SX. From (6-11)

A A A T

sk<w> = g§k(m) Agk (9) (6-12)

Thus, the rms coherency measure evaluated over an infinite

interval for any deterministic step input disturbance is de-

termined by the steady state angle response of the generators

to that disturbance.

It can easily be shown that equations (6-6) and (6-12)

are consistent expressions for §k(m) for the disturbances in

the modal disturbance sequence. Letting 932k equal zero in

(6-7) the disturbance 23 becomes the kth disturbance in the

modal disturbance sequence when Agggijsdefined by (6-4).

Setting the derivative of the state vector equal to zero as t

approaches infinity in the state equation (2-9), §k(w) becomes

k
k -1 APM

2:. (co) = —A E (6-13)

0



80

Substituting (3-25) for A-1 E into (6-13) and extracting

93kt») from §k(°°)

A0k(m) = (M T)’1M APMk (6-14)

Substituting (6-14) into (6-12) equation (6-6) is obtained

confirming that §:(w) depends on é§k(w). Equation (6-12) will

be shown to be a convenient form for computing the infinite

interval rms coherency measure for the modal disturbance.

Computation of Steady State Generator Angles for a Step
 

Disturbance
 

The steady state generator angles required to calculate

§X(w) for any step input, uk(t), can be efficiently computed

using a triangular factorization technique to solve the sys-

tem network equations (2-6), at time equal to infinity for

48k (w). The key to the approach is to show that the steady

state deviation in the real power generations due to the step

input, ég§k(w), which are required to set up the steady state

network equations for solution, can be deduced from the en-

tries in the disturbance vector and knowledge of the genera-

tor inertias and damping constants. The procedures for con-

structing éEEk‘m) from 23 and solving the steady state network

equations for A§k(w) are now discussed.

Prior to the occurrence of the step input disturbance,

it is assumed that the system is in a power balance. The sum

of the real powers generated by the system generators exactly

balances the sum of the powers demanded at the load buses

(neglecting line losses). The total mechanical input power

to the system is just sufficient to maintain the balance
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between generated and demanded powers and to allow the gen-

erators to operate at the synchronous speed, mo.

After the step disturbance uk(t) is applied, the power

balance between generation and demand may be temporarily

upset. However, if the linear system model is stable then

as t approaches infinity the balance between real power gen-

eration and real power demanded at the load buses must be

restored. Thus, if there are no losses in the network

3] APG}:(°°) = - If APL]? (6-15)

i=1 j=l 3

where APG:(w) is the steady state deviation in the electrical

output power produced by generator i in response to the dis-

turbance uk(t), and APL? is the change in the power demanded

at load bus j (a negative value implies an increase in load)

which is specified by the disturbance uk(t). If there is an

excess (deficiency) of mechanical input power in the step in-

put disturbance uk which is not balanced by a change in load,

then the system generators will accelerate (decelerate) to

some new system speed, wo + Awk, but remain synchronous.

Each generator in the system is modelled by the linear,

classical synchronous machine representation

Mi §% Aw§<t) = APM: - APGE(t) - DiAwE(t) , t220 (6-16)

i=l,2,...,N

As t goes to infinity, each generator will settle into some

new steady (A6§(w),Aw:(w),APG§(w)) in response to the dis-

turbance 33 and

g%-Aw§(t) + 0 as t + m , i=l,2,...,N (6-17)
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and since the generators maintain synchronism

Aw§(t) + Awk (a constant) as t + w

(6-18)

i=1,2,...,N

Thus, as t approaches infinity (6-16) becomes

0 = APMI - 4963(m) - D.Awk , i=1,2,...,N (6-19)
1 1 1

Summing the N equations of (6-19)

N N N

0 = Z APMK - Z APGk(w) - Awk X D. (6-20)
. 1 . . 1
1=1 1=1 1=1

The steady state change in system speed resulting from the

step disturbance can be found by solving (6-20) for Awk and

using the substitution (6-15)

 

N K

2 APMI + Z APLB

k i=1 1 3:1 3

Am = (6-21)

N

2 Di
i=1

Equation (6-21) may be substituted into (6-19) and solved for

APG:(w) to obtain

 

N K ‘—

2 APMK + Z APLK
._ l ._ j

k k 1—1 j-l

APG.(m) = APM. - D. (6-22a)
l l l

N

2 0.
1=1  
i=1,2,...,N

Thus, the steady state deviations in real power generation

are determined by the entries in the vector 3k and the damp-

ing constants of the system generators.

In general, the generator damping constants are not ac-

curately known. When the uniform damping assumption is made,
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the damping constants can be eliminated from (6-22) in favor

of the more accurately known generator inertias. Substitut-

ing 0Mi for D1’ equation (6-22) becomes

r- -1

N k K

2 APM. + Z APL.
. 1 .

k k 1:1 3:

APG.(w) = APM. - M. (6-22b)
1 1 1

 

  
i=1,2,...,N

Once the vector §P§k(w) has been computed using equation

(6-22) the network equations may be solved for A§3(w). The

procedure for solving the steady state network equations is

now addressed.

The synchronous frame network equations (2-4) are not of

full rank and in order to obtain a solution it is necessary

to reference all of the bus angles in the system to the angle

of an arbitrarily chosen reference generator whose angle may

be set equal to zero. Let the network equations in the gen-

erator N reference frame, given by equation (2-6), be written

as

93(t) = g 9(t) (6-23)

where

APL agg/ag agg/ag

£2 = ' i = A A I (6’24)

4pc egg/ag_ BEE/SQ

. 49

4 = ,.
Ag
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The matrix Q is an (N+K))<(N+K-l) matrix constructed by

evaluating the Jacobian matrix of the synchronous frame net-

work equations at the system's nominal load flow conditions

and dropping the column corresponding to the Nth generator.

As a consequence of the conversion from the synchronous ref-

erence frame to the generator N reference frame one of the

rows in equation (6-23) is a redundant equation and may be

deleted. By eliminating the last row of 1, equation (6-23)

may be written as

;(t) (6-25)

(
€
4
8

g§(t) =

where 3 is a symmetric, nonsingular matrix formed by deleting

the last row of g and

APE

a? = (6-26)

“- APG
 

with

T’b

APG - (APGl’APGZ'...’APGN—Z'APG ) (6-27)

N-l

Equation (6-23) is a constraint on the states of the differ-

ential equations representing the system generators and must

be satisfied at any point in time. In particular as t ap-

proaches infinity the steady state network equations for a

particular step input, Bk, become

é§k(”) = 3 Ak(m) (6-28)

where,

wk APLk

Ag (m) = (6-29)

APGk(w)
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Equation (6-28) may be solved by the triangular factoriza-

tion of g,

T

(6-30)

I
Q
?

|
<
8

|
<
8

where § is a lower triangular matrix, and then solving the

forward substitution

fikm) = 113" (6-31)

for the vector yk and finally solving the back substitution

1" = if 4km (6-32)

for the vector A (w). The desired steady state generator

A

angles, é§k(w), may be extracted from 93(w) using the

definition (6-24).

The steps of matrix factorization, forward, and backward

substitution are essential steps used in the Newton-Raphson

solution to the load flow problem and can be performed quite

efficiently using numerical methods which employ optimal

ordering techniques and exploit the sparsity of the matrix 3.

The procedure for evaluating §:(w) for a particular step

input disturbance has been shown to entail

l. the conversion of the step input into an

equivalent steady state deviation in real

power generations, equation (6-22).

2. one solution of a set of linear equations,

equation (6-28).

The bulk of the computational effort is expended in the solu-

tion of the linear equations which are generally of very

large dimension (N+K-1).

The algorithm for evaluating the infinite interval rms

coherency measure for the modal disturbance will involve the
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construction of N equivalent steady state disturbances in

real power generations and N repeat solutions of the linear

equations, one for each disturbance in the modal disturbance

sequence.

1.

2.

The algorithm is summarized as follows.

Factorize the Jacobian matrix, i.

Establish the modal disturbance sequence

{APMk : k=l,2,...,N}, using equation

(6-4).

For each APMk compute the entries in the

vector APG (m) using equation (6-22).

(Note: APLk = 0 for every k.)

Construct the A§k(w) vector for each k

using equation (6-29).

For each k

a) Solve the forward substitution

problem (6-31) for 23-

-b) Solve the back substitution

problem (6-32) for 93(1),

c) Extract the steady state genera-

tor angles é§k(w) from 93(m)

using the definition (6-24).

Compute the §X(w) matrix for the modal

disturbance as

A N A AT

8 (w) = 2 g§k(w) ggk (w) (6-33)
k=l

Use the relationship between §x and CkR

given in (2-24) to compute the rms co-

herency measure between each pair of

generators in the system.

The major features of this algorithm are

1. Only limited system data is required;

namely the generator inertias and damping
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constants and the Jacobian matrix of

the network equations evaluated at the

nominal load flow condition. The

Jacobian matrix is a normal output of

a Newton-Raphson load flow program.

2. Network reduction to eliminate load

buses is not necessary since the algo-

rithm does not require knowledge of

the synchronizing torque coefficient

matrix, T, or the reflection matrix, Q.

3. The triangular factorization technique,

which is the main tool in the solution

process, is a well-known technique

which is frequently employed in power

system analysis. Thus programming the

algorithm for large scale system appli-

cations should not present any major

problems.

Once the rms coherency measure has been computed between

each pair of system generators for the modal disturbance

(step 1) the next step in the construction of a modal coher-

ent equivalent is to identify coherent groups from the com-

puted coherency measures (step 2).

Identification of Coherent Groups for Aggregation

Once the value of the rms coherency measure between each

of the N(N-l)/2 possible generator pairs has been computed,

the coherent groups

Chapter 4, a simple

discussed which was

threshold, EC. The

for aggregation may be identified. In

rule for identifying coherent groups was

based on the specification of a coherency

rule assigned generators to a coherent

group whenever the coherency measure between each possible pair
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of generators in the group was less than ec. As the thresh-

old increases, the number of generators retained in the

dynamic equivalent decreases (coherent groups are generally

fewer in number but contain more generators). Thus, a par-

ticular value of EC uniquely specifies an equivalent of a

certain size. In general, it would be more desirable to have

a rule which specified, a priori, the size of the desired

dynamic equivalent rather than a coherency threshold. In

this section, two rules are proposed which allow the coher-

ency threshold to float while identifying groups which cor-

respond to an equivalent of a predetermined size.

One method of identifying the groups from the coherency

measures is to rank the observed values of C from the
k8

smallest to the largest using a rankingfitable. The ranking
 

table would contain three columns, the first of which would

be the rank, r, where r=l,2,...,N(N-l)/2, the second would

contain the pair kr'fir corresponding to the indices which

identify the generators which produce the rth smallest coher-

ency measure, and the third column would contain the value of

the rth smallest coherency measure, C . A suggested for-

krwr

mat for the ranking table is shown in Table 6-1. Coherent

groups are then identified by proceeding down the ranks of

the ranking table (from the smallest to the largest) using

some prescribed rule to separate generators into coherent

groups until the system model has been reduced to the prede-

termined number of generators. Two possible "prescribed

rules" are now described.
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Table 6-1 Suggested Ranking Table Structure

  

 

 

rank

C

r k '91 k IQ“

r r r r

l kl’gl +most Ckl'gl +smallest

coherent coherency

2 k2,£2 pair Ck ,1 measure

2 2

N(N-l)

_’7T_’ kN(N-l)'£N(N-l)+lea5t CkN(N_l).8N(N_l)‘1argeSt

2 2 coherent 2 coherency

pair measure
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The first rule is based on a transitive relationship.

Let A, B and C stand for generators, then the transitive co-

herency rule may be stated as

"A coherent with B and B coherent with C

implies A coherent with C"

A procedure for identifying coherent groups based on the

ranking table and the transitive coherency rule is now des-

cribed in a flowchart fashion

1. Establish the desired level of aggregation

by letting NC be the number of generators

in the desired modal-coherent equivalent

(NC<<N = the number of generators in the

unreduced system model.).

Set r = 0

NE N-Nc = number of generators

to be eliminated

ne = 0 = an index which counts

the number of genera-

tors eliminated so far

Set r = r+l

Decide which of the following four possi-

bilities apply to generators kr and 2r,

a) if neither kr nor £r has been

previously identified as belong-

ing to a coherent group, then

generators kr and fir become the

first two generators in a new

group. Proceed to 5

b) if generator kr(£r) belongs to a

coherent group but generator

£r(kr) does not then put genera-

tor £r(kr) into the coherent group

of which kr(2r) is a member. Pro-

ceed to 5
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c) if generators kr and 2r belong

to different coherent groups,

then merge the two coherent

groups to form a single group

containing all members of the

two separate groups. Proceed

to 5

d) if generators kr and 2r have

already been placed in the same

coherent group, return to 3

since the aggregation of gener-

ators kr and fr has been

decided previously.

5. Set me = ne+1

6. If ne<<NE return to step 3 otherwise proceed

to 7.

7. Terminate.

A second possible rule for identifying coherent groups

using the ranking table is based on a commutative notion of

coherency. A simple illustration is provided by again letting

A, B and C stand for generators and letting G be a coherent

group containing only generators A and B, then

"C belongs to the group G if and only if

C is coherent with A and C is coherent with B"

The procedure for identifying coherent groups based on

the commutative rule differs from the iterative procedure des-

cribed previously for the transitive rule only in step 4,

which should be changed to
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Decide which of the following possibilities

apply to generators kr and 2r,

a) if neither kr nor fir has been pre-

viously identified as belonging to

a coherent group, then generators

k
r

and 2r become the first two

generators in a new group. Proceed

to 5.

b) if generator kr(£r) belongs to a

coherent group but generator

2 (k ) does not then

r r

i)

ii)

if £r(kr) has been previously

recognized as coherent with

all members of the group to

which kr(£r) belongs except

for kr(Rr), then add £r(kr)

to the coherent group con-

taining kr(2r). Proceed to

5.

if £r(kr) has not been found

previously to be coherent

with all other members of the

group to which kr(£r) belongs,

then recognize that kr and 1r

are coherent but do not add

£r(kr) to the coherent group

containing kr(£r). Return to

step 3.

c) if generators kr and 2r belong to dif-

ferent coherent groups then

i) if all possible generator pairs

which can be selected from the

members of the two groups except

kr and 2r have been previously

recognized as being coherent,

then merge the two groups to
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form a single coherent group

containing all members of

the separate groups. Proceed

to 5.

ii) if at least one pair of gen-

erators which can be selected

from the two groups other than

kr and 2r has not yet been re-

cognized as a coherent pair,

then recognize kr and 1r as a

coherent pair but do not merge

the groups. Return to step 3.

Further research is needed to determine which of the two

rules (or possibly other rules) performs best based on the

performance of the equivalents derived from those rules in

reproducing the behavior of the unreduced system model for

various levels of aggregation and various system disturbances.

Some conclusions regarding the relative merits of the two pro-

posed rules based on experience with the MECS system model

are presented with the computational examples in Section 6.3.

6.2 Comparison of the Algorithms for Constructing the Modal-

Coherent Equivalent and Coherent Equivalents Based on the

Max-Min Coherency Measure

In this section, the computational algorithm for con-

structing the modal-coherent equivalent is compared with the

procedure used to construct coherent equivalents based on the

Inax-min coherency measure. The discussion begins with a brief

summary of the integration technique used to simulate the

.1inearized swing equations and the generator clustering algo-

Jrithm used to identify coherent groups based on the max-min

 



94

coherency measure. The discussion will show that for any

given deterministic step input disturbance that the evalua-

tion of the infinite interval rms coherency measure requires

significantly less computational effort than the evaluation

of the max-min coherency measure for the same disturbance.

In addition, it is shown that when a reasonable number of

disturbances are included in the transient stability study

case list for a particular internal system that the construc-

tion of the general purpose modal-coherent equivalent is

likely to be computationally competitive with the construc-

tion of the set of coherent equivalents which would be re-

quired to complete the same transient stability study.

Trapezoidal Integration Technique for Processing the Linear-
 

ized Swing Equations
 

The max-min coherency measure is evaluated for any given

system disturbance by simulating the response of the linear-

ized system model to that disturbance over a one to two

second interval using a computational step size of about 0.1

second. Each generator is represented by the linearized,

classical synchronous machine equations (2-3) and the system

network equations are viewed as a set of algebraic constraints

on the system states which must be satisfied at each discrete

time point in the simulation interval. A trapezoidal inte-

gration technique is used to process the swing equations and

it is assumed that A6i(t), Awi(t) and APGi(t) vary linearly

over a computation interval while the model inputs égM(t) and

APL(t) vary in a step-wise fashion. Reference [5] provides a
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complete discussion of the trapezoidal integration technique

and includes the following summary of the steps in the

procedure.

STEP 1 Initialize é§(0), 99(0) and AP§(0)

STEP 2 Increment time from t - At to t

STEP 3 Set APM(t) and APL(t) according to the

disturbance being modelled.

STEP 4 Calculate the following variables for

each generating unit

DiAt At

Ai(t-At) = (Jr-Tr) Awi(t-At) - m— APGi(t-At)

l l

+ AP

M. APM.(t)

l l

Bi(t-At) = flfoAtAwi(t-At) + A51(t-At)

2Mi

2M. DiAt

t nfo 1

Note: f0 = nominal synchronous speed in Hz

Aéi is in degrees

STEP 5 Solve the following matrix equation for

the new bus angles A8(t) and A§(t)

C(t-At) HGG' HGL g§(t)

APL(t) HLG HLL 98(t)

Note: HGG = BEE/SQ

HGL = agg/ag

HLG = BEL/86

HLL = BEL/88 2M1 DiAt

2
and HGG' is the matrix HGG with At nfo (1+2Mi)

added to the diagonal elements.
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STEP 6 Calculate the new generator electric

powers using

2Mi

ZMi DiAt

- —————— (l+————)(A6.(t)-B.(t-At))

AtznfO 2M1 1 l

STEP 7 Calculate the new generator speeds

using

Awi(t) - (Aai(t) - Bi(t—At))/nfoAt

STEP 8 Stop if time t exceeds specified value;

otherwise return to step 2.

The modified network matrix, in step 5 above, differs

from the power-angle Jacobian matrix in equation (2-4) only

in the diagonal terms corresponding to the internal generator

buses. The modified terms are a direct result of the use of

the trapezoidal integration technique. Since the modified

network matrix is constant and retains the sparse, symmetric

character of the power-angle Jacobian matrix, triangular

factors may be precomputed and then used at each integration

step to solve the modified network equations for ég(t) and

90(t).

The bulk of the computational effort in computing either

the infinite interval rms coherency measure or the max-min

measure for a particular deterministic step disturbance is

expended in the triangular factorization technique used to

solve the system network equations. For a single disturbance,

the network equations are solved at least ten times in the

max-min approach (based on a minimum simulation time of 1

second and an integration step size of 0.1 second). On the
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other hand, the infinite interval rms measure for a particu-

lar step disturbance can be computed by solving the steady

state network equations just once. Thus, once the triangu-

lar factorization of the network Jacobian matrix has been

performed, the rms coherency measure for a given determinis-

tic step disturbance can be evaluated with about one tenth

the effort required to process the swing equations.

Clustering Algorithm for Identifying Coherent Groups
 

Once the linearized swing equations for a given system

disturbance have been processed, coherent groups based on

the max-min coherency measure are identified using a genera-

tor clustering algorithm. The clustering algorithm minimizes

the number of max-min coherency measures which must actually

be computed by using a transitive coherency rule. One gener-

ator in each coherent group is designated as a reference

generator for the group and any other generator is considered

a member of the group if the max-min coherency measure between

that generator and the group reference is less than some

specified coherency threshold, EC. The algorithm begins by

assigning the first generator as the reference for the first

coherent group. The remaining generators in the area to be

equivalenced are then examined, one by one, and a generator

can either be combined with an existing group or the genera-

tor becomes the reference for a new coherent group.

The identification of coherent groups using the genera-

tor clustering algorithm would require significantly less

computational effort than would the use of the ranking table

method. The procedure based on the ranking table requires
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that all N(N-l)/2 possible coherency measures be computed

and then ordered from smallest to largest, whereas the num-

ber of coherency measures actually computed using the clus-

tering algorithm is dependent on EC and is bounded below by

N (large value of EC) and bounded above by N(N-l)/2 (small

value of EC).

The accuracy of the clustering algorithm in identifying

coherent groups is suspect since the decision as to whether

or not a particular generator belongs to a group may well de-

pend on the arbitrary choice of group reference. Further

research is needed to determine how accurate the clustering

algorithm is and whether or not the ranking table technique

is worth the additional computational effort.

No matter which rule for identifying coherent groups is

ultimately shown to be best, the modal-coherent equivalent

will have a computational advantage over the coherency

approach. Structurally coherent groups are identified only

once in order to construct the modal-coherent equivalent

while the disturbance dependent coherent groups required to

construct a coherent equivalent must be identified each time

the system disturbance is changed.

A rough comparison is now drawn between the computation-

al effort required to construct the general purpose modal-

coherent equivalent and the effort required to generate a

set of coherent equivalents. For purposes of the comparison

it is assumed that both approaches will use the generator

clustering algorithm to identify coherent groups.
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Computational Comparison
 

For a particular internal system, a thorough transient

stability study would require a large number of coherent

equivalents; one for each distinct disturbance in the tran-

sient stability study case list. On the other hand, a single

modal-coherent equivalent would suffice to study any dis-

turbance which might occur within the study area for which

the modal-coherent equivalent was constructed. Thus, a com-

parison between the modal-coherent approach to dynamic

equivalents based on the rms coherency measure and the co-

herency analysis approach based on the max-min measure must

recognize that a single modal-coherent equivalent replaces

many coherent equivalents. An accurate comparison between

the computational effort required to construct the modal-

coherent equivalent and the effort required to construct a

set of coherent equivalents cannot be made until the proce-

dure for constructing the modal-coherent equivalent is pro-

grammed for large scale systems. At this time, the following

general comments are offered based on a system containing N

generators for which n distinct system disturbances are to

be examined in a transient stability study.

In order to study n distinct system disturbances, n co-

herent equivalents would be needed. The construction of n

coherent equivalents would require that the algorithm for

constructing a coherent equivalent be executed n times. Thus

there would be
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1. n passes through the linear simulation algo-

rithm in order to be able to compute the max-

min coherency measure for each of the dis-

turbances in the case list.

2. n passes through the generator clustering al-

gorithm to identify the appropriate coherent

groups for each disturbance.

3. n applications of the coherency-based aggre-

gation technique to do the network reduction

and generator aggregation for each disturbance.

Based on data from [5], approximately one quarter as much

computer time is required to identify coherent groups using the

clustering algorithm as is required to run the linear simula-

tion; and the aggregation procedure requires about twice as

much computer time as does the simulation. With the following

normalizations

linear simulation W 4 units of computer time

identification of coherent % 1 unit of computer time

groups (with the cluster-

ing algorithm)

1 coherency-based aggregation N 8 units of computer time

the total number of "units of computer time required to con-

struct n coherent equivalents would be

( 4 + l + 8 ) n = 13 n units of computer time

The construction of the general purpose modal-coherent

equivalent would require

1. N solutions to the steady state network equa-

tions, one for each disturbance in the modal

disturbance sequence.

2. 1 application of the clustering algorithm.

3. 1 application of the coherency-based aggrega-

tion technique.
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Since virtually all of the effort in the linear simulation

algorithm is consumed in repeat solutions of the network

equations it may be assumed that one pass through the lin-

ear simulation algorithm corresponds to a minimum of 10 solu-

tions of the network equations (with a minimum simulation

time of 1 second and an integration step size of 0.1 second).

The number of units of computer time expended in solving the

steady state network equations N times would be

4 units of computer time

10 solutions

 

)N solutions x (

= 0.4 N units of computer time

Thus, the total units of computer time to construct a modal

coherent equivalent would be approximately

0.4 N + l + 8 = 0.4 N + 9 units .

The construction of the modal-coherent equivalent will

be computationally competitive with the construction of n co-

herent equivalents if less computer time is required to gene-

rate the modal-coherent equivalent than the total time re-

quired to generate the n coherent equivalents or,

13 n > 0.4 N + 9

or,

N + 22.5

32.5

>

For a system containing 250 generators, the construction of

the modal-coherent equivalent would be competitive with the

construction of 9 coherent equivalents.

It may be possible to reduce the number of disturbances

in the modal disturbance sequence while retaining the essential
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character of the modal-coherent equivalent. One approach

would be to limit the disturbance sequence to include only

those disturbances which correspond to generators in the

internal system and a few external system generators which

are first or second neighbors to the internal system. Such

an approach would attempt to preserve the modal-coherent

structure only in the internal system and in a boundary re-

gion surrounding the internal system. The underlying

assumption is that the dynamics arising from the remote re-

gions of the external system have little impact on the

behavior of the internal system and therefore accurate aggre-

gation of the remote external system is not necessary. Since

this method would significantly reduce the computational

effort required to construct a modal-coherent equivalent,

further research is needed to determine the validity of the

approach.

6.3 Computational Examples

The algorithm for evaluating the infinite interval rms

coherency measure and identifying structurally coherent groups

is now illustrated for two example systems. The first example

illustrates the procedure described in Section 6.1 for the

case when the load buses have not been eliminated from the

network equations. Example number two demonstrates the pro-

cedure when the network reduction necessary to eliminate the

load buses has been performed and the synchronizing torque

coefficients between internal generator buses are known. The

second example system was treated previously in Chapter 4
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where the coherency measure for the modal disturbance was

determined by constructing the linear model matrix (M g) and

computing (M g)-1.

Example System 1

A schematic diagram of a 3 generator, 5 bus system is

shown in Figure 6-1. The system data necessary to compute

the rms coherency measure for the modal disturbance is given

in the figure.

 

 

 

     
 

 

  
 

    

 

 

generator 1 generator 2

M1=1,Dl=.l M2=2,D2=.2

bus 4 l/0° 1/0°

bus 1 r— * , bus 2

Yl4-6-4 y24-6.4

y25=8.0

bus 3 l/0° .1___._

bus 5 1/00

3 3 D1 D2 D3

generator 3 O=M_=M—=M—= .l

l 2 3

Figure 6-1 Three Generator Example System
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The step by step procedure given in Section 6.1 to

evaluate the rms coherency measure will be followed.

1. The synchronous frame network equations may be

written as

r— - r- '1;- fl

APL4 20.48 0.00 -6.40 ’6.40 -7.68 A04

APL5 0.00 10.00 0.00 '8.00 ’2.00 A05

APGl -6.40 0.00 6.40 0.00 0.00 A01

APG2 -6.40 '8.00 0.00 14.40 0.00 A02

APG3 -7.68 -2.00 0.00 0.00 9.68 A53

L. ..J _ JL. ..-      
Using generator 3 as the reference generator, the

network equations in the generator 3 reference frame

 

may be written as

      

r- - r- —--

APL4 20.48 0.00 -6.40 -6.40 A84 - A031

APL5 0.00 10.00 0.00 -8.00 A85 - A63

APGl = -6.40 0.00 6.40 0.00 A61 - A63

APG2 -6.40 -8.00 0.00 14.40 A62 - A63

L. J L. J).— ...J

which is of the form

fi=ié

The triangular factorization of i may be accomplished

by using the equations [15]

’L .

Vi1 - Jil// 3‘11 1315N+K-l

% j_1 . . .
= — < .-

Vij (Jij kgl Vikvjk)/ij 1< j< 1..N4-K 1

i=1 2

v,,=(J,.- 2 v. )2 l<1sN+K-l
11 11 1k

k=l

(6-34)

to obtain

r“4.525483 0.000000 0.000000 0.000000"1

m 0.000000 3.612278 0.000000 0.000000

2 — -1.4l4214 0.000000 2.097617 0.000000

L_:-l.4l4214 -2.529822 -0.953463 2.256304J  
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2. The modal disturbance sequence for this system is

APMl = (1,0,0)T, APM2 = <0,2,0)T, APM3 = (0,0,4)T

3. Using equations (6-22b), the APGk(w) vectors corre-

sponding to the modal disturbance sequence may be

written as

9391(w) = (0.857143,—0.285714,-0.571429)T

9392(w) = (-0.285714,1.428571,-1.142857)T

Agg3(w) = (-0.571429,-1.142857,1.714286)T

4. Recognizing that éggk = Q for each disturbance in

the modal disturbance sequence, the vectors é§k(w)

needed to solve the steady state network equations may

be written as

931(m) = (0.000000,0.000000,0.857143,-0.285714)T

932(w)

gg3<w)

(0.000000,0.000000,-0.285714,1.428571)T

(0.000000,0.000000,-0.571429,-1.l42857)T

5. For each disturbance in the modal disturbance se-

quence

a) the solution to the forward substitution

problem is

11 = (0.000000,0.000000,0.408627,O.046047)T

:2 = (0.000000,0.000000,-0.l36209,0.575588)T

:3 = (0.000000,0.000000,-0.272418,-O.621635)T

b) the solution to the back sutstitution

problem is

91(w) = (0.057398,0.014293,0.204082,0.020408)T

g2(w) = (--0.063776,0.516285,0.051020,0.255102)T

93(w) = (0.006378,-0.192951,—0.255102,-0.275510)T
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c) and the desired steady state angles are

g§1(m) = (0.204082,0.020408)T

A§2(m) = (0.051020,0.255102)T

933(w) = (-0.255102,-o.275510)T

6. The §X(w) matrix for the modal disturbance is

3 Ak AkT 0.109330 0.087463

§x(w) = 2 Ag (m) Ag (9) =

k=l 0.087463 0.141399

7. The rms coherency measures between each pair of

generators is

 

C12 = /.109330 - 2(.087463) + .141399 = .275323

Cl3 = {.109330 = .330651

C23 = 7.141399 = .376031

The above solution may be verified by constructing the

synchronizing torque coefficient matrix 3, using the network

Jacobian matrix in step 1 and applying equation (2-11) to

obtain

4.4 -2.0

2 = -2.0 6.0

-2.4 -4.0

then computing M g with the result

5.0 -l.0

E I =

-0.4 4.0

and finally using equation (6-2) with the substitution

1.0 0.0 0.0

311 = 0.0 4.0 0.0

0.0 0.0 16.0

A

to compute §k.

It can easily be shown that the computational procedure

for evaluating the rms coherency measure based on computing
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the steady state response of the generator angles for each

disturbance in the modal disturbance sequence is, in fact,

1
a method of generating (M 3). directly from the network

equations. For the first N-l disturbances in the modal dis-

turbance sequence the vector M APMk may be expressed as

k=l,2,...,N-1 (6-35)

where the vector 1k 0 is defined as an N-l dimensional column

"" I

vector whose 12M entry is given by

0 1%k

{lk,0}i= . k,1=l,2,...,N-l (6-36)

1 1=k

When a matrix of compatible dimension premultiplies lk 0 the

resulting vector is the kEM column of the matrix. Substitut-

ing (6-35) into (6-14)

k -l

g§ (w) = (M T) 1 (6-37)

and it is clear that the steady state generator angles for

the kEM disturbance in the modal disturbance sequence

(k=l,2,...,N-l) is the kEM column of (M Z)-l.

For the example system it can be easily verified that

(M :)-l can be realized from the results in step 5 c)

-1 Al , A2 .204082 .051020

(M _'1_‘) = [93 (°°) ’ 4’3 (“4] =
 

.020408 .255102

Another interesting aspect of the information in the

solution of the steady generator angles for the modal dis-

turbance sequence is that it may be used to corpute the syn-

chronizing torque coefficients between internal generator

A

. .k _. .

buses. Since the vectors £3 (m) corresponcing to the first
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N-l disturbances in the modal disturbance sequence are the

1
columns of the matrix (M I)- it is clear that these vectors

are a linearly independent set for which weighting factors aij

can be found such that

“1

4g (co) + ai ggN‘lwo) = 1.
“2

Ag (00) + .0. + a.
-l,0

ail 2 1,N-l

i=1,2,...,N-l

(6-38)

For any vectors APGk(w) and Agk(w) corresponding to a distur-

bance where APLk==0, equation (2-12) indicates that

APG (w) = 3 A6 (w) (6-39)

Let the same set of aij's which satisfy (6-38) be used to

construct A31 which is defined as

N-l
éBi — ailAPG ( ) + aiZAPG ( ) + ... + ai'N_lAPG ( )

(6-40)

Substituting (6-39) into (6-40)

_ “1 m “2 m “N-1 m
921 — ail: Ag ( ) + aiZI £9 ( ) + ... + ai,N_12 Ag ( )

_ 21 m “2 m “N-1 w
— M {ailég ( ) + aizéé ( ) + ... + ai,N-lé§ ( )}

= 3 $1.0 (6-41)

and it is clear that 931 is the 13M column of the synchroniz-

ing torque coefficient matrix.

Example System 2
 

When the network reduction necessary to eliminate the

load buses from the linear system model has been performed,

the procedure for evaluating the infinite interval rms coher-

ency measure can be modified to take advantage of the

reduction. In particular, there is a significant reduction
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in the order of the triangular factorization problem which

is solved to obtain the steady generator angles for each

disturbance in the modal disturbance sequence. The essential

modifications for the case when the synchronizing torque

coefficient matrix, 1, is known, is presented and then applied

to the seven station MECS model.

If the synchronizing torque coefficient matrix, M, and

the reflection matrix, M, are known, then the load bus angles,

Ag(t), can be eliminated from the network equations. In this

case the network equations are given by (2-12). For each step

disturbance in the modal disturbance sequence, A2££==0, and

the steady state network equations for a particular distur-

bance k become

gagkwo) = g 930») (6-42)

The matrix M is an N)<(N-l) matrix and one row of (6-42) is a

redundant equation. For the same reason described previously

in the transition from the network matrix Q to the matrix E

the last row of 1 may be deleted to obtain

@930») = Ejkm (6-43)

where i is an (N-l))((N-l) symmetric matrix formed by omitting

the last row of 2 and AE§k(w) is as defined in (6-27). Thus,

when M is known the steady state generator angles can be com-

puted by solving (6-43) using the triangular factorization

technique.

The advantage in solving (6-43) rather than (6-28) for

the steady state generator angles is that the dimensionality

of the problem has been reduced from N+K-l to N-l.
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The procedure for constructing a modal-coherent equiva-

lent when the matrix 3 is known, is now applied to the seven

generator MECS model. Once again the step by step evaluation

procedure given in Section 6-1 is followed.

1. The synchronizing torque coefficient matrix in the

generator 7 reference frame for the MECS model is

F29.89 -4.14 -6.53 -2.42 -3.53 -3.86—-

-4.14 16.54 -l.82 -0.91 -1.62 -l.73

-6.53 -l.82 30.64 -4.96 -5.12 -5.70

E = -2.42 -0.91 -4.96 22.26 -4.44 -4.88

-3.53 -l.62 -5.12 -4.44 37.81 -12.65

-3.86 -l.73 -5.70 -4.88 -12.65 38.86

L:9.4l -6.32 -6.51 -4.65 -10.45 -10.04

Deleting the last row of M to obtain

  
m

3, the triangular

factorization of E is obtained by replacing i with E in

 

  

equation (6-34) with the result

_ .1

5.4671 0.0000 0.0000 0.0000 0.0000 0.0000

-0.7572 3.9958 0.0000 0.0000 0.0000 0.0000

% -1.1944 -0.6818 5.3617 0.0000 0.0000 0.0000

Y = -O.4426 -0.3116 -1.0633 4.5646 0.0000 0.0000

-0.6456 -0.5277 -1.1658 -1.3429 5.8268 0.0000

-0.7060 -0.5667 -1.2924 -1.4772 -2.8896 5.0773

2. Using (6-4) the modal disturbance sequence is

APMl = (.7767,0,0,0,0,0,0)T

2 T
APM = (0,.1844,0,0,0,0,0)

APM3 = (0,0,.2100,0,0,0,0)T

APM4 = (0,0,0,.2752,0,0,0)T

APMS = (0,0,0,0,.2752,0,0)T

6 T
APM = (0,0,0,0,0,.2752,0)

APM7 = (0,0,0,0,0,0,.2752)T
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The corresponding values of APGk(w) can be ob-

tained from (6-22b)

@103»)

43020»)

§g§3<w)

42510»)

4333500)

9119600)

9397(w)

4.

(.5112,-.0630,-.0718,-.0941,-.0941,—.0941,-.0941)T

(—.0630,.1694,-.0170,-.0223,-.0223,-.0223,-.0223)T

(-.0718,-.0170,.1906,-.0254,-.0254,-.0254,-.0254)T

(-.0941,-.0223,--.0254,.2419,-.0333,-—.0333,-.0333)T

(-.0941,-.0223,-.0254,-.0333,.2419,-.0333,-.0333)T

(-.0941,-.0223,—.0254,-.0333,-.0333,.2419,-.0333)T

(-.0941,-.0223,-.0254,-.O333,-.O333,-.0333,.2419)T

The vectors §3k(w), defined by (6-27), may be ob-

tained from the APGk(w) vectors in step 3 by simply

dropping the last entry in each vector.

5. The solution to the forward substitution problem,

(6-31) for each k is

1

2

l
‘
<
l
‘
<

3

I
“

P
3

P
<

I
K

|'
~<
‘.

(.09350,.00194,.00768,-.00962,-.00629,-.00975)T

(-.01153,.04022,-.00063,-.00341,-.00238,-.00403)T

(-.01313,-.00675,.03176,.00009,-.00006,.00049)T

(-.01721,-.00885,-.00970,.04845,.00080,.00214)T

(-.01721,-.00885,-.00970,-.01184,.03413,.00363)T

(-.01721,-.00885,-.00970,-.01184,-.01310,.03086)T

(-.01721,-.00885,-.00970,-.01184,-.01310,-.02334)T

and the solution to the back substitution problem (6-32)

for each k is

b
W
N
I
—
J

H
>
>
|
>
>
|
c
>
>
u
>
>
|
>
>

U
'
l

(.01627,-.00034,-.00013,-.00333,-.00203,-.00192)T

(-.00123,.00962,-.00073,-.00124,-.00080,-.00079)T

(-.00117,-.00065,.00597,.00006,.00004,.00010)T

(-.00222,-.00117,.00052,.01085,.00035,.00042)T

(-.00264,-.00140,-.00039,-.00053,.00621,.00072)T
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(-.00254,-.00132,-.00025,-.00040,.00078,.00608)T

|
I
>
>
|
t
>
>

(-.00646,-.00474,-.00498,-.00542,-.00454,-.00460)T

A

The steady state generator angles are the Ak given

above.

6. The matrix §X(w) can be computed as

A An

A

§_X(oo) =

_-.32766 .02369 .02448 -.03941 -.02204 -.01895_-

.02369 .02072 .01301 .00332 .00427 .00518

10_3 .02448 .01301 .06143 .03462 .02121 .02268

-.03941 .00332 .03462 .16016 .03246 .03404

-.02204 .00427 .02121 .03246 .06469 .03471

_:.01895 .00518 .02268 .03404 .03471 .06309   
A

7. The rms coherency measures can be found from §x

using (2-24). The values obtained are given in the

ranking table, Table 6-2.

In the following discussion it will be found convenient

to represent the m generator coherent group consisting of

generators n1,n2,..., and nm as (nl,n ..,nm). The data ob-2,.

tained from the MECS model for the modal disturbance is now

discussed.

It was stated in Section 6.2 that the coherent groups

identified using the generator clustering algorithm, might be

sensitive to the arbitrary choice of indices assigned to the

system generators. This can be demonstrated using the data

obtained with the MECS model. Let the threshold of coherency,

Ec' be .0795 and use the clustering algorithm as described in

Section 6.2 to identify coherent groups based on the rms



113

Table 6-2 Ranking Table for the Modal Disturbance, MECS

Example System

 

rank

r kr'jlr Ck ,2
____ r r

1 5-6 .007639

2 3-7 .007838

3 6-7 .007943

4 - .008043

5 3-6 .008897

6 3-5 .009149

7 2—7 .010987

8 3-4 .012343

9 4-6 .012457

10 2-3 .012495

11 4-5 .012646

12 4-7 .012656

13 2-6 .013170

14 2-5 .013299

15 2-4 .016560

16 l-7 .018101

17 1-3 .018443

18 1-2 .020025

19 1-6 .020704

20 1-5 .020891

21 1-4 .023804
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coherency measures given in Table 6-2. Let the generators

be processed by the clustering algorithm according to the

generator numbering system adopted in this thesis, that is in

the order l,2,3,4,5,6,7. The resulting coherent equivalent

would be a 6-generator equivalent model consisting of gen-

erators l,2,3,4,7 and an equivalent generator representing

the coherent group (5,6). If the clustering algorithm pro-

cessed the generators in reverse order, that is 7,6,5,4,3,2,l

corresponding to a simple reassignment of the generator

indices, then the coherent equivalent defined by the same

coherency threshold would be a 5-generator model consisting

of generators 1,2,4,5 and an equivalent generator represent-

ing the coherent group (3,6,7). Thus, the coherent groups

identified by the generator clustering algorithm are depen-

dent not only on the selected coherency threshold but also

on the arbitrary assignment of indices to the system

generators.

Based on the results of the ranking table, Table 6-2, a

modal-coherent equivalent for the 7-generator MECS model can

be identified which retains any predetermined number of gen-

erators between 1 and 7. This can be accomplished using the

commutative or the transitive rules described in Section 6.1.

Table 6-3 shows the coherent groups identified as the commu-

tative rule progresses through the ranking table. At each

rank, r, the table indicates the coherent groups identified

through that rank, the corresponding number of generators

eliminated through that rank, ne(r), and the number of gen-

erators which remain in the modal-coherent equivalent if the
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Table 6-3 Coherent Group Identification Based on the Ranking

Table and the Commutative Rule, MECS Example System-

Modal Disturbance

number of

     

generators

retained

number of in the

generators equivalent

coherent groups eliminated identified

rank identified through rank r at rank r

r kr’gr through rank r ne(r) 7-ne(r)

1 5-6 (5,6) l 6

2 3-7 (5,6),(3-7) 2 5

3 6-7 (5,6),(3-7) 2 5

4 5-7 (5,6),(3-7) 2 5

5 - (5,6),(3-7) 2 5

6 3-5 (3,5,6,7) 3 4

7 2-7 (3,5,6,7) 3 4

8 3-4 (3,5,6,7) 3 4

9 4-6 (3,5,6,7) 3 4

10 2-3 (3,5,6,7) 3 4

11 4-5 (3,5,6,7) 3 4

12 4-7 (3,4,5,6,7) 4 3

13 2-6 (3,4,5,6,7) 4 3

14 2-5 (3,4,5,6,7) 4 3

15 2-4 (2,3,4,5,6,7) 5 2

16 1-7 (2,3,4,5,6,7) 5 2

17 1-3 (2,3,4,5,6,7) 5 2

18 1-2 (2,3,4,5,6,7) 5 2

19 1-6 (2,3,4,5,6,7) 5 2

20 1-5 (2,3,4,5,6,7) 5 2
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Table 6-4 Coherent Group Identification Based on the Ranking

Table and the Transitive Rule MECS Example System-

Modal Disturbance

number of

     

generators

retained

number of in the

generators equivalent

coherent groups eliminated identified

rank identified through rank r at rank r

r kr'Qr through rank r ne(r) 7-ne(r)

1 5-6 (5,6) 1 6

2 3-7 (5,6),(3-7) 2 5

3 6-7 (3,5,6,7) 3 4

4 5-7 (3,5,6,7) 3 4

5 - (3,5,6,7) 3 4

6 3-5 (3,5,6,7) 3 4

7 2-7 (2,3,5,6,7) 4 3

8 3-4 (2,3,5,6,7) 4 3

9 - (2,3,4,5,6,7) 5 2

10 — (2,3,4,5,6,7) 5 2

ll - (2,3,4,5,6,7) 5 2

12 - (2,3,4,5,6,7) 5 2

13 - (2,3,4,5,6,7) 5 2

l4 - (2,3,4,5,6,7) 5 2

15 - (2,3,4,5,6,7) 5 2

l6 -

l7 -

18 -

l9 -

20 -

N f
.
-

|
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group identification process were to terminate at rank r.

Table 6-4 gives the same information for the transitive

rule. The following observations are based on Tables 6-3

and 6-4.

1. The transitive rule tends to reduce the number

of generators retained in the equivalent faster, that

is at a lower rank, than the commutative rule. This

result is not unexpected since more ranks must be

examined to merge coherent groups under a commutative

rule than a transitive rule.

2. The modal-coherent equivalents retaining 6,5,4 and

2 generators defined by the commutative and transitive

rules are identical.

3. The two rules disagree on the coherent group

which defines the 3-generator version of the modal-

coherent equivalent. Corresponding to a 3-generator

equivalent, the commutative rule identifies the co-

herent group (3,4,5,6,7) at rank 12 in Table 6-3

whereas the transitive rule identifies the group

(2,3,5,6,7) at rank 7 in Table 6-4. Each rule pre-

viously identified a 4-generator equivalent con-

taining the single coherent group (3,5,6,7). Since

generators 2 and 7 are found to be a coherent pair

at rank 7 in the ranking table, the transitive rule

immediately merges generator 2 with the coherent

group C3,5,6,7). The commutative rule also recognizes

generators 2 and 7 as a coherent pair at rank 7, but

must wait until generator 2 is also found to be cc-

herent with generators 3,5 and 6 as well, before

generator 2 can join the group (3,5,6,7). The com-

mutative rule proceeds through the ranking table from

rank 7, and generator 4 is found to be coherent with

each member of (3,5,6,7) before generator 2 can meet

that requirement. Thus, the commutative rule joins
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generator 4 to the group (3,5,6,7) instead of gen-

erator 2 as observed with the transitive rule.

The disagreement over the coherent group which

defines the 3-generator modal-coherent equivalent

for the MECS model points out a fundamental differ-

ence in the character of coherent groups which are

likely to be identified by the transitive and com-

mutative rules. The synchronizing torque coeffi-

cient matrix for the MECS model given in step 1

shows that the synchronizing torque coefficients

of the equivalent lines which connect generator 2

to the generators in the coherent group (3,5,6,7)

are

T23 = 1.82

T25 = 1.62

T26 = 1.73

T27 = 6.32

Since generators 3,5,6 and 7 have essentially the

same inertia, the torque coefficients determine

the relative stiffness of the connection between

generator 2 and each member of the group (3,5,6,7).

The synchronizing torque coefficients clearly in-

dicate that generator 2 is tightly coupled to gen-

erator 7 but not to the remaining generators in

the group. Thus, the use of the transitive rule

would be likely to identify coherent groups which

contain "weak" members, that is a generator which

is stiffly connected to just one member in the co-

herent group. The commutative rule avoids this

problem by requiring that a generator be coherent

with all members of a coherent group before that

generator can join the group.

4. In Chapter 4, the ZMIID disturbance identified

a 4-generator equivalent of the MECS model contain-

ing the single coherent group (3,5,6,7). Both the

commutative and the transitive rules applied to the
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ranking table cflf the modal disturbance identify

the same 4-generator equivalent. Thus it is

confirmed that there is no difference in the co-

herent groups identified by the ZMIID and modal

disturbances for the 4-generator modal-coherent

equivalent of the MECS model.

5. The 3-generator version of the modal-coherent

equivalent defined by the commutative rule in

Table 6-3 contains the single coherent group

(3,4,5,6,7). The same coherent group was aggre-

gated in Chapter 4 to construct the coherent

equivalent based on the UD disturbance. Thus,

the 3-generator modal-coherent equivalent of the

MECS model is the same equivalent as the "UD

coherent equivalent" in Chapter 4. The perform-

ance of the UD equivalent in preserving the rms

coherency measure for various system disturbances

was shown to be quite poor. It was also indicated

that the eigenvalues of the UD coherent equiva-

lent did not match the system eigenvalues retain-

ed by the modal equivalent based on the UD

disturbance. The fact that the 3-generator co-

herent equivalents for the MECS model based on

the modal and UD disturbances are identical is

purely a coincidence, however, it does indicate

that even if the modal-coherent approach is used

to identify coherent groups there is the danger

of over-aggregating and destroying the modal and

coherent structure of the unreduced system.

Intuitively, the less model aggregation that is done to

construct a dynamic equivalent, the more accurate the equiva-

lent should be in predicting the behavior of the unreduced

system model. An indication of the gradual degradation of

the modal structure of the system that occurs as the number
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of generators retained by the modal-coherent equivalent de-

creases, is shown in Table 6-5. Table 6-5 compares the

modes of intermachine oscillations in the unreduced linear

system model with the modes of oscillation computed for the

linearized 6,5,4,3 and 2-generator versions of the modal-

coherent equivalent defined by the ranking table and the

commutative rule as shown in Table 6-3. Except for the 4-

generator and 3-generator versions, the modes corresponding

to the equivalents in Table 6-5 were computed from linear

models obtained by directly aggregating the unreduced linear

MECS model using the procedure for linear model aggregation

described in Section 2.4. As indicated earlier in the dis-

cussion, linear models of the 4-generator and 3-generator

equivalents (and their modes) were previously derived in

Chapter 4. The following comments are based on the results

in Table 6-5.

1. The commutative rule identifies generators 5

and 6, at rank 1 in Table 6-3, as the most coher-

ent pair of generators in the MECS model. The

aggregation of these two generators to form the

6-generator modal-coherent equivalent removes

the oscillation at 13.614 rad/sec observed in the

unreduced system. Apparently, the oscillation at

13.614 rad/sec is associated exclusively with the

intermachine behavior of generators 5 and 6 since

the remaining modes of oscillation observed in

the unreduced model are closely (and almost

exactly) preserved in the 6-generator modal-

coherent equivalent.
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Table 6-5 Modes of Intermachine Oscillation for Modal-

Coherent Equivalents Derived from the Commutative

Rule

MODES OF INTERMACHINE OSCILLATIONS (rad/sec)

number of generators retained in the

modal-coherent equivalent

 

unreduced

system 9 2 4 .3. 2

7.415 7.414 7.226 7.288 6.653 8.680

9.481 9.481 9.432 9.351 10.176

10.389 10.391 10.201 10.659

12.756 12.761

13.614 13.729

14.304 14.309
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2. The S-generator modal-coherent equivalent is con-

structed by aggregating two coherent groups, (5,6)

and (3,7). The construction of the 5-generator equiva-

lent may be viewed as a two step aggregation process in

the unreduced system or a one step aggregation (of

generators 3 and 7) in the 6-generator modal-coherent

equivalent model. Taking the later view, the changes

in the modes of oscillation from the 6-generator to

the S-generator equivalent indicate that the modes at

12.761 and 14.309 rad/sec in the 6-generator equivalent

are associated with the intermachine oscillations of

generators 3 and 7, and the group to group oscillations

of (5,6) and (3,7). When generators 3 and 7 in the 6-

generator model are aggregated to form the 5-generator

modal-coherent equivalent, the modes at 12.761 and

14.309 rad/sec are replaced by a "new" mode at 13.729

rad/sec. It is emphasized that the new mode at 13.729

rad/sec in the 5-generator equivalent does not corres-

pond to the oscillation at 13.614 rad/sec in the

unreduced model. Rather, the new mode represents the

effort by the coherency aggregation procedure to com-

pensate in the S-generator equivalent for the loss of

one degree of freedom in representing the group to

group behavior of (5,6) and (3,7), which was determined

by two modes in the 6-generator equivalent and must be

represented by a single "average" mode in the 5-gener-

ator equivalent. Notice also that the remaining modes

in the 5-generator equivalent have shifted below the

corresponding modes in the 6-generator equivalent.

3. The 4-generator modal-coherent equivalent can be

constructed by aggregating the generators in the 5-

generator equivalent model which represent (5,6) and

(3,7). The transition of the modes of the 5-generator

equivalent to the modes of the 4-generator equivalent

indicates that the mode at 13.729 in the 5-generator

equivalent, the new mode, is strongly associated with
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the group to group oscillations of (5,6) and

(3,7), since the aggregation of (5,6) and (3,7)

to form the 4-generator equivalent effectively

eliminates that mode. The modes which remain in

the 4-generator equivalent correspond quite well

with the low frequency (10.389 rad/sec and below)

modes in the unreduced model. This also indicates

that the high frequency modes 12.756, 13.614 and

14.304 of the unreduced model are all associated

with the intermachine behavior of the coherent

group (3,5,6,7).

4. In each of the transitions from the 6-generator

to the 4-generator equivalent there is a slight but

steady deterioration of the agreement between the

low frequency modes of the modal-coherent equiva-

lents and the corresponding modes of the unreduced

system.

5. The modes of the 3- and 2-generator equivalents

bear little resemblance to any of the modes of the

unreduced system model.

The above observations indicate that the user of modal-

coherent equivalents should not specify unnecessarily "small"

equivalents. Unfortunately, there isn't an obvious way to

tell whether or not a dynamic equivalent is over-aggregated.

However, for the MECS model, the ranking table approach for

identifying coherent groups does provide some indication that

there might be a reasonably dramatic drop in performance be-

tween the 4-generator and 3-generator modal-coherent

equivalents. Tables 6-3 and 6-4 indicate that for both the

commutative and transitive rules that large jumps occur in

the ranking table between the rank at which the 4-generator

and 3-generator equivalents are identified. This suggests

that the ranking table approach for identifying coherent
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groups may be able to provide information to suggest where

the model aggregation process should be cut off in order to

guarantee that modal and coherent system structure are ade-

quately preserved. Further research is planned to investi-

gate the uses of the ranking table in identifying coherent

groups and in controlling the amount of model aggregation

for large scale systems.

Summary of Chapter 6
 

In this chapter an efficient algorithm for constructing

modal-coherent equivalents for large scale systems was

developed. The feasibility of the algorithm was confirmed by

applying it to two relatively small example systems. Pro-

gramming of the algorithm for large scale systems is already

underway.



CHAPTER 7

CONCLUSIONS AND FUTURE INVESTIGATIONS

The major results of this thesis are now summarized on

a chapter by chapter basis and related topics for future

research are proposed.

7.1 Thesis Review

In the first chapter, the properties of power system

dynamic equivalents derived from the present modal and coher-

ency analysis approaches are discussed. Both approaches are

indicated to have considerable merit and at the same time

significant drawbacks. The criticisms that have limited the

acceptance of these two techniques are used to deduce the

properties of an "ideal" dynamic equivalent which would be

found highly desirable by the power industry. It is argued

that an ideal equivalent should be

1. Suitable for studying any contingency that

might occur inside the study area for which

the equivalent is derived.

2. Simultaneously a modal and a coherent equivalent.

3. Derived from an efficient computational

technique.

4. Expressed in terms of normal power system

components.

The above properties are a composite of the most desirable

features of present modal and coherent equivalents. This

125
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suggests that it may be possible to develop an ideal equiva-

lent by properly linking the modal and coherency analysis

techniques. A historical perspective for this research is

provided by briefly reviewing the modal analysis approach

based on the rms coherency measure [8,9], the so-called

coherent-modal approach, which was an early effort to link

modal and coherency analysis. It is indicated that the

coherent-modal approach does not lead directly to an ideal

dynamic equivalent but it does suggest that the rms coherency

measure is the key to the development of a nearly ideal dy-

namic equivalent. The first chapter closes with a statement

of the thesis objective which is to develop the justification

and the means for constructing a modal-coherent equivalent

whose properties closely approximate those of an ideal

dynamic equivalent.

In the second chapter the mathematical models used in the

development of the modal-coherent equivalent are defined.

The justification for the modal-coherent approach is de-

veloped in Chapters 3 and 4. In Chapter 3, the expected value

of the rms coherency measure, evaluated over an infinite

interval, is algebraically related to the parameters of the

power system state model and the statistics of the system

disturbance. For random initial conditions and pulse type

disturbances (faults), an implicit relationship is developed

which, in each case, takes the form of a Lyapunov equation.

For step disturbances in mechanical input power or load bus

power injection, an explicit formula is derived, relating the

rms measure directly to system parameters and the statistics
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of the step disturbance. Two probabilistic step disturbances,

the ZMIID disturbance and the modal disturbance, are shown to

cause the rms coherency measure to depend solely on system

parameters. Coherent groups based on the ZMIID disturbance

are shown to depend strictly on line stiffnesses, while the

coherent groups determined by the modal disturbance are deter-

mined by relative line stiffnesses.

Using an example system,iJ:is shown in Chapter 4 that the

eigenvalues of the coherent equivalent constructed by aggre-

gating the coherent groups identified by the rms coherency

measure and the ZMIID disturbance closely approximate the sys-

tem eigenvalues retained by the modal equivalent based on the

same coherency measure and disturbance. It is further shown

that both the modal and the coherent equivalent based on the

ZMIID disturbance are useful for studying any disturbance

that might occur outside the areas of the example system ag-

gregated to form these equivalents. These results indicate

that a coherent equivalent which closely approximates a gen-

eral purpose modal equivalent can be derived when the rms co-

herency measure and an appropriate probabilistic disturbance

are used to identify coherent groups. The example system is

a special case composed of many generating units with similar

inertias and there is little difference between line stiff-

nesses and relative line stiffnesses. Consequently, the same

set of coherent groups are identified using either the ZMIID

or the modal disturbance. In general, this would not be the

case and to identify a general purpose dynamic equivalent the

modal disturbance would normally be preferred over the ZMIID
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disturbance since the coherent groups identified by the modal

disturbance are determined by relative line stiffnesses which

are a more complete description of dynamic system structure

than line stiffnesses which are the basis for aggregation

when the ZMIID disturbance is used to identify coherent groups.

Chapter 5 proposes that a modal-coherent equivalent can

be derived by usingtflmacoherency-based aggregation technique

to aggregate the coherent groups identified by the rms coher-

ency measure and the modal disturbance. The justification

for the approach rests on the analytical developments in

Chapter 3 and the observations based on the example system in

Chapter 4 which indicate that the rms coherency measure and

the modal disturbance can identify coherent groups which prop-

erly reflect dynamic system structure.

The construction of the modal-coherent equivalent is a

3 step procedure which includes the evaluation of the expected

value of the rms coherency measure for the probabilistic modal

disturbance, the identification of coherent groups based on

the computed coherency measure and finally, the aggregation

of the coherent groups using the coherency-based aggregation

technique [2]. Since the coherency-based aggregation techni-

que is well established, the problem of developing the means

for constructing the modal-coherent equivalent reduces to

finding a procedure for computing the rms coherency measure

and identifying coherent groups.

In Chapter 6, an efficient computational algorithm, ap-

plicable to large scale systems, is developed for computing

the rms coherency measure for the modal disturbance. The
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algorithm expands the coherency measure for the probabilis-

tic modal disturbance in terms of the coherency measures

observed for a sequence of deterministic step disturbances

known as the modal disturbance sequence. For each distur-

bance in the modal disturbance sequence the coherency mea-

sure is shown to depend strictly on the steady state

response of the generator angles to that disturbance. It is

shown that steady state generator angles for any determinis-

tic step disturbance can be efficiently computed from the

steady state network equations using a triangular factoriza-

tion technique.

The coherent groups identified by the generator cluster-

ing algorithm, which is presently used to identify coherent

groups based on the max-min coherency measure, were shown to

be sensitive to the arbitrary order in which generators may

be processed by the algorithm. To eliminate this sensitiv-

ity, a new approach for identifying coherent groups was pro-

posed based on a ranking table in which the N(N-l)/2 possible

coherency measures between the various pairs of generators

are ordered from the smallest to the largest. Coherent groups

are identified using the ranking table by proceeding down the

ranks in the table and using either a transitive or a commu-

tative coherency rule to assign generators to coherent groups.

The ranking table approach has an additional advantage over

the generator clustering algorithm since the size of the de-

sired equivalent can be specified a priori and coherent groups

may be identified to conform to the prespecified number of

generators to be retained by the equivalent.
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A rough comparison was drawn between the computational

effort required to construct the general purpose modal-

coherent equivalent and the effort required to construct a

coherent equivalent based on the max-min coherency measure.

It was shown that the computer time needed to construct the

modal-coherent equivalent was approximately equal to the

total time required to construct nine coherent equivalents,

based on a system containing 250 generators. Thus, the

modal-coherent approach will be computationally competitive

with the coherency analysis approach based on the max-min

coherency measure when a relatively modest number of distur-

bances are to be examined in a transient stability study.

7.2 Future Research

Based on the developments in the first six chapters it

is concluded that the modal-coherent approach to power sys-

tem dynamic equivalents represents a viable alternative to

the present modal and coherency analysis techniques. However,

further research is required to fully explore the relative

merits of the approach. Some areas where further investiga—

tion is indicated are now discussed.

The procedure for evaluating the rms coherency measure

for the probabilistic modal disturbance must be programmed

for large scale systems. No major difficulties are expected

in this task since the triangular factorization technique

which is the heart of the computational procedure is an often

used tool in power system analysis. This work is already

underway.
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There is also a need to investigate the suitability of

the generator clustering algorithm and the ranking table

methods for identifying coherent groups. Based on experi-

ence with the MECS example system it is believed that the

ranking table procedure using the commutative rule will

identify the most meaningful set of coherent groups for use

with the modal-coherent approach. The use of the ranking

table to limit the amount of aggregation in order to avoid

constructing over-aggregated equivalents which do not pre-

serve modal or coherent dynamic system structure is also a

topic for future investigation.

Another item for future research which was briefly des-

cribed in Chapter 6 is the possibility of reducing the number

of disturbances in the modal disturbance sequence while re-

taining the essential character of the modal-coherent

equivalent. The computational attractiveness of the modal-

coherent approach would be significantly enhanced if it can

be shown that only those disturbances corresponding to gener-

ators in the internal system and a few generators in the

external system which are near neighbors to the internal sys-

tem need be included in the modal disturbance sequence in

order to preserve the integrity of the modal-coherent

equivalent.

The performance of the dynamic equivalents derived in

this research were judged on their ability to reproduce the

coherency measure observed with the unreduced system model.

Since these equivalents are intended for use in transient

stability studies, there is a definite need to compare the
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time domain properties of the equivalents derived from the

infinite interval rms coherency measure to the properties

of equivalents derived from the max-min coherency measure

which is evaluated over a short interval. Because the modal-

coherent equivalent closely preserves system modes it is ex-

pected that the time response observed with the modal-

coherent equivalent will closely match the time response of

the unreduced system.
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