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ABSTRACT

FLOW OF A VISCOUS LIQUID
ON A ROTATING DISK

by Tony Leonard Kaminski

There are ilnherent advantages to the rotating disk for
the atomizatlion or distribution of liquids especilally
liguids which cannot be subjJected to high pressure or
which contain solld particles. An investigatlion was con-
ducted to obtain a more thorough understanding of the flow
of a liquid on a flat rotating disk and to determine the
feaslbillity of using theoretical considerations to study
this flow situation. 1In this study an exact solution to
the Navier-Stokes equations, for the case of flow around
a disk rotating in a fluid at rest, was applied to the
present flow situation. The flow of the liquid on the disk
was characterized by means of streamline projections in
both the horizontal (r-e) plane and the vertical (r-z)
plane.

An experimental apparatus consisting of a 6-inch
dlameter disk powered by a variable speed motor was used to
verify the theoretical results. Two mineral olls were
selected for the tests: one had a kinematic viscosity of
.087 in?/sec and the other had a kinematic viscosity of

.194 in?/sec. The o1l was introduced axially symmetrical
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onto the disk through a plexli-glass tube desligned to reduce
the axial velocity of the liquid. Effects of rotational
speeds of 1000 rpm and 2400 rpm and flow rates of 5.0 gpm
and 10.2 gpm of the two olls were consldered.

The thickness of the oil layer on the disk was
measured with a polnt gage and the streamline patterns in
the horizontal plane were photographed. The theoretical
and experimental curves were compared and the deviations
between some of the curves were explalned.

The following conclusions derived from the Navier-
Stokes equations were verified experimentally for the laminar
flow of a Newtonian fluid on a rotating disk.

1. The thickness of the liquid flowing on the disk
is increased by: (a) increased liquid viscosity (b) increased
flow rate and (c) slower rotational speed.

2. The angular displacement of the liquid from inlet
to outlet 1s increased by: (a) increased liquid viscosity
(b) decreased flow rate and (c¢) higher rotational speed.

3. The angle relative to the radius with which a
liguid particle leaves the disk increases with (a) increased
angular displacement (b) increased radial distance and
(c) decreased helght above the disk surface. This angle has
a maximum value of 90 degrees on the surface of the disk
implying that a particle at this height has only tangential
veloclity. As the distance above the disk increases the flow

becomes more in a radial direction.
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Preliminary experiments were made injecting fluid
through special nozzles on a section of the disk. These
tests showed that approximately two-thirds of the liquid

could be made to flow off of one-fifth of the circumference
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of the disk.
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I. INTRODUCTION

This study was initlated when working on problems
in connection with the atomization of a liquid emulsion
which could not be atomized by more conventional methods.

Hougthon (1950) and Bainer et al. (1955) stated that
in general, devices used for the atomization of liquids
utilize one or more of the following principles:

1. Pressure or hydraulic atomization, in which ligquid
pressure supplles the atomization energy. The liquid stream
from the nozzle or an orifice 1s broken up by its inherent
instabllity and 1its inpact upon the atmosphere or by impact
upon a plate or another jet. In some designs liquid
pressure 1s used for obtaining rotary motion within the
nozzle.

2. Gas atomization, in which the 1liquid is broken
up by a high veloclity gas stream, the breakup occuring
elther entirely outside of the nozzle or within a chamber
ahead of the exit orifice.

3. Centrifugal atomization, in which the liquid 1is
fed under low pressure to the center of a rotating device,
such as a disk or cup, and is broken up by centrifugal force

as 1t leaves the periphery.



The hydraulic-type spray nozzle 1s the most common
atomizing device. It in general can be successfully used
to atomize most of the common liqulds. This device does
however possess certain limitations which have compelled
the use of other devices. High viscosities may necessitate
heating the liquid before it can be forced through the
nozzle to be atomized. Since atomization 1s influenced
by the size of the nozzle orifice, high pressures are
required 1n order to maintain both reach and atomization.

Unstable liquid emulsions and various liquid mixtures
such as ligquid manure cannot be dispersed by spray nozzles
and they have necessitated atomization by a rotating disk.
The problem presented by the unstable emulsion is that the
pressure required to force the liquid through the nozzle
may cause the liquid to harden in the pump or at the nozzle.
Whereas the problem encountered with a non-homogeneous
liguid such as liquid manure is that of clogging of the
nozzle which cannot be satifactorily corrected by the use
of filters.

Although the principle of centrifugal atomization is
not common in liquid sprayers, Yates (1951) and Gunkel (1957)
have shown that 1t 1s a very successful method of producing
uniform droplet sizes. 1In addition there are inherent

virtues to the design of a centrifugal device:



1. Simplicity

2. Low cost

3. Compact dimensions for a given width of coverage

4, No close tolerances or small holes required

5. Material 1s fed by gravity or a low pressure pump

Due to these advantages the rotating disk 1s used
extensively today for the distribution of granular materials.
Patterson and Reece (1962) analyzed the motion of spherical
particles fed on to the center of a rotating disk fitted
with radial vanes. They checked their theoretical results
by feeding steel balls on to the center of the disk. Inns
and Reece (1962) extended the theory to the case of off-
center feeding of spherical particles on to a plate fitted
wlth radial vanes. The effect of impact between the particle
and vane was taken 1nto account. Experimental evaluation
of the theory showed that the path of a spherical particle
accelerated by a flat radial vane may be accurately calculated.

Crowther (1958) investigated how factors such as disk
speed, fertilizer particle size, forward travel of the disk
and overlappling of adjacent runs affect the pattern of spread
of granular fertilizer distributed by a centrally-fed spinning
disk fitted with radial vanes.

These studles have ylelded some information for the
design of a disk for the distribution of granular particles.
Little, however, 1s known about the design of a disk for

the handling of a viscous liquid. Various theoretical



considerations have been made on the flow of fluilds due to
the presence of a rotating disk but 1t appears as if none

of the theory has been applied to the flow of liquids and

no experimental evaluations have been made.

The designs of some of the existing centrifugal
atomizing devices have followed a trial and error procedure.
It 1s well known that when the liquid is introduced axially
symmetrical on to a flat rotating disk, the 1liquid 1s
uniformly atomized about the entire periphery of the disk.
For this reason the rotating disk may not be sultable for
certain applicatlions requiring a fan-1like spray pattern
similar to the pattern produced by a spray nozzle. It is
suggested that if sufficient information was available
Oon the movement of liguid on a rotating disk then 1t may
be possible to produce any desired form of spray pattern
with a disk by precise introduction of the liquid on to a
specific area of the disk.

The purpose of thils research work was to:

1. Fully develop the theory of axial-symmetric flow
of a viscous liquid on to a flat rotating disk
and characterize the flow by constructing various
flow profiles and streamline representations.

2. Experimentally evaluate the theory using a

laboratory apparatus.



Study the effect of viscosity, flow rate and
rotational speed of the disk on the flow of the
liquid.

Present a hypothesls for producing a specific

form of spray pattern and verify it experimentally.



II. REVIEW OF LITERATURE

The steady flow of a viscous fluid, due to an infinite
rotating disk, was first discussed by von Kdrmdn (1921). He
studied the case where the fluid occupied the semi-infinite
region on one side of the disk and the motion of the fluid
could be assumed to be rotationally symmetric around the
axis of the disk. The layer of fluid near the disk was put
in rotary motion by the disk through viscous friction and
thrown outwards owing to the action of centrifugal force.
This caused a flow of the fluid in the axial direction toward
the center of the disk.

By virtue of his assumptions about the velocity com-
ponents, von Kdrmdn could reduce the Navier-Stokes equations
to a set of ordinary, non-linear differential equations of
a single independent variable. The resulting egjuations are
the boundary-layer equations for this flow situation since
the terms which are ordinarily omitted in boundary-layer
theory vanish 1dentically. Numerical integration of this
set of equations thus ylelds an exact solution to the
Navier-Stokes eqguatilons.

Von Kdrmdn obtalned an approximate solution to the
reduced flow equations by using the integral method he

developed. Cochran (1934) corrected von Kdrmdn's solution



and calculated more accurate values by numerical integration
of the ordinary differential equations.

Homann (1936) considered a related problem of motion
of a fluld flowing with axial symmetry towards an 1infinite
statlionary plane.

Bodewadt (1940) solved numerically the problem of the
flow produced over an infinite stationary plane in a fluid
which rotated with uniform angular velocity at an infinite
distance from the plane.

Hannah (1947) considered the general guestion of
steady irrotatlional flow with axial symmetry against an
infinite rotating plane. She obtained two solutions: one
for a non-viscous liquid and the other for a viscous liquid.

Batchelor (1951) considered two classes or families
of solutions of the Navier-Stokes eguations representing
steady rotationally-symmetric flow. In the first class (one-
parameter families) of solutions he showed that a simple
form of solution similar to von Kadrmdn's solution 1s retained
if the fluid at infinity had an arbiltrary uniform angular
veloclty about the axls of rotation of the infinite disk.

In the second class (two-parameter families) of solutions

Batchelor described the flow between two parallel infinite
disks rotating about the same axls with different angular

velocities.

Von Schlichting and Truckenbrodt (1952) considered

laminar flow of the fluld around a finite rotating disk



moving through an infinite fluid at a uniform axially velocity
and concluded that the thickness of the layer carried along

by the rotating disk depended mainly on the ratio of the

axial velocity of the disk and the peripheral velocity of

the disk. Truckenbrodt (1954) studied turbulent boundary
layer at the surface of the rotating disk and concluded that
the thickness of the boundary layer and also the torque of

the rotating disk depended strongly on the ratio of the

axlal velocity of the disk to the peripheral veloclty of

the disk.

Stewartson (1953) considered theoretically and experi-
mentally the steady motion of a viscous fluid confined
between two coaxial rotating disks. He found experimentally
that when the disks rotate in the same direction the main
body of the fluid rotated as well, but 1if the disks rotate
in opposite directions the main body of the fluid was almost
at rest.

Stuart (1954) integrated the exact ordinary differentilal
equations of von Karman for the case of fluild belng sucked
through the disk. In the analysils a suction parameter a
was introduced, where a¥ve was the velocity of suction
acting normal to the disk. He found that the magnitude of
the radlal flow veloclity decreased rapidly as the suction
increased, while at the disk the derivative of the tangential

component with respect to the distance from the disk increased.



In 1955 Fettls devised an iterative process for
obtaining approximate solutions for several cases of
rotationally symmetric flow in which the fluid at infinity
was rotating at an arbitrary velocity in the same direction
as the disk. Leigh (1955) developed a method for use with
an electronic computer for solving the laminar boundary-
layer equation. Wu (1961) discussed the finite difference
solution to laminar boundary-layer problems.

Rogers and Lance (1960) investigated numerically the
flow produced by an infinite rotating disk when the fluid
at infinity was 1in the state of solld rotation. When
the fluid at infinity was rotating in the same direction
as the disk, physically acceptable solutions were present
in all cases. When the fluid at infinity rotated in the
Opposite direction to the disk the only acceptable solutions
were where there was uniform suctlon present acting through
the disk. Rogers and Lance (1962) alsc considered axially
symmetric flow of a viscous fluid between two infinite
rotating disks. Several cases were investigated in detail
and the radial and transverse velocity profiles were
presented. When one disk was at rest or both disks were
rotated 1n the same direction, the flow at high Reynolds
numbers could be represented by combining two one-disk
solutions. There were boundary layers attached to both
disks and in the main body of the fluid, the flow was from

the slower to the faster disk.
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Von Karman and Lin (1961) proved the existence of an
exact solution of the Navier-Stokes equations. The liter-
ature review may be summarized by stating that in 1921
von Karman showed that the flow due to an infinite rotating
disk could be treated by an exact solution of the Navier-
Stokes equations, provided that a certain boundary-value
problem involving a system of nonlinear ordinary differen-
tial equations could be solved. Varlous mathematical
solutions related to this flow situatlon were presented
within this forty-year period, but it wasn't until 1961
that a mathematical proof was provided to the fact that
this boundary value problem did possess a solution. This
literature review had indicated that no attempts have
been made to study non-symmetrical motion of the fluid
due to a rotating disk nor have any studies been made on
the flow of a finite quantity of liquid with a limited

thickness and a free upper surface.



III. THEORETICAL CONSIDERATIONS

3.1 The Flow Functions for a Semi-Infinite
Fluid and an Infinite Disk

The Navier-Stokes equations express the condition of
equilibrium between the forces due to pressure, viscosity,
inertia and gravity for a fluid in motion. 1In 1921
von Karmén applied the Navier-Stokes equations to the flow
near an infinite flat disk which rotated with an angular
Velocity w in a semi-infinite fluid at rest. A layer of
fluid 1s propelled around by the disk through viscous
friction and 1s at the same time thrown outwards due to
centrifugal force. Thils causes a flow 1n an axial direction
towards the disk to replace the fluid thrown out. This 1is
a three-dimensional flow case, 1.e. there exist veloclty
components in the radial direction, r, the circumferential
directlon, 6, and the axial direction, z, which will be
denoted respectively by u, v, and w. An axonometric
representation of this flow is shown in Figure 1. The
general system of Navier-Stockes equations in cylindrical
co-ordinates for the case of incompressible fluid flow

(Schlichting, 1960) are:

11
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Filgure 1. Flow near a disk rotating in a fluid at rest.
Veloclity components: u-radial, v-circumferential and
w-axlal.
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By neglecting the body forces and assuming steady

rotationally symmetric flow of a viscous liquld the Navier-
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dr r z ar rer  n 3z
W W 1l 3p 32w 1 3w 3 W
U—+w —= - = tyv (xSt (3.7)
ar -/ p 92 3 r ar 5z
au . u w
R L A (3.8)
Where v = ¥ = kinematic viscosity

The no-slip condition on the disk gives the following
boundary conditions
z=0 : u=0, v=rs w=0 (3.9)
and the condition of a fluid at rest at infinity gives
z = : u=20, v=20.... (3.10)
The equations of motlion and the continuity equation
are satisfied by the following substitutilons:
u=rf(z), v =rglz), w=nh(z), p=rp(z). . .(3.11)
These assumptions can be used only In laminar flow since
in turbulent flow the veloclty components are not propor-
tional to the radius but more complicated functions of the

radius. Assuming laminar flow, the Navier-Stokes equations

become
2
£2 - g +n £ -1 = (3.12)
dz
2
2rg + h S8 - V1 E = (3.13)
z V2
z:
2
ah , 1dp _ a’h _
hdz +p 3z ~ V 0 (3.14)
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2f + == = 0 (3.15)

with the following boundary conditions
z=0 : £=0, g=w, h=o0, p=p, (3.16)
0 (3.17)

zZ=o ¢ =0, g=0, h=-¢c, p
In order to integrate the system of equations
(3.12-3.15) it 1is convenient to introduce a dimensionless
distance from the disk
= w
t =z (3.18)
The flow equatlions are also changed into non-dimen-
sional form by substituting
f=uwF(z), & =wG(z), h=VYow H(z), p = pvwP(2)
(3.19)

where P, = P—Po

Thus the followlng assumptions are made for the velocity
components and the pressure:

u =wr F(z), Vv = ruG(g), w =Yvw H(g), p = pvwP;(g)
(3.20)

Inserting these assumptions (3.20) into equations 3.5-3.8
d .4 . d¢
dz dg dz
of four simultaneous, ordinary, non-linear differential

and noting that yields the following system

equations for the functions F, G, H, and P,

2
2 2
F -G + %E -4 E 0 (3.21)
C
de
2
OFG + H %% S48 g (3.22)
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dpP, 2
dH d H
— + H 574 - —= = .2
3 a o 0 (3.23)
dH  _
2F + ac - 0 (3.24)

The boundary conditions calculated from equations (3.9) and

(3.10) are:
=0 : F=0, G=1, H=0, P; =0 (3.25)
g = : F=20, G=0 (3.26)

As indicated earlier the first solution of this system
of equations (3.21 - 3.24) was given by von Karman (1921)
by an approximate integral method. Later Cochran (1934)
calculated more accurate values, for a limited number of
values of the independent variable, by a method of numerical
integration. Cochran's solution was obtalned by assuming
a power serles near ¢ = 0 and an asymptotic series for
large values of . By trial and error he connected the

two series which yielded the following boundary conditions

aF aG |
for az and az :
- . dF _ ac _ _
t =0 ac 0.510, az 0.616 (3.27)

In order to use an existing computer program and solve the
equations by a digital computer the dependent variables

F, G, H, and P, were redefined as follows:

dF dG
y1 = H, yo, =F, y3 = G2 Yu =G, ys = ac’

ye = Pp = P-P (3.28)
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The system of flow equations (3.21 - 3.24) were then written
as a system of six first-order linear differential equations

for the functions y;, ¥y2, ¥3, Yus ¥s5, and yg

dy

ac - -2y2 (3.29)
dy»

e = Vs (3.30)
d 2 2

_13 = YV1¥3 t Y2 - VY (3.31)
dc

AT (3.32)
dg

dys

dz- T 2 Yavys * V1Vs (3.33)
dye

gz T V2 - 2ys (3.34)

The original boundary condions (3.24 - 3.25) became
=0 : y;=0, y, =0, y3=0.510, y, = 1.0, ys = -.616,
ye = 0 (3.35)
The values of the functions of velocity and pressure were
calculated by the Michigan State University digital computer
(CDC 3600), using library program D2 UTEX RKAMPDP, and are
shown in Table 1. The values are shown with four decimal
places but the fourth figure 1s insignificant since some
of the 1nitial conditions were accurate to only three signi-
ficant figures. Many of the very small values shown in

Table 1 might be assumed to be zero.
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TABLE 1. Functions for the velocity and pressure distri-
bution as calculated by the digital computer using equations

3.29 - 3.34.
w
T = z)/v' -H F dF/d¢ G -dG/dg -P,

0 .0000 .0000 .5100 1.0000 .6160 .0000
0.1 .0048 .0L462 L4160 .9386 L6113 .0924
0.2 .0179 .0836 .3336 .8780 .5988 .1673
0.3 .0377 .1133 .2618 .8190 .5804 L2273
0.4 .0628 .1363 .1997 L7621 .5578 .2745
0.5 .0918 .1535 L1465 .7075 .5323 .3112
0.6 .1238 .1658 .1013 .6557 .5049 .3393
0.7 .1579 L1740 .0633 .6066 . 4765 .3605
0.8 .1932 .1787 .0315 .5604 L4478 .3761
0.9 .2292 .1805 .0054 .5170 .4193 .3873
1.0 .2653 .1799 -.0232 L4610 .3804 .3974
1.1 .3010 .1775 -.0329 . 4387 .3643 L4003
1.2 .3361 .1735 -.0463 .4036 .3384 . 4035
1.3 .3703 .1683 -.0565 .3710 .3136 .4os52
1.4 . 4034 .1623 -.0641 .3408 .2902 . 4059
1.5 L4352 .1556 -.0694 .3129 .2681 .4058
1.6 . 4656 .1484 -.0726 .2871 L2473 .4053
1.7 .Uou6 L1410 -.0748 .2634 .2280 .4oky
1.8 .5220 .1335 -.0755 .2415 .2099 .4033
1.9 .5480 .1260 -.0751 L2214 .1932 L4021
2.0 L5724 .1185 -.0739 .2028 L1776 .4009
2.1 .5954 L1112 -.0721 .1858 .1632 .3997
2.2 .6169 .1041  -.0698 .1702 .1499 .3985
2.3 .6370 .0973 -.0672 .1558 .1376 .3974
2.4 .6558 .0907 -.0643 L1426 L1263 .3964
2.5 .6733 .084y -.0612 .1305 .1158 .3955
2.6 .6896 .0784 -.0580 .1194 .1062 L3947
2.7 L7047 .0728 -.0548 .1092 .0974 .3939
2.8 .7188 .0675 -.0516 .0999 .0893 .3933
2.9 .7318 .0625 -.0485 .0913 .0819 .3927
3.0 .7438 .0578 -.0454 .0835 .0750 .3921
3.2 .7651 .0493 -.0396 L0697 .0630 .3913
3.4 .7833 L0419 -.0343 .0582 .0529 .3906
3.6 .7988 .0355 -.0295 .0485 .0byy .3901
3.8 .8119 .0300 -.0253 .0403 .0373 .3896
4.o .8229 .0255 -.0216 .0335 .0313 .3893
4,2 .8323 .0214 -.0184 .0278 .0262 .3891
b,y . 8401 .0180 -.0156 .0230 .0220 .3888
4.6 .8U67 .0151 -.0132 .0189 .0185 .3887
4,8 . 8522 .0127 -.0112 .0155 .0155 . 3885
5.0 . 8569 .0106 -.0094 .0127 .0130 .3884
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TABLE 1 (Continued)

w
g = z/g_ -H F dF/de¢ G -dG/dzg -P,
5.2 .8608 .0089 -.0079 .0103 .0109 .3883
5.4 L8640 .0074 -.0067 .0083 .0091 .3882
5.6 . 8668 .0062 -.0056 .0066 .0077 .3881
5.8 .8690 .0052 -.0047 .0052 .0064 . 3880
6.0 .8709 .0043 -.0040 .0040 .0054 .3879
6.2 .8725 .0036 -.0033 .0030 .0045 .3878
6.4 .8738 . .0030 -.0028 .0022 .0038 .3877
6.6 . 8749 . 0025 -.0024 .0015 .0032 .3876
6.8 .8758 .0020 -.0020 .0009 .0027 .3875
7.0 .8765 .0017 -.0017 .0004 .0022 .3875
7.2 L8772 .0014 -.0014 .0000 .0019 .3874
7.6 .8780 .0009 -.0010 -.0006 .0013 .3872
7.8 .8783 .0007 -.0008 -.0009 .0011 .3871
8.0 .8786 .0006 -.0007 -.0011 .0009 .3871
8.5 .8790 .0003 -.0004 -.0014 .0006 .3869
9.0 .8792 .0001 -.0003 -.0017 .0004 .3867
9.5 .8792 .0000 -.0002 -.0018 .0003 .3865
10.0 .8791 -.0001 -.0001 -.0019 .0002 .3863
10.5 .8790 -.0001 -.0001 -.0020 .0001 .3861
11.0 .8789 -.0002 -.0001 -.0021 .0001 .3859
11.5 .8787 -.0002 -.0000 -.0021 .0000 .3856
12.0 .8785 -.0002 -.0000 -.0021 .0000 .3854
® .866% o® o* o#® o# .393%

*These values were calculated by W. G. Cochran (1934).

3.2 Description of the Flow Pattern

In the previous section the general flow equations
were deduced for an infinite disk rotating in a semi-
infinite fluid. 1In our special case we want to consider
the motion of a limited quantity of liquid flowing on a
rotating disk of finite radius. Thils wes done.by studying
the flow patterns in the layer of the semi-infinite fluid

nearest to the disk surface.
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The flow on the disk can be described by means of
streamlines, that 1s, the paths which the liquid particles
follow as they move radially outwards due to rotation of
the disk. In order te characterize the flow as mentioned
it 1s necessary to know the kinematic viscosity of the
liquid, the quantity of liquid flowing on to the disk,
and the speed of rotation of the disk.

The angular velocity 1is related to the speed of
21N

rotation by the formula w = “r5 (3.36)
where w = angular velocity
N = speed of rotation

Use of formula ¢ = 2/573_(eq. 3.18) enables the
determination of the dimensionless distance (z) corres-
ponding to an actual distance (z) above the disk (Appendix A).
Note that z = 0 corresponds to the surface of the disk.
Once the non-dimensionless distance i1s known, the corres-
ponding velocity functlons are obtained‘from Table 1 and
the radial component (u) and tangential component (v) of
veloclty can be calculated by the relationships u = rwF(g)
and v = rwG(z) (eq. 3.20). An example of the resulting
velocity profliles obtained is shown in Figure 2.

The area under the velocity distributlon curve 1is
proportional to the quantity of liquid flowing through this
section. If the thickness of the liquid is known at a

glven radlius then the average radial veloclty of the liquid in

thls layer can be obtained by using the expression
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N = 2400 rpm
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Figure 2. Example of radial and tangential velocity

profiles above a rotating disk.
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=1
U, = g udz (3.37)
o]
where u, = average radial velocity
h = thickness of liquid

and also the quantity of ligquid (Q) flowing on the disk can
be calculated by using the expression

Q = 2nrhuA (3.38)

The surface of the disk where h = 0 represents one
streamline. Another streamline can be found by the
condition that Q = constant.

The flow between two streamlines in the r-z plane
is equal to Q. 1In our case we were therefore interested
in finding this streamline. The values of radial velocilty
(u) were found numerically and therefore the average radlal
velocity (uA) could also only be determined numerically from
the graphs of u versus z. The integral (equation 3.37)
representing the area under a velocity distribution curve,
was evaluated by using a planimeter and applying appropriate
scale factors. A trial and error procedure was followed,
that 1s, varlious h values were selected untll the area
requlred under a curve was obtalined. After the depth of
flow was obtalned, the average radlal velocity component
was determined by using equation 3.37. By determining the
h-value at various radii, a streamline (thickness profile)
in the r-z plane can be plotted for a given flow rate by
assuming constant values of fluid viscosity and rotational

speed.
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We were also interested in the streamline pattern as
seen in the r-6 plane, that 1s, the direction of motion
of particles in the surface z = h. The average tangential
velocity component was determined from the tangential
veloclity distributions by direct use of a planimeter
since the depth of flow had already been determined in the
determination of the average radial velocity. By consldering
the geometry of a particle moving from point A to point B as

shown in Figure 3 1t can be seen that

im 1 ar _ldr _u

460 T A6 r 4o v (3.39)
Or thls may be written as

a8 _ 1 v

dr r u (3.40)

The velocity components (u, v) are functions of the
radius (r). By plotting the ratio of the velocitles
V/u, versus radius r (Figure 4) it was observed that there
was approximately a linear relatlonship between this
velocity ratio and the radial position along the disk for
various flow conditlons indicating that a first degree
polynomial ought to provide a good approximation for this
relationship. Thus assuming % = Ar + B (3.41)
where A and B are constants which were calculated for each
flow case by the Michigan State University digital computer
using llbrary program E2 UTEX LSCFWOP and are shown in

Appendix B. Substituting equation 3.41 into equation 3.40
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Figure 3. Motlon of a particle on a rotating disk.
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Figure 4. Example of how the ratio of tangential velocity
to radial velocity varies with radial position on the disk.
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yields the expression

dé _ , + B (3.42)

By integrating equation 3.42, one obtains the equation

8=Ar + Blnr + C (3.43)

where C a constant of integration, which 1is evaluated

by applying an initial condition.

8 angular dlsplacement

Thus by the use of equation 3.43 the curve along which a
particle moves can be calculated and the resulting stream-
line pattern in the r-6 plane may be determined (Figure 3).
Various streamline patterns will develop at different

heights above the disk due to the variations in the magni-
tudes of the velocity components (u, v). Two streamline
patterns 1n the r-6 plane were plotted for each test con-
sidered. One plot was made using the average values of the
radlal and tangential velocity components at the various
radll considered. The other streamline plotted was the

one whilch existed on the surface of this layer. It was

found that the term in equation 3.43 which contained the
logarithmic function was usually relatively small. Neglecting
this term willl yleld the equation for an Archimedes spiral.
Thus a streamline in the r-6 plane approximates an Archimedes

spiral.



IV. EXPERIMENTAL CONSIDERATIONS

4.1 Description of the Apparatus

An overall view of the testing apparatus 1s shown in
Figure 5. A positive displacement hydraulic pump, powered
by an electric motor, supplied liquid to a small reservoir
mounted above the rotating disk. The small reservolr was
vented near the top to permit oll to flow back to the main
reservolr once the liquld reached the level of this
opening. Thils regulated the formation of hydraulic
pressure 1n the system.

The liquid from the small reservoir flowed by gravity
through a flow-control valve which was used to vary the
liquid flow to the disk. After the ligquid passed through
the valve 1t was directed down to the center of the disk
through a section of 2-inch (2.0 inch outside diameter and
1.75-inch inside diameter) plexi-glass tubing with its
lower edge taped toward the inside. Since it was important
to minimize the axial velocity of the liquld as it flowed on
to the disk and to keep the tube filled with liquid, metal
screens were mounted inside the plexi-glass tube (Figure 6).
The number of screens used 1n the tube depended upon the visco-
sity of the liqulid used. A 3-inch head of liquid was maintained

in the tube directly above the disk. Other elements employed in

27
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Figure 5. The testing apparatus.
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Figure 6. The point gage and plexi-glass tube mounted above
the di

e sk.
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the hydraulic circult consisted of a filter mounted directly
after the outlet of the pump and a thermometer mounted in
the elbow above the plexi-glass tublng for oil temperature
measurement.

The quantity of liquid flowing on to the disk was
'determined by diverting the liquid flowing from the disk
into a 1l-gallon can placed in the main reservoir (Figure 7).
A stop watch was used to measure the time of flow and the
amount of liquid was determined by weighing the can with a
scale. By knowling the specific gravity of the liquid, the

liquid flow (Q) was determined using the relationship

Q= 122 W gon
where s = specific gravity of the liquid
w = welght of the 1liquid, 1b.
t = time of flow, sec.

A 6-inch diameter steel disk was machined and mounted
inside a cylindrical tank (Figure 5). The disk was driven
by a variable speed (-3200 rpm to +3200 rpm) electric motor
and a 0-2500 rpm tachometer was used to indicate the disk
speed. All four legs of the tank and the electric motor
were bolted to the concrete floor to reduce vibration.

The thilckness of the 1liquld layer on the disk was
measured with an Ames dial indicator, having a range of 0
to 1 inch, graduated in .001 inch increments and accurate

to within +.001 inch, as shown in Figure 6. Initially the



Figure 7. Equipment used for flow measurement.
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dial indicator was set so that a zero reading was obtained
when the tip of the point gage touched the top surface of
the disk. Thus when the pointer was set to just touch the
surface of the liquid, the reading on the dial indicator
was a direct measurement of the thickness of the liquid
flowing. The accuracy of this method of measurement was
estimated to be +.002 inch. The dial indicator was
mounted in a support (Figure 6) so that it could be rotated
around in a plane parallel to the surface of the disk.
Thus the zero reading, representing the surface of the
disk, remained the same for every position at which the

thickness of the ligquid was measured.

4.2 Selection of a Viscous Liguld

The basic requirement of the viscous liquid used 1n
the experimental work 1s that it be a Newtonian fluild, that
1s, 1ts viscosity remains constant at any given temperature
regardless of the rate of shear. Georgi (1955), Klaus and
Fenske (1955), and Appeldoorn et al. (1962) have shown
that stralght mineral oils behave like Newtonilan flulds
at temperatures above 32°F. Motor oils which contain
appreclable amounts of viscosity 1index-improving additives
were 1indicated to be non-Newtonlan fluids throughout the
temperature range to which olls are ncrmally exposed in
engines. Because of their suitable properties, stralght
mineral oils were used in the experimental apparatus to

verify the theoretical results.
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Two oils were used for the tests: one was an S.A.E.
20 mineral oil (Everest-Cutler 0il Co.) with a typical
viscosity of about 300 S.U.S. (Saybolt Universal Seconds)
at 100°F and a viscosity index of 45-50; the other oil
was an industrial hydraulic oil (Industrial No. 75-
American 0il Co.) with a typical viscosity of about 750
S.U.S. at 100°F and a viscosity index of 95-100. Small
quantities (20 to 30 parts per million) of silicone foam
suppressor (Dow Corning 200 Fluld) were added to both oils

to prevent foaming.

4.3 Experimental Procedure

The surface of the disk was sprayed with black paint
to provide a dark background for photographing the flow
pattern of the liquid. Concentric circles spaced one-half
inch apart were drawn on the disk surface to enable a
visual determination of radlial position on the disk. This
facllitated both the method for measuring the thickness
of the liquld and the method for studying the streamline
pattern on the photographs since the radial positions were
clearly marked on the disk and could be observed because
the olls used were transparent.

The streamline pattern on the disk was photographed
wlth a single-lense reflex camera (Pentax H-2), with a focal
plane shutter, mounted about one foot above the disk. A
short extension tube was employed between the lense and the

camera body to permit focusing of the lense at shorter
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distances. Various shutter speeds were used and it was
found that slower shutter speeds of 1/30 sec. or 1/60 sec.
were more suitable for obtaining a continuous streamline
pattern and the high shutter speeds of 1/250 sec or 1/500
sec. were more sultable for studying the relative velocities
of particles as they moved radially outwards.

Since the viscosity of oil 1s affected by temperature
it was necessary to control the operating temperature of
the 01l during the tests. By operating the experimental
apparatus for a period of 2-3 hours it was observed that
the temperature of the oll became relatively stable when it
reached_95°F. Four 250-watt heat lamps were placed around
the 0ll reservoilr to heat the oll to 100°F. The temperature
of the oll was tﬁen maintained at 100°F (#.2°F) by varying
the positlon and the number of heat lamps as required. All
the tests were made employing 6 gallons of oil in the system.

After the equipment had operated for 2 hours with the
oll at the operating temperature of 100°F, two samples of
the oll were taken for analysis. The specific gravity
defined as the weight of a product in relation to the
welght of an equal volume of water was determined by the

followlng relationship

welght of the oil
welght of an egual volume of water

speéific gravity (s) =

Georgli (1950) stated that capillary tube viscosimeters

are considered as the most accurate means available for
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Viscosity measurement of lubricating oils. A Series 200
Modified Ostwald Viscosimeter was immersed in a constant
temperature bath maintained at 100°F and used for the
Viscosity determinations. The viscosimeter tube was first
calibrated using distilled water as a reference fluid,
then the tube was charged with an o1l sample. To equalize
the liquild temperature with the bath temperature, the
liquld was allowed to remain in the tube for 10 minutes
before the actual tests were made. The tests consisted

of drawing up the ligquid sample by suction until the lower
bulb was fllled and the upper bulb was partially filled.
After removing the suction, the liquid was allowed to flow

down the tube by gravity and the time is seconds was

recorded for the oll level to pass between two etched marks.

The kinematic viscosity (v) of the o0il sample was determined

by using the relatiopship

v=§——vw
W
v = kinematic viscosity of the oil @100°F
vy T kinematic viscosity of the distilled water
@100°F
t = time of flow of the o0il @1l00°F
tw = time of flow of the distilled water @100°F

The properties of the olls were determined after the

oll was subjJected to considerable usage since a small amount

of alr was entrained in the o0ll causing the viscosity to
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increase slightly and the specific gravity to decrease
slightly when compared with the values obtained by employing

unused samples. The required properties for the olls are

shown in Table 2.

TABLE 2. Values of specific gravity and kinematic viscosity
obtailned from samples of the olls used in the laboratory

tests.
Kinematic Viscosity
Type of 0il Specific Gravity (s) (v)in?/sec @100°F
S.A.E. 20
Mineral 011 .90 .087
Industrial Hydraulic
011 .84 .194

The final consideration in the experimental pro-
cedure was the determination of what distance should be
maintalned between the plexi-glass tube and the disk to
allow the liquid to flow on to the disk. Preliminary tests
indicated that varying this distance from .20 inches to .40
Inches produced some variation in the streamline pattern
and 1in the thickness of the liquild only in a region within
one-inch from the outside of the tube (radius = 1.0 in)
wlth no noticeable effects produced beyond thls region of
fflow. It was thus decided to maintaln a distance of 0.300
inches between the lower taped inside edge of the plexi-

glass tube and the surface of the disk for all the laboratory

tests.
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It should be pointed out that it was impossible to
duplicate the theoretical flow conditions in the experi-
mental work. The theoretical solution was obtalned for
the flow of a semi-infinite mass of fluid which could only
be expected to be approximately correct for the experimental

work where the fluld was a layer of limited thickness.



V. PRESENTATION AND DISCUSSION
OF RESULTS

A serles of elght tests were conducted to study the
effect of flow rate, viscosity, and rotational speed on
the flow of a viscous liquild on a rotating disk. The
tests are out-lined in Table 3.

TABLE 3. Tests conducted to study the flow of a viscous
liquid on a rotating disk.

Test Kinematic Viscosity Flow Rate Rotational Speed

Number (v) in?/sec. (Q) gpm (N) rpm
1 .194 10.2 1000
2 .194 10.2 2400
3 .194 5.0 1000
Yy .194 5.0 2400
5 .087 10.2 1000
6 .087 10.2 2400
7 .087 5.0 1000
8 .087 5.0 2400

5.1 Streamlines in the r-z Plane

The experimental and theoretical streamlines in the
r-z plane (depth of flow versus radial position relationships)

are compared in Figures 8 to 11. As was expected, there

38
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Tests 1 and 3
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Plexi-Glass T Streamline
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Figure 8. Comparison of experimental and theoretical stream-
lines in the r-z plane for hydraulic oil (v = .194 in?/sec.
flowing on a disk rotating at 1000 rpm.
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Plexi-glass Tests 2 and 4
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Figure 9. Comparison of experimental and theoretical stream-
lines in the r-z plane for hydraulic oil (v = .194 in?/sec)
flowing on a disk rotating at 2400 rpm.
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Plexi-glass Tests 5 and 7
Tube Theoretical
Streamline
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| Streamline
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Figure 10. Comparison of experimental and theoretical stream-
lines in the r-z plane for mineral oil (v = .087 in?/sec)
flowing on a disk rotating at 1000 rpm.
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Tests 6 and 8
Plexi-glass Theoretical
Tube Streamline
~---Experimental
J Streamline
—.300 - - - - --~- \
\
\
n |
- 250 & 5.0 gpm 10.2 gpm
\\
\\
\\
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\ \
\
\
~ .150 \
~ .100
—.050
| | | | ] J
0 0.50 1.00 1.50 2.00 2.50 3.00

Radial Distance, r (in)

Flgure 11. Comparison of experimental and theoretical stream-
lines in the r-z plane for mineral oil (v = .087. 1in2/sec)
flowing on a disk rotating at 2400 rpm.
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was conslderable deviation between the experimental and
theoretical curves 1in the area where the oll was initially
Introduced onto the disk. Thils was due to the face that
in the theoretical solution it was assumed the disk rotated
in a body of liquid where there 1s essentially no point of
introduction of the liquid ontoc the disk. Thecretically
however, it 1s possible as earlier shown to determine a
streamline representing a certain flcw quantity, assumirg
constant rotational speed and liguid viscosity. It 1s inter-
esting to note that theoretically fcr the velocities and
viscosities used in this investigation, a rotating disk has
little or no effect on the movement of liquid which is
located 0.20 inches or mcre above the surface of the disk.
This 1s due tc the fact that the radial and tangential
components of veloclty become negligible in this reglor as
shown 1n Appendix A.

The experimental curves 1in the area where the o1l
was introduced onto the disk could have been made to
correspond mcre closely to the theoretical curves by in-
creasing the dlameter of the plexi-glass tube, used abcve
the disk, untll the inside surtace of the tube colincided
with the theoretical curve. 1Increasing the diameter ct
the tube has the other advantage of reducing the axial
veloclty of the liquid so as to agree more clcsely with the
theoretical values. In the experirental tests ccnducted, the
axlal velocity of the o0ll at the outlet was usuzlly consider-

ably higher than the theoretical values 4s shown in Tabtle 4.
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An increase in the axlal velocity of the liquid would
tend to increase the resultant velocity of the Lliquid on the
disk. However, since the magnitude of the axial velocity 1s
relatively small compared to the resultant veloclty, as
shown in Table 4, the difference in the initial kinetic energy
may be assumed to have relatively small influence on the
final result.

There was good agreement between the experimental and
theoretical streamlines at radial distances of two 1nches
or more when the rotational speed cf the disk was 1000 rpm
(Figures 8 and 10). At the higher rotational speed of 2400
rpm (Figures 9 and 11) the experimental values for the
thickness of the liquld were higher than the theoretical
values at radial distances of two inches cr mecre. In this
flow region 1t 1is interesting to note that at the high
rotational speed (2400 rpm) the experimental values of
depth of flow are affected more by changes In o5il visccsity
than by changes in the flow rate. 1In all cases the real
influence of flow rate i1s less than predicted by the thecre-
tical solution. The experimental results also indlcated
that the boundary layer thickness increased slightly at the
edge of the disk at the higher rotational speed rather than
decrease as shown by the theoretical values. The variaticn
between the experimental and theoretical curves obtained at
the higher rotational speed (2400 rpm) can be at leas* par-

tially explained by considering boundary-layer stabllity.
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The criteria used to determine the stability of flow
is obtained by considering the ratio of inertla forces to
friction forces as expressed by the Reynolds number Re.
For the case of flow on a rotating disk the value of Re 1s

determined by using the relationshilp

riy
Re = 'T"— (5.1)

where
Re = Reynolds number
r = radial distance
w = angular veloclity of the disk
v = kinematic viscosity of the fluid
Schlichting (1960) when considering the torque on a
disk retating in a body of fluild, stated there was good
agreement between the theoretical values for laminar
flow and the experimental values of torque for Reynolds
numbers up to about Re = 3x10°. At higher Reynolds numbers
the flow was definitely turbulent. The curves plotted by
Schlichting show that the onset of instability was present
at measured Reynolds numbers (r2w/v) as low as 10“. The
values of Reynolds numbers present in the experimental
tests are summarized in Table 5.
Gregory, Stﬁart and Walker (1955) discussed boundary-
layer instability from both the theoretical and experi-

mental points of view for a disk rotating in a compressible
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TABLE 5. Values of Reynolds number present in the labora-

tory tests.
Kinematic Rotational ) R
. .\‘\ r « ;‘l‘ A el e
Viscosity Speed (N) Test Reynolds Humber (Re)
(v) in?/sec. rpm No. r=1.0 in r=2.0 in r=3.0 in
1000 1 or .055x10% .22x10% .49x10%
3
.194
2400 2 or .13 xlo“ .52x10% 1.17x10"
4
1000 5 or .12 x10“ .48x10"% 1.08x10"
7
.087
2400 6 or .29 x10% 1.16x10" 2.60x10"
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fluid (air). They conducted experiments with a 12«inch
diameter disk having one side coated with china clay for
indicating the transition from laminar to turbulent flow.
The boundary-layer velocity profiles were measured and
compared with the theoretical laminar profiles. The shapes
of some of the curves obtained by Gregory and Walker are
shown in Figures 12 and 13. The curves showed that for
laminar flow the tangential velocity component was in good
agreement with theory, while the radial component had a
peak value which 1s somewhat lower than the theoretical.
The experimental profiles (Figures 12 and 13) showed that
for turbulent flow both the radial and tangential velocity
components had smaller peak values which dld not decrease
as rapidly as the theoretical values with increasing
distance from the disk surface. Gregory et al. stated that
on a one-foot dlameter disk rotating in air the onset of
boundary layer Iinstability occured at Reynolds numbers of
1.8-2.1 x 103 and the highest value of Reynolds number at
transition, 2.99 x 10°, was obtained when the air in the
room was at its stillest. The results of this work carried
out 1in an aerodynamic laboratory can be applied to the
present investigation on the flow of a viscous liquid (o0il)
since similar theoretical considerations were made for
investigating the boundary layer on the rotating disk.
Also 1t 1s known that two systems are dynamically similar

i f thelr Reynolds numbers are similar.

L ARIOTET ) WA Dy
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Figure 12. Comparison of experimental and theoretical
radial velocity profiles on a disk rotating at 2100
rpm in air (obtained by Gregory et al. 1955). Curve
1, theoretical laminar profile; 2, 3, 4 experimental
profiles; 2, laminar region; 3, instability regilon;

4, turbulent region.



.01 .02 .03 .04 .05 .06 .07 .08 .09 .10
Distance Normal to Disk Surface, z (in)

Figure 13. Comparison of experimental and theoretical
tangentlal velocity profiles on a disk rotating at
2100 rpm in air (obtalned by Gregory et al. 1955).
Curve 1, theoretical laminar profile; 2, 3, 4, experi-
mental profiles: 2, laminar region; 3, instability
region; 4, turbulent region.
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Thus the varliations between the experimental and
theoretical curves (Figures 9 and 11) at the higher
rotational speed were due to the differences in the shapes
of the velocity profiles. At radial distances of two
inches or more the experimental values for the thickness
of the boundary layer were higher than the theoretical
values 1indicating the actual radial velocity was lower
than the theoretical value. Thils statement 1s in agreement
with the velocity distribution curves (Figure 12) obtained
by Gregory et al. The values of Reynolds numbers (Table 5)
present in the laboratory tests 1ndicate there was limited
turbulent flow present at the higher rotational speed
which may have reduced the magnitude of the radial velocity.

It 1is difficult, however, to explaln why the thilckness
of the liquid, measured at the edge of the disk rotating
at 2400 rpm was affected by kinematic viscosity but not by
flow rate. In the theoretical conslideration 1t was assumed
the disk was an Infinite rotating plane. The results were
extended to 1nclude a disk of finite diameter by neglecting
the edge effect. The significance of neglectling the edge
effect 1s not known but 1t 1s normally assumed that if the
boundary layer thickness is small compared to the radius
of the disk then the edge effect can be neglected in a
semi-infinite fluid. Since there 1s a finite quantity of
liquid present in our case we must also consider the layer

thickness.

L Y 1
-
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5.2 Streamlines in the r-6 Plane

The streamlines in the r-6 plane, that is, the path
followed by a partlicle moving on the disk as seen 1n the
direction of the axls, was calculated for two positions in
the liquid (Appendix B): the surface streamline was calcu-
lated first by uslng the magnitudes of the veloclity compon-
ents present 2t the free surface of the liquid and secondly,
for comparison, the streamline pattern was calculated using

the average values of the radial and tangential velocity

components at each radial position considered. A study of
the velocity profiles indicated the "average streamline"
corresponds approximately to a streamllne at two-thirds of
the layer height above the disk.

The theoretical and experimental streamlines in the
r-0 plane are compared in Figures 14 to 21. All the curves

are drawn through a common point located two inches from

14!
4

the center of the disk. The experimental curves were
approximated by taking measurements from the photographs {

taken 1n the laboratory. These experimental curves were ‘

assumed to represent the flow on the free surface of the

BT

liquid.
Comparison of the experimental and theoretical stream-
line patterns (Figures 14-21) existing on the surface of
the 1liquid, 1ndicates good agreement especially for cases
of high flow (10.2 gpm) and low rotational speeds (1000 rpm).

In every case the experimental curve falls between the two



STREAMLINES (TEST NO. 1) \
————— Experimental (surface)
Theoretical (surface)
—-— Theoretical (average)

Figure 14. Comparison of experimental and theoretical stream-

lines in the r-e plane for 10.2 gpn flow of hydraulic oil

(s = 2294 inz/secg onto a disk rotating at 1000 rpm (clockwise)
(MSU Photo No. 65772-2).
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STREAMLINES (TEST NO. 2)
Experimental (surface)
Theoretical (surface)

— -— Theoretical (average)

Figure 15. Comparison of experimental and theoretical

streamlines in the r-¢ plane for 10.2 gpm flow of hydraulic

01l (v = .194 in2?/sec.) onto a disk rotating at 2400 rpm
(clockwise).
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STREAMLINES (TEST NO. 3)
Experimental (surface)
Theoretical (surface)

——- — Theoretical (average)

T
j \
i

Figure 16. Comparison of experimental and theoretical

streamlines in the r-6 plane for 5.0 gpm flow of hydraulic

0il (v = .194 in2/sec) onto a disk rotating at 1000 rpm
(clockwise).
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— STREAMLINES (TEST NO. 4)

————— Experimental (surface)
Theoretical (surface)
——-—Theoretical (average)

e e

o 7 -
~L

Figure 17. Comparison of experimental and theoretical

streamlines in the r-g plane for 5.0 gpm flow of hydraulic

01l (v = .194 1in2/sec) onto a disk rotating at 2400 rpm
(clockwise) (MSU Photo No. 65772-1).
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STREAMLINES (TEST NO. 5)
----- Experimental (surface)
Theoretical (surface)
— -——Theoretical (average)

Figure 18. Comparison of experimental and theoretical stream-

lines in the r-g plane for 10.2 gpm flow of mineral oil

(v = .087 in?/sec) onto a disk rotating at 1000 rpm (clockwise)
(MSU Photo No. 65772-5).



58

~| STREAMLINES (TEST NO. 6)
Experimental (surface)
Theoretical (surface)

—-——Theoretical (average)

|

Figure 19. Comparison of experimental and theoretical stream-

lines in the r-e plane for 10.2 flow of mineral oil (v = .087

in2/sec) onto a disk rotating at 2400 rpm (clockwise) (MSU
Photo No. 65772-6).
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STREAMLINES (TEST NO. 7)
Experimental (surface)
Theoretical (surface)

—-— Theoretical (average)

Figure 20. Comparison of experimental and theoretical

streamlines in the r-e plane for 5.0 gpm flow of mineral

oil (v = .087 in2/sec) onto a disk rotating at 1000 rpm
(clockwise) (MSU Photo No. 65772-7).



Figure 21.
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STREAMLINES (TEST NO. 8) !
————— Experimental (surface )

Theoretical (surface)
—-—Theoretical (average)

Comparison of experimental and theoretical stream-

lines in the r-6 plane for 5.0 gpm flow of mineral oil

v

.087 in2/sec) onto a disk rotating at 2400 rpm (clockwise)
(MSU Photo No. 65772-8).
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theoretical streamline curves: one for surface velocity
components and the other for average velocity components

at each radial position. The deviations between the
experimental and theoretical streamline curves can be
explained by a discussion similar to the one given earlier
in explaining the variations in the thickness profiles on
the disk. Since the radial velocity profile on the disk
has a peak value which was smaller than the theoretical
value (see Firure 12), the experimental surface streamline
fell inside the theoretical curve on the disk. The
photographs talken at the higher rotational speeds (2400 rpm)
did illustrate some transition in the boundary layer near
the edge of the :isk. Gregory and Walker (1955) took a
photograph showing the process of transition on a disk
rotating in air. This photograph showed that in an annular
region near the edge of the disk there were stationary
vortices which assumed the shape of logarithmlc spirals.
The inner radius of this region marked the onset of
iﬁstability (Re = 1.9x10%) and the transition to turbulent
flow occurred at an outer radius corresponding to a Reynolds
number of 2.8x10°%. The values of the Reynolds numbers
present in our laboratory tests are shown in Table 5. The
maximum value of Reynolds number was 2.6x10° which seemed
to indicate that in the present investigation the limit for
stability occurredat smaller Reynolds numbers than those

indicated by Gregory et al. (1955). It is likely that there
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was considerable turbulence in the oil as it flowed to the
disk thwrongh the screens.

The experimental and theoretical surface streamlines
are compared in Table 6 by using two descriptive para-
meters: one was the angular displacement of the particle
when moving.from a radius of two inches to a radius of
three inches (the edge of the disk); the other parameter
was the angle relative to the radius with which a particle
leaves the disk.

This comparison of the streamlines indicated, in every
test, that the 2xverimental values of both the angular
displacements and the angles relative to the radius'were
larger than indicated by the theory.

A final evaluation of thne theory was made by comparing
the experimentil and theoretical average radial and average
tangential veloclities at the edge of the disk as shown
in Table 7. This comparison of the experimental and
theoretical velocities indicates relatively good agreement
at low rotational speeds (1000 rpm-Tests 1, 3, 5, and 7)
bﬁt at the high rotational speeds ( ' rpm-Tests, 2, 4, 6,
and §) the theoretical values of velocity were considerably
larger than the experimental values.

5.3 Flow on Selected Areas of
the Rotating Disk

It was mentioned earlier that in certain applications

1t is desirable to limit the area of liquid flow from a
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rotating disk. An attempt was made to produce a spray
pattern similar to the one produced by a fan-type spray
nozzle by controlling the introduction of the liquid on
to the disk. To produce this form of spray pattern, nozzles
with speclal-shaped openings were constructed to introduce
only a sector of the flow normally present with axially-
symmetric liquid introduction on to the disk.

The nozzle openings were designed on the basis of
the shape of the streamlines existing in the r-6 plane

such that the liquid particles at various helghts along an

edge of the opening would travel out and meet at a common
point on the periliphery. The horizontal openlng between

the edges of the nozzle controlled the width of liquid flow
from the disk.

Two types of nozzles (Figures 22) were constructed
using 3-inch (3.00-inch outside diameter and 2.45-inch
inside diameter) plexi-glass tubing: one nozzle had a r
closed bottom which permitted liquid to flow out through
an opening 1n the slde, the other nozzle had an open

bottom which permitted liquid to flow against the disk

within the nozzle. Both nozzles had parallelogram-shaped 5
openings (Figure 23) designed on the basls of the theoreti-
cal streamlines in the r-6 plane from r=1.5 in (outside of
the nozzle) to r=3 in (edge of the disk) as shown in Figure
23. The slope X of the edges of the openings was determined

by measuring the angular distance between the surface




Figure 22.

nozzle (right) with parallelogram shaped openings.

Closed-bottom nozzle (left) andrépen—bottom

—

e

|

Figure 23. Diagram of a paral elogram-shaped nozzle

opening.
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streamline (AB) and the average streamline (AC) at r=1.5 in.
when drawn from a common point A (Figure 23) at r=3.0 in.
and using the relationship

Slope (o<) = tan-l r;o, = tan—l 1.561
h h

where

6, = angular displacement between the surface stream-

line and average streamline at r,

r, = radlal posltion of the outside of the nozzle

h = depth of the 1liquid

Calculations based on the methods presented earlier
(section 3.2) showed that the "average streamline"
corresponded to the particle movement at from approximately
one-third to two-thirds of the layer height above the disk.
Thus in the present design considerations the streamlines
corresponding to particle movement at less than one-thilrd
of the layer depth were not considered. The amount of
radlal flow in this bottom layer is, however, small. A
liquid depth of .20 inches was selected for the nozzle
design. The horizontal distance between the sloping edges
of the nozzle opening corresponded to an angular displace-
ment of approximately 75 degrees, representing a typical
spray width for a hydraulic spray nozzle. By varying the
flow rate, a 7-inch head of hydraulic oil (v = 194 in?/sec.)

was maintalned above the nozzle opening in all the tests.
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The flow patterns from the special nozzles are shown
in Figures 24 to 27. A rotational speed of 1000 rpm was
émployed for these tests since 1t was observed that increasing
the speed to 2000 rpm had little noticeable effect on the
flow pattern. The resulting flow patterns indicate the
presence of hligh tangentlal veloclty and low radial velocity
of the liquid closest to the disk. In Figure 27 a large
alr bubble is clearly visible along the outside of the
nozzle which shows that the calculated angular displacement
of the layers at the inlet to the disk was as desired.

After measuring both the depth of the oil and the
resultant flow direction and by assuming a uniform velocity
profile in the liguld at the edge of the disk the proportion
of o0ll leaving the disk at varlious areas was determined.

On the basis of these results 1t was observed that in the
area of highest concentration approximately two-thirds of
the liquid was leaving the disk in one-fifth of the circum-
ference. It 1s felt that wilth further work and the addition
of shrouds to prevent the undesirable flow, the disk may

be used to produce an acceptable fan-type spray pattern.
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Figure 24. Flow pattern from the closed-bottom nozzle
(N = 1000 rpm, Q = 4.4 gpom,v = .194 in?/sec.).

Figure 25. Streamlines in the r-e plane for the closed-
bottom nozzle (N = 1000 rpm, Q = 4.4 gom v = .194 in2/
sec.).
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Figure 26. Flow pattern from the open-bottom nozzle
(N = 1000 rpm, Q = 5.4 gpm,v = .194 in? /sec) (MSU
Photo No. 65772-15).

Figure 27. Streamlines in the r-plane for the open-
bottom nozzle (N - 1000 rpm, Q = 5.4 gpm, v = .194 in2
/sec) (MSU Photo No. 65772-16).



VI. SUMMARY AND CONCLUSIONS

6.1 Summary

The principle of centrifugal distribution or
atomization of liquids has many inherent advantages. An
investigation was conducted to obtain a more thorough
ﬁnderstanding of the factors affecting the flow of a liquid
on a rotating disk and to determine the feasibllity of
using theoretical conslderations to describe the fluid
motion.

In this investigation a solution to the Navier-
Stokes equations, for the case of flow around a disk
rotating in a fluild at rest, was applied to the present
flow situation. The flow on the disk was characterized by
means of streamlines in both the r-6 plane and the r-z
plane. In order to obtaln the thickness profile for a
specifled flow condition, the areas under the veloclty
profiles were found with a planimeter. A first order
polynomial approximation for the ratio of tangential
veloclty to radlal veloclity as a function of radius was
integrated and used to obtain an equation for the path
traced by a particle moving on the disk.

An experimental apparatus consisting of a 6-inch
(15.2 om) diameter steel disk powered by a variable-speed

71
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electric motor was used to verify the theoretical results.
Two mineral olls were selected for the tests because of
thelr Newtonian behavior: one had a kinematic viscosity
of .087 in?/sec (56.1 centistokes) @100°F and the other
01l had a kinematic viscosity of .194 in?/sec (125.0

centistokes) @100°F. The oll temperature was maintained

T nx"

at 100°F throughout all the tests by controlling the
operation of heat lamps placed around the main oil
reservolr. The oll was introduced axlally symmetric

on to the disk through a 2-inch (5.1 cm) outside diameter

plexi-glass tube designed to reduce the axial velocity
component of the -0l1l. A distance of .300 inches (.75 cm)
was maintained between the disk surface and the lower

edge of the plexl-glass tube for all the tests. Rotational
speeds of 1000 rpm and 2400 rpm and flow rates of 5.0 gpm
(.32 liter/sec.) and 10.2 gpm (.64 liters/sec.) were used
in the tests. A serles of eight tests were conducted to
study the effect of rotational speed, flow rate and fluid
Viscosity on the flow of the 1liquid on the disk.

The thickness of the 01l layer on the disk was

measured with a point gage and the surface streamline
patterns in the r-6 plane were obtalned from a photograph.
The theoretical and experimental curves were compared and
the deviations between some of the curves were explalned.
Preliminary experiments were made injecting liquid

through speclal nozzles on a sectlon of the disk.
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6.2 Conclusions

As a result of this study, the following conclusions

are presented:

1.

The Navier-Stokes flow equation can be success-
fully used to predict the laminar flow of a
Newtonlian fluld on a rotating disk. The actual
deviations from the theoretical solution are
discussed below in point 6.

Increasing the kinematlc viscosity of the

liquid increased the boundary layer thickness

of the liquid on the disk and also increased the
angular displacement of the liquid on the disk
which resulted in a higher resultant average
velocity of the liquid leaving the edge of the
disk, assuming constant flow rate and rotational
speed. -
Increasing the flow rate of the liquid onto the
disk increased the boundary layer thickness of
the liquid on the disk and also decreased the

angular displacement of the liquild on the disk

o

which resulted in a lower resultant average
veloclty of the liquid leaving the edge of the
disk, assuming constant liquid viscosity and

rotatlional speed.
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Increasing the rotational speed of the disk
decreased the boundary layer thickness of the
fluid on the disk and also increased the angular
displacement of the liquld on the disk which
resulted in a higher resultant average velocity

of the liquid leaving the edge of the disk,

assuming constant liquid viscosity and flow rate.

The angle relative to the radius wilth which a
liquid particle leaves the disk 1ncreases with
increased angular displacement of the 1liquid,
increased disk radius and decreased helght above
the disk surface. This angle has a maximum
value of 90 degrees on the surface of the disk
implying that a particle at this height has only
tangential veloclty. As the distance above the
disk increases the flow becomes more 1n a

radial direction.

When compared with the theoretical results, the

experimental results indicated that the flow

rate had less effect than theoretically expected,

while the viscoslty and tﬁe rotational speed had
the expected effect on the streamlines used to
characterize the liquid flow on a rotating disk.
Comparison of the surface streamlines 1in the

r-6 plane indicated that 1in every test the

G 2 LN S

ST
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experimental values of both the angular displace-
ments and the angles relative to the radius were
slightly larger than indicated by the theory.

When the liquild was introduced axially symmetrical
onto the rotating disk, the liquid was uniformly
distributed about the entire periphery of the

disk. By introducing the liquid through a specilal-
shaped nozzle on a section of the disk, approxi-
mately two-thirds of the liquid left the disk on

one-fifth of the circumference of the disk.
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SUGGESTION FOR FURTHER STUDY

Further investigations should be conducted to obtain

a better understanding in the following areas:

1.

Edge Effect.--Tests should be conducted with
disks having various diameters so that the edge
effect of the disk can be determined.

Veloclty Profiles.--Instrumentation should be

employed to enable measurement of the veloclty
components at different positions in the liquid.

Ligqulid Introduction.--The diameter of the tube

used to Introduce the liquid onto the disk should
be varled to satisfy the condltions dictated by
the theoretical solutions.

Partial Flow.--More extenslve laboratory tests

should be conducted with speclal shaped nozzles
and auxiliary devices should be added to provide

better control of the liquid flow.

76

IR Y !‘q

ECL OIS by

\
Y-



REFERENCES

Appeldoorn, J. K., Okrent, E. H., and Philippoff, W.
1962 Viscosity and elasticity at high pressures and
high shear rates. American Petroleum Institute

Proceedings, Section III Vol. 42:163-172.

Bainer R., Kepner, R. A., and Barger, E. L.
1955 Principles of Farm Machinery. John Wiley and
Sons Inc., New York 571 pp.

Bodewadt, U. T.
1940 Die Drehstromung uber festem Grunde. Zeiltschrift
Fur Angewandte Mathematik Und Meckanik. Vol. 20:
241-253.

Cochran, W. G.
1934 The flow due to a rotating disc. Cambridge
Philosophical Society Proceedings. 30:365-375.

Crowther, A. J.
1958 The distribution of particles by a spinning disc.
Journal of Agricultural Engineering Research
3 (4):288-291.

Fettls, H. E.

1955 On the 1ntegration of a class of differential
equatlons occuring in boundary layer and other
hydrodynamic problems. Proceeding of 4th Mid-
western Conference on Fluid Mechanics : 93-114

Georgl, C. W.
1950 Motor Oils and Englne Lubricatlon, Relnhold
Publishing Corporation, New York: 514 pp.

Georgli, C. W.
1955 Viscoslty characteristics of motor olls at
higher shear rates. Proceedings Fourth World
Petroleum Congress, Rome. Section VI/C: 211-221.

Gregory, N., Stuart, J. T., and Walker, W. S.
1955 On the stabllity of three-dimensional boundary layers
with application to the flow due to a rotating disk.
Royal Soclety of London Philosophical Transactions
A248:155-199.

7



78

Gunkel, W. W.

1957 Deposit of mist concentrate spray as influenced
by droplet size, alr velocity, temperature and
humidity. Thesls for the degree Ph.D, Michligan
State University, East Lansing. (unpublished)

Hannah, D. M.
1947 Forced flow against a rotating disc. Great
Britaln Aeronautical Research Councll Reports
and Memoranda No 2772:1-17.

Homann, Von F. .
1936 Der Einfluss grosser Zahigkeit bel der Stromung
um den Zylinder und um die Kugel. Zeitschrift
Fur Angewandte Mathematik Und Mechanik. Vol. 16,
No. 3 : 153-164.

Houghton, H. G.
1950 Spray Nozzle. pp 1170-1175 Chemical Engineers
Handbook, third edition. John H. Perry, editor.
McGraw-Hill Book Co. New York, pp. 1170-1175.

Inns, F. M., and Reece, A. R.
1962 The theory of the centrifugal distributer (II),
Journal of Agricultural Engineering Research
7(4) : 345-353.

Karman, Th..von
1921 Uber laminare und tubulente Relbung. Zeltschrift
Fur Angewandte Mathematik Und Mechanik. Vol. 1,
No. 4 : 233-252.

Karman, Th. and Lin, C. C.
1961 On the existence of an exact solution of the
equations of Navier-Stokes. Communications on
Pure and Applied Mathematics 14 : 6U45-655.

Klaus, E. E. and Fenske, M. R.
1955 Some viscosity-shear characteristics of lubricants.
Lubrication Engineering, March-April : 101-108.

Lance, G. N., and Rogers, M. H.
1962 The axially symmetric flow of a viscous fluid
between two infinite rotating disks. Royal
Soclety Proceedings 266 : 109-121.

Leigh, D. C.
1955 The laminar boundary-layer equation: a method
of solution by means of an automatic computer.
Cambridge Philosophical Society Proceedings 51;
320-332.



Patterson,
1962

79

D. E. and Reece, A. R.

The theory of the centrifugal distributor (I).
Journal of Agricultural Englineering Research
7(3) : 232-240.

Schlichting, Von H. and Truckenbrodt, E.

1952

Die Stromung an einer angeblasenen rotierenden
Schiebe, Zeitschrift Fur Angewandte Mathematik
Und Mechanik Vol. 32 : 97-111.

Schlichting, Von H.

1960

Stewartson, K.

1952

Stuart, J.
1954

Boundary Layer Theory. McGraw-Hill, Inc., r
New York. 647 pp.

The flow between two rotating coaxlal disks.
Cambridge Philosophical Society Proceedings. 49
333-341.

T.
On the effects of uniform suction on the steady
flow due to a rotating disk. Quarterly Journal
Mechanics and Applied Mathematiecs T7:446-457

——— VR TN T

Truckenbrodt, E.

1954

Rogers, M.
1960

Tifford, A.
1952

Wu, J. C.
1961

Die turbulente Stromung an einer angeblasenen
rotlerender Schelbe. Zeitschrift Fur Angewandte
Mathematik Und Mechanik Vol. 34 : 150-162.

H. and Lance, G. N.

The rotationally symmetrlic flow of a viscous
fluid in the presence of an infinite rotating
disk. Journal of Fluid Mechanies 7 : 617-631.

T

N. and Chu, Sheng To
On the flow around a rotating disc in a uniform

stream. Journal Aeron. Sciences Readers Forum
19 : 284,

On the finite difference solution of laminar , -
boundary layer problems. Proceedings of Heat

Transfer and Fluld Mechanics Institute, Stanford,

California : 55-69.

Yates, W. E.

1951

An analysis of atomlzation by the rotating disk
for controlled droplet size. Unpublished thesis,
University of Californila.



F!H.GENFK,:P-E"

APPENDIX A

80



81

20000°0 HT00°0 oroeg-°L T8TO0°0 GHTO"0 08h9° 4 0z
8000°0 6T00°0 gEHE "9 9220°0 LLT0°0 9GTh h 6T
6T00°0 L200°0 9€8K° 9 2geo-o0 LT20°0 2EQT "4 8T
©€00°0 8€00°0 H€2T"9 TGE0°0 ©920°0 80G6° ¢ LT
GG00°0 £G00°0 2€9.L°G GERO'O 22€0°0 heTL" € 9T "
£800°0 %,00°0 0foh° ¢ 8€G0°0 06€0°0 0984 "€ Gt
T2T0°0 20T0"0 82h0°G 2990°0 TLh0°0 9£Ge € hT®
tlT0°0 oOnTo*0 9289 6T80°0 8950°0 ARARES £t
Lt20°0 26T0°0 heeg - h 600T°0 6L90°0 gggl e AN
Lh€0°0 2920°0 2296°¢ TheT 0 0T80°0 19662 T
hgho* 0 GGE0°0 0209°€ 0£GT°0 6G60°0 owezE'e oT*
T11.90°0 9.40°0 gTHe € T.8T°0 gTIT 0 9T60°2 60"
ge260°0 £€€90°0 9T88°¢2 w62e°0 062T°0 26681 80"
182T°0 T€80°0 A4 1T82"0 L9®T" 0 8929°T Lo
09.T°0 690T°0 21912 hehE€ o 9291°0 hheg T 90"
€The* 0 HEET O 0T08°T €9TH "0 2Gl1°0 029T°'T S0
262€ 0 96GT°0 goht " T 060G6°0 G08T"0 96260 to*
09tk °0 08.T°0 9080°T 0809°0 gELT"O 2Ll69°0 €0
0L6G°0 A TAR hoelo Gg9el:0 6L4T°0 8h9t°0 2o
t€glL*o 2geT" o0 209€°0 9868°0 0t60°0 teee o T0°
G688°0 TLL0°0 TOQT"0 1826°0 1L250°0 9TT"'0 00"
000°T 0°0 0°0 000°T 00°0 0°0 00"
(Tet3us3duey) (TeTpPRa) 220°9¢= (TeT3ua3due]) (TeTPRJI) ZpeEe= (Uut)
) d 2 D Jd 2 z
wda oowe = N wda 000T = N

‘wda Qokz pue
wda Q00T Y3oq 3B Buljejod NSTP B UO JUTMOTJ (°09S/,UT h6T° = ") TTO O2TTnBAPAY
J0J sjusuodwod L3T00TaA (H) TeTFIusldue] pue (J4) TeBTIPBI SSSTUOTSUSWIQ °TY FAILVL



82

TABLE A2. Radial veloclty components for hydraulic oil
(v = .194 in?/sec.) flowing on a disk rotating at 1000
rpm.

z Radial Velocity (ips) u=ruwF

(in) r=1.0 in r=1.5 in r=2.0 in r=2.5 in r=3.
0.0 0.0 0.0 0.0 0.0 0.
0.005 5.52 8.28 11.04 13.79 16.56
0.01 9.84 14.76 19.68 24.60 29.53
0.02 15.49 23.23 30.97 38.71 L6, 46
0.03 18.20 27.30 36.39 45.59 54.60
0.04 18.90 28.36 37.80 47.25 56.71
0.05 18.34 27.52 36.69 45,86 55.04
0.06 17.02 25.54 34.04 42.56 51.08
0.07 15.36 23.04 30.72 38.40 46.09
0.08 13.51 20.26 27.01 33.77 40.53
0.09 11.71 17.56 23.41 29.26 35.12
0.10 10.04 15.06 20.08 25.10 30.13
0.11 8.48 12.72 16.96 21.20 25.45
0.13 5.95 8.92 11.89 14.87 17.84
0.14 4.93 7.40 9.86 12.33 14.80
0.15 4.08 6.12 8.17 10.21 12.25
0.16 3.37 5.06 6.74 8.43 10.12
0.17 2.76 4,15 5.53 6.91 8.29
0.18 2.27 3.41 .54 5.68 6.82
0.19 1.85 2.78 3.71 4.63 5.56
0.20 1.52 2.28 3.04 3.80 4.56
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TABLE A3. Tangential veloclty components for hydraulic oil
(v = .194 in?/sec.) flowing on a disk rotating at 1000 rpm.

z Tangential Velocity (ips) v=rwG
(in) r=1.0 in r=1.5 in r=2.0 in r=2.5 in r=3.0 in

0.0 104.72 157.08 209.44 261.80 314.16
0.005 97.25 145.88 194.51 243.13 291.76
0.01 89.91 134.87 179.83 224.78 269.74
0.02 76.08 114.12 152.16 190.20 228.24
0.03 63.67 95.50 127.34 159.17 191.01
0.04 52.88 79.33 105.77 132.21 158.65
0.05 43.59 65.39 87.19 108.99 130.78
0.06 35.86 53.78 71.71 89.64 107.57
0.07 29.47 44,20 58.94 73.67 88.40
0.08 24,02 36.03 48.05 60.06 72.07
0.09 19.59 29.39 39.19 48.98 58.78
0.10 16.02 24.03 32.04 40.06 48.07
0.11 13.00 19.49 25.99 32.49 38.99
0.12 10.57 15.85 21.13 26.42 31.70
0.13 8.58 12.86 17.15 21.44 25.73
0.14 6.93 10. 40 13.86 17.33 20.80
0.15 5.63 8.45 11.27 14.08 16.90
0.16 4.56 6.83 9.11 11.39 13.67
0.17 3.68 5.51 7.35 9.19 11.03
0.18 2.95 4.43 5.91 7.38 8.86
0.19 2.37 3.55 4.73 5.92 7.10
0.20 1.90 2.84 3.79 4.74 5.69
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TABLE A4. Radial velocity components for hydraulic oil
(v = .194 1in?/sec.) flowing on a disk rotating at 2400
rpm.
z Radial Velocity (ips) u=ruF

(in) r=1.0 in r=1.5 in r=2.0 in r=2.5 in r=3.0 in
0.0 0.0 0.0 0.0 0.0 0.00
0.005 19.38 29.07 38.76 ug.u4 57.90
0.01 32.22 48.33 64.44 80.55 96.28
0.02 44,03 66.05 88.07 110.08 131.57
0.03 by, 73 67.10 89.47 111.84 133.68
0.04 4o.11 60.17 80.22 100.28 119.86
0.05 33.52 50.29 67.05 83.83 100.18
0.06 26.86 40.30 53.73 67.17 80.28
0.07 20.88 31.33 41.77 52.21 62.41
0.08 15.91 23.86 31.82 39.77 47.54
0.09 11.96 17.94 23.93 29.91 35.75
0.10 8.92 13.38 17.84 22.31 26.66
0.11 6.58 9.88 13.17 16. 46 19.68
0.12 4,82 7.24 9.65 12.06 14.42
0.13 3.52 5.28 7.04 8.80 10.51
0.14 2.56 3.85 5.13 6.41 7.66
0.15 1.86 2.79 3.72 4,65 5.56
0.16 1.36 2.04 2.71 3.39 .06
0.17 .95 1.43 1.91 2.39 2.85
0.18 .68 1.02 1.36 1.70 2.03
0.19 .48 .72 .96 1.19 1.43
0.20 .34 .51 .68 0.85 1.01
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TABLE A5. Tangential velocity components for hydraulic oil
(v = .194 in2/sec.) flowing on a disk rotating at 2400 rpm.

z Tangential Velocity (ips) v=rwG
(in) r=1.0 in r=1.5 in r=2.0 in r=2.5 in r=3.0 in

0.0 251.33 376.99 502.66 628.32 750.99
0.005 223.56 335.33 447.12 558.89 668.01
0.01 196. 89 295.33 393.78 492.23 588.33
.02 150.04 225.06 300.09 375.11 448,34
.03 112.09 168.14 224,19 280.23 334.94
.0l 82.74 124.11 165.48 206.84 247.23
.05 60.65 90.97 121.29 151.61 181.21
.06 4y, 23 66.35 88.47 110.58 132.17
.07 32.20 48.29 64.39 80.49 96.21
.08 23.32 34.98 46.65 58.31 69.69
.09 16.86 25.30 33.73 42.16 50.39
.10 12.16 18.25 24.33 30.41 36.35
.11 8.72 13.08 17. 44 21.80 26.06
.12 6.21 9.31 12.42 15.52 18.55
.13 4.37 6.56 8.75 10.93 13.07
.14 3.04 4.56 6.08 7.60 9.09
.15 2.09 3.13 4.17 5.22 6.23
.16 1.38 2.07 2.76 3.46 4.13
.17 0.85 1.28 1.71 2.14 2.55
.18 0.48 0.72 0.96 1.19 1.43
.19 0.21 0.31 0.41 0.52 0.62
.20 0.05 0.08 0.10 0.13 0.15
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TABLE A7. Radial velocity components for mineral oil
(v = .087 in?/sec.) flowing on a disk rotating at 1000
rpm.

N

Radial Velocity (ips) u=rwF

(in) r=1.0 in r=1.5 in r=2.0 in r=2.5 in r=3.0 in
0.0 0.00 0.0 0.0 0.0 0.0
0.005 8.01 12.01 16.02 20.02 24.03
0.01 13.07 19.60 26.14 32.67 39.20
0.02 18.18 27.27 36.36 45, 45 54.54
0.03 18.76 28.15 37.53 46.91 56.30
0.04 17.07 25.60 34.14 42.67 51.21
0.05 14.49 21.74 28.97 36.23 43.48
0.06 11.79 17.69 23.58 29.48 35.37
0.07 9.32 13.98 18.64 23.30 27.96
0.08 7.25 10.87 14,49 18.12 21.74
0.09 5.49 8.23 10.97 13.72 16. 46
0.10 4,14 6.20 8.27 10.34 12.41
0.11 3.10 4.65 6.20 7.75 9.30
0.12 2.30 3.46 4,61 5.76 6.91
0.13 1.71 2.57 3.42 4,28 5.13
0.14 1.26 1.89 2.53 3.16 3.79
0.15 .93 1.39 1.86 2.32 2.78
0.16 .68 1.02 1.36 1.70 2.04
0.17 .50 0.74 .99 1.24 1.49
0.18 .36 0.54 .72 .90 1.08
0.19 .26 0.39 .52 .65 .78
0.20 .18 0 28 .37 U6 .55
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TABLE A8. Tangential velocity components for mineral oil
(v = .087 in?/sec.) flowing on a disk rotating at 1000 rpm.

z Tangential Velocity (1ps) v=ruwG
(in) r=1.0 in r=1.5 in r=2.0 in r=2.5 in r=3.0 in

0.0 104.72 157.08 209. 44 261.80 314.16
0.005 93.41 140.11 186.82 233.53 280.23
0.01 82.93 124.39 165.86 207.32 248.78
0.02 63.82 95.72 127.63 159.54 191.45
0.03 48.23 72.35 96. 47 120.59 144.70
0.04 36.06 54.08 72.11 90.14 108.17
0.05 26.76 40.13 53.51 66.89 80.27
0.06 19.77 29.66 39.54 49.43 59.31
0.07 14.57 21.85 29.13 36.42 43.70
0.08 10.69 16.04 21.38 26.73 32.08
0.09 7.83 11.75 15.67 19.58 23.50
0.10 5.71 8.56 11.41 14.27 17.12
0.11 4.16 6.24 8.31 10.39 12.47
0.12 3.01 4.51 6.01 7.51 9.02
0.13 2.16 3.24 4. 32 5.40 6.48
0.14 1.54 2.30 3.07 3.84 4.61
0.15 1.07 1.61 2.15 2.69 3.22
0.16 .73 1.10 1.47 1.84 2.20
0.17 .48 .72 .97 1.21 1.45
0.18 .30 . s .60 .75 .90
0.19 .16 .24 .32 . 4o .48
0.20 .06 .09 .12 .15 .18
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TABLE A9. Radial veloclty components for mineral oil
(v = .087 in?/sec.) flowing on a disk rotating at 2400
rpm.

Radial Velocity (ips) u=ruF

N

(in) r=1.0 in r=1.5 in r=2.0 in r=2.5 in r=3.0 in
0.0 0.0 0.0 0.0 0.0 0.0
0.005 26.34 39.51 52.68 65.85 78.70
0.01 39.84 59.75 79.67 99.59 119.03
0.02 by, 79 67.18 89.57 111.97 133.83
0.03 37.07 55.61 74,14 92.68 110.77
0.04 27.04 40.56 54.09 67.61 80.81
0.05 18.47 27.71 36.96 46.18 55.20
0.06 12.14 18.21 24.28 30.35 36.27
0.07 7.79 11.69 15.58 19.48 23.28
0.08 4.93 7.39 9.85 12.32 14.72
0.09 3.08 4.63 6.17 7.71 9.25
0.10 1.91 2.87 3.82 4,78 5.72
0.11 1.18 1.76 2.35 2.94 3.51
0.12 .71 1.07 1.42 1.78 2.13
0.13 U2 .63 .85 1.06 1.27
0.14 .24 .36 .48 .61 .72
0.15 .13 .19 .26 .32 .39
0.16 .06 .09 .12 .15 .18
0.17 .02 .02 .03 .04 .05
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TABLE Al0. Tangentlal velocity components for mineral oil
(v = .087 in2/sec.) flowing on a disk rotating at 2400 rpm.

z Tangential Velocity (ips) v=ruwG
(in) r=1.0 in r=1.5 in r=2.0 in r=2.5 in r=3.0 in

251.33 376.99 502.66 628.32 750.99

0.0

0.005 210.36 315.54 420.73 525.90 628.58
0.01 172.92 259.37 345.83 432.28 516.68
0.02 114.48 171.72 228.96 286.20 342.08
0.03 71.43 107.14 142.86 178.57 213.43
0.04 by, 69 67.03 89.37 111.72 133.53
0.05 27.75 41.62 55.49 69.37 82.91
0.06 17.14 25.71 34.28 42.85 51.22
0.07 10.48 15.72 20.96 26.20 31.32
0.08 6.36 9.54 12.72 15.90 19.00
0.09 3.76 5.64 7.52 9.40 11.23
0.10 2.15 3.22 4.29 5.37 6.41
0.11 1.14 1.71 2.28 2.85 3.40
0.12 .51 17 1.03 1.28 1.53
0.13 .12 .17 .23 .29 .35
0.14 - .13 - .19 - .26 - .32 - .38
0.15 - .28 - b2 - .56 - .70 - .84
0.16 - .38 - ,56 - .75 - .94 -1.12
0.17 AL - .65 - .87 -1.09 -1.30
0.18 - .47 - .71 - .95 -1.18 -1,41
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TABLE Bl. Determination of streamlines in r-e6 plane for

10.2 gpm flow of hydraulic oil (v = .194) onto a disk-
rotating at 1009 rpm.

Test No. 1 Q = 10.2 gpm v = .194 in?/sec. N = 1000 rpm

(a) Surface Streamline

6, = 1.146 r - .808 1n r - 1.587

Radius Depth Ug Vg 8

r (in) h (in) (ips) (ips) vg/ug (deg?ees)
1.80 .200 2.74 3.41 }.25 Q ,
2.00 112 16.4 25.0 1.53 8.3
2.25 .082 29.6 52.0 1.76 19.3
2.50 .066 40.1 80.0 2.00" 30.8
2.75 .056 44.9 107.1 2.38 42.8
3.00 .048 51.9 136.3 2.63 55.1
(b) Average Streamline

6y = 1.776 r - .209 1In r - 3.073

Radius Depth up va CT

¢ (in) h (in) (1ps) (ips) va /uy (degrees)
1.80 .200 17.3 52.2 3.02 0

2.00 .112 27.8 93.3 3.36 13.4
2.25 .082 33.8 127.5 3.77 43.1
2.50 .066 ,37.8 158.3 4,18 67.3
2.75 .056 40.5 186.5 4.60 91.7
3.00 .048 41.8 218.0 5.21 116.1
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TABLE B2. Determination of streamlines in r-6 plane for
10.2 gpm flow of hydraulic oil (v = .194) onto a disk
rotating at 2400 rpm

Test No. 2 Q = 10.2 gpm v = .194 1n?/sec. N = 2400 rpm
(a) Surface Streamline

by = 1.226 r - .479 1n r - 1.582

Radius Depth Ug Vg 0g

r (in) h (in) (ips) (1ps) vﬁ)/uS (degrees)
1.43 .200 .49 .07 -———

1.50 . 100 13.4 18.03 1.36 .6
1.75 .059 48.2 80.0 1.66 12.9
2.00 .042 77.6 156.6 2.02 30.8
2.25 .036 100.3 222.4 2.22 4s.2
2.50 .029 111.7 289.7 2.60 59.8
2.75 .026 122.0 349.4 2.86 75.0
3.00 .022 132.0 425.6 3.23 89.7
(b) Average Streamline

6y, = 2.030 - .042 In r - 2.888

Radilus Depth up va 0A

r (in) h (in) (ips) (ips) vA/uA (degrees)
1.43 .200 21.8 62.5 2.87 0
1.50 .100 41.6 125.0 3.00 8.0
1.75 .059 6G.3 212.0 3.52 31.0
2.00 .0b2 T4.2 298.0 4,02 65.5
2.25 .036 78.0 352.0 4.51 94.2
2.50 .029 86.0 431.0 5.02 123.2
2.75 .026 87.3 481.0 5.52 151.8
3 3 568.0 6.08 180.6

.00 .022 93.
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TABLE B3. Determination of streamlines in r-6 plane for
5.0 gpm flow of hydraulic oil (v = .194) onto a disk
rotating at 1000 rpm.
Test No. 3 Q = 5.0 gpm v = .194 in?/sec. N = 1000 rpm
(a) Surface Streamline
bg = 1.302 r - .315 1n r - 1.557

Radius Depth Ug Vg 05

r (in) h (in) (ips) (ips) vg/ug (degrees)
1.25 .2uo .6 .7 1.17 0
1.50 .093 16.8 27.8 1.66 15.4
1.75 .067 28.0 54.9 1.96 31.2
2.00 .053 35.9 82.0° 2.28 47.5
2.25 .045 42.0 109.6 2.61 64.0
2.50 .038 46.9 137.6 2.93 80.8
2.75 .033 50.6 165.1 3.26 97.7
3.00 .029 53.8 194.7 3.61 114.8
(b) Average Streamline

6p = 2.352 r + .116 In r - 2.966

Radius Depth up v 6p

r (in) h (in) (ips) (1ps) vp/up (degrees)
1.25 2L 10.2 30.6 3.00 0
1.50 .093 21.0 79.0 3.75 34.9
1.75 .067 26.1 109.8 4.20 69.6
2.00 .053 28.9 138.6 4,79 104.1
2.25 .045 30.6 .165.2 5.40 138.6
2.50 .038 32.3 193.5 5.99 173.0
2.75 .033 33.3 219.5 6.59 207.3
3.00 .029 35.3 253.5 7.18 241.6
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TABLE B4. Determination of streamlines in r-6 plane for
5.0 gpm flow of hydraulic oil (v = .194) onto a cisk
rotating at 2400 rpm.
Test No. 4 Q = 5.0 gpm v = .194 in?/sec. N=" 100 rpm
(a) Surface Streamline
6s = 1.725 r - 447 Inr - 1.725

Radius Depth Ug Vg fs

r (in) h (in) (ips) (ips) Vs/ug (degrees)
1.000 .210 .23 .14 -——— 0
1.25 .055 37.3 64.5 1.76 19.2
1.50 .038 61.6 132.9 2.16 39.0
1.75 .030 78.7 199.3 2.53 59.8
2.00 .024 88.7 269.7 3.04 81.1
2.25 .021 98.7 329.0 3.34 102.7
2.50 .018 104.2 398.5 3.82 124.9
2.75 .016 108.0 463.1 4,28 147.1
3.00 L0114 110.4 532.3 4,82 169.6
(b) Average Streamline

6p = 2.977 r - 2.977

Radius Depth up VA oA

r (in) h (in) (ips) (1ps) va/up (degrees)
1.00 .210 14.6 43.3 2.97 0
1.25 .055 uy.s 165.5 3.72 37.9
1.50 .038 53.8 240.0 4. 46 85,2
1.75 .030 59.3 309.0 5.21 127.8
2.00 .024 63.8 379.5 5.95 170.6
2.25 .021 64.9 433.0 6.68 213.72
2.50 .018 67.1 506.0 7.53 255.8
2.75 .016 69.7 569.0 8.16 298.5
3.00 .014 73.0 650.0 8.90 341.1
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TABLE BS.
10.2 gpm flow of mineral oil (v =
at 1000 rpm.

Determination of streamlines in r-6 plane for
.087) onto a disk rotating

Test No. 5 Q = 10.2 gpm VvV = .087 in?/sec. 1000 rpm
(a) Surface Streamline
6g = .940 r - .764 1n r - 1.454
Radius Depth Ug Vs s
r (in) h (in) (ips) (ips) vg/ug (degrees)
2.18 .200 4 .13 -——- 0
2.25 111 6.7 9.1 1.36 2.3
2.50 .072 22.2 34.5 1.55 11.2
2.75 .055 36.1 64.0 1.77 20.6
3.00 .04y 48,1 101.0 2.10 30.1
(b) Average Streamline
6p = 1.454 r - .305 1n r - 2.932
Radius Depth up VA A
r (in) h (in) (ips) (1ps) vp/up (degrees)
2.18 .200 14.3 41.2 2.88 0
2.25 111 25.0 74.3 2.98 5.3
2.50 .072 34.6 114.6 3.31 24.3
2.75 .055 41.3 150.0 3.64 43.5
3.00 .04y 45,7 187.6 4.10 62.9
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TABLE B6. Determination of streamlines in r-6 plane for
10.2 gpm flow of mineral oil (v = .087) onto a disk rotating
at 2400 rpm.
Test No. 6 Q = 10.2 gpm v = .087 in?/sec. N = 2400 rpm
(a) Surface Streamline
by = .728 r + .266 1n r - 1.423

Radlus Depth Ug Vs 8g

r (in) h (in) (ips) (ips) vg/ug (degrees)
1.75 .180 - .02 - .83 -——— 0
2.00 .047 42,1 75.7 1.80 12.4
2.25 .034 T4.7 136.6 1.84 24.7
2.50 .028 96.6 200.1 2.07 36.7
2.75 .023 116.2 275.7 2.18 48.6
3.00 .020 132.7 336.5 2.54 60.3
(b) Average Streamline

6p = 1.686 r - .002 1In r - 2.949

Radius Depth up va 8p

r (in) h (in) (ips) (ips) vp/up (degrees)
1.75 .180 19.8 58.3 2.94 0
2.00 .047 66.3 223.5 3.37 22.2
2.25 .034 81.5 309.0 3.80 48.2
2.50 .028 89.0 375.0 4,22 72.4
2.75 .023 98.7 4s7.0 4.63 96.5
3.00 .020 101.3 512.0 5.05 120.7
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TABLE B7. Determination of streamlines in r-6 plane for
5.0 gpm flow of mineral oil (v = .087) onto a disk rotating
at 1000 gpm.
Test No. 7 Q = 5.0 gpm v = .087 in?/sec. N = 1000 rpm
(a) Surface Streamline
6g = 1.114 r - .418 1In r - 1.535

Radlus Depth Ug Vg fs

r (in) h (in) (ips) (ips) Vs/ug (degrees)
1.54 . 200 .29 .09 ———— 0
1.75 .076 14.1 21.4 1.52 10.3
2.00 . 052 27.9 50.7 1.82 23.1
2.25 .04l 37.8 79.0 2.09 36.2
2.50 .034 45,2 108.4 2.40 4g.7
2.75 .030 51.1 132.6 2.60 63.4
3.00 .026 55.6 163.4 2.94 77.2
(b) Average Streamline

6y = 1.919 r - .0135 1n r - 2.949

Radius Depth un Va ea

r (in) h (in) (ips) (1ps) vp/up (degrees)
1.54 .200 9.95 29.5 2.97 0
1.75 .076 23.1 77.6 3.37 23.0
2.00 .052 29.5 113.4 3.85 50.4
2.25 .041 33.3 144.0 4.33 77.8
2.50 .034 36.0 173.5 4,81 105.2
2.75 .030 37.2 196.7 5.29 132.6
3.00 .026 39.3 227.0 5.77 160.0
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TABLE B8. Determination of streamlines in r-6 plane for
5.0 gpm flow of mineral oil (v = .087) onto a disk rotating
at 2400 rpm.

Test No. 8 Q = 5.0 gpm v = .087 in?/sec. N = 2400 rpm

(a) Surface Streamline

65 = 1.523 r - .613 1In r - 1.758

Radius Depth Ug Vg 0s

r (in) h (in) (ips) (1ps) vs/ug (degrees)
1.23 .180 - .02 - .58 -———- 0
1.25 .093 3.42 4,10 1.20 .5
1.50 .038 43.6 75.0 1.73 16.7
1.75 .028 67.6 140.1 2.07 32.3
2.00 .022 86.5 211.8 2.45 50.5
2.25 .0185 99.1 277.3 2.80 67.2
2.50 .016 107.0 354.6 3.31 85.3
2.75 .014 114.7 410.3 3.58 103.8
3.00 .0125 122.7 473.1 3.86 122.5
(b) Average Streamline

6y, = 2.536 r - .316 1n r - 3.054

Radius Depth up va oa

r(in) h (in) (ips) (ips) vp/up (degrees)
1.23 .180 13.9 2.2 3.05 0
1.25 .093 26.9 81.7 3.04 2.6
1.50 .038 62.5 200.0 3.20 35.6
1.75 .028 68.7 271.5 3.95 69.2
2.00 .022 73.7 345.4 4.68 103.1
2.25 .0185 76.7 411.0 5.36 137.3
2.50 .016 79.6 475.0 5.97 171.7
2.75 .014 79.6 543.0 6.71 206.3
3.00 .0125 81.8 608.0 7.43 241.1
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