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ABSTRACT

FLOW OF A VISCOUS LIQUID

ON A ROTATING DISK

by Tony Leonard Kaminski

There are inherent advantages to the rotating disk for

the atomization or distribution of liquids especially

liquids which cannot be subjected to high pressure or

which contain solid particles. An investigation was con—

ducted to obtain a more thorough understanding of the flow

of a liquid on a flat rotating disk and to determine the

feasibility of using theoretical considerations to study

this flow situation. In this study an exact solution to

the Navier—Stokes equations, for the case of flow around

a disk rotating in a fluid at rest, was applied to the

present flow situation. The flow of the liquid on the disk

was characterized by means of streamline projections in

both the horizontal (r—e) plane and the vertical (r-z)

plane.

An experimental apparatus consisting of a 6—inch

diameter disk powered by a variable speed motor was used to

verify the theoretical results. Two mineral oils were

selected for the tests: one had a kinematic viscosity of

.087 inz/sec and the other had a kinematic viscosity of

.194 inz/sec. The oil was introduced axially symmetrical
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onto the disk through a plexi—glass tube designed to reduce

the axial velocity of the liquid. Effects of rotational

speeds of 1000 rpm and 2&00 rpm and flow rates of 5.0 gpm

and 10.2 gpm of the two oils were considered.

The thickness of the oil layer on the disk was

measured with a point gage and the streamline patterns in

the horizontal plane were photographed. The theoretical

and experimental curves were compared and the deviations

between some of the curves were explained.

The following conclusions derived from the Navier—

Stokes equations were verified experimentally for the laminar

flow of a Newtonian fluid on a rotating disk.

1. The thickness of the liquid flowing on the disk

is increased by: (a) increased liquid viscosity (b) increased

flow rate and (c) slower rotational speed.

2. The angular displacement of the liquid from inlet

to outlet is increased by: (a) increased liquid viscosity

(b) decreased flow rate and (c) higher rotational speed.

3. The angle relative to the radius with which a

liquid particle leaves the disk increases with (a) increased

angular displacement (b) increased radial distance and

(c) decreased height above the disk surface. This angle has

a maximum value of 90 degrees on the surface of the disk

implying that a particle at this height has only tangential

velocity. As the distance above the disk increases the flow

becomes more in a radial direction.
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Preliminary experiments were made injecting fluid

through special nozzles on a section of the disk. These

tests showed that approximately twovthirds of the liquid

could be made to flow off of one—fifth of the circumference
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I. INTRODUCTION

This study was initiated when working on problems

in connection with the atomization of a liquid emulsion

which could not be atomized by more conventional methods.

Hougthon (1950) and Bainer gt_gl. (1955) stated that

in general, devices used for the atomization of liquids

utilize one or more of the following principles:

1. Pressure or hydraulic atomization, in which liquid

pressure supplies the atomization energy. The liquid stream

from the nozzle or an orifice is broken up by its inherent

instability and its inpact upon the atmosphere or by impact

upon a plate or another jet. In some designs liquid

pressure is used for obtaining rotary motion within the

nozzle.

2. Gas atomization, in which the liquid is broken

up by a high velocity gas stream, the breakup occuring

either entirely outside of the nozzle or within a chamber

ahead of the exit orifice.

3. Centrifugal atomization, in which the liquid is

fed under low pressure to the center of a rotating device,

such as a disk or cup, and is broken up by centrifugal force

as it leaves the periphery.



The hydraulic—type spray nozzle is the most common

atomizing device. It in general can be successfully used

to atomize most of the common liquids. This device does

however possess certain limitations which have compelled

the use of other devices. High viscosities may necessitate

heating the liquid before it can be forced through the

nozzle to be atomized. Since atomization is influenced

by the size of the nozzle orifice, high pressures are

required in order to maintain both reach and atomization.

Unstable liquid emulsions and various liquid mixtures

such as liquid manure cannot be dispersed by spray nozzles

and they have necessitated atomization by a rotating disk.

The problem presented by the unstable emulsion is that the

pressure required to force the liquid through the nozzle

may cause the liquid to harden in the pump or at the nozzle.

Whereas the problem encountered with a non—homogeneous

liquid such as liquid manure is that of clogging of the

nozzle which cannot be satifactorily corrected by the use

of filters.

Although the principle of centrifugal atomization is

not common in liquid Sprayers, Yates (1951) and Gunkel (1957)

have shown that it is a very successful method of producing

uniform droplet sizes. In addition there are inherent

virtues to the design of a centrifugal device:



l. Simplicity

2. Low cost

3. Compact dimensions for a given width of coverage

4. No close tolerances or small holes required

5. Material is fed by gravity or a low pressure pump

Due to these advantages the rotating disk is used

extensively ‘today ftu'the distribution of granular materials.

Patterson and Reece (1962) analyzed the motion of spherical

particles fed on to the center of a rotating disk fitted

with radial vanes. They checked their theoretical results

by feeding steel balls on to the center of the disk. Inns

and Reece (1962) extended the theory to the case of off—

center feeding of spherical particles on to a plate fitted

with radial vanes. The effect of impact between the particle

and vane was taken into account. Experimental evaluation

of the theory showed that the path of a spherical particle

accelerated by a flat radial vane may be accurately calculated.

Crowther (1958) investigated how factors such as disk

speed, fertilizer particle size, forward travel of the disk

and overlapping of adjacent runs affect the pattern of spread

of granular fertilizer distributed by a centrally-fed spinning

disk fitted with radial vanes.

These studies have yielded some information for the

design of a disk for the distribution of granular particles.

Little, however, is known about the design of a disk for

the handling of a viscous liquid. Various theoretical



considerations have been made on the flow of fluids due to

the presence of a rotating disk but it appears as if none

of the theory has been applied to the flow of liquids and

no eXperimental evaluations have been made.

The designs of some of the existing centrifugal

atomizing devices have followed a trial and error procedure.

It is well known that when the liquid is introduced axially

symmetrical on to a flat rotating disk, the liquid is

uniformly atomized about the entire periphery of the disk.

For this reason the rotating disk may not be suitable for

certain applications requiring a fan—like spray pattern

similar to the pattern produced by a spray nozzle. It is

suggested that if sufficient information was available

On the movement of liquid on a rotating disk then it may

be possible to produce any desired form of spray pattern

with a disk by precise introduction of the liquid on to a

Specific area of the disk.

The purpose of this research work was to:

1. Fully develop the theory of axial—symmetric flow

of a viscous liquid on to a flat rotating disk

and characterize the flow by constructing various

flow profiles and streamline representations.

2. Experimentally evaluate the theory using a

laboratory apparatus.



Study the effect of viscosity, flow rate and

rotational speed of the disk on the flow of the

liquid.

Present a hypothesis for producing a specific

form of spray pattern and verify it experimentally.



II. REVIEW OF LITERATURE

The steady flow of a viscous fluid, due to an infinite

rotating disk, was first discussed by von Karman (1921). He

studied the case where the fluid occupied the semi—infinite

region on one side of the disk and the motion of the fluid

could be assumed to be rotationally symmetric around the

axis of the disk. The layer of fluid near the disk was put

in rotary motion by the disk through viscous friction and

thrown outwards owing to the action of centrifugal force.

This caused a flow of the fluid in the axial direction toward

the center of the disk.

By virtue of his assumptions about the velocity com-

ponents, von Karman could reduce the Navier—Stokes equations

to a set of ordinary, non—linear differential equations of

a single independent variable. The resulting equations are

the boundary-layer equations for this flow situation since

the terms which are ordinarily omitted in boundary—layer

theory vanish identically. Numerical integration of this

set of equations thus yields an exact solution to the

Navier—Stokes equations.

Von Karman obtained an approximate solution to the

reduced flow equations by using the integral method he

developed. Cochran (1934) corrected von Karman's solution



and calculated more accurate values by numerical integration

of the ordinary differential equations.

Homann (1936) considered a related problem of motion

of a fluid flowing with axial symmetry towards an infinite

stationary plane.

B6dewadt (1940) solved numerically the problem of the

flow produced over an infinite stationary plane in a fluid

which rotated with uniform angular velocity at an infinite

distance from the plane.

Hannah (1947) considered the general question of

steady irrotational flow with axial symmetry against an

infinite rotating plane. She obtained two solutions: one

for a non-viscous liquid and the other for a viscous liquid.

Batchelor (1951) considered two classes or families

of solutions of the Navier-Stokes equations representing

steady rotationally-symmetric flow. In the first class (one-

parameter families) of solutions he showed that a simple

form of solution similar to von Karman's solution is retained

if the fluid at infinity had an arbitrary uniform angular

velocity about the axis of rotation of the infinite disk.

In the second class (two-parameter families) of solutions

Batchelor described the flow between two parallel infinite

disks rotating about the same axis with different angular

velocities.

Von Schlichting and Truckenbrodt (1952) considered

laminar flow of the fluid around a finite rotating disk



moving through an infinite fluid at a uniform axially velocity

and concluded that the thickness of the layer carried along

by the rotating disk depended mainly on the ratio of the

axial velocity of the disk and the peripheral velocity of

the disk. Truckenbrodt (1954) studied turbulent boundary

layer at the surface of the rotating disk and concluded that

the thickness of the boundary layer and also the torque of

the rotating disk depended strongly on the ratio of the

axial velocity of the disk to the peripheral velocity of

the disk.

Stewartson (1953) considered theoretically and experi-

mentally the steady motion of a viscous fluid confined

between two coaxial rotating disks. He found experimentally

that when the disks rotate in the same direction the main

body of the fluid rotated as well, but if the disks rotate

in Opposite directions the main body of the fluid was almost

at rest.

Stuart (1954) integrated the exact ordinary differential

equations of von Karman for the case of fluid being sucked

through the disk. In the analysis a suction parameter a

was introduced, where aVVE was the velocity of suction

acting normal to the disk. He found that the magnitude of

the radial flow velocity decreased rapidly as the suction

increased, while at the disk the derivative of the tangential

component with respect to the distance from the disk increased.



In 1955 Fettis devised an iterative process for

obtaining approximate solutions for several cases of

rotationally symmetric flow in which the fluid at infinity

was rotating at an arbitrary velocity in the same direction

as the disk. Leigh (1955) developed a method for use with

an electronic computer for solving the laminar boundary—

layer equation. Wu (1961) discussed the finite difference

solution to laminar boundary—layer problems.

Rogers and Lance (1960) investigated numerically the

flow produced by an infinite rotating disk when the fluid

at infinity was in the state of solid rotation. When

the fluid at infinity was rotating in the same direction

as the disk, physically acceptable solutions were present

in all cases. When the fluid at infinity rotated in the

Opposite direction to the disk the only acceptable solutions

were where there was uniform suction present acting through

the disk. Rogers and Lance (1962) also considered axially

symmetric flow of a viscous fluid between two infinite

rotating disks. Several cases were investigated in detail

and the radial and transverse velocity profiles were

presented. When one disk was at rest or both disks were

rotated in the same direction, the flow at high Reynolds

numbers could be represented by combining two one-disk

solutions. There were boundary layers attached to both

disks and in the main body of the fluid, the flow was from

the slower to the faster disk.
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Von Karman and Lin (1961) proved the existence of an

éxact solution of the Navier-Stokes equations. The liter—

ature review may be summarized by stating that in 1921

von Karman showed that the flow due to an infinite rotating

disk could be treated by an exact solution of the Navier—

Stokes equations, provided that a certain boundary-value

problem involving a system of nonlinear ordinary differen—

tial equations could be solved. Various mathematical

solutions related to this flow situation were presented

within this forty-year period, but it wasn't until 1961

that a mathematical proof was provided to the fact that

this boundary value problem did possess a solution. This

literature review had indicated that no attempts have

been made to study non—symmetrical motion of the fluid

due to a rotating disk nor have any studies been made on

the flow of a finite quantity of liquid with a limited

thickness and a free upper surface.



III. THEORETICAL CONSIDERATIONS

3.1 The Flow Functions for a Semi-Infinite

Fluid and an Infinite Disk

The Navier-Stokes equations express the condition of

equilibrium between the forces due to pressure, viscosity,

inertia and gravity for a fluid in motion. In 1921

von Karman applied the Navier-Stokes equations to the flow

near an infinite flat disk which rotated with an angular

Velocity w in a semi-infinite fluid at rest. A layer of

fluid is propelled around by the disk through viscous

friction and is at the same time thrown outwards due to

centrifugal force. This causes a flow in an axial direction

towards the disk to replace the fluid thrown out. This is

a three-dimensional flow case, i.e. there exist velocity

components in the radial direction, r, the circumferential

direction, 6, and the axial direction, z, which will be

denoted respectively by u, v, and w. An axonometric

representation Of this flow is shown in Figure l. The

general system of Navier—Stokes equations in cylindrical

co-ordinates for the case Of incompressible fluid flow

(Schlichting, 1960) are:

11
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Figure 1. Flow near a disk rotating in a fluid at rest.

Velocity components: u—radial, v-circumferential and

w-axial.
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ar r 82

1 ap azu 1 Eu u azu
=__ —_+_.___.__. ._____.> .

0 3r + v 2 r r 2 + (3 5)

8r r 823’



2 2
av uv 8v (3 v 1 av v a v (3.6)

u _ 'l' —— ‘l‘ W —— = \) —§' + -- '— .— -—-§- + j)

dr r z 3r r r r az

aw 3w 1 gap 32w 1 8w 32w
4 —— + W —“ = - — + V (“—2 + r *“+ ‘_E (3.7)

3r 2 p 32 or r r 3z

3! 2 3w _3r + r + 33 _ o (3.8)

Where v = E = kinematic viscosity

The no-slip condition on the disk gives the following

boundary conditions

z = 0 : u = 0, v = rm w = 0 (3.9)

and the condition of a fluid at rest at infinity gives

z = w : u = 0, v = 0 . . . . (3.10)

The equations of motion and the continuity equation

are satisfied by the following substitutions:

u = rf(z), v = rg(z), w = h(z), p = p(z). . .(3.ll)

These.assumptions can be used only in laminar flow since

in turbulent flow the velocity components are not prOpor—

tional to the radius but more complicated functions of the

radius. Assuming laminar flow, the Navier-Stokes equations

 

 

become

2

2 2 df d f _

f - g + h d? _ v 2 - 0 (3.12)

dz

2

2fg + h g5 - v9—5 = o (3 13)
z 2

dz

2

9.2122 dh-
hdz + 9 dz - v 2 - 0 (3.14)
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2f + —— = 0 (3.15)

with the following boundary conditions

2 = 0 : f = 0, g = w, h = o, p = p (3.16)
O

o (3.17)z = w : f = 0, g = O, h = —c, p

In order to integrate the system of equations

(3.12—3.15) it is convenient to introduce a dimensionless

distance from the disk

c = z % (3.18)

The flow equations are also changed into non—dimen—

sional form by substituting

f=wF(C), s=wG(c), h= NET HM), p=vaP1(C)

(3.19)

where P1 = P—PO

Thus the following assumptions are made for the velocity

components and the pressure:

u=wr F(Q), v=rwG(;), w=W H(§), p= prP1<C>

(3.20)

Inserting these assumptions (3.20) into equations 3.5—3.8

Q_ = Q_ . BE

dz dc dz

Of four simultaneous, ordinary, non-linear differential

and noting that yields the following system

equations for the functions F, G, H, and P1

2 2

F - G + g3 — 9—3 = o (3.21)
c

d:

2

2FG + H g% - é_§ = o (3.22)
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dP1 2
dH d H

~--.——- + H —e - —-—— = o .2

dH _
2F + a? — o (3.24)

The boundary conditions calculated from equations (3.9) and

(3.10).are:

C = O : F = O, G = 1, H = 0, P1 = O (3.25)

C = w : F = O, G = O (3.26)

As indicated earlier the first solution of this system

of equations (3.21 - 3.24) was given by von Karman (1921)

by an approximate integral method. Later Cochran (1934)

calculated more accurate values, for a limited number of

values of the independent variable, by a method Of numerical

integration. Cochran's solution was Obtained by assuming

a power series near C = O and an asymptotic series for

large values Of C. By trial and error he connected the

two series which yielded the following boundary conditions

dF dG ,

for d? and a: .

_ dF = dG = _

In order to use an existing computer program and solve the

equations by a digital computer the dependent variables

F, G, H, and P1 were redefined as follows:

dF dG

YI = H: y2 = F: y3 = a?) y4 = G) y5 = 6::

y6 = P1 = P-P (3.28)
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The system of flow equations (3.21 - 3.24) were then written

as a system of six first-order linear differential equations

for the functions y1, y2, y3, yq, y5, and ye

dYI
8—?— = -2y2

(3°29)

dyz

52. = y3
(3.30)

d 2 2

.13 = YIYB+YZ -yL. (3.31)

d6

33.1.: = 3’5 (3.32)

dC

dyS

a?“ = 2 Y2Y4 + Y1YS (3'33)

dy6

52— = 2YIY2 - 2YB (3'3“)

The original boundary condions (3.24 — 3.25) became

a = 0 : y1= O, y2 = 0, y3 = 0.510, yq = 1.0, y5 = —.6l6,

Y6 = 0 (3.35)

The values of the functions of velocity and pressure were

calculated by the Michigan State University digital computer

(CDC 3600), using library program D2 UTEX RKAMPDP, and are

shown in Table l. The values are shown with four decimal

places but the fourth figure is insignificant since some

of the initial conditions were accurate to only three signi—

ficant figures. Many of the very small values shown in

Table 1 might be assumed to be zero.
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TABLE 1. Functions for the velocity and pressure distri—

bution as calculated by the digital computer using equations

3.29 — 3.34.

C = ng’ -H F

 

 

dF/d; G -dG/d; —P1

0 .0000 .0000 .5100 1.0000 .6160 .0000

0.1 .0048 .0462 .4160 .9386 .6113 .0924

0.2 .0179 .0836 .3336 .8780 .5988 .1673

0.3 .0377 .1133 .2618 .8190 .5804 .2273

0.4 .0628 .1363 .1997 .7621 .5578 .2745

0.5 .0918 .1535 .1465 .7075 .5323 .3112

0.6 .1238 .1658 .1013 .6557 .5049 .3393

0.7 .1579 .1740 .0633 .6066 .4765 .3605

0.8 .1932 .1787 .0315 .5604 .4478 .3761

0.9 .2292 .1805 .0054 .5170 .4193 .3873

1.0 .2653 .1799 -.0232 .4610 .3804 .3974

1.1 .3010 .1775 -.0329 .4387 .3643 .4003

1.2 .3361 .1735 -.0463 .4036 .3384 .4035

1.3 .3703 .1683 -.0565 .3710 .3136 .4052

1.4 .4034 .1623 -.0641 .3408 .2902 .4059

1.5 .4352 .1556 —.0694 .3129 .2681 .4058

1.6 .4656 .1484 —.0726 .2871 .2473 .4053

1.7 .4946 .1410 —.0748 .2634 .2280 .4044

1.8 .5220 .1335 —.0755 .2415 .2099 .4033

1.9 .5480 .1260 —.0751 .2214 .1932 .4021

2.0 .5724 .1185 —.0739 .2028 .1776 .4009

2.1 .5954 .1112 —.0721 .1858 .1632 .3997

2.2 .6169 .1041 —.0698 .1702 .1499 .3985

2.3 .6370 .0973 -.0672 .1558 .1376 .3974

2.4 .6558 .0907 -.0643 .1426 .1263 .3964

2.5 .6733 .0844 —.0612 .1305 .1158 .3955

2.6 .6896 .0784 —.0580 .1194 .1062 .3947

2.7 .7047 .0728 —.0548 .1092 .0974 .3939

2.8 .7188 .0675 -.0516 .0999 .0893 .3933

2.9 .7318 .0625 -.0485 .0913 .0819 .3927

3.0 .7438 .0578 —.0454 .0835 .0750 .3921

3.2 .7651 .0493 —.0396 .0697 .0630 .3913

3.4 .7833 .0419 —.0343 .0582 .0529 .3906

3.6 .7988 .0355 —.0295 .0485 .0444 .3901

3.8 .8119 .0300 —.0253 .0403 .0373 .3896

4.0 .8229 .0255 -.0216 .0335 .0313 .3893

4.2 .8323 .0214 —.0184 .0278 .0262 .3891

4.4 .8401 .0180 —.0156 .0230 .0220 .3888

4.6 .8467 .0151 -.0132 .0189 .0185 .3887

4.8 .8522 .0127 —.0112 .0155 .0155 .3885

5.0 .8569 .0106 -.0094 .0127 .0130 .3884
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TABLE 1 (Continued)
 

 

 

dF/dc G -dG/dc —P1

5.2 .8608 .0089 —.0079 .0103 .0109 .3883

5.4 .8640 .0074 -.0067 .0083 .0091 .3882

5.6 .8668 .0062 —.0056 .0066 .0077 .3881

5.8 .8690 .0052 —.0047 .0052 .0064 .3880

6.0 .8709 .0043 —.0040 .0040 .0054 .3879

6.2 .8725 .0036 —.0033 .0030 .0045 .3878

6.4 .8738. .0030 -.0028 .0022 .0038 .3877

6.6 .8749 .0025 -.0024 .0015 .0032 .3876

6.8 .8758 .0020 -.0020 .0009 .0027 .3875

7.0 .8765 .0017 - 0017 .0004 .0022 .3875

7.2 .8772 .0014 -.0014 .0000 .0019 .3874

7.6 .8780 .0009 —.0010 «.0006 .0013 .3872

7.8 .8783 .0007 —.0008 —.0009 .0011 .3871

8.0 .8786 .0006 -.0007 —.0011 .0009 .3871

8.5 .8790 .0003 —.0004 -.0014 .0006 .3869

9.0 .8792 .0001 -.0003 —.0017 .0004 .3867

9.5 .8792 .0000 —.0002 —.0018 .0003 .3865

10.0 .8791 —.0001 —.0001 -.0019 .0002 .3863

10.5 .8790 -.0001 -.0001 -.0020 .0001 .3861

11.0 .8789 —.0002 -.0001 —.0021 .0001 .3859

11.5 .8787 —.0002 -.0000 —.0021 .0000 .3856

12.0 .8785 —.0002 - 0000 —.0021 .0000 .3854

.866* 0* 0* 0* 0* .393*

 

*These values were calculated by W. G. Cochran (1934).

3.2 Description of the Flow Pattern
 

In the previous section the general flow equations

were deduced for an infinite disk rotating in a semi—

infinite fluid. In our special case we want to consider

the motion Of.a limited quantity of liquid flowing on a

rotating disk Of finite radius. This was done by studying

the flow patterns in the layer Of the semi-infinite fluid

nearest to the disk surface.
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The flow on the disk can be described by means of

streamlines, that is, the paths which the liquid particles

follow as they move radially outwards due to rotation of

the disk. In order to characterize the flow as mentioned

it is necessary to know the kinematic viscosity of the

liquid, the quantity of liquid flowing on to the disk,

and the speed of rotation of the disk.

The angular velocity is related to the speed of

rotation by the formula w = Egg (3-36)

where w = angular velocity

N = Speed Of rotation

Use of formula t = 27673—(eq. 3.18) enables the

determination of the dimensionless distance (g) corres—

ponding to an actual distance (z) above the disk (Appendix A).

Note that z = 0 corresponds to the surface of the disk.

Once the non-dimensionless distance is known, the corres—

ponding velocity functions are obtained from Table l and

the radial component (u) and tangential component (v) of

velocity can be calculated by the relationships u = er(§)

and v = rwG(;) (eq. 3.20). An example of the resulting

velocity profiles obtained is shown in Figure 2.

The area under the velocity distribution curve is

prOportional to the quantity of liquid flowing through this

section. If the thickness Of the liquid is known at a

given radius then the average radial velocity of the liquid in

this layer can be Obtained by using the expression
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or

N = 2400 rpm

b v = .194 inZ/sec

r = 3.0 in

Tangential Velocity

’ Radial Velocity

I l I 1 I l - - __..

.02 .04 .06 .08 .10 .12 .14 .16 .18 .20

Distance Normal to Disk Surface, z (in)

Figure 2. Example of radial and tangential velocity

profiles above a rotating disk.
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uA = % udz (3.37)
2
:

:
3
‘

(
D

"
S

(
D

C
. IIA average radial velocity

{
3
‘

ll thickness of liquid

and also the quantity of liquid (Q) flowing on the disk can

be calculated by using the expression

Q = 2nrhuA (3.38)

The surface of the disk where h = 0 represents one

streamline. Another streamline can be found by the

condition that Q = constant.

The flow between two streamlines in the r-z plane

is equal to Q. In our case we were therefore interested

in finding this streamline. The values of radial velocity

(u) were found numerically and therefore the average radial

velocity (uA) could also only be determined numerically from

the graphs of u versus z. The integral (equation 3.37)

representing the area under a velocity distribution curve,

was evaluated by using a planimeter and applying apprOpriate

scale factors. A trial and error procedure was followed,

that is, various h values were selected until the area

required under a curve was obtained. After the depth of

flow was Obtained, the average radial velocity component

was determined by using equation 3.37. By determining the

h—value at various radii, a streamline (thickness profile)

in the r—z plane can be plotted for a given flow rate by

assuming constant values of fluid viscosity and rotational

speed.
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We were also interested in the streamline pattern as

seen in the r-e plane, that is, the direction of motion

of particles in the surface 2 = h. The average tangential

velocity component was determined from the tangential

velocity distributions by direct use of a planimeter

since the depth of flow had already been determined in the

determination of the average radial velocity. By considering

the geometry of a particle moving from point A to point B as

shown in Figure 3 it can be seen that

lim 1 9.3:- 19: ._u_
lid-*0 r A6 roe v (3.39)

Or this may be written as

de _ l 1
dr - r u (3.40)

The velocity components (u, v) are functions Of the

radius (r). By plotting the ratio of the velocities

V/u, versus radius r (Figure 4) it was observed that there

was approximately a linear relationship between this

velocity ratio and the radial position along the disk for

various flow conditions indicating that a first degree

polynomial ought to provide a good approximation for this

relationship. Thus assuming % = Ar + B (3.41)

where A and B are constants which were calculated for each

flow case by the Michigan State University digital computer

using library program E2 UTEX LSCFWOP and are shown in

Appendix B. Substituting equation 3.41 into equation 3.40.
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Figure 3. Motion of a particle on a rotating disk.

 



T
a
n
g
e
n
t
i
a
l

V
e
l
o
c
i
t
y

(
v
)
/
R
a
d
i
a
l

V
e
l
o
c
i
t
y

(
u
)

l
—
‘
O

25

  

. Test NO. 2 (surface velocity components)

Q = 10.2 gpm

v a .194 inZ/sec

»3 N = 2400 rpm

1

O

. 1 . l . l . J

.00 1.50 2.00 2.50 3.00

Radial Position, r (in)

Figure 4. Example of how the ratio of tangential velocity

to radial velocity varies with radial position on the disk.



26

yields the expression

99 = A + 3 (3.42)

By integrating equation 3.42, one Obtains the equation

a = Ar + B ln r + c (3.43)

where C a constant of integration, which is evaluated

by applying an initial condition.

8 angular displacement

Thus by the use of equation 3.43 the curve along which a

particle moves can be calculated and the resulting stream—

line pattern in the r—e plane may be determined (Figure 3).

Various streamline patterns will develop at different

heights above the disk due to the variations in the magni-

tudes of the velocity components (u, v). Two streamline

patterns in the r—e plane were plotted for each test con—

sidered. One plot was made using the average values of the

radial and tangential velocity components at the various

radii considered. The other streamline plotted was the

one which existed on the surface of this layer. It was

found that the term in equation 3.43 which contained the

logarithmic function was usually relatively small. Neglecting

this term will yield the equation for an Archimedes spiral.

Thus a streamline in the r-e plane approximates an Archimedes

spiral.



IV. EXPERIMENTAL CONSIDERATIONS

4.1 Description Of the Apparatus
 

An overall view of the testing apparatus is shown in

Figure 5. A positive displacement hydraulic pump, powered

by an electric motor, supplied liquid to a small reservoir

mounted above the rotating disk. The small reservoir was

vented near the tOp to permit oil to flow back to the main

reservoir once the liquid reached the level of this

Opening. This regulated the formation of hydraulic

pressure in the system.

The liquid from the small reservoir flowed by gravity

through a flow—control valve which was used to vary the

liquid flow to the disk. After the liquid passed through

the valve it was directed down to the center of the disk

through a section of 2—inch (2.0 inch outside diameter and

1.75-inch inside diameter) plexi—glass tubing with its

lower edge taped toward the inside. Since it was important

to minimize the axial velocity of the liquid as it flowed on

to the disk and to keep the tube filled with liquid, metal

screens were mounted inside the plexi-glass tube (Figure 6).

The number of screens used in the tube depended upon the visco—

sity of the liquid used. A 3—inch head of liquid was maintained

in the tube directly above the disk. Other elements employed in

27
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Heat lamp

Main reservoir

weight scale

Dial indicator

Thermometer

Plexi—glass tube above disk

Small reservoir

Tachometer

Variable—speed electric motor

Hydraulic pump and filterO
k
O
C
fi
N
O
N
U
‘
I
-
D
-
‘
U
U
N
H

H

Figure 5. The testing apparatus.
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fit

.

I"
1..)

4/-

Figure 6. The point gage and plexi—glass tube mounted above

the disk.
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the hydraulic circuit consisted of a filter mounted directly

after the outlet of the pump and a thermometer mounted in

the elbow above the plexi-glass tubing for Oil temperature

measurement.

The quantity of liquid flowing on to the disk was

.determined by diverting the liquid flowing from the disk

into a l-gallon can placed in the main reservoir (Figure 7).

A stOp watch was used to measure the time of flow and the

amount of liquid was determined by weighing the can with a

scale. By knowing the specific gravity of the liquid, the

liquid flow (Q) was determined using the relationship

Q = —————7°§§3w spm

where s = specific gravity of the liquid

w = weight Of the liquid, lb.

t = time of flow, see.

A 6—inch diameter steel disk was machined and mounted

inside a cylindrical tank (Figure 5). The disk was driven

by a variable Speed (~3200 rpm to +3200 rpm) electric motor

and a 0—2500 rpm tachometer was used to indicate the disk

speed. All four legs of the tank and the electric motor

were bolted to the concrete floor to reduce vibration.

The thickness of the liquid layer on the disk was

measured with an Ames dial indicator, having a range Of 0

to 1 inch, graduated in .001 inch increments and accurate

to within 1.001 inch, as shown in Figure 6. Initially the



Figure 7. Equipment used for flow measurement. 
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dial indicator was set so that a zero reading was obtained

when the tip of the point gage touched the tOp surfaCe of

the disk. Thus when the pointer was set to just touch the

surface of the liquid, the reading on the dial indicator

was a direct measurement of the thickness of the liquid

flowing. The accuracy Of this method of measurement was

estimated to be 2.002 inch. The dial indicator was

mounted in a support (Figure 6) so that it could be rotated

around in a plane parallel to the surface of the disk.

Thus the zero reading, representing the surface Of the

disk, remained the same for every position at which the

thickness of the liquid was measured.

4.2 Selection Of a Viscous Liqgid
 

The basic requirement of the viscous liquid used in

the experimental work is that it be a Newtonian fluid, that

is,its viscosity remains constant at any given temperature

regardless of the rate of shear. Georgi (1955), Klaus and

Fenske (1955), and Appeldoorn §t_al. (1962) have shown

that straight mineral Oils behave like Newtonian fluids

at temperatures above 32°F. Motor oils which contain

appreciable amounts of viscosity index—improving additives

were indicated to be non—Newtonian fluids throughout the

temperature range to which Oils are normally exposed in

engines. Because of their suitable prOperties, straight

mineral oils were used in the experimental apparatus to

verify the theoretical results.
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Two oils were used for the tests: one was an S.A.E.

20 mineral oil (Everest—Cutler Oil Co.) with a typical

viscosity of about 300 S.U.S. (Saybolt Universal Seconds)

at 100°F and a viscosity index of 45—50; the other Oil

was an industrial hydraulic oil (Industrial No. 75—

American Oil Co.) with a typical viscosity of about 750

S.U.S. at 100°F and a viscosity index Of 95—100. Small

quantities (20 to 30 parts per million) of silicone foam

suppressor (Dow Corning 200 Fluid) were added to both oils

to prevent foaming.

4.3 Experimental Procedure
 

The surface of the disk was sprayed with black paint

to provide a dark background for photographing the flow

pattern of the liquid. Concentric circles spaced one—half

inch apart were drawn on the disk surface to enable a

visual determination of radial position on the disk. This

facilitated both the method for measuring the thickness

of the liquid and the method for studying the streamline

pattern on the photographs since the radial positions were

clearly marked on the disk and could be observed because

the oils used were transparent.

The streamline pattern on the disk was photographed

with a single—lense reflex camera (Pentax H—2), with a focal

plane shutter, mounted about one foot above the disk. A

short extension tube was employed between the lense and the

camera body to permit focusing of the lense at shorter
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distances. Various shutter speeds were used and it was

found that slower shutter speeds of 1/30 sec. or 1/60 sec.

were more suitable for obtaining a continuous streamline

pattern and the high shutter speeds of l/250 sec or 1/500

sec. were more suitable for studying the relative velocities

of particles as they moved radially outwards.

Since the viscosity of oil is affected by temperature

it was necessary to control the operating temperature of

the Oil during the tests. By Operating the experimental

apparatus for a period of 2-3 hours it was observed that

the temperature of the oil became relatively stable when it

reached 95°F. Four 250—watt heat lamps were placed around

the oil reservoir to heat the oil to 100°F. The temperature

of the oil was then maintained at 100°F (i.2°F) by varying

the position and the number of heat lamps as required. All

the tests were made employing 6 gallons of Oil in the system.

After the equipment had Operated for 2 hours with the

Oil at the Operating temperature of 100°F, two samples of

the Oil were taken for analysis. The specific gravity

defined as the weight of a product in relation to the

weight of an equal volume of water was determined by the

following relationship

weight of the oil

weight of an equal volume of water

 specific gravity (s) =

Georgi (1950) stated that capillary tube viscosimeters

are considered as the most accurate means available for
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viscosity measurement of lubricating oils. A Series 200

Modified Ostwald Viscosimeter was immersed in a constant

temperature bath maintained at 100°F and used for the

viscosity determinations. The Viscosimeter tube was first

calibrated using distilled water as a reference fluid,

then the tube was charged with an oil sample. To equalize

the liquid temperature with the bath temperature, the

liquid was allowed to remain in the tube for 10 minutes

before the actual tests were made. The tests consisted

of drawing up the liquid sample by suction until the lower

bulb was filled and the upper bulb was partially filled.

After removing the suction, the liquid was allowed to flow

down the tube by gravity and the time is seconds was

recorded for the oil level to pass between two etched marks.

The kinematic viscosity (v) of the oil sample was determined

by using the relatiopship

”H—
W

v = kinematic viscosity Of the Oil @lOOOF

vw = kinematic viscosity of the distilled water

@100°F

t = time Of flow Of the Oil @100°F

tw = time Of flow of the distilled water @100°F

The prOperties of the Oils were determined after the

Oil was subjected to considerable usage since a small amount

Of air was entrained in the Oil causing the viscosity to
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increase slightly and the specific gravity to decrease

slightly when compared with the values obtained by employing

unused samples. The required prOperties for the Oils are

shown in Table 2.

TABLE 2. Values of specific gravity and kinematic viscosity

obtained from samples of the oils used in the laboratory

 

 

 

tests.

Kinematic Viscosity

Type Of Oil Specific Gravity (s) (v)in2/sec @100°F

S.A.E. 20

Mineral Oil .90 .087

Industrial Hydraulic

Oil .84 .194

 

The final consideration in the experimental pro—

cedure was the determination Of what distance should be

maintained between the plexi—glass tube and the disk to

allow the liquid to flow on to the disk. Preliminary tests

indicated that varying this distance from .20 inches to .40

inches produced some variation in the streamline pattern

and in the thickness of the liquid only in a region within

one-inch from the outside of the tube (radius = 1.0 in)

with no noticeable effects produced beyond this region of

:flow. It was thus decided to maintain a distance of 0.300

ichhes between the lower taped inside edge of the plexi—

gglass tube and the surface of the disk for all the laboratory

tests.
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It should be pointed out that it was impossible to

duplicate the theoretical flow conditions in the experi—

mental work. The theoretical solution was obtained for

the flow of a semi—infinite mass of fluid which could only

be expected to be approximately correct for the experimental

work where the fluid was a layer of limited thickness.



V. PRESENTATION AND DISCUSSION

OF RESULTS

A series Of eight tests were conducted to study the

effect of flow rate, viscosity, and rotational speed on

the flow of a viscous liquid on a rotating disk. The

tests are out-lined in Table 3.

TABLE 3. Tests conducted to study the flow of a viscous

liquid on a rotating disk.

 

Test Kinematic Viscosity Flow Rate Rotational Speed

 

Number (0) inZ/sec. (Q) gpm (N) rpm

1 .194 10.2 1000

2 .194 10.2 2400

3 .194 5.0 1000

4 .194 5.0 2400

5 .087 10.2 1000

6 .087 10.2 2400

7 .087 .0 1000

8 .087 5.0 2400

 

5.1 Streamlines in the r—z Plane
 

The experimental and theoretical streamlines in the

r—z plane (depth of flow versus radial position relationships)

are compared in Figures 8 to 11. As was expected, there

38
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‘ Tests 1 and 3

Theoretical

Plexi-Glass —__—Streamline

Tube

—---Experimental

/ Streamline

-.300 """""

I

l

\ Q=5.0 gpm Q=10.2 gpm

H250 “\
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Figure 8. Comparison of experimental and theoretical stream-

lines in the r-z plane for hydraulic oil (v = .194 inZ/sec.

flowing on a disk rotating at 1000 rpm.
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Plexi—glass Tests 2 and 4

Tube
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Streamline
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“ Streamline
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Figure 9. Comparison of experimental and theoretical stream-

lines in the r—z plane for hydraulic oil (v = .194 inZ/sec)

flowing on a disk rotating at 2400 rpm.
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Plexi—glass TEStS 5 and 7
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Streamline
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| Streamline
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Radial Distance, r (in.)

Figure 10. Comparison of experimental and theoretical stream—

lines in the r—z plane for mineral Oil (0 = .087 inZ/sec)

flowing on a disk rotating at 1000 rpm.
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Tests 6 and 8

Plexi—glass Theoretical

Tube Streamline

e——-Experimental

J Streamline
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I
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Radial Distance, r (in)

Figure 11. Comparison of experimental and theoretical stream-

lines in the r—z plane for mineral Oil (v = .087,in2/sec)

flowing on a disk rotating at 2400 rpm.
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was considerable deviation between the eXperimental and

theoretical curves in the area where the oil was initially

introduced onto the disk. This was due to the face that

in the theoretical solution it was assumed the disk rotated

in a body of liquid where there is essentially no point of

introduction Of the liquid onto the disk. Theoretically

however, it is possible as earlier shown to determine a

streamline representing a certain flew quantity, assuming

constant rotational speed and liquid viscosity. It is inter-

esting to note that theoretlcally for the velocities and

viscosities used in this investigation, a rotating disk has

little or no effect on the movement of liquid which is

located 0.20 inches or more above the surface of the disk.

This is due to the fact that the radial and tangential

components Of velocity become negligible in this region as

shown in Appendix A.

The experimental curves in the area where the 011

was introduced onto the disk could have been made to

correspond more closely to the theoretical curves by in—

creasing the diameter Of the plexi—glass tube, used above

the disk, until the inside surface of the tube coincided

with the theoretical curve. Increasing the diameter of

the tube has the other advantage of reducing the axial

velocity of the liquld so as to agree more closely with the

theoretical values. In the experimental tests conducted, the

axial velocity of the Oil at the outlet was usually consider—

ably higher than the theoretical values as shown in Table 4.
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An increase in the axial velocity of the liquid would

tend to increase the resultant velocity Of the Liquid on the

disk. However, since the magnitude of the axial velocity is

relatively small compared to the resultant velocity, as

shown in Table 4, the difference in the initial kinetic energy

may be assumed to have relatively small influence on the

final result.

There was good agreement between the experimental and

theoretical streamlines at radial distances Of two inches

or more when the rotational speed of the disk was 1000 rpm

(Figures 8 and 10). At the higher rotational speed Of 2400

rpm (Figures 9 and 11) the experimental values for the

thickness of the liquid were higher than the theoretical

values at radial distances of two inches or more. In this

flow region it is interesting to note that at the high

rotational speed (2400 rpm) the experimental values of

depth Of flow are affected more by changes in oil viscosity

than.by changes in the flow rate. In all cases the real

iJlfluence of flow rate is less than predicted by the theore—

tical solution. The experimental results also indicated

tfllat the boundary layer thickness increased slightly at the

(edge of the disk at the higher rotational speed rather than

cheerease as shown by the theoretical values. The variation

txetween the experimental and theoretical curves Obtained at

trma higher rotational speed (2400 rpm) can be at least par—

tiially explained by considering boundary—layer stability.
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The criteria used to determine the stability of flow

is obtained by considering the ratio of inertia forces to

friction forces as expressed by the Reynolds number Re.

For the case of flow on a rotating disk the value of Re is

determined by using the relationship

 

2 ,

Re - ”v“ (5.1)

where

Re Reynolds number

r = radial distance

w = angular velocity of the disk

v = kinematic viscosity of the fluid

Schlichting (1960) when considering the torque on a

disk rotating in a body of fluid, stated there was good

agreement between the theoretical values for laminar

flow and the experimental values of torque for Reynolds

numbers up to about Re - 3x105. At higher Reynolds numbers

the flow was definitely turbulent. The curves plotted by

Schlichting show that the onset of instability was present

at measured Reynolds numbers (rzw/v) as low as 10“. The

values of Reynolds numbers present in the experimental

tests are summarized in Table 5.

Gregory, Stuart and Walker (1955) discussed boundary-

layer instability from both the theoretical and experi-

mental points of view for a disk rotating in a compressible

'
‘
.
I
]
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TABLE 5. Values Of Reynolds number present in the labora—

 

 

tory tests.

Kinematic Rotational -
. V \ r D All .\ 3 R

Viscosity Speed (N) Test ILVJOld” ”dmbtr ( e)

(V) inz/sec. rpm No. r=l.0 in r=2.0 in r=3.0 in

1000 l or .055x10‘+ .22x101+ .49xlO“

3

.194

2400 2 or .13 x10“ .52x10“ 1.17x10“

4

1000 5 or .12 x10“ .48x10“ 1.08xlo‘+

7

.087

2400 6 or .29 x10“ 1.16x10“ 2.60x10”
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fluid (air). They conducted experiments with a l2vinch

diameter disk having one side coated with china clay for

indicating the transition from laminar to turbulent flow.

The boundary-layer velocity profiles were measured and

compared with the theoretical laminar profiles. The shapes

Of some of the curves obtained by Gregory and Walker are

shown in Figures 12 and 13. The curves showed that for

laminar flow the tangential velocity component was in good

agreement with theory, while the radial component had a

peak value which is somewhat lower than the theoretical.

The experimental profiles (Figures 12 and 13) showed that

for turbulent flow both the radial and tangential velocity

components had smaller peak values which did not decrease

as rapidly as the theoretical values with increasing

distance from the disk surface. Gregory gt_gl. stated that

on a one-foot diameter disk rotating in air the onset of

boundary layer instability occured at Reynolds numbers of

1.8—2.1 x 105 and the highest value of Reynolds number at

transition, 2.99 x 105, was obtained when the air in the

room was at its stillest. The results of this work carried

out in an aerodynamic laboratory can be applied to the

jpresent investigation on the flow of a viscous liquid (oil)

since similar theoretical considerations were made for

.investigating the boundary layer on the rotating disk.

.Also it is known that two systems are dynamically similar

:if their Reynolds numbers are similar.
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Figure 12. Comparison of experimental and theoretical

radial velocity profiles on a disk rotating at 2100

rpm in air (obtained by Gregory et a1. 1955). Curve

1, theoretical laminar profile; 2, 3, 4 experimental

profiles; 2, laminar region; 3, instability region;

4, turbulent region.
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Figure 13. Comparison of experimental and theoretical

tangential velocity profiles

2100 rpm in air (obtained by

on a disk rotating at

Gregory et al. 1955).

Curve 1, theoretical laminar profile; 2, 3, 4, experi-

mental profiles: 2, laminar

region; 4, turbulent region.

region; 3, instability
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Thus the variations between the experimental and

theoretical curves (Figures 9 and 11) at the higher

rotational speed were due to the differences in the shapes

of the velocity profiles. At radial distances of two

inches or more the experimental values for the thickness

of the boundary layer were higher than the theoretical

values indicating the actual radial velocity was lower

than the theoretical value. This statement is in agreement

with the Velocity distribution curves (Figure 12) Obtained

by Gregory gt_§l. The values of Reynolds numbers (Table 5)

present in the laboratory tests indicate there was limited

turbulent flow present at the higher rotational speed

which may have reduced the magnitude of the radial velocity.

It is difficult, however, to explain why the thickness

of the liquid, measured at the edge of the disk rotating

at 2400 rpm was affected by kinematic viscosity but not by

flow rate. In the theoretical consideration it was assumed

the disk was an infinite rotating plane. The results were

extended to include a disk of finite diameter by neglecting

the edge effect. The significance of neglecting the edge

effect is not known but it is normally assumed that if the

boundary layer thickness is small compared to the radius

of the disk then the edge effect can be neglected in a

semi-infinite fluid. Since there is a finite quantity of

liquid present in our case we must also consider the layer

thickness.
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5.2 Streamlines in the r—e Plane

The streamlines in the r-e plane, that is, the path

followed by a particle moving on the disk as seen in the

direction of the axis, was calculated for two positions in

the liquid (Appendix B): the surface streamline was calcu«

lated first by using the magnitudes of the velocity compon—

ents present at the free surface of the liquid and secondly,

for comparison, the streamline pattern was calculated using

the average values of the radial and tangential velocity

components at each radial position considered. A study of

 

the velocity profiles indicated the "average streamline"

corresponds approximately to a streamline at two—thirds of

the layer height above the disk.

The theoretical and experimental streamlines in the

r-e plane are compared in Figures 14 to 21. All the curves

are drawn through a common point located two inches from

the center of the disk. The experimental curves were

approximated by taking measurements from the photographs 5

taken in the laboratory. These experimental curves were i

assumed to represent the flow on the free surface of the  

‘
I
l
-
v
e
n
r
o
z
m
r
v

‘3

liquid.

Comparison of the experimental and theoretical stream—

line patterns (Figures 14—21) existing on the surface of

the liquid, indicates good agreement especially for cases

of high flow (10.2 gpm) and low rotational speeds (1000 rpm).

In every case the experimental curve falls between the two



53

 

STREAMUNES(TEST NOJ) \

----— Experimental (surface)

Theoretical (surface)

—-— Theoretical (average)

 

  
 

 
Figure 14. Comparison of experimental and theoretical stream-

lines in the r-e lane for 10.2 gpn flow of hydraulic oil

(0 = .194 inZ/sec§ onto a disk rotating at 1000 rpm (clockwise)

(MSU Photo NO. 65772—2).
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STREAMUNES (TEST NO. 2)

------ Experimental (surface)

Theoreticd (surface)

—-— Theoretical (average)   
 

\
x

 
Figure 15. Comparison of experimental and theoretical

streamlines in the r—e plane for 10.2 gpm flow of hydraulic

Oil (0 = .194 inZ/sec.) onto a disk rotating at 2400 rpm

(clockwise).
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STREAMLINES (TEST N0. 3)

————— Experimental (surface)

'Theorefical (surface)

----—— Theorefical (average)

 

 

Comparison

streamlines in the r—O

.194 inZ/sec)

‘\/ I
\ w/ I

, / "xii '
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-J,/

 

(clockwise).

 

     

Of experimental and theoretical

plane for 5.0 gpm flow Of hydraulic

onto a disk rotating at 1000 rpm
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STREAMLINES (TEST NO. 4)

----- Expernnenfal(surface)

Theorefbal (surface)

——-—Thecrelical (average)   

  
Figure 17. Comparison of experimental and theoretical

streamlines in the r—e plane for 5.0 gpm flow of hydraulic

oil (u = .194 inz/sec) onto a disk rotating at 2400 rpm

(clockwise) (MSU Photo NO. 65772—1).
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STREAMLINES (TEST NO. 5)

----- Expernnenfal(eurface) \‘\

-——Theoretical (surface)

— - —Theorefical (average)  
 

 
Figure 18. Comparison of experimental and theoretical stream—

lines in the r-e plane for 10.2 gpm flow of mineral 011

v = .0 7 inZ/sec) onto a disk rotating at 1000 rpm (clockwise)

(MSU Photo NO. 65772-5).
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I \

STREAMLINES (TEST no, 5) \‘f‘  .__

------ Expernnental (surface) 5\g~ .

Theorefical (surface) '\

  
 

— —— Theoretical (average) \ \

\ \-/ I \p ,

f I \7 \, I,I

,7 I \

a y ‘1

‘\ I

.4 I \'\ ’ /

,7" _ / [I

I, ’*

I I I

I

Figure 19. Comparison of experimental and theoretical stream—

lines in the r—e plane for 10.2 flow Of mineral Oil (0 = .087

inZ/sec) onto a disk rotating at 2400 rpm (clockwise) (MSU

Photo NO. 65772—6).
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STREAMLINES (TEST NO. 7)

----- Experimental (surface)

Theoretical (surface)

—-—Theorefica| (average)

 

   

 
Figure 20. Comparison of experimental and theoretical

streamlines in the r—e plane for 5.0 gpm flow of mineral

oil (0 = .087 inZ/sec) onto a disk rotating at 1000 rpm

(clockwise) (MSU Photo NO. 65772-7).
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Figure 21. Comparison of experimental and theoretical stream—

lane for 5.0 gpm flow of mineral oillines in the r—e

(v = .087 inZ/sec§ onto a disk rotating at 2&00 rpm (clockwise)

(MSU Photo No. 65772—8).
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theoretical streamline curves: one for surface velocity

components and the other for average velocity components

at each radial position. The deviations between the

experimental and theoretical streamline curves can be

explained by a discussion similar to the one given earlier

in eXplaining the variations in the thickness profiles on

the disk. Since the radial velocity profile on the disk

has a peak value which was smaller than the theoretical

value (see Figure 12), the experimental surface streamline

fell inside the theoretical curve on the disk. The.

photographs taken at tie higher rotational speeds (2UOO rpm)

did illustrate some transition in the boundary layer near

the edge of the disk. Gregory and Walker (1955) took a

photograph showing the process of transition on a disk

rotating in air. This photograph showed that in an annular

region near the edge of the disk there were stationary

vortices which assumed the shape of logarithmic spirals.

The inner radius of this region marked the onset of

instability (Re = 1.9x105) and the transition to turbulent

flow occurred at an outer radius corresponding to a Reynolds

number of 2.8xlOS. The values of the Reynolds numbers

present in our laboratory tests are shown in Table 5. _The

maximum value of Reynolds number was 2.6x105 which seemed

to indicate that in the present investigation the limit for

“stability occurredat smaller Reynolds numbers than those

indicated by Gregory et al. (1955). It is likely that there
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was considerable turbulence in the oil as it flowed to the

disk through the screens.

The experimental and theoretical surface streamlines

are compared in Table 6 by using two descriptive para—

meters: one was the angular displacement of the particle

when moving from a radius of two inches to a radius of

three inches (the edge of the disk); the other parameter

was the angle relative to the radius with which a particle

leaves the disk.

This comparison of the streamlines indicated, in every

test, that the experimental values of both the angular

displacements and the angles relative to the radius were

larger than indicated by the theory.

A final evaluation of the theory was made by comparing

the experimental and theoretical average radial and average

tangential velocities at the edge of the disk as shown

in Table 7. This comparison of the experimental and

theoretical velocities indicates relatively good agreement

at low rotational speeds (lOOO rpm—Tests l, 3, 5, and 7)

but at the high rotational Speeds (1 3“ rpm—Tests, 2, u, 6,

and 8) the theoretical values of velocity were considerably

larger than the experimental values.

 
5.3 Flow on Selected Areas of

the Rotating Disk ‘
 

It was mentioned earlier that in certain applications

it is desirable to limit the area of liquid flow from a
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rotating disk. An attempt was made to produce a spray

pattern similar to the one produced by a fan-type spray

nozzle by controlling the introduction of the liquid on

to the disk. To produce this form of spray pattern, nozzles

with special-shaped Openings were constructed to introduce

only a sector of the flow normally present with axially—

symmetric liquid introduction on to the disk.

The nozzle openings were designed on the basis of

the shape of the streamlines existing in the r-e plane

such that the liquid particles at various heights along an

 

edge Of the opening would travel out and meet at a common

point on the periphery. The horizontal Opening between

the edges Of the nozzle controlled the width Of liquid flow

from the disk.

Two types of nozzles (Figures 22) were constructed

using 3—inch (3.00-inch outside diameter and 2.45-inch

inside diameter) plexi-glass tubing: one nozzle had a F

closed bottom which permitted liquid to flow out through

an opening in the side, the other nozzle had an Open

bottom which permitted liquid to flow against the disk

 
within the nozzle. Both nozzles had parallelogram—shaped g

Openings (Figure 23) designed on the basis of the theoreti-

cal streamlines in the r—e plane from r=1.5 in (outside of

the nozzle) to r=3 in (edge Of the disk) as shown in Figure

23. The lepeCKOf the edges Of the Openings was determined

by measuring the angular distance between the surface
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Figure 22. ClOsed—bottom nozzle (left) and Open—bottom

nozzle (right) with parallelogram shaped openings.
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Figure 23. Diagram of a parallelogram—shaped nozzle

Opening.

 



67

streamline (AB) and the average streamline (AC) at r=l.5 in.

when drawn from a common point A (Figure 23) at r=3.0 in.

and using the relationship

Slope (4) = tan"1 r191 = tan"1 1'561

h h

 

where

61 = angular displacement between the surface stream-

line and average streamline at r1

r1 = radial position Of the outside of the nozzle

h = depth Of the liquid

Calculations based on the methods presented earlier

(section 3.2) showed that the "average streamline"

corresponded to the particle movement at from approximately

onevthird to two-thirds of the layer height above the disk.

Thus in the present design considerations the streamlines

corresponding to particle movement at less than one—third

of the layer depth were not considered. The amount Of

radial flow in this bottom layer is, however, small. A

liquid depth of .20 inches was selected for the nozzle

design. The horizontal distance between the sloping edges

of the nozzle Opening corresponded to an angular displace—

ment Of approximately 75 degrees, representing a typical

Spray width for a hydraulic spray nozzle. By varying the

flow rate, a 7—inch head of hydraulic Oil (v = 194 inZ/sec.)

was maintained above the nozzle Opening in all the tests.
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The flow patterns from the special nozzles are shown

in Figures 24 to 27. A rotational speed Of 1000 rpm was

employed for these tests since it was Observed that increasing

the speed to 2000 rpm had little noticeable effect on the

flow pattern. The resulting flow patterns indicate the

presence Of high tangential velocity and low radial velocity

of the liquid closest to the disk. In Figure 27 a large

air bubble is clearly visible along the outside of the

nozzle which shows that the calculated angular displacement

of the layers at the inlet to the disk was as desired.

After measuring both the depth Of the Oil and the

resultant flow direction and by assuming a uniform velocity

profile in the liquid at the edge of the disk the prOportion

of Oil leaving the disk at various areas was determined.

0n the basis Of these results it was Observed that in the

area Of highest concentration approximately two-thirds Of

the liquid was leaving the disk in oneefifth of the circum-

ference. It is felt that with further work and the addition

Of shrouds to prevent the undesirable flow, the disk may

be used to produce an acceptable fan—type spray pattern.



69

 
Figure 24. Flow pattern from the closed—bottom nozzle

(N = 1000 rpm, Q = 4.4 gpm,v = .194 inZ/sec.).

 
Figure 25. Streamlines in the r—e lane for the closed—

bottom nozzle (N = 1000 rpm, Q = .4 gpm v = .194 inz/

sec.).
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Figure 26. Flow pattern from the Open-bottom nozzle

(N = 1000 rpm, Q = 5.4 gpm,v = .194 in2 /sec) (MSU

Photo No. 65772—15).

 
Figure 27. Streamlines in the r—Bplane for the Open-

bottom nozzle (N - 1000 rpm, Q = 5.4 gpm,\)= .194 in2

/sec) (MSU Photo No. 65772-16).



VI. SUMMARY AND CONCLUSIONS

6.1 Summary

The principle Of centrifugal distribution or

atomization Of liquids has many inherent advantages. An

investigation was conducted to obtain a more thorough

understanding Of the factors affecting the flow Of a liquid

on a rotating disk and to determine the feasibility Of

using theoretical considerations to describe the fluid

motion.

In this investigation a solution to the Navier-

Stokes equations, for the case of flow around a disk

rotating in a fluid at rest, was applied to the present

flow situation. The flow on the disk was characterized by

means of streamlines in both the r-e plane and the r-z

plane. In order to Obtain the thickness profile for a

specified flow condition, the areas under the velocity

profiles were found with a planimeter. A first order

polynomial approximation for the ratio of tangential

velocity to radial velocity as a function Of radius was

integrated and used to obtain an equation for the path

traced by a particle moving on the disk.

An experimental apparatus consisting of a 6-inch

(15.2 cm) diameter steel disk powered by a variable-speed

71
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electric motor was used to verify the theoretical results.

Two mineral Oils were selected for the tests because Of

their Newtonian behavior: one had a kinematic viscosity

Of .087 inZ/sec (56.1 centistokes) @100°F and the other

Oil had a kinematic viscosity Of .194 inZ/sec (125.0

centistokes) @100°F. The Oil temperature was maintained

.
"
.
'
7
\
l
"

at 100°F throughout all the tests by controlling the

Operation of heat lamps placed around the main Oil

reservoir. The Oil was introduced axially symmetric

on to the disk through a 2-inch (5.1 cm) outside diameter  
plexi—glass tube designed to reduce the axial velocity

component Of the Oil. A distance of .300 inches (.75 cm)

was maintained between the disk surface and the lower

edge of the plexi-glass tube for all the tests. Rotational

speeds Of 1000 rpm and 2400 rpm and flow rates Of 5.0 gpm

(.32 liter/sec.) and 10.2 gpm (.64 liters/sec.) were used

in the tests. A series of eight tests were conducted to

study the effect of rotational speed, flow rate and fluid

viscosity on the flow of the liquid on the disk.

The thickness of the Oil layer on the disk was

 

measured with a point gage and the surface streamline

patterns in the r—e plane were Obtained from a photograph.

The theoretical and experimental curves were compared and

the deviations between some Of the curves were explained.

Preliminary experiments were made injecting liquid

through special nozzles on a section of the disk.
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6.2 Conclusions
 

As a result of this study, the following conclusions

are presented:

1. The Navier-Stokes flow equation can be success~

fully used tO predict the laminar flow Of a

Newtonian fluid on a rotating disk. The actual

deviations from the theoretical solution are

discussed below in point 6.

Increasing the kinematic viscosity of the

 

liquid increased the boundary layer thickness

of the liquid on the disk and also increased the

angular displacement Of the liquid on the disk

which resulted in a higher resultant average

velocity Of the liquid leaving the edge Of the

disk, assuming constant flow rate and rotational

speed. _

Increasing the flow rate of the liquid onto the ‘

disk increased the boundary layer thickness Of

the liquid on the disk and also decreased the

angular displacement Of the liquid on the disk  
which resulted in a lower resultant average

velocity Of the liquid leaving the edge of the

disk, assuming constant liquid viscosity and

rotational speed.
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Increasing the rotational speed of the disk

decreased the boundary layer thickness of the

fluid on the disk and also increased the angular

displacement Of the liquid on the disk which

resulted in a higher resultant average velocity

Of the liquid leaving the edge of the disk,

assuming constant liquid viscosity and flow rate.

The angle relative to the radius with which a

liquid particle leaves the disk increases with

increased angular displacement of the liquid,

 

increased disk radius and decreased height above

the disk surface. This angle has a maximum

value Of 90 degrees on the surface of the disk

implying that a particle at this height has only

tangential velocity. As the distance above the

disk increases the flow becomes more in a

radial direction.

When compared with the theoretical results, the §

experimental results indicated that the flow

rate had less effect than theoretically expected,

 ‘I‘Vn.
’
I
t
-

I

while the viscosity and the rotational speed had

the expected effect on the streamlines used to

characterize the liquid flow on'a rotating disk.

Comparison of the surface streamlines in the

r—e plane indicated that in every test the
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experimental values of both the angular displace—

ments and the angles relative to the radius were

slightly larger than indicated by the theory.

When the liquid was introduced axially symmetrical

onto the rotating disk, the liquid was uniformly

distributed about the entire periphery of the

disk. By introducing the liquid through a special-

shaped nozzle on a section of the disk, approxi-

mately two—thirds of the liquid left the disk on

one-fifth of the circumference of the disk.
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SUGGESTION FOR FURTHER STUDY

Further investigations should be conducted to Obtain

a better understanding in the following areas:

1. Edge Effect.——Tests should be conducted with
 

  

F-

disks having various diameters so that the edge

2

effect Of the disk can be determined. 5

2. Velocity Profiles.——Instrumentation should be

i

employed tO enable measurement of the velocity '

components at different positions in the liquid.

3. Liquid Introduction.-—The diameter Of the tube
 

used tO introduce the liquid onto the disk should

be varied to satisfy the conditions dictated by

the theoretical solutions.

4. Partial Flow.--More extensive laboratory tests
 

should be conducted with special shaped nozzles

and auxiliary devices should be added to provide

better control of the liquid flow.
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TABLE A2. Radial velocity components for hydraulic Oil

(0 = .194 inz/sec.) flowing on a disk rotating at 1000

rpm.

 

Radial Velocity (ips) u=er

in r=l.5 in r=2.0 in r=2.5 in r=3.0 inA H
N

:
5

V '
1 I
I

H O

 

0.0 0.0 0.0 0.0 0.0 0.0

0.005 5.52 8.28 11.04 13.79 16.56

0.01 9.84 14.76 19.68 24.60 29.53

0.02 15.49 23.23 30.97 38.71 46.46

0.03 18.20 27.30 36.39 45.59 54.60

0.04 18.90 28.36 37.80 47.25 56.71

0.05 18.34 27.52 36.69 45.86 55.04

0.06 17.02 25.54 34.04 42.56 51.08

0.07 15.36 23.04 30.72 38.40 46.09

0.08 13.51 20.26 27.01 33.77 40.53

0.09 11.71 17.56 23.41 29.26 35.12

0.10 10.04 15.06 20.08 25.10 30.13

0.11 8.48 12.72 16.96 21.20 25.45

0.13 5.95 8.92 11.89 14.87 17.84

0.14 4.93 7.40 9.86 12.33 14.80

0.15 4.08 6.12 8.17 10.21 12.25

0.16 3.37 5.06 6-74 8.43 10.12

0.17 2.76 4.15 5.53 6.91 8.29

0.18 2.27 3.41 4.54 5.68 6.82

0.19 1.85 2.78 3.71 4.63 5.56

0.20 1.52 2.28 3.04 3.80 4.56
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TABLE A3. Tangential velocity components for hydraulic Oil

(V = .194 inZ/sec.) flowing on a disk rotating at 1000 rpm.

 

z Tangential Velocity (ips) v=rmG

(in) r=l.0 in r=l.5 in r=2.0 in r=2.5 in r=3.0 in

 

0.0 104.72 157.08 209.44 261.80 314.16

0.005 97.25 145.88 194.51 243.13 291.76

0.01 89.91 134.87 179.83 224.78 269.74

0.02 76.08 114.12 152.16 190.20 228.24

0.03 63.67 95.50 127.34 159.17 191.01

0.04 52.88 79.33 105.77 132.21 158.65

0.05 43.59 65.39 87.19 108.99 130.78

0.06 35.86 53.78 71.71 89.64 107.57

0.07 29.47 44.20 58.94 73.67 88.40

0.08 24.02 36.03 48.05 60.06 72.07

0.09 19.59 29.39 39.19 48.98 58.78

0.10 16.02 24.03 32.04 40.06 48.07

0.11 13.00 19.49 25.99 32.49 38.99

0.12 10.57 15.85 21.13 26.42 31.70

0.13 8.58 12.86 17.15 21.44 25.73

0.14 6.93 10.40 13.86 17.33 20.80

0.15 5.63 8.45 11.27 14.08 16.90

0.16 4.56 6.83 9.11 11.39 13.67

0.17 3.68 5.51 7.35 9.19 11.03

0.18 2.95 4.43 5.91 7.38 8.86

0.19 2.37 3.55 4.73 5.92 7.10

0.20 1.90 2.84 3.79 4.74 5.69

 



TABLE A4.

.194 inZ/sec.) flowing on a disk rotating at 2400(v

Radial velocity components for hydraulic oil

84

rpm.

 

Radial Velocity (ips) u=er

 

(in) r=l.0 in r=l.5 in r=2.0 in r=2.5 in r=3.0 in

0.0 0.0 0.0 0.0 0.0 0.00

0.005 19.38 29.07 38.76 48.44 57.90

0.01 32.22 48.33 64.44 80.55 96.28

0.02 44.03 66.05 88.07 110.08 131.57

0.03 44.73 67.10 89.47 111.84 133.68

0.04 40.11 60.17 80.22 100.28 119.86

0.05 33.52 50.29 67.05 83.83 100.18

0.06 26.86 40.30 53.73 67.17 80.28

0.07 20.88 31.33 41.77 52.21 62.41

0.08 15.91 23.86 31.82 39.77 47.54

0.09 11.96 17.94 23.93 29.91 35.75

0.10 8.92 13.38 17.84 22.31 26.66

0.11 6.58 9.88 13.17 16.46 19.68

0.12 4.82 7.24 9.65 12.06 14.42

0.13 3.52 5.28 7.04 8.80 10.51

0.14 2.56 3.85 5.13 6.41 7.66

0.15 1.86 2.79 3.72 4.65 5.56

0.16 1.36 2.04 2.71 3.39 4.06

0.17 .95 1.43 1.91 2.39 2.85

0.18 .68 1.02 1.36 1.70 2.03

0.19 .48 .72 .96 1.19 1.43

0.20 .34 .51 .68 0.85 1.01
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TABLE A5. Tangential velocity components for hydraulic Oil

(v = .194 inZ/sec.) flowing on a disk rotating at 2400 rpm.

 

z Tangential Velocity (ips) v=rwG

(in) r=1.0 in r=l.5 in r=2.0 in r=2.5 in r=3.0 in

 

0.0 251.33 376.99 502.66 628.32 750.99

0.005 223.56 335.33 447.12 558.89 668.01

0.01 196.89 295.33 393.78 492.23 588.33

.02 150.04 225.06 300.09 375.11 448.34

.03 112.09 168.14 224.19 280.23 334.94

.04 82.74 124.11 165.48 206.84 247.23

.05 60.65 90.97 121.29 151.61 181.21

.06 44.23 66.35 88.47 110.58 132.17

.07 32.20 48.29 64.39 80.49 96.21

.08 23.32 34.98 46.65 58.31 69.69

.09 16.86 25.30 33.73 42.16 50.39

.10 12.16 18.25 24.33 30.41 36.35

.11 8.72 13.08 17.44 21.80 26.06

.12 6.21 9.31 12.42 15.52 18.55

.13 4.37 6.56 8.75 10.93 13.07

.14 3.04 4.56 6.08 7.60 9.09

.15 2.09 3.13 4.17 5.22 6.23

.16 1.38 2.07 2.76 3.46 4.13

.17 0.85 1.28 1.71 2.14 2.55

.18 0.48 0.72 0.96 1.19 1.43

.19 0.21 0.31 0.41 0.52 0.62

.20 0.05 0.08 0.10 0.13 0.15
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TABLE A7. Radial velocity components for mineral Oil

(6 = .087 inZ/sec.) flowing on a disk rotating at 1000

rpm.

 

Radial Velocity (ips) u=erN

 

(in) r=1.0 in r=l.5 in r=2.0 in r=2.5 in r=3.0 in

0.0 0.00 0.0 0.0 0.0 0.0

0.005 8.01 12.01 16.02 20.02 24.03

0.01 13.07 19.60 26.14 32.67 39.20

0.02 18.18 27.27 36.36 45.45 54.54

0.03 18.76 28.15 37.53 46.91 56.30

0.04 17.07 25.60 34.14 42.67 51.21

0.05 14.49 21.74 28.97 36.23 43.48

0.06 11.79 17.69 23.58 29.48 35.37

0.07 9.32 13.98 18.64 23.30 27.96

0.08 7.25 10.87 14.49 18.12 21.74

0.09 5.49 8.23 10.97 13.72 16.46

0.10 4.14 6.20 8.27 10.34 12.41

0.11 3.10 4.65 6.20 7.75 9.30

0.12 2.30 3.46 4.61 5.76 6.91

0.13 1.71 2.57 3.42 4.28 5.13

0.14 1.26 1.89 2.53 3.16 3.79

0.15 .93 1.39 1.86 2.32 2.78

0.16 .68 1.02 1.36 1.70 2.04

0.17 .50 0.74 .99 1.24 1.49

0.18 .36 0.54 .72 .90 1.08

0.19 .26 0.39 .52 .65 .78

0.20 .18 0 28 .37 .46 .55
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TABLE A8. Tangential velocity components for mineral Oil

(v = .087 inZ/sec.) flowing on a disk rotating at 1000 rpm.

 

z Tangential Velocity (ips) V=PwG

(in) r=l.0 in r=l.5 in r=2.0 in r=2.5 in r=3.0 in

 

0.0 104.72 157.08 209.44 261.80 314.16

0.005 93.41 140.11 186.82 233.53 280.23

0.01 82.93 124.39 165.86 207.32 248.78

0.02 63.82 95.72 127.63 159.54 191.45

0.03 48.23 72.35 96.47 120.59 144.70

0.04 36.06 '54.08 72.11 90.14 108.17

0.05 26.76 40.13 53.51 66.89 80.27

0.06 19.77 29.66 39.54 49.43 59.31

0.07 14.57 21.85 29.13 36.42 43.70

0.08 10.69 16.04 21.38 26.73 32.08

0.09 7.83 11.75 15.67 19.58 23.50

0.10 5.71 8.56 11.41 14.27 17.12

0.11 4.16 6.24 8.31 10.39 12.47

0.12 3.01 4.51 6.01 7.51 9.02

0.13 2.16 3.24 4.32 5.40 6.48

0.14 1.54 2.30 3.07 3.84 4.61

0.15 1.07 1.61 2.15 2.69 3.22

0.16 .73 1.10 1.47 1.84 2.20

0.17 .48 .72 .97 1.21 1.45

0.18 .30 .45 .60 .75 .90

0.19 .16 .24 .32 .40 .48

0.20 .06 .09 .12 .15 .18
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TABLE A9. (Radial velocity components for mineral Oil

(0 = .087 inZ/sec.) flowing on a disk rotating at 2400

 

 

rpm.

2 Radial Velocity (ips) u=rmF

(in) r=l.0 in r=l.5 in r=2.0 in r=2.5 in r=3.0 in

0.0 0.0 0.0 0.0 0.0 0.0

0.005 26.34 39.51 52.68 65.85 78.70

0.01 39.84 59-75 79-67 99-59 119.03

0.02 44.79 67.18 89.57 111.97 133.83

0.03 37.07 55.61 74.14 92.68 110.77

0.04 27.04 40.56 54.09 67.61 80.81

0.05 18.47 27.71 36.96 46.18 55.20

0.06 12.14 18.21 24.28 30.35 36.27

0.07 7.79 11.69 15.58 19.48 23.28

0.08 4.93 7.39 9.85 12.32 14.72

0.09 3.08 4.63 6.17 7.71 9.25

0.10 1.91 2.87 3.82 4.78 5.72

0.11 1.18 1.76 2.35 2.94 3.51

0.12 .71 1.07 1.42 1.78 2.13

0.13 .42 .63 .85 1.06 1.27

0.14 .24 .36 .48 .61 .72

0.15 .13 .19 .26 .32 .39

0.16 .06 .09 .12 .15 .18

0.17 .02 .02 .03 .04 .05
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TABLE A10. Tangential velocity components for mineral oil

(0 = .087 in2/sec.) flowing on a disk rotating at 2400 rpm.

 

z Tangential Velocity (ips) v=rwG

(in) r=1.0 in r=l.5 in r=2.0 in r=2.5 in r=3.0 in

 

~25l.33v 376.99 502.66 628.32 750.990.0~

0.005 210.36 315.54 420.73 525.90- 628.58

0.01 172.92 259.37 345.83 432.28 516.68

0.02 114.48 171.72 228.96 286.20 342.08

0.03 71.43- 107.14, 142.86 178.57 213.43

0.04, 44.69 67.03 89.37 111.72 133.53

0.05 27.75 41.62 55.49 69.37 82.91

0.06 17.14 25.71 34.28 42.85 51.22

0.07 10.48 15.72 20.96 26.20 31.32

0.08 6.36 9.54 12.72 15.90 19.00

0.09 3.76 5.64 7.52 9.40_ 11.23

0.10 2.15 3.22 4.29 5.37 6.41

0.11 1.14 1.71 2.28 2.85 3.40

0.12 .51 .77 1.03 1.28 1.53

0.13 .12 .17 .23 .29 .35

0.14 — .13 - .19 — .26 - .32 - .38

0.15 - .28 — .42 — .56 - .70 — .84

0.16 - .38 — ,56 — ,75 — .94 -1.12

0.17 - .44 - .65 — .87 —l.09 —1.30

0.18 — .47 — .71 - .95 —1.18 -1.41

 i
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TABLE B1. Determination Of streamlines in r-e plane for

10.2 gpm flow of hydraulic Oil (v = .194) Onto a disk"

rotating at 1000 rpm.

Test NO. 1 Q = 10.2 gpm 0 = .194 inz/sec. N = 1000 rpm

(a) Surface Streamline

as = 1.146 r - .808 in r - 1.587

 

 

 

 

 

 

Radius Depth uS VS a

r (in) h (in) (ips) (ips) vS/uS (degPees)

1.80 .200 2.74 3.41 1.25 0

2.00 .112 16.4 25.0 1.53 8.3

2.25 .082 29.6 52.0 1.76 19.3

2.50 .066 40.1 80.0 2.00: , 30.8

2.75 .056 44.9 107.1 2.38 42.8

3.00 .048 51.9 136.3 2.63 55.1

(0) Average Streamline

9A = 1.776 r - .209 1n r - 3-073

Radius Depth “A VA 6A

2 (in) h (in) (ips) (ips) YA/HA (degrees)

1.80 .200 17.3 52.2 3.02 0

2.00 .112 27.8 93.3 3.36 , 13.4.

2.25 .082 33.8 127.5 3.77 43.1

2.50 .066 .37.8 158.3 4.18 67.3

2.75 .056 40.5 186.5 4.60 91.7

3.00 .048 41.8 218.0 5.21 116.1
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TABLE B2. Determination Of streamlines in r—e plane for

10.2 gpm flow of hydraulic Oil (V = .194) onto a disk

rotating at 2400 rpm

Test NO. 2 Q = 10.2 gpm v = .194 inz/sec. N = 2400 rpm

(a) Surface Streamline

as = 1.226 r - .479 ln.r — 1.582

 

Radius Depth us vS 03

 
 

 

 

 

r (in) h (in) (168) (ips) v3/uS (degrees)

1.43 .200 .49 .07 ---~

1.50 .100 13.4 18.03 1.36 .6

1.75 .059 48.2 80.0 1.66 12.9

2.00 .042 77.6 156.6 2.02 30.8

2.25 .036 100.3 222.4 2.22 45.2

2.50 .029 111.7 289.7 2.60 59.8

2.75 .026 122.0 349.4 2.86 75.0

3.00 .022 132.0 425.6 3.23 89.7

(b) Average Streamline

6A = 2.030 — .042 1n r _ 2.888

Radius Depth uA VA 6A

r (in) h (in) (ips) (ips) vA/uA (degrees)

1.43 .200 21.8 62.5 2.87 O

1.50 .100 41.6 125.0 3.00 8.0

1.75 .059 60.3 212.0 3.52 31.0

2.00 .042 74.2 298.0 4.02 65.5

2.25 .036 78.0 352.0 4.51 94.2

2.50 .029 86.0 431.0 5.02 123.2

2.75 .026 87.3 481.0 5.52 151.8

3 3 568.0 6.08 180.6.00 .022 93.
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TABLE B3. Determination of streamlines in r-e plane for

5.0 gpm flow Of hydraulic Oil (v = .194) onto a disk

rotating at 1000 rpm.

Test NO. 3 Q = 5.0 gpm v = .194 inZ/sec. N = 1000 rpm

(a) Surface Streamline

as = 1.302 r - .315 1n r — 1.557

 

 

 

 
 

 

Radius Depth uS VS 08

r (in) h (in) (ips) (ips) vS/uS (degrees)

1.25 .240 .6 .7 1.17 0

1.50 .093 16.8 27.8 1.66 15.4

1.75 .067 28.0 54.9 1.96 31.2

2.00 .053 35.9 82.0' 2.28 47.5

2.25 .045 42.0 109.6 2.61 64.0

2.50 .038 46.9 137.6 2.93 80.8

2.75 .033 50.6 165.1 3.26 97.7

3.00 .029 53.8 194.7 3.61 114.8

(b) Average Streamline

9A = 2.352 r + .116 1n r - 2.966

Radius Depth uA VA 9A

r (in) h (in) (ips) (ips) vA/uA (degrees)

1.25 .240 10.2 30.6 3.00 0

1.50 .093 21.0 79.0 3.75 34.9

1.75 .067 26.1 109.8 4.20 69.6

2.00 .053 28.9 138.6 4.79 104.1

2.25 .045 30.6 .165.2 5.40 138.6

2.50 .038 32.3 193.5 5.99 173.0

2.75 .033 33.3 219.5 6-59 207-3

3.00 .029 35.3 253.5 7.18 241.6
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TABLE B4. Determination of streamlines in r—G plane for

5.0 gpm flow of hydraulic Oil (0 = .194) onto a disk

rotating at 2400 rpm.

Test No. 4 Q = 5.0 gpm v = .194 inz/sec. N=fl400 rpm

(a) Surface Streamline

as = 1.725 r - .447 1n P - 1-725

 

 

 

 

 

 

 

  

Radius Depth uS vS as

r (in) h (in) (ips) (ips) vS/uS (degrees)

.

1.000 .210 .23 .14 ———— 0

1.25 .055 37.3 64.5 1.76 19.2

1.50 .038 61.6 132.9 2.16 39.0 1

1.75 .030 78.7 199.3 2.53 59.8 i

2.00 .024 88.7 269.7 3.04 81.1

2.25 .021 98.7 329.0 3.34 102.7

2.50 .018 104.2 398.5 3.82 124.9

2.75 .016 108.0 463.1 4.28 147.1

3.00 .014 110.4 532.3 4.82 169.6

(b) Average Streamline

6A = 2-977 r — 2.977

Radius Depth uA VA 8A

r (in) h (in) (ips) (ips) vA/uA (degrees)

1.00 .210 14.6 43.3 2.97 ". ‘0

1.25 .055 44.5 165.5 3.72 37.9

1.50 .038 53.8 240.0 4.46 8522

1.75 .030 59.3 309.0 5.21 127.8

2.00 .024 63.8 379.5 5.95 170.6

2.25 .021 64.9 433.0 6.68 213.2

2.50 .018 67.1 506.0 7.53 255.8

2.75 .016 69.7 569.0 8.16 298L5

3.00 .014 73.0 650.0 8.90 341 1

1
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TABLE B5.

10.2 gpm flow Of mineral oil (v =

at 1000 rpm.

Test NO. 5 Q = 10.2 gpm V = .087 inZ/sec

(a) Surface Streamline

 

N

Determination of streamlines in r—e plane for

.087) onto a disk rotating

1000 rpm

 

 

 

  

 

 

6s = .940 r - .764 in r - 1.454

Radius Depth ’us VS 68

r (in) h (in) (ips) (ips) vS/uS (degrees)

2.18 .200 .4 .13 -——-

2.25 .111 6.7 9.1 1.36 .3

2.50 .072 22.2 34.5 1.55 11.2

2.75 .055 36.1 64.0 1.77 20.6

3.00 .044 48.1 101.0 2.10 30.1

(b) Average Streamline

9A = 1.454 r - .305 in r — 2.932

Radius Depth uA VA 8A

r (in) h (in) (ips) (ips) vA/uA (degrees)

2.18 .200 14.3 41.2 2.88 0

2.25 .111 25.0 74.3 2.98 5.3

2.50 .072 34.6 114.6 3.31 24.3

2.75 .055 41.3 150.0 3.64 43.5

3.00 .044 45.7 187.6 4.10 62.9

 

 xii
-
m

a
.
.
.
“
A
n
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TABLE B6. Determination of streamlines in r-e plane for

10.2 gpm flow Of mineral Oil (0 = .087) onto a disk rotating

at 2400 rpm.

 

 

Test NO. 6 Q = 10.2 gpm v = .087 inZ/sec. N = 2400 rpm

(a) Surface Streamline

eS = .728 r + .266 1n r — 1.423

Radius Depth uS vs 65

r (in) h (in) (ips) (ips) vS/uS (degrees)

1.75 .180 - .02 — .83 —--- 0

2.00 .047 42.1 75.7 1 80 12.4

2.25 .034 74.7 136.6 1.84 24.7

2.50 .028 96.6 200.1 2.07 36.7

2.75 .023 116.2 275.7 2.18 48.6

3.00 .020 132.7 336.5 2.54 60.3

 

(b) Average Streamline

0A = 1.686 r — .002 in r — 2.949

 

 

Radius Depth uA VA 9A

r (in) h (in) (ips) (ips) VA/uA (degrees)

1.75 .180 19.8 58.3 2.94 0

2.00 .047 66.3 223.5 3.37 22.2

2.25 .034 81.5 309.0 3.80 48.2

2.50 .028 89.0 375.0 4.22 72.4

2.75 .023 98.7 457.0 4.63 96.5

3.00 .020 101.3 512.0 5.05 120.7
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TABLE B7. Determination of streamlines in r—e plane for

5.0 gpm flow of mineral Oil (0 = .087) onto a disk rotating

at 1000 gpm.

 

 

Test NO. 7 0 = 5.0 gpm v = .087 inZ/sec. N = 1000 rpm

(a) Surface Streamline

GS = 1.114 r — .418 1n r - 1.535

Radius Depth uS vS as

r (in) h (in) (ips) (ips) vS/uS (degrees)

1.54 .200 .29 .09 —--— 0

1.75 .076 14.1 21.4 1.52 10.3

2.00 .052 27.9 50.7 1.82 23.1

2.25 .041 37.8 79.0 2.09 36.2

2.50 .034 45.2 108.4 2.40 49.7

2.75 .030 51.1 132.6 2.60 63.4

3.00 .026 55.6 163.4 2.94 77.2

 

 

(b) Average Streamline

9A = 1.919 r - .0135 in r — 2 949

 

 

Radius Depth ”A VA 9A

r (in) h (in) (ips) (ips) vA/uA (degrees)

1.54 .200 9.95 29.5 2.97 0

1.75 .076 23.1 77.6 3.37 23.0

2.00 .052 29.5 113.4 3.85 I 50.4

2.25 .041 33.3 144.0 4.33 77.8

2.50 6 .034 36.0 173.5 4.81 105.2

2.75 .030 37.2 196.7 5.29 132.6

3.00 .026 39.3 227.0 5.77 160.0

"
'
1
“
1
.
4
.
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TABLE B8. Determination Of streamlines in r—e plane for

5.0 gpm flow Of mineral Oil (v = .087) onto a disk rotating

at 2400 rpm.

Test NO. 8 Q = 5.0 gpm 0 = .087 inz/sec. N = 2400 rpm

(a) Surface Streamline

eS = 1.523 r — .613 1n r ~ 1.758

 

:7

 

 

 

 

 

Radius Depth us VS as

r (in) h (in) (ips) (ips) vg/uS (degrees)

1.23 .180 — .02 - .58 ---— 0

1.25 .093 3.42 4.10 1.20 .5

1.50 .038 43.6 75.0 1.73 16.7

1.75 .028 67.6 140.1 2.07 32.3

2.00 .022 86.5 211.8 2.45 50.5

2.25 .0185 99.1 277.3 2.80 67.2

2.50 .016 107.0 354.6 3.31 85.3

2.75 .014 114.7 410.3 3.58 103.8

3.00 .0125 122.7 473.1 3.86 122.5

(b) Average Streamline

6A = 2.536 r - .316 1n r - 3.054

Radius Depth uA VA 0A

r(in) h (in) (ips) (ips) vA/uA (degrees)

1.23 .180 13.9 42.2 3.05 0

1.25 .093 26.9 81.7 3.04 2.6

1.50 .038 62.5 200 0 3.20 35.6

1.75 .028 68.7 271 5 3.95 69.2

2.00 .022 73.7 345 4 4.68 103.1

2.25 .0185 76.7 411.0 5.36 137.3

2.50 .016 79.6 475.0 5.97 171.7

2.75 .014 79.6 543.0 6.71 206.3

3.00 .0125 81.8 608.0 7.43 241.1
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