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ABSTRACT

HEAT AND MASS TRANSFER IN ONIONS

BY

John R. Rosenau

The response of the product to its environment

must be known if the processing of a biological product

is to be Optimized. The overall purpose of this study

was to model the heat and moisture transfer response of

onion bulbs to any given boundary condition.

The "Alternating Direction Explicit Procedure"

for the solution of the transfer equations was adapted

to a special finite difference grid system. This grid

system was constructed orthogonal to the principle trans-

fer directions within the onion bulb. The model was

designed to be easily adapted to any axially symmetric

body.

The model parameters required to model heat and

moisture transfer in onions were obtained.

The heat transfer portion of the model simulated

the actual process very well as indicated by small RMS

and maximum differences between predicted and measured

center temperatures. The model showed that for heat



John R. Rosenau

transfer considerations, the bulb may be modeled as a

sphere with thermal conductivity equal to the radial

thermal conductivity of the bulb.

The mass transfer portion of the model was in only

fair agreement with experimental weight loss measurements

conducted as a test of the model. The differences are

attributed mainly to the effect of respiration and the

effect of the cracking and loosening of the outer scales

during the drying process.
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I . INTRODUCTION

The remarkable efficiency of the agricultural

production system in the United States has been achieved

through advances in three basic areas: (i) the development

of improved growing practices and genetic varieties, (ii)

the mechanization of crop and animal production, and (iii)

the evolution of new processing techniques to handle the

resulting production increases. The development of these

processing methods is extremely important as the benefits

of increased production are wasted if the system for

handling, processing, and distributing this production

is inadequate.

Inherent to the methods incorporated for the pro-

cessing of agricultural products is the response of the

products to their total processing environment. If the

effect of all of the mechanical, chemical, thermal, and

biological forces acting on a product can be predicted,

the deve10pment of Optimal processing systems for that

product is made possible.

This research project examines a part of the total

problem outlined above--the development of a mathematical



model simulating the response of yellow globe onions (var.

Abbott and Cobb 192) to a convective heat and moisture

transfer boundary condition.

There are two main reasons for choosing this thesis

topic. First, the onion production industry in Michigan is

in the process of rapid change. The harvesting and material

handling operations have been totally mechanized as have the

packaging and shipping operations. However, problems still

remain. The first occurs just after harvest when the onions

are "cured." Normally, this is done by leaving the covered

pallets of freshly harvested and topped onions in the field.

During the curing period, the onion necks dry, helping to

prevent disease organisms from entering the bulb through

the place where-the green top was attached. In addition,

the skins develop the traditional golden color, while the

outermost skin drys, cracks, and falls off ("shucks"), N

taking with it any attached field dirt. With warm dry

weather, curing takes about a week; with cool rainy weather,

up to three weeks.

The author has found that the curing process can

be shortened to about three days by passing air at 100 F

and 90% relative humidity over the bulbs. More work is

needed, however, to Optimize this artificial curing

process.

The processing step following curing is storage.

While storage conditions of 32 F and 75% relative humidity



have been recommended (Franklin et_§l., 1966), more work

needs to be done to identify the various effects of

respiration, moisture transfer, and spoilage on the weight

loss of marketable onions in storage.

Another problem area in the processing sequence

occurs when the bulbs are brought in from storage. If

run through the packaging line at storage temperatures

(about 35 F), water condenses on the bulbs. In the some-

what dusty atmosphere of the packing room, this moisture

picks up dirt causing an inferior product. The onions

thus need to be warmed before processing.

The Optimal design of curing, storage, and heating

equipment depends on the prediction of the response of the

Onion bulb to its environment. Thus, a mathematical model

of the bulb is needed.

When the environment is significantly affected by

interaction with the product (such as in the case of a

deep bin), the model of the bulb may be included within

larger models (Bakker-Arkema gt 31., 1969), to predict

the response of the entire process. One problem associ-

ated with such nested models, however, is the large amount

of computer storage and time required for their solution.

The second reason for the research was the hope

that studying the heat and moisture transfer processes in

onion bulbs would lead to a better understanding of these

processes in other high moisture products. The onion has



a relatively large size and a structure which allows

sections to be removed with a minimum of cell damage.

Thus, experiments may be performed on sections of the

product to determine its transfer properties without

changing these properties through the sectioning process.



II . LITERATURE REVIEW

2.1 Introduction
 

The investigation of the processes of heat and

moisture transfer can be divided into two parts--the trans-

fer processes occurring within the product, and the inter-

action of the product surface with the environment. Con-

cerning moisture migration, Van Arsdel (1963) writes:

The drying of a moist substance always involves the

movement of a quantity of water away from a dry sur-

face. The separation is usually regarded for purposes

of analysis as the result of two successive phenomena:

(1) migration of water within the moist body to its

surface; and (2) conveyance of the vaporized water

away from the body . . . the factors that determine

the rate of movement of water within the body can be

regarded as independent of the external conditions.

A useful analysis of the process can be made on the

basis of this simplified picture, even though in some

cases it may become evident that vaporization is in

fact occurring in an ill-defined zone within the moist

body instead of only at its geometric surface.

The surface-environment interaction can be described

by two convective transfer coefficients. The first, h, is

defined by the equation

4" = h (TS - Ta) (2.1-1)

and the second, hD’ by the equation



J8 = h (c — c ). (2.1—2)

In general, these coefficients are determined by the nature

of the air flow pattern around the product. When radiation

heat transfer is significant, h can be modified to include

its effects.

Much research has been performed investigating

these coefficients. Since onions are usually processed in

deep bins and pallet boxes, the work of Barker (1965) in

reviewing the subject of heat transfer in packed beds

should be mentioned. By reference to Barker's article,

a "Colburn j-factor" can be obtained for any given Reynolds

number and product shape. The heat transfer coefficient h

is then obtained by the relation

hd 1/3
 

 

k = Nu = j Re Pr (2.1-3)

air

and the mass transfer coefficient hD by

h d

DD = Sh = j Re Sol/3 (2.1-4)

air

where the Reynolds number Re is given by the onion bulb

diameter times the mass flow rate of air per square foot

of bed area divided by the absolute viscosity. The

Prandtl number Pr is given by the kinematic viscosity

divided by the thermal diffusivity ka. , and the Schmidt
1r



number So by the kinematic viscosity divided by the mutual

diffusivity of water in air D . .
air

While the above formulas can only be considered

approximate, they do characterize the interaction between

the product and its environment. The transport processes

within the product are outlined in the following sections.

2.2 Specific Heat
 

If heat is added to a simple closed constant pres-

sure system in which no work other than that used to change

the system volume is performed, the change in internal

energy of that system is given by

AB = q - PAV. (2.2—1)

The quantity H is defined by the equation

H = E + PV. (2.2-2)

Thus, in this process,

AH = q. (2.2-3)

During the heat addition process the temperature

of the system rises. This then is the basis for the

definition Of heat capacity, namely,

C = (——d . (2.2-4)



If the system is homogeneous, the specific heat is

given by

32

and the molar heat capacity by

_ C

c : _r12°
(2.2.6)

When the system can be considered a homogeneous

mixture, the enthalpy Of the system is the sum of the

partial enthalpies, i.e.,

H = Z n. H. (2.2-7)

i

where ni is the number of moles of species i present and

Hi, the partial molal enthalpy, is defined by the equation

_ 3H _

Likewise,

c = z n. 6.. (2.2—9)

i

In general, 5: is not a constant for a particular

species but varies with changes in temperature as well as

in the relative mole fractions making up the mixture.

Nevertheless, it is customary as a first (and usually quite



accurate) approximation to consider the 53's for a food

system as being constant.

Siebel (1892) considered food as composed of

solids and water for which he used the respective specific

heats of 0.2 and 1.0 Btu/1bmF.

Charm (1963) used this approach with the equation

C = 0.5 w + 0.3 w + 1.0 w (2.2-10)
S mf

wherein wf, ms, and ww refer to the mass fractions of fat,

solids, and moisture. If this formula is applied to

onions of 90% moisture content (w.b.), 9.8% solids non-

fat, and 0.2% fat, c is calculated as 0.93 Btu/lbmF. If

the formula were applied to 80% moisture content onions

(19.6% solids nonfat and 0.4% fat), c would be 0.86

Btu/1bmF. Ordinanz (1946) gives identical values of c

for onions at 80 and 90% moisture content (w.b.).

Reidel (1951) separated the solids portion of

fruits and vegetables into XO "soluble" and Xu "insoluble"

fractions by examining the refractive index of the juice.

He tested onions of 85.5% moisture content (w.b.) and used

weight fractions of l3.% (of the total weight) as soluble

solids, and 1.5% as insoluble solids in the equation

c = (l - Xu)(1 — 0.57 X0) + 0.29 Xu. (2.2-11)

In this case c is 0.916 Btu/lbmF. For 90% moisture con-

tent onions (w.b.), assuming the soluble and insoluble
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fractions are in the same proportion to each other, c

would be 0.942 Btu/lbmF.

In light of the above, it was concluded that

further work on determining the specific heat of onions

is not needed at the present time. Charm's equation

(eqn. 2.2-10) was used to determine c in the calculations

involving specific heat in this research.

2.3 Density
 

The importance of a product's specific heat has

been described in the previous section. Density merits

consideration in that it, when multiplied by the specific

heat, expresses the system's heat capacity on a per unit

volume basis.

It is often easier to determine a food product's

specific gravity y (by measuring its buoyancy in water)

than its density. The density is then determined by

multiplying the specific gravity by the density Of water.

While the density of water is slightly dependent upon its

3 (at 70 F)temperature, it does not vary from 62.27 lbmft

by more than 0.4% in the range of 40 to 100 F (Holman,

1963). Thus, in this temperature range the following

equation is sufficiently accurate.

0 = 62.27 Y (2.3-l)
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The author was unable to find literature values

for the density of onion flesh. It thus became necessary

to determine this property eXperimentally.

2.4 Thermal Conductivity

In the one dimensional case, Fourier's equation of

heat conduction

defines a material's thermal conductivity k. Consideration

of the law of the conservation of energy in conjunction

with the above leads to the following familiar differential

equation for the temperature history of a body in which

there is no heat generation:

8T _ 3 8T _

no 3-5 — 32 (k 82). (2.4 2)

This simple definition of k, however, must be

expanded when the multi-dimensional case is studied since

thermal conductivity is a tensor and not a scalar property.

Thus, in three dimensions (Arpaci, 1966),

.. 22
61x kll k12 k13 ax

" _ _
a—'I‘

qy — k21 k22 k23 ' 3y

- .. 3_T_ _
qz k31 k32 k33 32 . (2.4 3)
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If a material is orthorombic, and if its principle

directions are coincident with the x, y, and 2 directions,

the following equations are equivalent to equation (2.4-3):

.u _ 32 -

. 8T ‘
II = k _ 204-5qy y 3y . ( )

and

_ 22 ..
qz - k2 32 - (2.4 6)

The law of conservation of energy can be applied

to these equations, along with pertinent initial and bound-

ary conditions, to generate a model for the temperature-

time history of a product. (See Section 2.7 of this chap-

ter and all of Chapter IV.) Since this history is dependent

upon the thermal conductivity of the product, these values

must be determined and included in the mathematical model.

Van Arsdel (1963) gives a general description of

the values of thermal conductivity which might be expected

in biological products:

In fresh fruits and vegetables, whose moisture content

is very high, the conductivity is not far from that of

pure water. As drying takes place, however, con-

ductivity falls. If shrinkage is complete, so that

the dry product is free from internal voids, the de-

crease in conductivity is only minor, but if the body

becomes highly porous as it dries the low conductivity

of the air in the open spaces reduces the overall con-

ductivity markedly.
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Since the onion is a high moisture content vege-

table, one would expect its thermal conductivity to be

close to that of pure water which is 0.349 Btu per hr ft F

at 70 F (Holman, 1963). Since the thermal conductivity of

water varies from the value at 70 F by a maximum of 4.9%,

in the temperature range of 40-100 F, one would also ex-

pect the thermal conductivity of onion flesh to be quite

constant within this range.

Reidy (1968) has conducted an extensive review of

experimental techniques used to determine thermal proper-

ties. He noted that steady state techniques could not be

expected to give accurate results with high moisture bio-

logical products due to the problem of moisture migration

within the product during the test. He concluded that

numerical methods should be used with transient type

experiments involving these materials.

As the author has been unable to find values for

thermal conductivity of onion flesh in the literature, one

of the objectives of this research (see Chapter III and

Chapter VI) was to determine values for the thermal con-

ductivity of onion flesh.

2.5 Moisture Diffusion
 

GOrling (1958) outlined the process of moisture

movement within a biological product as a combination of

five different mechanisms: (i) liquid movement caused by

capillary forces, (ii) diffusion of liquids caused by
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concentration differences, (iii) surface diffusion, (iv)

water vapor diffusion, and (v) vapor flow caused by differ-

ences in total pressure.

Before proceeding with the subject of diffusion,

the distinction between the movement of moisture via dif-

fusion and via bulk flow should be mentioned. Bulk flow

is flow caused by the action of a pressure gradient or

gravity on water existing within a relatively large channel

such as a pipe. Poiseuille flow and Knudsen flow are

familiar examples of bulk flow. While such flows exist

in the xylem vessels of the larger plants during the grow-

ing process, the movement of water within the flesh of a

biological product can be considered a diffusion process,

i.e., the movement is caused by a chemical potential

gradient (as discussed later in this section) and not by

a total pressure gradient or gravity directly (Saravacos,

1962).

The traditional literature on the subject of dry-

ing used the theory and mathematics associated with heat

transfer. Thus, the diffusion equation

3C

J=-D‘ ww 0 -§;' (2.5-l)

was written in obvious analogy to the heat conduction

equation and all of the mass transfer mechanisms were

grouped together under one overall diffusion coefficient

D5 and one driving force sew/32.
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Babbit (1940) pointed out that the true driving

force for moisture movement is not the concentration

gradient. He showed this by noting that water can be

made to diffuse against a concentration gradient. He con-

cluded that the driving force for diffusion was the

gradient of the equilibrium water vapor pressure.

Kramer (1969) showed that the true driving force

for diffusion of water through a medium is the gradient

of the chemical potential of water Buw/Bz. Kramer, how-

ever, followed the soil physics literature convention and

used the chemical potential in another form. By dividing

the chemical potential by the molar volume of pure liquid

water, the chemical potential is transformed into WW,

the "water potential,‘ which is dimensionally equivalent

to pressure. Kramer mentioned that the transformation is

employed simply for convenience.

By using the chemical potential gradient instead

of the concentration gradient, a diffusion equation

analogous to equation (2.5-l) can be developed. If JS

is the molar flux of water with respect to a reference

frame moving at the same rate as the "medium," then

C 0 3p

m _ w w w _

Jw - 32
(2.5 2)

where 0w may be thought of as a mobility.* The solids

 

*Hartley and Crank (1949) presented a similar

development but with emphasis on liquid diffusion. Their

expression 1/0AnN is the same as 0w.
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may also move with respect to this reference frame and

the flux relative to the solids, J3, is the flux needed

to determine drying rates.

ms
If v is the velocity of the medium with respect

to the solids,

s _ m ms _
Jw - Jw + v Cw (2.5 3)

and

J8 = o = J‘“ + vms c . (2.5-4)
S S S

. (2.5-5)

The rate at which the solids move with respect to

the medium defines another mobility 03 by the equation

m 3“5
JS — ' CS {25 w. (2.5'6)

From the Gibbs-Duhem equation (Moore, 1962),

C

dp = lap . (2.5—7)
S C w

5

Therefore,

311

Jm= c {2 ——w (2.5-8)



U
)

and

then

n
W

 

2
3p C 8n

— _ __E. w __E. -

— Cw Qw 82 C s 32 ' (2'5 9)

Cw auw

= - (Cs 9w + Cw as) C; 32 " (2.5-10)

defined by

Cw Buw

= — ' -RT D 32 , (2.5 11)

_. Bil”. _
— Cs (CS Qw + CW 08). (2.5 12)

Since

0 pw

- “w - RTlnaw — RT1n(waw) — RTln 5:. (2.5-13)

the equation for the molar flux of water may be stated in

a number of equivalent ways. The most traditional involves

 

the concentration of water. Thus,

an alna Blna alnx

w _ w = w w _

‘52— ‘ RT 32 RT 231an 32 ' (2'5 14)

But,

Cw



Expanding de yields

BXW BXw

de = 36— de + EC- dC

W S

or

CS CW

dXW = '7 de " —'2' dCs

C C

S
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From the Gibbs-Duhem relations,

 

 
 

 

 

dC V

__§ = _ .2

de V

5

Therefore,

Csvs + vaw l

de = 2_ dC = 2_ de

C V V

s s

and

alnx 8C

w = 1 w

32 C C V. 8w

w s

yielding,

J5 = - (CS 9w + Cw QS)RT Elnaw BCW

w

CCV
SS

31an 32 '

(2.5-16)

(2.5-17)

(2.5-18)

(2.5-l9)

(2.5-20)

(2.5-21)

This development shows that Dé as used in equation

(2.5-1) is given by
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RT Elnaw

D8 = (Cs Qw + Cw as) alnX

C C V w

s s

Blna

= D11 i alnx‘”. (2.5—22)

CVs w

At this point the distinction between D; and DC should be

explained. Dé as defined in equation (2.5-l) relates the

molar flux with respect to the solid to the concentration

gradient. DC as used in many texts on mass transfer

(especially Bird, Steward, and Lightfoot, 1960) is the

mutual diffusion coefficient which relates the molar flux

with respect to the volume fixed reference plane to the

concentration gradient. Thus,

The relation of Dé to DC can now be determined. Since

v _ mv _
Jw — J3 + v Cw’ (2.5 24)

vmv = - v'm = — V' Jm - V Jm , (2.5-25)

w w s s

and

JV = Jm - c (\7 Jm + \7 Jm) , (2.5-26)
w w w w w s s

substituting for J? and J: into equation (2.5-26) yields
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V—_ — _. —

Jw — (CS Qw + CW 98) VS Cw . (2.5 27)

Substituting for Buw/Bz gives finally

BE Blnaw BCW

C :31an 82

 J = - (C Q + C Q )

S W W S

w (2.5-28)

which is identical with the result given by Hartley and

Crank (1949). Thus,

 

D!

59. = ,
(2.5-29)

C

When shrinkage upon drying is negligible, the partial

molar volume of water V; is zero and the term 1/C8Vé is

unity. In this case, Dé and DC are identical.

Fish (1958) found that in potato starch gel, Dé

varied with temperature and the variation could be de-

scribed by Arrhenius' equation as

-E

l _ I __a_ ..
DC — DO exp ( RT) . (2.5 30)

The constant D6 varied little with moisture content but

the activation energy Ea increased with decreasing moisture

content.

Jason (1958) obtained good agreement between the

experimental and theoretical results in the drying of fish

muscle by using two values for Dé--the first during the
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initial falling rate drying period and the second during

the later stages of drying. He postulated that the trans-

ition from the first to the second was associated with

the uncovering of the unimolecular water layer normally

bound to the portein molecules.

Jason (like Fish) noted an Arrhenius type of

relationship between the diffusion coefficient and temper-

ature. His results agree with those of Fish in that D5

was quite constant but Ea increased with decreasing

moisture content.

Wang (1958) used a different equation to model

moisture diffusion. While he solved a problem in simul-

taneous heat and mass transfer, the equations he used

degenerate for a one dimensional isothermal case to

J = W (2.5-31)
 

where pw is the equilibrium vapor pressure. Since

  

3p 3lnp 3p

__W==RT W = 53 W , (2.5-32)
32 32 p 32

w

equation (2.5-10) can be rewritten as

C 3p

8:- 1&4: -
Jw (Cs 9w + CW 98) C p 32 . (2.5 33)
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Thus,

MWRT cw D' M.w cw

= (CS 9w + CW 525) C— = —“——— . (2.5-34)

W S pWV

B  

Since Cw includes all of the moisture existing per

unit volume in the material, the gas law does not provide

a simple relationship between pw and Cw' One cannot say

a priori that B' is a constant.

Young (1968) used a related approach to model

simultaneous heat and mass transfer in spherical, porous,

hygroscopic solids. He assumed that the gradient of the

density of water vapor in the pore spaces pwv is the driv-

ing force for mass transfer, thus making a distinction

between pgm, the overall moisture density and pwv' the

density of the water vapor in the void fractions of the

material. Two further assumptions were that the overall

moisture content (d.b.) was related to the vapor concen-

tration in the void fraction and the temperature by

m = a + B pwv - y T (2.5-35)

where a, 8, and y are constants and that the diffusion

coefficient associated with the vapor concentration

gradient driving force could be modeled as

I _ —

Dwv — D1 + Dzm + D3T (2.5 36)

and D are constants.

D2' 3
where D1,
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It can be shown that D&v is related to D; by the equation

D' m p

D¢V = _£LEV_JBE . (2.5-37)

WV

While Young did not attempt to verify his model experi-

mentally, he did solve the model numerically for many

different input conditions. One important result was

the illustration of the fact that the heat and mass trans-

fer equations may be solved separately whenever temper-

ature equilibrium is reached much faster than moisture

equilibrium. Young developed a modified Lewis number as

a criterion for this condition. (See Chapter VIII.)

In spite of the fact that Dév is not a constant,

extremely good fits between experimental data and the

corresponding mathematical models have been obtained in

some cases by using constant values of D&V., For example,

Roa and Bakker-Arkema (1969) found that in freeze-dried

meat cubes, a model using a constant Dév and one using a

second order polynomial D¢v fitted the adsorption data

almost equally well.

Another possibility for the driving force should

be mentioned--the moisture content (d.b.), m. Since

3uw 3lnaw

 

32 3m. 35 ' (2°5’38)



24

equation (2.5—10) becomes

CWRT 3lnaw

C 3m

3

J
 8-- 2E -w - (CS 0w + CW 98) 32 . (2.5 39)

The mass flux of water with respect to the solids J: is

given by

= M J . (2.5-40)
w

Therefore,

C 31na

 

 

.s _ _ w w 3m _
3w — M.W RT (CS 0w + CW 05) Csm 31nm 32 (2.5 41)

defining Dfi in the equation

.5 _ . 3m

3W " - pdm Dm E (2.5-’42)

as

31na

. _ 52_ W _
D — C5 (C5 0w + CW 98) 31nm . (2.5 43)

It follows that

" 31naw

D' = D’ C V = D = D' . (2.5-44)

s s c u 31nm

Fish (1958) found that in potato starch gel the

term 3lnaw/3lnm varied from approximately 1.50 at moisture

contents between 0.02 and 0.18 (d.b.) to approximately

0.02 near saturation. He also found that, at 35 C, Di was
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7
constant (2.4 x 10— cmz/sec) for samples over 0.30 mois-

ture content (d.b.). For samples below this moisture con-

10 cmZ/sec. at 0.8%tent, DA decreased rapidly (l x 10-

moisture content).

The mass of water included in an incremental

volume of material dV is pdmmdv. The law of the conser-

vation of mass when combined with equation (2.5-42) yields

in the one dimensional case

_ . 3m)3

—3_z(m32 . (2.5 45)

O
J
I
O
)

H
'
B

Thus, the use of the moisture content as the driving force

for moisture transfer leads to an equation that is rela-

tively simple to solve in that the driving force for mois-

ture transfer and the measure of water existing within the

material are the same. For this reason, the moisture con-

tent was used as the driving force in the mathematical

model as described in Chapters IV and VI.

2.6 Mathematical Modeling
 

As shown in Sections 2.4 and 2.5, heat and moisture

transfer within a material can be described by parabolic

partial differential equations such as (2.4-2) and (2.5-45).

This section outlines in general terms how these equations

can be put into finite difference form, and describes a

particular method--the "alternating direction explicit

procedure" for solving the finite difference equations.



26

For the purpose of illustration, constant property,

isotropic, two dimensional heat conduction shall be con-

sidered. The modifications needed to extend this to the

heat and moisture transfer problem under consideration in

this research are straightforward and are outlined in

Chapter IV. The partial differential equation for the

constant property, isotropic, two dimensional case is

2 2

pc 22-: k (§—%-+ g—g) . (2.6-l)

3x 3y

In order to develop the finite difference approxi-

mations to this equation, a rectangular grid is super-

imposed on the material as shown in Figure 2.6.1. To

make the notation easier, the node points are referred

to by subscripts i, j, and n, with i and j referring to

the increment in the x and y directions, and n to the

increment in time.

By the Taylor series expansion theorem,

 

 

2 T. . - 2 T. . + T. .

2.2 = 1-1.3 1'1 1+1'3 + o (sz) (2 6-2)2 2 . .

3x Ax

Similarly,

2 T. . - 2 T. . + T. .

2.2 = lLlfl 1'1 1L3+1 + o (Ayz) . (2.6-3)
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i-l, 1+: i, j+l i+l,j+l

 

 

i-l,j i,j i+l,j

 

   
 

JUJ-I i+l,j-l

 

 

Figure 2.6.1. A Portion Of a Two Dimensional Finite

Difference Grid in Cartesian Coordi-

nates.
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Combining (2.6-2), (2.6-3), and (2.6-1),

  

dT. . T. . - T. . T. . - T. .

_1_'_l = i 1-113 1'1 + 1+1d 1:3

dt pc AX2 AX2

2

T. . — T. . T. . - T. .

+ 1.3-1 1,1.+ 1.1+1 1.]

Ay Ayz

+ 0(AX2) + 0(Ay2) . (2.6-4)

Equation (2.6-4) is the basic equation upon which the

various finite difference schemes are built. Given the

initial temperatures at every node point, the numerical

methods attempt to approximate the term (dTi,j/dt)ave in

the equation

(n+1) (n) d Ti '
To I = To 0 + ——’_1 At (2.6-5)

i,j i,j dt ave

in order to Obtain the temperature-time history of the

material. The evaluation of the right hand side of

equation (2.6-4) by the inclusion of the node temperatures

at different times gives rise to the various numerical

methods for solution of the conduction problem.

The "forward difference explicit method" uses

only node temperatures at time n in order to calculate

the right hand side of equation (2.6-4). Thus,
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T(n+1) _ T(n) T(n) T(n) T(n) T(n)

TiI j 1Ij = j; (i-le1Ij + i+le1Ii

At pc sz Ax2

T_(n) T(n) T(n) T(n)

+1Ij--11Ij + iIi+l Tin

Ay2 Ay2

(2.6—6)

and rearranging,

   

 
 

Tm) T(n) T(n) _ T(n)

T(n+1) = T(n) + Atk i-le1,j + i+1,j i,j

Ti,j i,j pc Ax2 sz

T(n) T(n) T(n) Tm)

+1Ij-11Ij +irj+1ltj . (2.6-7)

Ay2 Ay2

Thus, the method is "explicit, meaning that the calcu-

(n+1)
lation of the temperature Ti' uses only one equation

I

and not a set of simultaneous equations. Unfortunately,

the method is unstable if either Of the ratios kAt/pch2

or kAt/pcAy2 becomes larger than about 1/4. This requires

that the time step At be kept so small that the method is

impractical.

The "backward difference method" uses the node

temperatures as evaluated at time n+1 for evaluation of

the right hand side of equation (2.6-4). Since this yields

a system Of simultaneous algebraic equations giving the

node temperatures at the time n+1, the method is an

"implicit" one. While the method is stable for any At,
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the requirement of solving the simultaneous equations

renders the method impractical.

The "Crank-Nicolson" method uses the average of

the node temperatures at times n and n+1 for the right

hand side of equation (2.6-4). The method is stable but

has the same limitation as the backward difference method

in that the requirement of solving the system of simul-

taneous algebraic equations created by using the node

temperatures at time n+1 makes the method impractical.

A fourth method is known as the "alternating

direction implicit procedure" (ADIP) or the "Peaceman-

Rachford" method. This method uses node temperatures at

time n in the first two terms within the brackets on the

right hand side of equation (2.6-4) and temperatures at

time n+1 in the second two terms. In calculating the

temperatures at time n+2, temperatures at n+2 in the first

two terms within the brackets and at n+1 in the second two

are used. The systems of resulting simultaneous algebraic

equations differ from those Obtained in the backward

difference or the Crank-Nicolson methods in that the un-

known node temperatures appearing in any equation are all

from the same nodal row or column. This makes the solution

much easier since it is easier to solve I algebraic simul-

taneous equations J times than to solve I times J simul-

taneous equations once. This method is stable and

practical but the "alternating direction explicit pro-

cedure" (ADEP), as described next, is faster and easier
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to program and was therefore used in this research (Allada

and Quon, 1967).

The alternating direction explicit procedure

(ADEP), like the ADIP, is a two pass system. On the for-

ward pass, the first and third terms within the brackets

on the right hand side of equation (2.6-4) are evaluated

at time n+1, and the second and fourth terms are evalu-

ated at time n. On the return pass the first and third

terms of the right hand side of equation (2.6-4) are

evaluated at time n+1 and the second and fourth at time

n+2. The method thus progresses through two time steps

during the full forward and return passes.

Barakat and Clark (1966) described a variation of

the ADEP in which two separate solutions are generated.

In one, the first and third terms within the brackets on

the right hand side of equation (2.6-4) are evaluated at

time n+1 while the second and fourth are evaluated at

time n. In the other solution, the second and fourth

terms are evaluated at time n+1 and the first and third

at time n. The final solution is obtained by averaging

the two solutions wherever desired. Thus, for a given

At, this variation requires twice as much computer time

and storage as the first ADEP method. Barakat and Clark,

however, argued that the averaging ADEP is better than

the non-averaging. They pointed out that the truncation

At 32T
error in the first pass includes the terms - A; 3E3; (n+1)
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A; _32T
Ay 3t3y (n+1).

convergence, the ratios At/Ax and At/Ay must go to zero.

and - This would indicate that, to Obtain

The truncation errors on the return pass, however, have

the opposite sign of the ones on the forward pass. This

indicated to Barakat and Clark that these errors cancel

in the averaging ADEP, relaxing the requirement that the

ratios At/Ax and At/Ay go to zero. Barakat and Clark com-

mented that this condition needs further examination. The

tOpic is pursued further in Chapter IV.



III. OBJECTIVES

The objectives selected for this research are as

follows:

1.

2.

To determine the density of onion bulbs.

To determine the thermal conductivity of

onion flesh in the axial and radial directions.

To determine the moisture permeability of

onion skins.

To develop a mathematical model that simulates

the response of an onion bulb to its environ-

ment.

33



IV. MATHEMATICAL MODEL

4.1 Introduction
 

The partial differential equations governing the

heat and moisture transfer in an orthorombic material were

developed in Sections 2.4 and 2.6. It was also mentioned

that, by consideration of initial and boundary conditions

and of the laws of the conservation of mass and energy, a

mathematical model suitable for computer solution could be

developed to simulate the response of a biological product

to its environment. Examination of the onion bulb, how-

ever, reveals that there are two considerations that should

be mentioned before undertaking the development of such a

model.

First, examination reveals that the bulb can be

considered axially symmetric. This is the basis for the

decision to use the cylindrical coordinate system. A

reduction from a three dimensional problem to a two

dimensional one is easily accomplished in this case by

including only radial and axial dimensions.

The second consideration is that the principal

directions of the flesh (i.e., "axia1"--coplanar with the

34
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central axis and tangential to the onion rings, and

"radial"--perpendicu1ar to the rings) are dependent upon

position. A grid system that is orthogonal to these

principal directions is desirable because the node equations

describing heat and mass transfer will then be simplified.

Under such a system, transfer from one node to another is

independent of the potential gradient existing at right

angles to a line connecting the two nodal points. The

following section describes the generation of such an

orthogonal grid system.

The grid system is the basis for three computer

programs. The first of these, HTRAN, was written to simu-

late the temperature response of a biological product

under the assumption of no mass transfer. The second

program, HMTRAN, simulates both the heat and moisture

responses using the moisture content (d.b.) as the mois-

ture transfer driving force. The third program, MTRAN,

is identical with the second except that only moisture

transfer is considered.

4.2 Finite Difference Grid
 

In the development of the finite grid system, two

computer subroutines are required. The first, PERIM (z),

associates with any point (2,r) the length of the radius

passing through (2,r) to the surface. The second DPERIM

(z), associates with (2,r) the slope of the tangent line to

the surface with respect to the axis. (See Figure 4.2.1.)
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DPERIM (z)- fan 0

0

   -PERIM(:H 
  

:fi-r

Figure 4.2.1. Relationship Between PERIM

(z), DPERIM (z), and z.
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Expressions for PERIM (z) and DPERIM (2) were

determined for onion bulbs by fitting a ten term Fourier

sine series to the onion shape. This was done by taking

35mm slides of ten individual onions. From the projected

images, the length to maximum diameter ratio was found to

be 3/2. The diameters corresponding to various points

along the central axis of the bulbs were recorded. The

ratios of the diameters to the maximum diameter of each

bulb gave about 200 points outlining the shape of an

average onion with unit diameter. The ten term series

was fitted to these points by the least squares technique

as performed by GAUSHAUS--a computer program supplied by

the Michigan State University Computer Laboratory. Table 2

of the Appendix gives the resulting series. DEPERIM (z)

is obtained by term by term differentiation of PERIM (z)

with respect to 2.

To develop the grid proper, node points were placed

on the central axis. Since the base and the tip of the

onion were thought to play a relatively important role in

the mass transfer process, the node points were placed

progressively closer together near the base and near the

tip. When, for the purposes of model testing, the grid

was developed for a Sphere, eleven node points were placed

on the central axis at points corresponding to 0.16, 1/16,

2/16, 4/16, 6/16, 8/16, 10/16, 12/16, 14/16, 15/16, and

16/16 Of the diameter. When developed on the onion bulb,

an additional point was placed at the length ratio of 9/16
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so that the total grid would follow the bulb shape more

closely (see Figures 4.2.2 and 4.2.3).

From each of the central axis node points, a line

was projected outward along the principal material direc-

tions. This was done in the following manner: at each

central axis node point, an incremental distance was

formed as one hundredth of the distance between the two

adjacent axial node points. Using this incremental dis-

tance, a grid line was projected outward from the node

point adjusting itself to remain along the radial princi-

pal direction, which was always assumed at right angles

to the axial principal direction. The axial principal

direction was determined by assuming the tangent of the

angle between the principal direction and the central

axis is given by DPERIM (z) multiplied by the ratio r/PERIM

(2). When the grid line so generated reached the surface

of the bulb, it was sectioned to give nodes at points

corresponding to 0/32, 8/32, 16/32, 20/32, 24/32, 26/32,

28/32, 30/32, 31/32, and 32/32 of the line length. The

total grid is shown in Figures 4.2.2 and 4.2.3 for the

two-inch sphere and the two-inch diameter onion bulb,

respectively. When the grid was developed for HMTRAN

and MTRAN, two additional rows of points were added near

the surface at the ratios (as described above) of 61/64

and 63/64. This was done because HMTRAN and MTRAN had to

be designed for cases in which the modeling time would be

much less than the time constant for mass transfer.
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After the grid was developed, the nodal volumes

were determined. The volume of a general interior node

(i,j) was calculated by the following equation (see

Figure 4.2.4):

  

 

Vol = firiLi (Bl + Bz)ri+1.j + (A1 + A3”in
1I3 8 ri+l,j + ri,j

+ (B5 + B6)ri-l,j + (Al + A3)ri,{]

r. . + r. .
1-1,]

1’]

+ H

[(87 + B8)ri,j+1 + (A2 + A4)riLj

ri,j+1 i,j

(B + B )r. ._

.+ 3 4 1,3 l. (4.2-1)

4
.

P
N

+ 3
’

a
; H

p
.

L
_
_
_
_

. . + . .

rl'J-l 1’]

The volume of a surface node was calculated in the same

manner. Referring to Figure 4.2.5,

_ "ri,J B2ri+lLJ + A3ri,J BSri-1,J + A3ri,J
Vol. 4 +

. . . + .

r1+1,J + r1,J r1-1,J r1,J

+

r +r

BBri,J-l + A2ri,J B4ri,J+l + A4ri,J

i,J-1 i,J ri,J+1 + ri,J

(4.2-2)

The volume of a general central axis node is given by (see

Figure 4.2.6)

_ fl 2 2 _
Voli’l — —§§-[A2(3Al + Bl) + A4(3Al + B6) 1 . (4.2 3)
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Figure 4.2.4. A General Interior Node.
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Figure 4.2.5. A General Surface Node.
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The volumes of the two end nodes are simply (see Figure

4.2.7)

3
Vol = Vol = -— A2 . (4.2-4)

The transfer of heat or moisture from one nodal

volume to another is directly proportional to what

Dusinberre (1961) calls the "geometric factor." This

geometric factor is defined as the effective tranSport

area divided by the distance between the two node points.

Referring again to Figure 4.2.4 for a general

interior node, the geometric factor between node (i,j)

and node (i+1,j) is given by

(B + B )r. . + (A + A )r. .

Gfapi . = 4n 1 2 l+lLJ 1 3 1L3 (4.2-5)

I
j 6A2 + B3 + B8

The geometric factor between node (i,j) and (i,j+l) is

given similarly as

6A + B + B °

Gfrpi . = 4n

'3 1 1 6

The geometric factor between two surface nodes

(i,J) and (i+l,J) as shown in Figure 4.2.5, is

Gfa = 2“ Bz ri+1,J + A3 ri,J

pi,J 3A2 + B3
 

(4.2-7)

The geometric factor between a surface node and the

ambient surroundings is somewhat different from the above
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Figure 4.2.6. A General Central Axis Node.

 

 

  
Figure 4.2.7. An End Node.
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in that transfer between the two is proportional to a

heat or mass transfer coefficient, instead of a con-

ductivity or a mass diffusivity. Referring to Figure

4.2.5,

Gfrpi = W

I

J ri,J (A2 + A4) . (4.2-8)

With reference to Figure 4.2.6, the geometric

factor between a central axis node and its axial neighbor

is given by

2
1r (Bl + Al)

Gfapi’l = 4 (3A2 + BB) (4.2-9)
 

The geometric factor between a central axis node and its

radial neighbor is given by

(4.2-10)Gfrpi’l = A2 + A4 + B7 + 138 .

The end nodes present a somewhat different case

in that heat and moisture transfer takes place between

them and all of the adjacent nodes as well as with the

ambient. Thus, referring to Figure 4.2.7, the geometric

factor between the end node (1,1) and the node (2,j) is

given by

2’1 (4.2-11)
 

6
4
m

Gfapl'j =



46

The geometric factor between (1,1) and the surface node

(2,J) is

(4.2-12)

w
I
N

OGfapl J =

The geometric factor between (1,1) and (2,1) is given by

2

2 Bl
Gfapl’l - '3' T . (4.2‘13)

2

The geometric factor between (1,1) and the ambient is

Gfrpl,J = __4_ . (4.2-14)

After having determined the geometric factors, the

transfer parameters are assigned to each node. In HTRAN

these consist of ka, kr’ c, p, as well as h for the surface

and end nodes. In addition to the heat transfer parameters,

the initial values for D$a, Dfir,

in HMTRAN. In MTRAN, only D' , D'
ma mr

and hD have to be assigned

, and hD are assigned.

This completes the development of the grid system.

The next section describes the solution of the system of

resulting node equations.

4.3 Solution of Node Equations
 

The Alternating Direction Explicit Procedure

(ADEP) for the solution of the conduction equation was

reviewed in Section 2.7. The present section describes

how this method was utilized to solve the node equations
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resulting from the finite difference grid outlined in the

previous section. The case of pure heat conduction is

developed first, after which the modifications necessary

to include moisture transfer are described.

As was mentioned in Section 2.7, the ADEP is a

two pass method. However, when attempting to model a

homogeneous, isotropic sphere for the purposes of model

testing, it was found that, for the present grid system,

the two pass system was not truly symmetrical. Instead,

a four pass system was used which proved satisfactory.

The first pass starts at the bottom center of the product

and progresses row by row (moving outward upon each) until

it reaches the top. If this progression is designated as

northeast, the other three passes may be simply described

by the directions southwest, southeast, and northwest.

The following paragraphs outline the equations used

for the first pass. The equations used on the other passes

are all similar.

For an interior node, as shown in Figure 4.2.4,

the equations are the same as described in Section 2.7.

Thus, for the first pass,

(n) (n+1)
Vol T ./At + kaGfapi—l,jTi-l,j. .C. . .. .

T(n+1) = ‘31.] 1I3 1I15 1IJ
 

1,] pi,j Ci’j Voli’j/At + kaGfapi-l,j + krGfrpi,j-l

(n+1) [ (n) _ (n>J
+ krGfrpi,j-1T + kaGfapi,j Ti+1gi Ti,j

 

(n) _ (n)]

+ krGfrpin [ 1.1+1 Tin . (4.3-l)
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Heat transfer between the product surface and the

ambient is proportional to the surface heat transfer coef-

ficient. Thus, the above equations are modified for a

surface node, as shown in Figure 4.2.5, to yield for the

first pass,

 

 

T(n) (n+1)

T(n+1) = pLJ cLJ V011, J Ti, J/At + kaGfapi--L JTi- 1, J

1,J pi,J ci,J Vo J/At + kaiGfap-l J + krGfrpi j--l

(n+1) [ (n) T(n)

krGfrp1,J-l T ,J-l + kaGfapi,JTi+l,J Ti, J

m]

+ h Gfrp ,J [Ta T1,J . (4.3-2)
 

Since a central axis node, as shown in Figure

4.2.6, has only three faces, the first pass equation is

T(n) (n+1)

T(n+1) _ 01,1 1,1 V011,1T1/At + kaGfapi- 1, lTi-l, 1

T1,1 pi l c. VO l/At + kaGfapi_1 1

(n) T(n)

+ kaGfapL 1 [TTi+l,l T1,1)

+ krGfrpi'l [Tin) - T(n)] .

The end nodes are unique in that each has more than

four adjacent nodes as shown in Figure 4.2.7. The first

pass equation for the node (1,1) is
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J

(n)
p c Vol T /At + Z k Gfap .

T(n+l)= 1,1 1,1 1,1 1,1 i?1 a 1,3

1,1 01,1 Cl,l Voll,1/At + hl Gfrpl’J

(n) _ (n)

T2,j T1,j + h1 GfrpLJ Ta . (4.3-4)
 

The heat transfer model was tested by comparing

the analytical and model temperature histories for the

center of a two-inch diameter sphere initially at uniform

temperature and subjected to a step change in ambient

temperature. The surface heat transfer coefficient was

set at 500 Btu/hr ftZF, the initial temperature was uni-

form at 40 F, the ambient temperature was 100 F, the

density was 58.8 lbm/ft3, the specific heat was 0.93 Btu/

lbmF, and the axial and radial thermal conductivities were

0.3 Btu/hr ft F. The results, as shown in Figure 4.3.1,

indicate that the model agrees reasonably well with the

analytical solution which was calculated by the following

equation (Grigull, 1964):

B 2 sin Vn - vn cos v --v2 kt

T = 100 - 60 Z v - sin v cos v ech———7§—).
m=l n n n pc r

 

(4.3—5)

The eigenvalues vn in the above equation are the solutions

to the following transcendental equation:
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v cos v = (1 - 25) sin v (4 3-6

h n k n ° '

Only eight terms of the infinite series were used in deter-

mining the analytical solutions. The analytical results

for times less than 0.04 hours were discarded due to the

nonconvergence with only eight terms.

The author tried various modifications of the pro-

gram in an attempt to minimize the error shown in Figure

4.3.1. As shown in the Appendix, HTRAN was written so

that only a few statements would have to be changed to

convert the ADEP to that of Barakat and Clark (see Section

2.6). When this was tried, however, it was found that the

error was not affected. Since the Barakat-Clark scheme

requires in this case four times more storage and four

times more computing time, the Barakat-Clark modification

was abandoned.

The second modification tried was to further sub-

divide the region by adding more nodes in the radial

direction. This modification reduced the positive peak

shown in Figure 4.3.1, but did not affect the negative

one.

The third modification tried was to vary the axial

spacing of the node points to one in which the incremental

distances in 2 were more uniform. This did not signifi-

cantly affect the error.
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The fourth modification tried was to further sub-

divide the region by adding more nodes in the axial

direction. This increased slightly the magnitude of

both the positive and negative peaks shown in Figure 4.3.1.

The fifth modification tried was to reduce the

time increment by a factor of 100. This did not affect

the magnitude of the error.

The sixth modification tried was to replace the

geometric factors based on the average area between the

nodes by factors taking into account the fact that the

area between nodes is not constant. For example, if this

variation is assumed linear, the axial geometric factor

between two general interior nodes becomes (see Figure

 

 

4.4.2)

B+B..-A+A..

Gfa = fl( 1 2)r1+l,3 ( l 3)r1,3 (4 3_7)

pi,j (B + B )r. . '
A 1n 1 2 71+1L3

2 7A1 + A3)ri,j

If the variation is assumed quadratic, the radial geo-

metric factor between two general interior nodes becomes

(see Figure 4.2.4)

 

 

 

 

Gfrp. . = w/ri’j(A2 + A4F[(B7 + B8)ri,j+l - (A2 + A4)ripfl

1,3

A tan-1 /(B7 + BBri,j+l _ 1

1 (A2 + A4)ri j

I

(4.3-8)
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When these equations were used in the model, the positive

peak shown in Figure 4.3.1 remained the same but the magni-

tude of the negative peak was increased.

Barakat and Clark (1966) gave the following

equation for the truncation error for a uniform grid in

a cartesian coordinate system:

- At 32T

i,j,n+l AX atax i,j,n+l

M

II

m
'
o
)

(
'
1
'
H

 

 

 

 + . . . . (4.3-9)

 

The failure of the modifications to improve the

model error appears to contradict equation (4.3-9). It

would thus seem that a different expression for the trun-

cation error would be needed for this grid system. The

author, however, was unable to derive such an equation

due to the complexities of the grid system.

As shown by the listings of HTRAN, HMTRAN, and

MTRAN in the Appendix, the modifications necessary to model

mass transfer are minor: first, since the diffusion coef-

ficient Dfi is a function of the moisture content, it was

re-evaluated for each node at the start of each group of
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four passes; and second, to prevent instability at the

boundary, the mass flux at the surface was always evalu-

ated at the time n+1 for each pass. This was done by

approximating the boundary layer vapor concentration at

time n+1 by

 

(n+1) (n)
m. . C

céggl) = 1'3(n) WVS . (4.3-10)

m. .

1,]

(n)
was evaluated

wvs

The boundary layer vapor concentration C

as a function of min; by means of the straight lines

I

approximation shown in Figure 7.2.7.



V. DENSITY

A very simple experiment was performed to determine

the density of onion flesh. Eleven bulbs were weighed

individually in air. A metal sinker was then sewed to

each and each weighed in water. The temperature of the

bulbs and of the water was 70 F. The moisture content of

the bulbs was 9.00 (d.b.).

Table l of the Appendix shows the results. The

statistical data shown was calculated with the aid of

BASTAT, a basic statistical computer routine supplied by

the Michigan State University Agricultural Experiment

Station. As shown in the table, the average specific

gravity was 0.944. This corresponds to a density of 58.8

lb/ft3. The moisture content of the bulbs was 9.00 (d.b.).

The assumption that shrinkage upon drying is negligible

yields

and

3

de = 5.88 lbm/ft .
(5-2)
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Equations (5-1) and (5-2) were used in all calculations

involving the density in this research.



VI . HEAT TRANSFER

6.1 Introduction
 

The thermal conductivity of wood is considerably

greater parallel to the grain (0.23 Btu/hr ft F) than

perpendicular to the grain (0.12 Btu/hr ft F) (Rohsenow

and Choi, 1961). It was felt that this anisotropy might

also be present in onion flesh. Thus, experiments were

performed to determine the conductivity in both the "axial"

and "radial" directions (see Section 4.1).

The mathematical model for heat and mass transfer

has been described in Chapter IV. In most biological

products, the time scale for heat transfer phenomena is

much smaller than that for moisture transfer phenomena.

This allows separation of the two for modeling purposes

(Young, 1968).

When conducting an experiment to determine a

property such as thermal conductivity, the experiment

should be planned so that the measured quantity, such as

temperature, is highly dependent upon the desired property.

The "sensitivity coefficients,‘ defined in this case by

the ratio of the change in temperature at a particular

location and time to an assumed change in thermal

57
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conductivity, give an indication of the accuracy obtainable

in a particular experiment. More than one property may be

obtained from a single experiment if the respective sensi-

tivity coefficients are not closely correlated to each

other and are of sufficient magnitude. The sensitivity

coefficients AT/Akr and AT/Aka for the center (the point

on the central axis at which the onion diameter is a maxi-

mum) of a two-inch diameter onion are shown in Figure 6.1.1.

To determine these sensitivity coefficients, both kr and

ka were assumed to be 0.3 Btu/hr ft F while the initial

temperature was taken as 40 F with the boundary condition

consisting of a step change in ambient temperature to 100 F

with a heat transfer coefficient of 500 Btu/hr ft F. The

changes in the center temperature versus time due to small

(1%) changes in the assumed values of thermal conductivity

were obtained by solving the model three times--once at the

base values, once with an increased kr, and once with an

increased ka. The sensitivity coefficients were calcu-

lated by dividing the resulting changes in center tempera-

ture by the causal change in thermal conductivity. As the

figure shows, the center temperature is much more sensi-

tive to kr than to ka' Thus, placing an onion initially

at 40 F in a constant temperature bath at 100 F could be

expected to give kr (as described in Section 6.3) but not

both kr and ka. An alternative method (described in the

next section) was used to find ka.
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6.2 Axial Conductivity
 

As outlined in the previous section, the tempera-

ture history of an onion, when subjected to a step change

in ambient temperature with a uniform heat transfer coef-

ficient existing over its surface, is not highly dependent

upon the axial conductivity of the onion flesh ka. How-

ever, since the axial conductivity is a parameter in the

model, and since it was desired to be able to model the

case in which the surface heat transfer coefficient is a

function of 2 (see Figure 4.2.1), determination of ka was

included among the objectives of the research.

In order to determine the axial conductivity, the

sample holder shown in Figure 6.2.1 was constructed. The

holder consists of two metal cups lined with insulation.

A heat source consisting of a copper block one-inch in

diameter by 0.66 inches long was placed in a cavity in the

top cut. Using a cork borer, a one-inch diameter by one-

inch long sample was cut from the center of an onion and

placed in the bottom cup. After cooling the bottom cup

and specimen to 40 F and heating the top cup and block

to 100 F, the cups were brought together and the tempera-

ture histories of the block and sample were taken by means

of three thermocouples attached to the block and five

thermocouples imbedded in the sample. An existing system

developed by Dr. J. V. Beck (Mechanical Engineering Depart-

ment) was used to collect and record the data. The thermo-

couple voltages were amplified and sent to an IBM 1800
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hybrid computer which converted the voltages to tempera-

tures, and punched the temperature-time histories onto

cards. Each experimental run lasted 7.5 minutes during

which 150 readings were taken at each thermocouple.

Two existing nonlinear estimation computer pro-

grams developed by Beck (1964, 1966, 1968) were used to

analyze the data. The first used the temperature history

of the copper block to estimate the heat flux from the

block to the sample. The heat flux was assumed constant

during each of the time intervals between the thermocouple

readings. These discrete heat fluxes were adjusted by the

program so that the sum of the square differences between

the experimental block temperatures and the temperatures

as generated by a one dimensional Crank-Nicolson finite

difference model of the block, which included the dis-

cretized heat fluxes, was a minimum.

The second program used the temperature history

of the sample and the heat fluxes determined by the first

program to find the thermal conductivity of the sample.

As in the first program, the sum of the squared differ-

ences between the experimental temperatures and those

generated by a one dimensional Crank-Nicolson model of

the sample was minimized--in this case by adjusting the

thermal conductivity.

The results of five experimental runs are shown

in Table 3 of the Appendix. The second column in the
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individual results section of the table shows the root mean

square (RMS) difference between the calculated and the

experimental sample temperatures for each run. From this

column, it can be seen that the numerical model fits some

runs better than others. It is believed that the higher

RMS values were caused by inaccuracies in the measurement

of the thermocouple position within the sample. Thus, it

would seem justifiable to weight the results of each run

by the inverse of the RMS value to obtain a better estimate

of the axial conductivity. This weighted average is given

in the results section of Table 3 as 0.30 Btu/hr ft F and

was used in the calculations involving ka in this research.

6.3 Radial Conductivity
 

As shown in Section 6.1, the temperature history

at the center of an onion subjected to a step change in

ambient temperature is highly dependent upon the radial

thermal conductivity kr. This is the basis for the experi-

ments performed to determine kr'

Thermocouples were placed at the center (the point

on the central axis corresponding to the maximum diameter)

of each of five onions. After cooling to a uniform temper-

ature of 40 F, the onions were placed in an agitated water

bath at 100 F. The thermocouple voltages were amplified

and sent to the IBM 1800 hybrid computer which punched the

temperature-time histories onto cards. Readings were taken

every ten seconds over an interval of twenty-five minutes.
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The convective heat transfer coefficient h was found to

be 500 Btu/hr ft2 F from the temperature history of a

copper block placed in the bath. While the geometry of

the onion is different from that of the block, it was felt

that this manner of determining h was sufficiently accur-

ate since the Biot number of a two-inch diameter sphere

with a thermal conductivity of 0.3 Btu/hr ft F and a

surface heat transfer coefficient of 500 Btu/hr ft F is

139. This would indicate that the surface heat transfer

coefficient is sufficiently large so that the temperature

response of the onion is governed by the transfer proper-

ties of the onion and not by the surface heat transfer

coefficient.

To determine kr' a non-linear estimation program,

GAUSHAUS, as supplied by the Michigan State University

Computer Laboratory, was used in conjunction with the heat

transfer model described in Chapter IV to find a kr that

minimized the sum of the squared differences between the

experimental and calculated temperatures for the center

node of the onion. The results are shown in Table 4 of

the Appendix. As in the case of axial conductivity, the

weighted (by l/RMS temperature difference between the

calculated and experimental temperatures) mean is included

(0.217 Btu/hr ft F).
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6.4 Heat Transfer Simulation
 

The heat transfer model was solved for a set of

convective heat transfer coefficients ranging from 0.5-

500 Btu/hr ft2 F and a set of bulb diameters ranging from

1-3 inches. The results are shown in Figure 6.4.1. The

ratio of the heat transferred to that transferred at

infinite time is plotted versus the dimensionless grouping

th/pckr at various values of hd/kr.

From this chart, it is possible to determine the

time necessary to raise the average bulb temperature to

any desired level if the initial temperature, the bulb

diameter, the ambient temperature, and the convective

heat transfer coefficient are known.

If Figure 6.4.1 is compared to the corresponding

figure for spheres (Holman, 1963), it is seen that the two

agree within the accuracy that these charts may be read.

Thus, for process evaluation, such figures may be substi-

tuted for Figure 6.4.1.
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VII. MOISTURE TRANSFER

7.1 Introduction

In Section 2.5 it was shown that D; and D5 are

related by the equation

Blna

w
 Dm = D . (7.1-l)

I

u 31nm

This means that the two equations modeling one dimensional

moisture transfer

 

s Cwa 3“WO — ' -

Jw — RT Du 82 (7'1 2)

and

3'5 = - o 0' -——3m (7 1—3)
w dm m 32 °

are equivalent if D; and DA satisfy equation (7.1-1).

Section 7.2 of this chapter describes the eXperi-

ments conducted to determine D; and D$ in onions. Section

7.3 describes the results of including D$ in the mathe-

matical model outlined in Chapter IV.
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7.2 Determination of Moisture

Diffusivity
 

A modified Denny osmometer as described by Dumbroff

and Webb (1968) (Figure 7.2.1) was constructed to determine

the moisture diffusivity of onion flesh. The osmometer

consists basically of a distilled water chamber connected

to a sample holder. The rate of water loss from the

chamber can be monitored by observing the movement of the

water meniscus in a capillary tube attached to the chamber.

The unit was originally designed to be used with another

chamber on the other side of the sample in which was placed

a stirred sugar solution. Since sugar solutions become

quite viscous at water activities below 0.95 and saturated

near 0.9, this chamber was removed for water activities

below 0.95. The entire osmometer was placed in an air

stream with closely controlled temperature and relative

humidity produced by an "Aminco-Aire"* unit. Close control

of temperature was necessary since the position of the

meniscus within the capillary tube is very temperature

sensitive.

It was desired to model Db over the respective

ranges of water activity and temperature of 0.4 to 1.0

and 40 to 100 F. Inspection of equations (2.5-4), (2.5-8)

and (2.5-l2) shows that if the velocity of the medium with

respect to the solids vmS is small, as is small, and

 

*A device producing a stream of constant tempera-

ture and humidity air manufactured by the American Instru-

ment Co., Inc., Silver Spring, Maryland.
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D; = R T Q . (7.2-l)

This is the rationale behind attempting to approximate

l

Dur by

Q

D' = RT [01 m 2“r + 03(T — 530)] . (7.2-2)

Table 5 of the Appendix summarizes the results of

Q and Q ofthe experiments conducted to determine 91, 2 3

equation (7.2-2). By equation (7.1-2),

 

 

an
s _ _ pdm m . w _

JW'- RT D 82 ' (7'2 3)

and

02

l p m RT[Q m + Q (T-530)]da

jsAL — f d“ l 3 w (7.2-4)
w — a

aw w

where 5; is the water activity of the fluid to the right of

the sample (see Figure 7.2.1). Evaluation of this integral

requires that m be expressed as an explicit function of aw.

Saravacos (1960) determined the moisture isotherm

for onion flesh at 80 F. His data are summarized in

Table 6 of the Appendix and in Figure 7.2.2. In order to

express m explicitly in terms of aw, the isotherm was

approximated as shown in Figure 7.2.2 by three connecting

straight line segments passing through the points (0,0),

(0.022, 0.22), (0.530, 0.863), and (9.00, 1.0). The first

and last of these are not from Saravacos' data-~the first
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was included so that the straight lines approximation to

the isotherm would pass through the origin; the second,

so that the approximation would pass through the initial

onion bulb moisture content at saturation. Thus, the

simplified relationship between m and aw is given by

m = .l a for 0 < a < 0.22 , (7-2-5)
w — w —

m = 0.15181026 + .79004666 aw for 0.22

and

m = -52.824817 + 61.8248175 aw for 0.863

< a < 1.0 . (7.2-7)

The non-linear estimation routine, GAUSHAUS, was

used again (see Section 6.3) to vary the parameters 01, 02,

and 93 so that the sum of the squared differences between

the experimental mass fluxes and those predicted by

equation (7.2-4) was a minimum. The integration of

equation (7.2-4) was performed numerically by a Romberg

integration routine. The resulting values are shown in

the following equation:

18 m 6.023
+ 1.779 X 10-l4(T-53O)).

ur
D' = RT[4.5535 x 10'

(7.2-8)
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Inspection of equation (7.2-9), which is shown in

graphical form in Figure 7.2.3, reveals that negative

values are predicted for DLr when both the temperature

and moisture content are low. This was prevented when

using equation (7.2-8) in the mass transfer model by

setting Dfi equal to zero whenever this occurred.

In Section 7.1, it was shown that D$ is obtained

by multiplying DL by alnaw/Blnm. Differentiation of

equations (7.2-5), (7.2-6), and (7.2-7) yields

 

Elnaw

31nm = l for 0 i m i 0.022 , (7.2-9)

Blna

w m
 

31m = m + 0.15181026 for 0.022 < m 3 0.0.530, (7.2—10) 

and

alna

____E.= m

31nm m + 52.824817

 for 0.530 < m i 1.0 . (7.2-ll)

In Section 6.1, it was shown that the temperature

history of the onion bulb is much more dependent upon kr

than ka. Likewise, the mass transfer within the product

is much more dependent upon D$r than upon Dfia. With this

in mind, it was decided to model Dfia by simply assuming

it to be a constant multiple of Dfir. To determine the

ratio between D$ and Dfir, five experimental runs with
a

0.22-inch-thick slices cut from the center portion of the

bulb were performed under the same conditions as run 6
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of Table 5 of the Appendix. The average mass flux was

2 2
1.80 x 10’ lbm/ft hr. Comparing this result with

3
4.35 x 10' 1bm/ft2hr, the mass flux obtained from

equation (7.2-4) under the same conditions yields

0' = 4.14 x 102 0' . (7.2-12)
ua ur

Before concluding this section, the validity of a

tacit assumption made earlier should be established. The

above method rests upon the assumption that the resistance

to mass transfer through the specimen lies wholly within

the sample proper and the surface resistance to the right

of the sample is negligible. (See Figure 7.2.1.) (The

surface resistance to the left of the sample is obviously

zero since the fluid is pure water.) Reynolds analogy

states that the convective heat transfer coefficient and

the convective mass transfer coefficient are related by

 

hD = C 2/3 (7.2-13)

where pai is the air density, c . the specific heat, and

r air

Le the ratio of the thermal diffusivity of air to the

mutual diffusion coefficient of the air-water vapor mix-

ture. If h is assumed to be 5 Btu/hr ft2 F; pair’

0.075 lbm/ft3; c , 0.24 Btu/lbm F and Le, 0.845, then

air

hD is 312 ft/hr. Since
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h M
.s _ D w _ _

Jw - RT ( wvs Pwva) ’ (7'2 l4)

 

the maximum water vapor pressure difference from the sur-

face to the ambient (using the mass flux of 1.4 x 10-3

1bm/ft2hr from run 4 of Table 5 of the Appendix) is

1.425 x 10-3 psi. Since the minimum water pressure drop

from the pure water chamber to the ambient is 0.036 psi

(run 5), the drop in pressure from the surface to the

ambient is negligible.

7.3 Mass Transfer Model Testing
 

To obtain data with which to test the mathematical

model outlined in the previous sections and Chapter IV,

five two-inch diameter onion bulbs were placed in the air

stream of an “Aminco-Aire" unit for twenty-four days. The

temperature was maintained at 70 F and the relative humidity

at 31%. One of the onions sprouted after a week; the

average weight loss from the other four versus time is

shown in Figure 7.3.1.

Predicted moisture losses for the same conditions

were obtained by solution of the mathematical model and

are included in Figure 7.3.1. The convective mass transfer

coefficient hD was set to 300 ft/hr. The initial moisture

content was assumed to be 9.00.

As Figure 7.3.1 shows, there is only fair agreement

between the predicted and experimental values. The differ-

ence between the two is believed due to three factors:
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The predicted values are based on the assumption

that the initial moisture content distribution

is uniform. This accounts for the predicted

moisture loss values being greater than the

experimental values at small time values.

Respiration losses are not accounted for in

the predicted weight losses.

As the onion dries, the outer scales crack

and loosen uncovering additional surface area

of higher moisture content. This accounts

for the experimental moisture losses being

higher at the longer times.



VIII . CONCLUSIONS

The first objective for this research as given in

Chapter III was to determine the density of onion bulbs.

The final value obtained was 58.8 1bm/ft3.

The second objective listed was to obtain values

of thermal conductivity in the axial and radial directions.

The final values obtained were 0.30 Btu/hr ft F and 0.217

Btu/hr ft F for the axial and radial thermal conductivity

respectively.

The third objective was to obtain values for the

moisture diffusivity. The predicted values for the radial

diffusivity DLr and the axial diffusivity Dfia are given by

the equations

0hr = RT[4.553 x 10’18 m6°023 + 1.779 x 10'14(T-530)J

(8-1)

and

D' = 414 D' . (8—2)
113 Llr

The final objective was to develop a mathematical

model to simulate the reSponse of the onion bulb to its

79
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environment. To achieve this objective, the Alternating

Direction Explicit Procedure (ADEP) for solving the trans-

fer equation in cartesian coordinates was adapted to a non-

uniform grid system based on the onion shape.

The heat transfer portion of the model simulated

the actual process very well as indicated by the small

RMS and maximum differences between the predicted and

experimental center temperatures observed during the

tests for radial thermal conductivity (see Table 4).

The mass transfer portion of the model was in only

fair agreement with the experimental weight losses observed

as a test of the model.

Suggestions for Further Study

The author concludes that further work is needed:

1) to determine the magnitude of the weight losses

due to respiration compared to those due to

moisture loss,

ii) to measure the effect of the cracking and

loosening of the outer layers of the bulb, and

iii) to include this last effect in the modeling

of the mass transfer process.
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TABLE 2.--The Fourier series approximating the onion shape.

d 10 . i n z
PERIM (a) = 2 131 Ai Sin (1.5 d)

1 Ai

1 3 0.8322400

2 0.3689900

3 0.0462150

4 0.0074205

5 0.0822030

6 -0.0114820

7 0.0194130

8 0.0074970

9 0.0145270

10 -0.0046454
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TABLE 3.--Results of the axial thermal conductivity experi-

ments.

 

RMS Difference Between

Run ka(Btu/hr ft F) Calculated and Experimental

Temperatures (F)

 

Individual Experiments

 

 

 

1 0.32518 _ 1.38

2 0.251 1.44

3 0.322 0.56

4 0.324 1.36

5 0.241 2.55

Results

Average Axial Conductivity 0.293 Btu/hr ft F

Standard Deviation 0.042 Btu/hr ft F

Standard Error of the Mean 0.019 Btu/hr ft F

Weighted (by l/RMS) Average

Axial Conductivity 0.30 Btu/hr ft F
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86 F (Saravacos, 1960).

TABLE 6.--Data points for the onion moisture isotherm at

 

Water Activity Moisture Condent (d.b.)

 

0.112

0.220

0.328

0.436

0.539

0.633

0.756

0.863

0.907

0.012

0.022

0.077

0.148

0.190

0.305

0.330

0.530

0.925
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