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ABSTRACT

NUMERICAL ANALYSIS OF MAXIMUM MICROWAVE
POWER FROM A TUNNEL-DIODE OSCILLATOR

By
Chandrakant B. Patel

The available literature on negative-resistance
oscillators contains abundant information on small-signal
analysis of tunnel=diode oscillators. Little consideration,
however, has been given to large-signal analysis. Those
analyses which are available are based on

1. low-frequency circuit operation; and

2, assumption of a single-frequency sinusoidal

voltage at the tunnel -diode terminals.

In this thesis, the large-signal operation of a
tunnel-diode oscillator circuit is examined with the ob-
ject of delivering maximum fundamental power to the load.
The exact analysis of the circuit operation results in a
highly nonlinear, third-order and second-degree differen-
tial equation. The circuit can also be described by means
of a set of first-order, nonlinear differential equations--
its mathematical model. Using a digital computer, this
set of equations is numerically integrated in the time-

domain using a fourth-order Runge-Kutta scheme. The
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time-domain solution retains all significant harmonics,
and frequency-domain analysis can then be used to evaluate
the harmonic content. This method of solution can be
easily extended to study the effects of voltage-dependent
elements such as the tunnel-diode junction capacitance.

The set of equations describing the tunnel-diode
oscillator operation, with the circuit designed for the
dc operating point in the negative-conductance region,
is numerically integrated until the digital computer
cyclic solution corresponds to the steady-state operation
of the circuit as determined when the harmonic components
of two consecutive periods of the diode voltage are identi-
cal within specified limits. The fundamental power de-
livered to the load is next evaluated. This procedure, as
outlined, is repeated for a number of different bias
values and a number of different load resistances. These
results indicate an optimum bias and an optimum load re-
sistance for maximum fundamental power. The optimum bias
is closer to the diode valley point than to the peak point;
the flatter the diode valley characteristic, the closer
will be the optimum bias to the valley point. The ratios,
(v

v~ Vopt )/(VV
are 0.382 and 0.345. The actual fundamental frequency of

- VP), for the two diodes analyzed here

operation obtained from the time-domain analysis of the
circuit is slightly lower than the frequency calculated

from small-signal analysis.
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Circuit operation corresponding to optimum load
resistance cannot be obtained by small-signal build-up
from the bias point. Rather, this limit-cycle must be
obtained by a large-signal perturbation, as for instance
by external triggering. The power delivered to the load
is reduced when the operating frequency is increased.
Analysis of circuit operation with a voltage-dependent
junction capacitance indicates somewhat higher maximum
power delivered to the load and slightly lower operating
frequency than with the same circuit and a constant
junction capacitance.

Two specific configurations of load circuit were
used for most of the computer analysis work. Of greater
interest would be the synthesis of an optimum circuit
configuration for obtaining maximum fundamental power
from a specific diode. A few simple computations were
made in connection with this synthesis problem. The re-

sults of these simple calculations are consistent with

the analytic results, but are not of sufficient generality

to produce a fully-synthesized circuit.
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CHAPTER 1

INTRODUCTION

1.1 Background

A negative-resistance device is of considerable
interest as a signal-generating device. The tunnel diode,
a two-terminal negative-resistance semiconductor device,
opened up entirely new fields for circuit and solid-state
device engineers. The significant properties of the
tunnel diode were first observed by Leo Esaki while ex-
perimenting on degenerately doped p-n junction. Esaki's
results were first published in an historic paper [1] in
early 1958,

The tunnel diode differs in the basic physical
mechanism of its operation from the common rectifying
diode. Quantum-mechanical tunneling, from which the name
"tunnel diode" is derived, is uniquely exploited in this
active device to produce a negative resistance when it is
properly biased. The immediate applications of the device
were seen as amplification and generation of signals,
possibly at millimeter-wave frequencies; as detector,
mixer, fast computer memory, and logic element. As re-

search continued and related technology advanced, the



device was better understood and now has a fairly well
established place in modern semiconductor technology.
This device may find even greater usage as an element in
integrated electronic circuits.

An important use of the tunnel diode is as a
negative-resistance element in an oscillator circuit to

generate high-frequency power.

1.2 Survey of the Literature and the Problem Area

The basic problem of this thesis is part of the
problem of an exact analysis of a tunnel-diode oscillator
circuit. This thesis will concentrate on

1. high-frequency operation,
2. design of a circuit to maximize the fundamental
power delivered to the load, and

3. synthesis of a circuit for high-frequency operation.

The highly nonlinear characteristic of the tunnel diode
requires extensive use of a digital coﬁputer for a detailed
analysis of circuit operation.

It is fitting at this stage to review briefly the
literature in the area of negative-resistance oscillators.
Van der Pol [22,28] first studied the nonlinear theory of
electrical oscillations. Subsequently, two-terminal negative-
resistance "black boxes" were devised using tetrodes,
transistors, diodes and resistors [35,36,37]; various
negative-resistance oscillators and amplifiers were designed

[29,30,31,32].



The tunnel diode as a two-terminal negative-
resistance element was analyzed by Kim and Brandli [4],
Chow [5], G. Dermit [20] and others [2,7,14]. Their
analysis consideréd

l. small-signal operation of the device, and
2. a simplified third-degree polynomial approximating
the current-voltage (I-V) characteristic for the

tunnel diode.
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Figure 1.1. Tunnel diode I-V characteristics

(a) Actual
(b) Third-degree polynomial approximation

The circuit operating point was generally chosen
as the point of maximum negative-conductance on the curve.
K. Tarnay [6,7] and Coerver [8] considered better

approximations (see Section 2.5) to the I-V characteristic.



They analyzed low-frequency operation (below self-resonant
frequency, see Chapter 3) by assuming a pure sinusoidal
signal. Gartner-Schuller's [17] computer results are like-
wise for low-frequency operation. Sterzer [9] in his com-
puter calculations used a highly exact approximation for
I-V characteristic (tenth-degree polynomial) but he assumed
a single-frequency operation. It should be noted that in
all these publications the voltage dependency of the junc-
tion capacitance is neglected, and the capacitancé is
assumed to be constant.

The above survey of the literature reveals that
large-signal analyses of the tunnel-diode oscillator cir-
cuits for high-frequency operation have not been very
exact. Better solutions of the problem continue to be of
great importance. The improved solutions should consider
higher harmonic content of the signals and should include
junction capacitance as a voltage-dependent element.

It was through the realization of the overall
significance of the problem that the author was motivated
to carry out further research in the area of high-frequency

power in tunnel-diode oscillators.

1.3 Thesis Summary

The phenomenon of gquantum-mechanical tunneling
and the qualitative explanation of the tunnel diode action

are covered in Chapter 2. There follows a development of



the tunnel-diode equivalent circuit. This equivalent cir-
cuit is applicable for analysis from dc through gigahertz
frequencies. Also described are the various analytical
methods for approximating the I-V characteristic of a
tunnel diode. .

The small-signal oscillator circuit, its design
and its small-signal stability are considered in Chapter
3. Large-signal operation of the tunnel-diode oscillator
circuit is analyzed in Chapter 4. Applicable equations
are formulated, and their numerical solutions by a digital
computer are studied in detail. Examples of maximum power
delivered to a useful load are given for two types of
tunnel diodes. Effects of voltage dependency of the junc-
tion capacitance are examined and illustrated.

A hybrid approach for optimizing the fundamental
power generated by the intrinsic tunnel diode is given in
Chapter 5. Circuit synthesis is considered to implement
the hybrid-approach solutions. A summary of the overall

work and conclusions is given in the final Chapter 6.



CHAPTER 2

THE TUNNEL DIODE AND ITS EQUIVALENT CIRCUIT

This chapter first describes the tunneling phenome-
non to which the specific property of the device is
attributed. Then the equivalent circuit of the device,
depending on the tunneling property and other physical

characteristics, is developed.

2.1 Tunneling

Classical physics predicts that a particle of
total energy, E, cannot penetrate a potential barrier
greater than its own energy. The phenomenon known as
quantum-mechanical tunneling predicts that a particle
of total energy, E, can penetrate the potential barrier
of a height greater than E and be found beyond the bar-
rier, The probability of finding the particle on the
other side of the barrier decreases with the height and
the width of the barrier. These results can be demon-
strated by solving Schroedinger's wave equation in a

simple, one-dimensional problem.

2.2 Schroedinger's Wave Equation

The time-dependent, one-dimensional Schroedinger
wave equation [10] for a particle is

6
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where Y (Xx,t) = wave function defining motion of the parti-
cle, V(x,t) = potential energy function, h = 5%-Where h =

Planck's constant = 6.6252 x 10 3%

joule-sec., m = mass
of the particle, and j = /-1I.

The time-independent Schroedinger wave equation
can be obtained by separating time and position variables
as Y(x,t) = Y(x) ¢(t) provided V(x,t) = V(x) only.

Substituting these in (2.1) and separating vari-

ables we get:

2 .2 3
L (-4 vy = B2 (5.
¥ (x) 2m dx ¢(t) dt

Since the left-hand side is a function of x only
and the right-hand side is a function of t only, and since

x and t are independent variables, we must have

2 2
L (-2 38 vy =c (2.3)

P (x) { 2m dx
and

. 1 d¢(t) _

e e = C . (2.4)
Solving (2.4),

6 (t) = e ICE/A _ JJut (2.5)

where w = angular frequency = 27f = C/h. Hence, C = 2nfh

= fh = E, total energy of the particle; hence



(2.6)

2 .2
¥
. _z_d $X) 4 (v(x)-Ely(x) = 0
2m dx
This is the time-independent Schroedinger's wave
equation.
Figure 2.1 shows the particle with total energy,

E, encountering a potential barrier, V, of width d.

o~ t
T v
E I II IIX
| ._l_—
X=0 x=d

Figure 2.1l. Particle of total energy, E, encountering a
potential barrier, V, of width, d.

In regions I and III the arbitrary choice is made
that V(x) = 0, so Schroedinger's wave equation for these

regions is

2
i%ﬁ+§} Ep(x) = 0 . (2.7)
X

Let the solution in region I be wl(x) = A cosox +

B sinax. Then substituting this, we get

(-a2 + 3% E) (A cosax + B sinax) =0 . (2.8)
A
2 2m

Since Y (x) # 0, a” = = E .
h



Similarly the solution in region III is
¥5(x) = D cosax + F sinax .

In region II, V(x) = V, so the Schroedinger wave

equation in region II is

a%u, (x)  2m
——347—— + ‘gr (E-V)wz(x) =0 . (2.9)
X

The most general solution of (2.9) is

wz(x) = Cle"eX + c2eBx . (2.10a)

X *
Now ./; 2 V(x)¥ (x)dx is the probability of finding the
1

particle in an interval, X, = X;. From the physical con-

X
sideration./; 2 w(x)w*(x)dx is finite. If C2#0 in (2.10a),
1

X *
jr 2 Y(x) ¥V (x)dx > »as d > , So C, = 0. Hence
xl 2

v, (x) = ce™B* . (2.10b)

Substituting (2.10b) in (2.9) we get

82 + 3% (E-v)) ce B¥ = 0 .
A
Since wz(x) #0,
g2 = 2 (v-p) . (2.11)

g2
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At x = 0 and x = 4, the boundary conditions to be
satisfied are:

l. Y (x) be continuous and finite, and

2. Q%éﬁi be continuous and finite.

Matching the boundary conditions:
a) between regions I and II, at x = 0,

A=C (continuity of Y (x)),

d (X)),
X ’

aB -BC (continuity of

b) between regions II and III, at x = 4,

ce™d - b coxad + F sinad ’

-BCe-Bd = o[-D sinad + F cosad] .

Writing constants A, B, D and F in terms of C the
solutions are

Clcosax - g sinax] , (2.12a)

for region I ‘ wl(x)

for region II wz(x) C exp(-Bx) (2.12b)

’

and for region III w3(x) = Ce-Bd[(cosad + g sinod) cosax

+ (sinad - g cosod) sinax]

Ce-Bd[cosa(x-d) - g sina (x-d] .
(2.12c)

x
2 *
For any of the regions./; V(x)y (x)dx # 0. So the
1

particle can be found in region III beyond the barrier with
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finite probability. It can be seen that |y (x)| in region

Bd s compared to |y (x) |

III is reduced by a factor of e
in region I. This clearly indicates that the thinner the
barrier the higher the probability of penetration. Also
the smaller the barrier height the higher the probability

of penetration.

2.3 Qualitative Explanation of the Tunnel-Diode Action

A tunnel diode is a p-n junction with both p and n
semiconductors heavily doped to degeneracy. There are two
main effects of heavy doping. Firstly, the depletion layer

width, W, is small, that is, it constitutes a thin energy

barrier. Secondly, some empty energy states in the valence
band of p-type semiconductor and some occupied energy

states in the conduction band of the n-type semiconductor
are at the same energy and vice versa. This energy-level
situation allows tunneling from the occupied states in the
conductance band to the empty states in the valence band

and vice versa. Because the barrier is thin the probability
of tunneling is enhanced. (See Figure 2.2)

With no voltage applied,v(VB = 0), the tunnel-
diode junction is in equilibrium, and the same number of
electrons tunnel each way to yield zero net current.

When a small forward-bias voltage (VB > 0) is applied,
more electrons tunnel from the n-side into the empty states

in the p-type material than in the reverse direction. This
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Figure 2.2. Band structure of a p-n semiconductor junction
E : conduction-band edge energy
Ev Vvalence-band edge energy

Ef Fermi energy

Figure 2.3. Band structure of a p-n junction when tunnel-
ing is almost zero.
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asymmetry results in a steep rise in the forward current.
This rise in forward current with forward bias continues
until the empty states in the p-type semiconductor, at

the same level as the filled states in the n-type semi-
conductor, begin to decrease. An increase in forward bias

(VB >V see Figure 2.4) at this stage results in a de-

p’
crease in forward current. This decrease in forward cur-
rent continues until finally there are no empty states in
the p-type material opposite the filled states in the
n-type material at the same level. The tunneling current
is zero, (VB > VV). At this point the conduction-band
edge is at the same level as the valence-band edge (Figure
2.3). Simultaneously the ordinary p-n junction injection
current--mainly diffusion current--is flowing, so the net
current does not quite go to zero. The behavior of the
tunnel diode for higher forward-bias voltages (VB > VV)
is similar to that of an ordinary p-n junction.

When a small reverse-bias voltage, (VB < 0), is
applied, the number of empty states in the n-type semicon-
ductor at the same energy level as the filled states in
the p-type semiconductor is greatly increased. Also the
reverse bias enhances the electron flow from the p-side
to the n-side. As a result, the reverse current increases
sharply with reverse bias. As deduced from the above ex-
planation the current-voltage plot of a tunnel diode will

be as shown in Figure 2.4.
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Figure 2.4. I-V plot of a tunnel diode

OR:

Increasing tunneling current due to small
forward bias.

Tunneling decreases but resultant tunnel-
ing current still increases.

Peak point

Tunneling and tunneling-current component
decreases to almost zero.

Total current starts increasing due to
ordinary diode injection current, OSF.

Tunneling current due to reverse bias.
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2.4 Direct and Indirect Tunneling

The laws of conservation of energy and momentum
apply throughout the process of tunneling. The change in
momentum before and after tunneling involves some exchange
of momentum with the crystal lattice. The case where
electron momentum is equal before and after tunneling is
called direct tunneling. The processes described in Sec-
tions 2.2 and 2.3 are of direct tunneling. If the electron
momentum is different before and after tunneling, the pro-
cess is called indirect tunneling. The probability of
indirect tunneling is much lower than that of direct tun-
neling, owing to the added requirement of the conservation
of momentum.

Observing the energy-band-momentum diagram of
germanium and silicon (Figure 2.5) we can see that direct
tunneling is possible in the case of germanium only. For
the silicon junction the peak tunneling current will be
very small, since here a momentum of hk'c in addition to
energy is required for tunneling.

Another semiconductor suitable for direct tunnel-
ing is gallium arsenide. Therefore most of the tunnel

diodes are of germanium or of gallium arsenide.

2.5 Approximating the I-V Characteristic

The static current-voltage characteristic of a
tunnel diode was indicated in Sections 2.3 and 2.4 to be

as shown in Figure 2.6. An expression approximating
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this current-voltage characteristic is required for any
analysis or computing purposes. The I-V characteristic
can be approximately through various methods:

(a) Polynomial approximation

+ a,lv + a2V2 + —-—- + aNVN =

J

a.vl (2.13)

I(V) = 0 33

Il e~

)

The coefficients aj, j=20,1,2,---,N are evaluated
in accordance with the desired polynomial fit. The least-
square fit is most commonly used. The degree of poly-
nomial, N, depends on the desired accuracy of the fit. For
a more accurate fit in a given region the data associated
with the region can be given additional weight [38].

(b) Considering g(V) = dI(V)/dV, and noticing the
flat valley region, Narud and Meyer [13] suggested the fol-

lowing approximation:

g(V) = K(V-v,) (v-v,)> (2.14)

Equation (2.15) is obtained by integrating (2.14)
by parts and usingpeak-point -and valley-point voltage and

current values.

fg(V)dV

Lr1p

(VP -VV)

I(V)

4 5
[5(V-VP) (V—VV) - (V—VV) ] +C

(2.15)
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Figure 2.7. Tunnel-diode conductance vs. voltage

I; (v) I, (V)

I (lv) Y

g
-
s

/
L=

- »

Figure 2.8, Tunnel-diode static characteristic: Ferendici
and Ko's approximation.
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From valley point (IV' Vv),.the constant of integration,
C = Iy, is obtained. I(V) = 0 for V = 0 is obtained
only for certain ratios of IP/IV and VV/VP [13].

(c) Using the equation (2.15) for g(V) Scanlan [14]

suggested evaluation using Imax®

At Imax’ Q.év) = 0, and

dg(v) _ (v-vV)3 + 3(v—vv)2(v-vp) =0

dav

gives

V_VV+3VP

4 L]
Hence substituting for V into (2.14):
i _ 27 (Vy,~Vp) N
Imax 64 | v 'p :
Hence 3
256 (V-VP)(V-VV)
g(v) = Imax ‘ . ’ (2.16)
27 (VV-VP)

and

I (V) =fg(V)dV

4 3 2
4V =5 (3V+V) VT + 20V, (V+V )V

256 g
= max v + K, .

4 3
540 (VV-VP) p

- 2
10V, (3VL+V )V + 20V,°V
(2.17)

The constant of integration, K/, can be evaluated from the

choice of axes.
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(d) K. Tarnay([l2] suggested still another approxi-
mation considering: (a) the field-emission current due to
electrons passing from valence band to conduction band and
(b) the current due to electrons tunneling from conduction

band to valence band. His expression is as follows:

I(V) = a(V,~V)%tanh(qu/2kT) + g,V , (2.18)
where
- g,V I
a = Ig vV , and 9y = V! .
(VV-VP) tanh(qVP/sz) \Y

This expression gives a poor approximation to ex-
perimental curves, especially in the negative-conductance
region.

(e) Two-term exponential approximation:

Observation of tunneling current and direct-injec-
tion diode current components, led A. Ferendici and W. H.
Ko [11] to suggest a simple two-term approximation of the

static current-voltage characteristic of a tunnel diode.

Tunneling-current component (Figure 2.8).

I, (V)

IZ(V) Ordinary diode injection current component.

av

IW) = I, (V) + I,(v) = ave”® + B™-1) . (2.19)

This two-term fit generally gives *5% accuracy

over the entire curve. The accuracy can be increased over
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any desired region by selecting the pilot points from that
region for evaluation of constants A, a, B and b. (see

Appendix A.)

2.6 Equivalent Circuit

The current-voltage characteristic of a tunnel
diode junction is explained in Section 2.3. This current
flows through a p-n junction which is essentially depleted
of mobile carriers. Owing to the existing voltage across
this depletion layer, there are flux lines and a related
capacitance associated with the junction. Therefore the
tunneling junction is represented by a varying conductance
shunted by a varying capacitance. The junction capacitance,
Cd(Vb), is a function of junction voltage, Vb [15,16]. For
a step junction, which is the case for the tunnel junction,

the junction capacitance, Cd, is proportional to (VD-VC)-l/z.

_ -1/2
Cdo:(Vc VD) for Vp < VV (2.20)

where Vb junction voltage

and \Y contact potential, (n with respect to p)

C

LXd

+ 0.6 volts for Ge, and

Q

+ 1.1 volts for GaAs.

The electrons traversing the tunnel junction travel
through the semiconductor bulk material. The electron col-
lisions with the crystal lattice give rise to a resistance

ry termed 'spreading' or 'series resistance.' The value of
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Vp cqtvy) == 94 0Vp)

Lan

Figure 2.9. Equivalent circuit for a tunneling junction.

Figure 2.10. Equivalent circuit of a tunnel diode.



23

this series resistance depends upon the doping level and
the geometry of the diode. The physical length of the
lead from the semiconductor to external terminals gives
rise to a series inductance, Ls, of the order of a few
nanohenries. The series resistance, Iys and the series
inductance, Ls' are represented in series with the tunnel-
junction. The resulting equivalent circuit of the tunnel
diode is as shown in Figure 2.10. The validity of this
equivalent circuit was verified by Gartner and Schuller's
[17] experiments.

Computer calculations herein will use this equiva-

lent circuit with Cd(Vb) =C The effect of considering

D.
C.d as a function of VD will also be examined.




CHAPTER 3

THE TUNNEL-DIODE OSCILLATOR

3.1 Introduction

A tunnel diode can be used in negative-resistance
amplifiers [18,19] and in negative-resistance oscillators
[5,14]. It can also be used AS a detector or as a mixer,
in which, case the variation of negative resistance with
the signal level is essential. In all these cases the
diode must be biased in the negative-resistance region.

A tunnel diode can be biased to produce three different
potential conditions: (1) bistable, (2) monostable, and
(3) astable. These are shown in Figure 3.1.

In its negative~resistance region, a tunnel diode
can be biased two ways, viz., bistable and astable. 1In
bistable biasing the two stable points are a anc c. This
type of biasing is used in switching type circuits [5].
The astable biasing is used in amplifiers, oscillators,
etc. The tunnel diode used as an oscillator circuit ele-

ment is considered here.

3.2 Stability Criterion for the Tunnel-Diode Circuits

In a tunnel~diode oscillator circuit, the tunnel

diode is biased in the negative conductance region. The

24
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)

(o]

Figure 3.1 Biasing a tunnel diode: (1) bistable,
(2) monostable and (3) astable.

- R S

o
O

Figure 3.2 Small-signal equivalent circuit of a tunnel
diode.
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circuit is designed to be unstable so small-signal oscilla-
tions will start due to circuit noise or transient effect
and grow. The circuit stability is in part determined by
small-signal analysis.

The small-signal equivalent circuit for the tunnel
diode is shown in Figure 3.2, Here -9y is the value of
negative conductance at the dc bias point, V.

The loop impedance of the circuit of Figure 3.3 is
Zc(s) + ZD(s), where ZD(s) is the impedance of a two-
terminal active device and zc(s) is the passive network
impedance. As shown in Appendix B, the circuit is stable
if Zc(s) + ZD(s) = 0 has no solution in the closed right-
half s-plane, viz., Re(s) > 0 [2].

The above definition of stability is derived from
the small-signal, that is, linear analysis of the device. The
following example of a small-signal analysis of tunnel-diode
oscillator circuit, Figure 3.4, gives a procedure to ob-
tain (G, C) parameter values so that Zc(s) + ZD(s) = 0 has
a root in the right-half s-plane.

Consider the tunnel-diode equivalent circuit shunted
with a parallel G-C circuit as shown in Figure 3.4.

For this circuit

_ 1
2(®) = g¥s - (3.1a)
Z.(s) =r +L s + _; (3.1b)
D s s -g + CDs ’ *
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Z. (s)

Q

Z_(s)

O
-

Figure 3.3 Circuit showing connection of circuit with
impedance, Zc(s) to the diode with impedance,

ZD(s).
rS LS
. § B Zc (s) ZD (s)
e N N
C Cph N

O-
2%

2

Figure 3.4 Small-signal equivalent circuit of the

tunnel diode with a parallel G-C network.
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where -g is the negative conductance of the intrinsic

tunnel diode at the dc bias point, V The loop impedance

D*
is
(-g+CDS) + (rs+LSs)(G+Cs)(-g+ch) + (G+Cs)
(51333(-9+5§§) -
(3.2)
For stability [3], examine the characteristic equation,

Zc(s) + ZD(s) =

zc(s) + ZD(s) =0 = as3 + bs2 + cs + 4, (3.3)
where

a = CDCL >0,

b = -gCL_ + C(r C + GL_) ,

Cc =

-g(rsC + GLS) + rsGC + CD + C and

D
d=G-g - r Gg
to determire whether all roots are in the left-half plane,
(LHP) .
If all the coefficients of the characteristic
equation are positive then all the roots will be in LHP.

Therefore, for 4 > 0 implies

1
G + > g . (3.4)

This result constitutes the condition for dc stability.
Since Equation (3.3) has real coefficients, the

complex roots must be a conjugate pair. The necessary

condition, according to Routh's algorithm, for the complex

roots of (3.3) to be in LHP is (bc-da) < 0. Introducing the
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values of the coefficients,

2

bc - da = AlG + A2G + A3 = F(G,C) , (3.5)
where
_ 2 2
Al = rsLsCD gCDLs ’
_ 2 .2 2 2., 2
A, = -gCyr CL_ + rg Cp C + L.Cp + g°CLy
A, =r C2C (l-.gr_) + ¢ CC2 + ngL (gr_-1)
3 s D s s D s s *

Consider first a pair (Go, Co) of circuit values
such that the complex roots. are on the imaginary axis.
Thus s = tjwo with w, as the desired operating frequency.

Substituting s = jwo into (3.3) and using

Re[Zc(jwo) + ZD(on)] =0 ,
(3.6)
and Im(z, (Juw,) + ZD(jwo)] =0,
the following equations are obtained:
2, _
G, (rCh - gLy) + Co(l - grg - CDsto) =0,

2 - _
Go(l - grg - CDLSwo) + Co(gLs - rsCD) =0 .

Next, the value of Go (and/or Co) are altered such

that (3.3) has a complex conjugate root, s_= o_ t jw

o o (o}

with Oy > 0. The correct direction of change to Go is de-

dF (G,C)
=t

a . If the derivative

termined by evaluating ]
(G, sCo)
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is positive, Go is increased, otherwise G0 is decreased

to get % > 0.

2 L2 2.2

= _ 2
= 2GLSCD(rsCD gLs) + LSCD + C(r sCD +g " Lg

dr (G,C) )
—ac '

Thus in the small-signal analysis of the tunnel-
diode oscillator (Figure 3.4), there must be a root,
Sy, =0, t jwo, of the loop impedance, with Oy > 0. If so,
then over a period of a small-signal oscillation, the energy
generated by the negative conductance of the tunnel diode
is more than the energy dissipated by the lossy elements.
Once the oscillations start and grow in amplitude, the
small-signal conductance, -g, no longer applies because it
it constant only over a very small region around the bias
point. For large-signal oscillations the voltage-dependent
diode conductance, 93 = d i(vD)/d Vhye must be used. In the
large-signal operation, the diode will operate part of the
time in the region where the diode small-signal conductance
is positive. Additional losses are produced. These addi-
tional losses together with the nonlinear characteristic
of the diode establish a steady-state operation. For
steady-state operation, the average power generated by the

diode is equal to the average power dissipated by the lossy

elements of the circuit.
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3.3 Operating Frequency and Circuit

The type of circuit used depends in part on the
operating frequency, fo. The terminal impedance of the
tunnel diode shown in Figure 3.2 is

9p p

+ jw|(L_ -
2 2 s 2 2
gy * (MQD) gy + (uCp)

I
]
I

ZD(jw)

(3.9)
= Re(ZD) + 3 Im(zD).

(a) Resistive cut-off frequency, fR,

The resistive cut-off frequency, f_ = wR/2n is the

R
value of w for which Re(ZD) = 0. Equating Re(ZD) =0

gives

r - =0 . (3.10a)

Solving for Wp

_ 1 D _ 2
T = - (3.10b)
D [
For wg, < Wp »
Re[ZD(wo)] <0 . (3.10c)

For w, > We the terminal resistance is no longer negative,
and the tunnel diode cannot be used as an oscillator for

frequencies greater than the resistive cut-off frequency.
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(b) Self-resonant frequency, £

S.
The self-resonant angular frequency, wg = 2ﬂfs, is
the value of w for which Im(ZD) = 0.
w.C
Im(Z.) = w.L_ - S D =0 . (3.11a)
D S's 2 + (0.C )2
9p S°D
Solving for Wer
C
1 ‘/ D 2
S CD Ls D
If We < Wg
Im[ZD(wo)] <0, (3.11c)
and if Wy > Wg s
Im[ZD(wo)] > 0. (3.114)

With present technology, tunnel diodes with resis-
tive cut-off frequencies up to 30 GHz can be produced.
Generally the resistive cut-off frequency is found to be
greater than the self-resonant frequency, fS.

The tunnel-diode small-signal equivalent circuit
with a load circuit of terminal impedance, ZL(w), forming
an oscillator, is shown in Figure 3.5. Here -dp is the
incremental conductance of the tunnel diode at the bias

oint; r , L and C_ are diode parameters explained in
P s s p

D
Section 2.6.
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With the small-signal operating frequency, FO' the fol-

lowing conditions must be satisfied for a steady-state

solution:

(2 () + 25 (]I = 0, (3.12a)
or

Re[ZL(Qﬁ + ZD(ugl =0, (3.12b)
and

Im[ZL(wo)+ ZD(qgl =0 . (3.12c)

From Equations (3.10c) and (3.11d) for fo < fS'

Im(ZD(wo)) <0, a capacitive reactance, and for fo > fS'

InKZD(wo)) >0, an inductive reactance. For the circuit
operating as an oscillator and for fo < fs, Im(zL(mo)) > 0,
an inductive load, and for fo > fs, Im(ZL(wo)) <0, a
capacitive load. Thus, selection of an operating frequency
dictates the nature of the load-circuit necessary for
oscillation.

Here the aim is to concentrate on high-frequency
operation, fo > fs; only capacitive-load circuits of the
type shown in Figures 3.6b and 3.6c will be used. The
oscillator circuit with the operating frequency fo < fS’
load circuit inductive, was analyzed on a small-signal
basis by Chow [5]. The large-signal analysis with certain
assumptions was carried out by Kim and Brandli [4], Coerver

[8], and others (7,9,14,17].



34

LOAD

S — —_— ‘“L° s?gp
CIRCUIT !
D

2 W) Zp(w) c

Figure 3.5 Tunnel-diode oscillator circuit.

RC
L
c _L_c, = Fe 5o
G, T~ c
.’1'.' VBB Ve _-_?_ BB
. L T
< .
(a) fo fS (b) fo > fS (c) fo

Figure 3.6 Load circuits for the tunnel-diode oscillator
(a) inductive, (b) capacitive, (c) inductive
or capacitive load depending on fo‘

VBB is the dc bias voltage.
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3.4 Oscillator Circuit

The tunnel-diode oscillator circuit with an operat-
ing frequency, fo' which is greater than the self-resonant

frequency, f., but less than the resistive cut-off frequency,

S

f. < fo < fR_is shown in Figure 3.7.

fR’ S

In the circuit of Figure 3.7b, the load circuit
] ]
must be capacitive, viz., anocc - (l/21rf°Lc ) > 0. Param-
) ]
eters Lb and Cc can be calculated from the values of Cc

]
and fo considering C. = kCc, k > 1,

(a) Selection of an Operating Bias-point, VD.
The tunnel diode as an oscillator circuit element

must be biased in the negative-conductance region. The

bias point, VD’ must lie between peak point, VP' and val-

ley point, V. i.e.,v, < VD < V,,. It should be noticed

v’ P v
from the V-I characteristic of the tunnel diodes that the
valley region is flat compared to the peak region. This
phenomenon is more pronounced in gallium-arsenide tunnel
diodes than in germanium tunnel diodes (Figure 3.8). This
indicates that the region with the higher negative resis-
tance is flatter near the valley region than near the peak
region.

The power generated by the diode depends on the
voltage swing about the bias point and the incremental
negative resistance of the tunnel diode. Since the higher

negative-resistance region is flatter near the valley

point, the bias point for maximum fundamental power should
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Figure 3.7 Tunnel-diode oscillator circuits with an
operating frequency fo > fs.
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Figure 3.8

Current-voltage characteristics of
(1) Germanium tunnel diode, and
(2) Gallium-Arsenide tunnel diode.

r L 1=--2  plvp)
E:Gc C VD E
'

Figure 3.9

)
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, >I

I

Tunnel-diode oscillator circuit.
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be closer to the valley point, i.e., (VV - VD) < (VD - VP).
Sterzer [9] has shown in his computer calculations using
VD(t) = VD + Vo sin(27t/T) that the optimum bias voltage,
VD’
valley point. His results also show that the flatter the

for the maximum power generation is very close to the

valley region, the closer will be the operating bias point,

v to the valley point, V,,. Similar results will be de-

D’ v

rived in Chapter 5.
(b) Load Parameters: Gc' Cc and VBB'

The discussion of the stability of the tunnel-diode
circuits in Section 3.2 pointed out that small-signal in-
stability is essential for an oscillator circuit. The
circuit parameters, G, and C.s» are designed accordingly.

The bias supply, , can be determined from the operating

VeB

bias point, V and from r, and Gc'

Dl

Vg = Vp + (rg + é) I, (V) .
A tunnel-diode oscillator circuit is shown in
Figure 3.9. Here g(VD) and CD are the negative conductance
and the junction capacitance respectively, at the quies-
cent point, Vb. Initially CD is assumed constant. To the
left of terminals 1—1', the admittance is Y(w), a function

of frequency. Node admittance for the circuit is

YNode(w) = Y(w) + g(VD) .
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The conditions for an oscillator with an operating fre-
quency, fo' are (see Appendix B, equations (B.lla) and
(B.11b)):

(a) for the operating frequency of the oscillator

to be fo’

Im[YNode(wo)] = Im[Y(mo)] =0, (3.13a)
and (b) for the oscillation to start (due to the circuit
noise) and grow,

Re[Y(w )] < |g(vp)| . (3.13b)
Let

_ G
R = rg * > c w (3.14a)
G- + (w.C.)
c o ¢
wocc
w = -
and OX 0Ls Z 1 o )2 R (3.14b)
c o c
then,
R wox
Y(w ) = + jjw C. - - (3.15)
ol g?2, (wox)2 °P R 4 (u X)

Im[Y(wo)] = 0, implies

w C. - o =0 . (3.16)
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Solving,

= (o] - . .
R = ET w X (3.173)

This implies wox must be positive. From (3.14b),

(on)max = moLs when Cc = 0. Let wox = kwoLs, k<1,
then
kw L
_|_o’s _ .2 2.2
R —J——wzeg k mOLS . (3.l7b)

For R to be real,

s 2 2.2 . . . 1

< - k woLs > 0. This implies k < - .
D wL C

os D
Hence,

k < min |1, —2+—|= k (3.18)

= ' 20 max ° .
WolsCp

G
C
R-r =R = (3.19b)
s G2 + (W C )2 ’
C O C
and
c
L -X=X-= c , (3.19Db)

2 2
Gc + (mOCc)

and solving them simultaneously for Gc and Cc:

(3.20a)
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and

c, = v ﬁwx)z . (3.20b)
o
Thus for a different value of k a different set of values
(Gc,Cc) for a given operating frequency, fo > fq is
obtained.
The condition (3.13b) for growing oscillations can

be used to give a lower limit for the parameter, k. Using

R
Re[Y(w))] = — w < =94 (Vp) = g , (3.21)

R® + (mox)

substituting for R, from (3.17a), writing X = kLs' and

simplifying, gives:

e < (gf + Wiy, (3.22a)
S
or
CD/LS
k > —Tm = kmin . (3.22b)
9 T Yo's

Thus, the bounds for parameter k are:

Cp/Lg 1
kmin = m < k < min 1, ;2—1‘7 = kmax .
D o's o s D

(3.23)

The set of values (Gc 'Cc ) evaluated for k = k

m m min

means that Re[Y(wo)] G .C = gp- According to small-signal
c_'Tc
m m
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analysis, this circuit is on the verge of instability and
the oscillations may not grow or will grow very slowly.
In computer calculations (see Chapter 4) exactly the same
result is obtained. However, it should be kept in mind
that the small-signal analysis is only a means to obtain

suitable load parameters, Gc' Cc and V for an oscilla-

BB’
tor circuit. The circuit with Gc, Cc values evaluated

for k < k_.
m

in Means it is a small-signal stable circuit.

Large-signal analysis of the same circuit may nevertheless
show instability as corresponding to oscillations as will
be shown in Chapter 4.

As mentioned in Section 3.2, the circuit must be
dc stable. That is, the diode biased in the negative-re-
sistance region should have a unique dc operating point on
its I-V characteristic, as indicated by Equation (3.24)

and shown in Figure 3.10.
G, + =2 > |-g,| (3.24)
c ry 9pl - *

Thus the algorithm for designing a tunnel-diode
small-signal oscillator circuit is as follows:

(a) Obtain tunnel-diode parameters Cp, rg
and Lg from the specification sheet of
the diode.

(b) Obtain a static I-V characteristic for the
tunnel diode.

(c) Calculate the static I-V characteristic for
the intrinsic tunnel-diode junction from
step (b). Next evaluate parameters A, a, B,
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dc load line
slope - (Gc+ l/rs)

ac load line
(small signal

Figure 3.10. I-V characteristic of the intrinsic tunnel
diode with dc and (small signal) ac load
line for an oscillator circuit of Figure 3.9.
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and b approximating this curve as outlined
in Appendix A.

(d) Select an operating dc bias point, V_,
(Vp < Vp < Vy) and calculate q(Vp). “Equa-
tion (2.19) and g(V) = dI/dV gives:

bVp

= ae~3VD (1 -
qéVD) = Ae (1 aVD) + Bbe (3.25)

(e) Calculate two cutoff frequencies, fp and fg,
and select an operating frequency, %o, suc
that fs < fo < fR. Calculate kmax and kmin’

(f) Evaluate the load conductance, G, and the
load capacitance, Co, for a value of k such
that k_. < k <k .

min max

(g) Check for dc stability according to (3.24).

Finally, calculate

_ 1
VBB = VD + (rs + q) I.D (VD) .

This completes the design of a small-signal oscil-

lator with an operating frequence, fo.



CHAPTER 4

THE TUNNEL-DIODE OSCILLATOR CIRCUIT:
ITS ANALYSIS AND SOLUTION

4.1 Introduction

The small-signal equivalent circuit of the tunnel
diode developed in Chapter 2 gives very satisfactory re-
sults for the gain, bandwidth, etc., of a tunnel-diode
amplifier or the cut-off frequencies of a small-signal
oscillator [5,20]. However, this model fails to give
satisfactory answers to the typical large-signal nonlinear
problems such as the determination of the output waveform,
harmonic content, etc., in a tunnel-diode circuit.

To perform large-signal analysis of the tunnel-
diode oscillator circuit by analytical methods, the
characteristic of the negative-resistance element, the
intrinsic tunnel diode, must be simplified considerably.
Kim and Brandli [4] approximated the I-V characteristic
of the intrinsic tunnel diode by a third-degree polynomial

about the operating bias point [4,5,22], as

i(v) = -ggv+ hv> , (4.1a)
where
_ 3AI _ .
9= " AV - conductance at the dc bias (4.1b)
point,

45
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Figure 4.1. I-V characteristic of the tunnel diode and
the cubic approximation (i-v) used by Kim
and Brandli.
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h = =—=, (4.1c)
(av)

The analysis by Kim and Brandli assumes v = V cos (wt),
a perfect sinusoidal voltage about the dc bias point, VD' at the
intrinsic tunnel-diode terminals. Despite the poor approx-
imation to the I-V characteristic (Figure 4.1) and the
pure sinusoidal voltage assumption, meaningful qualitative

results were obtained.

4.2 Solution by Coerver and Sterzer

Coerver [8] carried out an analysis of a tunnel-
diode oscillator using a fifth degree polynomial similar
to Equation (2.17)([14], to approximate the intrinsic
tunnel-diode static I-V characteristic. He simplified
the oscillator circuit by neglecting harmonics, i.e.,
assuming single-frequency operation (Figure 4.2). Also
he assumed a circuit operating frequency, fo < fs. Coerver's
calculations show that the dc bias point, VD’ for the maxi-

mum fundamental power should be such that

(VV - VD)/(VV - VP) = 0.4 .

Sterzer [9] used a tenth degree polynomial to
approximate the static I-V characteristic of the intrinsic
tunnel diode. His computer calculations show that the dc

bias point for generating the maximum rf power should be
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ip (V)

\|
1

(a)

. S L G G
ip(v) C é D g L

(b)

Figure 4.2. (a) Coerver's tunnel-diode oscillator circuit

(b) Equivalent circuit of (a) at a frequency
fo = wg/2m < fg where Gp, is load conductance
and Gp is to account for diode and cavity

losses and L is the equivalent shunt
inductance.
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closer to the valley region. Another important result is
that the maximum power generated by diodes with flat val-
leys is greater than the power from diodes with narrow
valleys.

For an accurate solution a good approximation to
the nonlinear I-V characteristic is needed, but addi-
tionally, the effect of higher harmonics must be con-
sidered. A better approach is to formulate the solution
of the oscillator circuit in the time domain. If a
steady-state time-domain solution is available, harmonic
analysis can be employed to determine harmonic content.
Because of the nonlinearity of the device, numerical
methods of analysis must be used.

The time-domain solution of the large-signal
oscillator circuit is given in the remainder of this
chapter. A Fourier analysis of vD(t) as constituting a
frequency-domain signal of the form,

vp(t) = v, + Zl sinw_t + V_ c\ coswot], K > 2

ig carried out in Chapter 5.

4.3 Large-Signal Tunnel-Diode Oscillator Circuit

The complete large-signal oscillator circuit with

operating frequency fo > £ i.e., capacitive load circuit,

SI
is shown in Figure 4.3.
The following set of equations describes the

tunnel-diode section of the circuit.
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Figure 4.3, Complete large-signal tunnel-diode oscillator
circuit with parallel G_ - Cc load, for operat-

ing frequency fo > fS.
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Let i = i(t), v = v(t) and v, = vD(t) . Next,

applying Kirchoff's
1D(vD) + Cd

The voltage

r a is:
s nd Ls is

di .
Ls Ic + rsl =

i(t) - i(0)

D
1
law at terminal A-A :

dvD

1?= i . (4.2)

drop across the extrinsic elements,

=V -V . (4.3)
The solution of (4.3) with i(t = 0) = 1(0) is:
r
s r ,
"Lt Lt St
e ] ' ' Ls '
= =7 [vit ) - vp(t )]e dat .
s 0
(4.4)

Substituting for i(t) from (4.2) and using the notations,

results in

Cqvp * 1D(vD)

dsz
and V. =

D "q¢?2
r

- s Ts, "

e S t [] ] LS ]

= i(0) + f [v(t )-VD(t )]e dat .

L

s 0
(4.5)

Differentiating equation (4.5) with respect to time:

—q -



r r_ ,
s s
. . rs -E;t t ' ' E;t
o . - - - ]
c3Vp + lD(VD)VD = ;7 e Jr [v(t ) vD(t )]e dt
s 0
v-v
+ = D, (4.6a)
s
ry v-vy
= - [i(t) - i(0)] + T ’ (4.6b)
s s

rs . V-VD
= -E; [1D(vD) + cdvD-l(O)] + _f;_ ’ (4.6c)
where
d

iD(VD) = a?,; (iD(VD))= gd(VD) .

Rearranging Equation (4.6c):

sCal. rSiD(vD) v+i(o)r

[ r C ] vh s
c V. + |lgiv)+—lv + =0+ = ——— = | (4.7)
DD d''D Ls D Ls LS LS
Equation (4.7) completely describes the operation of the
tunnel diode in the circuit of Figure 4.2.
)
The load circuit to the left of terminals A-A in

Figure 4.3 is described by the following set of equations:

iGc(t) = i(t) + cce , (4.8a)
- T .

v(t) = Vg 5 [i(t) +c_v] , (4.8b)
- l . [ ] [ ]
= Vgg ~ 5: [1D(vD) + Cqvp *+ Ccv], (4.8c)

From Equation (4.3), v = a%(V(t)) is

~

F
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2. .
v=LSdl(t)+r M+VD
dt S at
.ll .2 . ] . eoe
= Ls 1D(VD)VD + lD(VD)VD + CdVD (4.9)
N ' L] e o0e
+ rs lD(VD)VD + CdvD + vh
di (t) a%i ()
where -t and are derived from Egquation (4.2).
dt

Substituting Equation (4.9) into (4.8c) and the
resulting expression for v into Equation (4.7), produces
a single nonlinear differential equation in Ve The ex-
pression for iD(vD) can be selected as any one of the

following expressions, (repeated from Section 2.5):

. _ 2 o N
lD(VD) =a  +a,vy +av, + +tawvy , N2 1,
or
I -I
lD(VD) = 5 [S(VD VP)(vD VV) (vD VV) ] + I,
(Vy=Vp)
P
or
. 2 Vp
lD(VD) = a(VV-vD) tanh %7 + IyVp
or
-av bv
. _ D D _
1D(VD) = Avje + Ble l) .

The complete equation describing the oscillator
circuit shown in Figure 4.3 is obtained by substituting
for v, iD(vD) and i;(VD) (from Equation (4.10)) into (4.7).
The resulting equation is a third-order, second-degree

nonlinear differential equation in v Analytical solutions

D.
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are not known, and straightforward analytical approxima-
tions quickly become complex and require numerical
approximations. A feasible method of solving specific
numerical cases is to use a digital computer to form time-

domain solutions on an incremental time basis.

4.4 System Model of the Oscillator Circuit

The primary purpose of the system approach is to
develop a set of first-order differential equations des-
cribing the oscillator circuit of Figures 3.7a and 3.7b.
Also, this approach permits the study of the effects of
voltage dependency of junction capacitance, Cd(vD),
without any difficulty.

The large-signal oscillator circuit shown in
Figure 3.7a is redrawn as Figure 4.4a for convenience.

The system graph of Figure 4.4 is shdﬁh in Figure
4.4b. The notations, lettering, and the direction of the
arrows are the same as described in reference [21]. The
circuit tree is shown in heavy lines.

The system model for the oscillator circuit is

derived as follows:

(1) The set of equations describing the circuit
elements, capacitors Cc' Cd and inductor Ls’

is
— T _— l - r—. -
Vl C_c o] (o] J.l
a% vy|=1]0 c_l of |1, . (4.11)
d
. 1
13 0 0 g V3
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(2) Writing the circuit and the cut-set equations

[21] from the system-graph of Figure 4.4b:

e

i1 = 16 - i3 = v6Gc i
(4.12a)
iz =i; - ig =i, - iD(vD)
. (4.12b)
=i, - 1D(v2) .
V3 = =V, 4Vt v, -,
(4.12c)
= - i3rs + vy + VBB -V, .
Writing (4.12) in matrix notation,
=1 I TRT o
i, Gc 0 -1 vy 0
i,|= 0 -1D( ) 1 vo |t 0 . (4.13)
vy 1 -1 “rg i3 VBB
| L 4 L I |
(3) Substituting Equation (4.13) into (4.11)
— { — 1 r - 1)
1 . ]
o 0 0 -G, 0 -1 vy 0
L oKlo -i() 1w, |+ o )
Cd D 2
1 .
0 — 1 -1 r i v
L s 3 BB
_ s\l L LR
_-G /C 0 -l/C—1 _v-T B 0--1
c’ “c c 1
0 -iD( )/Cd l/Cd vy | + 0 (4.14)
1/L -1/L -r_/L i V. o/L
| s s s .i | %_ LBB EJ
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In this set of differential equations, v can be

substituted for vy and Vp for Vye This substitution re-

sults in the following set of equations:

Gc 1 107 ) i
v - 0 -— v 0
Cc cc 1
d ip () 1 »
3t VD = 0 - o vp + 0 . (4.15)
d d
: 1 o1 I ||y )
3 Ls Ls Ls 3 Ls
. - — — S o S —

This describes the large-signal oscillator of
Figure 4.4. Solving this set of equations on a digital
computer is relatively easy compared to solving the
higher-order differential equation, Equation (4.7).

For initial conditions, the values of v(t), vD(t)
and i3(t) for t = 0, must be specified. The bias voltage,
VBB is obtained from VBB = VD + ID(VD)[rs + l/Gc] where

VD is the intrinsic diode dc bias point. If VD(t = 0)= Vo

then a trivial solution of Equation (4.15) is obtained
because 60v= v = 13 = 0. In an actual oscillator, the
electrical noise in the circuit may start the oscillations,
which in turn begin to grow in amplitude due to small-
signal instability. In computer simulation the initial
perturbatjon is provided by selecting VD(t = 0) not equal

to the dc bis point, V A satisfactory choice of initial

D.
conditions is:
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at t=0 vD(O) = VB(#VD) ’
then i,(0) = i (V)

3 DB’ (4.16)
and v(0) = VB + iD(VB)rs ’

= Vgp = ip(Vp)/G. .

These initial conditions will give non-zero values to

hf»)

noise excitation in an actual oscillator circuit.

, v and i3. The ratio, VB/VD # 1,is equivalent to

A similar set of first-order differential equations,
describing the second form of the oscillator circuit shown
in Figure 3.7b, will be derived next.

The large-signal oscillator circuit shown in
Figure 3.7b is redrawn as Figure 4.5a for convenience. It
is an equivalent to the circuit considered in the preceding
section. Its system graph is shown in Figure 4.5b.

Now to derive the state model of the oscillator
circuit, write the set of equations describing the Cc' Cqr

Ls and Lc circuit elements as follows:

[ 1 T 7
v —— 0 0 i
1 Cc 1
1 .
VD 0 oo 0 0 12
d d (4.17
EE' — l . . )
13 0 0 i— 0 V3
[}
. 1
i, 0 0 0 T v7
c
- -4 L 4L .
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_© ®
TN B2 /T Ca %(VD)

(a)

g9
(b)

Figure 4.5. Complete large-signal tunnel-diode oscillator
(a) Equivalent circuit, and (b) its System-
graph.
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Writing the circuit and the cut-set equations,

similar to (4.12) and putting them in the matrix form:

p— o —— -— - -y e cmmy
-

1l Gc 0 -1 1 v 0
i, 0 —iD( ) 1 1 vp 0
- + e (4.18)
v3 1 -1 -rS 0 13 0
v, -1 0 0 0 i7 Vg

Substituting Equation (4.18) into (4.17), multi-
plying the matrices, and substituting v for vy and VeB for

Y the resulting set of equations is:

r —t P -— = - —
G
c 1l 1
v -— 0 - - v 0
Cc cc cc
i ()
D 1
VD 0 - C E—— 0 VD 0
a d d
I P + . (4.19)
. 1 1 Ts
i — - -—— 0 i 0
3 LS LS LS 3
v
. 1 . BB
i —_— 0 0 0 i —_—
7 Lc 7 Lc
L - T -— e e -

This is the system model for the oscillator shown in
Figure 4.5a. Once again a suitable initial condition for
vD(t) must be specified. -

If the dc bias point for the intrinsic tunnel diode
is V

or (Vo < Vp < Vi), then Voo =V + I (V)r_.

BB D g+ For’
VD(t = 0) = VD the solution of (4.16) will be trivial since
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then V(0) = v (0) = i,(0) and i,(0) = 0. Accordingly suit-

able initial conditions are:

at t=20, VD(O) = VB(# VD) .

Then, i;00) = iy(vg) (4.20)
v(0) = VB + iD(VB)rs '
i,(0) = ij(Vg) + [Vvg + ip(Vo)r ]G, .

In both sets of equations the expression for iD(vD)
can be any one of those given in (4.10). For any reasonably
accurate expression for iD(vD), the set of equations given
in (4.15) or (4.19) cannot easily be solved by analytical
‘methods. They were solved on a digital computer. At the
same time solving them numerically on a digital computer
allows freedom to:

(a) choose any form for ip(vp) without making the
solution any more complicated;

(b) study the effect of the junction capacitance,
Cd' as a voltage dependent element,

Cd = Cd(vD).

4.5 Numerical Solution of the System-Model

The system models developed in (4.15) and (4.19)
for the large-signal tunnel-diode oscillator circuits of
Figures 4.4 and 4.5 respectively, were solved on a CDC 3600
digital computer using Fortran IV language.

The load-circuit parameters are Gc and Cc. For

studying large-signal analysis, the starting point,
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vD(t = 0), is chosen to be the peak point voltage, VP'
This choice permits steady-state solutions which cannot
be obtained by small perturbation of a circuit which is

ac small-signal stable. Vd(t = 0) = Vp is equivalent to
the shock excitation of the circuit.

The set of first-order differential equations can
be solved by either the Runge-Kutta method or by the Adam-
Moulton method with the Runge-Kutta starter [23,33]. The
computer program used for this is an expansion of the
method suggested by Hildebrand [23] for a system of two
first-order differential equations. The Adam-Moulton
method is referred to as one of the closed types of pre-
dictor-corrector formulas. A Fortran subroutine, RKAMSUB
[24], based on this was used to solve Equations (4.15) and
(4.19). This subroutine integrates the set of equations
for the specified time-step, AT, using fourth-order Runge-
Kutta method.

The time-step size, AT, with which RKAMSUB inte-
grates the system of differential equations, should be
small enough to yield a reasonably accurate solution and
at the same time large enough to yield the solution in a
reasonably short time. With the expected operating fre-
quency,fo, the gxpected time period will be T = l/fo. So

AT ® T/100 should be sufficient, considering the non-

linearity involved.
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The system model of the circuit of Figure 4.4 (or

Figure 4.5) is solved starting at time t = 0 with the

initial conditions on vD(t), v(t) and i3(t) given by (4.16),

(or (4.20)). As mentioned before

(t=0) =vy .

v p

D

The set of equations (4.15), (or (4.19)) is integrated
numerically until VD(t) corresponds to the steady-state
operation of the circuit. To ascertain when steady-state
is reached, vD(t) is Fourier-analyzed [34] and its funda-
mental, second and third harmonic components are obtained

as:

P=3
vplt) =vy + ] |V, sin (332 t| +V, cos
(0] p=1 sp T cp T
P=3 j(z—"f% t - )
=v, + v, e \T Pl (4.21)
0O p=1 'p '
where,
1
T = the new time-period of oscillation
Vd = p th harmonic sine component
sp
V4 = p th harmonic cosine component
cp
_1 /.2 2 _ .
V. = \Y + Vv = p th harmonic component
D 2,4 d -
p sp cp
and ¢ _ = arctan —Vd /Vd . If the harmonic
P cp “sp

anp

e



64

components Vpo1+ Vp2 and Vb3 of two consecutive periods of
vD(t) differ by less than 1, 2 and 4 per cent respectively,
it is assumed that the solution corresponds to the steady-
state operation.

The resultant period of oscillation, T', not being
equal to the assumed period of oscillation, T = 1/fo, is
not a surprising result. The period, T, is based on small-
signal analysis, while the actual period of oscillation,
T', is the result of a large-signal analysis of the non-
linear problem. It should be noticed that T' is always
greater than T. In other words, the resultant fundamental
frequency of oscillation, f; = l/T', is less than the
assumed operating frequency, fo‘

Using the solution corresponding to the steady-
state operation of the circuit, iD(t) = iD(vD(t)) is

evaluated point by point for one period of VD(t). Then

v(t) and iD(t) are Fourier analyzed in the form:

P=3
in(e) =14 + ] |1y sin (2—"3- t) + I, cos 2mp t),(4.22)
o p=1 sp T cp T
and
P=3 2 2
v(t) = V_ + Z \'4 sin —1$ t] +V cos —12 tl. (4.23)
(o} p=1 sp T cp T

The average power generated by the intrinsic tunnel

diode at the pEE harmonic is:

P =o.5(v Id + VvV . (4.24)

I
D d )
P Sp Sp dCP dCP
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The average power delivered to the load conductance, Gc'

at the fundamental frequency, fo' will be

_ 2 2
Pg = 0.5 [vg; + vcl) G, (4.25a)
cl
and at the pEll harmonic
p. =0.5 (v +v? |G (4.25b)
ch ) sp cp c ® *

The logic diagram of a typical computer program based on

the aforesaid procedure is given in Figure 4.6.

4.6 ExamEles

For a given tunnel diode, the procedure stated in
Section 4.5 is repeated for different dc operating points
between (VP + VV)/2 and Vy+ For each operating point,. sets

of load circuit elements (GC,CQ), are obtained for values
k .
_ "max = ‘min
(Ak), 0.8kmin where Ak = 10 (see

Section 3.4). The circuit elements (Gc,Cc) evaluated for

of k =k

max’

the parameter k < kmin indicate small-signal stable circuits.
As shown in the output curves to follow, the maximum power
is actually obtained when circuit elements correspond to

k < kmin' For each set of (Gc,Cc), the oscillator circuit
of Figure 4.3 is solved as described in Section 4.5. From

delivered
cl

the results, a plot is obtained for the power,~PG
to the load vs. the load conductance, Gc'
This procedure is followed for two tunnel diodes--

one a narrow valley germanium tunnel diode and the other
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a flat valley gallium-arsenide tunnel diode. The pertinent
specifications for these two diodes are listed in Table
4.1.

The parameters A, a, B and b in the specifications
are the same as described in Appendix A for approximating
the static current-voltage characteristic of the intrinsic
tunnel diode. The current-voltage plots for both diodes
are shown in Figure 4.7.

1. GaAs Tunnel Diode 2J61-22, Calculations

From the specifications:

valley point voltage, VV = 670 mV

peak point voltage, \Y

p 120 mv,

The dc operating points attempted were

\% 0.44, 0.46, 0.4B, 0.50, and 0.52 volts,

D
9 9
For VD = 0.44, wg = 2.27 x 107, wg = 4.80 x 10° .
= 9 _ 9

9

So select Wy = 2.77 x 10° radians/sec.

The load-circuit elements, Gc,Cc, calculated for

the bias point, VD = 0.48 volts, and for several values of

k < kma are plotted in Figure 4.8. The set (Gc ,Cc )

m m
is marked by a star (¥).

X
corresponding to k = Knin
The complete oscillator circuit of Figure 4.3 is

solved as described in Section 4.5 for VD = 0.43, (0.02),

0.53 and for different circuit parameters, Gc,Cc. In this
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TABLE 4.1

Tunnel-Diode Specifications

2J61-22 1N2941

Parameter Gals Ge
rs ohms 2 1

L nh 6 5

s

Cd pf 25 20

A 0.51554 0.44

a 8.6207 16.8

B 1.6114 x 10~° 5.4 x 10~
b 6.4694 15.4

VP mvV 120 60

IP mA 22,01 9.64

VV mv 670 400

IV mA 2.01 0.47
Iax mhos -0.0693 -0.0595
at v volt 0.23 0.12
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case maximum fundamental power is delivered to the load

conductance, Gc' when VD = 0.48 volts. Table 4.2 shows

the complete set of calculations for the oscillator cir-

cuit when VD = 0.48 volts. Similar tables are prepared

for each dc operating point. The plots of the funda-

mental power delivered to the load conductance, G c VS
Gc for various dc operating points are shown in Figure

4.9. Figure 4.10 shows a similar plot for the second

and third harmonic power delivered to Gc'

2. Germanium Tunnel Diode, 1N2941, Calculations

From the specifications:

VP = 0.06 volts, VV = 0.40 volts.

The dc operating points attempted were

VD = 0.25, 0.26, 0.27, 0.28 and 0.29 volts.
= 9 _ 9
For VD 0.25, wS = 2,99 x 10°, and W = 7.12 x 107,

_ 9 _ 9
For VD = 0.29, Wy 3.10 x 10°, and wR = 5,52 x 107,

So select Wy = 3.25 x 109 radians/sec.

Calculations similar to those described for the

gallium-arsenide diode were performed. The optimum dc

operating point is found to be Vp = 0.27 volts. The curves

of the fundamental power delivered to Gc vs. Gc for various
dc operating points are shown in Figure 4.11.
The results of the maximum power delivered to load

conductance, Gc' for the two diodes are summarized in Table

4.3.

R
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TABLE 4.3

Values for an Optimum Circuit and Related

Performance Data

Tunnel Diode

Parameter GaAs Ge Units
GC 0.1078 0.20 mhos
Cc 53.35 40.9 pfarad
VBB 0.5284 0.2778 volts
w, designed 2.77 x 10°  3.25 x 10° rad/sec
L}
Wo resultant 2.70 x 109 3.2057 x 109 rad/sec
Pout by diode 1.8328 0.518 mw
PGcl Fundamental 1.1375 0.402 mwW
PGc2 2nd Harm. 0.27 0.354 uw
PGc3 3rd Harm. 0.10 0.001 uw
Re (Y () ]
T 1 1.261 1.284
Vy,, = V
Rt 0.345 0.382
v P
iy 0.7680 D.479 volts
max
Vp 0.0726 0.037 volts
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As mentioned earlier it should be noted that the

[}
operating angular frequency, Wer is slightly less than

designed We for both diodes. According to (3.13b),

Re [Y(wo)]

F = <1
1 =9p | !

is required for the oscillations to grow. For both diodes

this ratio is much greater than 1. So for these cases,

P m——— gy~

VD(t = 0) value close to V. will result in decaying oscil-

D

lations such that vD(t+w) = Vp. By choosing vD(t =0) =

VP = the peak voltage, the diodes are perturbed sufficiently

that sustained large-signal oscillations are obtained.

4,7 Effects of Varying Circuit Parameters

(a) Oscillator Circuit with G-L-C Load Circuit

The equivalent Gc - Lc - Cc circuit of the
equ. equ.
Gc - Cc load circuit considered in the preceding section

is shown in Figure 4.5. The circuit elements Cc = nCc
equ.
and L = l/[(n-l)wzc ], n » 2 are computed to keep the
cequ. oc

operating frequency constant. The above calculations were
repeated for n = 3., In general it is observed that the
average fundamental power delivered to the load conductance,
Gc' is increased by about 10 per cent. But at the same
time, the operating angular frequency of oscillation, w;,

decreases significantly. Table 4.4 summarizes the calcula-

tions which are similar to those for Table 4.2 but for the
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equivalent circuit of Figure 4.4. The tunnel diode under
consideration is 2J61-22 and the operating point is VD =
0.48 volts. The conclusions with regard to an increase
in fundamental power and a decrease in the resultant
operating frequency, are evident when the data of Tables
4.2 and 4.4 are compared.

(b) Oscillator Circuit with Junction Capacitance
as a Junction-Voltage Dependent Element.

The oscillator circuit considered in Section 4.6
is solved again, but this time the junction capacitance,

Cc it considered to be a junction-voltage dependent

Dl
element:

_ -1/2
Cd“(vc VD)

and C

a Cd(VV) for vp2 Vy o

where V_ = contact potential.

The specified value of Ca is used for vp = VV:

C o (V)T =V
cqlvy) = d vV c VvV . (4.26)
Vcé - aD

The calculations show that the average fundamental
power delivered to Gc when the junction capacitance is con-
sidered a voltage-dependent element, Cd = Cd(vb)' is always

higher than the same power delivered to G, when the junction

oo J a4
{
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capacitance is considered voltage-independent, viz.,
Cd = Cd(VD). Figure 4.12 shows the graphs of the power
output for the two cases for the GaAs tunnel diode
and the dc operating point equal to 0.48 volts.

(c) Effect of Varying Operating Frequency

As the operating frequency approaches the resis-
tive cut-off frequency, wR, the Gc element value de-

creases sharply. Soon the value of Gc decreases enough

to violate dc stability condition (3.24) and we get

1
— - .

When a circuit with component values causing dc instability

was simulated on the computer, oscillation could not be
sustained.

For the circuits satisfying dc stability (3.24)
the power delivered to load Gc decreased rapidly as the

operating frequency was increased.

T svemmanLs 7 ~——
R
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CHAPTER 5

HYBRID APPROACH FOR MAXIMIZING LOAD POWER

5.1 Introduction

The intrinsic tunnel diode is the device element
which due to its dynamic megative-resistance property
converts dc power into signal ac power. Hence, an attrac-
tive approach to maximize the load power is to determine
the optimum voltage vD(t) at the intrinsic-diode terminals

that will produce maximum fundamental power, Pl' where

T
1 .
P, = 'F_/; vy (B)ipg, (£)dt , (5.1)

and le(t) and iDl(t) are the fundamental frequency com-
ponents of vD(t) and iD(t), respectively. Next a circuit,
with the diode elements Lo LS and CD included, that will
sustain VD(t) at the intrinsic-diode terminals must be
synthesized. The determination of the optimum voltage
vD(t) cannot be carried out analytically by conventional
variational calculus techniques due to the highly non-
linear nature of the intrinsic diode. Rather, extensive
computer calculations were used. With the optimum vD(t)

determined a suitable circuit can be designed following-

82
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usual circuit synthesis procedure. This approach is called

a hybrid approach.

5.2 Criterion for the Maximum Fundamental Power from the
Intrinsic Diode

The circuit designed must be such that current-
voltage matching exists at the intrinsic-diode terminals,
1B (Figure 5.1). The A,-B terminal admittance of the
circuit is determined by the harmonic components of vD(t)

A

* ?“‘_.“’-f" —~—

and the resulting iD(t).

To determine optimum components of VD(t), consider

the Fourier analysis of vD(t):

N

AV
. 27 27
v(t) =v, + 1) |V sin (/= t| + V cos |=% t) ,
D do k=1 dsk (T ) dck ( T ]
(5.2)
where Vd and Vd are kEl-l harmonic sine and cosine com-
sk dk

ponents, respectively. Consider 360 equally spaced values
per period of vD(t). Performing point-py-point calcula-

tions 360 equally spaced values per period of iD(t) =
iD(Vb(t)) can be obtained using one of the expressions from

those given in (4.10). The Fourier analysis of iD(t) is:

N
I
. . 27 27
i (t) =1 + I sin |—= t| + I cos |— .
D do £=l':dsk ( T ) dck T H

(5.3)

From this, the kE}—1 harmonic component of the power produced

at the intrinsic tunnel diode is:
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P = 0.5|V Id +vd Ig . (5.4)

dk sk sk ck “ck

d

Pa1 is to be maximized with respect to the (2k + 1)
harmonic components of vD(t), Vdo' Vdsk' Vdck; k = 1,2,...NV.
It should be noted that Pdl‘will be a negative quantity as
corresponding to positive power being delivered to the
load.

5.3 Circuit Desigp for the Maximum Power from the Intrinsic
Diode

For the passive-circuit to the left of terminals,
A,-B, (Figure 5.1), the voltage and the current are VD(t)
and -iD(t), respectively. For current-voltage matching at
the common terminals, Al-B, the circuit admittance at the

fundamental frequency, W should be

\' + jVv
Y(w)=fd$1 idCl=Y(w)+°Y(w) (5.5)
c o -I4 -3 a R o RS A L *
sl cl
th

Similarly at the k— harmonic, the circuit admittance

should be:

Y (ko ) = —m——— . (5.6)
c o Ids JId

These equations provide admittance requirements
for the circuit design after the operating frequency, w _,

o
is selected.
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Consider the case where only fundamental frequency
components are assumed. Following the analysis as indi-
cated above, the required admittance at the Al-B terminals
is

Y, (ug) = Ypluy) + 3¥play) - (5.7)

At the A,-B terminals the admittance required is

Yplug) + 3 (¥ lu)) = w,Cp) - (5.8)
Then,
Z(w,) = "R 0 ; j(YI(wO) - wOCD) 3!
(YR(wov + (YI(wo) - woCD)
= RelZ(w,)] + JIm[Z(w )] , (5.9)

is the impedance required at the AZ-B terminals. Similarly

at terminals, A3—B

Zplug) = [RelZ(wy)] - r ] + 3Im[Z ()] - @ L]

Re [z (w,)] + FImlZy (wy)] (5.10)

is required. en =
s q Wh We Wna

all the power produced by the intrinsic tunnel diode is

<! then Re[ZT(wO)] = 0 as then

dissipated in the series resistance, rg. When the operat-
ing angular frequency Wg s is equal to wg the reactive
component of ZT(wo), is equal to zero as corresponding to

the definition of wg. For Wy > Wgr Im[ZT(wo)] is negative
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corresponding to a capacitive load circuit. For Wy < Wgy
Im[ZT(wo)] is positive corresponding to an inductive load-

circuit requirement.

To determine wmax = W
Y (w )
Re (2 (w )] = > R m 5 -, =0 .
[Yp(w )1 + [¥p(u) - o Cpl
Then
Y_(w )
R'™m 2 _ 2 _ 2.2
—?s— YR(wm) = YI(wm) ZmeDYI(wm) + meD ’
or (5.11)
Y (w )
2.2 2 2 R'm _
meD ZmeI (wm)CD + YI (l.t)m) + YR(U)m) T =0 .
(5.12)
Hence
Y. (w ) Y_(w )
w=Im¢\/Rm-y2(w)_1. (5.13)
m CD r R'm C
8 D
This expression for Wroax is identical to the expression in

(3.10b) for the resistive cut-off frequency when

YI(wm) = 0 and YR(wm) =49,

Similarly, the solution of Im[ZT(qm)] = 0 (for ob-
taining an expression for ws) results in the following

cubic equation:

Y_(wa) wsC
1'%s S°D _ 2 2 2 3.2
- Ls + Ls = wSYR(wS) + mSYI(wS) 2w.YI(wS)CD + wSCD .

(5.14)
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When, as is usually the case YI(wS) << YR(wS), the equation

yields

- (5.15)

This is identical to the equation (3.11b) for the self-

resonant frequency if YR(wS) = 9gp-

Thus, when Wy

5.1 should be designed such that the admittance to the left

< Wpax? the load circuit of Figure

of terminals A,-B is Yc(wo). Upon completion of the design
the dc stability requirements, according to (3.13), must
also be met for proper functioning of the oscillator
circuit.

In Appendix C it is shown that any two frequency
admittance specifications, such as:

YT(wo) = YRl(wo) + jYIl(wo) (5.16a)

YT(2wo) = YRZ(Zwo) + jYIz(Zwo) (5.16Db)

can always be realized if YRl(wo) and YRz(wo) are positive.

5.4 Examgles

The procedure mentioned in Sections 5.2 and 5.3
was carried out for the two diodes analyzed in Section 4.6.

The most difficult part of the hybrid approach is
that of obtaining the optimum harmonic components of VD(t),
viz., Vdo’ Vsl’ Vcl' VsZ' ch(as for Nv = 2). Several

attempts were made to find these analytically. Finally a
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computer program, namely, GREAT--Generalized Random
Extremum Analysis Techﬁique-—, (Appendix D) was used for
numerical evaluation. This program finds the minimum
value of a function of several variables. The initial
value of each variable is selected at random from within
the specified limits. Evaluating the direction cosines
with respect to each variable, the variables are increased
or decreased to minimize the functional value.

For a gallium-arsenide tunnel diode, considering
the fundamental sine-cosine components only, the optimum
bias point is found to be about 0.465 * 0.004 volts and
the corresponding maximum fundamental power, P ax’ gene-
rated is about 1.947 mW. When second harmonic components
are also introduced, the optimum bias point shifts to
0.405 * 0.004 volts and the maximum fundamental power out-
put increases to about 2.264 mW, a 16.3 per cent increase.

Similarly for a germanium tunnel diode, considering
the fundamental sine-cosine components only, the optimum
bias point of about 0.27 * 0.004 volts is obtained, and
maximum fundamental power output is about 0.530 mW. When
second harmonic components are also considered, the opti-
mum bias point of about 0.23 + 0,004 volts and Pmax about
0.633 mW results. Introducing third harmonic components
gives optimum bias point between 0.24 and 0.28 volts and
P about 0.67 mW. Inclusion of higher harmonic components

max
results in larger output power, but computer time required
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to find the optimum voltage components increases con-
siderably. As might be expected higher harmonics produce
progressively smaller changes in Pmax‘ Table 5.1 gives
typical starting and final values of harmonic components

of diode voltage,

vD(t) = Vdo + VSl s1nwot + Vcl coswot + V82 31n2wot

coszwot ’ (5.17)

+ ch

and the power output from a gallium-arsenide tunnel diode,
2J61-22,

As mentioned in Section 5.3, the diode current

1D(t) =1I + Id Sanot + I

do coswot
sl

dcl

+ I 51n2wot + Id

cosZwot ’ (5.18)
s2 c2

d

is calculated from vD(t). The harmonic components of iD(t)
for the two cases listed in Table 5.1 are given in Table
5.2.

When only fundamental components are considered,
the circuit admittance required for the gallium-arsenide

diode is according to Equation (5.5):

2 10

Y (w)) = 2.4387 x 100 - j§ 5.6915 x 10 ~° .

- 9 ~ -9 .
Then, Weax = 4,.3079 x 107, and wg 2.3 x 10 radians/sec.

wWith gd(Vdo) = =-2,65 x 10_2 mhos, r, = 2 ohms and Wy > Wg o
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TABLE 5.1

vp (t) Harmonic Components when Fundamental

Power is Maximum
(GaAs Diode)

Initial Value
Component (Monte-Carlo Method)

Final Value

1lst case: Fundamental Component only

Vdo Volts 0.41695
Vsl 0.06931
Vcl -0.23125
Pout mwW -1.2624

0.46425

0.31349
-0.24794
-1.9480

2nd case: Fundamental and Second Harmonic Components

Vdo Volts 0.46802 0.41067

Vsl " 0.12911 0.43022

Vcl " -0.04920 -0.04584

VsZ " 0.123 -0.02570

ch " -0.06229 -0.11747

Pout mwW -1.3033 -2.26293
TABLE 5.2

1 (t) Harmonic Components when Fundamental

Power is Maximum
(GaAs Diode)

Component 1st Case 2nd Case
Ido ma 9.7076 12,953
Ig ma -7.6451 -10.401
sl
Id ma 6.0465 1.108
cl
I ma -3.7962 - 0.229
ds2
Id ma -0.8987 - 1.052

c2
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the dc stability condition requires the load conductance

Gc to be greater than 0.025 mhos.
9

The circuit elements--Gc,Cc--for Wy = 2.4 x 107,
(108), 4.2 x 109 radians/sec are calculated according to
Equations (5.7) through (5.10). These are plotted in
Figure 5.2. The results from the exact analysis (dis-
cussed in Chapter 4) for different wo's are tabulated in
Table 5.3. The fundamental power generated by the gallium-
arsenide diode is 1.948 mW in each case. 1In the table
w_, Gc and Cc are from Figure 5.2. w; is the resultant

(o]

(fundamental) frequency of oscillation; P is the power

out

generated by the diode; and P is the power delivered to

S¢

the load, Gc.

It is evident that the power output from the diode,
Pout' and the power delivered to the load, Gc’ at the
fundamental frequency reduces rapidly when the higher funda-
mental frequencies are considered.

The optimum circuit performance obtained in Chap-
ter 4 is also listed in Table 5.3. Vp for this case was
0.48 volts. A comparison of this with the data of set no.

2, Table 5.3 shows that the fundamental P and Po ob-

G ut
cl
G by 7 per cent and
cl
the power transfer efficiency, PG /P
cl

tained in Chapter 4 are higher: P
out by 5 percent.
However, the small-signal analysis for the circuit

elements (obtained by hybrid approach) listed in Table 5.3
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indicates that the factor F

Re[Yc(wO]/I-gDI is equal

to 0.926--1less than 1, unlike the value of factor F for
the optimum case obtained in Chapter 4. Factor F = 0.926
indicates that the circuits are very close to ac small-
signal stability. Consequently, the circuits should al-
ways be shock excited. When analyzed numerically, the
oscillations could not be generated when vD(t = 0) was
selected close to Vdo = 0.46 volts. The results listed
in Table 5.3 are obtained by considering vD(t = 0) = VP
= 0.12 volts. The last two sets in Table 5.3 resulted

in non-oscillatory circuits when analyzed numerically.
This is due to dc instability. But small-signal analysis
indicates dc instability for data of set no. 5 only,
while set no. 4 is very close to it.

In the second case of Table 5.1, the voltage at
the intrinsic=diode terminals, VD(t), up to and including
second harmonic components, is considered. Table 5.1
lists one set of several optimum voltage components, Vdo’
Vsl’ Vcl’ Vs2’ ch producing same fundamental power. The
circuit admittance, matching at the intrinsic-diode termi-
nals, is calculated for this set according to Equations
(5.5) and (5.6). The resulting admittances at the funda-
mental and the second harmonics are:

2 6

Y_(w)) = 2.418 x 107 + 3 1.135 x 10~

and

Y_(20 ) = -8.955 x 1072 - j 7.353 x 107° ,
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Note that Re[Yc(Zwo)] is negative. Several dif-
ferent optimized sets were attempted. But for each case
Re[Yc(zwo)] was found to be negative. Similar results
were obtained for the germanium tunnel diode. Consequently,
in the case of these two tunnel diodes a circuit could not
be designed that could provide the required current-
voltage matching for the second harmonic. This need not
be true for tunnel diodes in general. Designing a circuit
with Yc(mo) only, and neglecting the mismatch at the second
harmonic, resulted in greatly reduced power output when

analyzed numerically as outlined in Chapter 4.



CHAPTER 6

CONCLUSIONS

In this thesis a computer algorithm has been
developed for evaluating the fundamental power delivered
to the load of a tunnel-diode oscillator circuit. This
algorithm has been successfully used to determine changes
in fundamental power with changes in circuit parameters.
Specifically it was found that simple operating circuits
could be optimized to produce maximum fundamental power.
When the optimized circuit is used, tunnel-diode voltage
and current are rich in harmonic content. Large-signal
analyses that assume perfect sinusoidal signals are not
adequate to evaluate optimum performance.

From an in-depth computer evaluation of a germanium
and a gallium-arsenide tunnel-diode oscillator circuit it
was found that

(1) Optimum tunnel-diode bias voltage is closer
to the valley voltage than to the peak voltage.

(2) The optimum tunnel-diode bias voltage approaches
closer to the valley voltage as the valley region of the
diode flattens out.

(3) Fundamental power delivered to the load de-
creases as the operating frequency increases.

97
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(4) The operating frequency was somewhat lower
than the frequency indicated by small-signal analysis.

(5) Maximum power output was found to occur with
a circuit which was small-signal stable. This mode of
operation would be feasible only if provisions were made
for shock exciting the circuit.

(6) Somewhat greater fundamental power can be
obtained by the use of a voltage-dependent junction
capacitance in comparison with circuit operation in which
the junction capacitance is constant.

(7) For maximum power output the conversion
efficiency was about 23.7 per cent.

(8) Contrary to some reports in the literature,
at no time was it found that the circuit would oscillate
at a frequency greater than the resistive cut-off frequency.

Although the findings listed above were verified
for only the two diodes examined, they are believed to be
generally valid. From the work completed, it is con-
sidered feasible to use the algorithm developed to design
simple circuits for optimum operating conditions. At
ultra-high frequencies the circuits become more complex
and it is not certain whether the algorithm can be modi-
fied to include the added complexities. This area, parti-
cularly as it relates to transmission-line analysis, could

be the subject of further investigation.
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APPENDIX A

APPROXIMATION TO TUNNEL-DIODE STATIC

CURRENT-VOLTAGE CHARACTERISTIC EQUATION

A useful two-term approximation of the tunnel-
diode I-V characteristic was first suggested by Ferendici

and Ko [11] as

|} -av .bV
A V_e T + B (e T

Ip(Vq) = T

- 1) (A.1)

where IT(VT) is the terminal current and V_, is the termi-

T
nal voltage. The I3-V4 characteristic of the intrinsic
tunnel diode at terminals a-a' (see Figure A.l), is ob-
tained as discussed below.

The equivalent circuit of the tunnel diode is as
shown in Figure A.l. For static characteristic as ob-
tained at low frequency, the effects of series inductance,
Ls' and junction capacitance, Cd(vd)' can be neglected.

Then

(A.2)

L

Id(Vd) = IT(VT - Vrg where V:s= IT(VT)rS

Thus point-by-point calculations will give the characteris-
tic of the intrinsic tunnel diode. This characteristic

can similarly be approximated by
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IT(VT) r,

A S
? MW T ]

v Cd ?ﬁ zgd (Vd)
Va

T
l ,
A a'
Figure A.l1l. Equivalent circuit of a tunnel diode
I and Id
[
/
/
I < ‘”------'“-'-----"-'~"—*‘"-",/;—-

D

Static current-voltage characteristics at

Tunnel diode, terminals A-A

Figure A.2.
Intrinsic tunnel diode, terminals a-a

(a)
(b)
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-an bv

= AV _e + B(e

4
al a

Id(V - 1) (A.3)
The parameters A, a, B, and b can be evaluated as follows:

Suitable pilot points are chosen according to the
fit desired. Herein, a closer fit is desired in the nega-
tive-conductance region and near the valley and peak
points. Suitable pilot points are:

(a) peak point, (VP, IP)

(b) valley point, (VV, IV)

(c) point of maximum negative conductance, or a
point(V_, I ) near it, and

(d) a point between (VV, IV) and (V IP) or

FP'

(VFP' IP). The contribution of the diode-injection cur-

rent (2nd term of Equation A.3) is considered negligible

for Vd < Vc. Consider

g,(v,) = = A(l - av,)e for Vv, < Vv_ .
da''d HVd d d c
(A.4)
Using gd(VP) = 0 in (A.4) gives a = l/VP. For the point
_ -av

Knowing the coefficient a, the coefficient

I exp(V_ /V,)
A= S P (A.5)
c

can be determined.
At the valley point the tunneling current component

(st term of Equation A.3) is
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-av,
It(VV) = AV,e , (A.6)

and the diode injection current component, ID(Vd), at

valley point will be

ID(VV) = Id(VV) - It(VV) (A.7)
bV

. _ FP _
VFP , It(VFP) =0, so ID(VFP) = B(e 1).

Near V

Consider the ratio

I (Vop) _L..e FP _ (a.8)
v, ~ -~ "bv,  ° )
Ip Vy SV

In (A.9) the only unknown is b, but due to the involved
exponentials it must be solved numerically, as follows:

First guess, b, = ln(ry(VFP - Vy) .

0
] < <
Since VV VFP' b bO' by
1'Fp
. e -1

Consider b, = 0.98b,, and evaluate r, = .

1 0 1 blv

e V. 1

If ry < r, consider b2 = 0.99b0 and evaluate ryi if r, < r,

consider b3 = 0.995b0 and evaluate rj. Continue the pro-

cess until r < r. Thenb ;, <b <b . Then, try b, , =

(b + bn)/2 and calculate r

n-1 n+l°*

Continuing this procedure find bk giving Iy as
close to the ratio, r, as desired. Finally, knowing b,

evaluate

B = _W_— (Aog)
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Thus, parameters A, a, B and b are determined for

the intrinsic tunnel-diode junction characteristic.



APPENDIX B
STABILITY OF A LINEAR ACTIVE SYSTEM

B.1l In this appendix the stability of an active linear
network, Nd' connected to a passive linear network, N, as
shown in Figure B.l is considered.

Since the networks, N and Nd' are linear and
their parameters are constant, the pertinent differential
equations relating v(t) with i(t) and VD(t) with iD(t) will

be linear with constant coefficients [25] as

P(a%]i(t) - Q(a%)v(t) , (B.1)

pd(a%)io(t) - Qd(a%)vD(t) , (B.2)

where P, Q, Pd and Qd are polynomial operators of the form:

g gn-t d
am ﬁ + am_l F\:—r +....+a1 a? + ao . (B.3)

Here m, the degree of the polynomial operator, is a fixed
integer and the coefficients ags @yseeee, @ are functions
of the network elements alone. The degrees of the poly-
nomials are not necessarily the same. When N and Nd are

connected as shown in Figure B.1, vD(t) = v(t), and iD(t) =

- i(t). Accordingly, (B.l) and (B.2) become:
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i(t) iD(t)
N v(t) (t) Nd

v
D
|

Figure B.l. A linear active network, N4, connected to a
passive linear network, N, showing terminal
voltages and currents.

I(s) Id(S)

——-—— B — -

Z(s) T Zd(s)

- V() — d

Y (s) Yd(s)

A B'A'

Figure B.2. System of Figure B.l with their terminal
impedances and admittances.
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_ —_ - R
d d .
P T -Q It i(t) 0
= . (B.4)
d d
Fad Q3| [V®] |

Solutions of (B.4) will contain terms of the form

AeSt where s = 0 + jw, a complex number [25].
i(t) = 1(s)est
(B.5)
v(t) = V(s)eSt R

is a solution. However, the general solution [25] will

be:

r}(:\ Skt
i(t) = (s) e ’
k=lAk
(B.6)
t

m 8y
v(t) I B (s)e .
k=1

For studying the stability of the system shown in
Figure B.l it is sufficient to substitute (B.5) into (B.4)
and check whether the resulting characteristic polynomial
is a Hurwitz polynomial, viz., a polynomial having all its
roots with a negative real part. Substituting (B.5) into

st

(B.4) and canceling e~ -, the set of equations obtained is:

P(s) -Q(s) I(s) 0

: (B.7)
Pals)  Qq(s) | [vis)| |oO
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The characteristic polynomial, As, of the set of

equations (B.7) is:
As = P(s) Q4(s) + P4(s)Q(s) . (B.8)

For system stability, As = 0 should not have any root with
a positive real part. The natural frequencies of the sys-
tem are the roots of the characteristic equation. Consider
A(s) P(s) Py(s)
ats10,(s) ~ QtsT * g T

V(s) Vq(s)
O NS MO

(B.9)
= Z2(s) + zd(s)
= ZLo0p (8) -
Similarly,
AL8) _ _ y(s) + Y (s) = Y . (s) (B.10)
PlsSPdZsi d Node * *
ZLoop(s) and YNode(s) are the loop impedance and

the node admittance respectively, for the system shown in
Figure B.2. 2Z(s) + zd(s) is the input impedance for termi-

'
nals, A-A ; Y(s) + Yd(s) is the input admittance for

]
terminals, B-B .

The natural frequencies of a network can also be

obtained from Z (s) = 0 and Y

Loop (s) = 0. 1In general,

Node
the natural frequencies obtained from these will be dif-

ferent. If no independent voltage or current source is
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connected in the network, or if ZLoop(s) and Y (s)

Node
are obtained by considering all the voltage sources shorted
and current sources open, then the natural frequencies ob-
tained on either the impedance basis or the admittance
basis will be unique [26]. The tunnel-diode oscillator
circuit analyzed in Chapters 3 and 4 can be analyzed on
either basis.

The input impedance (admittance) of a stable net-

work is positive real. A positive real function, G(s),

must satisfy [27]:
Re[G(s)] > 0 for Re(s)= Re(oc + jw) =0 » 0 ., (B.1ll)

If the input impedance, 2 (s), (admittance,

Loop
YNode(S)), is such that:
Re[ZLoop(sﬂ <0
Re[YNode(s)] < 0 for Reg)= 0, viz., s = jw . (B.l2a)

Then the corresponding network will be unstable and any
oscillation initiated will grow in amplitude. Since the os-

cillations are of angular frequency, Wy as given by either

Im[2 (s)] =0

Loop

or

Im[YNode(s)] = 0 with s = juw . (B.12b)



APPENDIX C

CIRCUIT SYNTHESIS BASED ON TWO-FREQUENCY

ADMITTANCE SPECIFICATION

In this Appendix it will be shown that a suitable
circuit can be synthesized to have a given admittance at
two frequencies provided the conductances of the two ad-
mittances are positive.

Let the admittances at the two frequencies be:
and

Ylw,) = Yo(uy) + 3¥_(u)) . (c-1)

The imaginary parts of an admittance specified at
two frequencies can always be realized by a three-element
Foster network. 1In a degenerate case, a two-element Fos-
ter network will be sufficient. This will be obvious from
the following sketches:

Figure C.1l: for situations where Im[Y(wl)] >0

and Im[Y(mz)] <0,

Figure C.2: for situations where Im[Y(wl)] <0

and Im[Y(wz)] < 0 , and Im[Y(wl)] >0

and Im[Y(mz)] <0,
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Thus the form of the Foster network realizing the

imaginary parts of two admittances will be:

ks(s2 + wg) k(s2 + mi)

or
827+ wiﬁ

(C.2)

2 2 !
s(s® + wy)
or in a degenerate case, like Figure C.l(a) and C.2(a):

2 2
ks k(s + wl)

ﬁ or S . (C.3)
s + wl

The real parts of the admittances must be realized first.
In doing so, the imaginary parts will be altered, but they
can always be realized as shown in Figures C.1l and C.2.

For realizing the real parts of the admittance

either of the two general forms of networks shown in Figure

C.3 should be adequate. Consider the network of Figure
C.3a.

Let G = R—l' and R =

1
== , Then
1 2 G,

CGls 1
Y(s) = g ¥ Cs + R, + Ls '

2
LCGls + (RZCGl + C)s + G1

(Gl + Cs)(§;*+ Ls) ’

2

(s + 1/LC) + (RZ/L + Rl/L)s

G.R G R

2 172 1 2
S *T1Ic “E"—L,s

- Gl . (Co4)

+

¢

. -

P

b =
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or °

3
o)
L
3
0
1

(a) (b)

f

Figure C.3. Networks to realize the real parts of an
admittance specified at two frequencies.

S~ NS

» () -

(a) (b)

Figure C.4. Numerator and denominator of Equation (C.7).
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The function defined in equation (C.4) cannot be
negative on the jw axis because it is a positive real
function.

Consider the quantity,

R R R R
2 1 2 1 2 1 2 1
G (S + Lz) + (-—i- +E)S (S + m) - (:r +:r)s
1 G,R G R G,{R G R *
o 2o Be] s + HH- 2+ e

(C.5)

With the substitution of S

jw, only even-power
terms in s will effect the real part of the admittance.
Odd-power terms in s will effect only imaginary parts of
the admittance. With odd-power terms dropped (C.5)
becomes

R,G

2 261 R

G
=+

g

(52 + Eé s” + 'EE_) - %(R1 + R2)§
1 )
2 4 RZGI) _ (G, Rz)
LC cC L

EnS

G

Substituting jw for s in (C.6) and simplifying

gives:
4 2(.2 2 2.2
W 4w R2 + Rle)/L + R2G1/L (o]
1 2 2
.(_w

. (C.7)

1]
0=

2
+ R,G,/LC) + (G}/C + R,/L)uw

This real part of the desired network, (C.7), must
be positive real. Also any real zeros in wz must be double;
there are no real zeros on the jw-axis. Thus the numerator,

N, will be of the form shown in Figure C.4(a) and the
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Re [Y (y) ]

*
x 1
! )
! )
| l
: |
m w

1 2

Figure C.5a. Real parts of the admittance function at the
frequencies wy and Wy e

Re [Rf (w)]

~—

Figure C.5b. Real part of admittance function Yl(w).

N |
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denominator, D, will be of the form shown in Figure C.4(b).
The ratio, N/D, can be almost any positive number.

Example: Let YR(wl) < YR(wZ).

Design a four element G-C, R-L network (like
Figure C.3a) of terminal admittance function Yl(w) such
that Re[Yl(wl)] = YR(wl). This network will partially
realize YR(wz) since Re[Yl(wz)] # YR(wz) in general. Let
Re[Yl(wz)] = Y;(wz). This is shown in Figure C.5b. Now
by scaling the element values, a zero is created at w, by
reducing YR(wz) by the amount YR(wz)-Yé(wz). Scaling the
element values will not affect the zero designed at Wy
When this is completed, YR(wl) and YR(wz) are realized.
With this result, the modified imaginary parts to be
realized can be calculated and the design is completed

with a properly designed Foster network.
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APPENDIX D
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