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ABSTRACT

NUMERICAL ANALYSIS OF MAXIMUM MICROWAVE

POWER FROM A TUNNEL-DIODE OSCILLATOR

BY

Chandrakant B. Patel

The available literature on negative-resistance

oscillators contains abundant information on small-signal

analysis of tunnel-diode oscillators. Little consideration,

however, has been given to large-signal analysis. Those

analyses which are available are based on

1. low-frequency circuit operation; and

2. assumption of a single-frequency sinusoidal

voltage at the tunnel diode terminals.

In this thesis, the large-signal operation of a

tunnel—diode oscillator circuit is examined with the ob-

ject of delivering maximum fundamental power to the load.

The exact analysis of the circuit operation results in a

highly nonlinear, third-order and second-degree differen-

tial equation. The circuit can also be described by means

of a set of first-order, nonlinear differential equations--

its mathematical model.* Using a digital computer, this

set of equations is numerically integrated in the time-

domain using a fourth-order Runge-Kutta scheme. The



Chandrakant B. Patel

time-domain solution retains all significant harmonics,

and frequency-domain analysis can then be used to evaluate

the harmonic content. This method of solution can be

easily extended to study the effects of voltage-dependent

elements such as the tunnel-diode junction capacitance.

The set of equations describing the tunnel-diode

oscillator operation, with the circuit designed for the

dc: operating point in the negative—conductance region,

is numerically integrated until the digital computer

cyclic solution corresponds to the steady-state operation

of the circuit as determined when the harmonic components

of two consecutive periods of the diode voltage are identi-

cal within specified limits. The fundamental power de-

livered to the load is next evaluated. This procedure, as

outlined, is repeated for a number of different bias

values and a number of different load resistances. These

results indicate an Optimum bias and an optimum load re-

sistance for maximum fundamental power. The optimum bias

is closer to the diode valley point than to the peak point;

the flatter the diode valley characteristic, the closer

will be the optimum bias to the valley point. The ratios,

(V
V - Vopt

are 0.382 and 0.345. The actual fundamental frequency of

)/(VV - VP), for the two diodes analyzed here

operation obtained from the time-domain analysis of the

circuit is slightly lower than the frequency calculated

from small-signal analysis.
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Circuit Operation corresponding to optimum load

resistance cannot be obtained by small-signal build-up

from the bias point. Rather, this limit-cycle must be

obtained by a large-signal perturbation, as for instance

by external triggering. The power delivered to the load

is reduced when the operating frequency is increased.

Analysis of circuit operation with a voltage-dependent

junction capacitance indicates somewhat higher maximum

power delivered to the load and slightly lower Operating

frequency than with the same circuit and a constant

junction capacitance.

Two specific configurations of load circuit were

used for most of the computer analysis work. Of greater

interest would be the synthesis of an optimum circuit

configuration for obtaining maximum fundamental power

from a specific diode. A few simple computations were

made in connection with this synthesis problem. The re-

sults of these simple calculations are consistent with

the analytic results, but are not of sufficient generality

to produce a fully-synthesized circuit.
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CHAPTER 1

INTRODUCTION

1.1 Background
 

A negative-resistance device is of considerable

interest as a signal—generating device. The tunnel diode,

a two-terminal negative-resistance semiconductor device,

Opened up entirely new fields for circuit and solid-state

device engineers. The significant pr0perties of the

tunnel diode were first observed by Leo Esaki while ex-

perimenting on degenerately doped p-n junction. Esaki's

results were first published in an historic paper [1] in

early 1958.

The tunnel diode differs in the basic physical

mechanism of its operation from the common rectifying

diode. Quantum-mechanical tunneling, from which the name

"tunnel diode" is derived, is uniquely exploited in this

active device to produce a negative resistance when it is

prOperly biased. The immediate applications of the device

were seen as amplification and generation of signals,

possibly at millimeter-wave frequencies; as detector,

mixer, fast computer memory, and logic element. As re-

search continued and related technology advanced, the



device was better understood and now has a fairly well

established place in modern semiconductor technology.

This device may find even greater usage as an element in

integrated electronic circuits.

An important use of the tunnel diode is as a

negative-resistance element in an oscillator circuit to

generate high—frequency power.

1.2 Survey of the Literature and the Problem Area
 

The basic problem of this thesis is part of the

problem of an exact analysis of a tunnel-diode oscillator

circuit. This thesis will concentrate on

1. high-frequency operation,

2. design of a circuit to maximize the fundamental

power delivered to the load, and

3. synthesis of a circuit for high-frequency operation.

The highly nonlinear characteristic of the tunnel diode

requires extensive use of a digital computer for a detailed

analysis of circuit Operation.

It is fitting at this stage to review briefly the

literature in the area of negative-resistance oscillators.

Van der Pol [22,28] first studied the nonlinear theory of

electrical oscillations. Subsequently, two-terminal negative-

resistance "black boxes" were devised using tetrodes,

transistors, diodes and resistors [35,36,37]; various

negative—resistance oscillators and amplifiers were designed

[29,30,31,32].



The tunnel diode as a two-terminal negative—

resistance element was analyzed by Kim and Brandli [4],

Chow [5], G. Dermit [20] and others [2,7,14]. Their

analysis considered

1. small-signal operation of the device, and

2. a simplified third-degree polynomial approximating

the current-voltage (I-V) characteristic for the

tunnel diode.
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Figure 1.1. Tunnel diode I-V characteristics

(a) Actual

(b) Third-degree polynomial approximation

The circuit operating point was generally chosen

as the point of maximum negative-conductance on the curve.

K. Tarnay [6,7] and Coerver [8] considered better

approximations (see Section 2.5) to the I-V characteristic.



They analyzed low-frequency operation_(below self-resonant

frequency, see Chapter 3) by assuming a pure sinusoidal

signal. Gartner-Schuller's [17] computer results are like-

wise for low-frequency operation. Sterzer [9] in his com-

puter calculations used a highly exact approximation for

I-V characteristic (tenth-degree polynomial) but he assumed

a single-frequency operation. It should be noted that in

all these publications the voltage dependency of the junc-

tion capacitance is neglected, and the capacitance is

assumed to be constant.

The above survey of the literature reveals that

large-signal analyses of the tunnel-diode oscillator cir-

cuits for high-frequency Operation have not been very

exact. Better solutions of the problem continue to be of

great importance. The improved solutions should consider

higher harmonic content of the signals and should include

junction capacitance as a voltage-dependent element.

It was through the realization of the overall

significance of the problem that the author was motivated

to carry out further research in the area of high-frequency

power in tunnel-diode oscillators.

1.3 Thesis Summary
 

The phenomenon of quantum-mechanical tunneling

and the qualitative explanation of the tunnel diode action

are covered in Chapter 2. There follows a development of



the tunnel-diode equivalent circuit. This equivalent cir-

cuit is applicable for analysis from dc through gigahertz

frequencies. Also described are the various analytical

methods for approximating the I-V characteristic of a

tunnel diode. .

The small-signal oscillator circuit, its design

and its small-signal stability are considered in Chapter

3. Large-signal operation of the tunnel-diode oscillator

circuit is analyzed in Chapter 4. Applicable equations

are formulated, and their numerical solutions by a digital

computer are studied in detail. Examples of maximum power

delivered to a useful load are given for two types of

tunnel diodes. Effects of voltage dependency of the junc-

tion capacitance are examined and illustrated.

A hybrid approach for optimizing the fundamental

power generated by the intrinsic tunnel diode is given in

Chapter 5. Circuit synthesis is considered to implement

the hybrid—approach solutions. A summary of the overall

work and conclusions is given in the final Chapter 6.



CHAPTER 2

THE TUNNEL DIODE AND ITS EQUIVALENT CIRCUIT

This chapter first describes the tunneling phenome-

non to which the specific property of the device is

attributed. Then the equivalent circuit of the device,

depending on the tunneling property and other physical

characteristics, is developed.

2.1 Tunneling
 

Classical physics predicts that a particle of

total energy, E, cannot penetrate a potential barrier

greater than its own energy. The phenomenon known as

quantum-mechanical tunneling predicts that a particle

of total energy, E, can penetrate the potential barrier

of a height greater than B and be found beyond the bar-

rier.- The probability of finding the particle on the

other side of the barrier decreases with the height and

the width of the barrier. These results can be demon-

strated by solving Schroedinger's wave equation in a

simple, one-dimensional problem.

2.2 Schroedinger's Wave Equation
 

The time-dependent, one-dimensional Schroedinger

wave equation [10] for a particle is

6
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- 1‘— —-2—3“XI“ + V(x,t)‘Hx,t) = jh ——¢——3‘“’~‘-t) (2.1)

2m 3x at

where T(x,t) = wave function defining motion of the parti-

cle, V(x,t) = potential energy function, h = §%-where h =

Planck's constant = 6.6252 x 10-34 joule-sec., m = mass

of the particle, and j = /:I.

The time-independent Schroedinger wave equation

can be Obtained by separating time and position variables

as V(x,t) = w(x) ¢(t) provided V(x,t) = V(x) only.

Substituting these in (2.1) and separating vari-

ables we get:

 

2 2
°1 j Ld tux). + V(xWx, = 41211122., (2.2)

W(x) 2m dx ¢(t) dt

Since the left-hand side is a function of x only

and the right-hand side is a function of t only, and since

x and t are independent variables, we must have

2 2

l —f‘—9——‘Lz‘i)-+v<x>w<x) =c . (2.3) 

 

w(x) 2m dx

and

- l d¢(t) _

3h (HQ dt ’ C - (2'4)

Solving (2.4),

= e-th/fi = ejwt
¢(t) (2.5)

where w = angular frequency = 2nf = C/h. Hence, C = 2nfh

= fh == E, total energy of the particle; hence



2 2

_ __ 9.1231 + [V(x)-EHMX) = o (2.6)

2m dx

This is the time-independent Schroedinger's wave

equation.

Figure 2.1 shows the particle with total energy,

E, encountering a potential barrier, V, of width d.

 

    

M I

T v
E I II I III

I

x=o x=d

Figure 2.1. Particle of total energy, E, encountering a

potential barrier, V, of width, d.

In regions I and III the arbitrary choice is made

that V(x) = 0, so Schroedinger‘s wave equation.for these

regions is

2

9W") + 2‘“ mm = o (2 7)

d x ‘;7

Let the solution in region I be wl(x) = A cosax +

B sinax. Then substituting this, we get

(—a2 + agEHA cosax + B sinax) = 0 . (2.8)

‘fi

2 2m
Since w(x) # 0, a = —7IE .

'h



Similarly the solution in region III is

W3(x) = D cosax + F sinax .

In region II, V(x) = V, so the Schroedinger wave

equation in region II is

dzwz (x) 2m

——347——.+ g2-(E-V)1p2(x) = o . (2.9)

X

The most general solution of (2.9) is

w2(x) = ole-BX + czeBx . (2.10a)

x *

Now _/; 2 W(X)V (x)dx is the probability of finding the

1

particle in an interval, x2 - x1. From the physical con-

x *

sideration /; 2 w(x)w (x)dx is finite. If CZfO in (2.10a),

1

X *

./; 2 w(x) w (x)dx + w as d + w . So C2 = O.‘ Hence

1

w2(x) = Ce”Bx . (2.10b)

Substituting (2.10b) in (2.9) we get

82 + EI-2‘1(E-V) Ce’Bx = o

‘h

Since w2(x) # 0,

B = __ (V-E) , (2.11)



10

At x = 0 and x = d, the boundary conditions to be

satisfied are:

l. w(x) be continuous and finite, and

2. ggfiél-be continuous and finite.

Matching the boundary conditions:

a) between regions I and II, at x = 0,

A = c (continuity Of W(x)),

a8 -8C (continuity of Qgfiél);

b) between regions II and III, at x = d,

Ce-8d = D coxad + F sinad ,

-8Ce-8d = a[-D sinad + F cosad] .

Writing constants A, B, D and F in terms of C the

solutions are

for region I w (x) C[cosax - E sinax] , (2.12a)
. 1 a

for region II w2(x) C exPI-Bx) (2.12b)
I

Ce-Bd[(cosad + g sinad) cosaxand for region III w3(x)

+ (sinad - g cosad) sinax]

Ce-Bd[cosa(x-d) - g-sina(x-d] .

(2.12c)

x

2 *

For any of the regions I; W(x)w (x)dx # 0. So the

1

particle can be found in region III beyond the barrier with
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finite probability. It can be seen that IW(x)I in region

8d as compared to lw(x)|III is reduced by a factor of e-

in region I. This clearly indicates that the thinner the

barrier the higher the probability of penetration. Also

the smaller the barrier height the higher the probability

of penetration.

2.3 Qualitative Explanation of the Tunnel-Diode Action
 

A tunnel diode is a p-n junction with both p and n

semiconductors heavily doped to degeneracy. There are two

main effects of heavy doping. Firstly, the depletion layer

width, W, is small, that is, it constitutes a thin energy

barrier. Secondly, some empty energy states in the valence

band of p-type semiconductor and some occupied energy

states in the conduction band of the n-type semiconductor

are at the same energy and vice versa. This energy-level

situation allows tunneling from the occupied states in the

conductance band to the empty states in the valence band

and vice versa.. Because the barrier is thin the probability

of tunneling is enhanced. (See Figure 2.2)

With no voltage applied, (V = 0), the tunnel—
B

diode junction is in equilibrium, and the same number of

electrons tunnel each way to yield zero net current.

When a small forward-bias voltage (VB > 0) is applied,

more electrons tunnel from the n-side into the empty states

in the p-type material than in the reverse direction. This
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(a) Lightly doped (b) Heavily doped

Figure 2.2. Band structure of a p-n semiconductor junction

EC: conduction-band edge energy

: Valence-band edge energyE

E; Fermi energy
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Figure 2.3. Band structure of a p-n junction when tunnel-

ing is almost zero.
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asymmetry results in a steep rise in the forward current.

This rise in forward current with forward bias continues

until the empty states in the p-type semiconductor, at

the same level as the filled states in the n-type semi-

conductor, begin to decrease. An increase in forward bias

(VB > V see Figure 2.4) at this stage results in a de-P’

crease in forward current. This decrease in forward cur-

rent continues until finally there are no empty states in

the p-type material Opposite the filled states in the

n-type material at the same level. The tunneling current

is zero, (VB > Vv). At this point the conduction-band

edge is at the same level as the valence-band edge (Figure

2.3). Simultaneously the ordinary p-n junction injection

current--mainly diffusion current-~is flowing, so the net

current does not quite go to zero. The behavior of the

tunnel diode for higher forward-bias voltages (VB > VV)

is similar to that of an ordinary p-n junction.

When a small reverse-bias voltage, (VB < 0), is

applied,the number of empty states in the n-type semicon-

ductor at the same energy level as the filled states in

the p-type semiconductor is greatly increased. Also the

reverse bias enhances the electron flow from the p-side

to the n-side. As a result, the reverse current increases

sharply with reverse bias. As deduced from the above ex-

planation the current-voltage plot of a tunnel diode will

be as shown in Figure 2.4.
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Figure 2.4. I-V plot of a tunnel diode

OR:

Increasing tunneling current due to small

forward bias.

Tunneling decreases but resultant tunnel-

ing current still increases.

Peak point

Tunneling and tunneling—current component

decreases to almost zero.

Total current starts increasing due to

ordinary diode injection current, OSF.

Tunneling current due to reverse bias.



15

2.4 Direct and Indirect Tunneling
 

The laws of conservation of energy and momentum

apply throughout the process of tunneling. The change in

momentum before and after tunneling involves some exchange

of momentum with the crystal lattice. The case where

electron momentum is equal before and after tunneling is

called direct tunneling. The processes described in Sec-

tiom62.2 and 2.3 are of direct tunneling. If the electron'

momentum is different before and after tunneling, the pro-

cess is called indirect tunneling. The probability of-

indirect tunneling is much lower than that of direct tun-

neling, owing to the added requirement of the conservation

of momentum.

Observing the energy-band-momentum diagram of

germanium and silicon (Figure 2.5) we can see that direct

tunneling is possible in the case of germanium only. For

the silicon junction the peak tunneling current will be]

very small, since here a momentum of‘hk'c in addition to

energy is required for tunneling.

Another semiconductor suitable for direct tunnel-

ing is gallium arsenide. Therefore most of the tunnel

diodes are of germanium or of gallium arsenide.

2.5 Approximating the I-V Characteristic
 

The static current-voltage characteristic of a

tunnel diode was indicated in Sections 2.3 and 2.4 to be

as shown in Figure 2.6. An expression approximating
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Figure 2.5. Energy band-momentum diagram (a) Germanium,

(b) Silicon.
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this current-voltage characteristic is required for any

analysis or computing purposes. The I-V characteristic

can be approximately through various methods:

(a) Polynomial approximation

2
N .

I(V) = + 31" + a2V + --- + anN 520 ajvJ (2.13)
3:

a0

The coefficients aj, j = 0,1,2,---,N are evaluated

in accordance with the desired polynomial fit. The least—

square fit is most commonly used. The degree of poly-

nomial, N, depends on the desired accuracy of the fit. For

a more accurate fit in a given region the data associated

with the region can be given additional weight [38].

(b) Considering g(V) = dI(V)/dV, and noticing the

flat valley region, Narud and Meyer [13] suggested the fol-

lowing approximation:

g(V) = K(V-VP) (v-vV)3 (2.14)

Equation (2.15) is obtained by integrating (2.14)

by parts and using peak-point and valley-point voltage and

current values.

I(V) =fg(V)dV

-I

= IV P [5(V-VP)(V-V.V)4 ‘ (V-VV)5] + C

(VPv-VV‘)

(2.1s)
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Figure 2.7. Tunnel-diode conductance vs. voltage

Il(V) I2(V)

 V

Figure 2.8, Tunnel~diode static characteristic: Ferendici

and Ko's approximation.
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From valley point (Iv, Vv),.the constant of integration,

C = IV, is obtained. I(V) = O for V = 0 is obtained

only for certain rat1os of IP/IV and VV/VP [13].

(c) Using the equation (2.15) for g(V) Scanlan [14]

suggested evaluation using gmax'

d (V) _

At gmax' 1%V_—‘- 0' and

99-m- = (v-vV)3 + 3(V—VV)2(V-VP) = o

 

 

dV

gives

v _ VV + 3VP

4 .

Hence substituting for V into (2.14):

- - — 27 (VV-VP) (V -V )3K

9max 64 I V P °

Hence 3

256 (V-VP)(V-VV)

27 (VV-VP)

and

I(V) =fg(V)dV

4 3 2

4v —5(3v +v )V + 20V (V +V )V
V P V P--V

256 g
max I

= 4 V 2 3 + K °
540 (VV-VP) -10VV (3VP+VV)V + ZOVV VP

( .17)

The constant of integration, KC can be evaluated from the

choice of axes.
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(d) K. Tarnay[12] suggested still another approxi-

mation considering: (a) the field-emission current due to

electrons passing from valence band to conduction band and

(b) the current due to electrons tunneling from conduction

band to valence band. His expression is as follows:

I(V) = a(Vv-V)2tanh(qV/2kT) + gVV , (2.18)

where

- g V I

a = I; V V , and gV = §!» .

(VV-VP) tanh(qV?/2kT) V

This expression gives a poor approximation to ex-

perimental curves, especially in the negative-conductance

region.

(e) Two-term exponential approximation:

Observation of tunneling current and direct-injec-

tion diode current components, led A. Ferendici and W. H.

KO [11] to suggest a simple two-term approximation Of the

static current-voltage characteristic of a tunnel diode.

Il(V) = Tunneling-current component (Figure 2.8).

12(V) = Ordinary diode injection current component.

I(V) = I1(V) + 12(V) = AVe'aV + 3(ebV-1) . (2.19)

This two-term fit generally gives 15% accuracy

over the entire curve. The accuracy can be increased over
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any desired region by selecting the pilot points from that

region for evaluation of constants A, a, B and b. (see

Appendix A.)

2.6 Equivalent Circuit
 

The current-voltage characteristic of a tunnel

diode junction is explained in Section 2.3. This current

flows through a p-n junction which is essentially depleted

of mobile carriers. Owing to the existing voltage across

this depletion layer, there are flux lines and a related

capacitance associated with the junction. Therefore the

tunneling junction is represented by a varying conductance

shunted by a varying capacitance. The junction capacitance,

Cd(VD)' is a function of junction voltage, VD [15,16]. For

a step junction, which is the case for the tunnel junction,

the junction capacitance, Cd, is prOportional to (VD-Vc)-1/2.

c «(V -v )"l/2 for v < V (2 20)
d c D D V '

where Vb = junction voltage

and VC = contact potential, (n with respect to p)

H

+ 0.6 volts for Ge, and

2
2

+ 1.1 volts for GaAs.

The electrons traversing the tunnel junction travel

through the semiconductor bulk material. The electron col-

lisions with the crystal lattice give rise to a resistance

rS termed 'spreading' or 'series resistance.’ The value of



22

 

T a (‘fi

—£

V'D Cd (VD) 7‘

1.2

gd

  

(V )

Figure 2.9. Equivalent circuit for a tunneling junction.
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Figure 2.10. Equivalent circuit of a tunnel diode.
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this series resistance depends upon the doping level and

the geometry of the diode. The physical length of the

lead from the semiconductor to external terminals gives

rise to a series inductance, LS, of the order of a few

nanohenries. The series resistance, rs, and the series

inductance, LS, are represented in series with the tunnel-

junction. The resulting equivalent circuit Of the tunnel

diode is as shown in Figure 2.10. The validity of this

equivalent circuit was verified by Gartner and Schuller's

[17] experiments.

Computer calculations herein will use this equiva-

The effect of consideringDO

Cd as a function of VD will also be examined.

lent circuit with Cd(VD) = C

 



CHAPTER 3

THE TUNNEL-DIODE OSCILLATOR

3.1 Introduction

A tunnel diode can be used in negative-resistance

amplifiers [18,19] and in negative-resistance oscillators

[5,14]. It can also be used as a detector or as a mixer,

in which,case the variation of negative resistance with

the signal level is essential. In all these cases the

diode must be biased in the negative—resistance region.

A tunnel diode can be biased to produce three different

potential conditions: (1) bistable, (2) monostable, and

(3) astable. These are shown in Figure 3.1.

In its negative-resistance region, a tunnel diode

can be biased two ways, viz., bistable and astable. In

bistable biasing the two stable points are a anc c. This

type of biasing is used in switching type circuits [5].

The astable biasing is used in amplifiers, oscillators,

etc. The tunnel diode used as an oscillator circuit ele-

ment is considered here.

3.2 Stability Criterion for the Tunnel-Diode Circuits

In a tunnel—diode oscillator circuit, the tunnel

diode is biased in the negative conductance region. The

24
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O

  
Figure 3.1 Biasing a tunnel diode: (l) bistable,

(2) monostable and (3) astable.

 

 

   

Figure 3.2 Small—signal equivalent circuit of a tunnel

diode.
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circuit is designed to be unstable so small-signal oscilla-

tions will start due to circuit noise or transient effect

and grow. The circuit stability is in part determined by

small-signal analysis.

The small-signal equivalentscircuit for the tunnel

diode is shown in Figure 3.2. Here —gD is the value of

negative conductance at the dc bias point, VD.

The loop impedance of the circuit of Figure 3.3 is

Zc(s) + ZD(s), whereZD(s) is-the impedance of a two-

terminal active device and Zc(s) is the passive network

impedance. As shown in Appendix B, the circuit is stable

if Zd(s) + ZD(s) = 0 has no solution in the closed right-

half s-plane, viz., Re(s) > 0 [2].

The above definition of stability is derived from

the small-signal, that is, linear analysis of the device. The

follOwing example of a small-signal analysis of tunnel-diode

oscillator circuit, Figure 3.4, gives a procedure to ob-

tain (G, C) parameter values so that Zc(s) + ZD(s) = 0 has

a root in the right-half s-plane.

Consider the tunnel-diode equivalent circuit shunted

with a parallel G-C circuit as shown in Figure 3.4.

For this circuit

_l__.

G + Cs ’
Zc(s) (3.1a)

1

:7__-———' I
g + CD8

ZD(s) = r8 + Lss + (3.1b)
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Q

   

 

ZC(S) ZD(S)

     
 

   A

V

Figure 3.3 Circuit showing connection of circuit with

impedance, ZC(s) to the diode with impedance,

Z (s).
D

  

G 7R; ““ _" 7T -9 = QJVD)

   R

Figure 3.4 Small-signal equivalent circuit of the

tunnel diode with a parallel G-C network.
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Where -g is the negative conductance of the intrinsic

tunnel diode at the dc bias point, V The loop impedance

 

D.

is

(-g+CDs) + (rS+LSs)(G+Cs)(-g+CDs) + (G+Cs)

Zc(s) + 20‘s) = IT (OTCs)(-gIE;§) ‘

(3.2)

For stability [3], examine the characteristic equation,

3 2
Zc(s) + ZD(s) = 0 = as + bs + cs + d, (3.3)

where

a = CDCL > 0 ,

b = -gCLS + cD(rsc + GLS) ,

c = -g(rSC + GL5) + rsGCD + CD + C and

d G - g — rSGg :

to determimawhether all roots are in.the left-half plane,

(LHP).

If all the coefficients of the characteristic

equation are positive then all the roots will be in LHP.

Therefore, for d > 0 implies

(G + r1 > g . (3.4)

s

This result constitutes the condition for do stability.

Since Equation (3.3) has real coefficients, the

complex roots must be a conjugate pair. The necessary

condition, according to Routh's algorithm, for the complex

rootstof(3.3) to be in LHP is (bc-da)<<0. Introducing the
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values of the coefficients,

bc - da = A1G2 + AZG + A3 = F(G,C) , (3.5)

where

_ 2 _ 2

Al - rsLsCD chLs ’

_ _ 2 2 2 2 2
A2 — gCDrSCLS + rs cD c + LSCD + g CLS ,

A = r C2C (l-gr ) + r CC2 + gCZL (gr -1)
3 s D s s D s s '

Consider first a pair (Go, Co) of circuit values

such that the complex roots.are on the imaginary axis.

Thus 3 = ijwo with mo as the desired operating frequency.

Substituting 3 =jwo into (3.3) and using

Re[ZC(3wo) + ZD(jwo)] = 0 ,

(3.6)

and Im[ZC(jmo) + ZD(jwo)] = 0 ,

the following equations are obtained:

2 _
Go(rSCD - gLS) + Co(1 - grS - CDsto) - 0 ,

- (3.7)

2 = _
Go(1 - grs - CDLSwo) + Co(gLS - rSCD) - 0 .

Next, the value of GO (and/or Co) are altered such

that (3.3) has a complex conjugate root, so = 00 r jw
o

with co > 0. The correct direction of change to Go is de-

3F(G,C)

—.—»I
. If the derivative

(some)

termined by evaluating G
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is positive, Go is increased,otherwise Go is decreased

to get co > 0.

dF(G,C) _ _ 2 2 2 2 2T—. 2<:.L$cD(r$cD gLS) + LsCD + C(r 3CD +9 Ls .)

- 2rSgLSCDC . (3 o 8)

Thus in the small-signal analysis of the tunnel-

diode oscillator (Figure 3.4), there must be a root,

S0 = 00 + jwo, of the loop impedance, with Go > 0. If so,

then over a period of a small-signal oscillation, the energy

generated by the negative conductance of the tunnel diode

is more than the energy dissipated by the lossy elements.

Once the oscillations start and grow in amplitude, the

small-signal conductance, -g, no longer applies because it

it constant only over a very small region around the bias

point. For large-signal oscillations the voltage-dependent

diode conductance, gd = d i(vD)/d VD, must be used. In the

large-signal Operation, the diode will operate part of the

time in the region where the diode small-signal conductance

is positive. Additional losses are produced. These addi-

tional losses together with the nonlinear characteristic

of the diode establish a steady-state operation. For

steady—state operation, the average power generated by the

diode is equal to the average power dissipated by the lossy

elements of the circuit.
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3.3 Operating Frequency and Circuit
 

The type of circuit used depends in part on the

operating frequency, £0. The terminal impedance of the

tunnel diode shown in Figure 3.2 is

r . '

gD . CD
rS - 2 + (wC;§-+ jw L -

90 ID

 
 

ZD(jw)

   .- d

Re(ZD) + j Im(ZD).

(a) Resistive cut-off frequency, fR,

The resistive cut-off frequency, f = wR/Zfl is the
R

value of w for which Re(ZD) = 0. Equating Re(ZD) = 0

gives

gD + (wRCD)

 

RI

_ 1 D _ 2
“R _ E- E' 99 . (3.10b)

n s

Re[ZD(wo)] < 0 . (3.10c)

For mo > OR, the terminal resistance is no longer negative,

and the tunnel diode cannot be used as an oscillator for

frequencies greater than the resistive cut-Off frequency.



32

(b) Self-resonant frequency, f

 

sO

The self-resonant angular frequency, ms = 2rfs, is

the value of w for which Im(ZD) = 0.

m C

Im(Z ) = w L — S D = o . (3.11a)
D S s g + (m C )2

D S D

Solving for ms,

C

l ‘/ D 2

S CD Ls D

If mo < ms,

Im[ZD(wO)] < 0, (3.11c)

and if we > ms,

Im[ZD(wO)] > 0. (3.11d)

With present technology, tunnel diodes with resis-

tive cut-off frequencies up to 30 GHz can be produced.

Generally the resistive cut-off frequency is found to be

greater than the self-resonant frequency, £8.

The tunnel-diode small-signal equivalent circuit

with a load circuit of terminal impedance, ZL(N), forming

an oscillator, is shown in Figure 3.5. Here -gD is the

incremental conductance of the tunnel diode at the bias

point; rs, Ls and C are diode parameters explained in
D

Section 2.6.



33

With the small-signal operating frequency, F0, the fol-

lowing conditions must be satisfied for a steady—state

solution:

[ZL(“b)+ ZD(ub)]I = 0, (3.12a)

or

Re[ZL(ub) + ZD(ub)] - 0 , (3j.12b)

and

Im[ZL(wo)+ ZD(q§] - O . (3.12c)

From Equations (3.10c) and (3.11d) for fo < fs,

InKZD(wo)) <0, a capacitive reactance, and for fo > £3,

InKZD(wo)) >0, an inductive reactance. For the circuit

operating as an oscillator and for fo < fS, Im(ZL(wo)) > 0,

an inductive load, and for fo > fS’ Im(ZL(wO)) < 0, a

capacitive load. Thus, selection of an operating frequency

dictates the nature of the load-circuit necessary for

oscillation.

Here the aim is to concentrate on high-frequency

operation, fo > £8; only capacitive-load circuits of the

type shown in Figures 3.6b and 3.6c will be used. The

oscillator circuit with the operating frequency fo < fs,

load circuit inductive, was analyzed on a small-signal

basis by Chow [5]. The large-signal analysis with certain

assumptions was carried out by Kim and Brandli [4], Coerver

[8], and others [7,9,14,17].
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Figure 3.5 Tunnel—diode oscillator circuit.
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(a) fo < fS (b) fo > fs (c) f

Figure 3.6 Load circuits for the tunnel-diode oscillator

(a) inductive, (b) capacitive, (c) inductive

or capacitive load depending on f0.

VBB is the dc bias voltage.
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3.4 Oscillator Circuit
 

The tunnel-diode oscillator circuit with an operat-

ing frequency, f0, which is greater than the self—resonant

frequency, f but less than the resistive cut-off frequency,
8!

f < fo < fR.is shown in Figure 3.7.
fR' S

In the circuit of Figure 3.7b,-the load circuit

l I

must be capacitive, viz., eroCC. - (l/21rfoLc ) > 0. Param-

l I

eters L.C and Cc can be calculated from the values of CC

I

and f considering C = kC , k > 1.
o C c

(a) Selection of an Operating Bias-point, VD.

The tunnel diode as an oscillator circuit element

must be biased in the negative-conductance region. The

bias point, V , must lie between peak point, V , and val-
P

ley point, VV, i.e.,VP < VD < VV. It should be noticed

from the V-I characteristic of the tunnel diodes that the

D

valley region is flat compared to the peak region. This

phenomenon is more pronounced in gallium-arsenide tunnel

diodes than in germanium tunnel diodes (Figure 3.8). This

indicates that the region with the higher negative resis-

tance is flatter near the valley region than near the peak

region.

The power generated by the diode depends on the

voltage swing about the bias point and the incremental

negative resistance of the tunnel diode. Since the higher

negative-resistance region is flatter near the valley

point, the bias point for maximum fundamental power should



36

 
 

 

 

 

 

  

   

r L

s s

e : MI) I ‘

' LC V.
;:h\ C ‘4—' D

GC V Cd(VD) 2/[\ gd(VD)

BB

Il'r . ~ -

(a)

rs LS

. I

Lo . VD

____C G ____

/7~\ c c Cd(vD)/1h\ ngVD)

—‘-—l— VBB

- . + . -

(b)

Figure 3.7 Tunnel-diode oscillator circuits with an

operating frequency fo > fS.
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Figure 3.8 Current-voltage characteristics of

(1) Germanium tunnel diode, and

(2) Gallium-Arsenide tunnel diode.

r L 1 *"1 1D (VD)
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G __ v. E
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VBB I

1 I4}; I
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Figure 3.9 Tunnel-diode oscillator circuit.
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be closer to the valley p01nt, 1.e., (VV - VD) < (VD - VP).

Sterzer [9] has shown in his computer calculations using

vD(t) = V + Vo sin(2nt/T) that the optimum bias voltage,
D

V for the maximum power generation is very close to the
DI

valley point. His results also show that the flatter the

valley region, the closer will be the Operating bias point,

V to the valley point, V . Similar results will be de-
D' V

rived in Chapter 5.

(b) Load Parameters: Gc’ Cc and VBB'

The discussion of the stability of the tunnel-diode

circuits in Section 3.2 pointed out that small-signal in-

stability is essential for an oscillator circuit. The

circuit parameters, Gc and Cc' are designed accordingly.

The bias supply, V , can be determined from the Operating
BB

bias point, V and from rS and Gc'
D!

V =V
1

c

A tunnel-diode oscillator circuit is shown in

Figure 3.9. Here g(VD) and CD are the negative conductance

and the junction capacitance respectively, at the quies-

cent point, Vb. Initially CD is assumed constant. To the

I

left of terminals l-l , the admittance is Y(w), a function

of frequency. Node admittance for the circuit is

YNode(w) = Y(w) + g(VD) .
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The conditions for an oscillator with an Operating fre-

quency, f0, are (see Appendix B, equations (B.11a) and

(B.11b)):

(a) for the operating frequency of the oscillator

 

 

  

to be f0,

Im[YNode(wo)] = Im[Y(wO)] = 0 , (3.13a)

and (b) for the oscillationtx>start (due to the circuit

noise) and grow,

Re[Y(wo)] < LgJVD)I . (3.13b)

Let

_ G

R ‘ rs + 2 C .12 , (3.14a)

G + (to C )
c o c

wocc

o o s 2 ’

G0 + (woCC)

then,

R wox

o R2+ (m X)2 o D R2 + (m X)2

o o

Im[Y(wo)] = 0, implies

wox

m C - ' = 0 . (3.16) 
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Solving,

This implies wox must be positive. From (3.14b),

= w L when C = 0. Let m X = kw L , k < 1,

o s c o o s

 

kw L

R =J——9—§ - kzsz2 .

m C o s

o D

For R to be real,

kL
s 2 2 2 . . . l

—E—- k woLS > 0. Th1s implies k ('77_—_"

D m L C
o s D

Hence,

. 1
k s min 1, -§————-= kmax .

wOLsCD

Rewriting Equations (3.14a) and (3.14b) as:

 

GC

G + (m C )

C CO

and

CC

L-X=X=
I

 

2’ 2

GC + (moCc)

and solving them simultaneously for GC and CC:

R
G = u

+ (wox
C

 

I
R2 )2

(3.17a)

(3.17b)

(3.18)

(3.19b)

(3.19b)

(3.20a)
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and

c = )LA . (3.20b)
c R2 + (“0X12

 

Thus for a different value of k a different set of values

(GC,CC) for a given operating frequency, fo > fS is

obtained.

The condition (3.13b) for growing oscillations can

be used to give a lower limit for the parameter, k._ Using

Remw )1 = R < -9 (v ) a g . (3.21)
0 R2 + (mox)2 d D D

 

substituting for R, from (3.17a), writing X = kLS, and

simplifying, gives:

 

 

c
D 2 2 2

kLS < (99 + woCD) . (3.22a)

or

c /L

k > D S = k . . (3.22b)
2 2 2 m1n

9D + woLs

Thus, the bounds for parameter k are:

 

CD/LS . l

km1n = 2 ”2 2< k < m1n 1’ -2_-__' = kmax '

9D + “0L8 woLSCD

(3.23)

The set of values (Gcm'ccm) evaluated for k = kmin

means that Re[Y(wo)] Gc ICC = gD. According to small-signal
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analysis, this circuit is on the verge of instability and

the oscillations may not grow or will grow very slowly.

In computer calculations (see Chapter 4) exactly the same

result is obtained. However, it should be kept in mind

that the small-signal analysis is only a means to obtain

for an oscilla-suitable load parameters, G , CC and V
33'

tor circuit. The circuit with Gc' Cc values evaluated

C

for k < k .

m

in means it is a small-signal stable circuit.

Large-signal analysis of the same circuit may nevertheless

show instability as corresponding to oscillations as will

be shown in Chapter 4.

As mentioned in Section 3.2, the circuit must be

do stable. That is, the diode biased in the negative-re-

sistance region should have a unique dc Operating point on

its I-V characteristic, as indicated by Equation (3.24)

and shown in Figure 3.10.

(G + J.) > |- | (3 24)
c rs gD ° '

Thus the algorithm for designing a tunnel-diode

small-signal oscillator circuit is as follows:

(a) Obtain tunnel-diode parameters CD, rs

and Ls from the specification sheet of

the diode.

(b) Obtain a static I-V characteristic for the

tunnel diode.

(c) Calculate the static I-V characteristic for

the intrinsic tunnel-diode junction from

step (b). Next evaluate parameters A, a, B,
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do load line

SIOpe - (GC+ l/rs)

ac load line

(small signal

 
 

Figure 3.10. I-V characteristic of the intrinsic tunnel

diode with do and (small signal) ac load

line for an oscillator circuit of Figure 3.9.



(d)

(e)

(f)

(g)
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and b approximating this curve as outlined

in Appendix A.

Select an Operating dc bias point, V ,

(VP < VD < Vy) and calculate (VD). Equa-

tion (2.19) and g(V) = dI/dV g1ves:

bVD_ -aVD _

gfivn) - Ae (1 aVD) + Bbe (3.25)

Calculate two cutoff frequencies, f and f ,

and select an operating frequency, Io, suc

that fS < fo < f Calculate kmax and kmin’R'

Evaluate the load conductance, GC, and the

load capacitance, Cc, for a value of k such

that k . < k < k .
m1n max

Check for do stability according to (3.24).

Finally, calculate

_ l

VBB - VD 4' (rs 'l' 5;) ID (VD) ,

This completes the design of a small-signal oscil-

lator with an operating frequence, f0.



CHAPTER 4

THE TUNNEL-DIODE OSCILLATOR CIRCUIT:

ITS ANALYSIS AND SOLUTION

 

4.1 Introduction

The small—signal equivalent circuit of the tunnel

diode developed in Chapter 2 gives very satisfactory re-

sults for the gain, bandwidth, etc., of.a tunnel-diode

amplifier or the cut-off frequencies of a small-signal

oscillator [5,20]. However, this model fails to give

satisfactory answers to the typical large-signal nonlinear

problems such as the determination of the output waveform,

harmonic content, etc., in a tunnel-diode circuit.

To perform large-signal analysis of the tunnel-

diode oscillator circuit by analytical methods, the

characteristic of the negative-resistance element, the

intrinsic tunnel diode, must be simplified considerably.

Kim and Brandli [4] approximated the I-V characteristic

of the intrinsic tunnel diode by a third-degree polynomial

about the operating bias point [4,5,22], as

3
i(v) = -gDv+ hv , (4.1a)

where

3AI .
-gD= - EK—~= conductance at the dc bias (4.1b)

point,

45
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Figure 4.1. I-V characteristic of the tunnel diode and

the cubic approximation (i-v) used by Kim

and Brandli.
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h = ——3- '
(401(3)

(AV)

The analysis by Kim and Brandli assumes v = V cos (wt),

a perfect sinusoidal voltage about the dc bias point, VD' at the

intrinsic tunnel-diode terminals. Despite the poor approx-

imation to the I-V characteristic (Figure 4.1) and the

pure sinusoidal voltage assumption, meaningful qualitative

results were obtained.

4.2 Solution by Coerver and Sterzer
 

Coerver [8] carried out an analysis of a tunnel-

diode oscillator using a fifth degree polynomial similar

to Equation (2.17)[l4], to approximate the intrinsic

tunnel-diode static I-V characteristic. He simplified

the oscillator circuit by neglecting harmonics, i.e.,

assuming single-frequency operation (Figure 4.2). Also

he assumed a circuit operating frequency, fo < fs. Coerver's

calculations show that the dc bias point, V for the maxi—
DI

mum fundamental power should be such that

(Vv - VD)/(Vv - VP) = 0.4 .

Sterzer [9] used a tenth degree polynomial to

approximate the static I-V characteristic of the intrinsic

tunnel diode. His computer calculations show that the dc

bias point for generating the maximum rf power should be
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1D (V) FF CD

 
 

(a)

 

(b)

Figure 4.2. (a) Coerver's tunnel-diode oscillator circuit

(b) Equivalent circuit of (a) at a frequency

fo - wo/Zw < f5 where GL is load conductance

and GD is to account for diode and cavity

losses and L is the equivalent shunt

inductance.
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closer to the valley region. Another important result is

that the maximum power generated by diodes with flat val-

leys is greater than the power from diodes with narrow

valleys.

For an accurate solution a good approximation to

the nonlinear I-V characteristic is needed, but addi-

tionally, the effect of higher harmonics must be con-

sidered. A better approach is to formulate the solution

of the oscillator circuit in the time domain. If a

steady-state time-domain solution is available, harmonic

analysis can be employed to determine harmonic content.

Because of the nonlinearity of the device, numerical

methods of analysis must be used.

The time-domain solution of the large-signal

oscillator circuit is given in the remainder of this

chapter. A Fourier analysis of vD(t) as constituting a

frequency-domain signal of the form,

vD (t) = VD +kgiysk sinwOt + Vcck coswot], K > 2

is carried out in Chapter 5.

4.3 Large-Signal Tunnel-Diode Oscillator Circuit
 

The complete large-signal oscillator circuit with

operating frequency fO ) f i.e., capacitive load circuit,
8!

is shown in Figure 4.3.

The following set of equations describes the

tunnel-diode section of the circuit.
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Figure 4.3. Complete large-signal tunnel-diode oscillator

circuit with parallel G - Cc load, for Operat-

ing frequency fo > £8“
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Let i = i(t), v = V(t) and v = vD(t) . Next,
D

l

applying Kirchoff's law at terminal A-A :

dvD

iD(VD) + Cd 1? = i . (402)

The voltage drop across the extrinsic elements,

v

r and L is:

s s

.
.
.
.
_
_
_
_
.

.
‘
F

._
.

.
_

I

di ._ _
L8 35 + rsi — v v . (4.3)

The solution of (4.3) with i(t = 0) = i(O) is:

 

r r

"fit t it.
S | l L '

i(t) - 1(0) = e L f [V(t ) - vD(t )]e 3 dt .

s o

(4.4)

Substituting for i(t) from (4.2) and using the notations,

 

dv d2v

v = ——2- and v = -——g- ,

D dt D dt

results in

r

"JEt :Et'

. _ . e S t I I LS I

CdvD + 1D(VD) — 1(0) + L ‘l. [V(t )-VD(t )]e dt .

S 0

(4.5)

Differentiating equation (4.5) with respect to time:



 

 

r r .
s s

u .' - rs I-fgt t ' '. fgt u
chD + iD(vD)vD = -;I e [V(t )-vD(t )]e dt

3 0

v-v

+ L D , (4.6a)

3

rs ‘ Ver

= -f,— [I(t) " 1(0)] + L p (4.613)

s s

r v-v
_ - S s 0 -0 D

— f8— [1D(vD) + cdvD 1(0)] + 18— , (4.60)

where

.' _ d . _
1D(VD) - a]; (1D(VD))— 9d(vD) .

Rearranging Equation (4.6c):

CDVD + -———-v + -———————.+

g (v )+rst . rSiD(vD) VD v+i(o)rs

d D s s 5

Equation (4.7) completely describes the operation of the

tunnel diode in the circuit of Figure 4.2.

I

The load circuit to the left of terminals A-A in

Figure 4.3 is described by the following set of equations:

iGC(t) = i(t) + ccé , (4.8a)

_ l -. °
V(t) — VBB - a; [i(t) + Ccv] , (4.8b)

_ _ l . .
— VBB 5— [lD(VD) + Cdv + c061. (4.80)

c
D

From Equation (4.3), v = 3%(v(t)) is

‘
-

.
F
I
fl
J
fi
;

'
1
'
.
“

1
.
1
!

.
I
A
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2. .

v = Ls d I(t) + r QilEL + VD

dt 5 dt

. ll .2 . I " ...

- LS 1D(VD)VD + lD(VD)_VD + CdVD (4.9)

' O .. .0.

+ rS 1D(vD)vD + CdvD + VD

di(t) d2i(t)
where -3Ef—- and are derived from Equation (4.2).

dt

Substituting Equation (4.9) into (4.8c) and the

resulting expression for v into Equation (4.7), produces

a single nonlinear differential equation in v The ex-DC

pression for iD(vD) can be selected as any one of the

following expressions, (repeated from Section 2.5):

2
a + a v + a v + --- + a v

. _ N

1D(VD)_o 11) 2D ND'N?1’

or

I -I

. _ P V _ _ 4 _ _ S

1D(VD) — 5 [5(vD VP)(vD Vv) (vD VV) + Iv ,

(Vv-V)
P

or

. 2 qvD
1D(vD) — a(Vv-vD) tanh 2ET'+‘9VVD ,

or

-av bv

. _ D D_
1D(vD) — AvDe + B e l) .

 

The complete equation describing the oscillator

circuit shown in Figure 4.3 is obtained by substituting

for v, iD(vD) and 15(VD) (from Equation (4.10)) into (4.7).

The resulting equation is a thirdaorder, second-degree

nonlinear differential equation in v Analytical solutionsD.
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are not known, and straightforward analytical approxima-

tions quickly become complex and require numerical

approximations. A feasible method of solving specific

numerical cases is to use a digital computer to form time-

domain solutions on an incremental time basis.

4.4 System Model of the Oscillator Circuit
 

The primary purpose of the system approach is to

develop a set of first-order differential equations des-

cribing the oscillator circuit of Figures 3.7a and 3.7b.

Also, this approach permits the study of the effects of

voltage dependency of junction capacitance, Cd(vD),

without any difficulty.

The large—signal oscillator circuit shown in

Figure 3.7a is redrawn as Figure 4.4a for convenience.

The system graph of Figure 4.4 is shown in Figure

4.4b. The notations, lettering, and the direction of the

arrows are the same as described in reference [21]. The

circuit tree is shown in heavy lines.

The system model for the oscillator circuit is

derived as follows:

(1) The set of equations describing the circuit

elements, capacitors Cc’ Cd and inductor Ls’

is

F- F- “1 r- -(

v 7 -l- o o i

1 CC 1

d _ l .

E v2 ‘ ° c—d' ° 12 - (4.11)

. l
1 0 0 —— v
3 L 3

L _ L a L -      
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Writing the circuit and the cut-set equations

[21] from the system-graph of Figure 4.4b:

"V4+V1+V7"V2

- i
3rs

+ v + V

1 BB
V2 0

Writing (4.12) in matrix notation,

   

  

0

 

-iD( )/Cd l/Cd

 

1l -Gc

12 = 0

v3 1

L- L.

(3)

El 0 6T

C

0 El 0

d

1
o o ——-

L. La.

-Gc/CC o

o

1/LS -1/LS 

) l

-r

S  d

-l/cj

-rS/LS

 

#—

  
.13)

 

l

V

 —

:v—i

l

   

  

BB

 —4
F

F"

 

 

Substituting Equation (4.13) into (4.11)

'i
0

 

(4.12a)

(4.12b)

(4.12c)

(4.13)

(4.14)
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In this set of differential equations, v can be

substituted for v1 and vD for v2. This substitution re-

sults in the following set of equations:

 

       

F- -r --G - r - )— -‘

_ __C_ —_l.v Cc 0 cc V1 0

d i ( ) -

a; v0 = o - g a}. vD + o . (4.15)

d d

1 .1 _._l -32 1 :22
3 LS LS L:3 3.) Ls

._ ._ ._
_J _. ._ _( 

This describes the large-signal oscillator of

Figure 4.4. Solving this set of equations on a digital

computer is relatively easy compared to solving the

higher-order differential equation, Equation (4.7).

For initial conditions, the values of v(t), vD(t)

and i3(t) for t = 0, must be specified. The bias voltage,

VBB is obtained from V = V + ID(VD)[rs + l/Gc] where
BB D

VD is the intrinsic diode dc bias point. If vD(t = 0)= VD'

then a trivial solution of Equation (4.15) is obtained

because 6D.= v'= i3 5 0. In an actual oscillator, the

electrical noise in the circuit may start the oscillations,

which in turn begin to grow in amplitude due to small-

signal instability.. In computer simulation the initial

perturbation is provided by selecting vD(t = 0) not equal

to the do his point, VD‘ A satisfactory choice of initial

Aconditions is:
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at t = 0 vD(0) = VB(#VD) ,

then i (0) = i (V )

3 D B ’ (4.16)

and v(0) = VB~+ iD(VB)rS ,

= VBB ' iD(VB)/GC '

These initial conditions will give non-zero values to

VD

noise excitation in an actual oscillator circuit.

, v and i3. The ratio, VB/VD # l,is equivalent to

A similar set of first-order differential equations,

describing the second form of the oscillator circuit shown

in Figure 3.7b, will be derived next.

The large-signal oscillator circuit shown in

Figure 3.7b is redrawn as Figure 4.5a for convenience. It

is an equivalent to the circuit considered in the preceding

section. Its system graph is shown in Figure 4.5b.

Now to derive the state model of the oscillator

circuit, write the set of equations describing the Cc’ Cd'

LS and LC circuit elements as follows:

1 F. i, -r

F 1 F
V1 E:— 0 0 11

c

l .

vD 0 C— 0 0 12

d — d (4 17)
3E' ‘ 1 , '

13 O 0 f; 0 V3

. 1

l7 0 0 0 i:— V7

. J L C] _ J‘      



59

  

  
  

   

 
Figure 4.5. Complete large-signal tunnel-diode oscillator

(a) Equivalent circuit, and (b) its System-

graph.
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Writing the circuit and the cut-set equations,

similar to (4.12) and putting them in the matrix form:

      

P. " "" H F '1. " '-

11 -GO 0 -l l 0

12 0 -1D( ) l l VD 0

= + . (4.18)

v3 1 -1 -r5 0 13 0

v7 -1 0 0 0 171 v8

4_ .4 ._ .. __ _. _ ..  
Substituting Equation (4.18) into (4.17), multi-

plying the matrices, and substituting v for v1 and VBB for

v8, the resulting set of equations is:

 

        

T "I — 1 (- — (— "'1‘

F G 1 1
v -C—°- o 5— o— v o

C C C

1 ( )
D 1

d
3? = + . (4.19)

r

. l 1 s

13 r; i; ‘1‘; ° 13 0

v

i -—1— o o o i —B—B.-
. 7 LC 7 Lc

._ .J .1— ...) - _ m— J

This is the system model for the oscillator shoWn in

Figure 4.5a. lance again a suitable initial condition for

vD(t) must be specified.-

If the dc bias point for the intrinsic tunnel diode

is VD, (VP < VD < VV), then VBB = VD + ID(VD)rS. For“

(t = 0) = V the solution of (4.16) will be trivial since
V DD
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then {7(0) = {5(0) = 13(0) and 17(0) =._= 0. Accordingly suit-

able initial conditions are:

at t = 0 , VD(0) = VB(# VD) .

Then,- i3(0) = iD(VB) , (4.20)

v(O) = VB + iD(VB)rS ,

i7(0) = iD(VB) + [VB + iD(VB)rs]Gc .

In both sets of equations the expression for iD(vD)

can be any one of those given in (4.10). For any reasonably

accurate expression for iD(vD), the set of equations given

in (4.15) or (4.19) cannot easily be solved by analytical

“methods.. They_were solved on.a digital computer. At the

same time solving them numerically on.a digital computer

allows freedom to:

(a) choose any form for iD(vD) without making the

solution any more complicated;

(b) study the effect of the junction capacitance,

Cd' as a voltage dependent element,

C = Cd d(VD).

4.5 Numerical Solution of the System-Model

The system models developed in (4.15) and (4.19)

for the large-signal tunnel-diode oscillator circuits of

Figures 4.4 and 4.5 respectively, were solved on a CDC 3600

digital computer using Fortran IV language.

The load-circuit parameters are'Gc and Cc' For

studying large-signal analysis, the starting point,
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vD(t = 0), is chosen to be the peak point voltage, VP'

This choice permits steady-state solutions which cannot

be obtained by small perturbation of a circuit which is

ac small-signal stable. Vd(t = 0) = V is equivalent to
P

the shock excitation of the circuit.

The set of first-order differential equations can

be solved by either the Runge-Kutta method or by the Adam-

Moulton method with the Runge-Kutta starter [23,33]. The

computer program used for this is an expansion of the

method suggested by Hildebrand [23] for a system of two

first-order differential equations. The Adam—Moulton

method is referred to as one of the closed types of pre-

dictor-corrector formulas. A Fortran subroutine, RKAMSUB

[24], based on this was used to solve Equations (4.15) and

(4.19). This subroutine integrates the set of equations

for the specified time-step, AT, using fourth-order Runge-

Kutta method.

The time-step size, AT, with which RKAMSUB inte-

grates the system of differential equations, should be

small enough to yield a reasonably accurate solution and

at the same time large enough to yield the solution in a

reasonably short time. With the expected operating fre-

quency,fo, the expected time period will be T = l/fo. So

AT ~ T/100 should be sufficient, considering the non-

linearity involved.
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The system model of the circuit of Figure 4.4 (or

Figure 4.5) is solved starting at time t = 0 with the

initial conditions on vD(t), v(t) and i3(t) given by (4.16),

(or (4.20)). As mentioned before

The set of equations (4.15), (or (4.19)) is integrated

numerically until vD(t) corresponds to the steady-state

operation of the circuit. To ascertain when steady-state

is reached, vD(t) is Fourier-analyzed [34] and its funda-

mental, second and third harmonic components are obtained

as:

  

 

P=3

vD(t) = VD + 2 Vd sin (2“ t + Vd cos 313-t

O p=l sp T cp T

P=3 1(2—"3t-4)
=v + E v e T P (4.21)

D D ’ .

0 p=1 p

where,

I

T = the new time-period of oscillation

Vd = p Eh harmonic sine component

SP

Vd = p Eh harmonic cosine component

CP

_1 2 "2 _ .
V — V + V - p th harmonic component
D 2' d d —

P SP cP

and ¢ = arctan -Vd /Vd . If the harmonic

9 cp Sp
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components VDl' V and VD3 of two consecutive periods of
D2

vD(t) differ by less than 1, 2 and 4 per cent respectively,

it is assumed that the solution corresponds to the steady-

state operation.

The resultant period of oscillation, T', not being

equal to the assumed period of oscillation, T = l/fo, is

not a surprising result. The period, T, is based on small-

signal analysis, while the actual period of oscillation,

T', is the result of a large-signal analysis of the non-

linear problem. It should be noticed that T. is always

greater than T. In other words, the resultant fundamental

frequency of oscillation, f; = 1/T', is less than the

assumed Operating frequency, f0.

Using the solution corresponding to the steady-

state operation of the circuit, iD(t) = iD(vD(t)) is

evaluated point by point for one period of vD(t). Then

v(t) and iD(t) are Fourier analyzed in the form:

\

P=3

  

iD(t) = Id + 2 Id sin £1gt) + Id cos ZEB-t),(4.22)

o p=l sp T cp T

and

P=3 2 2

v(t) = V + Z V sin —Eg»t + V cos —l$-t . (4.23)

O p=l Sp T cp T

   

The average power generated by the intrinsic tunnel

diode at the pEE harmonic is:

p = 0.5(v Id + v . (4.24)
D d d Id )
9 sp sp GP G?
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The average power delivered to the load conductance, Gc'

at the fundamental frequency, f0, will be

 

_ 2 2
PG — 0.5 vsl + vcl) cc , (4.25a)

cl

and at the pEE harmonic

p = o 5 v2 + v2. G (4 25b)
ch ° sp cp c ' '

The logic diagram of a typical computer program based on

the aforesaid procedure is given in Figure 4.6.

4.6 Examples

For a given tunnel diode, the procedure stated in

Section 4.5 is repeated for different dc operating points

between (VP + VV)/2 and VV. For each operating point,.sets

of load circuit elements (Gc'cc)' are obtained for values

k .

_ max - m1n

(Ak), 0.8kmin where Ak -- 10 (see

Section 3.4). The circuit elements (GC,CC) evaluated for

of k = k
 

max’

the parameter k < kmin indicate small-signal stable circuits.

As.shown in the output curves to follow, the maximum powerv

is actually obtained when circuit elements correspond to

k < kmin' For each set of (GC,CC), the oscillator circuit

of Figure 4.3 is solved as described in Section 4.5. From

the results, a plot is obtained for the power,-PGCl delivered

to the load vs. the load conductance, Go.

This procedure is followed for two tunnel diodes--

one a narrow valley germanium tunnel diode and the other



 

 

   r¥es_

Check for a.c.

stability
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V READ ‘

\\\A(l),....A(4)

73:145th: VC /

I. { __

,READ /:——~—4Compute kmax}
VD, @gnj/ L__L

i

 

 

 

 

Compute

 

CC :CC 1(Lc)9VBB

   
 

Compute Initial

 
r conditions: VB=VP

  
231 = l/lOOfo

{

Integrate System-

model for 400 F———- «4

ASP steps _.__j >x1’

   
 

 

   

 

Integrate for

one period

L.

 

 

 

Fourier analyze

vd(t)

   

L_
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T
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I 1
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Compute idCt) i Yes

from det)

No

1.4 /:
    

 
    

Fig. 4.6. Legic Diagram of the Computer Program for

Analyzing Tunnel Diode Oscillator Circuit
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a flat valley gallium-arsenide tunnel diode. The pertinent

specifications for these two diodes are listed in Table

4.1.

The parameters A, a, B and b in the specifications

are the same as described in Appendix A for approximating

the static current-voltage characteristic of the intrinsic

tunnel diode. The current-voltage plots for both diodes

are shown in Figure 4.7.

l. GaAs Tunnel Diode ZJ61-22, Calculations

From the specifications:

valley point voltage, V = 670 mV
V.

peak point voltage, V 120 mV.
P

The dc operating points attempted were

vD = 0.44, 0.46, 0.48, 0.50, and 0.52 volts.

9 9
For vD = 0.44, ms = 2.27 x 10 , 0R = 4.80 x 10 .

For v = 0 52 w = 2 49 x 109 w = 3 65 x 109D . I S O ' R . .

9
So select mo = 2.77 x 10 radians/sec.

The load-circuit elements, Gc'Cc' calculated for

the bias point, VD = 0.48 volts, and for several values of

k < km are plotted in Figure 4.8. The set (Gc ’Cc )

m m

is marked by a star (*).

ax

corresponding to k = kmin

The complete oscillator circuit of Figure 4.3 is

solved as described in Section 4.5 for VD = 0.43, (0.02),

0.53 and for different circuit parameters, Gc'Cc' In this
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TABLE 4.1

Tunnel-Diode Specifications
 

 

 

 

 

 

' ZJ61-22 1N2941

Parameter GaAs Ge

rS ohms 2 1

LS nh 6 5

Cd pf 25 20

A 0.51554 0.44

a 8.6207 16.8

B 1.6114 x 10'5 5.4 x 10‘

b 6.4694 15.4

VP mV 120 60

IP mA 22.01 9.64

Vv mV 670 400

Iv mA _ 2.01 0.47

gmax mhos -0.0693 -0.0595

at V volt 0.23 0.12
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- 0.48 volts

— 2.77 x 109 rad/sec

0.06 .07 .08 .09 .10 .11 .12 .13

Load Conductance, Gc mhos ‘

Figure 4.8 Variation of load capacitance and conductance

for constant operating frequency.
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case maximum fundamental power is delivered to the load

conductance, Gc' when VD = 0.48 volts. Table 4.2 shows

the complete set of calculations for the oscillator cir-

cuit when VD = 0.48 volts. Similar tables are prepared

for each dc operating point. The plots of the funda-

mental power delivered to the load conductance, Gc vs.

Go for various dc operating points are shown in Figure

4.9. Figure 4.10 shows a similar plot for the second

and third harmonic power delivered to Gc'

2. Germanium Tunnel Diode, lN2941, Calculations

From the specifications:

VP = 0.06 volts, VV = 0.40 volts.

The dc operating points attempted were

V = 0.25, 0.26, 0.27, 0.28 and 0.29 volts.
D

_ _ 9 __ 9
For VD — 0.25, ms — 2.99 x 10 , and 01R - 7.12 x 10 .

For v=029 w =310x109 andw =552xlo9D O ' s O I R O 0

So select (00 = 3.25 x 109 radians/sec.

Calculations similar to those described for the

gallium-arsenide diode were performed. A The optimum dc

operating point is found to be VD = 0.27 volts. The curves

of the fundamental power delivered to Gc vs. Go for various

dc operating points are shown in Figure 4.11.

The results of the maximum power delivered to load

conductance, Gc' for the two diodes are summarized in Table

4.3.
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Values for an Optimum Circuit and Related
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TABLE 4.3

 

Performance‘pata
 

 #

Tunnel Diode

 

 

 

 

Parameter GaAs Ge Units

Gc 0.1078 0.20 mhos

Cc 53.35 40.9 pfarad

VBB 0.5284 0.2778 volts

00 designed 2.77 x 109 3.25 x 109 rad/sec

I

mo resultant 2.70 x 109 3.2057 x 109 rad/sec

Pout by diode 1.8328 0.518 mW

PGcl Fundamental 1.1375 0.402 mW

PGC2 2nd Harm. 0.27 0.354 “W

PGc3 3rd Harm. 0.10 0.001 uW

Re[Y(wb)]

4 1.261 1.284

l-gDT

'V - V

V" _ V°Pt 0.345 0.382

V P

'VD' 0.7680 0.479 volts

max

‘VD 0.0726 0.037 volts
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As mentioned earlier it should be noted that the

I

operating angular frequency, mg, is slightly less than

designed mo for both diodes. According to (3.13b),

Re [Y(wo)]»

F = i-gDT
 < 1 ,

is required for the oscillations to grow. For both diodes

this ratio is much greater than 1. So for these cases,

m
e
w
s
-
q
V

vD(t = 0) value close to V will result in decaying oscil-
D

lations such that vD(t+w) = VD. By choosing vD(t = 0) =

VP = the peak voltage, the diodes are perturbed sufficiently

that sustained large-signal oscillations are obtained.

4.7 Effects of Varying Circuit Parameters
 

(a) Oscillator Circuit with G-L-C Load Circuit

The equivalent GC - Lc - Cc circuit of the

equ. equ.

Gc — Cc load circuit considered in the preceding section

is shown in Figure 4.5. The circuit elements Cc = nC

equ.

and L = l/[(n-l)w2C ], n > 2 are computed to keep the
Cequ. o c .

Operating frequency constant. The above calculations were

repeated for n = 3. In general it is observed that the

average fundamental power delivered to the load conductance,

Gc' is increased by about 10 per cent. But at the same

time, the Operating angular frequency of oscillation, mg,

decreases significantly. Table 4.4 summarizes the calcula-

tions which are similar to those for Table 4.2 but for the
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equivalent circuit of Figure 4.4. The tunnel diode under

consideration is ZJ61-22 and the Operating point is VD =

0.48 volts. The conclusions with regard to an increase

in fundamental power and a decrease in the resultant

operating frequency, are evident when the data of Tables

4.2 and 4.4 are compared. 1

(b) Oscillator Circuit with Junction Capacitance I

as a Junction-Voltage Dependent Element. 1

The oscillator circuit considered in Section 4.6

is solved again, but this time the junction capacitance,

CD, it considered to be a junction-voltage dependent

element:

-1/2

CdOCWC VD) for VD < Vv ,

and Cd = Cd(VV) for VD), VV ,

where V_ c contact potential.

The specified value of Cd is used for vD = VV:

_ Cd(VV)‘V:c - lV .
Cd(VD) - chfT— (4.26)

The calculations show that the average fundamental

power delivered to Gc when the junction capacitance is con-

sidered a voltage-dependent element, Cd = Cd(vD) , is always

higher than the same power delivered to Gc when the junction
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capacitance is considered voltage-independent, viz.,

Cd = Cd(VD). Figure 4.12 shows the graphs of the power

output for the two cases for the GaAs tunnel diode

and the dc operating point equal to 0.48 volts.

(c) Effect of Varying Operating Frequency

As the Operating frequency approaches the resis-

tive cut-off frequency, wR, the Gc element value de-

creases sharply. Soon the value of Gc decreases enough

to violate dc stability condition (3.24) and we get

1
+— —

(Go rs) < I 90'

When a circuit with component values causing dc instability

was simulated on the computer, oscillation could not be

sustained.

For the circuits satisfying dc stability (3.24)

the power delivered to load Gc decreased rapidly as the

operating frequency was increased.

1
;
1
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'
-
_
a
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CHAPTER 5

HYBRID APPROACH FOR MAXIMIZING LOAD POWER

5.1 Introduction
 

The intrinsic tunnel diode is the device element

n
‘
d
m
j
i
‘
T
‘
w

F
’

which due to its dynamic‘negative-resistance property

converts dc power into signal ac power. Hence, an attrac-

tive approach to maximize the load power is to determine

the optimum voltage vD(t) at the intrinsic-diode terminals

that will produce maximum fundamental power, P1, where

T

_ l -

and vD1(t) and iD1(t) are the fundamental frequency com-

ponents of vD(t) and iD(t), respectively. Next a circuit,

D included, that will

sustain vD(t) at the intrinsic-diode terminals must be

with the diode elements rs, LS and C

synthesized. The determination of the optimum voltage

vD(t) cannot be carried out analytically by conventional

variational Calculus techniques due to the highly non-

linear nature of the intrinsic diode.. Rather, extensive

computer calculations were used. With the Optimum vD(t)

determined a suitable circuit can be designed following’

82
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usual circuit synthesis procedure. This approach is called

a hybrid approach.

5.2 Criterion for the Maximum Fundamental Power from the

Intrinsic Diode

The circuit designed must be such that current-

voltage matching exists at the intrinsic-diode terminals,

-B (Figure 5.1). The A -B terminal admittance of the
l l

circuit is determined by the harmonic components of vD(t)

A

g
r
‘
-
—
t
-
r
-
r
-
T
w

and the resulting iD(t).

To determine Optimum components of VD(t), consider

the Fourier analysis of vD(t):

N
V

. 20 Zn

v (t) = V + 2 V Sin -— t + V cos ——-t) ,
D do k=l dSk (T 1 dCk ( T ]

(5.2)

where Vd and Vd are k513- harmonic sine and cosine com-

sk dk

ponents, respectively. Consider 360 equally spaced values

per period of vD(t) . Performing point-by-point calcula-

tions 360 equally spaced values per period Of iD(t) =

jT)(vD(t)) can be obtained using one of the expressions from

tiusse given in (4.10). The Fourier analysis of iD(t) is:

N

I

. . Zn 2n

1 (t) = I + I Sln —— t + I cos —— t .

(5.3)

From this, the k2 harmonic component of the power produced

at: the intrinsic tunnel diode is:
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P = 0.5 V Id + Vd

sk sk

d . (5.4)

dk ck ck
d

Pd1 is to be maximized with respect to the (2k + l)

harmonic components of vD(t), Vdo’ Vdsk' Vde; k = 1,2,...NV.

It should be noted that Pd1.will be a negative quantity as

corresponding to positive power being delivered to the

load.

5.3 Circuit Design for the Maximum Power from the Intrinsic

For the passive-circuit to the left of terminals,

Al-B, (Figure 5.1), the voltage and the current are vD(t)

and -iD(t), respectively. For current-voltage matching at

the common terminals, A -B, the circuit admittance at the
l

fundamental frequency, mo, should be

 

V + jV

Y(u))=—:Sl idol=Y(0))+'Y(0)) (55)
c 0 -Id - j d R o 3 I 0 ° '

sl cl

th

Similarly at the k——-harmonic, the circuit admittance

should be:

 

 Yc(kwo) = -Id _ de . (5.6)

sk ck

These equations provide admittance requirements

for the circuit design after the Operating frequency, w ,
O

is selected.
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Consider the case where only fundamental frequency

components are assumed. Following the analysis as indi-

cated above, the required admittance at the Al-B terminals

is

Yc(wo) = YR(wO) + jYIIwO) . (5.7)

At the A2-B terminals the admittance required is

 

YR(00) + j(YI(wO) - 600D) . (5.8)

Then,

2(wo) = YR(wo) ;j<¥I(wo) - woCD> 2 ’

(YR(wov '+ [YI(wo) - woCD)

= Re[Z(wo)] + jIm[Z(wo)] , (5.9)

is the impedance required at the Az-B terminals. Similarly

at terminals, A3-B

ZT(wo) = [Re[Z(wo)] - rs] + lem[Z(wo)] - woLs]

= Re[zT(wO)] + jImIZT(wO)] (5.10)

is required. When “o = ”max' then RelZT(mo)] = 0 as then

all the power produced by the intrinsic tunnel diode is

dissipated in the series resistance, rs. When the operat-

ing angular frequency ”0' is equal to w , the reactive

S

(component of ZT(wo), is equal to zero as corresponding to

the definition of ms. For ”0 > ms, ImIZT(wO)] is negative
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corresponding to a capacitive load circuit. For mo < ms,

Im[ZT(wo)] is positive corresponding to an inductive load-

circuit requirement.

To determine w = w

 

 

 

max m’

Y (m )

Re[ZT(wm)] = 2 R m 2 - rS = 0 .

[YR(wm)1 + [YI(wm) - meD]

Then

Y (m )
R m 2 _ 2 _ 2 2

——E;——- YR(wm) — YI(wm) 2meDYI(wm) + meD ,

or
(5.11)

Y (m )
2 2 2 2 R m _

(DmCD zmeI (wm)CD + YI (00m) 'I' YR((Dm) " T — 0 e

(5.12)

Hence

Y (m ) \/Y (w’)
_ I m R m _ 2 1

3 D

This expression for w is identical to the expression in
max

(3.10b) for the resistive cut-off frequency when

YI(wm) = 0 and YR(wm) = gD

Similarly, the solution of Im[ZT(mm)] = 0 (for Ob-

taining an expression for ms) results in the following

cubic equation:

-mesw
L L S
s s

2 2 2 3 2
YR(wS) + wSYI(wS) - 20)..YI(0)S)CD + wSCD .

(5.14)
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When,as is usually the case YI(wS) << YR(wS), the equation

 

 

yields

w = 1 _ YR(wS) (5 15)

S LsCD C2 ' '

D

This is identical to the equation (3.11b) for the self-

resonant frequency if YR(wS) = gD.

Thus, when mo < wmax' the load circuit of Figure

5.1 should be designed such that the admittance to the left

of terminals Al-B is Yc(wo). Upon completion of the design

the dc stability requirements, according to (3.13), must

also be met for proper functioning of the oscillator

circuit.

In Appendix C it is shown that any two frequency

admittance specifications, such as:

YT(wo) = YR1(wO) + jYIl(wo) (5.16a)

YT(2wO) = YR2(2wo) + jYI2(2wo) (5.16b)

can always be realized if YRl(wo) and YR2(wo) are pOSitive.

5.4 Examples

The procedure mentioned in Sections 5.2 and 5.3

was carried out for the two diodes analyzed in Section 4.6.

The most difficult part of the hybrid approach is

that of Obtaining the Optimum harmonic components of vD(t),

viz., V Vcl’ V Vc2(as for Nv = 2). Several
do' Vsl' 52'

attempts were made to find these analytically. Finally a
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computer program, namely, GREAT--Generalized Random,

Extremum Analysis Technique--, (Appendix D) was used for

numerical evaluation. This program finds the minimum

value of a function of several variables. The initial

value of each variable is selected at random from within

the specified limits. Evaluating the direction cosines

with respect to each variable, the variables are increased

or decreased to minimize the functional value.

For a gallium-arsenide tunnel diode, considering

the fundamental sine-cosine components only, the optimum

bias point is found to be about 0.465 r 0.004 volts and

the corresponding maximum fundamental power, P x' gene-
ma

rated is about 1.947 mW. When second harmonic components

are also introduced, the optimum bias point shifts to

0.405 t 0.004 volts and the maximum fundamental power out-

put increases to about 2.264 mW, a 16.3 per cent increase.

Similarly for a germanium tunnel diode, considering

the fundamental sine-cosine components only, the optimum

bias point of about 0.27 i 0.004 volts is Obtained, and

maximum fundamental power output is about 0.530 mW. When

second harmonic components are also considered, the opti-

mum bias point of about 0.23 i 0.004 volts and Pmax about

0.633 mW results. Introducing third harmonic components

gives optimum bias point between 0.24 and 0.28 volts and

P x about 0.67 mW. Inclusion of higher harmonic components
ma

results in larger output power, but computer time required
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to find the optimum voltage components increases con-

siderably. As might be expected higher harmonics produce

progressively smaller changes in Pmax' Table 5.1 gives

typical starting and final values of harmonic components

of diode voltage,

vD(t) = Vdo + VSl Sinwot + VCl coswot + V82 Sin2wot

+ V cosZw t , (5.17)
c o2

and the power output from a gallium-arsenide tunnel diode,

As mentioned in Section 5.3, the diode current

iD(t) = I + Id Sinwot + Ido coswot

sl dcl

+1I sin2wot + I cosZwot , (5.18)

d c232 d

is calculated from vD(t). The harmonic components of iD(t)

for the two cases listed in Table 5.1 are given in Table

5.2.

When only fundamental components are considered,

the circuit admittance required for the gallium-arsenide

diode is according to Equation (5.5):

Yc(wo) = 2.4387 x 10‘2 - j 5.6915 x 10'10 .

Then, w = 4.3079 x 109, and w
z -9 .

max 2.3 x 10 radians/sec.
S

With gd(VdO) = -2.65 x 10‘2 mhos, rS = 2 ohms and mo > ms ,
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TABLE 5.1

VD (t) Harmonic Components when Fundamental

Power is Maximum

(GaAs Diode)

 

 

Initial Value

Component (Monte-Carlo Method) Final Value

 

lst case: Fundamental Component only

 

Vdo Volts 0.41695 0.46425

V61 " 0.06931 0.31349

VCl " -0.23125 -0.24794

Pout mW -1.2624 -1.9480

 

2nd case: Fundamental and Second Harmonic Components

 

 

Vdo Volts 0.46802 0.41067

V81 " 0.12911 0.43022

Vc1 " -0.04920 -0.04584

V82 " 0.123 -0.02570

ch " -0.06229 -0.11747

Pout mW -1.3033 -2.26293

TABLE 5.2

iD (t) Harmonic Components when Fundamental

Power is Maximum

(GaAs Diode)

 

 

 

Component lst Case 2nd Case

Ido ma 9.7076 12.953

Id ma -7.6451 -10.401

51

Id ma 6.0465 1.108

cl

I ma -3.7962 - 0.229

dsZ
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the dc stability condition requires the load conductance

Gc to be greater than 0.025 mhos.

The circuit elements--GC,Cc--for mo = 2.4 x 109,

(108), 4.2 x 109 radians/sec are calculated according to

Equations (5.7) through (5.10). These are plotted in

Figure 5.2. The results from the exact analysis (dis-

cussed in Chapter 4) for different wo's are tabulated in

Table 5.3. The fundamental power generated by the gallium-

arsenide diode is 1.948 mW in each case. In the table

O

I

w , Gc and Cc are from Figure 5.2. mo is the resultant

(fundamental) frequency of oscillation; P is the power
out

generated by the diode; and P is the power delivered to

Gc

the load, Gc'

It is evident that the power output from the diode,

Pout' and the power delivered to the load, Gc' at the

fundamental frequency reduces rapidly when the higher funda-

mental frequencies are considered.6

The Optimum circuit performance obtained in Chap-

ter 4 is also listed in Table 5.3. VD for this case was

0.48 volts. A comparison of this with the data of set no.

2, Table 5.3 shows that the fundamental P and Po ob-
G ut
cl

tained in Chapter 4 are higher: PG by 7 per cent and

cl

the power transfer efficiency, PG /P by 5 percent.
c1 out

However, the small-signal analysis for the circuit

elements (obtained by hybrid approach) listed in Table 5.3
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indicates that the factor F = Re[Yc(wo]/|-gDI is equal

to 0.926--1ess.than 1, unlike the value Of factor F for

the Optimum case obtained in Chapter 4. Factor F = 0.926

indicates that the circuits are very close to ac small-

signal stability. Consequently, the circuits should al-

ways be shock excited. When analyzed numerically, the

oscillations could not be generated when vD(t = 0) was

selected close to Vdo 0.46 volts. The results listed

in Table 5.3 are obtained by considering vD(t = 0) = VP

= 0.12 volts. The last two sets in Table 5.3 resulted

in non-oscillatory circuits when analyzed numerically.

This is due to dc instability. But small-signal analysis

indicates dc instability for data of set no. 5 only,

while set no. 4 is very close to it.

In the second case of Table 5.1, the voltage at

the intrinsic-diode terminals, vD(t), up to and including

second harmonic components, is considered. Table 5.1

lists one set Of several Optimum voltage components, Vdo'

Vsl' Vcl' VsZ' VC2 producing same fundamental power. The

circuit admittance, matching at the intrinsic-diode termi-

nals, is calculated for this set according to Equations

(5.5) and (5.6). The resulting admittances at the funda-

mental and the second harmonics are:

Yc(wo) = 2.418 x 10"2 + j 1.135 x 10'6

and

6
3 - j 7.353 x 10' .Yc(2wo) = -8.955 x 10
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Note that Re[YC(2wo)] is negative. Several dif-

ferent Optimized sets were attempted. But for each case

Re[Yc(2wo)] was found to be negative. Similar results

were obtained for the germanium tunnel diode. Consequently,

in the case of these two tunnel diodes a circuit could not

be designed that could provide the required current-

voltage matching for the second harmonic. This need not

be true for tunnel diodes in general. Designing a circuit

with Yc(wo) only, and neglecting the mismatch at the second

harmonic, resulted in greatly reduced power output when

analyzed numerically as outlined in Chapter 4.



CHAPTER 6

CONCLUSIONS

In this thesis a computer algorithm has been

developed for evaluating the fundamental power delivered

to the load of a tunnel-diode oscillator circuit. This

algorithm has been successfully used to determine changes

in fundamental power with changes in circuit parameters.

Specifically it was found that simple Operating circuits

could be optimized to produce maximum fundamental power.

When the optimized circuit is used, tunnel-diode voltage

and current are rich in harmonic content. Large-signal

analyses that assume perfect sinusoidal signals are not

adequate to evaluate Optimum performance.

From an in-depth computer evaluation of a germanium

and a gallium-arsenide tunnel-diode oscillator circuit it

was found that

(1) Optimum tunnel-diode bias voltage is closer

to the valley voltage than to the peak voltage.

(2) The optimum tunnel-diode bias voltage approaches

closer to the valley voltage as the valley region of the

diode flattens out.

(3) Fundamental power delivered to the load de-

creases as the Operating frequency increases.

97
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(4) The operating frequency was somewhat lower

than the frequency indicated by small-signal analysis.

(5) Maximum power output was found to occur with

a circuit which was small—signal stable. This mode of

operation would be feasible only if provisions were made

for shock exciting the circuit.

(6) Somewhat greater fundamental power can be

obtained by the use of a voltage-dependent junction

capacitance in comparison with circuit operation in which

the junction capacitance is constant.

(7) For maximum power output the conversion

efficiency was about 23.7 per cent.

(8) Contrary to some reports in the literature,

at no time was it found that the circuit would oscillate

at a frequency greater than the resistive cut-Off frequency.

Although the findings listed above were verified

for only the two diodes examined, they are believed to be

generally valid. From the work completed, it is con-

sidered feasible to use the algorithm developed to design

simple circuits for Optimum Operating conditions. At

ultra-high frequencies the circuits become more complex

and it is not certain whether the algorithm can be modi-

fied to include the added complexities. This area, parti-

cularly as it relates to transmission-line analysis, could

be the subject of further investigation.
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APPENDIX A

APPROXIMATION TO TUNNEL-DIODE STATIC

CURRENT-VOLTAGE CHARACTERISTIC EQUATION

A useful two-term approximation of the tunnel-

diode I-V characteristic was first suggested by Ferendici

and Ko [11] as

' "av ' bV

A V e T + B (e TIT (VT) = T - l) (A.l)

where IT(VT) is the terminal current and VT is the termi-

nal voltage. The Id- d characteristic of the intrinsic

tunnel diode at terminals a-a' (see Figure A.l), is ob-

tained as discussed below.

The equivalent circuit of the tunnel diode is as

shown in Figure A.l. For static characteristic as Ob-

tained at low frequency, the effects of series inductance,

L and junction capacitance, Cd(Vd), can be neglected.
S!

Then

(A.2)Id(Vd) = IT(VT - Vrg where Vrs= IT(VT)rS

Thus point-by-point calculations will give the characteris-

tic Of the intrinsic tunnel diode. This characteristic

can similarly be approximated by
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A IT(VT) rs Ls Id(vd) a

VT Cd ;& gd (Va)

V

' d

O _

a I

 
Equivalent circuit of a tunnel diodeFigure A.l.

 
 
Static current-voltage characteristics at

l
Tunnel diode, terminals A-A

Figure A.2.

Intrinsic tunnel diode, terminals a-a

(a)

(b)
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-an bV

AV e + B(e
_ d

d" d
Id(V - l) (A.3)

The parameters A, a, B, and b can be evaluated as follows:

Suitable pilot points are chosen according to the

fit desired. Herein, a closer fit is desired in the nega-

tive-conductance region and near the valley and peak

points. Suitable pilot points are:

(a) peak point, (VP, IP)

(b) valley point, (VV, IV)

(c) point of maximum negative conductance, or a

point(Vc, Ic) near it, and

(d) a point between (V , IV) and (V IP) or
FP'

(VFP, IP). The contribution of the diode-injection cur-

rent (2nd term of Equation A.3) is considered negligible

for Vd < Vc' Con31der

dId(Vd)
_ _ _ d

gd(Vd) "' —-a-V-d—' - A(l an)e for Vd < VC .

(A.4)

Using gd(VP) = 0 in (A.4) gives a = l/VP. For the point

_ -aV

(V0, 10), IC - AVCe C.

Knowing the coefficient a, the coefficient

I exp(V /V )

A = C v c P , (A.S)

C

 

can be determined.

At the valley point the tunneling current component

(lst term of Equation A.3) is
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-aVV

It(VV) = AVVe , (A.6)

and the diode injection current component, ID(Vd), at

valley point will be

ID(VV) = Id(Vv) - It(VV) (A.7)

bV
. _ FP

VFP , It(VFP) ~ 0 , so ID(VFP) — B(eNear V - 1).

Consider the ratio

 

1 (v ) bVFP

IDzVVs ebVV - 1

In (A.9) the only unknown is b, but due to the involved

exponentials it must be solved numerically, as follows:

First guess, b = ln(ry(VFP - Vv) .

 

0

' < <
Since VV VFP' b b0. b V

e 1 PP _ 1

Consider b = 0.98b , and evaluate r = _ .
1 0 1 b V

e 1 V - 1

If r1 < r, consider b2 = 0.99b0 and evaluate r2; if r2 < r,

consider b3 = 0.995b0 and evaluate r3. Continue the pro-

cess until rn < r. Then bn-l < b < bn. Then, try bn+1 =

(b -1 + bn)/2 and calculate r
n n+1“

Continuing this procedure find bk giving rk, as

close to the ratio, r, as desired. Finally, knowing b,

evaluate

ID(VFP)

B = W—
(A09)
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Thus, parameters A, a, B and b are determined for

the intrinsic tunnel-diode junction characteristic.



APPENDIX B

STABILITY OF A LINEAR ACTIVE SYSTEM

B.l In this appendix the stability of an active linear

network, Nd’ connected to a passive linear network, N, as

shown in Figure B.1 is considered.

Since the networks, N and Nd' are linear and

their parameters are constant, the pertinent differential

equations relating v(t) with i(t) and vD(t) with iD(t) will

be linear with constant coefficients [25] as

P(a%)i<t) = chi—hm . (3.1)

Pd(a%’iD(t) = Qd(a%)vD(t) , (B.2)

where P, Q, Pd and Qd are polynomial operators of the form:

dm dm-l d

am aft-IE + am_l W +....+a1 a-E + a0 0 (B03)

Here m, the degree of the polynomial operator, is a fixed

integer and the coefficients a0, a1,...., am are functions

of the network elements alone. The degrees of the poly-

nomials are not necessarily the same. When N and Nd are

connected as shown in Figure 3.1, vD(t) = v(t), and iD(t) =

- i(t). Accordingly, (8.1) and (B.2) become:
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 i(t) iD(t)

*— —.——

 

—
"
‘
F

N V(t) LVD(t) d

 

     
 

Figure 8.1. A linear active network, Nd, connected to a

passive linear network, N, showing terminal

voltages and currents.

  

I(s) Id(s)

__*__ B __.__
 

+— V(S) -—-—> d

Y(s) Yd(S)

 

      
Figure 3.2. System of Figure B.1 with their terminal

impedances and admittances.
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— d d— _. 7 ' 1
P a-E- "'Q a-t- I(t) 0

= . (3.4)
d d.

Pd an; ‘05 31 LV‘t’_ LOJ      

Solutions of (3.4) will contain terms of the form

AeSt where s = c + jw, a complex number [25].

i(t) = I(s)eSt .

(3.5)

st
v(t) = V(s)e ,

is a solution. However, the general solution [25] will

be:

? skt

(S) e I

k=1Ak

i(t)

(13.6)

m s t

X Bk(s)e k .

k=l

v(t)

For studying the stability of the system shown in

Figure B.1 it is sufficient to substitute (B.S) into (3.4)

and check whether the resulting characteristic polynomial

is a Hurwitz polynomial, viz., a polynomial having all its

roots with a negative real part. Substituting (3.5) into

st
(3.4) and canceling e , the set of equations obtained is:

Ms) -Q(s)’ I(s) o

. (3.7)

Pa“) ode.) V(s) o
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The characteristic polynomial, As, of the set of

equations (B.7) is:

As = P(s) Qd(s) + Pd(s)Q(s) . (B.8)

For system stability, As = 0 should not have any root with

a positive real part. The natural frequencies of the sys-

tem are the roots of the characteristic equation. Consider

A(s) P(s) Pd(s)

(maniac) = éTTs + Tods
 

V(s) Vd(s)

 

= I(sS + fab}

(3.9)

= 2(5) + Zd(s)

= ZLoop(S) '

Similarly,

MS) _ _.
P(s)Pd(§Y - Y(s) + Yd(s) - YNode(s) . (B.10)

ZLoop(S) and YNode(S) are the loop impedance and

the node admittance respectively, for the system shown in

Figure 3.2. Z(s) + Zd(s) is the input impedance for termi-

I

nals, A-A ; Y(s) + Yd(s) is the input admittance for

I

terminals, B-B .

The natural frequencies of a network can also be

obtained from Z (s) = 0 and YLoop = O. In general,
Node(s)

the natural frequencies obtained from these will be dif-

ferent. If no independent voltage or current source is
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connected in the network, or if Z op(s) and Y (3)
Lo Node

are obtained by considering all the voltage sources shorted

and current sources open, then the natural frequencies ob-

tained on either the impedance basis or the admittance

basis will be unique [26]. The tunnel-diode oscillator

circuit analyzed in Chapters 3 and 4 can be analyzed on

either basis.

The input impedance (admittance) of a stable net-

work is positive real. A positive real function, G(s),

must satisfy [27]:

Re[G(s)] 2 o for Re(s): Re(o + jw) = o > o . (3.11)

If the input impedance, ZLoop(s), (admittance,

YNode(S))' is such that:

Re[ZLoop(Sfl < 0

Re[YNode(s)] < 0 for Rds)= 0, v12., 3 = 3w . (B.12a)

Then the corresponding network will be unstable and any

oscillation initiated will grow in amplitude. Since the os-

cillations are of angular frequency, too, as given by either

Im[Z (3)] = 0
Loop

or

Im[ = 0 with s = jw . (B.12b)
YNode(S)]

 



APPENDIX C

CIRCUIT SYNTHESIS BASED ON TWO-FREQUENCY

ADMITTANCE SPECIFICATION

In this Appendix it will be shown that a suitable

-
w

‘
l
‘
.

M

circuit can be synthesized to have a given admittance at 1‘

two frequencies provided the conductances of the two ad-

mittances are positive.

Let the admittances at the two frequencies be:

Y(wl) = YR(wl) + 3YI(wl) ,

and

Y(w2) YR(w2) + jYI(w2) . (C-l)

The imaginary parts of an admittance specified at

two frequencies can always be realized by a three-element

Foster network. In a degenerate case, a two-element Fos-

ter network will be sufficient. This will be obvious from

the following sketches:

Figure C.l: for situations where Im[Y(wl)] > 0

and Im[Y(w2)] < O ,

Figure C.2: for situations where Im[Y(wl)] < 0

and Im[Y(w2)] < 0 , and Im[Y(w1)] > 0

and Im[Y(m2)] < 0 .
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Thus the form of the Foster network realizing the

imaginary parts of two admittances will be:

ksIs2 + mg) kIs2 + mi)

or

.?+.{
  

sp2+wg ' ‘QZ’

or in a degenerate case, like Figure C.l(a) and C.2(a):

 

ks k‘s2 + mi)

-2———§' or S . (C.3)

S + (01

The real parts of the admittances must be realized first.

In doing so, the imaginary parts will be altered, but they

can always be realized as shown in Figures C.l and C.2.

For realizing the real parts of the admittance

either of the two general forms of networks shown in Figure

C.3 should be adequate. Consider the network of Figure

C.3a.

Let G = fii and R = Then—l-.

1 2 Gz

C613 1

Y‘S’= W+m'

LCG s2 + (RZCG1 l + C)s + G1

(G1 + Cs)(§2 + Ls) '

(s2 + l/LC) + (Rz/L + Rl/L)s

‘ G1 G R ’ G1 R2 ' (C°4)

+ )s

 

2 1 2

3 +175— “5+7.
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=
:
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or F—O

 

e , - -II

(a) (M II

Figure C.3. Networks to realize the real parts of an

admittance specified at two frequencies.

IIN AD

  VV \JV
7w :0)

(a) (b)

  

Figure C.4. Numerator and denominator of Equation (C.7).
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The function defined in equation (C.4) cannot be

negative on the jw axis because it is a positive real

function.

Consider the quantity,

 

 

 

(C.5)

With the substitution of S = jw, only even-power

terms in s will effect the real part of the admittance.

Odd-power terms in s will effect only imaginary parts of

the admittance. With odd-power terms dropped (C.S)

 

 

 

becomes

R G G R

2 l 2 2H1 1 1 2 2

IS + Ed) I3 + '_Lc I " r‘Ri + Rz’I-c' + TIS

Gl 2 2

2 R291 61 R2)
3 + - — 4-

TC" I c ‘L'

Substituting jw for s in (C.6) and simplifying

gives:

004 +w2(R2 + R R )/L2 + R G /L2C2

2 l 2 2 l _ N

G - - 0 (C07)

1 . 2 2 2 D

. J-w + RzGl/LC) + (GI/C + Rz/LN

 

This real part of the desired network, (C.7), must

be positive real. Also any real zeros in w2 must be double;

there are no real zeros on the jw-axis. Thus the numerator,

N, will be of the form.shown in Figure C.4(a) and the
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: I

. l

w w

1 2

Figure C.5a. Real parts of the admittance function at the

frequencies ml and ”2'

Re [If (00)]

\

 

  
 

Figure C.5b. Real part of admittance function Yl(w).
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denominator, D, will be of the form shown in Figure C.4(b).

The ratio, N/D, can be almost any positive number.

Example: Let YR(wl) < YR(w2).

Design a four element G-C, R-L network (like

Figure C.3a) of terminal admittance function Y1(w) such

that Re[Y1(wl)] = YRle). This network will partially

realize YR(w2) Since Re[Y1(w2)] # YR(w2) in general. Let

“
T
u
-
fl

Re[Y1(w2)] = Y;(w2). This is shown in Figure C.5b. Now

by scaling the element values, a zero is created at oz by

reducing YR(w2) by the amount YR(w2)-Yg(w2). Scaling the

element values will not affect the zero designed at ml.

When this is completed, YR(w1) and YR(w2) are realized.

With this result, the modified imaginary parts to be

realized can be calculated and the design is completed

with a prOperly designed Foster network.
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APPENDIX D

/ . ‘x

' STAR” 2
\ -._,.:._/

 

 T

>initialize

Lindices
__I_____ 

 

 

 

  

i O

Irenormalize

L_ weights

 

Wm...

\ END ‘3

Print

I output

WWI..-“

 I

I arrange I

 

 

increment

,extremum

 
index

  

 

 

 

 

 

  

 

 

 

 

 
 

 

 

 

 

  

I'/

,o

.
.

-
-
.
_
.
.

-
.

.
_
w
.

.
—
_
.
.
.
.
.
-
-
.
—
—
—
.
.
_
.
i
.
.
_
_
_
.
.

.
.
—
.
.
a
”
.

-
.

.
—

//’

Ifunction E . I I

I data I ‘ r ’ I

r J Iincrement

"T::!""“ econdary

‘inl'ldllzel I search

L_weights . 1 index _I

-..-_._._T_._.___ l

1 ‘.

/1\ find i

r i Isecondary

___.;L- “i; ; I search

I generate I i point ;

I initial . I “I ‘4

I search I g r. L ;

I point ; ' utilize ‘
...___._J I 1 I

I I 52nd order ;

I d‘ t I ! 3 function i
I a L15 ,. I .- 3

I wegr‘wts ’b‘ I apprOXi' I
l o“ l I a ,

. __¢_m__mm_4 : mation g

1 I L J

i __.__i._m"- .____i_uiii
I ‘ I I I
I I

; Igenerate I perform ‘

I I search [contracting

I I vector I search I

i I I

i )\ I . !
i // l 3

; ‘///' is ~\ No ; perform 3

\\ " o t

I search vector,;»~——-'~expanding I
. ,/ l

9 null? search :

A I

I ,Yes

I .

. z
I

I ‘.

I 2

I ' L

I No A /’/. is .

3 \ , _ _~<— termination

\yz Yes“ required?

I I/

I store

extremum

I point

    

Logic Diagram of the Computer Program
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