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ABSTRACT

THE GEOMETRY OF MULTIDIMENSIONAL SCALING

BY

Daryl W. Tingley

Multidimensional Scaling (M.D.S.) is a process of

finding representations of a given class of objects as

points in a metric space. The metric represents the

similarity (or dissimilarity) between Objects of the

given class. Examples of M.D.S. are the representations

of colors as points in a metric space, and of pure tones

as points on a helix.

Once such a representation has been found, it is

natural to asx if the representation is, in some sense,

unique. The bulx of this thesis is devoted to the study

of uniqueness questions.

An order transformation f between two metric spaces

M and M is a function such that
l 2

That is, order transformations preserve "the order of the

distances". The uniqueness question can be stated as

follows: If f :Ml-aM2 is an order transformation, is f



necessarily a similarity? In general, the answer is no,

and examples are given in Chapter 1. However, by considering

only certain types of spaces, such as subsets of En, we

demonstrate many situations where f is necessarily a

similarity.

Many of the results in this thesis are valid for the

more general metric transformation.‘ A function between two

metric spaces is called a metric transformation if it preserves

equality of distances.

Typical theorems in this thesis are:

Theorem: If M1 and M are convex metric spaces, and
2

f is a bicontinuous metric transformation from M1 onto M2,

then f is a similarity.

Theorem: Let Ss:Em, m 2_2, be a connected set with

non-empty interior. Then any metric transformation of S

into En is either a similarity, or maps S onto a single

point.

In Chapter 6 some results are Obtained about the

existence of order transformations. Typically these results

discuss whether or not a given metric space can be order

embedded into another metric space.
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INTRODUCTION

The various psycho-physical theories associated with

color, sound and other sense perceptions have given rise

to many efforts to "represent" perceptual dissimilarities

as distances in a conventional geometric structure. Newton

[30], Helmholtz [l6], Schrodinger [33], and Henning [17],

are but a few of the scientific figures who have contri-

buted to the geometrization of psycho-physical perception

theories.

More recently a school of perception theorists led by

the contemporary psychologists Torgerson and Shephard have

advanced more purely psychological theories explicitly

distinguishing between the physical properties of light

and the subjective sensations which it produces. These

theories have spawned a technique known as multidimensional

scaling with applications far beyond the boundaries of

perception theory. It is with this notion of multidimensional

scaling (MDS) that this thesis is concerned.

Some sense of the explicitly geometrical thinking of

the Shephard-Torgerson school can be gathered from the

following introductory remarks taken from a recent paper

by J.P. Cunningham and R.N. Shephard ['7]entitled "Monotone

Mappings of Similarities onto a General Metric Space".



STATEMENT OF THE PROBLEM

"In ordinary, nontechnical discussions of the perceived

similarities and differences among things (whether faces,

voices, tastes, odors, colors, etc.), we readily make use

of a spatial metaphor. Thus we may say that one shade of

color is very glggg pg or, alternatively, §§£_;;gm another;

or even that one shade seems to be somewhere between two

 

others. This automatic use of clearly spatial terms such

as "near", "far", or "between" to characterize subjective

similarities and differences suggests that there is an

implicit connection, in human cognition, between the con-

cepts of similarity and dissimilarity, on the one hand, and

the concepts of spatial proximity and distance on the other.

Specifically, it suggests that similarities among objects

are related by some sort of monotone decreasing function to

distances among points corresponding to those objects in

some sort of metric space."

As a first step in trying to determine the nature of

the presumed real number distance function of an individual's

color perception space, much experimenting has taken the

form of studying the responses when the individual is asked

to decide which of two pairs of presented colors "is the

better match". If all such comparisons are made for a given

finite set of colors presumably some evidence is adduced

about the presumed underlying metric. In the early days of

such activity an effort was made to "realize" the resulting



structure "on the blackboard" in such a way that the "black

board distances" (presumably Euclidean 2-dimensiona1)

reflected the order properties of the observed comparisons.

This leads in the direction of the following abstrac-

tions. If S is a set and C a chain (linearly ordered

set) with minimal element 0, and if e is a mapping from

S X S into C satisfying e(x,y) = e(y,x), e(x,y) = 0

if and only if x = y, then (S,C,e) is a C-metrized
 

space. If C is a subset of the nonnegative real numbers,

(S,C,e) is called a semi—metric, or distance space. The

blackboard embedding problem is an attempt to "order embed"

a given C-metrized set S into E2, that is to find a map

2
f: S a E such that e(x,y) g e(u,v) if and only if

d(f(x)of(Y)) S d(f(u)of(v))-

There is, or course, no reason to believe that such

embeddings are always possible. In fact, if S contained

four p01nts x1,x2,x3,x4 such that e(xi,xj) = e(xk,x1)

for all permutations i,j,k,1 of l,2,3,4 then S could

not be order embedded in E2. While the space (S,C,e) may

2
not order embed in E it may be possible to "nearly"

embed it. That is, it may be possible to find a mapping

of S into E2 such that there are relatively few rever-

sals of the order of distances. This idea is at the root

of a scheme divised by J.B. Kruskal of Bell Telephone Labs

to produce the "best" approximate order embedding possible

into a Euclidean space of specified dimension [20]. The

measure of approximation is called the stress of the



embedding and essentially measures the departure from

strict monotonicity of the realized distances. Kruskal

and others have concocted computer programs which make this

embedding process quite simple and efficient. This thesis

does not consider approximate order embeddings.

There are a number of natural questions about order

embeddings, the first of course being, is such an embedding

possible? Then, is it unique, in some sense? What about

the possibility of embedding in spaces other than B“?

In practice the psychologist is trying to adduce the nature

of the "underlying" metric by examining a large number of

finite subsets. Is there any reason to suppose that, even

if every finite subset of an "unknown" metric space is order

embeddable in, say, E2, then the space itself must be order

embeddable in E2?

Broadly speaking, three questions suggest themselves.

These questions will also be asked about metric embeddings

(see Chapter 1).

I. Given two distance spaces N1 and N is N
2' 1

order embeddable into N2? We call this the

existence question.

II. Is the embedding unique, in some sense? We call

this the uniqueness question.

III. If each finite subset of N is order embeddable

1

into N2, what is the relation of N1 to N2?



Question I would seem to be the most important. Note

that there is no loss of generality in beginning with a

distance space, rather than some C-metrized space (S,C,e).

For if there is an order embedding f of (S,C,e) into

a distance space (N2,d) there is induced by this embedding

a one-to-one map from C to If? given by e(x,y) +

d(f(x),f(y)). Thus, for there to be any hope of (S,C,e)

being order embedded into N2, there must be a one-to-one

mapping of C into Iii, and we may assume the minimal

element of C goes to 0. Using this map, we may take C

to be 12+.

Nbrmally, an M.D.S. theorist would want N2 to be a

familiar space, or a subset of a familiar space, such as

En

or a normed linear space. We will present some answers

to questions of type I, although many of them are negative

in that they show, for certain N1 and N there is no2.

order embedding of N1 into N2.

Question II is very important in the applications of

MDS to prdblems of data analysis. It is widely assumed that

two different order embeddings of a distance space in En

are "nearly" equivalent "up to a scale factor". This

presumably means that they are "approximately" similar. But

a moment's reflection shows that this is not literally

true. Imagine a set in E2 with large (finite) cardinality

and one additional point, very far removed from this set.

Certainly this latter point can be rather freely perturbed

without affecting the order of the distances, but the



resulting set will not be even approximately similar to

the original set.

MDS theorists would characterize this set as excep-

tional and maintain their continued faith in the "principle

of metric determinancy" which asserts that in a "highly

structured" space such as En the order of distances of a

configuration "essentially" determines the configuration, if

the cardinality of the configuration is "large" and the

configuration is not "exceptional".

There is strong intuitive reason to feel that there

is an element of validity to this “principle" but its

precise formulation let alone its proof is very elusive.

One of our main purposes in this thesis is to examine the

proposition that the order of distances of a configuration

in a highly structured space determines the configuration.

Unfortunately we can make no contribution to the third

question. Results of this type would be extremely useful,

for in practice the MDS user deals with finite subsets

of infinite sets - such as a finite set of colors, and tries

to determine the underlying distance function from this.

This thesis is divided into 6 Chapters. To help

orient the reader, and to indicate what we are trying to

achieve we briefly outline these Chapters.

Chapter 1, called Preliminaries, is used to introduce

definitions and to make precise some of the ideas discussed

in the Introduction. In particular, §2 formally defines the

 



concepts of order transformation and metric transformation,

while §3 further discusses the problems to be considered in

this thesis. Chapter 1 concludes with a number of examples,

designed to help the reader become familiar with order and

metric transformations, and with the types of problems we

consider.

Chapter 2 investigates order and metric transformations

in very general metric spaces. The results obtained form

the foundations for much of the work in later chapters.

Sections 1 and 2 primarily investigate the continuity of

order and metric transformations. Section 3 investigates

metric transformations between convex spaces. Much of the

work on convex spaces is a reorganization of previously

known results. Finally, §4 investigates the effect of a

metric transformation on the curvature of a curve. This

is done using a metric definition of curvature.

Chapter 3 investigates metric transformations between

subsets of normed linear spaces (N.L.S.). Section 1 consists

largely of preliminaries such as definitions and known

results. In the second section, we apply results from

Chapter 2 and investigate the continuity of metric trans-

formations between subsets of N.L.S. The main results of

the chapter are presented in 93, and the following corollary

is typical.

Corollary_3.19: Let M1 be a N.L.S. of finite

dimension at least 2, with a strictly convex unit ball. If



Us:M1 is a set with a non-empty interior, then any metric

transformation from U into a N.L.S. with the same dimension

as M1, is a similarity.

Chapters four and five investigate metric transformations

between subsets of Euclidean spaces. Section 1 of Chapter

four contains bacxground material. In section 2, a theorem

of Schoenberg is extended. Schoenberg showed that any metric

(or order) transformation of Em, m 2.2, into En is

necessarily a similarity. We extend this to subsets of

Em. In section 3, all metric (and order) transformations

of the real line into En are characterized. This is an

elaboration of a known result (von-Neumann and Schoenberg).

Finally, section four of Chapter four investigates metric

and order transformations from the unit sphere of En into

arbitrary N.L.S.

Chapter five considers metric transformations between

hypersurfaces in En. Techniques of differential geometry

are used, forcing us to assume that the metric transformation

is differentiable.

Finally, Chapter 6 briefly discusses "existence questions".

That is, when do order transformations exist between two sets?

There are two sections, the first of which deals primarily

with finite sets, the second with infinite sets.



CHAPTER 1

PRELIMINARIES AND EXAMPLES

As indicated in the introduction, the principle

concern of this thesis is with the problems of order and

metric embeddings of one distance space into another,

with emphasis on determining when such embeddings are

unique. we nOW‘WiSh to make these concepts precise.

§1. By a distance spagg is meant what is commonly

called a semi-metric space, that is a set" N together

with a mapping d: N x N 4 If? (non-negative) such

that for (x,y) 6 N X N, d(x,y) = d(y,x) and d(x,y) = 0

if and only if x = y. For the most part, although not

always, our distance spaces will also satisfy the triangle

inequality, in which case the space is called a metric spagg,

We denote a distance space by listing the set and the

mapping symbol thus: (N,d), or simply by writing the set

symbol N. Symbols used for distance spaces in this thesis

are (N,d), (N’,d’), (Nl,d1), and (N2,d2). If the space

is to also satisfy the triangle unequality the symbols

(Mod): (M',d’), (M1,dl), (M2,d2) are used, and we

also state explicitly that the space is to be metric.
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As a metric space is a topological space, the concept

of continuity is very familiar. We briefly discuss

continuity in general distance spaces.

A sequence {pi} in a distance space N is said to

converge to p if and only if lim d(p,pi) = O. This is

denoted by lim pi = p. A function f from N1 into N2

is said to be continuous a; .2 if and only if for any

sequence {pi} with lim pi = p it is true that f(p) =

lim f(pi). Considering f as a function 9329 its range,

f is said to be bicontinuous if and only if f is inver-

tible and both f and f-1 are continuous. The distance

function d of a distance space N is said to be con-

tinuous if and only if for any two sequences {pi} and

[qi} with lim pi = p and lim qi = q it is true that

lim d(pi,qi) = d(p,q). It is easily seen that a metric is

continuous. Distance spaces with continuous distance

functions are important for, unlike distance spaces in

general, the sets of the form [xld(p,x) < 6, 6 > 0} form

a basis for a topology on the set N. We refer the reader

to Blumenthal [‘4] for more details.

Two distance spaces, N1 and N2, are said to be

isometric if and only if there is a function g from N1

onto N2 such that for x,y 6 N1, d1(x,y) = d2(g(x),g(y)).

The function g is called an isometry. If g is such that

for x,yENl, d1(x,y) =kd2(g(x),g(y)), k > 0 then N1 and

N2 are said to be similar and g is called a similarity.
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Two isometric distance spaces are, from a geometer's view-

point, "the same", while two similar distance spaces are "the

same except for the unit of measurement".

We assume a familiarity with the elementary topology

of metric spaces, including commonly used terms. Strictly

geometric concepts such as arclength, geodesic, curvature,

etc. are defined when they are first used. For the most

part the terminology of Blumenthal [4.] is used.

In addition to some topology, the reader should be

familiar with the concept of a normed linear space, and a

linear transformation for Chapter 3, some linear algebra,

including some knowledge of the standard theorems on

simultaneous diagonalization of linear transformations for

Chapter 4, and a knowledge of the differential geometry of

hypersurfaces in En for Chapter 5.

We often look at very specific metric spaces. These

include

En - n-dimensional Euclidean space

Sn - n-dimensional spherical space

Hn - n-dimensional hyperbolic space.

n . .
By an m-flat of En,Sn, or H we mean an isometric

image of Em,Sm, or Hm in En,Sn, or Hn respectively.

N - Hilbert space. By this we mean all sequences

Q

x1, . . . ,x , . . . of real numbers such that Z x?
n i=1 1

with the usual inner product.
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We also consider normed linear spaces (N.L.S.). In

particular, the spaces I; which consist of all n-tuples

oereal numbers with the norm given by “(xl,...,xn)”p =

(23linp)l/p and 1: whose norm is given by

”(Xl,...,xn)H¢ = mixflxil}, will be used.

We refer the reader to Blumenthal [‘4] for a more

detailed discussion of these spaces.

§2. We now make precise the notion of order preserving

transformation.

Definition: If N1 and N are distance spaces and
2

f is a mapping from N1 into N2 such that for all

x,y,u,v 6 N1

(1) d1(xoY) S d1 (111V) :9 d2 (f (X)of(Y)) S d2 (f (u) of(V))

then f is called an order preserving transformation or

simply order transformation of N1 into N2. The image

f(Nl) is said to be order isometric to N1 and N1

is said to be order embeddable into N
 

2.

Some properties of order transformations follow

easily from the definition. It is easy to see that if

(1) holds for all x,y,u,v E N then
1

(2) dl(x.y) = dl<u.v) a d2(f(x).f(y)) = d2<f(u).f(v))

From (2) it follows that f is one-to-one (to see this

let x = y), and then because of the symmetry of (1) it
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1
is easily seen that f- is an order transformation from

f(Nl) onto N1. We often refer to an onto order transfor-

mation as an order isomorphism, and when we ask if N1

can be order embedded into N we simply mean: Is there
2

an order transformation from N1 into N2?

Much of what we do is valid under the weaker assump-

tion that the transformation be a metric transformation.

Definition: If N1 and N are distance spaces and
2

f is a mapping from N1 onto N2 such that

(3) (110(0),) = (3101: V) a d2 (f (X) I f (17)) = d2 (f (11) I f (V))

then f is called a metric transformation and N2 is

said to be a metric transform of N1.

The term "metric transformation" was first used by

Wilson in [40]. Some of the results from this paper will

be mentioned later.

A metric transformation can be described as equality

preserving, rather than order preserving. Note that (3)

differs from (2) in that the implication is only in one

direction. A metric transformation need not be invertible,

and even if it is, the inverse need not be a metric trans-

formation. The term metric transformation is used rather

than, say, "distance transformation" to stay close to the

terminology established in the literature. It is clear

that if f maps a distance space to a single point, then

f is a metric transformation. This is called the trivial

metric transformation.
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The distance pg; D(N) of a distance space (N,d) is

merely the set of non-negative real numbers which occur as

distances in (N,d), in other words the range of d.

Associated with a metric or order preserving transformation

f from N1 into N is a mapping pf from D(Nl) into
2

D(N defined by pf(dl(x,y)) = d2(f(x),f(y)). The2)

function pf is called the scale function of the transfor-

mation f. If no confusion arises it is denoted simply by

p. Of course p(O) = 0. If lim Efgl' exists, it is called

ddO

the spread of f. This limit is used extensively in

Chapter 3, and consequences of its existence are used

throughout the thesis.

It is easily seen that a metric transformation is an

order transformation if and only if its scale function p

is strictly monotone. In this case, p is one-to-one,

1 1
and p- is the scale function of f-

It is the monotone characteristic of the scale function

that the M.D.S. theorists are anxious to attain in their

embeddings. If their scale function fails to be monotone,

then a least squares measure of the departure from mono-

tonicity is what Kruskal calls the stress of the mapping.

Zero stress corresponds to strict monotonicity while low

stress satisfies the M.D.S. theorist that he has a "good"

representation. Our concern will always be with zero stress.

It is easy to see that a metric or order transformation is

an isometry or similarity if and only if p(d) = d or
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p(d) = kd, k > 0 respectively. Note that isometries and

similarities are order preserving.

§3. In the introduction we said the purpose of this

thesis is primarily to work on the "uniqueness" question,

with some work on the "existence" question. We now try

to be more explicit as to the meaning of these terms.

The "existence" question asks: When is one distance

space order embeddable into another? This can only mean

the following: Given two distance spaces N1 and N2,‘

is there an order transformation f of N1 into N2? The

scope of the question may be widened by asking: Given a

distance space N1 and a class of distance spaces 0.

is there an order transformation f of N1 pppp some

member N2 of 6? Note the assumption of onto here, rather

than into. If desired, 6' could be such that any subspace

of any member of 6' is also in Cu hence the above question

includes the same question with into, rather than onto,used.

On the other hand, it may not be desirable for f(Nl) to be

certain subspaces of N Thus phrasing the question as2.

we do allows more flexibility. The same types of questions

can also be asked of metric transformations.

The uniqueness question is harder to state, for it

is not clear what "unique" means. If f and g are

order transformations of N1 onto members of a class <3

of distance spaces we could ask if necessarily f 5 g.
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However, this is too restrictive for our purpose. For

example if C is all subspaces of En, f: N 4 f(N) g E

is an order embedding, and h is a similarity of En

onto itself, then hof is also an order embedding of N

into En. As f(N) and h(f(N)) are similar, so

essentially "the same" from a geometric view point, it

would be more desirable to ask if f were unique, "up to

a similarity". This could be phrased as follows: If f

and g are order transformations of N onto members of

a class of distance spaces Cu is there a similarity h

such that h°f E 9?

Order isometries are invertible, so in the above

question we have h E gof_1. N w because 9 and f are

order isomorphisms, gaf-l is also an order isomorphism

and gof-l: f(Nl) 4 g(Nl). Thus equivalent to the above

question is the following: If f is an order transforma-

tion from N1 onto N N1 and N2 members of a class2'

O of distance spaces, is f a similarity? This phrasing

is nice as we stay within the class 6' of spaces, yet the

seemingly more general question (above) is answered.

Either of the above two questions could be asked of

metric transformations as well, however they would no

longer be equivalent. (A metric transformation need not

be invertible.) Most of our work will consider the second

question, with metric rather than order transformations

used. That is, we ask: If f is a metric transformation

from N1 onto N2, N1 and N2 members of a class C. of



17

distance spaces, is f a similarity? Occasionally we will

insist that f have further properties such as continuity,

or differentiability, but We try to stay away from

this, putting restrictions on the class 0, rather than on

the function f.

§4. At this point we wish to present some examples

of order and metric transformations. Further examples are

presented in appropriate Chapters - usually as counter-

examples. The purpose of the following examples is to

show that, even in "highly structured" spaces, the order

of the distances of a set does not determine the set, even

up to a similarity. In addition, in none of these examples

is there any hope of formulating a notion of "approximate"

similarity.

Example 1 shows that, given any metric or distance

space, there are many metric or distance spaces order

isomorphic to it.

Example 1 (Wilson) l39_[: Let p be any real valued

function with domain the non-negative real numbers, and

with the following properties

1) 9(0) = 0

2) p is strictly increasing

3) P(lt1+ (l-l)t2) 2 lp(tl) + (l-l)p(t2) for

t1,t220,ogxg1.

It is shown in [39] that if (M,d) is any metric space,
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then (M,p°d) is also a metric space. That (M,d) is

order isomorphic to (M,pod) is easy to see. The scale

function of the order transformation (the function which

assigns each point p of M to itself) is p. Example

3 is of this form. Condition (3) is used only in proving

(M,pod) satisfies the triangle inequality. Thus if one

were interested only in distance spaces, Condition (3)

could be omitted.

Example 2: Let S be a set of points on the line

segment [qr], on the y-axis, and let p and p' be any

two points on the x-axis, further than d(q,r) from the

origin (see Figure 1.1) . Then S U {p} is order isomorphic

to S U {P'}. The function

f(x) =

p’ x=p

establishes the order isomorphism. See Figure 1.1.

Example 3: A semicircle of radius r and a line

segment of length 2 are order isomorphic (see Figure 1.2).

The order isomorphism is f(x) = (r,e) where 9 = E?',

and x and (r,9) are as in Figure 1.2.

Example 4: The mapping from It to a helix given by

t 4 (a cos t, a sin t, bt) where a and b are constants,

is easily seen to be a metric transformation, whose scale

2 2 2
function is given by p2 (d) = 4a sin2(%) + b d . If

b2.2 2a2, by checking the derivative of p, it is seen

that f is an order transformation.
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Example 5: Let C be the unit circle

[(cos 6, sin e)lo g 6 < 2?]. We map C into E4 by

f((cos 9, sin 9)) = (cos a, sin 9, %cos 29, %sin 29)

If p = (cos 91, Sln 61) and q = (cos 62, Sln 92) then

 

e -e

d(p.q) =/4 sin2 (32—1)

 

e -e

d(f(p),f(q)) =/4 sin2 FAT—1') + E":"m2(°2"91)

Because both d(p,q) and d(f(p),f(q)) depend only on

the quantity I62-Gll, f defines a metric transformation

of C into E4. Furthermore, by investigating the functions

 

 

g(t) =./4 sinzt/Z and h(t) =./4 sinzt/2+sin2t , it

can be shown that f is an order transformation.

4 ofThe helix, the circle, and the curve in E

Example 5 are known as screw curves. A screw curve in a

metric space M is a metric transformation of fit into M.

von-Neumann and Schoenberg [29] characterized all continuous

. n

screw curves in E as those curves of the form

(Alcos klt, A sin klt, A cos k t, A sin k t,...,ct)
1 2 2 2 2

where Ai'ki' and <: are all constants. We shall present

a proof and extension of this in Chapter44.

Example 6: Consider the space (lR,d) where ]R is

the set of real numbers and d(x,y) =\/Ix-y|. It is easily

seen that CR,d) is a metric space and is order isomorphic
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to fit. It is shown in Blumenthal ([4-], Sec. 54) that this

space is ppp isometric to any subset of En, for any n,

but it is isometrically embeddable in Hilbert space. Note

that the scale function of the order isomorphism, p(d) =\/d ,

has no spread, for lim‘é? does not exist. This space,

daO

considered as a subset of Hilbert space, is also interesting

because it is a curve which has a tangent at no point.

Example 7. Let M be either hyperbolic or spherical
 

n-space. Let S c M be an m-flat in M, m,< n, and let

a (a less than g x radius,for spherical space) be given.

For 3 es, let f(s) be that point of M which is a

distance a above S. (i.e. d(s,f(s) = o and the segment

joining s to f(s) is perpendicular to S). Then f is

a metric transformation for, if d(p,q) =d(p",q’) , it is easy

to show the quadrilaterals qu(q)f(p) and p’q’f(q’f(p’)

are congruent.

 

    

f(p) f(r) f(q)

1 2 3 4

1 1

p r q

Figure 1.3



22

To see that f is ppp a similarity, consider three

distinct, collinear points p,q, and r in S, with

d(p,r)4-d(r,q) = d(p,q). If f is a similarity, then

d(f(p).f(r)) +d(f(r).f(q)) = d(f(P).f(q)) - Angles 1 and

2 (in the above diagram) are equal, as well as angles 3

and 4. (Using congruent triangles.) Thus a: 2+): 3={ 1+{ 4.

In both spherical and hyperbolic space, the sum of the angles

of a quadrilateral is ppp 360°. Hence { l-+{'2-+{’3-+{ 4 # 360°.

So { 2-+{ 3 # 180°. Thus f(r) does not lie on the line

through f(p) and f(q) and

d(f(p),f(rH+d(f(r).f(q)) #d(f(p)+f(q)) . C]

These examples show that in general the order of the

distances of a distance space doesfl determine (even up

to a similarity) the space. Even rather nice subspaces of

En, such as Examples 3, 4, and 5 are not determined by the

order of their distances. In none of these examples could

one hope to say the two Spaces are "approximately" similar.

One of our goals is to show that, at least in common

well structured spaces, there may be some truth in the

statement that these examples are exceptional. On the other

hand, we hope any user of M.D.S. would recognize the limi-

tations of MJD.S. shown by these examples.



CHAPTER 2

RESULTS IN GENERAL METRIC SPACES

In this Chapter results are obtained about order and

metric transformations in general metric spaces. The results

obtained are nice applications of metric geometry.

The Chapter is divided into four sections. The first

two deal, for the most part, with the continuity and

bicontinuity of metric and order transformations. The first

section contains a series of lemmas, all of which are easy

to prove. The major result shows that any order transfor-

mation between two distance spaces is necessarily bi-

continuous, unless one of the two spaces is discrete.

Some properties of the scale function are also developed.

The second section considers the continuity of metric

transformations. It gives sufficient conditions for a metric

transformation to be continuous. The conditions are mostly

on the domain and range of the transformations but, unlike

the same problem for order transformations, some (quite

rnild) conditions are imposed on f.

The third section shows that in the class of convex

metric spaces, the order of the distances determines the

Space, up to a similarity. There is also a metric trans-

formmation version of this and several results which relate

23
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the arc length ci’ a curve, and the image of that curve by

a metric or order transformation.

Finally, the fourth section includes an interesting

result relating the curvature of a curve and the curva-

ture of the image of that curve by a metric, or order,

transformation.

§l. We begin Section 1 with a discussion of what

is to be done. Let f be a metric or order transformation,

from a distance space (N1,d1) to a distance space (N2,d2),

with scale function p. Lemmas 2.1 and 2.2 show that if

f is an order transformation, and neither Nl nor N2

is discrete, then f is bicontinuous. This is done by

showing that necessarily 1im p(d) = 0, from which

deo

continuity follows easily. (A distance space N is said

to be discrete if for each p E N, there is an e > 0

such that [x|d(p.X) < s} = [Pi-1

Lemma 2.3 shows a similar result for f a metric

transformation. Here we assume 1im p(d) = 0, hence the

doc

<:ondition for continuity depends very much on the par-

tricular transformation involved.

Lemmas 2.4 and 2.5 show a converse of Lemma 2.3.

They present conditions under which 1im p (d) = 0. We

dao

use: this limit later in this Chapter, and in Chapter 3.

"
L
.
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Lemma 2.6 does not really concern continuity. However

it belongs with this series of lemmas, so we include it

here. It shows that a metric transformation is trivial

(i.e. maps the entire space to a single point) if the

domain is connected, and for some 6 > O, p(d) = O for

all d < s. This result is used in Chapters 3 and 4.

Before proceeding to Lemma 2.1, consider the following

example.

Example: Let (N,d) be any non-discrete distance

space. Define a new distance r on N by

O, x = y

r(xoy) =

d(XoY) + 10 X 7'! Y

Define f: (N,d) 4 (N,r) by f(x) = x. Then f is

clearly an order isomorphism. However, f is not con-

tinuous, for (N,r) is discrete while (N,d) is not. B

Thus, not all order transformations need be continuous.

Lemma 2.1 shows that many are.

Lemma 2.1: If f is an order isomorphism from N1

onto N with scale function p, and N2 is not discrete,20

then f is uniformly continuous, and lim p(d) = O.

dao '

Proof: Let 6 > 0 be given. Since N2 is not

discrete, there are f(p), f(q) in N2 with

O < d2(f(p),f(q)) < e. Let 6 = dl(p,q) and notice that

5 > O. For any x,y 6 N1 with d1(x,y) < 6 = dl(p,q)

we have
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d2(f(x).f(y)) =p(dl(x.y)) $P(d1(p.q)) =d2(f(p).f(q)) < 6

Hence f is uniformly continuous and lim p(d) = O. D

d40

Lemma 2.2: If f is an order isomorphism from N

onto N2, then f is bicontinuous if and only if

(a) both N1 and N2 are discrete

(b) neither Nl nor N2 is discrete.

Proof: It is clear that if f is bicontinuous either

(a) or (b) holds.

If (a) holds then, since an order isomorphism is one-

to-one, and every set in each space is open, f is bi-

continuous.

If (b) holds, the bicontinuity of f follows from

the previous Lemma, and the fact that f"1 is also an

order isomorphism. D

Thus we have established that if N and N are
l 2

non-discrete distance spaces, any order isomorphism between

them is continuous.

Lemma 2.3 appears to be similar to Lemma 2.1, however

the condition is on the scale function p (which depends

on the metric transformation f). Thus Lemma 2.3 is not

nearly as strong as Lemma 2.1.

Lemma 2.3: If f is a metric transformation from

N into N with scale function p, and lim p(d) = O,

1 2 d-o

then f is uniformly continuous.
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Ppppg: Let 6 > 0 be given. Let 6 > 0 be such

that d < 6 = p(d) < e. Let p 6 N1. Then if q is any

point Of N1 With dl(Poq) < 6 we have d2(f(p),f(q)) =

p(d1(p.q)) < e. The lemma follows. C]

The limit 1im p(d) = O which appears in the above

d40

Lemmas is important and we wish to study it further. Lemma

2.4, and a consequence of it, Lemma 2.5, will be used in

future chapters. These may be considered as a converse

to Lemma 2.3.

Lemma 2.4: Let f be a continuous metric transfor-

mation from N1 into N2 with scale function pp. Suppose

there is a p 6 N1, and a number a > 0 such that 0 31b g a

implies there is a q 6 N1 with dl(p,q) = b. Then

lim p(d) = O.

d40

Proof: Let 8 > 0 be given. Since f is continuous,

there is a 6 > 0 such that d1(p,q) < 6 ‘implies

d2(f(p),f(q)) < e. For every b > O, b < max[a,6}, there

is a q 6 N1 with d1(p,q) = b. Hence

Nb) = P(d1(p.q))= d2(f(p).f(q)) < e

That is, b < maxfa,6} =° POD) < 6:. Hence 1im p(d) = O. [J

640

Lemma 2.5 states Lemma 2.4 in terms of familiar

properties of distance spaces. A continuous distance

function is needed here, as well as in Lemma 2.6, to con-

sider the topological property of connectedness.
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Lemma 2.5: If (N1,d1) is a distance space with a

continuous distance function, containing a connected

subset which is neither empty nor a singleton, then any

continuous metric transformation f of N1 onto N2.

with scale function p, satisfies 1im p(d) = O.

d40

Lemma 2.5 follows easily from Lemma 2.4 and the

Intermediate Value Theorem.

Lemma 2.6 is of a slightly different flavor, but we

include it here as it also examines the scale function

near 0. This lemma will be used several times in

Chapter 4.

Notation: For any two sets C and T, C\T is defined

tobe [xlxec and xiT].

Lemma 2.6: Let f be a metric transformation from
 

N1 into N2 with scale function p. If for some 6 > O,

p(d) = O for all d,O < d < 6. then flc is trivial for

any connected component C of N1.

Proof: Let C be a connected component of N1 and

let pec. Let T= [xEC|p(dl(P.x)) =0}.

Note that f(T) = {f(p)}. Let xEET and let y be

such that d1(x,y) < so Then

d2(f(p).f(y)) d2<f<x).f<y))

p (c1l (X.y))

= O
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Thus yET, and T is open.

Let xeC\T, and let y be such that dl(x,y) < 6:

Now as above, if y 6T, it would follow that x 6T.

Hence y€C\T, and C\T is open.

Thus C = T U (C\T) so is the union of two disjoint

open sets, hence one must be empty (as C is connected).

As p GT, we have C = T, proving the lemma. C]

This concludes Section 1. We have seen that order

transformations tend to be continuous, and even bicontinuous.

Much of the work in Sections 3 and 4 of this Chapter uses

the assumption that f is a bicontinuous metric transfor-

mation. Lemma 2.2 then shows that this assumption is very

mild if one studies order, rather than metric transformations.

§2. Lemma 2.3 gave a condition sufficient to force

the continuity of a metric transformation f, however it

is not useful in answering a question such as this:

"If a given distance space N2 is a metric transform

of the given distance space N1. is the transformation

involved continuous?“
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Example 2, Chapter 3, shows a metric transformation

f: 13913—2, ]R which is not continuous. On the other hand

there are certainly continuous metric transformations

of JR onto R (the identity for example). Thus for

N1 = N2 = II, the answer to the above question depends

on the transformation.

If the above question were asked of order, rather than

metric transformations, Lemma 2.1 would give sufficient

conditions on N2 so that the answer is yes, regardless

of the transformation involved. The theorem we are about

to present, Theorem 2.9, is used to answer the above ques-

tion for metric transformations. In itself it does not

answer the question, for some of the conditions involve the

particular transformation. However, further information

about the domain and range can often be used to show that

the assumptions are satisfied, regardless of the particular

transformation.

Before proceeding with this theorem, we introduce

some definitions and two lemmas. The definitions are all

standard in the study of curve theory and arclength. Not

all will be needed here, but it seems appropriate to keep

them together. We define arcs, arclength, etc. in distance

spaces, however in general it is necessary to have a metric

space to obtain satisfactory results involving them.

Lemma 2.11, which is only true in metric spaces, illustrates

why arcs are usually studied in metric spaces.
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Dgfiniiignj A subset of a distance space N is a

segment if and only if it is isometric to an interval of

the real line. A subset of N is a line if and only if

it is isometric to the entire real line.

Definition: A subset y of a distance space N is

an gpg_if and only if it is a homeomorphic image of a

closed segment of the real line. An arc y = y([a,b]) is

said to jgip, p and q if and only if y(a) = p and

v(b) = q-

Definition: Let Y = y([a,b]) be an arc in a distance

space N. If P is a finite subset of y ‘with

P = [Po = Y(a).p1.p2.---opn = Y(b)} where pi = v(ai) and

oi_1 g oi, i = l,...,n then P is said to be normally

ordered with respect to the arc y.

Definition: Let P be normally ordered with respect

to an arc y. We define 2(P) by

n

£(P) = .Z d(Pi_llpi)

1=1

The length of the arc v, called £(y), is defined by

£(v) = sup 2(P)

P

‘where the sup is taken over all sets P normally ordered

with respect to y. If £(y) < a, then y is called a

rectifiable arc.
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Definition: An arc y = y([a,b]) in a distance space

N is said to be a geodesic arc if and only if its length is

no greater than the length of any other arc joining y(a) to

y(b). That is, if and only if 3(7) = inf £(9) where the

9

inf is taken over all arcs 6 joining y(a) to y(b).

Remark: This usage of the term "geodesic", although

consistent with that of Blumenthal, contrasts sharply to its

usage by Buseman and differential geometers. They define a

geodesic as a curve which is locally a segment. Note that a

closed segment in a metric space is a geodesic arc.

Lemmas 2.7 and 2.8 will be used in the proof of

Theorem 2.9, and later in this Chapter.

Lemma 2.7: Let y = y([a,b]) be an arc in a distance

space N with a continuous metric d, and let r > 0 be

a given distance. Let t 6 [a,b] and assume

d(y(t),y(b)) 2_r. Then there is an s E (t,b] with

d(Y(t).Y(s)) = r-

Proof: This is a simple application of the intermediate

value theorem.

Consider the function g: [t,b] 4 I! defined by

g(r) = d(Y(t),y(r)). Then 9 is continuous, since both

the distance function and Y are continuous.

9(t) d(v(t).Y(t)) = O

9(b) d(Y(t).Y(b)).2 r
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By the intermediate value theorem, there is an s E [t,b]

with g(s) = r. Also 3 ¥ t for otherwise 0 = g(t) =

9(3) = r, contradicting r > 0. Thus, the lemma is

proved. C]

Lemma 2.8: Let y = Y([a,b]) be a rectifiable arc

in a distance space N with continuous metric d. Let

r > 0 be a given number. Then there exists a set

9 =[po,...,pn } in y with Y(a) = P0: Y(b) = Pr 0

n

r r

d(pi-l'pi) = r, 1 g i < nr

d (pnr_l. pnr) S r

and the set {pi} is normally ordered with respect to y.

Proof: Let p0 = y(a). Assume p0,...,pm have been

defined. If d(pm,y(b)) g r, 1et pm+1 = Nb). and let

nr = m + l. Otherw1se, we Obtain pm+1 as 1n Lemma 2.7

and proceed, as above, to find pm+2.

We need now to show that eventually the process ter-

minates, that is, that for some m, pm+1 = y(b),.

For any m, consider S = [po,...,pm,y(b)}. S is

normally ordered with respect to y, hence

MY) 2 US)

at

= Z) d(Pi-l'pi) + d(pmoY(b))

i=1

= i r + d(pmnvfbH
i=1

‘2 mr.
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Thus m S.£{¥L , so m cannot be arbitrarily large. The

lemma is now complete. B

One more definition is needed before Theorem 2.9

can be stated. This definition is discussed further after

the statement of Theorem 2.9.

Definition: The distance space N is said to satisfy

the long legged local isosceles property at a point p 6N if

and only if there is a number 1(p) > 0 such that for

any 6 < l(p), and for any q with d(p,q) < 6 there

exists 5 E N’ with d(p,s) = (s,q) = 6. The number h(p)

may be a.

P

>3
q 6

Figure 2.1

Theorem 2.2: .Let f be a metric transformation with

scale function p from a metric space (Ml,d1) to a

metric space (M2,d2). Assume there is a point p 6 M1 and

a number 1 > 0 such that

(a) Ml satisfies the long legged local isosceles

property at p with x(p) = x.

(b) There is a point q 6 M1, with f(p) :1 f(q), and

a rectifiable arc ygg M1, joining q to p.

(c) The set f({xld1(p,x)<:%3) is pg; uncountably

discrete.
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Then for every t EM the function gt is
1 ‘=fl{x|dl(t.x)<§}

1
bicontinuous. Furthermore f,gt, and g; are all

uniformly continuous.

The hypotheses of this theorem may seem awxward, but

they are easy to apply. Many spaces satisfy the long

legged local isosceles property. It will be shown in

Chapter 3 that any open subset of a normed linear space

(of dimension at least 2) satisfies it at each point. In

Chapter 6, it is shown that a smooth hypersurface in En

(n 2_3) satisfies it at each of its points. Also, it can

be shown that any point of an open subset of either hyper-

bolic or spherical n-space (n 2.2) satisfies the long

legged local isosceles property.

Assumptions (b) and (c) depend on the particular metric

transformation, although they seem to be "mild" conditions.

Fortunately, in practice, assumptions on the domain and

range can often be substituted for these. For example,

in Chapter 3 it will be shown that if f: U 9232) v is a

metric transformation and U and V are both open subsets

of a finite dimensional normed linear space, then (b) and

(c) are satisfied.

Note that we require both the domain and range of f

to be metric spaces. This is unfortunate, and may not be

necessary. However we have been unable to prove or to

disprove such a theorem without the triangle inequality.

The proof of Theorem 2.9 is in 5 parts. The first

'two show the continuity of (at, from which the continuity
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of f follows easily, the last three that gll is

continuous.

In part (1) we show that some arbitrarily "small"

distances are transformed to "small" distances. It is here

that we use (c). In part (2) the long legged local

isosceles property and the triangle inequality are used to

show that if some arbitrarily small distances are trans-

formed to "small" distances, then all "small" distances are

transformed to "small" distances. Thus f is continuous.

To show 9;} is continuous it is necessary to show

"small" distances come from "small" distances. Using the

long legged local isosceles property and the rectifiability

of y, for each r, O < r < x, a set of points

P = qIP IP ...-.9 - .S,p = P
O 1 2 nrl nr

is constructed with the distance between any two adjacent

points being r. Then d2(f(p),f(q)) g (nr-+1)p(r). If

lim (nr-tl)p(r) = 0 then f(q) = f(p), contradicting (b).

r40

Thus as p(r) becomes "small", nr must become correspond-

ingly large, which, it is seen, only occurs if r becomes

"small". From this, the continuity of g2} follows.

In part (3), the pi's and s are defined, and the

relationship between nr and r is studied. In part(4),

gt is shown to be one—to-one by verifying that p(r) # O,

-1
O < r < 1. Finally, in part (5), the continuity of gt:

is established.
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Notation: Let B(x,r) = [y 6 Mlld1(x,y) < r].

Proof of Theorem 2.9:

(1) Let a > 0 be given. Then there is a 6 < k

such that p(6) < e.

Egoof of (IL: Assume the contrary. That is, assume

there is an e > 0 such that for all 0 < 6 < l: p(6) 2,6-

Then for any xl-leeB(p,)2‘-) it must be that d2(f(x) .f(y)) =

p(d1(x,y));;e. Hence fl is one-to-one, and
B (p. x/2)

f(B(p, %)) is discrete. On the other hand, B(p, %)

contains an open subset of the arc y, so is uncountable.

Thus f(B(p, %)) is uncountably discrete, contradicting

(c), and (1) has been proven.

(2) The function f is uniformly continuous.

Proof of (2L: Let 6 > 0 be given. By (1), choose

6 > O with 6 < x such that p(6) <'§. Let

d < min[6,dl(p,q)] be given. By Lemma 2.7, there is a

t E Y such that d1(p,t) = d, and by the long legged

local isosceles property of M1 at p, there is an s with

d1(p,s) = dl(s,t) = 6. Then

p(d) = d2<f(p).f(t)) g d2(f(p).f<s)) + d2(f<s).f(t)) _<.

29(5) < 6

Thus we have shown that lim p(d) = 0, so (2) follows

d40

by Lemma 2.3.
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(3) For each r < k,d2(f(P).f(Q))S(£13)’+2)P(r)-

Proof 0:4(3L: By Lemma 2.8 there is a normally ordered

subset of y Pr = [po = q,pl,...,pn ,pn p} with

r-l r

d1(pk.pk_1) = r. k < nr. and d1(pnr.Pnr_ 1) g r < 2r.

By the long legged isosceles property there is an s with

d1(Pn as) = d1(S.P _1) = 1'. NOW 4(Y) 2 1(Pr) 2 (hr-1)]:0
n

r r

Thus nr S.L£¥1 + 1. Also,

nr-l

d2(f(p).f(q))g 133:1 d2(f(pk).f(pk_1)) +

d2 (f (Pnr_1) o f (3)) + d2 (f (Pnr) o f (3))

= (nr + DP (r)

S (L9L+2)P(r)

Thus (3) has been shown.

(4) For each t 6 M1, the function f is one-to-one

on B(t, g).

Egoofpofv(41: Assume that for some r with O < r < l

p(r) = o. By (3) we have d2<f(p).f<q))s<flr1’-+2>p<r> = 0.

Since f(p) # f(q), (assumption (b) of Theorem 2.9) this

is a contradiction. Thus, p(r) > O for r < x. If

x,y E B(t, %) then dl(x,y) < A so that d2(f(x),f(y)) =

p(d1(x,y)) # O, and hence f(x) # f(y). This completes

the proof of (4).

(5) For each t E M fl is bicontinuous.

1' B (t, 1/2)
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Proof of (5): Let a be given, 0 < e < 1. Assume

that for each 6 > 0, there is an r, e.g r < k such that

p(r) < 6. Then by (3),

d2<f(p).f<q)) g (Lg-awe)

< (44314-2)5 .

Since 6 can be chosen arbitrarily small, d2(f(p),f(q)) = O,

which is a contradiction. Thus for e, O < e < k, there

is a 6 > 0 such that

if r < x and p(r) < 5 then r < e

Let t 6 M1 and let gt 5 f) Then by Step
B(t,1/2)'

2, gt is one-to-one and uniformly continuous. Let 6 > 0

be given (assume 6 < l). and choose 6 > 0 such that

if r < X and P(r) < 6 then r < e

If x,y e B(t, %) and d2(f(x),f(y)) < 6 then d1(x,y) < e.

l is uniformly continuous, and hence gtThis shows that g;

is bicontinuous with both 9t and 9;} uniformly continuous.

This completes the proof of Theorem 2.9. 13

Corollapy 2.10: If 1(p) = a, then f is bicontinu-

OUS .

In Sections 3 and 4 of this chapter bicontinuity is

usually assumed. Using the above theorem, or Theorem 2.2,

this assumption can often be avoided. In Chapters 3 and 4,

where metric transformations in normed linear spaces and

Euclidean spaces are investigated, the above theorem is applied.
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63. The major result of this section is to show that

in the class of convex metric spaces, the order of the

distances determines the space, up to a similarity. This

is the content of Theorem 2.11. Theorem 2.17 is a metric

transformation version of this.

Before discussing Theorem 2.11 the following definition

is needed.

Definition: A distance space (N,d) is said to be
 

convex if and only if for any two points p and q of

N, there is a segment joining p to q.

It should be noted that although this definition fits

one's intuitive notion of convexity, and is similar to that

normally used in linear spaces, it is not the definition

commonly found in metric geometry. The common definition of

metric geometry is that for each p and q in N there is

an r, r # p or q, such that d(p,r)4—d(r,q) = d(p,q).

There are several additional assumptions that can be made on

N so that these two definitions are equivalent. Perhaps the

best known is that of completeness. For further discussion

on this, see [4] sec 14.

Theorem 2.11: In the class of convex metric spaces,
 

the order of the distances determines the metric up to a

similarity.
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In other words, if (M1,dl) and (M2,d2) are both

convex metric spaces, and f is an order isomorphism

from M1 onto M2, then there is a constant D such

that d1(p.q) = D-d2(f(p).f(q)).

A metric transformation version of this was probably

originally due to Wilson, for he states in [39], without

proof, that a bicontinuous metric transformation with

non-zero finite spread, between convex metric spaces, is

a similarity. This is the content of Theorem 2.17,

although the assumption that the spread is non-zero and

finite is not made there. Theorem 2.11 is a consequence

of Theorem 2.17.

In [2], Beals, Krantz, and Tversxy show Theorem 2.11

with the added assumption of completeness. In [23] Lew

proves a stronger version of Theorem 2.11. He insists

on neither completeness nor as strong a version of

convexity as we use here. He uses "pseudo-convexity".

Definition: A metric space (M,d) is said to be
 

pseudo—convex if for any two points p and q, and x

in [0,1], and any 6 > 0 there exists u such that

d(pou) g e+xd(p.q) and d(q.u) : e+<1-x)d(p.q)

It seems not to be known whether the completion of a

pseudo—convex space is convex.
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In the work of Beals, Krantz and Tversxy, and that

of Lew, the primary interest is that of existence. They

show that, for a certain class of distance spaces, each

space is order isomorphic to one and only one convex

metric space.

Here we are considering only the uniqueness question

and, like Wilson, use metric rather than order transfor-

mations. Our methods could be adapted to pseudo-convex

spaces, giving Lew's result, although the proofs would

become more involved.

Leading up to Theorem 2.17 we first show that if

f :M -+M is a bicontinuous metric transformation, and
l 2

y is an arc in M1, then L(f(y)) = D-z(y), where

D is the spread of the transformation (see Theorem 2.14) .

From this it follows that the image of a geodesic arc is

a geodesic arc (Corollary 2.15) and then, in convex spaces,

that the image of a segment is a segment, (theorem 2.17).

Theorem 2.16 shows that, under very general conditions, the

spread of a metric transformation is a non-zero finite

number.

We begin.with Lemma 2.12, which shows that arc length

can be calculated by considering only "small" distances

along the arc. Note that the triangle inequality is

necessary.
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Definition: For any normally ordered subset
 

P = [p0,pl,...,pm} of an arc y, the number mesh(P)

is defined to be max[d(pi_1,pi)|1 g.i g m}.

i

 

Lemma 2.12: Let y be any rectifiable arc of a

metric space. Then for each n > 0 there is a 5 > 0

such that any normally ordered subset P of y with

mesh(P) < 5 satisfies g(P) > g(y) - n.

Proof: See Blumenthal [4], page 61, Lemma 24.1. I:

Remark: If y is a non-rectifiable arc, then Lemma

2.12 may be stated as follows: For each N > 0, there

is a 5 > 0 such that any normally ordered subset P

of Y with mesh(P) < 5 satisfies 1(P) > N. Blumenthal

does not prove this, but the proof is essentially the same

as the proof of Lemma 2.12.

Corollary 2.13: If rn 4 O and Pn is a normally

ordered subset of an arc y with mesh(Pn) g rn then

4(Y) = lim £(Pn) .

114'

It is not assumed in this corollary that y is

rectifiable.
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Theorem 2.14 (Wilson [40]): Let M1 and M2 be

metric spaces, f: M1 4 M2 a bicontinuous metric trans-

formation with finite non-zero spread D, and y a

rectifiable arc in M1. Then f(y) is a rectifiable

arc in M2 and 1(f(y)) = Dog(y). If y is a non-

rectifiable arc, then L(f(y)) = a.

Ppgpfi: Note that f(y) is an arc in M2, the

equation of the arc being f 0y(t), a g.t g_b. We will

prove the case 1(y) < a. The case 1(y) = a is essen-

tially the same, using the above remark, rather than

Lemma 2.12.

By Corollary 2.13 1(y) = lim 4(Pn), where Pn

n49

is any sequence of normally ordered subsets of y with

lim mesh(Pn) = O.

n-fi

Let c > 0 be given. As D = lim (d) , there is

d40

a 5 such that for d < 5, D - e < (d) < D + e, or

(D-e)d < p(d) < (D+e)d.

For any normally ordered subset P = [po,...,pm]

of y with mesh(P) < 5, f(P) is a normally ordered

subset of f(y) and



1 (f (P)) = d2 (f(pi-1)' f (‘31))

'5
'
M
a

1

hence

m m

(D- 6,51 d1 (Pi-1'91) s L (f (P)) g (D+ 6351 51(Pi-1'Pi)

or

(D-e)z(P) guflPH g (D+€)£(P)

Let Pn be any sequence of normally ordered subsets

of Y with mesh(Pn) 4 0. Then f(Pn) is a sequence of

normally ordered subsets of f(y), and as f is uniformly

continuous on the compact set y, 1im mesh(f(Pn)) = O.

11-”

Hence by Corollary 2.12 £(f(y)) = lim L(f(Pn)).

11-90

For n such that mesh Pn < 6 we have

(D-e)2(Pn) S “f(PnH S (D+e)£(Pn)

Letting n 4 a, we get

(D-EHM S 2(f(v)) g (D+e)£(Y)

As e was arbitrary, it must be that £(f(y)) = D°£(y).

Thus if 2(v) < a, then L(f(y)) = D°£(y). As has

been said, the case £(Y) = a is much the same. In this

case £(f(y)) = a. I]

Recall from Chapter 1 that a geodesic arc joining p

to q has the shortest length of any arc joining p to

q.
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Corollapy 2.15: If y = y([a,b]) is a geodesic arc

in M1 and f: Ml‘QflggiMz is a bicontinuous metric

transformation with finite non-zero spread D, then f(y)

is a geodesic arc in M and £(f(y)) = D-L(y).2’

Proof: That £(f(y)) = D-L(y) is the content of

Theorem 2.14. Let 0- be an arbitrary arc in M2, joining

f(y(a)) to f(y(b)). Then by Theorem 2.14, 1(0) = D-.¢,(f-l (0)).

Hence inf 1(0) = inf DUE-1(0)) 2 D1. (y) . However

0' O

£(f(y)) = D-£(y), showing f(y) is a geodesic arc in

M2. (3

Before continuing the study of metric transformations

of arcs we show (Theorem 2.16) that the assumption in

Theorem 2.14, that f has finite non-zero spread, is in

many cases unnecessary.

Theorem 2.16 may be considered as a converse of

Theorem 2.14.

Theorem 2.16: If the metric spaces M1 and M2 each

contain a rectifiable arc of length greater than zero,

onto

1

then the spread of f is a non-zero finite number.

and f: M  > M2 is a bicontinuous metric transformation,

Proof: Let y= y([a,b]) EM and O = 0([c,d]) EM
1

be rectifiable arcs, and let p be the scale function

2

of f. Let {ri} be any sequence of numbers such that

P(r.)

1im r1 = O and lim -—-l- = DIg m. Since y is connected,

i4a 14¢ i

Corollary 2.5 guarantees that lim p(ri) = 0. With this



47

fact, using notation as in Lemma 2.8, we have by Corollary

2.13, L(f(y)) = lim nr p(ri) and L(y) = 1im nr.ri°

 

14° 1 14¢ 1

Then

n e(r-)
p(r.) r. 1

D=1im r1 =lim—n'l'T—=LéfT(-)xu.

i4a i i4o rii‘ Y

Since £(f(y)) is bounded from below by

d2(f(v(a)),f(y(b))) and £(Y) is a positive real number,

we see that D > 0.

Similarly we show that

r. -l

lim_1___._£_(.f_1£zll=l>0.

iaaphfi) 4(0) D

Thus 0 < D < a. Since D =-&%%6¥LL is independent

of [ri], it must be the case that lim Eéfl = D, proving

r40

the theorem . Cl

Remark: At this point it should be noted that the

assumption in Theorem 2.14 that f be a bicontinuous

metric transformation with finite non-zero spread is

satisfied for f an order isomorphism between two "reasonable"

metric spaces. Using Lemma 2.2 and Theorem 2.16 we see that

if both the domain and range of an order isomorphism f

contain a rectifiable arc, then f is a bicontinuous metric

transformation with finite non-zero spread.

With the above remark in mind, Theorem 2.11 follows

easily from Theorem 2.17.
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Theorem 2.17: If M1 and M2 are convex metric

spaces, and f is a bicontinuous metric transformation

from Ml onto M then f is a similarity. The constant2’

of similarity is the spread of f.

Proof: From their respective definitions, it is

immediately clear that a segment is a geodesic arc, and

any two geodesic arcs, joining the same points, have the

same length.

Let p and q be arbitrary points in M1. Since M1

and M are convex, there are segments y and o: joining
2

p to q and f(p) to f(q), with lengths dl(p,q) and

d2(f(p),f(q)) respectively. By Theorem.2;16, f has

finite spread D. By Corollary 2415, f(y) is a geodesic

arc of length D-L(y). Furthermore, since f(y) is geodesic,

it has the same length as On Thus

d2(f(P)of(q)) = £(f(Y)) = D°Z(Y) = D'dl(poq)

Since p and q were arbitrary, the theorem is proved. l3

§4. The major result of this section, Theorem ZMZO,

concerns the curvature of arcs in general metric spaces.

We first define what is meant by curvature of arcs in

general metric spaces, and relate this to the more common

definition of curvature in Euclidean and Riemannian spaces.

Definitions: Let y = y([a,b]) be an arc in a metric

space (M,d). If q = y(s) and r = y(t) we define
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Ly(q,r) = 1(y([s,t])). That is, Ly(q,r) is the arc

length of y from q to r.

For p,q,r on r, if the following (non-negative)

limit exists, it is called the Haantjes-Finsler curvature

of y at the point p:

def 1y(q.r)«-d(q.r)
2 .

(Yip) = 11m 4'.

KB q.r4p z:(q.r)

 

This definition of curvature was first introduced

by Finsler in his thesis of 1918 [13] and was studied

extensively by Haantjes [15]. We are going to study the

relationship between KH(y,p) and KH(f(Y),f(p)), where

f is a metric transformation. The curvature KH lends

itself to this study for we have a nice grasp on the rela-

tionships of LY(q,r) to Lf(Y)(f(q),f(r)) and d1(q,r)

to d2(f(q),f(r)). In Euclidean space,curvature is

usually defined as follows:

Definition: If y(s) is a curve in Euclidean n-space,

where the parameter 3 represents arc length along the

curve, the curvature of y at a point y(so) is defined

to be IY”(sO)I. This is referred to as the classical

curvature of y at the point y(so).

More generally, classical curvature is defined for arcs

in Riemannian spaces by means of the Frenet formulae. We

refer the reader to a book on Riemann geometry, such as

Spivak [37], for such definitions.
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We now quote some theorems which relate these

concepts of curvature.

Theorem 2.18: (Haantjes) If an arc in a Riemannian

space has defining equations with continuous differentials

of order 3, and if the classical curvature exists at a point

on the arc, then the curvature KH exists at that point,

and the two curvatures are equal.

Proof: See [15], Theorem 5.

For arcs in Euclidean space we can combine another

theorem of Haantjes ([15], Theorem 8) and a theorem of

Egervary and Alexits ([11], Theorem 4.2) to obtain the

following result.

Theorem 2.12: If y is a curve in a Euclidean

space, and the classical curvature exists at p, then

it is equal to

A (q.p)-d(q.p)

lim 4! v 3

q4p zY(q.p)

 

The limit in the above theorem certainly exists if the

Haantjes-Finsler curvature of Y at p exists, in which

case the two are equal. This limit could be used as a

definition of curvature: however we will stay with the

more common KH. Theorem 2.20 remains true if KH is

replaced by the limit of Theorem 2.19.

In Theorem 2.20 it is assumed that f is a metric

transformation with spread 1. There is essentially no loss
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of generality since,if f: M1 4 M2 has finite non-zero

spread D, we define a metric r on by
M2

__ l —— —— ~

r(p,q) ='B d2(p,q), p,q 6 M2, and let f: (Ml,dl) 4 (M2,r)

be defined by f(p) = f(p). It is now easily seen that

f is a metric transform with spread l and that (M2,d2)

and (M2,r) are similar.

Theorem 2.20: Let M1 and M2 be two metric spaces,

f a bicontinuous metric transformation of M1 onto M2,

with spread 1. Then

(a) If y is any arc in M1' p E Y and KH(y,p)

and KH(f(y),f(p)) both exist, then

lim d g'd exists and

d4O d

(1) K§<v.p> - Kfi<f<v>.f<p)) = lim 4: d g‘d
d4O d

. d -d .

(b) If 11m 3 ex1sts, then for any arc y

d4O d

and any p 6 Y, KH(y,p) exists if and only if

KH(f(y),f(p)) exists.

Proof: (a) Assume KH(y,p) and KH(f(y),f(p)) exist.
 

 

 

Consider

z (r.q) -d (r.q)

K§<v.p) = lim 4: Ye 3 1

QIITP £Y(r'q)

K§(f(y).f(p)) = lim 4: 1ft?) (f(:)'f(q)) -d2(f(r)'f(q)) .

f(q),f(r)4f (p) if”) (f (r).f(q))

Because the spread of f is l we have

£f(y)(f(n)0f(q)) = £Y(roq) (see Theorem 2.14). Using this,
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and the fact that f is continuous, it follows that

zv(r.q) - P (61 (r.q))
 

 

K§(f(v).f(p)) = lim 4: 3

qar-9p LY(roq)

Thus

2 2 . P(d1(r.q)) -dl(r.q)

KH(Y.p) 'KH(f(Y),f(p)) = 4: 11m — 3 __

q,r4p 4Y(roQ)

 

For K§(y,p) to exist, it must be the case that

£Y(roq) 'dl (roq)

 

lim *---= 0 .

q.r4p Lv(r'q)

Hence

3

d (r.q) 1. mm

1im. ILTE—ET'= 1 and SO 1im -gL-——-'= 1 .

Gar-*P Y ' q.r-'p dl(r.q)

Thus

2 2 . p(dl (170(1)) “d1 (roq)

KH(v.p) -KH(f(v),f(p)) = 4: 11m — 3 ..—

Qor"P d1(roq)

 

Letting d = d1(r,q), and noting that any sufficiently

small distance can be written as dl(r,q) for some q,

it follows that

(1) K§I(Y.p) -K§(f(v).f(p)) = 4! lim d {‘3

d40 d

(b) Assume 1im (d) -d exists. Let y be any arc, p

qu <3

in the interior of y and suppose that KH(y,p) exists

di (1:. q)

(and is finite). As shown earlier, 1im ‘-§—--— = l

roq4p £Y(r.q)

Then
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2 . . d -d
KH(Y0P) - 4. 11m 3

d4O d

1. (r.q) -d (r.q)

=4: lim Y 3 l -

9:19P LY(roq)

 

Nd1 (r.q)) -d1(r.q) . dimq)
 

 

 

4! lim 3 3

q.r-'p d1(r.q) L (r,q)

Y

L (rap) 'd (roq) ‘P(d (IE-0(1)) +d (req)

= 4! lim Y, 1 3 1 l

qor"P £Y(r'q)

= 4: lim 32M (f(r).f(q>) -d;<f<r).f<q))

q.r4p Iii-(Y) (f (r).f(q))

_ 2
- KH(f(Y).f(p))

The proof that if K§(f(y),f(p)) exists then K§(y,p)

exists is much that same. ID

We wish to emphasize that in the above theorem, it

has been shown that for an arbitrary curve y in M and
10

an arbitrary point p on y, the number K§(y,p) —

K§(f(y),f(p)) = lim (d)"d is constant, regardless

qu d

of the choice of y and p.

Remark: Theorem 2.19 can easily be modified to the

case when the spread D is not 1. The formula (1) then

becomes

%-p(d1(r.Q)) -dl<r.q)
 

2 2 2 _ .
(y.p)-D (f(y).f(p)) = 11m 4: 4—1

KH KH q,r..p di (r.q)

and the existence of any two of the above terms implies the

existence of the third.
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This completes Chapter 2. In future chapters concrete

metric spaces will be considered, and the results of this

chapter will help us to show stronger theorems about metric

and order transformations of these spaces.



CHAPTER 3

RESULTS IN NORMED LINEAR SPACES

This chapter is devoted to the study of metric and

order transformations whose range and domain are both sub-

sets of real normed linear spaces (N.L.S.). The objective

is to discover subsets of N.L.S. which are "metrically

determined".

The M.D.S. theorists have had some interest in N.L.S.,

particularly in the finite dimensional “lg spaces. (That

is , spaces consisting of points x = (x1 , . . . ,xn) , xi 6 1R ,

n 1/p

with the metric d(x,y) = [ Z) [xi -yi|p] ). Beals,

i=1

Krantz, and TverSKy [ 3] present a set of axioms which,

when satisfied by a distance space, are sufficient

to guarantee that a space he order embeddable

into an 1; space. These axioms are satisfied by certain

subsets of 3; spaces, including open convex subsets. It

follows from the work in [3] that any order transformation

of these subsets, into any 4; space of the

same dimension, is a similarity. We extend this result to

metric transformations, considering N.L.S. other than the

In spaces, and subsets of them more general than those

P

consider in [3].

55
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Metric transformations of N.L.S. were investigated by

Vogt [38]. He showed that any metric transformation of a

N3L.S. onto another N.L.S. is a similarity - a result which

follows from our work in this chapter.

The study of N.L.S., often involves linear trans-

formations. Mankiewicz [26] showed that any similarity of

an open connected subset of a N.L.S. onto an open subset of

another N.L.S. can be extended to a similarity of the first

space onto the second space, and that this similarity is a

linear transformation. This result is used extensively.

This chapter is divided into 3 sections. The first

consists of definitions, some known results, and some lemmas

which, although necessary for our proofs, do not concern

metric transformations. In the second section we investigate

the continuity of metric transformations between subsets of

N.L.S. Much of this consists of showing when Theorem 2.9

can be applied to the present type of problems.

In the third section the main results are presented.

These are Theorems 3.14, 3.16, 3.18 and Corollary 3.19.

They give conditions under which metric transformations between

subsets of N.L.S. are necessarily similarities. The nicest

results are obtained for finite dimensional N.L.S. Theorem

3.16 shows that a metric transformation between open

subsets of finite dimensional N.L.S. is a similarity.

Theorem 3.18 strengthens this for spaces with strictly

convex unit balls.
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Before proceeding we should consider order transfor—

mations briefly. Although we have not been able to obtain

_stronger results for them, parts of this chapter can be

greatly simplified in this case. In particular much of

Section 2, which is devoted to the continuity of metric

transformations between subsets of N.L.S. could be sim-

plified, for Lemma 2.2 could be used rather than the more

complex Theorem 2.9.

61. The definitions presented in this section are used

throughout the chapter. This section also contains some

known results and elementary lemmas.

Throughout this chapter M, M1, and M2 denote

normed linear spaces over the field I: of real numbers.

If x EM, the norm of x is denoted by ”x“ and the

vector dimension of M by dim M.

The following definitions are standard in the geometry

of normed linear spaces.

Definitions; An affine transformation is the composition
 

of a linear transformation and a translation. That is,

A :Ml-oM2 is an affine transformation if and only if

A(x) = Tx+d, where T is linear and dEMZ. An affine

 

similarity of M1 onto M2 is an onto affine transformation,

which is also a similarity. An affine similarityw g];

subset U : M1 into M2 is a similarity of U into M2

which has an extension to an affine similarity of M1 onto M2.
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In this chapter, segments, lines, collinearity etc.

will be dealt with from an algebraic viewpoint, rather than

a metric vieWpoint as in Chapter 2. The following

definitions are needed:

Definitions: For p,q in a N.L.S. the algebraic
 

segment joining p to q is the set [xp+ (l -x)q | 0 g x g 1}.

This set is denoted by [p,q]. The set

[xp4-(1-l)q [O < x < l} is denoted by (p,q) and the set

[xp~t(l-—x)q [x real} by pq. The set pq is called the

lips joining p to q. The points p,q, and r are

said to be collinear if r 6 pg.

Definition: A set U in a N.L.S. is said to be

gqebraically convex if and only if for all p,q EU the

set [p,q] : U. The set U is said to be strictly glgpr

braically_convex if and only if for all p,qGEU, p ¥ q, the

set (p,q) lies in the interior of U.

Segments and convexity were defined in Chapter 2. It

is easily seen that an algebraic segment is a segment and

an algebraically convex set is convex. In general,

convexity in a N.L.S. does not imply algebraic convexity

and a segment is not an algebraic segment. In the case of

a N.L.S. with strictly convex unit ball, however, these

ideas are equivalent, and stronger results are obtained

in these spaces.

Note that the results of Chapter 2 remain valid when

algebraic segments and algebraic convexity are used.
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Throughout this chapter, "segment" and "convex" will mean

"algebraic segment" and "algebraically convex".

Notation: For pEM, define

B(p,r) [xeml Hp-x“ < r]

[xeMl HP-XH = 1')B(p,r)

For U c M, U. will denote the closure of U in M.

Note that B(p,r) = B(p,r) u S(p,r), so the boundary

of B(p,r) is S(p,r). Also, for q,s€B(p,r), O < l < l,

HP-(xq+(l-x)s)||=ll1(p-q)+(l-1) (p-sHngHp-q” + (1.4) Hp-s” gr.

Thus, B(p,r) is algebraically convex.

Definition: The unit ball of a N.L.S. M is the set

B(O,l), where O is the origin in M.

Since B(p,r) = rB(O,1)4-p, it follows that if B(O,1)

is strictly convex, then so is B(p,r) for any p and r.

The following theorem is probably the most important

tool used in this chapter.

Theorem 3.1: (Mankiewicz) Let M1 and M2 be N.L.S.

Let U be a non—empty open connected subset of M1, and

let V be an open subset of M2. Then every isometry

(similarity) of U onto V is an affine isometry (similarity).

Using this theorem it is often only necessary to show

that a metric transformation is a similarity to conclude

that it is also affine.
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Lemma 3.2: Two affine transformations A1 and A2

from Ml onto M2 Which agree on a non-empty open set

U of M are identical.

1

The proof of lemma 3.2 is a standard vector space

argument so it will not be reproduced here. It, and

Corollaries 3.3 and 3.4 are proved in [26].

Corollary 3.3: Let U and V be open subsets of M1’

f :U U V 4 M2 any function. Assume U n V ¥ ¢. If flu

and flv are affine similarities, then so is f.

This idea can be extended to obtain the following.

Corollary 3.4: Let U be a connected open subset of

M1 and 9 :U 4 M2 be such that for some open

covering a. of U, g]C is an affine similarity (isometry)

for each C e on Then 9 is an affine similarity (isometry).

Our best results have been for finite dimensional

N.L.S. We are able to obtain these results because of the

following theorem from algebraic topology, and some of its

consequences. These consequences (Corollary 3.6) are standard

results of dimension theory.

Theorem 3.5: (Invariance of Domain) If g :U 4 En is

bicontinuous and U is open in En, then g(U) is open in

En.

Proof: This, of course, is a basic theorem of

topological dimension theory.
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Corollary 3.6: Let M1 and M2 be N;L.S.,

dimM1 = n < a, dim M2 = m 3.9- Assume B(p,r) : U : Ml'

onto . .

be bicontinuous. Then
 and let 9 :U > V c M

2

(a) m 2.n

(b) If m>n, then forany subset B of U we

 

have g(B n U) = g(B n U) n v and this set

contains no open subset of M2.

(c) If m = n and U is open in M1 then g(U)

is open in M2.

Proof: If m < m, then because the topologies on any

two finite dimensional N.L.S. of the same dimension are

equivalent, it is necessary only to prove these for M1 = En,

M = Em (Euclidean spaces). Thus (c) follows directly from
2

Theorem 3.5.

(a) Assume m < n. Then m < a and we need only

consider M1 = En, and M2 = Em. Consider Em as a

subspace of En. Then 9 : B(p,r) 4.Em’c En, and by

Theorem 3.5, g(B(p,r)) is open in En. However as

g(B(p,r)) : Em this cannot be true. Thus m 2_n, and

(a) has been proved.

 

(b) That g(B n U) = g(B n U) n V for any subset B

of U follows directly from the fact that g is bicontinuous.

Assume m > n. If g(B n U) contains an open subset V’ of

M2, let M c M be a linear subspace of M2, of finite
2

. I
dimension greater than n, such that M n V # ¢. Then
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is bicontinuous from M n V’ c M into M1.

hence by part (a) dim M g.n. This contradicts the choice

of M. Thus g(B n U) contains no open subsets of M2. [3

To conclude this section three lemmas are presented. The

second, Lemma 3.8 is a commonly used property of convex

quadrilaterals. Lemma 3.7 is presented only to prove Lemma 3.8.

Lemma 3.9 has surely been shown by others, although we have

not seen a proof of it. It does not extend to 3 dimensions.

the that Lemmas 3.7 and 3.8, while stated in terms of N.L.S.,

are in more general metric spaces.

Definition: Three vectors a1,a2, and a3 are said to

satisfy the triangle equality if and only if for some

permutation (i,j,k) of (1,2,3), ”ai-ajH-tHaj-a I==Hai‘-a
k, k” °

Lemma 3.7: Let M1 be a N.L.S. with a strictly convex

unit ball. Then any three vectors are collinear if and only

if they satisfy the triangle equality.

Proof: If three vectors are collinear it is easy to

check that they satisfy the triangle equality.

To prove the converse assume the vectors are p,q, and

r and that Hp-—r”-+Hr-—q” = Hp-—q”. We show that r E [Poq].

If any two of p,q, or r are equal it is easy to see

that r 6 [p,q]. Assume they are distinct. Then none of

HP'-qH. Hp-—rH, “r -q” is zero, and

p-r p-r r- r- _ 2-3

'ip-qi ' IIP-rII+'IP-qn 'nr-qil ' HP-qll '    
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Also

 

l_wtg%=lm-qH4m-rn= r-

p-q Hp-qH Hp-q“

Thus, letting x = N. we have

- r r .. -

+ l.- = -1”%:?n ( M W7fi%[ Hgtgn

. "r r "'

Certa1n1y 0 < A < l, and the three vectors [[5711]? fir,

H§€33H all lie on the boundary of the unit ball. By the

definition of strict convexity, they must all be equal. In

particular

Rearranging this last equation we obtain r = xq4—(l-—x)p,

concluding the proof of Lemma 3.7. [3

Lemma 3.8: In a 2-dimensional N.L.S. 1et a,b,c,d be
 

the vertices of a convex quadrilateral, given in a cyclic

order around the edges of the quadrilateral. Then

(a) Ha -b|l + H(2 -dll S Ma ‘CH + Nb 'dll -

That is, the lengths of two opposite sides add up to no more

than the sum of the lengths of the two diagonals.

(b) If in addition a,b,c, and d are distinct, not

all collinear, and the unit ball is strictly convex then the

inequality above is strict.
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a(

d

Figure 3.1

Proof: The proof rests on the fact that the diagonals
 

[a,c] and [b,d] intersect at a point p which lies in

the interior, or on the boundary of,the quadrilateral abcd.

Ha “H! = Ha “PH + HP '0“

Nb ‘dH = ”P “P" + HP ‘6‘” -

(1)

However

”3 '1’” S H3 ‘PH + HP ‘19”

”C ‘5” _<. ”5 ‘PH + HP ‘CH .

(2)

Adding the two inequalities of (2) and combining with (l) we

obtain

Ha-bH+Hc-du5;Ha-CH+Hb-dfl

To show part (b) of the lemma it is only necessary to show

that one of the inequalities of (2) is strict. If not, Lemma 3.7

shows that a,b, and p are collinear ppg_that c,d, and p

are collinear. Since p 5 ac n bd we can readily conclude

that either not all the points are distinct, or all are
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collinear, contradicting the hypothesis of (b). Thus the

inequality must be strict. [3

Lemma 3.9: In any two dimensional N.L.S. with strictly

convex unit ball, there is at most one point equidistant

from three distinct points.

gpppg: Let p,q,r,c1, and c2 be such that

”p-ciH = ”q-ci” = ”r-ciH, i = 1,2. Also assume cl 7! c2,

and p,q,r are distinct. If p,q, and r are collinear,

the strict convexity of the unit ball is violated. Consider

Figure 2. If either c1 or c2 lies in one of the closed

regions 1,2, or 3 the convexity of the unit sphere is

violated. The line clc2 can intersect at most two of the

segments (p,q), (q,r), or (p,r). Assume it does not

intersect (p,q). Then either pqclc2 or pqczc1 forms a

convex quadrilateral. Assume the latter. The points

p,q,c1,c2 are distinct and not collinear, so by

 
Figure 3.2
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Lemma 3.8(b)

HP-CzHi'Hq-Cl” > IIP-C1H+ [lg-C2”

However Hp-c2H = ”q-c2H and Hp-—cl” = Hq-—c1H, giving

a contradiction. Thus c1 = c2. In

§2. We are now prepared to investigate the continuity

of metric transformations between subsets of N3L.S. Theorem 2.9

gave sufficient conditions for a metric transformation to be

continuous. This section proceeds by determining when these

conditions are satisfied. We recall the definition of the

long legged local isosceles property.

Definition: The metric space M has the lppg.

legged local isosceles property at P if and only if

if there is a number x(p) > 0 such that for any 5 < A(p)

and for any q with d(p,q) < 5 there exists 5 e M with

d(p,s) = d(s,q) = 5. The number x(p) may be taken to be c.

There are four results in this section. These are

Lemmas 3.10, 3.11, 3.13 and Theorem 3.12. Lemma 3.10 shows

that any point p of an open subset of a N.L.S. has the long

legged local isosceles property. Lemmas 3.11 and 3.13 then

show sufficient conditions for the continuity of a metric

transformation between subsets of N.L.S. Lemma 3.13 differs

from Lemma 3.11 in that it considers only finite dimensional

N.L.S., obtaining stronger results in this case. Theorem 3.12

is a theorem of Vogt, which follows easily from our work.
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Lemma 3.10: Let U be a subset of a N.L.S. M,
 

with dim M 2.2. Assume that p and x > O are such

that B(p,x)s:U. Then U has the long legged local

isosceles property at p, and k(P) can be taken to be

x.

Proof: Let 5 < x be given, and let q be given

with Hp-q” < 25. If S(p.6) nS(q,5) = (6 then

S(q,5) = (B(p,5) nS(q.o)) u ([xld(p.x) > a} ns(q.5))

Since both members of the above union are non-empty (for

example H-tq is in the first member, while - “(p -q,) +q

is in the second), both members are Open subsets of S(q,5),

and S(q,5) is connected, we have a contradiction. Thus,

S(p.5) ns(q.6) :4 ¢. Let seS(p.5) nS(q.5). Then d(p.s) =

d(q,s) = 5. Since d(p,s) = 5 < x then seB(p,)‘) and

hence s EU. [:1

Remark: In the above lemma, one could replace B(p,x)

by any subset B, peBcU, such that B is an isometric

image of an open ball of radius x in a N.L.S. of dimension

2. Then it would be necessary to verify only the case

dim M = 2 and the result would follow immediately. Lemma 3.10

is used in proving Lemma 3.11, for it allows Theorem 2.9, on

the continuity of metric transformation to be used. Example 2

at the end of this chapter shows the necessity of the

assumption that dim M1 2.2.
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There are undoubtedly many conditions which force a

metric transformation from a subset U : M1 to M2 to be

continuous. Lemma 3.11 presents two such conditions, the

proofs of which use Theorem 2.9.

Lemma 3.11: Let f :U-4M2 be a metric transformation,

Uch

B(p,x) : U.

, dim M1 2.2. Let p and x > 0 be such that

(a) If f(B(p,x/2)) is not discrete then le(t,x/2)r1U

is bicontinuous for each t E U, and f is

uniformly continuous.

(b) If M2 is separable, then le(t,x/2)IWU is either

bicontinuous for each t E U, or is trivial for

each t 6 U. If le(t,A/2)(1U is trivial for each

t e U, then flc is trivial for each connected

component C of U.

Proof: .As B(p,x)s:U, Lemma 3.10 shows that p e U
 

has the long-legged local isoceles property (as a point of

the metric space U) with x(p) = A.

(a) If f(p) = f(q) for all q 6 B(p,x/2) then

f(B(p,x/2)) is a singleton, hence discrete. Thus there is

a q E B(p,x/2) with f(p) # f(q) and letting y = [p,q] c U.

Theorem 2.9 shows that fiB(t,x/2) is bicontinuous for all

t 6 U, and that f is uniformly continuous.



69

(b) Assume that there is a q E B(p,1/2) with

f(p) ¥ f(q). If f([p.q]) is uncountable then, because M2

is separable, f([p,q]) contains a limit point of f([p,q]),

(in fact a condensation element). Hence f(B(p,x/2))

is not discrete. Letting y = [p,q] Theorem 2.9 now shows

that le(t,x/2) is bicontinuous for all t e U.

If f(p) = f(q) for all q 6 B(p,x/2) then certainly

p(d) = O for o < d < k. The proof follows by Lemma 2.6. [3

At this point the following theorem, due to Vogt [38],

is easy to show.

Theorem 3.12; (Vogt) Let M1 and M2

> M2 be a metric transformation.

be N.L.S., and

onto

1

Then f is an affine similarity.

 dimMl 2.2. Let f :M

3599;: By Lemma 3.10, the origin has the long legged

local isosceles property, with x = 9. Since M2 = f(Ml) =

f(B(O,%)) is not discrete, Theorem 2.9 shows that f is

bicontinuous. Theorem 2.17 then shows that f is a

similarity, and by the theorem of Mankiewicz (Theorem 3.1)

we condlude that f is an affine similarity. [3

Remark: Corollary 3.15 generalizes this to the case

onto

f :M, > V : M2, V open in M2. It is shown there that 

1

necessarily V = M2.

Although our proof of Theorem 3.12 is somewhat different

than Vogt's, our work on the continuity of metric transformations
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(Theorem 2.9) was motivated by his work in [38] *where he

proves the above theorem. Mankiewicz makes use of techniques

from this same paper in proving Theorem 3.1.

Lemma 3.13 strengthens Lemma 3.11 when separable and

finite dimensional N.L.S. are considered. It is here

that the Invariance of Domain Theorem (Theorem 3.5) is

used.

Lemma 3.13: Let M1 and M be separable N3L.S. and

onto

1 2

formation. Assume that there exists p,q 6M1 and rl,r2 > O

2

> V c M dimMl 2,2. Let f :U c M be a metric trans-

suchthat B(p,rl) :U and B(f(CI)or2) CV- Then f|B(t,rl/2)()U

is bicontinuous for all t E U and f is uniformly continuous .

In particular f'B(p r /2) is bicontinuous and nontrivial.

' 1

If in addition, dim M1 = n < a, then dim M2 = n.

Proof: As M is separable, and B(p,rl) c U, Lemma
2

3.11 shows le(t,rl/2)r1U is either trivial for each

t e U or bicontinuous for each t 6 U. Since M1 is

separable, and a susbspace of a separable metric space is

separable, then U is separable. Let T be a countable

dense subset of U. Let c. be the countable collection of

 

subsets of U of the form B(t,r1/4) n U, t 6 T. Note 6

covers U .

If f]B(t,r1/2)r1U is tr1v1al for each t 6 T, then

 

V = U f(B(t,rl/4)r1U) would consist of a countable set of

tET

points. Since B(f(q),r2) : V, this is impossible. Thus it
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follows that le(t,rl/2)rfiU is bicontinuous for each t e U.

In particular, le(p,rl/2) is bicontinuous, and hence non-

trivial.

If dimM1 = n < a, then Corollary 3.6(a) shows

dim M2 Z'n. Assume dimM2 > n. Then by Corollary 3.6(b)

 
 

f(B(t.r1/4) mm = f(B(t.r1/4) nU) nv

and this set contains no open subsets of M Hence2.

B(f(q).r2) [u f(B(t.r1/4) nUH nB<f(q).r2)

tET

u [f(B(t.rl/4) nU) nB(f(q).r2)]
tET

Thus B(f(q),r2) is the countable union of closed subsets of

the subspace B(f(q),r2) of M2, none of which contains an

open subset of B(f(q),r2), (an open subset of B(f(q),r2)

would also be open in M2). This contradicts the Baire

category theorem. Thus dim M2 = n, completing the proof

of Lemma 3.13. D

This concludes our study of the continuity of metric

transformations between subsets of N.L.S. These results

are used in Section 3 to establish theorems showing when

such transformations are similarities.
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§3. The main results of the chapter are in this section.

These are Theorems 3.14, 3.16, 3.18, and Corollary 3.19.

As has been stated before, the main goal of this thesis is

to consider the "uniqueness question". That is, if U and

V are spaces in a class a. of distance spaces, and

onto
 f :U > V is an order transformation, is f a similarity?

In this chapter, U and V are subsets of normed linear

spaces, called M1 and M2 respectively, and transformations,

f. are invariably metric rather than order transformations.

The class c. just referred to, may be taken to be

some suitable collection of subsets of M1. For example,

one of the hypotheses of Theorem 3.14 is that the domain

and range be open, hence a suitable choice for a. would

be all open subsets of M1.

Each of Theorems 3.14, 3.16, and 3.18 and Corollary

3.19 involve some type of openness hypothesis on the

domain and/or range of f. This is done in order to use

methods developed in Chapter 2 for convex sets. In

addition, some further hypotheses is needed. For example,

in Corollary 3.19, M1 and M2 are assumed to have the

same finite dimension.
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Note that these results could be considered as gener-

alizations of Mankiewicz's Theorem (Theorem 3.1) to metric

transformations.

Definition: A function is said to be Open if and only
 

if it maps Open sets onto Open sets.

Theorem 3.14: Let M1 and M2 be N.L.S., dim M1 2’2.

Let f be an open metric transformation, from an open

connected set U of M1 onto an open set V of M2.

Then f is an affine similarity.

Proof: Let p, and x > 0 be such that B(p,)[) :U.

Then by hypothesis, f(B(p,x)) is open, hence not discrete.

So, by Lemma 3.ll(a), f]B(t l/2)()U is bicontinuous for

each teEU, and f is uniformly continuous.

Let t be an arbitrary point of U. By hypothesis,

f(B(t,x/2MWU) is open in V, and hence in M2. Let r2

be such that B(f(t),r2)s:f(B(t,x/2)(WU). As f is continuous

f-1(B(f(t),r2)) is open in U, and hence in M1. Let

r1 be such that
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1

B(t.r1) :f‘ <B<f(t).r2)) nB(t.)./2)

Then f(B(t,r1)) ss(£(t) ,rz) :f(B(t,x/2) nu). Since

B(t,x/2)r1U and f(B(t,x/2)r1U) contain segments (which are

rectifiable arcs), and f‘B(t,x/2)rWU is bicontinuous,

Theorem 2.16 shows that f has finite spread D. For q1

and q2 in B(t,rl) :U, the algebraic segment [q1,q2] :B(t,r1)

and hence byCorollary2.l4 f([ql,q2]) is a geodesic arc in

f(B(t,x/2)r1U) of length D-Hq2-qu.

On the other hand,

[f(ql) .f(q2)] :B(f(t) .rz) sf(B<t.x/2) nU)

and has length ”f(q2)'-f(ql)“. As [f(ql),f(q2)] is an

arc, then D1Hq2, ql” = “f(ql)-f(q2)H. (This argument is

used in the proof of Theorem 2.16.) Since q1 and q2 are

arbitrary pOints of B(t,rl), we conclude that le(t,r1) is

a similarity. Since t is an arbitrary point of U,

Corollary 3.4 shows that f is an affine similarity. [j

The following generalizes Vogt's Theorem 3.12.

onto
 Corollary 3.15: If f :M1 > Vs:M dim M1 2.2, V a2'

non-empty open subset of M2, and f is a metric transformation,

then f is an affine similarity and V = M2.
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Proof: As in the proof of Theorem 3.12, f is necessarily

bicontinuous, hence is open. So by Theorem 3.14, f is an

affine similarity. Thus, for each x 6 M1, f(x) = T(x)4-d

where T is a linear transformation and d 6 M2.

To show V = M ’1et y 6 M2 and p 6 M1. Then because20

V is open there is a x # 0 such that (1-x)f(p)4-xy E V.

Hence there is a q 6 M1 such that f(q) = (li-x)f(p)-+xy.

 

 

 

 

Then

= f(q) -(1-}.)f(p)

y 1

= N9.) - (1 ->.)T(L)+d

l

k

= f(q- (1 ->.)p)

l

and hence y 6 f(Ml) = V, so V = M2. [3

Theorem 3.16: Let M1 and M be NyL.S., 2 g dim M1 < a.
2

Let f be a metric transformation, f :U onto
 > V, U an open

connected subset of M1, and VCMZ.

(a) If V contains an open subset of M2 and M2 is

separable, then f is an affine similarity and dim M1 = dim M2.

(b) If dim M1 = dim M2, then f is either trival or

an affine similarity.
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Proof: If V contains an open subset of M then
2’

Lemma 3.13 shows that dim M1 = dim M2, and f is non-

trivial. Thus if we assume dim M1 = dim M2, and f is

non-trivial, and then show that f is an affine similarity

both (a) and (b) will have been proven. This is what is now

done.

Assume dim M1 = dim M2 and f non-trivial. Let p

and x be such that B(p,x)s:U. Then by Lemma 3.11(b)

(because M2 is a finite dimensional vector space, it is

separable) fiB(t,x/2)t1U 13 either bicontinuous for each

t e U or trivial for each t e U. Furthermore, Lemma 3.11(b)

shows that if f'B(t.x/2)r1U is triv1al for each t 6 U,

then flc is trivial for any connected component C of U.

Since U is assumed to be connected, this would imply that

f is trivial, contradicting the assumption that f is non-

triv1a1. Thus we may assume that fiB(t,x/2)11U is

bicontinuous for each t E U.

As B(t,x/2)r1U is an open subset of M1, and by the

assumption dimM1 = dim M2, Corollary 3.6(c) shows that

f(B(t,x/2)r1W) is open in M2, for any t E U, and any

open subset W :U. 'Ihus, given an arbitrary open set W :U,

f(W) = [J f(B(t,x/2)11W) is an open subset of M2, so f

tEU

is an Open mapping. Theorem 3.14 now shows that f is an

affine similarity. 0

Note that Theorem 3.16 (a) generalizes Mankiewicz's

theorem to metric transformations between open subsets of

finite dimensional N.L.S.
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We have tried, without success, to establish the results

of Theorem 3.16 for the case in which both M1 and M2 are

separable. Theorem 3.17 summarizes the progress we have

made.

Theorem 3.17: Let M1 and M2

dili 22. Let Uch, VcM

be separable N.L.S.,

2 be open, and let f :U 9222) V

be a metric transformation with scale function p. Then

there is a x > 0 such that le(t,x/2)r1U is bicontinuous

for all t e U, and an r > O and q 6 U such that

f‘B(q,r) is an affine Similarity, and le(t,r)¢1U is

a similarity for each t e U.

Remark: If it could be shown that f(B(t,r)) is open

in M2 for all t, it would follow that f]B(t,r) is

an affine similarity and Theorem 3.1 would show that f

is an affine isometry.

Proof of Theorem 3.17: Let p and x be such that

B(p,x)s:U. Then Lemma 3.13 shows that le(t,x/2)¢1U is

bicontinuous for all t. As in the proof of Lemma 3.13, for

some b e‘u f(B(b,x/2)r1U) must contain an open subset

of M2. Let f(a), and r1 be such that B(f(a),r1) :

f(B(b,x/2)r1U). Now le(b,x/2)r1U is bicontinuous, hence

w = (leOLX/z) DU)-I(B(f(a),r1)) is open in B(b,A/2), and

hence open in M1. Let B(q,r)s:W, and g e le(q,r)'

Then g is a bicontinuous metric transformation of B(q,r).

The set g(B(q,r)) is open in M2, for g(B(q,r)) =

isf(B(q.r)) :f(W) = B(f(a)or1) and f]B(b,)\/2) nU

bicontinuous. It then follows from Theorem 3.14 that



I
n

(
’
3
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g a f'B(q,r) is an affine Similarity, hence p(d) = D-d

for some D > O, and for all d < 2r so f]B(t r) nU' is

a Similarity for all t. [3

When working in a N.L.S. with a strictly algebraically

convex unit ball (see the definition at the beginning of

this chapter) we are able to obtain results which are stronger

than those of Theorem 3.14 and 3.16. These results, contained

in Theorem 3.18 and Corollary 3.19, might be suprising since the

‘ set Uch ' is not assumed to be connected.

Theorem 3.18: Let Ml

strictly convex unit ball. Let Us:M1 be any set with non-

, dimMl 2_2 be a N.L.S. with a

empty interior. Let f be a metric transformation,

f :U 4f(U) cMz. Assume for some p E U, x > O that

B(p,x) : U, and f(B(p,x/2)) is open in M2. Then f is

an affine similarity.

More important than this theorem may be the following

corollary.

Corollary 3.19: Let M1. 2 ngim M1 < a, be a N.L.S.

with a strictly convex unit ball. Let U c M1 be any non-

empty set which contains an open subset of M1. Let

f :U-+M be a metric transformation,

2

(a) If dimMl = dim M2 then either f is an affine

Similarity or f1C is trivial for each connected component

C of U.
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(b) If f(U) contains an open subset of M2, and M2

is separable,then f is an affine similarity.

Proof of Corollary 3.19:

(a) Assume dim M1 = dim M2. Note that dim M2 is

finite, hence M2 is separable. Let p 6 U and x > 0 be

such that B(p,x) :‘U. Then by Lemma 3.11(b), either flc

is trivial for each connected component of C of U or

f|B(t,x/2)11U is bicontinuous for each t 6 U. In the latter

case, le(p,x/2) is bicontinuous, hence by Corollary 3.6(c),

f(B(p,x/2)) is open in M2. Part (a) now follows from

Theorem 3.18.

(b) If f(U) contains an open subset of M2, and M2

is separable, Lemma 3.13 shows that n = m and f]B(p,x/2)

is bicontinuous. Hence f(B(p,x/2)) is open in M2

(Corollary 3.6(c)). Then (b) follows from Theorem 3.18. [3

Progfiof_Theorem 3:18: Let g I le(p,x/2)' Then 9

is a metric transformation, 9 :B(p,x/2)-+f(B(p,x/2)). Since

f(B(p,x/2)) is open, it cannot be discrete. Hence Lemma 3.11(a)

shows that g is bicontinuous, and so is an open function.

From this it follows by Theorem 3.14 that g is an affine

similarity. Thus g = A‘B(P:l/2) where A is an affine

transformation and also a Similarity of M1 onto M2. Let

a > 0 be such that HA(x)«-A(y)” o”x-—y“, for all x,y 6 M1'

Let q 6 U and consider f(q) and A(q). Let d > 0

be such that S(q,d) n B(p,A/2) # O. Let T be any (two
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dimensional) plane in M2 containing f(q) and A(q),

and intersecting g(S(q,d)r1B(p,x/2)). Since A is an

affine Simularity from MI ontg M2 and g E A|B(Pol/2)

we have

9(S(q.d) nB(p.%)) A(S(q.d) nB(p.§))

S(A<q) .ad) n B(A<p) .324) .

The set C = TIWS(A(q),od)rwB(A(p),%%) is the intersection

of the "circle" in v, (with center A(q) and radius ad)

with the set B(A(p),%§h hence is an open subset of the

circle.

Tr n S (A (q) .Gd)

Figure 3.3

Since C is non empty, it contains an infinite number

of points of M2 = A(Ml)° Let A(xl),A(x2),A(x3) E C. Then

(1) ”A(Xl) -A(q)n = ”A(xz) -A(q)u = ”A(x3) -A<q)n .

On the other hand,

”A(xi) -A(q)ll = aHx-l-qu. i = 1.2.3
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Hence,

Hxl -qll = sz -qll = Hx3 “all

As f is a metric transformation,

(2) ”f(xl) -f(q> H = ”f(xz) -f(q)|l = “f(x3) -f(q)u .

Since 7r is the translation ofa two dimensional N.L.S.

with strictly convex unit ball and A(xi) = f(xi) for each

i we can apply Lemma 3.9 to the equations (1) and (2) to

see A(q) = f(q) . Now q being an arbitrary point of U, we

have f _ AlU' and f iS thus an affine similarity. D

Corollary 3.19 is our final result showing metric

transformations between subsets of N.L.S. are

similarities. , Theorems 3.14, 3.16, 3.18 and

Corollary 3.19 would seem to give some validity to the

statement "the order of the distances determines the set

up to a similarity". On the other hand, we have lOOked at

specialized situations and undoubtedly there are many order

transformations between subsets of N.L.S. which are not

similarities. Unfortunately the only type of example we

have been able to find has a disconnected domain - Example 1.

Example 1 shows that the strict convexity of the unit

ball is necessary for Theorem 3.18, and that the connectedness

condition of Theorem 3.14 is also necessary.

Example 1: Let M1 = 1:. That is, M is the set of

1

all ordered pairs (x,y) with ”(x,y)” = max[x,y]. Let



82

S1 = {(x,y) |H(X.y)H < l}

(
I
)

ll

2 {(xoy) I H (xay) - (4.0) H < 1}

For any real number a > 0, define f by

f(x.y) = (x,y). (x,y) 6 S1

f(XIY) (x+aIY) I (XIY) 6 82

Then f is a metric transformation, with scale function

p(d) = {34a 3 g g , but f is certainly not a Similarity. E]

Throughout this chapter it has been assumed dimM1 2_2.

This was used to obtain the continuity of the metric trans-

formation. In the case of order transformations, as has

been mentioned, Lemma 2.2 rather than Theorem 2.9 can be used

to show continuity. In this case all of the theorems could

be changed to include dim M1 = 1.

To Show the assumption dim M1 2_2 is necessary for

metric transformations, consider the following, due to Vogt [38].

Example 2: (Vogt) Consider Hi, the real numbers, as a

vector space over the field 0, the rational numbers. Let A

be a basis for this vector space, and assume 1 6 A. For

a 6 A, define f by f(a) = {:a': : i and extend f to

I

]R by linearity.

Now considering H! as a N.L.S., (of dimension 1) the

function f : IR-olR is a metric transformation because

[f(X) -f(y)| = [fix-y)! = [affix-371)] = [f(IX-YIH

and the scale function of f is p(d) = [f(d)[.
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On the other hand f is not a similarity for p(l) = 1,

while p([a]) = 2]a], a e A, a # 1.

More generally, define a metric transformation f : :IR-tM, M

any N.L.S., by defining f(a), a e A arbitrary and then

extending f by linearity to IR (treating ]R as a

vector space over Q). As above

”f(x) 'fmll = “fix-y)” = ”affix-YUM = “f(lx-YIHI-

This may be stated more simply by noting that f is a

group homomorphism from ]R into M, although possibly the

above description may yield more insight. Thus many non-

continuous metric transformations of fit into any N.L.S.

can easily be constructed. Even metric transformations onto

finite dimensional N3L.S. can be constructed as the cardinality

of a basis of a finite dimensional N.L.S., treated as a

vector space over the rationals, is the same as the cardinality

of Hz, treated as a vector space over the rationals. In

Chapter 4 all metric transformations, both continuous and

. . n .
non-continuous from E: into E are characterized. [3

This concludes our work on metric and order transformations

of general normed linear spaces. In Chapter 4 we shall consider

the problem.further when working with subsets of En.



. CHAPTER 4 n

ORDER AND METRIC TRANSFORMATIONS IN E

The original interest of M.D.S. Theorists was in order

transformations into En. Typically their concern was with a

finite space, which we regard as a distance Space, and with

the possibility of finding a subset of a low dimensional

Euclidean space order isomorphic to it. Thus, order

embeddings into En have assumed a prominent role in M.D.S.

theory.

A number of interesting questions on the existence of

order embeddings into En have been examined by Holman,

Kelly and others. We have made some efforts to extend these

without much success. For completeness, we summarize these

results in Chapter 6.

Some of our earlier results have immediate implications

for embeddings into En. The most interesting of these may be

Corollary 3.19 which shows that if s is any subset of En,

containing a ball, then any order or metric transformation of

S into En (in fact, into any n-dimensional normed linear

Space) is a similarity. This result is extended in Section 2

of this chapter.

84
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It was mentioned in Chapter 1 that von-Neumann and

Schoenberg [29] have characterized all continuous metric

transforms of it into Hilbert space. These are the so

called pgpgy_curves, whose associated scale functions are

given by

2

(**) p2(d) = c d2 +23 Ai sin 2 Kid, ci'Ai'Ki being constant.

Much of this chapter depends on this characterization.

The chapter is divided into four sections. Section 1

is bacxground material for the rest of the chapter. Here we

briefly discuss the concept of a metric basis. These are

often implicitly used in metric geometry, although rarely

mentioned by name.

In Section 2, a theorem of Schoenberg is extended. In

[32] Schoenberg showed that if f : Em 4En, m 2 2 is a

continuous metric transformation, then f is a similarity.

Vogt [38] showed that the assumption of continuity could be

dropped. we Show the domain need not be all of Em, giving

two different types of subsets of Em for which the theorem

is still valid.

Section 3 contains the characterization by von-Neumann

and Schoenberg of the continuous metric transformations of

JR into En. This characterization is extended to the non-

continuous case. We also Show in this section that any metric

transformation of an interval of JR into En can be

uniquely extended to a metric transformation of IR into En .
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This is important, in Section 2, where it is used to

Show that (**) is a characterization of the scale function

of a metric transformation of an interval, as well as of the

real line.

Although parts of Section 3 are used in Section 2 it

seems appropriate to present the results of Section 2 first.

The main result of Section 3 (the characterization (**)) is

not new, and our contributions are not surprising. In

addition, we suspect that all of these results are

contained somewhere in the literature.

Section 4 of this chapter is quite separate from the

other sections. It considers metric and order transformations

of the unit ball in En (and in other inner product spaces)

into normed linear spaces. This will be discussed further

when we come to it.

61. In this section we define and state some

theorems concerning metric bases. This material is used

in subsequent sections of this chapter.

Definition: A subset B of a distance Space N is
 

said to be a metric basis of N if and only if each point p

of N is uniquely determined by the set [d(p,b) [besB].

Metric bases abound in the classical Spaces. A

subset of En, Sn, or Hn is a metric basis if and

only if it does not lie in an (n-l)-flat. Such a set

is said to span En, Sn, or Hn respectively.
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n

A metric basis of En, S or HD must contain at least

(n4-l) points, and any metric basis (spanning set) of En,

Sn or Hn contains a subset of exactly (n4-1) points

which is itself a metric basis. We refer the reader to

Blumenthal PI] for the details of these statements.

Metric bases have appeared earlier in this thesis,

although they were not called such. The proof of Theorem 3.18

partly consisted of showing that any open subset of a normed

linear space with strictly convex unit ball is a metric basis

for that space. Metric bases also appear briefly in Chapter 5.

The following two lemmas are important properties of

metric bases. These are stated for En, but they are also

valid for Sn and Hn. Lemma 4.1 is a commonly used

property of En. It is often referred to as the property

of "free mobility".

Definition: An isometry of En onto itself is called
 

a motion of En.

Lemma 4.1: If f : S cEn4En is an isometry, then f

can be extended to a motion If of En. If S contains a

metric basis B, then the extension is unique.

Proof: See Blumenthal [44, Sec 38].

Lemma 4.2 shows that a metric basis is not always

needed to use the same type of arguments, provided more

information is available.
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Lemma 4.2: Let Em be an m-flat in En and let

BcEm be ametric basis of Em. If perm and qun,

and d(p,b) =d(q,b) for all bEB, then p=q.

Proof: See Blumenthal [44, Sec 40].

This essentially says that points of Em are determined

by a metric basis of Em, even within the larger space En.

Corollary 4.3: If f is a motion of En which maps a

metric basis of Em into Em, then f(Em) = Em.

The following lemma is used in Section 2.

Lemma 4.4: Let f :s c EV4EV. Let Eu be a u-flat

in EV, and Us:SnEu be such that flU is an isometry.

Let BcU be a metric basis of E‘1 and let pES be such

that leLJ{ is an isometry. Then flULJ{p] is an

p)

isometry. In particular, d(p,q) = d(f(p), f(q)) for all

qGEU.

Proof: By Lemma 4.1, and flu can be extendedf

_ IBu[p]

to motions 'f and 'f respectively of EV. The set f(B) is a

metric basis of both the u-flats f(Eu) and fXEu), from which

it follows that "f(Eu) = is“).

Both f] u and :f] u extend le to an isometry from

E E

Eu to f(Eu). By Lemma 4.1, there is only one such extension.

73" .[EuHence 'fl
Eu



For qEUch, f(q) = ?(q) = f(q). Also. f(P) = ?(p),

Hence, flULJ[p] s f‘U(J[p] is an isometry. D

62. In this section we extend the result of Schoenberg [32]

which Shows that any continuous metric transformation of Em

into En, is necessarily a similarity. The result depends on

the following characterization, by von—Neumann and Schoenberg [29].

of the scale functions associated with screw curves in En.

 

v

(**) p2(d) = c2d2+ Z A? sinzk.d
. 1 1
i=1

where v=n'2'1, n odd, v=§ for n even and c= O, and

v=r-l—§—2- for n evenand C710.

An examination of Schoenberg's proof reveals that in

fact he proves the following. (Recall that a trivial metric

transformation is one which maps the entire set to a single

point.)

Theorem 4.5: Let Ss:Em contain a circle C and a line

L. Then any continuous metric transformation of S into En

is either a similarity or trivial.

Theorems 4.6 and 4.7, which follow, extend this

result even further.
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Theorem 4.6: If Ss:Em contains a circle C, an

unbounded connected subset T, and a line segment L with

1.513 then any continuous metric transformation of S into

En is either trivial or a Similarity.

Theorem 4.7: Let S :Em, m 2 2 be a connected set with

non-empty interior. Then any metric transformation of S

into En is either trivial or is a similarity.

The subject of continuity needs comment. Theorem 3.11 (b)

shows that any metric transformation from an open subset of a

normed linear space (of dimension greater than one) into a

separable normed linear space is either continuous or trivial.

Thus the assumption of continuity is not necessary in

Schoenberg's version of Theorem 4.5. This is proved by

Vogt in [39]. Theorem 4.7 includes the assumption of an open

subset of Em, so Lemma 3.11 (b) shows continuity there. On

the other hand we are not guaranteed an open subset of F.m in

the set S of Theorem 4.6, so Lemma 3.11 cannot be applied

We conjecture that continuity need not be assumed

in this case, but follows from the remaining hypotheses.

However we have not been able to Show this.

The proofs of Theorem 4.6 and 4.7 are adaptations of

Schoenberg's proof of Theorem 4.5. For this reason we

present Schoenberg's proof of Theorem 4.5.
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Proof of Theorem 4.5: Let f be a continuous metric

transformation of S into En. We proceed by examining the

scale function, p, associated with f. First consider f

restricted to 5. Since 1 is isometric to ER, f(t) is a

screw line, thus p must satisfy (**). That is,

s

(**) p2(d) = c2d2+ z A? sinzk.d,

i=1 '- 1

for all d and some non-negative values of c, Ai' and Ki.

 

 
Figure 4.1

Next consider f restricted to C. For any pEC, 1et

0(p) be the central angle, measured between the radius with

endpoint p, and some fixed radius. For any two points p1

and p2 of C, with 01 = 0(pl), 02 = Osz) we have

 

  

O'-O

d(p1,p2) 2r sin ‘ 2 1| and

I02"01l

p( 2r Sin -——17——- ) = p(d(p1.pz)) d(f(pl).f(p2))
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l0 W!
Since p( 2r sin -—21r—£— ) depends only on [02-01|, the

mapping cp : IR-oEm defined by cp(o(p) + 2k1T) = f(p) for each

k, is a continuous metric transformation of fit into En

with scale function add) = p([2r sin gl). Hence by (**)

~ ~ v

(1) p2(|2r sin 3]) = p2(o) = czoz-t 2) Bi sinzhio

i=1

Since C' is bounded, f(C) and hence g(nu are also bounded,

so it must be the case that ‘3 = 0. Thus p(er sin $1) =

v

23132
. i

sinzhio. Let d = |2r sin g], and setting the

i=1

expressions (**) and (l) for p equal, we get

v p s

E B? sinzh.a = 4r2c2 sin2 3+ Z) A? sin2(2k.r sin %)

i=1 1 1 i=1 1 1

It follows from this (see the appendix at the end of this

chapter) that either Ai or ki is O for each i. Thus (**)

reduces to p2(d) = c2d2, or simply p(d) = cd, c 2.0. Since

(**) is true for any distance d, f is either a similarity.

or is trivial. I]

To adapt this idea to Theorems 4.6 and 4.7, several

problems arise. The most serious of these would seem to be

the substitution of a line segment L for a line 1 in the

hypotheses. It is not clear that the scale function associated

with a continuous metric transformation of a line segment,

rather than a line, has the form (**). It is shown in Section 3

of this chapter (Theorem 4.12) that any metric transformation

of an open interval can be extended, uniquely, to a metric
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transformation of the entire real line. Assuming the validity

of this result, it follows that the scale function associated

with a continuous metric transformation of a line segment has

the form (**).

It can then be shown in the same manner as in the proof

of Theorem 4.5 that if Ss:En contains a circle and a line

segment, then any metric transformation of S into En

satisfies p(d) = cd, for any distance d which occurs as

the distance between two points on the circle, 9; two points

on the line segment. In Schoenberg's case (Theorem 4.5)

this Shows p(d) = cd for 311_ d (hence that f is a

similarity) however it does not do so for us. To overcome

this problem, extra hypotheses are needed, (Example 1 at the

end of this section shows that some extra conditions are indeed

needed), such as the connectedness condition in each theorem.

Before proceeding to the proofs of Theorems 4.6 and 4.7,

we Show the following lemma.

Lemma 4.8: Let S be a connected set and 1, a line in

E:m such that Snz contains an interval U of 1. If

f :SaEn is a metric transformation, with scale function

p, and fiU is an isometry, then

d(f(p).f(q)) = d(p,q) for all p68. qu

Proof: Let qO be an arbitrary point of U. Since U
 

is open in 1, there are points ql and q2 of U such

that the segment joining ql to q2 is in U, and
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d(qolql) = d(qofllz) . Let

r = d(qoiql) = d(qooqz)

do = sup[d|d = d(P.qO) a PE 5]

d1 = sup[d’|p(d) = d, for all d < d’,d = d(p,q),p,q e S].

In other words, d1 is the largest distance such that p(d) = d

for all d in [0,d1).

 
Figure 4.2

Since fiU is an isometry we have d1 2.2r > O and

d0 2.r > 0, hence min[do,d1} > 0. Let d2 be an arbitrary

distance less than min[d0,d1]. Let p be an arbitrary point

such that d(p,qo) = d2. There is at least one such point

because S is connected, and d2 < do. Now since d2 < d1,
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there are two points b1 and b2 of U with d(p,bi) < <11

and hence with p(d(p,bi)) = d(p,bi).

Let M be an Euclidean space with EmcM, EncM. Then

we can apply Lemma 4.4, with f,p,S and U as above, Eu = 1,

V

E = M, and B = [bl,b to show that2}

p(d(p.q)) = d(f(p),f(q)) = d(p,q) for all q€.U.

. . )/2 2
In particular, p(d) = d for all d in [0, dzi-r ). (See

Figure 4.2. Apply the law of cosines, noting that one of the

angles p q0 q2 or p q0 q1 is between w/2 and w.) As d2

is an arbitrary distance less than min[do,d1], it follows

 

that p(d) = d for all d in [O,\/Qmin[do,d1])2-tr2).

If d = min[do,d1} this is a contradiction. Therefore
1

d0 = m1n[do,dl] and hence p(d(p,qo)) = d(p,qo) for all

pegs. Since qO is an arbitrary point of U, the lemma

is proved . [3

Corollary 4.9: Let S be a connected set in Em, and

m

assume U is an open subset of a line 1 in E with U c S.

Let f :SeEn be a metric transformation such that flU

is a similarity with

P(d(q1:q2)) = Cd(q10q2) I C > 0: <11qu 6 U

Then

p(d(p.q)) = cd(p.q) for all p e s, q 6 U
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Ppppg: Define ‘f by f(p) = % f(p). Then it is easily

seen that 'f is a metric transformation and ‘flU is an

isometry. Let '5 be the scale function associated with 'f.

Then certainly B(d) = 51:- p(d). It follows from Lemma 4.8

that p(d(p,q)) = d(p,q) for any pes, qu. Hence

p(d(p,q)) = cd(p,q) for any pes, qu. [3

We are now prepared to prove Theorems 4.6 and 4.7.

Theorem 4.6: If S :Em contains a circle C, an

unbounded connected subset T, and a line segment L with

I.:Tb then any continuous metric transformation of S into

n O O O I O Q I I

E is either tr1v1al or is a Similarity.

Proof: Let f be a continuous metric transformation
 

of S into En, with scale function p. Using Theorem 4.12

fiL can be extended to a screw curve, hence p must have

the form

2 22 r 2 2
(**) p (d) =cd + Z) A. sin k.d

. 1 1
i=1

for any distance d that can be written as d = d(ql,q2),

where q1,q2 e L. Using C, the proof of Theorem 4.5 can be

imitated to show that p(d) = cd, c 2_O, for any distance d

that can be written as d = d(q1,q2), q1,q2 E L. (Recall that

the proof of Theorem 4.5 depended upon (**), the existence of

a circle C in S, and the continuity of f.)
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If c = 0, then p(d) = O for d less than the length

of L and, by Lemma 2.6, f is trivial. If <:#'O Corollary

4 .9 shows that p (d(p,q)) = cd(p,q) for any p e T, q e L, which

defines p(d) for any distance d. Hence f is a similarity. [:1

Remark: When applying the above theorem, Lemma 3.11(b)

could well guarantee that the continuity assumption is

satisfied.

Theorem 4.7: Let S :Em, m 2 2 be a connected set with

non-empty interior. Then any metric transformation of S

o n o e c o o I o 0

into E is either a Similarity or is triv1al.

Proof: Let f be a metric transformation of S into

En, with scale function p. That f is continuous follows

from Lemma 3.11 (b). Since m 2_2, and S contains an

interior point of Em, S contains both a line segment and a

circle. Therefore, as in the proof of Theorem 4.6, p(d) = cd

for small d. If c = 0 Lemma 2.6 shows that f is trivial.

Now consider the case c > 0. Let f(p) = % f(p). and

let 3' be the scale function corresponding to ‘f Clearly,

N

p = é p, and hence ‘p(d) = d for small d. Thus there is an

open ball B of S such that ‘le is an isometry. Noting that

for q E B, there is an open segment L with q 6 L c B,

Lemma 4.8 shows that

d(f(p),f(q)) = p(d(p.q)) = d(p.q) for every p65. qu
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Now ‘f(B) is an isometric image in En of an open set of

Em, so it must be that m gDn. Let M1 be any n-dimensional

Euclidean space containing Em, and let M2 be the m-flat

of En which contains fXB). See Figure 4.3.

 

 

 

 

 

 

 

 

     
 

Em

S

f

/”“9

M1

Figure 4.3

Recall that an open subset of Em is a metric basis of

Em, and hence B is a metric basis of Em. The isometry

ij can be extended to an isometry f- : Em 4M , Let p 6 S.2.

For any q 6 B, it has been shown that d(p,q) = d(f(p) ,f(q)) .

Also

d(p,q) = d(f(p),f(q)) = d(f(p),f(q))

Hence

d(f(p),f(q)) = d(f(p),f(q)) for all q 6 B

Lemma 4.2 now shows f(p) = f(p).



99

In particular, f(p) 6 M2. Thus f':S : Em-oMz. The spaces

En and M2 are normed linear spaces of the same finite

dimension, so Corollary 3.19 (a) shows that f, is a

similarity. (In fact ‘f is an isometry.) From this it

follows that f is a similarity. [3

Example 4.1: To Show the connectedness conditions of

Theorems 4.6 and 4.7 cannot be eliminated (although they can

surely be modified) consider the following.

Let Dn' n any integer, be an open disc of radius one in

3

O

the xy-plane, centered at (4n,0). Let f : [J Dn-+E be

n=-°

defined by

f(X.y) = (x,y.n) for (x,y) 6 Dn

If d(p,q) = d(p’,q’) where p 6 Dn' q 6 Dma P' E Dnzo

q’ 6 Dm’ then [n-m] = [n’-m’] and

dz(f<p).f(q)) = dz<p.q) + (n-m)2

d2(f(p’) .f(q’)) = d2(p’.q’) + (n' -m')2

Thus it follows that f is a metric transformation. However

f is clearly not a Similarity. [3

To conclude this section we present a curious example.

The proof of Theorem 4.5 proceeded as follows. First,

distances of the form d(p,q), where p and q lie on a line

5 were considered. Then distances of the form d(p,q), where

p and q lie on a circle C were considered. In each case a
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characterization of the scale function p was Obtained. Using

the two characterizations, f was then Shown to be a similarity.

Our first thought for proving a theorem such as Theorem 4.7,

where S contains an open subset of Em, was to do the

following. Take two circles of different radii. For each

circle we have a characterization of the scale function p.

From this it was hoped that it would follow that f was a

similarity. This approach would eliminate the necessity of

Theorem 4.12. In the following example we show a function

4 andf which maps the unit disc of the xy-plane into E

which is clearly not a similarity. However f restricted

to any circle centered at the origin is a metric transformation

and if p1 and q1 lie on the circle of radius r centered
l

at (0,0). P2 and q2 lie on the circle of radius r2

centered at (0,0), and d(p1,ql) = d(p2,q2) then

d(f(pl),f(ql)) = d(f(pz),f(q2)). Thus the above approach

would not work without considering something further about the

circles.

Example 4.2: For any r > 0, let Cr be the circle of

radius r, centered at the origin. Let (r,e) be the polar

co-ordinates of a point p on the circle. Define f :Cr-4 E4

by

f(p) = (/3r2 - 2r4 cos 9, ./3r2 - 2r4 sin 9, J52: r2 cos 29, ./-2- rzsin 29) .

It is easy to see that f(Cr) is a metric transformation of

[
.
1

Cr' The scale function associated with flc , called pr, is

r

given by
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pr(d) = (3r2--2r4')sin2(sin-l £%)4-% r4sin2(2 Sin-l £%)

Since this last expression is independent of r, it has been

shown that for pl,q1 6 Cr and p2.q2 6 Cr with

1 2

d(p1.q1) = d(p2.q2> = d. then prl(d) = pr2(d).

We have now shown that to prove Theorem 4.7, it is not

enough to consider a set of circles and distances which occur

between two points of the same circle. [3

A more interesting example would be a set in Em

containing two circles of different radii and.a metric

transformation of that set into En which is not a similarity.

We conjecture that no such example exists.

63. The work in Section 2 of this chapter is based on

the characterization (**) of the scale function of a continuous

metric transformation of it into En. The transformation.

relative to a suitable co-ordinate system, is that which takes

teEIi to

t, A Sink t,...,A COSk t, A sink t, ct)

v v v v1 1
(A1 cos kl

where Ai'xi' and c are constants. If f(nu spans En,

then v = 3, c = O for n even, and v = 2434, c # O for

n odd.
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In E2 this says the only continuous metric transforms

of IR, (screw curves) that span the plane, are circles.

Since an order transformation is necessarily bicontinuous,

then there are no order transforms of Hi spanning E2.

In E3 the screw curves are necessarily circular helixes.

As in Example 4 Chapter 1, these may be order transforms of

IR. This behaviour is typical of the even and odd dimensional

cases. In even dimensions the screw curves spanning the space

are bounded simple closed curves lying on a sphere. Hence

there are no order transforms of n: spanning even dimensional

spaces. The simple closed curves referred to above are

sometimes called "trigonometric moment" curves.

In odd dimensions the screw curves spanning the Space

are unbounded and may be thought of as generalizations of the

circular helix in E3. Such a curve lies on a "spherical

cylinder" and its projection onto the base of the cylinder is

one of the trigonometric moment curves referred to above. The

tangents to the curve make a fixed angle with its axis as in

E3.

The von-Neuman-Schoenberg study shows much more, being

set in general Hilbert spaces. For example it is Shown that

bounded screw curves in V' must lie on a sphere. In En

screw curves are, of course, rectifiable, but such is not the

case in N3 For example the order transform of IR. given by

the square root function is an example of a homeomorphic

image of the line no sub-arc of which is rectifiable and it

was Shown in [32] that this is a screw curve in ya Von-Neuman
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and Schoenberg characterize those screw curves in y' which

are rectifiable.

Their proofs involve rather sophisticated analytic

techniques applicable to the Hilbert space setting. Since

M.D.S. theorists are more concerned with finite dimensions

and these characterization are finding their way into the

M.D.S. literature we thought a strictly finite-dimensional

derivation of the characterization in En might be both

simpler and more revealing.

We have another reason for presenting a proof in finite

dimensional space. Vogt [38] gives an intriguing example,

presented and generalized in Chapter 3 (Section 3), Showing

non-continuous metric transformations of HI. It is not

hard to Show that this example is typical of all metric

transformations of Hi into n:. That is, any metric

transformation of fit into El is a group homomorphism,

followed by a translation. A metric transformation of E:

into E2 that is not of this type is the following. Let

a : 1R 4 ]R be a group homomorphism. Define f : ]R-+E2

by f(t) = (cos e(t), Sin g(t)). Certainly this need not

be continuous, and it is not hard to Show f is a metric

transformation. In Theorem 4.10 all metric transformations

of Ti into En (be they continuous or not) are charac-

terized. We see that they are "made up" from the above

types of metric transformations.
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To assist the reader, we list the various symbols

used in the remainder of this section. To be consistent with

the literature, norm notation shall be used for distance here.

Notation for Theorems 4.10, 4.11, 4.12:

S,S.,a ,b - real numbers

3 s s

x,y,xj,yj,v1j,v2j,v3j,w - real vectors (The definition

of a real vector is introduced in the proof.)

z,zj - complex vectors

Vj,W.,W - subspaces of Cn

(
D
U

US,U. - unitary transformations of Cn

TS,T. - affine isometries

U
N
L
J

I - the identity transformation

Note: Us (or T3) does not represent the transformation
 

U (or T) raised to the power 5, but is one symbol.

We write it in this way because it is shown that

Usour = Us+r (TsoTr = Ts+r).

Let V1,...,Vm be vectors in Cn

(vl,v2) - the standard inner product in en

[v1,...,vm] - the subspace of en spanned by v1....,vm

If Vccn is a subspace, we denote by vi- the set

[zecn](z,v) =0 for all vEV].

"VI” = ~/_—(V1"’1)
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Definition: A unitary transformation Cn.»cn (or En-aEn)

is a function U such that U(O) = O and Hzl-22H==HU(zl)-—U(22)H

for all 6 Cn (or En).
21,22

The following is a list of elementary properties of unitary

transformations. These are all easy to show, and can be found

in linear algebra or functional analysis reference booxs.

(See for example [1.], [18]).

Let U be a unitary transformation.

U1. U is a linear transformation of en (or En). Thus U

is an affine isometry.

_ n n
U2. (21,22) - (U(zl),U(22)) for all z ,2 5C (or E).

1 2

U3. The absolute value of any eigenvalue of U is 1.

U4. U-l exists.

U5. (21'U(22)) = (u‘1(zl).zz).

U6. If V is a subspace of Cn (or En) and U(V) = V,

then U(v‘) = v‘.

U7. If antbi is an eigenvalue of U, then 51%E{==a-bi

1

is an eigenvalue of U-

Theorem 4.10: Let fun-.3“ be a metric
 

transformation with scale function p, such that f(fiU

spans En. Then there are mutually orthogonal two dimensional

subspaces V1, . . . ,Vm of En, an (n - 2m) -dimensiona1

subspace W of En with W ij for all j, vectors
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lj' 23., and v3]. in Vj, With Vlj'LVZj and

"Vle = ”vsz = l, a vector w eW, group homomorphisms

V V

ej :lR-oR/ZTr, 1 gj gm

a group homomorphism g : IR4W, and constants Aj such that

F .

fj (t) Aj((cos ej(t))v1j+ (Sin ej(t))v2j) +v

33'

(*) <

fw(t) g(t) +w

 

where fj(t) is the projection of f(t) into Vj, and

fw(t) is the projection of f(t) into W.

Conversely, any function f : lRaEn of the form (*) is

a metric transformation of JR into En.

Proof of Converse: We Show that if f satisfies (*) for

sane set of normal subspaces V1, . ..,Vn and W of En, then

f is a metric transformation. In this case we have

 

 

 

 

”f(tl) ‘f(t2)”2 = jg], 4A3g sin2(ej(t1) -ei(t2)) + H£W(tl) ‘£w(t2) "2

= jgl 4A; S"’inz(ej(i=1-2.112))
+ ”g(tl 't2)l!2

= jg 4a? sinzu. 91-(lt12-tzl))+”:g(‘tl -t2])l[2

= jg]. 4A3? Sin2(ej(‘t12-t2‘))
+ H9Ht1 ’t2])|l2 -

This shows f is a metric transformation with Scale function p(d)

satisfying

5

2 - 2 .2 d
p (d) — .23 4A3. em ej(2)+'[9(d)[[2 . c:

3=1
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We now provide some motivation for the proof of this

theorem by informally discussing the situation in E3.

3
Any motion of E can be described (see [6], Chapter 7)

as either

(A) A rotation about a line, and a translation along

that line. This line is called the axis of rotation.

(B) A rbtation about a line, and a reflection through a

plane perpendicular to that line.

(C) A reflection through a plane, and a translation

along a line in that plane.

We are given a metric transformation f of the real line,

with [f(t) , t 51R] Spanning E3. We can define an isometry

T3 of the set [f(t) [1:513] by Ts(f(t)) = f(t+s). It is

not hard to verify that this is an isometry. Extend this to

a motion of E3, also called Ts. As [f(t) [teIR] spans

E3, this extension will be unique (Theorem 4.1).

Using these properties of T3, it can be shown that

(1) Ts+reT3oTr II
I

6 0T

In particular TS e TS/ons/2 for all s, from which we can

conclude that T3 is not of type (B) or type (C), hence is of

type (A).

Next, using (1), it can be shown that the axis of rotation

of each TS must be the same. Thus, if Ts, Tr, and T3."r

have rotation angles e(s), e(r), and e(s-tr) respectively,

then e(s)-+e(r) = e(s-tr) (modulo 2w). It also follows
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that if TS has a translation along this axis of a

distance g(s), Tr of a distance g(r), and T8...: a

distance g(s+—r) then g(s)4—g(r) = g(s-tr) (where

g(s), g(r), g(s4—r), can be either positive or negative,

depending on the direction of the translation).

Definition: A set of motions [T8 1 s 6 1R] of En

s+r

satisfying TseaTr = T is called a one parameter subgroup

p§.motions.

It follows immediately that any two members of a one

parameter subgroup of motions commute.

Comment on Notation: Note that T3 is a motion, and

does not represent "T raised to the power 3". When we wish

n

to use exponentiation, and we shall, we write (Ts) . Thus

n

s) =‘Ti<>Ts 0 ..... 0T3; It is easy to see that if

f

n times

(T

[T8 ] s 6 IR] is a one parameter subgroup of motions, then

n .

(Ts) e Tn 3. As TS and Tr commute. it follows that

n n n n

(125”) = (TS .145) = (TS) (Tr) .

Proof of Theorem 4.10: The proof consists of eight steps.

Step 1. For each s 6 1R, define a motion T5 of En as

follows. Let Ts(f(t)) f(ti—s). AS f is a metric trans-

formation it follows that

”Ts(f(tl)) -Ts(f(t2))” = []f(tl+s) -f(t2+s)H = p([tZ-tll).
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Hence TS defines an isometry of f(nU into En. By

hypothesis f(flU spans En, hence TS can be uniquely

extended to a motion of En (Theorem 4.1). Because of this

uniqueness, and the fact that

T3 oTr(f(t)) = f(t+s+r) = Ts+r(f(t)),

it follows that T3 4Tr s Ts+r. Thus [T5 l S 61R] forms a

one parameter subgroup of motions of En.

The function Ts(x)-TS(O) is a norm preserving map from

En onto En, which takes 0 to 0, hence is a unitary

transformation (by definition). Thus Ts(x) = Us(x)4-TS(O)

where U3 is a unitary transformation. By U1, US is a

I O s O O I

linear transformation, hence T is an affine isometry.

Remark: Step 1 shows that every metric transformation

f of it into En can be written as f(s) = Ts(f(0)),

s O 0

where T is a one parameter subgroup of motions of En.

Step 2. Consider tn, the complexification of En.

Extend Us to a unitary transformation on Cn, also called

3

U , by

Us(x+ iy) = Us(x) + iUS (y)

where x and y are real vectors. (That is to say, x and

y lie in the natural embedding of En into Cn. See [1]

for a discussion of complexification.) Note that this is the

-1

unique extension of Us to a linear map of Tn. As (Us)

exists (by U4) it follows that Us(y) = 0 if and only if y = 0.
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Hence if z = xi-iy (x,y real) then Us(z) = Us(x4-iy) =

Us(x)4-iUs(y) ir real if and only if z is real, that is

y = O. This property of US will be used frequently

Extend TS to CD by

Ts(z) = Us(z) +Ts(0)

Note that this is the unique extension of Ts to en such

that Ts(z) is an affine isometry of On. Also, because

3

TS(O) is real, and U (z) is real if and only if z is

real, then Ts(z) is real if and only if z is real.

Step 3. Because the extension of Ts to Cn is unique

it follows that

T 0'1‘ = T = T <>T

showing TS is a one parameter subgroup of motions of en.

New

TS 0Tr(z) Ts(Ur(z) +Tr(0))

Us (Ur(z) +US (f(a)) + T3 (0)

and

3+]?

Ts+r(z) = Us”(z) +T (0)

Hence, combining the above equations

S-t s-tr

(U r-USUr)z U3(Tr(0))+TS(O)-T (0)

constant

As this is true for all z, the constant is O, and

s-tr S'Fr

(1) USUr = U and T (0) = US(Tr(O)) +T5(0).

Similarly
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UrUs = Us+r and Ts+r(0) = Ur(TS(0)) +Tr(0)

Thus

(2) UsUr = UrUS

and

Us(Tr(0)) +TS(0) = Us(Ts(0)) +Tr(0)

or

(3) (I -Ur)'rs(o) +Us(Tr(0)) = TWO).

where I is the identity transformation.

Step 4. We now wish to “simultaneously diagonalize" the

transformations Us,s 61R. That is, we wish to find a basis

B of en such that the matrix of Us in B is diagonal, for

all S.

We have enough information to apply standard theorems of

linear algebra, however we need to be quite specific in the

choosing of the basis vectors so we present some details of

the usual arguments. Equation (2) and a standard theorem of

linear algebra ([2], P 206) Show that the transformations

Us,s 61R possess a common eigenvector which we call x+ iy,

where x and y are real. Assume |lx+iyu=‘/s2-. Let the

eigenvalue of US corresponding to x+ iy be as + ibs . For any

5 61R,

Us (x) + iUs (y) = Us (x + iy)

(as + ibs) (X + iy)

asx-bsy4-i(bsx4-asy)

As observed earlier, Us (x) is real if and only if x is

real, hence it follows that
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Us (x) = asx -bsy

Us (y) = be+ asy

Now

U3 (x - iy) = Us(x) - iUs (y) = (as -bsi) (x - iy),

shOWing that x -iy is an eigenvector for all Us, the

corresponding eigenvalue being as -bsi.

Case I. If bs = O for all S, 1et W1 = [x+iy, x-iy].

It is easy to verify that Wl = [x,y] . Note that W1 may be

either one or two dimensional, but in any case, it has a real

basis. Clearly US (W1) = Us([x+ iy, x -iy]) = W1 hence by

S J. = J.

Case II. Assume that bS #0, for some S 51R. We

1
1

now Show (x+ iy) .L (x -iy) and that x .Ly. We have

5‘1
(4) (x+iy, U (x-iy)) = (a +b i)(x+iy, x-iy)

51 51

By U70

5"1 -1
(5) ((U ) (x+‘iy), x-iy) = (as --b8 i) (x+iy, x-iy)

1 1

By US, the left hand sides of (4) and (5) are equal, hence

Subtracting (5) from (4) yields

0 = 2b i(x+iy, x-iy)

31

As bS 7‘0, we have (x+iy, x-iy) =0. Then

1

o = (x+iy, x-iy) = HxH2-”y||2+21(x,y)
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From which it follows that (x,y) = O and ”x” = Hy”. Also

. 2 2 2 .

2 = ||X+1YH = ”XI! +HYH +21<Xoy>

Combining these, we see that

”X” = ”Y” = 1

Let x1 = x, y1 = y and let Vl be the space spanned by

the orthonormal vectors x1 and y1. For any 9,

S S . .

U (v1) = U ([x14-iy1, X1-1y1]) = v1, hence by U6, Us(Vi) = vi.

For any 3, the restriction of Us to Wi in Case I,

or Vi in Case II is a unitary transformation hence we can

continue the decomposition of On, in the same manner, by

lOOking at this restriction. Thus it follows that

n

C = V1@V2® . . .®Vm®WlWZG-) . . .@W

K

The subspace Vj has the orthogonal basis {in'iyj' xj-iyj}

and the real orthonormal basis [xj.yj}. For some 3, say S.
I

s o

the eigenvalue of U 3 associated with xji-iyj, call it

Sj Sj SJ

spanned by two real vectors (which may be dependent) so it too

a 4-ib is not real, ie b # O. The subspace Wj is

has a real basis. If W = Wle...@WK. then ‘W has a real

basis. Note, it may be that Cn = VrOVze...®Vfi or on = w.

s _ s s _ 3
Step 5. ILet Uj - U lvj, UW — U ‘W’ For each 3 let

S _ s s s

T (0) — Tl(0) + +Tm(0) +TW(0)
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where T§(O) evj, Tam) 6W. AS Vj, j = l,...,m and W have

real bases, and Ts(0) is real, it is not hard to conclude

that T;(O), j = l,...,m and T;(O) are themselves real.

Define

T;(z) = U§(z) +T:.'(O) and 1:;(2) = age) +T‘:(0)

If 2 = zl+ ...+zm+zw, zievi, zWEW, it follows that

125(2) = )3 (Us(zj) +T§<0H +Us(zw) ”3(0)

= E (Ugmj) +T3°r<on +03%) ”53(0)

= 21"(zj) +Tvsq(zw)

Step 6. In this step, and in step 7 the situation in

V3. is examined. As noted in step 4, the eigenvalue

a 4-bs 1, associated with xja-iyj, is not real. The

S) 3'

eigenvalue associated with xj -iyj is aS --b3 i.

j 3

We wish to find a vector v3j such that

sj sj sj

6 v . = T. v . = U. v . 4-T. 0H 33 3(33) 3(33) 3()

. S.

Since 1 is not an eigenvalue of Ujj, (I'-Uj3)"l exists.

Solving for v3j shows that

s. s.

_ 3-1 J
V . - I‘-U. T. O3] < 3) JH

The vector V3j is real, for if v3j = ui—iv then

S. S. S. S.

Tj3(0) = (I -Uj3)(u+ iv) = (I-Ujj)u+i(I -Uj3)v
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S. s.

As (I--Uj:’)-l exists and Tj3(O) is real, this shows

For szVj (6) shows

S. S. S.

Tj3(zj) = (Uj3(zj)4-(Tj3(0)-v3j)):-v3j

= Usj(z.)-Usj(v .)4-v .

J 3 J 33 33

= Usj(z.‘-v .)-+v .

J J 33 33

Consider Equation (3). Projecting both sides of this

onto Vj' it follows that for arbitrary s and r,

r s s r r
7 I-Uo To 0 +Uo To 0 = To 0( ) ( J) J( ) J( J( )) J( )

For arbitrary s,

s s s s

O o = o 9 - V 0 + U 0 V O + T O OTJ(zJ) UJ(zJ 33) J( 33) j( )

s s .
Now Uj(v3j)4-Tj(0) is equal to

S. S. S S.

_ J -1 ‘_ J S '_ j -1 J s
(I Uj ) (I Uj )(Uj(I Uj ) (Tj (0))4-Tj(0))

U
)

S.

AS U3.3 and U. commute (see (2)) this becomes

t
h
e
:

(Ii-U.j)-1(UsTsj(0)+-(I-Usj)Ts(O))
J 3 3 3L

]

From (7) it follows that this equals

3. S.

(I -UjJ)-1Tj3(0) = v3j (definition of v3j).

.)-+v

s 3

Hence T. 2. = U. . -

J( 3) 3(23 V33
3j' Note this is true for all

 



116

Step 7. We continue examining the situation in Vj.

Call the projection of f(s) onto Vj' fj(s). Let

f.0-v.=A.a..+ .. ,

J( ) 33 3( 3x3 BJyJ)

where |o[24-|B|s = l, Aj 2_O. As fj(O)--v3j is real, it must

be that oj and Bj are real.

Let v.. = o.x.4- . .

13 3 J sly)

V . .x.-o. .

23 s3 3 3y:

These form a real orthonormal basis of Vj' In the basis

[vl..v2j] the matrix Ms of Us is

J J 3

aS sbs

n? =

3

b a

s S

(This is easily cheCked by applying it to xj = ajv1j4-ij2j,

2 2 _ .
and yj — ijle-ojvzj.) As aS-I-bS — 1, it follows that

cos . s -s' . ss eJ( ) in 93( )

Mj =

s' . os . Sin 83(s) c 93( )

for some angle 8j(s).

We have

S

fj(s) Tj(f(0))

.)+v
S

3i

s
AjUj(v1j)4-v3j

Aj((cos 6j(s))v1j4-(Sin 6j(s))v2j)+v3j
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We need to Show that ej is a group homomorphism from n:

to lR/21r.

As U:4 r = Ug-UE, elementary trigonometric identities

Show that

cos (6343) + ej(r)) -sin (9348) + ej(r))

s-tr
M, =

J

S' . + . . + .1n (63(8) ej(r)) cos (93(8) 63(r))

and hence

 

93. (s + r) = ej (s) + ej (r) (modulo 21r) ,

showing that ej is group homomorphism. Thus the required

fonm of fj(s), is achieved.

Step 8. Here the situation in W is examined. In

choosing the basis vectors for Cn, it was seen that US has

real eigenvalues for all s, and hence by U3, these eigen-

values are :1. Now Us/s-Us/2 = Us, so Ua/Z-US/s = Us, and

hence the eigenvalues of US are all 1. This shows

2

is

2“
..
.

the identity.

NOW

s+r(z) U;+r(z)+T‘S1+r(O)=z+Tvs1+r(o)

T;(2+T£(O)) = z+T;(0) +T;(0)if.
“

2“
. a ll

As T;+r a 132%, it follows that

S

Tw+r(o) = 513(0) +T§(0)

Letting g(s) = T;(0) , it follows that g(s+r) = 9(5) +g(r) ,
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hence g is a group homomorphism from I! to ‘W, and

£W(S) = T§<f<0n = 9(5) +me)

Letting w = fw(0) the required form in W is achieved.

The proof of the theorem is now complete. [3

Remark: The von-Neumann-Schoenberg result, where f(t)

 

‘
\

is continuous,follows easily from this. For if f is

continuous then ej, j = l,...,m and g mmst be continuous,

in which case it is not difficult to conclude that

ej(s) ks (modulo 2V)

and

9(3) = sou, u a fixed vector in W.

This then gives the characterization of a metric transformation

of it into En given in the von-Neumann-Schoenberg paper.

In Section 2 it was asserted that a metric transform

of a segment can be extended to a metric transform of hi.

This is proven in Theorem 4.12. We first need a lemma

about one parameter subgroups of motions of En.

Lemma 4.11: Let [Ts] [S] < 5] be a set of motions of

En satisfying TsoTr = Ts+r whenever s,r and s4—r are

in (—5,5). Then there is a unique one parameter subgroup of

motions, called [Ts | sEIR} such that Tse Ts, [s] < 5.
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Proof: Let s be given. Define Ts as follows.

Let m be an integer such that s/m£5(-5,5) and define Ts

by TS = (TS/hm. If 8/4 e (-o.5) then

s g m
m -—- z

(Ts/m) = ((T ""') ) -= (Ts/h

Thus the definition of Ts is independent of the choice of m.

Let s and r be given. Let m be such that a, and

a
n
:

51:5 are in (-5,5). Then

m m

TsoTr = (TS/m) (Tr/m) = (Tm m) = 'T's+r

Thus [Ts] is a one parameter sub-group of motions. Clearly

 this extension of [Ts] [S] < 5} to a one parameter sub-

group of motions is the only such extension. 13

Theorem.4.12: Let f be a metric transformation of

(-a,a) into En. Then f can be uniquely extended to a metric

transformation f- of JR into En. If EmcEn, and

f((-a.a))csm, then f(lR)cEm.

Proof: Case I: Assume f((-a,a)) spans En. The case that

it does not will be covered in II. Let -a < tO g_t1 g ... S'tn < a

be such that [f(ti)] spans En, and let 5 = min [a-—tn, t 4-a].
0

For each s, |s| < 5, the function given by f(t)-+£(t4-s)

is an isometry of f([-a+ 5, a - 5]) into En, hence can be

uniquely extended to a motion Ts of En (Theorem 4.1).

For 5 and r such that s,r, and s-tr are in (-5,5)

Ts°Tr(f(t)) = f(t+s+r) = Ts+r(f(t))
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s+r

Because T is the unique motion such that

Ts+r(f(t)) = f(t+s+r), then

TSOTr '5 T8 4' r

Thus [Ts] [s] < 5] satisfies the hypotheses of Lemma 4.11,

so there is a unique one parameter subgroup of motions [Ts]

which extends [Ts] [S] < 5].

Define 'f(s) by fis) = Ts(f(0)). For se§(-a,a),

and m such that $6,(-5,5).

m

f(s) = Ts<f<on = (Ts/m) (f(0)) = 12mg) = f(s)

Thus ‘f extends f. The uniqueness follows from the uniqueness

in Lemma 4.11, and the fact that every metric transformation f

of JR can be written as

f(s) = 65mm)

 for some one parameter subgroup of motion [Ts] of En (Step 1,

Theorem 4.10).

Case II. Consider now the case f((-a,a)) does not Span

En. Let Em be the m-flat of En which contains, and is

spanned by f((-a,a)). Let 1f be any extension of f to it

and assume 'f(EU spans Es. As above, let 5 ‘be such that

f([-a4—5, a-6]) spans Es. As in Theorem 4.10, 1et [Ts] be a

one parameter subgroup of motions of E‘‘ such that

Ts(f(t)) == f(t+s). For [S] < 5,

Ts(f([—a+o. a-5])) = f(I-a+o+s. a-:+s1) sum
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Thus, by Corollary 4.3, Ts (Em) cEm.

For arbitrary s, let p be an integer such that

36 (-5,5) . Then Ts (Em) = (Ts/p)P(Em) :Em. Thus

'f(s) = Ts(f(O))<5Em for all s, so E‘ = Em, and the

uniqueness of the extension follows from Case I. D

Differential geometers cannot help but feel that this

work is closely related to the several studies of generalized

helices in the literature and those interested in the study

of topological groups, transformation groups, and topological

dynamics will observe that this characterization of metric

transforms of n: in En can be viewed as characterizing

the orbits of a one parameter subgroup of the group of motions

of En. No doubt the extensive literature in these fields

contains similar characterizations of screw curveslbut probably

under stronger hypotheses than we impose here. In any event,

we hope that this derivation under these weak hypotheses and

resorting to relatively elementary tools will prove useful.

Finally we should note the close connection between

these ideas and some recent work of Grunbaum and his students

concerning regular polygons in En. In that worktpolygons of

varying degrees of regularity are studied. A polygon

P1,P2, - - "Pm is called k-regular if all W = C3. for all

i and for j = l,2,°'°,K. We could describe a regular

polygon in En as one whose vertex space is an order isomorph

of a regular planar polygon. It is easy to see that there are

regular polygons with 2k vertices spanning En for any n

and r > g, but J. Lawrence [22] has shown that odd sided
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regular polygons span only even dimensional spaces. His

reasoning employs transformation ideas similar to those in

our proof.

Our early reflection on the metric determinancy problem

led us to conjecture that regular polygons with a large number

of vertices would probably be planar but,as the above

discussion shows,this was rather naive. Even the ultimate

regular convex planar figure, the circle, has order isomorphs

spanning arbitrarily high-dimensional Euclidean Spaces.

§4. Most of the results of this thesis, up to this point,

have been of the following type. The function f is a metric

transformation, whose domain contains a convex subset. Then

f is shown to be a similarity by first showing that the range

also contains a convex subset (compare Theorems 2.16, 3.16.

3.18, 4.7). In this section we Shall consider order transformations

of the unit sphere of an inner product space. The unit sphere  
of such a Space is certainly not convex, so it seems we have

managed to move away from the convexity conditions. However,

as the surface metric of the sphere of an inner product space,

and the nonm metric, are related by an order transformation

(see Lemma 4.14), convexity again plays a role.

Notice that we have been talking in terms of order

transformations here. The main theorem of this section,

Theorem 4.15, is stated, and proved only for order transformations.

This theorem shows that an order transformation from the unit

sphere of an inner product space onto the unit Sphere of a
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normed linear space must be a similarity, and the N.L.S.

must be an inner product space. The theorem is, at least for

finite dimensions greater than two, true for metric, rather

than order transformations. The proof of this generalization

is outlined after the proof of Theorem 4.15.

The proof of Theorem 4.15 relies on the following

characterization of inner product Spaces, due to Senechalle [34].

Theorem 4.13 (Senechalle): Let M be a normed linear

space with unit sphere S. Then M is an inner product Space

if and only if there is a function F such that for each p

and q in S

FWP-qw =HP+qH

Proof: See [34].

The following lemma is an easy consequence of some of our

work in Chapter 2. It is an interesting result about metric

transformations, although it certainly is not surprising. The

assumption of bicontinuity is not necessary for dim E1 2_3,

as Theorem 2.9 can be applied. However, for our purposes, the

following suffices.

Lemma 4.14: Let S1 and S2 be the unit spheres of inner

onto

1 >32

be a bicontinuous metric transformation. Then f is an isometry.

product spaces E1 and E2 respectively. Let f :S  
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gpppg: Let the metric given by the inner product on

S1 and 52 be d1 and d2 respectively, and let the

intrinsic metrics be di and dé respectively. (The

intrinsic distance between x and y being the length of

the shortest arc of the great circle joining x to y.)

Note that (Sl,di) and (Sz,dé) are convex metric spaces.

Let g1 :(Sl,dl)-4(Sl,di) and g2 :(Sz,d2)-4(Sz,dé)

be given by gl(x) = x, g2(x) = x. Both 91 and g2 are

order transformations with scale function p, where

p(r) = 2 sin '1 g . Thus the function g2fgi1 is a bicontinuous

metric transformation between the convex metric spaces (Sl,di

and (Sz,d’ . Theorem 2.17 then shows that ngg;1 is a

similarity, and it follows that indeed it is an isometry.

Hence. f is an isometry. [3

Before proceeding to the proof of Theorem 4.15, recall

from Chapter 1 that an order transformation has a one-to-one

strictly increasing scale function. Hence the scale function

and the order transformation are both invertible. See Chapter 1,

§2.

Theorem 4.15: Let (E,d) be an inner product space with

unit sphere S. Let M be a normed linear space, with unit

sphere U. If f :s °nt° > U is an order transfonmation, then

f is an isometry, and M is an inner product space.

Proof: Let H'H be the norm in M and let p be the

scale function for f. Then p is one-to-one. First it is shown

that U is strictly convex, and then that antipodal points of
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S are mapped by f to antipodal points of U.

Since 2 is the maximum distance between points of S,

f preserves the order of the distances, and 2 is the maximum

distance between points of U, it follows that p(2) = 2.

Let xe; S. The scale function p of f is one to

one, and -x is the only point a distance 2 from x, so it

follows that f(-x) is the only point a distance p(2) = 2

from f(x). This shows that f(-x) = -f(x).

Let iyeu. Then

 

 

 

”35+?” = Us" (5) H

= p(d(f‘1(§).f’l(-§)>)

... p(d(f‘1(§).-f‘1<§))>

.... p(fl.a2(f‘1(§) ,f-1(§)))

= 95/45. (p'1(u'£-§H))2)

f‘1(§)

...1 — _ _ —l -
'1 _f (-y) - f (y) 2 7 f (Y)

 

Figure 4.4
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Senechalle's Theorem, Theorem 4.13, now shows that M

is an inner product space. Lemma 4.14 now shows that f is

an isometry . C]

Corollary 4.16: Let (E,d) be an inner product space

with unit sphere S. Let M be a N.L.S. with unit sphere

U and dim M = dim E < m. If f :S-+U is an order trans-

formation, then f is an isometry, and M is an inner

product space.

2599;: Let dim M = dim E = n. Note that U is

homeomorphic to S. Any proper open subset of S is

homeomorphic to an open subset of En-l' and hence by the

Invariance of Domain Theorem (Theorem 3.5), is mapped by f

onto an Open subset of U. Thus f(S) is open in U. On the

otherhand f(S) is a compact subset of U, hence (as U is a

Hausdorf space) f(S) is closed in U. Since U is connected,

it follows that f(S) = U3 U

Corollary 4.17: If dim E = dim M = 2, and f :S-oM is

an order transformation then M is an inner product space

(ie the Euclidean plane) and f(S) is similar to S.

Proof: Fix a point p of S. Then for x 6 S we have

the first configuration shown in Figure 4.5.
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f (-X) f(p)
 

 

   
  

" f <-p) f(x) ’

Figure 4.5 ‘

Since f is an order transformation, it is easy to see that

the rectangle (-x)px(-p) is transformed into a parallelogram,

whose diagonals have equal length. These diagonals bisect

each other at a point 0, the midpoint of [f(-p),f(p)].

Thus Hf(p)-—OH = ”f(x)‘-O”, and hence f(S) lies on the

 circle [y] ”y-—OH = %p(2)}, so the corollary follows from

Corollary 4.16. D

As indicated earlier, Theorem 4.15 remains valid if the

assumption of "order transformation" is replaced by that of

"metric transformation", and 3 g_dim E < a. The proof of this

is only outlined here.

Theorem 4.15(a): Let M be a N.L.S. with unit sphere U.
 

onto
 Let S be the unit sphere of En, n 2_3. If f :S > U is

a metric transformation, then f is an isometry, and M is an

:n-dimensional inner product space.
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Outline of Proof: That it is necessary for n to be at

least 3 follows by noting that a circle is a screw curve, and

can be mapped onto itself by a discontinuous metric transformation.

For example, elt-.es3(t) where o is any group homomorphism of

TR. (Example 2 of Chapter 3 discussed this type of metric

transformation.)

 
The proof that f is an isometry is the same as that of

Theorem 4.15 once the following three facts are established.

The function f is bicontinuous, f(-x) = -f(x), and the

scale function p is one-to-one. We shall now informally

discuss the proofs of these in terms of the three dimensional

case. The proofs remain virtually the same for higher finite

dimensions.

To Show that f is bicontinuous, Theorem 2.9 is used. It

is not hard to see that the unit sphere S of E3 has the

long legged local issoceles property with x(p) =‘/31 Theorem 2.9

 then shows that f is locally bicontinuous and, in particular,

PM) #0 for d<\/3.

We now Show that f is one-to-one. It is here, and only

here, that we have not settled the theorem for the case that

 

 

Figure 4.6
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E and M have infinite dimension. Let d1.\/3'g.d1 g.2 be

given. Then there would be points x,y,z of S as in

Figure 4.6, where d2 is some distance less than \/3 .

If p(dl) = 0, it follows that p(dz) = O, contradicting

p(d) so for all d<fi.

We have now Shown p(d) ¥ 0 for any d, hence f is

one-to-one.

To Show f is onto, an argument such as the one in

Corollary 4.16 can be used. Hence, f is bicontinuous.

Next we show that f(-p) = -f (p) for any peS. Let p

be an arbitrary point of S and let A = [x ES [p(d(p,x)) = 2}

and B = [yeU] “f(p) -y|] = 2]. Then f(A) = B. so the sets

A and B, as well as their complements, are homeomorphic.

 

 

 

 

 

Figure 4.7

The set B can be shown to be a convex subset in U. The

set A must consist of a family of parallel "lines of

latitude" with p as the south pole). As A is homeomorphic

to B, A mustbea spherical cap and must contain -p.
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If A is run: equal to {-p}, then every Spherical cap the

same size as A is mapped onto a convex set in U. Clearly

this leads to a contradiction. Thus A = {—p], and B = [f(-p)].

Since -f(p) EB, it follows that f(-p) = —f(p) .

To Show p is one-to-one, a similar approach is taken.

Let A = [x68 lp(d(p,x)) = r] and B = {yEU I d(f(p),y) = r].

As before, A and B are homeomorphic and A contains a

number of lines of latitude of S. However, B can be shown

to be a Simple closed curve in U (for r < 2). Thus A must

consist of one line of latitude, so p is one-to-one.

The proof that f is an isometry can now proceed as in

Theorem 4.15. U

The questions raised in this section could be aSked of

order and metric transformations between the spheres of arbitrary

N.L.S. We have made no progress on this type of question.

While considering it, we aSked the following: If U1 and U2

are the unit Spheres of N.L.S. M1 and M2 respectively, and

onto

1

other words, can f be extended to M1? This problem seems to

f :U
 > U2 is an isometry, is M1 isometric to M2? In

be quite difficult, and yet should be easier than questions

about metric and order transformations between spheres. If

such theorems are true’they would supercede theorems of the

Mankiewicz type discussed in Chapter 3.
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§5. Appendix to Chapter 4

In proving Theorem 4.5, the following fact was used.

Let

V ‘2 2
h(o) = 2‘, Bj sin hjo

3=1

s

9(a) = 4r2c2sin2 §+ Z] Agsinsmkjr sin 3) ,

j=1 .

where sj'hj'c'Aj' and kj are all non-negative constants. If

h(o) = g(o) for all a 2_O on a non-empty interval I, then

for each j = l,...,s either Aj or k3. is zero.

The following proof of this is due to Dr. L. Sonneborn.

Assume that h(o) = g(o), for erI. Consider h and g

as functions of a complex variable 2. Both are analytic funtions

on the entire complex plane.

By a well known theorem of complex analysis, if h(z) = g(z)

for all z in any set having an accumulation point, then

h(z) = g(z) for all 2. Since we know that h(o) = g(o) for

every a in I, it must be the case that h(z) = g(z) for all

2.

 

B2

'11 (e ‘2hjt _ 2 + eZhjt)
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Let b = max[hj]. Then

1im e ‘(2b+1)th(it) = 0

t4-

-(2b+1)t 22 2 it
Similarly, 1im e -4r c sin 1? = 0. New

t-nu

-(2b+l)t S 2. 2 . it
A.s n 2k.r se .2) J 1 ( j in 1?)

 

 

 

 

3=1

. . it . . it
-(2b4-1)t s 2 e12k3r Sin 1?..e-lsxjr Sin 1? 2

= e Z) A.(-4 4;. )

j=1 3 2i

. -t/2 t/2 . -t/2 t/2

_ -(2b+l)t S 2 ez'br‘e 'e )-2+e"2"3r(e “3 )
- e Z A- ( )

j=1 J ‘4

Taking the limit as t-4a, we get -a. unless either Aj or

kj is zero for each j,j = 1,...,s,. From the above we know

this limit must be 0, so .Aj or kj is zero for each j. a



CHAPTER 5

FURTHER RESULTS IN EUCLIDEAN SPACE

In this chapter we consider metric transformations

1, n 2.2. Since webetween hypersurfaces immersed in En+

make use of results from differential geometry, the hyper-

surfaces are required to be smooth, and the metric trans-

formations to be diffeomorphisms. It is not our intention

here to carry out a complete investigation of diffeomorphic

metric transformations, but rather to show some applications

of the theory and techniques outlined in chapters one through

four. We suspect that there is much room for generalizing

the results of this chapter.

Before proceeding, a word of caution. Normally, a

differential geometer calls a function which preserves arc

length an isometry. In our work we consider, for the most

part, hypersurfaces in En+l, and continue to mean by an

isometry a function which preserves the Euclidean metric.

A map which preserves arc length is called eguilong.

The links connecting preceeding chapters to differential

onto> '5' be a
 geometry are Theorems 2.14 and2.20. Let f : S

(diffeomorphic metric transformation with spread 1. Theorem 2.14

ashows that,for any rectifiable arc y in S, the length of

133
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y equals the length of f(y). That is, f is equilong.

Thus, the first fundamental forms of s and s are the

same. (See §l for definitions, symbols and references).

Theorem 2.20 shows that, for a differentiable curve y in

S and a point pesy, the difference of the squares of

the curvatures of y at p and of f(y) at f(p) is

constant. The constant is independent of both Y and p.

This enables us to relate the second fundamental forms of

S and 'S and, in the case of hypersurfaces in En+1,

to show that they must be the same, up to Sign. See

Theorem 5.6.

Because f, a metric transformation with spread l,

preserves the first fundamental form (ie.arc length) a

large body of knowledge is immediately applicable. This

body of knowledge, known as "rigidity theory", investigates

diffeomorphisms between submanifolds of a manifold. The

diffeomorphisms are assumed to preserve the first fundamental

form. The question aSked is whether or not such a diffeo-

morphism can be extended to a diffeomorphism from the manifold

to itself, with the extension also preserving the first

fundamental form. One of the most famous rigidity theorems

is the following.

Theorem 5.1: (Cohn-Vossen) If S c E3 is a compact

surface which is the boundary of a convex set, then every

equilong diffeomorphism of S into E3 is an isometry.

 

 



 

135

Proof: See [36] 5, p 280 Theorem 12.

It follows immediately from Theorem 5.1 that a

diffeomorphic metric transformation, defined on the boundary

of a compact convex set in E3, into Es, is a similarity.

Another famous rigidity theorem, used later in this

chapter, is the following.

Theorem 5.2: Let s and s be differentiable hyper-

surfaces immersed in En+1, and let f :S 9259) S. be an

equilong diffeomorphism. .Assume also that the rank of the

differential is at least 3 for all points of S. Then f

is an isometry.

Proof: See [36] 5, p 244 Theorem 1.

Theorem 5.10, the main result of this chapten eliminates

the assumption of Theorem 5.2 that the rank of the differ-

ential be at least 3.

1 (suchThe rigidity theorems for hypersurfaces in En+

as 5.1 and 5.2) in themselves seem to support the principle

of "metric determinacy". That is, they seem to confirm

that an order transformation is "usually" an isometry. (See

Chapter l, 53). Theorem 5.10, and the results of Chapter 4,

may make the reader feel very comfortable with the principle

of metric determinacy, for subsets of En+1. However,

questions about metric transformations between submanifolds

of dimension less than n, in En+1, have not been addressed.

For example‘ we have not determined whether or not a metric
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transformation of an n-1 dimensional manifold immersed

in En+1 is necessarily an isometry.

The case of a submanifold of dimension one is partic-

ularly interesting. In Chapter 4, all the metric trans-

formations of the real line into En are classified. It

is easily seen that if a continuous metric transformation

of the real line has an inverse which is also a metric

transformation, then that metric transformation is necessarily

an order transformation. If f1 is an order transformation

of JR into En, f2 a metric transformation of JR into

Em. Then f2 afil is a metric transformation from a curve

in En into Em. One may aSk whether or not this is the

only type of metric transformation from a curve in En

into Em. The answer to this is by no means clear.

The remainder of this chapter is divided into 2 sections.

Section 1 contains a list of symbols, some definitions, and

a few elementary lemmas. Section 2 contains the main results

of this chapter, in particular Theorem 5.10.

§l. Notation, Definitions, and Elementary Lemmas.

Throughout this chapter S and S. (note that S. is

not, as in Chapter 4, the closure of S, but a new symbol)

are n-dimensional differentiable hypersurfaces immersed in

n+1

E (n 2_2). The function f :3 onto>'§ is a diffeomorphic 

metric transformation and, as usual, p is the scale

 



137

function associated with f. For any U c S, 5'- f(U) and

in particular, for x ES, 32 5 f(x) . If v is any vector

tangent to S at p, then 3' is the corresponding vector

tangent to S. at 5) under the map between the tangent

spaces induced by f.

We have tried to keep the notation and terminology

"standard" in this chapter. For the readers convenience we

now present a list of symbols used in this chapter, along

with their meanings. we refer the reader to Spivak [37]

for any terms he may wish defined in more detail.

Let peas, and y c S be a differentiable arc with

Pey.

k (p) The curvature of the curve y at p, as

Y defined in differential geometry. Called

the "classical curvature" in Chapter 2.

S The tangent space to S at p.

P

The symbols N(p), de, Kn(p,V), and up are only

defined for S an orientable hypersurface.

N(p) The unit normal at p in the given

orientation of S.

dN The differential of N at the point p,

p called the Weingarten Map.

Let u,v6S .

KN(p,V) The normal curvature of S at p in the

direction v.

I (u,v) The first fundamental form of S at p,

p evaluated at u and v.

np(u,v) The second fundamental fonm of S at p.

evaluated at u and v.
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d(y) The length of the arc y.

n(p,o) The normal to the curve a at p.

Let vl,...,vK be vectors in En+l.

”v1” The standard norm in Euclidean space.

<v1.v2> The inner product of v1 and v2.

[vl,...,vK] The subspace of En spanned by

v ,...,v .
1 k

1 _ -
[v1,...,vK] - [u|<u,v>— O, ve[v1,...,vK]].

Note that a symbol with "bars" is the corresponding

symbol in ‘S. For example rfi4535) is the normal curvature

of 'S at p in the direction 51

Equilong maps were referred to earlier in this chapter.

Their formal definition now follows.

Definition: A diffeomorphism f : s °nt°> s is said 

to be guilong if and only if Ip a- Ip for all p e S.

A standard result of differential goemetry shows that

an equilong function preserves arc length. As noted earlier,

differential geometers use the term isometry, rather than

equilong. In this chapter, f is an isometgy will continue

to mean d(x,y) = d(f(x),f(y)) for all x,yes.

Throughout this thesis, we have considered a metric

transformation, or order transformation, f. We have tried

to assume as little as possible about f, preferring to

make hypotheses about the domain and range, rather than the
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mapping itself. For example, although we often assume f

to be continuous and to have finite spread, Theorem 2.9

and 2.16 show that this is true if the domain and range

contain rectifiable arcs. In this chapter, we are not so

fortunate.

For Theorem 5.10, our main result, we aSk that f

have spread l, and be a diffeomorphism. The assumption of

Spread 1, rather than finite spread, allows us to prove f

is an isometry, rather than a similarity, and is included

for convenience.

Unfortunately, we are unable to Show anything about

the differentiablility of a metric transformation between

two differentiable hypersurfaces. However, Theorem 5.3

shows that a metric transformation from a differentiable

Euclidean hypersurface is necessarily continuous and

locally bicontinuous.

onto
 Theorem 5.3: If f :2, > i c: )3r1 is a metric

transformation, where Z] is a connected regular hyper-

surface, then f is continuous and there is a x > 0

such that f‘B(t,)[/2) OZ: is bicontinuous for any t 62).

Since none of our future work depends on this, we

only outline the proof.

 

\
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Proof: We need the following standard facts about a

hypersurface Z) regular at a point p.

1. Z) has a unique tangent hyperplane at p and

a unique normal line pn at p. For any

sequence of points [pi] on Z) approaching

p the measures of angles [< n p pi] approach

90°.

2. There exists a cylindrical neighborhood U of

p, with axis pn, such that U‘nZ} is a

topological (n -1)-ball D and o-D consists

of exactly two components.

Based on these observations we can conclude that there is

a cylindrical neighborhood, U, of p, axis pn, radius

x such that for any x 6D = Zno the measure of angle

< n p x is between 89° and 91°. This means that no

point of D is in the double napped cone with vertex p,

axis pn and vertex angle 89°.

Now for x 6D, consider the plane n px and note

that there are two points in this plane, q and q*

such that pq = qx = pq* = q*x = x and further that q

and q* are in o with q in one component of O'-D

and q* in the other.

n

Finally the locus of points y in B such that

py = yx = x is an (n-2) sphere which is a subset of o
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This connected set must intersect D and thus there is

a point m of Z) such that pm = mx = x. This implies

that Z] has the 111 property at p.

If there are two points p and q of :3 such that

f(p) ¥ f(q) then there is a rectifiable arc joint p to

q. Hence by Theorem 2.9 le(t,x/2) lS bicontinuous for

any t 62. [:1

onto> S. be a metric transformation, and

1

Let f :S
 

lets S,S' be smooth hypersurfaces in En+ , n 2_2.

Combining Theorems 5.3, 2.9 and 2.16, it is seen that f

is necessarily continuous, locally bicontinuous, and has

finite spread. Unfortunately, since we require f to be

a diffeomorphism, this information is superfluous for our

present purposes.

The following two lemmas are used to prove Theorem 5.6.

They are standard results of linear algebra.

Notation: Let T be a linear transformation. We

write Tx for T(x).

n

Lemma 5.4: Let T :En 4 E be a symmetric linear
 

transformation. Let el be such that

[<Tr ,e >] = max [<Tx,x>]

1 ' ”xu=1

5
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Then e1 is an eigenvector of T, with <Te1,e1>

the corresponding eigenvalue.

Proof: Since T is symmetric there is a set of

orthonormal eigenvectors of T spanning En, call them

[b.]s_ , with Tb. = k.b.. Let A be the matrix for T
1 1—1 1 i 1

in the basis [bi],

  

Let x=2o.b., with 2o§=1, (i.e. Hx”=l). Then
1 i

<Tx,x> = Z)kici. From this we can see that both max <Tx,x>

IIXH=1

and min (Tx,x> are eigenvalues, and the values of x

HXH=1

where these are obtained are eigenvectors. Thus it follows
 

that if

<Te ,e >] = max <Tx,x> ,

‘ 1 1 qu=1‘ ‘

then e1 is an eigenvector, and <Te1,el> is the corre-

sponding eigenvalue. D

Lemma 5.5: We can define a complete set of eigenvectors

for the symmetric linear transformation T as follows. Let

e1 be such that

[<Te1,e1>] = max [<Tx,x>| .

HxH=l
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Assume e1,...,eK_l have been defined, k g_n. Let eK

be defined by

[<Te ,e >] = max [<Tx,x>[ .
k k HxH=l ‘

xe[e1,...,eK_1]

Proof: This follows immediately from Lemma 5.4 by
 

noting that for k g_n. T is a symmetric= T. J.

K [81,...oeK]

linear transformation on [e1....,e 1‘, and that any

eigenvalue or eigenvector of TK is an eigenvalue or

eigenvector respectively of T. [j

62. This section contains the main result of this

chapter, Theorem 5.10. As has been mentioned, Theorem 5.10

shows that a diffeomorphic metric transformation f, with

spread 1, between connected hypersurfaces S and S. in

En+1, is an isometry. Theorem 5.6 contains the crucial

argument: that, up to Sign, f preserves the second

fundamental form. If peas is such that up a 0, standard

theorems of differential geometry then Show that :f is, in a

neighborhood of p, an isometry. Theorem 5.9 then shows,

by purely metric means, that f itself must be an isometry.

Theorem 5.6: Let S be an orientable differentiable

hypersurface immersed in En+l. Let f :S onto> SEEn+1 

be a diffeomorphic metric transformation with spread 1. Then,
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for any p65 and u,vesp,

355.?) = np(u.v) or 313(6)?) = -np<u.v)

Proof: We abbreviate this by saying ‘ES 5 *Hp' As

f has spread l, by Theorem 2.14, f is equilong. Also,

by Theorem 2.20.

def

(1) rédo’) -k$(p) = -4 '.lim (‘3) ‘d c

daO <3

Assume c 2.0. If not, interchange f and f-l.

(Although f-1 is not necessarily a metric transformation,

(1) still holds and fsl is equilong. As we do not use the

fact that f is a metric transformation further in this

1.)proof, we may now interchange, if necessary, f and f-

Let peS, veSp. ”v” = 1. Let d(s) be a regular

curve, parametrized by arc length, with o’(O) = v, and

d(O) = p. Then,

11p(a’(0) .a’(0)) = <<I”(O).N(p)>

Ku(p) <n(p.c).N(p)>

(2)

-<dNb(c’(O)).c’(O)>

kN(p.c’(0))

More generally, for u,v esp,

np(u.V) = -<dN§(u),v>

To prove Theorem.5.6, it suffices to Show that dNS a i dNb.
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First we show $5,?) = :tflffipfl) +c for each p68,

vessp ,“VH = 1. In the following, d(s) is a curve with

d(O) = p and a’(O) = v. New

[kN(p.v)l = [ka(p)| l<n(p.cx).N(p)>|

As there are curves d(s), (for example, the normal section),

with |<n(p,a),NP>] = l, we can write

(3) lkN(p. V)]= am(in) Ina (p)|

s

From (1) it follows that

(4) [KN(p,v)|a_1_n(isr; [k-(p) [= min ./K§ (p) + c .

d(s)

Clearly the minima (3) and (4) occur for the same curve

d(s). Hence,

 

[$(EOV)] =\/‘§(P0V) +C

Next, apply Lemmas 5.4 and 5.5 to the symmetric trans-

formation dNp : IRn-aRn and define the eigenvector el of

de by

[kN(p.e1)] = l<dee1.el>]

= Hxn=1 ‘<dNPxX>l

s 1144 “(NW...]

Let [kN(p,el)] = K1. Thus el is an eigenvector of dNP

and k1 the corresponding eigenvalue. Since f preserves

the first fundamental form, ”x” = H§fl and
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-—--— -—‘— 2
max |<dN—x,x>| = max RBI-(pm) I = max \/KN(p,X) + c

”xu=1 P Hxn=1 qu=1

This maximum occurs for the same value of x as the prece-

eding maximum, that is for x = e1. Hence

 

“gfixl «figs» = 1<afi531.31>1=/x§<p.e1> + c
X =

Thus, using Lemma 5.4, ‘31 is an eigenvector, corresponding

(defn)

to the eigenvalue x1 == (dEEEi,Ei>. From the above,

2 ,/2
E1 = i/K'Nm'el) +c = i x1+c

 

Using Lemma 5.5, and an argument as above, choose

e2,...,en eigenvectors of de, corresponding to the

eigenvalues xi = KN(p,ei) while e2....,en are eigen-

vectors of dfia corresponding to the eigenvalues

._ _ 2 _ _

Ki - :./Ki4-c . In the bases el,...,en and e1,...,en

we have

K1 0 x1 0

dN = dfi— =
P

O Kn O Kn

Assume that de has ranx at least 3. Since de is

a continuous function in p, and a differentiable hyper-

surface is locally connected, there is a neighborhood Us:S

of p such that qu has ranx at least 3 for all quU.

Remembering that f is equilong, and applying Theorem 5.2,

"
x 
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we see that f ‘U is an isometry (i.e. an Euclidean motion)

and hence up a £fi3°

Now assume that de has ranK at most 2 and that

K3 = ... = Kn = 0. By the Theorema Egregium ([35] 4, p 98,

Corollary 23),

 

1K1K2.. .Kn|=]K1K .Knl=fi +c./K2 +c Ki-l-C

Since c 2_O, it is immediately clear that c = 0. Hence

ifil O

__ :HCZ

db?— = o
p C

On the other hand, the set [KiKj [i < j} .is identical,

including multiplicities, to the set {KiKj ‘i < j}.

([36] 4, p 97, Proposition 22). From this it follows that

Kle = KlK2 and hence either

K1 0 -K1 0

K ._ -K

—- 2 0 or dN—= 2 o
P P

0 O O O

The proof of Theorem 5.6 is now complete. D

Corollary 5.7: If, in addition to the hypotheses of

Theorem 5.6, S is connected and up does not vanish

identically for any peas, then f is an isometry.
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Proof: As H is continuous in p, up i O for any p,

and S is connected, we must have either “p ‘11:; for all

p 68 or Hp 5 -EE- for all p 55. Remembering that f is

equilong, the corollary now follows from [36]. 4, p 23,

Theorem 21 . [:1

Lemma 5.8: Let V be a connected subset of a metric

space M. Let peM. q1,q2 6V and assume d(p,ql) <d(p.q2).

Then for any d such that d(p,ql) gd g d(p,qz) , there is

a veV such that 1

d(PIV) = d

Proof: Since d(p,x) is a real valued continuous

function defined on a connected set, the lemma is a consequence

of the Intermediate Value Theorem. [3

RemarK: Let Bl :Sl n82 be a metric basis of En+l.  
If f ] SI and f | 32 are isometries-,- Lemma 4.1 shows that

there are unique extensions f and f of f ‘51

to motions of En+1. Because f 'B has a unique extension

to a motion of En+l, and f and 7f both extend f ‘ B to

1

and fl

8

2

a motion of En+ , it follows that f s f- and f |

S1 U 82

is an isometry. In particular, if B :U :8, B is a

1
metric basis of Em and f ‘UU {p} is an isometry for

each peS, then f I S is an isometry.

1
Lemma 5.9. Let S be a connected set in En+ such
 

that for any tw0 points x1.x2 ES it is true that S\[x1,x2}
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is also connected. Let Us:S be a connected orientable

differentiable hypersurface in En+1

l

, with mg i 0 for

all q 6U. Let f : S 4En+ be a metric transformation

with spread 1, such that f [U is a diffeomorphism. Then

f is an isometry.

 Proof: By Corollary 5.7, f is an isometry. Let
‘u

d for all d < d(yl.y2).yl, YZEU- ByLeImna 5.8, p(d)

It follows from Lemma 2.3 that f is continuous. Let

d0 = sup{d’ ‘p(d) = d for all d < d’}

Note that do 2.d(y1,y2) > 0.

Our first objective is to show that d(p,q) = d(f(p),f(q))

for all p as, q 6U. Let qO be a fixed but arbitrary

point of U. On the line normal to U at q0 there are

1. n+ _ _
only two points xl.x2<EE such that d(x1,qo) - d(x2,qO)-d0.  
Let S'= S\[x1,x2}. By hypothesis, 5' is connected. Let

g>eS’. Assume d(p,qo) 2.do- Then by Lemma 5.8 there is a

I ~ g -
p068 With d(po,qo) dO' The line through p0 and qo

is not normal to the hypersurface U at qo. Thus there

are points ql and q2 of U with d(po,ql) < do==d(po,q0)<(

d(po.q2).

Consider B = {x ‘d(po.x) < do}¢1U. Since nq ¢ 0

for qegB, B does not lie in an n-flat of En+1, hence

1
is a metric basis of En+ (see Chapter 4, g1). By the

definitions of B and p0, is an isometry. As

f 'BtJ{pO}

f 'U is also an isometry and Bs:U, the above remarK shows

that f ‘ULJBLJ[PO} = f ‘ULJ{PO} IS an isometry.
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Let d be such that d(po,ql) < d < d(po,q2). By

Lemma 5.8. there is a qu with d(p0,q) = d. As

f ‘ULJ{PO} is an isometry then

P(d) = D(d(P0:q)) = d(f(PO).f(q)) = d(po.q) = d

It now follows that p(d) = d for all d < d(po,q2),

showing that dO 2.d(po,q2). This contradicts the choice

of q2, hence the assumption that d(p,qo) 2_d0 is false.

However if d(p,qo) < dO .it follows from the definition of

:10 that d(p,qo)=d(f(p),f(qo)) for all peS’. If

either x1 or x2 is in S - say xj, the continuity of

f shows that d(xj,q0) = d(f(xj),f(qo)).

As qO is an arbitrary point of U, it follows that

p(d(p,q)) = d(f(p),f(q)) for all p68, qu, and hence

f ‘UU {p} is an isometry for each p es. The above remarK

now shows that f is an isometry. [3

Theorem 5.10: Let S be a connected differentiable

1
1 onto) S c; En+ a diffeomorphichypersurface in En+ , f :S

 

metric transformation with spread 1. Then f is an

isometry.

Proof: Any differentiable hypersurface is locally

orientable, hence locally one may consider up.

If up a O for all pES, then by Theorem 5.6,

fisvs up 5 O, for all peas. Then S- and S. both lie in

n-flats of En+1. Hence Theorem 5.10 follows from either

Theorem 4.7 or Corollary 3.l9(a).
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Otherwise there is a qO es such that (in a local

orientation) an i 0. As H is continuous in qo, and a

differentiable hypersurface is both locally arcwise connected

and locally orientable, there is an open arcwise connected

subset U of S, containing go, for which we can assign

an orientation N(p) such that nq )4 O for all q 6U.

Noticing that any connected manifold S of dimension at

least 2 is such that S\[x1,x2} is connected, for any

x1 and x2, we now apply Lemma 5.9 to complete the proof

of Theorem 5.10. I] 1

1
Corollagy 5.11: Let f : S 4 ScEm' be a diffeomorphic

metric transformation, 8' a differentiable hypersurface in

En+1. Then f is a similarity.

We thinK that Theorem 5.10 has many possibilities for

generalizations, the most promising may be to submanifolds,

rather than hypersurfaces, immersed in En+l.

Two of the principal theorems from differential geometry

that we use in the proofs of Theorem 5.6 and Corollary 5.7

([36] 4, p 97, Proposition 22 and [36] 4, p 93, Theorem 21)

remain valid for both hyperbolic and spherical space,and

one might suspect that Theorem 5.10 could be generalized to

hypersurfaces immersed in manifolds of constant curvature.

However Example 7, Chapter 1, shows that this is not the

case .

 



CHAPTER 6

EXISTENCE QUESTIONS

This chapter is an attempt to summarize and extend

some of the worK that has been done on the "Existence

Question".

The "Existence Question" was discussed in Chapter 1.

Essentially, it is this: Given a distance space (N,d) and

a class a. of distance spaces, is (N,d) order embeddable

onto some member of 6? Frequently, c. is taKen to be all

subsets of some particular distance space - say En. All of

our results are of this type.

The chapter is divided into two sections. Section 1

deals exclusively with finite sets, while Section 2 deals

primarily with infinite sets. In both sections, most of the

results are of a "negative" type. That is, they show that a

certain space is not order embeddable into a certain class cu

§l. Of most interest to the MJD.S. Theorists are finite

sets of points, with an ordering of S xS. That is, they

begin with a set S, a totally ordered set C and a

mapping e :S;xS.4C. Then (S,C,e) is called a C-metrized

space. Because all that is of interest is the ordering

152
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induced on S xS by C and e, and as e(S x8) is a

finite subset of C, C may always be taKen to be a subset

of the positive reals. In this case, (S,C,e) is a distance

space and is denoted by (S,e).

One type of Multidimensional Scaling order embeds

(S,e) into a metric space (M,d). One way of

doing this is to find a metric d on S such that the

function f taKing (S,e) into (S,dL given by f(x) = x’

is an order transformation. This is easy to do. If d is

e(x,y)J-K x # y

defined by d(x,y)== and K is chosen

0 x = y

suitably large, then (S,d) will be a metric space. For

example, if K 2_ max [e(x,y)L then for any distinct

x,yeS

x,y.zes.

d(x,y) +d(y,z) = e(x,y) +K+e(y,z) +K 2 2K 2 e(x,z) +K = d(x,z)

This shows d is a metric, but the metric space (M,d) is

not very useful without Knowing something more about K. There

has been some worK done on the so called "additive constant"

problem, which attempts to find "apprOpriate" values for K

(see [271,[38]). Deciding on the "appropriate" value of K

requires more detailed information. One possibility often

considered is the value that minimizes K.

In general the M.D.S. user would liKe to embed (S,e)

into a metric space he Knows - such as a Euclidean space or

a normed linear space. Naturally, he would prefer a Euclidean

space. We now 100K at a few results in this area.
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If S contains n points, (S,e) can be order

embedded into En‘l

l

as follows. Consider an equilateral

simplex in En- Any edge can be either shortened or

lengthened slightly by a rotation about the opposite

(n-2)-face, without changing the lengths of any of the

other edges. Clearly, the lengths of these sides could be ‘  
arranged to correspond to any ordering of S xS. If the

length of the longest side is attained for only one pair of

points, it can be lengthened until the simplex lies in an

n-l l
(n -2)- flat of E . These remarKs apply also to Hn-

and Sn-l.

In [19] Holman characterizes all the distance spaces

(S,e) of n points which can be order embedded into En-Z.

He shows that if for some x,y,z in S the inequality

 
(l) e(x,z) g_max[e(x,y),e(y,z)]

is not satisfied then (S,e) is order embeddable into En-2.

The inequality e(x,z) g_max[e(x,y),e(y,z)] is often

referred to as the ultra-metric inequality. It is easily

seen that the ultra-metric inequality implies the triangle

inequality, and that it is satisfied if and only if all the

triangles in the space are "long legged isosceles"; that is

if and only if all triangles are isosceles and the length of

the two equal sides is greater than, or equal to, the length

of the third side. Thus the only metric n-tuples not order

embeddable are the ultrametric n—tuples.
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The presence of equal distances is clearly a complicating

factor in the geometric embedding problem, as well as in the

various scaling interpretations. Thus we consider only

scalene configurations for the time being. A distance

space (S,e) is said to be scalene if and only if

e(x,y) 94 e(z,w) for any x,y,z,weS with [x,y] 54 {z,w],

x # y. Holman's Theorem implies that any scalene distance

space (S,e) of n points can be order embedded into En-Z.

The problem of order embedding an arbitrary scalene config-

uration of n—points into lower dimensional spaces now arises.

In general, we have not been able to maKe much headway

against this question. We now present some results, first

considered by Kelly and Erdos (unpublished), which answer

the question for n = 4,5, and 6, and give a bound for

the minimum dimension needed for larger n.

The case n = 4 is easy, so it will not be considered

here. For n = 5 and 6 an example is presented which

cannot be order embedded into E2 or E3 respectively.

Thus an arbitrary 5 or 6 point scalene configuration

need not be order embeddable into E2 or B3 respectively.

Unfortunately, obvious generalizations of these examples

to n = 7 are order embeddable into E4.

The result for n = 5 (Theorem 6.1) shows the stronger

fact that there exists a scalene distance space of 5 points

not order embeddable into any two dimensional normed linear

space.
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Theorem 6.1: Let (S,e) be any distance space,

s = {p1,p2,p3,ql,q2}, such that

(2) e(Pion) > e(qllqz) > e(pm’qn)’ i 5‘ j

Then (S,e) cannot be order embedded into any two dimensional

normed linear space.

Proof: Let f :S-+E2 be an order embedding of S.

For simplicity's saKe, call f(x) simply x.

  
Figure 6.1

Consider the above diagram. We begin by assuming that

one of the points q1,q2 is in one of the closed regions
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labeled 1,2, or 3. Say q1 lies in 1. We have

q1P3 + (111? Z P3131 + Ply

szi'Ply 2.P1P2

Adding these, and simplifying, we obtain

q'lp3 + qu + pzy 2 133131 + 19192

or

However, this contradicts (2), since f is to be an order

embedding.

Assume neither q1 nor q2 lies in any of 1,2, or

Figure 6.2
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Then there is a pair of points pi,pj, such that the line

qlq2 does not intersect [pi,pj] and the line pipj

does not intersect [q1,q2]. The pOints pi,pj,q2,q1 form

a convex quadrilateral with [q2,ql] and [pi'Pj] being

opposite sides. Say the quadrilateral is p1p3q2ql. By

Lemma 3 .80

 
d(p1.p3) +d(q2.q1) g d(p1.q2) +d(p3.q1)

Hence, one of the terms on the left is less than or equal

to one of the terms on the right, contradicting (2). A

similar contradiction is obtained in all cases. This

completes the proof. [3

We have been able to generalize this to 6 points

only for order embeddings into E3.

 Theorem 6.2: Let (S,e), S = [p1,p2,p3,ql,q2,q3), be

any distance space such that

(3) e(Pi'Pj) > e(qx.q‘) > e(pmoqn). i e j. K # 1

Then (S,e) cannot be order embedded into E3.

Proof: As in Theorem 6.1, 1et f :S.-.E3 be any order

embedding of S, and call f(x) simply x.

Let V be any plane containing pl.p2. and p3.
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.r/p3 p2\

 
 

Figure 6.3

At least two of q1,q2,q3 lie on the same side of

w, say ql and q2. Let qi,q£ be the perpendicular

projections of g1 and q2 onto w. The situation in

v is very similar to that in the previous theorem, using

qi,qé instead of q1 and q2. ‘The only difference is

that d(q£,qé) g d(ql,q2), so d(qi,qé may be less than

d(pi,q5) for some i,j.

However, as in Theorem 6.1 it can be shown that

I I I I

d(pm.pn) + d(q2.ql) g d(pm.q2) + d(pn.ql)

for some m,n = 1,2,3, m # n. By (3), d(pm,pn) is the

largest of these distances (for d(pm,qé) g_d(pm,q2) and
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I I I

d(pn,q1) g d(pn.q1)). so d(q2,q1) must be the smallest.

I I I I I I

It follows that d(pm,q2) 2,d(q2.q1) and d(pan1)2,d(q2.ql

Assume d(q2,qé) 2_d(q1,qi), (otherwise change the roles of

q1 and q2, as well as pn and pm in the following ).

Then

2 _ , 2 , 2

d(pm.q2) - d(pm.q2) +d(q2.q2)

I I 2 I I 2

2 d(q2.q1) + (d(q2.q2) -d(q1.q1))

_ 2

- d(q2.q1)

This contradicts (3) so the proof is complete. D

As has been said, there seems to be no obvious

generalization of Theorems 6.1 and 6.2, even to n = 4.

The next result shows that if every distance space of

n points is order embeddable into some N.L.S. of dimension.

1° ((32-2) gm. This showsm, then it is necessary that

that,as n tends to a, so does the minimum dimension such

that every distance space of n points is order embeddable

into a N.L.S. of that dimension.

Theorem 6.3: In order for every scalene distance

space of n points to be order embeddable into some N.L.S.

M of dimension m, it is necessary that 1 ($1-2) £111

and sufficient that m g n -2.

Proof: That it is sufficient that m g_n-2 follows
 

from Holman's Theorem.
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Consider any distance space (S,e) consisting of the

n points {p1,p2.q1,...,qn_2} such that

(4) e(p1.p2) > e(qi.qj) > e(qx.p‘). i # j .

As in Theorems 6.1 and 6.2, let f :S.+M be an order

isomorphism, and denote f(x) by x.

Let r = d(p1.p2). Because the triangle inequality is

satisfied,

d(qi,p1)4-d(qi.p2) 2_d(p1.p2) = r for all i

From this, and (4) it follows that

r . .
d(qi,qj) > 2 for all i and 3

Again because of (4) . qi E B(p1,r) for all 1. Thus

B(qi,r/4)s:B(p1,5r/4) for all i. Also, because

d(quqj) > r/2 it follows that B(qi,r/4)r13(qj,r/4) = ¢

for all i,j.

Let Vt be the volume of a ball of radius t. Then

(n-2)Vr/4 S-VSr/4' Now Vt = th1 (see [5 ], page 158),

so (n--2)(r/4)m g_(5r/4)m. Thus, it follows that

lo (n-2)

mZ—fa'r- D

Clearly, the above theorem could be improved. However

we have not been able to obtain any lower bound on m which

is not a logarithmic function of n. At least for Euclidean

space, it should be possible to do better than this.
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§2. In Section 1 we presented a few results concerning

the existence question for finite sets. We now turn to

infinite sets.

In [24] Lew gives "Some Counterexamples in M.D.S.".

He shows the following:

(1) The spaces 1?» and I: have no order embedding

into En for m.2_2. However for each m, IT can be

order embedded into fl, Hilbert space.

(2) The space C of all real sequences with limit
0

zero, and norm defined by ”(xn)” = sup [xnl has no non-

' n

trivial metric transformation into Hilbert space.

Lew calls these counterexamples because they show that,

in applying M.D.S" it is necessary to consider spaces other

than En and y; The proofs of (l) and (2), as presented

by Lew, are quite difficult, relying heavily on the worK of

Schoenberg, von-Neumann, and Einhorn ([12], [29], [32])

on positive definite forms.

We now present an elementary proof and generalization

of the first part of (1).

Theorem 6.4: A N.L.S. which has a segment on its unit

sphere has no metric transform in En, Sn, or Hn.

Proof: Let M be a normed linear space with a segment

on its unit sphere. Consider a plane v that contains the

origin, and a segment of the unit sphere with endpoints



p1 and ql. It is sufficient to show that this plane, with

the induced norm, has no metric transform into En,Sn, or

Hn. Let qO be the

 

Po  

Figure 6.4

reflection of p1 through the origin, and p0 be the

reflection of q1 through the origin. Then the segment

joining pO to qO also lies on the unit sphere. Let

I and ‘P be the lines through qO and q1, and p0

q

and p1 respectively. For i > 1, let qi be the point

on ‘q which is a distance 2 from q. but is not
i-l'

equal to qi_2. Similarly define [pi]:=0 on ‘p' It

is easily seen that

(3) Hqi ‘qu = Hqi’PjH = ”Pi "PjH = ”Pi ‘qu for all i 7f 3'
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Let M be any of En,Sn, or Hn and let f :v-aMl
1

be a metric transformation. For a,b 6M1 1et

B(a,b) = [x‘d(x,a) = d(x,b), x6141}. Now B(a,b) is an

(n-l)-flat of M1. (See Busemann [5] p. 309). Thus, if

a ’,b’ 6 B (a,b), then

 [xeB(a,b) ld(x,a’) =d(x,b’)]=B(a’,b’) n B(a,b)

i-l

is an (n-2)-flat of M1' Continuing, if ai'bi 6 K91 B(aK,bK) ,

m

then .r‘ B(ai'bi) is an (n-m)-f1at of M1. -\

i=1

Now because of (3) and the fact that f is a metric

transformation,

d(f(qi).f(qj)) = d(f(qi).f(pj)) = d(f(pi).f(pj)) = d(f(pi).f(qj)L

Thus f(qi) and f(pi) are in B(f(qj),f(pj)) for i # j.

 m.

Therefore f(qi),f(p3) 6 r) B(f(qj),f(pj)) for i > m.

i=1

m

Hence r1 B(f(qj),f(pj)) contains an infinite number

i=1
n

of points for all m. However, r] B(f(qj),f(pj)) is

i=1

zero-dimensional, hence contains 1 or 2 points (1 if M1 is

En or Hn, 2 if M1 is Sn). This is a contradiction.

and the theorem is proved. [3

Corollary 6.5: If a N.L.S. has a segment on its unit

sphere, then no open subset of that space has a metric

transform in En,Sn or Hn.

The proof of this is essentially the same as the above.
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The space 12 seems to lend itself nicely to problems

involving order transformations. Theorem 6.10 show that

many N.L.S., in particular En, cannot be order embedded

into 1:. The proof of these theorems is based on the

characterization of "flat spots" of the unit sphere of a

N.L.S.,given in Lemma 6.8.

Before proceeding to Lemma 6.8 several definitions

and preliminary lemmas are needed. In these definitions,

and throughout the rest of this chapter, convex always,
 

means algebraically convex.

Definitions: Let K be a closed algebraically convex

set in a n;L.S., M. A hyperplane H in M is said to

support K if K lies in one of the closed half spaces

determined by H. A subset S of K is said to be a

supporting set of K if S = Ker for some supporting

hyperplane H of K. Clearly a supporting set of K is

convex. An extreme point of K is a supporting set of

one point. Supporting sets of more than one point are

called §§g§§_of K. A face of K which is prOperly

contained in no other face of K is called a facet of K.

Definition: An affine subspace of M is a translate
 

of a linear subspace of M. For any set A in a N.L.S.

M, aff A is defined by

aff A = [x [x II

D
1
5

7
P

9
.
!

P

[
a
s

y

II

|
'
-
‘

:
3

/
\ 8 (
U

H
. m 3
’
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A point pegA is said to be a relative interior 2932; of

A if p 6V :A, and V is open in the relative topology of

aff A. If K is algebraically convex it is not hard to

show that the relative interior of K is non-empty (see [14],

page 9).

For the following worK (Lemmas 6.6, 6.7, 6.8, 6.9) let

B be the closed unit ball, and U the unit sphere of a

N.L.S. M.

The proofs of Lemmas 6.6 and 6.7 are omitted.

Lemma 6.6: If K is a convex subset of U, then

there is a supporting hyperplane H of B with

K<;(aff K) nBcHnBcU

Proof: See Day [8] p. 43.
 

In other words, K lies in a face of B.

Lemma 6.7: If p is a relative interior point of a

facet F of B, then p lies in no other facet of B.

Notationz: For p EU, define E(p) to be

[x | x 6U, "p-x” = 2]. Let -p be the point of U

diametrically opposite p. Certainly, -p<5E(p), hence E(p)

is not empty.

As mentioned earlier, Lemma 6.8, which characterizes a

facet of B, is the crucial result to obtain Theorem 6.10.
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Lemma 6.8: If F is a facet of B, then F = E(p)

where -p is any relative interior point of F.

Proof: Assume erF. Then, since F is convex,

[‘PIX] CF -

...p y X

 

0 0y parallel to px

Figure 6.5

In Figure 6.5, let 0y be parallel to px, with

Y€E[-PIX]- Then Hy” = 1, so it follows that Hp-—x” = 2,

and hence x€E(p). Thus, F:E(p).

Assume x 63(1)). x (F. We will show that F could not

be a facet of B, giving a contradiction.

Consider Figure 6.5, where x eE(p) , and Oy is

parallel to px. Then ”y“ = 1, so it follows from the

convexity of B that [-p,x] cU. (Recall that x 6U, so

M = 1)-
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Let y = xx+ (l-x)q, qEF, O_<._)‘ gl

I

r

\\\\s 1_X

 

Figure 6.6

Consider Figure 6.6, which is the situation in the plane

containing x,-p and q. As -p is in the relative

interior of F, and q 6F, then r 6F can be chosen with

-p,q and r collinear, and q and r on opposite sides

of -p. Let [r,y]{j[-p,x] = s. Then r,s,q, and x all

are in U, so it follows that yeEU. Thus the convex set

(def)

K = [)‘x+(l-)‘)q[qu, ogxgl];U

Lemma 6.6 shows that K lies in some face of B. However

F 5£K :B, contradicting the fact that F is a facet of U.

Thus, E(p) c F and the proof is complete. I]

Let f be an order transformation with scale function

p, from U (the unit sphere of a N.L.S.) into 5:. Let

K be the smallest closed ball of 1: containing f(U),
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and let s be the corresponding sphere (that is, S is the

boundary of K). Then, clearly, two opposite facets of K

touch f(U). So K and f(U) have the same diameter,

which is p(2). Note, we use the fact that f is an order,

transformation to determine that p(2) is the maximum

transformed distance.

For peU, both f(p) and f(-p) lie in K and

”f(p) -f(-p)n = p(np- (-p)]|) = 9(2)

Hence, f(p) and f(-p) lie in opposite facets of K.

Thus, f(U)s:S.

Lemma 6.9: Let f be an order transformation from

U into 3:. If’ p1,...,pm are arbitrary points of U and

m m

m 2.2n4-1, then for some j, [J E(pi) = L) E(pi).

i=1 i=1

m

 

Proof: Let Fi’ i = l,...,r be the facets of S

m

containing points of f(lJ E(pi)). Let -Fi be the facet

i=1

of S opposite Fi‘ Note that [f(pi); i=1,...,m]:U(-Fi)

and for each K there is some members of [f(pi)] in -FK.

As m.2_2n4-1 > r, for some j it must be that there is

some member of {f(pi), i = l,...,m, i f j} in --FK for

each K. Let f(x)eFi. Let f(px)€ {f(pi). i=1.....m. i?‘ j}

be in -Fi. Then Hf(x)-—f(pK)H = p(2), hence Hx-—pKH = 2,

hence x<§E(pK). The lemma is now complete. [3.
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Theorem 6.10: Let B be the unit ball and U be the

unit sphere of a N.L.S. M. If B has more than 2n

facets, then U is not order embeddable into 5:.

Proof: Assume B has more than 2n facets. Let

-p., i = l,...,2n4-l be relative interior points of

1 2n+l

distinct facets Fi' Then U E(pi) :U. By Lemma 6.9,

2n+l 2n+1 1:1

(J E(p.) = [J E(pi) for some j. However Lemma 6.7

i=1 1 i=

1an

shows that -p:j (E(pi) = Fi for any i 7’ j, giving a

contradiction. [3.

It should be noted that a facet F may be an extreme

point p. In this case aff F = aff[p] = [p], so p is a

relative interior point, and Theorem 6.10 still holds. If

B is strictly convex then every point of U is a facet,

hence U cannot be order embedded into 1:.

It is annoying that Theorem 6.10 depends on the order

embedding being into 1:. These proofs do not hold up

ix: other spaces, even a space such as I? which often

behaves in a very similar fashion. However, Professor

L.M. Kelly claims that En is not order embeddable into

I?, for any n,m.

 



CONCLUSION

This thesis represents the first effort that we know'

of to bring together and to expand on the geometric embedding

problems underlying the data analysis technique known as

multidimensional scaling. Organization of the material has

been difficult and the results may seem discursive and

confused. It may be well, then, to summarize and reflect

on what has and has not been achieved.

The principal concern has been with the study of two

seemingly very general classes of transformations from

one distance space to another, namely metric transformations

which merely preserve equality of distances and ggggg

transformations which preserve the order of the distances.

It is the latter which are of prime interest to the MDS

theorists. In fact it is their fervent hOpe that in many

"highly structured" spaces the only order transformations

are "essentially" similarities.

The Beals-Krantz result [2], which we reprove

in Chapter 2, supports this idea in the class of convex

metric spaces.

As pleasing as this result is it fails to answer such

simple and relevant questions as: "does the order of

distances determine a sphere in euclidean 3-space"? or

171
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"what do order transforms of the real line look like in En"?

The first of these questions is answered in Chapter 5 and

the second in Chapter 2.

We will now attempt to highlight what we consider the

major results and achievements of the thesis making clear

in the process which are more or less original.

Among the more important essentially original contributions

are the following:

1. The arc length, arc curvature and various

continuity theorems in Chapter 2.

2. Theorem 3.16 generalizing the Mankiewicz

theorem from isometric transformations to

metric transformations.

3. Theorem 5.10 to the effect that two order

. . . n . .
isomorphic hypersurfaces in E are Similar.

4. Proof (Theorem 4.15) that any Minkowski Space

whose unit sphere is order isomorphic to the

sphere in En must be congruent to En.

5. There are k-point scalene metric spaces which

are not order embeddable into Mp (where k

is a function of n, Theorem 6.3).

6. Examples of non-similar order isomorphic

hypersurfaces in hyperbolic n-space, showing that

Theorem 5.10 and Theorem 4.5 of Schoenberg cannot

be directly extended even to spaces of constant

Gauss curvature.
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7. The impossibility of order embedding a

non-strictly convex NLS into En, Hn,

or Sn (Theorem 6.4).

8. The impossibility of order embedding a strictly

convex NLS into 1:. (Theorem 6.10).

Much of our effort has gone into summarizing, adapting,

refining and extending the work of others, notably:

l. The Schoenberg-Von Neumann characterization

of screw curves in En, the proof of which we

have made more accessible in that setting. we

have also extended this characterization to screw

segments and shown that the situation in hyperbolic

n-space is much more complicated.

2. The Schoenberg proof that a metric transformation

from Em into En is necessarily a similarity

and our extension of this result to metric

transformations defined on sets in Em with

a non-null interior.

3. Our simplification and extension of the work of

Vogt [37] in Chapter 3, of Lew [24] in Chapter 6,

and Holman [19] in Chapter 6.

A number of obvious questions remain unanswered.

Some of the more appealing are the following:
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If the spheres in two normed linear Spaces are

order isomorphic must the Spaces be congruent?

In this connection it seems to be even

unknown whether two such spaces are congruent

if their unit Spheres are congruent.

Is there an order isomorph of E2 in any normed

linear space other than En?

. n .
Are there two arcs in E which are order

isomorphic which are not of constant curvature?

Such arcs exist in Hn.

The euclidean Sphere in n-space is characterized

in the class of n-dimensional Minkowski spaces

by the order of its distances. Is this true of

other hypersurfaces in En? e.g. is it true

of the boundaries of convex bodies?

Is there a finite set in a euclidean Space

characterized in the class of subsets of all

euclidean Spaces by the order of its distances?

What is the smallest scalene space not order

embeddable in E4?

The perception theorist seems to Operate on

the assumption that order analyzing large numbers

of finite subsets of his postulated "underlying"

Space will give him a clue to a characterization

of the Space itself. To what extent is this true?
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In deference to those MDS theorists and users who

have perservered thus far we should concede that what we

have done here possibly has little direct bearing on their

concerns. The principle of metric determinacy is certainly

central in scaling theory and practice but in the context

of finite spaces it seldom can be claimed that the order

of distances determines a set up t0~a similaritx,Scaling

theorists tend to feel that if a finite metric space is order

embedded in the "prOper dimensional" euclidean Space, that

embedding should be unique up to an "approximate" isometry if

it is properly'scaled".

Furthermore, in practice, embeddings with low "stress"

are tolerated on the grounds that real data is subject to

stochastic uncertainties and noise. So the order of distances

of a configuration is claimed to "determine" the configuration

subject to much hedging.

We claim that our work could be a valuable first step

in trying to make the "practical principle" more precise.

In the absence of that precision some of our results can be

viewed as lending some support to the principle.

The literature on the applications of MDS is enormous

and for the reader unfamiliar with it we can do no better

than to refer to the extensive and authoritative writings

of R.N. Shephard. His pOpular paper [35] in Science is

particularly recommended both for its attractive survey

and its extensive bibliography.
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