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ABSTRACT

AN INTRODUCTION TO THE HISTORY OF
FOURIER SERIES AND THE THEORY OF INTEGRATION

By

Dean Webb

Consideration of the Fourier series corresponding to a function
f(x) suggests many interesting questions which relate to basic concepts
of analysis. Examples are the generality of the integrals admitted in
establishing the existence of the Fourier coefficients, uniqueness of
representation by Fourier series, and general forms of convergence such
that a function be represented by its corresponding Fourier series.

Study of these and other aspects of Fourier series representation
of functions has profoundly influenced the nature and direction of the
evolution of analysis and, in turn, has been influenced by it. This
influence 1s particularly apparent in the history of development of the
theory of functions of a real variable.

This paper is an exposition of the history of relationships between
the development of successively more general conceptions of definite
integral from Cauchy to Lebesgue and the concomitant evolution of a
theory of Fourier series. The unifying theme of the paper is the study
of Fourier series representation of functions and in particular, the
Search for general sufficient conditions for such representation.

The study begins with the work of the first mathematicians to con-

8ider the problem of trigonometric series representation of functions,
d’Alembert, Euler, D. Bernoulli and Lagrange. Fourler's contributions

are described and I conjecture a relationship between Fourier's work and
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Webb

Cauchy's definition of definite integral. Dirichlet's sufficient condi-
tion for convergence of Fourier series and modern conception of function
are presented, as is the more general definition of definite integral
given by Riemann in his Habilitationsschrift, which is devoted to investi-
gation of necessary and sufficient conditions for convergence of trigono-
metric series.

The theories of measure created by Stolz, Cantor, Harnack, Peano.
Jordan, Borel and Lebesgue are studied; efforts to solve the problem of
uniqueness of representation by trigonometric series is shown to have
initiated Cantor's creation of his theory of sets. Lebesgue's theory of
integration is described, as are the first applications by Lebesgue of
his conception of definite integral to study of Fourier series. Fatou's
sufficient condition for convergence almost everywhere of Fourier series
is presentédd as well as the work of Riesz and Fischer which led to the
discovery of the Riesz-Fischer theorem. Finally, Lusin's conjecture re-
garding convergence almost everywhere of the Fourier series corresponding
to a function f ¢ L2[0. 2] is studied, and the paper concludes with
Carleson's assertion of the validity of Lusin's very general sufficient
condition for convergence of Fourier series.

Both the historical sequence of events and the initiating influ-
ences which motivated the work of contributing mathematicians are
identified, and both influences and events are expressed in the words of
the men who helped create the theory. The latter is accomplished by

eéxcerpting passages from the original memoirs.
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Webb

Several insights derive from such study. These include the manner
in which the problem of Fourier series representation of functions has
been successively generalized in order to render it capable of partial
solution, deficiencies in the work of many of the mathematicians who con-
tributed to the creation of the theory (deficiencies which are, of course,
clearly secondary to the accomplishments of these men), and finally, the
persistent controversy which accompanied the evolution of the theory of

functions of a real variable.



AN INTRODUCTION TO THE HISTORY
OF FOURIER SERIES AND THE THEORY

OF INTEGRATION

by

ﬁw}; . _‘,
DeanﬁWebb

A THESIS
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1971



To Marilyn



A series ¢
2 ¢ are constar
fztiion whose go

St integralg

.
-]

a -»
n
ni
y b =
n
g then the Fq
ferieg
a
D+
2
~E tonstants a
| n
iy
RS Tequy,
o
ey series
& 3) Converg
iifies 3)
should c

¢

L. $neq th
gy

u, Te ega
. n
oma



An Introduction to the History of Fourier

Series and the Theory of Integration

Preface

A series of the form c + Z (an cosnx + bnsinnx) where the aj,by,
n=1
and c are constants is called a trigonometric series. If f(x) is a

function whose domain of definition is the interval -m < x < 7 and 1if

the integrals
m

[
1
1) a = ;-»f(x) cosnx, n=0,1,2,...
J
and -
1 ™
2) b ==} f(x) sinnx, n=1,2,3,...
n 7 J
-Tr

exist, then the Fourier series corresponding to f(x) is the trigonometric
series

3) fg_+ ! (a_ cosnx + b_ sinnx).
2 n=1""n n

The constants a and bn are the Fourier coefficients of f(x). This
definition requires only that the integrals 1) and 2) exist in order that
a Fourier series correspond to f(x); there is no requirement that the
series 3) converge in any sense. Indeed it is not apparent that the
series 3) should converge in the interval [-7m,m] nor if it does converge
at a point x that its sum should be f(x), i.e., that it should represent
f at x. Since the Fourier series corresponding to f(x) does not, in
general, represent f(x), we will use the symbol "~" to denote the cor-
respondence between f and its Fourier series,

f(x) ~ a, + ) (ancosnx + bnsinnx).
- n=1
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ii

Consideration of the Fourier series corresponding to a function
f(x) suggests many interesting problems which relate to basic concepts
of analysis. Examples are the generality of the integrals admitted in
establishing the existence of the Fourier coefficients 1) and 2), general
forms of convergence of the series 3) such that a function be represented
by its corresponding Fourier series, uniqueness of series representation,
and continuity, differentiability and integrability properties of Fourier
series in intervals of convergence.

If a trigonometric series converges (in the usual sense) for all x,
then its sum f(x) has the property f(x + 2n) = f(x), that is, £(x) is
periodic with period 2m. Periodic functions are encountered in the
study of a great variety of physical problems which feature periodic
phenomena such as vibration or wave motion. As is known, every periodic
function satisfying certain general conditions can be represented by a
trigonometric seriesl and most trigonometric series encountered in applied
problems are Fourier series. Thus Fourier series are of both theoretical
and applied interest.

The pure and applied aspects of study of Fourier series have moti-
vated the work of several generations of mathematicians whose efforts in
this and related areas have led to the creation of a theory of Fourier
series. The creation of this theory has profoundly influenced the
nature and direction of the evolution of analysis and, in turn, been
influenced by it. These influences are particularly apparent in the

development of a theory of functions of a real variable.

1See Appendix A for one form of this assertion.
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ii4

[The theory of Fourier series] has been a source of new ideas for
analysts during the last two centuries, and is likely to be so in
years to come.... It is not accidental that the notion of function
generally accepted now was first formulated in the celebrated memoir
of Dirichlet (1837) dealing with the convergence of Fourier series;
or that the definition of Riemann's integral in its general form
appeared in Riemann's Habilitationsschrift devoted to trigonometric
series; or that the theory of sets, one of the most important de-
velopments of nineteenth-century mathematics, was created by Cantor
in his attempts to solve the problems of the sets of uniqueness for
trigonometric series. In more recent times, the integral of Lebesgue
was develoBed in close connection with the theory of Fourier
series....
Indeed, its utility in the study of Fourier series was an important con-
tributing factor in the acceptance of Lebesgue's definition of integral.
This paper is an exposition of the history of such mutually advan-
tageous relationships between the successively more general conceptions
of definite integral from Cauchy to Lebesgue and the concomitant evolution
of a theory of Fourier series. The unifying theme of the paper is the
question of Fourier series representation of functions since, as will
be seen, much of this part of the theory of integration developed in
response to demands placed upon it by such series representations. The
paper begins with the work of the first mathematicians to consider this
question, d'Alembert, Euler, D. Bernoulli, and Lagrange, and following
the search for sufficient conditions for such representation, ends with
the theorems of Carleson and Hunt.
In writing the paper, I have attempted to identify both the histori-
cal sequence of events and the initiating influences which motivated the
work of contributing mathematicians, and to express both influences and

events in the words of the men who helped create the theory. Therefore

I have frequently excerpted passages from the original memoirs.

2A. Zygmund, Trigonometric Series, Volume I, xi.
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iv

I have assumed the reader has a knowledge of undergraduate analysis,
and have used standard notations and terminology; proofs of theorems have
not been given since they can be found in the references cited.

My purpose in writing this paper has been to identify an historical
context within which a study of the theory of functions of a real variable
might assume greater meaning. Many texts provide a rigorous mathematical
treatment of the theory, but, of necessity, little insight into its origins.
My hope is that this paper will complement such texts.

I should like to thank Charles Wells, John Wagner, John Kinney, John
Masterson, Clifford Weil, Francis Hildebrand, Albert Froderberg, Neil
Gray and particularly Gottfried Adam and Arthur Kimmel for assistance

and encouragement in the course of this work.
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Chapter 1
On the Cauchy and Riemann Integrals
Contributions of d'Alembert, Euler,

D. Bernoulli and Lagrange

One of the origins of the theory of Fourier series was study of the
vibration of stretched strings. Given certain simplifying assumptions
the motion of a stretched string is described by a solution of the par-

tial differential equation

1) 2 2

o

where a is a constant.l This equation has many solutions and the problem
is to find a solution F(x,t) of 1) which describes the motion of a particu-
lar string, that is, which satisfies given initial and boundary conditions
which determine the motion of the string and thus determine the solution
F(x,t) uniquely.A

Consider, for example, a stretched string of unit length in the (x,y)
plane whose equilibrium position is on the x-axis, 0 < x <1, y = 0, and
whose endpoints are fixed in this position through time. Assume the string
is deformed from its equilibrium position at time t = O by a force acting
in the (x,y) plane to an initial position 0 < x < 1, y = f(x). Let an initial

velocity g(x) in the y-direction be imparted to the string at time t = O.

Then the string responds to the forces acting upon it by vibrating about
its equilibrium position. If F(x,t) is the solution of 1) which describes
the motion of this string then F(x,t) satisfies the boundary conditions

F(O,t) = F(1,t) = 0 and the initial conditions F(x,0) = £(x) and

lA derivation of this equation is given in D. Widder's_Advanced
Calculus, Prentice-Hall, 1947, 344,



%%(x,O) = g(x). This equation describes the motion of the string in the
sense that the form of the displaced string is given by the curve y = F(x,to)
at a fixed instant in time t, 2 0.

The reader will verify that the functions
Fn(x,t) = sin nmwxcosnrnat,

where n is a positive integer, are solutions of 1) which satisfy the boundary
conditions Fn(O,t) = Fn(l,t) = 0 and initial conditions Fn(x,O) = fn(x) = gin nmx

and %%“(x,O) = gn(x) = 0, Moreover, if the series

o =)

2) F(x,t) = RZI

a Fn(x,t) = nglan sin ngyxcosnrat,

where the a are constants, and the series obtained from it by differentiating
term-by-term are convergent, and if term-by-term differentiation is justified,
then 2) is a solution of 1) satisfying the boundary conditions F(O,t)= F(1,t) = 0
and initial oonditions F(x,0) = f(x) = nz=1
Thus F(x,t) describes the motion of a string stretched between the points (0,0)

a sin nrx and %%(x,O) = g(x) = 0.

and (1,0), fixed at these points, displaced in the form f(x) = ;Zlan sin nrx,
0< x< 1, and at rest at the instant of release t = 0.

The function F(x,t) is the most general solution of this particular
case of the vibrating string provided it can be made‘to satisfy arbitrarily
given initial conditions. This is the criterion for generality of solution.
A solution, therefore, satisfying a particular initial condition F(x,0) = s(x)
where of physical necessity s(x) is continuous on 0 < x < 1 and, in the context
of this case of the vibrating string %{(x,O) = g(x) = 0, is subsumed in the
general solution. Again, a solution is obtained for each initial position

of the stretched string; the general solution encompasses all of these solutions



=g, 0f cour

szlumeowsly since

el solution of
T uestion,

If F(x,t) iSI

% felined on [0, :

Tésine serieg on
s since k(x) ¢
3% Thug the at
“ating String le:
zrese:tation of a;
Sndereq % the g

el by e cre

.



simultaneously since by definition it satisfies arbitrarily prescribed initial
o

conditions. Of course whethe; or not F(x,t) = nzlan sin nm cos nnat is the
general solution of this particular case of the vibrating string remains open
tb question..

If F(x,t) is the general solution, then an arbitrary continuous function
k(x) defined on [0,1] and such that k(0) = k&l) = 0 must admit representation
by a sine series on [0,1], that is, k(x) = nzlan sin nmx for 0 s x S 1. This
follows since k(x) can be interpreted as an initial position of the stretched
string. Thus the attempt to find the general solution for this case of the
vibrating string leads to the very interesting question of trigonometric series
representation of an arbitrary function. Historically, the controversy
engendered by the question of such representation helped initiate and was
resolved by the creation of the theory of Fourier series.

2
D'Alembert published a solution of the equation %:% - a? 2—%- (He assumed

ax
a =1 but I follow the usual convention.) in his 1747 memoir "Research on
curves formed by a stretched vibrating cord."? He gave his solution for a
vibrating cord of length ¢, fixed at the points (0,0) and (2,0) and at rest
at the instant of release, in the fom y= f(at + x) - f(at - x) where f denotesg
a periodic function with period 22. D'Alembert remarked, ''There are many. . .
consequences to be drawn from the general solution we have just given," a

rather ironic understatement in light of the historical sequence initiated by

publication of his solution général.

In his analysis d'Alembert took the initial position of the stretched
cord to be continuous or regular, that is, a curve whose form could be

expressed by a single definite function of the independent variable. Such a

2
D'Alembert, "Recherches sur la courbe que forme un corde tendue mise
en vibration," 214,
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4
curve stood in contrast to discontinuous or irregular curves which were under-
stood to be composed of portions of continuous curves and thus, not conforming
to a single law throughout their course, to require several different functions
for their expression.

Euler argued against d'Alembert's restriction of the initial position
of the stretched cord to a continuous curve. In his '"On the vibration of

3 published in 1748, he wrote "Mr. d'Alembert was the first to attack

cords, "
with considerable success the examination of this problem. . . and he has
communicated to our Academy a very good solution of it. But as. . . one
often draws very considerable profit from the comparison of several different
solutions of the same problem I do not hesitate to propose the one I have
found on this question."

Euler expressed his solution of the differential equation 1) in the
formy = f(x + at) + f(x - at) where for every t, f(at) + f(-at) = 0 and
f(2 + at) + £(2 - at) = 0, and concluded from these equations that every
curve which "be situated alternatively above and below [the axis] is proper
to represent the nature of the. . . function f. . . ." Thus, "a. . . curve,
be it regular, contained in a certain equation, or be it irregular or
mechanical, its arbitrary [ordinate] will furnish the functions which we

need for the solution of the problem." He then gave the equation

f(x) = asin 3% + Bsin 2%5 + ysin 2%§>+ e e

as a special case of the "general solution' in which the function f(x) "is a
continuous curve whose parts be bound in virtue of the law of continuity so

that its nature can be understood by an equation."

3Eu1er, "Sur la vibration des cordes," 69.
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Euler recognized that the vibrations of the stretched cord subsequent
to time t = 0 are completely determined by the initial form of the cord and
the initial velocities of its points. ". . .if a single vibration conforms
to this rule [of regularity], all the following must observe it also. One
sees by this how the state of following vibrations depends on the preceding
and is determined by them. . ." Furthermore '"one can before letting the
cord go give it whatever figure one wishes" and therefore, "so that the
initial figure of the cord can be [given] arbitrarily, the solution must
have the greatest extent possible.”" By obtaining a solution asserted to be
sufficiently general to comprehend such initial positions of the stretched
cord, Euler maintained that his solution was more general than that of
d'Alembert, whose solution, by assuming the initial form of the cord to be a
regular curve, did not encompass, for example, the case in which the initial
form of the cord is polygonal.

D'Alembert rejoined Euler in a paper published in 1750.4 "Mr. Euler
has treated in the Memoirs of 1748 the problem of vibrating cords by a method
entirely similar to mine as to the essential part of the problem and only, it
seems to me, a little longer." He cautioned his readers that "it does not
suffice to transport the initial curve alternatively above and below the
axis; it is necessary in addition that the curve satisfy the conditions that
I have expressed in my memoir. . . . In any other case the problem will not
be capable of resolution, at least by my method, and I do not know if it will
not surpass the force of continuous analysis. One cannot, it seems to me,

express y analytically in a more general manner than by supposing it a

4D'Alembert, "Addition au memoire sur la courbe que forme un corde

tendue, mise en vibration," 355.
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function of x and t. But in this supposition one finds the solution of the
problem only for the cases where the different figures of the vibrating cord
can be enclosed in a single and same equation. In all other cases it seems
to me impossible to give to y a general form."

Daniel Bernoulli became a third party to this controversy in 1753 by
publication of his "Reflections and enlightenments on the new vibrations of
cords given by the Memoirs of the Academy of 1747 and 1748."5 Bernoulli took
exception to d'Alembert and Euler's reliance upon a strictly mathematical
approach to the problem. He contended such reliance demonstrates that "to
listen to abstract analysis without any synthetic examination of the proposed
question is more likely to surprise rather than enlighten us. It seems to me
that one need only give attention to the nature of simple vibrations of cords
in order to foresee without any calculations all that these two great
geometricians found by the most difficult and abstract analysis. . . ."

Bernoulli apprehended the problem in physical terms. Basing his

arguments upon Taylor's De Methodo Incrementorum, he asserted the vibrating

cord, as a sonorous body whose vibrations consist of a fundamental and its
overtones, admits expression mathematically as the sum of terms corresponding
to the fundamental and its harmonics. This led him to conclude that any

initial position of the stretched cord admits representation in the form

y = asin'lf + Bsin 2%5'+ ysin 2%5 + .. ..

Bernoulli wrote "Here is therefore an infinity of curves found without any

calculation and our equation is the same as that of Mr. Euler. . . It is

5Bernoulli, "Réfléxions et eclaircissemens sur les nouvelles vibrations
des cordes exposées dans les Mémoires de 1'Académie de 1747 et 1748," 147,
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true that Mr. Euler does not treat this infinite multitude [of curves] as
general and that he gives it. . . only for particular cases, but., . . if there
are still other curves, I do not understand in what sense one can admit them."
Bernoulli's contention that every curve, and hence an arbitrary
function admits representation by a sine series was immediately disputed by
Euler.6 "Mr. Bernoulli. . . sustains against Mr. d'Alembert and myself that
the solution of Taylor is sufficient to explain all the movements of which a

cord is susceptible. . . ." Any argument 'that the equation y = asin> +

L
Bsin—z-%E + . . , because of the infinity of undetermined coeffieients, is so

general that it embraces all possible curves" must fail, Euler insisted, for
"all the curves expressed by this equation, no matter how the number of terms
be augmented, have certain characteristics which distinguish them from all
other curves. If one takes the abscissa x negative, then the ordinate
becomes also negative and equal to that which corresponds to the positive
abscissa x; and in the same way, the ordinate which corresponds to the abscissa
x + L is negative and equal to that which corresponds to the abscissa x."
Therefore, asserted Euler, a sine series, being odd and periodic, cannot repre-
sent a function which does not possess both of these properties, and in parti-
cular, cannot represent an algebraic function. Thus Euler held Bernoulli's
solution to be more restricted than the solution of d'Alembert.

We should observe that neither Euler nor his contemporaries could concede the
possibility of trigonometric series representation of non-periodic continuous
functions even in an interval. Indeed such a notion would have been dismissed

as a violation of the concept of continuous function. Coeval opinion held that

6Euler, "Remarques sur les mémoires précedens de M. Bernoulli," 196.
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the definition of a continuous function in an interval implied its definition
everywhere in its domain, i.e., that a continuous function could be extended
beyond an interval of definition in only one way. Thus, if two continuous
functions were equal on an interval they were held to be equal everywhere, a
circumstance which made the impossibility of a trigonometric series representa-
tion of a non-periodic function appear obvious.

Lagrange entered the controversy in 1759 with publication of his
"Researches on the nature and propagation of sound.“7 In reviewing the methods
of the first three protagonists, Lagrange reiterated Euler's objection to
Bernoulli's solution, a criticism with which he concurred: "It would be
necessary that the equation [y = asin'zf + Bsin 2%5-+ vsin §%£‘+ I |
enclose all the figures that one can give to a stretched cord, that is, all
the possible curves. This cannot be because of certain properties which seem
to distinguish cords comprised in this equation from all the other curves that
one can imagine; . . .in other words, in augmenting or diminishing the abscissa
of an arbitrary multiple of the axis, the value of the ordinate y does not
change."

Having dispatched Bernoulli's solution, Lagrange rejected the generality
of that of d'Alembert, again following Euler's lead. '"The construction of
Mr. Euler is evidently much more general than that of Mr. d'Alembert, for the
latter always supposed that the generating curve [i.e., the curve corresponding
to the initial position of the stretched cord] be regular and susceptible to
enclosure in a continuous equation. . . [and] . . .believed that such con-
struction became insufficient whenever the generating curve did not follow the

law of continuity. . . ."

7
Lagrange, '""Recherches sur la nature et la propogation du son," 39,
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9
Lagrange accepted Euler's solution as general but objected to its manner

of demonstration. "

« « .it seems undeniable that the consequences that are
inferred by application of the rules of differential and integral calculus are
illegitimate in all cases where this law [of continuity] is not assumed to
hold. It follows from this that the construction of Mr. Euler is applicable
by its very nature only to continuous curves since it is deduced immediately
from the integration of the given differential equation. . . ."

Lagrange proffered a demonstration of Euler's solution of the problem
of the vibrating cord "in which one considers the movements of the points of
the cord, each in particular, . . .to arrive at a conclusion which be sheltered
from all criticism." His argument consists of finding the solution for the
case of a weightless cord composed of a finite number of particles and then
obtaining the solution of the continuous cord as the limit of the first

solution as the number of particules is increased without bound. In an

intermediate step in his analysis, Lagrange expressed this limit in the form

F(x,t) = 2/ L (sin nms sin nmx cos nrat) f(s)ds

for a string of unit length, whose initial position is given by f(x), and
such that the initial velocity of each of its points is zero. This form is
of particular interest since it is only necessary to interchange in it the
operations of summation and integration, that is, to write a sum of integrals
rather than the integral of a sum, and let t = 0 to obtain a sine series
representation of f(x) in which the coefficients are determined as definite
integrals.

Lagrange undoubtedly recognized the relationship between this form and

that of Bernoulli but did not anticipate Fourier's conclusions with respect
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10
to such expansions. There are several reasons for this. First, and perhaps
most importantly, Lagrange was constrained by his concept of function. He
did not admit the possibility of such an expansion for any other than a periodic
function which could be given analytically, i.e., expressed by a single
equation. Second, Lagrange understood the integration symbol to denote a
finite sum: 'the integral sign ] is used to express the sum of all these

series,'" and only after summing the series did Lagrange let the number of
particles composing the cord tend to infinity. Indeed, had Lagrange considered
the summation to be an integral, his demonstration would have been open to the
same criticism which he directed toward that of Euler, i.e., integration of the
arbitrary (perhaps discontinuous) function f(x). Finally, having summed the
series and expressed the limit of the sum in Euler's functional form of
solution, Lagrange held his demonstration to be complete. ''Here then is the
theory of this great geometrician [Euler] placed beyond the reach of all criticism,
being established on clear and direct principles which do not depend in any
way on the law of continuity required by Mr. d'Alembert. Again, here is how

it happens that the same formula serves to support and demonstrate the theory
of Mr. Bernoulli on the mixture of isochronic vibrations when the number of
mobile bodies is finite and reveals to us the insufficiency of [Bermoulli's
theory] when the number of bodies becomes infinite." Lagrange "had formed

in advance in his mind a definite conception of the path to be taken"8 and in
his strict adherence to this conception and consequent disregard of any

alternative furnishes "an instructive example of the ease with which an author

8R1emann, Mathematische Werke, 220.
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11
can fail to draw an almost obvious conclusion if his attention is fixed in
another direction."9

Lagrange was not the only mathematician to approach, but not attain,
Fourier's conclusions. In discussing the problem of representation of the
reciprocal of the distance between two planets by a cosine series
3) ¢(6) = A+ Bcos 6 +Ccos 206+ . ..,
where 6 is the angle between the radii, Euler, in a memoir presented to the
St. Petersburg Academy in 1777,lo asserted that if a function ¢(6) admits a

series representation of the form 3), then
A=3[" oc0)de B =2 [T 0(6) cos 048
m ‘0 ’ m’0

a result obtained by multiplying the series by cos n6 and integrating term by
term. Euler only used this argument to determine the coefficients of a series
representation whose existence was verified by other means, however, and per-
haps for this reason his paper had no effect upon the question of trigonometric
series representation of an arbitrary function.

Years passed and the controvery regarding the possibility of series
representation remained without conclusion. It was left to Fourier to carry
Bernoulli's contention against the arguments and authority of d'Alembert,

Euler, and Lagrange.

Fourier
Fourier was led to consider trigonometric series representation of

functions in the course of his attempt to create a mathematical theory of the

9Burkhardt, "Entwicklungen nach oscillirenden Functionen und Inte-
gration der Differentialgleichungen der mathematischen Physik," 32,

10Euler, "Disquisito ulterior super seriebus secundum multipla
cuiusdam anguli progredientibus," 114,
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12
conduction of heat. An example of the type of problem studied by Fourier
which leads to the question of such series representation is the following.
Consider a rectangular plate whose sides B and C are of infinite length and
whose base A is of length m. Place the base A on the interval (- %3 %) on
the x-axis and heat it in such a way that unit temperature isrmaintained at
each of its points. Assume that each point of the sides B and C is
maintained at zero temperature. Then "heat will pass continually from
the source A into the solid BAC, and will be propagated there in the
longitudinal direction, which is infinite, and at the same time will turn
towards the cool masses B and C, which will absorb a great part of it. The
temperatures of the solid BAC will be raised gradually but will not be able
to surpass nor even attain a maximum of temperature, which is different for
different points of the mass. It is required to determine the final and
constant state to which the variable state continually approaches."11

Fourier showed that the steady state temperature T(x,y) at a point

(x,y) of the plate must satisfy the partial differential equation
4) - + —5 = 0,

and the boundary and initial conditions T(- %3 y) = T(%; y) = 0 and T(x,0) =1
where, of course, xe(- %3 %). He obtained as an intermediate step in his

analysis the form

5y

5) T(x,y) = a e’ cos x + b e—3y cos 3x +ce 7 cos 5x + . . . .

11Four:ler, The Analytical Theory of Heat, §164.
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13

"It is evident that the function. . . T(x,y) satisfies [equation 4] and
the condition TQt_%;y) = 0. A third condition remains to be fulfilled,
which is expressed thus, T(x,0) = 1. . . Equation 5) must therefore be
subject to the following condition:

l=acosx+bcos3x+ccos 5x+. ...

The coefficients a,b,c,... whose number is infinite are determined
by means of this equation.”

Thus it became important to Fourier to determine the coefficients of
a cosine series representation of the function which is identically one on
the interval (-%3%9. Similarly, had the base A of the rectangular plate
been heated in such a way that the temperature at a point x was given by the
function f(x), then it would have been required to represent f(x) in the form
of a cosine series. This begins to explain why Fourier was interested in
trigonometric series representation of '"arbitrary" functions. '"The funda-
mental problems of the theory of heat cannot be solved without reducing to
this form [development in a series of sines and cosines of multiple arcs]
the functions which represent the initial state of the temperatures."”

Fourier presented the first of his memoirs to the French Academy of
Science on December 21, 1807. His assertion that an "arbitrary" function

f(x) is represented on the interval (-%£,%) by a series

a
f(x) = —Q-+ Z (an cos m;?’-{-

nrx
2+ el + bn sin ) ) where

~

L ')
1 nvx 1 nnx
a ) J-z f(x) cos 7 dx and bn -2 J_lf(x) sin -I—'dx
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14
was met with disbelief. Riemann, in the historical section of his Habili-
tationsschrift, wrote that Fourier's contention ''was so unexpected by Mr.
Lagrange that he contradicted it in the most decisive manner. It is said
that there is still a document in the archives of the Paris Academy regarding

this controversy,"

the statement of existence of such a document having been
communicated to Riemann by Dirichlet. Fourier's memoir was deposited in the
archives without being published and, according to Darboux, was 'without
doubt withdrawn by Fourier in 1810."12

Perhaps as a consequence of Fourier's work, however, the Academy set
the competition for the grand prix de mathematiques for 1812 with the question:
"To give the mathematical theory of the laws of the propagation of heat and
to compare the results of this theory to exact experiments." On September 28,
1811, Fourier submitted to the Academy a work which essentially included and
slightly extended his original memoir. Fourier's paper was referred to the
Judges of the competition, Lagrange, Laplace, Malus, Hally and Legendre, and
while they awarded him the prize, they were critical of the generality and
rigor of his analysis. '"This piece. . . contains the true differential equa-
tions of the transmission of heat. . . . The newness of the subject together
with its importance has led the jury to crown this work, observing however
that the manner in which the author arrives at his equations is not exempt

from difficulty, and that his analysis in integrating his equations leaves

something to be desired relative to generality and even with respect to rigor."

2Darboux, Oeuvres de Fourier, vii.
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15

Fourier's manuscript was again deposited in the archives of the
Academy without being published. Resentful of this treatment, he incorporated
the first part of this memoir almost without change in his Analytical Theory
of Heat, published in 1822, and, having become Perpetual Secretary of the
Academy after the death of Delambre, caused this part of the memoir to be
printed in its original form in the Mémoires in 1824, and the second part to
be published in the Mémoires in 1826. In light of the interest excited by
his work "Fourier desired without doubt to thus establish his rights of
priority in an incontestable manner. . . ."13

Fourier's methods and results have continued to receive criticism, not
all of it justified. It is true that Fourier was a physicist interested in
solutions to applied problems and in his search for such solutions utilized natural
phenomena as a guide to mathematical theory. '"Profound study of nature is the
most fertile source of mathematical discoveries. Not only has this study,
in offering a determinate object to investigation, the advantage of ex-
cluding vague questions and calculations without issue; it is besides a sure
method of forming analysis itself, and of discovering the elements which it
concerns us to know, and which natural science ought always to preserve. . . ."14
Faithful to this conception throughout the course of his work, Fourier re-
iterated his position in a summary statement toward the end of his treatise.

"The integrals which we have obtained are not only general expressions

which satisfy the differential equations; they represent in the most distinct

13Darboux, op. cit., viii,

14Fourier, op. cit., Preliminary Discourse.
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16
manner the natural effect which is the object of the problem. This is the
chief condition which we have always had in view, and without which the
results of investigation would appear to us to be only useless transformations.
When this condition is fulfilled, the integral is, properly speaking, the
equation of the phenomenon; it expresses clearly the character and progress
of it, in the same manner as the finite equation of a line or curved
surface makes known all the properties of those forms."15

In holding to this view, Fourier occasionally allowed his physical
intuition to dominate his mathematical analysis. His discussion of uniqueness

of solution of the problem described above is an example of such domination.

Having determined the coefficients a, b, ¢,. . . of the equation

l=acos x+bcos 3x+c cos 5x +. . . to be, respectively, a -~%, b = g%
c = S d = %%;. . « for values of x such that xe(- %3 g), Fourier asserted

"the complete solution of the problem which we have proposed" to be of the

form

6) T(x,y) = %'ey cos x - 3% e-3y cos 3x + 3% e-Sy CO8 5X = . . . .

Fourier then argued, by means of physical considerations, that the final
temperature distribution is unique; therefore '"since the final state which
must be determined is unique, it follows that the proposed problem admits
no other solution than that which results from equation 6. Another form
may be given to this result, but the solution can be neither extended nor
restricted without rendering it inexact.“l6 Thus Fourier essentially

assumed uniqueness of solution.

15Fourier, op. cit., §5428.

16Fourier,.gg. cit., §204.
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17

This does not imply, however, that Fourier was disinterested in a
sound mathematical development of his theory. Indeed, his efforts to
demonstrate his propositions rigorously, while sometimes frustrated by his
physical or geometrical intuition, were often as successful as those of
Euler or Lagrange. For example, Fourier held the modern conception of
convergence of series and this, of course, before Cauchy formalized such
notions in his Cours d'analyse. He wrote, with respect to the question of
convergence of (Fourier) series, "it is. . . easy to prove they are con-
vergent. . . . This does not result solely from the fact that the values
of the terms diminish continually, for this condition is not sufficient to
establish the convergence of a series. It is necessary that the values at
which we arrive on increasing continually the number of terms should
approach more and more a fixed limit, and should differ from it only by a
quantity which becomes less than any given magnitude; this limit is the

value of the series."17 Again, when discussing the series

X 1 1
2 sin x - 2 sin 2x + 3 sin 3x - . . .

which was given without restrictions by Euler in his paper''Subsiduim Calculi
Sinuum," published in 1754, Fourier remarked "This infinite series, which is

always convergent, has the value'g so long as the arc x is greater than O

X
2

the contrary values very different from-%. . « This series has been known

and less than m. But it is not equal to < if the arc exceeds m; it has on

for a long time but the analysis which served to discover it did not

indicate why the result ceases to hold when the variable exceeds 7.

17Four:l.er, op. cit., §228.



The method whi |
ad the origin
is swbject mus-
wdertake,

These re-
regarding conve
dat the Fourie
dpartia] answe

Series, Fourie

y
b consideting

resseq this

w
..




18
The method which we are about to employ must therefore be examined attentively
and the origin of the limitation to which each of the trigonometrical series

is subject must be sought,"18

an examination which Fourier then proceded to
undertake.

These remarks are by way of prelude to a more important question
regarding convergence: how adequately did Fourier demonstrate his assertion
that the Fourier series corresponding to a function converges to the function.

A partial answer is suggested by Fourier's work with particular Fourier

series. Fourier initiated his discussion of the convergence of the series

y = 8in x - %-sin 2x +-% sin 3x - %-sin 4x + . . .

by considering the sum of the first m terms of the series, m even. He

expressed this finite sum Sm in the form

x
cos (mx + =
X ( 2)
S =+ - dx.
2 X
2 cos<§

Seeking the limit of this integral for increasing m, Fourier repeatedly

1
integrated by parts to obtain "a series in which the powers of (m + E)

cos (mx + %)

X

2 COS'E

enter into the denominators," Thus Lim f dx = 0, from which

Fourier concluded y = %ig Sm ='§. Having shown this, Fourier completed his
argument by demonstrating the necessity of the interval of convergence
noted above.

Fourier argued in this manner with respect to several explicit series.

His work is of particular interest and importance since it is this type of

18Fourier, op. cit., §184.
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argument, i.e., to express by an integral the sum of the first m terms of
the series and then to seek the limit of this integral as m tends to in-
finity, with which Lejeune-Dirichlet obtained the first rigorous theory
of convergence of Fourier series. Thus Fourier anticipated Dirichlet.
This remark is general. For consider the manner in which Fourier
established one form of his assertion regarding the representation of an

"arbitrary" function f(x) by its corresponding Fourier series, to wit,

1 1=+ +§ 24
£(x) = 12 f [£(a) cos =y (@=-x)] da,
5

where the interval of convergence is the set of all x such that

X
xe(~ > %) Fourier first interchanged the order of integration and
summation and, to simplify the work, let X = 27 and denoted a - x by r.

He thus obtained the form

4o {moo
£(x) =—[ [f(@) } cos i r] da.
{=—
i=+§ 1=+]
Fourier next wrote the finite sum Z cos 1 r in the form X cos 1 r =
=-] i=-]
cos jr+sinjr -i%%o—;—;. He then multiplied the second member of this

equation by f(a) expressed the product as an integral from -m to +m with a
as the variable of integration, and sought the form of the limit as j + «~.

In so doing he obtained the expression

4f (x )I+ it'n—g'du = 2nf(x)

which concludes the proof.19

19Fourier's argument is given in greater detail in Appendix B.

19
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Fourier also considered the form of the integral when x = *r and the
case in which the limits of integration encompass an interval of length
greater than 2m., Of course Fourier's work is flawed because he interchanged
the order of integration and summation and did not restrict the function
f(x) such that the integrals exist. It is true, however, that the form of
Fourier's reasoning was essentially correct and that it was by this means
that Dirichlet later rigorously established Fourier's contentions with
respect to trigonometric series representations. Thus Fourier's methods
and conclusions have received less than justice with respect to much of
the criticism directed toward them and concomitantly to Fourier himself.

It was with these considerations in mind that Darboux, in his
OEuvres de Fourier, commented that "Lejeune-Dirichlet. . .followed pre-
cisely the way which was indicated by Fourier, but brought into the work
an extreme precision which is necessary to such an important question.
This is not to deny the real and considerable progress brought by the
memoirs of Dirichlet to a subject where the efforts of Poisson and Cauchy
had not been crowned with complete success. But it seems just to remark
that Fourier, with his very profound sense of the questions of natural
philosophy. . .had indicated and even gone over, though with uncertain
steps, the path along which one should go to find the first exact demon-
stration of these fundamental results. . . ."

Part of Fourier's success can be attributed to his more general
conception of function. 1In this respect he represents a distinct break
from the traditions of his eighteenth century colleagues. When describing
the functions which admit trigonometric series representation, Fourier

wrote "above all, it must be remarked that the function f(x). . .is entirely
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21
arbitrary and not subject to a continuous law. . . .In general the function
f(x) represents a succession of values or ordinates each of which is
arbitrary. An infinity of values being given to the abscissa x, there are
an equal number of ordinates f(x). All have actual values, either positive
or negative or zero. We do not suppose these ordinates to be subject to a
common law; they succeed each other in any manner whatever, and each of

them is given as if it were a single quantity."zo

This description is
more general than Fourier intended. It is clear that Fourier, consistent
with his geometric methodology, considered the notion of function to be
equivalent to any relationship between the independent variable x and the
(unique) dependent variable f(x) which could be given graphically.21 Thus
he makes reference to a function '"such that the ordinate which represents
it has no existing value except when the abscissa is included between two
given limits a and b, all the other ordinates being supposed zero; so
that the curve has no form or trace except above the interval x = a to

x = b, and coincides with the x-axis in all other parts of its course.'
Again, in another context, Fourier wrote of a function "subject to no
condition, and the line whose ordinate it represents may have any form;
for example, that of a contour formed of a series of straight lines and

curved lines.'" Thus the functions considered by Fourier were piecewise

continuous and had at most finitely many discontinuities in the modern sense.

20Fourier, op. cit., §417.

21See Riemann, Mathematische Werke, 218.
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In addition to subjecting discontinuous functions to the methods of
analysis, Fourier demonstrated that a function could be extended beyond
an interval of definition in more than one way. For example Fourier ob-

tained the three analytic expressions

sinx-%sin2x+-§-sin3x-. . o s

ST
(]

%=-§-sinx-%sin 3x+%sin5x-. o« ooy
3 5w

and —=——-2-cosx-—2—-cos3x-...,
4 2
3

and remarked that 'these three values of 325 ought not to be considered as
equal with refernce to all possible values of x; the three preceding develop-
ments have a common value only when the variable x is included between O

m

and 2° The construction of the values of these three series, and the

comparison of the lines whose ordinates are expressed by them, render semsible
the alternate coincidence and divergence of the values of these functions."22
In general, Fourier wrote, "It is remarkable that we can express by con-
vergent series. . .the ordinates of lines. . .which are not subject to a
continuous law. We see by this that we must admit into analysis functions
which have equal values whenever the variable receives any values whatever
included between two given limits, even though on substituting in these
two functions. . .a number included in another interval, the results of the
two substitutions are not the same. The functions which enjoy this property
are represented by different lines which coincide only in a definite portion

n23

of their course. . . Thus Fourier's conception of the notion of

22Fourier, op. cit., §225.

23pourier, op. cit., §230.
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23
function was considerably more general than, say, that of d'Alembert.

It is of interest to consider how Fourier viewed the integrals of
discontinuous function when determining the coefficients of the corres-
ponding trigonometric series expansions. As might be expected, Fourier
argued geometrically: '"We see that the coefficients a, b, ¢, . . . which
enter into the equation %-¢(x) = asinx+bsin2x+csin 3x+ . . .
are the values of definite integrals expressed by the general term
f¢(x) 8in n x dx, n being the number of the term whose coefficient is
required. . . .if the function ¢(x) be represented by the variable ordinate
of any curve whatever whose abscissa extends from x = 0 to x = 7, and if on
the same part of the axis the knowntrigonometric curve, whose ordinate is
y = sin n x be constructed, it is easy to represent the value of any
integral term. We must suppose that for each abscissa x to which corresponds
one value of ¢(x) and one value of sin n x, we multiply the latter by the
first and at the same point of the axis raise an ordinate equal to the pro-
duct ¢(x) sin n x. By this continuous operation a third curve is formed
whose ordinates are those of the trigonometric curve, reduced in proportion
to the ordinates of the arbitrary curve represented by ¢(x). This done,
the area of the reduced curve taken from x = 0 to x = v gives the exact
value of the coefficient of sin nx, and whatever the given curve may be
which corresponds to ¢ (x), whether we can assign to it an analytical
equation, or whether it depends on no regular law, it is evident that it
always serves to reduce. . .the trigonometric curve, so that the area of
the reduced curve has, in all possible cases, a definite value which is the

value of the coefficient of sin mnx in the development of the function."za

24Fourier, op. cit., §220.
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In another place Fourier remarked "Whatever be the function ¢(x), or the
form of the curve which it represents, the integral has a definite value. . . .
The values of these integrals are analogous to that of the whole area. . .
included between the curve and the axis in a given interval. . . . It is
evident that all these quantities have assignable values, whether the
figure of the bodies be regular, or whether we give to them an entirely
arbitrary form."25

This conception represents a break from the Eulerian tradition,
derived, of course, from Newton, of defining a definite integral in terms
of its primitive. Fourier may have chosen to abandon the traditional
conception in deference to his geometrical viewpoint; it is more likely
that he conceived of the definite integral as an area for reasons given
below. In any case it should be remarked that, while unsatisfactory from
the modern standpoint, the notion of the definite integral as an area,
which was itself an essentially undefined concept, was adequate for Fourier's
purpose. That is, given the prevailing intuitive conception of area,
Fourier could integrate the functions he had in mind.

Fourier recognized that he had made a significant contribution. He
was aware of and recognized the relationship of his work to the researches
of d'Alembert, Euler, Daniel Bernoulli, and Lagrange. "If we apply these
principles to the problem of the motion of vibrating strings, we can solve
the difficulties which first appeared in the researches of Daniel Bernoulli.
The solution given by this geometrician assumes that any function whatever

may always be developed in a series of sines or cosines of multiple arcs

25Fourier, op. cit., §229.
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Now the most complete of all the proofs of this proposition is that which
consists in actually resolving a given function into such a series with
determined coefficients,"26 a work which Fourier had accomplished. He
had contributed to the solution of a long-standing problem in the represen-
tation of functions in such a way as to have important implicatiomns for
analysis. "It had always been regarded as manifestly impossible to express
in a series of sines of multiple arcs, or at least in a convergent trig-
onometric series, a function which has no existing values unless the values
of the variable are included between certain limits, all the other values of
the function being zero. But this point of analysis is fully cleared up and
it remains incontestable that [such functions] are exactly expressed by
trigonometric series which are convergent or by definite integrals. We
have insisted on this consequence from the origin of our researches up to
the present time, since we are not concerned here with an abstract and
isolated problem, but with a primary consideration intimately connected

n27 It 1s little wonder

with the most useful and extensive applicationms.
that Darboux could refer to Fourier's Analytical Theory of Heat as a
"handsome work that one can place with justice beside the most perfect of

all scientific writings."

26Four1er, op. cit., §230.

27Four1er, op. cit., §428.
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Cauchy

Before Cauchy there was no rigorous definition of the concept of
definite integral. Integration had been known from the time of Archimedes;
knowledge of the integral caluclus had been strengthened and extended,
especially by Newton and Leibnitz, and results of fundamental importance
had been obtained by its use. The basic concept had remained vague and
tenuous, however, due to inadequate statements of definition of limits and
limiting processes.28

Integration theory had followed complementary courses from Newton and
Leibnitz. Newton regarded integration as 'the inverse method of fluxionms,"
i.e., as the operation inverse to differentiation; Leibnitz conceived inte-

gration as a "calculus summatorius,"

or limiting summation. Both men were
familiar with the relationship between the two concepts, the fundamental
theorem of calculus. While both concepts were known, the view of the
integral calculus as the inverse of differentiation became predominant in

the course of the formal development. Euler, for example, in his

Institutiones calculi integralis, published in 1768, defined integral

calculus as the method of finding the relationship between functions given
the relationship between their differentials, and only used the concept of
a limiting summation for the approximate evaluation of integrals.

Of course, one of the interpretations of the definite integral was the
arithmetic expression of the geometric concept of area. Thus, as remarked

above, the concept of area was essentially undefined. Moreover, in the

288ee Bell, The Development of Mathematics, for these aspects of the

history.
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geometric-intuitive morass which prevailed in the absence of precise
definitions, and in the confusion between definition and interpretation, the
converse was also held to be true. That is, the definite integral was de-
fined by means of the concept of area. We have seen this in Fourier's
work., With Fourier, mathematicians 'merely said which areas had to be
added or subtracted in order to obtain the integral f:f(x)dx."29

Cauchy wished to extricate analysis from the quagmires of intuitionism
and formalism. To this end he successfully carried out the implied program
of d'Alembert, who in 1754 had stated that "The theory of limits is the true
metaphysics of the differential calculus.'" Thus, Cauchy first stated a
definition of the concept of a limit and then defined the notions of
continuity, derivative, and integral in terms of the limit concept.

Cauchy revived the concept of limiting summation as the fundamental notion
of the integral calculus. He defined the definite integral for an explicit
class of functions, and demonstrated the existence of the integral for
members of this class. He proved the fundamental theorem of calculus; he
was first to create a theory of integration, and indeed, a theory of
functions of a real variable.

Cauchy expressed his purpose in the introduction to his Cours
d'analyse, published in 1821. "I have sought to give to the methods of
analysis all the rigor which is demanded in geometry, in such a way as to
never have recourse to reasons drawn from the generality [i.e., formalism]
of algebra. Reasons of this type, although rather commonly admitted, above

all in the passage from converging series to diverging series, and from real

29Lebeague, "Sur le développement de la notion d'intégrale," 149.
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28
quantities to imaginary expressions, can only be considered, it seems to
me, as inductions which sometimes suggest the truth, but which bear little
relationship to the exactitudewhich is so prized by the mathematical
sciences. One ought even to observe that they tend to . . . attribute to
algebraic formulas an indefinite validity, while in reality most of these
formulas hold only under certain conditions, and for certain values of the
quantities which they contain. In determining these conditions and these
values, and in fixing in a precise manner the meaning of the notations which
I use, I shall dispel all incertitude." By attributing to formulas an
"indefinite validity" Cauchy meant, for example, an uncritical (formal)
application of the binomial theorem to obtain

-1-(1-2)'1-1+2+4+8+16+...

Cauchy was almost apologetic . in breaking with the micawberian
tradition and attempted to justify his work. "It is true that in order to
remain constantly faithful to these principles I have been forced to admit
several propositions which will perhaps appear a little hard on first
glance. For example, I state in Chapter 6 that a divergent series has no
sum . . . . But those who read my book will recognize, I hope, that pro-
positions of this nature, which bring forth the happy necessity of placing
more precision in theories and of bringing useful restrictions to assertions
which are too general, turn to the profit of analysis and furnish several
w30

subjects of research which are not without importance.

Cauchy's Course of Analysis, which he had given at the Royal

Polytechnical School, and had been encouraged to publish by Laplace and

30Cauchy, Cours d'analyse, iv.
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Poisson, included this definition of the concept of continuous function.
"Let f(x) be a function of the variable x and let us suppose that for each
value of x intermediate between two given limits, the function always
admits a unique and finite value. 1If, starting from a value of x included
between these limits, one attributes to the variable x an infinitely small
increment a, the function itself will receive the increment f(x + a) - £(x),
which will depend on the new variable a and the value of x. This having
been stated, the function f will be, between the two given limits, a con-
tinuous function of the variable x if, for each value of x intermediate
between these limits, the numerical value of the difference f(x + a) - £(x)
decreases indefinitely with a. In other terms, the function £(x) will be
continuous with respect to x between the limits given if, between these
limits, an infinitely small increment of the variable always produces an
infinitely small increment of the function 1teelf."3!

This definition is interesting in a number of aspects. First,
Cauchy probably did not intend his concept of function to be as general
as his statement might be interpreted to imply. That is, it is unlikely
that Cauchy had in mind a function like the Dirichlet functionm,

0 if 0< x< 1 and x is irrational
£(x) = ’
1if 0 < x < 1 and x 18 rational

even though it is admissible in terms of his definition of (single-valued)
function. Second, Cauchy defined the continuity of a function on an
interval rather than at a point. Discontinuity of a function was similarly

defined. ". . .when a function ceases to be continuous in a neighborhood of a

31(:auchy, op. cit., 34.
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particular value of the variable x, then one says that it is discontinuous,
and that there is for this particular value a solution of continuity. Thus,

x = 0 is a solution of continuity for the function iu Finally, in order
that Cauchy's definition of continuity of a function be meaningful, it is
required that the concept of the infinitely small be defined.

We turn to Cauchy's Resume of the Lessons Given at the Royal Poly-

such a definition. Indeed, it is here that Cauchy developed his theory of
limits. Cauchy remarked in the preface to this work "My principal goal

has been to reconcile the rigor which has been my guiding principle in my
Course of Analysis with the simplicity which follows from the consideration
of infinitely small quantities."

The first lesson of the test was devoted to ''des variables, de leurs
limites et des quantities infiniment petites.' Cauchy wrote '". . . a variable
quantity is that which successively receives several different values. . . ,
a constant quantity, on the other hand, is any quantity which receives
a fixed and determined value. When the values attributed successively
to the same variable approach a fixed value, so as to . . . differ from
it by as little as one would wish, then the latter is called the 1limit
of all the former. Thus, for example, the perimeter of a circle is the
limit toward which the perimeters of regular inscribed polygons converge
as the number of their sides is indefinitely increased."32 Cauchy then

1

sin o and (1 + a);'as a tends to zero. He

discussed the limits of

concluded the lesson by defining the concept of the infinitely small.

32
sur le calcul infinitésimal, 13. T
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"When the successive values of the same variable decrease indefinitely,
that is, in such a manner as to go below [i.e., be less than] any given
number, then this variable becomes what one calls infinitely small ., . .
A variable of this type has zero as its limit,"33

In a subsequent lesson Cauchy defined the concept of continuous
function as he had in his Cours d'analyse. Given this he was prepared
to define in the 25th lesson, the definite integral of a continuous
function over a closed (finite) interval as the limit of a set of sums.
Cauchy was aware of the importance of his work in integration theory and
had singled it out for special attention in his preface. '"In integral
calculus it has seemed necessary to me to demonstrate in general the
existence of integrals or primitive functions before developing their
diverse properties. In order to accomplish this it has first been
necessary to establish the notion of integrals taken between given limits
or definite integrals . . ."

Cauchy's definition of definite integral is as follows. ''Let us
suppose that the function y = f(x) is continuous with respect to the
variable x between two finite limits x = X, and x = X, We will designate
by Xis Xgs o o oy X ) Tew values of x interposed between these limits,

which always increase or decrease from the first limit to the second.

These values are used to divide the difference X - xo into elements

xl-xobxz"’&,ooo,x-xn_l

which will be of the same sign. This stated, let us multiply each element

33Cauchy, op. cit., 16.
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32
by the value of f(x) corresponding to the origin of the element, that is
to say the element x; - x_ by f(xo), the element x, - X, by £(%9)y -« .

and finally the element X - x,_1 by f(xn_l), and let

be the sum of the products thus obtained. The quantity S will evidently
depend on 1) the number n of elements in which the difference X - x, will
have been divided, and 2) the values of these elements and, in consequence,
the mode of division used., Now it is important to remark that if the
numerical values of the elements become very small and the number n very
large, then the mode of division will no longer have any but a very small
influence on the value of S."

Cauchy then proceeded to demonstrate this assertion, that is, that
the difference between sums S and S' corresponding to partitions P and P'
is small when the norms of P and P' are small. It was in this demonstra-
tion that Cauchy appealed to the hypothesis of the (uniform) continuity of f(x).
He then continued, '"Let us consider simultaneously of two modes of division
of the difference X - X, in each of which the elements of the difference
have very small numerical values. We will compare these two modes to a
third chosen in such a way that . . . all the values of x interposed in
the first two modes between the limits X and X be used in the third, and
will find that the value of S is charged very little by passing from the
first or second mode to the third . . . . Thus, when the elements of the
difference X =~ x, become infinitely small, the mode of division has on S
only a negligible influence, and if one decreases indefinitely the numer-

ical value of these elements while augmenting their number, the value of S
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33
will finish by being sensibly constant, or, in other terms, it will finish
by attaining a certain limit which will depend uniquely on the form of the
function f(x) and the extreme values X and X attributed to the variable x.
This limit is what one calls a definite integral."34

Given this definition, Cauchy then went on to develop the ''diverse
properties" of the integral in succeeding lessons, including, as has been
noted, the fundamental theorem of calculus. He also generalized the defini-
tion of definite integral to unbounded functions. In similar fashion,
Cauchy integrated piecewise continuous functions by integrating over those
subintervals in which there was no point of discontinuity. Thus, Cauchy's
theory of integration was sufficiently general to integrate the functions
he had in mind, i.e., continuous and piecewise continuous functions.35
Stated differently, Cauchy's theory of integration was adequate for his
purposes.

It remains to attempt to determine why Cauchy abandoned the pre-
vailing conception of integration as the inverse of differentation. This
is an important question, it seems to me, since Cauchy's definition of
definite integral as a limit of sums decisively influenced the course of
integration theory in its subsequent development. Some insight into this
matter is furnished by Cauchy's "General observations and additionms,"

published in 1823 as an addendum to an earlier memoir on the integration

of differential equations. ". . . we will consider each definite integral,

34Cauchy, op. cit., 122,

35See Hawkins, Lebesqués Theory of Integration, 12,
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34
taken between two limits, as being nothing else than the sum of the infinitely
small values of the differential expression placed under the sign f which
correspond to the diverse values of the variable contained within the given
limits, When one adapts this manner of viewing definite integrals, one
shows easily that such an integral has a unique and finite value, whenever
the two limits of the variable are finite quantities, and the function under
136

the [ sign is finite and continuous in the interval between the limits.

Later, and more importantly, Cauchy wrote in a post scriptum "One is

naturally led by the theory of quadrature to consider each definite in-
tegral, taken between two real limits as being [the limit of a set of sums].
But, it seems to me that this manner of viewing a definite integral should
be adopted by preference, as we have done, because it suits equally all
cases, even those in which one cannot generally pass from the function
placed under the sign f to the primitive., It has, in addition, the ad-
vantage of always furnishing real values for the integrals which correspond
to real functions. Finally, it permits us to separate each imaginary
equation into two real equations. All this would not take place if one
were to consider the definite integral, taken between two real limits, as
necegsarily equivalent to the difference of the extreme values of a primi-
tive or even discontinuous function, or if one caused the variable of one
limit to pass to another by a series of imaginary values. In these last
two cases, one would often obtain imaginary values for the integral, like

those given by Mr. Poisson."37

36Cauchy,'bbservations générales et additiong' 571,

37Cauchy, op cit., 590,
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35
Recall that if f(x) is defined on [a,b] then F(x) is a primitive

of f(x) on [a,b] 1f and only if F'(x) = f(x) for every xe(a,b). Also recall
a theorem of Riemann's theory of integration of the form; if f(x) is in-
tegrgble on [a,b] and if f(x) has a primitive on [a,b], then a primitive

is | £(t)dt+C. This given, consider the function

a
14f -1<x<0
f(x) =
2 1f 0 < x < 1,
1
Then f(x) is Cauchy integrable on [-1,1] and I f(x)dx = 3. Now if f(x) has
-1

a primitive on [-1,1] it must be

l" *C 1f -1 < x < 0

F(x) = f(t)dt+C =

-1 2x+C 1f 0 < x < 1.

However, F'(x) does not exist at x = 0 and therefore f(x) has no primitive
on [-1,1]. This is the kind of function of which Cauchy was undoubtedly
thinking when he referred to those cases 'in which one cannot generally
pass from the function placed under the sign I to the primitive."

Cauchy perceived that the integral of functions such as the one
defined above cannot be obtained by direct appeal to the conception of
integration as the inverse of differentiation. Fourier's assertion that
an arbitrary function admits representation by a trigonometric series whose
coefficients are given as definite integrals necessitated, however, the
integration of such "arbitrary" functions. Indeed, it was probably
Fourier's recognition that such functions cannot be considered "as neces-
sarily equivalent to the difference of the extreme values of a primitive"

which caused him to abandon the traditional conception of the definite integral
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36
and to hold in its stead the notion of definite integral as an area.

I should like to conjecture that Fourier's work was an import-
ant influence in Cauchy's reformulation of the concept of definite
integral. That is, Cauchy recognized the necessity, derived from
Fourier's assertions, to integrate functions for which the traditional
conception was inadequate, and yet for which an integral could be defined
by returning to Leibnitz's conception of the integral as a limit of
sums.

Cauchy stated that he was not aware of the work of Fourier until
after August, 1817. In a note added in 1825 to his 1814 publication
"Memoir on definite integrals," Cauchy wrote, with respect to certain
"reciprocal" properties of functions, "The remarkable properties of
these functions and the advantages offered by them in the solution of
a great number of problems furnished me the subject of a note in the
Bulletin de la Société philomathique of August, 1817, It is necessary
to remark that when I wrote this note I did not yet know of any memoirs
in which the . . . reciprocity is deduced or used, other than those
of Mr. Poisson and myself . . . . Since that time, Mr, Fourier com-
municated to me his researches on heat, presented to the Institute in
1807 and 1811 and only published in 1819, I there saw the same formula
and I hastened to render . . . the justice due to him in a second note
printed in December, 1818."38 0f course other obvious possibilities
with respect to Cauchy's recognition of such necessity are independent
work or communication through an intermediary.

In support of my conjecture I should remark that there is no

3SCauéhy,"Mémoire sur les intégrales définies}) 300.
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37
evidence for the conventional assertion that Cauchy conceived of the
definite integral as a limit of sums as early as 1814, at least in
his "Memoir on definite integrals.'" Cauchy did many wonderful things
in this monograph, but to write a new definition of definite integral,
even implicity, was not one of them. Indeed, Cauchy himself did not
contend to so early a priority. In asubsequent paper, for
example, Cauchy began "In a memoir presented to the Academy of
Sciences on October 28, 1822, . . . I showed how one can fix, in all
possible cases, the sense that ought to be attached to the notation

b
I f(x)dx which represents a definite integral . . . ."39

a

The question of Cauchy's conception of definite integral being
influenced by Fourier series is interesting and, in my opinion, deserv-
ing of additional research. Whatever the fate of my conjecture, how-

ever, it is clear that Cauchy began the long work of carrying out the

mathematical development implied by the conceptions of Fourier.

Dirichlet
The first rigorous proof that the Fourier series of a function
converges to the function was given for a general class of functions by
Lejeune-Dirichlet. Dirichlet presented his proof in his memoir "On the
convergence of trigonometric series which represent arbitrary functions

between given limits," published in 1829, In his introductory remarks

39Cauchy,'hémoire sur les intégrales définies prises entre
des limites imaginaires,' 265.
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38
to this memoir Dirichlet observed that the property of convergence
of Fourier series "had not escaped the illustrious geometer who had
opened a new field of study for the application of analysis by intro-
ducing the manner of expressing the arbitrary functions with which we
are dealing; this is found in the monograph which contains his first
researches on heat. But to my knowledge, no one has given up to the

n40 Dirichlet was evi-

present time a general demonstration of this,
dently unaware of several earlier unsuccessful attempts to give such
a demonstration, most notably by Poisson in 1823 and in and after 1826
by Cauchy,41 for he continued "I know nothing on this subject except a
work credited to Mr. Cauchy which is part of the Memoirs of the Academy
of Sciences of Paris for the year 1823." Of course Dirichlet was
familiar with Fourier's attempts to demonstrate convergence of such
series; indeed it was his acquaintance with Fourier in Paris which
had excited his interest in the theory of Fourier series.

After giving a critique of Cauchy's work which seemed '"to leave
no doubt to its insufficiency," Dirichlet began his own demonstration
by examining '"the most simple case, to which all others can be

2

reduced."*? First he proved the following lemma: "If 0 < g <h < m |
2

40D1richlet, "Sur la convergence des series trigonometriques qui
servent & représenter une fonction arbitraire entre des limites donneés,’ 157.

41See, for example, Cauchy, "Mémoire sur les dévelopements des
fonctions en series periodiques," 196,
42A detailed account of Dirichlet's proof is given by Hobson,
The Theory of Functions of a Real Variable and the Theory of Fourier's
Series, vol. 2, §323 and 328,
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in which the function f(8) is continuous and monotone increasing or
monotone decreasing over the interval of integration, converges to a
1limit as 1 tends to infinity. This limit is zero when g + 0 and is
%-f(O) when g = 0."

Given this, Dirichlet considered the Fourier series

™ m m

r ¢ (a)da +1 ¢ (a)cos ado cos x +-l ¢(a)sin ada sin x+...
27 n ﬂ

-7 -7 -m

of ¢(x), a function having "a finite and determined value for each
value of x included between -7 and n." Dirichlet expressed the sum

of the first 2n+l terms of this series in the closed form

1 sin(n +‘%)(a-x)
7 = ¢ (a) 1 da.
2 sini(a-x)

-T

Writing this integral as the sum

39
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'n+x r3:5

2 s8in(2n+1)B ¢ (x-28)dB + 2 8in(2n+1)B ¢ (x+28)dB,
sin B sin B8

0 0

Dirichlet obtained the limits of these integrals with increasing n by
use of the lemma, appealing to the lemma a finite number of times for
those functions which ''present several solutions of continuity . . .
and . . . have several maxima and minima" in the interval of integration.
Dirichlet concluded that "the [convergence of the] ihtegral (7) . . . proves
that the [Fourier] series is convergent . . . and equal to %’(¢(x+0) + ¢(x-0))
for each value of x included between -7 and 7, and for each of the extreme
values 7 and -7 is equal to %{¢(n-0) + 4>(-1r+0))"‘.3 for those functions
"all of whose values are finite and determined, and which have only a
finite number of solutions of continuity and maxima and minima between
the limits -7 and ﬂ."44 Thus Dirichlet completely solved the problem of
convergence of Fourier series representation of the "arbitrary' functions
of Fourier and Cauchy.

It is instructive to study Dirichlet's use of Cauchy's conception
of continuity in the proof of his lemma. Such study shows that the proof
does not require continuity of the integrable function f(x) but only
that it be monotone in an interval about x where, of course, xe[O,%ﬂ.

Given Cauchy's conception of definite integral of a piecewise continuous

43

Recall ¢(x+0) = 1im¢ (xt+k) and ¢(x-0) = 1lim¢ (x-k).
k0 k-0
k>0 k>0
44

Dirichlet, op. cit., 168.



function,
continuit
and f(x)s
in order
he worked
Di
for conve
the quest
couid be
sider the
the numpe
hold, Th
fred, 1
of contjn
f“nction
arbitrary
betueen a
togethe,
T to s.
ing thay
$0ing bac
the integ
fuaction
te“ded. 1
function |
tegrabilh

should be



41
function, Dirichlet required a condition to ensure the piecewise
continuity and hence integrability of f(x) and the products £(x) cos mx
and f(x)sin mx. Thus Dirichlet stated his hypothesis of continuity
in order to assure the existence of the definite integrals with which
he worked.

Dirichlet wished to obtain more general sufficient conditions
for convergence, i.e., to relax the restrictions on f(x). He believed
the question of convergence of Fourier series of more general functions
could be reduced to the above "most gimple case." 'It remains to con-
sider the case where the assumptions that we have made with respect to
the number of solutions of continuity and maxima and minima cease to
hold, These singular cases can be reduced to the ones we have consid-
ered. In order that the integral (7) have a meaning when the solutions
of continuity are infinite in number it is only necessary that the
function . . . ¢(x) be such that if one designates by a and b two
arbitrary quantities included between -7 and 7™, one can always place
between a and b other quantities r and s which are sufficiently close
together that the function remains continuous in the interval from
r to s. The necessity of this restriction is easily seen by consider-
ing that the different terms of the series are definite integrals and
going back to the fundamental notion of integral. Thus one sees that
the integral of a function signifies nothing except insomuch as the
function satisfies the preceding stated condition." Dirichlet con-
tended, therefore, that the only requirement to be satisfied by the
function is that it be integrable, and a sufficient condition for in-
tegrability is that the set of points of discontinuity of the function

should be nowhere dense.
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Dirichlet continued, "An example of a function which does not
fulf1ll this condition is [the function] ¢(x) equal to a fixed con-
stant c when the variable x is a rational number and equal to another
constant d when the variable is an irrational number. The function
thus defined has a finite and determined value for every value of x;
however, it cannot be substituted in the series, for the different
integrals which enter into the series lose all meaning . . . ." Thus
Dirichlet identified a function so discontinuous as to fail to be
integrable. Dirichlet's example had little immediate impact on integra-
tion theory, however, for the concept of an everywhere discontinuous
function was not yet taken seriously. Indeed, this was "an age in which
such pathological functions appeared to be completely devoid of in-
terest,"45 there being no necessity to integrate such functioms.

Dirichlet concluded his memoir by remarking 'the restriction
that I have just made and that of not becoming infinite are the only
restrictions to which the function ¢(x) is subject . . . . But to
demonstrate this, in order that the work be done with all the clarity
that one could desire, requires several details related to the funda-
mental principles of infinitesimal analysis which will be presented in
another note and in which I will also pursue some other rather remark-
able properties of [Fourier] series."

Dirichlet never published the proposed subsequent note. He con-
tinued to exert an influence upon the ensuing development, however,

not only by the implications for the theory of trigonometric series

ASBourbaki, Eléments d'histoire des mathématiques, 247.
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expressed in his 1829 memoir, and again in a memoir published in 1837,46
but also in his capacity as a teacher. In particular, Dirichlet
excited an interest in this theory in Riemann while the latter was

his student in Berlin, an interest which was expressed in Riemann's

G8ttingen inaurgural dissertation, to which we now turn,

Riemann

Dirichlet determined sufficient conditions for the representa-
tion of a function by a Fourier series. Riemann sought to establish
necessary conditions for such representation in 1854 in his Habilita-
tionsschrift '""On the representation of a function by a trigonometric
series."47 As will be seen, Riemann's work was in some respects in-
complete, and perhaps for this reason the memoir remained unpublished
during his lifetime. It was printed in 1867 on the authority of
Dedekind. Dedekind wrote in an introductory footnote, "This treatise
was presented in 1854 by the author to obtain appointment at the
University of GbBttingen ... Although the author seems not to have in-
tended to publish it, the present edition of this treatise in its
original form seems to be justified by the high interest of the subject
matter, and by the form of treatment of the most important principles
of the infinitesimal calculus ..."

Riemann viewed his paper as consisting of 'two essentially

different parts. The first part is a history of the investigation ...

46Dirich1et,"ueber die Darstellung ganz will-klirlicher Functionen
durch Sinus - und Cosinusreihen," 152,

47Riemann, Mathematische Werke, 213.
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of arbitrary (graphically given) functions and their representation
by trigonometric series. In its composition I was permitted to utilize
a few hints of the famous mathematician to whom is owed the first pro-
found work on this subject. In the second part I will present research
regarding the representability of a function by trigonometric series
which includes those cases which up to now have not been solved. [In
this respect] it was necessary to introduce a short discussion of the
concept of definite integral ..." Thus Riemann's more general con-
ception of definite integral was derived in a context of necessity
imposed by the problem of trigonometric series representation of
functions., The "famous mathematician' referred to was Dirichlet, to
whom Riemann had turned for information in the preparation of the
historical section of his Habilitationsschrift,

In this first part, Riemann reviewed the development of the
notion of trigonometric series representation of functions from
d'Alembert to Dirichlet. He concluded his survey of the history with
a statement of Dirichlet's sufficient conditions for such representation:
the function must be integrable, have only finitely many maxima and
minima, and "where the function suddenly changes values assumes
the average of the mutual limit values.' That is, if x, 1s a point of
discontinuity of f(x), then f(xo) = %-(f(xo + 0) 4-f(x°-0)). Riemann
remarked '"whether and when a function which does not fulfill these
three conditions can be represented by a trigonometrical series re-
mains undecided by these reeearches."48

Given the success of Dirichlet's work with respect to functions en-

countered in applied problems, and which therefore had been of primary

4BRiemann, op.cit., 223,
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interest, Riemann attempted to justify his own more general investiga-
tion of trigonometric series representation of functions in terms of
its relationship to pure mathematics. 'For all our ignorance concern-
ing the manner in which the forces and states of matter vary with time
and place in the infinitely small, we are able to hold as certain that
the functions to which the researches of Dirichlet do not apply fail
to express physical processes. Nevertheless, those cases not considered
by Dirichlet seem to merit attention for two reasons. First, as
Dirichlet himself remarked at the end of his treatise, this subject
matter stands in the closest relationship with the principles of the
infinitesimal calculus and it may serve to bring to these principles a
greater clarity and certitude. In this respect the study of this sub-
ject matter has an immediate interest. Second, the application of
Fourier series is not restricted to physical researches; it is also
applied with success in a field of pure mathematics, the theory of
numbers, and here precisely those functions whose representation by
trigonometrical series was not examined by Dirichlet seem to be of the
greatest importance. Toward the end of his treatise Dirichlet promised
to return to these cases but this promise has remained unfilled ..."49

As a preliminary to his work with trigonometric series, Riemann
proposed a more general concept of definite integral. '"The uncertainty
which still exists in a few fundamental points of the theory of the
definite integral forces us to make some introductory gtatementa regard-

ing this concept ... Thus, what do we understand by | f(x)dx ?"

a
Riemann answered this question as follows

49Riemann, op.cit., 224,
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Let 8,Xy,Xppe00,X,_;,b be a partition of the interval [a,b] and denote
X)-a by 8, , Xy=X; by 65,e0., b-x_; by § and by €, einen positiven
3chter Bruch," i.e., a given position fraction. Then "the value of

+

will depend on the choice of the interval ¢ and the magnitude €, If
the sum ... approaches a limit A when the &§'s become infinitely small,
then this value is called the definite integral bf(x)dx. If, on the
contrary, the sum does not have this property the: the integral is not
defined."50

Given this definition of the concept of definite integral,
Riemann turned to the unresolved question of integrability of Dirichlet.
"Let us shed light secondly as to the extent of validity of this con-
cept: in which cases does a function admit and in which cases does a
function not admit integration?"

Riemann established necessary and sufficient conditions for
integrability by arguing in this way. '"Let us ... first suppose that
the sum S converges if all §'s become infinitely small. We will
designate the greatest divergence of the function between a and Xy
that is, the difference between its maximal and minimal values in this

. b
interval, by Dl’ between Xy and X, by D2,..., and between X 1 and

by Dn' Then

GlDl + 62D2+. . .‘i-tsnDn

5ORiqnann, op.cit., 225,
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must become infinitely small with the magnitudes 6. In addition, we
assume that as long as all §'s remain smaller than d, the greatest
value this sum may attain is A; therefore A is a function of d which
decreases with d and becomes infinitely small with this value. Now
let the total length of the intervals in which the variation [of the
function] is greater than 0 be s. Then the sum 51D1+62D2+...+15nDn is

greater than or equal to 98, Consequently

os < 8;D,+8,D,+...+6 D < A, and hence s _<_-§- . Now -3— can,
if o is given, be made arbitrarily small by a suitable choice of the
magnitude d; the same is true for s, and therefore we obtain the
following:

"In order for the sums S to converge as the §'s become infinitely
small, it is required, in addition to the finiteness of the function,
that the total length of the intervals in which the amplitudes are
greater than o, no matter what O may be, can be made arbitrarily small
by a suitable choice of the magnitude d."

Riemann also held the converse to be true. "If the function
f(x) is always finite and if with infinitely decreasing magnitudes §,
the total length s of all the intervals in which the amplitude of f(x)
is greater than the given magnitude o becomes infinitely small, then
the sums S converge if all magnitudes § become infinitely small, For
those intervals in which the variations of f(x) are greater than ©
contribute less to the sum 61D1+62D2+...+6nDnthan 8 multiplied by the
greatest variation in the function between a and b, which is finite;

the other intervals contribute less than 6(b-a). Obviously we can
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assume o at first arbitrarily small, and then define the length of the
interval so that s become8 arbitrarily small, by which the sum
61D1+62D2+...+6nDn is given any chosen smallness, and consequently the
value of the sum can be enclosed in arbitrarily chosen narrow limits.

"Thus we have found conditions which are necessary and sufficient
for the sums € to converge with infinitely decreasing magnitudes 6,
and therefore, for the existence of the integral of a function f(x)
from a to b.""1
In modern terms, a function f(x) is Riemann integrable on [a,b]

if and only if the sum

n

} 1Py
1=l

tends to zero as the norm of the partition P tends to zero, where the
61 denote the lengths of the subintervals of [a,b] determined by P,
and each Di designates the oscillation of f(x) on the respective sub-
interval of length 61.

We should observe that Riemann asserted necessary and sufficient
conditions for integrability of a function on an interval without re-
quiring that the function satisfy a condition with respect to continuity.
Indeed, Riemann immediately gave an example of a discontinuous function
not integrable in the sense of Cauchy but which admits a Riemann
integral.

"Having examined the ... definite integral in general, i.e.,
without special assumptions as to the nature of the function to be in-

tegrated, we should apply this investigation in special cases ... and,

51Riemann, op.cit., 227.
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at first, to functions which are infinitely often discontinuous
between any two limits however close together. Since these functions
have not been considered anywhere it will be good to start with a

specific example." Riemann's example is the function

®
f(x) =) (ax) ,
n=1 n2
where (nx) denotes the positive or negative difference between nx and
the nearest integer, or is zero if nx is the midpoint of consecutive
integers. This function converges for every x, and is discontinuous
for every x of the form x = %;-where m is an integer relatively prime

to 2n, This follows since, as Riemann wrote, if x = %; , then

1 1.1 2
F(xH0) = £(x) = === (L + =+ == +22.) = £(x) = L=
2 9 T 25 2
2n 16n
1 1.1 -
2 9 725 2
2n 16n

If x 18 not of this form, then f£(x+0) = £(x-0) = £(x), i.e., x i8 a
point of continuity of f, Thus the points of discontinuity of f form
a dense subset of the points on the real line. The function f is
Riemann integrable on any finite interval [a,b], however, since the
oscillation of £ at any point of discontinuity is ﬂ—b and there are

2 8n
>§. Thus, in the

only finitely many values n such that “2
8n
interval [a,b] there are only finitely many points at which the oscilla-

tion of £ is greater than §, from which it follows that for a
partition P of [a,b] of sufficiently small norm, the sum I GiDi will

be arbitrarily small., Riemann's example is obviously not Cauchy
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integrable; thus the class of Riemann integrable functions is more ex-
tensive than the class of Cauchy integrable functions, and encompasses
the latter as a proper subset. Notice, however, that the Dirichlet
function is not Riemann integrable.

Having completed his definition and discussion of a more general
conception of definite integral, Riemann returned to the objective of
his Habilitationsschrift, trigonometric series representation of func-
tions. In introducing his "Research on the representability of a
function by a trigonometrical series without special assumptions regard-
ing the nature of the function,”" Riemann stated his intention in this
way. "Up to now works on this subject have had the purpose of demon-
strating the validity of Fourier series representation of functions
which arise in applied work. Thus the proof could begin for an entirely
arbitrarily assumed function and later, the course of the function
could be subjected to . . . restrictions, provided these would not
impair the first purpose, i.e., to demonstrate representability by
means of Fourier series, The former works demonstrate that if a function
has this and that property then it is describable by the series of
Fourier. We will consider the converse question; if a function is
represented by a trigonometrical series, then what follows out of this
as to its course, that is, to changes in its values corresponding to
changes in its argument?"52

There are several aspects of this work which are of particular

1ntereat.53 First, Riemann investigated trigonometric series

52Riemann, op.cit., 230.

35ee Hobson, The Theory of Functions of a Real Variable and
the Theory of Fourier Series, vol. 2, §420-426 for statements and
proofs of Riemann's theorems.
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representation of functions in general rather than restricting his
attention to the special case of Fourier series. That is, in consid-

ering the representation of a function f£(x) in the form
f(x) = a, + a,cos x + b1 sin x + a,cos 2x + bzsin 2xt...,

Riemann made no a priori assumption regarding the coefficients a, and
Bn; they might or might not be the Fourier coefficients of f. Riemann
was first to study the general case, and demonstrated the distinction
between the two types of series by giving several examples of trigono-
metric series which are not Fourier series.

Riemann utilized in a number of his proofs a new method of

summing a trigonometric series. Thus, Riemann considered the sum of

the series

7) A + A

0 1+A

2+0.0

a
where Ao -~§Q » A = a,cos x + blsin X, ese , and lim A, =0, in the form

n-ro

1

lim lim (o, + A, (EBD0)2 4, @&dn2hy2, ., (sin ohy2
0 1 n 2" 2h n' nh
h+0 e

This repeated limit is equal to the sum obtained at any point at which
the series 7) converges in the usual manner, and may exist at points
at which the series 7) fails to converge in the conventional sense.
Riemann introduced, therefore, a more general conception of convergence
of a trigonometric series.

Riemann was successful in obtaining necessary and sufficient
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conditions such that a function be represented by a trigonometric
series, In particular, Riemann proved that a function £(x) of period

21 1s represented (in the sense above) by a series of the form

<

a
32 + néi (ancos nx + b sin nx)

where lim a = 1lim bn = 0 if and only 1if

N N0

1) there exists a continuous function F(x) such that

lim  E(xta+f) + F(x-a-B) - F(x+a-f) - F(x -a+B) _

o) 840 4B £(x)
and 2) for arbitrary constants b and c,
C
lim uz F(x)cos p(x-a)x(x) dx = 0
H b

where A(x) is a function such that A’(x) exists in (b,c) and
vanishes at b and ¢, and Xv(x) has only a finite number of
maxima and minima.
Of course this trigonometric series need not be a Fourier series.
Finally, Riemann ended his treatise by exhibiting a number of
remarkable examples of functions with special properties. One of these

is the function f(x) defined by

f(x) = d(xvcos -3-"-) where 0<v<% .
dx

This function has infinitely many maxima and minima, is Riemann integrable,
and yet, because the series does not converge, does not admit repre-

sentation by a Fourier series. The last of Riemann's examples we will
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consider is a function which is not integrable and yet is represented
by a trigonometric series. The function is the series

£(x) = ) jﬁél

ns=1

which exists for every rational x and is represented on this domain by

the trigonometric series

0
® (=(-17))
i Z 2 ) sin 2n x,
=1 n

=2

where the summation with respect to © is over all divisors 6 of n.
The function f(x) is not integrable since it is unbounded on any in-
terval, however small.

Riemann did not achieve his objective of finding necessary con-
ditions for the convergence of a Fourier series., This fact, together
with the many avenues opened but not explored may, as suggested above,
have influenced Riemann to withhold publication of his Habilitations-
schrift. Nevertheless, the work is a cornerstone, both with respect to
Riemann's accomplishment and its implications for the subsequent de-
_velopment of real analysis. In addition to defining a more general
intergal and identifying a new field of investigation in the study of
trigonometric series, Riemann initiated the creation of a theory of
discontinuous functions., Dirichlet's definition of an everywhere dis-
continuous function had received little attention; Riemann's examples
of integrable functions whose discontinuities are dense in every interval
could not be ignored. Perhaps Dedekind envisaged the influence to be

worked by "the high interest of the subject matter and . . . form of
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treatment of . . . principles of the infinitesimal calculus . . ." of
Riemann's treatise when he caused its publication. Riemann's work was
an important contribution to the stream of ideas in which Dedekind
had an intense interest, the study of the continuum of real numbers
and the "arithmetization of analysis." As one aspect of this study,
the development of a theory of measure of sets of real numbers had
special significance for the evolution of integration theory, and it
is this development to which we turn our attention in the next chapter,

"As has been said of the poet Coleridge, so it could be said
of Riemann, he wrote but little, but that little should be bound in

gold,"?

54Van Vleck,'The influence of Fourier's series upon the development

of mathematics,116,
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Chapter 2
On the Creation of a Theory of Measure

Heine, Cantor, Hankel and Smith

Many influences contributed to the creation of a theory of
measure of sets of real numbers. As might be expected, the theory of
Fourier series played a central role at the inception of this develop-
ment,

Dirichlet had contended that the single requirement to be satis-
fied by a function in order that it admit representation by a Fourier
series is that the function possess a definite integral, and had
stated that the set of points of discontinuity of the function should
be nowhere dense as a sufficient condition for integrability. 1In his
"De explicatione per series trigonometricas...,”" published in 1864,
Lipschitz attempted to extend Dirichlet's results with respect to
Fourier series representation of functions. '"The series which procede
according to the sines and cosines of multiples of an angle, by the aid
of which one develops an arbitrary function of a single variable, have
for a long time been used in different branches of mathematics by all
those who are occupied with these questions. This is why it belongs to
the mathematician to study in depth the extended field of these functions
and to trace the limit between those which can be developed in trigono-
metric series and those which do not possess this property. The eminent
Dirichlet has acquitted himself of this charge, without speaking of the
efforts made before by others, in his celebrated memoir 'On the con-

vergence of trigonometric series. . .'" Lipschitz noted that Dirichlet
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had left consideration of the case of functions with infinitely many
discontinuities and maxima and minima to a later paper and remarked,
"Ag it is entirely regretable for [our science] that this work has
never seen the day, I propose to rediscover the traces of these
researches..."!

Lipschitz argued that "the functions ¢(x) which do not satisfy
[Dirichlet's] conditions can be distributed into the three following
classes; in the interval (-w,m) they take infinite values, or possess
an infinite number of discontinuities, or an infinite number of maxima
and minima, It suffices to examine each of these three cases, so to
speak, in itself, the combination of two or three of these cases modify-
ing the form rather than the nature and the properties of the series
[of Fourier]."

In considering '"the second case, in which the function ¢(x)
possesses in the finite interval (-m,7) an infinity of discontinuities,"
Lipschitz asserted "it is necessary that, if one designates by a and b
two numbers placed between -T and T, one can always find between a and
b numbers r and s such that the function remains finite and continuous
on the interval (r,s). One deduces from this, by an appropriate reason-
ing, that one can partition the interval (-m,n) into a finite number of
partial intervals of which the two kinds are analogous to the two kinds

of the first case.'" Lipschitz's "appropriate reasoning' was evidently

1Lipschitz, Recherches sur le développement en series trigono-
metriques des fonctions arbitraires d'une variable et principalement
de celles qui, in un intervalle fini, admettent une infinité de maxima
et de minima (Translation from the Latin by Paul Montel in Paris), 283.
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intended to demonstrate that the nowhere dense set of points of discon-
tinuity of ¢(x) admits only a finite number of limit points X,...,X .
Hence Lipschitz delineated two kinds of partial intervals, those of a
"first kind" which included the limit points Xsees,X,, and therefore
all but a finite number of points of discontinuity of ¢(x), and those
of "the space remaining, . . .composed of a finite number of intervals
of a second kind, in each of which the function ¢(x) satisfies the
conditions imposed on the function f(8) in [Dirichlet's] theorem."

The integral of ¢(x) can be defined on the intervals of second
kind as an improper integral in the Cauchy sense (Lipschitz was probably
not aware of Riemann's generalization of Cauchy's conception of definite

integral); given this Lipschitz defined the integral of ¢(x) in the form

b xi-Bi

p(x)dx = aifag_’o X ¢ (x)dx
i=1

-T xi_l+ai

where the (xi_l+ai, xi—Bi) are the intervals of second kind. Thus
Lipschitz contended to have defined a definite integral for functiomns
¢(x) of this form, and therefore to satisfy Dirichlet's requirement

of integrability in order that the functions ¢(x) admit representation
by Fourier series.

Lipschitz's work is of interest here in that it called attention
to the set of limit points of a nowhere dense set. Only later was it
discovered that such a set might contain infinitely many elements.

Another influence which contributed to the recognition of more
general point sets was the discovery of the importance of uniform con-

vergence in the interchange of integration and summation of infinite
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series. Dirichlet had shown that under certain conditions a function
admits representation by a trigonometric series whose coefficients are
the Fourier coefficients. The uniqueness of such representation was

demonstrated by assuming that i1f the series

©

1 iﬂ + Z (a cosnx + bnsin nx)
2 n=1 n

converges to zero for every xe (-m,m), then the coefficients a and bn
are identically zero for every n. This conclusion was obtained by
multiplying the series by cos nx or sin nx and integrating term by term
between -7 and w. However, the validity of this argument is called into
question if the convergence of the series is not uniform.

Heilne considered the problem of uniqueness of representation of
trigonometric series corresponding to functions in his "On trigonometrical
series," published in 1870. "Until the most recent time it was believed
that the integral of a convergent series, whose members remain finite
between finite limits of integration, equals the sum of the individual
members, and only Mr. Weierstrass has noticed the proof of this theorem
requires not only that the series converges in the interval of integra-
tion, but that it converges uniformly. Thereby the theorem [that] a
finite function given between -7 and 7 can be developed in at most one
way in a trigonometrical series ... has become untenable...."

Heine was successful in demonstrating the uniform convergence
"in general" of the Fourier series of a function satisfying

Dirichlet's conditions. He stated his work as follows: 'the
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Fourier series of a finite function f(x), which has a finite number

of maxima and minima, that is, those series of the form (1) in which

™ m™
Ta = f(x)cos mx dx nbm - f(x)sin mx dx

-1 -T

converges uniformly whenever f(x) is continuous between -t and 7 in-
clusive, and £f(1) = £ (-7); in all other cases it is only uniformly
convergent in general.

"The expression 'in general' will be used here and in the follow-
ing if the exception is supposed to refer to a finite number of points.
The exceptional places in the above theorem . . . are neighborhoods of
the points of discontinuity . . . ."2

Heine returned to the problem of uniqueness of representation of
trigonometric series in his second theorem. He proved that if a func-
tion is represented by a trigonometric series which converges uniformly
in general, then this series 1s unique. He expressed this theorem in
an equivalent form. "If a trigonometric series converges to zero
uniformly in general from -m to m,... then all coefficients a and b
must vanish, and the series therefore represents zero everywhere." The
possibility of demonstrating this theorem for the case in which the
series does not represent the function at a finite number of points

was suggested to Heine by Cantor, one of Heine's colleagues at the

2Heine, Uber trigonometrische Reihen, 3.
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University of Halle. '"I was encouraged by Mr. Cantor in Halle, whom
I made acquainted with my research, to extend [the theorem] to the case
in which coincidence in the points of discontinuity is no longer de-
manded...."

Of course it was still possible that a function uniquely repre-
sented by an in general uniformly convergent trigonometric series might
be represented by another trigonometric series not possessing this
property. That is, with reference to Heine's second theorem, there
might exist a non-uniformly convergent trigonometric series converging
everywhere to zero. Thus the uniqueness of representation of trigono-
metric series still could not be inferred. Heine recognized this dif-
ficulty and commented upon it. "...it is not yet known if a series which
represents a continuous function must converge uniformly.... This
subject is not enlightened even in the following...."

Stimulated by Heine's research, Cantor continued the study of
the problem of uniqueness of representation by trigonometric series. In
so doing, Cantor not only completely solved the uniqueness problem,
but initiated the study which eventually led to his creation of the
theory of sets. Cantor's first paper, ''On a theorem concerning trig-
onometrical series,' and dated March 20, 1870, contained a proof of the
theorem "If two infinite sequences of constants a1y a5, 845000 and
bl’ b2’ b3;... are of such a nature that for every value of x in a
given interval (a,b) the limit of (an cos nx + bn sin nx) is zero with
increasing n, then a and bn converge with increasing n to limit zero."

Cantor remarked "if this theorem is applied to trigonometrical series
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b
then it yields the result that if the series = + a;sin x + bjcos x + ...

2
+ a, sin nx + bn cos nX + ... 18 convergent for each value of x in an
interval (a<x<b) of the real line, then the coefficients a, and bn become
infinitely small with increasing n,"3 and this without any requirement
of uniform convergence.

Having demonstrated this, Cantor turned his attention to the
uniqueness of representation of a function by a trigonometric series.
In a memoir titled "The proof that a function f(x) which is given for
every real value of x by a trigonometrical series can be represented
in this form in one way only,'" and dated April 6, 1870, Cantor wrote,
"If a function f(x) of a real variable x is given by a trigonometrical

series

b
f(x) = 32 + (8181n X + bjcos X) + coe + (a sin n x + b cos nxX)+...,

which is convergent for every value of x, then it is important to know
if there are other series of the same form which also converge for
every value of x and which represent the function f£(x).'" Cantor showed
that if ;2' + (alsin X + blcos x) + ... converges fo zero for every
value of x in an interval, then for every n, a, = bn = 0, "It follows
from this that ... 1f a function f(x) of a real variable x is given by

a convergent trigonometric series for each value of x, then there 1is no

other series of the same form which converges for each value of x and

3Cantor,"Ueber einen die trigonometrischen Reiben betreffenden

Lehrsatz,"130.
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represents the given function f(x)."4 Thus Cantor succeeded in establish-
ing the uniqueness of representation of a function by a trigonometric
series on an interval without the requirement that the series converge
uniformly in general.

Next Cantor considered the possibility of uniqueness of represen-
tation of a function by a trigonometric series which fails to represent
the function on a finite or infinite subset of its domain. Cantor soon
realized that the requirement of convergence of the trigonometric series
for all values of the independent variable in an interval is too strin-
gent and could be remitted for some points of the interval without af-
fecting the validity of his conclusion regarding uniqueness of repre-
sentation. In a paper "On the extension of a theorem from the theory
of trigonometrical series,'" dated November 8, 1871, Cantor wrote, "In
the following I want to treat a certain generalization of the theorem
that trigonometrical series representations are unique.

"I have attempted to prove that two trigonometrical series

b P4
[e] o] P -
5 + cee + (anain nx+bncos nx) +... and 5 +...+(ansin nx+bncosnx)+...

which converge to the same sum for every value of x correspond in their

coefficients ..., and in a note which refers to this work5 I have ...

4Cantor,"Beweis, dass eine flr jeden reellen Werth von x durch

eine trigonometrische Reihe gegebene Function f(x) sich nur auf eine
einzige Weise in dieser Form darstellen ldsst; 142,

5The note referred to, 'Notiz zudem Aufsatz: Beweis, dass eine
fur jeden reellen Werth von x durch eine trigonometrische Reihe gegebene

Function f(x) sich nur auf eine einzige Weise in diser Form darstellen

lasst," was occasioned in part by Kronecker's suggestion of a simplified
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demonstrated that this theorem remains valid if one remits for a finite
number of values of x either the convergence or the coincidence of the
series sums.

"The extension intended here consists in the fact that for an
infinite number of values of x in the interval (0,27), the convergence
of the sums of the series is renounced without invalidating the truth
of the theorem.6

"For this purpose I feel compelled to mention a few preliminary
congiderations ...," two of which were definitions of the concepts of
limit point and derived set,

By a limit point of a point set P I mean a point on the line in
such a position that in any neighborhood of this point there exist in-
finitely many points of P .... By the term neighborhood of a point I
mean any interval which has the point in its interior.... It is easy
to prove that a (bounded) point set consisting of an infinite number of
points has at least one limit point.

"It is now a definite relationship of any point of the line
with respect to a given point set P either to be a limit point of P or

not to be any such limit point. Therefore with the point set P is given

proof of Cantor's uniqueness of representation theorem, a proof which
did not, as had Cantor's original proof, appeal to the theorem estab-
lighed in Cantor's first paper.

6Cantor,"Ueber die Ausdehnung eines Satzes aus der Theorie

der trigonometrischen Reihen,'"123.

r——
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the set of its limit points, which I shall designated by P“ and call

the first derived set of P."7

Cantor defined second, third, and so on
derived sets P°“, P°““, ... in the obvious manner.

Then, returning to the study of trigonometric series, Cantor
showed that the requirement of convergence can be remitted for any set
of points whose nth derived set contains only finitely many points
(and therefore whose (n+l)st derived set is empty) without invalidating
the conclusion of uniqueness of representation.

These early papers of Cantor demonstrate an initial stage in his
construction of a theory of sets. In a memoire published in 1879 and
titled "On linear and infinite sets of points," Cantor remarked with
respect to sets of points on the real line "... it does not seem im-
proper that we study and seek to classify them; this is what we propose
to do here ... we are lead to classify the sets of linear points into
certain catagories. To begin ,.. we recall the notion of the derived
set of a given set of points P as is giveﬁ in a work on trigonometrical
series...."S

Thus the work of Heine and Cantor was an important means by which
more general point sets were called to the attention of mathematicians.

The conditions to be satisfied by a function in order that it

admit Riemann integration were another impetus to the development of a

theory of measure. Riemann had stated

n
8 -
1im 1-21 (D=0
||p| >0

7Cantor, op. cit., 129.

8Cantor,"Ueber unendliche, lineare Punktmannichfaltigkeiten,'1l.
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as a necessary and sufficient condition for Riemann integrability of

a bounded function; Hankel, in his "Research on infinitely often oscil-
lating and discontinuous functions," published in 1870, expressed
Riemann's conditions in a form which suggests the concept of measure

of the set of points of discontinuity of a function in an interval.

Given the prevailing mood of indifference to the study of dis-
continuous functions, Hankel began by attempting to justify his work.
"... the question of the existence of a differential quotient [of an
integrable function] presents great difficulties. This has only rarely
been discussed because the existence of a tangent at each point of a
curve has been considered as certain from an immediate geometric view-
point and one has taken this for granted as a self-evidence result of
the lex continuitatis [law of continuity] which has been respected as
a necessity in the field of mathematics. However, even if this law of
continuity in fact governs all movements in nature, yet it should
restrict the discipline of pure mathematics in no way....

"... I owe the stimulation to these studies essentially to Rie-
mann's writings, especially to his excellent work on trigonometrical
series, after whose publication there is no need to excuse research
regarding these problems....If my essay fails in part over such a
slippery and rarely trodden path, and if the results here and there
are somewhat lacking ..., then I hope to find some benevolent considera-
tion, for it was my only intention in publishing these ideas to stimu-

late other scholars, and to draw their interest to these fundamental

problems of our science, which modern function theory does not permit
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us to reject any longer."9

Hankel defined the terms discontinuity, jump and oscillation of
a function at a point. '"One says that a function £(x) is discontinuous
at x=a when, among the values taken by the difference f(a+S) - £(a),
for all positive and negative 6 that are less than €, there are always
values greater than a given finite quantity 0, no matter how small one
choses €, I will say such a function makes a jump at the point x=a
which is greater than 0 ,.. and will mean by the oscillation of a func-
tion in a given interval .,,. the difference between the largest and
smallest values which the function takes in this interval,"1°

Hankel then classified functions into two categories, simply
continuous functions and linearly discontinuous functions. '"The simply
continuous functions make jumps in individual points, which are allowed
to exist only in a finite number on a given line .... Linear discon-
tinuous functions are functions which are discontinuous at infinitely
many points on a finite segment of a line."

Having observed that '"the jumps which [a linearly discontinuous]
function makes at these infinitely many points ... may show a very dif-
ferent nature since either the number of points at which jumps occur
which are larger than a fixed magnitude ¢ is infinite, or whose number
increases infinitely only if 0 decreases infinitely," Hankel proposed

to demonstrate 'the great variety of particularities which the linear

9Hanke1,'hntersuchungen iber die unendlich oft oscillirenden
und unstetigen Functionen,"70.

lonankel. op. cit., 84,

i a -ma “,‘l
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discontinuous functions may show ... by a number of examples in which
we let the variable x run through the interval from x=0 to x=1."
Hankel's first example is the Dirichlet function. Two of his
other examples are '"Define the function f(x) to have the value f(x) = 1
for x = 0 to x = 1 with the exception of infinitely many intervals of
length 6 which have their centers in the points x = (%)n; in each of
these intervals let the function ... have value zero for all rational
values and value one for all irrational values of the argument. The
total length of the intervals in which the functional oscillation is

everywhere one is

6= 6+ 62+ 654 L. = "
Again, '"Define the function f(x) to have the value f(x) = 1 for x = 1
to x >'% , value f(x) = %-for x -'% to x > %’, and generally the value
f(x) = 0%)n for x = (%On to x > (%)n+1. This function, which is dis-
continuous only at the points x = G%)n and at these points jumps by
(%)n, does not have an infinite number of points at which the jumps
surpass a fixed finite magnitude as do the examples we have just con-
sidered. To be sure, the number of points at which the jumps are
greater than ¢ is finite; with decreasing o however their numbers in-
crease constantly and without 1limit. The total length of the intervals
in which jumps greaﬁer than 0 occur obviously can be made arbitrarily
small for every o since these have to surround only the finitely many

points of discontinuity."

These examples suggested classes of points on the line. "If a
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set of points on a line has a certain property [i.e., at each point of

the set the jump of the function is greater than o] then I will say that
these points £f1i1ll up the line segment if in this segment, no interval,

no matter how small, can be given which does not contain at least one
point from this set; on the other hand, this set of points does not

fill the line segment, but that the points are scattered in it, if between
any two arbitrarily close points on the line segment, there can be

given an interval which contains no point of this set, "1

Thus the set
of points of discontinuity of a function at which the jump is greater
than o either "fills up" or is "scattered" on the line providing it is
dense or nowhere dense, respectively, on an interval.

Hankel believed that the length s of the intervals in which the
oscillation of a linear discontinuous function f(x) is greater than o
can be made arbitrarily small if and only if the points of discontinuity
of f are nowhere dense.

This belief led Hankel to classify linear discontinuous functions
into two types: 1) those that are totally discontinuous, i.e., whose
points of discontinuity at which the jumps greater than 0 are dense in
an interval, and 2) functions which are pointwise discontinuous, that
is, are such that for each 0>0, the set of points at which the jump of
the function is greater than 0 is nowhere dense.

Finally, Hankel concluded that this classification separated the
integrable and non-integrable functions. Thus, Hankel believed that a
function is Riemann integrable if and only if it is a simply continuous

or pointwise discontinuous function.

11Hanke1, op. cit., 87.
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Hankel's conclusion is only partially correct as will be shown
by an example below. Nevertheless, his work was a significant contri-
bution to an emerging theory of the mathematically discontinuous.
Originally published as part of the Gratulationsprogramm of Tubinger
University on March 6, 1870, Hankel's paper was published again in the
Mathematische Annalen in 1882. The editor of the Annals remarked in a

footnote, "

...the work of Herman Hankel...has up to now been difficult
to find due to its place of publication; since this paper is mentioned
in almost all modern investigations of the concept of functionms...we
have made the transcription [of the Gratulationsprogramm] literal, and
thus have considered as negligible any incorrect points which the work
may contain."

In 1875 an English mathematician, H. J. S. Smith, published an
example of a linear discontinuous function which is not Riemann in-
tegrable. He gave his example as follows: '"Let m be any given integer
greater than 2...now...divide the interval from 0 to 1 into m equal
parts, exempting the last segment from any further division; let us
divide each of the remaining m-1 segments by mz, exempting the last
segment of each segment; let us again divide each of the remaining
(nrl)(mz-l) segments by m3, exempting the last segment of each segment;

and so on continually. After k-1 operations we shall have

N=1+ @l + @D@-1) + ... + @@= ... @ 1)
exempted segments, of which the sum will be

1-a-da-i .. a-p
m m
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This sum, when k is increased without limit, approximates to the finite
limit 1 - E ( %-) where E ( %-) is the Eulerian product H a- lk)’ and
is certainly different from zero."12 ' B

Smith went on to show that the points of division Q are nowhere
dense on [0,1] and yet "a function having finite discontinuities at the
points Q would be incapable of integration." Thus Smith gave the first
example of a nowhere dense get with positive outer content.

Smith also expressed Riemann's integrability conditions in a
form which strongly suggests the notion of "length" of the set of points
of discontinuity of an integrable function. '"Let o be any given quantity,
however small; if, in every [partition] of norm d, the sum [of lengths]
of the segments, of which the ordinate differences surpass 0, diminishes
without limit, as d diminishes without limit, the function admits of
integration; and vice versa, if the function admits of integration, the
sun [of lengths] of these segments diminishes without limit with d."13
The ordinate difference of a segment had been previously defined to be
the difference between the greatest and least ordinates of f(x) on the
segment,

Smith had undertaken this work in order to‘further discuss
Riemann's theorem stating necessary and sufficient conditions for
integrability of a function "partly because, in one particular at
least, Riemann's demonstration is wanting in formal accuracy, and

partly because the theorem ... appears ... to have been made the basis

of erroneous ipferences." Smith considered the sufficiency part of

128mith,"0n the integration of Discontinuous Functions,' 148.

13Smith, op. cit., 142,
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Riemann's proof to be incomplete; the latter remark refers of course
to Hankel's work.

Thus the way was prepared to lead to the definition of a general-
ized conception of length, that is, a notion which would "measure"
general point sets such as the set of points of discontinuity of a
function, and reduce to the familiar concept of length when used to

"measure”" an interval.

Cantor, Harnack and Stolz

The first definitions of the measure of arbitrary point sets were
given by Cantor, Harmack and Stolz, These measures were defined as a
limiting form of a finite covering of the given set by elementary
figures whose measures were known, The adherence to finite covers was
undoubtedly due to the relationship between such covers and the summa-
tion, given a partition P of the interval of integration of a Riemann
integrable function f, of the lengths of the (finitely many) intervals
of P in which the oscillation of f is greater than ¢ > O,

Cantor, in the fifth installment of his '"On infinite linear
point sets," published in 1884, defined the content of a bounded set P
of points in n-dimensional space G . "If there is given a [bounded]
point set P of Gn' then form around each point p of the ... set P + P”
[the addition .= symbol denotes set union and P” designates the set of
limit points of P] an n-dimensional ball with center p and radius p,
which with all its interior and boundary points will be designated by
K(p,r).

"The ... full balls which are obtained by letting p run through
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all points of P + P” have one least common multiple [set union]

LK(p, p) ,
P

which point set is designated according to circumstances by I (p,P in Gn),
or more simply by I (p,P) or Ii(p).

"Now this pointset INI(p) of G, always consists of a finite number
of regions, since P is assumed bounded, each of which is an n-dimensional

continuum with its boundary. Consequently the n-times integral

dxldxz...dxn ’

taken over all regions of Ii(p), has a specific value which depends upon

p; we call this value F(p)...

". .. we define the content or volume of the set P [denoted I(P)
after Inhalt] to be the limit value 1lim F(p)... and obtain therefore
p~0

I (P) = 1im F (p)."u‘
p-0

Cantor observed an additive property of the set function I(P);
if P and Q are (bounded) sets which are "completely separated" then
I(P+HQ) = I(P) + I(Q).

Cantor remarked further with respect to his definition of content

1I‘Cantor:,"Uebex: unendliche, lineare Punktmannichfaltigkertem,' 474.
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in a letter addressed to the editor of Acta Mathematica in November,
1883, "I wish to explicitly state that this ... volume or extent of
an arbitrary set P in a ... space Gy of n-dimensions is absolutely

" Thus "a square each of whose sides is equal

dependent upon Gn e
to one, has its extent equal to zero when it is considered as a con-
stituent part of a space of three dimensions, but it has extent equal

to one when it is regarded as part of a plane of two dimensions. This
general notion of volume or extent is indispensable to me in my re-
searches on the dimensions of continuous sets ..."

Harnack, in 1883, in his paper "On the content of point sets"
wrote, "I am going to develop in a series of explanations and theorems
the general definition which I have given for discrete point sets
within a closed linear interval. These theorems partially supplement
the theorems which Mr, Cantor has in the meantime published on the
same subject on the basis of a somewhat different definitiom ...

"A point set within a linear interval of finite length is called
discrete (with content zero) if all points [of the set] can be included
in a finite number of intervals whose sum [of lengths] can be made
arbitrarily small even if thereby the number of intervals may grow be-
yond any limit., The latter always occurs if one has to do with an
infinite number of points."

Harnack defined the content of an arbitrary subset of an interval
of length £ in the following way: "If the point set is not everywhere

dense in the entire interval (thereby the limit would be the magnitude %)
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then one should fix a length ... % and construct the intervals [whose
lengths] are greater than or equal to %3 and which do not contain a
point of the set in their interior. If such an interval exists and
one has [deleted] it, then one should exclude from the residue parts
of the interval those [whose lengths] are greater than or equal to %
and contains no point of the set in their interior. One recognizes
generally that there is always only a finite number of intervals [whose
lengths] are z.%'and contain no point of the given set in their interior
whenever n is any positive integer. The total length of the intervals
excluded in this fashion which are.1~% may be [designated] by N. Then,
except for the finite number of points which coincide perhaps with the
endpoints of two adjoining excluded intervals and are isolated points,
the points of the set lie in the interior or as endpoints of a finite
number of intervals whose total length is 2 - N... One needs only to
arbitrarily diminish [the lengths of] the intervals which are taken
out,.. The limit value of 2-N for n = = is the limit for which one
is looking. The point set is consequently discrete if lim N = E."ls

Harnack remarked that the union of a finite number of discrete
sets is discrete, and continued "to the contrary the theorem is no
longer valid if one has an infinite sequence of discrete sets, as is
taught by the example of the sequence of rational numbers from O to 1,

which can be composed by the [infinite sequence of discrete sets]
1 12 13 1234
P, = {&}, P, ={%,3}, P, = {z,z}, P, = {-5-,-5-,3,'5'},... "

Harnack considered a countable as opposed to a finite cover in
a2 pasgsgage which is remarkable in its anticipation of Borel. "... in a

certajn sense any point set which can be counted has the property that
\————
15Harnack,"Ueber den Inhalt von Punktmengen,'241.
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that all its points may be included in intervals whose sum [of lengths]
is arbitrarily small. Thus, for example, although they are everywhere
dense on the unit interval, one is able to surround all the rational
numbers between 0 and 1 with intervals whose sum [of lengths] is arbi-
trarily small. For, if one has a countable point set al,az,...then one
surrounds the points with intervals of lengths €15 €9,e..and choses
these magnitudes in such a way that el+ez+...is less than an arbitrarily
small magnitude 8. If one carries out this process with the above
mentioned rational numbers...then...the points not covered by these
intervals...constitute a point set whose content is greater than 1 - 6."16

Harnack did not attempt to develop this observation; the notion
of an everywhere dense set with arbitrarily small content must have
seemed paradoxical. Indeed he believed to have obtained a "remarkable
paradox" by consideration of a countable covering of intervals. ...
if from an...interval of length a, one deletes an infinite number of
subintervals 85855000 whose sum of lengths b i8 less than a, then there
will remain infinitely many subintervals whose sum of lengths is never
greater than b-a; it may, however, be even smaller."17 Harnack con-
ceived of the latter occurrence in the case in which the endpoints of
the intervals and their limit points do not form a discrete set. The
difficulty in such a case is that content is not additive.

In his "On a limit value corresponding to an infinite point set,"

dated July, 1883, Stolz defined the measure of a point set in the

following way: Let x“ denote an arbitrary set of points in a finite

16Harnack, op. cit., 243.

17Harnack, op. cit., 244,






76
interval (a,b), and consider a sequence of partitions tl,tz,t3.... of
(a,b) such that the norm ||tn|| of t satisfies the inequality ||tn||<6n
where lim Gn-o. "Now if one carries out within the interval (a,b) a
systemn:; infinitely many such partitions tistostagrece, and if for each
partition one adds the lengths of those intervals containing points
of the given set x“, then one obtains a sequence of sums 81,82,83,...
such that 5,28,2842¢¢¢ « Thus there exists a finite limit iiz Sn-L
where L>0, The...number L is independent of the considered system of
partitions t 8o that to each point set x° in the interval (a,b) there
corresponds a unique 1limit L>0 which is called the interval limit
[that is, content of the given set]."18

Later in his paper Stolz brought his work into relationship
with Harnack's. "The point sets for which the limit value L=0 coincide
with the sets which have been called discrete by Mr., Harnack. Accord-
ing to his definition the points of a discrete set may be included in
a finite number of intervals whose sum S is smaller than €. Consequent-
ly L<e, 1.e., L=-O."19
Other definitions equivalent to those of Harnack and Stolz were
proposed. Pasch, in his article "On some topics in the theory of fun-
ctions," dated March, 1887, first defined a function s [(x,z)] to be 1
if the interval (x,z) contains a point of a subset E of an interval
(a,b), and O otherwise. Then he continued "We partition the interval

(a,b) in an arbitrary manner into a finite number of subintervals

(a,al), (al,az),...,(an_l,b) and form the sum

18Stolz,"Ueber einen zu einer unendlichen Punktmenge gehdrigen
Grenzwerth,'" 152,

19Stolz, op. cit., 154.
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§ = (a;-a)s[(a,a;)] + (a,-a;)s[(a;,8,)] +...(b-a _,)s[(a _;,b)] < b-a,

that is, the sum of the lengths of subintervals which contain points
of E, The lower limit [i.e., infimum] of all values S is a finite
number £ > O; it,so to say, represents the length covered by the point
set E and is to be designated as the content of the set since, as will
become clear from the following,it corresponds to the definition given
by Mr. Cantor..."zo

Pasch later commented, "If one calls I the extent of the point
set then one can designate the point set as being extended if I>0 and
as being unextended if I=0, The first attempt to classify point sets
in such a way for the purpose of the theory of functions can be found
with Mr. Hankel. Mr,., Harnack calls the point set linear if I>0 and
discrete if I=0,..deviating from the meaning of linear point set ac-
cording to Mr. Cantor.... Mr. du Bois-Reymond has called the point
set integrable if I=0...." These remarks give evidence of the influ-
ence of the new concept of measure upon the theory of functions.

The papers of Cantor, Harnack and Stolz were an important first
step toward the creation of a theory of measure., The notion of content
failed to satisfy one of the first expectations of a measure, however,
that of additivity. Thus a generalized conception of length might be
expected to possess the property that the measure of the union of dis-
joint sets be the sum of the measures of the sets. This expectation
was fulfilled for finite collections of disjoint sets several years

later in the definitions of measure proposed by Peano and Jordan.

20Pasch, "Ueber einige Punkte der Functionentheorie,' 142.
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Peano and Jordan

Peano was led to develop a theory of measure by his attempt to
find a simple condition for Riemann integrability of a function. At
the time he published his paper "On the integrability of functions,"
in 1883, the statement of existence of the Riemann integral was the
following: a function f is Riemann integrable on [a,b] if and only if
for arbitrary positive o and §, the content (in the sense of Stolz or
Harnack) of the set of points in [a,b] at which the oscillation of f
is greater than o is less than §. Peano sought to express the integra-
bility of £ in terms of the measurability of the ordinate set of f on

[a,b], that is, the set \J/ {(xo,y)| Ogyif(xo)} if £ is non negative.
xoe[a,b]

"The existence of the integral of functions of a single variable
is not always demonstrated with the rigor and simplicity desirable in
such questions., The method of reasoning of principal writers by re-
course to geometric considerations is not satisfactory. The analytical
demonstrations are generally long and complicated and conditions are
introduced which are too restrictive or partly useless. In the present
study I propose to demonstrate the existence of the integral by intro-
ducing a very simple condition of integrability. The reasoning will
be analytical but can be interpreted geometrically in any of its
parts."21

Peano began by stating Riemann's definition of integral: let

f(x) be a function defined on [a,b] and be bounded above and below by

21Peano,"Sulla integrabilita delle funzioni,' 439.
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A and B respectively. Partition the interval [a,b] into subintervals

hl’hZ""hn and let Vg = f(x) where x is an arbitrary element of hs' Then 1if
the sum u=h,y,+h,y,+...+h y , as h is "infinitely diminished," tends
to a limit S, then the function f is integrable on [a,b] and converse-

ly, and its integral| f(x)dx on [a,b] is S.

a

Peano continued in this way. Let Pg and 8 be supremum (limiti
superiore) and infimum (limiti inferiore), respectively, of the yg on

the subinterval h ., Let P = th p and Q = Zh g ; then
s 8's s°s
A(b-a) > P > u > Q > B(b-a).

Hence the numbers P corresponding to all partitions of [a,b] admit a

greatest lower bound M, and the numbers Q corresponding to all parti-

tions of [a,b] admit a least upper bound N, Furthermore, Peano showed

P>M>N2>Q. Finally, if f(x) is an integrable function on [a,b],
then M = N = S, Thus "if the function f(x) is integrable then the

quantities M and N are equal and their common value is equal to the

value of the int:egral."22

221"eano, op. cit., 441. It is of interest to note that Darboux

had asserted, without proof, the necessity and sufficiency of this con-

dition for the existence of the Riemann integral in 1875. Darboux's

purpose was to investigate several of Hankel's propositions which had

been criticized by Gilbert, Schwarz, Klein and others. "I have imposed

upon myself the duty of going back to several [of Hankel's assertions]
and,..to express them in a form such that they be sheltered from all

criticism,..." In particular, Darboux was interested in identifying a

clasgs of continuous functions which are not differentiable for in-

finitely many values of the independent variable. Thus Darboux did

ROt develop the consequences of his definition of the Riemann integral

WA th respect to the concept of area. See Darboux,'Memoire sus les

fanctions discontinues," 72.






80

Peano also proved the converse of this theorem in the form:
if for an arbitrary positive € there exists a partition of [a,b] with
the property that the corresponding numbers P and Q are such that
P-Q<e, then f(x) is an integrable function on [a,b].

Thus Peano obtained a necessary and sufficient condition for
the existence of the Riemann integral of a function on an interval.
This condition conveys an immediate geometric intuition, the area of
the ordinate set of f, and Peano turned his attention to this aspect
of the work in his concluding remarks. '"Many authors demonstrate the
existence of the integral by means of geometric consideration, but...
the reasonings are not at all adequate. In truth it is customary to
consider in such a case the area of a figure without defining it...
our minds conceive clearly, or believe to conceive clearly [notions
such as area or] the length of the arc of a curve, and so on, but
these need to be carefully defined before being introduced into analysis;
and among these more importantly for area, because one is accustomed
in elementary treatises to base other demonstrations upon this concept.

"Now if one takes a figure of simple form, the most natural
method to conceive of its area is to imagine polygons which enclose
within their interior the given figure, and polygons contained in the
interior of the given figure. The areas of the first admit an inferior
limit, and the areas of the second a superior limit., If these limits
coincide their common value is the area of the given figure, a well
defined quantity which can be calculated to any desired [degree of ac-
curacy];if jnstead these two limits are not equal, then the concept of
area is excluded...Thus, in order to speak of the area of a figure it

1s necessary first to verify the equality of these two limits, which
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is none other than the preceding condition of integrability."23
Peano developed these remarks in detail in his book Applications

of Geometry to Infinitesimal Calculus, published in 1887. He began the

section titled Axee Piane by stating definitions of interior, exterior
and boundary point of a set., 'Let us say that a point P is internal to
a plane field [i.e., set] A if it is possible to determine a length P
in such a way that all the points of the plane which are separated from
P by less than p belong to A; a point is called external to field A if
it is internal to the field formed by points not belonging to A. A
point neither internal nor external is called a limit point of A. The
field formed of limit points of A is called the limit field or contour
of A"

Having completed the statement of preliminary definitions, Peano
stated his definition of area. 'Let us take any plane field. We can
in general imagine plane areas bounded by straight lines which contain
in their interior plane field A, and plane areas also limited by straight
lines contained in the interior of the given field. If as happens in
the most common cases, the inferior limit of the first areas coincides
with the superior limit of the second, then we give the name area of
the given plane field to the common value of these two limits.

"But it can happen that these limits are not equal; in this case
we will call the inferior limit of the polygonal areas which contain
in their interior the given figure the external area, and the superior
limit of the polygonal areas contained in the interior the internal

area of the given figure."za

zsPeano, op. cit., 445,

2l‘l-’*eam:», Applicazioni geometriche del calcolo infinitesimale,156,

e ———
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Peano then gave necessary and sufficient conditions such that
a point set in the plane have an area. "If from a field limited by
straight lines, containing in its interior field A, we take a field
none-the-less limited by straight lines and contained in A, we thus
obtain a field limited by straight lines and which contains in its
interior the limit field of A, The area of this field is the differ-
ence between the areas of the two first., Thus we can be assured that
the inferior limit of the first area coincides with the superior limit
of the second area if their difference can be made as small as one
would wish. This is equivalent to saying that a plane field has an
area...if and only if there can be formed a plane field limited by
lines containing in 1its interior all the limit points of the given
field and whose area be as small as one wishes. It can also happen
that there exists no polygon of finite area containing in its interior
the given field and then we say that the external area of the field is
infinite. If there exists no polygon contained in the interior of the
given field then we will say that its internal area is zero."

Peano, in his discussion of length, had remarked that whether or
not a linear point set has a length, "it is seen that the difference
between the external and internal length of the set A 1s equal to the
external limit of the limit field of A," a statement which obviously
carries over to plane sets. In modern notation, if we denote the in-
terior area, exterior area, and "contour" or boundary of planar set E
by A(E), K(E), and B(A), respectively, then Peano's statement is of the

form A(E) - A(E) = A(B(E)). Thus E has area if and only 1if A(B(E)) = O.
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Peano recognized that the set function thus defined is finitely additive,
that is, if we denote the area of a set E that has area by A(E), and
if El’EZ""’En are nonoverlapping sets in the plane each of which has
area, then CbEi has area and

i=1

n n
AC UE)) = 2 A(E).
i=1 i=1

Peano used this '"distributive function" (funzione distributiva) to
develop a surprisingly sophisticated theory of integration and differ-
entiation, Thus Peano stated and proved that a bounded nonnegative
function f(x) defined on an interval [a,b] is Riemann integrable on
[a,b] if and only if the set of ordinates of f(x) on [a,b] has area,

and in this case,
b
£(x)dx = A{ U {(xgey) | O:y_if(xo)}).

a xoe[a,b]

This form of statement of integrability and characterization of
the integral as the measure of a point set opened the way to generalize
the conception of Riemann integration. It suggests that a more general
conception of measurability and measure of the set of ordinates implies
a more general conception of integrability and definite integral of
functions. Indeed Lebesgue followed this course several years later
in his geometric definition of integral.

Jordan was led to consider a theory of measure in connection
with his investigations of the role played by the set over which a
function is defined, in influencing the existence and properties of

the integral. In his "Remarks on definite integrals," published in
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1892, Jordan wrote 'the definite integral, simple or multiple, of a
function f in a set E is obtained as one is aware...in the following
manner:

"One decomposes the set into infinitely small elements in all
directions; one multiplies the extent doc of each of these elements by
the value of f chosen at will in the element, and one searches for the
limit of the sums Ifdo thus formed.

"One knows that this limit has a well determined value when the
function is continuous. This property subsists even for a more general
class of functions, defined in a precise manner by a well known theorem
of Riemann,

"Finally, Mr. Darboux has shown that, whatever be the bounded
function f, each of the two sums IMdo and Imdo, where M and m represent
the maximum and minimum of f in the element do, always has a perfectly
determined limit.

"These results are very clear cut and enlighten completely the
role played by the function in the integral.

"The influence of the nature of the set does not seem to have
been studied with the same care. All Aemonstrations rest upon this
double postulatum, that each set E has a determined extent, and that,
if one decomposes it into several parts El’E2’°"' the sum of the ex-
tents of these parts is equal to the total extent of E., Now these
propositions are far from being evident if one leaves the conception
of set to all its generalities."25

Jordan proposed to define, corresponding to a set E, an interior

25Jordan,"Remarques sur les intégrales définies," 69.
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extent E' and an exterior extent E," and, in the case of equality of
these limits, to call the set E measurable with extent the common
value E'=E." Jordan further proposed to show that a function f bounded
on a set E admits an upper and lower integral on E, and to define the
integral of f over E to be the common value of the upper and lower
integrals in the case of equality., Finally, by utilizing the previous-
ly defined concepts of measurability and integrability, Jordan set
himself the task of demonstrating that the multiple integral of a
function of several variables can be reduced to repeated simple in-
tegrals if the set over which the function is to be integrated is
measurable,

In carrying out this program, Jordan defined the extent of a
set in this way. 'We seek...to make precise the notion of the extent
of a set.

"This extent will be a length, an area, a volume,..., if the
number of dimensions of the set is 1,2,3,... . We suppose, in order
to fix the ideas, that this number is equal to 2. Each point (u,v)
of E 18 represented geometrically on a plane by the point whose rect-
angular coordinates are u,v.

"Decompose the plane by parallels to the axes into squares of
side r. The set of those squares all of whose points are interior to
E form a domain S interior to E; the set of those which are interior
to E or which contain a point of its frontier form a new dmain S+S°,to which
E is interior. These domains, being formed by the union of squares,

have determined areas which we will represent by S and S+S°.
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"We will vary the decomposition of squares in such a way that
r tends toward zero: the areas S and S+S° tend toward fixed limits."
Jordan proved this assertion, designating the limit of the
areas S by A, and the limit of the areas S+S“ by a. He continued,
"As one has always S+S” > S, a is at least equal to A.
"We will call A the interior area of E, a its exterior area.
If S° has limit zero, then we will say that E is measurable, and has
as its area the quantity a = A."
Jordan stated the (finite) additivity of the measure as follows:
"Suppose E is formed by the union of several partial sets EI’EZ"'°’
and consider an arbitrary decomposition of the plane into squares,
Let, respectively, S, Sl’ Sz,... be the sums [of areas] of the squares
interior to E, E,, E,,...; and S:S',SE,... the ones of squares which
meet their frontiers. Each square interior to one of the sets El,Ez,...

is interior to E, and, on the other hand, each square not exterior to

E is not exterior to at least one of the sets E Ez,...; one has

1)
therefore
S:§1+82+... s S+S §§1+Sl+8282+...,

and in the limit

A>A +A +... , a<a

_1 2 +a +.o. o

172

A, Al, Az,... and a, 815 8500 repregent the interior and exterior

areas of the sets E, El’ E2’°" These inequalities are changed, more-

©ver, into equalities if the sets are measurable."26

———

26Jordan, op. cit., 76-78.



87
Jordan gave his definition of definite integral in the section
of the same title. "Let f(x,y,...) be a bounded function in the in-
terior of a domain E supposed measurable.
"Decompose E into elementary measurable domains €1s €preen o

Designate by M and m the maximum and minimum of the function f in E;

and by Mk and m its maximum and minimum in e, and form the sums

s= ) Me » 8= ) mee "

Of course the symbol e, represents the extent of the "measurable do-
main" e, in each of these summations. Jordan showed that the sum S
and s, corresponding to given decompositions of E tend toward Jlimitg
fixes as the diametems of the elements of the decompositions tend to
zero, Designating these limits by T and t, respectively, Jordan wrote
"This fixed number T=1im S is called the upper integral (integrale par
exces) of the function f(x,y,...) in the interior of E,

"... the sums s tend toward their maximum t, which will be the
lower integral (intégrale par defént)of f(x,y,...).

"One evidently has T>t. If T=t, the function will be integrable
and T=t will be its integral, and will be represented by the notation
SpEG,y,00) Y

Jordan extended this definition of integrability to functions
defined on a nonmeasurable set. '"We have assumed until now that the
domain E is measurable, We are now able to suppress this restriction...
<onsider the limit of a sequence of measurable domains El’EZ"'°’En""

L each of which is interior to the following and to E]28 and whose extents

< Onverge toward a limit which, by definition, is the interior extent of
——

27Jordan, op. cit., 81-84.

28

Jordan had imposed this condition in the precedin aragraph and
k Q'..3"':Louslv intended 4t to hold here P g P grap
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E. Then the integral, upper or lower, taken in En tends toward a
limit" for the difference between the integrals taken in En and
En+p is

£ - |f = £ <D A(En+p)-A(En)

<D | A (E) - A(E)

were |f| < D. "We consider this limit of the integrals taken in E
as representing the value of the integral in E." Thus, in modern

notation

Jordan then turned to the theorem which was the primary object of his
paper. '"If a function f(x,y,...) of n variables is integrable in a
domain E of measurable extent, then the calculation of the multiple
integral I = SE f(XyYye0s) is reduced to the calculation of n suc-
cessive simple integrals."

Jordan proved this theorem in the following way. 'For greatest
simplicity we will suppose n=2 in the demonstration. The set E will be
represented geometrically by a set of points (x,y) situated in a plane.

"The values of y to which correspond points of E form a bounded
set F. Let one of them be n; the values of x which, associated with n
give points of E, form a bounded set Gn. We are not able to affirm

that Gn has a measurable length, nor that the function f(x,n) is
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integrable there; but this function being bounded, always has determined
in the interior of Gn its upper and lower integrals. These are func-~
tions of n, that we designate by J(n) and j(n), and which are bounded
in the domain F. We are able therefore to determine in the interior of
F: (1) the upper integral of J(n) which we designate by K, and (2) the
lower integral of j(n) which we designate by k."

Observing that K > k, Jordan succeeded in showing, using the
notation of extent, "that the integral K is at most equal to the upper
double integral SEf(x,y).

"One shows, by a similar reasoning, that the integral k is at
least equal to the lower double integral."

Thus, if we denote the upper and lower integrals of f(x,y) on E
by §£f(x,y) and §Ef(x,y), respectively, Jordan demonstrated the

inequalities
§Ef(x,y) >K>k 1§_Ef(x,y).

He concluded the proof by remarking "Until now we have not made use of
the hypothesis that the function f(x,y) is integrable. If this is
assumed, then the upper and lower double integrals are equal and,
therefore, equal the integrals K and k. Now each of the latter can be
calculated by a simple integration successively effected."29

In a footnote following the proof Jordan emphasized the necessity
of the hypothesis of measurability of E. 'The demonstration above
[requires] that the domain E be measurable. If it is not, then the

proposition will be found wanting. Suppose, for example, that E consists

——

29Jordan, op. cit., 85-87.
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of the points O <y <1 and 0 < x <1 if y is rational or -1 < x <O
1f y is irrational, and define the function to be an integral constant
c [where c + 0]. Then the double integral SEc [in the extended sense
previously defined] is zero, for the interior area of E is zero. But,
on the other hand, the domain Gn and F, having a length equal to 1,

one will have

d c dx = cdn = c. "
n

Thus Jordan called attention to the relationship between integration
theory and the theory of measure of sets.

It might be of interest to observe that Jordan's work was an
important contribution to the viability of set theory itself. We have
seen Jordan's appeal to Cantor's n-dimensional set theoretic conceptions
in his study of the theory of measure of sets and the theory of in-
tegration; he also made use of Cantor's set theory in his investigations
of the rectification of curves, trigonometric series and analysis
situs. '"In daring to incorporate certain parts of the theory of sets
into his course at the Polytechnical School,30 Jordan rehabilitated...
this theory; he affirmed that it is a useful branch of mathematics."31
Jordan's authority, arguments and results encouraged an acceptance of

Cantor's theory of sets which had been severely criticized by Kronecker.

30The integration theory described above appears in the second

€@dition of Jordan's Cours D'Analyse, published in 1893,

31Lebesque, Notice sur les travaux scientifiques de M. Henri

L. ebesgue, 16.
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In this respect, the evolution of a theory of functions of a
real variable was hardly greeted with equanimity by some mathematicians.
The study of functions possessing strange and unexpected properties
was sometimes viewed with disdain or even hostility. '"The distrust
with which this new field of investigation was regarded is typified
by the attitude of H. Poincaré who wrote, 'in the past new functions
were invented with some practical purpose in mind; today they are in-
vented intentionally in order to baffle the reasonings of our fathers,
and one cannot deduce anything from them but that....Researches dealing
with,.,..functions violating laws which one hoped were universal, were
regarded almost as the propagation of anarchy and chaos where past
generations had sought order and harmony. Even the first attempts to
establish a positive theory were rather skeptically received; it was
feared that an excessively pedantic exactitude in formulating hypotheses
would spoil the elegance of classical methods, and that discussions of
details would end by obscuring the main ideas of analysis."32

The concept of exterior extent defined by Jordan and Peano is
equivalent to Cantor, Stolz, and Harnack's conception of content. The
measure-theoretic accomplishment of Peano and Jordan was the introduc-
tion of the concepts of interior extent and measurability of a set.
Not all writers are in agreement, however, regarding the form of defini-
tion given by Peano and Jordan to the concept of interior extent. Thus
Lo2ve, in his Encyclopaedia Britannica article "Integration and measure,"
states "this requirement [of additivity] was recognized by G. Peano

and C. Jordan who introduced approximations both from above and below.

3ZSaks, Theory of the Integral, viii.
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To a set S contained in a bounded interval I they assigned also its
inner content (the difference between the ordinary measure of I and

the outer content of S)."33

This statement of definition is in error
and should read "the difference between the ordinary measure of I and
the outer content of I-S." The second source in which I have been
able to find a definition of this form attributed to Peano and Jordan
is in Bourbaki's Intégration (and the same passage in Bourbaki's

Eléments d'histoire des mathematiques), Bourbaki, after observing that

the concept of extent is not additive, writes '"without doubt to al-
leviate this last difficulty, Peano and Jordan, several years later,
introduced beside the 'measure' of Cantor u(A) of a set A contained
in an interval I, its 'interior measure' u(I)-u(I—A)..."34
I have been able to find nothing in the work of either Peano
or Jordan to support these assertions. Such contentions are of inter-
est, however, for if true, they may have guided the form given by
Lebesgue to the definition of inner measure of a set contained in an
interval. I have not been successful in corresponding with any members
of Bourbaki with respect to this question; Loeve responded to my query
by writing "I have no recollection...of the source (or sources) of my
statement...My feeling is that Lebesgue's use of difference is his own.
For he writes of Jordan content (étendue) in terms of outer and inner
contents both [defined by] a limiting process..."

However these differing statements of definition might be recon-

ciled, the measure theoretic concepts introduced by Peano and Jordan

33Loéve,"Integration and measure,' 343,

34Bourbaki, op. cit., 249,
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imply a rather comprehensive theory of measure. Thus the collection of
Peano Jordan measurable sets R forms a ring, i.e., R is a ring in the
usual algebraic sense with respect to the operations of '"addition" and
"multiplication" defined by the symmetric difference EAF = (E-F) U (F-E)
and intersection EAF, respectively. These operations are meaningful
since R is closed under set theoretic union and difference. (We might
note EAF = E - (E - F)). Furthermore, the set function A defined on
R is finitely additive on disjoint elements of R. That is, if EieR
for 1<i<n and Ei(\Ej + ¢ if 1 = j, then

n n

AC(VE) = Z AGE).
i=1 i=1
The example of the rational numbers in the unit interval demon-

strates, however, that the countable union of sets in R need not be in
R, and the set function A does not possess the property of countable
additivity. These facts might call into question the usefulness of
this class of sets and its associated set function. Analysis is es-
sentially a study of limiting processes; thus a theory of measure adequate
to the requirements of analysis might be expected to possess general
properties with respect to certain limiting operations. In particular,
the ring R of measurable sets might be expected to be closed under
countable unions, and its associated set function m might be expected
to be countably additive on sequences of disjoint elements of R. The
necessity of these analytic properties, as opposed to the purely alge-
braic properties of the ring of Peano Jordan measurable sets, was not

immediately recognized, It remained for Borel to introduce such



94
conceptions into the stream of measure theoretic ideas only after having

discovered their efficacy in a context removed from integration theory.

Borel

Borel developed a theory of measure as a consequence of his in-
vestigation of analytic continuation of functions. In a memoir pub-
lished in 1895 and titled 'On several points of the theory of functions,"
Borel proposed this question: '"Being given two functions of a complex
variable, the first defined when the variable is in a certain domain,
the other defined when the variable is in a different domain, in which
cases can one say that they are the same function?"35 A particular
case of the problem considered by Borel is the following: given a

circle K in the complex plane of which the set {an} of points is a

dense subset, and the function £f(z) defined by f(z) = ¥ fg_ o where
(z-=a_ ) n
n
Zun is a convergent series of positive terms such that ZlAn| is
m
u P
n

convergent, and ''the integral exponents m are at most equal to a fixed
number m," is it possible to define an analytic continuation of £f(z)
across K?

Borel argued in this way. Let P and Q be points inside and
outside the circle K, respectively. '"We will consider the circles C
passing through P and Q whose centers O are situated in a determined

segment AB,...perpendicular to the middle of PQ." Assume that for each n,

35Borel,"Sur quelques points de la théorie des fonctions,'9.
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the circle determined by P,Q and a, has center 0, on the line containing
AB, '"Designate by % the length of AB; the series Zu.n being con-

vergent, we are able to choose an n such that

2 I u < 2." Now for i>n, cover the center
n+l

0, by an interval AB, of length 2u_ ; "the sum [of lengths] of all the

1 1}
segments, infinite in number, AiBi’ situated on the segment AB or on
its extension, is less than the length % of AB; therefore there exists
on AB a nondenumarable infinity of points belonging to none of these
segments, Let w be one of these points which does not coincide with

any of the points O, for i<n, and let I' be the circle of center w

i
passing through the points P and Q; I say that this circle T has the
A
required property, that is to say that the series E(;:E-)mn is
n

n36 Thus Borel determined a sense

uniformly convergent on this circle.
in which f(x) can be analytically continued across T.

In a note at the end of his paper, Borel commented further on
the existence of a nondenumerable infinity of points not belonging to
the union of the intervals AiBi'

intervals given on a line whose sum [of lengths] is less than the length

"...if one has an infinity of partial

of a given interval, then there exists at least one point of the in-
terval contained in none of the partial intervals. It is clear that,
if there is such a point, then there exists a nondenumerable infinity
of them, for, if there i1s a denumerable infinity, then one is able to
enclose them in intervals whose sum [of lengths] is as small as one

wants, and chosen in such a manner that, in adjoining these intervals

36porel, op. cit., 25-26.
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to those which are already given, one has a sum less than the length
of the interval; it suffices therefore [to demonstrate the existence
of] a point on the line belonging to none of these intervals."37
Borel succeeded in demonstrating the existence of such a point by means
of what has since become known as the Heine-Borel theorem.

Thus Borel was led to consider the union of a countable col-
lection of intervals whose measure is defined to be the sum of lengths
of the constituent intervals. This measure was appropriate for Borel's
purpose in that it could distinguish between the measure of a countably
dense set and the measure of its closure, a property not enjoyed by
the measure of Peano Jordan. Borel was probably influenced in his
statement of definition of measure by Cantor and Harnack. Cantor,
in the fourth installment of his "Ueber unendliche, lineare Punktmann-
ichfaltigkeiten," had characterized each open set of real numbers as
a countable union of disjoint open intervals; an aspect of Harnack's
work in this respect has previously been described.

Borel developed the measure theoretic implications of his 1895

paper in his treatise Lessons on the Theory of Functions, published in

1898. '"We now define...a notion which will be very useful to us, the
notion of a measurable set.

"All of the sets we consider are formed of points included
between O and 1. When a set is formed of all the points included in
a denumerable infinity of intervals which are disjoint and have a total

length 8, we will say that the set has measure s, When two sets have

37Bore1,_<_>_2. cit., 51.
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no common points and their measures are s and s” then their union has
measure s+8”, Moreover, it is of little importance in the definition
of measure of a set, or that of the union of two sets, if we neglect . . .
the denumerable infinity of endpoints of intervals.

"More generally, if we have a denumerable infinity of sets which
are mutually disjoint and have measures respectively 81989500038 se0es
+ 8

then their union has measure s +...+sn+... .

1 2
"...if a set E has measure s, and contains all the points of a
set E whose measure 1s s~, then the set E-E~ formed of points of E
which do not belong to E will be said to have measure s-s‘...."38
Borel thus imagined sets formed by countable unions and set
theoretic difference, and their associated measure given by infinite
series and arithmetic difference. A nonempty class of sets closed
under the set operations of difference and countable union is called a
o-ring. The ring B of Borel measurable sets is, therefore, a o-ring.
The o-ring B of Borel measurable sets contains all open sets, closed
sets and countable sets; sets of particular importance in analysis.
None of these sets 1is, in general, measurable in the sense of Peano and
Jordan., Thus the 0-ring of Borel measurable sets B might be expected
to be more useful in analysis than the ring of Peano-Jordan measurable
sets R, The o-ring B does exhibit a deficiency: it is not complete.
That is, it is not true that if E is a Borel measurable set with Borel

measure zero, and if F i1s any subset of E, then F is a member of B.

This assertion is proved by means of a cardinality argument described

38Borel, Lecons sur la Theorie des Fonctions, 46.
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below; the importance of the property of completeness of the o-ring of
measurable sets will become evident in the next chapter.

Borel undoubtedly had the Peano-Jordan conception of measure in
mind when he wrote "the sets whose measures one can define by the pre-
ceding definitions are called by us measurable, without necessarily
implying by this that it is not possible to give a definition of the
measure of other sets, but such a definition would be useless to us,
it could even hinder us if it did not leave to measure the funda-
mental properties that we have attributed to it in the definitions
that we have given.,"

Borel stated the "essential properties" of a measure to be the
following: '"the measure of the union of a denumerable infinity of
sets is equal to the sum of their measures; the measure of the differ-
ence of two sets is equal to the difference of their measures; measure
is never negative; each set whose measure is not zero is nondenumerable.
It is above all this last property that we will use."39

The "essential properties" of a measure were referred to again
in a footnote, '"The procedure that we have u<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>