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ABSTRACT

AN INTRODUCTION TO THE HISTORY OF

FOURIER SERIES AND THE THEORY OF INTEGRATION

BY

Dean Webb

Consideration of the Fourier series corresponding to a function

fo) suggests many interesting questions which relate to basic concepts

of analysis. Examples are the generality of the integrals admitted in

establishing the existence of the Fourier coefficients, uniqueness of

representation by Fourier series, and general forms of convergence sudh

that a function be represented by its corresponding Fourier series.

Study of these and other aspects of Fourier series representation

of functions has profoundly influenced the nature and direction of the

evolution of analysis and, in turn, has been influenced by it. This

influence is particularly apparent in the history of development of the

theory of functions of a real variable.

This paper is an exposition of the history of relationships between

the development of successively more general conceptions of definite

integral from Cauchy to Lebesgue and the concomitant evolution of»a

theory of Fourier series. The unifying theme of the paper is the study

Of Fourier series representation of functions and in particular, the

8march for general sufficient conditions for such representation.

The study begins with the work of the first mathematicians to con-

81der the problem of trigonometric series representation of functions,

d'Aletnbert, Euler, D. Bernoulli and Lagrange. Fourier's contributions

are: described and I conjecture a relationship between Fourier's work and
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.Webb

-Cauchy's definition of definite integral. Dirichlet's sufficient condi-

tion for convergence of Fourier series and modern conception of function

are presented, as is the more general definition of definite integral

given by Riemann in his Habilitationsschrift, which is devoted to investi-

gation of necessary and sufficient conditions for convergence of trigono-

metric series.

The theories of measure created by Stolz, Cantor, Harnack, Peano.

Jordan, Borel and Lebesgue are studied; efforts to solve the problem of

uniqueness of representation by trigonometric series is shown to have

initiated Cantor's creation of his theory of sets. Lebesgue's theory of

integration is described. as are the first applications by Lebesgue of

his conception of definite integral to study of Fourier series. Fatou's

sufficient condition for convergence almost everywhere of Fourier series

is presented as well as the work of Riesz and Fischer which led to the

discovery of the Riesz~Fischer theorem. Finally, Lusin's conjecture re-

garding convergence almost everywhere of the Fourier series corresponding

to a function f e L2[O. 2n] is studied, and the paper concludes with

Carleson's assertion of the validity of Lusin's very general sufficient

condition for convergence of Fourier series.

Both the historical sequence of events and the initiating influ-

ences which motivated the work of contributing mathematicians are

identified, and both influences and events are expressed in the words of

the men who helped create the theory. The latter is accomplished by

excerpting passages from the original memoirs.
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Webb

Several insights derive from such study. These include the manner

in which the problem of Fourier series representation of functions has

been successively generalized in order to render it capable of partial

solution, deficiencies in the work of many of the mathematicians who con-

tributed to the creation of the theory (deficiencies which are, of course,

clearly secondary to the accomplishments of these men), and finally, the

persistent controversy which accompanied the evolution of the theory of

functions of a real variable.
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An Introduction to the History of Fourier

Series and the Theory of Integration

Preface

A series of the form c + n§1(an cosnx + businnx) where the an,bfi,

and c are constants is called a trigonometric series. If f(x) is a

function whose domain of definition is the interval -n §_x §_n and if

the integrals

n

l) a - l-}f(x) cosnx n - O 1 2
n ."4 9 999°°°

and 'fl

1 n

2) bn - :‘J f(x) sinnx, n - 1,2,3,...

1T

exist, then the Fourier series corresponding to f(x) is the trigonometric

series

3) a0 + Z (a cosnx + b sinnx).

-- n-l n n

2

The constants an and bn are the Fourier coefficients of f(x). This

definition requires only that the integrals l) and 2) exist in order that

a Fourier series correspond to f(x); there is no requirement that the

series 3) converge in any sense. Indeed it is not apparent that the

series 3) should converge in the interval [-n,n] nor if it does converge

at a point x that its sum should be f(x), i.e., that it should represent

f at x. Since the Fourier series corresponding to f(x) does not, in

general, represent f(x), we will use the symbol "N" to denote the cor-

respondence between f and its Fourier series,

f(x) N a0 + Z (ancosnx + businnx).

-3' n-l
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Consideration of the Fourier series corresponding to a function

f(x) suggests many interesting problems which relate to basic concepts

of analysis. Examples are the generality of the integrals admitted in

establishing the existence of the Fourier coefficients 1) and 2), general

forms of convergence of the series 3) such that a function be represented

by its corresponding Fourier series, uniqueness of series representation,

and continuity, differentiability and integrability prOperties of Fourier

series in intervals of convergence.

If a trigonometric series converges (in the usual sense) for all x,

then its sum f(x) has the property f(x + 2n) - f(x), that is, f(x) is

periodic with period 2n. Periodic functions are encountered in the

study of a great variety of physical problems which feature periodic

phenomena such as vibration or wave motion. As is known, every periodic

function satisfying certain general conditions can be represented by a

trigonometric series1 and most trigonometric series encountered in applied

problems are Fourier series. Thus Fourier series are of both theoretical

and applied interest.

The pure and applied aspects of study of Fourier series have moti-

vated the work of several generations of mathematicians whose efforts in

this and related areas have led to the creation of a theory of Fourier

series. The creation of this theory has profoundly influenced the

nature and direction of the evolution of analysis and, in turn, been

influenced by it. These influences are particularly apparent in the

deve10pment of a theory of functions of a real variable.

 

1See Appendix A for one form of this assertion.
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[The theory of Fourier series] has been a source of new ideas for

analysts during the last two centuries, and is likely to be so in

years to come.... It is not accidental that the notion of function

generally accepted now was first formulated in the celebrated memoir

of Dirichlet (1837) dealing with the convergence of Fourier series;

or that the definition of Riemann's integral in its general form

appeared in Riemann's Habilitationsschrift devoted to trigonometric

series; or that the theory of sets, one of the most important de-

ve10pments of nineteenth—century mathematics, was created by Cantor

in his attempts to solve the problems of the sets of uniqueness for

trigonometric series. In more recent times, the integral of Lebesgue

was-developed in close connection with the theory of Fourier

series....

Indeed, its utility in the study of Fourier series was an important con-

tributing factor in the acceptance of Lebesgue's definition of integral.

This paper is an exposition of the history of such mutually advan-

tageous relationships between the successively more general conceptions

of definite integral from Cauchy to Lebesgue and the concomitant evolution

of a theory of Fourier series. The unifying theme of the paper is the

question of Fourier series representation of functions since, as will

be seen, much of this part of the theory of integration developed in

response to demands placed upon it by such series representations. The

paper begins with the work of the first mathematicians to consider this

question, d'Alembert, Euler, D. Bernoulli, and Lagrange, and following

the search for sufficient conditions for such representation, ends with

the theorems of Carleson and Hunt.

In writing the paper, I have attempted to identify both the histori-

cal sequence of events and the initiating influences which motivated the

work of contributing mathematicians, and to express both influences and

events in the words of the men who helped create the theory. Therefore

I have frequently excerpted passages from the original memoirs.

 

2A. Zygmund, Trigonometric Series, Volume I, xi.
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I have assumed the reader has a knowledge of undergraduate analysis,

and have used standard notations and terminology; proofs of theorems have

not been given since they can be found in the references cited.

My purpose in writing this paper has been to identify an historical

context within which a study of the theory of functions of a real variable

might assume greater meaning. Many texts provide a rigorous mathematical

treatment of the theory, but, of necessity, little insight into its origins.

My hope is that this paper will complement such texts.

I should like to thank Charles Wells, John Wagner, John Kinney, John

Masterson, Clifford Weil, Francis Hildebrand, Albert Froderberg, Neil

Gray and particularly Gottfried Adam and Arthur Kimmel for assistance

and encouragement in the course of this work.
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Chapter 1

0n the Cauchy and Riemann Integrals

Contributions of d'Alembert, Euler,

D. Bernoulli and Lagrange

One of the origins of the theory of Fourier series was study of the

vibration of stretched strings. Given certain simplifying assumptions

the motion of a stretched string is described by a solution of the par-

tial differential equation

32F 2

étz 3x

1)

where a is a constant.1 This equation has many solutions and the problem

is to find a solution F(x,t) of l) which describes the motion of a particu-

lar string, that is, which satisfies given initial and boundary conditions

which determine the motion of the string and thus determine the solution

F(x,t) uniquely.l

Consider, for example, a stretched string of unit length in the (x,y)

plane whose equilibrium position is on the xraxis, 0 5.x‘§_1, y - 0, and

whose endpoints are fixed in this position through time. Assume the string

is deformed from its equilibrium position at time t - 0 by a force acting

in the (x,y) plane to an initial position 0 5_x.5_1, y - f(x). Let an initial

velocity g(x) in the y-direction be imparted to the string at time t - 0.

Then the string responds to the forces acting upon it by vibrating about

its equilibrium position. If F(x,t) is the solution of 1) which describes

the motion of this string then F(x,t) satisfies the boundary conditions

F(0,t) - F(l,t) - O and the initial conditions F(x,0) - f(x) and

 

1A derivation of this equation is given in D. Widder's Advanced

Calculus, Prentice-Hall, 1947, 344.



-%§(x,0) - g(x). This equation describes the motion of the string in the

sense that the form of the displaced string is given by the curve y = F(x,to)

at a fixed instant in time to Z 0.

The reader will verify that the functions

Fn(x,t) = sin nnxcosnnat,

where n is a positive integer, are solutions of l) which satisfy the boundary

conditions Fn(0,t) =‘Fn(l,t) = 0 and initial conditions Fn(x,0) - fn(x) = sin nnx

and ggn(x,0) - gn(x) = 0. Moreover, if the series

2) F(x,t) = nzlan Fn(x,t) = “Elan sin nflxcosnnat,

where the an are:constants, and the series obtained from it by differentiating

term-by-term are convergent, and if term-by-term differentiation is justified,

then 2) is a solution of l) satisfying(§he boundary conditions F(0,t)= F(l,t) 8 0

and initial conditions F(x,0) - f(x) = nil

Thus F(x,t) describes the motion of a string stretched between the points (0,0)

an sin nnx and gékaO) I g(x) 8 0.

and (1,0), fixed at these points, displaced in the form f(x) 8 #:lan sin nnx,

0 i x S 1, and at rest at the instant of release t = 0.

The function F(x,t) is the most general solution of this particular

case of the vibrating string provided it can be made to satisfy arbitrarily

given initial conditions. This is the criterion for generality of solution.

A solution, therefore, satisfying a particular initial condition F(x,0) = s(x)

where of physical necessity s(x) is continuous on 0‘: X‘i 1 and, in the context

of this case of the vibrating string g—E(x,0) - g(x) - 0, is subsumed in the

general solution. Again, a solution is obtained for each initial position

of the stretChed string; the general solution encompasses all of these solutions



   
   

 

3":ttnecusiy SinCE

:ziitisns. 0i C0“?

gaeral solution of '

2:;uestion.

If F(x,t) is;

LI) defined on [0,1

Sasine series on

5:11:45 since k(x) C

531:5. Thus the at

73:5:ng string lea

c
m
e
d

by
a

32:43
Cord

0f
1

"' instant of

risii
uncth

3‘éE-‘JEDCES
to

be

be C0ntinu



simultaneously since by definition it satisfies arbitrarily prescribed initial

(D

conditions. Of course whether or not F(x,t) - nglan sin nnx cos nnat is the

general solution of this particular case of the vibrating string remains open

to question.

If F(x,t) is the general solution, then an arbitrary continuous function

k(x) defined on [0,1] and such that k(O) = kgl) - 0 must admit representation

by a sine series on [0,1], that is, k(x) a nzlan sin nnx for 0 S x S 1. This

follows since k(x) can be interpreted as an initial position of the stretched

string. Thus the attempt to find the general solution for this case of the

vibrating string leads to the very interesting question of trigonometric series

representation of an arbitrary function. Historically, the controversy

engendered by the question of such representation helped initiate and was

resolved by the creation of the theory of Fourier series.

2

D'Alembert published a solution of the equation %:§-- a2-2-%- (He assumed

8x

a = 1 but I follow the usual convention.) in his 1747 memoir "Research on

curves formed by a stretched vibrating cord."2 He gave his solution for a

vibrating cord of length 2, fixed at the points (0,0) and (2,0) and at rest

at the instant of release, in the fonnyy- f(at + x) - f(at - x) where f denotes

a periodic function with period 22. D'Alembert remarked, "There are many. . .

consequences to be drawn from the general solution we have just given," a

rather ironic understatement in light of the historical sequence initiated by

publication of his solution general.
 

In his analysis d'Alembert took the initial position of the stretched

cord to be continuous or regular, that is, a curve whose form could be

expressed by a single definite function of the independent variable. Such a

 

2

D'Alembert, "Recherches sur la courbe que forme un corde tendue mise

en vibration," 214.
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4

curve stood in contrast to discontinuous or irregular curves which were under-

stood to be composed of portions of continuous curves and thus, not conforming

to a single law throughout their course, to require several different functions

for their expression.

Euler argued against d'Alembert's restriction of the initial position

of the stretched cord to a continuous curve. In his "On the vibration of

3 published in 1748, he wrote "Mr. d'Alembert was the first to attackcords,"

with considerable success the examination of this problem. . . and he has

communicated to our Academy a very good solution of it. But as. . . one

often draws very considerable profit from the comparison of several different

solutions of the same problem I do not hesitate to propose the one I have

found on this question."

Euler expressed his solution of the differential equation 1) in the

form y - f(x + at) + f(x - at) where for every t, f(at) + f(-at) - 0 and

f(z + at) + f(£ - at) = 0, and concluded from these equations that every

curve which "be situated alternatively above and below [the axis] is proper

to represent the nature of the. . . function f. . . ." Thus, "a. . . curve,

be it regular, contained in a certain equation, or be it irregular or

mechanical, its arbitrary [ordinate] will furnish the functions which we

need for the solution of the problem." He then gave the equation

f(x) =asin%+esin;}§+ysin3—zé+ . . .

as a special case of the "general solution" in which the function f(x) "is a

continuous curve whose parts be bound in virtue of the law of continuity so

that its nature can be understood by an equation."

 

3Euler, "Sur la vibration des cordes," 69.



   

   

its initial veloci

:3t'1is rule [of r

sees by this how t':

a: is determined '3

Rd 30 give it viii

 :izial figure of I

are the greatest 1

efficiently gener

33¢. Euler mainta

J'fl‘ L

”‘M‘t. whose

titular curve, did

1:“ °i the cord 1

D'Alembert

< treated
in the

.

q
u‘httly Similar 1

”its to me



Euler recognized that the vibrations of the stretched cord subsequent

to time t a O are completely determined by the initial form of the cord and

the initial velocities of its points. ". . .if a single vibration conforms

to this rule [of regularity], all the following must observe it also. One

sees by this how the state of following vibrations depends on the preceding

" Furthermore "one can before letting theand is determined by them. . .

cord go give it whatever figure one wishes" and therefore, "so that the

initial figure of the cord can be [given] arbitrarily, the solution must

have the greatest extent possible." By obtaining a solution asserted to be

sufficiently general to comprehend such initial positions of the stretched

cord, Euler maintained that his solution was more general than that of

d'Alembert, whose solution, by assuming the initial form of the cord to be a

regular curve, did not encompass, for example, the case in which the initial

form of the cord is polygonal.

D'Alembert rejoined Euler in a paper published in 1750.4 "Mr. Euler

has treated in the Memoirs of 1748 the problem of vibrating cords by a method

entirely similar to mine as to the essential part of the problem and only, it

seems to me, a little longer." He cautioned his readers that "it does not

suffice to transport the initial curve alternatively above and below the

axis; it is necessary in addition that the curve satisfy the conditions that

I have expressed in my memoir. . . . In any other case the problem will not

be capable of resolution, at least by my method, and I do not know if it will

not surpass the force of continuous analysis. One cannot, it seems to me,

express y analytically in a more general manner than by supposing it a

 

4D'Alembert, "Addition au memoire sur la courbe que forme un corde

tendfie, mise en vibration," 355.
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function of x and t. But in this supposition one finds the solution of the

problem only for the cases where the different figures of the vibrating cord

can be enclosed in a single and same equation. In all other cases it seems

to me impossible to give to y a general form."

Daniel Bernoulli became thhird party to this controversy in 1753 by

publication of his "Reflections and enlightenments on the new vibrations of

cords given by the Memoirs of the Academy of 1747 and 1748."5 Bernoulli took

exception to d'Alembert and Euler's reliance upon a strictly mathematical

approach to the problem. He contended such reliance demonstrates that "to

listen to abstract analysis without any synthetic examination of the proposed

question is more likely to surprise rather than enlighten us. It seems to me

that one need only give attention to the nature of simple vibrations of cords

in order to foresee without any calculations all that these two great

geometricians found by the most difficult and abstract analysis. . . ."

Bernoulli apprehended the problem in physical terms. Basing his

arguments upon Taylor's 22 Methodo Incrementorum, he asserted the vibrating
 

cord, as a sonorous body whose vibrations consist of a fundamental and its

overtones, admits expression mathematically as the sum of terms corresponding

to the fundamental and its harmonics. This led him to conclude that any

initial position of the stretched cord admits representation in the form

y = asin-1% + Bsin §%§_+ ysin'§%§-+ . . . .

Bernoulli wrote "Here is therefore an infinity of curves found without any

calculation and our equation is the same as that of Mr. Euler. . . It is

 

5 ,
Bernoulli, "Réflexions et eclaircissemens sur les nouvelles vibrations

des cordes exposées dans les Mémoires de l'Académie de 1747 at 1748," 147.
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true that Mr. Euler does not treat this infinite multitude [of curves] as

general and that he gives it. . . only for particular cases, but. . . if there

are still other curves, I do not understand in what sense one can admit them."

Bernoulli's contention that every curve, and hence an arbitrary

function admits representation by a sine series was immediately disputed by

Euler.6 "Mr. Bernoulli. . . sustains against Mr. d'Alembert and myself that

the solution of Taylor is sufficient to explain all the movements of which a

cord is susceptible. . . . Any argument "that the equation y - osinlfi +
2.

thin-2%E + . . , because of the infinity of undetermined coefficients, is so

general that it embraces all possible curves" must fail,Euler insisted, for

"all the curves expressed by this equation, no matter how the number of terms

be augmented, have certain characteristics which distinguish them from all

other curves. If one takes the abscissa x negative, then the ordinate

becomes also negative and equal to that which corresponds to the positive

abscissa x; and in the same way, the ordinate which corresponds to the abscissa

x'+ 2 is negative and equal to that which corresponds to the abscissa x."

Therefore, asserted Euler, a sine series, being odd and periodic, cannot repre-

sent a function which does not possess both of these properties, and in parti-

cular, cannot represent an algebraic function. Thus Euler held Bernoulli's

solution to be more restricted than the solution of d'Alembert.

We should observe that neither Euler nor his contemporaries could concede the

possibility of trigonometric series representation of non-periodic continuous

functions even in an interval. Indeed such a notion would have been dismissed

as a violation of the concept of continuous function. Coeval Opinion held that

 

6Euler, "Remarques sur lea mémoires précedens de M. Bernoulli," 196.
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the definition of a continuous function in an interval implied its definition

everywhere in its domain, i.e., that a continuous function could be extended

beyond an interval of definition in only one way. Thus, if two continuous

functions were equal on an interval they were held to be equal everywhere, a

circumstance which made the impossibility of a trigonometric series representa-

tion of a non-periodic function appear obvious.

Lagrange entered the controversy in 1759 with publication of his

"Researches on the nature and propagation of sound."7 In reviewing the methods

of the first three protagonists, Lagrange reiterated Euler's objection to

Bernoulli's solution, a criticism with which he concurred: "It would be

necessary that the equation [y - asin'fl% + Bsintz%§-+ ysin §%§ + . . . .]

enclose all the figures that one can give to a stretched cord, that is, all

the possible curves. This cannot be because of certain properties which seem

to distinguish cords comprised in this equation from all the other curves that

one can imagine; . . .in other wordS, in augmenting or diminishing the abscissa

of an arbitrary multiple of the axis, the value of the ordinate y does not

change."

Having dispatched Bernoulli's solution, Lagrange rejected the generality

of that of d'Alembert, again following Euler's lead. "The construction of

Mr. Euler is evidently much more general than that of Mr. d'Alembert, for the

latter always supposed that the generating curve [i.e., the curve corresponding

to the initial position of the stretched cord] be regular and susceptible to

enclosure in a continuous equation. . . [and] . . .believed that such con-

struction became insufficient whenever the generating curve did not follow the

law of continuity. . . ."

 

7

Lagrange, "Recherches sur la nature et la propagation du son," 39.



 

 
Lagrange a

of iezonstration.

itfetred by appli

illegitimate in a‘

tit. It follows

'3? its very nature.

fro: the integrati

Lagrange
p.

if the vibrating
c

35 cord, each in

.

s. .

~e

9*“ all criticis:

5 Of a “eighth

a.‘ .

‘3 5K ‘"‘“ELQ

n as the n

“mediate

stEP

1“(x

I: a
,

Stung of u
. u

i‘\

eat: that the in;

’:“1°ular int

it‘és‘itin.bus of Su—

than the

7:“..G~.-‘3En

grals

“‘3 t



9

Lagrange accepted Euler's solution as general but objected to its manner

of demonstration. " . . .it seems undeniable that the consequences that are

inferred by application of the rules of differential and integral calculus are

illegitimate in all cases where this law [of continuity] is not assumed to

hold. It follows from this that the construction of Mr. Euler is applicable

by its very nature only to continuous curves since it is deduced immediately

from the integration of the given differential equation. . . ."

Lagrange proffered a demonstration of Euler's solution of the problem

of the vibrating cord "in which one considers the movements of the points of

the cord, each in particular, . . .to arrive at a conclusion which be sheltered

from all criticism." His argument consists of finding the solution for the

case of a weightless cord composed of a finite number of particles and then

obtaining the solution of the continuous cord as the limit of the first

solution as the number of particules is increased without bound. In an

intermediate step in his analysis, Lagrange expressed this limit in the form

F(x,t) = 2! 2(sin nns sin nnx cos nnat) f(s)ds

for a string of unit length, whose initial position is given by f(x), and

such that the initial velocity of each of its points is zero. This form is

of particular interest since it is only necessary to interchange in it the

operations of summation and integration, that is, to write a sum of integrals

rather than the integral of a sum, and let t = 0 to obtain a sine series

representation of f(x) in which the coefficients are determined as definite

integrals.

Lagrange undoubtedly recognized the relationship between this form and

that of Bernoulli but did not anticipate Fourier's conclusions with respect



as: importantly,

iiéaat adnit the 
frztion which cc

station. Seton-c7

frdtesm:
"the

series," and only

particles conposir‘

:te smation
to l

Slat criticism
wh

rtitrary
(perha;

Sexes Mid expres



10

to such expansions. There are several reasons for this. First, and perhaps

most importantly, Lagrange was constrained by his concept of function. He

did not admit the possibility of such an expansion for any other than a periodic

function which could be given analytically, i.e., expressed by a single

equation. Second, Lagrange understood the integration symbol to denote a

finite sum: "the integral sign I is used to express the sum of all these

series," and only after summing the series did Lagrange let the number of

particles composing the cord tend to infinity. Indeed, had Lagrange considered

the summation to be an integral, his demonstration would have been open to the

same criticism which he directed toward that of Euler, i.e., integration of the

arbitrary (perhaps discontinuous) function f(x). Finally, having summed the

series and expressed the limit of the sum in Euler's functional form of

solution, Lagrange held his demonstration to be complete. "Here then is the

theory of this great geometrician [Euler] placed beyond the reach of all criticism,

being established on clear and direct principles which do not depend in any

way on the law of continuity required by Mr. d'Alembert. Again, here is how

it happens that the same formula serves to support and demonstrate the theory

of Mr. Bernoulli on the mixture of isochronic vibrations when the number of

mobile bodies is finite and reveals to us the insufficiency of [Bernoulli's

theory] when the number of bodies becomes infinite." Lagrange "had formed

in advance in his mind a definite conception of the path to be taken"8 and in

his strict adherence to this conception and consequent disregard of any

alternative furnishes "an instructive example of the ease with which an author

 

8Riemann, Mathematische Werke, 220.
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can fail to draw an almost obvious conclusion if his attention is fixed in

another direction."9

Lagrange was not the only mathematician to approach,but not attain.

Fourier's conclusions. In discussing the problem of representation of the

reciprocal of the distance between two planets by a cosine series

3) ¢(6) = A + B cos 6 +'C cos 26 + . . . ,

where 6 is the angle between the radii, Euler, in a memoir presented to the

St. Petersburg Academy in 1777,10 asserted that if a function ¢(6) admits a

series representation of the form 3), then

A = l [" o(9)de B = -2- ]" o(e) cos ode
n 0 ’ n 0

a result obtained by multiplying the series by cos n6 and integrating term by

term. Euler only used this argument to determine the coefficients of a series

representation whose existence was verified by other means, however, and per-

haps for this reason his paper had no effect upon the question of trigonometric

series representation of an arbitrary function.

Years passed and the controvery regarding the possibility of series

representation remained without conclusion. It was left to Fourier to carry

Bernoulli's contention against the arguments and authority of d'Alembert,

Euler, and Lagrange.

Fourier

Fourier was led to consider trigonometric series representation of

functions in the course of his attempt to create a mathematical theory of the

 

9Burkhardt, "Entwicklungen nach oscillirenden Functionen und Inte-

gration der Differentialgleichungen der mathematischen Physik," 32.

10Euler, "Disquisito ulterior super seriebus secundum multipla

cuiusdam anguli progredientibus," 114.
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conduction of heat. An example of the type of problem studied by Fourier

which leads to the question of such series representation is the following.

Consider a rectangular plate whose sides B and C are of infinite length and

whose base A is of length n. Place the base A on the interval (— %3 g) on

the x-axis and heat it in such a way that unit temperature is maintained at

each of its points. Assume that each point of the sides B and C is

maintained at zero temperature. Then "heat will pass continually from

the source A into the solid BAC, and will be propagated there in the

longitudinal direction, which is infinite, and at the same time will turn

towards the cool masses B and C, which will absorb a great part of it. The

temperatures of the solid BAC will be raised gradually but will not be able

to surpass nor even attain a maximum of temperature, which is different for

different points of the mass. It is required to determine the final and

constant state to which the variable state continually approaches."11

Fourier showed that the steady state temperature T(x,y) at a point

(x,y) of the plate must satisfy the partial differential equation

4) _+_=Oo

and the boundary and initial conditions T(- %3 y) = T(%3 y) = 0 and T(x,0) = 1

where, of course, xs(- 33 g). He obtained as an intermediate step in his

analysis the form

5y
5) T(x,y) = a e-y cos x + b e—3y cos 3x + c e— cos 5x + . . . .

 

11Fourier, The Analytical Theory of Heat, 5164.
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"It is evident that the function. . . T(x,y) satisfies [equation 4] and

the condition Tthg3y) - 0. A third condition remains to be fulfilled,

which is expressed thus, T(x,0) - l. . . Equation 5) must therefore be

subject to the following condition:

1 - a cos xi+ b cos 3x + c cos 5x‘+ . . . .

The coefficients a,b,c,... whose number is infinite are determined

by means of this equation."

Thus it became important to Fourier to determine the coefficients of

a cosine series representation of the function which is identically one on

the interval (~§3§). Similarly, had the base A of the rectangular plate

been heated in such a way that the temperature at a point x was given by the

function f(x), then it would have been required to represent f(x) in the form

of a cosine series. This begins to explain why Fourier was interested in

trigonometric series representation of.”arbitrary" functions. "The funda-

mental problems of the theory of heat cannot be solved without reducing to

this form [development in a series of sines and cosines of multiple arcs]

the functions which represent the initial state of the temperatures."

Fourier presented the first of his memoirs to the French Academy of

Science on December 21, 1807. His assertion that an "arbitrary" function

f(x) is represented on the interval (-2,2) by a series

a

f(x) - _Q_+ z (an cos 9-295-

nnx
2 n-l + bn sin 2 ) where

N

2 2.

1 nnx l nnx

an - l J-z f(x) cos 0 dx and bn - 2 J_£f(x) sin.-I-dx
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was met with disbelief. Riemann, in the historical section of his Habili-

tationsschrift, wrote that Fourier's contention "was so unexpected by Mr.

Lagrange that he contradicted it in the most decisive manner. It is said

that there is still a document in the archives of the Paris Academy regarding

this controversy," the statement of existence of such a document having been

communicated to Riemann by Dirichlet. Fourier's memoir was deposited in the

archives without being published and, according to Darboux, was "without

doubt withdrawn by Fourier in 1810."12

Perhaps as a consequence of Fourier's work, however, the Academy set

the competition for the grand prix de mathematiques for 1812 with the question:

"To give the mathematical theory of the laws of the prOpagation of heat and

to compare the results of this theory to exact experiments." On September 28,

1811, Fourier submitted to the Academy a work which essentially included and

slightly extended his original memoir. Fourier's paper was referred to the

Judges of the competition, Lagrange, Laplace, Malus, Hafiy and Legendre, and

while they awarded him the prize, they were critical of the generality and

rigor of his analysis. "This piece. . . contains the true differential equa-

tions of the transmission of heat. . . . The newness of the subject together

with its importance has led the jury to crown this work, observing however

that the manner in which the author arrives at his equations is not exempt

from difficulty, and that his analysis in integrating his equations leaves

something to be desired relative to generality and even with respect to rigor."

 

2Darboux, Oeuvres d3 Fourier, vii.
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Fourier's manuscript was again deposited in the archives of the

Academy without being published. Resentful of this treatment, he incorporated

the first part of this memoir almost without change in his Analytical Theory

of Heat, published in 1822, and, having become Perpetual Secretary of the

Academy after the death of Delambre, caused this part of the memoir to be

printed in its original form in the Mémoires in 1824, and the second part to

be published in the Mémoires in 1826. In light of the interest excited by

his work "Fourier desired without doubt to thus establish his rights of

priority in an incontestable manner. . . ."13

Fourier's methods and results have continued to receive criticism, not

all of it justified. It is true that Fourier was a physicist interested in

solutions to applied problems and in his search for such solutions utilized natural

phenomena as a guide to mathematical theory. "Profound study of nature is the

most fertile source of mathematical discoveries. Not only has this study,

in offering a determinate object to investigation, the advantage of ex-

cluding vague questions and calculations without issue; it is besides a sure

method of forming analysis itself, and of discovering the elements which it

concerns us to know, and which natural science ought always to preserve. . . ."14

Faithful to this conception throughout the course of his work, Fourier re-

iterated his position in a summary statement toward the end of his treatise.

"The integrals which we have obtained are not only general expressions

which satisfy the differential equations; they represent in the most distinct

 

l
3Darboux, op, cit., viii.

14Fourier,'gp. cit., Preliminary Discourse.
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manner the natural effect which is the object of the problem. This is the

chief condition which we have always had in view, and without which the

results of investigation would appear to us to be only useless transformations.

When this condition is fulfilled, the integral is, properly speaking, the

equation of the phenomenon; it expresses clearly the character and progress

of it, in the same manner as the finite equation of a line or curved

surface makes known all the properties of those forms."15

In holding to this view, Fourier occasionally allowed his physical

intuition to dominate his mathematical analysis. His discussion of uniqueness

of solution of the problem described above is an example of such domination.

Having determined the coefficients a, b, c,. . . of the equation

1 a a cos x'+ b cos 3x + c cos 5x +. . . to be, respectively, a -'%3 b = gg'

c = 3%, d =-%%,. . . for values of x such that xe(- g3 g9, Fourier asserted

"the complete solution of the problem which we have proposed" to be of the

form

6) T(x.Y) = g-ey cos x - 3%“ e“3y cos 3x +-§% e-Sy cos 5x - . . .

Fourier then argued, by means of physical considerations, that the final

temperature distribution is unique; therefore "since the final state which

must be determined is unique, it follows that the proposed problem admits

no other solution than that which results from equation 6. Another form

'may be given to this result, but the solution can be neither extended nor

restricted without rendering it inexact."16 Thus Fourier essentially

assumed uniqueness of solution.

 

15Fourier, op, cit., 5428.

16Fourier, 93. cit., §204.



This does 
SC'L'ad nathemati

. I

cemestrate his

.Dthical or gec:

Baler or Lagran:

MVEYSEnce of s

notions in his

(
3

”magenta of (

Vergem . . I

 
of the terms (14...

establish
the

finch we arrive

g

itjr

‘ a each mo re an

cw. -tit)?
‘fliillf1

I)

de 0f the Se:



17

This does not imply, however, that Fourier was disinterested in a

sound mathematical development of his theory. Indeed, his efforts to

demonstrate his propositions rigorously, while sometimes frustrated by his

physical or geometrical intuition, were often as successful as those of

Euler or Lagrange. For example, Fourier held the modern conception of

convergence of series and this, of course, before Cauchy formalized such

notions in his Cours.d'analyse. He wrote, with respect to the question of

convergence of (Fourier) series, "it is. . . easy to prove they are con—

vergent. .. . This does not result solely from the fact that the values

of the terms diminish continually, for this condition is not sufficient to

establish the convergence of a series. It is necessary that the values at

which we arrive on increasing continually the number of terms should

approadh more and more a fixed limit, and should differ from it only by a

quantity which becomes less than any given magnitude; this limit is the

value of the series."17 Again, when discussing the series

5-= sin x --%-sin 2x +-% sin 3x - .

N

which was given without restrictions by Euler in his paper"Subsiduim Calculi

SinuumJLpublished in 1754, Fourier remarked "This infinite series, which is

always convergent, has the value g-so long as the arc x is greater than 0

and less than n. But it is not equal to-g-if the arc exceeds w; it has on

the contrary values very different from-g. . . This series has been known

for a long time but the analysis which served to discover it did not

indicate why the result ceases to hold when the variable exceeds fl.

 

17Fourier, op, cit., 5228.
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The method which we are about to employ must therefore be examined attentively

and the origin of the limitation to which each of the trigonometrical series

is subject must be sought,"18 an examination which Fourier then proceded to

undertake.

These remarks are by way of prelude to a more important question

regarding convergence: how adequately did Fourier demonstrate his assertion

that the Fourier series corresponding to a function converges to the function.

A partial answer is suggested by Fourier's work with particular Fourier

series. Fourier initiated his discussion of the convergence of the series

y = sin x - %-sin 2x +-% sin 3x - %-sin 4x + . . .

by considering the sum of the first ulterms of the series, m even. He

expressed this finite sum 8m in the form

x

cos mx +-—

x ( 2)

S =—- dXO

2 x

2 cos-5

 

Seeking the limit of this integral for increasing m, Fourier repeatedly

integrated by parts to obtain "a series in which the powers of (m +‘%9

cos (mx +-§)

enter into the denominators," Thusllig I xsr-dx = 0, from which

2 cos-E

Fourier concluded y = lim Sm ='%u Having shown this, Fourier completed his

argument by demonstrating the necessity of the interval of convergence

noted above.

Fourier argued in this manner with respect to several explicit series.

His work is of particular interest and importance since it is this type of

 

18Fourier, 22, cit., 5184.



argzment, i.e., t

the series and th

finity, with whic

of convergence
of

This remark

established
one f

T

"arbitrary" functi

f(xi

 



l9

argument, i.e., to express by an integral the sum of the first m terms of

the series and then to seek the limit of this integral as m tends to in-

finity, with which Lejeune-Dirichlet obtained the first rigorous theory

of convergence of Fourier series. Thus Fourier anticipated Dirichlet.

This remark is general. For consider the manner in which Fourier

established one form of his assertion regarding the representation of an

"arbitrary" function f(x) by its corresponding Fourier series, to wit,

1 1=+oo +33" 21

f(x) = E 2 I: [f(a) cos ;— (a- x)] do,

ie-m —

2

where the interval of convergence is the set of all x such that

ii

x€(- 2’ §). Fourier first interchanged the order of integration and

summation and, to simplify the work, letI- 2n and denoted a - x by r.

He thus obtained the form

1 +oo 1-+oo

f(x) 37f...[f(o) 2 cos 1 r] do.

13—00

i=+j i-+j

Fourier next wrote the finite sum 2 cos i r in the form 2 cos i r =

sin r i=-j 1--j
cos j r + sin j r-i:zgg-;. He then multiplied the second member of this

equation by f(a) expressed the product as an integral from -n to +w with a

as the variable of integration, and sought the form of the limit as j + m.

In so doing he obtained the expression

4f(x)fo"Man a 21rf(x)

which concludes the proof.19

 

19Fourier's argument is given in greater detail in Appendix B.
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Fourier also considered the form of the integral when x a in and the

case in which the limits of integration encompass an interval of length

greater than 2n. Of course Fourier's work is flawed because he interchanged

the order of integration and summation and did not restrict the function

f(x) such that the integrals exist. It is true, however, that the form of

Fourier's reasoning was essentially correct and that it was by this means

that Dirichlet later rigorously established Fourier's contentions with

respect to trigonometric series representations. Thus Fourier's methods

and conclusions have received less than justice with respect to much of

the criticism directed toward them and concomitantly to Fourier himself.

It was with these considerations in mind that Darboux, in his

OEuvres fig Fourier, commented that "Lejeune-Dirichlet. . .followed pre-

cisely the way which was indicated by Fourier, but brought into the work

an extreme precision which is necessary to such an important question.

This is not to deny the real and considerable progress brought by the

memoirs of Dirichlet to a subject where the efforts of Poisson and Cauchy

had not been crowned with complete success. But it seems just to remark

that Fourier, with his very profound sense of the questions of natural

philosophy. . .had indicated and even gone over, though with uncertain

steps, the path along which one should go to find the first exact demon-

stration of these fundamental results. . . ."

Part of Fourier's success can be attributed to his more general

conception of function. In this respect he represents a distinct break

from the traditions of his eighteenth century colleagues. When describing

the functions which admit trigonometric series representation, Fourier

wrote "above all, it must be remarked that the function f(x). . .is entirely
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arbitrary and not subject to a continuous law. . . .In general the function

f(x) represents a succession of values or ordinates each of which is

arbitrary. An infinity of values being given to the abscissa x, there are

an equal number of ordinates f(x). All have actual values, either positive

or negative or zero. We do not suppose these ordinates to be subject to a

common law; they succeed each other in any manner whatever, and each of

them is given as if it were a single quantity."20 This description is

more general than Fourier intended. It is clear that Fourier, consistent

with his geometric methodology, considered the notion of function to be

equivalent to any relationship between the independent variable x and the

(unique) dependent variable f(x) which could be given graphically.21 Thus

he makes reference to a function "such that the ordinate which represents

it has no existing value except when the abscissa is included between two

given limits a and b, all the other ordinates being supposed zero; so

that the curve has no form or trace except above the interval x = a to

x = b, and coincides with the x-axis in all other parts of its course."

Again, in another context, Fourier wrote of a function "subject to no

condition, and the line whose ordinate it represents may have any form;

for example, that of a contour formed of a series of straight lines and

curved lines." Thus the functions considered by Fourier were piecewise

continuous and had at most finitely many discontinuities in the modern sense.

 

20Fourier,_p. cit., 5417.

21See Riemann, Mathematische Werke, 218.
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In addition to subjecting discontinuous functions to the methods of

analysis, Fourier demonstrated that a function could be extended beyond

an interval of definition in more than one way. For example Fourier ob-

tained the three analytic expressions

x l 1

2 sin x - 2 sin 2x + 3 sin 3x - . . . ,

§~ _ .2— Sin x - _2'— Sin 3x + _"'2— Sin 5x - o o o 3

n 2 2
3 fl 5 n

and 32{-=%-£cosx-—§—c033x-...,

" 3 n

and remarked that "these three values of-g- ought not to be considered as

equal with refernce to all possible values of x; the three preceding develop-

ments have a common value only when the variable x is included between 0

1T

and-f. The construction of the values of these three series, and the

comparison of the lines whose ordinates are expressed by them, render sensible

the alternate coincidence and divergence of the values of these functions."22

In general, Fourier wrote, "It is remarkable that we can express by con-

vergent series. . .the ordinates of lines. . .which are not subject to a

continuous law. We see by this that we must admit into analysis functions

which have equal values whenever the variable receives any values whatever

included between two given limits, even though on substituting in these

two functions. . .a number included in another interval, the results of the

two substitutions are not the same. The functions which enjoy this preperty

are represented by different lines which coincide only in a definite portion

"23
of their course. . . Thus Fourier's conception of the notion of

 

22Fourier,‘gp, cit., 5225.

23Fourier, _p, cit., 5230.
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function was considerably more general than, say, that of d'Alembert.

It is of interest to consider how Fourier viewed the integrals of

discontinuous function when determining the coefficients of the corres-

ponding trigonometric series expansions. As might be expected, Fourier

argued geometrically: "We see that the coefficients a, b, c, . . . which

enter into the equation %-¢(x) - a sin x + b sin 2x + c sin 3x + . . .

are the values of definite integrals expressed by the general term

f¢(x) sin n x dx, n being the number of the term whose coefficient is

required. . . .if the function ¢(x) be represented by the variable ordinate

of any curve whatever whose abscissa extends from x - O to x - n, and if on

the same part of the axis the knowntrigonometric curve, whose ordinate is

y = sin n x be constructed, it is easy to represent the value of any

integral term. We must suppose that for each abscissa x to which corresponds

one value of ¢(x) and one value of sin n x, we multiply the latter by the

first and at the same point of the axis raise an ordinate equal to the pro-

duct ¢(x) sin n x. By this continuous operation a third curve is formed

whose ordinates are those of the trigonometric curve, reduced in proportion

to the ordinates of the arbitrary curve represented by ¢(x). This done,

the area of the reduced curve taken from x - O to x - n gives the exact

value of the coefficient of sin nx, and whatever the given curve may be

which corresponds to ¢(x), whether we can assign to it an analytical

equation, or whether it depends on no regular law, it is evident that it

always serves to reduce. . .the trigonometric curve, so that the area of

the reduced curve has, in all possible cases, a definite value which is the

value of the coefficient of sin fix in the development of the function."24

 

24Fourier, 22, cit., 5220.
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In another place Fourier remarked "Whatever be the function ¢(x), or the

form of the curve which it represents, the integral has a definite value. . .

The values of these integrals are analogous to that of the whole area. .

included between the curve and the axis in a given interval. . . . It is

evident that all these quantities have assignable values, whether the

figure of the bodies be regular, or whether we give to them an entirely

arbitrary form."25

This conception represents a break from the Eulerian tradition,

derived, of course, from.Newton, of defining a definite integral in terms

of its primitive. Fourier may have chosen to abandon the traditional

conception in deference to his geometrical viewpoint; it is more likely

that be conceived of the definite integral as an area for reasons given

below. In any case it should be remarked that, while unsatisfactory from

the modern standpoint, the notion of the definite integral as an area,

which was itself an essentially undefined concept, was adequate for Fourier's

purpose. That is, given the prevailing intuitive conception of area,

Fourier could integrate the functions he had in mind.

Fourier recognized that he had made a significant contribution. He

was aware of and recognized the relationship of his work to the researches

of d'Alembert, Euler, Daniel Bernoulli, and Lagrange. "If we apply these

principles to the problem of the motion of vibrating strings, we can solve

the difficulties which first appeared in the researches of Daniel Bernoulli.

The solution given by this geometrician assumes that any function whatever

may always be developed in a series of sines or cosines of multiple arcs

 

25Fourier,'_p. cit., 5229.
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Now the most complete of all the proofs of this proposition is that which

consists in actually resolving a given function into such a series with

determined coefficients,"26 a work which Fourier had accomplished. He

had contributed to the solution of a long-standing problem in the represen-

tation of functions in such a way as to have important implications for

analysis. "It had always been regarded as manifestly impossible to express

in a series of sines of multiple arcs, or at least in a convergent trig-

onometric series, a function which has no existing values unless the values

of the variable are included between certain limits, all the other values of

the function being zero. But this point of analysis is fully cleared up and

it remains incontestable that [such functions] are exactly expressed by

trigonometric series which are convergent or by definite integrals. We

have insisted on this consequence from the origin of our researches up to

the present time, since we are not concerned here with an abstract and

isolated problem, but with a primary consideration intimately connected

"27 It is little wonderwith the most useful and extensive applications.

that Darboux could refer to Fourier's Analytical Theory of Heat as a

"handsome work that one can place with justice beside the most perfect of

all scientific writings."

 

26Fourier,‘9_p. cit., 5230.

27Fourier,‘gp. cit., 5428.
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Cauchy

Before Cauchy there was no rigorous definition of the concept of

definite integral. Integration had been known from the time of Archimedes;

knowledge of the integral caluclus had been strengthened and extended,

especially by Newton and Leibnitz, and results of fundamental importance

had been obtained by its use. The basic concept had remained vague and

tenuous, however, due to inadequate statements of definition of limits and

limiting processes.28

Integration theory had followed complementary courses from Newton and

Leibnitz. Newton regarded integration as "the inverse method of fluxions,"

i.e., as the operation inverse to differentiation; Leibnitz conceived inte-

gration as a "calculus summatorius," or limiting summation. Both men were

familiar with the relationship between the two concepts, the fundamental

theorem of calculus. While both concepts were known, the view of the

integral calculus as the inverse of differentiation became predominant in

the course of the formal development. Euler, for example, in his

Institutiones calculi integralis, published in 1768, defined integral

calculus as the method of finding the relationship between functions given

the relationship between their differentials, and only used the concept of

a limiting summation for the approximate evaluation of integrals.

Of course, one of the interpretations of the definite integral was the

arithmetic expression of the geometric concept of area. Thus, as remarked

above, the concept of area was essentially undefined. moreover, in the

 

28See Bell, The Development g£_Mathematics,for these aspects of the

history.
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geometric-intuitive morass which prevailed in the absence of precise

definitions, and in the confusion between definition and interpretation, the

converse was also held to be true. That is, the definite integral was de-

fined by means of the concept of area. We have seen this in Fourier's

work. With Fourier, mathematicians "merely said which areas had to be

added or subtracted in order to obtain the integral f:f(x)dx."29

Cauchy wished to extricate analysis from the quagmires of intuitionism

and formalism. To this end he successfully carried out the implied program

of d'Alembert, who in 1754 had stated that "The theory of limits is the true

metaphysics of the differential calculus." Thus, Cauchy first stated a

definition of the concept of a limit and then defined the notions of

continuity, derivative, and integral in terms of the limit concept.

Cauchy revived the concept of limiting summation as the fundamental notion

of the integral calculus. He defined the definite integral for an explicit

class of functions, and demonstrated the existence of the integral for

members of this class. He proved the fundamental theorem of calculus; he

was first to create a theogy of integration, and indeed, a theory of

functions of a real variable.

Cauchy expressed his purpose in the introduction to his Qgg£g_

gfanalyse, published in 1821. "I have sought to give to the methods of

analysis all the rigor which is demanded in geometry, in such a way as to

never have recourse to reasons drawn from the generality [i.e., formalism]

of algebra. Reasons of this type, although rather commonly admitted, above

all in the passage from converging series to diverging series, and from real

 

29Lebesgue, "Sur le développement de la notion d'intégrale," 149.
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quantities to imaginary expressions, can only be considered, it seems to

me, as inductions which sometimes suggest the truth, but which bear little

relationship to the exact itude which is so prized by the mathematical

sciences. One ought even to observe that they tend to . . . attribute to

algebraic formulas an indefinite validity, while in reality most of these

formulas hold only under certain conditions, and for certain values of the

quantities which they contain. In determining these conditions and these

values, and in fixing in a precise manner the meaning of the notations which

I use, I shall dispel all incertitude." By attributing to formulas an

"indefinite validity" Cauchy meant, for example, an uncritical (formal)

application of the binomial theorem to obtain

-1-(1-2)‘1-1+2+4+8+16+..

Cauchy was almost apologetic. in breaking with the micawberian

tradition and attempted to justify his work. "It is true that in order to

remain constantly faithful to these principles I have been forced to admit

several propositions which will perhaps appear a little hard on first

glance. For example, I state in Chapter 6 that a divergent series has no

sum . . . . But those who read my book will recognize, I hope, that pro-

positions of this nature, which bring forth the happy necessity of placing

more precision in theories and of bringing useful restrictions to assertions

which are too general, turn to the profit of analysis and furnish several

subjects of research which are not without importance."3o

Cauchy's Course of Analysis, which he had given at the Royal

Polytechnical School, and had been encouraged to publish by Laplace and

 

30Cauchy, Cours d'analyse, iv.
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Poisson, included this definition of the concept of continuous function.

"Let f(x) be a function of the variable x and let us suppose that for each

value of x intermediate between two given limits, the function always

admits a unique and finite value. If, starting from a value of x included

between these limits, one attributes to the variable x an infinitely small

increment a, the function itself will receive the increment f(x + a) - f(x),

which will depend on the new variable a and the value of x. This having

been stated, the function f will be, between the two given limits, a con-

tinuous function of the variable x if, for each value of x intermediate

between these limits, the numerical value of the difference f(x + a) - f(x)

decreases indefinitely with a. In other terms, the function f(x) will be

continuous with respect to x between the limits given if, between these

limits, an infinitely small increment of the variable always produces an

infinitely small increment of the function itself."31

This definition is interesting in a number of aspects. First,

Cauchy probably did not intend his concept of function to be as general

as his.statement might be interpreted to imply. That is, it is unlikely

that Cauchy had in mind a function like the Dirichlet function,

0 if 0 s x s 1 and x is irrational

f(X) - .

1 if 0 s x s l and x is rational

even though it is admissible in terms of his definition of (single-valued)

function. Second, Cauchy defined the continuity of a function on an

interval rather than at a point. Discontinuity of a function was similarly

defined. ". . .when a function ceases to be continuous in a neighborhood of a

 

31Cauchy,‘gp, cit., 34.
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particular value of the variable x, then one says that it is discontinuous,

and that there is for this particular value a solution of continuity. Thus,

x - 0 is a solution of continuity for the function i3" Finally, in order

that Cauchy's definition of continuity of a function be meaningful, it is

required that the concept of the infinitely small be defined.

We turn to Cauchy's Resume gf_the Lessons Given §£_the Royal gglyf

such a definition. Indeed, it is here that Cauchy developed his theory of

limits. Cauchy remarked in the preface to this work "My principal goal

has been to reconcile the rigor which has been my guiding principle in my

Course g£_Analysis with the simplicity which follows from the consideration

of infinitely small quantities."

The first lesson of the test was devoted to "des variables, de leurs

limites et des quantities infiniment petites." Cauchy wrote ". . . a variable

quantity is that which successively receives several different values. . . ,

a constant quantity, on the other hand, is any quantity which receives

a fixed and determined value. When the values attributed successively

to the same variable approach a fixed value, so as to . . . differ from

it by as little as one would wish, then the latter is called the limit

of all the former. Thus, for example, the perimeter of a circle is the

limit toward which the perimeters of regular inscribed polygons converge

as the number of their sides is indefinitely increased."32 Cauchy then

1

sin a and (l + a); as a tends to zero. He
 

discussed the limits of

concluded the lesson by defining the concept of the infinitely small.

 

sur lg'calcul infinitesimal, l3.
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"When the successive values of the same variable decrease indefinitely,

that is, in such a manner as to go below [i.e., be less than] any given

number, then this variable becomes what one calls infinitely small . . .

A variable of this type has zero as its limit."33

In a subsequent lesson Cauchy defined the concept of continuous

function as he had in his Egggg’d'analyse. Given this he was prepared

to define in the 25th lesson, the definite integral of a continuous

function over a closed (finite) interval as the limit of a set of sums.

Cauchy was aware of the importance of his work in integration theory and

had singled it out for special attention in his preface. "In integral

calculus it has seemed necessary to me to demonstrate in general the

existence of integrals or primitive functions before develOping their

diverse prOperties. In order to accomplish this it has first been

necessary to establish the notion of integrals taken between given limits

or definite integrals . . ."

Cauchy's definition of definite integral is as follows. "Let us

suppose that the function y = f(x) is continuous with respect to the

variable x between two finite limits x = x0 and x s X. We will designate

by x1, x2, . . ., xn_1 new values of x interposed between these limits,

which always increase or decrease from the first limit to the second.

These values are used to divide the difference X - xo into elements

xl - x0, x2 - ’3’ ' ' ° ’ X - xn—l

which will be of the same sign. This stated, let us multiply each element

 

33Cauchy,‘_p. cit., 16.
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by the value of f(x) corresponding to the origin of the element, that is

to say the element x1 — xo by f(xo), the element x2 - x1 by f(xl), . . . ,

and finally the element X - xn-l by f(xn_1), and let

be the sum of the products thus obtained. The quantity S will evidently

depend on 1) the number n of elements in which the difference X - xo will

have been divided, and 2) the values of these elements and,in consequence,

the mode of division used. Now it is important to remark that if the

numerical values of the elements become very small and the number n very

large, then the mode of division will no longer have any but a very small

influence on the value of S."

Cauchy then proceeded to demonstrate this assertion, that is, that

the difference between sums S and 8' corresponding to partitions P and P'

is small when the norms of P and P' are small. It was in this demonstraf

tion that Cauchy appealed to the hypothesis of the (uniform) continuity 0f f(x)-

He then continued, "Let us consider simultaneously of two modes of division

of the difference X - x0, in each of which the elements of the difference

have very small numerical values. We will compare these two modes to a

third chosen in such a way that . . . all the values of x interposed in

the first two modes between the limits x0 and X be used in the third, and

will find that the value of S is charged very little by passing from the

first or second mode to the third . . . . Thus, when the elements of the

difference x - x6 become infinitely small, the mode of division has on S

only a negligible influence, and if one decreases indefinitely the numer-

ical value of these elements while augmenting their number, the value of S
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will finish by being sensibly constant, or, in other terms, it will finish

by attaining a certain limit which will depend uniquely on the form of the

function f(x) and the extreme values x0 and X attributed to the variable x.

This limit is what one calls a definite integral."34

Given this definition, Cauchy then went on to develop the "diverse

prOperties" of the integral in succeeding lessons, including, as has been

noted, the fundamental theorem of calculus. He also generalized the defini-

tion of definite integral to unbounded functions. In similar fashion,

Cauchy integrated piecewise continuous functions by integrating over those

subintervals in which there was no point of discontinuity. Thus, Cauchy's

theory of integration was sufficiently general to integrate the functions

he had in mind, i.e., continuous and piecewise continuous functions.35

Stated differently, Cauchy's theory of integration was adequate for his

purposes.

It remains to attempt to determine why Cauchy abandoned the pre-

vailing conception of integration as the inverse of differentation. This

is an important question, it seems to me, since Cauchy's definition of

definite integral as a limit of sums decisively influenced the course of

integration theory in its subsequent deve10pment. Some insight into this

matter is furnished by Cauchy's "General observations and additions,"

published in 1823 as an addendum to an earlier memoir on the integration

of differential equations. ". . . we will consider each definite integral,

 

34Cauchy, 22, cit., 122.

35See Hawkins, Lebesqués Theory o£_Integratign, 12.
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taken between two limits, as being nothing else than the sum of the infinitely

small values of the differential eXpression placed under the sign I which

correspond to the diverse values of the variable contained within the given

limits. When one adapts this manner of viewing definite integrals, one

shows easily that such an integral has a unique and finite value, whenever

the two limits of the variable are finite quantities, and the function under

the I sign is finite and continuous in the interval between the limits."36

Later, and more importantly, Cauchy wrote in a pg§£.scriptum "One is

naturally led by the theory of quadrature to consider each definite in-

tegral, taken between two real limits as being [the limit of a set of sums].

But, it seems to me that this manner of viewing a definite integral should

be adapted by preference, as we have done, because it suits equally all

cases, even those in which one cannot generally pass from the function

placed under thesign f to the primitive. It has, in addition, the ad-

vantageof always furnishing real values for the integrals which correspond

to real functions. Finally, it permits us to separate each imaginary

equation into two real equations. All this would not take place if one

were to consider the definite integral, taken between two real limits, as

necessarily equivalent to the difference of the extreme values of a primi-

tive or even discontinuous function, or if one caused the variable of one

limit to pass to another by a series of imaginary values. In these last

two cases, one would often obtain imaginary values for the integral, like

those given by Mr. Poisson."37

 

36Cauchy, 'bbservations générales et additions" S71.

37Cauchy,‘gp cit., 590.
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Recall that if f(x) is defined on [a,b] then F(x) is a primitive

of f(x) on [a,b] if and only if F'(x) - f(x) for every xe(a,b). Also recall

a theorem of Riemann's theory of integration of the form; if f(x) is in—

tegrgble on [a,b] and if f(x) has a primitive on [a,b], then a primitive

is f(t)dt+C. This given, consider the function

a

1 if - l §_x'§.0

f(x) -

21£0<x;1.

1

Then f(x) is Cauchy integrable on [-l,1] and I f(x)dx - 3. Now if f(x) has

-1

a primitive on [-1,1] it must be

x+C if —1 §_x‘§.0
x

F(x) - f(t)dt+C -

_1 2x+C if 0 < x < 1.

However, F'(x) does not exist at x - 0 and therefore f(x) has no primitive

on [-l,l]. This is the kind of function of which Cauchy was undoubtedly

thinking when he referred to those cases "in which one cannot generally

pass from the function placed under the sign I to the primitive."

Cauchy perceived that the integral of functions such as the one

defined above cannot be obtained by direct appeal to the conception of

integration as the inverse of differentiation. Fourier's assertion that

an arbitrary function admits representation by a trigonometric series whose

coefficients are given as definite integrals necessitated, however, the

integration of such "arbitrary" functions. Indeed, it was probably

Fourier's recognition that such functions cannot be considered "as neces-

sarily equivalent to the difference of the extreme values of a primitive"

which caused him to abandon the traditional conception of the definite integral
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and to hold in its stead the notion of definite integral as an area.

I should like to conjecture that Fourier's work was an import-

ant influence in Cauchy's reformulation of the concept of definite

integral. That is, Cauchy recognized the necessity, derived from

Fourier's assertions, to integrate functions for which the traditional

conception was inadequate, and yet for which an integral could be defined

by returning to Leibnitz's conception of the integral as a limit of

sums.

Cauchy stated that he was not aware of the work of Fourier until

after August, 1817. In a note added in 1825 to his 1814 publication

"Memoir on definite integrals," Cauchy wrote, with respect to certain

"reciprocal" properties of functions, "The remarkable prOperties of

these functions and the advantages offered by them in the solution of

a great number of problems furnished me the subject of a note in the

Bulletin de la Société philomathique of August, 1817. It is necessary

to remark that when I wrote this note I did not yet know of any memoirs

in which the . . . reciprocity is deduced or used, other than those

of Mr. Poisson and myself . . . . Since that time, Mr. Fourier com-

municated to me his researches on heat, presented to the Institute in

1807 and 1811 and only published in 1819. I there saw the same formula

and I hastened to render . . . the justice due to him in a second note

printed in December, 1818."38 Of course other obvious possibilities

with respect to Cauchy's recognition of such necessity are independent

work or communication through an intermediary.

In support of my conjecture I should remark that there is no

 

38Cauchy,"Memoire sur les intégrales définies? 300.
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evidence for the conventional assertion that Cauchy conceived of the

definite integral as a limit of sums as early as 1814, at least in

his "Memoir on definite integrals." Cauchy did many wonderful things

in this monograph, but to write a new definition of definite integral,

even implicity, was not one of them. Indeed, Cauchy himself did not

contend to so early a priority. In‘asubsequent paper, for

example, Cauchy began "In a.memoir presented to the Academy of

Sciences on October 28, 1822, . . . I showed how one can fix, in all

possible cases, the sense that ought to be attached to the notation

£:;(x)dx which represents a definite integral . . . ."39

The question of Cauchy's conception of definite integral being

influenced by Fourier series is interesting and, in my Opinion, deserv-

ing of additional research. Whatever the fate of my conjecture, how-

ever, it is clear that Cauchy began the long work of carrying out the

mathematical development implied by the conceptions of Fourier.

Dirichlet

The first rigorous proof that the Fourier series of a function

converges to the function was given for a general class of functions by

Lejeune-Dirichlet. Dirichlet presented his proof in his memoir "0n the

convergence of trigonometric series which represent arbitrary functions

between given limits," published in 1829. In his introductory remarks

 

39Cauchy,'Mémoire sur les intégrales définies prises entre

des limites imaginaires:'265.
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to this memoir Dirichlet observed that the property of convergence

of Fourier series "had not escaped the illustrious geometer who had

Opened a new field of study for the application of analysis by intro-

ducing the manner of expressing the arbitrary functions with which we

are dealing; this is found in the monograph which contains his first

researches on heat. But to my knowledge, no one has given up to the

"40 Dirichlet was evi-present time a general demonstration of this.

dently unaware of several earlier unsuccessful attempts to give such

a demonstration, most notably by Poisson in 1823 and in and after 1826

by Cauchy,41 for he continued "I know nothing on this subject except a

work credited to Mr. Cauchy which is part of the Memoirs of the Academy

of Sciences of Paris for the year 1823." Of course Dirichlet was

familiar with Fourier's attempts to demonstrate convergence of such

series; indeed it was his acquaintance with Fourier in Paris which

had excited his interest in the theory of Fourier series.

After giving a critique of Cauchy's work which seemed "to leave

no doubt to its insufficiency," Dirichlet began his own demonstration

by examining "the most simple case, to which all others can be

d."“2reduce First he proved the following lemma: "If 0 :.g < h.§ 1r
_. ’

2
 

40Dirichlet, "Sur la convergence des series trigonometriques qui

servant a représenter une fonction arbitraire entre des limites donnees,"IL57.

41See, for example, Cauchy, "Mémoire sur 1es dévelOpements des

fonctions en series periodiques," 196.

42A detailed account of Dirichlet's proof is given by Robson,

The Theog g_f_ Functions 93 3 Real Variable and the Theory 9_f_ Fourier's

Series, vol. 2, 5323 and 328.
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then the integral

h

f(e) s—i—fifide.

s

in which the function f(B) is continuous and monotone increasing or

monotone decreasing over the interval of integration, converges to a

limit as 1 tends to infinity. This limit is zero when g + O and is

g-fm) when g - 0."

Given this, Dirichlet considered the Fourier series

1? 1T 1T

22!; ¢(o)da +%- ¢(o)cos ado cos x 4-7::- ¢(o)sin ado sin x+..

-n —n -n

of ¢(x),_a function having "a finite and determined value for each

value of x included between -n and n." Dirichlet expressed the sum

of the first 2n+1 terms of this series in the closed form

1 sin(n + %9(o-x)

7) ;' ¢(a) 1 do.

2 sinaia-x)

 

-TT

Writing this integral as the sum
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rn+x
n-x

81D 8
sin 8

JO
0

 

Dirichlet obtained the limits of these integrals with increasing n by

use of the lemma, appealing to the lemma a finite number of times for

those functions which "present several solutions of continuity . . .

and . . . have several maxima and minima" in the interval of integration.

Dirichlet concluded that "the [convergence of the] integral (7) . . . proves

that the [Fourier] series is convergent . . . and equal to %-(¢(x+0) +-¢(x-O))

for each value of x included between -n and n, and for each of the extreme

values n and -w is equal to %{¢(n-O) + ¢(-n+0))"43 for those functions

"all of whose values are finite and determined, and which have only a

finite number of solutions of continuity and maxima and minima between

the limits -n and n."44 Thus Dirichlet completely solved the problem of

convergence of Fourier series representation of the "arbitrary" functions

of Fourier and Cauchy.

It is instructive to study Dirichlet's use of Cauchy's conception

of continuity in the proof of his lemma. Such study shows that the proof

does not require continuity of the integrable function f(x) but only

that it be monotone in an interval about x where, of course, xe[0,%1.

Given Cauchy's conception of definite integral of a piecewise continuous

 

“Recall ¢<x+0> - 11M (x+k) and ¢(x—0) - 11m, (x—k).

k+0 k+0

k>0 k>0

44Dirichlet, 22, cit., 168.
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function, Dirichlet required a condition to ensure the piecewise

continuity and hence integrability of f(x) and the products f(x) cos mx

and f(x)sin mx. Thus Dirichlet stated his hypothesis of continuity

in order to assure the existence of the definite integrals with which

he worked.

Dirichlet wished to obtain more general sufficient conditions

for convergence, i.e., to relax the restrictions on f(x). He believed

the question of convergence of Fourier series of more general functions

could be reduced to the above "most simple case." "It remains to con-

sider the case where the assumptions that we have made with respect to

the number of solutions of continuity and maxima and minima cease to

hold. These singular cases can be reduced to the ones we have consid-

ered. In order that the integral (7) have a meaning when the solutions

of continuity are infinite in number it is only necessary that the

function . . . ¢(x) be such that if one designates by a and b two

arbitrary quantities included between -N and n, one can always place

between a and b other quantities r and s which are sufficiently close

together that the function remains continuous in the interval from

r to s. The necessity of this restriction is easily seen by consider-

ing that the different terms of the series are definite integrals and

going back to the fundamental notion of integral. Thus one sees that

the integral of a function signifies nothing except insomuch as the

function satisfies the preceding stated condition." Dirichlet con-

tended, therefore, that the only requirement to be satisfied by the

function is that it be integrable, and a sufficient condition for in-

tegrability is that the set of points of discontinuity of the function

should be nowhere dense.
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Dirichlet continued, "An example of a function which does not

fulfill this condition is [the function] ¢(x) equal to a fixed con-

stant c when the variable x is a rational number and equal to another

constant d when the variable is an irrational number. The function

thus defined has a finite and determined value for every value of x;

however, it cannot be substituted in the series, for the different

integrals which enter into the series lose all meaning . . . ." Thus

Dirichlet identified a function so discontinuous as to fail to be

integrable. Dirichlet's example had little immediate impact on integra-

tion theory, however, for the concept of an everywhere discontinuous

function was not yet taken seriously. Indeed, this was "an age in which

such pathological functions appeared to be completely devoid of in-

terest,"45 there being no necessity to integrate such functions.

Dirichlet concluded his memoir by remarking "the restriction

that I have just made and that of not becoming infinite are the only

restrictions to which the function ¢(x) is subject . . . . But to

demonstrate this, in order that the work be done with all the clarity

that one could desire, requires several details related to the funda—

mental principles of infinitesimal analysis which will be presented in

another note and in which I will also pursue some other rather remark—

able prOperties of [Fourier] series."

Dirichlet never published the prOposed subsequent note. He con-

tinued to exert an influence upon the ensuing development, however,

not only by the implications for the theory of trigonometric series

 

aSBourbaki, Elements gfhistoire des mathématigues, 247.
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expressed in his 1829 memoir, and again in a memoir published in 1837,46

but also in his capacity as a teacher. In particular, Dirichlet

excited an interest in this theory in Riemann while the latter was

his student in Berlin, an interest which was expressed in Riemann's

thtingen inaurgural dissertation, to which we now turn.

Riemann

Dirichlet determined sufficient conditions for the representa-

tion of a function by a Fourier series. Riemann sought to establish

necessary conditions for such representation in 1854 in his Habilita-

tionsschrift "On the representation of a function by a trigonometric

series."47 As will be seen, Riemann's work was in some respects in-

complete, and perhaps for the reason the memoir remained unpublished

during his lifetime. It was printed in 1867 on the authority of

Dedekind. Dedekind wrote in an introductory footnote, "This treatise

was presented in 1854 by the author to obtain appointment at the

University of thtingen ... Although the author seems not to have in-

tended to publish it, the present edition of this treatise in its

original form seems to be justified by the high interest of the subject

matter, and by the form of treatment of the most important principles

of the infinitesimal calculus ..."

Riemann viewed his paper as consisting of "two essentially

different parts. The first part is a history of the investigation ...

 

46Dirichlet,"Ueber die Darstellung ganz will-khrlicher Functionen

durch Sinus - und Cosinusreihen ," 152.

47Riemann, Mathematische Werke, 213.
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of arbitrary (graphically given) functions and their representation

by trigonometric series. In its composition I was permitted to utilize

a few hints of the famous mathematician to whom is owed the first pro-

found work on this subject. In the second part I will present research

regarding the representability of a function by trigonometric series

which includes those cases which up to now have not been solved. [In

this respect] it was necessary to introduce a short discussion of the

concept of definite integral ... Thus Riemann's more general con-

ception of definite integral was derived in a context of necessity

imposed by the problem of trigonometric series representation of

functions. The "famous mathematician" referred to was Dirichlet, to

whom Riemann had turned for information in the preparation of the

historical section of his Habilitationsschrift.

In this first part, Riemann reviewed the development of the

notion of trigonometric series representation of functions from

d'Alembert to Dirichlet. He concluded his survey of the history with

a statement of Dirichlet's sufficient conditions for such representation:

the function must be integrable, have only finitely many maxima and

minima, and "where the function suddenly changes values assumes

the average of the mutual limit valuesf' That is, if xb is a point of

discontinuity of f(x), then f(xo) -%'(f(xo + 0) +-f(xo-O)). Riemann

remarked "whether and when a function which does not fulfill these

three conditions can be represented by a trigonometrical series re-

mains undecided by these researches."48

Given the success of Dirichlet's work with respect to functions en-

countered in applied problems, and which therefore had been of primary

 

“aRiemann, gp,cit., 223.
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interest, Riemann attempted to justify his own more general investiga-

tion of trigonometric series representation of functions in terms of

its relationship to pure mathematics. "For all our ignorance concern—

ing the manner in which the forces and states of matter vary with time

and place in the infinitely small, we are able to hold as certain that

the functions to which the researches of Dirichlet do not apply fail

to express physical processes. Nevertheless, those cases not considered

by Dirichlet seem to merit attention for two reasons. First, as

Dirichlet himself remarked at the end of his treatise, this subject

matter stands in the closest relationship with the principles of the

infinitesimal calculus and it may serve to bring to these principles a

greater clarity and certitude. In this respect the study of this sub-

ject matter has an immediate interest. Second, the application of

Fourier series is not restricted to physical researches; it is also

applied with success in a field of pure mathematics, the theory of

numbers, and here precisely those functions whose representation by

trigonometrical series was not examined by Dirichlet seem to be of the

greatest importance. Toward the end of his treatise Dirichlet promised

to return to these cases but this promise has remained unfilled ..."49

As a preliminary to his work with trigonometric series, Riemann

proposed a more general concept of definite integral. "The uncertainty

which still exists in a few fundamental points of the theory of the

definite integral forces us to make some introductory gtatements regard—

ing this concept ... Thus, what do we understand by f(x)dx ?"

a

Riemann answered this question as follows

 

49Riemann, 22,cit., 224.
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Let 8.x1,x2,...,xn_l,b be a partition of the interval [a,b] and'denote

xl-a by 61 , x2-x1 by 62,..., b-xn_1 by 6n and by en"einen positiven

achter Bruch," i.e., a given position fraction. Then "the value of

the am

will depend on the choice of the interval 6 and the magnitude 6. If

the sum ... approaches a limit A when the 6's become infinitely small,

b

then this value is called the definite integral f(x)dx. If, on the

a

contrary, the sum does not have this prOperty then the integral is not

defined."50

Given this definition of the concept of definite integral,

Riemann turned to the unresolved question of integrability of Dirichlet.

"Let us shed light secondly as to the extent of validity of this con—

cept: in which cases does a function admit and in which cases does a

function not admit integration?"

Riemann established necessary and sufficient conditions for

integrability by arguing in this way. "Let us ... first suppose that

the sum S converges if all 6's become infinitely small. We will

designate the greatest divergence of the function between a and x1,

that is, the difference between its maximal and minimal values in this

interval, by D1; between x1 and x2 by D2,..., and between xn_1 and b

by Dn' Then

GlDl + 62D2+...+6nDn

 

5oRienann,g_g.cit., 225.
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must become infinitely small with the magnitudes 6. In addition, we

assume that as long as all 6's remain smaller than d, the greatest

value this sum may attain is A; therefore A is a function of d which

decreases with d and becomes infinitely small with this value. Now

let the total length of the intervals in which the variation [of the

function] is greater than 0 be 3. Then the sum 5 D1+<52D2+...+5nDn is
1

greater than or equal to 08. Consequently

as j_61D1+62D2+...+5nDn'§.A, and hence a j_%-. Now-% can,

if 0 is given, be made arbitrarily small by a suitable choice of the

magnitude d; the same is true for s, and therefore we obtain the

following:

"In order for the sums S to converge as the 6's become infinitely

small, it is required, in addition to the finiteness of the function,

that the total length of the intervals in which the amplitudes are

greater than a, no matter what 0 may be, can be made arbitrarily small

by a suitable choice of the magnitude d."

Riemann also held the converse to be true. "If the function

f(x) is always finite and if with infinitely decreasing magnitudes 6,

the total length s of all the intervals in which the amplitude of f(x)

is greater than the given magnitude 0 becomes infinitely small, then

the sums S converge if all magnitudes 6 become infinitely small. For

those intervals in which the variations of f(x) are greater than 0

contribute less to the sum 61D1+62D2+...+6nDnthan s multiplied by the

greatest variation in the function between a and b, which is finite;

the other intervals contribute less than 6(b-a). Obviously we can
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assume 0 at first arbitrarily small, and then define the length of the

interval so that s becomes arbitrarily small, by which the sum

61D1+62D2+...+6nDn is given any chosen smallness, and consequently the

value of the sum can be enclosed in arbitrarily chosen narrow limits.

"Thus we have found conditions which are necessary and sufficient

for the sums (Eta converge with infinitely decreasing magnitudes 5,

and therefore, for the existence of the integral of a function f(x)

from a to b."51

In modern terms, a function f(x) is Riemann integrable on [a,b]

if and only if the sum

n

X 51D1

1-1

tends to zero as the norm of the partition P tends to zero, where the

61 denote the lengths of the subintervals of [a,b] determined by P,

and each Di designates the oscillation of f(x) on the respective sub-

interval of length 61.

We should observe that Riemann asserted necessary and sufficient

conditions for integrability of a function on an interval without re-

quiring that the function satisfy a condition with respect to continuity.

Indeed, Riemann immediately gave an example of a discontinuous function

not integrable in the sense of Cauchy but which admits a Riemann

integral.

"Having examined the ... definite integral in general, i.e.,

without special assumptions as to the nature of the function to be in—

tegrated, we should apply this investigation in special cases ... and,

 

51Riemann,lgg.c t., 227.
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at first, to functions which are infinitely often discontinuous

between any two limits however close together. Since these functions

have not been considered anywhere it will be good to start with a

specific example." Riemann's example is the function

f(X)=-Z L121.

n=l n2

where (nx) denotes the positive or negative difference between nx and

the nearest integer, or is zero if nx is the midpoint of consecutive

integers. This function converges for every x, and is discontinuous

for every x of the form x s %E-where m is an integer relatively prime

to Zn. This follows since, as Riemann wrote, if x - %;" then

1 1 1 2
f(x+0) = f(x) --—— (1 +—+__.+”.) ‘ f(x) __1r__

2 9 25
2

2n
16n

1 1 1 ,2

and f(x-0) = f(x) +--(1 +—+-—-+...) = f(x) +-— .
2 9 25 2

2n
16n

If x is not of this form, then f(x+0) - f(x-O) - f(x), i.e., x is a

point of continuity of f. Thus the points of discontinuity of f form

a dense subset of the points on the real line. The function f is

Riemann integrable on any finite interval [a,b], however, since the

2

 

oscillation of f at any point of discontinuity is E—2 and there are

2 8n

only finitely many values n such that "2 >6. Thus, in the

8n

interval [a,b] there are only finitely many points at which the oscilla-

tion of f is greater than 6, from which it follows that for a

partition P of [a,b] of sufficiently small norm, the sum 2 61Di will

be arbitrarily small. Riemann's example is obviously not Cauchy
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integrable; thus the class of Riemann integrable functions is more ex-

tensive than the class of Cauchy integrable functions, and encompasses

the latter as a proper subset. Notice, however, that the Dirichlet

function is not Riemann integrable.

Having completed his definition and discussion of a more general

conception of definite integral, Riemann returned to the objective of

his Habilitationsschrift, trigonometric series representation of func-

tions. In introducing his "Research on the representability of a

function by a trigonometrical series without special assumptions regard-

ing the nature of the function," Riemann stated his intention in this

way. "Up to now works on this subject have had the purpose of donon-

strating the validity of Fourier series representation of functions

which arise in applied work. Thus the proof could begin for an entirely

arbitrarily assumed function and later, the course of the function

could be subjected to . . . restrictions, provided these would not

impair the first purpose, i.e., to demonstrate representability by

means of Fourier series. The former works demonstrate that if a function

has this and that pr0perty then it is describable by the series of

Fourier. We will consider the converse question; if a function is

represented by a trigonometrical series, then what follows out of this

as to its course, that is, to changes in its values corresponding to

changes in its argument?"52

There are several aspects of this work which are of particular

interest.53 First, Riemann investigated trigonometric series

 

52Riemann,‘gp_.cit., 230.

53See Hobson, The Theory of Functions g£“g_Real Variable and

the Theory'2£_Fourier Series, vol. 2, 5420-426 for statements and

proofs of Riemann's theorems.
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representation of functions in general rather than restricting his

attention to the special case of Fourier series. That is, in consid-

ering the representation of a function f(x) in the form

f(x) = a0 + alcos x + b1 sin x + a2cos 2x + bzsin 2x+...,

Riemann made no a priori assumption regarding the coefficients an and

bn; they might or might not be the Fourier coefficients of f. Riemann

was first to study the general case, and demonstrated the distinction

between the two types of series by giving several examples of trigono-

metric series which are not Fourier series.

Riemann utilized in a number of his proofs a new method of

summing a trigonometric series. Thus, Riemann considered the sum of

the series

7) A+A0 1+A2+ .0.

a

where Ao =-§Q ,A1 a a cos x + blsin x, ... , and lim A.u = O, in the form

n“
1

lim lim A0 + A1(_§_____inh)2 + A2 (£19159 +...+An(°-3-‘—-—-“huh)2

h+0 n+0°

This repeated limit is equal to the sum obtained at any point at which

the series 7) converges in the usual manner, and may exist at points

at which the series 7) fails to converge in the conventional sense.

Riemann introduced, therefore, a more general conception of convergence

of a trigonometric series.

Riemann was successful in obtaining necessary and sufficient
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conditions such that a function be represented by a trigonometric

series. In particular, Riemann proved that a function f(x) of period

2w is represented (in the sense above) by a series of the form

{I}a
0

§-'+ 4:1 (ancos nx + bnsin nx)

where lima.n = lim bn = 0 if and only if

“90:: n+0!)

1) there exists a continuous function F(x) such that

lim F§x+o+§) + F(x-o-Q) - F(x+oe§) - gx -o+B) a f( )

a.s+o 40:8 x

and 2) for arbitrary constants b and c,

C

1&9 “2 F(x)cos u(x—a)A(x) dx = 0

u b

where k(x) is a function such that A’(x) exists in (b,c) and

vanishes at b and c, and Xv(x) has only a finite number of

maxima and minima.

Of course this trigonometric series need not be a Fourier series.

Finally, Riemann ended his treatise by exhibiting a number of

remarkable examples of functions with special properties. One of these

is the function f(x) defined by

f(x) - d(xvcos 31:) where 0<v<%- .

dx

 

This function has infinitely many maxima and minima, is Riemann integrable,

and yet, because the series does not converge, does not admit repre-

sentation by a Fourier series. The last of Riemann's examples we will
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consider is a function which is not integrable and yet is represented

by a trigonometric series. The function is the series

f(x)=- Z 1:131

n a l

which exists for every rational x and is represented on this domain by

the trigonometric series

 

6

°° (- (-1 ))

i Z 2 9 sin 2n x,

n - l n

where the summation with respect to 9 is over all divisors 6 of n.

The function f(x) is not integrable since it is unbounded on any in-

terval, however small.

Riemann did not achieve his objective of finding necessary con-

ditions for the convergence of a Fourier series. This fact, together

with the many avenues Opened but not explored may, as suggested above,

have influenced Riemann to withhold publication of his Habilitations-

schrift. Nevertheless, the work is a cornerstone, both with respect to

Riemann's accomplishment and its implications for the subsequent de-

,velOpment of real analysis. In addition to defining a more general

intergal and identifying a new field of investigation in the study of

trigonometric series, Riemann initiated the creation of a theory of

discontinuous functions. Dirichlet's definition of an everywhere dis-

continuous function had received little attention; Riemann's examples

of integrable functions whose discontinuities are dense in every interval

could not be ignored. Perhaps Dedekind envisaged the influence to be

worked by "the high interest of the subject matter and . . . form of
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treatment of . . . principles of the infinitesimal calculus . . ." of

Riemann's treatise when he caused its publication. Riemann's work was

an important contribution to the stream of ideas in which Dedekind

had an intense interest, the study of the continuum of real numbers

and the "arithmetization of analysis." As one aspect of this study,

the develOpment of a theory of measure of sets of real numbers had

special significance for the evolution of integration theory, and it

is this development to which we turn our attention in the next chapter.

"As has been said of the poet Coleridge, so it could be said

of Riemann, he wrote but little, but that little should be bound in

gold."54

 

54Van Vleck,"The influence of Fourier's series upon the develOpment

of mathematics,"116.
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Chapter 2

0n the Creation of a Theory of Measure

Heine, Cantor, Hankel and Smith

Many influences contributed to the creation of a theory of

measure of sets of real numbers. As might be expected, the theory of

Fourier series played a central role at the inception of this develOp-

ment.

Dirichlet had contended that the single requirement to be satis-

fied by a function in order that it admit representation by a Fourier

series is that the function possess a definite integral, and had

stated that the set of points of discontinuity of the function should

be nowhere dense as a sufficient condition for integrability. In his

"De explicatione per series trigonometricas...," published in 1864,

Lipschitz attempted to extend Dirichlet's results with respect to

Fourier series representation of functions. "The series which procede

according to the sines and cosines of multiples of an angle, by the aid

of which one develops an arbitrary function of a single variable, have

for a long time been used in different branches of mathematics by all

those who are occupied with these questions. This is why it belongs to

the mathematician to study in depth the extended field of these functions

and to trace the limit between those which can be develOped in trigono-

metric series and those which do not possess this property. The eminent

Dirichlet has acquitted himself of this charge, without speaking of the

efforts made before by others, in his celebrated memoir 'On the con-

vergence of trigonometric series. . .'" Lipschitz noted that Dirichlet
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had left consideration of the case of functions with infinitely many

discontinuities and maxima and minima to a later paper and remarked,

"As it is entirely regretable for [our science] that this work has

never seen the day, I propose to rediscover the traces of these

researches..."1

Lipschitz argued that "the functions ¢(x) which do not satisfy

[Dirichlet's] conditions can be distributed into the three following

classes; in the interval (-fi,n) they take infinite values, or possess

an infinite number of discontinuities, or an infinite number of maxima

and minima. It suffices to examine each of these three cases, so to

speak, in itself, the combination of two or three of these cases modify-

ing the form rather than the nature and the prOperties of the series

[of Fourier]."

In considering "the second case, in which the function ¢(x)

possesses in the finite interval (-fl,fl) an infinity of discontinuities,"

Lipschitz asserted "it is necessary that, if one designates by a and b

two numbers placed between -W and fl, one can always find between a and

b numbers r and s such that the function remains finite and continuous

on the interval (r,s). One deduces from this, by an apprOpriate reason-

ing, that one can partition the interval (-n,n) into a finite number of

partial intervals of which the two kinds are analogous to the two kinds

of the first case." Lipschitz's "apprOpriate reasoning" was evidently

 

1Lipschitz, Recherches sur le développement en series trigono—

metriques des fonctions arbitraires d'une variable et principalement

de celles qui, in un intervalle fini, admettent une infinité de maxima

et de minima (Translation from the Latin by Paul Montel in Paris), 283.
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intended to demonstrate that the nowhere dense set of points of discon-

tinuity of ¢(x) admits only a finite number of limit points x,...,xn.

Hence Lipschitz delineated two kinds of partial intervals, those of a

"first kind" which included the limit points x1....,xn, and therefore

all but a finite number of points of discontinuity of ¢(x), and those

of "the space remaining, . . .composed of a finite number of intervals

of a second kind, in each of which the function ¢(x) satisfies the

conditions imposed on the function f(B) in [Dirichlet's] theorem."

The integral of ¢(x) can be defined on the intervals of second

kind as an improper integral in the Cauchy sense (Lipschitz was probably

not aware of Riemann's generalization of Cauchy's conception of definite

integral); given this Lipschitz defined the integral of ¢(x) in the form

n

¢(x)dx = o §8mrto X ¢(x)dx

i 1

-1T i=1 x + a

1-1 1

where the (xi-1+ai’ xi-Bi) are the intervals of second kind. Thus

Lipschitz contended to have defined a definite integral for functions

¢(x) of this form, and therefore to satisfy Dirichlet's requirement

of integrability in order that the functions ¢(x) admit representation

by Fourier series.

Lipschitz's work is of interest here in that it called attention

to the set of limit points of a nowhere dense set. Only later was it

discovered that such a set might contain infinitely many elements.

Another influence which contributed to the recognition of more

general point sets was the discovery of the importance of uniform con-

vergence in the interchange of integration and summation of infinite
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series. Dirichlet had shown that under certain conditions a function

admits representation by a trigonometric series whose coefficients are

the Fourier coefficients. The uniqueness of such representation was

demonstrated by assuming that if the series

(D

(1) :2.+ I (an cosnx + bnsin nx)

2 n=1

converges to zero for every xe (—n,n), then the coefficients an and bn

are identically zero for every n. This conclusion was obtained by

multiplying the series by cos nx or sin nx and integrating term by term

between -n and n. However, the validity of this argument is called into

question if the convergence of the series is not uniform.

Heine considered the problem of uniqueness of representation of

trigonometric series corresponding to functions in his "On trigonometrical

series," published in 1870. "Until the most recent time it was believed

that the integral of a convergent series, whose members remain finite

between finite limits of integration, equals the sum of the individual

members, and only Mr. Weierstrass has noticed the proof of this theorem

requires not only that the series converges in the interval of integra-

tion, but that it converges uniformly. Thereby the theorem [that] a

finite function given between -n and n can be developed in at most one

way in a trigonometrical series ... has become untenable...."

Heine was successful in demonstrating the uniform convergence

"in general" of the Fourier series of a function satisfying

Dirichlet's conditions. He stated his work as follows: "the
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Fourier series of a finite function f(x), which has a finite number

of maxima and minima, that is, those series of the form (1) in which

ram . f(x)cos mx dx nbm - f(x)sin mx dx

...‘n
.7]

converges uniformly whenever f(x) is continuous between -n and n in-

clusive, and f(n) a f (-fl); in all other cases it is only uniformly

convergent in general.

"The expression 'in general' will be used here and in the follow-

ing if the exception is supposed to refer to a finite number of points.

The exceptional places in the above theorem . . . are neighborhoods of

the points of discontinuity . . . ."2

Heine returned to the problem of uniqueness of representation of

trigonometric series in his second theorem. He proved that if a func-

tion is represented by a trigonometric series which converges uniformly

in general, then this series is unique. He expressed this theorem in

an equivalent form. "If a trigonometric series converges to zero

uniformly in general from -n to n,... then all coefficients a and b

must vanish, and the series therefore represents zero everywhere." The

possibility of demonstrating this theorem for the case in which the

series does not represent the function at a finite number of points

was suggested to Heine by Cantor, one of Heine's colleagues at the

 

2Heine, Uber trigonometrische Reihejn_, 3.
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University of Halle. "I was encouraged by Mr. Cantor in Halle, whom

I made acquainted with my research, to extend [the theorem] to the case

in which coincidence in the points of discontinuity is no longer de-

manded...."

Of course it was still possible that a function uniquely repre-

sented by an in general uniformly convergent trigonometric series might

be represented by another trigonometric series not possessing this

prOperty. That is, with reference to Heine's second theorem, there

might exist a non-uniformly convergent trigonometric series converging

everywhere to zero. Thus the uniqueness of representation of trigono-

metric series still could not be inferred. Heine recognized this dif-

ficulty and commented upon it. "...it is not yet known if a series which

represents a continuous function must converge uniformly.... This

subject is not enlightened even in the following...."

Stimulated by Heine's research, Cantor continued the study of

the problem of uniqueness of representation by trigonometric series. In

so doing, Cantor not only completely solved the uniqueness problem,

but initiated the study which eventually led to his creation of the

theory of sets. Cantor's first paper, "On a theorem concerning trig-

onometrical series," and dated March 20, 1870, contained a proof of the

theorem "If two infinite sequences of constants al, a2, a3,... and

b1, b2, b3,... are of such a nature that for every value of x in a

given interval (a,b) the limit of (an cos nx + bn sin nx) is zero with

increasing n, then an and bn converge with increasing n to limit zero."

Cantor remarked "if this theorem is applied to trigonometrical series
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b

then it yields the result that if the series -2-+ alsin x + blcos x + ...
2

+ an sin nx + bn cos nx + ... is convergent for each value of x in an

interval (a<x<b) of the real line, then the coefficients an and bn become

infinitely small with increasing n,"3 and this without any requirement

of uniform convergence.

Having demonstrated this, Cantor turned his attention to the

uniqueness of representation of a function by a trigonometric series.

In a memoir titled "The proof that a function f(x) which is given for

every real value of x by a trigonometrical series can be represented

in this form in one way only," and dated April 6, 1870, Cantor wrote,

"If a function f(x) of a real variable x is given by a trigonometrical

series

f(x) - ;2-+ (alsin x + blcos x) + ... + (ansin n x + bncos nx)+...,

which is convergent for every value of x, then it is important to know

if there are other series of the same form which also converge for

every value of x and which represent the function f(x)." Cantor showed

that if 22' + (alsin x + blcos x) + ... converges to zero for every

value of x in an interval, then for every n, an - bn - 0. "It follows

from this that ... if a function f(x) of a real variable x is given by

a convergent trigonometric series for each value of x, then there is no

other series of the same form which converges for each value of x and

 

3Cantor,"Ueber einen die trigonometrischen Reiben betreffenden

Lehrsatzfi'lSO.
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represents the given function f(x)."4 Thus Cantor succeeded in establish-

ing duzuniqueness of representation of a function by a trigonometric

series on an interval without the requirement that the series converge

uniformly in general.

Next Cantor considered the possibility of uniqueness of represen—

tation of a function by a trigonometric series which fails to represent

the function on a finite or infinite subset of its domain. Cantor soon

realized that the requirement of convergence of the trigonometric series

for all values of the independent variable in an interval is too strin-

gent and could be remitted for some points of the interval without af-

fecting the validity of his conclusion regarding uniqueness of repre-

sentation. In a paper "On the extension of a theorem from the theory

of trigonometrical series," dated November 8, 1871, Cantor wrote, "In

the following I want to treat a certain generalization of the theorem

that trigonometrical series representations are unique.

"I have attempted to prove that two trigonometrical series

b I

0 O » z

2 + ... + (ansin nx+bncos nx) +... and 2 +...+(ansin nx+bncosnx)+...

which converge to the same sum for every value of x correspond in their

coefficients ..., and in a note which refers to this work5 I have ...

 

“Cantor,"Beweis, dass eine fur jeden reellen Werth von x durch

eine trigonometrische Reihe gegebene Function f(x) sich nur auf eine

einzige Weise in dieser Form darstellen 188st? 142.

5The note referred to, "Notiz zudem Aufsatz: Beweis, dass eine

fur jeden reellen Werth von x durch eine trigonometrische Reihe gegebene

Function f(x) sich nur auf eine einzige Weise in diser Form darstellen

lasst," was occasioned in part by Kronecker's suggestion of a simplified
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demonstrated that this theorem remains valid if one remits for a finite

number of values of x either the convergence or the coincidence of the

series sums.

"The extension intended here consists in the fact that for an

infinite number of values of x in the interval (0,2n), the convergence

of the sums of the series is renounced without invalidating the truth

of the theorem.6

"For this purpose I feel compelled to mention a few preliminary

considerations ...," two of which were definitions of the concepts of

limit point and derived set.

"By a limit point of a point set P I mean a point on the line in

such a position that in any neighborhood of this point there exist in-

finitely many points of P .... By the term neighborhood of a point I

mean any interval which has the point in its interior.... It is easy

to prove that a (bounded) point set consisting of an infinite number of

points has at least one limit point.

"It is now a definite relationship of any point of the line

with respect to a given point set P either to be a limit point of P or

not to be any such limit point. Therefore with the point set P is given

 

proof of Cantor's uniqueness of representation theorem, a proof which

did not, as had Cantor's original proof, appeal to the theorem estab-

lished in Cantor's first paper.

6Cantor,"Ueber die Ausdehnung eines Satzes aus der Theorie

der trigonometrischen Reihenf'123.
(
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the set of its limit points, which I shall designated by P’ and call

the first derived set of P."7 Cantor defined second, third, and so on

derived sets P”, P”’, ... in the obvious manner.

Then, returning to the study of trigonometric series, Cantor

showed that the requirement of convergence can be remitted for any set

of points whose nth derived set contains only finitely many points

(and therefore whose (n+l)st derived set is empty) without invalidating

the conclusion of uniqueness of representation.

These early papers of Cantor demonstrate an initial stage in his

construction of a theory of sets. In a memoire published in 1879 and

titled "On linear and infinite sets of points," Cantor remarked with

respect to sets of points on the real line "... it does not seem im-

proper that we study and seek to classify them; this is what we prOpose

to do here ... we are lead to classify the sets of linear points into

certain catagories. To begin ... we recall the notion of the derived

set of a given set of points P as is given in a work on trigonometrical

series...."8

Thus the work of Heine and Cantor was an important means by which

more general point sets were called to the attention of mathematicians.

The conditions to be satisfied by a function in order that it

admit Riemann integration were another impetus to the development of a

theory of measure. Riemann had stated

n

5 ..lim 121 1% o

||P||+0

7Cantor,lgp_. cit., 129.

8Cantor,"Ueber unendliche, lineare Punktmannichfaltigkeiten;'1.
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as a necessary and sufficient condition for Riemann integrability of

a bounded function; Hankel, in his "Research on infinitely often oscil-

 lating and discontinuous functions," published in 1870, expressed

Riemann's conditions in a form which suggests the concept of measure

of the set of points of discontinuity of a function in an interval.

Given the prevailing mood of indifference to the study of dis- W

continuous functions, Hankel began by attempting to justify his work. f

"... the question of the existence of a differential quotient [of an Iv

integrable function] presents great difficulties. This has only rarely

been discussed because the existence of a tangent at each point of a

curve has been considered as certain from an immediate geometric view-

point and one has taken this for granted as a self-evidence result of

the 1ex continuitatis [law of continuity] which has been respected as

a necessity in the field of mathematics. However, even if this law of

continuity in fact governs all movements in nature, yet it should

restrict the discipline of pure mathematics in no way....

"... I owe the stimulation to these studies essentially to Rie-

mann's writings, especially to his excellent work on trigonometrical

series, after whose publication there is no need to excuse research

regarding these problems....If my essay fails in part over such a

slippery and rarely trodden path, and if the results here and there

are somewhat lacking ..., then I haps to find some benevolent considera-

tion, for it was my only intention in publishing these ideas to stimu-

late other scholars, and to draw their interest to these fundamental

problems of our science, which modern function theory does not permit
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us to reject any longer."9

Hankel defined the terms discontinuity, jump and oscillation of

a function at a point. "One says that a function f(x) is discontinuous

at x-a when, among the values taken by the difference f(a+6) - f(a),

for all positive and negative 6 that are less than a, there are always

values greater than a given finite quantity 0, no matter how small one

choses e. I will say such a function makes a jump at the point x-a

which is greater than 0 ... and will mean by the oscillation of a func—

tion in a given interval ... the difference between the largest and

smallest values which the function takes in this interval."10

Hankel then classified functions into two categories, simply

continuous functions and linearly discontinuous functions. "The simply

continuous functions make jumps in individual points, which are allowed

to exist only in a finite number on a given line .... Linear discon-

tinuous functions are functions which are discontinuous at infinitely

many points on a finite segment of a line."

Having observed that "the jumps which [a linearly discontinuous]

function makes at these infinitely many points ... may show a very dif-

ferent nature since either the number of points at which jumps occur

which are larger than a fixed magnitude 0 is infinite, or whose number

increases infinitely only if 0 decreases infinitely," Hankel prOposed

to demonstrate "the great variety of particularities which the linear

9Hankel,"Untersuchungen Uber die unendlich oft oscillirenden

und unstetigen Functionen,"70.

1oHankelhgp. cit., 84.
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discontinuous functions may show ... by a number of examples in which

we let the variable x run through the interval from x-O to x-l."

Hankel's first example is the Dirichlet function. Two of his

other examples are "Define the function f(x) to have the value f(x) 3 l

for x - O to x - 1 with the exception of infinitely many intervals of

length 6n which have their centers in the points x - (%)n; in each of

these intervals let the function ... have value zero for all rational

values and value one for all irrational values of the argument. The

total length of the intervals in which the functional oscillation is

everywhere one is

s a 6 + 62 + 63+ ... - Egg’... "

Again, "Define the function f(x) to have the value f(x) - l for x = l

to x > I51. , value f(x) - 31;- for x - -;’- to x > 3%; , and generally the value

f(x) ' (3%)“ for X - 6%)“ to x > (_%_)n+1. This function, which is dis-

continuous only at the points x - 6%)" and at these points jumps by

0%)“, does not have an infinite number of points at which the jumps

surpass a fixed finite magnitude as do the examples we have just con-

sidered. To be sure, the number of points at which the jumps are

greater than a is finite; with decreasing 0 however their numbers in—

crease constantly and without limit. The total length of the intervals

in which jumps greater than 0 occur obviously can be made arbitrarily

small for every 0 since these have to surround only the finitely many

points of discontinuity."

These examples suggested classes of points on the line. "If a
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set of points on a line has a certain prOperty [i.e., at each point of

the set the jump of the function is greater than a] then I will say that

these points fill up the line segment if in this segment, no interval,

no matter how small, can be given which does not contain at least one

point from this set; on the other hand, this set of points does not

fill the line segment, but that the points are scattered in it, if between

any two arbitrarily close points on the line segment, there can be

"11 Thus the setgiven an interval which contains no point of this set.

of points of discontinuity of a function at which the jump is greater

than 0 either "fills up" or is "scattered" on the line providing it is

dense or nowhere dense, respectively, on an interval.

Hankel believed that the length 3 of the intervals in which the

oscillation of a linear discontinuous function f(x) is greater than 0

can be made arbitrarily small if and only if the points of discontinuity

of f are nowhere dense.

This belief led Hankel to classify linear discontinuous functions

into two types: 1) those that are totally discontinuous, i.e., whose

points of discontinuity at which the jumps greater than 0 are dense in

an interval, and 2) functions which are pointwise discontinuous, that

is, are such that for each U>O, the set of points at which the jump of

the function is greater than 0 is nowhere dense.

Finally, Hankel concluded that this classification separated the

integrable and non-integrable functions. Thus, Hankel believed that a

function is Riemann integrable if and only if it is a simply continuous

or pointwise discontinuous function.

 

11Hankel,,gg. cit., 87.
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Hankel's conclusion is only partially correct as will be shown

by an example below. Nevertheless, his work was a significant contri-

bution to an emerging theory of the mathematically discontinuous.

Originally published as part of the Gratulationsprogramm of Tubinger

University on March 6, 1870, Hankel's paper was published again in the

Mathematische Annalen in 1882. The editor of the Annals remarked in a

footnote, " ...the work of Herman Hankel...has up to now been difficult

to find due to its place of publication; since this paper is mentioned

in almost all modern investigations of the concept of functions...we

have made the transcription [of the Gratulationsprogramm] literal, and

thus have considered as negligible any incorrect points which the work

may contain."

In 1875 an English mathematician, H. J. S. Smith, published an

example of a linear discontinuous function which is not Riemann in-

tegrable. He gave his example as follows: "Let m be any given integer

greater than 2...now...divide the interval from O to 1 into m equal

parts, exempting the last segment from any further division; let us

divide each of the remaining m-l segments by m2, exempting the last

segment of each segment; let us again divide each of the remaining

(ur1)(m2-l) segments by m3, exempting the last segment of each segment;

and so on continually. After k-l operations we shall have

2 2 -
N - l + (m—l) + (m-l)(m -l) + ... + (m—l)(m -l) ... (m

exempted segments, of which the sum will be

1 l 1

1-(1-t-n') (1-—2') (l-Tl)

m m
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This sum, when k is increased without limit, approximates to the finite

limit 1 - E ( %-) where E ( %-) is the Eulerian product 3 (l - lk)’ and

is certainly different from zero."12 1 m

Smith went on to show that the points of division Q are nowhere

dense on [0,1] and yet "a function having finite discontinuities at the

points Q would be incapable of integration." Thus Smith gave the first

example of a nowhere dense set with positive outer content.

Smith also expressed Riemann's integrability conditions in a

form which strongly suggests the notion of "length" of the set of points

of discontinuity of an integrable function. "Let a be any given quantity,

however small; if, in every [partition] of norm d, the sum [of lengths]

of the segments, of which the ordinate differences surpass 0, diminishes

without limit, as d diminishes without limit, the function admits of

integration; and vice versa, if the function admits of integration, the

sum [of lengths] of these segments diminishes without limit with d."13

The ordinate difference of a segment had been previously defined to be

the difference between the greatest and least ordinates of f(x) on the

segment.

Smith had undertaken this work in order to further discuss

Riemann's theorem stating necessary and sufficient conditions for

integrability of a function "partly because, in one particular at

least, Riemann's demonstration is wanting in formal accuracy, and

partly because the theorem ... appears ... to have been made the basis

of erroneous inferences." Smith considered the sufficiency part of

 

12Smith,"0n the integration of Discontinuous FunctionsJ'l48.

13Smith, 22, cit., 142.
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Riemann's proof to be incomplete; the latter remark refers of course

to Hankel's work.

Thus the way was prepared to lead to the definition of a general-

ized conception of length, that is, a notion which would "measure"

general point sets such as the set of points of discontinuity of a

function, and reduce to the familiar concept of length when used to

"measure" an interval.

Cantor, Harnack and Stolz

The first definitions of the measure of arbitrary point sets were

given by Cantor, Harnack and Stolz. These measures were defined as a

limiting form of a finite covering of the given set by elementary

figures whose measures were known. The adherence to finite covers was

undoubtedly due to the relationship between such covers and the summa-

tion, given a partition P of the interval of integration of a Riemann

integrable function f, of the lengths of the (finitely many) intervals

of P in which the oscillation of f is greater than 0 > O.

Cantor, in the fifth installment of his "On infinite linear

point sets," published in 1884, defined the content of a bounded set P

of points in n-dimensional space Gn' "If there is given a [bounded]

point set P of Gn’ then form around each point p of the ... set P + P’

[the addition . symbol denotes set union and P’ designates the set of

limit points oflfl an n-dimensional ball with center p and radius a,

which with all its interior and boundary points will be designated by

K(p.p).

"The ... full balls which are obtained by letting p run through
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all points of P + P’ have one least common multiple [set union]

2K“): p) 3

P

which point set is designated according to circumstances by H (p,P in Gn)’

or more simply by H(p,P) or H(p).

"Now this pointset H(p) of Gn always consists of a finite number

of regions, since P is assumed bounded, each of which is an n—dimensional

continUum with its boundary. Consequently the n-times integral

dxldxz...dxn ,

taken over all regions of H(p), has a specific value which depends upon

p; we call this value F(D)...

"... we define the content or volume of the set P [denoted I(P)

after Inhalt] to be the limit value lim F(o)... and obtain therefore

p+0

I (P) - lim F (0)."14

p+0

Cantor observed an additive property of the set function I(P);

if P and Q are (bounded) sets which are "completely separated" then

I(P+Q) - I(P) + 1(0).

CantOr remarked further with respect to his definition of content

 

14Cantor,"Ueber unendliche, lineare Punktmannichfaltigkertenj'474.
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in a letter addressed to the editor ofIAg£2.Mathematica in November,

1883. "I wish to eXplicitly state that this ... volume or extent of

an arbitrary set P in a ... space Gn of n-dimensions is absolutely

dependent upon Gn ..." Thus "a square each of whose sides is equal

to one, has its extent equal to zero when it is considered as a con-

stituent part of a space of three dimensions, but it has extent equal

to one when it is regarded as part of a plane of two dimensions. This

general notion of volume or extent is indispensable to me in my re-

searches on the dimensions of continuous sets ..."

Harnack, in 1883, in his paper "On the content of point sets"

wrote, "I am going to develop in a series of explanations and theorems

the general definition which I have given for discrete point sets

within a closed linear interval. These theorems partially supplement

the theorems which Mr. Cantor has in the meantime published on the

same subject on the basis of a somewhat different definition ...

"A point set within a linear interval of finite length is called

discrete (with content zero) if all points [of the set] can be included

in a finite number of intervals whose sum [of lengths] can be made

arbitrarily small even if thereby the number of intervals may grow be—

yond any limit. The latter always occurs if one has to do with an

infinite number of points."

Harnack defined the content of an arbitrary subset of an interval

of length i in the following way: "If the point set is not everywhere

dense in the entire interval (thereby the limit would be the magnitude 1)
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then one should fix a length ... é-and construct the intervals [whose

lengths] are greater than or equal to-%, and which do not contain a

point of the set in their interior. If such an interval exists and

one has [deleted] it, then one should exclude from the residue parts

of the interval those [whose lengths] are greater than or equal to-%

and contains no point of the set in their interior. One recognizes

generally that there is always only a finite number of intervals [whose

lengths] are :_%-and contain no point of the given set in their interior

whenever n is any positive integer. The total length of the intervals

excluded in this fashion which are-i-fi'may be [designated] by N. Then,

except for the finite number of points which coincide perhaps with the

endpoints of two adjoining excluded intervals and are isolated points,

the points of the set lie in the interior or as endpoints of a finite

number of intervals whose total length is 2 - N... One needs only to

arbitrarily diminish [the lengths of] the intervals which are taken

out... The limit value of z-N for n = w is the limit for which one

is looking. The point set is consequently discrete if lim N = £."15

Harnack remarked that the union of a finite number of discrete

sets is discrete, and continued "to the contrary the theorem is no

.1onger valid if one has an infinite sequence of discrete sets, as is

‘taught by the example of the sequence of rational numbers from O to l,

vfllich can be composed by the [infinite sequence of discrete sets]

13 1234

P3 ' {4’4}' P4 ' {5'5'5'5}'°°° °

Harnack considered a countable as Opposed to a finite cover in

a'Péissage which is remarkable in its anticipation of Borel. "... in a

Certain sense any point set which can be counted has the prOperty that

\

15Harnack,"Ueber den Inhalt von Punktmengen,"24l.
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that all its points may be included in intervals whose sum [of lengths]

is arbitrarily small. Thus, for example, although they are everywhere

dense on the unit interval, one is able to surround all the rational

numbers between 0 and l with intervals whose sum [of lengths] is arbi-

trarily small. For, if one has a countable point set a1,a2,...then one

surrounds the points with intervals of lengths cl, 22,...and choses

these magnitudes in such a way that el+ez+...is less than an arbitrarily

small magnitude 6. If one carries out this process with the above

mentioned rational numbers...then...the points not covered by these

intervals...constitute a point set whose content is greater than 1 - 6."16

Harnack did not attempt to develop this observation; the notion

of an everywhere dense set with arbitrarily small content must have

seemed paradoxical. Indeed he believed to have obtained a "remarkable

paradox" by consideration of a countable covering of intervals. "...

if from an...interval of length a, one deletes an infinite number of

subintervals a1,a2,... whose sum of lengths b is less than a, then there

will remain infinitely many subintervals whose sum of lengths is never

greater than b-a; it may, however, be even smaller."17 Harnack con-

ceived of the latter occurrence in the case in which the endpoints of

the intervals and their limit points do not form a discrete set. The

difficulty in such a case is that content is not additive.

In his "On a limit value corresponding to an infinite point set,"

dated July, 1883, Stolz defined the measure of a point set in the

following way: Let x’ denote an arbitrary set of points in a finite

 

16Harnack, 22, cit., 243.

it.7Harnack,.9_p_. c 244.
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interval (a,b), and consider a sequence of partitions t1,t2,t3,... of

(a,b) such that the norm lltnll of tn satisfies the inequality Iltn||<5n

where lim an-o. "Now if one carries out within the interval (a,b) a

n-m

system of infinitely many such partitions t t2,t3,..., and if for each1»

partition one adds the lengths of those intervals containing points

of the given set x’, then one obtains a sequence of sums 81,32,83,...

such that 513821831... . Thus there exists a finite limit :3: Sn-L

where L39. The...number L is independent of the considered system of

partitions tm so that to each point set x’ in the interval (a,b) there

corresponds a unique limit Lip which is called the interval limit

[that is, content of the given set]."18

Later in his paper Stolz brought his work into relationship

with Harnack's. "The point sets for which the limit value L-O coincide

with the sets which have been called discrete by Mr. Harnack. Accord-

ing to his definition the points of a discrete set may be included in

a finite number of intervals whose sum S is smaller than c. Consequent-

ly L<e, i.e., L==O."19

Other definitions equivalent to those of Harnack and Stolz were

prOposed. Pasch, in his article "On some topics in the theory of fun-

ctions," dated March, 1887, first defined a function 3 [(x,z)] to be 1

if the interval (x,z) contains a point of a subset E of an interval

(a,b), and 0 otherwise. Then he continued "We partition the interval

(a,b) in an arbitrary manner into a finite number of subintervals

(a,a1), (a1,a2),...,(an_l,b) and form the sum

 

18Stolz,"Ueber einen zu einer unendlichen Punktmenge gehbrigen

Grenzwerth,"152.

l9Stolz, op, cit., 154.
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S = (al-a)s[(a,al)] + (a2-a1)8[(a1,82)] +...(b-an_1)s[(an_1,b)] j_b-a,

that is, the sum of the lengths of subintervals which contain points

of E. The lower limit [i.e., infimum] of all values S is a finite

number 2 3_0; itgso to say,represents the length covered by the point

set E and is to be designated as the content of the set since, as will

become clear from the following,it correSponds to the definition given

by Mr. Cantor..."20

Pasch later commented, "If one calls 2 the extent of the point

set then one can designate the point set as being extended if Z>O and

as being unextended if £=O. The first attempt to classify point sets

in such a way for the purpose of the theory of functions can be found

with Mr. Hankel. Mr. Harnack calls the point set linear if Z>O and

discrete if £20...deviating from the meaning of linear point set ac—

cording to Mr. Cantor.... Mr. du Bois-Reymond has called the point

set integrable if £=O...." These remarks give evidence of the influ-

ence of the new concept of measure upon the theory of functions.

The papers of Cantor, Harnack and Stolz were an important first

step toward the creation of a theory of measure. The notion of content

failed to satisfy one of the first exPectations of a measure, however,

that of additivity. Thus a generalized conception of length might be

expected to possess the property that the measure of the union of dis-

joint sets be the sum of the measures of the sets. This expectation

was fulfilled for finite collections of disjoint sets several years

later in the definitions of measure proposed by Peano and Jordan.

 

20Pasch, "Ueber einige Punkte der Functionentheorieg'l42.
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Peano and Jordan

Peano was led to develop a theory of measure by his attempt to

find a simple condition for Riemann integrability of a function. At

the time he published his paper "On the integrability of functions,"

in 1883, the statement of existence of the Riemann integral was the

following: a function f is Riemann integrable on [a,b] if and only if

for arbitrary positive 0 and 6, the content (in the sense of Stolz or

Harnack) of the set of points in [a,b] at which the oscillation of f

is greater than 0 is less than 6. Peano sought to express the integra-

bility of f in terms of the measurability of the ordinate set of f on

[a,b], that is, the set \u/ {(x0,y)l O§y§f(x0)} if f is non negative.

xos[a,b]

"The existence of the integral of functions of a single variable

is not always demonstrated with the rigor and simplicity desirable in

such questions. The method of reasoning of principal writers by re-

course to geometric considerations is not satisfactory. The analytical

demonstrations are generally long and complicated and conditions are

introduced which are too restrictive or partly useless. In the present

study I prOpose to demonstrate the existence of the integral by intro-

ducing a very simple condition of integrability. The reasoning will

be analytical but can be interpreted geometrically in any of its

parts."21

Peano began by stating Riemann's definition of integral: let

f(x) be a function defined on [a,b] and be bounded above and below by

 

21Peano,"Sulla integrabilita delle funzionir 439.
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A and B respectively. Partition the interval [a,b] into subintervals

h1*“2

the sum u-hlyl+h2y2+...+hnyn, as h is "infinitely diminished," tends

,...hn and let y8 = f(x) where x is an arbitrary element of hs' Then if

to a limit S, then the function f is integrable on [a,b] and converse-

b

ly, and its integral f(x)dx on [a,b] is S.

8

Peano continued in this way. Let p8 and g8 be supremum (limiti

superiors) and infimum (limiti inferiore), reapectively, of the yS on

the subinterval h . Let P = 2h p and Q = 2h 3 ; then

s s s s s

A(b-a) 3_P 3_u 3_Q 3 B(b-a).

Hence the numbers P corresponding to all partitions of [a,b] admit a

greatest lower bound M, and the numbers Q corresponding to all parti-

tions of [a,b] admit a least upper bound N. Furthermore, Peano showed

P :_M :_N Z,Q. Finally, if f(x) is an integrable function on [a,b],

then M a N = 3. Thus "if the function f(x) is integrable then the

quantities M and N are equal and their common value is equal to the

value of the integral."22

 

22Peano, 22, cit., 441. It is of interest to note that Darboux

had asserted, without proof, the necessity and sufficiency of this con-

dition for the existence of the Riemann integral in 1875. Darboux's

purpose was to investigate several of Hankel's prepositions which had

laeen criticized by Gilbert, Schwarz, Klein and others. "I have imposed

lipon myself the duty of going back to several [of Hankel‘s assertions]

£1nd...to express them in a form such that they be sheltered from all

czriticism..." In particular, Darboux was interested in identifying a

CLlass of continuous functions which are not differentiable for in-

finitely many values of the independent variable. Thus Darboux did

‘1CIt develop the consequences of his definition of the Riemann integral

w31th respect to the concept of area. See Darboux,"Memoire sus les

fCilnctions discontinues," 72.
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Peano also proved the converse of this theorem in the form:

if for an arbitrary positive 6 there exists a partition of [a,b] with

the prOperty that the corresponding numbers P and Q are such that

P-Q<e, then f(x) is an integrable function on [a,b].

Thus Peano obtained a necessary and sufficient condition for

the existence of the Riemann integral of a function on an interval.

This condition conveys an immediate geometric intuition, the area of

the ordinate set of f, and Peano turned his attention to this aspect

of the work in his concluding remarks.‘ "Many authors demonstrate the

existence of the integral by means of geometric consideration, but...

the reasonings are not at all adequate. In truth it is customary to

consider in such a case the area of a figure without defining it...

our minds conceive clearly, or believe to conceive clearly [notions

such as area or] the length of the arc of a curve, and so on, but

these need to be carefully defined before being introduced into analysis;

and among these more importantly for area, because one is accustomed

in elementary treatises to base other demonstrations upon this concept.

"Now if one takes a figure of simple form, the most natural

method to conceive of its area is to imagine polygons which enclose

within their interior the given figure, and polygons contained in the

interior of the given figure. The areas of the first admit an inferior

limit, and the areas of the second a superior limit. If these limits

coincide their common value is the area of the given figure, a well

ciefined quantity which can be calculated to any desired [degree of ac-

<:uracy];if instead these two limits are not equal, then the concept of

area is excluded...Thus, in order to speak of the area of a figure it

is necessary first to verify the equality of these two limits, which
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is none other than the preceding condition of integrability."23

Peano developed these remarks in detail in his book Applications

2£_Geomet£yl£2.Infinitesimal Calculus, published in 1887. He began the

section titled,A;gg.£1§ng by stating definitions of interior, exterior

and boundary point of a set. "Let us say that a point P is internal to

a plane field [i.e., set] A if it is possible to determine a length 0

in such a way that all the points of the plane which are separated from

P by less than p belong to A; a point is called external to field A if

it is internal to the field formed by points not belonging to A. A

point neither internal nor external is called a limit point of A. The

field formed of limit points of A is called the limit field or contour

of A."

Having completed the statement of preliminary definitions, Peano

stated his definition of area. "Let us take any plane field. We can

in general imagine plane areas bounded by straight lines which contain

in their interior plane field A, and plane areas also limited by straight

lines contained in the interior of the given field. If as happens in

the most common cases, the inferior limit of the first areas coincides

with the superior limit of the second, then we give the name area of

the given plane field to the common value of these two limits.

"But it can happen that these limits are not equal; in this case

we will call the inferior limit of the polygonal areas which contain

in their interior the given figure the external area, and the superior

limit of the polygonal areas contained in the interior the internal

area of the given figure."24

 

23Peano,‘gp, cit., 445.

24Peano, Applicazioni geometriche del calcolo infinitesimale,156,
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Peano then gave necessary and sufficient conditions such that

a point set in the plane have an area. "If from a field limited by

straight lines, containing in its interior field A, we take a field

none-the-less limited by straight lines and contained in A, we thus

obtain a field limited by straight lines and which contains in its

interior the limit field of A. The area of this field is the differ-

ence between the areas of the two first. Thus we can be assured that

the inferior limit of the first area coincides with the superior limit

of the second area if their difference can be made as small as one

would wish. This is equivalent to saying that a plane field has an

area...if and only if there can be formed a plane field limited by

lines containing in its interior all the limit points of the given

field and whose area be as small as one wishes. It can also happen

that there exists no polygon of finite area containing in its interior

the given field and then we say that the external area of the field is

infinite. If there exists no polygon contained in the interior of the

given field then we will say that its internal area is zero."

Peano, in his discussion of length, had remarked that whether or

not a linear point set has a length, "it is seen that the difference

between the external and internal length of the set A is equal to the

external limit of the limit field of A," a statement which obviously

carries over to plane sets. In modern notation, if we denote the in-

terior area, exterior area, and "contour" or boundary of planar set E

by A(E), A(E), and B(A), respectively, then Peano's statement is of the

form 'A-(E) - _A_(E) = A(B(E)). Thus E has area if and only if A(B(E)) = O.
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Peano recognized that the set function thus defined is finitely additive,

that is, if we denote the area of a set E that has area by A(E), and

if E1,E2,...,En are nonoverlapping sets in the plane each of which has

area, then 03 E1 has area and

i=1

n n

A( UEi) = Z A(Ei).

i-l i=1

Peano used this "distributive function" (funzione distributiva) to

develOp a surprisingly sophisticated theory of integration and differ—

entiation. Thus Peano stated and proved that a bounded nonnegative

function f(x) defined on an interval [a,b] is Riemann integrable on

[a,b] if and only if the set of ordinates of f(x) on [a,b] has area,

and in this case,

b

f(x)dx = A 1., {(x0,y) I O§y§f(xo)}).

a xoela,b]

This form of statement of integrability and characterization of

the integral as the measure of a point set opened the way to generalize

the conception of Riemann integration. It suggests that a more general

conception of measurability and measure of the set of ordinates implies

a more general conception of integrability and definite integral of

functions. Indeed Lebesgue followed this course several years later

in his geometric definition of integral.

Jordan was led to consider a theory of measure in connection

with his investigations of the role played by the set over which a

function is defined, in influencing the existence and properties of

the integral. In his "Remarks on definite integrals," published in
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1892, Jordan wrote "the definite integral, simple or multiple, of a

function f in a set E is obtained as one is aware...in the following

manner:

"One decomposes the set into infinitely small elements in all

directions; one multiplies the extent do of each of these elements by

the value of f chosen at will in the element, and one searches for the

limit of the sums Zfdo thus formed.

"One knows that this limit has a well determined value when the

function is continuous. This property subsists even for a more general

class of functions, defined in a precise manner by a well known theorem

of Riemann.

"Finally, Mr. Darboux has shown that, whatever be the bounded

function f, each of the two sums ZMdo and Zmdo, where M and m represent

the maximum and minimum of f in the element do, always has a perfectly

determined limit.

"These results are very clear cut and enlighten completely the

role played by the function in the integral.

"The influence of the nature of the set does not seem to have

been studied with the same care. All demonstrations rest upon this

double postulatum, that each set E has a determined extent, and that,

if one decomposes it into several parts E1,E2,..., the sum of the ex-

tents of these parts is equal to the total extent of E. Now these

prOpositions are far from being evident if one leaves the conception

of set to all its generalities."25

Jordan prOposed to define, corresponding to a set E, an interior

25Jordan,"R.emarques sur les intégrales définiesf'69.
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extent E' and an exterior extent E," and, in the case of equality of

these limits, to call the set E measurable with extent the common

value E'sE." Jordan further proposed to show that a function f bounded

on a set E admits an upper and lower integral on E, and to define the

integral of f over E to be the common value of the upper and lower

integrals in the case of equality. Finally, by utilizing the previous-

ly defined concepts of measurability and integrability, Jordan set

himself the task of demonstrating that the multiple integral of a

function of several variables can be reduced to repeated simple in-

tegrals if the set over which the function 18 to be integrated is

measurable.

In carrying out this program, Jordan defined the extent of a

set in this way. "We seek...to make precise the notion of the extent

of a set.

"This extent will be a length, an area, a volume,..., if the

number of dimensions of the set is 1,2,3,... . We suppose, in order

to fix the ideas, that this number is equal to 2. Each point (u,v)

of E is represented geometrically on a plane by the point whose rect-

angular coordinates are u,v.

"Decompose the plane by parallels to the axes into squares of

side r. The set of those squares all of whose points are interior to

E form a domain S interior to E; the set of those which are interior

to E or which contain a point of its frontier form a new deiIS+S’,to which

E is interior. These domains, being formed by the union of squares,

have determined areas which we will represent by S and S+S’.
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"We will vary the decomposition of squares in such a way that

r tends toward zero: the areas S and S+S’ tend toward fixed limits."

Jordan proved this assertion, designating the limit of the

areas 8 by A, and the limit of the areas S+S’ by a. He continued,

"As one has always S+S’ 3_S, a is at least equal to A.

"We will call A the interior area of E, a its exterior area.

If S’ has limit zero, then we will say that E is measurable, and has

as its area the quantity a a A."

Jordan stated the (finite) additivity of the measure as follows:

"Suppose E is formed by the union of several partial sets E1,E2,...,

and consider an arbitrary decomposition of the plane into squares.

Let, respectively, S, 31’ 82,... be the sums [of areas] of the squares

interior to E, E1, E2,...; and SjS’,S§,... the ones of squares which

meet their frontiers. Each square interior to one of the sets E1,E2,...

is interior to E, and, on the other hand, each square not exterior to

E is not exterior to at least one of the sets E1,E2,...; one has

therefore

3331+52+~~ , 5+5 131+31+S252+"°'

and in the limit

+8 +0.. 0

AiA 1 2
1+A2+... , aia

AX,‘A1, A2,... and a, a1, a2.... represent the interior and exterior

Eireas of the sets E, E1, E2,... These inequalities are changed, more-

<>ver, into equalities if the sets are measurable."26

 

 

26Jordan,‘gp, cit., 76-78.
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Jordan gave his definition of definite integral in the section

of the same title. "Let f(x,y,...) be a bounded function in the in-

terior of a domain E supposed measurable.

"Decompose E into elementary measurable domains e1, e2,... .

Designate by M and m the maximum and minimum of the function f in E;

and by MR and 111k its maximum and minimum in ek, and form the sums

S = E Mkek , s = Z mkek ."

Of course the symbol e represents the extent of the "measurable do-
k

'main" ek in each of these summations. Jordan showed that the sum S

and 8, corresponding to given decompositions of E tend towardm

pfi§g§_as the diametersof the elements of the decompositions tend to

zero. Designating these limits by T and t, reSpectively, Jordan wrote

"This fixed number T=lim S is called the upper integral (integrale par

exces) of the function f(x,y,...) in the interior of E.

"... the sums s tend toward their maximum t, which will be the

lower integral (integrale par defant)of f(x,y,...).

"One evidently has Tit. If Tat, the function will be integrable

and Tat will be its integral, and will be represented by the notation

27

SEf(x,y,...) 3'

Jordan extended this definition of integrability to functions

clefined on a nonmeasurable set. "We have assumed until now that the

Clomain E is measurable. We are now able to suppress this restriction...

consider the limit of a sequence of measurable domains E1,E2,...,En,...

lrsaach of which is interior to the following and to E]28 and whose extents

c(haverge toward a limit which, by definition, is the interior extent of

\

27Jordan’ .220 Cito, 81-84.

28
Jordan had imposed this condition in the recedin ara ra h and

‘ obviouslv intended it to hold here- p g p g p
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E. Then the integral, upper or lower, taken in En tends toward a

limit" for the difference between the integrals taken in En and

En+p is

f — f = f _<_D A(Efip) -A(En)

in A (E) - A(Eg

  

where |f| §_D. "We consider this limit of the integrals taken in En

as representing the value of the integral in E." Thus, in modern

notation

Jordan then turned to the theorem which was the primary object of his

paper. "If a function f(x,y,...) of n variables is integrable in a

domain E of measurable extent, then the calculation of the multiple

integral I - SE f(x,y,...) is reduced to the calculation of n suc-

cessive simple integrals."

Jordan proved this theorem in the following way. "For greatest

simplicity we will suppose n=2 in the demonstration. The set E will be

represented geometrically by a set of points (x,y) situated in a plane.

"The values of y to which correspond points of E form a bounded

set F. Let one of them be n; the values of x which, associated with n

give points of E, form a bounded set Gn' We are not able to affirm

that Gn has a measurable length, nor that the function f(x,n) is
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integrable there; but this function being bounded, always has determined

in the interior of Gn its upper and lower integrals. These are func-

tions of n, that we designate by J(n) and j(n), and which are bounded

in the domain F. We are able therefore to determine in the interior of

F: (1) the upper integral of J(n) which we designate by K, and (2) the

lower integral of j(n) which we designate by k."

Observing that K.: k, Jordan succeeded in showing, using the

notation of extent, "that the integral K is at most equal to the upper

double integral SEf(x,y).

"One shows, by a similar reasoning, that the integral k is at

least equal to the lower double integral."

Thus, if we denote the upper and lower integrals of f(x,y) on E

by'S£f(x,y) and §Ef(x,y). respectively, Jordan demonstrated the

inequalities

‘s'E£(x.y) _>. K _>_ k _>. _S,Ef<m')-

He concluded the proof by remarking "Until now we have not made use of

the hypothesis that the function f(x,y) is integrable. If this is

assumed, then the upper and lower double integrals are equal and,

therefore, equal the integrals K and k. Now each of the latter can be

calculated by a simple integration successively effected."29

In a footnote following the proof Jordan emphasized the necessity

of the hypothesis of measurability of E. "The demonstration above

[requires] that the domain E be measurable. If it is not, then the

jprOposition will be found wanting. Suppose, for example, that E consists

k

29Jordan,_o_g. cit., 85-87.
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ofthepointsoiyilandoixilifyisrationalor-lixio

if y is irrational, and define the function to be an integral constant

c [where c + 0]. Then the double integral SEc [in the extended sense

previously defined] is zero, for the interior area of E is zero. But,

on the other hand, the domain Gn and F, having a length equal to 1,

one will have

dn c dx = cdn a c. "

Thus Jordan called attention to the relationship between integration

theory and the theory of measure of sets.

It might be of interest to observe that Jordan's work was an

important contribution to the viability of set theory itself. We have

seen Jordan's appeal to Cantor's n-dimensional set theoretic conceptions

in his study of the theory of measure of sets and the theory of in—

tegration; he also made use of Cantor's set theory in his investigations

of the rectification of curves, trigonometric series and analysis

situs. "In daring to incorporate certain parts of the theory of sets

into his course at the Polytechnical School,30 Jordan rehabilitated...

this theory; he affirmed that it is a useful branch of mathematics."31

Jordan's authority, arguments and results encouraged an acceptance of

Cantor's theory of sets which had been severely criticized by Kronecker.

30The integration theory described above appears in the second

Gadition of Jordan's Cours D'Analyse, published in 1893.

31Lebesque, Notice sur les travaux scientifiques‘ds M, Henri

Lebesgue, 16.
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In this respect, the evolution of a theory of functions of a

real variable was hardly greeted with equanimity by some mathematicians.

The study of functions possessing strange and unexpected properties

was sometimes viewed with disdain or even hostility. "The distrust

with which this new field of investigation was regarded is typified

by the attitude of H. Poincare who wrote, 'in the past new functions

were invented with some practical purpose in mind; today they are in—

vented intentionally in order to baffle the reasonings of our fathers,

and one cannot deduce anything from them but that!...Researches dealing

with...functions violating laws which one haped were universal, were

regarded almost as the prepagation of anarchy and chaos where past

generations had sought order and harmony. Even the first attempts to

establish a positive theory were rather skeptically received; it was

feared that an excessively pedantic exactitude in formulating hypotheses

would spoil the elegance of classical methods, and that discussions of

details would end by obscuring the main ideas of analysis."32

The concept of exterior extent defined by Jordan and Peano is

equivalent to Cantor, Stolz, and Harnack's conception of content. The

measure—theoretic accomplishment of Peano and Jordan was the introduc—

tion of the concepts of interior extent and measurability of a set.

Not all writers are in agreement, however, regarding the form of defini-

tion given by Peano and Jordan to the concept of interior extent. Thus

Loeve, in his EncyclOpaedia Britannica article "Integration and measure,"

states "this requirement [of additivity] was recognized by G. Peano

and C. Jordan who introduced approximations both from above and below.

 

32Saks, Theory‘g£_the Inte ral, viii.
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To a set S contained in a bounded interval I they assigned also its

inner content (the difference between the ordinary measure of I and

the outer content of S)."33 This statement of definition is in error

and should read "the difference between the ordinary measure of I and

the outer content of I-S." The second source in which I have been

able to find a definition of this form attributed to Peano and Jordan

is in Bourbaki's Integration (and the same passage in Bourbaki's

Elements d'histoire des mathematiques), Bourbaki, after observing that

the concept of extent is not additive, writes "without doubt to al-

leviate this last difficulty, Peano and Jordan, several years later,

introduced beside the 'measure' of Cantor u(A) of a set A contained

in an interval I, its 'interior measure' u(I)-u(I-A)..."34

I have been able to find nothing in the work of either Peano

or Jordan to support these assertions. Such contentions are of inter-

est, however, for if true, they may have guided the form given by

Lebesgue to the definition of inner measure of a set contained in an

interval. I have not been successful in corresponding with any members

of Bourbaki with respect to this question; Loeve responded to my query

by writing "I have no recollection...of the source (or sources) of my

statement...My feeling is that Lebesgue's use of difference is his own.

For he writes of Jordan content (étendue) in terms of outer and inner

contents both [defined by] a limiting process..."

However these differing statements of definition might be recon-

ciled, the measure theoretic concepts introduced by Peano and Jordan

 

33Loeve,"Integration and measure,"343.

3('Bourbaki, 22, cit., 249.
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imply a rather comprehensive theory of measure. Thus the collection of

Peano Jordan measurable sets R forms a ring, i.e., R is a ring in the

usual algebraic sense with respect to the operations of "addition" and

"multiplication" defined by the symmetric difference EAF a (E-F)LJ(F-E)

and intersection E(\F, respectively. These Operations are meaningful

since R is closed under set theoretic union and difference. (We might

note EIWF - E - (E - F)). Furthermore, the set function A defined on

R is finitely additive on disjoint elements of R. That is, if E ER
i

for l_<_i_<_n and EinEj +¢ if i = j, than

n n

A(UEi) - Z “'31)-

i-l i=1

The example of the rational numbers in the unit interval demon-

strates, however, that the countable union of sets in R need not be in

R, and the set function A does not possess the prOperty of countable

additivity. These facts might call into question the usefulness of

this class of sets and its associated set function. Analysis is es-

sentially a study of limiting processes; thus a theory of measure adequate

to the requirements of analysis might be expected to possess general

prOperties with respect to certain limiting operations. In particular,

the ring R of measurable sets might be eXpected to be closed under

countable unions, and its associated set function m might be eXpected

to be countably additive on sequences of disjoint elements of R. The

necessity of these analytic prOperties, as Opposed to the purely alge-

braic properties of the ring of Peano Jordan measurable sets, was not

immediately recognized. It remained for Borel to introduce such
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conceptions into the stream of measure theoretic ideas only after having

discovered their efficacy in a context removed from integration theory.

Borel

Borel develOped a theory of measure as a consequence of his in-

vestigation of analytic continuation of functions. In a memoir pub-

lished in 1895 and titled "On several points of the theory of functions,"

Borel proposed this question: "Being given two functions of a complex

variable, the first defined when the variable is in a certain domain,

the other defined when the variable is in a different domain, in which

cases can one say that they are the same function?"35 A particular

case of the problem considered by Borel is the following: given a

circle K in the complex plane of which the set {an} of points is a

dense subset, and the function f(z) defined by f(z) - 2‘22. where

(z-a ) n
n

Sun is a convergent series of positive terms such that ZIAnI is

m

n

11

n

convergent, and "the integral exponents mn are at most equal to a fixed

number m," is it possible to define an analytic continuation of f(z)

across K?

Borel argued in this way. Let P and Q be points inside and

outside the circle K, respectively. "We will consider the circles C

passing through P and Q whose centers 0 are situated in a determined

segment AB...perpendicular to the middle of PQ." Assume that for each n,

_

35Borel,"Sur quelques points de la théorie des fonctions:'9.
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the circle determined by P,Q and an has center On on the line containing

AB. "Designate by 2 the length of AB; the series Eon being con—

vergent, we are able to choose an n such that

(D

2 2 U1 < 1." Now for i>n, cover the center

n+1

O by an interval AiBi of length 2n
1 "the sum [of lengths] of all the13

segments, infinite in number, A B1, situated on the segment AB or on
1

its extension, is less than the length 2 of AB; therefore there exists

on AB a nondenumarable infinity of points belonging to none of these

segments. Let m be one of these points which does not coincide with

any of the points 0 for iin, and let P be the circle of center w
i

passing through the points P and Q; I say that this circle I has the

A

required property, that is to say that the series £(;:§-)mn is

n

"36 Thus Borel determined a senseuniformly convergent on this circle.

in which f(x) can be analytically continued across T.

In a note at the end of his paper, Borel commented further on

the existence of a nondenumerable infinity of points not belonging to

the union of the intervals AiBi°

intervals given on a line whose sum [of lengths] is less than the length

"...if one has an infinity of partial

of a given interval, then there exists at least one point of the in-

terval contained in none of the partial intervals. It is clear that,

if there is such a point, then there exists a nondenumerable infinity

of them, for, if there is a denumerable infinity, then one is able to

enclose them in intervals whose sum [of lengths] is as small as one

wants, and chosen in such a manner that, in adjoining these intervals

 

36Borel, 22, cit., 25-26.
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to those which are already given, one has a sum less than the length

of the interval; it suffices therefore [to demonstrate the existence

of] a point on the line belonging to none of these intervals."37

Borel succeeded in demonstrating the existence of such a point by means

of what has since become known as the Heine-Borel theorem.

Thus Borel was led to consider the union of a countable col-

lection of intervals whose measure is defined to be the sum of lengths

of the constituent intervals. This measure was apprOpriate for Borel's

purpose in that it could distinguish between the measure of a countably

dense set and the measure of its closure, a property not enjoyed by

the measure Of Peano Jordan. Borel was probably influenced in his

statement of definition of measure by Cantor and Harnack. Cantor,

in the fourth installment of his "Ueber unendliche, lineare Punktmann-

ichfaltigkeiten," had characterized each Open set of real numbers as

a countable union of disjoint open intervals; an aspect of Harnack's

work in this respect has previously been described.

Borel develOped the measure theoretic implications of his 1895

paper in his treatise Lessons 235113 Theory 2_f_ Functions, published in

1898. "We now define...a notion which will be very useful to us, the

notion of a measurable set.

"All of the sets we consider are formed of points included

between 0 and 1. When a set is formed of all the points included in

a denumerable infinity of intervals which are disjoint and have a total

length 3, we will say that the set has measure a. When two sets have

 

37Borel,‘gp, c t., 51.
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no common points and their measures are a and s’ then their union has

measure s+s’. Moreover, it is Of little importance in the definition

of measure of a set, or that of the union of two sets, if we neglect . . .

the denumerable infinity of endpoints of intervals.

"More generally, if we have a denumerable infinity of sets which

are mutually disjoint and have measures respectively sl,s2,...,sn,....

then their union has measure 3 + s
l 2

"...if a set E has measure 8, and contains all the points of a

+OOO+8 +0.. C

11

set E’ whose measure is s’, then the set E-E‘ formed of points of E

which do not belong to B! will be said to have measure s-s’...."38

Borel thus imagined sets formed by countable unions and set

theoretic difference, and their associated measure given by infinite

series and arithmetic difference. A nonempty class of sets closed

under the set Operations of difference and countable union is called a

o-ring. The ring B of Borel measurable sets is, therefore, a o-ring.

The o-ring B of Borel measurable sets contains all Open sets, closed

sets and countable sets; sets of particular importance in analysis.

None of these sets is. in general. measurable in the sense of Peano and

Jordan. Thus the O-ring of Borel measurable sets B might be expected

to be more useful in analysis than the ring of Peano-Jordan measurable

sets R. The o-ring B does exhibit a deficiency: it is not complete.

That is, it is not true that if E is a Borel measurable set with Borel

measure zero, and if F is any subset of E, than F is a member of B.

This assertion is proved by means Of a cardinality argument described

 

38Borel, Lecons sur'lgiTheorie des Fonctions, 46.
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below; the importance of the prOperty of completeness of the o-ring of

measurable sets will become evident in the next chapter.

Borel undoubtedly had the Peano-Jordan conception of measure in

mind when he wrote "the sets whose measures one can define by the pre-

ceding definitions are called by us measurable, without necessarily

implying by this that it is not possible to give a definition of the

measure of other sets, but such a definition would be useless to us,

it could even hinder us if it did not leave to measure the funda-

mental prOperties that we have attributed to it in the definitions

that we have given."

Borel stated the "essential properties" of a measure to be the

following: "the measure of the union of a denumerable infinity of

sets is equal to the sum Of their measures; the measure of the differ-

ence of two sets is equal to the difference of their measures; measure

is never negative; each set whose measure is not zero is nondenumerable.

It is above all this last property that we will use."39

The "essential prOperties" of a measure were referred to again

in a footnote. "The procedure that we have used comes back to this:

we have recognized that a definition of measure can be useful only if

it has certain fundamental properties; we have posed a priori these

prOperties and it is these which have served us in defining the class

Of sets that we regard as measurable....ln all cases, it proceeds from

the same fundamental idea: define the new elements which one intro-

duces with the aid Of their essential properties, that is to say, of

 

39Borel, 92. cit., 48.
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those which are strictly indispensible for the reasonings which must

follow." Thus Borel attempted a postulational approach to the theory

of measure. This was a significant contribution in itself for it

made explicit important prOperties a.measure might be expected to

possess.

Borel did not endeavor to apply his concept of measure to the

theory of integration. There are two reasons for this. First, the

problems studied by Borel in the theory of functions were presumably

unrelated to integration theory. Second, the theory of measure pro-

posed by Borel is in a sense not as general as the concepts of measure

defined by Harnack and Stolz, and Peano and Jordan. Thus Borel's work

was ostensibly not as apprOpriate to the theory of integration. Borel

wrote, "One will compare fruitfully the definitions that we are going

to give with the more general definitions given by Mr. Jordan in his

Course'gf,Analysis. The problem that we are studying here is besides,

completely different from the one resolved by Mr. JordanJ' Lebesgue

later attributed this remark to Borel with respect to Borel measurable

sets: "By renouncing the definition of measure for an arbitrary set

one founds a less general theory; that is to say, it applies to fewer

cases, but more precisely in the cases in which it is applied."40

The sense in which Borel's theory of measure is "less general"

is that the cardinal number of Borel measurable sets is less than the

cardinal number Of measurable sets in the theories of Cantor, Harnack

and Stolz, and Peano and Jordan. Any bounded set Of real numbers is

40Lebesgue, Notice sur les travaux scientifigues gg_M, Henri

Lebesgue , 33.
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measurable in the sense of Cantor, Harmack and Stolz; thus the cardin-

ality of the collection of measurable sets in this theory of measure

is 2c where c is the cardinality of the continuum. The Cantor ternary

set is measurable in the sense of Peano and Jordan, with extent zero.

It follows that all subsets of this set have extent zero and there

are, therefore, at least 2c Peano-Jordan measurable sets. (There are

also at most 2c sets Of real numbers measurable in the sense of Peano-

Jordan. This does not mean,of course, that every subset of real numbers

is Peano-Jordan measurable). There are, however, only c Borel measur-

able sets. This assertion follows from the propositions that there are

c Open sets, that the o-ring of Borel measurable sets is generated by

the collection Of Open sets, that is, the Borel measurable sets are

the elements of the smallest o-ring Of sets containing the open sets,

and, if M is a class of sets and the cardinality of M is less than or

equal to c, then the cardinality of the o-ring generated by M is also

less than or equal to c.41 Thus there are "fewer" Borel measurable

sets than sets with content or extent.

It was probably with this in mind that Borel appended the follow-

ing statement to his definition of measure. "It is expressly under—

stood that we will be speaking of measure only with respect to sets

that we have called measurable.

"However, if a set E contains all the elements of a measurable

set E1, of measure a, we will say that the measure of E is greater than

a without inquiring whether E is measurable or not. Inversely, if E1

contains all the elements of E, we will say that the measurswof‘E is

 

418ee Halmos, Measure Theory, 26.
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less than c. The words greater than and less than do not, moreover,

exclude equality." This statement contributed to the subsequent history

of measure theory; in particular it became one of the issues of con-

troversy in the polemic between Borel and Lebesgue.

Arthur Schoenflies promulgated a critique of Borel's theory of

measure in his treatise The DevelOpment of the Theory p_i: £22.53; _S_e_t_:_s_.

Schoenflies' work is of interest in two respects: first, it was pub-

lished in 1900 and hence after Borel had published his theory of measure

but before Lebesgue had published his work on this subject, and second,

Schoenflies was at the time a well-known and respected mathematician,

and his treatise was a standard reference, being frequently cited in

the literature. Indeed, Schoenflies' text was an outgrowth of a re-

port on the tOpic "curves and point sets," commissioned two years

before by the German Mathematical Association.42 The work might be

expected to reflect a conservative point of view'and therefore to illus-

trate the skepticism with which contributions to the emerging theory

of functions of a real variable continued to be received.

Schoenflies began his discussion of "the content of point sets"

by remarking on the existence of three essentially different theories

of measure. "The consideration of the content of point sets con-

stitutes a subject from which various controversies have emanated.

On one hand, we utilize results that could appear to be paradoxical;

on the other hand, the definition of content, like every mathematical

definition, has above all a certain subjective character, and the con-

sequences that proceed from it vary, if it has been chosen in accordance

 

42Schoenflies, Die Entwickelung der Lehre von den Punktmannig-

faltigkerten, iii.
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with the purpose to be accomplished."

Schoenflies reviewed the conceptions of Hankel, Cantor and

Harnack, and Peano and Jordan, and continued, "An essentially different

position has been taken recently by E. Borel. Borel does not add the

limit points to the point set P, and dismisses the requirement that

a finite number of regions contain all the points of the set. He

imagines that every point of P is surrounded by an arbitrary domain,

and considers the areas of these and their limits respectively. A

consequence of this definition is that all countable point sets have

content zero...."

Schoenflies was critical of Borel's form of definition of measure.

"...Borel has taken [additivity] as the basis of his definition of con-

tent. He considers this as the essential prOperty Of the concept of

content....If the continuum C on a line is divided into two point sets

P and P1, then it must follow that

1(a) = J(P) + J(P1).

To this Borel adds the second requirement that this equation must hold

for any countable collection of point sets....Now [this] second require-

ment of Borel has of course by no means the same character as the first.

It has above all only the character of a postulate; the question of ex-

tending a prOperty of finite sums to the sum of infinitely many terms

cannot be settled by assertion but requires investigation...."l'3

Borel's postulates describe the properties he wishes the concept of

measure to possess. But where, Schoenflies seems to ask, are Borel's

 

43Schoenflies, 22, cit., 93.
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proofs of existence and uniqueness of a measure with these prOperties?

Of course these objections are sound; proof of Borel's assertions came

only with Lebesgue.

Schoenflies ended by rejecting the theories of both Borel and

Peano and Jordan. "Since in applications it is always only a question

of the outer content, I will from now on call it the content of T,

designated by J(T)." Thus Schoenflies conceived the measure of Cantor

and Harnack to be adequate for the theory of integration.

Not all mathematicians dismissed Borel's conception of measure.

Even as Schoenflies was writing his monograph, Lebesgue was develOping

his theory of measure as a completion of that of Borel. "[Borel's]

definition was to inaugurate a new era in analysis: in connection with

the contemporaneous work of Baire, it formed the point of departure

of a whole series Of researches of a topological nature on the classi-

fication of sets Of points; above all, it went to serve as a basis

for the extension of the notion of integral, realized by Lebesgue in

m.
the first years of the 20th century.‘ This is the extension to

which we turn in the next chapter.

 

44Bourbaki,gp, cit., 250.
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Chapter 3

On the Lebesgue Integral

Lebesgue measure and integral

Lebesgue undertook his study of measure and integral in an at-

tempt to free classical results in analysis from restrictive continuity

hypotheses. Thus, the Riemann integral solved the problems of determin-

ing the primitive of a continuous derivative and the length of an arc

with a continuously turning tangent line in the forms

[

f’(x)dx = f(x) + c

{b

and <1+<f'<x>>2)1’2 dx,

Ja

respectively. Volterra's example Of a bounded derivative which is not

 

Riemann integrable, and Scheeffer's example of a continuous increasing

function whose derivative is unbounded in any interval1 had demonstrated,

however, the failure of these classical forms in the absence of the

continuity requirement necessary for the existence of the Riemann inte-

gral. Lebesgue's investigation of these and other classical theorems

led to his generalization of the concept of integral.

The succession of ideas which resulted in Lebesgue's definition

of integral, and which formed the basis of his thesis, can be found in

a sequence of papers published by Lebesgue between June, 1899 and April,

1901. In the first Of these, "On several non ruled surfaces applicable

on the plane," Lebesgue prOposed "to seek to determine if there exist

 

1These examples are given in Appendix C.
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surfaces applicable on the plane other than developable surfaces."2

Bonnet had proved that a surface is applicable on the plane if and only

if it is develOpable,3 a classical theorem whose generalization requires

a less restrictive hypothesis than that of a continuously turning tangent

plane. Lebesgue gave a procedure for identifying non develOpable sur-

faces applicable on the plane, basing his procedure on the exemplar of

a crumpled handkerchief or sheet of paper. He concluded, "These examples

demonstrate that the question of finding all the surfaces applicable on

the plane is not completely resolved by the theorem of Ossian Bonnet."

Montel wrote, with respect to Lebesgue's violation of the con-

ventional bounds of classical differential geometry, "This observation

[of non develOpable surfaces applicable on the plane], in conjunction

with the construction of polyhedrons by means of cutout cardboard, was

the origin of the great discovery to which his name remains attached,

this integral of Lebesgue, which for the study of discontinuous func—

tions is the principal algorithm created since the series of Fourier."4

 

Lebesgue,"Sur quelques surfaces non régleés applicables sur

1e planf'1503.

3Roughly speaking, surfaces which can be continuously deformed

into each other in such a way that length Of every arc on either of

the surfaces is preserved, are called applicable. A ruled surface is

a surface which can be generated by the continuous motion of a line in

space. The instantaneous positions of the line are called generators

of the ruled surface. A develOpable surface is a ruled surface with

the prOperty that it has the same tangent plane at all points of a

given generator.

4Montel,"Notice nécrologique sur M. Henri Lebesgue:'l98.
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In his second research note, "On the definition of the area of

a surface," Lebesgue stated, "the problem of measure of plane surfaces"

in the following way: "To make correspond to each surface a number

called its area, in such a way that two equal surfaces have equal areas,

and that the surface formed by the union of a finite or infinite number

of [non overlapping] surfaces, has area the sum of the areas of the

composing surfaces."5 Thus Lebesgue had adopted Borel's conception Of a

countably additive measure. Lebesgue's third and fourth notes are a

continuation of his investigations of the concept of surface area.

The fifth note in this sequence, "On a generalization of the

definite integral," includes statements Of definition of Lebesgue measure

and integral. Lebesgue began by reviewing prOperties of the Riemann

integral with respect to existence of a primitive. "In the case of

continuous functions there is an identity between the notions of integral

and primitive function. Riemann defined the integral of certain dis-

continuous functions, but not all derived functions are integrable in

the sense of Riemann. The problem of the research of primitive functions

is therefore not resolved by [Riemann] integration, and one can seek a

definition of integral which includes the Riemann integral as a par-

ticular case, and which permits the resolution of the problem of primitive

functions."6

After reviewing Riemann's definition of integral, Lebesgue stated

 

5Lebesgue,"Sur la definition de l'aire d'une surfaceJ'870.

6Lebesgue,"Sur une generalisation de 1'intégrale definie:'1025.



 



107

his own definition: "Let y be a function [bounded below and above

respectively by] m and M. We give

m = m0 < 1111 < m2 < "°< mp_1 p

y = m when x is a member of a set E0; mi!1 < y _<_'m.i when x is a member

of a set E1.

"We will define the measures >‘0, 41 of these sets below. Con-

sider one or the other Of the two sums

. A
o 0 1 1 ' mo 0 I

Z A O

m1-1 1 1

if, when the maximum difference between two consecutive mi tend toward

zero, these sums tend toward the same limit independently of the choice

of the mi, then this limit will be by definition the integral of y,

which will be called integrable."7

Lebesgue immediately defined his conception of the measure Of

a set. "Consider a set of points of (a,b); one can in infinitely many

ways enclose these points in a denumerable infinity of intervals; the

greatest lower bound of the sum of lengths of these intervals is the

measure of the set. A set E is said to be measurable if its measure

plus the one of the set of points not contained in E gives the measure

of (a,b)." Lebesgue continued by remarking that the countable union or

intersection of measurable sets is measurable, and measure is countably

additive on disjoint sequences of measurable sets.

"It is natural to consider...functions such that the sets which

figure in the definition of the integral are measurable. One finds that

 

7Lebesgue, 22, cit., 1026.
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if a function bounded in absolute value is such that, for every A and

B, the set of values of x for which A<y5B is measurable, then it is

integrable....Such a function will be called summable." Thus Lebesgue

defined what he later called a measurable function.

Lebesgue asserted that the integral of a summable function is

between the intégrale BEE défaut and the intégrale‘pggugyggg. Therefore,

"if a function integrable in the sense of Riemann is summable, the in-

tegral is the same with the two definitions. Now, each function integrable

in the sense of Riemann is summable, for the set of points of discon-

tinuity is of measure zero..."

Lebesgue gave the Dirichlet function as an example of a summable

function not integrable in the sense of Riemann. He stated that "the

set Of summable functions has a cardinality greater than that of the

continuum," and that "if f and 6 are summable, f+¢ and f6 are also, and

the integral of f+¢ is the sum of the integrals of f and of o."

Lebesgue contended that "if a sequence of summable functions has

a limit, it is a summable function," and therefore, by these last two

prOperties "The set of summable functions...contains all continuous

functions, all the limits of continuous functions, that is to say the

functions of the first class [of Baire], it contains all those Of the

second class, and so on.

"In particular, each derived function, bounded in absolute value,

being of the first class, is summable, and one can demonstrate that its

integral, considered as a function of its upper limit, is one of its

primitive functions."
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Lebesgue concluded this remarkable outpouring by asserting an

integral form of a concept which had occupied his attention in a prior

note, the length of a curve. "Here is an application in geometry: if

|f’|, |¢’|, lw’l are bounded, then the curve

x=f(t). Y=¢(t). z=w(t)

has its length given by the integral of (f’2+¢’z+w’2)1/2." Thus, in

this introductory note, Lebesgue demonstrated the usefulness of his more

general conception of integral by applying it to previously unsolved

problems in analysis. That is, Lebesgue reinstated for a more general

class of functions the classical integral form of the length of a curve,

and Of the relationship between a derivative and its primitive.

Lebesgue develOped and extended the ideas introduced in his

research notes in his thesis "Integral, Length, and Area," published

in 1902. Lebesgue attempted to justify and describe his work in his

Introduction. "In this work I try to give as precise and general defini-

tions as possible to some of the numbers that are considered in analysis:

definite integral, length of a curve, area of a surface.

"Mr. Jordan, in the second edition of his course of analysis

has studied these numbers in depth. It seems useful to me, however, to

take up this study again and here is why. It is known that there exist

derived functions which are not integrable, when one adopts, as Mr.

Jordan did, the definition of the integral given by Riemann. Thus

integration, as Riemann defined it, does not permit the resolution in

all cases of the fundamental problem of the integral calculus:

"To find a function knowing its derivative.
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"It seems natural therefore to search for another definition of

the integral such that in more extended cases, integration is the inverse

Operation of differentiation.

"On the other hand, as Mr. Jordan remarked, the area of a surface

not having tangent planes varying in a continuous fashion is not defined;

and the things...which one would be tempted to admit as analogous to

the definition of the length of a curve cannot be adopted. There is

therefore reason to seek a definition of area and perhaps also to modify

that Of length so that the two definitions are as analogous as possible.

"In the study of questions relative to the theory of functions

Of real variables it is often recognized that it would be useful to be

able to attach to sets of points numbers enjoying certain of the prOper-

ties of lengths of segments or areas of polygons.

"In the first chapter I define with Mr. Borel the measure of a

set by its essential prOperties. After having completed and making more

precise the rather sketchy arguments given by Mr. Borel, I indicate what

relations there are between measure thus defined and the measure of Mr.

Jordan....

"[the method] of defining the integral of a continuous function

as the area of a plane domain...has the advantage of leading to a defini-

tion of the integral of a bounded discontinuous function as the measure

of a certain set of points. I adopt this geometric definition in the

second chapter; one can replace it by an analytical definition, the integral

then being presented as the limit Of a series of sums rather analogous to

those that are considered in the definition of Riemann....

"The integral of a bounded derivative, considered as a function
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of the upper limit of integration, is a primitive function of the given

derivative; the fundamental problem of integral calculus is therefore

theoretically resolved whenever the given derived function is bounded.

"In order to obtain more general results it is necessary to give

a definition of integral applying to unbounded functions. It is easy to

find such a definition but that which seemed the most simple and natural

to me does not apply to all unbounded derived functions, so that for

unbounded functions the problem of research of primitive functions is

not resolved....

"The effective calculation of an integral depends essentially on

the form in which the function to be integrated is given. In the case

in which the function is defined with the aid of series, one can make

use of this prOperty, of which a particular case was obtained by Mr.

Osgood: a series whose terms have integrals and whose remainders are in

absolute value less than a fixed number is integrable term by term.

"In the third chapter...I adopt the following definition: the

length of a curve C is the infimum of the lengths of polygonal lines

which tend uniformly toward C. This definition is exactly equivalent

to the classical definition.

"The search for an expression of the length of a curve having

tangents leads to a new application of the definite integral....If

f’, o’, w’ exist then the necessary and sufficient condition that the

curve

x=f (t) . y=¢ (t) . z=w (t)
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[have finite length] is that the integral of (f 2+ ¢2+ $2)1/2
exists.

This integral represents the length of the curve whenever it exists.

The definition...is therefore a particular case of the classical

definition....

"In the fourth chapter I call the area of a surface L the infimum

of the areas of polyhedral surfaces which tend uniformly toward L.

"The study of the representation of area with the aid Of a double

integral is approached only in the very particular case in which the

surface admits plane tangents varying in a continuous manner; one recovers

the classical integral

r 8

I J (EG-F2)1/2 dudv."

Lebesgue devoted the last two chapters of his thesis to the study

of surfaces applicable on the plane and surfaces of minimum area bounded

by a given contour, respectively. The latter had been a topic of in-

vestigation in his fourth research note.

In the first chapter, Mesure gg_Ensembles. Lebesgue began by

proposing "to attach to each bounded set a nonnegative number that we

will call its measure and which satisfies the following conditions:

1. There exist sets whose measure is not zero.

2. Two equal [i.e., congruent] sets have the same measure.

3. The measure of the union Of a finite or denumerable

infinity of [mutually disjoint] sets is the sum of the

measures of these sets.

 

8Lebesgue,"Intégrale, Longeur, Aire,"231 ff.
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"We will resolve the problem of measure only for the sets that

we will call measurable."

Having identified the essential prOperties of a measure in the

manner of Borel, Lebesgue stated his definition of a measurable set.

"A set E being given, one can in infinitely many ways enclose its points

in a finite or denumerable infinity of intervals. The set E1 of points

of these intervals contains E; therefore the measure m(E) of E is at

most equal to the measure m (E1) of E1, that is to say at most equal to

the sum of the lengths of the intervals considered. The greatest lower

bound of this sum is an upper bound of m(E), we call it the exterior

measure of E, me (E).

"Suppose that all the points of E belong to a segment AB. We

will call the complement of E with respect to AB, CAB (E), the set AB-E.

Since the measure of CAB(E) is at most me(CAB(E))’ that of E is at least

m(AB)-me(CAB(E)). This number is independent of the chosen segments AB

containing E; we call it the interior measure of E, mi(E).

"We will call measurable those sets whose exterior and interior

measures are equal, the common value of these two numbers will be the

measure of the set....From the prOperties which follow...the number

m(E) thus defined satisfies very well the conditions Of the problem of

measure...."9

Lebesgue demonstrated that the union of a denumerable infinity

of measurable sets is measurable. He continued, "If E1,E2,... are

Inutually disjoint then the points of E are interior to intervals
1

(11 in such a manner that m(o1)-m(Ei) is at most equal to Bi. Now m(E)

hi

9Lebesgue,gp_. cit., 236ff.
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differs from

m(al) + m(az) + m(o3) + ...

by less than

6 + £2 + £3 + 0--

therefore one has

m(E) = m(El) + m(EZ) + ... ...."10

Thus Lebesgue measure is countably additive on disjoint sequences of

Lebesgue measurable sets.

Lebesgue Obtained the measure of the difference of two measurable

sets. "Let E1 contain E2, E1 - E2 is the set of points common tO‘E1 and

C(EZ), therefore if E1 and E2 are measurable, El-Ezis measurable. More-

over, since one has El - (El-E2) + E2, m(El-Ez) = m(El) - m(Ez)."

These two prOperties of Lebesgue measure, countable additivity

and the form of the measure of the difference of two sets, imply that

any Borel measurable set is measurable in the sense of Lebesgue and the

measures are equal. In particular, the collection of Borel measurable

sets is a subset of the class of Lebesgue measurable sets. Lebesgue com-

mented, "Mr. Borel called measurable the sets that one Obtains by

[denumerable union and difference]; I will call such sets measurable

(B)....[The set of Borel measurable sets] has the cardinality of the

continuum. Among these sets it is necessary to cite those which are

unions of intervals and the closed sets, that is to say which contain

 

10Lebesgue, op, cit., 239.



115

their derivative, whose complements are unions Of intervals." Thus

every Open and every closed set is Lebesgue measurable; the collection

of Lebesgue measurable sets is closed under countable union and dif-

ference, and therefore is a o-ring.

The deficiency exhibited by the collection of Borel measurable

sets, that the measure is not complete, is obviated in Lebesgue's theory

of measure. Having shown that the Lebesgue measure of the Cantor set E

is zero, Lebesgue remarked, "E has the cardinality of the continuum,

therefore one can form with the points of E an infinity of sets all of

which, having exterior measure zero, are measurable. The cardinality of

the set of these sets is that of the set of sets of points [i.e., cardin—

ality 2c Of the set of subsets Of real numbers]; there exist therefore

measurable sets which are not measurable (B), and the cardinality of the

set of measurable sets is [2c]."11

Lebesgue proved that "...each measurable set is contained in a

set EI and contains a set E2, EI and E2 being measurable (B) and having

the same measure." In modern terms, if E is Lebesgue measurable, then

there exist Borel measurable sets E and E
l 2

m(E1)-m(E)-m(E2). We note that since EZCE and E2 and E are Lebesgue

such that E11) EDE2 and

measurable, m(E-Ez) - 0. Since E - E2\I(E-E2), it follows that every

Lebesgue measurable set is the disjoint union of a Borel measurable set

and a set of Lebesgue measure zero.

Lebesgue also expressed a relationship between Lebesgue measurable

sets and sets measurable in the sense of Peano-Jordan. "From this defini-

tion [of Peano-Jordan extent] it follows that the exterior extent is at

least equal to the exterior measure and that the interior extent is at

 

llLebesgue,Igp. cit., 241.
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most equal to the interior measure." That is, A(E):me(E):mi(E).>_A_(E).

"Mr. Jordan calls measurable the sets whose interior and exterior extents

are equal; these sets which wecall measurable (J) are therefore measur-

able in the sense we have adopted...."

Lebesgue completed his discussion of the Lebesgue measure of sets

on the real line by demonstrating that the measure of the set "of points

common to all the measurable sets E E 00- which are such that each con-

1’ 2’

tains all those that follow it, is the infimum of the sequence m (E1),

m(Ez),...," Thus, if E13 E23 ..., then m (£51131) - 111m m(Ei).

Lebesgue then extended his definition of measure to point sets

in "a space of several dimensions," in particular to sets of points in

the plane.

It is Of interest to attempt to understand how Lebesgue was led

to his definition of interior measure. He commented in this respect in

his memoir "On the develOpment of the concept of integral," published in

1927. Lebesgue remarked that the measure in (E) of a set E formed of an

infinity of disjoint intervals is defined to be the sum of the lengths

of the intervals. In the general case this "leads us to proceed as

follows. Enclose E in a finite or denumerable infinity number of inter-

vals and let 2 21, 2,--- be the length of these intervals. We evidently

'wish to have

m(E) ; 21 + £2 + 000.

"If we seek the greatest lower bound of the second member for

all possible systems Of intervals that cover E, then this bound is an

upper bound of m(E). For this reason we represent it by m(E), and we

have

 

1) m(E) _<_ m(E).

"If C is the set of points of the interval (a,b) that do not
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belong to E, we have similarly

 

m(C) _<_ m(C).

"Now we manifestly wish to have

m(E) + m(C) B m ([a,b]) = b-a 3

and therefore we must have

2) m(E) 3_(b-a) — m(C).

"The inequalities l) and 2) give upper and lower bounds for

m(E)....When the upper and lower bounds for m(E) are equal, m(E) is

defined, and we then say that E is measurable."12

In the second chapter of his thesis, Integrals, Lebesgue utilized

his theory of measure to create a more general theory Of integration.

His first definition of integral was expressed in a geometric form, i.e.,

the integral of a function as the measure of its set of ordinates. "From

the geometric point Of view the problem of integration can be eXpressed

as follows:

"Being given a curve C by its equation y-f(x) (where f is a

continuous positive function...), find the area of the domain bounded by

an arc of C, a segment of the x-axis, and two parallels to the y-axis

whose abscissas are a and b where a < b.

"This area is called the definite integral Of f taken between

b

the limits a and b and is represented by f(x)dx."

a

Lebesgue reviewed the geometric definition of integral given by

 

12Lebesgue,"Sur 1e développement do 1a notion d'integrale,"

153-154 0
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Peano and Jordan. "In order that the function f be integrable it is

necessary and sufficient that [the set of ordinates] E be measurable

(J); the measure of E is the integral."

If the function f is Of arbitrary sign, that is, not necessarily

positive, then the set E is the union of the set E1 of positive ordinates

and the set E2 of negative ordinates. "The intégrale122£.défaut is the

interior extent Of E1 minus the exterior extent of E2; the intégrale‘pgg

giggg'is the exterior extent of E1 minus the interior extent of E2. If

E is measurable (J), in which case E1 and E2 are also, then the function

is integrable, with integral A(El)-A(E2).

"These results immediately suggest the following generalization:

if the set E is measurable, in which case E1 and E2 are also, we will

call the definite integral of f, taken between a and b, the quantity

"The corresponding functions f are called summable."

It may bear repeating that Lebesgue later called such functions

"measurable." In order to avoid confusion (since the term "summable" is

a member of the technical vocabulary as will be seen below), I will con-

form to Lebesgue's later usage by referring to such functions as

"measurable functions."

Lebesgue continued, "Relative to nondmeasurable functions, if

such exist, I will define the inferior and superior integrals as equal

to

mi(E1)~me(E2) me(E1)-mi(E2) .
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"These two numbers are included between the intégrale‘225_défaut

and the intégrale 233; fly”

Thus if a function is Riemann integrable it is Lebesgue integrable,

and since the Dirichlet function is integrable in the sense of Lebesgue,

Lebesque's definition of integral is a generalization of that of Riemann.

Lebesgue next turned his attention to an analytic definition of

integral. His first result in this direction was an analytic character—

ization of measurable functions. Arguing by means Of the definition Of

measurable function, the relationship between Borel measurable and

Lebesgue measurable sets identified above, and the fact that the inter-

section Of a planar Borel measurable set by a line parallel to a coordin-

ate axis is a linear Borel measurable set, Lebesgue succeeded in estab-

lishing this analytic form of measurability: a bounded function f(x) is

measurable if and only if for arbitrary real numbers a and b, a > b,

the set {xIa>f(x)>b} is measurable.

Lebesgue immediately utilized this characterization of measura-

bility in his analytic definition of integral. As a prelude to his

definition he wrote, "Let f(x) be a continuous increasing function de—

fined between G and B (o<B) and varying between a and b (a<b). Arbi-

trarily choose values of x such that

x = o<x <x < --- <x - B

nO l 2

to which correspond the values of f(x)

ao - a<a1<a2< -°° <ah - b.

"The definite integral, in the usual sense of the word, is the

  

3 a
Lebesgue,"Integrale, Longeur, Aire,"250.
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common limit Of the two sums

n n

2 (x1’x1-1)a1—1 Z (xi—x1.1)81

1:1 1:1

when the maximum of xi - x1_1 tends toward zero.

"But x1 is given if ai is, and xi - xi_1 tends toward zero if

ai - ai_1 tends toward zero. Therefore, in order to define the integral

of a continuous increasing function f(x) one can give the a1, that is to

say, the division of the interval Of variation of f(x) in place of giving

the xi, that is to say, the division of the interval of variation of x."

This Observation, in conjunction with the form of measurability

Of a function and therefore the prOperties of the measure of sets on the

real line, led Lebesgue to state an analytic definition of integral in

which the range Of the function to be integrated is partitioned rather

than its domain. "Let f(x) be a continuous function defined in (o,B) and

varying between a and b, (a<b). Arbitrarily choose

a - ao<al<a2<--°<a,n - b ;

f(x) - a for the points of a closed set e (i-O,l,°'-,n); a <f(x)<a
i i’ i

’. (1 - 0,1,2,-°',n-l); the sets

1+1

for the points of an [Open] set e1

e1 and ei’ are measurable.

The two quantities

n n n n

o - Z aim(ei) + E aim(éi) y - Zaim(ei) + £a1+1m(éi)

O 1 0 1

b

tend toward J f(x)dx when the number of ai's is augmented in such a way

that the maxigum of a -a tends toward zero.

1 1-1
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"This property obtained, one can take it for the definition of

the integral of f(x). But the two quantities o and Y have meaning for

functions other than continuous functions, they [have a sense] for

measurable functions. ...for these functions 0 and Y have the same limit

independently of the choice of the a this limit is by definition thei’

integral of f(x) taken between a and B."

This form of definition had important consequences in the ensuing

development of the properties of the integral. It enabled Lebesgue and

subsequent mathematicians to exploit the prOperties of measurable func-

tions and measurable sets both as a guide and as a means to develop the

theory. Jeffery commented that the form given by Lebesgue to his defini-

tion of integral "...proved fortunate. It influenced [the form of

results] in real variable theory, and gave them an elegance and aim-

plicity which they might not Otherwise have obtained."14

Lebesgue described this form of definition in a later paper in this

way. "It is evident that partitioning the interval (o,B) into smaller and

smaller intervals will make the differences fgfji[where f, and;1

denote the supremum and infimum of f(x) in [x respectively] smaller

1-1’x11’

and smaller if f(x) is continuous, and continued refinement of the par-

tition will make §'- §_[upper and lower Riemann sums, respectively] tend

toward zero if there are only a few points of discontinuity. But one

has no reason to hope that this will happen for an everywhere discon-

tinuous function. Then. to take smaller and smaller intervals (xi,xi+1),

—‘

14Jeffery, The Theory of Functions of a Real Variable, 74.
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that is to say values of f(x) corresponding to values of x closer and

closer together, guarantees in no way that one takes values of f(x)

whose differences become smaller.

"Let us be guided by the goal to be attained: to group approxi-

mately equal values of f(x). It is clear then that we must partition,

not (o,8), but the interval (§;f) bounded by the lower and upper bounds

of f(x) in (o,8). Let us do this with the aid of numbers yi differing

between themselves by less than c. We are thus led to consider the

values of f(x) defined by

y1 _<_ f(x):y1+1 .

"The corresponding values of x form a set E ... which plays a
i

role analogous to the interval (xi,x ) in the definition of the in-
1+1

tegral of continuous functions, since it identifies the values of x which

give to f(x) Approximately equal values."15

Lebesgue observed that if n is chosen such that Y1591531+1’
i

then n1 plays the role of f(gi) in the usual summation formula

plays the role of theEf(gi)(x -x1) and the measure m(Ei) of E

1

Thus, corresponding to the ordinary

1+1

length of the interval (x1,xi+1).

sum we are led to consider the sum

S - Znim(Ei),

Whose limit as the maximum of the yi+1--y1 tends to zero is the integral

0f f from a to B.

If the integral is thought of as the sum of an infinity of

15Lebesgue,"Sur le développement de la notion d'intégrale,"

151.152.
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indivisibles, each of which is a positive or negative ordinate of f,

then "one could say that according to Riemann's procedure, one attempts

to add the indivisibles by taking them in the order in which they are

furnished by the variation in x, Operating therefore like a merchant

without method who counts coins and bills at random in the order in

which they come to hand...," while the procedure of Lebesgue is to

separate the coins and bills into collections of like denominations,

to find the value of each of these collections and then to find the

total of the values thus obtained. Lebesque continued, "The two pro-

cedures certainly lead the merchant to the same result because no matter

how much money he has there are only finitely many coins or bills to

count. But for us who must add an infinity of indivisibles, the dif-

ference between the two methods is of capital importance."

Returning to Lebesgue's thesis, "A very important prOposition

is the following: if a bounded function f is the limit of a sequence

{f1} of measurable functions, then f is measurable.

"For let e be the set of values for which f is included be—
i i

tween a and b. The set e of points common to all the e , at least be-

i

ginning with a certain value of i, is the set of values of x for which

f is included between a and b. Now the ei being measurable imply e is

measurable; therefore f is measurable." If {En} is a sequence of sets of

points, then the set E of points which belong to En for all but a finite

number of values of n is called the limit inferior of the sequence and

is denoted by E - lim inf En. It follows that

lmfinfEn-Ln/ flEi.
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Thus, if we designate e - {x|a:f(xlfb} and en a {xlagfn(x)§b}, Lebesgue's

conclusion follows from the equality

e=Un 21

n i> n

and the measurability of the limit inferior of the sequence {en}. The

"great importance" of this prOposition will become apparent below.

Lebesgue stated a definition of integral for a bounded measur-

able function defined only for the points of a (measurable) set E.

"Let AB be a segment containing E and define a function ¢ to be equal

to f for the points of E and equal to zero for the points of CA (E).

The integral of f taken in E is, by definition, the integral of ¢

taken in AB." Thus Lebesgue could integrate functions over more general

sets than intervals. In particular, "If E is the union of E1,E2,...,

all these sets being measurable and [mutually disjoint], and if the

function f is measurable in E, then one has

f(x)dx = Z f(x)dx ."

E E1

Lebesgue extended his definition of integral to unbounded

functions in the following way. "The geometric method which was so

useful to us at the beginning of this chapter, being based on the

concept of the measure of a bounded set, applies only to bounded

16
functions. To the contrary, the analytic method [of definition] can

be applied almost without modification to [unbounded] functions.

"A function is called measurable if, for arbitrary a and b,

Lebesgue observed in a footnote, however, that "there is no
difficulty in stating the problem of the mea f
bounded or not." sure 0 points for all sets,
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the set of values of x for which

a < f(x) < b

is measurable.

"Let f(x) be a summable function. Choose the numbers

-o-<m_ < m;1 < mO < m1 < m2<--- varying between -m and

2

1 - mi_1 is bounded in absolute value. Let e1 be

the set of values of x for which f(x) is equal to 1111 and e’1 be the

+00 and such that m

set of values for which

m < f(x)< m

1 1+1 '

"Consider the two sums

o = 2mi m(ei) + 2m1 m(ei) y = 2mim(e1) + £mi+lm(ei)

in which the symbols 2 represent the sums of two series, one of positive

terms, the other of negative terms. [That is, as the index 1 runs

through negative and nonnegative integral values]. These series can be

convergent or divergent; if the series which figure in o are convergent,

that is to say, if c has a meaning, then 7 has a meaning and conversely,

and this holds however the m1 are chosen.

"By reasoning as before, one will see that the two sums of o

and y tend toward the same limit, independently of the choice of the

m1, when the number of m1 is augmented in such a way that the maximum

of m1 - m1_1 tends toward zero. This limit is the integral."
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If the limit exists as a finite real number, then f is called

integrable. The term summable, which conveys an immediate intuition

in the context of Lebesgue's definition, is used by some authors as a

synonym for "integrable."

The result of greatest interest for our purposes is the theorem

Lebesgue stated and proved regarding the interchange of the operations

of limit and integral and its consequent, term by term integration of

infinite series. "Most of the discontinuous functions that have been

considered up to now in analysis have been defined by means of infinite

series; it is therefore of interest to know the following theorem.

"If a sequence of integrable [and therefore measurable] func-

tions f1,f2,--- has a limit f, and if |f—fnl remains, for arbitrary n,

less than a fixed number M, then f has an integral which is the limit

of the integrals of fn."

Lebesgue’s method of proof of this theorem demonstrates the

way he utilized the prOperties of measurable functions and measurable

sets to obtain his results. First, the measurability of the limit

function f follows from the measurability of the functions f. Let E

be a measurable set. "Choose an arbitrary positive number e. Let en

be the set of values of er for which If - fn+p|< 6 fails for all

nonnegative values of p; then en is measurable." Thus, en -

{erllf - fn+pLiF} for all p39. Now E - en -{erIIf - fn+pl<e} for all

p39 and E-en is a measurable set. Since, as usual,

I I f - I fn I f-f

E E E " 

_<_ lf-flL n:
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and E-en and en are disjoint measurable sets whose union is E,

If—f | = If-f | + If—f |.
n n n

E e E-e

n n

Furthermore

If—fn| :_Mm(en) and If-fnl 5_em(E-en).

e E-e

n n

from.which it follows that

I f - fnl §_ Mm(en) + sm(E-en).

E E

"Now each set en contains all those of greater indices and there

exists no point common to all the en. Therefore m(en) tends to zero

with fi'and consequently so does

 

That is, since e1) e2) and {:1 en - ¢, m(iq en) a ltiim m(en) - 0.

Another way of expressing the conclusion of the theorem is

limf - lim f ,

n n n n

E .E

i.e., in these circumstances, the limiting operations can be interchanged.

This prOposition is called Lebesgue's bounded convergence theorem.

Lebesgue continued, "When f is bounded the proposition can be
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stated as follows: If a sequence f1,f2,... of measurable functions,

bounded above in absolute value..., has a limit f, then the

integral of f is the limit of the integrals of the functions fn'

"Here is another form of statement of the theorem in the general

case:

"If the set of remainders of a convergent series of integrable

functions is bounded above in absolute value, then the series is integrable

term by term."

We observe with respect to the statement of this last theorem

that the limit of a convergent series of measurable functions is a

measurable function.

It is of interest to compare these theorems with the strongest

corresponding prOpositions which can be obtained in Riemann's theory of

integration. These are the theorems of Arzela17 and independently of

(Osgood,18 published in 1885 and 1897, respectively, which may be stated

as follows: If {fn} is a sequence of Riemann integrable functions such

that Ifnlih and 1%mfn 8 f, and if f is Riemann integrable, then

b b

limf - lim f .
n n n n

a a

It follows from this that if {fn} is a sequence of Riemann integrable

functions such that f - a: fn where f is Rieman integrable, then

1

 

17Arzela, "Sulla integrazione per series," 532-537, 566-569.

Osgood,"Non-uniform Convergence and the Integration of Series

Term by Term," 182.



129

b l b
co oo 19

nélfn a n§l fn °

a a

An essential difference between these prOpositions is that in

Legesgue's theory the measurability of the limit function is implied

by the measurability of the fn, while in the theory of Riemann the

integrability of the limit function must be made the consequence of

a special hypothesis: the limit of a sequence of Riemann integrable

functions need not be Riemann integrable. This distinction, in con-

currence with the more general class of Lebesque integrable functions,

means that convergence theorems relating to the interchange of limit

and integral are valid in Lebesgue's theory of integration under

considerably less restrictive hypotheses than the corresponding prOp-

ositions in the integration theory of Riemann. Such interchanges are

frequently encountered in analysis since a function is often defined

by a limit process. Thus the Lebesgue integral is better adapted to

analytical processes, and is therefore of greater usefulness in

analysis than the integral of Riemann. A classic example of this fact

is the theorem of Riesz—Fischer, which will be described below.

One way to generalize Lebesgue's bounded convergence theorem is

to relax the requirement that the sequence {fn} converge to f for

every 35E. It might be required instead that {fn} converge to f for

every fitE—A where A is a set of measure zero. If the limit function f

 

19See Kestelman,"Riemann Integration of Limit Functions,"182,

for elementary proofs of these theorems.
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remains measurable then the proof given by Lebesgue is clearly valid

in this more general case.

If a proposition with respect to a measurable set E is true for

every element of E with the exception of at most a measurable subset

of E of measure zero, then the preposition is said to be true almost

everywhere in E. The phrase "almost everywhere" is abbreviated by

a.e. Thus, in the circumstance above, it is required that 1%m fn - f a.e.

in E.

Now if the measure is complete and if f is a measurable function,

then f = g a.e. implies g is a measurable function. This assertion

fails in general if the measure is not complete. For consider the

o-ring of Borel measurable sets and define, for purposes of argument,

a function to be Borel measurable if and only if for every a and b,

a>b, the set {x|a>f(x)>b} is measurable (B). Let C be the Cantor set

on [0,1] and E be a subset of C which is not Borel measurable. Define

f(x) - 0 for every xs[0,l] and

o if xs[0,l] - c

g(x) - 1 if xe C-E

-1 if XEEO

Then f is Borel measurable, f = g a.e, and yet g is not Borel measurable.

Thus, in this circumstance, the measurability of a function may be lost

by changing its values on a set of measure zero. Lebesgue's measure

is complete and therefore if f is an integrable function and if f - g a.e.

then g is integrable; furthermore



131

This property of completeness is also eXpressed with respect to

the measurability of the limit a.e. of a sequence of measurable functions.

Define, for example, the sequence {fn} of Borel measurable functions by

.1 if xe [0,1] - C

n

(-1)n if xeC.

Then lriimfn - g a.e. where g is the function defined above. Thus, if

Lebesgue's bounded convergence theorem were expressed in this more

general form, i.e., lémfn - f a.e., for Borel measurable functions,

then an additional hypothesis would be required to ensure the measura-

bility of the limit function f. Of course the limit a.e. of a sequence

of Lebesgue measurable functions is Lebesgue measurable. The validity

of Lebesgue's bounded convergence in this more general case may help

to explain why a measure which is complete is preferred to one which

is not.

Lebesgue gave the Cours Peccot on integration theory at the

College of France during the academic year 1902-1903. His lectures

were collected and and published in 1904 as one of the Borel monographs

on the theory of functions under the title, "Lessons on integration

and research on primitive functions." Lebesgue devoted six of the seven

chapters of his text to the history of the development of the concept

of integral. "A complete history could not be given in twenty lessons;

thus leaving aside many important results . . . [and] numerous defini-

tions which have been successively prOposed for the integral of real

valued functions of one real variable, I have retained only those that
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in my Opinion are indespensible to know in order to understand well

all the transformations the problem of integration has undergone and

in order to comprehend the relationships that exist between the notion

of area, so simple in appearance, and certain analytical definitions

of the integral with very complicated aspects."20

Again, Lebesgue attempted to justify his work. "One may ask,

it is true, if there is any interest in considering such complications

and if it would not be better to limit oneself to the study of functions

which only necessitate simple definitions. This has hardly any ad-

vantage . . . [for] as one will see in these lessons, if one wishes to

limit onself to consideration of these simple functions, it will be

necessary to renounce the resolution of many problems with simple

statements which have been asked for a long time. It is for the resolution

of these problems, and not through love for complications, that I

have introduced in this book [my] definition of the integral . . . ."

Lebesgue expostulated with those who objected to the study of

discontinuous functions. "Those who read me carefully, while regretting

perhaps that things are not simple, will agree with me, I think, that

this definition is necessary and natural. I dare to say that it is in

a certain sense simpler than that of Riemann, as easy to comprehend

as his, and that only habits of mind which have been acquired earlier

can make it seem more complicated. It is more simple because it places

in evidence the most important prOperties of the integral . . . ."

Lebesgue noted that his researches on primitive functions and

 

20Lebesgue, Lecons sur l'intégration.g£.l_ recherche des

MW. v.
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rectification of curves were given in his course as applications of

his definition of integral. "To these two applications I wished to

join another which is very important: the study of the trigonometric

development of functions, but in my course I have given this subject

such scant attention that I have decided not to reproduce it here."

Lebesgue had pursued research on trigonometric series representation

of Lebesgue integrable functions during his Cours Peccot tenure, the

results of which were published as separate papers.

Having described the theories of integration of Cauchy and

Riemann, Lebesgue began his investigation of the "problem of integration"

by stating conditions to be satisfied by an integral "if one wants that

there be some analogy between [it] and the integral of continuous

functions." Lebesgue prOposed "to attach to each bounded function

f(x), defined in a finite interval (a,b), a finite number, positive,

negative, or zero, be(x)dx, that we call the integral of f(x) in

(a,b) and which satizfies the following conditions:

1. For arbitrary, a, b, h, one has

b b+h

f(x)dx - f(x-h)dx.

a a+h

2. For arbitrary a, b, c, one has

b c a

f(x)dx + f(x)dx + f(x)dx - 0.

a b c

L_  
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b b b

3. (f(x) + ¢(x))dx . f(x)dx + ¢(x) dx.

a a a

4. If fzp and b>a then

b

f(x)dx _>_ 0.

a

5. One has

ldx a l

O

6. If ft5x) tends increasingly toward f(x), the integral of

fn(x) tends toward the integral of f(x)."21

"In enunciating the six conditions of the problem of integration,

we define the integral. This definition belongs to the class Of defini-

tions that one can call descriptive; in these definitions one states

the characteristic prOperties of the object that one wants to define.

In constructive definitions, one states which Operations it is necessary

to complete in order to obtain the Object that is defined.

"When one states a constructive definition it must be shown

that the indicated Operations are possible; a descriptive definition

is also subject to certain conditions: it is necessary that the con-

ditions stated be compatible [i.e., non contradictory] . . . It is also

necessary to study the possibly ambiguous nature of the Objects that

one wants to define. Suppose, for example, that one has demonstrated

the impossibility of the existence of two different classes of Objects

satisfying the conditions indicated and that, in addition, one has

21Lebesgue,‘gp, cit., 98.
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demonstrated the compatibility of these conditions by choosing a class

of Objects satisfying them. This class of objects is then uniquely

defined, so that the constructive definition which has served to effect

the choice is exactly equivalent to the descriptive definition.

"We seek a constructive definition equivalent to the descriptive

definition of the integral."

Lebesgue stated in this respect the primary purpose of his work.

". . . one can say that the investigations reported in this treatise

have as their principal goal the discovery of a constructive definition

equivalent to the descriptive definition of primitive functions."22

Lebesgue succeeded in demonstrating, for the class of Lebesgue

integrable functions, that there is exactly one constructive definition

of integral which satisfies the descriptive definition, and that is

the definition of the Lebesgue integral. Thus "the reasonings employed

show that the problem of integration is possible and in only one way,

if it is posed for summable functions."

Lebesgue resolved a question which had remained Open in his

thesis by proving this theorem: ". . . the indefinite integral Of a

summable function admits this function as its derivative except at the

points of a set Of measure zero." That is, if f(x) is integrable on

[a,b], then

x

f - f(x) a.e

 

22Lebesgue, 22, cit., 100.
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This remarkable theorem is only one of many stated and proved by

Lebesgue with respect to "the research of primitive functions," which

is of course the focal point of the Lecons.23

 

23It is necessary to mention the work Of W. H. Young in his

attempt to generalize the Riemann integral as the natural generalization

of the definition given by Darboux. In a paper titled "0n the General

theory Of Integration" published in 1904, Young recalled Darboux's

definition Of Riemann integral, and in particular, that the interval of

Of integration is partitioned into a finite number Of subintervals.

"The progress of the modern theory of sets of points . . . due, as is

well known, chiefly to G. Cantor, though taking its origin in Riemann's

paper 'Ueber die Darstellbarkeit . . .' naturally leads us to put the

question how far these definitions can be generalized. This theory has

in fact taught us on the one hand that many of the theorems hitherto

stated for finite numbers are true with or without modification for a

countably infinite number, and on the other hand that closed sets of

points possess many Of the prOperties of intervals.

"What would be the effect on the Riemann and Darboux definitions,

if in those definitions, the word 'finite' were replaced by 'countably

infinite,‘ and the word 'interval' by set of points? A further question

suggests itself: are we at liberty to replace the segment (a,b) itself

by a closed set of points, and so define integration with respect to any

closed set of points?"

In the course of his investigations of these problems, Young

created a definition of measure and integral equivalent to that of

Lebesgue. The accomplishments of the two men, however, are reflected

in their intentions. Young wished to generalize the definition Of

integral and succeeded in this. Lebesgue wished to resolve fundamental

problems in analysis and created his theory Of measure and integral as

a means to this end. Lebesgue's attempts to reinstate the classical

forms relating integral and derivative, for example, led to his bounded

convergence theorem and its consequent, integration of any bounded
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It is of interest for our purpose to call attention to Lebesgue's

publication Of a convergence theorem Of which the bounded convergence

theorem is a special case. In "On the method of Mr. Goursat for the

resolution Of the equation of Fredholm," printed in January, 1908,

Lebesgue stated and proved this theorem: "A convergent sequence of

summable functions f is integrable term by term when there exists
1

a summable function F such that, whatever be i and the variable x,

24

lfil 5. IF

Of Lebesgue measure, if {fn} is a sequence of summable functions and

 
In modern terms, and taking advantage of the completeness

if h is a summable function such that ltimfn - f a.e. and Ifn]§_h for

every n, then f is summable and

- n n n

This prOposition is called Lebesgue's dominated convergence theorem.

It is to be expected that Lebesgue's work was rejected by some

members of the mathematical establishment. Denjoy, in a memoir "Henri

Lebesgue, the scholar, the teacher, the man," published in 1957,

 

derivative. Young did not discover these results because he was con-

cerned with the question of definition rather than application of his

integral. See Pesin, Classical‘gng.Modern Integration Theories for a

description Of Young's work and its relationship with that of Lebesgue.

24Lebesgue,"Sur la méthode de M. Goursat pour la résolution

de l'equation de Fredholm,"12.
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observed that Lebesgue "presented in his thesis . . . to mathematical

service a tool Of extraordinary power." Yet "The acceptance Of the

works of Lebesgue by the masters Of the time was rather reserved. Many

feared to see installed a teratology of functions. Darboux, whom one

might have thought favorable because of his memoir of 1875 on dis-

continuous functions, was hostile to him. Boussinesq was supposed to

have said, 'But a function has every interest in having a derivative!‘

He was speaking of the interest of he who uses it. Only Picard defended

the research of Lebesgue and appreciated its qualities."25

Lebesgue reflected on these and other aspects of the objections

which had been raised against the study of the functions of real variables

in the Introduction of his "Notice on the scientific works Of Henri

Lebesgue," published in 1922. "In order to demonstrate the state of

mind at the time when I began my research, I will indicate certain re-

sistance which I encountered; all those who have taken up the same type

of studies have met analogous resistance. I can do this without hesita-

tion, for it has never been anything but conflicts in ideas, and I have

always found the greatest personal goodwill in the case Of those very

peOple to whom my works were the least agreeable.26

"In 1899 I remitted to Mr. Picard a note on non ruled surfaces

applicable on the plane; Hermite wished for a moment to Oppose its

insertion in the Comptes Rendus of the Academy; Mr. Picard had to de-

fend my note. One knows how much, however, Hermite was filled with

 

25Denjoy,"Henri Lebesgue, ES Savant, Le Professeur, L'Homme,"15.
 

 

 

26Lebesgue, Notice sur les travaux scientifiques de M, Henri
  

Lebesgue, 13.
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goodwill and praise, but this was near the time he was writing to

StieltjEs, 'I turn away with fright and horror from this lamentable

plague of functions which have no derivatives,‘ and he wished to see

excluded from the domain of mathematics all research in which these

horrifying functions intervene."

Lebesgue observed that he became, for many mathematicians, the

man of functions without derivatives, a charge which Lebesgue denied.

Nevertheless, "as the horror manifested by Hermite was felt by nearly

all, as soon as I tried to take part in a mathematical conversation

there was always an analyst to tell me 'this cannot interest you; we

are talking about functions with derivatives," and a geometer to repeat

in his language 'We are taking up surfaces having a tangent plane.'"

Lebesgue expressed doubt that Darboux ever entirely pardoned

his memoir on applicable surfaces and noted that "for a long time he

was hardly interested in my memoir on integration . . . .It is said

that in 1875 Darboux was somewhat criticized for having allowed himself

to study such questions; whether because of these remonstrances, or

whether because Of the beauty and importance of the problems he took

up after that, Darboux made no Other incursion into the domain of non

analytical functions."

Lebesgue believed that Borel was the first "to think that my

work would have practical utility in some way. He did, in any case,

think it before I did. I saw myself still hesitant before deciding to

present as a doctoral thesis the memoir where I took up nearly all the

research that I have since developed . . . .A little later, in 1903, I

insisted on the necessity of these studies in the preface of my Lessons
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22 Integration. In an analysis of the book, Mr. Picard, while encourag-

ing me as he has always done . . ., allowed some uneasyness to show

through on the subject of possible exagerations of the tendency that I

represented."

Given wideSpread resistance to the study of functions of real

variables, Lebesgue asked if these Objections might have merit. He

responded to this question by Observing that most Of the prior works on

real functions, except for those relating to trigonometric series,

were without comprehension in the sense that one could attribute to them

a coherent body Of theory. Many statements were negative; positive

statements were sought after but seldom achieved. ". . .if one searched

to generalize [a prOperty or definition], then one would too Often end

up with a notion certainly new but serving nothing other than being

defined. . . .If one sought for the most general functions possessing

a certain prOperty or to which is applied a certain definition, then

one would end up with a class of functions variable with the prOperty

or definition envisaged, and which by consequent, could not naturally

be put into any research; such had been the case for the class of

functions integrable in the sense of Riemann."

Lebesgue argued that since the work was essentially an explora-

tion of a disordered mass of functions, properties, and definitions,

without knowledge of interest or application, and no criteria with

which to judge such questions, mathematicians could be led to think

that researches with respect tO real functions could be suspended until

the necessity of such researches became more apparent. Yet, "in spite
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of the indifference and sometimes the opposition manifested with re-

gard to the theory Of functions of real variables, . . .it happened,

as in the past with trigonometric series, that one encountered func-

tions whose analyticity did not have to be assumed. It was thus for

example in the study of solutions of differential equations by the

method of Cauchy-Lipschitz, or by that of successive approximations

by Mr. Picard. . . .Sometimes certain of the data or solutions could

be or even necessarily were discontinuous functions, . . .at other

times, as in the questions studied by Mr. Borel, the solution is con-

tinuous but non analytic. Thus one could become familiar with the idea

that a discontinuity or a singularity is not necessarily a monstrosity."27

The reviews Lebesgue's work received in the Jahrbuch fibggngig

Fortschritte der Mathematik.were mixed. Haussner wrote a three line

review of Lebesgue's memoir "Sur une generalisation de l'integrale

définie" as follows: "The author gives a generalization of the definite

integral which encompases Riemann's definition as a special case and

simultaneously permits the solution of the problem of primitive func-

tions." On the other hand, Lebesgue's "Intégrale,longeur aire" received

a very complete and unbiased review from Kowalewski. Again, Stackel,

reviewer Of Lecons _8_l_l_£ l'intégration _et _13 recherche £13 fonctions

rimitives, was moved to write "The definition of Lebesgue [integral] . . .

corresponds to a need which Obviously cannot be CORCGSted- However, if

one goes so far to say, as does the author, that in a certain sense it

is more simple than Riemann's theory, and is just as easy to comprehend,

since only certain methods of thought which had been assumed previously

 

27Lebesgue, op, cit., 16.
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let them appear complicated, then all these things are debatable to

the reviewer. At any rate it will have to be expressed in a set theoretic

context and will hardly be amenable to elementary lectures, for which

purpose however the definition of Riemann is very suitable."

Of course Lebesgue was not without support. Picard's advocacy

has been noted. Lebesgue received his first university appointment in

Rennes in 1902; he was chosen to give the Cours Peccot in 1902-1903.

Indeed, in his inaugural lecture at the Collége de France, Lebesgue

remarked how "the great authority Of Camille Jordan gave to the new

school a valuable encouragement which amply compensated for the few

reproofs it had to suffer."

General acceptance of Lebesgue's ideas was another matter,

however, and was achieved only as Lebesgue and others exploited the

remarkable prOperties of his integral. One of the areas in which

Lebesgue's conceptions were first applied was the study of trigonometric

series. "Of all branches of analysis in which the use of an integral

more powerful than Riemann's offered a rich reward, none was so promis-

ing as the theory of trigonometrical series,"28 and it was to the in-

vestigation Of such series that Lebesgue turned.

Trigonometric Series

The theory of trigonometric series representation of functions had

continued to develOp in the period in which there was created a theory

of measure and a more general theory of integration.

The reader will recall the memoirs Of Heine and Cantor in which

the uniqueness of representation of trigonometric series of functions was

 

28Burkill, "Henri Lebesgue," 58.
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demonstrated for a particular class of functions, after the uniqueness

of such representation had been called into question by the discovery

of the relationship between uniform convergence and term by term in-

tegration of infinite series. The propositions of Heine and Cantor

reinstated the uniqueness of representation of trigonometric series

under certain conditions but did not speak to the question Of the form

Of coefficients of such representations.

Ascoli considered this aspect Of the problem in his memoir "On

trigonometrical series," dated April, 1872.

"In a treatise on trigonometrical series...Mr. Heine has verified

the following theorem:

"A function which is in general continuous but not necessarily

finite can be developed in at most one way in a trigonometrical series

of the form

3) Z(a sinnx + b cosnx)

0 n n

if the series is required to converge uniformly in general.

"Shortly after that Mr. Cantor...demonstrated how a function given

by a trigonometrical series which is convergent in general for every

value of x cannot be represented by another series of the same form.

From this it seems to follow that the preconditions which have been made

in Heine's theorem on the continuity of the function and on the type Of

convergence of the series are unnecessary.

"Also it seems to me that if a periodically repeating function in

the interval [0,2n] which is continuous in general...is representable by

a trigonometric series of the form 3), then the develOpment is not only

unique but must be the development of Fourier."29

 

29Ascoli, "Uber trigonometrische Reihen," 231.
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Thus, Ascoli asserted, the coefficients of the unique trigonometric

series representation of a function continuous except at a finite number

Of points are the Fourier coefficients. Dini published a paper, "0n

the series of Fourier," also dated April, 1872, which extended Ascoli's

result to functions whose points of discontinuity have at most a finite

number of limit points.30

These propositions were generalized in turn by du Bois Reymond.

In his "Proof that the coefficients Of the trigonometric series f(x) 8

1T
pm

1
Z (a cos x + b sin x) have the values a ='- f a do a -p=0 p p p p ().p

0 2n

+w n -n

.1 [f(a)cospodo, bp 8 iff(o)sin podo, whenever these integrals are

1T

-1T 1T

finite and determinate," published in 1875, du Bois Reymond argued that

the coefficients of the trigonometric series corresponding to a Riemann

integrable function are the coefficients of Fourier. Du Bois Reymond

noted that "the main theorems of the theory of trigonometric series are

called into question by introduction of the concept Of uniform conver—

gence, these being the theorems "if a trigonometrical development Of

the form f(x) - pg“ (apcospx+bpsinpx) is given then there is no second

p-0

of the same form," and "the coefficients of the developments can only

be expressed [in the form of the Fourier coefficients].

"Both these theorems were proven by term by term integration Of the

series f(x) and both were suddenly left without meaning."31

 

3ODini, "Sopra la serie di Fourier," 161.

31duBois Reymond, "Beweis, dass die Coefficienten der



145

In his section "History of the further evolution of the study of

trigonometrical series. The first theorem is restored," duBois Reymond

Observed that the work Of Heine and Cantor "not only restored the theorem

Of the unambiguity of trigonometric representations...but also gave to

it a general applicability of which one had not thought before these

events took place."

Turning to the purpose Of his paper in the section "On the second

main theorem. The author announces that he is able to restore it," du Bois

Reymond wrote, "With regard to the first main theorem of the theory of

trigonometric series, we can consider the research as being closed. There

seems to be.no publication on the subject of the second theorem, that

under certain necessary conditions on f(x) the coefficients have the form

discovered by Fourier, so nothing has been clarified here.

"I have known for some time that the second theorem can also be

restored if one assumes f(x) to be continuous except at special points.

 

trigonometrischen Reihe

=00

f(x) - Z (a cospx + b sinpx)

p-0 p 9

die Werthe

‘ TI'

1T II

= .1;— _ l. g _l_ f(o)sinpodo
a0 2" f(o)da,ap fl f(o)c08pado , bp fl

haben, jedesmal wenn diese Integrale endlich und bestimmt sind,"121.
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"This condition on f(x) is more restrictive, however, than

integrability in general, which suffices for the existence of Fourier

coefficients. The task which challenged my mathematical curiosity most

was to find if the coefficients Of the series of f(x) have the form Of

Fourier whenever f(x) is integrable....

"Now I believe I am able to solve the problem and in a most

general fashion."32

Du Bois Reymond's proof of his theorem is extremely long and

complicated.33 Indeed the length and difficulty of the proof were such

thatchLBois Reymond was moved to comment in this respect in a concluding

statement. "If the primeval saga is a juxtaposing of enjoyment without

effort in paradise and the hard work of the just after the fall, then

our science shows a similar anthesis. After the first analytical epoch,

which ended approximately with Fourier and Poisson, and in which there

‘were many new discoveries of formulas and theorems but little concern

with their precise formulation and range of validity... we, having eaten

from the tree Of cognizance [of uniform convergence], have had to

struggle with profound difficulties... in order to gain again these

results for science."34

Some years later, in 1881, in a paper titled "On the integration

of trigonometric series,"du.Bois Reymond Observed, "Heine's theorem shows

that a Fourier series which converges [uniformly in general] to a function

continuous at all but a finite or suitably grouped infinite set Of points

 

3au Bois Reymond,‘22, cit., 123.

33See Gibson, "On the History of the Fourier Series," 163, for a

partial synopsis.

3duBois Reymond, 22, cit., 160.
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admits integration in its members, but nothing can be said on the basis

of Heine's theorem of the term by term integration of a trigonometrical

series, assuming only that the sum is integrable."35 Du 3°13 Reymond

was able to demonstrate that a trigonometric series which converges to

a Riemann integrable function can be integrated term by term. Thus the

Significance Of uniform convergence for such integration of a trigono-

metric series was shown tO be less important than initially assumed.

Of course the theorems of Argela and Osgood are generalizations of

this proposition of du Bois Reymond.

In the second section of the same volume of the Abhandlungen‘dgr

Bayerischen Academie in whichchJBois Reymond proved his theorem that

if a trigonometric series converges in (-n,w) to a Riemann integrable

function f(x), then the series is the Fourier series of f(x), du 3018

Reymond published another long and arduous paper in whigh, by consider-

ing particular forms of f(o) in the Dirichlet integralJ f(o)§i§hgda,

he demonstrated the existence of a continuous function 0whose qurier

series does not converge at a particular point, and more generally, a

function continuous in (-w,w) whose Fourier series does not converge at the

points of an everywhere dense set.36 Thus the question of Fourier series

representation at every point of every continuous function was decided

in the negative.

Jordan obtained a simplified sufficient condition for convergence

in his memoir "On the series of Fourier," published in 1881. The sufficient

 

3duBois Reymond, "Ueber die Integration der trigonometrischen

Reihe," 260.

Ban Bois Reymond,"Untersuchungen fiber die Convergenze und

Divergenz der Fourierschen Darstellungsformeln,"72.
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conditions Of Dirichlet wrote Jordan "depend upon the two following

prOpositions:

b

1) lim f(x) sinpx - O if<0<a<b<1T

P”” x

a

and 2) This limit is equal to f(+O) if a = O and O<b<n.

"Dirichlet assumed for his demonstration that in the interval of

integration f(x) has only a finite number of discontinuities and a finite

number of maxima and minima....

"One sees easily that the first prOposition holds under the single

condition that f(x) is integrable from a to b. [Jordan attributed this

remark to Darboux].

"With regard to the second prOposition, its demonstration requires

only that there exists, in a neighborhood of the point x - O, a finite

interval (0,2) in which f(x) is constantly non increasing or non de-

creasing.

"The theorem holds therefore whenever f(x) can be represented from

O to e by h(x) - g(x) where h(x) and g(x) are two finite non decreasing

functions."37

Jordan then introduced the concepts Of negative, positive, total

and bounded variation of a function in an interval, and showed that a

function of bounded variation can be expressed as the difference of

two monotone functions.

"The demonstration Of Dirichlet is therefore applicable, without

modification, for every function Of bounded variation." Expressed

 

37Jordan, "Sur la serie de Fourier," 228.
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differently, Jordan's sufficient condition for the convergence of the

Fourier series of f(x) at a point x tO-%'(f(x+0) + f(x-0)) is that

f(x) be Riemann integrable and of bounded variation in a neighborhood

of the point x. Dini38 and Lipschitz39 had previously published suf-

ficient conditions for convergence of the Fourier series of an integrable

function f(x) at a point x in the form lim log]5kf(x+6)-f(x)) - O and

lf(x+5)-f(x)l§A5qwhere A and G are consizgts, respectively. The inequality

is now called a Lipschitz condition.

One more result from the theory of Fourier series which will be

of interest in later work is Parseval's equality. PrOperties of the

Fourier coefficients had been sought for some time and it was well known

that if f and f2 are Riemann integrable on (-W,W) and if an and bn are

the Fourier coefficients of f(x), then

H

a02+ f(arzl+b:)_<_%f2.

§-' n-l

—n

In a paper "On several applications of the integral of Poisson,‘ pub-

lished in 1893, de la Vallée - Poussin was successful in demonstrating

the inequality to be an equality,"0 a result obtained independently

some years later by Hurwitz.41 The equality has since become known

 

38131111, 22. cit., 161.

39Lipschitz,.gg. cit., 294.

"Ode la Vallée—Poussin, "Sur quelques applications de l' integral

de Poisson," 18.

41Hurwitz,"fiber die Fourierschen Konstanten integurbarer

Funktionen,"425.
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as Parseval's equality.

Lebesgue published one of the first applications of his conception

Of integral to the study of trigonometric series«corresponding to func-

tions in 1903 in a memoir titled, "On trigonometrical series." He wrote,

"In my work with trigonometric series, my principal goal has been to

demonstrate the utility that the notion of integral I introduced in my

thesis can have in the study of discontinuous functions of a real

variable."42

After a brief description of his conception Of measure and in-

tegration, Lebesgue stated the means by which he sought to attain his

purpose. "I am going to apply the concept of integral to the study of

trigonometric develOpment Of functions non integrable in the sense of

Riemann.

"Among the methods which have been used for the study of trigono—

metric series, the only one which can be applied to these functions is

that of Riemann. But this method has led up to now only to two or three

general prOperties,[One of which is] the theorem of Cantor on the im-

possibility of two develOpments of the same function...it results from

the work of Dini and Ascoli that a continuous function can only be

represented trigonometrically by means Of a Fourier series. P. du Bois

Reymond, with the aid of considerations which are not perhaps exempt from

all criticism has extended the same theorem to Riemann integrable func-

tions. The search for sufficient conditions for the possibility of the

trigonometric development of non integrable functions, in the sense of

Riemann, has not yet been taken up because of the ignorance in which one

finds oneself regarding the form of the coefficients Of the develOpment

 

42Lebesgue, "Sur les series trigonometriques," 453.
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of these functions."43

Lebesgue resolved this problem by demonstrating the theorem "If a

bounded function admits a convergent trigonometric development for all

values Of the variable, except perhaps for values of a reducible set,

then this trigonometric develOpment is the series of Fourier." Thus,

the coefficients Of the trigonometric series corresponding to such

functions are the Fourier coefficients.

As a second important result, Lebesgue succeeded in demonstrating

a generalization of a theorem of Riemann: "The integrals of Fourier,

corresponding to a function having an integral in the generalized sense

44
of the word, tend toward zero when their index is indefinitely increased."

That is, if f(x) is an integrable function in the sense of Lebesgue, then

lime(x)costxdx - lim f(x)sintxdx - 0

t+m t+m

Lebesgue then used this result to obtain a number of sufficient conditions

for the convergence Of a Fourier series. Given sufficient conditions for

such convergence Lebesgue was able to demonstrate the existence of "a

function non integrable in the sense of Riemann and representable by a

[Fourier] series for all values of the variable." In this respect

Lebesgue Observed that "the calculation of the coefficients which was

made at the beginning was therefore not without purpose."

Lebesgue ended his memoir with the statement and proof of another

striking theorem. Lebesgue showed that if f(x) is a summable function

 

43
Lebesgue,'gp. cit., 466.

44
Lebesgue,'gp. cit , 474.



152

a

and if E—- + E (ancosnx + bnsinnx) is the Fourier series corresponding

n=l

to f(x), then

x

3o w 1
f(x)dx - E-x + Z -(ansinnx + bn(l-cosnx)) for every

n-l

0

xs (0,2n). "The series of Fourier are therefore integrable term by term

in each interval....[This] prOposition...is the generalization of a

theorem of du Bois Reymond."45 One remarkable aspect of this theorem

is that the conclusion follows whether or not the Fourier series of f(x)

converges.

Lebesgue returned to the consideration Of sufficient conditions

for convergence of Fourier series in a subsequent paper, "Researches on

the convergence of the series of Fourier," published in 1905. Lebesgue

argued that "in order to study the convergence of the series of Fourier

toward the corresponding function f(x), it sufficies...to study the con-

vergence toward zero of one or the other Of the integrals [when Sm denotes

the sum of the first In terms of the Fourier series]

h
fl
fi

a
n
:

t

sin

0 0

n<Sm-f(x)) - t sin(2m+l)tdt - m(t)sin(2m+l)t dt

where ¢(t) a sin t w(t) s f(x+2t) + f(x—2t) —2f(x)."46 Of course this is an

adOption of the method of Riemann. Lebesgue succeeded in demonstrating

the theorem: "The series of Fourier converges to the function [f(x)] at

the point x if the integral of |¢(t)l has a derivative equal to zero at

t - O, and if the quantity

 

45Lebesgue,‘gp. cit., 485.

Lebesgue, "Recheres sur la convergence de series de Fourier,"

252.
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G.

IW<t+5) ‘ W(t)|dt 9 0<a<fl s 0<5 3

tends toward zero with 6.

"This is the statement that I wanted to obtain."47 This is a more

general sufficient condition for convergence for, as shown by Lebesgue,

it includes as special cases the previously given sufficient conditions

of Dirichlet, Lipschitz, Dini, and Jordan.

Lebesgue was chosen to give the Cours Peccot on trigonometric series

at the Collége de France in the year 1904-1905. He published his collected

lectures as another of the Borel monographs in 1906 under the title

"Lessons on Trigonometric Series." As might be expected, the focus of

this "22222hl$Z£2" is the theory of the trigonometric series representa-

tion of functions. Lebesgue discussed a wide range of topics relating

to such. study, including applications to the Poisson integral

and the Dirichlet problem, and a history of the develOpment of the theory.

Having described some of Lebesgue's earlier results, there is one prOpo-

sition of particular interest in the Lecons, a generalization of Parseval's

equality. Lebesgue demonstrated that "for each bounded summable function

f, such that

 

l

f m-an + 2(apcospx + bpcospx)

one has 2n

1 f2(6)d9 - $32 + 33 (a2 + 13)."48
- 2 O

n p=l

0

47

Lebesgue, 22, cit., 263.

48Lebesgue, Lecons sur les Series Trigonometrigues, 100.
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Lebesgue published a number of papers on the topic of trigonometric

 series; these first propositions suffice to demonstrate the usefulness of

his conception of integral as a means to Obtain a more comprehensive

theory. In Lebesgue's words, "...the generalization of the notion of

integral permits me to give a much more extended meaning to [the classical

theorems]." These results helped to stimulate interest in Lebesgue's work.

It was left to Riesz and Fischer, however, to independently and almost F‘

simultaneously appeal to Lebesgue's ideas to discover a theorem sufficient-

ly important to establish Lebesgue's conceptions as fundamental in the

theory of real functions.

The Riesz-Fischer theorem

Fatou was one of the first after Lebesgue to apply Lebesgue's

more general conception Of integral to the study of trigonometric series.

In a paper "Trigonometric series and series of Taylor," published in

1906, Fatou wrote "...the introduction Of these notions of measure and

generalized integral, which constitutes an important progress in the

study of point sets and of functions Of real variables, can equally

serve to resolve problems which are posed in formerly cultivated branches

of analysis.

"Already Mr. Lebesgue, in a memoir which appeared in the Annales

 

.gg.1fEcole normale s érieure, has applied his notion of integral to the

study of trigonometric series, and demonstrated, among other things, that

ifa trigonometric series is convergent and represents a bounded function,

then the coefficients Of this series are given by the formulas of Euler-

Fourier where the integrals are taken in the generalized sense of the
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word. Now there exist bounded functions non integrable in the sense of

Riemann which are representable at each point by a convergent trigono-

metric series; this result permits therefore...more unity and generality

in the theory Of Fourier series.

"In this work I demonstrate an analogous result relative to the

integral of Poisson; if a harmonic function regular in the interior of

a circle remains bounded there, then it can be expressed with the aid of

a Poisson integral, the integral being taken in the sense of Mr.

49 Fatou had undertaken this work, he remarked, "in largeLebesgue."

part for the purpose of demonstrating the advantage that one can obtain

in these questions from the new notions of measure of sets and of gener-

alized definite integral."

One of Fatou's results which is of independent interest is a

' It is "if a sequenceproposition which is now called "Fatou's Lemma.‘

f1(x), f2(x),...of positive bounded summable functions tends toward a

function f(x) bounded or not, and if

b

fn(x)dx

a

remmdns, for every n, less than a fixed number, then the function f(x)

is integrable and one has

 

49Fatou, "Series trigonometriques et series de Taylor," 337.
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b b

f (x) dxilim inf fa“) c1,,...50

8. a

Fatou used this theorem to Obtain a more general form of Parseval's

equality. He demonstrated "if f(u) is a square summable function, then

Tl’

m 2 2

+ 22(a.n + bn)’l'f2(u)du - 2a2

" 1
0

"TI'

)."5]- Thusan and bn being the Euler—Fourier constants attached to f(u

Fatou succeeded in demonstrating Parseval's equality for any square

summable function, i.e., without restricting his argument to bounded

functions as had Lebesgue in his proof of this theorem.

As will be seen, Fatou's lemma was important in another respect;

it influenced Riesz to utilize Lebesgue's conception of integral in his

attempt to extend Hilbert's results in the study of linear integral

equations. Hilbert, in his investigation of the equation

 

SOFatou, 22, cit., 375. We should observe that if {an} is a sequence

of real numbers and if bn - inf {a1}, then bn - -m for every n, or {bu} is a

i>n

monotonically increasing sequence of real numbers. Therefore limbn exists

11%

as a finite real number'or-ir. This limit is defined to be the limit inferior

of the sequence {a } and is denoted lim inf a . If liminfan - a and b is
n n+¢ n n+w

any limit point Of the sequence {a&}then agb, that is, the limit inferior Of

{afilis the least limit point of the sequence. This may help to explain the

interest in Fatou's lemma.

SlFatou, 22. cit., 379.
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b

4) f(x) + K(x,y)f(y)dy = u(X)

8.

where the functions K(x,y) and u(x) are given and f(x) is unknown, had

introduced the concept of a complete orthogonal system.of functions

{¢n}, and had, in the course of solution of the integral equation 4)

sought the "generalized Fourier coefficients" of the unknown function

f(x) with respect to {on}, that is,

b

‘
6
‘
.
.
.

'

I

cn - f(x)¢n(x)dx.52 f

a

Riesz commented in this regard in the paper in which he published

his form Of the Riesz—Fischer theorem, "On orthogonal systems of func-

tions," dated March 11, 1907. "Mr. Hilbert has introduced a general

'method for the resolution of certain functional equations of the type...

of Fredholm. This method consists of relating the resolution of these

functional equations to the resolution of an infinite system Of linear

equations in an infinite number Of unknowns. Mr. Hilbert makes the con-

nection between these two problems by using an orthogonal system of

functions; the coefficients, like the unknowns of the latter equations,

[are] integrals Obtained from the given functions and the unknown functions

«of the problem, in a manner analogous to the coefficients of Fourier,

*with the aid of an orthogonal system of functions.

 

52The definition of a complete orthogonal system of functions and

.a description of Hilbert's method of solution of the linear integral

equation 4) is given in Appendix D.
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"For the method of Mr. Hilbert, the following question is of great

importance:

"Being given an orthogonal system of functions [on] a determined

interval, attribute to each function of the system a real number. Then

under what conditions will there exist a function such that for each

function of the system [of orthogonal functions], the integral of the

product Of this fmction and the function in question, taken on the in-

terval, will be equal to the given number?" That is, if {¢n} is an

orthogonal sequence of functions defined on [a,b] and if {cu} is a given

sequence Of real numbers, than under what conditions does there exist a

function f(x) such that

b

cn - f(x)¢n(x)dx for n - l,2,...?

a

Riesz continued, "For the class of summable functions, bounded

or not, but whose square is summable, the theorem that I am going to give

completely resolves the question."53

After Observing that "an orthogonal system of functions of which

..54
none has integral zero, must be finite or denumerable, Riesz stated

 

53Riesz, "Sur les systemes orthogonaux de fonctions," 616.

5"As a generalization of a theorem Of Schmidt, Riesz had proved

this assertion for bounded functions in his memoir "Sur les ensembles de

fonctions," published in November, 1906. Riesz Observed that the theorem

"can be extended without difficulty to all square summable functions,"

i.e. , whether or not the functions are bounded.
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his theorem. "Let ¢1(x), ¢2(x),... be a ... system of functions, de-

fined on an interval [a,b], orthogonal two by two, bounded or not, sum-  
mable and square summable.... Attribute to each function ¢1(x) of the

system a number a1. Then the convergence Of 2a: is a necessary and

sufficient condition for the existence of a function f(x) such that one

has

b i-j

f(x)¢i(x)dx a a1

5..
a .

for each function ¢i(x) and each number a1."

Riesz Observed, "The necessity of the given condition follows im-

mediately from the well known inequality Of Bessel, given for continuous

functions, but which remains true for arbitrary functions, summable and

square summable." The necessity of this condition is also seen by appeal

to Fatou's form of Parseval's equality (which is, of course, a strengthened

form of Bessel's inequality in the presence of a complete orthonormal

sequence). As Riesz stated, therefore, what must be shown is the suf-

ficiency of the given condition. That is, if {ah} is a square summable

sequence, then does there exist a square summable function f such that

for every n

f

a = f ¢n ?

 

Riesz was successful in demonstrating the existence of such a

function f. In the proof of existence of this function Riesz utilized

in an essential way the convergence properties of the Lebesgue integral;



160

properties which fail for the Riemann integral. Thus a Riesz-Fischer

theorem.is not possible in the context Of Riemann's theory Of integration.

Fischer demonstrated an equivalent form Of this theorem.in his

note "0n convergence in mean," published April 27, 1907. He wrote "On

the 11th Of March, Mr. Riesz presented to the Academy a note on ortho-

gonal systems Of functions.... I had arrived at the same result and had

demonstrated it at a conference Of the mathematical society in Brflnn on

‘March 5th. Thus my independence is evident, but the priority of publica-

tion belongs to Mr. Riesz."55

As a prelude to the statement and proof of his form of the Riesz-

Fischer theorem, Fischer introduced the notion Of convergence in mean.

Let Q be the set Of real [valued] functions of a real variable x such

that f and f2 are summable...on a finite interval (a,b). Then "a sequence

f1,f2,... of functions belonging to Q is said to converge in mean if

b

lim (f —f )zdx=0
m n °

m’n-Hao

a

[The sequence] converges in mean toward a function f of 9 if

b

2
lim (f-f ) dx - 0;

new n

a

'we will write then the 'equivalence' limfn mf. This does not imply the

n

 

55Fischer, "Sur la convergence en moyenne," 1023.
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existence Of a limit in the ordinary sense of the word." That is, the

sequence fn need not converge a.e. to f. Indeed, consider the following

sequence of functions. For each natural number n define n functions.

n n n

f1 ’ f2 '°"' fn

on the interval (0,1] by

1 if 121<x < .1
n _nn

f1(x) -

0 elsewhere.56

Then the sequence of functions f: , f: , f; , f2 , f3, f3 , ...

converges in mean to the function which is identically zero but does not

converge at any point of (0,1]. There does exist, however, a subsequence

Of this sequence which converges a.e. For example, the subsequence of

functions {f:} converges a.e. to zero. This behavior is typical: if a

sequence of functions {fn} converges in mean, then there exists a sub-

sequence {f } of {fn} which converges a.e.

Given these preliminaries, Fischer stated his theorem. "If a

sequence of functions belonging to Q converges in mean, then there

exists in 0 a function f toward which [the sequence] converges in mean."

That is, if {fn} is a sequence Of functions, where fnefl, is such that

b

lim 2

m,n+°° (fn-fm) - O,

 

56This example is taken from Kolmogorov and Fomin, Elements 2:

the Theory gprunctions and Functional Analysis, Vol. 2.
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then there exists an fen such that

b

lim

n+0° a(fn-f)2 a 0.

Of course Fischer, as had Riesz, utilized in an indispensable manner

properties of the Lebesgue integral in the proof of this theorem.

After demonstrating his proposition, Fischer brought his work

into relationship with that of Riesz. "Let ¢1(x), 2(x),... be a §

denumerable set in 0 such that L”

b

¢m ¢n dx = 0 if m + n,

a

and

b

2
¢ndx l.

a

"If the series of constant non negative terms a: + a: + ... converges,

then aldl + azoz + ... converges in mean, and the theorem demonstrated

proves the existence of a function o of 0 essentially determined [that

is, with the possible exception of a set of measure zero] for which

¢(X) W a1¢1(X) + 82¢2(x) + ... .

Now ... one can calculate the an by the classical method,

b

a - ¢¢ndx ;

a
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this demonstrates the theorem previously stated by Mr. Riesz." It

should be Observed that by "alol + azoz + ... converges in mean," Fischer

n

meant the sequence of partial sums fn - X a1¢1 converges in mean.

i-l

Riesz reflected on the creation Of the Riesz-Fischer theorem in

a memoir titled "The evolution of the notion of integral since Lebesgue,"

published in 1949. "If I am.not mistaken it was the book of Lebesgue on

trigonometric series, in the Borel collection, which drew my attention to

his notion of integral; after, in order to penetrate into the details,

I studied also his thesis and his book on integration. However, the idea

and the courage to try to apply this notion to the problems with which I

was occupied came to me while reading in 1906 the excellent memoir of

Fatou, printed in the A252 Mathematics and which the author presented

also as a thesis. It is in particular, a very simple theorem generally

called the lemma of Fatou...which helped me to demonstrate, in February,

1907, a few weeks after the reading of the thesis, the theorem also

discovered independently and simultaneously by Mr. Ernest Fischer and

which is cited under both our names. The theorem served first of all as

a permanent ticket to go and return between the two spaces with infinitely

many dimensions whose interest is attached to the study of integral

equations, i.e., the space with an infinity of coordinates of Hilbert,

and the set L2 of square summable functions.... This was perhaps the

first application Of the theory of Lebesgue after, naturally, those given

by himself and Fatou, which drew the attention of mathematicians and

"h1Ch brought into the light the importance of his notion of integral."57

 

57Riesz "L'evolution de la notion d'intégrable depuis Lebesgue," 29.
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The application referred to by Riesz might be described as follows:

Let L2[a,b] denote the set of all square summable functions on [a,b].

Identify functions f e Lzla,b] that are equal a.e., that is, consider the

equivalence classes [f] of functions of L2[a,b] defined by [f] - {geL2[a,b]I

f - ga.e.}. Then every complete orthonormal sequence of functions {on}

effects a one-to-one correspondence between the equivalence classes [f ]

of square sumable functions defined on [a,b] and the square summable

sequences {cn} of real numbers, i.e., sequences such that 32° c:

n-l

converges. Indeed, the representation

f’b? co

nn

n=1

shows that the equivalence classes [f] of L2[a,b] can be regarded as the

infinite dimensional Hilbert space of square summable sequences introduced

by Hilbert and studied in detail by Schmidt.58 This space is a generaliza-

tion of the concept of finite dimensional Euclidean space. The point [f]

has coordinates (c1, c2, ...) and the functions ¢n are the coordinate

vectors. The distance d([f], [g]) between [f] and [g] is defined by

b

d([f].[g]>-( <f—g>2 1’2

which is a generalization of the finite dimensional Euclidian distance

n
2 1 2

d(X.y) -( 2 (xi-Y1) ) I .

1-1

If f and g are in L2[a,b], then the product fg is sumable. Thus the

inner product ([f],[g]) of [f] and [g] is defined by

 

58See Berberian, Introduction 52Hilbert Space for an elementary

account of the theory.
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b

([f],[g]) - f8.

a

which is a generalization of the finite dimension Euclidean inner product

n

(x,y) . z X y e

1_1 i 1

Finally, the existence of an inner product makes possible the definition

of the norm of [f],

b

2 1/2

llIfJII-RTTTHYTT-(f .

a

which is a generalization of the norm of a vector in a finite dimensional

Euclidean space.

Now if [f] and [g] are two equivalence classes of functions of

L2[a,b], then the distance between [f] and [g] is M [f] - [g] H . Thus

a sequence of equivalence classes of functions {[fnl} converges to an

equivalence class of functions [f] if and only if lim [Ilf] - [full] - 0,

that is, convergence in the space of equivalence clgsses of functions is

convergence in mean. In this context the Riesz-Fischer theorem asserts

that if {[fnl} is a sequence of equivalence classes of functions of

L2[a,b], then a necessary and sufficient condition that there exists on

feL2[a,b] such that {[fnl} converges to [f] is that lim II [fa] -

[fm] [I - O. This theorem, which is analogous to thenCauchy convergence

theorem, shows that any Cauchy sequence {[fnl} converges, i.e., the space

Of equivalence classes of functions of Lzla,b] is complete. It might be

observed in this respect that the form of the Riesz-Fischer theorem

proved by Riesz implies the form given by Fischer since Hilbert space is
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complete in the inner product norm. Thus the two forms are equivalent

which explains the name of the theorem.

Fischer emphasized the necessity Of Lebesgue's conceptions for

the validity Of the Riesz-Fischer theorem in a note "Applications of a

theorem on convergence in mean" published on May 27, 1907. "I shall

prove that use of the notions Of Mr. Lebesgue is necessary for our subject.

Let H be the set of continuous functions, and n1, n2, ... [be an ortho-

normal sequence of continuous functions]. Then there exists in 059 a

L
‘
u
n
—
_
_
_
_
—
_
‘
.
a
.
-

.
1

function X which is essentially different from all the functions of n.

Suppose

Then the series of continuous terms

alfll + azwz + ...

converges in mean without converging in mean toward any continuous

function; therefore for H, the theorem fails in general."60

Riesz remarked with respect to geometric aspects of the Fourier

coefficients Of square summable functions on June 24, 1907, in a memoir

titled "On a type of analytic geometry of systems of summable functions."

He wrote "In a lecture given in GSttingen to the mathematical society,

February 26th of this year, I set forth the results of my research on

 

59Recall that in his previous Cgmptes Rendus note Fischer had defined

0 to be the set of all real valued functions of a real variable x such that

f and f2 are summable on a finite interval (a,b).

60
Fischer, "Applications d'un theorem sur la convergence en moyenne,"

1150.
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systems of summable functions. Afterwards I communicated the principal

of these results in two notes published in Cgmptes Rendus....

"The goal of my research was to investigate the method of co-

ordinates applied to the study of systems of summable functions. To

whom goes the credit for having introduced the notion of coordinates

into the theory of summable functions? It would be difficult to say.

What is certain is that after the fundamental results relative to r!

Fourier series...the idea of representing a function by its Fourier

constants ought to have become very familiar. In this fashion, one ~-«

arrived at representing the set of summable functions by a subset of

the space of a denumerable infinity of dimensions. What is this subset?

Until today no one could really say.

"Now, for a more special class, the system of square summable

functions, the solution of the prOblem no longer carries with it so many

difficulties. For this class there exists a more intimate bond between

the function and its Fourier series.... For this class Of functions one

can define a notion of distance and can found upon this notion a

geometric theory Of systems of functions, a theory which resembles synthetic

geometry. On the other hand, the notion Of distance can also be defined in

a simple manner for a subset of points of our space, the set of points

whose sum of squares of coordinates converge. Now thanks to the theorem

on the integration of the product of two functions represented by their

Fourier constants, the bond between these two notions of distance is very

intimate; it permits one to make a correspondence between the synthetic

geometry of functions and an analytic geometry. This parallelism of the

two theories becomes complete only through my theorem of existence which
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assures that each point playing a role in this analytic geometry can be

regarded as the image of a square summable function. Then, the whole

geometry of our subset Of points, a geometry which can be developed without

difficulty, can be translated into a theory of systems of square summable

functions....

"...it is the analytical theory I had in mind. On the contrary, in

his two notes...Mr. Fischer developed, in a very elegant manner, the

synthetic theory. . . ."61

It remains to make explicit the relationship between the Riesz-

Fischer theorem and the theory of Fourier series. This special case of

the Riesz-Fischer theorem is given as follows: if {an} and. {bn} are

sequences Of real numbers such that

1 2 w 2 2
1904-1151 (an+bn) <00

then there exists a function f e L2 [0,2H] such that

5) [260 + g (a cosan+ b sinnx)
n-l n n

is the Fourier series corresponding to f, and conversely.

Thus the Riesz-Fischer theoremimplies a very general solution to the

prOblem of existence of a function f such that a given sequence of con-

stants {ch} is the set of Fourier coefficients of f. It should be noted,

however, that the Riesz-Fischer theorem does not speak to the questions

of pointwise convergence or representation of a function by its corres-

ponding Fourier series. The sequence of partial sums of 5) converges in

 

61Riesz, "Sur une espece de Geometric analytique des systems

de fonctions sommables," 1409.
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mean; this does not imply convergence of the series at a point xs [0,2n],

nor in case of convergence, convergence to f(x).

It is natural to attempt to determine conditions such that the

Fourier series corresponding to a square summable function represents the

function. In 1915 Lusin conjectured that if a function is square summable

then it is represented almost everywhere by its corresponding Fourier

series. This sufficient condition for Fourier series representation

remained open until 1966 when Carleson succeeded in affirming its validity.

Lusin and Carleson

The first sufficient condition for representation almost everywhere

of a function feL2[0,2n] by its corresponding Fourier series was given

’"criteria for convergenceby Fatou. "One can seek," Fatou remarked,

[Of trigonometric series], or, supposing that convergence takes place,

seek the prOperties of the functions thus defined. These prOblems, which

appear difficult, have been little studied." With respect to the former,

criteria for convergence, Fatou Obtained the following proposition as a

consequence Of Parseval's equality. "...1et an and bn be the Fourier

coefficients of f(x); if the series 2n(a: + bi) is convergent, then f(x)

[is represented by its corresponding] Fourier series, except perhaps for

a set of values Of x of measure zero; pratically this proposition does

not seem very useful."62

After examining several examples Of trigonometric series which

diverge at certain points, Fatou proposed this problem. "Here is a

—__

62Fatou, op, cit., 379.



170

question...which appears interesting to me and for which I have not been

able to find a solution: consider a trigonometric series whose coef-

ficients tend toward zero; we have seen that [such a trigonometric series]

can have points of divergence in every interval, but the set of points for

which we can demonstrate divergence... is always of measure zero. ,Can

one give an example of a trigonometric series, whose coefficients tend

toward zero, and which is divergent for all values for a set of non—

‘eero measure of values of the argument?"63

Three years later, in 1909, Weyl obtained a generalization of

Fatou's proposition regarding sufficient conditions for convergence

almost everywhere of a trigonometric series. Weyl considered the con—

vergence Of the series

c1¢1(x) + c2¢2(x) + c3¢3(x) + ...

where the orthonormal functions ¢1(x),¢2(x),... are defined on the in-

terval 0 §_x‘§.1. He succeeded in demonstrating, by a method due to

Jerosch and developed by Weyl, that if the functions ¢n(x) are such that

I¢n(x)l< M for every n and x£(0,l), then the trigonometric series

2 °n¢n(x)

n-l

converges almost everywhere on (0,1) if

an 1

2c: .3

is convergent.64

 

63Fatou, 22, cit., 398.

64Weyl, "fiber die Konvergenz von Reihen, die nach Orthogonalfunktionen

fortschreiten," 241.
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In the axverse direction, Lusin gave an affirmative answer to

Fatou's question regarding divergence of a trigonometric series on a

set of positive measure by publishing in 1911 the first example of a

trigonometric series whose coefficients tend to zero, and which di—

verges almost everywhere on [0,211].65

Hobson contributed a generalization Of Weyl's theorem in 1912.

He demonstrated the following prOposition. "If ¢1(x),¢2(x), ... [is]

a sequence of [orthonormal] functions, and if the series

lk ci + chg + ... + nkc: + ... converges for some value of k that is

greater than zero, then the series c1¢1(x) + c2¢2(x) + ... + cn¢n(x) + ...

converges at all points of the interval for which the [orthonormal]

functions are defined, with at most the exception Of a set of points

of ... measure ... zero."66 Hobson Observed that "the particular case

Of [this] theorem which arises when k has the value 1/2 was established

by Weyl... Weyl also established the theorem for the case k - 1/3, on

the assumption that the functions ¢n(x) are less in absolute value than

some fixed positive number, for all ... values of n and x; this last

restriction has been shown... to be unnecessary."

In a paper published in 1913 Plancherel wrote, "By modifying in

its details the method given by Mr. Hobson... I have Obtained the follow—

ing theorem, of which the theorems of Weyl and Hobson are corollaries:

If the functions ¢n(x) (n - 1,2,3,...) form an [orthonormal] system of

functions in the interval (a,b) ..., and if, moreover, the real constants

 

6SLusin, "Uber eine Potenzreihe," 386.

6Hobson, "0n the convergence Of series of orthogonal functions,"

307.
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cu are such that 2c: (logn)3 converges, then the series ch¢n(x) converges

1 1

67
almost everywhere in the interval (a,b)."

Hardy contributed to the theory by proving in a paper also pub-

lished in 1913 that the convergence of Z c:(log,n)2 is a sufficient

n-l

condition for convergence almost everywhere of the corresponding trig-

onometric series.68

Hardy's was the most general result known when Lusin wrote his

thesis, Integral ang_Trigonometric Series, which was published in 1915.

This work contains Lusin's famous conjecture: the Fourier series of a

square summable function converges almost everywhere.

Lusin inferred the truth of his supposition from two lines of

evidence. The first is related to the concept of the series conjugate

to a given trigonometric series. The conjugate of the trigonometric

series

so

a

6) 0 + Z (ancosnx + bnsinnx)

2 n=1

is defined to be the series

on
a

0 ,
7) 2 + nil (-bncosnx + ansinnx).

We might Observe in justifying the name "conjugate series" that these are

the real and imaginary parts, respectively, of the series

an n

n§1(a“ - ibn)z

on the circle [2] = 1.

 

67Plancherel, "Sur la convergence des series de fonctions ortho-

gonales," 540.

68H81‘d "O
' H

Y» n the summability of Fourier a series. 365-  
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If 6) is the Fourier series of a function feL2[0,2n], then

2 (a2
n

n-l

a square summable function f such that 7) is its Fourier series. The

+ bi) < co; therefore by the Riesz-Fischer theorem there exists

function f is called the conjugate of f. Lusin showed that if f is

square summable then chan be expressed in terms of f independently

of the Fourier series 6) and 7). He demonstrated that in this case,

f is defined almost everywhere by the integral 9

  

 

n

_ l f(x+t)-f(x-t) 69
8) '1'; t dt.

2 tent?)

0

The integral in 8) can be expressed in the form

n

9) fQH't);f(X't)dt,

0

for the integrals 8) and 9) exist or fail to exist simultaneously since

___1.__.. .1.

2 tan (12;) t

is a continuous function on [0,"].

Lusin was fascinated by 9) and showed that it exists because of the

mutual effect of the positive and negative quantities in the integral.

Indeed, he considered this interference to be of fundamental importance

in the convergence of Fourier series. "It is necessary to examine the

interference of the positive and negative magnitudes of the expression

x+o - x-o

o

 

69Lusin, Integral and Trigonometric Series, 200 ff;(l951 edition).
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as the true source Of the convergence Of Fourier-Lebesgue series. All

investigations which have been carried out up to this time concerning

convergence of Fourier series have been based on an examination of the

absolute value Of only one or another expression. It is necessary

therefore to consider these investigations as approximate and not actual-

ly entering into the [ cause of] convergence Of Fourier series. Un—

fortunately, the fact of the existence of a limit value of the integral

9) is deeply hidden in the Riesz-Fischer theory...."70

5
2
1

Lusin demonstrated the existence of 9) in the course of his proof

of the following theorem: the Fourier series of a square summable

function f(x) is convergent a.e. in [-n,n] if and only if almost every-

where in [-n,n]

1T

10) I113 .f-(x+t) -?(x-tl
t cosntdt - 0.

O

Lusin held these considerations to be a first argument for the

validity of his conjecture. For "having noticed that the integral in

equation 10)... differs from the integral 9) only by the factor cosnt,

which acquires positive and negative values which are uniformly dis-

tributed over the interval [0,2w] when n converges to +w, we are led

to expect that the Fourier-Lebesgue series of any square summable func-

tion f(x) is always a series which converges almost everywhere in the

interval [0,2n]. All the results which have been obtained up to this

time in the theory of trigonometric series confirm the probability of

this hypothetical proposition."71

 

70Lusin, Op. cit., 218.

71Lusin, Op. cit., 219.
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A second line of reasoning which led Lusin to his conjecture is

related to the collection of papers cited above, i.e., the papers of

Fatou, Weyl, Hobson, Plancherel and Hardy. Lusin argued in the follow-

ing way. "It is possible, in general, to study the trigonometric series

a oo

11) -%-+ z (a cosnxib sinnx)

n=l n n

from two points of view. First, [it is possible] to study the question

of convergence or divergence of 11) in direct dependence on the numerical

character of the coefficients an, bn (n-l,2,3,...). It is, for example,

possible to study the convergence or divergence [of 11) as it depends]

on the character of the magnitude of an, bn with increasing n. Classical

analysis Often applies this point of view. Second, it is possible in

the study of these questions to completely exclude the numerical character

of the coefficients of the trigonometric series, expressing these co—

efficients directly through the function; for example, determining them

according to the formulas Of Fourier.... From this point of view the

questions of convergence or divergence of the trigonometric series or

other analogous questions are no longer related to the properties of the

coefficients, but to the properties of the function f(x) itself....

This point of view is primarily the point Of view of the theory of

functions.

"Both of these points of view almost coincide when we limit our—

selves to the examination of square summable functions. In this case the

natural necessary and sufficient numerical characteristic of the co-

efficients is the convergence Of the series

2 (a2 + b2).

n-l n n

h
u
m
a
n
-
.
0
0
1
1
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Earlier we were at the second or the function theoretic point of view

in the study of trigonometric series, and we saw a great probability

that the Fourier-Lebesgue series Of every square summable function f(x)

converges almost everywhere in the interval [0,2w]. The probability of

the indicated hypothetical prOposition becomes clear with an examination

of this question from the first point of view."

Lusin then reviewed the sufficient conditions for convergence

almost everywhere of Fourier series cited above, the tests of Fatou

through Hardy. He continued, "Examining this table of tests for con-

vergence, we see that their general type is the convergence of the series

°° 2 2
12) Z W(n) (a +1: )

n n
n=l

where W(n) is a positive increasing function. We shall call such a test

for convergence Weyl's test since Weyl first attracted attention to tests

for convergence of this type. The function W(n) is a positive non-

decreasing function such that the convergence of the series 12) implies

the convergence almost everywhere of the corresponding trigonometric

series

ona

-Q-+ Z (a cosnx+b sinnx).

2 n=1 n n

We shall call such a function Weyl's function.

"The more slowly Weyl's function W(n) increases, the more extensive

the class Of trigonometric series which converge on the basis of this

test, and consequently the greater the generality of this test of con-

vergence. Hence the problem of convergence of the trigonometric series

of Fourier—Lebesgue of a square summable function f(x) leads to the task
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of seeking out the least increasing functions of Weyl.

"...It is easy to see that if each increasing function ... is a

Weyl function, then the Fourier series of each square summable function

converges almost everywhere."72

Lusin was thus led to a conjecture whose validity remained unde-

cided for over fifty years after it was first expressed.

New ground was broken with respect to study of the divergence of

Fourier series with Kolmogorov's publication in 1922 Of the first

"example of a summable function whose Fourier series diverges almost

everywhere...."73 Kolmogorov noted that the function constructed "is

not square summable and I know nothing of the magnitude of the coef-

ficients of its Fourier series." It might be Observed that the Fourier

series of the function constructed by Kolmogorov diverges almost every-

where because the sequence of partial sums of the Fourier series is

almost everywhere unbounded. In a paper published in 1923, Menchov

stated and proved the following generalization of Hardy's test for con-

vergence almost everywhere of Fourier series: "If the functions ¢n(x).

(n = 1,2,...) form an [orthonormal] system of functions in the interval

(a,b), and if the series

2 a2(log n)2
n

n=l

converges, then the series

oo

2 an¢n(X)

n=1

 

72Lusin, op, cit., 227ff.

73Kolmogorov, "Une série de Fourier—Lebesgue divergente presque

partout," 324.
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74 (The reader willconverges almost everywhere in the interval (a,b)."

recall that Hardy proved this theorem for the case of trigonometric

series). It may be of interest to note that Rademacher had stated this

generalization Of Hardy's theorem without proof in a paper published in

1822.75 Menchov's work, however, was independent of that of Rademacher.

The principal result of Menchov's paper was original and striking.

Having Observed that the notation

we» = o [(logn>21

means "the order of increase of W(n) is less than that of (logn)2,"

Menchov stated and proved the following theorem: "If W(n) is an arbi-

trary positive function satisfying the condition W(n) - 0 [(logn)2],

then there exists an [orthonormal] system of functions ¢n(x),n - 1,2,3,...,

and a sequence Of real constants an such that the series

2 an¢n(X)

n=1

diverges everywhere in (0,1), whereas the series

2 a: W(n)

n=1

converges."76 Thus Menchov's first theorem above is the best possible

for arbitrary systems of orthonormal functions.

 

4Menchov, "Sur les series de fonctions orthogonales," 82.

75Rademacher, "Einige Satze uber Reihen von allgemeinen Orthogonal

funktionen," 112.

76Menchov, op, cit., 89.
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Menchov's result did not negate the possibility of replacing the

Weyl function (logn)2 by a function W(n) satisfying the condition W(n) -

0[(logn)2] for the case of trigonometric series, and this Opportunity

was exploited by Kolmogorov and Seliverstov in a paper published in E225.

These men demonstrated that in the case Of trigonometric series, the

factor (logn)2 in Weyl's test for convergence can be replaced by the

factor (logn)1+6 where 6 > 0.77 This was accomplished by proving the

theorem: "If the series

°° 2 2
13) uglrm) (an + bn)

and m

14) Z 33%;3-where I(n) < T(n+l)

n=1

converge, then the series

as

Z (a cosnx + b sinnx)
n n

n=1

converges almost everywhere," i.e., the convergence of

co

2 2 2

nEll-(105m) (an + bn)

can be replaced by the convergence of both Of the series 13) and 14) where

in the latter series, I(n) < T(n+1).

In the same year, 1925, Plessner Obtained a generalization of the

result of Kolmogorov-Seliverstov. By utilizing the methods of Jerosch

 

77Kolmogorov and Seliverstov, "Sur la convergence des series de

Fourier," 303.
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and Weyl, as had Kolmogorov and Seliverstov, Plessner proved that if

so

n§1(1ogn)(a: + bi)

is convergent, then

oo

2 (a cosnx + b sinnx)

n n
n-l

 

is convergent almost everywhere.78 This result remained the most general

‘
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n
-
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t
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known for over forty years.

Turning again to the study of divergence of Fourier series, Kol-

mogorov published in 1926 an example of a summable function whose

Fourier series diverges everywhere.79 Even more significant for our

purpose is the assertion, due to Kolmogorov, and published in 1927 in

a paper authored by Kolmogorov and Menchov, that there exists a function

feL2[0,2n] with the prOperty that the terms of its Fourier series can

be rearranged to form a series which diverges almost everywhere.80

Kolmogorov stated this proposition without proof. Assuming the

validity Of Kolmogorov's theorem, Ulyanov published a generalization of

it in 1958. To understand Ulyanov's generalization requires that we de-

fine the concept of an LP space. Let 1 §.p §_w; then Lp is the space

of all measurable functions f such that If]p is summable. We have

already encountered the two special cases p - l and p - 2; these are

 

8Plessner, "Uber Konvergenz von trigonometrischen Reihen," 16.

79Kolmogorov, "Une serie de Fourier-Lebesgue divergente partout,"

1327.

80Kolmogorov and Menchov, "Sur la convergence des series de fonctions

orthogonales," 433.



 
181

the spaces of summable and square summable functions, respectively. We

might observe that the use of the term "space" is meaningful for, as in

the case of L2, it is possible to define a norm on the elements of Lp

such that Lp is a normed linear (or vector) space.81

Given the definition of an Lp space, Ulyanov's generalization of

Kolmogorov's theorem can be stated as follows: if p > 2 then there

exists a function feLp such that the terms of the Fourier series of f

can be rearranged to form a series which is divergent almost everywhere.82

 
The first construction of such a Fourier series was given in 1960

in a paper by Zahorski. Zahorski sketched a means of determining the

coefficients of the Fourier series of a function feL2 and indicated how

to permute the terms of the series in order that the rearranged series

diverges almost everywhere.83 Zahorski thus verified in print Kolmogorov's

proposition and Ulyanov's generalization of it.

In the converse direction, and "[lending] some support to the con-

jecture of N. N. Lusin," Garsia proved the following two theorems in a

paper published in 1963. "The Fourier series of every function in

L2(-w,n) can be so rearranged as to converge almost everywhere," and,

"If successively and independently for each k we permute at random the

terms of the Fourier series Of f whose indices are comprised between

mk and mk+1 among themselves, then with probability one, the resulting

rearranged series will converge almost everywhere,‘ where f is a function

 

81See Royden, Real Analysis, 93.

82Ulyanov, "On unconditional convergence and summability," 828.

83Zahorski, "Une série de Fourier permutée d'une fonction de

classe L divergent presque partout," 501.
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in L2(-n,n) and {mk} is a sequence Of integers such that

S (x,f) + f(x).

“’1.

Having noted that these theorems are valid for arbitrary orthonormal

expansions, Garsia Observed that "the construction of divergent ortho-

normal expansions is elaborate.... The corresponding form of [carsia's

second theorem] may explain this difficulty, since convergence almost

everywhere appears to be more the rule than the exception."84

Such was the situation when Carleson published his paper in 1966.

Carleson stated his purpose in this way. "In the present paper we shall

introduce a new method to estimate partial sums of Fourier series. This

will give quite precise results and will in particular enable us to

solve the long Open problem concerning convergence almost everywhere

for functions in L2."85 In particular, Carleson proved that if

feL2[0,2n]then the sequence of partial sums of the Fourier series of f

converges almost everywhere.

Kahane reviewed Carleson's paper in Mathematical Reviews:"The

spectacular discovery contained in this article is the validity Of Lusin's

hypothesis.... The coherence [of results Of previous workers] and [their]

great difficulty... had made specialists think that they were probably

the best possible; from which followed a skepticism, justifiable until a

few months ago, with respect to proposed demonstrations of Lusin's

hypothesis.

 

4Garsia, "Existence of almost everywhere convergent rearrangements

for Fourier series of L2 functions," 623.

5Carleson, "On convergence and growth of partial sums of Fourier

series," 135.
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"[Carlson's] proof is very delicate and demands admiration....

The techniques used...are refined but classical (maximal Hilbert trans—

forms, harmonic functions in a half plane, convolutions, and Young's

inequalities on Fourier transforms).

"The article Of the author is very difficult to read. It would be

desirable to find either a more rapid demonstration by another method or

several general theorems suggested by the author's method from which

the theorems on convergence of Fourier series would follow...."

 
Kahane Observed that Carleson's results "...are without doubt not

the best possible; one can conjecture that...[the sequence of partial sums]

sn(x) is convergent a.e. when feLp, p > 1." Hunt succeeded in demonstrating

this generalization Of Carleson's theorem in a paper published in 1968.

By utilizing essentially Carleson's proof but modifying certain of Carle-

son's definitions and constructions, Hunt showed that if feLp[0,2n]

where l < p < w, then the Fourier series corresponding to f converges

almost everywhere.86

Thus the theorem of Carleson and its generalization by Hunt provide

a very general answer to the question Of sufficient conditions for rep-

resentation almost everywhere of a function by its corresponding Fourier

series.

 7'

86Hunt, "On the convergence Of Fourier series," 235.
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Epilogue

Lebesgue remarked that " ... many branches of our science have

died just at the time when general results seemed to guarantee them a

new activity. I cite as examples the theory of forms and elliptic

functions--so completely ignored since Weierstrass presented the gen—

eral theorems about them. General theories reply to the questions

asked of them. Unfortunately, they reply too easily, without requiring

Of us any effort, and since they give us the solution of problems before

we have studied them, they weaken our curiosity and deny us the intimate

86 We need not shareknowledge which would have led to new problems."

Lebesgue's concern regarding continued study of Fourier series. Carle-

son's result is very general, yet many questions with respect to Fourier

series representation of functions remain Open. This has been and is

one of the great problems Of analysis. Investigation of it can be ex-

pected to continue and I predict the pursuance of such investigation will

continue to contribute to the development of analysis.

The question of Fourier series representation of functions has been

successively generalized. Such generalization, by making the problem

more rather than less comprehensive, renders it capable Of partial solu-

tion. Thus the question of representing a generalized Fourier series

ganon, which may be convergent or divergent, by a function f derived

from the series, i.e., which is related to the series by the equations

b

 

6Lebesgue, "Humbert et Jordan, Roberval et Ramus," 192.
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and agrees in value with the series at almost all points of (a,b) at

which the series converges, becomes possible only with the introduction

of a more general conception of integral and convergence of series.

Saks, describing the "regularity and harmony, unhoped for by the older

methods, concerning, for instance, the existence of a limit, a deriva-

tive, or a tangent, remarked that . . . many branches of analysis. . .

have lost none of their elegance where they have been inspired by methods

of the theory Of real functions. On the contrary, we have learned to

admire in the arguments not only cleverness of calculation, but also

the generality which, by an apparent abstraction, often enables us to

grasp the real nature of the problem."87 Indeed, the generalization of

a problem in order to grasp its "real nature" and therefore to make it

amenable to solution is characteristic of the evolution of the theory.

It is evident from reading the almost literal excerpts that there

were many ambiguities and omissions in the statements of definitions and

assertions of results in the original papers. Borel's definition of

measure, for example, is in my Opinion almost incomprehensive in its

indefiniteness. Proofs were often wanting in accuracy; even Lebesgue

slipped into occasional error in his Lecons §g£.1flnt§gration g£_l§_

Recherche des Fonctigns Primitives. Such logical deficiencies are

clearly secondary, however, to the very real accomplishments of the men

who contributed to the creation of the theory: the explication of new

ideas, lines of investigation, methods of attack, and fruitful generaliza-

tions.88

 

87Saks, 22, cit., x.

88See Kline, "Logic versus Pedagogy," 264.
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Finally, mention should be made of the controversy which accom-

panied the creation of the theory of functions Of a real variable. There

was polemic between Bernoulli and d'Alembert and Euler; Fourier was

criticized by Lagrange. Cauchy's formulation of the notion of limit

was criticized by Cournot and ignored by Poisson.89 While I have no

evidence to support such a contention, I suspect Riemann did not publish

his Habilitationschrift in part because of the criticism he knew would

follow. Cantor was criticized by Kronecker, Borel by Schoenflies, and

 
Lebesgue by Hermite. In all Of this there is the question of the role

Of authority in the determination Of what is admissable in mathematical

science. It is apparent that mathematics was not the Open and impartial

discipline described by the stereotype. Indeed, evidence suggests that

this is true of science in general even today;90 hOpefully, the possibility

of such controversy no longer exists in the science of mathematics.

 

89Boyer, The Histogy gf_the Calculus and its Conceptual Develog-

ment, 283.

90See de Grazia, The Velikovsky Affair; The Warfare of Science

and Scientism. ..—
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Appendix A

Let f be a real valued function of a single real variable such

that f is periodic with period 2n, i.e., f(x + 2n) - f(x); and f’ and

f” exist and are continuous. First we will show that f can be repre-

sented by a Fourier series on [-",“].

 

 

 

 

 

  

 

 

Let

T!

1

an a ;- f(t)cosntdt for n - 0,1,2,...,

and -n

11'

1

bn - ?- f(t)sinntdt for n - 1,2,... .

Then -F

{N

1
la | = - f(t)cosntdt
n n

J-n

1 r" 1
... f(t)d(iflli)

n n

1.1:
n

n

1 sinnt sinnt

l) 8 fl f(t) n - f (t) n dt

-n

-n

by integration by parts.

Evaluate l) to obtain

r1!

1 .
-'| f (t)sinntdt
nn

J-n

in

= .1_ I f’(t)d -cosnt

1111'

J-" 
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n
11’

_ lg' , cosnt ,, cosnt
_nfl -f (t) n + f (t)—-r-‘-—-dt

7!

-n

l , .
_<_ 2 f (1T) + f (-11) +21IM

n n

 

 

 

 

where M = max {If”(t)| n §_t §_n}.

 

Thus there exists a constant M1 such that

M1
Ianl £7 for n= 1.2.... e

n n

Similarly, there exists a constant M such that

2

M2
lbnl_i-§ for n = 1,2,... .

1111'

Therefore the series

a
0

2) 2 + (ancosnx + bnsinnx)

n
t
o
B

n 1

converges uniformly and absolutely on [-n,n] to a (continuous) function,

say g(x). That is,

a

g(x) - 39-+ Z (ancosnx + bnsinnx) for every xe[-n,n].

n=1
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Now let

n

, 1

an = ;- g(x)cosnxdx for n - 0,1,2,... ,

—n

and

11'

, 1
bn a ;' g(x)sinnxdx for n = 1,2,... .

-w

Since the series 2) converges uniformly,

n

1 a0 °°
a; -';- {§-+ mil (amcosmx + bmcosmx)}cosnxdx

n w n w

a0 m m b

- - cosnxdx + Z - cosmxcosnxdx + 49- sinmxcosnxdx .

2n m=l n n

Using the facts

" o if m + n

cosmx cosnxdx =

if m - n

-n

and

TI

sinmx cosnxdx = 0 ,

-11

it follows that an a an for every n. Similarly, bn = bn.
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Thus f and g have exactly the same Fourier coefficients. It is

easy to show that the function which is identically zero is the only

continuous function with the prOperty that all its Fourier coefficients

are zero. Thus f = g, and

a

3) f(x) = 39'+ nél (ancosnx + bnsinnx)

for all xe[-n,n].

Now since f(x) has the property that f(x + 2n) - f(x) for every

real number x, f is represented for every real number by the Fourier

series 3).
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Appendix B

The difficult part of the proof is to evaluate the integral

lim I:f(u) sin jrriglE—£-da. An analytic analog of Fourier's geometric
j+m -cos r

argument might be as follows.

Express the integral in the form

sin rN-x

“_xf(x+r) Qin J r l-cos £>d r recalling, of course, the

relationship r =<¥ - x. Now let u - jr. Then the integral is written

sin2

New" f(x-+19) (sin 1.) (%)(-—-L)du.

 

30'1"") l-cosg-

3 5

Appealing to ghe fzmiliar equalities sin y = y - §T-+-§T-- . . . and

cos y = l - §T’+'%T" . . . , we obtain the integral in the form

u u3 u5
1 — - —— + -——- - . .

j(1r-x) u (1" j 3313 5315 ,
f(x-l-) (sin u) —- du.

(-1r-x) j 2 2 4 6

i) _9_ _ .11.. + _2_ -

1 2:32 4') 63j

Now consider the limit Of this integral as j-+ w. The limit is of the form

f(x)]dlsin u) -- du.

1L

2

Hence, completing the evaluation, we write

+nsin u

2f(x)fdo du.= 4f(x)f+w81+u du = 2wf(x).

Thus, Fourier concluded

i-+on n

f(x) = -- Z I” [f(o) cos i (a- x)] do.

"in—m

It is of interest to observe that Fourier's proof is quite different from

the argument given here. Fourier argued geometrically rather than analytically.
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He Obtained the integral

2f(x)fg°einj r) 35:11:

.E

2

by asserting that the area under the curve whose abscissas are a and

ordinates are f(u) (sin j r) lgigsgf is zero "except for certain intervals

infinitely small, namely, when the ordinate IgEEEEF- becomes infinite. This

will take place if r - o - x is zero; and in the interval in which a differs

infinitely little from x, the value of f(u) coincides with f(x). Hence the

integral

, sin r
ff(o)(31n j r)I:E;;—;-do

becomes 2f(x)f;(sin.j r)£é-dr. . . ."

r

7

It is enjoyable to attempt to visualize Fourier's assertion; such an

exercise will also begin to reveal remarkable depth of insight and geometric

intuition which Fourier almost invariably brought to bear upon such problems.
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Appendix C

Volterra's1 example of a bounded derivative which is not Riemann

integrable may be described as follows: In analogy with the construc-

tion of the Cantor ternary set, construct a nowhere dense perfect

subset E of [0,1] of positive Lebesgue measure,2 i.e., such that the

sum of lengths of the Open intervals (a,b) of [0,1] whose union is

the complement of E is less than 1.

Recall that the function f defined by

xzsini'if O<x§1

f(x) -

0 if x = O

is differentiable on [0,1], where f’(0) and f’(l) are left and right

derivatives respectively, and f’ is bounded on [0,1] but is discontin-

uous at the origin. Volterra's example is a function g defined on

[0,1] such that g’ exists and is bounded on [0,1] and, on each in-

terval contiguous to E behaves as the function f above behaves on (0,1).

Thus g’ is discontinuous at every point of E.

To define g, proceed in this way. Let E be given as above and

let (a,b) be any of the countably many Open intervals whose union is the

complement of E. Then on (a,b) the function

h(x,a) - (x-a)zsin';%z’ xe(a,b)

is differentiable and the derivative h’(x,a) is given by

a _;L_ l
h (x,a) 2(x-a)sin x-a - cos;:; xe(a,b).

 

1Volterra,"Sui principii del calcolo integrale,"334.

2See Gelbaum and Olmsted, Counterexamples‘ig_Analysis, 88, for

the construction Of such a set.
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Now there exists a sequence {xn} of points in (a,b) converging to a

for which h’ (xn,a) a +1, and there exists a sequence {yn} of points

in (a,b) converging to a for which h’(yn,a) - -1. Indeed, there exists

a fixed positive integer N such that a < a +--lh-< b; hence for every

2Nn

n > N,

1 1 1

a < a +(2n+l)n < a + 2;; <'b. Therefore for n > N,{a +(2n+l)w }

and {a +*§%;J are sequences contained in (a,b) which converge to a

, a) - l and h’ (a +-l—', a) a -l.and are such that h’(a +

2nn

___1.__..

(2n+1)n

By the intermediate value prOperty of derivatives, for every n > N

there exists an xe (a +<§;:%3;-, a.+- -E%;-) such that h’(x,a) - 0.

Thus there are countably many zeros of h7(x,a) in the interva1(a,'§§2'].

Let Y denote a fixed zero of h’ (x,a) in this interval.

Now define g(x) by

h(x,a) if a < x: Y

g(x) = h(Y,a) if Y : x<__ a + b-Y

h(a+b-x,a) - -f(x,b) if atb-Y:x<b.

Thus, on each of the intervals (a,b), g(x) is symmetric with respect to

the line x -‘§§E . Finally, define

g(x) 3 0 if 35E.

Therefore g(x) is defined on [0,1].

Now g(x) is differentiable on [0,1). For if x is a member of

the complement of E, then there exists an (a,b) such that xe(a,b).

. . ..L .1.. . .Hence g (x) 2(x-a) sin x-a - cos x-a if a<xgy , g (x) 0 if
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y§x§a+b-y , and g’(X) = _2(b-x)sin'3%;-+ cos'3%;'if a+b-y:;<b, If

er then let e>0 and y€[0,l] such that Iy-xl<s and consider

 

If y is a member of the complement of E then there exists an (a,b) such

that ys(a,b). Then xia or ng. If xga then Iy-al §_|y-x|, and since

|8(y)| _<, (y-a)2 on (a,b),

£11).
y-X

2
: Ismail _<_ ILL-2.2.! t heal; Ml...

ly"a | ly'al

l g(x)—g(x)

y-X    

Of course a similar argument can be written if b §_x for then

[Y‘b[ §_Iy-x| and |g(y)| _<__(y-b)2 on (a,b). Therefore for every er,

if y€[0,l] is such that Iy-xl<e, then

 

which implies g’(x) exists and g’(x) - 0. Notice that g’(0) and g’(l)

are left and right derivatives respectively.

Now 3’ is bounded on [0,1] for Ig’(x)| §_3.

Finally, g’ is discontinuous at every point of E. For since

E is nowhere dense in [0,1], for every xsE and every Open interval

containing x there exists a subinterval of [0,1] containing no point
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of E. Hence for every x E, every Open interval containing x contains an

endpoint Of an interval complementary to E, and since g assumes values

jfl.in every neighborhood of such a point, 3’ is discontinuous at every

point Of E. Thus there exists a bounded derivative 3 on [0,1] which is

not Riemann integrable there.

These remarks indicate that the assertion "integration is the I

inverse Of differentiation" requires some qualification. Given a dif— -‘

ferentiable function f we differentiate to obtain f’. But given f’ we

cannot necessarily integrate, in the sense of Riemann, to recover f up to [

 
a constant. Thus for Riemann integrals the classical form

fails in general.

An example of a function for which Scheefer asserted the classical

integral form Of the length of curve

b

(1+(£’>2>1’2

has no meaning is constructed in the following way.

"Let wl, w2,...be the set of all rational numbers. With the se-

quence w1,w2,...associate a sequence Of positive quantities c1, c2,...

so that

f(x) = r21 cr(x-wr)l/3

is uniformly convergent for all values of x from x0 to x1....The function
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f(x) is then continuous and increasing with x...it follows that the curve

between any two points (xo,yo) and (x1,y2) has a determined length. The

integral

x
l

1) (1 + f’(x)2)1/2dx

xo

by which the length usually is expressed is in this case completely mean— .Wfl

ingless, since...at all points x = wr a differential quotient exists and

has the value +00."3 That is, for any xs(x0,x1) the oscillation at f’(x) [

 is +00 and therefore the integral 1) does not exist.

 

Scheeffer, "Allgemeine Untersuchungen fiber Rectification der

Curven," 66.
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Appendix D

It should be remarked at the outset that Hilbert worked with

Riemann integrals and therefore the integral symbol J is understood to

denote an integral in the Riemann sense.

We will begin by attempting to develOp some intuition regarding

how a linear integral equation

b

l) f(s) + K(s,t) f (t)dt = u(s),

A
!
“

n

a

 where the functions K and u are given and f is unknown, can be reduced

to a system of infinitely many linear equations in infinitely many un-

knowns and why this might be of assistance in obtaining a solution f(x)

of the integral equation.

Let the interval of integration [a,b] be partitioned into n

subintervals of equal length by the points x0,x1,...xn. Then

xi = a+'$£;2:21'where i = 0,1,2

f(xi) by f1, K(xi,xj) by K

,...,n. Designate the functional values

ij and u(xi) by ui. Then the integral equation

1) assumes the form

n

2) fi + X K f = u

i=0 ij j 1 ’ 1 = 0.1.2.--..n.

that is, a system of n+1 linear equations in the n+1 unknowns f1.

Written out, these equations are of the form
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(1 + Koo>fo + K01f1 + K02f2 +. . . + K nfn II

C‘
.

0 0

x f + (1+K )f + K f _

10 0 11 1 12 2 + . . . + Klnfn ul

KZOfO + K21f1 + (1+K22)f2 + . . . + Kann . u2

K f +

n0 0 Knlfl + Kn2f2 + . . . +(1+Knn)fn = un .

For a given n, let f0,f1,...,fn be a solution of 2) and consider

the set of points

P = {(xi’fi) I Ojiin}.

Now if K and u are sufficiently well behaved, then as n tends to infinity,

the systems of linear equations 2) tend to the integral equation 1), and

the sets of points Pn tend to a solution function f(x) of the integral

equation. This may help to explain why Hilbert reduced the equation 1)

to a system of linear equations.

More specifically, Hilbert argued as follows. He first introduced

the concept of a complete orthogonal sequence of functions {¢n}. Such a

sequence of functions, each of which is defined and continuous on [a,b],

is orthogonal, that is,

b

¢.¢ = 0 if i + j .

a

and complete, i.e., if s(x) is any continuous function defined on [a,b]

and if
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5n = s(x)¢n(x)dx

is defined to be the generalized nth Fourier coefficient of s(x) with

respect to {¢n}, then {¢n} is complete if and only if

This is, of course, a more general form of Parseval's equality. Hilbert

did not give this definition of completeness of an orthogonal set but

he did demonstrate the equivalence of the above condition and his defini—

tion. We note that an orthogonal sequence of functions {¢n} is said to

be orthonormal if and only if for every n,

¢n=1-

The sequence

1 , cosx, sinx, ... , cosnx, sinnx,...

me/T VT.”—

is a complete orthonormal sequence of functions defined on [~n,n]; this

example may help to eXplain the origin of the conception of complete

orthonormal sequence and generalized Fourier coefficients.

Hilbert then reduced the linear integral equation 1) to a system
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of infinitely many linear equations in infinitely many unknowns

3) x. + 32° a. x = b , 1 = 1,2,3,...,

where aij and bi are the generalized Fourier coefficients of K and u,

reapectively, in reference to a complete orthogonal sequence of functions

{¢n}o That is,

b b

aij = K(s,t)¢i(s)¢j(t)dsdt ,

a a

a "double" Fourier series, and

b

bi = u(s)¢i(s)ds .

a

This enabled Hilbert to view the problem of obtaining a solution of 1)

as the search for a solution (x1,x2,x3,...) of 3) where x1 is the i th

generalized Fourier coefficient of the unknown function f with respect

to {¢n}.

Hilbert showed that the bi are square summable, that is,

E b: < w. Therefore, by a theorem previously demonstrated by Hilbert,

thire are two possibilities for 3): there exists a unique square summable

solution or no unique solution exists. We will consider only the first

of these two possibilities.

If (01, 02,...) is the unique square summable solution of 3) then

Hilbert proved,
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where

b

Ki(s) = K(s,t)¢i(t)dt ,

Ja

converges uniformly on [a,b] to a (continuous) function, u(s).

Finally, Hilbert showed if f(x) is defined by f(x) 8 u(x) -a(x)

then

b

f(x)¢i(x)dx = oi

a

and hence, since a1 is the i th generalized Fourier coefficient of the

solution function of l) with respect to {¢n}, f(x) is a solution of the

integral equation. Conversely, the conditions satisfied by (a1,a2,...)

must be satisfied by the generalized Fourier coefficients with respect

to {¢n} of any continuous solution of 1). Thus, Hilbert concluded, if

3) has a unique solution then there exists a unique continuous solution

of 1).

This argument is given in Hilbert's Grundzfige §i223_Allgemeinen

Theorie ESE linearen Integralgleichungen, 174 ff., a collection of six

papers of which the first five appeared in the Gfittingen Nachrichten

in 1904-1906; the collected works were published in 1912. For a more

detailed account in English of Hilbert's work in integral equations the

reader is directed to Bernkopf's "The Deve10pment of Function Spaces with

Particular Reference to their Origins in Integral Equation Theory."
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