x ? ' 0 : 1 ‘ 1 ‘ i 1 u ‘ ‘ “ 0 ’ 0 v x 5 3 9 I ‘ ? I v ! C 5 " ' V A m . “ ; . k w . ' . I u I - 5 n . w 5 2 ‘ C 3 1 . 2 - $ ' ‘ \ ? . . . u ; ’ 3 - . - 4 - ‘ 3 . . 4 . - . , . p ‘ 8 ; . — 3 o , , . g : 1 . \ 5 u ‘ . ‘ " . ‘ . - Z 1 . 2 ' r ‘ “ _ ” “ : 1 3 4 " f I ; " . 5 4 . 6 n , # v f . - I . ' ’ 1 . " ‘ u 1 l 5 l 4 . 1 } v 1 3 l , e f . - " . ( w .- a v i n g , . . ’ 3 u ' . : $ h W 2 . I i f 7 ] ,' I I . ? 4 ' ' 1 ' 1 . 1 ; ( ; . 1 .' I 1 " 1 A J ” ’ 3 ; : : Z - 3 h . t 4 , ' 5 ‘ M 4 0 $ “ ? 3 k 1 J < 5 0 1 $ . . ‘ u I ‘ 7 ‘ m 2 4 4 ' 6 . ' 1 ‘ . 1 . . u I ‘ I " , ' ” w i l l ! ” ” I Q - I f n v i f ‘ , . . s ‘ ' I f 3 > " J ? ? I I : 2 . . ( 5 | ‘ 2 ' “ ” ' 5 ‘ r ' I . . § ; - v : v r : ; ' : ? ' ' J N d , ‘ m i { ( : i v ' ‘ ’ 3 : “ 0 » ; o , : E : ‘ J ) , “ 4 v . h : ~ 1 : 5 " . ' f 4 v . " I t : 4 ' 4 : I N ‘ 1 : u 3 . 4 : : , \ " " ‘ 1 4 ' 3 n J 4 J ‘ " ” . 3 “ 7 . . . " - 0 . } , 4 ‘ 5 ‘ “ . . . ‘ ~ I . j . I ‘ q - k “ ' I ‘ H ‘ J / r " M , ' “ l i ‘ l 1 5 " " ? “ 3 ; : 3 : } 1 : 3 : 1 ‘ . . H M ‘ . ‘ l w M M . . N j fi " . . I n » : P i t h : : A ‘ ‘ I _ ‘ h 5 . - { I f } , 1 1 5 3 : ! " ' 4 ’ “ I " A ’ I / fi é ] 0 ' " { I : . , 3 “ . y w 1 ‘ £ 1 0 7 . 4 5 . 4 2 , 1 ) . i i ‘ " ; , ' { 4 u ’ ~ ? { : — ; ' ' { u : i ‘ q v ' . i t , “ 4 . 5 ? l . . . z ’ + . " . . . W M ’ { 6 4 " a ? $ 5 3 2 , : ' , J V ? “ ’ 4 “ , 1 1 . ) . . . 5 5 . « i . . . - . ' . 1 . i f ! ” I t g ' z fi ‘ s 1 : 2 1 ; M “ . . ‘ i : 5 v . 3 1 . f i n - i n ” ’ ' ; ' . \ « . ~ ~ : ~ : . " é V ‘ R i g - h m ? “ $ 3 E R w a x - i . ~ E S 2 % , , 4 3 + . . - I v a , g a w k ) v ; . ( N M ‘ h ' J , ‘ I , ‘ I ‘ f f : > . V ‘ n o . , I t ; - : ' u fi - fi w “ . ‘ V “ J ” L z ‘ g ‘ g ' : n ; . - : r v ‘ I t ‘ Q K h 3 " “ " 9 & ' \ P ' - { . 5 I . W 3 5 0 ? ” . I R E . " a “ ! ! “ u i i ” ' ! f x l ‘ " 4 4 ) 4 ‘ Q . 4 1 ' . ' 1 4 : 9 : * 5 ? “ " - , _ - : \ I l ‘ f l i k ’ p ‘ i ‘ ~ , v a 4 ’ : 9 : 3 . . . r fl ‘ g . 4 1 : ! L I ' K I ’ E ‘ 4 ' 2 4 ! ” M u m , " i ’ r . ' M ; ” a , l . . . A l f ) , 4 Y A 1 ‘ 7 4 / n - I ’ I - £ § I H I I 1 l ¢ f l i fi fi g h x u f 4 ‘ ” A I > A ' 4 2 " ( . 1 . M , - . “ ’ v ’ . " ) 3 . 4 I t - " . : 1 . y ' { " f r ' 1 ' 4 ‘ f - “ - I y . - . - l g l { ‘ N ' f fi é / ' 3 ‘ ? j k ‘ g ' g i fi g z fl y l , - { . 4 3 2 " ) “ , " 1 ” I . r “ 3 4 " ! f a b ; ‘ 5 ‘ l ‘ r l r ’ . Y . ‘ ' ' 1 9 , 1 , : A . “ { . 2 v ’ \ J " x l 1 3 4 . 4 ? b . ‘ . V \ \Iiwn'l 3 ‘ m 1 ’ 2 i 9 i 3 w 0 m 0 u 6 “ m 0 5 I 2 7 x 3 § ‘ u - ~ - J a w — d e g r e e i n W t u é é ‘ fl i fl fl " ‘ “ ' 2 ; ' ) f 7 , C H G E U T ‘ f L E S M R Y V M i c h i g a n S t a t e U n i v e r s i t y T h i s i s t o c e r t i f y t h a t t h e d i s s e r t a t i o n e n t i t l e d C H A R A C T E R I S T I C S O F A S P H A L T P A V I N G M I X T U R E S U N D E R C Y C L I C L O A D U S I N G F L E X U R A L T E S T S p r e s e n t e d b y K I S E L E E h a s b e e n a c c e p t e d t o w a r d s f u l fi l l m e n t o f t h e r e q u i r e m e n t s f o r M a j o r p r o f e s s o r D a t e M M S U i s a n A f fi r m a t i v e A c t i o n / E q u a l O p p o r t u n i t y I n s t i t u t i o n 0 - 1 2 7 7 1 l _ _ _ . _ — P L A C E I I R E T U R N B O X t o r e m w e t h i s c h e c k o u t f r o m y o u r r e c o r d . T O A V O I D F I N E S r e t u r n o n o r b e t o r e d e t e d u e . = D A T E D U E D A T E D U E D A T E D U E i M S U I . A n A f fi r m d l v e A d l e r - E q u a l O p p o r t u n i t y l n e t t t m i o n C H A R A C T E R I S T I C S O F A S P H A L T P A V I N G M I X T U R E S U N D E R C Y C L I C L O A D U S I N G F L E X U R A L T E S T S V o l u m e 1 B Y K I S E L E E A D I S S E R T A T I O N S u b m i t t e d t o M i c h i g a n S t a t e U n i v e r s i t y i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r t h e d e g r e e o f D O C T O R O F P H I L O S O P H Y D e p a r t m e n t o f C i v i l a n d E n v i r o n m e n t a l E n g i n e e r i n g 1 9 8 8 > ‘ " 3 K e v a l u a t e t h e s t r u c t u r a l p r o p e r t i e s o f t h e m i x , a n d t h e i i A B S T R A C T C H A R A C T E R I S T I C S O F A S P H A L T P A V I N G M I X T U R E S U N D E R C Y C L I C L O A D U S I N G F L E X U R A L T E S T S B Y R I S E L E E I n c r e a s i n g h e a v y w h e e l l o a d s a n d t r u c k t r a f f i c o n f l e x i b l e h i g h w a y a n d a i r p o r t p a v e m e n t s h a s n e c e s s i t a t e d m o r e r a t i o n a l d e s i g n a p p r o a c h e s . R e c e n t l y , s i g n i f i c a n t p r o g r e s s h a s b e e n m a d e t o d e v e l o p n e w p a v e m e n t s t r u c t u r a l d e s i g n m o d e l s ( e . g . e l a s t i c a n d v i s c o e l a s t i c , a n d f i n i t e e l e m e n t m o d e l s ) . T h i s g a v e r i s e t o t h e p r o b l e m o f m a t e r i a l c h a r a c t e r i z a t i o n u n d e r s i m u l a t e d f i e l d l o a d i n g c o n d i t i o n s . M o r e o v e r , a t t e m p t s t o d i r e c t l y r e l a t e m i x d e s i g n v a r i a b l e s t o t h e s t r u c t u r a l p r o p e r t i e s o f t h e m a t e r i a l s a r e l i m i t e d o r n o n - e x i s t e n c e . C o n s e q u e n t l y , t h e n e e d f o r q u a n t i f y i n g r e l a t i o n s h i p s b e t w e e n t h e s t r u c t u r a l p r o p e r t i e s o f c o m p a c t e d a s p h a l t m i x e s a n d m i x d e s i g n p a r a m e t e r s w a s r e a l i z e d . I n t h i s s t u d y , i t w a s h y p o t h e s i z e d t h a t r e l a t i o n s h i p s b e t w e e n t h e s t r u c t u r a l p r o p e r t i e s o f t h e a s p h a l t m i x e s a n d t h e a s P h a l t m i x d e s i g n p a r a m e t e r s c a n ' b e f o u n d u s i n g s t a t i s t i c a l a n a l y s e s . T o v e r i f y t h e h y p o t h e s i s , l a b o r a t o r y f l e x u r a l c y c l i c l o a d t e s t s w e r e d e s i g n e d a n d c o n d u c t e d t o s t a n d a r d M a r s h a l l m i x d e s i g n p r o c e d u r e s w e r e e m p l o y e d t o o b t a i n t h e m i x d e s i g n p a r a m e t e r s . B a s e d u p o n p h y s i c a l i n t e r p r e t a t i o n o f t h e t e s t r e s u l t s , s t a t i s t i c a l r e l a t i o n s h i p s b e t w e e n t h e s t r u c t u r a l p r o p e r t i e s o f a s p h a l t m i x e s a n d t h e i r m i x d e s i g n p a r a m e t e r s w e r e e x a m i n e d . T h e s e r e l a t i o n s h i p s a r e p r e s e n t e d a n d d i s c u s s e d i n t h i s d i s s e r t a t i o n . T O M Y P A R E N T S i i A C K N O W L E D G E M E N T S T h e w r i t e r w i s h e s t o e x p r e s s h i s a p p r e c i a t i o n t o h i s m a j o r p r o f e s s o r , D r . G i l b e r t Y . B a l a d i , P r o f e s s o r o f C i v i l a n d E n v i r o n m e n t a l E n g i n e e r i n g , f o r h i s g u i d a n c e a n d n u m e r o u s h e l p f u l s u g g e s t i o n s d u r i n g t h e c o n d u c t i n g o f t h e r e s e a r c h a n d p r e p a r a t i o n o f t h i s d i s s e r t a t i o n . T h a n k s a l s o t o t h e o t h e r m e m b e r s o f t h e w r i t e r ’ s d o c t o r a l c o m m i t e e : D r . R . D . L e p a g e , P r o f e s s o r o f S t a t i s t i c s : D r . R . W . L y l e s , A s s o c i a t e P r o f e s s o r o f C i v i l a n d E n v i r o n m e n t a l E n g i n e e r i n g : a n d D r . R . S . H a r i c h a n d r a n , A s s i s t a n t P r o f e s s o r o f C i v i l a n d E n v i r o n m e n t a l E n g i n e e r i n g . T h e w r i t e r a l s o o w e s h i s a p p r e c i a t i o n t o D r . Y o u n g - S h i k P a i k , P r o f e s s o r o f C i v i l E n g i n e e r i n g o f K y u n g H e e U n i v e r s i t y , w h o i n i t i a t e d t h e w r i t e r i n t o t h e p u r s u i t o f l e a r n i n g . M a n y t h a n k s a r e a l s o e x t e n d e d t o M r . C h a - d o n L e e f o r h i s t h o u g h t f u l n e s s d u r i n g t h e c o u r s e o f t h i s s t u d y ; M r . K y u - b o n g K i m f o r h i s f r i e n d s h i p ; a n d M r s . S i h a m B a l a d i f o r h e r c a r e a n d k i n d n e s s . S p e c i a l a p p r e c i a t i o n , a d m i r a t i o n , a n d l o v e a r e d u e h i s P a r e n t s w h o m a k e i t a l l w o r t h w h i l e . i i i T A B L E O F C O N T E N T S P A G E L I S T O F T A B L E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v i i L I S T O F F I G U R E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i x L I S T O F S Y M B O L S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x i i i I N T R O D U C T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 L I T E R A T U R E R E V I E W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 . 1 G E N E R A L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 . 2 M A T E R I A L E V A L U A T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 . 3 R E S I L I E N T C H A R A C T E R I S T I C S O F A S P H A L T M I X E S . . . . . . . . 1 1 2 . 3 . 1 E F F E C T S O F T E S T V A R I A B L E S . . . . . . . . . . . . . . . . . . . 1 2 2 . 3 . 2 E F F E C T S O F M I X A N D S A M P L E V A R I A B L E S . . . . . . . . . 1 4 2 . 3 . 3 C O R R E L A T I O N S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 2 . 4 P L A S T I C C H A R A C T E R I S T I C S . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 2 . 4 . 1 P L A S T I C D E F O R M A T I O N P R E D I C T I O N M O D E L S . . . . . . . 2 1 2 . 4 . 2 E F F E C T S O F T E S T V A R I A B L E S . . . . . . . . . . . . . . . . . . . 2 3 2 . 4 . 3 E F F E C T S O F S A M P L E A N D M I X V A R I A B L E S . . . . . . . . . 2 6 2 . 5 F A T I G U E P R O P E R T I E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 2 . 5 . 1 F A T I G U E M O D E L S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 2 . 5 . 2 E F F E C T S O F T E S T , S A M P L E , A N D M I X V A R I A B L E S . . . 3 3 2 . 5 . 3 C O R R E L A T I O N S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 2 . 5 . 3 . 1 B O N N A U R E , G R A V O I S , A N D U D R O N M E T H O D . . 4 0 2 . 5 . 3 . 2 P E L L A N D C O O P E R M E T H O D . . . . . . . . . . . . . . . 4 4 2 . 5 . 4 F A T I G U E L I F E O F I N S E R V I C E P A V E M E N T . . . . . . . . . . . 4 5 2 . 5 . 5 S U M M A R Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 8 i v 3 . L A B O R A T O R Y I N V E S T I G A T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 3 . 1 G E N E R A L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 3 . 2 T E S T M A T E R I A L S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 3 . 2 . 1 A G G R E G A T E A N D M I N E R A L F I L L E R . . . . . . . . . . . . . . . . 5 1 3 . 2 . 2 A S P H A L T B I N D E R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7 3 . 3 A S P H A L T M I X D E S I G N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7 3 . 4 T E S T V A R I A B L E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 3 . 4 . 1 C Y C L I C L O A D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 3 . 4 . 2 T E S T T E M P E R A T U R E . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 3 . 4 . 3 N U M B E R O F L O A D R E P E T I T I O N S . . . . . . . . . . . . . . . . . . 6 9 3 . 5 M I X V A R I A B L E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 0 3 . 5 . 1 A G G R E G A T E A N G U L A R I T Y . . . . . . . . . . . . . . . . . . . . . . . . 7 0 3 . 5 . 2 A S P H A L T T Y P E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1 3 . 5 . 3 A G G R E G A T E G R A D A T I O N . . . . . . . . . . . . . . . . . . . . . . . . . 7 1 3 . 6 S P E C I M E N V A R I A B L E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 3 . 7 T E S T M A T R I C E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 7 3 3 . 8 S P E C I M E N D E S I G N A T I O N N U M B E R . . . . . . . . . . . . . . . . . . . . . . . 7 7 3 . 9 S P E C I M E N P R E P A R A T I O N P R O C E D U R E . . . . . . . . . . . . . . . . . . . . 7 8 3 . 1 0 M E A S U R E M E N T S Y S T E M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 3 . 1 1 T E S T P R O C E D U R E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 T E S T R E S U L T S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 4 . 1 G E N E R A L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 4 . 2 T E S T R E S U L T S . . . . . . . . . . . . . . . . . . . . i . . . . . . . . . . . . . . . . . 8 6 A N A L Y S I S A N D D I S C U S S I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 2 5 . 1 G E N E R A L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 2 5 . 2 S T U D Y O B J E C T I V E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 3 5 . 3 D A T A P R E P A R A T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 4 5 . 4 A N A L Y S I S M E T H O D S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 8 5 . 4 . 1 S E P A R A T I O N O F V A R I A B L E S . . . . . . . . . . . . . . . . . . . . . 1 0 9 5 . 4 . 2 G E N E R A L E Q U A T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 6 5 . 4 . 3 S T E P W I S E C O R R E L A T I O N . . . . . . . . . . . . . . . . . . . . . . . . 1 2 7 5 . 5 A N A L Y S I S O F P E R M A N E N T D E F O R M A T I O N . . . . . . . . . . . . . . . . . 1 3 0 5 . 6 A N A L Y S I S O F P E R M A N E N T D E F O R M A T I O N U S I N G D E F L E C T I O N B A S I N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 8 5 . 7 F A T I G U E L I F E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 7 5 . 7 . 1 F A T I G U E L I F E : T O T A L P L A S T I C D E F O R M A T I O N . . . . . 1 5 1 5 . 7 . 2 F A T I G U E L I F E : P L A S T I C D E F O R M A T I O N R A T I O . . . . . 1 5 7 5 . 8 A N A L Y S I S O F R E S I L I E N T A N D T O T A L M O D U L U S . . . . . . . . . . . 1 5 9 5 . 8 . 1 G E N E R A L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 9 5 . 8 . 2 S T A T I S T I C A L A N A L Y S I S . . . . . . . . . . . . . . . . . . . . . . . . 1 6 4 5 . 9 S U M M A R Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 8 5 . 1 0 I M P L E M E N T A T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 9 6 . C O N C L U S I O N S A N D R E C O M M E N D A T I O N S . . . . . . . . . . . . . . . . . . . . . . . . 2 0 0 6 . 1 C O N C L U S I O N S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 0 6 . 2 R E C O M M E N D A T I O N S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 1 L I S T O F R E F E R E N C E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 2 A P P E N D I C E S A P P E N D I X A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 2 A P P E N D I X B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 0 A P P E N D I X C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 5 A P P E N D I X D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 6 A P P E N D I X E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 4 v i L I S T O F T A B L E S T A B L E P A G E 3 . 1 P E R C E N T P A S S I N G B Y W E I G H T F O R G R A D A T I O N S A A N D B . . . . 5 3 3 . 2 S P E C I F I C G R A V I T Y O F T H E C O A R S E A G G R E G A T E . . . . . . . . . . . . 5 4 3 . 3 S P E C I F I C G R A V I T Y O F T H E F I N E A G G R E G A T E . . . . . . . . . . . . . 5 5 3 . 4 A S P H A L T P R O P E R T I E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 8 3 . 5 M A R S H A L L M I X D E S I G N R E S U L T S F O R V I S C O S I T Y G R A D E D A S P H A L T A C - 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 9 3 . 6 M A R S H A L L M I X D E S I G N R E S U L T S F O R V I S C O S I T Y G R A D E D A S P H A L T A C - S . . . . . . . . . . . . O O O O O O O O O O O O O O O O . . . . . 6 1 3 . 7 M A R S H A L L M I X D E S I G N R E S U L T S F O R V I S C O S I T Y G M D E D A S P H A L T A C - Z O S O . . . . . . C O O O O C O I O O O O O O O O O O . . . . . . 6 3 3 . 8 A S P H A L T M I X D E S I G N F O R T H R E E P E R C E N T A I R V O I D S . . . . . . 6 7 3 . 9 T Y P I C A L C O M P A C T I O N V A R I A B L E S F O R 3 P E R C E N T A I R V O I D S U S I N G L I M E S T O N E A N D A C - I O . . . . . . . . . . . . . . . . . 8 0 3 . 1 0 T Y P I C A L C O M P A C T I O N V A R I A B L E S F O R 5 P E R C E N T A I R V O I D S U S I N G L I M E S T O N E A N D A C - 1 0 . . . . . . . . . . . . . . . . . 8 0 3 . 1 1 T Y P I C A L C O M P A C T I O N V A R I A B L E S F O R 7 P E R C E N T A I R V O I D S U S I N G L I M E S T O N E A N D A C - 1 0 . . . . . . . . . . . . . . . . . 8 0 5 . 1 R E G R E S S I O N M A T R I X F O R T H E C U M U L A T I V E P L A S T I C D E F O R M A T I O N S U N D E R T H E L O A D E D A R E A , F L E X U R A L B M T E S T S A T 7 7 F . . . . . . C O C O O C O C O O C O O O 0 0 . . . . . . . . . . . . 1 3 1 5 . 2 R E G R E S S I O N M A T R I X F O R T H E C U M U L A T I V E P L A S T I C D E F O R M A T I O N é U N D E R T H E L O A D E D A R E A , F L E X U R A L B E A M T E S T S A T 4 0 F . . . . . . . . . C O O O C O C O C O O O O O O C O O 0 . 0 . 0 . . . . O O . 1 3 2 5 . 3 R E G R E S S I O N M A T R I X F O R T H E C U M U L A T I V E P L A S T I C D E F O R M A T I O N S U N D E R T H E L O B D E D A R E A , F L E X U R A L B E A M T E S T S A T 7 7 F A N D 4 0 F . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 7 5 . 4 R E G R E S S I O N M A T R I X F O R T H E P A R A M E T E R A O F T H E D E F L E S T I O N B A S I N O F T H E S U R F A C E O F T H E B E A M A T 7 7 F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 5 . 5 R E G R E S S I O N M A T R I X F O R T H E P A R A M E T E R B O F T H E D E F L E S T I O N B A S I N O F T H E S U R F A C E O F T H E B E A M A T 7 7 F 0 . . . . . . . . . . O O O O O O O O O . . . . . . O O O O O O O O O O O O 0 . 0 0 . . . 1 4 1 5 . 6 R E G R E S S I O N M A T R I X F O R T H E P A R A M E T E R A O F T H E v i i D E F L E S T I O N B A S I N O F T H E S U R F A C E O F T H E B E A M A T 4 0 F R E G R E S S I O N M A T R I X F O R T H E P A R A M E T E R B O F T H E D E F L E S T I O N B A S I N O F T H E S U R F A C E O F T H E B E A M A T 4 0 F R E G R E E S I O N M A T R I X F O R T H E R E S I L I E N T T M O D U L U S A T 7 7 F 0 0 0 . . . . . . 0 . 0 . 0 . 0 . . . . . . . . . . O O O O O O O O O O O . . . . . . O . R E G R E S S I O N M A T R I X F O R T H E T O T A L M O D U L U S A T 7 7 F 0 0 . . . . . . 0 . 0 . . . . . . O O O C O O O O O O O O O O O O O . . . . . . . 0 . . . P A R T I A L C O R R E & A T I O N M A T R I X F O R R E S I L I E N T M O D U L U S A T 7 7 F R E G R E E S I O N M A T R I X F O R T H E R E S I L I E N T M O D U L U S A T 4 0 F . . . . . . O O O O O O O O O O O O O O 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . . . . . . . . . . . R E G R E S S I O N M A T R I X F O R T H E T O T A L M O D U L U S A T 4 0 F . . . . . . O O O O O O O O O O O O O . . . . . . O O O O O O O O O O O O O O O O . . . . R E G R E E S I O N M A T B I X F O R T H E R E S I L I E N T M O D U L U S A T 7 7 F A N D 4 0 F O . . . . . . . O O O O O O O O O O O O O O O O O O O . . . . . . . . O R E G R E E S I O N M A T B I X F O R T H E T O T A L M O D U L U S A T 7 7 F A N D 4 0 F I . . . . . . . . . C O O O O C C O O O O O O O 0 . . . . . . 0 . . . . v i i i 1 4 2 1 4 2 1 7 1 1 7 2 1 7 7 1 8 3 1 8 3 1 8 8 1 8 8 L I S T O F F I G U R E S F I G U R E s — 2 . 1 F E A T U R E S O F T H E C Y C L I C S T R E S S ' S T R A I N C U R V E O F A S P H A L T M I X E S e e e e e e e e e e e e e e e e e e e e o e e o e e e e o o o o o o o o o 2 . 2 N O M O G R A P H F O R P R E D I C T I N G T H E F A T I G U E L I F E O F B I T U M I N O U S M A T E R I A L S ( A F T E R B O N N A U R E E T . A L . ) . . . . . . . 2 . 3 N O M O G R A P H F O R P R E D I C T I O N O F F A T I G U E L I F E O F B I T U M I N O U S M A T E R I A L S ( A F T E R P E L L A N D C O O P E R ) . . . . . . . . 3 . 1 S T R A I G H T L I N E A N D A A N D B G R A D A T I O N S O F A G G R E G A T E . . . 3 . 2 F U L L ’ F A C T O R I A L E X P E R I M E N T M A T R I X F O R M A R S H A L L T E S T S e e e e e e e o o e e e e e e e e e e e e e e e e e e e c o o o o o o o o o 3 . 3 P A R T I A L F A C T O R I A L E X P E R I M E N T M A T R I X F O R T H E B E A M T E S T S e e e e o o e o e e e e o o e e e e e o e o o o o o o o o o o o o o 3 . 4 B E A M S P E C I M E N S A W E D T O E I G H T E Q U A L P A R T S F O R D E N S I T Y M A L Y S I S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 5 S C H E M A T I C D I A G R A M O F T H E B E A M T E S T S E T - U P . . . . . . . . . . . 4 . 1 M A R S H A L L S T A B I L I T Y V E R S U S P E R C E N T A S P H A L T C O N T E N T F O R L I M E S T O N E G R A D A T I O N A A N D V I S C O S I T Y G R A D E D A S P H A L E A C ' I O e e e e e e o e e e e e e e e e e e e e o e e o e o e e o o o o 4 . 2 B U L K S P E C I F I C G R A V I T Y O F T H E M I X V E R S U S P E R C E N T A S P H A L T C O N T E N T F O R L I M E S T O N E G R A D A T I O N A A N D V I S C O S I T Y G R A D E D A S P H A L T A C - I O . . . . . . . . . . . . . . . . . . . . . . 4 . 3 P E R C E N T A I R V O I D S V E R S U S P E R C E N T A S P H A L T C O N T E N T F O R L I M E S T O N E G R A D A T I O N A A N D V I S C O S I T Y G R A D E D A S P H A L T A C - 1 0 e e e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e o c o o 4 . 4 P E R C E N T V O I D S I N M I N E R A L A G G R E G A T E V E R S U S P E R C E N T A S P H A L T C O N T E N T F O R L I M E S T O N E G R A D A T I O N A A N D V I S C O S I T Y G R A D E D A S P H A L T A C ‘ I O e e e e e e e e e e e e e o e e e e e e e o 4 . 5 P E R C E N T V O I D S F I L L E D W I T H A S P H A L T V E R S U S P E R C E N T A S P H A L T C O N T E N T F O R L I M E S T O N E G R A D A T I O N A A N D V I S C O S I T Y G R A D E D A S P H A L E A C ‘ I O e e e e o e e e e e e e e e e e e e e e o e 4 . 5 F L O W V E R S U S P E R C E N T A S P H A L T C O N T E N T F O R L I M E S T O N E G R A D A T I O N A A N D V I S C O S I T Y G R A D E D A S P H A L T A C - I O . . . . . . 4 . 7 M A R S H A L L S T A B I L I T Y V E R S U S T H E P E R C E N T A I R V O I D S i x P A G E 4 3 4 6 5 6 6 5 8 4 8 8 8 9 9 0 9 1 9 2 9 3 4 . 1 3 5 . 1 5 . 2 5 . 3 5 . 4 O F T H E S P E C I E N 0 . . . . . . . . . O O O O O O O O O O O O O O O O . . . . . . . . . . . F L O W V A L U E S V E R S U S T H E P E R C E N T A I R V O I D S O F T H E S P E C I M E N S . . . 0 . 0 0 . 0 . . . . . O O O O O O O O O O O O O O O O O O O O . . . . . R E S I L I E N T D E F O R M A T I O N S A T F O U R P O I N T S O N T H E S U R F A C E O F T H E B E A M S P E C I M E N V E R S U S T H E N U M B E R O F m A D A P P L I C A T I O N S C O C O . . . . . . O O O O O O O O O O O O O O O O O O O O O O T O T A L D E F O R M A T I O N S A T F O U R P O I N T S O N T H E S U R F A C E O F T H E B E A M S P E C I M E N V E R S U S T H E N U M B E R O F L O A D A P P L I C A T I O N S O O O O O O O O O O O O . . . . . . O O O O O O O O O O O O O O O O . . . . . . C U M U L A T I V E P L A S T I C D E F O R M A T I O N S A T F O U R P O I N T S O N T H E S U R F A C E O F T H E B E A M S P E C I M E N V E R S U S T H E N U M B E R O F m A D A P P L I C A T I O N S . . . . . . O O O O O O O O O O O O O O O . . . . N O R M A L I Z E D P L A S T I C D E F O R M A T I O N B A S I N O F T H E B E A M S P E C I M E N A T D I F F E R E N T N U M B E R O F L O A D A P P L I C A T I O N S 0 . 0 . 0 . 0 . . . . . . . . . . O O O O O O O O O O O O O O O O O O . . . . . R E S I L I E N T A N D T O T A L D E F O R M A T I O N S A T T H E C E N T E R O F T H E L O A D E D A R E A A T C Y C L E N U M B E R 1 0 0 V E R S U S T H E P E R C E N T A I R V O I D S O F T H E B E A M S P E C I M E N . . . . . . . . . . C U M U L A T I V E P L A S T I C D E F O R M A T I O N S A T T H E C E N T E R O F T H E L O A D E D A R E A A T D I F F E R E N T N U M B E R O F L O A D A P P L I C A T I O N S V E R S U S T H E P E R C E N T A I R V O I D S O F T H E B E A M S P E C I M E N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T Y P I C A L L O A D A N D D E F O R M A T I O N R E C O R D S V E R S U S T I M E . . . . T Y P I C A L L O A D A N D D E F O R M A T I O N R E C O R D S V E R S U S T H E N U M B E R O F L O A D A P P L I C A T I O N S . . . . . . . . . . . . . . . . . . . . . P A R T I A L F A C T O R I A L E X P E R I M E N T M A T R I X F O R T H E B E M T E S T O O O O O O O O O O O O O O . . . O O O O O O O O O O O O 0 . 0 . 0 . 0 . . . C U M U L A T I V E P L A S T I C D E F R O M A T I O N S A T F O U R P O I N T S O N T H E S U R F A C E O F T H E B E A M S P E C I M E N V E R S U S T H E W E R O F m A D A P P L I C A T I O N S O O O O O O O O O O O O O O O O O O O O O O . . . S L O P E O F E Q U A T I O N 5 . 1 V E R S U S T H E P E R C E N T A I R V O I D S F O R T H R E E L E V E L S O F T H E C Y C L I C L O A D A N D A K I N E M A T I C V I S C O S I T Y V A L U E O F 2 7 0 C E N T I S T O K E . . . . . . . S L O P E O F E Q U A T I O N 5 . 1 V E R S U S T H E P E R C E N T A I R V O I D S F O R T H E T W O L E V E L S O F T H E G R A D A T I O N O F A G G R E G A T E O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 . 0 . . 0 0 . . . . S L O P E O F E Q U A T I O N 5 . 1 V E R S U S T H E K I N E M A T I C V I S C O S I T Y O F T H E A S P H A L T . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 9 5 9 6 9 7 9 8 1 0 0 1 0 1 1 0 6 1 0 7 1 1 1 1 1 2 1 1 5 1 1 6 1 1 7 5 . 1 6 5 . 1 7 5 . 1 8 5 . 2 1 5 . 2 2 S L O P E O F E Q U A T I O N 5 . 1 V E R S U S T H E A N G U L A R I T Y O F A G G R E G A T E . 0 . . . . . . . . . . . . O O O C O O O O O O C C O O O O O . . . 0 . . . . O 1 1 8 I N T E R C E P T O F E Q U A T I O N 5 . 1 V E R S U S T H E K I N E M A T I C V I S C O S I T Y F O R T H R E E V A L U E S O F T H E A G G R E G A T E A N G U H R I T Y . . . . . . O C C O C O O C O O 0 . 0 . 0 0 . 0 . . . . . . . . . . . . . . . . . . 1 1 9 I N T E R C E P T O F E Q U A T I O N 5 . 1 V E R S U S T H E K I N E M A T I C V I S C O S I T Y F O R A G G R E G A T E G R A D A T I O N S A A N D B . . . . . . . . . . 1 2 0 I N T E R C E P T O F E Q U A T I O N 5 . 1 V E R S U S T H E P E R C E N T A I R V O I D S F O R T H R E E L E V E L S O F T H E C Y C L I C L O A D A N D A K I N E M A T I C V I S C O S I T Y O F 2 7 0 C E N T I S T O K E . . . . . . . . . 1 2 1 S L O P E A N D I N T E R C E P T ( A 1 A N D B l ) O F E Q U A T I O N 5 . 4 V E R S U S T H E A P P L I E D C Y C L I C L O A D . . . . . . . . . . . . . . . . . . 1 2 3 S C H E M A T I C R E P R E S E N T A T I O N O F T H E P L A S T I C D E E L E C T I O N B A S I N O F T H E B E A M S P E C I M E N A T 7 7 F A N D F O R D I F F E R E N T N U M B E R O F L O A D A P P L I C A T I O N S S C H E M A T I C R E P R E S E N T A T I O N O F T H E D E F L E C T E D S H A P E O F T H E B E A M S P E C I M E N . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 9 S T R E S S - F A T I G U E L I F E C U R V E S F O R T H E B E A M S P E C I M E N S F O R 3 V I S C O S I T Y G R A D E D A S P H A L T S A N D 3 V A L U E S O F T H E P E R C E N T A I R V O I D S B O U N D A R Y C O N D I T I O N S A N D T H E F I N I T E E L E M E N T M E S H . . . . . F L O W C H A R T O F T H E I T E R A T I O N P R O C E D U R E O F T H E F I N I T E E L E M E N T C O M P U T E R P R O G R A M C A L C U L A T E D R E S I L I E N T M O D U L U S U S I N G F E M P R O G R A M V E R S U S T H E N U M B E R O F L O A D A P P L I C A T I O N A T D I F F E R E N T P E R C E N T A I R V O I D S 1 6 5 C A L C U L A T E D T O T A L M O D U L U S U S I N G F E M P R O G R A M V E R S U S T H E N U M B E R O F L O A D A P P L I C A T I O N A T D I F F E R E N T P E R C E N T A I R V O I D S 1 6 6 M E A S U R E D C U M U L A T I V E P E R M A N E N T D E F O R M A T I O N V E R S U S T H E N U M B E R O F L O A D A P P L I C A T I O N A T D I F F E R N T P E R C E N T A I R V O I D S 1 6 7 N O R M A L I Z E D R E S I L I E N T M O D U L U S V E R S U S T H E N U M B E R O F L O A D A P P L I C A T I O N S A T D I F F E R E N T P E R C E N T A I R V O I D S 1 6 9 C A L C U L A T E D R E S I L I E N T M O D U L U S U S I N G E Q U A T I O N 5 . 2 0 V E R S U S C A L C U L A T E D R E S I L I E N T M O D U L U S U S I N G F E M P R O G R A M x i C A L C U L A T E D T O T A L M O D U L U S U S I N G E Q U A T I O N 5 . 1 9 V E R S U S C A L C U L A T E D T O T A L M O D U L U S U S I N G F E M P R O G R A M . . . . . . O O O O O O O O C O O O O O . . . . . . O O O O C O O O O O O O O O 0 . . . . 1 8 1 C A L C U L A T E D R E S I L I E N T M O D U L U S U S I N G E Q U A T I O N 5 . 2 1 V E R S U S C A L C U L A T E D R E S I L I E N T M O D U L U S U S I N G F E M P R O G R A M I 0 0 . . . . . . . . . . . . O C O O O O O C O O O O O O O . . . . . 1 8 5 C A L C U L A T E D T O T A L M O D U L U S U S I N G E Q U A T I O N 5 . 2 2 V E R S U S C A L C U L A T E D T O T A L M O D U L U S U S I N G F E M P R O G R A M . . . 0 . 0 . 0 . . . . 0 . 0 0 0 . 0 0 0 . 0 0 0 0 . . . 0 0 . 0 . 0 0 . . . . . . . . . 1 8 6 C A L C U L A T E D R E S I L I E N T M O D U L U S U S I N G T H E A . I . E Q U A T I O N V E R S U S C A L C U L A T E D R E S I L I E N T M O D U L U S U S I N G E Q U A T I O N 5 . 2 3 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . C O O O O O O O 1 9 2 C A L C U L A T E D R E S I L I E N T M O D U L U S U S I N G E Q U A T I O N 5 . 2 5 V E R S U S C A L C U L A T E D R E S I L I E N T M O D U L U S U S I N G E Q U A T I O N 5 . 2 3 O . . . . . . 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 . . . . C 1 9 5 C A L C U L A T E D T O T A L M O D U L U S U S I N G E Q U A T I O N 5 . 2 6 V E R S U S C A L C U L A T E D T O T A L M O D U L U S U S I N G E Q U A T I O N 5 . 2 4 O . . . . . . . O O O C O O O O O O O O O O O O O . . . 0 0 0 0 0 0 0 0 0 0 1 9 6 x i i A a n d B A 1 a n d B l A C A V A V G B K C D 1 C D ( X ) C F P C L d C D i / d N C E O I L I S T O F S Y M B O L S - p a r a m e t e r s o f t h e p l a s t i c b a s i n . - r e g r e s s i o n c o e f f i c i e n t s . - t h e a c t u a l p e r c e n t a s p h a l t c o n t e n t . - a g g r e g a t e a n g u l a r i t y . - a p p a r e n t . - m a r s h a l l s t a b i l i t y a d j u s t e d t o t h e s a m p l e h e i g h t . - p e r c e n t a i r v o i d s . - a v e r a g e 3 b u l k . - p e r m a n e n t d e f o r m a t i o n o f L V D T i . - c u m u l a t i v e p l a s t i c d e f o r m a t i o n o f a p o i n t o n t h e s u r f a c e o f t h e b e a m l o c a t e d a t d i s t a n c e x f r o m t h e e d g e o f t h e l o a d e d a r e a . a c o m p a c t o r f o o t p r e s s u r e ( p s i ) . - c y c l i c l o a d s ( p o u n d s ) . - t h e r a t e o f c h a n g e o f t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n w i t h r e s p e c t t o N . C C 2 , a n d C - c o e f f i c i e n t s . 1 ' 3 - t o t a l m o d u l u s ( p s i ) . - t o t a l s t r a i n . - e l a s t i c s t r a i n . - v i s c o e l a s t i c s t r a i n . - p l a s t i c s t r a i n . - e x p o n e n t i a l f u n c t i o n . 8 f l o w ( l / l O O " ) . - t h e b u l k s p e c i f i c g r a v i t y o f t h e b e a m s p e c i m e n . x i i i 2 : - . . . G M M G R A D G s 1 n L V D T S E S S D S T A B T A V T A C X 1 X 2 t h e m a x i m u m t h e o r e t i c a l s p e c i f i c g r a v i t y o f t h e m i x . g r a d a t i o n o f a g g r e g a t e . s p e c i f i c g r a v i t y . i n t e r c e p t s o f e q u a t i o n 5 . 1 . k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t b i n d e r s ( c e n t i s t o k e s ) . n a t u r a l l o g a r i t h m . l o g a r i t h m t o b a s e 1 0 . l i n e a r v a r i a b l e d i f f e r e n t i a l t r a n s d u c e r . r e s i l i e n t m o d u l u s ( p s i ) . n u m b e r o f l o a d a p p l i c a t i o n s . n u m b e r o f l o a d a p p l i c a t i o n s t o f a t i g u e f a i l u r e . n u m b e r o f t a m p i n g . c o e f f i c i e n t o f d e t e r m i n a t i o n . m a r s h a l l s t a b i l i t y ( p o u n d s ) . s t a n d a r d e r r o r o f t h e e s t i m a t e . c o e f f i c i e n t s o f e q u a t i o n 5 . 1 . s a t u r a t e d s u r f a c e d r y . m a r s h a l l s t a b i l i t y . t h e t a r g e t p e r c e n t a i r v o i d s . t h e t a r g e t p e r c e n t a s p h a l t c o n t e n t . p e r c e n t v o i d s i n m i n e r a l a g g r e g a t e s . w e i g h t o f a s p h a l t m i x e s ( g r a m s ) . l a t e r a l d i s t a n c e f r o m t h e e d g e o f t h e l o a d e d a r e a . p e r c e n t p a s s i n g # 2 0 0 s i e v e : p e r c e n t a i r v o i d s i n m i x : x i v X 3 X 4 X 5 X 6 a s p h a l t v i s c o s i t y a t 7 0 O F ( 1 0 6 p o i s e s ) ; p e r c e n t a s p h a l t b y t o t a l w e i g h t o f m i x : t e s t t e m p e r a t u r e ( O F ) : t h e l o g a r i t h m i c v a l u e o f t h e v i s c o s i t y ( i n p o i s e s ) o f t h e a s p h a l t a t t h e t e s t t e m p e r a t u r e ; X V C H A P T E R 1 I N T R O D U C T I O N 1 . 1 I N T R O D U C T I O N O v e r t h e y e a r s , A m e r i c a n s a l o n e h a v e i n v e s t e d m o r e t h a n o n e t r i l l i o n d o l l a r s i n t h e i r h i g h w a y s y s t e m s a n d a r e j u s t b e g i n n i n g t o r e a l i z e t h a t t h e c o n d i t i o n s o f t h e h i g h w a y i n f r a s t r u c t u r e s a r e a m a j o r p r o b l e m t h a t r e q u i r e s t h e i n f u s i o n o f f u n d s f o r m a i n t a i n i n g , r e h a b i l i t a t i n g , a n d r e b u i l d i n g . t h e s y s t e m s . P u b l i c a n d l e g i s l a t i v e a t t e n t i o n s h a v e b e e n f o c u s e d o n t h e s c o p e o f p u b l i c p r o g r a m s t o r e b u i l d a n d u p g r a d e e x i s t i n g f a c i l i t i e s a n d o n t h e f i n a n c i n g a s p e c t s o f t h e s e p r o g r a m s . F i n a n c i n g a l o n e c a n n o t s o l v e t h e p r o b l e m b e c a u s e t h e n e e d s f a r e x c e e d t h e a v a i l a b l e r e s o u r c e s . I n n o v a t i o n i n s t r u c t u r a l a n d m a t e r i a l m i x d e s i g n i s t h e k e y t o b r i d g i n g t h e g a p a n d t o a c c e l e r a t e t h e s e a r c h f o r a b e t t e r s o l u t i o n . I n g e n e r a l , t h e h i g h w a y s y s t e m s w e r e b u i l t u s i n g t w o t y p e s o f s u r f a c i n g m a t e r i a l s : r i g i d ( P o r t l a n d c e m e n t c o n c r e t e ) a n d f l e x i b l e ( a s p h a l t m i x e s ) . T h e l a t t e r p a v e m e n t t y p e ( f l e x i b l e ) i s t h e s u b j e c t o f t h i s r e s e a r c h s t u d y . A s s t a t e d b y Y o d e r a n d W i t c z a k , t h e c l a s s i c a l d e f i n i t i o n _ o f f l e x i b l e p a v e m e n t s i n c l u d e s t h o s e p a v e m e n t s t h a t h a v e a n a s p h a l t c o n c r e t e s u r f a c e ( 1 8 5 ) . A n a s p h a l t p a v e m e n t m a y c o n s i s t o f t h i n w e a r i n g s u r f a c e c o u r s e b u i l t o v e r a b a s e c o u r s e , s u b b a s e c o u r s e , a n d c o m p a c t e d s u b g r a d e . T h u s , t h e t e r m p a v e m e n t h e r e i n i m p l i e s a l l t h e l a y e r s ( c o u r s e s ) i n t h e p a v e m e n t s t r u c t u r e . T h e l o a d c a r r y i n g - c a p a c i t y o f a f l e x i b l e p a v e m e n t i s b r o u g h t a b o u t b y t h e l o a d d i s t r i b u t i o n c h a r a c t e r i s t i c s o f t h e l a y e r e d s y s t e m . T h e h i g h e s t q u a l i t y l a y e r i s p l a c e d a t o r n e a r t h e s u r f a c e . H e n c e , t h e s t r e n g t h o f t h e p a v e m e n t i s t h e r e s u l t o f b u i l d i n g u p t h i c k l a y e r s a n d , t h e r e b y , d i s t r i b u t i n g t h e l o a d o v e r t h e r e l a t i v e l y w e a k s u b g r a d e ( 1 8 5 ) . A t y p i c a l a s p h a l t p a v i n g m i x c o n s i s t s o f f o u r m a j o r c o m p o n e n t s : a s p h a l t , c o a r s e a n d f i n e a g g r e g a t e s , m i n e r a l f i l l e r s , a n d a i r . A l s o , c e r t a i n t y p e s o f a d d i t i v e s o r m o d i f i e r s c o u l d b e a d d e d t o t h e m i x t o a l t e r s o m e o f i t s p r o p e r t i e s . T h e s o c a l l e d ” p r o p e r t i e s " o f a n a s p h a l t c o n c r e t e m i x a r e d e p e n d e n t u p o n t h e p r o p e r t i e s o f t h e m a t e r i a l i n t h e m i x , t h e p r o p o r t i o n i n g o f t h e d i f f e r e n t c o m p o n e n t i n t h e m i x ( t h e a s p h a l t m i x d e s i g n ) , t h e t e s t t y p e a n d p r o c e d u r e , a n d t e m p e r a t u r e a n d e n v i r o n m e n t a l c o n d i t i o n s . T h e s t r u c t u r a l d e s i g n o f f l e x i b l e p a v e m e n t s h a s e v o l v e d f r o m r u l e - o f - t h u m b p r o c e d u r e s t o m e t h o d s b a s e d p r i m a r i l y o n t h e e x p e r i e n c e a n d j u d g e m e n t o f h i g h w a y e n g i n e e r s a u g m e n t e d b y e m p i r i c a l r e l a t i o n s h i p s d e v e l o p e d t h r o u g h r e s e a r c h a n d f i e l d o b s e r v a t i o n s . R e c e n t l y , s i g n i f i c a n t p r o g r e s s h a s b e e n m a d e t o d e v e l o p n e w p a v e m e n t s t r u c t u r a l d e s i g n m o d e l s ( e . g . e l a s t i c a n d v i s c o e l a s t i c , a n d f i n i t e e l e m e n t m o d e l s ) . T h e a c c u r a c y o f t h e s e m o d e l s , h o w e v e r , d e p e n d s u p o n t h e a c c u r a c y o f t h e i n p u t d a t a s u c h a s t h e s t r u c t u r a l a n d m a t e r i a l p r o p e r t i e s , a n d o t h e r s . S e v e r a l l a b o r a t o r y t e s t p r o c e d u r e s w e r e d e v e l o p e d f o r t h e e v a l u a t i o n o f t h e s e p r o p e r t i e s . H o w e v e r , n u m e r o u s p r a c t i c a l d i f f i c u l t i e s a r e o f t e n e n c o u n t e r e d i n e a c h t e s t t o e x a c t l y l o a d t h e t e s t s p e c i m e n a s d i c t a t e d b y t h e o r e t i c a l c o n s i d e r a t i o n s a n d / o r t o d u p l i c a t e f i e l d c o n d i t i o n s . M o r e o v e r , a t t e m p t s t o d i r e c t l y r e l a t e m i x d e s i g n v a r i a b l e s ( e . g . a s p h a l t t y p e a n d c o n t e n t ) t o t h e s t r u c t u r a l p r o p e r t i e s o f t h e m a t e r i a l s a r e e i t h e r v e r y f e w o r n o n - e x i s t e n c e . C o n s e q u e n t l y , t h e r e h a v e b e e n f e w l i n k s b e t w e e n t h e n e w l y d e v e l o p e d l a b o r a t o r y t e s t s ( e . g . , f l e x u r a l t e s t s a n d i n d i r e c t t e n s i l e t e s t s ) a n d t h e t r a d i t i o n a l m i x d e s i g n m e t h o d s ( e . g . , H v e e m s t a b i l o m e t e r , a n d M a s h a l l s t a b i l i t y a n d f l o w m e t h o d ) t h a t h a v e b e e n i n e x i s t e n c e f o r m a n y d e c a d e s . T h e o b j e c t i v e s o f t h i s s t u d y a r e t o : a ) D e t e r m i n e t h e a s p h a l t m i x d e s i g n p a r a m e t e r s u s i n g t h e s t a n d a r d M a r s h a l l t e s t s . b ) D e t e r m i n e t h e s t r u c t u r a l p r o p e r t i e s o f t h e a s p h a l t m i x e s u s i n g c y c l i c l o a d f l e x u r a l t e s t s . c ) Q u a n t i f y r e l a t i o n s h i p s b e t w e e n t h e s t r u c t u r a l p r o p e r t i e s o f t h e a s p h a l t m i x a n d t h e t y p e s o f t h e m a t e r i a l i n t h e m i x . d ) I d e n t i f y a l a b o r a t o r y t e s t p r o c e d u r e w h e r e b y t h e a s p h a l t m i x d e s i g n c a n b e t a i l o r e d t o o p t i m i z e i t s s t r u c t u r a l p r o p e r t i e s . C H A P T E R 2 L I T E R A T U R E R E V I E W 2 . 1 G E N E R A L T h e f i e l d o f f l e x i b l e p a v e m e n t d e s i g n h a s e v o l v e d f r o m e m p i r i c a l r u l e - o f - t h u m b p r o c e d u r e s b a s e d o n p a s t e x p e r i e n c e t o r a t i o n a l m e t h o d s b a s e d o n s o i l c l a s s i f i c a t i o n s y s t e m s a n d l a t e r o n r o a d t e s t d a t a . B e g i n n i n g i n t h e 1 9 5 0 5 , h o w e v e r , h e a v y w h e e l l o a d s a n d t r u c k t r a f f i c r e s u l t e d i n s e v e r e b r e a k u p o f s o m e h i g h w a y s w h i c h n e c e s s i t a t e d m o r e r a t i o n a l a p p r o a c h e s . C o n s e q u e n t l y , a n a l y t i c a l ( m e c h a n i s t i c ) p a v e m e n t d e s i g n m e t h o d s w e r e i n t r o d u c e d w h i c h p r o v i d e d a b e t t e r u n d e r s t a n d i n g o f p a v e m e n t r e s p o n s e u n d e r t r a f f i c l o a d i n g . T h i s , h o w e v e r , g a v e r i s e t o t h e p r o b l e m o f m a t e r i a l c h a r a c t e r i z a t i o n u n d e r s i m u l a t e d f i e l d l o a d i n g c o n d i t i o n s . T o s o l v e t h e p r o b l e m , n e w l a b o r a t o r y t e s t s s u c h a s t h e r e s i l i e n t m o d u l u s a n d p e r m a n e n t d e f o r m a t i o n - c r e e p w e r e d e v e l o p e d , w h i c h e n a b l e d p a v e m e n t e n g i n e e r s t o o b t a i n m a t e r i a l p r o p e r t i e s n e c e s s a r y f o r m e c h a n i s t i c p a v e m e n t d e s i g n m o d e l s ( 5 0 ) . I n o r d e r t o u n d e r s t a n d t h e m a t e r i a l p r o p e r t i e s a n d t o b e a b l e t o e x t r a c t t h e d e s i g n p a r a m e t e r s , t h e s t r e s s - s t r a i n r e s p o n s e s o f t h e m a t e r i a l u n d e r s i m u l a t e d t r a f f i c l o a d i n g m u s t b e o b t a i n e d . S t a t i s t i c a l a n d a c t u a l v a r i a t i o n s o f t h e r e s p o n s e s a n d t h e d e s i g n p a r a m e t e r s r e l a t i v e t o o t h e r f a c t o r s ( e . g . , t e m p e r a t u r e ) s h o u l d a l s o b e d e t e r m i n e d . E x i s t i n g i n f o r m a t i o n c o n c e r n i n g t h e s e v a r i a t i o n s o f a s p h a l t m i x e s a r e p r e s e n t e d i n t h e f o l l o w i n g s e c t i o n s . 2 . 2 M a t e r i a l E v a l u a t i o n T h e m e c h a n i c a l r e s p o n s e o f m o s t a s p h a l t m i x e s s u b j e c t e d t o s t a t i c a n d q u a s i - s t a t i c l o a d i n g i s c o m p l e x a n d d i f f e r s c o n s i d e r a b l y f r o m t h a t o f t h e c o n s t i t u e n t m a t e r i a l s i n t h e m i x e s ( 1 0 9 ) . T h e r e s p o n s e d e p e n d s o n s e v e r a l v a r i a b l e s w h i c h c a n b e d i v i d e d i n t o t h r e e c o m m o n g r o u p s ( 2 6 , 3 2 , 3 5 , 4 4 , 4 7 , 7 1 , 1 0 0 ) : 1 ) A s p h a l t m i x v a r i a b l e s i n c l u d i n g t y p e s o f a s p h a l t , t h e p e r c e n t a s p h a l t c o n t e n t , t y p e s o f a g g r e g a t e a n d t h e i r p r o p o r t i o n a n d g r a d a t i o n , t y p e s a n d p r o p o r t i o n o f t h e m i n e r a l f i l l e r , a n d t y p e s a n d c o n c e n t r a t i o n o f m o d i f i e r ( i f a n y ) . 2 ) S p e c i m e n v a r i a b l e s i n c l u d i n g c o m p a c t i o n v a r i a b l e s , d e n s i t y o r t h e p e r c e n t a i r v o i d s , s p e c i m e n s i z e , a n d t h e a m o u n t o f i n d u c e d m o i s t u r e . 3 ) T e s t v a r i a b l e s i n c l u d i n g t e m p e r a t u r e , l o a d i n t e n s i t y a n d f r e q u e n c y , a n d l o a d i n g a n d r e l a x a t i o n p e r i o d s . F i g u r e 1 d e p i c t s a t y p i c a l m e c h a n i c a l r e s p o n s e ( s t r e s s - s t r a i n ) o f a s p h a l t m i x e s s u b j e c t e d t o c y c l i c l o a d i n g ( 8 1 ) . T h e p e r t i n e n t f e a t u r e s o f t h e s t r a i n r e s p o n s e i n c l u d e : 1 ) T i m e - i n d e p e n d e n t e l a s t i c s t r a i n ( a l s o c a l l e d r e s i l i e n t s t r a i n ) w h i c h i s i m m e d i a t e l y r e c o v e r a b l e u p o n u n l o a d i n g . T h i s i s s h o w n a s a b i n f i g u r e 2 . 1 . c i n t i s a a r l t P s a d H L L A , . ' . a c b C c i n i U t s a l t i e n s a o i a r c a l t s r e s i t v s " ' " " ‘ o t e u d d e n n i i a a t 5 r s 3 t u ° s s 1 d e n i a t d s a u o s l u x e z a s k i / L m F i g u r e 2 . 1 F e a t u r e s o f t h e c y c l i c s t r e s s - s t r a i n c u r v e o f a s p h a l t m i x e s . 2 ) T i m e - d e p e n d e n t v i s c o e l a s t i c s t r a i n w h i c h i s r e c o v e r a b l e d u r i n g a n d a f t e r r e m o v a l o f t h e l o a d ( b c i n f i g u r e 2 . 1 ) . 3 ) P l a s t i c ( p e r m a n e n t ) s t r a i n w h i c h i s i r r e c o v e r a b l e ( e d i n t h e f i g u r e ) . I n o r d e r t o o b t a i n a n a n a l y t i c a l a s s e s s m e n t o f t h e m e c h a n i c a l r e s p o n s e , a c o n s t i t u t i v e m o d e l s h o u l d b e u s e d t h a t c a n a c c o u n t f o r t h e p e r t i n e n t f e a t u r e s o f t h e s t r e s s - s t r a i n p r o p e r t i e s o f t h e a s p h a l t m i x e s . L a b o r a t o r y o b s e r v a t i o n s s u g g e s t t h a t s e v e r a l d i f f e r e n t m o d e l s c a n b e c o n s t r u c t e d t h a t i n c l u d e : 1 ) L i n e a r o r n o n l i n e a r e l a s t i c . 2 ) E l a s t o - p l a s t i c . 3 ) E l a s t i c - v i s c o e l a s t i c - p l a s t i c . 4 ) E l a s t i c - v i s c o e l a s t i c . 5 ) V i s c o e l a s t i c - p l a s t i c . T h e m o d e l t o b e s e l e c t e d f o r t h e a n a l y s i s d e p e n d s u p o n t h e d e s i r e d t y p e o r t y p e s o f s t r a i n t o b e m o d e l e d , t h e d e g r e e o f a c c u r a c y , t h e d e s i r e d m a t h e m a t i c a l s i m p l i c i t y , a n d t h e a n t i c i p a t e d l o a d i n t e n s i t y . F o r e x a m p l e : m a t h e m a t i c a l l y , t h e l i n e a r e l a s t i c m o d e l i s t h e s i m p l e s t . H o w e v e r , t h e m o d e l d o e s n o t a c c o u n t f o r t h e v i s c o e l a s t i c a n d p l a s t i c d e f o r m a t i o n s o f t h e m i x . I n g e n e r a l , t h e e l a s t i c - v i s c o e l a s t i c - p l a s t i c m o d e l i s a p p r o p r i a t e b e c a u s e o f i t s a b i l i t y t o a c c u r a t e l y m a n a g e t h e a c t u a l p a v e m e n t r e s p o n s e w h e n s u b j e c t e d t o t r a f f i c l o a d i n g ( 1 7 , 1 8 ) . T h e b a s i c p r e m i s e o f t h i s m o d e l i s t h e a s s u m p t i o n t h a t , a t e a c h l o a d i n g i n c r e m e n t , t h e m a t e r i a l i s c a p a b l e o f u n d e r g o i n g a s m a l l p l a s t i c ( p e r m a n e n t ) s t r a i n , a s m a l l v i s c o e l a s t i c s t r a i n , a n d a s m a l l e l a s t i c s t r a i n . M a t h e m a t i c a l l y , f o r e a c h l o a d i n g c y c l e , t h e t o t a l s t r a i n i s t h e s u m o f t h e p l a s t i c , v i s c o e l a s t i c , a n d e l a s t i c c o m p o n e n t s , i . e . 8 T a 9 E + e V E + e p ( 2 ' 1 ) w h e r e : e T = t o t a l s t r a i n : e E = e l a s t i c s t r a i n : e V E = v i s c o e l a s t i c s t r a i n ; a n d e p = p l a s t i c s t r a i n . S i n c e t h e e l a s t i c s t r a i n i s t i m e i n d e p e n d e n t , t h e t o t a l s t r a i n r a t e i s t h e s u m o f t h e c o m p o n e n t s o f t h e v i s c o e l a s t i c a n d p l a s t i c s t r a i n r a t e s . T h a t i s : d e d e V E d e ( 2 . 2 ) . w h e r e : t h e s t r a i n r a t e i s t h e f i r s t d e r i v a t i v e o f s t r a i n w i t h r e s p e c t t o t i m e . I t s h o u l d b e n o t e d t h a t e q u a t i o n 2 . 2 i n d i c a t e s t h a t t h e s t r e s s i s a p p l i e d a n d r e m o v e d i n s t a n t l y . T h a t i s , t h e s t r e s s i n t e n s i t y i s e i t h e r z e r o o r a p r e s p e c i f i e d v a l u e . I f t h e s t r e s s i n c r e a s e s g r a d u a l l y w i t h t i m e ( a s t h e c a s e o f m o v i n g w h e e l l o a d i n t h e f i e l d a n d m o s t l a b o r a t o r y t e s t s ) t h e n s t r a i n r a t e s i n e q u a t i o n 2 . 2 s h o u l d b e e x p r e s s e d i n t e r m s o f p a r t i a l d e r i v a t i v e s . A l l s t r a i n r a t e s ( i n c l u d i n g t h e e l a s t i c o n e ) w o u l d b e s t r e s s - d e p e n d e n t . E q u a t i o n 2 . 2 r e p r e s e n t s t h e s t r a i n r a t e s d u r i n g t h e p e r i o d o f c o n s t a n t s t r e s s . N e v e r t h e l e s s , u s i n g f i g u r e 2 . 1 a n d t h e a b o v e s c e n a r i o , o n e c a n d e f i n e t h e t h r e e t y p e s o f s t r a i n a s f o l l o w s : a ) R e s i l i e n t s t r a i n - T h e r e s i l i e n t s t r a i n f o r e a c h l o a d c y c l e i s d e f i n e d a s t h e d i f f e r e n c e b e t w e e n t h e i n s t a n t a n e o u s v a l u e s o f t h e s t r a i n a t p e a k a n d z e r o l o a d s . T h i s i s s h o w n a s l i n e a b i n f i g u r e 2 . 1 . b ) V i s c o e l a s t i c s t r a i n - F o r e a c h l o a d c y c l e , t h e v i s c o e l a s t i c s t r a i n c a n b e m e a s u r e d b y t h e d i f f e r e n c e s b e t w e e n t h e v a l u e s o f s t r a i n a t z e r o l o a d a n d t h a t w h e n t h e s e c o n d l o a d c y c l e c o m m e n c e s . I n f i g u r e 2 . 1 , l i n e h e i s a m e a s u r e o f t h e v i s c o e l a s t i c s t r a i n . c ) P l a s t i c s t r a i n - T h e v a l u e o f t h e p l a s t i c s t r a i n p e r l o a d c y c l e i s v e r y s m a l l a n d d i f f i c u l t t o m e a s u r e . T h e r e f o r e , t h e c u m u l a t i v e p l a s t i c s t r a i n d u e t o a c e r t a i n n u m b e r o f l o a d r e p e t i t i o n s i s g e n e r a l l y m e a s u r e d . T h i s i s s h o w n a s l i n e d e i n f i g u r e 2 . 1 . I t s h o u l d b e n o t e d t h a t t h e a c c u r a c y o f t h e a c t u a l m e a s u r e m e n t o f s t r a i n s d e p e n d s o n t h e r a t e o f u n l o a d i n g . 1 0 A h i g h e r r a t e p e r m i t s m o r e a c c u r a t e ' m e a s u r e m e n t o f t h e r e s i l i e n t a n d v i s c o e l a s t i c s t r a i n s . I n r e f e r e n c e t o f i g u r e 2 . 1 , t h e v a l u e s o f t h e r e s i l i e n t s t r a i n r e p r e s e n t e d b y a b i n c r e a s e s a n d t h e v i s c o e l a s t i c ( b c ) d e c r e a s e s w i t h d e c r e a s i n g u n l o a d i n g r a t e . B e c a u s e , d u r i n g t h e u n l o a d i n g p e r i o d , t h e t e s t s p e c i m e n w i l l r e c o v e r a l l t h e r e s i l i e n t a n d p a r t o f t h e v i s c o e l a s t i c s t r a i n s . H e n c e , t h e a c t u a l v a l u e s o f t h e r e s i l i e n t a n d v i s c o e l a s t i c s t r a i n s c a n n o t b e a c c u r a t e l y d e t e r m i n e d I n g e n e r a l , t h e a p p l i e d c y c l i c s t r e s s , a n d t h e r e s i l i e n t , v i s c o e l a s t i c , a n d p l a s t i c s t r a i n s a r e u s e d t o o b t a i n t h e s t r u c t u r a l p r o p e r t i e s o f a s p h a l t m i x e s . T h e f o l l o w i n g d e f i n i t i o n s o f t h e s t r u c t u r a l p r o p e r t i e s a r e r e l e v a n t a n d c a n b e f o u n d t h r o u g h o u t t h e l i t e r a t u r e . 1 ) R e s i l i e n t m o d u l u s i s t h e r a t i o o f t h e a p p l i e d c y c l i c d e v i a t o r i c s t r e s s t o t h e r e s i l i e n t p a r t o f t h e a x i a l s t r a i n ( a b ) . 2 ) R e s i l i e n t P o i s s o n ' s r a t i o i s t h e r a t i o o f t h e r a d i a l ( n o t s h o w n i n f i g u r e 2 . 1 ) t o t h e a x i a l r e s i l i e n t s t r a i n s . 3 ) V i s c o e l a s t i c m o d u l u s i s t h e r a t i o o f t h e a p p l i e d c y c l i c d e v i a t o r i c s t r e s s t o t h e v i s c o e l a s t i c p a r t o f t h e a x i a l s t r a i n ( b c ) . 4 ) T o t a l m o d u l u s i s t h e r a t i o o f t h e a p p l i e d c y c l i c d e v i a t o r i c s t r e s s t o t h e t o t a l a x i a l s t r a i n ( a c ) . 5 ) S t i f f n e s s i s a g e n e r a l t e r m d e s c r i b i n g a n y o n e o f t h e 1 1 a b o v e m o d u l i . 6 ) F a t i g u e l i f e i s t h e n u m b e r o f l o a d r e p e t i t i o n s a m a t e r i a l c a n w i t h s t a n d p r i o r t o t h e i n i t i a t i o n o f m i c r o c r a c k s . 7 ) P e r m a n e n t d e f o r m a t i o n i s t h e s u m ( c u m u l a t i v e ) o f t h e p l a s t i c a x i a l d e f o r m a t i o n ( d e ) d e v e l o p e d d u r i n g t h e t o t a l n u m b e r o f l o a d r e p e t i t i o n s . W h e r e a s t h e a b o v e t e r m s a r e g e n e r a l l y a c c e p t e d , o n e c a n f i n d ( i n t h e l i t e r a t u r e ) s e v e r a l t e r m s d e s c r i b i n g t h e m o d u l u s o f a m a t e r i a l ( e . g . , s t i f f n e s s m o d u l u s , m i x m o d u l u s , c o m p l e x m o d u l u s , d y n a m i c m o d u l u s , e l a s t i c m o d u l u s , e l a s t i c s t i f f n e s s , f l e x u r a l s t i f f n e s s ) ( 8 1 , 1 0 4 ) . U n f o r t u n a t e l y , m o s t o f t h e e x i s t i n g l i t e r a t u r e d o n o t p r o p e r l y d e f i n e t h e s e t e r m s n o r d o t h e y o f f e r a n y e x p l a n a t i o n s c o n c e r n i n g t h e m e t h o d o f c a l c u l a t i o n . H e n c e , o n e c a n f i n d t h e s a m e t e r m b e i n g u s e d b y s e v e r a l a u t h o r s e v e n t h o u g h t h e m e t h o d s o f c a l c u l a t i o n a r e d i f f e r e n t ( e . g . , o n e a u t h o r u s e s r e s i l i e n t s t r a i n , w h i l e a n o t h e r u s e s t o t a l s t r a i n , t o c a l c u l a t e t h e s a m e m o d u l u s ) . 2 . 3 R E S I L I E N T C H A R A C T E R I S T I C S O F A S P H A L T M I X E S T h e r e s i l i e n t c h a r a c t e r i s t i c s o f a s p h a l t m i x e s a r e t h e r e s i l i e n t m o d u l u s a n d r e s i l i e n t P o i s s o n ' s r a t i o . E x i s t i n g i n f o r m a t i o n c o n c e r n i n g t h e e f f e c t s o f t h e t e s t , m i x , a n d s p e c i m e n v a r i a b l e s o n t h e r e s i l i e n t c h a r a c t e r i s t i c s o f a s p h a l t m i x e s a r e p r e s e n t e d b e l o w . 1 2 2 . 3 . 1 E f f e c t s o f T e s t V a r i a b l e s T h e e f f e c t s o f t e s t v a r i a b l e s o n t h e r e s i l i e n t m o d u l u s o f a s p h a l t m i x e s w e r e i n v e s t i g a t e d b y s e v e r a l r e s e a r c h e r s ( 2 7 , 2 8 , 5 1 , 5 2 , S 4 , 1 0 6 , 1 0 9 ) . T h e s e v a r i a b l e s i n c l u d e a p p l i e d s t r e s s , t e s t t e m p e r a t u r e , l o a d f r e q u e n c y , r e l a x a t i o n p e r i o d , a n d n u m b e r o f l o a d r e p e t i t i o n s . T h e e f f e c t s o f t h e n u m b e r o f l o a d a p p l i c a t i o n s ( N ) o n t h e r e s i l i e n t m o d u l u s ( M R ) o f a s p h a l t m i x e s a r e d e p e n d e n t o n t h e t e s t t y p e a n d b o u n d a r y c o n d i t i o n s . F o r e x a m p l e : f o r a c o n t i n u o u s l y s u p p o r t e d b e a m s p e c i m e n , i n c r e a s i n g N r e s u l t s i n i n c r e a s i n g M R . W h i l e f o r s i m p l y s u p p o r t e d b e a m s p e c i m e n , i n c r e a s i n g N y i e l d s a d e c r e a s e i n t h e v a l u e s o f M R ( 4 8 , 7 1 ) . B r o w n a n d C o o p e r ( 2 7 ) s t a t e d t h a t , f o r a s t i f f a s p h a l t b i n d e r a n d r e l a t i v e l y m o d e r a t e s t r e s s l e v e l s , t h e r e s i l i e n t m o d u l u s i s i n d e p e n d e n t o f s t r e s s l e v e l ( 5 1 , 5 2 , 5 4 ) . S i m i l a r l y , Y e a g e r a n d W o o d ( 1 0 6 ) f o u n d t h a t a c o n s t a n t v a l u e o f t h e r e s i l i e n t m o d u l u s c a n b e o b t a i n e d f o r a s t r e s s l e v e l u p t o 7 0 p s i a n d t e s t t e m p e r a t u r e s b e t w e e n 4 0 a n d l O O O F . T h e e f f e c t s o f l o a d d u r a t i o n a n d f r e q u e n c y u p o n t h e r e s i l i e n t r e s p o n s e o f a s p h a l t m i x e s w e r e a l s o e v a l u a t e d b y s e v e r a l i n v e s t i g a t o r s . G e n e r a l l y , i t h a s b e e n f o u n d t h a t l o n g e r l o a d d u r a t i o n s a n d l o w e r f r e q u e n c i e s r e s u l t i n l o w e r v a l u e s o f t h e r e s i l i e n t m o d u l u s ( 2 7 , 2 8 , 1 0 6 , 1 0 9 ) . A l s o , s i n c e t h e r e s p o n s e o f v i s c o e l a s t i c m a t e r i a l s , s u c h a s a s p h a l t m i x e s , t o l o a d i s t e m p e r a t u r e d e p e n d e n t , h i g h e r t e s t 1 3 t e m p e r a t u r e s r e s u l t i n h i g h e r d e f l e c t i o n s a n d l o w e r v a l u e s o f t h e m o d u l u s ( 2 4 , 2 7 , 8 7 , 9 9 , 1 0 7 , 1 0 8 , ) . T h e r e s i l i e n t P o i s s o n ' s r a t i o f o r i s o t r o p i c l i n e a r e l a s t i c m a t e r i a l u n d e r u n i a x i a l s t r e s s i s d e f i n e d , a s n o t e d a b o v e , b y t h e r a t i o o f r e c o v e r a b l e r a d i a l s t r a i n t o t h e r e c o v e r a b l e a x i a l s t r a i n . T h i s d e f i n i t i o n a p p l i e s o n l y f o r z e r o o r c o n s t a n t c o n f i n i n g p r e s s u r e . F o r v a r i a b l e c o n f i n i n g p r e s s u r e , t h e d e f i n i t i o n i s m o r e c o m p l e x . T h e t h e o r e t i c a l r a n g e o f t h e v a l u e s o f P o i s s o n ' s r a t i o i s b e t w e e n - 1 . 0 a n d 0 . 5 , a l t h o u g h v a l u e s h i g h e r t h a n 0 . 5 w e r e r e p o r t e d ( 5 1 , 5 2 ) . T h i s c a n b e a t t r i b u t e d t o s e v e r a l f a c t o r s : 1 ) A s p h a l t m i x e s a r e n o t p e r f e c t l y l i n e a r e l a s t i c m a t e r i a l . 2 ) L a b o r a t o r y t e s t c o n d i t i o n s d o n o t e x a c t l y d u p l i c a t e t h o s e d i c t a t e d b y t h e t h e o r y o f e l a s t i c i t y . 3 ) T h e t e s t s p e c i m e n e x p e r i e n c e s v o l u m e c h a n g e d u r i n g s h e a r w h i c h i s n o t p e r m i s s i b l e i n t h e t h e o r y o f e l a s t i c i t y . B e c a u s e o f t h e p r o b l e m s a s s o c i a t e d w i t h l a b o r a t o r y m e a s u r e m e n t s o f P o i s s o n ' s r a t i o a n d s i n c e p a v e m e n t r e s p o n s e i s r e l a t i v e l y i n s e n s i t i v e t o v a r i a t i o n s i n t h i s p a r a m e t e r , e s t i m a t e d v a l u e s o f P o i s s o n ' s r a t i o a r e g e n e r a l l y u s e d b y p a v e m e n t e n g i n e e r s ( 1 0 8 ) . A t y p i c a l r a n g e o f P o i s s o n ' s r a t i o f o r a s p h a l t c o n c r e t e m i x e s i s b e t w e e n 0 . 2 a n d 0 . 4 ( 1 0 9 ) . N e v e r t h e l e s s , r e s e a r c h e r s h a v e e v a l u a t e d t h e e f f e c t s o f t h e t e s t v a r i a b l e s o n t h e v a l u e o f P o i s s o n ' s r a t i o . I t w a s f o u n d 1 4 t h a t : a ) H i g h e r t e s t t e m p e r a t u r e y i e l d s h i g h e r v a l u e s o f P o i s s o n ' s r a t i o ( 1 0 4 ) . b ) I n c r e a s i n g n u m b e r o f l o a d a p p l i c a t i o n s y i e l d s h i g h e r v a l u e s o f P o i s s o n ' s r a t i o ( 1 5 ) . 2 . 3 . 2 E f f e c t s o f H i x a n d S a m p l e v a r i a b l e s T h e r e s i l i e n t m o d u l u s o f a s p h a l t m i x e s i s a l s o a f u n c t i o n o f t h e m i x a n d s p e c i m e n v a r i a b l e s i n c l u d i n g a g g r e g a t e t y p e , a s p h a l t t y p e a n d c o n t e n t , g r a d a t i o n o f a g g r e g a t e , a n d p e r c e n t a i r v o i d s . B o n n a u r e e t a 1 . s t u d i e d t h e e f f e c t s o f s e v e r a l f a c t o r s u p o n t h e r e s i l i e n t m o d u l u s o f a s p h a l t m i x e s u t i l i z i n g a t w o - p o i n t b e n d i n g a p p a r a t u s f o r t e s t i n g t r a p e z o i d a l s p e c i m e n s ( 2 4 ) . S o m e o f t h e i r t e s t s p e c i m e n s w e r e f a b r i c a t e d i n t h e l a b o r a t o r y w h i l e o t h e r s w e r e o b t a i n e d f r o m t h e f i e l d . T h e y c o n c l u d e d t h a t : . A s p h a l t c o n t e n t , p e r c e n t a i r v o i d s , g r a d e o f b i n d e r , a n d v o l u m e c o n c e n t r a t i o n o f t h e a g g r e g a t e s i g n i f i c a n t l y a f f e c t t h e t e s t r e s u l t s . . A c c u r a t e e s t i m a t e s o f t h e s t i f f n e s s m o d u l u s a n d p h a s e a n g l e o f t h e m i x c a n b e o b t a i n e d u s i n g t h e a b o v e n o t e d v a r i a b l e s w i t h t h e a i d o f n o m o g r a p h s ( V a n D e r P o e l ) . S a r a f a n d M a j i d z a d e h p e r f o r m e d d y n a m i c t e s t s o n s i m p l y s u p p o r t e d b e a m s ( 1 2 i n . l o n g , 2 i n . w i d e , a n d 2 i n . h i g h ) t o e x a m i n e t h e e f f e c t s o f t h e t y p e o f a s p h a l t b i n d e r o n t h e 1 5 d y n a m i c m o d u l u s ( 8 5 ) . T h e y u s e d s i x d i f f e r e n t t y p e s o f a s p h a l t a g e d f o r 2 , 4 , a n d 6 h o u r s i n a n o v e n h e a t e d t o a c o n s t a n t t e m p e r a t u r e o f 4 2 5 ° F . T h e t e s t s w e r e c o n d u c t e d u s i n g 0 . 2 s e c o n d l o a d i n g t i m e f o l l o w e d b y 0 . 8 s e c o n d r e l a x a t i o n p e r i o d . T h e y c o n c l u d e d t h a t : . T h e d y n a m i c m o d u l u s o f t h e c o m p a c t e d m i x i n c r e a s e s w i t h a n i n c r e a s e i n t h e b i n d e r v i s c o s i t y . . F o r a n y g i v e n g r a d e o f a s p h a l t , t h e r e i s a n o p t i m u m a s p h a l t c o n t e n t a t w h i c h t h e v a l u e o f t h e d y n a m i c m o d u l u s i s m a x i m u m . . A g i n g o f a s p h a l t c a u s e s a n i n c r e a s e i n i t s v i s c o s i t y a n d d y n a m i c m o d u l u s . . T h e d y n a m i c m o d u l u s i n c r e a s e s w i t h a n i n c r e a s e i n t h e c o m p a c t e d d e n s i t y o f t h e m i x . T h e e f f e c t s o f a g g r e g a t e g r a d a t i o n o n t h e r e s i l i e n t c h a r a c t e r i s t i c s o f a g g r e g a t e s a n d a s p h a l t m i x e s w e r e a l s o i n v e s t i g a t e d b y s e v e r a l r e s e a r c h e r s . . I n g e n e r a l , i t w a s f o u n d t h a t t h e s e e f f e c t s a r e i n s i g n i f i c a n t ( 6 4 , 9 0 , 9 1 , 1 0 5 , 1 0 8 , 1 0 9 ) . B e c a u s e o f t h e c o m p l e x i t y o f t h e l a b o r a t o r y t e s t s t o o b t a i n t h e s t r u c t u r a l p r o p e r t i e s o f a s p h a l t m i x e s , a n d b e c a u s e t h e s e t e s t s a r e e x p e n s i v e a n d t i m e c o n s u m i n g , s e v e r a l r e s e a r c h e r s c o r r e l a t e d t h e s t r u c t u r a l p r o p e r t i e s o f t h e m i x e s t o s o m e o f t h e m i x p a r a m e t e r s w h i c h a r e e a s y t o o b t a i n . S o m e o f t h e s e c o r r e l a t i o n s a r e p r e s e n t e d i n t h e f o l l o w i n g s e c t i o n . 1 6 2 . 3 . 3 C O R R E L A T I O N S E f f o r t s h a v e b e e n m a d e t o c o r r e l a t e t h e d y n a m i c m o d u l u s o f a s p h a l t m i x e s t o t h e t e s t , m i x , a n d s a m p l e v a r i a b l e s . S h o o k a n d K a l l a s ( 9 3 ) u s e d d a t a f r o m s e v e r a l d i f f e r e n t t e s t s t o d e v e l o p c o r r e l a t i o n e q u a t i o n s ( k n o w n a s t h e A s p h a l t I n s t i t u t e ( A . I . ) e q u a t i o n s ) b e t w e e n t h e d y n a m i c m o d u l u s o f a s p h a l t m i x e s a n d s e v e r a l m i x , t e s t , a n d s p e c i m e n v a r i a b l e s . T h e t e s t s i n c l u d e d : . M a r s h a l l s t a b i l i t y a n d f l o w a t 4 0 , 7 0 , 1 0 0 , a n d 1 4 0 ° F . . H v e e m t e s t s a t t h e s a m e t e m p e r a t u r e s . . D i r e c t a n d i n d i r e c t t e n s i l e t e s t s . . D y n a m i c m o d u l u s t e s t s o n 4 - i n d i a m e t e r a n d 8 - i n h i g h c y l i n d r i c a l s p e c i m e n s . T h e i r s t a t i s t i c a l l y c o r r e l a t e d e q u a t i o n s a r e : L o g E 1 . 5 4 5 3 6 + 0 . 0 2 0 1 0 8 ( x 1 ) - 0 . 0 3 1 8 6 0 6 ( x 2 ) + 0 . 0 6 8 1 4 2 ( X 3 ) - 0 . 0 0 1 2 7 0 0 3 ( X 4 ) ° ' 4 ( X S ) 1 ' 4 ( 2 . 3 ) R 2 a 0 . 9 6 8 , a n d S . E . = 0 . 0 8 8 8 9 0 4 L o g E = 3 . 1 2 1 9 7 + 0 . 0 2 4 8 7 2 2 ( X 1 ) - 0 . 0 3 4 5 8 7 5 ( X 2 ) 0 . 1 9 - 9 . 0 2 5 9 4 ( X 4 ) / ( X 6 ) ° ° 9 ( 2 . 4 ) R 2 = 0 . 9 7 1 , a n d S . E . = 0 . 0 8 4 9 1 8 6 W h e r e : L o g 8 E - X 1 8 X 2 8 X 3 8 X 4 8 X 6 S . E . R 2 = 1 7 l o g a r i t h m t o b a s e 1 0 : d y n a m i c m o d u l u s , 1 0 5 p s i ( 4 H z l o a d i n g f r e q u e n c y ) : p e r c e n t p a s s i n g # 2 0 0 s i e v e : p e r c e n t a i r v o i d s i n m i x : a s p h a l t v i s c o s i t y a t 7 0 O F ( 1 0 6 p o i s e s ) : p e r c e n t a s p h a l t b y t o t a l w e i g h t o f m i x : t e s t t e m p e r a t u r e ( O F ) : t h e l o g a r i t h m i c v a l u e o f t h e v i s c o s i t y ( i n p o i s e s ) o f t h e a s p h a l t a t t h e t e s t t e m p e r a t u r e : = s t a n d a r d e r r o r o f t h e e s t i m a t e : a n d c o e f f i c i e n t o f d e t e r m i n a t i o n . S h o o k a n d K a l l a s n o t e d t h a t : . F o r a c o n s t a n t a s p h a l t c o n t e n t , t h e r e s i l i e n t m o d u l u s d e c r e a s e s a s t h e p e r c e n t a i r v o i d s i n c r e a s e s . . T h e r e s i l i e n t m o d u l u s o f t h e m i x i n c r e a s e s a s t h e a s p h a l t v i s c o s i t y i n c r e a s e s , o r a s p e n e t r a t i o n d e c r e a s e s . L a t e r , W i t c z a k u t i l i z e d a n e x p a n d e d d a t a b a s e t o m o d i f y t h e A I e q u a t i o n s a n d t o i n c l u d e t h e t e s t f r e q u e n c y a s o n e o f t h e v a r i a b l e s ( 1 0 4 ) . M i l l e r e t a l . c o m p a r e d n e a r l y 1 2 0 0 l a b o r a t o r y m e a s u r e d d y n a m i c m o d u l u s v a l u e s w i t h t h o s e p r e d i c t e d u s i n g t h e A I e q u a t i o n s ( 6 6 ) . T h e y o b s e r v e d t h a t f o r a l l m i x e s m a d e u s i n g c r u s h e d a g g r e g a t e , t h e m e a s u r e d a n d p r e d i c t e d m o d u l i s h o w e d 1 8 a g o o d a g r e e m e n t . H o w e v e r , v e r y p o o r a g r e e m e n t w a s n o t e d f o r m i x e s m a d e u s i n g s l a g a n d s a n d . T h u s , t h e y m o d i f i e d t h e A I e q u a t i o n s t o o b t a i n a b e t t e r c o r r e l a t i o n f o r a l l m i x e s . T h e f i n d i n g s b y M i l l e r s u p p o r t t h a t t h e m o d u l u s o f t h e a s p h a l t m i x d e p e n d s u p o n t h e c o n s t i t u e n t m a t e r i a l i n t h e m i x . T h e o r i g i n a l A I e q u a t i o n s w e r e o b t a i n e d u s i n g c r u s h e d a n d n a t u r a l g r a v e l . C o n s e q u e n t l y , w h e n s i m i l a r a g g r e g a t e s w e r e u s e d , c a l c u l a t e d a n d m e a s u r e d m o d u l i s h o w e d a r e l a t i v e l y g o o d a g r e e m e n t c o m p a r e d t o t h a t o f u s i n g d i f f e r e n t a g g r e g a t e s ( s l a g ) . N e v e r t h e l e s s , w h e n t h e A I e q u a t i o n s f a i l e d t o p r e d i c t t h e m o d u l u s t o w i t h i n r e a s o n a b l e l i m i t s , r e s e a r c h e r s d e v e l o p e d a l t e r n a t i v e e q u a t i o n s . F o r e x a m p l e , T e r r e l e t a l . c o r r e l a t e d t h e r e s i l i e n t m o d u l u s t o t h e a s p h a l t c o n t e n t , t e s t t e m p e r a t u r e , a n d p e r c e n t a i r v o i d s i n t h e m i x ( 9 6 ) . Y e a g e r a n d W o o d c o r r e l a t e d t h e d y n a m i c m o d u l u s t o t h e s l o p e o f t h e l i n e s r e p r e s e n t i n g t h e l o g a r i t h m i c v a l u e s o f t h e k i n e m a t i c v i s c o s i t y a g a i n s t t h e i n v e r s e v a l u e s o f t h e t e m p e r a t u r e , l o a d i n g r a t e , a n d t e s t t e m p e r a t u r e ( 1 0 6 ) . T h e i r c o r r e l a t i o n s , h o w e v e r , w e r e l i m i t e d t o a s p e c i f i c a g g r e g a t e t y p e , g r a d a t i o n , a s p h a l t t y p e , a n d a s p h a l t c o n t e n t . T o s u m m a r i z e , s e v e r a l c o r r e l a t i o n s r e l a t i n g t h e r e s i l i e n t a n d / o r t o t a l c h a r a c t e r i s t i c s o f a s p h a l t m i x e s t o t h e m i x , t e s t , a n d s p e c i m e n v a r i a b l e s w e r e d e v e l o p e d . T h e s e , h o w e v e r , w e r e f o u n d t o b e l i m i t e d t o s p e c i f i c t y p e s o f a g g r e g a t e a n d a s p h a l t , a n d t o t h e s p e c i f i c t e s t s a n d 1 9 b o u n d a r y c o n d i t i o n s . 2 . 4 P L A S T I C C H A R A C T E R I S T I C S I n g e n e r a l , t h e p l a s t i c c h a r a c t e r i s t i c s o f a n y m a t e r i a l c a n b e d i v i d e d i n t o t w o c a t e g o r i e s : p e r m a n e n t d e f o r m a t i o n a n d c r e e p . T h e b a s i c d i f f e r e n c e b e t w e e n t h e t w o c a t e g o r i e s i s t h a t t h e f o r m e r i s t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n u n d e r c y c l i c l o a d ( e . g . , a m o v i n g w h e e l l o a d ) w h i l e t h e l a t t e r i s , t y p i c a l l y , m e a s u r e d a s t h e t o t a l d e f o r m a t i o n u n d e r a c o n s t a n t s t a t i c l o a d ( e . g . , a p a r k e d v e h i c l e ) . T h e o r e t i c a l l y , p e r m a n e n t d e f o r m a t i o n o f a c o m p a c t e d a s p h a l t m i x i s a m a n i f e s t a t i o n o f t w o d i f f e r e n t m e c h a n i s m s : m a t e r i a l d e n s i f i c a t i o n t h a t r e s u l t s i n a v o l u m e c h a n g e : a n d r e p e t i t i v e s h e a r d e f o r m a t i o n t h a t r e s u l t s i n a p l a s t i c f l o w w i t h n o v o l u m e c h a n g e ( 5 8 ) . T h e p o r t i o n o f t h e d e f o r m a t i o n d u e t o d e n s i f i c a t i o n c a n b e m i n i m i z e d b y p r o p e r c o m p a c t i o n s p e c i f i c a t i o n s ( 1 7 , 1 8 , 1 9 , 5 8 ) . T o c o n t r o l o r m i n i m i z e p l a s t i c f l o w i n a p a v e m e n t s e c t i o n , t h e a p p l i e d s h e a r s t r e s s s h o u l d b e m i n i m i z e d b y a p r o p e r d e s i g n . I n p r a c t i c e , t h e s e p a r a t i o n o f t h e t w o c o m p o n e n t s o f p e r m a n e n t d e f o r m a t i o n i s n o t p o s s i b l e . T h e r e f o r e , t h e t e r m p e r m a n e n t d e f o r m a t i o n h e r e i n r e f e r s t o t h e s u m o f b o t h d e f o r m a t i o n s . P e r m a n e n t d e f o r m a t i o n r e p r e s e n t s a b a s i c c o n c e r n i n t h e s t r u c t u r a l d e s i g n o f p a v e m e n t s y s t e m . I t c a u s e s t w o d i f f e r e n t d i s t r e s s m o d e s i n t h e p a v e m e n t : r u t s a n d f a t i g u e c r a c k i n g ( 8 5 ) . R a t s i n f l e x i b l e p a v e m e n t s a r e s i m p l y a 2 0 s u r f a c e d i s t o r t i o n t h a t c a n b e f o u n d i n t h e w h e e l p a t h s . T h i s s u r f a c e d i s t o r t i o n c a n b e c a u s e d b y a n y o n e l a y e r o r a c o m b i n a t i o n o f l a y e r s i n t h e p a v e m e n t s y s t e m . W a t e r t e n d s t o a c c u m u l a t e i n t h e r u t t e d a r e a o f t h e p a v e m e n t c a u s i n g a s a f e t y p r o b l e m ( h y d r o p l a n i n g ) . F a t i g u e c r a c k i n g ( a l s o k n o w n a s a l l i g a t o r c r a c k i n g ) i s t h e r e s u l t o f t h e a c c u m u l a t i o n o f c y c l i c p l a s t i c s t r a i n i n d u c e d b y r e p e a t e d t r a f f i c l o a d s . T h e s e c r a c k s c a u s e s l o w d i s i n t e g r a t i o n o f t h e a s p h a l t c o u r s e w h i c h s h o r t e n s p a v e m e n t l i f e . C o n c e n t r a t e d e f f o r t s t o c o n t r o l b o t h r u t s a n d f a t i g u e c r a c k i n g r e s u l t e d i n t h e d e v e l o p m e n t o f t w o p a v e m e n t d e s i g n m e t h o d o l o g i e s t h a t a r e b a s e d u p o n l i m i t i n g p e r m a n e n t d e f o r m a t i o n s ( 1 0 9 ) : . E m p i r i c a l m e t h o d s b a s e d o n c o r r e l a t i o n s o f e x c e s s i v e d e f o r m a t i o n s t o p r e s e l e c t e d f a i l u r e c o n d i t i o n s o f t h e p a v e m e n t . . Q u a s i - e l a s t i c o r v i s c o e l a s t i c m e t h o d s t h a t a r e u s e d t o p r e d i c t t h e c u m u l a t i v e p e r m a n e n t d e f o r m a t i o n s i n p a v e m e n t s y s t e m s . T h e l a t t e r m e t h o d o l o g y i s p r e f e r r e d b e c a u s e i t c a n b e u s e d i n m o r e t h e o r e t i c a l a n d r a t i o n a l p a v e m e n t d e s i g n m e t h o d s . I t s h o u l d b e n o t e d , h o w e v e r , t h a t n e i t h e r m e t h o d i s p e r f e c t e d t o t h e p o i n t w h e r e p e r m a n e n t d e f o r m a t i o n s c a n b e a c c u r a t e l y p r e d i c t e d . I n t h e f o l l o w i n g s e c t i o n s , p l a s t i c d e f o r m a t i o n p r e d i c t i o n m o d e l s a n d t h e e f f e c t s o f s e v e r a l v a r i a b l e s u p o n 2 1 t h e p l a s t i c c h a r a c t e r i s t i c s o f a s p h a l t m i x e s a r e s u m m a r i z e d . 2 . 4 . 1 P l a s t i c D e f o r m a t i o n P r e d i c t i o n M b d e l s M o n i s m i t h e t a l . f o u n d t h a t , f o r a s p h a l t m i x e s , t h e f u n c t i o n a l r e l a t i o n s h i p b e t w e e n t h e p e r m a n e n t s t r a i n a n d t h e n u m b e r o f l o a d c y c l e s c a n b e d e s c r i b e d a s f o l l o w s ( 6 7 , 6 8 , 6 9 , 7 0 , 7 2 ) . l o g ( e p ) = C 0 + c 1 1 0 9 ( N ) + c 2 ( 1 0 9 ( N ) ) 2 + c 3 ( l o g ( N ) ) 3 ( 2 . 5 ) w h e r e : l o g = l o g a r i t h m t o b a s e 1 0 : e p = p l a s t i c s t r a i n : C 6 ' C 1 ' c 2 N - n u m b e r o f l o a d a p p l i c a t i o n . , a n d C 3 - c o e f f i c i e n t s : a n d T h e b a s i c c o n c e p t o f t h e m o d e l i s b a s e d u p o n t h e a s s u m p t i o n t h a t f o r a g i v e n s t r e s s a n d m a t e r i a l p r o p e r t i e s t h e p l a s t i c d e f o r m a t i o n o f a s p h a l t m i x e s i s a f u n c t i o n o f t h e n u m b e r o f l o a d a p p l i c a t i o n s . T h i s i m p l i e s t h a t t h e p r e d i c t i o n o f p e r m a n e n t d e f o r m a t i o n c a n b e d e t e r m i n e d b y r e p e a t e d l o a d l a b o r a t o r y t e s t s . A l l e n a n d D e e n c o n f i r m e d t h e a b o v e f i n d i n g a n d e x p a n d e d t h e r e l a t i o n s h i p t o i n c l u d e t h e e f f e c t s o f t e s t t e m p e r a t u r e a n d a p p l i e d d e v i a t o r i c s t r e s s ( 1 6 ) . C o m p a r i s o n s o f p r e d i c t e d p e r m a n e n t d e f o r m a t i o n w i t h a c t u a l r u t d e p t h s m e a s u r e d f r o m f u l l - d e p t h a s p h a l t p a v e m e n t s s h o w e d a 2 2 r e a s o n a b l e a g r e e m e n t . H a a s a n d M o r r i s e t a l . i n t r o d u c e d a p o l y n o m i a l f u n c t i o n b e t w e e n t h e r a t i o o f t h e l o g a r i t h m i c v a l u e o f t h e p e r m a n e n t d e f o r m a t i o n t o t h e l o g a r i t h m i c v a l u e o f t h e n u m b e r o f l o a d r e p e t i t i o n s a n d t h e a p p l i e d s t r e s s , t h e t e s t t e m p e r a t u r e , a n d t h e p e r c e n t a i r v o i d s i n t h e m i x ( 4 0 , 7 4 , 7 5 ) . A d i f f e r e n t a p p r o a c h w a s p r o p o s e d b y B r o w n a n d C o o p e r ( 2 7 ) . T h e y s t a t e d t h a t t h e p e r m a n e n t d e f o r m a t i o n o f a s p h a l t m i x e s c a n b e b e t t e r e x p r e s s e d b y u s i n g t h e p e r c e n t a i r v o i d s o r t h e v o i d s i n t h e m i n e r a l a g g r e g a t e ( V M A ) a s t h e i n d e p e n d e n t v a r i a b l e r a t h e r t h a n t h e n u m b e r o f l o a d c y c l e s . T h i s i m p l i e s t h a t t h e p e r m a n e n t d e f o r m a t i o n i s i n d e p e n d e n t o f t h e n u m b e r o f l o a d a p p l i c a t i o n s . T h i s i s t r u e i f t h e - p e r m a n e n t d e f o r m a t i o n t e r m i n c l u d e s o n l y c r e e p . F o r t h i s c a s e , t i m e b e c o m e s i m p o r t a n t . I n g e n e r a l , p e r m a n e n t d e f o r m a t i o n o f a s p h a l t m i x e s i s a f u n c t i o n o f s e v e r a l v a r i a b l e s i n c l u d i n g t i m e o f l o a d i n g , p e r c e n t a i r v o i d s , t e m p e r a t u r e , m a t e r i a l p r o p e r t i e s , a p p l i e d s t r e s s e s , s e r v i c e l i f e , a n d e n v i r o n m e n t a l c o n d i t i o n s ( 2 6 , 3 2 , 3 5 , 4 0 , 4 2 , 4 4 , 4 5 , 4 7 , 5 0 , 5 3 , 5 5 , 7 1 , 7 3 , 7 6 , 7 8 , 7 9 , 8 3 , 8 6 , 1 7 3 ) . . F o r e x a m p l e , t h e p e r f o r m a n c e a n d s e r v i c e l i f e o f t w o s i m i l a r p a v e m e n t s e c t i o n s a r e d r a s t i c a l l y d i f f e r e n t i f o n e s e c t i o n i s s u b j e c t e d t o a h i g h n u m b e r o f t r u c k s ( h i g h a x l e l o a d s ) , w h i l e t h e o t h e r i s s u b j e c t e d o n l y t o a u t o m o b i l e t r a f f i c . F u r t h e r , e v e n i f t h e t r a f f i c c h a r a c t e r i s t i c s a r e t h e s a m e , p a v e m e n t s l o c a t e d i n d i f f e r e n t g e o g r a p h i c a l a r e a s ( e . g . 2 3 p r e s e n c e / a b s e n c e o f f r e e z e - t h a w c y c l e s ) w i l l p e r f o r m d i f f e r e n t l y . T h e s e i m p l y t h a t t o p r o p e r l y m o d e l p e r m a n e n t d e f o r m a t i o n s o f a s p h a l t m i x e s , a l l f a c t o r s i n v o l v e d s h o u l d b e i n c l u d e d i n t h e m o d e l . T h u s , t h e d i f f e r e n c e s i n o p i n i o n f o u n d i n t h e l i t e r a t u r e c o n c e r n i n g p l a s t i c d e f o r m a t i o n a r e m a i n l y d u e t o t h e f a c t t h a t e a c h s t u d y d i d n o t i n c l u d e t h e e f f e c t s o f a l l p o s s i b l e i n d e p e n d e n t v a r i a b l e s a n d / o r t h e i r r a n g e s . T h e s e a r e p r e s e n t e d i n t h e f o l l o w i n g s e c t i o n . 2 . 4 . 2 E f f e c t s o f T e s t V a r i a b l e s T h e e f f e c t s o f c y c l i c s t r e s s l e v e l a n d t e s t t e m p e r a t u r e o n p e r m a n e n t d e f o r m a t i o n o f a s p h a l t m i x e s w e r e i n v e s t i g a t e d b y s e v e r a l r e s e a r c h e r s . T h e y r e p o r t e d t h a t h i g h e r s t r e s s l e v e l s a n d / o r t e s t t e m p e r a t u r e s r e s u l t i n h i g h e r p e r m a n e n t d e f o r m a t i o n s ( 4 0 , 4 2 , 4 5 , 4 7 , 5 0 , 5 3 , 5 5 , 7 3 , 7 6 , 7 8 , 7 9 , 8 3 , 8 6 ) . A l l e n a n d D e e n f o u n d t h a t t h e p e r m a n e n t d e f o r m a t i o n a t t h e f i r s t l o a d a p p l i c a t i o n ( i n i t i a l r e s p o n s e ) i s a f u n c t i o n o f t h e s t r e s s l e v e l a n d t e s t t e m p e r a t u r e ( 1 6 ) . T h e i n c r e m e n t o f p e r m a n e n t d e f o r m a t i o n b e t w e e n a n y s u b s e q u e n t c y c l e s , h o w e v e r , i s i n d e p e n d e n t o f s t r e s s l e v e l a n d t e s t t e m p e r a t u r e . H a a s a n d M e y e r , o n t h e o t h e r h a n d , r e p o r t e d t h a t t h e a c c u m u l a t e d p e r m a n e n t d e f o r m a t i o n ( i n p e r c e n t ) p e r t h e l o g a r i t h m i c v a l u e o f t h e n u m b e r o f l o a d a p p l i c a t i o n i n c r e a s e s w i t h i n c r e a s i n g a x i a l s t r e s s a n d t e s t t e m p e r a t u r e ( 4 0 ) . T h e d i f f e r e n c e b e t w e e n t h e t w o f i n d i n g s c o u l d b e 2 4 a t t r i b u t e d t o t h e t o t a l n u m b e r o f i n d e p e n d e n t v a r i a b l e s i n c l u d e d i n t h e s t u d y o r t o t h e t y p e o f t e s t u s e d . D i f f e r e n t t e s t s m a y y i e l d d i f f e r e n t s t r e s s d i s t r i b u t i o n s a n d , c o n s e q u e n t l y , t h e r e s u l t s m a y n o t b e d i r e c t l y c o m p a r e d . M o n i s m i t h a n d V a l l e r g a e x a m i n e d t h e e f f e c t s o f t h e r e l a x a t i o n p e r i o d d u r i n g l o a d - u n l o a d c y c l e s o n p e r m a n e n t d e f o r m a t i o n ( 7 3 ) . T h e y f o u n d t h a t , r e l a t i v e t o o t h e r v a r i a b l e s , t h e e f f e c t o f t h e r e l a x a t i o n p e r i o d i s s t a t i s t i c a l l y i n s i g n i f i c a n t . A l l e n a n d D e e n s t u d i e d t h e e f f e c t s o f t h e l o a d d u r a t i o n o n p e r m a n e n t d e f o r m a t i o n ( 1 6 ) . T h e y s h o w e d t h a t r e g a r d l e s s o f t h e l o a d f r e q u e n c y , e q u i v a l e n t l o a d i n g t i m e s ( n u m b e r o f l o a d c y c l e s m u l t i p l i e d b y l o a d d u r a t i o n ) y i e l d s i m i l a r p e r m a n e n t d e f o r m a t i o n . I n p r a c t i c e , t h e a b o v e f i n d i n g s i m p l y t h a t s p a c i n g b e t w e e n e q u a l l y l o a d e d t r u c k a x l e s ( r e l a x a t i o n p e r i o d ) d o e s n o t a f f e c t t h e p e r m a n e n t d e f o r m a t i o n . T r a f f i c s p e e d ( l o a d i n g p e r i o d ) , o n t h e o t h e r h a n d , i n v e r s e l y a f f e c t s p e r m a n e n t d e f o r m a t i o n . T h a t i s , t h e h i g h e r t h e s p e e d t h e l o w e r t h e p e r m a n e n t d e f o r m a t i o n . T h e f i n d i n g b y A l l e n a n d D e e n h o w e v e r , w a s d i s p u t e d b y B r o w n a n d C o o p e r ( 1 6 , 2 7 ) . T h e y e x a m i n e d t h e b e h a v i o r o f a s p h a l t m i x e s u n d e r s t a t i c a n d c y c l i c l o a d ( s t a t i o n a r y a n d m o v i n g v e h i c l e ) u s i n g a s q u a r e w a v e . I n b o t h t e s t s , t h e p e a k c y c l i c l o a d w a s e q u a l t o t h e s t a t i c l o a d i n t h e c r e e p t e s t . T h u s , t h e e q u i v a l e n t l o a d i n g t i m e f o r t h e c r e e p t e s t i s m u c h h i g h e r t h a n t h a t o f t h e c y c l i c t e s t . T h e y f o u n d t h a t t h e 2 5 p e r m a n e n t d e f o r m a t i o n o b t a i n e d f r o m t h e c y c l i c t e s t i s s i g n i f i c a n t l y h i g h e r t h a n t h a t m e a s u r e d f r o m t h e c r e e p t e s t . B r o w n a n d C o o p e r a t t r i b u t e d t h i s t o t h e s h a p e o f t h e l o a d i n g w a v e . C o n s e q u e n t l y , t h e y r e c o m m e n d e d t h e u s e o f s i n u s o i d a l w a v e f o r m s . A g a i n , t h e d i f f e r e n c e s i n t h e f i n d i n g s a r e a c t u a l l y r e l a t e d t o t h e v a r i a b l e s i n v o l v e d . A l l e n a n d D e e n u s e d a s i n u s o i d a l w a v e f o r m w h i l e B r o w n a n d C o o p e r u s e d a s q u a r e w a v e f o r m . T o s u m m a r i z e , t h e e f f e c t s o f t e s t v a r i a b l e s o n p e r m a n e n t d e f o r m a t i o n o f a s p h a l t m i x e s v a r y . R e s u l t s a p p e a r t o d e p e n d u p o n t h e n u m b e r o f i n d e p e n d e n t v a r i a b l e s u n d e r c o n s i d e r a t i o n . I d e a l l y , t h e e f f e c t s o f t h e i n d e p e n d e n t v a r i a b l e s c a n b e s e p a r a t e d b y h o l d i n g a l l v a r i a b l e s b u t o n e t o b e c o n s t a n t . T h e n t h e t e s t r e s u l t s f r o m t w o d i f f e r e n t i n v e s t i g a t i o n s c a n b e c o m p a r e d i f a n d o n l y i f t h e c o n s t a n t v a l u e s i n b o t h i n v e s t i g a t i o n s a r e e q u a l . T h e m o s t s i g n i f i c a n t f i n d i n g s a r e t h o s e r e p o r t e d b y A l l e n a n d D e e n ( 1 6 ) . T h a t i s , r e g a r d l e s s o f t h e a p p l i e d s t r e s s l e v e l a n d o t h e r m i x v a r i a b l e s , t h e p e r m a n e n t d e f o r m a t i o n a t t h e f i r s t l o a d c y c l e i s d e p e n d e n t o n t h e s t r e s s l e v e l a n d m i x v a r i a b l e s a n d t h a t t h e i n c r e m e n t o f p e r m a n e n t d e f o r m a t i o n b e t w e e n a n y s u b s e q u e n t c y c l e s i s l o a d i n d e p e n d e n t . T h e s e f i n d i n g s i m p l y t h a t , i n t h e f i e l d , t h e p e r m a n e n t d e f o r m a t i o n o f a p a v e m e n t s y s t e m u n d e r t h e f i r s t a p p l i c a t i o n o f a x l e l o a d p l a y s a m a j o r r o l e i n t h e e x t e n t o f f u t u r e r u t s o f t h a t 2 6 p a v e m e n t . T h u s , m e a s u r e m e n t s o f t h e p e r m a n e n t d e f o r m a t i o n o f a n e w l y c o n s t r u c t e d p a v e m e n t i s c r u c i a l t o t h e p r e d i c t i o n o f i t s f u t u r e p e r f o r m a n c e . 2 . 4 . 3 E f f e c t s o f S a m p l e a n d M i x v a r i a b l e s T h e e f f e c t s o f s a m p l e a n d m i x v a r i a b l e s u p o n t h e p e r m a n e n t d e f o r m a t i o n o f a s p h a l t m i x e s h a v e b e e n s t u d i e d e x t e n s i v e l y . S i n c e t h e f i n d i n g s a r e s i m i l a r a n d c o n s i s t e n t , a s u m m a r y w i t h i l l u s t r a t i v e c i t a t i o n s i s p r e s e n t e d b e l o w : . F o r a c o n s t a n t a s p h a l t c o n t e n t , l o w e r p e r c e n t a i r v o i d s r e s u l t s i n l o w e r p e r m a n e n t d e f o r m a t i o n ( 2 7 , 4 0 ) . . T h e e f f e c t s o f t h e p e r c e n t f i n e c o n t e n t d e p e n d u p o n t h e t y p e o f t h e a g g r e g a t e i n t h e m i x ( 2 1 , 4 6 , 4 7 ) . . T h e p e r c e n t o f c o a r s e a g g r e g a t e a n d t o p s i z e a g g r e g a t e i n t h e m i x c a u s e n o s i g n i f i c a n t e f f e c t s o n p e r m a n e n t d e f o r m a t i o n ( 4 6 ) . . S o f t e r a s p h a l t b i n d e r c a u s e s h i g h e r p e r m a n e n t d e f o r m a t i o n ( 4 0 ) . . H i g h e r a s p h a l t c o n t e n t s c a u s e h i g h e r p e r m a n e n t d e f o r m a t i o n s ( 4 6 ) . T h e s e f i n d i n g s h a v e a d i r e c t i m p a c t o n t h i s s t u d y i n t h e s e l e c t i o n o f t h e s p e c i m e n a n d t e s t v a r i a b l e s a n d t h e i r r a n g e s . I n t h i s s t u d y t h e t e s t m a t r i x w a s d e s i g n e d t o i n c l u d e t h e f o l l o w i n g : t h r e e v a l u e s o f p e r c e n t a i r v o i d s : t h r e e v i s c o s i t y g r a d e d a s p h a l t s : t h r e e t y p e s o f a g g r e g a t e 2 7 w i t h o n e t o p s i z e a n d a c o n s t a n t p e r c e n t f i n e c o n t e n t : t w o p r o p o r t i o n s o f f i n e a n d c o a r s e a g g r e g a t e s ( t w o g r a d a t i o n s ) : t h r e e l e v e l s o f c y c l i c l o a d : a n d t w o t e s t t e m p e r a t u r e s . T h e s e v a r i a b l e s a n d t h e i r r a n g e s a r e d e t a i l e d i n c h a p t e r 3 . 2 . 5 F A T I G U E P R O P E R T I E S T h e s u b j e c t o f f a t i g u e i s c o m p l e x a n d c a n b e s t u d i e d i n m a n y w a y s ( 2 , 3 9 , 5 2 , 5 9 , 6 3 , 6 5 , 8 4 , 8 8 , 9 2 , 9 4 , 1 0 1 , 1 0 3 ) . R e g a r d l e s s o f t h e c o m p l e x i t y o f t h e s u b j e c t a n d t h e w a y i t i s s t u d i e d , i t s h o u l d b e c l e a r t h a t c y c l i c p l a s t i c s t r a i n i s u l t i m a t e l y r e s p o n s i b l e f o r f a t i g u e d a m a g e ( 8 4 ) . Y o d e r a n d W i t c z a k s t a t e d t h a t f a t i g u e i s t h e p h e n o m e n o n o f r e p e t i t i v e l o a d - i n d u c e d c r a c k i n g d u e t o a r e p e a t e d s t r e s s o r s t r a i n b e l o w t h e u l t i m a t e s t r e n g t h o f t h e m a t e r i a l ( 1 0 8 ) . F a t i g u e f a i l u r e i s o n e o f t h e m o s t c o m m o n l y u s e d f a i l u r e c r i t e r i o n i n s t r u c t u r a l e n g i n e e r i n g a n d h a s b e e n a d o p t e d a s a p a v e m e n t f a i l u r e c r i t e r i o n . I n g e n e r a l , t e n s i l e c r a c k s i n f l e x i b l e p a v e m e n t s i n i t i a t e a t t h e b o t t o m o f t h e a s p h a l t m i x l a y e r a n d a r e l o c a t e d u n d e r o r i n t h e v i c i n i t y o f t h e w h e e l l o a d s w h e r e t h e t e n s i l e s t r a i n i s h i g h . H e n c e , t h e m a x i m u m t e n s i l e s t r e s s a n d / o r s t r a i n t h a t c a n b e p e r m i t t e d a t t h e b o t t o m f i b e r o f t h e a s p h a l t l a y e r c a n b e s p e c i f i e d s u c h t h a t f a t i g u e c r a c k s a r e m i n i m i z e d . F a t i g u e t e s t s ( a l t h o u g h n o t s t a n d a r d i z e d ) h a v e b e e n c o n d u c t e d u t i l i z i n g s e v e r a l t e s t m e t h o d s a n d v a r i o u s s p e c i m e n s i z e s ( 1 4 , 1 5 , 3 1 , 3 7 , 4 8 , 4 9 , 6 5 , 7 4 , 8 0 , 8 5 , 9 7 ) . 2 8 I t i s g e n e r a l l y a g r e e d t h a t b e c a u s e o f t h e e f f e c t s o f t h e s t i f f n e s s o f t h e a s p h a l t b i n d e r u p o n f a t i g u e p r o p e r t i e s a n d b e c a u s e b i n d e r s t i f f n e s s i s t e m p e r a t u r e - d e p e n d e n t , a t e m p e r a t u r e - c o n t r o l l e d c h a m b e r s h o u l d b e u s e d a r o u n d t h e t e s t s p e c i m e n s . F a t i g u e t e s t m e t h o d s v a r y f r o m t h e r e p e a t e d l o a d f l e x u r a l t e s t u s i n g b e a m s p e c i m e n s t o r e p e a t e d l o a d i n d i r e c t t e n s i l e t e s t s o n M a r s h a l l - t y p e s p e c i m e n s ( 1 4 , 1 5 , 3 1 , 4 1 ) . R e c e n t l y , a t e s t m e t h o d b a s e d u p o n t h e p r i n c i p l e s o f f r a c t u r e m e c h a n i c s h a s a l s o b e e n u s e d ( 4 3 , 6 3 ) . I n a d d i t i o n , f a t i g u e t e s t s m a y b e c o n d u c t e d e i t h e r i n s t r e s s o r s t r a i n - c o n t r o l l e d m o d e s ( 2 6 , 3 5 ) . I n t h e s t r e s s - c o n t r o l l e d m o d e , a c o n s t a n t p e a k c y c l i c s t r e s s i s c o n t i n u o u s l y a p p l i e d a n d r e m o v e d w h i c h r e s u l t s i n a d e c r e a s e i n s t i f f n e s s a n d , c o n s e q u e n t l y , a n i n c r e a s e i n t h e a c t u a l f l e x u r a l s t r a i n w i t h a n i n c r e a s i n g n u m b e r o f l o a d a p p l i c a t i o n s . I n t h e s t r a i n - c o n t r o l l e d a p p r o a c h , t h e p e a k c y c l i c l o a d i s c o n t i n u o u s l y v a r i e d t o y i e l d a c o n s t a n t f l e x u r a l s t r a i n . T h i s r e s u l t s i n a p e a k c y c l i c s t r e s s t h a t c o n t i n u o u s l y d e c r e a s e s w i t h i n c r e a s i n g l o a d a p p l i c a t i o n s . I t s h o u l d b e n o t e d t h a t i t i s d i f f i c u l t ( e s p e c i a l l y i n t h e s t r a i n - c o n t r o l l e d t e s t s ) t o e s t a b l i s h t h e n u m b e r o f l o a d r e p e t i t i o n s t o f a i l u r e . C o n s e q u e n t l y , a r b i t r a r y d e f i n i t i o n s o f f a t i g u e l i f e o f a t e s t s p e c i m e n h a s b e e n a d o p t e d ( f a t i g u e l i f e i s d e f i n e d a s t h e n u m b e r o f l o a d c y c l e s f o r w h i c h t h e s p e c i m e n s t i f f n e s s i s r e d u c e d t o h a l f o f i t s i n i t i a l v a l u e ) ( 2 6 ) . T h i s 2 9 d e f i n i t i o n s h o u l d n o t b e i n t e r p r e t e d a s t h e h i g h e r t h e s t i f f n e s s m o d u l u s t h e h i g h e r t h e f a t i g u e l i f e . I n d e e d , i t i s w e l l k n o w n t h a t s o f t e r a s p h a l t h a s l o n g e r f a t i g u e l i f e ( 8 5 ) . N e v e r t h e l e s s , I n p r a c t i c e , s t r a i n - c o n t r o l l e d t e s t s a r e c o n s i d e r e d t o b e a p p l i c a b l e t o t h i n a s p h a l t l a y e r p a v e m e n t s ( l e s s t h a n 2 - i n ) , w h i l e s t r e s s - c o n t r o l l e d t e s t s a r e c o n s i d e r e d a p p l i c a b l e t o t h i c k ( m o r e t h a n 6 - i n ) a s p h a l t p a v e m e n t l a y e r s ( 3 5 , 1 0 9 ) . O t h e r t h i c k n e s s e s a r e c o n s i d e r e d t o b e i n t h e i n t e r m e d i a t e r a n g e . T h e c y c l i c l o a d a p p l i e d t o t h e b e a m s p e c i m e n ( i n t h e f l e x u r a l t e s t s ) i s n o r m a l l y a s i n u s o i d a l w a v e w i t h 0 . 1 s e c o n d l o a d i n g t i m e a n d 0 . 4 s e c o n d r e l a x a t i o n t i m e ( 4 8 ) . O t h e r w a v e f o r m s a n d s e v e r a l l o a d i n g a n d r e l a x a t i o n p e r i o d s h a v e a l s o b e e n u s e d ( 3 2 , 3 4 , 7 1 ) . I r r e s p e c t i v e o f t h e t e s t p r o c e d u r e , s p e c i m e n s i z e , a n d l o a d i n g c h a r a c t e r i s t i c s , n i n e t e s t s p e c i m e n s ( t r i p l i c a t e f o r e a c h s t r e s s l e v e l , t h r e e s t r e s s l e v e l s ) a r e g e n e r a l l y u s e d t o e s t a b l i s h t h e n e c e s s a r y f a t i g u e r e l a t i o n s h i p f o r a n y g i v e n a s p h a l t m i x a n d t e s t c o n d i t i o n s ( 4 4 , 4 8 , 1 0 9 ) . I n t h i s s t u d y , n i n e s p e c i m e n s w e r e u s e d ( t r i p l i c a t e f o r e a c h o f t h e f o l l o w i n g c y c l i c l o a d l e v e l s : 1 0 0 , 2 0 0 a n d 5 0 0 p o u n d s ) . T h e t e s t r e s u l t s ( f a t i g u e l i f e ) w e r e t h e n s t a t i s t i c a l l y c o r r e l a t e d t o t h e a p p l i e d c y c l i c l o a d l e v e l s t o o b t a i n t h e f a t i g u e l i f e c u r v e o f e a c h t y p e o f a s p h a l t m i x . A l s o , i n t h i s s t u d y , s e v e r a l d e f i n i t i o n s o f f a t i g u e l i f e w e r e e m p l o y e d w h i c h a r e d e t a i l e d i n c h a p t e r 5 . 3 0 I n t h e f o l l o w i n g s e c t i o n , t w o t y p e s o f f a t i g u e m o d e l s a r e i n t r o d u c e d . 2 . 5 . 1 F a t i g u e M b d e l s S e v e r a l f a t i g u e m o d e l s h a v e b e e n s u g g e s t e d i n t h e l i t e r a t u r e . T h e s e c a n b e s e p a r a t e d i n t o t w o t y p e s ( 9 5 , 9 6 ) : p h e n o m e n o l o g i c a l m o d e l s ( 3 2 , 4 4 , 9 7 ) a n d m e c h a n i s t i c m o d e l s ( 4 3 , 4 8 , 8 5 , 9 8 ) . T h e p h e n o m e n o l o g i c a l m o d e l s a r e e s s e n t i a l l y b a s e d o n M i n e r ’ s l a w ( 8 2 ) ( f a t i g u e d a m a g e o f a s p h a l t m i x e s i s d i r e c t l y p r o p o r t i o n a l t o t h e n u m b e r o f l o a d a p p l i c a t i o n ) : a n d t h e y h a v e t h e a d v a n t a g e s o f s i m p l i c i t y a n d a v a i l a b i l i t y o f d a t a f o r d i f f e r e n t m a t e r i a l s . T h e i r p r i n c i p a l d i s a d v a n t a g e s a r e t h a t t h e y d o n o t a c c o u n t s a t i s f a c t o r i l y f o r t h e i n f l u e n c e o f g e o m e t r y a n d m a t e r i a l h e t e r o g e n e i t i e s , a n d t h e y d o n o t p r o v i d e a q u a n t i t a t i v e m e a s u r e f o r t h e e x t e n t o f c r a c k i n g i n p a v e m e n t s . T h e m e c h a n i s t i c m o d e l s , a l t h o u g h i m p r a c t i c a l t o u s e d u e t o t h e i r c o m p l e x i t y , a r e m o r e a m e n a b l e t h a n t h e p h e n o m e n o l o g i c a l m o d e l s i n p r o v i d i n g a q u a n t i t a t i v e d e s c r i p t i o n o f t h e d e g r e e o f c r a c k i n g i n p a v e m e n t s . S o u s s o u a n d M o a v e n z a d e h p r e s e n t e d a c l o s e d f o r m p r o b a b i l i s t i c s o l u t i o n b a s e d o n M i n e r ' s l a w t o c h a r a c t e r i z e t h e a c c u m u l a t i o n o f f a t i g u e d a m a g e i n f l e x i b l e p a v e m e n t s ( 9 5 ) . T h e i r s o l u t i o n r e l a t e s t h e e x p e c t e d v a l u e s a n d v a r i a n c e s o f t h e m e a s u r e o f d a m a g e t o t h e s t a t i s t i c a l c h a r a c t e r i s t i c s o f l o a d f a c t o r s a n d m a t e r i a l p r o p e r t i e s . 3 1 T h e y e m p h a s i z e d t h e n e e d f o r o b t a i n i n g m o r e c o m p l e t e m a t e r i a l c h a r a c t e r i z a t i o n p r o c e d u r e s w h i c h i n c l u d e m e a s u r e m e n t s o f s p a t i a l v a r i a b i l i t i e s t o d e t e r m i n e t h e a v e r a g e s i z e o f c r a c k e d a r e a s . F a t i g u e l i f e a n d f a t i g u e p r o p e r t i e s o f a s p h a l t m i x e s h a v e b e e n e v a l u a t e d u s i n g s e v e r a l d i f f e r e n t m e c h a n i s t i c m o d e l s . I r w i n u s e d t h e f r a c t u r e e n e r g y c r i t e r i o n w h i c h i s d i r e c t l y r e l a t e d t o t h e m e c h a n i s m t h a t c a u s e s m a t e r i a l s t o f a i l d u e t o c r a c k i n g ( 4 3 , 4 4 ) . H e s h o w e d t h a t : . U n l i k e s t r e s s a n d s t r a i n , t h e m i n i m u m e n e r g y r e q u i r e d t o c a u s e f r a c t u r e i s i n d e p e n d e n t o f s p e c i m e n s t i f f n e s s . . F r a c t u r e e n e r g y i s a n i n v a r i a n t s c a l a r , r e l a t i v e l y s i m p l e t o c a l c u l a t e , a n d i n d e p e n d e n t o f d i r e c t i o n . U s i n g s t r a i n - c o n t r o l l e d d y n a m i c b e n d i n g t e s t s , V a n D i j k a n d V i s s e r f o u n d t h a t f a t i g u e b e h a v i o r o f a s p h a l t m i x e s c a n b e s a t i s f a c t o r i l y m o d e l e d u s i n g a m e c h a n i s t i c m o d e l ( e n e r g y c o n c e p t ) ( 9 7 , 9 8 ) . P e r m i s s i b l e s t r a i n a n d f a t i g u e b e h a v i o r w e r e s h o w n t o d e p e n d n o t o n l y o n s t i f f n e s s , b u t a l s o o n t h e t y p e o f m i x . F u r t h e r , e v i d e n c e f r o m t h e d a t a w a s t h e p o s i t i v e e f f e c t o f i n t e r m i t t e n t l o a d i n g a s o p p o s e d t o c o n t i n u o u s l o a d i n g o n t h e f a t i g u e l i f e o f m i x e s ( i . e . , t h e f o r m e r r e s u l t s i n a l o n g e r f a t i g u e l i f e ) . S e c o r a n d M o n s m i t h , o n t h e o t h e r h a n d , s h o w e d t h a t a l i n e a r v i s c o e l a s t i c m o d e l ( p h e n o m e n o l o g i c a l m o d e l ) p r e d i c t e d t h e s t r u c t u r a l r e s p o n s e o f p a v e m e n t w i t h i n 3 0 p e r c e n t o f t h e 3 2 m e a s u r e d v a l u e s ( 8 9 ) . I n g e n e r a l , t h i s m o d e l i s t h e m o s t p r e f e r r e d d u e t o t h e c a p a b i l i t y o f o b t a i n i n g c u m u l a t i v e d e f o r m a t i o n s o f a n y p a v e m e n t s y s t e m ( 1 0 9 ) . O t h e r r e s e a r c h e r s i n t r o d u c e d g u i d e l i n e s , m e t h o d o l o g i e s , a n d n o m o g r a p h s f o r u s e i n t h e s t r u c t u r a l d e s i g n o f p a v e m e n t a g a i n s t f a t i g u e f a i l u r e ( 2 5 , 3 8 , 8 0 ) . W i t c z a k d e v e l o p e d a t h e o r e t i c a l d e s i g n p r o c e d u r e f o r a f u l l d e p t h a s p h a l t c o n c r e t e a i r f i e l d p a v e m e n t b a s e d o n f a t i g u e f a i l u r e ( 1 0 2 ) . T h e p r o c e d u r e l i m i t s t h e d e v e l o p m e n t o f c o m p r e s s i v e s t r a i n i n t h e s u b g r a d e l a y e r a n d t h e t e n s i l e s t r a i n s a t t h e b o t t o m f i b e r o f t h e a s p h a l t l a y e r . F i n a l l y , K a s i a n c h u c k e t a l . s u g g e s t e d a s e r i e s o f r e q u i r e d r e s e a r c h e s a n d d e v e l o p m e n t t a s k s t o i m p r o v e t h e d e s i g n t e c h n o l o g y . T h e y d e v e l o p e d a n d i n t r o d u c e d r e l a t i o n s h i p s b e t w e e n f a t i g u e , p e r m a n e n t d e f o r m a t i o n , a n d s h r i n k a g e c r a c k i n g f o r u s e i n t h e o v e r a l l d e s i g n o f a s p h a l t p a v e m e n t s ( 4 9 ) . R e g a r d l e s s o f t h e m e t h o d e m p l o y e d , n o m o g r a p h , o r g u i d e l i n e s , f a t i g u e l i f e o f p a v e m e n t c a n n o t b e p r e d i c t e d w i t h r e a s o n a b l e a c c u r a c y . M o s t m e t h o d s t e n d t o u n d e r p r e d i c t p a v e m e n t l i f e ( 1 0 9 ) . F u r t h e r , t h e r e a r e o b v i o u s d i f f e r e n c e s b e t w e e n f a t i g u e f a i l u r e c r i t e r i a . T h e s e d i f f e r e n c e s e x i s t b e t w e e n m e t h o d s a s w e l l a s s t i f f n e s s l e v e l s . A t l o w s t i f f n e s s , t h e c r i t e r i o n b y S e c o r a n d M o n i s m i t h ( 7 1 ) i s m o r e c o n s e r v a t i v e t h a n t h e o t h e r s . H o w e v e r , a t h i g h s t i f f n e s s , t h e K i n g h a m a n d K a l l a s c r i t e r i o n ( 5 3 ) i s m u c h m o r e 3 3 c o n s e r v a t i v e t h a n t h e o t h e r s . T h e s e d i f f e r e n c e s l e a d t o s i g n i f i c a n t v a r i a n c e w h e n i n t e r p r e t a t i o n o f t h e f a t i g u e c u r v e i s m a d e o n t h e b a s i s o f c u m u l a t i v e d a m a g e t o d e t e r m i n e t h e c r i t i c a l f a t i g u e p e r i o d . R e g a r d l e s s o f t h e s e d i f f e r e n c e s , h o w e v e r , t h e r e i s n o s i g n i f i c a n t d i f f e r e n c e i n t h e d e s i g n t h i c k n e s s o f t h e a s p h a l t c o n c r e t e c o u r s e n e c e s s a r y f o r f a t i g u e d i s t r e s s ( 1 0 9 ) . T h e r e a l s o a p p e a r s t o b e a m p l e e v i d e n c e t h a t t h e u s e o f l a b o r a t o r y - d e v e l o p e d f a t i g u e r e s u l t s l e a d t o a c o n s e r v a t i v e e s t i m a t e o f f a t i g u e l i f e ( 9 5 , 9 8 , 1 0 9 ) . N e v e r t h e l e s s , l a b o r a t o r y t e s t s w e r e u s e d b y s e v e r a l i n v e s t i g a t o r s t o e v a l u a t e t h e e f f e c t s o f t h e d i f f e r e n t t e s t , m i x , a n d s a m p l e v a r i a b l e s o n f a t i g u e l i f e . T h e t e s t r e s u l t s w e r e u s e d t o : . U n d e r s t a n d t h e e f f e c t s o f t h e v a r i a b l e s o n f a t i g u e l i f e . . C o r r e l a t e f a t i g u e l i f e t o t h e d i f f e r e n t m i x c o m p o s i t i o n s . . P r e d i c t t h e f a t i g u e l i f e o f i n - s e r v i c e p a v e m e n t s . T h e s e a r e p r e s e n t e d i n t h e f o l l o w i n g s e c t i o n s . 2 . 5 . 2 E f f e c t s o f T e s t , S a m p l e , a n d M i x v a r i a b l e s T h r o u g h o u t t h i s p r e s e n t a t i o n , i t s h o u l d b e n o t e d t h a t t h e t e s t s w e r e c o n d u c t e d u s i n g d i f f e r e n t s p e c i m e n d i m e n s i o n s , d i f f e r e n t l o a d i n g m o d e s , d i f f e r e n t t y p e s o f t e s t , a n d d i f f e r e n t m a t e r i a l s . C o n s e q u e n t l y , t h e r e i s n o 3 4 c o m m o n b a s i s t o c o m p a r e t h e f i n d i n g s o f t h e d i f f e r e n t s t u d i e s . T h e o b j e c t i v e s o f t h e p r e s e n t a t i o n a r e t o i l l u s t r a t e w h a t h a s b e e n d o n e a n d t o d e f i n e w h a t s h o u l d b e d o n e t o s t a n d a r d i z e t h e t e s t s s o t h a t t h e r e s u l t s c a n b e c o m p a r e d . I t s h o u l d a l s o b e n o t e d t h a t a l a r g e v o l u m e o f l i t e r a t u r e c a n b e f o u n d i n t h i s a r e a . T h u s , t h e c i t e d r e f e r e n c e s a r e n o t e x h a u s t i v e , r a t h e r t h e y a r e i l l u s t r a t i v e a n d a r e p r e s e n t e d t o s h o w t h e n e e d f o r s t a n d a r d i z a t i o n . B o n n a u r e e t a l . e x a m i n e d t h e e f f e c t s o f t h e r e l a x a t i o n ( r e s t ) p e r i o d u p o n t h e f a t i g u e c h a r a c t e r i s t i c s o f a s p h a l t c o n c r e t e m i x e s ( 2 6 ) . T h e y t e s t e d 9 - b y 1 . 2 - b y 0 . 8 - i n r e c t a n g u l a r b e a m s p e c i m e n s i n t h e s t r e s s a n d s t r a i n - c o n t r o l l e d m o d e s u t i l i z i n g t w o t y p e s o f p e n e t r a t i o n g r a d e d a s p h a l t ( 4 0 - 6 0 a n d 8 0 - 1 0 0 ) : a t h r e e p o i n t b e n d i n g a p p a r a t u s w i t h a f r e q u e n c y o f 5 0 H z : r e s t p e r i o d s o f 0 , 3 , 5 , 1 0 , a n d 2 5 t i m e s t h e l e n g t h o f t h e l o a d i n g p e r i o d : a n d t e s t t e m p e r a t u r e s o f 4 1 , 6 8 , a n d 7 7 ° F . T h e y d e f i n e d t h e f a i l u r e c o n d i t i o n ( f a t i g u e l i f e ) a s t h e n u m b e r o f c y c l e s r e q u i r e d f o r a r e d u c t i o n o f 5 0 p e r c e n t o f t h e i n i t i a l s t i f f n e s s m o d u l u s o f t h e m i x . T h e y c o n c l u d e d t h a t : 1 ) L o n g e r r e s t p e r i o d s y i e l d h i g h e r n u m b e r o f l o a d c y c l e s t o f a i l u r e ( l o n g e r f a t i g u e l i f e ) . 2 ) T h e m o s t b e n e f i c i a l r e s t p e r i o d i s e q u a l t o 2 5 t i m e s t h e l o a d p e r i o d . 3 ) H i g h e r t e s t t e m p e r a t u r e s r e s u l t i n l o w e r m i x s t i f f n e s s a n d h i g h e r s e r v i c e l i f e . 3 5 4 ) T h e t e s t r e s u l t s w e r e i n d e p e n d e n t o f t h e t e s t m o d e ( s t r e s s o r s t r a i n - c o n t r o l l e d ) . M o n i s m i t h e t a 1 . s t u d i e d t h e e f f e c t s o f l o a d f r e q u e n c y a n d s t r e s s r e v e r s a l ( f r o m t e n s i o n t o c o m p r e s s i o n ) o n t h e f a t i g u e p r o p e r t i e s o f a s p h a l t m i x t u r e ( 7 1 ) . T h e y t e s t e d 1 2 - b y 2 - b y 3 - i n b e a m s p e c i m e n s s u p p o r t e d o n s p r i n g s . T h e b e a m s w e r e m a d e u s i n g d e n s e g r a d e d c r u s h e d g r a n i t e a g g r e g a t e w i t h ( 3 / 4 - i n t o p s i z e ) a n d t w o t y p e s o f 8 5 - 1 0 0 p e n e t r a t i o n g r a d e d a s p h a l t c e m e n t s ( a c o n v e n t i o n a l p a v i n g a s p h a l t a n d a n a i r b l o w n m a t e r i a l ) . T h e t e s t s w e r e c o n d u c t e d u n d e r a r a n g e o f f r e q u e n c i e s f r o m 3 t o 3 0 c y c l e s p e r m i n u t e . T h e y c o n c l u d e d t h a t : 1 ) F o r a g i v e n l o a d , h i g h e r f r e q u e n c i e s r e s u l t i n l o w e r s t r a i n . 2 ) T h e t e s t f r e q u e n c y h a s n o e f f e c t u p o n t h e m i x b e h a v i o r i n r e p e a t e d f l e x u r e d u e t o t w o r e a s o n s : a ) T h e d e f l e c t i o n s w e r e m e a s u r e d n e a r t h e l o a d w h i c h m a y r e f l e c t d e n s i f i c a t i o n w i t h i n t h e b e a m i t s e l f . b ) T h e s p r i n g b a s e d i d n o t a l l o w c u m u l a t i v e d e f o r m a t i o n t o b u i l d u p . 3 ) F o r t h e s a m e v a l u e o f m a x i m u m s t r a i n , t h e r e i s n o d i f f e r e n c e i n r e s u l t s o b t a i n e d f r o m b e a m s f l e x e d i n t w o d i r e c t i o n s c o m p a r e d t o t h o s e f r o m b e a m s f l e x e d i n o n e d i r e c t i o n . 4 ) H i g h e r a s p h a l t c o n t e n t s y i e l d l o n g e r f a t i g u e l i f e . I r w i n a n d G a l l a w a y e x a m i n e d t h e i n f l u e n c e o f l a b o r a t o r y 3 6 t e s t m e t h o d u p o n t h e f a t i g u e l i f e o f a s p h a l t m i x e s ( 4 4 ) . T h e i r t e s t m e t h o d s i n c l u d e d u n i a x i a l s t r e s s f i e l d s ( b e a m s p e c i m e n s ) , b i a x i a l s t r e s s f i e l d s ( p l a t e s p e c i m e n s ) , f u l l s t r e s s r e v e r s a l , a n d n o s t r e s s r e v e r s a l . I n a d d i t i o n , t h e y c o m p a r e d t e s t r e s u l t s o b t a i n e d f r o m l a b o r a t o r y - c o m p a c t e d t e s t s p e c i m e n s t o t h o s e o b t a i n e d f r o m f i e l d - c o r e d s p e c i m e n s ( f i e l d - c o m p a c t e d a s p h a l t c o n c r e t e ) . T h e y c o n c l u d e d t h a t : 1 ) T h e d e g r e e o f s t r e s s r e v e r s a l a f f e c t s f a t i g u e p r o p e r t i e s o f t h e m i x t u r e s . 2 ) F a t i g u e c h a r a c t e r i s t i c s o b t a i n e d f r o m l a b o r a t o r y a n d f i e l d p r e p a r e d b e a m s p e c i m e n s a r e n o t s t a t i s t i c a l l y t h e s a m e . 3 ) T h e b e a m t e s t m e t h o d a l l o w s a b e t t e r d e f i n i t i o n o f t h e n u m b e r o f c y c l e s t o f a i l u r e t h a n t h e b i a x i a l t e s t m e t h o d u s i n g p l a t e . s p e c i m e n s . T h e r e s u l t s p r e s e n t e d a b o v e a n d t h o s e f o u n d i n o t h e r r e f e r e n c e s ( 1 5 , 2 2 , 2 3 , 3 4 , 3 5 , 3 7 , 4 8 , 6 0 , 6 1 , 6 2 ) i l l u s t r a t e t h e f a c t t h a t d i f f e r e n t t e s t s a n d / o r s p e c i m e n s i z e s l e a d t o d i f f e r e n t c o n c l u s i o n s . A s i m i l a r p o i n t w a s a l s o m a d e b y E p p s a n d M o n i s m i t h ( 3 5 ) . T h e y s u m m a r i z e d a v a i l a b l e i n f o r m a t i o n ( f r o m 1 9 5 4 t o 1 9 7 1 ) c o n c e r n i n g t h e e f f e c t s o f s e v e r a l m i x t u r e a n d t e s t v a r i a b l e s u p o n f a t i g u e p r o p e r t i e s o f a s p h a l t m i x e s . F o r c o n v e n i e n c e , o n l y p a r t s o f t h e i r s u m m a r y i s p r e s e n t e d b e l o w . a ) S t r e s s - c o n t r o l l e d c o n d i t i o n s m a y n o t b e f o u n d i n a r e a l p a v e m e n t s u b j e c t e d t o t r a f f i c l o a d i n g . I n t h e b ) d ) e ) f ) 9 ) 3 7 l a b o r a t o r y , h o w e v e r , t h i s m o d e o f t e s t i n g p r o v i d e s a c o n s e r v a t i v e e s t i m a t e o f f a t i g u e l i f e a n d i t i s a p p l i c a b l e t o r e l a t i v e l y t h i c k a n d s t i f f a s p h a l t c o n c r e t e l a y e r s . L o a d f r e q u e n c i e s i n t h e r a n g e o f 3 t o 3 0 c y c l e s p e r m i n u t e h a v e n o e f f e c t o n s p e c i m e n f a t i g u e l i f e . F r e q u e n c i e s o f 3 0 t o 1 0 0 c y c l e s p e r m i n u t e , o n t h e o t h e r h a n d , s i g n i f i c a n t l y d e c r e a s e t h e f a t i g u e l i f e ( b y a p p r o x i m a t e l y 2 0 p e r c e n t ) . F o r s t r e s s - c o n t r o l l e d t e s t s , l o w e r t e s t t e m p e r a t u r e s y i e l d h i g h e r s p e c i m e n s t i f f n e s s a n d l o n g e r f a t i g u e l i f e . F o r s t r a i n - c o n t r o l l e d t e s t s , l o w e r t e s t t e m p e r a t u r e s r e s u l t i n h i g h e r s p e c i m e n s t i f f n e s s a n d s h o r t e r f a t i g u e l i f e . A l t h o u g h n o t c o n c l u s i v e l y d e m o n s t r a t e d , a b s o r p t i o n o f m o i s t u r e b y a s p h a l t m i x t u r e s m a y l e a d t o a r e d u c t i o n i n s t i f f n e s s a n d a p o t e n t i a l r e d u c t i o n i n f a t i g u e l i f e . F o r t h e s t r e s s - c o n t r o l l e d m o d e o f l o a d i n g , a h i g h e r m i x t u r e s t i f f n e s s l e a d s t o a l o n g e r f a t i g u e l i f e a n d f o r t h e s t r a i n - c o n t r o l l e d m o d e o f l o a d i n g , a h i g h e r m i x t u r e s t i f f n e s s y i e l d s a s h o r t e r f a t i g u e l i f e . I t s h o u l d b e n o t e d t h a t i n r e a l p a v e m e n t s a h i g h e r m i x t u r e s t i f f n e s s r e s u l t s i n a s h o r t e r f a t i g u e l i f e . T h i s i s b e c a u s e t h e s t r e s s - c o n t r o l l e d m o d e o f l o a d i n g 3 8 i s n e v e r r e a l i z e d i n r e a l p a v e m e n t c o n d i t i o n s ( 3 2 ) . h ) F o r b o t h s t r e s s - c o n t r o l l e d a n d s t r a i n - c o n t r o l l e d m o d e s , a l o w e r p e r c e n t a i r v o i d s i n t h e m i x t u r e l e a d s t o a l o n g e r f a t i g u e l i f e . i ) A h i g h e r a n g u l a r i t y a n d r o u g h n e s s o f t h e a g g r e g a t e r e s u l t i n a h i g h e r m i x s t i f f n e s s . T h e e f f e c t s o f s t i f f n e s s w e r e n o t e d i n i t e m s g a n d h a b o v e . F a t i g u e l i f e o f a s p h a l t m i x e s i s a l s o a f u n c t i o n o f t h e s t r e s s d i s t r i b u t i o n w i t h i n t h e m a t e r i a l a n d t h e m a g n i t u d e o f t h e a p p l i e d l o a d . I n t h e f i e l d , t r a f f i c l o a d i s n o t u n i f o r m i n i n t e n s i t y a n d f r e q u e n c y a n d t h e a c t u a l p a v e m e n t r e s p o n s e i s a f f e c t e d b y t h e l o a d v a r i a t i o n . D e a c o n a n d M o n i s m i t h s t u d i e d t h e e f f e c t s o f l o a d v a r i a t i o n o n t h e f a t i g u e l i f e o f a s p h a l t m i x e s ( 3 2 ) . T h e y t e s t e d 1 5 - b y 3 . 2 5 - b y 3 . 5 - i n b e a m s p e c i m e n s m a d e u s i n g c r u s h e d g r a n i t e a g g r e g a t e a n d p e n e t r a t i o n g r a d e d a s p h a l t c e m e n t o f 8 5 - 1 0 0 . T h e y e m p l o y e d t h r e e t y p e s o f c o m p o u n d l o a d i n g ( s e q u e n c e t y p e , r e p e a t e d b l o c k t y p e , a n d r a n d o m t y p e ) a t a f r e q u e n c y o f 0 . 1 H z t o s i m u l a t e t r a f f i c l o a d s . T h e y c o n c l u d e d t h a t : 1 ) T h e m o d e o f l o a d i n g h a s a p r o f o u n d i n f l u e n c e o n t h e o b s e r v e d f a t i g u e b e h a v i o r o f a s p h a l t - c o n c r e t e s p e c i m e n s . F o r t h e s t r e s s - c o n t r o l l e d m o d e , s p e c i m e n s e x h i b i t i n g t h e l a r g e s t i n i t i a l s t i f f n e s s m o d u l i t e n d t o p e r f o r m m o s t s a t i s f a c t o r y a s l o n g a s t h e m i x t u r e i s n o n b r i t t l e a n d h a s a r e a s o n a b l e b a l a n c e a m o n g t h e p r o p o r t i o n s o f i t s c o n s t i t u e n t m a t e r i a l s . T h e r e v e r s e 3 9 i s t r u e f o r t h e s t r a i n - c o n t r o l l e d m o d e . 2 ) F a t i g u e b e h a v i o r i s a s t o c h a s t i c r a t h e r t h a n a d e t e r m i n i s t i c p h e n o m e n o n . 3 ) T h e m e a n f r a c t u r e l i v e s o f s p e c i m e n s s u b j e c t e d t o t w o - l e v e l d e c r e a s i n g - s e q u e n c e t e s t s e x c e e d s t h a t o f s p e c i m e n s s u b j e c t e d t o t w o - l e v e l i n c r e a s i n g - s e q u e n c e t e s t s i f t h e a p p l i e d p e r c e n t a g e o f t h e l a r g e r s t r e s s l e v e l i s s m a l l . 4 ) T h e m e a n f r a c t u r e l i v e s f o r r a n d o m a n d r e p e a t e d - b l o c k ( s m a l l b l o c k s i z e ) l o a d h i s t o r i e s a r e i d e n t i c a l i f t h e p r o b a b i l i t i e s o f a p p l i c a t i o n o f t h e v a r i o u s s t r e s s l e v e l s f o r t h e r a n d o m l o a d i n g e q u a l t h e c o r r e s p o n d i n g a p p l i e d p e r c e n t a g e s ( e x p r e s s e d i n d e c i m a l f o r m ) f o r t h e r e p e a t e d - b l o c k l o a d i n g . 5 ) T h e v a r i a b i l i t y o f f r a c t u r e l i f e f o r r a n d o m t e s t s e x c e e d s t h a t f o r c o m p a r a b l e r e p e a t e d - b l o c k t e s t s w i t h t h e r e l a t i v e d i f f e r e n c e d e c r e a s i n g a s t h e f r a c t u r e l i f e i n c r e a s e s . T h u s , o n e c a n c o n c l u d e t h a t , i n t h e f i e l d , t r a f f i c p a t t e r n a n d d i s t r i b u t i o n h a v e p r o f o u n d e f f e c t s o n f a t i g u e l i f e . T h e s e e f f e c t s v a r y f r o m o n e p a v e m e n t t o a n o t h e r a n d t h e y c a n n o t b e e a s i l y s i m u l a t e d i n t h e l a b o r a t o r y . C o n s e q u e n t l y , t h e u s e o f l a b o r a t o r y r e s u l t s t o p r e d i c t f a t i g u e l i f e o f a p a v e m e n t i s p r o b l e m a t i c . L a b o r a t o r y r e s u l t s , h o w e v e r , m a y b e u s e d t o a n a l y z e t h e e f f e c t s o f t h e m i x a n d t e s t v a r i a b l e s o n f a t i g u e l i f e a n d , c o n s e q u e n t l y , t o i m p r o v e t h e a s p h a l t 4 0 m i x d e s i g n p r o c e d u r e . 2 . 5 . 3 C o r r e l a t i o n s T h e c h a r a c t e r i s t i c s o f a s p h a l t m i x e s s u c h a s s t i f f n e s s m o d u l u s , c r e e p , a n d f a t i g u e l i f e a r e n e e d e d f o r a n a d e q u a t e d e s i g n o f p a v e m e n t s t r u c t u r e s . T h e s e c h a r a c t e r i s t i c s a r e d i f f i c u l t a n d t i m e c o n s u m i n g t o m e a s u r e . T h u s , t h e n e e d t o e s t i m a t e t h e s e c h a r a c t e r i s t i c s f r o m t h e r e s u l t s o f s i m p l e t e s t s h a v e b e e n r e c e n t l y r e c o g n i z e d . V a n D e r P a u l ( 8 2 ) d e v e l o p e d a n o m o g r a p h t o e s t i m a t e t h e s t i f f n e s s m o d u l u s o f a s p h a l t m i x e s b a s e d o n t h e k n o w l e d g e o f t h e m o d u l u s o f t h e b i t u m e n a n d o f t h e v o l u m e t r i c c o m p o s i t i o n o f t h e m i x . A s n o t e d i n s e c t i o n 2 . 3 . 3 , S h o o k a n d K a l l a s ( 9 3 ) a l s o d e v e l o p e d c o r r e l a t i o n e q u a t i o n s ( A I e q u a t i o n s ) t o o b t a i n t h e s t i f f n e s s m o d u l u s . L a t e r , o t h e r r e s e a r c h e r s ( 6 6 , 9 6 , 1 0 4 , 1 0 6 ) m o d i f i e d t h e e q u a t i o n s t o i n c l u d e t h e e f f e c t s o f m o r e v a r i a b l e s . S i m i l a r l y , m e t h o d s f o r p r e d i c t i n g t h e f a t i g u e l i f e o f a s p h a l t m i x e s w e r e i n v e s t i g a t e d a n d d e v e l o p e d b y s e v e r a l r e s e a r c h e r s ( 2 4 , 2 5 , 3 8 , 4 3 , 8 0 , 9 7 , 9 8 ) . T w o o f t h e s e m e t h o d s a r e p r e s e n t e d b e l o w . 2 . 5 . 3 . 1 B o n n a u r e , G r a v o i s , a n d U d r o n M e t h o d B o n n a u r e e t a 1 . s t u d i e d a n d a n a l y z e d 1 4 6 f a t i g u e c u r v e s ( 7 5 s t r e s s - c o n t r o l l e d a n d 7 1 s t r a i n - c o n t r o l l e d ) u t i l i z i n g a s t a t i s t i c a l a p p r o a c h ( 2 5 ) . T h e d a t a ( f a t i g u e l i f e , a s p h a l t 4 1 p r o p e r t i e s , s t i f f n e s s m o d u l u s o f t h e m i x , a n d m i x c o m p o s i t i o n ) w e r e o b t a i n e d f r o m f i v e d i f f e r e n t E u r o p e a n l a b o r a t o r i e s a n d u n i v e r s i t i e s . T h e o b j e c t i v e o f t h e i r s t u d y w a s t o p r e d i c t t h e f a t i g u e c h a r a c t e r i s t i c s o f a s p h a l t m i x e s b a s e d o n a s m a l l n u m b e r o f p a r a m e t e r s t h a t a r e e a s y t o o b t a i n . T h e y m a d e t h e f o l l o w i n g g e n e r a l o b s e r v a t i o n s . 1 ) T e s t d a t a f r o m s t r e s s - c o n t r o l l e d t e s t s s h o w e d a s h o r t e r l i f e t i m e t h a n t h o s e f r o m s t r a i n - c o n t r o l l e d t e s t s . 2 ) F o r a g i v e n l e v e l o f i n i t i a l s t r a i n , a s o f t e r a s p h a l t b i n d e r l e a d s t o a l o n g e r f a t i g u e l i f e . 3 ) T h e s l o p e o f t h e f a t i g u e l i n e i n t h e l o g s t r a i n v e r s u s l o g n u m b e r o f l o a d r e p e t i t i o n s p a c e v a r i e s f r o m 0 . 1 4 f o r a s p h a l t b i n d e r s w i t h a h i g h p e n e t r a t i o n i n d e x t o 0 . 3 f o r t h o s e w i t h a l o w p e n e t r a t i o n i n d e x . 4 ) F o r a g i v e n a s p h a l t s t i f f n e s s m o d u l u s a n d i n i t i a l s t r a i n , h i g h e r a s p h a l t c o n t e n t s a n d / o r l o w e r p e r c e n t a i r v o i d s r e s u l t i n l o n g e r f a t i g u e l i f e . B a s e d u p o n t h e s e o b s e r v a t i o n s , B o n n a u r e e t a l . m a d e t h e f o l l o w i n g t w o a p p r o x i m a t i o n s . 1 ) A l t h o u g h t h e s l o p e s o f t h e f a t i g u e l i n e s a r e d e p e n d e n t o n t h e a s p h a l t t y p e , t h e t e s t t e m p e r a t u r e , t h e a s p h a l t c o n t e n t , a n d t h e t e s t t y p e a c o n s t a n t v a l u e o f 0 . 2 i s a s s u m e d t o r e p r e s e n t s a l l o f t h e 1 4 6 f a t i g u e l i n e s . 2 ) T h e s l o p e o f t h e l i n e r e p r e s e n t i n g t h e i n i t i a l s t r a i n . 2 a s a f u n c t i o n o f t h e b i n d e r s t i f f n e s s m o d u l u s ( i n l o g a r i t h m i c s p a c e ) w a s a s s i g n e d t w o v a l u e s : 0 . 3 6 f o r t h e c o n s t a n t s t r a i n t e s t s , a n d 0 . 2 8 f o r t h e c o n s t a n t s t r e s s t e s t s . B a s e d o n t h e s e a p p r o x i m a t i o n s , s t a t i s t i c a l a n a l y s e s w e r e c o n d u c t e d a n d a g e n e r a l m a t h e m a t i c a l e q u a t i o n w a s o b t a i n e d . S o l u t i o n s o f t h e e q u a t i o n f o r a l l p o s s i b l e p a r a m e t e r s w e r e t h e n c o n s t r u c t e d i n t h e f o r m o f a n o m o g r a p h a s s h o w n i n f i g u r e 2 . 2 . T h e y t h e n e x a m i n e d t h e a c c u r a c y o f t h e p r e d i c t e d f a t i g u e l i f e r e l a t i v e t o t h e a v a i l a b l e d a t a a n d c o n c l u d e d t h a t : 1 ) F o r t h e 7 5 f a t i g u e l i n e s o b t a i n e d i n s t r e s s - c o n t r o l l e d t e s t s , t h e a c c u r a c y o f t h e e q u a t i o n i s a r o u n d p l u s o r m i n u s 4 0 p e r c e n t o f t h e o r i g i n a l d a t a . 2 ) F o r t h e 7 1 f a t i g u e l i n e s o b t a i n e d i n s t r a i n - c o n t r o l l e d t e s t s , t h e a c c u r a c y o f t h e e q u a t i o n i s w i t h i n p l u s o r m i n u s 5 0 p e r c e n t o f t h e o r i g i n a l d a t a . D i f f e r e n c e s b e t w e e n c a l c u l a t e d a n d m e a s u r e d d a t a a r e m a i n l y d u e t o t h e t w o a p p r o x i m a t i o n s m a d e p r i o r t o g e n e r a t i n g t h e f i n a l e q u a t i o n . A l s o , t h e f a c t t h a t f a t i g u e d a t a w e r e c o l l e c t e d f r o m d i f f e r e n t l a b o r a t o r i e s w h e r e t h e s p e c i m e n s i z e a n d t h e b o u n d a r y c o n d i t i o n s w e r e n o t e x a c t l y t h e s a m e c o n t r i b u t e d t o t h e v a r i a n c e o f t h e d a t a . N e v e r t h e l e s s , t h e a b o v e c o n c l u s i o n s i n d i c a t e t h a t s t r e s s - c o n t r o l l e d t e s t s a r e s l i g h t l y m o r e c o n s i s t e n t t h a n s t r a i n - c o n t r o l l e d t e s t s . I t s h o u l d b e r e m e m b e r e d t h a t t h e a c c u r a c y ) s e l c y c ( E M I ‘ \ V . T ‘ o o E F \ O r \ . 3 5 1 . ‘ I 1 L \ 5 \ . 3 \ \ ‘ \ \ “ . . . . § - 1 . ‘ \ . r . . . . . . 9 0 1 0 . 0 1 1 . O s ) l m u / d N ( o m x s i s m e n e f h f t N I A R T S L A I T I N I . f ) o . l e a f i t l e e e u r g u i a t n a n f o t n . b a s x e t s ‘ s e t h r 0 n r s t e \ o t e c t s t g f n a ( i 1 O 9 0 \ 0 t t 3 n 1 4 . \ \ a n t i s a t n r s . . . . 0 . , c s i l d a e i i . \ c s t o t e r r t f s o \ ° . . . 0 0 . " . . 1 ‘ . o n x a p u ; n o r a e z n e u e d p e t r a o m f s h u p o a n r i N g m E o u M U T I B . ( ) O t ( I R T T E N m t o i N b 2 . 2 M E e U T r L N u O O V C g i F i ) \ \ \ \ ‘ 0 4 3 4 4 o f t h e c a l c u l a t e d d a t a m a y d r o p s i g n i f i c a n t l y i f c o m p a r e d t o f i e l d m e a s u r e d d a t a . T h e n o m o g r a p h , h o w e v e r , r e p r e s e n t s a s i g n i f i c a n t c o n t r i b u t i o n i n t h e f i e l d o f f a t i g u e a n a l y s i s i n t h a t i t c a n b e u s e d t o q u a l i t a t i v e l y a s s e s s t h e e f f e c t s o f t h e m i x v a r i a b l e s o n p a v e m e n t l i f e . 2 . 5 . 3 . 2 F a l l a n d C o o p e r M e t h o d P e l l a n d C o o p e r e x a m i n e d t h e e f f e c t s o f t e s t a n d m i x v a r i a b l e s o n t h e f a t i g u e l i f e o f a s p h a l t m i x e s ( 8 0 ) . T h e y c o n d u c t e d a s e r i e s o f 4 8 t e s t s o n a w i d e v a r i e t y o f b a s e a n d w e a r i n g c o u r s e m i x e s m a d e w i t h g a p - g r a d e d a n d c o n t i n u o u s l y - g r a d e d a g g r e g a t e s . S t r e s s - c o n t r o l l e d f l e x u r a l t e s t s a t 5 0 ° F w e r e c o n d u c t e d o n n e c k e d - t y p e s p e c i m e n s ( 2 . 5 - i n d i a m e t e r a t t h e n e c k ) . T h e s p e c i m e n s w e r e m o u n t e d a s a v e r t i c a l c a n t i l e v e r c y l i n d e r o n a s h a f t r o t a t i n g a t a c o n s t a n t s p e e d a r o u n d t h e s p e c i m e n a x i s , w h i l e a s i n g l e c o n s t a n t p o i n t l o a d w a s a p p l i e d p e r p e n d i c u l a r t o t h e a x i s . T h i s p r o d u c e d a s i n u s o i d a l b e n d i n g s t r e s s t h r o u g h o u t t h e s p e c i m e n w i t h a m a x i m u m s t r e s s a m p l i t u d e a t t h e n e c k . T h e y e s t a b l i s h e d t w o l i n e a r l o g a r i t h m i c r e l a t i o n s h i p s : t h e f i r s t r e l a t e s f a t i g u e l i f e ( e x p r e s s e d i n t e r m s o f t h e n u m b e r o f l o a d r e p e t i t i o n s ( N ) t o f a i l u r e ) a n d t h e m a x i m u m a m p l i t u d e o f t h e a p p l i e d d y n a m i c s t r e s s : t h e s e c o n d r e l a t e s ( N ) t o t h e m a x i m u m a m p l i t u d e o f t h e i n i t i a l d y n a m i c s t r a i n . T h e y a s s u m e d t h a t a l l t h e f a t i g u e l i n e s f o r t h e f i r s t r e l a t i o n s h i p m e e t a t o n e f o c a l p o i n t a s s h o w n i n f i g u r e 2 . 3 . 4 5 T h e y c o n c l u d e d t h a t : 1 ) A s p h a l t c o n t e n t i s t h e m o s t i m p o r t a n t m i x v a r i a b l e a f f e c t i n g f a t i g u e l i f e : h i g h e r a s p h a l t c o n t e n t s a n d l o w e r p e r c e n t a i r v o i d s r e s u l t i n h i g h e r f a t i g u e l i v e s . 2 ) F o r g o o d f a t i g u e p e r f o r m a n c e , a n a g g r e g a t e s h o u l d b e r o u n d e d t o a l l o w e f f e c t i v e c o m p a c t i o n t o t a k e p l a c e , h a v e a h i g h c r u s h i n g s t r e n g t h t o p r e v e n t f r a c t u r e d u r i n g c o m p a c t i o n , a n d h a v e a c o a r s e s u r f a c e t e x t u r e f o r f i r m b i n d i n g w i t h t h e a s p h a l t . 3 ) I n t h e a x i a l l o a d f a t i g u e t e s t s , f a t i g u e l i f e i s i n d e p e n d e n t o f t h e c o n f i n i n g s t r e s s a n d t e m p e r a t u r e . A g a i n , f i g u r e 2 . 3 c a n b e u s e d t o a s s e s s t h e e f f e c t s o f t h e v a r i a b l e s ( a s p h a l t t y p e , a s p h a l t c o n t e n t , a n d s t r a i n a m p l i t u d e ) u p o n t h e f a t i g u e l i f e o f a s p h a l t m i x e s . S u c h a n a s s e s s m e n t l e a d s t o a b e t t e r p a v e m e n t d e s i g n r e l a t i v e t o f a t i g u e l i f e . T h e f i g u r e s h o u l d n o t b e u s e d , o n t h e o t h e r h a n d , t o p r e d i c t p a v e m e n t f a t i g u e l i f e . 2 . 5 . 4 F a t i g u e L i f e o f I n s e r v i c e P a v e m e n t C r a u s e t a l . a n d K e n i s a s s e s s e d t h e e f f e c t s o f h e a v i e r a x l e l o a d s a n d h i g h e r c o n t a c t p r e s s u r e s o n t h e f a t i g u e l i f e o f p a v e m e n t s t r u c t u r e s c o n t a i n i n g r e l a t i v e l y t h i n l a y e r s o f a s p h a l t c o n c r e t e ( l e s s t h a n 4 - i n ) ( 1 7 , 2 9 , 3 0 ) . T h e i r a s s e s s m e n t w a s m a d e b y t h r e e c o m p u t e r p r o g r a m s : E L S Y M S a n d P S A D w h i c h a r e b a s e d o n l a y e r e d e l a s t i c t h e o r y : a n d V E S Y S s u o n i m u 0 1 l C B t l V ‘ i a e B r r e u e m d t d u n a n l a r i o 0 e 1 B V g p n m i e R t O ( . 0 b f o e f i l e u g i t 1 a . f ) r e e N p h t o , o e n c ' r 4 u o 0 l d 1 i n n a f o t o a i t l c l i e s p d e e ‘ l 3 c 0 y 1 C 0 1 r r p e t r f o a f ( h s p l a a r i g r 5 o e m t o a N m 0 1 O T x x r m u ; u r e z n s F i g u r e 2 . 3 4 6 4 7 w h i c h i s b a s e d o n a v i s c o e l a s t i c m o d e l . F u r t h e r , t h e f a t i g u e r e s p o n s e o f a s p h a l t p a v e m e n t w i t h l e s s t h a n 1 0 p e r c e n t c r a c k i n g w a s d e f i n e d u s i n g t h e F i n n e q u a t i o n ( 3 6 ) . I t w a s c o n c l u d e d t h a t : 1 ) 2 ) 3 ) 4 ) 5 ) T h e i n f l u e n c e o f t h e a s p h a l t c o n c r e t e s t i f f n e s s o n f a t i g u e l i f e i s d e p e n d e n t u p o n t h e l a y e r t h i c k n e s s . F o r p a v e m e n t s w i t h 4 - a n d 6 - i n t h i c k a s p h a l t - b o u n d l a y e r s , f a t i g u e l i f e i n c r e a s e s a s t h e s t i f f n e s s o f t h e a s p h a l t c o n c r e t e i n c r e a s e s . F o r a 2 - i n t h i c k l a y e r , o n t h e o t h e r h a n d , t h e f a t i g u e l i f e i n c r e a s e s a s t h e s t i f f n e s s o f t h e a s p h a l t c o n c r e t e d e c r e a s e s . F o r a c o n s t a n t c o n t a c t a r e a , a n i n c r e a s e i n t h e w h e e l l o a d a n d c o n t a c t p r e s s u r e c a u s e s a p r o p o r t i o n a l d e c r e a s e i n t h e f a t i g u e l i f e ( a b o u t 7 5 p e r c e n t ) f o r a l l l a y e r t h i c k n e s s e s . F o r a c o n s t a n t l o a d , a n i n c r e a s e i n c o n t a c t p r e s s u r e ( d e c r e a s e i n t h e c o n t a c t a r e a ) c a u s e s a d e c r e a s e i n t h e f a t i g u e l i f e . A r e d u c t i o n o f 2 5 t o 5 0 p e r c e n t i n - t h e t h i c k n e s s e s o f t h e b a s e a n d s u b b a s e c o u r s e s h a s l i t t l e i n f l u e n c e o n t h e f a t i g u e l i f e o f t h e 2 - i n t h i c k a s p h a l t c o n c r e t e s t r u c t u r e . H o w e v e r , r u t t i n g b e c o m e s i m p o r t a n t . S i m i l a r r e d u c t i o n s f o r t h e 4 - a n d 6 - i n t h i c k l a y e r s c a u s e a d e c r e a s e o f 2 0 t o 2 5 p e r c e n t i n t h e f a t i g u e l i f e . T h e r e d u c t i o n i n t h e v a l u e s o f t h e r e s i l i e n t m o d u l u s 4 8 o f t h e b a s e , s u b b a s e , a n d s u b g r a d e l a y e r s s i g n i f i c a n t l y d e c r e a s e s t h e f a t i g u e l i f e o f t h i n l a y e r a s p h a l t c o n c r e t e p a v e m e n t s t r u c t u r e s . 6 ) T h i n a s p h a l t c o n c r e t e p a v e m e n t s t r u c t u r e s y i e l d l o n g e r s e r v i c e l i v e s i f t h e m o d u l u s o f t h e a s p h a l t c o n c r e t e s u r f a c e c o u r s e r e m a i n s l o w t h r o u g h o u t i t s l i f e . B a s e d o n i t e m ( 1 ) a b o v e , r e s e a r c h e r s h a v e a g r e e d t o u s e t h e s t r e s s - c o n t r o l l e d t e s t s t o s t u d y t h e f a t i g u e l i f e o f c o m p a c t e d a s p h a l t m i x e s i n t h i c k ( 4 - i n o r l a r g e r ) a s p h a l t l a y e r p a v e m e n t s , a n d t h e s t r a i n - c o n t r o l l e d t e s t s f o r t h i n ( l e s s t h a n 2 - i n ) a s p h a l t l a y e r p a v e m e n t s . F o r p a v e m e n t s w i t h a s p h a l t l a y e r t h i c k n e s s e s i n b e t w e e n 2 ~ a n d 4 - i n h o w e v e r , n o t e s t m o d e h a s b e e n s e l e c t e d a s y e t . I t e m ( 6 ) , i n d i c a t e s t h a t t h e f a t i g u e l i f e o f a s p h a l t p a v e m e n t i s a l s o a f u n c t i o n o f t h e r e s i l i e n t m o d u l u s v a l u e s o f t h e b a s e , s u b b a s e , a n d s u b g r a d e m a t e r i a l s . T h i s i m p l i e s t h a t t h e p r e d i c t i o n o f p a v e m e n t f a t i g u e l i f e b a s e d s o l e l y o n t h e f a t i g u e l i f e d a t a o f t h e a s p h a l t l a y e r i s p r o b l e m a t i c . T h e p r o p e r t i e s o f a l l p a v e m e n t l a y e r s s h o u l d b e c o n s i d e r e d i n t h e p r e d i c t i o n o f f a t i g u e l i f e . 2 . 5 . 5 S u m m a r y I t i s a p p a r e n t t h a t n o s t a n d a r d t e s t p r o c e d u r e t o c h a r a c t e r i z e f a t i g u e l i f e , n o r a s t a n d a r d d e f i n i t i o n o f f a t i g u e l i f e , h a s b e e n d e v e l o p e d a n d u n i v e r s a l l y a d o p t e d . 4 9 R e s e a r c h e r s h a v e u t i l i z e d d i f f e r e n t s i z e s p e c i m e n s , s e v e r a l t e s t i n g p r o c e d u r e s , a n d v a r i o u s a n a l y s i s m e t h o d s t o c h a r a c t e r i z e t h e f a t i g u e l i f e o f a s p h a l t m i x e s . S e v e r a l m e t h o d s t o p r e d i c t f a t i g u e l i f e u s i n g a s p h a l t m i x v a r i a b l e s h a v e a l s o b e e n d e v e l o p e d . P r o b l e m s s t i l l e x i s t s i n c e t h e a b i l i t y o f a l l o f t h e s e m e t h o d s i n p r e d i c t i n g t h e f a t i g u e l i f e o f p a v e m e n t s y s t e m s i s v e r y p o o r . I t s h o u l d b e n o t e d t h a t : a ) F a t i g u e l i f e d e p e n d s u p o n t h e s t r e s s d i s t r i b u t i o n i n t h e m a t e r i a l s a n d o t h e r e n v i r o n m e n t a l a n d m a t e r i a l f a c t o r s . b ) T h e s t r e s s d i s t r i b u t i o n i n a p a v e m e n t s y s t e m d e p e n d s u p o n t h e c h a r a c t e r i s t i c s o f t h e d i f f e r e n t p a v e m e n t c o u r s e s . c ) F a t i g u e l i f e d e p e n d s o n t h e v a l u e s o f c y c l i c p l a s t i c s t r a i n i n d u c e d b y m o v i n g w h e e l l o a d s a n d h a s n o r e l a t i o n s h i p t o t h e c y c l i c e l a s t i c o r v i s c o e l a s t i c s t r a i n s . d ) T h e r e i s a s i g n i f i c a n t v a r i a t i o n i n t h e d e f i n i t i o n o f f a t i g u e l i f e . T h e r e i s s t i l l n o l a b o r a t o r y t e s t a v a i l a b l e t h a t w i l l d u p l i c a t e f i e l d c o n d i t i o n s . C o n s e q u e n t l y , p r e d i c t i o n o f p a v e m e n t f a t i g u e l i f e i s p r o b l e m a t i c . D e s p i t e t h e s e f a c t s , t h e u n d e r s t a n d i n g o f f a t i g u e l i f e a n d f a t i g u e f a i l u r e h a s i m p r o v e d c o n s i d e r a b l y o v e r t h e l a s t f e w d e c a d e s . A b e t t e r u n d e r s t a n d i n g c a n b e d e v e l o p e d o n l y a f t e r a l o n g - t e r m 5 0 p a v e m e n t e v a l u a t i o n a n d m o n i t o r i n g p r o g r a m i s e s t a b l i s h e d . S u c h a p r o g r a m h a s j u s t b e g u n ( t h e S t r a t e g y H i g h w a y R e s e a r c h P r o g r a m ) a n d t h e f u t u r e s e e m s v e r y p r o m i s i n g . 5 1 C H A P T E R 3 L A B O R A T O R Y I N V E S T I G A T I O N 3 . 1 G E N E R A L T h e p r i m a r y o b j e c t i v e o f t h i s s t u d y i s t o q u a n t i f y r e l a t i o n s h i p s b e t w e e n s t r u c t u r a l p r o p e r t i e s a n d a s p h a l t m i x p a r a m e t e r s . T h e s e p r o p e r t i e s i n c l u d e : a ) E l a s t i c a n d r e s i l i e n t c h a r a c t e r i s t i c s . b ) P e r m a n e n t d e f o r m a t i o n . c ) F a t i g u e l i f e . T o a c c o m p l i s h t h e o b j e c t i v e o f t h e s t u d y , f l e x u r a l c y c l i c l o a d b e a m t e s t s ( o r s i m p l y , b e a m t e s t s ) w e r e c o n d u c t e d u s i n g s e v e r a l a s p h a l t m i x e s . T h e m i x e s w e r e m a d e u s i n g s e v e r a l d i f f e r e n t m a t e r i a l s w h i c h a r e d e s c r i b e d i n t h e n e x t s e c t i o n . 3 . 2 T E S T M A T E R I A L S S e v e r a l m a t e r i a l s w e r e s e l e c t e d f o r t h i s s t u d y . T h e s e i n c l u d e : t h r e e t y p e s o f a g g r e g a t e , o n e t y p e o f m i n e r a l f i l l e r ( f l y a s h ) , a n d t h r e e t y p e s o f a s p h a l t . 3 . 2 . 1 A G G R E G A T E A N D M I N E R A L F I L L E R T w o p r i m a r y t y p e s o f c o a r s e a n d f i n e a g g r e g a t e s w e r e u s e d i n t h i s s t u d y . T h e s e a r e c r u s h e d l i m e s t o n e , a n d r o u n d e d r i v e r d e p o s i t e d g r a v e l . A t h i r d t y p e o f a g g r e g a t e w a s o b t a i n e d b y m i x i n g ( f o r e a c h s i e v e s i z e ) f i f t y p e r c e n t b y w e i g h t c r u s h e d l i m e s t o n e w i t h f i f t y p e r c e n t r o u n d e d r i v e r 5 2 d e p o s i t e d g r a v e l . T h i s l a s t t y p e i s d e s i g n a t e d t h r o u g h o u t t h i s d i s s e r t a t i o n a s 5 0 / 5 0 m i x . E a c h t y p e o f a g g r e g a t e ( c r u s h e d l i m e s t o n e , r o u n d e d r i v e r d e p o s i t e d g r a v e l , a n d 5 0 / 5 0 m i x ) w a s s i e v e d u s i n g A A S H T O T 2 7 - 8 4 ( A S T M C 1 3 6 - 8 4 a ) t e s t p r o c e d u r e a n d s e p a r a t e d i n t o d i f f e r e n t s i z e f r a c t i o n s . E a c h s i z e f r a c t i o n w a s w a s h e d , d r i e d t o a c o n s t a n t w e i g h t a n d t h e n r e c o m b i n e d i n a c c o r d a n c e w i t h t h e t w o g r a i n s i z e d i s t r i b u t i o n c u r v e s ( A a n d B ) s h o w n i n f i g u r e 3 . 1 , a l o n g w i t h t h e s t r a i g h t l i n e g r a d a t i o n . I t s h o u l d b e n o t e d t h a t t h e a b s c i s s a i n t h e f i g u r e i s s c a l e d t o s i e v e o p e n i n g s r a i s e d t o t h e p o w e r 0 . 4 5 . I t s h o u l d a l s o b e n o t e d t h a t b o t h g r a i n s i z e d i s t r i b u t i o n c u r v e s ( g r a d a t i o n c u r v e s ) h a d t h e s a m e t o p s i z e a g g r e g a t e o f 0 . 7 5 i n c h e s a n d p e r c e n t b y w e i g h t p a s s i n g s i e v e n u m b e r 2 0 0 - o f 8 . 2 9 . T h e p e r c e n t p a s s i n g b y t o t a l w e i g h t f o r e a c h s i e v e s i z e f o r g r a d a t i o n s A a n d B a r e l i s t e d i n t a b l e 3 . 1 . F o r e a c h o f t h e c o a r s e a n d f i n e p o r t i o n s o f e a c h t y p e o f a g g r e g a t e , t w o v a l u e s o f e a c h o f t h e b u l k G s ( B K ) , s a t u r a t e d s u r f a c e d r y G s ( S S D ) , a n d a p p a r e n t G s ( A P P ) s p e c i f i c g r a v i t y w e r e d e t e r m i n e d u s i n g A A S H T O t e s t p r o c e d u r e s T - 8 ( f o r c o a r s e a g g r e g a t e ) a n d T - 8 4 ( f o r f i n e a g g r e g a t e ) . T h e d a t a f r o m e a c h t e s t a n d t h e a v e r a g e v a l u e s a r e l i s t e d i n t a b l e s 3 . 2 a n d 3 . 3 . I t s h o u l d b e n o t e d t h a t n e i t h e r t h e l i m e s t o n e d u s t , n o r t h e m a t e r i a l p a s s i n g s i e v e n u m b e r 2 0 0 o f t h e n a t u r a l a g g r e g a t e w a s u s e d . R a t h e r , f l y a s h w a s u s e d a s t h e m i n e r a l 5 3 T a b l e 3 . 1 P e r c e n t p a s s i n g b y w e i g h t f o r g r a d a t i o n s A a n d B . s i e v e p e r c e n t p a s s i n g b y w e i g h t n u m b e r s i z e ( i n c h ) s i z e ( m m ) g r a d a t i o n a g r a d a t i o n b 3 / 4 " 0 . 7 5 0 1 9 . 0 0 0 1 0 0 . 0 0 1 1 0 0 . 0 0 1 3 / 8 " 0 . 3 7 5 9 . 5 0 0 7 0 . 7 1 7 8 . 4 6 4 . 0 0 . 1 8 6 4 . 7 5 0 4 9 . 8 4 2 6 1 . 4 2 2 8 . 0 0 . 0 9 3 2 . 3 6 0 3 6 . 9 1 4 3 . 9 3 1 6 . 0 0 . 0 4 6 1 . 1 8 0 2 7 . 5 4 3 1 . 4 2 3 0 . 0 0 . 0 2 4 0 . 6 0 0 2 0 . 4 0 2 2 . 6 5 5 0 . 0 0 . 0 1 2 0 . 3 0 0 1 5 . 1 1 1 6 . 2 0 1 0 0 . 0 0 . 0 0 6 0 . 1 5 0 1 1 . 1 9 3 1 1 . 5 9 3 2 0 0 . 0 0 . 0 0 3 0 . 0 7 5 8 . 2 9 8 . 2 9 1 P e r c e n t c o a r s e a g g r e g a t e b y t o t a l w e i g h t : 5 0 . 1 6 2 f o r g r a d a t i o n A , a n d 3 8 . 5 8 f o r 8 . P e r c e n t f i n e a g g r e g a t e ( e x c l u d i n g - # 2 0 0 s i e v e ) b y t o t a l w e i g h t : 4 1 . 5 5 f o r g r a d a t i o n A a n d 5 3 . 1 3 f o r 8 . F l y a s h . 5 4 T a b l e 3 . 2 S p e c i f i c g r a v i t y o f t h e c o a r s e a g g r e g a t e . g r a d a t i o n A B s a m p l e 1 2 A V G 1 2 A V G n u m b e r G s ( B K ) 2 . 6 6 5 2 . 6 7 6 2 . 6 7 1 2 . 7 5 7 2 . 6 9 9 2 . 7 2 8 l i m e s t o n e G s ( S S D ) 2 . 6 8 8 2 . 6 9 9 2 . 6 9 4 2 . 7 6 8 2 . 7 1 6 2 . 7 4 2 G s ( A P P ) 2 . 7 2 8 2 . 7 4 0 2 . 7 3 4 2 . 7 8 9 2 . 7 4 7 2 . 7 6 8 G s ( B K ) 2 . 6 8 3 2 . 7 0 4 2 . 6 9 4 2 . 6 2 3 2 . 7 0 3 2 . 6 6 3 n a t u r a l G s ( S S D ) 2 . 7 1 2 2 . 7 3 2 2 . 7 2 2 2 . 6 5 3 2 . 7 3 2 2 . 6 9 3 g r a v e l G s ( A P P ) 2 . 7 6 3 2 . 7 8 3 2 . 7 7 3 2 . 7 0 2 2 . 7 8 4 2 . 7 4 3 G s ( B K ) 2 . 6 6 3 2 . 7 2 6 2 . 6 9 5 2 . 6 9 7 2 . 7 2 6 2 . 7 1 2 5 0 / 5 0 m i x G s ( S S D ) 2 . 6 8 6 2 . 7 4 7 2 . 7 1 7 2 . 7 2 2 2 . 7 4 8 2 . 7 3 5 G s ( A P P ) 2 . 7 2 5 2 . 7 8 5 2 . 7 5 5 2 . 7 6 7 2 . 7 8 7 2 . 7 7 7 A V G = a v e r a g e G s - s p e c i f i c g r a v i t y . B K - b u l k . S S D - s a t u r a t e d s u r f a c e d r y . A P P a p p a r e n t . 5 5 T a b l e 3 . 3 S p e c i f i c g r a v i t y o f t h e f i n e a g g r e g a t e . g r a d a t i o n A B s a m p l e 1 2 A V G . 1 2 A V G . n u m b e r l i m e s t o n e G s ( B K ) 2 . 7 9 4 2 . 8 1 0 2 . 8 0 2 2 . 8 0 9 2 . 8 0 3 2 . 8 0 6 n a t u r a l G s ( B K ) 2 . 7 2 0 2 . 7 4 6 2 . 7 3 3 2 . 7 2 2 2 . 7 5 0 2 . 7 3 6 g r a v e l 5 0 / 5 0 m i x G s ( B K ) 2 . 7 6 5 2 . 7 7 6 2 . 7 7 1 2 . 7 8 3 2 . 7 7 0 2 . 7 7 7 A V G . = a v e r a g e . G s = s p e c i f i c g r a v i t y . B K = b u l k . S S D = s a t u r a t e d s u r f a c e A P P = a p p a r e n t . d r y . N O I T A D A T R S G S R I E o “ ‘ . ' o T E M I I L I M N I R E T E M A I D O O 0 O O 0 4 S 6 7 9 0 I . N I ' I e v a l S . 7 0 . 0 . I ! 0 7 e 3 l 4 N I ’ 4 a . / c 0 3 S o . t o l s g . s a a I n l l - c u u a o l b p u A O l . N I - o i t a d ' z a / l . N I - a r g B d / n 3 a A . N I d n a e n i l t h g i a r t S 1 . 3 e r u g i F - 4 / I 4 0 O I 6 1 . 0 3 0 4 I | | 0 5 0 0 1 0 0 2 t ‘ 0 O 0 O O O 0 I 9 8 7 4 3 O N I S S V J m a n n a 6 0 5 0 2 O 0 ' ! F l 6 5 . 0 Z V O 0 8 ' 0 S I ' O ' 1 0 ' 0 V 3 I ' b I 7 ' 9 8 l ' Z I — - - I O 2 0 3 0 8 0 I \ S I E V E S I Z E S O B N I V H H " 4 3 3 8 3 : ! 5 6 5 7 f i l l e r . 3 . 2 . 2 A S P H A L T B I N D E R T h r e e v i s c o s i t y g r a d e d a s p h a l t c e m e n t s ( A C 1 0 , A C 5 , a n d A C 2 . 5 ) w e r e u s e d i n t h i s s t u d y . E a c h o f t h e s e a s p h a l t s w a s t e s t e d i n a c c o r d a n c e w i t h t h e p r o p e r A A S H T O t e s t p r o c e d u r e s t o d e t e r m i n e t h e i r p r o p e r t i e s . T h e t e s t r e s u l t s a r e l i s t e d i n t a b l e 3 . 4 . 3 . 3 A S P H A L T M I X D E S I G N T h e a s p h a l t m i x d e s i g n w a s c o n d u c t e d i n a c c o r d a n c e w i t h t h e s t a n d a r d M a r s h a l l t e s t a n d t e s t p r o c e d u r e s a n d t h e f u l l - f a c t o r i a l e x p e r i m e n t m a t r i x s h o w n i n f i g u r e 3 . 2 . I t c a n b e s e e n t h a t t h e r e a r e e i g h t e e n c e l l s i n t h e m a t r i x f o r e i g h t e e n p o s s i b l e c o m b i n a t i o n s o f t h e v a r i a b l e s ( 3 a s p h a l t s : 3 a g g r e g a t e s , 2 g r a d a t i o n s ) . E a c h c e l l , r e p r e s e n t s a t o t a l o f 1 2 s p e c i m e n s : o n e t r i p l i c a t e f o r e a c h o f t h e f o l l o w i n g p e r c e n t a s p h a l t c o n t e n t s b y t o t a l w e i g h t o f m i x , 3 . 5 , 4 . 2 , 4 . 9 a n d 5 . 6 . T h u s , t o t a l o f 2 1 6 s p e c i m e n s w e r e t e s t e d . T h e t e s t r e s u l t s a r e s u m m a r i z e d i n t a b l e s 3 . 5 t h r o u g h 3 . 7 . F o r e a c h a s p h a l t c o n t e n t , t h e a v e r a g e v a l u e s f o r s t a b i l i t y , f l o w , d e n s i t y , p e r c e n t a i r v o i d s , a n d p e r c e n t v o i d s i n m i n e r a l a g g r e g a t e s w e r e c a l c u l a t e d . T h e s e v a l u e s a r e a l s o . l i s t e d i n t h e t a b l e s . F o r e a c h c o m b i n a t i o n o f t h e v a r i a b l e s ( a s p h a l t , a g g r e g a t e , a n d g r a d a t i o n ) , t h e s t a b i l i t y , f l o w , d e n s i t y , 5 8 T a b l e 3 . 4 A s p h a l t p r o p e r t i e s . P e n e t r a t i o n G r a d e 7 5 - 1 0 0 1 2 0 - 1 5 0 2 0 0 - 2 5 0 V i s c o s i t y G r a d e A C - 1 0 A C - 5 A C - 2 . 5 L a b o r a t o r y N u m b e r 8 6 8 - 2 9 6 8 6 8 - 2 9 7 8 6 B - 2 9 8 P e n e t r a t i o n , 4 C , 2 0 0 g . , 6 0 s e c . 3 5 5 2 8 4 P e n e t r a t i o n , 2 5 C , 1 0 0 g . , 5 s e c . 9 6 1 5 4 2 7 2 P e n e t r a t i o n , 3 0 C , 1 0 0 g . , 5 s e c . 1 5 7 2 3 3 * S p e c i f i c G r a v i t y 2 5 / 2 5 C . 1 . 0 2 4 1 . 0 2 0 1 . 0 1 5 F l a s h P o i n t ( C . O . C . ) , C . 2 8 8 3 1 0 3 1 4 S o f t e n i n g P o i n t ( R & B ) , C . 4 2 . 0 3 7 . 5 3 5 . 0 S o l u b i l i t y i n T r i c h l o r o e t h y l e n e , % 9 9 . 6 0 9 9 . 7 0 9 9 . 6 0 D u c t i l i t y , 2 5 C , c m / m i n , c m . 1 5 0 + 1 5 0 + 9 5 V i s c o s i t y ( c o n e ) 7 7 F , K p o i s e s 7 9 3 4 0 7 1 6 2 V i s c o s i t y ( a b s o l u t e ) 1 4 0 F , p o i s e s 1 0 2 6 5 9 4 2 7 1 V i s c o s i t y ( k i n e m a t i c ) 2 7 5 F , c s 2 7 0 2 1 2 1 5 9 1 / 8 ” T h i n F i l m , 1 6 3 C , 5 h r , 5 0 g . C h a n g e i n W e i g h t , p e r c e n t 0 . 4 7 0 . 4 3 0 . 3 4 P e n e t r a t i o n , 2 5 C , 1 0 0 g , 5 s e c . 4 8 7 3 1 2 3 % o f O r i g i n a l P e n e t r a t i o n 5 0 4 7 4 5 D u c t i l i t y , 2 5 C , 5 c m / m i n , c m 1 5 0 + 1 5 0 + 1 0 6 V i s c o s i t y ( a b s . ) 1 4 0 F , p o i s e s 3 0 8 3 1 6 1 4 7 2 7 V i s c o s i t y ( k i n . ) 2 7 5 F , c s 4 1 9 3 3 5 2 3 7 V i s c o s i t y ( c o n e ) 7 7 F , K p o i s e s 4 5 5 4 1 7 4 2 6 3 4 * H i t B o t t o m . T a b l e 3 . 5 M g a r r a s d h e l a d l a m p i h s x a d t l e s A i C g - n l O r e s u l t s f o r v i s c o s i t y 5 9 a g g r e g a t e | l i e e a t o a a n a t u r a l g r a v e l l . 1 : o f 5 0 / 5 0 b y w e i g h t g r a d a t i o n A I I A I I A I 3 4 4 . 6 1 4 n o . I 1 I 2 1 I 1 I 2 1 1 I 2 I 1 1 I 2 1 I 1 I 2 1 I 1 I 2 1 p e r c e n t 4 8 p 8 4 1 8 s 2 0 4 0 2 1 0 0 2 8 8 0 2 1 8 0 2 0 7 1 1 0 2 0 2 1 1 0 2 4 1 0 2 1 0 0 2 7 8 0 2 7 7 0 2 8 0 0 2 0 8 0 2 4 8 0 2 2 2 0 1 1 8 0 2 0 1 0 1 1 1 0 c o n t e n t a s 1 1 1 4 2 7 2 2 2 8 1 1 2 8 8 0 1 1 1 8 1 1 7 4 2 8 8 8 2 1 8 0 2 4 7 1 2 8 7 0 2 8 0 1 2 0 0 0 2 2 0 8 2 8 2 1 2 1 1 2 1 1 2 1 1 0 8 4 1 4 6 7 r 8 7 7 8 7 7 7 7 7 7 7 7 7 7 8 8 8 7 1 . 1 a s 2 . 4 1 2 . 4 1 2 . 4 2 2 . 4 2 2 . 4 2 2 . 4 1 2 . 4 1 2 . 4 1 2 . 4 1 2 . 4 0 2 . 4 1 2 . 4 0 2 . 4 4 2 . 4 4 2 . 4 3 2 . 4 1 2 . 4 2 2 . 4 2 a v 1 . 0 1 1 . 8 8 8 . 2 8 8 . 2 8 8 . 1 2 1 . 0 7 1 . 0 0 4 . 1 4 4 . 0 7 1 . 8 8 1 . 1 1 8 . 0 8 1 . 1 4 1 . 1 0 1 . 4 1 1 . 0 6 1 . 8 1 1 . 7 7 v n a 1 4 . 2 0 1 4 2 0 1 4 . 1 0 1 4 . 1 0 1 4 . 4 0 1 4 . 1 0 1 1 . 1 0 1 2 . 7 0 1 2 . 4 0 1 4 1 0 1 1 . 8 0 1 4 . 1 0 1 1 1 0 1 1 . 4 0 1 1 8 0 1 4 . 2 0 1 4 . 1 0 1 4 . 0 0 a v e r a g e e s 2 7 1 4 2 8 1 2 2 4 2 0 2 7 8 1 2 2 6 0 1 2 0 7 a s 2 8 8 2 2 0 8 7 2 1 8 1 2 8 0 4 2 1 8 7 1 1 1 1 a s 2 . 4 1 2 . 4 2 2 . 4 4 2 . 4 0 2 . 4 1 2 . 4 2 a v 8 . 0 2 8 . 1 1 4 . 4 8 1 . 8 1 1 . 2 1 1 . 8 1 v n a 1 4 . 1 0 1 4 . 4 0 1 2 . 8 0 1 4 . 0 0 1 1 . 1 0 1 4 . 1 0 8 2 1 1 0 2 1 1 0 2 0 0 0 2 8 1 0 2 7 0 1 2 7 8 0 1 0 2 0 2 0 1 0 2 2 1 0 1 8 8 0 1 8 1 0 1 0 1 0 1 8 0 0 1 7 1 0 1 7 7 0 2 1 6 0 2 4 8 0 2 4 8 0 a s 2 7 2 8 2 1 1 8 2 2 4 4 2 8 2 4 2 0 8 8 2 0 7 7 2 1 0 8 2 2 1 1 2 4 1 1 1 7 8 8 1 7 4 1 2 0 8 8 1 0 4 8 1 8 8 1 1 8 0 8 2 7 1 8 2 8 4 8 2 6 1 4 r 1 0 0 0 8 0 8 7 8 8 8 0 0 1 1 1 1 1 1 8 8 8 4 . 2 0 8 2 . 4 7 2 . 4 7 2 . 4 7 2 . 4 8 2 . 4 8 2 . 4 8 2 . 4 8 2 . 4 7 2 . 4 8 2 . 4 1 2 . 4 1 2 . 4 4 2 . 4 8 2 . 4 7 2 . 4 7 2 . 4 1 2 . 4 8 2 . 4 1 a v 1 . 1 1 1 . 1 1 1 . 1 1 1 . 8 1 1 . 8 0 1 . 8 0 1 . 0 1 2 . 1 8 2 . 8 8 2 . 8 1 1 . 7 8 1 . 2 2 2 . 1 1 2 . 8 1 2 . 7 8 1 . 1 0 1 . 2 2 1 . 6 1 u n a 1 1 . 1 0 1 1 . 4 0 1 1 . 1 0 1 1 . 0 0 1 1 . 8 0 1 1 . 8 0 1 2 . 1 0 1 2 . 1 0 1 2 . 0 0 1 2 . 0 0 1 1 . 7 0 1 1 . 2 0 1 2 7 0 1 2 . 8 0 1 2 . 0 0 1 1 . 4 0 1 1 . 1 0 1 1 . 6 0 e v e r - g e e s 2 1 0 7 2 7 4 2 2 0 7 1 1 7 1 1 1 7 7 1 2 1 0 7 a s 2 1 0 1 2 0 1 0 2 2 4 1 1 8 1 8 1 0 1 0 2 6 7 1 8 8 2 . 4 7 2 . 4 8 2 . 4 7 2 . 4 4 2 . 4 7 2 . 4 1 a v _ 1 . 2 7 1 . 7 1 2 . 4 0 1 . 2 8 2 . 8 8 1 . 1 8 v n a 1 1 4 0 1 1 . 8 0 1 2 . 1 0 1 1 . 1 0 1 2 8 0 1 1 . 4 0 4 4 . 6 1 . n o . I 1 I 2 I 1 | 1 I 2 I 1 I 1 I 2 I 1 I 1 I 2 I 1 I 1 I 2 I 1 I 1 I 2 I 1 S - e e r e h a l l a t a b l l i t y ( p o u n d e ) . A 8 ' - a n A V V M A - I e e r e h a l l a t a b i l l t y a d j u s t e d t o t h e e a l p l a h e i g h t . f l e w ( 1 I 1 0 0 ' ) . a p e c i f l c g r a v i t y . - 8 1 2 v o a d e i n p e r c e n t . v e i d a 1 n n u m e r a l e g g r e g a t a a i n p e r c e n t . 6 0 T a b l e 3 . 5 C o n t i n u e d a g g r e g a t e I l i n e e t e n a I n a t u r a l g r a v e l I a i r 0 ! 5 0 1 5 0 b y ' O l t h ‘ g r a d a t i o n A I I I A I I I A I I “ - 9 1 8 n o . 1 | 2 I 1 I 1 I 2 I 1 I 1 I 2 I 1 I 1 I 2 I 1 I 1 I 2 | 1 I 1 I 2 1 p e r c e n t I l p h l l t 0 1 4 5 0 1 4 5 0 1 5 3 0 1 0 7 0 2 0 7 0 2 0 4 0 1 0 7 0 1 0 0 0 1 0 5 0 1 4 0 0 1 5 3 0 1 0 5 0 1 2 1 0 1 3 0 0 1 2 0 0 1 4 5 0 1 4 7 0 1 0 5 0 c o n t e n t A 5 1 5 7 7 1 5 7 0 1 0 5 4 1 0 0 1 2 2 5 0 2 2 1 7 1 1 5 3 1 0 0 7 1 1 4 7 1 5 0 0 1 0 2 0 2 0 1 4 1 3 0 2 1 4 0 0 1 2 0 0 1 5 5 0 1 5 7 3 1 7 0 0 F 1 7 1 7 1 7 1 5 1 3 1 4 2 1 1 7 1 0 1 3 1 5 1 2 1 0 1 7 1 7 1 3 I 3 1 2 4 . 0 0 8 2 . 4 0 2 . 4 0 2 . 4 7 2 . 4 7 2 . 4 0 2 . 4 0 2 . 4 0 2 . 4 7 2 . 4 7 2 . 4 5 2 . 4 4 2 . 4 7 2 . 4 7 2 . 4 7 2 . 4 7 2 . 4 5 2 . 4 5 2 . 4 0 A V 1 . 0 5 1 . 0 5 1 . 0 3 2 . 3 2 2 . 0 1 2 . 0 1 1 . 0 0 1 . 3 4 1 . 3 4 1 . 0 1 2 . 2 7 0 . 0 1 1 . 7 2 1 . 0 5 1 . 0 5 2 . 3 2 2 . 2 0 2 . 0 1 V H A 1 3 . 5 0 1 3 . 5 0 1 3 . 0 0 1 4 . 1 0 1 3 . 0 0 1 3 . 0 0 1 3 . 4 0 1 3 . 2 0 1 3 . 2 0 1 3 . 0 0 1 4 . 0 0 1 2 . 7 0 1 3 . 5 0 1 3 . 5 0 1 3 . 5 0 1 4 . 1 0 1 4 . 0 0 1 3 . 0 0 a v e r a g e e S 1 4 7 7 1 0 2 7 1 0 4 0 1 0 2 0 1 2 5 7 1 5 2 3 A 5 1 0 0 4 2 0 0 1 1 1 2 0 1 7 4 3 1 3 5 0 1 0 3 0 G S 2 . 4 0 2 . 4 7 2 . 4 7 2 . 4 5 2 . 4 7 2 . 4 0 A V 1 . 7 0 2 . 0 5 1 . 4 5 1 . 7 0 1 . 0 7 2 . 1 0 V H A 1 3 . 0 0 1 3 . 0 0 1 3 . 3 0 1 3 . 4 0 1 3 . 5 0 1 3 . 0 0 0 1 1 0 0 1 3 5 0 1 1 0 0 1 5 2 5 1 0 5 0 1 5 7 0 0 0 0 0 0 0 0 5 0 1 1 0 0 1 2 0 0 3 1 7 0 1 0 2 0 1 0 5 0 0 5 0 1 0 0 0 1 1 0 0 1 0 7 0 A 8 1 2 0 7 1 4 0 0 1 1 0 5 1 0 4 0 1 7 0 0 1 0 0 7 0 7 2 0 0 4 3 0 5 2 2 1 7 1 1 2 7 7 1 2 4 1 1 1 0 0 1 1 4 4 1 0 2 0 1 1 5 0 1 2 4 2 1 1 4 5 F 2 1 2 3 2 1 1 7 2 0 2 1 2 4 2 7 3 1 1 7 1 0 2 0 2 4 2 0 2 7 2 0 1 0 2 4 5 . 0 0 3 2 . 4 7 2 . 4 7 2 . 4 0 2 . 4 0 2 . 4 7 2 . 4 0 2 . 4 0 2 . 4 4 2 . 4 0 2 . 4 3 2 . 4 4 2 . 4 2 2 . 4 0 2 . 4 0 2 . 4 0 2 . 4 4 2 . 4 5 2 . 4 4 A V 1 . 1 2 0 . 0 2 1 . 5 0 1 . 4 0 0 . 0 0 1 . 4 4 0 . 5 2 1 . 3 7 0 . 0 5 1 . 4 0 1 . 4 2 1 . 0 0 0 . 0 7 0 . 3 0 1 . 1 7 1 . 0 0 1 . 3 7 1 . 5 7 V H A 1 4 . 0 0 1 4 . 4 0 1 5 . 0 0 1 4 . 0 0 1 4 . 5 0 1 4 . 0 0 1 4 . 0 0 1 4 . 7 0 1 4 . 3 0 1 4 . 0 0 1 4 . 7 0 1 5 . 1 0 1 4 . 4 0 1 3 . 0 0 1 4 . 0 0 1 5 . 0 0 1 4 . 0 0 1 4 . 0 0 a v e r a g a e 0 1 2 1 3 1 5 0 2 0 0 7 1 1 5 7 1 0 0 7 1 1 0 3 A S 1 3 1 0 1 7 0 0 0 0 0 1 2 3 0 1 0 0 1 1 1 0 1 0 5 2 . 4 0 2 . 4 7 2 . 4 0 2 . 3 2 2 . 4 0 2 . 4 4 A V 1 . 2 1 1 . 2 0 0 . 0 1 1 . 5 0 0 . 0 3 1 . 5 5 V H O 1 4 . 7 0 1 4 . 0 0 1 4 . 3 0 1 4 . 0 0 1 4 . 3 0 1 4 . 0 0 4 4 . 9 1 4 n o . I 1 I 2 | 1 I 1 I 2 I 1 I 1 I 2 I 1 I 1 I 2 I 1 I 1 I 2 | 1 I 1 I 2 1 - n a r e h e l l e t a b i l i t y ( p o u n d e ) . - n a r e h a l l e t a h i l i t y a d J u e t e d t o t h e e a l p l a h e i g h t . 0 f l o w ( 1 1 1 0 0 “ ) . - e p e c i t i c g r a v i t y . - a i r v e i d a i n p e r c e n t . - v c i d e i n m i n e r a l a g g r e g a t e e i n p e r c e n t . 2 1 2 . 8 . 6 1 T a b l e 3 . 6 M a r s h a l l m i x d e s i g n r e s u l t s f o r v i s c o s i t y g r a d e d a s p h a l t A C - S . 1 1 1 : 0 1 - 0 0 | 1 1 . 1 1 1 1 1 1 1 . 1 0 2 1 1 g r a v e l I . 1 : a t 1 0 / 1 0 b y 0 1 1 . 1 1 g r a d a t i o n A I l A I I A I I 1 1 . 9 1 . n o . 1 I 2 1 I 1 l 2 1 1 2 I 1 1 I 2 1 I 1 I 2 1 I 1 I 2 1 p e r c e n t 1 1 1 1 . 1 1 1 2 1 1 0 2 1 0 0 2 1 1 0 2 2 0 0 2 1 2 0 2 1 0 0 1 0 2 0 2 1 2 0 2 1 1 0 2 1 2 0 2 2 1 0 2 1 0 0 2 7 1 0 2 1 1 1 2 0 2 0 1 1 1 0 1 1 1 0 1 1 1 0 c o n t e n t 1 1 2 1 1 1 2 7 1 1 2 0 1 1 2 1 1 1 2 7 1 0 2 0 2 1 2 0 1 1 2 1 1 1 2 2 1 1 2 1 2 1 2 2 0 1 2 1 7 0 2 0 1 1 1 0 2 7 1 0 0 7 1 1 0 2 1 2 1 1 1 1 1 0 7 0 7 1 7 7 7 1 7 1 1 7 1 7 1 1 7 1 7 1 . 1 a s 2 . 1 1 2 . 1 1 2 . 1 1 2 . 1 1 2 . 1 2 2 . 1 2 2 . 1 1 2 . 1 1 2 . 1 1 2 . 1 1 2 . 1 0 2 . 1 0 2 . 1 1 2 . 1 1 2 . 1 1 2 . 1 0 2 . 1 0 2 . 1 1 a v 1 . 1 7 1 . 1 1 1 . 0 0 1 . 1 1 1 . 2 0 1 . 2 1 1 . 2 2 1 . 1 0 1 . 0 1 1 . 1 1 1 . 1 1 1 . 2 0 1 . 0 7 1 . 2 1 1 . 0 1 1 . 1 7 1 . 1 0 1 . 1 1 v a n 1 1 . 0 0 1 1 . 0 0 1 1 . 2 0 1 1 2 0 1 1 . 1 0 1 1 . 1 0 1 2 1 0 1 1 . 1 0 1 1 . 1 0 1 1 . 0 0 1 1 . 1 0 1 1 . 1 0 1 1 . 1 0 1 1 . 1 0 1 1 . 1 0 1 1 . 7 0 1 1 . 1 0 1 1 . 1 0 a v e r a g e e s 2 1 1 0 2 1 7 0 2 1 2 1 2 1 1 0 2 1 1 2 1 2 1 0 A S 2 7 0 0 2 1 0 2 2 2 1 1 2 1 0 1 1 0 1 1 1 1 1 1 a s 2 . 1 1 2 . 1 1 2 . 1 1 2 . 1 0 2 . 1 1 2 . 1 0 A V 1 . 1 0 1 . 1 0 1 . 1 1 1 . 0 1 1 . 1 0 1 . 1 1 “ H A 1 1 . 0 0 1 1 . 1 0 1 2 . 0 0 1 1 . 1 0 1 1 1 0 1 1 . 1 0 1 2 2 1 0 2 1 1 0 2 2 1 0 2 1 0 0 2 1 1 0 2 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 2 0 1 0 1 0 1 0 2 2 0 1 2 0 1 0 2 1 7 0 1 0 1 0 2 1 1 0 2 1 0 0 a s 2 1 7 1 2 1 1 2 2 1 1 0 2 7 1 1 2 7 0 2 2 1 7 7 1 1 1 0 1 1 1 1 1 1 1 0 2 0 1 1 2 1 1 1 2 1 0 7 2 1 1 1 2 1 1 2 2 1 1 2 1 2 1 1 1 0 1 0 2 1 1 1 r 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 1 . 2 a s 2 . 1 7 2 . 1 7 2 . 1 7 2 . 1 1 2 . 1 1 2 . 1 1 2 . 1 1 2 . 1 7 2 . 1 1 2 . 1 1 2 . 1 1 2 . 1 1 2 . 1 1 2 . 1 7 2 . 1 7 2 . 1 1 2 . 1 1 2 . 1 1 A V 1 . 1 1 1 . 1 1 2 . 0 0 1 . 1 1 1 . 0 7 1 . 7 1 2 . 1 1 2 . 1 1 2 . 1 1 1 . 1 0 2 . 0 1 1 . 1 7 2 . 1 0 2 . 1 7 2 . 7 1 1 . 2 1 1 . 1 1 1 . 1 0 “ a n 1 1 . 1 0 1 1 . 1 0 1 1 2 0 1 1 . 0 0 1 1 . 1 0 1 1 . 1 0 1 2 . 1 0 1 2 1 0 1 1 . 0 0 1 1 . 1 0 1 1 . 0 0 1 1 . 1 0 1 2 . 1 0 1 2 . 1 0 1 1 . 0 0 1 1 . 1 0 1 1 . 1 0 1 1 . 1 0 a v e r a g e e 1 2 2 1 0 2 1 1 7 1 1 1 0 1 0 0 1 2 1 1 1 2 1 1 7 a s 2 1 1 2 2 7 1 1 1 1 1 1 2 1 1 0 2 2 0 0 1 0 1 0 a s 2 . 1 7 2 . 1 1 2 . 1 1 2 . 1 1 2 . 1 7 2 . 1 1 1 V 1 . 0 1 1 . 1 1 2 . 1 2 1 . 2 1 2 . 1 2 1 . 1 0 m 1 1 . 2 0 1 1 . 1 0 1 2 . 7 0 1 1 . 1 0 1 2 . 1 0 1 1 . 1 0 e a l p l e n o . I 1 I 2 1 I 1 I 2 1 1 2 I 1 1 I 2 1 I 1 I 2 1 I 1 I 2 1 3 - n a r e h a l l e t a h l l l t y ( p o u n d e ) . F 0 2 1 0 ' ( 1 I 1 0 0 ' ) . 0 0 A V I ' H A - - 1 p e c 1 2 1 c g r a v i t y . 1 : : v o l d e l n p e r c e n t . v o l d e 1 n u l n a r a l a g g r e g a t e e 1 n p e r c e n t . n a r e h e l l e t a h l l l t y e d J n e t e d t o t h e 1 a l p l e h e i g h t . “ 0 ‘ 8 : ' 1 n e a z e d n : 1 e z e I e r i i a t e r e e t e a t 1 p t e e a v a n ' 1 n a o s e d n : 1 p y a 1 r t e ' t a t a e r i a t z r a e d e - “ ( . O O I I ! ) . 9 1 3 - " 1 0 1 m 0 1 4 - 0 a n a m u m ‘ fl fl m i u m : — ' ( I ! I n o d ) t a t t v q u o 1 1 1 0 1 : . - t I ' e n 1 1 1 - n 1 0 ( ' 9 ! 0 2 ' ! 0 9 ' 2 0 0 0 ! ( 9 2 ! 0 ( ' 9 ! ( 2 ' ! 0 9 ' 2 0 0 0 0 0 0 0 ( ' 9 ! 0 0 ' ! 0 9 ' 2 2 0 0 ( ( 0 0 2 ' 0 ! ( 0 ' ! 0 9 ' 2 0 0 ( ( 9 ( 0 0 ' 9 ! 0 0 ' ! 0 9 ' 2 2 ( 0 ! 0 ( 2 ! 0 0 ' 9 ! 9 ! ' ! ( 9 ' 2 ! ( ! ! V H A A V 0 0 0 ' 0 0 0 ! 0 0 0 ' 9 ! ! 9 ' ! 9 9 ' 2 0 2 0 0 2 ! 0 ! 2 ! 0 0 ' 9 ! ( 0 ' ! 9 9 ' 2 0 ! 0 0 0 ! 0 0 0 ! 0 0 ' 9 ! 0 0 ' 9 ! 0 ! ' ! 0 0 ' ! 0 9 ' 2 0 9 ' 2 0 ! 0 2 2 2 0 ! 0 0 0 0 0 2 ! 0 0 0 0 0 ' 9 ! 0 ! ' ! 0 9 ' 2 0 2 0 0 0 0 ( 0 ( ! ( 0 0 0 0 0 0 0 ' 0 ! 0 0 ' 0 ! ! 0 ' ! 2 0 ' ! 9 9 ' 2 0 9 ' 2 0 9 ' 9 ! 0 0 ' 9 ! ! 0 ' ! 9 0 ' ! 9 9 ' 2 0 9 ' 2 0 ! 0 2 ! 0 0 0 9 0 0 0 0 0 0 0 0 9 ' 0 ! 0 ! ' 2 2 9 ' 2 0 0 0 0 ( 0 0 ( 0 9 " ! 0 0 ' 9 ! 9 ! ' 2 ( 0 ' ! 2 9 ' 2 9 9 ' 2 ( 0 0 0 0 0 0 9 0 ( 0 0 ( 0 0 ( 0 0 ' 9 ! 0 2 ' ! ( 9 ' 2 0 ! 0 9 9 ! 0 9 0 ! 0 0 ' 9 ! 0 0 ' 9 ! 0 2 ' ! 0 9 ' 2 ( ! 0 0 0 ! 0 0 2 ! 0 9 ' ! 0 9 ' 2 ( ! 2 ! 0 ! 0 2 2 ! 0 9 ' 9 ! 9 0 ' 0 ( 9 ' 2 ! 2 0 0 2 ! 0 0 ! ! 0 0 ' 9 ! 0 0 ' 0 0 9 ' 2 0 ! 0 0 2 ! 0 0 ! ! 0 0 ' 0 ! V H O 0 0 ' ! A V 0 9 ' 2 0 0 2 0 I 0 0 0 ! 0 ' 0 0 0 0 0 ' 0 0 0 ' 0 ! 9 0 ' ! 9 9 ' 2 9 0 0 ! 0 9 ( ! 0 0 ' 0 ! 0 0 ' ! 0 9 ' 2 9 2 0 ! ( 2 2 ! 0 0 ' 0 ! 2 0 ' ! 0 9 ' 2 2 2 0 ! 0 9 2 ! 0 0 ' 0 ! 2 ( ' ! 0 9 ' 2 9 0 0 ! e e i e r e n a 0 0 ' 0 ! ! 0 ' 2 ( 9 ' 2 ( 0 0 ! ( 0 ( ! 0 0 ' 0 ! 0 0 ' ! 0 9 ' 2 9 0 9 ! V H O A V 0 9 0 V O ! § ! 0 0 6 ' 0 ! 0 1 ' 2 9 9 ' 2 9 ! $ 0 0 ! 0 0 0 ! 0 0 ' 0 ! ! 0 ' ! ( 9 ' 2 2 ! 9 0 0 ! 0 ( ( ! 0 ( ‘ 0 ! 0 0 ' ! 0 9 ' 2 0 ! 0 0 0 ! 0 0 0 ! 0 0 ' 0 ! ( 0 ' ! 0 9 ' 2 0 ! 0 0 0 ! 0 0 2 ! 0 0 ' 9 ! 0 2 ' 2 0 9 ' 2 0 ! 0 0 2 ! 0 0 ! ! 0 0 ' 0 ! 0 0 ' ! 0 9 ' 2 0 ! 0 0 0 ! 0 9 2 ! 0 ( 2 ! 0 0 ' ! 0 9 ' 2 0 0 0 ! 9 ! 0 ! 0 0 0 ! 0 0 2 ! 0 0 ' 0 ! 9 0 ' 2 9 9 ' 2 0 ! 0 0 2 ! 0 0 ! ! ' 0 ! 0 0 ' 0 ! 0 ( ' ! 0 9 ' 2 0 ! 0 0 ' 0 ! 0 9 ' ! ( 9 ' 2 0 ! 0 0 0 ! 0 2 0 ! 0 2 ' 0 ! 0 9 ' ! ( 9 ' 2 0 ! ( ( 0 ! 0 0 0 ! 0 0 ' 9 ! 0 2 ' 2 0 9 ' 2 0 ( ‘ 0 ! ! 0 ' ! 0 9 ' 2 2 ! 0 0 0 ! 0 0 0 ! 0 2 ' 9 ! 2 0 ' 2 ( 9 ' 2 9 ! 0 0 0 ! 0 0 0 ! 0 0 ' 0 ! 0 0 ' ! 0 9 ' 2 2 ! 0 0 ' 0 ! 0 0 ' ! ( 9 ' 2 0 ! ! 0 0 ! 0 0 0 ! 0 9 ' 0 ! V H A 0 9 ' ! A V 0 9 ' 2 0 9 9 ! I 0 0 0 ! S V 0 0 0 ! 0 0 0 ' 0 ! 0 ( ' ! 0 9 ' 2 0 ! 9 0 0 ! 0 9 9 ! 0 ' 9 1 & 1 “ : 1 1 1 0 1 0 ! g u e s s e d ' e n e t d l a e v n o v a - 0 0 8 ! 1 1 . 1 0 1 £ 4 0 1 / 0 1 1 0 8 1 - I 1 1 1 1 : ! t e z n a e a e n e q e e e w x | e s e t e r i t a ' p a n u g q u o a 9 ' : a t q e m Z 9 T a b l e 3 . 7 M a r s h a l l m i x d e s i g n r e s u l t s f o r v i s c o s i t y 6 3 g r a d e d a s p h a l t A C - Z . 5 . 4 8 8 2 0 8 4 9 0 I 1 4 3 9 3 9 0 9 0 ' I n a t u r a l g r a v e l I l l : o f 5 0 / 5 9 b y u e t g h t g r a d a t 1 o n A I 0 I A I I I A I I a m p l e n o . 1 I 2 I 3 I l I 2 I 3 I 1 I 2 I 3 I 1 I 2 I 3 I l I 2 3 I 1 I 2 3 p e r c e n t e 1 p h a l t 5 2 8 1 9 2 4 5 9 2 5 0 9 2 9 2 9 2 9 5 9 3 2 9 9 2 9 7 9 2 1 5 9 1 5 8 9 2 5 8 9 2 5 9 9 2 5 9 9 2 2 9 9 2 9 1 9 2 3 9 9 2 1 9 9 2 3 5 9 2 3 0 0 c o n t e n t A 5 2 7 8 5 2 5 3 1 2 7 7 8 3 1 9 9 3 1 9 7 3 3 8 5 2 2 1 9 2 2 5 4 1 7 8 9 2 5 5 4 2 5 5 8 2 5 7 1 2 3 7 4 2 1 5 7 2 4 8 9 2 3 2 9 2 4 5 7 2 1 3 1 I 1 9 8 7 5 5 5 5 5 5 5 7 5 5 5 5 5 5 6 3 . 5 0 8 2 . 4 5 2 . 4 5 2 . 4 5 2 . 4 4 2 . 4 4 2 . 4 4 2 . 4 5 2 . 4 2 2 . 4 3 2 . 3 0 2 . 3 8 2 . 3 0 2 . 4 7 2 . 4 5 2 . 4 7 2 . 4 3 2 . 4 1 2 . 4 3 A V 5 . 9 1 4 . 9 3 4 . 8 5 5 . 2 7 5 . 5 4 5 . 3 1 4 . 2 3 5 . 1 5 4 . 9 3 5 . 9 8 5 . 4 4 5 . 3 2 3 . 7 9 4 . 3 7 3 . 5 9 5 . 9 7 5 . 9 3 5 . 1 9 V H A 1 3 . 4 9 1 3 . 4 9 1 3 . 3 9 1 3 . 7 9 1 3 . 9 9 1 3 . 7 9 1 2 . 7 9 1 3 . 5 9 1 3 . 3 9 1 4 . 3 9 1 4 . 7 9 1 4 . 5 9 1 2 . 2 9 1 2 . 8 9 1 2 . 1 0 1 3 . 5 9 1 4 . 2 0 1 3 . 6 0 a v e r a g e a S 2 5 5 3 3 0 2 3 l 0 5 0 2 5 5 0 2 1 7 0 2 2 8 3 A S 2 7 3 1 3 2 9 1 2 0 7 5 2 5 3 2 2 3 4 9 2 1 0 3 6 8 2 . 4 5 2 . 4 4 2 . 4 3 2 . 3 9 2 . 4 5 2 . 1 2 A V 4 . 9 3 5 . 3 0 4 . 7 7 5 . 2 7 3 . 9 0 5 . 4 0 V H A 1 3 . 3 0 1 3 . 7 9 1 3 . 1 0 1 4 . 4 9 1 2 . 3 9 1 3 . 7 0 5 1 9 2 9 1 8 5 9 2 9 9 9 2 4 3 9 2 4 9 9 2 5 8 9 1 2 1 5 1 1 5 9 1 4 8 9 2 9 8 9 2 2 9 9 2 2 7 9 1 4 8 9 1 5 9 9 1 7 8 9 1 9 2 9 1 8 5 0 1 7 8 0 A 5 2 9 7 7 2 9 9 9 2 1 5 9 2 8 2 9 2 8 7 5 2 8 7 3 1 3 9 5 1 2 2 8 1 5 9 4 2 1 8 5 2 3 1 5 2 3 8 9 1 5 1 4 1 5 2 7 1 9 3 9 2 9 5 2 1 9 9 1 1 9 1 3 F 1 9 9 9 8 9 8 8 1 9 8 9 7 7 8 9 9 7 8 7 4 . 2 6 5 2 . 4 9 2 . 4 8 2 . 4 8 2 . 4 8 2 . 4 7 2 . 4 7 2 . 4 5 2 . 4 5 2 . 4 9 2 . 4 4 2 . 4 3 2 . 4 4 2 . 4 9 2 . 4 8 2 . 4 8 2 . 4 5 2 . 4 5 2 . 1 7 A 9 2 . 4 3 2 . 8 5 2 . 5 5 2 . 9 8 3 . 2 5 3 . 2 5 2 . 8 1 3 . 9 8 1 . 4 5 3 . 4 1 3 . 5 5 3 . 9 5 1 . 8 7 2 . 4 5 2 . 1 8 2 . 9 7 2 . 8 5 2 . 7 3 V H A 1 2 . 7 9 1 3 . 1 9 1 2 . 8 9 1 3 . 2 9 1 3 . 5 9 1 3 . 5 9 1 3 . 9 9 1 3 . 2 9 1 1 . 8 9 1 3 . 5 9 1 3 . 7 9 1 3 . 2 9 1 2 . 2 9 1 2 . 7 9 1 2 . 4 9 1 3 . 2 9 1 3 . 9 9 1 2 . 9 0 a v e r a g e a s 1 9 2 7 2 5 3 3 1 2 7 5 2 1 8 3 1 5 8 7 1 8 5 0 A S 2 9 8 5 2 7 2 3 1 3 7 5 2 2 9 5 1 7 2 4 1 9 8 5 9 5 2 . 4 8 2 . 4 7 2 . 4 7 2 . 4 4 2 . 4 8 2 . 1 5 A V 2 . 8 3 3 . 1 5 2 . 4 5 3 . 3 8 2 . 1 7 2 . 8 5 M 1 2 . 8 9 1 3 . 3 9 1 2 . 8 9 1 3 . 4 9 1 2 . 3 9 1 3 . 9 9 s u m o m . l 1 I 2 I 1 I 1 I 2 I 1 I 1 I 2 I 1 I 1 I 2 I 1 I 1 I 2 1 I 1 I 2 1 1 5 - n e r 1 h a l l a t a h l l l t y ( p o u n d a ) . ' A S - e a r a h a l l e t a h l l l t y e d J u e t e d t o t h e 1 a l p l e h e l g h t . I - t l o e ( 1 1 1 0 0 “ ) . 9 3 - a p e c l t l c g r a v x t y . A V - a t : v o 1 d 1 i n p e r c e n t . “ H A - v o l d e 1 n e l n e r a l a g g r e g a t e e 1 n p e r c e n t . “ 0 0 8 : ; u n u s e d a t e e 1 e 9 e 3 9 9 e r e s e m - n x e m u . ' 1 n e a x e d I t e p v o a x t e . ' t z t a a x i a v z x e e d e . ' ( . 0 0 1 l t ) . 0 1 3 - " 1 v a 0 1 d . - m o n m u m 4 1 m m - u ' n - m - W M ) £ 1 1 1 1 9 . “ “ ' 0 ' " - - ! | t I ' e n e t b e 0 0 ' 0 ! 0 0 ' 0 0 0 ' ! 0 0 0 ! 0 0 5 0 0 ' 0 ! 0 0 ' ! 0 0 ' ! ! 0 0 0 0 ¢ 0 0 ' 0 ! 0 0 ' 0 ! 0 0 ' 0 ! 0 ! ' ! 0 0 ' ! 0 0 ' 0 0 0 ' ! 0 0 ' ! ¢ 0 ' ! 0 0 5 0 5 ¢ 0 0 ! ! 0 0 0 ¢ 0 ¢ ¢ 0 ! ! 0 ¢ ' 0 ! 0 ! ' ! 0 0 ' ! 0 ! 0 ! ¢ 0 5 V H O A V 0 9 0 V 0 0 0 ' 0 ! 0 ! ' ! 0 0 ' ! L ! 0 0 5 0 0 0 0 0 ' 0 ! 0 ¢ ' 0 ! 0 ¢ ' 0 ! 0 ! ' 0 0 0 ' ! ¢ ! 0 0 0 ! 0 L 5 ! ! ' ! 0 0 ' ! 0 ! ! 9 5 0 0 5 0 ! ' ! 0 0 ' ! 2 0 0 ¢ ¢ 0 ! ¢ 0 0 ' 0 ! 0 ¢ ' 0 ! 0 0 ' 0 ! 0 ¢ ' 0 0 0 ' ! 0 ! 0 ! 5 0 0 0 ¢ ! ' ! 0 0 ' ! 0 0 0 0 0 0 0 0 0 0 ' ! 0 0 ' ! 0 ! 0 0 5 0 ! 5 0 0 ' 0 ! 0 0 ' 0 ! 0 0 ' 0 ! 0 0 ' 0 ! 0 0 ' 0 ! 0 0 ' 0 ! 0 0 ' 0 ! 0 ¢ ' 0 ! 0 ! ' 0 ! ! 0 ' ! 0 0 ' 0 0 ! ' ! 0 0 ' ! 0 5 ' ! 0 0 ' 0 0 0 ' 0 ! ! ' ! 0 ¢ ' ! 0 0 ' ! 0 0 ' ! 0 0 ' ! 0 0 ' ! 0 0 ' ! 0 0 ' ! 0 0 ' ! ¢ 0 ' ! 0 0 ' ! 0 ! ! ! ! ! ¢ ! 5 ! 5 ! 5 ! 0 ! ! ! 5 0 0 0 0 5 0 ! 5 0 0 0 0 0 0 0 0 ! ! 0 0 0 ! 0 0 ! ! ! 0 0 ! 0 Z 0 0 ! 5 0 0 0 0 0 ¢ 0 ! 0 0 5 ! ! 0 0 ! ! 0 ! 0 ! 0 ¢ 5 0 0 ' 0 ! 0 0 ' 0 ¢ 0 ' ! 0 ! ! 0 5 0 0 5 0 0 ' 0 ! V H 5 0 5 ' 0 A ! ¢ 0 ' ! 8 0 0 ' 0 0 ! l 0 ! 0 ! 0 ' 0 0 5 0 0 0 ' 0 ! 9 9 ' ! ¢ 0 ' ! 9 0 0 ! 0 0 0 ! 0 0 ' 0 ! ! 0 ' ! ¢ 0 ' ! ¢ 0 5 0 ! 5 0 0 ' 0 ! 0 ! ' 0 ! 0 0 ' 0 ! 0 l ' ! ! 0 ' ! 0 0 ' ! 0 0 ' ! ¢ 0 ' ! 0 0 ' ! 0 0 ! ! 0 0 0 ! 0 0 ¢ ! 0 0 ! ! 0 0 5 0 Z 0 ! 0 0 ' 0 ! 0 0 ' ! 0 0 ' ! 0 0 0 ! 0 Z 0 ! A V " ' 2 8 0 0 ' 0 ! ! 0 ' ! ( 0 ' ! 0 ! 0 5 0 ! 0 0 0 ! 0 0 ' 0 ! 0 0 ' ! ¢ 0 ' ! 0 ! 5 ! 0 ! 0 0 ! ! 0 0 ' 0 ! 0 5 ' ! 0 0 ' ! ! ! 0 5 0 ! 0 0 0 ! 0 ! ' 0 ! 0 ! ' ! 0 0 ' ! 0 ! C L O ! 0 0 5 0 0 ' 0 ! 0 5 ' ! 0 0 ' ! 0 ! ¢ ! 5 0 ¢ ' 0 ! ! 0 ' ! 0 0 ' ! 0 ! 0 0 5 0 5 0 0 0 ' 0 ! 0 0 ' ! ¢ 0 ' ! 0 ! 0 0 ! ! 0 0 ! ! 0 0 ' 0 ! 0 5 ' 0 ! 0 0 ' 0 ! 0 ¢ ' ! ! 0 0 ' 0 ! 0 0 ' 0 ! 0 0 ' 0 ! 0 0 ' 0 ! 0 ! ' 0 ! 0 0 ' ! 5 0 ' ! ! 0 ' ! ! ¢ ' 0 ! ¢ ' ! 5 0 ' ! 0 0 ' ! ¢ 0 ' ! 0 ! ' ! 0 0 ' ! 0 0 ' ! 0 0 ' ! 0 0 ' ! 0 0 ' ! 0 0 ' ! 5 0 ' ! 5 0 ' ! 5 0 ' ! Z ! Z ! 0 ! ! ! 0 ! ! ! 0 ! 0 ! 0 ! ! ! ! ! l ! ! ! ! 0 0 ! 0 0 5 0 0 0 ! ! 0 0 ! £ 5 0 ! 0 5 ¢ ! 5 ! 0 ! 0 0 ! ! 0 0 0 ! 0 0 0 ! 0 0 5 0 0 5 0 0 0 ! 0 0 0 ! 0 0 0 ! 0 5 0 ! 0 0 ' 0 ! 0 0 ' ! 0 0 ' ! 0 ! ( ! 0 ! 0 0 0 ! 0 0 ' 0 ! V H A ! 0 ' ! A V 0 0 ' ! 9 9 5 ' 0 0 ! l 0 0 2 1 0 0 1 0 9 1 0 9 3 0 9 ! t 9 “ U n d u e a n a a a e d | t ' 0 9 e t d l e e n o t z e p e 2 9 w i t - 1 4 0 6 1 ° C 3 ° : 1 - | e 1 e 9 e 2 0 0 e ' p a n u t n u o a L ' C a t q e m 0 9 X 2 8 1 1 I M 0 5 / 0 5 L E V A R 1 6 G D E D N U O l 5 R E 8 B 2 4 1 N O T S E M I L A 1 7 3 1 . s t s e t l l a h s r a m r o f x i r t a m t n e m i r e p x e l a i r o t c a f - l l 0 0 u 5 5 F 1 2 - - 5 0 2 0 1 2 2 . 3 e r u g i F 4 1 0 1 1 l 7 6 5 6 6 p e r c e n t a i r v o i d s , a n d t h e p e r c e n t v o i d s i n m i n e r a l a g g r e g a t e w e r e t h e n r e l a t e d t o t h e p e r c e n t a s p h a l t c o n t e n t . T h e v a l u e s o f t h e p e r c e n t a s p h a l t c o n t e n t c o r r e s p o n d i n g t o t h e t h r e e p e r c e n t a i r v o i d s w e r e t h e n s e l e c t e d a s t h e d e s i g n a s p h a l t c o n t e n t s . T h e s e v a l u e s a r e l i s t e d i n t a b l e 3 . 8 a n d w e r e u s e d t h r o u g h o u t t h e r e s t o f t h e t e s t i n g p r o g r a m . I t s h o u l d b e n o t e d t h a t , f o r a l l m i x e s , t h e v a l u e s o f t h e d e s i g n a s p h a l t c o n t e n t w e r e s l i g h t l y l o w e r t h a n t h o s e d e t e r m i n e d b y t h e A s p h a l t I n s t i t u t e c r i t e r i o n a n d s l i g h t l y h i g h e r t h a n t h e C o r p s o f E n g i n e e r s c r i t e r i o n . N e v e r t h e l e s s , t h e t e s t i n g p r o g r a m w a s d e s i g n e d a n d c o n d u c t e d t o e v a l u a t e t h e e f f e c t s o f t h e t e s t , m i x , a n d s p e c i m e n v a r i a b l e s o n t h e s t r u c t u r a l p r o p e r t i e s o f t h e a s p h a l t m i x e s . T h e s e v a r i a b l e s a r e p r e s e n t e d i n t h e f o l l o w i n g s e c t i o n s . 3 . 4 T E S T V A R I A B E E S T h e e f f e c t s o f t h r e e t e s t v a r i a b l e s o n t h e s t r u c t u r a l p r o p e r t i e s o f a s p h a l t m i x e s w e r e i n v e s t i g a t e d i n t h i s s t u d y . T h e s e a r e t h e m a g n i t u d e o f t h e a p p l i e d c y c l i c l o a d , t h e t e s t t e m p e r a t u r e , a n d t h e n u m b e r o f l o a d a p p l i c a t i o n s . 3 . 4 . 1 C Y C L I C L O A D T h e c h a r a c t e r i s t i c s o f t h e s t r e s s - s t r a i n d i a g r a m o f a s p h a l t m i x e s s u g g e s t t h a t t h e m i x e s p o s s e s s a n o n l i n e a r b e h a v i o r . S o m e r e s e a r c h e r s , h o w e v e r , f o u n d t h a t ( f o r a 6 7 T a b l e 3 . 8 A s p h a l t m i x d e s i g n f o r t h r e e p e r c e n t a i r v o i d s . a g g r e g a t e t y p e a s p h a l t l i m e s t o n e r o u n d e d 5 0 % m i x m i x a s p h a l t d e s i g n A B A B A B p e n v a r i a b l e s % A . C . 4 . 3 1 0 4 . 4 6 0 3 . 9 9 0 4 . 2 8 0 4 . 1 6 0 4 . 4 0 0 M A X . S . G . 2 . 5 4 6 2 . 5 4 3 2 . 5 3 9 2 . 5 2 0 2 . 5 4 1 2 . 5 3 0 7 5 B U L K S . G . 2 . 4 7 0 2 . 4 6 7 2 . 4 6 3 2 . 4 4 5 2 . 4 6 5 2 . 4 5 4 - S T A B . ( 1 b S ) 2 2 4 2 . 2 5 9 0 . 2 1 7 7 . 1 9 8 4 . 1 8 8 4 . 2 3 0 2 . 1 0 0 V . M . A 1 3 . 3 9 1 3 . 7 5 1 2 . 6 0 1 3 . 2 1 1 3 . 0 1 1 3 . 5 4 F L O W ( 0 . 0 1 " ) 1 1 . 3 4 1 0 . 3 8 7 . 3 3 9 . 4 2 1 0 . 3 8 8 . 9 5 % A . C . 4 . 2 5 0 4 . 4 8 0 4 . 0 3 0 4 . 3 2 0 4 . 1 4 0 4 . 3 8 0 M A X . S . G . 2 . 5 4 7 2 . 5 4 1 2 . 5 3 7 2 . 5 1 7 2 . 5 4 1 2 . 5 3 0 1 2 5 B U L K S . G . 2 . 4 7 1 2 . 4 6 5 2 . 4 6 0 2 . 4 4 2 2 . 4 6 5 2 . 4 5 4 - S T A B . ( l b s ) 2 2 8 9 . 2 3 9 2 . 1 7 0 1 . 1 8 9 6 . 2 2 3 8 . 2 6 5 5 . 1 5 0 V . M . A . 1 3 . 2 6 1 3 . 7 9 1 2 . 7 0 1 3 . 3 1 1 2 . 9 6 1 3 . 4 9 F L O W ( 0 . 0 1 " ) 9 . 9 0 9 . 7 6 7 . 4 2 8 . 3 4 9 . 9 9 9 . 6 8 % A . C . 4 . 0 7 0 4 . 2 4 0 3 . 9 9 0 4 . 3 3 0 3 . 8 6 0 4 . 2 0 0 M A X . S . G . 2 . 5 5 3 2 . 5 4 9 2 . 5 3 7 2 . 5 1 6 2 . 5 5 1 2 . 5 3 5 2 0 0 B U L K S . G . 2 . 4 7 7 2 . 4 7 3 2 . 4 6 1 2 . 4 4 1 2 . 4 7 4 2 . 4 5 9 - S T A B . ( l b s ) 2 1 7 3 . 2 5 4 8 . 1 5 8 4 . 1 9 4 2 . 1 9 5 5 . 1 9 3 5 . 2 5 0 V . M . A . 1 2 . 8 5 1 3 . 2 3 1 2 . 6 1 1 3 . 3 1 1 2 . 3 3 1 3 . 0 8 F L O W ( 0 . 0 1 " ) 8 . 8 5 8 . 8 5 6 . 6 3 7 . 8 6 6 . 3 9 7 . 0 3 A C = p e r c e n t a s p h a l t c o n t e n t . G M M - m a x i m u m t h e o r e t i c a l s p e c i f i c g r a v i t y . S T A B = m a r s h a l l s t a b i l i t y . V M A a p e r c e n t v o i d s i n m i n e r a l a g g r e g a t e s . 6 8 m o d e r a t e s t r e s s l e v e l ) t h e r e s i l i e n t m o d u l u s o f a s p h a l t m i x e s a r e i n d e p e n d e n t o f t h e a p p l i e d s t r e s s l e v e l ( i . e . , t h e y p o s s e s s a l i n e a r b e h a v i o r ) . O t h e r s s t a t e d t h a t i n c r e a s i n g s t r e s s l e v e l y i e l d s l o w e r m o d u l u s v a l u e s . T o f u r t h e r i n v e s t i g a t e t h i s p o i n t , a n d t o q u a n t i f y r e l a t i o n s h i p s b e t w e e n t h e s t r u c t u r a l p r o p e r t i e s a n d t h e m a g n i t u d e o f t h e a p p l i e d c y c l i c l o a d , t h r e e c y c l i c l o a d s w e r e u s e d t h r o u g h o u t t h e t e s t i n g p r o g r a m o f t h i s s t u d y . T h e s e a r e 1 0 0 , 2 0 0 , a n d 5 0 0 p o u n d s w h i c h r e s u l t e d i n a p p l i e d c y c l i c s t r e s s l e v e l s o f 5 0 , 1 0 0 , a n d 2 5 0 p s i , r e s p e c t i v e l y . T h e r e a s o n f o r s e l e c t i n g t h e s e s t r e s s l e v e l s i s t o s i m u l a t e f i e l d c o n d i t i o n s . I n g e n e r a l , p a v e m e n t s a r e s u b j e c t e d t o s t r e s s e s e q u a l t o t h e v e h i c l e t i r e p r e s s u r e w h i c h v a r i e s f r o m a b o u t 5 0 p s i f o r s o m e v e h i c l e s t o a b o u t 1 0 0 p s i f o r t r u c k s . T h e 2 5 0 p s i v a l u e i s r e p r e s e n t a t i v e o f t h e t i r e p r e s s u r e o f a n e w t y p e o f t i r e ( t h e s u p e r t i r e ) t h a t i s t o b e i n t r o d u c e d b y t h e t i r e i n d u s t r y i n t h e n e a r f u t u r e . 3 . 4 . 2 T E S T T E M P E R A T U R E S t r u c t u r a l p r o p e r t i e s o f a s p h a l t m i x e s a r e a l s o f u n c t i o n s o f t h e m i x t e m p e r a t u r e . T h e f u n c t i o n a l r e l a t i o n s h i p s , h o w e v e r , a r e w e l l k n o w n a n d t h e y a r e d o c u m e n t e d t h r o u g h o u t t h e l i t e r a t u r e ( s e e c h a p t e r 2 ) . T h e p u r p o s e o f t h e i n v e s t i g a t i o n h e r e i n i s t o v e r i f y e x i s t i n g i n f o r m a t i o n r a t h e r t h a n t o d e v e l o p n e w m o d e l s r e l a t i n g t h e s t r u c t u r a l p r o p e r t i e s t o t e s t t e m p e r a t u r e . C o n s e q u e n t l y , 6 9 o n l y t w o t e s t t e m p e r a t u r e s w e r e u s e d i n t h i s s t u d y . T h e s e a r e 4 0 a n d 7 0 ° F . 3 . 4 . 3 N U M B E R O F L O A D A P P L I C A T I O N S T h e n u m b e r o f l o a d a p p l i c a t i o n s p l a y s a n i n s i g n i f i c a n t r o l e i n d e t e r m i n i n g t h e r e s i l i e n t c h a r a c t e r i s t i c s o f a s p h a l t m i x e s . I n p r a c t i c e , t h e r e s i l i e n t c h a r a c t e r i s t i c s a r e d e t e r m i n e d a f t e r 5 0 9 o r 1 , 0 0 0 l o a d a p p l i c a t i o n s a f t e r w h i c h t h e t e s t i s t e r m i n a t e d . F a t i g u e l i f e , o n t h e o t h e r h a n d , i s d e f i n e d b y t h e n u m b e r o f l o a d a p p l i c a t i o n a t w h i c h m i c r o c r a c k s a r e i n i t i a t e d i n t h e t e s t s p e c i m e n o r t h e f l e x u r a l m o d u l u s o f t h e a s p h a l t m i x i s r e d u c e d t o h a l f o f i t s o r i g i n a l v a l u e . T h u s , i t i s c l e a r t h a t i n t h e f a t i g u e t e s t , t h e n u m b e r o f l o a d a p p l i c a t i o n t o f a i l u r e w i l l v a r y a n d i s d e p e n d e n t o n s e v e r a l v a r i a b l e s . E a r l y i n t h e t e s t i n g p r o g r a m o f t h i s s t u d y i t w a s f o u n d t h a t t h e n u m b e r o f l o a d a p p l i c a t i o n s t o f a t i g u e f a i l u r e v a r i e d f r o m a f e w t h o u s a n d s f o r t h e s e v e n p e r c e n t a i r v o i d s p e c i m e n s t o a f e w m i l l i o n s f o r t h e t h r e e p e r c e n t a i r v o i d s p e c i m e n s . T h i s r e p r e s e n t e d a p r o b l e m b e c a u s e t h e a p p l i c a t i o n o f o n e m i l l i o n l o a d r e p e t i t i o n s a t a f r e q u e n c y o f 2 H z . r e q u i r e s 6 d a y s o f c o n t i n u o u s t e s t i n g . S i n c e a b o u t 1 0 9 s p e c i m e n s w e r e m a d e a t t h e t h r e e p e r c e n t a i r v o i d s , i t i m p l i e d t h a t m o r e t h a n f i v e y e a r s o f c o n t i n u o u s t e s t i n g i s r e q u i r e d . C o n s e q u e n t l y , i t w a s d e c i d e d t o s u b j e c t a l l s p e c i m e n s t o a b o u t 1 9 9 , 0 0 0 l o a d c y c l e s u n l e s s 7 0 t h e s p e c i m e n f a i l s p r i o r t o t h i s n u m b e r . I n a d d i t i o n , t o v e r i f y t h e e x t r a p o l a t i o n o f t h e r e l a t i o n s h i p s b e t w e e n p l a s t i c s t r a i n a n d t h e n u m b e r o f l o a d a p p l i c a t i o n , a f e w s p e c i m e n s w e r e s u b j e c t e d t o m o r e t h a n 6 0 0 , 9 0 0 c y c l e s . 3 . 5 M I X V A R I A B L E S T h e e f f e c t s o f t h r e e m i x v a r i a b l e s o n t h e s t r u c t u r a l p r o p e r t i e s o f a s p h a l t m i x e s w e r e i n v e s t i g a t e d i n t h i s s t u d y . T h e s e a r e : a g g r e g a t e a n g u l a r i t y , a s p h a l t t y p e , a n d g r a d a t i o n o f t h e a n g u l a r i t y . 3 . 5 . 1 A G G R E G A T E A N G U L A R I T Y A g g r e g a t e a n g u l a r i t y i s a m e a s u r e o f t h e d e g r e e o f c u r v a t u r e o f t h e a g g r e g a t e . I n q u a l i t a t i v e t e r m s , a g g r e g a t e a n g u l a r i t y c a n b e d e s c r i b e d a s r o u n d e d , s u b r o u n d e d , s u b a n g u l a r , o r a n g u l a r . Q u a n t i t a t i v e l y , a g g r e g a t e a n g u l a r i t y c a n b e o b t a i n e d b y e s t i m a t i n g a n d / o r c a l c u l a t i n g t h e p r o x i m i t y o f a n a g g r e g a t e t o a c i r c u m s c r i b i n g s p h e r e . T h e c a l c u l a t i o n , h o w e v e r , h a s n o t b e e n s t a n d a r d i z e d . R e s e a r c h e r s h a v e s u g g e s t e d s e v e r a l e q u a t i o n s ( 5 6 , 1 0 5 ) a n d / o r s c a l e s f o r c a l c u l a t i n g o r e s t i m a t i n g t h e a n g u l a r i t y . I n t h i s s t u d y , a g g r e g a t e a n g u l a r i t y w a s " q u a n t i f i e d " u s i n g a s c a l e f r o m 1 . 0 t o 4 . 0 ( 1 0 5 ) . A v a l u e o f 1 . 0 d e s c r i b e s a p e r f e c t l y s p h e r i c a l a n d s m o o t h a g g r e g a t e w h i l e a v a l u e o f 4 . 0 d e s c r i b e s a n a n g u l a r a g g r e g a t e s u c h a s a c r u s h e d a g g r e g a t e . H e n c e , a n g u l a r i t i e s o f t h e c r u s h e d l i m e s t o n e , 7 1 n a t u r a l a g g r e g a t e a n d 5 0 / 5 0 m i x w e r e a s s i g n e d t h e v a l u e s o f f o u r , t w o , a n d t h r e e , r e s p e c t i v e l y . T h e s e n u m e r i c a l v a l u e s w e r e u s e d t o e x a m i n e t h e e f f e c t s o f a g g r e g a t e a n g u l a r i t y o n t h e s t r u c t u r a l p r o p e r t i e s o f t h e a s p h a l t m i x e s . 3 . 5 . 2 A S P H A L T T Y P E T r a d i t i o n a l l y , p e n e t r a t i o n o r v i s c o s i t y o f t h e a s p h a l t a r e u s e d t o c h a r a c t e r i z e t h e a s p h a l t t y p e . S i n c e t h e b e a m s p e c i m e n s , i n t h i s s t u d y , a r e s u b j e c t e d t o c y c l i c l o a d s ( a p s u d o d y n a m i c t y p e l o a d ) i t w a s t h o u g h t t h a t t h e k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t i s a b e t t e r d e s c r i p t o r o f t h e a s p h a l t t y p e b e c a u s e k i n e m a t i c v i s c o s i t y i s t h e r a t i o o f t h e a s p h a l t v i s c o s i t y t o i t s d e n s i t y . C o n s e q u e n t l y , t h e k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t b i n d e r w a s u s e d t o q u a n t i f y t h e a s p h a l t t y p e a n d t o e x a m i n e i t s e f f e c t s o n t h e s t r u c t u r a l p r o p e r t i e s o f t h e m i x . T h e v a l u e s o f t h e k i n e m a t i c v i s c o s i t y o f t h e t h r e e t y p e s o f a s p h a l t ( A C 1 0 , A C 5 , a n d A C 2 . 5 ) u s e d i n t h i s s t u d y a r e 1 5 9 , 2 1 2 , a n d 2 7 0 c e n t i s t o k e s , r e s p e c t i v e l y . T h e s e v a l u e s a r e l i s t e d i n t a b l e 3 . 4 . 3 . 5 . 3 A G G R E G A T E G R A D A T I O N A s n o t e d i n t h e C h a p t e r 2 , s e v e r a l i n v e s t i g a t o r s h a v e f o u n d t h a t a g g r e g a t e g r a d a t i o n h a v e a n i n s i g n i f i c a n t e f f e c t o n t h e s t r u c t u r a l p r o p e r t i e s o f a s p h a l t m i x e s ( 6 4 , 9 0 , 9 1 , 1 0 5 , 1 0 8 , 1 9 9 ) . T o s u b s t a n t i a t e t h e i r f i n d i n g s , t w o 7 2 g r a d a t i o n s ( A a n d B ) a r e u s e d i n t h i s s t u d y ( s e e t a b l e 3 . 3 a n d f i g u r e 3 . 1 ) . I t c a n b e n o t e d t h a t g r a d a t i o n A h a d a h i g h e r p e r c e n t o f c o a r s e a g g r e g a t e t h a n g r a d a t i o n B . F o r a n a l y t i c a l p u r p o s e , t h e s e g r a d a t i o n s c a n b e c h a r a c t e r i z e d b y t h e w e i g h t r a t i o o f c o a r s e t o f i n e a g g r e g a t e , b y t h e i r v o l u m e o r p e r c e n t p a s s i n g r a t i o , o r b y t h e v o l u m e c o n c e n t r a t i o n o f t h e f i n e . S i n c e , t h e s a m e p e r c e n t f i n e w a s u s e d f o r b o t h g r a d a t i o n s ( A a n d B ) , a n d s i n c e t h e p u r p o s e o f t h e i n v e s t i g a t i o n i n t h i s s t u d y i s t o d e t e r m i n e w h e t h e r a g g r e g a t e g r a d a t i o n a f f e c t s t h e s t r u c t u r a l p r o p e r t i e s o r n o t , i t w a s d e c i d e d t o a s s i g n t h e v a l u e s o f 1 a n d 2 f o r g r a d a t i o n s A a n d B , r e s p e c t i v e l y . T h e s e t w o v a l u e s w e r e t h e n u s e d i n t h e a n a l y s i s . 3 . 6 S P E C I M E N V A R I A B L E S T h e e f f e c t o f o n l y o n e s p e c i m e n v a r i a b l e o n t h e s t r u c t u r a l p r o p e r t i e s o f a s p h a l t m i x e s w a s i n v e s t i g a t e d i n t h i s s t u d y . T h i s w a s p e r c e n t a i r v o i d s . T h e p e r c e n t a i r v o i d s o f t h e b e a m s p e c i m e n s w e r e v a r i e d b y v a r y i n g t h e c o m p a c t i o n e f f o r t s . T h r e e v a l u e s o f t h e p e r c e n t a i r v o i d s ( t h r e e , f i v e , a n d s e v e n ) w e r e t a r g e t e d . F o r e a c h c o m b i n a t i o n o f m a t e r i a l a n d f o r e a c h t a r g e t v a l u e o f t h e p e r c e n t a i r v o i d s , t h r e e s p e c i m e n s ( t r i p l i c a t e ) w e r e m a d e . E a c h s p e c i m e n w a s t h e n t e s t e d t o d e t e r m i n e i t s a c t u a l ( n o t t a r g e t ) a i r v o i d s . T h i s l a s t v a l u e w a s t h e n u s e d i n t h e a n a l y s i s . 7 3 3 . 7 T E S T M A T R I C E S A s n o t e d a b o v e , a t o t a l o f s i x i n d e p e n d e n t v a r i a b l e s w e r e c o n s i d e r e d i n t h i s s t u d y . E a c h h a d e i t h e r t w o o r t h r e e l e v e l s T h u s , a s f o l l o w s : T h r e e t a r g e t l e v e l s o f t h e p e r c e n t a i r v o i d s ( A V ) . T h e s e a r e 3 , 5 , a n d 7 p e r c e n t . T h e a c t u a l v a l u e s o f t h e p e r c e n t a i r v o i d s v a r i e d f r o m a b o u t t h r e e t o a b o u t s e v e n p e r c e n t . T h r e e v a l u e s o f t h e k i n e m a t i c v i s c o s i t y ( K V ) o f t h e a s p h a l t b i n d e r . T h e v a l u e s o f R V a r e 1 5 9 , 2 1 2 , a n d 2 7 0 c e n t i s t o k e s . T h r e e a g g r e g a t e a n g u l a r i t i e s ( A N G ) . T h e v a l u e o f A N G a r e : t w o f o r r o u n d e d g r a v e l , t h r e e f o r t h e 5 0 / 5 0 m i x , a n d f o u r f o r c r u s h e d l i m e s t o n e . T h r e e m a g n i t u d e s o f t h e c y c l i c l o a d ( C L ) . T h e v a l u e s o f C L a r e 1 0 9 , 2 0 0 , a n d 5 0 0 p o u n d s . T w o g r a d a t i o n s ( G R A D ) o f t h e a g g r e g a t e s . T h e v a l u e o f G R A D i s e i t h e r o n e f o r g r a d a t i o n A o r t w o f o r g r a d a t i o n B . T w o t e s t t e m p e r a t u r e s ( T T ) . T h e v a l u e s o f T T a r e 4 0 a n d 7 7 ° F . t h e p o s s i b l e n u m b e r o f c o m b i n a t i o n s o f t h e s e v a l u e s i s 3 2 4 ( 3 a i r v o i d s x 3 k i n e m a t i c v i s c o s i t i e s x 3 a g g r e g a t e s x 3 c y c l i c l o a d s x 2 g r a d a t i o n s x 2 t e s t t e m p e r a t u r e s ) . T h i s i m p l i e s t h a t , f o r t h e b e a m t e s t s a n d f o r a f u l l 7 4 f a c t o r i a l s t u d y , 3 2 4 s p e c i m e n s ( 9 7 2 s p e c i m e n s i n t r i p l i c a t e s ) w e r e r e q u i r e d . T h i s i s i m p r a c t i c a l b e c a u s e o f t h e t i m e i n v o l v e d . C o n s e q u e n t l y , a p a r t i a l f a c t o r i a l e x p e r i m e n t d e s i g n m a t r i x w a s e s t a b l i s h e d b a s e d o n t h e c o n c e p t o f s e p a r a t i o n o f v a r i a b l e s s u c h t h a t t h e e f f e c t s o f e a c h v a r i a b l e o n t h e s t r u c t u r a l p r o p e r t i e s o f a s p h a l t m i x e s c o u l d b e i n d e p e n d e n t l y a n d s a t i s f a c t o r i l y a s s e s s e d . T h i s m a t r i x i s s h o w n i n f i g u r e 3 . 3 . T h e r e a r e t o t a l o f 7 2 d e s i g n a t e d c e l l s i n t h e m a t r i x a n d e a c h c e l l r e p r e s e n t s a t r i p l i c a t e f o r a t o t a l o f 2 1 6 b e a m t e s t s . T h e t e s t d a t a c a n b e g r o u p e d a n d s u b g r o u p e d i n c e r t a i n w a y s s u c h t h a t t h e v a l u e s o f a l l i n d e p e n d e n t v a r i a b l e s b u t o n e a r e c o n s t a n t s w i t h i n t h a t g r o u p . T h e s e g r o u p s a r e : . G r o u p 1 : p e r c e n t a i r v o i d s . T h i s g r o u p w a s s u b d i v i d e d t o n i n e s u b g r o u p s . T h e o n l y i n d e p e n d e n t v a r i a b l e w i t h i n e a c h s u b g r o u p i s t h e p e r c e n t a i r v o i d s . F o r e x a m p l e : s u b g r o u p 1 . 1 f o r c e l l s 1 , 2 , a n d 3 : s u b g r o u p 1 . 2 f o r c e l l s 1 3 , 1 4 , a n d 1 5 . . G r o u p 2 : c y c l i c l o a d . T h e d a t a i n t h i s g r o u p w e r e s e p a r a t e d i n t o 2 4 s u b g r o u p s T h e i n d e p e n d e n t v a r i a b l e s w i t h i n e a c h s u b g r o u p a r e t h e c y c l i c l o a d a n d t h e p e r c e n t a i r v o i d s a l t h o u g h t h e t a r g e t v a l u e s o f t h e p e r c e n t a i r v o i d s a r e t h e s a m e . F o r e x a m p l e : s u b g r o u p 2 . 1 f o r c e l l s 1 , 1 3 , a n d 2 5 : a n d s u b g r o u p 2 . 2 f o r c e l l s 7 0 , 7 1 a n d 7 2 . . G r o u p 3 : k i n e m a t i c v i s c o s i t y . T h e d a t a i n t h i s g r o u p . e t a c i l p i r t a s e t a n g i s e d l l e c h c a E . s t s e t m a e b e h t r o f x i r t a m t n e m i r e p x e l a i r o t c a f l a i t r a P 3 . 3 e r u g i F 7 5 7 6 w a s s e p a r a t e d i n t o 9 s u b g r o u p s . T h e i n d e p e n d e n t v a r i a b l e s w i t h i n e a c h s u b g r o u p a r e t h e k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t a n d t h e p e r c e n t a i r v o i d s a l t h o u g h t h e t a r g e t v a l u e s o f t h e l a t t e r i s c o n s t a n t . F o r e x a m p l e : s u b g r o u p 3 . 1 f o r c e l l s 1 , 4 , a n d 5 , a n d s u b g r o u p 3 . 7 f o r c e l l s 3 9 , 4 0 , a n d 4 1 . . G r o u p 4 : a g g r e g a t e a n g u l a r i t y . T h i s g r o u p w a s a l s o s u b d i v i d e d i n t o 9 s u b g r o u p s . T h e i n d e p e n d e n t v a r i a b l e s w i t h i n e a c h s u b g r o u p a r e t h e a g g r e g a t e a n g u l a r i t y a n d t h e p e r c e n t a i r v o i d s . F o r e x a m p l e : s u b g r o u p 4 . 1 f o r c e l l s 1 , 6 , a n d 1 1 a n d s u b g r o u p 4 . 4 f o r c e l l s 1 5 , 2 0 , a n d 2 4 . . G r o u p 5 : g r a d a t i o n . T w e l v e s u b g r o u p s w e r e f o u n d h e r e i n . F o r e x a m p l e : s u b g r o u p 5 . 1 f o r c e l l s 1 a n d 3 7 a n d s u b g r o u p 5 . 1 0 f o r c e l l s 7 a n d 4 2 . T h e d i s a d v a n t a g e h e r e i n i s t h a t , s i n c e o n l y t w o g r a d a t i o n s w e r e u s e d , t h e e f f e c t s o f t h i s v a r i a b l e c a n n o t b e a c c u r a t e l y a s s e s s e d . . G r o u p 6 : t e m p e r a t u r e . F i f t e e n s u b g r o u p s w e r e e s t a b l i s h e d . F o r e x a m p l e : s u b g r o u p 6 . 1 f o r c e l l s 1 a n d 5 8 a n d s u b g r o u p 6 . 6 f o r c e l l s 2 9 a n d 6 3 . A g a i n , s i n c e o n l y t w o t e m p e r a t u r e s w e r e u s e d , t h e e f f e c t s o f t h e t e s t t e m p e r a t u r e c a n n o t b e a c c u r a t e l y a s s e s s e d . D u r i n g t h e a n a l y s i s , d a t a s u b g r o u p s w e r e r e c a l l e d t o a n a l y z e t h e e f f e c t o f t h e v a r i a b l e w i t h i n t h a t s u b g r o u p . F o r e x a m p l e , d a t a f r o m t h r e e c e l l s t h a t h a v e a l l v a r i a b l e s , 7 7 b u t o n e , c o n s t a n t ( e . g . , c e l l s 1 , 4 , a n d 5 i n f i g u r e 3 . 3 ) w e r e a n a l y z e d t o i n f e r t h e e f f e c t s o f t h e i n d e p e n d e n t v a r i a b l e ( a s p h a l t t y p e i n t h i s c a s e ) o n t e s t r e s u l t s ( e . g . , c e l l 1 c o r r e s p o n d s t o a s p h a l t t y p e 1 : 2 t o a s p h a l t t y p e 2 : 3 t o a s p h a l t t y p e 3 : w h i l e a l l o t h e r v a r i a b l e s a r e i n v a r i a n t ) . S i m i l a r l y , d a t a f r o m c e l l s 1 , 2 , a n d 3 c a n b e a n a l y z e d t o e x a m i n e t h e e f f e c t s o f t h e p e r c e n t a i r v o i d s o n t h e s t r u c t u r a l p r o p e r t i e s o f a s p h a l t m i x e s . 3 . 8 S P E C I M E N D E S I G N A T I O N N U M B E R F o r a p r o p e r d a t a s t o r a g e , r e t r i e v a l , a n d . m a n a g e m e n t , e a c h t e s t s p e c i m e n w a s a s s i g n e d a n u n i q u e e i g h t - d i g i t d e s i g n a t i o n n u m b e r . T h e d e s i g n a t i o n n u m b e r w a s b a s e d o n t h e f o l l o w i n g ( t h e n u m e r i c a l o r d e r h e r e i s t h a t o f t h e d e s i g n a t i o n , e . g . : n u m b e r o n e c o r r e s p o n d s t o t h e f i r s t s i g n i f i c a n t d i g i t o f t h e d e s i g n a t i o n n u m b e r ) : 1 . A g g r e g a t e t y p e : l i m e s t o n e s 1 , g r a v e l a 2 , 5 0 / 5 0 m i x b y w e i g h t a 3 . 2 . G r a d a t i o n t y p e : g r a d a t i o n A = 1 , B = 2 . 3 . A s p h a l t v i s c o s i t y , 1 , 2 , a n d 3 f o r k i n e m a t i c v i s c o s i t y o f 2 7 0 , 2 1 2 , a n d 1 5 9 c s , r e s p e c t i v e l y . 4 . T e s t t e m p e r a t u r e : 7 7 ° F - 1 , 4 9 ° F 8 2 . 5 . T e s t t y p e : B e a m - 0 . 6 . P e r c e n t a i r v o i d s : 3 % a i r v o i d s = 5 : 5 % a i r v o i d s = 6 : 7 % a i r v o i d s = 7 . 7 . S a m p l e n u m b e r ( S N ) f o r a t r i p l i c a t e b y o r d e r o f t e s t : 7 8 ( S N - 1 t o 3 ) . 8 . L o a d l e v e l : 1 0 0 p o u n d s c y c l i c l o a d a 1 , 2 0 0 p o u n d s - 2 , a n d 5 0 0 p o u n d s - 5 ) . T o i l l u s t r a t e , a d e s i g n a t i o n n u m b e r o f 1 1 1 1 0 5 2 1 i m p l i e s ( f r o m l e f t t o r i g h t ) : l i m e s t o n e : g r a d a t i o n A : h i g h v i s c o s i t y a s p h a l t : 7 7 ° F : b e a m t e s t : 3 % a i r v o i d s : s e c o n d b e a m o f a t r i p l i c a t e : a n d 1 0 0 p o u n d s c y c l i c l o a d . 3 . 9 S P E C I M E N P R E P A R A T I O N P R O C E D U R E F o r a l l b e a m s p e c i m e n s , e a c h a g g r e g a t e f r a c t i o n ( s i z e ) w a s w a s h e d a n d o v e n d r i e d t o c o n s t a n t w e i g h t a t 2 3 0 ° F ( 1 0 9 ° C ) f o r a 2 4 - h o u r p e r i o d . A f t e r d r y i n g , a l l a g g r e g a t e f r a c t i o n s w e r e b r o u g h t b a c k t o r o o m t e m p e r a t u r e . A p o r t i o n o f e a c h f r a c t i o n , s t a r t i n g w i t h t h e t o p s i z e , w a s t h e n w e i g h e d t o t h e n e a r e s t 0 . 1 g r a m i n a c c o r d a n c e w i t h t h e s p e c i f i c g r a d a t i o n c u r v e ( A o r B ) . T h e p r o p e r a m o u n t o f f l y a s h w a s t h e n a d d e d . T h e a g g r e g a t e m i x w a s t h e n p l a c e d i n a n o v e n t o b r i n g i t s t e m p e r a t u r e t o t h e c o m p a c t i o n t e m p e r a t u r e a s s p e c i f i e d i n t h e A A S H T O T 2 4 5 - 8 2 t e s t p r o c e d u r e . T h e p r o p e r w e i g h t o f a s p h a l t w a s t h e n a d d e d t o t h e a g g r e g a t e b l e n d t o y i e l d t h e d e s i g n a s p h a l t c o n t e n t . T h e a g g r e g a t e a n d a s p h a l t w e r e m i x e d a c c o r d i n g t o A A S H T O T 2 4 5 - 8 2 p r o c e d u r e . A f t e r m i x i n g , t h e b e a m s p e c i m e n s w e r e c o m p a c t e d u s i n g a C a l i f o r n i a K n e a d i n g c o m p a c t o r m o d e l C S - 1 0 0 0 a n d a b e a m m o l d 1 6 - i n . l o n g , 4 - i n . w i d e , a n d 4 - i n . h i g h . E a c h s p e c i m e n w a s c o m p a c t e d i n f o u r l a y e r s . T h e c o m p a c t i o n p a r a m e t e r s ( w e i g h t 7 9 o f t h e m a t e r i a l , t h e n u m b e r o f t a m p i n g s , a n d t h e f o o t p r e s s u r e p e r l a y e r ) w e r e v a r i e d . T h r e e t r i a l b e a m s w e r e m a d e t o d e t e r m i n e t h e s e v a r i a b l e s . A f t e r c o m p a c t i o n , t h e d e n s i t y o f t h e t r i a l b e a m s w e r e d e t e r m i n e d a s s p e c i f i e d i n t h e A A S H T O T 1 6 6 - 8 2 . T h e b e a m s w e r e t h e n s a w e d t o e i g h t e q u a l p a r t s a s s h o w n i n f i g u r e 3 . 4 . T h e d e n s i t y a n d t h e p e r c e n t a i r v o i d s o f e a c h p a r t w a s d e t e r m i n e d . F r o m t h e s e t r i a l s , t h e p r o p e r w e i g h t o f a s p h a l t m i x , t h e n u m b e r o f t a m p i n g s , a n d t h e f o o t p r e s s u r e p e r l a y e r w e r e s e l e c t e d t o y i e l d u n i f o r m b e a m s w i t h n e a r t a r g e t a i r v o i d s . T h e f i n a l s e t o f t h e c o m p a c t i o n p a r a m e t e r s a r e l i s t e d i n t a b l e s 3 . 9 t h r o u g h 3 . 1 1 . A f t e r c o m p a c t i o n , t h e b e a m s p e c i m e n w a s e x t r a c t e d f r o m t h e m o l d , p l a c e d o n a r u b b e r m a t a n d a l l o w e d t o c o o l t o r o o m t e m p e r a t u r e . A f t e r c o o l i n g , t h e d e n s i t y a n d t h e p e r c e n t a i r v o i d s w e r e d e t e r m i n e d . I t s h o u l d b e n o t e d t h a t t h e m a x i m u m v a r i a t i o n o f t h e p e r c e n t a i r v o i d s o f a n y t r i p l i c a t e w a s g e n e r a l l y l e s s t h a n 0 . 2 p e r c e n t . H o w e v e r , t h e a c t u a l a i r v o i d s i n s o m e t r i p l i c a t e s v a r i e d b y a s m u c h a s o n e p e r c e n t f r o m t h e t a r g e t a i r v o i d s , w h i c h w a s m a i n l y r e l a t e d t o t h e h y d r a u l i c s y s t e m o f t h e c o m p a c t o r w h i c h d i d n o t d e l i v e r e x a c t l y t h e s p e c i f i e d f o o t p r e s s u r e . T h e s p e c i m e n w e r e t h e n a i r - d r i e d a n d s t o r e d o v e r n i g h t i n a t e m p e r a t u r e - c o n t r o l l e d c h a m b e r w h i c h w a s s e t a t t h e t e s t t e m p e r a t u r e o f e i t h e r 7 7 o r 4 0 ° F . T h e n e x t d a y , t h e s p e c i m e n w a s t e s t e d . 8 0 T a b l e 3 . 9 T y p i c a l c o m p a c t i o n v a r i a b l e s f o r 3 % a i r v o i d s u s i n g l i m e s t o n e a n d A C 1 0 l a y e r n u m b e r W M C F P N T 1 3 3 9 3 2 0 0 7 8 2 2 7 1 4 2 5 0 7 8 3 2 2 6 2 3 0 0 7 8 4 1 8 0 9 3 5 0 7 8 W M - w e i g h t o f a s p h a l t m i x e s ( g r a m s ) . C F P s c o m p a c t o r f o o t p r e s s u r e ( p s i ) . N T 8 n u m b e r o f t a m p i n g . T a b l e 3 . 1 0 T y p i c a l c o m p a c t i o n v a r i a b l e s f o r 5 % a i r v o i d s u s i n g l i m e s t o n e a n d A C 1 0 l a y e r n u m b e r W M . C F P N T 1 3 3 8 3 2 9 0 3 9 2 2 7 0 6 2 5 9 3 9 3 2 2 5 5 3 0 0 3 9 4 1 8 0 4 3 5 0 3 9 W M - w e i g h t o f a s p h a l t m i x e s ( g r a m s ) . C F P = c o m p a c t o r f o o t p r e s s u r e ( p s i ) . N T 8 n u m b e r o f t a m p i n g . T a b l e 3 . 1 1 T y p i c a l c o m p a c t i o n v a r i a b l e s f o r 7 % a i r v o i d s u s i n g l i m e s t o n e a n d A C 1 0 l a y e r n u m b e r W M C F P N T 1 3 2 6 7 2 0 0 2 6 2 2 6 1 2 2 5 0 2 6 3 2 1 7 7 3 0 0 2 6 4 1 7 4 1 3 5 9 2 6 W M = w e i g h t o f a s p h a l t m i x e s ( g r a m s ) . C F P - c o m p a c t o r f o o t p r e s s u r e ( p s i ) . N T = n u m b e r o f t a m p i n g . 8 1 1 v 2 3 4 5 6 7 8 F i g u r e 3 . 4 B e a m s p e c i m e n s a w e d t o e i g h t f o r d e n s i t y a n a l y s i s . e q u a l p a r t s 8 2 3 . 1 0 M E A S U R E M E N T S Y S T E M E a r l y i n t h e t e s t i n g p r o g r a m , s e v e r a l b e a m s w e r e i n s t r u m e n t e d u s i n g s e v e r a l t y p e s o f s t r a i n g a u g e s ( 2 - , 3 - , a n d 4 - i n l o n g ) m o u n t e d a t d i f f e r e n t h e i g h t s o n t h e s i d e o f t h e b e a m . T h e v a l u e s o f t h e m e a s u r e d s t r a i n s w e r e f o u n d t o b e r a n d o m a n d i n c o n s i s t e n t f o r t h r e e r e a s o n s : a ) T h e l o n g ( 4 - i n ) s t r a i n g a u g e s s p a n n e d a l o n g t h e n e u t r a l a x i s ( t h e t e n s i l e a n d c o m p r e s s i v e r e g i o n s ) o f t h e b e a m . H e n c e , m e a s u r e d s t r a i n v a l u e s r e p r e s e n t e d t h e n e t v a l u e s o f t h e t e n s i l e a n d c o m p r e s s i v e s t r a i n s . b ) S o m e o f t h e s h o r t s t r a i n g a u g e s ( 2 - i n ) s p a n n e d o n l y t w o a d j a c e n t a g g r e g a t e s : o t h e r s s p a n n e d o n l y p a r t s o f t h e a g g r e g a t e s : s t i l l o t h e r s w e r e m o u n t e d o n t h e a s p h a l t b i n d e r o n o n e s i d e a n d o n a p a r t o f a n a g g r e g a t e o n t h e o t h e r s i d e . c ) S e v e r a l t y p e s o f e p o x y r e s i n s w e r e u s e d t o f i r m l y a t t a c h t h e s t r a i n g a u g e s t o t h e s i d e o f t h e b e a m . T h e m a g n i t u d e o f t h e c u m u l a t i v e p l a s t i c s t r a i n s a t t h e h i g h e r n u m b e r o f l o a d a p p l i c a t i o n s c a u s e d t h e e p o x y t o c r a c k a n d h e n c e , t h e s t r a i n g a u g e w a s s e p a r a t e d f r o m t h e b e a m . C o n s e q u e n t l y , a d i f f e r e n t m e a s u r e m e n t s y s t e m w a s u s e d t h a t c o n s i s t e d o f f o u r l i n e a r v a r i a b l e d i f f e r e n t i a l t r a n s d u c e r s ( L V D T ) m o u n t e d o n a s t e e l f r a m e a l o n g t h e c e n t r a l l i n e o f t h e s u r f a c e o f t h e b e a m s p e c i m e n a t d i f f e r e n t d i s t a n c e s f r o m 8 3 t h e p o i n t o f l o a d a p p l i c a t i o n . T h e L V D T s w e r e p l a c e d a t t h e c e n t e r o f t h e b e a m , 2 . 2 5 - i n . , 4 . 2 5 - i n . , a n d 6 . 3 1 - i n f r o m t h e c e n t e r a s s h o w n i n f i g u r e 3 . 5 . T h e t o t a l s u r f a c e d e f l e c t i o n o f t h e s p e c i m e n d u e t o t h e a p p l i e d c y c l i c l o a d w a s r e c o r d e d a t d i f f e r e n t n u m b e r o f l o a d a p p l i c a t i o n s u s i n g a s t r i p c h a r t r e c o r d e r . 3 . 1 1 T E S T P R O C E D U R E S A l l b e a m s p e c i m e n s w e r e p r e p a r e d u s i n g t h e p r o c e d u r e o u t l i n e d i n s e c t i o n 3 . 9 . T h e t e s t s w e r e c o n d u c t e d a t e i t h e r 7 7 o r 4 0 ° F i n a t e m p e r a t u r e - c o n t r o l l e d c h a m b e r . T h e s u s t a i n e d a n d c y c l i c l o a d s w e r e a p p l i e d u s i n g a n M T S h y d r a u l i c s y s t e m . P r i o r t o t e s t i n g , a l l e q u i p m e n t s u s e d i n t h e f l e x u r a l b e a m t e s t s ( e . g . M T S h y d r a u l i c s y s t e m , L V D T ' s , s t r i p c h a r t r e c o r d e r s , a n d s o o n ) w e r e c a l i b r a t e d i n a c c o r d a n c e w i t h a p r o p e r p r o c e d u r e b e f o r e c o m m e n c i n g t h e t e s t . A f t e r e a c h s p e c i m e n w a s c o n d i t i o n e d t o t h e t e s t t e m p e r a t u r e , t h e b e a m s p e c i m e n w a s c o n t i n u o u s l y s u p p o r t e d b y p l a c i n g i t o n a r u b b e r p a d ( 1 i n . t h i c k ) w h i c h w a s t h e n r e s t e d o n a s t e e l b l o c k ( 8 i n . t h i c k ) i n t h e t e s t c h a m b e r . T h e r u b b e r p l a t e a n d t h e s t e e l b l o c k , h e r e i n , r e p r e s e n t t h e b a s e o r s u b b a s e c o u r s e u n d e r l a i n b y a r i g i d f o u n d a t i o n . A f t e r p l a c e m e n t , a l l L V D T s w e r e a d j u s t e d t o a r e f e r e n c e p o s i t i o n . A l o a d i n g s t r i p ( 0 . 5 i n c h - w i d e a n d 4 i n c h - l o n g ) F i g u r e 3 . 5 S c h e m a t i c d i a g r a m o f t h e b e a m t e s t s e t - u p . 8 4 M T S A C T U A T O R / L V ' D T H O L D E R L O A D S T R I P \ R U B B E R S T E E L I 7 \ \ \ , . \ \ \ \ \ \ \ x é I 8 5 a t t a c h e d t o t h e a c t u a t o r o f t h e H T S s y s t e m w a s t h e n l o w e r e d t o m a k e c o n t a c t w i t h t h e b e a m . A s u s t a i n e d l o a d o f 5 0 p o u n d s w a s t h e n a p p l i e d a n d t h e c o n s e q u e n t d e f o r m a t i o n s w e r e r e c o r d e d . W h e n t h e r a t e o f d e f o r m a t i o n d r o p p e d t o n e a r z e r o ( 1 0 t o 2 0 m i n u t e s ) , t h e c y c l i c l o a d w i t h a s i n u s o i d a l w a v e f o r m w a s a p p l i e d a n d t h e r e s u l t i n g r e s i l i e n t , v i s c o e l a s t i c , p l a s t i c d e f o r m a t i o n s , a n d n u m b e r o f l o a d a p p l i c a t i o n s w e r e r e c o r d e d . T h e l o a d f r e q u e n c y w a s s e t a t t w o c y c l e s p e r s e c o n d w i t h 0 . 1 s e c o n d l o a d i n g t i m e a n d 0 . 4 - s e c o n d r e l a x a t i o n p e r i o d . T h e p e a k c y c l i c l o a d , h o w e v e r , w a s e i t h e r 1 0 0 , 2 0 0 o r 5 0 9 p o u n d s . F o r e a c h l o a d , t h r e e b e a m s p e c i m e n s ( t r i p l i c a t e ) w e r e t e s t e d . C H A P T E R 4 T E S T R E S U L T S 4 . 1 G E N E R A L I n t h i s s t u d y , t h e l a b o r a t o r y t e s t s w e r e p e r f o r m e d a c c o r d i n g t o t h e r e s p e c t i v e p a r t i a l f a c t o r i a l e x p e r i m e n t m a t r i x s h o w n i n c h a p t e r 3 . T h e t e s t s w e r e c o n d u c t e d i n t h e l a b o r a t o r y o f t h e D i v i s i o n o f M a t e r i a l s a n d T e c h n o l o g y a t t h e M i c h i g a n D e p a r t m e n t o f T r a n s p o r t a t i o n ( M D O T ) . I t s h o u l d b e r e c a l l e d t h a t a l l t e s t s w e r e c o n d u c t e d i n t r i p l i c a t e s . T y p i c a l t e s t r e s u l t s a r e p r e s e n t e d i n t h i s c h a p t e r . 4 . 2 T E S T R E S U L T S F o r e a c h o f t h e t e s t m a t e r i a l s , t h e M a s h a l l m i x d e s i g n t e s t s w e r e c o n d u c t e d u s i n g f o u r v a l u e s o f t h e p e r c e n t a s p h a l t c o n t e n t s b y t o t a l w e i g h t o f t h e m i x ( 3 . 5 , 4 . 2 , 4 . 9 a n d 5 . 6 ) . T h e t e s t r e s u l t s w e r e a n a l y z e d a n d t h e d e s i g n a s p h a l t c o n t e n t w a s d e t e r m i n e d a s t h e p e r c e n t a s p h a l t c o n t e n t b y t o t a l w e i g h t o f m i x t h a t c o r r e s p o n d i n g t o t h r e e p e r c e n t a i r v o i d s . T y p i c a l d i a g r a m s r e l a t i n g t h e s t a b i l i t y , s p e c i f i c g r a v i t y ( d e n s i t y ) , p e r c e n t a i r v o i d s , v o i d s i n t h e m i n e r a l a g g r e g a t e s , p e r c e n t v o i d s f i l l e d w i t h a s p h a l t , a n d f l o w t o t h e p e r c e n t a s p h a l t c o n t e n t s a r e s h o w n i n f i g u r e s 4 . 1 t h r o u g h 4 . 6 . N i n e s p e c i m e n s ( t h r e e t r i p l i c a t e s ) w e r e m a d e a t t h e d e s i g n a s p h a l t c o n t e n t f o r e a c h o f t h e t e s t m a t e r i a l s . E a c h 8 6 8 7 t r i p l i c a t e w a s c o m p a c t e d t o y i e l d s p e c i m e n s w i t h u n i f o r m d e n s i t y n e a r t h e t a r g e t v a l u e s o f t h e p e r c e n t a i r v o i d s ( A V ) o f e i t h e r t h r e e , f i v e o r s e v e n p e r c e n t . F i g u r e s 4 . 7 a n d 4 . 8 s h o w t y p i c a l d i a g r a m s o f M a s h a l l s t a b i l i t y a n d f l o w v e r s u s t h e p e r c e n t a i r v o i d s , r e s p e c t i v e l y . F o r e a c h b e a m a t t h e 7 7 ° F , t h e c y c l i c l o a d w a s a p p l i e d f o r a p e r i o d o f 2 4 h o u r s o r u n t i l f a i l u r e . B e a m s a t 4 0 ° F w e r e t e s t e d f o r a p e r i o d o f t h r e e t o s i x d a y s ( o n e m i l l i o n l o a d a p p l i c a t i o n s ) . D u r i n g t h e t e s t , t h e r e s i l i e n t , t o t a l , a n d p l a s t i c d e f o r m a t i o n s a t f o u r p o i n t s o n t h e s u r f a c e o f t h e b e a m w e r e m e a s u r e d a n d r e c o r d e d . F i g u r e s 4 . 9 , 4 . 1 0 , a n d 4 . 1 1 s h o w t y p i c a l c u r v e s o f r e s i l i e n t , t o t a l a n d p l a s t i c d e f o r m a t i o n s o f t h e b e a m v e r s u s t h e n u m b e r o f l o a d a p p l i c a t i o n s , r e s p e c t i v e l y . T h e m a x i m u m s p e c i f i c g r a v i t y o f t h e m i x ( G M M ) , t h e b u l k s p e c i f i c g r a v i t y o f t h e b e a m s p e c i m e n ( G B ) , t h e t a r g e t a i r v o i d s ( T A V ) , t h e a c t u a l a i r v o i d s ( A V ) , t h e t a r g e t a s p h a l t c o n t e n t ( T A C ) , a n d t h e a c t u a l a s p h a l t c o n t e n t ( A C ) a r e a l s o s h o w n i n t h e f i g u r e s . F i g u r e 4 . 1 2 d e p i c t s t y p i c a l s h a p e s o f t h e d e f l e c t i o n b a s i n a t s e v e r a l n u m b e r s o f l o a d a p p l i c a t i o n s . F i g u r e 4 . 1 3 s h o w s t y p i c a l c u r v e s o f t h e r e s i l i e n t a n d t o t a l d e f o r m a t i o n s a t c y c l e n u m b e r 1 0 9 v e r s u s t h e p e r c e n t a i r v o i d s . F i g u r e 4 . 1 4 d e p i c t s t y p i c a l p l o t s o f t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n v e r s u s t h e p e r c e n t a i r v o i d s f o r c y c l e s n u m b e r 1 0 0 , 1 , 0 0 0 , 1 9 , 0 0 9 , a n d 1 5 0 , 0 0 0 . T h e t e s t r e s u l t s , f o r a l l b e a m s , a r e p r e s e n t e d i n A p p e n d i x A . \ 0 0 1 3 . . / : / 1 5 ' 5 N 8 8 A ( / / ' z / / - é ‘ C C U D Z C - I — I G I N - ( “ # 3 . 1 . 1 . 9 1 D \ 3 . 5 . 3 . 0 4 . 3 4 . 7 0 . 1 5 . 5 3 . 7 4 . 1 4 . 5 4 . 0 5 . 3 ‘ \ “ e n e m a s - 1 1 x F i g u r e 4 . 1 M a r s h a l l s t a b i l i t y v e r s u s p e r c e n t a s p h a l t c o n t e n t f o r l i m e s t o n e g r a d a t i o n A a n d v i s c o s i t y g r a d e d a s p h a l t A C — I O . \ \ / I 5 7 4 4 . . 2 2 0 . 5 3 ‘ 1 . 5 9 4 7 . 4 X ! H F O . 5 T 4 W W M 3 X . 4 1 4 0 . 3 7 3 0 a . 3 4 . 3 2 . 4 0 0 ‘ v e N I “ V N ( ” S u n n i - ' 0 O C C M ) F i g u r e 4 . 2 b u l k s p e c i f i c g r a v i t y o f t h e m i x v e r s u s p e r c e n t a s p h a l t c o n t e n t f o r l i m e s t o n e g r a d a t i o n A a n d v i s c o s i t y g r a d e d a s p h a l t A C - I O . 8 9 ' 0 . 0 3 . 5 e n o t s e m i l r o f t n . e O t l n — o C ' c A 1 . 5 t t l l a a h h p p 9 s s . 1 ' x i a a t d n e 7 n e d . c a 4 r o r r e g . p t 5 o . n 1 v y s t u i 1 s s c 1 3 . 1 " ' r o e c v s i s v d i d 1 o n . 4 9 . 5 7 . 3 ' 9 . 1 v a r A i a n o t i n t e a c d r a e r P g 3 . 4 e r u g i F V I C O - ‘ C 3 0 0 - 8 3 0 9 0 . t n e t n . o O c l - t C l A a h t p l s a a h ‘ . p 0 3 . 0 ‘ t s n a e c d r e e d p a r s g . u 0 s y 0 . 4 X I M r t e i v s o e c t s a i g v ? . ' e 4 r d 0 . ! 0 0 0 . V 4 I 0 0 3 0 . g n g a a A l a n r o e i n t 4 i a m d a n r 1 i g . 4 0 . 3 7 . 3 s e d n i o o t v s e t m i n l e c r r ' e o P f 0 . 3 4 . 4 e r u g i F k 5 . 5 1 . . . 5 1 1 2 1 1 1 0 . 0 1 1 . / I 3 “ \ \ . / 1 3 . 1 5 . 0 3 . 0 0 . 4 X 1 5 W . T 0 W . 4 V 0 0 0 0 1 . 4 7 . 3 / / r 0 7 . 0 0 / \ I E I 3 4 5 ‘ F i g u r e 4 . 5 P e r c e n t v o i d s f i l l e d w i t h a s p h a l t v e r s u s p e r c e n t a s p h a l t c o n t e n t f o r l i m e s t o n e g r a d a t i o n A a n d v i s c o s i t y g r a d e d a s p h a l t A C - I O . 9 2 A n o i t a d a r g e n o t s 0 . 5 3 . e 5 m i l r o f t . n O e I 1 . 5 0 . 4 X t — 1 5 n C o A 7 . 4 F c O t . t l ! 0 l a 0 a h 0 . 4 V I 0 A 3 I . 4 1 . h p p s s a a d t e n d e a c r r g e 4 y p 0 . 3 7 . 3 5 . 3 t s i u s s o r c e s v i v w o d l n F a 6 . 4 e r u g i F / / r l ’ w . S 1 1 2 . 0 $ . 3 0 : “ \ “ O H : 9 9 3 . n e m i c e p s e h t f o s d i o v r i a t n e c r e p e h t s u s r e v y t i l i b a t s l l a h s r a M 7 . 4 e r u g i F ‘ s d i o V r i 4 A t n e c r e P 2 0 0 0 3 0 0 0 0 0 0 0 2 1 ( s p u n o d ) A J I I I q e a s I I B u S J B N 9 4 6 s d i o 4 V r i A t n e c r e P . 2 _ 0 ' 4 3 4 2 ( . . O O I / I ) 4 0 H F i g u r e 1 . 8 F l o w v a l u e s v e r s u s t h e p e r c e n t a i r v o i d s o f t h e s p e c i m e n s . 9 5 8 1 8 1 . s n f o o i t e a c c a i f l r p u p s a e d h a t o l n N o f O o I s T t r I n e 8 T i b 1 E P E R D A O L F O o m p u n r u e o h f t t s a u s s r n e 8 v 1 R o i E t n B a e M m m U r i N 8 1 8 1 o c f e e p d s t m n a e e i b l i e s h e t R 9 . 4 e r u g i F T D V L r e t n e C ' : 4 . g - m c 5 3 7 8 1 1 1 1 8 8 6 2 8 1 1 8 4 8 L V D T Z ( s a q o u r ) V ' O I X u o i n e m l o g a q Q u a r t i s e g 9 6 0 1 9 1 N O I T T D V L r e t n e C I 9 T 1 E P E R D A O L r o 0 1 R E B M ' U N a 1 . 2 - m c 5 3 7 8 1 1 1 1 8 8 2 8 8 8 1 5 0 1 ( s a q o u i ) v _ Q I x u o r n e m z o g a q { a n a l 1 5 8 F i g u r e 4 . 1 0 T o t a l d e f o r m a t i o n s a t f o u r p o i n t s o n t h e s u r f a c e o f t h e b e a m s p e c i m e n v e r s u s t h e n u m b e r o f l o a d a p p l i c a t i o n s . 9 7 8 e 1 c . a s f n r o u i s t a e c h i t l p n p o a s d t a n o i l o p f o N r 8 4 3 8 . . 4 5 . T D V L O I T I T E P E R = - D u r o e f b m t u a n s e n h t o i t s V V A A T r e t n e C 1 2 6 8 1 1 1 1 A a u O m s L r r F O 8 1 R E B M U N o e f v e d n e c m i i t c s e a p l s p m e a v e i b t 8 a e 1 l h u t m u f C o 1 1 . 4 e r u g i F ( s e q o u i ) u o i n e m i o g e q D I J S B I J L V D T 4 2 3 1 8 4 1 8 9 8 9 4 . 5 ) s 8 e . h 4 c n i ( E C . ' . 2 - N . . . a 1 2 6 9 1 1 1 1 . n i W 9 5 8 5 . 7 5 2 1 . 0 . r i n n e e m m z i o o g g a e R T S 2 I . D 3 L A I D A R 5 . 1 9 q a i x n a u o e u g e a a s q i n a 3 a 2 s u u o o q F i g u r e 4 . 1 2 N o r m a l i z e d p l a s t i c d e f o r m a t i o n b a s i n o f t h e b e a m s p e c i m e n a t d i f f e r e n t n u m b e r o f l o a d a p p l i c a t i o n s . 9 9 P e r c e n t A i r V o i d s 1 0 0 4 0 1 ? 0 . l : 0 3 c . d ' 2 / X . U 3 0 I / > ~ — 0 = ' / : 5 I g T o t a l i I r > - ' D e f . r m a t o n : ‘ f O / . . m " 2 0 1 . ’ 7 o h 3 A e s i l i e n t o i o - o e . a 9 z ; 1 0 I B o 4 4 ‘ 3 o a h . o M o c : 0 2 4 5 fi g u r e 4 . 1 3 R e s i l i e n t a n d t o t a l d e f o r m a t i o n s a t t h e c e n t e r o f t h e l o a d e d a r e a a t c y c l e n u m b e r 1 0 0 v e r s u s t h e p e r c e n t a i r v o i d s o f t h e b e a m s p e c i m e n . ° 0 1 t n e c r d e e p d a e o h l t e s h u 0 0 t 0 , 0 5 1 1 ' 0 1 s r f e o v r s e n t o n i e t c a c e i h l t p p t a a d s a . n o n l o e 2 i m ’ t f i 0 a c o 1 m e r r p o e s f b e m m d u a n e c b i t t e n s h e a r t l e p f f f o 3 e i ‘ v s d 0 i d 1 t t i a a o l v u a m e r u i r C a a 4 1 . 4 e r u g i F “ “ 0 1 s p i o A 1 1 v n u a o z e d C u m u l a t i v e P l a s t i c D e f o r m a t i o n s a t t h e C e n t e r o f t h e L o a d e d A r e a ( i n c h e s ) 1 0 1 C H A P T E R 5 A N A L I S I S A N D D I S C U S S I O N 5 . 1 G E N E R A L S t r u c t u r a l p r o p e r t i e s o f a s p h a l t m i x e s h a v e a d i r e c t b e a r i n g o n t h e p a v e m e n t p e r f o r m a n c e u n d e r t h e a n t i c i p a t e d t r a f f i c l o a d i n g a n d e n v i r o n m e n t a l c o n d i t i o n s ( 1 0 9 ) . T h e d e t e r m i n a t i o n o f r e l e v a n t s t r u c t u r a l p r o p e r t i e s c a n b e v e r y t e d i o u s a n d i n v o l v e d b e c a u s e s a i d p r o p e r t i e s c h a n g e w i t h c h a n g i n g e n v i r o n m e n t a l c o n d i t i o n s . U n l i k e t h e m i n e r a l a g g r e g a t e i n t h e m i x o r i n t h e p a v e m e n t b a s e a n d s u b b a s e l a y e r s w h o s e p r o p e r t i e s a r e r e l a t i v e l y c o n s t a n t , p h y s i c a l a n d c h e m i c a l a s p h a l t b i n d e r p r o p e r t i e s a r e d y n a m i c i n n a t u r e a n d a r e i n f l u e n c e d b y t e m p e r a t u r e , m o i s t u r e , a n d t i m e ( 3 5 ) . I n a d d i t i o n , t h e r e s p o n s e o f a s p h a l t m i x e s t o l o a d ( a s n o t e d i n c h a p t e r 2 ) i s t h e r e s u l t o f t h r e e d i f f e r e n t m e c h a n i s m s : e l a s t i c : v i s c o e l a s t i c : a n d p l a s t i c . T h u s , s o m e o f t h e r e l e v a n t s t r u c t u r a l p r o p e r t i e s o f a s p h a l t m i x e s t h a t a r e n e e d e d f o r t h e d e s i g n o f a s p h a l t p a v e m e n t i n c l u d e r e s i l i e n t a n d / o r t o t a l c h a r a c t e r i s t i c s , p e r m a n e n t d e f o r m a t i o n , c r e e p , a n d f a t i g u e b e h a v i o r . A s p h a l t m i x e s a r e l a r g e l y c o m p o s e d o f c o a r s e a n d f i n e a g g r e g a t e s , m i n e r a l f i l l e r , a s p h a l t b i n d e r , a n d a i r v o i d s . T h e p r o p o r t i o n i n g o f t h e s e c o m p o n e n t s i n a n y g i v e n m i x ( t h e a s p h a l t m i x d e s i g n ) d i c t a t e s i t s b e h a v i o r u n d e r t r a f f i c l o a d i n g a n d a f f e c t s i t s s t r u c t u r a l p r o p e r t i e s ( 2 4 , 3 4 , 4 0 , 1 0 2 1 0 3 7 4 , 7 5 , 8 5 ) . E x i s t i n g p r a c t i c e s , h o w e v e r , d i v o r c e t h e a s p h a l t m i x d e s i g n p r o c e d u r e s f r o m t h o s e t o o b t a i n t h e s t r u c t u r a l p r o p e r t i e s . H e n c e , a m a j o r q u e s t i o n f a c i n g t h e p a v e m e n t e n g i n e e r i s " h o w t o t a i l o r t h e a s p h a l t m i x d e s i g n p r o c e d u r e t o o p t i m i z e i t s s t r u c t u r a l p r o p e r t i e s w h i c h w i l l r e s u l t i n t h e b e s t p a v e m e n t p e r f o r m a n c e u n d e r t r a f f i c l o a d s a n d e n v i r o n m e n t a l c o n d i t i o n s ? " 5 . 2 S T U D Y O B J E C T I V E S T h e o b j e c t i v e s o f t h i s s t u d y i n c l u d e : a ) D e t e r m i n i n g t h e s t r u c t u r a l p r o p e r t i e s o f a s p h a l t m i x e s u s i n g c y c l i c l o a d f l e x u r a l t e s t s . b ) D e t e r m i n i n g t h e a s p h a l t m i x d e s i g n p a r a m e t e r s u s i n g t h e s t a n d a r d M a r s h a l l t e s t s a n d t e s t p r o c e d u r e s . c ) Q u a n t i f y i n g r e l a t i o n s h i p s b e t w e e n t h e s t a n d a r d p r o p e r t i e s o f t h e a s p h a l t m i x a n d t h e t y p e s o f t h e m a t e r i a l i n t h e m i x . d ) I d e n t i f y i n g a l a b o r a t o r y t e s t p r o c e d u r e w h e r e b y t h e a s p h a l t m i x d e s i g n c a n b e t a i l o r e d t o o p t i m i z e i t s s t r u c t u r a l p r o p e r t i e s . T o a c c o m p l i s h t h e s e o b j e c t i v e s , i t w a s h y p o t h e s i z e d t h a t r e l a t i o n s h i p s b e t w e e n t h e s t r u c t u r a l p r o p e r t i e s a n d t h e a s p h a l t m i x d e s i g n p a r a m e t e r s c a n b e f o u n d u s i n g s t a t i s t i c a l a n a l y s e s . T o v e r i f y t h e h y p o t h e s i s , l a b o r a t o r y f l e x u r a l c y c l i c l o a d t e s t s w a s d e s i g n e d a n d c o n d u c t e d t o e v a l u a t e t h e s t r u c t u r a l p r o p e r t i e s o f t h e m i x . T h e a s p h a l t m i x d e s i g n 1 0 4 p a r a m e t e r s ( o n t h e o t h e r h a n d ) w e r e o b t a i n e d u s i n g s t a n d a r d M a r s h a l l t e s t s . T h e m e a s u r e d s t r u c t u r a l p r o p e r t i e s a n d t h e a s p h a l t m i x d e s i g n p a r a m e t e r s w e r e t h e n a n a l y z e d t o : a ) M o d e l t h e s t r u c t u r a l p r o p e r t i e s o f t h e c o m p a c t e d m i x e s a s f u n c t i o n s o f l o a d a n d t e m p e r a t u r e . b ) M o d e l t h e s t r u c t u r a l p r o p e r t i e s o f t h e c o m p a c t e d m i x e s a s a f u n c t i o n o f t h e t y p e s o f m a t e r i a l i n t h e m i x . c ) C o r r e l a t e i t e m s a a n d b . d ) E v a l u a t e t h e r e p e a t a b i l i t y o f t h e t e s t r e s u l t s . e ) E x a m i n e t h e f e a s i b i l i t y o f t h e b e a m t e s t . I t e m s ( a ) , a n d ( b ) a b o v e a r e r e q u i r e d t o v e r i f y t h e h y p o t h e s i s ( i t e m c ) . I t e m s ( d ) a n d ( e ) a r e n e c e s s a r y t o d e t e r m i n e w h e t h e r t h e f l e x u r a l b e a m t e s t c a n b e u s e d t o i d e n t i f y a l a b o r a t o r y t e s t p r o c e d u r e w h e r e b y t h e a s p h a l t m i x d e s i g n c a n b e t a i l o r e d t o o p t i m i z e t h e s t r u c t u r a l p r o p e r t i e s o f t h e m i x . 5 . 3 D A T A P R E P A R A T I O N F o r e a c h t e s t , t h e a p p l i e d c y c l i c a n d t h e c o r r e s p o n d i n g s p e c i m e n t o t a l d e f o r m a t i o n w e r e c o n t i n u o u s l y r e c o r d e d u s i n g s t r i p c h a r t r e c o r d e r s a t c y c l e s n u m b e r 1 0 0 , 5 0 0 , a n d a m u l t i p l e o f 1 0 o f t h e s e v a l u e s t h e r e a f t e r . A f t e r t h e t e s t , e a c h d a t a r e c o r d w a s e x a m i n e d a n d t h e v a l u e s o f t h e r e s i l i e n t , t o t a l , a n d p l a s t i c ( p e r m a n e n t ) d e f o r m a t i o n s w e r e d i g i t i z e d s e p a r a t e l y . T h i s c a n b e i l l u s t r a t e d w i t h t h e a i d 1 0 5 o f f i g u r e s 5 . 1 a n d 5 . 2 . F i g u r e 5 . 1 d e p i c t s a t y p i c a l l o a d a n d d e f o r m a t i o n r e c o r d v e r s u s t i m e d u r i n g o n e l o a d - u n l o a d c y c l e . T h e s u s t a i n e d a n d c y c l i c l o a d s , a n d t h e l o a d i n g a n d r e l a x a t i o n p e r i o d s a r e s h o w n o n t h e l o a d r e c o r d i n t h e f i g u r e . T h e t o t a l p e a k d e f o r m a t i o n , t h e t i m e l a g b e t w e e n t h e p e a k l o a d a n d p e a k d e f o r m a t i o n , a n d t h e r e s i l i e n t , v i s c o e l a s t i c , a n d p l a s t i c d e f o r m a t i o n s a r e d e s i g n a t e d o n t h e d e f o r m a t i o n r e c o r d i n f i g u r e 5 . 1 . T h e l e n g t h o f t h e l i n e s D G , D E , E F , a n d F G i n t h e f i g u r e a r e p r o p o r t i o n a l t o t h e t o t a l r e s i l i e n t , v i s c o e l a s t i c , a n d p l a s t i c d e f o r m a t i o n s , r e s p e c t i v e l y . I t c a n b e s e e n t h a t t h e l e n g t h o f t h e l i n e P C i s m u c h s m a l l e r t h a n t h o s e o f D E a n d E F . I n d e e d , i t w a s n o t e d t h a t t h e v a l u e s o f t h e p l a s t i c d e f o r m a t i o n d u e t o a n y o n e l o a d - u n l o a d c y c l e i s v e r y s m a l l a n d w i t h i n t h e a c c u r a c y o f t h e m e a s u r e m e n t s y s t e m . C o n s e q u e n t l y , t h e p l a s t i c d e f o r m a t i o n d u e t o a n y o n e l o a d c y c l e w a s n e g l e c t e d a n d t h e t o t a l a n d r e s i l i e n t d e f o r m a t i o n s ( l i n e s D C a n d D E ) w e r e d i g i t i z e d . T h e v i s c o e l a s t i c d e f o r m a t i o n i s s i m p l y t h e d i f f e r e n c e b e t w e e n t h e t o t a l a n d r e s i l i e n t d e f o r m a t i o n s . I t s h o u l d b e n o t e d t h a t t h e v a l u e o f t h e v i s c o e l a s t i c d e f o r m a t i o n d e p e n d s o n s e v e r a l v a r i a b l e s s u c h a s t e m p e r a t u r e a n d l o a d i n g a n d r e l a x a t i o n p e r i o d s . F o r e x a m p l e , h i g h e r t e m p e r a t u r e s a n d / o r l o n g e r l o a d i n g a n d r e l a x a t i o n p e r i o d s p r o d u c e h i g h e r v i s c o e l a s t i c d e f o r m a t i o n . S i n c e ( i n t h i s s t u d y ) t h e r a t e o f s p e c i m e n r e c o v e r y w a s n o t r e c o r d e d a n d o n l y o n e l o a d i n g a n d r e l a x a t i o n p e r i o d s w e r e u s e d , t h e n o n o i t ’ d t a m i I o a r n i m o o d r r f i d a a e e o o d p f l e d o n c l o d i e t i t t n t a m r o f e . e m i t s u s r e v s d r o c c n s i i a e a e d l a l r x i c t e a l y o s l i C c u e s c i t S s R s e R a f I \ i V . l c . P m ‘ m g a l e . A m i ‘ T " “ I A I ' r n o i t a m r o f e d d e n m a i T d a o l l a c i p y T ] . I . \ 5 ' e r u g i F P 9 0 1 n o r z s n x o g e a n o t i s x n p p 8 0 1 I I 1 0 6 l a e g i a n O J e p n e e d I s i o ; A d e ; o d a r a o l c i l F d e n i l I c y C a t s u S b m u n e h t s u s r 1 5 1 e 0 v V A ' — N s d r o c . e n r o i n t o a i c t i a l m p r p o a s n o i t a c i l p p ) t n e n a . m r e p ( c i t s a l P ' a 3 0 f 1 e d d a o d l n a f o d a o l f o r e 2 b 0 m 1 ‘ u N 1 0 1 . 9 3 0 1 n o t i o m a o g e a l F i g u r e 5 . 2 T y p i c a l l o a d 1 0 7 1 0 8 c a l c u l a t i o n o f t h e v i s c o e l a s t i c p r o p e r t i e s b e c o m e s t e d i o u s a n d m i s l e a d i n g . T h u s , o n l y t h e r e s i l i e n t , t o t a l , a n d p l a s t i c d e f o r m a t i o n s w e r e c o n s i d e r e d i n t h e a n a l y s e s . A s n o t e d a b o v e , t h e v a l u e o f t h e p l a s t i c d e f o r m a t i o n o f t h e t e s t s p e c i m e n f o r a n y o n e l o a d c y c l e i s v e r y s m a l l a n d w i t h i n t h e a c c u r a c y o f t h e m e a s u r e m e n t s y s t e m . F o r t h i s r e a s o n , t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n d u e t o a n u m b e r o f l o a d a p p l i c a t i o n s w e r e d e t e r m i n e d a n d a n a l y z e d . T h i s c a n b e i l l u s t r a t e d u s i n g f i g u r e 5 . 2 w h i c h s h o w s a t y p i c a l l o a d a n d d e f o r m a t i o n r e c o r d v e r s u s t h e n u m b e r o f l o a d a p p l i c a t i o n s . T h e r e c o r d s f o r c y c l e s 1 9 1 , 1 0 2 , 1 0 3 , a n d 5 0 1 w e r e o b t a i n e d u s i n g a h i g h e r s p e e d s e t t i n g o n t h e c h a r t - r e c o r d e r . T h e r e c o r d s b e t w e e n c y c l e s n u m b e r 1 0 4 a n d 5 0 0 w e r e o b t a i n e d u s i n g a s l o w s p e e d s e t t i n g o n t h e c h a r t - r e c o r d e r . A s i t c a n b e s e e n , t h e d e f o r m a t i o n s i g n a l d r i f t s a w a y f r o m t h e h o r i z o n t a l a x i s a s t h e n u m b e r o f l o a d a p p l i c a t i o n i n c r e a s e s . T h e l e n g t h o f t h e l i n e A B i n t h e f i g u r e i s p r o p o r t i o n a l t o t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n b e t w e e n l o a d c y c l e s n u m b e r 1 0 3 a n d 5 9 1 . I n t h i s s t u d y , t h e v a l u e o f t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n b e t w e e n l o a d c y c l e n u m b e r a n d a n y o t h e r l o a d c y c l e i n q u e s t i o n w a s u s e d i n t h e a n a l y s i s . 5 . 4 A N A L T S I S M E T H O D S A n a l y t i c a l a n d s t a t i s t i c a l m e t h o d s w e r e u s e d t o a n a l y z e t h e d a t a o b t a i n e d f r o m t h e f l e x u r a l t e s t s . T h e a n a l y t i c a l 1 0 9 m e t h o d w a s b a s e d o n t h e e l a s t i c - v i s c o e l a s t i c - p l a s t i c m o d e l ( e q u a t i o n 2 . 2 ) . I n t h i s m e t h o d , t h e m a g n i t u d e o f t h e a p p l i e d c y c l i c l o a d a n d t h e m e a s u r e d r e s i l i e n t a n d t o t a l d e f o r m a t i o n s o f t h e b e a m s p e c i m e n s w e r e a n a l y z e d u s i n g a l i n e a r e l a s t i c f i n i t e e l e m e n t c o m p u t e r p r o g r a m t o e x t r a c t t h e r e s i l i e n t a n d t o t a l c h a r a c t e r i s t i c s o f t h e a s p h a l t m i x e s . T h e a n a l y s e s a r e p r e s e n t e d i n s e c t i o n 5 . 7 . F o r e a c h b e a m s p e c i m e n , t h e v a l u e s o f t h e r e s i l i e n t a n d t o t a l c h a r a c t e r i s t i c s o b t a i n e d u s i n g t h e f i n i t e e l e m e n t p r o g r a m , a n d t h e v a l u e s o f t h e m e a s u r e d p l a s t i c d e f o r m a t i o n s ( p e r m a n e n t d e f o r m a t i o n s ) w e r e s t a t i s t i c a l l y c o r r e l a t e d t o t h e d i f f e r e n t m i x , s p e c i m e n , a n d t e s t v a r i a b l e s u s i n g a n a v a i l a b l e m u l t i p l e l i n e a r r e g r e s s i o n a n a l y s i s c o m p u t e r p r o g r a m ( S P S S / P C + ) . I n t h i s a n a l y s i s , t h r e e p r o c e d u r e s w e r e u t i l i z e d b a s e d o n t h e f o l l o w i n g c o n c e p t s : a ) S e p a r a t i o n o f v a r i a b l e s : b ) D e t e r m i n a t i o n o f t h e g e n e r a l c o r r e l a t i o n e q u a t i o n s : a n d c ) S t e p w i s e p r o c e d u r e w h i c h i s b a s e d o n t h e o r d e r o f s i g n i f i c a n c e o f t h e v a r i a b l e s . T h e t h r e e p r o c e d u r e s a r e p r e s e n t e d i n t h e f o l l o w i n g s e c t i o n s . 5 . 4 . 1 S E P A R A T I O N O F V A R I A B L E S T h e s e p a r a t i o n o f v a r i a b l e s m e t h o d c a n b e i l l u s t r a t e d b y c o n s i d e r i n g t h e p a r t i a l f a c t o r i a l e x p e r i m e n t m a t r i x o f t h e 1 1 0 b e a m t e s t s r e p e a t e d , f o r c o n v e n i e n c e , i n f i g u r e 5 . 3 . E a c h c e l l i n t h e m a t r i x r e p r e s e n t s t h r e e s p e c i m e n s ( t r i p l i c a t e ) . D a t a f r o m e a c h t r i p l i c a t e w e r e s t a t i s t i c a l l y a n a l y z e d t o a s s e s s t h e r e p e a t a b i l i t y o f t h e t e s t r e s u l t s a n d t h e v a r i a b i l i t y o f t h e p e r c e n t a i r v o i d s w i t h i n e a c h t r i p l i c a t e . F o r e a c h t e s t w i t h i n a n y t r i p l i c a t e i n t h e m a t r i x , t h e o n l y v a r i a b l e i s t h e n u m b e r o f l o a d r e p e t i t i o n s . H e n c e , t h e d a t a ( e . g . p e r m a n e n t d e f o r m a t i o n ) f r o m e a c h t e s t w a s f i r s t p l o t t e d a g a i n s t t h e n u m b e r o f l o a d a p p l i c a t i o n s a s s h o w n i n f i g u r e 5 . 4 . F r o m t h e f i g u r e , t h e p l a s t i c d e f o r m a t i o n s w e r e m o d e l e d a s a f u n c t i o n o f t h e n u m b e r o f l o a d a p p l i c a t i o n s u s i n g t h e f o l l o w i n g e q u a t i o n : o n a I N 5 1 ( 5 1 ) i i ' w h e r e : C D 1 a p e r m a n e n t d e f o r m a t i o n o f L V D T i : I i a n d S 1 = r e g r e s s i o n c o n s t a n t s : N = n u m b e r o f l o a d a p p l i c a t i o n s : a n d i = L V D T n u m b e r ( l o c a t i o n ) . I n t h e l o g a r i t h m i c s p a c e , e q u a t i o n 5 . 1 c a n b e w r i t t e n a s l n ( C D ) i = l n l i + S i l n N ( 5 . 2 ) w h e r e : l n - n a t u r a l l o g a r i t h m : a l l o t h e r v a r i a b l e s a r e a s b e f o r e . E a c h c e l l d e s i g n a t e s a t r i p l i c a t e . 1 1 1 F i g u r e 5 . 3 P a r t i a l f a c t o r i a l e x p e r i m e n t m a t r i x f o r t h e b e a m t e s t . 4 T D V L 8 1 N O I T I 8 T 1 E 8 4 8 8 . . 4 5 ' - - T P D E V L R D e c . a s f n r o u i s t a e c h i t l p n p o a s d t a n o i l o p f o r u r o e f b m t u a n s e n h t o ’ r A i V V e A A t T n e C 1 2 6 8 1 1 1 1 O t s L a u F O 8 1 R E B M U N m s o r r e f v e d n e c m i i t c s e a p l s p m e a v e i b t a e l h u t m u f C o 4 . 5 e r u g i F ( s a q o u i ) u o i n e m x o g e q 3 1 3 5 9 1 6 3 * 4 1 8 1 1 2 1 1 3 E q u a t i o n 5 . 2 r e p r e s e n t s a s t r a i g h t l i n e h a v i n g a n i n t e r c e p t o f l n I i a n d s l o p e o f S i . T h i s e q u a t i o n w a s e m p l o y e d t o m o d e l t h e d a t a ( p e r m a n e n t d e f o r m a t i o n ) a n d t o o b t a i n t h e v a l u e s o f I 1 a n d S 1 f o r e a c h s p e c i m e n a n d f o r a l l L V D T ( s ) . I t s h o u l d b e n o t e d t h a t t h e v a l u e s o f t h e s l o p e ( S i ) o f e q u a t i o n 5 . 2 s h o u l d n o t b e i n t e r p r e t e d a s t h e r a t e o f c h a n g e o f C D 1 w i t h r e s p e c t t o N . T h i s r a t e c a n b e o b t a i n e d b y t a k i n g t h e f i r s t d e r i v a t i v e o f e q u a t i o n 5 . 1 w i t h r e s p e c t t o N a s f o l l o w s : ( d C D i / d N ) = ( I i ) ( S i ) [ N ( S i - 1 ) ] ( 5 . 3 ) w h e r e : ( d C D i / d N ) = t h e r a t e o f c h a n g e o f t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n w i t h r e s p e c t t o N : a n d a l l e l s e a r e a s b e f o r e . T h u s , t h e r a t e o f c h a n g e o f C D i i s d e p e n d e n t o n t h e v a l u e s o f 5 1 ' I i , a n d N . T h e v a l u e s o f I 1 a n d S 1 o f e q u a t i o n 5 . 1 c a n b e r e g a r d e d a s d e s c r i p t o r s o f t h e p e r m a n e n t d e f o r m a t i o n a n d f a t i g u e l i f e o f t h e c o m p a c t e d a s p h a l t m i x i n q u e s t i o n . F o r e x a m p l e , h i g h e r v a l u e s o f I 1 a n d S i i m p l y h i g h e r p e r m a n e n t d e f o r m a t i o n a n d p e r h a p s s h o r t e r f a t i g u e l i f e o f t h e m i x . N e v e r t h e l e s s , t h e v a l u e s o f t h e p a r a m e t e r s I 1 a n d S i a l o n g w i t h t h e c o e f f i c i e n t o f d e t e r m i n a t i o n ( R 2 ) a n d s t a n d a r d e r r o r f o r a l l b e a m s p e c i m e n s a r e t a b u l a t e d i n A p p e n d i x B . 1 1 4 T h e v a l u e s o f I 1 a n d S 1 f o r t h e c e n t e r L V D T w e r e u s e d i n t h e n e x t s t e p o f t h e a n a l y s i s . I n t h i s s t e p , t h e v a l u e s o f I 1 a n d S 1 w e r e f i r s t s e p a r a t e d i n t o n i n e g r o u p s r e l a t i v e t o t h e i n d e p e n d e n t v a r i a b l e s a s p r e v i o u s l y d e s c r i b e d i n s e c t i o n 3 . 7 . A f t e r g r o u p i n g , t h e v a l u e s o f t h e s l o p e ( S a n d 1 ) i n t e r c e p t ( I o f t h e c e n t e r L V D T o f a l l t e s t s a t 7 7 ° F w e r e 1 ) e x a m i n e d . I t w a s f o u n d t h a t : a ) T h e v a l u e s o f S a r e i n d e p e n d e n t o f t h e p e r c e n t a i r 1 v o i d s , t h e m a g n i t u d e o f t h e c y c l i c l o a d a n d t h e g r a d a t i o n o f t h e a g g r e g a t e ( s e e f i g u r e s 5 . 5 a n d 5 . 6 ) . b ) T h e v a l u e s o f 8 1 a r e d e p e n d e n t o n t h e k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t ( f i g u r e 5 . 7 ) a n d t h e a g g r e g a t e a n g u l a r i t y ( f i g u r e 5 . 8 ) . I n c r e a s i n g R V a n d A N G c a u s e s a d e c r e a s e i n t h e v a l u e o f 8 1 . c ) T h e v a l u e s o f I 1 a r e i n d e p e n d e n t o f t h e k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t , t h e a g g r e g a t e a n g u l a r i t y a n d t h e g r a d a t i o n o f t h e a g g r e g a t e ( s e e f i g u r e s 5 . 9 a n d 5 . 1 0 ) . d ) T h e v a l u e s o f I 1 a r e d e p e n d e n t o n b o t h t h e p e r c e n t a i r v o i d s a n d t h e m a g n i t u d e o f t h e c y c l i c l o a d a s s h o w n i n f i g u r e 5 . 1 1 . F o r e a c h o f t h e c u r v e s i n f i g u r e 5 . 1 1 , e q u a t i o n 5 . 4 w a s s e l e c t e d t o e x p r e s s t h e i n t e r c e p t ( I i n t e r m o f t h e 1 ) p e r c e n t a i r v o i d s ( A V ) . l . ‘ u q " " 8 . ~ _ _ . ~ — — - — — — . 1 : \ ‘ 6 ( l ) - . . . . . . . . . — . - — - — ' ' M 1 1 \ 1 1 5 o 1 0 0 0 0 0 0 0 5 c 2 0 0 p o u n d s a S O C p a u n o s . 0 k ) " ‘ r - l F ‘ r e c e n t A i r V o i d s F i g u r e 5 . 5 S l o p e o f e q u a t i o n 5 . 1 v e r s u s t h e p e r c e n t a i r v o i d s f o r t h r e e l e v e l s o f t h e c y c l i c l o a d a n d a k i n e m a t i c v i s c o s i t y v a l u e o f 2 7 0 c e n t i s t o k e . L 1 a 7 . 9 . P e r c e n t A i r V o i d s 1 1 6 o G r a d a t i o n A a G r a d a t i o n 8 0 . 8 5 ) W V ( 5 0 ) C I 0 . 8 2 U ‘ ) I i 0 . 4 ' F i g u r e 5 . 6 S l o p e o f e q u a t i o n 5 . 1 v e r s u s t h e p e r c e n t a i r v o i d s f o r a g g r e g a t e g r a d a t i o n s A a n d B . 1 1 7 1 . 0 0 0 . 8 0 m N 0 ) O . 0 . 6 0 . 2 V ) 0 . 4 0 0 . 2 0 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . K i n e m o t i c V i s c o s i t y ( c e n t i s t o k e s ) F i g u r e 5 . 7 S l o p e o f e q u a t i o n 5 . 1 v e r s u s t h e k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t . 1 ' e m h S ) 1 1 1 , ( 0 \ - . - . - . _ _ . . _ _ I I _ . . . . . . _ _ . _ _ . . _ _ . _ . _ _ . - r i A . _ . . . . . . . . . . . _ . . . - _ . . . . . — . . . i _ . i _ ~ l _ _ _ i i n _ l m F i g u r e 5 . 8 S o l f o p a e g o r f e g g e a q t u e a . t i o n 5 . 1 v e r s u s t h e a n g u l a r i t y 1 1 8 0 . 8 0 : ) 1 7 3 I n I ) 0 1 O < — - a — d i — 0 . 5 5 O L n ( 2 . . . 4 _ _ I { - 4 & < — — ~ — A n g u h j n t y o f A o o r r e g c t e d d 1 1 9 3 5 0 o l i m e s t o n e a g r o v e ! A 5 0 / 5 0 m i x 0 0 0 1 : 3 . 1 C D _ . U S C I fi = = = = $ § F - - q o < 1 3 1 i f i - I D O 4 — I . 5 ' l s ~ . ' 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . K i n e m a t i c V i s c o s i t y ( c e n t i s t o k e s ) F i g u r e 5 . 9 I n t e r c e p t o f e q u a t i o n 5 . 1 v e r s u s t h e k i n e m a t i c v i s c o s i t y f o r t h r e e v a l u e s o f t h e a g g r e g a t e a n g u l a r i t y . l l t p e l c r e t n I E 1 2 0 o G r a d a t i o n A a G r a d a t i o n B 0 . 0 0 . 1 0 0 . 2 0 0 . 3 0 0 4 0 0 K i n e m o t i c V i s c o s i t y ( c e n t i s t o k e s ) F i g u r e 5 . 1 0 I n t e r c e p t o f e q u a t i o n 5 . 1 v e r s u s t h e k i n e m a t i c v i s c o s i t y f o r a g g r e g a t e g r a d a t i o n s A a n d B . I A 1 2 1 o 1 0 0 p o u n d s a 2 0 0 p o u n d s ( 1 5 0 0 p o u n d s . . i ) I n t e r c e p t l l 0 ’ P r e c e n t A i r V o i d s F i g u r e 5 . 1 1 I n t e r c e p t o f e q u a t i o n 5 . 1 v e r s u s t h e p e r c e n t a i r v o i d s f o r t h r e e l e v e l s o f t h e c y c l i c l o a d a n d a k i n e m a t i c v i s c o s i t y o f 2 7 0 c e n t i s t o k e . 1 2 2 l n ( I i ) - l n ( A 1 ) + B l ( A V ) ( 5 . 4 ) w h e r e : A V 8 p e r c e n t a i r v o i d s ( A V = 3 t o 7 ) : I 1 - i n t e r c e p t o f e q u a t i o n 5 . 1 : a n d A 1 a n d B l a r e r e g r e s s i o n c o e f f i c i e n t s . F i g u r e 5 . 1 2 d e p i c t s t h e v a l u e s o f A 1 a n d B I p l o t t e d a g a i n s t t h e m a g n i t u d e o f t h e a p p l i e d c y c l i c l o a d . I t c a n b e n o t e d t h a t A l i s a f u n c t i o n o f t h e c y c l i c l o a d w h i l e B 1 i s i n d e p e n d e n t o f t h e c y c l i c l o a d . N e x t , t h e v a l u e s o f A 1 w e r e s t a t i s t i c a l l y c o r r e l a t e d t o t h e c y c l i c l o a d a n d t h e r e s u l t i n g e q u a t i o n w a s t h e n s u b s t i t u t e d i n t o e q u a t i o n 5 . 4 . T h e l a s t s t e p y i e l d e d a n e q u a t i o n o f t h e i n t e r c e p t I 1 i n t e r m s o f t h e p e r c e n t a i r v o i d s a n d t h e c y c l i c l o a d . S i m i l a r s t e p s w e r e t a k e n t o m o d e l t h e e f f e c t s o f t h e o t h e r v a r i a b l e s ( k i n e m a t i c v i s c o s i t y , a g g r e g a t e a n g u l a r i t y , a n d c y c l i c l o a d ) . E q u a t i o n 5 . 5 r e p r e s e n t s t h e f i n a l r e g r e s s i o n e q u a t i o n w h i c h e x p r e s s e s t h e p l a s t i c d e f o r m a t i o n s a s a f u n c t i o n o f t h e s p e c i m e n a n d t e s t v a r i a b l e s . 0 . 2 0 4 l n ( C D 1 ) = - 7 . 3 7 3 + 2 ( C L ) + 0 . 3 5 7 ( A V ) 5 1 . 3 9 8 6 + { 0 . 9 8 8 - 2 . 6 2 3 7 x 1 0 ' ( K V ) } x { 1 . 0 5 5 7 - 0 . 0 1 4 4 7 ( A N G ) ) x l n ( N ) ( 5 . 5 ) p 0 . 7 5 i B d n a 1 A f o s e u l a V o . 1 5 0 . 0 . 1 u 0 d ( p o u n d s ) 4 5 0 . C y c n c L o 5 0 0 . 1 2 3 1 . 0 0 0 . 5 0 0 7 * " . S / / / / / 0 2 5 0 . 0 0 F i g u r e 5 . 1 2 S l o p e a n d i n t e r c e p t ( A 1 a n d B l ) o f e q u a t i o n 5 . 4 v e r s u s t h e a p p l i e d c y c l i c l o a d . 1 2 4 R 2 = 0 . 9 8 a n d S . E . - 0 . 0 5 w h e r e : l n = n a t u r a l l o g a r i t h m : C D 1 - p e r m a n e n t d e f o r m a t i o n a t L V D T 1 : N = n u m b e r o f l o a d a p p l i c a t i o n s : C L - c y c l i c l o a d s ( p o u n d s ) : A V - p e r c e n t a i r v o i d s : R V = k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : A N G = a g g r e g a t e a n g u l a r i t y : R = c o e f f i c i e n t o f d e t e r m i n a t i o n : a n d S E = s t a n d a r d e r r o r . T h e a d v a n t a g e o f t h e a b o v e p r o c e d u r e i s t h a t t h e e f f e c t s o f e a c h v a r i a b l e c a n b e a n a l y z e d s e p a r a t e l y . T h e d i s a d v a n t a g e s h o w e v e r a r e t h a t : a ) t h e i n t e r a c t i o n b e t w e e n t h e v a r i a b l e s c a n n o t b e a s s e s s e d d u e t o t h e n a t u r e o f t h e p r o c e d u r e : a n d b ) t h e f i n a l e q u a t i o n w a s o f s e c o n d a n d t h i r d o r d e r . s i n c e t h e o b j e c t i v e h e r e i n i s t o o b t a i n a s i m p l e p r o c e d u r e n o t a c o m p l i c a t e d m a t h e m a t i c a l e q u a t i o n , i t w a s c o n c l u d e d t h a t t h e a n a l y s i s m e t h o d w h i c h y i e l d s t h e s i m p l e s t , y e t a c c u r a t e , e q u a t i o n b e e m p l o y e d . C o n s e q u e n t l y , t w o o t h e r s t a t i s t i c a l m e t h o d s w e r e c o n s i d e r e d . I n s p i t e o f t h e a b o v e n o t e d d i s a d v a n t a g e s o f t h i s p r o c e d u r e , s e v e r a l c o n c l u s i o n s c a n b e d r a w n f r o m t h e a n a l y s i s . T h e s e a r e : a ) T h e a r i t h m e t i c o r l o g a r i t h m i c v a l u e s o f t h e i n c r e m e n t o f t h e p l a s t i c d e f o r m a t i o n d u e t o t h e f i r s t l o a d 1 2 5 a p p l i c a t i o n a r e f u n c t i o n s o f t h e p e r c e n t a i r v o i d s a n d t h e m a g n i t u d e o f a p p l i e d c y c l i c l o a d . b ) T h e d i f f e r e n c e i n t h e l o g a r i t h m i c ( n o t a r i t h m e t i c ) v a l u e s o f t h e p l a s t i c d e f o r m a t i o n b e t w e e n a n y s u b s e q u e n t c y c l e s i s d e p e n d e n t o n t h e a g g r e g a t e a n g u l a r i t y a n d t h e k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t . T h e s e f i n d i n g s , i n p a r t , s u p p o r t t h o s e r e p o r t e d b y A l l e n a n d D e e n ( 1 6 ) . T h e i m p l i c a t i o n s o f t h e s e f i n d i n g s ( a s s u m i n g t h a t t h e l a b o r a t o r y b e h a v i o r o f c o m p a c t e d a s p h a l t m i x e s i s s i m i l a r t o t h a t i n t h e f i e l d ) a r e : a ) I n t h e f i e l d , t h e i n c r e m e n t o f t h e p l a s t i c d e f o r m a t i o n a t a p o i n t o n t h e s u r f a c e o f t h e p a v e m e n t c a u s e d b y t h e f i r s t v e h i c l e o f e a c h t y p e o f v e h i c l e ( e . g . , t r u c k s , s e m i , c a r s ) t r a f f i c k i n g t h a t p a v e m e n t s h o u l d b e i n d e p e n d e n t l y m e a s u r e d . b ) T h e e q u i v a l e n t v a l u e o f S f o r a n y p a v e m e n t s e c t i o n c a n b e o b t a i n e d b y k n o w i n g t h e n u m b e r o f l o a d a p p l i c a t i o n s ( N ) a n d b y m e a s u r i n g t h e p l a s t i c d e f o r m a t i o n s ( r u t d e p t h ) a t a n y t w o p o i n t s i n t i m e . c ) T h e e q u i v a l e n t v a l u e o f t h e s l o p e ( S ) i s t h e s a m e f o r a n y o n e p a v e m e n t s e c t i o n t r a f f i c k e d b y t r u c k s , a u t o m o b i l e s , o r a n y m i x e d t r a f f i c . d ) T h e d a m a g e d e l i v e r e d t o a p a v e m e n t s e c t i o n b y d i f f e r e n t t y p e o f v e h i c l e s c a n b e a s s e s s e d b y k n o w i n g t h e p l a s t i c d e f o r m a t i o n c a u s e d b y t h e f i r s t v e h i c l e o f e a c h t y p e o f v e h i c l e t r a f f i c k i n g t h a t 1 2 6 p a v e m e n t s e c t i o n ( i t e m a ) a n d t h e v a l u e o f S ( i t e m b ) . T h e c u m u l a t i v e d a m a g e d u e t o a n y n u m b e r o f p a s s a g e s i s r e l a t e d t o t h e m a g n i t u d e o f C D w h i c h c a n b e e s t i m a t e d u s i n g e q u a t i o n 5 . 5 . I f t h e v a l u e o f I i s n o t m e a s u r e d p r i o r t o o p e n i n g t h e p a v e m e n t s e c t i o n t o m i x e d t r a f f i c t h e n t h e a s s e s s m e n t o f t h e d a m a g e d u e t o d i f f e r e n t v e h i c u l a r t y p e s b e c o m e s v e r y t e d i o u s a n d i n v o l v e d . 5 . 4 . 2 G E N E R A L E Q U A T I O N I n t h i s p r o c e d u r e , u n l i k e t h e s e p a r a t i o n o f v a r i a b l e s , t h e e n t i r e d a t a b a s e i s u t i l i z e d t o c o r r e l a t e t h e d e p e n d e n t a n d a l l i n d e p e n d e n t v a r i a b l e s b a s e d o n a u s e r s p e c i f i e d e q u a t i o n f o r m . T h e o u t c o m e o f t h e a n a l y s i s i n c l u d e s a t a b u l a t i o n o f t h e r e g r e s s i o n c o e f f i c i e n t ( s ) f o r e a c h i n d e p e n d e n t v a r i a b l e , a n d t h e c o e f f i c i e n t s o f d e t e r m i n a t i o n a n d s t a n d a r d e r r o r o f t h e e n t i r e e q u a t i o n . T h e d i s a d v a n t a g e s o f t h i s m e t h o d a r e : a ) S e p a r a t e a n a l y s i s o f t h e r e s u l t i n g e q u a t i o n s h o u l d b e c o n d u c t e d t o d e t e r m i n e t h e m o s t s i g n i f i c a n t v a r i a b l e . b ) A l l v a r i a b l e s , i m p o r t a n t o r n o t , a r e i n c l u d e d i n t h e c o r r e l a t i o n e q u a t i o n . I t e m b a b o v e i m p l i e s t h a t t h e u s e r o f t h e c o m p u t e r p r o g r a m s h o u l d p o s s e s s p r i o r k n o w l e d g e , a n d / o r e s t i m a t e , o f t h e v a r i a b l e s t h a t a f f e c t t h e t e s t r e s u l t s . F u r t h e r , t h e i n c l u s i o n o f o n e o r m o r e v a r i a b l e s i n t h e e q u a t i o n m a y o r 1 2 7 m a y n o t m e a n t h a t t h e v a r i a b l e ( s ) d o a f f e c t t h e t e s t r e s u l t s . I t m a y s i m p l y m e a n t h a t t h e t w o s e t s o f n u m b e r a r e s t a t i s t i c a l l y r e l a t e d a n d t h e p h y s i c a l m e a n i n g o f t h e r e s u l t i n g e q u a t i o n s t i l l n e e d s t o b e e x a m i n e d . N e v e r t h e l e s s , t h e m e t h o d , i n g e n e r a l , y i e l d e d a n e q u a t i o n v e r y s i m i l a r t o t h a t o b t a i n e d i n a n o t h e r m e t h o d " S t e p w i s e C o r r e l a t i o n s " e x c e p t t h a t t h e o r d e r o f t h e v a r i a b l e s i n t h e r e s u l t i n g e q u a t i o n s w e r e d i f f e r e n t . I n t h e g e n e r a l e q u a t i o n m e t h o d , t h e o r d e r o f t h e v a r i a b l e s w e r e t h e s a m e a s t h o s e d i c t a t e d b y t h e u s e r . T h e v a r i a b l e s i n t h e r e s u l t i n g e q u a t i o n f r o m t h e s t e p w i s e c o r r e l a t i o n w e r e l i s t e d i n t h e i r o r d e r o f s i g n i f i c a n c e . T h i s l a s t p r o c e d u r e i s p r e s e n t e d i n t h e n e x t s e c t i o n . 5 . 1 . 3 V s r s m s n C O R R E L A T I O N S I n t h i s p r o c e d u r e , f i r s t , a l l a v a i l a b l e d a t a ( e . g . p e r m a n e n t d e f o r m a t i o n ) a n d t h e c o r r e s p o n d i n g i d e n t i f i e d v a r i a b l e s w e r e f i r s t e n t e r e d i n t o t h e m e m o r y o f a m i c r o c o m p u t e r . T h e d e p e n d e n t a n d i n d e p e n d e n t v a r i a b l e s w e r e t h e n c o r r e l a t e d u s i n g a m u l t i v a r i a t e r e g r e s s i o n p r o g r a m ( S P S S / P C + ) . U n l i k e t h e g e n e r a l e q u a t i o n m e t h o d , t h e i n d e p e n d e n t v a r i a b l e s a r e s e p a r a t e l y e n t e r e d i n s e v e r a l s t e p s . I n t h e f i r s t s t e p , t h e f i r s t v a r i a b l e c o n s i d e r e d f o r e n t r y i n t o t h e e q u a t i o n i s t h e o n e w i t h t h e l a r g e s t p o s i t i v e o r n e g a t i v e c o r r e l a t i o n w i t h t h e d e p e n d e n t v a r i a b l e . A n F t e s t i s t h e n c o n d u c t e d f o r t h e n u l l h y p o t h e s i s t h a t t h e 1 2 8 c o e f f i c i e n t o f t h e e n t e r e d v a r i a b l e i s 0 . T o e v a l u a t e w h e t h e r t h i s v a r i a b l e ( a n d e a c h s u c c e e d i n g v a r i a b l e ) s h o u l d b e u s e d , t h e F v a l u e i s c o m p a r e d t o a n e s t a b l i s h e d c r i t e r i o n ( m i n i m u m v a l u e o f 3 . 8 4 ) . I f t h e v a r i a b l e f a i l s t o m e e t t h i s c r i t e r i o n , t h e p r o c e d u r e t e r m i n a t e s w i t h n o i n d e p e n d e n t v a r i a b l e s i n t h e e q u a t i o n . I f i t p a s s e s t h e c r i t e r i o n , t h e s e c o n d v a r i a b l e i s s e l e c t e d b a s e d o n t h e h i g h e s t p a r t i a l c o r r e l a t i o n . I f i t p a s s e s t h e e n t r y c r i t e r i o n , i t a l s o e n t e r s t h e e q u a t i o n . A f t e r e a c h s t e p o f e n t e r i n g a v a r i a b l e , t h e v a r i a b l e s a l r e a d y i n t h e e q u a t i o n a r e e x a m i n e d f o r r e m o v a l b a s e d o n t h e r e m o v a l c r i t e r i o n ( m i n i m u m v a l u e o f F s t a t i s t i c o f 2 . 7 1 ) . A g a i n , f r o m e a c h s t e p , a n e w r e g r e s s i o n m a t r i x ( r e g r e s s i o n c o e f f i c i e n t s a n d t h e c o e f f i c i e n t s o f d e t e r m i n a t i o n a n d s t a n d a r d e r r o r ) w a s o b t a i n e d . V a r i a b l e s t h a t d i d n o t h a v e a s i g n i f i c a n t l e v e l h i g h e r t h a n 0 . 0 5 p e r c e n t r e l a t i v e t o t h e p r e v i o u s v a r i a b l e w e r e n o t i n c l u d e d i n t h e f i n a l e q u a t i o n . T h e a d v a n t a g e s o f t h i s m e t h o d a r e : . I n e a c h s t e p , t h e v a r i a b l e s i n t h e e q u a t i o n a r e l i s t e d i n t h e o r d e r o f t h e i r s i g n i f i c a n c e a n d a r e g r e s s i o n m a t r i x w a s p r o d u c e d . . T h e i n t e r a c t i o n b e t w e e n v a r i a b l e s c a n b e a s s e s s e d b y c o m p a r i n g t h e v a l u e s o f t h e r e g r e s s i o n c o n s t a n t s f r o m t w o c o n s e c u t i v e r e g r e s s i o n s a n d p a r t i a l c o r r e l a t i o n m a t r i c e s . . T h e m e t h o d p r o d u c e d t h e s i m p l e s t p o s s i b l e , y e t 1 2 9 a c c u r a t e , e q u a t i o n . L i k e t h e g e n e r a l e q u a t i o n m e t h o d a n d a n y o t h e r s t a t i s t i c a l a n a l y s e s , t h e p h y s i c a l m e a n i n g o f t h e r e s u l t i n g c o r r e l a t i o n e q u a t i o n s t i l l h a s t o b e a s s e s s e d b y t h e u s e r . F u r t h e r , a s e n s i t i v i t y a n a l y s i s o f t h e f i n a l e q u a t i o n h a s t o b e c o n d u c t e d t o a s s e s s t h e r a t e o f c h a n g e o f t h e v a l u e s o f t h e d e p e n d e n t v a r i a b l e d u e t o c h a n g e s i n t h e v a l u e s o f e a c h i n d e p e n d e n t v a r i a b l e w i t h a l l o t h e r s h e l d c o n s t a n t . D u e t o t h e a b o v e s t a t e d a d v a n t a g e s , t h i s m e t h o d w a s e m p l o y e d f o r t h e s t a t i s t i c a l a n a l y s i s o f a l l t e s t r e s u l t s . I t s h o u l d b e n o t e d t h a t d u r i n g t h e a n a l y s i s s e v e r a l t r a n s f o r m a t i o n f o r m s ( l o g a r i t h m i c , s e m i - l o g a r i t h m i c , a n d a r i t h m e t i c ) w e r e e m p l o y e d f o r t h e d e p e n d e n t a n d e a c h o f t h e i n d e p e n d e n t v a r i a b l e s . T h e f i n a l s e l e c t i o n o f t h e t r a n s f o r m a t i o n f o r m w a s b a s e d u p o n : . P h y s i c a l i n t e r p r e t a t i o n s o f t h e t e s t r e s u l t s . . S i m p l i c i t y o f t h e r e s u l t i n g e q u a t i o n . . H i g h v a l u e o f t h e c o e f f i c i e n t o f d e t e r m i n a t i o n ( R 2 ) o f t h e r e s u l t i n g e q u a t i o n . . E x a m i n a t i o n o f t h e r e s i d u a l s i n o r d e r t o s a t i s f y t h e a s s u m p t i o n s o f t h e l i n e a r r e g r e s s i o n ( i n d e p e n d e n c y , c o n s t a n t v a r i a n c e , a n d n o r m a l i t y o f r e s i d u a l s ) . I t s h o u l d a l s o b e n o t e d t h a t t h e s e l e c t i o n o f t h e f i n a l f o r m o f t h e d e p e n d e n t v a r i a b l e b a s e d o n l y o n t h e v a l u e o f R 2 m a y b e m i s l e a d i n g . V a r i a t i o n s i n t h e l o g a r i t h m i c v a l u e s o f a n y v a r i a b l e a r e n a t u r a l l y l e s s t h a n t h o s e o f t h e a r i t h m e t i c 1 3 0 v a l u e s . N e v e r t h e l e s s , t h e a n a l y s i s a n d d i s c u s s i o n o f t h e t e s t r e s u l t s a r e p r e s e n t e d i n t h e f o l l o w i n g s e c t i o n . 5 . 5 A N A L X S I S O E P E R M A N E N T D E F O R M A T I O N T h e m e a s u r e d p l a s t i c d e f o r m a t i o n s a t t h e c e n t e r o f e a c h b e a m s p e c i m e n w e r e c o r r e l a t e d t o t h e t e s t , m i x , a n d s p e c i m e n v a r i a b l e s u s i n g a s t e p w i s e l i n e a r m u l t i v a r i a t e r e g r e s s i o n p r o g r a m S P S S / P C + ( 7 7 ) . T h e r e s u l t i n g r e g r e s s i o n m a t r i c e s f o r b e a m s p e c i m e n s t e s t e d a t 7 7 ° F a n d t h o s e a t 4 0 ° F a r e l i s t e d i n t a b l e s 5 . 1 a n d 5 . 2 , r e s p e c t i v e l y . E q u a t i o n s 5 . 6 a n d 5 . 7 a r e t h e c o r r e s p o n d i n g r e g r e s s i o n e q u a t i o n s . F o r 7 7 ° F : l n ( C D l ) = - 7 . 1 4 5 + 0 . 6 4 8 1 x l n ( N ) + 1 . 2 5 0 x l n ( C L ) + 0 . 3 6 1 8 x A V - 0 . 0 0 2 5 7 8 x X V - 0 . 0 8 0 6 4 x A N G ( 5 . 6 ) R 2 = 0 . 9 9 a n d S E - 0 . 0 7 w h e r e : a l l v a r i a b l e s a r e a s b e f o r e . F o r 4 0 ° F : l n ( C D l ) = - 1 . 0 4 9 4 0 + 0 . 2 9 7 0 x l n ( N ) + 0 . 3 8 5 4 x A V + 0 . 2 8 5 5 x l n ( C L ) - 0 . 0 0 1 2 7 0 x K V - 0 . 0 2 1 3 7 x A N G ( 5 . 7 ) 1 3 1 T a b l e 5 . 1 . R e g r e s s i o n m a t r i x f o r t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n s u n d e r t h e l o a g e d a r e a , f l e x u r a l b e a m t e s t s a t 7 7 F . p l a s t i c I n t e r - R e g r e s s i o n c o e f f i c i e n t s o f d e f o r - c e p t t h e i n d e p e n d e n t v a r i a b l e s 2 m a t i o n , R S E C D 1 l n ( N ) l n ( C L ) ( A V ) ( K V ) ( A N G ) ( 1 0 - 1 ) ( 1 0 ' 1 ) ( 1 0 ' 3 ) ( 1 0 ' 2 ) 0 . 8 2 2 6 . 0 2 6 - - - - 0 . 6 3 1 . 0 3 - 6 . 3 1 0 6 . 3 4 1 1 . 2 8 1 - - - 0 . 8 8 0 . 6 0 l n ( C D l ) - 8 . 0 0 6 6 . 4 6 5 1 . 2 4 2 3 . 6 6 5 - - 0 . 9 9 0 . 1 4 - 7 . 4 2 6 6 . 4 7 4 1 . 2 4 6 3 . 6 3 7 - 2 . 4 4 5 - 0 . 9 9 0 . 1 0 - 7 . 1 4 5 6 . 4 8 1 1 . 2 5 0 3 . 6 1 8 - 2 . 5 7 8 - 8 . 0 6 4 0 . 9 9 0 . 0 7 1 n = n a t u r a l l o g : _ 4 C D 1 8 p l a s t i c d e f o r m a t i o n ( i n c h e s x 1 0 ) : N = n u m b e r o f l o a d a p p l i c a t i o n s : C L - c y c l i c l o a d s ( 1 0 0 , 2 0 0 a n d 5 0 0 l b s ) : A V 8 p e r c e n t a i r v o i d s : R V = k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : A N G = a g g r e g a t e a n g u l a r i t y : R = c o e f f i c i e n t o f c o r r e l a t i o n : a n d S E = s t a n d a r d e r r o r . 1 3 2 T a b l e 5 . 2 . R e g r e s s i o n m a t r i x f o r t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n s u n d e r t h e l o a g e d a r e a , f l e x u r a l b e a m t e s t s a t 4 0 F . p l a s t i c I n t e r - R e g r e s s i o n c o e f f i c i e n t s o f d e f o r - c e p t t h e i n d e p e n d e n t v a r i a b l e s 2 m a t i o n , R S E C D 1 l n ( N ) ( A V ) l n ( C L ) ( K V ) ( A N G ) ( 1 0 ' 1 ) ( 1 0 ' 1 ) ( 1 0 ' 1 ) ( 1 0 ' 3 ) ( 1 0 ' 2 ) 1 . 6 9 6 7 2 . 9 3 8 - - - - 0 . 8 2 0 . 4 0 0 . 2 6 8 9 2 . 9 4 5 3 . 4 6 3 - - - 0 . 9 5 0 . 2 0 l n ( C D l ) - 1 . 3 5 7 0 2 . 9 7 0 3 . 6 6 7 2 . 8 6 8 - - 0 . 9 9 0 . 0 7 - l . l 8 9 1 2 . 9 7 0 3 . 9 9 8 2 . 8 6 3 - l . 2 4 5 - 0 . 9 9 0 . 0 5 - 1 . 0 4 9 4 2 . 9 7 0 3 . 8 5 4 2 . 8 5 5 - 1 . 2 7 0 - 2 . 1 3 7 0 . 9 9 0 . 0 5 l n = n a t u r a l l o g : _ 4 C D 1 = p l a s t i c d e f o r m a t i o n ( i n c h e s x 1 0 ) : N = n u m b e r o f l o a d a p p l i c a t i o n s : C L - c y c l i c l o a d s ( 1 0 0 , 2 0 0 a n d 5 0 0 l b s ) : A V = p e r c e n t a i r v o i d s : R V = k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : A N G - a g g r e g a t e a n g u l a r i t y : R - c o e f f i c i e n t o f c o r r e l a t i o n : a n d S E = s t a n d a r d e r r o r . 1 3 3 R 2 = 0 . 9 9 a n d S E - 0 . 0 5 w h e r e : a l l v a r i a b l e s a r e a s b e f o r e . I t s h o u l d b e n o t e d t h a t t h e v a r i a b l e s i n t a b l e s 5 . 1 a n d 5 . 2 , a n d i n e q u a t i o n s 5 . 6 a n d 5 . 7 a r e l i s t e d i n t h e i r o r d e r o f s i g n i f i c a n c e . T h e s e n s i t i v i t y o f t h e a r i t h m e t i c ( n o t l o g a r i t h m i c ) v a l u e s o f C D o f e q u a t i o n s 5 . 6 a n d 5 . 7 w a s d e t e r m i n e d . I t 1 w a s f o u n d t h a t : a ) N i s t h e m o s t s i g n i f i c a n t v a r i a b l e a f f e c t i n g C D 1 a t 7 7 a n d 4 0 ° F . I n c r e a s i n g N f r o m 1 t o 1 0 0 , 0 0 0 c y c l e s c a u s e s a n i n c r e a s e i n t h e a r i t h m e t i c v a l u e o f C D 1 b y a f a c t o r o f 1 7 3 5 a t 7 7 ° F a n d b y a f a c t o r o f 3 0 a t 4 0 ° F . b ) C L i s t h e s e c o n d - m o s t s i g n i f i c a n t v a r i a b l e a f f e c t i n g t h e v a l u e s o f C D a t 7 7 ° F , a n d t h e t h i r d - m o s t 1 s i g n i f i c a n t a t 4 9 ° F . I n c r e a s i n g C L f r o m 1 0 9 t o 5 0 0 p o u n d s c a u s e s a n i n c r e a s e i n C D a t 7 7 ° F b y a f a c t o r 1 o f 7 . 5 a n d a t 4 0 ° F b y a f a c t o r o f 1 . 6 . c ) T h e e f f e c t o f A V o n C D a t 7 7 ° F i s s l i g h t l y l o w e r 1 t h a n t h a t a t 4 0 ° F . I n c r e a s i n g A V f r o m t h r e e t o s e v e n r e s u l t s i n i n c r e a s i n g C D b y f a c t o r s o f 4 . 3 a n d 4 . 7 1 a t 7 7 a n d 4 0 ° F , r e s p e c t i v e l y . d ) T h e e f f e c t o f x v o n o n a t 7 7 ° F i s h i g h e r t h a n t h a t 1 a t 4 0 ° F . I n c r e a s i n g K V f r o m 1 5 9 t o 2 7 0 c e n t i s t o k e s c a u s e s a d e c r e a s e i n C D b y f a c t o r s o f 0 . 7 5 a n d 0 . 8 7 1 1 3 4 a t 7 7 a n d 4 9 ° F , r e s p e c t i v e l y . e ) T h e e f f e c t s o f a g g r e g a t e a n g u l a r i t y o n C D a t 7 7 ° F i s 1 a l s o h i g h e r t h a n t h a t a t 4 0 ° F . U s i n g a n g u l a r ( c r u s h e d ) a g g r e g a t e s i n s t e a d o f r o u n d e d o n e s r e s u l t s i n a d e c r e a s e i n t h e v a l u e o f C D b y f a c t o r s o f 0 . 9 1 l a n d 9 . 9 7 a t 7 7 a n d 4 0 ° F , r e s p e c t i v e l y . I t s h o u l d b e n o t e d t h a t t h e g r a d a t i o n t e r m , w h i c h h a s o n l y t w o l e v e l s , i s e l i m i n a t e d f o r b o t h e q u a t i o n s 5 . 6 a n d 5 . 7 d u r i n g t h e s t e p w i s e p r o c e d u r e b e c a u s e o f i t s i n s i g n i f i c a n t e f f e c t s o n t h e r e s u l t s o f p e r m a n e n t d e f o r m a t i o n . T h i s f i n d i n g i s c o n s i s t e n t w i t h t h a t r e p o r t e d b y K a l c h e f f , e t . a l . ( 4 6 ) . T h e a b o v e o b s e r v a t i o n s i m p l y t h a t p l a s t i c d e f o r m a t i o n ( r u t p o t e n t i a l ) o f c o m p a c t e d a s p h a l t m i x e s i s a f u n c t i o n o f t h e n u m b e r o f c y c l e , t h e m a g n i t u d e o f a p p l i e d c y c l i c l o a d , t h e p e r c e n t a i r v o i d s , t h e k i n e m a t i c v i s c o s i t y o f a s p h a l t , a n d t h e a g g r e g a t e a n g u l a r i t y a n d i t c a n b e r e d u c e d b y u s i n g a l o w e r p e r c e n t a i r v o i d s i n t h e m i x a n d a h i g h e r v i s c o s i t y g r a d e d a s p h a l t . F u r t h e r , h e a v y v e h i c l e s c a u s e h i g h e r r u t p o t e n t i a l ( i t e m b ) a n d , f r o m e q u a t i o n s 5 . 6 a n d 5 . 7 , i t c a n b e a l s o n o t e d t h a t a l o w e r t e m p e r a t u r e r e s u l t s i n l e s s r u t t i n g . T h e s e t e s t t e m p e r a t u r e e f f e c t s o n t h e p e r m a n e n t d e f o r m a t i o n a r e a l s o r e p o r t e d i n t h e l i t e r a t u r e ( 4 0 , 4 2 , 4 5 , 4 7 , 5 0 , 5 3 , 5 5 , 7 3 , 7 6 , 7 8 , 7 9 , 8 3 , 8 6 ) . I t s h o u l d b e n o t e d t h a t t h e v a l u e s o f t h e c o e f f i c i e n t o f d e t e r m i n a t i o n o f e q u a t i o n s 5 . 6 a n d 5 . 7 a r e a r t i f i c i a l l y h i g h 1 3 5 b e c a u s e t h e y r e l a t e t o t h e c o r r e l a t i o n b e t w e e n t h e l o g a r i t h m i c v a l u e s o f t h e d e p e n d e n t a n d i n d e p e n d e n t v a r i a b l e s . V a r i a t i o n s i n t h e a r i t h m e t i c v a l u e s a r e m u c h h i g h e r . T h i s p o i n t c a n b e i l l u s t r a t e d b y c o n s i d e r i n g t h e r e g r e s s i o n m a t r i x i n t a b l e 5 . 1 . T h e v a l u e o f t h e c o e f f i c i e n t o f d e t e r m i n a t i o n ( R 2 ) i n t h e t h i r d s t e p o f t h e a n a l y s i s ( i n w h i c h C D 1 i s c o r r e l a t e d t o N , C L , a n d A V ) i s 0 . 9 9 . T h i s v a l u e o f R 2 m a y i n c o r r e c t l y i n d i c a t e t h a t t h e o t h e r t w o v a r i a b l e s ( R V a n d A N G ) h a v e n o s i g n i f i c a n t e f f e c t s o n C D 1 . A r i t h m e t i c v a l u e s o f C D 1 e s t i m a t e d u s i n g t h e t h i r d s t e p o f t a b l e 5 . 1 v a r i e d b y a s m u c h a s t h i r t y - t w o p e r c e n t f r o m t h e m e a s u r e d v a l u e s . I t i s c l e a r t h a t a v a l u e o f R 2 o f 0 . 9 9 d o e s n o t r e f l e c t t h i s v a r i a t i o n . T h e a c c u r a c y o f e q u a t i o n s 5 . 6 a n d 5 . 7 w a s e x a m i n e d r e l a t i v e t o t h e m e a s u r e d v a l u e s o f C 0 1 . I t w a s f o u n d t h a t t h e m a x i m u m d i f f e r e n c e s b e t w e e n t h e a r i t h m e t i c v a l u e s o f C D 1 e s t i m a t e d u s i n g e q u a t i o n s 5 . 6 a n d 5 . 7 a n d t h e m e a s u r e d v a l u e s a r e 7 a n d 9 p e r c e n t , r e s p e c t i v e l y . A f t e r d e t e r m i n i n g e q u a t i o n s 5 . 6 a n d 5 . 7 , t h e t e s t r e s u l t s a t 7 7 a n d 4 0 ° F w e r e c o m b i n e d i n o n e a n a l y s i s w h i c h i n c l u d e d t h e t e s t t e m p e r a t u r e a s o n e o f t h e i n d e p e n d e n t v a r i a b l e s . I n t h i s a n a l y s i s , i t w a s a s s u m e d t h a t a s e m i — l o g a r i t h m i c r e l a t i o n s h i p e x i s t s b e t w e e n C D 1 a n d t h e t e s t t e m p e r a t u r e s . T h i s a s s u m p t i o n w a s n e c e s s a r y b e c a u s e o n l y t w o v a l u e s ( 7 7 a n d 4 0 ° ) o f t h e t e s t t e m p e r a t u r e w e r e u s e d i n t h i s s t u d y . T a b l e 5 . 3 s u m m a r i z e s t h e r e s u l t i n g r e g r e s s i o n 1 3 6 m a t r i x o f t h i s a n a l y s i s . E q u a t i o n 5 . 8 i s t h e c o r r e s p o n d i n g e q u a t i o n . l n ( C D l ) = - 8 . 5 4 3 + 0 . 5 4 5 9 x l n ( N ) + 0 . 0 4 1 1 0 x T T + 1 . 0 3 9 9 x l n ( C L ) + 0 . 3 6 5 0 x A V - 0 . 0 0 1 9 5 0 x K V - 0 . 0 7 4 1 7 x A N G ( 5 . 8 ) R 2 - 0 . 9 3 a n d $ 8 - 0 . 4 5 w h e r e : T T = t e s t t e m p e r a t u r e : a n d a l l v a r i a b l e s a r e a s b e f o r e . I t c a n b e n o t e d t h a t t h e d i s a d v a n t a g e o f t h i s a n a l y s i s i s t h e l o s s o f a c c u r a c y o f t h e e q u a t i o n r e l a t i v e t o e q u a t i o n s 5 . 6 a n d 5 . 7 . T h e r e a s o n f o r t h i s i s t h a t t h e e f f e c t s o f t h e t e s t a n d s p e c i m e n v a r i a b l e s ( A V , C L , R V , a n d A N G ) a r e a l s o d e p e n d e n t o n t h e t e s t t e m p e r a t u r e . T h e s e e f f e c t s c a n o n l y b e m o d e l e d b y u s i n g a c o m p l e x n o n l i n e a r t r a n s f o r m a t i o n w h i c h i s n o t p r a c t i c a l . N e v e r t h e l e s s , t h e m a x i m u m a r i t h m e t i c d i f f e r e n c e b e t w e e n t h e e s t i m a t e d v a l u e s o f C D 1 u s i n g e q u a t i o n 5 . 8 a n d t h e m e a s u r e d v a l u e s w e r e 3 0 p e r c e n t f o r t h e 7 7 ° F t e s t s a n d 4 5 p e r c e n t f o r t h e 4 0 ° F t e s t s . T h e s e d i f f e r e n c e s w e r e o n l y 7 a n d 9 p e r c e n t f o r e q u a t i o n s 5 . 6 a n d 5 . 7 , r e s p e c t i v e l y . H e n c e , i t i s c o n c l u d e d h e r e i n t h a t e q u a t i o n s 5 . 6 a n d 5 . 7 a r e m o r e r e l i a b l e t h a n e q u a t i o n 5 . 8 a n d t h e r e f o r e t h e y w e r e u s e d t o s t u d y v a r i a t i o n s o f t h e v a l u e s o f C D 1 d u e t o v a r i a t i o n s i n t h e v a l u e s o f t h e T a b l e 5 . 3 R e g r e s s i o n m a t r i x f o r t h e c u m u l a t i v e p l a s t i c 1 3 7 d e f o r m a t i o n s u n d e r t h e l o a d e d a r e s , f l e x u r a l b e a n t e s t s a t 7 7 a n d 4 0 F . p l a s t i c I n t e r - R e g r e s s i o n c o e f f i c i e n t s o f d e f o r - c e p t t h e i n d e p e n d e n t v a r i a b l e s 2 m a t i o n , R S E c 1 3 1 l n ( N ) ' r ' r l n ( C L ) ( A V ) ( R V ) ( A N G ) ( 1 0 " ) ( 1 0 ' 2 ) ( 1 0 ' 1 > ( 1 0 ' 3 ) ( 1 0 ' 2 ) 1 . 5 9 7 4 . 6 3 8 - - - - - 0 . 4 5 1 . 2 3 - 2 . 3 2 4 5 . 1 4 5 5 . 0 1 7 - - - - 0 . 6 4 0 . 9 9 l n ( C D l ) - 8 . 0 5 8 5 . 3 5 6 4 . 8 7 3 1 . 0 5 7 - - - 0 . 8 2 0 . 7 1 - 9 . 2 3 2 5 . 4 5 1 4 . 0 8 8 1 . 0 3 6 3 . 6 8 4 - - 0 . 9 2 0 . 4 6 - 8 . 8 3 9 5 . 4 5 5 4 . 0 9 6 1 . 0 3 6 3 . 7 0 8 - 1 . 7 0 5 - 0 . 9 3 0 . 4 5 - 8 . 5 4 3 5 . 4 5 9 4 . 1 1 0 1 . 0 4 0 3 . 6 5 0 - 1 . 9 5 0 - 7 . 4 1 7 0 . 9 3 0 . 4 5 l n = n a t u r a l l o g : _ 4 0 0 1 = p l a s t i c d e f o r m a t i o n ( i n c h e s x 1 0 ) 3 N - n u m b e r o f l o a d a p p l i c a t i o n s : T T - t e s t t e m p e r a t u r e ( F ) : C L = c y c l i c l o a d s ( 1 0 0 , 2 0 0 a n d 5 0 0 l b s ) : A V - p e r c e n t a i r v o i d s ; K V - k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) ; A 5 6 8 a g g r e g a t e a n g u l a r i t y : R - c o e f f i c i e n t o f c o r r e l a t i o n : a n d S E s t a n d a r d e r r o r . 1 3 8 i n d e p e n d e n t v a r i a b l e s . s i m i l a r e q u a t i o n s w e r e a l s o o b t a i n e d f o r p l a s t i c d e f o r m a t i o n s m e a s u r e d a t d i f f e r e n t l a t e r a l d i s t a n c e s f r o m t h e e d g e o f t h e l o a d e d a r e a s ( C D 2 , C D 3 , a n d C D 4 ) . I t w a s n o t e d , h o w e v e r , t h a t e x p r e s s i n g t h e s e m e a s u r e m e n t s ( C D 2 , C D 3 , a n d C D 4 ) i n t e r m s o f C D a n d t h e 1 l a t e r a l d i s t a n c e f r o m t h e e d g e o f t h e l o a d e d a r e a w o u l d p r o v i d e a b e t t e r u n d e r s t a n d i n g o f t h e p l a s t i c s h a p e ( b a s i n ) o f t h e b e a m s p e c i m e n s . I t s h o u l d b e n o t e d t h a t t h e p l a s t i c b a s i n o f t h e b e a m s p e c i m e n i s a n a l o g o u s t o t h e s h a p e o f t h e r u t c h a n n e l o f a p a v e m e n t s e c t i o n . T h e a n a l y s i s o f t h e p l a s t i c b a s i n i s p r e s e n t e d i n t h e n e x t s e c t i o n . 5 . 6 A N A L X S I S O F P E R M A N E N T D E F O R M A T I O N U S I N G D E F L E C T I O N B A S I N T h e p l a s t i c b a s i n o f e a c h b e a m s p e c i m e n w a s m o d e l e d u s i n g t h e f o l l o w i n g e q u a t i o n : C D ( X ) = ( C D 1 ) ( E X P ( A x x B ) ) ( 5 . 9 ) w h e r e : C D ( X ) c u m u l a t i v e p l a s t i c d e f o r m a t i o n o f a p o i n t o n t h e s u r f a c e o f t h e b e a m l o c a t e d a t d i s t a n c e x f r o m t h e e d g e o f t h e l o a d e d a r e a : X a l a t e r a l d i s t a n c e f r o m t h e e d g e o f t h e l o a d e d a r e a , ( s t , 4 , a n d 6 . 0 6 i n c h ) : E X P - e x p o n e n t i a l f u n c t i o n : A a n d B = p a r a m e t e r s o f t h e p l a s t i c b a s i n : a n d 1 3 9 a l l e l s e a r e a s b e f o r e . T h e A a n d 8 p a r a m e t e r s o f e q u a t i o n 5 . 9 m a y b e r e g a r d e d a s d e s c r i p t o r s o f t h e d i s t r i b u t i o n o f p l a s t i c d e f l e c t i o n f r o m t h e e d g e o f t h e l o a d e d a r e a . F o r e x a m p l e , i f B i s e q u a l t o t w o , e q u a t i o n 5 . 9 r e s e m b l e s t h e n o r m a l d i s t r i b u t i o n w i t h A b e i n g p r o p o r t i o n a l t o t h e v a r i a n c e . T h u s , a s m i g h t b e e x p e c t e d , c h a n g e s i n t h e v a l u e s o f A a n d B o f a b e a m s p e c i m e n ( o r i n t h i s s e n s e , o f a p a v e m e n t s e c t i o n ) r e f l e c t c h a n g e s i n t h e d i s t r i b u t i o n o f t h e p l a s t i c d e f l e c t i o n s ( s h a p e o f t h e r u t d e p t h o r t h e s h a p e o f t h e p l a s t i c d e f l e c t i o n b a s i n ) a n d c o n s e q u e n t l y , t h e d i s t r i b u t i o n o f t h e d a m a g e ( d i s t r e s s ) d e l i v e r e d t o t h a t s p e c i m e n o r p a v e m e n t s e c t i o n . F u r t h e r , t h e s h a p e o f t h e p l a s t i c d e f l e c t i o n b a s i n c a n b e g e n e r a l l y d e f i n e d b y i t s w i d t h ( e x t e n t o f l a t e r a l s p r e a d f r o m t h e e d g e o f t h e l o a d e d a r e a ) a n d i t s d e p t h . T h e w i d t h o f t h e b a s i n ( t h e l a t e r a l s p r e a d ) m a y b e t h o u g h t o f a s a m e a s u r e o f t h e s t o r e d e n e r g y a n d i t s l a t e r a l a t t e n u a t i o n i n t h e b e a m . F o r e x a m p l e , n a r r o w e r a n d d e e p e r b a s i n s i n d i c a t e c o n c e n t r a t i o n o f e n e r g y i n t h e v i c i n i t y o f t h e l o a d e d a r e a . T h e s e o b s e r v a t i o n s g a v e r i s e t o t h e u s e o f t h e A a n d 8 p a r a m e t e r s a s i n d i c a t o r s o f t h e b e a m p e r f o r m a n c e u n d e r t h e l o a d . F o r e a c h b e a m a n d f o r d i f f e r e n t n u m b e r o f l o a d a p p l i c a t i o n s , c l o s e d f o r m s o l u t i o n s o f e q u a t i o n 5 . 9 w e r e o b t a i n e d a n d t h e v a l u e s o f t h e p a r a m e t e r s A a n d B w e r e 1 4 0 c a l c u l a t e d . T h e s e v a l u e s , f o r a l l b e a m s p e c i m e n s , a r e t a b u l a t e d i n A p p e n d i x C . I t s h o u l d b e n o t e d t h a t e a c h a n d s o l u t i o n w a s b a s e d o n t h e m e a s u r e d v a l u e s o f C D C D 1 ’ 2 ' C D 3 a n d t h e i r c o r r e s p o n d i n g l a t e r a l d i s t a n c e s o f 0 . - , 2 . - , a n d 4 . - i n , r e s p e c t i v e l y . T h e v a l u e s o f C D 4 w e r e n o t u s e d b e c a u s e , a t l o w n u m b e r o f l o a d a p p l i c a t i o n s , t h e s e v a l u e s w e r e s m a l l a n d i n t h e r a n g e o f t h e a c c u r a c y o f t h e L V D T . T h e v a l u e s o f t h e p a r a m e t e r s A a n d B w e r e t h e n s t a t i s t i c a l l y c o r r e l a t e d t o t h e n u m b e r o f l o a d a p p l i c a t i o n s a n d t o t h e t e s t , m i x a n d s p e c i m e n v a r i a b l e s . T h e r e g r e s s i o n m a t r i c e s f o r A a n d B a t 7 7 ° F a r e s u m m a r i z e d i n t a b l e s 5 . 4 a n d 5 . 5 , r e s p e c t i v e l y . T h e r e g r e s s i o n m a t r i c e s f o r A a n d B a t 4 0 ° F a r e s u m m a r i z e d i n t a b l e s 5 . 6 a n d 5 . 7 , r e s p e c t i v e l y . E q u a t i o n s 5 . 1 0 t h r o u g h 5 . 1 3 a r e t h e c o r r e s p o n d i n g e q u a t i o n s . F o r 7 7 ° F : A = - 0 . 3 2 9 8 - 0 . 0 7 0 9 3 X A V - 0 . 0 0 9 6 6 0 X l n ( N ) - 0 . 0 0 0 0 4 0 8 2 x C L + 0 . 0 0 4 3 1 9 x l n ( K V ) ( 5 . 1 0 ) 2 R = 0 . 9 9 , a n d S E a 0 . 0 6 B = 0 . 2 6 5 0 + 0 . 0 4 0 4 1 x l n ( N ) + 0 . 0 0 0 2 9 6 9 x C L - 0 . 0 0 0 1 4 5 8 X K V + 0 . 0 0 1 7 5 6 x A V - 0 . 0 0 0 5 3 3 0 x A N G ( 5 . 1 1 ) 1 4 1 T a b l e 5 . 4 R e g r e s s i o n m a t r i x f o r t h e p a r a m e t e r A o f t h e p l a s t i c d e f l e c t g o n b a s i n o f t h e s u r f a c e o f t h e b e a m a t 7 7 P . p a r a - I n t e r - m e t e r c e p t R e g r e s s i o n c o e f f i c i e n t s o f t h e i n d e p e n d e n t v a r i a b l e s A R 2 S E A V l n ( N ) C L l n ( K V ) A N G ( 1 0 ' 1 ) ( 1 0 ’ 2 ) ( 1 0 " ) ( 1 0 ’ s ) ( 1 0 " ) - 3 . 9 8 0 - 7 . 0 3 8 - - - - 0 . 9 6 0 . 0 2 A - 3 . 1 8 2 - 7 . 1 1 1 - 9 . 3 9 0 - - - 0 . 9 9 0 . 0 1 ' 3 . 0 6 1 ' 7 . 0 9 5 - 9 . 6 5 1 ' 4 . 0 6 5 - - 0 . 9 9 0 . 0 6 ' 3 . 2 9 8 ' 7 . 0 9 3 ' 9 . 6 6 0 “ 4 . 0 8 2 4 . 3 1 9 - 0 . 9 9 0 . 0 6 T a b l e 5 . 5 R e g r e s s i o n m a t r i x f o r t h e p a r a m e t e r B o f t h e p l a s t i c d e f l e c t a o n b a s i n o f t h e s u r f a c e o f t h e b e a m a t 7 7 P . p a r a - I n t e r - m e t e r c e p t R e g r e s s i o n c o e f f i c i e n t s o f t h e i n d e p e n d e n t v a r i a b l e s B R 2 S E l n ( N ) C L x v A V A N G ( 1 0 ' 1 ) ( 1 0 ' 2 ) ( 1 0 " ) ( 1 0 " ) ( 1 0 ’ 3 ) ( 1 0 " ) 3 . 3 3 2 3 . 8 3 3 - - - - 0 . 7 4 0 . 0 5 B 2 . 3 7 5 4 . 0 2 8 2 . 9 6 3 - - - 0 . 9 9 0 . 1 0 2 . 7 2 8 4 . 0 3 4 2 . 9 7 4 - l . 4 7 6 - - 0 . 9 9 0 . 0 7 2 . 6 3 1 4 . 0 4 1 2 . 9 6 8 ' 1 . 4 5 0 1 . 7 6 6 - 0 . 9 9 0 . 0 6 2 . 6 5 0 4 . 0 4 1 ‘ 2 . 9 6 9 - 1 . 4 5 8 1 . 7 5 6 - 5 . 3 3 0 0 . 9 9 0 . 0 6 l n - n a t u r a l l o g : _ C D 1 = p l a s t i c d e f o r m a t i o n ( i n c h e s x 1 0 n u m b e r o f l o a d a p p l i c a t i o n s : c y c l i c l o a d s ( 1 0 0 , 2 0 0 a n d 5 0 0 l b s ) : p e r c e n t a i r v o i d s : k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : a g g r e g a t e a n g u l a r i t y : c o e f f i c i e n t o f c o r r e l a t i o n : a n d s t a n d a r d e r r o r . N C L A V K V G 2 5 S E 4 ) ; 1 4 2 T a b l e 5 . 6 R e g r e s s i o n m a t r i x f o r t h e p a r a m e t e r A o f t h e p l a s t i c d e f l e c t g o n b a s i n o f t h e s u r f a c e o f t h e b e a m a t 4 0 P . p a r a - I n t e r - R e g r e s s i o n c o e f f i c i e n t s o f m e t e r c e p t t h e i n d e p e n d e n t v a r i a b l e s 2 A R S E A N G l n ( N ) l n ( K V ) A v C L ( 1 0 ' 1 ) ( 1 0 ’ 2 ) ( 1 0 ' 1 ) ( 1 0 ' 1 ) - 1 . 7 7 9 3 . 0 4 3 7 - - - - 0 . 1 8 0 . 5 6 A - l . 0 9 6 3 . 5 8 4 - 8 . 7 8 5 - - - 0 . 3 3 0 . 5 0 - 5 . 3 3 6 4 . 7 2 0 - 8 . 8 1 1 7 . 1 1 3 - - 0 . 3 8 0 . 4 9 - 4 . 9 7 3 2 . 8 0 6 - 1 0 . 1 9 3 9 . 8 9 0 - 2 . 6 7 8 - 0 . 4 2 0 . 4 7 T a b l e 5 . 7 R e g r e s s i o n m a t r i x f o r t h e p a r a m e t e r B o f t h e p l a s t i c d e f l e c t i o n b a s i n o f t h e s u r f a c e o f t h e b e a m a t 4 0 P . p a r a - I n t e r - R e g r e s s i o n c o e f f i c i e n t s o f m e t e r c e p t t h e i n d e p e n d e n t v a r i a b l e s 2 B R S E A N G C L A V l n ( K V ) l n ( N ) ( 1 0 ' 1 ) ( 1 0 " ) ( 1 0 ' 1 ) - 0 . 0 4 1 1 . 7 2 3 - - - - 0 . 0 3 0 . 7 9 B 0 . 1 6 4 1 . 8 0 5 - 9 . 0 3 3 - - - 0 . 0 7 0 . 7 7 - 1 . 3 6 6 3 . 7 6 0 - 9 . 1 0 2 2 . 1 4 4 - - 0 . 0 9 0 . 7 7 l n = n a t u r a l l o g : _ 4 C D 1 = p l a s t i c d e f o r m a t i o n ( i n c h e s x 1 0 ) : N a n u m b e r o f l o a d a p p l i c a t i o n s : C L a c y c l i c l o a d s ( 1 0 0 , 2 0 0 a n d 5 0 0 l b s ) : A V = p e r c e n t a i r v o i d s : R V = k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : A y G - a g g r e g a t e a n g u l a r i t y : R = c o e f f i c i e n t o f c o r r e l a t i o n : a n d S E 8 s t a n d a r d e r r o r . 1 4 3 R 2 = 0 . 9 9 , a n d S E = 0 . 0 6 F o r 4 0 ° F : A = - 4 . 9 7 3 + 0 . 2 8 0 6 x A N G - 0 . 1 0 1 9 3 x l n ( N ) + 0 . 9 8 9 0 x l n ( K V ) - 0 . 2 6 7 8 x C L ' ( 5 . 1 2 ) R 2 = 0 . 4 2 , a n d S E = 0 . 4 7 B = - 1 . 3 6 6 + 0 . 3 7 6 0 x A N G - 0 . 0 0 0 9 1 0 2 x C L + 0 . 2 1 4 4 x A V ( 5 . 1 3 ) R 2 = 0 . 0 9 , a n d S E = 0 . 7 7 w h e r e : a l l v a r i a b l e s a r e a s b e f o r e . E x a m i n a t i o n s o f t h e v a l u e s o f t h e r e g r e s s i o n c o e f f i c i e n t s a n d t h e c o e f f i c i e n t o f d e t e r m i n a t i o n s o f e q u a t i o n s 5 . 1 0 t h r o u g h 5 . 1 3 i n d i c a t e d t h a t : . T h e r e i s l i t t l e o r n o c o r r e l a t i o n b e t w e e n t h e v a l u e s o f A a n d B a t 4 0 ° F a n d t h e s p e c i m e n a n d t e s t v a r i a b l e s . T h e v a l u e s o f A a n d B s e e m t o b e r a n d o m a n d i n c o n s i s t e n t . T h e r e a s o n f o r t h i s i s t h a t , f o r m o s t 1 4 4 t e s t s a t 4 0 ° F , t h e v a l u e s o f t h e m e a s u r e d p l a s t i c d e f o r m a t i o n u n d e r t h e c e n t e r o f t h e l o a d e d a r e a w e r e v e r y s m a l l a n d t h o s e o f C D 2 a n d C D 3 w e r e w i t h i n t h e a c c u r a c y o f t h e L V D T ( s ) ( 0 . 0 0 0 1 - i n . ) . P l a s t i c d e f o r m a t i o n s o f b e a m s p e c i m e n s t e s t e d u s i n g 1 0 0 , o r 2 0 0 p o u n d s c y c l i c l o a d w e r e l e s s t h a n 0 . 0 0 0 4 - i n u n d e r t h e p o i n t o f l o a d a p p l i c a t i o n a n d l e s s t h a n 0 . 0 0 0 1 - i n a t a p o i n t 4 - i n a w a y . T h e s h a p e o f t h e p l a s t i c d e f l e c t i o n b a s i n a t 7 7 ° F c h a n g e s w i t h i n c r e a s i n g n u m b e r o f l o a d a p p l i c a t i o n s . A t t h e s t a r t o f t h e t e s t , t h e b a s i n i s s h a l l o w a n d f l a t : i t g e t s d e e p e r a n d s t e e p e r a s t h e n u m b e r o f l o a d a p p l i c a t i o n s i n c r e a s e s ( s e e f i g u r e 4 . 4 . ) T h e e f f e c t o f N o n t h e v a l u e s o f B a t 7 7 ° F i s h i g h e r a n d o p p o s i t e t o i t s e f f e c t o n A . I n c r e a s i n g N f r o m 1 t o 1 0 0 , 0 0 0 c y c l e s c a u s e s a d e c r e a s e i n t h e v a l u e o f A b y 0 . 1 1 1 2 , a n d a n i n c r e a s e i n t h e v a l u e o f B b y 0 . 4 6 5 2 . A t 7 7 ° F , t h e e f f e c t s o f A V a n d R V o n t h e v a l u e s o f t h e p a r a m e t e r A a r e h i g h e r t h a n t h o s e o n B . I n d e e d , A V i s t h e m o s t s i g n i f i c a n t v a r i a b l e a f f e c t i n g A w h i l e i t i s t h e f o u r t h - m o s t s i g n i f i c a n t f o r B . I n c r e a s i n g t h e v a l u e s o f A V a n d C L c a u s e d e e p e r a n d s t e e p e r d e f l e c t i o n b a s i n s . I n c r e a s i n g t h e v a l u e s o f R V a n d A N G r e s u l t i n s h a l l o w e r a n d f l a t t e r d e f l e c t i o n b a s i n s . 1 4 5 T h e s i g n i f i c a n c e o f t h e a b o v e o b s e r v a t i o n s a n d t h e v a l u e s o f t h e p a r a m e t e r s A a n d B c a n b e i l l u s t r a t e d w i t h t h e a i d o f f i g u r e 5 . 1 3 . T h e f i g u r e s h o w s s c h e m a t i c r e p r e s e n t a t i o n o f t y p i c a l p l a s t i c d e f l e c t i o n b a s i n s w i t h c o r r e s p o n d i n g r e l a t i v e v a l u e s o f t h e n u m b e r o f l o a d a p p l i c a t i o n s ( N ) a n d t h e r e l a t i v e v a l u e s o f t h e A a n d B p a r a m e t e r s . I t c a n b e s e e n t h a t h i g h e r v a l u e s o f N c a u s e h i g h e r v a l u e s o f t h e B p a r a m e t e r , s m a l l e r v a l u e s o f t h e A p a r a m e t e r , a n d d e e p e r b a s i n s . I m p l i c i t i n t h i s i s t h a t a h i g h e r N c a u s e s a m o r e r a p i d l a t e r a l a t t e n u a t i o n o f e n e r g y , a n d a d e e p e r p l a s t i c d e f l e c t i o n b a s i n . T h u s , a t t h e h i g h e r n u m b e r o f l o a d a p p l i c a t i o n s , m o r e w o r k i s d o n e t o t h e b e a m i n t h e v i c i n i t y o f t h e l o a d e d a r e a . C o n s e q u e n t l y , g r e a t e r d i s t r e s s m i g h t b e e x p e c t e d t o o c c u r w i t h f e w e r n u m b e r o f l o a d a p p l i c a t i o n s . V i s u a l o b s e r v a t i o n s o f b e a m s p e c i m e n s s u b j e c t e d t o c y c l i c l o a d i n g t e n d t o c o n f i r m t h i s . S p e c i m e n s w h i c h s h o w e d s m a l l e r v a l u e s o f A a n d h i g h e r v a l u e s o f B f a i l e d a t a f e w e r n u m b e r o f l o a d a p p l i c a t i o n s . T h e r e a s o n f o r t h i s i s t h a t , f o r t h e s a m e v a l u e o f C D a s t e e p e r p l a s t i c d e f l e c t i o n b a s i n 1 . i m p l i e s a h i g h e r t e n s i l e p l a s t i c s t r a i n . T h e h i g h e r t h e c u m u l a t i v e t e n s i l e p l a s t i c s t r a i n , t h e c l o s e r t h e b e a m a p p r o a c h e s f a t i g u e f a i l u r e . I n d e e d , d u r i n g t h e t e s t s a t 7 7 ° F , i t w a s n o t i c e d t h a t h a i r - s i z e c r a c k s w e r e i n i t i a t e d w h e n t h e v a l u e o f C D 2 i s a b o u t 3 0 p e r c e n t o f C D 1 o r w h e n t h e v a l u e o f C D 1 a p p r o a c h e s 0 . 4 5 i n c h e s . T h e s e v a l u e s w e r e 7 p e r c e n t a n d 0 . 1 - i n f o r t h e 4 0 ° F t e s t s . S h o r t l y t h e r e a f t e r , 3 0 3 2 5 6 7 6 5 4 , 6 6 8 . 7 5 0 . 1 - 0 n _ 4 0 9 0 9 4 0 2 6 0 6 5 , 9 6 0 0 . 1 - 0 z 2 1 0 2 1 0 8 6 6 0 . 5 0 . 0 1 - 0 0 . 1 t n e r e f f i d r o f d n a F ° ) h c n i ( p i r t s g 7 n 7 i d a o l e h t f o t a . s n n e o m i i t c a e c p i s l p e p m g a a d e e b d e e h h t t m f o o a o l f o r n e i b s m a u b n r f e c n a t s i D 0 1 1 8 1 n o t a m e x o g a a Z < fl / / / < n M l / z < J - . . 2 l . 6 F i g u r e 5 . 1 3 S c h e m a t i c r e p r e s e n t a t i o n o f t h e p l a s t i c d e f l e c t i o n 1 4 6 1 4 7 t h e b e a m f a i l e d . T h e d e f i n i t i o n o f t h e f a t i g u e l i f e o f t h e b e a m s p e c i m e n s p r e s e n t e d i n s e c t i o n 5 . 6 w a s b a s e d u p o n t h e s e o b s e r v a t i o n s . I t s h o u l d b e n o t e d t h a t t h e v a l u e s o f 3 0 a n d 7 p e r c e n t a r e j u s t a p p r o x i m a t e v a l u e s b a s e d u p o n v i s u a l o b s e r v a t i o n s . F o r e x a m p l e , t h e t h i r t y p e r c e n t v a l u e c o u l d b e a f u n c t i o n o f t h e m i x v a r i a b l e s s u c h a s K V , A V a n d o t h e r s . I n d e e d , t h e o n l y d i f f e r e n c e b e t w e e n t e s t s c o n d u c t e d a t 4 0 ° F a n d 7 7 ° F i s t h e k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t b i t u m e n . T h i s s c e n a r i o i n d i c a t e s t h a t l o w e r v i s c o s i t y a s p h a l t s y i e l d s m a l l e r v a l u e s f o r t h e r a t i o C D z / C D l . T h e f u n c t i o n a l r e l a t i o n s h i p b e t w e e n t h e v i s c o s i t y o f t h e a s p h a l t a n d t h e v a l u e o f t h e d e f l e c t i o n r a t i o h o w e v e r , c o u l d n o t b e d e t e r m i n e d i n t h i s s t u d y . T h e a b o v e s c e n a r i o i m p l i e s t h a t t h e f a t i g u e l i f e o f t h e b e a m s p e c i m e n c a n b e e s t i m a t e d u s i n g e i t h e r e q u a t i o n s 5 . 6 a n d 5 . 7 o r e q u a t i o n s 5 . 9 , 5 . 1 0 a n d 5 . 1 1 . E v e n t u a l l y , o n l y o n e f a t i g u e l i f e w i l l b e e s t i m a t e d , t h e o n e t h a t c o r r e s p o n d s t o t h e s m a l l e s t o f t h e n u m b e r o f l o a d a p p l i c a t i o n s o b t a i n e d f r o m e q u a t i o n s 5 . 6 a n d 5 . 7 o r e q u a t i o n s 5 . 9 , 5 . 1 0 , a n d 5 . 1 1 . E q u a t i o n s 5 . 1 2 a n d 5 . 1 3 w e r e n o t u s e d b e c a u s e o f t h e i r p o o r a c c u r a c y . T h e p r o c e d u r e s t o e s t i m a t e t h e f a t i g u e l i f e a r e e x p l a i n e d i n t h e f o l l o w i n g s e c t i o n . 5 . 7 F A T I G U E L I F E T r a d i t i o n a l l y , s t r e s s - o r s t r a i n - c o n t r o l l e d f l e x u r a l t e s t s a r e c o n d u c t e d u s i n g s i m p l y s u p p o r t e d b e a m s f l e x e d i n 1 4 8 o n e o r t w o d i r e c t i o n s . B e a m t h e o r y i s t h e n u s e d t o c a l c u l a t e t h e s t i f f n e s s o f t h e b e a m a s s u m i n g t h a t t h e n e u t r a l a x i s o f t h e b e a m ( t h e a x i s a l o n g w h i c h t h e s t r a i n i s z e r o ) i s l o c a t e d a t m i d - h e i g h t o f t h e b e a m . I n a d d i t i o n , f a t i g u e l i f e i s d e f i n e d b y t h e n u m b e r o f l o a d a p p l i c a t i o n s a t w h i c h t h e s t i f f n e s s o f t h e b e a m d e c r e a s e s t o h a l f o f i t s o r i g i n a l v a l u e ( 2 6 ) . I n t h i s s t u d y , b e a m s p e c i m e n s w e r e c o n t i n u o u s l y s u p p o r t e d d u r i n g t h e t e s t s b y a r u b b e r p a d w h i c h w a s r e s t e d o n a s t e e l b l o c k . T h i s b o u n d a r y c o n d i t i o n w a s t h o u g h t t o b e t t e r r e f l e c t f i e l d c o n d i t i o n s t h a n s i m p l y s u p p o r t e d b e a m s . D u r i n g e a r l y t e s t s , h o w e v e r , i t w a s n o t i c e d t h a t t h e n e u t r a l a x i s o f t h e c o n t i n u o u s l y s u p p o r t e d b e a m w a s c l o s e r t o t h e t o p o f t h e b e a m . T h i s i m p l i e s t h a t t h e a s p h a l t m i x b e h a v i o r i n t e n s i o n i s d i f f e r e n t t h a n t h a t i n c o m p r e s s i o n . F u r t h e r , t h e d e f l e c t e d s h a p e o f t h e c o n t i n u o u s l y s u p p o r t e d b e a m ( s h o w n i n f i g u r e 5 . 1 4 ) w a s s i m i l a r t o t h e s h a p e o f t h e d e f l e c t e d p a v e m e n t u n d e r a c t u a l t r a f f i c l o a d i n g . T h e s e t w o o b s e r v a t i o n s g a v e r i s e t o a n e w p r o b l e m . T h a t i s , t h e u s e o f t h e t r a d i t i o n a l b e a m t h e o r y t o a n a l y z e t h e t e s t d a t a a n d t o e x t r a c t t h e f a t i g u e l i f e o f t h e t e s t s p e c i m e n s i s n o t a d e q u a t e b e c a u s e o f t h e a s s u m p t i o n s i n v o l v e d i n t h e t h e o r y . N e v e r t h e l e s s , l a b o r a t o r y f a t i g u e - l i f e d a t a o f a s p h a l t m i x e s h a s b e e n a c c u m u l a t e d i n l a r g e q u a n t i t i e s . T h e s e f a t i g u e l i f e d a t a o f a s p h a l t m i x e s a r e t r a d i t i o n a l l y p l o t t e d a s s t r e s s o r s t r a i n a m p l i t u d e v e r s u s t h e r e s u l t i n g f a t i g u e l i f e e x p r e s s e d b y t h e n u m b e r o f l o a d a p p l i c a t i o n t o f a t i g u e p i r d t a s o l g n c i i d l a c o y L C m a e b t l a h p s A k c o l b l e e t S r e b b u R 1 4 9 F i g u r e 5 . 1 4 S c h e m a t i c r e p r e s e n t a t i o n o f t h e d e f l e c t e d s h a p e o f t h e b e a m s p e c i m e n . 1 5 0 f a i l u r e . F o r a s p h a l t m i x e s , a s f o r m o s t m a t e r i a l s , f a t i g u e l i f e s t e a d i l y i n c r e a s e s w i t h d e c r e a s i n g s t r e s s o r s t r a i n a m p l i t u d e u n t i l t h e s t r e s s o r s t r a i n l e v e l o f t h e f a t i g u e l i m i t i s r e a c h e d . I n g e n e r a l , s t r e s s e s a t o r b e l o w t h e f a t i g u e l i m i t c a u s e o n l y e l a s t i c s t r a i n s a n d t h e f a t i g u e l i f e b e c o m e s i n f i n i t e l y l o n g . R e g a r d l e s s o f t h e a p p l i e d s t r e s s , i t s h o u l d b e n o t e d t h a t c y c l i c p l a s t i c s t r a i n i s u l t i m a t e l y r e s p o n s i b l e f o r f a t i g u e d a m a g e a n d t h e c o n s e q u e n t f a t i g u e f a i l u r e . I n f a c t , a p e r f e c t l y e l a s t i c m a t e r i a l w i l l n e v e r e x p e r i e n c e a n y f a t i g u e d a m a g e r e g a r d l e s s o f t h e n u m b e r o f l o a d a p p l i c a t i o n s . A s n o t e d a b o v e , d u e t o t h e s h a p e o f t h e p l a s t i c d e f l e c t i o n b a s i n , b e a m t h e o r y i s i n a d e q u a t e a n d i t c a n n o t b e u s e d f o r d a t a a n a l y s i s . A l s o , t h e b e h a v i o r o f t h e s h o r t a n d s q u a r e s p e c i m e n s w o u l d b e e x p e c t e d t o d e v i a t e s i g n i f i c a n t l y f r o m t h e e l e m e n t a r y b e a m t h e o r y t h a t i s o n l y v a l i d f o r r e l a t i v e l y l o n g a n d s l e n d e r b e a m s . H e n c e , t h e t r a d i t i o n a l d e f i n i t i o n o f f a t i g u e l i f e b a s e d o n t h e r e d u c t i o n i n t h e v a l u e o f t h e i n i t i a l s t i f f n e s s m o d u l u s i s n o t a p p l i c a b l e i n t h i s s t u d y . C o n s e q u e n t l y , a n e w d e f i n i t i o n o f f a t i g u e l i f e w a s e s t a b l i s h e d a s f o l l o w s : T h e f a t i g u e l i f e o f a s p h a l t m i x e s t e s t e d i n f l e x u r e i s d e f i n e d b y t h e s m a l l e r o f t h e n u m b e r o f l o a d a p p l i c a t i o n s a t w h i c h : a ) T h e m e a s u r e d t o t a l c u m u l a t i v e p l a s t i c d e f o r m a t i o n u n d e r t h e l o a d r e a c h e s v a l u e s o f 0 . 4 5 - a n d 0 . 1 0 - i n c h e s f o r t e s t s c o n d u c t e d a t 7 7 a n d 4 0 ° F , 1 5 1 r e s p e c t i v e l y ( e q u a t i o n s 5 . 6 a n d 5 . 7 ) . b ) T h e m e a s u r e d t o t a l c u m u l a t i v e p l a s t i c d e f o r m a t i o n a t a p o i n t t w o i n c h e s a w a y f r o m t h e e d g e o f t h e l o a d e d a r e a r e a c h e s a v a l u e o f a b o u t 3 0 a n d 7 p e r c e n t o f t h a t u n d e r t h e l o a d f o r t e s t s c o n d u c t e d a t 7 7 a n d 4 0 ° F , r e s p e c t i v e l y ( e q u a t i o n s 5 . 9 , 5 . 1 0 , a n d 5 . 1 1 ) . I t s h o u l d b e n o t e d t h a t t h e a b o v e d e f i n i t i o n i s b a s e d o n v i s u a l o b s e r v a t i o n s o f t h e b e a m s p e c i m e n s w h i c h s h o w e d t h e i n i t i a t i o n o f h a i r - s i z e c r a c k s a t t h e s t a t e d n u m b e r o f l o a d a p p l i c a t i o n s . T h e e s t i m a t i o n s o f f a t i g u e l i f e b a s e d u p o n t h e a b o v e t w o d e f i n i t i o n s a r e p r e s e n t e d a n d d i s c u s s e d i n t h e f o l l o w i n g s e c t i o n s . 5 . 7 . 1 F a t i g u e L i f e : T o t a l P l a s t i c D e f o r m a t i o n I n t h i s m e t h o d , t h e f a t i g u e l i f e ( N o f e a c h b e a m F L ) s p e c i m e n w a s e s t i m a t e d u s i n g e q u a t i o n 5 . 6 o r 5 . 7 t o c a l c u l a t e t h e v a l u e o f N t h a t c o r r e s p o n d s t o a v a l u e o f C D 1 o f 0 . 4 5 - o r 0 . 1 - i n f o r t h e 7 7 a n d 4 0 O F t e s t s , r e s p e c t i v e l y . F o r 7 7 ° F : N F L I E X P { 2 4 . 0 0 3 2 - 1 . 9 2 8 1 x l n ( C L ) - 0 . 5 5 8 3 x A V . + 0 . 0 0 4 2 7 8 x x v + 0 . 0 7 1 9 6 x A N G } ( 5 . 1 4 ) 1 5 2 F o r 4 0 ° F : N F L I E X P { 2 6 . 7 9 2 8 - 1 . 2 9 7 6 x A V - 0 . 9 6 1 2 1 x l n ( C L ) + 0 . 0 0 4 2 7 8 x x v + 0 . 1 2 4 4 2 x A N G ) ( 5 . 1 5 ) w h e r e : N F L - n u m b e r o f l o a d a p p l i c a t i o n s t o f a t i g u e f a i l u r e : a n d a l l o t h e r p a r a m e t e r s a r e a s b e f o r e . A s u m m a r y o f t h e v a l u e s o f N L f o r a l l b e a m s p e c i m e n s F a l o n g w i t h t h e v a l u e s o f t h e t e s t a n d s p e c i m e n v a r i a b l e s a n d t h e v a l u e s o f t h e r a t i o o f C D 2 t o C D 1 i s t a b u l a t e d i n A p p e n d i x D . E x a m i n a t i o n o f t h e f a t i g u e l i f e l i s t e d i n A p p e n d i x D a n d e q u a t i o n s 5 . 1 4 a n d 5 . 1 5 i n d i c a t e d t h a t : a ) I n c r e a s i n g t h e m a g n i t u d e o f t h e c y c l i c l o a d f r o m 1 0 0 t o 5 0 0 p o u n d s ( 5 0 t o 2 5 0 p s i ) r e s u l t s i n a d e c r e a s e o f f a t i g u e l i f e b y f a c t o r s o f a b o u t 2 2 a n d 5 f o r t h e 7 7 a n d 4 0 ° F t e s t s , r e s p e c t i v e l y . b ) I n c r e a s i n g t h e p e r c e n t a i r v o i d s f r o m t h r e e t o s e v e n y i e l d s a d e c r e a s e i n t h e f a t i g u e l i f e b y f a c t o r s o f 9 a n d 1 8 0 f o r t h e 7 7 a n d 4 0 ° F t e s t s , r e s p e c t i v e l y . c ) I n c r e a s i n g t h e k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t b i n d e r f r o m 1 5 9 t o 2 7 0 c e n t i s t o k e s c a u s e s a n i n c r e a s e o f t h e f a t i g u e l i f e b y a f a c t o r o f a b o u t 1 . 6 f o r a l l t e s t s a t 7 7 a n d 4 0 ° F . I t s h o u l d b e n o t e d t h a t f i e l d d ) f ) 1 5 3 d a t a d o e s n o t s u p p o r t t h i s o b s e r v a t i o n a n d i t i n d i c a t e s t h a t h i g h e r v i s c o s i t i e s y i e l d s l o w e r f a t i g u e l i f e ( h i g h e r c r a c k p o t e n t i a l ) . T h e r e a s o n f o r t h e d i f f e r e n c e b e t w e e n t h e l a b o r a t o r y a n d f i e l d d a t a c o u l d b e a t t r i b u t e d t o t h e n a t u r e o f t h e d e f i n i t i o n o f f a t i g u e l i f e . R e c a l l t h a t t h e f a t i g u e l i f e i s d e f i n e d b y t h e v a l u e o f N a t w h i c h C D i s 0 . 4 5 - i n . A 1 c o n s t a n t v a l u e o f C D o f 0 . 4 5 - i n f o r a l l b e a m s m a y 1 n o t b e r e a s o n a b l e . U n f o r t u n a t e l y , v i s u a l o b s e r v a t i o n o f h a i r c r a c k s i s d i f f i c u l t a n d i n a c c u r a t e . H e n c e , d i s c r e p a n c y i n t h e d a t a s h o u l d b e e x p e c t e d . ‘ T h e f a t i g u e l i f e o f a s p h a l t m i x e s m a d e u s i n g c r u s h e d a g g r e g a t e i s l o n g e r t h a n t h o s e m a d e u s i n g r o u n d e d a g g r e g a t e b y f a c t o r s o f a b o u t 1 . 2 a n d 1 . 3 f o r t e s t s a t 7 7 a n d 4 0 ° F , r e s p e c t i v e l y . T h e v a r i a t i o n s o f t h e f a t i g u e l i f e , e s t i m a t e d f r o m t h e e q u a t i o n s , f o r t h e m o s t f a v o r a b l e a n d t h e m o s t u n f a v o r a b l e c o m b i n a t i o n s o f t h e t e s t a n d s p e c i m e n v a r i a b l e s a r e f r o m 3 , 5 0 0 , 0 0 0 t o 9 , 0 0 0 c y c l e s f o r a l l t e s t s a t 7 7 ° F : a n d f r o m 7 5 , 0 0 0 , 0 0 0 , 0 0 0 t o 2 2 , 0 0 0 , 0 0 0 c y c l e s f o r t h e 4 0 O F t e s t s . A l t h o u g h t h e v a l u e o f C D f o r a l l b e a m s i s 0 . 4 5 1 i n c h e s , t h e v a l u e o f t h e r a t i o o f C D 2 t o C D 1 v a r i e s a n d i t d e p e n d s u p o n t h e s p e c i m e n a n d t e s t v a r i a b l e s . T h u s u s i n g a c o n s t a n t v a l u e o f C D 1 o f 0 . 4 5 d o e s n o t n e c e s s a r i l y m e a n t h a t t h e d e f l e c t i o n b a s i n i s t h e 1 5 4 s a m e f o r a l l b e a m s p e c i m e n s . T h e i m p l i c a t i o n s o f t h e a b o v e o b s e r v a t i o n s b a s e d u p o n t h e d e f i n i t i o n o f f a t i g u e l i f e a r e t h a t : 1 ) F a t i g u e l i f e o f a s p h a l t m i x e s c a n b e i n c r e a s e d b y u s i n g h i g h e r v i s c o s i t y a s p h a l t s , a n g u l a r a g g r e g a t e s , a n d l o w e r p e r c e n t a i r v o i d s i n t h e m i x . 2 ) T h e e f f e c t o f t h e p e r c e n t a i r v o i d s o n t h e f a t i g u e l i f e o f a s p h a l t m i x e s s u b j e c t e d t o c y c l i c l o a d s i n c o l d r e g i o n s ( e . g . , M i c h i g a n , M i n n e s o t a ) i s m u c h h i g h e r t h a n t h a t i n m o d e r a t e c l i m a t e s ( e . g . , A r i z o n a , F l o r i d a ) . 3 ) T e m p e r a t u r e i s t h e m o s t i m p o r t a n t f a c t o r a f f e c t i n g t h e f a t i g u e l i f e o f a s p h a l t m i x e s . I t s h o u l d b e n o t e d t h a t t h e a b o v e f i n d i n g s d o n o t m e a n t h a t f a t i g u e l i f e o f a s p h a l t p a v e m e n t i n a c o l d r e g i o n i s h i g h e r t h a n t h a t o f a c o m p a t i b l e p a v e m e n t i n a m o d e r a t e r e g i o n . T h e c y c l i c s t r a i n c a u s e d b y e n v i r o n m e n t a l c h a n g e s s h o u l d b e a s s e s s e d b e f o r e s u c h a c o n c l u s i o n c a n b e m a d e . I n d e e d , t h e r e i s a m p l e e v i d e n c e i n d i c a t i n g t h a t c y c l i c p l a s t i c s t r a i n s d u e t o f r e e z e - t h a w c y c l e s a r e m u c h h i g h e r t h a n t h o s e c a u s e d b y t r a f f i c l o a d s . F u r t h e r , t h e v a l u e s o f t h e f a t i g u e l i f e l i s t e d i n A p p e n d i x D a r e e x p e c t e d t o b e m u c h l o w e r t h a n t h o s e e x p e c t e d i n t h e f i e l d . T h e r e a s o n s f o r t h i s i n c l u d e : 1 ) T h e b e a m s p e c i m e n s w e r e l o a d e d u s i n g a l o a d i n g s t r i p t h a t i s f i x e d i n o n e p o s i t i o n d u r i n g t h e e n t i r e t e s t . 1 5 5 I n t h e f i e l d , t h e w h e e l p a t h i s n o t f i x e d i n o n e p o s i t i o n f o r a l l v e h i c l e s . T r a f f i c t e n d s t o w e a v e c l o s e a n d a w a y f r o m t h e p a v e m e n t e d g e ( l a t e r a l w a n d e r o r l a t e r a l p l a c e m e n t ) . H e n c e , a p o i n t o n t h e s u r f a c e o f t h e p a v e m e n t w i l l n o t a l w a y s b e l o c a t e d u n d e r t h e t i r e o f e a c h p a s s i n g v e h i c l e . 2 ) T h e b e a m s p e c i m e n s w e r e l o a d e d a t t h e e d g e . T h e n u m b e r o f v e h i c l e s w h i c h t r a v e l a t t h e e d g e o f a n i n s e r v i c e p a v e m e n t i s m u c h l o w e r t h a n t h e t o t a l n u m b e r o f v e h i c l e s t r a v e l i n g t h a t p a v e m e n t . T o r e l a t e t h e l a b o r a t o r y f a t i g u e l i f e t o t h a t o f i n s e r v i c e p a v e m e n t s , a s t u d y o f t h e l a t e r a l w e a v i n g , a n d t h e e d g e e f f e c t s s h o u l d b e c o n d u c t e d . F o r e x a m p l e , i f o n e a s s u m e s t h a t a p o i n t l o c a t e d o n t h e s u r f a c e o f t h e p a v e m e n t i s s u b j e c t e d t o d i r e c t l o a d 5 0 p e r c e n t o f t h e t i m e , a n d t h a t t h e e d g e e f f e c t s s h o r t e n t h e f a t i g u e l i f e b y a f a c t o r o f t w o , t h e n i t s h o u l d b e e x p e c t e d t h a t t h e l a b o r a t o r y f a t i g u e l i v e s l i s t e d i n A p p e n d i x D a r e s h o r t e r t h a n t h e a c t u a l f a t i g u e l i f e o f t h e p a v e m e n t b y , a t l e a s t , a f a c t o r o f f o u r . A c t u a l f a t i g u e l i f e d a t a o f i n s e r v i c e p a v e m e n t s s h o u l d h e l p t h e e n g i n e e r t o r e l a t e l a b o r a t o r y r e s u l t s t o f i e l d c o n d i t i o n s . I n a d d i t i o n , t h e o b s e r v a t i o n i n i t e m f a b o v e i s v e r y i m p o r t a n t , a n d w a s t o b e e x p e c t e d . T h e v a l u e o f t h e r a t i o o f C D t o C D c a n b e r e g a r d e d a s a m e a s u r e o f t h e t e n s i l e 2 1 s t r a i n . T h e l o w e r t h e r a t i o , t h e s t e e p e r i s t h e d e f l e c t i o n 1 5 6 b a s i n , a n d t h e h i g h e r i s t h e t e n s i l e s t r a i n . T h e v a l u e o f t h e t e n s i l e s t r a i n a t f a i l u r e v a r i e s a n d i s d e p e n d e n t u p o n t h e t e s t a n d s p e c i m e n v a r i a b l e s . H e n c e , o n e m a y e x p e c t t h a t t h e v a l u e o f t h e r a t i o o f C D 2 t o C D 1 i s a l s o a f u n c t i o n o f t h e s a m e v a r i a b l e s . T o v e r i f y t h i s , a s t a t i s t i c a l c o r r e l a t i o n b e t w e e n t h e r a t i o o f C D 2 t o C D 1 a t 7 7 o F ( l i s t e d i n A p p e n d i x D ) a n d t h e t e s t a n d s p e c i m e n v a r i a b l e s w a s c o n d u c t e d . T h i s r e s u l t e d i n t h e f o l l o w i n g e q u a t i o n . l n ( C D Z / C D l ) = - 0 . 8 9 2 6 4 - 0 . 0 9 3 7 5 x A V + 0 . 0 0 0 0 5 1 0 5 x C L - 0 . 0 0 4 8 9 6 x A N G - 0 . 0 0 0 0 4 4 8 2 x K V ( 5 . 1 6 ) w h e r e a l l v a r i a b l e s a r e a s b e f o r e . S e n s i t i v i t y a n a l y s i s o f e q u a t i o n 5 . 1 6 i n d i c a t e d t h a t : a ) T h e p e r c e n t a i r v o i d s ( A V ) i n t h e m i x i s t h e m o s t s i g n i f i c a n t v a r i a b l e a f f e c t i n g ‘ a n d C D Z / C D I . I n c r e a s i n g A V f r o m t h r e e t o s e v e n y i e l d s a d e c r e a s e i n t h e v a l u e s o f C D z / C D 1 b y a f a c t o r o f 1 . 4 5 . b ) T h e v a l u e s o f C D z / C D 1 i s a f f e c t e d b y t h e m a g n i t u d e o f t h e c y c l i c l o a d . I n c r e a s i n g t h e m a g n i t u d e o f C L f r o m 1 0 0 t o 5 0 0 p o u n d s c a u s e s a n i n c r e a s e i n t h e r a t i o o f C D z / C D 1 b y a f a c t o r o f 1 . 0 2 . c ) U s i n g c r u s h e d a g g r e g a t e c a u s e s a d e c r e a s e i n t h e v a l u e s o f C D z / C D 1 b y a f a c t o r o f 1 . 0 1 r e l a t i v e t o r o u n d e d a g g r e g a t e . 1 5 7 d ) I n c r e a s i n g k i n e m a t i c v i s c o s i t y c a u s e s a d e c r e a s e i n t h e v a l u e s o f C D z / C D 1 b y a f a c t o r o f 1 . 0 0 5 . T h e a b o v e o b s e r v a t i o n s s u p p o r t t h e c o n c e p t t h a t t h e r a t i o o f C D Z / C D 1 i s a m e a s u r e o f t h e t e n s i l e s t r a i n i n t h e b e a m . I t s h o u l d b e n o t e d t h a t a d e c r e a s e i n t h e v a l u e s o f C D z / C D 1 c a u s e s a d e c r e a s e i n t h e f a t i g u e l i f e . I t e m b w a s a l s o e x p e c t e d b e c a u s e t h e s h a p e o f t h e d e f l e c t e d b e a m i s l o a d d e p e n d e n t . H i g h e r l o a d s c a u s e s t e e p e r d e f l e c t i o n b a s i n s . F i n a l l y , f i g u r e 5 . 1 5 d e p i c t s t h e f a t i g u e l i f e o f b e a m s p e c i m e n s ( u s i n g e q u a t i o n 5 . 1 4 f o r 7 7 ° F ) a s a f u n c t i o n o f t h e a p p l i e d c y c l i c s t r e s s . A s i m i l a r p l o t c a n b e o b t a i n e d f o r t h e 4 0 ° F t e s t s u s i n g e q u a t i o n 5 . 1 5 . 5 . 7 . 2 F a t i g u e L i f e : P l a s t i c D e f o r m a t i o n R a t i o T h e f a t i g u e l i f e o f e a c h b e a m s p e c i m e n w a s a l s o e s t i m a t e d u s i n g i t e m b o f t h e d e f i n i t i o n o f t h e f a t i g u e l i f e o f s e c t i o n 5 . 6 a n d e q u a t i o n 5 . 9 a s f o l l o w s : ( C D z / C D l ) = 0 . 3 o r 0 . 0 7 = E X P ( A x x 3 ) ( 5 . 1 7 ) E q u a t i o n s 5 . 1 0 a n d 5 . 1 1 ( f o r t h e 7 7 ° F t e s t s ) a n d e q u a t i o n s 5 . 1 2 a n d 5 . 1 3 ( f o r t h e 4 0 ° F ) w e r e t h e n s u b s t i t u t e d i n t o e q u a t i o n 5 . 9 f o r t h e p a r a m e t e r s A a n d B . T h e r e s u l t i n g e q u a t i o n w a s s o l v e d t o c a l c u l a t e t h e n u m b e r o f l o a d a p p l i c a t i o n s ( N a t w h i c h t h e f a t i g u e l i f e i s r e a c h e d . F L ) C a l c u l a t e d v a l u e s o f N L f o r t h e h i g h e r p e r c e n t a i r v o i d s F s s s e e e k k k o o o t t t s s s i i i t t t n n n e e e c c c 0 2 9 7 1 6 2 2 1 ) 5 D C [ 8 0 1 t n r e o c f r e s p n e e m h i t c e f p o 7 s 0 1 e r u s m e a u e l b a l v i a F e h 3 t o d t r n s f o a n o i s s t t e l 6 a v a 0 c 1 i l p p r h u p c s a A e d a o L f d i e l d a e r f g o r u g i y e . t t b a i s m f s d 5 u 0 N 1 “ 0 1 1 0 1 - o i s o c s s v e i r v r t i S a 3 5 1 . 5 e r u g i F ( t s d ) $ 3 3 1 3 5 p a t t d d v 1 5 8 1 5 9 ( A V l a r g e r t h a n 4 p e r c e n t ) w e r e m u c h s m a l l e r t h a n t h o s e o b s e r v e d d u r i n g t h e t e s t s . T h i s i m p l i e d t h a t c o n s t a n t r a t i o s o f C D z / C D 1 o f 0 . 3 f o r a l l b e a m s t e s t e d a t 7 7 ° F a n d 0 . 0 7 f o r t h e 4 0 ° F t e s t s a r e i n v a l i d . T h i s w a s e x p e c t e d b e c a u s e t h e f a t i g u e l i v e s o f t h e b e a m s a n d t h e v a l u e s o f t h e p l a s t i c d e f o r m a t i o n r a t i o s f o r d i f f e r e n t b e a m s s h o u l d b e d i f f e r e n t . R e c a l l t h a t t h e v a l u e s o f 0 . 3 ( a t 7 7 ° F ) a n d 0 . 0 7 ( a t 4 0 ° F ) w e r e a s s i g n e d b a s e d u p o n t h e v i s u a l d e t e c t i o n o f h a i r - s i z e c r a c k s . T h i s i s n e i t h e r a c c u r a t e n o r c o n s i s t e n t . I n a d d i t i o n , t h e a c c u r a c y o f e q u a t i o n s 5 . 1 2 a n d 5 . 1 3 i s p o o r . T h u s , i t i s r e c o m m e n d e d t h a t t h i s m e t h o d ( p l a s t i c d e f o r m a t i o n r a t i o ) n o t b e u s e d u n t i l a b e t t e r a n d m o r e a c c u r a t e t e c h n i q u e s f o r t h e d e t e c t i o n o f c r a c k i n i t i a t i o n a n d t h e d e t e r m i n a t i o n o f t h e c o r r e s p o n d i n g v a l u e o f t h e r a t i o o f C D 2 t o C D 1 c a n b e f o u n d . H e n c e , i t i s r e c o m m e n d e d t h a t e q u a t i o n s 5 . 1 5 a n d 5 . 1 6 b e u s e d t o e s t i m a t e t h e f a t i g u e l i f e o f b e a m s p e c i m e n s . 5 . 8 A N A L Y S I S O F T H E R E S I L I E N T A N B ‘ T O T A L H O D U L I 5 . 8 . 1 G E N E R A L A s n o t e d i n t h e p r e v i o u s s e c t i o n , e l e m e n t a r y b e a m t h e o r y c a n n o t b e u s e d i n t h e a n a l y s i s o f t h e b e a m t e s t d a t a b e c a u s e t h e d e f l e c t e d s h a p e o f t h e b e a m s p e c i m e n , a n d t h e l o c a t i o n o f t h e n e u t r a l a x i s d o n o t s a t i s f y t h e a s s u m p t i o n s o f t h e t h e o r y . H e n c e , a n e x i s t i n g t w o d i m e n s i o n a l f i n i t e e l e m e n t ( F E M ) c o m p u t e r p r o g r a m w a s m o d i f i e d b a s e d o n t h e a s s u m p t i o n 1 6 0 o f p l a n e - s t r e s s a n d e m p l o y e d i n t h e a n a l y s i s o f t h e r e s i l i e n t a n d t o t a l m o d u l i . A A l l t e s t d a t a w a s a n a l y z e d u s i n g t h e F E M m e s h d e p i c t e d i n f i g u r e 5 . 1 6 . I t s h o u l d b e n o t e d t h a t o n l y h a l f t h e d o m a i n o f t h e b e a m s p e c i m e n n e e d s t o b e m o d e l e d s i n c e t h e y - a x i s i s a n a x i s o f s y m m e t r y . A t w o l a y e r s y s t e m ( a s p h a l t a n d r u b b e r ) w a s u s e d i n t h e a n a l y s i s o f e a c h b e a m s p e c i m e n a s s h o w n i n f i g u r e 5 . 1 6 . L i n e A B , i n t h e f i g u r e , r e p r e s e n t s t h e b o u n d a r y b e t w e e n t h e a s p h a l t b e a m a n d t h e r u b b e r p a d , w h i l e l i n e C D r e p r e s e n t s t h e b o u n d a r y o f t h e r i g i d s u p p o r t ( s t e e l b l o c k ) . T h e b o u n d a r y c o n d i t i o n s a l o n g t h e l i n e o f s y m m e t r y a n d a l o n g t h e r i g i d b o u n d a r y a r e a l s o s h o w n i n t h e f i g u r e . T h e f o l l o w i n g d a t a w e r e u s e d i n t h e a n a l y s i s o f a l l t h e t e s t r e s u l t s : a ) P o i s s o n ' s r a t i o o f t h e a s p h a l t m i x o f 0 . 2 5 . T h i s i s a n a v e r a g e v a l u e w h i c h w a s o b t a i n e d f r o m c y c l i c l o a d i n d i r e c t t e n s i l e t e s t s . b ) B e a m d i m e n s i o n s : 4 - i n . t h i c k a n d 1 6 - i n . l o n g . c ) M o d u l u s o f e l a s t i c i t y a n d P o i s s o n ' s r a t i o o f t h e r u b b e r o f 3 , 0 0 0 p s i a n d 0 . 4 , r e s p e c t i v e l y . T h e s e v a l u e s w e r e o b t a i n e d f r o m t h e r u b b e r i n d u s t r y . d ) R u b b e r p a d d i m e n s i o n s : 1 - i n . t h i c k a n d 1 6 . - i n . l o n g . T h e F E M a n a l y s i s w a s b a s e d o n a n i t e r a t i v e p r o c e s s a s d e p i c t e d i n f i g u r e 5 . 1 7 . F i r s t , f o r a g i v e n m i x , s p e c i m e n , a n d t e s t v a r i a b l e s , a s e e d ( i n i t i a l ) m o d u l u s v a l u e o f t h e . h s e m t n e m e l e e t i n i f e h t d n a s n o i t i d n o c y r a d n u o B 6 1 . 5 e r u g i F ‘ 0 . 1 “ 5 . ' 5 . ' 5 . ' 5 - ' 5 2 . ' 5 2 . “ 5 2 . : P mfl ‘ _ _ e . I J Y N E N I D H d S “ V H S X 1 6 1 1 6 2 a s p h a l t m i x w a s a s s u m e d a n d t h e c o r r e s p o n d i n g s u r f a c e d e f l e c t i o n b a s i n w a s c a l c u l a t e d a t s e v e r a l l a t e r a l d i s t a n c e s f r o m t h e l i n e o f s y m m e t r y t h a t c o r r e s p o n d t o t h e a c t u a l l o c a t i o n s o f t h e L V D T ( s ) . T h e c a l c u l a t e d b a s i n w a s t h e n c o m p a r e d t o t h e m e a s u r e d o n e a n d t h e r a t i o o f c a l c u l a t e d t o m e a s u r e d d e f l e c t i o n ( R C M ) u n d e r t h e l o a d w a s d e t e r m i n e d . I n s u b s e q u e n t i t e r a t i o n s , t h e v a l u e o f t h e m o d u l u s w a s a d j u s t e d b y m u l t i p l y i n g t h e v a l u e o f t h e R C M b y t h e v a l u e o f t h e m o d u l u s f r o m t h e p r e v i o u s i t e r a t i o n . T h e v a l u e o f t h e m o d u l u s w h i c h p r o d u c e d a n R C M v a l u e s b e t w e e n 0 . 9 9 a n d 1 . 0 1 w a s a c c e p t e d a s t h e f i n a l m o d u l u s v a l u e o f t h e a s p h a l t m i x a n d t h e i t e r a t i o n p r o c e s s w a s t e r m i n a t e d . I n g e n e r a l , a v a l u e o f R C M b e t w e e n 0 . 9 9 a n d 1 . 0 1 w a s r e a c h e d w i t h i n a f e w i t e r a t i o n s ( g e n e r a l l y 2 t o 4 ) . T h a t i s , t h e v a l u e o f t h e c a l c u l a t e d d e f l e c t i o n u n d e r t h e l o a d . c o n v e r g e d t o t h e m e a s u r e d v a l u e w i t h i n 2 t o 4 i t e r a t i o n s . I t s h o u l d b e n o t e d t h a t t h e m a x i m u m p e r c e n t d i f f e r e n c e b e t w e e n t h e c a l c u l a t e d a n d m e a s u r e d d e f l e c t i o n s a t L V D T 2 a n d 3 a t 7 7 ° F w e r e 4 2 a n d 6 9 p e r c e n t , r e s p e c t i v e l y . F o r t h e 4 0 ° F t e s t s , t h e s e d i f f e r e n c e s w e r e 7 a n d 2 4 p e r c e n t , r e s p e c t i v e l y . T h e f i n a l v a l u e s o f t h e r e s i l i e n t a n d t o t a l m o d u l i f o r e a c h b e a m s p e c i m e n a n d f o r s e v e r a l n u m b e r o f l o a d a p p l i c a t i o n s a r e l i s t e d i n A p p e n d i x B . T h e s e v a l u e s w e r e s t a t i s t i c a l l y c o r r e l a t e d t o t h e m i x , s p e c i m e n , a n d t e s t v a r i a b l e s . T h e s t a t i s t i c a l a n a l y s i s i s p r e s e n t e d i n t h e n e x t s e c t i o n . A d j u s t t h e V a l u e . C a l c u l a t e C D C l F i g u r e 5 . 1 7 F l o w c h a r t o f t h e i t e r a t i o n p r o c e d u r e o f t h e f i n i t e 1 6 3 L S T A R T ] E S : 3 € : C 1 " J % 1 1 1 1 € 3 5 ; : f 2 3 1 r I D V I J R L ( ) I f I E S o f M R o r E C D C l - C D I q u ’ I ‘ < 1 % C D 1 M R = R e s i l i e n t m o d u l u s o f a s p h a l t m i x E = T o r a l m o d u l u s o f a s p h a l t m i x C D C l = C a l c u l a t e d d e fl e c t i o n a t t h e c e n t e r L V D ' I C D ] = M e a s u r e d d e fl e c r i o n a t t h e c e n t e r L V D T e l e m e n t c o m p u t e r p r o g r a m . 1 6 4 5 . 8 . 2 S T A T I S T I C A L . A N A L ¥ S I S F i g u r e s 5 . 1 8 a n 5 . 1 9 d e p i c t , r e s p e c t i v e l y , t h e v a l u e s o f t h e r e s i l i e n t ( M R ) a n d t o t a l ( B ) m o d u l i o f b e a m s p e c i m e n s a t 3 , 5 , a n d 7 p e r c e n t a i r v o i d s p l o t t e d a g a i n s t t h e l o g a r i t h m i c v a l u e s o f t h e n u m b e r o f l o a d a p p l i c a t i o n s ( N ) . I t c a n b e s e e n t h a t i n c r e a s i n g N p r o d u c e s h i g h e r v a l u e s o f r e s i l i e n t a n d t o t a l m o d u l i . T h a t i s , t h e r e s i l i e n t a n d t o t a l d e f l e c t i o n s d e c r e a s e a s t h e n u m b e r o f l o a d a p p l i c a t i o n s i n c r e a s e s ( s e e f i g u r e 4 . 9 ) . T h i s w a s e x p e c t e d b e c a u s e t h e s p e c i m e n e x p e r i e n c e d d e n s i f i c a t i o n a n d p l a s t i c f l o w u n d e r t h e c y c l i c l o a d . T h i s c a n b e e x p l a i n e d w i t h t h e a i d o f f i g u r e 5 . 2 0 . I n t h i s f i g u r e , t h e l o g a r i t h m i c v a l u e s o f t h e c u m u l a t i v e p e r m a n e n t d e f o r m a t i o n s ( o f t h e s a m e s p e c i m e n s o f f i g u r e s 5 . 1 8 a n d 5 . 1 9 ) a r e p l o t t e d a g a i n s t t h e - l o g a r i t h m i c v a l u e s o f t h e n u m b e r o f l o a d a p p l i c a t i o n s . I t c a n b e s e e n t h a t i n c r e a s i n g N y i e l d s a n i n c r e a s e i n t h e p e r m a n e n t d e f o r m a t i o n . T h a t i s t h e t o t a l v o l u m e o f t h e b e a m s p e c i m e n d e c r e a s e s a n d h e n c e , i t s d e n s i t y i n c r e a s e s . F u r t h e r e x a m i n a t i o n o f f i g u r e s 5 . 1 8 a n d 5 . 1 9 h a v e i n d i c a t e d t h a t t h e r a t e o f i n c r e a s e i n t h e r e s i l i e n t a n d t o t a l m o d u l i ( t h e s l o p e o f t h e c u r v e s ) a r e d e p e n d e n t o n t h e p e r c e n t a i r v o i d s o f t h e b e a m s p e c i m e n s . L o w e r p e r c e n t a i r v o i d s p r o d u c e s h i g h e r r a t e s ( s l o p e s ) o f r e s i l i e n t a n d t o t a l m o d u l i . T h i s w a s e x p e c t e d b e c a u s e h i g h e r p e r c e n t a i r v o i d s r e s u l t s i n h i g h e r p l a s t i c f l o w a n d r e l a t i v e l y l o w e r d e n s i f i c a t i o n i n t h e a s p h a l t m i x . T h i s c a n a l s o b e n o t e d i n 1 6 5 3 . 0 E + 0 5 o 1 1 1 1 0 5 3 5 : A l V - 3 . 0 7 x a 1 1 1 1 0 6 1 5 ; 4 N = $ . 3 0 $ 0 1 1 1 1 0 7 2 5 : 4 5 1 - 7 0 1 : / O r * \ ' 6 ) 7 0 5 4 . 0 5 A O . V 2 U u . / < C » 6 . 0 E + 0 5 . E ( n D U ) 2 S . 0 E + 0 5 3 D M O 2 * 5 4 . 0 E + 0 5 . 9 ' 5 T C ] 0 ) m . A . 0 3 . 0 E + 0 5 3 ‘ . 2 ( . 5 E O 2 . 0 E + 0 5 L ) 1 . 0 E + 0 5 1 0 . 1 0 0 . 1 0 0 0 . l . E + O 4 l . E + 0 5 l . E + 0 6 N u m b e r o f L o a d A p p l i c a t i o n s F i g u r e 5 . 1 8 C a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g F E M p r o g r a m v e r s u s t h e n u m b e r o f l o a d a p p l i c a t i o n a t d i f f e r e n t p e r c e n t a i r v o i d s . F i g ) ) i s p ( M E F g n i s U s u l u d o M l a t o T d e t a l u c l a C 1 0 0 . 1 0 0 0 N u m b e r o . f 1 . E L o a d A p p + l 0 i 4 c ( 1 . E + 0 5 1 . E + 0 6 a t i o n s 1 6 6 8 . 0 E + 0 5 0 1 1 1 1 0 5 3 5 ; 8 3 . 0 7 % A 1 1 1 1 0 6 1 5 ; 3 5 3 0 1 0 1 1 1 1 0 7 2 5 : - 7 0 1 ! 7 . 0 E + 0 5 6 . 0 E + 0 5 5 . 0 9 0 5 A ) 4 . 0 E + 0 5 3 . 0 E + 0 5 2 . 0 E + 0 5 C f 1 . 0 E + O S 1 0 . F i g u r e 5 . 1 9 C a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m v e r s u s t h e n u m b e r o f l o a d a p p l i c a t i o n a t d i f f e r e n t p e r c e n t a i r v o i d s . 1 6 7 t 0 E + 0 4 0 1 1 1 1 0 5 3 5 ; A N = 3 . 0 7 X A 1 1 1 1 0 6 1 5 ; 1 N = 5 . 3 O S 0 1 1 1 1 0 7 2 5 ; A i m - 7 . 0 1 x c O 2 ; o E L — 3 1 ; : “ ’ 0 C ) : D + 4 0 1 0 0 0 . 0 c C ( f 0 _ . C e - 0 I S o L ‘ - { V q ) . — 2 * - 1 9 : ) q £ fi > § _ J Q ) 1 3 5 1 0 0 . 0 . . . a 0 E 3 0 . 3 C w 0 v 2 1 0 . 0 1 0 . 1 0 0 . 1 0 0 0 . 1 . £ + 0 4 1 . E + 0 5 1 . E + 0 6 N u m b e r o f L o a d A p p l i c a t i o n s F i g u r e 5 . 2 0 M e a s u r e d c u m u l a t i v e p e r m a n e n t d e f o r m a t i o n v e r s u s t h e n u m b e r o f l o a d a p p l i c a t i o n a t d i f f e r n t p e r c e n t a i r v o i d s . 1 6 8 f i g u r e 5 . 2 0 . w h i c h i n d i c a t e s t h a t t h e s l o p e o f t h e c u r v e s i n c r e a s e s a s t h e p e r c e n t a i r v o i d s i n c r e a s e s . T h a t i s , f o r t h e s a m e m a g n i t u d e o f c y c l i c l o a d , t h e n e t v o l u m e c h a n g e o f t h e a s p h a l t m i x a t h i g h p e r c e n t a i r v o i d s i s l e s s t h a n t h o s e a t t h e l o w e r p e r c e n t a i r v o i d s . I t s h o u l d b e n o t e d t h a t , a l t h o u g h t h e s l o p e o f t h e c u r v e s i n f i g u r e s 5 . 1 8 a n d 5 . 1 9 i n c r e a s e s w i t h d e c r e a s i n g a i r v o i d s , t h e p e r c e n t i n c r e a s e i n t h e v a l u e s o f M R r e l a t i v e t o i t s i n i t i a l v a l u e i s h i g h e r f o r t h e 7 p e r c e n t a i r v o i d s c u r v e t h a n t h a t f o r t h e 3 p e r c e n t a i r v o i d s . T h i s c a n b e i l l u s t r a t e d w i t h t h e a i d o f f i g u r e 5 . 2 1 . I n t h i s f i g u r e , t h e v a l u e s o f t h e r e s i l i e n t m o d u l u s f o r a n y n u m b e r o f l o a d a p p l i c a t i o n i s d i v i d e d ( n o r m a l i z e d ) b y t h e c o r r e s p o n d i n g v a l u e o f M R a t l o a d c y c l e n u m b e r 1 0 0 . I t c a n b e s e e n t h a t , f o r t h e 7 p e r c e n t a i r v o i d s c u r v e , t h e v a l u e o f M R a t N e q u a l 1 0 , 0 0 0 c y c l e s i n c r e a s e s b y a f a c t o r o f 1 . 4 5 5 r e l a t i v e t o i t s v a l u e a t N e q u a l 1 0 0 c y c l e s . T h i s f a c t o r i s 1 . 4 0 5 f o r t h e 3 p e r c e n t a i r v o i d s . T h e i m p l i c a t i o n o f t h i s i s t h a t a s p h a l t p a v e m e n t c o n s t r u c t e d u s i n g h i g h p e r c e n t a i r v o i d s i n t h e m i x w i l l e x p e r i e n c e ( d u e t o t r a f f i c e f f e c t s ) h i g h e r p l a s t i c f l o w ( r u t d e p t h ) a n d h i g h e r i n c r e a s e i n t h e i n i t i a l r e s i l i e n t m o d u l u s t h a n p a v e m e n t c o n s t r u c t e d a t l o w e r p e r c e n t a i r v o i d s . N e v e r t h e l e s s , i n p r a c t i c e , r e s i l i e n t m o d u l u s t e s t s a r e c o n d u c t e d o n l y t o 1 0 0 o r 5 0 0 l o a d c y c l e s f o r s a m p l e c o n d i t i o n i n g . A f t e r w h i c h t h e r e s i l i e n t m o d u l u s i s N u m b e r o f L o a d A p F i g u r e 5 . 2 1 a N l o o r a m d l a i p z p e l d i r a e t s i i o l n c i t e a n t m i d p o f l i c d f u e a l r s v t i o n u e s n t e p r e s r u c s e t t h e a n u n r i m v b o e i r d s f o . 1 6 9 1 1 8 0 1 1 1 1 0 5 3 5 ; v = 3 . o 7 x 8 1 1 1 1 0 5 1 5 ; v = 5 . 3 0 x 0 1 1 1 1 0 7 2 5 : V - 7 . 0 1 x 1 . 7 U , 1 . 5 E 3 ‘ 0 o : 2 1 5 A H C . ‘ 2 ' 1 7 : o 1 . 4 ( t r U Q ) 2 ‘ 1 . 3 c . 5 5 2 1 . 2 1 . 1 1 . 0 1 0 . 1 . 1 0 0 0 . 1 . E + 0 4 1 . E + 0 5 1 . E + 0 6 1 7 0 d e t e r m i n e d a n d t e s t s a r e t e r m i n a t e d . H e n c e , i n t h e s t a t i s t i c a l a n a l y s i s o f t h i s s t u d y , t h e v a l u e s o f M R a n d E a t l o a d c y c l e n u m b e r 1 0 0 w e r e c o r r e l a t e d t o t h e s p e c i m e n , t e s t , a n d a s p h a l t m i x v a r i a b l e s . T h e r e a d e r s h o u l d k e e p i n m i n d t h a t M R i n c r e a s e s w i t h i n c r e a s i n g N a n d t h a t t h e v a l u e o f M R a t l o a d c y c l e n u m b e r 1 0 0 i s a v e r y c o n s e r v a t i v e v a l u e . T a b l e s 5 . 8 a n d 5 . 9 s u m m a r i z e t h e r e g r e s s i o n m a t r i c e s o f t h e r e s i l i e n t a n d t o t a l m o d u l i a t 7 7 ° F , r e s p e c t i v e l y . T h e r e g r e s s i o n c o e f f i c i e n t s , c o e f f i c i e n t o f d e t e r m i n a t i o n ( R 2 ) , a n d s t a n d a r d e r r o r ( S E ) o b t a i n e d f r o m e a c h s t e p o f t h e s t e p w i s e p r o c e d u r e a r e l i s t e d i n t h e t a b l e s . I t s h o u l d b e n o t e d t h a t t h e v a r i a b l e s i n t h e t a b l e s a r e l i s t e d i n t h e i r o r d e r o f s i g n i f i c a n c e . F o r e x a m p l e , t h e p e r c e n t a i r v o i d s i n t a b l e 5 . 8 i s t h e m o s t s i g n i f i c a n t v a r i a b l e w h i l e t h e g r a d a t i o n o f t h e a g g r e g a t e i s t h e l e a s t s i g n i f i c a n t o n e . N e v e r t h e l e s s , e q u a t i o n s 5 . 1 8 a n d 5 . 1 9 a r e t h e c o r r e s p o n d i n g e q u a t i o n s t o t a b l e s 5 . 8 a n d 5 . 9 , r e s p e c t i v e l y . l n ( M R ) = 1 3 . 8 9 5 - 0 . 1 9 7 4 x A V - 0 . 0 0 0 7 0 9 6 x x v + 0 . 0 0 7 2 2 5 x A N G + 0 . 0 0 8 6 8 5 x G R A D ( 5 . 1 8 ) R 2 - 0 . 9 9 8 a n d S E = 0 . 0 1 4 l n ( E ) = 1 3 . 7 4 5 - 0 . 2 0 8 9 x A V - 0 . 0 0 0 7 1 2 x K V + 0 . 0 1 0 8 x A N G ( 5 . 1 9 ) 1 7 1 T a b l e 5 . 8 R e g r e s s i o n m a t r i x f o r t h e r e s i l i e n t m o d u l u s a t 7 7 ° F . R e g r e s s i o n c o e f f i c i e n t s o f M R t h e i n d e p e n d e n t v a r i a b l e s 2 I n t e r c e p t R S E A V K V G R A Q ) ( 1 0 1 ) ( 1 o 4 ) ( 1 0 g 3 ) ( 1 0 1 4 . 7 5 0 - 1 . 9 5 9 - - - 0 . 9 8 8 0 . 0 3 4 l n ( M R ) 1 3 . 9 2 8 - 1 . 9 6 7 - 7 . 1 5 7 - - 0 . 9 9 7 0 . 0 1 7 1 3 . 8 9 7 - l . 9 6 5 - 7 . 0 3 8 8 . 5 6 9 - 0 . 9 9 8 0 . 0 1 5 1 3 . 8 9 5 - 1 . 9 7 4 - 7 . 0 9 6 7 . 2 2 5 8 . 6 8 5 0 . 9 9 8 0 . 0 1 4 l n a n a t u r a l 1 0 9 : M R - r e s i l i e n t m o d u l u s ( p s i ) : A V - a i r v o i d s ( t ) : A N G = a n g u l a r i t y : K V - k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : G R A D - g r a d a t i o n o f a g g r e g a t e : R - c o e f f i c i e n t o f c o r r e l a t i o n : a n d S E s t a n d a r d e r r o r . t ‘ fi ’ u a fi fi fi T a b l e 5 . 9 R e g r e s s i o n m a t r i x f o r t h e t o t a l m o d u l u s a t 7 7 ° F . 1 7 2 R e g r e s s i o n c o e f f i c i e n t s o f E t h e i n d e p e n d e n t v a r i a b l e s 2 I n t e r c e p t R S E A 2 1 K y , w e , ( 1 0 ) ( 1 0 ) ( 1 0 ) 1 3 . 6 0 4 - 2 . 0 8 4 - - 0 . 9 8 7 0 . 0 3 9 l n ( E ) 1 3 . 7 8 6 - 2 . 0 9 1 - 7 . 2 7 4 - 0 . 9 9 5 0 . 0 2 4 1 3 . 7 4 5 - 2 . 0 8 9 - 7 . 1 2 0 1 . 1 0 8 0 . 9 9 6 0 . 0 2 2 1 n = n a t u r a l l o g : E = t o t a l m o d u l u s ( p s i ) : A V - a i r v o i d s ( t ) : A N G - a n g u l a r i t y : K g - k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : R a c o e f f i c i e n t o f c o r r e l a t i o n : a n d S E s t a n d a r d e r r o r . 1 7 3 R 2 = 0 . 9 9 6 a n d S E . 0 . 0 2 2 w h e r e : 1 n - n a t u r a l l o g : M R - r e s i l i e n t m o d u l u s ( p s i ) : t o t a l m o d u l u s ( p s i ) : a n d A V - a i r v o i d s ( t ) : A N G = a n g u l a r i t y : K V - k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : G R A D c g r a d a t i o n o f a g g r e g a t e : R a c o e f f i c i e n t o f c o r r e l a t i o n : a n d S E s t a n d a r d e r r o r . E x a m i n a t i o n o f t h e v a l u e s o f t h e r e g r e s s i o n c o e f f i c i e n t s a n d t h e o r d e r o f s i g n i f i c a n c e o f t h e i n d e p e n d e n t v a r i a b l e s o f t a b l e s 5 . 8 a n d 5 . 9 , a n d e q u a t i o n s 5 . 1 8 a n d 5 . 1 9 h a v e i n d i c a t e d : 1 ) T h e r e s i l i e n t m o d u l u s a t 7 7 ° F i s a f f e c t e d ( i n o r d e r o f d e c r e a s i n g s i g n i f i c a n c e ) b y t h e a i r v o i d s ( A V ) , t h e k i n e m a t i c v i s c o s i t y ( K V ) , t h e a g g r e g a t e a n g u l a r i t y ( A N G ) , a n d t h e g r a d a t i o n o f t h e a g g r e g a t e ( G R A D ) w h i l e t h e t o t a l m o d u l u s i s a f f e c t e d b y A V , R V , a n d A N G . T h e e f f e c t s o f t h e A V a n d K V o n t h e a r i t h m e t i c v a l u e s o f M R a r e s l i g h t l y l o w e r t h a n t h o s e o n E . I n c r e a s i n g A V f r o m 3 t o 7 p e r c e n t c a u s e s a d e c r e a s e i n M R a n d E b y f a c t o r s o f 0 . 4 5 a n d 0 . 4 3 , r e s p e c t i v e l y . W h i l e i n c r e a s i n g R V f r o m 1 5 9 t o 2 7 0 1 7 4 c e n t i s t o k e y i e l d s a d e c r e a s e i n M R a n d E b y f a c t o r s o f 0 . 9 3 a n d 0 . 9 2 , r e s p e c t i v e l y . T h e e f f e c t o f a g g r e g a t e a n g u l a r i t y o n t h e v a l u e s o f M R a n d E i s l e s s t h a n 1 . 5 p e r c e n t . F i n a l l y , a g g r e g a t e g r a d a t i o n h a s n o s i g n i f i c a n t e f f e c t ( l e s s t h a n 1 p e r c e n t ) o n e i t h e r m o d u l u s . T h e a b o v e o b s e r v a t i o n s w e r e a n t i c i p a t e d b e c a u s e t h e v a l u e s o f M R w e r e c a l c u l a t e d u s i n g t h e r e s i l i e n t d e f o r m a t i o n w h i l e t h e v a l u e s o f E w e r e o b t a i n e d u s i n g t h e t o t a l d e f o r m a t i o n ( e l a s t i c a n d v i s c o e l a s t i c ) . S i n c e a s p h a l t b i n d e r s a r e v i s c o e l a s t i c m a t e r i a l a n d s i n c e t h e A V i s a m e a s u r e o f t h e a b i l i t y o f t h e m a t e r i a l t o f l o w u n d e r t h e l o a d ( h i g h e r A V p r o d u c e s h i g h e r f l o w ) , o n e c a n e x p e c t t h a t t h e e f f e c t s o f R V a n d A V o n t h e v i s c o e l a s t i c c o m p o n e n t o f t h e d e f o r m a t i o n a r e h i g h e r t h a n t h o s e o n t h e e l a s t i c ( r e s i l i e n t ) o n e . E q u a t i o n s 5 . 1 8 a n d 5 . 1 9 i n d i c a t e t h a t M R i s i n v e r s e l y p r o p o r t i o n a l t o t h e k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t b i n d e r . T h a t i s , i n c r e a s i n g K V ( h a r d e r a s p h a l t b i n d e r ) c a u s e s a h i g h e r r e s i l i e n t d e f o r m a t i o n a n d h e n c e a l o w e r r e s i l i e n t m o d u l u s . T h i s f i n d i n g i s i n c o n t r a s t t o t h a t r e p o r t e d i n t h e l i t e r a t u r e a n d t o t h a t r e l a t i v e t o p l a s t i c d e f o r m a t i o n r e p o r t e d i n s e c t i o n 5 . 5 . F r o m a n e n g i n e e r i n g v i e w p o i n t , h i g h e r K V ( h a r d e r a s p h a l t b i n d e r ) s h o u l d r e s u l t i n l o w e r 2 ) 3 ) 1 7 5 r e s i l i e n t a n d t o t a l d e f o r m a t i o n s a n d c o n s e q u e n t l y , h i g h e r r e s i l i e n t a n d t o t a l m o d u l i . T h e t e s t r e s u l t s h o w e v e r , d o n o t s u p p o r t t h i s v i e w . U n f o r t u n a t e l y , n o s o u n d e x p l a n a t i o n c a n b e o f f e r e d a t t h i s t i m e t o e x p l a i n t h i s d i s c r e p a n c y . T h e m a g n i t u d e o f t h e c y c l i c l o a d p o s s e s s e s n o s i g n i f i c a n t e f f e c t s o n t h e v a l u e s o f t h e r e s i l i e n t a n d t o t a l m o d u l i . T h i s i n d i c a t e s a l i n e a r b e h a v i o r o f t h e b e a m s p e c i m e n s w i t h i n t h e r a n g e o f t h e m a g n i t u d e o f t h e a p p l i e d c y c l i c l o a d . T h e i m p l i c a t i o n o f t h i s f i n d i n g i s t h a t t h e a p p l i c a t i o n o f l i n e a r e l a s t i c i t y i n t h e a n a l y s i s o f t h e r e s i l i e n t a n d t o t a l m o d u l i i s v a l i d . I t s h o u l d b e n o t e d t h a t r e s u l t s o b t a i n e d f r o m i n d i r e c t t e n s i l e t e s t s s h o w e d a n o n l i n e a r b e h a v i o r ( i n c r e a s i n g c y c l i c l o a d c a u s e s a d e c r e a s e i n t h e v a l u e s o f t h e r e s i l i e n t a n d t o t a l m o d u l i ) . T h e d i f f e r e n c e i n t h e f i n d i n g b e t w e e n t h e t w o t e s t s c a n b e r e l a t e d t o t h e p h y s i c a l d i m e n s i o n s o f t h e t e s t s p e c i m e n s a n d t o t h e b o u n d a r y c o n d i t i o n s . B e a m s p e c i m e n s a r e 4 - i n . t h i c k a n d s u b j e c t e d m a i n l y t o c o m p r e s s i o n w h i l e i n d i r e c t t e n s i l e t e s t s p e c i m e n s a r e 2 . 5 - i n . t h i c k a n d s u b j e c t e d t o b o t h c o m p r e s s i o n a n d t e n s i o n . T h e v a l u e s o f t h e r e g r e s s i o n c o e f f i c i e n t s ( s e e t a b l e s 5 . 8 a n d 5 . 9 ) f o r a l l v a r i a b l e s a r e o n l y s l i g h t l y c h a n g e d a s m o r e v a r i a b l e s a r e a d d e d i n t h e s t e p w i s e 1 7 6 p r o c e d u r e ( e . g . , t h e v a l u e s o f t h e c o e f f i c i e n t o f A V i n b o t h t a b l e s c h a n g e v e r y l i t t l e a s a d d i t i o n a l v a r i a b l e s e n t e r e d i n t o t h e a n a l y s i s ) . T h i s i m p l i e s t h a t t h e r e i s n o s i g n i f i c a n t i n t e r a c t i o n b e t w e e n t h e i n d e p e n d e n t v a r i a b l e s . T h i s c o n c l u s i o n w a s r e a c h e d a f t e r e x a m i n a t i o n o f t h e p a r t i a l c o r r e l a t i o n m a t r i x ( P C M ) s h o w n i n t a b l e 5 . 1 0 . T h e v a l u e s o f t h e p a r t i a l c o r r e l a t i o n c o e f f i c i e n t s ( P C C ) l i s t e d u n d e r e a c h v a r i a b l e i n t h e t a b l e i n d i c a t e t h e d e g r e e o f d e p e n d e n c y o f t h a t v a r i a b l e o n t h e o t h e r s . T h e v a l u e o f P C C m a y r a n g e f r o m - 1 . 0 t o + 1 . 0 . A n e g a t i v e v a l u e o f P C C b e t w e e n a n y t w o v a r i a b l e s i m p l i e s t h a t t h e v a r i a b l e s a r e i n v e r s e l y p r o p o r t i o n a l t o e a c h o t h e r w h i l e a p o s i t i v e v a l u e i n d i c a t e s d i r e c t p r o p o r t i o n a l i t y . N e v e r t h e l e s s , t h e v a l u e s o f t h e P C C i n t h e P C M o f t a b l e 5 . 1 0 i n d i c a t e s o m e d e g r e e o f i n t e r a c t i o n b e t w e e n A V a n d G R A D , a n d A N G a n d G R A D . T h i s w a s e x p e c t e d b e c a u s e t h e p e r c e n t a i r v o i d s i n a n a g g r e g a t e m i x i s a f u n c t i o n o f t h e g r a d a t i o n o f t h e m i x . A w e l l g r a d e d m i x p o s s e s s e s l o w e r a i r v o i d s t h a n a u n i f o r m m i x . S i m i l a r l y , a g g r e g a t e a n g u l a r i t y a f f e c t s i t s g r a d a t i o n . A n g u l a r a g g r e g a t e s t e n d t o i n t e r l o c k c a u s i n g h i g h e r f r i c t i o n a n d t h e r e f o r e , o f f e r h i g h e r r e s i s t a n c e f o r f i n e r m a t e r i a l s t o e n t e r a n d f i l l t h e a i r s p a c e b e t w e e n t h e l a r g e r s i z e a g g r e g a t e s . D u e t o t h e s e i n t e r a c t i o n s , t h e A V a n d 1 7 7 T a b l e 5 . 1 0 P a r t i a l c o r r e l a t i o n m a t r i x f o r r e s i l i e n t m o d u l u s a t 7 7 F l n ( M R ) A V A G K V C L G R l n ( M R ) 1 . 0 0 0 - . 9 9 4 . 0 6 0 - . 0 5 5 - . 0 5 8 - . 2 8 6 A V - . 9 9 4 1 . 0 0 0 - . 0 2 9 - . 0 4 0 . 0 5 4 . 3 0 2 A G . 0 6 0 - . 0 2 9 1 . 0 0 0 - . 0 6 4 . 0 1 8 . 2 7 5 K V - . 0 5 5 - . 0 4 0 - . 0 6 4 1 . 0 0 0 . 0 1 3 . 0 2 7 C L - . 0 5 8 . 0 5 4 . 0 1 8 . 0 1 3 1 . 0 0 0 - . 0 1 5 G R - . 2 8 6 . 3 0 2 . 2 7 5 . 0 2 7 - . 0 1 5 1 . 0 0 0 1 n - n a t u r a l l o g : M R = r e s i l i e n t m o d u l u s ( p s i ) : A V - a i r v o i d s ( t ) : A N G s a n g u l a r i t y : K V - k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : C l - c y c l i c l o a d : G R - g r a d a t i o n : R - c o e f f i c i e n t o f c o r r e l a t i o n : a n d S E s t a n d a r d e r r o r . 1 7 8 A N G t e r m s i n e q u a t i o n s 5 . 1 8 a n d 5 . 1 9 m a y a l s o i n c l u d e s o m e o f t h e e f f e c t s o f a g g r e g a t e g r a d a t i o n o n M R a n d E . U n f o r t u n a t e l y , ‘ t h e s e p a r a t i o n o f t h e e f f e c t s o f t h e s e v a r i a b l e s c a n n o t b e o b t a i n e d d u e t o t h e l i m i t e d n u m b e r o f g r a d a t i o n ( o n l y t w o g r a d a t i o n s w e r e u s e d ) e m p l o y e d i n t h i s s t u d y . 4 ) T h e f i n a l v a l u e s o f t h e c o e f f i c i e n t o f d e t e r m i n a t i o n a n d s t a n d a r d e r r o r i n b o t h t a b l e s i n d i c a t e a h i g h d e g r e e o f c o r r e l a t i o n b e t w e e n t h e d e p e n d e n t a n d i n d e p e n d e n t v a r i a b l e s . T h a t i s n o s i g n i f i c a n t s c a t t e r o f t h e l o g a r i t h m i c v a l u e s o f t h e r e s i l i e n t a n d t o t a l m o d u l i a b o u t t h e m e a n . I t s h o u l d b e n o t e d t h a t t h e v a l u e s o f R 2 i n t h e t a b l e s m a y b e a r t i f i c i a l l y h i g h b e c a u s e o f t h e n a t u r e o f t r a n s f o r m a t i o n ( l o g a r i t h m i c ) . V a r i a t i o n s i n t h e a r i t h m e t i c v a l u e s a r e n a t u r a l l y m u c h h i g h e r t h a n t h o s e i n t h e l o g a r i t h m i c v a l u e s . T h e s c e n a r i o i n i t e m s 1 a n d 3 a b o v e i m p l i e s t h a t e q u a t i o n 5 . 1 8 c a n b e s i m p l i f i e d b y e l i m i n a t i n g t h e g r a d a t i o n t e r m ( G R A D h a s n o s t a t i s t i c a l s i g n i f i c a n c e o n M R ) . C o n s i d e r i n g t h e t h i r d s t e p o f t a b l e 5 . 8 , t h e f o l l o w i n g e q u a t i o n w a s o b t a i n e d . l n ( M R ) 3 1 3 . 8 9 7 - 0 . 1 9 6 5 X A V - 0 . 0 0 0 7 0 3 8 X K V + 0 . 0 0 8 5 6 9 X A N G ( 5 . 2 0 ) 1 7 9 R 2 - 0 . 9 9 8 a n d S E - 0 . 0 1 5 w h e r e : a l l v a r i a b l e s a r e a s b e f o r e . T h e a d v a n t a g e s o f t h i s l a s t e q u a t i o n a r e i t i s s i m p l e r t h a n e q u a t i o n 5 . 1 8 a n d t h a t i t i s s i m i l a r t o e q u a t i o n 5 . 1 9 . F i g u r e s 5 . 2 2 a n d 5 . 2 3 d e p i c t , r e s p e c t i v e l y , t h e v a l u e s o f t h e r e s i l i e n t a n d t o t a l m o d u l i o b t a i n e d f r o m F E M a n d t h o s e c a l c u l a t e d u s i n g e q u a t i o n s 5 . 2 0 a n d 5 . 1 9 . T h e s t r a i g h t l i n e s i n t h e f i g u r e s r e p r e s e n t t h e l o c u s o f p o i n t s o f e q u a l i t y . I t s h o u l d b e n o t e d t h a t t h e m a x i m u m p e r c e n t d i f f e r e n c e b e t w e e n t h e v a l u e s o f r e s i l i e n t a n d t o t a l m o d u l i o b t a i n e d u s i n g F E M a n d t h o s e f r o m e q u a t i o n s 5 . 2 0 a n d 5 . 1 9 w e r e 6 a n d 7 p e r c e n t , r e s p e c t i v e l y . T a b l e s 5 . 1 1 a n d 5 . 1 2 s u m m a r i z e , r e s p e c t i v e l y , t h e r e g r e s s i o n m a t r i c e s ( r e g r e s s i o n c o e f f i c i e n t s , c o e f f i c i e n t o f d e t e r m i n a t i o n , a n d s t a n d a r d e r r o r ) o f t h e r e s i l i e n t a n d t o t a l m o d u l i o f t h e b e a m s p e c i m e n s t e s t e d a t 4 0 ° F . E q u a t i o n s 5 . 2 1 a n d 5 . 2 2 a r e t h e r e s u l t i n g e q u a t i o n s . l n ( M R ) - 1 4 . 7 3 6 - 0 . 1 2 4 8 x A V - 0 . 0 0 0 2 1 1 6 x C L ( 5 . 2 1 ) R 2 x 0 . 8 8 2 a n d S E - 0 . 0 4 9 w h e r e : C L - a p p l i e d c y c l i c l o a d : a n d a l l o t h e r v a r i a b l e s a r e a s b e f o r e . 5 0 0 . 0 , s u ) l u s u k d ( o M 0 2 t n 5 e i l n i o s i e t R a u d q e E t a q l l u l c l l a “ a C 1 8 0 6 0 0 . 0 4 0 0 1 0 3 0 0 . 0 2 0 0 . 0 2 0 0 . 0 3 0 0 . 0 4 0 0 . 0 5 0 0 . 0 6 0 0 . 0 C a l c u l a t e d R e s i l i e n t M o d u l u s U s i n g F E M P r o g r a m ( k s i ) F i g u r e 5 . 2 2 C a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g e q u a t i o n 5 . 2 0 v e r s u s c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g F E M p r o g r a m . C U a s l u c n u g l a r e t E d M T P o r t a o l g r M a d o m u ( l k u s s ) i 1 8 1 5 0 0 . 0 , - ’ / “ , l / ‘ . ' . / - ' 0 " fl " : 3 3 . 3 ‘ 0 e 0 ' . 9 “ ” - r . 4 0 0 . 0 ' ' n 2 ? ' / m ( D : 4 X / 3 v / ~ _ , . . 3 ’ 3 1 / . / 2 ' 7 " _ L n / ° ( ' 1 l 1 2 g / ' # 5 3 0 0 . 0 a : ‘ t r ? I ’ i . 1 ) : 1 7 ' E d ] . t / 1 . 1 : o / : 2 B S 1 , : ' I / l 2 0 : c e I l ‘ O t 4 ‘ 1 ’ l 4 l E : , 1 ' / 1 1 0 0 . 0 . L J l 0 * 0 ‘ ' L . 1 0 . 0 3 0 0 . 0 4 0 0 . 0 5 0 0 . 3 F i g u r e 5 . 2 3 C a l c u l a t e d t o t a l m o d u l u s u s i n g e q u a t i o n 5 . 1 9 v e r s u s c a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m . 1 8 2 l n ( E ) = 1 4 . 4 2 - 0 . 1 3 9 x A V ( 5 . 2 2 ) R 2 = . 6 7 9 a n d S E - 0 . 0 9 9 w h e r e : a l l o t h e r v a r i a b l e s a r e a s b e f o r e . E x a m i n a t i o n o f t h e v a l u e s o f t h e c o e f f i c i e n t o f c o r r e l a t i o n i n t a b l e s 5 . 1 1 a n d 5 . 1 2 , a n d e q u a t i o n s 5 . 2 1 a n d 5 . 2 2 h a v e i n d i c a t e d t h a t : 1 ) T h e r e s i l i e n t m o d u l u s a t 4 0 ° F i s a f f e c t e d ( i n o r d e r o f d e c r e a s i n g s i g n i f i c a n t ) b y t h e a i r v o i d s ( A V ) a n d t h e a p p l i e d c y c l i c l o a d ( C L ) , w h i l e t h e t o t a l m o d u l u s i s a f f e c t e d o n l y b y A V . T h i s i m p l i e s t h a t t h e t o t a l r e s p o n s e ( e l a s t i c a n d v i s c o e l a s t i c ) o f t h e s p e c i m e n i s l i n e a r l y p r o p o r t i o n a l t o t h e m a g n i t u d e o f t h e a p p l i e d c y c l i c l o a d . E a c h c o m p o n e n t o f t h e t o t a l r e s p o n s e ( e l a s t i c a n d v i s c o e l a s t i c ) , h o w e v e r , i s n o n l i n e a r l y r e l a t e d t o C L . T h a t i s i n c r e a s i n g C L c a u s e s a n i n c r e a s e i n b o t h e l a s t i c a n d v i s c o e l a s t i c d e f o r m a t i o n s s u c h t h a t t h e r a t i o o f l o a d t o e l a s t i c d e f o r m a t i o n d e c r e a s e s w h i l e t h e r a t i o o f l o a d t o v i s c o e l a s t i c d e f o r m a t i o n i n c r e a s e s . T h i s f i n d i n g w a s n o t e x p e c t e d a n d i t d e p a r t s f r o m t h a t f o u n d i n t h e l i t e r a t u r e . T h e r e a s o n o f t h e d i s c r e p a n c y c o u l d b e r e l a t e d t o t h e m a g n i t u d e o f t h e t o t a l d e f o r m a t i o n w h i c h w a s w i t h i n t h e a c c u r a c y o f t h e m e a s u r e m e n t 1 8 3 T a b l e 5 . 1 1 R e g r e s s i o n m a t r i x f o r t h e r e s i l i e n t m o d u l u s a t 4 0 ° F . R e g r e s s i o n c o e f f i c i e n t s o f M R t h e i n d e p e n d e n t v a r i a b l e s 2 I n t e r c e p t R S E A y l C 9 4 ( 1 0 ) ( 1 0 ) 1 4 . 6 7 1 - 1 . 2 2 0 - 0 . 8 1 3 0 . 0 6 0 l n ( M R ) 1 4 . 7 3 6 - 1 . 2 4 8 - 2 . 1 1 6 0 . 8 8 2 0 . 0 4 9 l n = n a t u r a l l o g : M R = r e s i l i e n t m o d u l u s ( p s i ) : A V = a i r v o i d s ( % ) : C L a c y c l i c l o a d ( p o u n d s ) : R = c o e f f i c i e n t o f c o r r e l a t i o n : a n d S E = s t a n d a r d e r r o r . T a b l e 5 . 1 2 R e g r e s s i o n m a t r i x f o r t h e t o t a l m o d u l u s a t 4 0 ° F . R e g r e s s i o n c o e f f i c i e n t s o f M R t h e i n d e p e n d e n t v a r i a b l e s 2 I n t e r c e p t R S E A 1 1 1 ( 1 0 ) l n ( M R ) 1 4 . 4 2 0 - 1 . 3 9 0 0 . 6 7 8 0 . 0 9 9 l n = n a t u r a l 1 0 9 : E - r e s i l i e n t m o d u l u s ( p s i ) : A 3 2 a i r v o i d s ( % ) : R - c o e f f i c i e n t o f c o r r e l a t i o n : a n d S E = s t a n d a r d e r r o r . 1 8 4 s y s t e m . N e v e r t h e l e s s , i n c r e a s i n g A V f r o m 3 t o 7 p e r c e n t c a u s e d d e c r e a s e s i n M R a n d E b y f a c t o r s o f 0 . 6 1 a n d 0 . 5 7 , r e s p e c t i v e l y . W h i l e i n c r e a s i n g C L f r o m 1 0 0 t o 5 0 0 p o u n d s c a u s e d a d e c r e a s e i n M R b y a f a c t o r o f 0 . 8 2 . 2 ) T h e v a l u e s o f t h e c o e f f i c i e n t o f d e t e r m i n a t i o n a n d s t a n d a r d e r r o r o f t a b l e s 5 . 1 1 a n d 5 . 1 2 i n d i c a t e a l o w d e g r e e o f c o r r e l a t i o n b e t w e e n t h e d e p e n d e n t a n d i n d e p e n d e n t v a r i a b l e s c o m p a r e d t o t h e r e s u l t s f r o m 7 7 ° F . T h i s o b s e r v a t i o n d o e s n o t m e a n t h a t t h e v a l u e s o f t h e r e s i l i e n t a n d t o t a l m o d u l i a t 4 0 ° F a r e i n c o n s i s t e n t o r , i n a s t a t i s t i c a l s e n s e , r a n d o m . T h i s i s m a i n l y d u e , a s n o t e d a b o v e , t o t h e m a g n i t u d e o f t h e m e a s u r e d d e f l e c t i o n w h i c h w a s w i t h i n t h e a c c u r a c y o f t h e m e a s u r e m e n t s y s t e m . F i g u r e s 5 . 2 4 a n d 5 . 2 5 d e p i c t t h e v a l u e s o f t h e r e s i l i e n t a n d t o t a l m o d u l i c a l c u l a t e d u s i n g t h e F E M p r o g r a m a n d t h e c o r r e s p o n d i n g m o d u l i c a l c u l a t e d u s i n g e q u a t i o n s 5 . 2 1 a n d 5 . 2 2 , r e s p e c t i v e l y . A g a i n , t h e s t r a i g h t l i n e i n t h e f i g u r e s r e p r e s e n t s t h e l o c u s o f t h e p o i n t s o f e q u a l i t y . I t w a s f o u n d t h a t t h e m a x i m u m p e r c e n t d i f f e r e n c e b e t w e e n t h e v a l u e s o f r e s i l i e n t a n d t o t a l m o d u l i c a l c u l a t e d u s i n g F E M a n d t h o s e c a l c u l a t e d u s i n g e q u a t i o n s 5 . 2 0 a n d 5 . 2 1 w e r e 1 3 a n d 2 0 p e r c e n t , r e s p e c t i v e l y . A s e c o n d s t a t i s t i c a l a n a l y s i s w a s p e r f o r m e d u s i n g t h e t e s t r e s u l t s a t 7 7 a n d 4 0 ° F . I n t h i s a n a l y s i s , t h e t e s t 2 0 0 0 . 1 7 5 0 . 1 5 0 1 2 5 0 0 — 4 . l l 1 1 l l 3 l . L i i 1 i i z I i l s u ) 1 l 3 ‘ u 1 d ( o M 1 2 t . n 5 e i l m i t s l e l R a u l i q e E l i r l g u n j r i l s l t U i t 1 { / 1 / I . . o ' 1 O ' l / ’ / / l / ’ 1 0 0 0 ’ / 0 / f . . 1 i 0 0 1 2 5 . C v O 4 " / I . . . o . / / / r . . / , / ‘ / , 3 a - ’ 0 / / o t ' e . 1 5 0 0 . 1 7 5 0 . 1 8 5 C a l c u l a t e d R e s i l i e n t M o d u l u s U s i n g F E M P r o g r a m ( k s i ) F i g u r e 5 . 2 4 C a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g e q u a t i o n 5 . 2 1 v e r s u s c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g F E M p r o g r a m . s 1 u 3 l k u ( d 2 o 2 M . 5 l a t n o o T i t d a e u t q a E l u - g c n l i a s C U ‘ ) 1 8 6 1 5 0 0 . 0 1 2 5 0 . 0 1 0 0 0 . 0 7 5 0 . 0 5 0 0 . 0 5 0 0 . 0 1 0 0 0 . 0 1 2 5 0 . 0 C a l c u l a t e d T o t a l M o d u l u s U s i n g F E M P r o g r a m ( k s i ) 1 5 0 0 . 0 F i g u r e 5 . 2 5 C a l c u l a t e d t o t a l m o d u l u s u s i n g e q u a t i o n 5 . 2 2 v e r s u s c a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m . 1 8 7 t e m p e r a t u r e w a s i n c l u d e d a s o n e o f t h e i n d e p e n d e n t v a r i a b l e . A s e m i - l o g a r i t h m i c r e l a t i o n s h i p b e t w e e n M R o r E a n d t h e t e s t t e m p e r a t u r e ( T T ) w a s a s s u m e d b a s e d o n t h e A s p h a l t I n s t i t u t e e q u a t i o n w h i c h w a s r e p o r t e d i n c h a p t e r 2 . T a b l e s 5 . 1 3 a n d 5 . 1 5 s u m m a r i z e t h e r e s u l t i n g r e g r e s s i o n m a t r i c e s ( r e g r e s s i o n c o e f f i c i e n t s , c o e f f i c i e n t o f d e t e r m i n a t i o n , s t a n d a r d e r r o r ) f o r t h e r e s i l i e n t a n d t h e t o t a l m o d u l i , r e s p e c t i v e l y . E q u a t i o n s 5 . 2 3 a n d 5 . 2 4 a r e t h e c o r r e s p o n d i n g e q u a t i o n s . l n ( M R ) = 1 6 . 3 8 2 - 0 . 0 3 3 2 6 X T T - 0 . 1 8 9 9 X A V - 0 . 0 0 0 4 1 4 8 X K V ( 5 . 2 3 ) R 2 - 0 . 9 9 4 a n d S E - 0 . 0 4 6 w h e r e : T T - t e s t t e m p e r a t u r e : a n d a l l v a r i a b l e s a r e a s b e f o r e . l n ( E ) - 1 5 . 9 6 9 - 0 . 0 2 9 8 2 x T T - 0 . 2 0 2 9 x A V - 0 . 0 0 0 3 9 2 7 x x v ( 5 . 2 4 ) R 2 - 0 . 9 9 0 a n d S E - 0 . 0 5 7 w h e r e : a l l o t h e r v a r i a b l e s a r e a s b e f o r e . E x a m i n a t i o n o f t h e v a l u e s o f t h e c o r r e l a t i o n c o e f f i c i e n t o f t a b l e s 5 . 1 3 a n d 5 . 1 4 , a n d e q u a t i o n s 5 . 2 3 a n d 5 . 2 4 h a s i n d i c a t e d : _ l M T A K R m K M 1 l \ h E E W W N E T a 5 5 3 2 3 3 $ ? I ” I 3 1 1 5 1 2 1 1 I 3 I 1 8 8 T a b l e 5 . 1 3 R e g r e s s i o n m a t r i x f o r t h e r e s i l i e n t m o d u l u s a t 7 7 a n d 4 0 P . R e g r e s s i o n c o e f f i c i e n t s o f M R t h e i n d e p e n d e n t v a r i a b l e s 2 I n t e r c e p t R S E ( 1 0 2 2 ) ( 1 0 2 1 ) ( 1 0 2 ‘ ) 1 5 . 6 7 1 - 3 . 7 5 5 - - 0 . 7 6 3 0 . 2 9 1 l n ( M R ) 1 6 . 2 8 4 - 3 . 3 2 7 - 1 . 9 0 3 - 0 . 9 9 3 0 . 0 4 9 1 6 . 3 8 2 - 3 . 3 2 6 - 1 . 8 9 9 - 4 . 1 4 8 0 . 9 9 4 0 . 0 4 6 n a t u r a l l o g : r e s i l i e n t m o d u l u s ( p s i ) : t e s t t e m p e r a t u r e ( F ) : a i r v o i d s ( % ) : k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : c o e f f i c i e n t o f c o r r e l a t i o n : a n d s t a n d a r d e r r o r . T a b l e 5 . 1 4 R e g r e s s i o n m a t r i x f o r t h e t o t a l m o d u l u s a t 7 7 a n d 4 0 o F . R e g r e s s i o n c o e f f i c i e n t s o f E t h e i n d e p e n d e n t v a r i a b l e s I n t e r c e p t R 2 S E ( 1 0 1 2 ) ( 1 0 2 1 ) ( 1 0 2 ‘ ) 1 5 . 2 3 4 - 3 . 4 5 6 - - 0 . 6 9 9 0 . 3 1 2 l n ( E ) 1 5 . 8 7 7 - 2 . 9 8 4 - 2 . 0 3 2 - 0 . 9 8 9 0 . 0 6 0 1 5 . 9 6 9 - 2 . 9 8 2 - 2 . 0 2 9 - 3 . 9 2 7 0 . 9 9 0 0 . 0 5 7 n a t u r a l 1 0 9 : t o t a l m o d u l u s ( p s i ) : t e s t t e m p e r a t u r e ( F ) : a i r v o i d s ( t ) : k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : c o e f f i c i e n t o f c o r r e l a t i o n : a n d s t a n d a r d e r r o r . 1 8 9 1 ) B o t h r e s i l i e n t a n d t o t a l m o d u l i a r e a f f e c t e d ( i n o r d e r o f d e c r e a s i n g s i g n i f i c a n c e ) b y t h e t e s t t e m p e r a t u r e , t h e p e r c e n t a i r v o i d s , a n d t h e k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t b i n d e r . I n c r e a s i n g T T f o r m 4 0 t o 7 7 ° F c a u s e s a d e c r e a s e i n M R a n d E b y f a c t o r s o f 3 . 4 2 a n d 2 . 9 9 , r e s p e c t i v e l y . I t s h o u l d b e n o t e d t h a t , i n e q u a t i o n s 5 . 2 3 a n d 5 . 2 4 , t h e R V t e r m i s a l s o a f u n c t i o n o f t h e t e s t t e m p e r a t u r e . L o w e r t e m p e r a t u r e s c a u s e h i g h e r K V ( h a r d e r a s p h a l t ) . I n o r d e r t o s e p a r a t e t h e t w o v a r i a b l e s ( R V a n d T T ) , t h e v a l u e o f R V a t t h e t e s t t e m p e r a t u r e s h o u l d b e u s e d i n t h e a n a l y s i s . U n f o r t u n a t e l y , t h i s d a t a w a s n o t a v a i l a b l e t o t h e a u t h o r n o r i t w a s p o s s i b l e t o c o n d u c t t h e l a b o r a t o r y t e s t s b e c a u s e o f l a c k o f e q u i p m e n t . H e n c e , i t i s r e c o m m e n d e d , f o r f u t u r e s t u d y , t o o b t a i n t h e v a l u e s o f R V a t t h e t e s t t e m p e r a t u r e s w h e n e v e r p o s s i b l e a n d t o u s e t h e s e v a l u e s i n t h e a n a l y s i s . 2 ) T h e v a l u e s o f t h e c o e f f i c i e n t o f d e t e r m i n a t i o n a n d s t a n d a r d e r r o r s h o w a h i g h d e g r e e o f c o r r e l a t i o n b e t w e e n t h e d e p e n d e n t a n d t h e i n d e p e n d e n t v a r i a b l e s . A g a i n , i t s h o u l d b e n o t e d t h a t t h e v a l u e s o f R 2 i n t h e t a b l e s m a y b e a r t i f i c i a l l y h i g h b e c a u s e o f t h e n a t u r e o f t h e t r a n s f o r m a t i o n ( l o g a r i t h m i c ) . I t s h o u l d n o t e d t h a t ( i n t h e r a n g e o f t h e m i x , t e s t , a n d s p e c i m e n v a r i a b l e s ) t h e m a x i m u m d i f f e r e n c e s b e t w e e n t h e 1 9 0 v a l u e s o f M R a n d E a t 7 7 ° F p r e d i c t e d u s i n g e q u a t i o n s 5 . 2 3 a n d 5 . 2 4 , a n d t h o s e c a l c u l a t e d u s i n g t h e f i n i t e e l e m e n t p r o g r a m w e r e f o u n d t o b e 7 . 6 a n d 9 p e r c e n t r e s p e c t i v e l y . T h e s e d i f f e r e n c e s w e r e 1 7 a n d 2 4 . 5 p e r c e n t f o r t h e 4 0 ° F . I n a d d i t i o n , i n s t i t u t e e q u a t i o n ( e q u a t i o n 2 . 3 ) e q u a t i o n 5 . 2 3 w a s c o m p a r e d t o t h e a s p h a l t w h i c h i s r e p e a t e d b e l o w f o r c o n v e n i e n c e . L o g H R = 1 . 5 4 5 3 6 + 0 . 0 2 0 1 0 8 ( X 1 ) - 0 . 0 3 1 8 6 0 6 ( X 2 ) + 0 . 0 6 8 1 4 2 ( x 3 ) - 0 . 0 0 1 2 7 0 0 3 ( X 4 ) ° " ‘ ( X 5 ) 1 ' 4 ( 2 . 3 ) R 2 = 0 . 9 6 8 , a n d S . E . = 0 . 0 8 8 8 9 0 4 L o g M R - 3 . 1 2 1 9 7 + 0 . 0 2 4 8 7 2 2 ( X 1 ) - 0 . 0 3 4 5 8 7 5 ( X 2 ) - 9 . 0 2 5 9 4 ( ( X 4 ) W h e r e : L o g X 1 X 2 X 3 X 4 X 5 0 ' 1 9 / ( X 6 ) 0 ' 9 ' ( 2 . 4 ) 0 . 9 7 1 , a n d S . E . = 0 . 0 8 4 9 1 8 6 l o g a r i t h m t o b a s e 1 0 : d y n a m i c ( r e s i l i e n t ) m o d u l u s , 1 0 5 p s i ( 4 H z l o a d i n g f r e q u e n c y ) : p e r c e n t p a s s i n g # 2 0 0 s i e v e : p e r c e n t a i r v o i d s i n m i x : a s p h a l t v i s c o s i t y a t 7 0 o F ( 1 0 6 p o i s e s ) : p e r c e n t a s p h a l t b y t o t a l w e i g h t o f m i x : t e s t t e m p e r a t u r e ( O F ) : 1 9 1 X 6 - t h e l o g a r i t h m i c v a l u e o f t h e v i s c o s i t y ( i n p o i s e s ) o f t h e a s p h a l t a t t h e t e s t t e m p e r a t u r e : S E : s t a n d a r d e r r o r o f t h e e s t i m a t e : a n d R 2 - c o e f f i c i e n t o f d e t e r m i n a t i o n . T h e r e s u l t s o f t h i s c o m p a r i s o n a r e i l l u s t r a t e d i n f i g u r e 5 . 2 6 . T h e s t r a i g h t l i n e i n t h e f i g u r e r e p r e s e n t s t h e l o c u s o f t h e p o i n t s o f e q u a l i t y . F u r t h e r , a s e n s i t i v i t y a n a l y s i s o f t h e c a l c u l a t e d v a l u e s o f M R f r o m b o t h e q u a t i o n t o t h e r a n g e o f t h e m i x , t e s t , a n d s p e c i m e n v a r i a b l e s w a s c o n d u c t e d . I t w a s f o u n d t h a t : 1 ) T h e a g r e e m e n t b e t w e e n t h e v a l u e s o f M R o b t a i n e d f r o m b o t h e q u a t i o n s w a s f o u n d t o b e d e p e n d e n t o n t h e v a l u e o f t h e p e r c e n t a i r v o i d s . I n g e n e r a l , t h e v a l u e s o f M R o b t a i n e d u s i n g e q u a t i o n 5 . 2 3 w e r e h i g h e r t h a n , e q u a l t o , a n d l o w e r t h a n t h o s e o b t a i n e d u s i n g e q u a t i o n 2 . 3 f o r 3 , 5 , a n d 7 p e r c e n t a i r v o i d s , r e s p e c t i v e l y . 2 ) I n c r e a s i n g A V f r o m 3 t o 7 p e r c e n t c a u s e s a d e c r e a s e i n M R b y f a c t o r s o f 0 . 7 5 a n d 0 . 4 7 f o r e q u a t i o n s 2 . 3 a n d 5 . 2 3 , r e s p e c t i v e l y . 3 ) T h e v a l u e s o f t h e r e s i l i e n t m o d u l u s f r o m A . I . e q u a t i o n i n c r e a s e b y f a c t o r o f 3 . 8 1 a s t h e t e m p e r a t u r e d e c r e a s e s f r o m 7 7 ° F t o 4 0 ° F , w h i l e t h o s e o f e q u a t i o n 5 . 2 3 i n c r e a s e b y a f a c t o r o f 3 . 4 2 . 1 9 2 2 2 0 0 . 3 ” t / / ' . / ’ / O : . 1 " 7 ’ 1 7 0 0 . , w . 3 / " . O a s : / _ . x ’ 2 v . . 5 « ' 1 C " . / E o . . g / E . 3 1 2 0 0 . / . : 9 ' , . ‘ 7 ’ L u / , q ? — ' / 0 ; < ‘ / ' 0 / 1 ‘ Q . ) / / ‘ . . . 1 : , , 1 O " " _ / E 1 / ? U ’ 0 0 / Q / / i i / ' E / l . 9 " e a ‘ 0 , - e I . . . 1 2 0 0 . / _ J 2 0 0 . 7 0 0 . 1 2 0 0 . 1 7 0 0 . 2 2 0 0 . C a l c u l a t e d R e s i l i e n t M o d u l u s l j s i n g U s m g E q u a t i o n 5 . 2 3 » ( k s i ; F i g u r e 5 . 2 6 C a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g t h e A . I . e q u a t i o n v e r s u s c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g e q u a t i o n 5 . 2 3 . 1 9 3 4 ) A n i n c r e a s e i n t h e k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t b i n d e r f r o m 1 5 9 t o 2 7 0 c e n t i s t o k e s l e a d s t o a n i n c r e a s e i n t h e v a l u e o f t h e r e s i l i e n t m o d u l u s b y a f a c t o r o f 1 . 0 0 0 1 f o r A . I . e q u a t i o n , a n d a d e c r e a s e b y a f a c t o r o f 0 . 9 5 f o r e q u a t i o n 5 . 2 3 . 5 ) T h e v a l u e s o f M R i n e q u a t i o n 2 . 3 a r e a l s o f u n c t i o n s o f t h e p e r c e n t p a s s i n g s i e v e n u m b e r 2 0 0 ( p e r c e n t f i n e ) a n d t h e p e r c e n t a s p h a l t c o n t e n t i n t h e m i x . T h e s e t w o v a r i a b l e s w e r e n o t i n c l u d e d i n t h i s s t u d y ( e q u a t i o n 5 . 2 3 ) . T h e a b o v e o b s e r v a t i o n s i m p l y t h a t t h e v a l u e s o f M R o f e q u a t i o n 5 . 2 3 a r e m o r e s e n s i t i v e t o t h e v a r i a t i o n o f t h e p e r c e n t a i r v o i d s t h a n t h o s e o f t h e A . I . e q u a t i o n . T h e e f f e c t s o f t h e t e s t t e m p e r a t u r e o n t h e v a l u e s o f M R o f b o t h e q u a t i o n s a r e a l m o s t t h e s a m e . I n a d d i t i o n , a l t h o u g h t h e e f f e c t s o f k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t o n t h e v a l u e s o f M R i s s m a l l , t h e t r e n d i n b o t h e q u a t i o n s i s n o t c o m p a t i b l e a s n o t e d b e f o r e . E q u a t i o n s 5 . 2 3 a n d 5 . 2 4 w e r e a l s o c o m p a r e d t o t h e e q u a t i o n s 5 . 2 5 a n d 5 . 2 6 w h i c h w e r e o b t a i n e d f r o m i n d i r e c t t e n s i l e c y c l i c l o a d t e s t s . T h e t e s t s w e r e c o n d u c t e d u s i n g t h e s a m e t e s t , m i x , a n d s p e c i m e n v a r i a b l e s a s t h o s e u s e d i n t h i s s t u d y ( 8 2 ) . l n ( M R ) 8 1 6 . 0 9 2 - 0 . 0 3 6 5 8 X T T - 0 . 1 4 0 1 X A V - 0 . 0 0 0 3 4 0 9 X C L + 0 . 0 4 3 5 3 X A N G + 0 . 0 0 0 8 7 9 3 X K V ( 5 . 2 5 ) 1 9 4 R 2 - 0 . 9 9 7 : a n d S E - 0 . 0 3 3 w h e r e : a l l v a r i a b l e s a r e a s b e f o r e . l n ( E ) = 1 6 . 3 8 5 - 0 . 0 4 5 2 9 x T T - 0 . 1 5 4 9 x A V - 0 . 0 0 0 3 3 3 9 x C L + 0 . 0 4 2 5 8 x A N G + 0 . 0 0 0 8 3 6 4 x K V ( 5 . 2 6 ) R 2 = 0 . 9 9 8 : a n d S . E . - 0 . 0 3 4 w h e r e E = t o t a l m o d u l u s ( p s i ) : a n d a l l o t h e r v a r i a b l e s a r e a s b e f o r e . F i g u r e s 5 . 2 7 a n d 5 . 2 8 d e p i c t , r e s p e c t i v e l y , t h e v a l u e s o f M R a n d E o b t a i n e d u s i n g e q u a t i o n s 5 . 2 5 a n d 5 . 2 6 p l o t t e d a g a i n s t t h o s e f r o m e q u a t i o n s 5 . 2 3 a n d 5 . 2 4 . T h e s t r a i g h t l i n e i n t h e f i g u r e s d e p i c t t h e l o c u s o f t h e p o i n t s o f e q u a l i t y . T h i s c o m p a r i s o n a n d a s e n s i t i v i t y a n a l y s i s o f b o t h e q u a t i o n s r e v e a l e d t h a t : 1 ) I n c r e a s i n g A V f r o m 3 t o 7 p e r c e n t r e s u l t s i n : a ) d e c r e a s e i n M R b y f a c t o r s o f 0 . 4 6 8 a n d 0 . 5 7 1 f o r e q u a t i o n s 5 . 2 3 a n d 5 . 2 5 , r e s p e c t i v e l y . b ) d e c r e a s e i n E b y f a c t o r s o f 0 . 4 4 4 a n d 0 . 5 3 8 f o r e q u a t i o n s 5 . 2 4 a n d 5 . 2 6 , r e s p e c t i v e l y . 2 ) D e c r e a s i n g t e s t t e m p e r a t u r e s f r o m 7 7 t o 4 0 ° F y i e l d s : a ) a n i n c r e a s e i n M R b y f a c t o r s o f 3 . 4 2 a n d 3 . 8 7 f o r e q u a t i o n s 5 . 2 3 a n d 5 . 2 5 , r e s p e c t i v e l y . 1 9 5 2 4 0 0 . . 0 I 0 1 ' . ’ / c ’ , . 7 , 1 8 0 0 . ’ ' D / / i ‘ 3 A 5 ' 5 I ) I / 1 2 1 - 1 t ' " C V . p 2 0 ’ ) / “ N ‘ 0 ' o $ 1 0 1 2 0 0 . E C i n O / 4 2 ' ; C E 0 / 3 ‘ 0 t r ’ D L i J / 6 . / 5 / C " Q . ' 0 . 5 0 0 . 1 2 0 0 . 1 8 0 0 . 2 4 0 0 . C a l c u l a t e d R e s i l i e n t M o d u l u s U S i n g E q u a t i o n 5 . 2 3 ( k s i ) F i g u r e 5 . 2 7 C a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g e q u a t i o n 5 . 2 5 v e r s u s c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g e q u a t i o n 5 . 2 3 . g n i s U ) s i u S k l ( u d 6 o 2 M . 5 l a t n o o T i t d a e u t q a E l u c l a C 1 8 0 0 . 1 2 0 0 . 6 0 0 . 1 9 6 6 0 0 . 1 2 0 0 . C a l c u l a t e d T o t a l M o d u l u s U s i n g E q u a t i o n 5 . 2 4 ( k S i ) 1 8 0 0 . 2 4 0 0 . F i g u r e 5 . 2 8 C a l c u l a t e d t o t a l m o d u l u s u s i n g e q u a t i o n 5 . 2 6 v e r s u s c a l c u l a t e d t o t a l m o d u l u s u s i n g 1 e q u a t i o n 5 . 2 4 . 3 ) 4 ) 1 9 7 b ) a n i n c r e a s e i n E b y f a c t o r s o f 3 . 0 1 4 a n d 5 . 1 6 f o r e q u a t i o n s 5 . 2 4 a n d 5 . 2 6 , r e s p e c t i v e l y . I n c r e a s i n g k i n e m a t i c v i s c o s i t y f r o m 1 5 9 t o 2 7 0 c e n t i s t o k e s c a u s e s t h e v a l u e s o f M R a n d E t o i n c r e a s e b y a f a c t o r o f 1 . 1 f o r t h e i n d i r e c t e q u a t i o n s a n d t o d e c r e a s e b y a f a c t o r o f 0 . 9 5 f o r e q u a t i o n s 5 . 2 3 a n d 5 . 2 5 . T h e v a l u e s o f t h e r e s i l i e n t a n d t o t a l m o d u l i o b t a i n e d f r o m t h e i n d i r e c t t e n s i l e t e s t s a r e a f f e c t e d b y t h e a g g r e g a t e a n g u l a r i t y ( A N G ) t h e m a g n i t u d e o f t h e c y c l i c l o a d ( C L ) . I n c r e a s i n g C L o r d e c r e a s i n g A N G r e s u l t s i n l o w e r v a l u e s o f M R a n d E . T h e v a l u e s o f M R a n d E o f e q u a t i o n s 5 . 2 3 a n d 5 . 2 4 , o n t h e o t h e r h a n d , a r e i n d e p e n d e n t o f C L a n d A N G . T h e a b o v e o b s e r v a t i o n s i m p l y t h a t : 1 ) 2 ) T h e p e r c e n t a i r v o i d s o f t h e t e s t s p e c i m e n p o s s e s s i m i l a r e f f e c t s o n b o t h r e s u l t s o b t a i n e d f r o m t h e i n d i r e c t t e n s i l e a n d b e a m t e s t s . A l t h o u g h t h e e f f e c t s o f t h e t e s t t e m p e r a t u r e o n t h e v a l u e s o f M R a r e a l m o s t t h e s a m e f o r b o t h t y p e s o f t e s t s , i t s e f f e c t s o n E a r e d i f f e r e n t . S i n c e t h e v a l u e s o f E a r e c a l c u l a t e d u s i n g t h e m e a s u r e d t o t a l s p e c i m e n d e f o r m a t i o n ( r e s i l i e n t a n d v i s c o e l a s t i c ) a n d s i n c e t h e v a l u e s o f M R a r e c a l c u l a t e d u s i n g o n l y t h e m e a s u r e d r e s i l i e n t d e f o r m a t i o n , o n e c a n c o n c l u d e t h a t t h e v i s c o e l a s t i c b e h a v i o r o f t h e i n d i r e c t t e n s i l e 1 9 8 t e s t s p e c i m e n s i s d i f f e r e n t t h a n t h a t o f t h e b e a m s p e c i m e n s . T h a t i s , t h e a s p h a l t b i n d e r i n t h e i n d i r e c t t e n s i l e t e s t s p e c i m e n s a p p e a r s t o b e c o m e m u c h s t i f f e r , a t 4 0 ° F r e l a t i v e t o i t s s t i f f n e s s a t 7 7 ° F , t h a n t h e b i n d e r i n t h e b e a m s p e c i m e n . A g a i n , t h i s c o u l d b e r e l a t e d t o t h e b o u n d a r y c o n d i t i o n s o f t h e b o t h t e s t s . 3 ) O n c e a g a i n , t h e d i s c r e p a n c y r e l a t i v e t o t h e e f f e c t s o f t h e k i n e m a t i c v i s c o s i t y b e t w e e n t h e t w o t e s t r e s u l t s c a n n o t b e e x p l a i n e d a t t h i s t i m e . 4 ) T h e a s p h a l t m i x e s i n t h e i n d i r e c t t e n s i l e t e s t p o s s e s a n o n l i n e a r b e h a v i o r ( i n c r e a s i n g l o a d c a u s e s a d e c r e a s e i n t h e v a l u e s o f M R a n d E ) , w h i l e t h e y s h o w e d a l i n e a r b e h a v i o r i n t h e b e a m t e s t s . 5 . 9 S U M M A R Y L a b o r a t o r y t e s t r e s u l t s o b t a i n e d u s i n g t h e s t a n d a r d M a r s h a l l m i x d e s i g n p r o c e d u r e s a n d f l e x u r a l c y c l i c b e a m t e s t s a r e p r e s e n t e d a n d d i s c u s s e d . I t i s s h o w n t h a t s t a t i s t i c a l c o r r e l a t i o n s b e t w e e n t h e s t r u c t u r a l p r o p e r t i e s o f c o m p a c t e d a s p h a l t m i x e s a n d t h e i r m i x d e s i g n p a r a m e t e r s a r e u s e f u l t o a n a l y z e t h e e f f e c t s o f t h e d i f f e r e n t m i x , s p e c i m e n , a n d t e s t v a r i a b l e s o n t h e s t r u c t u r a l p r o p e r t i e s o f t h e m i x . T h e s t a t i s t i c a l e q u a t i o n s p r e s e n t e d i n t h i s d i s s e r t a t i o n w e r e p r o v e n t o b e a c c u r a t e w i t h i n t h e r a n g e o f t h e v a l u e s o f 1 9 9 t h e i n d e p e n d e n t v a r i a b l e s e m p l o y e d i n t h i s s t u d y . A n y i n t e r p o l a t i o n s h o u l d b e c h e c k e d w i t h s o m e l a b o r a t o r y t e s t r e s u l t s . E x t r a p o l a t i o n , h o w e v e r , i s s t r o n g l y d i s c o u r a g e d . 5 . 1 0 I M P L E M E N T A T I O N T h e s t a t i s t i c a l e q u a t i o n s p r e s e n t e d i n t h i s d i s s e r t a t i o n c a n b e u s e d t o a n a l y z e t h e e f f e c t s ( i n a q u a l i t a t i v e t e r m s ) o f t h e i n d e p e n d e n t v a r i a b l e s o n t h e s t r u c t u r a l p r o p e r t i e s ( r e s i l i e n t a n d t o t a l m o d u l i , p e r m a n e n t d e f o r m a t i o n s , a n d f a t i g u e l i f e ) o f c o m p a c t e d a s p h a l t m i x e s . T h e s t a t i s t i c a l e q u a t i o n s , h o w e v e r , s h o u l d n o t b e u s e d f o r p r e d i c t i n g t h e p r o p e r t i e s a n d b e h a v i o r s o f i n s e r v i c e p a v e m e n t s u n l e s s t h e y a r e c a l i b r a t e d u s i n g f i e l d d a t a . A l i m i t e d f i e l d d a t a b a s e ( 4 p a v e m e n t s e c t i o n s ) h a s i n d i c a t e d t h a t t h e e f f e c t s o f s o m e o f t h e i n d e p e n d e n t v a r i a b l e s o n t h e l a b o r a t o r y t e s t r e s u l t s a r e a l m o s t t h e s a m e a s t h e i r e f f e c t s o n t h e i n s e r v i c e p a v e m e n t s . H o w e v e r , t h e e f f e c t s o f t h e k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t b i n d e r o n t h e l a b o r a t o r y t e s t r e s u l t s ( f a t i g u e l i f e ) a r e i n c o n s i s t e n t w i t h i t s e f f e c t s o n i n s e r v i c e p a v e m e n t s . 2 0 0 C H A P T E R 6 C O N C L U S I O N S A N D R E C O M M E N D A T I O N S 6 . 1 C O N C L U S I O N S B a s e d u p o n t h e t e s t r e s u l t s , t h e a n a l y s i s , a n d t h e f i n d i n g s p r e s e n t e d i n t h i s d i s s e r t a t i o n , t h e f o l l o w i n g c o n c l u s i o n s m a y b e d r a w n : 1 ) 2 ) 3 ) 4 ) 5 ) S t a t i s t i c a l r e l a t i o n s h i p s b e t w e e n t h e s t r u c t u r a l p r o p e r t i e s a n d t h e t e s t , m i x , a n d s p e c i m e n v a r i a b l e s h a v e b e e n f o u n d . T h e s e r e l a t i o n s h i p s c a n b e u s e d , i n t h e l a b o r a t o r y , t o a s s e s s t h e e f f e c t o f e a c h v a r i a b l e u p o n t h e s t r u c t u r a l p r o p e r t i e s o f t h e a s p h a l t m i x e s . T h e a p p l i c a t i o n o f t h e s e r e l a t i o n s h i p s t o f i e l d d a t a n e e d t o b e v e r i f i e d . R u t t i n g ( P e r m a n e n t d e f o r m a t i o n ) i n t h e f l e x i b l e p a v e m e n t c a n b e i m p r o v e d b y u s i n g a l o w e r p e r c e n t a i r v o i d s , h a r d e r a s p h a l t b i n d e r , h i g h e r a g g r e g a t e a n g u l a r i t y , o r c o m b i n a t i o n s t h e r e o f i n t h e a s p h a l t m i x e s . F a t i g u e l i f e o f a s p h a l t m i x e s c a n b e i n c r e a s e d b y u s i n g a l o w e r p e r c e n t a i r v o i d s , a n g u l a r a g g r e g a t e s , o r a c o m b i n a t i o n t h e r e o f i n t h e m i x . T h e u s e o f b e a m t h e o r y i n t h e a n a l y s i s o f r e s i l i e n t a n d t o t a l m o d u l i o f b e a m s p e c i m e n s i s i n a d e q u a t e b e c a u s e o f t h e a s s u m p t i o n s i n v o l v e d i n t h e t h e o r y . T h e m o d u l u s o f a s p h a l t m i x e s c a n b e i n c r e a s e d b y t h e 2 0 1 u s e o f a l o w e r p e r c e n t a i r v o i d s , h i g h e r a g g r e g a t e a n g u l a r i t y , o r a c o m b i n a t i o n t h e r e o f i n t h e a s p h a l t m i x e s . 6 . 2 R E C O M M E N D A T I O N S T h e r e s u l t s o f t h i s s t u d y s h o w e d t h a t i t i s p o s s i b l e t o e v a l u a t e , i n t h e l a b o r a t o r y , t h e e f f e c t s o f t h e t e s t , m i x , a n d s p e c i m e n v a r i a b l e s o n t h e ’ s t r u c t u r a l p r o p e r t i e s o f a s p h a l t m i x e s . I t i s r e c o m m e n d e d t h a t t h e s t a t i s t i c a l e q u a t i o n s p r e s e n t e d i n t h i s d i s s e r t a t i o n b e c a l i b r a t e d t o f i e l d d a t a p r i o r t o t h e i r u s e . I t i s f u r t h e r r e c o m m e n d e d t h a t t h e e f f e c t s o f t h e a s p h a l t c o n t e n t o n t h e s t r u c t u r a l p r o p e r t i e s o f a s p h a l t m i x e s b e c a l c u l a t e d . I t w a s s h o w n t h a t t h e c r i t e r i o n u s e d t o d e t e r m i n e t h e f a t i g u e l i f e o f t h e b e a m s p e c i m e n s l e d t o a n e r r o n e o u s c o n c l u s i o n r e l a t i v e t o t h e e f f e c t s o f t h e k i n e m a t i c v i s c o s i t y o f t h e a s p h a l t b i n d e r . T h e r e f o r e , i t i s r e c o m m e n d e d t h a t , i n f u t u r e s t u d i e s , t h e c r i t e r i o n b e r e f i n e d a n d t h e a c t u a l n e t a s s u m e d l i m i t o n t h e v a l u e o f t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n u n d e r t h e l o a d a t w h i c h t h e f a t i g u e l i f e i s r e a c h e d b e m o n i t o r e d a n d , p e r h a p s , b e r e l a t e d t o t h e t e s t , m i x , a n d s p e c i m e n v a r i a b l e s . R E F E R E N C E S R E F E R E N C E S 1 . T e s t a n d M a t e r i a l S p e c i f i c a t i o n s , P a r t s I a n d I I , 1 3 t h e d i t i o n , A m e r i c a n A s s o c i a t i o n f o r S t a t e H i g h w a y a n d T r a n s p o r t a t i o n O f f i c i a l s , 1 9 8 2 . e s i f P o a v e m t S t t e s A m e r i c a n A s s o c i a t i o n f o r S t a t e H i g h w a y a n d T r a n s p o r t a t i o n O f f i c i a l s , 1 9 7 2 , c h a p t e r I I I r e v i s e d , 1 9 8 1 . 3 . A A S H T O P r o p o s e d G u i d e f o r D e s i g n g r n g e m e g r s r r g g r g r e s , N a t i o n a l C o o p e r a t i v e H i g h w a y R e s e a r c h P r o g r a m , P r o j e c t 2 0 - 7 / 2 4 , V o l u m e 1 8 2 , J u l y 1 5 , 1 9 8 5 . 4 . A n n u a l B o o k o f S t a n d a r d , S e c t i o n 4 , V o l u m e 0 4 . 0 8 , A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l s , P h i l a d e l p h i a , P e n n s e l v a n i a , 1 9 8 4 5 . R e v i s i o n o f S e c t i o n I i , M a n u g i o n F a t i g u e T e s t i n g I A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l s , S p e c i a l T e c h n i c a l P a p e r n o . 9 1 , P h i l a d e l p h i a , P e n n s e l v a n i a , 1 9 5 9 . 6 . S t a n d a r d d e f i n i t i o n s o f t e r m s r e l a t i n g t o f a t i g u e t g g t i n q a n d s t a t i s t i c a l a n a i y s i s o f d a t a . A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l s , P h i l a d e l p h i a , P e n n s e l v a n i a , D e s i g n a t i o n E 2 0 6 - 7 2 . . 7 . A B r i e r i n r r o d u c t i o n r g A s p h g i r g n d S o m e o f i r g E g g s , t h e A s p h a l t I n s t i t u t e , M a n u a l S e r i e s n o . 5 ( M S - 5 ) 7 t h e d . , C o l l e g e P a r k , M D . 1 9 7 7 . 8 . M i r Q e s i g n M e t h o d s r g r A s p h a l t Q o g g r e t g a n g g t h e r H o t - M i x I y p g s r t h e A s p h a l t I n s t i t u t e , M a n u a l S e r i e s n o . 2 ( M S - 2 ) , C o l l e g e P a r k , M a r y l a n d , 1 9 7 9 . 9 . P r o c e e d i n g s , C o n f e r e n c e o n M e t h o d s f o r P r e d i c t i o n o f P e r m a n e n t D e f o r m a t i o n i n P a v e m e n t S y s t e m s , U n i v e r s i t y o f T e x a s a t A u s t i n , T e x a s , A u g . 1 9 7 3 . 1 0 . A s p h a i r g o i d M i r B e g y c i i n g , t h e A s p h a l t I n s t i t u t e , M a n u a l S e r i e s n o . 2 1 ( M S - 2 1 ) , 1 9 8 3 . l l . A s p h g i r fi g ; - n i x B e c y g l i n g , t h e A s p h a l t I n s t i t u t e , M a n u a l S e r i e s n o . 2 0 ( M S - 2 0 ) , 1 9 8 1 . 1 2 . A s p h a i t i n E a v e m g n t M a i g t e n g n c e , t h e A s p h a l t I n s t i t u e , M a n u a l S e r i e s n o . 1 6 ( M S - 1 6 ) , M a r c h 1 9 8 3 e d i t i o n . 1 3 . A s p h g r Q v e r i a y s f o r H i g y a v a n d S t r e t R e h a b i l i t a t i g n , t h e A s p h a l t I n s t i t u t e , M a n u a l S e r i e s n o . 1 7 ( M S - l 7 ) , J u n e 1 9 8 3 . 2 0 2 1 4 . 1 5 . 1 6 . 1 7 . 1 8 . 1 9 . 2 0 . 2 1 . 2 2 . 2 3 . 2 4 . 2 5 . 2 0 3 e s P r o c e d u r e o r C h a t ' ' D n a m c S t s s - S t a ' n P r o p e r t i e _ 1 . o f P a v e m s n t _ M a t _ r i _ l a A _ _ l n d i r e s t _ z e n § i l e _ _ e § t l T r a n s p o r t a t i o n R e s e a r c h B o a r d , S p e c i a l R e p o r t n o . 1 6 2 , 1 9 7 5 , p p . 3 2 - 3 4 . A d e d i m i l a , A . S . , a n d K e n n e d y , T . W . , E g r i g g g _ g h g _ 3 § § i l i g p r r a c t e ‘ s t ' c s o A s ' x t u s R e e a t e — - d i r e c t T e n s i l e T e s t I R e p o r t N o . C F H R 3 - 9 - 7 2 - 1 8 3 - 5 , T r a n s - p o r t a t i o n P l a n n i n g D i v i s i o n , T e x a s S t a t e D e p a r t m e n t o f H i g h w a y s a n d P u b l i c T r a n s p o r t a t i o n , A u s t i n , T e x a s , A u g u s t 1 9 7 5 . A l l e n , D . L . a n d D e e n , R . C . , R u t t ' o d s s a t i C o h c r e t e a n d D e n s e - G r a d e d A g g r e g a t e F r o m R e p e a t e d L o a d T e s t s , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 4 9 , 1 9 8 0 , p p . 6 5 3 - 6 6 7 . B a l a d i , G . Y . , e ' ' o ' v - s r g g y . A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l , S p e c i a l T e c h n i c a l P a p e r n o . 8 0 7 , 1 9 8 3 , p p . 1 6 4 - 1 7 1 . B a l a d i , G . Y . , L i n e a r V i s c o s i r y , U . S . A r m y E n g i n e e r W a t e r w a y s E x p e r i m e n t S t a t i o n , O c t o b e r 1 9 8 5 , p p . 1 - 6 . B a l a d i , G . Y . , N u m e r ' c a l m m e n a i o n o f a r a n s v e r s e - l s o t r o p i g , l n e l a s t i c , W o r k - H a r d e n i n g C o n s t i t u t i v e M o d e l , S o i l D y n a m i c s D i v i s i o n , S o i l s a n d P a v e m e n t L a b o r a t o r y , U . S . A r m y E n g i n e e r W a t e r w a y s E x p e r i m e n t S t a t i o n , V i c k s - b u r g , M i s s . , p p . 1 - 1 2 . B a l a d i , G . Y . , n t e a t e ' a n d S t r u t u r a l D e s i n e x ' b l e P a v e h t F H W A / R D - 8 8 / 1 0 9 , 1 9 8 8 . B a r k s d a l e , R . D . , C o m e s s i v S e s s P u s e T ' m e s ' n F l e x i b e P a v m e n t s r o r U s e i h D y n a m i c T e s t i n g , H i g h w a y R e s e a r c h B o a r d n o . 3 4 5 , 1 9 7 1 , p p . 3 2 - 4 3 . B a r k s d a l e , R . D . , b a o r v u ' o f t ' ' a s e g p g r § g _ h g r g r i g l § r t h e 3 r d I n t e r n a t i o n a l C o n f e r e n c e o n t h e S t r u c t u r a l D e s i g n o f A s p h a l t P a v e m e n t , U n i v e r s i t y o f M i c h i g a n , A n n A r b o r , M i c h i g a n , v o l . 1 , 1 9 7 2 , p p . 1 6 1 - 1 7 4 . B a r k s d a l e , R . D . , ' c a t o o f ' u a n g g r r i h g I g s r s p p E i r u h i p g g s h g s e M i x e s , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 4 7 , 1 9 7 8 , p p . 1 1 5 - 1 6 0 . B o n n a u r e , F . , G r a v o i s , A . a n d U d r o n , J . , e w o r P r e d i c t i n g t h e F a t i g u e L i f e o f B i t u m i n g u s M i x e s . t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 4 9 , 1 9 8 0 , p p . 4 9 9 - 5 2 9 . B o n n a u r e , F . B . , G e s t , G . , G r a v o i s , G . A . , a n d U g e , P . , A N e w 2 6 . 2 7 . 2 8 . 2 9 . 3 0 . 3 1 . 3 2 . 3 3 . 3 4 . 3 5 . 2 0 4 M p t h o d o f P r g g i c t i n q t h e S t i f f i n e s s o f A s p h a l t P a v i n g M i x r u r e s I t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t , v o l . 4 6 , 1 9 7 7 , p p . 6 4 - 1 0 4 . B o n n a u r e , F . P . , H u i b e r s , A . H . J . J . a n d B o o n d e r s , A . , A L a b o r a t o r y I n v e s r i g a t i o n o f t h e I n f l u e n c e o f R g g t P e r i o d s o n t h e F a t i g u e C h a r a c t e r i s t i c s o f B i t u m i n o u s M i x g g y t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 5 1 , 1 9 8 2 , p p . 1 0 4 - 1 2 9 . B r o w n , S . F . a n d C o o p e r , K . E . , A F u n d a m e n t a l S t u d y o f t h e S t r e s s - S t r a i n C h a r a c t e r i s t i c s o f a B i t u m e n o u s M a t e r i a l t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 4 9 , 1 9 8 0 , p p . 4 7 6 - 4 9 9 . B r o w n , S . F . , a n d H y d e , A . F . L . , S i g i n f i c a n c e o f C y c l i c C o n f i n i n q S t r e s s i n R e p e a t e d - L o a d T r i a x i a l T e s t i n g o f G r a n u l a r M a t e r i a l , T r a n s p o r t a t i o n R e s e a r c h R e c o r d n o . 5 3 7 , 1 9 7 5 , p p . 4 9 - 5 8 . C h o u , Y . T . , E g p a t i o n s f o r N o n b o n d e d C o n c r e t e O v e r l a y s , M i s c e l l a n e o u s P a p e r G L - 8 5 - 2 5 , U . S . A r m y C o r p s o f E n g i n e e r s H u n t s v i l l e , A l a b a m a , S e p t e m b e r 1 9 8 5 , p p . 1 - 2 6 . C h r i s t i s o n , J . T . , A n d e r s o n , K . O . , a n d S h i e l d s , B . P . , l h S i t u M e a s u r e m e n t s o f S t r a i n s a n d D e f l e g t i o h s i h a F u l l D e p t h A s p h l a t i c g o n c r e t e E a v e m e h t , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t , v o l . 4 7 , 1 9 7 8 , p p . 3 9 8 - 4 3 3 . C o w h e r , C . E . , a n d K e n n e d y , T . W . , C u m u l a t i v e D a m a g e o f A s p h a l t M a t e r i a l s U n d e r R e p e a t e d - L o a d i n d i r e c t T e n s i o n , I n t e r i m R e s e a r c h S t u d y 3 - 9 - 7 2 - 1 8 3 , P l a n n i n g & R e s e a r c h D i v i s i o n , T e x a s H i g h w a y D e p a r t m e n t , A u s t i n , T e x a s , J a n u a r y 1 9 7 5 . D e a c o n , J . A . , a n d M o n i s m i t h , C . L . , L a b o r a t o r y F l e x u r a l — E g r i g u e I g s r i h g p f A s p h a l t - C o n c r e t e W i t h E m p h a s i s o f C o m p o u n d - L o a d i n g T e s t s , H i g h w a y R e s e a r c h R e c o r d n o . 1 5 8 , 1 9 6 7 , p p . 1 - 3 1 . D e s a i , C . S . , E l g m e n t a r y E i h i t e E l e m e n t M e t h o d , P r e n t i c e - H a l l , E n g l e w o o d C l i f f s , N e w J e r s e y , 1 9 7 9 . E p p s , J . A . , a n d M o n i s m i t h , C . L . , I n f l u e n c e o f M i x r u r e V g r i g b l e g o h t h g E l g x p r a l F a t i g p e P r g p e r r i e s o f A s p h a l t C o n c r e t e . t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t , v o l . 3 8 , 1 9 6 9 , p p . 4 2 3 - 4 6 4 . E p p s , J . A . , a n d M o n i s m i t h , C . L . , F a t i g u e o f A s p h a l t C g h c r e t e M i x r g r g s : S u m m a r y o f E x i s t i n g l n f o r m a t i o n s l A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l , S p e c i a l T e c h n i c a l P a p e r n o . 5 0 8 , 1 9 7 2 , p p . 1 9 - 4 5 . 3 6 . 3 7 . 3 8 . 3 9 . 4 0 . 4 1 . 4 2 . 4 3 . 4 4 . 4 5 . 4 6 . 4 7 . 2 0 5 F i n n , F . N . , F a c t o r s l h v o l v e d i n t h e D e s i g n o f A s p h a l t i c P a v e m e n t S u r f a c e s , N a t i o n a l C o o p e r a t i v e H i g h w a y R e s e a r c h P r o g r a m , R e p o r t n o . 3 9 , 1 9 6 7 , p p . 1 - 1 1 2 . F r a n c k e n , L . , a n d V e r s t r a e t e n , J . , M e t h o d s f o r P r e d i c t i n g M o d u l i a n d F a t i g u e L a w s o f B i t u m i h o u s B o a g h i r e s U n d e r R e p e a t e d B e n d i n g , T r a n s p o r t a t i o n R e s e a r c h R e c o r d n o . 5 1 5 , 1 9 7 4 , p p . 1 1 4 - 1 2 3 . F u c h s , H . O . , A S e t o f F a t i g p e F a i l u r g C r i t e r i a , A S M E J o u r n a l o f B a s i c E n g i n e e r i n g , v o l . 8 7 , J u n e 1 9 6 5 , p p . 3 3 3 - 3 4 3 . F u c h s H . O . , a n d S t e p h e n s , R . I . , h g t a l F a t i g u e E n g i n e e r i n g , J o h n W i l e y a n d S o n s P u b l i s h e r s , 1 9 8 0 . H a a s , R . , a n d M e y e r , F . , C y c l i c g r g e p p f B i r u m i n o u s M a r e r i a l s U n d e r T r a n s i e n t , h i g h - V o l u m e L o a d g y T r a n s p o r t a t i o n R e s e a r c h R e c o r d n o . 5 4 9 , 1 9 7 5 , p p . 1 - 1 4 . H a d l e y , W . O . , a n d V a h i d a , H . , A F u h g a m e n r a l C o m p a r i s g n o f t h e F l e x u r a l a n d I n d i r e c t T e p g i l e T e s t s , T r a n s p o r t a t i o n R e s e a r c h B o a r d , 1 9 8 3 . H v e e m , F . N . , Z u b e , E . , B r i d g e s , R . , a n d F o r s y t h , R . , T h e E f f e c t o f R e s i l i e n c e — D e f l e c t i o n R e l a t i o n s h i p o n t h e S t r u c t u r a l D g s i g n o r A s p h g l t i g P a v e m g p r s , t h e I n t e r n a t i o n a l C o n f e r e n c e o n S t r u c t u r a l D e s i g n o f A s p h a l t P a v e m e n t s , 1 9 6 2 , p p . 6 4 9 - 6 6 6 . I r w i n , L . h . , U s e o F a c t u e n ' F ' u r e C r i r e r i o n , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 4 6 , 1 9 7 7 , p p . 4 1 - 6 3 . I r w i n , L . H . , a n d G a l l a w a y , B . M . , I u e o b o a o I g s r M e t h o d o n F a t i g u e I g s r R g s u l t s f o r h s p h g l t i g C g h c r g t e , A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l , S p e c i a l T e c h n i c a l P a p e r n o . 5 6 1 , 1 9 7 3 , p p . 1 2 - 4 6 . J o n e s , G . M . , D a r t e r , M . I . , a n d L i t t l e f i e l d , G . , T h e r m a l E r p g h s i o h - Q o n t r a g t i o h o f h s p h a l t i g g o h g r g t e , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , V o l . 3 7 1 9 6 8 , p p . 5 6 - 6 3 . K a l c h e f f , I . V . a n d H i c k s , R . C . , A T e s t E r g c g d u r e r o r ' 1 - g _ 7 1 ' 1 - 1 - ; - s ' . - 1 ' O p e , i - s . a 1 - . g a t e T . 5 A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l , J o u r n a l o f T e s t i n g a n d E v a l u a t i o n , v o l . 1 , n o . 6 , 1 9 7 3 p p . 4 7 2 - 4 7 9 . K a l c h e f f , I . V . , a n d T u n n i c l i f f , D . G . , c t s o u s h e d S r g n e A g g r e g a t e S i z e a n d S h a p e o n P r o p e r t i e s o f A s p h a l t 4 8 . 4 9 . 5 0 . 5 1 . 5 2 . 5 3 . 5 4 . 5 5 . 5 6 . 5 7 . 2 0 6 a n g z e t e , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 5 1 , 1 9 8 2 , p p . 4 5 3 - 4 8 4 . K a l l a s , B . P . , a n d P u z i n a u s k a s , V . P . , F l e x p u r e F a t i g u e T e s t s o n A s p h a l p P a v i n g M i x t u r e s , A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l , S p e c i a l T e c h n i c a l P a p e r n o . 5 0 8 , 1 9 7 2 . K a s i a n c h u k , D . A . , T e r r e l , R . L . , a n d H a a s , R . C . G . , A D e s i g n _ e m o _ ' g ' m ' f n - a ' - e P - , a n - " _ O Q u 1 ' . , . n d S h r i n k a g e F r a c t u p e D i s t r e s s o f A s p h a l t P a v e m e n p g I t h e 3 r d I n t e r n a t i o n a l C o n f e r e n c e o n t h e S t r u t u r a l D e s i g n o f A s p h a l t P a v e m e n t s , L o n d o n , v o l . 1 , S e p t e m b e r 1 9 7 2 , p p . 6 2 9 - 6 5 5 . K e n i s , W . J . , M a t e r i n i g h n n n g p e p i p n s f o r n g i p n n i a n g m e n p D e s i g n , A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l , S p e c i a l T e c h n i c a l P a p e r n o . 5 6 1 , 1 9 7 3 , p p . 1 3 2 - 1 5 2 . K e n n e d y , T . W . , C h a r a t e p i z g p i o n o i A s p h a l t P a v e m e n t M a p g r i a i s U s i n g t h e I n d i g e n t T e n s i i e T e s p , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 4 6 , 1 9 7 7 , p p . 1 3 2 - 1 5 0 . K e n n e d y , T . W . , T e n s i l e C h a r a c p e r i z a t i o n o f H i g h w a y P a v e m e n t M a p e p i a l s , R e p o r t N o . F H W A / T X - 8 4 / 2 1 + 1 8 3 - 1 5 F , T r a n s p o r t a t i o n P l a n n i n g D i v i s i o n , T e x a s S t a t e D e p a r t m e n t o f H i g h w a y s a n d P u b l i c T r a n s p o t a t i o n , A u s t i n , T e x a s , J u l y 1 9 8 3 . K i n g h a n , R . I . a n d K a l l a s , B . F . , L a b o r a t g p y F a t i g u e a n d i t s R e l a t i o n s h i p t o P a v e m e n t P e p f o r m a n g e , A s p h a l t I n s t . R e s e a r c h R e p o r t 7 2 - 3 , t h e 3 R D I n t e r n a t i o n a l C o n f e r e n c e o n t h e S t u c t u r a l D e s i g n o f A s p h a l t P a v e m e n t s , L o n d o n , E n g l a n d 1 9 7 2 . K i m , 0 . K . , B e l l , C . A . , a n d H i c k s , R . C . , E f f e c t o f M i a n g i t i o n i n g o n i P r o p e r p i e s o f A s p h a l t i c M i x t u r e s , T r a n s p o r t a t i o n R e s e a r c h R e c o r d n o . 9 6 8 , T r a n s p o r t a t i o n R e s e a r c h B o a r d , N a t i o n a l R e s e a r c h C o u n c i l , 1 9 8 4 , p p . 8 6 - 9 2 . K l o m p , A . J . G . , a n d N i e s m a n , T . W . , 0 s e a n a e d ' n s a t V ’ o u s t s ' s h a t P v e m e n s t h e 2 n d I n t e r n a t i o n a l C o n f e r e n c e o n S t r u c t u r a l D e s i g n o f A s p h a l t P a v e m e n t s , U n i v e r s i t y o f M i c h i g a n , A n n A r b o r , M i c h i g a n , 1 9 6 7 , p p . 6 7 1 - 6 8 8 . K o e r n e r , R . M , E fi f g g g o f P n p t i c i g c n a r n c p e r i s t i c s o n § o i i S t p g n g p h , J o u r n a l o f t h e S o i l M e c h a n i c s a n d F o u n d a t i o n D i v i s i o n , A S C E , v o l . 9 6 , S M 4 , J u l y 1 9 7 0 . K o l b u s z e w s k i , J . J , P n n d g n e n p g l P n g t o r s A f f e c t i n g E x p e r i m e n t a l E x p e r i m e n t a l P r o c e d u g e s a n i i n g w i p n P r g s s n r e D i s t r i b u t i o n i n S a n d s , P r o c e e d i n g s , t h e B r u s s e l s C o n f e r e n c e o n E a r t h P r e s s u r e P r o b l e m s , B r u s s e l s , 1 9 5 8 . 5 8 . 5 9 . 6 0 . 6 1 . 6 2 . 6 3 . 6 4 . 6 5 . 6 6 . 6 7 . 6 8 . 6 9 . 2 0 7 L a n d g r a f , R . W . , M o r r o w , J . , a n d E n d o , T . , P e t e r m i n a t i p n o f g y g l i c S t r e g s - S t r g i n C n r y g , J . M a t e r . v o l . 4 , n o . 1 , M a r c h 1 9 6 9 , p p . 1 7 6 - 1 8 9 . L i t t l e , R . E . , a n d J o b e , E . H . , M a n u a l S t t i s t ' c a P n n i n a n d A n a s l y s i s f o r F a t i g u e P r p e r i m e n t s , A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l , S p e c i a l T e c h n i c a l P a p e r n o . 5 8 8 , 1 9 7 5 . L o t t m a n , R . P . , L a p o r n r g r y T e s t M e t n o d f o r P r e g i g r i n g M o i s t u r e I n d u c e d D a m a g e t o A s p h a l t g g n g r e t e , T r a n s p o r t a t i o n R e s e a r c h R e c o r d n o . 8 4 3 , 1 9 8 2 , p p . 8 8 - - 9 5 . L o t t m a n , R . P . , ' o i s e - a m a e t o A s p h l t i c C o n c r e t e P i e l g E y n l u a r i o o n , N a t i o n a l C o o p e r a t i v e H i g h w a y R e s e a r c h P r o g r a m , R e p o r t n o . 2 4 6 , 1 9 8 2 , p p . 1 - 5 0 . L o t t m a n , R . P . , C h e n , R . P . , K u m a r , R . S . , a n d W o l f , L . W . , A . b o a t o r T - s t s - m . f - d _ o . . 5 - 1 . _ . r e t e M o i s t u r e D a m a g e , T r a n s p o r t a t i o n R e s e a r c h R e c o r d 5 1 5 , 1 9 7 4 , p p . 1 8 - 2 6 . M a j i d z a d e h , K . , a n d K e r a k o u z i a n , M . , a c t ' a M e t h o d f o E v a l u a t i n g F a t i g u e a n d F r a c t u r e T o u g h n e s s o f P a v e m e n t M a r e r i a l s , T r a n s p o r t a t i o n R e s e a r c h R e c o r d n o . 6 9 5 , 1 9 7 8 , p p . 7 - 1 4 . M a r a c h i , N . D . , C h a n , C . R . , a n d S e e d , H . B . , E v a l u a t i o n o f ' ' M ' J o u r n a l o f t h e S o i l M e c h a n i c s a n d F o u n d a t i o n s D i v i s i o n , A m e r i c a n S o c i e t y o f C i v i l E n g i n e e r s , S M 1 , 1 9 7 2 , p p . 9 5 - 1 1 4 . M a u p i n , G . W . J r . , e s 0 d ' ' ' u e L ' o f E i t n m i n 2 2 § _ g g n g r g § g r T r a n s p o r t a t i o n R e s e a r c h R e c o r d n o . 6 5 9 , 1 9 7 8 , p p . 3 2 - 3 6 . M i l l e r , J . S . , U z a n , J . , a n d W i t c z a k , M . W . , o i f ' c ' o n o f t 5 h a s t ' u t e B i t u m i n o u s 1 M o u l u s e d i c t i v e E g n a t i o n , T r a n s p o r t a t i o n R e s e a r c h R e c o r d n o . 9 1 1 , 1 9 8 3 , p p . 2 7 - 3 6 . M o n i s m i t h , C . L . , F e x i b i l i t C h a a c e ' s ' s o f l t P a v i n g M i r r u r g s , t h e A s s o c i a t i o n o f A s p h l t P a v i n g T e c h n o l o g i s t s , v o l . 2 7 , 1 9 5 8 , p p . 7 4 - 1 0 6 . M o n i s m i t h , C . L . , o ' u F ' v e t v ' s R e l a t e d t o D e c t ' o I - ' n ' ' c a c e P a v e m e n t Q e f l e c t i o n s , t h e A s s o c i a t i o n o f A s p h l t P a v i n g T e c h n o l o g i s t s , v o l . 3 1 , 1 9 6 2 , p p . 2 3 1 - 2 6 0 . M o n i s m i t h , C . L . , O g a w a , N . , a n d F r e e m e , C . R . , P e n D e f o r m a t i o n C h a r a c t e r i s t i c s o f S u b g r a d e S o i l s D u e t o P e p g n t e d L o a d i n g , T r a n s p o r t a t i o n R e s e a r c h R e c o r d n o . 5 3 7 , 7 0 . 7 1 . 7 2 . 7 3 . 7 4 . 7 5 . 7 6 . 7 7 . 7 8 . 7 9 . 8 0 . 2 0 8 1 9 7 5 , p p . 1 - 1 7 . M o n i s m i t h , C . L . , a n d S a l a m , Y . M . , D i s t r e s s C n e r e e t e r i s r i e s e f A s p n e l t g e n c r e r e M i x e s , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 4 3 , 1 9 7 3 , p p . 3 2 0 - 3 5 0 . M o n i s m i t h , C . L . , S e c o r , K . E . , a n d B l a c k m e r , E . W . , A s p h a l t M i x t u r e B e h a v i o r i n R e p e a t e d F l e x u r e y t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 3 0 , 1 9 6 1 , p p . 1 8 8 - 2 2 2 . M o n i s m i t h , C . L . , S e e d , H . B . , M i t r y , F . G . , a n d C h a n , C . R . , P r e d i c r i o n o f P e v e m e n t D e f l e c t i o n s P r o m D e b o r a t o r y T e s t s , t h e 2 n d I n t e r n a t i o n a l C o n f e r e n c e o n t h e S t r u c t u r a l D e s i g n o f A s p h a l t P a v e m e n t s , U n i v e r s i t y o f M i c h i g a n , A n n A r b o r , M i c h i g a n , 1 9 6 7 , p p . 1 0 9 - 1 4 0 . M o n i s m i t h , C . L . , a n d V a l l e g r a , B . A . , R e l a t i o n s h i p B e t w e e n D e n s i t a n d S t a b i i t o f A s h a l t ' c a v i n M i x t u r e s t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 2 5 , 1 9 5 6 , p p . 8 8 - 1 0 8 . M o r r i s , J . , a n d H a a s , R . C . G . , D y n a m i c T e s t i n g o f B i t u m i n o u s M i r f n r e s f o r P e r m a n e n t D e f o r m a t i o n R e s p o n s e , A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l , S p e c i a l T e c h n i c a l P a p e r n o . 5 6 1 , 1 9 7 3 , p p . 1 1 5 - 1 3 1 . M o r r i s , J . , H a a s , R . C . G . , R e i l l y , P . , a n d H i g n e l l , E . T . , P e r n a n e n r D e f o r m a t i o n i n A s p h e l t P a v e m e n t s C a n D e P r e d i e r e d , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t , v o l . 4 3 , 1 9 7 4 , p p . 4 1 - 7 6 . N i j b o e r , L . W . , n e o n a n i c e l P r o p e r t i e s o f A s p h a l t M a t e r i a l s e n d s p r u c t u r a l D e s i g n o f A s p h e l t R o a d s , H i g h w a y R e s e a r c h B o a r d , v o l . 3 3 , 1 9 5 4 , p p . 1 8 5 - 2 0 0 . N o r u s i s , M . , S P C + f o t B M C X T A T S P S S I n c . , C h i c a g o , 1 9 8 6 . P a v l o v i c h , R . D . , a n d G o e t z , W . H . , D i r e e r _ _ T e n § i e n _ T e e r B e s u 1 t s _ f 2 r _ S 2 m e _ _ A s n n a l t _ _ Q o n s r e t e § 1 t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 4 5 , 1 9 7 6 , p p . 4 0 0 - 4 2 8 . P e l l , P . S . a n d B r o w n , S . F . , h C a ' s ' c M a r e r i a l s f o r r h e D e s i g n o f P l e r i b l e P a v e m e n r S t r u c t u r e s , t h e 3 r d I n t e r n a t i o n a l C o n f e r e n c e o n t h e S t r u c t u r a l D e s i g n o f A s p h a l t P a v e m e n t s , U n i v e r s i t y o f M i c h i g a n , v o l . I , 1 9 7 2 , p p . 3 2 6 - 3 4 2 . P e l l , P . S . , a n d C o o p e r , R . E . , T n e E f f e e r o f T e s t i n g a n d M i x V e r i a b l e s o n t h e F t ' u e P r o n c e o f ' t u m i n o u s M a t e r i e l s , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 4 4 , 1 9 7 5 , p p . 1 - 3 7 . 8 1 . 8 2 . 8 3 . 8 4 . 8 5 . 8 6 . 8 7 . 8 8 . 8 9 . 9 0 . 9 1 . 9 2 . 2 0 9 P e r l , M . , U z a n , J . , a n d S i d e s , A . , V ' s o - ' c - s t ' o n s t i t u t i v e L a w 0 a ' u m i n o u s M ' x t e U n d e r R e p e a t e d L e g g i n g r T r a n s p o r t a t i o n R e s e a r c h R e c o r d n o . 9 1 1 , 1 9 8 3 , p p . 2 0 - 2 7 . R e a d y , J . N . , A n I n t r o d u e r i o n t o t h e F i n i t e E l e m e n t n e r n g g , M c G r a w - H i l l , N e w Y o r k , 1 9 8 4 . R o m a i n , J . E . , R u ; D e p t h P r e d i c t i o n i n A s p h e l r P e v e m e n t s , t h e 3 r d I n t e r n a t i o n a l C o n f e r e n c e o n S t r u c t u r a l D e s i g n o f A s p h a l t P a v e m e n t s , L o n d o n , 1 9 7 2 , p p . 7 0 5 - 7 1 8 . S a n d o r , B . I . , u d a m e s o c ' e s s t h e U n i v e r s i t y o f W i s c o n s i n p r e s s , 1 9 7 2 . S a r a f , C . L . , a n d M a j i d z a d e h , R . , D y n a m i c P e s p o n s e a n d P a t i g u e C h a r a c t e r i s t i c s o f A s p h a l t i c M i r t m r e s , A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l , S p e c i a l T e c h n i c a l P a p e r n o . 5 6 1 , 1 9 7 3 , p p . 9 5 - l l 4 . S a y e g h , G . , V i s c o e l a s t i c P r o p e r t i e s o f B i t u m i n o u s M i x t u r e s , t h e 2 n d I n t e r n a t i o n a l C o n f e r e n c e o n t h e S t r u c t u r a l D e s i g n o f A s p h a l t P a v e m e n t s , U n i v e r s i t y o f M i c h g a n , 1 9 6 7 , p p . 7 4 3 - 7 5 5 . S c h m i d t , R . J . , a ' M e t d ’ e R e s ' ' e n t d s o f s h - T r t e d i x e s H i g h w a y R e s e a r c h R e c o r d n o . 4 0 4 , 1 9 7 2 , p p . 2 2 - 3 2 . S c h u e t t e , E . H . , A S i m l i f i e d S t a t i s t i a P o c e u r e f o r O b t a i n i n g D e s i g n L e v e l E e t i g u e D n r y e s , A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l , v o l . 5 4 , 1 9 5 4 p p . 8 5 3 - 8 7 4 . S e c o r , R . E . , a n d M o n i s m i t h , C . L . , V ' s o e t ' e r t ' e o f A s p h a l r g o n c r e r e , H i g h w a y R e s e a r c h B o a r d , v o l . 4 1 , N a t i o n a l R e s e a r c h C o u n c i l , 1 9 6 2 , p p . 2 9 9 - 3 2 0 . S e e d , H . B . , C h a n , C . b K . , a n d L e e , C . E . , P e s i l i e n c e a a c t c s e o a d h e ' R e a t i o n t o E e r i g u e E e i l u u r e s i n A s p h a l t P a v e m e n t s , t h e I n t e r n a t i o n a l C o n f e r e n c e o n t h e S t r u c t u r a l D e s i g n o f A s p h l a t P a v e m e n t s , U n i v e r s i t y o f M i c h g a n , A n n A r b o r , M i c h i g a n , 1 9 6 2 , p p . 6 1 1 - 6 3 6 . S e e d , H . B . , M i t r y , F . G . , M o n i s m i t h , C . L . , a n d C h a n , C . R . , ' ‘ 0 ' O ! 0 e b e ’ - V ‘ ‘ 1 U ‘ ‘ , 0 ! C u . 9 0 a 0 ; T e s t s , N a t i o n a l C o o p o r a t i v e H i g h w a y R e s e a r c h P r o g r a m R e p o r t n o . 3 5 , 1 9 6 7 . S h a r m a , M . G . , o d ' ' a ’ o R u t h o d e F i n a l R e p o r t n o . 8 0 - P - 3 0 1 1 3 , F e d e r a l H i g h w a y A d m i n i s t r a t i o n , 9 3 . 9 4 . 9 5 . 9 6 . 9 7 . 9 8 . 9 9 . 1 0 0 . 1 0 1 . 1 0 2 . 1 0 3 . 2 1 0 W a s h i n g t o n , D . C . , N o v . , 1 9 8 1 , p p . 1 - 1 5 . S h o o k , J . F . , a n d K a l l a s , B . F . , F a c t o r s I n f l u e n c i n g D y n a m i c M o d u l u s o f A s p h a l t C o n c r e t e , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s v o l . 3 8 , 1 9 6 9 , p p . 1 4 0 - 1 7 8 . S m i t h , W . , F i n n , F . , K u l k a r n i , R . , S a r a f , C . , a n d N a i r , K . , B a y e s i a n M e t h o d o l e g v f o r V e r i f y i n g R e c o m m e n d e r i o n s t o M i n i m i z e A s p h a l p P e v e m e n t D i e t r e s s , N a t i o n a l C o o p o r a t i v e H i g h w a y R e s e a r c h P r o g r a m , R e p o r t 2 1 3 , 1 9 7 9 , p p . 1 - 5 2 . S o u s s o u , J . E . , a n d M o a v e n z a d e h , F . , S t a t i s t i c a l C h e r a c r e r i s t i c s o f F a t i g u e D e m e g e A c c u m u l e t i o n i n E l e x i p l e P a v e m e n t s , A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l , S p e c i a l T e c h n i c a l P a p e r n o . 5 6 1 , 1 9 7 3 , p p . 3 - 1 1 . T e r r e l , R . L . , F a t i g u e B e h a v i o r : E i e l d O b s e r v e t i o n s a n d A n a l y t i c a l P r e d i c t i o n s , A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l , S p e c i a l T e c h n i c a l P a p e r n o . 5 0 8 , 1 9 7 1 , p p . 1 1 7 - 1 4 3 . V a n D i j k , W . , P r a c t i c a l F a t i g u e C h e r e e r e r i z a t i o n o f B i t u m i n o u s M i x e s , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 4 4 , 1 9 7 5 , p p . 3 8 - 7 4 . V a n D i j k , W . , a n d V i s s e r , W . , T h e E n e r g y A p p r o a c h t o F a t i g u e f o r P a v e m e n t D e s i g n , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 4 6 , 1 9 7 7 , p p . 1 - 4 0 . V o n Q u i n t u s H . L . , R a u h u t , J . E . , a n d K e n n e d y T . W . , C o m p a r i s o n s o f A s p h a l t D o n c r e t e S t i f f n e s s a s M e a s u r e d b y V a r i o u s T e e t i n g T e c h n i g n e s , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 5 1 , 1 9 8 2 , p p . 3 5 - 5 2 . W e d d i n g , P . A . , a n d G a y n o r , R . D . , T h e E f f e c t s o f U s i n g C r u s h e d G r a v e l a s t h e C o a r s e a n d F i n e A g g r e g a t e i n D e n s e G r a d e d B i t u m i n o u s M i x t u r e s , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 3 0 , 1 9 6 1 , p p . 4 6 9 - 4 9 2 . W i t c z a k , M . W . , R e p e a t e d L e a d F r a c t u r e o f P a v e m e n t S y s t e m s , P a v e m e n t P e r f o r m a n c e M o d e l s , S o i l s a n d P a v e m e n t s L a b o r a t o r y U . S . A r m y E n g i n e e r W a t e r w a y s E x p e r i m e n t S t a t i o n , v o l . 1 V i c k s b u r g , M i s s . , A u g u s t , 1 9 7 6 . W i t c z a k , M . W . , P r e d i c t i o n o f E g n i v a l e n t D a m e g e P e p e r i t i o n s F r o m A i r c r a f t T r a f f i c M i x t u r e s f o r F u l l - D e p t h A s p h a l t A i r f i e l d P a v e m e n t s , t h e A s s o c i a t i o n o f A s p h a l t P a v i n g T e c h n o l o g i s t s , v o l . 4 2 , 1 9 7 3 , P P . 2 7 7 - 2 9 9 . W i t c z a k , M . W . , F a t i g u e S u b s y s t e m f o r A s p h a l t C o n c r e t e A i r f i e l d P a v e m e n t s , t h e T h i r d I n t e r n a t i o n a l C o n f e r e n c e o n t h e S t r u c t u r a l D e s i g n o f A s p h a l t P a v e m e n t s , U n i v e r s i t y o f 1 0 4 . 1 0 5 . 1 0 6 . 1 0 7 . 1 0 8 . 1 0 9 . 2 1 1 M i c h i g a n , V o l 1 , 1 9 7 2 . W i t c z a k , M . W . a n d R o o t , R . E . , S u m m a r y o f C o m p l e x M o d u l u s L a b o r a t o r y T e s t P r o c e e d u r e s a n d R e s u l t s , A m e r i c a n S o c i e t y f o r T e s t i n g a n d M a t e r i a l , S p e c i a l T e c h n i c a l P a p e r n o . 5 6 1 , 1 9 7 4 , p p . 6 7 - 9 4 . W u , T . H . , T n e E f f e c r s o f G r a i n C h a r a c t e r i s t i e s o n t n e S h e a r S t r e n g t h o f C o h e s i o n l e s s S o i l s , P h . D t h e i s e s , M i c h g a n S t a t e U n i v e r s i t y , D e p a r t m e n t o f C i v i l E n g i n e e r i n g , 1 9 8 5 . Y e a g e r , L . L . , a n d W o o d , L . E . , R e c o m m d e o c 0 D e t e r m i n i n g t h e D y n a m i c M o d u l u e o f A s p h a l t M i x t u r e s , T r a n s p o r t a t i o n R e s e a r c h R e c o r d n o . 5 4 9 , 1 9 7 4 . Y o d e r , E . J . , a n d L o w r i e , C . R . , T r i a x i a l T e s r i n g A p p l i e d t o D e s i g n o f F l e x i b l e P a v e m e n t s , H i g h w a y R e s e a r c h B o a r d , v o l . 3 1 , 1 9 5 2 , p p . 4 8 7 - 4 9 9 . Y o d e r , E . J . , S e l e c t i e n e f S o i l S t r e n g t n V a l u e s f o r r n e D e s i g n o f F l e x i b l e P a v e m e n t s , H i g h w a y R e s e a r c h B o a r d R e c o r d n o . 2 7 6 , 1 9 6 9 , p p . 1 - 1 3 . Y o d e r , E . J . , a n d W i t c z a k , M . W . , P r i n c i p l e s o f P a v e m e n t D e s i g n , 2 n d . e d i t i o n , J o h n W i l e y a n d S o n s , I n c . , N e w Y o r k , 1 9 7 5 . ‘ 3 # A “ . “ 1 n , I 3 . A . v , ( h . 1 ' > h \ f 4 r s fl ” : . I « - _ c t v § 1 f ' j * ‘ 1 : h 5 f 1, f 3 a fl . “ « 5 , . t , ‘ § J : ' T 1 7 : " . . t y . § - - , 2 v 4 \ n : fi 1 ‘ . , " “ } “ . A ‘ " é fi I g " . $ ~ n o m , ' § 1 g 9 l i p 5 " ‘ ‘ 1 1 “ " , _ - . . . ' . ‘ - 1 . 9 : ‘ : 4 4 » . 2 1 : 1 1 : , 2 . " - . g . . 1 . ~ ~ ” . 1 ' 9 5 ' 5 ; ' Y : 1 3 “ ; . I C J H A ' ; { A r i a } ' fi g ? , T v ’ ’ 3 3 : “ . ‘ 0 ‘ : g ‘ . I ~ . A ‘ 1 2 3 9 . . » t h W m m . 1 » : . . fi g ) ? fi r v ‘ r ' v ' : A g ‘ : 4 . “ : L ~ 1 1 " ? J u ' J o o ' “ ' u u . - , : : “ ( “ r : { V ‘ “ $ 7 ; 1 . N u t ' , ' . b n s \ ~ ' 6 : 3 7 . . " 5 1 % ” ? ? 1 R i g a - 4 w . V 4 1 “ " 2 $ 1 . . V i i g fi z z g u ‘ W 5 7 2 : w " , ‘ 1 ‘ \ S 5 - 4 - 5 1 “ fi l ‘ . # 1 , ’ g ) , s fl ‘ é ’ i ‘ P K t } n : 1 0 1 i ' v - { s l fi m - S H y » : 1 , 1 ( I G " § " } V ‘ 5 ‘ 2 " _ w _ ' I . a ; 2 1 5 ' fl i t - 3 5 1 3 3 . : 5 ‘ 1 1 . » 5 " ? M . i ” “ } ‘ ‘ } M 1 9 ? 2 V - L u n g / ‘ 3 ’ . ” w : ‘ M ‘ 4 5 ] u ‘ 1 " - x ' d ; , ' ' r ‘ ' : £ . : : . “ : ‘ 1 ' I . . 6 . . o : ‘ 3 ‘ . A 1 ’ 4 . i f “ ? 3 - 1 - 1 1 " . 3 “ } K 4 } ? " ' 1 ' 2 ' I . > ‘ \ ‘ ( g ‘ g x 4 , N " . . ( a t $ 7 “ " 3 0 1 5 3 4 3 3 1 1 3 3 4 1 “ “ E “ 1 1 " " ‘ 5 . m " . . \ - \ ' I I ' V M ® % 1 ' l ‘ q ‘ w . . ’ : ‘ I . ‘ v 1 7 + _ V ‘ 1 “ \ ‘ x 3 5 3 . . . 2 - 4 » , 4 > 4 4 1 1 1 1 4 . 1 2 g m . 1 t s l . W ! \ ‘ x ' " ' " L g . ' 1 < m a g i , . L ‘ 3 1 . : : 1 ? 3 } ” 3 7 M . V ‘ z g » ‘ - I ' g u m , . , _ . D , , : 8 , . 4 ; > 3 : - . . . ' I . [ 1 & 7 ' 1 ‘ o “ “ : ' 1 2 3 : . " “ 1 . # 1 1 1 , « V I E . . . r ‘ 4 I , L ‘ . . . V . ‘ . . ‘ 5 ‘ . $ 3 1 1 3 » ( 7 0 1 ; ; A , ‘ . ' - . ‘ ' _ ‘ ‘ l 1 % . : " u ' ( k ‘ O ’ . 4 , \ ‘ v . \ r v ‘ A . 3 ' ‘ a 1 ‘ 1 ‘ ' - : ~ , 1 ‘ \ \ - R ‘ 1 . » 3 6 ; 4 ; 1 n 3 1 : 1 1 , ; 1 ' \ 3 1 ' 4 “ ” ; I ' fl 1 . “ m ' m ; \ 1 " 1 5 ' ’ « W n ' ‘ N y s ‘ v - ' 7 " 5 A , - v w " , r ” ‘ 7 ! ” 1 ‘ 1 : _ ' : . 4 " . ' l 1 . . ‘ 1 ‘ . . 1 1 4 “ ' 0 ' . 2 | I I I l u ) , . ‘ 2 ) ; 1 ‘ o ’ ’ l 1 . 1 ; " ! - . o 8 ‘ 1 r , 7 ? , “““““““““ \ 3 E 6 E E E E E E E E E E E E E E E E E E E \\\\\\\\\\\\\\\m\xw\\\\\\\\\\\\\\ 7 2 6 3 0 06 0 5 Z Q S ’ Z A 5 3 ( 0 L I Q R A c U h n i i g v a e n r E s i S i Y t t a y t e M i L O P T _ A C A D E V A O _ I T N D R F E I E U E _ T N D R S U N m B u E X o t n m O _ o D r e o r _ A m b o d v o e n h d i a s t t _ T E D k . o u c _ c e U h d e E o u t f t / D o m y o u r r e c o r d . A T E D U E , f T M S U I s A n A fl m d i v o A c t i o N E q u a l O p p o fl u n l t y I n s t i t u t i o n — — — - — - " ‘ — - C H A R A C T E R I S T I C S O F A S P H A L T P A V I N G M I X T U R E S U N D E R C Y C L I C L O A D U S I N G F L E X U R A L T E S T S V o l u m e 1 1 B Y K I S E L E E A D I S S E R T A T I O N S u b m i t t e d t o M i c h i g a n S t a t e U n i v e r s i t y i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r t h e d e g r e e o f D O C T O R O F P H I L O S O P H Y D e p a r t m e n t o f C i v i l a n d E n v i r o n m e n t a l E n g i n e e r i n g 1 9 8 8 A P P E N D I C E S A P P E N D I X A P h y s i c a l c h a r a c t e r i s t i c s ( w e i g h t s , p e r c e n t a i r v o i d s , a p p l i e d s u s t a i n e d a n d c y c l i c l o a d s , a n d t h e m a x i m u m t h e o r e t i c a l s p e c i f i c g r a v i t y ) , a n d t h e m e a s u r e d e l a s t i c , t o t a l , a n d p l a s t i c d e f o r m a t i o n s a t s e v e r a l n u m b e r o f l o a d a p p l i c a t i o n s a r e p r e s e n t e d i n t h i s A p p e n d i x . 2 1 2 ” E N E E 2 1 3 B E A M C Y C L I C L O A D D A T A S A M P L E H A N B A C S L C L H E W N B A ( 3 & 1 A V m m ( 5 : ) ( 8 r ) ( 2 ) ( l b s ) ( l b s ) ( 5 : ) ( 8 r ) ( 2 ) 1 1 1 1 0 5 1 1 1 0 0 0 0 4 4 9 4 . 3 0 5 0 1 0 0 6 0 3 2 . 0 1 0 1 3 0 . 0 2 . 5 5 2 . 9 1 D E F O R M A ‘ I I O N ( i n c h - s X 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 5 0 1 6 . 7 1 9 . 4 7 . 3 9 . 0 1 0 . 4 3 . 4 7 . 2 6 . 4 2 . 5 5 . 6 6 . 5 1 . 6 5 2 0 1 3 . 9 1 6 . 1 1 4 . 6 7 . 4 6 . 5 6 . 5 5 . 7 6 . 6 4 . 6 4 . 1 4 . 7 3 . 0 1 0 0 0 1 2 . 6 1 4 . 5 2 4 . 0 6 . 6 7 . 6 1 0 . 3 5 . 0 5 . 6 7 . 0 3 . 4 3 . 9 4 . 3 5 0 0 0 9 . 9 1 1 . 4 6 0 . 6 5 . 1 5 . 9 2 4 . 3 3 . 6 4 . 2 1 5 . 1 2 . 1 2 . 4 7 . 6 1 0 0 0 0 6 . 9 1 0 . 2 1 0 4 . 7 4 . 6 5 . 2 4 0 . 6 3 . 1 3 . 6 2 4 . 2 1 . 7 2 . 0 1 1 . 5 2 1 9 4 0 7 . 9 9 . 0 1 5 6 . 4 4 . 0 4 . 5 5 9 . 4 2 . 6 3 . 0 3 3 . 7 1 . 3 1 . 5 1 4 . 3 1 6 4 9 2 5 5 . 6 6 . 7 6 1 6 . 0 2 . 9 3 . 3 2 1 2 . 1 1 . 7 1 . 9 1 0 4 . 0 0 . 6 0 . 7 3 1 . 0 S A M P L E H A H 6 A C S L C L H E W N B A G M M A V N U M B E R ( 3 : ) ( 3 r ) ( 1 ) ( l b s ) ( l b s ) ( 3 : ) ( 5 r ) ( 2 ) 1 1 1 1 0 5 2 1 1 0 0 0 0 4 4 9 4 . 3 0 5 0 1 0 0 6 0 3 5 . 0 1 0 1 3 6 . 0 2 . 5 5 2 . 9 5 D E P G Q M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T O 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 7 . 9 2 0 . 3 5 . 7 9 . 6 1 0 . 9 2 . 7 7 . 6 6 . 9 2 . 0 6 . 2 7 . 0 1 . 5 5 0 0 1 4 . 0 1 6 . 3 1 4 . 3 7 . 4 6 . 6 6 . 3 5 . 7 6 . 6 4 . 4 4 . 1 4 . 7 2 . 9 1 0 0 0 1 2 . 7 1 4 . 6 2 4 . 7 6 . 6 7 . 7 1 0 . 5 5 . 0 5 . 6 7 . 1 3 . 4 3 . 9 4 . 4 5 0 0 0 9 . 9 1 1 . 6 6 2 . 7 5 . 1 6 . 1 2 5 . 0 3 . 6 4 . 3 1 5 . 5 2 . 1 2 . 5 6 . 0 1 0 0 0 0 9 . 0 1 0 . 3 1 0 4 . 3 4 . 6 5 . 3 4 0 . 3 3 . 1 3 . 6 2 4 . 0 1 . 7 1 . 9 1 1 . 3 3 6 2 3 5 7 . 4 6 . 7 2 1 5 . 6 7 . 2 1 1 . 0 - 7 . 3 1 0 . 7 - 7 . 0 9 . 7 - 1 7 0 4 2 0 5 . 9 6 . 7 6 4 9 . 5 2 . 9 3 . 3 2 2 1 . 6 1 . 7 1 9 1 0 6 0 0 . 6 0 . 7 3 1 . 8 - T O T A L H E I G H T O P D R Y A G G R E G A T E S ; N B - H E I G H T O P B I T U M E N ; - P E R C E N T A S P H A L T C O N T E N T ; S L - S U S T A I N E D L O A D ; - H E I G H T O P S A M P L E I N A I R ; C L - C Y C L I C L O A D ; - H E I G H T O F S A M P L E I N H A T E R ; A V - P E R C E N T A I R V O I D S ; - M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . - E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E ; - C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ; “ N E E T 2 1 4 B E A M C Y C L I C L O A D D A T A S A M P L E N A N B A C S L C L N E W N B A ( 3 9 1 A V N U M B E R ( 6 ! ) ( I t ) ( 1 ) ( l b s ) ( 1 b ! ) ( 6 r ) ( 3 : ) ( 2 ) 1 1 1 1 0 5 3 1 1 0 0 0 0 4 4 9 4 . 3 0 5 0 1 0 0 6 0 4 0 . 0 1 0 1 5 0 . 0 2 . 5 5 3 . 0 0 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 9 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 6 . 0 2 0 . 7 5 . 7 9 . 7 1 1 . 1 2 . 7 7 . 6 9 . 0 2 . 0 6 . 2 7 . 1 1 . 5 5 0 0 1 4 . 2 1 6 . 3 1 4 . 6 7 . 5 6 . 6 6 . 4 5 . 7 6 . 6 4 . 5 4 . 1 4 . 7 2 . 9 1 0 0 0 1 2 . 8 1 4 . 7 2 5 . 2 6 . 7 7 . 7 1 0 . 7 5 . 0 5 . 6 7 . 2 3 . 4 3 . 9 4 . 4 5 0 1 0 1 0 . 0 1 1 . 7 6 2 . 7 5 . 1 6 . 0 2 4 . 6 3 . 6 4 . 2 1 5 . 3 2 . 1 2 . 5 7 . 9 1 0 0 2 5 9 . 0 1 0 . 4 1 0 9 . 3 4 . 6 5 . 3 4 2 . 0 3 . 1 3 . 6 2 4 . 9 1 . 7 1 . 9 1 1 . 7 2 1 2 0 0 6 . 1 9 . 2 1 5 6 . 7 2 . 6 3 . 1 - 2 . 1 2 . 5 - 1 . 7 1 . 9 - 1 6 4 7 2 5 5 . 9 6 . 9 6 4 6 . 4 2 . 9 3 . 3 2 1 9 . 6 1 . 7 1 . 9 1 0 6 . 8 0 . 6 0 . 7 3 1 . 4 S A M P L E H A N B A C S I . C 1 . w a w N B A G M “ ! A v N U M B E R ( 3 : ) ( 3 r ) ( 2 ) ( l b s ) ( l b s ) ( 3 : ) ( 5 r ) ( 1 ) 1 1 1 1 0 5 1 2 1 0 0 0 0 4 4 9 4 . 3 0 5 0 2 0 0 6 0 4 2 . 0 1 0 1 5 2 . 0 2 . 5 5 2 . 9 8 D E P O R M A T I O N ( i n c h o s X 0 . 0 0 0 1 ) L V D T 9 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 5 5 3 3 . 7 3 6 . 1 1 7 . 1 1 7 . 6 1 9 . 9 7 . 7 1 3 . 7 1 5 . 5 5 . 5 1 0 . 2 1 1 . 5 3 . 8 5 2 5 2 6 . 1 3 1 . 6 3 3 . 6 1 4 . 5 1 6 . 4 1 4 . 5 1 0 . 6 1 2 . 2 9 . 6 7 . 3 6 . 3 6 . 1 1 0 0 0 2 5 . 5 2 6 . 9 5 4 . 9 1 3 . 0 1 4 . 6 2 2 . 6 9 . 5 1 0 . 7 1 4 . 9 6 . 1 6 . 9 8 . 7 5 0 0 0 2 0 . 0 2 2 . 9 1 4 2 . 0 1 0 . 0 1 1 . 5 5 5 . 1 6 . 6 7 . 6 3 2 . 6 3 . 7 4 . 3 1 5 . 9 1 0 0 0 0 1 6 . 0 2 0 . 6 2 3 7 . 4 9 . 0 1 0 . 2 6 9 . 4 5 . 9 6 . 7 5 0 . 9 3 . 0 3 . 4 2 2 . 5 2 6 7 3 0 1 5 . 6 1 7 . 9 4 1 4 . 0 7 . 6 6 . 6 1 4 9 . 3 4 . 7 5 . 4 7 9 . 5 2 . 1 2 . 4 3 0 . 2 1 6 9 1 0 0 1 1 . 6 1 3 . 5 1 4 3 5 . 9 5 . 6 6 . 4 4 7 6 . 6 3 . 1 3 . 6 2 2 0 . 3 1 . 0 1 . 1 5 6 . 4 - T O T A L H E I G H T O P D R Y A O G R E O A T E S ; N B - H E I G H T O P B I T U M E N ; - P E R C E N T A S P H A L T C O N T E N T ; S L - S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; - H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; ' M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . - E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E ; - C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 1 5 B E A M C Y C L I C L O A D D A T A S A M P L E H A N B A C S L C L N E H N B A ( 3 & 1 A V N U M B E R ( a t ) ( S r ) ( 1 ) ( l b s ) ( 1 b ! ) ( 8 ! ) ( 3 : ) ( 1 ) 1 1 1 1 0 5 2 2 1 0 0 0 0 4 4 9 4 . 3 0 5 0 2 0 0 6 0 5 0 . 0 1 0 1 7 5 . 0 2 . 5 5 3 . 1 2 D E P O R M A T I O N ( i n c h o s X 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T # 2 ( 2 . 0 I N . ) L V D T i 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 6 . 6 4 2 . 3 1 3 . 4 1 9 . 1 2 1 . 9 6 . 1 1 5 . 0 1 7 . 2 4 . 5 1 1 . 4 1 3 . 0 3 . 1 5 0 0 2 6 . 9 3 2 . 9 3 4 . 1 1 4 . 7 1 6 . 6 1 4 . 4 1 0 . 9 1 2 . 4 . 7 7 . 4 6 . 4 . 0 1 0 0 0 2 6 . 1 2 9 . 6 5 6 . 6 1 3 . 2 1 4 . 9 2 4 . 0 9 . 5 1 0 . 6 1 5 . 6 6 . 1 6 . 9 9 . 0 5 0 2 5 2 0 . 5 2 3 . 4 1 4 9 . 1 1 0 . 1 1 1 . 6 5 7 . 0 6 . 6 7 . 6 3 3 . 6 3 . 7 4 . 2 1 6 . 1 1 0 0 0 0 1 6 . 5 2 0 . 6 2 5 3 . 9 9 . 0 1 0 . 2 9 4 . 2 5 . 6 6 . 6 5 3 . 2 2 . 9 3 . 3 2 3 . 2 1 5 6 6 5 0 1 2 . 2 1 3 . 9 1 3 1 2 . 1 5 . 7 6 . 5 4 3 0 . 2 3 . 1 3 . 6 1 9 7 . 3 1 . 0 1 . 1 5 1 . 8 S A M P L E N A N B A C S L C L H E N N B A G M M A V N U M B E R ( 5 : ) ( 5 r ) ( 1 ) ( l b s ) ( l b s ) ( 5 : ) ( 3 r ) ( 2 ) 1 1 1 1 0 5 3 2 1 0 0 0 0 4 4 9 4 . 3 0 5 0 2 0 0 6 0 4 0 . 0 1 0 1 5 1 . 0 2 . 5 5 3 . 0 2 D E P O R M A T I O N ( i n c h o s X 0 . 0 0 0 1 ) L V D T 5 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T § 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 6 . 2 4 2 . 1 1 3 . 0 1 9 . 0 2 2 . 1 5 . 9 1 4 . 9 1 7 . 4 4 . 4 1 1 . 4 1 3 . 2 3 . 1 5 0 0 2 6 . 4 3 2 . 3 3 3 . 6 1 4 . 6 1 6 . 6 1 4 . 3 1 0 . 9 1 2 . 4 9 . 7 7 . 4 6 . 5 6 . 0 1 0 0 0 2 5 . 6 2 9 . 6 5 5 . 5 1 3 . 1 1 5 . 2 2 3 . 0 9 . 5 1 1 . 0 1 5 . 0 6 . 1 7 . 1 6 . 7 5 0 0 0 2 0 . 1 2 2 . 9 1 4 1 . 2 1 0 . 0 1 1 . 4 5 4 . 6 6 . 6 7 . 7 3 2 . 4 3 . 7 4 . 2 1 5 . 7 1 0 0 0 0 1 6 . 1 2 0 . 6 2 4 0 . 3 9 . 0 1 0 . 3 9 0 . 2 5 . 6 6 . 7 5 1 . 2 3 . 0 3 . 4 2 2 . 6 3 0 0 0 0 1 5 . 4 1 7 . 4 4 4 4 . 3 7 . 5 6 . 5 1 5 6 . 6 4 . 6 5 . 2 6 3 . 6 2 . 0 2 . 3 3 1 . 0 1 6 3 7 4 0 1 1 . 9 1 3 . 7 1 4 2 1 . 6 5 . 7 6 . 5 4 7 1 . 0 3 . 1 3 . 6 2 1 7 . 5 1 . 0 1 . 1 5 7 . 7 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; N B I W E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I W E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . E E H E ” ” ” 3 5 3 2 : 1 6 5 B E A M C Y C L I C L O A D D A T A S A M P L E R A H I A C S L C L H E W N B A ( 3 1 1 A v N U M B E R ( s t ) ( s t ) ( 1 ) ( l b s ) ( l b s ) ( s r ) ( 8 r ) ( 1 ) 1 1 1 1 0 5 1 5 1 0 0 0 0 4 4 9 4 . 3 0 5 0 5 0 0 6 0 4 7 . 0 1 0 1 6 6 . 0 2 . 5 5 3 . 0 6 D E P O R M A T I O N ( i n c h e s - X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T § 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 9 1 . 2 1 0 4 . 6 4 4 . 0 4 4 . 5 5 1 . 1 1 6 . 7 3 1 . 6 3 6 . 2 1 2 . 4 2 1 . 3 2 4 . 4 7 . 6 5 0 0 7 1 . 6 6 1 . 0 1 1 2 . 7 3 4 . 2 3 6 . 7 4 4 . 7 2 2 . 7 2 5 . 6 2 7 . 0 1 3 . 3 1 5 . 0 1 4 . 4 1 0 0 0 6 4 . 6 7 4 . 7 1 9 2 . 6 3 0 . 6 3 5 . 3 7 4 . 2 1 9 . 6 2 2 . 6 4 2 . 8 1 0 . 7 1 2 . 3 2 1 . 0 5 0 0 0 5 0 . 7 5 6 . 6 4 6 1 . 3 2 3 . 5 2 7 . 2 1 7 2 . 4 1 3 . 6 1 6 . 0 6 9 . 1 6 . 1 7 . 1 3 4 . 6 1 0 0 0 0 4 5 . 7 5 2 . 6 6 0 9 . 3 2 0 . 0 2 4 . 1 2 8 1 . 0 1 1 . 8 1 3 . 6 1 3 7 . 6 4 . 7 5 . 4 4 7 . 6 5 0 0 0 0 3 5 . 9 4 1 . 2 2 1 1 1 . 2 1 6 . 0 1 6 . 4 6 6 1 . 0 6 . 1 9 . 3 2 9 2 . 4 2 . 4 2 . 7 7 2 . 6 1 0 0 0 0 0 3 2 . 4 3 6 . 6 3 5 6 9 . 6 1 4 . 3 1 6 . 2 1 1 2 1 . 2 6 . 8 7 . 7 4 5 2 . 1 1 . 7 1 . 9 9 4 . 7 S A M P L E H A H 6 A C S L C L H E W N B A G M M A v N U M B E R ( 8 : ) ( S t ) ( 1 ) ( l b s ) ( l b s ) ( 6 : ) ( 8 : ) ( 2 ) 1 1 1 1 0 5 2 5 1 0 0 0 0 4 4 9 4 . 3 0 5 0 5 0 0 6 0 4 7 . 0 1 0 1 6 4 . 0 2 . 5 5 3 . 0 3 D E P O R M A T I O N ( i n c h o s X 0 . 0 0 0 1 ) L V D T ” ( 0 . 0 1 1 ! . ) m m ” ( 2 . 0 m . ) L V D T ” ( 4 . 0 I N . ) L V D T « ( 6 . 0 6 2 5 I N . ) 6 2 6 1 . : ‘ 1 0 0 9 0 . 6 1 0 5 . 0 4 3 . 4 4 4 . 5 5 1 . 4 1 6 . 5 3 1 . 6 3 6 . 5 1 2 . 3 2 1 . 3 2 4 . 7 7 . 7 5 0 0 7 1 . 3 6 0 . 9 1 1 1 . 0 3 4 . 2 3 6 . 6 4 4 . 2 2 2 . 7 2 5 . 7 2 6 . 7 1 3 . 3 1 5 . 1 1 4 . 3 1 0 0 0 6 4 . 3 7 3 . 1 1 6 6 . 4 3 0 . 5 3 4 . 7 7 2 . 0 1 9 . 6 2 2 . 3 4 1 . 6 1 0 . 7 1 2 . 2 2 0 . 5 5 0 0 0 5 0 . 5 5 6 . 0 4 6 3 . 4 2 3 . 4 2 6 . 9 1 7 3 . 7 1 3 . 6 1 5 . 6 9 0 . 0 6 . 1 7 . 0 3 5 . 2 1 0 0 0 0 4 5 . 5 5 2 . 9 6 1 9 . 0 2 0 . 9 2 4 . 3 2 6 5 . 3 1 1 . 6 1 3 . 7 1 4 0 . 3 4 . 7 5 . 5 4 6 . 6 5 0 0 0 0 3 5 . 7 4 0 . 4 2 0 7 0 . 5 1 6 . 0 1 6 . 1 6 7 0 . 2 6 . 1 9 . 2 2 6 6 . 7 2 . 4 2 . 7 7 2 . 2 1 0 0 0 0 0 3 2 . 2 3 6 . 6 3 5 0 6 . 7 1 4 . 3 1 6 . 3 1 0 9 9 . 6 9 7 . 6 4 4 4 . 9 1 . 7 2 . 0 9 3 . 6 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I N E ! M I C A L S P E C I F I C G A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 1 7 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 6 ! ) ( 6 r ) ( 1 ) ( l b s ) ( l b s ) ( 6 : ) ( 8 r ) ( 1 ) 1 1 1 1 0 5 3 5 1 0 0 0 0 4 4 9 4 . 3 0 5 0 5 0 0 6 0 5 6 . 0 1 0 1 6 5 . 0 2 . 5 5 3 . 0 7 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T P 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 9 1 . 5 1 0 3 . 6 4 3 . 7 4 4 . 6 5 0 . 5 1 6 . 5 3 1 . 7 3 5 . 9 1 2 . 3 2 1 . 3 2 4 . 2 7 . 7 5 0 0 7 1 . 9 6 3 . 2 1 1 1 . 7 3 4 . 3 3 9 . 7 4 4 . 3 2 2 . 7 2 6 . 3 2 6 . 7 1 3 . 3 1 5 . 4 1 4 . 2 1 0 0 0 6 4 . 6 7 3 . 3 1 9 2 . 7 3 0 . 6 3 4 . 7 7 4 . 1 1 9 . 6 2 2 . 2 4 2 . 7 1 0 . 7 1 2 . 1 2 1 . 0 5 0 2 7 5 0 . 6 5 9 . 0 4 9 3 . 1 2 3 . 5 2 7 . 3 1 7 6 . 4 1 3 . 6 1 6 . 0 9 1 . 1 6 . 1 7 . 1 3 5 . 5 1 0 4 0 0 4 5 . 6 5 2 . 1 6 3 3 . 4 2 0 . 6 2 3 . 6 2 6 6 . 6 1 1 . 7 1 3 . 4 1 4 1 . 0 4 . 6 5 . 3 4 8 . 5 1 6 0 0 0 4 2 . 0 4 9 . 1 1 0 9 3 . 2 1 9 . 0 2 2 . 2 3 6 9 . 3 1 0 . 3 1 2 . 1 1 7 2 . 6 3 . 7 4 . 3 5 3 . 5 S A M P L E H A H B A C 8 1 . C L H B H H B A G M “ ! A V N U M B E R ( 6 : ) ( 5 r ) ( 2 ) ( l e ) ( 1 b ! ) ( 6 ! ) ( 3 r ) ( 1 ) 1 1 2 1 0 5 1 1 1 0 0 0 0 4 4 4 4 . 2 5 5 0 1 0 0 6 0 3 2 . 0 1 0 1 4 6 . 0 2 . 5 5 3 . 1 7 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T § 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T § 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 7 . 9 2 0 . 5 6 . 6 9 . 4 1 0 . 7 3 . 1 7 . 5 6 . 6 . 3 5 . 6 6 . 6 1 . 7 5 0 0 1 4 . 1 1 5 . 9 1 6 . 0 7 . 2 6 . 1 7 . 7 5 . 4 6 . 2 5 . 3 3 . 6 4 . 3 3 . 3 1 0 0 0 1 2 . 7 1 4 . 4 3 0 . 6 6 . 4 7 . 3 1 2 . 7 4 . 7 5 . 4 6 . 4 3 . 1 3 . 6 5 . 0 5 0 0 0 9 . 9 1 1 . 3 6 0 . 7 5 . 0 5 . 6 3 1 . 1 3 . 4 3 . 9 1 6 . 6 1 . 9 2 . 2 9 . 3 1 0 0 0 0 9 . 0 1 0 . 3 1 4 1 . 6 4 . 4 5 . 1 5 3 . 0 2 . 9 3 . 4 3 0 . 6 1 . 5 1 . 6 1 3 . 9 3 0 5 0 0 7 . 6 6 . 6 2 6 5 . 5 3 . 7 4 . 3 9 4 . 6 2 . 3 2 . 7 5 0 . 7 1 . 0 1 . 2 1 9 . 4 6 6 3 0 0 0 4 . 6 5 . 4 2 2 3 1 . 5 2 . 2 2 . 5 6 9 0 . 7 1 . 1 1 . 3 2 6 7 . 5 0 . 3 0 . 3 5 5 . 4 H A I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O F B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H H A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; O H I M A X I M W I C A L S P E C I F I C Q A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 1 8 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H H H H B A ( 3 1 1 A V N U M B E R ( 8 ! ) ( 8 r ) ( 2 ) ( l b s ) ( l b s ) ( 8 ! ) ( 8 r ) ( 1 ) 1 1 2 1 0 5 2 1 1 0 0 0 0 4 4 4 4 . 2 5 5 0 1 0 0 6 0 4 1 . 0 1 0 1 5 0 . 0 2 . 5 5 3 . 0 2 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T O 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T l 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 7 . 5 2 0 . 6 6 . 4 9 . 3 1 0 . 9 . 0 7 . 4 6 . 6 2 . 2 5 . 6 6 . 6 1 . 6 5 0 0 1 3 . 7 1 5 . 5 1 7 . 0 7 . 2 6 . 1 . 4 5 . 4 6 . 1 5 . 1 3 . 6 4 . 3 3 . 3 1 0 0 0 1 2 . 4 1 4 . 0 2 9 . 1 6 . 4 7 . 2 1 2 . 2 4 . 7 5 . 4 6 . 2 3 . 2 3 . 6 4 . 9 5 0 0 0 9 . 7 1 1 . 0 7 6 . 4 4 . 9 5 . 6 3 0 . 0 3 . 4 3 . 9 1 6 . 3 1 . 9 2 . 2 9 . 2 1 0 0 0 0 6 . 6 1 0 . 1 1 3 4 . 5 4 . 4 5 . 1 5 1 . 2 2 . 9 3 . 4 2 9 . 9 1 . 6 1 . 6 1 3 . 8 3 0 5 5 0 7 . 4 6 . 4 2 5 5 . 4 3 . 7 4 . 2 9 2 . 6 2 . 3 2 . 6 5 0 . 2 1 . 1 1 . 2 1 9 . 5 4 0 0 0 0 7 . 1 6 . 2 3 2 7 . 6 3 . 5 4 . 0 1 1 7 . 4 2 . 2 2 . 5 6 2 . 4 1 . 0 1 . 1 2 3 . 2 3 5 2 0 3 0 5 . 1 5 . 9 1 2 5 5 . 1 2 . 4 2 . 6 4 0 7 . 9 1 . 3 1 . 5 1 6 2 . 9 0 . 4 0 . 4 4 3 . 4 S A M P L E H A H B A C S L C L H H H H B A ( R 9 1 A V N U M B E R ( 8 : ) ( 8 r ) ( 2 ) ( l b s ) ( l b s ) ( 8 ! ) ( 8 r ) ( 1 ) 1 1 2 1 0 5 3 1 1 0 0 0 0 4 4 4 4 . 2 5 5 0 1 0 0 6 0 3 2 . 0 1 0 1 3 6 . 0 2 . 5 5 3 . 0 3 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 9 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T i 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 5 0 1 6 . 4 1 9 . 1 6 . 4 6 . 7 1 0 . 1 3 . 6 6 . 9 6 . 0 2 . 6 5 . 2 6 . 1 2 . 0 5 5 0 1 3 . 5 1 5 . 3 1 6 . 0 7 . 0 7 . 9 7 . 6 5 . 3 6 . 0 5 . 3 3 . 7 4 . 2 3 . 4 1 0 0 0 1 2 . 4 1 4 . 2 2 9 . 7 6 . 4 7 . 3 1 2 . 4 4 . 7 5 . 4 6 . 3 3 . 1 3 . 6 5 . 0 5 0 0 0 9 . 7 1 1 . 2 7 6 . 4 4 . 9 5 . 7 2 9 . 9 3 . 4 3 . 9 1 6 . 2 1 . 9 2 . 2 9 . 2 1 0 0 0 0 6 . 6 1 0 . 1 1 3 3 . 6 4 . 4 5 . 1 5 0 . 9 2 . 9 3 . 4 2 9 . 6 1 . 6 1 . 8 1 3 . 6 3 3 1 0 0 7 . 3 6 . 3 2 6 6 . 2 3 . 6 4 . 1 9 6 . 0 2 . 3 2 . 6 5 1 . 6 1 . 0 1 . 1 1 9 . 8 1 4 5 0 0 0 5 . 9 6 . 7 7 6 5 . 6 2 . 6 3 . 2 2 6 5 . 3 1 . 6 1 . 9 1 2 7 . 6 0 . 6 0 . 6 3 7 . 1 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I W T H E C B E T I C A L S P E I P I C G A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . B E N ? “ 2 1 9 . B E A M C Y C L I C L O A D D A T A S A M P L E H A H 8 A C 3 1 . 0 1 . " 8 9 N B A G M ! A v m m ( s ! ) ( a t ) ( 2 ) ( l b s ) ( l b s ) ( s t ) ( 8 1 : ) ( 2 ) 1 1 2 1 0 5 1 2 1 0 0 0 0 4 4 4 4 . 2 5 5 0 2 0 0 6 0 3 4 . 0 1 0 1 4 3 . 0 2 . 5 5 3 . 0 6 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 5 . 3 4 0 . 5 1 4 . 9 1 6 . 2 2 0 . 9 6 . 7 1 4 . 2 1 6 . 3 4 . 9 - - - 5 0 0 2 7 . 7 3 2 . 2 3 9 . 5 1 4 . 0 1 6 . 3 1 6 . 6 1 0 . 3 1 2 . 0 1 1 . 1 ' - ' 1 0 0 0 2 5 . 0 2 6 . 5 6 6 . 9 1 2 . 5 1 4 . 3 2 7 . 3 6 . 9 1 0 . 2 1 7 . 5 - - ' 5 0 0 0 1 9 . 6 2 2 . 1 1 7 6 . 7 9 . 6 1 0 . 9 6 6 . 0 6 . 4 7 . 2 3 9 . 7 - - - 1 0 0 0 0 1 7 . 7 2 0 . 0 3 0 4 . 2 6 . 6 9 . 7 1 1 2 . 4 5 . 5 6 . 2 6 2 . 6 - - - 2 0 0 0 0 1 5 . 9 1 6 . 5 4 3 6 . 6 7 . 7 6 . 9 1 5 7 . 2 4 . 7 5 . 5 6 3 . 4 - - - 3 4 0 0 0 1 4 . 7 1 7 . 1 6 9 1 . 2 7 . 0 6 . 2 2 4 1 . 6 4 . 2 4 9 1 2 3 . 4 ' - - 1 6 4 6 0 0 1 1 . 6 1 3 . 4 1 7 9 0 . 0 5 . 4 6 . 2 5 8 3 . 2 2 . 9 3 4 2 6 2 . 5 - - - S A M P L E H A H B A C S L C L H B H H H A ( 3 % ! A V N U M B E R ( 8 ! ) ( 8 : ) ( 2 ) ( l b s ) ( l b s ) ( 8 : ) ( S r ) ( 2 ) 1 1 2 1 0 5 2 2 1 0 0 0 0 4 4 4 4 . 2 5 5 0 2 0 0 6 0 3 1 . 0 1 0 1 4 0 . 0 2 . 5 5 3 . 1 1 D E P C B M A T I G I ( i n c h s s X 0 . 0 0 0 1 ) L V D T 1 1 ( 0 . 0 I N . ) L V D T § 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T l 4 ( 6 . 0 6 2 5 I N . v C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 5 . 4 4 1 . 2 1 5 . 1 1 6 . 2 2 1 . 2 6 . 6 1 4 . 2 1 6 . 5 4 . 9 - - ' 5 0 0 2 7 . 6 3 2 . 1 3 9 . 4 1 4 . 1 1 6 . 2 1 6 . 5 1 0 . 3 1 1 . 9 1 1 . 0 ' ' ' 1 0 0 0 2 5 . 1 2 9 . 2 6 6 . 2 1 2 . 6 1 4 . 6 2 7 . 6 6 . 9 1 0 . 4 1 7 . 6 - - - 5 0 0 0 1 9 . 7 2 2 . 9 1 6 1 . 4 9 . 7 1 1 . 2 6 6 . 6 6 . 4 7 . 4 4 0 . 1 - - - 1 0 0 0 0 1 7 . 6 2 0 . 7 3 0 4 . 1 6 . 6 1 0 . 0 1 1 2 . 0 5 . 5 6 . 4 6 2 . 2 - - - 4 4 0 0 0 1 4 . 2 1 6 . 1 7 4 3 . 1 6 . 6 7 . 6 2 5 6 . 1 4 . 0 4 . 5 1 2 7 . 9 ° - - 1 6 5 0 0 0 1 1 . 7 1 3 . 4 1 9 6 6 . 2 5 . 4 6 . 2 6 3 9 . 0 2 . 9 3 . 3 2 6 6 . 7 s - - H A I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H B I H E I G H T O F B I T U M B N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; G M M I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E : P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 2 0 B E A M C Y C L I C L O A D D A T A S A M P L E H A 9 6 A C 8 1 . C L W S W N B A a n A V m m ( 5 : ) ( s t ) ( 1 ) ( l b s ) ( l b s ) ( 3 : ) ( 3 r ) ( 2 ) 1 1 2 1 0 5 3 2 1 0 0 0 0 4 4 4 4 . 2 5 5 0 2 0 0 6 0 2 6 . 0 1 0 1 3 6 . 0 2 . 5 5 3 . 1 5 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 5 1 ( 0 . 0 I N . ) L V D T # 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 5 . 6 4 1 . 5 1 5 . 3 1 6 . 3 2 1 . 3 6 . 6 1 4 . 2 1 6 . 5 4 . 9 1 0 . 6 1 2 . 3 3 . 4 5 0 0 2 6 . 0 3 2 . 5 4 0 . 3 1 4 . 1 1 6 . 3 1 6 . 6 1 0 . 3 1 1 . 9 1 1 . 2 6 . 9 6 . 0 6 . 6 1 0 0 0 2 5 . 2 2 9 . 1 6 9 . 3 1 2 . 6 1 4 . 5 2 6 . 1 6 . 9 1 0 . 3 1 6 . 0 5 . 6 6 . 5 1 0 . 2 5 0 0 0 1 9 . 6 2 3 . 1 1 6 3 . 3 9 . 7 1 1 . 3 6 9 . 2 6 . 4 7 . 4 4 0 . 2 3 . 4 3 . 9 1 6 . 6 1 0 0 0 0 1 7 . 9 2 0 . 5 3 1 7 . 4 6 . 6 9 . 9 1 1 6 . 3 5 . 5 6 . 3 6 4 . 4 2 . 7 3 . 1 2 7 . 3 2 7 1 0 0 1 5 . 4 1 7 . 5 5 5 1 . 9 7 . 3 6 . 3 1 9 3 . 5 4 . 4 5 . 0 9 9 . 9 1 . 9 2 . 1 3 6 . 0 4 9 6 0 0 1 4 . 0 1 6 . 2 9 1 2 . 2 6 . 6 7 . 7 3 1 1 . 2 3 . 6 4 . 4 1 5 3 . 4 1 . 5 1 . 7 4 9 . 4 1 9 5 0 0 0 1 1 . 4 1 3 . 0 2 0 4 2 . 3 5 . 3 6 . 0 6 5 4 . 6 2 . 6 3 . 2 2 6 6 . 4 0 . 6 0 . 9 6 8 . 9 S A M P L E H A H E A C S L C L H E H H H A G M M A V N U M B E R ( 8 ! ) ( 6 t ) ( 1 ) ( l b s ) ( l b s ) ( 6 ! ) ( 6 t ) ( 2 ) 1 1 2 1 0 5 1 5 1 0 0 0 0 4 4 4 4 . 2 5 5 0 5 0 0 6 0 3 5 . 0 1 0 1 4 2 . 0 2 . 5 5 3 . 0 5 D E P O R M A T I O N ( i n c h o s X 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 7 . 6 9 9 . 0 4 9 . 0 4 2 . 5 4 6 . 0 2 0 . 7 2 9 . 6 3 3 . 7 1 3 . 5 1 9 . 6 2 2 . 3 6 . 4 5 0 0 6 6 . 6 7 9 . 1 1 2 7 . 2 3 2 . 7 3 7 . 6 5 0 . 1 2 1 . 3 2 4 . 5 2 9 . 6 1 2 . 3 1 4 . 1 1 5 . 6 1 0 0 0 6 2 . 0 7 0 . 1 2 1 9 . 6 2 9 . 2 3 2 . 9 6 3 . 9 1 6 . 4 2 0 . 6 4 7 . 6 9 . 6 1 1 . 1 2 3 . 0 5 0 0 0 4 6 . 7 5 5 . 1 5 6 2 . 1 2 2 . 4 2 5 . 3 2 0 7 . 1 1 2 . 9 1 4 . 6 1 0 5 . 3 5 . 6 6 . 3 4 0 . 0 1 0 0 0 0 4 3 . 9 4 9 . 7 1 0 0 0 . 9 2 0 . 0 2 2 . 6 3 4 5 . 1 1 1 . 1 1 2 . 5 1 6 6 . 4 4 . 3 4 . 6 5 6 . 0 2 1 0 0 0 3 9 . 3 4 5 . 1 1 4 7 3 . 4 1 7 . 7 2 0 . 3 4 9 1 . 1 9 . 3 1 0 . 7 2 2 2 . 9 3 . 1 3 . 6 6 4 . 9 3 0 4 0 0 3 7 . 2 4 2 . 9 2 0 7 6 . 5 1 6 . 6 1 9 . 2 6 6 0 . 5 6 . 5 9 . 6 2 9 9 . 4 2 . 7 3 . 1 6 0 . 5 1 2 2 6 7 7 3 0 . 2 3 4 . 7 4 7 6 3 . 7 1 3 . 2 1 5 . 1 1 4 6 2 . 9 6 1 7 . 0 5 6 6 . 5 1 . 4 1 . 6 1 0 7 . 6 H A I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H E I H E I G H T O P D I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H H A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H H H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; G M M I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 2 1 B E A M C Y C L I C L O A D D A T A S A M P L E N A 9 6 A C 8 L C L N B " R E A ( : 1 : A v N U M B E R ( 5 : ) ( 3 r ) ( 2 ) ( l b s ) ( l b s ) ( 5 : ) ( 3 r ) ( 2 ) 1 1 2 1 0 5 2 5 1 0 0 0 0 4 4 4 4 . 2 5 5 0 5 0 0 6 0 2 9 . 0 1 0 1 3 4 . 0 2 . 5 5 3 . 0 7 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T # 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T 9 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 6 . 0 1 0 1 . 6 4 6 . 6 4 2 . 5 4 9 . 2 2 0 . 6 2 9 . 6 3 4 . 4 1 3 . 4 1 9 . 7 2 2 . 6 8 . 3 5 0 0 6 9 . 1 6 2 . 5 1 2 9 . 7 3 2 . 7 3 9 . 0 5 0 . 9 2 1 . 3 2 5 . 4 3 0 . 2 1 2 . 2 1 4 . 6 1 5 . 8 1 0 0 0 6 2 . 3 7 0 . 6 2 2 5 . 6 2 9 . 2 3 3 . 1 8 5 . 9 1 8 . 4 2 0 . 8 4 6 . 8 9 . 6 1 1 . 1 2 3 . 4 5 2 0 0 4 6 . 6 5 5 . 2 5 9 6 . 4 2 2 . 2 2 5 . 2 2 1 1 . 1 1 2 . 8 1 4 . 5 1 0 6 . 7 5 . 5 6 . 2 4 0 . 1 1 0 0 0 0 4 4 . 1 4 9 . 9 1 0 0 7 . 7 2 0 . 0 2 2 . 6 3 4 6 . 2 1 1 . 0 1 2 . 5 1 6 6 . 4 4 . 2 4 . 8 5 5 . 8 2 0 0 0 0 3 9 . 7 4 7 . 5 1 4 4 9 . 4 1 7 . 8 2 1 . 3 4 8 2 . 4 9 . 4 1 1 . 2 2 1 9 . 2 3 . 2 3 . 8 6 4 . 2 9 8 8 5 0 3 1 . 3 3 5 . 5 4 6 1 8 . 3 1 3 . 6 1 5 . 5 1 4 2 7 . 4 6 . 4 7 . 3 5 6 2 . 5 - - - S A M P L E N A 9 8 A C S L C l H 9 " N B A ( 2 6 1 A V N U M B E R ( 3 : ) ( s t ) 0 ) ( l b s ) ( l b s ) ( s t ) ( 5 : ) ( 2 ) 1 1 2 1 0 5 3 5 1 0 0 0 0 4 4 4 4 . 2 5 5 0 5 0 0 6 0 5 7 . 0 1 0 1 6 6 . 0 2 . 5 5 3 . 1 4 D E P O R M A T I O N ( i n c h o s X 0 . 0 0 0 1 ) L V D T 6 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T l 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 9 . 4 1 0 2 . 4 4 9 . 6 4 2 . 9 4 9 . 1 2 0 . 6 2 9 . 9 3 4 . 2 1 3 . 5 1 9 . 7 2 2 . 6 6 . 3 5 0 0 7 0 . 2 7 9 . 7 1 3 3 . 6 3 3 . 0 3 7 . 4 5 2 . 1 2 1 . 4 2 4 . 3 3 0 . 6 1 2 . 2 1 3 . 6 1 6 . 0 1 0 0 0 6 3 . 3 7 2 . 4 2 3 0 . 0 2 9 . 4 3 3 . 6 6 6 . 9 1 6 . 4 2 1 . 1 4 9 . 1 9 . 7 1 1 . 1 2 3 . 4 5 0 0 0 4 9 . 7 5 6 . 9 5 9 9 . 3 2 2 . 6 2 5 . 6 2 1 0 . 7 1 2 . 9 1 4 . 6 1 0 6 . 2 5 . 5 6 . 3 3 9 . 6 1 0 0 0 0 4 4 . 6 5 1 . 3 1 0 4 1 . 2 2 0 . 1 2 3 . 1 3 5 4 . 7 1 1 . 0 1 2 . 6 1 6 9 . 4 4 . 2 4 . 6 5 6 . 2 2 0 0 0 0 4 0 . 4 4 6 . 3 1 4 7 7 . 3 1 7 . 9 2 0 . 5 4 6 7 . 5 9 . 4 1 0 . 6 2 2 0 . 0 3 . 2 3 . 6 6 3 . 6 3 7 5 0 0 3 6 . 7 4 1 . 4 2 4 5 5 . 3 1 6 . 2 1 6 . 2 7 6 7 . 0 6 . 1 9 . 1 3 3 6 . 4 2 . 4 2 . 7 6 4 . 7 1 0 0 9 0 0 3 1 . 7 3 6 . 2 4 3 6 9 . 1 1 3 . 7 1 5 . 6 1 3 3 7 . 1 6 . 4 7 . 3 5 2 1 . 6 1 . 5 1 . 7 1 0 2 . 3 H A I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H E I H E I G H T O P B I T U M P N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H H A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; O H I M A X I M . “ T H E G E T I C A L S P E C I F I C G A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; P L A I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 2 2 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C 8 L C L H B H N B A ( 3 6 1 A V m m ( s t ) ( s r ) ( 2 ) ( l b s ) ( l b s ) ( s : ) ( s : ) ( 2 ) 1 1 3 1 0 5 1 1 1 0 0 0 0 4 2 4 4 . 0 7 5 0 1 0 0 6 0 7 4 . 0 1 0 1 8 8 . 0 2 . 5 5 3 . 0 0 D E P O R M A T I O N ( l u c h o s X 0 . 0 0 0 1 ) L V D T 5 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 7 . 1 1 9 . 6 6 . 9 9 . 1 1 0 . 4 3 . 2 7 . 2 6 . 3 2 . 4 5 . 6 6 . 4 1 . 7 5 0 0 1 3 . 4 1 5 . 5 1 6 . 1 7 . 0 6 . 0 7 . 6 5 . 3 6 . 1 5 . 4 3 . 7 4 . 2 3 . 4 1 0 0 0 1 2 . 1 1 4 . 1 3 1 . 7 6 . 2 7 . 2 1 3 . 3 4 . 6 5 . 3 6 . 6 3 . 0 3 . 5 5 . 2 5 0 0 0 9 . 5 1 0 . 6 6 6 . 1 4 . 6 5 . 5 3 3 . 7 3 . 3 3 . 6 2 0 . 4 1 . 9 2 . 1 1 0 . 2 1 0 0 0 0 6 . 6 9 . 7 1 4 6 . 2 4 . 3 4 . 9 5 6 . 3 2 . 9 3 . 2 3 2 . 6 1 . 5 1 . 7 1 4 . 6 3 2 1 4 2 7 . 2 6 . 4 3 0 4 . 2 3 . 5 4 . 1 1 0 9 . 7 2 . 2 2 . 6 5 6 . 7 1 . 0 1 . 1 2 2 . 4 1 7 2 9 0 0 5 . 6 6 . 3 1 0 0 1 . 7 2 . 7 3 . 0 3 3 5 . 2 1 . 5 1 . 7 1 5 6 . 0 0 . 5 0 . 6 4 3 . 5 S A M P L E H A H B A C S L C L H B H H B A ( R t ! A V N U M B E R ( 6 ! ) ( 6 ! ) ( 1 ) ( l b s ) ( l b ! ) ( 8 : ) ( 6 r ) ( 2 ) 1 1 3 1 0 5 2 1 1 0 0 0 0 4 2 4 4 . 0 7 5 0 1 0 0 6 0 4 6 . 0 1 0 1 4 4 . 0 2 . 5 5 2 . 9 9 D E F O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T f l ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T § 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 7 . 0 1 9 . 6 6 . 9 9 . 0 1 0 . 4 3 . 2 7 . 2 6 . 3 2 . 4 5 . 6 6 . 4 . 7 5 0 0 1 3 . 4 1 5 . 5 1 9 . 2 6 . 9 6 . 1 6 . 3 5 . 3 6 . 1 5 . 7 3 . 7 4 . 2 . 6 1 0 0 0 1 2 . 0 1 3 . 6 3 2 . 0 6 . 2 7 . 1 1 3 . 4 4 . 6 5 . 2 6 . 9 3 . 0 3 . 5 . 3 5 0 0 0 9 . 5 1 0 . 7 6 7 . 0 4 . 6 5 . 4 3 4 . 0 3 . 3 3 . 7 2 0 . 6 1 . 9 2 . 1 1 0 . 3 1 0 0 0 0 6 . 5 9 . 9 1 5 0 . 0 4 . 3 5 . 0 5 7 . 0 2 . 6 3 . 3 3 3 . 0 1 . 5 1 . 7 1 5 . 0 2 1 0 0 0 7 . 6 6 . 9 2 2 2 . 5 3 . 6 4 . 4 6 1 . 6 2 . 4 2 . 6 4 5 . 1 1 . 1 1 . 3 1 6 . 4 5 0 5 3 5 6 . 7 7 . 5 4 4 4 . 0 3 . 3 3 . 7 1 5 7 . 1 2 . 0 2 . 3 6 1 . 4 0 . 6 0 . 9 2 6 . 7 1 5 4 5 0 0 5 . 7 6 . 5 6 4 4 . 6 2 . 7 3 . 1 2 6 4 . 3 1 . 5 1 . 6 1 3 5 . 3 0 . 5 0 . 6 3 8 . 2 H A I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; G I ! I M A X I M T H E G E T I C A L S P E C I F I C G A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O H M A T I O N . ” ? ? ? B E 2 2 3 I B E A M C Y C L I C L O A D D A T A S A M P L E H A H ' B A C S L C L H B H H B A G 1 4 A V N U M B E R ( 8 ! ) ( 8 r ) ( 2 ) ( l b s ) ( l b s ) ( 6 ! ) ( 6 : ) ( 1 ) 1 1 3 1 0 5 3 1 1 0 0 0 0 4 2 4 4 . 0 7 5 0 1 0 0 6 0 4 6 . 0 1 0 1 4 5 . 0 2 . 5 5 3 . 0 1 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 7 . 0 1 9 . 6 6 . 9 9 . 0 1 0 . 5 3 . 2 7 . 2 6 . 3 2 . 4 5 . 6 6 . 5 1 . 7 2 0 0 1 5 . 4 1 7 . 6 1 0 . 1 6 . 1 9 . 2 4 . 5 6 . 3 7 . 2 3 . 3 4 . 7 5 . 3 2 . 2 5 0 0 1 3 . 4 1 5 . 5 2 0 . 0 7 . 0 6 . 0 6 . 6 5 . 3 6 . 1 5 . 9 3 . 7 4 . 2 3 . 6 1 0 0 0 1 2 . 1 1 3 . 7 2 9 . 7 6 . 2 7 . 0 1 2 . 5 4 . 6 5 . 2 6 . 3 3 . 0 3 . 4 4 . 9 5 0 0 0 9 . 5 1 1 . 0 9 5 . 1 4 . 6 5 . 5 3 7 . 2 3 . 3 3 . 6 2 2 . 5 1 . 9 2 . 1 1 1 . 2 1 0 0 0 0 6 . 5 9 . 9 1 3 6 . 9 4 . 3 4 . 9 5 2 . 7 2 . 6 3 . 3 3 0 . 5 1 . 5 1 . 7 1 3 . 9 3 0 0 0 0 7 . 2 6 . 2 3 1 4 . 6 3 . 6 4 . 0 1 1 3 . 7 2 . 2 2 . 5 6 1 . 1 1 . 0 1 . 1 2 3 . 5 1 6 4 7 0 0 5 . 6 6 . 4 6 6 6 . 2 2 . 7 3 . 1 2 9 7 . 6 1 . 5 1 . 6 1 4 0 . 7 0 . 5 0 . 6 3 9 . 1 S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 6 ! ) ( 6 r ) ( 1 ) ( l b s ) ( l b s ) ( 6 : ) ( 8 r ) ( 1 ) 1 1 3 1 0 5 1 2 1 0 0 0 0 4 2 4 4 . 0 7 5 0 2 0 0 6 0 4 3 . 0 1 0 1 3 7 . 0 2 . 5 5 3 . 0 1 D E P O R M A T I O N ( i n c b s s X 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T # 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 4 . 1 3 9 . 2 1 5 . 4 1 7 . 7 2 0 . 3 6 . 9 1 3 . 7 1 5 . 7 5 . 0 1 0 . 2 1 1 . 7 3 . 5 5 0 0 2 6 . 6 3 1 . 1 4 1 . 2 1 3 . 6 1 5 . 6 1 7 . 4 9 . 9 1 1 . 5 1 1 . 5 6 . 6 7 . 7 7 . 0 1 0 0 0 2 4 . 1 2 7 . 5 7 0 . 9 1 2 . 2 1 3 . 9 2 9 . 0 6 . 6 9 . 6 1 6 . 6 5 . 4 6 . 2 1 0 . 5 5 0 0 0 1 9 . 0 2 1 . 7 1 9 3 . 0 9 . 3 1 0 . 7 7 3 . 7 6 . 2 7 . 1 4 2 . 6 3 . 3 3 . 6 2 0 . 0 1 0 0 0 0 1 7 . 1 1 9 . 7 3 3 9 . 3 6 . 3 9 . 6 1 2 5 . 7 5 . 3 6 . 1 6 9 . 7 2 . 6 3 . 0 2 9 . 6 3 0 0 0 0 1 4 . 5 1 6 . 7 6 5 2 . 7 7 . 0 . 1 2 3 0 . 3 4 . 2 4 . 6 1 1 6 . 2 1 . 7 2 . 0 4 1 . 9 7 5 2 0 0 1 2 . 6 1 4 . 5 1 3 0 7 . 6 6 . 0 . 9 4 4 2 . 6 3 . 4 3 . 9 2 1 1 . 6 1 . 2 1 . 4 6 2 . 9 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 2 4 B E A M C Y C L I C L O A D D A T A S A M P L E H A N B A C 8 L C L H B H N B A ( : 0 1 A V N U M B E R ( s r ) ( s r ) ( 2 ) ( l b s ) ( l b s ) ( s r ) ( S r ) ( 1 ) 1 1 3 1 0 5 2 2 1 0 0 0 0 4 2 4 4 . 0 7 s o 2 0 0 6 0 4 4 . 0 1 0 1 4 2 . 0 2 . 5 5 3 . 0 6 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T f 1 ( 0 . 0 I N . ) L V D T # 2 ( 2 . 0 I N . ) L V D T § 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 4 . 4 3 9 . 5 1 5 . 7 1 7 . 7 2 0 . 4 7 . 1 1 3 . 7 1 5 . 6 5 . 1 - - - 5 0 0 2 7 . 0 3 0 . 6 4 1 . 7 1 3 . 6 1 5 . 6 1 7 . 5 9 . 9 1 1 . 3 1 1 . 6 ‘ ' ‘ 1 0 0 0 2 4 . 3 2 7 . 5 7 2 . 7 1 2 . 2 1 3 . 6 2 9 . 6 6 . 6 9 . 6 1 6 . 9 - - - 5 0 0 0 1 9 . 1 2 1 . 9 1 9 9 . 5 9 . 4 1 0 . 7 7 5 . 6 6 . 2 7 . 1 4 3 . 9 ' - - 1 0 0 0 0 1 7 . 2 1 9 . 9 3 3 6 . 0 6 . 4 9 . 7 1 2 4 . 6 5 . 3 6 . 1 6 6 . 6 - - ' 3 0 0 0 0 1 4 . 6 1 7 . 0 6 5 9 . 7 7 . 0 6 . 1 2 3 1 . 5 4 . 2 4 . 6 1 1 6 . 3 - - - 5 6 7 0 0 1 3 . 3 1 5 . 4 1 1 1 3 . 5 6 . 3 7 . 3 3 7 9 . 6 3 . 6 4 . 2 1 6 4 . 9 “ ' ‘ S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 8 : ) ( g r ) ( 1 ) ( l b s ) ( l b s ) ( 5 ! ) ( 3 r ) ( 2 ) 1 1 3 1 0 5 3 2 1 0 0 0 0 4 2 4 4 . 0 7 5 0 2 0 0 6 0 6 1 . 0 1 0 1 7 2 . 0 2 . 5 5 3 . 0 6 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T I l ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 2 0 3 3 . 6 3 6 . 6 1 7 . 6 1 7 . 3 1 9 . 9 7 . 9 1 3 . 3 1 5 . 3 5 . 6 - - - 5 0 0 2 7 . 2 3 0 . 9 4 2 . 6 1 3 . 7 1 5 . 6 1 7 . 9 1 0 . 0 1 1 . 4 1 1 . 9 ‘ ’ - 1 0 0 0 2 4 . 5 2 6 . 2 7 2 . 6 1 2 . 2 1 4 . 1 2 9 . 6 6 . 7 1 0 . 0 1 6 . 9 ' - - 5 0 0 0 1 9 . 2 2 2 . 2 1 9 6 . 3 9 . 4 1 0 . 9 7 4 . 4 6 . 2 7 . 1 4 3 . 0 ' ' ' 1 0 0 0 0 1 7 . 3 1 9 . 7 3 4 3 . 3 6 . 4 . 6 1 2 6 . 2 5 . 3 6 . 1 6 9 . 7 - - ’ 3 5 3 4 0 1 4 . 3 1 6 . 2 7 6 7 . 9 6 . 6 . 7 2 6 6 . 9 4 . 0 4 . 5 1 3 4 . 5 - - - 4 1 7 0 0 1 4 . 0 1 6 . 1 9 0 0 . 4 6 . 6 . 7 3 1 0 . 6 3 . 9 4 . 5 1 5 4 . 6 - - - H A I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; W I M A X I ! ! ! ) T H E G I E T I C A L S P E C I F I C G A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . E B E E Q E E 5 2 9 . 9 2 2 2 5 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 ! ! A V N U M B E R ( 6 1 ) ( 6 ! ) ( 3 ) ( l b s ) ( l b ! ) ( 6 ! ) ( 6 ! ) ( 3 ) 1 1 3 1 0 5 1 5 1 0 0 0 0 4 2 4 4 . 0 7 5 0 5 0 0 6 0 5 6 . 0 1 0 1 6 4 . 0 2 . 5 5 3 . 0 4 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 6 1 ( 0 . 0 I N . ) L V D T § 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T f 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 5 . 6 9 7 . 8 5 2 . 2 4 1 . 4 4 7 . 2 2 2 . 0 2 8 . 8 3 2 . 9 1 4 . 3 1 6 . 9 2 1 . 6 6 . 7 5 0 0 6 7 . 4 7 6 . 7 1 3 8 . 0 3 1 . 9 3 6 . 2 5 4 . 1 2 0 . 6 2 3 . 5 3 1 . 9 1 1 . 7 1 3 . 3 1 6 . 5 1 0 0 0 6 0 . 7 6 9 . 0 2 4 4 . 2 2 6 . 4 3 2 . 3 9 2 . 9 1 7 . 6 2 0 . 2 5 2 . 4 9 . 4 1 0 . 6 2 4 . 9 5 0 0 0 4 7 . 7 5 3 . 9 6 5 5 . 9 2 1 . 6 2 4 . 6 2 3 2 . 3 1 2 . 5 1 4 . 1 1 1 6 . 9 5 . 3 6 . 0 4 3 . 7 1 0 0 0 0 4 3 . 0 5 0 . 0 1 1 2 4 . 1 1 9 . 5 2 2 . 6 3 8 5 . 8 1 0 . 7 1 2 . 4 1 8 4 . 0 4 . 0 4 . 7 6 0 . 8 3 0 0 0 0 3 6 . 5 4 1 . 6 2 1 9 2 . 4 2 0 . 2 3 2 . 0 - 1 6 . 0 2 4 . 4 - - 7 . 6 - S A M P L E H A N B A C 8 1 . C I . H B H H B A G E M A v N U M B E R ( 5 1 ' ) ( s r ) ( 1 ) ( l b s ) ( l b s ) ( 3 : ) ( s r ) ( 2 ) 1 1 3 1 0 5 2 5 1 0 0 0 0 4 2 4 4 . 0 7 5 0 5 0 0 6 0 7 0 . 0 1 0 1 9 7 . 0 2 . 5 5 3 . 2 2 D E P O R M A T I O N ( i n c h o s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T i 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 6 . 5 1 0 0 . 7 5 4 . 6 4 1 . 9 4 7 . 7 2 2 . 5 2 6 . 6 3 2 . 6 1 4 . 5 1 6 . 7 2 1 . 3 6 . 6 5 0 0 6 9 . 5 7 9 . 6 1 5 0 . 1 3 2 . 2 3 6 . 6 5 7 . 7 2 0 . 6 2 3 . 5 3 3 . 6 1 1 . 5 1 3 . 2 1 7 . 1 1 0 0 0 6 2 . 7 7 1 . 6 2 5 7 . 6 2 6 . 7 3 2 . 9 9 5 . 9 1 7 . 7 2 0 . 3 5 3 . 4 9 . 2 1 0 . 5 2 4 . 9 5 0 0 0 4 9 . 2 5 7 . 1 6 6 7 . 2 2 2 . 0 2 5 . 5 2 3 6 . 1 1 2 . 4 1 4 . 4 1 1 7 . 9 5 . 1 6 . 0 4 3 . 0 1 0 0 0 0 4 4 . 4 5 0 . 5 1 2 0 4 . 0 1 9 . 6 2 2 . 3 4 0 4 . 1 1 0 . 6 1 2 . 0 1 6 9 . 4 3 . 9 4 . 4 6 0 . 9 2 0 3 0 0 3 9 . 9 4 5 . 9 1 7 6 9 . 2 1 7 . 5 2 0 . 1 5 6 1 . 2 6 . 9 1 0 . 3 2 5 6 . 6 2 . 9 3 . 3 7 1 . 5 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; I P E R C E N T A S P H A L T C O N T E N T ; I H E I G H T O P S A M P L E I N A I R ; I H E I G H T O P S A M P L E I N H A T E R ; I M A X I ! ! ! ) T W I C A L S P E I P I C G A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . H E I G H T O P B I T U M E N ; S U S T A I N E D L O A D ; C Y C L I C L O A D ; I P E R C E N T A I R V O I D S ; ” ! ? H E 2 2 6 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 6 : ) ( 6 r ) ( 1 ) ( l b s ) ( l b s ) ( I t ) ( I t ) ( 1 ) 1 1 3 1 0 5 3 5 1 0 0 0 0 4 2 4 4 . 0 7 5 0 5 0 0 6 0 5 6 . 0 1 0 1 5 3 . 0 2 . 5 5 2 . 9 3 D E P O R M A T I O N ( l n c h s s x 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T # 2 ( 2 . 0 I N . ) L V D T 9 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 8 4 . 2 9 7 . 7 4 9 . 6 4 1 . 2 4 7 . 7 2 1 . 1 2 8 . 6 3 3 . 4 1 3 . 6 1 9 . 1 2 2 . 1 6 . 5 5 0 0 6 6 . 2 7 5 . 6 1 3 4 . 9 3 1 . 7 3 6 . 3 5 3 . 6 2 0 . 7 2 3 . 6 3 1 . 6 1 1 . 6 1 3 . 6 1 6 . 6 1 0 0 0 5 9 . 6 6 9 . 1 2 3 5 . 0 2 8 . 3 3 2 . 7 9 0 . 6 1 7 . 6 2 0 . 6 5 1 . 5 9 . 5 1 1 . 0 2 4 . 7 5 3 0 0 4 6 . 4 5 2 . 4 6 4 0 . 7 2 1 . 5 2 4 . 3 2 2 9 . 3 1 2 . 4 1 4 . 0 1 1 6 . 0 5 . 3 6 . 0 4 3 . 5 1 0 0 0 0 4 2 . 2 4 9 . 0 1 0 6 6 . 9 1 9 . 4 2 2 . 4 3 7 8 . 6 1 0 . 7 1 2 . 4 1 8 2 . 5 4 . 1 4 . 6 6 1 . 3 3 0 0 0 0 3 5 . 6 4 0 . 9 2 1 1 0 . 0 1 6 . 1 1 6 . 4 6 9 6 . 2 6 . 3 9 . 5 3 0 7 . 4 2 . 6 3 . 0 6 2 . 6 4 2 1 0 0 3 4 . 0 3 8 . 9 2 6 2 0 . 5 1 5 . 3 1 7 . 4 9 1 6 . 8 7 . 7 6 . 7 3 9 2 . 9 - - - S A M P L E H A H B A C S L C L H B H H B A ( 3 % ! A V N U M B E R ( s t ) ( s r ) ( 2 ) ( l b s ) ( l b s ) ( s t ) ( 5 : ) ( 2 ) 1 1 1 1 0 6 1 1 1 0 0 0 0 4 5 0 4 . 3 1 5 0 1 0 0 5 9 6 7 . 0 1 0 1 4 3 . 0 2 . 5 5 4 . 1 4 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 6 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 1 . 5 2 4 . 7 6 . 6 1 0 . 3 1 1 . 6 3 . 7 6 . 0 9 . 3 2 . 7 - - - 5 0 0 1 6 . 9 1 9 . 3 2 2 . 0 7 . 9 9 . 0 6 . 6 5 . 6 6 . 6 5 . 7 - - - 1 0 0 0 1 5 . 2 1 7 . 7 3 8 . 0 7 . 1 6 . 2 1 4 . 3 5 . 0 5 . 6 9 . 2 - - - 2 1 7 0 1 3 . 5 1 5 . 7 5 7 . 0 6 . 2 7 . 2 2 0 . 7 4 . 3 4 . 9 1 2 . 7 - - - 5 6 7 0 1 1 . 7 1 3 . 5 1 1 6 . 4 5 . 3 6 . 1 4 0 . 6 3 . 4 4 . 0 2 3 . 3 - - - 1 0 3 5 0 1 0 . 7 1 2 . 1 1 4 9 . 4 4 . 6 5 . 4 5 0 . 7 3 . 0 3 . 4 2 6 . 0 ' - - 3 0 0 0 0 9 . 1 1 0 . 5 3 2 9 . 4 4 . 0 4 . 6 1 0 6 . 5 2 . 4 2 . 7 5 4 . 2 ' - - 1 5 0 0 0 0 7 . 2 6 . 3 6 1 9 . 6 3 . 1 3 . 5 2 4 5 . 6 1 . 6 1 . 9 1 0 9 . 4 - - - I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” ? ? ? B E 2 2 7 B E A M C Y C L I C L O A D D A T A S A M P L E H A H 9 A C S L C L H B H H B A ( 3 0 1 A V m m ( s : ) ( s r ) ( 1 ) ( l b s ) ( l b s ) ( s t ) ( 3 : ) ( 1 ) 1 1 1 1 0 6 2 1 1 0 0 0 0 4 5 0 4 . 3 1 5 0 1 0 0 5 9 9 1 . 0 1 0 1 4 2 . 0 2 . 5 5 4 . 0 4 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T 5 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 1 . 1 2 4 . 0 8 . 3 1 0 . 2 1 1 . 6 3 . 5 8 . 0 9 . 1 2 . 6 6 . 1 6 . 9 1 . 8 5 0 0 1 6 . 6 1 9 . 3 2 1 . 6 7 . 9 9 . 1 6 . 5 5 . 6 6 . 7 5 . 7 3 . 9 4 . 5 3 . 5 1 0 0 0 1 5 . 0 1 7 . 2 3 6 . 0 7 . 0 6 . 1 1 3 . 7 5 . 0 5 . 6 8 . 9 3 . 2 3 . 7 5 . 1 5 0 0 0 1 1 . 8 1 3 . 6 9 2 . 8 5 . 4 6 . 3 3 2 . 9 3 . 6 4 . 1 1 9 . 2 1 . 9 2 . 2 9 . 0 1 0 0 0 0 1 0 . 6 1 2 . 2 1 5 5 . 3 4 . 8 5 . 5 5 3 . 4 3 . 1 3 . 5 2 9 . 7 1 . 5 1 . 7 1 2 . 7 3 3 0 0 0 8 . 9 1 0 . 1 3 0 7 . 9 3 . 9 4 . 5 1 0 0 . 3 2 . 3 2 . 7 5 1 . 0 1 . 0 1 . 1 1 7 . 8 1 8 1 0 0 0 6 . 9 7 . 9 9 9 3 . 4 3 . 0 3 . 4 2 9 6 . 7 1 . 6 1 . 8 1 3 2 . 0 0 . 5 0 . 5 3 2 . 0 3 5 1 0 0 0 6 . 2 7 . 1 1 3 8 6 . 4 2 . 7 3 . 0 4 0 4 . 0 1 . 3 1 . 5 1 6 7 . 9 0 . 3 0 . 4 3 4 . 2 S A M P L E H A H 8 A C S L C L H B H H B A ( 3 6 1 A v N U M B E R ( 5 : ) ( s t ) ( 1 ) ( l b s ) ( l b s ) ( 5 : ) ( 5 r ) ( 2 ) 1 1 1 1 0 6 3 1 1 0 0 0 0 4 5 0 4 . 3 1 5 0 1 0 0 5 9 9 2 . 0 1 0 1 3 8 . 0 2 . 5 5 3 . 9 6 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 0 . 9 2 3 . 7 6 . 3 1 0 . 2 1 1 . 5 3 . 5 6 . 0 9 . 1 2 . 6 6 . 1 6 . 9 1 . 6 5 0 0 1 6 . 4 1 9 . 0 2 0 . 4 7 . 6 9 . 1 6 . 1 5 . 6 6 . 7 5 . 5 3 . 9 4 . 5 3 . 4 1 1 7 0 1 4 . 4 1 6 . 9 3 9 . 0 6 . 6 6 . 0 1 4 . 9 4 . 9 5 . 7 9 . 5 3 . 1 3 . 6 5 . 4 5 0 0 0 1 1 . 6 1 3 . 5 6 6 . 3 5 . 4 6 . 2 3 1 . 6 3 . 6 4 . 2 1 6 . 5 1 . 9 2 . 2 6 . 6 1 0 0 0 0 1 0 . 5 1 1 . 9 1 4 9 . 9 4 . 6 5 . 5 5 2 . 0 3 . 1 3 . 5 2 9 . 1 1 . 5 1 . 7 1 2 . 5 3 0 0 0 0 6 . 9 1 0 . 1 2 6 0 . 3 4 . 0 4 . 6 9 2 . 5 2 . 4 2 . 7 4 7 . 7 1 . 0 1 . 1 1 7 . 1 1 6 5 0 0 0 6 . 9 7 . 6 9 0 6 . 4 3 . 0 3 . 4 2 7 6 . 2 1 . 6 1 . 6 1 2 3 . 9 0 . 5 0 . 6 3 1 . 1 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M . “ T H E G I E T I C A L S P E C I F I C Q A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . 2 2 8 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 ! ! A V N U M B E R ( 3 : ) ( t r ) ( 2 ) ( l b s ) ( l b s ) ( 3 : ) ( 2 r ) ( 1 ) 1 1 1 1 0 6 1 2 1 0 0 0 0 4 5 0 4 . 3 1 5 0 2 0 0 6 0 4 4 . 0 1 0 1 3 9 . 0 2 . 5 5 2 . 7 5 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 6 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 4 . 6 3 9 . 6 1 1 . 6 1 6 . 6 2 1 . 4 5 . 5 1 4 . 6 1 7 . 0 4 . 1 1 1 . 4 1 3 . 1 . 9 5 0 0 2 7 . 2 3 1 . 5 3 0 . 5 1 4 . 4 1 6 . 7 1 3 . 4 1 0 . 6 1 2 . 5 9 . 2 7 . 5 6 . 7 . 6 1 0 0 0 2 4 . 5 2 7 . 9 5 0 . 5 1 2 . 9 1 4 . 7 2 1 . 5 9 . 4 1 0 . 6 1 4 . 2 6 . 2 7 . 1 . 4 5 0 0 0 . 1 9 . 3 2 2 . 0 1 3 0 . 1 9 . 9 1 1 . 3 5 1 . 6 6 . 6 7 . 7 3 1 . 2 3 . 6 4 . 4 1 5 . 5 1 0 0 0 0 1 7 . 4 2 0 . 1 2 2 0 . 4 8 . 6 1 0 . 2 6 5 . 2 5 . 9 6 . 8 4 9 . 2 3 . 1 3 . 5 2 2 . 3 4 2 2 0 0 1 4 . 0 1 6 . 0 4 9 7 . 7 7 . 0 6 . 0 1 6 0 . 6 4 . 3 4 . 9 9 4 . 7 1 . 6 2 . 1 3 4 . 4 1 6 3 5 0 0 1 1 . 4 1 3 . 2 1 2 6 3 . 9 5 . 6 6 . 5 4 3 6 . 7 3 . 2 3 . 7 2 0 7 . 7 1 . 1 1 . 2 5 7 . 6 2 1 6 0 0 0 1 1 . 0 1 2 . 7 1 4 3 8 . 6 5 . 3 6 . 2 4 6 5 . 5 3 . 0 3 . 5 2 2 4 . 7 0 . 9 1 . 1 5 8 . 8 3 3 7 7 5 0 1 0 . 2 1 1 . 7 2 0 6 6 . 3 5 . 0 5 . 7 6 6 3 . 4 2 . 7 3 . 1 3 0 4 . 7 0 . 6 0 . 9 7 1 . 6 5 1 0 0 0 0 9 . 6 1 0 . 9 2 4 3 6 . 1 4 . 6 5 . 2 7 9 1 . 5 2 . 4 2 . 7 3 4 0 . 5 0 . 6 0 . 7 7 2 . 0 6 5 5 3 0 0 . 9 1 0 . 1 3 7 5 5 . 0 4 . 3 4 . 6 1 1 9 0 . 6 2 . 1 2 . 4 4 6 8 . 9 0 . 5 0 . 5 6 9 . 4 S A M P L E H A H B A C S L C L H B H H B A ( 3 ! ! A V N U M B E R ( 3 : ) ( 3 r ) ( 1 ) ( l b s ) ( l b s ) ( 6 ! ) ( I t ) ( 1 ) 1 1 1 1 0 6 2 2 1 0 0 0 0 4 5 0 4 . 3 1 5 0 2 0 0 5 9 3 6 . 0 1 0 1 5 2 . 0 2 . 5 5 5 . 4 2 D E F C R M A T I M ( l u c h s s 1 ! 0 . 0 0 0 1 ) L V D T 4 1 ( 0 . 0 I N . ) L V D T 5 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T l 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 5 1 . 6 5 9 . 5 3 0 . 7 2 1 . 2 2 4 . 4 1 1 . 0 1 5 . 3 1 7 . 6 7 . 4 1 0 . 5 1 2 . 0 . 7 5 0 0 4 0 . 7 4 5 . 9 7 9 . 2 1 6 . 2 1 6 . 4 2 6 . 3 1 0 . 6 1 2 . 2 1 5 . 9 6 . 4 7 . 2 . 6 1 0 0 0 3 6 . 6 4 2 . 6 1 3 3 . 6 1 4 . 5 1 6 . 6 4 2 . 9 9 . 3 1 0 . 6 2 4 . 6 5 . 1 5 . 9 1 2 . 2 5 0 0 0 2 6 . 6 3 2 . 5 3 3 6 . 3 1 1 . 0 1 2 . 5 1 0 0 . 5 6 . 4 7 . 2 5 1 . 4 2 . 6 3 . 2 1 9 . 9 1 0 0 0 0 2 5 . 9 2 9 . 5 5 7 4 . 3 9 . 6 1 1 . 2 1 6 5 . 0 5 . 4 6 . 2 7 9 . 7 2 . 1 2 . 4 2 7 . 1 3 0 0 0 0 2 2 . 0 2 5 . 4 1 0 5 0 . 2 6 . 2 9 . 4 2 6 5 . 6 4 . 2 4 . 6 1 2 5 . 1 1 . 3 1 . 5 3 3 . 6 1 6 6 6 0 0 1 7 . 0 1 9 . 2 3 3 5 6 . 2 6 . 1 6 . 9 6 3 6 . 1 2 . 7 3 . 0 3 0 6 . 6 0 . 5 0 . 6 5 2 . 7 S N 1 1 A U 1 M M 1 P B 0 L E 6 R E 3 2 3 H 0 A : 0 ) 0 ( 0 1 ) 3 H 5 ( 4 B r 0 1 A 3 C ) 1 ( 4 . s ) ( S l 5 b L 0 s ) l C 0 L b 0 ( 2 ( H 9 3 B 7 H : 7 5 ) . 0 H ( 0 B 3 1 1 A r 4 ) 2 . 0 G 2 M . M 5 5 2 A . ( 4 ) V 3 6 ” ? ? ? E E F 2 2 9 B E A M C Y C L I C L O A D D A T A D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 6 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 4 . 3 5 0 . 0 2 1 . 3 2 0 . 3 2 2 . 9 6 . 5 1 5 . 2 1 7 . 1 5 . 9 1 0 . 9 1 2 . 3 4 . 0 5 0 0 3 4 . 6 3 9 . 9 5 4 . 0 1 5 . 6 1 7 . 6 2 0 . 0 1 0 . 9 1 2 . 5 1 2 . 7 6 . 9 7 . 9 7 . 3 1 0 0 0 3 1 . 4 3 6 . 5 9 0 . 2 1 3 . 9 1 6 . 1 3 2 . 4 9 . 4 1 0 . 9 1 9 . 6 5 . 5 6 . 4 1 0 . 5 5 0 0 0 2 4 . 7 2 6 . 1 2 3 1 . 7 1 0 . 6 1 2 . 1 7 7 . 3 6 . 7 . 5 4 2 . 3 3 . 2 3 . 6 1 6 . 0 1 0 0 0 0 2 2 . 2 2 5 . 3 3 9 0 . 5 9 . 5 1 0 . 6 1 2 6 . 2 5 . 6 6 . 4 6 5 . 5 2 . 5 2 . 6 2 5 . 0 3 6 0 0 0 1 6 . 3 2 1 . 8 6 0 5 . 2 7 . 6 . 1 2 4 5 . 1 4 . 2 5 . 0 1 1 4 . 6 1 . 5 1 . 7 3 4 . 3 1 6 1 6 0 0 1 4 . 6 1 6 . 6 2 2 6 9 . 1 5 . 9 . 6 6 4 2 . 6 2 . 9 3 3 2 6 2 . 2 0 . 7 0 . 8 5 4 . 6 S A M P L E H A H B A C 5 1 . C L H B H H B A G U A V N U M B E R ( 3 : ) ( B r ) ( 1 ) ( l b s ) ( l b s ) ( 3 : ) ( 3 r ) ( 2 ) 1 1 1 1 0 6 1 5 1 0 0 0 0 4 5 0 4 . 3 1 5 0 5 0 0 5 9 3 6 . 0 1 0 1 4 3 . 0 2 . 5 5 5 . 3 0 D E P O R M A T I O N ( i n c b s s x 0 . 0 0 0 1 ) L V D T l 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 2 7 . 1 1 4 6 . 5 9 9 . 2 4 6 . 2 5 5 . 6 3 2 . 6 3 0 . 4 3 5 . 0 1 9 . 3 1 7 . 8 2 0 . 5 1 0 . 6 5 0 0 9 9 . 9 1 1 5 . 6 2 5 1 . 5 3 6 . 6 4 2 . 7 7 7 . 0 2 1 . 1 2 4 . 5 4 0 . 2 1 0 . 2 1 1 . 9 1 7 . 8 1 0 0 0 9 0 . 0 1 0 2 . 4 4 1 6 . 9 3 2 . 6 3 7 . 3 1 2 3 . 4 1 7 . 9 2 0 . 4 6 0 . 9 7 . 9 9 . 0 2 4 . 2 5 0 0 0 7 0 . 7 6 1 . 4 1 0 6 2 . 6 2 4 . 9 2 6 . 7 2 9 6 . 0 1 2 . 2 1 4 . 0 1 2 6 . 9 1 7 . 4 2 3 . 9 - 1 0 0 0 0 6 3 . 7 7 3 . 0 1 8 3 7 . 6 2 2 . 2 2 5 . 4 4 6 5 . 1 1 0 . 2 1 1 . 7 1 9 4 . 5 1 6 . 5 2 1 . 5 - 2 0 0 0 0 5 7 . 4 6 6 . 7 2 6 4 6 . 6 1 9 . 7 2 2 . 9 6 7 4 . 5 6 . 5 9 . 9 2 5 2 . 0 1 5 . 9 2 1 . 0 - 4 0 0 0 0 5 1 . 7 6 0 . 1 4 4 6 3 . 1 1 7 . 5 2 0 . 3 1 0 9 7 . 4 7 . 1 6 . 3 3 8 0 . 3 1 5 . 6 2 0 . 4 - 4 4 2 0 0 5 1 . 0 5 7 . 6 4 3 3 6 . 6 1 7 . 2 1 9 . 5 1 0 6 0 . 9 6 . 9 7 . 6 3 6 3 . 5 1 5 . 6 2 0 . 4 - I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H B I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T : S L I S U S T A I N E D L O A D : I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E : I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” E H E E § . - 2 3 0 m m C Y C L I C L O A D o n ] ; S A M P L E H A H B A C S L C L H B H H B A G M M A V m m ( s : ) ( 6 1 ' ) ( 2 ) ( l b s ) ( l b s ) ( s : ) ( s : ) ( 1 ) 1 1 1 1 0 6 2 5 1 0 0 0 0 4 5 0 4 . 3 1 5 0 5 0 0 6 0 4 6 . 0 1 0 1 3 7 . 0 2 . 5 5 2 . 6 8 D E P O R M A T I O N ( I n c h s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 5 . 5 9 6 . 7 3 6 . 7 4 3 . 6 4 9 . 3 1 7 . 2 3 1 . 6 3 5 . 7 1 1 . 6 2 1 . 6 2 4 . 7 7 . 5 5 0 0 6 7 . 2 7 6 . 6 9 7 . 1 3 3 . 6 3 6 . 3 4 0 . 3 2 2 . 6 2 6 . 0 2 4 . 9 1 3 . 6 1 5 . 7 1 3 . 7 1 0 0 0 6 0 . 6 6 9 . 7 1 6 3 . 6 3 0 . 0 3 4 . 5 6 5 . 8 1 9 . 7 2 2 . 7 3 9 . 0 1 1 . 1 1 2 . 6 1 9 . 9 5 0 0 0 4 7 . 6 5 4 . 7 4 2 6 . 6 2 3 . 0 2 6 . 5 1 6 0 . 1 1 4 . 0 1 6 . 1 6 5 . 4 6 . 5 7 . 5 3 5 . 0 1 0 0 0 0 4 2 . 9 4 9 . 5 7 0 9 . 9 2 0 . 6 2 3 . 6 2 5 6 . 4 1 2 . 0 1 3 . 9 1 3 1 . 2 5 . 0 5 . 6 4 8 . 1 2 6 0 0 0 3 7 . 1 4 2 . 4 1 2 1 2 . 1 1 7 . 6 2 0 . 0 4 2 2 . 7 9 . 7 1 1 . 0 1 9 9 . 5 3 . 5 3 . 9 6 1 . 3 5 1 0 0 0 3 3 . 6 3 6 . 6 2 0 1 4 . 8 1 5 . 7 1 6 . 2 6 6 1 . 6 6 . 3 9 . 5 3 0 4 . 5 2 . 6 3 . 0 6 1 . 3 1 6 6 7 7 0 2 6 . 1 3 2 . 3 3 9 2 3 . 3 1 2 . 9 1 4 . 9 1 2 5 7 . 5 6 . 2 7 . 2 5 0 5 . 9 1 . 5 1 . 7 1 0 0 . 9 S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 6 : ) ( I ! ) ( 1 ) ( l b s ) ( l b s ) ( 6 : ) ( 6 r ) ( 2 ) 1 1 1 1 0 6 3 5 1 0 0 0 0 4 5 0 4 . 3 1 5 0 5 0 0 5 9 6 2 . 0 1 0 0 6 5 . 0 2 . 5 5 3 . 1 6 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T I 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T l 3 ( 4 . 0 I N . ) L V D T 5 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . . P L A . E L A . T O T . P L A . 1 0 0 9 2 . 0 1 0 4 . 9 4 5 . 3 4 4 . 3 5 0 . 5 1 9 . 0 3 1 . 3 3 5 . 6 1 2 . 5 6 0 0 7 0 . 3 6 0 . 1 1 3 2 . 7 3 3 . 1 3 7 . 7 5 1 . 5 2 1 . 5 2 4 . 5 3 0 . 5 1 0 0 0 6 5 . 1 7 5 . 2 1 9 6 . 6 3 0 . 4 3 5 . 1 7 5 . 4 1 9 . 3 2 2 . 3 4 3 . 2 5 0 5 0 5 1 . 1 5 7 . 9 5 1 2 . 0 2 3 . 3 2 6 . 4 1 6 0 . 7 1 3 . 5 1 5 . 3 9 2 . 4 1 0 1 5 0 4 6 . 0 5 2 . 4 6 6 6 . 6 2 0 . 7 2 3 . 7 2 9 6 . 5 1 1 . 6 1 3 . 2 1 4 3 . 7 - - - 4 7 0 0 0 3 6 . 5 4 2 . 5 2 0 6 9 . 7 1 6 . 1 1 6 . 7 6 6 6 . 1 6 . 1 9 . 4 2 6 4 . 1 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O F B T T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” E H E E 2 3 1 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H H H H B A G ! ! ! A V N U M B E R ( 6 : ) ( I t ) ( 1 ) ( l b s ) ( l b s ) ( 6 : ) ( 8 r ) ( 1 ) 1 1 1 1 0 7 1 1 1 0 0 0 0 4 5 0 4 . 3 1 5 0 1 0 0 5 6 3 0 . 0 9 7 2 2 . 0 2 . 5 5 6 . 6 6 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 6 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T f 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 9 . 5 3 4 . 2 2 1 . 1 1 1 . 0 1 2 . 7 8 . 9 7 . 9 9 . 2 4 . 6 5 . 4 6 . 3 2 . 9 5 0 0 2 3 . 2 2 7 . 0 5 5 . 9 6 . 4 9 . 6 1 6 . 8 5 . 6 6 . 5 1 0 . 1 3 . 2 3 . 6 5 . 4 1 0 5 0 2 0 . 6 2 4 . 2 9 6 . 1 7 . 4 6 . 6 2 7 . 9 4 . 7 5 . 5 1 5 . 9 2 . 5 2 . 9 7 . 7 5 0 0 0 1 6 . 4 1 6 . 6 2 3 7 . 3 5 . 7 6 . 5 6 3 . 6 3 . 3 3 . 7 3 2 . 0 1 . 4 1 . 6 1 2 . 0 1 0 2 0 0 1 4 . 8 1 7 . 1 4 0 5 . 5 5 . 0 5 . 6 1 0 4 . 6 2 . 7 3 . 2 4 9 . 5 1 . 0 1 . 2 1 6 . 3 3 6 7 0 0 1 2 . 2 1 3 . 8 6 7 6 . 6 4 . 0 4 . 6 2 1 2 . 2 2 . 0 2 . 2 6 6 . 7 0 . 6 0 . 6 2 1 . 8 1 5 9 3 4 0 9 . 6 1 1 . 4 2 3 8 2 . 4 3 . 1 3 . 6 5 3 3 . 7 1 . 3 1 . 6 1 9 0 . 4 0 . 3 0 . 3 3 0 . 6 S A M P L E H A H 8 A C S L C L H B H H B A a n A V m m ( s : ) ( s : ) ( 1 ) ( l b s ) ( l b s ) ( s t ) ( s t ) ( 2 ) 1 1 1 1 0 7 1 1 1 0 0 0 0 4 5 0 4 . 3 1 5 0 1 0 0 5 7 5 6 . 0 9 7 2 1 . 0 2 . 5 5 3 . 7 0 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 9 . 3 2 1 . 6 7 . 5 9 . 6 1 0 . 9 3 . 3 7 . 6 6 . 7 . 4 5 . 6 6 . 6 1 . 7 5 0 0 1 5 . 1 1 7 . 2 1 6 . 7 7 . 4 6 . 4 7 . 6 5 . 5 6 . 3 5 . 2 3 . 6 4 . 3 3 . 2 1 0 0 0 1 3 . 6 1 5 . 5 3 1 . 7 6 . 6 7 . 5 1 2 . 5 4 . 6 5 . 5 6 . 2 3 . 1 3 . 5 4 . 6 5 0 0 0 1 0 . 7 1 2 . 5 6 1 . 5 5 . 1 5 . 9 3 0 . 0 3 . 4 4 . 0 1 7 . 8 1 . 9 2 . 2 6 . 6 1 0 0 0 0 9 . 7 1 1 . 2 1 3 7 . 7 4 . 5 5 . 3 4 9 . 1 3 . 0 3 . 4 2 7 . 9 1 . 5 1 . 7 1 2 . 3 3 0 0 0 0 6 . 2 9 . 3 2 5 3 . 5 3 . 6 4 . 3 6 6 . 0 2 . 3 2 . 6 4 5 . 1 1 . 0 1 . 1 1 6 . 7 1 5 2 0 0 0 6 . 4 7 . 5 7 7 4 . 6 2 . 9 3 . 4 2 4 3 . 9 1 . 6 1 . 9 1 1 2 . 6 0 . 5 0 . 6 3 0 . 0 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M ) ! W I C A L S P E C I F I C R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . N I N E B 2 3 2 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 % ! A V m m ( s t ) ( s r ) ( 1 ) ( l b s ) ( l b s ) ( s t ) ( 6 1 ' ) ( 2 ) 1 1 1 1 0 7 2 1 1 0 0 0 0 4 5 0 4 . 3 1 5 0 1 0 0 5 6 8 5 . 0 9 7 0 6 . 0 2 . 5 5 5 . 1 9 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T § 3 ( 4 . 0 I N . ) L V D T i 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 3 . 9 2 7 . 6 1 2 . 6 1 0 . 3 1 1 . 9 4 . 7 7 . 6 9 . 0 3 . 3 5 . 6 6 . 5 2 . 2 5 0 0 1 6 . 6 2 1 . 6 3 1 . 9 7 . 9 9 . 2 1 1 . 2 5 . 6 6 . 5 7 . 1 3 . 5 4 . 1 4 . 1 1 0 0 0 1 7 . 0 1 9 . 6 5 4 . 9 7 . 1 6 . 1 1 6 . 6 4 . 6 5 . 5 1 1 . 4 2 . 6 3 . 3 6 . 1 5 4 0 0 1 3 . 2 1 5 . 2 1 4 6 . 2 5 . 3 6 . 2 4 6 . 4 3 . 3 3 . 6 2 5 . 2 1 . 6 1 . 6 1 0 . 6 1 0 4 0 0 1 1 . 9 1 3 . 9 2 3 7 . 3 4 . 6 5 . 6 7 2 . 0 2 . 6 3 . 3 3 7 . 2 1 . 2 1 . 4 1 4 . 1 4 3 0 0 0 . 6 1 0 . 9 5 5 5 . 3 3 . 6 4 . 2 1 5 7 . 2 2 . 0 2 . 3 7 2 . 1 0 . 7 0 . 6 2 0 . 6 1 6 9 5 0 0 7 . 6 8 . 9 1 4 4 6 . 1 3 . 0 3 . 4 3 6 3 . 0 1 . 4 1 . 6 1 5 4 . 2 0 . 3 0 . 4 3 1 . 3 S A M P L E H A H B A C S L C L H B H H B A ( 3 0 ! A V N U M B E R ( 3 : ) ( 6 r ) ( 1 ) ( l b s ) ( l b s ) ( 5 : ) ( 5 r ) ( 2 ) 1 1 1 1 0 7 3 1 1 0 0 0 0 4 5 0 4 . 3 1 5 0 1 0 0 5 7 3 6 . 0 9 7 1 4 . 0 2 . 5 5 4 . 0 9 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T i 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 0 . 4 2 3 . 0 6 . 5 9 . 6 1 1 . 1 3 . 5 7 . 7 6 . 7 . 6 5 . 6 6 . 6 1 . 8 5 0 0 1 6 . 0 1 6 . 4 2 1 . 7 7 . 5 6 . 7 6 . 5 5 . 6 6 . 4 5 . 7 3 . 7 4 . 3 3 . 5 1 0 0 0 1 4 . 4 1 6 . 5 3 6 . 6 6 . 7 7 . 7 1 3 . 9 4 . 6 5 . 5 6 . 9 3 . 0 3 . 5 5 . 1 5 0 0 0 1 1 . 3 1 3 . 2 9 4 . 1 5 . 2 6 . 0 3 3 . 2 3 . 4 4 . 0 1 9 . 3 1 . 6 2 . 1 9 . 1 1 0 0 0 0 1 0 . 2 1 1 . 6 1 5 9 . 7 4 . 6 5 . 3 5 4 . 6 2 . 9 3 . 4 3 0 . 3 1 . 4 1 . 6 1 2 . 6 3 0 0 0 0 6 . 7 1 0 . 0 2 9 2 . 7 3 . 6 4 . 4 9 5 . 2 2 . 3 2 . 6 4 6 . 6 0 . 9 1 . 1 1 7 . 2 1 5 9 6 0 0 6 . 7 7 . 6 9 3 1 . 3 2 . 9 3 . 4 2 6 0 . 0 1 . 5 1 . 6 1 2 4 . 5 0 . 5 0 . 5 3 0 . 6 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I } ! ! ! W I C A L S P E C I F I C m u n ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 3 3 B E A M C Y C L I C L O A D D A T A S A M P L E H A a n A C 8 1 . C l . H B H H B A a n A V m m ( s : ) ( s t ) ( 2 ) ( l b s ) ( l b s ) ( s t ) ( 3 : ) ( 2 ) 1 1 1 1 0 7 1 2 1 0 0 0 0 4 5 0 4 . 3 1 5 0 2 0 0 5 6 7 0 . 0 9 7 2 5 . 0 2 . 5 5 5 . 8 0 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T i 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 5 2 . 3 6 0 . 7 3 5 . 5 2 0 . 6 2 3 . 9 1 2 . 2 1 4 . 6 1 7 . 0 6 . 1 9 . 9 1 1 . 5 5 . 1 5 0 0 4 1 . 1 4 7 . 7 6 9 . 4 1 5 . 6 1 6 . 3 2 8 5 1 0 . 3 1 2 . 0 1 7 0 6 . 0 6 . 9 6 . 9 1 0 0 0 3 7 . 0 4 2 . 9 1 5 5 . 3 1 4 . 0 1 6 . 3 4 7 9 6 . 6 1 0 . 2 2 7 1 4 . 7 5 . 4 1 3 . 0 5 0 0 0 2 9 . 1 3 3 . 4 3 6 5 . 1 1 0 . 7 1 2 . 3 1 0 9 6 6 . 1 7 . 0 5 4 . 9 2 . 6 3 . 0 2 0 . 4 1 0 6 0 0 2 6 . 0 2 9 . 5 6 8 7 . 0 9 . 4 1 0 . 7 1 6 6 7 5 . 1 5 . 8 6 6 . 4 1 . 9 2 . 1 2 6 . 6 3 3 4 0 0 2 1 . 9 2 5 . 3 1 3 1 0 . 7 7 . 8 9 . 0 3 3 9 6 3 . 6 4 . 4 1 4 3 0 1 . 1 1 . 3 3 5 . 6 1 5 1 1 0 0 1 7 . 4 2 0 . 0 3 6 1 4 . 3 0 6 . 6 6 6 7 . 1 2 . 6 2 9 3 1 1 6 0 . 5 0 . 6 5 1 . 3 S A M P L E H A H B A C S L C L H B H H B A ( i t ! A V m m ( s t ) ( 5 : ) ( 2 ) ( l b s ) ( l b s ) ( s t ) ( 3 1 ' ) ( 2 ) 1 1 1 1 0 7 1 2 1 0 0 0 0 4 5 0 4 . 3 1 5 0 2 0 0 5 6 3 6 . 0 9 7 2 5 . 0 2 . 5 5 6 . 5 9 D E P O R M A T I O N ( i n c h e s x 0 . 0 0 0 1 ) L V D T 6 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 5 6 . 3 6 6 . 1 4 7 . 5 2 1 . 2 2 4 . 1 1 5 . 1 1 4 . 6 1 6 . 6 9 . 7 9 . 6 1 0 . 6 5 . 9 5 0 0 4 5 . 6 5 4 . 0 1 1 9 . 0 1 6 . 2 1 9 . 1 3 4 . 9 1 0 . 2 1 2 . 0 2 0 . 1 5 . 6 6 . 6 1 0 . 1 1 0 0 0 4 1 . 3 4 6 . 9 2 0 5 . 0 1 4 . 4 1 6 . 4 5 6 . 2 6 . 7 9 . 9 3 1 . 7 4 . 4 5 . 0 1 4 . 4 5 0 0 0 3 2 . 4 3 6 . 7 5 1 6 . 3 1 1 . 0 1 3 . 1 1 3 5 . 6 5 . 9 7 . 1 6 4 . 5 2 . 3 2 . 6 2 2 . 4 1 8 0 0 0 2 6 . 6 3 0 . 3 1 2 7 6 . 5 6 . 6 9 . 9 3 1 3 . 2 4 . 3 4 . 9 1 3 2 . 1 1 . 3 1 . 5 3 4 . 6 3 0 0 0 0 2 4 . 6 2 6 . 6 1 5 9 1 . 5 6 . 1 9 . 3 3 7 9 . 6 3 . 6 4 . 3 1 5 2 . 0 1 . 0 1 . 2 3 5 . 3 6 1 2 3 2 2 2 . 3 2 5 . 9 2 7 9 8 . 7 7 . 1 6 . 3 6 4 2 . 9 3 . 1 3 . 6 2 3 6 . 5 0 . 7 0 . 6 4 5 . 4 H A I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; 3 9 ! I M A X I M T H E G E T I C A L S P E I F I C m u n ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C Y C L E : P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” ? N U 2 3 4 B E A M C Y C L I C L O A D D A T A S A M P L E H A H 8 A C S L C L H B H H B A ( 3 ! ! A V m m ( 3 : ) ( s t ) ( 1 ) ( l b s ) ( l b s ) ( 3 : ) ( 3 r ) ( 1 ) 1 1 1 1 0 7 1 2 1 0 0 0 0 4 5 0 4 . 3 1 5 0 2 0 0 5 7 0 3 . 0 9 7 1 9 . 0 2 . 5 5 4 . 9 5 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T i 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 6 . 3 5 2 . 4 2 6 . 0 1 9 . 9 2 2 . 6 9 . 6 1 4 . 6 1 6 . 5 6 . 7 1 0 . 2 1 1 . 6 4 . 4 5 0 0 3 6 . 4 4 1 . 1 6 6 . 9 1 5 . 3 1 7 . 3 2 3 . 3 1 0 . 4 1 1 . 6 1 4 . 5 6 . 3 7 . 1 6 . 0 1 0 0 0 3 2 . 8 3 7 . 6 1 1 2 . 5 1 3 . 6 1 5 . 6 3 6 . 0 6 . 9 1 0 . 3 2 2 . 5 5 . 1 5 . 6 1 1 . 5 5 0 0 0 2 5 . 7 2 9 . 3 2 6 2 . 6 1 0 . 4 1 1 . 6 6 6 . 5 6 . 2 7 . 1 4 6 . 6 2 . 9 3 . 2 1 6 . 6 1 0 0 0 0 2 3 . 2 2 7 . 0 4 9 2 . 3 9 . 3 1 0 . 6 1 4 9 . 1 5 . 3 6 . 2 7 4 . 4 2 . 2 2 . 5 2 6 . 7 3 0 0 0 0 1 9 . 7 2 2 . 5 6 9 4 . 9 7 . 7 6 . 6 2 5 7 . 0 4 . 1 4 . 7 1 1 6 . 7 1 . 4 1 . 6 3 3 . 6 1 7 3 1 0 0 1 5 . 1 1 7 . 5 2 9 4 4 . 1 5 . 7 6 . 6 7 7 5 . 5 2 . 6 3 . 0 2 9 7 . 4 0 . 6 0 . 7 5 4 . 6 S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 6 ! ) ( 8 r ) ( 2 ) ( l b s ) ( l b s ) ( 8 ! ) ( 8 r ) ( 1 ) 1 1 1 1 0 7 2 2 1 0 0 0 0 4 5 0 4 . 3 1 5 0 2 0 0 5 6 5 0 . 0 9 7 0 7 . 0 2 . 5 5 6 . 0 2 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 1 0 5 3 . 1 6 1 . 7 4 1 . 2 2 0 . 5 2 3 . 6 1 3 . 6 1 4 . 3 1 6 . 6 9 . 0 9 . 5 1 1 . 0 5 . 6 5 0 0 4 2 . 3 4 9 . 0 9 6 . 1 1 5 . 9 1 6 . 4 2 9 . 9 1 0 . 3 1 1 . 9 1 7 . 6 5 . 9 6 . 6 9 . 2 1 0 0 0 3 6 . 1 4 3 . 7 1 6 3 . 6 1 4 . 1 1 6 . 2 4 9 . 3 6 . 6 1 0 . 1 2 7 . 6 4 . 6 5 . 3 1 3 . 1 5 0 0 0 2 9 . 9 3 5 . 2 4 2 0 . 6 1 0 . 6 1 2 . 6 1 1 7 . 0 6 . 0 7 . 1 5 7 . 7 2 . 5 2 . 9 2 1 . 1 1 0 0 0 0 2 7 . 0 3 1 . 4 7 2 5 . 5 9 . 6 1 1 . 1 1 9 5 . 0 5 . 1 5 . 9 9 0 . 4 1 . 9 2 . 2 2 6 . 9 3 6 0 0 0 2 2 . 1 2 5 . 4 1 5 0 3 . 5 7 . 6 6 . 7 3 7 7 . 6 3 . 6 4 . 2 1 5 4 . 2 1 . 0 1 . 2 3 6 . 3 1 6 4 6 0 0 1 7 . 7 2 0 . 5 4 1 5 3 . 6 5 . 9 6 . 6 9 6 6 . 6 2 . 5 2 . 9 3 3 6 . 9 0 . 5 0 . 5 5 1 . 8 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” ? N E E T 2 3 5 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( s r ) ( S r ) ( 1 ) ( l b s ) ( l b s ) ( s r ) ( 6 r ) ( 1 ) 1 1 1 1 0 7 3 2 1 0 0 0 0 4 5 0 4 . 3 1 5 0 2 0 0 5 6 9 0 . 0 9 7 2 2 . 0 2 . 5 5 5 . 2 9 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T § 3 ( 4 . 0 I N . ) L V D T i 4 ( 6 . 0 6 2 5 I N . ) C Y C L E . N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 6 . 7 5 5 . 0 2 9 . 6 2 0 . 2 2 2 . 9 1 0 . 7 1 4 . 6 1 6 . 5 7 . 2 1 0 . 1 1 1 . 4 4 . 6 5 0 0 3 6 . 2 4 3 . 7 7 5 . 5 1 5 . 5 1 7 . 7 2 5 . 4 1 0 . 4 1 1 . 6 1 5 . 5 6 . 2 7 . 1 8 . 4 1 0 0 0 3 4 . 5 4 0 . 0 1 2 9 . 1 1 3 . 8 1 6 . 0 4 2 . 0 6 . 9 1 0 . 3 2 4 . 4 4 . 9 5 . 7 1 2 . 2 5 0 0 0 2 7 . 1 3 1 . 2 3 2 5 . 6 1 0 . 5 1 2 . 1 9 8 . 1 6 . 2 7 . 1 5 0 . 6 2 . 7 3 . 2 1 9 . 8 1 0 0 0 0 2 4 . 4 2 6 . 4 5 4 7 . 8 9 . 4 1 0 . 9 1 5 9 . 6 5 . 2 6 . 1 7 7 . 6 2 . 1 2 . 4 2 6 . 9 3 0 0 0 0 2 0 . 7 2 3 . 9 1 0 2 4 . 7 7 . 6 9 . 0 2 6 2 . 9 4 . 0 4 . 6 1 2 5 . 1 1 . 3 1 . 5 3 4 . 4 3 3 3 0 0 2 0 . 4 2 3 . 3 1 1 6 8 . 5 7 . 6 6 . 7 3 2 6 . 5 3 . 9 4 . 5 1 4 2 . 9 1 . 2 1 . 4 3 8 . 4 1 6 3 2 0 0 1 6 . 0 1 6 . 4 2 9 4 6 . 9 5 . 8 6 . 7 7 4 7 . 4 2 . 6 3 . 0 2 7 9 . 1 0 . 5 0 . 6 4 9 . 1 S A M P L E H A H 8 A C S L C L H B H H B A G M M A v N U M B E R ( s t ) ( 6 1 ' ) ( 2 ) ( l b s ) ( l b s ) ( 5 : ) ( s t ) ( 1 ) 1 1 1 1 0 7 1 5 1 0 0 0 0 4 5 0 4 . 3 1 5 0 5 0 0 5 6 3 3 . 0 9 7 5 5 . 0 2 . 5 5 7 . 0 5 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T § 3 ( 4 . 0 I N . ) L V D T l 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 5 5 . 7 1 7 9 . 9 1 6 5 . 1 4 6 . 6 5 6 . 1 5 0 . 3 2 7 . 9 3 2 . 2 2 6 . 9 1 4 . 7 1 7 . 0 1 3 . 2 5 0 0 1 2 2 . 3 1 3 6 . 2 4 7 1 . 2 3 6 . 9 4 1 . 7 1 1 7 . 9 1 6 . 9 2 1 . 3 5 5 . 0 7 . 9 9 . 0 2 1 . 0 1 0 0 0 1 1 0 . 2 1 2 4 . 5 7 9 2 . 4 3 2 . 7 3 7 . 0 1 9 1 . 2 1 5 . 9 1 7 . 9 6 3 . 6 5 . 9 6 . 7 2 6 . 1 5 0 0 0 6 6 . 6 9 6 . 9 2 0 1 5 . 6 2 4 . 6 2 6 . 3 4 4 6 . 4 1 0 . 4 1 1 9 1 6 5 . 5 2 . 6 3 . 2 3 6 . 9 1 1 2 0 0 7 6 . 7 6 7 . 0 3 7 3 0 . 1 2 1 . 5 2 4 . 4 7 9 0 . 6 6 . 4 9 . 5 2 6 7 . 5 1 . 8 2 . 1 5 0 . 6 1 2 0 0 0 7 5 . 9 6 7 . 9 3 5 0 0 . 4 2 1 . 3 2 4 . 6 7 3 9 . 1 6 . 2 9 . 5 2 4 6 . 1 1 . 6 2 . 0 4 6 . 0 1 3 1 0 0 7 4 . 9 6 4 . 6 4 0 6 1 . 6 2 0 . 9 2 3 . 6 6 5 7 . 7 6 . 0 9 . 0 2 6 4 . 9 1 . 7 1 . 9 5 1 . 4 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O F S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 3 6 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 ! ! A V N l M B E R ( S r ) ( 3 1 ‘ ) ( 1 ) ( l b s ) ( l b s ) ( S r ) ( 6 1 ‘ ) ( 1 ) 1 1 1 1 0 7 1 5 1 0 0 0 0 4 5 0 4 . 3 1 5 0 5 0 0 5 6 3 5 . 0 9 7 5 6 . 0 2 . 5 5 7 . 0 4 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 9 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T l 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 5 5 . 6 1 7 6 . 9 1 6 4 . 0 4 6 . 6 5 5 . 9 5 0 . 1 2 7 . 9 3 2 . 0 2 6 . 6 1 4 . 7 1 6 . 9 1 3 . 2 5 0 0 1 2 2 . 2 1 4 1 . 5 4 6 1 . 6 3 6 . 9 4 2 . 7 1 1 5 . 6 1 6 . 9 2 1 . 9 5 4 . 0 7 . 9 9 . 2 2 0 . 6 1 0 0 0 1 1 0 . 2 1 2 4 . 7 7 9 5 . 5 3 2 . 7 3 7 . 1 1 9 2 . 1 1 5 . 9 1 6 . 0 8 4 . 0 5 . 9 6 . 7 2 6 . 3 5 0 0 0 6 6 . 5 9 9 . 6 1 9 9 1 . 6 2 4 . 6 2 6 . 6 4 4 1 . 5 1 0 . 4 1 2 . 0 1 6 3 . 6 2 . 6 3 . 2 3 6 . 5 8 0 0 0 6 0 . 6 9 3 . 3 3 0 0 2 . 6 2 2 . 6 2 6 . 4 6 4 6 . 6 9 . 2 1 0 . 6 2 2 8 . 3 2 . 2 2 . 5 4 7 . 5 1 0 0 0 0 7 8 . 0 9 0 . 3 3 1 3 3 . 9 2 1 . 9 2 5 . 4 6 6 8 . 9 6 . 6 1 0 . 0 2 2 9 . 5 1 . 9 2 . 2 4 4 . 8 1 2 1 0 0 7 5 . 6 6 7 . 1 3 6 9 6 . 7 2 1 . 2 2 4 . 4 8 2 3 . 5 6 . 2 9 . 4 2 7 6 . 3 1 . 7 2 . 0 5 1 . 1 S A M P L E H A H B A C S L C L H B H H B A ( 3 1 1 A V m m ( 5 : ) ( 2 : ) ( 1 ) ( l b s ) ( l b s ) ( 3 : ) ( 8 t ) ( 1 ) 1 1 1 1 0 7 2 5 1 0 0 0 0 4 5 0 4 . 3 1 5 0 5 0 0 5 6 5 6 . 0 9 7 1 0 . 0 2 . 5 5 5 . 9 2 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T i 3 ( 4 . 0 I N . ) L V D T O 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 3 2 . 6 1 5 3 . 5 1 2 4 . 9 4 7 . 0 5 4 . 3 3 6 . 5 2 6 . 6 3 3 . 1 2 1 . 9 1 6 . 2 1 6 . 7 1 1 . 5 5 0 0 1 0 4 . 3 1 2 1 . 3 3 1 2 . 6 3 5 . 6 4 1 . 6 8 9 . 1 1 9 . 7 2 2 . 9 4 4 . 7 9 . 1 1 0 . 6 1 6 . 6 1 0 0 0 9 4 . 0 1 0 9 . 4 5 3 4 . 8 3 1 . 6 3 7 . 0 1 4 7 . 2 1 6 . 7 1 9 . 4 6 9 . 6 6 . 9 8 . 1 2 6 . 0 5 0 0 0 7 3 . 9 6 6 . 0 1 3 7 4 . 3 2 4 . 2 2 6 . 2 3 4 6 . 5 1 1 . 2 1 3 . 0 1 4 1 . 9 3 . 4 4 . 0 3 8 . 5 1 0 0 0 0 6 6 . 6 7 7 . 4 2 2 6 7 . 6 2 1 . 5 2 5 . 0 5 5 9 . 7 9 . 3 1 0 . 9 2 1 2 . 3 2 . 5 2 . 9 4 6 . 7 2 0 0 0 0 6 0 . 0 6 9 . 1 3 2 4 5 . 6 1 9 . 1 2 2 . 0 7 6 5 . 6 7 . 6 9 . 0 2 6 9 . 4 1 . 7 2 . 0 5 1 . 3 2 2 5 4 4 5 6 . 9 6 6 . 5 3 6 9 5 . 9 1 6 . 7 2 1 . 7 9 1 3 . 4 7 . 5 6 . 7 3 1 7 . 0 1 . 6 1 . 9 5 6 . 3 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; I P E R C E N T A S P H A L T C O N T E N T ; I H E I G H T O P S A M P L E I N A I R ; I H E I G H T O F S A M P L E I N H A T E R ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . H E I G H T O P B I T U M E N ; S U S T A I N E D L O A D ; C Y C L I C L O A D ; I P E R C E N T A I R V O I D S ; E E Q E E “ 6 9 9 5 2 3 7 B E A M C Y C L I C L O A D D A T A S A M P L E H A H 8 A C 8 1 . C l . H B H H M c m A V m m ( s t ) ( 6 ! ) ( 2 ) ( l b s ) ( l b s ) ( s t ) ( s t ) ( 1 ) 1 1 1 1 0 7 2 5 1 0 0 0 0 4 5 0 4 . 3 1 5 0 5 0 0 5 6 3 2 . 0 9 7 5 0 . 0 2 . 5 5 7 . 0 0 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 5 4 . 7 1 7 6 . 7 1 6 1 . 6 4 6 . 5 5 5 . 4 4 9 . 7 2 7 . 9 3 1 . 6 2 6 . 6 1 4 . 7 1 6 . 6 1 3 . 1 5 0 0 1 2 1 . 5 1 3 9 . 0 4 6 7 . 4 3 6 . 6 4 2 . 1 1 1 7 . 5 1 6 . 9 2 1 . 6 5 5 . 0 8 . 0 9 . 1 2 1 . 1 1 0 0 0 1 0 9 . 5 1 2 7 . 1 7 5 5 . 7 3 2 . 7 3 7 . 9 1 8 3 . 3 1 5 . 9 1 6 . 5 6 0 . 4 6 . 0 6 . 9 2 7 . 1 5 0 0 0 6 6 . 0 9 9 . 0 1 9 7 0 . 1 2 4 . 7 2 6 . 5 4 3 6 . 6 1 0 . 5 1 2 . 0 1 6 3 . 2 2 . 6 3 . 2 3 6 . 5 1 0 0 0 0 7 7 . 5 6 6 . 3 3 4 1 9 . 6 2 1 . 9 2 4 . 9 7 3 3 . 1 6 . 7 9 . 9 2 5 2 . 3 2 . 0 2 . 2 4 9 . 6 1 5 0 0 0 7 3 . 0 6 2 . 5 3 9 9 9 . 6 2 0 . 4 2 3 . 1 6 3 6 . 6 7 . 7 6 . 7 2 7 5 . 2 1 . 6 1 . 8 4 6 . 0 1 6 0 0 0 7 2 . 3 6 4 . 1 4 6 3 3 . 8 2 0 . 2 2 3 . 5 9 6 6 . 2 7 . 6 8 . 6 3 1 5 . 2 1 . 5 1 . 7 5 3 . 9 S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( s t ) ( 5 : ) ( 1 ) ( l b s ) ( l b s ) ( s t ) ( 3 : ) ( 2 ) 1 1 1 1 0 7 3 5 1 0 0 0 0 4 5 0 4 . 3 1 5 0 5 0 0 5 6 6 0 . 0 9 7 1 5 . 0 2 . 5 5 5 . 9 0 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 3 2 . 4 1 5 0 . 6 1 2 3 . 3 4 7 . 0 5 3 . 5 3 6 . 1 2 6 . 7 3 2 . 6 2 1 . 7 1 6 . 2 1 8 . 5 1 1 . 4 5 0 0 1 0 4 . 0 1 1 9 . 2 3 1 2 . 2 3 5 . 8 4 1 . 0 8 9 . 2 1 9 . 7 2 2 . 6 4 4 . 6 9 . 1 1 0 . 5 1 6 . 9 1 0 0 0 9 3 . 6 1 0 6 . 4 5 3 3 . 6 3 1 . 6 3 6 . 1 1 4 7 . 3 1 6 . 7 1 9 . 0 6 9 . 6 7 . 0 7 . 9 2 6 . 2 5 0 0 0 7 3 . 6 6 3 . 2 1 3 8 4 . 1 2 4 . 2 2 7 . 3 3 5 2 . 1 1 1 . 2 1 2 . 7 1 4 3 . 6 3 . 5 3 . 9 3 9 . 1 1 0 0 0 0 6 6 . 4 7 6 . 9 2 2 6 9 . 5 2 1 . 5 2 4 . 9 5 6 1 . 9 9 . 4 1 0 . 9 2 1 3 . 6 2 . 5 2 . 9 4 9 . 2 2 0 2 0 0 5 9 . 7 6 9 . 2 3 2 6 6 . 6 1 9 . 0 2 2 . 1 7 7 7 . 9 7 . 6 9 . 0 2 7 4 . 0 1 . 7 2 . 0 5 2 . 3 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . E 3 5 3 3 9 ? ” ” ? 1 2 5 E 2 3 8 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( B l ! A V N U M B E R ( 6 ! ) ( 6 : ) ( 1 ) ( l b s ) ( l b s ) ( 6 ! ) ( S r ) ( 2 ) 1 1 1 1 0 7 3 5 1 0 0 0 0 4 5 0 4 . 3 1 5 0 5 0 0 5 6 3 6 . 0 9 7 5 5 . 0 2 . 5 5 6 . 9 6 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 5 4 . 3 1 7 7 . 1 1 6 1 . 7 4 6 . 5 5 5 . 7 4 9 . 8 2 7 . 9 3 2 . 0 2 6 . 7 1 4 . 8 1 6 . 9 1 3 . 2 5 0 0 1 2 1 . 2 1 4 0 . 2 4 5 2 . 6 3 6 . 6 4 2 . 6 1 1 4 . 2 1 6 . 9 2 1 . 9 5 3 . 5 6 . 0 9 . 2 2 0 . 6 1 0 0 0 1 0 9 . 2 1 2 6 . 7 7 7 5 . 1 3 2 . 7 3 7 . 9 1 6 6 . 5 1 5 . 9 1 6 . 5 6 2 . 6 6 . 0 6 . 9 2 6 . 0 5 0 0 0 6 5 . 6 9 7 . 7 1 9 6 2 . 9 2 4 . 7 2 6 . 2 4 3 6 . 3 1 0 . 5 1 1 . 9 1 6 3 . 4 2 . 8 3 . 2 3 6 . 7 1 0 0 0 0 7 7 . 3 6 6 . 5 3 3 7 2 . 7 2 1 . 9 2 5 . 1 7 2 5 . 3 6 . 7 9 . 9 2 5 0 . 2 2 . 0 2 . 2 4 9 . 3 2 0 2 0 0 6 9 . 6 7 9 . 5 4 7 2 6 . 0 1 9 . 4 2 2 . 1 9 7 6 . 3 7 . 1 6 . 2 3 1 0 . 3 1 . 3 1 . 5 4 9 . 6 S A M P L E H A H B A C S L C L H B H H B A ( 3 9 1 A V N U M B E R ( 6 ! ) ( B r ) ( 2 ) ( l b s ) ( l b s ) ( 6 ! ) ( 6 r ) ( 1 ) 2 1 1 1 0 5 1 1 1 0 0 0 0 4 1 6 3 . 9 9 5 0 1 0 0 6 1 4 9 . 0 1 0 3 4 9 . 0 2 . 5 4 2 . 9 5 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 9 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T l 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 6 . 3 2 1 . 4 6 . 2 9 . 6 1 1 . 5 2 . 9 6 . 0 9 . 3 2 . 2 6 . 3 7 . 3 1 . 6 5 0 0 1 4 . 4 1 6 . 7 1 6 . 3 7 . 6 6 . 6 7 . 2 5 . 6 6 . 6 5 . 0 4 . 2 4 . 6 3 . 3 1 0 0 0 1 3 . 0 1 4 . 6 2 6 . 0 6 . 6 7 . 7 1 1 . 9 5 . 1 5 . 6 6 . 1 3 . 4 3 . 9 4 . 9 5 0 2 0 1 0 . 2 1 1 . 5 7 3 . 1 5 . 2 5 . 9 2 9 . 0 3 . 7 4 . 1 1 6 . 0 2 . 1 2 . 4 9 . 2 1 0 3 0 0 . 1 1 0 . 5 1 2 6 . 1 4 . 6 5 . 3 4 9 . 4 3 . 2 3 . 6 2 9 . 2 1 . 7 2 . 0 1 3 . 7 3 1 2 2 0 7 . 7 6 . 9 2 3 9 . 7 3 . 9 4 . 5 6 6 . 0 2 . 5 2 . 9 4 6 . 4 1 . 2 1 . 3 1 9 . 4 1 7 6 5 5 0 6 . 0 6 . 9 6 2 4 . 3 2 . 9 3 . 4 2 6 0 . 4 1 . 7 1 . 9 1 3 5 . 9 0 . 6 0 . 7 3 9 . 5 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I ) ! ” W I C A L S P K I F I C G A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” ? N E B 2 3 9 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( : 9 1 A V N U M B E R ( 2 : ) ( s t ) ( 2 ) ( l b s ) ( l b s ) ( s t ) ( 5 : ) ( 2 ) 2 1 1 1 0 5 2 1 1 0 0 0 0 4 1 6 3 . 9 9 5 0 1 0 0 6 1 4 5 . 0 1 0 3 4 8 . 0 2 . 5 4 3 . 0 3 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 8 . 5 2 1 . 2 8 . 5 9 . 9 1 1 . 3 3 . 0 8 . 0 9 . 2 2 . 3 6 . 3 7 . 2 1 . 7 5 0 0 1 4 . 6 1 6 . 6 1 7 . 0 7 . 8 8 . 7 7 . 4 5 . 9 6 . 7 5 . 2 4 . 2 4 . 7 3 . 3 1 0 5 0 1 3 . 0 1 4 . 8 2 9 . 7 6 . 8 7 . 7 1 2 . 5 5 . 0 5 . 7 8 . 4 3 . 4 3 . 8 5 . 1 5 0 0 0 1 0 . 3 1 1 . 7 7 5 . 7 5 . 2 6 . 0 2 9 . 8 3 . 7 4 . 2 1 8 . 4 2 . 1 2 . 4 9 . 4 1 0 0 0 0 9 . 3 1 0 . 5 1 2 6 . 5 4 . 7 5 . 3 4 9 . 2 3 . 2 3 . 6 2 9 . 0 1 . 7 1 . 9 1 3 . 6 3 5 0 0 0 7 . 7 6 . 7 2 6 9 . 2 3 . 8 4 . 3 9 7 . 5 2 . 4 2 . 7 5 3 . 0 1 . 1 1 . 3 2 0 . 6 1 5 0 6 0 0 6 . 2 7 . 2 7 6 7 . 7 3 . 0 3 . 5 2 6 0 . 6 1 . 6 2 . 0 1 2 7 . 1 0 . 6 0 . 7 3 7 . 7 S A M P L E H A H B A C S L C L H B H H B A ( : 9 4 A v N U M B E R ( s r ) ( 3 : ) ( 2 ) ( l b s ) ( l b s ) ( 3 : ) ( s r ) ( 2 ) 2 1 1 1 0 5 3 1 1 0 0 0 0 4 1 6 3 . 9 9 5 0 1 0 0 6 1 4 4 . 0 1 0 3 4 1 . 0 2 . 5 4 2 . 9 6 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 6 1 ( 0 . 0 I N . ) L V D T ' # 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T § 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 6 . 3 2 1 . 2 6 . 3 9 . 6 1 1 . 4 2 . 9 6 . 0 9 . 2 2 . 2 6 . 3 7 . 3 1 . 6 5 0 0 1 4 . 4 1 6 . 5 1 6 . 3 7 . 6 6 . 7 7 . 1 5 . 6 6 . 7 5 . 0 4 . 2 4 . 6 3 . 2 1 1 0 0 1 2 . 6 1 4 . 5 2 9 . 6 6 . 7 7 . 6 1 2 . 6 5 . 0 5 . 7 6 . 5 3 . 4 3 . 6 5 . 1 5 0 0 0 1 0 . 2 1 1 . 6 7 4 . 2 5 . 2 5 . 9 2 9 . 5 3 . 7 4 . 2 1 6 . 2 2 . 1 2 . 4 9 . 4 1 0 2 0 0 9 . 1 1 0 . 4 1 2 6 . 4 4 . 6 5 . 3 4 6 . 7 3 . 2 3 . 6 2 8 . 6 1 . 7 1 . 9 1 3 . 6 3 3 5 0 0 7 . 7 6 . 7 2 5 0 . 6 3 . 6 4 . 3 9 1 . 6 2 . 5 2 . 6 5 0 . 2 1 . 1 1 . 3 1 9 . 9 1 5 9 3 0 0 6 . 1 7 . 0 7 7 2 . 6 3 . 0 3 . 4 2 6 3 . 6 1 . 7 2 . 0 1 2 6 . 6 0 . 6 0 . 7 3 6 . 2 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D : I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 4 0 B E A M C Y C L I C L O A D D A T A S A M P L E H A H 8 A C S L C L H B H H B A ( 3 9 1 A V “ E R ( 5 2 ‘ ) ( 3 : ) ( 1 ) ( l b s ) ( l b s ) ( 3 : ) ( s t ) ( 2 ) 2 1 1 1 0 5 1 2 1 0 0 0 0 4 1 6 3 . 9 9 5 0 2 0 0 6 1 3 4 . 0 1 0 3 2 1 . 0 2 . 5 4 2 . 9 1 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 9 1 ( 0 . 0 I N . ) L V D T # 2 ( 2 . 0 I N . ) L V D T l 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 6 . 3 4 1 . 1 1 3 . 7 1 9 . 2 2 1 . 7 6 . 3 1 5 . 2 1 7 . 2 4 . 6 1 1 . 6 1 3 . 1 3 . 3 5 0 0 2 6 . 5 3 2 . 2 3 6 . 4 1 4 . 6 1 6 . 7 1 5 . 7 1 1 . 0 1 2 . 5 1 0 . 7 7 . 6 6 . 6 6 . 7 1 0 0 0 2 5 . 7 2 9 . 2 6 1 . 6 1 3 . 2 1 5 . 1 2 5 . 6 9 . 6 1 0 . 9 1 6 . 9 6 . 2 7 . 1 9 . 9 5 0 0 0 2 0 . 2 2 3 . 0 1 6 1 . 6 1 0 . 2 1 1 . 6 6 3 . 1 6 . 9 7 . 9 3 7 . 6 3 . 6 4 . 4 1 6 . 4 1 0 6 0 0 1 6 . 0 2 0 . 5 2 6 9 . 2 9 . 0 1 0 . 2 1 0 9 . 3 5 . 9 6 . 7 6 2 . 1 3 . 0 3 . 4 2 7 . 4 2 0 9 0 0 1 6 . 3 1 6 . 5 4 1 2 . 7 6 . 1 9 . 2 1 5 1 . 4 5 . 1 5 . 8 6 2 . 2 2 . 3 2 . 7 3 2 . 7 1 5 6 7 0 0 1 2 . 0 1 4 . 0 1 7 0 6 . 6 5 . 8 6 . 7 5 7 2 . 2 3 . 2 3 . 7 2 6 6 . 7 1 . 0 1 . 2 7 2 . 2 S A M P L E H A H B A C S L C L H B H H B A ( R 9 4 A V N U M B E R ( 3 : ) ( 5 r ) ( 2 ) ( l b s ) ( l b s ) ( 5 : ) ( 6 r ) ( 1 ) 2 1 1 1 0 5 2 2 1 0 0 0 0 4 1 6 3 . 9 9 5 0 2 0 0 6 1 2 6 . 0 1 0 3 1 7 . 0 2 . 5 4 3 . 0 0 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 9 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T i 3 ( 4 . 0 I N . ) L V D T 9 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 6 . 6 4 2 . 3 1 4 . 1 1 9 . 3 2 2 . 2 6 . 4 1 5 . 2 1 7 . 5 4 . 7 1 1 . 5 1 3 . 3 3 . 4 5 0 0 2 6 . 9 3 3 . 3 3 6 . 7 1 4 . 9 1 7 . 1 1 5 . 7 1 1 . 0 1 2 . 7 1 0 . 6 7 . 5 8 . 7 6 . 6 1 0 0 0 2 6 . 0 3 0 . 9 6 4 . 3 1 3 . 3 1 5 . 6 2 6 . 7 9 . 6 1 1 . 4 1 7 4 6 . 2 7 . 4 1 0 . 1 5 0 0 0 2 0 . 4 2 3 . 5 1 6 5 . 1 1 0 . 2 1 1 . 6 6 3 . 9 6 . 9 7 . 9 3 7 9 3 . 6 4 . 4 1 6 . 3 1 0 0 0 0 1 6 . 4 2 0 . 9 2 6 9 . 6 9 . 1 1 0 . 3 1 0 6 . 7 5 . 9 6 . 7 6 1 7 3 . 0 3 . 4 2 7 . 1 3 1 3 0 0 1 5 . 5 1 7 . 7 5 4 9 . 9 7 . 6 6 . 6 1 9 6 . 4 4 . 6 5 . 3 1 0 3 . 0 2 . 0 2 . 3 3 7 . 9 1 7 6 6 0 0 1 2 . 0 1 3 . 7 1 8 7 7 . 5 5 . 7 6 . 5 6 2 0 . 3 3 . 1 3 . 6 2 6 4 . 4 1 . 0 1 . 1 7 4 . 0 H A I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; a “ I M A X I I ' R M T W I C A L S P E C I F I C G u v r n r ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . 2 4 1 B E A M C Y C L I C L O A D D A T A S A M P L E H A H 8 A C S L H B H H 8 A a n A V m m ( s t ) ( 6 1 : ) ( 2 ) ( l b s ) ( l b s ) ( 2 1 : ) ( s t ) ( 1 ) 2 1 1 1 0 5 3 2 1 0 0 0 0 4 1 6 3 . 9 9 6 1 2 6 . 0 1 0 3 2 1 . 0 2 . 5 4 3 . 1 0 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T “ ( 0 . 0 I N . ) L V D T ” ( 2 . 0 I N . ) L V D T ” ( 4 . 0 I N . ) L V D T “ ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 7 . 4 4 3 . 0 1 4 . 9 1 9 . 4 2 2 . 3 6 . 7 1 5 . 2 1 7 . 5 4 . 9 1 1 . 5 1 3 . 2 . 5 5 0 0 2 9 . 4 3 3 . 6 3 8 . 6 1 4 . 9 1 7 . 1 1 6 . 4 1 1 . 1 1 2 . 7 1 1 . 1 7 . 5 6 . 6 . 8 1 0 0 0 2 6 . 5 3 0 . 0 6 5 . 9 1 3 . 4 1 5 . 1 2 7 . 0 9 . 6 1 0 . 9 1 7 . 5 6 . 2 7 . 0 1 0 . 1 5 0 0 0 2 0 . 8 2 3 . 8 1 7 2 . 1 1 0 . 3 1 1 . 6 6 5 . 8 6 . 9 7 . 9 3 6 . 6 3 . 7 4 . 3 1 8 . 6 1 0 4 0 0 1 6 . 6 2 1 . 5 3 0 5 . 1 9 . 1 1 0 . 5 1 1 3 . 1 5 . 9 6 . 6 6 3 . 6 2 . 9 3 . 4 2 7 . 5 3 0 0 0 0 1 5 . 9 1 6 . 4 5 5 0 . 4 7 . 7 6 . 8 1 9 4 . 7 4 . 7 5 . 4 1 0 1 . 6 2 . 0 2 . 3 3 7 . 1 1 6 6 0 0 0 1 2 . 3 1 4 . 2 1 8 4 5 . 4 5 . 6 6 . 7 6 0 4 . 2 3 . 2 3 . 6 2 7 5 . 8 1 . 0 1 . 1 7 1 . 4 S A M P L E H A H B A C S L H B H H B A G i t ! A V M E N ( 3 : ) ( 5 r ) ( 2 ) ( l b s ) ( l b s ) ( 3 : ) ( s t ) ( 1 ) 2 1 1 1 0 5 1 5 1 0 0 0 0 4 1 6 3 . 9 9 6 1 2 4 . 0 1 0 3 1 9 . 0 2 . 5 4 3 . 1 2 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 9 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 1 3 ( 4 . 0 I N . ) L V D T l 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 2 0 9 1 . 1 1 0 4 . 6 5 6 . 4 4 4 . 0 5 0 . 5 2 3 . 6 3 0 . 9 3 5 . 4 1 5 . 4 2 0 . 4 2 3 . 4 9 . 5 5 0 0 7 3 . 6 6 5 . 6 1 2 8 . 7 3 4 . 9 4 0 . 6 5 0 . 6 2 3 . 0 2 6 . 7 3 0 . 4 1 3 . 3 1 5 . 5 1 6 . 1 1 0 0 0 6 8 . 3 7 8 . 8 2 2 4 . 7 3 1 . 1 3 6 . 0 6 5 . 8 1 9 . 8 2 2 . 9 4 9 . 2 1 0 . 7 1 2 . 4 2 3 . 9 5 0 0 0 5 2 . 1 6 1 . 4 5 6 6 . 9 2 3 . 9 2 6 . 1 2 0 9 . 2 1 3 . 9 1 6 . 4 1 0 7 . 3 6 . 1 7 . 2 4 1 . 4 1 0 0 0 0 4 8 . 9 5 3 . 7 9 9 8 . 8 2 1 . 3 2 4 . 4 3 4 3 . 9 1 1 . 9 1 3 . 6 1 8 7 . 3 4 . 7 5 . 3 5 7 . 3 3 3 2 0 0 3 9 . 2 4 4 . 8 1 9 9 4 . 4 1 7 . 5 1 9 . 9 6 5 0 . 0 9 . 0 1 0 . 3 2 8 6 . 6 2 . 6 3 . 2 7 7 . 1 H A I T O T A L H E I G H T O P D R Y M A T E S ; H 8 - H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G B T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H - H E I G H T O P S A M P L E I N H A T E R ; A V - P E R C E N T A I R V O I D S ; G m - M A X I M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . . E L A S T I C A N D T O T A L D E P ' C R M A T I m / C Y C L E ; P L A . I C M I L A T I V E P L A S T I C ( P E R M A N E N T ) D M T I O N . " 2 4 2 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 9 1 A V N U M B E R ( 2 : ) ( g r ) ( 1 ) ( l b s ) ( l b s ) ( 6 2 ) ( C r ) ( 1 ) 2 1 1 1 0 5 2 5 1 0 0 0 0 4 1 6 3 . 9 9 5 0 5 0 0 6 1 2 9 . 0 1 0 3 1 7 . 0 2 . 5 4 2 . 9 7 D E P O I M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T ’ 1 ( 0 . 0 I N . ) L V D T O 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 9 1 . 6 1 0 5 . 2 4 7 . 3 4 5 . 1 5 1 . 6 2 0 . 3 3 2 . 1 3 6 . 9 1 3 . 5 2 1 . 7 2 4 . 9 6 . 5 5 0 0 7 1 . 9 6 2 . 6 1 2 4 . 7 3 4 . 7 3 9 . 6 4 9 . 9 2 3 . 0 2 6 . 5 3 0 . 2 1 3 . 5 1 5 . 6 1 6 . 2 1 0 0 0 6 4 . 6 7 3 . 6 2 1 3 . 1 3 1 . 0 3 5 . 2 6 2 . 7 1 9 . 9 2 2 . 6 4 7 . 9 1 0 . 9 1 2 . 4 2 3 . 7 5 0 0 0 5 0 . 9 5 6 . 0 5 6 6 . 2 2 3 . 6 2 7 . 1 2 0 4 . 7 1 4 . 0 1 6 . 0 1 0 6 . 2 6 . 3 7 . 1 4 1 . 7 1 0 0 0 0 4 5 . 9 5 2 . 1 9 5 2 . 2 2 1 . 2 2 4 . 1 3 3 3 . 7 1 2 . 0 1 3 . 6 1 6 4 . 5 4 . 6 5 . 5 5 7 . 5 2 0 6 0 0 4 1 . 2 4 7 . 3 1 4 1 3 . 7 1 6 . 6 2 1 . 6 4 7 9 . 4 1 0 . 2 1 1 . 7 2 2 3 . 2 3 . 6 4 . 1 6 6 . 0 S A M P L E H A H B A C S L C L H B H H B A ( I f ! A V N U M B E R ( I t ) ( 2 : ) ( 1 ) ( l b s ) ( 1 b ! ) ( 6 ! ) ( I ! ) ( 1 ) 2 1 1 1 0 5 3 5 1 0 0 0 0 4 1 6 3 . 9 9 5 0 5 0 0 6 1 1 4 . 0 1 0 3 0 6 . 0 2 . 5 4 3 . 1 7 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 9 4 . 3 1 0 6 . 0 5 0 . 2 4 5 . 4 5 2 . 0 2 1 . 0 3 2 . 0 3 6 . 6 1 3 . 6 2 1 . 4 2 4 . 5 6 . 6 5 0 0 7 4 . 1 6 4 . 5 1 3 1 . 6 3 4 . 9 3 9 . 6 5 1 . 5 2 2 . 9 2 6 . 1 3 0 . 6 1 3 . 3 1 5 . 1 1 6 . 2 1 0 0 0 6 6 . 6 7 5 . 9 2 1 9 . 7 3 1 . 2 3 5 . 4 6 3 . 3 1 9 . 6 2 2 . 5 4 7 . 6 1 0 . 6 1 2 . 1 2 3 . 1 5 0 0 0 5 2 . 5 5 9 . 7 5 9 0 . 0 2 3 . 9 2 7 . 2 2 0 6 . 3 1 3 . 9 1 5 . 6 1 0 6 . 4 6 . 0 6 . 9 4 0 . 7 1 0 0 0 0 4 7 . 3 5 4 . 9 1 0 1 6 . 0 2 1 . 3 2 4 . 6 3 4 7 . 6 1 1 . 9 1 3 . 6 1 6 6 . 3 4 . 6 5 . 4 5 7 . 2 3 0 0 0 0 4 0 . 1 4 6 . 4 1 9 1 5 . 1 1 7 . 6 2 0 . 6 6 2 3 . 0 9 . 2 1 0 . 6 2 7 5 . 6 2 . 9 3 . 4 7 5 . 1 6 6 0 0 0 3 5 . 6 4 1 . 1 3 4 7 1 . 5 1 5 . 6 1 6 . 0 1 0 6 6 . 6 7 . 6 6 . 6 4 4 9 . 1 2 . 0 2 . 3 1 0 1 . 6 H A I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H I I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; G M M " I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . “ ” 3 9 3 2 4 3 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C S L C L H B H H H A ( 3 9 1 A V N U M B E R ( I t ) ( 3 : ) ( 2 ) ( 1 b ! ) ( 1 b ! ) ( 6 ! ) ( 3 r ) ( 1 ) 2 1 1 1 0 6 1 1 1 0 0 0 0 4 1 6 3 . 9 9 5 0 1 0 0 5 9 2 6 . 0 1 0 1 0 3 . 0 2 . 5 4 4 . 7 4 D E P O R M A T I O N ( i n c h o s 8 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 5 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A u T O T . P L A N E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 3 . 4 2 6 . 5 1 1 . 7 1 0 . 6 1 1 . 9 4 . 6 6 . 1 9 . 1 3 . 3 5 . 9 6 . 7 2 . 3 5 0 0 1 6 . 4 2 0 . 6 3 1 . 3 6 . 1 9 . 2 1 1 . 5 5 . 6 6 . 6 7 . 5 3 . 7 4 . 2 4 . 4 1 0 0 0 1 6 . 6 1 9 . 3 5 3 . 4 7 . 2 6 . 4 1 6 . 9 5 . 0 5 . 6 1 1 . 6 3 . 0 . 3 . 5 6 . 4 5 0 0 0 1 3 . 0 1 5 . 0 1 3 9 . 5 5 . 5 6 . 4 4 5 . 9 3 . 5 4 . 1 2 5 . 7 1 . 6 2 . 0 1 1 . 4 1 0 0 0 0 1 1 . 7 1 3 . 4 2 3 9 . 5 4 . 9 5 . 6 7 6 . 3 3 . 0 3 . 4 4 0 . 5 1 . 4 1 . 6 1 6 . 1 3 0 3 0 0 . 9 1 1 . 4 4 5 4 . 3 4 . 1 4 . 7 1 3 7 . 3 2 . 3 2 . 7 6 6 . 6 0 . 9 1 . 0 2 1 . 7 1 6 0 3 0 0 7 . 7 6 . 6 1 4 6 4 . 4 3 . 1 3 . 5 4 0 6 . 4 1 . 6 1 . 6 1 7 1 . 2 0 . 4 0 . 5 3 7 . 6 S A M P L E H A H B A C S L C L H B H H H A ( I I ! A V N U M B E R ( 6 2 ) ( I ! ) ( 2 ) ( 1 b ! ) ( 1 b . ) ( 6 1 ) ( 3 ! ) ( I ) 2 1 1 1 0 6 2 1 1 0 0 0 0 4 1 6 3 . 9 9 5 0 1 0 0 5 9 2 3 . 0 1 0 1 1 1 . 0 2 . 5 4 4 . 9 1 D E P O H M A T I O N ( i n c h n c X 0 . 0 0 0 1 ) L V D T 9 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T O 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N M M I E R E L A . T O T . P L A . E L A . T O T . P L A . E L A N T O T . P L A . E L A . T O T . P L A . 1 0 0 2 4 . 0 2 7 . 7 1 2 . 5 1 0 . 6 1 2 . 3 4 . 6 6 . 1 9 . 3 3 . 4 5 . 9 6 . 6 2 . 3 5 0 0 1 6 . 9 2 1 . 5 3 2 . 7 6 . 2 9 . 3 1 1 . 6 5 . 6 6 . 6 7 . 6 3 . 7 4 . 2 4 . 4 1 0 0 0 1 7 . 0 1 9 . 6 5 7 . 4 7 . 3 6 . 4 2 0 . 0 5 . 0 5 . 6 1 2 . 4 3 . 0 3 . 5 6 . 7 5 4 0 0 1 3 . 2 1 5 . 2 1 5 5 . 5 5 . 5 6 . 3 5 0 . 0 3 . 4 4 . 0 2 7 . 6 1 . 7 1 . 9 1 1 . 9 1 0 9 0 0 1 1 . 9 1 3 . 7 2 7 0 . 0 4 . 9 5 . 6 6 4 . 1 2 . 9 3 . 4 4 3 . 9 1 . 3 1 . 5 1 6 . 9 3 1 0 5 0 1 0 . 2 1 1 . 6 4 6 5 . 6 4 . 1 4 . 6 1 4 3 . 6 2 . 3 2 . 7 6 9 . 0 0 . 6 1 . 0 2 1 . 6 1 6 6 9 3 0 7 . 9 9 . 1 1 6 3 3 . 3 3 . 1 3 . 5 4 4 5 . 3 1 . 5 1 . 7 1 6 3 . 0 0 . 4 0 . 4 3 6 . 7 I T O T A L H E I G H T 0 ' 0 H ! A G G R E G A T E S ; H I I H E I G H T O P S I T U M E N : I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T 0 P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A N I P E R C E N T A I R V O I D S ; I J M A E I M U M T H E O R E T I C A L S P E C I P I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O N M A T I O N I C Y C L E : I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T T O N . O D H U Q U . N 2 4 4 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 ! ! A N N U M B E R ( 3 : ) ( 3 : ) ( 2 ) ( 1 b ! ) ( 1 b ! ) ( 3 : ) ( t ! ) ( 1 ) 2 1 1 1 0 6 3 1 1 0 0 0 0 4 1 6 3 . 9 9 5 0 1 0 0 5 9 1 0 . 0 1 0 0 9 2 . 0 2 . 5 4 4 . 9 5 D E P O R M A T I O N ( i n c h o s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T l 3 ( 4 . 0 I N . ) L V D T § 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . E L A . E L A . T O T . P L A . 1 0 0 2 4 . 1 2 7 . 5 1 2 . 7 1 0 . 6 1 2 . 1 4 . 9 6 . 1 9 . 2 3 . 5 5 . 9 6 . 7 2 . 4 5 0 0 1 9 . 0 2 1 . 6 3 3 . 6 6 . 2 9 . 3 1 2 . 0 5 . 6 6 . 6 7 . 6 3 . 7 4 . 2 4 . 5 1 0 0 0 1 7 . 1 1 9 . 6 5 6 . 1 7 . 3 6 . 4 2 0 . 1 5 . 0 5 . 6 1 2 . 4 3 . 0 3 . 5 6 . 7 5 0 0 0 1 3 . 4 1 5 . 3 1 5 0 . 1 5 . 6 6 . 3 4 6 . 3 3 . 5 4 . 0 2 6 . 7 1 . 7 2 . 0 1 1 . 6 1 0 0 0 0 1 2 . 1 1 3 . 6 2 6 1 . 5 5 . 0 5 . 7 6 1 . 4 3 . 0 3 . 4 4 2 . 7 1 . 3 1 . 5 1 6 . 6 5 0 0 0 0 9 . 5 1 0 . 6 6 7 6 . 1 3 . 6 4 . 3 1 9 4 . 7 2 . 0 2 . 3 6 9 . 4 0 . 7 0 . 6 2 5 . 4 1 0 0 0 0 0 6 . 6 9 . 7 1 1 7 3 . 1 3 . 4 3 . 6 3 2 6 . 6 1 . 7 2 . 0 1 4 0 . 7 0 . 5 0 . 6 3 3 . 9 S A M P U E H A H B A C S L C L H B H 1 H B A ( I Q ! A V " ” ‘ 3 ( 6 3 ) ( I ! ) ( 2 ) ( l b s ) ( 1 h ! ) ( 6 ! ) ( I ! ) ( 1 ) 2 1 1 1 0 6 1 2 1 0 0 0 0 4 1 6 3 . 9 9 5 0 2 0 0 5 9 0 1 . 0 1 0 0 7 6 . 0 2 . 5 4 4 . 9 7 D E P O R M A T I O N ( 1 n c h o c X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L R D T ' 3 ( 4 . 0 I N . ) L V D T O ‘ ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 6 . 3 5 4 . 6 2 9 . 1 2 0 . 7 2 3 . 4 1 0 . 9 1 5 . 1 1 7 . 1 7 . 4 1 0 . 6 1 1 . 9 4 . 5 0 0 3 6 . 0 4 3 . 6 7 5 . 5 1 5 . 9 1 6 . 2 2 6 . 2 1 0 . 6 1 2 . 4 1 6 . 2 6 . 5 7 . 5 1 0 0 0 3 4 . 2 3 6 . 7 1 3 0 . 3 1 4 . 1 1 6 . 0 4 3 . 6 9 . 3 1 0 . 5 2 5 . 6 5 . 2 5 . 9 1 3 . 5 0 0 0 2 6 . 9 3 1 . 3 3 4 2 . 5 1 0 . 6 1 2 . 6 1 0 6 . 7 6 . 4 7 . 5 5 6 . 0 2 . 9 3 . 4 2 2 . 1 0 0 0 0 2 4 . 2 2 6 . 1 5 7 4 . 7 9 . 6 1 1 . 2 1 7 3 . 3 5 . 5 6 . 4 6 6 . 0 2 . 2 2 . 6 3 0 . 3 0 0 0 0 2 0 . 5 2 3 . 6 1 0 9 5 . 4 6 . 0 9 . 2 3 1 3 . 2 4 . 2 4 . 9 1 4 1 . 5 1 . 4 1 . 6 4 0 . 1 6 9 2 0 0 1 5 . 6 1 6 . 1 3 7 4 0 . 9 6 . 0 6 . 6 9 6 1 . 6 2 . 7 3 . 1 3 7 5 . 1 0 . 6 0 . 7 6 6 H A I T O T A L H E I G H T O F D R ! A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D : H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; ( I I I I ' M A N I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; P L A I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 4 5 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A I ! ! ! A V N U M B E R ( 3 : ) ( 3 : ) ( 2 ) ( L b s ) ( 1 b ! ) ( 8 ! ) ( 5 : ) ( 2 ) 2 1 1 1 0 6 2 2 1 0 0 0 0 4 1 6 3 . 9 9 5 0 2 0 0 5 9 1 4 . 0 1 0 1 0 9 . 0 2 . 5 4 5 . 0 9 D E P O H M A T I O N ( 1 3 ¢ h o s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 9 . 3 5 5 . 9 2 9 . 6 2 0 . 9 2 3 . 7 1 1 . 0 1 5 . 2 1 7 . 2 7 . 5 1 0 . 5 1 2 . 0 4 . 6 5 0 0 3 6 . 7 4 4 . 1 7 6 . 0 1 6 . 0 1 6 . 2 2 6 . 7 1 0 . 6 1 2 . 3 1 6 . 4 6 . 5 7 . 4 9 . 0 1 0 0 0 3 4 . 9 4 0 . 2 1 3 7 . 0 1 4 . 3 1 6 . 4 4 5 . 5 9 . 3 1 0 . 7 2 6 . 7 5 . 2 6 . 0 1 3 . 4 5 0 0 0 2 7 . 4 3 1 . 3 3 5 6 . 1 1 0 . 9 1 2 . 4 1 1 0 . 2 6 . 4 7 . 3 5 7 . 4 2 . 9 3 . 3 2 2 . 6 1 0 0 0 0 2 4 . 7 2 6 . 2 6 1 6 . 3 9 . 7 1 1 . 1 1 6 3 . 4 5 . 5 6 . 3 9 0 . 3 2 . 2 2 . 5 3 1 . 7 3 0 0 0 0 2 1 . 0 2 4 . 4 1 1 3 0 . 1 6 . 1 9 . 4 3 1 6 . 6 4 . 2 4 . 9 1 4 2 . 7 1 . 4 1 . 6 4 0 . 1 1 6 2 3 1 0 1 6 . 3 1 6 . 7 3 7 6 1 . 2 6 . 0 6 . 9 9 7 5 . 7 2 . 7 3 . 2 3 7 0 . 3 0 . 6 0 . 7 6 7 . 2 S A M P L E H A H E A C S L C L H B H H B A ( I t ! A N N U M B E R ( 6 ! ) ( 3 ! ) ( I ) ( I h l ) ( 1 h ! ) ( 6 ! ) ( I t ) ( 1 ) 2 1 1 1 0 6 3 2 1 0 0 0 0 4 1 6 3 . 9 9 5 0 2 0 0 5 9 1 5 . 0 1 0 1 1 1 . 0 2 . 5 4 5 . 0 9 D E P O H M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T i 3 ( 4 . 0 I N . ) L V D T " ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 9 . 3 5 5 . 9 3 0 . 3 2 0 . 9 2 3 . 7 1 1 . 2 1 5 . 2 1 7 . 2 7 . 6 1 0 . 5 1 2 . 0 4 . 9 5 0 0 3 6 . 7 4 5 . 1 7 9 . 3 1 6 . 0 1 6 . 6 2 7 . 2 1 0 . 6 1 2 . 5 1 6 . 7 6 . 5 7 . 5 9 . 1 1 0 0 0 3 4 . 9 3 9 . 6 1 3 7 . 2 1 4 . 3 1 6 . 1 4 5 . 5 9 . 3 1 0 . 5 2 6 . 7 5 . 2 5 . 9 1 3 . 4 5 0 0 0 2 7 . 4 3 1 . 2 3 5 3 . 2 1 0 . 9 1 2 . 4 1 0 6 . 6 6 . 4 7 . 3 5 6 . 6 2 . 9 3 . 3 2 2 . 4 1 0 0 0 0 2 4 . 7 2 6 . 5 6 1 0 . 7 9 . 7 1 1 . 2 1 6 1 . 7 5 . 5 6 . 3 6 9 . 4 2 . 2 2 . 5 3 1 . 4 3 0 0 0 0 2 1 . 0 2 4 . 3 1 1 4 2 . 3 6 . 1 9 . 3 3 2 2 . 1 4 . 2 4 . 9 1 4 4 . 2 1 . 4 1 . 6 4 0 . 5 1 6 4 5 0 0 1 6 . 2 1 6 . 3 3 6 1 9 . 2 6 . 0 6 . 6 9 6 9 . 6 2 . 7 3 . 1 3 7 4 . 9 0 . 6 0 . 7 6 7 . 6 H A I T O T A L H E I G H T O N U R ! A G G R E G A T E S ; H I I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T 0 F S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A N I P E R C E N T A I R V O I D S ; G M M I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) U E I O H M A T I O N . ” E N E E 2 4 6 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 % ! A V N U M B E R ( I S ) ( 3 ! ) ( 1 ) ( 1 b ! ) ( 1 b ! ) ( 3 : ) ( 3 : ) ( 2 ) 2 1 1 1 0 6 1 5 1 0 0 0 0 4 1 6 3 . 9 9 5 0 5 0 0 5 9 1 3 . 0 1 0 1 0 7 . 0 2 . 5 4 5 . 0 9 D E P O R M A T I O N ( L B O B O I 8 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T . 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 2 3 . 1 1 4 3 . 0 1 0 1 . 5 4 7 . 6 5 5 . 5 3 4 . 3 3 0 . 4 3 5 . 3 2 0 . 4 1 6 . 0 2 0 . 9 1 1 . 3 5 0 0 9 6 . 7 1 1 2 . 3 2 6 6 . 3 3 6 . 5 4 2 . 4 6 3 . 5 2 1 . 2 2 4 . 6 4 4 . 0 1 0 . 4 1 2 . 1 1 9 . 6 1 0 0 0 6 7 . 2 9 9 . 3 4 5 6 . 5 3 2 . 5 3 7 . 0 1 3 9 . 0 1 6 . 0 2 0 . 5 6 9 . 4 . 6 . 1 9 . 2 2 6 . 0 5 0 0 0 6 6 . 5 7 9 . 7 1 1 9 4 . 5 2 4 . 6 2 6 . 6 3 3 4 . 6 1 2 . 2 1 4 . 2 1 4 5 . 6 4 . 2 4 . 9 4 3 . 7 1 0 0 0 0 6 1 . 7 7 1 . 2 2 0 3 6 . 0 2 2 . 0 2 5 . 4 5 5 1 . 5 1 0 . 3 1 1 . 9 2 2 4 . 7 3 . 0 3 . 5 5 7 . 6 3 0 7 0 0 5 1 . 9 5 6 . 6 3 9 3 6 . 3 1 6 . 1 2 0 . 5 1 0 0 5 . 3 7 . 6 6 . 7 3 6 4 . 0 1 . 7 1 . 9 6 9 . 7 3 1 7 0 0 5 2 . 2 5 9 . 4 4 2 1 0 . 7 1 6 . 2 2 0 . 7 1 0 7 6 . 6 7 . 7 6 . 6 3 9 1 . 2 1 . 7 2 . 0 7 5 . 5 S A M P L E H A H B A C S L C L H B H H B A ( I 9 1 A V N U M B E R ( I ! ) ( I t ) ( 2 ) ( I D ! ) ( 1 b ! ) ( 6 ! ) ( 3 r ) ( 2 ) 2 1 1 1 0 6 2 5 1 0 0 0 0 4 1 6 3 . 9 9 5 0 5 0 0 5 9 1 4 . 0 1 0 1 0 3 . 0 2 . 5 4 5 . 0 1 D E P O R M A T I O N ( i n c h o s X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T O 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 2 1 . 6 1 3 7 . 7 9 6 . 1 4 7 . 7 5 3 . 9 3 3 . 5 3 0 . 4 3 4 . 4 1 9 . 9 1 6 . 1 2 0 . 5 1 1 . 1 5 0 0 9 5 . 6 1 1 1 . 3 2 5 6 . 2 3 6 . 4 4 2 . 4 6 1 . 6 2 1 . 2 2 4 . 7 4 3 . 3 1 0 . 5 1 2 . 2 1 9 . 6 1 0 0 0 6 6 . 2 9 9 . 6 4 3 4 . 3 3 2 . 4 3 7 5 1 3 2 . 6 1 6 . 1 2 0 . 9 6 6 . 7 6 . 1 9 . 4 2 7 . 1 5 0 0 0 6 7 . 7 7 9 . 6 1 1 4 6 . 9 2 4 . 7 2 9 . 1 3 2 4 . 6 1 2 . 3 1 4 . 5 1 4 2 . 2 4 . 2 5 . 0 4 3 . 1 1 0 0 0 0 6 1 . 0 7 0 . 9 2 0 0 3 . 0 2 2 . 0 2 5 . 5 5 4 7 . 1 1 0 . 3 1 2 . 0 2 2 4 . 4 3 . 1 3 . 6 5 6 . 4 3 0 6 0 0 5 1 . 5 5 9 . 9 3 7 6 4 . 3 1 6 . 1 2 1 1 9 7 6 . 7 7 . 6 9 . 0 3 5 7 . 5 1 . 6 2 . 1 6 9 . 9 3 5 0 0 0 5 0 . 6 5 6 . 0 4 5 0 6 . 6 1 7 . 7 2 0 . 4 1 1 5 5 . 6 7 . 5 6 . 6 4 1 7 . 2 1 . 7 1 . 9 7 6 . 7 I T O T A L H E I G H T O F U R ! A G G R E G A T E S ; H I I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; I L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . “ . 0 0 . 0 ” ! ? 3 5 E 2 4 7 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A : 8 L C L H B H H B A G M M A v m m ( 3 : ) ( 3 : ) ( 2 ) ( l b s ) ( l b s ) ( 3 : ) ( a t ) ( 2 ) 2 1 1 1 0 6 3 5 1 0 0 0 0 4 1 6 3 . 9 9 5 0 5 0 0 5 9 0 2 . 0 1 0 0 6 0 . 0 2 . 5 4 4 . 9 8 D E P O R M A T I O N ( i n c h - I X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T i 3 ( 4 . 0 I N . ) L V D T I A ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 2 0 . 9 1 3 9 . 2 9 7 . 6 4 7 . 5 5 4 . 5 0 0 9 5 . 0 1 0 6 . 2 2 5 0 . 6 3 6 . 3 4 1 . 1 0 0 0 6 5 . 6 9 9 . 6 4 3 2 . 7 3 2 . 3 3 7 . 5 0 0 0 6 7 . 2 7 5 . 9 1 1 4 7 . 9 2 4 . 6 2 7 . 1 0 6 0 0 6 0 . 1 6 6 . 6 2 0 1 7 . 6 2 1 . 7 2 4 . 3 0 3 0 0 5 1 . 3 5 6 . 9 3 6 6 6 . 3 1 6 . 1 2 0 . 3 3 . 4 3 0 . 4 3 5 . 0 1 9 . 9 1 6 . 1 2 0 . 9 1 1 . 1 7 9 . 6 2 1 . 2 2 4 . 1 4 2 . 3 1 0 . 5 1 2 . 0 1 9 . 2 1 3 2 . 6 1 6 . 1 2 1 . 0 6 6 . 9 6 . 2 9 . 5 2 7 . 3 3 2 5 . 6 1 2 . 3 1 3 . 9 1 4 3 . 0 4 . 2 4 . 6 4 3 . 5 5 5 1 . 7 1 0 . 2 1 1 . 6 2 2 5 . 7 3 . 0 3 . 5 5 6 . 2 9 5 6 . 1 7 . 6 6 . 9 3 5 1 . 6 1 . 6 2 . 1 6 9 . 5 S A M P L E H A H B A C S L C L H B H H B A ( I t ! A V N U M B E R ( 8 : ) ( 3 ! ) ( 2 ) ( L b s ) ( 1 b ! ) ( 6 ! ) ( I t ) ( 2 ) 2 1 1 1 0 7 1 1 1 0 0 0 0 4 1 6 3 . 9 9 5 0 1 0 0 5 7 1 5 . 0 9 6 9 6 . 0 2 . 5 4 6 . 7 6 D E P O R M A T I O N ( i n c h o c X 0 . 0 0 0 1 ) L V D T . 1 ( 0 . 0 I N . ) L V D T 1 2 ( 2 . 0 I N . ) L V D T i 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 0 . 5 3 5 . 3 2 4 . 7 1 1 . 3 1 3 . 0 7 . 9 6 . 0 9 . 3 5 . 3 5 . 5 6 . 3 3 . 4 5 0 0 2 4 . 0 2 7 . 5 6 5 . 6 6 . 6 9 . 6 1 9 . 5 5 . 6 6 . 5 1 1 . 7 3 . 3 3 . 7 6 . 2 1 0 0 0 2 1 . 6 2 4 . 6 1 1 2 . 9 7 . 6 6 . 7 3 2 . 4 4 . 6 5 . 5 1 6 . 4 2 . 6 2 . 9 6 . 9 5 0 0 0 1 7 . 0 1 9 . 5 2 6 6 . 9 5 . 6 6 . 7 7 6 . 5 3 . 3 3 . 6 3 6 . 2 1 . 4 1 . 6 1 4 . 2 1 0 0 0 0 1 5 . 3 1 7 . 4 4 9 6 . 0 5 . 2 5 . 9 1 2 6 . 6 2 . 6 3 . 2 5 9 . 5 1 . 0 1 . 2 1 9 . 3 3 1 9 0 0 1 2 . 9 1 5 . 0 9 7 9 . 2 4 . 2 4 . 9 2 3 5 . 6 2 . 1 2 . 4 9 9 . 0 0 . 6 0 . 7 2 4 . 6 1 7 5 6 0 0 1 0 . 0 1 1 . 4 3 2 9 5 . 9 3 . 1 3 . 6 7 2 5 . 1 1 . 3 1 . 5 2 5 2 . 7 0 . 2 0 . 3 3 6 . 7 I T O T A L H E I G H T O P U R ! A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D : I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I i M A E I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” E H E E 2 4 8 B E A M C Y C L I C L O A D D A T A S A M P L E H A H m A C S L C L H B H N B A ( : 1 1 A V m m ( 3 : ) ( s t ) ( 2 ) ( 1 . 1 » ) ( l b s ) ( 3 : ) ( 3 r ) ( 1 ) 2 1 1 1 0 7 2 1 1 0 0 0 0 4 1 6 3 . 9 9 5 0 1 0 0 5 7 1 1 . 0 9 6 9 6 . 0 2 . 5 4 6 . 8 7 D E F O H M A T I O N ( i n c h o o X 0 . 0 0 0 1 ) L V D T , 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T 9 3 ( 4 . 0 I N . ) L V D T O A ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 0 . 9 3 5 . 9 2 5 . 7 1 1 . 3 1 3 . 1 6 . 2 6 . 0 9 . 3 5 . 4 5 . 5 6 . 3 3 . 4 5 0 0 2 4 . 3 2 7 . 7 6 6 . 7 6 . 6 9 . 6 1 9 . 6 5 . 6 6 . 4 1 1 . 7 3 . 3 3 . 7 6 . 2 1 0 0 0 2 1 . 9 2 4 . 6 1 1 6 . 3 7 . 7 6 . 7 3 3 . 1 4 . 6 5 . 5 1 6 . 7 2 . 6 2 . 9 9 . 0 5 3 0 0 1 7 . 0 1 9 . 7 3 1 4 . 1 5 . 6 6 . 7 6 2 . 2 3 . 2 3 . 7 4 0 . 6 1 . 3 1 . 6 1 4 . 6 1 0 0 0 0 1 5 . 5 1 6 . 0 5 1 2 . 2 5 . 2 6 . 0 1 2 9 . 7 2 . 6 3 . 2 6 0 . 5 1 . 0 1 . 2 1 9 . 5 3 1 0 0 0 1 3 . 1 1 4 . 9 9 9 7 . 0 4 . 3 4 . 9 2 3 6 . 1 2 . 1 2 . 4 9 9 . 6 0 . 6 0 . 7 2 4 . 6 1 7 1 0 0 0 1 0 . 1 1 1 . 6 3 2 6 7 . 6 3 . 2 3 . 6 7 1 2 . 6 1 . 3 1 . 5 2 4 7 . 3 0 . 2 0 . 3 3 7 . 6 S A M P L E H A H B A C S L C L H B H H B A ( 3 ! ! A V N U M B E R ( 3 : ) ( I ! ) ( 2 ) ( L b s ) ( l b ! ) ( 6 2 ) ( I ! ) ( 2 ) 2 1 1 1 0 7 3 1 1 0 0 0 0 4 1 6 3 . 9 9 5 0 1 0 0 5 7 0 3 . 0 9 6 6 6 . 0 2 . 5 4 6 . 9 2 D E P O R M A T I O N ( i n c h o s X 0 . 0 0 0 1 ) L V D T O 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T O 3 ( 4 . 0 I N . ) L V D T O 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 1 . 1 3 5 . 6 2 5 . 9 1 1 . 3 1 3 . 0 6 . 2 6 . 0 9 . 2 5 . 4 5 . 4 6 . 2 3 . 4 5 0 0 2 4 . 4 2 6 . 4 6 7 . 6 6 . 6 1 0 . 0 1 9 . 6 5 . 6 6 . 5 1 1 . 6 3 . 2 3 . 6 6 . 2 1 0 0 0 2 2 . 0 2 4 . 6 1 1 6 . 3 7 . 7 6 . 6 3 2 . 9 4 . 6 5 . 4 1 6 . 6 2 . 5 2 . 9 6 . 9 5 0 0 0 1 7 . 3 2 0 . 0 3 0 6 . 0 5 . 6 6 . 7 6 0 . 4 3 . 3 3 . 6 3 9 . 6 1 . 4 1 . 6 1 4 . 6 1 0 0 0 0 1 5 . 6 1 7 . 9 5 1 9 . 9 5 . 2 6 . 0 1 3 1 . 0 2 . 6 3 . 2 6 0 . 9 1 . 0 1 . 2 1 9 . 5 3 0 0 0 0 1 3 . 2 1 5 . 1 9 9 2 . 7 4 . 3 4 . 9 2 3 6 . 2 2 . 1 2 . 4 9 6 . 6 0 . 6 0 . 7 2 4 . 7 1 7 0 0 0 0 1 0 . 2 1 1 . 6 3 3 6 7 . 1 3 . 2 3 . 7 7 3 0 . 5 1 . 3 1 . 5 2 5 2 . 5 0 . 2 0 . 3 3 6 . 2 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H I I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O F S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 4 9 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C S L C L H B H H B A I ! ! ! A V N U M B E R ( 3 : ) ( s t ) ( 2 ) ( l b s ) ( L b s ) ( I t ) ( I ! ) ( 2 ) 2 1 1 1 0 7 1 2 1 0 0 0 0 4 1 6 3 . 9 9 5 0 2 0 0 5 7 0 0 . 0 9 6 9 4 . 0 2 . 5 4 7 . 0 9 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T I 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T O 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 3 . 7 7 3 . 1 6 2 . 4 2 2 . 0 2 5 . 3 1 6 . 6 1 4 . 6 1 7 . 0 1 1 . 6 9 . 5 1 0 . 6 7 . 0 5 0 0 5 0 . 0 5 6 . 5 1 6 5 . 4 1 6 . 6 1 6 . 9 4 6 . 0 1 0 . 3 1 1 . 6 2 5 . 7 5 . 5 6 . 2 1 2 . 5 1 0 0 0 4 5 . 1 5 2 . 2 2 7 6 . 6 1 4 . 9 1 7 . 2 7 4 . 3 6 . 7 1 0 . 1 3 9 . 3 4 . 2 4 . 9 1 7 . 2 5 0 0 0 3 5 . 4 4 1 . 0 7 3 0 . 9 1 1 . 3 1 3 . 1 1 6 0 . 7 5 . 9 6 . 6 6 3 . 1 2 . 2 2 . 6 2 7 . 3 1 0 0 0 0 3 1 . 9 3 6 . 3 1 2 6 7 . 2 1 0 . 0 1 1 . 4 3 0 2 . 1 5 . 0 5 . 6 1 3 0 . 0 1 . 6 1 . 6 3 6 . 6 3 0 9 0 0 2 6 . 9 3 1 . 0 2 3 6 7 . 0 6 . 3 9 . 5 5 3 6 . 0 3 . 7 4 . 2 2 0 5 . 1 0 . 9 1 . 1 4 3 . 9 6 6 5 0 0 2 3 . 9 2 7 . 5 4 3 4 9 . 6 7 . 2 6 . 3 9 3 5 . 7 3 . 0 3 . 4 3 2 7 . 2 0 . 6 0 . 7 5 5 . 4 S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 3 : ) ( 8 8 ) ( 2 ) ( 1 6 s ) ( 1 6 s ) ( 9 : ) ( 9 ! ) ( 2 ) 2 1 1 1 0 7 2 2 1 0 0 0 0 4 1 6 3 . 9 9 5 0 2 0 0 5 7 0 1 . 0 9 6 9 2 . 0 2 . 5 4 7 . 0 4 W I “ ( i n c h e s X 0 . 0 0 0 1 ) L V D T I 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 3 . 2 7 3 . 6 6 1 . 2 2 2 . 0 2 5 . 6 1 6 . 5 1 4 . 6 1 7 . 3 1 1 . 7 9 . 5 1 1 . 0 6 . 9 5 0 0 4 9 . 7 5 6 . 5 1 6 1 . 6 1 6 . 7 1 9 . 0 4 5 . 2 1 0 . 3 1 1 . 7 2 5 . 4 5 . 5 6 . 3 1 2 . 3 1 0 0 0 4 4 . 6 5 0 . 5 2 7 4 . 4 1 4 . 9 1 6 . 6 7 4 . 0 6 . 6 9 . 9 3 9 . 3 4 . 3 4 . 6 1 7 . 3 5 2 0 0 3 5 . 0 3 9 . 5 7 4 3 . 9 1 1 . 2 1 2 . 7 1 6 4 . 5 5 . 9 6 . 6 6 4 . 6 2 . 2 2 . 5 2 7 . 6 1 0 0 0 0 3 1 . 7 3 6 . 3 1 2 2 2 . 1 1 0 . 0 1 1 . 5 2 9 2 . 9 5 . 0 5 . 7 1 2 6 . 4 1 . 6 1 . 9 3 6 . 0 3 0 0 0 0 2 6 . 9 3 0 . 9 2 3 0 6 . 0 6 . 3 9 . 5 5 2 1 . 5 3 . 7 4 . 3 2 0 0 . 9 0 . 9 1 . 1 4 3 . 6 5 4 . 3 3 5 2 4 . 0 2 7 . 5 4 1 3 7 . : - - - - - - - - - H A - r o m . m m a r m m ; u - m m u n n ’ m ; a c - m n a s m r c a l m r ; n - s m m m ; m . m m m m u n m ; a - m x c m ; a n - m m o r s m n m n ; a v - r m m v o m s ; G M M I I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) U E F O H M A T I O N . ” E N E R 2 5 0 B E A M C Y C L I C L O A D D A T A S A M P L E N A 9 3 A C S L C L H a d H B A < a e 1 A V m ( 3 : ) ( s t ) ( 2 ) ( 1 ) : . ) ( l b s ) ( 3 : ) ( 5 r ) ( 2 ) 2 1 1 1 0 7 3 2 1 0 0 0 0 4 1 6 3 . 0 9 5 0 2 0 0 5 6 9 7 . 0 0 8 8 5 . 0 2 . 5 4 7 . 0 5 D E F Q M A T I U ( i n c h o s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 3 . 2 7 1 . 5 6 1 . 0 2 2 . 0 2 4 . 6 1 6 . 5 1 4 . 6 1 6 . 6 1 1 . 6 9 . 5 1 0 . 7 6 . 9 5 0 0 4 9 . 6 5 6 . 1 1 6 1 . 1 1 6 . 7 1 6 . 9 4 5 . 0 1 0 . 3 1 1 . 6 2 5 . 2 5 . 5 6 . 2 1 2 . 3 1 0 0 0 4 4 . 7 5 1 . 1 2 7 6 . 2 1 4 . 9 1 7 . 0 7 5 . 1 6 . 7 1 0 . 0 3 9 . 6 4 . 3 4 . 9 1 7 . 5 5 0 0 0 3 5 . 1 3 9 . 6 7 1 6 . 6 1 1 . 3 1 2 . 6 1 7 6 . 1 5 . 9 6 . 7 6 2 . 2 2 . 2 ‘ 2 . 5 2 7 . 1 1 0 0 0 0 3 1 . 7 3 6 . 5 1 2 4 6 . 5 1 0 . 0 1 1 . 5 2 9 6 . 6 5 . 0 5 . 7 1 2 9 . 0 1 . 6 1 . 9 3 6 . 7 3 0 0 0 0 2 6 . 9 3 0 . 5 2 2 6 1 . 6 6 . 3 9 . 4 5 1 6 . 0 3 . 7 4 . 2 1 9 6 . 6 0 . 9 1 . 1 4 3 . 1 5 2 6 5 2 2 4 . 7 2 6 . 5 3 6 5 7 . 7 - - - - - - - - - S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 6 : ) ( I t ) ( I ) ( 1 6 s ) ( L b s ) ( I t ) ( 6 8 ) ( I ) 2 1 1 1 0 7 1 5 1 0 0 0 0 4 1 6 3 . 9 9 5 0 5 0 0 5 6 9 6 . 0 9 6 6 9 . 0 2 . 5 4 7 . 0 7 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 9 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T O 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 5 6 . 7 1 6 0 . 1 2 0 7 . 3 4 9 . 3 5 6 . 0 5 6 . 1 2 6 . 2 3 1 . 9 2 9 . 9 1 4 . 6 1 6 . 7 1 4 . 6 5 5 0 1 2 2 . 9 1 4 1 . 4 5 7 2 . 2 3 6 . 6 4 2 . 4 1 4 1 . 9 1 6 . 6 2 1 . 4 6 5 . 3 7 . 6 6 . 6 2 4 . 4 1 0 0 0 1 1 2 . 3 1 3 0 . 4 9 2 2 . 1 3 3 . 2 3 6 . 6 2 2 1 . 6 1 6 . 0 1 6 . 6 9 6 . 4 5 . 9 6 . 9 3 2 . 2 5 0 0 0 6 6 . 2 1 0 1 . 1 2 3 6 0 . 5 2 5 . 1 2 6 . 6 5 2 4 . 9 1 0 . 5 1 2 . 1 1 9 3 . 5 2 . 6 3 . 2 4 5 . 0 1 0 0 0 0 7 9 . 5 9 0 . 6 4 1 9 6 . 5 2 2 . 3 2 5 . 4 6 9 1 . 5 6 . 7 9 . 9 3 0 3 . 6 1 . 9 2 . 2 5 6 . 7 1 3 3 6 5 7 6 . 1 6 7 . 0 4 6 6 1 . 0 I I I I I I I - I I T O T A L H E I G H T 0 P D R Y A G G R E G A T E S ; H I I H E I G H T 0 P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T : S L I S U S T A I N E D L O A D ; I H E I G H T 0 P S A M P L E I N A I R : C L I C Y C L I C L O A D ; I H E I G H T 0 P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O N M A T I O N . " . G N O D ” E H E E 2 5 1 B E A M C Y C L I C L O A D D A T A S A M P L E H A H P A C S L C L 9 6 9 N B A ( : 1 1 A V W ( 3 : ) ( 5 r ) ( 1 ) ( l b s ) ( l b s ) ( 5 : ) ( a t ) ( 1 ) 2 1 1 1 0 7 2 5 1 0 0 0 0 4 1 6 3 . 9 9 5 0 5 0 0 5 7 0 1 . 0 9 6 9 6 . 0 2 . 5 4 7 . 0 9 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 4 2 ( 2 . 0 I N . ) L V D T i 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 5 9 . 3 1 6 2 . 3 2 0 6 . 6 4 9 . 4 5 6 . 5 0 0 1 2 5 . 1 1 4 4 . 6 5 4 5 . 7 3 7 . 5 4 3 . 1 0 0 0 1 1 2 . 6 1 2 7 . 4 9 3 3 . 0 3 3 . 2 3 7 . 5 0 0 0 6 6 . 6 1 0 1 . 2 2 4 0 0 . 0 2 5 . 1 2 6 . 1 0 0 0 0 7 9 . 6 9 2 . 6 4 1 5 0 . 0 2 2 . 3 2 5 . 1 1 4 3 2 7 6 . 2 6 9 . 2 4 6 2 6 . 6 2 1 . 6 2 4 . 5 5 . 6 2 6 . 2 3 2 . 2 2 9 . 7 1 4 . 7 1 6 . 9 1 4 . 5 1 3 5 . 6 1 9 . 1 2 2 . 1 6 2 . 9 7 . 9 9 . 2 2 3 . 6 2 2 3 . 6 1 6 . 0 1 6 . 1 9 7 . 1 5 . 9 6 . 7 3 2 . 3 5 2 7 . 6 1 0 . 5 1 2 . 0 1 9 4 . 2 2 . 6 3 . 2 4 5 . 1 6 7 6 . 7 6 . 7 1 0 . 1 2 9 6 . 6 1 . 9 2 . 2 5 7 . 5 9 7 2 . 9 6 . 4 9 . 6 3 2 5 . 7 1 . 6 2 . 0 6 0 . 3 S A M P L E H A H 6 A C S L C L H B H H B A G M M A V m m ( 3 : ) ( u ) ( 2 ) ( L b s ) ( L b s ) ( ‘ 1 ' ) ( 5 : ) ( 2 ) 2 1 1 1 0 7 3 5 1 0 0 0 0 4 1 6 3 . 9 9 5 0 5 0 0 5 6 9 6 . 0 9 6 9 0 . 0 2 . 5 4 7 . 1 2 D E F O R M A T I O N ( L n C H e s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 5 9 . 9 1 6 1 . 7 2 1 1 . 1 4 9 . 4 5 6 . 1 5 6 . 6 2 6 . 1 3 1 . 9 3 0 . 2 1 4 . 7 1 6 . 7 1 4 . 7 5 0 0 1 2 5 . 6 1 4 3 . 0 5 4 7 . 2 3 7 . 5 4 2 . 6 1 3 5 . 5 1 9 . 0 2 1 . 7 6 2 . 6 7 . 9 9 . 0 2 3 . 7 1 0 0 0 1 1 3 . 2 1 2 6 . 6 9 3 2 . 3 3 3 . 2 3 7 . 6 2 2 2 . 5 1 6 . 0 1 6 . 1 9 6 . 4 5 . 9 6 . 7 3 2 . 0 5 0 0 0 6 6 . 9 1 0 3 . 4 2 4 3 2 . 6 2 5 . 1 2 9 . 2 5 3 2 . 6 1 0 . 5 1 2 . 2 1 9 5 . 4 2 . 6 3 . 2 4 5 . 2 1 0 0 0 0 6 0 . 2 9 1 . 2 4 2 0 0 . 3 2 2 . 3 2 5 . 3 6 6 5 . 7 6 . 7 9 . 9 3 0 0 . 2 1 . 9 2 . 2 5 7 . 5 1 1 0 5 0 7 9 . 0 9 0 . 7 4 4 6 5 . 1 I I I I I I I I I I T O T A L H E I G H T O P U R I A G G R E G A T E S ; H B I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O F S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O H M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . ” E H E E 2 5 2 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 ’ 1 A V N U M B E R ( 3 : ) ( g r ) ( 2 ) ( L b s ) ( L b s ) ( 3 ! ) ( 3 : ) ( 2 ) 3 1 1 1 0 5 1 1 1 0 0 0 0 4 3 4 4 . 1 6 5 0 1 0 0 6 1 2 7 . 0 1 0 3 0 6 . 0 2 . 5 4 2 . 9 7 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T O 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 1 0 1 6 . 0 2 0 . 7 6 . 7 9 . 7 1 1 . 1 3 . 1 7 . 6 6 . 9 2 . 3 6 . 1 7 . 0 1 . 7 5 0 0 1 4 . 4 1 6 . 6 1 6 . 0 7 . 6 6 . 7 7 . 0 5 . 6 6 . 7 4 . 9 4 . 1 4 . 6 3 . 2 1 0 0 0 1 2 . 9 1 4 . 7 2 7 . 7 6 . 6 7 . 7 1 1 . 6 5 . 1 5 . 7 7 . 9 3 . 4 3 . 9 4 . 6 5 0 0 0 1 0 . 2 1 1 . 6 7 2 . 1 5 . 2 5 . 9 2 6 . 6 3 . 6 4 . 1 1 7 . 6 2 . 1 2 . 4 9 . 0 1 0 0 0 0 9 . 2 1 0 . 4 1 2 2 . 3 4 . 6 5 . 3 4 7 . 1 3 . 2 3 . 6 2 7 . 6 1 . 7 1 . 9 1 3 . 1 3 0 5 0 0 7 . 6 6 . 9 2 3 3 . 4 3 . 9 4 . 5 6 5 . 5 2 . 5 2 . 9 4 7 . 0 1 . 2 1 . 3 1 6 . 6 1 6 2 0 5 0 6 . 0 7 . 0 7 4 5 . 6 2 . 9 3 . 4 2 5 3 . 6 1 . 7 2 . 0 1 2 3 . 5 0 . 6 0 . 7 3 6 . 3 S A M P L E H A H B A C S L C L H B H H B A ( i t ! A V m ( 6 1 ' ) ( 2 1 ' ) ( I ) ( 1 1 ” ) ( L b s ) ( 6 8 ) ( 6 t ) ( 2 ) 3 1 1 1 0 5 2 1 1 0 0 0 0 4 3 4 4 . 1 6 5 0 1 0 0 6 1 2 6 . 0 1 0 3 1 0 . 0 2 . 5 4 2 . 9 6 D E F O B M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T O 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 6 . 3 2 0 . 9 6 . 1 9 . 6 1 1 . 2 2 . 6 7 . 9 9 . 1 2 . 1 6 . 2 7 . 1 1 . 6 5 2 0 1 4 . 3 1 6 . 3 1 6 . 6 7 . 5 6 . 6 7 . 2 5 . 6 6 . 6 5 . 1 4 . 1 4 . 7 3 . 3 1 0 0 0 1 3 . 0 1 4 . 7 2 6 . 1 6 . 6 7 . 7 1 1 . 9 5 . 1 5 . 6 6 . 0 3 . 4 3 . 9 4 . 9 5 2 5 0 1 0 . 1 1 1 . 5 7 3 . 9 5 . 2 5 . 9 2 9 . 2 3 . 6 4 . 1 1 6 . 0 2 . 1 2 . 4 9 . 2 1 0 4 0 0 9 . 1 1 0 . 6 1 2 1 . 6 4 . 6 5 . 5 4 6 . 6 3 . 1 3 . 7 2 7 . 6 1 . 7 2 . 0 1 2 . 9 3 0 0 0 0 7 . 6 6 . 9 2 2 9 . 6 3 . 9 4 . 4 6 4 . 3 2 . 5 2 . 9 4 6 . 4 1 . 2 1 . 3 1 6 . 6 1 6 5 6 0 0 6 . 0 6 . 9 7 5 6 . 6 2 . 9 3 . 4 2 5 7 . 6 1 . 7 2 . 0 1 2 5 . 1 0 . 6 0 . 7 3 6 . 6 I T O T A L H E I G H T O P D R Y A G H B B S A N B B ; H I I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O B M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . B r 2 5 3 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 2 ! ) ( S t ) ( 2 ) ( L b s ) ( L b s ) ( 2 ! ) ( 3 x ) ( I ) 3 1 1 1 0 5 3 1 1 0 0 0 0 4 3 4 4 . 1 6 5 0 1 0 0 6 1 3 6 . 0 1 0 3 3 3 . 0 2 . 5 4 3 . 0 6 D W I “ ( i n c h e s X 0 . 0 0 0 1 ) L V D T 5 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T 5 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 6 . 6 2 1 . 4 6 . 4 9 . 9 1 1 . 4 2 . 9 6 . 0 9 . 2 2 . 2 6 . 2 7 . 2 1 . 6 5 0 0 1 4 . 6 1 6 . 7 1 7 . 0 7 . 6 6 . 7 7 . 4 5 . 6 6 . 7 5 . 1 4 . 1 4 . 7 3 . 3 1 0 0 0 ” 1 3 . 2 1 4 . 9 2 6 . 6 6 . 6 7 . 7 1 2 . 1 5 . 1 5 . 6 6 . 1 3 . 4 3 . 9 4 . 9 5 0 0 0 1 0 . 3 1 1 . 9 7 5 . 2 5 . 2 6 . 0 2 9 . 5 3 . 7 4 . 2 1 6 . 1 4 . 9 6 . 5 I 1 0 0 0 0 9 . 3 1 0 . 7 1 2 6 . 3 4 . 7 5 . 4 4 6 . 1 3 . 2 3 . 6 2 6 . 3 4 . 3 5 . 4 - 3 0 0 0 0 7 . 9 9 . 1 2 4 0 . 5 3 . 9 4 . 5 6 7 . 3 2 . 5 2 . 9 4 7 . 6 3 . 0 3 . 7 I 1 6 2 9 0 0 6 . 1 7 . 3 7 6 4 . 9 3 . 0 3 . 5 2 6 4 . 4 1 . 7 2 . 0 1 2 7 . 5 2 . 0 2 . 2 I S A M P L E H A H B A C S L C L H B H H B A ( I I ! A V N U M B E R ( . 2 ) ( I ! ) ( I ) ( L b l ) ( L b s ) ( 2 ! ) ( I t ) ( I ) 3 1 1 1 0 5 1 2 1 0 0 0 0 4 3 4 4 . 1 6 5 0 2 0 0 6 1 4 2 . 0 1 0 3 4 1 . 0 2 . 5 4 3 . 0 6 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T . 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T l 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 7 . 3 4 3 . 3 1 4 . 5 1 9 . 4 2 2 . 5 6 . 6 1 5 . 2 1 7 . 6 4 . 6 1 1 . 5 1 3 . 3 3 . 4 5 0 0 2 9 . 3 3 4 . 1 3 7 . 2 1 4 . 9 1 7 . 4 1 5 . 7 1 1 . 1 1 2 . 9 1 0 . 6 7 . 5 6 . 7 6 . 5 1 0 0 0 2 6 . 4 3 0 . 0 6 4 . 6 1 3 . 3 1 5 . 2 2 6 . 6 9 . 6 1 0 . 9 1 7 . 3 6 . 1 7 . 0 1 0 . 0 5 0 0 0 2 0 . 7 2 3 . 6 1 6 6 . 1 1 0 . 3 1 1 . 7 6 4 . 4 6 . 9 7 . 6 3 6 . 0 3 . 7 4 . 3 1 6 . 2 1 0 0 0 0 1 6 . 7 2 1 . 5 2 6 5 . 7 9 . 2 1 0 . 6 1 0 6 . 2 5 . 9 6 . 6 5 9 . 6 3 . 0 3 . 4 2 6 . 1 3 0 6 0 0 1 5 . 6 1 7 . 9 5 5 3 . 3 7 . 6 6 . 6 1 9 5 . 6 4 . 6 5 . 2 1 0 2 . 0 2 . 0 2 . 2 3 7 . 2 1 6 7 4 0 0 1 2 . 2 1 3 . 9 1 7 7 7 . 9 5 . 6 6 . 5 5 6 2 . 7 3 . 1 3 . 6 2 6 5 . 6 1 . 0 1 . 1 6 6 . 7 H A I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H I I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; ‘ G M M I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A N A N D T O T . I E L A S T I C A N D T O T A L D E I O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” ? i 3 5 3 3 2 5 4 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 1 1 A V N U M B E R ( 6 ! ) ( I ! ) ( 1 ) ( L b s ) ( L b s ) ( 8 r ) ( 6 ! ) ( 1 ) 3 1 1 1 0 5 2 2 1 0 0 0 0 4 3 4 4 . 1 6 5 0 2 0 0 6 1 3 2 . 0 1 0 3 2 2 . 0 2 . 5 4 3 . 0 5 D E F O R M A T I O N ( i n C h e s X 0 . 0 0 0 1 ) L V D T f 1 ( 0 . 0 I N . ) L V D T 5 2 ( 2 . 0 I N . ) L V D T O 3 ( 4 . 0 I N . ) L V D T § 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 7 . 1 4 2 . 4 1 4 . 2 1 9 . 3 2 2 . 1 6 . 5 1 5 . 2 1 7 . 3 4 . 7 1 1 . 5 1 3 . 1 3 . 3 5 0 0 2 9 . 1 3 3 . 9 3 6 . 4 1 4 . 9 1 7 . 3 1 6 . 3 1 1 . 0 1 2 . 6 1 1 . 0 7 . 5 6 . 7 6 . 6 1 0 0 0 2 6 . 2 2 9 . 7 6 3 . 1 1 3 . 3 1 5 . 1 2 6 . 0 9 . 6 1 0 . 9 1 6 . 9 6 . 2 7 . 0 9 . 6 5 0 0 0 2 0 . 6 2 3 . 4 1 6 5 . 7 1 0 . 2 1 1 . 6 6 3 . 7 6 . 9 7 . 6 3 7 . 6 3 . 7 4 . 2 1 6 . 1 1 0 3 0 0 1 6 . 5 2 1 . 3 2 9 3 . 3 9 . 1 1 0 . 5 1 0 9 . 3 5 . 9 6 . 6 6 1 . 6 2 . 9 3 . 4 2 6 . 6 3 0 0 0 0 1 5 . 6 1 7 . 9 5 2 9 . 1 7 . 6 6 . 7 1 6 6 . 0 4 . 7 5 . 3 9 6 . 3 2 . 0 2 . 3 3 6 . 1 1 6 4 5 0 0 1 2 . 2 1 4 . 0 1 7 4 7 . 6 5 . 6 6 . 6 5 7 5 . 3 3 2 3 . 6 2 6 3 . 6 1 . 0 1 . 1 6 6 . 6 S A M P L E H A H B A C S L C L H B H H B A I ! ! ! A V N U M B E R ( 6 8 ) ( I t ) ( I ) ( L b s ) ( 1 b . ) ( 6 2 ) ( I t ) ( 2 ) 3 1 1 1 0 5 3 2 1 0 0 0 0 4 3 4 4 . 1 6 5 0 2 0 0 6 1 2 7 . 0 1 0 3 1 1 . 0 2 . 5 4 3 . 0 2 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T § A ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 6 . 6 4 1 . 9 1 4 . 3 1 9 . 3 2 1 . 9 6 . 5 1 5 . 1 1 7 . 2 4 . 6 1 1 . 5 1 3 . 1 3 . 4 5 0 0 2 6 . 9 3 3 4 3 6 . 6 1 4 . 6 1 7 . 1 1 5 . 6 1 1 . 0 1 2 . 7 1 0 . 6 7 . 5 6 . 7 6 . 5 1 0 0 0 2 6 . 1 2 9 . 9 6 2 . 3 1 3 . 3 1 5 . 2 2 5 . 6 9 . 6 1 1 . 0 1 6 . 6 6 . 2 7 . 1 9 . 7 5 0 0 0 2 0 . 5 2 3 . 7 1 6 5 . 1 1 0 . 2 1 1 . 6 6 3 . 7 6 . 9 6 . 0 3 7 . 7 3 . 6 4 . 4 1 6 . 2 1 0 0 0 0 1 6 . 4 2 1 0 2 6 0 . 1 9 . 1 1 0 . 4 1 0 4 . 9 5 . 9 6 . 6 5 9 . 4 3 . 0 3 . 4 2 6 . 0 3 0 5 0 0 1 5 . 6 1 6 . 6 5 3 5 . 5 7 . 6 9 . 0 1 9 0 . 9 4 . 6 5 . 5 1 0 0 . 0 2 . 0 2 . 4 3 6 . 6 1 6 6 0 0 0 1 2 . 1 1 4 . 0 1 7 3 4 . 0 5 . 7 6 . 6 5 7 2 . 6 3 . 1 3 . 7 2 6 2 . 7 1 . 0 1 . 1 6 6 . 7 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O F S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . 6 6 9 : 2 2 5 5 B E A M C Y C L I C L O A D D A T A S A M P L E H A H P A C 8 L C L H B H H B A ( 3 0 1 A V N U M B E R ( 5 : ) ( 5 r ) ( 2 ) ( L b s ) ( L b s ) ( 5 r ) ( 3 : ) ( 2 ) 3 1 1 1 0 5 1 5 1 0 0 0 0 4 3 4 4 . 1 6 5 0 5 0 0 6 1 3 4 . 0 1 0 3 3 3 . 0 2 . 5 4 3 . 1 6 D E P G M A T I U ( i n c h e s X 0 . 0 0 0 1 ) L V D T f 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T § 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 9 4 . 3 1 0 7 . 3 5 0 . 4 4 5 . 4 5 1 . 7 2 1 . 2 3 2 . 0 3 6 . 4 1 3 . 9 2 1 . 3 2 4 . 3 6 . 7 5 0 0 7 4 . 1 6 4 . 5 1 3 0 . 6 3 4 . 9 3 9 . 9 5 1 . 2 2 2 . 9 2 6 . 1 3 0 . 6 1 3 . 2 1 5 . 1 1 6 . 1 1 0 0 0 6 6 . 7 7 7 . 3 2 2 2 . 6 3 1 . 2 3 6 . 1 6 4 . 5 1 9 . 6 2 2 . 9 4 6 . 3 1 0 . 6 1 2 . 3 2 3 . 4 5 0 0 0 5 2 . 4 6 0 . 7 5 7 6 . 3 2 3 . 9 2 7 . 7 2 0 3 . 7 1 3 . 9 1 6 . 1 1 0 4 . 0 1 4 . 0 1 4 . 0 I 1 0 0 0 0 4 7 . 3 5 4 . 1 9 9 4 . 7 2 1 . 3 2 4 . 4 3 4 0 . 7 1 1 . 9 1 3 . 6 1 6 4 . 9 1 3 . 4 1 3 . 4 I 3 0 0 0 0 4 0 . 1 4 6 . 5 1 6 6 7 . 6 1 7 . 6 2 0 . 6 6 0 6 . 2 9 . 2 1 0 . 7 2 6 9 . 0 1 2 . 0 1 2 . 0 I 6 3 1 6 6 3 5 . 6 4 1 . 6 3 2 6 3 . 5 1 5 . 7 1 6 . 2 1 0 2 6 . 7 7 . 7 6 . 9 4 2 5 . 1 I I I S A M P L E H A H B A C S L C L H B H H B A ( B I ! A V N U M B E R ( 6 ! ) ( i t ) ( I ) ( L b ! ) ( L b ! ) ( 2 3 ) ( I t ) ( 2 ) 3 1 1 1 0 5 2 5 1 0 0 0 0 4 3 4 4 . 1 6 5 0 5 0 0 6 1 1 6 . 0 1 0 2 9 4 . 0 2 . 5 4 2 . 9 9 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T O 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A W T O T . P L A T E L A H T O T . P L A C E L A n T O T . P L A . 1 0 0 9 1 . 5 1 0 3 . 3 4 6 . 3 4 4 . 9 5 0 . 7 1 9 . 6 3 1 . 9 3 6 . 0 1 3 . 1 2 1 . 5 2 4 . 3 6 . 3 5 0 0 7 1 . 9 6 2 . 1 1 2 0 . 3 3 4 . 6 3 9 . 5 4 6 . 0 2 2 . 9 2 6 . 2 2 9 . 0 1 3 . 4 1 5 . 3 1 5 . 5 1 0 0 0 6 4 . 6 7 3 . 3 2 0 9 . 6 3 0 . 9 3 4 . 9 6 1 . 2 1 9 . 6 2 2 . 4 4 6 . 9 1 0 . 6 1 2 . 2 2 3 . 1 5 2 0 0 5 0 . 6 5 7 . 2 5 5 4 . 2 2 3 . 5 2 6 . 6 1 9 9 . 5 1 3 . 6 1 5 . 6 1 0 3 . 0 6 . 1 6 . 9 4 0 . 0 1 0 0 0 0 4 5 . 9 5 3 . 2 9 3 0 . 7 2 1 . 1 2 4 . 5 3 2 5 . 3 1 1 . 9 1 3 . 6 1 5 9 . 9 4 . 6 5 . 5 5 5 . 6 3 0 2 0 0 3 6 . 9 4 4 . 6 1 7 2 9 . 5 1 7 . 6 2 0 . 3 5 7 4 . 9 9 . 2 1 0 . 7 2 5 6 . 5 3 . 0 3 . 5 7 2 . 3 9 6 0 0 0 3 2 . 6 3 7 . 9 4 0 3 9 . 7 1 4 . 5 1 6 . 6 1 2 7 1 . 7 7 . 0 6 . 1 5 1 5 . 3 1 . 6 2 . 0 1 0 9 . 1 I T O T A L H E I G H T 0 P D R Y A G G R E G A T E S ; I P E R C E N T A S P H A L T C O N T E N T ; H A H E I G H T O P B I T U M E N ; A C H B A I H E I G H T O P S A M P L E I N A I R ; H B H G M M I S U S T A I N E D L O A D ; C Y C L I C L O A D ; I P E R C E N T A I R V O I D S ; - { m m o r a m : n m ; - m m m x w e n s u r e m m ; . A I D 1 ' 0 1 . - m a n e m T O T A L m x m / m : - m u m r u e r c ( M T ) n m n a n . E E ” E H E E 2 5 6 B E A M C Y C L I C L O A D D A T A m 6 H A H B a c 5 1 . c 1 . m m c m 1 v a m ( 3 : ) ( a ) ( 1 ) ( l b s ) ( L b s ) ( 3 : ) ( 5 r ) ( 2 ) 3 1 1 1 0 5 3 5 1 0 0 0 0 4 3 4 4 . 1 6 s o 5 0 0 6 1 3 6 . 0 1 0 3 2 2 . 0 2 . 5 4 2 . 9 5 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A W T O T . P L A . E L A W T O T . P L A . 1 0 0 9 1 . 3 1 0 5 . 0 4 5 . 7 4 5 . 0 5 1 . 6 1 9 . 6 3 2 . 0 3 6 . 6 1 3 . 0 2 1 . 6 2 4 . 9 6 . 2 5 0 0 7 1 . 7 6 1 . 2 1 1 6 . 9 3 4 . 6 3 9 . 2 4 7 . 6 2 3 . 0 2 6 . 0 2 6 . 6 1 3 . 5 1 5 . 3 1 5 . 4 1 0 0 0 6 4 . 6 7 4 . 6 2 0 9 . 3 3 0 . 9 3 5 . 7 6 1 . 3 1 9 . 9 2 2 . 9 4 7 . 1 1 0 . 9 1 2 . 5 2 3 . 2 5 0 0 0 5 0 . 6 5 7 . 6 5 3 9 . 9 2 3 . 7 2 7 . 0 1 9 5 . 4 1 4 . 0 1 5 . 9 1 0 1 . 4 6 . 2 7 . 1 3 9 . 6 1 0 0 0 0 4 5 . 6 5 2 . 2 9 2 3 . 3 2 1 . 2 2 4 . 1 3 2 3 . 9 1 2 . 0 1 3 . 7 1 5 9 . 7 4 . 6 5 . 5 5 5 . 6 3 0 0 0 0 3 6 . 6 4 5 . 1 1 7 2 6 . 6 1 7 . 6 2 0 . 5 5 7 6 . 4 9 . 3 1 0 . 6 2 6 0 . 1 3 . 1 3 . 6 7 3 . 3 1 1 2 6 0 0 3 1 . 6 3 6 . 1 4 4 0 4 . 7 1 4 . 2 1 6 . 1 1 3 6 3 . 2 6 . 6 7 . 7 5 5 5 . 2 1 . 7 1 . 9 1 1 4 . 0 S A M P L E H A H B A C S L C L H B H H B A I ! ! ! A V B I N D E R ( I ! ) ( I ! ) ( 2 ) ( L b s ) ( L b ! ) ( 6 8 ) ( I t ) ( 2 ) 3 1 1 1 0 7 1 1 1 0 0 0 0 4 3 4 4 . 1 6 5 0 1 0 0 5 6 9 4 . 0 9 6 6 5 . 0 2 . 5 4 6 . 9 2 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T 9 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 1 . 0 3 5 . 3 2 6 . 2 1 1 . 3 1 2 . 6 6 . 3 6 . 0 9 . 1 5 . 5 5 . 4 6 . 2 3 . 5 5 0 0 2 4 . 4 2 6 . 3 6 7 . 0 6 . 6 1 0 . 0 1 9 . 6 5 . 6 6 . 5 1 1 . 6 3 . 2 3 . 7 6 . 1 1 0 0 0 2 2 . 0 2 5 . 0 1 1 5 . 0 7 . 6 6 . 7 3 2 . 5 4 . 6 5 . 4 1 6 . 3 2 . 5 2 . 9 6 . 7 5 0 0 0 1 7 . 2 1 9 . 9 3 0 0 . 3 5 . 6 6 . 7 7 6 . 3 3 . 3 3 . 6 3 6 . 7 9 . 6 1 6 . 3 I 1 0 0 0 0 1 5 . 5 1 7 . 6 5 0 9 . 3 5 . 2 5 . 6 1 2 6 . 1 2 . 7 3 . 1 5 9 . 5 6 . 4 1 3 . 7 I 3 4 6 0 0 1 2 . 9 1 4 . 6 1 0 5 9 . 3 4 . 2 4 . 6 2 4 9 . 7 2 . 0 2 . 3 1 0 2 . 6 5 . 5 9 . 7 I 1 6 5 7 0 0 1 0 . 2 1 1 . 7 3 2 0 1 . 2 3 . 2 3 . 7 6 9 4 . 4 1 . 3 1 . 5 2 4 0 . 1 2 . 6 4 . 7 - I T O T A L H E I G H T 0 P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T 0 P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 5 0 I 9 3 g 5 ’ 7 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V m m ( 3 1 ' ) ( s t ) ( 1 ) ( 1 6 : ) ( l b s ) ( 5 : ) ( 5 r ) ( 2 ) 3 1 1 1 0 7 2 1 1 0 0 0 0 4 3 4 4 . 1 6 5 0 1 0 0 5 7 0 5 . 0 9 6 6 6 . 0 2 . 5 4 6 . 9 5 D E P O R M A T I O N ( i n c h c s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T i 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . E L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 3 5 2 9 . 6 3 4 . 1 3 1 . 6 1 0 . 7 1 2 . 3 9 . 6 7 . 5 6 . 6 6 . 4 4 . 9 5 . 6 3 . 9 5 0 0 2 4 . 5 2 7 . 9 6 6 . 5 6 . 6 9 . 6 2 0 . 0 5 . 6 6 . 4 1 1 . 9 3 . 2 3 . 7 6 . 2 1 1 5 0 2 1 . 6 2 4 . 4 1 2 9 . 2 7 . 5 6 . 4 3 6 . 2 4 . 6 5 . 2 2 0 . 1 2 . 4 2 . 7 9 . 4 5 0 0 0 1 7 . 3 1 9 . 6 3 0 5 . 6 5 . 6 6 . 6 7 9 . 5 3 . 3 3 . 7 3 9 . 2 1 . 4 1 . 5 1 4 . 3 1 0 0 0 0 1 5 . 6 1 7 . 9 5 1 5 . 7 5 . 2 5 . 9 1 2 9 . 4 2 . 6 3 . 1 6 0 . 0 1 . 0 1 . 1 1 9 . 1 3 2 0 0 0 1 3 . 1 1 5 . 0 9 9 4 . 1 4 . 2 4 . 6 2 3 4 . 7 2 . 0 2 . 3 9 7 . 1 0 . 6 0 . 7 2 3 . 7 1 6 2 6 5 0 1 0 . 3 1 2 . 0 3 2 1 2 . 5 3 . 2 3 . 7 6 9 5 . 6 1 . 3 1 . 5 2 4 0 . 5 0 . 2 0 . 3 3 6 . 6 S A M P L E H A H E A C S L C L H B H H B A ( R I ! A V N U M B E R ( 6 ! ) ( 6 1 ) ( I ) ( L b s ) ( L b s ) ( 6 ! ) ( I t ) ( I ) 3 1 1 1 0 7 3 1 1 0 0 0 0 4 3 4 4 . 1 6 5 0 1 0 0 5 7 0 6 . 0 9 6 9 6 . 0 2 . 5 4 7 . 0 1 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T # 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 6 0 2 9 . 3 3 3 . 7 3 6 . 4 1 0 . 5 1 2 . 0 1 1 . 2 7 . 2 6 . 3 7 . 2 4 . 7 5 . 4 4 . 3 5 0 0 2 4 . 7 2 6 . 1 6 6 . 5 6 . 6 9 . 6 1 9 . 9 5 . 6 6 . 4 1 1 . 6 3 . 2 3 . 6 6 . 1 1 0 0 0 2 2 . 3 2 5 . 4 1 1 9 . 5 7 . 7 6 . 6 3 3 . 5 4 . 6 5 . 5 1 6 . 6 2 . 5 2 . 9 6 . 9 5 1 0 0 1 7 . 5 1 9 . 7 3 1 0 . 4 5 . 6 6 . 6 6 0 . 1 3 . 2 3 . 7 3 9 . 3 1 . 3 1 . 5 1 4 . 2 1 1 0 0 0 1 5 . 6 1 7 . 7 5 5 6 . 6 5 . 1 5 . 6 1 3 6 . 1 2 . 7 3 . 1 6 3 . 2 1 . 0 1 . 1 1 9 . 6 2 0 5 0 0 1 4 . 2 1 6 . 0 7 7 2 . 2 4 . 6 5 . 2 1 6 5 . 4 2 . 3 2 . 6 7 9 . 9 0 . 7 0 . 6 2 1 . 6 1 6 9 5 0 0 1 0 . 3 1 2 . 3 3 3 4 2 . 5 3 . 2 3 . 6 7 1 7 . 0 1 . 3 1 . 6 2 4 5 . 4 0 . 2 0 . 3 3 6 . 4 H A I T O T A L H E I G H T 0 P D R Y A G G R E G A T E S ; A C I P E R C E N T A S P H A L T C O N T E N T ; H B A I H E I G H T O F S A M P L E I N A I R ; H B H I H E I G H T O P S A M P L E I N H A T E R ; ( I I I I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . H E I G H T O P B I T U M E N ; I S U S T A I N E D L O A D ; C Y C L I C L O A D ; I P E R C E N T A I R V O I D S ; ” E H E E 2 5 8 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( ‘ 2 ) ( I t ) ( I ) ( L b s ) ( L b s ) ( I t ) ( a t ) ( I ) 3 1 1 1 0 7 1 2 1 0 0 0 0 4 3 4 4 . 1 6 5 0 2 0 0 5 7 0 9 . 0 9 6 9 6 . 0 2 . 5 4 6 . 9 9 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T O 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 2 . 6 7 1 . 4 5 9 . 7 2 1 . 9 2 4 . 9 1 6 . 1 1 4 . 6 1 6 . 6 1 1 . 4 9 . 5 1 0 . 7 6 . 6 5 0 0 4 9 . 3 5 6 . 6 1 5 2 . 5 1 6 . 7 1 9 . 2 4 2 . 6 1 0 . 3 1 1 . 6 2 4 . 0 5 . 5 6 . 3 1 1 . 7 1 0 0 0 4 4 . 4 5 0 . 9 2 5 9 . 5 1 4 . 6 1 7 . 0 7 0 . 3 6 . 7 1 0 . 0 3 7 . 4 4 . 3 4 . 9 1 6 . 4 5 2 0 0 3 4 . 7 3 9 . 6 7 0 0 . 1 1 1 . 2 1 2 . 6 1 7 4 . 5 5 . 6 6 . 7 6 0 . 3 2 . 2 2 . 5 2 6 . 3 1 0 4 0 0 3 1 . 3 3 6 . 1 1 2 1 4 . 2 9 . 9 1 1 . 4 2 9 1 . 6 4 . 9 5 . 7 1 2 5 . 7 1 . 6 1 . 6 3 5 . 5 6 2 3 5 0 0 2 7 . 7 3 1 . 1 9 0 6 . 2 6 . 6 9 . 6 4 3 6 . 6 4 . 0 4 . 5 1 7 3 . 6 1 . 1 1 . 2 4 0 . 4 S A M P L E H A H B A C S L C L H B H H B A ( R I ! A V N U M B E R ( 6 ! ) ( I ! ) ( I ) ( 1 b . ) ( L b l ) ( I ! ) ( i t ) ( I ) 3 1 1 1 0 7 2 2 1 0 0 0 0 4 3 4 4 . 1 6 5 0 2 0 0 5 6 6 9 . 0 9 6 5 3 . 0 2 . 5 4 6 . 6 6 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T I 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T l 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 1 . 6 7 0 . 2 5 7 . 6 2 1 . 7 2 4 . 6 1 7 . 6 1 4 . 7 1 6 . 6 1 1 . 3 9 . 5 1 0 . 6 6 . 7 5 0 0 4 6 . 4 5 6 . 0 1 4 7 . 9 1 6 . 5 1 9 . 2 4 2 . 0 1 0 . 2 1 1 . 9 2 3 . 7 5 . 5 6 . 4 1 1 . 6 1 0 0 0 4 3 . 6 4 9 . 7 2 5 7 . 2 1 4 . 7 1 6 . 6 7 0 . 5 6 . 7 9 . 9 3 7 . 7 4 . 3 4 . 9 1 6 . 7 5 5 0 0 3 3 . 6 3 6 . 5 6 9 9 . 5 1 1 . 0 1 2 . 5 1 7 5 . 9 5 . 6 6 . 6 6 1 . 0 2 . 2 2 . 5 2 6 . 6 1 0 4 0 0 3 0 . 7 3 5 . 7 1 1 4 6 . 3 9 . 9 1 1 . 5 2 7 9 . 3 4 . 9 5 . 7 1 2 1 . 1 1 . 6 1 . 9 3 4 . 7 2 7 6 0 0 2 6 . 5 3 1 . 5 2 0 0 2 . 5 6 . 3 9 . 9 4 6 2 . 5 3 . 6 4 . 5 1 6 1 . 5 1 . 0 1 . 2 4 0 . 9 5 2 5 0 0 2 4 . 1 2 7 . 9 3 3 6 1 . 6 7 . 4 6 . 6 7 5 0 . 6 3 . 2 3 . 7 2 7 4 . 7 0 . 7 0 . 6 5 1 . 6 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H E I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; ' I I N U O D I I I T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E : I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . 2 5 9 B E A M C Y C L I C w a n D A T A S A M P L E H A H 6 A C 5 1 . C L H B H H B A 3 1 4 A V N M E R ( C ! ) ( 2 1 ' ) ( I ) ( L b s ) ( L b s ) ( 6 t ) ( 2 1 ' ) ( I ) 3 1 1 1 0 7 3 2 1 0 0 0 0 4 3 4 4 . 1 6 5 0 2 0 0 5 7 1 6 . 0 9 9 0 6 . 0 2 . 5 4 6 . 9 6 m a t ( i n c h e s X 0 . 0 0 0 1 ) L V D T 6 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T O 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . I L A . T O T . ' P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 2 . 6 7 2 . 6 5 9 . 3 2 1 . 9 2 5 . 3 1 6 . 0 1 4 . 6 1 7 . 1 1 1 . 4 9 . 5 1 0 . 9 6 . 6 5 0 0 4 9 . 4 5 6 . 4 1 5 5 . 5 1 6 . 7 1 9 . 1 4 3 . 7 1 0 . 3 1 1 . 6 2 4 . 5 5 . 5 6 . 3 1 1 . 9 1 0 0 0 4 4 . 5 5 0 . 6 2 6 7 . 7 1 4 . 6 1 6 . 9 7 2 . 6 6 . 7 9 . 9 3 6 . 6 4 . 3 4 . 9 1 7 . 0 5 7 5 0 3 4 . 2 4 0 . 9 7 5 6 . 7 1 1 . 0 1 3 . 1 1 6 7 . 6 5 . 7 6 . 6 6 5 . 5 2 . 1 2 . 5 2 7 . 5 1 0 9 0 0 3 1 . 1 3 5 . 1 1 2 4 5 . 0 9 . 9 1 1 . 1 2 9 6 . 5 4 . 9 5 . 5 1 2 6 . 0 1 . 6 1 . 6 3 5 . 6 2 6 6 0 0 2 7 . 2 3 0 . 7 2 0 6 7 . 0 6 . 4 9 . 5 4 7 2 . 6 3 . 6 4 . 3 1 6 4 . 7 1 . 0 1 . 1 4 1 . 4 6 2 1 0 0 2 3 . 9 2 7 . 3 3 9 0 4 . 1 7 . 3 6 . 3 6 5 3 . 4 3 . 1 3 . 5 3 0 3 . 7 0 . 6 0 . 7 5 3 . 6 S A M P L E H A H 6 A C C L C L H I H H B A ( I t ! A V N U M B E R ( 6 ! ) ( s : ) ( I ) ( L b s ) ( L b s ) ( s t ) ( s t ) ( 2 ) 3 1 1 1 0 7 1 5 1 0 0 0 0 4 3 4 4 . 1 6 5 0 5 0 0 5 7 0 6 . 0 9 6 7 6 . 0 2 . 5 4 6 . 7 5 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T l 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 1 0 1 4 9 . 5 1 6 6 . 7 1 9 4 . 9 4 6 . 0 5 4 . 2 5 4 . 3 2 7 . 7 3 1 . 2 2 9 . 2 1 4 . 6 1 6 . 5 1 4 . 3 5 0 0 1 1 9 . 1 1 3 7 . 7 4 6 9 . 7 3 7 . 1 4 2 . 6 1 2 1 . 3 1 9 . 2 2 2 . 2 5 7 . 3 6 . 2 9 . 5 2 2 . 3 1 0 0 0 1 0 7 . 4 1 2 5 . 0 6 0 6 . 4 3 2 . 9 3 6 . 3 2 0 0 . 9 1 6 . 2 1 6 . 9 6 9 . 1 6 . 2 7 . 2 3 0 . 6 5 5 0 0 6 3 . 2 9 4 . 6 2 2 2 4 . 0 2 4 . 5 2 6 . 0 5 0 6 . 3 1 0 . 4 1 1 . 9 1 6 9 . 2 2 . 6 3 . 2 4 4 . 6 1 0 1 0 0 7 5 . 9 6 7 . 1 3 4 9 0 . 6 2 2 . 1 2 5 . 3 7 6 9 . 1 6 . 6 1 0 . 2 2 6 6 . 7 2 . 0 2 . 3 5 4 . 0 1 2 4 5 0 7 3 . 6 6 3 . 2 3 7 7 7 . 9 2 1 . 3 2 4 . 1 6 2 3 . 0 6 . 4 9 . 4 2 6 0 . 7 1 . 6 2 . 1 5 3 . 1 H A I T O T A L H E I G H T 0 P D R Y A G G R E G A T E S ; H I I H E I G H T 0 P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; 6 L I S U S T A I N E D L O A D ; H B A I H E I G H T 0 P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T 0 P S A M P L E I N H A T E R . A V I P E R C E N T A I R V O I D S ; ( l 9 ! I ' M A X I M U M T H E O R E T I C A L S P E C I P I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O N M A T I O N I C Y C L E : P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . q I - o : 6 n t o n n i . ‘ o ” E H “ 2 6 0 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( R i d A V N U M B E R ( 5 : ) ( 3 : ) ( I ) ( L b s ) ( L b s ) ( 3 t ) ( 3 : ) ( I ) 3 1 1 1 0 7 2 5 1 0 0 0 0 4 3 4 4 . 1 6 5 0 5 0 0 5 7 1 6 . 0 9 9 0 3 . 0 2 . 5 4 6 . 9 2 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T I 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T l 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 1 0 1 5 3 . 4 1 7 6 . 3 2 0 5 . 3 4 6 . 3 5 6 . 2 5 6 . 2 2 7 . 6 3 2 . 1 2 9 . 9 1 4 . 4 1 6 . 7 1 4 . 5 5 6 0 1 1 9 . 6 1 3 6 . 9 5 5 2 . 4 3 6 . 4 4 1 . 6 1 3 6 . 6 1 6 . 5 2 1 . 1 6 4 . 0 7 . 6 6 . 7 2 3 . 9 1 0 0 0 1 1 0 . 2 1 2 7 . 7 6 6 6 . 0 3 3 . 1 3 6 . 4 2 1 2 . 0 1 6 . 1 1 6 . 7 9 3 . 0 6 . 0 7 . 0 3 1 . 4 5 5 0 0 6 5 . 3 9 9 . 1 2 3 4 9 . 7 2 4 . 6 2 6 . 6 5 2 4 . 1 1 0 . 3 1 2 . 0 1 9 3 . 1 1 6 . 4 2 1 . 3 I 1 0 0 0 0 7 6 . 0 9 0 . 7 3 6 6 7 . 3 2 2 . 2 2 5 . 6 6 3 9 . 4 6 . 6 1 0 . 2 2 6 9 . 1 1 6 . 4 2 0 . 4 - 1 3 6 0 0 7 4 . 3 6 5 . 5 4 3 4 6 . 3 2 1 . 0 2 4 . 1 9 2 2 . 1 6 . 0 9 . 2 3 0 5 . 6 1 7 . 5 1 6 . 5 I S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 2 8 ) ( S t ) ( I ) ( L b s ) ( L b s ) ( 6 2 ) ( 6 2 ) ( I ) 3 1 1 1 0 7 3 5 1 0 0 0 0 4 3 4 4 . 1 6 5 0 5 0 0 5 7 1 0 . 0 9 6 9 7 . 0 2 . 5 4 6 . 9 6 D E P O R M A T I O N ( i n C h e c X 0 . 0 0 0 1 ) L V D T 9 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T 9 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A W T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 1 0 1 5 4 . 5 1 7 6 . 9 2 1 0 . 0 4 6 . 4 5 5 . 4 5 7 . 1 2 7 . 5 3 1 . 5 3 0 . 3 1 4 . 3 1 6 . 4 1 4 . 5 3 0 1 2 2 . 1 1 4 1 . 1 5 3 2 . 3 3 6 . 9 4 2 . 7 1 3 3 . 5 1 6 . 6 2 1 . 6 6 1 . 9 7 . 6 9 . 0 2 3 . 1 0 0 0 1 1 1 . 0 1 2 6 . 0 6 7 7 . 6 3 3 . 1 3 6 . 2 2 1 2 . 9 1 6 . 0 1 6 . 5 9 3 . 0 6 . 0 6 . 9 3 1 . 5 4 0 0 6 6 . 2 1 0 1 . 3 2 4 2 9 . 5 2 4 . 7 2 9 . 1 5 3 6 . 7 1 0 . 3 1 2 . 1 1 9 7 . 9 2 . 7 3 . 2 4 5 . 6 6 2 0 6 3 . 2 9 5 . 9 3 0 2 0 . 2 2 3 . 7 2 7 . 4 6 6 1 . 3 9 . 7 1 1 . 2 2 3 6 . 7 2 . 4 2 . 6 5 1 . 6 6 0 0 6 0 . 1 9 2 . 7 3 3 3 3 . 6 2 2 . 7 2 6 . 3 7 1 9 . 6 9 . 0 1 0 . 5 2 5 0 . 3 2 . 1 2 . 4 5 0 1 0 6 0 0 7 7 . 7 6 9 . 3 4 1 1 9 . 7 2 1 . 9 2 5 . 2 6 7 9 . 7 6 . 6 9 . 6 2 9 6 . 7 1 . 9 2 . 2 5 7 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D : I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T 0 P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T T O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O N M A T I O N . D D J ‘ U U U . ” ! H 9 3 2 6 1 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 1 4 A V W ( 3 1 : ) ( 3 : ) ( I ) ( L b s ) ( L b s ) ( 5 : ) ( s t ) ( 2 ) 2 1 2 1 0 6 1 1 1 0 0 0 0 4 1 9 4 . 0 2 5 0 1 0 0 5 9 1 6 . 0 1 0 1 1 4 . 0 2 . 5 4 4 . 9 9 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T f 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 3 0 2 2 . 6 2 5 . 6 1 7 . 5 0 0 1 6 . 5 2 1 . 4 3 9 . 1 0 3 0 1 6 . 6 1 6 . 9 6 9 . 5 0 0 0 1 3 . 1 1 5 . 0 1 6 3 . 1 0 0 0 0 1 1 . 6 1 3 . 4 3 2 9 . 2 4 0 5 0 1 0 . 3 1 2 . 0 5 4 5 . 1 7 7 6 0 0 7 . 6 6 . 6 2 2 4 5 . 9 . 6 1 1 . 1 6 . 5 7 . 3 6 . 2 5 7 . 6 9 . 1 1 4 . 1 5 . 5 6 . 3 . 9 7 . 0 7 . 9 2 3 . 6 4 . 7 5 . 3 1 4 . 4 5 . 3 6 . 1 5 6 . 2 3 . 3 3 . 6 3 1 . 5 I I I 4 . 6 5 . 4 1 0 1 . 1 2 . 6 3 . 2 5 1 . 9 4 . 1 4 . 6 1 6 0 . 4 2 . 3 2 . 6 7 6 . 7 2 . 9 3 . 4 5 9 6 . 6 1 . 4 1 . 6 2 3 7 . 6 S A M P L E H A H 6 A C S L C L H B H H B A ( 3 ! ! A V N U M B E R ( 6 2 ) ( 3 : ) ( I ) ( L b s ) ( L b c ) ( C ! ) ( I t ) ( I ) 2 1 2 1 0 6 2 1 1 0 0 0 0 4 1 9 4 . 0 2 5 0 1 0 0 5 9 1 2 . 0 1 0 1 0 4 . 0 2 . 5 4 4 . 9 9 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T I 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T O 3 ( 4 . 0 I N . ) L V D T i 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 1 0 2 3 . 2 2 6 . 4 1 5 . 6 1 0 . 1 1 1 . 5 5 . 9 7 . 5 6 . 6 4 . 1 5 . 3 6 . 1 2 . 7 5 0 0 1 6 . 4 2 0 . 6 3 9 . 6 7 . 6 6 . 9 1 4 . 0 5 . 5 6 . 2 6 . 9 3 . 4 3 . 9 5 . 1 1 0 2 0 1 6 . 6 1 9 . 2 7 0 . 4 7 . 0 6 . 1 2 4 . 0 4 . 7 5 . 4 1 4 . 6 2 . 7 3 . 2 7 . 7 5 6 0 0 1 2 . 6 1 4 . 6 2 0 3 . 4 5 . 2 6 . 0 6 4 . 1 3 . 2 3 . 6 3 4 . 4 1 . 5 1 . 7 1 4 . 3 1 0 6 0 0 1 1 . 7 1 3 . 5 3 3 4 . 2 4 . 7 5 . 5 1 0 2 . 2 2 . 6 3 . 2 5 2 . 3 1 . 2 1 . 4 1 9 . 4 2 4 5 0 0 1 0 . 3 1 1 . 6 5 4 3 . 6 4 . 1 4 . 6 1 5 9 . 7 2 . 3 2 . 6 7 6 . 2 0 . 6 0 . 9 2 4 . 2 1 7 7 1 0 0 7 . 6 6 . 6 2 2 6 4 . 7 2 . 9 3 . 3 6 0 3 . 6 1 . 4 1 . 6 2 3 9 . 6 0 . 3 0 . 4 4 7 . 2 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T 0 P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . 2 6 2 B E A M C Y C L I C L O A D D A T A S A M P L E H A H 6 A C S L C L H B H H B A ( 3 ! ! A v N U M B E R ( 3 : ) ( 3 ! ) ( I ) ( L b s ) ( L b s ) ( s t ) ( 6 : ) ( 2 ) 2 1 2 1 0 6 3 1 1 0 0 0 0 4 1 9 4 . 0 2 5 0 1 0 0 5 9 1 1 . 0 1 0 1 1 2 . 0 2 . 5 4 5 . 1 2 D E P O R M A T I O N ( i n c h e s I 0 . 0 0 0 1 ) L V D T i 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T f 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 3 . 9 2 7 . 2 1 5 . 4 1 0 . 3 1 1 . 7 5 . 6 7 . 7 6 . 7 4 . 0 5 . 5 6 . 2 2 . 7 5 0 0 1 6 . 6 2 1 . 6 4 1 . 7 7 . 9 9 . 0 1 4 . 5 5 . 5 6 . 3 9 . 2 3 . 4 3 . 9 5 . 2 1 0 0 0 1 7 . 0 1 9 . 3 7 1 . 6 7 . 0 6 . 0 2 4 . 2 4 . 7 5 . 4 1 4 . 6 2 . 7 3 . 1 7 . 6 5 0 0 0 1 3 . 3 1 5 . 1 1 9 4 . 6 5 . 4 6 . 1 6 0 . 6 3 . 3 3 . 7 3 2 . 7 1 . 6 1 . 6 1 3 . 6 1 0 6 2 0 1 1 . 9 1 3 . 6 3 5 6 . 3 4 . 7 5 . 5 1 0 6 . 0 2 . 6 3 . 2 5 4 . 6 1 . 2 1 . 3 2 0 . 1 2 3 6 0 0 1 0 . 5 1 2 . 2 5 5 3 . 7 4 . 1 4 . 6 1 6 0 . 7 2 . 3 2 . 6 7 6 . 2 0 . 6 1 . 0 2 4 . 0 1 5 4 4 0 0 6 . 0 9 . 2 2 0 9 4 . 1 3 . 0 3 . 5 5 5 3 . 9 1 . 4 1 . 7 2 2 0 . 4 0 . 3 0 . 4 4 4 . 1 S A M P L E H A H B A C S L C L H B H H B A ( 3 ! ! A v N U M B E R ( s t ) ( S t ) ( I ) ( L b s ) ( L b s ) ( 6 ! ) ( 3 : ) ( I ) 2 1 2 1 0 6 1 2 1 0 0 0 0 4 1 9 4 . 0 2 5 0 2 0 0 5 9 0 5 . 0 1 0 1 0 6 . 0 2 . 5 4 5 . 1 6 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T P 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T f 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 6 . 2 5 5 . 1 3 4 . 4 2 0 . 1 2 2 . 9 1 2 . 5 1 4 . 3 1 6 . 4 6 . 3 9 . 6 1 1 . 1 5 . 3 5 2 0 3 7 . 7 4 3 . 6 9 6 . 9 1 5 . 3 1 7 . 7 3 2 . 5 1 0 . 1 1 1 . 7 1 9 . 5 5 . 9 6 . 6 1 0 . 4 1 0 0 0 3 4 . 2 3 9 . 0 1 6 6 . 6 1 3 . 7 1 5 . 6 5 4 . 3 6 . 7 9 . 9 3 1 . 2 4 . 7 5 . 4 1 5 . 2 5 1 2 0 2 6 . 7 3 0 . 6 4 5 6 . 1 1 0 . 4 1 2 . 0 1 3 7 . 3 6 . 0 6 . 9 6 9 . 6 2 . 6 3 . 0 2 6 . 5 1 0 7 0 0 2 3 . 9 2 7 . 7 6 0 6 . 6 9 . 2 1 0 . 6 2 3 4 . 4 5 . 0 5 . 6 1 1 1 . 6 1 . 9 2 . 2 3 7 . 2 2 3 6 5 0 2 1 . 3 2 4 . 0 1 2 6 7 . 6 6 . 0 9 . 1 3 5 9 . 9 4 . 2 4 . 7 1 6 0 . 0 1 . 4 1 . 5 4 5 . 1 5 1 7 0 0 1 6 . 9 2 1 . 4 2 3 3 6 . 7 7 . 0 6 . 0 6 2 6 . 3 3 . 4 3 . 9 2 5 9 . 4 0 . 9 1 . 1 6 0 . 7 H A I T O T A L H E I G H T 0 P D R Y A G G R E G A T E S ; H I I H E I G H T 0 P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T 0 P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; G M M I I M A X T M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D T P O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P C H M A T I O N . “ . V U U N J \ 2 6 3 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C C L C L H E R H B A G M M A v m m ( a t ) ( 5 : ) ( I ) ( L b s ) ( L b s ) ( 3 : ) ( a t ) ( I ) 2 1 2 1 0 6 2 2 1 0 0 0 0 4 1 9 4 . 0 2 5 0 2 0 0 5 9 1 1 . 0 1 0 1 1 6 . 0 2 . 5 4 5 . 1 6 D E P O H M A T I O N ( A n c h o s X 0 . 0 0 0 1 ) L N D T O L ( 0 . 0 I N . ) L V D T l 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . E L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 6 . 3 5 7 . 5 0 0 3 7 . 0 4 3 . 0 4 . 1 1 5 . 1 0 0 0 3 4 . 2 3 0 . 1 6 2 . 2 1 3 . 1 3 4 . 5 2 0 . A 3 5 0 0 0 2 6 . 6 3 0 . 6 4 6 4 . 3 1 0 . 1 3 1 2 3 . 6 1 2 . 5 1 4 . 3 1 7 . 0 6 . 3 0 . 6 1 1 . 6 5 . 3 1 7 . 6 3 1 . 7 1 0 . 2 1 1 . 6 1 0 . 1 6 . 0 6 . 6 1 0 . 2 1 5 . 7 5 2 . 6 6 . 7 1 0 . 0 3 0 . 3 4 . 7 5 . 4 1 4 . 6 1 1 . 0 1 4 0 . 0 6 . 0 6 . 0 7 1 . 2 2 . 6 3 . 0 2 7 . 2 1 0 . 6 2 2 7 . 0 5 . 1 5 . 0 1 0 6 . 0 2 . 0 2 . 3 3 6 . 7 6 . 6 4 2 6 . 1 3 . 0 4 . 4 1 6 5 . 0 1 . 2 1 . 4 4 9 . 5 7 . 6 7 6 2 . 5 3 . 2 3 . 7 3 0 6 . 6 0 . 6 1 . 0 6 6 . 0 1 0 0 0 0 2 4 . 2 2 6 . 7 7 6 . 4 0 . 3 0 5 0 0 2 0 . 5 2 3 . 1 5 5 0 . 3 7 . 6 7 6 0 0 1 6 . 2 2 1 . 2 6 7 3 . 7 S A M P L E H A H E A C C L C L H B H H H A I ! ! ! A M N U M B E R ( 6 8 ) ( I t ) ( I ) ( 1 b . ) ( 1 b ! ) ( 6 1 ) ( 3 : ) ( I ) 2 1 2 1 0 6 3 2 1 0 0 0 0 4 1 0 4 . 0 2 5 0 2 0 0 5 0 1 3 . 0 1 0 1 1 1 . 0 2 . 5 4 5 . 0 6 D E E O H M A T I O N ( A n c h o s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T f 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . . E L A . T O T . P L A . 1 0 0 4 7 . 5 5 5 . 1 3 3 . 0 2 0 . 0 2 3 . 2 1 2 . 1 1 4 . 3 1 6 . 6 6 . 1 0 . 6 1 1 . 4 5 . 2 5 0 0 3 7 . 3 4 3 . 0 6 0 . 3 1 5 . 3 1 7 . 6 3 0 . 4 1 0 . 2 1 1 . 7 1 6 . 4 6 . 0 6 . 0 0 . 0 1 0 0 0 3 3 . 6 3 6 . 0 1 5 5 . 0 1 3 . 6 1 5 . 4 5 1 . 4 6 . 7 0 . 0 2 0 . 7 4 . 6 5 . 4 1 4 . 6 5 0 0 0 2 6 . 4 3 0 . 1 4 2 4 . 1 1 0 . 4 1 1 . 0 1 2 0 . 5 6 . 1 6 . 0 6 6 . 3 2 . 7 3 . 0 2 5 . 6 1 0 0 0 0 2 3 . 6 2 7 . 4 7 5 0 . 7 0 . 3 1 0 . 7 2 2 1 . 7 5 . 1 5 . 0 1 0 7 . 2 2 . 0 2 . 3 3 6 . 6 3 0 0 0 0 2 0 . 2 2 3 . 3 1 4 4 5 . 5 7 . 7 6 . 0 4 0 4 . 6 3 . 0 4 . 5 1 7 7 . 6 1 . 2 1 . 4 4 6 . 2 7 1 6 0 0 1 7 . 7 2 0 . 0 2 6 7 3 . 4 6 . 6 7 . 5 7 7 0 . 3 3 . 2 3 . 6 3 1 1 . 0 0 . 6 0 . 0 6 6 . 1 H A I T O T A L H E I G H T O F D H ! A G G R E G A T E S ; H I I H E I G H T O E B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; 8 L I S U S T A I N E D L O A D ; H I A I H E I G H T O E S A M P L E I N A I R : C L I C T C L I C L O A D ; H B H I H E I G H T O P H U M B L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; G M M I - l E D U fl E I I T H E O H E T I C A L S P E C I F I C G R A N I T T ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E E O I M A T I O N I C T C L E ; P L A I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O H M A T I O N . ” ! ? 3 E 3 2 6 4 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 5 : ) ( i t ) ( I ) ( L b s ) ( 1 b ! ) ( 3 : ) ( B r ) ( I ) 2 1 2 1 0 6 1 5 1 0 0 0 0 4 1 0 4 . 0 2 5 0 5 0 0 5 0 1 6 . 0 1 0 1 1 7 . 0 2 . 5 4 5 . 0 3 D E P O I M A T I O N ( L u c h o s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T 6 3 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M H E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 6 . 2 1 3 4 . 3 1 0 6 . 7 4 5 . 7 5 1 . 0 3 6 . 6 2 6 . 6 3 2 . 5 2 1 . 4 1 6 . 7 1 6 . 0 1 1 . 6 5 0 0 0 2 . 6 1 0 7 . 4 2 0 3 . 7 3 4 . 0 4 0 . 4 0 1 . 6 1 0 . 0 2 3 . 0 4 7 . 6 0 . 6 1 1 . 1 2 0 . 0 1 0 0 0 6 3 . 7 0 7 . 1 5 1 7 . 6 3 1 . 1 3 6 . 0 1 5 6 . 2 1 6 . 0 1 0 . 6 7 6 . 6 7 . 4 6 . 6 3 0 . 2 5 0 0 0 6 5 . 7 7 4 . 3 1 4 2 1 . 5 2 3 . 7 2 6 . 7 3 0 6 . 3 1 1 . 5 1 3 . 0 1 6 0 . 2 3 . 6 4 . 3 4 9 . 2 1 0 0 0 0 5 0 . 2 6 6 . 6 2 4 3 3 . 3 2 1 . 0 2 4 . 3 6 5 5 . 3 0 . 6 1 1 . 2 2 6 1 . 6 2 . 6 3 . 2 6 5 . 2 1 0 5 0 0 5 3 . 6 6 1 . 6 3 5 1 3 . 1 1 6 . 6 2 1 . 6 0 1 4 . 7 6 . 1 0 . 3 3 4 1 . 5 2 . 0 2 . 3 7 1 . 6 S A M P L E H A H B A C S L C L H E H H B A ( 3 ! ! A V N U M B E R ( 3 : ) ( 6 1 ) ( I ) ( L b s ) ( 1 b ! ) ( 3 : ) ( A ! ) ( I ) 2 1 2 1 0 6 2 5 1 0 0 0 0 4 1 0 4 . 0 2 5 0 5 0 0 5 0 2 0 . 0 1 0 1 2 2 . 0 2 . 5 4 5 . 0 5 D E P O I M A T I O N ( L D O H O C X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C T C L E N U M I E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 6 . 6 1 3 5 . 0 1 1 1 . 3 4 5 . 7 5 2 . 1 3 7 . 4 2 6 . 6 3 2 . 6 2 1 . 6 1 6 . 6 1 6 . 0 1 1 . 6 5 0 0 0 3 . 2 1 0 5 . 5 3 0 1 . 3 3 4 . 0 3 0 . 6 0 3 . 7 1 0 . 0 2 2 . 5 4 6 . 6 0 . 6 1 0 . 6 2 1 . 3 1 0 0 0 6 4 . 0 0 7 . 0 5 2 3 . 0 3 1 . 1 3 5 . 0 1 5 7 . 4 1 6 . 0 1 0 . 5 7 7 . 2 7 . 4 6 . 5 3 0 . 3 5 0 0 0 6 6 . 0 7 4 . 0 1 4 0 0 . 0 2 3 . 7 2 6 . 0 3 6 0 . 5 1 1 . 5 1 3 . 0 1 6 6 . 0 3 . 6 4 . 3 4 6 . 2 1 0 0 0 0 5 0 . 4 6 7 . 4 2 5 1 4 . 0 2 1 . 0 2 3 . 0 6 7 5 . 5 0 . 6 1 0 . 0 2 6 0 . 3 2 . 7 3 . 1 6 6 . 6 1 6 5 0 0 5 5 . 1 6 4 . 0 3 2 1 5 . 0 1 0 . 3 2 2 . 4 6 4 2 . 0 6 . 5 0 . 6 3 1 0 . 2 2 . 1 2 . 5 6 0 . 0 I T O T A L H E I G H T O P D H ! A G G R E G A T E S ; H I I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C T C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; 6 ' I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A I D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C T C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) U E P O R M A T I O N . 2 6 5 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C S L C L H B H H B A ( 3 ! ! A V m m ( 5 : ) ( g r ) ( I ) ( L b s ) ( L b s ) ( 3 : ) ( g r ) ( I ) 2 1 2 1 0 6 3 5 1 0 0 0 0 4 1 9 4 . 0 2 5 0 5 0 0 5 9 1 6 . 0 1 0 1 1 0 . 0 2 . 5 4 4 . 6 6 D E F O R M A T I O N ( i n c h - s X 0 . 0 0 0 1 ) L V D T O L ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L N D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 7 . 3 1 3 5 . 7 1 0 6 . 4 4 5 . 6 5 2 . 7 3 6 . 0 2 6 . 6 3 3 . 1 2 1 . 1 1 6 . 7 1 9 . 3 1 1 . 5 5 0 0 0 2 . 2 1 0 5 . 3 2 0 0 . 6 3 4 . 6 3 9 . 6 0 1 . 1 1 0 . 0 2 2 . 6 4 7 . 5 9 . 6 1 1 . 0 2 0 . 0 1 0 0 0 6 3 . 1 0 4 . 7 5 1 4 . 7 3 1 . 0 3 5 . 3 1 5 6 . 2 1 7 . 0 1 9 . 3 7 7 . 0 7 . 4 6 . 5 3 0 . 5 5 0 0 0 6 5 . 2 7 4 . 5 1 3 0 6 . 1 2 3 . 6 2 7 . 0 3 0 2 . 0 1 1 . 5 1 3 . 1 1 6 6 . 1 3 . 6 4 . 4 4 9 . 2 1 0 0 0 0 5 6 . 6 6 6 . 0 2 4 3 0 . 1 2 1 . 0 2 4 . 3 6 5 6 . 3 9 . 7 1 1 . 2 2 6 4 . 1 2 . 6 3 . 2 6 6 . 2 2 7 6 0 0 5 0 . 5 5 7 . 6 4 4 2 7 . 0 1 7 . 7 2 0 . 2 1 1 3 0 . 5 7 . 4 6 . 5 4 1 2 . 1 1 . 7 1 . 0 7 0 . 5 2 7 6 5 0 5 0 . 4 5 7 . 3 4 7 9 0 . 2 1 7 . 6 2 0 . 0 1 2 3 2 . 2 7 . 4 6 . 4 4 4 5 . 1 6 . 3 6 . 7 * S A M P L E H A H E A C S L C L H B H H B A ( I O ! A N N U M B E R ( 8 : ) ( ‘ 1 ) ( I ) ( L D I ) ( 1 6 6 ) ( I t ) ( [ 2 ) ( I ) 2 1 3 1 0 6 1 1 1 0 0 0 0 4 1 6 3 . 0 9 5 0 1 0 0 5 0 1 0 . 0 1 0 1 0 0 . 0 2 . 5 4 4 . 0 0 m m ( i n c h e s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T O 4 ( 6 . 0 6 2 5 I N . ) C T C L E N U M B E R E L A . T O T . P L A . E L A N T O T . P L A . E L A W T O T . P L A . E L A . T O T . P L A . 1 0 0 2 3 . 0 2 6 . 1 1 5 . 4 1 0 . 0 1 1 . 3 5 . 6 7 . 4 6 . 4 4 . 0 5 . 3 6 . 0 2 . 7 5 0 0 1 6 . 1 2 1 . 0 4 2 . 7 7 . 6 6 . 0 1 5 . 0 5 . 3 6 . 1 0 . 4 3 . 3 3 . 6 5 . 3 1 0 0 0 1 6 . 3 1 6 . 7 7 5 . 7 6 . 6 7 . 6 2 5 . 7 4 . 5 5 . 2 1 5 . 5 2 . 6 3 . 0 6 . 1 5 0 0 0 1 2 . 6 1 4 . 6 2 1 1 . 2 5 . 2 6 . 0 6 6 . 6 3 . 2 3 . 7 3 5 . 7 1 . 5 1 . 7 1 4 . 6 1 0 7 0 0 1 1 . 4 1 3 . 1 3 6 3 . 3 4 . 6 5 . 3 1 1 6 . 6 2 . 7 3 . 1 5 6 . 9 1 . 1 1 . 3 2 1 . 5 2 9 5 0 0 9 . 6 1 1 . 2 7 1 7 . 6 3 . 9 4 . 4 2 0 7 . 9 2 . 1 2 . 4 9 6 . 5 0 . 7 0 . 6 2 6 . 9 1 6 3 0 0 0 7 . 6 6 . 6 2 5 4 3 . 5 2 . 0 3 . 4 6 7 7 . 0 1 . 4 1 . 6 2 6 7 . 2 0 . 3 0 . 4 5 2 . 4 H A I T O T A L H E I G H T O E D R I ’ A G G R E G A T E S ; H E I H E I G H T O F B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O E S A M P L E I N H A T E R ; A 7 I P E R C E N T A I R V O I D S ; G M M I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A N I T T ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C T C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . ” ! N E B 6 6 6 9 2 3 2 6 6 B E A M C Y C L I C L O A D D A T A S A M P L E H A H P A C 5 1 C L H B H H B A ( i i ! A V m m ( a t ) ( 5 1 ' ) ( I ) ( L b s ) ( L b s ) ( 3 : ) ( a t ) ( I ) 2 1 3 1 0 6 2 1 1 0 0 0 0 4 1 6 3 . 9 9 5 0 1 0 0 5 9 2 3 . 0 1 0 1 1 8 . 0 2 . 5 b 4 . 9 3 D E F O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 5 0 2 1 . 5 2 5 . 5 2 0 . 1 9 . 3 1 1 . 1 7 . 5 6 . 6 6 . 1 5 . 1 4 . 7 5 . 6 3 . 3 5 5 0 1 7 . 7 2 0 . 0 4 4 . 1 7 . 5 6 . 5 1 5 . 5 5 . 2 5 . 9 0 . 7 3 . 2 3 . 6 5 . 4 1 0 4 0 1 6 . 1 1 6 . 2 7 5 . 6 6 . 6 7 . 7 ‘ 2 5 . 9 4 . 5 5 . 1 1 5 . 6 2 . 6 3 . 0 6 . 1 5 0 0 0 1 2 . 7 1 4 . 6 2 0 3 . 0 5 . 2 6 . 0 6 4 . 4 3 . 2 3 . 6 3 4 . 7 1 . 5 1 . 7 1 4 . 5 1 0 0 0 0 1 1 . 4 1 3 . 3 3 6 1 . 3 4 . 6 5 . 4 1 1 0 . 9 2 . 7 3 . 2 5 6 . 6 1 . 2 1 . 3 2 1 . 0 3 2 0 0 0 . 6 1 0 . 0 7 2 7 . 5 3 . 6 4 . 3 2 1 1 . 2 2 . 1 2 . 3 0 7 . 7 0 . 7 0 . 6 2 6 . 0 1 6 7 5 0 0 7 . 5 6 . 7 2 5 5 5 . 3 2 . 0 3 . 3 6 6 3 . 6 1 . 4 1 . 6 2 7 0 . 7 0 . 3 0 . 4 5 3 . 3 S A M P L E H A H E A C S L C L H B H H B A ( H T ! A N N U M B E R ( 6 2 ) ( I t ) ( I ) ( I D ! ) ( I D ! ) ( 6 ! ) ( I ! ) ( I ) 2 1 3 1 0 6 3 1 1 0 0 0 0 4 1 6 3 . 9 9 5 0 1 0 0 5 0 1 0 . 0 1 0 0 9 4 . 0 2 . 5 4 4 . 9 1 D E F O R M A T I O N ( a n h o o X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) C T C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 2 . 7 2 6 . 4 1 4 . 0 9 . 9 1 1 . 5 5 . 7 7 . 4 6 . 6 3 . 9 5 . 3 6 . 1 2 . 6 5 0 0 1 7 . 6 2 0 . 5 4 1 . 1 7 . 6 6 . 7 1 4 . 6 5 . 3 6 . 1 0 . 2 3 . 3 3 . 6 5 . 2 1 0 0 0 1 6 . 1 1 6 . 4 7 2 . 0 6 . 6 7 . 6 2 5 . 0 4 . 5 5 . 2 1 5 . 1 2 . 6 3 . 0 7 . 9 5 0 5 0 1 2 . 6 1 4 . 6 2 0 2 . 6 5 . 2 6 . 1 6 4 . 4 3 . 2 3 . 7 3 4 . 7 1 . 5 1 . 6 1 4 . 5 1 0 5 0 0 1 1 . 3 1 2 . 9 3 6 6 . 7 4 . 6 5 . 2 1 1 3 . 2 2 . 7 3 . 1 5 7 . 6 1 . 1 1 . 3 2 1 . 3 1 6 5 0 0 1 0 . 4 1 2 . 0 5 0 6 . 7 4 . 2 4 . 6 1 5 1 . 4 2 . 3 2 . 7 7 3 . 6 0 . 9 1 . 0 2 4 . 4 1 6 1 6 0 0 7 . 5 6 . 6 2 4 2 6 . 1 2 . 9 3 . 3 6 5 2 . 2 1 . 4 1 . 6 2 5 9 . 7 0 . 3 0 . 4 5 1 . 6 I T O T A L H E I G H T O F D R ! A G G R E G A T E S : I P E R C E N T A S P H A L T C O N T E N T ; I H E I G H T O P S A M P L E I N A I R ; I H E I G H T O P S A M P L E I N H A T E R ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T T ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C T C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . H E I G H T O F B I T U M E N ; S U S T A I N E D L O A D ; C T C L I C L O A D ; I P E R C E N T A I R V O I D S ; ” ! ? S E E F 2 6 7 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 % ! A V N U M B E R ( 6 ! ) ( g r ) ( I ) ( L b s ) ( 1 b ! ) ( 2 ! ) ( 6 : ) ( I ) 2 1 3 1 0 6 1 2 1 0 0 0 0 4 1 6 3 . 0 0 5 0 2 0 0 5 9 1 4 . 0 1 0 1 0 3 . 0 2 . 5 4 4 . 0 4 D E F O R M A T I O N ( L u c h s s X 0 . 0 0 0 1 ) L V D T O 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T O 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 5 0 4 2 . 0 4 9 . 0 4 4 . 5 1 6 . 1 2 0 . 6 1 6 . 1 1 2 . 7 1 4 . 5 1 0 . 5 6 . 4 9 . 5 6 . 4 5 0 0 3 5 . 9 4 1 . 7 0 4 . 6 1 4 . 6 1 7 . 2 3 2 . 5 0 . 6 1 1 . 4 1 0 . 6 5 . 6 6 . 7 1 0 . 5 1 0 0 0 3 2 . 3 3 7 . 6 1 6 4 . 7 1 3 . 2 1 5 . 4 5 4 . 7 6 . 4 0 . 6 3 1 . 5 4 . 6 5 . 3 1 5 . 4 5 0 0 0 2 5 . 4 2 9 . 2 4 5 6 . 9 1 0 . 1 1 1 . 6 1 4 1 . 3 5 . 6 6 . 7 7 2 . 1 2 . 6 2 . 0 2 7 . 7 1 0 2 0 0 2 2 . 6 2 6 . 1 6 1 3 . 5 6 . 0 1 0 . 2 2 4 2 . 0 4 . 0 5 . 7 1 1 6 . 5 1 . 0 2 . 2 3 0 . 4 2 6 0 0 0 1 9 . 6 2 2 . 4 1 5 2 3 . 9 7 . 5 6 . 6 4 3 1 . 6 3 . 9 4 . 4 1 0 0 . 1 1 . 2 1 . 4 5 2 . 1 4 6 0 0 0 1 6 . 1 2 0 . 7 2 4 2 4 . 6 6 . 9 7 . 0 6 6 6 . 7 3 . 4 3 . 9 2 6 0 . 0 - - - S A M P L E H A H E A C S L C L H B H H B A ( H T ! A V u m ( 6 1 ) ( 6 2 ) ( I ) ( I N ) ( 1 5 6 ) ( 6 8 ) ( S t ) ( I ) 2 1 3 1 0 6 2 2 1 0 0 0 0 4 1 6 3 . 0 9 5 0 2 0 0 5 0 1 1 . 0 1 0 1 0 2 . 0 2 . 5 4 4 . 0 0 D E F O R M A T I O N ( L a s h e s X 0 . 0 0 0 1 ) L P D T ' 1 ( 0 . 0 I N . ) L V D T P 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C T C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . . T O T . P L A . 1 0 0 4 6 . 0 5 2 . 0 3 4 . 1 1 9 . 4 2 1 . 9 1 2 . 5 1 3 . 6 1 5 . 7 6 . 3 0 . 4 1 0 . 6 5 . 3 5 0 0 3 6 . 1 4 1 . 4 0 6 . 2 1 4 . 6 1 7 . 0 3 2 . 6 0 . 6 1 1 . 2 1 9 . 7 5 . 7 6 . 6 1 0 . 5 1 0 0 0 3 2 . 6 3 7 . 5 1 6 6 . 1 1 3 . 2 1 5 . 2 5 5 . 5 6 . 4 0 . 7 3 1 . 6 4 . 6 5 . 3 1 5 . 6 5 0 0 0 2 5 . 6 2 0 . 7 4 7 5 . 6 1 0 . 1 1 1 . 7 1 4 5 . 5 5 . 6 6 . 6 7 4 . 0 2 . 5 2 . 9 2 6 . 3 1 0 0 0 0 2 3 . 1 2 6 . 6 6 3 0 . 4 0 . 0 1 0 . 4 2 4 5 . 7 5 . 0 5 . 7 1 1 6 . 0 1 . 9 2 . 2 3 0 . 6 3 0 0 0 0 1 0 . 6 2 2 . 4 1 6 2 6 . 1 7 . 5 6 . 5 4 5 6 . 6 3 . 6 4 . 3 1 0 9 . 0 7 . 2 4 . 2 ' 3 3 0 0 0 1 0 . 3 2 2 . 2 1 0 0 6 . 0 7 . 4 6 . 5 5 3 2 . 7 3 . 7 4 . 3 2 3 0 . 1 - ° ' I T O T A L H E I G H T O F D R T ’ A G G R E G A T E S ; H E I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O E S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A I I O N I C T C L E : I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . ” ! H 3 3 2 6 8 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 ! ! A V N U M B E R ( 2 ! ) ( S t ) ( I ) ( L b s ) ( l b s ) ( 6 ! ) ( S t ) ( I ) 2 1 3 1 0 6 3 2 1 0 0 0 0 4 1 6 3 . 9 9 5 0 2 0 0 5 0 1 3 . 0 1 0 1 0 4 . 0 2 . 5 4 4 . 0 7 D E F O R M A T I O N ( a n b s s X 0 . 0 0 0 1 ) L V D T l 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T O 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . E L A . E L A . T O T . P L A . 1 0 0 4 5 . 9 5 2 . 1 3 4 . 3 1 9 . 4 2 2 . 0 1 2 . 6 1 3 . 6 1 5 . 7 6 . 4 0 . 4 1 0 . 7 5 . 3 5 0 0 3 6 . 0 4 1 . 3 0 3 . 9 1 4 . 6 1 7 . 0 3 2 . 1 0 . 6 1 1 . 3 1 9 . 3 5 . 6 6 . 6 1 0 . 3 1 0 0 0 3 2 . 5 3 6 . 0 1 6 6 . 4 1 3 . 2 1 5 . 0 5 5 . 7 6 . 4 0 . 6 3 2 . 0 4 . 6 5 . 2 1 5 . 7 5 0 0 0 2 5 . 5 2 6 . 0 4 7 1 . 3 1 0 . 1 1 1 . 4 1 4 4 . 5 5 . 6 6 . 6 7 3 . 6 2 . 5 2 . 0 2 6 . 2 1 0 0 0 0 2 3 . 0 2 6 . 5 6 1 5 . 6 9 . 0 1 0 . 3 2 4 1 . 0 5 . 0 5 . 7 1 1 6 . 3 1 . 9 2 . 2 3 0 . 3 2 0 0 0 0 1 9 . 6 2 2 . 5 1 5 5 2 . 6 7 . 5 6 . 6 4 3 7 . 1 3 . 6 4 . 4 1 0 1 . 4 1 . 2 1 . 4 5 1 . 6 1 2 3 3 0 0 1 5 . 6 1 6 . 2 4 6 6 7 . 0 5 . 9 6 . 6 1 2 2 6 . 1 2 . 7 3 . 1 4 6 6 . 4 0 . 6 0 . 7 6 6 . 6 S A M P L E H A H B A C S L C L H B H H B A ( I I ! A P m ( ‘ 8 ) ( A ! ) ( I ) ( 1 1 ” ) ( 1 b . ) ( 6 ! ) ( 2 ! ) ( I ) 2 1 3 1 0 6 1 5 1 0 0 0 0 4 1 6 3 . 0 0 5 0 5 0 0 5 0 1 3 . 0 1 0 1 0 5 . 0 2 . 5 4 4 . 9 6 D E F O R M A T I O N ( a n b o s X 0 . 0 0 0 1 ) L V D T I L ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C T C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 2 0 1 1 1 . 6 1 2 6 . 5 1 3 1 . 2 4 3 . 0 4 6 . 7 4 3 . 7 2 6 . 5 2 9 . 9 2 5 . 0 1 5 . 0 1 7 . 6 5 0 0 0 0 . 3 1 0 2 . 0 3 1 6 . 5 3 3 . 0 3 6 . 6 0 9 . 2 1 0 . 2 2 1 . 6 5 1 . 1 1 4 . 7 1 7 . 2 1 0 0 0 6 1 . 4 0 2 . 1 5 5 5 . 5 3 0 . 2 3 4 . 1 1 6 7 . 4 1 6 . 3 1 6 . 4 6 1 . 5 1 5 . 0 1 7 . 2 5 0 0 0 6 3 . 9 7 4 . 0 1 5 3 0 . 1 2 3 . 0 2 6 . 6 4 2 6 . 5 1 1 . 0 1 2 . 6 1 6 1 . 1 1 5 . 0 1 6 . 0 1 0 1 0 0 5 7 . 5 6 6 . 6 2 7 3 6 . 0 2 0 . 4 2 3 . 7 7 3 5 . 7 9 . 2 1 0 . 7 2 9 0 . 6 1 4 . 0 1 4 . 5 2 2 0 0 0 5 1 . 2 5 6 . 6 4 3 6 3 . 1 1 7 . 0 2 0 . 5 1 1 2 7 . 6 7 . 6 6 . 7 4 1 1 . 1 1 3 . 6 1 2 . 6 - I T O T A L H E I G H T O F D R ! A G G R E G A T E S ; H I I H E I G H T O E B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T : S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R : A N I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A N I T E ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O I M A T I O N I C T C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . 2 6 9 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 9 1 A V N U M B E R ( 6 ! ) ( I t ) ( I ) ( L b s ) ( L b s ) ( 6 ! ) ( t r ) ( I ) 2 1 3 1 0 6 2 5 1 0 0 0 0 4 1 6 3 . 0 9 5 0 5 0 0 5 9 1 6 . 0 1 0 1 2 0 . 0 2 . 5 4 5 . 1 9 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T O 2 ( 2 . 0 I N . ) L V D T 9 3 ( 4 . 0 I N . ) L V D T § 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 6 . 6 1 3 4 . 3 1 2 3 . 7 4 4 . 7 5 0 . 7 4 0 . 6 2 7 . 5 3 1 . 1 2 3 . 3 1 5 . 6 1 7 . 7 1 2 . 3 5 0 0 0 3 . 2 1 0 7 . 0 3 4 6 . 0 3 4 . 2 3 9 . 2 1 0 5 . 2 1 9 . 0 2 1 . 6 5 3 . 4 6 . 9 1 0 . 2 2 2 . 7 1 0 0 0 6 4 . 0 0 5 . 5 6 1 1 . 6 3 0 . 4 3 4 . 5 1 7 9 . 9 1 6 . 2 1 6 . 4 6 6 . 3 6 . 6 7 . 6 3 2 . 6 5 1 0 0 6 5 . 6 7 4 . 4 1 6 9 3 . 6 2 3 . 0 2 6 . 1 4 5 9 . 4 1 0 . 0 1 2 . 3 1 0 0 . 4 3 . 4 3 . 9 5 2 . 6 1 0 0 0 0 5 0 . 5 6 7 . 7 2 0 0 6 . 2 2 0 . 6 2 3 . 4 7 6 6 . 1 9 . 1 1 0 . 4 3 0 4 . 6 2 . 5 2 . 6 7 2 . 2 2 0 7 5 6 5 3 . 3 6 2 . 0 4 5 5 1 . 4 1 6 . 1 2 1 . 1 1 1 4 0 . 6 7 . 6 6 . 6 4 1 3 . 0 1 . 7 2 . 0 6 0 . 6 S A M P L E H A H 6 A C S L C L H B H H B A ( I t ! A V N I R I E R ( 3 ! ) ( S t ) ( I ) ( L b s ) ( L b s ) ( I ! ) ( I ! ) ( I ) 2 1 3 1 0 6 3 5 1 0 0 0 0 4 1 6 3 . 0 0 5 0 5 0 0 5 6 0 9 . 0 1 0 0 6 7 . 0 2 . 5 4 5 . 0 6 D E P O R M A I I O N ( a n h s s X 0 . 0 0 0 1 ) L P D T 6 1 ( 0 . 0 I N . ) L N D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 6 . 0 1 3 4 . 9 1 1 9 . 3 4 4 . 4 5 1 . 6 3 9 . 6 2 7 . 4 3 1 . 0 2 2 . 9 - - - 5 0 0 0 1 . 1 1 0 3 . 0 3 2 6 . 0 3 3 . 0 3 6 . 3 1 0 0 . 0 1 0 . 1 2 1 . 5 5 1 . 7 - - - 1 0 0 0 6 2 . 1 0 4 . 7 5 7 6 . 4 3 0 . 2 3 4 . 6 1 7 2 . 0 1 6 . 2 1 6 . 7 6 3 . 3 - - - 5 0 0 0 6 4 . 5 7 3 . 4 1 6 0 6 . 6 2 3 . 0 2 6 . 1 4 4 3 . 1 1 1 . 0 1 2 . 5 1 6 6 . 0 - - - 0 6 5 0 5 6 . 3 6 7 . 5 2 7 6 0 . 0 2 0 . 5 2 3 . 7 7 4 3 . 4 0 . 2 1 0 . 7 2 0 2 . 1 ' ' ' H A I T O T A L H E I G H T O F D R ! A G G R E G A T E S : H E I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A P I P E R C E N T A I R V O I D S ; G I N ! ' I l M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A N A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E E O R M A T I O N . 2 7 0 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 9 1 A V N U M B E R ( 6 ! ) ( 6 x ) ( I ) ( L b s ) ( L b s ) ( 6 ! ) ( g r ) ( I ) 1 2 1 1 0 5 1 1 1 0 0 0 0 4 6 7 4 . 4 6 5 0 1 0 0 6 1 7 6 . 0 1 0 3 6 6 . 0 2 . 5 4 3 . 0 2 D E F O R M A T I O N ( a n b o s X 0 . 0 0 0 1 ) L V D T f 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T ' 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 6 . 2 2 1 . 2 6 . 0 9 . 7 1 1 . 3 2 . 6 7 . 0 9 . 1 2 . 1 6 . 2 7 . 2 1 . 5 5 0 0 1 4 . 3 1 6 . 5 1 4 . 9 7 . 5 6 . 6 6 . 5 5 . 6 6 . 6 4 . 5 4 . 1 4 . 7 2 . 0 1 0 0 0 1 2 . 0 1 4 . 7 2 5 . 0 6 . 7 7 . 6 1 0 . 6 5 . 0 5 . 7 7 . 1 3 . 4 3 . 9 4 . 3 5 0 0 0 1 0 . 1 1 1 . 6 6 4 . 2 5 . 2 6 . 0 2 5 . 3 3 . 6 4 . 2 1 5 . 6 2 . 1 2 . 4 6 . 0 1 0 0 0 0 0 . 1 1 0 . 6 1 0 6 . 4 4 . 6 5 . 4 4 1 . 5 3 . 1 3 . 6 2 4 . 5 1 . 7 2 . 0 1 1 . 5 3 0 3 0 0 7 . 7 6 . 9 2 0 3 . 7 3 . 6 4 . 4 7 4 . 4 2 . 5 2 . 6 4 0 . 6 1 . 1 1 . 3 1 6 . 2 1 5 7 0 0 0 6 . 0 7 . 0 6 3 5 . 0 2 . 9 3 . 4 2 1 5 . 4 1 . 7 2 . 0 1 0 4 . 7 0 . 6 0 . 7 3 0 . 6 S A M P L E H A H B A C S L C L H B H H B A ( 3 0 1 A V N U M B E R ( 6 ! ) ( A ! ) ( I ) ( L b s ) ( L b s ) ( 6 ! ) ( S t ) ( I ) 1 2 1 1 0 5 2 1 1 0 0 0 0 4 6 7 4 . 4 6 5 0 1 0 0 6 1 7 2 . 0 1 0 3 7 5 . 0 2 . 5 4 2 . 9 3 D E F O R M A T I O N ( a n b o s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T l 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 7 . 9 2 0 . 6 5 . 7 0 . 7 1 1 . 2 2 . 7 7 . 6 9 . 1 2 . 0 6 . 2 7 . 2 1 . 5 5 0 0 1 4 . 1 1 6 . 0 1 4 . 3 7 . 5 6 . 5 6 . 3 5 . 7 6 . 5 4 . 4 4 . 1 4 . 7 2 . 0 1 0 0 0 1 2 . 7 1 4 . 3 2 4 . 3 6 . 7 7 . 5 1 0 . 4 5 . 0 5 . 6 7 . 0 3 . 4 3 . 6 4 . 3 5 3 0 0 9 . 0 1 1 . 5 6 3 . 0 5 . 1 5 . 0 2 5 . 4 3 . 6 4 . 1 1 5 . 7 2 . 1 2 . 4 6 . 0 1 0 0 0 0 9 . 0 1 0 . 5 1 0 5 . 9 4 . 6 5 . 3 4 0 . 9 3 . 1 3 . 6 2 4 . 3 1 . 7 2 . 0 1 1 . 5 3 0 0 0 0 7 . 6 6 . 6 1 9 2 . 4 3 . 6 4 . 4 7 0 . 0 2 . 5 2 . 6 3 9 . 2 7 . 5 9 . 0 I 1 6 6 2 0 0 5 . 9 6 . 0 6 2 3 . 3 2 . 9 3 . 4 2 1 3 . 0 1 . 7 2 . 0 1 0 3 . 6 I I I H A I T O T A L H E I G H T O F D R ! A G G R E G A T E S ; H B I H E I G H T O E B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O F S A M P L E I N H A T E R ; A P I P E R C E N T A I R V O I D S ; G M M I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . 6 6 0 3 2 7 1 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C S L C L H B H H B A . G P ! ) A N N U M B E R ( : 2 ) ( 3 : ) ( I ) ( L b s ) ( L b s ) ( I t ) ( 6 : ) ( I ) 1 2 1 1 0 5 3 1 1 0 0 0 0 4 6 7 4 . 4 6 5 0 1 0 0 6 1 7 7 . 0 1 0 3 6 1 . 0 2 . 5 4 2 . 0 0 D E F O R M A T I O N ( L u c h s s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T O 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 7 . 9 2 0 . 6 5 . 7 9 . 7 1 1 . 1 2 . 7 7 . 6 0 . 0 2 . 0 6 . 2 7 . 1 1 . 5 5 0 0 1 4 . 0 1 6 . 0 1 4 . 2 7 . 4 6 . 5 6 . 3 5 . 7 6 . 5 4 . 4 4 . 1 4 . 7 2 . 0 1 0 0 0 1 2 . 6 1 4 . 7 2 4 . 0 6 . 7 7 . 7 1 0 . 3 5 . 0 5 . 6 7 . 0 3 . 4 3 . 9 4 . 3 5 1 5 0 0 . 9 1 1 . 5 6 3 . 7 5 . 1 5 . 0 2 5 . 4 3 . 6 4 . 2 1 5 . 7 2 . 1 2 . 4 6 . 1 1 0 0 0 0 0 . 0 1 0 . 4 1 0 3 . 4 4 . 6 5 . 3 4 0 . 1 3 . 1 3 . 6 2 3 . 6 1 . 7 2 . 0 1 1 . 3 3 0 0 0 0 7 . 6 6 . 6 1 0 1 . 4 3 . 6 4 . 4 7 0 . 6 2 . 5 2 . 9 3 0 . 2 0 . 7 2 . 4 - 1 6 0 0 0 0 5 . 6 6 . 6 6 6 4 . 0 2 . 6 3 . 3 2 3 3 . 2 1 . 6 1 . 0 1 1 2 . 6 I I I S A M P L E H A H B A C S L C L H B H H B A ( N P ! A V N U M B E R ( 6 1 ) ( I ! ) ( I ) ( L b l ) ( 1 b . ) ( 6 3 ) ( 3 : ) ( I ) 1 2 1 1 0 5 1 2 1 0 0 0 0 4 6 7 4 . 4 6 5 0 2 0 0 6 1 7 0 . 0 1 0 3 7 3 . 0 2 . 5 4 2 . 9 5 D E F O R M A T I O N ( i n c b s s X 0 . 0 0 0 1 ) L V D T 1 1 ( 0 . 0 I N . ) L V D T O 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A W T O T . P L A . E L A N T O T . P L A . E L A . T O T . P L A . 1 0 0 3 6 . 0 4 1 . 7 1 3 . 0 1 9 . 0 2 2 . 0 5 . 9 1 4 . 9 1 7 . 3 4 . 4 1 1 . 4 1 3 . 2 3 . 1 5 0 0 2 6 . 3 3 2 . 3 3 2 . 3 1 4 . 6 1 6 . 7 1 3 . 6 1 0 . 9 1 2 . 4 9 . 4 7 . 4 6 . 5 5 . 9 1 0 0 0 2 5 . 5 2 9 . 3 5 4 . 6 1 3 . 1 1 5 . 0 2 2 . 6 9 . 5 1 0 . 9 1 4 . 9 6 . 1 7 . 0 6 . 7 5 0 0 0 2 0 . 0 2 2 . 6 1 4 2 . 4 1 0 . 0 1 1 . 4 5 5 . 4 6 . 6 7 . 7 3 2 . 9 3 . 7 4 . 2 1 6 . 0 1 0 0 0 0 1 6 . 0 2 0 . 6 2 4 2 . 7 9 . 0 1 0 . 3 0 1 . 6 5 . 9 6 . 7 5 2 . 1 3 . 0 3 . 4 2 3 . 0 2 6 6 0 0 1 5 . 6 1 7 . 6 4 0 9 . 1 7 . 6 6 . 7 1 4 7 . 9 4 . 7 5 . 4 7 6 . 7 2 . 1 2 . 4 2 0 . 0 1 4 4 0 0 0 1 2 . 1 1 4 . 1 1 3 0 1 . 6 5 . 6 6 . 7 4 3 6 . 4 3 . 2 3 . 6 2 0 4 . 2 1 . 1 1 . 2 5 6 . 0 H A I T O T A L H E I G H T O F D R ! A G G R E G A T E S ; A C I P E R C E N T A S P H A L T C O N T E N T ; H B A I H E I G H T O P S A M P L E I N A I R ; H B H I H E I G H T O F S A M P L E I N H A T E R ; G M M I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . I H E I G H T O E B I T U M E N ; I S U S T A I N E D L O A D ; I C Y C L I C L O A D ; I P E R C E N T A I R V O I D S ; 2 7 2 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C S L C L H B H H B A ( 3 9 1 A V N U M B E R ( 2 ! ) ( S t ) ( I ) ( L b s ) ( L b ! ) ( S ! ) ( S t ) ( I ) 1 2 1 1 0 5 2 2 1 0 0 0 0 4 6 7 4 . 4 6 5 0 2 0 0 6 1 6 0 . 0 1 0 3 7 2 . 0 2 . 5 4 2 . 0 6 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T O 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A T E L A W T O T . P L A . E L A . T O T . P L A . E L A W T O T . P L A . 1 5 0 3 3 . 9 3 9 . 4 1 6 . 7 1 7 . 6 2 0 . 7 7 . 5 1 3 . 6 1 6 . 1 5 . 4 1 0 . 3 1 1 . 9 3 . 7 5 0 0 2 6 . 3 3 2 . 9 3 2 . 6 1 4 . 6 1 7 . 0 1 4 . 1 1 0 . 9 1 2 . 6 . 5 7 . 4 6 . 6 5 . 9 1 1 0 0 2 5 . 2 2 6 . 6 5 6 . 9 1 2 . 9 1 4 . 7 2 4 . 4 9 . 3 1 0 . 6 1 5 . 9 6 . 0 6 . 6 9 . 2 5 2 0 0 1 9 . 9 2 3 . 0 1 4 6 . 4 1 0 . 0 1 1 . 5 5 6 . 6 6 . 7 7 . 6 3 3 . 7 3 . 7 4 . 3 1 6 . 2 1 0 1 0 0 1 0 . 0 2 0 . 6 2 3 9 . 0 9 . 0 1 0 . 3 9 0 . 0 5 . 0 6 . 7 5 1 . 2 3 . 0 3 . 4 2 2 . 6 2 7 4 0 0 1 5 . 5 1 7 . 6 4 2 0 . 0 7 . 6 6 . 6 1 5 1 . 5 4 . 7 5 . 3 6 0 . 4 2 . 1 2 . 3 3 0 . 3 1 7 5 5 5 0 1 1 . 6 1 3 . 4 1 4 9 5 . 1 5 . 6 6 . 4 4 9 6 . 2 3 . 1 3 . 5 2 2 6 . 2 1 . 0 1 . 1 5 9 . 6 S A M P L E H A H 6 A C 8 1 C L H B H H S A ( 3 ! ! A N m a n ( s t ) ( 3 : ) ( 2 ) ( L b s ) ( L b s ) ( s t ) ( s t ) ( 2 ) 1 2 1 1 0 5 3 2 1 0 0 0 0 4 6 7 4 . 4 6 5 0 2 0 0 6 1 6 6 . 0 1 0 3 6 9 . 0 2 . 5 4 2 . 9 9 D E F O R M A T I O N ( a n b o s X 0 . 0 0 0 1 ) L N D T ' 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 6 . 2 4 1 . 0 1 2 . 6 1 0 . 0 2 1 . 5 5 . 7 1 4 . 9 1 6 . 9 4 . 2 1 1 . 4 1 2 . 0 3 . 0 5 0 0 2 6 . 4 3 2 . 9 3 2 . 9 1 4 . 6 1 6 . 0 1 4 . 0 1 0 . 0 1 2 . 6 9 . 5 7 . 4 6 . 6 5 . 9 1 4 0 0 2 4 . 4 2 6 . 0 6 0 . 6 1 2 . 4 1 4 . 2 2 6 . 6 6 . 6 1 0 . 2 1 6 . 3 5 . 5 6 . 4 1 0 . 3 5 0 0 0 2 0 . 1 2 2 . 6 1 4 1 . 5 1 0 . 1 1 1 . 4 5 4 . 6 6 . 6 7 . 7 3 2 . 5 3 . 7 4 . 2 1 5 . 7 1 2 3 0 0 1 7 . 6 2 0 . 0 2 7 4 . 2 6 . 7 0 . 0 1 0 2 . 1 5 . 6 6 . 4 5 7 . 1 2 . 6 3 . 1 2 4 . 4 2 0 1 0 0 1 6 . 3 1 6 . 6 3 4 0 . 2 6 . 0 0 . 1 1 2 4 . 0 5 . 0 5 . 7 6 7 . 1 2 . 3 2 . 6 2 6 . 6 1 6 7 5 0 0 1 1 . 9 1 3 . 5 1 4 3 9 . 9 5 . 7 6 . 4 4 7 7 . 3 3 . 1 3 . 5 2 1 0 . 6 I I I I T O T A L H E I G H T O F D R ! A G G R E G A I E S ; H I I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N ‘ H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . E E H E ” ” E H E E 2 7 3 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C S L C L H B H H B A ( I t ! A V N U M B E R ( 2 1 ) ( 6 ! ) ( I ) ( L b s ) ( L b s ) ( 3 : ) ( I t ) ( I ) 1 2 1 1 0 5 1 5 1 0 0 0 0 4 6 7 4 . 4 6 5 0 5 0 0 6 1 6 6 . 0 1 0 3 7 2 . 0 2 . 5 4 2 . 0 6 D E F O R M A T I O N ( i n n b s s X 0 . 0 0 0 1 ) L N D T I 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T P 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 0 0 . 4 1 0 5 . 2 4 2 . 6 4 4 . 5 5 1 . 7 1 6 . 3 3 1 . 6 3 6 . 6 1 2 . 1 2 1 . 3 2 4 . 6 7 . 7 5 0 0 7 1 . 0 6 3 . 5 1 1 0 . 0 3 4 . 2 4 0 . 2 4 4 . 3 2 2 . 7 2 6 . 7 2 6 . 6 1 3 . 3 1 5 . 7 1 4 . 3 1 0 0 0 6 4 . 0 7 4 . 5 1 6 6 . 0 3 0 . 5 3 5 . 5 7 2 . 9 1 9 . 6 2 2 . 6 4 2 . 2 1 0 . 7 1 2 . 5 2 0 . 6 5 0 0 0 5 0 . 3 5 6 . 2 4 7 0 . 6 2 3 . 4 2 7 . 1 1 6 0 . 0 1 3 . 6 1 6 . 0 6 6 . 1 6 . 1 7 . 1 3 4 . 5 1 0 0 0 0 4 5 . 3 5 1 . 3 6 1 3 . 5 2 0 . 0 2 3 . 7 2 6 4 . 7 1 1 . 6 1 3 . 4 1 4 0 . 1 4 . 7 5 . 4 4 6 . 6 3 0 0 0 0 3 6 . 4 4 4 . 1 1 4 0 2 . 1 1 7 . 4 2 0 . 0 4 0 6 . 6 0 . 2 1 0 . 5 2 2 3 . 6 3 . 0 3 . 5 6 2 . 9 1 0 2 6 3 1 3 2 . 0 3 6 . 4 3 4 0 3 . 4 1 4 . 2 1 6 . 2 1 0 0 6 . 9 6 . 6 7 . 6 4 4 4 . 1 1 . 7 1 . 9 0 3 . 2 S A M P L E H A H E A C S L C L H B H H B A ( I N ! A N N U M B E R ( 6 3 ) ( 6 8 ) ( I ) ( L b s ) ( 1 b . ) ( 6 3 ) ( S ! ) ( I ) 1 2 1 1 0 5 2 5 1 0 0 0 0 4 6 7 4 . 4 6 5 0 5 0 0 6 1 6 1 . 0 1 0 3 7 1 . 0 2 . 5 4 3 . 1 3 D E F O R M A T I O N ( A n u b i s X 0 . 0 0 0 1 ) L V D T P 1 ( 0 . 0 I N . ) L V D T O 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 5 0 6 7 . 1 9 0 . 5 5 0 . 6 4 1 . 9 4 7 . 9 2 4 . 6 2 0 . 1 3 3 . 2 1 5 . 0 I I I 5 0 0 7 2 . 7 6 7 . 0 1 1 5 . 4 3 4 . 4 4 1 . 2 4 5 . 3 2 2 . 6 2 7 . 1 2 7 . 1 I I I 1 0 0 0 6 5 . 5 7 5 . 6 1 0 4 . 5 3 0 . 7 3 5 . 5 7 4 . 1 1 9 . 5 2 2 . 6 4 2 . 5 I I I 5 0 0 0 5 1 . 5 5 9 . 4 5 0 6 . 0 2 3 . 6 2 7 . 2 1 7 9 . 4 1 3 . 7 1 5 . 6 0 1 . 9 I I I 1 1 5 0 0 4 5 . 4 5 2 . 9 0 4 2 . 2 2 0 . 5 2 3 . 0 3 2 1 . 6 1 1 . 3 1 3 . 2 1 5 4 . 6 I I I 3 0 0 0 0 3 0 . 3 4 4 . 4 1 5 4 3 . 7 1 7 . 5 1 9 . 6 5 0 4 . 5 9 . 1 1 0 . 2 2 2 3 . 9 I I I 6 5 1 0 0 3 5 . 0 4 0 . 6 2 6 1 5 . 6 1 5 . 4 1 7 . 9 6 6 7 . 6 7 . 5 6 . 6 3 6 6 . 0 I I I I T O T A L H E I G H T O F D R ! A G G R E G A T E S ; H E I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O F S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A N I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y : . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . ” E H E E 2 7 4 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 3 : ) ( 3 ! ) ( I ) ( L b s ) ( L b s ) ( 2 ! ) ( 2 ! ) ( I ) 1 2 1 1 0 5 3 5 1 0 0 0 0 4 6 7 4 . 4 6 5 0 5 0 0 6 1 7 0 . 0 1 0 3 7 5 . 0 2 . 5 4 2 . 9 6 D E P O R M A T I O N ( a n b o s X 0 . 0 0 0 1 ) L V D T O 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 0 0 . 4 1 0 2 . 5 4 3 . 0 4 4 . 5 5 0 . 4 1 6 . 6 3 1 . 6 3 5 . 0 1 2 . 5 2 1 . 4 2 4 . 2 7 . 9 5 0 0 7 1 . 0 6 1 . 7 1 1 0 . 6 3 4 . 2 3 9 . 4 4 4 . 2 2 2 . 7 2 6 . 1 2 6 . 7 1 3 . 3 1 5 . 3 1 4 . 3 1 0 0 0 6 4 . 0 7 2 . 5 1 6 6 . 2 3 0 . 5 3 4 . 6 7 3 . 0 1 9 . 6 2 2 . 2 4 2 . 3 I I I 5 3 0 0 4 9 . 6 5 7 . 0 4 6 6 . 6 2 3 . 2 2 7 . 0 1 7 6 . 1 1 3 . 6 1 5 . 0 9 0 . 9 I I I 1 0 3 0 0 4 5 . 1 5 1 . 3 6 2 1 . 5 2 0 . 6 2 3 . 7 2 6 7 . 3 1 1 . 7 1 3 . 4 1 4 1 . 1 I I I 3 0 0 0 0 3 6 . 4 4 4 . 0 1 4 6 5 . 6 1 7 . 4 2 0 . 0 4 9 4 . 9 0 . 2 1 0 . 5 2 2 3 . 1 I I I 6 2 2 0 0 3 4 . 4 3 9 . 5 2 5 9 7 . 5 1 5 . 4 1 7 . 7 6 3 6 . 6 7 . 7 6 . 0 3 5 4 . 2 I I I S A M P L E H A H E A C S L C L H B H H E A ( I t ! A V N U M B E R ( I ! ) ( s ! ) ( I ) ( L b s ) ( L b s ) ( s t ) ( 3 ! ) ( I ) 1 2 1 1 0 6 1 1 1 0 0 0 0 4 6 7 4 . 4 6 5 0 1 0 0 5 0 5 6 . 0 1 0 1 6 6 . 0 2 . 5 4 5 . 0 3 D E P O I M A T I O N ( L a c b o s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T P 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 4 . 1 2 6 . 0 1 2 . 0 1 0 . 6 1 2 . 3 4 . 6 6 . 0 9 . 3 3 . 2 5 . 6 6 . 7 2 . 2 5 0 0 1 6 . 9 2 1 . 5 3 0 . 4 6 . 1 9 . 2 1 0 . 6 5 . 7 6 . 5 6 . 9 3 . 6 4 . 1 4 . 0 1 0 0 0 1 7 . 1 1 9 . 4 5 1 . 9 7 . 2 6 . 2 1 7 . 6 4 . 9 5 . 6 1 1 . 0 2 . 9 3 . 3 5 . 9 5 0 0 0 1 3 . 4 1 5 . 2 1 3 1 . 4 5 . 5 6 . 3 4 1 . 9 3 . 4 3 . 9 2 3 . 1 1 . 7 1 . 0 9 . 9 1 0 0 0 0 1 2 . 1 1 3 . 7 2 2 7 . 2 4 . 9 5 . 6 7 0 . 1 2 . 9 3 . 3 3 6 . 6 1 . 3 1 . 5 1 4 . 1 3 0 2 5 0 1 0 . 2 1 1 . 7 4 2 1 . 9 4 . 1 4 . 7 1 2 3 . 5 2 . 3 2 . 6 5 6 . 6 0 . 6 0 . 9 1 6 . 4 1 4 3 7 0 0 6 . 1 9 . 2 1 2 0 9 . 9 3 . 1 3 . 6 3 2 6 . 1 1 . 5 1 . 6 1 3 5 . 5 0 . 4 0 . 5 2 9 . 4 I T O T A L H E I G H T 0 F D R Y A G G R E G A T E S ; H I I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E : I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” ! N E P 2 7 5 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 3 : ) ( 3 x ) ( I ) ( L b s ) ( L b s ) ( I t ) ( 3 : ) ( I ) 1 2 1 1 0 6 2 1 1 0 0 0 0 4 6 7 4 . 4 6 5 0 1 0 0 5 0 2 6 . 0 1 0 1 0 6 . 0 2 . 5 4 4 . 9 3 D E F O R M A T I O N ( L n o b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 3 . 6 2 6 . 0 1 1 . 6 1 0 . 4 1 1 . 0 4 . 6 7 . 0 0 . 0 3 . 2 5 . 6 6 . 6 2 . 2 5 0 0 1 6 . 6 2 0 . 9 2 0 . 6 6 . 0 9 . 0 1 0 . 6 5 . 7 6 . 4 6 . 6 3 . 6 4 . 1 4 . 0 1 0 0 0 1 6 . 7 1 0 . 2 5 0 . 6 7 . 1 6 . 2 1 7 . 6 4 . 0 5 . 6 1 0 . 0 2 . 0 3 . 4 5 . 9 5 5 0 0 1 2 . 0 1 5 . 0 1 3 6 . 2 5 . 4 6 . 2 4 3 . 7 3 . 4 3 . 0 2 4 . 0 1 . 6 1 . 0 1 0 . 3 1 0 7 0 0 1 1 . 7 1 3 . 6 2 2 6 . 5 4 . 6 5 . 6 7 0 . 4 2 . 0 3 . 4 3 6 . 6 1 . 3 1 . 5 1 4 . 1 3 0 0 0 0 1 0 . 0 1 1 . 6 3 9 6 . 6 4 . 0 4 . 7 1 1 6 . 0 2 . 3 2 . 6 5 6 . 7 0 . 6 1 . 0 1 6 . 0 1 0 2 0 0 0 7 . 6 6 . 6 1 4 1 1 . 0 3 . 0 3 . 4 3 6 1 . 4 1 . 4 1 . 6 1 5 4 . 4 0 . 4 0 . 4 3 1 . 4 S A M P L E H A H B A C S L C L H B H H B A ( I t ! A V " ' ” J ? ( 6 8 ) ( S t ) ( I ) ( L b s ) ( L b s ) ( I ! ) ( I t ) ( I ) 1 2 1 1 0 6 3 1 1 0 0 0 0 4 6 7 4 . 4 6 5 0 1 0 0 5 0 6 0 . 0 1 0 1 6 3 . 0 2 . 5 4 5 . 1 6 D E F O R M A T I O N ( L n e b s s X 0 . 0 0 0 1 ) L V D T P 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . E L A . E L A . T O T . E L A . 1 0 0 2 4 . 7 2 6 . 0 1 2 . 6 1 0 . 6 1 2 . 1 4 . 6 6 . 0 9 . 1 3 . 4 5 . 6 6 . 6 2 . 3 5 0 0 1 9 . 4 2 2 . 0 3 2 . 6 6 . 2 9 . 3 1 1 . 4 5 . 7 6 . 5 7 . 3 3 . 6 4 . 1 4 . 2 1 0 0 0 1 7 . 5 2 0 . 1 5 4 . 7 7 . 3 6 . 4 1 6 . 5 4 . 0 5 . 7 1 1 . 3 2 . 9 3 . 3 6 . 0 5 0 0 0 1 3 . 7 1 5 . 5 1 3 9 . 7 5 . 6 6 . 3 4 3 . 6 3 . 4 3 . 0 2 3 . 0 1 . 7 1 . 0 1 0 . 2 1 0 0 0 0 1 2 . 4 1 4 . 3 2 3 0 . 3 4 . 9 5 . 7 7 2 . 6 2 . 9 3 . 4 3 7 . 5 1 . 3 1 . 5 1 4 . 2 5 0 0 0 0 9 . 7 1 1 . 1 6 0 2 . 5 3 . 6 4 . 3 1 6 9 . 2 2 . 0 2 . 3 7 6 . 3 0 . 6 0 . 7 2 1 . 0 1 0 0 0 0 0 6 . 6 1 0 . 1 1 0 3 1 . 1 3 . 4 3 . 0 2 7 9 . 6 1 . 7 1 . 0 1 1 6 . 2 0 . 5 0 . 5 2 7 . 5 I T O T A L H E I G H T O F D R ! A G G R E G A T E S ; H E I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R : A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E E O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . 2 7 6 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C S L C L H B H H B A ( R i d A V N U M B E R ( 6 : ) ( S t ) ( I ) ( L b s ) ( L b s ) ( S r ) ( 6 : ) ( I ) 1 2 1 1 0 6 1 2 1 0 0 0 0 4 6 7 4 . 4 6 5 0 2 0 0 5 0 5 6 . 0 1 0 1 6 9 . 0 2 . 5 4 5 . 0 6 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T l 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 3 0 4 6 . 7 5 4 . 2 3 2 . 0 1 9 . 7 2 2 . 0 1 2 . 0 1 4 . 2 1 6 . 4 6 . 0 9 . 6 1 1 . 2 5 . 1 5 0 0 3 6 . 2 4 3 . 3 7 0 . 6 1 5 . 6 1 7 . 9 2 4 . 3 1 0 . 6 1 2 . 1 1 4 . 9 I I 1 0 0 0 3 4 . 4 3 6 . 9 1 1 6 . 9 1 4 . 1 1 5 . 9 3 0 . 5 0 . 1 1 0 . 3 2 3 . 1 I I 6 0 0 0 2 6 . 3 2 0 . 6 3 4 5 . 4 1 0 . 4 1 1 . 6 1 0 5 . 4 6 . 1 6 . 0 5 4 . 1 I I 1 0 1 0 0 2 4 . 3 2 7 . 5 5 2 4 . 6 9 . 5 1 0 . 6 1 5 6 . 1 5 . 4 6 . 1 7 6 . 6 I I 3 0 2 0 0 2 0 . 6 2 3 . 4 9 3 7 . 4 7 . 0 9 . 0 2 6 4 . 4 4 . 1 4 . 7 1 1 6 . 2 I I 1 6 6 6 0 0 1 5 . 7 1 7 . 6 3 3 0 7 . 1 5 . 6 6 . 6 6 5 2 . 0 2 . 6 3 . 0 3 1 6 . 3 I I S A M P L E H A H B A C S L C L H B H H B A ( N E ! A V s u m ( 6 3 ) ( 2 1 ' ) ( I ) ( L b s ) ( L b s ) ( 6 1 ' ) ( 6 ! ) ( I ) 1 2 1 1 0 6 2 2 1 0 0 0 0 4 6 7 4 . 4 6 5 0 2 0 0 5 0 6 3 . 0 1 0 1 6 3 . 0 2 . 5 4 4 . 6 5 m m ( L u c i u s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T # 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 6 . 0 5 4 . 6 2 5 . 3 2 0 . 4 2 3 . 7 9 . 6 1 4 . 9 1 7 . 4 6 . 6 1 0 . 5 1 2 . 2 4 . 3 5 0 0 3 6 . 9 4 2 . 4 6 5 . 9 1 5 . 6 1 7 . 9 2 3 . 2 1 0 . 6 1 2 . 2 1 4 . 4 6 . 5 7 . 5 6 . 0 1 0 0 0 3 3 . 2 3 7 . 7 1 1 1 . 1 1 3 . 0 1 5 . 6 3 7 . 6 9 . 2 1 0 . 4 2 2 . 4 5 . 2 5 . 0 1 1 . 5 5 0 0 0 2 6 . 1 2 0 . 6 2 6 1 . 9 1 0 . 6 1 2 . 1 6 9 . 0 6 . 4 7 . 2 4 7 . 0 2 . 0 3 . 3 1 9 . 1 1 0 0 0 0 2 3 . 5 2 6 . 2 4 7 5 . 3 9 . 5 1 1 . 4 1 4 5 . 3 5 . 4 6 . 5 7 2 . 6 2 . 3 2 . 7 2 6 . 2 2 7 0 0 0 2 0 . 2 2 2 . 6 6 4 3 . 0 6 . 0 9 . 0 2 4 5 . 2 4 . 3 4 . 6 1 1 2 . 5 1 . 5 1 . 7 3 3 . 1 1 0 1 5 0 0 1 5 . 1 1 7 . 1 3 1 0 0 . 9 5 . 6 6 . 5 6 2 0 . 5 2 . 6 3 . 0 3 1 2 . 6 0 . 6 0 . 6 5 6 . 4 H A I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H E I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; ( N H ! I ' M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A N A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” E H E E 2 7 7 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( H 9 1 A V N U M B E R ( I t ) ( 3 : ) ( I ) ( L b s ) ( L b s ) ( g r ) ( 3 : ) ( I ) 1 2 1 1 0 6 3 2 1 0 0 0 0 4 6 7 4 . 4 6 5 0 2 0 0 5 0 6 1 . 0 1 0 1 6 6 . 0 2 . 5 4 4 . 0 6 W 1 0 1 ( m o b s s x 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 7 . 7 5 5 . 0 2 6 . 4 2 0 . 5 2 3 . 6 0 . 9 1 5 . 0 1 7 . 2 6 . 7 1 0 . 4 1 2 . 0 4 . 4 5 0 0 3 7 . 5 4 3 . 2 6 7 . 4 1 5 . 7 1 6 . 1 2 3 . 4 1 0 . 6 1 2 . 3 1 4 . 5 6 . 4 7 . 4 6 . 0 1 0 0 0 3 3 . 6 3 6 . 5 1 1 2 . 6 1 4 . 0 1 5 . 9 3 6 . 0 9 . 2 1 0 . 4 2 2 . 4 5 . 1 5 . 0 1 1 . 4 5 1 0 0 2 6 . 5 3 0 . 6 2 0 6 . 6 1 0 . 7 1 2 . 3 9 3 . 1 6 . 3 7 . 3 4 6 . 6 2 . 0 3 . 3 1 9 . 5 1 0 6 0 0 2 3 . 6 2 7 . 2 5 1 1 . 5 . 4 1 0 . 6 1 5 3 . 6 5 . 3 6 . 1 7 5 . 0 2 . 1 2 . 5 2 6 . 6 3 0 0 0 0 2 0 . 3 2 3 . 3 0 1 2 . 2 7 . 0 0 . 1 2 6 1 . 1 4 . 2 4 . 6 1 1 6 . 0 1 . 4 1 . 6 3 3 . 6 1 6 6 1 0 0 1 5 . 7 1 6 . 3 2 0 7 3 . 0 . 0 6 . 9 7 6 1 . 0 2 . 7 3 . 2 2 0 0 . 4 0 . 6 0 . 7 5 5 . 2 S A M P L E H A H E A C S L C L H B H H B A G M M A V N U M B E R ( E ! ) ( S t ) ( I ) ( L b s ) ( L b s ) ( I t ) ( 6 ! ) ( I ) 1 2 1 1 0 6 1 5 1 0 0 0 0 4 6 7 4 . 4 6 5 0 5 0 0 5 0 6 0 . 0 1 0 1 6 0 . 0 2 . 5 4 4 . 0 9 D E P O R M A T I O N ( a n b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A N T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 5 0 1 1 2 . 0 1 3 1 . 3 1 1 4 . 2 4 4 . 0 5 1 . 1 3 6 . 3 2 7 . 4 3 1 . 0 2 2 . 1 1 5 . 7 1 6 . 2 1 1 . 7 5 0 0 0 4 . 2 1 0 7 . 6 2 2 0 . 1 3 5 . 0 4 1 . 1 7 2 . 5 2 0 . 9 2 3 . 0 3 6 . 5 1 0 . 4 1 1 . 9 1 7 . 4 1 0 0 0 6 4 . 0 0 6 . 6 3 6 1 . 5 3 2 . 0 3 7 . 2 1 1 6 . 6 1 7 . 6 2 0 . 7 5 6 . 7 6 . 0 0 . 3 2 3 . 0 5 4 0 0 6 5 . 9 7 6 . 0 1 0 2 6 . 6 2 4 . 1 2 7 . 7 2 0 0 . 1 1 1 . 0 1 3 . 7 1 2 6 . 1 4 . 0 4 . 7 3 7 . 6 1 1 1 0 0 5 0 . 2 6 7 . 7 1 7 6 6 . 2 2 1 . 3 2 4 . 3 4 6 0 . 6 9 . 9 1 1 . 4 1 0 5 . 2 I I I 3 0 1 0 0 5 1 . 0 5 0 . 3 3 1 0 5 . 6 1 6 . 0 2 0 . 9 6 0 3 . 7 7 . 7 9 . 0 2 0 5 . 0 I I I 5 1 0 0 0 4 7 . 1 5 3 . 4 4 6 7 6 . 3 1 6 . 4 1 6 . 6 1 1 7 6 . 4 6 . 7 7 . 6 4 0 6 . 5 I I I I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H E I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O F S A M P L E I N A I R ; C L I - C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C Y C L E : I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 0 0 . 0 5 0 “ “ ) ‘ 0 0 0 0 2 7 8 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C S L C L H B H H B A ( a t ! A V N U M B E R ( 3 : ) ( a t ) ( I ) ( L b s ) ( L b s ) ( 5 : ) ( 8 : ) ( I ) 1 2 1 1 0 6 2 5 1 0 0 0 0 4 6 7 4 . 4 6 5 0 5 0 0 5 0 6 6 . 0 1 0 1 6 6 . 0 2 . 5 4 4 . 6 2 D E F O R M A T I O N ( i n c b c s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 6 . 0 1 3 3 . 0 6 4 . 3 4 6 . 6 5 3 . 2 2 0 . 4 3 0 . 1 3 4 . 2 1 7 . 6 1 6 . 1 2 0 . 6 0 . 0 5 0 0 0 1 . 9 1 0 6 . 3 2 1 6 . 6 3 5 . 6 4 1 . 4 7 0 . 0 2 1 . 1 2 4 . 4 3 7 . 5 1 0 . 6 1 2 . 3 1 7 . 2 1 0 0 0 6 2 . 6 9 3 . 5 3 6 4 . 6 3 1 . 6 3 6 . 0 1 1 3 . 9 1 6 . 0 2 0 . 3 5 6 . 0 6 . 2 9 . 3 2 4 . 0 5 0 0 0 6 5 . 0 7 4 . 2 9 3 1 . 6 2 4 . 3 2 7 . 7 2 6 9 . 4 1 2 . 3 1 4 . 0 1 1 0 . 7 4 . 3 4 . 9 3 7 . 1 1 0 0 0 0 5 6 . 6 6 6 . 2 1 5 6 6 . 7 2 1 . 6 2 5 . 1 4 4 3 . 4 1 0 . 3 1 2 . 0 1 6 4 . 0 3 . 2 3 . 7 4 9 . 4 3 0 0 0 0 4 0 . 7 5 6 . 7 2 0 0 2 . 5 1 7 . 0 2 0 . 4 7 6 7 . 0 7 . 6 6 . 9 2 6 7 . 0 1 . 0 2 . 1 5 6 . 3 5 3 6 0 0 4 5 . 5 5 1 . 6 4 5 1 0 . 7 1 6 . 2 1 6 . 5 1 1 5 6 . 6 6 . 7 7 . 6 4 0 6 . 0 1 . 4 1 . 5 7 0 . 0 S A M P L E H A H B A C S L C L H B H H E A ( N 0 1 A V N U M B E R ( 6 ! ) ( I t ) ( I ) ( L b S ) ( L b s ) ( 6 3 ) ( 3 : ) ( I ) 1 2 1 1 0 6 3 5 1 0 0 0 0 4 6 7 4 . 4 6 5 0 5 0 0 5 0 3 3 . 0 1 0 1 3 0 . 0 2 . 5 4 5 . 0 9 D E P O R M A T I O N ( a n b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 2 5 1 1 7 . 1 1 3 5 . 9 1 0 7 . 5 0 0 0 5 . 1 1 0 0 . 3 2 3 6 . 1 0 0 0 6 5 . 6 0 6 . 2 3 0 6 . 5 1 0 0 6 7 . 2 7 5 . 6 1 0 3 6 . 1 0 2 0 0 6 0 . 5 6 9 . 3 1 7 0 7 . 2 1 6 0 0 5 4 . 1 6 1 . 2 2 6 4 6 . 2 7 7 0 0 5 2 . 1 5 0 . 6 3 3 3 6 . 4 5 . 3 5 2 . 5 3 5 . 0 2 6 . 4 3 2 . 9 2 0 . 9 1 6 . 4 1 0 . 1 1 1 . 3 5 . 9 4 1 . 2 7 4 . 7 2 0 . 6 2 3 . 9 3 9 . 4 1 0 . 2 1 1 . 7 1 7 . 3 2 . 0 3 6 . 6 1 2 0 . 6 1 7 . 7 2 0 . 3 6 0 . 3 7 . 9 9 . 0 2 4 2 4 . 3 2 7 . 4 2 0 0 . 0 1 2 . 0 1 3 . 5 1 2 5 . 7 4 . 1 4 . 6 3 7 . 2 1 . 6 2 4 . 7 4 6 1 . 2 1 0 . 1 1 1 . 5 1 6 7 . 3 3 . 0 3 . 4 4 7 . 1 0 . 0 2 1 . 5 6 6 6 . 3 6 . 3 0 . 4 2 5 9 . 2 2 . 0 2 . 3 5 4 . 5 1 6 . 2 2 0 . 9 6 5 7 . 4 7 . 6 6 . 0 3 1 4 . I I - H A I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H E I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; G M M I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E ; P L A I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . ” E H E E 2 7 9 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 3 : ) ( S t ) ( I ) ( L b s ) ( L b s ) ( 3 r ) ( 5 : ) ( I ) 1 2 1 1 0 7 1 1 1 0 0 0 0 4 6 7 4 . 4 6 5 0 1 0 0 5 7 3 7 . 0 9 0 4 2 . 0 2 . 5 4 7 . 0 3 D E F O R M A T I O N ( a n b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T P 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 1 . 1 3 5 . 1 2 5 . 0 1 1 . 2 1 2 . 6 7 . 6 7 . 0 6 . 0 5 . 2 5 . 3 6 . 0 3 . 2 5 0 0 2 4 . 5 2 6 . 0 6 3 . 6 6 . 5 9 . 6 1 6 . 5 5 . 5 6 . 3 1 0 . 9 3 . 2 3 . 6 5 . 7 1 0 0 0 2 2 . 0 2 5 . 6 1 0 7 . 0 7 . 6 6 . 6 2 0 . 0 4 . 7 5 . 5 1 6 . 6 . 2 . 5 2 . 9 6 . 0 5 3 0 0 1 7 . 2 1 9 . 7 2 6 0 . 4 5 . 7 6 . 5 7 2 . 1 3 . 2 3 . 6 3 5 . 3 1 . 3 1 . 5 1 2 . 7 1 0 0 0 0 1 5 . 6 1 7 . 6 4 6 3 . 3 5 . 1 5 . 6 1 1 5 . 3 2 . 7 3 . 1 5 3 . 2 1 . 0 1 . 1 1 6 . 9 2 5 5 0 0 1 3 . 6 1 5 . 7 7 5 6 . 3 4 . 4 5 . 1 1 7 0 . 7 2 . 1 2 . 5 7 5 . 7 0 . 6 0 . 7 1 9 . 4 1 4 6 7 0 0 1 0 . 4 1 1 . 6 2 5 6 9 . 7 3 . 2 3 . 6 5 5 4 . 3 1 . 3 1 . 5 1 0 2 . 6 0 . 2 0 . 3 2 0 . 6 S A M P L E H A H E A C S L C L H B H H B A ( N i ! A V m ( 6 8 ' ) ( I t ) ( I ) ( L b s ) ( L b s ) ( 6 ! ) ( I ! ) ( I ) 1 2 1 1 0 7 2 1 1 0 0 0 0 4 6 7 4 . 4 6 5 0 1 0 0 5 7 3 5 . 0 0 0 3 7 . 0 2 . 5 4 7 . 0 1 D E P O R M A T I O N ( L D O H O I X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T O 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 2 0 3 0 . 2 3 4 . 6 2 7 . 7 1 0 . 6 1 2 . 4 6 . 6 7 . 6 6 . 7 5 . 6 5 . 0 5 . 6 3 . 5 5 1 0 2 4 . 3 2 6 . 7 6 3 . 5 6 . 5 1 0 . 0 1 6 . 4 5 . 5 6 . 5 1 0 . 0 3 . 1 3 . 7 5 . 7 1 0 0 0 2 2 . 0 2 5 . 5 1 0 5 . 2 7 . 6 6 . 6 2 0 . 5 4 . 7 5 . 5 1 6 . 6 2 . 5 2 . 9 7 . 9 5 4 2 0 1 7 . 1 1 0 . 3 2 6 1 . 9 5 . 7 6 . 4 7 2 . 5 3 . 2 3 . 6 3 5 . 4 1 . 3 1 . 5 1 2 . 7 1 1 5 6 0 1 5 . 2 1 7 . 6 5 0 6 . 1 5 . 0 5 . 6 1 2 5 . 3 2 . 6 3 . 0 5 7 . 1 0 . 0 1 . 1 1 7 . 6 1 6 6 0 0 1 4 . 4 1 6 . 7 5 6 7 . 6 4 . 7 5 . 4 1 4 2 . 6 2 . 4 2 . 6 6 2 . 7 0 . 6 0 . 9 1 7 . 6 1 6 7 3 0 0 1 0 . 2 1 1 . 6 2 7 2 2 . 1 3 . 1 3 . 6 5 6 4 . 7 1 . 3 1 . 5 2 0 0 . 7 0 . 2 0 . 3 3 0 . 0 I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H E I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 8 0 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C S L C L H B H H B A ( 3 T 1 A V N U M B E R ( 3 ! ) ( 3 : ) ( I ) ( L b s ) ( L b s ) ( 3 t ) ( 5 : ) ( I ) 1 2 1 1 0 7 3 1 1 0 0 0 0 4 6 7 4 . 4 6 5 0 1 0 0 5 7 3 6 . 0 9 0 4 6 . 0 2 . 5 4 7 . 0 5 D E F O R M A T I O N ( a n h s s X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A ” E L A N T O T . P L A . E L A . T O T . P L A . 1 0 0 3 1 . 3 3 5 . 6 2 5 . 3 1 1 . 2 1 2 . 6 7 . 9 7 . 9 0 . 1 5 . 2 5 . 3 6 . 1 3 . 3 5 0 0 2 4 . 6 2 6 2 6 4 . 2 6 . 5 0 . 6 1 6 . 5 5 . 5 6 . 4 1 0 . 9 3 . 2 3 . 6 5 . 7 1 0 0 0 2 2 . 1 2 5 5 1 0 0 . 2 7 . 6 6 . 7 3 0 . 4 4 . 7 5 . 4 1 7 . 1 2 . 5 2 . 6 6 . 1 5 0 0 0 1 7 . 4 1 0 . 7 2 7 5 . 3 5 . 6 6 . 5 7 0 . 6 3 . 2 3 . 6 3 4 . 7 1 . 3 1 . 5 1 2 . 6 1 1 7 0 0 1 5 . 3 1 7 . 6 5 1 6 . 0 5 . 0 5 . 6 1 2 7 . 0 2 . 6 3 . 0 5 7 . 6 0 . 9 1 . 1 1 7 . 6 2 6 6 0 0 1 3 . 5 1 5 . 3 6 0 9 . 0 4 . 3 4 . 9 1 0 0 . 6 2 . 1 2 . 4 7 9 . 6 0 . 6 0 . 7 2 0 . 1 1 5 0 0 0 0 1 0 . 3 1 1 . 0 2 6 6 1 . 6 3 . 2 3 . 7 5 7 4 . 4 1 . 3 1 . 5 1 0 7 . 5 0 . 2 0 . 3 2 9 . 6 S A M P L E H A H B . A C S L C L H B H H B A ( R E ! A V N U M B E R ( 2 ! ) ( I t ) ( I ) ( L b s ) ( L b s ) ( 6 ! ) ( I t ) ( I ) 1 2 1 1 0 7 1 2 1 0 0 0 0 4 6 7 4 . 4 6 5 0 2 0 0 5 7 2 0 . 0 0 0 1 1 . 0 2 . 5 4 7 . 0 1 D E F O R M A T I O N ( a n b s s X 0 . 0 0 0 1 ) L V D T f 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T P 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 1 . 0 7 0 . 5 5 5 . 5 2 1 . 6 2 4 . 5 1 6 . 6 1 4 . 6 1 6 . 6 1 0 . 6 0 . 3 1 0 . 6 6 . 3 5 0 0 4 6 . 6 5 5 . 6 1 4 1 . 9 1 6 . 4 1 6 . 6 3 0 . 6 1 0 . 1 1 1 . 6 2 2 . 3 5 . 4 6 . 2 1 0 . 9 1 0 0 0 4 3 . 6 4 9 . 6 2 4 0 . 5 1 4 . 6 1 6 . 6 6 5 . 1 6 . 6 9 . 6 3 4 . 6 4 . 2 4 . 6 1 5 . 2 5 6 0 0 3 3 . 6 3 0 . 2 6 5 3 . 5 1 0 . 0 1 2 . 6 1 6 1 . 9 5 . 6 6 . 5 7 4 . 0 I I I 1 0 0 0 0 3 1 . 0 3 6 . 1 1 0 1 6 . 4 9 . 6 1 1 . 4 2 4 4 . 6 4 . 9 5 . 7 1 0 5 . 6 I I I 2 7 0 0 0 2 6 . 7 3 0 . 7 1 7 0 1 . 9 6 . 3 9 . 5 4 0 6 . 7 3 . 6 4 . 3 1 5 0 . 4 I I I 1 0 2 2 0 0 2 1 . 0 2 5 . 4 4 4 6 1 . 2 6 . 6 7 . 6 0 4 7 . 1 2 . 6 3 . 0 3 1 7 . 5 I I I H A I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H E I H E I G H T O F B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O F S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O F S A M P L E I N ‘ H A T E R ; A V I P E R C E N T A I R V O I D S ; G M M I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . ” E H E E 2 8 1 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C S L C L H B H H B A G M M A V N U M B E R ( 3 : ) ( 2 ! ) ( I ) ( L b s ) ( L b s ) ( 3 : ) ( 5 : ) ( I ) 1 2 1 1 0 7 2 2 1 0 0 0 0 4 6 7 4 . 4 6 5 0 2 0 0 5 7 3 6 . 0 9 0 4 6 . 0 2 . 5 4 7 . 1 0 D E F O R M A T I O N ( a n h s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 3 0 6 0 . 5 7 1 . 4 6 6 . 6 2 0 . 6 2 4 . 5 1 0 . 6 1 3 . 6 1 6 . 3 1 2 . 2 6 . 5 1 0 . 1 7 . 0 5 0 0 4 9 . 4 5 6 . 9 1 4 7 . 6 1 6 . 5 1 9 . 0 4 0 . 9 1 0 . 1 1 1 . 7 2 2 . 9 5 . 4 6 . 2 1 1 . 1 1 0 0 0 4 4 . 5 5 0 . 6 2 4 7 . 0 1 4 . 7 1 6 . 7 6 6 . 2 6 . 6 9 . 6 3 5 . 0 4 . 2 4 . 6 1 5 . 3 5 2 5 0 3 4 . 7 3 0 . 7 6 3 7 . 6 1 1 . 1 1 2 . 6 1 5 6 . 9 5 . 7 6 . 6 7 1 . 7 2 . 1 2 . 4 2 3 . 3 7 5 0 0 3 2 . 0 3 6 . 2 6 7 6 . 4 1 0 . 4 1 2 . 0 2 1 1 . 7 5 . 2 6 . 1 0 3 . 5 1 . 6 2 . 1 2 6 . 1 1 0 3 0 0 3 1 . 4 3 6 . 2 1 0 0 7 . 7 0 . 6 1 1 . 4 2 3 9 . 4 4 . 6 5 . 6 1 0 2 . 5 I I I 3 0 0 0 0 2 6 . 7 3 0 . 0 2 1 4 7 . 6 6 . 2 9 . 4 4 6 2 . 0 3 . 7 4 . 2 1 6 4 . 6 I I I 1 1 0 5 0 0 2 2 . 0 2 4 . 0 4 5 4 0 . 0 6 . 5 7 . 4 9 4 9 . 6 2 . 6 2 . 9 3 1 2 . 7 I I I S A M P L E H A H 6 A C S L C L H B H H B A I ! ! ! A V N U M B E R ( s ! ) ( I t ) ( I ) ( L b s ) ( L b s ) ( I ! ) ( I t ) ( I ) 1 2 1 1 0 7 3 2 1 0 0 0 0 4 6 7 4 . 4 6 5 0 2 0 0 5 7 3 4 . 0 0 0 5 0 . 0 2 . 5 4 7 . 1 0 D E F O R M A T I O N ( a n b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T I E ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 3 . 6 7 2 . 0 5 6 . 0 2 1 . 6 2 4 . 0 1 7 . 5 1 4 . 6 1 6 . 7 1 1 . 0 0 . 3 1 0 . 6 6 . 5 5 0 0 5 0 . 1 5 6 . 7 1 5 0 . 1 1 6 . 6 1 6 . 6 4 1 . 2 1 0 . 1 1 1 . 5 2 2 . 0 5 . 4 6 . 1 1 1 . 0 1 0 0 0 4 5 . 1 5 1 . 6 2 5 5 . 0 1 4 . 7 1 6 . 9 6 7 . 6 6 . 6 0 . 0 3 5 . 6 4 . 1 4 . 7 1 5 . 4 5 0 0 0 3 5 . 5 4 0 . 6 6 7 0 . 4 1 1 . 2 1 2 . 6 1 6 5 . 0 5 . 6 6 . 7 7 5 . 7 2 . 1 2 . 5 2 4 . 6 1 0 0 0 0 3 2 . 0 3 7 . 1 1 1 1 6 . 0 0 . 9 1 1 . 5 2 6 3 . 4 4 . 0 5 . 6 1 1 2 . 4 1 . 6 1 . 6 3 1 . 4 5 0 0 0 0 2 5 . 1 2 6 . 6 2 6 2 4 . 5 7 . 5 6 . 6 6 1 0 . 1 3 . 2 3 . 6 2 1 9 . 0 0 . 7 0 . 6 4 0 . 1 1 0 0 0 0 0 2 2 . 6 2 6 . 0 4 7 0 2 . 4 6 . 6 7 . 6 0 0 6 . 6 2 . 6 3 . 0 3 2 0 . 5 0 . 5 0 . 5 4 6 . 3 - m m m o r m m m ; m - m m o r n m ; - m r a s m r c m m ; S L - s u s n n - L O A D ; - m a a r o r m m m ; u - m x é m ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y : . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . ” E H “ 2 8 2 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C 8 1 C L H B H H B A G M M A V M E N ( : 1 ) ( 3 : ) ( I ) ( L b s ) ( L b s ) ( s t ) ( 3 : ) ( I ) 1 2 1 1 0 7 1 5 1 0 0 0 0 4 6 7 4 . 4 6 5 0 5 0 0 5 7 2 6 . 0 9 9 3 4 . 0 2 . 5 4 7 . 1 2 D E P O R M A T I O N ( a n b o s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 3 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 5 7 . 6 1 7 9 . 1 1 0 4 . 1 4 6 . 6 5 5 . 3 5 2 . 2 2 7 . 7 3 1 . 4 2 7 . 7 5 0 0 1 2 3 . 6 1 4 3 . 9 4 6 9 . 2 3 6 . 0 4 2 . 0 1 2 1 . 0 1 6 . 7 2 1 . 6 5 5 . 0 1 0 0 0 1 1 1 . 6 1 2 7 . 5 6 2 3 . 2 3 2 . 7 3 7 . 4 1 9 6 . 4 1 5 . 7 1 6 . 0 6 5 . 0 5 0 0 0 6 7 . 6 1 0 1 . 4 2 1 3 1 . 6 2 4 . 6 2 6 . 6 4 6 6 . 5 1 0 . 3 1 1 . 0 1 7 0 . 0 1 0 6 0 0 7 6 . 1 0 0 . 6 3 7 3 3 . 3 2 1 . 6 2 5 . 2 7 6 3 . 3 6 . 3 0 . 7 2 6 2 . 6 I I I 1 1 3 0 0 7 7 . 6 6 7 . 6 3 5 5 6 . 5 2 1 . 5 2 4 . 2 7 4 4 . 4 6 . 2 0 . 3 2 4 6 . 4 S A M P L E H A H E A C S L C L H B H H B A ( I Q ! A V N U M B E R ( 2 1 ) ( 2 2 ) ( I ) ( L b s ) ( L b s ) ( I ! ) ( 3 : ) ( I ) 1 2 1 1 0 7 2 5 1 0 0 0 0 4 6 7 4 . 4 6 5 0 5 0 0 5 7 4 1 . 0 0 0 4 2 . 0 2 . 5 4 6 . 0 4 D E P O R M A T I O N ( a n b o s X 0 . 0 0 0 1 ) L V D T 9 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 5 3 . 6 1 7 5 . 0 1 7 6 . 5 4 6 . 5 5 5 . 4 4 0 . 0 2 7 . 6 3 1 . 6 2 6 . 3 1 4 . 7 1 6 . 6 1 2 . 9 5 0 0 1 2 0 . 6 1 4 0 . 0 4 6 0 . 2 3 6 . 6 4 2 . 6 1 1 6 . 3 1 6 . 9 2 1 . 0 5 4 . 4 7 . 9 9 . 2 2 0 . 0 1 0 0 0 1 0 6 . 0 1 2 3 . 6 7 6 1 . 2 3 2 . 7 3 7 . 1 1 0 0 . 5 1 5 . 9 1 6 . 1 6 3 . 5 5 . 0 6 . 6 2 6 . 2 5 0 0 0 6 5 . 5 9 6 . 6 1 0 0 7 . 6 2 4 . 7 2 6 . 6 4 4 7 . 1 1 0 . 5 1 2 . 1 1 6 6 . 3 2 . 6 3 . 2 3 9 . 3 1 0 0 0 0 7 7 . 1 6 6 . 9 3 3 2 1 . 6 2 1 . 0 2 5 . 3 7 1 6 . 0 6 . 7 1 0 . 0 2 4 6 . 5 2 . 0 2 . 2 4 6 . 4 1 3 3 0 0 7 3 . 9 6 5 . 4 3 7 2 0 . 7 2 0 . 6 2 4 . 1 7 0 1 . 5 6 . 0 9 . 2 2 6 3 . 5 1 . 7 1 . 0 4 7 . 7 I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H E I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E R O R M A T I O N . ” ! ! ! f i 2 8 3 0 2 0 0 c r c m x c 0 0 0 0 0 0 : 0 0 0 0 0 1 0 H A 0 0 0 : 0 1 0 1 0 0 0 0 0 0 ( : 0 1 0 0 m m ( 0 : ) ( a ) m ( 1 0 . ) m m ( a ) ( u ) ( 2 ) 1 2 1 1 0 7 0 0 1 0 0 0 0 0 0 7 « . 0 0 5 0 5 0 0 0 7 2 0 . 0 0 0 1 3 . 0 2 . 5 0 0 . 0 7 0 0 0 0 0 0 0 0 1 0 0 ( 1 0 0 0 . . x 0 . 0 0 0 1 ) L V D T 0 1 ¢ 0 . 0 1 0 . ) 1 0 0 0 0 2 ( 2 . 0 1 0 . ) n v n : 0 0 ( 4 . 0 I N . ) 1 0 0 1 0 0 ( 0 . 0 0 2 0 I N . ) 0 0 0 1 0 0 0 0 0 0 0 0 1 0 . : 0 0 . 0 1 0 . 0 1 0 . 0 0 0 . 0 1 0 . 0 1 0 . 0 0 1 . 2 1 0 . 0 1 0 . 0 0 1 . 0 1 0 . 1 0 0 1 0 0 . 0 1 0 0 . 7 2 0 2 . 0 « 0 . 0 0 1 . 0 0 2 . 0 2 5 . 0 2 0 . 7 0 2 . 0 1 2 . 0 1 0 . 0 1 0 . 1 5 0 0 1 2 0 . 0 1 0 0 . 0 0 0 4 . 0 0 0 . 7 4 2 . 2 1 1 0 . 0 1 0 . 0 2 1 . 0 0 0 . 0 7 . 0 0 . 1 2 0 . 5 1 0 0 0 1 0 0 . 0 1 2 0 . 0 7 0 2 . 5 0 2 . 0 0 0 . 0 1 0 2 . 0 1 0 . 0 1 0 . 0 0 0 . 0 0 . 0 0 . 0 2 0 . 0 0 1 0 0 0 0 . 4 0 0 . 0 2 0 0 0 . 0 2 ~ . 0 2 7 . 0 0 0 0 . 5 1 0 . 0 1 1 . 7 1 0 0 . 0 2 . 0 0 . 1 0 0 . 0 0 7 0 0 7 0 . 0 0 0 . 0 0 0 7 0 . 0 2 2 . 4 2 0 . 7 0 0 0 . 0 0 . 0 1 0 . 0 2 0 2 . 1 2 . 1 2 . 0 0 7 . 2 0 7 0 0 7 7 . 5 0 0 . 1 2 0 0 0 . 0 2 2 . 0 2 0 . 2 0 0 0 . 0 0 . 7 1 0 . 0 2 2 2 . 0 2 . 0 2 . 0 0 0 . 0 0 0 0 0 1 0 0 0 a n 0 c 0 1 0 1 H B H 0 0 0 : 0 0 : 0 0 0 0 0 0 0 0 ( 0 : ) ( 2 : ) ( x ) ( 1 0 0 ) ( 1 0 0 ) ( 0 : ) ( 2 : ) ' ( 2 ) 1 1 1 1 0 7 1 5 1 0 0 0 0 0 0 0 4 . 0 1 5 0 0 0 0 0 7 . 0 . 0 0 0 0 0 . 0 2 . 0 5 7 . 1 0 0 0 0 0 0 0 0 1 1 0 0 ( 1 0 0 0 . . x 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 1 0 . ) 1 0 0 0 0 2 : 2 . 0 1 0 . ) n v n m 0 0 ( « . 0 1 0 . ) 1 0 0 1 0 0 ( 0 . 0 0 2 0 I N . ) c 0 0 1 0 N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 6 0 . 1 1 6 2 . 2 1 6 6 . 2 4 0 . 6 5 6 . 5 5 0 . 6 2 6 . 4 3 2 . 3 2 7 . 1 1 4 . 9 1 7 . 0 1 3 . 3 5 0 0 1 2 5 . 7 1 4 3 . 0 4 7 4 . 1 3 7 . 7 4 3 . 1 1 1 7 . 9 1 9 . 2 2 2 . 0 5 4 . 6 6 . 0 0 . 2 2 0 . 0 1 0 0 0 1 1 3 . 3 1 3 0 . 2 6 0 3 . 7 3 3 . 4 3 6 . 4 1 0 2 . 7 1 6 . 2 1 6 . 6 6 3 . 9 6 . 0 6 . 0 2 6 . 1 5 0 0 0 6 9 . 0 1 0 2 . 7 2 0 3 6 . 4 2 5 . 3 2 0 . 2 4 4 6 . 5 1 0 . 6 1 2 . 2 1 6 5 . 5 2 . 6 3 . 2 3 6 . 6 1 1 2 0 0 7 6 . 0 6 0 . 6 3 7 5 7 . 3 2 2 . 0 2 5 . 0 7 9 1 . 1 6 . 5 9 . 7 2 6 6 . 3 1 . 6 2 . 1 4 9 . 0 1 2 0 0 0 7 6 . 1 6 6 . 3 3 5 6 5 . 7 2 1 . 7 2 4 . 5 7 5 2 . 1 6 . 3 9 . 4 2 5 1 . 1 1 . 6 2 . 0 4 6 . 1 1 3 1 0 0 7 7 . 0 6 6 . 0 4 1 3 2 . 6 2 1 . 4 2 4 . 1 6 6 2 . 6 6 . 1 9 . 2 2 6 5 . 1 1 . 7 1 . 0 5 1 . 0 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H I I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I I I N H O U R B I T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O I M A T I O N I C Y C L E ; . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 8 4 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( R E ! A V N U M B E R ( 6 : ) ( I ! ) ( I ) ( L b s ) ( L b s ) ( 6 ! ) ( 6 ! ) ( I ) 1 2 2 1 0 7 1 1 1 0 0 0 0 4 6 9 4 . 4 6 5 0 1 0 0 5 7 1 9 . 0 9 0 4 0 . 0 2 . 5 4 7 . 3 2 D E F O R M A T I O N ( L u c b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 1 . 3 3 5 . 4 3 0 . 6 1 0 . 6 1 2 . 2 0 . 3 7 . 5 6 . 4 6 . 0 4 . 0 5 . 5 3 . 6 5 0 0 2 4 . 6 2 6 . 4 6 0 . 1 6 . 2 0 . 5 2 2 . 2 5 . 2 6 . 0 1 2 . 7 2 . 6 3 . 3 . 4 1 0 0 0 2 2 . 2 2 5 . 4 1 4 1 . 2 7 . 3 6 . 4 3 7 . 6 4 . 4 5 . 0 2 0 . 5 2 . 2 2 . 5 9 . 3 5 0 0 0 1 7 . 4 1 0 . 9 3 7 1 . 0 5 . 5 6 . 3 0 1 . 7 3 . 0 3 . 4 4 3 . 4 1 . 2 1 . 3 1 4 . 6 1 0 0 0 0 1 5 . 7 1 6 . 1 6 3 4 . 1 4 . 0 5 . 7 1 5 0 . 6 2 . 5 2 . 0 6 6 . 6 0 . 9 1 . 0 1 9 . 6 3 0 0 0 0 1 3 . 3 1 5 . 3 1 2 0 7 . 4 4 . 1 4 . 7 2 7 0 . 0 1 . 0 2 . 2 1 0 7 . 2 0 . 5 0 . 6 2 4 . 3 1 5 0 2 0 0 1 0 . 4 1 2 . 0 3 9 1 4 . 0 3 . 0 3 . 5 6 0 1 . 0 1 . 2 1 . 4 2 6 1 . 6 0 . 2 0 . 2 3 5 . 6 S A M P L E 1 H A H E A C S L C L H E H H B A ( H E ! A V s u m ( 6 2 ) ( 6 8 ) ( I ) ( L b s ) ( L b s ) ( 6 2 ) ( 2 2 ) ( I ) 1 2 2 1 0 7 2 1 1 0 0 0 0 4 6 0 4 . 4 6 5 0 1 0 0 5 7 3 1 . 0 9 0 2 4 . 0 2 . 5 4 6 . 6 6 D E P O R M A T I O N ( i n c b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 6 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 0 . 4 3 3 . 0 2 5 . 6 1 0 . 6 1 2 . 3 6 . 1 7 . 4 6 . 6 5 . 3 4 . 0 5 . 7 3 . 3 5 0 0 2 3 . 1 2 6 . 6 6 6 . 7 6 . 1 0 . 3 2 0 . 0 5 . 2 6 . 0 1 1 . 7 2 . 0 3 . 4 6 . 0 1 0 0 0 2 0 . 6 2 3 . 0 1 1 6 . 5 7 . 2 6 . 3 3 2 . 6 4 . 4 5 . 1 1 6 . 2 2 . 3 2 . 6 6 . 5 5 1 0 0 1 6 . 3 1 6 . 5 3 2 3 . 2 5 . 4 6 . 2 6 3 . 6 3 . 0 3 . 4 4 0 . 6 1 . 2 1 . 4 1 4 . 4 1 0 0 0 0 1 4 . 7 1 6 . 6 5 3 0 . 5 4 . 9 5 . 5 1 3 2 . 6 2 . 5 2 . 9 6 0 . 6 I I I 3 0 0 0 0 1 2 . 5 1 4 . 5 1 0 3 0 . 0 4 . 0 4 . 7 2 4 3 . 5 1 . 9 2 . 2 0 9 . 6 I I I 1 6 7 0 0 0 0 . 6 1 1 . 1 3 4 0 6 . 5 4 . 6 5 . 6 I 1 . 2 1 . 4 2 4 6 . 4 I I I ‘ H A I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H E I H E I G H T O F B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H E H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; ( N E ! I ' M A X I M U M I T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C Y C L E : P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T T O N . 2 8 5 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C S L C L H B H H B A G M M A V N U M B E R ( 6 ! ) ( I ! ) ( I ) ( L b s ) ( L b s ) ( I ! ) ( 6 8 ) ( I ) 1 2 2 1 0 7 3 1 1 0 0 0 0 4 6 9 4 . 4 6 5 0 1 0 0 5 7 3 2 . 0 0 9 5 4 . 0 2 . 5 4 7 . 2 2 D E P O R M A T I O N ( a n b s s X 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 2 0 3 0 . 1 3 4 . 5 3 3 . 4 1 0 . 5 1 2 . 0 1 0 . 0 7 . 2 6 . 2 6 . 4 4 . 6 5 . 3 3 . 6 5 0 0 2 4 . 3 2 7 . 6 7 6 . 6 6 . 2 0 . 3 2 2 . 1 5 . 2 5 . 0 1 2 . 7 2 . 0 3 . 3 6 . 4 1 0 0 0 2 1 . 0 2 4 . 0 1 3 2 . 6 7 . 3 6 . 3 3 6 . 0 4 . 4 5 . 0 1 9 . 6 2 . 2 2 . 5 9 . 0 5 2 0 0 1 7 . 1 1 0 . 6 3 6 0 . 6 5 . 5 6 . 3 6 0 . 6 3 . 0 3 . 4 4 2 . 6 I I I 1 0 0 0 0 1 5 . 5 1 7 . 6 6 1 6 . 6 4 . 0 5 . 6 1 4 6 . 9 2 . 5 2 . 0 6 6 . 4 I I I 3 0 0 0 0 1 3 . 1 1 5 . 1 1 1 4 5 . 0 4 . 1 4 . 7 2 6 0 . 0 1 . 9 2 . 2 1 0 3 . 7 I I I 1 0 1 3 0 0 1 0 . 0 1 1 . 3 4 1 0 5 . 3 2 . 9 3 . 4 6 6 1 . 6 1 . 1 1 . 3 2 7 7 . 4 I I I S A M P L E H A H B A C S L C L H B H H B A ( l l ! A V N U M B E R ( 6 8 ) ( I ! ) ( I ) ( L b s ) ( L b s ) ( I ! ) ( I t ) ( I ) 1 2 2 1 0 7 1 2 1 0 0 0 0 4 6 9 4 . 4 6 5 0 2 0 0 5 7 3 5 . 0 0 0 5 0 . 0 2 . 5 4 7 . 1 0 D E P O R M A T I O N ( L n n b s s X 0 . 0 0 0 1 ) L V D T 9 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T O 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 0 . 6 6 9 . 4 6 3 . 6 2 0 . 7 2 3 . 7 1 6 . 0 1 3 . 7 1 5 . 7 1 1 . 7 6 . 6 0 . 6 6 . 6 5 0 0 4 7 . 6 5 4 . 5 1 6 7 . 1 1 5 . 6 1 6 . 0 4 5 . 6 9 . 5 1 0 . 6 2 5 . 1 4 . 0 5 . 6 1 1 . 6 1 0 0 0 4 3 . 1 5 0 . 0 2 6 6 . 2 1 4 . 0 1 6 . 3 7 6 . 3 6 . 0 9 . 3 3 0 . 5 3 . 6 4 . 4 1 6 . 6 6 4 0 0 3 2 . 6 3 6 . 0 0 0 3 . 4 1 0 . 2 1 1 . 5 2 1 7 . 2 5 . 1 5 . 6 0 5 . 1 1 . 7 2 . 0 2 6 . 5 1 0 0 0 0 3 0 . 5 3 4 . 7 1 2 6 6 . 0 0 . 4 1 0 . 6 3 0 2 . 0 4 . 5 5 . 2 1 2 6 . 5 1 . 4 1 . 6 3 4 . 3 2 6 5 0 0 2 6 . 1 3 0 . 0 2 4 1 2 . 7 7 . 9 0 . 1 5 3 5 . 7 3 . 4 4 . 0 2 0 0 . 6 0 . 6 1 . 0 4 1 . 7 5 4 0 0 0 2 3 . 7 2 7 . 4 3 0 3 3 . 0 7 . 0 6 . 1 6 4 3 . 6 2 . 0 3 . 3 2 0 4 . 0 0 . 6 0 . 7 5 0 . 6 H A I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H E I H E I G H T O F B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; ( I E ! I ' M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . S A M P L E H A H E A C S L C L H B H H B A ( R 0 ! A V N U M B E R ( 3 : ) ( 2 ! ) ( I ) ( L b s ) ( L b s ) ( 5 : ) ( g r ) ( I ) 1 2 2 1 0 7 2 2 1 0 0 0 0 4 6 9 4 . 4 6 5 0 2 0 0 5 7 3 6 . 0 9 9 5 3 . 0 2 . 5 4 7 . 0 7 D E P O R M A T I O N ( A n a b o s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . E L A . 1 0 0 6 0 . 6 7 0 . 1 6 3 . 6 2 0 . 7 2 4 . 0 1 6 . 0 1 3 . 7 1 5 . 0 1 1 . 7 6 . 6 0 . 0 6 . 6 5 0 0 4 7 . 6 5 5 . 2 1 6 3 . 7 1 5 . 6 1 6 . 3 4 5 . 0 0 . 5 1 1 . 0 2 4 . 7 4 . 9 5 . 7 1 1 . 7 1 0 0 0 4 2 . 0 4 0 . 6 2 6 0 . 4 1 4 . 0 1 6 . 2 7 6 . 6 6 . 1 0 . 3 3 9 . 6 3 . 6 4 . 4 1 6 . 9 5 5 0 0 3 3 . 2 3 7 . 9 6 0 0 . 0 1 0 . 5 1 1 . 9 1 9 6 . 6 5 . 3 6 . 0 6 7 . 5 1 . 9 2 . 1 2 7 . 2 1 0 0 0 0 3 0 . 4 3 4 . 6 1 3 0 0 . 7 0 . 4 1 0 . 6 3 0 6 . 4 4 . 5 5 . 2 1 2 6 . 5 9 . 1 1 0 . 6 I 2 9 0 0 0 2 5 . 9 2 9 . 7 2 4 2 2 . 7 7 . 6 9 . 0 5 3 0 . 2 6 . 7 1 0 . 2 I I I I 7 0 0 0 0 2 2 . 7 2 6 . 0 4 7 2 0 . 4 6 . 7 7 . 7 1 0 0 2 . 7 2 . 7 3 . 1 3 3 0 . 2 I I I S A M P L E H A H E A C S L C L H B H H B A ( N i ! A V N U M B E R ( 6 1 ) ( I t ) ( I ) ( L b s ) ( L b s ) ( I ! ) ( 3 : ) ( I ) 1 2 2 1 0 7 3 2 1 0 0 0 0 4 6 0 4 . 4 6 5 0 2 0 0 5 7 3 0 . 0 0 0 4 2 . 0 2 . 5 4 6 . 0 1 D E P O R M A T I O N ( L u b b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A ; T O T . P L A . E L A N T O T . P L A " E L A m T O T . P L A . 1 0 0 5 0 . 2 6 6 . 5 5 6 . 7 2 0 . 6 2 3 . 6 1 7 . 6 1 3 . 7 1 5 . 0 1 1 . 1 6 . 6 1 0 . 0 6 . 5 5 0 0 4 6 . 5 5 3 . 5 1 5 4 . 4 1 5 . 7 1 6 . 0 4 3 . 2 9 . 5 1 0 . 0 2 3 . 0 5 . 0 5 . 7 1 1 . 4 1 0 0 0 4 1 . 0 4 7 . 4 2 6 7 . 6 1 3 . 0 1 5 . 7 7 2 . 3 6 . 1 0 . 1 3 7 . 6 3 . 0 4 . 4 1 6 . 3 5 0 0 0 3 2 . 9 3 7 . 3 7 0 1 . 2 1 0 . 6 1 2 . 0 1 7 4 . 4 5 . 5 6 . 2 7 9 . 1 2 . 0 2 . 3 2 5 . 5 1 0 0 0 0 2 9 . 7 3 4 . 0 1 2 3 2 . 7 9 . 4 1 0 . 6 2 0 5 . 7 4 . 6 5 . 2 1 2 5 . 5 1 . 5 1 . 7 3 4 . 6 5 0 0 0 0 2 3 . 3 2 6 . 6 3 2 1 9 . 6 7 . 1 6 . 2 7 0 9 . 0 3 . 0 3 . 4 2 5 3 . 4 0 . 6 0 . 7 4 6 . 0 6 0 0 0 0 2 1 . 7 2 5 . 3 4 7 4 6 . 4 6 . 5 7 . 6 1 0 1 6 . 0 2 . 6 3 . 1 3 4 4 . 7 0 . 5 0 . 6 5 4 . 0 H A I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H E I ‘ H E I G H T O F B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N . A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O F S A M P L E I N ‘ H A T E R ; A V I P E R C E N T A I R V O I D S ; ( N I ! I ' M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E : P L A I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” ! N E B 2 8 7 B E A M C Y C L I C L O A D D A T A S A M P L E H A H 6 A C S L C L H B H H B A ( N 0 ! A V N U M B E R ( 2 ! ) ( A ! ) ( I ) ( L b s ) ( L b s ) ( I t ) ( 8 ! ) ( I ) 1 2 2 1 0 7 1 5 1 0 0 0 0 4 6 9 4 . 4 6 5 0 5 0 0 5 7 5 5 . 0 0 0 6 6 . 0 2 . 5 4 6 . 6 6 D E P O R M A T I O N ( a n b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A " E L A N T O T . P L A T E L A W T O T . P L A “ E L A N T O T . P L A . 1 0 0 1 4 7 . 5 1 7 1 . 3 1 9 1 . 7 4 6 . 3 5 3 . 7 5 2 . 4 2 6 . 1 3 0 . 3 2 7 . 6 I I I 5 0 0 1 1 5 . 0 1 3 4 . 4 5 1 9 . 3 3 5 . 1 4 0 . 6 1 3 0 . 7 1 7 . 7 2 0 . 5 5 0 . 0 I I I 1 0 3 0 1 0 4 . 0 1 1 9 . 3 6 6 7 . 4 3 1 . 0 3 5 . 6 2 1 5 . 0 1 4 . 6 1 6 . 9 0 2 . 1 I I I 5 0 0 0 6 2 . 0 9 3 . 6 2 3 5 3 . 3 2 3 . 6 2 7 . 0 5 2 4 . 2 0 . 6 1 1 . 2 1 0 0 . 6 I I I 1 0 0 0 0 7 3 . 0 6 4 . 1 4 0 4 9 . 2 2 0 . 0 2 3 . 6 6 6 6 . 6 6 . 1 0 . 2 2 0 2 . 1 I I I 1 2 5 0 0 7 1 . 5 6 1 . 1 4 3 1 2 . 0 2 0 . 1 2 2 . 6 0 1 3 . 7 7 . 6 6 . 6 2 0 0 . 3 I I I 1 3 0 0 0 7 1 . 1 6 1 . 5 4 7 7 3 . 5 2 0 . 0 2 2 . 0 1 0 0 0 . 4 7 . 5 6 . 6 3 2 9 . 1 I I I S A M P L E H A H E A C S L C L H B H H B A G M M A V N U M B E R ( 6 1 ) ( I t ) ( I ) ( 1 0 6 ) ( 1 b . ) ( 6 3 ) ( I t ) ( I ) 1 2 2 1 0 7 2 5 1 0 0 0 0 4 6 0 4 . 4 6 5 0 5 0 0 5 7 5 6 . 0 0 0 6 3 . 0 2 . 5 4 6 . 6 0 m u n ! ( a n b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 4 6 . 3 1 6 0 . 6 1 6 0 . 2 4 6 . 2 5 3 . 6 5 2 . 0 2 6 . 2 3 0 . 4 2 7 . 5 1 3 . 6 1 5 . 7 1 3 . 3 5 0 0 1 1 4 . 9 1 3 1 . 9 4 9 5 . 4 3 5 . 1 4 0 . 3 1 2 5 . 5 1 7 . 7 2 0 . 4 5 7 . 6 7 . 3 6 . 4 2 1 . 7 1 0 0 0 1 0 3 . 6 1 1 7 . 1 6 5 0 . 2 3 1 . 1 3 5 . 2 2 1 0 . 0 1 4 . 9 1 6 . 9 0 0 . 6 5 . 5 6 . 2 2 9 . 0 5 0 0 0 6 1 . 3 0 4 . 5 2 2 7 7 . 7 2 3 . 6 2 7 . 4 5 1 1 . 1 0 . 6 1 1 . 4 1 6 7 . 0 2 . 6 3 . 0 4 2 . 0 1 0 0 0 0 7 3 . 3 6 3 . 3 3 9 7 0 . 6 2 0 . 9 2 3 . 7 6 5 6 . 2 6 . 1 9 . 2 2 0 0 . 3 1 . 6 2 . 0 5 5 . 3 1 2 1 0 0 7 1 . 2 6 2 . 6 4 1 2 2 . 4 2 0 . 2 2 3 . 4 6 6 1 . 6 7 . 7 6 . 9 2 0 1 . 6 1 . 6 1 . 0 5 2 . 5 I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H I I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I ' H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I ' M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O I M A T I O N I C Y C L E : . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . ” ! E N E 2 8 8 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C S L C L H B H H B A ( 3 0 1 A V N U M B E R ( 6 ! ) ( 2 ! ) ( I ) ( L b s ) ( L b s ) ( I ! ) ( 3 : ) ( I ) 1 2 2 1 0 7 3 5 1 0 0 0 0 4 6 9 4 . 4 6 5 0 5 0 0 5 7 1 7 . 0 9 9 2 3 . 0 2 . 5 4 7 . 1 5 D E F O R M A T I O N ( a n b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 5 2 . 6 1 7 2 . 7 2 1 4 . 9 4 6 . 4 5 2 . 4 5 6 . 6 2 5 . 7 2 9 . 1 2 0 . 4 1 3 . 1 1 4 . 7 1 3 . 9 5 0 0 1 2 0 . 0 1 3 7 . 1 5 6 3 . 4 3 5 . 2 4 0 . 2 1 3 7 . 0 1 7 . 4 1 9 . 6 6 1 . 6 6 . 9 7 . 0 2 2 . 4 1 0 0 0 1 0 6 . 2 1 2 2 . 4 0 6 5 . 6 3 1 . 2 3 5 . 3 2 3 1 . 0 1 4 . 6 1 6 . 5 9 7 . 2 5 . 1 5 . 6 3 0 . 9 5 0 0 0 6 5 . 0 0 6 . 3 2 5 4 4 . 3 2 3 . 6 2 6 . 7 5 4 6 . 9 9 . 5 1 0 . 6 1 0 4 . 0 2 . 4 2 . 7 4 2 . 5 1 0 0 0 0 7 6 . 6 6 6 . 6 4 4 6 6 . 2 2 0 . 0 2 3 . 7 0 2 6 . 6 7 . 6 6 . 9 3 0 3 . 9 1 . 6 1 . 6 5 4 . 0 1 3 0 0 0 7 3 . 6 6 4 . 0 4 6 3 5 . 9 1 9 . 9 2 3 . 0 0 6 6 . 1 7 . 3 6 . 4 3 1 2 . 6 1 . 4 1 . 6 5 2 . 2 S A M P L E H A H B A C S L C L H B H H B A ( I I ! A V N U M B E R ( 3 : ) ( 3 : ) ( I ) ( L b s ) ( L b s ) ( 6 2 ) ( 3 : ) ( I ) 1 2 3 1 0 7 1 1 1 0 0 0 0 4 4 3 4 . 2 4 5 0 1 0 0 5 7 4 9 . 0 0 0 6 3 . 0 2 . 5 5 7 . 2 5 D E P O I M A T I O N ( L n o b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 0 . 4 3 4 . 6 3 1 . 6 1 0 . 5 1 1 . 9 0 . 6 7 . 2 6 . 2 6 . 1 4 . 6 5 . 3 3 . 7 5 0 0 2 3 . 6 2 7 . 3 6 5 . 0 6 . 0 0 . 1 2 3 . 6 5 . 0 5 . 7 1 3 . 4 2 . 7 3 . 1 6 . 7 1 0 0 0 2 1 . 5 2 4 . 9 1 4 6 . 0 7 . 1 6 . 2 3 0 . 4 4 . 2 4 . 0 2 1 . 2 2 . 1 2 . 4 0 . 5 5 0 0 0 1 6 . 9 1 9 . 3 4 0 6 . 3 5 . 4 6 . 1 1 0 0 . 3 2 . 9 3 . 3 4 7 . 0 1 . 1 1 . 3 1 5 . 9 1 0 0 0 0 1 5 . 2 1 7 . 2 6 0 6 . 0 4 . 6 5 . 4 1 6 6 . 3 2 . 4 2 . 7 7 2 . 9 0 . 6 0 . 0 2 1 . 3 2 6 0 0 0 1 3 . 0 1 5 . 1 1 2 6 6 . 2 4 . 0 4 . 6 2 6 5 . 6 1 . 6 2 . 1 1 1 2 . 6 0 . 5 0 . 6 2 5 . 7 1 6 7 4 4 0 1 0 . 0 1 1 . 6 4 6 5 1 . 7 2 . 0 3 . 4 0 5 1 . 1 1 . 1 1 . 3 3 0 5 . 0 0 . 2 0 . 2 3 9 . 0 I T O T A L H E I G H T O F D R Y A G G R E O A I E S ; H E I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O F S A M P L E I N A I R ; C L I C Y C L I C L O A D : I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . ” ! 1 2 5 E 2 8 9 H E A M C Y C L I C L O A D D A T A S A M P L E H A H P A C S L C L H B H H B A ( 3 % ! A V N U M B E R ( 3 ! ) ( I t ) ( I ) ( L b ! ) ( L b ! ) ( I ! ) ( 5 ! ) _ ( I ) 1 2 3 1 0 7 2 1 1 0 0 0 0 4 4 3 4 . 2 4 5 0 1 0 0 5 7 5 3 . 0 0 9 6 4 . 0 2 . 5 5 7 . 1 7 D E P O N M A T I O N ( i n c b o s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T O 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . E L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 3 0 . 1 3 4 . 5 3 0 . 6 1 0 . 5 1 2 . 0 0 . 3 7 . 2 6 . 2 6 . 0 4 . 7 5 . 4 3 . 6 5 0 0 2 3 . 6 2 7 . 5 6 3 . 2 6 . 0 9 . 3 2 3 . 3 5 . 0 5 . 6 1 3 . 3 2 . 7 3 . 2 . 6 1 0 0 0 2 1 . 3 2 4 . 3 1 4 3 . 3 7 . 1 6 . 1 3 6 . 7 4 . 2 4 . 6 2 0 . 0 2 . 1 2 . 4 9 . 4 5 0 0 0 1 6 . 7 1 9 . 0 3 0 5 . 6 5 . 4 6 . 1 0 6 . 5 2 . 0 3 . 3 4 6 . 3 1 . 1 1 . 3 1 5 . 6 1 0 3 0 0 1 5 . 0 1 7 . 4 6 6 0 . 3 4 . 7 5 . 5 1 6 5 . 2 2 . 4 2 . 6 7 2 . 6 0 . 6 0 . 0 2 1 . 2 3 0 9 0 0 1 2 . 7 1 4 . 6 1 3 1 0 . 5 3 . 0 4 . 6 2 0 6 . 2 1 . 6 2 . 1 1 1 6 . 3 0 . 5 0 . 5 2 6 . 0 1 4 4 3 0 0 1 0 . 1 1 1 . 7 4 0 3 7 . 6 3 . 0 3 . 5 6 3 0 . 6 1 . 2 1 . 4 2 7 6 . 1 0 . 2 0 . 2 3 6 . 6 S A M P L E H A H E A C S L C L H B H H H A ( I Q ! A N N U M B E R ( 6 8 ) ( I t ) ( I ) ( L b ! ) ( L b l ) ( i t ) ( i t ) ( I ) 1 2 3 1 0 7 3 1 1 0 0 0 0 4 4 3 4 . 2 4 5 0 1 0 0 5 7 4 0 . 0 9 9 5 4 . 0 2 . 5 5 7 . 1 3 D E P O N M A T I O N ( i n c b o o X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L N D T ' 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 0 . 0 3 4 . 3 3 0 . 3 1 0 . 4 1 2 . 0 9 . 2 7 . 2 6 . 2 5 . 9 - ’ ' 5 0 0 2 3 . 5 2 7 . 3 6 3 . 2 7 . 9 9 . 2 2 3 . 4 5 . 0 5 . 6 1 3 . 4 - - - 1 0 0 0 2 1 . 1 2 4 . 6 1 4 1 . 3 7 . 1 6 . 2 3 6 . 3 4 . 2 4 . 0 2 0 . 6 - - - 5 5 0 0 1 6 . 4 1 9 . 0 4 1 5 . 3 5 . 3 6 . 1 1 0 3 . 3 2 . 6 3 . 3 4 6 . 3 ' ' ' 1 0 6 0 0 1 4 . 6 1 6 . 6 6 6 6 . 3 4 . 7 5 . 3 1 6 4 . 9 2 . 4 2 . 7 7 2 . 4 3 0 0 0 0 1 2 . 7 1 4 . 3 1 2 0 0 . 2 3 . 0 4 . 4 2 0 3 . 4 1 . 6 2 . 0 1 1 5 . 0 1 2 0 2 0 0 1 0 . 2 1 1 . 5 3 7 1 9 . 0 3 . 1 3 . 4 7 6 1 . 6 1 . 2 1 . 4 2 6 1 . 4 1 3 0 0 0 0 1 0 . 2 1 1 . 5 3 4 0 1 . 4 3 . 0 3 . 5 7 1 4 . 6 1 . 2 1 . 4 2 3 6 . 6 I T O T A L H E I G H T O F D R ! A G G R E G A T E S ; H I I H E I G H T O P N I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R : C L I C Y C L I C L O A D ; I ‘ H E I G H T O P S A M P L E I N H A T E R ; A N I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y : . A N D T O T . I E L A S T I C A N D T O T A L D E P O N M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O N M A T I O N . 2 9 0 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L I U N ' H B A G M M A V N U M B E R ( 5 ! ) ( 3 ! ) ( I ) ( 1 b ! ) ( 1 b ! ) ( I ! ) ( I t ) ( I ) 1 2 3 1 0 7 1 2 1 0 0 0 0 4 4 3 4 . 2 4 5 0 2 0 0 5 7 4 0 . 0 0 9 3 5 . 0 2 . 5 5 7 . 0 0 D E P O N M A T I O N ( A a c h e n X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L N D T 0 2 ( 2 . 0 I N . ) L V D T . 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 5 9 . 3 6 7 . 0 6 6 . 6 2 0 . 1 2 3 . 0 1 0 . 6 1 3 . 1 1 5 . 1 1 2 . 0 6 . 1 9 . 3 6 . 0 5 0 0 4 6 . 6 5 2 . 6 1 6 3 . 0 1 5 . 3 1 7 . 3 4 0 . 6 0 . 1 1 0 . 3 2 7 . 0 4 . 6 5 . 3 1 2 . 6 1 0 0 0 4 2 . 0 4 7 . 0 3 1 6 . 7 1 3 . 6 1 5 . 5 6 3 . 2 7 . 7 6 . 6 4 2 . 6 3 . 6 4 . 1 1 7 . 6 5 7 0 0 3 2 . 3 3 6 . 0 9 1 2 . 6 1 0 . 1 1 1 . 5 2 1 0 . 2 5 . 0 5 . 7 9 5 . 7 1 . 7 2 . 0 2 6 . 6 2 2 1 6 0 2 6 . 4 3 0 . 4 2 5 0 6 . 5 6 . 0 0 . 2 5 6 0 . 3 3 . 5 4 . 0 2 1 2 . 6 0 . 9 1 . 0 4 6 . 1 3 1 5 7 0 2 5 . 0 2 0 . 1 2 6 0 0 . 0 7 . 5 6 . 7 6 3 6 . 0 3 . 2 3 . 7 2 3 2 . 0 0 . 7 0 . 0 4 5 . 6 5 2 0 0 0 2 3 . 2 2 6 . 0 4 4 6 6 . 2 6 . 0 6 . 0 0 5 6 . 0 2 . 6 3 . 2 3 2 9 . 9 0 . 6 0 . 6 5 5 . 6 S A M P L E H A H B A C S L C L H B H H B A ( I O ! A V N U M B E R ( ' 8 ) ( 3 : ) ( I ) ( L b s ) ( 1 b . ) ( . 8 ) ( I ! ) ( I ) 1 2 3 1 0 7 2 2 1 0 0 0 0 4 4 3 4 . 2 4 5 0 2 0 0 5 7 4 5 . 0 9 0 4 7 . 0 2 . 5 5 7 . 1 3 m m ! ( h o b o . X 0 . 0 0 0 1 ) L N D T 0 1 ( 0 . 0 I N . ) L N D T N 2 ( 2 . 0 I N . ) L N D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A “ E L A m T O T . . P L A W E L A N T O T . P L A . E L A W T O T . P L A . 1 0 0 5 0 . 7 6 6 . 1 6 6 . 1 2 0 . 1 2 3 . 0 2 0 . 0 1 3 . 2 1 5 . 0 1 2 . 2 6 . 1 9 . 2 7 . 0 5 0 0 4 6 . 0 5 5 . 9 1 6 3 . 6 1 5 . 3 1 6 . 3 4 0 . 6 9 . 1 1 0 . 6 2 6 . 0 4 . 6 5 . 5 1 2 . 5 1 0 0 0 4 2 . 3 4 6 . 1 3 1 9 . 4 1 3 . 6 1 5 . 5 6 3 . 6 7 . 7 6 . 6 4 2 . 6 3 . 6 4 . 1 1 7 . 6 5 2 0 0 3 3 . 0 3 6 . 4 6 9 6 . 1 1 0 . 2 1 1 . 0 2 1 5 . 6 5 . 1 6 . 0 9 4 . 6 1 . 6 2 . 1 2 0 . 0 1 0 3 0 0 2 9 . 6 3 4 . 1 1 5 2 6 . 1 9 . 1 1 0 . 4 3 5 4 . 1 4 . 3 4 . 0 1 4 5 . 3 1 . 3 1 . 5 3 6 . 1 2 7 0 0 0 2 5 . 6 2 0 . 9 2 6 6 3 . 5 7 . 7 6 . 0 5 6 6 . 2 3 . 3 3 . 0 2 1 6 . 9 0 . 6 0 . 9 4 4 . 3 5 5 2 0 0 2 3 . 2 2 6 . 3 4 6 6 5 . 6 6 . 6 7 . 7 0 0 1 . 0 2 . 7 3 . 1 3 3 7 . 0 0 . 5 0 . 6 5 5 . 7 H A I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H I I H E I G H T O N B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C T C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; G M M I M A X I M U M T H E O R E T I C A L S P E C I P I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O N M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 9 1 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C S L C L H B H H B A G M M A V N U M B E R ( 3 2 ) ( I t ) ( I ) ( L b s ) ( L b s ) ( 8 : ) ( 6 ! ) ( I ) 1 2 3 1 0 7 3 2 1 0 0 0 0 4 4 3 4 . 2 4 5 0 2 0 0 5 7 6 3 . 0 0 0 6 9 . 0 2 . 5 5 7 . 0 2 D E P O R M A T I O N ( A n a b O I X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 5 6 . 9 6 7 . 1 6 5 . 3 2 0 . 1 2 2 . 0 1 9 . 4 1 3 . 2 1 5 . 0 1 1 . 9 6 . 2 0 . 3 6 . 0 5 0 0 4 6 . 2 5 3 . 1 1 6 0 . 9 1 5 . 3 1 7 . 6 4 0 . 6 0 . 1 1 0 . 5 2 7 . 0 4 . 7 5 . 4 1 2 . 6 1 0 0 0 4 1 . 7 4 7 . 1 3 0 5 . 6 1 3 . 6 1 5 . 3 6 1 . 0 7 . 7 6 . 7 4 1 . 6 3 . 6 4 . 1 1 7 . 5 5 5 0 0 3 2 . 3 3 6 . 9 6 9 6 . 1 1 0 . 1 1 1 . 6 2 1 6 . 0 5 . 1 5 . 6 9 6 . 0 1 . 6 2 . 0 2 0 . 3 1 0 9 0 0 2 9 . 1 3 3 . 5 1 5 0 4 . 2 0 . 0 1 0 . 4 3 5 2 . 2 4 . 3 4 . 9 1 4 4 . 0 1 . 3 1 . 5 3 6 . 0 3 0 0 0 0 2 5 . 0 2 6 . 6 2 7 7 1 . 3 7 . 6 6 . 6 6 1 4 . 7 3 . 3 3 . 7 2 2 6 . 0 0 . 6 0 . 0 4 5 . 7 5 7 0 0 0 2 2 . 7 2 6 . 2 4 5 6 6 . 3 6 . 6 7 . 6 0 6 2 . 5 2 . 7 3 . 1 3 3 6 . 0 0 . 5 0 . 6 5 6 . 0 S A M P L E H A H B A C S L C L H B H H B A ( I I ! A N N U M B E R ( 6 3 ) ( ‘ 2 ) ( I ) ( L b s ) ( L b l ) ( I ! ) ( ‘ 8 ) ( 2 ) 1 2 3 1 0 7 1 5 1 0 0 0 0 4 4 3 4 . 2 4 5 0 5 0 0 5 7 4 6 . 0 9 9 4 6 . 0 2 . 5 5 7 . 0 6 D E P O R M A T I O N ( A n c h o c X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L N D T . 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . E L A . 1 0 0 1 4 6 . 1 1 7 2 . 3 2 2 1 . 0 4 5 . 0 5 2 . 3 5 6 . 5 2 4 . 7 2 6 . 6 3 0 . 0 1 2 . 4 1 4 . 4 1 4 . 0 5 0 0 1 1 6 . 4 1 3 1 . 6 6 0 5 . 2 3 4 . 1 3 6 . 6 1 4 7 . 2 1 6 . 7 1 6 . 0 6 5 . 6 6 . 6 7 . 4 2 3 . 5 1 0 0 0 1 0 4 . 0 1 2 1 . 6 1 0 3 4 . 4 3 0 . 3 3 5 . 1 2 4 2 . 6 1 4 . 0 1 6 . 2 1 0 1 . 0 - - ° 2 0 0 0 0 4 . 5 1 0 6 . 7 1 5 1 3 . 1 2 6 . 6 3 0 . 0 3 4 2 . 0 1 1 . 7 1 3 . 4 1 3 2 . 7 - - - 5 0 0 0 6 2 . 4 0 5 . 0 3 1 1 7 . 1 2 2 . 0 2 6 . 4 6 7 0 . 4 0 . 1 1 0 . 5 2 3 5 . 2 ‘ ' ' 7 0 0 0 7 6 . 3 0 0 . 2 3 5 6 7 . 9 2 1 . 6 2 4 . 6 7 5 7 . 5 6 . 3 9 . 6 2 5 5 . 7 - - - 9 0 0 0 7 5 . 4 6 6 . 2 4 6 0 0 . 4 2 0 . 6 2 3 . 6 0 5 7 . 9 - - - - - - H A I T O T A L H E I G H T O P D R ! A G G R E G A T E S ; H I I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A . I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A N I P E R C E N T A I R . V O I D S ; I ! ! ! I ' M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E : P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O N M A T I O N . ” ! ! ! E B 2 9 2 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( R i d A V N U M B E R ( 3 : ) ( g r ) ( I ) ( L b s ) ( 1 b ! ) ( 8 ! ) ( I t ) ( 1 ) 1 2 3 1 0 7 2 5 1 0 0 0 0 4 4 3 4 . 2 4 5 0 5 0 0 5 7 4 3 . 0 0 9 4 3 . 0 2 . 5 5 7 . 1 3 D E P O R M A T I O N ( A D O B O S X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 4 0 . 0 1 7 2 . 2 2 2 4 . 9 4 5 . 0 5 2 . 0 5 9 . 2 2 4 . 7 2 6 . 5 3 0 . 3 1 2 . 3 1 4 . 3 1 4 . 1 5 0 0 1 1 7 . 1 1 3 4 . 5 6 0 2 . 4 3 4 . 1 3 0 . 2 1 4 5 . 6 1 6 . 6 1 0 . 1 6 4 . 7 6 . 5 7 . 5 2 3 . 1 1 0 0 0 1 0 5 . 5 1 1 0 . 7 1 0 4 3 . 7 3 0 . 3 3 4 . 3 2 4 3 . 4 1 3 . 9 1 5 . 6 1 0 1 . 0 - - - 2 0 0 0 0 5 . 1 1 0 9 . 0 1 5 4 7 . 6 2 6 . 6 3 0 . 6 3 4 7 . 6 1 1 . 6 1 3 . 3 1 3 4 . 4 - - - 5 0 0 0 6 2 . 9 9 4 . 1 3 1 5 3 . 6 2 2 . 0 2 6 . 0 6 7 4 . 3 0 . 1 1 0 . 3 2 3 5 . 6 6 0 0 0 7 7 . 2 6 9 . 5 3 6 7 2 . 6 2 1 . 1 2 4 . 4 6 0 7 . 0 6 . 0 9 . 2 2 6 7 . 0 0 0 0 0 7 5 . 0 6 6 . 6 4 6 5 3 . 3 2 0 . 6 2 3 . 6 0 6 3 . 3 7 . 7 6 . 6 3 1 4 . 3 S A M P L E H A H B A C S L C L H B H H B A ( I T ! A V N M ( 6 1 ' ) ( 8 8 ) ( I ) ( L b ! ) ( L b C ) ( 6 1 ’ ) ( i t ) ( I ) 1 2 3 1 0 7 3 5 1 0 0 0 0 4 4 3 4 . 2 4 5 0 5 0 0 5 7 6 7 . 0 9 0 7 4 . 0 2 . 5 5 ' 6 . 0 9 m m ( i n c h : X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T l 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 4 6 . 6 1 6 9 . 9 2 1 4 . 4 4 5 . 0 5 2 . 1 5 7 . 3 2 4 . 0 2 6 . 6 2 9 . 5 1 2 . 5 1 4 . 5 1 3 . 0 5 0 0 1 1 5 . 3 1 3 0 . 7 5 6 2 . 6 3 4 . 2 3 6 . 7 1 4 3 . 3 1 6 . 6 1 9 . 0 6 4 . 2 6 . 7 7 . 6 2 3 . 2 1 0 0 0 1 0 3 . 9 1 2 0 . 6 1 0 1 6 . 2 3 0 . 3 3 5 . 2 2 4 0 . 0 1 4 . 1 1 6 . 4 1 0 1 . 0 4 . 9 5 . 7 3 1 . 9 5 0 0 0 6 1 . 6 0 3 . 2 2 7 1 2 . 4 2 2 . 0 2 6 . 2 5 6 0 . 7 0 . 2 1 0 . 5 2 0 6 . 5 2 . 3 2 . 6 4 5 . 4 6 0 0 0 7 0 . 4 0 0 . 6 3 3 4 3 . 4 2 2 . 2 2 5 . 4 7 1 9 . 6 6 . 6 1 0 . 0 2 4 0 . 3 2 . 1 2 . 4 5 1 . 7 7 0 0 0 7 7 . 6 6 7 . 6 3 4 3 2 . 4 2 1 . 6 2 4 . 4 7 3 2 . 6 6 . 4 9 . 5 2 4 0 . 3 1 . 9 2 . 2 4 9 . 5 6 0 0 0 7 6 . 1 6 6 . 0 4 0 5 6 . 5 ' ' ' - - I T O T A L H E I G H T O P U R I A G G R E G A T E S ; H I I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I P I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 9 3 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 ! ! A V N U M B E R ( 3 : ) ( 8 : ) ( I ) ( L b s ) ( L b s ) ( 5 r ) ( 3 : ) ( I ) 2 2 1 1 0 6 1 1 1 0 0 0 0 4 4 7 4 . 2 6 5 0 1 0 0 5 6 5 0 . 0 1 0 0 4 5 . 0 2 . 5 2 4 . 7 8 D E P O R M A T I O N ( i n c b o s X 0 . 0 0 0 1 ) L V D T O 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T O 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 3 . 2 2 6 . 2 1 2 . 3 1 0 . 4 1 1 . 7 4 . 6 7 . 0 6 . 0 3 . 4 5 . 6 6 . 5 2 . 3 5 0 0 1 6 . 2 2 1 . 2 3 1 . 3 6 . 0 0 . 3 1 1 . 4 5 . 7 6 . 6 7 . 4 3 . 7 4 . 2 4 . 3 1 0 0 0 1 6 . 4 1 6 . 7 5 4 . 0 7 . 1 6 . 1 1 9 . 3 4 . 0 5 . 6 1 2 . 0 2 . 0 3 . 4 6 . 5 5 0 0 0 1 2 . 9 1 4 . 6 1 4 4 . 9 5 . 4 6 . 2 4 7 . 4 3 . 4 3 . 9 2 6 . 4 1 . 7 2 . 0 1 1 . 6 1 0 0 0 0 1 1 . 6 1 3 . 5 2 4 6 . 5 4 . 6 5 . 6 7 6 . 0 2 . 0 3 . 4 4 1 . 2 1 . 3 1 . 5 1 6 . 2 3 0 0 0 0 0 . 6 1 1 . 3 4 6 0 . 6 4 . 0 4 . 6 1 3 6 . 4 2 . 3 2 . 6 6 7 . 0 0 . 0 1 . 0 2 1 . 5 1 6 3 0 0 0 7 . 6 6 . 6 1 5 1 2 . 7 3 . 0 3 . 5 4 1 6 . 6 1 . 5 1 . 7 1 7 4 . 0 0 . 4 0 . 4 3 7 . 7 S A M P L E H A H B A C S L C L H B H H B A ( N T ! A V N U M B E R ( 6 8 ) ( I t ) ( I ) ( L b s ) ( L b s ) ( I ! ) ( I t ) ( I ) 2 2 1 1 0 6 2 1 1 0 0 0 0 4 4 7 4 . 2 6 5 0 1 0 0 5 6 3 6 . 0 1 0 0 1 1 . 0 2 . 5 2 4 . 6 0 D E P O R M A T I O N ( a n b s s X 0 . 0 0 0 1 ) L V D T N 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A " E L A N T O T . P L A » E L A N T O T . P L A . E L A . T O T . P L A . 1 0 0 2 3 . 2 2 6 . 6 1 2 . 5 1 0 . 4 1 2 . 0 4 . 0 7 . 0 0 . 1 3 . 4 5 . 6 6 . 7 2 . 4 5 0 0 1 6 . 2 2 0 . 7 3 1 . 0 6 . 0 0 . 0 1 1 . 6 5 . 7 6 . 4 7 . 5 3 . 6 4 . 1 4 . 4 1 0 0 0 1 6 . 4 1 6 . 5 5 4 . 5 7 . 1 6 . 0 1 0 . 1 4 . 0 5 . 5 1 1 . 0 2 . 0 3 . 3 6 . 4 5 5 0 0 1 2 . 7 1 4 . 6 1 5 1 . 4 5 . 3 6 . 1 4 0 . 1 3 . 4 3 . 6 2 7 . 1 1 . 6 1 . 0 1 1 . 7 1 0 2 0 0 1 1 . 6 1 3 . 3 2 5 4 . 9 4 . 6 5 . 5 6 0 . 4 2 . 0 3 . 3 4 2 . 3 1 . 3 1 . 5 1 6 . 5 2 7 6 0 0 1 0 . 0 1 1 . 3 4 4 7 . 3 4 . 1 4 . 6 1 3 4 . 5 2 . 3 2 . 6 6 5 . 4 0 . 0 1 . 0 2 1 . 3 1 6 9 6 6 5 7 . 5 6 . 5 1 6 6 4 . 4 2 . 0 3 . 3 4 6 1 . 4 1 . 4 1 . 6 1 6 6 . 4 - - - H A I T O T A L H E I G H T O P U R I A G G R E G A T E S ; H E I H E I G H T O E B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C T C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; G M M ‘ I I A U O B I I I T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A N A N D T O T . I E L A S T I C A N D T O T A L D E P O N M A T I O N I C T C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . n a 0 * o s ¢ ~ . . a t . . ” ! N E B 2 9 4 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 5 ! ) ( I ! ) ( I ) ( L b s ) ( L b s ) ( I t ) ( I t ) ( I ) 2 2 1 1 0 6 3 1 1 0 0 0 0 4 4 7 4 . 2 6 5 0 1 0 0 5 6 2 6 . 0 1 0 0 0 0 . 0 2 . 5 2 4 . 9 3 D E P O N M A T I O N ( a n b s s X 0 . 0 0 0 1 ) L V D T 4 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 3 . 6 2 6 . 7 1 3 . 0 1 0 . 4 1 1 . 6 5 . 0 7 . 0 6 . 0 3 . 5 5 . 7 6 . 5 2 . 4 5 0 0 1 6 . 5 2 0 . 0 3 3 . 5 6 . 0 9 . 0 1 2 . 0 5 . 6 6 . 4 7 . 7 3 . 6 4 . 1 4 . 5 1 0 0 0 1 6 . 7 1 0 . 2 5 7 . 1 7 . 1 6 . 2 1 9 . 6 4 . 0 5 . 6 1 2 . 2 2 . 9 3 . 3 6 . 6 5 0 0 0 1 3 . 1 1 5 . 5 1 5 2 . 0 5 . 4 6 . 4 4 6 . 0 3 . 4 4 . 0 2 7 . 0 1 . 7 2 . 0 1 1 . 7 1 0 3 0 0 1 1 . 6 1 3 . 3 2 6 6 . 7 4 . 6 5 . 5 6 2 . 0 2 . 0 3 . 3 4 3 . 3 1 . 3 1 . 4 1 6 . 7 2 4 1 0 0 1 0 . 4 1 1 . 0 4 2 3 . 6 4 . 2 4 . 6 1 2 6 . 5 2 . 4 2 . 7 6 1 . 7 0 . 0 1 . 0 2 0 . 3 1 6 0 0 0 0 7 . 7 6 . 6 1 6 9 7 . 6 3 . 0 3 . 4 4 5 0 . 6 1 . 5 1 . 7 1 6 6 . 6 0 . 4 0 . 4 3 6 . 4 S A M P L E H A H B A C S L C L H B H H B A ( I i ! A V N U M B E R ( I S ) ( A ! ) ( I ) ( 1 b . ) ( 1 b . ) ( I t ) ( 3 : ) ( I ) 2 2 1 1 0 6 1 2 1 0 0 0 0 4 4 7 4 . 2 6 5 0 2 0 0 5 6 3 6 . 0 1 0 0 2 3 . 0 2 . 5 2 4 . 0 6 W I “ ( A u d i t s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T ’ 3 ( 4 . 0 I N . ) L V D T ' 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 7 . 5 5 5 . 3 2 9 . 0 2 0 . 4 2 3 . 7 1 0 . 6 1 4 . 6 1 7 . 3 7 . 4 1 0 . 3 1 2 . 0 4 . 5 0 0 3 7 . 3 4 2 . 4 7 7 . 3 1 5 . 6 1 7 . 7 2 6 . 6 1 0 . 5 1 2 . 0 1 6 . 5 6 . 4 7 . 2 1 0 0 0 3 3 . 6 3 6 . 4 1 3 1 . 2 1 3 . 0 1 5 . 0 4 4 . 1 0 . 1 1 0 . 4 2 5 . 0 5 . 1 5 . 6 1 3 . 5 0 0 0 2 6 . 4 3 0 . 4 3 4 6 . 5 1 0 . 6 1 2 . 2 1 0 6 . 5 6 . 3 7 . 3 5 6 . 6 2 . 0 3 . 3 2 2 . 1 0 0 0 0 2 3 . 6 2 7 . 0 5 9 0 . 2 0 . 5 1 0 . 7 1 7 7 . 6 5 . 4 6 . 1 6 6 . 0 2 . 2 2 . 5 3 1 . 3 0 0 0 0 2 0 . 2 2 3 . 5 1 1 0 6 . 2 7 . 0 0 . 1 3 1 6 . 0 4 . 1 4 . 6 1 4 2 . 3 1 . 4 1 . 6 4 0 . 1 6 7 2 0 0 1 5 . 6 1 6 . 1 3 6 7 6 . 0 5 . 0 6 . 6 9 6 4 . 6 2 . 7 3 . 1 3 6 7 . 6 0 . 6 0 . 7 6 7 . I T O T A L H E I G H T O P D R ! A G G R E G A T E S ; . H 6 I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” ! N E B 2 9 5 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( R 0 1 A V N U M B E R ( 5 ! ) ( g r ) ( I ) ( L b s ) ( L b s ) ( 3 : ) ( a t ) ( I ) 2 2 1 1 0 6 2 2 1 0 0 0 0 4 4 7 4 . 2 6 5 0 2 0 0 5 6 2 1 . 0 1 0 0 0 0 . 0 2 . 5 2 5 . 0 4 D E P O R M A T I O N ( A n c h o s X 0 . 0 0 0 1 ) L V D T I 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T O 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 6 . 0 5 5 . 0 3 0 . 2 2 0 . 4 2 3 . 4 1 1 . 2 1 4 . 6 1 7 . 0 7 . 6 1 0 . 3 1 1 . 6 4 . 9 5 0 0 3 7 . 7 4 3 . 4 7 6 . 7 1 5 . 6 1 6 . 0 2 7 . 1 1 0 . 5 1 2 . 1 1 6 . 6 6 . 3 7 . 3 0 . 1 1 0 0 0 3 4 . 0 3 6 . 7 1 3 4 . 6 1 3 . 0 1 5 . 0 4 4 . 6 0 . 0 1 0 . 3 2 6 . 2 5 . 0 5 . 7 1 3 . 2 5 0 0 0 2 6 . 7 3 0 . 1 3 5 5 . 5 1 0 . 6 1 2 . 0 1 0 9 . 7 6 . 3 7 . 1 5 7 . 1 2 . 6 3 . 2 2 2 . 6 1 0 0 0 0 2 4 . 0 2 7 . 6 6 1 5 . 3 0 . 5 1 0 . 9 1 6 3 . 7 5 . 3 6 . 1 0 0 . 4 2 . 2 2 . 5 3 1 . 7 2 6 6 0 0 2 0 . 7 2 4 . 0 1 0 5 6 . 1 6 . 0 9 . 3 3 0 1 . 1 4 . 2 4 . 0 1 3 6 . 1 1 . 4 1 . 6 3 0 . 1 1 6 9 0 1 0 1 5 . 7 1 6 . 0 3 7 0 6 . 7 5 . 0 6 . 7 9 6 6 . 1 2 . 7 3 . 0 3 7 2 . 5 0 . 6 0 . 7 6 6 . 7 S A M P L E H A H B A C S L C L H B H H B A ( 3 ! ! A V N U M B E R ( I t ) ( I ! ) ( I ) ( L b fl ) ( L b ! ) ( 6 3 ) ( I ! ) ( I ) 2 2 1 1 0 6 3 2 1 0 0 0 0 4 4 7 4 . 2 6 5 0 2 0 0 5 6 2 5 . 0 1 0 0 1 2 . 0 2 . 5 2 5 . 1 1 D E P O R M A T I O N ( A n a b o s X 0 . 0 0 0 1 ) L V D T I 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T # A ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A m T O T . P L A . 1 0 0 4 6 . 5 5 6 . 3 3 0 . 6 2 0 . 5 2 3 . 6 1 1 . 3 1 4 . 6 1 7 . 2 7 . 6 1 0 . 3 1 1 . 0 4 . 0 5 5 0 3 7 . 5 4 2 . 6 6 4 . 7 1 5 . 4 1 7 . 6 2 6 . 6 1 0 . 3 1 1 . 7 1 7 . 5 6 . 1 7 . 0 0 . 4 1 0 0 0 3 4 . 3 4 0 . 2 1 3 6 . 4 1 4 . 0 1 6 . 3 4 5 . 7 0 . 0 1 0 . 6 2 6 . 7 5 . 0 5 . 0 1 3 . 4 5 6 0 0 2 6 . 5 3 0 . 6 3 6 4 . 4 1 0 . 5 1 2 . 1 1 1 7 . 1 6 . 1 7 . 1 6 0 . 1 2 . 7 3 . 1 2 3 . 2 1 0 6 5 0 2 4 . 0 2 6 . 0 6 6 6 . 4 9 . 4 1 0 . 0 1 9 6 . 7 5 . 2 6 . 1 9 5 . 7 2 . 1 2 . 4 3 2 . 6 2 0 2 5 0 2 1 . 9 2 5 . 4 0 0 0 . 0 6 . 4 0 . 6 2 5 7 . 9 4 . 5 5 . 2 1 1 6 . 0 1 . 6 1 . 6 3 6 . 0 3 6 0 0 0 2 0 . 1 2 2 . 6 1 4 2 0 . 0 7 . 6 6 . 6 3 0 5 . 2 3 . 0 4 . 4 1 7 3 . 0 1 . 2 1 . 4 4 6 . 1 1 6 4 6 0 0 1 6 . 0 1 6 . 5 3 5 3 7 . 0 5 . 0 6 . 6 9 1 2 . 6 2 . 7 3 . 1 3 4 3 . 5 0 . 6 0 . 7 6 1 . 3 I T O T A L H E I G H T O P D R T A G G R E G A T E S ; H I I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R . V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I P I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 9 6 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 ! ! A V N U M B E R ( 8 ! ) ( I t ) ( I ) ( L b s ) ( L b s ) ( S r ) ( 3 : ) ( I ) 2 2 1 1 0 6 1 5 1 0 0 0 0 4 4 7 4 . 2 6 5 0 5 0 0 5 6 0 5 . 0 9 9 6 6 . 0 2 . 5 2 4 . 9 8 D E P O R M A T I O N ( i n c b o s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T i 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E ‘ N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 6 . 5 1 3 5 . 4 0 6 . 2 4 6 . 4 5 3 . 1 3 3 . 5 2 0 . 6 3 3 . 6 1 0 . 9 1 7 . 6 2 0 . 1 1 1 . 0 5 0 0 9 3 . 1 1 0 6 . 2 2 5 4 . 6 3 5 . 5 4 0 . 5 6 0 . 6 2 0 . 6 2 3 . 5 4 2 . 6 1 0 . 2 1 1 . 6 1 0 . 2 1 0 0 0 6 3 . 0 0 5 . 4 4 3 6 . 6 3 1 . 6 3 5 . 0 1 3 4 . 2 1 7 . 6 2 0 . 0 6 7 . 3 7 . 0 0 . 0 2 7 . 3 5 0 0 0 6 5 . 0 7 5 . 6 1 1 5 4 . 9 2 4 . 1 2 7 . 7 3 2 6 . 6 1 1 . 0 1 3 . 7 1 4 2 . 7 4 . 1 4 . 7 4 3 . 1 1 0 0 0 0 5 9 . 4 6 6 . 0 1 9 6 0 . 6 2 1 . 4 2 4 . 5 5 3 6 . 0 1 0 . 1 1 1 . 5 2 1 9 . 4 3 . 0 3 . 4 5 6 . 6 2 0 0 0 0 5 3 . 5 6 1 . 3 2 6 6 7 . 6 1 9 . 0 2 1 . 6 7 6 2 . 5 6 . 4 0 . 7 2 9 1 . 2 2 . 1 2 . 4 6 3 . 7 3 0 0 0 0 5 0 . 4 5 7 . 0 3 9 1 2 . 9 1 7 . 6 2 0 . 1 1 0 1 2 . 2 7 . 6 6 . 6 3 7 0 . 6 1 . 7 2 . 0 7 2 . 6 S A M P L E H A H A A C S L C L H B H H B A ( N I ! A V N U M B E R ( I S ) ( I ! ) ( I ) ( L b s ) ( L b s ) ( I ! ) ( I ! ) ( I ) 2 2 1 1 0 6 2 5 1 0 0 0 0 4 4 7 4 . 2 6 5 0 5 0 0 5 6 2 5 . 0 1 0 0 1 0 . 0 2 . 5 2 5 . 0 6 D E P O R M A T I O N ( i n d b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T ‘ 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 2 0 . 7 1 3 6 . 6 1 0 2 . 7 4 6 . 6 5 3 . 0 3 4 . 7 2 0 . 6 3 3 . 6 2 0 . 5 ' ' - 5 0 0 9 4 . 6 1 0 6 . 5 2 6 3 . 5 3 5 . 7 4 0 . 0 6 2 . 4 2 0 . 6 2 3 . 6 4 3 . 3 ' ' ' 1 0 0 0 6 5 . 5 9 0 . 0 4 5 6 . 0 3 1 . 6 3 6 . 6 1 3 6 . 5 1 7 . 6 2 0 . 3 6 0 . 0 - - ' 5 5 0 0 6 6 . 2 7 7 . 0 1 2 6 5 . 7 2 3 . 6 2 7 . 7 3 5 2 . 1 1 1 . 6 1 3 . 5 1 5 1 . 2 ' ' ' 1 0 3 0 0 6 0 . 2 6 0 . 5 2 0 6 3 . 0 2 1 . 4 2 4 . 7 5 6 1 . 6 1 0 . 0 1 1 . 5 2 2 7 . 1 ' ‘ ' 2 7 0 0 0 5 2 . 1 5 6 . 9 3 6 1 4 . 2 1 6 . 2 2 0 . 5 9 2 6 . 1 7 . 6 6 . 6 3 4 0 . 1 - ' ' 3 1 0 0 0 5 1 . 1 5 9 . 4 4 3 5 4 . 3 1 7 . 6 2 0 . 7 1 1 1 0 . 4 7 . 5 6 . 7 4 0 0 . 0 - - ' H A I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H I I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T 0 P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; G M M I M A X I M U M T H E O R E T I C A L S P E C I P I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O N M A T I O N / C Y C L E ; P L A I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” E H E E 2 9 7 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( I Q ! A V m m ( s r ) ( s t ) ( 2 ) ( l b s ) ( 1 6 : ) ( s t ) ( 5 : ) ( 2 ) 2 2 1 1 0 6 3 5 1 0 0 0 0 4 4 7 4 . 2 6 5 0 5 0 0 5 6 2 4 . 0 1 0 0 1 0 . 0 2 . 5 2 5 . 1 1 M I G ( L u c i u s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 2 1 . 1 1 4 0 . 0 1 0 1 . 6 4 6 . 6 5 4 . 5 3 4 . 2 2 0 . 6 3 4 . 4 2 0 . 2 1 7 . 4 2 0 . 3 1 1 . 1 5 0 0 0 5 . 1 1 0 0 . 1 2 6 0 . 0 3 5 . 6 4 1 . 0 6 3 . 9 2 0 . 6 2 3 . 6 4 4 . 0 1 0 . 1 1 1 . 6 1 9 . 6 1 0 0 0 6 5 . 6 9 6 . 5 4 6 4 . 7 3 1 . 6 3 6 . 5 1 4 0 . 2 1 7 . 5 2 0 . 1 6 0 . 7 7 . 6 6 . 0 2 7 . 9 5 0 0 0 6 7 . 4 7 7 . 0 1 2 1 9 . 0 2 4 . 2 2 6 . 0 3 3 9 . 6 1 1 . 0 1 3 . 6 1 4 6 . 0 4 . 0 4 . 6 4 3 . 6 1 0 0 0 0 6 0 . 7 6 9 . 1 2 0 7 6 . 2 2 1 . 5 2 4 . 5 5 5 9 . 6 1 0 . 0 1 1 . 4 2 2 6 . 5 2 . 9 3 . 3 5 7 . 6 2 3 2 0 0 5 3 . 5 6 1 . 7 3 3 3 3 . 1 1 6 . 7 2 1 . 5 6 6 0 . 2 6 . 1 0 . 3 3 1 0 . 6 1 . 0 2 . 2 6 5 . 6 3 3 0 0 0 5 0 . 6 5 0 . 7 4 5 1 6 . 4 1 7 . 6 2 0 . 7 1 1 4 5 . 3 7 . 4 6 . 6 4 0 9 . 6 1 . 6 1 . 9 7 6 . 5 S A M P L E H A H B A C S L C L H B H H B A ( I i ! A V N D I E R ( I ! ) ( 3 8 ' ) ( I ) ( L b s ) ( L b s ) ( I ! ) ( 3 8 ' ) ( I ) 3 2 1 1 0 6 1 1 1 0 0 0 0 4 6 0 4 . 4 0 5 0 1 0 0 5 6 2 5 . 0 0 0 9 0 . 0 2 . 5 3 5 . 2 0 m a ( i n o b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 4 . 4 2 7 . 6 1 4 . 0 1 0 . 5 1 1 . 9 5 . 2 7 . 0 6 . 0 3 . 7 - - - 5 0 0 1 0 . 2 2 1 . 6 3 6 . 0 6 . 0 9 . 1 1 2 . 9 5 . 6 6 . 3 6 . 2 ' ' ’ 1 0 0 0 1 7 . 3 1 0 . 6 6 2 . 4 7 . 2 6 . 1 2 1 . 0 4 . 6 5 . 5 1 2 . 6 ' - ' 5 0 0 0 1 3 . 6 1 5 . 6 1 6 4 . 1 5 . 5 6 . 3 5 1 . 3 3 . 4 3 . 9 2 7 . 6 - - ~ 1 0 0 0 0 1 2 . 2 1 4 . 0 2 6 1 . 6 4 . 9 5 . 6 6 5 . 2 2 . 9 3 . 3 4 3 . 6 ' ' - 2 7 0 0 0 1 0 . 5 1 2 . 2 4 6 6 . 4 4 . 1 4 . 6 1 4 0 . 7 2 . 3 2 . 6 6 6 . 6 - - - 1 6 4 7 0 0 7 . 0 6 . 0 1 6 3 5 . 3 3 . 0 3 . 4 4 6 0 . 0 1 . 4 1 . 6 1 6 0 . 6 ' - ° I T O T A L H E I G H T O F D R ! A G G R E G A T E S ; H I I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I J M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E E O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 9 8 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 2 ! ) ( I t ) ( I ) ( L b s ) ( L b s ) ( I ! ) ( S ! ) ( I ) 3 2 1 1 0 6 2 1 1 0 0 0 0 4 6 0 4 . 4 0 5 0 1 0 0 5 6 7 1 . 0 1 0 0 6 0 . 0 2 . 5 3 5 . 0 8 D E F O R M A T I O N ( L n o b n s X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T N 3 ( 4 . 0 I N . ) L V D T O ‘ ( 6 . 0 6 2 5 I N . ) N U M B E R E L A N T O T . P L A . E L A N T O T . P L A " E L A » T O T . P L A . E L A » T O T . P L A . 1 0 0 2 4 . 1 2 6 . 1 1 3 . 3 1 0 . 5 1 2 . 2 5 . 0 7 . 0 9 . 2 3 . 5 5 . 7 6 . 6 2 . 4 5 0 0 1 9 . 0 2 1 . 6 3 4 . 9 6 . 0 0 . 2 1 2 . 3 5 . 6 6 . 5 7 . 6 3 . 6 4 . 1 4 . 5 1 0 0 0 1 7 . 1 1 9 . 7 6 0 . 5 - 7 . 2 6 . 2 2 0 . 6 4 . 0 5 . 6 1 2 . 6 2 . 0 3 . 3 6 . 7 5 0 0 0 1 3 . 4 1 5 . 3 1 5 4 . 7 5 . 5 6 . 3 4 0 . 0 3 . 4 3 . 9 2 6 . 7 1 . 6 1 . 0 1 1 . 4 1 0 3 4 5 1 2 . 0 1 4 . 4 2 7 4 . 0 4 . 0 5 . 6 6 4 . 0 2 . 0 3 . 5 4 3 . 4 1 . 3 1 . 5 1 6 . 4 2 5 0 0 0 1 0 . 5 1 2 . 0 4 4 4 . 1 4 . 2 4 . 6 1 3 0 . 1 2 . 3 2 . 7 6 2 . 5 0 . 9 1 . 0 2 0 . 0 1 6 2 0 0 0 6 . 0 0 . 1 1 6 0 6 . 4 3 . 1 3 . 5 4 2 0 . 4 1 . 5 1 . 7 1 7 3 . 5 0 . 4 0 . 4 3 5 . 7 S A M P L E H A H B A C S L C L H B H H B A G M M . A V N I E I E R ( S t ) ( I ! ) ( I ) ( L b s ) ( L D C ) ( 6 1 ' ) ( 8 1 ' ) ( I ) 3 2 1 1 0 6 3 1 1 0 0 0 0 4 6 0 4 . 4 0 5 0 1 0 0 5 6 3 0 . 0 1 0 0 1 3 . 0 2 . 5 3 5 . 1 6 D E P O R M A T I O N ( A n a b o s X 0 . 0 0 0 1 ) L V D T O 1 ( 0 . 0 I N . ) L V D T O 2 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T ‘ O 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A N T O T . P L A N E L A n T O T . P L A . E L A . T O T . P L A . E L A W T O T . P L A . 1 0 0 2 4 . 4 2 7 . 6 1 4 . 1 1 0 . 5 1 2 . 0 5 . 3 7 . 0 0 . 0 3 . 7 5 . 7 6 . 5 2 . 5 5 0 0 1 0 . 2 2 1 . 0 3 6 . 4 6 . 0 0 . 2 1 2 . 7 5 . 6 6 . 4 6 . 1 3 . 5 4 . 0 4 . 6 1 0 0 0 1 7 . 3 1 0 . 6 6 2 . 1 7 . 2 6 . 2 2 0 . 9 4 . 6 5 . 5 1 2 . 7 2 . 6 3 . 3 6 . 7 5 0 0 0 1 3 . 6 1 5 . 7 1 6 2 . 4 5 . 5 6 . 3 5 0 . 6 3 . 4 3 . 0 2 7 . 6 1 . 6 1 . 0 1 1 . 7 1 0 6 5 0 1 2 . 1 1 3 . 6 2 9 3 . 4 4 . 6 5 . 5 6 6 . 5 2 . 6 3 . 2 4 5 . 2 1 . 2 1 . 4 1 6 . 6 3 0 0 0 0 1 0 . 4 1 1 . 0 5 2 5 . 1 4 . 1 4 . 6 1 5 0 . 7 2 . 2 2 . 5 7 0 . 6 0 . 6 0 . 0 2 1 . 6 1 6 4 3 0 0 6 . 0 0 . 1 1 7 1 6 . 2 3 . 0 3 . 4 4 5 3 . 5 1 . 5 1 . 6 1 6 1 . 4 0 . 4 0 . 4 3 6 . 5 H A I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H I I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; G M M I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O I M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 2 9 9 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C S L C L H B H H B A G M M A V N U M B E R ( 3 : ) ( 3 ! ) ( I ) ( L b s ) ( L b s ) ( I t ) ( 3 : ) ( I ) 3 2 1 1 0 6 1 2 1 0 0 0 0 4 6 0 4 . 4 0 5 0 2 0 0 5 6 4 2 . 0 1 0 0 1 4 . 0 2 . 5 3 5 . 1 3 D E F O R M A T I O N ( i n c b n s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 6 . 4 5 5 . 4 3 0 . 9 2 0 . 4 2 3 . 3 1 1 . 3 1 4 . 7 1 6 . 0 7 . 7 1 0 . 2 1 1 . 6 4 . 0 5 0 0 3 6 . 0 4 3 . 6 6 1 . 0 1 5 . 6 1 6 . 0 2 7 . 6 1 0 . 5 1 2 . 1 1 6 . 6 6 . 2 7 . 2 0 . 1 1 0 0 0 3 4 . 3 3 0 . 0 1 3 7 . 5 1 3 . 0 1 6 . 2 4 5 . 3 0 . 0 1 0 . 4 2 6 . 4 5 . 0 5 . 6 1 3 . 2 5 1 0 0 2 6 . 6 3 1 . 0 3 6 1 . 2 1 0 . 6 1 2 . 2 1 1 0 . 3 6 . 2 7 . 2 5 6 . 0 2 . 6 3 . 2 2 2 . 2 1 0 0 0 0 2 4 . 3 2 6 . 0 6 0 7 . 0 9 . 5 1 0 . 0 1 7 0 . 4 5 . 3 6 . 1 6 7 . 6 2 . 1 2 . 4 3 0 . 4 2 6 0 0 0 2 0 . 6 2 4 . 0 1 0 6 0 . 7 7 . 9 9 . 2 3 0 3 . 7 4 . 1 4 . 6 1 3 5 . 6 1 . 4 1 . 6 3 6 . 1 2 0 6 7 0 0 1 5 . 4 1 7 . 6 4 3 2 0 . 7 5 . 7 6 . 4 1 0 9 6 . 6 2 . 5 2 . 6 4 0 2 . 0 0 . 5 0 . 6 6 6 . 4 S A M P L E H A H B A C S L C L H B H H B A ( I 6 ! A V ' " T ( 6 3 ) ( I ! ) ( I ) ( L b l ) ( 1 b . ) ( 6 3 ) ( 6 ! ) ( I ) 3 2 1 1 0 6 2 2 1 0 0 0 0 4 6 0 4 . 4 0 5 0 2 0 0 5 6 7 0 . 0 1 0 0 4 0 . 0 2 . 5 3 4 . 9 5 D E P O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A N T O T . P L A N E L A I T O T . P L A . E L A W T O T . P L A . 1 0 0 4 7 . 4 5 4 . 0 2 0 . 1 2 0 . 3 2 3 . 5 1 0 . 6 1 4 . 6 1 7 . 1 7 . 4 1 0 . 3 1 1 . 0 4 . 6 5 0 0 3 7 . 2 4 3 . 2 7 6 . 2 1 5 . 6 1 6 . 0 2 6 . 4 1 0 . 5 1 2 . 2 1 6 . 3 6 . 3 7 . 3 6 . 9 1 0 0 0 3 3 . 6 3 6 . 6 1 3 0 . 4 1 3 . 9 1 6 . 0 4 3 . 6 0 . 0 1 0 . 4 2 5 . 7 5 . 1 5 . 6 1 3 . 0 5 0 0 0 2 6 . 4 3 0 . 0 3 3 6 . 1 1 0 . 6 1 2 . 4 1 0 5 . 3 6 . 3 7 . 4 5 5 . 0 2 . 6 3 . 3 2 1 . 9 1 1 3 0 0 2 3 . 3 2 6 . 7 6 1 7 . 3 9 . 2 1 0 . 6 1 6 4 . 9 5 . 2 6 . 0 9 0 . 4 2 . 1 2 . 4 3 1 . 2 2 6 0 0 0 2 0 . 6 2 3 . 6 9 6 5 . 2 6 . 0 0 . 2 2 7 7 . 6 4 . 3 4 . 9 ‘ 1 2 6 . 4 1 . 4 1 . 7 3 6 . 9 1 7 0 2 0 0 1 5 . 5 1 6 . 0 3 6 4 6 . 2 5 . 6 6 . 6 9 5 6 . 2 2 . 7 3 . 1 3 6 3 . 1 I I I H A I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H I I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; 1 R 0 ! I ' M A X T M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E : P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D B P O R M A T I O N . 3 0 0 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( * 9 ! A V N U M B E R ( 3 : ) ( 3 2 ) ( I ) ( L b s ) ( L b s ) ( I t ) ( 3 : ) ( I ) 3 2 1 1 0 6 3 2 1 0 0 0 0 4 6 0 4 . 4 0 5 0 2 0 0 5 6 6 6 . 0 1 0 0 3 6 . 0 2 . 5 3 4 . 6 5 D E F O R M A T I O N ( i n c b o s X 0 . 0 0 0 1 ) L V D T 6 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A W T O T . P L A . E L A . T O T . P L A . 1 0 0 4 6 . 7 5 3 . 5 2 7 . 7 2 0 . 2 2 3 . 2 1 0 . 5 1 4 . 6 1 6 . 0 7 . 1 1 0 . 3 1 1 . 6 4 . 6 5 0 0 3 6 . 7 4 2 . 1 7 2 . 2 1 5 . 5 1 7 . 6 2 5 . 3 1 0 . 5 1 2 . 1 1 5 . 6 6 . 4 7 . 3 6 . 6 1 0 0 0 3 3 . 0 3 7 . 7 1 2 4 . 3 1 3 . 6 1 5 . 6 4 2 . 2 9 . 0 1 0 . 3 2 4 . 0 5 . 1 5 . 6 1 2 . 7 5 0 0 0 2 5 . 9 3 0 . 0 3 2 4 . 6 1 0 . 5 1 2 . 2 1 0 2 . 2 6 . 3 7 . 3 5 3 . 7 2 . 9 3 . 3 2 1 . 6 1 0 0 0 0 2 3 . 4 2 6 . 4 5 5 2 . 1 9 . 4 1 0 . 6 1 6 6 . 2 5 . 4 6 . 1 6 3 . 7 2 . 2 2 . 5 2 9 . 9 2 4 0 0 0 2 0 . 5 2 3 . 7 0 0 6 . 4 6 . 1 0 . 4 2 6 4 . 7 4 . 4 5 . 0 1 2 2 . 3 1 . 5 1 . 6 3 6 . 6 1 6 1 5 0 0 1 5 . 4 1 6 . 0 3 3 4 2 . 6 5 . 0 6 . 0 6 6 0 . 0 2 . 7 3 . 2 3 4 2 . 7 I - - S A M P L E H A H B A C S L C L H B H H B A ( I t ! A V N U M B E R ( 6 1 ) ( 6 2 ) ( I ) ( L b s ) ( L b ! ) ( 6 8 ) ( I t ) ( I ) 3 2 1 1 0 6 1 5 1 0 0 0 0 4 6 0 4 . 4 0 5 0 5 0 0 5 6 6 1 . 0 1 0 0 3 6 . 0 2 . 5 3 4 . 0 9 D E P O R M A T T O N ( L D O H O I X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 6 . 9 1 3 6 . 3 0 6 . 6 4 6 . 5 5 3 . 3 3 3 . 0 2 0 . 6 3 3 . 0 1 0 . 6 I I I 5 0 0 0 3 . 4 1 0 7 . 6 2 5 7 . 4 3 5 . 6 4 1 . 0 6 1 . 3 2 0 . 6 2 3 . 6 4 3 . 0 I I I 1 0 0 0 6 4 . 2 0 6 . 2 4 3 3 . 9 3 1 . 6 3 6 . 2 1 3 2 . 6 1 7 . 6 2 0 . 1 6 6 . 4 I I I 5 0 0 0 6 6 . 1 7 6 . 6 1 1 4 7 . 3 2 4 . 1 2 6 . 0 3 2 4 . 2 1 1 . 0 1 3 . 0 1 4 1 . 3 I I I 1 0 0 0 0 5 9 . 6 6 6 . 0 1 0 1 4 . 0 2 1 . 4 2 4 . 6 5 2 2 . 5 1 0 . 1 1 1 . 6 2 1 3 . 3 I I I 2 5 0 0 0 5 1 . 0 6 0 . 0 3 2 0 4 . 4 1 6 . 3 2 1 . 2 6 3 5 . 4 7 . 9 0 . 2 3 1 1 . 0 I I I 3 0 0 0 0 5 0 . 5 5 6 . 4 3 0 1 2 . 0 1 7 . 6 2 0 . 5 1 0 1 0 . 5 7 . 6 6 . 6 3 6 0 . 0 I I I ‘ H A I T O T A L H E I G H T O F D R ! A G G R E G A T E S ; H I I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; ( R I ! I ' M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E : P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) U E P O R M A T I O N . 3 0 1 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 6 1 ) ( 6 ! ) ( I ) ( L b ! ) ( L b ! ) ( 6 ! ) ( 6 2 ) ( I ) 3 2 1 1 0 6 2 5 1 0 0 0 0 4 6 0 4 . 4 0 5 0 5 0 0 5 6 7 0 . 0 1 0 0 4 9 . 0 2 . 5 3 4 . 0 5 D E F O R M A T I O N ( A n a b o s X 0 . 0 0 0 1 ) L V D T I 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 6 . 5 1 3 3 . 0 9 7 . 2 4 6 . 6 5 2 . 6 3 3 . 3 2 9 . 6 3 3 . 5 1 0 . 6 1 7 . 6 1 0 . 0 1 1 . 0 5 0 0 0 3 . 1 1 0 5 . 3 2 5 5 . 0 3 5 . 6 4 0 . 2 6 1 . 2 2 0 . 7 2 3 . 4 4 3 . 0 1 0 . 2 1 1 . 6 1 0 . 3 1 0 0 0 6 3 . 0 9 5 . 4 4 3 3 . 7 3 1 . 7 3 6 . 0 1 3 3 . 1 1 7 . 6 2 0 . 0 6 6 . 7 7 . 9 9 . 0 2 7 . 0 5 0 0 0 6 5 . 0 7 6 . 6 1 1 3 0 . 3 2 4 . 1 2 6 . 1 3 2 0 . 6 1 2 . 0 1 3 . 0 1 4 0 . 1 4 . 1 4 . 6 4 2 . 3 1 3 0 0 0 5 6 . 5 6 4 . 1 2 3 5 3 . 6 2 0 . 3 2 3 . 0 6 3 4 . 5 9 . 3 1 0 . 5 2 5 1 . 5 2 . 6 2 . 0 6 0 . 3 3 0 3 0 0 5 0 . 3 5 6 . 6 3 6 2 0 . 1 1 7 . 6 2 0 . 1 9 4 0 . 7 7 . 6 6 . 6 3 4 4 . 3 1 . 7 2 . 0 6 7 . 3 3 2 0 0 0 4 0 . 9 5 6 . 9 4 1 1 4 . 2 1 7 . 6 2 0 . 1 1 0 6 3 . 5 7 . 5 6 . 5 3 6 6 . 9 1 . 7 1 . 9 7 4 . 5 S A M P L E H A , H B A C 6 1 C L H B H H B A ( R T ! A V N U M B E R ( 8 8 ) ( l ! ) ( I ) ( L b s ) ( L b s ) ( 6 1 ) ( I t ) ( I ) 3 2 1 1 0 6 3 5 1 0 0 0 0 4 6 0 4 . 4 0 5 0 5 0 0 5 6 6 0 . 0 1 0 0 6 3 . 0 2 . 5 3 4 . 9 1 D E F O R M A T I O N ( L a n O I X 0 . 0 0 0 1 ) L V D T 6 1 ( 0 . 0 I N . ) L V D T 5 2 ( 2 . 0 I N . ) L V D T 0 0 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 6 . 0 1 3 4 . 1 0 5 . 1 4 6 . 6 5 2 . 0 3 2 . 7 2 0 . 7 3 3 . 6 1 0 . 5 1 7 . 7 2 0 . 1 1 0 . 6 5 0 0 0 2 . 7 1 0 4 . 7 2 4 6 . 0 3 5 . 6 4 0 . 2 7 6 . 7 2 0 . 7 2 3 . 4 4 1 . 6 1 0 . 3 1 1 . 6 1 6 . 9 1 0 0 0 6 3 . 5 0 6 . 4 4 1 6 . 2 3 1 . 7 3 6 . 6 1 2 6 . 0 1 7 . 7 2 0 . 4 6 4 . 6 6 . 0 9 . 2 2 6 . 4 5 0 0 0 6 5 . 6 7 6 . 3 1 0 0 6 . 6 2 4 . 1 2 6 . 1 3 1 3 . 3 1 2 . 0 1 4 . 0 1 3 7 . 4 4 . 1 4 . 6 4 1 . 7 1 0 0 0 0 5 0 . 1 6 6 . 5 1 6 7 3 . 2 2 1 . 5 2 4 . 9 5 1 6 . 0 1 0 . 1 1 1 . 7 2 1 2 . 1 3 . 0 3 . 5 5 5 . 3 2 0 0 0 0 5 3 . 3 6 1 . 6 2 7 0 0 . 3 1 0 . 1 2 2 . 1 7 1 6 . 5 6 . 5 0 . 6 2 7 5 . 7 2 . 2 2 . 5 6 0 . 7 3 5 0 0 0 4 0 . 0 5 5 . 7 4 2 3 6 . 4 1 7 . 3 1 0 . 7 1 0 0 5 . 6 7 . 3 6 . 4 3 9 6 . 6 1 . 6 1 . 6 7 5 . 1 H A I T O T A L H E I G H T O F D R ! A G G R E G A T E S ; H B I H E I G H T O F B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R . A V I P E R C E N T A I R V O I D S ; G I T ! ' I l fl U C H I A M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E E O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” E H E E 3 0 2 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( R 0 1 A V N U M B E R ( 3 : ) ( g r ) ( I ) ( L b s ) ( L b s ) ( S r ) ( 3 : ) ( I ) 1 1 1 2 0 5 1 1 1 0 0 0 0 4 5 0 4 . 3 1 5 0 1 0 0 6 1 4 4 . 0 1 0 3 2 0 . 0 2 . 5 5 3 . 0 6 D E P O R M A T I O N ( i n c b s s X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T I 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 2 0 0 . 7 1 3 . 2 1 2 . 3 6 . 6 1 1 . 7 3 1 . 0 6 . 3 1 1 . 2 3 6 . 3 7 . 9 1 0 . 6 3 9 . 0 5 6 0 9 . 3 1 2 . 6 1 9 . 3 6 . 2 1 1 . 1 3 7 . 3 7 . 6 1 0 . 5 4 2 . 6 7 . 3 0 . 6 4 5 . 0 1 0 0 0 6 . 9 1 1 . 7 2 2 . 2 7 . 6 1 0 . 3 4 0 . 3 7 . 4 9 . 6 4 5 . 6 6 . 0 9 . 0 4 7 . 5 5 0 0 0 7 . 0 0 . 7 3 3 . 1 6 . 0 6 . 5 4 0 . 1 6 . 4 7 . 0 5 6 . 6 5 . 6 7 . 1 5 6 . 5 1 3 6 0 0 6 . 4 1 1 . 5 4 0 . 0 7 . 4 1 0 . 0 5 6 . 6 6 . 6 0 . 3 6 5 . 5 6 . 0 6 . 2 6 7 . 5 2 0 0 0 0 6 . 0 1 0 . 5 5 2 . 7 7 . 0 0 . 1 6 1 . 7 6 . 4 6 . 4 6 6 . 6 5 . 6 7 . 3 7 0 . 7 2 7 0 0 0 7 . 5 0 . 2 5 4 . 6 6 . 5 6 . 0 6 4 . 1 6 . 0 7 . 4 7 1 . 6 5 . 2 6 . 4 7 3 . 4 1 7 2 6 0 0 7 . 1 6 . 7 0 3 . 1 6 . 1 7 . 5 7 5 . 1 5 . 5 6 . 6 6 3 . 1 4 . 5 5 . 5 7 4 . 9 3 3 6 3 0 0 6 . 0 6 . 5 1 1 3 . 4 6 . 0 7 . 4 7 6 . 1 5 . 3 6 . 6 6 6 . 1 4 . 2 5 . 2 6 6 . 4 7 1 5 7 0 0 7 . 0 0 . 0 1 4 6 . 0 6 . 1 7 . 6 6 4 . 6 5 . 4 6 . 9 0 1 . 1 4 . 1 5 . 3 9 3 . 4 6 6 1 9 0 0 7 . 0 9 . 1 1 5 5 . 6 6 . 1 7 . 6 6 4 . 6 5 . 3 6 . 0 0 1 . 1 4 . 0 5 . 2 0 3 . 4 S A M P L E H A ‘ H B A C S L C L H B H H B A ( I I I A V N D I E R ( 6 1 ' ) ( 6 1 ' ) ( I ) ( 1 1 3 ' ) ( L b s ) ( 6 1 ' ) ( 6 2 ) ( I ) 1 1 1 2 0 5 2 1 1 0 0 0 0 4 4 0 4 . 3 0 5 0 1 0 0 6 1 6 2 . 0 1 0 3 5 7 . 0 2 . 5 5 3 . 0 3 D E P O R M A T I O N ( a n b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 0 . 0 1 3 . 9 1 1 . 6 6 . 9 1 2 . 3 4 4 . 5 6 . 5 1 1 . 6 4 4 . 4 6 . 1 1 1 . 2 4 3 . 0 5 0 0 6 . 7 1 1 . 0 1 7 . 2 7 . 7 0 . 7 5 0 . 0 7 . 3 0 . 2 4 6 . 6 6 . 6 6 . 6 4 7 . 2 1 0 0 0 0 . 0 1 2 . 0 2 2 . 2 7 . 0 1 0 . 5 5 4 . 0 7 . 5 1 0 . 0 5 2 . 3 6 . 0 9 . 2 5 0 . 6 5 0 0 0 6 . 0 1 0 . 1 3 3 . 5 7 . 1 6 . 0 6 6 . 0 6 . 6 6 . 3 6 3 . 4 5 . 9 7 . 5 5 9 . 6 1 0 5 0 0 6 . 4 1 1 . 4 4 4 . 6 7 . 4 1 0 . 0 7 3 . 2 6 . 6 0 . 2 6 0 . 4 6 . 1 6 . 2 6 3 . 0 1 5 5 6 0 0 7 . 6 1 0 . 1 0 6 . 2 6 . 6 6 . 6 1 1 0 . 4 6 . 0 7 . 0 0 6 . 1 4 . 0 6 . 5 7 0 . 4 1 6 7 2 0 0 7 . 6 1 0 . 6 1 0 4 . 1 6 . 7 0 . 2 1 1 5 . 2 6 . 1 6 . 2 1 0 0 . 1 4 . 0 6 . 7 6 2 . 0 3 3 3 0 4 0 6 . 7 6 . 0 1 0 6 . 0 5 . 6 6 . 9 1 2 4 . 6 5 . 2 6 . 2 1 0 7 . 0 4 . 1 4 . 9 6 5 . 1 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O F S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E ; . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 3 0 3 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 6 8 ) ( I t ) ( I ) ( L b s ) ( L b s ) ( I t ) ( I t ) ( I ) 1 1 1 2 0 5 3 1 1 0 0 0 0 4 4 0 4 . 3 0 5 0 1 0 0 6 1 6 2 . 0 1 0 3 6 7 . 0 2 . 5 5 3 . 1 7 D E F O R M A T I O N ( a n b s s X 0 . 0 0 0 1 ) L V D T 6 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T O 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 0 . 0 1 3 . 7 1 2 . 2 6 . 9 1 2 . 1 2 7 . 4 6 . 5 1 1 . 6 3 0 . 1 6 . 1 1 1 . 0 3 0 . 1 5 0 0 6 . 6 1 1 . 1 1 6 . 0 7 . 6 0 . 6 3 3 . 4 7 . 4 0 . 3 3 5 . 0 6 . 9 6 . 7 3 5 . 3 1 0 0 0 9 . 2 1 2 . 4 2 3 . 6 6 . 1 1 0 . 0 3 7 . 2 7 . 6 1 0 . 3 3 9 . 0 7 . 1 9 . 5 3 0 . 4 5 0 0 0 6 . 7 1 1 . 6 3 7 . 4 7 . 6 1 0 . 2 5 0 . 0 7 . 1 0 . 5 5 1 . 6 6 . 4 6 . 5 5 1 . 6 1 0 0 0 0 6 . 5 1 1 . 4 4 5 . 7 7 . 4 0 . 9 5 0 . 5 6 . 0 9 . 2 5 0 . 2 6 . 1 6 . 1 5 6 . 2 1 6 6 5 0 0 7 . 7 1 0 . 1 1 0 2 . 2 6 . 6 6 . 7 1 0 2 . 2 6 . 0 7 . 6 9 7 . 1 4 . 6 6 . 4 6 4 . 0 3 5 2 7 2 5 7 . 6 1 0 . 6 1 3 1 . 7 6 . 7 0 . 1 1 2 1 . 0 6 . 0 6 . 1 1 0 7 . 5 4 . 7 6 . 4 9 5 . 1 S A M P L E H A H B A C S L C L H B H H B A ( I Q ! A V " J J ? ( 6 ! ) ( I ! ) ( I ) ( L b s ) ( L b s ) ( 6 8 ) ( I t ) ( I ) 1 1 1 2 0 5 1 2 1 0 0 0 0 4 4 0 4 . 3 0 5 0 2 0 0 6 1 6 0 . 0 1 0 3 6 0 . 0 2 . 5 5 3 . 1 2 D E N O R M A T I O N ( L n n b s s X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T 6 0 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T O 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 0 . 3 2 4 . 3 1 3 . 4 1 7 . 0 2 1 . 4 3 1 . 5 1 6 . 2 2 0 . 4 2 0 . 2 1 5 . 4 1 9 . 4 2 5 . 6 5 1 0 1 0 . 7 2 6 . 6 2 3 . 1 1 7 . 3 2 3 . 3 3 6 . 0 1 6 . 3 2 2 . 0 3 5 . 9 1 5 . 1 2 0 . 4 2 7 . 6 1 0 2 0 1 0 . 3 2 6 . 0 2 6 . 3 1 6 . 0 2 2 . 6 4 0 . 6 1 5 . 6 2 1 . 4 3 0 . 4 1 4 . 5 1 0 . 6 3 1 . 4 5 0 0 0 1 7 . 1 2 1 . 5 4 1 . 9 1 4 . 0 1 6 . 6 4 0 . 5 1 3 . 6 1 7 . 3 4 6 . 3 1 2 . 2 1 5 . 4 4 1 . 2 1 0 0 0 0 1 6 . 5 2 0 . 5 5 0 . 7 1 4 . 4 1 7 . 0 5 3 . 4 1 3 . 2 1 6 . 4 5 2 . 3 1 1 . 5 1 4 . 4 4 5 . 2 3 1 0 0 0 1 6 . 7 2 1 . 7 7 3 . 6 1 4 . 5 1 6 . 6 5 9 . 4 1 3 . 1 1 7 . 1 5 6 . 5 1 1 . 1 1 4 . 5 5 0 . 6 1 6 1 5 0 0 1 6 . 3 2 1 . 6 1 2 2 . 7 1 4 . 1 1 6 . 0 7 2 . 3 1 2 . 5 1 6 . 6 6 6 . 5 1 0 . 0 1 3 . 4 6 0 . 1 3 2 7 7 0 0 1 4 . 7 1 6 . 2 1 3 9 . 3 1 2 . 7 1 5 . 7 6 0 . 0 1 1 . 2 1 3 . 6 6 4 . 5 6 . 6 1 0 . 7 7 4 . 6 5 0 1 3 7 0 1 5 . 0 1 0 . 2 1 6 3 . 0 1 2 . 0 1 6 . 5 0 1 . 4 1 1 . 3 1 4 . 5 6 6 . 0 6 . 6 1 0 . 0 7 7 . 6 H A I T O T A L H E I G H T 0 ! D R ! A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; ( I i ! I ' M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E : P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . a : ¢ » r N a ~ : a t r ~ z S O I O A H I V I N E O H E I I 3 0 V O T D I T O I D I ' G V O T G E N I V I S O S I A V 1 3 T R : N H H H I I H J O I N D I H M I I N ' N O I I V H H O I T O ( I N E N V H H E I ) O T I S V T I E A I I V T N H O D I ' V T I ’ H T O I O I N O I I V H H O I E G T V I O I G N V D I I S V T E I ' I O I H I V ' V T E : I I I A V H D D I I I D E I S I V O I I E H O E H I H N H T X H H I H H S : H E I U M N I S T E R N ! T O L I S T E N I M G M : H I V N I T T H H V S 3 0 L I S T E N I V I M : I N H I N O O I T V S I S V I N H O H E I I 3 ' : S H I V O E H B O V I S O 3 0 L I S T E N T V I O I I V M 0 ' 0 2 0 ' ! 0 0 ' 9 0 0 ' 9 0 0 ' 2 0 0 ' 0 0 0 ' 0 2 0 ' 0 2 0 ' ! ! 0 ' 6 0 ' 0 ! 0 ' 6 2 ' 2 ! 9 ' 0 ! 6 ' 9 ! 2 ' ! ! ! ' 9 ! 0 ' 2 ! 9 ‘ 0 ! 0 ' 2 ! 2 ' 0 ! 2 ' 9 ! 0 ' 0 2 2 ' 0 ! 0 ' 0 9 0 ' 2 9 0 ' 2 0 0 ' 0 0 0 ' 0 0 0 ' 6 2 0 ' 2 2 0 ' 0 2 0 ' 0 ! 9 ' 9 ! 6 ' 9 ! 0 ' 2 ! ! ' 0 ! 0 ' 9 ! 9 ' 6 ! 2 ' ! 2 9 ' ! ! 0 ' 2 ! 9 ' 2 ! 9 ' 0 ! ! ' 9 ! 0 ' 9 ! 9 ' 0 ! 9 ' 9 ! 0 ' ! 9 0 ' 0 0 0 ' 0 9 0 ' 9 0 0 ' 2 0 0 ' 9 2 0 ' 9 2 0 ' ! 2 ! ' 2 ! 2 ' 0 ! 9 ' 0 ! 6 ' 0 ! 0 ' 9 ! 0 ' 0 ! 0 ' 0 ! 9 ' 9 ! 9 ' 6 ! 2 ' 0 ! 6 ' 2 ! 6 ' 9 ! 0 ' 0 2 0 ' 9 ! 0 ' 2 2 9 ' 2 ! 2 ' 2 9 ! 0 ' 6 ! 0 ' 0 2 ! 9 ' ! 2 2 ' 0 9 0 ' 0 ! ! ' 2 0 0 ' ! 2 0 ' 0 9 0 ' 2 2 0 ' 0 2 9 ' 0 2 0 ' ! 2 2 ' 0 2 ! ' 0 ! 6 ' 0 2 0 ' 0 ! ! ' 9 ! 9 ' 0 ! 0 ' 9 ! 9 ' 2 ! ! ' 2 ! 9 ' 0 ! 0 ' 6 ! 0 0 0 ! 9 0 0 0 9 2 2 ! 0 0 0 0 2 0 0 2 0 ! 0 0 0 0 0 0 0 ! 0 0 0 0 0 ! ' I O I ' V 1 2 ' V 1 2 ' I O I ' V T E ' V T H ' I O I ' V 1 2 ' V 1 H ' I O I ' V T E ( ' N I 0 2 9 0 ' 9 ) 9 0 I G A T ( ' N I 0 ' 9 ) 0 0 I G A T n u 2 1 3 3 3 ( ' 6 1 0 ' 2 ) 2 0 ' I G A T ( ' 0 1 0 ' 0 ) ! ’ I G A T ( ! 0 0 0 ' 0 I . 9 9 9 3 ! ) N O I I V H H O J H U 0 0 ' 2 0 ' 2 2 0 0 ! 0 ' 0 9 ! 9 0 0 2 0 0 0 0 ' 9 6 9 9 0 0 0 0 ! 2 0 0 0 2 ! ! ! ( 3 ' ) V I M ( 3 ' ) H I M ( 2 ) A V ( 2 ) ( 3 ' ) ( 1 ’ ) 3 V ( ' 4 ! ) T D ( ' 1 ! ) 1 3 0 ' 0 0 ' 9 0 ' 2 ! 0 ' 6 ! 0 ' 0 2 0 ' 0 2 0 ' 0 ! 0 ' 2 ! 0 ' 0 ! 0 ' 2 ! 0 ' ! ! 0 ' ! ! 9 ' 9 ! 2 ' 2 ! 6 ' 9 ! 0 ' 2 ! 0 ' 9 ! 0 ' 0 ! 0 ' 0 0 ' 0 0 ' 6 0 ' 2 ! 9 ' 2 ! 0 ' 2 ! 0 ' 0 ! 2 ' 0 ! 0 ' 0 ! 9 ' 0 2 6 ' 9 2 6 ' 9 9 6 ' ! 9 6 ' 0 0 9 ' 0 0 6 ' ! 2 2 ' 6 ! 2 ' 9 ! ! ' 9 ! 0 ' 0 ! 6 ' 0 ! ! ' 6 ! 2 ' 6 ! 2 ' 9 ! 9 ' 6 ! ! ' 0 ! 0 ' 6 ! 0 ' ! ! 9 ' ! ! 9 ' ! ! 0 ' 9 ! 9 ' 9 ! 0 ' 0 ! ! ' 0 ! 0 ' 9 ! 6 ' 0 ! 9 ' 9 9 ! 0 ' 0 ! 0 ' 6 0 ! 0 ' 2 ! ! ' 2 ! ! 2 ' 0 ! 9 ' 6 0 0 ' ! 2 0 ' 2 9 0 ' ! 2 0 ' 2 0 ! ' 0 ! 0 ' 0 2 2 ' 0 2 0 ' 0 2 2 ' 6 ! 0 ' 9 ! 0 ' 0 2 9 ' 0 ! 0 ' 0 ! 0 ' 2 ! 9 ' 0 ! 2 ' 0 ! 9 ' 9 ! ! ' 9 ! 2 ' 0 ! 9 ' 9 ! 0 ' 9 6 ! 9 ' ! 2 9 ' 2 2 ! 9 ' 0 2 ! ' 2 ! ! 2 ' 0 ! 0 ' 6 9 2 ' 9 2 2 ' 2 0 2 ' 2 9 0 ' 2 2 2 ' ! 2 9 ' 0 ! 0 ' 0 ! 0 ' 0 ! 0 ' 9 ! 2 ' 2 ! ! ' 9 ! 0 ' 9 ! 9 ' 9 ! 6 ' 2 ! 6 ' 0 ! 0 0 9 ! 6 9 0 0 0 0 ! 0 0 0 6 9 2 ! 0 0 0 0 2 0 0 9 0 ! 0 0 ! 0 0 0 0 ! 0 0 0 0 0 ! ' V T H ' I O I ' V 1 2 ' V 1 1 ' I O I ' V 1 2 ' V 1 1 ' I O T ' V 1 2 ' V 1 1 ' I O I ' V T H H H H H U N ( ' N I 0 2 9 0 ' 9 ) 9 0 I O A T ( ' N I 0 ' 9 ) 0 0 I G A T 3 1 3 1 0 ( ' N I 0 ' 2 ) 2 0 L S A T ( ' N I 0 ' 0 ) ! ’ I G A T ( ! 0 0 0 ' 0 X . 0 9 9 9 ! ) N O I I V H H O H H O 9 ! ' 0 0 0 ' 2 0 ' 0 0 0 0 ! 0 ' 9 2 ! 9 0 0 2 0 0 0 0 ' 9 6 9 9 0 0 0 0 ! 2 2 0 0 2 ! ! ! ( 1 9 ) V H M ( 1 0 ) M G M ( 2 ) A V ( 1 ’ ) ( 1 ' ) V M ( ' 4 ! ) I D ( ' 1 ! ) I S ( 2 ) 3 V S B H H O N I T H H N S V I V O G V O T D I T D A O H V H H 0 0 0 “ “ 0 . O O O ‘ O 5 D 0 U “ ! E N E 3 0 5 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 8 3 ) ( I t ) ( I ) ( L b s ) ( L b s ) ( I ! ) ( a t ) ( I ) 1 1 1 2 0 5 1 5 1 0 0 0 0 4 4 9 4 . 3 0 5 0 5 0 0 6 1 1 2 . 0 1 0 2 6 2 . 0 2 . 5 5 3 . 1 5 D E P O R M A T I O N ( i n c b s s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 9 . 4 5 9 . 6 1 7 . 2 4 2 . 9 5 1 . 0 3 0 . 0 4 0 . 1 4 6 . 5 3 3 . 6 3 7 . 1 4 4 . 0 2 6 . 3 5 0 0 4 9 . 1 6 2 . 2 2 6 . 6 4 2 . 4 5 3 . 7 3 6 . 3 3 0 . 1 4 9 . 5 3 6 . 3 5 . 2 4 4 . 6 3 3 . 3 1 0 0 0 4 5 . 6 5 4 . 7 3 3 . 4 3 9 . 4 7 . 2 4 0 . 0 3 6 . 0 4 3 . 2 4 1 . 3 1 . 9 3 6 . 3 3 5 . 6 5 6 0 0 4 7 . 0 6 1 . 4 6 0 . 0 4 0 . 5 2 . 7 5 0 . 0 3 6 . 2 4 7 . 4 4 6 . 3 0 . 6 4 0 . 2 3 6 . 6 1 0 0 0 0 4 6 . 5 6 1 . 3 7 1 . 7 3 9 . 5 2 . 6 5 5 . 0 3 5 . 6 4 6 . 9 5 1 2 0 . 7 3 9 . 1 4 0 . 0 1 9 5 0 0 4 5 . 2 5 0 . 1 6 6 . 4 3 6 . 5 0 . 6 6 1 . 3 3 4 . 2 4 4 . 6 5 4 2 7 . 0 3 6 . 5 4 0 . 6 1 7 0 0 0 0 4 4 . 0 6 0 . 1 1 6 9 . 6 3 7 . 5 1 . 0 6 7 . 6 3 2 . 1 4 3 . 6 6 4 . 2 3 . 7 3 2 . 4 3 4 . 3 3 4 6 1 0 0 3 6 . 6 4 7 . 7 1 6 7 . 7 3 2 . 4 0 . 4 0 9 . 3 2 7 . 6 3 4 . 2 6 6 1 0 . 6 2 4 . 3 3 2 . 6 S A M P L E H A H S A C S L C L H B H H B A ( R T ! A V u m ( 6 8 ) ( I ! ) ( I ) ( L b s ) ( L b s ) ( 6 ! ) ( ‘ 1 ' ) ( I ) 1 1 1 2 0 5 2 5 1 0 0 0 0 4 4 9 4 . 3 0 5 0 5 0 0 6 1 2 4 . 0 1 0 3 0 1 . 0 2 . 5 5 3 . 1 4 D E P O R M A T I O N ( i n o b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 9 A ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 9 . 0 5 6 . 6 1 7 . 0 4 2 . 5 5 1 . 1 2 7 . 0 3 0 . 6 4 7 . 6 2 4 . 3 3 6 . 6 4 4 . 2 1 6 . 6 5 0 0 5 2 . 6 7 1 . 4 3 0 . 7 4 5 . 5 6 1 . 7 3 9 . 0 4 1 . 9 5 6 . 9 3 6 . 3 3 7 . 6 5 1 . 2 3 0 . 5 1 1 0 0 4 6 . 5 6 2 . 1 3 6 . 4 4 1 . 6 5 3 . 6 4 7 . 0 3 6 . 3 4 0 . 1 4 5 . 1 3 3 . 9 4 3 . 4 3 6 . 0 5 4 0 0 4 6 . 0 6 1 . 2 5 0 . 0 4 0 . 3 5 2 . 6 6 7 . 0 3 6 . 3 4 7 . 3 6 3 . 3 3 0 . 6 4 0 . 2 5 6 . 3 1 0 4 0 0 4 5 . 1 5 7 . 6 7 0 . 0 3 6 . 7 4 0 . 5 7 6 . 6 3 4 . 5 4 4 . 2 7 3 . 0 2 6 . 6 3 6 . 9 6 3 . 6 2 3 2 0 0 4 0 . 0 4 6 . 6 6 2 . 3 3 5 . 0 4 1 . 7 9 2 . 4 3 0 . 9 3 6 . 9 6 5 . 1 2 5 . 1 2 9 . 9 7 2 . 5 1 2 3 0 0 0 4 1 . 3 5 2 . 3 1 4 2 . 6 3 5 . 1 4 4 . 5 1 2 1 . 6 3 0 . 3 3 6 . 4 1 0 6 . 5 2 2 . 6 2 6 . 0 6 4 . 0 3 3 9 2 0 0 3 0 . 6 4 9 . 6 1 6 9 . 5 3 3 . 6 4 2 . 2 1 4 2 . 6 2 6 . 5 3 5 . 6 1 1 0 . 6 2 0 . 3 2 5 . 5 9 0 . 0 4 7 0 0 0 0 4 1 . 5 5 5 . 3 2 2 0 . 7 3 5 . 2 4 6 . 6 1 5 0 . 2 2 0 . 7 3 9 . 5 1 2 3 . 4 2 0 . 7 2 7 . 5 9 1 . 5 I T O T A L H E I G H T O P D R ! A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O E S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . 3 0 6 B E A M C Y C L I C L O A D D A T A S A M P L E H A H 6 A C S L C L H B H H B A I ! ! ! A V m m ( 6 ! ) ( s t ) ( 2 ) ( L b s ) ( l b s ) ( 8 ! ) ( s t ) ( 1 ) 1 1 1 2 0 5 3 5 1 0 0 0 0 4 4 9 4 . 3 0 5 0 5 0 0 6 1 2 1 . 0 1 0 3 0 0 . 0 2 . 5 5 3 . 1 9 D E F O R M A T I O N ( i n c b s s X 0 . 0 0 0 1 ) L V D T 6 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 9 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 1 0 5 0 . 3 6 1 . 6 1 6 . 2 4 3 . 6 5 3 . 6 3 5 . 5 4 0 . 7 5 0 . 0 3 5 . 5 3 7 . 6 4 6 . 2 3 7 . 3 5 0 0 5 3 . 1 7 2 . 1 3 1 . 3 4 5 . 6 6 2 . 3 4 0 . 6 4 2 . 2 5 7 . 4 4 0 . 0 3 6 . 0 5 1 . 6 4 2 . 3 1 0 0 0 5 2 . 0 7 0 . 6 3 6 . 4 4 4 . 6 6 1 . 1 4 2 . 5 4 1 . 0 5 5 . 0 4 1 . 6 3 6 . 4 4 9 . 5 4 3 . 5 5 1 0 0 4 9 . 4 6 7 . 3 6 1 . 7 4 2 . 4 5 7 . 7 4 0 . 5 3 6 . 1 5 1 . 0 4 5 . 6 3 2 . 4 4 4 . 1 4 7 . 3 1 0 5 0 0 4 2 . 6 5 1 . 7 6 7 . 6 3 6 . 7 4 4 . 3 5 3 . 0 3 2 . 7 3 9 . 5 4 7 . 6 2 7 . 2 3 2 . 6 4 6 . 3 2 7 0 0 0 4 3 . 3 5 4 . 4 0 2 . 6 3 6 . 9 4 6 . 4 5 0 . 0 3 2 . 5 4 0 . 0 5 1 . 6 2 6 . 1 3 2 . 0 4 9 . 6 1 6 4 1 0 0 4 2 . 6 5 5 . 0 1 6 0 . 3 3 6 . 1 4 7 . 4 7 4 . 0 3 0 . 0 4 0 . 6 6 1 . 6 2 2 . 7 2 0 . 6 5 3 . 6 5 1 0 0 0 0 4 2 . 6 5 6 . 4 2 3 6 . 5 3 6 . 2 4 9 . 3 6 5 . 0 3 0 . 4 4 1 . 5 6 6 . 3 2 1 . 0 2 6 . 7 5 1 . 3 1 0 6 1 5 0 0 4 0 . 6 5 3 . 7 2 6 4 . 0 3 4 . 2 4 5 . 3 6 6 . 6 2 6 . 3 3 7 . 5 6 6 . 3 1 6 . 6 2 4 . 6 5 2 . 3 S A M P L E H A H B A C S L C L H B H H B A ( I t ! A V N U M B E R ( 6 ! ) ( 6 ! ) ( I ) ( L b s ) ( L b l ) ( 6 3 ) ( I ! ) ( I ) 1 1 3 2 0 5 1 1 1 0 0 0 0 4 2 4 4 . 0 7 5 0 1 0 0 6 1 2 7 . 0 1 0 2 0 0 . 0 2 . 5 5 3 . 1 6 m m ( i n c b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A ” E L A m T O T . P L A . E L A . T O T . P L A . 1 0 0 0 . 4 1 2 . 6 1 3 . 2 6 . 3 1 1 . 3 2 0 . 0 7 . 9 1 0 . 6 4 7 . 2 7 . 5 1 0 . 3 3 6 . 3 5 5 0 6 . 2 1 0 . 2 2 0 . 5 7 . 2 9 . 0 2 4 . 7 6 . 6 6 . 5 4 0 . 2 6 . 3 7 . 0 3 0 . 6 1 0 0 0 6 . 4 1 0 . 0 2 5 . 7 7 . 3 0 . 5 2 6 . 3 6 . 9 9 . 0 5 1 . 2 6 . 3 6 . 3 4 0 . 6 5 0 0 0 7 . 4 6 . 0 3 0 . 1 6 . 4 7 . 6 2 6 . 7 6 . 0 7 . 2 5 5 . 0 5 . 3 6 . 5 4 3 . 4 1 0 2 0 0 7 . 3 6 . 0 4 0 . 3 6 . 4 7 . 6 2 0 . 1 5 . 0 7 . 2 6 0 . 9 5 . 1 6 . 3 4 6 . 2 3 0 9 7 5 7 . 4 9 . 6 7 3 . 1 6 . 5 6 . 3 3 3 . 6 5 . 0 7 . 6 6 2 . 3 5 . 0 6 . 4 5 1 . 1 3 2 7 6 6 6 6 . 7 6 . 4 1 4 7 . 0 5 . 6 7 . 3 3 6 . 4 5 . 1 6 . 4 7 4 . 3 4 . 0 5 . 0 7 2 . 1 5 1 1 0 5 0 7 . 0 9 . 4 1 7 6 . 0 6 . 0 6 . 1 4 2 . 5 5 . 3 7 . 1 7 5 . 5 4 . 1 5 . 4 7 3 . 1 H A I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; ‘ G M H - ' l N U H N U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . 3 0 7 ' B E A M C Y C L I C L O A D D A T A S A M P L E H A H P A C S L C L H B H H B A 0 ! ! ! A V N U M B E R ( 2 ! ) ( s t ) ( 2 ) ( L b s ) ( L b s ) ( 6 2 ) ( 3 : ) ( 2 ) 1 1 3 2 0 5 2 1 1 0 0 0 0 4 2 4 4 . 0 7 5 0 1 0 0 6 1 4 5 . 0 1 0 3 2 9 . 0 2 . 5 5 3 . 3 0 m m ( a n b s s X 0 . 0 0 0 1 ) L V D T 9 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 6 3 ( 4 . 0 I N . ) L V D T 9 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A N T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 0 . 2 1 1 . 0 1 3 . 2 6 . 1 1 0 . 5 7 . 7 7 . 7 1 0 . 0 6 . 0 7 . 3 0 . 5 5 . 4 5 0 0 6 . 3 1 0 . 3 2 0 . 7 7 . 3 0 . 0 0 . 1 6 . 0 6 . 5 7 . 5 6 . 4 7 . 0 7 . 1 1 0 0 0 6 . 4 1 0 . 0 2 6 . 6 7 . 4 9 . 5 1 0 . 1 6 . 0 6 . 0 6 . 2 6 . 4 6 . 2 6 . 1 5 5 0 0 6 . 4 1 1 . 5 4 7 . 4 7 . 3 1 0 . 0 1 3 . 5 6 . 6 0 . 3 1 1 . 7 6 . 0 6 . 2 1 1 . 7 1 0 0 0 0 7 . 6 0 . 4 5 2 . 0 6 . 6 6 . 2 1 5 . 1 6 . 0 7 . 5 1 3 . 1 5 . 3 6 . 6 1 3 . 0 3 0 1 4 0 7 . 2 6 . 0 7 2 . 4 6 . 3 7 . 7 1 6 . 1 5 . 7 7 . 0 1 6 . 1 4 . 6 6 . 0 1 5 . 6 1 6 7 6 2 0 7 . 4 0 . 0 1 3 2 . 9 6 . 4 6 . 5 2 3 . 1 5 . 7 7 . 6 2 1 . 1 4 . 5 6 . 1 1 0 . 0 4 0 7 2 5 0 6 . 5 7 . 0 1 6 6 . 4 5 . 6 6 . 6 2 6 . 0 4 . 9 5 . 0 2 3 . 0 3 . 7 4 . 5 2 0 . 9 S A M P L E H A H B A C S L C L H B H H B A I R E ! A V N I N I E R ( 6 1 ' ) ( 6 1 ' ) ( I ) ( L b s ) ( L b s ) ( 6 1 ' ) ( 6 1 ' ) ( I ) 1 1 3 2 0 5 3 1 1 0 0 0 0 4 2 4 4 . 0 7 5 0 1 0 0 6 1 4 5 . 0 1 0 3 0 6 . 0 2 . 5 5 2 . 9 6 m a t ( i n c b s s X 0 . 0 0 0 1 ) L V D T 6 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T 6 9 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 6 0 9 . 1 1 2 . 3 1 4 . 2 6 . 0 1 0 . 9 1 6 . 0 7 . 6 1 0 . 4 1 3 . 3 7 . 2 0 . 6 7 7 5 0 0 7 . 9 9 . 7 1 6 . 2 6 . 9 6 . 5 2 0 . 4 6 . 6 6 . 1 1 4 . 4 6 . 1 7 . 5 6 . 5 1 0 0 0 6 . 5 1 1 . 5 2 4 . 6 7 . 5 1 0 . 1 2 1 . 5 7 . 0 0 . 5 1 4 . 0 6 . 5 6 . 6 0 . 0 5 0 0 0 7 . 4 9 . 1 3 7 . 1 6 . 4 7 . 0 2 5 . 0 6 . 0 7 . 4 1 0 . 4 5 . 4 6 . 6 1 1 . 5 1 1 5 0 0 7 . 4 9 . 3 4 0 . 2 6 . 4 6 . 1 2 6 . 6 5 . 0 7 . 5 2 0 . 0 5 . 2 6 . 6 1 2 . 7 3 6 3 0 0 7 . 5 9 . 0 7 3 . 6 6 . 5 6 . 6 3 1 . 7 5 . 0 7 . 9 2 3 . 4 5 . 0 6 . 7 1 3 . 4 3 6 2 0 0 0 7 . 0 0 . 4 1 5 1 . 3 6 . 1 6 . 2 3 6 . 4 5 . 4 7 . 2 2 6 . 4 4 . 2 5 . 7 1 4 . 6 6 6 2 0 0 0 6 . 4 7 . 0 1 6 0 . 0 5 . 5 6 . 6 4 0 . 5 4 . 6 6 . 0 2 0 . 4 3 . 7 4 . 5 1 5 . 3 6 9 9 3 5 0 6 . 6 6 . 5 1 7 7 . 2 5 . 7 7 . 3 4 1 . 0 5 . 0 6 . 4 2 0 . 5 3 . 6 4 . 6 1 6 . 0 H A I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I ! ! ! I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N I C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T T O N . 3 0 8 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A G M M A V N U M B E R ( 6 : ) ( I ! ) ( I ) ( L b s ) ( L b s ) ( 6 ! ) ( I ! ) ( I ) 1 1 3 2 0 5 1 2 1 0 0 0 0 4 2 4 4 . 0 7 5 0 2 0 0 6 1 0 6 . 0 1 0 2 6 5 . 0 2 . 5 5 3 . 2 6 D E F O R M A T I O N ( a n b s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T l 3 ( 4 . 0 I N . ) L V D T 6 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 0 . 7 2 6 . 4 1 6 . 4 1 7 . 2 2 3 . 1 1 3 . 9 1 6 . 3 2 1 . 0 1 3 . 0 1 5 . 4 2 0 . 7 1 2 . 6 5 0 0 1 6 . 7 2 5 . 1 2 6 . 6 1 6 . 3 2 1 . 9 1 7 . 3 1 5 . 3 2 0 . 5 1 6 . 9 1 4 . 1 1 6 . 0 1 4 . 5 1 0 0 0 1 6 . 6 2 0 . 1 3 0 . 1 1 4 . 4 1 7 . 5 1 9 . 2 1 3 . 4 1 6 . 4 1 6 . 2 1 2 . 2 1 4 . 9 1 5 . 2 5 0 0 0 1 5 . 6 1 6 . 6 4 6 . 0 1 3 . 5 1 6 . 3 2 5 . 5 1 2 . 4 1 4 . 9 2 2 . 7 1 0 . 0 1 3 . 1 1 6 . 3 1 0 2 0 0 1 6 . 3 2 0 . 0 6 5 . 0 1 4 . 1 1 6 . 1 2 6 . 6 1 2 . 6 1 6 . 5 2 5 . 3 1 1 . 1 1 4 . 2 1 9 . 3 2 1 0 0 0 1 6 . 6 2 2 . 4 6 6 . 1 1 4 . 4 1 0 . 4 3 2 . 0 1 3 . 0 1 7 . 5 2 7 . 6 1 1 . 0 1 4 . 6 2 0 . 6 1 3 5 6 0 0 1 4 . 6 1 6 . 3 1 4 0 . 3 1 2 . 5 1 5 . 7 3 0 . 6 1 1 . 1 1 3 . 0 3 3 . 0 6 . 7 1 1 . 0 2 2 . 2 4 0 3 4 0 0 1 5 . 0 2 0 . 1 2 2 3 . 5 1 2 . 6 1 7 . 2 4 4 . 7 1 1 . 1 1 4 . 9 3 6 . 5 6 . 2 1 1 . 1 2 2 . 6 6 4 3 9 5 0 1 4 . 0 1 7 . 7 2 4 9 . 5 1 1 . 9 1 5 . 1 4 6 . 6 1 0 . 2 1 3 . 0 3 7 . 6 7 . 4 0 . 3 2 2 . 6 S A M P L E H A H B A C S L C L H B H H B A G M M A V H U B E R ( 3 3 ) ( s t ) ( 2 ) ( L b s ) ( L b s ) ( s 2 ) ( 8 ! ) ( I ) 1 1 3 2 0 5 2 2 1 0 0 0 0 4 2 4 4 . 0 7 5 0 2 0 0 6 1 2 5 . 0 1 0 2 0 5 . 0 2 . 5 5 3 . 3 0 D E F O R M A T I O N ( a n b s s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T 0 3 ( 4 . 0 I N . ) L V D T * O 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A I T O T . P L A . E L A . T O T . P L A . 1 0 0 1 0 . 9 2 6 . 6 1 6 . 6 1 7 . 4 2 3 . 5 2 2 . 1 1 6 . 5 2 2 . 3 2 0 . 6 1 5 . 5 2 1 . 0 1 6 . 0 5 0 0 1 7 . 2 2 1 . 1 2 4 . 7 1 5 . 0 1 6 . 4 2 6 . 0 1 4 . 0 1 7 . 3 2 5 . 7 1 2 . 9 1 5 . 0 1 0 . 1 1 0 0 0 1 6 . 0 2 3 . 7 3 2 . 6 1 5 . 7 2 0 . 6 3 3 . 7 1 4 . 6 1 0 . 2 2 6 . 7 1 3 . 3 1 7 . 5 2 0 . 1 5 0 0 0 1 6 . 5 2 1 . 0 5 1 . 0 1 4 . 3 1 6 . 1 5 0 . 0 1 3 . 1 1 6 . 7 3 0 . 6 1 1 . 6 1 4 . 7 2 3 . 7 1 0 0 0 0 1 7 . 4 2 3 . 0 6 0 . 3 1 5 . 1 2 0 . 6 5 0 . 6 1 3 . 7 1 6 . 6 4 5 . 5 1 1 . 0 1 6 . 3 2 6 . 6 2 7 6 0 0 1 5 . 6 2 0 . 3 6 6 . 7 1 3 . 6 1 7 . 5 7 3 . 6 1 2 . 3 1 5 . 6 5 4 . 2 1 0 . 3 1 3 . 2 2 6 . 0 3 4 4 6 0 0 1 4 . 2 1 7 . 6 1 6 7 . 0 6 . 3 9 . 3 I 6 . 0 6 . 0 I 5 . 7 6 . 6 I 5 0 1 1 5 0 1 3 . 5 1 6 . 2 2 0 2 . 4 1 1 . 5 1 3 . 6 1 0 7 . 6 1 0 . 0 1 2 . 0 7 0 . 5 7 . 4 6 . 0 3 0 . 5 H A I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O F S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R . V O I D S ; ( I I I I ' M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” ? N E B 3 0 9 B E A M C Y C L I C L O A D D A T A S A M P L E H A H a A C 8 1 . ( : 1 . " B R H B A a n A V N U M B E R ( 5 : ) ( g r ) ( 2 ) ( l b s ) ( l b s ) ( 5 : ) ( 5 r ) ( 1 ) 1 1 3 2 0 5 3 2 1 0 0 0 0 4 2 4 4 . 0 7 5 0 2 0 0 6 1 4 1 . 0 1 0 3 1 5 . 0 2 . 5 5 3 . 2 0 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 9 . 9 2 7 . 1 1 8 . 2 1 7 . 4 2 3 . 8 2 2 . 1 1 8 . 8 2 2 . 6 2 0 . 8 1 5 . 6 2 1 . 3 1 6 . 0 5 0 0 1 8 . 9 2 5 . 7 2 6 . 5 1 6 . 5 2 2 . 4 2 8 . 9 1 5 . 5 2 1 . 1 2 5 . 7 1 4 . 3 1 9 . 4 1 9 . 1 1 0 0 0 1 8 . 5 2 5 . 2 3 2 . 8 1 6 . 1 2 1 . 9 3 3 . 7 1 5 . 0 2 0 . 5 2 8 . 7 1 3 . 7 1 8 . 7 2 0 . 1 5 0 0 0 1 7 . 0 2 2 . 3 5 2 . 0 1 4 . 7 1 9 . 4 5 0 . 0 1 3 . 5 1 7 . 8 3 9 . 6 1 1 . 9 1 5 . 7 2 3 . 7 1 1 1 0 0 1 6 . 6 2 1 . 8 6 4 . 4 1 4 . 4 1 8 . 9 5 9 . 8 1 3 . 1 1 7 . 3 4 5 . 5 1 1 . 4 1 5 . 0 2 6 . 8 3 1 8 0 0 1 4 . 9 1 8 . 2 8 1 . 5 1 2 . 9 1 5 . 7 7 3 . 6 1 1 . 8 1 4 . 2 5 4 . 2 9 . 8 1 1 . 9 2 8 . 9 1 7 1 6 0 0 1 4 . 7 1 9 . 2 1 5 2 . 0 1 2 . 7 1 5 . 6 9 1 . 0 1 1 . 2 1 4 . 0 6 6 . 6 9 . 5 1 2 . 0 3 2 . 1 3 4 9 4 0 0 1 4 . 6 1 6 . 9 1 8 8 . 1 1 2 . 0 1 5 . 2 1 0 1 . 0 1 3 . 0 1 6 . 0 7 1 . 0 1 0 . 5 1 2 . 0 3 4 . 0 6 2 7 9 0 0 1 4 . 3 1 6 . 4 2 0 9 . 5 1 2 . 3 1 5 . 6 1 0 7 . 6 1 2 . 5 1 5 . 0 7 2 . 0 1 0 . 2 1 1 . 7 3 4 . 5 7 2 0 0 0 0 1 4 . 2 1 8 . 6 2 1 9 . 5 1 2 . 5 1 5 . 6 1 1 0 . 0 1 2 . 6 1 5 . 2 7 2 . 2 1 0 . 1 1 1 . 2 3 4 . 0 S A M P L E H A H B A C 8 L C L H B H H B A G M M A V N U M B E R ( s t ) ( 3 : ) ( 2 ) ( l b s ) ( l b s ) ( 3 : ) ( a t ) ( 1 ) 1 1 3 2 0 5 1 5 1 0 0 0 0 4 2 4 4 . 0 7 5 0 5 0 0 6 1 6 0 . 0 1 0 3 8 0 . 0 2 . 5 3 2 . 4 3 D E P O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T ’ 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 9 3 ( 4 . 0 I N . ) L V D T l 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 5 . 7 5 6 . 2 1 5 . 1 4 0 . 2 5 1 . 2 4 4 . 3 3 7 . 7 4 6 . 0 4 4 . 2 3 5 . 0 4 4 . 6 4 2 . 7 5 0 0 4 3 . 6 5 6 . 4 2 5 . 0 3 6 . 4 4 9 . 4 5 2 . 0 3 5 . 6 4 5 . 6 4 0 . 2 3 2 . 2 4 1 . 4 4 5 . 6 1 0 0 0 4 1 . 7 5 2 . 2 3 0 . 1 3 6 . 5 4 5 . 7 5 6 . 6 3 3 . 6 4 2 . 1 5 2 . 2 3 0 . 0 3 7 . 6 4 6 . 9 5 0 0 0 4 2 . 9 5 6 . 0 5 3 . 4 3 7 . 3 5 0 . 6 6 9 . 3 3 3 . 6 4 5 . 6 5 7 . 1 2 9 . 1 3 9 . 4 4 3 . 6 1 0 1 5 0 3 7 . 2 4 4 . 6 5 6 . 9 3 2 . 4 3 6 . 9 7 5 . 6 2 0 . 1 3 5 . 0 6 0 . 1 2 4 . 5 2 9 . 5 4 3 . 2 3 5 0 0 0 3 7 . 7 4 7 . 7 0 1 . 5 3 2 . 6 4 1 . 3 6 6 . 7 2 6 . 9 3 6 . 6 6 4 . 6 2 3 . 3 2 9 . 5 4 1 . 2 1 5 7 9 0 0 3 4 . 4 4 1 . 6 1 3 6 . 3 2 0 . 7 3 6 . 1 0 6 . 5 2 5 . 6 3 1 . 3 6 9 . 5 1 9 . 5 2 3 . 7 3 6 . 1 3 3 4 6 0 0 3 6 . 3 4 7 . 6 1 6 6 . 2 3 1 . 3 4 1 . 0 1 0 4 . 3 2 6 . 6 3 5 . 1 7 1 . 5 1 9 . 5 2 5 . 6 3 6 . 5 I T O T A L H E I G H T 0 P D R Y A G G R E G A T E S ; H B I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T 0 P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I " ! ! ! T H E G E T I C A L S P E C I F I C ( R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E P O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E P O R M A T I O N . ” ? N E B 3 1 0 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 1 4 A V m m ( a t ) ( 8 1 ' ) ( 1 ) ( l b s ) ( l b s ) ( 5 1 ‘ ) ( a t ) ( 1 ) 1 1 3 2 0 5 2 5 1 0 0 0 0 4 2 4 4 . 0 7 5 0 5 0 0 6 1 8 0 . 0 1 0 3 6 3 . 0 2 . 5 5 2 . 9 6 D E F O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T l 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 4 6 . 4 5 6 . 6 1 7 . 5 4 0 . 3 4 9 . 3 6 1 . 3 3 7 . 6 4 6 . 0 6 0 . 0 3 4 . 7 4 2 . 5 6 5 . 0 5 0 0 4 4 . 7 5 5 . 6 2 9 . 2 3 8 . 7 4 8 . 1 7 3 . 6 3 5 . 6 4 4 . 3 7 0 . 0 3 2 . 0 3 9 . 7 7 5 . 0 1 0 0 0 4 3 . 9 5 4 . 7 3 6 . 2 3 7 . 0 4 7 . 2 7 9 . 3 3 4 . 7 4 3 . 2 7 5 . 5 3 0 . 6 3 8 . 2 8 0 . 0 5 0 0 0 4 4 . 8 5 0 . 9 6 3 . 8 3 8 . 6 5 1 . 6 9 2 . 6 3 4 . 6 4 6 . 3 8 5 . 5 2 9 . 4 3 0 . 3 8 7 . 5 1 0 7 0 0 4 1 . 6 5 2 . 9 7 6 . 6 3 5 . 7 4 5 . 4 0 6 . 1 3 1 . 6 4 0 . 4 9 0 . 5 2 6 . 3 3 3 . 5 8 9 . 5 2 0 7 5 0 4 3 . 7 5 9 . 5 1 0 0 . 7 3 7 . 4 5 1 . 0 1 0 4 . 1 3 3 . 0 4 5 . 0 9 4 . 5 2 6 . 7 3 6 . 4 9 1 . 5 1 9 1 2 0 0 3 9 . 9 5 3 . 4 1 9 5 . 6 3 4 . 0 4 5 . 4 1 2 5 . 4 2 9 . 0 3 6 . 7 1 0 7 . 0 2 1 . 2 2 6 . 3 9 2 . 8 3 5 1 4 5 0 3 6 . 9 5 1 . 6 2 3 4 . 2 3 3 . 0 4 3 . 6 1 3 1 . 4 2 7 . 9 3 7 . 0 1 0 9 . 8 1 9 . 7 2 6 . 1 9 2 . 8 S A M P L E H A H B A C S L C L H B H H B A ( 3 ! ! A V N U M B E R ( 8 ! ) ( 8 ! ) ( I ) ( L b s ) ( L b s ) ( I t ) ( I t ) ( I ) 1 1 3 2 0 5 3 5 1 0 0 0 0 4 2 4 4 . 0 7 5 0 5 0 0 6 0 2 4 . 0 1 0 1 5 0 . 0 2 . 5 5 3 . 6 4 D E F O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T i 3 ( 4 . 0 I N . ) L V D T f 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 5 3 . 5 7 1 . 0 2 4 . 3 4 5 . 6 6 0 . 6 2 2 . 4 4 2 . 4 5 6 . 3 2 1 . 4 3 6 . 6 5 1 . 5 2 0 . 5 5 0 0 5 1 . 6 6 0 . 5 4 0 . 5 4 4 . 0 5 9 . 2 2 7 . 7 4 0 . 1 5 4 . 0 2 5 . 0 3 5 . 5 4 7 . 0 2 4 . 4 1 0 0 0 4 5 . 6 5 5 . 5 4 5 . 2 3 6 . 6 4 7 . 2 3 1 . 2 3 5 . 1 4 2 . 7 2 6 . 4 3 0 . 6 3 7 . 3 2 5 . 9 5 3 0 0 4 6 . 6 6 1 . 2 6 1 . 4 3 0 . 4 5 1 . 6 4 1 . 4 3 5 . 0 4 5 . 9 3 5 . 4 2 0 . 1 3 6 . 2 3 0 . 4 1 0 2 2 5 4 7 . 5 6 4 . 6 1 0 3 . 7 4 0 . 1 5 4 . 7 4 6 . 6 3 5 . 3 4 6 . 1 3 6 . 9 2 8 . 7 3 9 . 1 3 2 . 8 3 0 0 0 0 4 4 . 0 5 7 . 5 1 3 6 . 3 3 7 . 0 4 6 . 4 5 6 . 1 3 2 . 0 4 1 . 9 4 6 . 1 2 4 . 9 3 2 . 6 3 8 . 2 1 5 3 1 0 0 3 6 . 6 4 6 . 6 2 1 0 . 0 3 2 . 3 3 9 . 0 6 6 . 6 2 7 . 2 3 2 . 6 5 7 . 9 1 9 . 5 2 3 . 5 4 6 . 7 3 2 5 3 0 0 3 7 . 2 4 4 . 4 2 6 2 . 6 3 1 . 1 3 7 . 1 7 5 . 4 2 5 . 6 3 0 . 6 6 2 . 0 1 7 . 6 2 1 . 0 5 0 . 4 5 0 1 2 0 0 3 7 . 1 4 4 . 8 3 0 3 . 6 3 0 . 9 3 7 . 3 7 9 . 5 2 5 . 5 3 0 . 6 6 6 . 2 1 6 . 6 2 0 . 3 5 3 . 3 I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H B I H E I G H T 0 F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D : I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . 3 1 1 B E A M C Y C L I C L O A D D A T A S A M P L E H A H E A C S L C L H B H H B A ( R I ! A V N U M B E R ( 8 : ) ( S t ) ( I ) ( L b s ) ( L b S ) ( 8 ! ) ( 6 ! ) ( I ) 2 2 1 2 0 6 1 1 1 0 0 0 0 4 4 7 4 . 2 6 5 0 1 0 0 5 7 9 0 . 0 9 9 3 5 . 0 2 . 5 2 4 . 8 9 D E F O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T 9 3 ( 4 . 0 I N . ) L V D T 5 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 0 . 0 1 4 . 0 2 2 . 4 9 . 3 1 2 . 0 1 3 . 0 6 . 6 1 1 . 3 6 . 6 6 . 3 1 0 . 7 4 . 3 5 0 0 1 0 . 4 1 3 . 4 3 6 . 4 6 . 6 1 1 . 4 1 4 . 9 6 . 3 1 0 . 7 9 . 6 7 . 6 0 . 6 4 . 6 1 0 0 0 1 0 . 1 1 2 . 9 4 4 . 4 6 . 6 1 0 . 9 1 6 . 1 7 . 9 1 0 . 1 1 0 . 5 7 . 2 9 . 2 5 . 0 7 7 0 0 9 . 3 1 1 . 6 6 0 . 0 7 . 6 9 . 7 2 2 . 0 7 . 1 6 . 9 1 4 . 5 6 . 1 7 . 6 7 . 0 1 0 5 0 0 1 0 . 0 1 3 . 6 0 5 . 7 6 . 4 1 1 . 5 2 4 . 4 7 . 6 1 0 . 4 1 5 . 1 6 . 5 6 . 0 7 . 2 1 3 4 6 0 0 6 . 9 1 1 . 7 1 9 6 . 6 7 . 4 9 . 6 3 4 . 0 6 . 5 6 . 6 1 9 . 8 5 . 0 6 . 6 6 . 5 3 0 9 3 0 0 . 4 1 0 . 6 2 4 7 . 5 7 . 0 9 . 0 3 7 . 1 6 . 0 . 7 1 0 . 3 4 . 5 5 . 7 4 . 5 1 0 1 1 9 0 0 6 . 2 1 0 . 5 3 5 4 . 5 6 . 6 6 . 7 4 0 . 9 5 . 7 . 3 1 9 . 6 3 . 9 5 . 0 2 . 2 S A M P L E H A H B A C S L C L H B H H B A ( 3 ! ! A V N U M B E R ( 8 : ) ( 6 ! ) ( I ) ( L b s ) ( L b s ) ( 6 ! ) ( I t ) ( I ) 2 2 1 2 0 6 2 1 1 0 0 0 0 4 4 7 4 . 2 6 5 0 1 0 0 5 7 7 0 . 0 9 9 0 5 . 0 2 . 5 2 4 . 9 4 D E F O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 6 2 ( 2 . 0 I N . ) L V D T f 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 . 2 1 4 . 7 2 3 . 4 9 . 5 1 2 . 5 1 0 . 1 9 . 0 1 1 . 6 6 . 4 6 . 5 1 1 . 1 4 . 8 5 0 0 1 0 . 0 1 4 . 5 3 6 . 6 9 . 2 1 2 . 3 1 3 . 0 6 . 6 1 1 . 5 6 . 6 7 . 9 1 0 . 6 7 . 3 1 0 0 0 0 . 7 1 1 . 6 4 3 . 3 6 . 2 1 0 . 0 1 5 . 0 7 . 6 0 . 3 1 0 . 1 6 . 9 6 . 4 6 . 4 5 0 0 0 9 . 6 1 2 . 7 7 4 . 7 6 . 3 1 0 . 7 2 2 . 4 7 . 5 0 . 6 1 4 . 5 6 . 6 6 . 5 1 2 . 2 1 0 0 0 0 9 . 6 1 3 . 0 0 4 . 0 6 . 2 1 1 . 0 2 7 . 2 7 . 5 9 . 9 1 7 . 5 6 . 4 6 . 5 1 4 . 9 3 0 5 0 0 9 . 6 1 3 . 6 1 3 6 . 4 6 . 2 1 1 . 4 3 5 . 6 7 . 4 1 0 . 2 2 2 . 2 6 . 0 6 . 4 1 9 . 0 1 6 5 6 0 0 6 . 6 1 1 . 1 2 1 6 . 2 7 . 2 9 . 3 5 2 . 3 6 . 2 6 . 0 3 1 . 5 4 . 7 6 . 1 2 4 . 2 3 3 0 5 3 8 6 . 5 1 1 . 0 2 5 0 . 7 7 . 1 9 . 1 6 0 . 0 6 . 1 7 . 6 3 4 . 6 4 . 5 5 . 6 2 7 . 0 5 1 5 9 0 0 6 . 6 1 1 . 4 3 0 4 . 9 7 . 1 0 . 5 6 7 . 6 6 . 1 6 . 1 3 7 . 6 4 . 4 5 . 8 2 9 . 3 6 7 6 9 0 0 8 . 3 1 0 . 7 3 2 1 . 1 6 . 9 6 . 6 6 9 . 0 5 . 6 7 . 5 3 8 . 6 4 . 1 5 . 3 3 0 . 3 6 0 5 7 0 0 6 . 6 1 1 . 5 3 3 5 . 6 7 . 1 0 . 5 6 9 . 5 6 . 0 6 . 0 3 9 . 0 4 . 2 5 . 7 3 0 . 5 H A I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H B I H E I G H T O F B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O F S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; G 0 ! I M A X I N E ! M I T C A L S P E C I F I C Q A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . 3 1 2 B E A M C Y C L I C L O A D D A T A S A M P L E H A H 8 A C S L C L H B H N B A ( 3 9 1 A v m m ( g r ) ( 3 : ) ( 2 ) ( l b s ) ( l b s ) ( 8 1 ' ) ( g r ) ( 2 ) 2 2 1 2 0 6 3 1 1 0 0 0 0 4 4 7 4 . 2 8 5 0 1 0 0 5 8 0 5 . 0 9 9 7 5 . 0 2 . 5 2 5 . 0 8 D E F O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 9 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 . 0 1 6 . 2 2 5 . 5 1 0 . 1 1 3 . 6 0 . 3 9 . 6 1 3 . 1 6 . 7 0 . 0 1 2 . 3 8 . 7 5 0 0 1 0 . 6 1 4 . 0 3 9 . 3 0 . 1 1 1 . 0 1 0 . 6 6 . 5 1 1 . 1 0 . 7 7 . 6 1 0 . 1 0 . 7 1 2 4 0 9 . 9 1 2 . 1 4 6 . 7 6 . 3 1 0 . 2 1 1 . 0 7 . 7 9 . 4 1 0 . 0 6 . 0 8 . 5 1 0 . 5 5 0 0 0 1 0 . 5 1 4 . 3 6 2 . 2 6 . 6 1 2 . 0 1 4 . 6 6 . 0 1 1 . 0 1 4 . 3 7 . 0 9 . 5 1 3 . 7 1 0 0 0 0 1 0 . 5 1 4 . 6 1 0 3 . 4 6 . 6 1 2 . 3 1 7 . 0 6 . 0 1 1 . 1 1 6 . 5 6 . 6 9 . 5 1 5 . 6 4 0 4 0 0 0 . 5 1 2 . 5 1 5 8 . 3 7 . 9 1 0 . 5 2 6 . 1 7 . 0 9 . 3 2 4 . 3 5 . 6 7 . 4 2 3 . 9 1 7 1 6 0 0 6 . 6 1 1 . 4 2 2 3 . 2 7 . 3 0 . 4 3 3 . 4 6 . 4 8 . 2 3 1 . 5 4 . 6 6 . 2 3 1 . 2 3 5 9 0 0 0 6 . 6 1 1 . 4 2 8 2 . 4 7 . 3 9 . 5 3 6 . 3 6 . 2 6 . 1 3 5 . 0 4 . 5 5 . 9 3 5 . 0 5 1 1 4 0 0 6 . 6 1 1 . 7 3 1 9 . 5 7 . 3 0 . 7 4 0 . 6 6 . 2 8 . 2 3 8 . 3 4 . 4 5 . 9 3 7 . 2 7 0 6 0 0 0 6 . 7 1 1 . 4 3 4 9 . 6 7 . 2 9 . 4 4 3 . 2 6 . 1 6 . 0 4 0 . 7 4 . 2 5 . 6 3 9 . 4 S A M P L E H A H B A C S L C L H B H H B A I ! ! ! A V N U M B E R ( 6 ! ) ( 6 : ) ( I ) ( L b s ) ( L b s ) ( 6 : ) ( 6 ! ) ( I ) 2 2 1 2 0 6 1 2 1 0 0 0 0 4 4 7 4 . 2 6 5 0 2 0 0 5 7 7 2 . 0 0 9 0 0 . 0 2 . 5 2 4 . 6 3 D E F O R M A T I O N ( i n c b s s X 0 . 0 0 0 1 ) L V D T 1 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T 9 3 ( 4 . 0 I N . ) L V D T 0 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 1 . 6 2 6 . 0 2 5 . 6 1 6 . 5 2 2 . 0 4 2 . 6 1 7 . 4 2 1 . 5 4 1 . 6 1 6 . 3 2 0 . 1 4 1 . 3 5 0 0 2 2 . 0 3 1 . 2 4 5 . 7 1 9 . 4 2 6 . 4 4 7 . 4 1 6 . 0 2 4 . 5 4 6 . 0 1 6 . 3 2 2 . 2 4 5 . 6 1 0 0 0 2 1 . 6 2 6 . 3 5 4 . 2 1 6 . 2 2 3 . 9 5 1 . 9 1 6 . 6 2 2 . 0 5 0 . 0 1 5 . 0 1 9 . 7 4 6 . 1 5 0 0 0 1 0 . 3 2 3 . 9 6 2 . 7 1 6 . 2 2 0 . 1 6 3 . 1 1 4 . 7 1 6 . 2 6 0 . 5 1 2 . 6 1 5 . 6 5 2 . 7 1 0 0 0 0 1 9 . 6 2 5 . 3 1 0 5 . 6 1 6 . 5 2 1 . 2 6 9 . 4 1 4 . 6 1 9 . 0 6 6 . 1 1 2 . 4 1 6 . 0 5 4 . 7 1 3 6 2 0 0 1 6 . 7 2 5 . 0 2 3 9 . 5 1 5 . 6 2 0 . 7 7 6 . 7 1 3 . 4 1 7 . 0 7 2 . 1 1 0 . 1 1 3 . 5 5 7 . 2 1 1 1 1 1 2 0 . 5 2 7 . 7 1 1 4 . 5 1 7 . 2 2 3 . 2 0 3 . 0 1 5 . 4 2 0 . 6 6 5 . 6 1 2 . 9 1 7 . 4 5 9 . 6 3 2 2 0 0 0 1 7 . 2 2 1 . 7 2 9 3 . 2 1 4 . 3 1 6 . 0 1 0 0 . 6 1 2 . 1 1 5 . 3 0 1 . 5 6 . 7 1 1 . 0 5 9 . 6 4 9 5 6 0 0 1 6 . 4 2 5 . 1 3 6 0 . 0 1 5 . 2 2 0 . 7 1 0 2 . 0 1 2 . 6 1 7 . 5 9 4 . 0 9 . 0 1 2 . 3 5 9 . 6 H A I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H B I H E I G H T O F B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O F S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; O H I M A X I M ) ! m a m a . S P E C I F I C G A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . ” ? ? ? B E 3 1 3 B E A M C Y C L I C L O A D D A T A S A M P L E H A H 8 A C 8 1 . C L H B H H B A 6 M 1 A V N U M B E R ( 3 : ) ( g r ) ( 2 ) ( l b s ) ( l b s ) ( 3 : ) ( s t ) ( 2 ) 2 2 1 2 0 6 2 2 1 0 0 0 0 4 4 7 4 . 2 8 5 0 2 0 0 5 8 1 5 . 0 9 9 7 2 . 0 2 . 5 2 4 . 8 1 D E F O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T 9 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 3 . 2 3 0 . 3 2 6 . 9 1 9 . 7 2 5 . 6 1 4 . 6 1 6 . 6 2 4 . 3 1 3 . 9 1 7 . 3 2 2 . 6 1 1 . 7 5 0 0 2 1 . 1 2 6 . 3 4 1 . 5 1 7 . 8 2 2 . 2 1 5 . 8 1 6 . 5 2 0 . 6 1 4 . 9 1 5 . 0 1 8 . 7 1 2 . 7 1 0 0 0 2 2 . 5 3 0 . 6 5 5 . 8 1 9 . 0 2 5 . 9 1 7 . 3 1 7 . 5 2 3 . 6 1 6 . 0 1 5 . 7 2 1 . 4 1 3 . 7 5 0 0 0 1 9 . 6 2 4 . 5 6 2 . 9 1 6 . 5 2 0 . 6 2 5 . 6 1 4 . 9 1 8 . 6 2 2 . 1 1 2 . 6 1 6 . 0 1 9 . 0 1 0 0 0 0 2 0 . 2 2 6 . 6 1 0 7 . 4 1 6 . 9 2 2 . 3 3 1 . 4 1 5 . 2 2 0 . 0 2 7 . 0 1 2 . 8 1 6 . 8 2 3 . 4 3 3 5 0 0 2 0 . 6 2 8 . 7 1 6 3 . 4 1 7 . 2 2 4 . 0 3 7 . 5 1 5 . 2 2 1 . 2 3 1 . 9 1 2 . 2 1 7 . 1 2 6 . 3 1 4 3 0 0 0 1 8 . 8 2 5 . 0 2 4 0 . 7 1 5 . 6 2 0 . 7 4 2 . 9 1 3 . 5 1 7 . 9 3 5 . 7 1 0 . 1 1 3 . 5 3 0 . 7 3 2 8 5 0 0 1 8 . 6 2 5 . 1 3 1 3 . 4 1 5 . 4 2 0 . 7 4 6 . 1 1 3 . 1 1 7 . 6 3 8 . 2 9 . 4 1 2 . 7 3 2 . 0 4 9 0 0 0 0 1 6 . 3 1 9 . 5 3 1 3 . 7 1 3 . 5 1 6 . 1 4 8 . 5 1 1 . 4 1 3 . 6 3 9 . 4 8 . 0 9 . 6 3 2 . 5 6 8 7 0 0 0 1 7 . 3 2 2 . 4 3 7 3 . 9 1 4 . 3 1 8 . 5 4 9 . 5 1 2 . 0 1 5 . 5 3 9 . 7 8 . 2 1 0 . 6 3 2 . 5 S A M P L E H A H 8 A C 8 1 . C I . H B H H B A G M A V N U M B E R ( 5 : ) ( a t ) ( 2 ) ( l b s ) ( l b s ) ( 3 : ) ( s t ) ( 1 ) 2 2 1 2 0 6 3 2 1 0 0 0 0 4 4 7 4 . 2 8 5 0 2 0 0 5 8 0 8 . 0 9 9 8 0 . 0 2 . 5 2 5 . 0 7 D E F O R M A T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T P 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 2 . 6 2 8 . 4 2 6 . 2 1 9 . 3 2 4 . 1 1 2 . 1 1 6 . 1 2 2 . 6 1 1 . 4 1 6 . 9 2 1 . 1 1 2 . 8 5 0 0 2 1 . 6 2 7 . 2 4 5 . 9 1 6 . 3 2 2 . 9 1 4 . 5 1 7 . 0 2 1 . 2 1 3 . 4 1 5 . 3 1 9 . 2 1 4 . 7 1 0 0 0 2 2 . 8 3 0 . 7 6 0 . 5 1 9 . 2 2 5 . 6 1 6 . 5 1 7 . 6 2 3 . 7 1 5 . 0 1 5 . 7 2 1 . 1 1 5 . 9 5 0 0 0 1 9 . 3 2 3 . 1 6 7 . 2 1 6 . 1 1 9 . 3 2 2 . 6 1 4 . 6 1 7 . 4 1 6 . 5 1 2 . 5 1 4 . 9 1 6 . 3 1 0 8 0 0 2 1 . 1 2 6 . 3 1 2 3 . 2 1 7 . 6 2 3 . 6 2 9 . 0 1 5 . 7 2 1 . 1 2 2 . 9 1 3 . 1 1 7 . 6 2 1 . 7 1 4 7 1 5 0 1 6 . 3 2 3 . 2 2 5 3 . 7 1 5 . 1 1 9 . 1 4 6 . 2 1 3 . 0 1 6 . 4 3 0 . 5 9 . 7 1 2 . 2 2 4 . 0 3 2 0 1 0 0 1 7 . 3 2 1 . 2 3 0 0 . 9 1 4 . 2 1 7 . 4 5 4 . 2 1 2 . 1 1 4 . 7 3 2 . 0 8 . 6 1 0 . 5 2 3 . 5 5 0 5 0 0 0 1 6 . 6 2 0 . 2 3 4 9 . 4 1 3 . 6 1 6 . 6 5 6 . 1 1 1 . 6 1 3 . 0 3 3 . 0 6 . 0 0 . 6 2 3 . 5 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H E I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; 8 L I S U S T A I N E D L O A D ; I H E I G H T O F S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . 3 1 4 B E A M C Y C L I C L O A D D A T A S A M P L E H A H 8 A c S L C L H B H H B A G M M A v N U M B E R ( 5 : ) ( g r ) ( 2 ) ( l b s ) ( l b s ) ( 5 : ) ( 3 r ) ( 2 ) 2 2 1 2 0 6 1 5 1 0 0 0 0 4 4 7 4 . 2 8 5 0 5 0 0 5 7 8 0 . 0 9 9 3 5 . 0 2 . 5 2 5 . 1 2 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 5 1 ( 0 . 0 I N . ) L V D T 5 2 ( 2 . 0 I N . ) L V D T f 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 5 9 . 4 7 2 . 5 3 6 . 9 4 9 . 4 6 0 . 2 3 3 . 8 4 5 . 2 5 5 . 1 3 2 . 6 4 0 . 7 4 9 . 7 3 1 . 2 5 0 0 6 1 . 7 8 2 . 2 6 5 . 3 5 1 . 0 6 7 . 9 3 6 . 8 4 5 . 8 6 1 . 0 . 3 5 . 0 3 9 . 8 5 3 . 1 3 3 . 1 1 0 0 0 6 2 . 6 8 6 . 7 8 3 . 4 5 1 . 7 7 1 . 5 3 8 . 5 4 6 . 0 6 3 . 6 3 6 . 6 3 9 . 3 5 4 . 3 3 4 . 1 5 0 0 0 5 3 . 6 6 6 . 8 1 2 1 . 7 4 4 . 0 5 4 . 8 4 3 . 9 3 8 . 3 4 7 . 7 4 0 . 1 3 1 . 0 3 8 . 6 3 5 . 6 1 0 0 0 0 5 7 . 4 7 8 . 2 1 6 3 . 8 4 6 . 9 6 4 . 0 4 6 . 8 4 0 . 4 5 5 . 1 4 2 . 1 3 1 . 8 4 3 . 4 3 6 . 2 3 6 4 0 0 5 3 . 1 6 9 . 8 2 3 2 . 5 4 3 . 2 5 6 . 8 5 2 . 0 3 6 . 4 4 7 . 8 4 5 . 5 2 6 . 9 3 5 . 4 3 6 . 8 1 5 8 7 0 0 5 0 . 1 6 5 . 0 3 5 6 . 7 4 0 . 5 5 2 . 5 5 8 . 3 3 3 . 1 4 3 . 0 5 0 . 8 2 2 . 4 2 9 . 0 3 7 . 0 3 3 2 9 0 0 4 5 . 6 5 5 . 2 4 1 5 . 3 3 6 . 7 4 4 . 5 6 1 . 0 2 9 . 6 3 5 . 8 5 3 . 5 1 8 . 9 2 2 . 9 3 7 . 0 S A M P L E H A H 8 A C S L C L H B H H B A ( 3 ! ! A V N U M B E R ( 3 : ) ( s t ) ( 1 ) ( l b s ) ( l b s ) ( 8 : ) ( s t ) ( 1 ) 2 2 1 2 0 6 2 5 1 0 0 0 0 4 4 7 4 . 2 8 5 0 5 0 0 5 8 1 5 . 0 9 9 8 0 . 0 2 . 5 2 4 . 9 1 D E F O R M A T I O N ( i n c h o s X 0 . 0 0 0 1 ) L V D T ' 1 ( 0 . 0 I N . ) L V D T § 2 ( 2 . 0 I N . ) L V D T l 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 3 . 7 8 4 . 6 3 7 . 4 5 3 . 1 7 0 . 6 2 0 . 8 4 8 . 7 6 4 . 7 2 5 . 2 4 4 . 0 5 8 . 6 2 9 . 3 5 0 0 5 8 . 3 7 4 . 6 5 8 . 4 4 8 . 4 6 2 . 0 2 4 . 4 4 3 . 6 5 5 . 8 2 9 . 0 3 8 . 0 4 8 . 7 3 4 . 2 1 1 0 0 5 5 . 0 8 8 . 1 7 1 . 5 4 5 . 5 5 6 . 4 2 6 . 3 4 0 . 6 5 0 . 3 2 9 . 4 3 4 . 7 4 3 . 0 3 6 . 6 5 5 0 0 5 7 . 3 7 7 . 8 1 2 6 . 9 4 7 . 2 6 4 . 1 3 0 . 8 4 1 . 2 5 5 . 9 3 0 . 6 3 3 . 4 4 5 . 3 4 1 . 5 1 0 9 0 0 5 6 . 3 7 6 . 8 1 5 6 . 4 4 6 . 3 6 3 . 1 3 2 . 8 3 9 . 9 5 4 . 5 3 2 . 3 3 1 . 5 4 2 . 9 4 3 . 9 2 2 0 0 0 5 5 . 0 7 4 . 9 1 9 2 . 8 4 5 . 1 6 1 . 4 3 5 . 6 3 8 . 4 5 2 . 4 3 4 . 3 2 9 . 4 4 0 . 0 4 6 . 1 1 6 1 7 0 0 4 5 . 7 5 5 . 0 3 0 9 . 7 3 7 . 1 4 4 . 7 4 2 . 9 3 0 . 5 3 6 . 7 4 0 . 4 2 0 . 8 2 5 . 0 5 2 . 2 3 5 3 2 0 0 4 9 . 2 6 5 . 4 4 3 1 . 8 3 9 . 8 5 2 . 9 4 2 . 9 3 2 . 2 4 2 . 7 4 0 . 4 2 0 . 7 2 7 . 5 5 2 . 2 I T O T A L H E I G H T O F D R ! A G G R E G A T E S ; H E I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O F S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I m m T H E G I E T I C A L S P E C I F I C G A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . E E H E ” 3 1 5 B E A M C Y C L I C L O A D D A T A S A M P L E H A H 8 A C S L C L H B H H B A G M M A V N U M B E R ( 8 ! ) ( 3 : ) ( 2 ) ( l b s ) ( l b s ) ( 5 : ) ( 5 r ) ( 1 ) 2 2 1 2 0 6 3 5 1 0 0 0 0 4 4 7 4 . 2 8 5 0 5 0 0 5 8 1 2 . 0 9 9 9 3 . 0 2 . 5 2 5 . 1 5 D E F O R M A T I O N ( i n c h - s X 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 7 . 1 9 1 . 5 4 1 . 9 5 5 . 7 7 6 . 0 1 7 . 1 5 0 . 9 6 9 . 4 1 6 . 7 4 5 . 9 6 2 . 6 1 7 . 7 5 0 0 6 3 . 3 8 5 . 8 6 7 . 4 5 2 . 3 7 0 . 8 2 2 . 4 4 7 . 0 6 3 . 6 2 2 . 5 4 0 . 8 5 5 . 3 2 3 . 1 1 0 0 0 5 4 . 5 6 4 . 9 7 2 . 9 4 4 . 9 5 3 . 4 2 4 . 9 3 9 . 9 4 7 . 8 2 4 . 9 3 4 . 1 4 0 . 6 2 6 . 2 5 5 0 0 5 7 . 1 7 5 . 3 1 3 4 . 3 4 6 . 8 6 1 . 6 3 5 . 6 4 0 . 6 5 3 . 5 3 6 . 1 3 2 . 7 4 3 . 1 3 8 . 4 1 0 0 0 0 5 6 . 3 7 4 . 5 1 6 1 . 3 4 6 . 0 6 0 . 8 3 9 . 3 3 9 . 6 5 2 . 3 4 2 . 4 3 1 . 1 4 1 . 1 4 4 . 5 1 2 8 0 0 0 4 7 . 9 5 8 . 6 3 1 9 . 5 3 8 . 7 4 7 . 3 5 6 . 4 3 1 . 8 3 8 . 9 6 6 . 8 2 1 . 8 2 6 . 6 7 2 . 6 3 3 7 9 0 0 4 6 . 0 5 5 . 6 4 2 2 . 8 3 7 . 0 4 4 . 8 6 4 . 9 2 9 . 8 3 6 . 0 7 8 . 0 1 8 . 9 2 2 . 9 8 3 . 6 S A M P L E H A H B A C S L C L H B H H B A G M M A V m m ( 3 r ) ( 8 : ) ( 2 ) ( l b s ) ( l b s ) ( 5 : ) ( s t ) ( 1 ) 3 2 1 2 0 6 1 1 1 0 0 0 0 4 6 0 4 . 4 0 5 0 1 0 0 5 8 2 6 . 0 9 9 9 4 . 0 2 . 5 3 5 . 2 3 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T 0 2 ( 2 . 0 I N . ) L V D T I 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A 1 0 0 1 1 . 4 1 4 . 6 2 5 . 3 9 . 6 1 2 . 4 5 . 2 9 . 1 1 1 . 7 3 . 7 - - - 5 0 0 1 1 . 4 1 5 . 6 4 3 . 2 9 . 6 1 3 . 1 1 2 . 9 9 . 0 1 2 . 3 8 . 2 - - - 1 0 0 0 1 0 . 9 1 4 . 4 5 1 . 6 9 . 2 1 2 . 1 2 1 . 0 8 . 5 1 1 . 2 1 2 . 8 - - - 5 5 0 0 1 0 . 4 1 3 . 9 8 6 . 4 8 . 7 1 1 . 6 5 1 . 3 7 . 9 1 0 . 8 2 7 . 8 - - - 1 2 0 0 0 9 . 7 1 2 . 4 1 0 4 . 5 8 . 1 1 0 . 4 8 5 . 2 7 . 3 9 . 4 4 3 . 8 - - - 3 7 0 0 0 9 . 8 1 3 . 2 1 5 3 . 4 8 . 2 1 1 . 0 1 4 0 . 7 7 . 3 9 . 8 6 6 . 8 - - - 1 6 4 5 0 0 8 . 9 1 1 . 2 2 2 5 . 5 7 . 3 9 . 3 4 8 0 . 9 8 . 3 8 . 0 1 8 9 . 8 - - - 3 8 5 5 5 0 8 . 3 1 0 . 2 2 7 5 . 9 - - - - - - - H A I T O T A L H E I G H T O F D R ! A G G R E G A T E S ; H 8 I H E I G H T O F B I T U M E N ; A C - P E R C E N T A S P H A L T C O N T E N T ; 3 1 . - S U S T A I N E D L O A D ; H B A - H E I G B T O F S A M P 1 . E I N A I R ; C L - C Y C l l c h D ; H B H I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; a ” I M A X I M U M W I C A L S P E C I F I C G I A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . 3 1 6 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( i t ! A V N U M B E R ( 8 : ) ( S r ) ( 2 ) ( l b s ) ( 1 b 8 ) ( 8 : ) ( 8 r ) ( 2 ) 3 2 1 2 0 6 2 1 1 0 0 0 0 4 6 0 4 . 4 0 5 0 1 0 0 5 8 2 8 . 0 9 9 9 7 . 0 2 . 5 3 5 . 2 2 D E P O R M B T I O N ( i n c h s s X 0 . 0 0 0 1 ) L V D T I 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T f 3 ( 4 . 0 I N . ) L V D T I 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 . 8 1 5 . 7 2 6 . 1 1 0 . 0 1 3 . 3 5 . 2 9 . 4 1 2 . 6 3 . 7 - - - 5 0 0 1 0 . 6 1 3 . 5 4 0 . 1 9 . 0 1 1 . 4 1 2 . 9 8 . 4 1 0 . 6 8 . 2 ' ' - 1 0 0 0 1 0 . 0 1 2 . 3 4 7 . 5 8 . 4 1 0 . 3 2 1 . 0 7 . 8 9 . 6 1 2 . 8 - - ~ 5 0 0 0 1 0 . 6 1 4 . 5 8 5 . 4 8 . 9 1 2 . 1 5 1 . 3 8 . 1 1 1 . 0 2 7 . 8 - - ' 1 0 0 0 0 9 . 5 1 2 . 0 9 6 . 6 8 . 0 1 0 . 0 8 5 . 2 7 . 2 9 . 0 4 3 . 8 - - - 2 9 5 0 0 9 . 9 1 3 . 2 1 4 2 . 5 8 . 2 1 1 . 0 1 4 0 . 7 7 . 3 9 . 8 6 6 . 6 ' - ' 1 5 4 7 0 0 8 . 8 1 1 . 0 2 1 8 . 9 7 . 3 9 . 1 4 8 0 . 9 6 . 3 7 . 9 1 8 9 . 8 - - - 3 8 7 4 5 0 9 . 1 1 2 . 2 3 0 6 . 5 ' - ' - - - - - - S A M P L E H A H B A C S L C L H B H H B A ( I t ! A V N U M B E R ( 3 : ) ( a t ) ( 1 ) ( l b s ) ( 1 b ! ) ( g r ) ( 3 : ) ( 1 ) 3 2 1 2 0 6 3 1 1 0 0 0 0 4 6 0 4 . 4 0 5 0 1 0 0 5 8 2 5 . 0 9 9 9 1 . 0 2 . 5 3 5 . 2 1 D E F O R M A T I O N ( i n c h o s X 0 . 0 0 0 1 ) L V D T f 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T f 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 . 2 1 4 . 2 2 4 . 8 9 . 5 1 2 . 1 5 . 2 9 . 0 1 1 . 4 3 . 7 - - - 5 0 0 1 1 . 2 1 5 . 0 4 2 . 1 9 . 4 1 2 . 6 1 2 . 9 8 . 8 1 1 . 8 8 . 2 - - ‘ 1 0 0 0 1 1 . 0 1 4 . 7 5 1 . 9 9 . 2 1 2 . 4 2 1 . 0 8 . 6 1 1 . 5 1 2 . 8 ' - ' 5 1 0 0 1 0 . 8 1 5 . 0 8 7 . 3 9 . 0 1 2 . 6 5 1 . 3 8 . 2 1 1 . 4 2 7 . 8 - - - 1 0 5 0 0 9 . 7 1 2 . 3 9 9 . 3 8 . 1 1 0 . 3 8 5 . 2 7 . 3 9 . 3 4 3 . 8 - - - 2 8 8 0 0 9 . 7 1 2 . 8 1 3 8 . 6 8 . 1 1 0 . 6 1 4 0 . 7 7 . 2 9 . 5 6 6 . 6 ' - - 1 5 4 7 0 0 8 . 6 1 0 . 6 2 1 3 . 8 7 . 1 8 . 8 4 8 0 . 9 6 . 2 7 . 6 1 8 9 . 8 - - - 4 1 2 3 5 0 9 . 2 1 2 . 5 3 1 5 . 9 - - - ' - - - - - H A I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H E I H E I G H T O F B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D : H H H I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; ( i i ! I ' M M X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . ” N E E B 3 2 1 7 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 1 1 A V N U M B E R ( 8 : ) ( S r ) ( 1 ) ( l b s ) ( l b s ) ( 8 ! ) ( 8 r ) ( 1 ) 3 2 1 2 0 6 1 2 1 0 0 0 0 4 6 0 4 . 4 0 5 0 1 0 0 5 8 2 0 . 0 9 9 8 0 . 0 2 . 5 3 5 . 1 8 D E F O R M A T I O N ( l u c h s s X 0 . 0 0 0 1 ) L V D T , 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T 5 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 . 8 1 6 . 0 2 6 . 0 1 0 . 0 1 3 . 5 5 . 2 0 . 5 1 2 . 8 3 . 7 - - — 5 0 0 1 1 . 1 1 4 . 8 4 1 . 4 9 . 4 1 2 . 5 1 2 . 0 8 . 7 1 1 . 6 8 . 2 - - - 2 0 0 0 9 . 9 1 2 . 2 5 8 . 2 8 . 3 1 0 . 3 2 1 . 0 7 . 6 9 . 4 1 2 . 8 - - ~ 5 1 0 0 9 . 4 1 1 . 4 7 5 . 3 7 . 9 9 . 5 5 1 . 3 7 . 2 8 . 7 2 7 . 8 - - - 1 4 2 0 0 9 . 8 1 2 . 8 1 1 0 . 3 8 . 2 1 0 . 7 8 5 . 2 7 . 4 9 . 8 4 3 . 8 - - - 2 7 1 5 0 9 . 0 1 1 . 0 1 2 4 . 9 7 . 5 9 . 1 1 4 0 . 7 6 . 7 8 . 1 6 6 . 6 - - - 1 9 4 7 0 0 8 . 7 1 1 . 1 2 3 2 . 5 7 . 2 9 . 1 4 8 0 . 9 6 . 2 7 . 9 1 8 9 . 8 - - - 4 1 6 6 0 0 9 . 2 1 2 . 5 3 1 3 . 8 - - - - - - - - - S A M P L E H A H 8 A C S L C L H B H H B A ( : 9 1 A V N U M B E R ( s t ) ( s t ) ( 1 ) ( l b s ) ( l b s ) ( s t ) ( 5 : ) ( 1 ) 3 2 1 2 0 6 2 2 1 0 0 0 0 4 8 0 4 . 4 0 5 0 2 0 0 5 7 9 5 . 0 9 9 5 5 . 0 2 . 5 3 5 . 4 1 D E F O R M A T I O N ( l n c h s s X 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T # 2 ( 2 . 0 I N . ) L V D T 5 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 5 . 5 3 4 . 6 3 4 . 6 2 1 . 4 2 9 . 1 2 6 . 4 2 0 . 1 2 7 . 3 2 3 . 4 1 8 . 6 2 5 . 3 1 8 . 5 5 0 0 2 4 . 4 3 3 . 2 5 6 . 1 2 0 . 4 2 7 . 8 3 1 . 3 1 6 . 8 2 5 . 6 2 7 . 9 1 6 . 9 2 3 . 1 2 2 . 0 1 0 0 0 2 0 . 9 2 5 . 0 6 0 . 5 1 7 . 4 2 0 . 9 3 4 . 3 1 6 . 0 1 9 . 1 3 0 . 3 1 4 . 2 1 7 . 0 2 3 . 9 5 0 0 0 2 1 . 8 2 8 . 7 1 0 7 . 2 1 8 . 1 2 3 . 8 4 1 . 2 1 6 . 3 2 1 . 4 3 7 . 0 1 3 . 8 1 8 . 2 2 9 . 9 1 0 0 0 0 2 0 . 4 2 5 . 6 1 2 5 . 9 1 6 . 9 2 1 . 2 4 4 . 6 1 5 . 0 1 8 . 8 3 9 . 5 1 2 . 5 1 5 . 7 3 2 . 8 1 5 3 6 0 0 1 7 . 9 2 1 . 5 2 7 1 . 6 1 4 . 7 1 7 . 6 5 8 . 4 1 2 . 5 1 5 . 0 5 0 . 5 9 . 2 1 1 . 0 4 4 . 5 3 2 2 4 0 0 1 9 . 3 2 5 . 5 3 7 3 . 4 1 5 . 7 2 0 . 8 6 2 . 3 1 3 . 2 1 7 . 5 5 3 . 5 9 . 3 1 2 . 3 4 7 . 5 4 7 1 9 0 0 1 7 . 5 2 1 . 2 3 8 3 . 4 1 4 . 2 1 7 . 3 6 4 . 7 1 1 . 9 1 4 . 4 5 5 . 5 8 . 1 9 . 9 4 9 . 5 6 9 8 0 0 0 1 9 . 1 2 5 . 7 4 7 6 . 7 1 5 . 5 2 0 . 9 6 6 . 5 1 2 . 9 1 7 . 3 5 7 . 3 8 . 5 1 1 . 5 5 0 . 9 I T O T A L H E I G H T O F D R Y A G G R E G A T E S ; H B I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I W W I C A L S P K I F I C G A V I T Y ; . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . 3 1 8 B E A M C Y C L I C L O A D D A T A S A M P L E H A H 8 A C S L C L H B H H B A G M M A V N U M B E R ( 5 : ) ( 5 r ) ( 1 ) ( l b s ) ( l b s ) ( 3 : ) ( 5 r ) ( 1 ) 3 2 1 2 0 6 3 2 1 0 0 0 0 4 6 0 4 . 4 0 5 0 2 0 0 5 8 0 5 . 0 9 9 4 5 . 0 2 . 5 3 5 . 0 5 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T # 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T # 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 2 4 . 7 3 3 . 7 3 0 . 5 2 0 . 9 2 8 . 5 1 9 . 0 1 9 . 8 2 6 . 8 1 5 . 2 1 8 . 3 2 4 . 9 1 1 . 7 5 0 0 2 0 . 5 2 4 . 4 4 3 . 0 1 7 . 3 2 0 . 6 2 2 . 0 1 8 . 0 1 9 . 0 1 7 . 1 1 4 . 5 1 7 . 2 1 2 . 7 1 0 0 0 2 1 . 8 2 8 . 1 5 7 . 4 1 8 . 3 2 3 . 7 2 4 . 0 1 6 . 8 2 1 . 7 1 8 . 0 1 5 . 0 1 9 . 4 1 3 . 7 5 0 0 0 2 0 . 1 2 5 . 3 9 0 . 1 1 8 . 8 2 1 . 2 3 0 . 1 1 5 . 2 1 9 . 1 2 1 . 5 1 3 . 0 1 8 . 3 1 5 . 6 1 0 0 0 0 2 1 . 3 2 9 . 0 1 1 9 . 9 1 7 . 8 2 4 . 2 3 4 . 1 1 5 . 9 2 1 . 6 2 3 . 7 1 3 . 3 1 8 . 1 1 6 . 1 2 2 7 0 0 2 0 . 1 2 6 . 5 1 4 8 . 2 1 6 . 7 2 2 . 0 3 8 . 9 1 4 . 8 1 9 . 5 2 6 . 1 1 2 . 0 1 5 . 9 1 6 . 8 1 4 7 9 5 0 1 8 . 4 2 3 . 6 2 5 1 . 5 1 5 . 2 1 9 . 5 4 9 . 3 1 3 . 0 1 6 . 7 3 0 . 6 9 . 7 1 2 . 5 1 6 . 3 4 8 1 6 0 0 1 8 . 7 2 5 . 3 3 7 6 . 8 1 5 . 4 2 0 . 7 5 6 . 1 1 2 . 9 1 7 . 4 3 3 . 9 9 . 0 1 2 . 1 1 5 . 6 1 0 2 5 5 0 0 1 6 . 1 1 9 . 2 4 1 6 . 4 1 3 . 2 1 5 . 7 6 0 . 1 1 0 . 9 1 3 . 0 3 5 . 6 7 . 2 8 . 5 1 5 . 5 1 1 9 4 9 0 0 1 8 . 3 2 5 . 0 4 9 8 . 0 1 5 . 0 2 0 . 4 5 9 . 6 1 2 . 4 1 6 . 8 3 5 . 0 8 . 0 1 0 . 9 1 4 . 4 S A M P L E H A H B A C S L C L H B H H B A ( 3 ! ! A V N U M B E R ( 3 : ) ( 8 r ) ( 2 ) ( l b s ) ( l b s ) ( 3 : ) ( 3 r ) ( 1 ) 3 2 1 2 0 6 1 5 1 0 0 0 0 4 6 0 4 . 4 0 5 0 1 0 0 5 8 2 7 . 0 9 9 8 9 . 0 2 . 5 3 5 . 1 4 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T 0 1 ( 0 . 0 I N . ) L V D T 1 2 ( 2 . 0 I N . ) L V D T i 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 1 1 . 2 1 4 . 2 2 4 . 3 9 . 5 1 2 . 1 5 . 2 9 . 0 1 1 . 4 . 7 - - - 5 0 0 1 0 . 7 1 3 . 9 3 9 . 7 9 . 1 1 1 . 7 1 2 . 9 8 . 5 1 0 . 9 . 2 - - - 1 0 0 0 1 1 . 1 1 5 . 0 5 1 . 3 9 . 3 1 2 . 7 2 1 . 0 8 . 6 1 1 . 8 1 2 . 8 - - - 5 0 0 0 1 0 . 5 1 4 . 4 8 3 . 2 8 . 9 1 2 . 1 5 1 . 3 8 . 1 1 1 . 0 2 7 . 8 - - - 1 2 0 0 0 1 0 . 0 1 3 . 2 1 0 4 . 7 8 . 3 1 1 . 0 8 5 . 2 7 . 5 9 . 9 4 3 . 8 - - - 3 2 5 0 0 1 0 . 0 1 3 . 8 1 4 6 . 2 8 . 3 1 1 . 5 1 4 0 . 7 7 . 4 1 0 . 2 6 6 . 6 - - - 1 7 4 3 5 0 8 . 2 9 . 8 2 0 8 . 7 6 . 8 8 . 1 4 8 0 . 9 5 . 9 7 . 0 1 8 9 . 8 - - - 3 9 0 5 0 0 8 . 5 1 0 . 8 2 8 2 . 1 - - - - - - - - - H A I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H 8 I H E I G H T O P B I T U M E N ; A C I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; H B A I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; H B H I H E I G H T O P S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; ( 3 1 4 I M A X I M ! ! ! W I C A L S P E C I F I C Q A V I T Y ; E L A . A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E ; P L A . I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . ” ? ? ? E S E 3 1 9 B E A M C Y C L I C L O A D D A T A S A M P L E H A H B A C S L C L H B H H B A ( 3 & 1 A v N U M B E R ( 5 : ) ( 5 1 ' ) ( 1 ) ( l b s ) ( l b s ) ( 5 : ) ( 5 r ) ( 2 ) 3 2 1 2 0 6 2 5 1 0 0 0 0 4 6 0 4 . 4 0 5 0 5 0 0 5 8 0 0 . 0 9 9 5 0 . 0 2 . 5 3 5 . 2 3 D E F O R M A T I O N ( i n c h e s X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T 9 2 ( 2 . 0 I N . ) L V D T l 3 ( 4 . 0 I N . ) L V D T # 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 7 . 1 9 1 . 5 4 2 . 9 5 5 . 6 7 5 . 6 2 5 . 9 5 0 . 6 6 9 . 2 2 3 . 9 4 5 . 7 6 2 . 3 2 1 . 5 5 0 0 6 2 . 9 8 4 . 8 6 8 . 4 5 1 . 9 6 9 . 9 3 1 . 7 4 6 . 5 6 2 . 6 2 8 . 7 4 0 . 4 5 4 . 4 2 4 . 4 1 0 0 0 6 1 . 9 8 3 . 9 8 4 . 6 5 0 . 9 6 8 . 9 3 5 . 5 4 5 . 2 6 1 . 3 3 1 . 1 3 8 . 5 5 2 . 2 2 5 . 8 5 0 0 0 5 7 . 4 7 5 . 7 1 3 3 . 1 4 6 . 9 6 1 . 9 4 9 . 7 4 0 . 7 5 3 . 8 4 0 . 4 3 2 . 8 4 3 . 3 2 8 . 7 1 0 0 0 0 5 3 . 4 6 6 . 9 1 5 5 . 5 4 3 . 5 5 4 . 6 5 7 . 9 3 7 . 4 4 6 . 9 4 5 . 7 2 9 . 3 3 6 . 7 3 0 . 2 2 9 8 0 0 5 3 . 2 6 9 . 0 2 2 2 . 2 4 3 . 2 5 5 . 9 7 1 . 6 3 6 . 4 4 7 . 2 5 1 . 1 2 7 . 1 3 5 . 1 3 0 . 2 1 9 9 5 0 0 5 2 . 6 7 1 . 4 4 1 0 . 5 4 2 . 3 5 7 . 5 9 2 . 6 3 4 . 3 4 6 . 6 6 1 . 1 2 2 . 7 3 0 . 8 2 8 . 7 4 9 0 7 0 0 4 7 . 4 5 9 . 8 4 9 8 . 1 3 8 . 0 4 8 . 0 1 0 1 . 5 3 0 . 2 3 8 . 1 6 5 . 8 1 8 . 5 2 3 . 4 2 8 . 2 8 6 2 5 0 0 4 7 . 3 6 0 . 5 5 9 7 . 8 3 7 . 8 4 8 . 4 1 0 6 . 2 2 9 . 6 3 7 . 9 6 7 . 5 1 7 . 2 2 2 . 1 2 7 . 7 S A M P L E H A H E A C S L C L H B H H B A ( 3 ! ! A V N U M B E R ( 8 ’ ) ( I ! ) ( 1 ) ( l b s ) ( l b ! ) ( 8 ! ) ( 8 r ) ( 1 ) 3 2 1 2 0 6 3 5 1 0 0 0 0 4 6 0 4 . 4 0 5 0 5 0 0 5 7 6 0 . 0 9 8 9 5 . 0 2 . 5 3 5 . 4 2 D E F O R M A T I O N ( i n c h o s X 0 . 0 0 0 1 ) L V D T § 1 ( 0 . 0 I N . ) L V D T ' 2 ( 2 . 0 I N . ) L V D T ' 3 ( 4 . 0 I N . ) L V D T O 4 ( 6 . 0 6 2 5 I N . ) C Y C L E N U M B E R E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . E L A . T O T . P L A . 1 0 0 6 9 . 1 9 5 . 8 4 6 . 6 5 7 . 0 7 9 . 1 2 5 . 4 5 2 . 0 7 2 . 1 2 2 . 2 4 6 . 7 6 4 . 8 1 9 . 0 5 0 0 6 3 . 1 8 4 . 0 7 2 . 2 5 1 . 8 6 8 . 9 2 6 . 3 4 6 . 3 6 1 . 7 2 4 . 3 4 0 . 1 5 3 . 4 2 1 . 0 1 0 0 0 5 8 . 8 7 4 . 6 8 4 . 6 4 8 . 1 6 1 . 1 3 0 . 3 4 2 . 7 5 4 . 1 2 5 . 8 3 6 . 2 4 5 . 9 2 2 . 0 5 0 0 0 5 3 . 3 6 4 . 5 1 3 0 . 3 4 3 . 4 5 2 . 4 3 5 . 7 3 7 . 6 4 5 . 4 3 0 . 2 3 0 . 1 3 6 . 5 2 5 . 5 1 0 0 0 0 5 8 . 0 7 8 . 2 1 7 8 . 2 4 7 . 1 6 3 . 4 3 7 . 8 4 0 . 3 5 4 . 3 3 1 . 7 3 1 . 4 4 2 . 3 2 6 . 9 3 3 3 0 0 5 0 . 3 6 0 . 9 2 2 9 . 4 4 0 . 6 4 9 . 2 4 0 . 9 3 4 . 0 4 1 . 2 3 3 . 9 2 5 . 0 3 0 . 3 2 7 . 9 1 5 0 4 0 0 5 3 . 7 7 2 . 8 4 0 2 . 2 4 3 . 0 5 8 . 4 4 5 . 0 3 5 . 0 4 7 . 4 3 7 . 2 2 3 . 4 3 1 . 7 2 9 . 1 3 5 3 2 0 0 5 2 . 4 7 1 . 4 5 2 0 . 6 4 1 . 9 5 7 . 0 4 8 . 0 3 3 . 4 4 5 . 5 3 9 . 3 2 0 . 9 2 8 . 4 3 0 . 1 I T O T A L H E I G H T O P D R Y A G G R E G A T E S ; H B I H E I G H T O F B I T U M E N ; I P E R C E N T A S P H A L T C O N T E N T ; S L I S U S T A I N E D L O A D ; I H E I G H T O P S A M P L E I N A I R ; C L I C Y C L I C L O A D ; I H E I G H T O F S A M P L E I N H A T E R ; A V I P E R C E N T A I R V O I D S ; I M A X I M U M T H E O R E T I C A L S P E C I F I C G R A V I T Y ; A N D T O T . I E L A S T I C A N D T O T A L D E F O R M A T I O N / C Y C L E ; I C U M U L A T I V E P L A S T I C ( P E R M A N E N T ) D E F O R M A T I O N . A P P E N D I X B T h e v a l u e s o f t h e s l o p e a n d i n t e r c e p t o f e q u a t i o n 5 . 1 a r e p r e s e n t e d i n t h i s A p p e n d i x . 3 2 0 T a b l e B . P v a e r r a s m u e s t e t r h s e o n f u t b h e e r m m c o u f u l l o a a t d i v a e p p l l i p a c s a t t i i c o n d e c f u o r r v m e a s t . i o n 3 2 1 2 2 S A M P L E N U M B E R L V D T I S I R S E S A M P L E N U M B E R L V D T 9 6 I R 8 E 1 1 1 1 0 5 1 1 1 0 . 6 3 4 3 “ . 5 3 4 7 0 . 9 9 9 1 0 . 0 2 2 2 7 1 1 1 1 0 5 3 5 1 0 5 6 2 7 8 0 . 3 7 9 2 0 . 9 9 8 8 0 . 0 2 1 3 0 2 0 5 9 0 9 ' . 7 7 2 8 0 . 9 9 8 9 0 . 0 2 2 6 0 2 0 . 5 8 4 1 0 . 0 9 4 5 0 . 9 9 8 6 0 . 0 2 1 1 5 3 0 . 5 3 2 5 - . 7 6 8 3 0 . 9 9 9 0 0 . 0 1 9 1 4 3 0 . 5 1 6 4 0 . 0 5 5 6 0 . 9 9 8 2 0 . 0 2 1 4 8 4 0 . 4 0 8 8 - . 6 1 6 5 0 . 9 9 6 7 0 . 0 2 6 6 8 4 0 . 3 8 0 3 0 . 1 4 0 7 0 . 9 9 3 9 0 . 0 2 8 8 6 1 1 1 1 0 5 2 1 1 0 . 6 3 4 2 ' . 5 3 0 0 0 . 9 9 8 9 0 . 0 2 5 5 5 1 1 2 1 0 5 1 1 1 0 . 6 5 6 7 - . 4 9 7 3 0 . 9 9 9 3 0 . 0 2 3 4 8 2 0 . 6 0 3 4 ' . 9 0 4 3 0 . 9 9 9 1 0 . 0 2 3 1 0 2 0 . 6 1 2 7 ' . 7 4 9 1 0 . 9 9 9 3 0 . 0 2 2 7 0 3 0 . 5 4 5 9 ‘ . 8 9 7 7 0 . 9 9 9 2 0 . 0 1 9 6 0 3 0 . 5 4 7 5 ‘ . 7 3 5 0 0 . 9 9 9 3 0 . 0 2 0 2 7 4 0 . 4 1 8 3 ' . 7 1 5 2 0 . 9 9 6 5 0 . 0 3 1 1 0 4 0 . 3 9 9 0 ‘ . 5 2 4 4 0 . 9 9 1 5 0 . 0 5 1 4 4 1 1 1 1 0 5 3 1 1 0 . 6 3 7 2 ° . 5 3 3 0 0 . 9 9 8 7 0 . 0 2 7 0 7 1 1 2 1 0 5 2 1 1 0 . 6 5 1 6 ' . 5 0 4 3 0 . 9 9 9 3 0 . 0 2 1 2 8 2 0 . 6 2 1 2 ' . 9 4 2 5 0 . 9 9 8 8 0 . 0 2 6 0 5 2 0 . 6 0 7 1 ' . 7 4 5 8 0 . 9 9 9 2 0 . 0 2 1 0 9 3 0 . 5 6 1 2 - . 9 2 9 7 0 . 9 9 8 9 0 . 0 2 3 0 9 3 0 . 5 4 6 8 ' . 7 4 5 1 0 . 9 9 8 7 0 . 0 2 4 2 7 4 0 . 4 3 1 1 - . 7 4 5 4 0 . 9 9 5 5 0 . 0 3 5 0 3 4 0 . 4 1 3 3 ' . 5 7 5 2 0 . 9 9 0 5 0 . 0 5 0 4 6 2 . ‘ 1 0 5 1 2 1 0 . 6 3 4 6 ' . 1 7 5 5 0 . 9 9 9 3 0 . 0 1 9 9 6 1 1 2 1 0 5 3 1 1 0 . 6 5 8 2 ' . 5 2 4 0 0 . 9 9 8 8 0 0 2 6 6 9 2 0 . 5 9 0 9 ° . 4 2 5 5 0 . 9 9 9 2 0 . 0 1 9 3 2 2 0 . 6 1 5 3 - . 7 7 2 9 0 . 9 9 8 7 0 . 0 2 5 4 9 3 0 . 5 2 8 8 - . 4 2 7 2 0 . 9 9 9 2 0 . 0 1 6 8 0 3 0 . 5 5 4 4 - 7 6 9 2 0 . 9 9 8 4 0 . 0 2 5 1 1 4 0 . 3 9 4 4 ' . 2 6 5 6 0 . 9 9 6 3 0 . 0 2 7 8 6 4 0 . 4 2 5 2 ' . 6 0 8 7 0 . 9 9 6 5 0 . 0 2 8 8 4 1 1 2 1 0 5 2 2 1 0 . 6 2 6 7 - . 1 3 1 0 0 . 9 9 9 1 0 . 0 2 4 0 0 1 1 2 1 0 5 1 2 1 0 . 6 5 2 0 ' . 1 4 1 9 0 . 9 9 9 3 0 . 0 2 0 3 3 2 0 . 5 8 2 4 ' . 3 8 5 1 0 . 9 9 8 9 0 . 0 2 4 2 5 2 0 . 6 0 8 6 - . 4 0 1 2 0 . 9 9 9 2 0 . 0 2 0 3 2 3 0 . 5 1 8 3 - . 3 8 2 8 0 . 9 9 8 3 0 . 0 2 7 1 6 3 0 . 5 4 4 0 - . 4 0 1 6 0 9 9 8 9 0 . 0 2 0 8 6 4 0 . 3 8 6 9 ' . 2 4 3 5 0 . 9 8 9 0 0 . 0 5 1 1 0 4 ' ‘ ' ° . 1 . I C E 3 2 1 0 . 6 3 3 1 ° . 1 6 6 7 0 . 9 9 9 3 0 0 2 0 9 8 1 1 2 1 0 5 2 2 1 0 . 6 5 5 5 ' . 1 4 8 9 0 . 9 9 9 2 0 . 0 2 3 0 0 2 0 . 5 9 0 4 - . 4 2 2 8 0 . 9 9 9 2 0 . 0 2 0 5 2 2 0 . 6 1 1 5 - . 4 0 7 2 0 . 9 9 9 1 0 0 2 3 1 8 3 0 . 5 2 6 6 ‘ . 4 1 8 0 0 9 9 9 1 0 . 0 1 8 7 2 3 0 . 5 4 7 5 ’ . 4 1 2 3 0 . 9 9 9 1 0 . 0 2 0 5 0 4 0 . 3 9 6 8 ‘ . 2 7 7 7 0 . 9 9 6 1 0 . 0 3 0 1 2 4 - - - - 1 1 1 1 0 5 1 5 1 0 . 6 3 4 1 0 . 3 6 2 4 0 9 9 9 1 0 . 0 2 2 7 8 1 1 2 1 0 5 3 2 1 0 . 6 5 2 3 ° . 1 3 0 3 0 . 9 9 9 2 0 . 0 2 2 3 6 2 0 . 5 8 9 4 0 . 0 8 1 1 0 . 9 9 9 0 0 . 0 2 2 5 3 2 0 . 6 0 9 0 ' . 3 9 3 9 0 . 9 9 9 1 0 . 0 2 2 3 9 3 0 . 5 1 7 1 0 . 0 5 5 5 0 9 9 8 9 0 . 0 2 0 8 0 3 0 . 5 4 4 2 ' . 3 9 6 6 0 . 9 9 8 7 0 . 0 2 3 5 1 4 0 . 3 5 7 5 0 . 2 0 8 5 0 . 9 9 3 7 0 . 0 3 3 9 9 4 0 . 4 0 6 0 ° . 2 4 2 0 0 . 9 9 1 9 0 . 0 4 3 8 2 1 1 1 . 3 5 2 5 1 0 . 6 3 4 5 0 3 5 5 5 0 . 9 9 9 2 0 . 0 2 1 3 0 1 1 2 1 0 5 1 5 1 0 . 6 5 0 1 0 . 3 7 7 7 0 . 9 9 9 0 0 0 2 2 3 3 2 0 . 5 8 9 8 0 . 0 7 5 6 0 . 9 9 9 1 0 . 0 2 1 0 7 2 0 . 6 0 5 4 0 . 0 9 3 8 0 9 9 8 9 0 . 0 2 2 3 3 3 0 . 5 1 8 0 0 . 0 5 0 1 0 . 9 9 8 9 0 0 2 0 4 8 3 0 . 5 3 2 5 0 . 0 6 3 4 0 . 9 9 8 4 0 0 2 3 4 1 4 0 . 3 5 9 2 0 . 2 0 0 5 0 . 9 9 2 6 0 . 0 3 6 8 6 4 0 . 3 6 9 4 0 . 2 1 9 8 0 9 8 9 0 0 0 4 3 3 1 - r e g r e s s z o n c o o £ ! : c 1 0 n t s ( s l o p e a n d i n t e r c e p t o f C q U I L 1 0 h 5 . 1 ) ; - c o e f f x c x o n t o f d o t - r m x n a t i o n ; a n d - s : a n d o : d D E P O T . T a b l e B . P a r a m e t e r s o f t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n 3 2 2 v e r s u s t h e n u m b e r o f l o a d a p p l i c a t i o n c u r v e s . 2 2 S A M P L E N U M B E R L V D T 0 S 1 R S t S A M P L E N U M B E R L V D T 0 S 1 I 8 2 1 1 2 1 0 5 2 5 1 0 . 6 5 7 0 0 . 3 6 0 7 0 . 9 9 8 9 0 . 0 2 5 0 8 1 1 3 1 0 5 1 5 1 0 6 6 1 9 0 . 3 8 3 2 0 . 9 9 8 9 0 . 0 2 2 3 8 2 0 6 1 1 9 0 . 0 7 6 4 0 . 9 9 8 7 0 . 0 2 4 8 9 2 0 . 5 4 1 8 0 . 2 0 4 5 0 . 9 9 8 0 0 . 0 2 5 5 3 3 0 5 3 9 5 0 . 0 4 3 3 0 . 9 9 8 6 0 . 0 2 2 6 5 3 0 . 4 8 3 0 0 . 1 4 2 4 0 . 9 9 7 7 0 . 0 2 4 5 1 4 0 . 3 3 4 0 0 . 2 6 1 6 0 . 9 9 3 6 0 . 0 3 0 7 3 4 0 . 3 6 6 5 0 . 1 8 1 3 0 . 9 9 6 2 0 . 0 2 4 0 4 1 1 2 1 C 5 3 5 1 0 . 6 5 1 5 0 . 3 8 8 3 0 . 9 9 9 1 0 . 0 2 1 3 8 1 1 3 1 0 5 2 5 1 0 . 6 6 2 4 0 . 4 0 6 9 0 9 9 9 0 0 . 0 2 0 5 5 2 0 . 6 0 6 6 0 . 0 9 9 9 0 . 9 9 9 0 0 . 0 2 1 3 9 2 0 . 6 1 7 6 0 . 1 1 2 1 0 . 9 9 8 9 0 . 0 2 0 3 8 3 0 . 5 3 3 1 0 . 0 6 8 1 0 . 9 9 8 6 0 0 2 2 3 9 3 0 . 5 4 6 5 0 . 0 6 7 4 0 . 9 9 8 5 0 . 0 2 0 6 3 4 0 . 3 7 0 0 0 . 2 1 9 0 0 . 9 9 0 0 0 . 0 4 1 0 4 4 0 . 3 9 9 8 0 . 1 6 1 3 0 . 9 9 5 0 0 . 0 2 7 6 5 1 1 3 1 0 5 1 1 1 0 . 6 6 9 5 - . 5 2 0 9 0 . 9 9 9 3 0 . 0 2 2 0 5 1 1 3 1 0 5 3 5 1 0 . 6 6 6 7 0 . 3 5 1 9 0 . 9 9 9 0 0 0 2 2 1 2 2 0 6 2 6 0 ° . 7 6 7 8 0 . 9 9 9 1 0 . 0 2 2 3 5 2 0 . 6 2 2 4 0 . 0 7 0 2 0 . 9 9 8 9 0 . 0 2 1 9 7 3 0 . 5 6 4 0 - . 7 6 2 1 0 . 9 9 9 2 0 . 0 1 9 7 0 3 0 . 5 5 1 8 0 . 0 3 2 8 0 . 9 9 8 7 0 0 2 1 4 2 4 0 . 4 3 9 3 - . 6 2 8 4 0 . 9 9 6 7 0 . 0 3 0 9 3 4 0 . 3 8 1 3 0 . 1 4 5 2 0 . 9 9 4 1 0 . 0 3 1 9 0 1 1 3 1 0 5 2 1 1 0 . 6 6 0 2 - . 4 8 5 9 0 . 9 9 9 3 0 . 0 1 9 9 1 1 1 1 1 0 6 1 1 1 0 . 6 2 7 8 ‘ . 3 2 2 6 0 . 9 9 8 7 0 . 0 2 4 9 6 2 0 . 6 1 6 8 - . 7 3 2 8 0 9 9 9 2 0 . 0 2 0 0 7 2 0 . 5 8 1 8 . . 6 0 7 4 0 . 9 9 8 5 0 . 0 2 4 9 7 3 0 . 5 5 5 5 - . 7 2 9 3 0 . 9 9 8 9 0 . 0 2 1 0 9 3 0 . 5 1 4 9 - . 6 0 2 1 0 . 9 9 7 8 0 . 0 2 6 8 0 4 0 . 4 3 1 7 - . 5 9 7 2 0 . 9 9 4 2 0 . 0 3 8 2 1 4 - — - - 1 1 3 1 0 5 3 1 1 0 . 6 6 5 1 - . 5 0 4 5 0 . 9 9 9 3 0 . 0 2 0 9 4 1 1 1 1 0 6 2 1 1 0 . 6 3 3 1 - . 3 5 6 7 0 . 9 9 9 5 0 . 0 1 8 9 7 2 0 . 6 2 2 0 - . 7 5 3 3 0 . 9 9 9 2 0 . 0 2 1 4 4 2 0 . 5 8 7 8 - . 8 4 0 0 0 . 9 9 9 4 0 . 0 1 8 7 1 3 0 . 5 6 0 0 - . 7 4 7 6 0 9 9 8 9 0 . 0 2 2 4 0 3 0 . 5 1 6 9 - . 6 1 8 7 0 . 9 9 9 2 0 . 0 2 0 2 4 4 0 . 4 3 7 7 - . 6 2 3 9 0 . 9 9 3 1 0 . 0 4 3 9 1 4 0 . 3 6 5 7 - . 4 2 2 5 0 . 9 9 0 1 0 . 0 4 9 2 1 1 1 3 1 0 5 1 2 1 0 . 6 7 0 8 - . 1 7 1 7 0 . 9 9 9 1 0 . 0 2 2 3 6 1 1 1 1 0 6 3 1 1 0 . 6 3 4 1 - . 3 7 2 4 0 . 9 9 8 8 0 . 0 2 6 1 4 2 0 . 6 2 8 1 - . 4 3 2 7 0 . 9 9 9 1 0 . 0 2 1 4 9 2 0 . 5 8 9 8 - . 6 5 5 9 0 . 9 9 8 8 0 . 0 2 5 0 1 3 0 . 5 6 5 7 - 4 4 2 9 0 . 9 9 8 9 0 . 0 2 0 7 4 3 0 . 5 2 2 4 - . 6 4 3 9 0 9 9 8 8 0 . 0 2 1 8 8 4 0 . 4 3 7 3 - . 3 1 7 3 0 . 9 9 7 2 0 . 0 2 5 9 2 4 0 . 3 8 6 5 - . 4 9 1 2 0 . 9 9 5 0 0 . 0 3 3 0 4 1 1 3 1 0 5 2 2 1 0 . 6 7 0 2 - . 1 6 2 1 0 . 9 9 9 1 0 . 0 2 2 2 4 1 1 1 1 0 6 1 2 1 0 . 6 3 4 5 - . 2 1 2 3 0 . 9 9 9 5 0 . 0 2 0 4 8 2 0 . 6 2 6 1 - . 4 1 9 1 0 . 9 9 8 9 0 . 0 2 2 4 7 2 0 . 5 9 1 5 - . 4 5 4 6 0 . 9 9 9 4 0 . 0 1 9 9 4 3 0 . 5 6 4 4 - . 4 3 3 1 0 . 9 9 8 9 0 . 0 2 0 5 7 3 0 . 5 2 5 4 - . 4 3 7 9 0 . 9 9 9 3 0 . 0 1 9 1 6 4 - - - - 4 0 . 3 7 4 5 - . 2 2 3 6 0 . 9 9 2 7 0 . 0 4 5 6 4 1 1 3 1 0 5 3 2 1 0 . 8 7 0 8 - . 1 5 9 9 0 . 9 9 9 2 0 . 0 1 9 8 3 1 1 1 1 0 6 2 2 1 0 . 8 3 1 8 0 . 2 1 2 9 0 . 9 9 9 3 0 . 0 2 0 9 0 2 0 . 6 2 7 6 - . 4 2 1 9 0 . 9 9 9 1 0 . 0 1 9 3 8 2 0 . 5 8 3 1 ' . 1 3 4 6 0 . 9 9 9 1 0 . 0 2 0 6 6 3 0 . 5 8 5 9 - . 4 3 8 0 0 . 9 9 9 1 0 . 0 1 7 5 1 3 0 . 5 0 2 5 ° . 1 3 5 5 0 . 9 9 8 9 0 . 0 2 0 2 2 4 - - - - 4 0 . 3 2 7 9 0 . 0 6 3 7 0 . 9 8 6 5 0 . 0 4 8 3 4 5 . 1 I r o g x o s s x o n c o o t t a c a o n t o ( 4 1 0 p . a n d t u t o r c o p t o ! 2 R S E o q u n t t o n 5 . 1 ) : I c o n f l i c t o n t o f d e t o x - A n a t x o n ; a n d I s t a n d a r d 9 2 2 0 ! . 3 2 3 T a b l e B . P a r a m e t e r s o f t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n v e r s u s t h e n u m b e r o f l o a d a p p l i c a t i o n c u r v e s . 2 S A M P L E N U M B E R L V D T 0 S 1 R S E S A M P L E K U H E E R L V D T d S 1 9 2 S E 1 1 1 1 0 8 3 2 1 0 . 6 3 1 4 0 . 0 4 9 5 0 . 9 9 9 2 0 . 0 2 1 2 2 1 1 1 1 0 7 1 2 1 0 . 8 3 2 2 0 . 2 7 2 3 0 . 9 9 9 0 0 . 0 2 3 6 6 2 0 . 5 8 5 2 - . 2 5 6 6 0 9 9 9 1 0 . 0 2 1 0 8 2 0 . 5 8 3 1 - . 0 9 1 9 0 . 9 9 8 9 0 . 0 2 3 3 7 3 0 . 5 1 3 3 - . 2 6 0 7 0 9 9 9 1 0 . 0 1 9 2 6 3 0 . 4 9 9 7 . . 0 9 2 7 0 . 9 9 8 8 0 . 0 2 2 5 7 4 0 . 3 5 6 5 - . 0 7 9 6 0 . 9 9 2 8 0 . 0 3 6 9 2 4 0 . 3 1 9 4 0 . 1 1 0 7 0 . 9 8 5 1 0 . 0 4 7 4 3 1 1 1 1 0 6 1 5 1 0 . 6 3 1 3 0 . 7 1 8 8 0 . 9 9 9 0 0 . 0 2 0 6 0 1 1 1 1 0 7 1 2 1 0 . 6 3 3 2 0 . 3 9 3 9 0 . 9 9 8 7 0 . 0 2 5 9 2 2 0 . 5 8 1 8 0 . 3 3 8 3 0 . 9 9 8 9 0 . 0 2 0 3 8 2 0 . 5 8 2 6 - . 0 0 2 0 0 . 9 9 8 5 0 . 0 2 5 8 4 3 0 . 4 9 2 1 0 . 2 9 5 6 0 . 9 9 8 5 0 . 0 1 9 6 1 3 0 . 4 9 6 5 - . 0 1 3 0 0 . 9 9 8 2 0 . 0 2 3 8 2 4 0 . 1 8 7 6 0 . 5 4 0 9 0 . 9 9 3 7 0 . 0 2 0 2 7 4 0 . 3 1 5 5 0 . 1 6 7 0 0 . 9 9 1 1 0 . 0 3 3 6 4 1 1 1 1 0 6 2 5 1 0 . 6 3 0 3 0 . 3 1 3 0 0 . 9 9 9 3 0 . 0 1 9 8 6 1 1 1 1 0 7 1 2 1 0 . 6 3 3 8 0 . 1 3 4 1 0 . 9 9 9 1 0 . 0 2 3 0 9 2 0 . 5 8 6 3 0 . 0 4 9 6 0 . 9 9 9 2 0 . 0 1 9 7 5 2 0 . 5 8 6 0 - . 1 9 4 0 0 . 9 9 8 9 0 0 2 3 1 4 3 0 . 5 1 7 0 0 . 0 2 6 7 0 . 9 9 8 8 0 . 0 2 0 7 5 3 0 . 5 0 8 7 - . 1 9 3 5 0 . 9 9 8 8 0 . 0 2 1 5 2 4 0 . 3 6 1 2 0 . 1 8 6 8 0 . 9 9 0 0 0 . 0 4 2 7 1 4 0 . 3 4 1 4 - . 0 0 0 1 0 . 9 8 9 0 0 . 0 4 3 6 3 1 1 1 1 0 6 3 5 1 0 . 6 2 7 5 0 . 3 9 9 0 0 . 9 9 9 1 0 . 0 1 9 8 0 1 1 1 1 0 7 2 2 1 0 . 6 3 2 1 0 . 3 0 5 6 0 . 9 9 8 9 0 . 0 2 5 3 6 2 0 . 5 8 2 9 0 . 1 1 1 7 0 . 9 9 9 0 0 . 0 1 9 9 7 2 0 . 5 8 2 3 - . 0 6 6 7 0 . 9 9 8 7 0 . 0 2 5 2 4 3 0 . 5 1 2 4 0 . 0 7 7 1 0 . 9 9 8 4 0 . 0 2 1 7 0 3 0 . 4 9 7 1 - . 0 8 7 3 0 . 9 9 8 4 0 . 0 2 4 3 0 4 - — - - 4 0 . 3 0 8 4 0 . 1 5 8 1 0 . 9 8 3 5 0 . 0 4 8 4 7 1 1 1 1 0 7 1 1 1 0 . 6 3 9 7 0 . 0 3 4 4 0 . 9 9 9 5 0 . 0 1 7 9 8 1 1 1 1 0 7 3 2 1 0 . 6 2 8 2 0 . 2 0 8 2 0 . 9 9 9 2 0 . 0 2 1 0 8 2 0 . 5 8 8 6 - . 3 4 8 9 0 . 9 9 9 4 0 . 0 1 7 9 9 2 0 . 5 8 0 2 - . 1 3 8 2 0 . 9 9 9 0 0 . 0 2 1 1 0 3 0 . 5 0 4 0 - . 3 4 3 2 0 . 9 9 9 3 0 . 0 1 8 1 0 3 0 . 5 0 1 2 - . 1 3 8 9 0 . 9 9 8 3 0 . 0 2 3 9 4 4 0 . 3 2 1 2 - . 1 2 7 6 0 . 9 8 6 0 0 . 0 4 6 4 4 4 0 . 3 3 0 5 0 . 0 5 3 2 0 . 9 8 1 2 0 . 0 5 2 9 0 1 1 1 1 0 7 1 1 1 0 . 6 3 3 5 - . 4 1 1 8 0 . 9 9 9 1 0 . 0 2 3 1 5 1 1 1 1 0 7 1 5 1 0 . 6 3 1 2 0 . 9 9 2 4 0 . 9 9 8 3 0 . 0 2 3 8 0 2 0 . 5 8 8 3 - . 8 7 9 3 0 . 9 9 8 9 0 . 0 2 3 4 8 2 0 . 5 7 8 3 0 . 5 3 3 1 0 . 9 9 8 0 0 . 0 2 3 6 0 3 0 . 5 2 5 5 - . 6 7 9 5 0 . 9 9 9 0 0 . 0 2 0 1 6 3 0 . 4 7 9 1 0 . 4 6 5 8 0 . 9 9 7 4 0 . 0 2 2 3 1 4 0 . 3 9 4 7 - . 5 3 5 7 0 . 9 9 5 0 0 . 0 3 3 5 9 4 0 . 2 6 8 4 0 . 6 0 1 9 0 . 9 8 8 2 0 . 0 2 8 4 9 1 1 1 1 0 7 2 1 1 0 . 8 3 7 1 ~ . 1 9 0 1 0 . 9 9 9 3 0 . 0 2 1 2 7 1 1 1 1 0 7 1 5 1 0 . 6 3 2 8 0 . 9 8 5 3 0 . 9 9 7 7 0 . 0 2 6 1 7 2 0 . 5 9 0 3 - . 5 2 0 9 0 . 9 9 9 3 0 . 0 1 9 9 1 2 0 . 5 7 9 8 0 . 5 2 6 8 0 . 9 9 7 3 0 . 0 2 6 0 8 3 0 . 5 1 6 1 - . 5 1 8 8 0 . 9 9 9 1 0 . 0 1 9 2 5 3 0 . 4 8 1 5 0 . 4 5 7 3 0 . 9 9 6 5 0 . 0 2 4 7 4 4 0 . 3 5 7 3 - . 3 3 1 5 0 . 9 9 1 4 0 . 0 4 1 2 1 4 0 . 2 7 4 0 0 . 5 8 5 9 0 . 9 8 6 6 0 . 0 2 7 7 1 1 1 1 1 0 7 3 1 1 0 . 8 3 6 0 - . 3 5 8 3 0 . 9 9 9 2 0 . 0 2 2 3 0 1 1 1 1 0 7 2 5 1 0 . 8 3 0 9 0 . 8 2 0 6 0 . 9 9 8 5 0 . 0 2 3 6 1 2 0 . 5 9 2 5 ~ . 8 5 1 2 0 . 9 9 9 1 0 . 0 2 0 9 4 2 0 . 5 8 0 3 0 . 4 1 1 5 0 9 9 8 3 0 . 0 2 3 4 6 3 0 . 5 2 4 1 - . 8 3 9 2 0 . 9 9 9 0 0 . 0 1 9 8 8 3 0 . 4 8 8 2 0 . 3 5 7 4 0 9 9 7 8 0 . 0 2 2 5 7 4 0 . 3 8 8 0 - . 4 8 3 2 0 . 9 9 4 3 0 . 0 3 5 2 8 4 0 . 2 9 0 9 0 . 5 0 0 4 0 . 9 8 8 5 0 . 0 3 0 6 6 5 . 1 I r a g r o s s x o n c o a t t x c 1 a n t 4 ( a 1 o p a a n d 1 n t a r c a p t o f 2 R S E a q u a t t o n 5 . 1 ) ; I c o o f t x c s a n t o f d 4 t a r u 1 n a t 1 6 n ; a n d I s t a n d a r d e r r o r . T a b l e B . P a r a m e t e r s v e r s u s t h e o f t h e n u m b e r 3 2 5 c u m u l a t i v e p l a s t i c d e f o r m a t i o n o f l o a d a p p l i c a t i o n c u r v e s . 2 2 S A M P L E N U M B E R L V D T 8 S 1 R 8 8 S A M P L E N U M B E R L V D T O 6 1 8 S E 1 1 1 1 0 7 2 5 1 0 . 6 3 3 6 0 . 9 7 6 8 0 . 9 9 8 4 0 . 0 2 3 7 0 2 1 1 1 0 5 3 2 1 0 . 8 4 9 2 - . 1 4 2 1 0 9 9 9 1 0 . 0 2 3 4 7 2 0 . 5 8 0 8 0 . 5 2 0 1 0 . 9 9 8 1 0 . 0 2 3 5 1 2 0 . 8 0 6 2 - . 4 0 1 4 0 . 9 9 9 0 0 . 0 2 2 7 9 3 0 . 4 8 1 2 0 . 4 5 4 4 0 . 9 9 7 7 0 . 0 2 1 4 8 3 0 . 5 4 2 8 - . 4 0 1 9 0 . 9 9 9 0 0 . 0 2 0 4 1 4 0 . 2 8 8 2 0 . 5 9 8 8 0 . 9 8 9 7 0 . 0 2 5 4 5 4 0 . 4 0 9 0 - . 2 5 1 1 0 . 9 9 5 9 0 . 0 3 1 8 8 1 1 1 1 0 7 3 5 1 0 . 8 2 7 6 0 . 8 2 7 5 0 . 9 9 8 8 0 . 0 2 1 0 7 2 1 1 1 0 5 1 5 1 0 . 8 4 2 4 0 . 4 0 5 9 0 . 9 9 8 7 0 . 0 2 3 3 2 2 0 . 5 7 7 2 0 . 4 1 9 0 0 . 9 9 8 8 0 . 0 2 1 0 5 2 0 . 5 9 8 0 0 . 1 2 0 4 0 . 9 9 8 5 0 . 0 2 3 4 7 3 0 . 4 8 8 5 0 . 3 6 1 6 0 . 9 9 7 9 0 . 0 2 1 8 3 3 0 . 5 2 8 2 0 . 0 8 5 0 0 . 9 9 8 0 0 . 0 2 3 7 9 4 0 . 2 9 5 2 0 . 4 8 9 6 0 . 9 8 5 6 0 . 0 3 4 7 8 4 0 . 3 8 1 8 0 . 1 9 8 2 0 . 9 9 2 7 0 . 0 3 3 1 7 1 1 1 1 0 7 3 5 1 0 . 6 2 4 4 0 . 9 9 9 5 0 . 9 9 8 2 0 . 0 2 5 6 4 2 1 1 1 0 5 2 5 1 0 . 6 4 5 0 0 . 3 7 7 8 0 . 9 9 9 1 0 . 0 1 9 1 5 2 0 . 5 7 1 4 0 . 5 4 4 0 0 . 9 9 7 9 0 . 0 2 5 5 3 2 0 . 8 0 0 9 0 . 0 9 9 0 0 . 9 9 8 9 0 . 0 1 9 1 3 3 0 . 4 7 2 3 0 . 4 7 8 4 0 . 9 9 6 9 0 . 0 2 5 6 6 3 0 . 5 3 3 9 0 . 0 5 9 7 0 . 9 9 8 6 0 . 0 1 9 3 8 4 0 . 2 5 9 3 0 . 8 2 4 8 0 . 9 7 8 3 0 . 0 3 7 6 4 4 0 . 3 9 7 4 0 . 1 4 8 9 0 . 9 9 5 3 0 . 0 2 6 8 0 2 1 1 1 0 5 1 1 1 0 . 6 5 2 5 - . 5 2 7 8 0 . 9 9 9 1 0 . 0 2 3 8 4 2 1 1 1 0 5 3 5 1 0 . 8 5 2 2 0 . 3 7 9 5 0 . 9 9 9 2 0 . 0 2 0 6 9 2 0 . 6 0 9 5 - . 7 6 9 5 0 . 9 9 9 0 0 . 0 2 3 0 3 2 0 . 6 0 7 7 0 . 0 9 1 5 0 . 9 9 9 1 0 . 0 2 0 1 7 3 0 . 5 5 0 2 - . 7 6 4 4 0 . 9 9 8 9 0 . 0 2 2 0 4 3 0 . 5 3 5 8 0 . 0 6 0 0 0 . 9 9 9 1 0 . 0 1 8 3 0 4 0 . 4 2 8 6 - . 8 2 8 1 0 . 9 9 8 7 0 . 0 2 9 9 9 4 0 . 3 8 0 4 0 . 1 9 5 0 0 . 9 9 5 5 0 . 0 2 8 4 2 2 1 1 1 0 5 2 1 1 0 . 6 5 0 7 - . 5 0 5 8 0 . 9 9 9 2 0 . 0 2 1 9 0 2 1 1 1 0 6 1 1 1 0 . 8 5 3 0 - . 2 4 8 8 0 9 9 9 3 0 . 0 2 0 7 3 2 0 . 6 0 8 4 - 7 5 4 6 0 . 9 9 9 2 0 . 0 2 1 1 1 2 0 . 8 0 6 3 - . 5 5 9 3 0 . 9 9 9 3 0 . 0 2 0 0 2 3 0 . 5 4 7 2 ° . 7 4 2 9 0 . 9 9 9 2 0 . 0 1 8 5 8 3 0 . 5 3 3 9 - . 5 5 0 2 0 . 9 9 9 2 0 . 0 1 8 4 5 4 0 . 4 2 5 3 - . 6 0 5 5 0 . 9 9 7 3 0 . 0 2 6 9 2 4 0 . 3 8 2 0 - . 3 7 0 4 0 . 9 9 3 9 0 . 0 3 6 1 4 2 1 1 1 0 5 3 1 1 0 . 6 5 1 2 - . 5 2 1 5 0 . 9 9 9 1 0 . 0 2 3 0 4 2 1 1 1 0 8 2 1 1 0 . 6 5 3 9 - . 2 2 5 3 0 . 9 9 9 0 0 . 0 2 5 4 0 2 0 . 8 1 0 1 - . 7 7 2 1 0 . 9 9 9 1 0 . 0 2 2 3 3 2 0 . 6 0 7 3 * . 5 4 4 6 0 . 9 9 8 9 0 . 0 2 4 8 8 3 0 . 5 5 0 3 - . 7 6 4 7 0 . 9 9 9 0 0 . 0 2 0 8 1 3 0 . 5 3 4 5 - . 5 3 9 1 0 . 9 9 8 7 0 . 0 2 3 3 4 4 0 . 4 3 1 3 - . 8 3 6 3 0 . 9 9 6 5 0 . 0 3 1 0 6 4 0 . 3 8 1 2 - . 3 6 2 8 0 . 9 9 1 9 0 . 0 4 1 9 8 2 1 1 1 0 5 1 2 1 0 . 8 5 3 7 “ . 1 8 6 0 0 . 9 9 9 2 0 . 0 2 1 8 8 2 1 1 1 0 6 3 1 1 0 . 8 5 2 1 - . 2 1 1 2 0 9 9 9 0 0 . 0 2 4 1 9 2 0 . 6 1 0 7 - . 4 3 5 7 0 . 9 9 9 1 0 . 0 2 1 4 3 2 0 . 8 0 5 1 - . 5 3 0 8 0 . 9 9 8 9 0 . 0 2 4 1 1 3 0 . 5 4 9 7 - . 4 4 0 5 0 . 9 9 9 2 0 . 0 1 8 7 6 3 0 . 5 3 1 7 - . 5 2 2 4 0 . 9 9 8 7 0 . 0 2 2 8 7 4 0 . 4 2 0 2 - . 2 9 5 0 0 . 9 9 8 3 0 . 0 3 0 2 4 4 0 . 3 8 0 8 - . 3 5 3 9 0 . 9 9 3 8 0 . 0 3 8 3 5 2 1 1 1 0 5 2 2 1 0 . 6 5 3 4 - . 1 7 3 2 0 . 9 9 8 9 0 . 0 2 8 0 5 2 1 1 1 0 6 1 2 1 0 . 6 5 2 2 0 . 1 4 1 5 0 . 9 9 9 2 0 . 0 2 2 8 9 2 0 . 8 1 0 6 - . 4 2 7 8 0 . 9 9 8 8 0 . 0 2 5 3 8 2 0 . 8 0 4 5 ° . 1 8 9 1 0 . 9 9 9 1 0 . 0 2 2 4 3 3 0 . 5 4 8 1 ' . 4 2 9 4 0 . 9 9 8 7 0 . 0 2 4 2 5 3 0 . 5 2 7 4 - . 1 9 1 8 0 . 9 9 9 1 0 . 0 1 8 9 5 4 0 . 4 1 4 2 ' . 2 7 3 4 0 . 9 9 5 4 0 . 0 3 4 4 2 4 0 . 3 6 0 1 - . 0 0 1 6 0 . 9 9 1 7 0 . 0 3 9 9 4 S . 1 I r a ¢ r 4 4 4 1 o n c o a t t 1 c t a n t 4 ( 8 1 0 p . a n d t u t a r c a p t a t 2 o q u a t 1 o n 5 . 1 ) ; R I c o a f t 1 c 1 4 n t o f d o t a r l 1 n a t 1 o n ; a n d S E I a t a n d a r d a r r o r . 3 2 6 T a b l e B . P a r a m e t e r s o f t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n v e r s u s t h e n u m b e r o f l o a d a p p l i c a t i o n c u r v e s . 2 S A M P L E N U M B E R L V D T 9 S 1 R S E S A M P L E N U M B E R L V D T 0 S 1 [ 2 3 ; 2 1 1 1 0 6 2 2 1 0 . 6 5 3 3 0 . 1 5 5 2 0 . 9 9 9 0 0 . 0 2 4 8 1 2 1 1 1 0 7 1 2 1 0 . 6 4 8 6 0 . 4 8 6 3 0 . 9 9 9 2 0 . 0 2 0 9 6 2 0 . 6 0 5 7 2 1 8 1 4 0 . 9 9 8 9 0 . 0 2 4 7 4 2 0 . 5 9 6 9 0 . 0 6 9 6 0 . 9 9 9 0 0 . 0 2 0 7 2 3 0 . 5 2 7 0 ' . 1 8 0 9 0 . 9 9 8 6 0 . 0 2 4 1 4 3 0 . 5 0 7 3 0 . 0 5 6 5 0 . 9 9 8 7 0 0 2 0 0 2 4 0 . 3 5 8 8 0 . 0 0 7 3 0 . 9 8 8 6 0 . 0 4 6 4 3 4 0 , 3 1 3 7 0 1 5 1 3 0 . 9 5 7 7 0 . 0 3 9 1 9 2 1 1 1 0 5 3 2 1 0 . 0 5 1 7 0 . 1 8 2 7 0 . 9 9 9 1 0 . 0 2 4 2 2 2 1 1 1 0 7 2 2 1 0 . 0 4 0 0 0 , 1 7 7 5 0 , 9 9 9 2 0 0 1 9 8 9 2 0 . 6 0 3 8 - . 1 7 2 9 0 . 9 9 8 9 0 . 0 2 3 8 4 2 0 . 5 3 8 9 0 , 1 4 5 0 0 0 0 0 ; o _ 0 1 5 5 5 3 0 . 5 2 5 5 - . 1 7 4 2 0 9 9 8 8 0 . 0 2 1 5 8 3 0 . 4 5 8 0 0 . 1 1 7 2 0 . 9 9 8 5 0 0 1 9 7 9 4 0 . 3 5 6 8 0 . 0 1 5 6 0 . 9 9 0 6 0 . 0 4 2 0 6 4 0 , 2 9 9 0 0 2 1 3 3 0 9 5 5 0 0 . 0 3 7 1 9 2 1 1 1 0 6 1 5 1 0 . 6 4 6 9 0 . 7 0 3 3 0 . 9 9 9 0 0 . 0 2 1 8 1 2 1 1 1 0 7 3 2 1 0 . 6 4 9 2 0 . 4 7 7 2 0 . 9 9 8 8 0 0 2 4 7 9 - 2 0 . 5 9 8 0 0 . 3 3 1 1 0 . 9 9 8 8 0 . 0 2 1 6 8 2 0 . 5 4 5 6 0 . 1 2 1 9 0 . 9 9 8 4 0 0 2 1 5 3 3 0 . 5 1 1 1 0 . 2 8 5 7 0 . 9 9 8 3 0 . 0 2 1 9 7 3 0 . 4 6 6 8 0 . 0 9 1 3 0 . 9 9 7 5 0 0 2 6 0 8 4 0 . 3 2 2 3 0 . 4 3 7 4 0 . 9 8 9 1 0 . 0 3 5 2 1 4 0 . 3 0 4 ) 0 . 2 3 2 3 0 3 5 5 0 0 0 . 1 5 7 2 1 1 1 0 6 2 5 1 0 . 8 5 0 6 0 . 6 7 6 6 0 9 9 8 9 0 . 0 2 2 5 0 2 1 1 1 0 7 1 5 1 0 . 8 4 4 4 1 . 0 1 5 5 0 9 9 5 3 0 . 0 2 . 5 . 2 0 6 0 1 9 0 . 3 0 8 4 0 . 9 9 8 7 0 . 0 2 2 4 0 2 0 . 5 7 0 8 0 . 5 2 2 5 0 . 9 9 7 4 0 . 0 2 7 5 0 3 0 . 5 1 5 8 0 . 2 6 2 3 0 . 9 9 8 4 0 . 0 2 1 4 2 3 0 . 4 7 7 2 0 . 4 5 2 7 0 . 9 9 6 9 0 . 0 2 5 5 0 9 0 . 3 2 7 9 0 . 4 1 6 2 0 . 9 9 1 0 0 . 0 3 1 9 0 9 0 , 2 8 3 0 0 . 5 7 3 9 o . 3 9 0 ‘ o ' 0 2 6 6 0 2 1 1 1 0 8 3 5 1 0 . 6 4 3 7 0 . 6 9 0 8 0 . 9 9 8 9 0 . 0 2 1 8 4 2 1 1 1 0 7 2 5 1 0 . 6 4 8 4 1 . 0 1 4 9 0 . 9 9 8 4 0 . 0 2 4 4 3 2 0 . 5 9 5 1 0 . 3 2 2 9 0 . 9 9 8 7 0 . 0 2 1 7 2 2 0 . 5 9 3 3 0 . 5 5 2 9 0 . 9 9 8 1 0 . 0 2 4 3 9 3 0 . 5 1 0 8 0 . 2 7 3 2 0 . 9 9 8 2 0 . 0 2 2 1 1 3 0 . 4 9 2 4 0 . 4 8 7 8 0 . 9 9 7 1 0 . 0 2 4 0 1 4 0 . 3 2 9 8 0 . 4 0 7 7 0 . 9 8 9 0 0 . 0 3 5 8 0 4 0 , 2 7 5 9 0 _ 5 3 5 7 0 . 9 . 0 2 0 0 3 5 5 2 2 1 1 1 0 7 1 1 1 0 . 8 5 2 4 0 . 0 7 4 4 0 . 9 9 9 1 0 . 0 2 3 5 1 2 1 1 1 0 7 3 5 1 0 . 8 4 4 9 1 _ 0 2 3 5 o _ g g g ) ° _ 0 2 2 ‘ 5 2 0 . 6 0 2 2 - . 3 1 7 9 0 . 9 9 9 0 0 . 0 2 2 7 5 2 0 . 8 1 1 5 0 . 4 2 7 5 0 9 9 8 7 0 0 2 2 0 3 3 0 . 5 1 5 1 ' . 3 0 6 0 0 . 9 9 9 0 0 . 0 1 9 9 7 3 0 . 5 0 4 9 0 . 3 9 0 5 0 . 9 9 7 9 0 0 2 2 7 9 4 0 . 3 2 8 6 - . 0 7 4 3 0 . 9 8 7 3 0 . 0 4 5 1 7 4 0 . 2 7 2 9 0 5 1 0 7 0 0 7 5 9 0 . 9 . 2 2 2 2 1 1 1 0 7 2 1 1 0 . 6 5 0 7 0 . 0 9 3 7 0 . 9 9 9 2 0 . 0 2 1 8 7 3 1 1 1 0 5 1 1 1 0 . 6 4 6 7 - . 5 1 3 6 0 . 9 9 9 1 0 0 2 3 0 5 2 0 . 5 9 9 8 - . 3 0 0 0 0 . 9 9 9 1 0 . 0 2 1 7 7 2 0 . 8 0 4 2 - 7 : 0 7 0 0 0 0 0 0 0 2 2 5 1 3 0 . 5 1 3 8 - . 2 9 5 2 0 . 9 9 9 0 0 . 0 1 9 8 7 3 0 . 5 4 8 3 ' . 7 6 1 0 0 _ 0 0 0 1 0 0 1 0 5 2 4 0 . 3 2 5 4 - . 0 6 7 8 0 . 9 8 4 2 0 . 0 5 0 0 2 4 0 . 4 2 2 2 - . 8 1 2 8 0 . 9 9 6 8 0 . 0 2 8 4 8 2 1 1 1 0 7 3 1 1 0 . 6 5 4 0 0 . 0 8 8 2 0 . 9 9 9 3 0 . 0 2 1 3 5 3 1 1 1 0 5 2 1 1 0 . 8 4 7 7 - . 5 2 0 0 0 . 9 9 9 3 0 _ 0 2 1 4 3 2 0 . 6 0 3 3 - . 3 0 8 3 0 9 9 9 2 0 . 0 2 0 7 5 2 0 . 8 0 8 9 - , 7 7 3 0 o 0 0 9 2 0 0 2 0 . 0 3 0 . 5 1 6 6 - . 3 0 2 1 0 . 9 9 9 2 0 . 0 1 8 1 3 3 0 . 5 4 7 6 - . 7 6 8 6 0 . 9 9 9 3 0 . 0 1 7 8 1 4 0 . 3 2 7 8 - . 0 7 5 4 0 . 9 8 5 8 0 . 0 4 7 5 7 4 0 4 2 1 0 - _ 5 1 1 1 0 . 9 9 7 0 0 . 0 2 7 . ; 5 . 1 I r o s r o s s x o n c o o f f 1 c 1 o n t 4 ( 9 1 0 p . a n d I n t a r c o p t o f a q u a t L o n 5 . 1 ) ; R I c o a f f a c t a n t o f d o t o r u x n a t t o n ; a n d S E I a t a n d a r d a r r o r . T a b l e B . P a r a m e t e r s o f t h e v e r s u s t h e n u m b e r 3 2 7 c u m u l a t i v e p l a s t i c d e f o r m a t i o n o f l o a d a p p l i c a t i o n c u r v e s . 2 2 S A M P L E N U M B E R L V D T 9 S 1 R S t S A M P L E N U M B E R L V D T 9 8 1 R 3 8 3 1 1 1 0 5 3 1 1 0 . 8 4 8 5 - . 5 0 2 8 0 9 9 9 4 0 . 0 1 9 4 9 3 1 1 1 0 7 2 1 1 0 . 6 4 8 5 0 . 1 0 5 5 0 . 9 9 9 0 0 0 2 4 0 0 2 0 . 6 0 7 2 - . 7 5 7 7 0 . 9 9 9 4 0 . 0 1 8 0 0 2 0 . 5 9 7 7 - . 2 9 2 6 0 . 9 9 8 9 0 0 2 3 5 3 3 0 . 5 4 7 4 - . 7 5 4 2 0 . 9 9 9 3 0 . 0 1 6 9 9 3 0 . 5 0 8 8 - . 2 7 8 5 0 . 9 9 8 7 0 . 0 2 1 4 4 4 0 . 2 2 3 8 - . 3 3 0 4 0 . 9 9 8 7 0 . 0 2 0 1 8 4 0 . 3 1 8 4 - . 0 3 9 5 0 . 9 8 5 4 0 . 0 4 5 1 2 3 1 1 1 0 5 1 2 1 0 . 8 4 8 8 - . 1 5 3 1 0 9 9 9 2 0 . 0 2 1 9 5 3 1 1 1 0 7 3 1 1 0 . 6 4 9 6 0 . 1 0 8 3 0 . 9 9 8 9 0 . 0 2 4 9 1 2 0 . 6 0 5 0 - . 4 0 8 0 0 . 9 9 9 1 0 . 0 2 2 2 5 2 0 . 5 9 7 9 - . 2 8 9 0 0 . 9 9 8 7 0 . 0 2 4 5 2 3 0 . 5 4 2 0 - . 4 1 0 6 0 9 9 9 1 0 . 0 2 0 2 1 3 0 . 5 0 8 3 - . 2 7 3 7 0 . 9 9 8 6 0 . 0 2 1 3 5 4 0 . 4 0 8 9 ~ . 2 6 2 6 0 . 9 9 5 1 0 . 0 3 4 5 8 4 0 . 3 1 3 5 - . 0 2 7 0 0 . 9 8 5 9 0 . 0 4 2 8 7 3 1 1 1 0 5 2 2 1 0 . 6 4 7 9 - . 1 5 3 8 0 9 9 9 3 0 . 0 2 0 7 1 3 1 1 1 0 7 1 2 1 0 . 6 4 2 7 0 . 4 7 5 9 0 9 9 8 7 0 0 2 3 2 3 2 0 . 6 0 3 7 - . 4 0 5 5 0 9 9 9 2 0 0 2 0 8 1 2 0 . 5 9 2 2 0 . 0 5 9 6 0 . 9 9 8 5 0 . 0 2 2 8 3 3 0 . 5 4 1 9 - . 4 1 2 0 0 . 9 9 9 2 0 0 1 9 0 8 3 0 . 5 0 7 2 0 . 0 3 5 1 0 9 9 8 1 0 0 2 2 2 2 4 0 . 4 1 0 2 - . 2 8 7 7 0 . 9 9 5 2 0 . 0 3 4 2 7 4 0 . 3 3 4 6 0 . 1 7 7 7 0 . 9 9 2 3 0 0 2 9 3 : 3 1 1 1 0 5 3 2 1 0 . 6 4 7 5 - . 1 5 8 5 0 . 9 9 9 3 0 . 0 2 0 9 4 3 1 1 1 0 7 2 2 1 0 . 6 4 5 2 0 . 4 5 5 7 0 . 9 9 8 7 0 . 0 2 5 2 7 2 0 . 8 0 4 3 - . 4 1 2 9 0 . 9 9 9 2 0 . 0 2 0 4 5 2 0 . 5 9 3 9 0 . 0 4 7 3 0 . 9 9 8 5 0 . 0 2 5 0 1 3 0 . 5 4 0 5 - . 4 1 0 0 0 9 9 9 2 0 . 0 1 8 4 7 3 0 . 5 0 5 8 0 . 0 3 4 2 0 . 9 9 8 2 0 . 0 2 3 2 5 4 0 . 4 0 9 2 - . 2 6 6 5 0 . 9 9 5 9 0 . 0 3 1 8 7 4 0 . 3 2 2 9 0 . 2 0 7 9 0 . 9 9 0 7 0 . 0 3 3 8 5 3 1 1 1 0 5 1 5 1 0 . 6 4 5 8 0 . 3 9 6 3 0 . 9 9 9 1 0 . 0 2 1 9 4 3 1 1 1 0 7 3 2 1 0 . 6 4 8 2 0 . 4 6 4 7 0 . 9 9 9 0 0 . 0 2 2 2 1 2 0 . 6 0 0 9 0 . 1 1 0 4 0 . 9 9 8 9 0 . 0 2 1 8 1 2 0 . 5 9 7 0 0 . 0 5 0 8 0 9 9 8 9 0 . 0 2 1 7 9 3 0 . 5 2 9 3 0 . 0 7 7 7 0 . 9 9 8 8 0 . 0 2 0 2 7 3 0 . 5 0 7 6 0 . 0 3 9 0 0 . 9 9 8 8 0 . 0 2 0 6 3 4 0 . 2 1 4 9 0 . 4 1 4 4 0 . 9 9 2 7 0 . 0 2 6 2 9 4 0 . 3 1 9 7 0 . 2 2 5 2 0 . 9 8 9 9 0 . 0 3 5 4 3 3 1 1 1 0 5 2 5 1 0 . 8 4 7 8 0 . 3 5 8 3 0 9 9 9 0 0 . 0 2 3 7 1 3 1 1 1 0 7 1 5 1 0 . 6 3 4 6 0 . 9 8 4 9 0 . 9 9 8 9 0 . 0 1 9 5 7 2 0 . 6 0 3 2 0 . 0 7 9 1 0 . 9 9 8 9 0 . 0 2 3 5 0 2 0 5 8 2 4 0 . 5 3 7 3 0 . 9 9 8 7 0 . 0 1 9 4 0 3 0 . 5 3 2 1 0 . 0 5 0 1 0 . 9 9 8 6 0 . 0 2 2 5 5 3 0 . 4 8 5 4 0 . 4 7 0 5 0 9 9 8 1 0 . 0 1 9 1 8 4 0 . 3 7 4 8 0 . 1 9 8 5 0 . 9 9 3 0 0 . 0 3 6 2 7 4 0 . 2 8 1 0 0 . 5 9 9 0 0 . 9 8 8 9 0 . 0 2 7 2 4 3 1 1 1 0 5 3 5 1 0 . 6 4 9 3 0 . 3 4 9 8 0 . 9 9 9 1 0 . 0 2 3 1 2 3 1 1 1 0 7 2 5 1 0 . 6 4 0 6 0 . 9 9 6 8 0 . 9 9 8 1 0 . 0 2 5 4 6 2 0 . 8 0 5 0 0 . 0 7 1 7 0 . 9 9 8 9 0 . 0 2 2 9 2 2 0 . 5 8 7 8 0 . 5 4 2 5 0 . 9 9 7 8 0 . 0 2 5 3 9 3 0 . 5 3 3 7 0 . 0 4 4 4 0 . 9 9 8 7 0 . 0 2 2 4 0 3 0 . 4 8 9 4 0 . 4 7 4 9 0 . 9 9 8 9 0 . 0 2 5 1 8 4 0 . 3 7 8 2 0 . 1 9 3 9 0 . 9 9 2 3 0 . 0 3 8 6 8 4 0 . 2 0 8 5 0 . 8 8 8 0 0 . 9 8 8 5 0 . 0 2 7 9 9 3 1 1 1 0 7 1 1 1 0 . 8 4 8 0 0 . 1 0 2 6 0 . 9 9 9 1 0 . 0 2 3 3 1 3 1 1 1 0 7 3 5 1 0 . 8 4 5 0 0 . 9 9 4 3 0 . 9 9 8 8 0 . 0 1 9 9 8 2 0 . 5 9 7 0 - . 2 9 3 6 0 . 9 9 9 0 0 . 0 2 2 8 0 2 0 . 5 9 2 2 0 . 5 3 7 0 0 . 9 9 8 4 0 . 0 1 9 8 4 3 0 . 5 0 9 8 - . 2 8 6 4 0 . 9 9 9 0 0 . 0 2 0 0 8 3 0 . 4 9 4 0 0 . 4 6 7 2 0 . 9 9 7 9 0 . 0 1 8 8 9 4 0 . 1 7 8 5 0 . 1 1 4 9 0 . 9 9 0 2 0 . 0 2 7 9 7 4 0 . 2 8 7 4 0 . 5 9 4 0 0 . 9 9 1 3 0 . 0 2 2 3 4 8 . 1 I t a g r a 9 a 1 o n c o a t t 1 6 1 o n t a ( 8 1 0 ’ . a n d 1 n 8 a 6 6 a p t o ! 2 R S t a q u a 6 1 o n 5 . 1 ) ; I 6 6 6 1 2 1 6 1 6 6 6 6 2 d a t a t l 1 0 a 6 1 o a ; a n d I a t a n d a z d a t t o r . T a b l e B . P v a e r r a s m u e s t e t r h s e o n f u m t b h e e r m c o u f i u l l o a a t d v a e p p p l l i a c s a t t i i c o n d e c f u o r r v m e a s t . i o n 3 2 8 2 2 S A M P L E N U M B E R L V D T 9 S 1 I 5 8 S A M P L E N U M B E R L V D T 8 S 1 R 8 8 2 1 2 1 0 8 1 1 1 0 . 8 7 4 1 ' . 2 0 0 8 0 . 9 9 9 2 0 . 0 2 2 5 8 2 1 2 1 0 8 3 5 1 0 . 8 7 4 3 0 . 8 8 9 2 0 . 9 9 9 0 0 . 0 2 1 5 4 2 0 . 8 2 7 1 ° . 5 2 8 2 0 . 9 9 9 1 0 . 0 2 1 7 1 2 0 . 8 2 5 5 0 . 2 9 7 0 0 . 9 9 8 9 0 . 0 2 1 5 8 3 0 . 5 5 1 2 ° . 5 1 8 8 0 . 9 9 9 0 0 . 0 2 0 7 4 3 0 . 5 3 8 4 0 . 2 4 8 3 0 . 9 9 8 4 0 . 0 2 1 8 8 4 - - - - 4 0 . 3 4 1 9 0 . 3 8 0 3 0 . 9 8 8 4 0 . 0 3 8 5 8 2 1 2 1 0 8 2 1 1 0 . 8 7 3 1 - . 1 9 8 4 0 . 9 9 9 3 0 . 0 2 2 0 2 2 1 3 1 0 8 1 1 1 0 . 8 8 9 5 - . 2 0 8 9 0 . 9 9 9 4 0 . 0 2 1 2 2 2 0 . 8 2 5 8 ' . 5 2 1 0 0 . 9 9 9 2 0 . 0 2 1 3 8 2 0 . 8 4 2 8 ' . 5 3 5 4 0 . 9 9 9 3 0 . 0 2 0 4 9 3 0 . 5 5 0 3 ' . 5 1 4 7 0 . 9 9 9 1 0 . 0 1 9 2 7 3 0 . 5 8 7 5 ° . 5 3 8 0 0 . 9 9 9 2 0 . 0 1 9 2 1 4 0 . 3 8 9 8 2 . 3 2 5 2 0 . 9 9 2 8 0 . 0 3 9 7 8 4 0 . 4 0 4 0 ' . 3 4 2 8 0 . 9 9 3 5 0 . 0 3 9 5 3 2 1 2 1 0 8 3 1 1 0 . 8 8 9 9 - . 1 8 8 8 0 . 9 9 9 2 0 . 0 2 1 9 3 2 1 3 1 0 8 2 1 1 0 . 8 8 9 9 ' . 2 1 9 1 0 . 9 9 8 9 0 . 0 2 7 0 5 2 0 . 8 2 2 1 ' . 4 9 5 4 0 . 9 9 9 1 0 . 0 2 1 9 9 2 0 . 8 4 2 5 ' . 5 4 3 3 0 . 9 9 8 7 0 . 0 2 8 7 5 3 0 . 5 4 7 1 ' . 4 9 4 4 0 . 9 9 9 0 0 . 0 2 0 2 8 3 0 . 5 8 8 0 ' . 5 3 8 1 0 . 9 9 8 8 0 . 0 2 4 8 2 4 0 . 3 8 5 4 ' . 3 0 5 8 0 . 9 9 2 1 0 . 0 4 0 7 9 4 0 . 4 0 0 1 ° . 3 3 0 8 0 . 9 9 3 8 0 . 0 3 8 5 8 2 1 2 1 0 8 1 2 1 0 . 8 7 3 3 0 . 1 8 0 8 0 . 9 9 9 2 0 . 0 2 0 3 8 2 1 3 1 0 8 3 1 1 0 . 8 9 0 4 ' . 2 2 5 3 0 . 9 9 9 2 0 . 0 2 2 3 9 2 0 . 8 2 5 2 ' . 1 8 2 7 0 . 9 9 9 1 0 . 0 2 0 4 2 2 0 . 8 4 2 8 ' . 5 4 8 5 0 . 9 9 9 2 0 . 0 2 1 9 9 3 0 . 5 4 9 0 ' . 1 8 0 0 0 . 9 9 8 9 0 . 0 1 9 8 5 3 0 . 5 8 9 5 ° . 5 5 1 9 0 . 9 9 9 2 0 . 0 1 9 3 9 4 0 . 3 8 9 1 ' . 0 2 7 8 0 . 9 9 4 8 0 . 0 3 0 1 2 - 4 0 . 4 0 9 8 ' . 3 8 8 4 0 . 9 9 2 9 0 . 0 4 0 9 4 2 1 2 1 0 8 2 2 1 0 . 8 7 8 1 0 . 1 8 7 1 0 . 9 9 9 4 0 . 0 1 7 8 7 2 1 3 1 0 8 1 2 1 0 . 8 8 9 7 0 . 1 3 3 9 0 . 9 9 9 1 0 . 0 2 1 0 8 2 0 . 8 3 0 2 ' . 1 7 7 0 0 . 9 9 9 4 0 . 0 1 7 4 1 2 0 . 8 4 2 8 ‘ . 2 0 4 0 0 . 9 9 9 0 0 . 0 2 0 7 5 3 0 . 5 5 3 0 ‘ . 1 9 1 3 0 . 9 9 9 3 0 . 0 1 8 0 9 3 0 . 5 8 5 7 “ . 2 1 8 7 0 . 9 9 8 9 0 . 0 1 9 4 5 4 0 . 3 8 9 1 ' . 0 2 7 8 0 . 9 9 4 8 0 . 0 3 1 1 9 4 0 . 3 7 4 9 “ . 0 2 8 8 0 . 9 9 5 2 0 . 0 2 7 3 0 2 1 2 1 0 8 3 2 1 0 . 8 7 8 0 0 . 1 4 5 4 0 . 9 9 9 0 0 . 0 2 4 3 2 2 1 3 1 0 8 2 2 1 0 . 8 9 0 3 0 . 1 4 1 8 0 . 9 9 9 2 0 . 0 2 0 7 2 2 0 . 8 3 0 3 - . 1 9 4 1 0 . 9 9 8 8 0 . 0 2 4 0 4 2 0 . 8 4 3 1 ‘ ‘ . 1 9 8 8 0 . 9 9 9 1 0 . 0 2 0 5 8 3 0 . 5 5 3 3 ° . 2 0 8 3 0 . 9 9 8 7 0 . 0 2 2 1 3 3 0 . 5 8 8 1 ' . 2 2 0 2 0 . 9 9 8 8 0 . 0 2 0 2 3 4 0 . 3 9 0 9 ° . 0 4 3 1 0 . 9 9 4 9 0 . 0 3 1 3 1 4 0 . 3 8 4 8 ' . 0 7 2 3 0 . 9 9 7 4 0 . 0 2 0 8 0 2 1 2 1 0 8 1 5 1 0 . 8 8 7 9 0 . 8 9 2 2 0 . 9 9 8 9 0 . 0 2 1 8 1 2 1 3 1 0 8 3 2 1 0 . 8 8 9 8 0 . 1 3 9 1 0 . 9 9 9 1 0 . 0 2 4 3 0 2 0 . 8 1 9 1 0 . 3 1 7 8 0 . 9 9 8 7 0 . 0 2 1 8 1 2 0 . 8 4 2 1 “ . 1 9 9 3 0 . 9 9 9 0 0 . 0 2 3 8 0 3 0 . 5 3 3 8 0 . 2 8 0 5 0 . 9 9 8 2 0 . 0 2 2 0 8 3 0 . 5 8 3 5 ' . 2 0 8 8 0 . 9 9 8 9 0 . 0 2 2 0 2 4 0 . 3 5 3 9 0 . 3 7 8 8 9 . 9 9 1 0 0 . 0 3 2 7 8 4 0 . 3 9 4 1 ’ . 0 2 8 9 0 . 9 9 2 8 0 . 0 3 9 8 1 2 1 2 1 0 8 2 5 1 0 . 8 8 7 2 0 . 7 0 1 7 0 . 9 9 8 5 0 . 0 2 4 5 0 2 1 3 1 0 8 1 5 1 0 . 8 7 9 8 0 . 8 9 3 0 0 . 9 9 8 9 0 . 0 2 1 3 1 2 0 . 8 1 8 4 0 . 3 2 8 1 0 . 9 9 8 3 0 . 0 2 4 4 9 2 0 . 8 3 0 8 0 . 3 1 7 7 0 . 9 9 8 8 0 . 0 2 1 1 7 3 0 . 5 3 3 7 0 . 2 8 8 3 0 . 9 9 7 8 0 . 0 2 3 8 2 3 0 . 5 4 4 3 0 . 2 8 0 8 0 . 9 9 8 5 0 . 0 2 0 5 8 4 0 . 3 5 5 4 0 . 3 7 7 1 0 . 9 9 2 4 0 . 0 2 9 8 8 4 . . ° ' 5 . 1 I 3 8 3 8 8 8 8 1 0 8 1 6 6 9 2 2 1 6 1 9 2 1 6 9 ( 9 1 9 9 9 a n d 1 0 8 8 2 8 8 9 8 6 2 a q u a 6 1 o a 5 . 1 ) ; R I 6 9 9 2 1 1 6 1 9 1 1 1 . 6 ! 8 9 8 9 9 9 1 1 1 1 9 6 1 9 0 1 ; a n d S t I a t a n d a r d a t t a t . 3 2 9 T a b l e B . P a r a m e t e r s o f t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n v e r s u s t h e n u m b e r o f l o a d a p p l i c a t i o n c u r v e s . 2 2 S A M P L E N U M B E R L V D T 9 S 1 I S ! S A M P L E N U M B E R L V D T 9 S 1 R 8 . 2 . 2 1 3 1 0 6 2 5 1 0 . 8 8 2 5 0 . 7 2 0 0 0 9 9 8 8 0 . 0 2 3 4 8 1 2 1 1 0 5 1 5 1 0 . 8 3 3 7 0 . 3 5 4 2 0 . 9 9 9 1 0 . 0 2 2 0 7 2 0 . 6 3 3 4 0 . 3 3 5 1 0 9 9 8 8 0 . 0 2 3 4 2 2 0 . 5 8 9 4 0 . 0 7 5 0 0 9 9 9 0 0 . 0 2 1 8 7 3 0 . 5 4 5 5 0 . 2 7 5 1 0 . 9 9 8 0 0 . 0 2 3 8 5 3 0 . 5 1 8 4 0 0 4 8 3 0 . 9 9 8 8 0 0 2 1 1 7 4 0 . 3 5 9 4 0 . 3 9 3 7 0 . 9 9 0 8 0 . 0 3 4 2 5 4 0 . 3 8 0 7 0 . 1 9 6 7 0 . 9 9 2 5 0 . 0 3 6 2 9 2 1 3 1 0 6 3 5 1 0 . 6 8 3 9 0 . 8 9 5 4 0 . 9 9 8 5 0 . 0 2 4 5 7 1 2 1 1 0 5 2 5 1 0 . 8 3 3 9 0 . 3 7 7 9 0 . 9 9 8 6 0 . 0 2 5 1 7 2 0 . 8 3 5 0 0 . 3 1 6 6 0 . 9 9 8 3 0 . 0 2 4 4 1 2 0 . 5 8 8 9 0 . 0 9 3 5 0 . 9 9 8 4 0 . 0 2 5 2 0 3 0 . 5 5 1 8 0 . 2 4 7 9 0 . 9 9 8 1 0 . 0 2 2 4 1 3 0 . 5 1 8 9 0 . 0 8 3 8 0 . 9 9 8 1 0 . 0 2 3 9 1 4 - I I - 4 . I - - 1 2 1 1 0 5 1 1 1 0 . 8 3 4 0 - . 5 1 3 4 0 . 9 9 9 0 0 . 0 2 3 7 8 1 2 1 1 0 5 3 5 1 0 . 6 3 1 8 0 . 3 8 2 9 0 9 9 8 8 0 . 0 2 4 5 4 2 0 . 5 9 0 8 - . 7 5 8 7 0 . 9 9 8 9 0 . 0 2 3 5 5 2 0 . 5 8 7 6 0 . 0 8 3 9 0 9 9 8 8 0 0 2 4 3 2 3 0 . 5 3 2 4 I . 7 5 8 5 0 . 9 9 9 0 0 . 0 2 0 5 7 3 0 . 5 1 7 4 0 . 0 5 3 3 0 . 9 9 8 4 0 . 0 2 2 8 8 4 0 . 4 1 2 9 - . 8 3 1 5 0 . 9 9 6 9 0 . 0 2 7 8 3 4 0 . 1 8 1 1 0 . 3 8 7 4 1 . 0 0 0 0 0 . 0 0 0 0 0 1 2 1 1 0 5 2 1 1 0 . 6 3 3 1 - . 5 2 8 3 0 . 9 9 9 0 0 . 0 2 4 3 9 1 2 1 1 0 8 1 1 1 0 . 6 3 5 8 I . 2 0 7 5 0 . 9 9 9 1 0 . 0 2 2 7 5 2 0 . 5 8 9 1 I . 7 8 5 2 0 . 9 9 8 8 0 . 0 2 4 4 8 2 0 . 5 8 8 2 I . 5 2 9 2 0 . 9 9 9 0 0 . 0 2 2 4 5 3 0 . 5 3 2 8 I . 7 7 1 4 0 . 9 9 8 9 0 . 0 2 1 5 8 3 0 . 5 1 8 4 I . 5 3 0 6 0 . 9 9 8 8 0 . 0 2 1 8 0 4 0 . 3 1 7 7 I . 4 9 2 8 0 . 9 9 8 9 0 . 0 2 2 7 5 4 0 . 3 6 0 7 I . 3 4 8 1 0 . 9 9 1 6 0 . 0 3 9 8 3 1 2 1 1 0 5 3 1 1 0 . 8 3 4 2 I . 5 3 3 7 0 . 9 9 9 1 0 . 0 2 2 9 7 1 2 1 1 0 6 2 1 1 0 . 8 3 2 8 I . 2 1 0 3 0 . 9 9 9 1 0 . 0 2 3 6 1 2 0 . 5 9 0 4 I . 7 8 9 8 0 . 9 9 9 0 0 . 0 2 2 5 6 2 0 . 5 8 4 8 I . 5 2 5 5 0 . 9 9 8 9 0 . 0 2 3 8 7 3 0 . 5 3 3 5 I . 7 7 4 2 0 . 9 9 9 1 0 . 0 1 9 2 5 3 0 . 5 1 3 2 I . 5 2 8 4 0 . 9 9 8 8 0 . 0 2 1 8 5 4 0 . 3 1 2 7 I . 4 7 7 5 0 . 9 9 7 9 0 . 0 1 8 3 4 4 0 . 3 5 5 0 - . 3 3 2 3 0 . 9 9 1 3 0 . 0 4 0 8 1 1 2 1 1 0 5 1 2 1 0 . 8 3 5 0 I . 1 7 6 4 0 . 9 9 9 0 0 . 0 2 3 8 2 1 2 1 1 0 8 3 1 1 0 . 8 3 3 3 I . 1 7 3 9 0 . 9 9 9 1 0 . 0 2 3 2 1 2 0 . 5 9 3 2 I . 4 3 3 4 0 . 9 9 8 9 0 . 0 2 3 1 1 2 0 . 5 8 6 2 I . 5 0 4 3 0 . 9 9 8 9 0 . 0 2 2 7 4 3 0 . 5 2 9 8 I . 4 2 9 2 0 . 9 9 8 8 0 . 0 2 1 9 3 3 0 . 5 1 1 4 I . 4 9 6 9 0 . 9 9 8 8 0 . 0 2 1 4 7 4 0 . 4 0 1 3 I . 2 9 0 6 0 . 9 9 5 8 0 . 0 3 1 5 5 4 0 . 3 5 8 8 I . 3 2 3 3 0 . 9 9 3 4 0 . 0 3 4 5 1 1 2 1 1 0 5 2 2 1 0 . 8 3 8 2 I . 1 7 9 8 0 . 9 9 9 2 0 . 0 2 1 0 2 1 2 1 1 0 8 1 2 1 0 . 8 3 3 4 0 . 1 8 2 8 0 . 9 9 9 0 0 . 0 2 3 4 4 2 0 . 5 9 3 1 I . 4 3 1 4 0 . 9 9 9 2 0 . 0 2 0 0 5 2 0 . 5 8 5 5 I . 1 7 3 0 0 . 9 9 8 9 0 . 0 2 3 0 4 3 0 . 5 3 0 4 I . 4 3 1 0 0 . 9 9 9 1 0 . 0 1 8 7 7 3 0 . 5 0 8 8 I . 1 7 2 2 0 . 9 9 8 7 0 . 0 2 1 4 8 4 0 . 3 9 8 7 I . 2 7 4 1 0 . 9 9 5 8 0 . 0 3 0 5 1 4 - . - - 1 2 1 1 0 5 3 2 1 0 . 8 3 7 1 I . 1 8 4 4 0 . 9 9 9 1 0 . 0 2 2 8 1 1 2 1 1 0 8 2 2 1 0 . 8 3 5 0 0 . 1 2 2 8 0 9 9 9 3 0 . 0 2 0 0 8 2 0 . 5 9 5 1 I . 4 4 2 2 0 . 9 9 9 0 0 . 0 2 2 8 8 2 0 . 5 8 7 4 I . 2 0 2 6 0 . 9 9 9 2 0 . 0 1 9 7 4 3 0 . 5 3 2 3 I . 4 4 1 7 0 . 9 9 8 8 0 . 0 2 1 7 0 3 0 . 5 1 0 1 I . 2 0 1 2 0 9 9 9 2 0 . 0 1 8 1 0 4 0 . 3 4 2 3 I . 1 8 5 5 0 . 9 9 4 8 0 . 0 2 9 7 5 4 0 . 3 4 2 8 I . 0 0 8 5 0 . 9 8 8 8 0 . 0 4 4 4 9 8 . 1 I 2 9 9 : 9 9 9 1 6 0 6 6 9 2 2 1 6 1 9 9 6 9 ( 9 1 9 p 9 a n d 1 n t a r c a p 2 9 2 2 R S t 9 q u a t 1 o n 5 . 1 ) ; I 6 6 9 2 2 1 6 1 a n t 6 2 d a t a r l 1 n a t 1 o n ; a n d I a t a n d a r d a t t o x . T a b l e B . P a r a m e t e r s v e r s u s t h e 3 3 0 o f t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n n u m b e r o f l o a d a p p l i c a t i o n c u r v e s . 2 2 S A M P L E N U M E D . L V D T 9 S 1 R 5 . 8 S A M P L E M E I ! L V D T 9 S 1 I 8 . 8 . 1 2 1 1 0 8 3 2 1 0 . 6 3 6 4 0 . 1 3 1 7 0 . 9 9 9 3 0 . 0 2 0 1 0 1 2 1 1 0 7 2 2 1 0 . 8 3 0 8 0 . 4 8 3 8 0 9 9 9 1 0 . 0 1 9 5 0 2 0 . 5 8 8 7 I . 1 9 8 3 0 9 9 9 2 0 0 1 9 9 1 2 0 . 5 7 9 2 0 . 0 8 6 0 0 . 9 9 9 0 0 . 0 1 9 5 5 3 0 . 5 1 2 0 I . 2 0 2 1 0 9 9 9 3 0 . 0 1 6 4 1 3 0 . 4 8 6 9 0 . 0 6 2 2 0 . 9 9 8 3 0 . 0 2 1 1 1 4 0 . 3 4 3 8 I . 0 0 7 2 0 . 9 9 1 5 0 . 0 3 8 5 3 4 0 . 2 5 2 1 0 . 2 6 8 2 0 . 9 9 2 1 0 . 0 2 4 9 8 1 2 1 1 0 8 1 5 1 0 . 8 3 5 0 0 . 8 6 4 1 0 . 9 9 9 2 0 . 0 1 9 0 9 1 2 1 1 0 7 3 2 1 0 . 8 3 5 7 0 . 4 8 7 3 0 . 9 9 9 3 0 0 2 0 7 4 2 0 . 5 8 5 9 0 . 2 9 8 8 0 9 9 9 0 0 . 0 1 8 9 3 2 0 . 5 8 4 0 0 . 0 6 5 1 0 9 9 9 1 0 . 0 2 0 8 0 3 0 . 4 9 8 1 0 . 2 5 7 1 0 . 9 9 8 8 0 . 0 1 7 6 3 3 0 . 4 9 0 8 0 . 0 6 0 6 0 . 9 9 8 6 0 . 0 2 2 0 5 4 0 . 2 2 5 3 0 . 5 1 6 2 0 . 9 9 0 9 0 . 0 2 5 1 1 4 0 . 2 8 8 6 0 . 2 8 1 9 0 . 9 7 9 4 0 . 0 4 9 7 8 1 2 1 1 0 6 2 5 1 0 . 6 3 1 9 0 . 8 5 1 8 0 . 9 9 9 1 0 . 0 2 0 5 9 1 2 1 1 0 7 1 5 1 0 . 6 2 6 0 1 . 0 2 4 6 0 9 9 8 8 0 . 0 2 0 3 9 2 0 . 5 8 3 2 0 . 2 9 2 2 0 . 9 9 9 0 0 . 0 2 0 4 0 2 0 . 5 7 2 9 0 . 5 8 1 1 0 . 9 9 8 5 0 . 0 2 0 2 8 3 0 . 4 9 8 0 0 . 2 4 8 8 0 . 9 9 8 8 0 . 0 2 0 3 8 3 0 . 4 7 3 5 0 . 4 9 0 1 0 . 9 9 8 1 0 . 0 1 9 1 9 4 0 . 3 0 9 1 0 . 4 1 1 3 0 . 9 8 7 7 0 . 0 3 7 4 1 4 - - - - 1 2 1 1 0 6 3 5 1 0 . 6 3 3 2 0 . 6 8 8 9 0 . 9 9 9 1 0 . 0 1 8 9 8 1 2 1 1 0 7 2 5 1 0 . 6 2 8 8 0 . 9 8 8 1 0 . 9 9 8 9 0 . 0 1 9 1 1 2 0 . 5 8 4 3 0 . 3 1 8 7 0 . 9 9 8 9 0 . 0 1 8 7 5 2 0 . 5 7 5 9 0 . 5 3 2 7 0 . 9 9 8 7 0 . 0 1 9 1 1 3 0 . 4 9 8 0 0 . 2 6 9 1 0 . 9 9 8 8 0 . 0 1 6 8 8 3 0 . 4 7 7 8 0 . 4 8 4 6 0 . 9 9 8 1 0 . 0 1 9 2 8 4 0 . 2 9 8 6 0 . 4 1 0 7 0 . 9 9 2 9 0 . 0 2 5 1 5 4 0 . 2 7 0 8 0 . 5 9 2 1 0 . 9 8 5 8 0 . 0 3 0 1 9 1 2 1 1 0 7 1 1 1 0 . 8 3 2 7 0 . 1 1 8 8 0 . 9 9 9 0 0 . 0 2 3 9 4 1 2 1 1 0 7 3 5 1 0 . 8 2 3 4 1 . 0 0 7 4 0 . 9 9 7 6 0 . 0 2 5 3 3 2 0 . 5 8 2 0 I . 2 8 5 6 0 . 9 9 8 9 0 . 0 2 3 0 7 2 0 . 5 7 0 5 0 . 5 5 1 3 0 . 9 9 7 2 0 . 0 2 5 3 3 3 0 . 4 9 3 9 I . 2 7 8 1 0 . 9 9 8 7 0 . 0 2 1 0 4 3 0 . 4 7 2 2 0 . 4 8 3 0 0 . 9 9 6 0 0 . 0 2 4 9 8 4 0 . 3 0 7 4 I . 0 6 0 9 0 . 9 8 3 4 0 . 0 4 7 3 9 4 0 . 2 8 3 9 0 . 8 1 8 3 0 . 9 8 3 6 0 . 0 2 8 4 4 1 2 1 1 0 7 2 1 1 0 . 8 3 5 0 0 . 1 0 4 1 0 . 9 9 9 1 0 . 0 2 2 1 7 1 1 1 1 0 7 1 5 1 0 . 8 3 1 4 0 . 9 9 7 3 0 . 9 9 8 3 0 . 0 2 3 4 4 2 0 . 5 8 4 1 I . 2 9 6 3 0 . 9 9 9 0 0 . 0 2 1 8 9 2 0 . 5 7 8 5 0 . 5 3 5 3 0 . 9 9 8 1 0 . 0 2 3 1 8 3 0 . 4 9 6 1 I . 2 8 6 9 0 . 9 9 8 9 0 . 0 1 9 4 9 3 0 . 4 7 8 7 0 . 4 6 7 9 0 . 9 9 7 5 0 . 0 2 1 8 5 4 0 . 3 0 3 1 I . 0 4 4 8 0 . 9 8 2 7 0 . 0 4 8 8 8 4 0 . 2 8 5 9 0 . 8 0 8 7 0 . 9 8 9 1 0 . 0 2 5 2 8 1 2 1 1 0 7 3 1 1 0 . 8 3 2 9 0 . 1 2 2 2 0 . 9 9 9 2 0 . 0 2 1 8 0 1 2 2 1 0 7 1 1 1 0 . 8 5 7 3 0 . 1 5 7 9 0 . 9 9 9 2 0 . 0 2 2 9 6 2 0 . 5 8 2 0 I . 2 8 0 5 0 . 9 9 9 1 0 . 0 2 1 1 8 2 0 . 8 0 5 0 I . 2 5 7 5 0 . 9 9 9 0 0 . 0 2 2 8 9 3 0 . 4 9 4 3 I . 2 7 4 5 0 . 9 9 8 9 0 . 0 2 0 0 7 3 0 . 5 1 3 3 I . 2 5 2 8 0 . 9 9 8 8 0 0 2 1 6 7 4 0 . 3 0 3 1 I . 0 4 2 9 0 . 9 8 3 3 0 . 0 4 7 4 3 4 0 . 3 1 4 2 I . 0 2 0 7 0 . 9 8 1 3 0 . 0 5 2 2 2 1 2 1 1 0 7 1 2 1 0 . 6 3 2 0 0 . 4 8 7 8 0 . 9 9 9 2 0 . 0 2 0 0 0 1 2 2 1 0 7 2 1 1 0 . 8 5 8 4 0 . 0 8 0 5 0 . 9 9 9 6 0 . 0 1 8 7 9 2 0 . 5 8 0 7 0 . 0 5 3 2 0 . 9 9 9 2 0 . 0 1 9 4 3 2 0 . 4 9 9 5 I . 0 9 8 3 0 . 9 9 9 3 0 0 1 6 1 3 3 0 . 4 9 0 0 0 . 0 4 5 2 0 . 9 9 8 9 0 . 0 1 8 3 2 3 0 . 5 1 9 2 - . 3 1 4 2 0 . 9 9 9 4 0 . 0 1 5 4 0 4 0 . 1 8 3 8 0 . 3 5 2 7 0 . 9 9 2 7 0 . 0 2 3 2 9 4 0 . 2 4 2 8 I . 0 2 4 8 0 . 9 9 5 4 0 . 0 2 2 4 2 S I I 9 9 9 2 9 9 9 1 o n 6 6 9 2 2 1 6 1 9 n 6 9 ; R I 6 6 9 2 2 1 6 1 a n 6 6 2 d a t a r l 1 n a 6 1 a n ; a n d 8 . 8 . I a t a n d a r d a r r o r . T a b l e B . P v a e r r a s m u e s t e t r h s e o n f u m t b h e e r m c o u f u l l o a a t d i v a e p p p l l i a c s a t t i i c o n d e c f u o r r v m e a s t . i o n 3 3 1 2 S A M P L E N U M B E E L V D T 9 S 1 R 8 . 2 . S A M P L E N U M B E R L V D T 9 S 1 9 2 8 . 8 . 1 2 2 1 0 7 3 1 1 0 . 8 5 5 5 0 . 1 4 5 9 0 9 9 9 2 0 . 0 2 2 5 4 1 2 3 1 0 7 2 1 1 0 . 8 6 9 5 0 . 1 3 5 3 0 . 9 9 9 3 0 . 0 2 0 8 5 2 0 . 8 0 4 1 " 2 8 8 4 0 . 9 9 9 1 0 . 0 2 1 8 9 2 0 . 8 1 8 1 I 2 7 9 7 0 . 9 9 9 3 0 . 0 2 0 1 7 3 0 . 5 1 2 0 I . 2 5 9 4 0 9 9 8 8 0 . 0 2 1 0 1 3 0 . 5 2 8 2 I . 2 7 5 8 0 9 9 9 1 0 . 0 1 9 1 8 4 0 . 1 7 1 0 0 . 1 6 3 2 0 . 9 9 4 1 0 . 0 2 0 5 3 4 0 . 3 2 8 7 I . 0 5 1 7 0 . 9 8 4 3 0 . 0 4 9 5 3 1 2 2 1 0 7 1 2 1 0 . 8 5 3 9 0 . 4 8 3 3 0 . 9 9 9 3 0 . 0 1 9 4 3 1 2 3 1 0 7 3 1 1 0 . 6 6 8 6 0 . 1 3 8 8 0 . 9 9 9 5 0 . 0 1 8 0 4 2 0 . 6 0 2 4 0 . 0 5 9 5 0 . 9 9 9 2 0 . 0 1 9 0 2 2 0 . 8 1 4 9 I . 2 7 3 5 0 . 9 9 9 5 0 . 0 1 7 6 5 3 0 . 5 1 1 1 0 . 0 4 2 3 0 . 9 9 9 0 0 . 0 1 7 8 4 3 0 . 5 2 2 4 I . 2 6 7 4 0 . 9 9 9 1 0 0 1 8 9 8 4 0 . 3 1 8 2 0 . 2 2 8 8 0 9 9 0 1 0 . 0 3 4 8 9 4 - - - - 1 2 2 1 0 7 2 2 1 0 . 6 5 8 1 0 4 7 4 3 0 9 9 8 9 0 . 0 2 4 1 0 1 2 3 1 0 7 1 2 1 0 . 8 8 9 2 0 4 7 4 4 0 . 9 9 9 0 0 0 2 3 7 8 2 0 . 8 0 4 8 0 . 0 5 1 9 0 . 9 9 8 8 0 0 2 3 8 8 2 0 . 8 1 7 8 0 . 0 4 7 8 0 . 9 9 8 9 0 0 2 3 3 8 3 0 . 5 1 8 1 - 0 5 8 2 0 9 9 8 8 0 . 0 2 2 1 2 3 0 . 5 2 4 9 0 . 0 2 8 9 0 . 9 9 8 8 0 . 0 2 1 8 4 4 0 . 2 4 9 2 0 2 5 9 8 0 . 9 8 9 8 0 . 0 3 1 4 0 4 0 . 3 2 7 1 0 . 2 1 9 3 0 . 9 9 1 8 0 . 0 3 3 4 9 1 2 2 1 0 7 3 2 1 0 . 6 5 8 1 0 . 4 4 3 5 0 . 9 9 9 0 0 . 0 2 3 7 3 1 2 3 1 0 7 2 2 1 0 . 6 6 8 6 0 4 8 3 8 0 . 9 9 9 2 0 . 0 2 0 9 1 2 0 . 8 0 4 4 0 . 0 2 9 8 0 . 9 9 8 9 0 . 0 2 3 5 2 2 0 . 6 1 6 7 0 . 0 5 6 5 0 . 9 9 9 0 0 . 0 2 0 7 2 3 0 . 5 1 2 3 0 . 0 1 9 : 0 . 9 9 8 5 0 . 0 2 3 3 9 3 0 . 5 2 4 4 0 . 0 3 5 5 0 . 9 9 8 8 0 . 0 2 0 0 5 4 0 . 3 1 3 1 0 . 2 2 8 2 0 . 9 8 4 6 0 . 0 4 5 8 4 4 0 . 3 2 7 3 0 . 2 2 5 3 0 9 8 8 5 0 . 0 3 8 1 7 1 2 2 1 0 7 1 5 1 0 . 8 5 7 7 0 . 9 5 7 7 0 . 9 9 9 0 0 . 0 1 8 5 9 1 2 3 1 0 7 3 2 1 0 . 8 6 7 3 0 . 4 7 1 9 0 . 9 9 9 5 0 . 0 1 8 2 5 2 0 . 8 0 4 8 0 . 5 0 0 9 0 . 9 9 8 9 0 . 0 1 8 4 1 2 0 . 6 1 5 8 0 . 0 4 8 8 0 9 9 9 4 0 . 0 1 6 0 0 3 0 . 5 0 4 9 0 . 4 2 8 1 0 . 9 9 8 5 0 . 0 1 7 4 7 3 0 . 5 2 3 9 0 . 0 2 9 7 0 . 9 9 9 3 0 . 0 1 5 4 6 4 I I - I 4 0 . 3 2 7 4 0 . 2 2 1 0 0 . 9 9 0 2 0 . 0 3 5 7 9 1 2 2 1 0 7 2 5 1 0 . 8 5 3 2 0 . 9 5 8 7 0 . 9 9 8 4 0 . 0 2 3 7 8 1 2 3 1 0 7 1 5 1 0 . 8 7 2 8 0 . 9 8 4 9 0 . 9 9 8 3 0 . 0 2 1 7 1 2 0 . 6 0 0 8 0 . 5 0 3 4 0 9 9 8 2 0 . 0 2 3 8 0 2 0 . 6 1 9 5 0 . 5 1 4 8 0 . 9 9 8 0 0 . 0 2 1 5 6 3 0 . 5 0 2 1 0 . 4 2 9 5 0 . 9 9 7 8 0 . 0 2 2 7 1 3 0 . 4 9 9 3 0 . 4 2 8 8 0 . 9 9 7 2 0 . 0 2 0 7 8 4 0 . 2 9 2 8 0 . 5 5 4 7 0 . 9 8 8 5 0 . 0 2 9 0 0 4 0 . 2 2 5 9 0 . 5 3 2 5 1 . 0 0 0 0 0 . 0 0 0 0 0 1 2 2 1 0 7 3 5 1 0 . 8 4 9 7 1 . 0 2 3 6 0 9 9 8 2 0 . 0 2 5 9 5 1 2 3 1 0 7 2 5 1 0 . 8 7 0 5 0 . 9 9 5 9 0 . 9 9 7 9 0 . 0 2 4 3 1 2 0 . 5 9 8 3 0 . 5 5 3 1 0 . 9 9 7 8 0 . 0 2 5 8 2 2 0 . 8 1 7 0 0 . 5 2 3 8 0 . 9 9 7 5 0 . 0 2 4 1 3 3 0 . 4 9 4 8 0 . 4 7 6 3 0 . 9 9 8 9 0 . 0 2 5 5 1 3 0 . 5 1 8 0 0 . 4 4 0 4 0 . 9 9 8 8 0 . 0 2 3 0 1 4 0 . 2 7 8 1 0 . 8 0 7 0 0 . 9 8 3 7 0 . 0 3 3 1 9 4 0 . 2 1 2 8 0 . 5 7 1 3 1 . 0 0 0 0 0 . 0 0 0 0 0 1 2 3 1 0 7 1 1 1 0 . 6 7 1 8 0 . 1 4 1 0 0 . 9 9 9 2 0 . 0 2 2 5 3 1 2 3 1 0 7 3 5 1 0 . 8 8 5 8 0 9 9 1 9 0 . 9 9 8 4 0 . 0 2 1 1 2 2 0 . 8 1 9 3 I . 2 7 3 9 0 . 9 9 9 1 0 . 0 2 2 2 4 2 0 . 8 1 6 0 0 . 4 4 7 8 0 . 9 9 8 2 0 . 0 2 1 1 8 3 0 . 5 2 7 8 I . 2 7 3 8 0 9 9 9 0 0 . 0 1 9 8 8 3 0 . 5 1 8 1 0 . 3 7 5 8 0 . 9 9 7 4 0 . 0 2 1 4 8 4 0 . 3 2 4 3 I . 0 3 1 1 0 . 9 8 3 4 0 . 0 5 0 7 1 4 0 . 3 0 8 6 0 . 5 0 8 8 0 . 9 8 7 7 0 . 0 2 7 8 8 8 1 I 9 9 9 1 9 9 9 1 6 6 6 6 9 2 2 1 6 1 9 6 6 9 ; 5 . ! - I 6 6 9 2 2 1 6 1 9 6 6 6 2 9 9 6 9 2 9 1 6 9 6 1 6 6 ; a n d I a 6 a n d a r d 9 2 : 6 2 . o n f u m t b h e e r c o u f m u l l o a a t d i v a e p p l l i p a c s a t t i i c o n d e c f u o r r v m e a s t . i o n T a b l e B . P a r a m e t e r s v e r s u s t h e 3 3 2 2 2 S A M P L E N U M B E R L V D T 9 S 1 I 8 . 8 . S A M P L E N U M B E R L V D T 9 S 1 R 5 . 2 . 2 2 1 1 0 8 1 1 1 0 . 8 5 1 5 I . 2 3 1 8 0 . 9 9 9 1 0 . 0 2 4 1 8 2 2 1 1 0 8 3 5 1 0 . 8 5 2 2 0 . 6 9 2 8 0 . 9 9 9 1 0 . 0 2 0 5 3 2 0 6 0 5 0 I . 5 4 8 1 0 . 9 9 9 0 0 . 0 2 3 3 8 2 0 . 8 0 3 2 0 . 3 1 8 5 0 . 9 9 8 9 0 0 2 0 4 0 3 0 . 5 3 3 0 I . 5 4 1 1 0 9 9 8 9 0 . 0 2 1 5 6 3 0 . 5 1 8 4 0 . 2 7 0 4 0 . 9 9 8 8 0 . 0 2 0 1 0 4 0 . 3 8 1 7 I . 3 6 9 4 0 . 9 9 2 2 0 . 0 4 0 8 3 4 0 . 3 2 8 5 0 . 4 1 5 5 0 . 9 9 1 0 0 . 0 3 1 9 5 2 2 1 1 0 6 2 1 1 0 . 6 5 1 5 I . 2 2 8 4 0 . 9 9 9 0 0 . 0 2 5 0 9 3 2 1 1 0 8 1 1 1 0 . 6 4 8 2 I . 1 8 2 8 0 . 9 9 9 3 0 . 0 2 0 5 3 2 0 . 6 0 4 2 I . 5 4 0 6 0 . 9 9 8 9 0 . 0 2 4 8 8 2 0 . 6 0 1 3 I . 4 9 5 7 0 . 9 9 9 3 0 . 0 1 9 3 7 3 0 5 3 3 5 I . 5 4 2 2 0 . 9 9 8 9 0 . 0 2 1 8 2 3 0 . 5 2 4 0 I 4 8 1 9 0 . 9 9 9 1 0 . 0 1 9 0 8 4 0 . 3 2 4 8 I . 2 8 0 0 0 . 9 9 5 5 0 . 0 2 7 3 1 4 - I I I 2 2 1 1 0 8 3 1 1 0 . 8 5 1 5 I . 2 0 8 5 0 . 9 9 9 2 0 . 0 2 2 3 0 3 2 1 1 0 8 2 1 1 0 . 8 4 8 4 I . 1 8 4 8 0 . 9 9 9 1 0 0 2 3 0 3 2 0 . 8 0 4 8 I . 5 2 8 3 0 . 9 9 9 1 0 . 0 2 1 7 3 2 0 . 8 0 2 0 I . 5 1 3 9 0 . 9 9 9 1 0 0 2 2 1 4 3 0 5 3 2 3 I . 5 2 8 7 0 9 9 9 1 0 . 0 1 9 7 4 3 0 . 5 2 8 4 I . 5 1 2 0 0 . 9 9 8 7 0 0 2 2 4 9 4 0 . 3 7 4 8 I . 3 3 5 3 0 . 9 9 1 9 0 . 0 4 0 8 2 4 0 . 3 8 8 9 I . 3 2 0 7 0 . 9 9 0 9 0 0 4 2 2 5 2 2 1 1 0 8 1 2 1 0 . 8 5 1 4 0 . 1 4 8 9 0 . 9 9 9 4 0 . 0 1 9 4 0 3 2 1 1 0 8 3 1 1 0 . 8 4 9 0 I . 1 8 7 2 0 . 9 9 9 2 0 . 0 2 2 1 8 2 0 . 6 0 4 1 I . 1 8 3 9 0 . 9 9 9 3 0 . 0 1 9 1 0 2 0 . 6 0 1 4 I . 4 9 8 5 0 . 9 9 9 1 0 . 0 2 1 7 1 3 0 . 5 2 5 9 I . 1 8 3 2 0 . 9 9 9 2 0 . 0 1 8 3 0 3 0 . 5 2 8 5 I . 4 9 1 8 0 . 9 9 9 2 0 . 0 1 8 4 9 4 0 . 3 5 7 5 0 . 0 0 9 4 0 . 9 9 0 1 0 . 0 4 3 1 3 4 0 . 3 6 6 5 I 3 0 4 5 0 . 9 9 2 7 0 . 0 3 8 1 0 2 2 1 1 0 6 2 2 1 0 . 6 5 1 0 0 . 1 8 2 5 0 . 9 9 9 2 0 . 0 2 2 3 1 3 2 1 1 0 8 1 2 1 0 . 6 4 6 0 0 . 1 8 4 1 0 . 9 9 9 3 0 . 0 2 1 7 5 2 0 . 8 0 3 2 I . 1 7 1 6 0 . 9 9 9 1 0 . 0 2 1 9 8 2 0 . 5 9 8 3 I . 1 5 5 7 0 . 9 9 9 2 0 . 0 2 1 0 3 3 0 . 5 2 5 0 I . 1 7 3 9 0 . 9 9 8 9 0 . 0 2 0 8 3 3 0 . 5 1 7 9 I . 1 5 2 4 0 . 9 9 9 1 0 . 0 1 9 4 2 4 0 . 3 5 5 3 0 . 0 2 0 0 0 . 9 8 9 1 0 . 0 4 4 8 5 4 0 . 3 4 4 0 0 . 0 4 9 1 0 . 9 8 7 9 0 0 4 8 8 8 2 2 1 1 0 8 3 2 1 0 . 6 4 7 6 0 . 1 8 1 1 0 9 9 9 0 0 . 0 2 3 6 1 3 2 1 1 0 8 2 2 1 0 . 8 4 7 2 0 . 1 5 5 1 0 . 9 9 9 1 0 . 0 2 3 4 0 2 0 . 5 9 9 4 I . 1 5 5 1 0 . 9 9 8 8 0 0 2 3 7 0 2 0 . 6 0 0 3 I . 1 7 9 3 0 . 9 9 9 0 0 . 0 2 2 7 5 3 0 . 5 2 1 5 I . 1 5 9 9 0 9 9 8 2 0 . 0 2 5 8 2 3 0 . 5 2 1 7 I . 1 7 7 5 0 . 9 9 9 0 0 . 0 2 0 0 4 4 0 . 3 5 2 2 0 . 0 3 1 6 0 . 9 8 4 0 0 . 0 5 1 2 5 4 0 . 3 0 8 3 0 . 0 8 5 8 0 . 9 9 2 9 0 . 0 3 2 0 7 2 2 1 1 0 8 1 5 1 0 . 8 4 7 9 0 . 8 8 3 5 0 . 9 9 9 1 0 . 0 1 9 2 0 3 2 1 1 0 8 3 2 1 0 . 8 4 9 3 0 . 1 2 9 4 0 . 9 9 9 3 0 . 0 2 0 5 3 2 0 . 5 9 9 3 0 . 3 1 4 6 0 . 9 9 9 0 0 . 0 1 8 9 0 2 0 . 8 0 1 6 I 1 9 6 4 0 . 9 9 9 2 0 . 0 2 0 5 3 3 0 . 5 1 4 1 0 . 2 8 5 3 0 . 9 9 8 7 0 . 0 1 8 3 7 3 0 . 5 2 5 9 I . 2 0 3 4 0 . 9 9 9 1 0 . 0 1 9 0 9 4 0 . 3 3 0 8 0 . 4 0 2 5 0 . 9 9 2 4 0 . 0 2 9 0 2 4 0 . 3 1 8 1 0 . 0 5 1 4 0 . 9 9 3 9 0 . 0 3 0 0 1 2 2 1 1 0 8 2 5 1 0 . 8 5 0 1 0 . 8 9 5 1 0 . 9 9 8 6 0 . 0 2 4 7 0 3 2 1 1 0 8 1 5 1 0 . 8 4 4 8 0 . 8 8 8 8 0 . 9 9 9 2 0 . 0 1 8 0 6 2 0 . 8 0 1 0 0 . 3 2 2 8 0 . 9 9 8 4 0 . 0 2 4 5 5 2 0 . 5 9 8 1 0 . 3 1 9 6 0 . 9 9 9 1 0 . 0 1 7 9 8 3 0 . 5 1 4 3 0 . 2 7 4 5 0 . 9 9 8 1 0 . 0 2 3 2 9 3 0 . 5 1 0 0 0 . 2 7 2 5 0 . 9 9 8 8 0 0 1 7 9 9 . - ‘ C o o u S 1 I 2 9 9 : 9 9 9 1 6 n 6 6 9 2 2 1 6 1 9 6 6 9 ; R I 6 6 9 2 2 1 6 1 a n 6 6 2 6 9 6 9 : 9 1 n a 6 1 6 6 ; a n d 5 . 2 . I 9 6 a n d a r d a r r o x . o n f u t b h e e r m m c o u f u l l o a a t d i v a e p p l l i a c s a p t t i i c o n d e c f u o r r v m e a s t . i o n T a b l e B . P a r a m e t e r s v e r s u s t h e 3 3 3 2 2 S A M P L E N U M B E R L V D T 9 S 1 R 8 . 8 . S A M P L E N U M B E R L V D T 9 S 1 I 5 . 8 3 2 1 1 0 8 2 5 1 0 . 8 4 5 1 0 . 8 8 7 1 0 . 9 9 9 1 0 . 0 2 0 2 5 2 2 2 1 0 8 1 5 1 0 . 7 0 8 7 0 . 4 0 2 9 0 . 9 9 9 3 0 . 0 1 7 9 4 2 0 . 5 9 8 2 0 . 3 2 0 4 0 . 9 9 9 0 0 . 0 2 0 1 2 2 0 . 3 2 8 5 0 . 8 0 8 7 0 . 9 9 9 9 0 . 0 0 3 8 4 3 0 . 5 0 9 9 0 . 2 7 4 2 0 . 9 9 8 7 0 . 0 1 9 2 3 3 0 . 1 8 0 4 1 . 1 4 0 9 0 . 9 8 1 1 0 . 0 2 1 5 4 4 0 . 3 2 2 2 0 . 4 2 3 3 0 . 9 9 2 1 0 . 0 3 0 4 2 4 0 . 1 4 7 0 0 . 1 9 8 8 0 . 0 8 4 5 0 . 5 4 1 1 5 3 2 1 1 0 8 3 5 1 0 . 8 4 8 2 0 . 8 7 1 4 0 . 9 9 8 9 0 . 0 2 1 4 7 2 2 2 1 0 8 2 5 1 0 . 8 7 9 8 0 . 8 5 2 2 0 . 9 9 9 3 0 . 0 1 7 1 1 2 0 . 5 9 7 5 0 . 3 0 5 7 0 . 9 9 8 8 0 . 0 2 1 1 9 2 0 . 3 2 8 4 0 . 8 2 0 4 0 . 9 9 4 8 0 . 0 2 2 7 3 3 0 . 5 1 2 1 0 . 2 5 8 7 0 . 9 9 9 3 0 . 0 1 9 5 3 3 0 . 2 5 3 1 0 . 7 3 5 7 0 . 9 9 4 1 0 . 0 1 8 3 3 4 0 . 3 2 8 3 0 . 3 9 9 3 0 . 9 9 2 9 0 . 0 2 8 1 8 4 I I - - 2 2 2 1 0 8 1 1 1 0 . 8 7 8 2 - _ 1 2 3 5 0 . 9 9 9 4 0 . 0 1 8 8 9 2 2 2 1 0 8 3 5 1 0 . 8 8 2 9 0 . 8 0 5 7 0 . 9 9 9 5 0 0 1 4 7 1 2 0 . 3 0 8 2 0 . 1 7 0 0 0 . 9 9 9 8 0 . 0 0 8 3 8 2 0 . 3 3 8 2 0 . 8 0 0 0 0 . 9 9 8 0 0 . 0 1 9 5 2 3 0 . 1 8 9 2 0 . 1 8 9 8 0 . 9 9 5 7 0 . 0 1 0 9 1 3 0 . 2 5 8 5 0 . 7 2 2 3 0 . 9 9 0 2 0 0 2 3 8 2 4 0 . 4 3 7 4 I 1 . 1 7 0 1 1 . 0 0 0 0 0 . 0 0 0 0 0 4 I - - - 2 2 2 1 0 8 2 1 1 0 . 8 8 1 8 I . 1 7 4 3 0 . 9 9 9 4 0 . 0 1 9 2 0 1 1 1 2 0 5 1 1 1 0 . 2 8 3 5 0 . 4 9 8 5 0 . 9 9 8 5 0 . 0 1 5 3 3 2 0 . 2 4 8 5 0 . 4 3 8 7 0 . 9 9 1 3 0 . 0 2 7 8 5 2 0 . 1 1 4 9 1 . 2 8 8 8 0 . 9 8 7 0 0 0 1 8 0 9 3 0 . 1 8 0 8 0 . 8 3 2 5 0 . 9 7 8 5 0 . 0 2 8 3 2 3 0 . 1 0 8 3 1 . 3 5 4 2 0 . 9 8 0 9 0 . 0 2 0 3 2 4 I . 0 1 1 4 0 . 9 9 5 2 0 . 0 2 7 4 0 . 0 7 9 7 8 4 0 . 0 9 8 4 1 . 3 9 8 9 0 . 9 7 2 4 0 . 0 2 2 7 3 2 2 2 1 0 8 3 1 1 0 . 8 8 4 8 I . 1 3 4 8 0 . 9 9 9 9 0 . 0 0 7 8 0 1 1 1 2 0 5 2 1 1 0 . 2 8 8 0 0 . 4 8 4 9 0 . 9 9 7 0 0 . 0 2 2 1 9 2 0 . 2 4 4 5 0 . 5 1 0 8 0 . 9 9 8 8 0 . 0 1 8 2 9 2 0 . 1 3 3 3 1 . 3 4 7 1 0 9 8 8 2 0 . 0 2 0 8 8 3 0 . 1 9 9 2 0 . 5 7 2 9 0 . 9 9 8 3 0 . 0 0 9 5 9 3 0 . 1 1 3 9 1 . 3 9 1 9 0 . 9 9 0 9 0 . 0 1 5 5 2 4 0 . 0 4 1 8 0 . 9 9 2 3 0 . 2 9 8 3 0 . 0 7 5 4 1 4 0 . 0 8 7 2 1 . 4 4 9 9 0 . 9 9 8 8 0 . 0 0 7 2 3 2 2 2 1 0 8 1 2 1 0 . 8 8 5 2 0 . 1 5 0 0 0 . 9 9 9 8 0 . 0 1 5 2 8 1 1 1 2 0 5 3 1 1 0 . 2 9 2 7 0 . 4 8 8 1 0 . 9 9 0 3 0 . 0 1 3 0 0 2 0 . 2 7 2 9 0 . 2 8 7 8 0 . 9 8 0 7 0 . 0 4 2 1 3 2 0 . 1 8 7 8 1 . 0 2 8 7 0 . 9 9 3 7 0 . 0 2 1 2 8 3 0 . 1 5 0 7 0 . 2 2 0 8 0 . 9 8 7 5 0 . 0 1 8 8 5 3 0 . 1 8 4 0 1 . 1 1 8 1 0 . 9 9 2 8 0 . 0 1 9 9 1 4 0 . 3 8 7 2 ' 1 . 3 1 7 7 0 . 9 1 3 8 0 . 1 4 3 2 7 4 0 . 1 4 4 5 1 . 1 7 4 3 0 . 9 9 8 0 0 . 0 1 3 0 9 2 2 2 1 0 8 2 2 1 0 . 8 8 4 7 0 . 2 8 3 1 0 . 9 9 9 1 0 . 0 2 1 8 1 1 1 1 2 0 5 1 2 1 0 . 2 8 9 0 0 . 5 8 5 0 0 . 9 9 8 4 0 . 0 1 8 0 8 2 0 . 2 7 4 4 0 . 2 8 5 1 0 . 9 7 9 8 0 . 0 4 3 3 2 2 0 . 1 2 4 0 1 . 2 3 8 8 0 . 9 8 9 1 0 . 0 1 8 1 8 3 0 . 1 5 1 7 0 . 2 1 8 5 0 . 9 8 9 3 0 . 0 1 7 2 8 3 0 . 1 2 4 8 1 . 2 1 7 1 0 . 9 9 2 4 0 . 0 1 5 2 5 4 0 . 3 8 8 1 ‘ 1 . 3 1 0 3 0 . 8 9 7 7 0 . 1 5 8 1 2 4 0 . 1 3 4 5 1 . 1 0 9 0 0 . 9 8 3 7 0 . 0 2 4 1 8 2 2 2 1 0 8 3 2 1 0 . 8 8 5 3 0 . 2 0 4 2 0 . 9 9 9 5 0 . 0 1 7 3 7 1 1 1 2 0 5 2 2 1 0 . 2 9 8 9 0 . 5 3 2 2 0 . 9 9 8 0 0 . 0 1 9 8 1 2 0 . 2 8 3 7 0 . 2 9 3 0 0 . 9 7 5 2 0 . 0 4 7 8 9 2 0 . 2 8 7 5 0 . 8 1 0 9 0 . 9 9 0 9 0 . 0 3 7 1 8 3 0 . 1 4 5 8 0 . 2 3 3 9 0 . 9 8 5 2 0 . 0 2 0 3 2 3 0 . 1 9 0 7 0 . 7 9 4 0 0 . 9 9 3 8 0 . 0 2 2 2 2 4 0 . 3 7 4 1 I 1 . 2 8 1 8 0 . 9 0 8 8 0 . 1 4 7 3 9 4 I . 1 5 1 0 1 . 7 2 5 8 0 . 5 2 4 8 0 . 2 0 8 3 4 S 1 I 9 9 9 2 9 9 9 1 6 6 6 6 9 2 2 1 6 1 9 1 1 6 9 ; 1 1 I 6 6 9 2 2 1 6 1 9 6 6 6 2 8 9 8 8 2 - 1 2 1 8 8 1 “ ) ; a n d 5 . 2 . I 9 6 9 9 1 8 9 1 1 1 9 2 9 6 : . T a b l e B . P a r a m e t e r s v e r s u s t h e 3 3 4 o f t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n n u m b e r o f l o a d a p p l i c a t i o n c u r v e s . 2 2 S A M P ; E N U M B E R L V D T o s 1 R 5 . 0 . S A M P L E N U M B E R L V D T 0 S 1 R 5 . 0 . 1 1 1 2 0 3 3 2 1 0 . 2 0 3 0 0 . 3 4 0 3 0 . 0 0 7 0 0 . 0 1 7 3 3 1 1 3 2 0 3 2 2 1 0 . 2 0 0 3 0 . 0 1 3 0 0 . 0 0 0 1 0 . 0 1 0 4 3 2 0 . 1 3 0 7 1 . 0 0 0 0 0 . 0 0 4 0 0 . 0 1 2 0 0 2 0 . 1 0 2 4 0 . 0 0 3 7 0 . 0 0 3 0 0 . 0 3 3 0 0 3 0 . 0 0 1 2 1 . 2 1 2 2 0 . 0 0 3 4 0 . 0 0 0 3 0 3 0 . 1 4 2 0 1 . 0 2 3 4 0 . 0 7 7 2 0 . 0 3 1 2 0 4 0 . 0 1 0 1 1 . 4 1 1 1 0 . 2 2 2 4 0 . 0 4 3 0 4 4 0 . 0 7 3 3 1 . 0 0 0 0 0 . 0 1 7 0 0 . 0 3 2 4 7 1 1 1 2 0 3 1 3 1 0 . 2 0 0 0 0 . 0 4 3 0 0 . 0 0 7 0 0 . 0 1 0 4 2 1 1 3 2 0 3 3 2 1 0 . 2 0 4 0 0 . 0 2 4 4 0 . 0 0 0 4 0 . 0 1 7 2 2 2 0 . 1 4 8 1 1 . 1 8 1 2 0 . 9 9 4 0 0 . 0 1 4 4 4 2 0 . 1 8 3 7 0 . 9 9 2 7 0 . 9 0 7 0 0 . 0 3 0 0 0 3 0 . 0 0 7 1 1 . 3 3 7 1 0 . 0 0 0 4 0 . 0 0 4 3 0 3 0 . 1 4 0 3 1 . 0 3 0 0 0 0 0 3 0 0 . 0 2 7 0 3 4 0 . 0 1 3 3 1 . 4 0 0 3 0 . 1 2 7 7 0 . 0 3 3 4 3 4 0 . 0 0 0 2 1 . 0 3 0 3 0 . 0 0 0 0 0 . 0 1 7 7 3 1 1 1 2 0 3 2 3 1 0 . 2 9 2 6 0 . 8 0 7 0 0 . 9 9 7 8 0 . 0 1 9 8 5 1 1 3 2 0 3 1 3 1 0 . 3 0 3 8 0 . 5 8 0 3 0 . 9 0 8 0 0 . 0 1 0 1 0 2 0 . 2 0 2 3 1 . 0 3 4 5 0 . 0 0 2 0 0 . 0 2 3 7 0 2 0 . 1 0 0 8 1 . 4 3 1 8 0 . 0 0 3 2 0 . 0 1 0 0 0 3 0 . 1 0 0 1 1 . 0 0 1 3 0 . 0 7 7 4 0 . 0 3 0 4 2 3 0 . 0 3 0 0 1 . 3 3 3 3 0 . 0 0 3 7 0 . 0 0 0 3 1 4 0 . 1 7 0 0 1 . 0 1 1 4 0 . 0 3 1 2 0 . 0 0 0 0 0 4 I . 0 2 4 7 1 . 7 1 0 3 0 . 0 0 3 4 0 . 0 2 3 4 3 1 1 1 2 0 3 3 3 1 0 . 2 0 4 4 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 2 3 3 7 1 1 3 2 0 3 2 3 1 0 . 3 1 0 4 0 . 0 0 0 0 0 . 0 0 0 3 0 . 0 1 1 3 0 2 0 . 1 0 2 0 1 . 3 2 0 3 0 . 0 0 0 0 0 . 0 1 3 3 0 2 0 . 0 0 1 0 1 . 0 1 0 2 0 . 0 0 3 1 0 . 0 0 0 3 4 3 0 . 0 7 3 4 1 . 3 0 0 0 0 . 0 0 0 0 0 . 0 1 0 0 7 3 0 . 0 7 3 0 1 . 0 3 0 4 0 . 0 0 1 0 0 . 0 1 3 2 1 4 0 . 0 3 0 0 1 . 3 1 0 0 0 . 0 0 7 3 0 . 0 1 7 0 1 4 0 . 0 4 0 0 1 . 7 0 0 7 0 . 0 2 0 4 0 0 2 4 7 7 1 1 3 2 0 3 1 1 1 0 . 3 0 3 0 0 . 4 0 3 3 0 . 0 0 0 1 0 . 0 1 0 1 0 1 1 3 2 0 3 3 3 1 0 . 2 0 0 1 0 . 7 0 0 1 0 . 0 0 7 0 0 . 0 1 0 3 3 2 0 . 0 7 7 3 1 . 1 0 0 0 0 . 0 7 1 0 0 . 0 1 0 0 7 2 0 . 1 3 2 0 1 . 0 4 4 1 0 . 0 0 0 3 0 . 0 1 3 0 2 3 0 . 0 3 0 0 1 . 3 3 0 0 0 . 0 7 0 7 0 . 0 1 2 2 0 3 0 . 1 3 3 0 1 . 0 3 0 2 0 . 0 0 0 0 0 . 0 0 0 4 0 4 0 . 0 0 1 0 1 . 3 7 1 0 0 . 0 1 2 1 0 . 0 3 3 0 0 4 0 . 1 1 3 2 1 . 0 7 3 7 0 . 0 0 0 3 0 . 0 0 0 3 0 1 1 3 2 0 3 2 1 1 0 . 3 0 4 3 0 . 3 0 0 0 0 . 0 0 7 0 0 . 0 1 0 0 3 2 2 1 2 0 0 1 1 1 0 . 3 0 1 2 0 . 7 4 7 0 0 . 0 0 0 1 0 . 0 1 2 0 3 2 0 . 1 3 0 0 0 . 3 0 0 3 0 . 0 0 3 0 0 . 0 1 4 3 4 2 0 . 1 4 0 0 0 . 0 1 1 7 0 . 0 0 0 4 0 . 0 1 0 2 4 3 0 . 1 0 7 7 0 . 4 3 4 2 0 . 0 0 2 3 0 . 0 1 0 0 4 3 0 . 1 1 2 3 0 . 7 0 1 3 0 . 0 7 2 4 0 . 0 2 0 4 0 4 0 . 1 0 7 4 0 . 4 1 3 3 0 . 0 0 2 0 0 . 0 3 0 1 3 4 0 . 0 2 0 2 0 . 0 3 4 0 0 . 1 4 2 0 0 . 0 0 0 3 4 1 1 3 2 0 3 3 1 1 0 . 3 0 0 1 0 . 4 3 0 7 0 . 0 0 0 2 0 . 0 1 0 1 0 2 2 1 2 0 0 2 1 1 0 . 3 0 0 3 0 . 7 0 3 0 0 . 0 0 0 0 0 . 0 1 4 4 0 2 0 . 0 0 4 4 1 . 0 0 2 3 0 . 0 0 3 0 0 . 0 0 0 0 0 2 0 . 2 2 7 0 0 . 3 1 0 3 0 . 0 0 7 3 0 . 0 1 0 0 0 3 0 . 0 0 0 0 0 . 0 0 2 1 0 . 0 0 7 2 0 . 0 1 0 0 2 3 0 . 2 0 0 1 0 . 3 0 0 0 0 . 0 0 7 7 0 . 0 1 4 0 0 4 0 . 0 0 3 2 0 . 7 2 1 0 0 . 0 3 1 2 0 . 0 2 7 0 0 4 0 . 2 0 3 2 0 . 3 1 7 3 0 . 0 0 0 0 0 . 0 2 0 0 3 1 1 3 2 0 3 1 2 1 0 . 3 0 0 4 0 . 3 0 3 3 0 . 0 0 7 0 0 . 0 2 0 0 1 2 2 1 2 0 0 3 1 1 0 . 2 0 0 3 0 . 7 0 7 0 0 . 0 0 0 3 0 . 0 1 0 3 7 2 0 . 1 3 7 0 0 . 0 0 1 2 0 . 0 0 0 0 0 . 0 2 1 0 4 2 0 . 1 0 7 0 0 . 3 2 3 3 0 . 0 0 0 7 0 . 0 3 0 0 0 3 0 . 1 1 2 0 0 . 0 3 0 3 0 . 0 0 0 4 0 . 0 1 0 0 3 3 0 . 1 0 0 0 0 . 4 0 0 4 0 . 0 0 4 3 0 . 0 3 4 0 4 4 0 . 0 0 0 7 0 . 0 0 2 3 0 0 2 0 2 0 . 0 2 0 0 0 4 0 . 1 0 0 2 0 . 4 0 3 3 0 . 0 7 0 0 0 . 0 4 0 7 0 $ 2 1 I 2 4 3 : 4 0 4 1 0 0 c o o t t 1 c 1 o n t u ; R I 0 0 4 2 2 1 c 1 4 n 0 o r G a t o r - 1 n o z t o n ; a n d 5 . 2 . I s t a n d a r d a c t o r . 3 3 5 T a b l e B . P a r a m e t e r s o f t h e c u m u l a t i v e p l a s t i c d e f o r m a t i o n v e r s u s t h e n u m b e r o f l o a d a p p l i c a t i o n c u r v e s . 2 2 S A M P L I N U M B E R L V D T 0 s 1 R 0 . 0 . S A M P L I N U M B E R L V D T 0 S 1 R 5 . 0 . 2 2 1 2 0 0 1 2 1 0 . 3 0 3 0 0 . 0 1 0 4 0 . 0 0 0 2 0 . 0 1 7 7 7 3 2 1 2 0 0 3 1 1 0 . 2 0 2 0 0 . 0 2 0 3 0 . 0 0 7 3 0 0 1 0 2 0 2 0 . 1 0 3 4 1 . 4 2 3 7 0 . 0 0 3 0 0 . 0 3 0 1 4 2 0 . 0 0 0 3 I . 3 2 0 1 0 . 0 0 0 0 0 . 0 3 3 0 7 3 0 . 0 0 4 1 1 . 4 3 0 2 0 . 0 0 3 7 0 . 0 3 0 0 2 3 0 . 3 3 0 3 I . 3 0 3 0 0 . 0 0 0 3 0 . 0 2 0 3 0 4 0 . 0 4 1 4 1 . 3 3 7 0 0 . 0 4 4 0 0 . 0 2 4 3 0 4 I . I - 2 2 1 2 0 6 2 2 1 0 . 2 0 0 6 0 . 0 3 2 3 0 . 0 0 7 6 0 . 0 2 1 1 3 3 2 1 2 0 0 1 2 1 0 . 2 0 0 3 0 . 0 2 0 2 0 . 0 0 7 7 0 . 0 1 6 0 6 2 0 . 1 3 2 7 0 . 0 3 2 4 0 . 0 0 0 3 0 . 0 3 0 3 3 2 0 . 0 0 1 0 I . 3 3 0 3 0 . 0 0 1 0 0 . 0 6 6 3 0 3 0 . 1 3 3 4 0 . 0 3 1 2 0 . 0 0 6 1 0 . 0 3 3 0 3 3 0 . 3 2 4 0 I . 3 2 0 0 0 . 0 0 3 0 0 . 0 3 3 4 2 4 0 . 1 3 0 7 0 . 7 0 2 0 0 . 0 3 0 3 0 . 0 4 2 0 0 4 I I I - 2 2 1 2 0 0 3 2 1 0 . 2 0 4 0 0 . 0 7 3 2 0 . 0 0 0 0 0 . 0 1 0 7 4 3 2 1 2 0 6 2 2 1 0 . 2 0 3 1 0 . 0 3 0 4 0 0 0 7 1 0 . 0 2 4 1 3 2 0 . 1 0 3 6 0 . 6 3 4 0 0 . 0 0 2 0 0 . 0 2 4 7 4 2 0 . 1 0 4 0 1 . 2 1 0 0 0 . 0 0 7 0 0 . 0 0 7 4 1 3 0 . 1 3 1 1 0 . 7 0 0 3 0 . 0 0 0 0 0 . 0 2 1 3 7 3 0 . 1 0 0 2 1 . 1 0 0 0 0 . 0 0 3 2 0 . 0 1 0 7 0 4 0 . 0 7 4 1 0 0 0 0 1 0 0 2 0 2 0 . 0 3 0 4 0 4 0 . 1 1 0 7 1 . 0 3 3 0 0 0 0 7 3 0 0 0 0 9 3 2 2 1 2 0 0 1 3 1 0 . 2 0 0 0 1 . 0 0 4 2 0 . 0 0 0 3 0 . 0 2 3 3 2 3 2 1 2 0 6 3 2 1 0 . 3 0 1 1 0 . 0 3 3 4 0 . 0 0 7 2 0 . 0 2 1 3 0 2 0 . 0 7 6 2 1 . 3 0 3 4 0 . 0 0 3 0 0 . 0 0 0 7 4 2 0 . 1 3 4 2 0 . 0 0 2 3 0 . 0 0 4 0 0 . 0 1 3 2 0 3 0 . 0 0 2 0 1 . 3 7 0 0 0 . 0 0 4 0 0 . 0 0 0 1 1 3 0 . 0 0 0 0 0 . 0 7 2 4 0 . 0 0 4 0 0 . 0 1 0 3 0 4 0 . 0 2 0 0 1 . 4 0 3 0 0 . 0 0 0 1 0 . 0 0 0 0 3 4 0 . 0 3 0 7 1 . 0 1 0 4 0 . 7 0 3 1 0 . 0 3 3 6 7 2 2 1 2 0 0 2 3 1 0 . 2 0 0 3 0 . 0 7 0 6 0 . 0 0 0 0 0 . 0 2 2 0 3 3 2 1 2 0 0 1 3 1 0 . 2 0 3 3 0 . 0 1 7 0 0 . 0 0 3 7 0 . 0 2 3 0 0 2 0 . 0 0 2 6 1 . 1 3 0 0 0 . 0 0 2 2 0 . 0 1 0 0 2 2 0 . 3 0 3 7 I . 4 0 7 0 0 . 0 0 7 0 0 . 0 3 4 2 3 3 0 . 0 3 7 3 1 . 2 0 0 4 0 . 0 0 7 1 0 . 0 1 3 0 7 3 0 . 3 1 0 2 I . 4 7 4 0 0 . 0 0 0 2 0 . 0 2 7 4 0 4 0 . 0 7 2 2 1 . 3 3 0 3 0 . 0 7 0 6 0 . 0 1 3 7 4 4 I I I I 2 2 1 2 0 6 3 3 1 0 . 2 0 7 2 1 . 0 4 1 0 0 . 0 0 7 2 0 . 0 2 1 4 1 3 2 1 2 0 6 3 3 1 0 . 2 0 1 4 1 . 0 4 7 0 0 0 0 0 2 0 . 0 1 2 2 1 2 0 . 1 0 0 1 0 . 0 0 0 3 0 . 0 0 4 0 0 . 0 1 6 0 7 2 0 . 1 0 4 0 1 . 0 7 0 3 0 . 0 0 0 3 0 . 0 2 3 3 3 3 0 . 1 0 3 7 0 . 0 3 1 7 0 . 0 0 7 7 0 . 0 1 3 0 0 3 0 . 1 1 0 0 1 . 1 3 1 0 0 . 0 0 4 3 0 . 0 2 2 0 2 4 0 . 1 0 7 7 0 . 0 4 1 3 0 . 0 0 7 3 0 . 0 1 4 4 0 4 0 . 0 2 4 7 1 . 3 3 2 3 0 . 4 0 7 1 0 . 0 3 0 0 3 3 2 1 2 0 0 1 1 1 0 . 2 0 4 0 0 . 0 2 7 3 0 . 0 0 0 0 0 . 0 1 2 3 2 3 2 1 2 0 0 3 3 1 0 . 2 0 0 0 1 . 0 3 0 0 0 . 0 0 3 0 0 . 0 2 3 2 4 2 0 . 3 0 3 0 I . 4 0 3 0 0 . 0 0 3 2 0 . 0 3 0 4 0 2 0 . 0 7 0 7 1 . 2 4 0 6 0 . 0 0 2 0 0 . 0 0 0 1 0 3 0 . 3 1 7 3 I . 4 7 4 0 0 . 0 0 3 0 0 . 0 4 1 2 0 3 0 . 0 7 2 1 1 . 2 0 1 3 0 . 0 0 1 2 0 . 0 0 0 0 2 4 I I I - 4 0 . 0 3 7 0 1 . 1 7 4 1 0 . 0 3 0 0 0 . 0 1 0 3 0 3 2 1 2 0 0 2 1 1 0 . 2 0 0 4 0 . 0 1 1 3 0 . 0 0 7 0 0 . 0 1 0 4 7 2 0 . 0 0 0 0 I . 3 1 0 4 0 . 0 0 7 7 0 . 0 3 4 0 0 3 0 . 3 3 0 4 I . 3 0 2 1 0 . 0 0 7 0 0 . 0 2 0 0 4 ‘ - - o - S 1 I 3 4 5 : 4 4 4 1 0 0 c o o t t 1 c t c n 0 4 ; I e o o t t 1 c 1 c n t o f d o t o r l l n o t l o n ; 4 n d I I t c n d a r d a t t o x . A P P E N D I X C T h e v a l u e s o f t h e p a r a m e t e r s o f t h e d e f l e c t i o n b a s i n o f a l l b e a m s p e c i m e n s a r e p r e s e n t e d i n t h i s A p p e n d i x . 3 3 6 3 3 7 T a b l e C . P a r a m e t e r s o f t h e d e f l e c t i o n b a s i n o f t h e b e a m s p e c i m e n s . 3 0 5 4 v 5 3 4 5 0 5 A » u 5 4 1 1 1 1 0 5 1 1 2 . 9 0 9 1 5 0 I 0 . 5 4 5 0 . 4 5 5 5 0 0 0 I 0 . 5 2 5 0 . 7 1 5 5 2 0 I 0 . 5 7 0 0 . 5 0 5 1 0 0 0 0 - 0 . 5 3 2 0 . 7 4 3 1 0 0 0 ' 0 . 5 8 1 0 . 5 4 3 5 0 0 0 0 I 0 . 8 4 8 0 . 8 0 5 5 0 0 0 ' 0 . 8 0 4 0 . 8 0 3 1 0 0 0 0 0 I 0 . 8 5 4 0 . 8 3 2 1 0 0 0 0 ' 0 . 8 1 3 0 . 8 2 9 1 1 1 1 0 3 2 5 3 . 0 3 3 1 0 0 ' 0 . 5 7 7 0 . 5 8 4 2 1 0 4 0 - o . 5 2 2 0 . 5 5 5 5 0 0 - 0 . 5 0 5 0 . 5 3 0 1 5 4 9 2 5 - 0 . 5 4 2 0 . 7 3 7 1 0 0 0 - 0 . 5 0 3 0 . 5 5 7 1 1 1 1 0 5 2 1 2 . 9 5 1 1 0 0 ' 0 . 5 3 3 0 . 4 8 7 5 0 0 0 I 0 . 8 2 3 0 . 7 1 8 5 0 0 - 0 . 5 7 0 0 . 5 2 4 1 0 0 0 0 - 0 . 8 3 0 0 . 7 4 2 1 0 0 0 - 0 . 5 5 7 0 . 5 4 3 5 0 0 0 0 , I o . 5 4 5 0 . 5 0 5 5 0 0 0 ' 0 . 8 0 5 0 . 8 0 4 1 0 0 0 0 0 ' 0 . 8 5 2 0 . 8 3 2 1 0 0 0 0 ' 0 . 8 1 5 0 . 8 2 8 1 1 1 1 0 5 3 3 3 . 0 8 8 1 0 0 ' 0 . 5 8 3 0 . 5 1 1 1 7 0 4 2 0 - 0 . 5 4 5 0 . 7 3 5 5 0 0 - 0 . 5 5 5 0 . 5 3 0 1 1 1 1 0 3 3 1 3 . 0 0 1 1 0 0 I 0 . 5 3 3 0 . 4 8 7 1 0 0 0 I 0 . 8 0 8 0 . 8 5 7 5 0 0 - o 5 7 5 0 . 5 1 3 5 0 2 7 - o . 5 2 5 0 . 7 1 5 1 0 0 0 - 0 . 5 8 8 0 . 5 4 8 1 0 4 0 0 I 0 . 8 3 3 0 . 7 4 5 5 0 1 0 - 0 . 5 1 0 0 . 5 0 5 1 5 0 0 0 I 0 . 5 3 5 0 . 7 5 5 1 0 0 2 3 - 0 . 8 1 8 0 . 8 2 9 1 1 2 1 0 5 1 1 3 . 1 7 2 1 0 0 I 0 . 5 8 9 0 . 4 8 3 1 8 4 7 2 5 I 0 . 8 4 7 0 . 7 3 8 5 0 0 ~ 0 . 5 9 0 0 . 5 2 8 1 1 1 1 0 3 1 2 2 . 9 8 2 1 5 5 I 0 . 5 8 1 0 . 5 0 8 1 0 0 0 I 0 . 8 0 4 0 . 5 3 2 5 2 5 - 0 . 5 7 9 0 . 3 4 9 5 0 0 0 I 0 . 8 2 4 0 . 8 1 2 1 0 0 0 - 0 . 5 9 2 0 . 5 7 0 1 0 0 0 0 I 0 . 8 3 0 0 . 8 4 1 5 0 0 0 - O . 8 1 2 0 . 8 3 0 3 0 5 0 0 I 0 . 8 4 3 0 . 8 8 2 1 0 0 0 0 I 0 . 8 1 9 0 . 8 3 7 8 8 3 0 0 0 - o _ 5 7 1 0 . 8 0 5 2 5 7 3 0 - 0 . 5 3 0 0 . 5 0 4 1 1 2 1 0 5 2 1 3 . 0 1 5 1 0 0 - 0 . 5 3 5 0 . 4 0 5 1 8 9 1 0 0 ' 0 . 8 4 8 0 . 7 8 8 5 0 0 - 0 . 5 7 5 0 . 5 3 4 1 1 1 1 0 5 2 2 3 . 1 1 5 1 0 0 — o . 5 5 5 0 . 4 7 2 1 0 0 0 - 0 . 5 0 7 0 . 5 4 3 5 0 0 - 0 . 5 5 1 0 . 5 4 4 5 0 0 0 - 0 . 5 1 1 0 . 5 1 2 1 0 0 0 ~ 0 . 5 0 2 0 . 5 5 5 1 0 0 0 0 - 0 . 5 2 0 0 . 5 3 0 5 0 2 5 I o . 5 2 1 0 . 5 3 2 3 0 5 5 0 - 0 . 5 3 3 0 . 5 5 1 1 0 0 0 0 - o . 5 2 0 0 . 5 5 5 4 0 0 0 0 - o . 5 3 5 0 . 5 0 2 1 5 8 8 5 0 I 0 . 8 5 8 0 . 7 8 3 3 5 2 0 3 0 ' 0 . 8 5 8 0 . 7 7 7 1 1 1 1 0 5 3 2 3 . 0 1 5 1 0 0 I 0 . 5 7 8 0 . 4 5 8 1 1 2 1 0 5 3 1 3 . 0 3 2 1 5 0 ' 0 . 5 7 3 0 . 4 7 0 5 0 0 - 0 . 5 5 7 0 . 5 4 0 5 5 0 I 0 . 5 7 2 0 . 5 4 5 1 0 0 0 I o . 5 0 3 0 . 5 7 1 1 0 0 0 - 0 . 5 0 5 0 . 5 4 5 5 0 0 0 - 0 . 5 1 3 0 . 5 3 2 5 0 0 0 - 0 . 5 1 3 0 . 5 1 3 1 0 0 0 0 - 0 . 8 2 1 0 . 8 5 8 1 0 0 0 0 - 0 . 8 1 9 0 . 8 4 2 3 0 0 0 0 I o . 5 3 4 0 . 5 0 0 3 3 1 0 0 - 0 . 5 3 4 0 . 5 5 5 1 5 3 7 4 0 - 0 . 5 5 0 0 . 7 5 5 1 4 5 0 0 0 I 0 . 5 4 5 0 . 7 4 2 1 1 1 1 0 5 1 5 3 . 0 5 1 1 0 0 - o . 5 7 5 0 . 5 5 5 1 1 2 1 0 5 1 2 3 . 0 5 3 1 0 0 - 0 . 5 7 4 0 . 4 7 7 5 0 0 - 0 . 5 5 5 0 . 5 2 5 5 0 0 - 0 . 5 5 2 0 . 5 5 0 1 0 0 0 I 0 . 5 0 5 0 . 5 5 5 1 0 0 0 - 0 . 5 5 0 0 . 5 5 1 S D I I b e a n d a s i g n a t i o n n u n b a r ; A V I p o r c a n t a i r v o i d s ; N I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d r o g r o l a i o n c o e f f i c i a n t a . 3 3 8 T a b l e C . P a r a m e t e r s o f t h e d e f l e c t i o n b a s i n o f t h e b e a m s p e c i m e n s . 8 0 ! A V 9 8 A 8 0 9 A V 9 9 A 5 0 0 0 - 0 . 5 2 1 0 . 5 3 5 1 0 0 5 0 0 - 0 . 5 5 0 0 . 5 4 4 1 0 0 0 0 - 0 5 2 7 0 . 5 5 7 1 1 3 1 0 5 1 1 3 . 0 0 0 1 0 0 I o . 5 5 5 0 . 4 5 5 2 0 0 0 0 I 0 . 8 3 5 0 . 8 9 4 ‘ 5 0 0 I 0 . 5 8 8 0 . 5 2 3 3 4 0 0 0 - 0 . 5 4 0 0 . 7 1 4 1 0 0 0 - 0 . 5 5 5 0 . 5 5 1 1 8 4 8 0 0 - 0 . 8 5 5 0 . 7 7 8 5 0 0 0 I 0 . 8 1 1 0 . 8 1 8 1 1 2 1 0 3 2 2 3 . 1 1 1 1 0 0 ' 0 . 5 8 5 0 . 4 9 8 1 0 0 0 0 - 0 . 8 1 9 0 . 8 4 8 5 0 0 - 0 . 5 5 4 0 . 5 5 2 3 2 1 4 2 - 0 . 5 3 2 0 . 5 5 0 1 0 0 0 - 0 . 5 0 0 0 . 5 5 2 1 7 2 5 0 0 - 0 . 5 4 5 0 . 7 5 5 3 0 0 0 - 0 . 8 2 3 0 . 8 3 9 1 1 3 1 0 5 2 1 2 . 9 9 4 1 0 0 I 0 . 5 5 9 0 . 4 5 9 1 0 0 0 0 - 0 . 8 2 9 0 . 8 8 8 5 0 0 ' 0 . 5 7 9 0 . 5 3 4 4 4 0 0 0 - 0 . 5 4 5 0 . 7 2 4 1 0 0 0 - o . 5 5 2 0 . 5 5 5 1 8 3 0 0 0 - 0 . 8 5 7 0 . 7 7 8 5 0 0 0 ' 0 . 8 1 3 0 . 8 1 7 1 1 2 1 0 5 3 2 3 . 1 5 4 1 0 0 ' 0 . 5 7 8 0 . 4 9 0 1 0 0 0 0 ' 0 . 8 1 8 0 . 8 4 8 5 0 0 - 0 . 5 5 5 0 . 5 4 5 2 1 0 0 0 - 0 . 5 2 7 0 . 5 7 4 1 0 0 0 - 0 . 8 0 4 0 . 3 7 9 5 0 5 3 5 ' 0 . 8 3 8 0 . 7 0 7 3 0 0 0 - 0 . 8 2 3 0 . 8 3 9 1 5 4 5 0 0 ' 0 . 8 4 8 0 . 7 5 0 1 0 0 0 0 ' 0 . 8 3 2 0 . 8 8 8 1 1 3 1 0 5 3 1 3 . 0 0 8 1 0 0 ' 0 . 5 5 9 0 . 4 3 9 2 7 1 0 0 - 0 . 5 4 3 0 . 7 0 5 2 0 0 - o . 5 5 4 0 . 4 5 5 4 9 8 0 0 ' 0 . 8 4 9 0 . 7 2 9 5 0 0 - O . 3 8 3 0 . 5 3 3 1 9 5 0 0 0 ' 0 . 8 8 1 0 . 7 8 3 1 0 0 0 I 0 . 5 8 7 0 . 5 3 9 1 1 2 1 0 5 1 5 3 . 0 4 5 1 0 0 I 0 . 5 7 8 0 . 5 8 1 5 0 0 0 - 0 . 8 1 1 0 . 8 1 9 5 0 0 - 0 . 5 5 5 0 . 5 3 5 1 0 0 0 0 I 0 . 5 2 0 0 . 5 4 5 1 0 0 0 - 0 . 8 0 7 0 . 8 8 4 3 0 0 0 0 I 0 . 8 3 2 0 . 8 0 7 5 0 0 0 - 0 . 8 2 5 0 . 7 2 8 1 8 4 7 0 0 ' 0 . 8 4 9 0 . 7 3 3 1 0 0 0 0 I 0 . 8 3 2 0 . 7 3 3 1 1 3 1 0 5 1 2 3 . 0 1 4 1 0 0 ' 0 . 5 7 3 0 . 4 8 7 2 1 0 0 0 ' 0 . 8 3 9 0 . 7 8 2 5 0 0 ' 0 . 5 8 2 0 . 5 8 8 3 0 4 0 0 I 0 . 5 4 3 0 . 7 5 5 1 0 0 0 - 0 . 5 5 7 0 . 5 5 2 1 2 2 5 7 7 - 0 . 5 5 5 0 . 5 5 1 5 0 0 0 I 0 . 5 1 5 0 . 5 4 5 1 1 2 1 0 5 2 5 3 . 0 7 4 1 0 0 - 0 . 5 7 5 0 . 5 5 4 1 0 0 0 0 I 0 . 5 2 3 0 . 5 7 3 5 0 0 - 0 . 5 0 0 0 . 5 4 0 3 0 0 0 0 - 0 . 5 3 5 0 7 1 4 1 0 0 0 - o . 5 0 5 0 . 5 5 5 7 5 2 0 0 - 0 . 5 4 4 0 . 7 5 0 5 2 0 0 I 0 . 8 2 7 0 . 7 2 9 1 1 3 1 0 3 2 2 3 . 0 8 0 1 0 0 I 0 . 5 8 0 0 . 5 0 3 1 0 0 0 0 - 0 . 5 3 4 0 . 7 5 3 5 0 0 I 0 . 5 5 5 0 . 5 5 5 2 0 0 0 0 - 0 . 5 4 1 0 . 7 5 0 1 0 0 0 - 0 5 5 5 0 . 5 5 4 5 5 5 5 0 - o . 5 5 5 0 . 5 4 2 5 0 0 0 - 0 . 5 1 5 0 . 5 4 5 1 1 2 1 0 5 3 5 3 . 1 4 3 1 0 0 ' 0 . 5 8 4 0 . 5 8 0 1 0 0 0 0 - 0 . 8 2 8 0 . 8 7 4 5 0 0 - o . 5 0 5 0 . 5 3 5 3 0 0 0 0 - 0 . 5 3 5 0 7 1 5 1 0 0 0 - 0 . 5 1 3 0 5 5 5 5 5 7 0 0 - 0 . 5 4 4 0 . 7 3 5 5 0 0 0 - 0 . 8 3 1 0 . 7 2 7 1 1 3 1 0 5 3 2 3 . 0 8 1 1 2 0 ' 0 . 5 7 1 0 . 5 1 0 1 0 0 0 0 I 0 . 8 3 9 0 . 7 5 4 5 0 0 ' 0 . 5 9 4 0 . 5 5 4 2 0 0 0 0 - 0 . 5 4 5 0 . 7 5 0 1 0 0 0 - 0 . 5 0 1 0 . 5 5 4 3 7 5 0 0 - 0 . 5 5 1 0 . 5 0 5 5 0 0 0 - 0 . 5 2 0 0 . 5 4 5 8 0 0 I b e e n d e s i g n a t i o n n u m b e r ; A V I p e r c e n t a i r v o i d a ; l I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d A , 8 I r e a r e a a i o n c o e f f i c i e n t a . 3 3 9 T a b l e C . P a r a m e t e r s o f t h e d e f l e c t i o n b a s i n o f t h e b e a m s p e c i m e n s . 8 0 ! A V 9 8 A 8 0 9 A V 9 8 A 1 0 0 0 0 ' 0 . 8 2 8 0 . 8 7 2 3 0 0 0 0 - 0 . 8 9 4 0 . 8 7 8 3 5 3 4 0 ' 0 . 8 4 1 0 . 7 2 1 1 8 5 0 0 0 I 0 . 7 1 0 0 . 7 4 4 4 1 7 0 0 ' 0 . 8 4 3 0 . 7 2 7 1 1 1 1 0 8 1 2 2 . 7 3 2 1 0 0 - O . 5 5 1 0 . 4 7 0 1 1 3 1 0 5 1 5 3 . 0 3 9 1 0 0 - 0 . 5 7 7 0 . 5 8 4 5 0 0 I 0 . 5 8 4 0 . 5 4 3 5 0 0 I 0 . 5 0 9 0 . 8 4 5 1 0 0 0 I 0 . 3 7 5 0 . 5 7 1 1 0 0 0 - 0 . 8 0 7 0 . 8 7 1 5 0 0 0 I 0 . 5 9 4 0 . 8 3 3 5 0 0 0 - 0 . 8 2 5 0 . 7 3 3 1 0 0 0 0 I 0 . 8 0 2 0 . 8 5 8 1 0 0 0 0 - 0 . 8 3 2 0 . 7 5 9 4 2 2 0 0 ' 0 . 8 1 9 0 . 7 1 1 1 1 3 1 0 3 2 5 3 . 2 2 0 1 0 0 I 0 . 5 9 3 0 . 5 8 1 1 8 3 5 0 0 I 0 . 8 3 3 0 . 7 8 2 3 0 0 - 0 . 8 1 1 0 . 8 4 7 2 1 8 0 0 0 - 0 . 8 3 8 0 . 7 7 3 1 0 0 0 - 0 . 8 2 0 0 . 8 7 1 3 3 7 7 5 0 ' 0 . 8 4 0 0 . 7 9 1 3 0 0 0 7 0 . 8 3 7 0 . 7 3 4 5 1 0 0 0 0 I 0 . 8 4 3 0 . 0 0 7 1 0 0 0 0 I 0 . 8 4 4 0 . 7 8 1 8 5 3 3 0 0 I 0 . 8 4 7 0 . 0 2 8 2 0 3 0 0 - O . 8 3 1 0 . 7 8 8 1 1 1 1 0 8 2 2 3 . 4 2 1 1 0 0 I 0 . 7 4 0 0 . 4 7 1 1 1 3 1 0 3 3 5 2 . 9 3 2 1 0 0 - 0 . 5 7 1 0 . 5 8 2 5 0 0 I 0 . 7 3 7 0 . 5 4 3 5 0 0 - 0 . 3 9 0 0 . 8 4 7 1 0 0 0 I 0 . 7 8 8 0 . 3 8 8 1 0 0 0 I 0 . 3 9 8 0 . 8 7 1 5 0 0 0 - 0 . 7 8 2 0 . 8 3 5 5 3 0 0 - 0 . 8 1 8 0 . 7 3 4 1 0 0 0 0 - 0 . 7 8 8 0 . 8 8 3 1 0 0 0 0 - O . 8 2 4 0 . 7 5 8 3 0 0 0 0 - 0 . 7 9 8 0 . 7 0 9 3 0 0 0 0 ' 0 . 8 3 3 0 . 0 0 1 1 8 8 8 0 0 ' 0 . 8 0 7 0 . 7 8 2 4 2 1 0 0 - 0 . 8 3 8 0 . 8 1 3 1 1 1 1 0 8 3 2 4 . 3 5 8 1 0 0 - 0 . 8 3 7 0 . 4 0 3 1 1 1 1 0 8 1 1 4 . 1 4 1 1 0 0 - 0 . 8 3 5 0 . 4 4 7 5 0 0 - 0 . 8 8 2 0 . 5 4 3 5 0 0 I 0 . 8 3 3 0 . 5 2 4 1 0 0 0 - 0 . 8 9 1 0 . 5 8 7 1 0 0 0 I 0 . 8 7 3 0 . 3 3 7 5 0 0 0 - 0 . 7 0 9 0 . 8 3 2 2 1 7 0 I 0 . 8 0 3 0 . 5 8 0 1 0 0 0 0 I 0 . 7 1 5 0 . 8 8 0 3 8 7 0 - 0 . 8 9 0 0 . 8 1 1 3 8 0 0 0 - 0 . 7 2 8 0 . 7 1 3 1 0 3 5 0 ' 0 . 8 9 8 0 . 8 3 2 1 8 1 8 0 0 - 0 . 7 3 8 0 . 7 7 4 3 0 0 0 0 I 0 . 7 0 8 0 . 8 7 8 1 1 1 1 0 8 1 3 3 . 3 0 3 1 0 0 I 0 . 7 4 8 0 . 5 8 3 1 3 0 0 0 0 I 0 . 7 2 0 0 . 7 4 2 5 0 0 I 0 . 7 8 4 0 . 8 3 1 1 1 1 1 0 8 2 1 4 . 0 3 5 1 0 0 - O . 8 4 2 0 . 4 2 7 1 0 0 0 I 0 . 7 7 0 0 . 8 8 0 3 0 0 - 0 . 8 5 3 0 . 5 1 4 5 0 0 0 - 0 . 7 0 5 0 . 7 2 3 1 0 0 0 I 0 . 8 8 8 0 . 5 3 3 1 0 0 0 0 I 0 . 7 9 0 0 . 7 3 4 3 0 0 0 - 0 . 8 8 3 0 . 8 0 3 2 0 0 0 0 I 0 . 7 9 3 0 . 7 0 3 1 0 0 0 0 ° 0 . 8 8 9 0 . 8 3 2 4 0 0 0 0 - 0 . 7 9 9 0 . 8 1 2 3 3 0 0 0 I 0 . 7 0 0 0 . 8 8 1 4 4 2 0 0 ‘ 0 . 8 0 0 0 . 8 1 8 1 8 1 0 0 0 I 0 . 7 1 5 0 . 7 4 0 1 1 1 1 0 8 2 5 2 . 8 7 8 1 0 0 ° 0 . 3 4 8 0 . 3 7 1 3 5 1 0 0 0 I 0 . 7 2 0 0 . 7 7 8 5 0 0 - 0 . 5 8 8 0 . 8 3 0 1 1 1 1 0 8 3 1 3 . 9 3 7 1 0 0 ' 0 . 8 4 2 0 . 4 2 7 1 0 0 0 ' 0 . 5 7 9 0 . 8 3 5 3 0 0 I 0 . 8 5 1 0 . 5 0 3 5 0 0 0 I 0 . 3 0 7 0 . 7 1 5 1 1 7 0 I 0 . 8 5 8 0 . 5 5 4 1 0 0 0 0 - 0 . 8 0 3 0 . 7 4 0 5 0 0 0 ' 0 . 8 7 8 0 . 8 0 3 2 8 0 0 0 I 0 . 8 1 3 0 . 7 7 8 1 0 0 0 0 I 0 . 8 8 4 0 . 8 3 1 5 1 0 0 0 ' 0 . 8 2 2 0 . 0 0 2 $ 0 0 I b e e n d e s i g n a t i o n n u m b e r ; A V I p e r c e n t a i r v o i d s ; 8 I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d A , 0 I r e g r e s s i o n c o e f f i c i e n t s . T a b l e C . P b a e r a 8 0 ' A V 1 1 1 1 0 8 3 5 3 . 1 7 8 1 8 8 7 a m 8 1 0 0 1 0 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 7 0 0 0 5 5 0 1 5 0 4 0 4 5 1 5 0 0 0 0 8 0 0 5 0 0 0 4 1 5 0 0 8 4 1 1 5 0 0 0 0 0 1 5 0 0 2 7 3 1 5 0 3 1 e s t p e e ' ” ' ' ' ' ° “ ' - - ' l 0 . . . . . . . r c 0 0 0 0 0 “ 0 0 0 0 0 0 0 ' ' ' ' ' ' ‘ - ' ' ' ' ' ‘ ' ' ' ' “ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . “ ' ' ' ' ' ' - ° ' 0 0 0 0 0 0 0 O 0 0 s i . 5 8 8 8 8 8 8 8 8 8 8 8 . . . . . . . . . . . . . . . . . . . . . . o e f n s m t . A . 5 8 8 7 7 8 4 5 5 8 8 8 7 4 5 . . . . . . . . . . . . . . . . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 5 8 8 8 8 8 8 7 7 7 7 2 8 8 0 1 3 4 5 2 4 5 8 7 7 8 9 3 4 5 3 8 9 5 0 4 5 0 5 0 5 1 8 8 2 3 0 7 8 7 9 2 2 4 8 8 8 9 8 5 8 8 7 3 8 9 5 1 8 0 0 7 5 3 8 9 0 1 7 8 9 1 0 2 3 3 5 3 8 2 7 2 4 8 3 1 7 7 7 8 8 8 8 8 7 7 7 7 7 8 8 8 8 e 8 4 7 5 5 7 4 3 7 9 1 8 8 1 8 3 7 9 8 1 h 0 4 0 4 8 3 8 5 1 4 0 3 9 5 7 0 3 0 3 7 3 4 2 3 5 8 8 8 7 4 5 5 5 9 2 2 8 9 4 8 2 7 2 5 8 1 7 4 8 8 0 4 8 5 0 8 8 8 7 4 5 5 8 8 8 7 4 5 5 8 8 7 7 0 3 9 5 1 1 4 0 3 7 4 8 3 7 3 8 1 8 d e f l e c t i o n b a s i 8 1 0 1 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 7 7 7 7 7 7 1 1 2 3 1 1 2 2 2 2 5 5 A . 8 V 5 4 8 7 5 7 . . . . . 9 0 2 0 0 8 4 2 9 4 4 4 8 3 2 8 8 1 5 0 1 5 0 5 0 1 1 0 0 0 2 0 0 1 0 0 8 0 0 5 0 0 0 0 3 2 1 5 0 1 0 2 0 1 5 0 0 0 0 1 5 8 0 1 0 8 5 0 3 5 0 4 1 1 1 5 0 0 3 3 1 5 1 2 3 1 5 8 0 1 1 1 3 8 3 1 1 7 1 8 3 1 6 3 3 1 1 1 1 n I 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o f t h e l . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 8 8 8 8 8 8 7 7 7 7 7 7 7 7 8 9 8 8 9 9 9 8 8 9 8 9 9 ' - ' ' “ ' ° ” ' ' ' ' ' ' ' ' I - ' ' - ' ' ' ' ' ‘ ' I “ ' ' - ' ' ' ’ - ' I I ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 o 0 0 0 O 0 0 0 0 0 0 0 0 0 2 4 8 4 7 0 3 7 7 2 4 5 7 8 0 0 2 3 8 2 4 3 7 5 5 7 8 8 9 9 0 8 9 1 1 1 7 9 0 9 1 1 7 8 3 9 2 2 2 5 9 8 8 5 8 8 4 4 7 3 0 4 3 4 4 3 8 9 0 8 8 2 9 8 8 9 9 9 8 8 9 4 1 2 A 4 5 5 8 7 8 7 4 5 5 8 8 7 4 7 5 8 7 4 5 8 7 5 5 8 7 8 7 7 5 8 8 7 7 7 7 5 8 8 7 7 7 . , . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . 7 3 8 9 3 1 4 7 3 8 8 7 8 8 8 3 8 3 0 8 4 3 2 7 3 8 0 8 1 3 3 8 3 8 8 7 8 8 3 3 5 5 1 5 8 0 8 2 3 8 8 5 2 8 9 5 5 9 9 4 7 1 0 5 1 4 4 2 8 8 3 1 3 2 0 7 4 1 8 2 2 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 7 1 1 8 1 1 1 1 0 7 1 1 3 1 1 1 1 0 7 2 1 1 1 1 1 0 7 3 1 1 1 1 1 0 7 1 2 . 5 5 4 8 8 3 . 7 0 4 . 1 9 1 . 0 8 8 . 8 0 2 1 1 1 1 4 3 1 5 1 1 1 0 5 7 5 0 1 8 9 1 0 5 0 2 1 5 3 1 5 3 0 9 1 5 0 0 9 4 1 8 3 1 5 1 3 5 3 4 0 S D ! I b e a m d e s i g n a t i o n n u m b e r ; A V I p e r c e n t a i r v o i d s ; l I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d A . B I r e p r e s s i o n c o e f f i c i e n t s . T a b l e C . P a r a m e t e r s o f t h e d e f l e c t i o n 3 4 1 b e a m s p e c i m e n s . b a s i n o f t h e S D ! A V 9 I A S D . A V 9 I A 1 2 1 0 0 ' 0 . 9 1 3 0 . 7 8 8 5 0 0 I 0 . 5 8 4 0 . 5 0 8 1 1 1 1 0 7 2 5 5 . 9 2 4 1 0 0 “ 0 . 7 9 8 0 . 5 8 5 1 1 0 0 ’ 0 . 5 8 5 0 . 5 4 7 5 0 0 ' 0 . 8 1 1 0 . 8 3 2 5 0 0 0 ' 0 . 8 0 5 0 . 8 0 7 1 0 0 0 - 0 . 8 1 8 0 . 8 8 0 1 0 2 0 0 ’ 0 . 8 1 5 0 . 8 3 3 5 0 0 0 ' 0 . 8 2 9 0 . 7 2 7 3 3 5 0 0 ' 0 . 8 2 8 0 . 8 7 9 1 0 0 0 0 ’ 0 . 8 3 4 0 . 7 5 8 1 5 9 3 0 0 ' 0 . 8 4 5 0 . 7 3 7 2 0 0 0 0 ' 0 . 8 3 8 0 . 7 8 5 2 1 1 1 0 5 1 2 2 . 9 1 4 1 0 0 ' 0 . 5 5 3 0 . 4 9 0 2 2 5 4 4 ' 0 . 8 3 9 0 . 7 9 0 5 0 0 ' 0 . 5 7 8 0 . 5 4 2 1 1 1 1 0 7 2 5 7 . 0 0 5 1 0 0 ' 0 . 8 7 5 0 . 5 8 8 1 0 0 0 ' 0 . 5 8 8 0 . 5 7 2 5 0 0 ' 0 . 8 9 1 0 . 8 3 2 5 0 0 0 ' 0 . 8 0 7 0 . 8 3 3 1 0 0 0 ' 0 . 8 9 8 0 . 8 8 2 1 0 8 0 0 - 0 . 8 1 5 0 . 8 8 1 5 0 0 0 ' 0 . 9 0 8 0 . 7 3 0 2 0 9 0 0 ' 0 . 8 2 3 0 . 8 8 8 1 0 0 0 0 ' 0 . 9 1 0 0 . 7 5 9 1 5 8 7 0 0 ' 0 . 8 4 3 0 . 7 8 4 1 5 0 0 0 - O . 9 1 2 0 . 7 7 7 2 1 1 1 0 5 2 2 2 . 9 9 8 1 0 0 ' 0 . 5 8 8 0 . 4 7 8 1 8 0 0 0 ' 0 . 9 1 2 0 . 7 8 0 5 0 0 ' 0 . 5 8 1 0 . 5 4 9 1 1 1 1 0 7 3 5 3 . 8 9 9 1 0 0 - 0 . 7 9 4 0 . 5 8 5 1 0 0 0 ' 0 . 5 9 1 0 . 5 7 3 5 0 0 ' 0 . 8 0 8 0 . 8 3 2 5 0 0 0 - 0 _ 5 1 2 0 . 8 3 3 1 0 0 0 ' 0 . 8 1 5 0 . 8 8 0 1 0 0 0 0 ' 0 . 8 2 1 0 . 8 5 8 5 0 0 0 ' 0 . 8 2 7 0 . 7 2 7 3 1 3 0 0 ' 0 . 8 3 3 0 . 7 0 2 1 0 0 0 0 ' 0 . 8 3 2 0 . 7 5 8 1 7 8 8 0 0 ' 0 . 8 5 0 0 . 7 8 9 2 0 2 0 0 ' 0 . 8 3 8 0 . 7 8 8 2 1 1 1 0 5 3 2 3 . 0 9 9 1 0 0 ' 0 . 5 7 4 0 . 4 7 7 1 1 1 1 0 7 3 5 8 . 9 8 0 1 0 0 ' 0 . 8 7 4 0 . 5 8 7 5 0 0 ' 0 . 5 9 3 0 . 5 3 9 5 0 0 ' 0 . 8 8 8 0 . 8 3 3 1 0 0 0 ' 0 . 8 0 0 0 . 5 7 1 1 0 0 0 * 0 . 8 9 4 0 . 8 8 2 5 0 0 0 I 0 . 8 2 1 0 . 8 3 2 5 0 0 0 ' 0 . 9 0 4 0 . 7 3 0 1 0 4 0 0 - 0 . 8 2 8 0 . 8 8 0 1 0 0 0 0 ' 0 . 9 0 8 0 . 7 5 9 3 0 0 0 0 ' 0 . 8 3 9 0 . 7 0 1 2 0 2 0 0 ' 0 . 9 1 1 0 . 7 9 0 1 8 8 0 0 0 ' 0 . 8 5 8 0 . 7 8 8 2 1 1 1 0 5 1 1 2 . 9 5 2 1 0 0 - O . 5 5 7 0 . 4 4 7 2 1 1 1 0 5 1 5 3 . 1 1 8 1 2 0 I 0 . 5 8 5 0 . 5 7 5 5 0 0 ' 0 . 5 8 5 0 . 5 3 2 5 0 0 ' 0 . 8 0 4 0 . 8 2 8 1 0 0 0 ' 0 . 5 9 0 0 . 5 3 8 1 0 0 0 ' 0 . 8 1 0 0 . 8 5 8 5 0 2 0 ' 0 . 8 1 0 0 . 8 0 0 5 0 0 0 ' 0 . 8 2 9 0 . 7 1 8 1 0 3 0 0 ' 0 . 8 1 4 0 . 8 3 4 1 0 0 0 0 ' 0 . 8 3 8 0 . 7 4 5 3 1 2 2 0 - 0 . 8 2 8 0 . 8 7 5 3 3 2 0 0 ' 0 . 8 4 8 0 . 7 9 1 1 7 8 5 5 0 ' 0 . 8 4 5 0 . 7 4 1 2 1 1 1 0 5 2 5 2 . 9 7 5 1 0 0 I 0 . 5 7 1 0 . 5 8 8 2 1 1 1 0 5 2 1 3 . 0 3 1 1 0 0 ' 0 . 5 7 5 0 . 4 2 8 5 0 0 ' 0 . 5 9 2 0 . 8 3 1 5 0 0 ' 0 . 5 8 4 0 . 5 1 0 1 0 0 0 ' 0 . 8 0 0 0 . 8 5 7 1 0 5 0 ' 0 . 5 9 3 0 . 5 4 5 5 0 0 0 I 0 . 8 1 8 0 . 7 1 8 5 0 0 0 ' 0 . 8 1 4 0 . 8 0 1 1 0 0 0 0 ’ 0 . 8 2 8 0 . 7 4 4 1 0 0 0 0 ' 0 . 8 1 9 0 . 8 3 3 2 0 8 0 0 ' 0 . 8 3 4 0 . 7 7 1 3 5 0 0 0 ' 0 . 8 3 5 0 . 8 7 8 2 1 1 1 0 5 3 5 3 . 1 7 1 1 0 0 I 0 . 5 8 8 0 . 5 8 7 1 5 0 8 0 0 ' 0 . 8 4 9 0 . 7 3 5 5 0 0 ' 0 . 8 0 8 0 . 8 3 0 2 1 1 1 0 5 3 1 2 . 9 5 8 1 0 0 ' 0 . 5 7 2 0 . 4 3 9 1 0 0 0 ' 0 . 8 1 5 0 . 8 5 7 S D ! I b e e n d e s i g n a t i o n n u m b e r ; A V I p e r c e n t a i r v o i d s ; N I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d A , 8 I r e g r e s s i o n c o e f f i c i e n t s . 3 4 2 T a b l e C . P a r a m e t e r s o f t h e d e f l e c t i o n b a s i n o f t h e b e a m s p e c i m e n s . S D ! A V I B A S D I A V 9 B A 5 0 0 0 “ 0 . 8 3 3 0 . 7 1 8 5 0 0 0 “ 0 . 7 8 0 0 . 8 3 5 1 0 0 0 0 “ 0 . 8 4 0 0 . 7 4 5 1 0 0 0 0 “ 0 . 7 8 5 0 . 8 8 5 3 0 0 0 0 “ 0 . 8 5 1 0 . 7 8 8 3 0 0 0 0 “ 0 . 7 7 4 0 . 7 0 9 8 8 0 0 0 “ 0 . 8 5 8 0 . 8 1 8 1 8 4 5 0 0 “ 0 . 7 8 8 0 . 7 8 1 2 1 1 1 0 8 1 1 4 . 7 3 7 1 0 0 “ 0 . 8 8 9 0 . 4 3 9 2 1 1 1 0 8 1 5 5 . 0 8 8 1 0 0 “ 0 . 7 3 4 0 . 5 8 5 5 0 0 “ 0 . 7 0 2 0 . 5 1 3 5 0 0 “ 0 . 7 4 7 0 . 8 3 4 1 0 0 0 “ 0 . 7 1 5 0 . 5 4 0 1 0 0 0 “ 0 . 7 5 4 0 . 8 8 2 5 0 0 0 “ 0 . 7 3 0 0 . 8 0 8 5 0 0 0 “ 0 . 7 8 9 0 . 7 2 8 1 0 0 0 0 “ 0 . 7 3 8 0 . 8 3 8 1 0 0 0 0 “ 0 . 7 7 5 0 . 7 5 4 3 0 3 0 0 “ 0 . 7 4 7 0 . 8 8 0 3 0 7 0 0 “ 0 . 7 8 3 0 . 8 0 2 1 8 0 3 0 0 “ 0 . 7 8 0 0 . 7 4 9 3 1 7 0 0 “ 0 . 7 8 3 0 . 8 0 1 2 1 1 1 0 8 2 1 4 . 9 1 2 1 0 0 “ 0 . 7 0 4 0 . 4 4 4 2 1 1 1 0 8 2 5 5 . 0 1 0 1 0 0 “ 0 . 7 2 4 0 . 5 7 0 5 0 0 “ 0 . 7 1 2 0 . 5 1 8 5 0 0 “ 0 . 7 4 3 0 . 8 3 2 1 0 0 0 “ 0 . 7 2 5 0 . 5 3 9 1 0 0 0 “ 0 . 7 4 9 0 . 8 8 1 5 4 0 0 “ 0 . 7 4 5 0 . 8 0 8 5 0 0 0 “ 0 . 7 8 4 0 . 7 2 8 1 0 9 0 0 “ 0 . 7 4 9 0 . 8 3 9 1 0 0 0 0 “ 0 . 7 8 9 0 . 7 5 4 3 1 0 5 0 “ 0 . 7 5 9 0 . 8 8 1 3 0 8 0 0 “ 0 . 7 7 8 0 . 8 0 1 1 8 8 9 3 0 “ 0 . 7 7 2 0 . 7 5 2 3 5 0 0 0 “ 0 . 7 7 8 0 . 8 0 8 2 1 1 1 0 8 3 1 4 . 9 5 5 1 0 0 “ 0 . 7 0 4 0 . 4 3 8 2 1 1 1 0 8 3 5 4 . 9 7 7 1 0 0 “ 0 . 7 2 3 0 . 5 8 8 5 0 0 “ 0 . 7 2 8 0 . 5 0 4 5 0 0 “ 0 . 7 4 0 0 . 8 3 3 1 0 0 0 “ 0 . 7 2 9 0 . 5 4 1 1 0 0 0 “ 0 . 7 4 7 0 . 8 8 0 5 0 0 0 “ 0 . 7 4 5 0 . 8 0 7 5 0 0 0 “ 0 . 7 8 2 0 . 7 2 8 1 0 0 0 0 “ 0 . 7 5 2 0 . 8 3 5 1 0 8 0 0 “ 0 . 7 8 8 0 . 7 5 8 5 0 0 0 0 “ 0 . 7 8 8 0 . 7 0 1 3 0 3 0 0 “ 0 . 7 7 5 0 . 8 0 0 1 0 0 0 0 0 “ 0 . 7 7 1 0 . 7 3 0 2 1 1 1 0 7 1 1 8 . 7 7 8 1 0 0 “ 0 . 8 4 4 0 . 4 3 3 2 1 1 1 0 8 1 2 4 . 9 7 3 1 0 0 “ 0 . 7 0 4 0 . 4 8 0 5 0 0 “ 0 . 8 5 4 0 . 5 0 7 5 0 0 “ 0 . 7 2 8 0 . 5 4 0 1 0 0 0 “ 0 . 8 5 9 0 . 5 3 9 1 0 0 0 “ 0 . 7 3 4 0 . 5 7 1 5 0 0 0 “ 0 . 8 7 3 0 . 8 0 7 5 0 0 0 “ 0 . 7 5 1 0 . 8 3 5 1 0 0 0 0 “ 0 . 8 7 7 0 . 8 3 7 1 0 0 0 0 “ 0 . 7 5 7 0 . 8 8 4 3 1 9 0 0 “ 0 , 8 8 5 0 . 6 8 7 3 0 0 0 0 “ 0 . 7 8 8 0 . 7 0 9 1 7 5 8 0 0 “ 0 . 8 9 3 0 . 7 8 2 1 8 9 2 0 0 “ 0 . 7 7 8 0 . 7 8 2 2 1 1 1 0 7 2 1 8 . 8 8 7 1 0 0 “ 0 . 8 3 8 0 . 4 5 0 2 1 1 1 0 8 2 2 5 . 0 9 0 1 0 0 “ 0 . 7 2 0 0 . 4 8 9 5 0 0 “ 0 . 8 8 2 0 . 5 0 7 5 0 0 “ 0 . 7 3 7 0 . 5 4 1 1 0 0 0 “ 0 . 8 8 4 0 . 5 4 0 1 0 0 0 “ 0 . 7 4 3 0 . 5 8 9 5 3 0 0 “ 0 . 8 7 8 0 . 8 1 0 5 0 0 0 “ 0 . 7 5 9 0 . 8 3 5 1 0 0 0 0 “ 0 . 8 8 3 0 . 8 3 7 1 0 0 0 0 “ 0 . 7 8 5 0 . 8 8 4 3 1 0 0 0 “ 0 . 8 9 0 0 . 8 8 8 3 0 0 0 0 “ 0 . 7 7 4 0 . 7 0 9 1 7 1 0 0 0 “ 0 . 8 9 8 0 . 7 8 1 1 8 2 3 1 0 “ 0 . 7 8 5 0 . 7 8 1 2 1 1 1 0 7 3 1 8 . 9 1 7 1 0 0 “ 0 . 8 4 4 0 . 4 4 7 2 1 1 1 0 8 3 2 5 . 0 9 4 1 0 0 “ 0 . 7 1 8 0 . 4 7 5 5 0 0 “ 0 . 8 8 4 0 . 5 0 7 5 0 0 “ 0 . 7 3 5 0 . 5 4 2 1 0 0 0 “ 0 . 8 7 0 0 . 5 3 8 1 0 0 0 “ 0 . 7 4 4 0 . 5 8 8 5 0 0 0 “ 0 . 8 8 2 0 . 8 0 7 8 0 0 I b e a m d e s i g n a t i o n n u n b e r ; A V I p e r c e n t a i r v o i d s ; N I n u n b e r o f l o a d a p p l i c a t i o n s ; a n d A , 8 I r e g r e s s i o n c o e f f i c i e n t s . 3 4 4 1 3 T a b l e C . P a r a m e t e r s o f t h e d e f l e c t i o n b a s i n o f t h e b e a m s p e c i m e n s . s 0 5 4 v 5 5 5 5 0 5 5 v 5 5 5 1 0 0 0 0 - 0 5 5 5 0 . 5 3 5 1 0 0 0 0 I 0 . 5 1 5 0 . 5 3 5 3 0 0 0 0 I 0 . 5 5 3 0 . 5 5 4 3 0 5 0 0 I 0 . 5 2 5 0 . 5 7 4 1 7 0 0 0 0 - o . 5 0 1 0 . 7 5 1 1 5 2 0 5 0 I 0 . 5 4 5 0 . 7 3 5 2 1 1 1 0 7 1 2 . 0 8 8 1 0 0 “ 0 . 8 8 4 0 . 4 7 3 3 1 1 1 0 5 2 1 2 . 9 7 8 1 0 0 “ 0 . 5 8 9 0 . 4 5 4 5 0 0 - 0 . 5 5 0 0 . 5 4 1 5 2 0 I 0 . 5 5 1 0 4 5 5 1 0 0 0 I 0 . 5 5 5 0 5 7 0 1 0 0 0 I 0 . 5 5 5 0 5 4 5 5 0 0 0 I 0 . 5 5 5 0 . 5 3 5 5 2 5 0 I 0 . 5 1 0 0 5 0 5 1 0 0 0 0 I 0 . 5 0 3 0 . 5 5 7 1 0 4 0 0 I 0 . 5 1 5 0 . 5 3 4 3 0 5 0 0 I 0 . 5 o 5 o 7 1 5 3 0 0 0 0 I 0 . 5 2 5 0 . 5 7 4 5 5 5 0 0 I 0 . 5 1 3 0 . 7 5 2 1 5 5 5 0 0 - 0 . 5 4 5 0 . 7 4 0 2 1 1 1 0 7 2 2 . 0 3 5 1 0 0 ~ 0 . 5 5 5 0 . 4 5 5 3 1 1 1 0 5 3 1 3 . 0 5 3 1 0 0 I 0 . 5 5 7 0 . 4 3 2 5 0 0 I 0 . 5 7 5 0 . 5 3 5 5 0 0 I 0 . 5 7 5 0 . 5 3 4 1 0 0 0 I 0 . 5 5 4 0 . 5 5 5 1 0 0 0 I 0 . 5 5 3 0 . 5 4 5 5 2 0 0 - o . 5 5 5 0 . 5 3 5 5 0 0 0 I 0 . 5 1 5 0 . 5 0 5 1 0 0 0 0 I 0 . 5 5 5 0 . 5 5 7 1 0 0 0 0 I 0 . 5 2 3 0 . 5 3 2 3 0 0 0 0 - o . 5 0 5 0 . 7 1 5 3 0 0 0 0 - 0 . 5 3 5 0 . 5 7 3 2 1 1 1 0 7 3 2 . 0 3 8 1 0 0 “ 0 . 8 5 8 0 . 4 7 8 1 8 2 9 0 0 “ 0 . 8 5 1 0 . 7 4 0 5 0 0 “ 0 . 8 7 7 0 . 5 4 1 3 1 1 1 0 5 1 2 3 . 0 8 0 1 0 0 “ 0 . 5 8 0 0 . 4 9 0 1 0 0 0 I 0 . 5 5 2 0 . 5 7 0 5 0 0 - 0 . 5 5 3 0 5 4 1 5 0 0 0 - 0 5 5 5 0 . 5 3 7 1 0 0 0 - o . 5 0 0 0 . 5 5 5 1 0 0 0 0 “ 0 . 8 9 9 0 . 8 8 7 5 0 0 0 “ 0 . 8 1 9 0 . 8 3 2 3 0 0 0 0 I 0 . 5 0 5 0 . 7 1 5 1 0 0 0 0 I 0 . 5 2 5 0 . 5 5 0 2 1 1 1 0 7 1 5 . 0 8 7 1 0 0 “ 0 . 8 8 2 0 . 5 8 7 3 0 8 0 0 “ 0 . 8 3 8 0 . 7 0 3 5 5 0 I 0 . 5 5 5 0 . 5 3 5 1 5 7 4 0 0 I 0 . 5 5 5 0 . 7 5 5 1 0 0 0 - o . 5 o o 0 . 5 5 3 3 1 1 1 0 5 2 2 3 . 0 5 1 1 0 0 - 0 . 5 5 2 0 . 5 0 1 5 0 0 0 - 0 . 5 1 1 0 . 7 3 1 5 0 0 I 0 . 5 5 7 0 . 5 4 5 1 0 0 0 0 - o . 5 1 4 0 . 7 5 1 1 0 0 0 I 0 . 5 5 7 0 5 7 1 2 1 1 1 0 7 2 5 . 0 5 5 1 0 0 I 0 . 5 5 4 0 . 5 5 7 5 0 0 0 I 0 . 5 1 5 0 . 5 3 4 5 0 0 I 0 . 5 5 7 0 . 5 3 4 1 0 3 0 0 - 0 . 5 2 4 0 . 5 5 1 1 0 0 0 I 0 . 5 0 2 0 . 5 5 3 3 0 0 0 0 — o . 5 3 5 0 . 7 0 2 5 0 0 0 I 0 . 5 1 2 0 . 7 3 1 ‘ 1 5 4 5 0 0 I 0 . 5 5 3 0 . 7 5 5 1 0 0 0 0 I 0 . 5 1 5 0 . 7 5 1 3 1 1 1 0 5 3 2 3 . 0 1 5 1 0 0 I 0 . 5 5 5 0 . 4 5 5 1 1 4 3 2 - 0 . 5 1 7 0 . 7 5 7 5 0 0 - o . 5 5 7 0 . 5 3 5 2 1 1 1 0 7 3 5 . 1 2 4 1 0 0 - 0 . 5 5 5 0 5 5 7 1 0 0 0 - 0 . 5 5 3 0 . 5 7 2 5 0 0 I 0 . 5 5 5 0 . 8 3 5 5 0 0 0 I 0 . 5 1 4 0 . 5 3 3 1 0 0 0 - 0 . 5 0 5 0 . 5 5 3 1 0 0 0 0 I 0 . 5 2 2 0 . 5 5 5 5 0 0 0 I 0 . 5 1 5 0 . 7 3 2 3 0 5 0 0 I 0 . 5 3 4 0 7 0 2 1 0 0 0 0 I 0 . 5 1 5 0 . 7 5 1 1 5 5 0 0 0 I 0 . 5 5 1 0 7 5 5 3 1 1 1 0 5 1 1 . 5 7 4 1 1 0 I 0 . 5 5 5 0 . 4 7 2 3 1 1 1 0 5 1 5 3 . 1 5 5 1 0 0 I 0 . 5 5 2 0 . 5 7 3 5 0 0 I 0 . 5 7 5 0 . 5 1 7 5 0 0 - o . 5 0 5 0 . 5 3 1 ‘ 1 0 0 0 I 0 . 5 5 0 0 . 5 5 5 1 0 0 0 - 0 . 5 1 4 0 . 5 5 5 5 0 0 0 I 0 . 5 0 5 0 . 5 0 5 5 0 0 0 I 0 . 5 3 2 o 7 1 5 S D ! I b e a m d e s i g n a t i o n n u m b e r ; A V I p e r c e n t a i r v o i d s ; N I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d A . 8 I r e g r e s s i o n c o e f f i c i e n t s . T a b l e C . P a r a m e t e r s o f t h e d e f l e c t i o n b a s i n o f t h e 3 4 4 b e a m s p e c i m e n s . S D ! A V N 8 A 3 0 ' A V I 8 A 1 0 0 0 0 ' 0 . 8 3 9 0 . 7 4 8 1 0 4 0 0 ' 0 . 8 9 8 0 . 8 7 0 3 0 0 0 0 ' 0 . 6 5 0 0 . 7 8 8 2 3 5 0 0 ' 0 . 9 0 1 0 . 7 0 5 6 3 1 8 8 ’ 0 . 6 5 6 0 . 8 1 8 3 1 1 1 0 7 2 2 6 . 8 7 8 1 0 0 - 0 . 8 5 0 0 . 4 7 1 3 1 1 1 0 5 2 5 2 . 9 8 9 1 0 0 ' 0 . 5 7 2 0 . 5 7 2 5 0 0 ' 0 . 8 8 5 0 . 5 4 1 5 0 0 ' 0 . 5 9 3 0 . 8 3 1 1 0 0 0 ‘ 0 . 8 7 2 0 . 5 6 9 1 0 0 0 ' 0 . 6 0 1 0 . 8 5 8 5 5 0 0 ' 0 . 8 8 4 0 . 8 4 3 5 2 0 0 ' 0 . 6 2 0 0 . 7 2 0 1 0 4 0 0 ' 0 . 8 8 9 0 . 8 7 0 1 0 0 0 0 - 0 . 8 2 7 0 . 7 4 5 2 7 8 0 0 ' 0 . 8 9 5 0 . 7 1 2 3 0 2 0 0 ’ 0 . 6 3 8 0 . 7 8 7 5 2 5 0 0 “ 0 . 8 9 8 0 . 7 4 0 9 8 0 0 0 ' 0 . 6 4 9 0 . 8 3 3 3 1 1 1 0 7 3 2 8 . 9 8 3 1 0 0 “ 0 . 8 8 2 0 . 4 8 8 3 1 1 1 0 5 3 5 2 . 9 5 8 1 0 0 - 0 . 5 7 0 0 . 5 7 0 5 0 0 ' 0 . 8 7 2 0 . 5 4 2 5 0 0 - 0 . 5 9 1 0 . 8 3 1 1 0 0 0 ' 0 . 8 7 9 0 . 5 7 0 1 0 0 0 - 0 . 6 0 0 0 . 8 5 7 5 7 5 0 ' 0 . 8 9 2 0 . 8 4 5 5 0 0 0 ' 0 . 8 1 8 0 . 7 1 8 1 0 9 0 0 ‘ 0 . 8 9 7 0 . 8 7 2 1 0 0 0 0 ' 0 . 6 2 5 0 . 7 4 4 2 8 8 0 0 ' 0 . 9 0 2 0 . 7 1 1 3 0 0 0 0 ' 0 . 6 3 6 0 . 7 8 7 8 2 1 0 0 ' 0 . 9 0 5 0 . 7 4 8 1 1 2 8 0 0 - 0 . 6 4 8 0 . 8 3 8 3 1 1 1 0 7 1 5 6 . 7 5 0 1 1 0 ' 0 . 8 8 0 0 . 5 7 1 3 1 1 1 0 7 1 1 6 . 9 2 1 1 0 0 - 0 . 8 4 6 0 . 4 4 1 5 0 0 ‘ 0 . 8 7 1 0 . 6 3 8 5 0 0 ' 0 . 8 8 2 0 . 5 1 3 1 0 0 0 7 0 . 8 7 7 0 . 6 6 5 1 0 0 0 - 0 . 8 6 9 0 . 5 4 1 5 5 0 0 ' 0 . 8 8 9 0 . 7 3 8 5 0 0 0 * 0 . 8 8 2 0 . 6 0 8 1 0 1 0 0 ' 0 . 8 9 2 0 . 7 8 1 1 0 0 0 0 ' 0 . 8 8 7 0 . 8 3 7 1 2 4 5 0 - O . 8 9 3 0 . 7 7 0 3 4 8 0 0 ' 0 . 8 9 5 0 . 8 9 2 3 1 1 1 0 7 2 5 8 . 9 1 9 1 1 0 ‘ 0 . 8 7 1 0 . 5 7 2 1 8 5 7 0 0 ' 0 . 9 0 2 0 . 7 6 1 5 8 0 ' 0 . 8 8 5 0 . 8 4 2 3 1 1 1 0 7 2 1 6 . 9 4 8 1 3 5 ' 0 . 8 5 8 0 . 4 4 8 1 0 0 0 ' 0 . 8 9 0 0 . 6 6 4 5 0 0 ' 0 . 8 6 6 0 . 5 0 8 5 5 0 0 ' 0 . 9 0 1 0 . 7 3 6 1 1 5 0 ' 0 . 8 7 0 0 . 5 4 8 1 0 0 0 0 ' 0 . 9 0 4 0 . 7 6 2 5 0 0 0 ‘ 0 . 8 8 3 0 . 8 0 9 1 3 8 0 0 ' 0 . 9 0 6 0 . 7 7 6 1 0 0 0 0 - 0 . 8 8 9 0 . 8 3 8 3 1 1 1 0 7 3 5 6 . 9 7 6 1 1 0 ‘ 0 . 8 7 8 0 . 5 7 2 3 2 0 0 0 ' 0 . 8 9 6 0 . 8 8 8 5 3 0 ' 0 . 8 8 9 0 . 6 3 8 1 6 2 8 5 0 ' O . 9 0 3 0 . 7 8 1 1 0 0 0 “ 0 . 8 9 4 0 . 8 8 4 3 1 1 1 0 7 3 1 7 . 0 0 7 1 6 0 ' 0 . 8 5 7 0 . 4 5 9 5 4 0 0 ' 0 . 9 0 5 0 . 7 3 5 5 0 0 ' 0 . 8 8 9 0 . 5 0 9 6 8 2 0 ' 0 . 9 0 8 0 . 7 4 5 1 0 0 0 ' 0 . 8 7 5 0 . 5 4 0 8 8 0 0 ' 0 . 9 0 7 0 . 7 5 8 5 1 0 0 ' 0 . 8 8 8 0 . 8 0 9 1 0 8 0 0 ' 0 . 9 0 8 0 . 7 6 5 1 1 0 0 0 - O . 8 9 3 0 . 8 4 2 2 1 2 1 0 8 1 1 4 . 9 9 1 1 3 0 ‘ 0 . 7 1 7 0 . 4 5 8 2 0 5 0 0 ' 0 . 8 9 7 0 . 8 8 9 5 0 0 ' 0 . 7 1 9 0 . 5 2 9 1 8 9 5 0 0 ' 0 . 9 0 7 0 . 7 8 3 1 0 3 0 ' 0 . 7 3 2 0 . 5 5 3 3 1 1 1 0 7 1 2 6 . 9 8 5 1 0 0 ' 0 . 8 8 0 0 . 4 7 2 5 0 0 0 ° 0 . 7 4 8 0 . 8 1 8 5 0 0 ' 0 . 8 7 3 0 . 5 4 1 1 0 0 0 0 ' 0 . 7 5 5 0 . 8 4 8 1 0 0 0 ' 0 . 8 8 0 0 . 5 8 9 2 4 0 5 0 ' 0 . 7 8 4 0 . 8 8 1 5 2 0 0 ' 0 . 8 9 1 0 . 8 4 0 1 7 7 8 0 0 ' 0 . 7 7 8 0 . 7 8 5 S D ! I b e e n d e s i g n a t i o n n u m b e r ; A V I p e r c e n t a i r v o i d s ; N I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d A . B I r e g r e s s i o n c o e f f i c i e n t s . 3 4 5 T a b l e C . P a r a m e t e r s o f t h e d e f l e c t i o n b a s i n o f t h e b e a m s p e c i m e n s . S D I A V I B A S D I A N I 8 A 2 1 2 1 0 6 2 1 4 . 9 9 4 1 1 0 “ 0 . 7 0 7 0 . 4 5 9 5 0 0 “ 0 . 7 4 8 0 . 8 4 3 5 0 0 “ 0 . 7 2 4 0 . 5 2 2 1 0 0 0 “ 0 . 7 5 4 0 . 8 7 2 1 0 2 0 “ 0 . 7 3 8 0 . 5 4 8 5 0 0 0 “ 0 . 7 6 8 0 . 7 3 7 5 6 0 0 “ 0 . 7 5 0 0 . 8 2 2 1 0 0 0 0 “ 0 . 7 7 3 0 . 7 8 5 1 0 6 0 0 “ 0 . 7 5 7 0 . 8 4 7 1 8 5 0 0 “ 0 . 7 7 7 0 . 7 8 6 2 4 5 0 0 “ 0 . 7 8 4 0 . 8 8 2 2 1 2 1 0 6 3 5 4 . 9 8 3 1 0 0 “ 0 . 7 2 8 0 . 5 7 8 1 7 7 1 0 0 “ 0 . 7 7 8 0 . 7 8 5 5 0 0 “ 0 . 7 4 3 0 . 8 4 3 2 1 2 1 0 8 3 1 5 . 1 2 2 1 0 0 “ 0 . 7 0 7 0 . 4 8 5 1 0 0 0 “ 0 . 7 4 8 0 . 8 7 2 5 0 0 “ 0 . 7 3 8 0 . 5 1 7 5 0 0 0 “ 0 . 7 8 3 0 . 7 3 8 1 0 0 0 “ 0 . 7 4 3 0 . 5 5 1 1 0 0 0 0 “ 0 . 7 8 9 0 . 7 8 5 5 0 0 0 “ 0 . 7 5 9 0 . 8 1 8 2 7 8 0 0 “ 0 . 7 7 8 0 . 8 0 7 1 0 8 2 0 “ 0 . 7 6 6 0 . 8 4 7 2 7 8 5 0 “ 0 . 7 7 8 0 . 8 0 7 2 3 6 0 0 “ 0 . 7 7 2 0 . 6 8 1 2 1 3 1 0 6 1 1 4 . 9 8 8 1 0 0 “ 0 . 7 0 7 0 . 4 6 5 1 5 4 4 0 0 “ 0 . 7 8 8 0 . 7 8 0 5 0 0 “ 0 . 7 2 3 0 . 5 3 3 2 1 2 1 0 8 1 2 5 . 1 7 9 1 0 0 “ 0 . 7 2 1 0 . 4 9 0 1 0 0 0 “ 0 . 7 3 8 0 . 5 5 4 5 2 0 “ 0 . 7 4 4 0 . 5 5 3 5 0 0 0 “ 0 . 7 4 9 0 . 8 2 3 1 0 0 0 “ 0 . 7 5 1 0 . 5 7 9 1 0 7 0 0 “ 0 . 7 5 8 0 . 8 5 4 5 1 2 0 “ 0 . 7 6 7 0 . 6 4 7 2 9 5 0 0 ' 0 . 7 8 5 0 . 6 9 5 1 0 7 0 0 “ 0 . 7 7 3 0 . 6 7 7 1 6 3 9 0 0 “ 0 . 7 7 8 0 . 7 6 8 2 3 6 5 0 “ 0 . 7 7 9 0 . 7 1 0 2 1 3 1 0 6 2 1 4 . 9 3 0 1 5 0 “ 0 . 7 0 9 0 . 4 7 6 5 1 7 0 0 “ 0 . 7 8 5 0 . 7 4 3 5 5 0 “ 0 . 7 2 2 0 . 5 3 4 2 1 2 1 0 6 2 2 5 . 1 7 5 1 0 0 “ 0 . 7 2 3 0 . 4 8 9 1 0 4 0 “ 0 . 7 2 9 0 . 5 5 8 5 0 0 “ 0 . 7 4 2 0 . 5 5 2 5 0 0 0 “ 0 . 7 4 8 0 . 8 2 2 1 0 0 0 “ 0 . 7 5 1 0 . 5 8 0 1 0 0 0 0 “ 0 . 7 5 3 0 . 8 5 0 5 0 0 0 “ 0 . 7 6 7 0 . 8 4 5 3 2 0 0 0 “ 0 . 7 8 2 0 . 8 9 9 1 0 0 0 0 “ 0 . 7 7 2 0 . 6 7 5 1 8 7 5 0 0 “ 0 . 7 7 4 0 . 7 8 8 3 0 5 0 0 “ 0 . 7 8 1 0 . 7 2 1 2 1 3 1 0 8 3 1 4 . 9 0 8 1 0 0 “ 0 . 8 8 9 0 . 4 8 0 8 7 8 0 0 “ 0 . 7 8 7 0 . 7 5 4 5 0 0 “ 0 . 7 1 8 0 . 5 3 2 2 1 2 1 0 8 3 2 5 . 0 8 4 1 0 0 “ 0 . 7 1 7 0 . 4 8 5 1 0 0 0 “ 0 . 7 2 7 0 . 5 5 7 5 0 0 “ 0 . 7 3 5 0 . 5 5 2 5 0 5 0 “ 0 . 7 4 4 0 . 8 2 2 1 0 0 0 “ 0 . 7 4 3 0 . 5 7 9 1 0 5 0 0 “ 0 . 7 5 1 0 . 8 5 3 5 0 0 0 “ 0 . 7 5 8 0 . 8 4 8 1 8 5 0 0 “ 0 . 7 5 8 0 . 8 7 5 1 0 0 0 0 “ 0 . 7 8 4 0 . 8 7 4 1 8 1 8 0 0 “ 0 . 7 7 2 0 . 7 8 8 3 0 0 0 0 “ 0 . 7 7 3 0 . 7 2 0 2 1 3 1 0 6 1 2 4 . 9 3 5 1 5 0 “ 0 . 7 1 8 0 . 5 0 8 7 1 8 0 0 “ 0 . 7 7 9 0 . 7 5 6 5 0 0 “ 0 . 7 2 7 0 . 5 5 8 2 1 2 1 0 8 1 5 5 . 0 3 0 1 0 0 “ 0 . 7 2 9 0 . 5 7 8 1 0 0 0 “ 0 . 7 3 5 0 . 5 8 8 5 0 0 “ 0 . 7 4 8 0 . 8 4 3 5 0 0 0 “ 0 . 7 5 0 0 . 8 5 2 1 0 0 0 “ 0 . 7 5 3 0 . 8 7 1 1 0 2 0 0 “ 0 . 7 5 8 0 . 8 8 1 5 0 0 0 “ 0 . 7 8 7 0 . 7 3 7 2 8 0 0 0 “ 0 . 7 8 5 0 . 7 2 2 1 0 0 0 0 “ 0 . 7 7 2 0 . 7 8 5 4 8 0 0 0 “ 0 . 7 8 9 0 . 7 4 5 1 9 5 0 0 - O . 7 7 7 0 , 7 9 3 2 1 3 1 0 6 2 2 4 . 9 9 0 1 0 0 “ 0 . 7 1 3 0 . 4 9 4 2 1 2 1 0 8 2 5 5 . 0 5 1 1 0 0 “ 0 . 7 3 0 0 . 5 8 0 5 0 0 “ 0 . 7 3 0 0 . 5 8 0 S O ! I b e a m d e s i g n a t i o n n u m b e r ; A V I p e r c e n t a i r v o i d s ; N I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d A , 8 I r e g r e s s i o n c o e f f i c i e n t s . 3 4 6 T a b l e C . P a r a m e t e r s o f t h e b e a m s p e c i m e n s . d e f l e c t i o n b a s i n o f t h e 8 0 8 A V I I A S D . A V I 8 A 1 0 0 0 “ 0 . 7 3 8 0 . 5 8 7 1 6 8 2 0 0 “ 0 . 8 4 3 0 . 7 3 9 5 0 0 0 “ 0 . 7 5 4 0 . 8 5 2 1 2 1 1 0 5 3 1 2 . 8 9 8 1 0 0 “ 0 . 5 3 3 0 . 4 8 7 1 0 0 0 0 “ 0 . 7 8 0 0 . 8 8 0 5 0 0 “ 0 . 5 8 4 0 . 5 2 8 3 0 0 0 0 “ 0 . 7 6 9 0 . 7 2 5 1 0 0 0 “ 0 . 5 8 1 0 . 5 4 3 3 3 0 0 0 “ 0 . 7 7 0 0 . 7 2 9 5 1 5 0 “ 0 . 6 0 4 0 . 6 0 7 2 1 3 1 0 8 3 2 4 . 9 7 1 1 0 0 “ 0 . 7 1 3 0 . 4 9 0 1 0 0 0 0 “ 0 . 8 1 1 0 . 8 3 3 5 0 0 “ 0 . 7 2 8 0 . 5 8 0 3 0 0 0 0 “ 0 . 8 2 4 0 . 8 7 3 1 0 0 0 “ 0 . 7 3 7 0 . 5 8 8 1 8 9 9 0 0 “ 0 . 8 4 2 0 . 7 4 4 5 0 0 0 “ 0 . 7 5 3 0 . 8 5 1 1 2 1 1 0 5 1 2 2 . 9 4 9 1 0 0 “ 0 . 5 7 6 0 . 4 5 8 1 0 0 0 0 “ 0 . 7 5 9 0 . 8 8 0 5 0 0 “ 0 . 5 8 8 0 . 5 3 8 2 9 0 0 0 “ 0 . 7 8 7 0 . 7 2 4 1 0 0 0 “ 0 . 5 9 0 0 . 5 7 1 1 2 3 3 0 0 “ 0 . 7 7 7 0 . 7 8 5 5 0 0 0 “ 0 . 6 0 8 0 . 6 3 4 2 1 3 1 0 8 1 5 4 . 9 8 4 1 2 0 “ 0 . 7 2 9 0 . 5 9 3 1 0 0 0 0 “ 0 . 8 1 7 0 . 8 5 9 5 0 0 “ 0 . 7 4 4 0 . 6 5 0 2 8 8 0 0 “ 0 . 6 2 8 0 . 8 9 6 1 0 0 0 “ 0 . 7 5 0 0 . 6 7 8 1 4 4 0 0 0 “ 0 . 8 4 5 0 . 7 6 1 5 0 0 0 “ 0 . 7 8 4 0 . 7 4 3 1 2 1 1 0 5 2 2 2 . 9 5 9 1 5 0 “ 0 . 5 6 8 0 . 4 9 6 1 0 1 0 0 “ 0 . 7 7 0 0 . 7 7 1 5 0 0 “ 0 . 5 7 5 0 . 5 5 4 2 2 0 0 0 “ 0 . 7 7 5 0 . 8 0 4 1 1 0 0 “ 0 . 5 9 3 0 . 5 7 1 2 1 3 1 0 6 2 5 5 . 1 8 9 1 0 0 “ 0 . 7 4 3 0 . 5 8 3 5 2 0 0 “ 0 . 8 1 0 0 . 6 3 4 5 0 0 “ 0 . 7 5 9 0 . 6 5 0 1 0 1 0 0 - 0 . 8 1 9 0 . 8 5 8 1 0 0 0 “ 0 . 7 6 5 0 . 8 7 8 2 7 4 0 0 “ 0 . 6 2 9 0 . 8 9 7 5 1 0 0 “ 0 . 7 7 9 0 . 7 4 4 1 7 5 5 5 0 “ 0 . 8 4 7 0 . 7 8 9 1 0 0 0 0 “ 0 . 7 8 4 0 . 7 7 2 1 2 1 1 0 5 3 2 2 . 9 8 7 1 0 0 “ 0 . 5 7 3 0 . 4 7 0 2 0 7 5 8 “ 0 . 7 8 9 0 . 8 0 3 5 0 0 “ 0 . 5 8 8 0 . 5 4 0 2 1 3 1 0 6 3 5 5 . 0 6 3 1 0 0 “ 0 . 7 3 0 0 . 5 8 8 1 4 0 0 “ 0 . 5 9 5 0 . 5 8 5 5 0 0 “ 0 . 7 4 9 0 . 6 5 0 5 0 0 0 “ 0 . 8 1 2 0 . 6 3 3 1 0 0 0 “ 0 . 7 5 8 0 . 6 7 8 1 2 3 0 0 “ 0 . 6 2 2 0 . 6 6 7 5 0 0 0 “ 0 . 7 7 0 0 . 7 4 3 2 0 1 0 0 “ 0 . 8 2 7 0 . 6 8 6 9 8 5 0 “ 0 . 7 7 5 0 . 7 7 1 1 8 7 5 0 0 “ 0 . 8 4 9 0 . 7 8 7 1 2 1 1 0 5 1 1 3 . 0 1 7 1 0 0 “ 0 . 5 5 3 0 . 4 6 2 1 2 1 1 0 5 1 5 2 . 9 8 2 1 0 0 “ 0 . 5 7 1 0 . 5 7 2 5 0 0 “ 0 . 5 7 5 0 . 5 2 9 5 0 0 “ 0 . 5 9 3 0 . 8 3 0 1 0 0 0 “ 0 . 5 8 5 0 . 5 5 3 1 0 0 0 “ 0 . 8 0 1 0 . 8 5 7 5 0 0 0 “ 0 . 8 1 3 0 . 8 0 3 5 0 0 0 “ 0 . 8 1 9 0 . 7 1 8 1 0 0 0 0 “ 0 . 8 2 0 0 . 8 3 1 1 0 0 0 0 “ 0 . 8 2 7 0 . 7 4 4 3 0 3 0 0 “ 0 . 8 3 1 0 . 8 7 5 3 0 0 0 0 “ 0 . 8 3 7 0 . 7 8 7 1 5 7 0 0 0 “ 0 . 8 4 8 0 . 7 3 7 1 0 2 8 3 1 “ 0 . 8 4 9 0 . 8 3 5 1 2 1 1 0 5 2 1 2 . 9 3 1 1 0 0 “ 0 . 5 3 3 0 . 4 8 7 1 2 1 1 0 5 2 5 3 . 1 2 9 1 5 0 “ 0 . 5 8 5 0 . 5 9 0 5 0 0 “ 0 . 5 7 0 0 . 5 2 4 5 0 0 “ 0 . 8 0 4 0 . 8 3 2 1 0 0 0 “ 0 . 5 7 9 0 . 5 5 2 1 0 0 0 “ 0 . 8 1 2 0 . 8 5 6 5 3 0 0 “ 0 . 6 0 6 0 . 8 0 5 5 0 0 0 “ 0 . 8 3 0 0 . 7 1 8 1 0 0 0 0 “ 0 . 6 1 5 0 . 8 3 0 1 1 5 0 0 “ 0 . 8 3 9 0 . 7 5 1 3 0 0 0 0 “ 0 . 6 2 6 0 . 8 7 2 3 0 0 0 0 “ 0 . 8 4 8 0 . 7 8 8 S D ! I b e a m d e s i g n a t i o n n u m b e r ; A V I p e r c e n t a i r v o i d s ; I I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d A . 8 I r e g r e s s i o n c o e f f i c i e n t s . t h e d f l e c t i o n b a s i n o f t h e e 5 1 5 0 5 1 1 2 4 v 5 3 2 4 . 5 5 5 T 5 5 0 0 0 0 0 5 5 8 5 8 8 s 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 2 S D ! I b a 3 1 2 3 1 2 e 5 1 1 1 2 2 e b l e C . m P b a e r a a m e s t p e e r c s i m o e f n s 5 v 2 5 4 5 5 4 . . . . . . 5 0 9 1 0 8 n d e s i g n 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - - - - “ “ “ “ - - “ “ “ “ “ “ “ “ “ “ “ “ - - “ - “ “ “ “ “ - - - - - “ “ “ - “ “ 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 6 6 8 8 7 7 5 5 5 7 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 7 7 7 7 7 7 0 2 2 3 4 5 5 5 5 5 2 3 8 7 8 1 3 5 8 4 7 2 3 4 8 8 8 1 5 4 5 7 5 5 9 3 1 4 2 4 5 3 1 0 7 7 4 1 7 5 2 5 2 8 8 8 0 0 0 7 1 4 4 5 5 5 8 5 9 2 1 4 1 0 4 7 5 5 9 2 6 8 7 1 1 5 5 0 0 2 5 0 0 3 1 5 0 1 1 0 2 5 0 0 0 5 0 0 5 1 5 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 3 3 0 2 1 5 0 1 5 0 0 0 2 7 1 5 0 5 7 0 0 1 5 1 0 5 0 1 5 0 0 0 0 0 1 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 u 0 0 m 0 0 b e r ; 5 3 8 1 1 3 4 1 3 9 1 5 0 1 3 5 1 1 1 1 1 2 7 n i o n 2 7 2 7 8 4 4 a 5 7 7 5 8 t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 . 5 5 5 5 7 7 7 8 5 5 6 6 8 7 4 5 5 6 8 8 7 4 5 5 8 8 7 7 4 5 5 5 5 7 7 4 5 5 5 8 7 1 3 5 5 2 5 4 8 1 1 3 0 3 8 4 7 1 3 1 3 8 5 3 1 4 0 3 0 3 8 4 4 7 5 1 7 3 5 4 7 8 0 5 2 5 7 1 6 8 5 3 5 6 5 5 1 7 0 0 1 2 8 8 0 8 8 5 8 8 2 2 8 3 3 2 5 0 2 5 7 3 1 5 8 1 5 5 0 1 8 0 1 1 5 0 4 1 5 0 1 1 0 1 0 0 0 8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 5 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 5 1 8 3 1 3 5 1 1 1 5 0 0 8 1 5 1 1 0 1 5 0 3 5 1 2 2 1 4 2 1 1 0 3 1 5 0 1 7 5 0 1 5 5 1 5 1 6 1 2 1 5 7 5 0 3 0 1 5 5 7 0 4 5 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 . . . . . . . . . . . . . 8 8 5 5 5 5 5 8 8 8 5 8 8 7 0 2 3 5 5 8 7 2 4 4 6 6 7 8 0 1 2 5 2 0 7 5 7 7 2 9 3 9 8 0 8 8 8 8 0 8 4 3 5 5 9 5 1 2 4 7 0 5 4 0 5 8 1 5 8 3 8 2 3 5 5 8 8 3 4 5 8 7 5 8 8 8 7 5 5 0 0 5 7 7 5 9 9 - - ~ - “ “ “ “ - - “ “ “ “ “ “ “ “ “ “ “ “ - - “ “ “ - “ “ “ - - - - - “ “ “ - “ “ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 7 4 5 5 6 7 8 5 7 5 8 7 7 8 8 5 8 8 7 7 7 8 5 5 6 7 7 7 7 4 5 5 5 5 5 7 4 5 5 5 8 8 9 3 3 1 1 3 7 5 0 5 3 1 4 6 5 5 3 7 3 0 8 5 8 3 8 5 3 0 2 7 3 8 2 5 2 9 7 3 6 2 5 5 7 3 5 1 8 9 7 1 5 2 1 0 9 2 0 2 5 0 8 9 5 4 4 3 1 8 8 7 7 5 1 3 5 5 5 5 9 1 8 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . 1 2 1 1 0 5 1 5 4 . 5 5 4 1 2 1 1 0 8 2 5 4 . 8 1 8 1 2 1 1 0 5 3 5 5 . 0 5 7 1 2 1 1 0 7 1 1 7 . 0 2 8 1 2 1 1 0 7 2 1 7 . 0 0 8 3 4 7 A V 1 . a A , 8 I I p e r c e n t a i r v o i d s ; r e g r e s s i o n c o e f f i c i e n t s . n u m b e r o f l o a d a p p l i c a t i o n s ; a n d T a b l e C . P b a e r a a m m e s t p e e r c s i m o e f n s t . h e d e f l e c t i o n b a s i n o f t h e 3 4 8 S D ! A V I B A 3 0 ' A V I 8 A 1 8 7 3 0 0 “ 0 . 9 0 7 0 . 7 6 1 1 2 1 1 0 7 3 5 6 . 9 6 5 1 4 5 “ 0 . 8 7 6 0 . 5 8 5 1 2 1 1 0 7 3 1 7 . 0 5 5 1 0 0 “ 0 . 8 5 6 0 . 4 4 3 5 0 0 “ 0 . 8 8 8 0 . 8 3 5 5 0 0 “ 0 . 8 7 3 0 . 5 1 1 1 0 0 0 “ 0 . 8 9 3 0 . 8 8 4 1 0 0 0 “ 0 . 8 8 2 0 . 5 3 6 5 1 0 0 “ 0 . 9 0 4 0 . 7 3 2 5 0 0 0 “ 0 . 8 9 0 0 . 8 0 9 8 7 0 0 “ 0 . 9 0 7 0 . 7 5 5 1 1 7 0 0 “ 0 . 8 9 6 0 . 6 4 5 9 7 0 0 “ 0 . 9 0 7 0 . 7 6 0 2 6 8 0 0 “ 0 . 9 0 2 0 . 8 8 0 1 1 1 1 0 7 1 5 7 . 1 0 3 1 0 0 “ 0 . 8 8 5 0 . 5 8 5 1 5 9 0 0 0 “ 0 . 9 1 0 0 . 7 5 9 5 0 0 “ 0 . 8 9 7 0 . 8 3 3 1 2 1 1 0 7 1 2 7 . 0 0 8 1 0 0 “ 0 . 8 6 3 0 . 4 7 0 1 0 0 0 “ 0 . 9 0 3 0 . 8 8 2 5 0 0 “ 0 . 8 7 3 0 . 5 4 2 5 0 0 0 “ 0 . 9 1 3 0 . 7 3 0 1 0 0 0 “ 0 . 8 8 1 0 . 5 6 9 1 1 2 0 0 “ 0 . 9 1 7 0 . 7 6 5 5 6 0 0 “ 0 . 8 9 4 0 . 8 4 3 1 2 0 0 0 “ 0 . 9 1 7 0 . 7 6 8 1 0 0 0 0 “ 0 . 8 9 7 0 . 6 8 8 1 3 1 0 0 “ 0 . 9 1 8 0 . 7 7 1 2 7 0 0 0 “ 0 . 9 0 3 0 . 7 1 1 1 2 2 1 0 7 1 1 7 . 3 2 4 1 0 0 “ 0 . 8 7 7 0 . 4 5 0 1 0 2 2 0 0 “ 0 . 9 0 9 0 . 7 7 0 5 0 0 “ 0 . 8 9 4 0 . 5 2 1 1 2 1 1 0 7 2 2 7 . 0 9 9 1 3 0 “ 0 . 8 7 0 0 . 4 8 4 1 0 0 0 “ 0 . 9 0 0 0 . 5 5 0 5 0 0 “ 0 . 8 8 4 0 . 5 3 8 5 0 0 0 “ 0 . 9 1 3 0 . 6 1 8 1 0 0 0 “ 0 . 8 8 7 0 . 5 7 0 1 0 0 0 0 “ 0 . 9 1 7 0 . 8 4 8 5 2 5 0 “ 0 . 9 0 0 0 . 6 4 0 3 0 0 0 0 “ 0 . 9 2 2 0 . 6 9 6 7 5 0 0 “ 0 . 9 0 2 0 . 6 5 8 1 5 9 2 0 0 “ 0 . 9 2 9 0 . 7 7 1 1 0 3 0 0 “ 0 . 9 0 4 0 . 6 8 9 1 2 2 1 0 7 2 1 6 . 8 5 5 1 0 0 “ 0 . 8 4 8 0 . 4 5 0 3 0 0 0 0 “ 0 . 9 1 0 0 . 7 1 6 5 0 0 “ 0 . 8 6 0 0 . 5 2 1 1 1 0 5 0 0 “ 0 . 9 1 5 0 . 7 7 4 1 0 0 0 “ 0 . 8 8 5 0 . 5 5 1 1 2 1 1 0 7 3 2 7 . 1 9 4 1 0 0 “ 0 . 8 7 8 0 . 4 6 7 5 1 0 0 “ 0 . 8 7 8 0 . 6 2 0 5 0 0 “ 0 . 8 8 9 0 . 5 4 0 1 0 0 0 0 “ 0 . 8 8 4 0 . 8 4 8 1 0 0 0 “ 0 . 8 9 5 0 . 5 6 9 3 0 0 0 0 “ 0 . 8 9 0 0 . 6 9 6 5 0 0 0 “ 0 . 9 0 6 0 . 8 3 8 1 2 2 1 0 7 3 1 7 . 2 1 8 1 2 0 “ 0 . 8 8 0 0 . 4 5 4 1 0 0 0 0 “ 0 . 9 1 0 0 . 8 6 8 5 0 0 “ 0 . 8 8 5 0 . 5 2 2 5 0 0 0 0 “ 0 . 9 1 8 0 . 7 3 9 1 0 0 0 “ 0 . 8 9 1 0 . 5 5 2 1 0 0 0 0 0 “ 0 . 9 2 1 0 . 7 7 0 5 2 0 0 “ 0 . 9 0 5 0 . 8 2 0 1 2 1 1 0 7 1 5 7 . 1 2 3 1 0 0 “ 0 . 8 8 6 0 . 5 8 8 1 0 0 0 0 “ 0 . 9 0 9 0 . 8 4 8 5 0 0 “ 0 . 9 0 0 0 . 8 3 5 3 0 0 0 0 “ 0 . 9 1 5 0 . 6 9 6 1 0 0 0 “ 0 . 9 0 4 0 . 8 6 4 1 9 1 3 0 0 “ 0 . 9 2 2 0 . 7 7 9 5 0 0 0 “ 0 . 9 1 5 0 . 7 3 2 1 2 2 1 0 7 1 2 7 . 0 9 9 1 0 0 “ 0 . 8 7 3 0 . 4 7 9 1 0 8 0 0 “ 0 . 9 1 9 0 . 7 8 5 5 0 0 “ 0 . 8 8 4 0 . 5 5 1 1 1 3 0 0 “ 0 . 9 1 9 0 . 7 8 7 1 0 0 0 “ 0 . 8 8 9 0 . 5 8 1 1 2 1 1 0 7 2 5 8 . 9 3 8 1 0 0 “ 0 . 8 7 3 0 . 5 6 7 8 4 0 0 “ 0 . 9 0 2 0 . 8 5 9 5 0 0 “ 0 . 8 8 8 0 . 8 3 4 1 0 0 0 0 “ 0 . 9 0 5 0 . 8 7 9 1 0 0 0 “ 0 . 8 9 1 0 . 8 8 4 2 8 5 0 0 “ 0 . 9 1 1 0 . 7 2 4 5 0 0 0 “ 0 . 9 0 1 0 . 7 3 2 5 4 0 0 0 “ 0 . 9 1 4 0 . 7 5 3 1 0 0 0 0 “ 0 . 9 0 5 0 . 7 8 1 1 2 2 1 0 7 2 2 7 . 0 7 1 1 0 0 “ 0 . 8 7 0 0 . 4 8 0 1 3 3 0 0 “ 0 . 9 0 7 0 . 7 7 4 $ 0 0 I b e a m d e s i g n a t i o n n u m b e r ; A V I p e r c e n t a i r v o i d s ; N I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d A . 8 I r e g r e s s i o n c o e f f i c i e n t s . T a b l e C . m P b a e r a a m e s t p e e r c s i m o e f n s t . h e d e f l e c t i o n b a s i n o f t h e 3 4 9 S D ! A V I 8 A 8 0 ' A V I I A 1 0 0 0 “ 0 . 8 8 7 0 . 5 8 1 3 0 9 0 0 “ 0 . 9 1 3 0 . 7 0 4 5 5 0 0 “ 0 . 9 0 0 0 . 8 5 3 1 4 4 3 0 0 “ 0 . 9 1 9 0 . 7 7 2 1 0 0 0 0 “ 0 . 9 0 3 0 . 8 7 9 1 2 3 1 0 7 3 1 7 . 1 3 3 1 0 0 “ 0 . 8 8 8 0 . 4 5 7 7 0 9 0 0 “ 0 . 9 1 3 0 . 7 6 4 5 0 0 “ 0 . 8 8 1 0 . 5 2 8 1 2 2 1 0 7 3 2 6 . 9 0 9 1 0 0 “ 0 . 8 5 5 0 . 4 8 1 1 0 0 0 “ 0 . 8 8 9 0 . 5 5 4 5 0 0 “ 0 . 8 7 0 0 . 5 5 1 5 5 0 0 “ 0 . 9 0 0 0 . 8 2 9 1 0 0 0 “ 0 . 8 7 6 0 . 5 8 0 1 0 8 0 0 “ 0 . 9 0 4 0 . 8 5 7 5 0 0 0 “ 0 . 8 8 7 0 . 8 4 9 3 0 0 0 0 “ 0 . 9 1 0 0 . 7 0 2 1 0 0 0 0 “ 0 . 8 9 2 0 . 8 7 8 1 2 9 2 0 0 “ 0 . 9 1 6 0 . 7 8 7 5 0 0 0 0 “ 0 . 9 0 1 0 . 7 4 8 1 3 0 0 0 0 “ 0 . 9 1 8 0 . 7 8 8 8 0 0 0 0 “ 0 . 9 0 3 0 . 7 8 9 1 2 3 1 0 7 1 2 7 . 0 8 9 1 0 0 “ 0 . 8 7 3 0 . 4 8 7 1 2 2 1 0 7 1 5 6 . 8 8 1 1 0 0 “ 0 . 8 8 8 0 . 5 7 9 5 0 0 “ 0 . 8 8 5 0 . 5 5 6 5 0 0 “ 0 . 8 8 1 0 . 6 4 7 1 0 0 0 “ 0 . 8 9 1 0 . 5 8 8 1 0 3 0 “ 0 . 8 8 7 0 . 8 7 8 5 7 0 0 “ 0 . 9 0 2 0 . 8 6 1 5 0 0 0 “ 0 . 8 9 8 0 . 7 4 2 2 2 1 6 0 “ 0 . 9 1 0 0 . 7 2 0 1 0 0 0 0 “ 0 . 9 0 1 0 . 7 7 2 3 1 5 7 0 “ 0 . 9 1 1 0 . 7 3 5 1 2 5 0 0 “ 0 . 9 0 3 0 . 7 8 2 5 2 0 0 0 “ 0 . 9 1 4 0 . 7 5 7 1 3 0 0 0 “ 0 . 9 0 3 0 . 7 8 4 1 2 3 1 0 7 2 2 7 . 1 3 2 1 0 0 “ 0 . 8 7 3 0 . 4 8 9 1 2 2 1 0 7 2 5 8 . 8 0 1 1 0 0 “ 0 . 8 6 5 0 . 5 7 8 5 0 0 “ 0 . 8 8 7 0 . 5 5 7 5 0 0 “ 0 . 8 7 8 0 . 6 4 6 1 0 0 0 “ 0 . 8 9 2 0 . 5 8 8 1 0 0 0 “ 0 . 8 8 2 0 . 6 7 5 5 2 0 0 “ 0 . 9 0 4 0 . 6 5 7 5 0 0 0 “ 0 . 8 9 3 0 . 7 4 2 1 0 3 0 0 “ 0 . 9 0 9 0 . 6 8 6 1 0 0 0 0 “ 0 . 8 9 7 0 . 7 7 2 2 7 0 0 0 “ 0 . 9 1 4 0 . 7 2 8 1 2 1 0 0 “ 0 . 8 9 8 0 . 7 8 0 5 5 2 0 0 “ 0 . 9 1 7 0 . 7 6 0 1 2 2 1 0 7 3 5 7 . 1 5 3 1 0 0 “ 0 . 8 9 0 0 . 5 8 0 1 2 3 1 0 7 3 2 7 . 0 1 5 1 0 0 “ 0 . 8 6 5 0 . 4 8 8 5 0 0 “ 0 . 9 0 3 0 . 6 4 8 5 0 0 “ 0 . 8 8 0 0 . 5 5 8 1 0 0 0 “ 0 . 9 0 9 0 . 8 7 5 1 0 0 0 “ 0 . 8 8 5 0 . 5 8 6 5 0 0 0 “ 0 . 9 1 8 0 . 7 4 3 5 5 0 0 “ 0 . 8 9 6 0 . 6 5 9 1 0 0 0 0 “ 0 . 9 2 2 0 . 7 7 3 1 0 9 0 0 “ 0 . 9 0 1 0 . 8 8 9 1 3 0 0 0 “ 0 . 9 2 3 0 . 7 8 5 3 0 0 0 0 “ 0 . 9 0 8 0 . 7 3 3 1 2 3 1 0 7 1 1 7 . 2 4 7 1 0 0 “ 0 . 8 6 9 0 . 4 6 3 5 7 0 0 0 “ 0 . 9 0 9 0 . 7 6 1 5 0 0 “ 0 . 8 8 9 0 . 5 2 8 1 2 3 1 0 7 1 5 7 . 0 7 8 1 0 0 “ 0 . 8 8 5 0 . 5 8 7 1 0 0 0 “ 0 . 8 9 5 0 . 5 5 7 5 0 0 “ 0 . 9 0 0 0 . 8 5 2 5 0 0 0 “ 0 . 9 0 7 0 . 8 2 5 1 0 0 0 “ 0 . 9 0 4 0 . 8 8 2 1 0 0 0 0 “ 0 . 9 1 2 0 . 6 5 5 2 0 0 0 “ 0 . 9 0 9 0 . 7 1 1 2 8 0 0 0 “ 0 . 9 1 8 0 . 8 9 9 5 0 0 0 “ 0 . 9 1 4 0 . 7 5 0 1 6 7 4 4 0 “ 0 . 9 2 5 0 . 7 7 9 7 0 0 0 “ 0 . 9 1 6 0 . 7 8 4 1 2 3 1 0 7 2 1 7 . 1 7 2 1 0 0 “ 0 . 8 7 7 0 . 4 5 0 1 2 3 1 0 7 2 5 7 . 1 2 5 1 0 0 “ 0 . 8 8 9 0 . 5 8 7 5 0 0 “ 0 . 8 8 4 0 . 5 2 7 5 0 0 “ 0 . 9 0 2 0 . 8 5 3 1 0 0 0 “ 0 . 8 9 0 0 . 5 5 8 1 0 0 0 “ 0 . 9 0 8 0 . 8 8 2 5 0 0 0 “ 0 . 9 0 2 0 . 8 2 6 2 0 0 0 “ 0 . 9 1 2 0 . 7 1 1 1 0 3 0 0 “ 0 . 9 0 7 0 . 8 5 8 5 0 0 0 “ 0 . 9 1 7 0 . 7 5 0 S D ! I b e e n d e s i g n a t i o n n u m b e r ; A V I p e r c e n t a i r v o i d s ; I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d A , 8 I r e g r e s s i o n c o e f f i c i e n t s . T a b l e C . P a r a m e t e r s o f t h e d e f l e c t i o n b a s i n o f t h e 3 ! 5 C ) b e a m s p e c i m e n s . S D ! A V I I A 8 D ! A V 9 8 A 8 0 0 0 “ 0 . 9 2 0 0 . 7 7 0 1 8 9 0 1 0 “ 0 . 7 8 3 0 . 7 8 4 9 0 0 0 “ 0 . 9 2 0 0 . 7 7 5 2 2 1 1 0 6 3 2 5 . 1 1 1 1 0 0 “ 0 . 7 1 3 0 . 4 8 4 1 2 3 1 0 7 3 5 8 . 9 9 1 1 0 0 “ 0 . 8 7 8 0 . 5 8 8 5 5 0 “ 0 . 7 3 8 0 . 5 4 8 5 0 0 “ 0 . 8 9 2 0 . 8 5 3 1 0 0 0 “ 0 . 7 4 8 0 . 5 7 0 1 0 0 0 “ 0 . 8 9 7 0 . 8 8 2 5 8 0 0 “ 0 . 7 8 1 0 . 8 4 3 5 0 0 0 “ 0 . 9 0 8 0 . 7 5 0 1 0 8 5 0 “ 0 . 7 8 7 0 . 8 6 9 8 0 0 0 “ 0 . 9 0 9 0 . 7 5 7 2 0 2 5 0 “ 0 . 7 7 3 0 . 8 9 5 7 0 0 0 “ 0 . 9 1 0 0 . 7 8 4 3 8 0 0 0 “ 0 . 7 7 7 0 . 7 1 9 2 2 1 1 0 6 1 1 4 . 7 7 5 1 0 0 “ 0 . 8 8 9 0 . 4 5 0 1 8 4 8 0 0 “ 0 . 7 8 7 0 . 7 8 4 5 0 0 “ 0 . 7 0 7 0 . 5 1 4 2 2 1 1 0 8 1 5 4 . 9 8 3 1 0 0 “ 0 . 7 2 5 0 . 5 7 0 1 0 0 0 “ 0 . 7 1 9 0 . 5 4 1 5 0 0 “ 0 . 7 4 0 0 . 8 3 8 5 0 0 0 - 0 . 7 3 3 0 . 8 0 8 1 0 0 0 “ 0 . 7 4 8 0 . 8 6 2 1 0 0 0 0 “ 0 . 7 4 0 0 . 6 3 7 5 0 0 0 “ 0 . 7 6 2 0 . 7 2 8 3 0 0 0 0 “ 0 . 7 5 0 0 . 8 8 1 1 0 0 0 0 “ 0 . 7 8 8 0 . 7 5 8 1 8 3 0 0 0 “ 0 . 7 8 3 0 . 7 5 2 2 0 0 0 0 “ 0 . 7 7 3 0 . 7 8 5 2 2 1 1 0 6 2 1 4 . 8 0 2 1 0 0 “ 0 . 6 7 4 0 . 4 7 5 3 0 0 0 0 “ 0 . 7 7 8 0 . 8 0 2 5 0 0 “ 0 . 7 0 7 0 . 5 1 7 2 2 1 1 0 8 2 5 5 . 0 8 4 1 0 0 “ 0 . 7 3 1 0 . 5 7 1 1 0 0 0 “ 0 . 7 2 2 0 . 5 3 7 5 0 0 “ 0 . 7 4 8 0 . 6 3 8 5 5 0 0 “ 0 . 7 3 7 0 . 6 1 1 1 0 0 0 “ 0 . 7 5 6 0 . 8 8 2 1 0 2 0 0 “ 0 . 7 4 1 0 . 8 3 8 5 5 0 0 “ 0 . 7 7 0 0 . 7 3 2 2 7 8 0 0 “ 0 . 7 5 1 0 . 6 7 8 1 0 3 0 0 “ 0 . 7 7 5 0 . 7 5 8 1 8 9 8 8 5 “ 0 . 7 8 5 0 . 7 5 8 2 7 0 0 0 “ 0 . 7 8 2 0 . 7 9 8 2 2 1 1 0 8 3 1 4 . 9 2 9 1 0 0 “ 0 . 8 9 6 0 . 4 5 8 3 1 0 0 0 “ 0 . 7 8 3 0 . 8 0 4 5 0 0 “ 0 . 7 1 7 0 . 5 1 8 2 2 1 1 0 6 3 5 5 . 1 0 7 1 0 0 “ 0 . 7 3 4 0 . 5 8 9 1 0 0 0 - 0 . 7 2 7 0 . 5 4 3 ' 5 0 0 - 0 . 7 5 0 0 . 5 3 5 5 0 0 0 “ 0 . 7 4 4 0 . 8 0 8 1 0 0 0 “ 0 . 7 5 7 0 . 6 6 3 1 0 3 0 0 “ 0 . 7 5 1 0 . 8 3 8 5 0 0 0 “ 0 . 7 7 1 0 . 7 2 8 2 4 1 0 0 “ 0 . 7 5 8 0 . 8 7 3 1 0 0 0 0 “ 0 . 7 7 7 0 . 7 5 6 1 8 0 0 0 0 “ 0 . 7 7 3 0 . 7 5 7 2 3 2 0 0 “ 0 . 7 8 3 0 . 7 9 2 2 2 1 1 0 6 1 2 4 . 9 6 1 1 0 0 “ 0 . 7 1 4 0 . 4 8 8 3 3 0 0 0 “ 0 . 7 8 5 0 . 8 0 8 5 0 0 “ 0 . 7 2 7 0 . 5 4 4 3 2 1 1 0 8 1 1 5 . 1 9 5 1 0 0 “ 0 . 7 3 7 0 . 4 2 8 1 0 0 0 “ 0 . 7 3 3 0 . 5 7 4 5 0 0 “ 0 . 7 3 4 0 . 5 1 7 5 0 0 0 “ 0 . 7 5 1 0 . 8 3 7 1 0 0 0 “ 0 . 7 4 9 0 . 5 4 1 1 0 0 0 0 “ 0 . 7 5 8 0 . 8 8 8 5 0 0 0 “ 0 . 7 8 2 0 . 8 1 1 3 0 0 0 0 “ 0 . 7 8 8 0 . 7 1 1 1 0 0 0 0 “ 0 . 7 8 9 0 . 8 3 8 1 8 7 2 0 0 “ 0 . 7 7 7 0 . 7 8 3 2 7 0 0 0 “ 0 . 7 7 7 0 . 8 7 9 2 2 1 1 0 6 2 2 5 . 0 4 3 1 0 0 “ 0 . 7 1 3 0 . 4 7 6 1 8 4 7 0 0 “ 0 . 7 9 1 0 . 7 6 1 5 0 0 “ 0 . 7 3 0 0 . 5 4 8 3 2 1 1 0 6 2 1 5 . 0 7 8 1 0 0 “ 0 . 7 1 7 0 . 4 4 8 1 0 0 0 “ 0 . 7 3 9 0 . 5 7 3 5 0 0 “ 0 . 7 2 6 0 . 5 2 3 5 0 0 0 “ 0 . 7 5 8 0 . 8 3 7 1 0 0 0 “ 0 . 7 4 0 0 . 5 4 2 1 0 0 0 0 “ 0 . 7 8 2 0 . 8 8 8 5 0 0 0 “ 0 . 7 5 2 0 . 8 1 2 2 8 8 0 0 “ 0 . 7 7 0 0 . 7 0 8 1 0 3 4 5 “ 0 . 7 8 1 0 . 8 3 9 S D ! I b e e n d e s i g n a t i o n n u m b e r ; A V I p e r c e n t a i r v o i d s ; I I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d A , 8 I r e g r e s s i o n c o e f f i c i e n t s . T a b l e C . P b a e r a a m m e s t p e e r c s i m o e f n s t . h e d e f l e c t i o n b a s i n o f t h e 3 5 1 S D ! A V I 8 A 8 D ! A V I 8 A 2 5 0 0 0 “ 0 . 7 8 9 0 . 8 7 5 3 0 3 0 0 “ 0 . 7 7 4 0 . 8 0 3 1 8 2 0 0 0 “ 0 . 7 8 2 0 . 7 5 4 3 2 0 0 0 “ 0 . 7 7 4 0 . 8 0 5 3 2 1 1 0 8 3 1 . 1 8 2 1 0 0 “ 0 . 7 1 8 0 . 4 5 1 3 2 1 1 0 8 3 5 4 . 9 1 3 1 0 0 “ 0 . 7 1 9 0 . 5 7 0 5 0 0 “ 0 . 7 3 8 0 . 5 1 3 5 0 0 “ 0 . 7 3 8 0 . 8 3 5 1 0 0 0 “ 0 . 7 4 7 0 . 5 4 3 1 0 0 0 “ 0 . 7 4 3 0 . 8 8 4 5 0 0 0 “ 0 . 7 8 2 0 . 6 0 9 5 0 0 0 “ 0 . 7 5 7 0 . 7 2 8 1 0 8 5 0 “ 0 . 7 8 8 0 . 8 4 2 1 0 0 0 0 “ 0 . 7 8 3 0 . 7 5 7 3 0 0 0 0 “ 0 . 7 7 8 0 . 8 8 3 2 0 0 0 0 “ 0 . 7 8 8 0 . 7 8 5 1 8 4 3 0 0 “ 0 . 7 8 9 0 . 7 5 5 3 5 0 0 0 “ 0 . 7 7 2 0 . 8 0 9 3 2 1 1 0 6 1 2 . 1 2 7 1 0 0 “ 0 . 7 2 8 0 . 4 8 8 2 2 2 1 0 8 1 1 5 . 5 9 8 1 2 0 “ 0 . 8 0 0 “ 0 . 1 1 5 5 0 0 “ 0 . 7 3 7 0 . 5 4 7 5 0 0 “ 1 . 1 8 2 0 . 1 2 8 1 0 0 0 “ 0 . 7 4 7 0 . 5 7 2 1 0 0 0 “ 1 . 4 1 5 0 . 1 4 8 5 1 0 0 “ 0 . 7 6 1 0 . 8 4 0 5 0 0 0 “ 1 . 9 2 4 0 . 1 7 8 1 0 0 0 0 “ 0 . 7 8 8 0 . 8 8 7 1 0 0 0 0 “ 2 . 2 9 0 0 . 1 8 0 2 8 0 0 0 “ 0 . 7 7 6 0 . 7 1 0 3 0 3 0 0 “ 2 . 5 7 8 0 . 2 0 9 2 0 8 7 0 0 “ 0 . 7 8 9 0 . 7 9 4 1 8 7 4 0 0 “ 3 . 3 9 8 0 . 2 0 5 3 2 1 1 0 6 2 2 . 9 5 5 1 0 0 “ 0 . 7 1 8 0 . 4 8 8 2 2 2 1 0 6 2 1 5 . 9 3 8 1 0 0 “ 0 . 3 8 8 0 . 3 8 4 5 0 0 “ 0 . 7 2 9 0 . 5 4 1 5 0 0 “ 1 . 1 4 8 0 . 1 2 8 1 0 0 0 “ 0 . 7 3 3 0 . 5 7 4 1 5 0 0 “ 1 . 8 5 4 0 . 0 9 8 5 0 0 0 “ 0 . 7 4 9 0 . 6 3 9 5 0 0 0 “ 2 . 0 8 4 0 . 1 3 1 1 1 3 0 0 “ 0 . 7 5 7 0 . 8 7 2 1 0 0 5 0 “ 2 . 3 8 3 0 . 1 2 9 2 6 0 0 0 “ 0 . 7 8 4 0 . 7 0 8 2 1 3 0 0 “ 2 . 5 7 9 0 . 1 5 9 1 7 0 2 0 0 “ 0 . 7 7 7 0 . 7 8 5 1 7 0 5 0 0 “ 3 . 3 8 8 0 . 1 8 1 3 2 1 1 0 6 3 2 . 8 5 4 1 0 0 “ 0 . 8 9 1 0 . 4 8 9 2 2 2 1 0 8 3 1 5 . 7 2 3 1 0 0 “ 0 . 8 3 9 0 . 7 0 8 5 0 0 “ 0 . 7 1 8 0 . 5 4 7 5 0 0 “ 1 . 0 5 4 0 . 8 0 0 1 0 0 0 “ 0 . 7 2 6 0 . 5 7 4 1 0 0 0 “ 1 . 2 2 3 0 . 8 0 1 5 0 0 0 “ 0 . 7 4 2 0 . 8 3 9 8 0 0 0 “ 1 . 8 8 3 0 . 5 8 5 1 0 0 0 0 “ 0 . 7 4 9 0 . 8 8 8 1 0 1 0 0 “ 1 . 8 4 0 0 . 5 5 9 2 4 0 0 0 “ 0 . 7 5 8 0 . 7 0 2 2 0 0 0 0 “ 2 . 0 7 1 0 . 5 3 8 1 8 1 5 0 0 “ 0 . 7 7 0 0 . 7 8 2 2 2 2 1 0 8 1 2 5 . 5 0 2 1 0 0 “ 1 . 1 9 8 0 . 4 8 1 3 2 1 1 0 8 1 5 . 9 8 7 1 0 0 “ 0 . 7 2 5 0 . 5 7 0 5 0 0 “ 1 . 7 4 3 0 . 4 3 3 5 0 0 “ 0 . 7 4 2 0 . 8 3 5 1 0 0 0 “ 1 . 8 5 8 0 . 4 5 9 1 0 0 0 “ 0 . 7 4 9 0 . 8 8 3 8 0 0 0 “ 2 . 3 1 1 0 . 4 7 4 5 0 0 0 “ 0 . 7 8 3 0 . 7 2 9 1 0 0 0 0 “ 2 . 4 5 1 0 . 4 8 5 1 0 0 0 0 “ 0 . 7 8 8 0 . 7 5 7 5 2 0 0 0 “ 3 . 3 3 8 0 . 3 9 0 2 5 0 0 0 “ 0 . 7 7 5 0 . 7 9 5 2 2 2 1 0 8 2 2 5 . 7 7 8 1 0 0 “ 1 . 3 8 2 0 . 4 4 1 3 0 0 0 0 “ 0 . 7 7 8 0 . 8 0 3 5 0 0 “ 1 . 8 8 2 0 . 4 1 4 3 2 1 1 0 6 2 5 . 9 5 5 1 0 0 “ 0 . 7 2 1 0 . 5 7 1 1 0 0 0 “ 1 . 9 0 5 0 . 4 5 1 5 0 0 “ 0 . 7 3 9 0 . 8 3 8 5 0 0 0 “ 2 . 3 5 5 0 . 4 8 8 1 0 0 0 “ 0 . 7 4 5 0 . 8 8 4 1 1 1 0 0 “ 2 . 5 9 3 0 . 4 4 7 5 0 0 0 “ 0 . 7 8 0 0 . 7 2 9 4 9 5 0 0 “ 3 . 3 0 9 0 . 3 9 3 1 3 9 0 0 “ 0 . 7 8 8 0 . 7 7 1 2 2 2 1 0 8 3 2 5 . 3 1 8 1 0 0 “ 1 . 2 2 8 0 . 4 7 4 S D ! I b e a m d e s i g n a t i o n n u m b e r ; A V I p e r c e n t a i r v o i d s ; I I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d A . 8 I r e g r e s s i o n c o e f f i c i e n t s . 3 5 2 T a b l e C . P a r a m e t e r s o f t h e d e f l e c t i o n b a s i n o f t h e b e a m s p e c i m e n s . S D ! A V I 8 A 8 0 ! A V I 8 A 5 0 0 “ 1 . 7 0 1 0 . 4 4 0 5 0 0 0 . 5 7 5 0 . 1 0 5 1 0 0 0 “ 1 . 8 6 7 0 . 4 5 8 1 0 0 0 0 . 4 1 2 0 . 1 4 3 5 5 0 0 “ 2 . 2 7 8 0 . 4 7 9 5 0 0 0 0 . 2 9 2 0 . 0 8 0 1 2 0 0 0 “ 2 . 4 9 5 0 . 4 5 9 1 0 0 0 0 0 . 2 8 9 “ 0 . 0 2 8 8 3 5 0 0 “ 3 . 3 4 9 0 . 3 8 9 3 5 2 7 2 5 “ 0 . 0 2 9 1 . 3 9 3 2 2 2 1 0 6 1 5 4 . 1 2 8 1 1 0 “ 0 . 9 1 2 “ 0 . 0 8 5 1 1 1 2 0 5 1 2 3 . 1 1 8 1 0 0 0 . 9 3 8 “ 0 . 1 3 4 5 0 0 “ 1 . 1 1 8 0 . 2 9 3 5 1 0 0 . 5 8 2 “ 0 . 1 7 5 1 0 0 0 “ 1 . 4 0 2 0 . 3 1 9 1 0 2 0 0 . 3 9 4 “ 0 . 1 2 5 5 5 0 0 “ 1 . 8 2 2 0 . 3 7 2 5 0 0 0 0 . 1 9 5 “ 0 . 2 3 0 1 0 4 0 0 “ 1 . 9 8 1 0 . 3 7 6 1 0 0 0 0 0 . 0 8 7 “ 0 . 7 4 0 2 0 0 0 0 “ 2 . 1 8 1 0 . 3 7 2 3 1 0 0 0 “ 0 . 2 0 3 0 . 0 9 8 2 2 2 1 0 8 2 5 5 . 1 7 1 1 0 0 “ 0 . 9 2 7 0 . 4 4 1 1 8 1 5 0 0 “ 0 . 4 8 0 0 . 1 4 0 5 0 0 “ 1 . 3 3 1 0 . 4 6 3 3 2 7 7 0 0 “ 0 . 4 0 1 0 . 1 5 8 1 0 0 0 “ 1 . 3 9 8 0 . 4 9 9 5 0 1 3 7 0 “ 0 . 5 2 3 0 . 1 4 4 5 4 5 0 “ 1 . 9 1 5 0 . 4 3 6 1 1 1 2 0 5 2 2 3 . 1 8 5 1 0 0 0 . 2 0 2 “ 0 . 0 4 8 1 0 0 5 0 “ 2 . 0 9 8 0 . 3 9 9 5 0 0 “ 0 . 0 2 8 0 . 7 5 8 1 5 0 0 0 “ 2 . 3 5 8 0 . 3 5 8 1 0 0 0 “ 0 . 1 1 4 0 . 4 7 8 1 8 4 0 0 “ 2 . 4 5 8 0 . 3 6 1 5 1 0 0 “ 0 . 0 4 7 1 . 3 8 1 2 2 2 1 0 8 3 5 4 . 9 9 3 1 0 0 “ 0 . 8 3 5 0 . 4 7 4 1 0 4 0 0 “ 0 . 0 7 8 1 . 2 9 3 5 0 0 “ 1 . 2 2 5 0 . 4 9 0 2 0 3 0 0 “ 0 . 0 4 7 1 . 7 1 9 1 0 0 0 “ 1 . 3 4 1 0 . 5 1 2 1 7 8 9 0 0 “ 0 . 0 0 3 3 . 6 8 1 5 4 5 0 “ 1 . 8 8 5 0 . 4 4 0 5 1 6 8 0 0 “ 0 . 0 5 5 1 . 9 3 6 1 0 0 5 0 “ 2 . 0 6 8 0 . 4 0 3 8 9 1 8 0 0 “ 0 . 0 8 7 1 . 8 9 3 1 2 0 0 0 “ 2 . 1 3 6 0 . 3 8 5 1 1 1 2 0 5 3 2 3 . 1 2 5 1 3 0 0 . 2 4 8 0 . 4 2 3 1 7 0 0 0 “ 2 . 2 7 1 0 . 3 8 2 5 0 0 0 . 0 4 3 1 . 1 5 4 1 1 1 2 0 5 1 1 3 . 0 8 0 1 2 0 0 . 7 9 0 0 . 2 2 7 1 0 0 0 0 . 0 1 0 1 . 9 2 0 5 8 0 0 . 5 4 5 0 . 2 7 4 5 0 0 0 “ 0 . 3 3 0 “ 0 . 1 5 9 1 0 0 0 0 . 4 9 1 0 . 2 8 0 1 0 2 0 0 “ 0 . 3 4 3 0 . 1 0 6 5 0 0 0 0 . 2 8 8 0 . 4 5 4 2 0 0 0 0 “ 0 . 3 4 3 0 . 2 5 2 1 3 8 0 0 0 . 0 7 2 1 . 0 0 9 1 7 7 8 0 0 “ 0 . 8 2 9 0 . 3 9 2 2 0 0 0 0 0 . 0 9 3 0 . 7 5 8 3 4 1 0 0 0 “ 0 . 8 5 7 0 . 4 2 1 2 7 9 0 0 0 . 0 9 2 0 . 7 7 1 1 1 1 2 0 5 1 5 3 . 1 5 4 1 0 0 0 . 4 5 8 0 . 2 8 0 1 7 2 8 0 0 “ 0 . 4 0 8 “ 0 . 9 1 9 5 0 0 0 . 1 8 0 0 . 3 8 5 3 3 8 3 0 0 “ 0 . 5 0 5 “ 0 . 4 3 7 1 0 0 0 0 . 1 4 5 0 . 3 1 5 7 1 5 7 0 0 “ 0 . 8 3 7 “ 0 . 2 0 8 5 8 0 0 “ 0 . 1 4 9 0 . 2 9 1 8 8 1 9 0 0 “ 0 . 8 9 4 “ 0 . 1 8 7 1 0 0 0 0 “ 0 . 2 0 8 0 . 3 8 2 1 1 1 2 0 5 2 1 3 . 0 2 9 1 0 0 1 . 3 3 0 “ 0 . 0 0 2 1 9 5 0 0 “ 0 . 2 5 9 0 . 4 0 8 5 0 0 1 . 0 9 2 “ 0 . 0 3 3 1 7 0 9 0 0 “ 0 . 4 5 1 0 . 5 4 7 1 0 0 0 0 . 9 2 2 “ 0 . 0 5 3 3 4 8 1 0 0 “ 0 . 4 0 1 0 . 8 8 7 5 0 0 0 0 . 7 2 1 “ 0 . 0 8 8 1 1 1 2 0 5 2 5 3 . 1 3 7 1 0 0 0 . 5 9 9 “ 0 . 3 7 3 1 0 5 0 0 0 . 5 5 5 “ 0 . 1 8 4 5 0 0 0 . 3 4 2 “ 0 . 5 1 4 1 1 1 2 0 5 3 1 3 . 1 8 8 1 0 0 0 . 7 2 5 0 . 1 5 9 1 1 0 0 0 . 3 0 5 “ 0 . 2 5 4 S D ! I b e a m d e s i g n a t i o n n d e r ; A V I p e r c e n t a i r v o i d s ; I I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d A . 8 I r e g r e s s i o n c o e f f i c i e n t s . T a b l e C . m P b a e r a a m e s t p e e r c s i m o e f n s t . h e d e f l e c t i o n b a s i n o f t h e 3 5 3 S D ! A V I 8 A S D ! A V I 8 A 5 4 0 0 0 . 2 8 1 “ 0 . 9 9 8 8 4 3 9 5 0 “ 1 . 4 8 4 0 . 1 7 3 1 0 4 0 0 0 . 3 2 0 “ 1 . 4 8 5 1 1 3 2 0 5 2 2 3 . 2 9 7 1 0 0 0 . 3 8 3 “ 0 . 3 4 3 2 3 2 0 0 0 . 4 0 1 “ 1 . 7 9 1 5 0 0 0 . 8 2 1 “ 1 . 9 8 4 1 2 3 9 0 0 “ 0 . 0 8 5 0 . 8 8 9 5 0 0 0 “ 0 . 0 0 5 2 . 8 5 8 3 3 9 2 0 0 “ 0 . 1 7 4 0 . 7 0 2 1 0 0 0 0 “ 0 . 0 5 4 1 . 4 8 0 4 7 0 0 0 0 “ 0 . 2 5 5 0 . 5 9 5 2 7 8 0 0 “ 0 . 0 7 1 1 . 4 0 0 1 1 1 2 0 5 3 5 5 0 0 0 . 2 8 6 “ 0 . 1 1 2 5 0 1 1 5 0 “ 0 . 3 7 9 0 . 7 3 9 1 0 0 0 0 . 1 2 1 “ 0 . 2 5 8 1 1 3 2 0 5 3 2 3 . 2 0 2 1 0 0 0 . 3 8 8 “ 0 . 3 1 3 5 1 0 0 “ 0 . 1 8 3 0 . 4 3 8 5 0 0 0 “ 0 . 0 0 8 2 . 7 9 8 1 0 5 0 0 “ 0 . 1 7 1 0 . 5 1 0 1 1 1 0 0 “ 0 . 0 1 7 2 . 1 6 5 2 7 0 0 0 “ 0 . 3 5 0 0 . 3 6 6 3 1 8 0 0 “ 0 . 0 2 5 2 . 0 0 0 1 8 4 1 0 0 “ 0 . 8 8 0 0 . 2 8 4 1 7 1 6 0 0 “ 0 . 3 1 9 0 . 6 8 6 5 1 0 0 0 0 “ 0 . 8 4 3 0 . 2 7 9 3 4 9 4 0 0 “ 0 . 3 9 7 0 . 8 4 8 1 0 8 1 5 0 0 “ 0 . 9 9 0 0 . 2 8 3 8 2 7 9 0 0 “ 0 . 4 1 8 0 . 8 8 1 1 1 3 2 0 5 1 1 3 . 1 8 2 1 0 0 0 . 1 8 6 1 . 4 7 1 7 2 0 0 0 0 “ 0 . 4 2 9 0 . 8 8 7 5 5 0 0 . 0 4 0 2 . 2 3 2 1 1 3 2 0 5 1 5 2 . 4 3 1 1 0 0 1 . 0 7 9 “ 0 . 0 0 3 1 0 0 0 0 . 0 0 1 4 . 9 0 0 5 0 0 0 . 7 9 2 “ 0 . 1 1 3 3 0 9 7 5 “ 3 . 7 2 2 “ 2 . 2 7 1 1 0 0 0 0 . 7 3 2 “ 0 . 2 0 6 3 2 7 8 8 8 “ 2 . 6 4 1 “ 0 . 9 7 8 5 0 0 0 1 . 0 1 4 “ 1 . 9 6 0 5 1 1 0 5 0 “ 2 . 3 9 5 “ 0 . 7 3 6 1 0 1 5 0 3 . 0 8 9 “ 3 . 8 3 0 1 1 3 2 0 5 2 1 3 . 3 0 2 1 0 0 “ 0 . 3 8 8 0 . 5 4 9 3 5 9 0 0 “ 0 . 0 0 8 2 . 6 9 2 5 0 0 “ 0 . 6 6 5 0 . 3 0 5 1 5 7 9 0 0 “ 0 . 1 8 7 1 . 0 2 0 1 0 0 0 “ 0 . 7 9 7 0 . 2 8 1 3 3 4 8 0 0 “ 0 . 3 6 0 0 . 7 1 3 5 5 0 0 “ 1 . 1 2 7 0 . 1 5 6 1 1 3 2 0 5 2 5 2 . 9 6 1 1 0 0 1 . 2 7 5 “ 0 . 0 2 5 1 0 0 0 0 “ 1 . 1 0 9 0 . 1 5 7 5 0 0 0 . 9 8 3 “ 0 . 0 8 5 3 0 1 4 0 “ 1 . 2 7 8 0 . 1 1 7 1 0 0 0 0 . 8 3 7 “ 0 . 0 9 3 1 8 7 8 2 0 “ 1 . 8 8 4 0 . 0 7 3 5 0 0 0 0 . 4 7 4 “ 0 . 3 4 8 4 9 7 2 5 0 “ 1 . 7 5 3 0 . 0 9 2 1 0 7 0 0 0 . 3 6 7 “ 0 . 5 8 9 1 1 3 2 0 5 3 1 1 0 0 0 “ 0 . 0 4 0 1 . 8 3 5 1 9 1 2 0 0 “ 0 . 3 2 8 0 . 4 4 0 5 0 0 0 “ 0 . 1 9 9 0 . 8 5 1 3 5 1 4 5 0 “ 0 . 4 4 1 0 . 3 9 0 1 1 5 0 0 “ 0 . 3 3 5 0 . 8 7 7 1 1 3 2 0 5 3 5 3 . 6 4 2 1 0 0 “ 0 . 0 5 2 0 . 6 4 2 3 8 3 0 0 “ 0 . 8 1 9 0 . 4 4 4 5 0 0 “ 0 . 3 2 3 0 . 2 3 5 3 8 2 0 0 0 “ 1 . 1 2 4 0 . 2 8 7 1 0 0 0 “ 0 . 2 9 6 0 . 3 2 6 8 8 2 0 0 0 “ 1 . 1 7 2 0 . 2 9 1 5 3 0 0 “ 0 . 5 4 9 0 . 3 0 1 8 9 9 3 5 0 “ 1 . 1 9 5 0 . 2 9 3 1 0 2 2 5 “ 0 . 8 4 8 0 . 3 0 1 1 1 3 2 0 5 1 2 5 0 0 “ 0 . 4 1 5 0 . 0 7 5 3 0 0 0 0 “ 0 . 7 4 1 0 . 2 8 4 1 0 0 0 “ 0 . 4 0 2 0 . 1 8 2 1 5 3 1 0 0 “ 0 . 9 7 1 0 . 2 0 7 5 0 0 0 “ 0 . 5 5 2 0 . 2 3 7 3 2 5 3 0 0 “ 1 . 0 9 0 0 . 1 9 8 1 0 2 0 0 “ 0 . 7 1 4 0 . 2 0 1 5 0 1 2 0 0 “ 1 . 1 7 9 0 . 1 8 5 2 1 9 0 0 “ 0 . 8 8 7 0 . 1 9 2 2 2 1 2 0 6 1 1 4 . 8 8 8 1 0 0 “ 0 . 3 0 9 0 . 8 1 5 1 3 5 6 0 0 “ 1 . 0 9 7 0 . 2 0 0 5 0 0 “ 0 . 5 9 9 0 . 5 7 7 4 9 3 4 0 0 “ 1 . 4 2 9 0 . 1 7 1 1 0 0 0 “ 0 . 7 1 4 0 . 5 0 7 8 0 ! I b e e n d e s i g n a t i o n n u m b e r ; A V I p e r c e n t a i r v o i d s ; I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d A . 8 I r e g r e s s i o n c o e f f i c i e n t s . 3 5 4 T a b l e C . P a r a m e t e r s o f t h e d e f l e c t i o n b a s i n o f t h e b e a m s p e c i m e n s . S D ! A V I 8 A 8 9 ! A V I 8 A 7 7 0 0 “ 0 . 9 1 8 0 . 4 4 9 3 2 8 5 0 0 “ 1 . 7 4 5 0 . 1 3 5 1 0 5 0 0 “ 1 . 0 1 1 0 . 4 3 4 4 9 0 0 0 0 “ 1 . 8 8 0 0 . 1 5 2 1 3 4 6 0 0 “ 1 . 3 1 1 0 . 4 0 7 8 8 7 0 0 0 “ 1 . 8 2 3 0 . 1 4 9 3 0 9 3 0 0 “ 1 . 4 1 2 0 . 4 2 7 2 2 1 2 0 6 3 2 5 . 0 7 4 1 0 0 “ 0 . 7 9 0 0 . 0 9 8 1 0 1 1 9 0 0 “ 1 . 8 1 1 0 . 4 2 3 5 0 0 “ 1 . 0 7 8 0 . 0 9 8 2 2 1 2 0 6 2 1 4 . 9 4 4 1 0 0 “ 0 . 5 4 5 0 . 8 2 8 1 0 0 0 “ 1 . 2 1 0 0 . 1 0 2 5 0 0 “ 0 . 7 8 9 0 . 4 8 4 5 0 0 0 “ 1 . 1 7 8 0 . 1 9 9 1 0 0 0 “ 0 . 7 7 2 0 . 4 5 7 1 0 8 0 0 “ 1 . 2 4 3 0 . 2 1 8 5 0 0 0 “ 0 . 8 8 5 0 . 4 4 5 1 4 7 1 5 0 “ 1 . 3 0 2 0 . 3 5 1 1 0 0 0 0 “ 0 . 9 1 5 0 . 4 3 9 3 2 0 1 0 0 “ 1 . 3 3 9 0 . 3 8 1 3 0 5 0 0 “ 0 . 9 8 8 0 . 4 4 1 5 0 5 0 0 0 “ 1 . 3 8 4 0 . 3 9 5 1 8 5 8 0 0 “ 1 . 0 5 4 0 . 4 3 8 2 2 1 2 0 8 1 5 5 . 1 1 5 1 0 0 “ 0 . 0 8 2 0 . 4 9 8 3 3 0 5 3 8 “ 1 . 0 8 5 0 . 4 8 0 5 0 0 “ 0 . 5 2 7 0 . 1 2 1 5 1 5 9 0 0 “ 1 . 0 8 4 0 . 4 7 4 1 0 0 0 “ 0 . 7 2 5 0 . 0 9 1 8 7 8 9 0 0 “ 1 . 1 1 9 0 . 4 5 9 5 0 0 0 “ 0 . 9 3 8 0 . 1 2 3 8 9 5 7 0 0 “ 1 . 1 5 2 0 . 4 5 1 1 0 0 0 0 “ 1 . 1 5 5 0 . 1 1 7 2 2 1 2 0 6 3 1 5 . 0 7 6 1 0 0 “ 0 . 9 4 8 0 . 0 9 2 3 8 4 0 0 “ 1 . 3 7 5 0 . 1 2 3 5 0 0 “ 1 . 1 9 3 0 . 1 1 5 1 5 8 7 0 0 “ 1 . 8 8 3 0 . 1 0 6 1 2 4 0 “ 1 . 3 2 7 0 . 0 8 7 3 3 2 9 0 0 “ 1 . 7 9 5 0 . 0 9 5 5 0 0 0 “ 1 . 7 0 8 0 . 0 1 7 2 2 1 2 0 6 2 5 4 . 9 1 4 1 0 0 “ 0 . 8 7 2 “ 0 . 5 7 1 1 0 0 0 0 “ 1 . 7 7 8 0 . 0 2 4 5 0 0 “ 1 . 0 8 8 “ 0 . 3 1 8 4 9 4 0 0 “ 1 . 7 3 4 0 . 0 5 6 1 1 0 0 “ 1 . 1 2 8 “ 0 . 1 7 0 1 7 1 6 0 0 “ 1 . 8 4 3 0 . 0 4 4 5 5 0 0 “ 1 , 4 0 9 0 , 0 0 7 3 5 9 0 0 0 “ 1 . 9 3 5 0 . 0 4 8 1 0 9 0 0 “ 1 . 5 4 7 0 . 0 1 4 5 1 1 4 0 0 “ 1 . 9 9 7 0 . 0 4 4 2 2 0 0 0 “ 1 . 8 5 3 0 . 0 3 1 7 0 8 0 0 0 “ 2 . 0 3 3 0 . 0 4 1 1 8 1 7 0 0 “ 1 . 9 1 8 0 . 0 4 3 2 2 1 2 0 6 1 2 4 . 8 3 1 1 0 0 0 . 5 2 9 “ 0 . 0 5 5 3 5 3 2 0 0 “ 2 . 2 5 1 0 . 0 3 7 5 0 0 0 . 0 5 1 “ 0 . 4 9 5 2 2 1 2 0 8 3 5 5 . 1 5 5 1 0 0 “ 0 . 8 7 3 0 . 0 3 8 1 0 0 0 “ 0 . 0 2 3 0 . 8 9 5 5 0 0 “ 1 . 1 0 8 “ 0 . 0 0 8 5 0 0 0 “ 0 . 2 3 4 0 . 2 0 9 5 5 0 0 “ 1 . 3 4 2 “ 0 . 0 1 5 1 0 0 0 0 “ 0 . 3 7 8 0 . 1 5 8 1 0 0 0 0 “ 1 . 4 9 2 “ 0 . 0 8 0 1 3 8 2 0 0 “ 1 . 0 8 0 0 . 0 7 8 1 2 8 0 0 0 “ 1 . 9 2 2 “ 0 . 1 4 8 1 1 1 1 1 “ 0 . 1 5 0 0 . 4 7 2 3 3 7 9 0 0 “ 2 . 0 7 8 “ 0 . 1 4 9 3 2 2 9 0 0 “ 0 . 9 7 9 0 . 1 2 5 3 2 1 2 0 6 1 1 5 . 2 2 8 1 0 0 “ 1 . 3 0 2 0 . 2 8 1 4 9 5 8 0 0 “ 1 . 1 7 0 0 . 1 0 0 5 0 0 “ 0 . 8 7 9 0 . 4 5 9 2 2 1 2 0 6 2 2 4 . 8 0 8 1 0 0 “ 0 . 5 8 8 0 . 1 1 2 1 0 0 0 “ 0 . 5 8 0 0 . 8 3 3 5 0 0 “ 0 . 9 1 0 0 . 0 8 5 5 5 0 0 “ 0 . 2 4 0 1 . 1 2 1 1 0 0 0 “ 1 . 0 9 8 0 . 0 9 3 1 2 0 0 0 “ 0 . 0 4 8 2 . 0 9 0 5 0 0 0 “ 1 . 0 4 4 0 . 1 7 0 3 7 0 0 0 “ 0 . 0 0 9 3 . 2 7 1 1 0 0 0 0 “ 1 . 0 9 5 0 . 1 8 7 3 2 1 2 0 8 2 1 5 . 2 2 0 1 0 0 “ 1 . 3 3 2 0 . 2 7 8 3 3 5 0 0 “ 1 . 3 2 8 0 . 1 5 0 5 0 0 “ 0 . 8 1 0 0 . 4 8 5 1 4 3 0 0 0 “ 1 . 5 5 9 0 . 1 4 8 1 0 0 0 “ 0 . 5 0 8 0 . 8 8 4 S D ! I b e a m d e s i g n a t i o n n u m b e r ; A V I p e r c e n t a i r v o i d s ; N I n u m b e r o f l o a d a p p l i c a t i o n s ; a n d A , B I r e g r e s s i o n c o e f f i c i e n t s . 3 5 5 T a b l e C . P a r a m e t e r s o f t h e d e f l e c t i o n b a s i n o f t h e b e a m s p e c i m e n s . S D ! A V I 8 A S D ! A V I 8 A 5 0 0 0 “ 0 . 2 3 1 1 . 1 3 9 1 0 0 0 0 “ 0 . 7 9 7 0 . 3 1 0 1 0 0 0 0 “ 0 . 0 2 0 2 . 8 5 5 2 9 8 0 0 “ 0 . 8 7 3 0 . 3 7 6 2 9 5 0 0 “ 0 . 0 0 0 5 . 9 0 3 1 9 9 5 0 0 “ 1 . 1 8 4 0 . 3 5 5 3 2 1 2 0 8 3 1 5 . 2 0 9 1 0 0 “ 1 . 2 8 3 0 . 2 8 4 4 9 0 7 0 0 “ 1 . 2 5 0 0 . 3 4 8 5 0 0 “ 0 . 8 5 5 0 . 4 8 8 8 6 2 5 0 0 “ 1 . 3 8 9 0 . 3 3 6 1 0 0 0 “ 0 , 5 8 5 0 , 6 3 0 3 2 1 2 0 6 3 5 5 . 4 1 6 1 0 0 “ 0 . 4 9 7 0 . 2 8 9 5 1 0 0 “ 0 . 2 4 7 1 . 1 0 6 5 0 0 “ 0 . 8 0 6 0 . 2 1 7 1 0 5 0 0 “ 0 . 0 2 9 2 . 4 1 8 1 0 0 0 “ 0 . 8 8 8 0 . 2 1 0 3 2 1 2 0 6 1 2 5 . 1 7 6 1 0 0 “ 1 . 3 2 9 0 . 2 7 7 5 0 0 0 “ 1 . 1 4 7 0 . 1 7 5 5 0 0 “ 0 . 8 4 0 0 . 4 7 4 1 0 0 0 0 “ 1 . 3 9 3 0 . 1 5 5 2 0 0 0 “ 0 . 6 8 8 0 . 5 7 1 3 3 3 0 0 “ 1 . 5 5 5 0 . 1 4 9 5 1 0 0 “ 0 . 1 4 8 1 . 3 7 6 1 5 0 4 0 0 “ 2 . 0 1 5 0 . 1 2 0 1 4 2 0 0 “ 0 . 0 7 2 1 . 8 3 9 3 5 3 2 0 0 “ 2 . 1 9 9 0 . 1 1 8 3 2 1 2 0 8 2 2 5 . 4 1 4 1 0 0 “ 0 . 1 8 7 0 . 5 3 2 5 0 0 “ 0 . 4 8 7 0 . 2 6 0 1 0 0 0 “ 0 . 4 8 6 0 . 2 8 5 5 0 0 0 “ 0 . 8 8 0 0 . 1 5 4 1 0 0 0 0 “ 0 . 9 2 9 0 . 1 8 0 1 5 3 8 0 0 “ 1 . 4 0 4 0 . 1 3 0 3 2 2 4 0 0 “ 1 . 8 5 0 0 . 1 1 8 4 7 1 9 0 0 “ 1 . 6 3 8 0 . 1 1 9 6 9 8 0 0 0 “ 1 . 8 3 1 0 . 1 0 5 3 2 1 2 0 8 3 2 5 . 0 5 2 1 0 0 “ 0 . 3 2 2 0 . 5 5 7 5 0 0 “ 0 . 4 8 7 0 . 4 6 0 1 0 0 0 “ 0 . 6 5 6 0 . 4 1 1 5 0 0 0 “ 0 . 8 3 9 0 . 3 8 8 1 0 0 0 0 “ 0 . 9 7 5 0 . 3 8 7 2 2 7 0 0 “ 1 . 0 3 0 0 . 3 7 7 1 4 7 9 5 0 “ 1 . 2 6 1 0 . 3 7 0 4 8 1 8 0 0 “ 1 . 5 0 6 0 . 3 3 9 1 0 2 5 5 0 0 “ 1 . 5 2 3 0 . 3 4 5 1 1 9 4 9 0 0 “ 1 . 6 9 7 0 . 3 2 3 3 2 1 2 0 6 1 5 5 . 1 3 8 1 0 0 “ 1 . 2 8 3 0 . 2 8 8 5 0 0 “ 0 . 8 0 1 0 . 4 8 9 1 0 0 0 “ 0 . 5 7 5 0 . 8 3 6 5 0 0 0 “ 0 . 2 1 3 1 . 1 8 1 1 2 0 0 0 “ 0 . 0 4 9 2 . 0 8 0 3 2 5 0 0 “ 0 . 0 0 2 4 . 3 5 8 3 2 1 2 0 6 2 5 5 . 2 3 4 1 0 0 “ 0 . 4 3 5 0 . 2 1 3 5 0 0 “ 0 . 8 8 1 0 . 1 7 5 1 0 0 0 “ 0 . 7 5 4 0 . 2 0 5 5 0 0 0 “ 0 . 8 1 4 0 . 2 7 5 S D ! I b e a n d e s i g n a t i o n m n b e r ; A V I p e r c e n t a i r v o i d s ; I I n u n b a r o f l o a d a p p l i c a t i o n s ; a n d A , 8 I r e g r e s s i o n c o e f f i c i e n t s . A P P E N D I X D T h e c a l c u l a t e d f a t i g u e l i v e s o f t h e b e a m s p e c i m e n s b a s e d o n a m a x i m u m a l l o w a b l e c u m l a t i v e p l a s t i c d e f o r m a t i o n u n d e r t h e l o a d e d a r e a o f 0 . 4 5 - i n . a r e p r e s e n t e d i n t h i s A p p e n d i x . 3 5 6 3 5 7 T a b l e D . F a t i g u e l i f e o f b e a m s p e c i m e n s b a s e d o n a m a x i m u m a l l o w a b l e c u m u l a t i v e p l a s t i c g e f o r m a t i o n o f 0 . 4 5 a n d 0 . 1 - i n f o r t h e 7 7 a n d 4 0 F t e s t s , r e s p e c t i v e l y . S D # A V K V A N G C S T T C D Z / C D l N F L C D 1 1 1 1 1 0 5 1 1 2 . 9 0 9 2 7 0 4 5 0 7 7 0 . 3 0 0 3 5 1 2 0 8 1 4 5 0 0 . 0 1 1 1 1 0 5 2 1 2 . 9 5 1 2 7 0 4 5 0 7 7 0 . 2 9 9 3 4 3 1 2 0 8 4 5 0 0 . 0 1 1 1 1 0 5 3 1 3 . 0 0 1 2 7 0 4 5 0 7 7 0 . 2 9 7 3 3 3 5 6 0 8 4 5 0 0 . 0 1 1 1 1 0 5 1 2 2 . 9 8 2 2 7 0 4 1 0 0 7 7 0 . 3 0 9 8 8 5 9 2 9 4 5 0 0 . 0 1 1 1 1 0 5 2 2 3 . 1 1 6 2 7 0 4 1 0 0 7 7 0 . 3 0 5 8 2 2 1 8 5 4 5 0 0 . 0 1 1 1 1 0 5 3 2 3 . 0 1 5 2 7 0 4 1 0 0 7 7 0 . 3 0 8 8 6 9 6 8 3 4 5 0 0 . 0 1 1 1 1 0 5 1 5 3 . 0 6 1 2 7 0 4 2 5 0 7 7 0 . 3 0 4 1 4 4 9 1 4 4 5 0 0 . 0 1 1 1 1 0 5 2 5 3 . 0 3 3 2 7 0 4 2 5 0 7 7 0 . 3 0 5 1 4 7 1 9 7 4 5 0 0 . 0 1 1 1 1 0 5 3 5 3 . 0 6 8 2 7 0 4 2 5 0 7 7 0 . 3 0 4 1 4 4 3 4 1 4 5 0 0 . 0 1 1 2 1 0 5 1 1 3 . 1 7 2 2 1 2 4 5 0 7 7 0 . 2 9 3 2 4 0 7 8 2 8 4 5 0 0 . 0 1 1 2 1 0 5 2 1 3 . 0 1 6 2 1 2 4 5 0 7 7 0 . 2 9 8 2 6 2 7 0 0 8 4 5 0 0 . 0 1 1 2 1 0 5 3 1 3 . 0 3 2 2 1 2 4 5 0 7 7 0 . 2 9 7 2 6 0 3 9 7 6 4 5 0 0 . 0 1 1 2 1 0 5 1 2 3 . 0 8 3 2 1 2 4 1 0 0 7 7 0 . 3 0 6 6 6 5 0 1 9 4 5 0 0 . 0 1 1 2 1 0 5 2 2 3 . 1 1 1 2 1 2 4 1 0 0 7 7 0 . 3 0 6 6 5 4 4 5 9 4 5 0 0 . 0 1 1 2 1 0 5 3 2 3 . 1 5 4 2 1 2 4 1 0 0 7 7 0 . 3 0 4 6 3 9 0 5 0 4 5 0 0 . 0 1 1 2 1 0 5 1 5 3 . 0 4 5 2 1 2 4 2 5 0 7 7 0 . 3 0 6 1 1 6 0 6 4 4 5 0 0 . 0 1 1 2 1 0 5 2 5 3 . 0 7 4 2 1 2 4 2 5 0 7 7 0 . 3 0 5 1 1 4 1 8 2 4 5 0 0 . 0 1 1 2 1 0 5 3 5 3 . 1 4 3 2 1 2 4 2 5 0 7 7 0 . 3 0 3 1 0 9 8 7 2 4 5 0 0 . 0 1 1 3 1 0 5 1 1 3 . 0 0 0 1 5 9 4 5 0 7 7 0 . 2 9 9 2 1 4 7 0 5 5 4 5 0 0 . 0 1 1 3 1 0 5 2 1 2 . 9 9 4 1 5 9 4 5 0 7 7 0 . 2 9 9 2 1 5 3 6 6 0 4 5 0 0 . 0 1 1 3 1 0 5 3 1 3 . 0 0 8 1 5 9 4 5 0 7 7 0 . 2 9 8 2 1 3 6 7 4 8 4 5 0 0 . 0 1 1 3 1 0 5 1 2 3 . 0 1 4 1 5 9 4 1 0 0 7 7 0 . 3 0 9 5 5 9 7 8 1 4 5 0 0 . 0 1 1 3 1 0 5 2 2 3 . 0 6 0 1 5 9 4 1 0 0 7 7 0 . 3 0 8 5 4 5 3 2 0 4 5 0 0 . 0 1 1 3 1 0 5 3 2 3 . 0 8 1 1 5 9 4 1 0 0 7 7 0 . 3 0 7 5 3 9 0 5 3 4 5 0 0 . 0 1 1 3 1 0 5 1 5 3 . 0 3 9 1 5 9 4 2 5 0 7 7 0 . 3 0 7 9 4 2 9 4 4 5 0 0 . 0 1 1 3 1 0 5 2 5 3 . 2 2 0 1 5 9 4 2 5 0 7 7 0 . 3 0 1 8 5 2 7 0 4 5 0 0 . 0 1 1 3 1 0 5 3 5 2 . 9 3 2 1 5 9 4 2 5 0 7 7 0 . 3 1 0 1 0 0 1 4 5 4 5 0 0 . 0 1 1 1 1 0 6 1 1 4 . 1 4 1 2 7 0 4 5 0 7 7 0 . 2 6 6 1 7 6 5 3 0 5 4 5 0 0 . 0 1 1 1 1 0 6 2 1 4 . 0 3 5 2 7 0 4 5 0 7 7 0 . 2 6 8 1 8 7 2 9 2 4 4 5 0 0 . 0 1 1 1 1 0 6 3 1 3 . 9 5 7 2 7 0 4 5 0 7 7 0 . 2 7 0 1 9 5 6 1 0 9 4 5 0 0 . 0 1 1 1 1 0 6 1 2 2 . 7 5 2 2 7 0 4 1 0 0 7 7 0 . 3 1 6 1 0 0 7 7 0 1 4 5 0 0 . 0 S D # = s a m p l e d e s i g n a t i o n n u m b e r : A V = p e r c e n t a i r v o i d s ( A V = 3 t o 7 ) ; K V = k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : A N G = a n g u l a r i t y : C 8 = c y c l i c s t r e s s ( p s i A = c y c l i c l o a d / l o a d e d a r e a ; T T = t e s t t e m p e r a t u r e ( F ) : N = n u m b e r o f l o a d a p p l i c a t i o n s t o f a t i g u e f a i l u r e : C 5 1 = c u m u l a t i v e p l a s t i g 4 d e f o r m a t i o n a t t h e c e n t e r o f t h e l o a d e d a r e a ( x 1 0 i n . ) ; a n d C 0 2 = c u m u l a t i v e p l a s t i c d e f o r m a t i o n a t a r a d i a l d i s t a n c e o f 2 . 2 5 - i n f r o m t h e c e n t e r o f t h e l o a d e d a r e a ( x 1 0 i n . ) . 3 5 8 2 . 2 5 - i n f r o m t h e c e n t e r o f t h e T a b l e D . F a t i g u e l i f e o f b e a m s p e c i m e n s b a s e d o n a m a x i m u m a l l o w a b l e c u m u l a t i v e p l a s t i c d e f o r m a t i o n o f 0 . 4 5 a n d 0 . 1 - i n f o r t h e 7 7 a n d 4 0 F t e s t s , r e s p e c t i v e l y . S D # A V K V A N G C S T T C D 2 / C D l N F L C D 1 1 1 1 1 0 6 2 2 5 . 4 2 1 2 7 0 4 1 0 0 7 7 0 . 2 4 5 2 2 6 9 6 7 4 5 0 0 . 0 1 1 1 1 0 8 3 2 4 . 3 5 8 2 7 0 4 1 0 0 7 7 0 . 2 7 0 4 1 1 0 5 3 4 5 0 0 . 0 1 1 1 1 0 6 1 5 5 . 3 0 3 2 7 0 4 2 5 0 7 7 0 . 2 4 5 4 1 4 3 7 4 5 0 0 . 0 1 1 1 1 0 6 2 5 2 . 6 7 6 2 7 0 4 2 5 0 7 7 0 . 3 1 7 1 7 9 6 6 9 4 5 0 0 . 0 1 1 1 1 0 6 3 5 3 . 1 7 8 2 7 0 4 2 5 0 7 7 0 . 3 0 1 1 3 5 7 6 0 4 5 0 0 . 0 1 1 1 1 0 7 1 1 6 . 6 8 3 2 7 0 4 5 0 7 7 0 . 2 1 0 4 2 7 1 0 5 4 5 0 0 . 0 1 1 1 1 0 7 1 1 3 . 7 0 4 2 7 0 4 5 0 7 7 0 . 2 7 7 2 2 5 3 5 0 1 4 5 0 0 . 0 1 1 1 1 0 7 2 1 5 . 1 9 1 2 7 0 4 5 0 7 7 0 . 2 4 0 9 8 2 1 0 5 4 5 0 0 . 0 1 1 1 1 0 7 3 1 4 . 0 8 8 2 7 0 4 5 0 7 7 0 . 2 6 7 1 8 1 8 8 4 6 4 5 0 0 . 0 . 1 1 1 1 0 7 1 2 5 . 8 0 2 2 7 0 4 1 0 0 7 7 0 . 2 3 6 1 8 3 4 9 5 4 5 0 0 . 0 1 1 1 1 0 7 1 2 6 . 5 8 6 2 7 0 4 1 0 0 7 7 0 . 2 2 1 1 1 8 4 9 8 4 5 0 0 . 0 1 1 1 1 0 7 1 2 4 . 9 4 6 2 7 0 4 1 0 0 7 7 0 . 2 5 6 2 9 5 9 3 5 4 5 0 0 . 0 1 1 1 1 0 7 2 2 6 . 0 2 3 2 7 0 4 1 0 0 7 7 0 . 2 3 2 1 6 2 2 2 2 4 5 0 0 . 0 1 1 1 1 0 7 3 2 5 . 2 9 4 2 7 0 4 1 0 0 7 7 0 . 2 4 8 2 4 3 6 8 2 4 5 0 0 . 0 1 1 1 1 0 7 1 5 7 . 0 4 8 2 7 0 4 2 5 0 7 7 0 . 2 1 0 1 5 6 4 7 4 5 0 0 . 0 1 1 1 1 0 7 1 5 7 . 0 4 2 2 7 0 4 2 5 0 7 7 0 . 2 1 0 1 5 7 0 0 4 5 0 0 . 0 1 1 1 1 0 7 2 5 5 . 9 2 4 2 7 0 4 2 5 0 7 7 0 . 2 3 2 2 9 2 9 3 4 5 0 0 . 0 1 1 1 1 0 7 2 5 7 . 0 0 5 2 7 0 4 2 5 0 7 7 0 . 2 1 0 1 6 0 2 4 4 5 0 0 . 0 1 1 1 1 0 7 3 5 5 . 8 9 9 2 7 0 4 2 5 0 7 7 0 . 2 3 2 2 9 7 0 8 4 5 0 0 . 0 1 1 1 1 0 7 3 5 6 . 9 8 0 2 7 0 4 2 5 0 7 7 0 . 2 1 1 1 6 2 5 0 4 5 0 0 . 0 2 1 1 1 0 5 1 1 2 . 9 5 2 2 7 0 2 5 0 7 7 0 . 3 0 2 2 6 7 3 3 3 3 4 5 0 0 . 0 2 1 1 1 0 5 2 1 3 . 0 3 1 2 7 0 2 5 0 7 7 0 . 3 0 0 2 5 5 8 4 9 7 4 5 0 0 . 0 2 1 1 1 0 5 3 1 2 . 9 5 8 2 7 0 2 5 0 7 7 0 . 3 0 2 2 6 6 4 8 2 9 4 5 0 0 . 0 2 1 1 1 0 5 1 2 2 . 9 1 4 2 7 0 2 1 0 0 7 7 0 . 3 1 4 7 1 7 5 2 9 4 5 0 0 . 0 2 1 1 1 0 5 2 2 2 . 9 9 8 2 7 0 2 1 0 0 7 7 0 . 3 1 2 6 8 4 6 7 2 4 5 0 0 . 0 2 1 1 1 0 5 3 2 3 . 0 9 9 2 7 0 2 1 0 0 7 7 0 . 3 0 9 6 4 7 0 6 7 4 5 0 0 . 0 2 1 1 1 0 5 1 5 3 . 1 1 8 2 7 0 2 2 5 0 7 7 0 . 3 0 6 1 0 9 4 3 0 4 5 0 0 . 0 2 1 1 1 0 5 2 5 2 . 9 7 5 2 7 0 2 2 5 0 7 7 0 . 3 1 1 1 1 8 5 3 3 4 5 0 0 . 0 2 1 1 1 0 5 3 5 3 . 1 7 1 2 7 0 ’ 2 2 5 0 7 7 0 . 3 0 5 1 0 6 2 5 0 4 5 0 0 . 0 2 1 1 1 0 6 1 1 4 . 7 3 7 2 7 0 2 5 0 7 7 0 . 2 5 4 9 8 6 7 4 3 4 5 0 0 . 0 2 1 1 1 0 6 2 1 4 . 9 1 2 2 7 0 2 5 0 7 7 0 . 2 5 0 8 9 4 9 0 7 4 5 0 0 . 0 2 1 1 1 0 6 3 1 4 . 9 5 5 2 7 0 2 5 0 7 7 0 . 2 4 9 8 7 3 9 1 4 4 5 0 0 . 0 S D # = s a m p l e d e s i g n a t i o n n u m b e r : A V = p e r c e n t a i r v o i d s ( A V = 3 t o 7 ) : K V = k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : A N G = a n g u l a r i t y : C 8 = c y c l i c s t r e s s ( p s i A = c y c l i c l o a d / l o a d e d a r e a : T T = t e s t t e m p e r a t u r e ( F ) : N = n u m b e r o f l o a d a p p l i c a t i o n s t o f a t i g u e f a i l u r e : C 5 1 = c u m u l a t i v e p l a s t i g 4 d e f o r m a t i o n a t t h e c e n t e r o f t h e l o a d e d a r e a ( x 1 0 i n . ) : a n d C D Z = c u m u l a t i v e p l a s t i c d e f o r m a t i o n a t a r a d i a l d i s t a g g e o f l o a d e d a r e a ( x 1 0 i n . ) . 3 5 9 T a b l e D . F a t i g u e l i f e o f b e a m s p e c i m e n s b a s e d o n a m a x i m u m a l l o w a b l e c u m u l a t i v e p l a s t i c g e f o r m a t i o n o f 0 . 4 5 a n d 0 . 1 - i n f o r t h e 7 7 a n d 4 0 F t e s t s , r e s p e c t i v e l y . S D # A V K V A N G C S T T C D Z / C D l N F L C D 1 2 1 1 1 0 6 1 2 4 . 9 7 3 2 7 0 2 1 0 0 7 7 0 . 2 5 8 2 2 7 3 1 9 4 5 0 0 . 0 2 1 1 1 0 6 2 2 5 . 0 9 0 2 7 0 2 1 0 0 7 7 0 . 2 5 5 2 1 2 9 8 2 4 5 0 0 . 0 2 1 1 1 0 6 3 2 5 . 0 9 4 2 7 0 2 1 0 0 7 7 0 . 2 5 5 2 1 2 5 2 4 4 5 0 0 . 0 2 1 1 1 0 6 1 5 5 . 0 8 6 2 7 0 2 2 5 0 7 7 0 . 2 5 3 3 6 4 7 7 4 5 0 0 . 0 2 1 1 1 0 6 2 5 5 . 0 1 0 2 7 0 2 2 5 0 7 7 0 . 2 5 5 3 8 0 5 1 4 5 0 0 . 0 2 1 1 1 0 6 3 5 4 . 9 7 7 2 7 0 2 2 5 0 7 7 0 . 2 5 6 3 8 7 6 5 4 5 0 0 . 0 2 1 1 1 0 7 1 1 6 . 7 7 8 2 7 0 2 5 0 7 7 0 . 2 1 1 3 1 5 7 2 0 4 5 0 0 . 0 2 1 1 1 0 7 2 1 6 . 8 6 7 2 7 0 2 5 0 7 7 0 . 2 0 9 3 0 0 4 0 0 4 5 0 0 . 0 2 1 1 1 0 7 3 1 6 . 9 1 7 2 7 0 2 5 0 7 7 0 . 2 0 8 2 9 2 1 9 1 4 5 0 0 . 0 2 1 1 1 0 7 1 2 7 . 0 8 6 2 7 0 2 1 0 0 7 7 0 . 2 1 4 6 9 8 6 8 4 5 0 0 . 0 2 1 1 1 0 7 2 2 7 . 0 3 8 2 7 0 2 1 0 0 7 7 0 . 2 1 5 7 1 7 5 4 4 5 0 0 . 0 2 1 1 1 0 7 3 2 7 . 0 3 8 2 7 0 2 1 0 0 7 7 0 . 2 1 5 7 1 7 8 4 4 5 0 0 . 0 2 1 1 1 0 7 1 5 7 . 0 6 7 2 7 0 2 2 5 0 7 7 0 . 2 1 2 1 2 0 7 1 4 5 0 0 . 0 2 1 1 1 0 7 2 5 7 . 0 8 9 2 7 0 2 2 5 0 7 7 0 . 2 1 2 1 1 9 1 8 4 5 0 0 . 0 2 1 1 1 0 7 3 5 7 . 1 2 4 2 7 0 2 2 5 0 7 7 0 . 2 1 1 1 1 6 9 3 4 5 0 0 . 0 3 1 1 1 0 5 1 1 2 . 9 7 4 2 7 0 3 5 0 7 7 0 . 3 0 0 2 9 9 1 1 8 4 4 5 0 0 . 0 3 1 1 1 0 5 2 1 2 . 9 7 8 2 7 0 3 5 0 7 7 0 . 3 0 0 2 9 8 3 8 8 1 4 5 0 0 . 0 3 1 1 1 0 5 3 1 3 . 0 6 3 2 7 0 3 5 0 7 7 0 . 2 9 7 2 8 4 5 7 6 3 4 5 0 0 . 0 3 1 1 1 0 5 1 2 3 . 0 8 0 2 7 0 3 1 0 0 7 7 0 . 3 0 7 7 4 0 5 8 9 4 5 0 0 . 0 3 1 1 1 0 5 2 2 3 . 0 5 1 2 7 0 3 1 0 0 7 7 0 . 3 0 8 7 5 2 9 8 3 4 5 0 0 . 0 3 1 1 1 0 5 3 2 3 . 0 1 5 2 7 0 3 1 0 0 7 7 0 . 3 0 9 7 6 8 0 8 1 4 5 0 0 . 0 3 1 1 1 0 5 1 5 3 . 1 5 5 2 7 0 3 2 5 0 7 7 0 . 3 0 3 1 2 1 3 7 7 4 5 0 0 . 0 3 1 1 1 0 5 2 5 2 . 9 8 9 2 7 0 3 2 5 0 7 7 0 . 3 0 8 1 3 3 1 5 3 4 5 0 0 . 0 3 1 1 1 0 5 3 5 2 . 9 5 8 2 7 0 3 2 5 0 7 7 0 . 3 0 9 1 3 5 5 1 5 4 5 0 0 . 0 3 1 1 1 0 7 1 1 6 . 9 2 1 2 7 0 3 5 0 7 7 0 . 2 0 7 3 3 0 2 0 0 4 5 0 0 . 0 3 1 1 1 0 7 2 1 6 . 9 4 6 2 7 0 3 5 0 7 7 0 . 2 0 7 3 2 5 6 3 1 4 5 0 0 . 0 3 1 1 1 0 7 3 1 7 . 0 0 7 2 7 0 3 5 0 7 7 0 . 2 0 5 3 1 4 6 2 9 4 5 0 0 . 0 3 1 1 1 0 7 1 2 6 . 9 8 5 2 7 0 3 1 0 0 7 7 0 . 2 1 4 8 3 7 0 9 4 5 0 0 . 0 3 1 1 1 0 7 2 2 6 . 8 7 8 2 7 0 3 1 0 0 7 7 0 . 2 1 6 8 8 8 8 0 4 5 0 0 . 0 3 1 1 1 0 7 3 2 6 . 9 8 3 2 7 0 3 1 0 0 7 7 0 . 2 1 4 8 3 7 9 0 4 5 0 0 . 0 3 1 1 1 0 7 1 5 6 . 7 5 0 2 7 0 3 2 5 0 7 7 0 . 2 1 7 1 6 3 1 3 4 5 0 0 . 0 S D # = s a m p l e d e s i g n a t i o n n u m b e r : A V = p e r c e n t a i r v o i d s ( A V = 3 t o 7 ) : K V = k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : A N G = a n g u l a r i t y : C S = c y c l i c s t r e s s ( p s i L = c y c l i c l o a d / l o a d e d a r e a : T T = t e s t t e m p e r a t u r e ( F ) : N = n u m b e r o f l o a d a p p l i c a t i o n s t o f a t i g u e f a i l u r e : C 8 1 = c u m u l a t i v e p l a s t i g 4 d e f o r m a t i o n a t t h e c e n t e r o f t h e l o a d e d a r e a ( x 1 0 i n . ) : a n d C D 2 = c u m u l a t i v e p l a s t i c d e f o r m a t i o n 2 . 2 5 - i n f r o m t h e c e n t e r o f t h e a t a r a d i a l d i s t a n c e o f l o a d e d a r e a ( x 1 0 ' i n . ) . 3 6 0 T a b l e D . F a t i g u e l i f e o f b e a m s p e c i m e n s b a s e d o n a m a x i m u m a l l o w a b l e c u m u l a t i v e p l a s t i c g e f o r m a t i o n o f 0 . 4 5 a n d 0 . 1 - i n f o r t h e 7 7 a n d 4 0 F t e s t s , r e s p e c t i v e l y . S D # A V K V A N G C S T T C D Z / C D l N F L C D 1 3 1 1 1 0 7 2 5 6 . 9 1 9 2 7 0 3 2 5 0 7 7 0 . 2 1 3 1 4 8 4 1 4 5 0 0 . 0 3 1 1 1 0 7 3 5 6 . 9 7 6 2 7 0 3 2 5 0 7 7 0 . 2 1 2 1 4 3 8 1 4 5 0 0 . 0 2 1 2 1 0 6 1 1 4 . 9 9 1 2 1 2 2 5 0 7 7 0 . 2 4 9 6 8 0 1 3 1 4 5 0 0 . 0 2 1 2 1 0 6 2 1 4 . 9 9 4 2 1 2 2 5 0 7 7 0 . 2 4 9 6 7 8 8 5 0 4 5 0 0 . 0 2 1 2 1 0 6 3 1 5 . 1 2 2 2 1 2 2 5 0 7 7 0 . 2 4 6 6 3 1 8 6 3 4 5 0 0 . 0 2 1 2 1 0 6 1 2 5 . 1 7 9 2 1 2 2 1 0 0 7 7 0 . 2 5 4 1 6 0 9 0 3 4 5 0 0 . 0 2 1 2 1 0 6 2 2 5 . 1 7 5 2 1 2 2 1 0 0 7 7 0 . 2 5 4 1 6 1 2 2 2 4 5 0 0 . 0 2 1 2 1 0 6 3 2 5 . 0 6 4 2 1 2 2 1 0 0 7 7 0 . 2 5 7 1 7 1 5 4 5 4 5 0 0 . 0 2 1 2 1 0 6 1 5 5 . 0 3 0 2 1 2 2 2 5 0 7 7 0 . 2 5 5 2 9 8 7 4 4 5 0 0 . 0 2 1 2 1 0 6 2 5 5 . 0 5 1 2 1 2 2 2 5 0 7 7 0 . 2 5 5 2 9 5 2 7 4 5 0 0 . 0 2 1 2 1 0 6 3 5 4 . 9 8 3 2 1 2 2 2 5 0 7 7 0 . 2 5 7 3 0 6 7 6 4 5 0 0 . 0 2 1 3 1 0 6 1 1 4 . 9 8 6 1 5 9 2 5 0 7 7 0 . 2 4 9 5 5 2 1 8 3 4 5 0 0 . 0 2 1 3 1 0 6 2 1 4 . 9 3 0 1 5 9 2 5 0 7 7 0 . 2 5 1 5 6 9 6 8 1 4 5 0 0 . 0 2 1 3 1 0 6 3 1 4 . 9 0 6 1 5 9 2 5 0 7 7 0 . 2 5 1 5 7 7 3 1 8 4 5 0 0 . 0 2 1 3 1 0 6 1 2 4 . 9 3 5 1 5 9 2 1 0 0 7 7 0 . 2 6 0 1 4 9 2 8 5 4 5 0 0 . 0 2 1 3 1 0 6 2 2 4 . 9 9 0 1 5 9 2 1 0 0 7 7 0 . 2 5 9 1 4 4 7 8 9 4 5 0 0 . 0 2 1 3 1 0 6 3 2 4 . 9 7 1 1 5 9 2 1 0 0 7 7 0 . 2 6 0 1 4 6 3 1 8 4 5 0 0 . 0 2 1 3 1 0 6 1 5 4 . 9 8 4 1 5 9 2 2 5 0 7 7 0 . 2 5 7 2 4 8 2 1 4 5 0 0 . 0 2 1 3 1 0 6 2 5 5 . 1 8 9 1 5 9 2 2 5 0 7 7 0 . 2 5 2 2 2 1 4 8 4 5 0 0 . 0 2 1 3 1 0 6 3 5 5 . 0 6 3 1 5 9 2 2 5 0 7 7 0 . 2 5 5 2 3 7 5 5 4 5 0 0 . 0 1 2 1 1 0 5 1 1 3 . 0 1 7 2 7 0 4 5 0 7 7 0 . 2 9 7 3 3 0 7 2 0 0 4 5 0 0 . 0 1 2 1 1 0 5 2 1 2 . 9 3 1 2 7 0 4 5 0 7 7 0 . 2 9 9 3 4 6 9 9 4 3 4 5 0 0 . 0 1 2 1 1 0 5 3 1 2 . 8 9 8 2 7 0 4 5 0 7 7 0 . 3 0 0 3 5 3 4 5 4 7 4 5 0 0 . 0 1 2 1 1 0 5 1 2 2 . 9 4 9 2 7 0 4 1 0 0 7 7 0 . 3 1 0 9 0 2 3 5 0 4 5 0 0 . 0 1 2 1 1 0 5 2 2 2 . 9 5 9 2 7 0 4 1 0 0 7 7 0 . 3 0 9 8 9 7 6 4 9 4 5 0 0 . 0 1 2 1 1 0 5 3 2 2 . 9 8 7 2 7 0 4 1 0 0 7 7 0 . 3 0 8 8 8 3 6 9 5 4 5 0 0 . 0 1 2 1 1 0 5 1 5 2 . 9 8 2 2 7 0 4 2 5 0 7 7 0 . 3 0 7 1 5 1 4 4 3 4 5 0 0 . 0 1 2 1 1 0 5 3 5 2 . 9 7 7 2 7 0 4 2 5 0 7 7 0 . 3 0 7 1 5 1 8 6 5 4 5 0 0 . 0 1 2 1 1 0 6 1 1 5 . 0 2 5 2 7 0 4 5 0 7 7 0 . 2 4 4 1 0 7 7 4 1 5 4 5 0 0 . 0 1 2 1 1 0 6 2 1 4 . 9 2 7 2 7 0 4 5 0 7 7 0 . 2 4 6 1 1 3 8 2 3 9 4 5 0 0 . 0 1 2 1 1 0 6 3 1 5 . 1 7 8 2 7 0 4 5 0 7 7 0 . 2 4 1 9 8 9 3 7 4 4 5 0 0 . 0 S D # = s a m p l e d e s i g n a t i o n n u m b e r : A V = p e r c e n t a i r v o i d s ( A V = 3 t o 7 ) : K V = k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : A N G = a n g u l a r i t y : C S = c y c l i c s t r e s s ( p s i A = c y c l i c l o a d / l o a d e d a r e a : T T = t e s t t e m p e r a t u r e ( F ) : N = n u m b e r o f l o a d a p p l i c a t i o n s t o f a t i g u e f a i l u r e : C 5 1 = c u m u l a t i v e p l a s t i g 4 d e f o r m a t i o n a t t h e c e n t e r o f t h e l o a d e d a r e a ( x 1 0 i n . ) : a n d C D 2 = c u m u l a t i v e p l a s t i c d e f o r m a t i o n 2 . 2 5 - i n f r o m t h e c e n t e r o f t h e a t a r a d i a l d i s t a n c e o f l o a d e d a r e a ( x 1 0 ° i n . ) . 3 6 1 T a b l e D . F a t i g u e l i f e o f b e a m s p e c i m e n s b a s e d o n a m a x i m u m a l l o w a b l e c u m u l a t i v e p l a s t i c g e f o r m a t i o n o f 0 . 4 5 a n d 0 . 1 - i n f o r t h e 7 7 a n d 4 0 F t e s t s , r e s p e c t i v e l y . S D # A V K V A N G C S T T C D Z / C D l N F L C D 1 1 2 1 1 0 6 1 2 5 . 0 8 4 2 7 0 4 1 0 0 7 7 0 . 2 5 2 2 7 4 0 5 5 4 5 0 0 . 0 1 2 1 1 0 6 2 2 4 . 8 4 6 2 7 0 4 1 0 0 7 7 0 . 2 5 8 3 1 2 9 3 2 4 5 0 0 . 0 1 2 1 1 0 6 3 2 4 . 9 5 8 2 7 0 4 1 0 0 7 7 0 . 2 5 5 2 9 4 0 3 2 4 5 0 0 . 0 1 2 1 1 0 6 1 5 4 . 9 9 4 2 7 0 4 2 5 0 7 7 0 . 2 5 2 4 9 2 5 5 4 5 0 0 . 0 1 2 1 1 0 6 2 5 4 . 8 1 8 2 7 0 4 2 5 0 7 7 0 . 2 5 7 5 4 3 2 5 4 5 0 0 . 0 1 2 1 1 0 6 3 5 5 . 0 8 7 2 7 0 4 2 5 0 7 7 0 . 2 5 0 4 6 7 4 3 4 5 0 0 . 0 1 2 1 1 0 7 1 1 7 . 0 2 6 2 7 0 4 5 0 7 7 0 . 2 0 4 3 5 2 6 2 9 4 5 0 0 . 0 1 2 1 1 0 7 2 1 7 . 0 0 6 2 7 0 4 5 0 7 7 0 . 2 0 4 3 5 6 5 0 6 4 5 0 0 . 0 1 2 1 1 0 7 3 1 7 . 0 5 5 2 7 0 4 5 0 7 7 0 . 2 0 3 3 4 6 9 8 4 4 5 0 0 . 0 1 2 1 1 0 7 1 2 7 . 0 0 6 2 7 0 4 1 0 0 7 7 0 . 2 1 3 9 3 6 8 9 4 5 0 0 . 0 1 2 1 1 0 7 2 2 7 . 0 9 9 2 7 0 4 1 0 0 7 7 0 . 2 1 1 8 8 9 6 0 4 5 0 0 . 0 1 2 1 1 0 7 3 2 7 . 1 9 4 2 7 0 4 1 0 0 7 7 0 . 2 0 9 8 4 3 6 9 4 5 0 0 . 0 1 2 1 1 0 7 1 5 7 . 1 2 3 2 7 0 4 2 5 0 7 7 0 . 2 0 8 1 5 0 0 2 4 5 0 0 . 0 1 2 1 1 0 7 2 5 6 . 9 3 8 2 7 0 4 2 5 0 7 7 0 . 2 1 2 1 6 6 3 8 4 5 0 0 . 0 1 2 1 1 0 7 3 5 6 . 9 6 5 2 7 0 4 2 5 0 7 7 0 . 2 1 1 1 6 3 8 2 4 5 0 0 . 0 1 1 1 1 0 7 1 5 7 . 1 0 3 2 7 0 4 2 5 0 7 7 0 . 2 0 9 1 5 1 7 4 4 5 0 0 . 0 1 2 2 1 0 7 1 1 7 . 3 2 4 2 1 2 4 5 0 7 7 0 . 1 9 9 2 3 7 0 4 0 4 5 0 0 . 0 1 2 2 1 0 7 2 1 6 . 8 5 5 2 1 2 4 5 0 7 7 0 . 2 0 7 3 0 7 9 3 8 4 5 0 0 . 0 1 2 2 1 0 7 3 1 7 . 2 1 6 2 1 2 4 5 0 7 7 0 . 2 0 1 2 5 1 8 5 0 4 5 0 0 . 0 1 2 2 1 0 7 1 2 7 . 0 9 9 2 1 2 4 1 0 0 7 7 0 . 2 1 2 7 0 6 3 8 4 5 0 0 . 0 1 2 2 1 0 7 2 2 7 . 0 7 1 2 1 2 4 1 0 0 7 7 0 . 2 1 2 7 1 7 5 1 4 5 0 0 . 0 1 2 2 1 0 7 3 2 6 . 9 0 9 2 1 2 4 1 0 0 7 7 0 . 2 1 5 7 8 5 5 7 4 5 0 0 . 0 1 2 2 1 0 7 1 5 6 . 8 6 1 2 1 2 4 2 5 0 7 7 0 . 2 1 4 1 3 7 8 6 4 5 0 0 . 0 1 2 2 1 0 7 2 5 6 . 8 0 1 2 1 2 4 2 5 0 7 7 0 . 2 1 5 1 4 2 5 9 4 5 0 0 . 0 1 2 2 1 0 7 3 5 7 . 1 5 3 2 1 2 4 2 5 0 7 7 0 . 2 0 8 1 1 7 1 4 4 5 0 0 . 0 1 2 3 1 0 7 1 1 7 . 2 4 7 1 5 9 4 5 0 7 7 0 . 2 0 1 2 0 0 3 8 1 4 5 0 0 . 0 1 2 3 1 0 7 2 1 7 . 1 7 2 1 5 9 4 5 0 7 7 0 . 2 0 2 2 0 8 9 9 6 4 5 0 0 . 0 1 2 3 1 0 7 3 1 7 . 1 3 3 1 5 9 4 5 0 7 7 0 . 2 0 3 2 1 3 6 1 6 4 5 0 0 . 0 1 2 3 1 0 7 1 2 7 . 0 8 9 1 5 9 4 1 0 0 7 7 0 . 2 1 2 5 7 5 2 0 4 5 0 0 . 0 1 2 3 1 0 7 2 2 7 . 1 3 2 1 5 9 4 1 0 0 7 7 0 . 2 1 1 5 6 1 6 3 4 5 0 0 . 0 1 2 3 1 0 7 3 2 7 . 0 1 5 1 5 9 4 1 0 0 7 7 0 . 2 1 4 5 9 9 5 1 4 5 0 0 . 0 S D # = s a m p l e d e s i g n a t i o n n u m b e r : A V = p e r c e n t a i r v o i d s ( A V = 3 t o 7 ) : K V = k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : A N G = a n g u l a r i t y : C S = c y c l i c s t r e s s ( p s i g = c y c l i c l o a d / l o a d e d a r e a : T T = t e s t t e m p e r a t u r e ( F ) : N = n u m b e r o f l o a d a p p l i c a t i o n s t o f a t i g u e f a i l u r e ; C 8 1 = c u m u l a t i v e p l a s t i g 4 d e f o r m a t i o n a t t h e c e n t e r o f t h e l o a d e d a r e a ( x 1 0 i n . ) : a n d C D 2 = c u m u l a t i v e p l a s t i c d e f o r m a t i o n 2 . 2 5 - i n f r o m t h e c e n t e r o f t h e a t a r a d i a l d i s t a n g e o f l o a d e d a r e a ( x 1 0 ' 1 n . ) . 3 6 2 T a b l e D . F a t i g u e l i f e o f b e a m s p e c i m e n s b a s e d o n a m a x i m u m a l l o w a b l e c u m u l a t i v e p l a s t i c g e f o r m a t i o n o f 0 . 4 5 a n d 0 . 1 - i n f o r t h e 7 7 a n d 4 0 F t e s t s , r e s p e c t i v e l y . S D # A V K V A N G C S T T C D 2 / C 0 1 N F L C D 1 1 2 3 1 0 7 1 5 7 . 0 7 8 1 5 9 4 2 5 0 7 7 0 . 2 1 0 9 8 9 0 4 5 0 0 . 0 1 2 3 1 0 7 2 5 7 . 1 2 5 1 5 9 4 2 5 0 7 7 0 . 2 0 9 9 6 3 5 4 5 0 0 . 0 1 2 3 1 0 7 3 5 6 . 9 9 1 1 5 9 4 2 5 0 7 7 0 . 2 1 2 1 0 3 8 7 4 5 0 0 . 0 2 2 1 1 0 6 1 1 4 . 7 7 5 2 7 0 2 5 0 7 7 0 . 2 5 3 9 6 6 0 6 2 4 5 0 0 . 0 2 2 1 1 0 6 2 1 4 . 8 0 2 2 7 0 2 5 0 7 7 0 . 2 5 2 9 5 1 7 8 3 4 5 0 0 . 0 2 2 1 1 0 6 3 1 4 . 9 2 9 2 7 0 2 5 0 7 7 0 . 2 4 9 8 8 6 4 4 5 4 5 0 0 . 0 2 2 1 1 0 6 1 2 4 . 9 6 1 2 7 0 2 1 0 0 7 7 0 . 2 5 9 2 2 8 8 4 0 4 5 0 0 . 0 2 2 1 1 0 6 2 2 5 . 0 4 3 2 7 0 2 1 0 0 7 7 0 . 2 5 7 2 1 8 6 0 6 4 5 0 0 . 0 2 2 1 1 0 6 3 2 5 . 1 1 1 2 7 0 2 1 0 0 7 7 0 . 2 5 5 2 1 0 4 9 7 4 5 0 0 . 0 2 2 1 1 0 6 1 5 4 . 9 8 3 2 7 0 2 2 5 0 7 7 0 . 2 5 6 3 8 6 3 1 4 5 0 0 . 0 2 2 1 1 0 6 2 5 5 . 0 8 4 2 7 0 2 2 5 0 7 7 0 . 2 5 3 3 6 5 0 8 4 5 0 0 . 0 2 2 1 1 0 6 3 5 5 . 1 0 7 2 7 0 2 2 5 0 7 7 0 . 2 5 3 3 6 0 4 8 4 5 0 0 . 0 3 2 1 1 0 6 1 1 5 . 1 9 5 2 7 0 3 5 0 7 7 0 . 2 4 2 8 6 5 3 2 2 4 5 0 0 . 0 3 2 1 1 0 6 2 1 5 . 0 7 8 2 7 0 3 5 0 7 7 0 . 2 4 4 9 2 3 9 0 5 4 5 0 0 . 0 3 2 1 1 0 6 3 1 5 . 1 8 2 2 7 0 3 5 0 7 7 0 . 2 4 2 8 7 1 8 1 0 4 5 0 0 . 0 3 2 1 1 0 6 1 2 5 . 1 2 7 2 7 0 3 1 0 0 7 7 0 . 2 5 3 2 3 6 2 2 7 4 5 0 0 . 0 3 2 1 1 0 6 2 2 4 . 9 5 5 2 7 0 3 1 0 0 7 7 0 . 2 5 7 2 6 0 0 5 5 4 5 0 0 . 0 3 2 1 1 0 6 3 2 4 . 8 5 4 2 7 0 3 1 0 0 7 7 0 . 2 5 9 2 7 5 1 1 9 4 5 0 0 . 0 3 2 1 1 0 6 1 5 4 . 9 8 7 2 7 0 3 2 5 0 7 7 0 . 2 5 4 4 3 6 5 6 4 5 0 0 . 0 3 2 1 1 0 6 2 5 4 . 9 5 5 2 7 0 3 2 5 0 7 7 0 . 2 5 5 4 4 4 4 3 4 5 0 0 . 0 3 2 1 1 0 6 3 5 4 . 9 1 3 2 7 0 3 2 5 0 7 7 0 . 2 5 6 4 5 4 8 2 4 5 0 0 . 0 1 1 1 2 0 5 1 1 1 . 2 7 6 2 7 0 4 5 0 4 0 - 4 1 7 8 1 9 3 0 0 0 1 0 0 0 . 0 1 1 1 2 0 5 2 1 1 . 2 4 4 2 7 0 4 5 0 4 0 - 4 3 5 3 3 7 0 0 0 0 1 0 0 0 . 0 1 1 1 2 0 5 3 1 1 . 3 8 4 2 7 0 4 5 0 4 O - 3 6 3 1 4 6 4 0 0 0 1 0 0 0 . 0 1 1 1 2 0 5 1 2 1 . 3 3 3 2 7 0 4 1 0 0 4 0 - 1 9 9 2 0 5 6 0 0 0 1 0 0 0 . 0 1 1 1 2 0 5 2 2 1 . 3 8 3 2 7 0 4 1 0 0 4 0 - 1 8 6 7 4 6 9 0 0 0 1 0 0 0 . 0 1 1 1 2 0 5 3 2 1 . 3 4 2 2 7 0 4 1 0 0 4 0 - 1 9 6 9 1 4 2 0 0 0 1 0 0 0 . 0 1 1 1 2 0 5 1 5 1 . 3 7 2 2 7 0 4 2 5 0 4 0 - 7 8 5 5 1 4 6 0 0 1 0 0 0 . 0 1 1 1 2 0 5 2 5 1 . 3 5 5 2 7 0 4 2 5 0 4 0 - 8 0 2 6 8 0 1 0 0 1 0 0 0 . 0 1 1 1 2 0 5 3 5 1 . 4 1 2 2 7 0 4 2 5 0 4 0 - 7 4 5 6 6 4 5 0 0 1 0 0 0 . 0 1 1 3 2 0 5 1 1 4 . 9 3 2 1 5 9 4 5 0 4 0 - 2 2 6 2 5 8 6 0 1 0 0 0 . 0 S D # = s a m p l e d e s i g n a t i o n n u m b e r : A V = p e r c e n t a i r v o i d s ( A V = 3 t o 7 ) : R V = k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : A N G = a n g u l a r i t y : C 8 = c y c l i c s t r e s s ( p s i ) = c y c l i c l o a d / l o a d e d a r e a : T T = t e s t t e m p e r a t u r e ( F ) : N = n u m b e r o f l o a d a p p l i c a t i o n s t o f a t i g u e f a i l u r e : C 5 1 = c u m u l a t i v e p l a s t i g 4 d e f o r m a t i o n a t t h e c e n t e r o f t h e l o a d e d a r e a ( x 1 0 i n . ) : a n d C D 2 = c u m u l a t i v e p l a s t i c d e f o r m a t i o n a t a r a d i a l d i s t a n g e o f 2 . 2 5 - i n f r o m t h e c e n t e r o f t h e l o a d e d a r e a ( x 1 0 i n . ) . 3 6 3 T a b l e D . F a t i g u e l i f e o f b e a m s p e c i m e n s b a s e d o n a m a x i m u m a l l o w a b l e c u m u l a t i v e p l a s t i c g e f o r m a t i o n o f 0 . 4 5 a n d 0 . 1 - i n f o r t h e 7 7 a n d 4 0 F t e s t s , r e s p e c t i v e l y . S D # A V K V A N G C S T T C D 2 / C D 1 N F L C D 1 1 1 3 2 0 5 2 1 5 . 0 5 0 1 5 9 4 5 0 4 0 1 9 3 9 7 2 7 0 1 0 0 0 . 0 1 1 3 2 0 5 3 1 4 . 7 3 8 1 5 9 4 5 0 4 0 2 9 0 8 7 3 4 0 1 0 0 0 . 0 1 1 3 2 0 5 1 2 5 . 0 2 6 1 5 9 4 1 0 0 4 0 1 0 2 8 5 2 2 0 1 0 0 0 . 0 1 1 3 2 0 5 2 2 5 . 0 4 5 1 5 9 4 1 0 0 4 0 1 0 0 2 9 7 3 0 1 0 0 0 . 0 1 1 3 2 0 5 3 2 4 . 9 5 2 1 5 9 4 1 0 0 4 0 1 1 3 2 0 4 8 0 1 0 0 0 . 0 1 1 3 2 0 5 1 5 1 . 1 4 3 1 5 9 4 2 5 0 4 0 6 5 7 4 8 9 6 0 0 1 0 0 0 . 0 1 1 3 2 0 5 2 5 4 . 7 1 5 1 5 9 4 2 5 0 4 0 6 3 7 9 8 6 7 1 0 0 0 . 0 1 1 3 2 0 5 3 5 5 . 3 8 4 1 5 9 4 2 5 0 4 0 2 6 7 7 3 0 9 1 0 0 0 . 0 2 2 1 2 0 6 1 1 4 . 1 2 5 2 7 0 2 5 0 4 0 8 9 6 8 0 9 8 0 1 0 0 0 . 0 2 2 1 2 0 6 2 1 4 . 1 8 4 2 7 0 2 5 0 4 0 8 3 1 4 2 0 2 0 1 0 0 0 . 0 2 2 1 2 0 6 3 1 4 . 3 1 7 2 7 0 2 5 0 4 0 6 9 9 8 5 7 8 0 1 0 0 0 . 0 2 2 1 2 0 6 1 2 4 . 0 7 0 2 7 0 2 1 0 0 4 0 4 9 5 1 2 0 2 0 1 0 0 0 . 0 2 2 1 2 0 6 2 2 4 . 0 4 6 2 7 0 2 1 0 0 4 0 5 1 0 5 0 6 8 0 1 0 0 0 . 0 2 2 1 2 0 6 3 2 4 . 3 1 4 2 7 0 2 1 0 0 4 0 3 6 0 4 1 6 8 0 1 0 0 0 . 0 2 2 1 2 0 6 1 5 4 . 3 5 6 2 7 0 2 2 5 0 4 0 1 4 1 5 0 4 3 0 1 0 0 0 . 0 2 2 1 2 0 6 2 5 4 . 1 5 4 2 7 0 2 2 5 0 4 0 1 8 4 0 3 6 9 0 1 0 0 0 . 0 2 2 1 2 0 6 3 5 4 . 3 9 6 2 7 0 2 2 5 0 4 0 1 3 4 3 6 7 8 0 1 0 0 0 . 0 3 2 1 2 0 6 1 1 4 . 0 8 8 2 7 0 3 5 0 4 0 1 0 1 1 3 3 3 0 0 1 0 0 0 . 0 3 2 1 2 0 6 2 1 4 . 0 8 3 2 7 0 3 5 0 4 0 1 0 1 8 9 3 4 0 0 1 0 0 0 . 0 3 2 1 2 0 6 3 1 4 . 0 7 1 2 7 0 3 5 0 4 0 1 0 3 4 2 0 2 0 0 1 0 0 0 . 0 3 2 1 2 0 6 1 2 4 . 0 3 8 2 7 0 3 1 0 0 4 0 1 0 7 8 8 8 5 0 0 1 0 0 0 . 0 3 2 1 2 0 6 2 2 4 . 2 7 9 2 7 0 3 1 0 0 4 0 4 0 5 6 3 2 6 0 1 0 0 0 . 0 3 2 1 2 0 6 3 2 3 . 9 1 3 2 7 0 3 1 0 0 4 0 6 5 2 0 5 1 6 0 1 0 0 0 . 0 3 2 1 2 0 6 1 5 3 . 9 9 8 2 7 0 3 2 5 0 4 0 1 1 3 6 9 2 0 0 0 1 0 0 0 . 0 3 2 1 2 0 6 2 5 4 . 0 9 6 2 7 0 3 2 5 0 4 0 2 1 3 0 2 6 0 0 1 0 0 0 . 0 3 2 1 2 0 6 3 5 4 . 2 8 1 2 7 0 3 2 5 0 4 0 1 6 7 7 4 8 7 0 1 0 0 0 . 0 S D # = s a m p l e d e s i g n a t i o n n u m b e r : A V = p e r c e n t a i r v o i d s ( A V = 3 t o 7 ) : K V = k i n e m a t i c v i s c o s i t y ( c e n t i s t o k e s ) : A N G = a n g u l a r i t y : C S = c y c l i c s t r e s s ( p s i A = c y c l i c l o a d / l o a d e d a r e a : T T = t e s t t e m p e r a t u r e ( F ) : N = n u m b e r o f l o a d a p p l i c a t i o n s t o f a t i g u e f a i l u r e : C 5 1 = c u m u l a t i v e p l a s t i g 4 d e f o r m a t i o n a t t h e c e n t e r o f t h e l o a d e d a r e a ( x 1 0 i n . ) : a n d C D 2 = c u m u l a t i v e p l a s t i c d e f o r m a t i o n 2 . 2 5 — i n f r o m t h e c e n t e r o f t h e a t a r a d i a l d i s t a n g e o f l o a d e d a r e a ( x 1 0 ' i n . ) . A P P E N D I X E T h e v a l u e s o f t h e r e s i l i e n t a n d t o t a l m o d u l i o b t a i n e d u s i n g t h e F E M f o r a l l b e a m s p e c i m e n s a r e p r e s e n t e d i n t h i s A p p e n d i x . 3 6 4 M H 1 1 T 1 1 1 1 1 S I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A U 1 1 1 1 1 1 1 a b l e E . C F a E l M c 2 0 0 0 2 4 5 0 0 0 0 0 3 2 0 3 0 0 1 0 2 2 5 2 0 0 0 0 0 0 0 2 0 5 0 4 0 0 0 0 0 0 I 9 0 9 2 7 1 5 0 0 1 5 0 0 0 2 4 0 0 7 1 5 0 1 5 0 0 0 1 0 0 6 1 5 0 1 5 1 0 0 0 0 7 0 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 0 0 5 5 5 5 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 u p l r a o t g e r H p ( R s 5 5 8 6 7 7 6 8 7 5 7 7 7 7 5 8 8 8 7 8 8 7 8 8 5 7 7 7 5 5 7 7 7 5 5 7 5 5 7 7 7 5 2 8 8 2 1 4 3 1 0 3 1 2 5 5 1 3 2 9 0 4 5 1 7 0 7 2 1 8 2 3 9 0 2 0 7 0 1 9 2 4 4 0 8 5 0 8 2 7 7 8 4 3 2 7 2 4 4 3 3 0 5 0 0 3 4 8 7 1 4 0 1 0 1 0 8 0 0 2 8 8 0 2 2 0 8 8 3 8 2 1 4 0 1 5 5 3 9 8 3 8 8 8 4 3 1 6 8 8 8 2 1 0 7 1 3 5 8 2 9 4 8 7 6 8 7 7 r m d a i 2 2 5 8 1 0 8 7 9 7 8 1 8 8 8 2 7 1 9 7 5 2 0 0 2 1 7 7 0 5 7 3 0 2 3 7 7 2 1 5 1 2 ) 6 3 3 1 3 8 8 0 3 3 3 7 7 4 4 5 2 8 5 5 8 5 7 3 0 0 0 0 8 8 8 5 8 7 0 7 3 5 9 8 2 8 e ( 4 4 5 5 6 8 4 5 4 8 6 5 5 8 4 4 8 8 6 4 4 5 5 5 5 5 8 8 4 4 8 4 8 8 8 8 4 5 5 5 5 5 s 2 4 8 s 0 2 9 9 9 3 1 7 5 0 0 8 2 0 2 3 2 1 3 4 4 5 5 5 1 9 5 3 3 1 8 1 1 8 5 1 7 0 0 8 3 7 1 1 4 1 7 9 9 1 1 p 2 8 2 3 9 0 2 2 4 8 0 0 1 8 0 1 1 2 7 1 6 8 1 7 0 8 1 0 3 2 2 i l i e i 4 7 5 7 0 0 2 2 4 2 7 9 9 0 2 7 5 7 0 2 8 1 1 2 9 9 3 3 4 3 4 8 9 4 1 4 1 9 8 3 0 8 ) 9 8 2 1 4 8 8 2 8 0 5 9 9 3 2 0 3 7 3 2 0 0 8 1 0 2 8 8 8 7 0 2 5 2 7 2 0 0 9 4 0 3 8 2 5 1 1 7 7 4 7 1 7 0 0 7 7 2 2 3 7 5 5 5 2 5 3 1 0 0 1 9 5 9 3 5 8 2 9 8 3 0 4 4 n S I t A U M H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 a E R 2 3 2 1 1 3 5 5 1 1 1 2 0 0 0 0 P B 0 0 5 5 L E 5 5 5 5 n d t o t a l m A V . . . 0 0 1 3 . 0 1 . . 0 0 3 8 7 3 3 8 2 8 2 8 3 I 5 0 0 0 0 0 0 0 0 0 1 5 0 1 5 0 0 4 0 0 0 0 1 5 1 5 0 0 0 0 5 1 5 1 5 0 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 5 5 0 0 0 1 5 0 0 0 1 5 0 0 0 1 1 5 0 8 5 0 1 5 0 0 3 0 0 1 5 0 3 5 1 5 0 1 5 0 1 1 1 1 3 8 3 4 1 3 4 1 1 8 1 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d u l i u s M p ( 2 1 5 0 9 8 4 9 8 9 4 5 5 4 2 5 8 8 2 7 2 8 9 8 9 8 2 1 7 1 8 7 8 8 4 8 6 4 8 8 0 2 2 8 3 9 1 3 0 8 2 9 4 1 4 0 8 1 8 0 2 1 9 1 3 8 2 5 3 3 4 7 8 3 2 5 2 2 0 0 5 5 3 1 8 8 5 7 7 7 5 5 8 8 7 7 7 5 5 8 8 7 7 5 5 7 7 7 5 7 7 5 8 8 8 8 7 7 7 8 6 8 7 7 7 5 s 8 5 R 8 8 3 3 9 1 3 4 0 4 8 2 3 1 3 9 2 1 2 8 9 3 4 7 1 5 8 4 9 3 9 9 9 2 6 8 0 3 0 9 8 3 4 7 9 8 8 5 3 3 4 8 8 8 1 2 3 2 9 4 5 4 0 9 5 8 3 0 2 i 9 7 5 4 9 1 1 1 1 1 8 1 0 2 8 5 2 2 0 7 7 3 3 3 0 0 0 8 5 8 8 9 2 8 8 9 9 2 8 8 9 5 ) 4 7 7 7 1 7 1 0 9 4 4 7 7 i 9 p 8 2 7 8 0 9 1 3 1 9 3 3 3 7 2 6 9 9 0 3 9 8 3 1 2 3 2 5 2 2 6 5 4 0 2 8 0 4 9 4 4 ( 4 5 5 8 8 4 4 5 5 5 5 8 6 4 4 5 5 5 5 5 5 5 4 8 8 4 5 5 5 8 8 8 8 4 5 5 5 8 8 4 8 4 n g i 8 7 0 5 3 5 8 3 9 9 8 8 8 9 8 9 9 3 8 7 1 8 1 0 4 3 0 8 0 9 9 3 2 3 3 8 8 3 3 1 8 7 ) 3 0 3 3 7 7 9 8 9 9 3 9 4 8 7 7 4 4 4 7 1 2 5 2 7 0 1 6 2 0 5 4 5 7 7 8 7 8 8 8 7 7 4 4 4 4 1 3 2 8 2 9 5 9 2 8 2 5 5 3 3 3 0 1 4 7 2 9 1 0 1 3 8 9 9 8 5 7 7 0 0 0 8 5 2 s 8 8 5 9 7 0 9 9 8 7 8 7 7 1 7 3 4 8 8 7 7 7 8 3 0 3 5 9 9 0 4 8 7 7 3 4 4 5 3 5 4 9 A . 2 2 . 3 2 3 3 3 . . . . . V 9 9 0 9 1 0 0 0 5 0 8 1 1 9 1 1 2 8 5 8 1 1 5 0 1 4 1 5 0 0 6 1 8 5 0 4 1 1 5 0 9 5 0 8 1 1 5 0 0 3 1 8 2 3 1 7 2 2 1 8 1 8 1 5 1 3 6 1 1 1 1 1 1 P B 0 0 L E 5 5 E R 1 2 0 5 3 5 5 5 1 2 3 0 0 0 0 1 1 1 2 2 2 5 1 5 3 6 5 I I n u m b e r o f l o a d a p p l i c a t i o n s ; A V I p e r c e n t a i r v o i d s ; H R I c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g F I B p r o g r a m ; I I c a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m . 3 6 6 T a b l e E . C a l c u l a t e d r e s i l i e n t a n d t o t a l m o d u l i u s i n g F E M p r o g r a m S A M P L E A V I M R 8 S A M P L E A V I 8 8 ! 8 N U M B E R ( p s i ) ( p s i ) I U M B E R ( p s i ) ( p s i ) 1 0 0 0 6 5 0 4 8 0 5 4 4 3 7 4 1 0 0 0 8 7 8 7 8 2 5 5 3 7 8 2 5 0 0 0 7 2 2 0 0 5 8 1 5 8 9 8 5 0 0 0 7 5 1 6 3 2 8 3 4 1 5 1 1 0 0 0 0 7 4 2 4 1 3 8 3 2 9 8 5 1 0 0 0 0 7 7 0 7 5 7 8 5 7 2 8 1 2 0 0 0 0 7 8 3 8 8 3 8 3 2 9 6 5 3 2 1 4 2 7 9 8 3 9 8 8 5 7 2 8 1 3 4 0 0 0 7 7 4 6 4 5 8 3 2 9 8 5 1 7 2 9 0 0 7 9 8 3 9 8 8 7 8 2 4 9 1 1 2 1 0 5 2 2 3 . 1 1 1 1 0 0 5 2 8 4 0 0 4 3 4 9 4 7 1 1 3 1 0 5 2 1 2 . 9 9 4 1 0 0 5 5 8 1 3 2 4 8 3 8 7 6 5 0 0 6 1 0 0 2 6 5 0 0 8 8 8 5 0 0 8 4 0 8 4 5 5 2 8 4 0 3 1 0 0 0 5 4 7 0 4 5 5 2 5 0 2 5 1 0 0 0 5 5 5 5 2 5 5 5 5 1 0 0 5 0 0 0 7 1 7 3 8 3 5 8 7 8 2 7 5 0 0 0 7 5 2 0 2 7 8 4 2 8 1 4 1 0 0 0 0 7 3 7 1 5 9 8 0 4 4 5 6 1 0 0 0 0 7 7 9 9 5 8 6 4 2 8 1 4 4 4 0 0 0 7 6 7 4 8 7 8 5 6 7 2 1 2 1 0 0 0 8 0 2 4 8 5 8 5 5 9 1 8 1 8 5 0 0 0 7 8 7 4 8 7 8 4 2 8 1 8 5 0 5 3 5 8 1 2 0 2 3 7 0 2 5 7 8 1 1 2 1 0 5 3 2 3 . 1 5 4 1 0 0 5 2 4 6 8 0 4 3 0 8 7 2 1 1 3 1 0 5 3 1 3 . 0 0 8 1 0 0 5 5 6 1 3 2 4 5 7 7 9 4 5 0 0 8 0 4 2 2 9 4 9 2 5 2 1 2 0 0 5 9 2 8 9 8 4 9 3 1 1 2 1 0 0 0 8 4 3 4 7 0 5 2 9 5 8 2 5 0 0 8 4 3 2 0 8 5 2 8 9 1 4 5 0 0 0 7 1 2 6 1 2 5 8 1 3 2 7 1 0 0 0 8 7 8 9 5 2 5 7 4 5 6 5 1 0 0 0 0 7 3 2 0 5 4 6 1 5 8 0 5 5 0 0 0 7 5 1 8 4 2 8 2 1 4 4 8 2 7 1 0 0 7 5 5 4 8 0 6 3 8 5 3 3 1 0 0 0 0 7 7 9 8 8 9 8 4 0 7 5 4 4 9 8 0 0 7 8 8 8 8 9 8 3 8 5 3 3 3 0 0 0 0 8 0 8 0 5 9 8 8 8 0 1 8 1 1 2 1 0 5 1 5 3 . 0 4 5 1 0 0 5 3 5 3 5 6 4 5 7 7 9 4 1 1 3 1 0 5 1 2 3 . 0 1 4 1 0 0 5 5 4 0 9 8 4 8 3 8 0 5 5 0 0 8 1 8 3 0 5 5 1 2 3 5 9 5 0 0 8 4 0 8 1 7 5 2 4 2 8 5 1 0 0 0 8 5 7 2 9 8 5 5 8 7 7 7 1 0 0 0 8 8 2 2 9 5 5 7 1 5 6 2 5 0 0 0 7 2 7 8 8 0 8 1 8 6 8 2 5 0 0 0 7 5 1 8 3 0 8 3 1 8 3 5 1 0 0 0 0 7 4 9 7 3 2 8 3 7 5 3 8 1 0 0 0 0 7 7 5 3 2 9 8 4 6 6 3 2 2 1 0 0 0 7 6 9 2 9 8 8 4 5 9 0 4 3 0 0 0 0 8 0 1 4 5 1 8 8 7 9 0 0 3 0 4 0 0 7 7 8 2 8 3 8 4 5 9 0 4 7 5 2 0 0 8 1 3 3 0 5 8 7 8 8 5 8 1 1 2 1 0 5 2 5 3 . 0 7 4 1 0 0 5 3 2 2 7 3 4 4 1 5 8 9 1 1 3 1 0 5 2 2 3 . 0 8 0 1 0 0 5 4 7 9 7 5 4 5 9 2 8 6 5 0 0 8 1 4 7 0 3 4 8 4 0 1 0 5 0 0 8 3 4 2 0 1 5 3 0 3 8 0 1 0 0 0 8 5 3 1 2 9 5 4 9 4 7 0 1 0 0 0 6 7 5 0 7 9 5 7 2 0 2 8 5 2 0 0 7 2 5 6 2 9 8 1 3 4 4 8 5 0 0 0 7 4 8 6 8 1 6 2 4 6 5 2 1 0 0 0 0 7 4 5 8 0 7 8 3 3 8 4 7 1 0 0 0 0 7 8 9 7 8 5 8 3 8 4 2 0 2 0 0 0 0 7 8 5 4 4 1 8 1 8 2 0 9 3 0 0 0 0 7 9 4 7 0 5 8 5 4 1 1 9 9 8 8 5 0 7 7 8 3 7 6 8 5 9 9 2 0 5 6 7 0 0 8 0 2 7 0 3 8 8 3 7 3 0 1 1 2 1 0 5 3 5 3 . 1 4 3 1 0 0 5 1 8 9 0 5 4 3 8 2 8 8 1 1 3 1 0 5 3 2 3 . 0 8 1 1 2 0 5 4 5 3 3 2 4 5 3 8 9 8 5 0 0 5 0 1 4 5 2 5 0 5 5 2 5 5 0 0 5 1 5 1 5 7 5 1 5 1 2 3 1 0 0 0 6 3 9 5 3 1 5 3 3 9 1 4 1 0 0 0 8 5 6 9 8 0 5 4 4 4 9 4 5 0 0 0 7 0 8 8 6 8 5 9 2 8 1 3 5 0 0 0 7 3 0 1 9 8 6 0 3 1 9 3 1 0 0 0 0 7 3 0 3 1 5 8 1 1 0 5 2 1 0 0 0 0 7 5 2 8 2 3 8 3 9 3 7 8 2 0 0 0 0 7 4 8 7 3 4 8 2 6 5 7 3 3 5 3 4 0 7 8 1 3 9 4 8 8 4 4 0 5 3 7 5 0 0 7 8 1 9 6 3 8 4 8 2 8 2 4 1 7 0 0 7 8 1 3 9 4 8 8 4 4 0 5 1 1 3 1 0 5 1 1 3 . 0 0 0 1 0 0 5 5 2 0 7 8 4 8 3 8 7 8 1 1 3 1 0 5 1 5 3 . 0 3 9 1 0 0 5 4 9 6 2 8 4 8 5 0 2 3 5 0 0 8 4 0 3 4 4 5 2 8 4 0 3 5 0 0 8 3 5 4 8 5 5 3 3 5 7 4 I I n u m b e r o f l o a d a p p l i c a t i o n s ; A V I p e r c e n t a i r v o i d s ; M R I c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g P D ! p r o g r a m ; E I c a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m . e 5 I 1 1 1 1 1 1 1 1 4 U 1 1 1 1 5 M 1 1 1 1 5 B 0 0 0 0 1 E 5 8 6 5 5 R 3 1 2 3 2 5 5 5 1 1 1 1 0 7 1 1 C F 4 v 3 2 2 4 4 3 5 . . . . . . . 2 5 7 1 9 4 0 2 3 4 5 5 2 0 2 1 3 5 2 7 1 a E 1 1 3 2 1 3 4 1 1 1 1 3 3 4 5 I 4 U 5 M 5 B 1 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 5 5 8 5 8 5 6 5 R 2 3 1 2 3 1 2 5 5 1 1 1 2 2 c l M u p l r a o t g 5 3 0 0 0 0 1 5 1 5 0 0 0 0 3 0 0 1 1 5 0 1 5 0 1 5 1 5 3 0 0 0 1 0 0 0 2 5 0 0 0 1 1 1 5 0 0 0 1 5 0 1 5 0 0 2 2 3 1 5 0 1 5 0 1 1 5 0 5 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 7 5 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 p ( 5 9 5 7 7 4 8 5 9 8 2 0 5 2 5 4 3 8 5 8 0 5 4 5 7 5 4 4 3 2 5 5 7 3 4 3 8 7 5 5 5 7 7 8 0 4 4 5 2 1 3 5 5 5 5 5 5 1 2 0 8 9 3 5 7 1 7 0 5 8 7 0 2 5 2 5 4 1 2 3 5 5 8 0 7 7 7 7 7 6 6 7 5 5 8 7 7 5 5 8 8 4 4 5 5 5 5 5 5 4 5 4 5 5 5 7 7 4 5 4 4 5 6 7 6 3 r e d a m e r 5 1 s 7 4 2 5 8 9 5 8 0 8 8 5 1 1 1 7 0 7 5 8 4 4 5 5 5 2 2 0 2 4 5 1 5 2 3 0 0 7 0 8 5 i 5 2 2 3 3 2 5 8 5 8 5 7 4 7 3 4 4 1 4 3 5 6 5 1 0 5 7 2 4 3 7 5 5 3 5 1 3 5 8 7 7 ) 1 7 4 5 8 5 8 2 3 5 3 7 8 1 1 3 1 4 1 7 8 8 0 5 5 2 5 3 5 0 7 7 0 5 5 5 9 2 5 3 5 5 8 4 ( p 3 3 4 8 7 3 5 0 2 3 5 4 5 5 9 9 5 3 8 9 2 5 5 4 5 1 5 8 1 5 5 2 0 1 5 5 1 8 2 3 5 4 5 6 4 8 8 5 5 5 5 5 5 4 5 5 6 8 3 3 4 5 5 5 4 4 5 5 5 2 5 3 3 4 4 4 3 3 4 4 4 3 5 5 5 s s 5 9 0 5 8 7 9 7 7 5 5 1 5 4 4 0 0 3 8 9 8 5 7 7 5 3 5 3 1 7 4 0 7 1 7 4 4 0 0 0 5 8 i l i i 8 5 8 8 3 4 7 4 8 0 5 7 1 3 3 7 7 3 2 1 4 1 5 3 5 1 8 5 7 7 3 2 7 5 2 5 9 4 3 5 4 7 ) 4 4 4 5 4 2 1 3 0 2 4 5 5 5 5 4 4 4 5 8 6 5 1 5 5 5 3 2 1 4 5 5 1 5 3 0 8 8 3 5 3 3 1 7 7 1 7 5 8 2 3 1 6 5 5 5 5 5 9 6 9 5 5 5 2 2 9 2 5 5 5 2 5 4 4 4 1 2 5 0 2 5 2 3 1 1 1 1 0 7 1 1 . 7 0 4 1 1 1 1 0 7 2 1 . 1 9 1 n t a n d t o t a l m o d u l i u 5 v . . 3 3 . 6 5 5 0 7 3 8 . . 1 7 5 8 8 3 s p 9 0 5 5 7 2 8 5 4 5 5 5 5 2 5 7 7 7 8 3 5 s 8 3 9 7 4 4 9 1 4 8 5 4 4 1 5 5 5 1 3 2 2 4 7 2 5 0 7 9 9 0 3 4 5 5 1 5 5 2 8 4 5 7 4 1 5 0 5 5 5 3 7 3 0 5 7 3 5 5 4 5 2 1 2 9 3 1 7 2 0 1 3 4 5 0 5 2 5 4 5 5 1 2 i n g i 2 5 3 5 4 3 9 2 7 1 1 6 5 7 1 0 0 8 3 4 5 5 7 1 ) 5 5 5 7 9 1 6 3 8 1 1 8 7 2 5 1 1 5 1 1 2 1 4 4 2 5 7 1 5 6 5 0 7 5 5 1 7 1 1 0 2 9 5 5 1 1 0 5 3 7 6 1 1 5 5 5 3 5 5 7 1 1 5 5 7 5 4 7 0 8 5 2 5 5 5 1 0 4 7 3 0 2 4 1 5 0 1 5 0 0 5 0 1 0 0 0 5 0 1 0 0 0 5 0 1 0 0 0 5 0 1 5 0 0 1 0 0 0 2 1 7 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 1 0 5 0 1 5 5 0 1 0 5 0 1 5 0 1 5 7 5 0 1 5 5 0 0 1 3 1 3 1 1 2 1 2 4 1 3 1 3 a p ( 5 5 2 4 5 5 4 7 2 4 7 1 5 5 3 5 8 5 3 7 4 7 5 0 5 1 5 0 3 2 8 8 5 9 5 8 5 9 8 5 8 5 1 7 7 2 7 8 7 9 2 7 0 7 0 2 3 1 3 3 4 4 4 3 4 4 5 5 5 3 3 3 5 4 4 4 8 6 7 7 7 5 5 5 5 7 7 2 3 2 3 3 3 4 5 5 5 5 5 3 5 5 1 5 5 5 7 4 8 4 5 5 4 2 3 3 1 5 2 3 5 1 3 5 3 9 s n 3 8 4 5 2 3 7 7 9 5 2 3 5 5 7 2 0 3 6 0 3 1 5 0 0 5 3 8 5 0 5 0 5 5 5 0 0 1 5 5 4 5 0 5 5 5 4 5 1 3 2 5 2 3 5 1 i 1 3 4 2 5 9 2 5 7 2 3 1 5 3 4 8 7 4 4 8 7 4 0 5 1 2 3 7 ) 4 5 8 0 8 5 5 5 8 0 0 0 5 5 5 8 0 8 9 7 1 3 7 0 4 3 0 5 5 7 5 5 5 0 2 6 7 4 5 3 4 1 ( 2 3 3 3 3 3 3 3 4 4 4 3 2 2 3 3 3 5 4 5 6 5 5 4 5 1 4 5 5 5 2 2 2 3 2 3 4 5 4 5 5 2 3 6 7 T a b l e E . I I n u m b e r o f l o a d a p p l i c a t i o n s ; A V I p e r c e n t a i r v o i d s ; M R I c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g F E M p r o g r a m ; E I c a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m . T a 5 I 4 U 5 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 B 0 0 0 0 0 0 0 1 E 7 7 7 7 7 7 7 5 R 3 1 1 1 2 3 1 1 b 2 2 2 2 2 5 l e E . C F a E 4 . . . . . . v 0 8 5 9 0 2 0 8 4 5 2 5 2 8 8 5 3 4 . 0 4 5 5 8 4 4 6 5 7 1 4 1 3 1 3 1 3 1 1 3 3 1 3 1 5 0 3 1 5 0 5 0 0 3 1 1 1 5 8 5 0 1 5 0 1 5 0 0 0 5 0 M l 5 4 0 5 0 4 1 5 0 0 0 0 1 5 0 0 8 4 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 1 5 0 1 5 0 1 c u p l r a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t g ( 0 9 2 7 1 4 0 3 5 1 3 0 5 7 2 3 5 5 5 1 5 8 5 6 2 8 4 0 1 3 3 5 9 1 3 4 5 1 8 8 0 3 a p 3 9 5 7 7 0 3 7 5 6 3 3 3 5 0 9 2 6 5 8 8 2 5 5 2 9 5 1 7 4 5 5 9 7 5 0 4 7 5 1 3 1 e r n 5 1 0 7 s 0 4 4 5 0 1 5 1 5 2 0 8 5 7 8 5 1 2 3 7 5 9 4 3 0 5 2 5 9 2 5 2 1 3 2 5 3 5 4 4 4 4 5 4 5 5 5 8 3 3 3 4 4 3 3 3 4 8 2 2 3 3 4 2 4 5 5 5 3 3 3 4 4 3 3 4 4 4 5 2 r e s d a m 5 s 3 5 5 8 4 5 3 3 3 8 4 1 1 0 9 5 5 8 1 2 5 8 5 2 3 5 5 0 7 9 5 5 4 3 4 2 0 5 8 8 0 1 ( 3 3 3 3 4 3 4 4 4 2 2 3 2 2 2 2 5 5 3 3 3 3 3 3 3 3 4 4 4 2 2 2 2 3 3 3 3 3 3 3 4 1 p 2 4 5 9 3 5 1 4 5 0 2 4 8 0 4 6 8 0 3 6 7 1 1 0 5 5 1 2 4 2 5 5 1 5 3 5 2 3 7 8 1 5 1 i 0 5 7 5 5 0 3 5 1 5 4 5 9 5 4 8 1 5 4 3 9 5 9 5 2 4 4 4 4 5 2 5 0 8 1 5 5 4 0 3 5 ) 4 4 2 7 3 0 0 3 1 5 5 5 0 9 5 8 8 2 8 9 0 0 5 9 5 5 5 5 5 5 5 9 2 5 2 5 7 4 4 1 1 7 i 5 4 4 1 7 4 7 3 2 8 4 8 7 9 2 1 9 9 5 2 6 0 5 7 5 5 0 4 7 8 7 1 2 2 5 3 3 2 9 0 4 4 i ) 4 0 7 2 5 1 1 5 5 0 7 2 2 4 2 4 7 4 1 1 0 5 5 2 5 4 3 5 3 7 5 4 0 0 4 4 7 7 4 3 3 5 5 2 5 2 9 5 5 5 4 3 4 4 4 4 3 2 5 6 5 2 2 1 1 0 9 2 0 2 5 5 1 1 2 5 2 0 1 0 3 7 4 4 l i 1 1 1 e 5 I 1 1 1 1 1 1 1 5 U 1 1 1 1 1 5 M 1 1 1 1 1 5 B 0 0 0 0 0 1 E 7 7 7 7 7 5 R 1 2 2 3 3 5 5 5 5 5 2 2 1 1 1 1 1 1 0 0 5 5 1 2 1 1 n t a n d t o t a l m o d u 2 2 3 3 3 2 3 3 3 3 2 2 3 4 4 4 2 2 2 2 3 3 3 3 4 3 4 2 4 2 2 2 3 5 3 3 5 8 8 5 7 5 l 5 1 p ( 7 5 2 4 4 3 7 5 2 3 3 9 4 5 1 2 3 3 7 9 3 4 4 4 9 5 1 3 4 3 7 5 3 4 5 5 0 1 8 1 0 7 0 5 5 1 1 1 0 5 7 4 9 6 5 7 0 9 8 3 3 1 0 0 7 7 7 5 2 0 1 4 4 2 1 1 1 1 0 7 4 1 0 1 i 1 s 1 1 5 8 6 7 5 1 4 8 4 0 7 4 5 0 7 0 3 1 2 2 9 0 4 5 5 5 0 8 0 2 5 4 2 0 1 5 9 0 0 2 i 5 2 1 9 9 5 3 7 5 4 3 9 1 7 2 8 7 1 3 0 8 4 5 4 2 5 5 5 0 8 5 5 8 5 0 4 5 1 3 8 0 4 ) 5 5 1 0 0 5 2 5 5 9 9 2 1 0 5 8 8 5 2 5 5 5 2 4 3 0 7 1 2 5 5 2 8 4 3 0 0 0 9 3 0 3 u s ( 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 1 2 2 2 2 2 2 2 3 3 3 1 3 2 2 2 2 2 4 4 5 5 5 4 4 p 5 2 3 5 8 7 1 3 5 8 7 3 7 5 3 4 5 8 1 3 8 8 5 4 5 0 4 4 5 8 1 3 7 7 5 0 7 1 8 9 1 7 s 5 5 0 3 5 1 7 3 7 5 8 0 6 3 1 0 4 8 6 5 0 5 0 7 3 1 3 7 7 5 8 5 0 5 5 0 7 3 8 3 2 4 7 i i 0 5 5 9 0 2 2 5 5 4 3 7 8 4 1 4 9 8 5 0 1 3 2 4 5 7 2 2 1 3 5 5 2 5 4 5 3 7 1 5 1 5 n g ) 5 4 4 7 2 7 5 2 5 0 8 8 5 5 5 0 0 0 3 2 3 1 5 1 8 5 5 5 0 1 5 5 9 7 4 5 2 1 4 8 1 3 5 5 5 1 1 7 0 5 5 0 9 6 5 9 1 4 1 7 7 3 0 9 5 0 1 0 5 5 5 2 2 5 8 5 3 5 8 8 2 4 1 4 4 5 . 0 4 2 5 . 9 2 4 . . . . . 0 8 9 5 0 9 8 5 5 9 0 2 0 3 1 5 5 0 0 2 0 1 5 0 1 0 0 0 5 0 0 0 1 5 0 1 5 1 0 0 0 0 0 0 0 5 0 1 2 0 0 5 0 2 0 3 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 1 2 1 5 8 0 1 5 0 1 5 0 5 1 5 0 1 1 1 1 1 2 0 1 1 1 2 1 2 1 0 5 0 0 1 5 0 3 6 8 I I n u m b e r o f l o a d a p p l i c a t i o n s ; A V I p e r c e n t a i r v o i d s ; M I I c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g I I M p r o g r a m ; E I c a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m . o t a l m o d u l a n d t V A l e T M M 1 1 1 1 1 1 1 a 5 L E 5 5 5 5 5 5 0 P B 0 0 0 0 0 0 b E R 3 1 1 2 3 1 2 3 2 2 2 5 5 5 S N 1 1 1 1 1 1 1 2 2 2 2 2 2 2 A U 1 1 1 1 1 1 1 2 1 1 1 0 8 1 1 A 2 . E V 9 9 9 0 1 9 1 7 . . . . . . . . C F a E l M 1 5 9 9 1 7 7 3 6 6 9 6 5 4 1 7 1 1 1 1 1 1 1 1 1 5 0 1 1 5 0 5 0 1 5 0 1 5 0 1 5 0 1 5 0 1 5 0 1 5 c 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 1 5 1 1 5 0 2 0 0 6 1 5 0 0 0 0 0 4 5 0 0 0 0 0 0 1 5 1 1 3 1 5 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u p l r a o t g e r p 5 ( 5 1 s 6 6 5 5 8 8 8 7 5 5 7 5 6 6 5 6 7 5 5 4 6 5 4 5 5 6 5 6 5 5 7 8 5 5 5 4 5 8 3 4 4 4 1 7 9 0 2 8 8 1 0 8 2 9 1 7 0 1 0 8 5 9 0 5 9 9 5 9 5 7 0 8 1 5 0 9 5 9 5 8 8 1 4 9 3 6 8 0 1 2 5 1 9 9 7 4 6 0 8 7 5 5 4 5 1 5 0 3 5 1 5 7 0 2 9 7 7 0 9 5 0 0 0 6 0 3 1 6 1 1 0 5 5 9 2 7 0 3 7 0 7 2 3 7 2 8 6 1 6 5 1 8 0 4 0 2 8 1 7 0 8 2 7 3 2 3 7 1 r e s i d a m z s 3 0 1 4 1 5 7 7 6 8 7 4 5 5 5 6 5 9 6 9 7 5 1 6 0 2 5 8 6 0 0 7 7 3 5 9 5 1 7 7 3 1 ( p 5 5 5 4 4 5 5 3 8 4 4 5 4 4 4 5 5 5 4 5 5 5 4 4 4 4 5 5 4 4 5 5 5 4 4 4 5 5 3 2 3 4 1 7 9 1 6 2 7 9 3 9 2 8 0 1 7 6 5 9 0 6 0 5 7 0 5 8 2 8 1 6 2 7 9 0 8 9 5 8 9 4 5 0 i 9 7 3 1 3 0 7 5 2 9 8 3 2 4 8 2 4 9 0 3 5 1 8 0 5 3 8 8 4 8 9 5 7 4 5 5 1 4 1 1 0 0 ) 5 1 8 5 4 7 9 8 9 8 7 3 8 4 8 4 0 2 6 6 4 0 0 1 0 1 7 4 5 6 7 2 2 0 4 0 2 7 1 6 8 0 i 6 3 2 0 5 9 3 3 4 2 8 5 1 5 0 3 3 8 2 1 5 5 6 7 8 7 5 4 0 4 8 5 9 6 8 3 0 5 2 3 5 5 ) 3 2 5 0 0 3 4 7 3 9 2 9 5 0 0 3 1 0 3 4 7 7 0 1 5 0 6 6 8 2 5 5 2 2 2 2 0 1 0 7 1 5 l 7 4 7 9 5 9 2 5 6 5 2 8 8 1 1 6 7 3 4 2 2 0 0 9 9 3 7 0 3 9 7 0 0 8 2 8 2 5 0 7 1 7 i e n S I 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 t M H 1 1 1 1 1 1 1 1 1 A U 1 1 1 1 1 1 1 1 1 P B 0 0 0 0 0 0 0 0 0 L E 6 8 6 8 6 8 8 6 7 E R 2 3 1 2 3 1 2 3 1 1 2 2 2 5 5 5 1 1 i H p 0 7 0 5 7 1 5 7 2 2 7 4 7 2 0 6 4 6 0 8 3 4 6 0 8 3 4 7 0 8 3 0 7 3 5 1 3 7 9 1 0 6 ( 1 4 0 2 7 9 4 9 2 7 8 4 5 2 7 6 3 6 1 5 7 3 6 1 5 7 3 6 1 5 7 4 1 9 8 8 4 9 2 7 6 3 R s 2 3 4 8 0 9 3 3 2 5 5 3 3 2 2 7 3 6 1 0 2 3 6 1 0 1 2 9 4 6 0 0 3 8 7 4 7 3 5 6 7 2 i 5 9 9 0 2 1 8 5 2 9 1 5 7 8 6 6 5 3 9 6 0 5 3 6 0 9 4 4 6 9 5 9 8 9 7 5 4 4 9 6 7 2 ) 8 6 6 5 7 3 4 2 0 8 5 1 6 5 9 9 2 2 1 2 9 2 2 2 1 0 1 0 9 9 8 9 9 6 8 7 7 0 8 2 6 8 u s i n g 2 s 4 7 9 5 6 5 0 7 7 3 4 3 3 1 6 7 3 7 2 6 4 3 4 8 8 7 4 6 7 8 8 0 6 1 0 7 5 6 5 7 5 7 i 6 6 9 8 6 9 6 6 6 1 4 9 8 0 9 0 9 6 9 7 9 9 4 0 9 1 4 6 2 2 9 7 1 4 0 5 1 7 1 4 3 1 ) 4 9 2 2 2 3 9 6 2 6 0 5 8 6 4 2 1 0 4 7 4 1 7 0 7 1 0 1 0 1 5 9 5 0 8 3 9 4 8 8 8 8 2 4 3 3 3 4 2 ( 3 3 2 3 4 3 3 3 3 2 3 3 3 3 3 2 3 3 3 2 2 3 2 3 3 3 3 3 3 3 3 3 3 4 p 7 2 2 4 6 0 6 2 3 9 0 8 2 5 7 9 7 1 3 7 9 0 7 3 7 8 6 6 8 7 0 3 8 8 1 3 9 2 3 9 0 1 8 7 6 7 3 4 6 9 2 3 3 1 4 5 5 0 6 6 4 7 0 1 8 2 2 8 3 6 1 2 8 5 4 7 0 3 0 1 2 8 5 5 8 9 0 1 5 0 4 9 1 5 0 0 0 3 0 0 0 1 1 5 0 0 0 1 5 0 0 0 5 0 0 0 1 1 5 0 0 0 5 0 0 6 1 1 0 5 1 0 1 5 0 1 5 0 5 0 5 0 1 1 5 1 0 1 5 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 5 3 4 4 4 4 3 3 4 4 3 4 3 4 4 4 3 4 3 3 4 4 3 4 4 4 3 3 4 4 4 3 4 4 3 3 4 3 4 4 4 2 . . . . . . . . . 9 1 2 9 9 0 0 0 0 9 7 5 7 9 9 6 1 7 7 5 3 0 4 6 0 7 8 3 6 9 N I n u m b e r o f l o a d a p p l i c a t i o n s ; A V I p e r c e n t a i r v o i d s ; H R I c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g F I N p r o g r a m ; 8 I c a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m . T a b l e E . C a l c u l a t e d r e s i l i e n t a n d t o t a l m o d u l i 3 ' 7 ( ) u s i n g F E M p r o g r a m S A M P L E 5 v 5 a n 5 S A M P L E 5 v 5 H R 5 N U M B E R ( p s i ) ( p s i ) N U M B E R ( p s i ) ( p s i ) 5 0 0 2 7 8 5 3 5 2 2 3 2 9 1 5 0 0 0 3 1 5 0 0 5 2 5 5 6 1 6 1 9 9 9 2 9 7 2 5 3 2 3 5 5 5 3 1 9 9 9 9 3 2 3 9 2 5 2 5 5 5 2 5 5 9 9 9 3 3 5 3 9 1 2 7 1 7 9 7 3 1 1 1 9 5 1 1 2 . 9 7 5 1 1 9 5 9 5 1 5 5 5 1 9 5 7 7 1 9 9 9 9 3 5 9 2 5 5 2 5 5 9 9 5 5 9 9 5 7 5 5 7 5 5 7 3 9 9 7 2 1 1 1 9 7 2 1 5 . 5 5 7 1 9 9 2 3 5 3 9 5 1 5 2 9 1 5 1 9 9 9 5 1 7 9 9 9 5 1 5 7 7 5 5 9 9 2 7 3 9 5 5 2 2 9 5 9 1 5 9 9 9 5 5 9 9 5 5 5 7 2 5 9 5 1 9 9 9 2 9 1 9 5 1 2 3 5 1 5 2 1 9 9 9 9 7 9 9 3 5 9 5 9 5 9 5 9 5 3 9 9 3 3 2 9 9 9 2 5 2 5 7 3 3 9 5 9 9 7 2 2 5 5 7 5 9 5 9 9 5 1 9 9 9 9 3 5 1 9 5 9 2 7 2 7 5 7 1 5 2 9 5 9 7 3 2 7 3 5 5 9 5 9 9 5 2 1 1 1 0 7 3 1 6 9 1 7 1 0 0 2 3 2 0 0 5 1 8 5 5 6 5 3 1 1 1 0 5 2 1 2 . 9 7 8 1 0 0 5 0 0 0 0 0 5 2 2 5 3 7 5 9 9 2 7 1 1 9 2 2 1 2 2 3 3 5 2 9 5 5 3 5 5 3 5 5 7 7 9 3 1 9 9 9 2 5 5 9 7 2 2 3 9 5 3 7 1 9 9 9 5 1 7 5 9 3 5 2 2 2 7 7 5 0 0 0 3 2 7 5 6 1 2 5 9 5 5 8 5 2 5 0 6 8 9 0 6 2 5 8 0 0 3 5 1 9 9 9 9 3 3 5 9 5 9 2 7 5 5 5 5 1 9 5 9 9 7 1 1 1 1 5 5 5 9 9 3 5 2 1 1 1 9 7 1 2 7 . 9 5 5 1 9 9 2 2 3 5 5 5 1 7 5 5 7 5 3 9 9 9 9 7 3 9 5 3 5 5 1 7 5 5 5 5 9 9 2 5 9 9 2 5 2 1 3 3 9 2 1 5 5 5 9 9 7 3 9 5 3 5 5 1 7 5 5 5 1 9 9 9 2 7 7 5 9 2 2 1 5 5 5 5 3 1 1 1 9 5 3 1 3 . 9 5 3 1 9 9 5 9 9 9 9 9 5 9 5 5 5 5 5 9 9 9 3 1 5 1 9 2 2 5 9 5 5 5 5 9 9 5 7 1 2 5 3 5 7 3 3 2 5 1 9 9 9 9 3 2 5 9 1 9 2 5 5 9 9 9 1 9 9 9 5 9 5 1 9 3 5 1 2 2 5 7 2 1 1 1 0 7 2 2 7 0 3 8 1 0 0 2 2 6 2 7 0 1 7 5 6 9 3 5 0 0 0 6 7 6 3 0 8 5 5 8 5 8 5 5 9 9 2 5 3 5 9 5 2 1 3 2 3 7 1 9 9 9 9 5 9 5 9 9 9 5 7 5 9 5 5 1 9 9 9 2 5 9 5 5 5 2 3 1 1 3 5 3 9 9 9 9 7 1 5 2 5 5 5 9 5 7 7 5 5 2 9 9 3 1 9 5 5 5 2 5 5 5 5 5 1 5 2 9 9 9 7 1 5 2 5 5 5 7 7 5 3 1 1 0 0 0 0 3 2 8 9 1 1 2 6 8 5 7 5 3 1 1 1 0 5 1 2 3 . 0 8 0 1 0 0 5 0 0 0 0 0 5 0 2 1 0 1 2 1 1 1 9 7 3 2 7 . 9 3 5 1 9 9 2 2 5 2 7 9 1 5 3 2 5 5 5 9 9 5 5 5 7 1 9 5 5 9 1 1 3 5 9 9 2 5 5 2 5 7 2 1 5 2 5 5 1 9 9 9 5 9 5 9 2 9 5 9 5 7 2 5 1 9 9 9 2 5 1 5 5 1 2 2 7 5 5 9 5 9 9 9 5 7 2 3 9 5 5 5 5 9 5 3 5 9 9 9 3 2 9 3 5 5 2 5 3 9 9 1 1 9 9 9 9 5 9 1 5 1 7 5 7 5 5 5 9 1 9 9 9 9 3 2 9 1 5 1 2 5 5 5 5 3 3 9 5 9 9 7 1 5 1 2 5 5 1 1 1 2 3 2 1 1 1 9 7 1 5 7 . 9 5 7 1 9 9 2 2 5 5 5 5 1 5 1 9 1 1 1 5 7 5 9 9 7 1 5 1 2 5 5 1 1 1 2 3 5 5 9 2 5 5 5 2 5 2 1 9 5 3 3 3 1 1 1 9 5 2 2 3 . 9 5 1 1 9 9 5 9 9 9 9 9 5 1 5 1 1 5 1 9 9 9 2 5 9 9 9 9 2 2 9 5 5 9 5 9 9 5 7 3 5 9 3 5 5 5 9 9 5 5 9 9 9 3 1 7 5 7 1 2 5 5 2 5 5 1 9 9 9 5 1 1 9 5 9 5 1 3 5 5 3 1 9 9 9 9 3 3 9 5 1 9 2 5 9 5 1 9 5 9 9 9 5 7 5 5 9 5 5 7 9 7 3 2 2 1 1 1 9 7 2 5 7 . 9 5 9 1 9 9 2 2 3 3 5 5 1 7 7 3 9 7 1 9 3 9 9 5 9 7 5 5 3 5 5 9 9 9 9 5 9 9 2 5 9 5 1 5 2 9 5 3 5 9 3 9 9 9 9 7 1 5 5 7 7 5 1 3 5 9 5 1 9 9 9 2 7 7 7 7 5 2 2 9 5 5 2 1 5 5 5 9 9 7 1 5 5 7 7 5 9 5 5 5 1 5 9 9 9 3 1 5 5 5 5 2 5 5 5 3 5 3 1 1 1 9 5 3 2 3 . 9 1 5 1 9 9 5 9 9 9 9 9 5 2 9 9 5 5 1 9 9 9 9 3 2 5 5 5 2 2 5 9 5 5 5 5 9 9 5 7 5 7 5 9 5 7 5 5 5 9 2 1 1 1 9 7 3 5 7 . 1 2 5 1 9 9 2 2 2 9 1 5 1 7 5 3 7 3 1 9 9 9 5 1 5 3 7 5 5 1 9 1 7 5 5 9 9 2 5 5 9 5 7 2 9 9 5 7 5 5 9 9 9 5 5 1 9 7 5 5 5 1 3 5 9 1 9 9 9 2 7 5 1 9 2 2 2 5 7 9 9 1 9 9 9 9 7 9 5 7 5 5 5 9 5 9 5 5 N - n u m b e r o f l o a d a p p l i c a t i o n s ; A V - p e r c e n t a i r v o i d s ; M R - c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g F E M p r o g r a m ; E - c a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m . T a b l e E . C a l c u l a t e d r e s i l i e n t a n d t o t a l m o d u l i 3 ' 7 ] . u s i n g F E M p r o g r a m s n a n r 5 v 9 a n 5 S A M P L E 5 v 5 a n 5 N U M B E R ( p s i ) ( p s i ) m m ( p s i ) ( p s i ) 3 9 5 9 9 7 2 7 5 5 9 5 5 5 5 5 5 2 9 5 9 9 3 2 5 5 7 2 2 7 3 9 3 1 1 5 5 9 9 9 7 2 7 5 5 9 5 9 5 5 1 7 1 5 9 5 9 9 3 3 2 5 5 2 2 5 7 2 5 9 3 1 1 1 0 5 1 5 . 1 5 5 1 0 0 5 9 0 0 6 2 5 0 7 0 8 9 3 1 1 1 0 7 1 2 . 9 8 5 1 0 0 2 2 8 5 5 5 1 8 3 7 0 3 5 9 9 5 5 9 5 5 2 5 5 5 9 2 5 5 9 9 2 5 5 5 5 5 2 1 3 3 5 5 1 9 9 9 5 9 5 3 5 5 5 5 7 9 5 5 1 9 9 9 2 5 5 5 5 2 2 2 5 5 5 9 5 9 9 9 5 5 1 5 9 7 5 5 2 5 3 9 5 2 9 9 3 2 3 5 7 5 2 5 3 3 5 5 1 9 9 9 9 5 5 9 7 5 5 5 7 2 7 3 3 1 9 5 9 9 3 3 3 9 5 5 2 5 5 2 9 5 3 9 9 9 9 7 9 3 5 3 1 5 5 1 5 5 3 2 3 5 9 9 3 5 5 5 3 5 2 5 2 7 9 3 5 3 1 5 5 7 1 5 3 5 9 5 5 1 5 5 3 3 1 1 1 9 7 2 2 . 5 7 5 1 9 9 2 3 5 5 7 5 1 5 5 9 2 7 3 1 1 1 0 5 2 5 2 . 9 8 9 1 0 0 5 0 5 0 5 9 5 3 3 3 2 2 5 0 0 2 7 5 8 1 5 2 1 7 2 5 9 5 9 9 5 5 2 5 5 2 5 5 5 2 5 5 1 9 9 9 2 9 3 9 7 5 2 3 5 9 5 9 1 0 0 0 6 1 9 9 1 3 5 2 5 0 5 5 5 5 0 0 3 3 3 9 3 3 2 7 2 7 3 5 5 2 9 9 5 5 5 5 5 3 5 5 5 7 7 9 1 9 5 9 9 3 5 3 1 5 5 2 7 2 7 3 5 1 9 9 9 9 7 9 5 1 1 5 5 5 5 7 7 9 2 7 5 9 9 3 5 5 3 7 7 2 7 2 7 3 5 3 9 2 9 9 7 3 1 5 5 3 5 9 5 5 1 9 5 2 5 9 9 3 5 5 3 7 7 2 5 5 5 9 1 9 5 9 9 9 7 3 9 1 2 5 5 9 5 5 1 9 3 1 1 1 9 7 3 2 . 9 5 3 1 9 9 2 2 5 5 5 5 1 7 5 7 1 9 3 1 1 1 9 5 3 5 2 . 9 5 5 1 9 9 5 9 5 1 5 5 5 1 9 5 9 9 5 9 9 2 5 5 9 5 9 2 1 5 1 2 5 5 0 0 5 8 5 8 2 1 5 9 6 8 8 5 1 0 0 0 2 8 3 8 5 2 2 3 0 6 7 1 1 0 0 0 6 2 2 5 6 7 5 0 9 6 8 9 5 7 5 0 3 2 5 5 9 0 2 5 5 1 5 9 5 9 9 9 5 5 5 9 5 9 5 7 9 1 1 5 1 9 9 9 9 3 3 3 9 1 9 2 7 9 1 9 3 1 9 9 9 9 7 9 9 7 7 5 5 9 5 9 9 7 2 5 5 9 9 3 5 3 9 1 7 2 5 5 1 5 1 3 9 9 9 9 7 3 5 3 5 9 5 9 5 2 5 5 5 2 1 9 9 3 5 1 9 5 1 2 5 5 1 5 1 1 1 2 5 9 9 7 3 5 3 5 9 5 2 5 1 5 7 3 1 1 1 9 7 1 5 . 7 5 9 1 1 9 2 5 1 3 2 9 1 9 5 9 2 3 3 1 1 1 9 7 1 1 5 . 9 2 1 1 9 9 2 3 3 2 2 3 1 5 7 1 5 5 5 9 9 2 7 5 9 1 7 2 2 1 1 5 3 5 9 9 2 7 1 2 5 5 2 1 3 5 7 2 1 9 9 9 2 9 5 9 3 9 2 3 3 5 9 9 1 9 9 9 2 5 5 9 5 2 2 3 5 7 5 9 5 5 9 9 3 3 5 5 5 5 2 7 5 2 3 9 5 9 9 9 3 3 9 3 9 2 2 5 9 9 5 3 1 9 1 9 9 3 5 7 7 5 5 2 5 2 1 5 5 1 9 9 9 9 3 5 9 1 3 9 2 5 1 9 1 5 1 2 5 5 9 3 5 2 5 9 5 2 9 3 3 5 5 3 5 5 9 9 3 5 5 2 5 5 2 5 7 1 7 9 3 1 1 1 9 7 2 5 . 9 1 9 1 1 9 2 3 1 7 5 3 1 7 9 7 3 5 1 5 5 7 9 9 3 5 5 2 5 5 2 5 7 1 7 9 5 5 9 2 7 1 2 5 9 2 1 7 5 5 9 3 1 1 1 9 7 2 1 5 . 9 5 5 1 3 5 2 3 1 1 5 1 1 5 3 9 5 3 1 9 9 9 2 5 5 5 9 5 2 2 5 1 2 9 5 9 9 2 5 1 9 5 9 2 1 1 9 9 5 5 5 9 9 3 2 5 9 5 7 2 5 7 9 3 5 1 1 5 9 2 5 1 5 5 2 2 3 9 9 5 1 1 9 9 9 9 3 3 5 5 5 5 2 5 5 5 5 2 5 9 9 9 3 1 7 9 3 1 2 5 7 5 9 5 1 3 5 9 9 3 5 9 7 5 9 2 7 5 5 7 5 1 9 9 9 9 3 3 9 5 5 3 2 5 5 5 2 1 3 1 1 1 9 7 3 5 . 9 7 5 1 1 9 2 2 9 1 5 5 1 5 2 1 9 3 3 2 9 9 9 3 5 5 2 7 2 2 7 9 7 5 5 5 3 9 2 5 5 9 3 1 2 1 9 2 5 1 1 5 2 5 5 9 3 5 5 2 7 2 2 7 5 5 2 9 1 9 9 9 2 5 2 1 5 5 2 2 5 2 2 9 3 1 1 1 9 7 3 1 7 . 9 9 7 1 5 9 2 2 5 9 5 5 1 7 9 5 2 5 5 5 9 9 3 2 1 5 5 1 2 5 9 1 2 5 5 9 9 2 5 9 5 9 9 2 9 5 5 5 3 5 5 2 9 3 2 5 1 9 9 2 5 1 5 5 5 1 9 9 9 2 5 5 5 5 5 2 1 7 5 1 5 5 5 9 9 3 3 9 5 1 5 2 5 1 5 5 5 5 1 9 9 3 9 5 9 1 3 2 5 3 5 9 1 1 9 5 9 9 3 3 5 2 9 2 2 5 7 5 9 9 1 1 9 9 9 3 1 9 7 5 9 2 5 9 3 2 5 2 1 2 1 9 5 1 1 . 9 9 1 1 3 9 3 5 7 5 5 3 2 9 5 9 5 9 N - n u m b e r o f l o a d a p p l i c a t i o n s ; A V - p e r c e n t a i r v o i d s ; M R - c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g a n p r o g r a m ; E - c a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m . 3 7 2 T a b l e E . C a l c u l a t e d r e s i l i e n t a n d t o t a l m o d u l i u s i n g F E M p r o g r a m S A M P L E 5 v 9 a n 5 S N M P L E 5 v 5 1 5 1 5 N U M B E R ( p s i ) ( p s i ) N U M B E R ( p s i ) ( p s i ) 5 0 0 3 9 9 1 5 5 3 2 1 7 1 6 5 0 0 0 5 9 1 1 6 1 5 0 5 7 1 9 1 0 3 0 5 2 7 3 1 7 3 5 2 0 5 5 1 0 0 0 0 5 0 7 0 9 1 5 1 5 5 1 5 5 0 0 0 5 7 8 5 6 6 3 9 2 0 1 6 2 1 3 1 0 6 1 1 . 9 8 6 1 0 0 3 6 9 1 5 6 3 0 5 0 0 5 1 0 0 0 0 5 9 2 9 0 1 5 1 5 9 0 7 5 0 0 5 2 2 1 8 7 3 3 9 5 9 5 2 1 2 1 0 6 2 1 . 9 9 5 1 1 0 3 5 7 3 5 3 2 9 2 3 8 3 1 0 0 0 5 5 1 9 5 6 3 6 9 3 6 3 5 0 0 5 1 2 3 3 8 3 5 3 5 8 6 5 0 0 0 5 0 5 1 5 1 5 1 0 0 6 7 1 9 2 9 5 3 5 5 9 5 3 5 9 7 3 5 1 9 7 9 9 5 2 2 5 5 9 5 3 3 9 5 5 5 5 9 9 5 9 9 7 5 3 5 9 9 5 5 5 2 1 3 1 9 5 2 1 . 9 3 9 1 5 9 3 7 2 7 9 5 2 5 7 1 5 9 1 9 5 9 9 5 9 3 9 1 1 5 9 9 5 5 5 5 5 9 5 1 5 5 5 7 3 5 7 9 5 5 2 1 2 1 0 6 3 1 5 . 1 2 2 1 0 0 3 5 9 5 5 1 2 8 5 5 7 5 1 0 5 0 5 5 0 0 5 9 3 6 8 1 3 3 5 0 0 5 0 3 5 5 5 3 2 8 1 1 7 5 0 0 0 5 9 1 3 2 7 5 0 3 2 0 1 1 9 9 9 5 2 5 1 1 2 3 5 2 5 3 5 1 9 9 9 9 5 1 5 5 7 5 5 1 2 5 1 5 5 0 0 0 5 7 7 5 1 5 3 9 7 5 1 3 2 1 3 1 0 6 3 1 . 9 0 6 1 0 0 3 7 6 0 9 7 2 9 8 7 9 2 1 0 6 2 0 5 9 3 5 5 6 5 0 2 9 1 6 5 0 0 5 3 6 6 9 6 3 5 5 6 2 8 2 1 2 1 0 6 1 2 5 . 1 7 9 1 0 0 3 5 5 3 6 2 2 8 0 0 5 6 1 0 0 0 5 6 0 6 5 9 3 7 9 0 8 5 5 2 0 3 9 9 9 2 5 3 1 9 6 9 3 5 0 5 0 5 1 5 5 6 8 5 1 0 5 3 6 1 0 0 0 5 2 2 5 5 3 3 5 6 9 5 3 1 0 5 0 0 5 3 1 5 1 5 5 5 3 9 5 8 5 1 2 0 5 7 3 3 0 3 3 8 5 3 0 7 2 1 3 1 0 6 1 2 . 9 3 5 1 5 0 3 7 3 9 0 3 3 0 5 1 2 2 1 0 7 0 0 5 8 9 8 8 2 3 9 7 2 2 5 5 0 0 5 1 1 7 1 1 3 3 0 0 6 1 2 1 2 1 0 6 2 2 5 . 1 7 5 1 0 0 3 5 5 3 5 1 2 6 5 1 2 6 1 0 0 0 5 5 0 1 0 2 3 5 2 2 7 0 5 0 0 3 9 8 8 5 2 3 2 5 8 8 3 5 0 0 0 5 9 1 3 3 1 5 0 5 3 5 5 1 0 0 0 5 2 2 5 3 5 3 5 5 0 8 1 1 0 2 0 0 5 0 8 9 3 2 5 2 5 6 5 0 5 0 0 0 5 7 2 5 5 2 3 8 9 5 6 8 2 1 3 1 0 6 2 2 . 9 9 0 1 0 0 3 6 9 2 0 0 3 0 5 7 8 7 1 0 0 0 0 5 8 7 5 3 8 3 9 6 0 6 1 5 0 0 5 2 8 0 0 9 ’ 3 5 0 0 1 7 2 1 2 1 0 6 3 2 5 . 0 6 5 1 0 0 3 5 2 6 7 0 2 8 0 0 5 6 1 0 0 0 5 5 2 5 0 1 3 6 9 2 7 3 5 9 9 5 9 5 2 5 5 3 3 9 9 9 3 5 9 9 9 5 9 5 2 9 2 5 9 5 2 9 5 1 0 0 0 5 3 3 2 5 7 3 6 0 5 1 5 1 0 0 0 0 5 2 0 1 1 5 5 2 9 8 9 3 5 0 0 0 5 8 2 8 9 5 5 0 0 0 8 3 2 1 3 1 0 6 3 2 . 9 7 1 1 0 0 3 7 0 3 2 7 3 0 5 9 1 5 1 9 9 9 9 5 9 5 7 5 1 5 9 9 5 9 1 5 9 9 5 2 9 7 5 9 3 5 1 2 3 5 2 1 2 1 9 5 1 5 5 . 9 3 9 1 9 9 3 5 5 9 5 5 2 9 1 9 9 5 1 9 9 9 5 5 5 5 5 1 3 7 7 3 5 5 5 9 9 5 1 1 1 5 5 3 3 1 9 5 7 5 9 9 9 5 9 5 5 5 5 5 2 3 9 9 5 1 9 9 9 5 3 5 5 1 5 3 5 9 2 7 1 1 9 9 9 9 5 2 3 9 5 5 5 3 1 1 5 7 5 9 9 9 5 5 5 9 3 3 5 1 9 2 9 9 2 1 3 1 9 5 1 5 . 9 5 5 1 2 9 3 5 9 5 3 9 3 9 5 7 5 2 1 0 0 0 0 5 0 2 1 3 2 5 1 0 2 0 0 5 0 0 5 1 6 5 0 3 3 5 3 0 5 6 2 1 2 1 0 6 2 5 5 . 0 5 1 1 0 0 3 5 3 3 1 9 2 8 8 7 8 8 1 0 0 0 5 5 5 7 6 9 3 7 0 9 8 5 5 9 9 5 9 5 5 9 5 3 3 9 5 5 2 5 9 9 9 5 9 5 5 5 5 5 9 3 5 5 5 1 0 0 0 5 3 3 2 5 5 3 5 8 7 0 2 1 0 1 0 0 5 1 3 7 5 0 5 1 5 9 8 7 5 9 9 9 5 5 2 5 5 9 5 9 5 5 2 5 2 1 3 1 9 5 2 5 . 1 5 9 1 9 9 3 5 3 3 1 9 2 9 1 9 9 5 1 0 0 0 0 5 9 9 5 6 8 5 1 8 0 5 0 5 0 0 5 0 8 5 8 0 3 3 2 8 9 0 2 1 2 1 9 5 3 5 5 . 9 5 3 1 9 9 3 5 5 9 2 5 2 5 5 5 2 5 1 9 9 9 5 3 3 2 5 2 3 5 5 3 1 5 5 9 9 5 1 5 9 3 5 3 5 9 5 9 5 5 1 9 9 5 5 3 5 3 5 5 9 5 7 2 5 1 9 9 9 5 3 9 9 5 9 3 5 3 2 5 3 1 9 9 9 9 5 9 5 5 5 5 5 1 5 9 2 5 N - n u m b e r o r l o a d a p p l i c a t i o n s ; A V - p e r c e n t a i r v o i d s ; M R . c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g P I M p r o g r a m ; E - c a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m . 3 ' 7 2 3 T a b l e E . C a l c u l a t e d r e s i l i e n t a n d t o t a l m o d u l i u s i n g F E M p r o g r a m S A M P L E 5 v 5 1 5 1 r s n u s t r 5 v 5 M R 5 N U M B E R ( p s i ) ( p s i ) N U M B E R ( p s i ) ( p s i ) 2 1 3 1 9 5 3 5 . 9 5 3 1 9 9 3 5 5 5 7 2 2 5 9 1 2 5 1 5 9 9 5 5 3 1 9 2 5 3 3 5 5 9 5 9 9 5 2 2 2 5 7 3 5 1 7 1 2 5 9 9 9 5 9 9 5 5 1 5 9 1 2 5 3 1 9 9 9 5 5 7 5 5 9 3 5 1 3 3 9 1 2 3 9 9 7 2 3 3 3 5 5 1 1 3 3 5 5 9 9 9 5 9 5 7 5 2 5 1 7 5 5 5 2 9 1 9 9 7 5 9 2 9 9 5 2 3 5 9 5 9 5 5 9 5 1 5 5 5 5 5 2 1 9 7 2 1 5 7 5 9 9 7 5 9 2 9 9 5 2 3 5 9 5 1 2 1 1 9 5 1 1 . 9 1 7 1 9 9 5 9 7 5 5 5 5 1 5 1 1 5 1 2 1 1 9 5 1 5 . 9 5 2 1 9 9 5 1 1 1 5 7 5 1 5 5 7 7 5 9 9 5 5 7 9 5 2 5 5 1 3 7 9 5 9 9 5 9 2 5 9 1 5 7 5 3 2 9 1 9 9 9 5 2 3 9 2 2 5 2 1 7 5 9 1 9 9 9 5 3 9 2 5 7 5 1 2 3 2 9 5 9 9 9 5 9 5 1 5 9 5 5 5 3 5 9 5 9 9 9 5 9 7 9 2 5 5 7 5 3 3 3 1 9 9 9 9 7 1 5 5 5 9 5 5 5 3 9 5 1 9 9 9 9 7 1 9 7 2 1 5 1 5 5 3 2 3 9 3 9 9 7 5 9 5 3 9 5 1 7 9 3 5 3 9 9 9 9 7 5 5 3 5 5 5 2 5 5 1 2 1 5 7 9 9 9 7 5 9 5 3 9 5 1 7 9 3 5 1 9 2 5 3 1 7 5 5 3 5 5 5 3 3 2 7 9 1 2 1 1 9 5 2 1 2 9 3 1 1 9 9 5 1 5 3 9 9 5 2 5 2 2 5 1 2 1 1 9 5 2 5 . 1 2 9 1 5 9 5 9 9 9 9 9 5 1 5 5 9 9 5 9 9 5 9 5 1 5 5 5 9 7 2 2 3 5 9 9 5 5 3 5 5 5 5 2 5 9 7 9 1 9 9 9 5 3 5 7 5 9 5 5 2 5 3 7 1 9 9 9 5 5 5 5 9 5 5 7 9 5 1 3 5 3 9 9 7 9 5 5 5 5 5 5 9 7 5 2 5 9 9 9 5 5 3 7 9 9 5 3 5 7 7 7 1 9 9 9 9 7 2 5 5 7 9 5 9 3 9 9 5 1 1 5 9 9 5 7 5 5 2 1 5 5 5 5 3 1 3 9 9 9 9 7 5 3 5 2 5 5 2 7 5 2 5 3 9 9 9 9 7 9 1 9 9 2 5 9 9 9 1 5 1 5 5 2 9 9 7 5 3 5 2 5 5 1 5 5 5 5 5 5 1 9 9 7 1 1 1 7 9 5 5 7 7 5 5 1 2 1 1 9 5 3 1 . 5 9 5 1 9 9 5 1 5 3 9 9 5 3 5 9 1 1 1 2 1 1 9 5 3 5 2 . 9 7 7 1 9 9 5 1 1 1 5 7 5 3 7 5 9 5 5 9 9 5 9 3 5 7 5 5 9 2 5 7 9 5 9 9 5 9 2 5 9 1 5 5 9 7 3 5 1 9 9 9 5 5 3 5 3 5 5 1 5 9 5 5 1 9 9 9 5 3 9 2 5 7 5 3 1 7 2 5 5 1 5 9 7 9 9 5 5 5 5 5 1 2 3 5 5 3 9 9 7 9 1 9 3 1 5 7 5 9 5 2 1 9 9 9 9 7 2 7 3 3 2 5 9 9 5 5 5 1 9 3 9 9 7 2 1 1 2 5 5 1 1 5 9 9 3 9 9 9 9 7 5 5 9 9 3 5 2 2 1 5 5 3 9 9 9 9 7 5 5 5 7 1 5 2 5 2 7 5 1 5 9 9 9 9 7 5 5 9 9 3 5 2 2 1 5 5 5 2 2 9 9 7 5 5 5 5 3 5 2 5 2 7 5 1 2 1 1 0 5 1 2 2 , 9 5 9 1 0 0 5 1 3 5 9 5 1 2 3 3 2 7 1 2 1 1 0 6 1 1 5 . 0 2 5 1 0 0 3 5 5 3 6 2 2 7 3 2 1 1 5 9 9 5 9 5 2 9 1 5 9 9 7 5 5 5 0 0 5 9 9 5 1 5 3 2 9 5 9 5 1 9 9 9 5 3 3 5 5 1 5 2 5 7 1 2 1 9 9 9 5 2 2 5 3 9 3 5 9 5 5 5 5 9 9 9 7 9 3 2 2 5 5 9 7 2 5 9 5 0 0 0 5 7 2 5 2 7 3 9 3 7 5 9 1 9 9 9 9 7 2 5 7 9 9 5 9 9 5 9 9 1 9 9 9 9 5 5 7 5 2 5 5 1 1 9 5 9 2 5 5 9 9 7 5 5 2 3 9 5 2 7 7 5 5 3 0 2 5 0 5 1 3 1 1 9 5 2 0 9 9 1 1 5 5 9 9 9 7 5 5 2 3 9 5 1 5 5 3 7 1 5 3 7 9 9 5 1 3 1 1 9 5 2 5 1 9 7 1 2 1 1 9 5 2 2 2 . 9 5 9 1 5 9 5 1 3 9 9 3 5 2 1 3 5 2 1 2 1 1 0 6 2 1 . 9 2 7 1 0 0 3 5 5 9 3 3 2 9 9 5 5 5 5 9 9 5 7 5 3 5 5 5 5 5 5 3 5 5 9 9 5 9 9 9 7 7 3 5 5 5 7 5 1 1 9 9 5 1 2 5 3 9 5 9 9 9 7 5 1 9 9 9 5 3 5 5 1 5 3 5 5 9 1 2 5 2 9 9 5 5 9 3 9 9 5 5 1 9 5 9 5 5 9 9 5 9 1 1 7 5 3 9 5 5 1 9 1 9 1 9 9 7 9 1 5 5 5 5 9 9 7 9 7 1 9 7 9 9 5 9 5 5 9 3 5 9 7 5 5 5 2 7 5 9 9 7 2 5 1 5 9 5 1 2 7 5 9 3 9 9 9 9 5 2 3 3 5 3 5 2 5 7 9 1 1 7 5 5 5 9 7 2 5 1 5 9 5 1 2 7 5 5 1 9 2 9 9 9 5 2 3 3 5 3 5 3 5 5 5 5 1 2 1 1 9 5 3 2 2 9 5 7 1 5 5 5 1 5 5 3 0 1 3 7 7 3 1 1 2 1 1 9 5 3 1 5 . 1 7 5 1 9 9 3 3 3 3 5 5 2 7 3 2 1 1 5 9 9 5 9 2 5 5 5 5 5 5 5 9 1 5 0 0 3 8 5 3 3 3 3 1 8 0 1 9 ‘ N - n u m b e r o f l o a d a p p l i c a t i o n s ; A V - p e r c e n t a i r v o i d s ; m - c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g 1 1 2 1 p r o g r a m ; E - c a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m . 3 ' 7 1 ! T a b l e E . C a l c u l a t e d r e s i l i e n t a n d t o t a l m o d u l i u s i n g F E M p r o g r a m S A M P L E A V N H R 2 S A M P L E A V 8 H R 2 N U M B E R ( p s i ) ( p s i ) H U H B E R ( p s i ) ( p s i ) 1 0 0 0 5 0 8 5 6 1 3 3 3 0 6 8 1 0 0 0 5 1 0 6 1 0 3 3 5 9 8 3 5 0 0 0 5 5 7 9 0 7 3 8 5 7 8 8 5 1 0 0 5 5 9 5 8 5 3 8 8 9 7 7 1 0 0 0 0 5 7 1 3 5 3 3 8 5 7 8 8 1 0 2 0 0 5 8 0 5 1 1 3 9 5 8 2 8 5 9 9 9 9 5 9 5 5 5 1 5 1 1 3 5 7 2 1 5 9 9 5 9 1 5 1 5 5 1 5 5 5 3 1 0 0 0 0 0 5 9 8 6 5 1 5 1 1 3 6 7 2 7 7 0 0 5 9 7 2 3 0 5 1 5 5 5 3 1 2 1 1 0 6 1 2 5 . 0 8 5 1 3 0 3 5 1 5 3 6 2 7 0 3 8 3 1 2 1 1 0 7 1 1 7 . 0 2 6 1 0 0 2 3 2 0 0 5 1 8 8 9 0 6 5 0 0 3 8 0 7 8 6 3 1 7 5 3 7 5 0 0 2 6 9 5 5 7 2 1 7 2 5 8 1 0 0 0 5 0 7 5 0 9 3 3 9 5 5 7 1 0 0 0 2 8 8 7 5 1 2 2 7 5 3 1 6 0 0 0 5 6 0 1 7 3 3 8 3 7 1 2 5 3 0 0 3 2 7 1 7 7 2 6 5 5 2 6 1 9 1 9 9 5 7 3 3 5 7 3 9 5 7 5 1 1 0 0 0 0 3 3 5 5 5 9 2 5 1 5 1 5 3 0 2 0 0 5 9 5 9 8 2 5 1 3 8 9 6 2 5 5 0 0 3 5 0 7 8 3 2 8 1 5 1 5 1 8 6 8 0 0 5 9 5 9 8 2 5 1 3 8 9 6 1 5 8 7 0 0 3 5 0 7 8 3 2 8 8 2 1 5 1 2 1 1 0 6 2 2 5 . 8 5 6 1 0 0 3 5 9 1 5 1 2 8 3 9 6 5 1 2 1 1 0 7 2 1 7 . 0 0 6 1 2 0 2 3 2 7 7 9 1 8 5 8 8 8 5 9 9 5 1 5 7 3 3 3 3 7 1 3 5 5 1 9 2 5 7 9 2 3 2 9 5 1 5 3 1 9 9 9 5 5 9 5 5 5 3 5 5 1 5 3 1 9 9 9 2 5 3 5 5 5 2 2 2 5 5 3 5 0 0 0 5 9 0 7 5 7 5 0 9 5 3 2 5 5 2 0 3 2 2 9 6 0 2 6 6 6 5 5 1 0 0 0 0 5 0 7 3 7 8 5 0 0 8 5 3 1 1 5 8 0 3 3 8 5 5 5 2 6 9 8 5 8 2 7 9 0 0 5 2 3 7 8 0 5 5 3 3 7 1 1 6 8 0 0 3 5 2 8 0 5 2 7 2 9 5 6 1 9 1 5 0 0 5 2 3 7 8 0 5 5 3 3 7 1 1 6 7 3 0 0 3 5 6 7 9 7 2 8 5 7 1 3 1 2 1 1 0 6 3 2 5 9 5 8 1 0 0 3 5 0 5 8 6 2 8 0 8 2 5 1 2 1 1 0 7 3 1 7 . 0 5 5 1 0 0 2 2 9 7 0 7 1 8 2 8 5 7 5 9 9 5 9 5 9 9 5 3 2 7 5 5 2 5 9 9 2 5 7 7 7 5 2 1 5 5 5 5 1 0 0 0 5 2 9 5 7 6 3 5 3 9 8 8 1 0 0 0 2 8 6 7 0 5 2 2 8 2 2 9 5 1 0 0 5 7 8 8 5 5 3 8 9 6 3 5 5 0 0 0 3 2 5 6 3 9 2 6 7 0 8 0 1 0 8 0 0 5 0 2 5 5 8 5 1 0 5 7 2 1 1 7 0 0 3 5 0 2 5 0 2 6 7 0 8 0 3 0 0 0 0 5 1 5 7 9 8 5 2 2 7 5 3 2 6 8 0 0 3 5 8 6 8 5 2 8 8 3 9 0 1 6 6 1 0 0 5 1 5 7 9 8 5 1 7 3 8 5 1 5 9 0 0 0 3 5 8 6 8 5 2 8 5 9 0 5 1 2 1 1 0 6 1 5 5 . 9 9 5 1 5 0 3 5 7 5 1 5 2 7 5 5 8 1 1 2 1 1 0 7 1 2 7 . 0 0 6 1 0 0 2 3 3 7 8 0 1 8 7 6 0 0 5 9 9 3 5 3 3 7 5 3 1 5 9 3 7 5 9 9 2 7 2 9 9 5 2 1 9 5 5 9 1 9 9 9 5 9 9 5 5 2 3 2 7 5 9 2 1 9 9 9 2 9 1 9 3 9 2 3 5 5 9 5 5 5 9 9 5 5 9 5 5 3 3 7 7 5 3 5 5 5 9 9 3 3 2 9 9 5 2 5 5 5 2 2 1 1 1 0 0 5 7 6 2 6 5 3 9 6 6 5 3 1 0 0 0 0 3 5 1 0 3 6 2 7 0 0 2 0 3 9 1 9 9 5 9 2 7 1 1 5 9 1 1 5 9 2 7 9 9 9 3 5 5 5 9 5 2 5 7 1 2 3 5 1 9 9 9 5 9 9 7 7 2 5 2 9 1 9 5 1 9 2 2 9 9 3 5 5 5 9 5 2 5 7 1 2 3 1 2 1 1 0 5 2 5 5 . 8 1 8 1 0 0 3 6 0 6 7 5 2 9 5 5 1 1 1 2 1 1 0 7 2 2 7 . 0 9 9 1 3 0 2 2 7 7 9 1 1 7 2 0 8 9 5 0 0 5 1 7 0 0 8 3 3 6 2 9 1 5 0 0 2 5 8 6 8 2 2 0 5 7 3 5 1 0 0 0 5 5 2 2 6 5 3 6 8 9 5 8 1 0 0 0 2 7 5 8 8 8 2 2 2 1 7 5 5 0 0 0 5 9 3 3 2 6 5 0 8 5 1 8 5 2 5 0 3 1 5 0 0 9 2 5 5 8 7 9 1 0 0 0 0 5 0 9 5 3 2 5 1 5 0 7 3 7 5 0 0 3 2 0 6 0 6 2 5 5 8 7 9 3 9 9 9 9 5 2 7 5 5 9 5 5 2 1 5 1 1 9 3 9 9 3 2 5 5 7 9 2 5 9 3 2 9 5 3 5 9 9 5 3 5 9 5 9 5 5 7 7 5 5 3 9 9 9 9 3 5 9 9 5 7 2 7 2 9 5 5 1 2 1 1 0 6 3 5 5 . 0 8 7 1 2 5 3 5 2 9 8 2 2 7 1 6 0 0 5 0 0 2 6 0 1 1 6 2 1 2 2 7 7 5 0 0 3 8 5 5 9 7 3 1 5 3 8 6 1 0 0 0 2 7 7 8 7 5 2 2 2 9 9 6 N - n u m b e r o f l o a d a p p l i c a t i o n s ; A V - p e r c e n t a i r v o i d s ; M R - c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g F E M p r o g r a m ; E - c a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m . T a b l e E . C a l c u l a t e d r e s i l i e n t a n d t o t a l 3 7 5 F E M p r o g r a m m o d u l i u 5 1 n g S A M P L E A V 6 M R 2 S A M P L E A V N 1 9 1 E N U M B E R ( p s i ) ( p s i ) I U M B E R ( p s i ) ( p s i ) 1 2 2 1 0 7 3 1 7 . 2 1 6 1 2 0 2 3 3 9 5 7 1 8 5 7 7 9 5 0 0 2 7 8 5 1 9 2 2 5 7 8 8 5 0 0 2 6 7 7 6 6 2 1 7 5 2 5 1 0 0 0 2 9 6 5 3 1 2 5 3 1 7 5 1 0 0 0 2 8 5 3 5 2 2 3 2 2 7 8 5 0 0 0 3 3 6 3 0 5 2 7 7 1 8 3 5 2 0 0 3 2 5 2 0 3 2 6 2 8 7 6 1 0 0 0 0 3 5 6 2 2 1 2 8 8 6 2 5 1 0 0 0 0 3 3 5 5 5 7 2 7 6 9 7 2 1 3 0 0 0 3 5 2 6 1 9 2 8 8 8 2 5 3 0 0 0 0 3 5 2 8 5 2 2 8 2 7 5 0 1 2 3 1 0 7 1 1 7 . 2 5 7 1 0 0 2 5 0 5 5 3 1 9 3 5 5 3 1 9 1 3 0 0 3 5 8 7 5 8 2 8 5 8 9 7 5 0 0 2 8 2 0 5 8 2 2 6 2 5 6 1 2 2 1 0 7 1 2 7 . 0 9 9 1 0 0 2 5 0 5 7 2 1 9 2 5 1 8 1 0 0 0 2 9 9 6 3 6 2 3 7 7 7 3 5 0 0 2 8 0 2 7 0 2 2 6 8 1 2 5 0 0 0 3 3 9 3 6 7 2 7 6 0 0 2 1 0 0 0 2 9 8 5 8 3 2 3 6 5 3 8 1 0 0 0 0 3 5 3 6 0 5 2 9 2 1 5 8 6 5 0 0 3 5 3 7 2 6 2 8 3 3 8 9 2 8 0 0 0 3 6 8 2 6 7 2 9 2 1 5 8 1 0 0 0 0 3 5 0 3 6 6 2 8 7 9 9 1 1 6 7 5 5 0 3 6 8 2 6 7 2 9 2 1 5 8 2 8 5 0 0 3 6 5 8 6 2 2 9 3 7 3 3 1 2 3 1 0 7 2 1 7 . 1 7 2 1 0 0 2 5 5 2 0 8 1 9 5 3 5 2 5 5 0 0 0 3 6 8 5 5 5 2 9 3 7 3 3 5 0 0 2 8 5 8 8 1 2 2 3 8 0 9 1 2 2 1 0 7 2 2 7 . 0 7 1 1 0 0 2 5 1 6 9 8 1 8 9 3 6 5 1 0 0 0 3 0 3 9 9 6 2 5 5 5 2 6 5 0 0 2 8 2 1 2 2 2 2 2 1 9 3 5 0 0 0 3 5 5 5 0 2 2 8 3 0 0 3 1 0 0 0 3 0 0 5 9 8 2 3 8 5 5 3 1 0 3 0 0 3 5 5 5 8 2 2 8 6 0 5 3 5 5 0 0 3 5 3 0 9 0 2 7 9 3 2 1 3 0 9 0 0 3 7 3 5 6 7 2 9 3 7 5 1 1 0 0 0 0 3 5 1 3 0 6 2 9 0 2 6 1 1 5 5 3 0 0 3 7 3 5 6 7 2 9 3 7 5 1 2 9 0 0 0 3 6 7 6 0 7 2 9 6 8 5 5 1 2 3 1 0 7 3 1 7 . 1 3 3 1 0 0 2 5 6 7 8 7 1 9 6 2 3 5 7 0 9 0 0 3 6 7 6 0 7 3 0 0 6 6 3 5 0 0 2 8 7 8 2 6 2 2 6 5 5 3 1 2 2 1 0 7 3 2 6 . 9 0 9 1 0 0 2 5 0 6 7 1 1 9 6 6 9 7 1 0 0 0 3 0 8 1 8 7 2 5 1 7 9 3 5 0 0 2 9 2 6 5 5 2 3 3 6 6 8 5 5 0 0 3 5 6 0 2 5 2 7 8 5 5 2 1 0 0 0 3 1 1 7 9 8 2 5 5 7 2 7 1 0 6 0 0 3 6 3 8 2 5 2 9 9 1 5 2 5 0 0 0 3 5 9 9 7 8 2 9 1 5 5 5 3 0 0 0 0 3 7 3 2 3 7 3 1 5 0 9 1 1 0 0 0 0 3 8 6 0 0 9 2 9 6 9 2 7 1 2 9 2 0 0 3 7 3 2 3 7 3 1 5 0 9 1 5 0 0 0 0 3 8 3 9 6 5 3 1 1 0 5 0 1 2 3 1 0 7 1 2 7 . 0 8 9 1 0 0 2 5 0 0 2 3 1 9 9 5 5 8 8 0 0 0 0 3 8 3 9 6 5 3 1 1 0 5 0 5 0 0 2 9 1 6 9 5 2 3 8 6 3 6 1 2 2 1 0 7 1 5 6 . 8 6 1 1 0 0 2 5 2 0 0 7 1 9 6 5 9 6 1 0 0 0 3 1 0 6 6 3 2 5 2 8 0 1 5 0 0 2 9 5 0 5 3 2 3 1 9 3 2 5 7 0 0 3 5 5 5 2 5 2 8 9 8 2 9 1 0 3 0 3 1 3 8 5 0 2 5 2 1 3 8 2 2 1 6 0 3 7 6 1 3 7 3 0 5 1 8 6 5 0 0 0 3 5 1 6 8 2 2 8 8 8 0 8 3 1 5 7 0 3 8 0 6 5 1 3 0 5 1 8 6 1 0 0 0 0 3 6 8 5 9 3 3 0 2 8 5 3 5 2 0 0 0 3 8 0 6 5 1 3 0 5 1 8 6 1 2 5 0 0 3 7 2 2 5 3 3 0 7 1 5 1 1 2 3 1 0 7 2 2 7 . 1 3 2 1 0 0 2 5 7 5 2 3 1 9 8 5 9 0 1 3 0 0 0 3 7 2 2 5 3 3 0 7 1 5 1 5 0 0 2 8 8 7 6 7 2 1 6 5 6 7 1 2 2 1 0 7 2 5 6 . 8 0 1 1 0 0 2 5 5 2 3 1 1 9 9 5 5 5 1 0 0 0 3 0 7 2 8 5 2 5 1 3 8 0 5 0 0 2 9 8 0 2 9 2 3 8 9 2 0 5 2 0 0 3 5 9 5 3 1 2 7 5 7 5 8 1 0 0 0 3 1 7 1 7 5 2 6 0 7 5 5 1 0 3 0 0 3 5 9 3 5 3 2 9 5 0 2 2 5 0 0 0 3 5 6 1 5 8 2 8 3 7 6 8 2 7 0 0 0 3 7 5 1 2 3 2 9 9 0 5 0 1 0 0 0 0 3 7 2 9 9 6 3 0 6 1 0 0 5 5 2 0 0 3 7 5 1 2 3 3 1 3 1 7 8 1 2 1 0 0 3 7 6 7 6 2 3 0 6 1 0 0 1 2 3 1 0 7 3 2 7 . 0 1 5 1 0 0 2 5 2 6 6 3 2 0 3 5 5 5 1 2 2 1 0 7 3 5 7 . 1 5 3 1 0 0 2 3 8 5 8 9 1 9 3 9 8 7 5 0 0 2 9 5 6 0 2 2 3 6 8 5 1 l - n u m b e r o f l o a d a p p l i c a t i o n s ; A V - p e r c e n t a i r v o i d s ; m - c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g 9 1 2 4 p r o g r a m ; E - c a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m . 3 ' 7 6 5 T a b l e E . C a l c u l a t e d r e s i l i e n t a n d t o t a l m o d u l i u s i n g F E M p r o g r a m 5 5 5 9 1 5 5 v 5 a n 2 5 5 5 9 1 2 A V 5 1 5 1 5 ” U M B E R ( p s i ) ( p s i ) I U M B E R ( p s i ) ( p s i ) 1 0 0 0 3 1 5 1 8 0 2 5 8 5 5 3 5 0 0 0 5 8 8 0 3 5 3 8 5 1 3 6 5 5 0 0 3 5 7 5 9 5 2 9 1 8 5 6 1 0 3 0 0 5 0 2 7 5 5 5 2 5 2 3 8 1 0 9 0 0 3 6 8 2 9 1 2 9 8 5 2 6 2 5 1 0 0 5 1 7 3 1 2 5 3 0 7 3 8 3 0 0 0 0 3 6 5 8 0 3 3 1 3 9 9 8 1 8 0 0 0 0 5 1 7 3 1 2 0 5 7 0 0 0 3 8 5 8 0 3 3 1 3 9 9 8 2 2 1 1 0 6 1 2 5 . 9 6 1 1 0 0 3 5 2 6 7 0 2 9 3 7 1 1 1 2 3 1 0 7 1 5 . 0 7 8 1 0 0 2 5 0 5 1 8 1 9 5 7 2 6 5 0 0 5 0 8 2 6 5 3 5 5 6 3 1 5 9 9 2 9 2 9 7 5 2 3 5 5 5 5 1 9 9 9 5 3 3 2 5 7 3 5 5 9 5 5 1 9 9 9 3 1 1 1 9 5 2 5 5 7 3 5 5 9 9 9 5 5 2 5 9 5 3 5 5 1 3 5 2 0 0 0 3 2 9 9 7 7 2 6 5 5 5 2 1 0 0 0 0 5 9 8 7 5 1 5 2 5 2 3 8 5 0 0 0 3 5 1 5 0 7 2 8 2 2 7 8 3 0 0 0 0 5 1 6 2 3 1 5 3 0 7 3 8 7 0 0 0 3 5 8 1 3 8 2 8 8 2 1 1 1 6 7 2 0 0 5 1 6 2 3 1 5 3 0 7 3 8 9 0 0 0 3 6 3 6 2 5 2 9 5 2 2 1 2 2 1 1 0 6 2 2 5 . 0 5 3 1 0 0 3 5 7 5 5 7 2 7 8 5 9 3 1 2 3 1 0 7 2 5 . 1 2 5 1 0 0 2 5 8 0 7 5 1 9 5 9 1 8 5 0 0 5 0 1 9 8 1 3 3 6 8 5 9 5 9 9 2 5 9 3 5 9 2 3 1 5 5 1 1 9 9 9 5 2 5 9 5 5 3 5 5 3 9 2 1 0 0 0 3 0 8 3 6 0 2 5 1 8 6 5 5 0 0 0 5 7 5 2 2 1 3 9 5 5 1 7 2 9 9 9 3 2 5 5 5 1 2 5 5 5 9 9 1 9 9 9 9 5 9 7 2 5 5 5 2 9 9 5 5 5 0 0 0 3 5 8 2 0 5 2 8 5 9 6 6 2 6 8 0 0 5 1 1 0 5 5 5 2 0 0 5 6 8 0 0 0 3 5 6 6 7 8 2 8 5 9 6 6 1 6 9 0 1 0 5 1 1 0 5 5 5 2 0 0 5 6 9 0 0 0 3 6 0 7 3 3 2 9 3 0 3 2 2 2 1 1 0 6 3 2 5 . 1 1 1 1 0 0 3 5 2 2 9 6 2 8 0 8 2 5 1 2 3 1 0 7 3 5 . 9 9 1 1 0 0 2 5 3 8 7 6 1 9 9 2 5 6 5 5 0 5 0 0 0 5 2 3 2 5 7 0 2 5 0 0 2 9 6 5 2 3 2 5 2 2 6 5 1 0 0 0 5 2 0 9 3 8 3 5 1 3 1 8 1 0 0 0 3 1 5 7 5 0 2 5 8 0 9 8 5 6 0 0 5 7 1 7 2 1 3 9 9 0 0 9 5 0 0 0 3 5 5 2 2 1 2 9 1 3 5 7 1 0 8 5 0 5 8 6 5 8 3 5 0 6 3 1 3 6 0 0 0 3 6 0 2 7 9 2 9 5 6 1 5 2 0 2 5 0 5 9 8 0 3 2 5 1 5 3 5 6 7 0 0 0 3 6 5 3 5 0 3 0 0 6 5 9 3 6 0 0 0 5 0 5 8 0 5 5 2 0 8 1 0 2 2 1 1 0 6 1 1 . 7 7 5 1 0 0 3 6 5 6 9 3 3 0 2 2 7 9 2 2 1 1 0 6 1 5 5 . 9 8 3 1 0 0 3 5 3 7 5 9 2 7 0 9 3 8 5 9 9 5 2 2 9 5 5 3 3 5 9 5 3 5 9 9 5 9 9 2 3 3 3 2 7 5 7 5 1 9 9 9 5 5 5 5 3 2 3 5 5 5 1 5 1 9 9 9 5 3 3 9 9 3 3 3 2 5 5 1 5 9 9 9 5 9 5 5 5 7 5 1 9 9 9 5 5 9 9 9 5 5 3 9 1 5 3 5 2 5 2 5 1 9 9 9 9 5 1 5 3 5 1 5 1 5 5 5 7 1 9 9 9 9 5 9 9 5 7 9 3 9 1 5 9 2 3 0 0 0 0 5 5 2 9 7 5 5 5 5 6 2 8 2 0 0 0 0 5 1 5 3 5 6 5 0 2 3 5 9 1 5 3 9 9 9 5 5 2 9 7 5 5 5 5 5 2 5 3 9 9 9 9 5 2 1 7 9 9 5 2 5 7 9 9 2 2 1 1 9 5 2 1 . 5 9 2 1 9 9 3 5 5 5 9 3 2 9 2 9 7 2 2 2 1 1 9 5 2 5 5 . 9 5 5 1 9 9 3 5 5 5 5 3 2 5 7 5 9 3 5 0 0 5 2 2 9 8 5 3 5 9 5 2 8 5 0 0 3 9 8 5 6 8 3 3 6 3 6 8 1 9 9 9 5 5 5 5 3 2 3 7 5 7 5 5 1 9 9 9 5 2 2 3 5 9 3 5 9 2 3 7 5 5 9 9 5 9 2 1 7 1 5 1 2 5 5 5 5 5 9 9 5 7 3 5 5 2 3 9 5 1 3 3 1 9 2 9 9 5 1 5 9 5 5 5 2 5 5 9 7 1 9 3 9 9 5 5 5 5 5 3 5 1 5 1 7 5 2 7 5 9 9 5 3 1 7 9 5 5 5 1 9 9 5 2 7 9 9 9 5 9 5 5 5 7 5 2 5 5 9 5 1 5 9 5 5 5 5 3 1 7 9 5 5 5 1 9 9 5 3 1 9 9 9 5 9 5 5 5 7 5 3 5 7 5 9 2 2 1 1 0 6 3 1 . 9 2 9 1 0 0 3 5 5 9 3 3 2 9 3 7 1 1 2 2 1 1 0 6 3 5 5 . 1 0 7 1 0 0 3 5 2 9 2 5 2 8 3 0 2 1 5 9 9 5 1 3 9 5 9 3 5 5 5 3 1 5 9 9 3 9 5 7 2 5 3 2 5 7 9 3 1 9 9 9 5 3 7 1 2 9 3 5 5 9 5 5 1 9 9 9 5 2 9 2 5 7 3 5 9 5 9 9 N - n u m b e r o f l o a d a p p l i c a t i o n s ; A V - p e r c e n t a i r v o i d s ; M R - c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g F E M p r o g r a m ; E - c a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m . l e T a U s N a n M r B b t E r R E A 3 2 1 1 9 5 1 1 5 . 3 2 1 1 0 5 2 1 5 . 3 2 1 1 9 5 3 1 5 C F a E . V . 1 9 5 9 7 5 1 5 2 3 2 1 1 0 5 1 2 5 . 1 2 7 3 2 1 1 0 5 2 2 5 . 9 5 5 1 . 3 2 N A M I V R 9 n 1 - - - 5 3 2 5 . 5 5 5 u p c c m e a a b r l l e c c c r e u u n l l t o a a f t t o r l d i d a e e a r t d v e o o s t i s r 0 1 7 7 9 2 5 7 0 1 1 7 2 3 5 7 5 9 9 5 5 1 3 2 3 5 1 1 5 9 1 1 5 2 5 5 1 2 2 9 5 8 ( 3 5 5 5 2 3 3 3 3 5 5 2 p 5 0 2 1 7 2 5 7 9 0 1 7 3 3 3 3 5 5 2 2 5 9 5 2 2 7 3 3 3 5 5 5 2 3 3 3 3 5 5 2 3 3 3 5 5 5 2 3 3 i 5 9 5 5 5 5 2 2 1 5 9 9 5 3 9 5 2 2 9 5 3 0 5 5 3 5 5 5 7 5 5 5 7 7 9 5 5 3 5 0 5 3 l i ) 5 0 3 7 2 5 5 9 0 5 5 0 0 5 9 9 5 3 6 3 5 5 9 5 3 9 1 1 1 1 9 5 1 0 5 7 1 5 1 9 0 0 1 9 1 9 0 9 5 7 2 7 0 1 5 5 5 0 3 0 1 5 5 9 2 1 1 9 5 5 5 2 2 5 9 2 9 2 2 5 1 1 3 0 7 7 5 9 5 7 2 5 7 7 7 2 1 5 9 5 5 2 5 5 5 0 6 5 5 5 5 3 3 5 5 5 5 5 3 3 5 5 5 l M 2 1 3 1 2 5 1 1 5 2 1 1 2 c l 1 5 0 7 5 1 5 5 9 2 0 0 2 9 1 0 5 9 5 5 0 3 3 1 3 5 1 5 0 9 0 9 7 1 5 0 0 9 3 9 1 5 0 5 5 1 2 9 9 0 9 9 1 5 0 0 5 9 3 u p 0 0 0 0 0 0 1 5 0 1 9 0 7 l r a o t g 9 9 9 9 9 0 9 0 0 0 9 0 0 0 0 5 0 9 9 9 0 0 9 5 0 9 9 9 0 0 5 0 0 0 0 0 0 0 0 0 0 9 0 9 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 3 2 ; 1 5 0 e m l 0 0 9 0 9 0 0 0 0 0 i n o 0 0 0 9 0 0 0 9 0 0 c t d 1 5 5 1 0 s 1 p i 2 1 7 d p l l 1 i a i a a u t i o m l o u d s 5 7 7 1 2 0 2 3 3 9 8 9 9 3 3 2 5 5 2 5 7 7 3 7 0 1 5 2 2 3 9 e r ( 9 5 5 0 3 9 1 5 8 9 9 d a 9 1 9 5 5 0 7 9 1 5 2 5 9 9 5 5 3 3 5 5 5 5 5 3 3 5 5 7 2 2 5 7 7 9 1 5 5 9 2 7 9 9 9 3 9 1 5 5 9 9 5 9 2 7 5 0 0 5 0 3 5 0 1 1 5 s 1 5 l 5 5 5 5 3 5 5 5 5 3 5 5 n 5 5 u 1 5 3 3 1 7 3 2 m 1 3 1 1 ) 9 5 5 5 1 5 3 5 1 7 7 5 5 2 9 5 2 2 2 5 9 5 5 3 5 7 3 2 1 9 5 5 5 3 5 1 5 3 5 5 1 1 7 5 5 5 5 2 3 3 9 5 5 5 3 3 5 9 9 1 1 5 3 9 0 9 5 5 7 7 9 3 2 9 0 5 5 5 1 7 3 3 7 5 9 9 9 1 1 7 5 5 9 5 5 5 3 0 5 s 3 2 7 5 5 1 ; 5 5 u s u g i F n E g M F p I r N o g p r r a o m g . u s i n r e s e n t S l A u M n d t o t a l m o d u l i u s i 5 . . . . . . 5 5 5 3 3 3 v 9 9 9 0 0 1 5 7 5 1 5 2 5 5 3 0 9 5 5 9 0 0 5 5 0 0 0 1 9 9 9 3 9 1 5 0 0 5 0 9 0 9 0 0 9 5 0 0 5 5 0 0 5 5 2 5 0 1 1 1 1 0 5 1 5 1 5 0 5 9 1 5 3 9 2 0 5 0 7 1 5 0 1 5 3 1 5 0 1 5 7 9 0 9 9 0 9 9 9 0 0 0 0 0 0 9 9 0 0 0 9 0 0 9 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 9 0 9 9 9 0 9 9 0 9 9 9 0 9 9 0 0 0 0 9 0 0 0 0 9 0 0 0 0 0 0 0 0 9 0 9 0 9 9 0 9 0 2 1 5 1 2 3 1 3 3 1 2 3 1 2 2 1 5 5 1 1 1 1 9 ( 5 5 5 5 3 5 5 5 5 3 5 5 5 5 5 5 5 5 3 5 5 5 5 0 5 5 5 5 7 1 0 0 1 5 9 5 5 7 9 5 5 7 9 2 1 2 5 0 3 5 9 5 0 3 5 1 2 1 2 2 3 5 1 5 1 0 2 5 5 5 0 1 9 0 7 5 2 7 5 5 1 0 5 2 5 2 1 7 7 7 1 1 7 5 9 3 9 3 3 1 1 1 5 1 5 7 3 5 0 7 5 5 9 7 0 7 7 5 5 7 5 5 0 5 5 3 9 1 9 5 0 5 9 5 3 7 5 5 3 5 7 2 9 9 2 1 1 5 7 2 3 2 3 9 9 5 5 5 5 5 5 5 5 3 2 1 5 1 0 0 7 1 7 0 9 7 2 2 1 7 5 3 5 9 9 9 1 5 5 5 9 9 5 5 1 9 2 7 5 0 5 3 3 5 7 3 2 0 5 9 7 5 7 5 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 ) 3 5 7 3 5 9 9 5 5 5 0 9 3 9 9 2 5 5 3 3 1 5 1 3 5 9 5 5 2 2 2 7 0 7 3 9 9 5 2 9 5 5 5 2 3 2 5 5 5 3 3 5 5 5 3 3 5 2 3 5 5 3 3 3 5 5 5 ( 3 1 1 2 5 5 5 0 3 2 5 3 5 5 0 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n 9 0 3 3 3 5 2 5 9 5 0 1 2 5 5 9 2 3 3 5 9 5 9 1 2 5 0 5 7 5 1 5 5 5 9 5 5 5 5 7 7 7 2 g 1 5 3 3 3 5 9 3 5 5 5 3 5 7 3 9 5 7 7 9 7 9 2 7 0 0 7 5 0 5 5 2 5 5 2 5 3 2 1 1 9 2 5 2 2 3 3 3 5 5 5 5 5 3 9 5 2 9 9 9 5 7 7 1 3 2 1 1 2 1 3 9 2 7 5 5 3 7 3 5 0 5 2 3 5 9 1 ) 5 1 5 5 5 5 7 5 1 0 2 2 5 7 7 7 5 5 5 9 0 1 5 5 1 5 5 5 5 1 5 5 5 5 9 5 1 3 2 3 5 5 5 5 9 5 2 5 5 1 1 1 7 7 7 5 3 3 7 7 5 3 5 9 5 2 0 9 7 0 2 5 5 1 5 5 5 5 9 2 9 0 5 3 n E n 1 2 3 1 3 2 5 5 5 1 1 1 a P n 9 9 9 0 0 0 m L r 5 5 5 5 5 5 ; 3 3 3 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 r 1 1 1 2 2 2 a 3 ' 7 7 7 3 7 8 T a b l e E . C a l c u l a t e d r e s i l i e n t a n d t o t a l m o d u l i u s i n g F E M p r o g r a m 9 9 9 9 1 9 9 v 9 1 9 1 2 s a n r r s 3 v 9 1 9 1 2 N U M B E R ( p s i ) ( p s i ) I U H B E R ( p s i ) ( p s i ) 5 9 9 9 1 9 1 9 5 1 5 1 3 9 2 5 7 1 5 1 9 9 1 5 5 9 9 9 9 1 9 9 3 9 1 9 1 9 9 9 9 1 9 7 3 9 5 9 1 3 3 9 5 9 9 1 9 5 9 9 1 9 9 5 5 2 9 1 9 9 2 9 9 9 1 6 6 5 0 0 2 0 9 7 3 2 4 1 5 4 1 9 2 8 2 7 0 0 0 1 8 4 5 5 2 8 1 4 1 6 9 6 2 3 5 2 7 2 5 2 9 7 2 1 9 5 1 9 7 3 1 9 9 1 9 9 1 9 9 1 9 9 5 5 2 9 1 3 7 9 9 9 9 1 1 1 2 9 5 1 2 . 1 1 9 1 9 9 1 9 2 2 9 9 9 1 2 9 1 7 9 3 1 1 3 2 9 5 1 1 3 . 1 9 2 1 9 9 1 9 7 2 3 9 9 1 1 9 7 2 9 9 5 1 9 1 5 9 5 2 9 3 1 1 2 3 5 7 3 5 5 9 1 9 5 3 7 5 9 1 5 2 1 5 5 5 1 9 2 9 1 9 2 9 9 7 9 1 1 9 7 1 9 1 1 9 9 9 1 9 9 9 7 9 9 1 9 2 9 5 9 9 5 9 9 9 1 9 9 9 9 9 9 1 9 3 2 9 9 9 5 9 9 9 2 1 9 9 7 9 9 1 7 9 9 3 9 1 1 9 9 9 9 1 9 3 5 2 1 9 1 5 9 9 9 3 5 1 9 2 9 9 2 2 2 3 9 9 3 1 7 9 9 3 9 1 3 1 0 0 0 1 9 3 5 2 1 9 1 4 3 5 0 3 3 3 0 9 7 5 2 1 9 6 4 9 8 1 6 5 4 3 0 7 1 6 1 5 0 0 1 9 6 6 4 5 4 1 4 1 8 9 2 4 3 2 7 8 6 6 2 4 2 2 4 6 7 1 9 0 1 2 7 2 1 1 1 2 0 5 2 2 . 1 6 5 1 0 0 1 6 6 2 1 5 1 1 3 0 4 5 4 1 1 1 3 2 0 5 2 1 3 . 3 0 2 1 0 0 1 7 1 3 1 3 2 1 2 7 2 6 9 7 5 9 9 1 7 9 9 3 9 9 1 3 9 3 5 9 9 5 9 9 1 9 2 7 9 1 1 1 5 9 7 2 2 9 1 0 0 0 1 7 2 4 5 7 1 1 2 9 9 7 4 0 1 0 0 0 1 9 0 7 0 2 4 1 4 2 7 7 6 0 5 1 0 0 1 8 8 4 2 8 5 1 4 9 1 1 8 6 5 5 0 0 1 9 0 7 0 2 4 1 3 4 4 0 0 0 1 9 9 9 9 1 7 9 9 2 9 9 1 2 2 9 1 7 2 1 9 9 9 9 2 1 2 9 5 9 9 1 9 7 2 7 1 1 2 0 3 0 0 1 7 9 3 2 7 5 1 2 5 0 1 4 2 3 0 1 4 0 2 2 4 6 8 6 3 1 7 7 2 3 9 8 1 7 6 9 0 0 2 1 8 9 2 9 0 1 7 3 2 0 5 5 1 6 7 8 2 0 2 1 9 8 6 0 4 1 5 8 4 7 6 0 1 1 1 2 0 5 3 2 . 1 2 5 1 3 0 1 5 3 9 0 3 6 1 1 2 3 2 5 0 1 1 3 2 0 5 3 1 2 . 9 8 4 1 6 0 1 6 6 3 4 2 4 1 1 7 1 4 3 3 5 9 9 1 9 9 9 9 9 7 1 2 5 1 9 3 3 5 9 9 1 9 5 3 9 2 2 1 5 9 9 9 9 9 1 0 0 0 1 8 2 2 2 5 4 1 4 8 8 0 0 6 1 0 0 0 1 8 1 9 0 1 0 1 2 7 9 6 6 9 5 9 9 9 1 7 9 3 1 9 9 1 3 3 5 9 9 9 5 9 9 9 2 1 9 2 3 9 9 1 9 9 2 9 3 5 1 9 2 9 9 1 9 5 9 1 9 2 1 9 9 9 5 7 3 1 1 5 9 9 2 1 9 2 3 9 9 1 9 3 3 9 9 9 2 0 0 0 0 2 0 0 4 2 4 3 1 6 3 5 5 7 7 3 6 3 0 0 2 0 7 7 7 5 6 1 5 3 1 4 1 8 1 7 7 6 0 0 1 9 5 7 6 3 2 1 4 1 6 6 9 5 3 6 2 0 0 0 2 2 2 4 0 9 6 1 5 9 9 1 7 7 1 1 1 2 9 5 1 5 . 1 5 9 1 9 9 1 5 7 9 9 3 9 1 2 9 5 9 9 3 1 1 3 2 9 5 1 2 3 . 2 7 7 1 9 9 1 5 9 5 2 9 2 1 1 2 5 1 9 9 5 9 9 1 5 7 9 9 3 9 1 2 2 1 9 5 9 5 9 9 1 9 7 5 3 9 9 1 1 9 9 5 9 5 1 9 9 9 1 7 3 9 3 2 9 1 9 9 9 1 9 7 1 9 9 9 1 9 2 7 3 9 9 1 5 9 7 7 9 9 5 9 9 9 1 9 9 9 7 7 9 1 2 3 5 7 5 1 5 9 9 9 2 9 5 9 3 7 3 1 9 9 1 3 2 9 1 9 9 9 9 1 9 9 9 7 7 9 1 2 3 5 7 5 1 1 9 2 9 9 1 9 7 9 5 9 5 1 9 9 9 9 5 7 1 9 5 9 9 1 7 9 5 7 7 1 1 2 9 9 9 9 7 2 1 9 9 9 1 9 3 5 9 9 9 1 3 9 7 9 9 1 1 7 9 9 9 9 1 9 9 9 9 2 9 1 2 9 9 9 3 3 1 3 5 9 9 9 2 2 2 3 3 9 9 1 7 2 9 9 9 1 1 1 1 2 9 5 2 5 . 1 3 7 1 9 9 1 5 9 9 9 2 1 1 2 9 9 3 3 9 1 1 3 2 9 5 2 2 3 . 2 9 7 1 9 9 1 5 9 9 7 9 1 1 1 9 5 9 9 9 5 9 9 1 9 9 9 2 9 3 1 9 3 5 3 2 9 5 9 9 1 9 5 1 9 9 7 1 9 9 2 3 9 9 1 1 0 0 1 6 0 2 2 9 1 1 2 1 0 7 5 4 1 0 0 0 1 7 7 2 8 8 6 1 2 8 8 1 5 2 5 9 9 9 1 9 7 2 2 9 9 1 2 3 2 9 3 1 5 9 9 9 1 9 2 9 9 9 9 1 9 7 5 1 9 9 1 9 9 9 9 1 7 9 9 1 5 9 1 3 9 9 9 9 1 1 9 9 9 9 1 9 9 1 2 9 7 1 2 7 9 2 2 5 2 3 2 9 9 1 9 5 9 9 9 9 1 9 9 2 9 5 9 2 7 9 9 9 2 9 1 7 9 9 1 1 5 3 2 3 9 2 1 2 3 9 0 0 1 9 5 9 8 6 0 1 4 9 9 8 1 5 3 4 4 8 0 0 2 2 9 2 8 5 3 1 8 0 4 3 8 9 1 1 1 2 9 5 3 5 . 1 9 3 1 1 9 1 5 3 3 9 2 7 1 2 9 5 9 9 7 1 1 3 2 9 5 3 2 3 . 2 9 2 1 9 9 1 5 9 9 7 9 1 1 9 9 9 5 9 3 5 9 9 1 9 5 7 9 7 9 1 9 1 2 9 1 1 5 9 9 1 9 5 5 5 9 9 1 1 5 9 7 9 1 1 9 9 9 1 9 7 9 9 9 2 1 9 2 9 9 9 9 1 9 9 9 1 7 9 2 7 9 9 1 1 9 9 7 3 9 N - n u m b e r o f l o a d a p p l i c a t i o n s ; A V - p e r c e n t a i r v o i d s ; H R . c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g F I H p r o g r a m ; 2 - c a l c u l a t e d t o t a l m o d u l u s u s i n g P E N p r o g r a m . 3 7 9 T a b l e E . C a l c u l a t e d r e s i l i e n t a n d t o t a l m o d u l i u s i n g F E M p r o g r a m s a n w t r a v n 1 9 1 2 9 9 9 9 1 2 a v 9 a n 9 m m ( p s i ) ( p s i ) m m ( p s i ) ( p s i ) 5 0 0 0 1 8 5 9 0 1 5 1 3 7 5 2 8 3 5 0 0 0 1 4 9 0 9 7 3 1 0 3 2 9 4 3 1 1 1 0 0 1 9 2 2 8 1 2 1 4 1 0 6 6 1 1 0 0 0 0 1 4 9 0 9 7 3 1 0 0 6 8 4 8 3 1 8 0 0 2 1 7 4 5 3 6 1 7 3 5 6 2 8 4 9 4 0 0 1 6 5 5 5 2 2 1 2 0 0 7 2 6 1 7 1 6 0 0 2 2 0 6 9 7 8 1 6 4 9 5 0 4 1 7 1 6 0 0 1 7 8 9 3 5 2 1 3 4 1 5 0 3 1 1 3 2 0 5 1 5 2 . 4 3 1 1 0 0 1 7 2 6 3 8 0 1 3 0 6 0 4 4 2 2 1 2 0 6 1 2 . 8 3 1 1 0 0 1 4 1 0 2 7 4 1 1 0 0 0 9 3 5 0 0 1 8 0 6 8 3 5 1 3 5 2 9 6 6 5 0 0 1 3 4 7 3 2 2 9 2 8 7 5 6 1 0 0 0 1 9 0 7 7 2 9 1 4 8 5 9 6 0 1 0 0 0 1 4 1 9 3 9 6 1 0 3 6 4 6 3 5 0 0 0 1 8 6 5 4 4 0 1 3 2 0 4 4 6 5 0 0 0 1 6 2 5 5 1 9 1 2 6 6 0 4 4 1 0 1 5 0 2 1 7 7 1 0 6 1 7 6 3 9 5 0 1 0 0 0 0 1 6 0 3 3 2 6 1 2 0 0 9 2 4 3 5 9 0 0 2 1 5 1 1 2 7 1 6 6 3 1 2 6 1 3 6 2 0 0 1 6 7 7 7 4 8 1 2 0 0 9 2 4 1 5 7 9 9 9 2 3 5 9 7 5 9 1 9 1 1 9 9 2 3 2 2 9 9 9 1 9 5 3 9 1 7 1 9 1 9 2 5 3 1 1 3 2 0 5 2 5 2 . 9 6 1 1 0 0 1 6 9 6 6 2 6 1 3 4 3 7 2 9 2 2 1 2 0 6 2 2 . 8 0 8 1 0 0 1 3 1 1 2 4 3 9 5 2 1 2 4 5 0 0 1 7 6 6 8 1 3 1 3 7 8 2 0 8 5 0 0 1 4 6 7 5 7 0 1 1 3 0 4 6 7 1 0 0 0 1 8 0 7 4 6 3 1 4 0 5 7 5 9 1 0 0 0 1 3 7 8 6 3 8 9 5 1 2 1 6 5 9 9 9 1 7 7 5 9 9 2 1 2 7 1 2 9 9 5 9 9 9 1 5 9 9 3 9 9 1 2 2 7 2 2 2 1 0 7 0 0 1 9 0 8 6 4 0 1 4 6 1 9 8 4 1 0 0 0 0 1 5 5 2 5 1 5 1 1 2 3 2 4 7 2 0 7 5 0 1 8 3 1 3 9 9 1 2 8 2 0 8 9 3 3 5 0 0 1 5 1 7 0 8 2 1 0 2 5 4 7 6 1 9 1 2 0 0 1 9 9 6 9 0 2 1 4 4 6 6 5 6 1 4 3 0 0 0 1 6 7 5 4 0 4 1 2 0 1 3 3 8 1 1 3 2 0 5 3 5 3 . 6 4 2 1 0 0 1 4 4 0 7 0 9 1 0 3 0 4 3 2 2 2 1 2 0 6 3 2 . 0 7 4 1 0 0 1 3 3 8 2 1 9 1 0 3 0 4 8 8 5 0 0 1 4 9 9 3 8 5 1 0 5 7 2 3 9 5 0 0 1 4 0 5 2 3 0 1 0 8 0 6 3 4 1 0 0 0 1 7 3 2 9 7 0 1 3 7 8 5 1 6 1 0 0 0 1 3 5 2 6 5 7 9 4 6 2 1 4 5 3 0 0 1 6 9 9 0 7 2 1 2 3 9 8 1 0 5 0 0 0 1 6 2 4 1 7 2 1 3 1 3 3 7 9 1 0 2 2 5 1 6 6 2 9 9 9 1 1 6 8 6 0 3 1 0 8 0 0 1 4 7 3 1 3 3 1 0 4 6 7 4 9 3 0 0 0 0 1 7 9 0 5 7 8 1 3 2 6 9 6 5 1 4 7 1 5 0 1 7 2 6 0 5 3 1 3 1 0 3 0 3 1 5 3 1 9 9 2 9 9 9 9 5 1 1 9 9 9 1 9 9 3 2 9 1 9 9 1 9 2 9 9 9 9 1 9 5 9 5 7 9 2 2 1 2 0 6 1 1 4 . 8 8 6 1 0 0 1 4 0 9 7 9 7 1 0 4 8 3 2 7 2 2 1 2 0 6 1 5 . 1 1 5 1 0 0 1 2 7 5 0 9 9 1 0 0 4 5 3 6 5 9 9 1 9 9 3 3 9 1 1 9 9 9 7 5 9 5 9 9 1 2 3 2 9 2 9 9 7 9 1 5 1 1 9 9 9 1 5 3 7 5 9 9 1 1 5 1 7 7 7 1 9 9 9 1 2 9 9 9 9 3 9 1 1 9 3 5 7 7 0 0 1 6 9 6 8 9 2 1 3 1 3 3 8 3 5 0 0 0 1 4 3 8 8 6 9 1 1 0 3 8 5 3 1 0 5 0 0 1 5 7 9 3 9 9 1 0 9 6 4 5 6 1 0 0 0 0 1 3 4 7 6 4 0 9 2 6 1 3 0 1 3 4 6 0 0 1 7 6 2 9 5 8 1 2 9 8 7 6 8 3 6 4 0 0 1 4 4 3 5 3 1 1 0 5 3 1 0 1 3 9 9 3 9 9 1 9 9 9 7 7 9 1 9 2 9 9 9 9 1 5 9 7 9 9 1 5 9 9 9 1 2 1 1 9 9 9 9 2 2 2 1 2 0 6 2 1 4 . 9 4 4 1 0 0 1 3 6 6 1 6 9 9 8 8 1 8 4 2 2 1 2 0 6 2 5 . 9 1 4 1 0 0 1 1 7 3 7 9 5 8 3 0 4 4 3 5 9 9 1 9 9 9 9 3 7 1 9 9 5 9 9 2 5 9 9 1 3 9 9 2 5 9 9 9 9 9 5 5 1 0 0 0 1 6 1 5 1 6 3 1 2 8 3 8 6 9 1 1 0 0 1 3 8 7 4 9 9 1 0 8 5 5 7 8 5 9 9 9 1 9 1 5 1 9 3 1 1 9 9 5 3 9 5 5 9 9 1 3 9 3 3 3 5 9 3 1 2 9 2 1 0 0 0 0 1 6 1 5 1 6 3 1 1 5 6 8 7 0 1 0 9 0 0 1 3 6 0 9 0 8 9 3 1 2 9 2 3 0 5 0 0 1 6 1 5 1 6 3 1 1 0 1 7 0 2 2 2 0 0 0 1 3 9 5 6 6 3 9 6 3 2 3 5 1 8 5 8 0 0 1 8 5 2 4 7 5 1 3 8 0 0 6 4 1 6 1 7 0 0 1 7 2 6 9 7 5 1 3 8 9 6 0 1 2 2 1 2 9 9 3 1 5 . 9 7 9 1 9 9 1 2 7 2 9 9 7 9 7 9 5 7 9 2 2 1 2 9 9 3 5 . 1 5 5 1 9 9 1 1 9 3 9 2 9 7 5 2 2 2 9 5 0 0 1 4 2 8 1 0 5 1 0 4 7 8 9 0 5 0 0 1 1 8 6 2 4 6 8 1 7 1 4 4 1 2 4 0 1 5 7 9 4 5 7 1 2 4 8 0 4 6 1 0 0 0 1 4 1 1 2 5 6 1 1 4 1 9 5 1 N - n u m b e r o f l o a d a p p l i c a t i o n s ; A V - p e r c e n t a i r v o i d s ; H R - c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g F I N p r o g r a m ; 2 - c a l c u l a t e d t o t a l m o d u l u s u s i n g r m p r o g r a m . 3 8 0 T a b l e E . C a l c u l a t e d r e s i l i e n t a n d t o t a l m o d u l i u s i n g F E M p r o g r a m s a u r t z a v n 1 9 1 z S A M P L E a v N H R 2 m m ( p s i ) ( 9 9 1 1 M E I R ( 9 9 1 ) ( 9 9 1 ) 5 5 0 0 1 3 5 1 1 1 9 9 9 9 9 0 9 1 0 9 9 1 9 2 9 0 9 9 1 0 5 3 9 2 2 1 9 9 9 9 1 3 5 1 1 1 9 9 9 9 9 0 9 5 0 0 0 1 5 3 9 1 2 9 1 1 9 5 9 3 5 1 2 9 0 0 0 1 6 3 7 3 2 6 1 2 9 2 3 3 9 1 0 0 0 0 1 4 6 5 6 2 0 1 0 1 9 9 3 9 3 3 7 9 0 0 1 7 0 9 5 9 0 1 3 7 9 9 9 5 2 2 7 0 0 1 5 4 3 3 5 0 1 1 2 2 5 0 5 3 2 1 2 0 9 1 1 5 . 2 2 9 1 0 0 1 3 3 9 9 5 5 9 9 9 0 9 0 1 4 7 9 5 0 1 7 1 7 2 9 5 1 2 9 7 0 7 9 5 0 0 1 3 3 9 9 5 5 9 2 9 0 3 9 9 9 1 9 9 9 1 9 9 1 9 3 9 1 1 9 1 7 9 5 1 0 0 0 1 9 0 9 5 5 5 1 0 1 5 1 3 2 3 2 1 2 0 6 1 5 1 0 0 1 3 6 6 1 6 9 1 0 3 0 2 0 9 5 5 0 0 1 9 9 2 5 9 1 1 0 5 9 7 2 0 5 0 0 1 9 3 5 9 7 9 1 0 5 7 3 9 3 1 2 0 0 0 1 9 0 0 7 9 5 1 2 1 3 9 5 9 1 0 0 0 1 3 9 3 9 5 9 9 7 1 9 2 7 3 7 0 0 0 1 9 0 0 7 9 5 1 1 9 3 9 3 5 5 0 0 0 1 4 6 6 6 0 6 1 0 0 9 9 9 7 1 9 9 5 0 0 1 7 9 3 2 9 9 1 3 9 9 9 9 9 1 2 0 0 0 1 5 5 0 9 3 3 1 1 2 7 3 9 9 3 2 1 2 0 9 2 1 5 2 2 0 1 0 0 1 2 9 5 5 9 9 9 1 1 3 9 9 3 2 5 0 0 1 5 5 0 8 3 3 1 0 9 0 9 9 2 5 9 9 1 9 5 9 5 2 9 1 0 9 9 9 9 3 1 7 9 3 5 0 1 9 5 1 9 2 5 1 5 9 9 3 3 9 1 0 0 0 1 5 9 9 5 3 5 1 2 2 5 5 4 5 3 2 1 2 0 6 2 5 1 0 0 1 1 0 3 0 2 9 7 5 2 2 2 9 5 0 0 0 1 9 7 9 0 9 3 1 0 1 5 5 5 3 5 0 0 1 1 9 4 9 7 8 9 2 9 7 9 2 1 9 9 9 9 1 9 5 5 2 2 1 1 2 5 9 1 9 9 1 0 0 0 1 2 1 6 4 5 1 8 4 0 5 4 5 2 9 5 0 0 1 5 9 0 9 9 2 1 1 3 3 9 9 7 5 0 0 0 1 3 3 0 9 9 3 9 5 3 9 2 7 1 5 9 7 0 0 1 9 9 9 9 3 2 1 3 9 5 5 9 9 1 0 0 0 0 1 9 9 7 7 2 1 1 1 0 7 7 9 1 3 2 1 2 0 9 3 1 5 . 2 9 9 1 9 0 1 3 9 9 1 9 9 1 0 3 0 2 0 9 2 9 8 0 0 1 4 4 7 7 2 1 1 9 7 9 0 7 5 5 0 0 1 3 5 5 1 5 9 0 7 0 5 5 9 1 9 9 5 0 0 1 4 7 1 7 6 4 1 0 3 7 1 4 3 1 0 0 0 1 3 9 5 7 9 2 9 0 0 0 5 1 4 9 0 7 0 0 1 6 5 9 1 5 6 1 2 6 4 8 2 7 5 1 0 0 1 5 2 5 5 7 0 9 7 2 3 5 3 3 2 1 2 0 6 3 5 1 0 0 1 0 6 4 7 4 3 7 0 9 4 4 1 1 0 5 0 0 1 9 1 5 5 0 3 1 2 2 2 5 2 0 5 0 0 1 1 8 9 5 5 3 9 3 9 0 2 9 2 9 9 9 9 1 9 1 5 5 0 3 1 1 9 9 9 7 5 1 0 0 0 1 2 9 3 8 8 7 9 7 0 0 9 9 1 5 9 7 9 0 1 9 5 2 9 9 0 1 9 5 9 9 9 5 5 0 0 0 1 4 5 0 0 5 1 1 1 5 6 5 4 0 3 2 1 2 0 9 1 2 5 . 1 7 9 1 0 9 1 2 9 5 5 9 9 9 9 0 3 9 2 1 0 0 0 0 1 3 1 9 8 3 4 0 2 7 4 2 4 5 0 0 1 3 7 1 9 1 9 9 0 1 5 0 0 3 3 3 0 0 1 5 4 9 9 9 4 1 2 3 4 5 2 2 2 9 9 9 1 5 7 9 3 5 3 1 2 3 9 5 1 7 1 5 0 9 0 9 1 9 5 9 9 5 2 1 0 1 0 9 5 0 5 1 0 0 1 5 5 5 0 0 0 1 3 9 2 3 2 0 3 5 3 2 0 0 1 4 7 9 3 9 6 1 0 2 5 6 8 5 1 9 2 0 0 1 9 0 9 9 2 0 1 1 7 9 9 5 0 2 7 1 5 0 1 7 9 9 1 2 3 1 3 9 9 7 2 9 1 9 9 7 0 0 1 9 2 1 3 7 9 1 3 9 9 7 2 9 3 2 1 2 0 9 2 2 5 . 9 1 9 1 0 9 1 1 7 2 9 2 2 9 0 7 9 9 3 5 0 0 1 2 3 0 7 3 7 9 9 5 1 2 9 1 0 0 9 1 9 9 1 9 9 1 1 1 9 9 3 7 9 5 9 0 0 1 9 2 5 0 1 9 1 0 2 7 2 1 1 1 0 0 0 0 1 5 1 9 5 9 3 1 1 9 9 0 0 0 1 5 3 9 0 0 1 7 9 9 9 0 0 1 9 3 3 2 0 9 3 2 2 9 0 0 1 9 9 5 0 5 3 1 1 9 3 9 2 9 9 7 1 9 0 0 1 9 1 7 1 2 9 1 9 5 9 5 5 5 3 2 1 2 0 9 3 2 5 . 0 5 2 1 0 0 1 2 1 9 0 9 2 9 3 9 9 2 7 5 0 0 1 5 1 9 3 5 9 1 2 2 9 2 1 9 N I n u m b e r o r l o a d a p p l i c a t i o n s ; A V I p e r c e n t a i r v o i d s ; M R I c a l c u l a t e d r e s i l i e n t m o d u l u s u s i n g F E M p r o g r a m ; 2 I c a l c u l a t e d t o t a l m o d u l u s u s i n g F E M p r o g r a m .