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ABSTRACT

ELECTROMAGNETIC FIELD SOLUTIONS
FOR THE NATURAL MODES OF A CYLINDRICAL CAVITY
LOADED WITH LOSSY MATERIALS

By

Edward Benjamin Manring

A rigorous solution is presented for the natural mode fields of a circular cylindrical
cavity coaxially loaded with homogeneous, isotropic, lossy materials for loads of
arbitrary length and distance from the cavity end plates. Field expressions and
numerically stable characteristic equations are derived for the coaxially-loaded
waveguide, the coaxially-loaded cavity with cavity-length loads (cavity-short type),
and the coaxially-loaded cavity with loads of length less than cavity-length (cavity-
open type). Cavity-open type solutions are constructed using a mode-matching
technique which is shown to be more numerically stable than the mode-matching
method previously published for lossless loads. Theoretical and experimental resonant
frequency are shown to agree to within 0.2 % for a 1" diameter nylon load in a 6"
diameter cavity for the cavity-short type configuration and to within 0.06 % for all
lengths from zero to cavity-length of a 0.5" diameter nylon load in a 6" diameter
cavity for the cavity-open type configuration. A solution is included for the
azimuthally symmetric TM modes of the cavity-open type configuration for a
conducting load; this solution equally applies to the reentrant cavity. Numerical
solutions are presented for TE, TM, and hybrid modes of the coaxially-loaded
waveguide and the cavity-short type configuration, and the TM modes of the cavity-
open type configuration. Complex mode behavior is demonstrated in the waveguide
for lossless loads with high dielectric constant. For lossy loads, a backward wave
region is discovered in the low frequency range for TM modes. Mode charts
presented for the cavity-short type configuration show that mode behavior is highly



diverse and that modes cannot be consistently labeled by association with
corresponding empty cavity modes which are approached as the load radius becomes
small or the dielectric constant approaches unity. Very high loss factor loads are
shown to behave like good conductors. It is shown that a small change in dielectric
constant can cause a mode switch without affecting the resonant frequency or Q.
Miscellaneous contributions include presentation of three previously untabulated
indefinite Bessel function integrals, a complex zero-finding subroutine, and the
discovery of natural mode field rotation in the presence of boundaries between lossy
media.



Copyright® Edward Benjamin Manring, 1992



To my wife,
Sandy,

whom I love with all my heart,
whose companionship has made my life
so much more joyful and fruitful,

and to my Savior,
Jesus Christ,

“through whom all things were made, and
without Him nothing was made that was
made.”

“It is the God who commanded light to
shine out of darkness who has shone in our
hearts to give the light of the knowledge of
the glory of God in the face of Jesus
Christ.”



ACKNOWLEDGMENTS

I am much in debt to Dr. Jes Asmussen, my major professor, for his many
suggestions and insights into the nature of microwave cavity and material interactions,
but I owe him no less gratitude for the congenial manner in which he has overseen
my career as a graduate student. In addition, his editorial, technical, and thematic
comments on the rough drafts of this dissertation have improved it more than I would
care to admit. Credit is due to Dr. Edward Rothwell who shared selections from his
abundant knowledge in the field of practical numerical computations and who, with
Dr. Dennis Nyquist, helped steer parts of the theoretical analysis in the right
direction. I must also extend thanks to my good friend Ron Fritz whose expertise at
doing microwave cavity experiments is unsurpassed, and whose ability to quote
pertinent Bible passages keeps them in perspective. Finally, if it were not for the
generous and patient nature of my wife, who has seen more than one deadline come
and go, none would be reading this today.

This research was supported in part by grants from DARPA (U.S. Army Grant
DAAG46-85-k-0006), DARPA/Virginia Tech. (Contract CR-4355-430031), the
Michigan Materials and Processing Institute (Proposal ORD# 48422), the State of
Michigan REF, and the Navy University Research Initiative administered by the
University of Illinois.



TABLE OF CONTENTS

LISTOFFIGURES . . ... ... ittt ittt i ennnnns xii
Chapte; LLINTRODUCTION . . . . . . ittt e ittt et e et eneenn 1
Chapter 2: REVIEW OF PERTINENT LITERATURE ................ 9
2.1 Introduction . . ...... ...ttt 9
2.2 Waveguide and Cavity-Short Type Solutions . .............. 10
2.2.1 Dielectric Rod Waveguides . ............c00.... 10
2.2.2 Coaxially-Loaded Waveguides for Particle Acceleration
and Microwave Circuit Components . . ............ 11
2.2.3 Backward and Complex modes in Lossless Coaxially-
Loaded Waveguides . ..............c00evonun. 13
2.2.4 Microwave Plasma Diagnosis and Excitation ......... 14
2.2.5 Permittivity Measurement and Materials Processing . . . .. 18
2.2.6 Miscellaneous Recent Studies . .. ................ 20
2.3 Mode-Matching and Cavity-Open Type Solutions . ........... 23
Chapter 3: THEORY OF CYLINDRICAL WAVEGUIDES ............. 28
3.1 Introduction . .. ... ittt it e et e 28
3.2 The Source-Free Time-Harmonic Maxwell Equations . ......... 28
3.2.1 Maxwell’s Equations . ..........cueveereucennn 28
3.2.2 Magnetic and Electric Vector Potentials ............ 31
3.3 Electromagnetic Fields in Regions of Cylindrical Symmetry . . .. .. 32
3.3.1 Separationof Variables ...................... 32
3.3.2 Electromagnetic Fields in Terms of the z-Directed Vector
Potential ............ ...t 34
3.4 Homogeneously Filled Waveguides . .................... 36
3.5 The Coaxially-Loaded Waveguide . . . ................... 40
3.5.1 Description of the Coaxially-Loaded Waveguide . ...... 40



3.5.2 Fields of the Coaxially-Loaded Waveguide . . . . .......
3.5.3 Characteristic Equation for the Coaxially-Loaded
Waveguide . . .........0i it nnnnn.

Chapter 4: THE LOSSY-LOADED CYLINDRICAL CAVITY ...........

4.1 Introduction . . ..........uttititrreeananan
4.2 The Lossy Homogeneously Filled Cavity .................
4.3 Coaxially loaded Cavity Configurations ..................
4.4 The Cavity-Short Type Configuration ...................
4.5 The Cavity-Open Type Configuration . . . .. ...............
4.5.1 Mode-Matching Methods .....................
4.5.2 Field Equations for Generalized Axial Dependence . . . . ..
4.5.3 Characteristic Equation: Method I . . ..............
4.5.4 Characteristic Equation: Method I ... ............

Chapter 5: TM MODE SOLUTION FOR A PERFECTLY CONDUCTING

ROD LOAD . ... ittt ittt ie it eeneeeeasannaenas
5.0 Introduction . ..........iiiiiiitt ittt
52 Field Equations . ... .......cittiittienenennnnenns
5.3 Mode-Matching Equations for Bolle’s Problem . . ............
5.4 Numerical Solutions . . ...........cuiiitiieeenennnnn
SS Conclusion . ...... ... ...ttt et et

Chapter 6: NATURAL FREQUENCY AND THE SINUSOIDAL STEADY-

STATERESPONSE . ... ... ...t iiiiiiintnnneennnnas
6.1 Introduction . . ........citiiiiineeronnnaeeeens
6.2 Equivalent Circuit Description of the Lossy Cavity ...........
6.3 Quality Factor and the Natural Frequencies of the Microwave

Cavity ...t ittt i et i it i e e
6.4 S-Plane Representation of Natural Frequencies . .............
6.5 S-Plane Frequencies vs. Loss Factor for Cavity-Short Type Modes

Chapter 7: WAVENUMBER RELATIONSHIPS IN THE COAXIALLY-

LOADED WAVEGUIDE . ... ... ..ttt titneeenennnnenens
7.1 Introduction . ... .........0uiitiieteneeonnsonnas
7.2 Namingofthe Modes . ...........coiiiieeennnnnnenn
7.3 Lossless Load: €,=37.6 ............ .00 0iiuiueennn.
7.4 Lossless Loads: ¢, =3.0 .............. ...t



7.5 Nylon Loads: €,=3.03—j0.039 . ......................
7.6 Higher Loss FactorLoads ..........................
7.7 ConClusion . . . ..o v v ittt ittt e

Chapter 8: NUMERICAL SOLUTIONS FOR THE CAVITY-SHORT TYPE
CONFIGURATION . . ... ittt ittt ittt e et eenennns
8.1 Introduction . ...........ciiiiiiineneenenenennan
82 Namingof Modes . ..........iiiiiinenennennnnnnn
8.3 Mode Charts and Field Patterns: TM Modes . . .............

8.3.1 Low Dielectric Constant Loads with Various Loss
Factors . .......ci ittt ineeneennnnnns
8.3.2 Electric Field Magnitudes for Increasing Loss Factors . . . .
8.3.3 High Loss Factor Modes Associated with Coaxial Cavity
TM Modes .. ... ..ttt intennneennnnans
8.3.4 TMy;; Mode Frequency Variation with Dielectric
Constantand Loss Factor . ....................
8.3.5 Frequency and Field Pattern Variation with Load Radius . .
8.3.6 Dielectric Confinement and Exclusion .............
8.4 Mode Charts and Field Patterns: TEModes . . . .. ...........
8.4.1 Variations in the TEgp;; Mode with Increasing Loss
Factor . .. ... ...ttt ittt eennnns
8.4.2 Radial Order Exhibited in Frequency Variation with Load
Radius .........0 ittt eeeeneennnns
8.4.3 Dielectric Confined and Dielectric Excluded TE Modes . . .
8.4.4 Dielectric Excluded and Coaxial Cavity TE Modes . . . . ..
8.5 Mode Charts and Field Patterns: HEM Modes . .............
85.1 LosslessLoads . . ..........c.ciiiiiiienennn.
8.5.2 Tracing HEM Modes Through Permittivity and Load
Radius Variables . ...........c0i it enennn.
8.5.3 Modal OrderingandLoss Factor . . . ..............
8.6 ConCluSion . . ........cuiviimeeeneeeneeoeeonennns

Chapter 9: NUMERICAL SOLUTIONS FOR THE CAVITY-OPEN TYPE
CONFIGURATION .. ... ...ttt tnneennnnenannnnns
9.1 Introduction . ..........oitiierennrennnacecnanas
9.2 TM Specialization of the Cavity-Open Type Characteristic
Equation . ... ... ... iiiieeeeeeeonnnnennnnns
9.2.1 Coaxially-Loaded Waveguide TM Characteristic Equation .

ix



9.22 MethodI ........ ... i, 299

923 MethodIT . ....... ...ttt eneennnnn. 299
9.3 Outline of Numerical Procedure Used to Solve Equations (4-147)
and (4-180) . ... ... ... e 300
9.4 Numerical and Experimental Results .. .................. 305
9.4.1 Experimental Measurement Techniques: Cavity-Image
Type with Varying Load Length . . . . ............. 305
9.42 MethodI ... .......0 ittt iennnnnns 310
943 MethodIT . . ....... ... .. iiinnnnn. 317
9.4.4 CONVEIZENCE . . . vt vttt et teeeeeeeeennanenas 326
9.4.5 Cavity-Open Type Solutions: Varying A ............ 329
9.4.6 Quality Factor Calculations .................... 331
9.5 Conclusion . . ... ......ii ittt 336
Chapter 10: SUMMARY ANDCONCLUSIONS .................... 337
10.1 Introduction . .. ... ... ...ttt 337
10.2 The Coaxially-Loaded Waveguide . .................... 338
10.3 The Cavity-Short Type Configuration . . ................. 339
10.4 The Cavity-Image and Cavity-Open Type Configurations . .... .. 341
10.5 Lossy, Material Filled Cavity and Conducting Rod Loaded Cavity
Solutions . ... ... ... e e e e 342
10.6 Relationship of Complex Natural Frequencies to Resonant
Frequencyand Q . .............0iiiiuiiiinenennnn 343
10.7 Miscellaneous Theoretical Formulation Contributions . ........ 343
10.8 Application of Theory to Materials Heating Processes . ... ... .. 345
10.9 Suggestions for Further Research ..................... 346

Appendix A: INTEGRALS AND RECURRENCE RELATIONSHIPS USED
IN CIRCULAR CYLINDRICAL ORTHOGONALITY INTEGRATION

AND ENERGY CALCULATIONS . ... ... ...ttt iiienneennn 348
AllIntroduction ............cuiiiiiiieroneeonnnennas 348
A2 IndefiniteIntegrals . . . ............. .. i, 348
A3 Recurrence Identities . .........c0iiiitttinernennns 351
A.4 Evaluation of the Integral Expressions at Extremum .......... 352

A4.]1 Evaluationatz=0. ...........c00iereeonon 353

A42 Evaluationat z=00. . ... ... ... eetvueeennnn 356
AS DefiniteIntegrals . . . . .. oot ittt vennneonnononssas 357



Appendix B: MODE ORTHOGONALITY IN INHOMOGENEOUSLY
FILLED WAVEGUIDES ........... ...ttt

Appendix C: BRACKETED CONSTANTS USED IN THE CAVITY-OPEN
TYPESOLUTIONS . ... ... ittt iiiitititeereneneenn.

Appendix D: TIME-AVERAGE VALUE OF A DECAYING, ROTATING
D.lIntroduction ...........c.ciiiiiiiiieenneeennenenenns
D.2 Time-Average Field Values for a Given Time Period .........
D.3 Field Rotation of the Natural Modes . . ..................
D.4 Relative Time-Average Field Values . . . .. ...............

Appendix E: COMPLEX ROOT-FINDING ALGORITHMS USED IN THIS
DISSERTATION . ... .. ittt iiiieeennennns

Appendix F: CHARACTERISTIC EQUATION FOR THE SLAB-LOADED
07 1 1

LISTOFWORKSCITED . . . ... ...t iiiiiiiiiniennnnnnnnnnn



LIST OF FIGURES

Figure 1-1 Coaxially-Loaded Waveguide ......................... 2
Figure 1-2 Cavity-Open Type Configuration ....................... 2
Figure 1-3 Cavity-Short Type Configuration . ...................... 3
Figure 14 Cavity-Image Type Configuration . . ..................... 3
Figure 3-1 Homogeneously Filled Cylindrical Waveguide .............. 36
Figure 3-2 Coaxially-Loaded Waveguide ........................ 40
Figure 4-1 Homogeneously Filled Cylindrical Cavity ................. 52
Figure 4-2 General Cavity-Open Type Configuration . ................ 56
Figure 4-3 Cavity-Short Type Configuration . ..................... 57
Figure 4-4 Cavity-Image Type Configuration . . .................... 58
Figure 5-1 Cavity-image type configuration with conducting load ......... 99
Figure 5-2 f, vs. £ for Ly = 15.65 cm from the empty cavity TMy;, mode . . . . 109
Figure 5-3 Cut-away drawing of the 6" cavity ..................... 111
Figure 544 Conducting load sample construction . ................... 112
Figure 5-5 6" Cavity loaded with a suspended conductingrod ........... 113
Figure 5-6 Convergence of solutions with matrix size . . . .............. 115
Figure 5-7 Resonant frequency behavior for load lengths near the cavity length . 116
Figure 5-8 Comparison of solutions for ¢ =0.635 and 0.700cm .......... 118
Figure 5-9 High load length region of Figure 5-8. . . . ................ 119
Figure 5-10 TMy,, empty cavity to TM,;q coaxial cavity mode for

L=15.65cm . ... ... ittt 121
Figure 5-11 Several modes for L,=10and25cm ................... 123
Figure 5-12 Empty cavity TMy,;, has no coaxial cavity companion mode . . . . . 124
Figure 6-1 Parallel RLCCircuit . ... ... ..ottt ittt enennnns 128
Figure 6-2 RLC circuit driven by acurrentsource . .. ... ... .o oo evv.. 129
Figure 6-3 S-Plane presentation of the complex LaPlace transform frequencies . 133

xii



Figure 6-4 S-Plane representation of the magnitude of the impedance ....... 135

Figure 6-5 S-Plane frequencies of the lossy homogeneously filled cavity .. ... 136
Figure 6-6 Impedance as a function of sinusoidal steady-state driving

frequency @ ... ... ... i e e e e 139
Figure 6-7 Cavity-short type TEq;; mode frequencies as a function of loss

factor . ... ... e 141
Figure 6-8 Cavity-short type TM,;; mode frequencies as a function of loss

factor: a=0.1"and 0.2" ... ...... ... ... .. i it 142

Figure 7-1 kpla vs. kya for TE and TM modes, ¢, =37.6, a = 1cm,

b=12T7cm ... .. .. i i i i e 151
Figure 7-2 Real kpla vs. k,a for HEM; modes, ¢, = 37.6, a=1cm,

L O 0 I+ 153
Figure 7-3 Imaginary k;;a vs. k,a for HEM; modes, ¢, = 37.6, @ = 1cm,

b=1.2TCm ... ...ttt ettt e 156

Figure 7-4 <va vs. k,a for HEM; modes, ¢,=37.6,a=1cm, b=1.27cm ... 157
Figure 7-5 Real kpla vs. k,a for HEM, modes, ¢, = 37.6, a = 1cm,

b=1.27cm ... e e i e 158
Figure 7-6 Imaginary k,;a vs. k,a for HEM, modes, ¢, = 37.6, a = 1cm,

b=1.27cm . ... e et i e e e 159
Figure 7-7 Real k;ja vs. k,a for HEM; modes, €, = 37.6, a=1cm,

b=1.27cm ... e et e i e 161
Figure 7-8 Imaginary k,;a vs. k,a for HEM3 modes, €, = 37.6, a = 1cm,

b=1.27cm ... . . e 162
Figure 7-9 k,1b vs. f for TE and TM modes, €, = 3.0,a=1.27cm,

b=7.62cm . ... .. i i i e e e e 164
Figure 7-10 kplb vs. f for TE and TM modes, ¢, =3.0, a =3.81cm,

b=T7.62cm ... ...ttt i i i i e e 164
Figure 7-11 k,;b vs. f for TE and TM modes, ¢, = 3.0, @ = 6.35cm,

b=T7.62Cm ... ... i i i e i e e e 165
Figure 7-12 k,;b vs. f for TE and TM modes, ¢, = 3.0, @ = 7.60cm,

b=7.62cm .. ... .. it i i i e e e e 165
Figure 7-13 f'vs. 4 for the TMy; mode, ¢,=3.0,a=7.60cm, b=7.62cm . .. 166
Figure 7-14 Low frequency, low 4 region of Figure 7-13 .............. 167
Figure 7-15 Real k,;b vs. f for TE and TM modes: nylon, ¢ = 1.27cm,

b=T.62cm ... ... i i e e i i i e 169
Figure 7-16 Imaginary k, b vs. f for TE and TM modes: nylon, a = 1.27 cm,

b=T7.62Cm . ... .. .ttt e e e 170



Figure 7-17 Imaginary kb vs. f for TEg; and TMg; upto 20GHz . . .. .. .. 171
Figure 7-18 f'vs. v for the TMy; mode: nylon, ¢ =7.60cm, b=7.62cm .... 172

Figure 7-19 fvs. 4 for the TMy; mode for frequencies upto 10GHz . . . . ... 174
Figure 7-20 Cut off region of Figures 7-18and 7-19 ................. 175
Figure 7-21 fvs. v for the TMy; mode, exhibiting low frequency backward

modebehavior ............ ... ... .. i i i i, 176
Figure 7-22 f'vs. v for TMy; and TMy, modes: €, =3—j1 ............. 178
Figure 7-23 fvs. 7y for TMy; and TMy4 modes: €, =3—j1 ............. 179
Figure 7-24 f'vs. v for TEy;, TEq,, and TEg; modes: €, =3—j1 ......... 181
Figure 7-25 fvs. y for HEM;; and HEM;, modes: é, =3—j0.5 . ......... 182
Figure 7-26 fvs. y for HEM;; and HEM;, modes in the lower frequency

region . ............. e et ettt et e e 183

Figure 8-1 Resonant frequency vs. eigenlength for 1" diameter nylon rod in

6" diametercavity . ......... ...ttt et 190
Figure 8-2 Resonant frequency vs. cavity length for nylon load with

hypothetical loss factors . . . .. .......... .. . .. 191
Figure 8-3 Imaginary frequency vs. cavity length for nylon load with

hypothetical loss factors . . . ............ ... ..., 192
Figure 8-4 Axial electric field magnitude along a radius, TMy;; mode,

6, =100 . ... . i i e 195
Figure 8-5 Axial electric field magnitude along a radius, TMy;; mode,

6 =1000 ...... ... . i i i e 195
Figure 8-6 Axial electric field magnitude along a radius, TMy;; mode,

& =10 ... e e 196
Figure 8-7 Axial electric field magnitude along a radius, TMy;; mode,

& =30 ... i i e e 196
Figure 8-8 Radial electric field magnitude along a radius, TMy;; mode,

=10 .. ...t e 198
Figure 8-9 Radial electric field magnitude along a radius, TM(;; mode,

6 =30 .. e i i e e e 198
Figure 8-10 Radial electric field magnitude along a radius, TMy;; mode,

6 =100 . ... i i e e 199
Figure 8-11 Radial electric field magnitude along a radius, TM,;; mode,

6 =1000 ....... ... i i i i i e 199
Figure 8-12 Radial electric field magnitude along a radius, coaxial cavity

TEMmode . . ... .ot iiitiiiiieneeerenenoeeennncens 201

xiv



Figure 8-13 Resonant frequency vs. cavity length: 1* diameter rod in 6"

diameter cavity, TMp; - -« o v vt i vttt it 202
Figure 8-14 Real frequency versus loss factor: TMp,; mode . ............ 204
Figure 8-15 Imaginary frequency versus loss factor: TMy,; mode ......... 205
Figure 8-16 Axial electric field magnitude along a radius, TM,; mode,

€ =1000....... .. i i e e 206
Figure 8-17 Radial electric field magnitude along a radius, TM,; mode,

€ =1000 ...... ... i i i e 206

Figure 8-18 Axial electric field magnitude for the coaxial cavity TMg,; mode . . 207
Figure 8-19 Radial electric field magnitude for the coaxial cavity TM,,

MOde ... ..ttt i e et e e 207
Figure 8-20 Real frequency versus loss factor fore, =0t050 ........... 209
Figure 8-21 Imaginary frequency vs. loss factor for TMy;; mode, ¢ =0 to

A 210

Figure 8-22 Real frequency vs. loss factor for materials with low values of ¢, . 211
Figure 8-23 Real frequency vs. dielectric constant for TMg;; mode, ¢, =1 to

| 213
Figure 8-24 Imaginary frequency vs. dielectric constant for TMy;, mode,

€=11t050 ... .. .. i e e 214
Figure 8-25 Resonant frequency vs. load radius for lossless load, ¢, =9 ... .. 217

Figure 8-26 Real frequency vs. load radius for nylon load, €, =3-j0.039 . . .. 218
Figure 8-27 Imaginary frequency vs. load radius for nylon load,

€,=3-J0.039 . .. ... e i e e 219
Figure 8-28 Real frequency vs. load radius for moderately lossy load,

€,=20—18 ... i i e 221
Figure 8-29 Imaginary frequency vs. load radius for moderately lossy load,

€,=20-18 ... i e e e e, 222

Figure 8-30 Real frequency vs. load radius for highly lossy load, é, = 10—j30 . 224
Figure 8-31 Imaginary frequency vs. load radius for highly lossy load,

€,=10-j30 .. ... i i i e 225
Figure 8-32 Axial electric field magnitude: TM,, mode A, load radius

11 227
Figure 8-33 Radial electric field magnitude: TM,,, mode A, load radius

5 1 227
Figure 8-34 Radial electric field magnitude (load only): TMy, mode A, load

radius 7.57cm . . . ... e e i it e e 228
Figure 8-35 Axial electric field magnitude: TMOp2 mode A, load radius

6.53Cm . ... i it i i e e 229

XV



Figure 8-36 Radial electric field magnitude: mopz mode A, load radius

6.53Cm . .. i e e e e it e e 229
Figure 8-37 Axial electric field magnitude: TMopz mode A, load radius 4cm .. 230
Figure 8-38 Radial electric field magnitude: TMy,, mode A, load radius 4cm . 230
Figure 8-39 Axial electric field magnitude: TM,, mode A, load radius 2cm . . 231
Figure 840 Radial electric field magnitude: TMg,, mode A, load radius 2cm . 231
Figure 8-41 Axial electric field magnitude: TMg,, mode A, load radius

0.524cm . ... ... i e e e 232
Figure 8-42 Radial electric field magnitude: TMg,, mode A, load radius

0.524cm . .. ... e e e e e e e 232
Figure 8-43 Axial electric field magnitude: TMg,, mode B, load radius

0.0477cm ........... et ettt e e 235
Figure 8-44 Radial electric field magnitude: TM,, mode B, load radius

0.0477CM .. ..t e e e e e e 235
Figure 8-45 Axial electric field magnitude: TM,,, mode B, load radius

0.143cm ... i e e e e e 236
Figure 8-46 Radial electric field magnitude: TMg,, mode B, load radius

0.143cm . .. ... e e e e 236
Figure 8-47 Axial electric field magnitude: TM,,, mode B, load radius

0.524cm ... ... i i i e e e e 237
Figure 8-48 Radial electric field magnitude: TMg,, mode B, load radius

0.524cm .. ... .. e e et e e 237

Figure 8-49 Axial electric field magnitude: TMg,, mode B, load radius 2cm . . 238
Figure 8-50 Radial electric field magnitude: TM,,, mode B, load radius 2cm . 238
Figure 8-51 Axial electric field magnitude: TMg,, mode B, load radius 4cm . . 239
Figure 8-52 Radial electric field magnitude: TMypp mode B, load radius 4cm . 239
Figure 8-53 Axial electric field magnitude: TM,, mode B, load radius

T X 3 1 240
Figure 8-54 Radial electric field magnitude: TMgp, mode B, load radius
6.53CmM . ... ittt ittt e it e i e 240

Figure 8-55 Axial electric field magnitude for the coaxial cavity TMy,, mode . . 244
Figure 8-56 Radial electric field magnitude for the coaxial cavity TMg,,

MOdE .. ... ittt ittt toenneeeeonnaneennaeeennes 244
Figure 8-57 Real frequency vs. load radius: é,=20—j30, T™™ppy v vvven - 245
Figure 8-58 Imaginary frequency vs. load radius: €, = 20—;j30, T™™pp - - - - - 246
Figure 8-59 TE;; Real frequency vs. cavity length for ¢; = 3.03 with

hypothetical loss factors . . ... ... ..o v v ittt enneeeennn 249

Figure 8-60 Real frequency vs. loss factor for ¢, = 3.03 in the TEq;; mode . . . 250

xvi



Figure 8-61 Imaginary frequency vs. loss factor for ¢, = 3.03 in the TEg,,

MOde .. ... i i i i et e e 251
Figure 8-62 Azimuthal E-field magnitude along a radius, TEg;; mode, e =1 . 252
Figure 8-63 Azimuthal E-field magnitude along a radius, TE;; mode,

& =10 ... e e 252
Figure 8-64 Azimuthal E-field magnitude along a radius, TE;; mode,

€ =30 ... e i e 253
Figure 8-65 Azimuthal E-field magnitude along a radius, TE;; mode,

6 =100 ... .. i e e 253
Figure 8-66 Azimuthal E-field magnitude along a radius, TE;; mode,

6 =1,000 .. ... .. i i e 254
Figure 8-67 Azimuthal E-field magnitude along a radius, coaxial cavity TEpy

MOde . . ... .. ...t i i e et e 254
Figure 8-68 Resonant frequency vs. load radius: lossless load, ¢, =9, TEq,,

MOdeS . . ..ot e e e e e e e e 256
Figure 8-69 Real frequency vs. load radius: é, = 3—j0.039, TEg,, modes . ... 257
Figure 8-70 Imaginary frequency vs. load radius: €, = 3—j0.039, TEg,,

MOdeS . . . ... . e e e i e 258
Figure 8-71 Real frequency vs. load radius: €, = 20—j8, TEq,, modes . ... .. 260

Figure 8-72 Imaginary frequency vs. load radius: €, = 20—;8, TE(,, modes . . 261
Figure 8-73 Enlarged view of primary mode crossing: €, = 20—j8, TEqp,

MOAES . . .t vttt it i e e e et e e 263
Figure 8-74 Real frequency vs. load radius for higher order TEq,, modes . . .. 264
Figure 8-75 Imaginary frequency vs. load radius for higher order TEqp

MOdeS . . ...t i i e it e et e e 265
Figure 8-76 Enlarged view of imaginary frequencies in mode crossing region . . 266
Figure 8-77 Axial H-field magnitude for the coaxial cavity TEy;, mode ... .. 268
Figure 8-78 Radial H-field magnitude for the coaxial cavity TEp;, mode . . . . . 268
Figure 8-79 Axial H-field magnitude: TEq,; mode B, load radius 4cm . . . . .. 269
Figure 8-80 Radial H-field magnitude: TEgqy,, mode B, load radius 4cm ..... 269
Figure 8-81 Axial H-field magnitude: TEq,, mode B, load radius 6¢cm . . . . .. 270
Figure 8-82 Radial H-field magnitude: TEq,, mode B, load radius 6cm . .. .. 270
Figure 8-83 Resonant frequency vs. load radius: HEg, and EH;g,, ¢, =9 . ... 273
Figure 8-84 Blow up view of small load radiusregion ................ 274
Figure 8-85 Resonant frequency vs. load radius: HEM;5, €, =9 ......... 276
Figure 8-86 Real frequency vs. dielectric constant ¢;: HEM;,, ¢/ =8 ... ... 271
Figure 8-87 Imaginary frequency vs. dielectric constant ¢;: HEM, 5, ¢/ =8 .. 279
Figure 8-88 Real frequency vs. load radius: HEM,, é, = 20-8......... 280

xvii



Figure 8-89 Imaginary frequency vs. load radius: HEM, 5, €, =20—j8 .....
Figure 8-90 Real frequency vs. loss factor: HEM;5, e, =1,a4=1.27cm . ...

Figure 8-91 Imaginary frequency vs. loss factor: HEM;,, ¢, =1,a=1.27cm

Figure 8-92 Real frequency vs. ¢,: HEMj 5, /=4 .................
Figure 8-93 Imaginary frequency vs. ¢,: HEM /=4 ..............
Figure 8-94 Real frequency vs. ¢;: HEM )5, ¢/ =5 .................
Figure 8-95 Imaginary frequency vs. ¢, HEM ), /=5 ..............
Figure 8-96 Real frequency vs. ¢/: HEM 5, /=6 .................
Figure 8-97 Imaginary frequency vs. ¢, : HEM; 5, =6 ..............
Figure 8-98 Real frequency vs. ¢;: HEM 5, ¢/ =7 .................
Figure 8-99 Imaginary frequency vs. e;: HEM5, /=7 ..............
Figure 8-100 Real frequency vs. ¢;: HEM; 5, ¢/ =75 ...............
Figure 8-101 Imaginary frequency vs. ,: HEMlpz, =75 ............
Figure 8-102 Real frequency vs. ¢,: HEM 5, ¢/ =9 ................
Figure 8-103 Imaginary frequency vs. ¢, : HEM;p, ¢, = 9 ...
Figure 8-104 Real frequency vs. ¢,: HEM,,, e =10................
Figure 8-105 Imaginary frequency vs. ¢/ : HEM,.,,, =10 ............
Figure 8-106 Real frequency vs. e;: HEM; 5, ¢/ =12 . ...............
Figure 8-107 Imaginary frequency vs. €, : HEMpp, /=12 ............
Figure 8-108 Real frequency vs. ¢;: HEM 5, ¢/ =15 . ...............
Figure 8-109 Imaginary frequency vs. ;: HEM 5, /=15 ............

Figure 9-1 Load sample with holes for thread suspension ..............

Figure 9-2 Microwave circuit for low power measurements of frequency and

O e e i e i et e e e

Figure 9-3 Real frequency vs. rod length: TMy;, mode, 3x3 and 5x5

117 0 o (=S

Figure 9-4 Real frequency vs. rod length: TMy;, mode, 5x5 and 7x7

117 0 o [ < S

Figure 9-5 7" cavity, TMg;, mode: 1x1, 3x3, 5x35, and 7x7 matrices
Figure 9-6 7" cavity, TMy;, mode: 1x1, 3x3, 5x5, 7x7, and 13x13

MatTiCeS . . . it v ittt ittt ittt eossonsnnennonennas
Figure 9-7 Real frequency vs. load length: Method II . . . ... ...........
Figure 9-8 Method II compared with a perturbation solution ............
Figure 9-9 Real frequency vs. load length: 2¢=0.5"and 1.0" . ... .......

Figure 9-10 Real frequency vs. load length, 2a = 1.0": Method II and

Perturbation . ... ... ...ttt ittt
Figure 9-11 Real frequency vs. a for a nylon load: TMg;,, b=3", {=4cm ..

xviii



Figure 9-12 Imaginary frequency vs. a for a nylon load: TMy,, b = 3",

L=4cCm ... e i e e
Figure 9-13 Imaginary frequency vs. a for a nylon load: TMy,,, b = 3",

E=4Cm .. ... ..t i e i e e e e
Figure 9-14 Real frequency vs. h: TMyy,, @ =0.25" (nylon), b =3.5",

E=2CmM .. e e i e e e

Figure 9-15 Quality factor vs. load length: TMy;,, @ = 0.25" (nylon), b=3" . .
Figure 9-16 Quality factor vs. h: TM;,, @ =0.25" (nylon), b = 3.5",
E=2Cm ... e i e e e

Figure B-1 Cross-section of an inhomogeneously filled cylindrical waveguide . .

Figure D-1 Ellipse rotated by ¢ away from coordinate axes .............
Figure D-2 Rotation ellipse with inscribed field trajectory . .............

Figure E-1 Complex roots located by crossing of real and imaginary root

Figure E-2 Points used by COMBIS in finding complexroots . . ..........
Figure E-3 Non-existent root located by COMBIS . ..................

Figure F-1 General slab-loaded cavity configuration . . . ... ............
Figure F-2 Slab-loaded cavity with slabatoneend ..................

xix



Chapter 1
INTRODUCTION

The purpose of the present work is to present analytical and numerical
solutions for the electromagnetic fields of cylindrical waveguides and cavities
coaxially-loaded with homogeneous, isotropic, lossy, cylindrically shaped materials.
The motivation for this study is the application of these solutions to microwave
heating of lossy materials. Electromagnetic field solutions provide fundamental
information on the interaction between microwaves and lossy materials in waveguides
and resonant cavities. For materials processing purposes, knowledge of the
electromagnetic fields reveals where energy is dissipated in the material, how
efficiently energy is coupled into the material, and how material properties affect
wave propagation or resonant conditions in the waveguide and cavity respectively.
Since material properties change during processing, the electromagnetic fields are
dynamically linked to the process cycle. Accurate field solutions make it possible to
track material properties during the course of processing.

The coaxially-loaded waveguide is shown in Figure 1-1. The coaxially-loaded
cavity investigated in this dissertation falls into three configurations called cavity-short
type, cavity-image type, and cavity-open type. The most general of these, the cavity-
open type, is shown in Figure 1-2. Special cases of the cavity-open type
configuration exist when the length of the load is equal to the cavity length, cavity-
short type, or when the load rests on one end of the cavity, cavity-image type. These
are shown in Figures 1-3 and 1-4 respectively. The cavity-image type configuration

also describes the cavity-open type configuration when the load material is located

TThe term “cylindrical” often refers to waveguide and cavity systems of general cross section with
Do cross sectional variation in the axial variable. Here we use it in a more specialized sense to refer to
cylindrical waveguides and cavities with circular cross section.

1
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exactly half way between the ends of the cavity. The features of these configurations
are discussed in greater detail in Chapters 3 and 4.

Coaxially-loaded cylindrical waveguides and resonant cavities have found an
immense range of applications in the SO years since they were first studied. Particle
acceleration, microwave circuit components, plasma generation and diagnosis, and
materials processing are only the broad headings that classify most of the hundreds of
different purposes they have served. Probably the chief reason that such attention has
been given to the coaxial geometry is its circular symmetry which makes it simple to
construct physically and renders its electromagnetic field parameters amenable to
closed form analytic expression. Also, its symmetry is but one-dimensional and
allows for junctions to be formed along planes perpendicular to the remaining free
variable spacial component, in this case the axial variable.

That is not the case, for example, with the concentric spherical geometry,
whose symmetry is two-dimensional. Aside from spheres being difficult to construct,
any planar junction formed on a sphere distorts its symmetry. The axially invariant
rectangular geometry presents a difficulty of a different kind: there are no closed form
expressions for the wavenumbers of a rectangular waveguide with a smaller
rectangular material located along the axis. Neither are there any cases in which
purely TM or purely TE modes propagate in such a guide.! The corners of the
rectangular load material make even perturbation analysis difficult for many modes
and constitute potential hot spots in practical applications.

With all the attention that coaxially-loaded waveguides and cavities have
received, there remain several unanswered questions about their behavior, especially
for lossy loads. Although solutions have been presented, as will be discussed in
Chapter 2, for lossy coaxially-loaded waveguides and cavity-short type cavities, and
others have been presented for the cavity-open type cavity loaded with lossless

11f the material is altered so that it fills one dimension of the waveguide, closed form expressions
for the wavenumbers are available and TE,, modes exist with the electric field parallel to the material
interface. Cf. R. E. Collin, Field Theory of Guided Waves (New York: McGraw-Hill, 1960), 224-25.
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materials, no one has rigorously investigated the cavity-open or cavity-image type
cavity loaded with lossy materials. As a second step, beyond perturbation methods,
field solutions for these cavity configurations when the load is lossy are vital to our
understanding of the exact interaction between lossy materials and the cavity fields.
In materials processing and microwave cavity plasma applications, this information is
important both in the design of cavity applicators and in understanding the behavior of
existing cavity applicators for new load materials and modes.

Since solutions for the waveguide and cavity-short type configuration with
lossy loads have been previously demonstrated, the principal contribution of this work
is the presentation of analytical and numerical solutions to the cavity-open and cavity-
image type configurations for lossy loads. This presentation proceeds as follows:
Chapter 2 contains a review of past investigations of coaxially-loaded waveguides and
cavities up to 1991. The papers reviewed are cataloged primarily by application and
chronology. Chapters 3, and 4, with Appendices A, B, C, and F, present an analysis
of the natural modes of lossy, coaxially-loaded cylindrical waveguides and cavities
according to a rigorous solution of Maxwell’s equations. For the cavity-open and
cavity-image type configurations, mode-matching is used to find the eigenvalues.

Chapter 5 is a reworking of a solution by D. M. Bolle published in 1962.2
Bolle used mode-matching to solve for the resonant frequencies of a cylindrical cavity
coaxially loaded with a conducting cylinder. The cylinder was located at the cavity
center so that the configuration can be considered cavity-image type. The cavity-
image type configuration with a conducting load and an electric wall is identical to the

TThe equations in Chapters 3, 4, and 5 and Appendices C and F have been assiduously checked for
errors. Most of them have not been simply copied from notebooks at publication time. Many of the
programs written to solve them numerically have been founded directly on these equations as recorded
in rough drafts of this work, so that the numerical solutions reflect the analysis as given by what is
actually printed on these pages. That is not to claim that all equations presented here are inerrant,
especially those which were not tested by numerical solution, but only to say that exceptional care was
taken to prevent typographical errors.

2p. M. Bolle, “Eigenvalues for a Centrally Loaded Circular Cylindrical Cavity,” IRE Trans.
Microwave Thry. Tech. MTT-10 (3) (March 1962): 133-38.
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reentrant cavity. Bolle’s results are in error since the TEM mode contribution to the
fields in the cavity region containing the conductor was neglected. Chapter S includes
the development of the mode-matching equation and numerical results. The numerical
results for the resonant frequency are compared with experiment showing excellent
agreement. The solution is presented in order to demonstrate the principles and utility
of mode-matching, and to examine the limiting case of high conductivity or loss factor
for dielectric loads.

Chapter 6 is a discussion of the relationship of the natural mode lossy cavity
frequeﬁcies to the resonances of the sinusoidal steady-state and the material loaded
cavity quality factor. It is shown that for quality factors greater than 50, the real part
of the natural mode complex frequency closely approximates the sinusoidal steady-
state resonant frequency. With the same restriction, the quality factor is one-half of
the ratio of the real part of the complex frequency to the imaginary part of the
complex frequency. For materials processing applications, the quality factor is often
several thousand and rarely less than 50, so that this restriction is not prohibitive.

Numerical examples of the analysis of Chapters 3 and 4 are presented in
Chapters 7, 8, and 9. Chapter 7 contains propagation diagrams, i.e., plots of system
wavenumbers versus frequency, for the coaxially-loaded waveguide. Numerical
results are compared with published values of the radial wavenumbers for given
waveguide and load parameters. Complex mode propagation is demonstrated in the
lossless case for high dielectric constant loads. Both propagation and attenuation
patterns are examined for the lossy case. Numerical solutions for the cavity-short
type configuration are found in Chapter 8. The axial wavenumber is constrained to
be a real integer multiple of  normalized by the cavity length. Losses are no longer
spacially distributed, as in the waveguide case, but are temporally distributed,
represented by a complex natural frequency. Resonant frequencies are computed for
several load materials and sizes and compared favorably to experiment. Field

TThe effective equivalence of high conductivity and high loss factor is demonstrated in Chapter 3.
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patterns are computed from a special time average magnitude defined in Appendix D.
The natural frequencies of the modes are followed for a number of variables. The
natural frequency versus load radius is plotted for several modes and materials over a
load radius range of zero to the radius of the cavity. These plots demonstrate that the
mode structure may change radically, changing from TE-like to TM-like and vice
versa, as the load radius changes, especially for higher order modes and high loss
factor materials.

Chapter 9 concludes the body of the dissertation with numerical examples of
solutions for TM modes in the cavity-open and cavity-image type configurations. It is
demonstrated that conventional formulations of the mode-matching equations produce
a highly ill-conditioned characteristic matrix, and cannot be used to obtain reliable
eigenvalues. Another formulation, worked out in Chapter 4, is shown to yield a well-
conditioned characteristic matrix that provides accurate results for all load lengths. It
is also shown how the resonant frequency and quality factor vary with the height of
the load and its radius. All solutions are compared with experiments that show
excellent agreement with computed resonant frequencies and qualitative agreement
with computed quality factors. The quality factor discrepancy is due to the finite
conductivity of the cavity walls and losses due to imperfections in the experimental
cavity that were not accounted for by the theory. Quality factor agreement is better
with larger loads when load losses dominate cavity wall losses and losses due to
cavity imperfections.

Certain of the Appendices contain information that is of more general interest.
For example, Appendix A contains a list of three previously unpublished indefinite
integrals of products of Bessel functions. Also included are three previously
unpublished Bessel function recurrence identities and two orthogonal definite
integrals. Appendix B is an examination of the relationship between energy
orthogonality and power orthogonality in inhomogeneously loaded waveguides of
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arbitrary cross section. It is shown that energy orthogonality is actually a special case
of power orthogonality when the modes are purely TM or purely TE.

It is shown in Appendix D that in the presence of boundaries between lossy
materials, or between a lossy material and a lossless material, the natural fields of a
loaded cavity rotate as they decay in time. The rotation is described by a time
decaying ellipsoid whose parameters depend on the phases of the various field
components. Since the time-average of a decaying field is zero, a relative time-
average is defined for each field component. Due to the rotation, the relative value is
not defined by simply neglecting the time-decay factor, but takes into account the
differing phases of the various field components.

The numerical solutions presented in Chapters 7, 8, and 9 all involve finding
the roots of complex functions of a complex variable. This can be a very difficult
numerical problem and it proved so in this case. It was necessary to use two different
approaches which are discussed in Appendix E. The FORTRAN source code is
supplied for each. Similarly, it was necessary to evaluate Bessel functions with
complex arguments. An address is given in the same Appendix where excellent
subroutines may obtained for this purpose.

In the final Appendix, Appendix F, an analytical solution is derived for a slab-
loaded cavity when the slab is located at an arbitrary height above the cavity bottom.
This solution is the radial analog to the cavity-short type solution, but is much easier
to solve because it involves only sine and cosine functions. It is used in Chapter 9 to
check cavity-open type solutions as the load radius approaches the cavity radius. If
cross sectional wavenumbers are known, the same solution may be used for slab-

loaded cavities of arbitrary cross section.



Chapter 2
REVIEW OF PERTINENT LITERATURE

2.1 Introduction

The literature on coaxially-loaded cylindrical microwave cavities and
waveguides is diverse, dealing with permittivity measurements, materials processing
and heating, including direct ceramic sintering by microwaves, filters for microwave
circuits, atomic clocks, particle accelerators, and plasma generation for applications in
such a wide range of technology as heating of materials, ion generators, anisotropic
etching of solid state circuit components, diamond thin film deposition, and deep
space engines. The general field of this literature has been reviewed before.! Since
the primary aim of the present study is to perform the theoretical analysis required to
obtain the system eigenvalues, only literature pertinent to the chosen method of
analysis is reviewed here.

As mentioned in Chapter 1, solutions are presented for the coaxially-loaded

waveguide, the cavity-short type coaxially-loaded cavity, and the cavity-open type

1A review covering several of these areas is found in Haw-Hwa Lin, “Theoretical Formulation and
Experimental Investigation of a Cylindrical Cavity Loaded with Lossy Dielectric Materials” (Ph.D.
diss., Michigan State University, 1989). Literature on heating of materials, dielectric constant
measurements, and techniques of measuring electric field strengths inside a cavity is reviewed in
Edward B. Manring, “An Experimental Investigation of the Microwave Heating of Solid Non-Reactive
Materials in a Circular Cylindrical Resonant Cavity” (M.S. thesis, Michigan State University, 1988).
Literature on electric plasma propulsion and general use of the cavities developed at Michigan State
University’s Department of Electrical Engineering is reviewed by Lydell L. Frasch, “An Experimental
and Theoretical Study of a Microwave Cavity Applicator Loaded with Lossy Materials” (Ph.D. diss.,
Michigan State University, 1987). Three new publications that deserve meation in the materials
processing field are Microwave Processing of Materials: Materials Research Society Symposia
Proceedings 124, Symposium Held at Reno, Nevada 5-8 April 1988, ed. W. H. Sutton, M. H. Brooks,
and I. J. Chabinsky (Pittsburgh: Materials Research Society, 1988); Microwave Processing of Materials
II: Materials Research Society Symposia Proceedings 189, Symposium Held at San Francisco,
California 17-20 April 1990, ed. Wm. B. Snyder, et al. (Pittsburgh: Materials Research Society, 1991);
Microwaves: Theory and Application in Materials Processing: Ceramic Transactions 21, Symposium
Held During the 93rd Meeting of the American Ceramic Society at Cincinnati, Ohio 29 April-3 May,
1991, ed. D. E. Clark, F. D. Gac, W. H. Sutton (Westerville, Ohio: The American Ceramic Society,
1991).
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coaxially-loaded cavity. The method used to solve for the latter configuration is
called mode-matching. Since the coaxially-loaded waveguide and the cavity-short
type loaded cavity are treated similarly, the literature will be divided into two
categories: 1) waveguide and cavity-short type solutions, 2) mode-matching techniques
and cavity-open type solutions. Coaxially-loaded waveguides and cavities have been
studied for a wide variety of reasons over the past 50 years, therefore special attention
is paid to the progressive applications motivating their development.

2.2 Waveguide and Cavity-Short Type Solutions
2.2.1 Dielectric Rod Waveguides

Waveguides involving dielectric rods come in various forms. Some consist of
a simple rod-shaped material with a high enough dielectric constant that
electromagnetic energy flowing through the rod is confined by total internal
reflection. This is called a dielectric waveguide. Sometimes dielectric waveguides
are enclosed in a second material called a cladding. A third form exists when the
dielectric rod is encased in a metal. A dielectric rod surrounded by a cladding
encased in metal is called a shielded dielectric waveguide or a coaxially-loaded
waveguide. The foundational modern paper treating dielectric waveguides was
written by E. Snitzer and published in 1961.2 In it he refers to the first work done
on dielectric waveguides at the turn of the century. Although others had already
derived the characteristic equation and examined the first few modes, Snitzer
demonstrated the behavior of the higher order modes, developed a reliable means of
classifying them, and drew some very clear pictures of the electric and magnetic
fields. His classification scheme has been widely accepted among those treating non-
shielded dielectric waveguides. Mode classification schemes, including Snitzer’s, are
discussed in greater detail in Chapter 7.

The dielectric waveguide with cladding has been recently treated by Bruno and

Bridges using a powder core to create a flexible millimeter-wave dielectric

2E. Snitzer, “Cylindrical Dielectric Waveguide Modes,” J. Opt. Soc. Am. 51 (5) (May 1961): 491-98.
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waveguide.3 All flexible solids with low millimeter-wave losses have low dielectric
constants. In order to confine the waves to the core region, the dielectric constant
must be high. Bruno and Bridges’s solution to this difficulty was to fill a hollow tube
with the powder of a high dielectric constant, low loss material. In addition to
presenting a clearly written paper, well-reasoned conclusions, and useful data, Bruno
and Bridges make an original contribution in determining how to classify hybrid
modes according to the relative axial field strengths of the electric and magnetic
fields. They determine whether a hybrid mode is TE-like or TM-like by comparing
the absolute value of the ratio of E, to H, (suppressing the ¢-dependence) with the
wave impedance of a plane wave traveling at the same phase velocity. This means of
mode classification has physical intuitive appeal and provides an objective reference
for determining the meaning of the ratio of E, to H,. The merits of Bruno and

Bridges’s mode classifications are discussed further in Chapter 7.

2.2.2 Coaxially-Loaded Waveguides for Particle Acceleration and Microwave Circuit
Components

More directly related to the research presented in this dissertation are studies
of the shielded dielectric or coaxially-loaded waveguide. The first study in America
of the fields in a coaxially-loaded waveguide was reported in 1944 by L. Pincherle in
which he demonstrates the method for obtaining the characteristic equations for ¢-
symmetric modes and how to solve them graphically.# Other investigations of
¢-symmetric TM; modes were reported in 1947 by S. Frankel and by G. G. Bruck

3William M. Bruno and William B. Bridges, “Flexible Dielectric Waveguides with Powder Cores,”
IEEE Trans. Microwave Thry. Tech. 36 (5) (May 1988): 882-90.

4L. Pincherle, “Electromagnetic Waves in Metal Tubes Filled Longitudinally with Two
Dielectrics,” Phys. Rev. 2:66 (S, 6) (September 1 and 15, 1944): 118-30. Beam and Wachowski refer
to a similar publication in Germany the previous year by Von Herbert Bucholz, “Der Hohlleiter von
kreisformigen Querschnitt mit Geschichtetem Dielektrischen Einsatz,” Annalen der Physik (Leipzig) 43
(1943): 313-68, from which we may infer that the Nazis were the first to look into this question. Due
to the war, however, it is certain that Pincherle’s work was done independently.
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and E. R. Wicher in the same issue of the Journal of Applied Physics.> Their
interests in the coaxially-loaded waveguide geometry stemmed from a desire to use
the TM,,; waveguide mode for particle acceleration. For optimal particle acceleration
it is desirable that the phase velocity of the fields be near the velocity of the particles.
This had been accomplished in the past by carving spiral grooves or inserting fins in
the waveguide walls. The object of their investigations was to demonstrate that the
phase velocity might be reduced below the speed of light in a cylindrical waveguide
by lining the waveguide walls with a high permittivity dielectric.

In 1949 complete solutions for the coaxially-loaded waveguide, including the
non-¢-symmetric hybrid modes, were presented by Teasdale and Higgins.® More
results were published in 1951 by R. E. Beam and H. M. Wachowski in which the
labels HE and EH are applied for the first time to the coaxially-loaded waveguide
hybrid modes.” These labels were imported from the dielectric waveguide which
Beam also studied.® Others contributed throughout the 1950’s to the expanding field
of knowledge of the propagation characteristics of the coaxially-loaded waveguide.
The motivation for this research had moved beyond particle acceleration to building
microwave circuit components like impedance transformers, matching devices, phase
shifters, and antenna feeds.

In 1959, P. J. B. Clarricoats published the first in a series of studies he
carried out over the next several years on coaxially-loaded waveguides. His

comprehensive survey of dielectric waveguides, both shielded and un-shielded,

5S. Frankel, “TM,; Mode in Circular Wave Guides with Two Coaxial Dielectrics,” J. App. Phys.
18 (1947): 650-55; G. G. Bruck and E. R. Wicher, “Slow Transverse Waves in Cylindrical Guides,”
J. App. Phys. 18 (1947): 766-70.

6R. D. Teasdale and T. J. Higgins, “Electromagnetic Waves in Circular Waveguides Containing
Two Coaxial Media,” Proc. Nat. Elec. Conf. 5 (1949): 42741.

R. E. Beam and H. M. Wachowski, “Shielded Dielectric Rod Waveguides,” Trans. Amer. Inst.
Elec. Eng. 70 (1951): 874-80.

8R. E. Beam, M. M. Astrahan, W. C. Jakes, H. M. Wachowski, and W. L. Firestone, “Dielectric
Tube Waveguides,” Report ATI 94929, Ch. V, Northwestern University, Evanston, IL (1949), cited in
Snitzer and in Bruno and Bridges.
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covered 17 pages in the Proceedings of the Institution of Electrical Engineers in
1960.° In this Proceedings he demonstrates that propagation characteristics for the
shielded and un-shielded dielectric waveguide are similar when the dielectric constant
is sufficiently high and the radius of the dielectric is sufficiently less than the radius
of the shield. He also discusses applications of the theory to ferrite materials. If
Clarricoats is a fair representative, the British engineers do not seem to have taken up
Beam’s HE-EH hybrid mode naming scheme.

About the same time Clarricoats was investigating the coaxially-loaded
waveguide, R. F. Harrington’s Time-Harmonic Electromagnetic Fields was published
in which he presents a generalized solution that can be adapted to the dielectric
waveguide, the coaxially-loaded waveguide, the coated cylindrical conductor, or a
corrugated cylindrical conductor. 10 Harrington’s solution also applies to the coaxial
waveguide, i.e., a cylindrical waveguide with a cylindrical conducting rod along the
axis. The simplicity‘ of Harrington’s notation and procedure makes his analysis the
easiest to follow. Being a text book, however, few numerical results from the
equations are provided. The analysis of the coaxially-loaded waveguide found in
Chapter 3 of this dissertation is an extension of Harrington’s formulation.

2.2.3 Backward and Complex modes in Lossless Coaxially-Loaded Waveguides
Among the more interesting topics Clarricoats addressed in his series of
studies was the existence of complex and backward modes in the lossless coaxially-
loaded waveguide.“ In particular, his paper with B. C. Taylor on “evanescent and
propagating modes” discusses complex mode behavior in a coaxially-loaded

9p. J. B. Clarricoats, “Propagation Along Unbounded and Bounded Dielectric Rods—pts. 1 and 2,”
Proc. Inst. Elec. Eng., 108 (3), pt. C (March 1961): 170-86.

loRogex' F. Harrington, Time-Harmonic Electromagnetic Fields (New York: McGraw-Hill, 1961),
219-23.

llp, 3. B. Clarricoats, “Circular-Waveguide Backward-Wave Structures,” Proc. Inst. Elec. Eng.
110 (2) (Feb. 1963): 261-70; P. J. B. Clarricoats and K. R. Slinn, “Experimental Observation of
Travelling Backward Waves in Dielectric-Loaded Circular Waveguide,” Proc. Inst. Elec. Eng. 111 (6)
(June 1964): 1090-92; P. J. B. Clarricoats and B. C. Taylor, “Evanescent and Propagating Modes of
Dielectric-Loaded Circular Waveguide,” Proc. Inst. Elec. Eng. 111 (12) (Dec. 1964): 1951-56.
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waveguide for the first time. The authors demonstrate that the appearance of a
backward propagating mode is associated with the appearance at a lower frequency of
a complex mode, but complex modes do not necessarily give rise to higher frequency
backward modes. The method used to prove the existence of the complex modes is
instructive. Clarricoats and Taylor expand the characteristic equation at the edges of
bands where purely real or purely imaginary propagation constants cease to exist.
The expanded characteristic equation is used to show that an incremental change in w
cannot produce a purely real or purely imaginary + solution, but a complex y will
solve the equation. .

An abstract study of complex and backward modes was published by A. S.
Omar and K. F. Schiinemann in 1987 in which a rigorous proof was presented of the
existence of complex and backward modes in inhomogeneously and anisotropically
filled waveguides of general cross section.!2 Their paper also includes a discussion
of power orthogonality between the modes, showing that the electric field of one
complex mode couples to the magnetic field of another instead of to its own magnetic
field. Thus, the complex modes must exist in coupled pairs. The effect of these
modes on cavity resonances was later demonstrated by Chen and Zaki. They located
a resonance in their cavity containing a lossless dielectric rod that could not be

explained without considering complex modes. 13

2.2.4 Microwave Plasma Diagnosis and Excitation

Even as particle acceleration was an early motivation for researching the
coaxially-loaded waveguide, followed later by applications in microwave circuitry, in
the 1960’s microwave plasma applications became yet another reason to study the
coaxially-loaded waveguide. Quasistatic solutions for coaxially-loaded waveguide
modes were presented by Trivelpiece in 1958 and Trivelpiece and Gould in 1959 in

12Abbas S. Omar and Klaus F. Schiinemann, “Complex and Backward Wave Modes in
Inhomogeneously and Anisotropically Filled Waveguides,” IEEE Trans. Microwave Thry. Tech. MTT-
35 (3) (March 1987): 268-75.

13Chunming Chen and Kawthar A. Zaki, “Resonant Frequencies of Dielectric Resonators Contain-
ing Guided Complex Modes,” IEEE Trans. Microwave Thry. Tech. 36 (10) (Oct. 1988): 1455-57.
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which they present the discovery of space charge waves on stationary plasma

columns.!* The exact solution of the interaction of lossless plasmas with
¢-symmetric coaxially-loaded cavity-short type modes was presented in 1960 by
Buchsbaum, Mower, and Brown. 13 They found exact expressions for a lossless

cold plasma column-in TM,,, and TE,,,,, modes, and developed perturbation
formulas for several other modes. An axial magnetic field was shown not to affect
the calculations for the TM,,,o mode and could be accounted for by perturbation for
TEg,y,, modes. This work was followed up by Agdur and Enander the next year with
an exact solution that included the non-¢-symmetric modes, although without
considering the anisotropical behavior induced by an axial static B-field.16 In
addition to the ¢-symmetric modes, Agdur and Enander identified the length-
independent TM,,;,,o modes as non-hybrid. The dielectric properties of the plasma
were determined using the cold plasma approximation, and losses were considered
only as a perturbation to the lossless solution. They present several charts of resonant
frequency versus plasma density and plasma frequency for a number of different
modes. These are equivalent to mode charts for resonant frequency versus dielectric
constant.

Two interesting features of the investigation of Agdur and Enander were the
inclusion of radial variation in the plasma for some of the ¢-symmetric modes and the
discovery of TM-like modes that had no corresponding empty cavity relatives. These
modes were labeled TMn*Op because the mode for the n = 0 case is related to the

coaxial cavity TEM mode.t As the plasma density becomes small, the resonant

145, W. Trivelpiece, “Slow Wave Propagation in Plasma Waveguides,” (Ph.D. diss., California
Institute of Technology, 1958); A. W. Trivelpiece and R. W. Gould, “Space Charge Waves in
Cylindrical Plasma Columns,” J. App. Phy. 30 (11) (Nov. 1959): 1784-93.

155, J. Buchsbaum, L. Mower, and S. C. Brown, “Interaction Between Cold Plasmas and Guided
Electromagnetic Waves,” Phys. Fluids 3 (5) (Sept.-Oct. 1960): 806-819.

16B. Agdur and B. Enander, “Resonances of a Microwave Cavity Partially Filled with a Plasma”
J. App. Phy. 33 (2) (Feb. 1962): 575-81.

Mrivelpiece and Gould had earlier shown the existence of these modes for the ¢-symmetric case.
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frequencies for the TMn"'op modes go to zero. Agdur and Enander, followed by

others treating plasmas in coaxially-loaded cavities, use the asterisk (*) superscript to
identify hybrid modes.

Losses were first rigorously included in the plasma model of Agdur and
Enander three years later by Shohet and Moskowitz.17 As pointed out earlier by
Agdur and Enander, losses in the plasma occur due to collisions. In the models of
both Agdur and Enander and Shohet and Moskowitz electron collisions are the chief
source of losses. They enter the model by including a non-zero electron collision
frequency in the equivalent dielectric constant expression. It is significant that Shohet
and Moskowitz are the first, in treating either plasmas or dielectrics, to include losses
rigorously in their numerical analysis of the coaxially-loaded cavity. Presumably, this
is connected with the availability of numerical methods of evaluating Bessel functions
with complex arguments. Shohet and Moskowitz show how the behavior of the
resonant frequency versus plasma frequency can change radically near critical values
of loss in the plasma.

The same sort of behavior is observed by Lin in the resonant frequency versus
dielectric constant for a cavity-short type cavity loaded with a lossy dielectric rod.18
Under lossless conditions, the resonant frequency of a dielectric-loaded cavity will
drop with increasing dielectric constant or material size (for a plasma the opposite
occurs since the effective dielectric constant is negative). When losses are present, as
Shohet and Moskowitz show, an increase in the effective dielectric constant can cause
a drop in resonant frequency for a plasma load, or as Lin shows, a rise in resonant
frequency for a dielectric load.

Following the work of Agdur and Enander and Shohet and Moskowitz, several
investigations of plasmas excited along the axis of cylindrical waveguides and cavities
were carried out at Michigan State University. In 1971 Fredericks examined plasma

columns using both the dielectric waveguide and coaxially-loaded waveguide models.

173, L. Shohet and C. Moskowitz, “Eigeavalues of a Microwave-Cavity-Lossy-Plasma System,” J.
App. Phy. 36 (5) (May 1965): 1756-59.

181 in, 192, 195.
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The plasma was modeled as lossless, homogeneous, and isotropic with the equivalent
dielectric constant being calculated for both the cold plasma and warm plasma
approximations. The warm plasma supports Tonks-Dattner modes which disappear in
the absence of the plasma. They are heavily damped for appreciable collision
frequencies and exist only for low pressures. Hybrid modes were included in the
analysis. 19 Asmussen, Mallavarpu, Hamann, and Park later used similar models,

but with losses, as part of the design process in constructing microwave plasma
appli(mtors.20 Since the plasma was contained in a quartz tube in the cavity, it was
desirable to include the tube in the model to obtain more accurate results.
Accordingly, a three region model of the cavity-short type configuration, including
hybrid modes and losses in the plasma, was developed by Mallavarpu in 1976.21

Mallavarpu noticed in his three region model the same kind of TM;Op modes found

by Agdur and Enander in their two region model. A fourth region was added later by
Rogers because the plasma did not completely fill the tube in which it was contained.
Rogers still included losses in his model, but due to the complicated nature of the
four-region boundary value problem, and an experimental interest in the TMy;,
mode, only ¢-symmetric solutions were sought.22 Rogers’s solution continues to be

used for diagnosis of tube-contained plasma columns in cylindrical cavities.23

19Robert Michael Fredericks, “An Experimental and Theoretical Study of Resonantly Sustained
Plasma in Microwave Cavities” (Ph.D. diss., Michigan State University, 1971).

20jes Asmussen, Jr., Raghuveer Mallavarpu, John R. Hamann, and Hee Chung Park, “The Design
of a Microwave Plasma Cavity,” Proc. IEEE 62 (1) (Jan. 1974): 109-117.

21Raghuveer Mallavarpu, “An Investigation of the Electromagnetic Behavior of a Microwave
Plasma Source Over a Wide Range of Pressures and Flow Rates” (Ph.D. diss., Michigan State
University, 1976); R. Mallavarpu, J. Asmussen, and M. C. Hawley, “Behavior of a Microwave Cavity
Discharge Over a Wide Range of Pressures and Flow Rates,” IEEE Trans. Plasma Sci. PS-6 (4) (Dec.
1978): 341-54.

25ames R. Rogers, “Properties of Steady State, High Pressure, Argon Microwave Discharges”
(Ph.D. diss., Michigan State University, 1982).

BM. L. Passow, M. L. Brake, P. Lopez, W. B. McColl, and T. E. Repetti, “Microwave
Resonant-Cavity-Produced Air Discharges,” IEEE Trans. Plasma Sci. PS-19 (2) (April 1991): 219-28.
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Models based on the coaxially-loaded cavity-short type cavity configuration
continue to be used to characterize plasma discharges. Since most plasmas are not
homogeneous, the inhomogeneity must be considered in order to gain an accurate
understanding of the plasma/cavity interaction. This is particularly true for high-
pressure plasma discharges. The problem is an especially difficult one, however,
because the inhomogeneity of the plasma is coupled to the fields. To simplify the
investigation of these phenomena, Offermanns examined a high-pressure mercury
plasma column in the TM,,,.o mode, which may be considered to have a one-
dimensional field configuration.24 .

Offermans’s plasma was considered to be longitudinally homogeneous with
inhomogeneity only in the radial variable. The inhomogeneity was incorporated into
the model by solving Maxwell’s equations for the TM,,,,o mode together with the
plasma energy balance equation. These equations are linked because the Joulean
heating term in the energy balance equation depends on the local electric field. The
temperature from the energy balance equation, in turn, affects the local permittivity,
¢, in the field equations. This is because the collision frequency and the plasma
frequency/density, on which ¢ depends, are temperature dependent. The magnitude of
the numerical problem may be comprehended by noting that it took between 8 and 24
hours of CPU time on an IBM 4341-11 to solve for each state.

2.2.5 Permittivity Measurement and Materials Processing

Apart from plasma applications, where it was necessary to include losses to
understand more accurately the behavior of the plasma as it related to system
eigenvalues, most analyses of the coaxially-loaded waveguide and cavity have been
motivated by lossless or almost lossless applications. Two more applications of the
technology, developed in the 1950’s and 60’s, demanded that losses be explicitly
included in theoretical models: the first new application was materials processing, the

7"'Stepha.ﬂ Offermanns, “Electrodeless High-Pressure Microwave Discharges,” J. App. Phy. 67 (1)
(January 1990): 115-23; Stephan Offermanns, “Resonance Characteristics of a Cavity-Operated
Electrodeless High-Pressure Microwave Discharge System,” IEEE Trans. Microwave Thry. Tech. 38
(7) (July 1990): 904-11.
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second was high frequency complex permittivity measurement. A combination of the
two applications has been described by Asmussen, Lin, Manring, and Fritz for single-
mode cavities using the same mode both to process the load material and to measure
material properties during processing.zs Both materials processing applications and
permittivity measurement were treated in the beginning by perturbation theory.26

This method, however, is inadequate for cavities containing large samples and
materials with high dielectric constants or loss factors. This obstacle led Lin to
investigate exact solutions for the coaxially-loaded waveguide and cavity with a lossy
dielectric rod along the axis.?’ _

Lin’s contribution to the study of the coaxially-loaded waveguide lies chiefly in
the large number of cases he solves for the lossy-load. When the load is lossy, and
the frequency is the independent variable, there are six dependent variables in the
solution for each mode: the waveguide radius, the load radius, and the real and
imaginary parts of the complex dielectric constants of both the core region and the
region between the core and the waveguide. w-y diagrams, where v is the complex
axial wavenumber, may be drawn for different values of each dependent variable for
each of an infinite number of modes. That, incidentally, is one of the reasons that the
subject of the coaxially-loaded waveguide has not been wrapped up in the 50 years
that it has been studied.

In addition to reproducing some results for the cavity-short type cavity that
others had reported earlier, and as mentioned above on page 16, Lin investigates the
relatively unexplored relationship between a (a being defined by y =8 —j ) and w
for the coaxially-loaded waveguide with a lossy core. He demonstrates that as the
loss factor of the core rises, losses in the guide rise until a critical loss factor is

reached, after which rising loss factor causes a decrease in propagation loss. This is

255, Asmussen, H. H. Lin, B. Manring, and R. Fritz, “Single-Mode or Controlled Multimode
Microwave Cavity Applicators for Precision Materials Processing,” Rev. Sci. Instrum. 58 (8) (August
1987): 1477-86.

26 review of the literature on these applications is found in Lin and in Manring.

27Lin.
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due, presumably, to the large core material loss factor being indistinguishable from a
high electron conductivity. The equivalence of the two is discussed below in Chapter
3. As the loss factor rises, the skin depth of the material decreases, forcing the fields
out of the material and inhibiting energy dissipation in the load. Among the more
interesting features demonstrated by Lin’s plots is that the light line crossing for the
TM,; mode is independent of the ratio of the core diameter to the waveguide
diameter.

2.2.6 Miscellaneous Recent Studies

Most studies of dielectric waveguides and coaxially-loaded cavities have been
content to examine the propagation wavenumbers, and present no drawings of what
the fields look like, Snitzer’s early paper being an exception. K. A. Zaki and C.
Chen remedy this deficiency by presenting diagrams of the transverse field patterns of
several hybrid modes in a coaxially-loaded waveguide.28 The fields are shown for
an outer waveguide radius of 0.5" with a dielectric core radius of 0.394" at
frequencies of 4 and 8 GHz. The relative dielectric constant of the core region was
37.6 with free-space between the core and the waveguide wall. Field component
magnitude plots are also presented by Lin. These are similar to those found below in
Chapter 8.

Many of the more recent studies of coaxially-loaded waveguides are concerned
with metallic waveguides coated on the inside with one or more layers of dielectric
material. Since the object of the coating is often to produce a high attenuation rate
for selected modes, the dielectrics in these studies are usually lossy. Chou and Lee
present an investigation of modal attenuation in waveguides coated with multiple
layers of lossy dielectric and lossy magnetic materials. 2 They demonstrate the
technique of dealing with multiple layers by manipulation of a series of 4 x 4 matrices

28Kawthar A. Zaki and Chunming Chen, “Intensity and Distribution of Hybrid-Mode Fields in
Dielectric-Loaded Waveguides,” IEEE Trans. Microwave Thry. Tech. MTT-33(12) (Dec. 1985): 1442-
47.

29Ri-Chee Chou and Shung-Wu Lee, “Modal Attenuation in Multilayered Coated Waveguides,”
IEEE Trans. Microwave Thry. Tech. 36 (7) (July 1988): 1167-76.
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rather than one large 4nx4n matrix, where n is the number of layers outside the core.
This technique is not original with Chou and Lee, but their application presents a
good example of its utility. They show that multiple layers can broaden the frequency
range for modal attenuation compared to a single layer coating. They also show that
a lossless layer on top of a lossy magnetic coating increases dominant mode
attenuation by 20 dB per distance a where a is twice the waveguide wavelength.

The problem treated by Chou and Lee in their paper on multilayered coated
waveguides is very similar to one examined earlier by Sphicopoulos, Bernier, and
Gardiol in solving for the resonant frequency and cavity quality factor of a cylindrical
cavity coaxially loaded with a multilayered material.3® The concentric layers of
dielectric materials extend the entire length of the cavity so that the axial

wavenumber, v, is real and equal to % where ¢q is an integer and L is the cavity

length. As Sphicopoulos, Bernier, and Gardiol point out, since g may be set to zero,
making 4 zero, non-¢-symmetric, length-independent TM_,,,,o modes exist. Normally
non-¢-symmetric modes are neither TM nor TE, but are hybrid. When there are only
'two layers, the cavity of Sphicopoulos, Bernier, and Gardiol is the cavity-short type
cavity of Figure 1-3 of Chapter 1.

Sphicopoulos, Bernier, and Gardiol use the 4 x 4 matrix manipulation
technique, used later by Chou and Lee, instead of the 4n x 4n matrix arising when
boundary conditions are matched at the n boundaries between layers. They also
include losses in the metal walls of the cavity. Since losses are allowed in the
dielectrics, the wall losses could conceivably be taken care of by making the loss
factor of the outermost layer very high, but the explicit inclusion of wall conductivity
in the equations is elegantly incorporated and allows direct input of the wall
conductivity in the characteristic equation. To allow losses in the cavity, the natural
frequency must be complex. Sphicopoulos, Bernier, and Gardiol define the resonant

3or, Sphicopoulos, L. G. Bemier, and F. Gardiol, “Theoretical Basis for the Design of the
Radially Stratified Dielectric-Loaded Cavities Used in Miniaturised Atomic Frequency Standards,”
Proc. Inst. Elec. Eng. 131 (2), pt. H (April 1984): 94-98.
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frequency as the real part of the complex frequency and the cavity quality factor, Q,
they define as

Q=" @1

where ' is the real part of the complex radian frequency, &, and w” is the imaginary
part, i.e., @ = w' +jw". Their discussion does not attempt to justify the asserted
significance of the real and imaginary parts of the frequency. In Chapter 6 of this
dissertation those questions are addressed and resolved in agreement with
Sphicopoulos, Bernier, and Gardiol. A last note on this paper is that it contains
several plots of the magnitude of the field components versus radial coordinate.
Although the cavity size and dielectric constant are different, the general shapes of the
plots are similar to many of those presented in Chapter 8 of the present work.

The shorted dielectric rod resonator is similar in configuration to the cavity-
short type coaxially-loaded cavity. The difference is that the shorted dielectric rod
resonator has no radial conducting wall boundary. In spite of this difference, some
modes behave similarly in either configuration, particularly those with fields confined
to the dielectric rod. The absence of a radial wall for the dielectric rod resonator
does introduce the possibility that energy may propagate away from the dielectric rod
region. Modes exhibiting this sort of behavior are called “leaky modes” while those
whose energy is confined to the dielectric are called “trapped modes.” A study of the
shorted dielectric rod resonator has been presented by Kobayashi and Tanaka in which
they consider both trapped and leaky modes.3!

Although no dielectric or conducting losses are present in the system, a
complex frequency must be invoked to account for the energy loss due to propagation
away from the resonator for the leaky modes. In addition to standard types of mode
charts, of which they present several detailed ones, they demonstrate the effect of rod
radius and dielectric constant on Q for the leaky modes. One plot shows how Q

31yoshio Kobayashi and Shuzo Tanaka, “Resonant Mods of a Dielectric Rod Resonator Short-
Circuited at Both Ends by Parallel Conducting Plates,” IEEE Trans. Microwave Thry. Tech. MTT-28
(10) (Oct. 1980): 1077-85.
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increases with dielectric constant for all length-independent TM modes, especially the
higher order modes. Q also increases with rod diameter for most length-dependent
modes, although it is shown that the Q of the HE;,; mode (after Snitzer’s notation)
for ¢, = 10 drops with increasing rod diameter until the diameter reaches 20% of the
rod length. Q for length-independent modes is not affected by changes in rod
diameter. Kobayashi and Tanaka did not compare their results with a cavity-short
type loaded cavity, but it would be useful to investigate the relationship between the
leaky and trapped modes of the shorted dielectric resonator and the modes of the
cavity-short type loaded cavity.

2.3 Mode-Matching and Cavity-Open Type Solutions

Mode-matching derives its name from the method it describes of satisfying
electromagnetic boundary conditions at junction surfaces between two regions. The
fields in each region are expressed as infinite sums of modes, where each mode
satisfies the boundary conditions in its own region. By equating appropriate field
components from each region at the junction, the boundary conditions at the junction
are met. Although this method has been used extensively in the past 50 years for
waveguide junctions, it was originally conceived as the means of solving for the
eigenfrequencies of a cavity. First suggested in 1936 by L. V. King for electrostatic
applications, it was developed for microwave cavities in 1940 by W. C. Hahn of the
General Electric Company.32 Not having the computational ability we enjoy today
in the age of the microcomputer, Hahn nevertheless showed the feasibility of using
mode-matching to solve for the boundary conditions between two cylindrical cavity
regions of differing diameters. Similar problems had been examined previous to

Hahn’s research, but all had relied on various approximations.33

32w, C. Hahn, “A New Method for the Calculation of Cavity Resonators,” J. App. Phy. 12
(January 1941): 62-68. Hahn cites the work of L. V. King, Phil. Mag. 21 (1936): 128 ff.

BFor example, W. W. Hansen’s work on reeatrant cavities, “On the Resonant Frequency of
Closed Concentric Lines,” J. App. Phy. 10 (Jan. 1939): 38-45.
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Hahn’s method was immediately taken up as a means of determining shunt
impedances arising from discontinuities in waveguides, but it wasn’t until 1961 that it
was once again applied to resonant cavities. In that year D. M. Bolle used mode-
matching to find the eigenvalues for the ¢-symmetric TM modes of a cavity
containing a conducting cylinder along its axis.3¥ The center of the conducting
cylinder was coincident with the center of the cavity so that in addition to being
azimuthally symmetric, the configuration was axially symmetric across the transverse
plane at the cavity center, i.e., cavity-image type. Bolle uses the axial symmetry
plane as an electric wall where the transverse E-field is zero. His solutions may
therefore be applied to the even (electric wall) modes of the centrally loaded cavity,
or to the reentrant cavity.

He divides the imaged cavity into two regions separated by the plane
containing one end surface of the conducting cylinder. The tangential and normal
electric fields are expressed as series of modes in each region. In the region
containing the cylinder, the modes are those of the coaxial waveguide with an axial
dependence such that the tangential E-field is zero at the image plane. In the other
region, the series is composed of empty waveguide modes with an axial dependence
such that the tangential E-field is zero at the end of the cavity. Two infinite sums of
modes are equated at the boundary for each boundary condition.

To simplify the resulting two equations, each containing an infinite sum on
either side of the equals sign, the orthogonality of the modes is used to reduce one
side of each equation to a single term and allow the equations to be put into matrix
form. A key point in Bolle’s approach is that he uses a mode from the empty
waveguide region to orthogonalize one equation, and a mode from the coaxial
waveguide to orthogonalize the other. In the work of Kobayashi, Fukuoka and

34Bolle.
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Yoshida,3% Zaki and Chen,36 and Vigneron and Guillon,3” which will be

discussed below, they use only the empty waveguide mode to orthogonalize both
equations. As will be shown in Chapter 9 of this dissertation, Bolle’s method is
preferable since the other yields an ill-conditioned characteristic matrix. The zeros of
the determinant of the characteristic matrix are the resonant frequencies of the loaded
cavity.

Bolle includes a full discussion of numerical errors and compares his results
both to a perturbation solution and experiment. Unfortunately, his solution appears to
work only for the TM;o mode. The perturbation technique proved to be better than
Bolle’s mode-matching method for the TMy;, mode. This sad result is not due to
imperfection in the mode-matching method, nor to numerical errors inherent in it.

An oversight caused Bolle to neglect the TEM mode in his series for the coaxial
waveguide region. The TEM mode is actually a ¢-symmetric TM mode with a radial
wavenumber equal to zero. It turns out that the TEM mode makes the dominant
contribution to the field in the coaxial region for TM(;,. Chapter 5 of this
dissertation is devoted to reworking Bolle’s solution by including the TEM mode. It
is shown that by including the TEM mode, excellent agreement between theory and
experiment is achieved for TM modes in the entire range of rod lengths from zero to
cavity length.

An analysis of a cavity similar to Bolle’s was carried out in 1969 by Bhartia
and Hamid to model an Alvarez type linear accelerator.3® Their configuration
differs from Bolle’s by the addition of a hole through the center along the axis of the

35Yoshio Kobayashi, Nobushige Fukuoka, and Sink-ichiro Yoshida, “Resonant Modes for a
Shielded Dielectric Rod Resonator,” Elect. Comm. Jap. 64-B (11) (trans. Scripta Publishing Co.,
1983): 44-51, translated from Denshi Tsushin Gakkai Ronbunshi 64-B (5) (1981): 433-40.

36Kawthar A. Zaki and Chunming Chen, “New Results in Dielectric-Loaded Resonators,” IEEE
Trans. Microwave Thry. Tech. MTT-34 (7) (July 1986): 815-24.

37s, Vigneron and P. Guillon, “Mode-Matching Method for Determination of the Resonant
Frequencies of a Dielectric Resonator Placed in a Metallic Box,” Proc. Inst. Elec. Eng. 134, pt. H (2)
(April 1987): 151-55.

38p, Bhartia and M. A. K. Hamid, “Field distribution in a Centrally Loaded Circular Cylindrical
Cavity,” IEEE Trans. Nuc. Sci. NS-16 (2) (April 1969): 27-34.
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load. Their development of the characteristic equation is identical to Bolle’s. This
includes, apparently, neglecting the TEM mode since it is not included specifically in
the equations provided. Since they present experimental data only for the TMy,q
mode, it is not discernable from their final results whether they did so or not.

The first application of mode-matching to resonant structures containing
dielectrics was presented by Kobayashi, Fukuoka and Yoshida in 1981.3% Their
interest in cavities apparently arose from the necessity of shielding their dielectric
resonators. They investigate mode similarities between parallel-plate-open dielectric
rod resonator structures and cavity-open type configuration loaded cavities. The
parallel-plate-open dielectric rod resonator is similar to the dielectric rod short-
circuited at either end by parallel conducting plates, except the ends of the rod are
detached from the plates such that a gap exists between the rod and the shorting
plates. The terminology “cavity-open,” “cavity-short,” and “cavity-image” is derived
from similar usage for dielectric rod resonators between parallel plates structures.
Kobayashi, Fukuoka, and Yoshida introduce these terms for both the dielectric
resonator between parallel plates and the loaded cavity.

Kobayashi, Fukuoka, and Yoshida are the first to apply the mode-matching
method to the cavity coaxially-loaded with a lossless dielectric, anticipating by S years
the work of Zaki and Chen. In their work they demonstrate numerically that the
resonant frequency for TEq, 4 cavity-open type modes when the load is small and of
high dielectric constant does not differ significantly from the case where the outer
walls of the cavity are removed and the material behaves as a simple dielectric
resonator. They present mode charts with drawings of the cavity field patterns for
several modes. An apparently independent development of a solution for the parallel-
plate-open dielectric resonator was published in 1983 by Maystre, Vincent, and
Mage.%0 1t is similar to the work of Kobayashi, Fukuoka, and Yoshida.

39K obayashi, Fukuoka, and Yoshida.

40p), Maystre, P. Vincent, and J. C. Mage, “Theoretical and Experimental Study of the Resonant
Frequency of a Cylindrical Dielectric Resonator,” IEEE Trans. Microwave Thry. Tech. MTT-31 (10)
(Oct. 1983): 844-48.
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In 1983, Zaki and Atia presented a mode-matching solution for a lossless load,
similar to that of Kobayashi, Fukuoka, and Yoshida, publishing with it some values of
the radial wavenumbers in the coaxially-loaded waveguide region.4! Although they
derive a theoretical mode-matching matrix, their numerical solutions are an
approximation based on truncating the matrix after the first element. This
approximation was improved by Zaki and Chen in 1986 to include a sufficient number
of matrix elements for eigenvalue convergence.*? This model did not include
complex coaxially-loaded waveguide modes which were added later.43 The load
configurations of Zaki and Chen and Kobayashi, et al., were actually of the cavity-
image fype, since their load was situated axially symmetrically in the cavity. A
general cavity-open type solution for a load of varying height was published in 1987 by
Vigneron and Guillon.#

The mode-matching solutions published thus far on the coaxially-loaded cavity
have been aimed at discovering optimal cavity/load configurations for various
microwave circuit components, primarily filters. Theoretical solutions provide
essential information on mode spacing and sources of energy loss.*> Since energy
loss to the load and cavity is an undesirable effect in microwave circuitry, only lossless
load materials have been considered. For materials processing, lossiness in the load is
essential to being able to transfer energy from the fields to the material. Losses are
also a feature of plasma loads. It is therefore desirable for materials processing or
microwave plasma applications to understand the material/field interactions for the
lossy case. It is the object of this dissertation to provide solutions for the fields of the
coaxially-loaded cavity-open type configuration when the load material is lossy.

41Rawthar A. Zaki and Ali E. Atia, “Modes in Dielectric-Loaded Waveguides and Resonators,”
IEEE Trans. Microwave Thry. Tech. MTT-31 (12) (Dec. 1983): 1039-45.

42Zaki and Chen, "New Results.”

43Chen and Zaki.

4g, Vigneron and P. Guillon, “Mode Matching Method for Determination of the Resonant
Frequency of a Dielectric Resonator Placed in a Metallic Box,” IEE Proceedings 134, pt. H (2) (April
1987): 151-55.

45Kawthar A. Zaki and Chunming Chen, “Loss Mechanisms in Dielectric-Loaded Resonators,”
IEEE Trans. Microwave Thry. Tech. MTT-33 (12) (December 1985): 1448-52.



Chapter 3
THEORY OF CYLINDRICAL WAVEGUIDES

3.1 Imtroduction

The theoretical formulation of field solutions to empty cylindrical waveguide
and cavity systems is standard in advanced undergraduate and beginning graduate
electromagnetics text books.! The treatment found here for empty waveguides is a
digest of the conventional formulations and is provided for convenience and
continuity. Standard text books also treat the coaxially loaded cylindrical wave-
guide,? although in less detail than is found here. In this Chapter the field solutions
for the lossy coaxially loaded waveguide are delineated for all modes.

3.2 The Source-Free Time-Harmonic Maxwell Equations
3.2.1 Maxwell’s Equations

The differential form of the Maxwell Equations, governing all well-behaved
electromagnetic quantities, is given in general by

B
VXE=-_——
at
D =¢-E
V-D=p
J = o-E (3-1)
vxH=9D .3
at
B=uH
V-B=0

where

! John R. Reitz, Frederick J. Milford, and Robert W. Christy, Foundations of Electromagnetic
Theory, 3d ed. (Reading, Mass.: Addison-Wesley, 1979): 412-17; Harrington, 129-30, 198-216;
Collin, 170-89, 195-98; J. D. Jackson, Classical Electrodynamics (New York: John Wiley & Sons,
1975): 339-56.

2 Harrington, 219-223.
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E is the electric field strength (Volts per meter)

D is the electric flux density (Coulombs per square meter)

H is the magnetic field strength (Amperes per meter)

B is the magnetic flux density (Volt-seconds per square meter)

J is the electric current density (Amperes per square meter)

p is the electric charge density (Coulombs per cubic meter)

€ is the electric permittivity of the medium (Coulombs per Volt-meter)

o is the electric conductivity of the medium (Coulomb-meters per Volt-second)
p is the magnetic permeability of the medium (Volt-seconds per Ampere-meter).

Taking the divergence of the third and using the second of Maxwell’s
equations above, the equation of continuity, expressing the law of the conservation of
electrical charge, is given by

v.y+9 9. (3-2)
at
Within this compact set of Equations (3-1) and (3-2) can be found the description of
all macroscopic electromagnetic phenomena.

In the time harmonic domain, where time dependence can be described by a
periodic sinusoid, Maxwell’s equations become much simpler. In such a case, the
time-dependence, including the time phase information, can be included in Maxwell’s
equations as a factor of the form el If only source-free regions are considered,
i.e., J=0 and p=0, a further simplification can be achieved and the equations can be

written as
VXE = -juB G3-3)

VD =0 G-4)

VXH =jwD (3-5)



V.B =0 (3-6)
where

D = E . E (3'7)

B=ji-H (3-8)

The physical, time-dependent values of the electromagnetic fields are determined by
multiplying the fields given in Equations (3-3) through (3-8) by e/ and taking the
real part.

It should be noted that the electric permittivity and magnetic permeability are
complex quantities in the time-harmonic domain. This is indicated by the hat symbol
(") over € and x. In terms of their real and imaginary parts, they are expressed as

f =€ -j€" (3-9)
p=p -ju".
where ¢’ is called the dielectric constant, " the dielectric loss factor, p' the a-c
inductivity, and u" the magnetic loss factor. All materials, including free-space, have
non-zero €' and p’. Materials with non-zero €” or x” are called “lossy” because they
are capable of absorbing electromagnetic energy. Energy is absorbed directly from
the electric field through ¢” and directly from the magnetic field through p”.

Materials with finite, non-zero conductivities are also capable of absorbing
electromagnetic energy directly from the electric field so that an effective dielectric
loss factor can be defined which includes both dielectric relaxation and conductivity
losses, i.e.,

rmer e 2 (3-10)

When w is complex, a non-zero conductivity also contributes to the real part of the
complex permittivity, making it useful to define an effective dielectric constant as
well. However, unless it is necessary to separate the effects of dielectric relaxation
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and capacitivity from free-electron conductivity, there is no need to complicate the
notation. The notation of Equation (3-9) is sufficient to define the material properties
for electromagnetic purposes, with the understanding that effects of free-electron
conductivity are included in ¢’ and €”. An important consequence of this
understanding, from Equation (3-10), is that high values of €” are electromagnetically
equivalent to to high values of o. This principle will be used to explain field behavior
in the presence of high €¢” materials in the Chapters that follow.

3.2.2 Magnetic and Electric Vector Potentials

The fields of the source-free Maxwell Equations can be represented by an
alternate set of functions called potential functions.? Since V-H = 0, H can be
represented as the curl of some other vector A. A is called the magnetic vector
potential,

H=VXA. G-11)
Similarly, an electric vector potential can be defined such that
E=--VxF. (3-12)

We remain free to choose values for V-A and V-F. With appropriate choices, A and
F may be found to satisfy the vector Helmholtz equations,
2 2p -
V°F +k“F =0 G-13)
v2A + k%A = 0,

where k2 = wzéﬁ..

The fields E and H can be represented exclusively in terms of A as in
Equation (3-14),

3Harrington, 77, 129-130.
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1

E=_—_VX(VXA
joe (Vx4) (3-14)
H = VXA,

or exclusively in terms of F as in Equation (3-15),

E = -VXF

L vx@vxF).
ok

(3-15)
H

Often it is convenient to express them as a superposition of solutions in terms of both
A and F as in Equation (3-16),

1

E = -VXF + — VX (V XA)
Jwé

(3-16)

VXA + _L_Vx(VxF).
jok

H

3.3 Electromagnetic Fields in Regions of Cylindrical Symmetry
3.3.1 Separation of Variables

Up to this point the formulation of the solution has been general to any
coordinate system. Now we wish to restrict the discussion to problem geometries
which can best be described using cylindrical coordinates. Taking solutions of the
form given in Equation (3-14), solutions may be sought for E and H with A = z Y™,
where z is the coordinate invariant z-directed unit vector and ¢/ is a scalar function
of all coordinates. This choice for A allows us to solve a scalar Helmholtz equation,
Equation (3-17), instead of the vector form, Equation (3-13). Whether or not this is a
valid choice for A is determined by whether or not the fields given by Equation
(3-14) meet the electromagnetic boundary conditions for the given configuration.

v2ym 4 k2ym = 0 G-17)

In cylindrical coordinates, Equation (3-17) becomes
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2 2
19 9™ 135" 3N aum g (3-18)
L I T

This equation can be solved by separation of variables, such that

Y™ (0,9,2) = R(p) (¢) Z(2). (3-19)

Ignoring the trivial solution Y™ = 0, we divide both sides of Equation (3-18) by y™
to get

: 2 2
1 a_(paR(p) + 1 -0 Q(d)) + 1 0 Z(Z) + k2 = 0. (3_20)
pR(p) ap ap P2§(¢) a¢2 Z(Z) azz
The third term of Equation (3-20) is independent of p and ¢. Since none of the other
terms are z-dependent, yet all terms sum to zero for all z, it must not be dependent on
z either. We set it equal to a constant,

1 %z | ;2 (3-21)

Z@ 5.2

Multiplying both sides of Equation (3-20) by p? and substituting in the constant given
in Equation (3-21) for the third term, we have

2 3 LRE), , 1 %@ , 42_;2,2 .0 (22
R@ 9" 00 ) F@ ae2 D

An argument similar to the one leading to Equation (3-21) can be made for the second
term of Equation (3-22) to get

1 %) _ _,2 (3-23)
3@ 942

This leaves an equation for p in terms of the separations constants k,, n, and k.

If we introduce a constant kp, such that



34

k? = w2 = k] + k7, (3-24)

then the equation for p can be written as follows,

03RO, (22 - n2)R() = 0. (3-25)
dap ap p

Equation (3-25) is called Bessel’s Equation with well-known tabulated
solutions called Bessel’s functions. With regard to these equations it should also be
noted that if the configuration boundaries are symmetric in ¢ then # must be an
integer; also if n is zero and the boundaries are symmetric in ¢, $(¢) must be a
constant. The function space of the components of Equation (3-19), solving the
differential equations in Equations (3-21) through (3-25), is given by

r 3
( Ta(k,0) ) e (n=0)
N, (k,0) cos(n¢)
R = B_(k = 4 > 5 $ = 9 i ,
(o) = B,(k,p) EO ) (¢) sin(n¢) (
2 /"
HY (&) mé
) ’ { © ) (3-26)
cos (k,2)|
sin (k,2)
Z@ =1 .. (-
@ = ik
{ et J

3.3.2 Electromagnetic Fields in Terms of the z-Directed Vector Potential
The electric field of Equation (3-14) can be reexpressed by using the
Helmholtz equation for A, given in Equation (3-13), as
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E =L VUxX(VXA) = joiA + - L_V(V-A). 3-27)
Jwe Jwée

With A = z /", where z is the unit normal in the z-direction and y/* in
dimensions of Amperes, the electric and magnetic fields are given by

. 1 o, ay™
E = - m, - v

JeRzYT + s VS (3-28)
H=VXzy™ =Vy" xz.

The cylindrical coordinate components can then be written in the following manner,

g - 1 3% Hy = 1947
P jwé dpdz p 09
2,m __ay™ 3-29
E¢=_Lkla¢ Hd,""— ( )
Jjwé p ¢ 0z p
_ 1 ;2.m =
Ez';-;‘gkp‘l’ H, =0.

The z-component of the magnetic field of Equation (3-29) is zero for any ™.
Therefore solutions of the form found in Equation (3-29) are referred to as transverse
magnetic, abbreviated TM.

A similar set of equations can be found by beginning with Equations (3-15)
and constraining F to be z y¢, with y° in dimensions of Volts. The function space of
yf is the same as that of Y” given in Equation (3-26). The electric and magnetic
fields are given by

E = -VX(@Zy® = -Vy°xz
(3-30)

H

- 1 ay°
- €+ V(L)
jwézy ok (az

with the cylindrical coordinate components given by



1ay° 1 92u°
E =-- H = _~_ 14
P pa¢ » " jop dpaz
Ey = 9y° H.=_11 a2y @3-31)
dp ® jop p 040z
1,2
E, =0 H, = —~_k*y°
; * Jar e

The set of fields given by Equation (3-31), due to the absence of the z-directed

electric field, is referred to as transverse electric, or TE.

3.4 Homogeneously Filled Waveguides

The homogeneously filled cylindrical waveguide is shown below in Figure 3-1.
It has an inside radius b and is filled with a homogeneous, isotropic material of
complex dielectric constant ¢ and complex magnetic permeability ;. The waveguide
walls are perfectly conducting such that E,;; = 0 at the wall.

Beginning with appropriate choices for y™ and y° from Equations (3-19) and
(3-26), we seek field solutions using Equations (3-29) and (3-31). Since the region of

Figure 3-1 Homogeneously Filled Cylindrical Waveguide.
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interest contains the origin, solutions for R(p) will be of the form Jn(kp p) rather than
Nn(kp p), which is unbounded at p = 0.

The ¢-dependence of the fields is determined primarily by the device used to
couple electromagnetic energy into the waveguide. Although coupling is not
considered here, it is practical to assure common ¢-dependence for TE and TM field
solutions since they will presumably be excited by the same coupling device for a
given waveguide or cavity. If we choose ®(¢) = cos(n¢) for TM solutions and
&(¢) = sin(n¢) for TE solutions, the field components will have similar ¢-dependence
for both TE and TM solutions. _

Finally, since the implicit time-dependence is represented by e/ the
direction of propagation may be chosen in the positive z-direction by allowing

Z(z)=e El kzz. Y™ and y* are then given by

Y™ = AT, (™) cos(ne) e 7
(3-32)

¥ = By o) sin(nd) e T

Using y™ from Equations (3-32) and plugging it into Equations (3-29), the TM

field components, including the n = 0 case, are found to be

m

k,k -
E, = -4 £ 1. &T0) cos(ng) e (3-33)
we
k -
E, =4 L:l 1 Jn(k:' p) sin(n¢) e k2 (3-34)
wEé p
m2 'k
E, = A2 _1,(k"p)costng) e % (3-35)
Jwé
H, = -4 n Jn(k;" p) sin(ng) e k2 (3-36)
p
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Hy = -A k™ 1.(™p) cos(ne) e 75 (337

H, = 0. (3-38)

TE field components, for n # 0, from Equations (3-31) with y© from
Equations (3-32) are given by

E, = ~B 2 1,0,0) costnd) e Tk (3-39)

E4 = BKS Ik p) sin(ng) e 75° (3-40)

E, =0 (3-41)
k,k° &k

H, = -B =L 1, (k; p) sin(n¢) e 7t (3-42)
wft
k _:

Hy = -B ZZE %Jn(k,fp) cos(ng) e 75 (3-43)
e "

H, = B j" . Jn(k:p) sin(ng) e 7. (3-44)
Wi

If n = 0, all TE field components are zero except E, H), and H,, which are given
by

E, = BKIj (kS p)e /5 (3-45)
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e

k, k y

H, = -B :’ﬁ" Jg (ko) e 75 (3-46)
e2 "

H =B Jok p) e . (3-47)

The boundary condition on E,,, at the waveguide wall, i.e., p = b, yields the

following constraints on the radial wavenumbers k,™*:

Totk,'b) = 0
(3-48)
’ e
TS B) = 0.
Equations (3-48) lead to the following definitions for k,*™:
k" = _AE
p
b (3-49)
xl
e _ Mp
%%

where is ptll zero of J_and X', is the p' zero of J'..
n np n

3.5 The Coaxially-Loaded Waveguide
3.5.1 Description of the Coaxially-Loaded Waveguide
A diagram of the coaxially-loaded waveguide is shown in Figure 3-2. It

consists of a cylindrical waveguide of radius b, and a homogeneous, isotropic material
rod of radius @, dielectric constant &, and magnetic permeability 4 ,, located
coaxially inside the waveguide. Between the load material and the waveguide walls is
a homogeneous, isotropic filler of dielectric constant €, and magnetic permeability
fto. Often in practice the filler material consists of free space or a lossless dielectric

used to support the load material.
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Figure 3-2 Coaxially-Loaded Waveguide.

3.5.2 Fields of the Coaxially-Loaded Waveguide

As shown in Figure 3-2, the coaxially-loaded waveguide is divided into two
regions: region 1 for p < a and region 2 for a < p < b. Fields in each of the
regions may be obtained using the general solutions found in Section 3.3. Except for
one special case, the case n = 0, the boundary conditions at the surface of the coaxial
load cannot be met by fields that are exclusively TM or exclusively TE to z. Instead,
a superposition of TM and TE solutions, as expressed by Equation (3-16), must be
implemented.

We begin by writing down the potential function y’s for the two waveguide
regions. Field components from these potentials are found as before for the
homogeneously loaded waveguide by substituting them into Equations (3-29) and
(3-31). The superposition is achieved by adding the two resulting sets of equations
together to get an expression for the total field. In region 1, the potential functions
are given by

¢m1 =4 Jnm] (kp"; p) cos(n,,; ) e'j'Yl : (3-50)

vel = BI, (&S p) sintn,g9) V. G-3h



41

For n = 0 we replace the sine and cosine functions in the above equations by a
constant. Note that the radial dependence in region 1, since it contains p = 0,
consists only of Bessel’s functions of the first kind.

In region 2 the radial dependence of the potential functions also includes
Bessel’s functions of the second kind. The potentials in region 2, with the same
modification for the n = 0 case as for region 1, are given by

y™ = CF, (k 2 P) COS(Myp8) € s (3-52)

V2 = DG, (k0) sin(n,z4) e TNt (3-53)

where the boundary condition on E,,, at p = b is met by requiring

LE&5e) =N, (50T, (5e) -1, (DN, k5p) G54

ny%o2P) = Ny (k50 1y (k50) - I, (0N, (k20).  (3-55)

The component wave numbers k.7, k., k;"z, k:z’ Y1s ¥]s 15, and v3, and the
azimuthal dependences n,,;, n,;, n,,,5, and n,,, are found in terms of the frequency,
w, by applying the boundary conditions of continuous tangential electric and magnetic
fields at the interface between regions 1 and 2. The application of these boundary
conditions also reduces the number of component wave numbers such that

m e
kpl = pl = kpl

m e
ki2 = kpp = kyp

(3-56)
m e m [
M =EN=T2 =TV =Y

Mmi = Mel = M2 = N2 = 1.
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The separation equations for the two regions are

2 A A 2
kl = (0261 b = kpl + ’72
(3-57
2 .
k2=w€2[.l.2=k2+‘)‘2.

The radial wave numbers, k,; and k5, are coupled in Equation (3-57) through v, the
axial wave number common to both regions 1 and 2, and through w.

We may now write down the field components for each region. In region 1
the fields for n # 0 are given by

‘Yk ’ -7
E, = - [A?‘;‘Jn(kplp) + B%Jn(kpl p)j& cos(n ¢) e/7? (3-58)
E, = [A?‘%%J,,(kplp) + kalJ;,(kplp)] sin(n ¢) e 772 (3-59)
k2 .
Eyy =4 ::1 1, (k1 p) cos(n ) e 72 (3-60)
'Yk ’ . -7
H, =- Aﬁln(kplp) + B flln(kplp)] sin(n ¢) e /72 (3-61)
p Wy
Hyy = - [Aky T, (kyqp0) + Bw—‘:’q%]n(kplp)] cos(n ¢) e 77 (3-62)

2

k .
Hyy = B ‘::l T, (k,q p) sin(n ¢) e 7. (3-63)
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For n = 0 the above expressions remain valid except for Ey, H), and H,
which become

E4y = Bk,  Jo(k,; p)e 72 (3-64)
‘Yk 1,/ -7
H;=-B—2_J (k, pe’"* (3-65)
pl Wiy 0\l
k2 o
Hy = Bj_:; Totkyyp)e 77, (3-66)
1

The field equations in region 2 for n # 0 are given by Equations (3-67)
through (3-72),

‘Yk ’ -7
E, = - [c wé’; F,(ky20) + D%Gn(kpzp):l cos(n ¢) e/ 7? (3-67)
Eyy = [CwLEZ%Fn(kpzp) + Dk, G;,(kpzp)] sin(n ¢) e /72 (3-68)
k,: 3-69
2 _-
En = Cs ‘:32 F, (k)2 p) cos(n $) e 772 (3-69)
i ) |
Hy, = - |C2F,(k,30) + D Y702 G;,(kpzp)] sin(n ¢) e /72 (3-70)
P )77

Hyp = - Cksz;.«,,zp)+o;;—2-gcn<kpzp>] cos(ng)ed1E BTY)




2
k .
Hy =D J:;Z G, (k,3 p) sin(n ¢) 7. G-72)

For n = 0, Equations (3-67) through (3-72) are correct except for E¢, Hp, and
H, which are given by

E¢2 = kaz Gé(kpzp) e'j'” (3°73)
é ,=-D kp2 Gg(ky2 p) AZ: (3-74)
p “’ﬁz P
k2
H,, = D_*% G,k -jrz (3-75)
22 Tty olky2p)e

In Equations (3-67) through (3-75), the functions F,, F;, G,, and G,,, from
Equations (3-54) and (3-55), are given by

Fo(ky20) = N,(ky25)J,(ky20) = J,(ky2 B)N,(K,7p) (3-76)
Foky20) = Nykyp0)3,(ky20) - J,(ky2 D)N, (k2 0) (3-77)
G,ky2p) = N, (k;2 D) I, (ky20) - 1, (k)2 D) N, (K, 0) (3-78)

G,(kyp) = N, (kpb) ], (ky2p) = T, (k)2 )N, (k;20) (3-79)
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3.5.3 Characteristic Equation for the Coaxially-Loaded Waveguide

Application of the boundary conditions on E,,, and H,,, at the interface
between regions 1 and 2, i.e., p = @, was mentioned in the previous Section with
regard to reducing to four the number of component wave numbers. These were
given by k), k)5, 7, and n. Application of these boundary conditions also provides
sufficient information for calculation of all component wave numbers, for a given n,
as a function of the excitation frequency, w. In addition, the coefficients B, C, and D
may be found in terms of A such that the fields for a given n may be calculated as a
unique- function of w with 4 as an arbitrary amplitude coefficient.

The tangential field components at p = a are E,, E,, H,, and H,. The
boundary condition on tangential field components across an interface of finite
conductivity is that they must be continuous. Enforcing continuity of E, at p = a we

have

n ’
A -575 ZInky10) + Bky1 1,6k, 0)

(3-80)
=Ccan .
A similar equation results from the continuity of Hy,
Ak, 1 (k B X 2y &
p13nky10) + ohy @ nkp19)
(3-81)

CkF'(k DY "G (k,a).
p2 n(pZa)"' wﬁza n(p2 )

From the continuity of E, and of H,,

% %
A—e"illn(kpla) - c%z F,(,20) = 0 (3-82)
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k2 k2
B2y, (k10 - D22G,k,0) = 0. (3-83)
K1 K2

Equations (3-80) through (3-83) make it clear why it is not possible in general
to excite a purely TM or TE mode in the coaxially loaded waveguide. For example,
if B and D were both zero, i.e., the fields consist of the TM contribution only,
Equation (3-82) would provide a value for C in terms of A. Then H could be made
continuous by some constraint on k,; and kpz in terms .of w, remembering that kp 1
and k,, are not both independent variables since they are linked by the separation
equations. However, unless n = 0, that process leaves E¢ discontinuous. A similar
argument can be used to demonstrate that TE solutions alone will not provide
solutions which meet all of the boundary conditions unless n = 0.

It is convenient to make the following abbreviations:

I = 1,6y 0), Vo= 1,k a),

F = F,(k,0), F =F,k,a), (3-84)

G = G,(k,z0), G' = G,k,0).

Using these abbreviations, Equations (3-80) through (3-83) may be written in a single

homogeneous matrix equation as

kyJ'  koF XLy Y Zg| [ 4] KN
wp a Wy a
kLT HELF 0 0 -C 0
= (3-85)
X Ry Y Pp g k.,G'
wél a wéz a rl sz B 0
0 0 i k%] a k3G -D 0
L #2551 K1%p52 L J L v
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The well-known solution to the homogeneous matrix equation is that the
determinant of the matrix is equal to zero. Also the four field coefficients in the
column vector are not independent. Three of them may be written in terms of the
fourth. Calculation of the determinant of the matrix of Equation (3-85) yields the
characteristic equation of the coaxially-loaded waveguide boundary value problem,

v, W, - n202 =0 (3-86)
where,
Vi = ky1kyp (B KppJ' G - finky JG') (3-87)
W, = k1 ko (41K 0] F - &k, T F") (3-88)
7 = Y (k2 - 12 -
0, = =L (k) ) IVFG . (3-89)

This equation is true regardless of the type of solutions chosen to represent the axial
variation of the fields. However, as noted below, the mode coefficients do vary with
the type of solutions chosen to represent the axial variation.

As these equations demonstrate, for the general n # 0 case the characteristic
equation and field coefficient expressions are rather complicated. However, if n = 0
then the matrix of Equation (3-85), the characteristic equation, and the field
coefficients are all greatly simplified.

The matrix equation for the case n = 0 is shown below in Equation (3-90). It
should be noted that the matrix is resolved into two independent sub-matrices. If the
determinant of either of the sub-matrices is zero then the determinant of the composite
matrix is zero. The upper left sub-matrix corresponds to the field coefficients A and
C which were assigned to the TM contribution in Equations (3-50) and (3-52).
Similarly, the lower right sub-matrix corresponds to the field coefficients B and D
which were assigned to the TE contribution in Equations (3-51) and (3-53).



48

k1 J' ko F 0 0 4

AT HkLF 0 0 -C
0 0 kyJ' kG B
0 0 ikt mkhG | |_p

From Equation (3-90) the characteristic equation for n = 0 is given by,

Vo Wo = 0,

0

(3-90)

3-91)

where V¥, and W, are given by Equations (3-87) and (3-88) when n=0. Equation

(3-91) is consistent with the n = 0 special case of the general characteristic equation,

Equation (3-86). Equation (3-91) is true for either V=0, or Wy =0. If ¥, =

then the solutions are TE; if W =0, the solutions are TM.

For programming purposes it is best to write the characteristic equation in

dimensionless form. This may be accomplished by multiplying Equation (3-86) by

2 2
- The characteristic equation becomes
k k 52 €0 Mo
V, W 2y?
wW, - n°U; =0,
where iy

-ka(“‘kzaJG 2210767
Ko

Ko

A

¥
"

k
7a( -kLz)JJFG.

p2 pl

Un

ka(él eJ'F - 2k aJF")
n o 5—0 p2 —'pl

If n = 0: TE solutions — V, = 0, TM solutions —

W, = 0.

(3-92)

(3-93)

(3-94)

(3-95)
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The field coefficients are not altered by writing the characteristic equation in
dimensionless form. The coefficients B, C, and D are given in terms of A for
traveling wave solutions as
ko iy [G Un

— = 2 (3-96)

wél Ko F Vn

B

An

2
e k5, J
C = 4 200! (3-97)

& kpzz F

- 2
k, i‘z kpl J y_n
(&’el “0 kp22 ,FG Vn

For axial standing waves the coefficients B and D as given above must be multiplied

D =An (3-98)

by -j, or by +j if hyperbolic functions are used to represent the axial dependence. C
is not affected by a change from traveling to standing waves.

In the case of TM solutions, the field coefficients B and D are set to zero and
C is given in terms of A by Equation (3-97) above. For TE solutions A and C are set
to zero with D given in terms of B, regardless of axial dependence, by

A 2.2
ﬂzkpl.,
. 12

D =B

(3-99)

The field solutions and characteristic equation of the coaxially-loaded
waveguide will be used extensively in the next Chapter for the coaxially-loaded
cavity. As indicated above, the field coefficients will change slightly depending upon
the eigenfunctions chosen to represent the axial dependence. Since it is often
convenient to choose various axial dependences for the cavity solution, a field solution
for generalized axial dependences will be developed. However, the characteristic
equation, Equation (3-92), will be used without alteration.



Chapter 4
THE LOSSY-LOADED CYLINDRICAL CAVITY

4.1 Introduction

This Chapter is concerned with extending the waveguide solutions found in the
last Chapter to cavities with cylindrical cross section. The axial boundaries imposed
by the transformation to a cavity system discretizes the wavenumbers non-uniformly.
The wavenumber can no longer be considered a continuous function of the axial
wavenumber, i.e., the natural frequehcies are discrete values which are determined by
the cavity eigenvalue equation for an infinite set of discrete natural modes.

For the lossless case the natural frequencies are real and correspond to the
sinusoidal steady-state resonant frequencies of the loaded cavity. The presence of loss
in the cavity walls or in the material inside the cavity causes the natural frequencies to
become complex. In the limit as losses approach zero, the complex natural
frequencies approach the sinusoidal steady-state resonant frequencies of the lossless
system, so that both lossless and lossy cavity solutions may be obtained from the
solution for the lossy cavity. The solutions presented here will be for general lossy
loads and may be specialized to the lossless condition simply by setting the imaginary
part of the dielectric constant or magnetic permeability found in Equations (3-9) to
zero.

In this Chapter three cavity/load configurations will be considered. First the
modes of the cavity homogeneously filled with a lossy dielectric will be discussed.
While homogeneously loaded cavities are commonly discussed in standard text
books,! these discussions are for lossless loadings. A solution for a cavity homoge-
neously filled with a lossy dielectric, while not representing a standard practical
application, provides a simple expression for the complex natural frequency which

illustrates how losses affect cavity behavior. For simplicity, this solution is given for

! Harrington, 213-16; R. E. Collin, Foundations for Microwave Engineering (New York: McGraw-
Hill, 1966), 326-29; Jackson, 354-56; C. G. Montgomery, Technique of Microwave Measurements
(New York: McGraw-Hill, 1947), 297 ff.
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a material with a real magnetic permeability and a complex dielectric constant, or
vice-versa.

Secondly, a solution is given for a cavity coaxially loaded with a lossy
cylindrical material which extends the entire axial length of the cavity. This is the
cavity-short type configuration illustrated in Figure 1-3 of Chapter 1 and described
more fully below. The solution for the cavity-short type configuration is a simple
extension of the coaxially loaded waveguide solution, requiring only an additional
restriction on the axial wavenumber, v, as discussed below.

Finally, a solution is presented for a cavity coaxially loaded with a lossy
cylindrical material of length less than the cavity length, i.e., cavity-open or cavity-
image type solutions, shown in Figures 1-2 and 1-4 of Chapter 1. These solutions are
much more complicated than either of the first two, requiring expression of the
electromagnetic fields in the cavity as infinite modal expansions which are matched at
the axial load-material boundaries. The method is called mode-matching and has been
previously employed for the lossless case.2

The question of the relationship of the natural frequencies to the sinusoidal
steady-state driven response of the cavity is reserved for Chaper 6. Since calculation
of energy stored and dissipated at sinusoidal steady-state depends on this relationship,

it will be discussed in Chapter 6 as well.

4.2 The Lossy Homogeneously Filled Cavity

The electromagnetic fields in the cylindrical cavity filled with a homogeneous,
isotropic material are similar to those found in the similarly filled waveguide, but with
standing waves instead of traveling waves in the axial direction. The cavity is
constructed by placing shorting plates at either end of a section of waveguide. Fixing
the origin of coordinates at one end of the cavity, as shown in Figure 4-1, the vector

potential magnitudes ™ and y° for the cavity are given by

2Koba)mshi, Fukuoka, and Yoshida; Zaki and Chen, “New Results”; Vigneron and Guillon.
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>N

S

Figure 4-1 Homogeneously Filled Cylindrical Cavity.

ym =47 n(k;" p) cos(ng) cos(k,2)
@4-1)

¥¢ = BI,(k, p) sin(ng) sin(k,2) .

Equations (4-1), with Equations (3-29) and (3-31), provide field solutions
similar to those for the waveguide in Equations (3-33) through (3-47). The TM field

components, including the n = 0 case, are given explicitly as,

kz )\,,p , p . 4-2
E, =4 2% 21 0 P sin(mé) sink,2) (“4-3)
” jaip "P-b') sin(n¢) sin(k,z
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2
A
: _b’.‘ﬁ Jn()\np%) cos(né) cos(k,2)

.
P

E,=4

e

J

o)
"

= -4 % TaQpp %) sin(n¢) cos(k,2)

H —-AA"PJ'(X P) cos(n¢) cos(k,z2)
6 = 5 InPnpy s(n¢) cos(k,z

H, = 0.

TE field components, for n # 0, are given by

E, = -B % Jn()\,',p%) cos(n¢) sin(k,2)

EgB)""PJrO\r P)' in(k
» — Tntapy sin(n¢) sin(k,2)

E, =0
H =B kz Anp J' (N’ L) sin(ng) cos(k,z)
» P F5E B "PE *
H, =B k, 2y o, 2) cos(ne) cos(k,z)
T T g :

1 N2
H,=B T35 ﬁ Jn()\,',p%) sin(n¢) sin(k,2).
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@“-5)

(4-6)

Col))

(4-8)

@9

4-10)

4-11)

(4-12)

(4-13)

If n = 0, all TE field components are zero except E¢, Hp, and H,, which are given

by
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Al ,
Ey =B ¥ J;,()\;,p%) sin(k,2) (4-14)
H =B Roryiar 8y cosin @-15)
0" U TGR B o erp v
2
g =81 Mory o 0y gk (4-16)
Z Ja’i‘ bz o Opb %

These solutions meet the boundary condition on E,;; at the shorting plate located at
the origin of coordinates. To meet the same boundary condition at the other end of
the cavity, a constraint must be placed on k, such that

k, = qL_:, 4-17)
where q is an integer and L, is the cavity length as shown in Figure 4-1.

Due to the constraints on kp and k, in Equations (3-49) and (4-17), k, hence
the frequency @, may take on only certain discrete values, defined for TM solutions
by Equation (4-18) below. A similar equation exists for TE fields with )"'P replaced
by )\;,p. At each discrete value of @, electromagnetic energy may reside in the cavity
in the standing wave patterns described above. Under these conditions the cavity is
said to resonate in a certain mode. The fields may be either TM or TE to z, and their
unique modal field patterns are prescribed by the integer values n, p, and q. The
modes may then be designated in shorthand form by either Tanq or TEnpq.

(4-18)

_ . .
k=0oypt = [%] + [%’E]

The above results are valid whether the material inside the cavity is lossless or
lossy. However, when the material is lossy, Equation (4-18) constrains & to be
complex, signified by the hat symbol (*) over w. This is evident since the right hand
side of Equation (4-18) or its square is purely real. In order for the left hand side to



55
be purely real as well, the frequency must be complex such that

Im(&2p2) =0, (4-19)

2 2
Re (&%) = [%] + [ﬂ] , (4-20)

The complex radian frequency, &, may be written as

) (4-21)

=0 +jo”",

where ' is the real part and w” is the imaginary part of &. Neglecting magnetic
loss, i.e., setting u” = 0, Equation (4-19) implies that «” is given in terms of w’ by

o = o 6 18 (4-22)

Either sign may be chosen as long as it is used consistently throughout. The same

answer for @ results. It is worth commenting that, from Equation (4-22), it is evident

that values for s =j & do not fall into complex conjugate pairs. In order to consider
the resonant cavity in terms of circuit analysis, it is necessary that the s’s come in
complex conjugate pairs. Equation (4-22) does not neccessarily present a
contradiction, however, because the natural mode resonances do not individually form
independent circuits; a sinusoidal steady-state resonance is composed of contributions
from all the natural modes, dominated by the natural mode nearest in frequency.

Using Equations (4-20) and (4-22) an explicit expression for & for each integer
value n, p, and g may be derived:

@ = + _ne + | 4%
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The choice of the positive sign in Equation (4-23) is the only physically realizable
solution. Equation (4-23) may also be used to explore cavity resonances for magnetic
loss with a lossless dielectric. Since é and i are symmetric in Equations (4-19) and
(4-20), Equation (4-23) may be reconstructed for magnetic loss by replacing symbols

e with u and vice-versa.

4.3 Coaxially loaded Cavity Configurations

The general configuration of the coaxially loaded cavity is shown below in
Figure 4-2. As shown in Figure 4-2, the load of radius @ and length ¢ is located
coaxially in the cavity at a height 4 above the bottom. When the load length ¢ is less
than the cavity length L, this configuration is referred to as cavity-open type.'r
Figure 4-2 shows the cavity divided into three regions. Regions I and III consist of
homogeneously filled waveguide, while Region II consists of a section of coaxially
loaded waveguide. Regions I and III are bounded by shorting plates at either end of
the cavity.

Region [

-

Reglon [
-

Reglon [T1

-

Figure 4-2 General Cavity-Open Type Configuration.

PThe cavity configuration notation, as noted in Chapter 2, is that used by Kobayashi, Fukuoka, and
Yoshida.
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The general coaxially loaded configuration of Figure 4-2 may take on two
special case configurations for variations in load length. The first special case, called
the cavity-short type configuration, is for a load which extends the entire cavity
length. The cavity-short type configuration consists of a section of coaxially loaded
waveguide, as described in the previous Chapter in Section 3.5 and shown in
Figure 3-2, with shorting plates on either end. An azimuthal cross sectional diagram
of the cavity-short type cavity configuration is shown below in Figure 4-3.

Load

/ Material
——

b

>

~ o~

NENTANRY

—_—

Figure 4-3 Cavity-Short Type Configuration.

A second special case is referred to as the cavity-image type configuration. In
the cavity-image type configuration the load rests at one end of the cavity as shown in
Figure 4-4. The cavity-image type configuration is composed of two regions. Region
I consists of a homogeneously filled waveguide shorted at one end. Region II consists
of a coaxially loaded waveguide region shorted at the end away from Region I.

The shorting plane which bounds Region II may be either a perfect electrical
conductor, in which case the transverse electric field is shorted, or a perfect

“magnetic conductor,” in which case the transverse magnetic field is shorted. In the
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first case, the Region II shorting plate a perfect electrical conductor, the cavity-image

type configuration includes two cases. It includes the case where the load sits on one
end of the cavity and the case for axially even modes where the load is located in the
center of the cavity, referring to Figure 4-2, at A = 12 L. In the second case, the
Region II shorting plate a perfect “magnetic conductor,” the axially odd modes for a
load in the center of the cavity may be found. Taking advantage of axial symmetry
by formulating solutions to the cavity-open type configuration, when A = 4 L, as
even or odd cavity-image type solutions greatly reduces the number of numerical

operations required to solve the characteristic determinant.

-x -
é“ﬂ
b
Region [  —— |
Load E?
Material 2
2 \ i}
=~ LA LY
€.
R 2F2 1
egion [ >
2 W

Figure 4-4 Cavity-Image Type Configuration.

4.4 The Cavity-Short Type Configuration

The characteristic equation for the cavity-short type configuration is found in a
manner similar to that followed for the homogeneously-loaded cavity in Section 4.2.
The eigenfrequencies of the homogeneously-loaded cavity were found by requiring the
axial dependence of the fields for the homogeneously loaded waveguide to be
represented by standing wave solutions instead of traveling wave solutions. Then the
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axial wavenumber was constrained in order to meet the boundary conditions at the
shorting plates.

For the cavity-short type configuration the same procedure is followed except
now the radial wavenumbers are given by the coaxially loaded waveguide characteris-
tic equation, Equation (3-92), instead of the homogeneously-loaded characteristic
equation, Equation (3-48). With z =0 at one end of the cavity, the field potential
functions for the cavity-short type configuration in the loaded region, region 1, are

given by

y™ = A1,k p) cos(ng) cos(v2) (4-24)

vl = BI,(k,, p) sin(n¢) sin(y2). (4-25)

For n = 0 we replace the ¢-dependence in the above equations by a constant.
The potentials in region 2, with the same modification for the n = 0 case as for region

1, are given by
y™2 = CF,(k,2p) cos(ng) cos(v2) (4-26)

%2 = DG, (k)2 p) sin(n¢) sin(v2). 4-27)

As in the case of the homogeneously-loaded cavity, in order to meet the
boundary condition at z = L, the axial wavenumber must be an integer number of

half-wavelengths, i.e.,
=497 4-28
Y L (4-28)

The separation equations for each region, from Equations (3-57) for the coaxially
loaded waveguide, are



2 -~ -~ A 2
ky = 0285y = k) +(‘”)2
(4-29)
2 .
ky = &% = 2 *( )2

The characteristic eqﬁation is given by Equation (3-92) with v as given in Equation
(4-28) and kp ; and kpz linked by Equations (4-29).

The electric and magnetic fields given in Equations (3-58) through (3-75) are
modiﬁgd to reflect the standing waves in the z-direction. In region 1 the fields for
n = 0 become, '

k
E, = - [ ;’w"‘J (ky10) + B%J,,(kplp)] cos(n ¢) sin(y z) (4-30)
E4y = [A]—a—J_—J ky10) + kall;(kplp)} sin(n ¢) sin(y 2) (4-31)
k2
E, = Aj :él 3, (k, 1 p) cos(n ¢) cos(y z) (4-32)
1
H,, = [-Agx,,(k,,lp ‘:‘J;,(k,,lp)] sin(n ) cos(y 2) (4-33)

H¢1 = [-—A kpll;g(kplp) + BJ__ ‘:ﬁl %Jn(kplp)] cos(n ¢) cos(y 2) (4-34)

(4-35)

k
H, = Bjc:;‘: T (kyy p) sin(n ¢) sin(y2).

For n = 0 the above expressions remain valid except for E;, H,, and H, which
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become
E,y = Bk, Jo(k,) p) sin(y 2) (4-36)
Hy = B0y o) costy 2 @37)
Jopy
X 38
H,, = B—2L Jy(k, p)sin(y2). (4-38)
2 T Fop, 0Tl
The field equations in region 2 for n # 0 are given by Equations (4-39)
through (4-44),
vky2 :
Epp = - [C ij F,(k,20) + D g Gk,, p)] cos(n ¢) sin(y 2) (4-39)

=C

[Cﬁ?_@z % F,(ky3p) + Dk, G;(kpz p)] sin(n ¢) sin(y 2) (4-40)

2

Jjw

‘ Y
{- c% F,(k,20) + D

Jjo

L : F, (k7 p) cos(n ¢) cos(y 2) (4-41)
2

kzz G, (ky2 p)] sin(n ¢) cos(y 2) (4-42)
2

[- Ck,yF,(ky2p) + D Jwan % G,,(k‘,zp)] cos(n ¢) cos(yz) (4-43)
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2
k
Hy = D :: G (k,7 p) sin(n ¢) sin(y 2) . (4-44)
2

For n =0, Equations (4-39) through (4-44) are correct except for E¢, Hp, and
H, which are given by

E¢2 = kaz G(')(kpz p) Siﬂ(‘y Z) (4'45)
H, =D kp2 Go (k2 P) cos@ 2) (4-46)
g Jopy 7F
2
k
H,, = D 22 Gy(k,p) sin(y 2). (4-47)
22 Johy 0\%p2

The coefficients B, C, and D are given in terms of A by

B=A=%" k°_ﬁl EE_’E (4-48)
J weuo | F V,

c = 42517 (449)
a 3.2
2
i k
D=atfotb%1 J Un (4-50)

4.5 The Cavity-Open Type Configuration
4.5.1 Mode-Matching Methods
The cavity-open and cavity-image type configurations require a much more

complicated procedure for calculating the eigenvalues of the system than did the
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special case of the cavity-short type configuration. This is due to the additional
boundary conditions which must be metatz = A — %L, + % ¢, referring to
Figure 4-2 and placing the origin of coordinates at the cavity center half way between
the shorting plates. In order to describe the electromagnetic fields in the cavity, the
fields in each of regions I, II, and III, again referring to Figure 4-2, are represented
as an infinite series modal expansion of the waveguide modes in each region.
Boundary conditions are met by matching appropriate field components at
z=h - %L, + % { using the modal expansion representation of the fields. Hence
the method is called “mode matching.” This method was first applied to microwave
resonators by W. C. Hahn? in 1940 and has since been used by several others to
successfully calculate the characteristic values for lossless resonant cavities.4

There are two methods which may be used to resolve the mode matching
boundary condition equations into one homogeneous matrix equation. Both involve
orthogonalization of the modal field expansions by a single mode from one of the
regions at the boundary where the fields are being matched. The first method uses a
single mode from the homogeneous region, i.e., either region I or region III, to
orthogonalize both of the boundary condition equations. This is the method used by
Kobayashi, Fukuoka and Yohshida, Zaki and Atia, and Vigneron and Guillon for the
lossless load.> The second method uses a mode from the homogeneous region to
orthogonalize one of the boundary condition equations and a mode from the coaxially
loaded waveguide region, region II, to orthogonalize the other equation. This method
was used by Bolle in his work on the conducting load.b

The first method has the advantage of having fewer integrals to solve and

results in simpler expressions for the elements of the characteristic matrix than the

3W. C. Hahn, “A New Method for the Calculation of Cavity Resonators,” J. App. Phs. 12, no. 1
(Jan. 1941), 62-68.

4D. M. Bolle, “Eigenvalues for a Centrally Loaded Circular Cylindrical Cavity,” IRE Trans.
Microwave Thry. Tech. Mtt-10, no. 3 (March 1962), 133-138; Zaki and Atia; Vigneron and Guillon.

sKobayashi, Fukuoka, and Yoshida; Zaki and Atia; Vigneron and Guillon.
SBolle.
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second method. However, the first method has the grave disadvantage of producing a
highly ill-conditioned characteristic matrix. The characteristic matrix of the second
method is much better conditioned than that of the first method and is the preferred
method for numerical computation of the eigenfrequencies. Analytical expressions for
both methods will be given here and numerical comparisons between them will be
made in Chapter 9.

4.5.2 Field Equations for Generalized Axial Dependence

At the conclusion of the derivation of the characteristic equation for the
coaxially loaded waveguide, it was briefly mentioned that the mode coefficients vary
slightly depending upon which set of eigenfunctions are chosen to represent the axial
dependence. Since it is convenient to use various representations for the axial
dependence in constructing solutions for the cavity-open type configuration, a
generalized form for the fields will be given here that allows for simple conversions
between axial representations.

The potentials in regions I and III may be written as

¢m = TI’ m Jn()‘npp) COS("¢) Z};'m ’
(4-51)

' . I IO
y¢ = Py, 0) sin(rg) 2, .

Remembering that the origin of coordinates is located at the cavity center half way
between the shorting plates, and applying the boundary conditions at the shorting
plates, the axial dependences Z,};m and Zg’m may be written in any of the following

irs,
1 1
:l,m - e-szz . esz(z¢L,)
4-52)
] T L
Lm _ ukz er(z s)

N
!

for traveling wave solutions,



] (4-53)

L
Z;’m = cosh I:jkZ [z ¥ —2'-]]
(4-54)
Lm | L,
zZ, = sinh [sz [z:F _2.]]
for hyperbolic solutions. We also introduce the constants Ef,"m and Ei’m, where
Em=—t.=-1 standing waves
Em=8c.=-J traveling waves (4-55)
Em=%c.=J hyperbolic waves.
It may shown that
9z iz
SN 39

where ¢, £,=-1.

The TM fields in regions I and III may then be written in the following form,

I I Lm kA , . LI, LI

E; - = -1V 2L 1,00, 5) cos9) Gk D2, 4-57)
Qe b

LI . LI, 1 I

Egy" = b &el,m%J"O‘"‘I%)sm(nd’) Gtm DZ¢ s (4-58)
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2
I, I I m 1 )‘"P p

Ep™ =1t z,
z Toe b 2 Tn(ng ) cos(9)
I, IO : L I

Hyo = -THI23,0m,3) sine) Z,,

LI _ _Tx,mﬁbg

&
[

]"‘()\nq%) cos(n¢) Z};'III

H = 0.

The TE solutions for n0 may be written as

I’m )\ ’ »
Ey = st ;an()\nqp)sm(mi’)z

E " =0,

gL _o1m kMg Jn()\nqb)sm(nd’)(JE Tz,

P “Imb

LI k ' LI, LI
g - -sl,m_zng,,(x,.qg)cos(w)m, )Zp,

c‘bpl’

X:Z
b _ grm_ 1 "2 T 'p)sm(mb)Z’
j b2

(4-59)

(4-60)

(4-61)

(4-62)

(4-63)

(4-64)

(4-65)

(4-66)

(4-67)

(4-68)
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If n =0, all TE components are zero except for Ey, H,, and Hz, which are given by

LIl _ Lm Mogyin, oy, LI -
Ej " =S % JIehog3) 2o (4-69)

LIO I, kz)‘oq P LI 4

LI _ m 1 >\'2 py LI é-71)
Hz' =S mbzlo\oq £yz; .

In region II the generalized form is established by removing the coefficients A,
B, C, and D from the radial dependence and investing the variations due to changes in
axial dependence in the coefficients of the axial dependences themselves. We write
the potentials in region 1 as

A
™= (k ne)Z ,
2 (kp1p) cos(ne) Z,, .

Ve = I(k,0) sin(ng) 22,

and those in region 2 as

V" = S Falkyo0) cosnd) Z,
4-73)

D . B
A 3 Gp(ky20) sin(ne) Z, .
. . A A B B . .
The general axial dependences for region I, Z, , Z_, Z,,, and Z,, are similar to

those defined for regions I and III. The functions Z; and Z': are used for the TM

formulation, i.e., a formulation which becomes TM for n=0. They are
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Z, =AeJ1: - pel1?

4-74)

X §Ia

Z% = Ae V% &+ pelZ

for traveling waves,

Z = Acos(yz) - Psin(yz2)

A
m (4-75)
A
(4

Z, = Asin(yz) + Pcos(y2)

for standing waves, and

Z = Acosh(jyz) + Psinh(jyz)

A
" (4-76)
A
e

Z, = Asinh(jyz) + Pcosh(jyz)

for hyperbolic waves. For the TE formulation, i.e., the formulation which becomes
TE for n=0, the axial functions are transformed by multiplying the TM formulation

axial functions by % to get Zf, and Zf. We have

y4 =Be-j7z - er‘YZ

@77

cty YW

Z. =Be 12 + Qel1?

for traveling waves,

(4-78)

Zf, = Bcos(yz) - Qsin(y2)
z;

= Bsin(yz) + Qcos(yz2)

for standing waves, and
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Z,, = Beosh(jyz) + Qsinh(jyz)

B
m (4-79)
B
(4

Z, = Bsinh(jyz) + Qcosh(jvyz2)

for hyperbolic waves, where Q = %f .

Using £, and £, defined above for regions I and III in Equation (4-55) we
define the constants B,, C,, D, Ag, and Cp, Which are independent of axial

formulation:
B ko #1 [G U,
By = ER—— = T (4-80)
jE'I'llA Qfl “O F Vn
2
c, -S- e2k,1] (4-81)
k2
py=_P -pfo k2l 1 Ua 4-82)
Ap = 4 _n ke B [F Un (4-83)
JEEB O)“l 60 G n
k2
Cp=—S_ =nto 251 1 U (4-84)
j¢ B Wy € k22 \/FG W,
2
pp=2- kL (4-85)
[l.lksz

The following relationships may be shown to hold between the above defined
constants,



CAAB=CB DAAB=DB'

The TM formulation solutions in region 1 can then be written

vky1 -, S | R
E, = - [ &gll Jpky10) + By %‘Jn(kplp) cos(ne) (j&,,) Z,
, . S | S|
Ey = {gg—gln(kﬂp) + Bk, I, (k1 p) | sin(ne) (j£,,) Z
1
k2 p
= »l
E, = 755 Jp(k,1p)cOS(nd) Z,,
‘Yk 1 . A
Hy=- |21,k 0 + By——2-T.(k,10)]| sin(ng) Z
pl P n\%pl A G fy n\"pl m
Hei = - |k Tk +B, X 5 z4
61 5130 (k1 0) 4 —= nky1p) | cos(ng) Z,,
el W
k? o4
H, = B, w‘;‘ 1,01 p) Sin(n) £, Z5 .
1

The field equations in region 2 are given by

(4-86)

(4-87)

(4-88)

(4-89)

(4-90)

4-91)

(4-92)
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ty
N
[}

k
- [CA Z,g : Faks26) + Dy = Gnlks2 ,,)] cos(ng) (jEm) Z4  493)

Egp = [CA&L,Eszn(kpzp) + DAk,,zG:,(kpzp)] sin(g) GeEm) 2o 499

k2
E;, = .p. (4-95)
Hy = - CA%F ] sin(n¢) an (4-96)
[ A
H¢2 =T CA kszr’l( 2P) + DA a’ﬁz %Gn(kpzp)] cos(n¢) Zm 497
k2
Hy =D, - ﬁ G,(k,20) sm(nq&)f Z (4-98)
2

For n = 0 the constants B, and D, are zero and these expressions become TM with
E¢, H,, and H, all being zero.

The TE formulation is a simple transformation of the TM formulation by
multiplication of the TM formulation fields by Az B, = 1. The TE formulation
fields in region 1 for n#0 are

‘Ykl
Epl'—"‘[A p

1) + %J,,(k,,l p)] cos(ne) zf (4-99)
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E4y = [AB—I—J,;( 10) + kpll,',(k,,lp):| sin(ng) 22 (4-100)
E, =Ap 2":11 Jp(k,1 p) cos(ne) gf zﬁ (4-101)
Hor = - :"Bg’n("pm . .kA Tak w)] sin(n$) (D) Z5, (¢-102)
Hyy = - :Ankpll,’.(kplp) + a’ﬁ —J (s lp)] cos(nd) (jgf) z": (4-103)
H, = k"zl T,(ky1 0) sin(ne) Z2. (4-104)

For n=0 the constant Ap is zero and these expressions become TE with E, E, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>