‘ . ‘ I " * " l ‘ . ‘ ‘ ( I . . 0 " ‘ ; ; _ ' g ' . . ” d o ‘ i ‘ o S " L ? \ J ‘ ‘ O L I . - : ( 5 ‘ ' 5 o - ” ; ' ' . , o ‘ . w ‘ “ ‘ . c ‘ . b d O u w . O - é ‘ . w ' r y t v i l ' é ‘ Q ‘ u { \ i l ‘ fi _ ( fi x 0 - 1 i § $ ’ ‘ M j . » . : t > v m - - 5 ; ; : ? 0 0 _ K - L . - 1 ' ' w ’ fi ' u v e fi o — h ‘ ‘ 0 - g i l l " « o n o . “ I t ? “ I 0 0 " " fl a p “ 0 . ' “ c ' 1 ‘ Y . r L : w m " 7 “ ‘ 5 2 ‘ ? 1 & . . l " ° ‘ . " ‘ - L \ L ’ g t " : ' T . ’ 0 " b “ i t . . . J . ' " . l . _ J ' . a s , . 1 . . 2 ‘ : n o ‘ 1 . “ ‘ y u ( : £ ' 9 g “ d ~ : b . 1 " : 1 : H “ ~ , V - , ' , . f . . ‘ . _ . . , , . > 4 g r . _ . V A , , 1 . A , _ . . ' " e ; x . - L r ~ i ; ~ ' ; ' = ~ ' v g ~ " ~ 5 2 - 2 . ! . ‘ V — . . . 4 . u . _ R _ I . c " - . . - . O . . ' . ' - 4 ‘ 1 K - [ U - m » . . 1 “ . ‘ . . . " ‘ L O . 0 f s ‘ . . ‘ . . . o 9 . ‘ o ‘ . H 7 ‘ " 4 ? P ” ‘ ' ' ( b \ g h . v o ' 0 5 - . w v ‘ { J . 4 . - ~ ' “ ‘ - “ . " I o - - : ! ( ° O I O ~ ' ‘ 1 ’ M i l l i ! l l l ‘ l l l l l fl l l i l l ’ l l l 3 1 2 9 3 0 0 3 5 0 I ' . T h i s i s t o c e r t i f y t h a t t h e d i s s e r t a t i o n e n t i t l e d S y n t h e s i s , S t r u c t u r a l a n d S p e c t r o s c o p i c C h a r a c t e r i z a t i o n o f N e w P o l y c h a l c o g e n i d e C o m p l e x e s o f I n d i u m a n d T h a l l i u m , a n d T h e i r A p p l i c a t i o n a s P r e c u r s o r s t o S o l i d S t a t e M a t e r i a l s p r e s e n t e d b y S a n d e e p S . D h i n g r a h a s b e e n a c c e p t e d t o w a r d s f u l fi l l m e n t o f t h e r e q u i r e m e n t s f o r P h . D . C h e m i s t r y M a j o r p r o f e s s o r d e g r e e i n 6 1 2 5 / 0 7 2 M S U i s a n A f fi r m a t i v e A c t i o n / ' E q u u l O p p o r t u n i t y I n s u ' m n ' o n 0 - 1 2 7 7 1 i V L i B R A R Y M i c h i g a n S t a t e ‘ U n l v e r s l t y P L A C E I N R E T U R N B O X t o r e m o v e t h i s c h e c k o u t f r o m y o u r r e c o r d . T O A V O I D F I N E S r e t u r n o n o r b e f o r e d a t e d u e . D A T E D U E D A T E D U E D A T E D U E M S U l e A n A f fl n n e t i v e A c t i o n / E q u a l O p p o n u n l t y I n s t i t u t i o n e a n G — n t S Y N T H E S I S , S T R U C T U R A L A N D S P E C T R O S C O P I C C H A R A C T E R I Z A T I O N O F N E W P O L Y C H A L C O G E N I D E C O M P L E X E S O F I N D I U M A N D T H A L L I U M , A N D T H E I R A P P L I C A T I O N A S P R E C U R S O R S T O S O L I D S T A T E M A T E R I A L S . V o l u m e I B y S a n d e e p S . D h i n g r a A D I S S E R T A T I O N S u b m i t t e d t o M i c h i g a n S t a t e U n i v e r s i t y i n p a r t i a l f u l f i l l m e n t o f t h e r e q u i r e m e n t s f o r t h e d e g r e e o f D O C T O R O F P H I L O S O P H Y D e p a r t m e n t o f C h e m i s t r y 1 9 9 2 S Y . ‘ C H A I C O M P ! A P P L I C A T I T h e c P 0 1 ) ‘ s u l fi d e g O w i n g t o h l ’ d r o d e s u l f t C h e m l s u y 0 r e c e i v e d S c a a n a l o g o u s C h d i f f e r e n t m 0 . i d e n t i c a l C O ” C o m p a l m a m g r O U P / 1 7 7 ( " J / C A B S T R A C T S Y N T H E S I S , S T R U C T U R A L A N D S P E C T R O S C O P I C C H A R A C T E R I Z A T I O N O F N E W P O L Y C H A L C O G E N I D E C O M P L E X E S O F I N D I U M A N D T H A L L I U M , A N D T H E I R A P P L I C A T I O N A S P R E C U R S O R S T O S O L I D S T A T E M A T E R I A L S . B y S a n d e e p S . D h i n g r a T h e c h e m i s t r y o f s o l u b l e t r a n s i t i o n m e t a l s u l f i d e s a n d p o l y s u l f i d e s h a s r e c e i v e d i m m e n s e a t t e n t i o n i n t h e l a s t t w o d e c a d e s o w i n g t o i n t e r e s t i n b i o i n o r g a n i c c h e m i s t r y a n d t o h y d r o d e s u l f u r i z a t i o n p r o c e s s e s . H o w e v e r , u n t i l r e c e n t l y t h e c h e m i s t r y o f s o l u b l e m e t a l p o l y s e l e n i d e s a n d p o l y t e l l u r i d e s h a d r e c e i v e d s c a n t a t t e n t i o n d u e t o t h e n o t i o n t h a t t h e s e w o u l d e x h i b i t a n a l o g o u s c h e m i s t r y t o t h a t o f p o l y s u l f i d e s . I n f a c t , i n m o s t c a s e s a d i f f e r e n t m o l e c u l a r s t r u c t u r e o r s t o i c h i o m e t r y i s a d o p t e d e v e n u n d e r i d e n t i c a l c o n d i t i o n s . C o m p a r e d t o t r a n s i t i o n - m e t a l p o l y c h a l c o g e n i d e c h e m i s t r y , t h e m a i n g r o u p c h e m i s t r y w a s v i r t u a l l y u n e x p l o r e d . T h e b i n a r y a n d ( ” 1 4 ? ) m e t e r n a r y C h i l l C u l n S e z ) a p r o m i s i n g c o m p o u n d s : t e n d t o i n c o h e n c e . m o l e o u r w o r k i t c o m p o u n d s s y n t h e s i z e d . F r o m c h e m i s t r y r u n d e r t o o k a i s o l a t e a n P O I y C h a l c o g r [ h e S t r u c t u r l P W V M I n g l l P h 3 P ) 2 N ] 2 a n d ( E 1 4 3 3 5 i n t h e p o l ( P h 4 p ) 4 l l n ( P M ) ) 2 l T 1 3 ( H [ P h i p l z l l K O - o t T l e f S a n d e e p S . D h i n g r a t e r n a r y c h a l c o g e n i d e s o f g r o u p I I I - A m e t a l s ( c g . I n S e , I n 2 8 e 3 , C u I n S e z ) a r e t e c h n o l o g i c a l l y i m p o r t a n t d u e t o t h e i r v e r y p r o m i s i n g p r o m i s i n g e l e c t r o n i c a n d o p t o e l e c t r o n i c p r o p e r t i e s . T h e s e c o m p o u n d s a r e u s u a l l y p r e p a r e d a t h i g h t e m p e r a t u r e > 1 0 0 0 ° C w h i c h t e n d t o i n c o r p o r a t e a h i g h d e g r e e o f d e f e c t s , l o w e r i n g d e v i c e q u a l i t y ; h e n c e , m o l e c u l a r p r e c u r s o r m e t h o d s a r e h i g h l y d e s i r a b l e . P r i o r t o o u r w o r k i n g r o u p I I I - A m e t a l s , a n u m b e r o f m o n o c h a l c o g e n i d e s c o m p o u n d s w e r e k n o w n b u t n o p o l y c h a l c o g e n i d e h a d b e e n s y n t h e s i z e d . F r o m t h i s p e r s p e c t i v e a n d a l s o t o s t u d y t h e c o o r d i n a t i o n c h e m i s t r y o f t h e s e m e t a l s w i t h p o l y c h a l c o g e n i d e l i g a n d s , w e u n d e r t o o k a s y s t e m a t i c i n v e s t i g a t i o n o f t h i s s y s t e m a n d w e r e a b l e t o i s o l a t e a n u m b e r o f s t r u c t u r a l l y i n t e r e s t i n g i n d i u m a n d t h a l l i u m p o l y c h a l c o g e n i d e s c o m p l e x e s . T h e p o l y s e l e n i d e c o m p l e x e s e x h i b i t t h e s t r u c t u r a l d i v e r s i t y i n t h i s s y s t e m ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] , ( P r 4 N ) 4 [ I n 2 ( S C 4 ) 4 ( S e s ) L ( E M N ) 4 [ I n 2 ( S C 4 ) 4 ( S e s ) ] . ( P r 4 N ) 2 [ I n 2 8 6 2 ( S e 4 ) 2 ] . [ ( P h s P ) 2 N l 2 [ I n 2 $ c z ( S e 4 ) 2 ] . ( E t 4 N ) 3 [ I n 3 S e a ( S C 4 ) 3 ] . ( E t 4 N ) 3 [ T 1 3 8 6 3 ( S C 4 ) 3 ] a n d ( E t 4 N ) 5 [ N a I n 5 8 e 5 ( S e 4 ) 6 ] . S i m i l a r s t r u c t u r a l d i v e r s i t y i s a l s o s e e n i n t h e p o l y s u l f i d e c o m p l e x e s : ( P h 4 P ) 2 [ I n ( S 4 ) ( 8 6 ) X ] ( X = B r , C l ) , ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( S 6 ) 2 ( S 7 ) ] . ( P h 4 P ) 2 [ I n 2 3 ( S s ) ( S 4 ) 1 . 5 ( 8 6 ) o . 5 ] ; a - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . B - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 l - 2 D M F . B ' - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F . Y - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] - D M F . ( E t 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] . ( M e 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] a n d K o . 5 3 T 1 1 , 3 2 8 5 . T h e c o m p o u n d s ( P h 4 P ) [ G a ( S e 6 ) 2 ] , ( P h 4 P ) [ I n ( S e 5 ) 2 ] a n d ( P h 4 P ) [ T l ( S e 5 ) 2 ] , e x h i b i t a n u n u s u a l a n d o p e n l a y e r e d f r a m e w o r k . T h e p h y s i c o c h e m a r e i l l u s t r a t p r e c u r s o r s f w h i c h a r e 0 1 s t a t e m a t e r i : r e a g e n t s t o p o l y c h a l c o g e r m i c r o s c o p i c f i l m s a n d P r o p e r t i e s a r S a n d e e p S . D h i n g r a T h e s y n t h e t i c s t r a t e g i e s , X - r a y c r y s t a l s t r u c t u r e s a n d p h y s i c o c h e m i c a l p r o p e r t i e s o f t h e s e n e w p o l y c h a l c o g e n i d e c o m p l e x e s a r e i l l u s t r a t e d . T h e s e c o m p l e x e s a r e e x c e l l e n t l o w t e m p e r a t u r e p r e c u r s o r s f o r f i l m s o f b i n a r y a n d t e r n a r y s o l i d s t a t e c o m p o u n d s w h i c h a r e o b t a i n e d a s s i n g l e p h a s e s . N a n o - c r y s t a l l i t e s o f t h e s e s o l i d s t a t e m a t e r i a l s h a v e b e e n a c h i e v e d b y u s i n g c h a l c o g e n - a b s t r a c t i n g r e a g e n t s t o d e p l e t e t h e e x c e s s c h a l c o g e n i d e s f r o m t h e m e t a l - p o l y c h a l c o g e n i d e s . T h e s y n t h e s i s , X - r a y , s p e c t r o s c o p i c a n d e l e c t r o n m i c r o s c o p i c c h a r a c t e r i z a t i o n o f t h e s e m o l e c u l a r p r e c u r s o r d e r i v e d f i l m s a n d n a n o - c r y s t a l l i t e s a s w e l l a s s o m e c h a r g e t r a n s p o r t p r o p e r t i e s a r e r e p o r t e d . T O M Y P A R E N T S , A N D B R O T H E R , R A J A N P r o f e s s o r T . K m E a c n a n s l e c t e w u r f u r r o n e m e n t M i s c R a j a n f 0 r t h e r ‘ N o n e b e e n s u c c e s s g u i d a n c e a n d K a n a t z i d i s . c o m m i t t e e : I w o u l d C o m m e n t s O n . 1 w o u l d s p e c i a l f r i e n d . t h a n k a l l t h e a n d K i n g - W 0 C M o m i n A C K N O W L E D G E M E N T N o n e o f t h e w o r k d e s c r i b e d i n t h i s d i s s e r t a t i o n w o u l d h a v e b e e n s u c c e s s f u l w i t h o u t t h e d e d i c a t i o n , s c i e n t i f i c i n g e n u i t y , p a t i e n t g u i d a n c e a n d s u p p o r t o f m y r e s e a r c h a d v i s o r , P r o f e s s o r M e r c o u r i G . K a n a t z i d i s . I w o u l d a l s o l i k e t o t h a n k t h e o t h e r m e m b e r s o f m y c o m m i t t e e : P r o f e s s o r J . L . D y e , P r o f e s s o r J . S t i l l e a n d e s p e c i a l l y P r o f e s s o r T . J . P i n n a v a i a f o r h i s h e l p f u l c o m m e n t s a s a s e c o n d r e a d e r . I w o u l d l i k e t o e x p r e s s m y g r e a t a p p r e c i a t i o n t o P r o f e s s o r C . R . K a n n e w u r f a n d h i s s t u d e n t s f o r t h e c h a r g e t r a n s p o r t p r o p e r t y m e a s u r e m e n t s , P r o f e s s o r K . K l o m p a r e n s f o r h e l p f u l d i s c u s s i o n s o n E l e c t r o n M i c r o s c o p y e x p e r i m e n t , a n d D r . D o n W a r d f o r h e l p f u l c o m m e n t s o n X - r a y s i n g l e c r y s t a l d i f f r a c t i o n s t u d y . ‘ I w o u l d l i k e t o e x t e n d m y d e e p e s t g r a t i t u d e a n d t h a n k s t o a s p e c i a l f r i e n d , C h u n - G u e y W u f o r a l l t h e h e l p a n d a d v i s e , a n d m a k i n g t h e g r a d u a t e s c h o o l a w o n d e r f u l e x p e r i e n c e . I w o u l d a l s o l i k e t o t h a n k a l l t h e K a n a t z i d i s g r o u p m e m b e r s , e s p e c i a l l y T i m M c C a r t h y a n d K a n g - W o o K i m ( t w o s i m p l y g r e a t g u y s ) . M o s t i m p o r t a n t l y I a m g r a t e f u l t o m y p a r e n t s , a n d b r o t h e r , R a j a n f o r t h e i r l o v e a n d e n c o u r a g e m e n t i n e v e r y e n d e a v o r I c h o s e . v i F i n a n c ( 1 9 9 0 ) . 1 3 0 ‘ C e n t e r f o r I C h e m i s t r y a t F i n a n c i a l s u p p o r t g i v e n b y A l u m i n a S u m m e r F e l l o w s h i p ( 1 9 9 0 ) , D o w F e l l o w s h i p ( 1 9 9 1 - 9 2 ) , N a t i o n a l S c i e n c e F o u n d a t i o n , C e n t e r f o r F u n d a m e n t a l M a t e r i a l s R e s e a r c h , a n d t h e D e p a r t m e n t o f C h e m i s t r y a t M i c h i g a n S t a t e U n i v e r s i t y a r e g r a t e f u l l y a c k n o w l e d g e d . v i i C C H I A L W P i s I T t E o R f 1 . R e f e E R 2 . A b s t r a c t . ..... I n t r O d u c t i o r E x l ’ e f i m e n t R P S e h y a y m g s h e i e n u s ' U S T O F T A B l U S T O F F l G L ' l T A B L E O F C O N T E N T S P a g e L I S T O F T A B L F S - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ x v i i L I S T O F F I G U R E S . . . . . . . . . . . . . . . . . . . - _ _ _ _ _ _ _ _ _ - . . . . . . . . . . x x v C H A P T E R 1 . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 L i s t o f R e f e r e n c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 C H A P T E R 2 . I n d i u m a n d T h a l l i u m C h e m i s t r y w i t h P o l y s e l e n i d e l i g a n d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 A b s t r a c t _ _ _ _ _ 3 1 I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 R e a g e n t s - - - - - - - - - - - - . 3 5 P h y s i c o c h e m i c a l M e t h o d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 , S y n t h e s e s - . . . . . . . . . . . . 3 9 S o d i u m p e n t a s e l e n i d e , N a z s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 T e t r a ( t e t r a p h e n y l p h o s p h o n i u m ) - t e t r a t e t r a s e l e n i d o - u - ( p e n t a s e l e n i d o ) - d i i n d a t e ( I I I ) , ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 T e t r a ( t e t r a p r o p y l a m m o n i u r n ) - t e t r a t e t r a s e l e n i d o - u - ( p e n t a s e l e n i d o ) - d i i n d a t e ( I I I ) , ( P r 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 O v i i i P a g e T e t r a ( t e t r a e t h y l a m m o n i u m ) - t e t r a t e t r a s e l e n i d o - u ~ ( p e n t a s e l e n i d o ) - d i i n d a t e ( I I I ) , ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e s ) ] ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 B i s ( t e t r a p r o p y l a m m o n i u m ) - b i s ( u 2 - s e l e n i d o ) - b i s t e t r a s e l e n i d o - d i i n d a t e ( I I I ) , ( P r 4 N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] ( I V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 B i s ( t r i p h e n y l p h o s p h o n i u m i m i d e ) - b i s ( u 2 - s e l e n i d o ) - b i s t e t r a s e l e n i d o - d i i n d a t e ( I I I ) , [ ( P h 3 P ) 2 N ] 2 [ I n 2 8 e 2 ( S C 4 ) 2 ] ( V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 T r i ( t e t r a e t h y l a m m o n i u m ) - t r i ( u 2 - s e l e n i d o ) - t r i t e t r a s e l e n i d o - t r i i n d a t e ( I I I ) , ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] ( V I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 T r i ( t e t r a e t h y l a m m o n i u m ) - t r i ( u 2 - s e l e n i d o ) — t r i t e t r a s e l e n i d o - t r i t h a l a t e ( I I I ) , ( E t 4 N ) 3 [ ' I ' l g S e 3 ( S e 4 ) 3 ] ( V I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 X - r a y C r y s t a l l o g r a p h i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 S y n t h e s e s - - - - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ‘ 7 7 . U V / V i s S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 C y c l i c V o l t a m m e t r i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 7 7 8 e N M R S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 F a r - I R S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 D e s c r i p t i o n o f t h e S t r u c t u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 S t r u c t u r e o f ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 S t r u c t u r e o f ( h 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 1 S t r u c t u r e o f ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 4 i x S t S t S t S t C o m p T h e r r C o n c l u s i o L i s t o f R e A p p e n d i x A b s t r a c t . . . S y n t h e s e s . X - r a y C r y R e s u l t s a n S t r u c r P a g e S t r u c t u r e o f ( P r a . N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] ( I V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 6 S t r u c t u r e o f [ ( P h 3 P ) 2 N ] 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] ( V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 6 S t r u c t u r e o f ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] ( V I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 S t r u c t u r e o f ( E t 4 N ) 3 [ T l 3 c h ( S e 4 ) 3 ] ( V I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 7 C o m p a r i s o n o f S t r u c t u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 7 T h e r m a l D e c o m p o s i t i o n S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 9 C o n c l u s i o n s _ _ _ _ _ - - _ _ . . . . . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 4 L i s t o f R e f e r e n c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 5 A p p e n d i x t o C h a p t e r T w o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 0 A b s t r a c t . - - - - _ _ _ . . . . . - _ - - . . . l 3 0 S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 1 X - r a y C r y s t a l l o g r a p h i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 1 R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 5 S t r u c t u r e D e s c r i p t i o n o f ( E t 4 N ) 5 [ N a l n 5 8 e 5 ( S e 4 ) ( , ] ( V I I I ) . . . . . . . . . . 1 3 8 C H A P T E R 3 . S y n t h e s e s a n d C h a r a c t e r i z a t i o n o f N e w I n d i u m - P o l y s u l f i d e C o m p l e x e s : [ I n ( S 4 ) ( 8 6 ) B r ] 2 ' , [ I n ( S 4 ) ( S e ) C 1 ] 2 ’ . [ I n 2 ( S 4 ) 2 ( 3 6 ) 2 ( S 7 ) ] 4 ‘ [ I n z S ( S s ) ( S 4 ) 2 ] 2 ' a n d [ I n z S ( S s ) ( S 4 ) ( S 6 ) ] 2 ' . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 A b s t r a c t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 2 I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 4 E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 5 R e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 5 P h y s i c o c h e m i c a l M e t h o d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 6 P a g e S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - _ - - . . . 1 4 7 P o t a s s i u m p e n t a s u l f i d e , K 2 8 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 7 B i s ( t e t r a p h e n y l p h o s p h o n i u m ) - t e t r a s u l f i d o - h e x a s u l f i d o - i n d a t e ( I I I ) b r o m i d e , ( P h 4 P ) 2 [ I n ( S 4 ) ( 8 6 ) B r ] ( I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 8 B i s ( t e t r a p h e n y l p h o s p h o n i u m ) - t e t r a s u l f i d o - h e x a s u l f i d o - i n d a t e ( I I I ) c h l o r i d e , ( P h 4 P ) 2 [ I n ( S 4 ) ( S 5 ) C l ] ( I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 8 T e t r a ( t e t r a p h e n y l p h o s p h o n i u m ) - b i s ( t e t r a s u l f i d o ) - b i s ( h e x a s u l f i d o ) - ( u — h e p t a s u 1 f i d o ) - d i i n d a t e ( I I I ) , ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( 8 5 ) 2 ( S 7 ) ] ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 9 B i s ( t e t r a p h e n y l p h o s p h o n i u m ) - { b i s ( t e t r a s u l f i d o ) - ( u - s u l f i d o ) - ( u — p e n t a s u l f i d o ) - d i i n d a t e ( I I I ) l a n d { - t e t r a s u l f i d o - h e x a s u l f i d o - ( u - s u l f i d o ) - ( u - p e n t a s u l f i d o ) - d i i n d a t e ( l I I ) } , ( P h 4 P ) 2 [ { I n 2 8 ( S s ) ( S 4 ) 2 l 0 . 5 { I n 2 8 ( S s ) ( S 4 ) ( S s ) } o . s ] ( I V ) - - - - - - - - - - - - 1 5 0 X - r a y C r y s t a l l o g r a p h i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 1 R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 9 S y n t h e s e s . a n d S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 9 T h e r m a l G r a v i m e t r i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 3 D e s c r i p t i o n o f t h e S t r u c t u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 5 S t r u c t u r e o f ( P h 4 P ) 2 [ I n ( S 4 ) ( S s ) B r ] ( I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 5 S t r u c t u r e o f ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( S 5 ) 2 ( S 7 ) ] ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 0 S t r u c t u r e o f ( P h 4 P ) 2 [ { I n 2 8 ( S s ) ( S 4 ) 2 } o . 5 { I n 2 8 ( S s ) ( S 4 ) ( S s ) l o . s l ( 1 V ) - - - - - - - - - - - - - - - 1 8 6 C o m p a r i s o n o f t h e S t r u c t u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 3 x i C o n c l u s i L i s t o f R C H A P T E R 4 A b s t r a c t I n t r o d u c t E x p e r i m e - R c a g P h y s S y n t l P a g e C o n c l u s i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 5 L i s t o f R e f e r e n c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 6 C H A P T E R 4 . S y n t h e s e s a n d C h a r a c t e r i z a t i o n o f N e w T h a l l i u m - P o l y s u l f r d e C o m p l e x e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 0 A b s t r a c t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 1 I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 3 E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 4 R e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 4 P h y s i c o c h e m i c a l S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 5 S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 6 a - b i s ( t e t r a p h e n y l p h o s p h o n i u m ) - b i s ( t t - t e t r a s u l f i d o ) - d i t h a l a t e fl ) , c t - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] ( I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 6 B - b i s ( t e t r a p h e n y l p h o s p h o n i u m ) - b i s ( u - t e t r a s u l f i d o ) - d i t h a l a t e ( I ) b i s ( d i m e t h y l f o r m a m i d e ) , ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F ( I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 7 B ' - b i s ( t e t r a p h e n y l p h o s p h o n i u m ) - b i s ( u - t e t r a s u l f i d o ) - d i t h a l a t e ( l ) b i s ( d i m e t h y l f o r m a m i d e ) , ( P h 4 P ) 2 [ 1 1 2 ( 8 4 ) 2 ] . 2 D M F ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 7 y — b i s ( t e t r a p h e n y 1 p h o s p h o n i u m ) - b i s ( u - t e t r a s u l f i d o ) - d i t h a l a t e ( l ) d i m e t h y l f o r m a m i d e , ( P h 4 P ) 2 [ 1 1 2 ( 8 4 ) 2 ] . D M F ( I V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 8 B i s ( t e t r a e t h y l a m m o n i u m ) - b i s ( t e t r a s u l f i d o ) - d i t h a l a t e ( I ) , ( E t 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] ( V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 8 x i i C H A P T E R 5 . l c I X - r a R e s u l t s 2 S y n t D e s c S S t S t S t S t S t S u C o m p C o n c l u s i O r L I S I 0 f R e f P a g e B i s ( t e t r a m e t h y l a m m o n i u m ) - b i s ( t e t r a s u l f i d o ) - d i t h a l a t e ( I ) , ( M e 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] ( V I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 9 P o t a s s i u m t h a l l i u m p e n t a s u l f i d e , K o , 5 3 T 1 1 , 3 2 8 5 ( V I I ) . . . . . . . . . 2 0 9 X - r a y C r y s t a l l o g r a p h i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 0 R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 8 S y n t h e s e s . a n d S p e c t r o s c o p i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 8 D e s c r i p t i o n o f t h e S t r u c t u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 6 S t r u c t u r e o f a - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] ( I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 6 S t r u c t u r e o f B - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F ( I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 0 S t r u c t u r e o f B ' - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 0 S t r u c t u r e o f y — ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . D M F ( I V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 3 S t r u c t u r e o f ( E t 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] ( V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 3 S t r u c t u r e o f ( M e q N ) 2 [ T 1 2 ( S 4 ) 2 ] ( V I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 7 S t r u c t u r e o f K o , 5 3 T 1 1 , 3 2 8 5 ( V I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 7 C o m p a r i s o n o f t h e S t r u c t u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 1 C o n c l u s i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 3 L i s t o f R e f e r e n c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 4 C H A P T E R 5 . T o w a r d s M i c r o p o r o u s C h a l c o g e n i d e s : O p e n F r a m e w o r k S t r u c t u r e s B a s e d o n S e x z ' F r a g m e n t s . S y n t h e s e s o f ( P h 4 P ) [ M ( S e 6 ) 2 ] ( M = G a , I n , T 1 ) i n M o l t e n ( P h 4 P ) 2 8 e x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 7 A b s t r a c t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 8 I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 9 x i i i E x p e r i m c n R e a g e r P h y s i c S y n t h e B i ( P t T e g a l T e i n c T e t h e X ~ r a y R e s u l t s a n . S y n t h e F a y " ; D e a n ' S t r T h e m D i f f e r C o n c l u s i O E L i s t o f R e f . P a g e E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 0 l u n g G M S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 0 P h y s i c o c h e m i c a l S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 1 S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 2 B i s ( t e t r a p h e n y l p h o s p h o n i u m ) - p e n t a s e l e n i d e , ( P h d fi fl k z . . . . . . . . . . . . . . . . . . . . . . n “ - - - - n n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 3 T e t r a p h e n y l p h o s p h o n i u m - b i s ( h e x a s e l e n i d e ) - g a l l a t e ( I I I ) ( P h 4 P ) [ G a ( S e 6 ) 2 ] ( I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 3 T e t r a p h e n y l p h o s p h o n i u m - b i s ( h e x a s e l e n i d e ) - i n d a t e ( I I I ) ( P h 4 P ) [ I n ( S e 5 ) 2 ] ( I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 3 T e t r a p h e n y l p h o s p h o n i u m - b i s ( h e x a s e l e n i d e ) - t h a l l a t e ( I I I ) ( P h 4 P ) [ T 1 ( S e 6 ) 2 ] ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 4 X - r a y C r y s t a l l o g r a p h i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 5 R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 5 S y n d m a m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 5 F a r - I R S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 6 D e s c r i p t i o n o f t h e S t r u c t u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 9 S t r u c t u r e o f ( P h 4 P ) [ M ( S e 5 ) 2 ] ( M = G a , I n , T l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 9 T h e r m a l G r a v i m e t r i c A n a l y s i s a n d D i f f e r e n t i a l S c a n n i n g C a l o r i m e t r i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 5 ( a n h m h n m . u n _ - n . . , _ r “ 3 0 1 L i s t o f R e f e r e n c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 2 x i v C H A P T E R C l ‘ " - ! J . l L i i A b s t r a c t . l n t r o d u c t R e a g P h y m S y n t t 3 3 7 : 9 : I ? R e s u l t s a n F a b r i c I : a b r i c . F a b fi c F a b r i c F a b r i c C m m h m k u L I S I o f R C : P a g e C H A P T E R 6 . T h e U s e o f S o l u b l e M e t a l - P o l y s e l e n i d e C o m p l e x e s a s P r e c u r s o r s t o B i n a r y a n d T e r n a r y S o l i d M e t a l S e l e n i d e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 5 A b s t r a c t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 6 I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 7 E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 8 R e a g e n t s - _ . . . . . - - - . . . . . . . . . . . . . . . . . . . . 3 0 8 P h y s i c o c h e m i c a l S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 8 S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 0 P r e p a r a t i o n o f B - I n 2 8 e 3 fi l m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 0 P r e p a r a t i o n o f T I S e fi l m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 1 P r e p a r a t i o n o f C d S e fi l m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 1 P r e p a r a t i o n o f C u 2 - x S e f i l m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 1 P r e p a r a t i o n o f C u I n S e z f i l m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 1 R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 2 F a b r i c a t i o n o f C d S e F i l m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 6 F a b r i c a t i o n o f C u 2 - x S e F i l m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 9 , F a b r i c a t i o n o f B — I n z s e g F i l m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 9 F a b r i c a t i o n o f T l S e F i l m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 4 F a b r i c a t i o n o f C u I n S e 2 F i l m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 7 C o n c l u s i o n s - . . . . . . . . - . . . . . 3 3 5 L i s t o f R e f e r e n c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 6 X V C H A P T E R 7 . A b s t r a c t . . . l n t r o d u c t i E x p e r i m e R e a g e P h y s i S y n t h P r P r P r P r P p P r . P r : R C S U I t s a n . ' F o fi n a F C " m a F O F m a c o n c l u s i o n L i s t o f R e f . P a g e C H A P T E R 7 . P o l y c h a l c o g e n i d e C o m p l e x e s a s L o w T e m p e r a t u r e P r e c u r s o r s f o r Q u a n t u m S i z e a n d B u l k B i n a r y a n d T e r n a r y S e m i c o n d u c t o r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 8 A b s t r a c t - - - - - - - - - - - . . . . . . . . . . . . . . . . . . . . . . . 3 3 9 I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 0 E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 1 R e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 1 P h y s i c o c h e m i c a l S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 2 S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 5 P r e p a r a t i o n o f C u S e u s i n g K C N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 5 P r e p a r a t i o n o f C u S e u s i n g ( n - B u ) 3 P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 5 P r e p a r a t i o n o f I n x S e y u s i n g K C N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 6 P r e p a r a t i o n o f I n , ‘ S e y u s i n g ( n - B u ) 3 P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 6 P r e p a r a t i o n o f C u I n S e 2 u s i n g K C N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 7 P r e p a r a t i o n o f C u I n S e 2 u s i n g ( n - B u ) 3 P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 7 P r e p a r a t i o n o f C u I n S e 2 u s i n g ( E t 4 N ) C N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 8 R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 9 . F o r m a t i o n o f C u S e C r y s t a l l i t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 2 F o r m a t i o n o f I n x S e y P a r t i c l e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 4 F o r m a t i o n o f C u I n S e z C r y s t a l l i t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 5 C o n c l u s i o n s - - - - - - - - - - - - . - - - - - - - - - 3 6 6 L i s t o f R e f e r e n c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 7 x v i 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 L I S T O F T A B L E S x v i i P a g e C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( P r 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( H 4 N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( P P N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( E t 4 N ) 3 [ I n 3 8 e 3 ( S e 4 ) 3 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n . P a t t e r n o f ( E t 4 N ) 3 [ T 1 3 S e 3 ( S e 4 ) 3 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e s ) ] ( I ) . ( P r 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e s ) l ( I I ) a n d ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r ( P r 4 N ) 2 [ I n 2 3 6 2 ( S e 4 ) 2 l ( 1 V ) a n d [ ( P h 3 P ) 2 N ] 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] ( V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 2 . 1 3 F r a c t i o 2 ‘ 1 5 ~ F r a c t i o F f F r a o r r e C ( q t i o ; E U - t e a r 1 8 2 . 1 0 S u m n ( E u N ( E u N j 2 . 1 1 F I B C I I ! f o r ( P S t a n d a 2 . l 2 F r a c t i c f o r ( P r S t a n d a r f o r ( B . S t a n d a r 2 - 1 4 F r a c t i o r f o r ( P u * S t a n d a n 2 ' 1 5 F r a c t i o f o r ( P p S t a n d s : f o r ( E S t a n d a ; 7 ~ O 2 . 1 7 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s P a g e 2 . 1 0 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r ( E t 4 N ) 3 [ 1 n 3 8 6 3 ( S e 4 ) 3 ] ( V I ) a n d ( E t 4 N ' ) 3 [ ' I ‘ l 3 S e 3 ( S e 4 ) 3 ] ( V I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 2 . 1 1 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 2 . 1 2 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P u N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 2 . 1 3 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 2 . 1 4 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P r 4 N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 0 2 . 1 5 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P P N ) 2 [ I n 2 S e 2 ( S e 4 ) 2 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ‘ 7 1 2 . 1 6 . F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 f o r ( E t 4 N ) 3 [ T l 3 S e 3 ( S e 4 ) 3 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 2 . 1 8 F r e q u e n c i e s ( c m ' l ) o f t h e S p e c t r a l A b s o r p t i o n s o f ( I ) , ( I I ) , ( I I I ) , ( I V ) , ( V I ) a n d ( V I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 x v i i i “ A E ) ‘ m 2 . 1 0 S u m m ( E t 4 N ( E m 2 . 1 1 F r a c t i c f o r ( P 1 S t a n d a ' 2 . 1 2 F r a c t i o f o r ( P r S t a n d a r 2 . 1 3 F r a c t i o f o r ( E t . S t a n d a r 2 - 1 4 F r a c t i o i f o r ( P r 4 S t a n d a n 7 " 1 5 F r a c t i o n P a g e 2 . 1 0 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r ( E t 4 N ) 3 [ I n 3 8 6 3 ( S e 4 ) 3 ] ( V I ) a n d ( E t 4 N ) 3 [ T l 3 S e 3 ( S e 4 ) 3 ] ( V I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 2 . 1 1 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 2 . 1 2 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P I 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 2 . 1 3 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 2 . 1 4 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P u N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 0 2 . 1 5 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P P N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1 2 . 1 6 . F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 2 . 1 7 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( E t 4 N ) 3 [ T l 3 S e 3 ( S e 4 ) 3 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 2 . 1 8 F r e q u e n c i e s ( c m ' l ) o f t h e S p e c t r a l A b s o r p t i o n s o f ( I ) , ( I I ) , ( I I I ) , ( I V ) , ( V I ) a n d ( V I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 x v i i i 2 . 1 9 C o : a n d A n i 2 . 2 0 2 . 2 1 2 . 2 2 2 . 2 3 2 . 2 4 2 . 2 5 3 . 1 3 . 2 C o m p a r i s o n o f S o m e S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f t h e [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' A n i o n i n ( I ) , ( I I ) a n d ( 1 1 1 ) . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C o m p a r i s o n o f S o m e S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f t h e [ I n 2 8 e 2 ( S e 4 ) 2 ] 2 ' a n i o n i n ( I V ) a n d ( V ) . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C o m p a r i s o n o f S o m e S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f t h e [ M 3 S e 3 ( S e 4 ) 3 ] 3 ' A n i o n i n ( V I ) a n d ( V I I ) . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( E t 4 N ) 5 [ N a I n 5 8 e 5 ( S e 4 ) 5 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r ( V I I I ) . . . . . . . . . . . . . . . . . . . . . . . F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( E t 4 N ) 5 [ N a I n 5 S e 5 ( S e 4 ) 5 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) i n t h e [ N a I n 5 8 e 5 ( S e 4 ) 5 ] 5 ' A n i o n . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( P h 4 P ) 2 [ I n ( S 4 ) ( S a ) B r ] ( I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( 8 5 ) 2 ( S 7 ) ] ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x i x P a g e . . . . . . . . . . . . 9 8 . . . . . . . . . . 1 1 0 . . . . . . . . . . 1 1 4 . . . . . . . . . . 1 3 2 . . . . . . . . . 1 3 6 . . . . . . . . . . 1 3 7 . . . . . . . . . . 1 4 0 . . . . . . . . . 1 5 2 . . . . . . . . . 1 5 4 3.12 3 . 3 3 4 3 . 5 3 6 3 . 7 3 . 8 3 . 9 3 . 1 0 3 . 1 1 C a l c P a t t e S u m ( P h a a n d ( F r a c t f o r ( 1 S t a n d F r a c t i f o r ( F E s t i m : F r a c t i c ( P h 4 P j T h e i r F r e q u e A b s o r p S e l e c t e i n t h e . a r e S i V e S e l e c r A n i o n , S c l e c t e r A m i 0 n . S e l e n a A m ' O n . 3 . 3 3 . 4 3 . 5 3 . 6 3 . 7 3 . 8 3 . 9 3 . 1 0 3 . 1 1 3 . 1 2 P a g e C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( P h 4 P ) 2 [ [ I n 2 8 ( S s ) ( S 4 ) 2 } o . s [ I n 2 8 ( S s ) ( S 4 ) ( S e ) } o . 5 ] . . . . . . . . . 1 5 6 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r ( P h 4 P ) 2 [ l n ( S 4 ) ( 8 6 ) B r l ( I ) . ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( 8 6 ) 2 ( S 7 ) ] ( 1 1 1 ) a n d ( P h 4 P ) 2 [ { I n 2 8 ( S s ) ( S 4 ) 2 1 0 . 5 1 1 n 2 8 ( 8 5 ) ( S 4 ) ( S e ) 1 0 . 5 ] ( I V ) - - - - - - - - - - - - - 1 6 0 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ I n ( S 4 ) ( S 5 ) B r ] ( I ) w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 1 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( S e ) 2 ( 5 7 ) ] ( I I I ) w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 3 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ { I n 2 8 ( 8 5 ) ( 8 4 ) 2 } o . 5 { I n 2 8 ( S s ) ( S 4 ) ( S d ) l o . s l ( I V ) w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . 1 6 6 F r e q u e n c i e s ( c m ' l ) o f t h e I n f r a r e d S p e c t r a l A b s o r p t i o n s o f ( I ) , ( I I ) , ( I I I ) a n d ( I V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 1 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) i n t h e [ I n ( S 4 ) ( S ( 5 ) B r ] 2 ' A n i o n . S t a n d a r d D e v i a t i o n s . a r e g i v e n i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 9 S e l e c t e d B o n d D i s t a n c e s ( A ) i n t h e r r n 2 ( s 7 ) ( s 4 ) 2 ( s s ) 2 ] 4 - A n i o n . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . . . . . . . . . . . . . . 1 8 4 S e l e c t e d B o n d A n g l e s ( d e g ) i n t h e [ I n 2 ( S 7 ) ( S 4 ) 2 ( 8 6 ) 2 ] 4 ' A n i o n . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . . . . . . . . . . . . . . 1 8 5 S e l e c t e d B o n d D i s t a n c e s ( A ) i n t h e [ r n z s t s s x s n 1 , 5 ( 3 6 ) o , 5 ] 2 - A n i o n . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . . . . . . . . . . . . . . 1 9 1 X X 3 . 1 3 8 6 1 4 . 1 C a l 4 . 2 C a l P a g e 3 . 1 3 S e l e c t e d B o n d A n g l e s ( d e g ) i n t h e [ I n 2 8 ( 8 5 ) ( S 4 ) 1 , 5 ( S ( 5 ) o . 5 ] 2 ' 4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 4 . 6 4 . 7 4 . 8 4 . 9 . A n i o n . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . . . . . . . . . . . . . . 1 9 2 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f a - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 1 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f B - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F a n d B ' - ( P h 4 P ) 2 [ ' I ' 1 2 ( S 4 ) 2 ] . 2 D M F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 3 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f y — ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . D M F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 5 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( E t 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 7 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( M e 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 9 C a l c u l a t e d a n d O b s e r v e d X — r a y P o w d e r D i f f r a c t i o n P a t t e r n o f K o , 6 2 ' l ' 1 1 , 3 3 8 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 0 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r c t - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] ( I ) . B - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F ( I I ) a n d B ' - ( P h 4 P ) 2 [ ' I ‘ 1 2 ( S 4 ) 2 ] . 2 D M F ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 4 - S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r y - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] D M F O V ) . ( E t 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] ( V ) a n d ( M C 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] ( V I ) - - - - - - - - - - 2 2 5 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r K o , 5 3 T 1 1 , 3 2 8 5 ( V I I ) . . . . . . . . 2 2 6 4 . 1 0 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r c t - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 7 x x i 4 . 1 1 4 . 1 2 4 . 1 3 4 . 1 4 4 . 1 5 4 . 1 6 4 . 1 7 4 . 1 3 F r a c t f o r 5 S t a n c F r a c t f o r 0 ' S t a n d F r a c t i f o r 7 - 4 S t a n d : F r a c t i r f o r ( E S t a n d a F r a c t i c f o r ( M S t a n d a r F r a c t i o f o r [ ( 0 . S u n d a y o f ( I ) . C o m p a - a n d B C i n ( I ) , D e v i a t i . 1 1 . 1 2 . 1 3 . 1 4 . 1 5 . 1 6 . 1 7 . 1 8 P a g e F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r B - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F w i t h t h e E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 9 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r B ' - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 1 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r y - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . D M F w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 3 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( E t 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 5 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( M e 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 6 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r K o , 5 3 T 1 1 , 3 2 8 5 w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 7 . F r e q u e n c i e s ( c m ' l ) o f t h e S p e c t r a l A b s o r p t i o n s o f ( I ) , ( I I ) , ( I I I ) ( I V ) , ( V I ) a n d ( V I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 5 C o m p a r i s o n o f S o m e S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f t h e [ T 1 2 ( S 4 ) 2 ] 2 ‘ A n i o n i n ( I ) , ( I I ) , ( 1 1 1 ) , ( I V ) , ( V ) a n d ( v 1 ) . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 9 x x i i 5 . 5 F r a c t i 5 ' 7 F r a c t i t 5.8 4 . 1 9 S o r f o r g i w C a l P a r t 5 . 2 C 3 1 1 U ! l . . . P a t t i 5 . 3 C a l c P a t t e 5 . 4 S u m ( P h a f 5 . 5 F r a c t 5 . 9 i n ( I ) . g l e l P a g e 4 . 1 9 S o m e S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) 5 . 1 5 . 2 5 . 3 5 . 4 5 . 5 5 . 6 5 . 7 5 . 8 5 . 9 f o r K o , 6 3 T l 1 , 3 2 8 5 ( V I I ) . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 0 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( P h 4 P ) [ G a ( S c 5 ) 2 ] ( I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 6 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( P h 4 P ) [ I n ( S e 6 ) 2 ] ( I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 7 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( P h 4 P ) [ T 1 ( S e 5 ) 2 ] ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 9 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r ( P h 4 P ) [ G a ( S e 6 ) 2 ] ( I ) , ( P h 4 P ) [ I n ( S e 5 ) 2 ] ( I I ) a n d ( P h 4 P ) [ T l ( S e 5 ) 2 ] ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 1 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P h 4 P ) [ G a ( S e 5 ) 2 ] ( I ) w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 2 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P h 4 P ) [ I n ( S e 5 ) 2 ] ( I I ) w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 3 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s . f o r ( P h 4 P ) [ T l ( S e 5 ) 2 ] ( I I ) w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 4 F r e q u e n c i e s ( c m ' l ) o f t h e S p e c t r a l A b s o r p t i o n s o f ( I ) , ( I I ) a n d ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 6 C o m p a r i s o n o f S o m e S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f t h e A n i o n [ M ( S e 5 ) 2 ] n n ‘ i n ( I ) , ( I I ) a n d ( 1 1 1 ) . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 4 x x i i i 7 . ] C o m } ; o f C 1 t h e B L P a g e 7 . 1 C o m p a r i s o n o f t h e D - S p a c i n g O b s e r v e d i n t h e S A E D o f C u I n S e 2 O b t a i n e d f r o m ( n - B u ) 3 P R e a c t i o n w i t h t h e B u l k C u I n S e 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 0 x x i v L 5 2 . 2 O r t e p ( A ) ( P ( B ) ( P t S t r u c t t h e w T h e p o m i t t e S u u c t e n - t S t r u t 0 5 n d ! S t r u . ( B ) ~ ( D ) ( F r c S C h e i n . . . r r e a m . ' F a n ( B ) p 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 2 . 1 2 . 2 L I S T O F F I G U R E S P a g e O r t e p r e p r e s e n t a t i o n o f t h e a n i o n s i n ( A ) ( P h 4 P ) [ B r I n ( S P h ) 3 ] ( f r o m r e f 6 7 ) a n d ( B ) ( P h 4 P ) [ I n ( S t B u ) 4 ] . M e O H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 S t r u c t u r e o f t h e ( A ) [ T 1 5 ( S P h ) 5 ] ' a n d ( B ) [ T l 7 ( S P h ) 5 ] + t h e t w o c a g e s c o n s t i t u t i n g t h e s t r u c t u r e o f T l ( S P h ) . T h e p h e n y l g r o u p s o f t h e S P h l i g a n d s h a v e b e e n o m i t t e d . ( F r o m r e f 6 9 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 S t r u c t u r e o f t h e o c t a n u c l e a r [ T l g ( S t B u ) 3 ] w i t h t h e t e r t - b u t y l ' g r o u p s o f t h e S t B u l i g a n d s o m i t t e d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 S t r u c t u r e o f [ I n 1 0 8 1 5 ( S P h ) 4 ] 5 - i n t h e c r y s t a l s o f ( E t 4 N ) 6 [ I n l o S 1 5 ( S P h ) 4 ] . M e O H . ( F r o m r e f 7 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 S t r u c t u r e s o f ( A ) a d a m a n t i n e - l i k e a n i o n [ I n 4 S 1 0 ] 3 ‘ , ( B ) t h e l a y e r e d K I n S e z , ( C ) t h e d i m e r i c R b 5 I n 2 S 5 a n d . ( D ) t h e o n e d i m e n s i o n a l R b 4 I n 2 8 5 a n d R b 4 1 n 2 8 e 5 ( F r o m r e f 1 4 g ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 S c h e m a t i c s t r u c t u r a l r e p r e s e n t a t i o n o f t h e T 1 + t r i m e r i c i n t e r m e d i a t e c o m p l e x a n d t h e s u b s e q u e n t s l i g h t r e a r r a n g e m e n t a f t e r e l e c t r o n t r a n s f e r t o ( V I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1 T y p i c a l U V / V i s s p e c t r a o f ( A ) ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I ) , ( B ) ( P h 4 P ) 2 S e 5 a n d ( C ) ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] ( V I ) i n D M F . . . . . . . . . . . . 8 3 X X V 1 . Q . o r m g L 2 . 7 2 . 8 2 . 1 0 2 . 1 2 C y c l i i n D L s i m i l . ‘ ( P u b i n D 1 I n s e t , 7 7 3 6 a s a f F a r - I I ( B ) ( l ( C ) ( E F a r - I R ( E t 4 N O R T E “ 9 2 ( 8 O R T E u n i t C e [ I n 2 ( S O R T E u n i t C e O R T E i n ( m i n t h e 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 2 . 1 0 2 . 1 1 2 . 1 2 P a g e C y c l i c v o l t a m m o g r a m o f ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I ) i n D M F . ( 1 1 ) a n d ( I I I ) a s w e l l a s ( P h 4 P ) 2 8 e 5 h a v e s i m i l a r v o l t a m m o g r a m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 T h e 7 7 S e N M R s p e c t r a o f ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I ) , ( P r 4 N ) 2 [ I n 2 $ e z ( S e 4 ) 2 l ( 1 V ) a n d ( E t 4 N ) 3 [ I n 3 8 6 3 ( S e 4 ) 3 ] ( V 1 ) i n D M F a r e t h e s a m e . A n e x a m p l e i s s h o w n a b o v e . I n s e t , s c h e m a t i c a s s i g n m e n t o f t h e p e a k s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 9 7 7 S e N M R s p e c t r a o f ( E t 4 N ) 3 [ T 1 3 S e 3 ( S e 4 ) 3 ] ( V I I ) i n D M F a s a f u n c t i o n o f t e m p e r a t u r e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 0 F a r - 1 R S P C C t m o f ( A ) ( P h 4 P ) 4 [ I n 2 ( S C 4 ) 4 ( S e s ) l ( I ) . ( B ) ( P r 4 N ) 4 [ I n 2 ( S C 4 ) 4 ( S e s ) ] ( 1 1 ) . a n d ( C ) ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 F a r - I R s p e c t r a o f ( A ) ( P n t N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] ( I V ) , ( B ) ( E t 4 N ) 3 [ I n 3 $ e 3 ( S e 4 ) 3 l ( V l ) a n d ( C ) ( E t 4 N ) 3 [ T 1 3 3 6 3 ( S e 4 ) 3 ] ( V I I ) . . . . . . 9 3 O R T E P r e p r e s e n t a t i o n o f t h e t w o c o n f o r m a t i o n s o f t h e [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' a n i o n i n ( I ) w i t h l a b e l i n g s c h e m e . . . . . . . . . . . . . . . . . . . . . . 9 6 O R T E P r e p r e s e n t a t i o n o f t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 7 . O R T E P r e p r e s e n t a t i o n o f t h e t w o c o n f o r m a t i o n s o f t h e [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' a n i o n i n ( I I ) w i t h l a b e l i n g s c h e m e . . . . . . . . . . . . . . . . . 1 0 2 O R T E P r e p r e s e n t a t i o n o f t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( P r l t N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 3 O R T E P r e p r e s e n t a t i o n o f ( A ) [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' a n i o n i n ( I I I ) w i t h l a b e l i n g s c h e m e ( B ) t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 5 x x v i 2 . 1 7 2 . 1 8 O T R G T ] A 2 . 1 9 T G A 2 . 2 0 T G A 3.1 I t I I t ‘ . ‘ 3 ‘ 2 . 1 5 O R T 2 . 1 6 O R T 2 . 1 3 2 . 1 4 2 . 1 5 2 . 1 6 2 . 1 7 2 . 1 8 2 . 1 9 2 . 2 0 2 . 2 1 3 . 1 P a g e O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e [ I n 2 8 6 2 ( S e 4 ) 2 1 2 ' a n i o n s i n ( A ) ( P r 4 N ) 2 [ I n 2 8 6 2 ( S e 4 ) 2 ] a n d ( B ) ( P P N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 7 O R T E P r e p r e s e n t a t i o n o f t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( P r a N ) 2 [ I n 2 S e 2 ( S e 4 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 8 O R T E P r e p r e s e n t a t i o n o f t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( P P N ) 2 [ I n 2 3 e 2 ( S e 4 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 9 O R T E P r e p r e s e n t a t i o n o f t h e t w o c o n f o r m a t i o n s o f [ I n 3 8 e 3 ( S e 4 ) 3 ] 3 ' a n i o n , r e s u l t i n g f r o m t h e d i s o r d e r i n t h e 8 e 4 2 ' l i g a n d a t t a c h e d t o I n ( 2 ) i n ( V 1 ) w i t h l a b e l i n g s c h e m e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 2 O R T E P r e p r e s e n t a t i o n o f t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( E t 4 N ) 3 [ M 3 S e 3 ( S e 4 ) 3 ] ( M = I n , T l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 3 T G A d i a g r a m s ( u n d e r N 2 ) o f . ( A ) ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I ) . ( B ) ( P r 4 N ) 4 l I n 2 ( S e 4 ) 4 ( S e s ) l ( I I ) a n d ( C ) ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I I I ) . T h e fi n a l p r o d u c t i n t h e s e c a s e s i s B - I n 2 S e 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 1 T G A d i a g r a m s ( u n d e r N 2 ) o f ( A ) ( P I 4 N ) 2 [ I n 2 $ e 2 ( S e 4 ) 2 ] ( l V ) . a n d ( B ) [ ( P h 3 P ) 2 N ] 2 [ I n 2 S e 2 ( S e 4 ) 2 ] ( V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 2 T G A d i a g r a m s ( u n d e r N 2 ) o f ( A ) ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] ( V I ) a n d ( B ) ( E t 4 N ) 3 [ T I 3 S e 3 ( S e 4 ) 3 ] ( V I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 3 O R T E P r e p r e s e n t a t i o n o f t h e [ N a I n 6 8 e 6 ( S e 4 ) 5 ] 5 ' a n i o n i n ( V I I I ) w i t h l a b e l i n g s c h e m e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 9 F a r - I R s p e c t r a o f ( A ) ( P h 4 P ) 2 [ I n ( S 4 ) ( S ( 5 ) B r ] , ( B ) ( P h 4 P ) 2 [ I n ( S 4 ) ( S e ) C l ] . ( C ) ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( S a ) 2 ( 8 7 ) ] a n d ( D ) ( P h 4 P ) 2 [ { I n 2 8 ( S s ) ( S 4 ) 2 } o . s l I n 2 8 ( S s ) ( S 4 ) ( S e ) ) o . s ] . . . . . . . . . . . . . . 1 7 2 x x v i i 4 . 2 3 . 2 3 . 3 3 . 4 3 . 5 3 . 6 3 . 7 3 . 8 3 . 9 4 . 1 4 . 3 T O } ( B ) ( C ) ( O R T [ I n ( f O R T o f 0 ’ ] O R T o f t h : l a b e l i . O R T l u n i t c O R T I a n i o n O R T ‘ E U n z S t O R T E c e l l o f ~ T Y P i C a ( A ) D . F a l k l R ( B ) 5 ( C ) H 1 3 : 3 - i j ( B ) L , 3 . 2 3 . 3 3 . 4 3 . 5 3 . 6 3 . 7 3 . 8 3 . 9 4 . 1 4 . 2 4 . 3 P a g e T G A d i a g r a m s ( u n d e r N 2 ) o f ( A ) ( P h 4 P ) 2 [ l n ( S 4 ) ( 8 6 ) B r ] , ( B ) ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( 3 6 ) 2 ( 3 7 ) ] a n d ( C ) ( P h 4 P ) 2 l { I n 2 $ ( S s ) ( S 4 ) 2 } o . 5 { I n 2 8 ( S s ) ( S 4 ) ( S o ) l o . s l ( I V ) - - - - - - - - - - - - - - 1 7 4 O R T E P r e p r e s e n t a t i o n o f t h e t w o v i e w s o f t h e [ I n ( S 4 ) ( S 5 ) B r ] 2 ‘ a n i o n i n ( I ) w i t h l a b e l i n g s c h e m e . . . . . . . . . . . . . . . . . . . . . . . 1 7 7 O R T E P r e p r e s e n t a t i o n o f t h e u n i t c e l l o f ( P h 4 P ) 2 [ I n ( S 4 ) ( S ( 5 ) B r ] ( I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 8 O R T E P r e p r e s e n t a t i o n o f t h e t w o c o n f o r m a t i o n s o f t h e [ l n 2 ( S 4 ) 2 ( 8 5 ) 2 ( S 7 ) ] 4 ‘ a n i o n i n ( 1 1 1 ) w i t h l a b e l i n g s c h e m e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 2 O R T E P r e p r e s e n t a t i o n o f t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( P h 4 P ) 4 [ I n 2 ( 8 4 ) 2 ( 8 5 ) 2 ( S 7 ) ] ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 3 O R T E P r e p r e s e n t a t i o n o f t w o v i e w s o f t h e [ I n 2 8 ( S 5 ) ( S 4 ) 2 ] 2 ' a n i o n i n ( I V ) w i t h l a b e l i n g s c h e m e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 8 O R T E P r e p r e s e n t a t i o n o f t w o v i e w s o f t h e [ I n 2 8 ( S s ) ( S 4 ) ( S 5 ) ] 2 ' a n i o n i n ( I V ) w i t h l a b e l i n g s c h e m e . . . . . . . . . . . . 1 8 9 O R T E P r e p r e s e n t a t i o n o f t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( P h 4 P ) 2 [ { I n 2 8 ( S s ) ( S 4 ) 2 } o . 5 { I n 2 3 ( S s ) ( S 4 ) ( S e ) } o . s ] ( I V ) - - - - - - - 1 9 0 . T y p i c a l U V l V i s s p e c t r a o f c t - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] i n ( A ) D M F a n d ( B ) A c e t o n t r i l e s o l v e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 1 F a r - I R s p e c t r a o f ( A ) c t - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] , ( B ) 1 3 a n d 1 5 ' - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F a n d ( C ) + ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . D M F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 3 F a r - I R S p e c t r a o f ( A ) ( E t 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] . ( B ) ( M e 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] a n d ( C ) K o , 5 3 T l L 3 2 8 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 4 x x v i i i 5 . 3 4 . 4 4 . 5 4 . 6 4 . 7 4 . 3 4 . 9 4 . 1 0 4 . 1 1 4 . 1 2 5 . 1 5 . 2 g 4 . 4 4 . 5 4 . 6 4 . 7 4 . 8 4 . 9 4 . 1 0 4 . 1 1 4 . 1 2 5 . 1 5 . 2 5 . 3 5 . 4 P a g e O R T E P r e p r e s e n t a t i o n o f t w o v i e w s o f t h e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n i n ( I ) w i t h l a b e l i n g s c h e m e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 7 O R T E P r e p r e s e n t a t i o n o f t h e u n i t c e l l o f a - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 8 O R T E P r e p r e s e n t a t i o n o f t h e [ 1 1 2 ( 8 4 ) 2 ] 2 ' a n i o n i n o f B a n d B ' - ( P h 4 P ) 2 [ l e ( S 4 ) 2 ] . 2 D M F w i t h t h e l a b e l i n g s c h e m e . . . . . . 2 5 1 O R T E P r e p r e s e n t a t i o n o f t h e u n i t c e l l o f B a n d B ' - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 2 O R T E P r e p r e s e n t a t i o n o f t h e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n ( A ) i n Y - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 l . 2 D M F . ( B ) i n ( E t 4 N ) 2 [ ' I ' 1 2 ( S 4 ) 2 ] w i t h t h e l a b e l i n g s c h e m e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 4 O R T E P r e p r e s e n t a t i o n o f t h e u n i t c e l l o f y - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . D M F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 5 O R T E P r e p r e s e n t a t i o n o f t h e u n i t c e l l o f ( E t 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] . . . . . . . . 2 5 6 O R T E P r e p r e s e n t a t i o n o f t h e 8 5 2 ' a n i o n i n K o , 5 3 T 1 1 , 3 2 8 5 , , , , , , , , , , , , 2 5 8 O R T E P r e p r e s e n t a t i o n o f t h e u n i t c e l l o f K o , 5 3 T ‘ 1 1 . 3 2 S 5 . . . . . . . . . . . . . . . . 2 5 9 F a r - I R s p e c t r a o f ( A ) ( P h 4 P ) [ G a ( S e 5 ) 2 ] ( I ) , ( B ) ( P h 4 P ) [ I n ( S e 5 ) 2 ] ( I I ) , ( C ) ( P h 4 P ) [ T l ( S e 5 ) 2 ] ( I H ) . . . . . . . . . . . . . . . . . . . . . . . 2 8 7 . O R T E P r e p r e s e n t a t i o n o f t h e v i e w o f t h e s i n g l e u n i t c e l l o f ( P h 4 P ) [ M ( S e 5 ) 2 ] a l o n g t h e c r y s t a l l o g r a p h i c a b p l a n e . . . . . . . . . . . . . 2 9 1 O R T E P r e p r e s e n t a t i o n o f t h e v i e w o f t h e [ M ( S e 5 ) 2 ] n n ' l a y e r s a l o n g t h e a b p l a n e w i t h t h e P h 4 P + c a t i o n s o m i t t e d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 2 O R T E P r e p r e s e n t a t i o n o f t h e v i e w o f t h e l a y e r s p r e p e n d i c u l a r t o t h e c - a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 3 x x i x ’ r t " : . fl i : 5 . 5 5 . 6 5 . 7 5 . 8 6 . 1 6 . 2 6 . 3 6 . 4 6 . 5 6 . 6 6 . 7 6 . 8 6 . 9 T G A d a n d ( B ) D S C d c y c l e 0 X o r a y ( A ) S i l a n d ( C T h e a t o f ( P 1 1 . e n e r g y . S c h e m i n t h e l T G A c ' ( B ) ( P ) S c h e m S E M n X ~ r a y . S E M n ‘ X f a y S E M r s e l e c u T h e u 5 . 5 P a g e T G A d i a g r a m s ( u n d e r N 2 ) o f ( A ) ( P h 4 P ) [ G a ( S e 6 ) 2 ] ( I ) a n d ( B ) ( P h 4 P ) [ I n ( S e 6 ) 2 ] ( I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 7 5 . 6 D S C d i a g r a m s ( u n d e r N 2 ) o f ( P h 4 P ) [ I n ( S e 5 ) 2 ] ( I I ) ( A ) I n i t i a l c y c l e o f h e a t i n g a n d c o o l i n g ( B ) S u b s e q u e n t c y c l e . . . . . . . . . . . . . . . . . . . . . 2 9 8 5 . 7 X - r a y d i f f r a c t i o n p a t t e r n s o f ( P h 4 P ) [ I n ( S e 6 ) 2 ] ( l I ) ( A ) S i n g l e c r y s t a l s , ( B ) P r o c e s s e d a t 3 0 0 ° C ( g l a s s y s t a t e ) a n d ( C ) a f t e r h e a t i n g t o 1 6 0 ° C ( r e c r y s t a l l i z a t i o n ) . . . . . . . . . . . . . . . . . . . . . . . . 2 9 9 5 . 8 T h e a b s o r p t i o n s p e c t r u m o f t h e g l a s s y f i l m s o f ( P h 4 P ) [ I n ( S e 5 ) 2 ] ( l I ) . ( I n s e t a b s o r p t i o n ” 2 v e r s u s e n e r g y ( e V ) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 0 6 . 1 S c h e m a t i c r e p r e s e n t a t i o n o f t h e p o l y s e l e n i d e a n i o n s i n t h e p r e c u r s o r c o m p l e x e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 3 6 . 2 T G A d i a g r a m s ( u n d e r N 2 ) o f ( A ) ( P h 4 P ) 2 [ C d ( S e 4 ) 2 ] , ( B ) ( P h 4 P ) 2 [ C U 4 ( S e 4 ) 3 ] a n d ( C ) ( P h 4 P ) 4 [ C U 2 ( S e 5 ) 2 ( S e 4 ) ] . . . . . . . . . . . . . . . 3 1 4 6 . 3 S c h e m a t i c r e p r e s e n t a t i o n o f t h e f i l m f a b r i c a t i o n p r o c e s s . . . . . . . . 3 1 5 6 . 4 S E M m i c r o g r a p h o f a C d S e f i l m o n C a r b o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 7 6 . 5 X - r a y d i f f r a c t i o n p a t t e r n o f a C d S e f i l m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 8 6 . 6 S E M m i c r o g r a p h o f a C u 2 - x S e f i l m o n P y r e x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 0 6 . 7 . X - r a y d i f f r a c t i o n p a t t e r n o f a C u 2 - x S e f i l m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 1 6 . 8 S E M m i c r o g r a p h o f a B - l n 2 S e 3 fi l m o n Q u a r t z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 2 6 . 9 S e l e c t e d A r e a E l e c t r o n D i f f r a c t i o n o f a B - I n 2 S e 3 fi l m . T h e u n i t c e l l d i m e n s i o n s o f B - I n 2 S e 3 a r e a = b = 3 . 9 9 3 ( 1 ) A , = 2 8 . 3 9 1 ( 5 ) A , a = B = 9 0 . 0 ° , 7 : 1 2 0 . 0 ° . T h e S A E D i s f r o m t h e " 1 1 0 " c r y s t a l d i r e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 3 6 . 1 0 S E M m i c r o g r a p h o f a T l S e fi l m o n Q u a r t z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 5 6 . 1 1 X - r a y d i f f r a c t i o n p a t t e r n o f a T l S e fi l m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 6 X X X i n . 1 6 . 1 2 X - r a ) ’ C 6 . 1 3 S E M n a n d ( B ) 6 . 1 4 S E M n a n d ( B ) 6 . 1 5 V a r i a b l p r e s s e d 6 . 1 6 V a r i a b l o f a p r e 6 . 1 7 S e l e c t e . 7 - 1 S c h e m : P I C C u r s r 7 - 2 S c h e m ; f r o m a ‘ 7 . 3 X - r a y W a s u s 7 ' 4 X ~ r a y K C N V 7 . 5 . S e l e C t e O b t a i n . S t a - a b s ) 7 . 6 T E M S e ‘ a b s . 6 . 1 2 6 . 1 3 6 . 1 4 6 . 1 5 6 . 1 6 6 . 1 7 7 . 1 7 . 2 7 . 3 7 . 4 7 . 5 7 . 6 P a g e X - r a y d i f f r a c t i o n p a t t e r n o f C u I n S e 2 fi l m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 9 S E M m i c r o g r a p h o f C u I n S e 2 F i l m s o n ( A ) Q u a r t z a n d ( B ) P y r e x s u b s t r a t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 0 S E M m i c r o g r a p h o f C u I n S e 2 F i l m s o n ( A ) S t a i n l e s s S t e e l a n d ( B ) C a r b o n s u b s t r a t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 1 V a r i a b l e t e m p e r a t u r e C o n d u c t i v i t y d a t a o f a p r e s s e d p e l l e t o f C u I n S e 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 2 V a r i a b l e t e m p e r a t u r e t h e r m o e l e c t r i c p o w e r d a t a o f a p r e s s e d p e l l e t o f C u I n S e 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 3 S e l e c t e d A r e a E l e c t r o n D i f f r a c t i o n o f C u I n S e 2 F i l m . . . . . . . . . . . . . . . . . . . . . 3 3 4 S c h e m a t i c r e p r e s e n t a t i o n o f t h e t w o a n i o n s i n t h e p r e c u r s o r c o m p l e x e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 0 S c h e m a t i c r e p r e s e n t a t i o n o f t h e e x h a u s t i v e r e m o v a l S e ° f r o m a S e - r i c h c o m p l e x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 1 X — r a y D i f f r a c t i o n p a t t e r n o f C u S e o b t a i n e d w h e n K C N w a s u s e d a s t h e S e - a b s t r a c t i n g r e a g e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 3 X - r a y D i f f r a c t i o n p a t t e r n o f C u I n S e 2 o b t a i n e d w h e n K C N w a s u s e d a s t h e S e - a b s t r a c t i n g r e a g e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 7 . S e l e c t e d A r e a E l e c t r o n D i f f r a c t i o n p a t t e r n o f C u I n S e 2 o b t a i n e d w h e n ( n - B u ) 3 P w a s u s e d a s t h e S e - a b s t r a c t i n g r e a g e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 8 T E M M i c r o g r a p h o f C u I n S e 2 c r y s t a l l i t e s o b t a i n e d w h e n t r i b u t y l p h o s p h i n e w a s u s e d a s t h e S e - a b s t r a c t i n g r e a g e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 0 x x x i 7 . 7 E v o l t 6 ! ‘ N ‘ . 1 4 1 ' ' 7 8 7 9 T fi b u n m g m V a n a p r e t ( B ) ( B V a fi a o f a r K C N r 7 . 7 7 . 8 7 . 9 P a g e E v o l u t i o n o f C u I n S e 2 c r y s t a l l i t e s i n D M F a t 6 0 ° C . T r i b u t y l p h o s p h i n e w a s u s e d a s t h e S e - a b s t r a c t i n g r e a g e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 1 V a r i a b l e t e m p e r a t u r e C o n d u c t i v i t y d a t a o f a p r e s s e d p e l l e t o f C u I n S e 2 o b t a i n e d f r o m t h e ( A ) K C N a n d ( B ) ( B u 3 ) P r e a c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 3 V a r i a b l e t e m p e r a t u r e t h e r m o e l e c t r i c p o w e r d a t a o f a p r e s s e d p e l l e t o f C u I n S e 2 o b t a i n e d f r o m t h e K C N r e a c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 4 x x x i i D u r i n g e l e c t r o n i c r c h e m i s t r y . m o d e r n m a i m m e n s e p r t h a s a p p a r e n n e w m a t e r i . a r e a l . C S S u p e I C O D d L c a r b o n 4 . . 1 S l ' n l h e t i c C l t h e i r i n t e r e s a s u n u S U a l P r a c t i c a l 3 P 1 9 1 3 0 # - I I I C H A P T E R 1 I n t r o d u c t i o n D u r i n g t h e p a s t t w o d e c a d e s t h e s c i e n c e a n d e n g i n e e r i n g o f e l e c t r o n i c m a t e r i a l s h a s b e c o m e m o r e a n d m o r e i n t e r t w i n e d w i t h c h e m i s t r y . C h e m i s t r y d r i v e n b y t h e n e e d s a n d o p p o r t u n i t i e s o f m o d e r n m a t e r i a l s h a s l e a d t o t e c h n o l o g i c a l a d v a n c e s a s w e l l a s i m m e n s e p r o g r e s s i n o u r u n d e r s t a n d i n g o f m a t e r i a l s p r o p e r t i e s . T h i s h a s a p p a r e n t l y r e c o g n i z e d t h e i m p o r t a n c e o f e x p l o r a t o r y s y n t h e s i s o f n e w m a t e r i a l s a n d t h e n e e d f o r m o r e e x t e n s i v e r e s e a r c h i n t h i s a r e a l , e s p e c i a l l y i n v i e w o f t h e d i s c o v e r y o f h i g h - T c s u p e r c o n d u c t o r s z , n o v e l m i c r o p o r o u s o x i d e s 3 a n d n e w f o r m s o f c a r b o n 4 . T h e r e h a s b e e n c o n s i d e r a b l e e f f o r t i n t h e l a s t d e c a d e i n t h e s y n t h e t i c c h e m i s t r y o f n e w m e t a l c h a l c o g e n i d e c o m p o u n d s d u e t o t h e i r i n t e r e s t i n g e l e c t r i c a l 5 , o p t i c a l 6 a n d c a t a l y t i c p r o p e r t i e s ' 7 a s w e l l a s u n u s u a l s t r u c t u r a l f e a t u r e s . S o l i d s t a t e c h a l c o g e n i d e s e n j o y m a n y p r a c t i c a l a p p l i c a t i o n s s u c h a s : 1 . I R d e t e c t i o n a n d i m a g i n g 8 ( e . g . C d n g 1 - x T e ) , E l e c t r a - l u m i n e s c e n t d e v i c e s 3 i 9 ( e . g . Z n S , C d S e ) , O p t o e l e c t r o n i c s a n d n o n - l i n e a r o p t i c s 1 0 ( e . g . T l 3 A s S e 3 ) , S o l a r c e l l s l l ( e . g . C u I n S e 2 , C d T e ) , H i g h e n e r g y d e n s i t y r e c h a r g e a b l e b a t t e r i e s ” , 1 3 ( e . g . L i / T i S 2 , N a / S e t c ) . C 3 O , M P I C 2 . S X “ C g M e t a l - T h e l : a b i l i t y o f t r e s p o n s i b l e c o m p o u n d s . s y n t h e s i z e e x t e n s i v e l y S o l u t T h e r e C h a r a c t e r i z a P a n i c u l a r e i n C o n n e c t i t C o m l l l e x e s c a t a l y s i s 7 , o f t h e s e C h e m I S l r y n o v e n ) , o w n u m b e r o f I h a s b e e n M e t a l - c h a l c o g e n c o m p o u n d s c a n b e d i v i d e d i n t o t w o g r o u p s : i ) t h o s e c o n t a i n i n g f o r m a l l y Q 2 ' i o n s i i ) t h o s e c o n t a i n i n g s z ' i o n s i n w h i c h t h e r e a r e Q - Q b o n d s . T h e l a t t e r a r e r e f e r r e d t o a s p o l y c h a l c o g e n i d e s . T h e c a t e n a t i n g a b i l i t y o f t h e c h a l c o g e n a t o m s p a r t i c u l a r l y f o r Q = S , S e a n d T o i s r e s p o n s i b l e f o r a n e x c i t i n g d i v e r s e a n d u s e f u l c l a s s o f i n o r g a n i c c o m p o u n d s . T h e r e a r e a n u m b e r o f d i f f e r e n t a p p r o a c h e s t o s y n t h e s i z e m e t a l - c h a l c o g e n i d e c o m p l e x e s a n d s o m e o f t h e e x t e n s i v e l y u s e d m e t h o d s a r e s u m m a r i z e d b e l o w : S o l u t i o n S y n t h e s e s T h e r e h a s b e e n e v e r - g r o w i n g i n t e r e s t i n t h e s y n t h e s i s , c h a r a c t e r i z a t i o n , a n d c h e m i s t r y o f s o l u b l e m e t a l p o l y c h a l c o g e n i d e s ” . P a r t i c u l a r e m p h a s i s h a s b e e n p l a c e d t o t r a n s i t i o n m e t a l p o l y s u l fi d e s i n c o n n e c t i o n w i t h t h e r e a l i z a t i o n o f t h e i m p o r t a n c e o f m e t a l s u l f i d e c o m p l e x e s i n t h e i n d u s t r i a l ( h y d r o d e s u l f u r i z a t i o n , H D S ) o r e n z y m a t i c c a t a l y s i s 7 , i n t h e m o d e l i n g o f b i o l o g i c a l s y s t e m s ” , a n d i n t h e u t i l i t y o f t h e s e m a t e r i a l s a s l u b r i c a n t s ” . M e a n w h i l e t h e s t r u c t u r a l c h e m i s t r y o f m e t a l p o l y s u l f i d e s e x h i b i t s a g r e a t d i v e r s i t y a n d n o v e l t y o w i n g t o t h e v e r s a t i l i t y a n d f l e x i b i l i t y o f t h e 8 8 ' l i g a n d s . T h e r e a s o n f o r t h i s , i s i n p a r t t h e a b i l i t y o f 8 9 ' l i g a n d s t o v a r y t h e n u m b e r o f c o o r d i n a t i o n s i t e s a n d " g l u e " m e t a l c e n t e r s t o g e t h e r . I t h a s b e e n f o u n d t h a t a l l p o s s i b l e s z ' i o n s , x = 2 - 9 , o c c u r i n c o m p l e x e s ” . T h i s , a l o n g w i t h t h e v a r i o u s c o o r d i n a t i o n m o d e s o f t h e 8 x 2 “ l i g a n d s h a s m a d e t h e s t r u c t u r a l p o s s i b i l i t i e s o f m e t a l p o l y s u l f i d e s l n t e r e s p o l y t e l l u r i d e F o r a g i v e r o r p o l y t e l l u t h i s m a y b d e c r e a s e s f r : r e d u c t i o n p n a t u r e o f t h i n t e r n a l r e t i n c r e a s e o f n a t u r e o f t h d o e s n o t p l P O I y s e l e n i d e c x a m p I C S 3 1 “ 1 1 1 1 2 0 2 1 2 " S Y s t e m s z l p O I Y S e l e n i d f t . V p i c a l p 0 ] ( x = 2 ’ Y = 9 - [ n g T e 5 ] 2 - . J [ A 0 2 3 e 5 ] 2 - , p o l y s u l f i d e s i n n u m e r a b l e . I n t e r e s t i n g l y , t h e c h e m i s t r y o f s o l u b l e m e t a l p o l y s e l e n i d e s o r p o l y t e l l u r i d e s d o e s n o t n e c e s s a r i l y p a r a l l e l t h a t o f m e t a l p o l y s u l fi d e s . F o r a g i v e n m e t a l p o l y s u l f i d e c o m p o u n d , t h e a n a l o g o u s p o l y s e l e n i d e o r p o l y t e l l u r i d e c o m p l e x o f t e n d o e s n o t e x i s t . P o s s i b l e r e a s o n s f o r t h i s m a y b e , a ) t h e p r o p e n s i t y f o r c a t e n a t i o n o f c h a l c o g e n a t o m s d e c r e a s e s f r o m S t o T e , w h i c h g r e a t l y a f f e c t s s z ' l i g a n d s i z e s ; b ) t h e r e d u c t i o n p o t e n t i a l s r e q u i r e d t o s p l i t t h e Q - Q b o n d s v a r y w i t h t h e n a t u r e o f t h e e l e m e n t a s w e l l a s t h e l i g a n d s i z e , r e s u l t i n g i n d i f f e r e n t i n t e r n a l r e d o x c h e m i s t r y i n v a r i o u s m e t a l / s z ' s y s t e m s ; c ) T h e i n c r e a s e o f t h e Q - Q b o n d l e n g t h s f r o m S t o T e c a n a f f e c t t h e c h e m i c a l n a t u r e o f t h e s z - l i g a n d s : T h u s t h e i s o s t r u c t u r a l b e h a v i o r g e n e r a l l y d o e s n o t p r e v a i l b e t w e e n m e t a l p o l y s u l f i d e c o m p l e x e s a n d t h o s e o f p o l y s e l e n i d e s o r p o l y t e l l u r i d e s . T h e o n l y f e w e x i s t i n g i s o s t r u c t u r a l e x a m p l e s a r e f o u n d i n t h e [ M ( Q 4 ) 2 ] 2 ‘ ( M = Z n , H g ; Q = S , S e , T e ) ” , [ N i ( Q 4 ) 2 ] 2 " 1 9 ( Q = S , 8 6 ) . [ F 6 2 Q 2 ( Q 5 ) 2 ] 2 " 2 ° ( Q = S , S e ) a n d i n t h e M o / Q 4 2 ’ s y s t e m 8 2 1 . ( Q = S a n d S e ) . I n s o m e c a s e s , t h e s t r u c t u r e s o f m e t a l p o l y s e l e n i d e s o r p o l y t e l l u r i d e s t u r n e d o u t t o b e m o r e n o v e l . S o m e t y p i c a l p o l y s e l e n i d e s a n d p o l y t e l l u r i d e s c o m p l e x e s a r e : [ W x S e y P ' ( x = 2 . y = 9 - 1 0 ; x = 3 . F 9 ) ” . [ V 2 8 6 1 3 1 2 " 2 3 . [ C r 3 Q 2 4 l 3 ' ( Q = S ¢ . T e ) “ . [ n g T e s l z ' r z i [ H 8 4 T 6 1 2 1 4 " 2 5 . [ N b T e r o l 3 " Z G . [ A U 2 T 6 2 1 2 ' ° 2 7 . [ A u 2 8 6 1 0 1 2 " 2 3 . [ A u 2 S e 5 ] 2 ' v 2 3 , [ A 0 2 3 6 6 1 2 " 2 8 . [ H 8 7 S C I O I 4 " 2 9 . [ H g 7 S e 9 l n 4 “ " 2 9 . [ C u 2 8 6 1 4 l 4 ' ’ 3 0 , [ M ( S e 4 ) 3 ] 2 ‘ ( M = P t 3 1 , S n 3 2 ) , [ A g S e x ] ‘ ( x = 4 , 5 ) 3 3 e t c . W o r k i n t h i s a r e a i s o f f u n d a m e n t a l i n t e r e s t a n d w i l l l e a d t o a b e t t e r u n d e r s t a n d i n g o f t h e c h e m i s t r y o f n o t o n l y h e a v i e r c h a l c o g e n s , b u t a l s o o f p o l y s u l f i d e s t h e m s e l v e s . I t i s p o s s i b l e f o r i n s t a n c e t h a t s e v e r a l s t a b l e s t r u c t u r a l a r r a n g e m e n t s i n h e a v i e r l y c c u m p e f c fi e e y m w i b t a t a a n l p d h l r p i s T e l t e o i e h o a m l o s o r e c u u o m e g l d e d fi h u 1 i I y l t a e f c u c n u d t w i y l o r i t r e g o e c e s e : e g c u e n p d o t t n p g 0 s o 1 A P i “ t c t e o i n h e e o r t f s e r 3 s a ‘ e e r y e e P 1 h t r t h n 0 H e l e e h O h l i a s r l a p d o u n d i c t r o n - e d t s . ) t r i i o c , l t h e m e t a l 3 t [ h e P I C S e n C i " S i t u 3 7 _ I R C C C J ( M t a l k a u I I I O y S 0 T p o l y c h a l c o g e n i d e c h e m i s t r y m a y s e r v e a m o d e l s f o r m e t a s t a b l e a n d d i f f i c u l t t o i s o l a t e p o l y s u l fi d e s p e c i e s a n d v i c e v e r s a . F u r t h e r m o r e , o n c e n e w p o l y s e l e n i d e a n d p o l y t e l l u r i d e c o m p l e x e s a r e a v a i l a b l e , t h e y m a y h a v e p r a c t i c a l u s e s i n m a t e r i a l s c h e m i s t r y a s s u i t a b l e l o w t e m p e r a t u r e p r e c u r s o r c o m p o u n d s t o e l e c t r o n i c s o l i d s 3 4 . I n t e r e s t i n g n e w p o l y c h a l c o g e n i d e m o l e c u l e s d e m o n s t r a t e t h a t t h e s t r u c t u r a l p o s s i b i l i t i e s a c c e s s i b l e b y t h e s e l i g a n d s a r e i n t r i g u i n g a n d t h a t a g r e a t d e a l a w a i t s t o b e l e a r n e d a b o u t t h e b e h a v i o r o f t h e v a r i o u s s z ' s p e c i e s i n s o l u t i o n a n d i n t h e s o l i d s t a t e . T h e i n i t i a l a p p r o a c h t o m e t a l p o l y s u l fi d e s w a s u s u a l l y t o p a s s a s t r e a m o f H 2 8 t h r o u g h a n a q u e o u s b a s e ( i . e . a q . N H 3 ) i n t h e p r e s e n c e o f e l e m e n t a l s u l f u r 3 5 . T h e p o l y s u l f i d e s o l u t i o n s g e n e r a t e d f r o m s u c h a p r o c e d u r e w e r e t h e n r e a c t e d i n s i t u w i t h a p p r o p r i a t e m e t a l s a l t s . A l t h o u g h t h i s h a s b e e n v e r y s u c c e s s f u l i n p r e p a r i n g m e t a l p o l y s u l f i d e s , i t s e e m s t o b e a n e x p e n s i v e , i n c o n v e n i e n t , p o t e n t i a l l y i r r e p r o d u c i b l e , o r e v e n i m p r a c t i c a l ( s t e i s e x t r e m e l y p o i s o n o u s a n d H 2 T e i s u n s t a b l e ) r o u t e t o m e t a l p o l y s e l e n i d e s o r p o l y t e l l u r i d e s . N o w t h e r e a r e s e v e r a l d i f f e r e n t p r e p a r a t i v e r o u t e s t o m e t a l p o l y s e l e n i d e c o m p o u n d s . ( 1 ) b y u s i n g e l e m e n t a l s e l e n i u m a s r e a g e n t t o a c h i e v e t h e a d d i t i o n o f t h e s e l e n i u m l i g a n d s t o a c o o r d i n a t i v e l y u n s a t u r a t e d e l e c t r o n - r i c h m e t a l c o m p l e x w i t h a c h a n g e i n t h e o x i d a t i o n s t a t e o f t h e m e t a l “ ; ( 2 ) b y r e a c t i n g s o d i u m m e t a l w i t h e l e m e n t a l s e l e n i u m i n t h e p r e s e n c e o f a m e t a l p r e c u r s o r t o f o r m t h e p o l y s e l e n i d e c o m p l e x i n M M ” . R e c e n t l y , t h e e x t r a c t i o n o f t h e Z i n t l p h a s e s , s u c h a s M 2 Q x ( M = a l k a l i m e t a l , x = 4 - 6 ) , o b t a i n e d f r o m e i t h e r h i g h - t e m p e r a t u r e a l l o y s o r l i q u i d a m m o n i a 3 8 r e a c t i o n p r o d u c t s o f a l k a l i m e t a l s a n d c h a l c o g e n S . d i m e t h y l f o r p o l y c h a l c o g p o l y c h a l c o g t w o r k e r s a n e x t r a c t e d C a r e e x c e l l e n t o t h e m e t a I t h a s s o l v e n t s e x l s z ' t h e p c b l u e o r g r e 1 3 9 . F a s t t w o t l r ’ p i c a l W a t e r a n d i s n o e v i d t r c s o t t a n c e I : i n P o i a r e { i l l i l i b l ’ i u m ' 4 0 ' ~ T h e s e m l ” t 0 t h S p e c i e s . T h ! i n t h e g e m S h o w s t h e T h i s d I S p ; g e n e f i t t e d c h a l c o g e n s , i n t o b a s i c s o l v e n t s s u c h a s e t h y l e n e d i a m i n e , ( e n ) , o r d i m e t h y l f o r m a m i d e , ( D M F ) , g e n e r a t e s s o l u t i o n s w h i c h c o n t a i n p o l y c h a l c o g e n i d e a n i o n s s u i t a b l e f o r t h e p r e p a r a t i o n o f m e t a l p o l y c h a l c o g e n i d e c o m p l e x e s . P a r a l l e l t o o u r w o r k , K o l i s a n d h i s c o - w o r k e r s a n d I b e r s a n d h i s c o - w o r k e r s s h o w e d t h a t t h e s o l v e n t e x t r a c t e d s z ‘ p o l y a n i o n s o b t a i n e d f r o m l i q u i d a m m o n i a r e a c t i o n s a r e e x c e l l e n t s o u r c e s f o r t h e i n t r o d u c t i o n o f p o l y c h a l c o g e n i d e l i g a n d s t o t h e m e t a l p r e c u r s o r s . I t h a s b e e n w e l l d o c u m e n t e d t h a t t h e 8 3 ' p o l y a n i o n s i n p o l a r s o l v e n t s e x h i b i t a c o m p l e x e q u i l i b r i u m . I n N H 3 a n d D M F s o l u t i o n o f 8 3 ' t h e p o l y a n i o n d i s s o c i a t e s t o g e n e r a t e S x ' - r a d i c a l s , g i v i n g r i s e t o b l u e o r g r e e n s o l u t i o n s d e p e n d i n g o n c o n c e n t r a t i o n a n d t h e v a l u e o f x 3 9 . F a s t e q u i l i b r i a d o m i n a t e s u c h s o l u t i o n s . T h e s e s o l u t i o n s e x h i b i t t w o t y p i c a l a b s o r p t i o n s i n t h e U V / V i s a t ~ 6 2 0 n m a n d ~ 4 5 0 n m . W a t e r a n d e t h a n o l f o r m y e l l o w s o l u t i o n s w i t h s z ' s p e c i e s a n d t h e r e i s n o e v i d e n c e o f 8 , , “ r a d i c a l s . E x t e n s i v e U V / v i s , R a m a n a n d r e s o n a n c e R a m a n s p e c t r o s c o p i c s t u d i e s o n t h e s e p o l y s u l f i d e s o l u t i o n s i n p o l a r s o l v e n t s s u g g e s t t h a t d i f f e r e n t s z ' l i g a n d s a r e i n e q u i l i b r i u m w i t h t h e r a d i c a l a n i o n S 3 ' - a n d o t h e r s p e c i e s s u c h a s 8 2 ‘ - . 4 0 , . T h e s e s t u d i e s h a v e c o n c l u d e d t h a t t h e a b s o r p t i o n a t ~ 6 2 0 n m i s d u e t o t h e p r e s e n c e o f t h e S 3 ’ - s p e c i e s w h i c h a l s o c o n f e r s t h e b l u e c o l o r t o t h e s e s o l u t i o n s a n d t h e b a n d a t ~ 4 5 0 n m i s d u e t o t h e S 2 ' - s p e c i e s . T h e c o m p l e x e q u i l i b r i u m o f t h e 8 1 3 ' s p e c i e s c a n b e d e p i c t e d i n t h e s e r i e s o f e q . 1 ( a - e ) . I t i s w o r t h n o t i n g t h a t t h e f i r s t e q u a t i o n s h o w s t h e d i s p r o p o r t i o n a t i o n o f a n 8 5 2 ' g e n e r a t i n g 8 4 2 ' a n d S 5 2 2 T h i s d i s p r o p o r t i o n a t i o n r e a c t i o n d o e s n o t c e a s e h e r e b u t t h e g e n e r a t e d s p e c i e s f u r t h e r d i s s o c i a t e t o d i f f e r e n t S x 2 ' a n i o n s i n s o l u t i o n . 3 , } w i t h ‘ T h e I s t u d i e d , i s a n d D M F 2 a t ~ 5 1 0 m a r e d a r k r e o f t h e ~ 6 1 a n i o n s 4 1 _ 7 7 3 e N M R S i t h a t ] i s o S u g E E S t s p o l y s e l e n j d P o t y s m fi d e P O I a r 3 0 1 v s o l u t i o n . T h u s a d d i t i o n o f a n 8 5 2 ' t o D M F w o u l d g e n e r a t e d i f f e r e n t 8 3 ' w i t h v a r y i n g v a l u e o f x ( x = l - 7 ) . 2 8 5 2 ' < = = = = > S 4 2 - + 8 5 2 ' e q ( l a ) 2 8 4 2 ' < = = = = > 8 3 2 ' + 8 5 2 ' e q ( l b ) 2 8 3 2 ' < = = = = > 8 2 2 ' + 8 4 2 ' e q ( l c ) 2 8 2 2 ' < = = = = > 5 2 - + 8 3 2 ' e q ( l d ) 2 8 4 2 ' < = = = = > 8 3 % + $ 2 " + 8 3 2 ' e q ( l c ) T h e b e h a v i o r o f t h e S e x z ' ( x > 2 ) s p e c i e s , t h o u g h n o t v e r y w e l l s t u d i e d , i s a n a l o g o u s t o t h e p o l y s u l fi d e s . S o l u t i o n s o f S e x z ' i n N H 3 a n d D M F a r e d a r k g r e e n w i t h t w o a b s o r p t i o n s i n t h e U V / V i s s p e c t r a a t ~ 6 1 0 n m a n d ~ 4 4 0 n m . T h e s a m e s o l u t i o n s i n w a t e r a n d e t h a n o l a r e d a r k r e d w i t h t h e U V / V i s a b s o r p t i o n a t ~ 4 6 0 n m . T h e p r e s e n c e o f t h e ~ 6 1 0 n m b a n d i s p r o b a b l y d u e t o p a r a m a g n e t i c S e x ' - r a d i c a l a n i o n s “ . C o n s i s t e n t w i t h t h i s i n t e r p r e t a t i o n i s t h e a b s e n c e o f a n y 7 7 S e N M R s i g n a l s i n D M F s o l u t i o n s . I n w a t e r h o w e v e r a 7 7 S e N M R s i g n a l i s o b s e r v e d . T h i s c o u p l e d w i t h t h e a b s e n c e o f a ~ 6 1 0 n m b a n d s u g g e s t s t h a t S e x ” r a d i c a l a n i o n s d o n o t d o m i n a t e a q u e o u s p o l y s e l e n i d e s o l u t i o n s . C o m p l e x e q u i l i b r i a s i m i l a r t o t h o s e i n t h e p o l y s u l fi d e s o l u t i o n s c a n a l s o b e e n v i s i o n e d i n t h e S e x z ‘ s o l u t i o n s i n p o l a r s o l v e n t s . S o l i F I C P a l - e d s o l v e n t s ) d b - W h e n a f o r e m e n t i c c o o r d i n a t i o r s u g g e s t s t h . l i g a n d d r i v : l i g a n d . F o r c o o r d i n a t i o n f r o m 7 7 S e a l T h e p o l y c h a l c o r u n d e r t a k e P O c h h a l c o g W a s o u r d e S o l i d t h e r m a l P o l y c h a ] C O S t e m p . , . , u , e ‘ | b e e m p l o y ] h o t f o r r l W h e n a m e t a l i o n i s a d d e d t o p o l y c h a l c o g e n i d e s o l u t i o n s t h e a f o r e m e n t i o n e d e q u i l i b r i a a r e a f f e c t e d d r a m a t i c a l l y d u e t o c o o r d i n a t i o n . T h e c i r c u m s t a n t i a l e v i d e n c e a v a i l a b l e t h u s f a r , s u g g e s t s t h a t t h e p r e f e r e n c e o f a m e t a l i o n f o r a p a r t i c u l a r Q x 2 ‘ l i g a n d d r i v e s a l l t h e e x i s t i n g e q u i l i b r i a t o w a r d s f o r m a t i o n o f t h a t l i g a n d . F o r M M i o n s ( w i t h n 2 2 ) t h e s e e q u i l i b r i a a r e s u p p r e s s e d u p o n c o o r d i n a t i o n , a s s t a b l e M Q x m e t a l l a c y c l e s r i n g s a r e f o r m e d a s e v i d e n t f r o m 7 7 S e a n d 1 2 5 T e N M R . T h e s c a r c i t y o f r e p o r t s o n r e a c t i o n s i n v o l v i n g s o l u b l e p o l y c h a l c o g e n i d e s w i t h m a i n g r o u p m e t a l s , p r o m p t e d u s t o u n d e r t a k e a s y s t e m a t i c i n v e s t i g a t i o n i n t o t h e s y n t h e s i s o f n e w p o l y c h a l c o g e n i d e c o m p l e x e s w i t h s u c h e l e m e n t s . A n o t h e r m o t i v a t i o n w a s o u r d e s i r e t o f i n d s u i t a b l e p r e c u r s o r s t o s e m i c o n d u c t i n g I n 2 S e 3 , I n S e , T l S e a n d C u I n S e 2 . S o l i d S t a t e S y n t h e s i s i n M o l t e n S a l t s S o l i d s t a t e c o m p o u n d s i n c o r p o r a t i n g s z ' l i g a n d s c a n n o t b e p r e p a r e d b y c l a s s i c a l h i g h t e m p e r a t u r e t e c h n i q u e s 4 2 b e c a u s e o f t h e t h e r m a l i n s t a b i l i t y o f t h e s z ' f r a g m e n t s . T o i n c o r p o r a t e p o l y c h a l c o g e n i d e l i g a n d s i n t o s o l i d s t a t e l a t t i c e s , l o w e r s y n t h e s i s t e m p e r a t u r e s ( T < 4 5 0 ° C ) , c o m p a r e d t o c l a s s i c a l c e r a m i c m e t h o d s m u s t b e e m p l o y e d . T h i s i n t e r m e d i a t e t e m p e r a t u r e r a n g e i s c o n s i d e r e d t o o h o t f o r m o l e c u l a r s y n t h e t i c c h e m i s t s ( l a c k o f s u i t a b l e o r g a n i c s o l v e n t s ) , a n d t o o c o l d f o r m o s t s o l i d s t a t e c h e m i s t s ( l o w m o b i l i t y o r d i f f u s i o n o f s o l i d r e a c t a n t s ) a n d t h u s w a s a v o i d e d . h i s c o w o r ] A l k a r e c r y s t a l l i t e m p e r a t u r r C d S , N a C s u c h m e l t g r o w t h e : a l k a l i m e t p o l y c h a l c c r e p o r t b y i n v e s t i g a t i t t o a l a r g . c o m p o u n d s H O W t U n u s u a l c o m p o u n d s P h y s i c a l F t e c h n i q u e s . Z e o l i t e s ) i n m e t a l C h a ] e n v i s i o n m C l a s s e s o f A h h o u g h . M P U b l i c ‘ 0 a c h i e v e 1 h e r ( f a c r j A l k a l i m e t a l p o l y s u l f i d e m e l t s ( o r f l u x e s ) w e r e u s e d t o r e c r y s t a l l i z e b i n a r y a n d t e r n a r y m e t a l - s u l f i d e s f r o m h i g h t e m p e r a t u r e s ( > 7 0 0 ° C ) b y S c h e e l a n d o t h e r s . M a t e r i a l s s u c h a s Z n S , C d S , N a C r S z , F e S z , C u 3 V S 4 , H g S , e t c . w e r e g r o w n s u c c e s s f u l l y f r o m s u c h m e l t s 4 3 . T h e u s e o f o t h e r a l k a l i m e t a l p o l y c h a l c o g e n i d e s t o g r o w t h e a n a l o g o u s s o l i d s w a s s u g g e s t e d b u t n o t p u r s u e d . T h e u s e o f a l k a l i m e t a l p o l y c h a l c o g e n i d e s t o i n t e n t i o n a l l y s y n t h e s i z e s o l i d s t a t e p o l y c h a l c o g e n i d e c o m p o u n d s a p p e a r e d a f e w y e a r s a g o w i t h t h e r e p o r t b y I b e r s a n d h i s c o w o r k e r s 4 4 a . S i n c e t h e n a s y s t e m a t i c i n v e s t i g a t i o n a n d b e t t e r u n d e r s t a n d i n g o f t h e f l u x b e h a v i o r h a s l e d t o a l a r g e n u m b e r o f t e r n a r y a n d q u a t e r n a r y m e t a l c h a l c o g e n i d e c o m p o u n d s b y K a n a t z i d i s a n d h i s c o w o r k e r s “ 5 a s w e l l a s I b e r s a n d h i s c o w o r k e r s 4 4 b . H o w e v e r , t h e r e i s a n e v e r i n c r e a s i n g i n t e r e s t i n n e w a n d u n u s u a l s y n t h e t i c c o n d i t i o n s w h i c h m a y h e l p s t a b i l i z e n e w c o m p o u n d s w i t h n o v e l s t r u c t u r a l f r a m e w o r k s a n d i n t e r e s t i n g p h y s i c a l p r o p e r t i e s t h a t w o u l d n o t b e p o s s i b l e b y c o n v e n t i o n a l t e c h n i q u e s . G i v e n t h e e n o r m o u s u t i l i t y o f m i c r o p o r o u s o x i d e s ( i . e . Z e o l i t e s ) i n c h e m i c a l t e c h n o l o g y a n d t h e c o r r e s p o n d i n g p r o m i n e n c e o f m e t a l c h a l c o g e n i d e s i n e l e c t r o n i c a p p l i c a t i o n s , i t i s i n t r i g u i n g t o e n v i s i o n m a t e r i a l s t h a t w o u l d c o m b i n e t h e u s e f u l p r o p e r t i e s o f b o t h c l a s s e s o f m a t e r i a l s i n t o o n e n e w c l a s s o f m i c r o p o r o u s c h a l c o g e n i d e s . A l t h o u g h s u c h m a t e r i a l s h a v e n o t b e e n r e p o r t e d t o e x i s t t h i s f a r , a f e w p u b l i c a t i o n s h a v e m a d e r e f e r e n c e t o t h i s c o n c e p t 4 5 ’ 4 7 . I n o r d e r t o a c h i e v e t h i s g o a l w e u n d e r t o o k a n e w s y n t h e t i c a p p r o a c h o f u s i n g t h e r e a c t i v e ( P h 4 P ) 2 S e x i n m o l t e n f o r m a s a r e a c t i o n m e d i a t o 1 1 + ( P h a l i n c o r p O r a m o p e n a n i o n i m o l t e n ( P I o x i d i z e d , a s t h e n b i n d s ( 3 ) . ( P h a P ) 2 S e T h e a f f o r d e d [ h 1 n , T 1 ) c o n T h e s e C O d e s C t i b e d i i n c o r p o r a t e l a r g e o r g a n i c c a t i o n s a s t e m p l a t e s i n o r d e r t o s t a b i l i z e o p e n a n i o n i c m e t a l p o l y s e l e n i d e f r a m e w o r k s . T h e r e a c t i o n o c c u r s i n m o l t e n ( P h 4 P ) 2 S e x . T h i s i s a r e d o x r e a c t i o n i n w h i c h t h e m e t a l i s o x i d i z e d , a s S e x z ‘ i s r e d u c e d , t o f o r m s m a l l e r S e x z ' f r a g m e n t s w h i c h t h e n b i n d s t o t h e m e t a l c e n t e r s a n d c a n b e e x p r e s s e d e q . ( 2 ) a n d e q . ( 3 ) . ( P h 4 P ) 2 S e 5 + n S e - - - - > ( P h 4 P ) 2 S e x ( x = n + 5 ) e q . ( 2 ) M + ( P h 4 P ) 2 S e x - - - - > ( P h 4 P ) x [ M ( S e y ) z ] e q . ( 3 ) T h e p r e l i m i n a r y i n v e s t i g a t i o n s o f t h i s s y n t h e t i c t e c h n i q u e a f f o r d e d t h r e e n e w i s o s t r u c t u r a l c o m p o u n d s ( P h 4 P ) [ M ( S e 6 ) 2 ] ( M = G a , I n , T l ) c o n s i s t i n g o f a n o v e l t w o d i m e n s i o n a l o p e n a n i o n i c f r a m e w o r k . T h e s e c o m p o u n d s e x h i b i t a u n i q u e t h e r m a l p r o p e r t y w h i c h a r e d e s c r i b e d i n t h i s d i s s e r t a t i o n . H y d r o t h e r m a l S y n t h e s i s . H y d r o t h e r m a l s y n t h e s i s u s u a l l y r e f e r s t o h e t r o g e n e o u s r e a c t i o n s i n a q u e o u s m e d i a a b o v e 1 0 0 ° C t e m p e r a t u r e a n d 1 b a r p r e s s u r e “ . N u m e r o u s m i n e r a l s h a v e f o r m e d u n d e r t h e s e c o n d i t i o n s i n n a t u r e . F o r m o r e t h a n a c e n t u r y , g e o l o g i s t s a n d m i n c r a l o g i s t s h a v e e x t e n s i v e l y s t u d i e d h y d r o t h e r m a l s y n t h e s i s i n t h e l a b o r a t o r i e s i n o r d e r t o d e t e r m i n e t h e c o n d i t i o n s n e c e s s a r y f o r m i n e r a l f o r m a t i o n a n d h a v e t h u s s i g n i f i c a n t l y c o n t r i b u t e d t o t h e k n o w l e d g e o f g e o l o g i c a l p r o c e s s e s . B y t h e m i d 1 9 4 0 ' s t h e p r o c e s s w a s u s e d i n ) . F i n d u s t r y I t s y n t h e s i s C r e a c t i o n s a . t r a n s p o r t 5 c r y s t a l g r c o n v e n t i o n a I S : D e S p i 1 n i m p o r t : o t h e r i n t e r m e t a l C h a ‘ n o t a b l e e " " S i n g C o C o w o r k e r s . Y i e l d a r 1 0 i n d u s t r y t o s y n t h e s i z e q u a r t z o s c i l l a t o r c r y s t a l s 4 9 . H y d r o t h e r m a l s y n t h e s i s c a n b e c o n s i d e r e d a s a s p e c i a l c a s e o f c h e m i c a l t r a n s p o r t r e a c t i o n s a s i t r e q u i r e s a h i g h l y s o l u b l e s u b s t a n c e ( " m i n e r a l i z e r " ) t o t r a n s p o r t s p a r i n g l y s o l u b l e c o m p o u n d s a n d a l s o p a r t i c i p a t e i n t h e c r y s t a l g r o w t h . H y d r o t h e r m a l s y n t h e s i s , i n c o n t r a s t t o t h e c o n v e n t i o n a l s y n t h e t i c m e t h o d s , o f f e r s a n u m b e r o f a d v a n t a g e s s u c h a s : 1 . G r o w t h o f e x t r e m e l y p u r e a n d l a r g e c r y s t a l s o f s o m e t e c h n o l o g i c a l l y i m p o r t a n t m a t e r i a l s ( e g Q u a r t z , K T P , e t c . ) 2 . G r o w t h o f s i n g l e c r y s t a l s o f s p a r i n g l y s o l u b l e c o m p o u n d s . 3 . S t a b i l i z a t i o n o f m e t a l o x i d a t i o n s t a t e s d i f fi c u l t t o m a i n ” . 4 . S t a b i l i z a t i o n o f l o w - t e m p e r a t u r e p h a s e s “ . 5 . S y n t h e s i s o f n e w m e t a - s t a b l e c o m p o u n d s . D e s p i t e t h e i n v a l u a b l e c o n t r i b u t i o n o f h y d r o t h e r m a l t e c h n i q u e s i n i m p o r t a n t a r e a s s u c h a s z e o l i t e s y n t h e s i s ” , q u a r t z 5 3 a n d p o t a s s i u m t i t a n y l p h o p h a t e s 5 4 ( K T P ) c r y s t a l g r o w t h , a n d s y n t h e s i s o f o t h e r i n t e r e s t i n g o x i d e s ” , t h e a p p l i c a t i o n o f t h i s p r o c e s s t o p r e p a r e m e t a l c h a l c o g e n i d e s i s r a r e i n t h e l i t e r a t u r e , e x c e p t w i t h s o m e n o t a b l e e x a m p l e s “ . H y d r o t h e r m a l a n d m e t h a n o t h e r m a l c o n d i t i o n s u s i n g C 0 3 2 ' a n d O H ' a s m i n e r a l i z e r s w e r e u s e d b y S h e l d r i c k a n d c o w o r k e r s t o d i g e s t s u l f i d e s a n d s e l e n i d e s o f m a i n g r o u p m e t a l s t o y i e l d a n u m b e r o f n e w t e r n a r y m e t a l c h a l c o g e n i d e p h a s e s “ . F u r t h e r m o r e . s u l fi d e n e w m e t h o d s s i r c o m p o u n d s t W e S ] i n s t e a d , a s p o l y c h a l c o g e s h o w n b y I s u c c e s s f u l l y m e t a l p o l e x p l o r e d h a n d 5 5 5 2 - c o n d i t i o n s 1 r e a c t i o n m P O I y s e l e n i d e s Y I I t h c t i c a m e t a l s i n I i 1 1 F u r t h e r m o r e , B e d a r d e t a l . r e c e n t l y r e p o r t e d t h a t n o v e l g e r m a n i u m - s u l f i d e n e t w o r k s t r u c t u r e s c o u l d b e s y n t h e s i z e d b y h y d r o t h e r m a l m e t h o d s s i m i l a r t o t h o s e u s e d f o r z e o l i t e s “ . M o s t o f t h e s e c o m p o u n d s c o n t a i n m o n o c h a l c o g e n i d e ~ l i g a n d s . W e s p e c u l a t e d t h a t i f p o l y c h a l c o g e n i d e l i g a n d s w e r e u s e d i n s t e a d , a s m i n e r a l i z e r s a s w e l l a s r e a g e n t s , n e w p h a s e s c o n t a i n i n g p o l y c h a l c o g e n i d e l i g a n d s m a y b e a c c e s s i b l e . R e c e n t l y , i t h a s b e e n s h o w n b y o u r g r o u p t h a t h y d r o t h e r m a l s y n t h e s i s c a n b e a p p l i e d s u c c e s s f u l l y t o t h e p r e p a r a t i o n o f s o m e n o v e l t e r n a r y t r a n s i t i o n m e t a l p o l y c h a l c o g e n i d e 8 5 7 v 5 8 . I n e x t e n d i n g t h i s n e w a p p r o a c h w e e x p l o r e d h y d r o t h e r m a l r e a c t i o n s b e t w e e n g r o u p I I I - A m e t a l h a l i d e s a n d S e 5 2 ' l i g a n d s i n v a r i o u s r a t i o s . W e m o d i f i e d t h e r e a c t i o n c o n d i t i o n s b y t h e a d d i t i o n o f d i f f e r e n t o r g a n i c c o u n t e r i o n s t o t h e r e a c t i o n m e d i a a n d w e r e s u c c e s s f u l i n s y n t h e s i z i n g n e w m e t a l p o l y s e l e n i d e c o m p l e x e s w i t h u n p r e c e d e n t e d s t r u c t u r a l f e a t u r e s . T h i s s y n t h e t i c a p p r o a c h i s v e r y g e n e r a l a n d c a n b e a p p l i e d t o o t h e r m e t a l s i n t h e p e r i o d i c t a b l e . . M o l e c u l a r A p p r o a c h t o S o l i d S t a t e M a t e r i a l s T h e m o l e c u l a r a p p r o a c h t o s o l i d s t a t e c h e m i s t r y i s c u r r e n t l y a n a r e a o f i n t e n s e i n v e s t i g a t i o n ” . T h e d r i v i n g f o r c e i s a n e v e r i n c r e a s i n g n e e d t o p r o d u c e b e t t e r m a t e r i a l s f o r e l e c t r o n i c s a n d O p t o e l e c t r o n i c s a p p l i c a t i o n s , w i t h i m p r o v e d p r o p e r t i e s a n d u n d e r m i l d c o n d i t i o n s “ ) . C o m p a r e d t o t h e e x t e n s i v e i n v e s t i g a t i o n s i n t o t h e c h e m i s t r y o f m o l e c u l a r p r e c u r s o r m a t e r i a l s f o r t h e s y n t h e s i s o f m e t a l o x i d e C C I E I i n t h e a r e : i n v o l v i n g I s u l f i d e s a r e o n v o l a t i l d e p o s i t i o n 1 l o w t e m p e b i n a r y l I - ' m e t a l - c h a l c p r o d u c i n g e x t r e m e l y s y n t h e s i z e t h u s i t W t I a b r i c a t e c b y M 0 0 D O I Y C h a l c o g 1 2 o x i d e c e r a m i c s a n d s e m i c o n d u c t o r s , l i t t l e w o r k h a s b e e n c a r r i e d o u t i n t h e a r e a o f c h a l c o g e n i d e s o l i d s t a t e m a t e r i a l s 5 0 - 5 1 , p a r t i c u l a r l y i n v o l v i n g t h e h e a v i e r c h a l c o g e n s ” . O f t h e m o l e c u l a r c h a l c o g e n i d e s , s u l fi d e s a r e t h e m o s t s t u d i e d . T h e w o r k o n s u l fi d e s h a s c o n c e n t r a t e d o n v o l a t i l e s p e c i e s p r i m a r i l y f o r m e t a l - o r g a n i c c h e m i c a l v a p o r d e p o s i t i o n ( M O C V D ) e . g s y n t h e s i s o f Z n S , C d S ‘ S 3 a n d T i S 2 5 4 a n d o n t h e l o w t e m p e r a t u r e s o l u t i o n s y n t h e s i s o f q u a n t u m - s i z e c r y s t a l l i t e s o f b i n a r y I I - V I a n d I I I - V m a t e r i a l s “ . T h e v o l a t i l i t y o f m o l e c u l a r m e t a l - c h a l c o g e n i d e s d e c r e a s e s r a p i d l y f r o m S t o T e . T h e t a s k o f p r o d u c i n g s t a b l e v o l a t i l e M / Q ( Q = S e , T e ) c o m p o u n d s f o r M O C V D i s e x t r e m e l y d i f f i c u l t . O n t h e c o n t r a r y i t i s c o n s i d e r a b l y e a s i e r t o s y n t h e s i z e p u r e n o n - v o l a t i l e c o m p l e x e s o f m e t a l - c h a l c o g e n i d e s , a n d t h u s i t w o u l d b e h i g h l y d e s i r a b l e i f m e t h o d s w e r e d e v e l o p e d t o f a b r i c a t e c h a l c o g e n i d e f i l m s o f c o m p a r a b l e q u a l i t y t o t h o s e o b t a i n e d b y M O C V D . T h e p r o p e r t i e s o f m o l e c u l a r b i n a r y m e t a l - p o l y c h a l c o g e n i d e a n i o n s w i t h a v a r i e t y o f m e t a l s a n d c h a l c o g e n s a r e n o w b e g i n n i n g t o b e e x p l o r e d . T h e i r p o t e n t i a l a s p r e c u r s o r s f o r t h e l o w t e m p e r a t u r e d e p o s i t i o n o f c o r r e s p o n d i n g s e m i c o n d u c t i n g c h a l c o g e n i d e s h a d n o t b e e n e x p l o r e d . M e t a l p o l y c h a l c o g e n i d e s a r e s t a b l e , e a s y t o p r e p a r e a n d h a n d l e a n d d o n o t s u f f e r f r o m o d o r p r o b l e m s a s s o m e s e l e n i u m a n d t e l l u r i u m r e a g e n t s c a n . T h e s o l u b l e b i n a r y m e t a l p o l y c h a l c o g e n i d e s c a n , u n d e r a p p r o p r i a t e c o n d i t i o n s , b e e x c e l l e n t p y r o l y t i c 3 4 , a s w e l l a s l o w t e m p e r a t u r e n o n - p y r o l y t i c m o l e c u l a r p r e c u r s o r s t o b i n a r y a n d t e r n a r y s o l i d s t a t e s e m i c o n d u c t o r f i l m s a n d i n t h e n a n o m e t e r - s i z e o r b u l k f o r m , r e s p e c t i v e l y , h a v e b e e n d e m o n s t r a t e d i n t h i s d i s s e r t a t i o n . C o o r d i n a t i o . l n d i u S e l e n i T h e i r f o r a l o n g s r r u c t u r a l l y c o m p l e x e s . f o r m a d d u c N o v e l e l e c t r e t a l . f o r t ‘ t h e r e o n l y ( P h 4 P ) [ B r l n w e r e s y n t h t a l k a l i m e t a l m e t h a n o l . c o m p l e x e s S i m i l . c h a r a c l e l ' l Z e a n d [ T 1 8 ( I C O H S I S i i n g a n i O n i c U n i t h e C X I C n d S h o w n i n d e s c r i b e d 1 3 I n d i u m a n d T h a l l i u m C h e m i s t r y w i t h S u l f u r a n d S e l e n i u m l i g a n d s T h e i n d i u m a n d t h a l l i u m t h i o l a t e c h e m i s t r y h a s b e e n s t u d i e d f o r a l o n g t i m e b u t s u r p r i s i n g l y v e r y f e w c o m p o u n d s h a v e b e e n s t r u c t u r a l l y c h a r a c t e r i z e d t o r e m o v e a m b i g u i t y a b o u t t h e s e c o m p l e x e s . I t h a s b e e n w e l l e s t a b l i s h e d t h a t t h i o e t h e r s a n d t h i o u r e a f o r m a d d u c t s w i t h i n d i u m t r i h a l i d e s i n v a r i o u s s t o i c h i o m e t r i e s 5 5 . N o v e l e l e c t r o c h e m i c a l m e t h o d s h a v e b e e n r e p o r t e d r e c e n t l y b y T u c k e t a l . f o r t h e s y n t h e s i s o f i n d i u m a n d t h a l l i u m t h i o l a t e s “ . T o d a t e t h e r e o n l y t w o m o n o d e n t a t e t h i o l a t e s s t r u c t u r a l l y c h a r a c t e r i z e d : ( P h a P ) [ B r I n ( S P h ) 3 ] 6 7 a n d ( P h 4 P ) [ I n ( S t B u ) 4 ] . M e O H 6 3 . T h e c o m p l e x e s w e r e s y n t h e s i z e d b y t h e r e a c t i o n o f I n C 1 3 w i t h t h e c o r r e s p o n d i n g a l k a l i m e t a l t h i o l a t e ( N a S R ) i n t h e p r e s e n c e o f ( P h 4 P ) + c a t i o n s i n m e t h a n o l . T h e s t r u c t u r e s a r e s h o w n i n F i g u r e 1 . 1 . B o t h t h e c o m p l e x e s a r e m o n o n u c l e a r a n d c o n t a i n i n d i u m i n t e t r a h e d r a l c o o r d i n a t i o n . S i m i l a r l y , t h e r e a r e o n l y t w o t h a l l i u m ( I ) t h i o l a t e s s t r u c t u r a l l y c h a r a c t e r i z e d a n d w e r e r e c e n t l y r e p o r t e d b y K r e b s e t a l . 6 9 : T l ( S P h ) a n d [ T l g ( S t B u ) 3 ] . T l ( S P h ) h a s a r e m a r k a b l e p o l y m e r i c s t r u c t u r e c o n s i s t i n g o f t w o c a g e l i k e u n i t o f [ T 1 5 ( S P h ) 6 ] ' a n d [ T ' l 7 ( S P h ) 5 ] + . E a c h a n i o n i c u n i t i s c o u p l e d t o t h r e e c a t i o n i c u n i t a n d v i c e v e r s a t o f o r m t h e e x t e n d e d s t r u c t u r e . T h e s t r u c t u r e o f t h e t w o u n i t s i n T l ( S P h ) a r e s h o w n i n F i g u r e 1 . 2 . [ T 1 5 ( S P h ) 5 ] ' h a s a C 3 s y m m e t r y a n d c a n b e d e s c r i b e d a s a d i s t o r t e d o c t a h e d r a l a r r a y o f s u l f u r a t o m s i n w h i c h f i v e o f t h e e i g h t f a c e s o f t h e o c t a h e d r o n a r e b r i d g e d b y t r i g o n a l p [ o b o s d y 1 c r f u i r 1 t a 7 m ( i 3 d P a h a h e d r i d g t f t h o u r l s e e d s e a r t e d l ) S l 6 y C n o o b t y l \ r m t e x t e n d e d p 1 T 1 8 ( o c t a n u c l e a r m o l e c u l e C t C o r n e r s a r e m i s s i n g . T a t o m s i n a m t m b e r e d S U I ) u n i t s a l 4 p y r a m i d a l l y c o o r d i n a t e d t h a l l i u m a t o m s . I n a s i m i l a r l y w a y [ T l 7 ( S P h ) 5 ] + a l s o h a s a C 3 s y m m e t r y a n d c o n t a i n s a n a l m o s t r e g u l a r o c t a h e d r o n o f s u l f u r a t o m s i n w h i c h s e v e n o f t h e e i g h t f a c e s a r e b r i d g e d b y t r i g o n a l p y r a m i d a l l y c o o r d i n a t e d t h a l l i u m a t o m s . T h r e e o f t h e s e s e v e n T l a t o m s o f [ T l 7 ( S P h ) 5 ] + h a v e a n a d d i t i o n a l b o n d t o a s u l f u r a t o m o f t h e n e i g h b o r i n g [ T 1 5 ( S P h ) 5 ] ' u n i t , t h u s g e n e r a t i n g a d i s t o r t e d t r i g o n a l b i p y r a m i d a l c o o r d i n a t i o n f o r T l ( 6 ) a t o m s a n d a n e x t e n d e d p o l y m e r i c s t r u c t u r e . [ T l g ( S t B u ) 3 ] h a s a n o v e l s t r u c t u r e c o n s i s t i n g o f i s o l a t e d o c t a n u c l e a r m o l e c u l e s a s s h o w n i n F i g u r e 1 . 3 . T h e c e n t r o s y m m e t r i c m o l e c u l e c o n s i s t s o f t w o c u b a n e l i k e [ T l 3 ( S t B u ) 4 ] s u b u n i t s w h o s e c o r n e r s a r e a l t e r n a t e l y o c c u p i e d b y T 1 a n d S w i t h o n e ( T l ) c o r n e r m i s s i n g . T h e t w o h a l v e s a r e c o u p l e d t o g e t h e r v i a t w o a d d i t i o n a l T l a t o m s i n a d i s t o r t e d t r i g o n a l p y r a m i d a l c o o r d i n a t i o n . a n d f o r m s a f o u r m e m b e r e d T 1 2 8 2 r i n g c o r e . T h e t h a l l i u m a t o m s i n t h e c u b a n e l i k e s u b u n i t s a r e i n t r i g o n a l p y r a m i d a l c o o r d i n a t i o n . T h e s e t w o t h i o l a t e s h a v e n o c o u n t e r p a r t s i n t h e p o l y n u c l e a r m e t a l l i g a n d s y s t e m s . F i g u r e 1 . . { P h ‘ i p i l B r 1 5 ( A ) ( B ) g , r \ , C f ‘ O 8 4 F i g u r e 1 . 1 O r t e p r e p r e s e n t a t i o n o f t h e a n i o n s i n ( A ) ( P h 4 P ) [ B r I n ( S P h ) 3 ] ( f r o m r e f 6 7 ) a n d ( B ) ( P h 4 P ) [ I n ( S t B u ) 4 ] . M e O H ( A ) F i g u r e 1 _ 2 t h e 1 1 9 0 C g r o u p s o f 1 6 ( A ) ( B ) F i g u r e 1 . 2 S t r u c t u r e o f t h e ( A ) [ 1 1 5 ( S P h ) 5 ] ' a n d ( B ) [ ' I ‘ l 7 ( S P h ) ( 5 ] + t h e t w o c a g e s c o n s t i t u t i n g t h e s t r u c t u r e o f T l ( S P h ) . T h e p h e n y l g r o u p s o f t h e S P h l i g a n d s h a v e b e e n o m i t t e d . ( F r o m r e f 6 9 ) T i t : “ 8 9 1 : 1 . 3 ( e n - b u t y l 1 1 7 F i g u r e 1 . 3 S t r u c t u r e o f t h e o c t a n u c l e a r [ T 1 3 ( S t B u ) 3 ] w i t h t h e t e r t - b u t y l g r o u p s o f t h e S t B u l i g a n d s o m i t t e d ( F r o m r e f 6 9 ) . b o u n d t o t h A v e p t h i o l a t e s a n p l i k e c a g e s l A l a r g e n u l o n l y r e c e n t r e p o r t e d ( F l d o u b l y a n d c o m p l e x e s K r e b s i n C o n c e n t r n o v e l c o m p C o I T l p l e x e s i d e a l i z e d " [ 1 S Y n t l i C h a l c o g t n i d p r e p a r e d f t a k j n g a n s t o i c h i O m e t P h a s e ) h a v 1 8 A v e r y c h a r a c t e r i s t i c s t r u c t u r a l f e a t u r e o f t h e d 1 0 m e t a l t h i o l a t e s a n d s u l f i d e - t h i o l a t e s i s t h e i r t e n d e n c y t o f o r m a d a m a n t a n e - l i k e c a g e s v i a p a r a l l e l v e r t e x - l i n k e d c o n d e n s a t i o n o f M 8 4 t e t r a h e d r a . A l a r g e n u m b e r o f Z n a n d C d c o m p l e x e s h a v e b e e n s y n t h e s i z e d 7 0 o n l y r e c e n t l y t h e f i r s t I n d i u m a n a l o g y [ I n 1 0 8 1 5 ( S P h ) 4 ] 5 ‘ - 7 1 w a s r e p o r t e d ( F i g u r e 1 . 4 ) . T h e c o m p l e x c o n t a i n s t e t r a h e d r a l I n 3 + w i t h d o u b l y a n d t r i p l y b r i d g i n g 8 2 ’ l i g a n d s c o n s t i t u t i n g t h e c o r e o f t h e c o m p l e x e s w i t h t h e f o u r ( S P h ) l i g a n d s a r e t e r m i n a l m o n o d e n t a t e s b o u n d t o t h e I n a t o m s a t f o u r v e r t i c e s o f t h e a d a m a n t o i d u n i t . K r e b s e t a l . 7 2 h a v e e m p l o y e d n u c l e o p h i l i c d e g r a d a t i o n o f I n 2 S 3 i n c o n c e n t r a t e d a q u e o u s a l k a l i m e t a l s u l fi d e s o l u t i o n s t o s y n t h e s i s a n o v e l c o m p l e x [ I n 4 S 1 o ] 3 ' a s w e l l a s a n a l o g o u s s e l e n o c o m p o u n d . T h e c o m p l e x e s c o n t a i n a d a m a n t i n e l i k e s t r u c t u r e s a n d h a v e a l m o s t i d e a l i z e d T d s y m m e t r y , a s s h o w n i n F i g u r e 1 . 5 . S y n t h e t i c e f f o r t s h a v e b e e n m a d e i n t h e p r e p a r a t i o n o f t e r n a r y c h a l c o g e n i d e s o f i n d i u m a n d t h a l l i u m . T h e s e c o m p o u n d s a r e u s u a l l y p r e p a r e d f r o m h i g h t e m p e r a t u r e m e l t s o r s o l i d s t a t e r e a c t i o n s b y t a k i n g a m i x t u r e o f t h e e l e m e n t a l f o r m o f t h e e l e m e n t s i n t h e r i g h t s t o i c h i o m e t r y . N a I n S 2 7 3 , N a I n S e 2 7 3 a s w e l l a s K I n S 2 7 4 ( h i g h p r e s s u r e p h a s e ) h a v e b e e n s h o w n t o b e l o n g t o t h e c t - N a F e O 2 s t r u c t u r e t y p e w i t h o c t a h e d r a l c o o r d i n a t i o n o f I n . K I n S 2 a n d R b 1 n 8 2 a r e i s o t y p i c t o T l S e c o n s i s t i n g o f o n e d i m e n s i o n a l c h a i n s o f e d g e s h a r i n g I n S 4 t e t r a h e d r a 7 4 . S u r p r i s i n g l y , K I n S e 2 7 5 s h o w s a n o v e l l a y e r e d s t r u c t u r e i n w h i c h a d a m a n t a n e - l i k e I n 4 S e 1 0 g r o u p s a r e l i n k e d t w o d i m e n s i o n a l l y v i a c o r n e r s ( F i g u r e 1 . 5 ) . F i g u r e 1 . 4 l E l t N ) 6 [ 1 n j i 1 9 s u e ) ' a , 5 1 1 5 1 I n t e l F i g u r e 1 . 4 S t r u c t u r e o f [ I n 1 0 8 1 6 ( S P h ) 4 ] 5 ' i n t h e c r y s t a l s o f ( E t 4 N ) 5 [ I n 1 ( ) S 1 5 ( S P h ) 4 ] . M e O H . ( F r o m r e f 7 0 ) 2 0 ( C ) M m s . ( D ) R e t h z s s 0 1 0 0 5 . D F i g u r e 1 . 5 S t r u c t u r e s o f ( A ) a d a m a n t i n e - l i k e a n i o n [ I n 4 S 1 0 ] 3 ' , ( B ) t h e l a y e r e d K I n S e z , ( C ) t h e d i m e r i c R b 6 1 n 2 S 6 a n d ( D ) t h e o n e d i m e n s i o n a l R b 4 I n 2 $ 5 a n d R b 4 I n 2 8 e 5 ( F r o m r e f 1 4 g ) . R b t s 1 u n c o n v e n t i m o n s e l e n i e d g e S h a r i : u n i t s l i n k e s h o w n i n l H O W t w i t h m a i n i n v e s t i g a t i c w i t h i n d i u r i n v e s t i g a t i c S y n t h e s i z e d T 1 3 6 a n d S l ' n t h e t i c r . S O l V e n t a n c o u l d p 0 5 8 . 1 “ t h i s d i s S P C C I I O S C Q K p O l y C h a I C O 1 s o l i d S t a t e 2 1 R b 5 1 n 2 S 5 , R b 4 I n 2 8 5 a n d R b 4 I n 2 S e 5 w e r e s y n t h e s i z e d b y a n u n c o n v e n t i o n a l r e a c t i o n o f r u b i d i u m w i t h i n d i u m m o n o s u l f i d e o r m o n s e l e n i d e 7 5 . R b 5 1 n 2 S 5 c o n s i s t s o f a d i m e r i c I n 2 8 5 o b t a i n e d b y e d g e s h a r i n g I n S 4 t e t r a h e d r a . R b 4 I n 2 S 5 c o n t a i n s t h e s e d i m e r i c I n 2 S ( , u n i t s l i n k e d t o f o r m o n e d i m e n s i o n a l c h a i n s b y c o m e r - s h a r i n g a s s h o w n i n F i g u r e 1 . 5 . H o w e v e r , t h e s c a r c i t y o f r e p o r t s o n p o l y c h a l c o g e n i d e c o m p l e x e s w i t h m a i n g r o u p m e t a l s , p r o m p t e d u s t o u n d e r t a k e a s y s t e m a t i c i n v e s t i g a t i o n i n t o t h e s y n t h e s i s o f n e w p o l y c h a l c o g e n i d e c o m p l e x e s w i t h i n d i u m a n d t h a l l i u m u s i n g v a r i o u s s y n t h e t i c t e c h n i q u e s . I n o u r i n v e s t i g a t i o n w e f o u n d t h a t t h e n e w m e t a l p o l y s e l e n i d e c o m p l e x e s s y n t h e s i z e d , a r e e x c e l l e n t p r e c u r s o r s t o s e m i c o n d u c t i n g I n 2 S e 3 , I n S e , T l S e a n d C u I n S e 2 . I n t h e c o u r s e o f o u r r e s e a r c h w e o p e n e d a n e w s y n t h e t i c r o u t e b y u t i l i z i n g o r g a n i c c a t i o n p o l y c h a l c o g e n i d e f l u x e s a s s o l v e n t a n d r e a g e n t t o p r e p a r e n e w m a t e r i a l s , a n d t h i s t e c h n i q u e c o u l d p o s s i b l y l e a d t h e w a y t o m i c r o p o r o u s m e t a l p o l y c h a l c o g e n i d e s . I n t h i s d i s s e r t a t i o n w e p r e s e n t t h e s y n t h e s i s , s t r u c t u r a l a s w e l l a s s p e c t r o s c o p i c c h a r a c t e r i z a t i o n o f s o m e n e w i n d i u m a n d t h a l l i u m p o l y c h a l c o g e n i d e s a n d t h e i r p o t e n t i a l a p p l i c a t i o n s a s p r e c u r s o r s t o s o l i d s t a t e m a t e r i a l s . ( a ) A n S c i e n t ’ ( 3 ) S i t 1 9 8 9 . ( a r s e C h e n : S n o h n S m i t h . ( a ) K r l E . N a . A . \ V . ( a ) S S e m i c P e r g a S P I E - ( a ) O 1 9 8 8 7 J p n . . ' R e v i e ( a ) ( q H o l m G . - I : ( a ) U n i v 1 9 5 - L I S T O F R E F E R E N C E S ( a ) A m a t o , I S c i e n c e 1 9 9 1 , 2 5 2 , 6 4 4 - 6 4 6 . ( b ) D i S a l v o , F . J . S c i e n c e 1 9 9 0 , 2 4 : 2 , 6 4 9 - 6 5 5 . ( a ) S l e i g h t , A . W . S c i e n c e 1 9 8 8 , 2 4 2 , 1 5 1 9 . ( b ) P o o l , R . i b i d 1 9 8 9 , 2 4 4 , 9 1 4 ( a ) N e n o f , T . M . ; H a r r i s o n , W . T . A . ; G i e r , T . E . ; S t u c k y , G . D . J . A m . C h e m . S o c . 1 9 9 1 , i l l , 3 7 8 - 3 7 9 . ( b ) H a u s h a l t e r , R . C . ; S t r o h m a i r , K . G . ; L a i , F . W . S c i e n c e 1 9 8 9 , 2 3 4 , 1 2 8 9 - 1 2 9 1 . ( c ) S m i t h , J . V . C h e m . R e v . 1 9 8 8 , 8 8 , 1 4 9 - 1 8 2 . ( a ) K r o t o , H . W . ; H e a t h , J . R . ; O ' B r i e n , S . C . ; C u r l , R . F . ; S m a l l e y , R . E . N a t u r e ( L o n d o n ) 1 9 8 5 , 1 1 8 , 1 6 2 - 1 6 3 . ( b ) K r o t o , H . W . ; A l l a f , A . W . ; B a l m , S . P . C h e m . R e v . 1 9 9 1 , 2 1 , 1 2 1 3 - 1 2 3 5 . ( a ) S h a y , J . L . ; W e r n i c k , J . H . I n T e r n a r y C h a l c o p y r i t e S e m i c o n d u c t o r s : G r o w t h , E l e c t r o n i c P r o p e r t i e s a n d A p p l i c a t i o n ; P e r g a m o n P r e s s : E l m s f o r d , N Y , 1 9 7 5 . ( b ) M e a k i n , J . D . P r o c . S P l E - I n t . S o c . O p t . E n g . 1 9 8 5 , 1 1 1 8 , 5 4 3 . ( a ) O i k k o n e n , M . ; T a m m e n m a a , M . ; A s p l u n d , M . M a t . R e s . B u l l . 1 9 8 8 , 2 8 , 1 3 3 - 1 4 2 . ( b ) Y a m a g a , S . ; Y o s h i k a w a , A . ; K a s a i , H . J p n . J . A p p l . P h y s . 1 9 8 7 , 2 6 , 1 0 0 2 . ( c ) F o n a s h , S . J . C R C C r i t i c a l ‘ R e v i e w s i n S o l i d S t a t e a n d M a t e r i a l s S c i e n c e 1 9 8 0 , 2 , 1 0 7 . ( a ) C h i a n e l l i , R . R . C a t a l . R e v - S c i . E n g . 1 9 8 4 , 2 _ 6 _ , 3 6 1 - 3 9 3 . ( b ) H o l m , R . H . ; S i m h o n , E . D . i n " M o l y b d e n u m E n z y m e s " ; S p i r o , T . 6 . ; E d . ; W i l y - I n t e r s c i e n c e : N Y , 1 9 8 5 ; C h a p t e r 1 . ( a ) S m i t h , R . A . i n " S e m i c o n d u c t o r s " p p . 4 3 8 , C a m b r i d g e U n i v e r s i t y P r e s s , 1 9 7 8 . ( b ) B a r t l e t t , B . E . e t a 1 . I n f r a r e d P h y s . 1 9 6 9 , 2 , 3 5 . K u n , Z . K . S o l i d S t a t e T e c h n o l o g y 1 9 8 8 , 3 _ l _ , L 7 7 - 7 9 . 2 2 L . 1 0 . 1 1 . 1 2 . 1 3 . 1 4 . 1 5 . 1 6 . 1 7 . 2 3 B a l l m a n , A . A . ; B y e r , R . L . ; E i m e r l , D . ; F e i g e l s o n , R . S . ; F e l d m a n , B . J . ; G o l d b e r g . L . S . ; M e n y u k , N . ; T a n g , C . L . A p p l i e d O p t i c s 1 9 8 7 , 2 5 , , 2 2 4 - 2 2 7 . ( a ) T u t t l e , J . R . ; A l b i n , D . S . ; N o u f i , R . S o l a r C e l l s 1 9 8 9 , 2 1 , 2 3 1 - 2 3 6 . ( b ) Z e i b e l , K . " T h e P o t e n t i a l o f C u I n S e 2 a n d C d T e f o r S p a c e A p p l i c a t i o n s . 2 3 r d I n t e r s o c i e t y E n e r g y C o n v e r s i o n E n g i n e e r i n g C o n f e r e n c e " V o l . 3 G o s w a m i , D . Y . ( E d ) , A S M E , 1 9 8 8 , p p 9 7 - 1 0 2 . ( c ) M i c k e l s e n , R . A . ; C h e n , W . S . i n ” T e r n a r y a n d M u l t i n a r y C o m p o u n d s , " P r o c e e d i n g s o f t h e 7 t h C o n f e r e n c e , D e b , S . K . a n d l o n g e r , A . E d s . , M a t e r i a l s R e s e a r c h S o c i e t y . 1 9 8 7 , p p . 3 9 - 4 7 . ( ( 1 ) S t e w a r d , J . M . ; C h e n , W . S . ; D e v a n e y , W . E . ; M i c k e l s e n , R . A . D e b , S . K . a n d Z u n g e r , A . E d s . , M a t e r i a l s R e s e a r c h S o c i e t y , 1 9 8 7 , p p . 5 9 - 6 4 . ( a ) R o u x e l , J . ; B r e c , R . A n n u . R e v . M a t e r . S c i . 1 9 8 6 , 2 6 , 1 3 7 . ( b ) W h i t t i n g h a m , M . ; T a m m e n m a a , M . ; A s p l u n d , M . M a t . R e s . B u l l . 1 9 8 8 , 2 1 , 1 3 3 - 1 4 2 . ( c ) W h i t t i n g h a m , M . S . S c i e n c e 1 9 7 6 , ] _ 9 _ 2 _ , 1 1 2 5 . ( d ) W h i t t i n g h a m , M . S . J . S o l i d S t a t e C h e m . 1 9 7 9 , 2 2 , 3 0 3 - 3 1 0 . ( a ) T h e S o d i u m - S u l f u r B a t t e r y , S u d w o r t h , J . L . ; T i l l e y , A . R . , E d s . C h a p m a n & H a l l : L o n d o n , N e w Y o r k , 1 9 8 5 . ( b ) F i s c h e r , W . M a t . R e s . S o c . S y m p . P r o c . 1 9 8 9 , 1 8 ; , 5 4 1 - 5 5 1 . ( c ) P o w e r s , R . W . ; K a r a s , B . R . J . E l e c t r o c h e m . S o c . 1 9 8 9 . 1 1 6 , 2 7 8 7 - 2 7 9 3 . ( a ) K a n a t z i d i s , M . G . C o m m e n t s I n o r g . C h e m . 1 9 9 0 , 1 9 , 1 6 1 - 1 9 5 . ( b ) A n s a r i , M . A . ; I b e r s , J . A . I I n o r g . C h e m . . 1 9 8 9 , 2 8 , 4 0 6 8 - 4 0 6 9 . ( c ) K o l i s , J . W . C o o r d . C h e m . R e v . 1 9 9 0 , L 0 5 , 1 9 5 - 2 1 9 . ( d ) M i i l l e r , A ; D i e m a n n , E . A d v . I n o r g . C h e m . R a d i o c h e m . 1 9 8 7 , 3 _ 1 _ , 8 9 - 1 2 2 . ( e ) M i i l l e r , A . P o l y h e d r o n 1 9 8 6 . 1 , 3 2 3 - . 3 4 0 . ( f ) D r a g a n j a c , M . ; R a u c h f u s s , T . B . A n g e w . C h e m i e . I n t . E d . E n g l . 1 9 8 5 , 2 3 , 7 4 2 - 7 5 7 . ( g ) K r e b s , B A n g e w . C h e m i e . I n t . E d . E n g l 1 9 8 3 , 2 2 , 1 1 3 - 1 3 4 . ( a ) C o u c o u v a n i s , D . A c c . C h e m . R e s . 1 9 8 1 , 1 4 , 2 0 1 - 2 0 9 ( b ) C o u c o u v a n i s , D . A c c . C h e m . R e s . 1 9 9 1 , 2 5 , 1 - 8 S u b b a R a o , G . V . ; S h a f e r , M . W . i n " I n t e r c a l a t e d L a y e r e d M a t e r i a l s " ; L e v y , F . E d . R e i d e l P u b l i s h i n g C o . , p . 1 2 2 . M a r b a c k , G . ; S t r a h l e , J . A n g e w . C h e m i e . I n t . E d . E n g l . 1 9 8 4 , 2 2 , 2 4 6 . ( b ) M i i l l e r , A . ; R o m e r , M . ; B o g g e , H . ; K r i c k e m e y e r , E . ; ‘ F l o m t Z i m m e ( a ) A n ! I . A . I t D e h n i c K a n a t z A n g e l : K . Z . . B a n d a . P o l y h e S t r a s d « L 1 1 - L W a r d l l l C h e m W a r d l l 9 8 7 . ‘ C h a n , 2 7 4 0 ' I “ l o r ' n e A . W 1 7 0 3 H a u s l 4 3 5 . 3 6 8 3 H a u s l ( a ) 1 8 . 1 9 . 2 0 . 2 1 . 2 2 . 2 3 . 2 4 . 2 5 . 2 6 . 2 7 . 2 8 . 2 9 . 3 0 . 2 4 Z i m m e r m a n n , M . Z . A n o r g . A l l g . C h e m . 1 9 8 6 , 5 . 3 3 . . 6 9 - 7 6 . ( a ) A n s a r i , M . A . ; M a h l e r , C . H . ; C h o r g h a d e , G . S . ; L u , Y . - J . ; I b e r s , J . A . I n o r g . C h e m . 1 9 9 0 , 2 2 , 3 8 3 2 - 3 8 3 9 . ( b ) A d e l , J . ; W e l l e r , E . ; D e h n i c k e , K . Z . N a t u r f o r s c h . 1 9 8 8 , 4 . 3 . 3 . . 1 0 9 4 - 1 1 0 0 . ( c ) K a n a t z i d i s , M . G . A b s t r a c t s o f 1 9 6 t h A C S N a t i o n a l M e e t i n g , L o s A n g e l e s 1 9 8 8 , I N O R G 4 6 9 . ( d ) K r i i u t e r , G . ; W e l l e r , E . ; D e h n i c k e , K . Z . N a t u r f o r s c h . 1 9 8 9 , w , 4 4 4 - 4 5 4 . B a n d a , R . M . H . ; C u s i c k , J . ; S c u d d e r , M . L . ; C r a i g , D . C . ; D a n c e , I . G . P o l y h e d r o n 1 9 8 9 , 8 , 1 9 9 5 - 1 9 9 8 . S t r a s d e i t , H . ; K r e b s , B . ; H e n k e l , G . I n o r g . C h i m . A c t a 1 9 8 4 , 8 2 , L 1 1 - L 1 3 . W a r d l e , R . W . M . ; M a h l e r , C . H . ; C h a n , C . - N . ; I b e r s , J . A . I n o r g . C h e m . 1 9 8 8 , 2 1 , 2 7 9 0 - 2 7 9 5 . W a r d l e , R . W . M . ; C h a u , C . - N . ; I b e r s , J . A . J . A m . C h e m . S o c . 1 9 8 7 , 1 9 9 , 1 8 5 9 - 1 8 6 6 . C h a u , C . - N . ; W a r d l e , R . W . M . ; I b e r s , J . A . I n o r g . C h e m . 1 9 8 7 , 2 6 , 2 7 4 0 - 2 7 4 1 . F l o m e r , W . A . ; O ' N e a l , S . C . ; P e n n i n g t o n , W . T . ; J e t e r , D . ; C o r d e s , A . W . ; K o l i s , J . W . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 8 , _ 2 _ ] _ , 1 7 0 2 - 1 7 0 3 . H a u s h a l t e r , R . C . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 5 , 2 4 , 4 3 3 - 4 3 5 . , F l o m e r , W . A . ; K o l i s , J . W . J . A m . C h e m . S o c . 1 9 8 8 , 1 _ 1 _ 0 _ , 3 6 8 2 - 3 6 8 3 . H a u s h a l t e r , R . C . I n o r g . C h i m . A c t a 1 9 8 5 , . 1 9 2 , L 3 7 - L 3 8 . ( a ) K a n a t z i d i s , M . G . ; H u a n g , S . - P . I n o r g . C h e m . 1 9 8 9 , 2 8 , 4 6 6 7 - 4 6 6 9 . ( b ) H u a n g , S . - P . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 1 , 3 _ Q , 3 5 7 2 - 3 5 7 5 . K i m , K . - W . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 1 , 2 0 , 1 9 6 6 - 1 9 6 9 . M i i l l e r , U . ; H a - E i e r d a n z , M . ; K r a u t e r , G . ; D e h n i c k e , K . Z . 39. 3 3 . 3 5 . 3 6 . 3 7 . 3 8 . 4 0 . N a t u r } A n s a r i ( 3 ) H 1 2 , 1 3 1 C r a i g , ( 2 1 ) K : 7 6 0 - 7 4 E d . E G . [ m ( a ) D C h e m 0 ) ) D P e r s p P r o c . 8 . ; K M a t e r R e s . 1 K r a u s G i n s C o h e C u s i 1 . 1 ( a ) s 2 2 6 5 1 9 8 D u b . ( a ) ( b ) ( 1 9 7 C h e . 3 1 . 3 2 . 3 3 . 3 4 . 3 5 . 3 6 . 3 7 . 3 8 . 3 9 . 4 0 . 2 5 N a t u r f o r s c h . 1 9 9 0 , 2 1 2 , 1 1 2 8 - 1 1 3 2 . A n s a r i , M . A . ; I b e r s , J . A . I n o r g . C h e m . . 1 9 8 9 , 2 8 , 4 0 6 8 - 4 0 6 9 . ( a ) H u a n g , S . - P . ; D h i n g r a , S . ; K a n a t z i d i s , M . G . P o l y h e d r o n 1 9 9 0 , 2 , 1 3 8 9 - 1 3 9 5 . ( b ) B a n d a , R . M . H . ; C u s i c k , J . ; S c u d d e r , M . L . ; C r a i g , D . C . ; D a n c e , 1 . G . P o l y h e d r o n 1 9 8 9 , 8 , 1 9 9 9 - 2 0 0 1 . ( a ) K a n a t z i d i s , M . G . ; H u a n g , S . - P . J . A m . C h e m . S o c . 1 9 8 9 , 1 1 L , 7 6 0 - 7 6 1 . ( b ) K a n a t z i d i s , M . G . ; H u a n g , S . - P . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 9 , 2 8 , 1 5 1 3 - 1 5 1 4 . ( c ) H u a n g , S . - P . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 1 , 2 0 , , 1 4 5 5 - 1 4 6 6 . ( a ) D h i n g r a , S . ; K a n a t z i d i s M . G . i n ” B e t t e r C e r a m i c s T h r o u g h C h e m i s t r y I V " M a t . R e s . S o c . S y m p . P r o c . 1 9 9 0 , 1 8 1 1 , 8 2 5 - 8 3 0 . ( b ) D h i n g r a , S . ; K i m , K . - W . ; K a n a t z i d i s M . G . i n " C h e m i c a l P e r s p e c t i v e s i n M i c r o e l e c t r o n i c M a t e r i a l s " M a t . R e s . S o c . S y m p . P r o c . 1 9 9 1 , 2 9 A , 1 6 3 - 1 6 8 . ( c ) K i m , K . - W . ; C o w e n , J . A . ; D h i n g r a , S . ; K a n a t z i d i s M . G . i n " C h e m i c a l P r o c e s s e s i n I n o r g a n i c M a t e r i a l s : M e t a l a n d S e m i c o n d u c t o r C l u s t e r s a n d C o l l o i d s " M a t . R e s . S o c . S y m p . P r o c . 1 9 9 2 , i n p r e s s . ( ( 1 ) K i m , K . - W . ; K a n a t z i d i s M . G . w o r k i n p r o g r e s s . K r a u s e , R . A . ; K o z l o w s k i , A . W . ; C o r n i n , J . L . I n o r g . S y n t h . 1 9 8 2 , 2 L , 1 2 - 1 6 . G i n s b e r g , A . P . ; L i n n d s e l l , W . E . ; S p r i n r l e , C . R . ; W e s t , K . W . ; C o h e n , R . L . I n o r g . C h e m . 1 9 8 2 A 3 6 6 6 - 3 6 8 1 . C u s i k , J . ; S c d d e r , M . L . ; C r a i g , D . C . D a n c e , 1 . G . P o l y h e d r o n 1 9 8 9 , 8 , 1 1 3 9 - 1 1 4 1 . . ( a ) S h a r p , K . W . ; K o e h l e r , w . H . I n o r g . C h e m . 1 9 7 7 , 1 . 6 . . 2 2 5 8 - 2 2 6 5 . ( b ) S c h u l t z , L . D . ; K o e h l e r , W . H . I n o r g . C h e m . 1 9 8 7 , 2 _ 6 _ , 1 9 8 9 - 1 9 9 3 . D u b o i s , P . ; L e l i e u r , J . P . I n o r g . C h e m . 1 9 8 8 , 2 1 , 7 3 - 8 0 . ( a ) P i n o n , V . ; L e l i e u r , J . P . I n o r g . C h e m . 1 9 9 1 , 3 _ Q , 2 2 6 0 - 2 2 6 4 . ( b ) C o t t o n , F . A . ; H a r m o n , J . B . ; H e d g e s , R . M . J . A m . C h e m . S o c . 1 9 7 6 , 2 8 , 1 4 1 7 - 1 4 2 4 . ( c ) C h i v e r s , T . ; D r u m m o n d , I . I n o r g . C h e m . 1 9 7 2 , 1 _ 1 _ , 2 5 2 5 - 2 5 2 7 . 52. 4 1 . 4 2 . 4 3 . 1 . 4 . 4 6 4 7 . 4 8 . 4 9 . 5 0 . 5 1 . 5 3 . K a n a t 2 0 2 6 . ( a ) R : C h e n H a n g t A c a d c C h e m A . R . S o n s : ( 3 ) S c G a m e 4 1 . 4 2 . 4 3 . 4 4 . 4 5 . 4 6 . 4 7 . 4 8 . 4 9 . 5 0 . 5 1 . 5 2 . 5 3 . 2 6 K a n a t z i d i s , M . G . ; D h i n g r a , S . I n o r g . C h e m . 1 9 8 9 , 2 8 , 2 0 2 4 - 2 0 2 6 . ( a ) R a o , C . N . R . ; G o p a l l a k r i s h n a n , J . N e w D i r e c t i o n i n S o l i d S t a t e C h e m i s t r y ; C a m b r i d g e U n i v e r s i t y P r e s s : N Y , 1 9 8 6 . ( b ) H a n g e n m u l l e r , P . P r e p a r a t i v e M e t h o d s i n S o l i d S t a t e C h e m i s t r y ; A c a d e m i c P r e s s : N Y , 1 9 7 2 . ( c ) C o r b e t t , J . D . I n S o l i d S t a t e C h e m i s t r y ; C h e e t a m , A . K . ; D a y , P . E d s . ; O x f o r d , 1 9 8 7 . ( ( 1 ) W e s t , A . R . S o l i d S t a t e C h e m i s t r y a n d I t s A p p l i c a t i o n s ; J o h n W i l e y a n d S o n s : N Y , 1 9 8 4 . ( a ) S c h e e l , H . J . J . C r y s t . G r o w t h 1 9 7 3 , 2 0 , 3 8 - 4 6 . ( b ) S a n j i n e s , R . ; B e r g e r , H . ; L e v y , F . M a t . R e s . B u l l . 1 9 8 8 , 2 1 , 5 4 9 - 5 5 3 . ( c ) G a r n e r , R . W . ; W h i t e , W . B . J . C r y s t . G r o w t h 1 9 7 0 , 1 , 3 4 3 - 3 4 7 . ( a ) S u n s h i n e , 8 . A . ; K a n g , D . ; I b e r s , J . A . J . A m . C h e m . S o c . 1 9 8 7 , 1 2 2 , 6 2 0 2 - 6 2 0 4 . ( b ) K e a n e , P . M . ; L u , Y . - J . ; I b e r s , J . A . A c c . C h e m . R e s . 1 9 9 1 , 2 4 , 2 2 3 - 2 2 9 ( a n d r e f e r e n c e s t h e r e i n ) . ( a ) K a n a t z i d i s , M . G . C h e m . M a t . 1 9 9 0 , _ 2 _ , 3 5 3 - 3 6 3 ( a n d r e f e r e n c e s t h e r e i n ) . ( b ) P a r k , Y . ; K a n a t z i d i s , M . G . C h e m . M a t . 1 9 9 1 , ; 7 8 1 - 7 8 3 . B e d a r d , R . L . ; W i l s o n , S . T . ; V a i l , L . D . ; B e n n e t < E . M . ; F l a n i g e n , E . M . Z e o l i t e s : F a c t s , F i g u r e s , F u t u r e ; J a c o b s , P . A . , v a n S a n t e n , R . A . E d s . ; 1 9 8 9 E l s e v i e r S c i e n c e P u b l i s h e r s B . V . : A m s t e r d a m ; p p 3 7 5 - 3 8 7 . P a r i s e , J . B . S c i e n c e 1 9 9 1 , 2 2 L , 2 9 3 - 2 9 4 . R a b e n a u , A . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 5 , 2 2 , 1 0 2 6 - 1 0 4 0 . ‘ N a c k e n , R . C h e m . Z t g . 1 9 5 0 , ‘ _ 7 _ 4 _ , 7 4 5 . C h e n , H . Y . ; H i l l e r , D . M . ; H u d s o n , J . E . ; W e s t e n b r o e k , C . J . A . I E E E T r a n s . M a g n . 1 9 8 4 , 2 2 , 2 4 . R a n , H . ; R a b e n a u , A . S o l i d S t a t e C o m m u n . 1 9 6 7 , 5 , 3 3 1 . B a r r e r , R . M . H y d r o t h e r m a l C h e m i s t r y o f Z e o l i t e s ; A c a d e m i c P r e s s : N e w Y o r k , 1 9 8 2 L a u d i s e , R . A . C h e m . E n g . N e w s 1 9 8 7 , 6 1 ( S e p t 2 8 ) , 3 0 - 4 3 . 5 4 . S t u c l 5 4 . 5 5 . 5 6 . 5 7 . 5 8 . 5 9 . 6 0 . 2 7 S t u c k y , G . D . ; P h i l l i p s , M . L . F . ; G i e r , T . E . C h e m . M a t e r . 1 9 8 9 , _ 1 _ , 4 9 2 - 5 0 9 . ( a ) H u a n , G . ; J a c o b s o n , J . W . ; C o r c o r a n , E . W . C h e m . M a t e r . 1 9 9 0 , 2 , 9 1 - 9 3 . ( b ) C o r c o r a n , E . W . I n o r g . C h e m . 1 9 9 0 , 2 2 , 1 5 8 - 1 6 0 . ( c ) M u n d i , L . A . ; S t r o h m a i e r , K . G . ; G o s h o m , D . P . ; H a u s h a l t e r , R . C . J . A m . C h e m . S o c . 1 9 9 0 , 1 _ 1 _ 2 , 8 1 8 2 - 8 1 8 3 . ( d ) H a u s h a l t e r , R . C . I n o r g . C h e m . 1 9 8 9 , 2 8 , 2 9 0 4 - 2 9 0 5 . ( a ) S h e l d r i c k , W . S . Z . A n o r g . A l l g . C h e m . 1 9 8 8 , 5 . 6 . 2 . 2 3 - 3 0 . ( b ) S h e l d r i c k W . S . ; H a u s e r , H . - J . Z . A n o r g . A l l g . C h e m . 1 9 8 8 , 5 1 1 , 9 8 - 1 0 4 . ( c ) S h e l d r i c k W . S . ; H a u s e r , H . - J . Z . A n o r g . A l l g . C h e m . 1 9 8 8 , 2 5 1 , 1 0 5 - 1 1 1 . ( d ) S h e l d r i c k , W . S . ; K a u b J . Z . A n o r g . A l l g . C h e m . 1 9 8 6 , 5 8 1 , 1 7 9 - 1 8 5 . ( e ) S h e l d r i c k , W . S . ; B r a u n b e c k , H . G . Z . N a t u r f o r s c h 1 9 8 9 , 1 4 1 1 , 8 5 1 - 8 5 2 . ( f ) S h e l d r i c k , W . S . Z . N a t u r f o r s c h 1 9 8 8 , 4 2 1 ; , 2 4 9 - 2 5 2 . ( g ) P a r i s e , J . B . J . C h e m . S o c . , C h e m . C o m m u n . 1 9 9 0 , 1 5 5 3 - 1 5 5 4 . ( a ) L i a o , J . - H . ; K a n a t z i d i s , M . G . J . A m . C h e m . S o c . 1 9 9 0 , ] _ 1 _ 2 _ , 7 4 0 0 - 7 4 0 2 . ( b ) L i a o , J . - H . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 2 , 3 . 1 . . 4 3 1 - 4 3 9 . K i m . K . - W . ; K a n a t z i d i s , M . G . J . A m . C h e m . S o c . ( i n p r e s s ) . ( a ) " C h e m i c a l P e r s p e c t i v e s i n M i c r o e l e c t r o n i c M a t e r i a l s " r e f e r e n c e s t h e r i n . , G r o s s , M . E . ; J a s i n s k i , J . M . ; Y a t e s , J . T . ( E d s ) M a t e r i a l s R e s e a r c h S o c i e t y S y m p o s i a P r o c e e d i n g s , V o l . 1 _ 3 _ 1 _ , 1 9 8 9 . ( b ) " B e t t e r C e r a m i c s T h r o u g h C h e m i s t r y I I I " r e f e r e n c e s t h e r i n . , B r i n k e r , C . J . ; C l a r k , D . W . ; U l r i c h , D . R . ( E d s ) M a t e r i a l s . R e s e a r c h S o c i e t y S y m p o s i a P r o c e e d i n g s , V o l . 1 2 L , 1 9 8 8 . ( a ) B r e n n a n , J . G . ; S i e g r i s t , T . ; C a r r o l l , J . P . ; S t r u c z y n s k i , S . M . ; B r u s , L . E . ; S t e i g e r w a l d , M . L . J . A m . C h e m . S o c . 1 9 8 9 , 1 _ 1 _ 1 _ , 4 1 4 1 - 4 1 4 3 . ( b ) S t e i g e r w a l d , M . L . ; R i c e , C . E . J . A m . C h e m . S o c . 1 9 8 8 , 1 1 2 , 4 2 2 8 - 4 2 3 1 . ( c ) R o s e t t i , R . ; H u l l , R . ; G i b s o n , J . M . ; B r u s , L . E . J . C h e m . P h y . 1 9 8 5 , 8 2 , 5 5 2 - 5 5 9 . ( d ) C h e s t n o y , N . ; H a r r i s , T . D . ; H u l l , R . ; B r u s , L . E . J . C h e m . P h y . 1 9 8 6 , 2 Q , 3 3 9 3 - 3 3 9 9 . ( e ) S t e i g e r w a l d , M . L . ; A l i v i z a t o s , A . P . ; G i b s o n , J . M . ; H a r r i s , T . D . ; K o r t a n , R . ; M u l l e r , A . J . ; T a y e r , A . M . ; D u n c a n , T . M . ; D u g l a s s , D . C . ; B r u s , L . E . J . A m . C h e m . S o c . 1 9 8 8 , 1 _ 1 _ 0 _ , 3 0 4 6 - 3 0 5 0 . ( 1 ' ) W a n g , Y . ; M a h l e r , W . O p t . C o m m . 1 9 8 7 , § _ 1 _ , 2 3 3 - 2 3 6 . 71. 6 1 . 6 3 . 6 4 . 6 5 . 6 6 . 6 7 . 6 8 . 6 9 . 7 0 . 7 2 . 7 3 . 7 4 . . 7 8 8 ‘ K r e b D i S S t K r e b L 1 0 H o p 6 1 . 6 2 . 6 3 . 6 4 . 6 5 . 6 6 . 6 7 . 6 8 . 6 9 . 7 0 . 7 1 . 7 2 . 7 3 . 7 4 . 2 8 ( g ) W a n g , Y . ; H e r o n , N . J . C h e m . P h y . 1 9 8 7 , 2 L , 2 5 7 - 2 6 0 . ( h ) W a n g , Y . ; D u k e , C . P h y s . R e v . 1 9 8 8 , m 6 4 1 7 - 6 4 2 3 . ( i ) Z a o , X . K . ; B a r a l , S . ; R o l a n d i , R . ; F e n d l e r , J . H . J . A m . C h e m . S o c . 1 9 8 8 , 1 1 8 , 1 0 1 2 - 1 0 2 4 . e t c . N o m u r a , R . ; F u j i i , S . ; K a n a y a , K . ; M a t s u d a , H . P o l y h e d r o n 1 9 9 0 , 2 , 3 6 1 A l b i n , D . S . ; R i s b u d , S . H . A d v . C e r a m . M a t e r . 1 9 8 7 , 2 , 2 4 3 F a n , G . ; W i l l i a m s , J . O . J . C h e m . S o c . F a r a d a y T r a n s . 1 9 8 7 , 8 8 , 3 2 3 - 3 3 8 . B o c h m a n n , M . ; H a w k i n s , 1 . ; W i l s o n , L . M . C h e m . C o m m u n . 1 9 8 8 , 3 4 4 . C a r t y , A . J . ; T u c k , D . G . P r o g . I n o r g . C h e m . 1 9 7 5 , 1 2 , 2 4 5 . ( a ) K u m a r , R . ; M a b r o u k , H . E . ; T u c k , D . G . J . C h e m . S o c . D a l t o n T r a n s . 1 9 8 8 , 1 0 4 5 . ( b ) G r e e n , J . H . ; K u m a r , R . ; S e u d e a l , N . ; T u c k , D . G . I n o r g . C h e m . 1 9 8 9 , 2 8 , 1 2 3 - 1 2 7 . C h a d h a , R . K . ; H a y e s , P . C . : M a b r o u k , H . E . ; T u c k , D . G . C a n . J . C h e m . 1 9 8 7 , 8 8 , 8 0 4 - 8 0 9 . H i r p o , W . ; D h i n g r a , S . ; K a n a t z i d i s , M . G . u n p u b l i s h e d r e s u l t s . K r e b s , B . ; B r é m m e l h a u s , A . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 9 , 2 8 , 1 6 8 2 - 1 6 8 3 . K r e b s , B . ; H e n k e l , G . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 1 , 3 _ Q , 7 6 9 - , 7 8 8 ( a n d r e f e r e n c e t h e r e i n ) . K r e b s , B . ; W i e s m a n n , K . u n p u b l i s h e d r e s u l t s ; W e l l m a n n , K . D i s s e r t a t i o n , U n i v e r s i t a ' t M u n s t e r 1 9 8 9 . ( F r o m r e f e r e n c e 7 0 ) K r e b s , B . ; V o e l k e r , D . ; S t i l l e r , K . - O . I n o r g . C h i m . A c t a 1 9 8 2 , 6 1 , L 1 0 1 - L 1 0 2 . H o p p e , R . ; L i d e c k e , W . ; F r o r a t h , F . C . Z . A n o r g . A l l g . C h e m . 1 9 6 1 , 8 8 2 , 4 9 . R a n g e , K . - J . ; M a h l b e r g , G . Z . N a t u r f o r s c h 1 9 7 5 , m 8 1 . 7 5 . 7 6 . K r e b s . i n m c c = 1 5 . 6 D e i s e r 7 5 . 7 6 . 2 9 K r e b s , B . ; S t i l l e r , K . - O . u n p u b l i s h e d r e s u l t s . K I n S e z c r y s t a l l i z e s i n m o n o c l i n i c s p a c e g r o u p C 2 / c w i t h a = 1 1 . 4 2 3 A , b = 1 1 , 4 2 8 A , c = 1 5 . 6 2 1 A , B = 1 0 0 . 5 1 ° , Z = 1 6 . D e i s e r o t h , H . - J . Z . N a t u r f o r s c h 1 9 8 0 . 8 8 5 , 9 5 3 - 9 5 8 . ‘ l I . \ ' I C H A P T E R 2 I N D I U M A N D T H A L L I U M C H E M I S T R Y W I T H P O L Y S E L E N I D E L I G A N D S . 3 0 3 1 A B S T R A C T T h e r e a c t i o n o f I n C l 3 w i t h N a z S e s i n d i m e t h y l f o r m a m i d e ( D M F ) i n t h e p r e s e n c e o f P h 4 P C l g a v e ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I ) i n 7 5 % y i e l d . U n d e r t h e s a m e c o n d i t i o n s , I n C l 3 r e a c t e d w i t h N a 2 8 e 5 i n t h e p r e s e n c e o f P r 4 N B r o r E t 4 N B r a n d a f f o r d e d s i n g l e c r y s t a l s o f ( P r 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I I ) i n 6 5 % y i e l d a n d ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I I I ) i n 7 2 % y i e l d , r e s p e c t i v e l y . ( I ) c r y s t a l l i z e s i n t h e t r i c l i n i c s p a c e g r o u p P - l ( # . 2 ) w i t h u n i t c e l l d i m e n s i o n s a = 1 1 . 4 1 7 ( 4 ) A ; b = 1 2 . 7 3 4 ( 9 ) A ; c = 2 0 . 1 8 8 ( 9 ) A ; a = 9 6 . 0 3 ( 5 ) ° ; B = 9 4 . 6 9 ( 3 ) ° ; y = 1 1 1 . 6 8 ( 4 ) ° ; V = 2 6 8 9 ( 2 ) A 3 ; Z = 1 , ( I I ) c r y s t a l l i z e s i n t h e m o n o c l i n i c s p a c e g r o u p P 2 / c ( # . 1 3 ) w i t h u n i t c e l l d i m e n s i o n s a = 1 5 . 9 9 7 ( 3 ) A ; b = 1 7 . 3 7 6 ( 3 ) A ; c = 1 5 . 1 6 8 ( 2 ) A ; B = 9 4 . 5 6 ( 3 ) ° ; v = 4 2 0 2 ( 1 ) A 3 ; 2 : 2 a n d ( I I I ) c r y s t a l l i z e s i n t h e t r i c l i n i c s p a c e g r o u p P - l ( # . 2 ) w i t h u n i t c e l l d i m e n s i o n s a = 1 2 . 4 2 8 ( 3 ) A ; b = l 7 . 5 4 0 ( 4 ) A ; c = 1 5 . 7 8 1 ( 3 ) A ; a = 8 9 . 4 7 ( 2 ) ° ; B = 9 4 - 4 7 ( 2 ) ° : y = 9 7 . 9 0 ( 2 ) ° ; v = 3 3 9 7 ( 1 ) A 3 ; 2 : 2 . S i n g l e - c r y s t a l x — t a y d i f f r a c t i o n s t u d i e s s h o w t h a t ( I ) , ( I I ) a n d ( I I I ) c o n t a i n t h e s a m e a n i o n , [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' . T h e a n i o n c o n s i s t s o f I n ? ’ + c e n t e r s i n t r i g o n a l b i p y r a m i d a l c o o r d i n a t i o n ; e a c h I n a t o m i s c h e l a t e d b y t w o b i d e n t a t e S e 4 2 " l i g a n d s f o r m i n g a [ I n ( S e 4 ) 2 ] ' u n i t . T w o o f t h e s e [ I n ( S e 4 ) 2 ] ' u n i t s a r e b r i d g e d b y a n S e s z ' c h a i n f o r m i n g a d i m e r . T h e h y d r o t h e r m a l r e a c t i o n o f I n C l 3 w i t h N a z s e 4 i n t h e p r e s e n c e o f P r 4 N B r a n d w a t e r a t 1 1 0 ° C f o r 3 d a y s i n a n e v a c u a t e d s e a l e d p y r e x t u b e a f f o r d e d d e e p r e d c r y s t a l s o f ( P I 4 N ) 2 [ I n 2 $ e 2 ( S e 4 ) 2 ] ( I V ) , i n 8 0 % y i e l d . U n d e r t h e s a m e c o n d i t i o n s t h e r e a c t i o n w i t h [ ( P h 3 P ) 2 N ] C l y i e l d s [ ( P h 3 P ) 2 N ] 2 [ I n z S e z ( S e 4 ) 2 ] ( V ) i n 6 0 % y i e l d . ( I V ) 3 2 c r y s t a l l i z e s i n t h e t r i c l i n i c s p a c e g r o u p P - l ( # . 2 ) w i t h u n i t c e l l d i m e n s i o n s a = 1 1 . 2 9 0 ( 2 ) A ; b = 1 1 . 5 2 8 ( 2 ) A ; c = 8 . 9 3 8 ( 2 ) A ; a = 1 0 5 . 5 6 ( 1 ) ° ; B = 9 9 . 8 4 ( 1 ) ° ; y = 7 9 . 1 9 ( 1 ) ° ; V = 1 0 9 3 ( 1 ) A 3 ; Z = 1 . ( V ) a l s o c r y s t a l l i z e s i n t h e t r i c l i n i c s p a c e g r o u p P - l ( # . 2 ) w i t h u n i t c e l l d i m e n s i o n s a = 1 1 . 3 0 2 ( 7 ) A ; b = 1 5 . 1 8 9 ( 8 ) A ; c = 1 0 . 9 3 1 ( 5 ) A ; a = 9 4 . 1 5 ( 4 ) ° ; B = 9 3 . 8 6 ( 4 ) ° ; y = 8 4 . 9 8 . 6 8 ( 5 ) ° ; V = 1 8 5 8 ( 1 ) A 3 ; z = 1 . S i n g l e - c r y s t a l X - r a y d i f f r a c t i o n s t u d i e s s h o w t h a t ( I V ) a n d ( V ) c o n t a i n t h e s a m e d i n u c l e a r a n i o n [ I n 2 8 e 2 ( S e 4 ) 2 ] 2 ' . T h e a n i o n c o n t a i n s I n 3 + w i t h a t e t r a h e d r a l c o o r d i n a t i o n , b r i d g e d b y t w o m o n o s e l e n i d e s t o f o r m a p l a n a r [ I n 2 8 e 2 ] 2 + c o r e w i t h a n i n v e r s i o n c e n t e r s i t u a t e d i n t h e m i d d l e o f t h e I n - - I n v e c t o r o f 3 . 3 3 6 A . T h e r e m a i n i n g t w o c o o r d i n a t i o n s i t e s o n e a c h I n a t o m a r e o c c u p i e d b y t h e 8 e 4 2 ' b i d e n t a t e c h e l a t e s . T h e r e a c t i o n o f I n C l 3 w i t h N a 2 8 e 5 i n 1 : 2 m o l e r a t i o i n a c e t o n i t r i l e i n t h e p r e s e n c e o f E t 4 N B r a f f o r d e d ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] ( V I ) . S i m i l a r r e a c t i o n o f T l C l w i t h N a 2 8 e 5 i n 1 : 2 m o l e r a t i o i n D M F i n t h e p r e s e n c e o f E t 4 N B r g a v e ( E t 4 N ) 3 [ T 1 3 S e 3 ( S e 4 ) 3 ] ( V I I ) . S i n g l e - c r y s t a l X - r a y d i f f r a c t i o n s t u d i e s s h o w t h a t t h e t w o c o m p o u n d s ( V I ) a n d ( V I I ) a r e i s o s t r u c t u r a l a n d c r y s t a l l i z e i n t h e m o n o c l i n i c s p a c e g r o u p P 2 1 / c ( # . 1 4 ) . T h e u n i t c e l l d i m e n s i o n s a r e a = 1 6 . 7 4 7 ( 4 ) A ; b = 1 3 , 7 0 1 ( 3 ) A ; c = 2 2 . 2 2 7 ( 3 ) A ; B = 9 4 . l 6 ( 2 ) ° ; V = 5 0 8 6 ( 2 ) A 3 ; 2 : 4 a n d a = 1 6 . 8 1 3 ( 3 ) A ; b = 1 3 . 7 7 4 ( 3 ) A ; c = 2 2 . 1 8 6 ( 4 ) A ; B = 9 4 . 1 3 ( l ) ° ; V = 5 1 2 6 ( 2 ) A 3 ; 2 : 4 f o r ( V 1 ) a n d ( V I I ) , r e s p e c t i v e l y . T h e t r i n u c l e a r a n i o n [ M 3 S e 3 ( S e 4 ) 3 ] 3 ' ( M = I n , T 1 ) i n ( V I ) a n d ( V I I ) , c o n t a i n s M 3 + w i t h a t e t r a h e d r a l c o o r d i n a t i o n . E a c h M 3 + c e n t e r h a s a c h e l a t i n g S e 4 2 ' l i g a n d a n d i s b r i d g e d t o t h e o t h e r t w o M 3 + c e n t e r s b y m o n o s e l e n i d e , u - S e z ' , l i g a n d s f o r m i n g a s i x - m e m b e r e d [ M 3 S e 3 ] 3 + c o r e . 3 3 V a r i a b l e t e m p e r a t u r e 7 7 S e N M R s p e c t r a o f ( I ) - ( V I I ) a r e r e p o r t e d . U V / V i s o f ( I ) - ( I I I ) a r e s i m i l a r , w i t h t w o a b s o r p t i o n s a t ~ 4 5 0 n m a n d ~ 6 5 0 n m , w h i l e ( I V ) - ( V I I ) h a v e a f e a t u r e l e s s s p e c t r a . T h e e l e c t r o c h e m i s t r y o f ( I ) a n d ( V I ) a r e r e p o r t e d . T h e s o l i d s t a t e f a r I R s p e c t r a o f a l l t h e c o m p o u n d s s h o w s t r o n g a b s o r p t i o n s i n t h e 3 0 0 - 1 0 0 c m ' 1 r e g i o n d u e t o t h e S e - S e a n d M - S e s t r e t c h i n g f r e q u e n c i e s , t e n t a t i v e a s s i g n m e n t s a r e r e p o r t e d h e r e i n . T h e r m a l g r a v i m e t r i c a n a l y s i s d a t a s h o w t h a t t h e c o m p o u n d s p y r o l y z e t o g i v e b i n a r y m e t a l c h a l c o g e n i d e s ( B - I n 2 S e 3 a n d T l S e ) . 3 4 I N T R O D U C T I O N I n r e c e n t y e a r s t h e c o o r d i n a t i o n c h e m i s t r y o f s o l u b l e m e t a l - p o l y c h a l c o g e n i d e s s z ' ( Q = S , S e , T e ) h a s b e c o m e a n a c t i v e a r e a o f r e s e a r c h l r z . O n e r e a s o n f o r t h i s i s t h e i r r e m a r k a b l e a b i l i t y t o p a r t i c i p a t e , i n v a r i o u s s i z e s a n d b o n d i n g m o d e s , i n a n e x t r e m e l y l a r g e v a r i e t y o f s t r u c t u r e t y p e s w i t h t r a n s i t i o n a n d m a i n g r o u p m e t a l s . P o l y c h a l c o g e n i d e c o m p l e x e s n o w r e p r e s e n t o n e o f t h e m o s t s t r u c t u r a l l y d i v e r s e c l a s s e s i n i n o r g a n i c c h e m i s t r y . S o l u b l e m e t a l p o l y s u l f i d e s h a v e r e c e i v e d c o n s i d e r a b l e e m p h a s i s d u e t o t h e i r i m p o r t a n c e i n f i e l d s s u c h a s m o d e l l i n g o f b i o l o g i c a l s y s t e m s 3 , i n d u s t r i a l ( h y d r o d e s u l f u r i z a t i o n , H D S ) o r e n z y m a t i c c a t a l y s i s 4 , l u b r i c a n t s 5 , e l e c t r o d e s i n r e c h a r g e a b l e b a t t e r i e s 5 , e t c 7 . D e s p i t e t h e l a r g e n u m b e r o f k n o w n p o l y s u l f i d e c o m p l e x e s z , t h e c o r r e s p o n d i n g c h e m i s t r y o f h e a v i e r c h a l c o g e n s h a s o n l y r e c e n t l y r e c e i v e d a t t e n t i o n l . D u e t o t h e d i f f e r e n t r e d o x p o t e n t i a l s a n d b o n d l e n g t h s b e t w e e n t h e v a r i o u s Q - Q b o n d s t h e c o o r d i n a t i o n c h e m i s t r y o f t h e Q x 2 ' l i g a n d s i s n o t e n t i r e l y a n a l o g o u s i n g o i n g f r o m S t o S e t o T e . E v e n i f t h e s t r u c t u r e o f a m e t a l p o l y s u l f i d e c o m p l e x i s k n o w n i t i s n o t p o s s i b l e t o p r e d i c t t h e s t r u c t u r e o f t h e c o r r e s p o n d i n g p o l y s e l e n i d e a n d p o l y t e l l u r i d e . T h e a b i l i t y t o v a r y x i n t h e Q 3 “ , a l l o w s f o r t h e s y n t h e s i s o f s e v e r a l d i f f e r e n t c o m p l e x e s w i t h i n t h e s a m e M / s z ' s y s t e m . S o m e t y p i c a l p o l y s e l e n i d e s a n d p o l y t e l l u r i d e s c o m p l e x e s a r e : [ F e z S e 1 2 ] 2 ' t 3 , [ W x S e y ] 2 ' ( x = 2 , y = 9 - 1 0 ; x = 3 , y = 9 ) 9 , [ s t e l a l z ' r l ‘ h [ M Q ( S e 4 ) 2 ] 2 ' ( M = M 0 . W ; Q = 0 . 8 . S e ) “ . [ M ( S e 4 ) 2 ] 2 ‘ ( M = M n 1 2 , N i 1 3 o 1 5 , P d 1 4 , P t 1 4 ’ 1 5 , Z n , C d , H g 1 5 o 1 5 , P b 1 3 ) , [ C r 3 Q 2 4 ] 3 ' ( Q = S e , T e ) ” , [ M o s e - 9 1 2 " ” . [ H 8 2 T 6 5 1 2 " 1 9 . [ H g 4 T 6 1 2 1 4 " 1 9 . [ N c h l o ] 3 " 2 ° . [ A u z T e z l z ' t z k [ A U 2 3 6 1 0 1 2 " 2 2 . [ A U 2 8 e 5 1 2 " 2 2 . [ A u z s e o ] 2 " 2 2 . [ H g 7 S e l o l 4 " 2 3 . 3 5 [ H g 7 S e 9 l n 4 “ " 2 3 . [ C U 2 3 6 1 4 ] 4 " 2 4 ' 7 3 . [ M ( S C 4 ) 3 ] 2 ' ( M = P t 2 5 . 8 1 1 2 6 ) . [ A g S C x l ' ( x = 4 , 5 ) 2 7 e t c . T h e s c a r c i t y o f r e p o r t s o n r e a c t i o n s i n v o l v i n g s o l u b l e p o l y c h a l c o g e n i d e s w i t h m a i n g r o u p m e t a l s , p r o m p t e d u s t o u n d e r t a k e a s y s t e m a t i c i n v e s t i g a t i o n i n t o t h e s y n t h e s i s o f n e w p o l y c h a l c o g e n i d e c o m p l e x e s w i t h s u c h e l e m e n t s . A n o t h e r m o t i v a t i o n w a s o u r d e s i r e t o f i n d s u i t a b l e p r e c u r s o r s t o s e m i c o n d u c t i n g I n 2 8 e 3 , I n S e , T l S e a n d C u I n S e 2 “ . I n t h i s c h a p t e r w e p r e s e n t t h e s y n t h e s i s , s t r u c t u r a l a n d s p e c t r o s c o p i c c h a r a c t e r i z a t i o n o f s o m e n e w i n d i u m a n d t h a l l i u m p o l y s e l e n i d e c o m p l e x e s : ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( 1 ) 2 9 , ( P r 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e s ) l ( I I ) . ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e s ) ] ( 1 1 1 ) . ( P r 4 N ) 2 [ I n 2 3 6 2 ( S ¢ 4 ) 2 l ( 1 V ) . [ ( P h a P ) 2 N ] 2 1 1 n 2 3 6 2 ( S e 4 ) 2 ] ( V ) . ( E t 4 N ) 3 [ I n 3 8 6 3 ( S C 4 ) 3 ] ( V I ) . a n d ( E t 4 N ) 3 [ T 1 3 8 6 3 ( S C 4 ) 3 ] ( V I I ) - E X P E R I M E N T A L S E C T I O N R e a g e n t s T h e c h e m i c a l s i n t h i s r e s e a r c h w e r e u s e d a s o b t a i n e d c o m m e r c i a l l y : s e l e n i u m , 9 9 . 9 9 9 % p u r i t y , A m e r i c a n S m e l t i n g a n d R e f i n i n g C o m p a n y , D e n v e r , C O . ; s o d i u m m e t a l , a n a l y t i c a l r e a g e n t , M a l l i n c k r o d t I n c . , P a r i s , K Y . ; i n d i u m ( I I I ) c h l o r i d e , 9 9 . 9 9 9 % p u r i t y , C e r a c I n c . M i l w a u k e e , W I . ; t h a l l i u m ( I ) c h l o r i d e , 9 9 % p u r i t y , t e t r a p h e n y l p h o s p h o n i u m c h l o r i d e ( P h 4 P C l ) , 9 8 % p u r i t y , t e t r a p r o p y l a m m o n i u m b r o m i d e ( P r 4 N B r ) , 9 7 % p u r i t y , t e t r a e t h y l a m m o n i u m b r o m i d e ( E t 4 N B r ) , 9 8 % p u r i t y , b i s - 3 6 t r i p h e n y l p h o s p h o n i u m i m i d e c h l o r i d e ( [ ( P h 3 P ) 2 N ] C l ) , 9 9 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y I n c . , M i l w a u k e e , W I . D i m e t h y l f o r m a m i d e ( D M F ) , a n a l y t i c a l r e a g e n t , w a s s t o r e d o v e r 4 A L i n d e m o l e c u l a r s i e v e s f o r o v e r a w e e k a n d t h e n d i s t i l l e d u n d e r r e d u c e d p r e s s u r e a t 2 5 - 3 0 ° C . T h e f i r s t 5 0 m l w a s d i s c a r d e d . A c e t o n i t r i l e ( a n a l y t i c a l r e a g e n t , M a l l i n c k r o d t I n c . , P a r i s , K Y ) w a s d i s t i l l e d a f t e r r e f l u x i n g w i t h c a l c i u m h y d r i d e f o r 8 h o u r s . D i e t h y l e t h e r ( A . C . S . a n h y d r o u s , C o l u m b u s C h e m i c a l I n d u s t r i e s I n c . , C o l u m b u s , W I . ) w a s d i s t i l l e d a f t e r r e fl u x i n g w i t h s o d i u m / p o t a s s i u m a l l o y , w i t h b e n z o p h e n o n e a n d t r i e t h y l e n e - g l y c o l - d i m e t h y l e t h e r f o r 1 2 h o u r s . D e u t e r a t e d d i m e t h y l f o r m a m i d e - d 7 , 9 9 . 5 a t o m % D ; a c e t o n i t r i l e - d 3 , 9 9 . 5 a t o m % D ; a n d p y r i d i n e - d s , 1 0 0 a t o m % D ( A l d r i c h C h e m i c a l C o m p a n y I n c . , M i l w a u k e e , W I ) w e r e u s e d w i t h o u t f u r t h e r p u r i f i c a t i o n . P h y s i c o c h e m i c a l S t u d i e s 7 7 S e ( 1 : 1 / 2 , n a t u r a l a b u n d a n c e 7 . 5 8 % ) N M R s p e c t r a w e r e o b t a i n e d o n a V a r i a n V X R - 5 0 0 ( s u p e r c o n d u c t i n g c r y o m a g n e t 1 1 . 7 4 T e s l a ) p u l s e s p e c t r o m e t e r , e q u i p p e d w i t h a S u n - 3 / 6 0 w o r k s t a t i o n . T h e s p e c t r a w e r e r e c o r d e d u s i n g a b r o a d b a n d 5 m m p r o b e ( f r e q u e n c y r a n g e 5 0 - 2 0 2 M H z ) . T h e 7 7 S e s i g n a l w a s o b s e r v e d a t 9 5 . 3 5 8 M H z w i t h a n a c q u i s i t i o n t i m e o f 0 . 3 2 2 s e c . T h e p u l s e w i d t h i n a l l t h e e x p e r i m e n t s w a s 1 4 u s e c ( i . e . t h e 9 0 ° p u l s e f o r t h i s i n s t r u m e n t ) a n d n o r e l a x a t i o n d e l a y w a s a p p l i e d . T h e n u m b e r o f f r e e i n d u c t i o n d e c a y s a c c u m u l a t e d w e r e t y p i c a l l y 7 2 0 0 0 , a n d a l i n e b r o a d e n i n g o f 4 0 H z w a s t y p i c a l l y a p p l i e d . T h e s p e c t r a w e r e r e f e r e n c e d t o M e z S e a t 8 : 0 p p m i n D M F a n d a s o l u t i o n o f P h 2 S e 2 3 7 ( 6 : 4 6 0 p p m ) i n D M F w a s u s e d a s a n e x t e r n a l s t a n d a r d . T h e c o n v e n t i o n u s e d f o r t h e c h e m i c a l s h i f t s i s t h a t a p o s i t i v e s i g n s i g n i f i e s a s h i f t t o l o w e r f i e l d c o m p a r e d t o t h e r e f e r e n c e c o m p o u n d . T h e V a r i a n V X R - 5 0 0 i n s t r u m e n t i s e q u i p p e d w i t h a v a r i a b l e t e m p e r a t u r e u n i t t o c h a n g e t h e i n t e r n a l t e m p e r a t u r e o f t h e p r o b e . A t h e r m o c o u p l e i n s i d e t h e p r o b e s e n s e s t h e t e m p e r a t u r e a n d r e g u l a t e s t h e f l o w a n d t e m p e r a t u r e o f t h e c o o l i n g g a s b y c h a n g i n g t h e h e a t e r c u r r e n t a c c o r d i n g l y . I n f r a r e d s p e c t r a o f t h e c o m p l e x e s w e r e r e c o r d e d a s s o l i d s i n a C s I m a t r i x o n a N i c o l e t 7 4 0 F T - I R s p e c t r o m e t e r . E a c h s a m p l e w a s g r o u n d a l o n g w i t h C 3 1 t o a fi n e p o w d e r a n d a t r a n s l u c e n t p e l l e t w a s m a d e b y a p p l y i n g ~ 1 5 0 0 0 p s i p r e s s u r e t o t h e m i x t u r e . T h e s p e c t r a w e r e r e c o r d e d i n t h e F a r I R r e g i o n ( 5 0 0 t o 1 0 0 c m ' l ) . U V / V i s s p e c t r a o f t h e c o m p l e x e s w e r e m e a s u r e d o n a H i t a c h i U - 2 0 0 0 s p e c t r o p h o t o m e t e r . T h e D M F s o l u t i o n s o f t h e c o m p l e x e s w i t h a c c u r a t e l y k n o w n c o n c e n t r a t i o n s w e r e u s e d t o d e t e r m i n e t h e e x t i n c t i o n c o e f f i c i e n t s . T h e a b s o r b a n c e ( A = l o g I o / I t ) w a s m e a s u r e d i n a q u a r t z c e l l w h o s e p a t h l e n g t h i s k n o w n t o b e l . 0 0 0 : 1 : 0 . 0 0 2 m m . T h e m o l a r e x t i n c t i o n c o e f f i c i e n t s a t m a x i m u m a b s o r p t i o n w e r e c a l c u l a t e d a c c o r d i n g t o t h e B e e r - L a m b e r t l a w : A = l o g I o / I t = e c l w h e r e c i s t h e c o n c e n t r a t i o n i n m o l e s p e r l i t e r a n d l i s t h e s a m p l e p a t h l e n g t h i n c m . T h e r m a l g r a v i m e t r i c a n a l y s i s ( T G A ) o f t h e c o m p o u n d s w e r e r e c o r d e d o n e i t h e r a C a h n T G s y s t e m 1 2 1 o r a S h i m a d z u T G A - 5 0 . T h e s o l i d s a m p l e s w e r e h e a t e d f r o m r o o m t e m p e r a t u r e t o 8 0 0 ° C a t a r a t e o f 5 ° C / m i n u n d e r a s t e a d y f l o w o f d r y n i t r o g e n . 3 8 A t h r e e e l e c t r o d e p o t e n t i o s t a t ( E G & G P r i n c e t o n A p p l i e d R e s e a r c h M o d e l 2 7 3 p o t e n t i o s t a t / g a l v a n o s t a t ) w a s u s e d f o r t h e c y c l i c v o l t a m m e t r i c e x p e r i m e n t s . T h e s c a n s w e r e i n i t i a t e d a t t h e r e s t p o t e n t i a l o f e a c h s o l u t i o n u n d e r a n a t m o s p h e r e o f a r g o n . T h e w o r k i n g e l e c t r o d e a n d c o u n t e r e l e c t r o d e w e r e p l a t i n u m b e a d a n d c o i l , r e s p e c t i v e l y . T h e r e f e r e n c e e l e c t r o d e w a s t h e s a t u r a t e d c a l o m e l e l e c t r o d e ( S C E ) . T h e c y c l i c v o l t a m m e t r i c s t u d i e s o f ( I ) , ( I I ) , ( V I ) a n d ( P h 4 P ) 2 S e 5 a r e o f 2 m m o l D M F s o l u t i o n i n 0 . 1 M n - B u 4 N C l O 4 , t h e s c a n r a t e w a s 4 0 0 m V / s u s i n g a c e l l c u r r e n t o f 1 m A . Q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s o f t h e c o m p o u n d s w a s p e r f o r m e d o n a s c a n n i n g e l e c t r o n m i c r o s c o p y ( S E M ) J E O L I S M - 3 5 C e q u i p p e d w i t h a n x - r a y m i c r o a n a l y s i s a t t a c h m e n t f r o m T r a c o r N o r t h e r n T N 5 5 0 0 , f o r e n e r g y d i s p e r s i v e s p e c t r o s c o p y ( E D S ) . S i n g l e c r y s t a l s o f e a c h s a m p l e w e r e m o u n t e d o n a n a l u m i n u m s t u b u s i n g c o n d u c t i v e c a r b o n p a i n t f o r a d h e s i o n t o t h e s t u b a s w e l l a s t o d i s s i p a t e c h a r g e t h a t i s d e v e l o p e d o n t h e s a m p l e u n d e r a n e l e c t r o n b e a m . E n e r g y d i s p e r s i v e s p e c t r a w e r e o b t a i n e d u s i n g t h e f o l l o w i n g e x p e r i m e n t a l s e t - u p : X - r a y d e t e c t o r p o s i t i o n : 5 5 m m W o r k i n g d i s t a n c e : 3 9 m m A c c e l e r a t i n g v o l t a g e : 2 0 K V T a k e - o f f a n g l e : 2 7 d e g B e a m c u r r e n t : 2 0 0 p i c o a m p s A c c u m u l a t i o n t i m e : 6 0 s e c s D e t e c t o r W i n d o w : B e r y l l i u m A s t a n d a r d l e s s q u a n t i t a t i v e ( S Q a n a l y s i s ) p r o g r a m w a s u s e d t o a n a l y z e t h e x - r a y s p e c t r a o b t a i n e d . T h e a n a l y s i s c o u l d n o t b e u s e d 3 9 f o r t h e a t o m s b e l o w a t o m i c n u m b e r 1 1 ( s o d i u m ) d u e t o t h e a b s o r p t i o n o f t h e l o w e n e r g y x - r a y s b y t h e B e w i n d o w o f t h e d e t e c t o r . S i n c e t h e s e l e n i u m r a t i o i s a l w a y s u n d e r e s t i m a t e d d u e t o a n a r t i f a c t i n t h e p r o g r a m , a c o r r e c t i o n f a c t o r ( x 1 . 6 ) , w h i c h w a s d e t e r m i n e d b y t a k i n g c o m m e r c i a l I n 2 8 e 3 a s a s t a n d a r d t o e v a l u a t e t h e S e r a t i o . T h e a n a l y s i s r e p o r t e d h e r e a r e a n a v e r a g e o f t h r e e t o f o u r i n d i v i d u a l m e a s u r e m e n t s o n s e v e r a l d i f f e r e n t s i n g l e c r y s t a l s o f e a c h c o m p o u n d . S y n t h e s e s A l l t h e e x p e r i m e n t s a n d s y n t h e s e s w e r e p e r f o r m e d u n d e r a n a t m o s p h e r e o f d r y n i t r o g e n i n a V a c u u m A t m o s p h e r e s D r i - L a b g l o v e b o x . E l e m e n t a l a n a l y s e s o n s a m p l e s d r i e d u n d e r v a c u u m f o r 6 - 8 h o u r s w e r e p e r f o r m e d b y G a l b r a i t h A n a l y t i c a l L a b o r a t o r i e s , K n o x v i l l e , T N a n d b y S E M - E D S s t u d i e s . S o d i u m p e n t a s e l e n i d e , N 3 2 S e 5 . 1 8 . 0 0 g ( 0 . 2 3 m o l ) o f f i n e l y p o w d e r e d e l e m e n t a l s e l e n i u m w a s c o m b i n e d w i t h 2 . 2 0 g ( 0 . 1 0 m o l ) ‘ o f s l i c e d s o d i u m m e t a l i n a r o u n d b o t t o m f l a s k e q u i p p e d w i t h a t e f l o n v a l v e a n d a s t i r b a r . A 1 5 0 m l s a m p l e o f l i q u i d a m m o n i a w a s c o n d e n s e d i n t o t h e f l a s k a t - 7 8 ° C ( d r y i c e / a c e t o n e b a t h ) a n d t h e m i x t u r e w a s s t i r r e d f o r a c o u p l e o f h o u r s u n t i l t h e s o d i u m m e t a l h a d d i s s o l v e d c o m p l e t e l y . W h e n a d a r k g r e e n s o l u t i o n f o r m e d , t h e a m m o n i a w a s r e m o v e d b y e v a p o r a t i o n a t r o o m t e m p e r a t u r e ( b y a l l o w i n g t h e c o l d b a t h t o w a r m u p s l o w l y ) u n d e r a s t e a d y f l o w o f d r y 4 0 n i t r o g e n . T h e r e s u l t i n g b l a c k s o l i d w a s d r i e d i n v a c u o , f l a m e d r i e d a n d g r o u n d t o a f i n e p o w d e r i n t h e g l o v e b o x . I t w a s u s e d w i t h o u t f u r t h e r c h a r a c t e r i z a t i o n . T h e b l a c k p o w d e r d i s s o l v e s i n D M F a n d a c e t o n i t r i l e r e s u l t i n g i n d e e p g r e e n s o l u t i o n s b u t i n w a t e r , m e t h a n o l a n d e t h a n o l g i v e s r e d s o l u t i o n s . P r e p a r a t i o n o f N a z S e 4 a n d N a 2 S e 5 w e r e a c c o m p l i s h e d b y f o l l o w i n g t h e s a m e p r o c e d u r e a s f o r N a 2 S e 5 , b y v a r y i n g t h e s t o i c h i o m e t r i c r a t i o s o f s o d i u m a n d s e l e n i u m a c c o r d i n g l y . T e t r a ( t e t r a p h e n y l p h o s p h o n i u m ) - t e t r a t e t r a s e l e n i d o - u - ( p e n t a s e l e n i d o ) - d i i n d a t e ( I I I ) , ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I ) T o a s o l u t i o n o f 0 . 5 0 0 g ( 1 . 1 3 2 m m o l ) N a 2 8 e 5 a n d 0 . 3 4 0 g ( 0 . 9 0 8 m m o l ) P h 4 P C l i n 6 0 m l o f D M F w a s a d d e d d r o p w i s e a 2 0 m 1 D M F s o l u t i o n o f 0 . 1 0 0 g ( 0 . 4 5 2 m m o l ) I n C l 3 . T h e m i x t u r e w a s t h e n s t i r r e d f o r c a . 2 0 m i n u t e s u n t i l i t s c o l o r b e c a m e d e e p b r o w n - g r e e n . F o l l o w i n g f i l t r a t i o n ( t o r e m o v e N a C l ) , 1 0 0 m l o f e t h e r w a s l a y e r e d o v e r i t t o i n c i p i e n t c r y s t a l l i z a t i o n . U p o n s t a n d i n g a t r o o m t e m p e r a t u r e f o r 2 d a y s , r e d - b r o w n c r y s t a l s o f ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] w e r e f o r m e d a n d i s o l a t e d b y f i l t r a t i o n ; y i e l d 7 5 % . E l e m e n t a l a n a l y s i s : c a l c u l a t e d f o r C 9 5 H 3 0 P 4 I n 2 8 6 2 1 : C , 3 4 . 6 7 ; H , 2 . 4 1 ; I n , 6 . 9 1 ; S e , 5 2 . 2 7 . F o u n d : C , 3 5 . 0 4 ; H , 2 . 4 8 ; I n , 6 . 8 6 ; S e , 5 0 . 8 9 . T e t r a ( t e t r a p r o p y l a m m o n i u m ) - t e t r a t e t r a s e 1 e n i d o - u - ( p e n t a s e l e n i d o ) - d i i n d a t e ( I I I ) , ( P r 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I I ) T o a s o l u t i o n o f 0 . 5 0 0 g ( 1 . 1 3 2 m m o l ) N a 2 S e 5 a n d 0 . 2 4 0 g ( 0 . 9 0 1 m m o l ) P r 4 N B r i n 6 0 m 1 D M F w a s a d d e d d r o p w i s e a 2 0 m 1 D M F s o l u t i o n c o n t a i n i n g 0 . 1 0 0 g ( 0 . 4 5 2 m m o l ) I n C l 3 . T h e r e w a s a n 4 1 i m m e d i a t e r e a c t i o n r e s u l t i n g i n a c o l o r c h a n g e f r o m d e e p g r e e n ' t o b r o w n g r e e n . T h e s o l u t i o n w a s s t i r r e d f o r c a . 2 0 m i n u t e s a n d t h e n f i l t e r e d t o r e m o v e N a C l a n d N a B r . T h e f i l t r a t e w a s l a y e r e d w i t h 8 0 m l e t h e r t o i n c i p i e n t c r y s t a l l i z a t i o n . U p o n s t a n d i n g a t r o o m t e m p e r a t u r e f o r t w o d a y s b r o w n - r e d c r y s t a l s o f ( P r 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] w e r e i s o l a t e d a n d w a s h e d w i t h e t h e r . E l e m e n t a l a n a l y s i s : c a l c u l a t e d f o r C 4 3 H 1 1 2 N 4 I n 2 8 e 2 1 : C , 2 1 . 2 4 ; H , 4 . 1 3 ; N , 2 . 0 6 5 ; I n , 8 . 4 7 . F o u n d : C , 1 8 . 9 8 ; H , 3 . 5 4 ; N , 1 . 8 2 ; I n , 6 . 7 8 . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( I I ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f I n l s e l o q . T e t r a ( t e t r a e t h y l a m m o n i u m ) - t e t r a t e t r a s e l e n i d o - u - ( p e n t a s e l e n i d o ) - d i i n d a t e ( I I I ) , ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( 1 1 1 ) T o a s o l u t i o n o f 0 . 5 0 0 g ( 1 . 1 3 2 m m o l ) N a 2 8 e 5 a n d 0 . 1 9 0 g ( 0 . 9 0 5 m m o l ) E t 4 N B r i n 6 0 m l D M F w a s a d d e d d r o p w i s e a 2 0 m l D M F s o l u t i o n c o n t a i n i n g 0 . 1 0 0 g ( 0 . 4 5 2 m m o l ) I n C l 3 . T h e r e w a s a n i m m e d i a t e r e a c t i o n r e s u l t i n g i n a c o l o r c h a n g e f r o m d e e p g r e e n t o b r o w n g r e e n . T h e s o l u t i o n w a s s t i r r e d f o r c a . 2 0 m i n u t e s a n d t h e n f i l t e r e d t o r e m o v e N a C l a n d N a B r . T h e f i l t r a t e w a s l a y e r e d w i t h 8 0 m l e t h e r t o i n c i p i e n t c r y s t a l l i z a t i o n . U p o n s t a n d i n g a t r o o m t e m p e r a t u r e f o r t w o d a y s b r o w n - r e d c r y s t a l s o f ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] w e r e i s o l a t e d a n d w a s h e d w i t h e t h e r , y i e l d 7 2 % . E l e m e n t a l a n a l y s i s : c a l c u l a t e d f o r C 3 2 H 3 0 N 4 I n 2 8 e 2 1 : C , 1 5 . 4 4 ; H , 3 . 2 2 ; N , 2 . 2 5 ; I n , 9 . 2 3 . F o u n d : C , 1 6 . 0 3 ; H , 3 . 1 3 ; N , 2 . 3 5 ; I n , 8 . 9 7 . 4 2 B i s ( t e t r a p r o p y l a m m o n i u m ) - b i s ( u 2 - s e l e n i d o ) - b i s t e t r a s e l e n i d o - d i i n d a t e ( I I I ) , ( P r 4 N ) 2 [ I n 2 S e 2 ( S e 4 ) 2 ] ( I V ) . I n a p y r e x t u b e w a s a d d e d 0 . 0 5 0 g ( 0 . 2 2 6 m m o l ) I n C l 3 , 0 . 1 6 4 g ( 0 . 4 5 3 m m o l ) N a 2 8 e 4 a n d 0 . 0 6 0 g ( 0 . 2 2 6 m m o l ) P m N B r a n d 0 . 5 m l o f w a t e r . T h e m i x t u r e w a s f r o z e n i n l i q u i d n i t r o g e n a n d f l a m e s e a l e d u n d e r v a c u u m . T h e t u b e w a s s u b s e q u e n t l y h e a t e d t o 1 1 0 ° C f o r t h r e e d a y s . T h e t u b e w a s o p e n e d i n a n i n e r t a t m o s p h e r e g l o v e b o x a n d t h e d e e p r e d c r y s t a l s w e r e i s o l a t e d b y f i l t r a t i o n , w a s h e d w i t h w a t e r , e t h a n o l a n d f i n a l l y w i t h e t h e r , y i e l d 8 0 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( I V ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f I n 1 S e 5 , 0 1 . B i s ( t r i p h e n y l p h o s p h o n i u m i m i d e ) - b i s ( u 2 - s e l e n i d o ) - b i s t e t r a s e l e n i d o - d i i n d a t e ( I I I ) , [ ( P h 3 P ) 2 N ] 2 [ I n 2 $ e 2 ( S e 4 ) 2 ] ( V ) I n a p y r e x t u b e w a s a d d e d 0 . 0 5 0 g ( 0 . 2 2 6 m m o l ) I n C 1 3 , 0 . 1 6 4 g ( 0 . 4 5 3 m m o l ) N a 2 8 e 4 a n d 0 . 1 3 0 g ( 0 . 2 2 7 m m o l ) [ ( P h 3 P ) 2 N ] C l a n d 0 . 5 m l o f w a t e r . T h e m i x t u r e w a s f r o z e n i n l i q u i d n i t r o g e n a n d f l a m e s e a l e d u n d e r v a c u u m . T h e t u b e w a s s u b s e q u e n t l y h e a t e d t o 1 1 0 ° C f o r t h r e e d a y s . T h e t u b e w a s o p e n e d i n a n i n e r t a t m o s p h e r e g l o v e b o x a n d t h e s m a l l r e d c r y s t a l s w e r e i s o l a t e d b y f i l t r a t i o n , w a s h e d w i t h w a t e r , e t h a n o l a n d f i n a l l y w i t h e t h e r , y i e l d 6 0 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( V ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f I n 1 8 e 4 , 3 . 4 3 T r i ( t e t r a e t h y l a m m o n i u m ) - t r i ( u 2 - s e l e n i d o ) - t r i t e t r a s e l e n i d o - t r i i n d a t e ( I I I ) , ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] ( V I ) M e t h o d ( A ) . A 2 0 m l a c e t o n i t r i l e ( C H 3 C N ) s o l u t i o n o f 0 . 1 0 0 g ( 0 . 4 5 2 m m o l ) I n C l 3 w a s a d d e d s l o w l y t o a 8 0 m l C H 3 C N s o l u t i o n c o n t a i n i n g 0 . 4 0 0 g ( 0 . 9 0 8 m m o l ) N a 2 S e 5 a n d 0 . 1 0 0 g ( 0 . 4 7 6 m m o l ) E t 4 N B r . T h e r e s u l t i n g l i g h t r e d - b r o w n s o l u t i o n w a s f i l t e r e d t o r e m o v e N a C l , N a B r a n d s o m e b l a c k g r e e n s o l i d . T o t h e f i l t r a t e w a s a d d e d 6 0 m l o f e t h e r . U p o n s t a n d i n g f o r 4 d a y s , w e l l f o r m e d d e e p - r e d s i n g l e c r y s t a l s o f ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] w e r e f o r m e d . T h e y w e r e i s o l a t e d b y f i l t r a t i o n a n d w a s h e d w i t h e t h e r ; y i e l d 7 6 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( V I ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f I n l S C S J 3 . M e t h o d ( B ) . I n a p y r e x t u b e w a s a d d e d 0 . 0 5 0 g ( 0 . 2 2 6 m m o l ) I n C 1 3 , 0 . 1 6 4 g ( 0 . 4 5 3 m m o l ) N a 2 8 e 4 a n d 0 . 0 4 9 g ( 0 . 2 3 3 m m o l ) E t 4 N B r a n d 0 . 5 m l o f w a t e r . T h e m i x t u r e w a s f r o z e n i n l i q u i d n i t r o g e n a n d f l a m e s e a l e d u n d e r v a c u u m . T h e t u b e w a s s u b s e q u e n t l y h e a t e d t o 1 1 0 ° C f o r t h r e e d a y s . T h e t u b e w a s o p e n e d i n a n i n e r t a t m o s p h e r e g l o v e b o x a n d b i g o r a n g e c r y s t a l s w e r e i s o l a t e d b y f i l t r a t i o n , w a s h e d w i t h w a t e r , e t h a n o l a n d f i n a l l y w i t h e t h e r , y i e l d 8 5 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( V 1 ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f I n 1 S e 5 , 2 . T r i ( t e t r a e t h y l a m m o n i u m ) - t r i ( u 2 - s e l e n i d o ) - t r i t e t r a s e l e n i d o - t r i t h a l a t e ( I I I ) , ( E t 4 N ) 3 [ T l 3 S e 3 ( S e 4 ) 3 ] ( V I I ) . A 0 . 2 0 0 g ( 0 . 8 3 4 m m o l ) o f T l C l w a s a d d e d t o a 8 0 m l D M F s o l u t i o n c o n t a i n i n g 0 . 3 7 0 g ( 0 . 8 3 9 m m o l ) N a 2 S e 5 a n d 0 . 1 8 0 g ( 0 . 8 5 7 m m o l ) 4 4 E t 4 N B r . T h e m i x t u r e w a s s t i r r e d f o r c a . 6 h o u r s a n d t h e r e s u l t i n g r e d s o l u t i o n w a s f i l t e r e d t o r e m o v e N a B r a n d N a C l . T o t h e fi l t r a t e w a s a d d e d 6 0 m l o f e t h e r . U p o n s t a n d i n g f o r 6 d a y s d e e p - r e d s i n g l e c r y s t a l s o f ( E t 4 N ) 3 [ T l 3 S e 3 ( S e 4 ) 3 ] w e r e f o r m e d . T h e y w e r e i s o l a t e d b y f i l t r a t i o n a n d w a s h e d w i t h e t h e r ; y i e l d 7 0 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( V I I ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f T 1 1 8 e 5 . 1 2 . X - r a y C r y s t a l l o g r a p h i c S t u d i e s . X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e r e c o r d e d e i t h e r w i t h a s t a n d a r d D e b y e - S c h e r r e r p o w d e r f i l m c a m e r a m o u n t e d o n a P h i l l i p s N o r e l c o X R G - 5 0 0 0 X - r a y g e n e r a t o r o p e r a t i n g a t 4 0 k V / 2 0 m A , o r a P h i l l i p s X R G - 3 0 0 0 c o m p u t e r c o n t r o l l e d p o w d e r d i f f r a c t o m e t e r . N i - f i l t e r e d , C u - r a d i a t i o n w a s u s e d . D - s p a c i n g s ( A ) f o r a l l m a t e r i a l s w e r e m e a s u r e d o n t h e P h i l l i p s X R G - 3 0 0 0 . T h e X - r a y p o w d e r p a t t e r n s o b t a i n e d f r o m t h e c o m p l e x e s , w e r e i n g o o d a g r e e m e n t w i t h t h o s e c a l c u l a t e d , f r o m t h e a t o m c o o r d i n a t e s o b t a i n e d f r o m t h e X - r a y s i n g l e c r y s t a l d i f f r a c t i o n s t u d i e s , u s i n g t h e p r o g r a m P O W D - 1 0 3 0 . T h i s c o n f i r m e d t h e h o m o g e n e i t y a n d t h e p u r i t y o f t h e c o m p l e x e s , a s s u m i n g n o a m o r p h o u s p h a s e s w e r e p r e s e n t . C a l c u l a t e d a n d o b s e r v e d d - s p a c i n g s ( A ) f o r a l l c o m p l e x e s a r e c o m p i l e d i n T a b l e s 2 . 1 - 2 . 7 . 4 5 T a b l e 2 . 1 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( P h 4 P ) 4 [ I n 2 ( S C 4 ) 4 ( S e s ) ] . h k l d 5 1 1 , ; ( A ) d o b , ( A ) I / I m a x m b s ) 0 1 0 1 1 . 7 1 1 . 8 1 0 0 . 0 0 0 2 9 . 9 5 9 . 9 7 7 1 . 6 o 1 1 9 . 5 0 9 . 5 9 5 6 . 0 — 1 l 1 8 . 8 8 8 . 9 3 6 0 . 3 o - 1 2 8 . 2 0 8 . 2 7 1 8 . 8 0 1 2 7 . 0 9 7 . 1 3 4 6 . 0 1 1 o 6 . 6 6 6 . 7 1 5 6 . 0 - 1 - 1 1 6 . 6 5 0 - 1 3 6 . 1 7 6 . 2 2 3 9 . 6 0 2 o 5 . 8 5 5 . 8 9 2 9 . 8 0 2 1 5 . 4 0 5 . 4 3 4 7 . 9 0 0 4 4 . 9 8 5 . 0 0 5 3 . 9 2 - 1 2 4 . 7 8 4 . 7 8 4 9 . 9 - 1 - 2 1 4 . 5 0 4 . 5 3 6 0 . 3 - 2 o 3 4 . 4 1 4 . 4 3 7 5 . 2 1 1 3 4 . 3 6 4 . 3 8 8 0 . 1 - 2 - 1 2 4 . 1 4 4 . 1 5 5 1 . 9 0 - 1 5 3 . 9 5 3 . 9 7 7 0 . 4 - 1 2 4 3 . 7 4 3 . 7 4 1 7 . 0 2 - 1 4 3 . 6 2 3 . 6 2 1 7 . 0 - 2 - 1 4 3 . 5 1 3 . 5 3 2 0 . 7 1 1 1 t 1 1 1 2 3 - 3 - 2 - - 5 1 3 1 2 0 2 3 4 o o 1 0 2 3 - 3 - - - - - - - - - - - 3 3 2 3 3 o 2 2 5 2 2 2 3 3 4 3 0 1 6 1 4 2 1 1 3 4 o 3 6 2 0 2 o 7 7 8 8 8 7 7 6 0 4 1 A ) d 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 m . . . . . . . . . . . . . . . . . . . . . . 4 4 3 2 1 0 0 8 7 7 6 5 6 4 4 3 2 2 1 1 1 0 L 3 6 0 6 6 5 1 4 6 1 0 3 7 9 2 7 5 2 7 6 1 0 2 2 0 2 0 6 9 5 7 5 5 5 3 5 8 8 8 5 1 t 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 h . . . . . . . . . . . . . . . . . . . . . . § ( A ) 4 4 3 1 7 2 2 1 0 0 8 7 7 6 6 5 4 4 3 2 2 1 1 1 0 6 6 6 0 4 8 2 6 1 0 3 9 7 5 2 8 6 1 0 3 6 8 9 9 4 6 8 7 7 5 3 7 7 3 2 9 5 9 1 1 1 1 1 2 5 7 3 2 3 4 5 2 2 2 2 3 3 2 2 3 8 7 7 7 5 2 9 1 3 9 1 8 3 7 8 9 9 4 4 4 2 6 . . . . . . . . . . . . . . . . . . . . . . 2 6 2 6 7 8 3 9 9 8 8 5 3 5 5 0 6 6 0 9 0 2 T a b l e 2 . 1 ( c o n t ' d ) . I / I m a x g o b s ) 4 7 T a b l e 2 . 2 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( P r 4 N ) 4 [ 1 n 2 ( S e 4 ) 4 ( S e s ) ] . h k 1 d c a M A ) d o b f g t ) I / I m fl g o b s ) 0 1 1 1 1 . 7 1 1 . 5 2 1 . 2 - 1 1 1 9 . 6 9 . 7 9 4 . 2 1 1 1 9 . 0 9 . 1 1 0 0 . 0 0 2 0 8 . 7 8 . 8 4 9 . 1 0 o 2 8 . 0 8 . 0 1 2 . 6 0 2 1 7 . 6 3 7 . 6 4 1 7 . 2 1 0 2 6 . 8 3 6 . 8 3 2 7 . 2 - 2 1 1 6 . 5 3 6 . 5 7 1 9 . 0 1 1 2 6 . 3 5 6 . 4 0 1 7 . 3 0 2 2 5 . 8 7 5 . 9 2 2 7 . 0 - 2 o 2 5 . 7 2 5 . 7 6 3 4 . 1 - 2 1 2 5 . 4 3 5 . 5 0 3 4 . 7 1 2 2 5 . 3 7 5 . 3 2 3 1 . 3 - 1 3 1 5 . 1 6 5 . 1 1 3 7 . 1 3 1 0 4 . 8 4 4 . 8 8 3 6 . 5 1 1 3 4 . 7 1 4 . 7 2 3 3 . 4 - 1 3 2 4 . 5 3 4 . 5 2 5 9 . 8 0 2 3 4 5 3 - 2 3 1 4 . 4 7 4 . 4 6 5 8 . 0 1 3 2 4 . 4 1 4 . 3 9 3 6 . 0 - 3 2 1 4 . 2 8 4 . 2 9 3 6 . 0 1 2 3 4 . 2 6 4 . 2 2 2 9 . 8 - 2 3 2 4 . 0 7 4 . 0 9 6 4 . 0 - 2 2 3 4 . 0 1 4 . 0 0 3 6 . 3 - 1 0 4 3 . 9 3 3 . 9 3 4 4 . 8 2 3 2 3 . 9 0 3 . 8 7 3 9 . 0 2 2 3 3 . 7 7 3 . 7 5 6 6 . 2 3 3 1 3 . 6 5 3 . 6 4 3 6 . 5 T a b l e 2 . 2 ( c o n t ' d ) . 4 8 h k l o m “ ) d o b § ( A ) I / I m fl w b s ) - 2 3 3 3 . 5 6 3 . 5 4 3 3 . 6 0 5 o 3 . 4 5 3 . 4 8 4 8 . 8 2 4 2 3 . 3 6 3 . 3 6 5 7 . 0 - 3 1 4 3 . 2 0 3 . 2 0 8 0 . 0 - 4 1 3 3 . 1 5 3 . 1 4 4 5 . 8 - 3 2 4 3 . 0 4 3 . 0 4 6 0 . 5 3 3 3 3 . 0 0 2 . 9 9 5 5 . 0 - 2 5 2 2 . 9 7 2 . 9 5 4 2 . 8 5 1 1 2 . 8 8 8 2 . 8 9 8 5 2 . 4 - 5 1 2 2 . 8 6 5 2 . 8 6 9 6 4 . 4 3 5 1 2 . 7 9 4 2 . 8 0 2 6 0 . 1 5 0 2 2 . 7 5 5 2 . 7 4 8 4 4 . 5 2 4 4 2 . 6 8 5 2 . 6 9 2 6 1 . 5 3 1 5 2 . 5 7 4 2 . 5 7 8 5 6 . 3 2 6 2 2 . 5 3 9 2 . 5 4 9 4 3 . 7 - 3 6 1 2 . 4 9 5 2 . 4 9 5 5 0 . 8 5 4 o 2 . 4 8 2 2 . 4 8 3 5 1 . 1 2 5 4 2 . 4 3 6 2 . 4 3 4 4 1 . 3 - 6 2 2 2 . 3 7 0 2 . 3 7 8 4 1 . 6 2 7 0 2 . 3 5 8 2 . 3 5 8 5 3 . 0 - 3 6 3 2 . 3 0 6 2 . 3 1 2 3 7 . 4 - 2 7 2 2 . 2 7 6 2 . 2 7 4 5 7 . 7 5 5 1 2 . 2 4 0 2 . 2 4 5 4 6 . 7 - 2 1 7 2 . 2 1 3 2 . 2 1 4 3 9 . 6 3 7 1 2 . 1 9 4 2 . 1 9 5 4 3 . 7 - 4 6 3 2 . 1 4 8 2 . 1 4 8 6 5 . 5 2 4 6 2 . 1 3 2 2 . 1 3 3 5 8 . 7 7 1 1 2 . 1 0 2 2 . 1 0 2 5 7 . 7 1 5 6 2 . 0 7 3 2 . 0 7 2 4 7 . 3 - 6 1 5 2 . 0 4 4 2 . 0 4 1 5 0 . 8 4 9 T a b l e 2 . 3 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( E t 4 N ) 4 [ I n z ( S e 4 ) 4 ( S e s ) ] . h k l d c a l c ( A ) d o b s ( A ) I / I m n fl g h s l - 1 1 0 1 0 . 7 4 1 0 . 7 4 6 . 3 1 1 0 9 . 4 3 9 . 4 7 1 7 . 0 - 1 1 1 9 . 1 6 9 . 0 2 1 6 . 5 1 - 1 1 8 . 6 1 8 . 6 4 1 4 . 4 - 1 - 1 1 8 . 3 2 8 . 3 5 1 0 . 9 1 1 1 7 . 8 8 7 . 9 4 2 4 . 1 7 . 8 8 2 1 . 2 0 - 2 1 7 . 6 1 7 . 6 1 2 3 . 2 0 2 l 7 . 6 0 - 1 2 1 6 . 9 7 6 . 9 7 5 . 8 1 - 2 1 6 . 7 2 6 . 7 5 6 . 0 1 - 1 2 6 . 1 5 6 . 1 9 4 . 7 0 - 2 2 5 . 8 4 5 . 8 5 7 . 3 2 0 1 5 . 5 7 5 . 5 8 6 . 8 0 - 3 1 5 . 4 3 5 . 4 0 1 0 . 9 - 2 2 1 5 . 1 9 5 . 2 0 1 0 . 6 0 - l 3 5 . 0 2 5 . 0 4 1 3 . 0 0 1 3 5 . 0 2 . 1 3 0 4 . 9 8 4 . 8 7 3 . 4 0 - 3 2 4 . 6 7 4 . 6 8 2 9 . 3 0 3 2 4 . 6 6 - 2 3 1 4 . 4 2 4 . 4 2 2 9 . 9 - 1 - 2 3 4 . 2 1 4 . 2 4 3 . 6 - 1 4 1 4 . 1 6 4 . 1 6 2 . 7 - 2 3 2 4 . 0 3 4 . 0 4 5 . 0 - 1 4 2 3 . 8 0 3 . 8 0 2 8 . 7 1 - 4 2 3 . 7 2 3 . 7 3 6 . 3 T a b l e 2 . 3 ( c o n t ' d ) . 5 0 “ 1 1 1 1 3 5 1 9 1 2 5 1 h k l d c a l c ( t & - ) d o b s ( A ) 1 0 4 3 . 6 6 3 . 6 8 2 . 7 - 3 - l 2 3 . 5 7 3 . 5 7 5 . 3 - 3 - 2 l 3 . 4 9 3 . 5 0 4 . 4 3 - 2 2 3 . 4 1 3 . 4 1 1 5 . 5 - 3 1 3 3 . 3 6 3 . 3 7 1 0 . 6 - 1 3 4 3 . 2 5 8 3 . 2 5 7 1 1 . 2 - 1 5 2 3 . 1 9 9 3 . 1 9 5 7 . 6 l - 3 4 3 . 1 5 7 3 . 1 5 3 1 0 . 2 - 1 - 3 4 3 . 1 3 7 3 . 1 2 7 1 4 . 1 4 0 0 3 . 0 6 8 3 . 0 7 8 1 5 . 5 - 4 2 1 3 . 0 1 4 3 . 0 1 4 1 0 0 . 0 - 4 0 2 2 . 9 3 6 2 . 9 3 7 1 5 . 8 2 - 3 4 2 . 8 9 1 2 . 8 8 8 4 1 . 7 4 0 2 2 . 7 8 6 2 . 7 8 4 3 . 0 - 2 - 5 2 2 . 7 2 1 2 . 7 2 2 7 . 3 2 - 1 5 2 . 7 0 9 2 . 7 0 7 8 . 6 - 4 3 3 2 . 6 0 4 2 . 6 0 7 3 . 8 - 1 4 5 2 . 5 6 7 2 . 5 6 5 4 . 8 1 l 6 2 . 4 8 8 2 . 4 8 4 1 3 . 5 0 - 7 1 2 . 4 5 2 2 . 4 5 2 4 . 7 5 1 0 2 . 3 8 6 2 . 3 8 7 8 . 8 4 0 4 2 . 3 3 3 2 . 3 3 4 5 . 9 - 5 2 3 2 . 2 8 9 2 . 2 8 7 2 . 9 0 - 2 7 2 . 1 7 9 2 . 1 8 9 3 1 . 8 1 4 6 2 . 1 5 5 2 . 1 5 5 7 . 7 2 - 4 6 2 . 1 1 2 2 . 1 1 2 6 . 8 - 4 - 4 4 2 . 0 7 8 2 . 0 7 8 8 6 . 3 3 7 0 2 . 0 0 3 2 . 0 0 3 5 8 . 8 5 1 T a b l e 2 . 4 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( P r 4 N ) 2 [ I n 2 $ e z ( S e 4 ) 2 ] . h k 1 d c a l c . ( A ) d o b s . ( A ) I / I m a x ( 0 s t 0 1 0 1 0 . 9 1 0 . 5 3 0 0 0 1 8 . 5 8 . 2 6 3 - l - l 1 7 . 0 6 . 9 3 1 - l - 2 1 5 . 1 9 5 . 1 5 1 0 0 0 0 2 4 . 2 7 4 . 1 8 5 0 - 1 - 3 1 3 . 7 6 3 . 7 3 3 2 0 3 0 3 . 6 6 3 . 6 8 8 - 2 0 2 3 . 6 0 3 . 5 8 7 9 - 3 — 2 1 3 . 3 7 3 . 3 6 5 - 2 2 1 3 . 2 4 3 . 2 3 2 2 3 - 1 1 3 . 0 6 3 . 0 8 5 - 3 - 2 2 3 . 0 0 9 3 . 0 0 6 2 3 - 1 - 1 3 2 . 9 6 5 2 . 9 5 4 1 4 - 1 3 1 2 . 9 2 4 2 . 9 2 2 1 1 0 0 3 2 . 8 4 7 2 . 8 4 0 1 7 - 4 0 1 2 . 7 2 1 2 . 7 1 8 2 0 0 - 4 2 2 . 6 1 8 2 . 6 2 9 2 3 3 - 1 2 2 . 5 7 5 2 . 5 7 5 3 6 4 0 1 2 . 5 2 5 2 . 5 3 0 4 0 - 4 0 2 2 . 4 5 9 2 . 4 8 7 3 6 3 4 0 2 . 3 7 4 2 . 3 8 6 2 1 - 1 4 1 2 . 3 4 0 2 . 3 0 7 3 1 - 1 - l 4 2 . 2 2 6 2 . 2 2 1 2 6 4 0 2 2 . 1 8 8 2 . 1 6 6 7 1 3 - 1 3 2 . 1 2 1 2 . 1 0 5 3 6 - 1 4 2 2 . 0 3 3 2 . 0 1 3 4 4 - 1 3 3 1 . 9 9 0 1 . 9 7 3 2 4 - 5 - 1 3 1 . 9 2 6 1 . 9 2 1 2 2 4 0 3 1 . 8 6 3 1 . 8 4 4 2 6 - 4 3 2 1 . 8 2 3 1 . 8 2 4 1 3 - 2 - 2 5 1 . 7 6 8 1 . 7 5 6 2 2 3 6 0 1 . 7 4 5 1 . 7 3 1 1 1 - 5 4 0 1 . 6 0 4 1 . 5 9 4 9 2 3 4 1 . 5 8 8 1 . 5 7 8 1 0 T a b l e 2 . 5 . o f ( P P N ) 2 [ I n 2 8 ¢ 2 ( S e 4 ) 2 ] . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n h k l d c a l c . ( A ) d o b s . ( A ) I / I m a x ( o b s ) 0 1 0 1 5 . 1 0 1 5 . 5 7 3 1 1 0 0 1 1 . 2 4 1 1 . 4 9 3 8 0 0 1 1 0 . 8 8 1 1 . 0 7 2 5 - 1 1 0 8 . 6 8 8 . 2 8 6 2 1 0 1 7 . 5 9 7 . 4 8 1 0 0 - 1 1 1 6 . 8 1 6 . 9 3 2 2 1 - 1 1 6 . 7 5 6 . 6 6 1 5 - 1 2 0 6 . 0 3 6 . 2 1 1 5 - 1 - 2 1 5 . 8 4 5 . 7 8 2 6 0 0 2 5 . 4 4 5 . 5 6 3 2 - 2 1 0 5 . 1 3 5 . 2 6 4 2 - 1 - 1 2 4 . 9 1 0 4 . 9 0 7 4 8 - 1 1 2 4 . 6 2 8 4 . 6 2 6 4 6 1 1 2 4 . 5 2 9 4 . 4 2 6 5 4 - 1 - 2 2 3 . 8 7 4 . 3 3 4 6 1 ‘ 2 2 1 4 . 1 7 4 4 . 1 5 6 2 8 2 - 2 1 4 . 0 1 7 4 . 0 2 2 3 8 0 - 3 2 3 . 8 2 4 3 . 8 2 7 3 1 2 0 2 3 . 7 9 3 3 . 7 8 0 4 3 3 1 0 3 . 7 0 8 3 . 6 8 9 3 8 l - 4 1 3 . 3 6 6 3 . 3 5 8 3 9 T a b l e 2 . 5 ( c o n t ' d ) . h k 1 d c a l c . ( A ) d o b s . ( A ) I " m a x ( 0 9 8 - ) - 2 - 1 3 3 . 1 3 7 3 . 1 5 5 2 1 - 2 4 0 3 . 0 1 9 3 . 0 1 4 3 5 3 - 1 2 2 . 9 2 6 2 . 9 2 3 1 0 1 5 1 2 . 8 1 5 2 . 8 1 6 2 3 4 2 0 2 . 7 0 5 2 . 7 0 4 2 0 2 - 4 2 2 . 6 6 3 2 . 6 6 9 1 6 - l 1 4 2 . 6 0 3 2 . 6 0 5 2 0 0 6 0 2 . 5 1 6 2 . 5 2 4 2 5 - 4 - 2 2 2 . 5 0 8 2 . 4 9 9 2 8 4 - 2 1 2 . 4 7 8 2 . 7 4 7 1 0 - 4 — 2 3 2 . 2 6 3 2 . 2 7 9 1 3 0 6 2 2 . 2 2 7 2 . 2 2 4 1 3 - 4 - 3 3 2 . 1 7 6 2 . 1 8 6 1 9 - 1 1 5 2 . 1 1 5 2 . 1 0 9 2 1 3 - 2 4 2 . 0 6 1 2 . 0 6 1 1 9 4 3 3 2 . 0 0 0 1 . 9 9 8 5 1 1 1 7 2 1 . 9 1 4 1 . 9 2 2 1 3 - 4 - 7 1 1 . 7 8 7 1 . 7 9 8 1 8 1 - 3 6 1 . 7 0 1 1 . 7 0 7 5 - 4 7 0 1 . 6 4 6 1 . 6 4 7 1 3 5 4 T a b l e 2 . 6 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( E M N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] . h k l d a n g ) d o b § ( A ) I / I m u ( o b s ) 1 1 0 1 0 . 6 1 0 . 5 6 . 3 1 1 1 9 . 4 9 . 3 1 1 . 5 1 0 2 8 . 9 8 . 9 2 4 . 1 0 1 2 8 . 6 8 . 5 1 5 . 1 - 1 1 2 7 . 8 7 . 8 2 1 . 8 - 2 0 2 6 . 9 1 6 . 9 1 8 . 4 3 0 0 5 . 5 6 5 . 5 5 3 6 . 7 - 1 0 4 5 . 3 7 5 . 3 5 4 3 . 0 2 2 0 5 . 2 9 5 . 2 7 3 6 . 1 - 3 0 2 5 . 1 2 5 . 1 0 3 8 . 9 2 1 3 4 . 9 7 4 . 9 7 3 7 . 7 - 2 o 4 4 . 7 8 4 . 7 8 4 5 . 0 2 0 4 4 . 4 7 4 . 4 7 3 8 . 3 - 2 2 3 4 . 4 0 4 . 3 9 4 8 . 6 2 2 3 4 . 2 1 4 . 2 1 4 2 . 3 1 1 5 4 . 0 2 4 . 0 0 4 7 . 2 2 3 1 3 . 9 1 3 . 9 0 4 7 . 2 1 3 3 3 . 7 5 3 . 7 9 3 6 . 7 0 2 5 3 . 7 2 3 . 7 1 3 7 . 7 3 3 0 3 . 5 3 3 . 5 4 3 9 . 9 - 4 2 2 3 . 4 6 3 . 4 6 4 1 . 3 - 3 3 2 3 . 4 1 3 . 4 0 4 2 . 3 - 4 1 4 3 . 3 5 3 . 3 5 3 8 . 0 - 3 3 3 3 . 2 4 3 . 2 3 6 1 . 8 5 1 1 3 . 1 7 3 . 1 7 5 0 . 1 - 3 1 6 3 . 1 0 3 . 0 9 8 3 . 0 - 2 4 2 3 . 0 6 9 3 . 0 6 3 6 3 . 8 5 5 T a b l e 2 . 6 ( c o n t ' d ) . h k 1 a m “ ) 6 0 1 , 5 0 4 ) I / I m u ( o b s ) - 2 3 5 3 . 0 2 5 3 . 0 1 9 1 0 0 . 0 5 2 1 2 . 9 4 9 2 . 9 4 3 7 2 . 5 3 1 6 2 . 9 1 2 2 . 9 1 0 5 5 . 0 - 1 4 4 2 . 8 8 6 2 . 8 8 2 5 9 . 7 1 4 4 2 . 8 5 2 2 . 8 4 5 6 4 . 3 - 2 4 4 2 . 7 8 4 2 . 7 8 0 3 8 . 9 2 4 4 2 . 7 1 9 2 . 7 1 3 5 6 . 5 - 2 1 8 2 . 6 3 8 2 . 6 3 7 5 5 . 0 - 6 1 3 2 . 6 2 0 2 . 6 1 5 4 5 . 0 - 3 0 8 2 . 5 5 8 2 . 5 6 0 4 6 . 4 - 1 4 6 2 . 5 0 2 2 . 4 9 9 6 3 . 4 5 3 3 2 . 4 8 0 2 . 4 6 5 4 2 . 3 6 2 2 2 . 4 7 5 - 4 4 0 2 . 4 3 3 2 . 4 3 7 4 4 . 0 - 4 0 8 2 . 3 9 0 2 . 3 8 6 4 6 . 4 4 4 4 2 . 3 4 7 2 . 3 4 7 4 4 . 3 4 3 6 2 . 3 0 6 2 . 3 0 1 3 3 . 6 6 2 4 2 . 2 8 0 2 . 2 7 5 4 6 . 4 - 7 2 2 2 . 2 3 8 2 . 2 3 4 4 5 . 7 - 2 o 1 0 2 . 1 8 2 2 . 1 8 3 5 3 . 5 2 6 2 2 . 1 5 3 2 . 1 5 5 6 8 . 1 7 0 4 2 . 1 3 6 2 . 1 4 6 5 9 . 3 2 5 6 2 . 1 0 5 2 . 1 0 5 6 2 . 2 5 4 5 2 . 0 6 2 2 . 0 6 2 5 5 . 0 3 5 6 2 . 0 1 7 2 . 0 1 6 5 5 . 0 4 6 0 2 . 0 0 3 2 . 0 0 1 7 1 . 1 3 6 4 1 . 9 5 6 1 . 9 5 3 7 2 . 9 - 4 2 1 0 1 . 9 3 7 1 . 9 3 5 5 7 . 7 - 2 6 6 1 . 9 0 8 1 . 9 0 4 6 1 . 8 - 5 3 9 1 . 8 7 4 1 . 8 7 1 6 4 . 3 d 0 0 2 0 1 1 0 0 1 9 0 1 1 0 0 0 . 6 . 0 4 1 7 1 1 1 1 4 2 1 7 7 1 1 1 0 2 9 7 5 7 2 9 9 0 1 2 6 4 3 5 8 0 3 2 0 0 7 0 3 2 0 8 2 1 0 3 8 1 0 0 0 0 0 2 2 0 9 8 1 5 3 0 0 4 1 2 7 1 1 6 4 7 3 0 0 6 5 4 0 7 6 6 4 4 0 4 3 2 8 5 6 6 3 2 0 1 5 1 3 9 4 5 2 3 1 9 9 1 7 1 5 8 4 5 5 1 4 1 8 7 3 0 5 5 4 1 9 2 4 0 4 4 1 5 7 4 7 6 4 2 3 2 4 4 3 2 3 3 1 8 4 0 4 2 3 2 2 6 8 1 8 4 4 . 4 2 3 2 2 2 1 8 9 2 2 4 0 0 1 1 1 8 4 9 9 4 4 8 4 0 0 0 1 2 5 8 9 4 4 4 4 1 5 1 0 0 3 9 4 2 0 4 2 4 2 4 9 6 4 4 2 9 2 2 5 2 5 1 3 8 7 3 8 5 1 3 9 4 3 3 3 8 2 3 8 1 1 6 4 0 5 2 3 7 2 3 7 3 1 4 7 4 1 2 2 5 7 5 7 5 5 3 3 4 2 2 3 9 4 4 7 4 5 3 3 3 2 3 4 4 1 0 2 4 3 3 3 3 4 2 4 1 3 6 1 3 3 6 3 6 3 5 0 3 3 2 9 3 1 3 9 2 3 8 3 3 7 3 1 3 2 5 2 4 3 1 6 2 J 6 J 7 5 0 9 3 3 3 6 1 4 6 0 J 0 3 3 J 3 5 6 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( E t 4 N ) 3 [ T l 3 S ¢ 3 ( S C 4 ) 3 ] . T a b l e 2 . 7 . I / I n m m b s ) d o b fi A ) m s L A ) h k l u h N o h u t u N a - u D I U H O # # p ‘ N u N 5 - k - v - . fi u v u b N § v h - w - N u h M w M O o H h O é — w h m N O I U ‘ O N ‘ w Q - O N a ‘ O N — N o Q u a N H ‘ - i h a N P N I N — U G N Q N C N w \ O O u \ h O ‘ > \ - O 4 > r u 4 ‘ N q O O T a b l e 2 . 7 ( c o n t ' d ) . h k l I 1 . . . ; N p — s I / I m fl g o b s ! ( 1 2 , 1 9 1 . 4 1 ) 6 0 1 , 1 0 1 ; 3 . 0 8 3 . 0 8 9 8 . 4 3 . 0 3 3 . 0 3 8 4 . 6 2 . 9 6 2 . 9 9 6 3 . 0 2 . 9 3 2 . 9 4 6 6 . 0 2 . 9 2 2 . 9 2 6 3 . 0 2 . 8 9 2 . 8 9 6 4 . 7 2 . 8 6 2 . 8 5 8 8 . 1 2 . 8 6 2 . 8 6 2 . 7 9 2 . 7 9 4 9 . 7 2 . 7 2 2 . 7 2 4 2 . 8 2 . 6 7 2 . 6 7 4 2 . 4 2 . 6 2 2 . 6 2 7 9 . 7 2 . 5 5 3 2 . 5 5 4 5 2 . 8 2 . 5 4 1 2 . 5 4 1 5 9 . 2 2 . 5 0 7 2 . 5 0 3 5 2 . 4 2 . 4 8 5 2 . 4 7 6 5 3 . 6 2 . 4 4 5 2 . 4 3 7 4 4 . 2 2 . 4 0 9 2 . 4 0 0 3 6 . 7 2 . 3 6 5 2 . 3 6 7 5 6 . 0 2 . 3 5 8 2 . 3 5 2 4 8 . 6 2 . 2 8 7 2 . 2 7 7 4 9 . 7 2 . 2 4 7 2 . 2 4 1 6 0 . 5 2 . 2 0 0 2 . 1 9 9 3 9 . 7 2 . 1 6 3 2 . 1 6 2 6 6 . 4 2 . 1 0 8 2 . 1 0 8 6 7 . 3 2 . 0 7 5 2 . 0 7 2 5 9 . 2 2 . 0 1 4 2 . 0 1 1 6 4 . 3 1 . 9 6 4 1 . 9 6 4 9 3 . 7 1 . 9 4 9 1 . 9 4 6 6 9 . 5 1 . 9 1 4 1 . 9 1 4 7 1 . 8 5 8 T h e s i n g l e c r y s t a l s o f c o m p l e x e s ( 1 ) , ( I I ) , ( I I I ) , ( V I ) a n d ( V I I ) w e r e m o u n t e d i n s i d e g l a s s c a p i l l a r i e s a n d fl a m e s e a l e d . T h e c r y s t a l s o f ( I V ) a n d ( V ) w e r e m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h e p o x y a n d c o v e r e d w i t h K r y l o n T M t o p r o t e c t t h e i r s u r f a c e f r o m a i r . T h e c r y s t a l l o g r a p h i c d a t a f o r ( I ) , ( I I ) a n d ( V I ) w e r e c o l l e c t e d o n N i c o l e t P 3 f o u r - c i r c l e a u t o m a t e d d i f f r a c t o m e t e r u s i n g a 0 - 2 0 s t e p s c a n m o d e “ . T h e d a t a f o r ( I I I ) a n d ( V I I ) w e r e c o l l e c t e d a t C r y s t a l l y t i c s C o . , L i n c o l n , N e b r a s k a b y D r . C . S . D a y o n a N i c o l e t d i f f r a c t o m e t e r u s i n g a n ( 0 - 2 0 s c a n m o d e . T h e d a t a f o r ( I V ) a n d ( V ) w e r e c o l l e c t e d o n R i g a k u A F C 6 S f o u r - c i r c l e a u t o m a t e d d i f f r a c t o m e t e r w i t h ( 0 - 2 0 s c a n t e c h n i q u e . A c c u r a t e u n i t c e l l d i m e n s i o n s w e r e d e t e r m i n e d f r o m t h e 2 0 , c o , 0 . x a n g l e s o f 1 5 - 2 5 m a c h i n e c e n t e r e d r e fl e c t i o n s . T h e i n t e n s i t i e s o f t h r e e c h e c k r e f l e c t i o n s w e r e m o n i t o r e d e v e r y 1 0 0 - 1 5 0 r e f l e c t i o n s a n d d i d n o t s h o w a n y a p p r e c i a b l e l o s s i n t h e i r i n t e n s i t i e s o v e r t h e d a t a c o l l e c t i o n p e r i o d . A n e m p i r i c a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d t o a l l d a t a b a s e d o n 1 4 1 s c a n s f o r 3 - 5 ( x ~ 9 0 ° ) r e f l e c t i o n s . T h e s t r u c t u r e s w e r e s o l v e d w i t h d i r e c t m e t h o d s a n d d i f f e r e n c e F o u r i e r S y n t h e s i s m a p s a n d r e f i n e d w i t h f u l l - m a t r i x l e a s t s q u a r e t e c h n i q u e s . A n a d d i t i o n a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d b e f o r e a n i s o t r o p i c r e f i n e m e n t u s i n g D I F A B S 3 2 . T h e c a l c u l a t i o n s w e r e p e r f o r m e d o n a V A X s t a t i o n 2 0 0 0 / 3 1 0 0 c o m p u t e r u s i n g t h e T E X S A N c r y s t a l l o g r a p h i c s o f t w a r e p a c k a g e f r o m M o l e c u l a r S t r u c t u r e C o r p o r a t i o n f o r ( I V ) a n d ( V ) a n d t h e S H E L X S - 8 6 a n d S D P c o m b i n e d p a c k a g e o f c r y s t a l l o g r a p h i c p r o g r a m s 3 3 f o r t h e r e s t o f t h e c o m p l e x e s . A l l t h e a t o m s i n t h e a n i o n s w e r e r e f i n e d a n i s o t r o p i c a l l y , w h i l e o n l y t h e n i t r o g e n s o r p h o s p h o r o u s a t o m s o f t h e c a t i o n s w e r e r e f i n e d a n i s o t r o p i c a l l y . T h e c a r b o n a t o m s w e r e r e f i n e d i s o t r o p i c a l l y , w h i l e 5 9 t h e c a l c u l a t e d c o o r d i n a t e s o f t h e h y d r o g e n a t o m s w e r e k e p t f i x e d . A l l t h e s t r u c t u r e s c o n s i s t o f d i s c r e t e , w e l l s e p a r a t e d c a t i o n s a n d a n i o n s . I n ( P r 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I I ) , a l l t h e c a t i o n s a r e s i t u a t e d o n s p e c i a l p o s i t i o n s . T h e n i t r o g e n a t o m s a r e s i t u a t e d o n a t w o f o l d g l i d e a t ( 0 . 5 , x , 0 . 7 5 ) , ( 0 . 5 , y , 0 . 7 5 ) , ( 0 . 5 , x , 0 . 2 5 ) , a n d ( 0 . 5 , y , 0 . 2 5 ) t h u s t h e r e a r e f o u r h a l f c a t i o n s i n t h e a s y m m e t r i c u n i t . T h e r e i s d i s o r d e r i n o n e o f t h e P r 4 N + c a t i o n s , w h e r e t h e m i d d l e c a r b o n a t o m s o f t h e p r o p y l c h a i n s h a v e t w o d i f f e r e n t s i t e s o f h a l f o c c u p a n c y . I n t h i s s t r u c t u r e t h e r e i s a l s o d i s o r d e r i n t h e S e 5 2 ' c h a i n b r i d g i n g t h e I n a t o m s . T h e s e c o n d s e l e n i u m a t o m i n t h e c h a i n S e ( l O ) i s p o s i t i o n a l l y d i s o r d e r e d o v e r t w o s i t e s w i t h e q u a l o c c u p a n c y . T h e S e ( l l ) a t o m i s s i t u a t e d v e r y c l o s e t o t h e C 2 a x i s a n d h a s h a l f o c c u p a n c y . T h i s l e a d s t o t w o d i f f e r e n t c o n f o r m a t i o n s o f t h e S e 5 2 ' i n t h e s o l i d s t a t e . T h e S e 5 2 ' c h a i n s c o n s i s t e i t h e r o f t h e S e ( 9 ) S e ( 1 0 ) S e ( 1 l ) S e ( l O ) ' S e ( 9 ) o r S e ( 9 ) S e ( 1 0 ) ' S e ( l 1 ) ' S e ( 1 0 ) S e ( 9 ) s e q u e n c e o f a t o m s . I n ( P r 4 N ) 2 [ I n z S e 2 ( S e 4 ) 2 ] ( I V ) t h e P m N ' l ‘ c a t i o n i s d i s o r d e r e d . T h e p r o p y l c h a i n s h a v e t w o c o n f o r m a t i o n s , t h e i n n e r t w o c a r b o n a t o m s o n e a c h o f t h e f o u r c h a i n s a r e p o s i t i o n a l l y d i s o r d e r e d o v e r t w o s i t e s . w i t h 0 . 6 a n d 0 . 4 o c c u p a n c y b u t t h e t e r m i n a l c a r b o n h a s f u l l o c c u p a n c y . I n ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] ( V I ) t h e r e i s d i s o r d e r i n o n e o f t h e S e 4 2 ' l i g a n d s c h e l a t i n g t o I n ( 2 ) a t o m , t h u s l e a d i n g t o t w o d i f f e r e n t c o n f o r m a t i o n s o f t h e [ I n S e 4 ] + f i v e m e m b e r e d r i n g . T h i s d i s o r d e r i n v o l v e s t h r e e o f t h e f o u r S e a t o m s g i v i n g t w o s e p a r a t e S e 4 2 ' l i g a n d s : S e ( 6 ) S e ( 7 ) S e ( 8 ) S e ( 9 ) a n d S e ( 6 ) S e ( 7 ' ) S e ( 8 ' ) S e ( 9 ' ) s e e F i g u r e 2 . 1 6 b e l o w . T h e f o r m e r c o n f o r m a t i o n i s t h e m o r e p r e d o m i n a n t w i t h 0 . 7 6 0 o c c u p a n c y . I n t h i s s t r u c t u r e a l l t h e E t 4 N + c a t i o n s a r e d i s o r d e r e d w i t h t h e i n n e r c a r b o n a t o m s o f a l l t h e e t h y l g r o u p s d i s t r i b u t e d o v e r t o d i f f e r e n t s i t e s o f h a l f o c c u p a n c y . T h e r e i s n o d i s o r d e r i n t h e t e r m i n a l c a r b o n s o r t h e n i t r o g e n a t o m s o f t h e c a t i o n s . T h e c o m p l e t e d a t a c o l l e c t i o n p a r a m e t e r s a n d d e t a i l s o f t h e s t r u c t u r e s o l u t i o n a n d r e f i n e m e n t f o r a l l t h e c o m p o u n d s a r e s u m m a r i z e d i n T a b l e s 2 . 8 - 2 . 1 0 . T h e f i n a l c o o r d i n a t e s , t e m p e r a t u r e f a c t o r s a n d t h e i r e s t i m a t e d s t a n d a r d d e v i a t i o n s ( e s d ' s ) o f a l l n o n h y d r o g e n a t o m s f o r a l l t h e c o m p o u n d s , a r e s h o w n i n T a b l e s 2 . 1 1 - 2 . 1 7 . T a b l e 2 . 8 S u m m a r y C r y s t a l l o g r a p h i c D a t a f o r ( P h 4 P ) 4 [ I n z ( S C 4 ) 4 ( S e s ) ] ( I ) . ( P r 4 N ) 4 [ I n z ( S e 4 ) 4 ( S c s ) l ( 1 1 ) a n d ( E M N ) 4 [ I H 2 ( S C 4 ) 4 ( 3 6 5 ) ] ( 1 1 1 ) - F o r m u l a C 9 5 H 3 0 P 4 I n 2 8 e 2 1 F W 3 2 4 5 . 2 2 C r y s t a l c o l o r r e d - b r o w n T e m p . ( ° C ) 2 3 3 ( A ) 1 1 . 4 1 7 ( 4 ) b ( A ) 1 2 . 7 3 4 ( 9 ) c ( A ) 2 0 . 1 8 8 ( 9 ) a ( ° ) 9 6 . 0 3 ( 5 ) B ( ° ) 9 4 . 6 9 ( 3 ) 7 ( ° ) l l 1 . 6 8 ( 4 ) Z . V ( A 3 ) 1 , 2 6 8 9 S p a c e g r o u p P - l ( # 2 ) D c a l c . ( 8 c m ' 3 ) 2 . 0 5 3 u ( c m ' 1 ) M o ( K a ) 7 9 . 0 C r y s t a l s i z e ( m m ) - 2 0 m 3 x ( ° ) 4 4 # o f d a t a C o l l e c t 7 2 2 7 D a t a ( I > 3 0 ( I ) ) 2 4 7 7 N o . o f v a r i a b l e s 3 1 9 m i n / m a x a b s c o r 0 . 7 3 6 - 1 . 0 8 9 F i n a l R / R w ( % ) 7 . 3 / 8 . 5 I I I I I I C 4 8 H 1 1 2 N 4 I n 2 8 6 2 1 C 3 2 H 8 0 N 4 I n 2 8 6 2 1 2 6 3 3 . 2 0 2 4 0 8 . 7 9 r e d - b r o w n r e d - b r o w n 2 3 2 3 1 5 . 9 9 7 ( 3 ) 1 2 . 4 2 8 ( 3 ) 1 7 . 3 7 6 ( 3 ) 1 7 . 5 4 0 ( 4 ) 1 5 . 1 6 8 ( 2 ) 1 5 . 7 8 1 ( 3 ) 9 0 . 0 0 8 9 . 4 7 ( 2 ) 9 4 . 5 6 ( l ) 9 4 . 4 7 ( 2 ) 9 0 . 0 0 9 7 . 9 0 ( 2 ) 2 , 4 2 0 2 . 9 2 , 3 3 9 7 P 2 / c ( # 1 3 ) P - l ( # 2 ) 2 . 0 8 1 2 . 3 5 5 9 5 . 8 1 1 8 . 4 0 . 4 0 , 0 . 4 0 , 0 . 0 4 0 . 1 3 , 0 . 5 1 , 0 . 6 0 4 5 4 5 . 8 6 1 7 9 9 9 7 3 2 0 5 9 4 2 2 5 2 4 3 3 7 2 0 4 2 6 - 0 9 9 9 0 . 6 4 0 — l . 4 0 7 6 . 9 / 8 . 0 7 . 5 / 8 . 4 T a b l e 2 . 9 6 2 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r ( P r 4 N ) 2 [ I n 2 3 6 2 ( S e 4 ) 2 ] ( 1 V ) a n d [ ( P h 3 P ) 2 N ] 2 [ I n 2 8 6 2 ( S e 4 ) 2 ] ( V ) I V V F o r m u l a C 2 4 H 5 5 N 2 1 n 2 8 e 1 0 C 7 2 H 5 0 P 4 N 2 1 n 2 8 e 1 0 F W 1 3 9 1 . 9 7 2 0 9 6 . 4 2 C r y s t a l c o l o r o r a n g e - r e d r e d / b r o w n T e m p . ( ° C ) 2 3 2 3 a ( A ) 1 1 . 2 9 0 ( 2 ) 1 1 . 3 0 2 ( 7 ) b ( A ) 1 1 . 5 2 8 ( 2 ) 1 5 . 1 8 9 ( 8 ) c ( A ) 8 . 9 3 8 ( 2 ) 1 0 . 9 3 1 ( 5 ) a ( ° ) 1 0 5 . 5 6 ( l ) 9 4 . 1 5 ( 4 ) B ( ° ) 9 9 . 8 4 ( 1 ) 9 3 . 8 6 ( 4 ) y ( ° ) 7 9 . 1 9 ( l ) 8 4 . 9 8 ( 5 ) z , V ( A 3 ) 1 , 1 0 9 2 . 8 ( 3 ) 1 , 1 8 5 8 ( 1 ) S p a c e g r o u p P - l ( # 2 ) P - 1 ( # 2 ) D c a l c . ( g c m ‘ 3 ) 2 . 1 1 7 1 . 8 7 1 1 1 ( c m ‘ 1 ) M 0 ( K a ) 9 3 . 1 5 5 . 8 C r y s t a l s i z e ( m m ) 0 . 1 6 , 0 . 1 2 , 0 . 0 8 0 . 2 4 , 0 . 2 0 , 0 . 1 4 2 9 m a x ( ° ) 4 5 4 0 # o f d a t a C o l l e c t 3 0 9 7 3 8 2 3 D a t a ( l > 3 a ( l ) ) l 5 5 0 2 1 2 0 N o . o f v a r i a b l e s 2 0 4 2 2 6 m i n / m a x a b s c o r 0 . 7 0 9 - 1 . l 4 0 0 . 4 0 3 - 1 . 4 8 4 F i n a l R / R w ( % ) 4 . 5 / 4 . 9 6 . 0 / 8 . 1 T a b l e 2 . 1 0 . 6 3 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r ( E t 4 N ) 3 [ I n 3 8 6 3 ( S C 4 ) 3 ] ( V I ) a n d ( E t 4 N ) 3 [ T l 3 S e 3 ( S C 4 ) 3 l ( V I I ) V I V I I F o r m u l a C 2 4 H 6 0 N 3 I n 3 S e 1 5 C 2 4 H 5 0 N 3 T 1 3 S e 1 5 F W 1 9 1 9 . 6 3 2 1 8 8 . 2 8 C r y s t a l c o l o r D e e p R e d D e e p R e d T e m p . ( ° C ) 2 3 2 1 a ( A ) l 6 . 7 4 7 ( 4 ) 1 6 . 8 1 3 ( 3 ) b ( A ) 1 3 . 7 0 1 ( 3 ) 1 3 . 7 7 4 ( 3 ) c ( A ) 2 2 . 2 2 7 ( 3 ) 2 2 . 1 8 6 ( 4 ) a ( ° ) 9 0 . 0 0 9 0 . 0 0 B ( ° ) 9 4 . 1 6 ( 2 ) 9 4 . 1 3 ( 1 ) W ) 9 0 . 0 0 9 0 . 0 0 z , V ( A 3 ) 4 , 5 0 8 6 . 4 4 , 5 1 2 6 S p a c e g r o u p P 2 1 / c ( # 1 4 ) P 2 1 / c ( # 1 4 ) D c a l c . ( 8 c m ' 3 ) 2 . 5 0 7 2 . 8 3 5 u ( c m ' 1 ) M o ( I ( a ) 1 1 9 . 8 2 0 0 . 8 C r y s t a l s i z e ( m m ) 0 . 7 6 , 0 . 2 3 , 0 . 4 0 0 . 0 8 , 0 . 3 6 , 0 . 7 0 2 9 m a x ( ° ) 4 0 4 5 . 8 # o f d a t a C o l l e c t 5 4 1 7 7 7 9 2 D a t a ( I > 3 o ( I ) ) 2 8 9 4 3 4 0 4 N o . o f v a r i a b l e s 3 6 1 2 6 3 m i n / m a x a b s c o r O . 9 5 0 - 1 . 0 6 5 O . 7 1 0 — 1 . 3 3 0 F i n a l R / R w ( % ) 4 . 5 / 5 . 1 7 . 2 / 8 . 7 6 4 T a b l e 2 . 1 1 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q " , A 2 I n 0 . 3 1 2 0 ( 2 ) 0 . 5 9 3 4 ( 2 ) 0 . 7 8 6 7 ( 1 ) 5 . 0 7 ( 7 ) S e l 0 . 4 9 1 0 ( 4 ) 0 . 7 6 8 5 ( 3 ) 0 . 7 4 6 5 ( 2 ) 5 . 1 ( 1 ) S e 2 0 . 6 6 0 9 ( 4 ) 0 . 7 0 9 7 ( 4 ) 0 . 7 4 0 4 ( 2 ) 7 . 3 ( 1 ) S e 3 0 . 5 5 4 0 ( 4 ) 0 . 5 1 6 9 ( 3 ) 0 . 6 9 6 8 ( 2 ) 7 . 5 ( 1 ) S e 4 0 . 4 4 5 1 ( 4 ) 0 . 4 5 4 1 ( 3 ) 0 . 7 8 7 9 ( 2 ) 7 . 5 ( 1 ) S e 5 0 . 1 4 9 1 ( 4 ) 0 . 4 3 2 0 ( 3 ) 0 . 6 9 5 8 ( 2 ) 6 . 6 ( 1 ) S e 6 0 . 0 1 5 5 ( 5 ) 0 . 5 1 5 1 ( 4 ) 0 . 6 5 3 5 ( 2 ) 8 . 7 ( 2 ) S e 7 - 0 . 0 1 1 0 ( 4 ) 0 . 6 1 5 6 ( 4 ) 0 . 7 4 8 1 ( 3 ) 8 . 1 ( 1 ) S e 8 0 . 1 9 5 6 ( 4 ) 0 . 7 4 6 3 ( 4 ) 0 7 8 6 3 ( 4 ) 1 1 . 5 ( 2 ) S e 9 0 . 2 7 2 7 ( 4 ) 0 . 5 8 2 6 ( 5 ) 0 . 9 1 2 1 ( 2 ) 9 . 1 1 2 ) S e 1 0 0 . 3 4 3 5 ( 6 ) 0 . 4 3 7 2 ( 4 ) 0 . 9 4 1 0 ( 2 ) 1 0 . 5 ( 2 ) S e l l 0 . 4 5 1 7 ( 8 ) 0 . 4 7 6 8 ( 7 ) 0 . 0 4 8 9 ( 4 ) 6 . 5 ( 2 ) P 1 0 . 1 0 4 9 ( 7 ) 0 . 8 4 5 8 ( 6 ) 0 . 0 7 5 2 ( 1 ) 3 1 ( 2 ) P 2 0 . 2 1 1 4 ( 7 ) 0 . 8 6 2 8 ( 6 ) 0 . 5 2 3 8 ( 4 ) 3 . 4 ( 2 ) C l 0 . 0 0 7 ( 2 ) 0 . 2 5 1 ( 2 ) - 0 . 0 0 2 ( 1 ) 2 . 5 ( 6 ) C 2 0 . 1 0 1 ( 3 ) 0 2 2 0 ( 2 ) 0 . 0 1 8 ( 1 ) 3 . 3 ( 6 ) C 3 0 . 1 8 3 ( 3 ) 0 . 2 8 7 ( 2 ) 0 . 0 7 8 ( 1 ) 3 . 9 ( 7 ) C 4 0 . 1 6 6 ( 3 ) 0 . 3 8 1 ( 3 ) 0 . 1 0 7 ( 2 ) 5 . 3 ( 8 ) C 5 0 . 0 7 8 ( 3 ) 0 . 4 1 5 ( 2 ) 0 . 0 8 0 ( 2 ) 4 . 6 ( 8 ) C 6 - 0 . 0 1 2 ( 3 ) 0 . 3 5 5 ( 2 ) 0 . 0 2 0 ( 1 ) 3 . 3 ( 6 ) C 7 0 . 1 7 9 ( 2 ) 0 . 7 7 5 ( 2 ) 0 . 1 2 7 ( 1 ) 2 . 9 ( 6 ) C 8 0 . 1 3 8 ( 3 ) 0 . 7 4 1 ( 3 ) 0 . 1 8 2 ( 2 ) 5 . 6 ( 9 ) C 9 0 . 1 9 7 ( 4 ) 0 . 6 8 7 ( 3 ) 0 . 2 1 9 ( 2 ) 8 ( 1 ) C 1 0 0 . 3 0 2 ( 3 ) 0 . 6 6 9 ( 2 ) 0 . 1 9 8 ( 2 ) 4 . 6 ( 8 ) C l l 0 . 3 4 2 ( 3 ) 0 . 6 9 8 ( 2 ) 0 . 1 4 5 ( 2 ) 4 . 9 ( 8 ) C 1 2 0 . 2 8 5 ( 3 ) 0 . 7 5 6 ( 2 ) 0 . 1 0 5 ( 2 ) 5 . 1 ( 8 ) C 1 3 - 0 . 0 1 9 ( 3 ) 0 . 0 9 5 ( 2 ) 0 . 8 7 1 ( 1 ) 3 . 5 ( 7 ) C 1 4 - 0 . 0 5 4 ( 3 ) - 0 . 0 2 0 ( 2 ) 0 . 8 5 0 ( 1 ) 3 . 3 ( 6 ) C 1 5 0 . 0 1 6 ( 3 ) - 0 . 0 5 8 ( 2 ) 0 . 8 0 9 ( 2 ) 4 . 4 ( 7 ) C 1 6 0 . 1 2 3 ( 1 ) 0 . 0 1 6 ( 3 ) 0 . 7 8 8 ( 2 ) 6 . 0 ( 9 ) C 1 7 0 . 1 6 5 ( 3 ) 0 . 1 3 1 ( 2 ) 0 . 8 1 2 ( 2 ) 4 . 8 ( 8 ) C 1 8 0 . 0 9 3 ( 3 ) 0 . 1 6 8 ( 2 ) 0 . 8 5 2 ( 2 ) 4 . 2 ( 7 ) C 1 9 0 . 2 2 5 ( 3 ) 0 . 9 5 6 ( 2 ) 0 . 0 3 8 ( 1 ) 3 . 3 ( 6 ) b 2 3 2 2 + c 2 B 3 3 + a b ( c o s 7 ) B 1 2 + a c ( c o s B ) B 1 3 + b c ( c o s a ) B 2 3 ] 6 5 T a b l e 2 . 1 1 ( c o n t ' d ) . A t o m x y z B e q ‘ , A 2 C 2 0 0 . 2 1 7 ( 3 ) 0 . 9 5 7 ( 2 ) - 0 . 0 2 6 ( 2 ) 4 . 9 ( 8 ) C 2 1 0 . 3 1 9 ( 3 ) 1 . 0 4 5 ( 3 ) - 0 . 0 4 7 ( 2 ) 7 ( 1 ) C 2 2 0 . 4 1 1 ( 3 ) 1 . 1 2 4 ( 3 ) - 0 . 0 0 7 ( 2 ) 6 . 1 ( 9 ) C 2 3 0 . 4 2 0 ( 1 ) 1 . 1 2 2 ( 1 ) 0 . 0 5 9 ( 2 ) 6 . 2 ( 9 ) C 2 4 0 . 3 2 2 ( 3 ) 1 . 0 3 5 ( 3 ) 0 . 0 8 7 ( 2 ) 5 . 1 ( 8 ) C 2 5 - 0 . 0 5 8 ( 3 ) 0 . 2 2 4 ( 2 ) 0 . 4 5 9 ( 2 ) 4 . 2 ( 7 ) C 2 6 0 . 0 0 6 ( 3 ) 0 . 1 8 3 ( 3 ) 0 . 4 1 4 ( 2 ) 6 . 3 ( 9 ) C 2 7 0 . 1 2 5 ( 4 ) 0 . 2 5 1 ( 3 ) 0 . 4 0 0 ( 2 ) 7 ( 1 ) C 2 8 0 . 1 8 7 ( 1 ) 0 . 3 5 5 ( 3 ) 0 . 4 4 1 ( 2 ) 7 ( 1 ) C 2 9 0 . 1 2 9 ( 4 ) 0 3 9 3 ( 3 ) 0 . 4 8 8 ( 2 ) 7 ( 1 ) C 3 0 - 0 . 0 0 1 ( 3 ) 0 . 3 3 1 ( 3 ) 0 . 4 9 3 ( 2 ) 5 . 4 ( 8 ) C 3 1 0 . 3 0 5 ( 3 ) 0 . 7 7 7 ( 2 ) 0 . 5 1 8 ( 1 ) 3 . 2 ( 6 ) C 3 2 0 . 3 6 5 ( 3 ) 0 . 7 7 3 ( 2 ) 0 . 4 6 0 ( 2 ) 4 8 ( 8 ) C 3 3 0 . 4 3 4 ( 3 ) 0 . 7 0 3 ( 3 ) 0 . 4 5 8 ( 2 ) 5 . 8 ( 9 ) C 3 4 0 . 4 5 1 ( 3 ) 0 6 5 0 ( 3 ) 0 . 5 0 9 ( 2 ) 5 . 8 ( 9 ) C 3 5 0 . 3 9 2 ( 3 ) 0 . 6 4 9 ( 2 ) 0 . 5 6 3 ( 2 ) 4 . 7 ( 8 ) C 3 6 0 . 3 1 6 ( 3 ) 0 . 7 1 4 ( 2 ) 0 . 5 6 6 ( 2 ) 4 . 3 ( 7 ) C 3 7 0 . 2 0 0 ( 2 ) - 0 . 0 8 1 ( 2 ) 0 . 4 4 9 ( 1 ) 2 . 7 ( 6 ) C 3 8 0 . 3 0 2 ( 3 ) 0 . 0 1 1 ( 2 ) 0 . 4 3 5 ( 2 ) 4 . 9 ( 8 ) C 3 9 0 . 2 9 7 ( 3 ) 0 . 0 4 8 ( 2 ) 0 . 3 7 4 ( 2 ) 4 . 6 ( 8 ) C 4 0 0 . 1 9 4 ( 3 ) — 0 . 0 0 3 ( 3 ) 0 . 3 2 6 ( 2 ) 6 . 3 ( 9 ) C 4 1 0 . 0 9 5 ( 3 ) - 0 . 0 9 1 ( 3 ) 0 . 3 3 9 ( 2 ) 6 . 0 ( 9 ) C 4 2 0 . 0 9 6 ( 3 ) - 0 . l 3 5 ( 2 ) 0 . 3 9 9 ( 2 ) 4 . 7 ( 8 ) C 4 3 0 . 2 3 7 ( 2 ) - 0 . 0 1 5 ( 2 ) 0 . 5 9 0 ( 1 ) 2 . 2 ( 5 ) C 4 4 0 . 3 7 3 ( 3 ) - 0 . 0 2 5 ( 3 ) 0 . 6 4 2 ( 2 ) 5 . 6 ( 9 ) C 4 5 0 . 4 3 0 ( 3 ) 0 . 0 7 0 ( 3 ) 0 . 6 9 2 ( 2 ) 5 8 ( 9 ) C 4 6 0 . 3 9 2 ( 3 ) 0 . 1 5 9 ( 2 ) 0 . 6 9 2 ( 2 ) 4 . 8 ( 8 ) C 4 7 0 . 3 0 4 ( 3 ) 0 . 1 6 6 ( 3 ) 0 . 6 4 6 ( 2 ) 5 . 2 ( 8 ) C 4 8 0 . 2 4 9 ( 3 ) 0 . 0 7 4 ( 2 ) 0 . 5 9 2 ( 2 ) 4 . 7 ( 8 ) a l A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 3 1 1 + T a b l e 2 . 1 2 . 6 6 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P r 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q a , A 2 I n 0 . 7 4 8 0 ( 2 ) 0 . 7 5 6 7 ( 1 ) 0 . 0 3 5 9 ( 2 ) 4 . 2 2 ( 6 ) S e l 0 . 8 0 8 3 ( 3 ) 0 . 7 5 5 9 ( 2 ) 0 . 1 3 0 9 ( 2 ) 5 . 1 ( 1 ) S e 2 0 . 7 0 6 5 ( 3 ) 0 . 6 8 4 8 ( 2 ) 0 . 2 0 1 3 ( 2 ) 5 . 9 ( 1 ) S e 3 0 . 6 4 5 2 ( 3 ) 0 . 6 1 4 9 ( 2 ) 0 . 0 8 2 2 ( 3 ) 5 . 9 ( 1 ) S e 4 0 . 5 9 0 1 ( 3 ) 0 . 7 1 2 2 ( 2 ) 0 . 0 1 0 7 ( 2 ) 4 . 6 8 ( 9 ) S e 5 0 . 7 9 8 1 ( 3 ) 0 . 6 2 9 7 ( 2 ) 0 . 1 0 6 2 ( 3 ) 6 . 1 ( 1 ) S e 6 0 . 8 8 5 4 ( 3 ) 0 . 6 8 5 9 ( 3 ) 0 . 2 0 3 0 ( 3 ) 6 . 6 ( 1 ) S e 7 0 . 9 8 3 0 ( 3 ) 0 . 7 4 0 8 ( 3 ) 0 . 1 0 4 8 ( 3 ) 7 . 2 ( 1 ) S e 8 0 . 9 0 4 8 ( 3 ) 0 . 8 3 5 1 ( 3 ) 0 . 0 3 8 3 ( 3 ) 6 . 5 ( 1 ) S e 9 0 . 7 0 3 7 ( 3 ) 0 . 8 7 6 4 ( 3 ) 0 . 1 3 4 8 ( 3 ) 6 . 8 ( 1 ) S e 1 0 0 . 5 5 1 9 ( 7 ) 0 . 8 6 4 8 ( 6 ) 0 . 1 4 7 3 ( 6 ) 1 0 . 1 ( 3 ) S e l O ‘ 0 . 4 3 2 4 ( 6 ) 0 . 8 9 8 7 ( 5 ) 0 . 3 8 7 1 ( 5 ) 7 . 4 ( 2 ) S e l l 0 . 5 1 1 6 ( 7 ) 0 . 8 1 3 1 ( 5 ) 0 . 2 9 6 2 ( 7 ) 8 . 5 ( 3 ) N 1 0 . 5 0 0 0 . 8 8 3 ( 2 ) 0 . 7 5 0 4 ( 1 ) N 2 0 . 0 0 0 0 . 0 0 9 ( 2 ) 0 . 7 5 0 6 ( 1 ) N 3 0 . 5 0 0 0 . 5 4 6 ( 2 ) 0 . 2 5 0 4 ( 1 ) N 4 0 . 0 0 0 0 . 4 1 8 ( 3 ) 0 . 2 5 0 9 ( 2 ) C 1 0 . 5 4 2 ( 2 ) 0 . 8 2 7 ( 2 ) 0 . 6 8 3 ( 2 ) 4 . 8 ( 8 ) C 2 0 . 5 9 1 ( 3 ) 0 . 8 6 7 ( 2 ) 0 . 6 0 2 ( 3 ) 6 ( 1 ) ( : 1 0 . 6 3 4 ( 3 ) 0 . 8 0 7 ( 3 ) 0 . 5 4 3 ( 3 ) 8 ( 1 ) C 4 0 . 4 3 7 ( 2 ) 0 . 9 3 1 ( 2 ) 0 . 7 0 7 ( 2 ) 4 . 5 ( 8 ) C 5 0 . 3 7 5 ( 3 ) 0 . 8 9 7 ( 2 ) 0 . 6 6 1 ( 2 ) 6 ( 1 ) C 6 0 . 3 1 6 ( 3 ) 0 . 9 5 8 ( 3 ) 0 . 6 1 8 ( 3 ) 8 ( 1 ) T a b l e 2 . 1 2 ( c o n t ' d ) . 6 7 A t o m x y z B e q , A 2 C 7 0 . 0 5 5 ( 4 ) 0 . 0 5 8 ( 4 ) 0 . 6 9 1 ( 4 ) 1 2 ( 2 ) C 8 ' 0 . 1 2 0 ( 5 ) 0 . 0 9 1 ( 4 ) 0 . 7 0 4 ( 5 ) 5 ( 2 ) C 8 0 . 1 1 5 ( 5 ) 0 . 0 4 5 ( 4 ) 0 . 6 4 6 ( 5 ) 5 ( 2 ) C 9 0 . 1 7 9 ( 3 ) 0 . 1 2 7 ( 3 ) 0 . 6 2 5 ( 3 ) 7 ( 1 ) C 1 0 0 . 0 5 1 ( 4 ) 0 . 0 3 6 ( 3 ) 0 . 6 8 6 ( 4 ) 1 2 ( 3 ) C l l ' 0 . 1 1 ( 1 ) - 0 . 0 6 ( l ) 0 . 6 2 ( 1 ) 2 3 ( 7 ) C 1 1 0 . 1 0 7 ( 4 ) 0 . 0 9 5 ( 3 ) 0 . 7 0 0 ( 4 ) 1 0 ( 3 ) C 1 2 0 . 1 7 3 0 . 0 9 6 0 . 6 3 0 1 3 ( 2 ) C 1 3 0 . 6 0 3 ( 4 ) 0 . 5 9 0 ( 4 ) 0 . 3 1 8 ( 4 ) 1 4 ( 2 ) C 1 4 0 . 5 7 2 ( 5 ) 0 . 6 2 3 ( 5 ) 0 . 2 6 7 ( 5 ) 1 7 ( 3 ) C 1 5 0 . 6 7 4 ( 3 ) 0 . 6 6 9 ( 3 ) 0 . 3 4 4 ( 3 ) 8 ( 1 ) C 1 6 0 . 4 0 9 ( 5 ) 0 . 4 6 6 ( 5 ) 0 . 3 2 3 ( 5 ) 1 8 ( 3 ) C 1 7 0 . 4 5 3 ( 5 ) 0 . 5 1 5 ( 5 ) 0 . 3 4 7 ( 5 ) 1 8 ( 3 ) C 1 8 0 . 3 5 7 ( 3 ) 0 . 4 3 2 ( 3 ) 0 . 4 1 8 ( 3 ) 7 ( 1 ) C 1 9 0 . 0 4 3 ( 5 ) 0 . 3 5 9 ( 5 ) 0 . 3 0 5 ( 5 ) 1 7 ( 3 ) C 2 0 0 . 0 8 0 ( 5 ) 0 . 3 5 0 ( 4 ) 0 . 3 7 4 ( 5 ) 1 6 ( 2 ) C 2 1 0 . 1 3 3 ( 4 ) 0 . 2 9 2 ( 1 ) 0 . 4 0 5 ( 4 ) 1 3 ( 2 ) C 2 2 0 . 0 5 6 ( 4 ) 0 . 4 7 0 ( 4 ) 0 . 3 1 5 ( 4 ) 1 3 ( 2 ) ( 5 2 3 ' 0 . 1 0 9 ( 7 ) 0 . 4 4 7 ( 6 ) 0 . 3 7 6 ( 7 ) 1 0 ( 3 ) C 2 3 0 . 0 5 8 ( 6 ) 0 . 5 2 0 ( 6 ) 0 . 3 8 8 ( 6 ) 8 ( 2 ) C 2 4 0 . 1 3 3 ( 3 ) 0 . 5 3 5 ( 3 ) 0 . 4 2 2 ( 3 ) 9 ( 1 ) a A n i s o t l ' o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r O p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 B 1 1 + b 2 B 2 2 + c 2 B 3 3 + a b ( c o s ' y ) B l z + a c ( c o s B ) B 1 3 + b c ( c o s o t ) B z 3 ] 6 8 T a b l e 2 . 1 3 . F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q ‘ , A 2 I n l 0 . 7 6 0 1 ( 2 ) 0 . 1 0 6 5 ( 1 ) 0 . 7 5 7 1 ( 1 ) 3 . 8 0 ( 4 ) I n 2 0 . 7 4 8 6 ( 2 ) 0 . 3 9 3 1 ( 1 ) 0 . 2 5 9 0 ( 1 ) 4 . 9 6 ( 5 ) S e l 0 . 6 8 3 4 ( 3 ) - 0 . 0 2 2 4 ( 2 ) 0 . 8 2 7 9 ( 2 ) 5 . 4 0 ( 8 ) $ 6 2 0 . 8 4 3 4 ( 3 ) - 0 . 0 7 0 2 ( 2 ) 0 . 8 7 9 1 ( 3 ) 6 . 9 ( 1 ) S e 3 0 . 9 6 1 6 ( 3 ) 0 . 0 4 2 4 ( 2 ) 0 . 9 1 0 6 ( 2 ) 5 . 8 7 ( 9 ) S e 4 0 . 9 7 4 1 ( 3 ) 0 . 0 9 8 6 ( 2 ) 0 . 7 7 7 3 ( 2 ) 5 . 6 8 ( 8 ) S 6 5 0 . 7 6 7 1 ( 3 ) 0 . 2 1 8 9 ( 2 ) 0 . 8 6 5 4 ( 2 ) 6 . 1 1 ( 9 ) S e 6 0 . 5 8 7 2 ( 3 ) 0 . 2 0 1 3 ( 3 ) 0 . 8 9 9 3 ( 2 ) 7 . 5 ( 1 ) S e 7 0 . 4 9 2 7 ( 3 ) 0 . 2 0 3 1 ( 2 ) 0 . 7 6 7 0 ( 3 ) 7 . 1 ( 1 ) 8 6 8 0 . 5 3 0 9 ( 3 ) 0 . 0 9 2 3 ( 2 ) 0 . 7 0 2 1 ( 2 ) 5 . 6 8 ( 9 ) S e 9 0 . 7 5 3 8 ( 3 ) 0 . 1 2 7 9 ( 2 ) 0 . 5 9 3 2 ( 2 ) 5 . 4 7 ( 8 ) S e l O 0 . 9 3 8 3 ( 3 ) 0 . 1 3 9 0 ( 3 ) 0 . 5 6 5 2 ( 3 ) 9 . 5 ( 1 ) S e l l 0 . 9 8 4 4 ( 3 ) 0 . 2 6 5 1 ( 3 ) 0 . 5 1 9 0 ( 3 ) 7 . 7 ( 1 ) S e l Z 0 . 9 3 1 9 ( 3 ) 0 . 2 6 1 5 ( 2 ) 0 . 3 7 5 5 ( 2 ) 6 . 8 2 ( 9 ) S e l 3 0 . 7 4 6 7 ( 3 ) 0 . 2 7 8 2 ( 2 ) 0 . 3 6 5 4 ( 2 ) 5 . 8 2 ( 8 ) S e l 4 0 . 9 5 4 1 ( 3 ) 0 . 3 8 5 9 ( 2 ) 0 . 2 1 7 1 ( 2 ) 5 . 5 3 ( 8 ) S e 1 5 0 . 9 3 9 3 ( 4 ) 0 . 4 5 3 9 ( 2 ) 0 . 0 9 0 1 ( 2 ) 8 . 0 ( 1 ) S e l 6 0 . 7 9 2 1 ( 5 ) 0 . 3 7 7 9 ( 3 ) 0 . 0 1 8 0 ( 3 ) 1 1 . 5 ( 2 ) 8 6 1 7 0 . 6 5 1 4 ( 4 ) 0 . 3 9 0 4 ( 2 ) 0 . 1 0 5 9 ( 3 ) 8 . 6 ( 1 ) S e l 8 0 . 8 0 1 9 ( 3 ) 0 . 5 2 8 2 ( 2 ) 0 . 3 3 2 0 ( 3 ) 6 . 9 ( 1 ) 8 9 1 9 0 . 6 3 6 1 ( 4 ) 0 . 5 6 5 4 ( 3 ) 0 . 3 5 6 7 ( 4 ) 1 0 . 7 ( 1 ) 8 6 2 0 0 . 5 4 0 3 ( 4 ) 0 . 4 5 4 3 ( 3 ) 0 . 4 0 7 8 ( 3 ) 1 1 . 3 ( 1 ) $ 6 2 1 0 . 5 2 7 4 ( 3 ) 0 . 3 7 1 6 ( 3 ) 0 . 2 9 2 2 ( 4 ) 1 1 . 0 ( 2 ) N 1 0 . 2 5 1 ( 2 ) 0 . 3 2 8 ( 1 ) 0 . 9 5 1 ( 2 ) 5 . 1 ( 6 ) N 2 0 . 2 1 9 ( 2 ) 0 . 5 8 2 ( 2 ) 0 . 3 4 7 ( 2 ) 8 . 9 ( 9 ) N 3 0 . 2 9 7 ( 2 ) 0 . 1 6 7 ( 1 ) 0 . 4 2 4 ( 2 ) 8 . 4 ( 9 ) N 4 0 . 2 7 7 ( 2 ) 0 . 9 2 2 ( 2 ) 0 . 8 3 4 ( 2 ) 6 . 8 ( 8 ) C l 0 . 3 0 7 ( 5 ) 0 . 4 0 1 ( 3 ) 0 . 9 1 4 ( 4 ) 1 4 ( 2 ) C 2 0 . 4 3 4 ( 4 ) 0 . 4 0 0 ( 3 ) 0 . 9 0 5 ( 3 ) 1 0 ( 1 ) C 3 0 . 1 3 5 ( 3 ) 0 . 3 3 8 ( 3 ) 0 . 9 5 6 ( 3 ) 1 0 ( 1 ) T a b l e 2 . 1 3 ( c o n t ' d ) . 6 9 A t o m x y z B e q a , A 2 C 4 0 . 0 6 6 ( 4 ) 0 . 2 6 5 ( 3 ) 0 . 9 9 0 ( 3 ) 1 0 ( 1 ) C 5 0 . 3 0 6 ( 5 ) 0 . 3 1 2 ( 4 ) 1 . 0 3 9 ( 4 ) 1 7 ( 2 ) C 6 0 . 2 9 9 ( 5 ) 0 . 3 9 4 ( 4 ) 1 . 0 9 8 ( 4 ) 1 6 ( 2 ) C 7 0 . 2 6 1 ( 5 ) 0 . 2 5 2 ( 3 ) 0 . 9 1 0 ( 4 ) 1 4 ( 2 ) C 8 0 . 2 1 2 ( 4 ) 0 . 2 6 8 ( 3 ) 0 . 8 1 1 ( 3 ) 1 1 ( 1 ) C 9 0 . 1 2 7 ( 5 ) 0 . 5 8 8 ( 3 ) 0 . 2 7 0 ( 4 ) 1 5 ( 2 ) C 1 0 0 . 0 6 2 ( 5 ) 0 . 6 4 5 ( 4 ) 0 . 2 7 0 ( 4 ) 1 6 ( 2 ) C 1 1 0 . 2 6 8 ( 3 ) 0 . 6 6 6 ( 2 ) 0 . 3 5 8 ( 2 ) 8 ( 1 ) C 1 2 0 . 3 7 5 ( 3 ) 0 . 6 7 6 ( 2 ) 0 . 4 1 8 ( 2 ) 7 . 2 ( 9 ) C 1 3 0 . 1 2 0 ( 8 ) 0 . 5 2 1 ( 5 ) 0 . 4 2 5 ( 6 ) 2 5 ( 4 ) C 1 4 0 . 1 8 0 ( 6 ) 0 . 4 5 9 ( 4 ) 0 . 4 1 6 ( 5 ) 2 0 ( 3 ) C 1 5 0 . 2 8 9 ( 4 ) 0 . 5 3 7 ( 3 ) 0 . 3 0 6 ( 4 ) 1 3 ( 2 ) C 1 6 0 . 3 4 1 ( 5 ) 0 . 5 6 9 ( 4 ) 0 . 2 2 4 ( 4 ) 1 6 ( 2 ) C 1 7 0 . 2 5 5 ( 7 ) 0 . 2 3 8 ( 5 ) 0 . 3 9 4 ( 5 ) 2 2 ( 3 ) C 1 8 0 . 2 3 9 ( 5 ) 0 . 2 4 2 ( 3 ) 0 . 2 9 9 ( 4 ) 1 4 ( 2 ) C 1 9 0 . 2 7 4 ( 6 ) 0 . 1 5 9 ( 4 ) 0 . 5 1 6 ( 5 ) 2 0 ( 3 ) C 2 0 0 . 3 3 1 ( 6 ) 0 . 2 3 0 ( 4 ) 0 . 5 6 2 ( 5 ) 1 9 ( 3 ) C 2 1 0 . 4 1 1 ( 5 ) 0 . 1 7 0 ( 4 ) 0 . 4 1 1 ( 4 ) 1 7 ( 2 ) C 2 2 0 . 4 7 4 ( 3 ) 0 . 1 0 9 ( 2 ) 0 . 4 2 8 ( 3 ) 9 ( 1 ) C 2 3 0 . 2 3 9 ( 6 ) 0 . 0 9 1 ( 4 ) 0 . 3 9 1 ( 5 ) 1 8 ( 2 ) C 2 4 0 . 1 0 9 ( 4 ) 0 . 0 7 8 ( 3 ) 0 . 3 8 4 ( 3 ) 1 3 ( 2 ) C 2 5 0 . 3 7 6 ( 3 ) 0 . 8 9 3 ( 2 ) 0 . 8 0 4 ( 3 ) 9 ( 1 ) C 2 6 0 . 4 3 4 ( 4 ) 0 . 8 4 2 ( 3 ) 0 . 8 6 4 ( 3 ) 1 0 ( 1 ) C 2 7 0 . 2 8 6 ( 5 ) 0 . 9 5 3 ( 4 ) 0 . 9 2 0 ( 4 ) 1 7 ( 2 ) C 2 8 0 . 3 6 6 ( 6 ) 1 . 0 2 8 ( 4 ) 0 . 9 1 9 ( 5 ) 1 8 ( 2 ) C 2 9 0 . 2 1 9 ( 4 ) 0 . 9 7 3 ( 3 ) 0 . 7 7 0 ( 3 ) 1 2 ( 1 ) C 3 0 0 . 2 1 8 ( 5 ) 0 . 9 6 0 ( 3 ) 0 . 6 8 7 ( 4 ) 1 4 ( 2 ) C 3 1 0 . 1 9 7 ( 5 ) 0 . 8 3 2 ( 4 ) 0 . 8 4 8 ( 4 ) 1 5 ( 2 ) C 3 2 0 . 0 9 3 ( 5 ) 0 . 8 4 9 ( 3 ) 0 . 8 5 5 ( 4 ) 1 5 ( 2 ) a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ 8 2 3 1 1 + b 2 B 2 2 + c 2 B 3 3 + a b ( c o s y ) B 1 2 + a c ( c o s | 3 ) B l 3 + b c ( c o s o z ) B 2 3 ] 7 0 T a b l e 2 . 1 4 . F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P r 4 N ) 2 [ I n 2 $ e 2 ( S e 4 ) 2 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q “ , A 2 I n ( l ) 0 . 1 3 1 3 ( 1 ) 0 . 9 0 5 4 ( 1 ) 0 . 5 0 2 7 ( 1 ) 4 . 1 l ( 6 ) S e ( l ) 0 . 0 0 9 2 ( 2 ) 1 . 0 2 8 1 ( 2 ) 0 . 7 2 6 1 ( 2 ) 4 . 7 4 ( 9 ) S e ( 2 ) 0 . 3 5 3 9 ( 2 ) 0 . 9 5 1 5 ( 2 ) 0 . 5 6 7 6 ( 3 ) 6 . 6 ( 1 ) S e ( 3 ) 0 . 4 4 0 5 ( 2 ) 0 . 7 6 4 8 ( 3 ) 0 . 4 2 3 4 ( 3 ) 9 . 2 ( 1 ) S e ( 4 ) 0 . 3 6 1 8 ( 2 ) 0 . 6 3 1 1 ( 2 ) 0 . 5 2 3 0 ( 3 ) 8 . 7 ( 1 ) S e ( 5 ) 0 . 1 5 7 5 ( 2 ) 0 . 6 6 8 0 ( 2 ) 0 . 4 2 7 9 ( 3 ) 6 . 7 ( 1 ) N ( 1 ) 0 . 2 0 6 ( 1 ) 0 . 2 4 7 ( 1 ) 0 . 2 0 4 ( 2 ) 4 . 8 ( 7 ) C ( l ) 0 . 2 1 7 ( 3 ) 0 . 3 2 6 ( 3 ) 0 . 3 8 2 ( 4 ) 6 ( 2 ) C ( l ' ) 0 . 2 0 0 ( 4 ) 0 . 2 3 3 ( 4 ) 0 . 3 7 1 ( 6 ) 3 . 6 ( 9 ) C ( 2 ) 0 . 1 6 0 ( 3 ) 0 . 2 5 8 ( 4 ) 0 . 4 7 8 ( 4 ) 7 ( 2 ) C ( 2 ' ) 0 . 1 7 6 ( 5 ) 0 . 3 5 1 ( 5 ) 0 . 4 9 3 ( 7 ) 5 ( 1 ) C ( 3 ) 0 . 1 8 5 ( 2 ) 0 . 3 3 1 ( 2 ) 0 . 6 5 3 ( 2 ) 9 ( 1 ) C ( 4 ) 0 . 2 5 5 ( 3 ) 0 . 3 2 2 ( 4 ) 0 . 1 1 0 ( 7 ) 8 ( 2 ) C ( 4 ' ) 0 . 3 1 ( 1 ) 0 . 3 2 0 ( 6 ) 0 . 1 9 3 ( 8 ) 7 ( 1 ) C ( S ) 0 . 3 9 9 ( 3 ) 0 . 3 2 4 ( 3 ) 0 . 1 5 6 ( 8 ) 9 ( 2 ) C ( S ' ) 0 . 3 2 6 ( 8 ) 0 . 3 2 1 ( 5 ) 0 . 0 5 6 ( 7 ) 7 ( 1 ) C ( 6 ) 0 . 4 3 3 ( 2 ) 0 . 3 9 6 ( 2 ) 0 . 0 5 8 ( 3 ) 9 ( 1 ) C ( 7 ) 0 . 2 7 3 ( 3 ) 0 . 1 2 1 ( 2 ) 0 . 1 8 7 ( 4 ) 6 ( 2 ) C ( 7 ' ) 0 . 2 1 4 ( 6 ) 0 . 0 9 7 ( 6 ) 0 . 0 6 6 ( 9 ) 8 ( 1 ) C ( 8 ) 0 . 2 9 6 ( 3 ) 0 . 0 3 8 ( 3 ) 0 . 0 3 3 ( 5 ) 7 ( 2 ) C ( 8 ' ) 0 . 3 3 9 ( 6 ) 0 . 0 4 3 ( 7 ) 0 . 1 5 ( 1 ) 9 ( 1 ) C ( 9 ) 0 . 3 4 5 ( 2 ) - 0 . 0 9 1 ( 2 ) 0 . 0 3 2 ( 3 ) 9 ( 1 ) C ( 1 0 ) 0 . 0 7 5 ( 2 ) 0 . 2 3 9 ( 3 ) 0 . 1 3 6 ( 3 ) 5 ( 2 ) C ( 1 0 ' ) 0 . 0 8 8 ( 5 ) 0 . 3 2 2 ( 6 ) 0 . 1 3 7 ( 7 ) 6 ( 1 ) C ( 1 1 ) - 0 . 0 0 6 ( 4 ) 0 . 3 5 7 ( 3 ) 0 . 1 5 2 ( 5 ) 8 ( 2 ) C ( 1 1 ' ) - 0 . 0 1 2 ( 6 ) 0 . 2 6 8 ( 6 ) 0 . 1 4 7 ( 7 ) 7 ( 1 ) C ( 1 2 ) - 0 . l 3 6 ( 2 ) 0 . 3 3 8 ( 2 ) 0 . 0 7 0 ( 3 ) 8 ( 1 ) ‘ a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 B 1 1 + 1 3 2 8 2 2 + c 2 8 3 3 + a b ( c o s y ) 8 1 2 + a c ( c o s B ) B l 3 + b c ( c o s o l ) B 2 3 ] 7 1 T a b l e 2 . 1 5 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P P N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q a , A 2 I n ( l ) 0 . 4 1 5 5 ( 2 ) 0 . 9 1 5 0 ( 1 ) 0 . 5 0 1 5 ( 2 ) 3 . 5 ( 1 ) S e ( l ) 0 . 4 5 7 1 ( 3 ) 1 . 0 3 9 0 ( 2 ) 0 . 6 6 5 6 ( 2 ) 4 . 3 ( 2 ) S e ( 2 ) 0 . 4 9 3 0 ( 3 ) 0 . 7 5 1 3 ( 2 ) 0 . 5 3 9 8 ( 3 ) 6 . 1 ( 2 ) S e ( 3 ) 0 . 3 1 2 4 ( 4 ) 0 . 6 8 8 8 ( 2 ) 0 . 5 3 9 6 ( 3 ) 6 . 8 ( 2 ) S e ( 4 ) 0 . 1 9 6 1 ( 3 ) 0 . 7 5 9 0 ( 2 ) 0 . 3 8 8 0 ( 3 ) 6 . 1 ( 2 ) S e ( 5 ) 0 . 1 8 6 7 ( 3 ) 0 . 9 0 6 3 ( 2 ) 0 . 4 6 2 4 ( 3 ) 5 . 6 ( 2 ) P ( l ) 0 . 9 5 0 4 ( 6 ) 0 . 2 3 1 7 ( 5 ) 0 . 0 5 8 4 ( 5 ) 2 . 6 ( 3 ) P ( 2 ) 0 . 7 6 1 1 ( 6 ) 0 . 3 8 3 2 ( 4 ) 0 . 0 5 9 5 ( 6 ) 2 . 7 ( 3 ) N ( 1 ) 0 . 8 8 7 ( 2 ) 0 . 3 2 9 ( 1 ) 0 . 0 8 0 ( 2 ) 3 ( 1 ) C ( l ) 0 . 8 5 2 ( 2 ) 0 . 1 4 3 ( 2 ) 0 . 0 3 7 ( 2 ) 2 . 8 ( 5 ) C ( 2 ) 0 . 8 2 4 ( 2 ) 0 . 0 9 3 ( 2 ) 0 . 1 3 6 ( 2 ) 4 . 7 ( 7 ) C ( 3 ) 0 . 7 3 8 ( 3 ) 0 . 0 3 3 ( 2 ) 0 . 1 1 6 ( 3 ) 5 . 3 ( 7 ) C ( 4 ) 0 . 6 8 0 ( 3 ) 0 . 0 2 2 ( 2 ) 0 . 0 0 9 ( 3 ) 5 . 6 ( 7 ) C ( 5 ) 0 . 7 0 1 ( 2 ) 0 . 0 6 6 ( 2 ) - 0 . 0 8 4 ( 2 ) 4 . 4 ( 6 ) C ( 6 ) 0 . 7 8 6 ( 2 ) 0 . 1 2 6 ( 2 ) - 0 . 0 7 5 ( 2 ) 3 . 8 ( 6 ) C ( 7 ) 1 . 0 4 3 ( 2 ) 0 . 2 2 7 ( 2 ) - 0 . 0 7 2 ( 2 ) 2 . 6 ( 5 ) C ( 8 ) 1 . 0 5 9 ( 2 ) 0 . 1 5 2 ( 2 ) - 0 . 1 5 5 ( 2 ) 3 . 5 ( 6 ) C ( 9 ) 1 . 1 3 3 ( 2 ) 0 . 1 5 6 ( 2 ) - 0 . 2 5 1 ( 2 ) 4 . 3 ( 6 ) C ( 1 0 ) 1 . 1 8 9 ( 2 ) 0 . 2 3 0 ( 2 ) - 0 . 2 6 2 ( 2 ) 3 . 8 ( 6 ) C ( 1 1 ) 1 . 1 7 7 ( 2 ) 0 . 3 0 2 ( 2 ) - 0 . 1 8 3 ( 2 ) 4 . 3 ( 6 ) C ( 1 2 ) 1 . 1 0 3 ( 2 ) 0 . 3 0 1 ( 2 ) - 0 . 0 8 6 ( 2 ) 3 . 6 ( 6 ) C ( 1 3 ) 1 . 0 5 3 ( 2 ) 0 . 2 0 9 ( 2 ) 0 . 1 9 1 ( 2 ) 3 . 0 ( 5 ) C ( 1 4 ) 1 . 1 5 8 ( 2 ) 0 . 1 5 6 ( 2 ) 0 . 1 8 0 ( 2 ) 4 . 1 ( 6 ) C ( 1 5 ) 1 . 2 3 1 ( 2 ) 0 . 1 3 6 ( 2 ) 0 . 2 8 1 ( 3 ) 5 . 1 ( 7 ) C ( 1 6 ) 1 . 1 9 6 ( 2 ) 0 . 1 6 8 ( 2 ) 0 . 3 9 4 ( 2 ) 4 . 3 ( 6 ) b 2 8 2 2 + c 2 B 3 3 + a b ( c o s y ) B 1 2 + a c ( c o s B ) B 1 3 + b C ( C O S O - ) 3 2 3 ] T a b l e 2 . 1 5 ( c o n t ' d ) . 7 2 A t o m x y z B e q a , A 2 C ( 1 7 ) 1 . 0 9 7 ( 3 ) 0 . 2 2 2 ( 2 ) 0 . 4 0 9 ( 2 ) 5 . 0 ( 7 ) C ( 1 8 ) 1 . 0 2 1 ( 2 ) 0 . 2 4 4 ( 2 ) 0 . 3 0 8 ( 2 ) 4 . 6 ( 7 ) C ( 1 9 ) 0 . 7 6 9 ( 2 ) 0 . 4 5 9 ( 2 ) - 0 . 0 6 2 ( 2 ) 3 . 1 ( 5 ) C ( 2 0 ) 0 . 8 4 1 ( 2 ) 0 . 4 3 4 ( 2 ) - 0 . 1 5 9 ( 2 ) 3 . 8 ( 6 ) C ( 2 1 ) 0 . 8 4 5 ( 2 ) 0 . 4 8 9 ( 2 ) - 0 . 2 5 5 ( 2 ) 4 . 6 ( 7 ) C ( 2 2 ) 0 . 7 8 1 ( 2 ) 0 . 5 6 7 ( 2 ) - 0 . 2 4 9 ( 2 ) 3 . 9 ( 6 ) C ( 2 3 ) 0 . 7 1 1 ( 2 ) 0 . 5 9 7 ( 2 ) - 0 . 1 5 6 ( 3 ) 5 . 0 ( 7 ) C ( 2 4 ) 0 . 7 0 5 ( 2 ) 0 . 5 4 2 ( 2 ) - 0 . 0 6 0 ( 2 ) 4 . 3 ( 6 ) C ( 2 5 ) 0 . 7 3 4 ( 2 ) 0 . 4 5 2 ( 2 ) 0 . 2 0 0 ( 2 ) 2 . 7 ( 5 ) C ( 2 6 ) 0 . 8 3 2 ( 2 ) 0 . 4 7 4 ( 2 ) 0 . 2 8 0 ( 2 ) 4 . 0 ( 6 ) C ( 2 7 ) 0 . 8 1 0 ( 3 ) 0 . 5 2 9 ( 2 ) 0 . 3 8 7 ( 2 ) 4 . 8 ( 7 ) C ( 2 8 ) 0 . 7 0 1 ( 3 ) 0 . 5 5 9 ( 2 ) 0 . 4 1 1 ( 2 ) 4 . 7 ( 7 ) C ( 2 9 ) 0 . 6 0 4 ( 3 ) 0 . 5 4 0 ( 2 ) 0 . 3 3 9 ( 3 ) 5 . 5 ( 7 ) C ( 3 0 ) 0 . 6 1 8 ( 2 ) 0 . 4 8 2 ( 2 ) 0 . 2 2 7 ( 2 ) 3 . 7 ( 6 ) C ( 3 1 ) 0 . 6 3 2 ( 2 ) 0 . 3 2 1 ( 2 ) 0 . 0 2 0 ( 2 ) 3 . 0 ( 5 ) C ( 3 2 ) 0 . 5 9 0 ( 2 ) 0 . 2 6 8 ( 2 ) 0 . 1 0 5 ( 2 ) 3 . 2 ( 6 ) C ( 3 3 ) 0 . 5 0 0 ( 2 ) 0 . 2 1 2 ( 2 ) 0 . 0 7 4 ( 2 ) 3 . 6 ( 6 ) C ( 3 4 ) 0 . 4 5 0 ( 2 ) 0 . 2 1 0 ( 2 ) - 0 . 0 4 4 ( 2 ) 4 . 0 ( 6 ) C ( 3 5 ) 0 . 4 8 9 ( 2 ) 0 . 2 5 9 ( 2 ) - 0 . 1 2 8 ( 2 ) 4 . 3 ( 6 ) C ( 3 6 ) 0 . 5 8 0 ( 2 ) 0 . 3 1 6 ( 2 ) - 0 . 1 0 2 ( 2 ) 3 . 3 ( 6 ) a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 3 1 1 + 7 3 T a b l e 2 . 1 6 . F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q “ , A 2 I n l 0 . 3 6 6 2 ( 1 ) 0 . 2 4 0 8 ( 1 ) 0 . 3 3 3 9 5 ( 7 ) 3 . 2 0 ( 4 ) I n 2 0 . 8 2 5 1 ( 1 ) 0 . 6 5 3 4 ( 1 ) 0 . 1 1 6 3 4 ( 9 ) 4 . 9 6 ( 5 ) I n 3 0 . 3 0 5 0 ( 1 ) - 0 . 0 0 0 0 ( 1 ) 0 . 2 8 6 3 3 ( 7 ) 3 . 2 9 ( 4 ) S e l 0 . 2 4 9 2 ( 2 ) 0 . 3 4 3 6 ( 2 ) 0 . 2 8 1 1 ( 1 ) 4 . 2 7 ( 6 ) S e Z 0 . 2 8 6 1 ( 2 ) 0 . 4 9 4 3 ( 2 ) 0 . 3 2 4 8 ( 1 ) 5 . 4 3 ( 7 ) S e 3 0 . 4 2 2 7 ( 2 ) 0 . 4 9 9 6 ( 2 ) 0 . 3 1 1 2 ( 1 ) 5 . 4 7 ( 7 ) S e 4 0 . 4 6 9 7 ( 2 ) 0 . 3 7 1 5 ( 2 ) 0 . 3 7 3 5 ( 1 ) 4 . 7 0 ( 6 ) S e 5 0 . 6 8 0 6 ( 2 ) 0 . 6 5 2 5 ( 2 ) 0 . 0 7 2 5 ( 1 ) 4 . 1 2 ( 6 ) S e 6 0 . 1 0 9 0 ( 2 ) 0 . 3 2 7 8 ( 2 ) 0 . 3 7 9 9 ( 1 ) 5 . 4 3 ( 7 ) S e 7 ' - 0 . 0 0 0 5 ( 8 ) 0 . 3 0 4 ( 1 ) 0 . 4 3 2 4 ( 6 ) 9 . 6 ( 4 ) S e 7 0 . 0 2 4 7 ( 3 ) 0 . 3 1 1 9 ( 4 ) 0 . 4 6 3 2 ( 2 ) 6 . 8 ( 1 ) S e 8 0 . 0 1 7 2 ( 3 ) 0 . 6 5 1 0 ( 4 ) 0 . 0 4 6 8 ( 3 ) 7 . 9 ( 1 ) S e 8 ' 0 . 9 5 5 1 ( 9 ) 0 . 6 8 4 ( 1 ) 0 . 0 0 1 2 ( 6 ) 1 1 . 8 ( 4 ) S e 9 0 . 8 9 5 3 ( 3 ) 0 . 5 6 8 8 ( 4 ) 0 . 0 2 8 1 ( 2 ) 8 . 8 ( 1 ) S e 9 ' 0 . 9 3 1 2 ( 6 ) 0 . 5 5 2 7 ( 8 ) 0 . 0 5 8 9 ( 5 ) 7 . 0 ( 3 ) S e 1 0 0 . 8 3 5 6 ( 2 ) 0 . 5 7 7 3 ( 2 ) 0 . 2 2 2 1 ( 1 ) 5 . 3 7 ( 7 ) S e l l 0 . 6 5 3 2 ( 2 ) 0 . 4 1 2 7 ( 2 ) 0 . 1 1 2 6 ( 1 ) 4 . 8 5 ( 7 ) 8 8 1 2 0 . 3 6 4 6 ( 2 ) 0 . 7 5 1 3 ( 2 ) 0 . 3 5 2 6 ( 1 ) 5 . 3 9 ( 7 ) S e l 3 0 . 5 8 7 1 ( 2 ) 0 . 2 7 8 4 ( 2 ) 0 . 2 4 1 2 ( 1 ) 5 . 0 7 ( 7 ) S e l 4 0 . 6 9 8 3 ( 2 ) 0 . 3 5 4 5 ( 2 ) 0 . 2 8 9 6 ( 1 ) 5 . 0 9 ( 7 ) S e l S 0 . 5 8 4 9 ( 2 ) 0 . 6 1 8 7 ( 2 ) 0 . 2 4 0 9 ( 1 ) 3 . 9 0 ( 6 ) N 1 0 . 7 0 3 ( 1 ) 0 . 5 7 3 ( 1 ) 0 . 4 4 9 1 ( 7 ) 3 . 8 ( 5 ) N 2 0 . 3 3 5 ( 1 ) 0 . 5 5 4 ( 1 ) 0 . 0 9 8 7 ( 8 ) 4 . 5 ( 5 ) N 3 0 . 0 5 4 ( 1 ) 0 . 7 4 4 ( 2 ) 0 . 3 1 8 6 ( 9 ) 5 . 1 ( 5 ) C 1 0 . 6 8 9 ( 2 ) 0 . 5 4 7 ( 3 ) 0 . 5 1 0 ( 2 ) 2 . 8 ( 7 ) C l ' 0 . 6 6 6 ( 6 ) 0 . 4 6 7 ( 8 ) 0 . 4 4 3 ( 5 ) 1 1 ( 3 ) C 2 0 . 3 6 0 ( 2 ) 0 . 5 5 8 ( 2 ) 0 . 4 8 9 ( 1 ) 7 . 5 ( 8 ) C 3 ' 0 . 7 2 0 ( 4 ) 0 . 5 8 5 ( 5 ) 0 . 3 8 4 ( 3 ) 5 ( 1 ) C 3 0 . 7 5 0 ( 2 ) 0 . 6 7 0 ( 3 ) 0 . 4 5 4 ( 2 ) 4 . 7 ( 9 ) C 4 0 . 7 7 1 ( 2 ) 0 . 7 1 0 ( 2 ) 0 . 3 9 0 ( 1 ) 6 . 6 ( 7 ) C 5 ' 0 . 6 4 7 ( 4 ) 0 . 6 3 9 ( 5 ) 0 . 4 8 1 ( 3 ) 6 ( 2 ) T a b l e 2 . 1 6 ( c o n t ' d ) . 7 4 A t o m x y z B e q f , A 2 C 5 0 . 6 1 6 ( 3 ) 0 . 5 9 6 ( 4 ) 0 . 4 0 8 ( 2 ) 7 ( 1 ) C 6 0 . 5 6 8 ( 2 ) 0 . 6 5 6 ( 2 ) 0 . 4 3 7 ( 1 ) 8 . 0 ( 8 ) C 7 0 . 7 4 9 ( 3 ) 0 . 5 0 3 ( 4 ) 0 . 4 1 0 ( 2 ) 8 ( 1 ) C 7 ' 0 . 2 2 4 ( 4 ) 0 . 4 3 7 ( 5 ) 0 . 4 9 7 ( 3 ) 6 ( 2 ) C 8 0 . 8 3 4 ( 3 ) 0 . 4 8 3 ( 3 ) 0 . 4 6 0 ( 2 ) 1 3 ( 1 ) C 9 0 . 3 5 7 ( 3 ) 0 . 4 5 2 ( 4 ) 0 . 0 9 1 ( 2 ) 7 ( 1 ) C 9 ' 0 . 3 8 0 ( 3 ) 0 . 5 1 3 ( 4 ) 0 . 1 5 4 ( 2 ) 4 ( 1 ) C 1 0 0 . 4 1 3 ( 2 ) 0 . 4 0 5 ( 3 ) 0 . 1 4 3 ( 1 ) 8 . 5 ( 9 ) C 1 1 0 . 4 0 9 ( 3 ) 0 . 6 3 2 ( 4 ) 0 . 1 0 2 ( 2 ) 7 ( 1 ) C 1 1 ' 0 . 3 8 1 ( 4 ) 0 . 5 5 0 ( 5 ) 0 . 0 4 4 ( 3 ) 6 ( 2 ) C 1 2 0 . 4 5 8 ( 2 ) 0 . 6 1 7 ( 3 ) 0 . 0 5 3 ( 2 ) 8 . 8 ( 9 ) C 1 3 ' 0 . 2 6 1 ( 3 ) 0 . 4 8 0 ( 4 ) 0 . 0 7 2 ( 2 ) 3 ( 1 ) C 1 3 0 . 3 0 0 ( 3 ) 0 . 5 7 9 ( 4 ) 0 . 1 6 2 ( 2 ) 7 ( 1 ) C 1 4 0 . 2 1 2 ( 3 ) 0 . 5 1 0 ( 4 ) 0 . 1 4 6 ( 2 ) 1 4 ( 1 ) C 1 5 0 . 2 8 0 ( 2 ) 0 . 5 8 4 ( 3 ) 0 . 0 4 5 ( 2 ) 4 . 6 ( 9 ) C 1 5 ' 0 . 2 9 8 ( 7 ) 0 . 6 4 7 ( 9 ) 0 . 1 1 3 ( 5 ) 1 3 ( 3 ) C 1 6 0 . 2 5 1 ( 2 ) 0 . 6 9 7 ( 3 ) 0 . 0 5 6 ( 2 ) 1 1 ( 1 ) C 1 7 0 . 1 4 0 ( 4 ) 0 . 7 1 8 ( 4 ) 0 . 3 3 2 ( 3 ) 9 ( 2 ) C 1 7 ' 0 . 1 0 0 ( 7 ) 0 . 7 8 4 ( 9 ) 0 . 3 8 4 ( 5 ) 1 4 ( 4 ) C 1 8 0 . 8 4 0 ( 3 ) 0 . 2 2 4 ( 4 ) 0 . 0 8 9 ( 2 ) 1 3 ( 1 ) C 1 9 0 . 0 3 9 ( 4 ) 0 . 6 1 9 ( 6 ) 0 . 3 2 0 ( 3 ) 7 ( 2 ) C 1 9 - 0 . 0 0 7 ( 3 ) 0 . 6 9 5 ( 4 ) 0 . 3 4 9 ( 2 ) 8 ( 1 ) C 2 0 0 . 0 0 2 ( 3 ) 0 . 5 8 5 ( 4 ) 0 . 3 6 3 ( 2 ) 1 4 ( 2 ) C 2 1 ' 0 . 8 8 2 ( 4 ) 0 . 2 7 2 ( 5 ) 0 . 2 2 5 ( 3 ) 6 ( 2 ) C 2 1 0 . 0 3 7 ( 4 ) 0 . 7 0 4 ( 6 ) 0 . 2 5 3 ( 3 ) 1 2 ( 2 ) C 2 2 0 . 0 8 8 ( 4 ) 0 . 7 4 9 ( 5 ) 0 . 2 1 3 ( 3 ) 1 9 ( 2 ) C 2 3 0 . 9 4 9 ( 5 ) 0 . 3 5 4 ( 6 ) 0 . 1 5 4 ( 3 ) 1 4 ( 2 ) C 2 3 ' 0 . 0 2 7 ( 5 ) 0 . 2 8 6 ( 6 ) 0 . 1 9 4 ( 4 ) 9 ( 2 ) C 2 4 0 . 0 3 0 ( 3 ) 0 . 3 9 7 ( 3 ) 0 . 1 9 6 ( 2 ) 1 3 ( 1 ) a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 B 1 1 + b 2 B 2 2 + c 2 B 3 3 + a b ( c o s y ) B l z + a c ( c o s [ 3 ) 3 1 3 + b c ( c o s a ) B 2 3 ] 7 5 T a b l e 2 . 1 7 . F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( E t 4 N ) 3 [ T 1 3 S e 3 ( S e 4 ) 3 ] . A t o m x y z B e q a , A 2 T l ( l ) 0 . 6 3 1 7 0 . 2 5 7 6 0 . 1 6 6 6 4 2 . 9 8 T l ( 2 ) 0 . 6 9 5 9 0 . 4 9 9 5 0 . 2 1 7 0 3 3 . 0 1 T l ( 3 ) 0 . 8 2 4 4 0 . 3 4 7 3 0 . 1 1 3 2 0 4 . 7 4 S e ( l ) 0 . 7 5 2 1 0 . 1 5 2 6 0 . 2 1 8 1 4 . 0 S e ( 2 ) 0 . 7 1 4 1 0 . 0 0 2 7 0 . 1 7 4 2 5 . 2 S e ( 3 ) 0 . 5 7 8 2 - 0 . 0 0 4 1 0 . 1 8 8 8 5 . 0 S e ( 4 ) 0 . 5 2 9 8 0 . 1 2 0 7 0 . 1 2 6 0 4 . 4 S e ( S ) 0 . 5 8 2 0 0 . 3 7 9 6 0 . 2 4 3 5 3 . 7 S e ( 6 ) 0 . 6 9 4 7 0 . 6 5 1 5 0 . 2 9 1 5 4 . 6 S e ( 7 ) 0 . 5 8 4 1 0 . 7 2 2 4 0 . 2 4 0 3 4 . 9 S e ( 8 ) 0 . 6 3 2 9 0 . 7 4 6 0 0 . 1 4 6 8 5 . 5 S e ( 9 ) 0 . 6 4 8 6 0 . 5 8 4 9 0 . 1 1 2 7 4 . 6 S e ( 1 0 ) 0 . 8 3 7 9 0 . 4 1 8 9 0 . 2 2 3 2 5 . 4 S e ( l l ) 0 . 9 0 6 8 0 . 4 3 3 9 0 . 0 2 9 8 1 1 . 6 S e ( 1 2 ) 1 . 0 1 8 7 0 . 3 4 2 5 0 . 0 4 2 3 1 1 . 0 S e ( 1 3 ) 0 . 9 7 6 9 0 . 1 8 5 7 0 . 0 3 8 0 8 . 8 S e ( 1 4 ) 0 . 8 9 0 3 0 . 1 6 9 5 0 . 1 1 7 1 5 . 0 S e ( 1 5 ) 0 . 6 7 7 3 0 . 3 4 9 0 0 . 0 6 9 9 4 . 0 N ( l ) 0 . 7 0 5 0 . 4 2 7 0 . 4 4 8 3 . 3 N ( 2 ) 0 . 3 3 6 0 . 4 3 9 0 . 0 9 8 1 3 N ( 3 ) 0 . 0 5 5 0 . 2 4 7 0 . 3 1 9 6 C ( 1 ) 0 . 6 1 5 0 . 4 0 4 0 . 4 1 2 1 4 C ( 2 ) 0 . 5 6 4 0 . 3 4 2 0 . 4 4 0 8 C ( 3 ) 0 . 6 9 4 0 . 4 4 9 0 . 5 0 9 9 C ( 4 ) 0 . 3 6 2 0 . 4 3 7 0 . 4 9 2 8 C ( 5 ) 0 . 7 4 9 0 . 3 2 5 0 . 4 5 4 8 b 2 B 2 2 + c 2 B 3 3 + a b ( c o s ' y ) B 1 2 + a c ( c o s B ) B l 3 + b c ( c o s a ) B 2 3 ] T a b l e 2 . 1 7 ( c o n t ' d ) . 7 6 A t o m x y z B e q “ , A 2 C ( 6 ) 0 . 7 7 5 0 . 2 8 6 0 . 3 9 0 5 C ( 7 ) 0 . 7 8 8 0 . 5 0 1 0 . 4 1 5 1 5 C ( 8 ) 0 . 8 3 9 0 . 5 2 0 0 . 4 6 3 1 0 C ( 9 ) 0 . 2 9 1 0 . 4 3 0 0 . 1 5 6 9 C ( 1 0 ) 0 . 1 8 7 0 . 4 8 1 0 . 1 4 7 1 6 C ( 1 1 ) 0 . 3 6 1 0 . 5 5 4 0 . 0 9 1 1 5 C ( 1 2 ) 0 . 4 1 2 0 . 5 9 4 0 . 1 4 4 8 C ( 1 3 ) 0 . 2 5 9 0 . 4 0 9 0 . 0 5 0 1 5 C ( 1 4 ) 0 . 2 6 0 0 . 3 0 2 0 . 0 5 2 1 0 C ( 1 5 0 . 4 5 0 0 . 4 3 0 0 . 0 7 7 2 8 C ( 1 6 ) 0 . 4 5 8 0 . 3 7 0 0 . 0 4 9 9 C ( 1 7 ) 0 . 1 4 4 0 . 2 7 8 0 . 3 3 4 1 1 C ( 1 8 ) 0 . 1 6 1 0 . 2 7 2 0 . 4 0 6 1 0 C ( 1 9 ) 0 . 0 0 0 0 . 3 3 0 0 . 3 5 0 2 0 C ( 2 0 ) 0 . 0 1 1 0 . 4 2 5 0 . 3 5 1 1 2 C ( 2 1 ) 0 . 9 4 0 0 . 6 5 0 0 . 1 4 7 2 8 C ( 2 2 ) 0 . 0 2 7 0 . 6 1 1 0 . 1 8 7 1 3 C ( 2 3 ) 0 . 0 4 0 0 . 2 4 0 0 . 2 5 5 3 2 7 C ( 2 4 ) 0 . 0 9 9 0 . 2 8 0 0 . 2 2 0 2 3 a A n i s ' o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 B 1 1 + 7 7 R E S U L T S A N D D I S C U S S I O N S y n t h e s e s T h e s y n t h e s e s o f ( I ) , ( I I ) a n d ( I I I ) w a s a c c o m p l i s h e d b y t h e r e a c t i o n b e t w e e n I n C l 3 a n d N a z s e s , i n 2 : 5 m o l a r r a t i o , i n t h e p r e s e n c e o f d i f f e r e n t q u a t e r n a r y a m m o n i u m o r p h o s p h o n i u m c a t i o n s i n D M F , a s r e p r e s e n t e d i n e q . ( 1 ) . D M F 2 I n C 1 3 + 5 N a 2 $ e s + 4 R 4 B X - - - - - - > ( R 4 B ) 4 [ 1 n 2 ( S e 4 ) 4 ( S e s ) ] + 4 N a X + 6 N a C 1 ( R : E t , P r , B : N ; R : p h e n y l , B : P ; x : C l , B r ) e q . ( l ) I n i t i a l l y , t h e r e a c t i o n s b e t w e e n I n C l 3 a n d N a z s e s w e r e r u n i n t h e 1 : 2 r a t i o h 0 p i n g t o o b t a i n [ I n ( S e 4 ) 2 ] ‘ , t h e i s o s t r u c t u r a l c o m p l e x t o [ M ( S e 4 ) 2 ] 2 ' ( M : Z n , C d , H g ) 1 5 - 1 5 . T h o u g h t h i s c o m p l e x i s s t i l l a t l a r g e , w e f o u n d t h a t t h e [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' a n i o n d i s p l a y s c o n s i d e r a b l e s t a b i l i t y a t l e a s t i n t h e s o l i d s t a t e , a n d i t i s o b t a i n e d i n g o o d y i e l d . I n a d d i t i o n , a s l i g h t v a r i a t i o n o f t h e c o m p o s i t i o n o f N a z s e x ( x : 4 - 6 ) u s e d o r i n t h e I n C 1 3 : N a 2 S e 5 r a t i o d i d n o t a f f e c t t h e c o u r s e o f t h e r e a c t i o n , p r o d u c i n g [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' i n l o w e r y i e l d . T h e h i g h e s t y i e l d s w e r e o b t a i n e d b y I n C l 3 t o N a z S e s m o l a r r a t i o o f 2 : 5 . O f t e n t h e s t r u c t u r e o f m e t a l p o l y c h a l c o g e n i d e c o m p l e x e s i s h i g h l y i n fl u e n c e d b y t h e n a t u r e o f t h e c o u n t e r i o n s . T h i s h a s b e e n s e e n i n t h e A g / S e x z ' o 2 7 , C u / s z ' o 3 4 a n d M o / s z ‘ o 3 5 s y s t e m s t o n a m e b u t a f e w . T h i s d e p e n d e n c e o n c o u n t e r i o n w a s p r o b e d b u t w a s n o t 7 8 o b s e r v e d i n t h i s s t u d y , a s t h e s a m e [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' c o m p l e x w a s i s o l a t e d w i t h t h r e e d i f f e r e n t c a t i o n s ( P h 4 P + , P m N + a n d E t 4 N + ) . S u r p r i s i n g l y , w h e n w e u s e d C H 3 C N , i n s t e a d o f D M F , i n t h e p r e s e n c e o f E t 4 N B r w e i s o l a t e d ( V I ) a c c o r d i n g t o e q ( 2 ) . C I - I B C N I n C l 3 + 2 N a z S e s + E t 4 N B r - - - - - - - > 1 / 3 ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] + 3 N a C 1 + N a B r + 5 8 c e q ( 2 ) T h e e l e m e n t a l S e s u g g e s t e d i n e q ( 2 ) w a s n o t o b s e r v e d a s a p r e c i p i t a t e . ( V I ) c a n b e d i s s o l v e d i n D M F t o g i v e a n o r a n g e - r e d s o l u t i o n , a n d c a n b e e a s i l y r e c r y s t a l l i z e d u n c h a n g e d b y a d d i t i o n o f a n h y d r o u s e t h e r . S i n c e i n o u r i n i t i a l i n v e s t i g a t i o n o f t h i s s y s t e m w e w e r e a b l e t o i s o l a t e o n l y t w o s t r u c t u r a l l y u n i q u e a n i o n s [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' a n d [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ' f r o m D M F a n d / o r a c e t o n i t r i l e a n d s i n c e c h a n g i n g f r o m D M F t o C H 3 C N g a v e a d i f f e r e n t I n / S e x c o m p l e x , w e c h a n g e d o u r a p p r o a c h a n d t r i e d w a t e r a s a s o l v e n t . D u e t o t h e i n s u f f i c i e n t s o l u b i l i t y o f o r g a n i c s a l t s i n w a t e r w e u s e d t h e h y d r o t h e r m a l t e c h n i q u e . R e c e n t l y , i t h a s b e e n s h o w n b y o u r g r o u p t h a t h y d r o t h e r m a l s y n t h e s i s c a n b e a p p l i e d t o t h e p r e p a r a t i o n o f s o m e n o v e l t r a n s i t i o n a n d m a i n g r o u p m e t a l p o l y c h a l c o g e n i d e s 3 5 3 7 , 3 3 . I n e x t e n d i n g t h i s n e w a p p r o a c h w e e x p l o r e d h y d r o t h e r m a l r e a c t i o n s b e t w e e n I n C l 3 a n d N a z s e s i n v a r i o u s r a t i o i n t h e p r e s e n c e o f d i f f e r e n t o r g a n i c c o u n t e r i o n s i n e v a c u a t e d s e a l e d p y r e x t u b e s a t 1 1 0 ° C . T h e s y n t h e s i s o f ( I V ) a n d ( V ) w a s a c c o m p l i s h e d v i a s u c h h y d r o t h e r m a l r e a c t i o n o f I n C l 3 a n d N a 2 8 e 4 i n t h e p r e s e n c e o f P m N B r o r [ ( P h 3 P ) 2 N ] C l a n d c a n b e e x p r e s s e d b y e q ( 3 ) . o r ) [ ( P h 3 P 2 N ] C l - - - - - - > [ ( P h s P ) 2 N l 2 [ I n 2 8 6 2 ( S e 4 ) 2 l C ‘ l - ( 3 ) 7 9 W a t e r I n C l g + 2 N a 2 S e 5 + P m N B r - - - - - - - - > ( P r 4 N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] + N a X + 3 N a C l I n o u r e n d e a v o r s t o f u r t h e r e x p l o r e t h e c o o r d i n a t i o n c h e m i s t r y o f t h e p o l y s e l e n i d e l i g a n d s w i t h o t h e r G r o u p I I I - A m e t a l s w e i n v e s t i g a t e d t h e r e a c t i o n b e t w e e n T l C l a n d N a z s e s . T h e s y n t h e s i s o f [ T l 3 S e 3 ( S e 4 ) 3 ] 3 ' ( V I I ) w a s r e a d i l y a c c o m p l i s h e d b y s t i r r i n g a r e a c t i o n m i x t u r e o f T l C l a n d N a 2 S e 5 i n t h e p r e s e n c e o f E t 4 N B r i n D M F f o r s e v e r a l h o u r s a s s h o w n i n e q ( 4 ) . D M F T l C l + N a 2 S e 5 + E t 4 N B r - - - - - - > 1 / 3 ( E t 4 N ) 3 [ T l 3 S e 3 ( S e 4 ) 3 ] + N a C l + N a B r e q ( 4 ) T o t h e b e s t o u r k n o w l e d g e , [ T 1 3 S e 3 ( S e 4 ) 3 ] 3 ' i s t h e f i r s t t h a l l i u m p o l y s e l e n i d e c o m p l e x i s o l a t e d t o d a t e . ( V I I ) c o n t a i n s T l c e n t e r s i n t e t r a h e d r a l c o o r d i n a t i o n i n 3 + o x i d a t i o n s t a t e . T h e r e d o x c h e m i s t r y a n d t h e f o r m a t i o n o f T l 3 + b y i n t e r n a l e l e c t r o n t r a n s f e r w a s u n e x p e c t e d b u t i t i s s i m i l a r t o t h a t f o u n d i n t h e A u / S e x z ‘ s y s t e m ” . I n t e r e s t i n g l y , t h e o x i d a t i o n p o t e n t i a l A u + a n d T 1 “ a r e v e r y s i m i l a r ( - l . 2 9 V a n d - l . 2 4 7 V , r e s p e c t i v e l y ) ” . T h e h i g h n e g a t i v e v a l u e o f t h e r e d o x p o t e n t i a l o f T l + i s c o n s i s t e n t w i t h t h e r e d u c t i v e c l e a v a g e o f t h e S e - - S e b o n d i n S e 5 2 ' . T h e f o r m a t i o n o f ( V ) c a n b e r a t i o n a l i z e d b y a s s u m i n g t h a t t h e i n i t i a l s t e p i n t h e r e a c t i o n i s a s i m p l e c o o r d i n a t i o n o f t h e S e 5 2 ‘ l i g a n d t o t h e T l + c e n t e r , f o l l o w e d b y c y c l i z a t i o n t o g i v e a n i n t e r m e d i a t e t r i m e r i c c o m p l e x , a s s h o w n i n F i g u r e 1 ( a ) . T h e c y c l i c [ T 1 3 ( S e 5 ) 3 ] 3 - s t r u c t u r e o f t h e T l + i n t e r m e d i a t e i s h o m o l o g o u s t o t h e 8 0 d i m e r i c a n i o n [ T 1 2 ( S 4 ) 2 ] 2 ‘ t “ ' o a n d s i m i l a r t o t h e t r i m e r i c C u + p o l y s u l f i d e c o m p l e x [ C u 3 ( S 5 ) 3 ] 3 ‘ t 3 4 . T h e f o r m a t i o n o f T 1 3 + c a n b e e n v i s i o n e d v i a i n t e r n a l t w o e l e c t r o n t r a n s f e r f r o m t h e t h a l l i u m a t o m t o t h e n e a r e s t S e - - S e b o n d o f a S e 5 2 ' l i g a n d , t h e r e b y g e n e r a t i n g a S e 2 ' l i g a n d . A s u b s e q u e n t s l i g h t r e a r r a n g e m e n t o f t h e s t r u c t u r e a f t e r t h e e l e c t r o n t r a n s f e r , r e s u l t s i n ( V I I ) . T h i s i s s c h e m a t i c a l l y r e p r e s e n t e d i n F i g u r e 2 . 1 . d n a x e l p m o c e t a i d e m r e t n i . ) I c I i V r ( e m i r t o t r e + f l s T n a r e t h t f o n o r t c n e o l i e t a r t e n t e f s a e r p t e n r e m e l a g r n u a t r c u r r a t e s r c t i h g t i a l m s e h t c n S e u q e 1 . 2 s b u s e r u g e i h F t 8 2 U V / V I S S p e c t r o s c o p y T h e U V / V i s s p e c t r u m o f ( I ) i n D M F , F i g u r e 2 ( a ) , s h o w s t w o a b s o r p t i o n s a t 4 5 0 ( s h ) n m ( 8 : 1 2 8 5 5 c m ' l M 4 ) a n d 6 4 9 n m ( 6 : 2 7 8 9 c m ‘ 1 M ' l ) r e s p e c t i v e l y , w h i l e s o l i d s t a t e s a m p l e s ( K B r p e l l e t ) s h o w o n l y a f e a t u r e l e s s r i s i n g a b s o r b a n c e . T h e i n d i u m d i m e r s ( I ) , ( I I ) a n d ( I I I ) c o n s i s t i n g o f t h e [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' a n i o n h a v e s i m i l a r U V / V i s s p e c t r a a n d a l s o r e s e m b l e s t o t h a t o f N a 2 8 e 5 o r ( P h 4 P ) 2 S e 5 . T h e U V / V i s s p e c t r u m o f t h e S e 5 2 ' i n D M F i s s h o w n i n F i g u r e 2 ( b ) . T h e s i m i l a r s p e c t r a i n d i c a t e s t h a t t h e a n i o n s i n ( I ) , ( I I ) a n d ( I I I ) d i s s o c i a t e i n D M F s o l u t i o n a n d g i v e r i s e t o S e x z ' s p e c i e s . T h e t w o a b s o r p t i o n b a n d s c a n b e a t t r i b u t e d t o t h e p r e s e n c e o f s e l e n i u m r a d i c a l a n i o n s p e c i e s 1 a s u c h a s S e 3 ' - i n e q u i l i b r i u m w i t h S e x z ‘ a n i o n s b y a n a l o g y t o t h e p o l y s u l f i d e s “ . T h e U V / v i s , R a m a n a n d r e s o n a n c e R a m a n s p e c t r o s c o p i c s t u d i e s o n p o l y s u l f i d e s i n l i q u i d a m m o n i a o r p o l a r s o l v e n t s s u c h a s D M F s u g g e s t t h a t d i f f e r e n t 8 3 ' l i g a n d s a r e i n e q u i l i b r i u m w i t h t h e r a d i c a l a n i o n S 3 ' - a n d o t h e r s p e c i e s s u c h a s S z ' - . E q . ( 5 ) d e p i c t s o n e o f t h e s e v e r a l p o s s i b l e e q u i l i b r i u m s b e t w e e n t h e s e l e n i u m r a d i c a l a n i o n s p e c i e s w i t h S e x z ' a n i o n s . 2 8 e x 2 ' < = = > 2 8 e 3 ‘ - + S e y z ' ( y = 2 x - 6 ) e q ( 5 ) T h e U V / V i s s p e c t r a o f t h e [ I n 2 S e 2 ( S e 4 ) 2 ] 2 ' i n ( I V ) a n d ( V ) a s w e l l a s t h e [ M 3 S e 3 ( S e 4 ) 3 ] 3 ' ( M = I n , T 1 ) i n ( V I ) a n d ( V I I ) i n D M F a r e f e a t u r e l e s s i n d i c a t i n g t h a t t h e s e c o m p o u n d s d o n o t y i e l d S e x z ' s p e c i e s , F i g u r e 2 ( c ) . 8 3 ( A ) A B S \ 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 M n m ) ( B ) A 8 3 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 M n m ) A B S . ( C ) . . - : 4 1 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 M n m ) F i g u r e 2 . 2 T y p i c a l U V / V i s s p e c t r a o f ( A ) ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I ) , ( B ) ( P h 4 P ) 2 S e s a n d ( C ) ( E t 4 N ) 3 [ I n 3 S e s ( S e 4 ) 3 l ( V I ) i n D M F - 8 4 C y c l i c V o l t a m m e t r i c S t u d i e s T h e p r e s e n c e o f S e x z ’ s p e c i e s i n t h e D M F s o l u t i o n s o f ( I ) , ( I I ) a n d ( I I I ) a r e f u r t h e r s u p p o r t e d b y c y c l i c v o l t a m e t r i c s t u d i e s . T h e c y c l i c v o l t a m m o g r a m o f ( I ) s h o w s a n i r r e v e r s i b l e o x i d a t i o n w a v e a t - 0 . 3 5 V w h i c h i s f o l l o w e d b y t w o r e d u c t i o n w a v e s a t - 0 . 8 2 V a n d - l . 2 5 V v s S a t u r a t e d C a l o m e l e l e c t r o d e ( S C E ) . T h e l a t t e r t w o r e d u c t i o n w a v e s a r e s e e n o n l y a f t e r t h e f o r m e r o x i d a t i o n w a v e h a s e n s u e d a n d h e n c e a r e n o t d u e t o t h e s p e c i e s o r i g i n a l l y p r e s e n t i n t h e s o l u t i o n , F i g u r e 2 . 3 . I n c o m p a r i s o n , ( P h 4 P ) 2 S e 5 g i v e s q u a l i t a t i v e l y s i m i l a r c y c l i c v o l t a m m o g r a m s i n D M F , a n i r r e v e r s i b l e o x i d a t i o n w a v e a t - 0 . 4 2 V f o l l o w e d b y t w o r e d u c t i o n w a v e s a t - 0 . 7 1 V a n d - 1 . 1 4 V , r e s p e c t i v e l y . T h i s 8 e 5 2 ' s o l u t i o n s h o w s t h e s a m e b e h a v i o r , t h e r e d u c t i o n w a v e s a r e s e e n o n l y a f t e r t h e o x i d a t i o n w a v e a s i n ( I ) a n d ( 1 1 ) , t h u s i n d i c a t i n g t h a t t h e r e d o x - a c t i v e s p e c i e s i n t h e D M F s o l u t i o n s a r e s i m i l a r . T h e c y c l i c v o l t a m m o g r a m o f ( E t 4 N ) 3 [ I n 3 8 e 3 ( S e 4 ) 3 ] i n C H 3 C N s h o w s a n i r r e v e r s i b l e r e d u c t i o n w a v e a t - 1 . 3 1 V i n t h e fi r s t c y c l e a n d a n i r r e v e r s i b l e o x i d a t i o n w a v e a t - 0 . 5 7 V ( a t 2 0 0 m V / s e c ) . F u r t h e r c y c l e s s h o w a n e w r e d u c t i o n w a v e a t - 1 . 0 3 V w h i l e t h e r e d u c t i o n w a v e a t - 1 . 3 1 V d i s a p p e a r s . T h e o x i d a t i o n w a v e a t - 0 . 5 7 V r e m a i n s u n c h a n g e d . I t i s l i k e l y t h a t t h e s e r e d o x w a v e s a r e a s s o c i a t e d w i t h r e d u c t i v e c l e a v a g e a n d o x i d a t i v e f o r m a t i o n o f S e - S e b o n d s r e s p e c t i v e l y . 8 5 ( 1 - 0 . 8 2 V l 1 m A I 4 0 0 m V / s e c - 1 . 2 5 V 1 3 1 : 5 5 F i g u r e 2 . 3 C y c l i c v o l t a m m o g r a m o f ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I ) i n D M F . ( 1 1 ) a n d ( I I I ) a s w e l l a s ( P h 4 P ) 2 S e 5 h a v e s i m i l a r v o l t a m m o g r a m . 8 6 7 " S e N M R S t u d i e s . T h e 7 7 S e N M R s p e c t r a o f ( I ) , ( I I ) a n d ( I I I ) i n D M F s o l u t i o n s a t r o o m t e m p e r a t u r e a r e i d e n t i c a l a n d a t - 5 5 ° C s h o w t h r e e p e a k s i n 2 : 2 : 1 r a t i o a t 6 4 3 p p m , 1 9 7 p p m a n d - 2 4 4 p p m r e s p e c t i v e l y s e e F i g u r e 2 . 4 . I n t e r e s t i n g l y , t h e " S c N M R s p e c t r a o f [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ' i n D M F o r C H 3 C N s o l u t i o n s a r e a l s o i d e n t i c a l t o t h o s e o f [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' B a s e d o n t h e s t r u c t u r e o f [ I n 3 8 e 3 ( S e 4 ) 3 ] 3 ' a n d o n t h e a s s u m p t i o n t h a t t h e r e i s a c o n f o r m a t i o n a l l a b i l i t y i n s o l u t i o n ( g i v i n g r i s e t o a t h r e e - f o l d a x i s i n t h e m o l e c u l e ) , t h r e e d i s t i n c t p e a k s a r e e x p e c t e d i n i t s 7 7 S e N M R s p e c t r u m . S u r p r i s i n g l y , t h e " S c N M R s p e c t r a o f [ I n 2 8 e 2 ( S e 4 ) 2 ] 2 ' i n D M F s o l u t i o n s a r e i d e n t i c a l t o t h o s e o f [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' a n d [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ' . T h e p e a k a t 6 4 3 p p m c a n b e t e n t a t i v e l y a s s i g n e d t o r e s o n a n c e f r o m t h e t e r m i n a l S e a t o m s o f t h e c h e l a t i n g S e 4 2 ' l i g a n d s a n d 1 9 7 p p m f r o m t h e i n n e r a t o m s o f t h e S e 4 2 ' l i g a n d s w h i l e t h e - 2 4 4 p p m i s m o r e r e a s o n a b l y a s s i g n e d t o t h e u - S e z ' l i g a n d . T h i s a s s i g n m e n t i s c o n s i s t e n t w i t h t h e 7 7 S e N M R r e s u l t s f r o m s i m i l a r m e t a l p o l y s e l e n i d e c o m p l e x e s r e c e n t l y r e p o r t e d b y I b e r s a n d c o w o r k e r s ” . U n d e r o u r e x p e r i m e n t a l c o n d i t i o n s w e f o u n d . n o e v i d e n c e o f a n y s a t e l l i t e p e a k s a r i s i n g f r o m I n - - S e c o u p l i n g ( 1 1 5 I n h a s I = 9 / 2 , n a t u r a l a b u n d a n c e 9 5 . 8 % ) . T h e f a c t t h a t t h e 7 7 S e N M R s p e c t r a o f a l l t h e I n / S e x c o m p l e x e s a r e i d e n t i c a l i n D M F , c o u p l e d w i t h t h e l a b i l i t y o f [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' a n d t h e s t a b i l i t y o f t h e [ I n 2 8 e 2 ( S e 4 ) 2 ] 2 ' a n d [ I n 3 8 e 3 ( S e 4 ) 3 ] 3 ' , s u g g e s t a p o s s i b l e e q u i l i b r i u m b e t w e e n [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' a n d [ I n x S e s x P ‘ u ( x = 2 , 3 ) a s s h o w n i n e q . ( 6 a - c ) . 8 7 H o w e v e r , i n v i e w o f t h e f a c t t h a t [ I n 2 8 e 2 ( S e 4 ) 2 ] 2 ' a n d [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ' h a v e i d e n t i c a l 7 7 S e N M R s p e c t r a i n D M F o n e m a y w o n d e r i f e s s e n t i a l l y o n l y o n e I n d i u m - p o l y s e l e n i d e c o m p l e x e x i s t s i n s o l u t i o n . T h i s c a n b e e n v i s i o n e d b y t h e s l i g h t r e a r r a n g e m e n t o f t h e f o r m e r d i m e r i c a n i o n t o t h e l a t t e r . T h i s c o n t e n t i o n i s b a s e d o n t h e f a c t t h a t t h e c e n t r a l [ I n 2 8 e 2 ] 2 + c o r e i n [ I n z S e 2 ( S e 4 ) 2 ] 2 ' w o u l d e x p e r i e n c e s t r o n g I n - - I n c o l u m b i c r e p u l s i o n b e c a u s e o f t h e c l o s e p r o x i m i t y o f t h e t w o l n 3 + a t o m s a n d d e s t a b i l i z e t h e c o m p l e x . T h i s r e p u l s i v e f o r c e i s s o m e w h a t d i s s i p a t e d i n [ I n 3 S e 3 ( S e 4 ) 3 ] 2 ' d u e t o t h e l o n g e r I n - - I n d i s t a n c e s i n t h e c o r r e s p o n d i n g [ I n 3 S e 3 ] 3 + c o r e . F u r t h e r m o r e i t i s w e l l d o c u m e n t e d i n o r g a n i c c h e m i s t r y t h a t a s i x - m e m b e r e d r i n g h a s h i g h e r s t a b i l i t y a s c o m p a r e d t o a h i g h l y s t r a i n e d p l a n a r f o u r - m e m b e r e d r i n g . T h u s i t i s r e a s o n a b l e t o p r o p o s e a r e a r r a n g e m e n t i n s o l u t i o n o f [ I n 2 8 e 2 ( S e 4 ) 2 ] 2 ' t o t h e m o r e s t a b l e [ I n 3 S e 3 ( S e 4 ) 3 ] 2 ' a s d e p i c t e d i n e q . ( 6 d ) . 3 [ I n 2 ( S e 4 ) 4 ( S e s ) ] 4 ' < = = > 2 [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ' + 3 S e 1 1 2 ‘ e q . ( 6 a ) [ I n 2 ( S e 4 ) 4 ( S e s ) l 4 ' < = = > [ I n 2 3 6 2 ( S e 4 ) 2 ] 2 ' + 3 3 1 1 2 ' e q . ( 6 b ) 2 8 e 1 1 2 ‘ < = = > S e x z ' + S e y z ' x + y = 2 2 e q ( 6 c ) 3 [ I n 2 8 6 2 ( S e 4 ) 2 ] 2 ' < = = > 2 [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ' 6 6 ! ( 6 d ) T h e s e e q u i l i b r i a a l s o e x p l a i n t h e s i m i l a r i t y o f t h e U V / V i s s p e c t r a a n d t h e c y c l i c v o l t a m e t r i c d a t a t o t h o s e o b t a i n e d f r o m S e x z ' s o l u t i o n s o n l y . T h e D M F s o l u t i o n s o f ( P h 4 P ) 2 S e 5 d i d n o t s h o w a n y p e a k s i n t h e - 5 5 ° C t o 2 5 ° C r a n g e i n t h e " S c N M R s p e c t r a . 8 8 S o l u t i o n s o f ( E t 4 N ) 3 [ T l 3 S e 3 ( S e 4 ) 3 ] ( V I I ) i n D M F , a c e t o n i t r i l e a n d p y r i d i n e w e r e a l s o i n v e s t i g a t e d b y 7 7 S e N M R s p e c t r o s c o p y i n t h e t e m p e r a t u r e r a n g e o f 2 5 ° C t o - 5 5 ° C . A t r o o m t e m p e r a t u r e D M F s o l u t i o n s s h o w t w o b r o a d t r i p l e t s i n t h e v i c i n i t y o f 6 5 0 a n d 2 3 0 p p m r e s p e c t i v e l y . A t - 5 5 ° C i n D M F t h e s p e c t r a r e v e a l s n i n e s h a r p p e a k s o f w h i c h o n l y t h r e e a r e i n t e n s e a t 6 4 0 , 2 7 3 a n d 2 1 8 p p m r e s p e c t i v e l y , a s s h o w n i n F i g u r e 2 . 5 . T h e s e t h r e e p e a k s c a n b e a s s i g n e d t o t h e [ T 1 3 S e 3 ( S e 4 ) 3 ] 3 ' a n i o n b y a n a l o g y t o t h e [ I n 3 8 e 3 ( S e 4 ) 3 ] 3 ' a n i o n . T h e p e a k a t 6 4 0 p p m c a n b e t e n t a t i v e l y a s s i g n e d t o r e s o n a n c e f r o m t h e t e r m i n a l S e a t o m s o f t h e c h e l a t i n g S e 4 2 ' l i g a n d s , t h e r e s o n a n c e a t 2 7 3 p p m f r o m t h e i n n e r a t o m s o f t h e S e 4 2 ' l i g a n d s a n d t h e 2 1 8 p p m i s a s s i g n e d t o t h e u - S e z ‘ l i g a n d . T h e 7 7 S e N M R s p e c t r a o f ( V I I ) i n a c e t o n i t r i l e e x h i b i t s a s i m i l a r f e a t u r e s a t r o o m t e m p e r a t u r e b u t a t - 4 0 ° C o n l y t h r e e m a i n p e a k s a r e o b s e r v e d a t 6 4 6 , 2 7 1 a n d 2 1 6 p p m . I n p y r i d i n e t h e s p e c t r a a r e s i m i l a r t o t h e s p e c t r a i n D M F a t r o o m t e m p e r a t u r e a n d a g a i n a t - 5 5 ° C o n l y t h r e e m a i n p e a k s a r e o b s e r v e d a t 6 5 4 , 2 8 5 a n d 2 3 0 p p m s l i g h t l y d o w n f i e l d f r o m t h e p r e v i o u s t w o s o l v e n t s . T h e s e r e s u l t s i n d i c a t e s c o n s i d e r a b l e l a b i l i t y o f t h e S c a t o m s i n t h e S e 4 2 ' c h e l a t e d u e t o p r o b a b l y a n e x i s t e n c e o f a r e d o x e q u i l i b r i a b e t w e e n ' I ‘ l 3 + a n d T l + s p e c i e s i n s o l u t i o n a t r o o m t e m p e r a t u r e . A t l o w e r t e m p e r a t u r e s t h e e q u i l i b r i u m s h i f t s c o n s i d e r a b l y t o w a r d s t h e [ T l 3 S e 3 ( S e 4 ) 3 ] 3 ' a n i o n a n d t h e s i x w e a k p e a k s o b s e r v e d i n t h e D M F s o l u t i o n c o u l d b e a t t r i b u t e d t o t h e o t h e r T l S e x n ' c o m p l e x e s p r e s e n t i n s o l u t i o n . fi ' r m p r 4 p 4 2 - r r 0 y 0 2 v - r r r 0 r 0 1 v - 0 I F V I I I I I 0 0 1 ' T I U I 0 0 2 ' V I V V 0 0 3 I V V V V 0 [ 0 4 . s k a e p e V h V I V 0 ' 0 5 I ' v f 0 ' 0 6 v v t f o t n e m n g i s s a c i t r a v 0 ' 0 7 w m e h c s 9 9 1 6 4 6 F i g u r e 2 . 4 T h e 7 7 S e N M R s p e c t r a o f ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I ) , ( P r . 4 N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] ( I V ) a n d ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] ( V I ) i n D M F a r e t h e s a m e . A n e x a m p l e i s s h o w n a b o v e . I n s e t , 8 9 9 0 2 5 ( ° C ) - 5 ( ° C ) - 3 5 ( ° C ) W - 5 5 ( ° C ) r I r v r 1 r ' ' ' 6 0 0 4 0 0 2 0 0 o - 2 0 0 p p m F i g u r e 2 . 5 7 7 S e N M R s p e c t r a o f ( E t 4 N ) 3 [ T 1 3 8 e 3 ( S e 4 ) 3 ] ( V I I ) i n D M F a s a f u n c t i o n o f t e m p e r a t u r e . ( E t 4 N ) 3 [ T l 3 S e 3 ( S C 4 ) 3 1 2 6 8 ( m ) 2 5 3 ( m ) 1 8 7 ( 8 ) 1 7 0 ( 8 ) 9 1 F a r - I R s t u d i e s I n t h e f a r - I R r e g i o n a l l t h e c o m p l e x e s r e p o r t e d h e r e e x h i b i t s p e c t r a l a b s o r p t i o n s d u e t o S e - S e a n d / o r M - S e s t r e t c h i n g v i b r a t i o n s a s s h o w n i n F i g u r e s 2 . 6 - 2 . 7 . O b s e r v e d a b s o r p t i o n f r e q u e n c i e s o f a l l t h e c o m p l e x e s e x c e p t ( V ) a r e g i v e n i n T a b l e 2 . 1 8 . T h e s p e c t r u m o f ( V ) h a s b e e n o m i t t e d b e c a u s e i t s h o w s a l a r g e n u m b e r o f s t r o n g a b s o r p t i o n s f r o m t h e [ ( P h 3 P ) 2 N ] + c a t i o n i n t h e r e g i o n ( 5 0 0 - 1 0 0 c m ' l ) , w h i c h o v e r l a p s w i t h t h e S e - S e a n d I n - S e a b s o r p t i o n s . T a b l e 2 . 1 8 . F r e q u e n c i e s ( c m ' l ) o f t h e S p e c t r a l A b s o r p t i o n s o f ( I ) , ( I I ) , ( I I I ) , ( I V ) , ( V I ) a n d ( V I I ) . C o m j l e x e s F r e q u e n c i e s ( c m ' l ) ( P h 4 P ) 4 1 1 0 2 ( S C 4 ) 4 ( S ¢ 5 ) 1 2 7 4 ( w ) 2 5 6 ( m ) 1 9 7 ( 8 ) 1 8 8 ( w ) 1 6 8 ( m ) ( P r 4 N ) 4 [ I n 2 ( S C 4 ) 4 ( S C S ) 1 2 6 5 ( m ) 2 5 7 ( m ) 1 9 9 ( s ) 1 8 8 ( 8 ) 1 6 7 ( 8 ) 1 5 6 ( m ) ( E M N ) 4 [ I n 2 ( S C 4 ) 4 ( S C S ) 1 2 7 0 ( m ) 2 5 4 ( m ) 2 3 0 ( m ) 2 2 4 ( m ) 2 0 5 ( 8 ) 1 7 1 ( m ) ( P r 4 N ) 2 [ I n 2 8 6 2 ( S c 4 ) 2 ] 2 6 8 ( m ) 2 5 8 ( m ) 2 3 1 ( 8 ) 2 0 5 ( 8 ) 1 9 0 ( 8 ) ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 1 2 6 8 ( m ) 2 5 6 ( m ) 2 3 0 ( m ) 2 2 5 ( m ) 2 0 5 ( 8 ) 1 7 2 ( m ) ¥ 9 2 ( A ) ( B ) I ! ) U 2 < [ - E : 2 m 2 < a : [ - E R 3 4 0 2 7 5 2 1 0 1 4 5 8 0 W A V E N U M B E R F i g u r e 2 . 6 F a r - I R s p e c t r a o f ( A ) ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I ) , ( B ) ( P r 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e s ) l ( I I ) . a n d ( C ) ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e s ) l ( I I I ) - 9 3 ( A ) t r : 2 < ( B ) I - F : 2 t o Z < a : I - a ? ( C ) i I I I ' 3 4 0 2 7 5 2 1 0 1 4 5 8 0 W A V E N U M B E R F i g u r e 2 . 7 F a r - I R s p e c t r a o f ( A ) ( P r 4 N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] ( I V ) , ( 3 ) ( E t 4 N ) 3 [ 1 n 3 S e 3 ( S e 4 ) 3 ] ( V 1 ) a n d ( C ) ( E t 4 N ) 3 [ T 1 3 3 6 3 ( S e 4 ) 3 ] ( V I I ) - 9 4 F o r a l l t h e r e s t o f t h e c o m p l e x e s t w o s p e c t r a l a b s o r p t i o n s a r e o b s e r v e d a r o u n d ~ 2 6 8 a n d ~ 2 5 6 c m ' l . T h e s e b a n d s c a n b e a s s i g n e d t o S e - S e v i b r a t i o n s b y c o m p a r i s o n w i t h t h e s p e c t r a o f o t h e r k n o w n p o l y s e l e n i d e c o m p l e x e s a n d w i t h t h a t o f t h e u n b o u n d l i g a n d ( P h 4 P ) 2 S e 5 2 7 ° ( u S e - S e a t 2 6 7 c m ' l ) . I n a d d i t i o n , t h e n S e - S e a b s o r p t i o n s i n t h i s r e g i o n h a s b e e n o b s e r v e d p r e v i o u s l y i n v a r i o u s c o m p o u n d s e g . S e x z ' v 4 2 ( x = 1 - 6 ) a t 2 5 8 c m ' l , c - S e 5 4 3 a t 2 5 3 c m ' l , [ F e 2 8 e 1 2 ] 2 ' t 8 a t 2 5 8 c m ' l , [ S n S e l z l z ' t 2 6 a a t 2 7 3 a n d 2 5 6 c m ' l , [ A g S e x ] ‘ 3 7 ° ( x = 4 , 5 ) a r o u n d 2 6 5 c m ' 1 a n d [ P d S e g l z ' o 1 4 a t 2 4 7 c m ' l . I n t h e l n 3 + / S e x 2 ' c o m p l e x e s a n a d d i t i o n a l s t r o n g b a n d i n t h e r a n g e o f 1 9 7 - 2 0 5 c m ’ 1 i s o b s e r v e d . T h i s m i g h t b e a p o s s i b l e c a n d i d a t e f o r a n I n - S e s t r e t c h i n g v i b r a t i o n b y c o m p a r i s o n t o t h e s p e c t r a o f a - I n z S e 3 ( H ) a n d a - I n 2 8 e 3 ( R ) 4 4 w h i c h e x h i b i t t w o s t r o n g a b s o r p t i o n s a t 1 8 8 , 1 6 3 c m ’ 1 a n d 1 8 9 , 1 6 4 c m ' l , r e s p e c t i v e l y . I n t h e T 1 3 + / S e x 2 ‘ c o m p l e x a n a d d i t i o n a l s t r o n g a b s o r p t i o n a t 1 7 0 c m ’ 1 i s o b s e r v e d , t h i s m i g h t b e a p o s s i b l e c a n d i d a t e f o r a n T l - S e s t r e t c h i n g v i b r a t i o n . T h e m a j o r d i f f i c u l t y i n a s s i g n i n g t h e o b s e r v e d I R a b s o r b a n c e s o f t h e s e c o m p l e x e s a r i s e s f r o m t h e f a c t t h a t t h e S e - S e a n d M - S e s t r e t c h i n g f r e q u e n c i e s f a l l i n t h e s a m e l o w f r e q u e n c y r e g i o n o f ( 1 5 0 - 2 8 0 c m ' l ) f o r w h i c h s y s t e m a t i c a n d q u a n t i t a t i v e s t u d i e s a r e l a c k i n g . 9 5 D e s c r i p t i o n o f t h e S t r u c t u r e s S t r u c t u r e o f ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I ) F i g u r e 2 . 8 s h o w s t h e s t r u c t u r e o f [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' a n i o n . I t c o n s i s t s o f t w o [ I n ( S e 4 ) 2 ] ' u n i t s b r i d g e d b y a S e 5 2 ' c h a i n . T h e I n a t o m h a s a t r i g o n a l - b i p y r a m i d a l c o o r d i n a t i o n g e o m e t r y . T h e m e t a l a t o m i s c h e l a t e d b y t w o S e 4 2 ' l i g a n d s a n d b o u n d t o a t e r m i n a l S e a t o m o f t h e S e s z ‘ c h a i n . T w o a x i a l s e l e n i u m a t o m s S e ( 4 ) a n d S e ( 8 ) , a n d t h e t h r e e e q u a t o r i a l a t o m s S e ( l ) , S e ( S ) a n d S e ( 9 ) c o m p o s e t h e c o o r d i n a t i o n s p h e r e o f i n d i u m . T h e a x i a l S e ( 4 ) - I n - S e ( 8 ) a n g l e i s 1 7 5 . 7 ( l ) ° . T h e e q u a t o r i a l S e - I n - S e a n g l e s a v e r a g e t o 1 1 9 . 9 ( 2 ) ° a n d t h e I n , S e ( l ) , S e ( 5 ) a n d S e ( 9 ) a t o m s d o n o t d e v i a t e m o r e t h a n 0 . 0 2 A f r o m t h e c o r r e s p o n d i n g l e a s t s q u a r e s p l a n e . A l l c h e l a t i n g S e 4 2 ' l i g a n d s a d o p t a n e n v e l o p e c o n f o r m a t i o n . A t o m s S e ( 3 ) a n d S e ( 7 ) a r e a t a n a v e r a g e 1 . 2 8 A a w a y f r o m t h e I n S e ( 1 ) S e ( 2 ) S e ( 4 ) a n d I n S e ( 5 ) S e ( 6 ) S e ( 8 ) p l a n e s , r e s p e c t i v e l y . T h e a n i o n [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ‘ i t s e l f d o e s n o t h a v e a c e n t e r o f s y m m e t r y , b u t a c r y s t a l l o g r a p h i c a l l y i m p o s e d c e n t e r o f s y m m e t r y l i e s h a l f w a y b e t w e e n t h e I n - - - I n v e c t o r . T h i s i n d u c e s a p o s i t i o n a l d i s o r d e r o f t h e c e n t r a l S e ( l l ) a t o m o f t h e b r i d g i n g S e 5 2 ' c h a i n . a n d r e s u l t s i n t w o d i f f e r e n t c o n f o r m a t i o n s o f t h e S e 5 2 ' c h a i n i n t h e s o l i d s t a t e w i t h a h a l f p o s i t i o n a l o c c u p a n c y o f t h e S e ( l l ) a t o m a s s h o w n i n F i g u r e 2 . 8 . F i g u r e 2 . 9 r e p r e s e n t s t h e p a c k i n g d i a g r a m o f ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I ) i n t h e u n i t c e l l . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e n i n T a b l e 2 . 1 9 . 6 9 L ” ) M Q 9 6 S e ( 7 ) S e ( 6 ) S e ( 1 0 ) S e ( l l w : 7 5 S e ( 4 ) ‘ S e ( 3 ) S e ( 2 ) S e ( l l ) S e ( I O ' ) ‘ 2 3 S e ( 4 ) S e ( 3 ) S e ( 2 ) F i g u r e 2 . 8 O R T E P r e p r e s e n t a t i o n o f t h e t w o c o n f o r m a t i o n s o f t h e [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' a n i o n i n ( I ) w i t h l a b e l i n g s c h e m e . 9 7 F i g u r e 2 . 9 O R T E P r e p r e s e n t a t i o n o f t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e s ) ] . F 9 8 T a b l e 2 . 1 9 . C o m p a r i s o n o f S o m e S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f t h e [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' A n i o n i n ( I ) , ( I I ) a n d ( I I I ) . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . ( I ) ( 1 1 ) ( I I I ) I n - S e ( 1 ) 2 . 6 6 3 ( 3 ) 2 . 7 9 9 ( 4 ) 2 . 6 1 4 ( 4 ) I n - S e ( 4 ) 2 . 7 2 9 ( 3 ) 2 . 6 3 9 ( 5 ) 2 . 6 7 7 ( 4 ) I n - S e ( 5 ) 2 . 6 2 2 ( 3 ) 2 . 5 5 2 ( 5 ) 2 . 6 0 8 ( 5 ) I n - S e ( 8 ) 2 . 7 3 5 ( 3 ) 2 . 8 5 2 ( 6 ) 2 . 8 9 0 ( 4 ) I n - S e ( 9 ) 2 . 6 1 6 ( 3 ) 2 . 6 9 2 ( 5 ) 2 . 6 0 8 ( 4 ) I n ( 2 ) - S e ( 1 3 ) 2 . 6 1 3 ( 5 ) I n ( 2 ) - S e ( 1 4 ) 2 . 7 0 8 ( 5 ) I n ( 2 ) - S e ( l 7 ) 2 . 6 1 2 ( 5 ) I n ( 2 ) - S e ( 1 8 ) 2 . 6 1 5 ( 5 ) I n ( 2 ) - S e ( 2 1 ) 2 . 8 1 5 ( 6 ) I n - S e ( m e a n ) 2 . 6 7 3 2 . 7 0 7 2 . 6 6 5 S e ( l ) - S e ( 2 ) 2 . 3 3 1 ( 7 ) 2 . 2 4 5 ( 6 ) 2 . 3 5 3 ( 6 ) S e ( 2 ) - S e ( 3 ) 2 . 3 3 4 ( 5 ) 2 . 4 4 6 ( 6 ) 2 . 3 2 1 ( 5 ) S e ( 3 ) - S e ( 4 ) 2 . 3 4 9 ( 6 ) 2 . 4 1 2 ( 6 ) 2 . 3 2 2 ( 5 ) S e ( 5 ) - S e ( 6 ) 2 . 3 1 2 ( 8 ) 2 . 1 7 7 ( 6 ) 2 . 3 1 8 ( 6 ) S e ( 6 ) - S e ( 7 ) 2 . 2 9 0 ( 7 ) 2 . 4 3 6 ( 7 ) 2 . 3 1 3 ( 6 ) S e ( 7 ) ‘ - S e ( 8 ) 2 . 3 3 7 ( 5 ) 2 . 2 5 1 ( 7 ) 2 . 3 2 7 ( 6 ) S e ( 9 ) - S e ( 1 0 ) 2 . 3 8 3 ( 9 ) 2 . 4 6 ( 1 ) 2 . 3 5 2 ( 6 ) S e ( 9 ) - S e ( 1 0 ) ‘ 2 . 2 1 ( 1 ) S e ( 1 0 ) - S e ( l l ) 2 . 3 2 2 ( 9 ) 2 . 5 6 ( l ) 2 . 3 3 4 ( 7 ) S e ( 1 0 ' ) - S e ( l l ) 2 . 4 5 ( 1 ) S e ( 1 1 ) - S e ( 1 2 ) 2 . 3 1 0 ( 6 ) S e ( 1 2 ) - S e ( 1 3 ) 2 . 3 5 3 ( 6 ) S e ( 1 4 ) - S e ( 1 5 ) 2 . 3 2 9 ( 6 ) " I T a b l e 2 . 1 9 ( c o n t ' d ) . 9 9 ( I ) ( I I ) ( I I I ) S e ( 1 5 ) - S e ( 1 6 ) 2 . 3 4 1 ( 7 ) S e ( l 6 ) - S e ( 1 7 ) 2 . 3 4 0 ( 8 ) S e ( 1 8 ) - S e ( 1 9 ) 2 . 3 0 5 ( 8 ) S e ( 1 9 ) - S e ( 2 0 ) 2 . 3 1 7 ( 8 ) S e ( 2 0 ) - S e ( 2 1 ) 2 . 3 1 8 ( 9 ) S e - S e ( m e a n ) 2 . 3 3 2 2 . 3 6 5 2 . 3 2 8 S e ( l ) - I n - S e ( 4 ) 9 6 . 6 ( 2 ) 1 0 5 . 3 ( 1 ) 1 0 0 . 7 ( 1 ) S e ( l ) - I n - S e ( 5 ) 1 1 8 . 9 ( 2 ) 1 0 4 . 8 ( 2 ) 1 0 9 . 2 ( 1 ) S e ( l ) - I n - S e ( 8 ) 7 9 . 4 ( 2 ) 6 9 . 3 ( 1 ) 7 7 . 7 ( 1 ) S e ( l ) - I n - S e ( 9 ) 1 2 3 . 6 ( 1 ) 1 2 9 . 6 ( 2 ) 1 2 3 . 5 ( 1 ) S e ( 4 ) - I n - S e ( 5 ) 8 5 . 3 ( 2 ) 9 4 . 2 ( 2 ) 9 4 . 6 ( 2 ) S e ( 4 ) - I n - S e ( 8 ) 1 7 5 . 7 ( 1 ) 1 6 6 . 4 ( 2 ) 1 6 6 . 8 ( 1 ) S e ( 4 ) - I n - S e ( 9 ) 9 3 . 5 ( 2 ) 9 0 . 9 ( 2 ) 9 5 . 6 ( 1 ) S e ( 5 ) - I n - S e ( 8 ) 9 8 . 1 ( 2 ) 9 9 . 2 ( 2 ) 9 8 . 3 ( 1 ) S e ( 5 ) - I n - S e ( 9 ) 1 1 7 . 1 ( 2 ) 1 2 1 . 6 ( 2 ) 1 2 2 . 9 ( 2 ) S e ( 8 ) - I n - S e ( 9 ) 8 7 . 4 ( 2 ) 8 4 . 0 ( 2 ) 7 4 . 9 ( 1 ) S e ( 1 3 ) - I n 2 - S e ( l 4 ) 9 4 . 4 ( 1 ) S e ( 1 3 ) - I n 2 - S e ( l 7 ) 1 2 6 . 7 ( 2 ) S e ( 1 3 ) - I n 2 - S e ( 1 8 ) 1 1 3 . 4 ( 2 ) S e ( 1 3 ) - I n 2 - S e ( 2 1 ) 7 9 . 8 ( 2 ) S e ( 1 4 ) - I n 2 - S e ( l 7 ) 9 8 . 6 ( 2 ) S e ( 1 4 ) - I n 2 - S e ( l 8 ) 9 3 . 3 ( 2 ) S e ( 1 4 ) - I n 2 - S e ( 2 1 ) 1 6 9 . 2 ( 2 ) S e ( 1 7 ) - I n 2 - S e ( 1 8 ) 1 1 7 . 1 ( 2 ) S e ( 1 7 ) - I n 2 - S e ( 2 1 ) 7 8 . 2 ( 2 ) S e ( 1 8 ) - I n 2 - S e ( 2 1 ) 9 7 . 4 ( 2 ) T a b l e 2 . 1 9 ( c o n t ' d ) . 1 0 0 ( I ) ( 1 1 ) ( I I I ) I n - S e ( 1 ) - S e ( 2 ) 1 0 3 . 8 ( 2 ) 9 8 . 3 ( 2 ) 1 0 1 . 6 ( 2 ) S e ( 1 ) - S e ( 2 ) - S e ( 3 ) 1 0 0 . 9 ( 2 ) 1 0 3 . 9 ( 2 ) 9 2 . 8 ( 2 ) S e ( 2 ) - S e ( 3 ) - S e ( 4 ) 9 9 . 1 ( 2 ) 1 0 5 . 7 ( 2 ) 9 9 . 7 ( 2 ) I n - S e ( 4 ) - S e ( 3 ) 9 6 . 0 ( 2 ) 8 4 . 3 ( 2 ) 9 7 . 7 ( 2 ) I n - S e ( 5 ) - S e ( 6 ) 1 0 3 . 9 ( 2 ) 9 3 . 3 ( 2 ) 1 0 2 . 8 ( 2 ) S e ( 5 ) - S e ( 6 ) - S e ( 7 ) 1 0 2 . 5 ( 2 ) 9 9 . 8 ( 2 ) 1 0 2 . 3 ( 2 ) S e ( 6 ) - S e ( 7 ) - S e ( 8 ) 1 0 2 . 7 ( 2 ) 1 0 1 . 5 ( 2 ) 1 0 1 . 8 ( 2 ) I n - S e ( 8 ) — S e ( 7 ) 9 7 . 6 ( 2 ) 9 6 . 6 ( 2 ) 1 0 2 . 6 ( 2 ) I n - S e ( 9 ) - S e ( 1 0 ) 1 0 3 . 6 ( 2 ) 1 0 6 . 5 ( 3 ) 1 0 3 . 2 ( 2 ) I n - S e ( 9 ) - S e ( 1 0 ' ) 1 1 0 . 5 ( 3 ) S e ( 9 ) - S e ( 1 0 ) — S e ( 1 1 ) 1 1 3 . 7 ( 3 ) 1 1 4 . 6 ( 5 ) 1 0 5 . 8 ( 2 ) S e ( 9 ) - S e ( 1 0 ' ) - S e ( 1 1 ' ) 1 1 0 . 9 ( 5 ) S e ( 1 0 ) - S e ( 1 1 ) - S e ( 1 0 ' ) 1 1 7 . 6 ( 5 ) S e ( 1 0 ) - S e ( l l ) - S e ( 1 2 ) 1 0 4 . 5 ( 2 ) I n 2 - S e ( 1 3 ) - S e ( 1 2 ) 1 0 0 . 6 ( 2 ) I n 2 - S e ( 1 4 ) - S e ( 1 5 ) 9 6 . 0 ( 2 ) I n 2 — S e ( 1 7 ) - S e ( 1 6 ) 1 0 3 . 5 ( 2 ) I n 2 - S e ( 1 8 ) - S e ( 1 9 ) 1 0 4 . 0 ( 2 ) I n 2 - S e ( 2 1 ) - S e ( 2 0 ) 9 8 . 2 ( 2 ) S e ( 1 4 ) - S e ( 1 5 ) - S e ( l 6 ) 1 0 0 . 5 ( 2 ) S e ( 1 5 ) - S e ( 1 6 ) - S e ( l 7 ) 1 0 1 . 4 ( 2 ) S e ( 1 8 ) - S e ( 1 9 ) - S e ( 2 0 ) 1 0 3 . 0 ( 3 ) S e ( l 9 ) - S e ( 2 0 ) - S e ( 2 1 ) 1 0 2 . 2 ( 3 ) 1 0 1 S t r u c t u r e o f ( P r 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I I ) T h e a n i o n i c m o i e t y o f t h i s c o m p l e x i s s i m i l a r t o ( I ) i . e . [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' w h e r e t h e t r i g o n a l b i p y r a m i d a l I n 3 + c e n t e r i s c h e l a t e d b y t w o S e 4 2 ' l i g a n d s a n d a t e r m i n a l s e l e n i u m a t o m o f a S e 5 2 ' c h a i n b r i d g i n g t h e t w o I n a t o m s . T h e a x i a l S e ( 4 ) - I n - S e ( 8 ) a n g l e i s 1 6 6 . 4 ( 2 ) ° a n d t h e c o r r e s p o n d i n g e q u a t o r i a l S e - I n - S e a n g l e s a v e r a g e t o 1 1 8 . 7 ( 2 ) ° . T h e c h e l a t i n g S e 4 2 ' l i g a n d s a d o p t a n e n v e l o p e c o n f o r m a t i o n . A t o m s S e ( 3 ) a n d S e ( 6 ) a r e a n a v e r a g e 1 . 3 6 A a w a y f r o m t h e I n S e ( 1 ) S e ( 2 ) S e ( 4 ) a n d I n S e ( 5 ) S e ( 7 ) S e ( 8 ) p l a n e s , r e s p e c t i v e l y . T h e r e i s a c r y s t a l l o g r a p h i c C 2 a x i s p a s s i n g t h r o u g h t h e m i d d l e o f t h e I n - - - I n v e c t o r . T h e C 2 a x i s p a s s e s c l o s e t o t h e S e ( l l ) a n d t h u s g i v i n g r i s e t o d i s o r d e r . T h e S e ( 1 0 ) i s a l s o d i s o r d e r e d a n d h e n c e t h e b r i d g i n g S e 5 2 ' c h a i n h a s t w o d i f f e r e n t c o n f o r m a t i o n s i n t h e s o l i d s t a t e a s s h o w n i n F i g u r e 2 . 1 0 . D u e t o t h e m a r g i n a l q u a l i t y o f t h e d a t a - s e t , t h e a c c u r a c y o f t h e S e - - S e b o n d s i n t h e 8 e 5 2 ' c h a i n i s l o w . F i g u r e 2 . 1 1 r e p r e s e n t s t h e p a c k i n g d i a g r a m o f ( P r 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I I ) i n t h e u n i t c e l l . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e n i n T a b l e 2 . 1 9 . 1 0 2 S e ( 7 ) S e ( 6 ) S c u m S e ( 1 1 ' ) ‘ 7 5 S e ( 4 ) M o m S e ( 2 ) S e ( 7 ) S e ( 6 ) fl S e ( 8 ) ( g S e ( l l ) S e ( 1 0 ‘ ) ( 2 § S e ( 4 ) . S e ( 3 ) S e ( 2 ) F i g u r e 2 . 1 0 O R T E P r e p r e s e n t a t i o n o f t h e t w o c o n f o r m a t i o n s o f t h e [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' a n i o n i n ( I I ) w i t h l a b e l i n g s c h e m e . 1 0 3 F i g u r e 2 . 1 1 O R T E P r e p r e s e n t a t i o n o f t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( P m N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] . 1 0 4 S t r u c t u r e o f ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I I I ) . T h e a n i o n m o i e t y i s s i m i l a r t o ( I ) a n d ( I I ) a s i t c o n t a i n s t h e s a m e s t r u c t u r a l u n i t [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ‘ w i t h o u t a n y d i s o r d e r . T h e a v e r a g e a n g l e b e t w e e n S e a x - I n - S e a x i s 1 6 8 . 0 ( 2 ) ° . T h e c o r r e s p o n d i n g e q u a t o r i a l a n g l e s a v e r a g e 1 1 8 . 8 ( 2 ) ° . T h e I n a t o m s d e v i a t e a t a n a v e r a g e o f 0 . 2 4 A f r o m t h e e q u a t o r i a l s e l e n i u m a t o m s . T h e t w o c h e l a t i n g S e 4 2 ' l i g a n d s a d 0 p t a n e n v e l o p e c o n f o r m a t i o n s i m i l a r t o t h e o n e s e e n i n ( I ) a n d ( I I ) . A t o m s S e ( 3 ) , S e ( 6 ) , S e ( 1 5 ) a n d S e ( 2 0 ) l i e a t a n a v e r a g e 1 . 2 6 A a w a y f r o m t h e b a s a l p l a n e s . I n t h e b r i d g i n g S e s z ' c h a i n S e ( l l ) l i e s 1 . 3 8 A a w a y f r o m t h e S e ( 9 ) , S e ( 1 0 ) , S e ( 1 2 ) a n d S e ( 1 3 ) p l a n e . T h e a t o m s i n t h i s p l a n e d o n o t d e v i a t e m o r e t h a n 0 . 0 1 3 A f r o m t h e l e a s t s q u a r e s p l a n e . F i g u r e 2 . 1 2 r e p r e s e n t s t h e p a c k i n g d i a g r a m o f ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I I I ) i n t h e u n i t c e l l . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e n i n T a b l e 2 . 1 9 . 1 0 5 S e ( 5 ) " S e ( 2 ) , . 3 ‘ “ U s , S e ( 3 ) ) I n ( 1 ’ i \ ' 1 S e ( 4 ) S e ( 8 ) S e ( 9 ) \ - S e ( I O ) S e ( 2 0 ) ! . S e ( 2 1 ) S e ( l l ) 5 ‘ 0 3 ) ( 9 , . J S e ( 1 2 ) S e ( l 9 ) " \ \ “ S e ( 1 3 ) I n ( 2 ) \ ~ S e ( 1 7 ) \ I t s 1 5 ) V I \ - I . ( S e ( 1 4 ) S e ( 1 6 ) F i g u r e 2 . 1 2 O R T E P r e p r e s e n t a t i o n o f ( A ) [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ‘ a n i o n i n ( I I I ) w i t h l a b e l i n g s c h e m e ( B ) t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e s ) ] . 1 0 6 S t r u c t u r e o f ( P r 4 N ) 2 [ I n 2 $ e 2 ( S e 4 ) 2 ] ( I V ) T h e d i n u c l e a r a n i o n [ I n 2 S e 2 ( S e 4 ) 2 ] 2 ' c o n t a i n s I n 3 + w i t h a t e t r a h e d r a l c o o r d i n a t i o n , b r i d g e d b y t w o s e l e n i d e s t o f o r m a p l a n a r [ I n 2 S e 2 ] 2 + c o r e w i t h a n i n v e r s i o n c e n t e r i n t h e m i d d l e o f t h e I n - - I n v e c t o r o f 3 . 3 3 6 A . T h e r e m a i n i n g t w o c o o r d i n a t i o n s i t e s o n e a c h I n a t o m a r e o c c u p i e d b y t h e S e 4 2 ' b i d e n t a t e c h e l a t e s a s s h o w n i n F i g u r e 2 . 1 3 . T h e I n - - S e b o n d s i n t h e c o r e a r e s h o r t e r ( a v 2 . 5 6 4 A ) t h a n i n t h e I n S e 4 r i n g s ( a v 2 . 6 0 6 A ) w h e r e a s t h e I n - S e ( 1 ) - I n ' a n g l e i s 8 1 2 ° a n d t h e S e ( l ) - I n - S e ( 1 ) ‘ i s 9 8 8 ° i n t h e [ I n 2 S e 2 ] 2 + c o r e . T h e S e 4 2 ' l i g a n d a d o p t s a t w i s t e d h a l f b o a t c o n f o r m a t i o n t h u s S e ( 3 ) a n d S e ( 4 ) a t o m s l i e a t a n a v e r a g e o f 0 . 7 2 5 A a b o v e a n d b e l o w r e s p e c t i v e l y f r o m t h e I n S e ( 2 ) S e ( 5 ) b a s a l p l a n e . F i g u r e 2 . 1 4 r e p r e s e n t s t h e p a c k i n g d i a g r a m o f ( P r 4 N ) 4 [ I n 2 S e 2 ( S e 4 ) 2 ] ( I V ) i n t h e u n i t c e l l . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e n i n T a b l e 2 . 2 0 . S t r u c t u r e o f [ ( P h 3 P ) 2 N ] 2 [ I n 2 S e 2 ( S e 4 ) 2 ] ( V ) . T h e a n i o n m o i e t y o f ( V ) i s s i m i l a r t o ( I V ) a s i t c o n t a i n s t h e s a m e s t r u c t u r a l u n i t a s [ I n 2 8 e 2 ( S e 4 ) 2 ] 2 ' . H o w e v e r , i n t h i s a n i o n t h e S e 4 2 ' l i g a n d a d o p t s a n e n v e l o p c o n f o r m a t i o n w i t h I n S e ( 2 ) S e ( 3 ) S e ( 5 ) a t o m s . i n a l e a s t s q u a r e p l a n e s w i t h t h e m e a n d e v i a t i o n o f 0 . 0 5 2 A a n d t h e S e ( 4 ) l y i n g 1 . 1 9 7 A a w a y f r o m t h e p l a n e a s s h o w n i n F i g u r e 2 . 1 3 . F i g u r e 2 . 1 5 r e p r e s e n t s t h e p a c k i n g d i a g r a m o f [ ( P h 3 P ) 2 N ] 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] ( V ) i n t h e u n i t c e l l . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s o f t h e a n i o n a r e c o m p a r e d w i t h t h o s e o f ( I V ) i n T a b l e 2 . 2 0 . 1 0 7 ( B ) S 4 e ( ) S e ( 5 ) S e ( 3 ) @ F i g u r e 2 . 1 3 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e [ I n 2 S e 2 ( S e 4 ) 2 ] 2 ‘ a n i o n s i n ( A ) ( P r 4 N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] a n d ( B ) ( P P N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] . 1 0 8 F i g u r e 2 . 1 4 O R T E P r e p r e s e n t a t i o n o f t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( P I 4 N ) 2 [ I n 2 8 e 2 ( S e 4 ) 2 ] . 1 0 9 F i g u r e 2 . 1 5 O R T E P r e p r e s e n t a t i o n o f t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( P P N ) 2 [ I n z S e 2 ( S e 4 ) 2 ] . 1 1 0 T a b l e 2 . 2 0 . C o m p a r i s o n o f S o m e S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f t h e [ I n 2 S e 2 ( S e 4 ) 2 ] 2 ' a n i o n i n ( I V ) a n d ( V ) . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . ( P r 4 N ) 2 [ I n 2 S e 2 ( S e d ) 2 ] ( P P N ) 2 | I n z S e z g S e g m I n - I n ' 3 . 3 3 6 ( 2 ) 3 . 3 4 7 ( 4 ) I n - S e ( 1 ) 2 . 5 6 5 ( 2 ) 2 . 5 5 7 ( 4 ) I n - S e ( 1 ) ' 2 . 5 6 2 ( 2 ) 2 . 5 7 1 ( 4 ) I n - S e ( 2 ) 2 . 6 0 2 ( 2 ) 2 . 6 1 7 ( 4 ) I n - S e ( 5 ) 2 . 6 0 9 ( 2 ) 2 . 6 0 5 ( 4 ) I n - S e ( m e a n ) 2 . 5 8 5 ( 8 ) 2 . 5 8 8 ( 1 2 ) S e ( 2 ) - S e ( 3 ) 2 . 3 2 5 ( 3 ) 2 . 3 2 5 ( 5 ) S e ( 3 ) - S e ( 4 ) 2 . 3 4 0 ( 4 ) 2 . 3 0 7 ( 5 ) S e ( 4 ) - S e ( 5 ) 2 . 3 2 0 ( 3 ) 2 . 3 2 1 ( 5 ) S e - S e ( m e a n ) 2 . 3 2 8 ( 1 0 ) 2 . 3 1 8 ( 1 2 ) S e ( 1 ) — I n - S e ( l ) ' 9 8 . 8 0 ( 6 ) 9 8 . 5 ( 1 ) S e ( 1 ) - I n - S e ( 2 ) 1 0 9 . 7 3 ( 8 ) 1 0 5 . 4 ( 1 ) S e ( 1 ) - I n - S e ( 5 ) 1 2 0 . 2 0 ( 8 ) 1 2 1 . 3 ( 1 ) S e ( 2 ) : I n - S e ( 1 ) ' 1 2 0 . l 9 ( 8 ) 1 1 9 . 9 ( 1 ) S e ( 2 ) - I n - S e ( 5 ) 1 0 3 . 4 7 ( 8 ) 1 0 3 . 0 ( 1 ) S e ( 5 ) - I n - S e ( l ) ' 1 0 5 . 4 9 ( 7 ) 1 0 9 . 8 ( 1 ) I n - S e ( l ) - I n ' 8 1 . 2 0 ( 6 ) 8 1 . 5 ( 1 ) I n - S e ( 2 ) - S e ( 3 ) 9 5 . 9 ( 1 ) 9 9 . 7 ( 2 ) S e ( 2 ) - S e ( 3 ) - S e ( 4 ) 1 0 0 . 8 ( 1 ) 1 0 3 . 5 ( 2 ) S e ( 3 ) - S e ( 4 ) - S e ( 5 ) 1 0 0 . 7 ( 1 ) 1 0 2 . 7 ( 2 ) S e ( 4 ) - S e ( 5 ) - I n 9 7 . 9 6 ( 9 ) 9 6 . 2 ( 2 ) 1 1 1 S t r u c t u r e o f ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] ( V I ) T h e t r i n u c l e a r a n i o n [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ' , c o n t a i n s I n 3 + w i t h a t e t r a h e d r a l c o o r d i n a t i o n . E a c h I n 3 + c e n t e r h a s a c h e l a t i n g S e 4 2 ' l i g a n d a n d i s b r i d g e d t o t h e o t h e r t w o I n 3 + c e n t e r s b y m o n o s e l e n i d e , u - S e 2 ° , l i g a n d s . T h e b r i d g i n g S e 2 ' l e a d s t o a n i n t e r e s t i n g s i x m e m b e r e d r i n g a s t h e c o r e o f t h e a n i o n i c s t r u c t u r e c o n s i s t i n g o f a l t e r n a t i n g I n a n d S e a t o m s . T h i s [ I n 3 S e 3 ] 3 + c o r e h a s a d i s t o r t e d b o a t c o n f o r m a t i o n . T h e r e i s a l e a s t s q u a r e p l a n e p a s s i n g t h r o u g h I n ( l ) , I n ( 2 ) , I n ( 3 ) a n d S e ( 1 5 ) a t o m s o f t h e [ I n 3 S e 3 ] 3 + c o r e w i t h t h e a v e r a g e d e v i a t i o n o f 0 . 1 0 4 A o f t h e f o u r a t o m s f r o m t h e l e a s t s q u a r e s p l a n e , S e ( 5 ) a n d S e ( 1 0 ) l i e 1 . 7 9 6 4 a n d 1 . 5 4 4 1 1 a b o v e o r b e l o w t h e b a s a l p l a n e , r e s p e c t i v e l y . T h e I n - - S e b o n d s i n t h e s i x m e m b e r e d [ I n 3 S e 3 ] 3 + r i n g a r e s h o r t e r ( a v 2 . 5 6 1 A ) t h a n t h e I n - - S e b o n d s i n t h e I n S e 4 r i n g s ( a v 2 . 6 2 0 A ) . W i t h i n t h e [ I n 3 S e 3 ] 3 + c o r e , t h e a v e r a g e I n - S e - l n a n g l e i s 9 2 2 ° w h i l e t h e a v e r a g e S e - I n - S e i s 1 1 1 . 4 ° . T h e c h e l a t i n g S e 4 2 ' l i g a n d s a d o p t t w o d i f f e r e n t c o n f o r m a t i o n s . T h e I n ( l ) a t o m i s c o o r d i n a t e d w i t h a S e 4 2 ' i n a h a l f t w i s t c o n f o r m a t i o n w h e r e a s I n ( 2 ) a n d I n ( 3 ) a t o m s h a v e t h e l i g a n d s i n t h e e n v e l o p c o n f o r m a t i o n . I n t h e t w i s t h a l f b o a t c o n f o r m a t i o n t h e S e ( 2 ) a n d S e ( 3 ) a t o m s l i e a t a n a v e r a g e 0 . 7 1 1 A a w a y f r o m t h e I n ( 1 ) S e ( 1 ) . S e ( 4 ) p l a n e . A t o m s S e ( 8 ) a n d S e ( 1 3 ) l i e a t a n a v e r a g e 1 . 3 3 2 A a w a y f r o m t h e I n ( 2 ) S e ( 6 ) S e ( 7 ) S e ( 9 ) a n d I n ( 3 ) S e ( 1 1 ) S e ( 1 2 ) S e ( l 4 ) b a s a l p l a n e s , r e s p e c t i v e l y . T h e d i s o r d e r i n o n e o f t h e S e 4 2 ' l i g a n d s c h e l a t i n g t o I n ( 2 ) a t o m l e a d s t o t w o c o n f o r m a t i o n s o f t h e S e 4 2 ' b i d e n t a t e i n t h e s o l i d s t a t e a s s h o w n i n F i g u r e 2 . 1 6 . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e n i n T a b l e 2 . 2 1 . F i g u r e 2 . 1 7 r e p r e s e n t s t h e p a c k i n g d i a g r a m o f ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] ( V I ) i n t h e u n i t c e l l . ) l ( e S ) 2 ( e S ) 3 ( e S ) 2 ( , n o i n a ) 3 1 ( e S ‘ ) 2 1 ( 3 ] 5 e 1 S e S 3 n I [ f o s n o i t a m r o f n o c o w t e h t f o n o i t ) l l a ) l ( e S ) 5 1 ( . e 3 ( t e e n S S 6 A S \ ) 3 ( n 5 I \ e r p e s ' ) \ ) e ) 4 1 ( e S ) 3 ( e S ‘ S 5 ( ( e @ ) 4 ( e S ) 6 3 ( ‘ e ‘ S m ' S ) 2 ) ( 0 n 1 h I , I ( A t e S ) 9 ( m e S ) 8 ( e S r P E T R O 6 1 . 2 e r u g i F I n ( l ) S e ( 1 3 ) S e ( 1 2 ) \ r e s u l t i n g f r o m t h e d i s o r d e r i n t h e S e 4 2 ' l i g a n d a t t a c h e d t o I n ( 2 ) i n ( V 1 ) w i t h l a b e l i n g s c h e m e 1 1 1 2 1 1 3 F i g u r e 2 . 1 7 O R T E P r e p r e s e n t a t i o n o f t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( E t 4 N ) 3 [ M 3 S e 3 ( S e 4 ) 3 ] ( M = I n , T l ) . 1 1 4 T a b l e 2 . 2 1 . C o m p a r i s o n o f S o m e S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f t h e [ M 3 S e 3 ( S e 4 ) 3 ] 3 ' A n i o n i n ( V I ) a n d ( V I I ) . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . ( E t 4 N ) 3 [ I n 3 3 6 3 ( S e 4 ) 3 ] ( E m l fl s l ' l ‘ h S e s L S u b l M ( 1 ) - M ( 2 ) 3 . 6 6 5 3 . 6 5 6 M ( l ) - M ( 3 ) 3 . 5 9 1 3 . 7 3 4 M ( 2 ) - M ( 3 ) 3 . 8 1 1 3 . 8 8 6 a v M - - M 3 . 6 8 9 3 . 7 5 9 M ( l ) - S e ( 1 ) 2 . 6 2 1 ( 3 ) 2 . 6 8 1 ( 5 ) M ( 1 ) - S e ( 4 ) 2 . 6 0 2 ( 3 ) 2 . 6 5 9 ( 6 ) M ( l ) - S e ( 5 ) 2 . 5 7 6 ( 3 ) 2 . 5 8 5 ( 5 ) M ( 1 ) - S e ( 1 5 ) 2 . 5 3 7 ( 3 ) 2 . 6 3 9 ( 5 ) M ( 2 ) - S e ( 5 ) 2 . 5 4 3 ( 3 ) 2 . 6 2 7 ( 6 ) M ( 2 ) - S e ( 6 ) 2 . 6 3 2 ( 3 ) 2 . 6 6 8 ( 6 ) M ( 2 ) - S e ( 9 ) 2 . 6 2 7 ( 6 ) 2 . 6 6 6 ( 5 ) M ( 2 ) - S e ( 9 ' ) 2 . 6 5 ( l ) M ( 2 ) - S e ( 1 0 ) 2 . 5 6 7 ( 4 ) 2 . 6 2 9 ( 6 ) M ( 3 ) - S e ( 1 0 ) 2 . 5 7 7 ( 3 ) 2 . 6 2 8 ( 7 ) M ( 3 ) - S e ( 1 1 ) 2 . 5 9 5 ( 3 ) 2 . 6 7 0 ( 9 ) M ( 3 ) - S e ( 1 4 ) 2 . 6 1 0 ( 3 ) 2 . 6 8 6 ( 6 ) M ( 3 ) s S e ( 1 5 ) 2 . 5 6 5 ( 3 ) 2 . 5 8 6 ( 6 ) M - S e ( m e a n ) 2 . 5 9 3 2 . 6 4 4 S e ( l ) - S e ( 2 ) 2 . 3 4 6 ( 4 ) 2 . 3 5 1 ( 8 ) S e ( 2 ) - S e ( 3 ) 2 . 3 3 0 ( 4 ) 2 . 3 3 3 ( 8 ) S e ( 3 ) - S e ( 4 ) 2 . 3 3 7 ( 4 ) 2 . 3 2 3 ( 8 ) S e ( 6 ) - S e ( 7 ) 2 . 4 1 9 ( 5 ) 2 . 3 2 4 ( 8 ) S e ( 6 ) - S e ( 7 ' ) 2 . 2 7 ( l ) T a b l e 2 . 2 1 ( c o n t ' d ) . 1 1 5 ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 l ( E t 4 N ) 3 l T l 3 S e 3 ( S e 4 ) 3 L S e ( 7 ) - S e ( 8 ) 2 . 3 1 9 ( 7 ) 2 . 3 2 5 ( 8 ) S e ( 7 ' ) - S e ( 8 ' ) 2 2 9 ( 2 ) S e ( 8 ) - S e ( 9 ) 2 . 3 4 3 ( 7 ) 2 . 3 5 9 ( 8 ) S e ( 8 ' ) - S e ( 9 ' ) 2 2 7 ( 2 ) S e ( 1 1 ) - S e ( 1 2 ) 2 . 3 6 9 ( 4 ) 2 . 2 6 5 ( 1 2 ) S e ( 1 2 ) - S e ( 1 3 ) 2 . 3 2 0 ( 4 ) 2 . 2 7 1 ( 1 3 ) S e ( 1 3 ) - S e ( 1 4 ) 2 . 3 2 8 ( 4 ) 2 . 3 7 1 ( 1 0 ) S e - S e ( m e a n ) 2 . 3 2 8 2 . 3 2 5 S e ( 1 ) - M ( l ) - S e ( 4 ) 1 0 3 . 9 ( 1 ) 1 0 2 . 1 ( 2 ) S e ( 1 ) - M ( l ) - S e ( 5 ) 1 1 0 . 7 ( 1 ) 1 0 9 . 6 ( 2 ) S e ( 1 ) - M ( l ) - S e ( 1 5 ) 1 0 9 . 1 ( 1 ) 1 1 0 . 5 ( 2 ) S e ( 4 ) - M ( l ) - S e ( 5 ) 1 0 6 . 6 ( 1 ) 1 1 6 . 9 ( 2 ) S e ( 4 ) - M ( l ) - S e ( 1 5 ) 1 1 5 . 9 ( 1 ) 1 0 6 . 7 ( 2 ) S e ( 5 ) - M ( l ) - S e ( 1 5 ) 1 1 0 . 6 ( 1 ) 1 1 0 . 8 ( 2 ) S e ( 5 ) - M ( 2 ) - S e ( 6 ) 1 1 3 . 7 ( 1 ) 1 0 8 . 5 ( 2 ) S e ( 5 ) - M ( 2 ) - S e ( 9 ) 1 0 0 . 2 ( 1 ) 1 0 7 . 2 ( 2 ) S e ( 5 ) - M ( 2 ) - S e ( 9 ' ) 1 1 7 . 8 ( 2 ) S e ( 5 ) - M ( 2 ) - S e ( 1 0 ) 1 1 0 . 5 ( 1 ) 1 1 3 . 4 ( 2 ) S e ( 6 ) - M ( 2 ) - S e ( 9 ) 1 0 2 . 5 ( 1 ) 1 0 0 . 2 ( 2 ) S e ( 6 ) - M ( 2 ) - S e ( 9 ' ) 1 0 1 . 3 ( 2 ) S e ( 6 ) - M ( 2 ) - S e ( 1 0 ) 1 0 9 . 8 ( 1 ) 1 1 0 . 2 ( 2 ) S e ( 9 ) : M ( 2 ) - S e ( 1 0 ) 1 2 0 . 0 ( 1 ) 1 1 6 . 4 ( 2 ) S e ( 9 ' ) - M ( 2 ) - S e ( 1 0 ) 1 0 3 . 1 ( 3 ) S e ( 1 0 ) - M ( 3 ) - S e ( l l ) 1 1 6 . 1 ( 1 ) 1 1 7 . 5 ( 2 ) S e ( 1 0 ) - M ( 3 ) - S e ( 1 4 ) 1 0 7 . 0 ( 1 ) 1 0 7 . 7 ( 2 ) S e ( 1 0 ) - M ( 3 ) - S e ( 1 5 ) 1 1 3 . 0 ( 1 ) 1 1 1 . 0 ( 2 ) S e ( 1 1 ) - M ( 3 ) - S e ( 1 4 ) 1 0 1 . 5 ( 1 ) 1 0 1 . 3 ( 2 ) S e ( 1 1 ) - M ( 3 ) - S e ( 1 5 ) 1 1 0 . 1 ( 1 ) 1 0 5 . 5 ( 2 ) S e ( 1 4 ) - M ( 3 ) - S e ( 1 5 ) 1 0 8 . 3 ( 1 ) 1 1 3 . 6 ( 2 ) T a b l e 2 . 2 1 ( c o n t ' d ) . 1 1 6 ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 l ( 5 % ) 3 l T l 3 S e 3 ( S e 4 ) 3 ] M ( l ) - S e ( 1 ) - S e ( 2 ) 9 7 . 0 ( 1 ) 9 7 . 0 ( 2 ) S e ( 1 ) - S e ( 2 ) - S e ( 3 ) 1 0 1 . 8 ( 1 ) 1 0 2 . 6 ( 3 ) S e ( 2 ) - S e ( 3 ) - S e ( 4 ) 1 0 1 . 1 ( 1 ) 1 0 1 . 1 ( 3 ) M ( l ) - S e ( 4 ) - S e ( 3 ) 9 7 . 4 ( 1 ) 8 9 . 1 ( 2 ) M ( l ) - S e ( 5 ) - M ( 2 ) 9 1 . 4 ( 1 ) 9 1 . 4 ( 1 ) M ( 2 ) - S e ( 6 ) - S e ( 7 ) 9 9 . 2 ( 2 ) 9 3 . 9 ( 2 ) S e ( 6 ) - S e ( 7 ) - S e ( 8 ) 1 0 1 . 7 ( 2 ) 1 0 0 . 2 ( 3 ) S e ( 6 ) - S e ( 7 ' ) — S e ( 8 ' ) 1 0 1 . 1 ( 6 ) S e ( 7 ) - S e ( 8 ) - S e ( 9 ) 1 0 0 . 7 ( 2 ) 1 0 1 . 8 ( 3 ) S e ( 7 ' ) - S e ( 8 ' ) - S e ( 9 ' ) 1 0 5 . 4 ( 7 ) M ( 2 ) - S e ( 9 ) - S e ( 8 ) 9 5 . 0 ( 2 ) 1 0 0 . 2 ( 2 ) M ( 2 ) - S e ( 9 ' ) - S e ( 8 ' ) 9 0 . 6 ( 5 ) M ( 2 ) — S e ( 1 0 ) - M ( 3 ) 9 5 . 7 ( 1 ) 9 5 . 3 ( 2 ) M ( 3 ) - S e ( l l ) - S e ( l 2 ) 1 0 0 . 4 ( 1 ) 9 7 . 7 ( 4 ) S e ( l l ) - S e ( l 2 ) - S e ( 1 3 ) 1 0 1 . 8 ( 1 ) 1 0 5 . 8 ( 4 ) S e ( 1 2 ) - S e ( 1 3 ) - S e ( l 4 ) 9 9 . 6 ( 1 ) 1 0 5 . 2 ( 4 ) M ( 3 ) - S e ( 1 4 ) - S e ( 1 3 ) 9 3 . 7 ( 1 ) 9 9 . 5 ( 3 ) M ( l ) - S e ( 1 5 ) - M ( 3 ) 8 9 . 5 ( 1 ) 9 1 . 3 ( 2 ) 1 1 7 S t r u c t u r e o f ( E t 4 N ) 3 [ T l 3 S e 3 ( S e 4 ) 3 ] ( V I I ) T h e s t r u c t u r e o f t h e [ T l 3 S e 3 ( S e 4 ) 3 ] 3 ' a n i o n i s i d e n t i c a l t o i t s i n d i u m a n a l o g . T h i s s t r u c t u r e s h o w s n o d i s o r d e r i n a n y o f i t s T l S e 4 r i n g s . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e c o m p a r e d w i t h t h o s e o f t h e I n a n a l o g i n T a b l e 2 . 2 1 . C o m p a r i s o n o f S t r u c t u r e s P r i o r t o o u r w o r k i n t h e I n / S e x s y s t e m t h e r e w a s o n l y o n e k n o w n s o l u b l e m o l e c u l a r c o m p o u n d , I n 4 S e 1 0 3 ' , i s o l a t e d b y K r e b s a n d c o w o r k e r s 4 5 . I t c o n t a i n s t e t r a h e d r a l I n 3 + c e n t e r s w i t h b r i d g i n g a n d t e r m i n a l m o n o s e l e n i d e ( S e z ' ) l i g a n d s t o f o r m a s m a l l a d a m a n t o i d u n i t . I n d i u m h a s m a i n l y b e e n f o u n d c o o r d i n a t e d t o s e l e n i d e l i g a n d s e i t h e r t e t r a h e d r a l l y ( C u I n S e 2 4 5 , I n 4 S e 1 0 8 ' v 4 5 . R b 4 I n 2 8 e 5 4 7 , B a 2 1 n 2 S e 5 4 3 , 1 ( I n S e 2 4 9 e t c . ) o r o c t a h e d r a l l y ( N a I n S e 2 5 0 , P r 3 I n S e ( 5 5 1 e t c . ) . F i v e c o o r d i n a t i o n w i t h a n a l l s e l e n i u m c o o r d i n a t i o n i s i n f a c t r a r e . T h e t r i g o n a l - b i p y r a m i d a l g e o m e t r y a r o u n d t h e I n a t o m c a n b e r a t i o n a l i z e d i n t e r m s o f V a l e n c e S h e l l E l e c t r o n P a i r R e p u l s i o n ( V S E P R ) t h e o r y . T h e [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' a n i o n e x h i b i t s c o n s i d e r a b l e t h e r m o d y n a m i c s t a b i l i t y a s i t i s t h e o n l y s p e c i e s c r y s t a l l i z i n g o u t o f t h e D M F s o l u t i o n . T h e d i m e r i c s t r u c t u r e s o f t h e a n i o n i n ( I ) , ( I I ) a n d ( I I I ) r e s e m b l e t h a t o f [ B i 2 ( S 7 ) 4 S ¢ 3 ] " " . 5 2 w h i c h i s c o m p o s e d o f t w o h i g h l y d i s t o r t e d s q u a r e - p y r a m i d a l [ B i ( S 7 ) 2 ] ' u n i t s b r i d g e d b y a 8 6 2 ° c h a i n . E x a m p l e s o f a s i n g l e p o l y c h a l c o g e n i d e s z ‘ c h a i n b r i d g i n g t w o s e p a r a t e M / Q x u n i t s a r e o b s e r v e d i n [ C u 2 S e 1 4 ] 4 ‘ t 2 4 o 7 3 , [ A g 2 8 2 0 ] 4 ' o 5 3 a n d [ C u 2 8 2 o ] 4 ' v 5 4 , w h i c h h a v e b r i d g i n g S e 5 2 ' a n d 8 3 2 ' r e s p e c t i v e l y . 1 1 8 T h e a n i o n s i n ( I V ) a n d ( V ) c o n s i s t s o f a [ I n 2 S e 2 ] 2 + c o r e w h e r e a s t h e ( V I ) a n d ( V I I ) c o n t a i n a [ M 3 S e 3 ] 3 + ( M = I n , T l ) c o r e , a n d t h e o v e r a l l s t r u c t u r e s a r e h o m o l o g o u s t o t h o s e o f [ A u 2 8 e 2 ( S e 4 ) 2 ] 2 ' 9 2 2 a n d [ F e 2 S e 2 ( S e 5 ) 2 ] 2 ‘ - 3 . I t i s i n t e r e s t i n g t o n o t e t h a t t h e d i m e r i c [ I n 2 S e 2 ( S e 4 ) 2 ] 2 ' a n i o n s i n ( I V ) a n d ( V ) h a v e b e e n s t a b i l i z e d b y l a r g e c o u n t e r c a t i o n s w h i l e t h e t r i m e r i c [ M 3 S e 3 ( S e 4 ) 3 ] 3 ' a n i o n s b y s m a l l e r E t 4 N + c a t i o n s . T h i s i s p r o b a b l y t h e r e s u l t o f t h e p a c k i n g f o r c e s i n t h e c r y s t a l l a t t i c e , r a t h e r t h a n a n y s y s t e m a t i c t r e n d i n fl u e n c e d b y t h e s i z e o f t h e c o u n t e r c a t i o n s . T h e s i z e o f t h e b i d e n t a t e S e x z ' s e e m s t o d e p e n d o n t h e c a t i o n i c s i z e o f t h e m e t a l a t o m s . A s t h e c a t i o n i c s i z e d e c r e a s e s t h e t e r m i n a l S e a t o m s h a v e t o c o m e i n c l o s e r p r o x i m i t y t o e a c h o t h e r , l o n g e r c h a i n s w o u l d d e c r e a s e t h e s t r a i n i n t h e b o n d s f a c i l i t a t i n g a s m a l l e r b i t e s i z e t h u s F e 3 + i s c h e l a t e d b y a n S e 5 2 ' w h e r e a s I n 3 + / T l 3 + a r e c h e l a t e d b y a n S e 4 2 ' . T h i s c a n a l s o b e v e r i f i e d b y t h e s u c c e s s f u l i s o l a t i o n o f ( P h 4 P ) 2 [ G a 2 S e 2 ( S e 5 ) 2 ] 5 5 w h i c h i s i s o s t r u c t u r a l t o t h e F e c o m p o u n d . I n ( I ) , ( I I ) a n d ( I I I ) I n 3 + a t o m s a r e f o u n d i n a t r i g o n a l b i p y r a m i d a l c o o r d i n a t i o n a n d t h e a v . I n - S e b o n d s i n t h e s e c o m p l e x e s a r e 2 . 6 7 3 A , 2 . 7 0 7 A a n d 2 . 6 7 6 A , r e s p e c t i v e l y . I n c o m p a r i s o n t h e I n - S e d i s t a n c e i n t h e t e t r a h e d r a l l y c o o r d i n a t e d I n 3 + c o m p l e x e s ( I V ) , ( V ) a n d ( V I ) a r e a t a n a v e r a g e 0 . 0 9 6 A s h o r t e r w i t h t h e a v . I n - S e b o n d s d i s t a n c e o f 2 . 5 8 5 A , 2 . 5 8 8 A a n d 2 . 5 9 3 A , r e s p e c t i v e l y . T h i s d e c r e a s e i n t h e b o n d l e n g t h s o r t h e i n c r e a s e o f t h e s - o r b i t a l c h a r a c t e r i n t h e b o n d s i s a s e x p e c t e d , g o i n g f r o m f i v e c o o r d i n a t e t o a f o u r c o o r d i n a t e g e o m e t r y , a n d t h e s e a r e i n t h e r i g h t r a n g e a s a v I n - S e d i s t a n c e i n a n o c t a h e d r a l c o o r d i n a t i o n i s 2 . 7 2 2 A ( e g . P r 3 I n S e 5 5 1 ) . 1 1 9 O u r i n a b i l i t y t o s y n t h e s i z e t h e [ I n ( S e 4 ) 2 ] ' ( i s o s t r u c t u r a l t o [ Z n ( S e 4 ) 2 ] 2 ' t 1 5 t 1 6 ) f r o m D M F , a c e t o n i t r i l e o r w a t e r c o u l d b e e x p l a i n e d b y t h e f a c t t h a t t h i s p r o p o s e d a n i o n h a s a s i n g l e n e g a t i v e c h a r g e t h u s r e q u i r e s o n l y o n e c a t i o n t o b a l a n c e i t . A s i n g l e c a t i o n f o r e a c h a n i o n i n t h e c r y s t a l l a t t i c e w o u l d n o t b e a b l e t o e f f e c t i v e l y s h i e l d o r s p a c e t h e a n i o n s a w a y f r o m e a c h o t h e r a n d C o u l o m b i c r e p u l s i o n s w o u l d d e s t a b i l i z e t h e l a t t i c e . I t i s i n t e r e s t i n g t o n o t e t h a t t h u s f a r t h e r e a r e n o m o n o n u c l e a r [ M ( Q x ) 2 ] ' c o m p l e x e s . I f ( R 4 N ) [ M ( Q x ) 2 ] e x i s t e d t h e r e i s g r e a t l i k e l i h o o d t h a t t h e y w o u l d b e p o l y m e r i c “ . T h e r m a l D e c o m p o s i t i o n s t u d i e s . A l l t h e c o m p o u n d s w e r e s t u d i e d b y t h e r m a l g r a v i m e t r i c a n a l y s i s ( T G A ) . T h e t e m p e r a t u r e a t w h i c h t h e s e c o m p l e x e s s t a r t t o l o s e w e i g h t ( a n d p r e s u m a b l y s t a r t t o d e c o m p o s e ) d e p e n d s o n t h e n a t u r e o f t h e c o u n t e r i o n s . T h e i n d i u m p o l y s e l e n i d e s d e c o m p o s e t o f o r m B - I n z S e 3 a s t h e f i n a l p r o d u c t . D u r i n g p y r o l y s i s , t h e c o m p l e x e s l o s e R 3 P o r R 3 N , R 3 P S e , R 2 8 e a n d e l e m e n t a l S e . T h e T G A d i a g r a m o f ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I ) d o e s n o t s h o w a n y a p p r e c i a b l e w e i g h t l o s s b e l o w . 3 5 0 ° C . A c o n t i n u o u s w e i g h t l o s s i s o b s e r v e d f r o m 3 5 0 ° C t o 5 3 0 ° C . I n c o n t r a s t , t h i s b e h a v i o r i s n o t s h a r e d b y ( 1 1 ) a n d ( I I I ) t h e P r 4 N + a n d E t 4 N + s a l t s , r e s p e c t i v e l y . T h e T G A c u r v e s a r e s h o w n i n F i g u r e 2 . 1 8 . ( I I ) b e g i n s t o l o s e w e i g h t a r o u n d 1 4 5 ° C a n d e x h i b i t s a w e l l d e fi n e d t w o s t e p w e i g h t l o s s a n d s t a b i l i z e s a t a r o u n d 5 0 0 ° C . ( 1 1 ) b e g i n s t o l o s e w e i g h t a r o u n d 1 3 5 ° C a n d e x h i b i t s a t h r e e s t e p w e i g h t l o s s a n d s t a b i l i z e s a t a b o u t 4 8 0 ° C . T h e t h e r m a l s t a b i l i t y o f t h e c o m p l e x e s i s i n t h e o r d e r P h 4 P + > P r 4 N + > E t 4 N + . T h i s t r e n d d i r e c t l y 1 2 0 r e fl e c t s t h e o r d e r o f s u s c e p t i b i l i t y o f n u c l e o p h i l i c a t t a c k o n t h e o r g a n i c c a t i o n s b y t h e s e l e n i d e l i g a n d s , t a k i n g i n t o c o n s i d e r a t i o n t h e s t a b i l i t i e s o f t h e a l k y l - - N a n d a r y l - - P b o n d s i n t h e s e c a t i o n s . ( I V ) a n d ( V ) e x h i b i t r a t h e r c o m p l i c a t e d w e i g h t l o s s f r o m 1 8 0 ° C t o 5 7 0 ° C a n d 2 6 0 ° C t o 9 0 0 ° C , r e s p e c t i v e l y . I n t e r e s t i n g l y ( V I ) s h o w s a h i g h e r t h e r m a l s t a b i l i t y a n d l o s s e s w e i g h t f r o m 2 0 5 ° C t o 5 0 0 ° C . T h e T G A c u r v e s o f ( I V ) - ( V I I ) a r e s h o w n i n F i g u r e 2 . 1 9 - 2 . 2 0 . T h e T l 3 + p o l y s e l e n i d e ( V I I ) s t a r t s t o d e c o m p o s e a t 1 9 0 ° C a n d t h e fi n a l p r o d u c t , a t a t e m p e r a t u r e a b o v e 5 0 0 ° C , w a s i d e n t i f i e d b y p o w d e r x - r a y d i f f r a c t i o n p a t t e r n a s T l S e 5 7 . T h e f i n a l w e i g h t l o s s o b s e r v e d f r o m t h e T G A c u r v e s o f a l l t h e c o m p l e x e s a r e i n g o o d a g r e e m e n t w i t h t h e e x p e c t e d t h e o r e t i c a l v a l u e s f o r t h e c o r r e s p o n d i n g b i n a r y m e t a l s e l e n i d e s . 1 2 1 1 0 0 fl 1 8 2 h I I : g . m a 4 o d j T I r r r r r r 0 4 0 0 8 0 0 T E M P E R A T U R E ( ° C ) F i g u r e 2 . 1 8 T G A d i a g r a m s ( u n d e r N i t r o g e n ) o f ( A ) ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e s ) ] ( I ) . ( B ) ( P r 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e s ) l ( I I ) a n d ( C ) ( E t 4 N ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] ( I I I ) . T h e f i n a l p r o d u c t i n t h e s e c a s e s i s B - I n z S e 3 . r . - . r D 1 . 0 1 0 0 a h : $ m 3 0 ? 2 : 1 e F i g u r 2 . 1 9 T G A d i a r a m s ( u n r r 1 1 I r I T r I m T 1 r I r A a l n 1 a l 2 J 5 T 0 E M P E A T U R 1 E l 0 ° 5 ( l 1 1 0 ) C d e r N i t r o g e fi l 5 0 7 ) o f ( A ) A n R g 1 2 2 ( P r 4 N ) 2 [ 1 n 2 3 6 2 ( S e 4 ) 2 ] ( I V ) a n d ( B ) [ ( P h 3 P ) 2 N 1 2 [ 1 1 1 2 5 6 2 6 6 0 2 ] ( V ) - 1 2 3 1 0 0 3 2 . r I - : a E “ I . 3 q 0 I I ) I I I I I r I I r 0 4 0 0 8 0 0 T E M P E R A T U R E ( ° C ) F i g u r e 2 . 2 0 T G A d i a g r a m s ( u n d e r N i t r o g e n ) o f ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 l ( V 1 ) a n d ( B ) ( E t 4 N ) 3 [ T 1 3 S C 3 ( S e 4 ) 3 l ( V 1 1 ) . ( A ) 1 2 4 C o n c l u s i o n T h e r e a c t i o n o f a l k a l i m e t a l p o l y s e l e n i d e s w i t h i n d i u m t r i c h l o r i d e i n t h e p r e s e n c e o f v a r i o u s o r g a n i c c a t i o n s i n d i f f e r e n t s o l v e n t s a f f o r d s s e v e r a l n e w I n 3 + p o l y s e l e n i d e c o m p l e x e s : ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e s ) l . ( P r 4 N ) 4 [ 1 n 2 ( S e 4 ) 4 ( S e s ) ] . ( E t 4 N ) 4 l I n 2 ( S e 4 ) 4 ( S e s ) l ( P r 4 N ) 2 [ I n 2 $ e z ( S C 4 ) 2 l . [ ( P h 3 P ) 2 N l 2 [ I n 2 8 6 2 ( S e 4 ) 2 1 a n d ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] S i m i l a r r e a c t i o n o f t h a l l i u m ( I ) c h l o r i d e w i t h p e n t a s e l e n i d e a n i o n , S e 5 2 ' , i n t h e p r e s e n c e o f E t 4 N B r r e s u l t s i n t h e f i r s t t h a l l i u m ( I I I ) p o l y s e l e n i d e : ( E t 4 N ) 3 [ T l 3 S e 3 ( S e 4 ) 3 ] . I n t h i s s y s t e m t h e s t a b i l i z a t i o n o f a n i o n i c s p e c i e s s e e m s t o d e p e n d m o r e o n t h e s o l v e n t r a t h e r t h a n t h e s i z e o f t h e o r g a n i c c a t i o n s . T h e s a m e 7 7 S e N M R o f a l l t h e i n d i u m p o l y s e l e n i d e c o m p l e x e s ( I ) - ( V I ) a t t e s t s t o t h e f a c i l e a n d c o m p l e x e q u i l i b r i a b e t w e e n t h e d i f f e r e n t s p e c i e s i n p o l a r s o l v e n t s a n d i n d i c a t e t h a t i n s o l u t i o n t h e y a l l c o n v e r t t o a s i n g l e l n / S e x s p e c i e s . T h e T G A s t u d i e s p r o v i d e i n f o r m a t i o n o f t h e d e c o m p o s i t i o n o f t h e s e c o m p l e x e s t o B - I n 2 8 e 3 a n d T l S e r e s p e c t i v e l y , a n d s u g g e s t t h e i r a p p l i c a t i o n a s l o w t e m p e r a t u r e p r e c u r s o r s t o fi l m s o f t h e s e s o l i d s t a t e m a t e r i a l s ” . L I S T O F R E F E R E N C E S ( a ) K a n a t z i d i s , M . G . C o m m e n t s I n o r g . C h e m . 1 9 9 0 , 1 0 , 1 6 1 - 1 9 5 . ( b ) A n s a r i , M . A . ; I b e r s , J . A . C o o r d . C h e m . R e v . 1 9 9 0 , 1 0 0 , 2 2 3 - 2 6 6 . ( c ) K o l i s , J . W . C o o r d . C h e m . R e v . 1 9 9 0 , 1 0 1 , 1 9 5 - 2 1 9 . ( a ) D r a g a n j a c , M . ; R a u c h f u s s , T . B . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 5 , 2 5 1 , 7 4 2 - 7 5 7 . ( b ) M i i l l e r , A . P o l y h e d r o n 1 9 8 6 , i , 3 2 3 - 3 4 0 . ( c ) M i i l l e r , A ; D i e m a n n , E . A d v . I n o r g . C h e m . R a d i o c h e m . 1 9 8 7 , a , 8 9 - 1 2 2 . C o u c o u v a n i s , D . A c c . C h e m . R e s . 1 9 8 1 , l _ 4 _ , 2 0 1 - 2 0 9 . ( a ) C h i a n e l l i , R . R . C a t a l . R e v — S c i . E n g . 1 9 8 4 , 2 6 , 3 6 1 - 3 9 3 . ( b ) H o l m , R . H . ; S i m h o n , E . D . i n " M o l y b d e n u m E n z y m e s " ; S p i r o , T . G . ; E d . ; W i l y - I n t e r s c i e n c e : N e w Y o r k , 1 9 8 5 ; C h a p t e r 1 . S u b b a R a o , G . V . ; S h a f e r , M . W . i n " l n t e r c a l a t e d L a y e r e d M a t e r i a l s " ; L e v y , F . E d . R e i d e l P u b l i s h i n g C o . , p . 1 2 2 . ( a ) R o u x e l , J . ; B r e c , R . A n n u . R e v . M a t e r . S c i . 1 9 8 6 , 1 _ 6 _ , 1 3 7 . ( b ) W h i t t i n g h a m , M . ; T a m m e n m a a , M . ; A s p l u n d , M . M a t . R e s . B u l l . 1 9 8 8 , 2 1 , 1 3 3 - 1 4 2 . ( a ) O i k k o n e n , M . ; T a m m e n m a a , M . ; A s p l u n d , M . M a t . R e s . B u l l . 1 9 8 8 , 2 3 , 1 3 3 - 1 4 2 . ( b ) Y a m a g a , S . ; Y o s h i k a w a , A . ; K a s a i , H . J p n . J . A p p l . P h y s . 1 9 8 7 , 2 _ 6 _ , 1 0 0 2 . ( c ) F o n a s h , S . J . C R C C r i t i c a l R e v i e w s i n S o l i d S t a t e a n d M a t e r i a l s S c i e n c e 1 9 8 0 , 2 , 1 0 7 . S t r a s d e i t , H . ; K r e b s , B . ; H e n k e l , G . I n o r g . C h i m . A c t a 1 9 8 4 , 8 2 , L 1 1 - L 1 3 . W a r d l e , R . W . M . ; C h a u , C . - N . ; I b e r s , J . A . J . A m . C h e m . S o c . 1 9 8 7 , 1 0 9 , 1 8 5 9 - 1 8 6 6 . 1 2 5 1 0 . 1 1 . 1 2 . 1 3 . 1 4 . 1 5 . 1 6 . 1 7 . 1 8 . 1 9 . 2 0 . 2 1 . 2 2 . 2 3 . 1 2 6 C h a u , C . - N . ; W a r d l e , R . W . M . ; I b e r s , J . A . I n o r g . C h e m . 1 9 8 7 , 2 6 , 2 7 4 0 - 2 7 4 1 . W a r d l e , R . W . M . ; M a h l e r , C . H . ; C h a n , C . - N . ; I b e r s , J . A . I n o r g . C h e m . 1 9 8 8 , 2 1 , 2 7 9 0 - 2 7 9 5 . ( a ) O ' N e a l , S . C . ; P e n n i n g t o n , W . T . ; K o l i s , J . W . I n o r g . C h e m . 1 9 9 0 , 2 2 , 3 1 3 4 - 3 1 3 8 . ( b ) K r i i u t e r , G . ; H a - E i e r d a n z , M . ; M i i l l e r , U . ; D e h n i c k e , K . Z . N a t u r f o r s c h . 1 9 9 0 , 4 5 5 , 6 9 5 - 7 0 0 . B a n d a , R . M . H . ; C u s i c k , J . ; S c u d d e r , M . L . ; C r a i g , D . C . ; D a n c e , I . G . P o l y h e d r o n 1 9 8 9 , 8 _ , 1 9 9 5 - 1 9 9 8 . K r i i u t e r , G . ; D e h n i c k e , K . ; F e n s k e , D . C h e m . - Z t g . 1 9 9 0 , L I A , 7 - 9 . A n s a r i , M . A . ; M a h l e r , C . H . ; C h o r g h a d e , G . S . ; L u , Y . - J . ; I b e r s , J . A . I n o r g . C h e m . 1 9 9 0 , 2 2 , 3 8 3 2 - 3 8 3 9 . ( a ) A d e l , J . ; W e l l e r , F . ; D e h n i c k e , K . Z . N a t u r f o r s c h . 1 9 8 8 , 4 1 3 , 1 0 9 4 - 1 1 0 0 . ( b ) K a n a t z i d i s , M . G . A b s t r a c t s o f 1 9 6 t h A C S N a t i o n a l M e e t i n g , L o s A n g e l e s 1 9 8 8 , I N O R G 4 6 9 . ( c ) K r i l u t e r , G . ; W e l l e r , F . ; D e h n i c k e , K . Z . N a t u r f o r s c h . 1 9 8 9 , £ 1 2 , 4 4 4 - 4 5 4 . F l o m e r , W . A . ; O ' N e a l , S . C . ; P e n n i n g t o n , W . T . ; J e t e r , D . ; C o r d e s , A . W . ; K o l i s , J . W . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 8 , 2 1 , 1 7 0 2 - 1 7 0 3 . O ' N e a l , S . C . ; K o l i s , J . W . J . A m . C h e m . S o c . 1 9 8 8 , 1 1 9 , 1 9 7 1 - 1 9 7 3 . H a u s h a l t e r , R . C . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 5 , 2 1 , 4 3 3 - . 4 3 5 . F l o m e r , W . A . ; K o l i s , J . W . J . A m . C h e m . S o c . 1 9 8 8 , L 1 0 , 3 6 8 2 - 3 6 8 3 . H a u s h a l t e r , R . C . I n o r g . C h i m . A c t a 1 9 8 5 , 1 0 2 , L 3 7 - L 3 8 . ( a ) K a n a t z i d i s , M . G . ; H u a n g , S . - P . I n o r g . C h e m . 1 9 8 9 , 2 8 . . 4 6 6 7 - 4 6 6 9 . ( b ) H u a n g , S . - P . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 1 , 3 _ Q , 3 5 7 2 - 3 5 7 5 . K i m , K . - W . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 1 , 3 Q . 1 9 6 6 - 1 9 6 9 . 2 4 . 2 5 . 2 6 . 2 7 . 2 8 . 2 9 . 3 0 . 3 1 . 3 2 . 3 3 . 3 4 . 3 5 . 1 2 7 ( a ) M i i l l e r , U . ; H a - E i e r d a n z , M . ; K r i i u t e r , G . ; D e h n i c k e , K . Z . N a t u r f o r s c h . 1 9 9 0 , 4 5 3 , 1 1 2 8 - 1 1 3 2 . A n s a r i , M . A . ; I b e r s , J . A . I n o r g . C h e m . . 1 9 8 9 , 2 8 , 4 0 6 8 - 4 0 6 9 . ( a ) H u a n g , S . - P . ; D h i n g r a , S . ; K a n a t z i d i s , M . G . P o l y h e d r o n 1 9 9 0 , 2 , 1 3 8 9 - 1 3 9 5 . ( b ) B a n d a , R . M . H . ; C u s i c k , J . ; S c u d d e r , M . L . ; C r a i g , D . C . ; D a n c e , 1 . G . P o l y h e d r o n 1 9 8 9 , 2 , 1 9 9 9 - 2 0 0 1 . ( a ) K a n a t z i d i s , M . G . ; H u a n g , S . - P . J . A m . C h e m . S o c . 1 9 8 9 , 1 _ 1 _ 1 _ , 7 6 0 - 7 6 1 . ( b ) K a n a t z i d i s , M . G . ; H u a n g , S . - P . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 9 , 2 2 , 1 5 1 3 - 1 5 1 4 . ( c ) H u a n g , S . - P . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 1 , 3 2 , 1 4 5 5 - 1 4 6 6 . D h i n g r a , S . ; K a n a t z i d i s M . G . i n " B e t t e r C e r a m i c s T h r o u g h C h e m i s t r y I V " M a t . R e s . S o c . S y m p . P r o c . 1 9 9 0 , 1 8 1 1 , 8 2 5 - 8 3 0 . P r e l i m i n a r y c o m m u n i c a t i o n , K a n a t z i d i s , M . G . ; D h i n g r a , S . I n o r g . C h e m . 1 9 8 9 , 2 2 , 2 0 2 4 - 2 0 2 6 . S m i t h , D . K . ; N i c h o l s , M . C . ; Z o l e n s k y , M . E . " P O W D I O : A F o r t r a n I V P r o g r a m f o r C a l c u l a t i n g X - r a y P o w d e r D i f f r a c t i o n P a t t e r n " , v e r s i o n 1 0 , P e n n s y l v a n i a S t a t e U n i v e r s i t y , 1 9 8 3 . N i c o l e t X R D C o r p o r a t i o n : " D a t a C o l l e c t i o n O p e r a t i o n M a n u a l " , p a r t n o . 1 0 0 6 2 , 1 9 8 2 . D I F A B S : " A n E m p i r i c a l M e t h o d f o r C o r r e c t i n g D i fi ' r a c t o m e t e r D a t a f o r A b s o r p t i o n C o r r e c t i o n " W a l k e r , N . ; S t u a r t , D . A c t a . C r y s t a l l o g r . 1 9 8 3 , A 2 2 , 1 5 8 . ' ( a ) S h e l d r i c k , G . M . i n " C r y s t a l l o g r a p h i c C o m p u t i n g 3 " ; S h e l d r i c k , G . M . ; K r u g e r , C . ; D o d d a r d , R . O x f o r d U n i v e r s i t y P r e s s , 1 9 8 5 , p . 1 7 5 - 1 8 9 . ( b ) F r e n z , B . A . T h e E n r a f - N o n i u s C A D 4 S D P S y s t e m i n " C o m p u t i n g i n C r y s t a l l o g r a p h y " ; D e l f t U n i v e r s i t y P r e s s : D e l f t H o l l a n d , 1 9 7 8 , p . 6 4 - 7 1 . M i i l l e r , A . ; S c h i m a n s k i , U . I n o r g . C h i m . A c t a . 1 9 8 3 , 1 1 , L 1 8 7 . H a d j i k y r i a c o u , A . 1 . ; C o u c o u v a n i s , D . I n o r g . C h e m . l 9 8 7 , 2 _ 6 _ , 2 4 0 0 - 2 4 0 8 . 3 6 . 3 7 . 3 8 . 3 9 . 4 0 . 4 1 . 4 2 . 4 3 . 4 4 . 4 5 . 4 6 . 4 7 . 1 2 8 L i a o , J . - H . ; K a n a t z i d i s , M . G . J . A m . C h e m . S o c . 1 9 9 0 , L 1 2 , 7 4 0 0 - 7 4 0 2 . ( b ) L i a o , J . - H . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 2 , 3 2 , 4 3 1 - 4 3 9 . ( c ) K i m , K . - W . ; K a n a t z i d i s , M . G . J . A m . C h e m . S o c . 1 9 9 2 i n p r e s s . ( a ) S h e l d r i c k , W . S . Z . A n o r g . A l l g . C h e m . 1 9 8 8 , 1 6 2 , 2 3 - 3 0 . ( b ) S h e l d r i c k W . S . ; H a u s e r , H . - J . Z . A n o r g . A l l g . C h e m . 1 9 8 8 , 1 5 1 , 9 8 - 1 0 4 . ( c ) S h e l d r i c k W . S . ; H a u s e r , H . - J . Z . A n o r g . A l l g . C h e m . 1 9 8 8 , 1 1 1 , 1 0 5 - 1 1 1 . ( ( 1 ) S h e l d r i c k , W . S . ; K a u b J . Z . A n o r g . A l l g . C h e m . 1 9 8 6 , 5 2 1 , 1 7 9 - 1 8 5 . ( e ) S h e l d r i c k , W . S . ; B r a u n b e c k , H . G . Z . N a t u r f o r s c h 1 9 8 9 , M b , 8 5 1 - 8 5 2 . ( f ) S h e l d r i c k , W . S . Z . N a t u r f o r s c h 1 9 8 8 , 4 1 1 2 , 2 4 9 - 2 5 2 . P a r i s e , J . B . S c i e n c e 1 9 9 1 , 2 1 L , 2 9 3 - 2 9 4 . ( b ) P a r i s e , J . B . J . C h e m . S o c . , C h e m . C o m m u n . 1 9 9 0 , 1 5 5 3 - 1 5 5 4 . " E l e c t r o c h e m i c a l M e t h o d s , F u n d a m e n t a l s a n d A p p l i c a t i o n s " E d s B a r d , A . J . ; F a u l k n e r , L . R . J o h n W i l e y & S o n s , N e w Y o r k , 1 9 8 0 , p g 7 0 0 - 7 0 1 . D h i n g r a , S . ; K a n a t z i d i s , M . G . ( S e e C h a p t e r 4 ) . ( a ) D u b o i s , P . ; L e l i e u r , J . P . ; L e p o u r t e , G . I n o r g . C h e m . 1 9 8 8 , 2 1 , 7 3 - 8 0 . ( b ) C l a r k , R . J . H . ; W a l t o n , J . R . J . C h e m . S o c . D a l t o n T r a n s . 1 9 8 7 , 1 5 3 5 - 1 5 4 4 . ( b ) C l a r k , R . J . H . ; D i n e s , T . J . ; P r o u d , G . P . J . C h e m . S o c . D a l t o n T r a n s . 1 9 8 3 , 2 2 9 9 - 2 3 0 2 . W e l l e r , P . ; A d e l , J . ; D e h n i c k e , K . Z . A n o r g . A l l g . C h e m . 1 9 8 7 , 5 2 8 , 1 2 5 - 1 3 2 . N a g a t a , K . ; T s h i b a s h i , K . ; M i y a m o t o , Y . J p n . J . A p p l . P h y s . 1 9 8 0 , . 1 2 , 1 5 6 9 - 1 5 7 3 . L u t z , H . D . ; F i s c h e r , M . ; B a l d u s , H . - P . ; B l a n c h n i k , R . J . L e s s - C o m m o n M e t . 1 9 8 8 , 1 3 2 , 8 3 - 9 2 . K r e b s , B . ; V o e l k e r , D . ; S t i l l e r , K . O . I n o r g . C h i m . A c t a . 1 9 8 2 , Q 1 , L 1 0 1 - L 1 0 2 . P a r k e s , J . ; T o m l i n s o n , R . D . ; H a m p s h i r e , M . J . J . A p p l . C r y s t a l l o g r . 1 9 7 3 , 4 1 4 - 4 1 6 . K r e b s , B A n g e w . C h e m . I n t . E d . E n g l 1 9 8 3 , 2 2 , 1 1 3 - 1 3 4 . 4 8 . 4 9 . 5 0 . 5 1 . 5 2 . 5 3 . 5 4 . 5 5 . 5 6 . 5 7 . 1 2 9 E i s e n m a n n , B . ; H o f m a n n , A . Z . A n o r g . A l l g . C h e m . 1 9 9 0 . 1 8 2 , 1 5 1 - 1 5 9 . K r e b s , B . ; S t i l l e r , K . O . u n p u b l i s h e d r e s u l t s [ i n r e f 4 7 ] . H o p p e , R . ; L i d e c k e , W . ; F r o r a t h , F . - C . Z . A n o r g . A l l g . C h e m . 1 9 6 1 , 3 _ Q 2 , 4 9 - 5 4 . A l e a n d r i , L . E . ; I b e r s , J . A . J . S o l i d S t a t e C h e m . 1 9 8 9 , 1 2 , 1 0 7 - 1 1 1 . M i i l l e r , A . ; Z i m m e r m a n n , M . ; B é g g e , H . A n g e w . C h e m . I n t . E d . E n g l 1 9 8 6 . 2 5 . 2 7 3 - 2 7 4 . M i i l l e r , A . ; K r i c k e m e y e r , E . ; Z i m m e r m a n n , M . ; R é m e r , M . ; B é g g e , H . ; P e n k , M . ; S c h m i t z , K . I n o r g . C h i m . A c t a . 1 9 8 4 , 2 Q , L 6 9 - L 7 0 . M i i l l e r , A . ; B a u m a n n , F . - W . ; B 6 g g e , H . ; R i i m e r , M . ; K r i c k e m e y e r , E . ; S c h m i t z , K . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 4 , 2 2 , 6 3 2 - 6 3 3 . D h i n g r a , S . ; K a n a t z i d i s M . G . U n p u b l i s h e d r e s u l t s . T h e r e a c t i o n o f G a C l 3 w i t h t w o e q u i v a l e n t s o f N a 2 8 e 5 i n t h e p r e s e n c e o f o n e e q u i v a l e n t P h 4 P C l i n D M F a f f o r d e d r e d c r y s t a l o f ( P h 4 P ) 2 [ G a 2 $ e 2 ( S e 5 ) 2 ] i n 7 2 % y i e l d . T h i s c o m p l e x c r y s t a l l i z e s i n t h e m o n o c l i n i c s p a c e g r o u p C 2 / c w i t h t h e u n i t c e l l d i m e n s i o n s : a = 2 2 . 2 8 8 ( 5 ) A ; b = 1 6 . 4 9 1 ( 7 ) A ; c = 1 6 . 0 6 4 ( 3 ) A ; 8 : 1 0 4 . 9 9 ( 2 ) ° ; V = 5 7 0 3 ( 3 ) A 3 ; 2 : 4 . D h i n g r a 8 . P h . D . D i s s e r t a t i o n , M i c h i g a n S t a t e U n i v e r s i t y , 1 9 9 2 . D h i n g r a , S . ; K a n a t z i d i s M . G . m a n u s c r i p t i n p r e p a r a t i o n , ( S e e C h a p t e r 5 ) J C P D S P o w d e r D i f f r a c t i o n F i l e : ( T l S e ) l 6 1 L # 2 2 - 1 4 7 6 I n t e r n a t i o n a l C e n t e r f o r D i f f r a c t i o n D a t a . 1 9 8 3 , S w a r t h m o r e , P A , U S A . A P P E N D I X T O C H A P T E R T W O A B S T R A C T T h e h y d r o t h e r m a l r e a c t i o n o f I n C l 3 w i t h N a z S e 3 i n t h e p r e s e n c e o f E t 4 N B r a n d w a t e r a t 1 1 0 ° C f o r 2 w e e k s i n a n e v a c u a t e d s e a l e d p y r e x t u b e a f f o r d e d d e e p r e d c u b i c c r y s t a l s o f ( E t 4 N ) 5 [ N a I n 5 S e 5 ( S e 4 ) 6 ] ( V I I I ) , i n 7 6 % y i e l d . ( V I I I ) c r y s t a l l i z e s i n t h e t r i g o n a l s p a c e g r o u p R - 3 c ( # . 1 6 7 ) w i t h u n i t c e l l d i m e n s i o n s a = 1 7 . 5 6 4 ( 4 ) A ; b = 1 7 . 5 6 4 ( 4 ) A ; c : 5 1 . 6 7 2 ( 1 l ) A ; a = B = 9 0 . 0 0 ° ; y : 1 2 0 . 0 0 ° ; V = 1 3 8 0 4 ( 6 ) A 3 ; Z = 6 . S i n g l e - c r y s t a l X - r a y d i f f r a c t i o n s t u d i e s s h o w t h a t ( V I I I ) c o n t a i n a h e x a n u c l e a r a n i o n [ N a l n 5 S e 5 ( S e 4 ) 5 ] 5 ' i n c a p s u l a t i n g a N a + i o n . T h e c o r e o f t h e a n i o n c o n t a i n s t e t r a h e d r a l I n 3 + c e n t e r s f o r m i n g a n o v e l 1 2 m e m b e r e d p u c k e r e d I n 5 8 e 5 r i n g c o n s i s t i n g o f a l t e r n a t i n g I n a n d S e a t o m s . T h e s i x S e 2 ' a t o m s c o n s t i t u t i n g t h e 1 2 m e m b e r e d r i n g f o r m a n a l m o s t p e r f e c t o c t a h e d r a l p o c k e t a n d t r a p a N a + i o n i n i t . T h e r e m a i n i n g t w o c o o r d i n a t i o n s i t e s o n t h e I n a t o m a r e o c c u p i e d b y t h e S e 4 2 ’ b i d e n t a t e c h e l a t e s , g e n e r a t i n g a f i v e m e m b e r e d [ I n S e 4 ] + r i n g o n e a c h I n 3 + c e n t e r . 1 3 0 1 3 1 S y n t h e s i s P e n t a ( t e t r a e t h y l a m m o n i u m ) - ( u 5 - s o d i u m ) - h e x a ( u 2 - s e l e n i d o ) - h e x a t e t r a s e l e n i d o - h e x a i n d a t e fl l l ) , ( E t 4 N ) 5 [ N a I n 5 8 e 5 ( S e 4 ) 5 ] ( V I I I ) . I n a p y r e x t u b e w a s a d d e d 0 . 0 5 0 g ( 0 . 2 2 6 m m o l ) I n C 1 3 , 0 . 1 9 2 g ( 0 . 6 7 9 m m o l ) N a 2 S e 3 a n d 0 . 0 4 8 g ( 0 . 2 2 8 m m o l ) E t 4 N B r a n d 0 . 5 m l o f w a t e r . T h e m i x t u r e w a s f r o z e n i n l i q u i d n i t r o g e n a n d fl a m e s e a l e d u n d e r v a c u u m . T h e t u b e w a s s u b s e q u e n t l y h e a t e d t o 1 1 0 ° C f o r t w o w e e k s . T h e t u b e w a s o p e n e d i n a n i n e r t a t m o s p h e r e g l o v e b o x a n d t h e d e e p r e d c u b i c c r y s t a l s o f ( E t 4 N ) 5 [ N a I n 5 S e 5 ( S e 4 ) 6 ] w e r e i s o l a t e d b y f i l t r a t i o n , w a s h e d w i t h w a t e r , e t h a n o l a n d f i n a l l y w i t h e t h e r , y i e l d 7 6 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( V I I I ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f I n l S e 5 , o 1 . X - r a y C r y s t a l l o g r a p h i c S t u d i e s . X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e r e c o r d e d o n a P h i l l i p s X R G - 3 0 0 0 c o m p u t e r c o n t r o l l e d p o w d e r d i f f r a c t o m e t e r . N i - f i l t e r e d , C u - r a d i a t i o n w a s u s e d . T h e X - r a y p o w d e r p a t t e r n o b t a i n e d f r o m t h e c o m p l e x , w a s i n g o o d a g r e e m e n t w i t h t h e o n e c a l c u l a t e d , f r o m t h e a t o m c o o r d i n a t e s o b t a i n e d f r o m t h e X - r a y s i n g l e c r y s t a l d i f f r a c t i o n s t u d i e s , u s i n g t h e p r o g r a m P O W D - 1 0 . T h i s c o n f i r m e d t h e h o m o g e n e i t y a n d t h e p u r i t y o f t h e c o m p l e x , a s s u m i n g n o a m o r p h o u s p h a s e s w e r e p r e s e n t . C a l c u l a t e d a n d o b s e r v e d d - s p a c i n g s ( A ) f o r ( E t 4 N ) 5 [ N a I n 5 S e 5 ( S e 4 ) 5 ] i s c o m p i l e d i n T a b l e 2 . 2 2 . T a b l e 2 . 2 2 . 1 3 2 P a t t e r n o f ( E t 4 N ) 5 [ N a I n 5 8 e 6 ( S e 4 ) 6 ] . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n h i t 1 d c m ( A ) d o b g A ) I / I m g x m b S ) 0 1 2 1 3 . 1 2 1 3 . 2 3 4 7 1 0 4 9 . 8 5 9 . 8 7 2 0 0 0 6 8 . 6 1 8 . 6 0 9 4 1 1 3 7 . 8 3 7 . 8 8 1 2 1 1 6 6 . 1 5 6 . 1 6 4 5 2 l 4 5 . 2 5 5 . 3 0 4 6 l 2 5 5 . 0 3 5 . 0 5 5 5 1 l 9 4 . 8 1 4 . 8 2 1 0 0 2 1 7 4 . 5 4 4 . 5 6 5 5 o 3 6 4 . 3 7 4 . 3 9 4 4 o o 1 2 4 . 3 1 4 . 3 2 3 6 1 3 4 4 . 0 1 4 . 0 3 3 2 2 2 9 3 . 4 8 8 3 . 4 9 6 1 5 4 l 0 3 . 3 2 0 3 . 3 3 3 9 0 3 1 2 3 . 2 8 2 3 . 2 8 3 4 4 3 2 7 3 . 1 5 5 3 . 1 6 5 6 3 4 1 1 6 3 . 0 9 8 3 . 1 1 0 2 4 0 5 4 2 . 9 6 2 3 . 0 0 5 4 2 1 3 1 3 2 . 8 9 3 2 . 9 0 0 4 3 2 4 1 2 . 8 7 1 2 . 8 8 0 3 6 T a b l e 2 . 2 2 ( c o n t ' d ) . 1 3 3 h k l d u n g ) d o i n g ) I / I n r a r ( o b s ) 4 2 5 2 . 7 7 0 2 . 7 7 4 8 2 4 7 2 . 6 7 9 2 . 6 8 3 1 3 3 2 1 3 2 . 6 2 3 2 . 6 2 6 3 7 2 3 1 4 2 . 5 3 6 2 . 5 3 9 7 0 3 1 8 2 . 4 9 8 2 . 5 0 1 1 2 3 4 5 2 . 4 3 1 2 . 4 3 0 1 3 4 1 1 5 / 1 4 1 5 2 . 3 9 0 2 . 3 9 2 1 4 2 4 1 3 2 . 3 3 0 2 . 3 3 1 9 l 3 1 9 2 . 2 8 6 2 . 2 8 8 2 8 5 1 1 3 2 . 2 5 2 2 . 2 5 2 1 4 1 4 1 8 2 . 1 7 2 2 . 1 7 6 2 1 4 2 1 7 2 . 0 8 9 2 . 0 8 4 2 4 1 7 3 2 . 0 0 1 2 . 0 0 6 2 2 5 1 1 9 1 . 9 2 8 1 . 9 3 1 2 6 6 3 3 1 . 9 0 5 1 . 9 0 7 2 0 1 6 1 6 1 . 8 8 4 1 . 8 8 8 1 4 ' 3 6 6 1 . 8 7 1 1 . 8 7 4 1 8 1 3 2 5 1 . 8 5 6 1 . 8 5 9 1 2 7 2 5 1 . 8 2 9 1 . 8 2 5 1 2 6 3 9 1 . 8 1 8 1 . 8 0 6 1 0 3 6 1 2 1 . 7 5 1 1 . 7 6 8 1 1 4 6 1 0 1 . 6 5 3 1 . 6 5 6 1 9 1 3 4 T h e s i n g l e c r y s t a l s o f c o m p l e x ( V I I I ) w e r e m o u n t e d i n s i d e g l a s s c a p i l l a r i e s a n d fl a m e s e a l e d . T h e d a t a f o r ( V I I I ) w a s c o l l e c t e d o n R i g a k u A F C 6 S f o u r - c i r c l e a u t o m a t e d d i f f r a c t o m e t e r w i t h ( 0 - 2 0 s c a n t e c h n i q u e . A c c u r a t e u n i t c e l l d i m e n s i o n s w e r e d e t e r m i n e d f r o m t h e 2 0 , t o , 4 1 , x a n g l e s o f 2 5 m a c h i n e c e n t e r e d r e fl e c t i o n s . T h e i n t e n s i t i e s o f t h r e e c h e c k r e fl e c t i o n s w e r e m o n i t o r e d e v e r y 1 5 0 r e fl e c t i o n s a n d d i d n o t s h o w a n y a p p r e c i a b l e l o s s i n t h e i r i n t e n s i t i e s o v e r t h e d a t a c o l l e c t i o n p e r i o d . A n e m p i r i c a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d b a s e d o n \ y s c a n s f o r 3 ( x ~ 9 0 ° ) r e fl e c t i o n s . T h e s t r u c t u r e w e r e s o l v e d w i t h d i r e c t m e t h o d s a n d d i f f e r e n c e F o u r i e r S y n t h e s i s m a p s a n d r e f i n e d w i t h f u l l - m a t r i x l e a s t s q u a r e t e c h n i q u e s . A n a d d i t i o n a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d b e f o r e a n i s o t r o p i c r e f i n e m e n t u s i n g D I F A B S 3 2 . T h e c a l c u l a t i o n s w e r e p e r f o r m e d o n a V A X s t a t i o n 3 1 0 0 / 7 6 c o m p u t e r u s i n g t h e T E X S A N c r y s t a l l o g r a p h i c s o f t w a r e p a c k a g e f r o m M o l e c u l a r S t r u c t u r e C o r p o r a t i o n . A l l t h e a t o m s i n t h e a n i o n s w e r e r e f i n e d a n i s o t r o p i c a l l y e x c e p t t h e s o d i u m a t o m . T h e c a r b o n a t o m s o f o n l y o n e c a t i o n w e r e r e f i n e d i s o t r o p i c a l l y , w h i l e f o r t h e o t h e r c a t i o n t h e c a r b o n a t o m s w e r e f o u n d b y t h e d i f f e r e n c e f o u r i e r m a p s b u t d u e t o t h e m a r g i n a l q u a l i t y o f t h e d a t a s e t t h e i r p o s i t i o n s w e r e n o t r e fi n e d . B o t h t h e E t 4 N + c a t i o n s a r e s i t u a t e d o n s p e c i a l p o s i t i o n s . T h e n i t r o g e n a t o m o f o n e i s o n a t h r e e f o l d a n d t h e o t h e r i n o n t w o f o l d c r y s t a l l o g r a p h i c a x i s . T h e c a r b o n a t o m s o n t h e s e c o n d c a t i o n a r e d i s o r d e r e d a n d t h e c a t i o n h a s t w o c o n f o r m a t i o n s i n t h e s o l i d s t a t e w i t h e q u a l o c c u p a n c i e s , a n d t h e p o s i t i o n s } o f t h e c a r b o n a t o m w e r e fi x e d . T h e s o d i u m i s s i t u a t e d o n ( 0 0 1 / 2 ) t h a t i s p o s s e s s i n g a t h r e e f o l d a n d a c e n t e r o f i n v e r s i o n . 1 3 5 T h e c o m p l e t e d a t a c o l l e c t i o n p a r a m e t e r s a n d d e t a i l s o f t h e s t r u c t u r e s o l u t i o n a n d r e fi n e m e n t f o r ( V I I I ) a r e s u m m a r i z e d i n T a b l e 2 . 2 3 . T h e fi n a l c o o r d i n a t e s , t e m p e r a t u r e f a c t o r s a n d t h e e s t i m a t e d s t a n d a r d d e v i a t i o n s ( e s d ' s ) o f a l l n o n - h y d r o g e n a t o m s f o r ( V I I I ) , a r e s h o w n i n T a b l e 2 . 2 4 . R e s u l t s a n d D i s c u s s i o n I n o u r i n i t i a l i n v e s t i g a t i o n o f t h e I n / S e x s y s t e m w e w e r e a b l e t o i s o l a t e a s t r u c t u r a l l y u n i q u e a n i o n [ I n 2 S e 2 ( S e 4 ) 2 ] 2 ‘ i n t h e p r e s e n c e o f P r 4 N B r o r [ ( P h 3 P ) 2 N ] C l u s i n g t h e h y d r o t h e r m a l t e c h n i q u e . I n e x t e n d i n g t h i s n e w a p p r o a c h w e e x p l o r e d h y d r o t h e r m a l r e a c t i o n s b e t w e e n I n C l 3 a n d N a z S e 3 i n t h e p r e s e n c e o f E t 4 N B r i n e v a c u a t e d s e a l e d p y r e x t u b e s a t 1 1 0 ° C f o r t w o w e e k s a n d s u c c e s s f u l l y a c c o m p l i s h e d t h e s y n t h e s i s o f ( E t 4 N ) 5 [ N a I n 5 8 e ( , ( S e 4 ) 6 ] ( V I I I ) . T h e r e a c t i o n i s r e p r e s e n t e d i n e q . 1 . W 8 1 6 ! I n C l g + 3 N a 2 8 e 3 + E t 4 N B r - - - - - - - > ( E t 4 N ) 5 [ N a I n 5 S e 5 ( S e 4 ) 5 ] + 3 N a C l e q . ] 1 1 0 ° C S i n g l e c r y s t a l s o f ( E t 4 N ) 5 [ N a I n 5 S e 5 ( S e 4 ) 5 ] a s a s i n g l e p h a s e i n g o o d y i e l d w e r e i s o l a t e d f r o m t h e I n C l 3 / N a 2 S e 3 m o l a r r a t i o s o f 1 : 2 - 1 : 3 . B u t . 7 : . 7 4 ' 7 ' : ' : : : . : 7 H 7 7 : 7 : ' ' : : : _ . : , a n d l a t e r a t t e m p t s t o p r e p a r e ( V I I I ) w e r e n o t s u c c e s s f u l . W e t r i e d d i f f e r e n t r a t i o s a n d e v e n c h a n g e d t h e c o n d i t i o n s d r a s t i c a l l y b y a d d i t i o n o f d i f f e r e n t m i n e r a l i z e r s ( e g . O H ‘ , C O 3 2 ' , e t c . ) b u t t o M . 1 3 6 T a b l e 2 . 2 3 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r ( V 1 1 1 ) V 1 1 1 F o r m u l a C 4 o H 1 o o N 5 N a I n 6 8 e 3 o F W 3 7 3 1 . 9 9 C r y s t a l c o l o r D a r k R e d T e m p . ( ° C ) 2 3 a ( A ) 1 7 . 5 6 4 ( 4 ) b ( A ) 1 7 . 5 6 4 ( 4 ) c ( A ) 5 1 . 6 7 2 ( 1 1 ) a ( ° ) 9 0 . 0 0 B ( ° ) 9 0 . 0 0 1 ( ° ) 1 2 0 . 0 0 2 , W 7 1 3 ) 6 , 1 3 8 0 4 ( 6 ) S p a c e g r o u p R - 3 c ( # 1 6 7 ) D c a l c . ( g c m - 3 ) 2 . 6 9 2 1 1 ( c m ‘ 1 ) 1 3 2 . 4 C r y s t a l s i z e ( m m ) 0 . 4 2 x 0 . 3 6 x 0 . 3 1 2 6 m 3 x ( ° ) 4 5 # o f d a t a C o l l e c t 4 3 8 4 D a t a ( I > 3 o ( l ) ) 7 6 0 N o . o f v a r i a b l e s 7 9 m i n / m a x a b s c o r 0 . 4 4 5 - l . 0 0 0 F i n a l R / R w ( % ) 6 . 0 / 7 . 2 T a b l e 2 . 2 4 . F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( E t 4 N ) 5 [ N a I n 5 8 e 5 ( S e 4 ) 6 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n 1 3 7 P a r e n t h e s i s . A t o m x y z B e q “ , A 2 I n ( l ) 0 . 1 7 5 4 ( 2 ) 0 . 2 3 6 7 ( 2 ) 0 . 4 9 3 5 0 ( 5 ) 2 . 9 ( 1 ) S e ( 1 ) 0 . 0 2 8 9 ( 2 ) 0 . 1 6 5 3 ( 2 ) 0 . 4 6 9 1 7 ( 7 ) 3 . 2 ( 2 ) S e ( 2 ) 0 . 2 9 6 9 ( 2 ) 0 . 2 4 8 9 ( 3 ) 0 . 4 6 1 4 4 ( 7 ) 3 . 7 ( 2 ) S e ( 3 ) 0 . 4 1 1 3 ( 3 ) 0 . 3 5 9 7 ( 3 ) 0 . 4 8 5 8 ( 1 ) 5 . 0 ( 2 ) S e ( 4 ) 0 . 3 7 2 1 ( 3 ) 0 . 4 6 7 3 ( 3 ) 0 . 4 8 4 6 ( 1 ) 5 . 8 ( 2 ) S e ( 5 ) 0 . 2 4 1 6 ( 3 ) 0 . 4 0 0 1 ( 3 ) 0 . 5 0 8 9 7 ( 9 ) 4 . 5 ( 2 ) N a 0 0 1 / 2 2 . 4 ( 7 ) N O ) 0 0 0 . 3 8 9 9 ( 8 ) 2 ( 1 ) N ( 2 ) 0 0 . 2 4 3 ( 3 ) 3 / 4 7 ( 1 ) C ( 1 ) 0 . 0 6 2 ( 6 ) 0 . 0 9 5 ( 6 ) 0 . 3 9 7 ( 2 ) 8 ( 2 ) C ( 2 ) 0 . 1 4 4 ( 3 ) 0 . 1 0 3 ( 3 ) 0 . 4 0 8 ( 1 ) 9 ( 1 ) C ( 3 ) 0 . 0 2 0 8 - 0 . 0 3 8 7 0 . 3 6 9 2 6 ( 3 ) C ( 4 ) 0 0 0 . 3 4 2 ( 1 ) 4 ( 1 ) C ( 5 ) 0 . 1 4 6 6 0 . 3 9 4 1 0 . 4 2 7 7 9 ( 2 ) C ( 6 ) 0 . 1 6 4 6 0 . 3 2 9 3 0 . 4 1 8 7 2 ( 1 ) C ( 7 ) 0 . 3 2 4 3 - 0 . 0 1 4 6 0 . 4 3 2 1 4 ( 2 ) C ( 8 ) 0 . 3 4 7 3 0 . 0 6 6 8 0 . 4 1 6 9 6 ( 1 ) C ( 9 ) 0 . 4 3 8 8 - 0 . 0 3 8 9 0 . 4 3 0 5 6 ( 2 ) C ( 1 0 ) 0 . 1 7 6 5 - 0 . 2 0 9 4 0 . 4 1 9 9 1 8 ( 3 ) C ( 1 1 ) 0 . 3 3 5 2 - 0 . 1 4 9 4 0 . 4 4 0 6 7 ( 2 ) C ( 1 2 ) 0 . 3 4 5 3 - 0 . 2 2 5 9 0 . 4 3 0 7 1 8 ( 4 ) a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 B 1 1 + b 2 B 2 2 + c 2 B 3 3 + a b ( c o s y ) B l z + a c ( c o s fl ) B 1 3 + b c ( c o s a ) B z 3 ] 1 3 8 S t r u c t u r e D e s c r i p t i o n o f ( E t 4 N ) 5 [ N a I n 5 8 e 5 ( S e 4 ) 5 ] ( V I I I ) F i g u r e 2 . 2 1 s h o w s t h e h e x a n u c l e a r a n i o n [ N a l n 5 8 e 5 ( S e 4 ) 5 ] 5 ' i n ( V I I I ) . T h e c o r e o f t h e a n i o n c o n t a i n s t e t r a h e d r a l I n 3 + a t o m s f o r m i n g a n o v e l 1 2 m e m b e r e d I n 5 8 e 5 r i n g c o n s i s t i n g o f a l t e r n a t i n g I n a n d S e a t o m s . T h e s i x S e 2 ' a t o m s f o r m a n a l m o s t p e r f e c t o c t a h e d r a l p o c k e t a n d i n c a p s u l a t e s a N a + i o n , w h i c h i s s i t u a t e d o n t h r e e f o l d a n d a n i n v e r s i o n c e n t e r . T h e r e m a i n i n g t w o c o o r d i n a t i o n s i t e s o n t h e I n a t o m s a r e o c c u p i e d b y t h e S e 4 2 ' b i d e n t a t e c h e l a t e s , g e n e r a t i n g a s m a l l f i v e - m e m b e r e d [ I n S e 4 ] + r i n g o n e a c h I n 3 + s i t e . . T h e I n - - S e b o n d s i n t h e c o r e a r e s h o r t e r ( a v 2 . 5 5 9 1 1 ) t h a n i n t h e [ I n S e 4 ] + r i n g s ( a v 2 . 6 2 5 A ) w h e r e a s t h e I n ( 1 ) - S e ( l ) - I n ( 1 ' ) a n g l e i s 9 5 8 ° a n d t h e S e ( 1 ) - I n ( 1 ) - S e ( l ) ' i s 1 0 9 . 9 ° i n t h e [ N a I n g S e 6 ] 7 + c o r e . I n t h i s a n i o n t h e S e 4 2 ' l i g a n d a d o p t s a n e n v e l o p c o n f o r m a t i o n w i t h I n ( l ) S e ( 2 ) S e ( 4 ) S e ( 5 ) a t o m s i n a l e a s t s q u a r e p l a n e w i t h t h e m e a n d e v i a t i o n o f 0 . 0 1 1 A a n d t h e S e ( 3 ) l y i n g 1 . 3 3 9 A a w a y f r o m t h e p l a n e . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e n i n T a b l e 2 . 2 5 . [ N a I n 5 8 e 5 ( S e 4 ) 5 ] 5 ' i s o n e o f t h e f e w e x a m p l e s o f a t r u e " i n o r g a n i c c r o w n " e t h e r b a s e d o n t h e s t r u c t u r a l a n a l o g y t o t h a t t y p e o f c o m p o u n d s . I t i s t h e h i g h e r h o m o l o g o f t h e [ I n 2 8 e 2 ( S e 4 ) 2 ] 2 ‘ a n d [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ' a n i o n s a s a l l h a v e t h e s a m e [ I n S e ( S e 4 ) ] ' b u i l d i n g u n i t . T h e s t a b i l i t y o f t h e h e x a m e r c a n b e a t t r i b u t e d t o t h e N a + i o n b i n d i n g a l l t h e b u i l d i n g u n i t s t o g e t h e r . F u r t h e r e v i d e n c e o f t h e p r e s e n c e o f s o d i u m c o m e s f r o m t h e 2 3 N a N M R i n D M F s o l u t i o n , w e r e a s i n g l e p e a k i s o b s e r v e d a t 0 . 3 p p m ( r e f e r e n c e d t o P h 4 3 N a 8 : 0 p p m i n D M F ) . 1 3 9 S e ( 4 ) S e ( 5 ) 7 A S e ( 3 ) ( e / l g ; 1 5 2 ~ I I S e ( ) ' I . , - S N ’ ‘ S e ( 1 ) . . C ) 5 ‘ . A ‘ . C 1 3 \ \ 7 A l l ( 3 ‘ \ ‘ V A ! ‘ 1 ' . 1 ‘ \ l ‘ 9 ‘ F i g u r e 2 . 2 1 O R T E P r e p r e s e n t a t i o n o f t h e [ N a l n 5 S e 6 ( S e 4 ) 6 ] 5 ' a n i o n i n ( V I I I ) w i t h l a b e l i n g s c h e m e 1 4 0 T a b l e 2 . 2 5 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) i n t h e [ N a l n 5 S e 5 ( S e 4 ) 5 ] 5 ' A n i o n . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . I n ( 1 ) - S e ( l ) 2 . 5 6 0 ( 4 ) S e ( 2 ) - S e ( 3 ) 2 . 3 4 5 ( 6 ) I n ( 1 ) - S e ( 1 ) 2 . 5 5 8 ( 5 ) S e ( 3 ) - S e ( 4 ) 2 . 3 1 4 ( 7 ) I n ( 1 ) - S e ( 2 ) 2 . 6 2 5 ( 5 ) S e ( 4 ) - S e ( 5 ) 2 . 3 5 1 ( 6 ) I n ( 1 ) - S e ( 5 ) 2 . 6 2 5 ( 5 ) S e - S e ( m e a n ) 2 . 3 3 7 S e ( 1 ) - N a 3 . 1 2 3 ( 4 ) I n ( 1 ) - I n ( l ) 3 . 7 9 8 ( 3 ) S e ( 1 ) - I n ( l ) - S e ( l ) 1 0 9 . 0 ( 2 ) I n ( 1 ) - S e ( 1 ) - I n ( 1 ) 9 5 . 8 ( 1 ) S e ( 1 ) - I n ( 1 ) - S e ( 2 ) 1 0 7 . 9 ( 2 ) I n ( l ) - S e ( 1 ) - N a 8 2 . 0 ( 1 ) S e ( 1 ) - I n ( l ) - S e ( 5 ) 1 1 8 . 2 ( 2 ) I n ( 1 ) - S e ( 1 ) - N a 8 2 . 1 ( 1 ) S e ( 1 ) - I n ( 1 ' ) - S e ( 2 ' ) 1 0 7 . 8 ( 2 ) I n ( 1 ) - S e ( 2 ) - S e ( 3 ) 9 3 . 1 ( 2 ) S e ( 1 ) - I n ( 1 ' ) - S e ( 5 ' ) 1 1 1 . 3 ( 2 ) S e ( 2 ) - S e ( 3 ) - S e ( 4 ) 1 0 0 . 5 ( 2 ) S e ( 2 ) - I n ( 1 ) - S e ( 5 ) 1 0 1 . 9 ( 2 ) S e ( 3 ) - S e ( 4 ) - S e ( 5 ) 1 0 0 . 9 ( 2 ) . I n ( l ) - S e ( 5 ) - S e ( 4 ) 1 0 0 . 0 ( 2 ) S e ( 1 ) - N a - S e ( 1 ) 1 8 0 . 0 0 S e ( 1 ) - N a - S e ( 1 ) 9 6 . 2 9 S e ( 1 ) - N a - S e ( 1 ) 8 3 . 7 1 P L A C E I N R E T U R N B O X t o r e m o v e t h i s c h e c k o u t f r o m y o u r r e c o r d . T O A V O I D F I N E S r e t u r n o n o r b e f o r e d a t e d u e . D A T E D U E D A T E D U E D A T E D U E M S U I s A n A f f i r m a t i v e A c t i o n / E q u a l O p p o r t u n i t y I n s t i t u t i o n c h i m e r a s - 9 . 1 S Y N T H E S I S , S T R U C T U R A L A N D S P E C T R O S C O P I C C H A R A C T E R I Z A T I O N O F N E W P O L Y C H A L C O G E N I D E C O M P L E X E S O F I N D I U M A N D T H A L L I U M , A N D T H E I R A P P L I C A T I O N A S P R E C U R S O R S T O S O L I D S T A T E M A T E R I A L S . V o l u m e I I B y S a n d e e p S . D h i n g r a A D I S S E R T A T I O N S u b m i t t e d t o M i c h i g a n S t a t e U n i v e r s i t y i n p a r t i a l f u l fi l l m e n t o f t h e r e q u i r e m e n t s f o r t h e d e g r e e o f D O C T O R O F P H I L O S O P H Y D e p a r t m e n t o f C h e m i s t r y 1 9 9 2 S Y N T H E S E S A P O L Y S U L F I D E I l n z k s 4 l z ( 3 6 ) 2 ( 3 7 7 ‘ ) / . / ) C " ; 6 7 6 C H A P T E R 3 S Y N T H E S E S A N D C H A R A C T E R I Z A T I O N O F N E W I N D I U M - P O L Y S U L F I D E C O M P L E X E S : [ I n ( S 4 ) ( S a ) B r ] 2 ' , [ I n ( S 4 ) ( S g ) C l ] 2 ' , [ I n 2 ( S 4 ) 2 ( S s ) 2 ( S 7 ) ] 4 ' [ I n 2 8 ( S s ) ( S 4 ) 2 ] 2 ' a n d [ 1 0 2 5 ( S S ) ( S 4 ) ( S 6 ) ] 2 ' 1 4 1 A b s t r a c t i B o n T 0 i f w f i t f r : i ( s 3 € o . 2 4 ( 7 ; s t r 2 . 0 & 1 ( + h . T h a : n r d e 5 i ! n r e P a M a c t i c t P o n 5 1 1 ] X - r a y d i i 2 5 r g 3 L I I ) 3 3 1 ; ) 7 1 5 : :21 P 7 = . a ‘ ~ ' = s o a 1 r / e c 2 2 3 o ) l 1 : 4 2 . 3 . i 3 . 1 ( 3 a - I n t 3 T 1 3 4 H S 6 ) X ] : E i 1 n 3 r ‘ a i c g e i m n d a a t l o m , b e h c E 553- d e t a l l i g a n d y ( M m P 1 . 4 ‘ c q u a t o n a l a n d T h e r e a c t i o n 1 4 2 A b s t r a c t T h e r e a c t i o n o f I n B r 3 w i t h t w o e q u i v a l e n t s o f K 2 8 5 ( o r K 2 8 4 a n d K 2 3 5 ) a n d P h 4 P B r i n D M F a f f o r d e d y e l l o w ( P h 4 P ) 2 [ I n ( S 4 ) ( S 6 ) B r ] ( I ) . A s i m i l a r r e a c t i o n w i t h I n C 1 3 y i e l d s ( P h 4 P ) 2 [ I n ( S 4 ) ( S ¢ 5 ) C l ] ( I I ) . S i n g l e - c r y s t a l X - r a y d i f f r a c t i o n s t u d i e s s h o w t h a t t h e t w o c o m p o u n d s ( I ) a n d ( I I ) a r e i s o s t r u c t u r a l a n d c r y s t a l l i z e i n t h e m o n o c l i n i c s p a c e g r o u p P 2 1 / c ( # . 1 4 ) . T h e u n i t c e l l d i m e n s i o n s a r e a = 1 4 . 3 5 5 ( 7 ) A , b = 1 7 . 7 2 3 ( 4 ) A , c = 2 0 . 9 7 4 ( 7 ) A , B = l O 8 . 5 ( l ) ° , V = 5 0 6 1 ( 1 ) A 3 ( a t 2 3 ° C ) , 2 : 4 a n d a = l 4 . 3 1 4 ( 7 ) A , b = 1 7 . 6 2 3 ( 8 ) A , c = 2 0 . 8 6 1 ( 1 5 ) A , B = 1 0 8 . 2 8 ( 5 ) ° , V = 5 0 2 2 A 3 ( a t 2 3 ° C ) , 2 : 4 f o r ( I ) a n d ( I I ) , r e s p e c t i v e l y . T h e [ I n ( S 4 ) ( 8 6 ) X ] 2 ' ( X = B r , C l ) a n i o n s i n ( I ) a n d ( I I ) f e a t u r e a t r i g o n a l b i p y r a m i d a l I n 3 + c e n t e r c o o r d i n a t e d b y f o u r s u l f u r a t o m s a n d o n e h a l o g e n a t o m . T h e l a t t e r o c c u p i e s a n a x i a l p o s i t i o n . T h e I n 3 + c e n t e r i s c h e l a t e d b y t w o b i d e n t a t e p o l y s u l f i d e 8 4 2 ' a n d 8 6 2 ' l i g a n d s . T h e 8 6 2 ' l i g a n d o c c u p i e s t w o e q u a t o r i a l p o s i t i o n s . T h e 8 4 2 ‘ l i g a n d s p a n s a n e q u a t o r i a l a n d a n a x i a l p o s i t i o n . T h e r e a c t i o n o f I n C l 3 w i t h K 2 8 5 a n d P h 4 P C l i n a 2 : 5 : 4 m o l e r a t i o i n D M F a f f o r d e d t h i n p a l e y e l l o w c r y s t a l s o f ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( S 5 ) 2 ( S 7 ) ] ( 1 1 1 ) ] ( 1 1 1 ) c r y s t a l l i z e s i n t h e t r i c l i n i c s p a c e - g r o u p P - l ( # 2 ) w i t h a = 1 2 . 2 7 6 ( 3 ) A , b = 2 1 . 8 4 9 ( 8 ) A , c = 1 0 . 8 5 2 ( 2 ) A , a = 9 9 . 5 7 ( 2 ) ° , B = 1 1 2 - 4 4 ( 2 ) ° . y = 7 9 . 2 8 ( 3 ) ° , V = 2 6 2 8 ( 1 ) A 3 ( a t - 9 0 ° C ) . 2 : 1 . T h e [ I n 2 ( S 4 ) 2 ( S 5 ) 2 ( S 7 ) ] 4 ' a n i o n a l s o c o n s i s t s o f l n 3 + c e n t e r s i n t r i g o n a l b i p y r a m i d a l c o o r d i n a t i o n , e a c h I n a t o m i s c h e l a t e d b y t w o b i d e n t a t e p o l y s u l f i d e 8 4 2 ' a n d 8 5 2 ' l i g a n d s f o r m i n g a [ I n ( S 4 ) ( 3 6 ) ] ' u n i t . T w o o f 3 . 3 . [ 1 n t s t l ( 5 6 l l ' L 3 5 . 2 . c h a i n f o r m i n g A s i m i l a r r e a c ' : f f z r e n t m o l e r a t i o P h P l ; [ { l n 3 $ ( S S l ( S h s a l l i z c s i n t h e t : e i t s m l . c = Z l l ' : 2 7 6 9 ( 1 ) A 3 ( a : o c r g s t a l l i z a t i o n o f 1 : 1 1 e q u a l o c c u p a : 2 2 1 3 1 5 . l i t e I n a t c a t e i g h t - m e m b e r c c z i g u r a t i o n . T h e 3 ‘ o c c u p i e d b y a 3 5 3 ' c h e l a t i n g 1 n g ; A l l c o m p l e x : T 3 6 s o l i d s t a t e { A a b s o r p l l o n s i n t h e L B " C 1 ) s t r e t c h m a r t i n , T h e r m a 1 1 4 3 t h e s e [ I n ( S 4 ) ( S s ) ] ' u n i t s a r e b r i d g e d v i a t h e t e r m i n a l s u l f u r a t o m s o f a 8 7 2 ' c h a i n f o r m i n g a d i m e r . A s i m i l a r r e a c t i o n o f I n C l 3 w i t h K 2 8 5 a n d P h 4 P C l i n a s l i g h t l y d i f f e r e n t m o l e r a t i o o f 1 : 2 : 1 i n D M F a f f o r d e d p a l e y e l l o w c r y s t a l s o f ( P h 4 P ) 2 [ { I n 2 S ( S s ) ( S 4 ) 2 } o , 5 { I n 2 S ( S s ) ( S 4 ) ( S 5 ) } o , 5 ] ( “ 0 - C o m p l e x ( 1 V ) c r y s t a l l i z e s i n t h e t r i c l i n i c s p a c e - g r o u p P - l ( # 2 ) w i t h a = 1 0 . 9 0 6 ( 2 ) A , b = 1 1 . 8 9 2 ( 2 ) A , c = 2 1 . 5 5 4 ( 3 ) A , a = 8 9 . 8 1 ( 1 ) ° , B = 9 7 . 4 6 ( 1 ) ° , 7 : 9 2 . 2 5 ( l ) ° , V = 2 7 6 9 ( l ) A 3 ( a t - 8 0 ° C ) . 2 : 2 . ( I V ) c a n b e c o n s i d e r e d a s t h e c o c r y s t a l l i z a t i o n o f [ I n 2 S ( S s ) ( S 4 ) 2 ] 2 ' a n d [ I n 2 S ( S s ) ( S 4 ) ( S 5 ) ] 2 ‘ a n i o n s w i t h e q u a l o c c u p a n c i e s . T h e t w o a n i o n s c o n t a i n t e t r a h e d r a l I n 3 + c e n t e r s . T h e I n a t o m s a r e b r i d g e d b y a 8 2 ' a n d a 8 5 2 ' l i g a n d t o f o r m a n e i g h t - m e m b e r e d [ I n S I n ( S s ) ] 2 + r i n g i n a n e x t r e m e c r a d l e c o n f i g u r a t i o n . T h e r e m a i n i n g t w o c o o r d i n a t i o n s i t e s o n e a c h I n a t o m a r e o c c u p i e d b y a 8 4 2 ' c h e l a t i n g l i g a n d o n o n e s i d e a n d a 8 4 2 ' a n d a 8 5 2 ' c h e l a t i n g l i g a n d s d i s o r d e r e d o n t h e o t h e r . A l l c o m p l e x e s s h o w n o a b s o r p t i o n s i n t h e U V / v i s s p e c t r u m . T h e s o l i d s t a t e f a r I R s p e c t r a o f a l l t h e c o m p o u n d s e x h i b i t s t r o n g a b s o r p t i o n s i n t h e 5 0 0 - 1 0 0 c m ' 1 r e g i o n d u e t o t h e 8 - 8 , M - S a n d M - X ( X = B r , C l ) s t r e t c h i n g f r e q u e n c i e s , t e n t a t i v e a s s i g n m e n t s a r e r e p o r t e d h e r e i n . T h e r m a l g r a v i m e t r i c a n a l y s i s d a t a i s a l s o r e p o r t e d . T h e 2 : r e a 3 : 2 5 1 c i t n l v i a i t s t t h y i t w o o f s a r e a c o m p l e x e s c o p l e d . o r u m ’ l i S n 1 3 4 ) 2 ( S 6 ) 0 _ 6 ( n T t l S i l n 2 3 3 3 0 1 2 . 3 1 5 a n d .m'estigation o f F I n t r o d u C l l O “ e n g i n e s a s m a n ! “ . h h y s t s l . b i o i n o g t o c h c m i S t r y 3 a c m h o n d u c t o r s ‘ . I t s s e r e x t e n t . p o l m i s t y o f t r a n s i t i t : t a r a c t e r i z e d . 1 ' 9 i e p e n a i n g o n t h e t h e r o l e o f t h e m i n t h e c h e m i s t r y l O l y ' c h a l c o g e n i d e e x t e n s i v e l y i n v P i l l y c h a l c o g e n i d e 1 1 ' a m g r o u p m e a n ; l O g 0 f t h e { . n ' C O n e s p o n d h 1 4 4 I n t r o d u c t i o n T h e l a s t t w o d e c a d e s s a w e x t e n s i v e r e s e a r c h i n t h e s y n t h e s i s a n d r e a c t i v i t y o f s o l u b l e m e t a l p o l y c h a l c o g e n i d e s . A n i m m e n s e i n t e r e s t i n t h i s a r e a h a s b e e n g e n e r a t e d b y t h e s i g n i f i c a n c e o f t h e s e c o m p l e x e s a s m o d e l c o m p o u n d s f o r s u l f i d e d h e t e r o g e n e o u s c a t a l y s t s l , b i o i n o r g a n i c s y s t e m s z , m e t a l s u l f u r t r a n s p o r t a g e n t s i n g e o c h e m i s t r y 3 a n d l o w t e m p e r a t u r e p r e c u r s o r s t o c h a l c o g e n i d e s e m i c o n d u c t o r s “ . C o n s e q u e n t i a l l y n u m e r o u s p o l y s u l f i d e , a n d t o a l e s s e r e x t e n t , p o l y s e l e n i d e a n d p o l y t e l l u r i d e c o m p l e x e s w i t h a v a r i e t y o f t r a n s i t i o n m e t a l s h a v e b e e n s y n t h e s i z e d a n d s t r u c t u r a l l y c h a r a c t e r i z e d . 1 ' 9 S i n c e p o l y s u l f i d e c o o r d i n a t i o n c h e m i s t r y c h a n g e s d e p e n d i n g o n t h e m e t a l c e n t e r , i t w o u l d b e i m p o r t a n t t o u n d e r s t a n d t h e r o l e o f t h e m e t a l i o n i n d e t e r m i n i n g s i m i l a r i t i e s a n d d i f f e r e n c e s i n t h e c h e m i s t r y a n d a l s o t o c o m p a r e t h e m w i t h t h e h e a v i e r p o l y c h a l c o g e n i d e l i g a n d s . T h u s f a r , t r a n s i t i o n m e t a l s h a v e b e e n e x t e n s i v e l y i n v e s t i g a t e d w i t h r e s p e c t t o c o o r d i n a t i o n t o p o l y c h a l c o g e n i d e l i g a n d s , w h e r e a s t h e s y n t h e s i s o f c o r r e s p o n d i n g c o m p l e x e s c o n t a i n i n g m a i n - g r o u p e l e m e n t s w e r e v i r t u a l l y u n e x p l o r e d . T h e f e w e x i s t i n g e x a m p l e s a r e , [ B i 2 S 3 4 ] 4 ' - 1 0 , [ S n ( S 4 ) 2 ( 3 6 ) o . 6 ( S 4 ) o . 4 ] 2 " 1 1 . [ I n 2 3 6 2 1 1 4 ‘ t 1 2 . [ S n S e 1 2 1 2 ' v 1 3 , [ P b 3 3 8 1 2 " 1 4 . [ I n 2 S e 1 o l z ' t 1 5 a n d [ M 3 S e 1 5 1 3 ' t 1 5 ( M = I n , T l ) . A s p a r t o f o u r s y s t e m a t i c i n v e s t i g a t i o n o f p o l y c h a l c o g e n i d e c h e m i s t r y o f t h e l a t e t r a n s i t i o n a n d m a i n g r o u p m e t a l s l z ' 1 5 a n d i n a n a t t e m p t t o p r e p a r e t h e s u l f u r a n a l o g o f t h e i n d i u m - p o l y s e l e n i d e c o m p l e x e 3 1 2 v 1 5 w e i n v e s t i g a t e d t h e c o r r e s p o n d i n g p o l y s u l f i d e c h e m i s t r y . W e d i s c o v e r e d a n d : . 1 1 z z l : c t 5 J t a . 3 5 t S ‘ a l t l l y ( 5 6 l t 5 4 ) r ] : ‘ C : ) h B ] a r : t e l l ' n g u n ~ [ ! 3 1 E h W g ( t h . 0 . , 3 : C l o g e n e u s W i m a f n i e t h l h ’ y d r l m i n E X P E R I K I E R e a g e n l S T h e c h e m i c o m m e r c i a l l y : S L R e f i n i n g C o m p a n ) i l a i l i n c k r o d t I n c . . . i t é i u m t l l l ) b r o m i d t t e t r a p h e n y l p h o s t t e t r a p h e n y l p h o s p i C h e m i c a l C o m p a n a n a l y t i c a l r e a g e n t “ i f . a w e e k a n d T h 0 fi r s t 5 0 m l C O l t t m h u s C h e m i c 1 4 5 s t r u c t u r a l l y c h a r a c t e r i z e d f i v e n e w i n d i u m - p o l y s u l f i d e c o m p l e x e s : [ 1 0 ( 8 4 ) ( 3 6 ) B r 1 2 " 1 6 . [ I n ( S 4 ) ( 8 6 ) C 1 1 2 ' . [ I n 2 ( S 4 ) 2 ( 5 6 ) 2 ( S 7 ) l 4 ' . [ I n 2 8 ( S s ) ( S 4 ) 2 ] 2 ' a n d [ 1 0 2 3 ( 3 5 ) ( S 4 ) ( 3 6 ) ] 2 ' . E X P E R I M E N T A L S E C T I O N R e a g e n t s T h e c h e m i c a l s i n t h i s r e s e a r c h w e r e u s e d a s o b t a i n e d c o m m e r c i a l l y : s u l f u r , 9 9 . 9 9 9 % p u r i t y , A m e r i c a n S m e l t i n g a n d R e f i n i n g C o m p a n y , D e n v e r , C O . ; p o t a s s i u m m e t a l , a n a l y t i c a l r e a g e n t , M a l l i n c k r o d t I n c . , P a r i s , K Y . ; i n d i u m ( I I I ) c h l o r i d e , 9 9 . 9 9 9 % p u r i t y , i n d i u m ( I I I ) b r o m i d e , 9 9 . 9 9 9 % p u r i t y , C e r a c I n c . M i l w a u k e e , W I . ; t e t r a p h e n y l p h o s p h o n i u m c h l o r i d e ( P h 4 P C l ) , 9 8 % p u r i t y , t e t r a p h e n y l p h o s p h o n i u m b r o m i d e ( P h 4 P B r ) , 9 8 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y I n c . , M i l w a u k e e , W I . D i m e t h y l f o r m a m i d e ( D M F ) , a n a l y t i c a l r e a g e n t , w a s s t o r e d o v e r 4 A L i n d e m o l e c u l a r s i e v e s f o r o v e r , a w e e k a n d t h e n d i s t i l l e d u n d e r r e d u c e d p r e s s u r e a t 2 5 - 3 0 ° C . T h e f i r s t 5 0 m l w a s d i s c a r d e d . D i e t h y l e t h e r ( A . C . S . a n h y d r o u s , C o l u m b u s C h e m i c a l I n d u s t r i e s I n c . , C o l u m b u s , W I . ) w a s d i s t i l l e d a f t e r r e f l u x i n g w i t h s o d i u m / p o t a s s i u m a l l o y , w i t h b e n z o p h e n o n e a n d t r i e t h y l e n e - g l y c o l - d i m e t h y l e t h e r f o r 1 2 h o u r s . M e t h a n o l ( M e O H ) a n h y d r o u s ( E . M . S c i e n c e , G i b b s t o w n , N . J . ) w a s d i s t i l l e d a f t e r r e f l u x i n g w i t h C a H 2 f o r 8 - 1 2 h o u r s . p h y s i c O C h e ' I n f r a r e d 5 p c : C s l m a t r i x o n 3 y a r d a l o n g W l l h 7 2 1 : b y a p p l y i n g a r e r e c o r d e d i n g u n o f t h e 3 ; : c t r o p h o t o m e t t T h e r m a l g r r e s c r i e d o n e l m : 7 : : s o l i d s a m p l e t r a t e o f 5 ° C / m i r Q u a n t i t a t i v a z r i o r m e d o n a E i l l l l p t d w i t h N o r t h e r n T N 5 5 ( : y s t a l s o f e a c h 3 0 fi d u c t i v e c a r b t i i s s i p a t e C h a r g e b e a m . E n e r g y 3 X p e l l l l l fi m a l S C X - r a ) W o r k A C C e T a k e . B e a n 1 4 6 P h y s i c o c h e m i c a l S t u d i e s I n f r a r e d s p e c t r a o f t h e c o m p l e x e s w e r e r e c o r d e d a s s o l i d s i n a C s I m a t r i x o n a N i c o l e t 7 4 0 F T - I R s p e c t r o m e t e r . E a c h s a m p l e w a s g r o u n d a l o n g w i t h C 8 1 t o a f i n e p o w d e r a n d a t r a n s l u c e n t p e l l e t w a s m a d e b y a p p l y i n g ~ 1 5 0 0 0 p s i p r e s s u r e t o t h e m i x t u r e . T h e s p e c t r a w e r e r e c o r d e d i n t h e F a r I R r e g i o n ( 5 0 0 t o 1 0 0 c m ' l ) . U V / V i s s p e c t r a o f t h e c o m p l e x e s w e r e m e a s u r e d o n a H i t a c h i U - 2 0 0 0 s p e c t r o p h o t o m e t e r . T h e r m a l g r a v i m e t r i c a n a l y s e s ( T G A ) o f t h e c o m p o u n d s w e r e r e c o r d e d o n e i t h e r a C a h n T G s y s t e m 1 2 1 o r a S h i m a d z u T G A - S O . T h e s o l i d s a m p l e s w e r e h e a t e d f r o m r o o m t e m p e r a t u r e t o 1 0 0 0 ° C a t a r a t e o f 5 ° C / m i n u n d e r a s t e a d y f l o w o f d r y n i t r o g e n . Q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s o f t h e c o m p o u n d s w a s p e r f o r m e d o n a s c a n n i n g e l e c t r o n m i c r o s c o p y ( S E M ) J E O L I S M - 3 5 C e q u i p p e d w i t h a n x - r a y m i c r o a n a l y s i s a t t a c h m e n t f r o m T r a c o r N o r t h e r n T N 5 5 0 0 , f o r e n e r g y d i s p e r s i v e s p e c t r o s c o p y ( E D S ) . S i n g l e c r y s t a l s o f e a c h s a m p l e w e r e m o u n t e d o n a n a l u m i n u m s t u b u s i n g c o n d u c t i v e c a r b o n p a i n t f o r a d h e s i o n t o t h e s t u b a s w e l l a s t o d i s s i p a t e c h a r g e t h a t i s d e v e l o p e d o n t h e s a m p l e u n d e r a n e l e c t r o n b e a m : E n e r g y d i s p e r s i v e s p e c t r a w e r e o b t a i n e d u s i n g t h e f o l l o w i n g e x p e r i m e n t a l s e t - u p : X - r a y d e t e c t o r p o s i t i o n : 5 5 m m W o r k i n g d i s t a n c e : 3 9 m m A c c e l e r a t i n g v o l t a g e : 2 0 K V T a k e - o f f a n g l e : 2 7 d e g B e a m c u r r e n t : 2 0 0 p i c o a m p s s t e a d y “ O w o f ( 3 A c c u m D e t e c t s A s t a n d a r d l e 3 : 1 } 2 3 t h e x - r 3 ) ' f a r t h e a t o m s l a b s o r p t i o n o f t h e : : : : : : a r . T h e a n a d i t l d u a l m e a s u r : : - r n p o u n d . S y n t h e s e s A l l e x p e r i r m o s i ‘ t h e r e o f d E l m ' e b o x . P O t a s s i u m fi n e l y P o w d e r e d : 0 3 8 4 m o l ) o f | e q u i p p e d w i t h a i m m o n i a w a s C b a t h ) a n d t h e m P O I a s g i U m m e t a l s o l s ' L t l o n f o r m e d l t ‘ fl n “ b e r a t i n g l b y H i “ 1 , - d t n V a C u o 1 4 7 A c c u m u l a t i o n t i m e : 6 0 s e c s D e t e c t o r W i n d o w : B e r y l l i u m A s t a n d a r d l e s s q u a n t i t a t i v e ( S Q a n a l y s i s ) p r o g r a m w a s u s e d t o a n a l y z e t h e x - r a y s p e c t r a o b t a i n e d . T h e a n a l y s i s c o u l d n o t b e u s e d f o r t h e a t o m s b e l o w a t o m i c n u m b e r 1 1 ( s o d i u m ) d u e t o t h e a b s o r p t i o n o f t h e l o w e n e r g y x - r a y s b y t h e B e w i n d o w o f t h e d e t e c t o r . T h e a n a l y s i s r e p o r t e d h e r e a r e a n a v e r a g e o f t h r e e t o f o u r i n d i v i d u a l m e a s u r e m e n t s o n s e v e r a l d i f f e r e n t s i n g l e c r y s t a l s o f e a c h c o m p o u n d . S y n t h e s e s A l l e x p e r i m e n t s a n d s y n t h e s e s w e r e p e r f o r m e d u n d e r a n a t m o s p h e r e o f d r y n i t r o g e n i n a V a c u u m A t m o s p h e r e s D r i - L a b g l o v e b o x . P o t a s s i u m p e n t a s u l f i d e , K 2 8 5 . 3 0 . 7 5 7 g ( 0 . 9 5 9 m o l ) o f f i n e l y p o w d e r e d e l e m e n t a l s u l f u r w a s c o m b i n e d w i t h 1 5 . 0 0 0 g ( 0 . 3 8 4 m o l ) o f s l i c e d p o t a s s i u m m e t a l i n a r o u n d b o t t o m fl a s k e q u i p p e d w i t h a t e f l o n v a l v e a n d a s t i r b a r . A 1 5 0 m l o f l i q u i d a m m o n i a w a s c o n d e n s e d i n t o t h e fl a s k a t - 7 8 ° C ( d r y i c e / a c e t o n e b a t h ) a n d t h e m i x t u r e w a s s t i r r e d f o r a c o u p l e o f h o u r s u n t i l t h e p o t a s s i u m m e t a l h a d d i s s o l v e d c o m p l e t e l y . W h e n a d e e p b l u e s o l u t i o n f o r m e d , t h e a m m o n i a w a s r e m o v e d b y e v a p o r a t i o n a t r o o m t e m p e r a t u r e ( b y a l l o w i n g t h e c o l d b a t h t o w a r m u p s l o w l y ) u n d e r a s t e a d y f l o w o f d r y n i t r o g e n . T h e r e s u l t i n g y e l l o w - o r a n g e s o l i d w a s d r i e d i n v a c u o , f l a m e d r i e d a n d g r o u n d t o a f i n e p o w d e r i n t h e n c p m ‘ i o n s a m e c e o P r d at o f p o t a s s i u m a n u d t d e ° B i s s D u l M l fi F l e t a m l rl { ) t h s o l u K 2 3 6 i n t h c ° s t 3'25 s t i r r e d r e m o v e t h e f B K t r a i n d u n C t S o i p o l o r r I ' l a n s t a r , d a n a l y t i c a l l y s y n t h e s i s a l q u a n t i t a t i v e s t o r a g p s m u o i r e c c r t of ( I ) w i t h E D l n 1 3 1 0 . 2 3 3 r 1 . o < P ‘ t a B i s l t e t r l t x a s u l f i d o q n i 2 0 '50 m1 D D M F m l F M sol, 1 4 8 g l o v e b o x . I t w a s u s e d w i t h o u t f u r t h e r c h a r a c t e r i z a t i o n . T h e y e l l o w - o r a n g e p o w d e r d i s s o l v e s i n D M F a n d a c e t o n i t r i l e r e s u l t i n g i n d e e p b l u e - g r e e n s o l u t i o n s . P r e p a r a t i o n o f K 2 8 4 a n d K 2 8 5 w e r e a c c o m p l i s h e d b y f o l l o w i n g t h e s a m e p r o c e d u r e a s f o r K 2 8 5 , b y v a r y i n g t h e s t o i c h i o m e t r i c r a t i o s o f p o t a s s i u m a n d s u l f u r . B i s ( t e t r a p h e n y l p h o s p h o n i u m ) - t e t r a s u l f i d o - h e x a s u l f i d o - i n d a t e ( l l l ) b r o m i d e , ( P h 4 P ) 2 [ I n ( S 4 ) ( S 5 ) B r ] ( I ) A 2 0 m l D M F s o l u t i o n o f 0 . 2 0 0 g ( 0 . 5 6 4 m m o l ) I n B r 3 w a s a d d e d t o a 8 0 m l D M F s o l u t i o n o f 0 . 1 1 7 g ( 0 . 5 6 8 m m o l ) K 2 8 4 , 0 . 1 5 3 g ( 0 . 5 6 5 m m o l ) K 2 8 5 i n t h e p r e s e n c e o f 0 . 4 7 0 g ( 1 . 1 2 1 m m o l ) P h 4 P B r . T h e m i x t u r e w a s s t i r r e d f o r 2 0 m i n . F i l t r a t i o n o f t h e p a l e y e l l o w s o l u t i o n t o r e m o v e t h e K B r p r e c i p i t a t e , f o l l o w e d b y s l o w a d d i t i o n o f c a . 6 0 m l o f e t h e r , a n d s t o r a g e a t r o o m t e m p e r a t u r e f o r 2 d a y s , a f f o r d e d 0 . 4 1 g a n a l y t i c a l l y p u r e y e l l o w c h u n k y c r y s t a l s o f ( I ) ( 6 1 % y i e l d ) . T h e s y n t h e s i s a l s o c a n b e c a r r i e d o u t w i t h K 2 8 5 ( 3 9 % y i e l d ) . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( L ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f I n 1 $ 1 0 . 2 3 3 r 1 . 0 5 P 2 . 2 2 . B i s ( t e t r a p h e n y l p h o s p h o n i u m ) - t e t r a s u l f i d o - h e x a s u l f i d o - i n d a t e ( I I I ) c h l o r i d e , ( P h 4 P ) 2 [ I n ( S 4 ) ( 8 5 ) C l ] ( I I ) A 2 0 m l D M F s o l u t i o n o f 0 . 2 0 0 g ( 0 . 9 0 4 m m o l ) I n C l 3 w a s a d d e d t o a 8 0 m l D M F s o l u t i o n o f 0 . 1 8 7 g ( 0 . 9 0 6 m m o l ) K 2 8 4 , 0 . 2 4 5 g ( 0 . 9 0 6 a l I Z : : a g i t r :t' a e 3 z a d 5 l l t y 2 ' K v r “ . c l o a A T C m o h e i c t 3 e e l . 3 5 6 3 5 S i l i ‘ l l t a q h e n u p u d a ( I I y l f e n r ) T t M e h m e “ t e l r a l t h o 1 5 i n t h c l t i s h t h C h K 3 3 5 w a s s t i r r e d r e m o v e t h m e t h a n o l f o r 2 , w q u a n t i t a e t a i t e n U m d a K d ” l i s 0 d d P c “ f o r B r l a a t e a n e k s , i v e m i c ; of ( I I I ) w i t h I n 1 3 1 4 . 0 4 1 ’ 2 1 5 I M e t h o d ( B 2 1 3 1 2 . 1 5 C 1 0 9 9 P M O I ) I n c h . 0 . P h i l ) “ a n d 0 . 5 - “ H a g e n a n d 1 4 9 m m o l ) K 2 8 5 i n t h e p r e s e n c e o f 0 . 6 7 8 g ( 1 . 8 0 9 m m o l ) P h 4 P C l . T h e m i x t u r e w a s s t i r r e d f o r 2 0 m i n . F i l t r a t i o n o f t h e p a l e y e l l o w s o l u t i o n t o r e m o v e t h e K C ] p r e c i p i t a t e , f o l l o w e d b y s l o w a d d i t i o n o f c a . 6 0 m l o f e t h e r , a n d s t o r a g e a t r o o m t e m p e r a t u r e f o r a w e e k , a f f o r d e d a n a l y t i c a l l y p u r e s m a l l y e l l o w c r y s t a l s o f ( P h 4 P ) 2 [ l n ( S 4 ) ( S s ) C l ] i n 6 5 % y i e l d . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( I I ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f I n 1 8 1 0 . 1 5 C l o . 9 9 P 2 . 1 6 . T e t r a ( t e t r a p h e n y l p h o s p h o n i u m ) - b i s ( t e t r a s u l f i d o ) - b i s ( h e x a s u l f i d o ) - ( u - h e p t a s u l f i d o ) - d i i n d a t e ( I I I ) , ( P 1 1 4 P ) 4 [ I n 2 ( S 4 ) 2 ( 8 6 ) 2 ( S 7 ) 1 ( I I I ) M e t h o d ( A ) A 5 m l D M F s o l u t i o n o f 0 . 1 0 0 g ( 0 . 4 5 2 m m o l ) I n C 1 3 w a s a d d e d t o a 1 5 m l D M F s o l u t i o n o f 0 . 2 7 0 g ( 1 . 1 3 2 m m o l ) K 2 8 5 i n t h e p r e s e n c e o f 0 . 3 3 9 g ( 0 . 9 0 4 m m o l ) P h 4 P C l . T h e m i x t u r e w a s s t i r r e d f o r 2 0 m i n . F i l t r a t i o n o f t h e p a l e y e l l o w s o l u t i o n t o r e m o v e t h e K B r p r e c i p i t a t e , f o l l o w e d b y s l o w a d d i t i o n o f c a . 1 0 m l o f m e t h a n o l a n d l a t t e r c a . 2 0 m l o f e t h e r . S t o r a g e a t r o o m t e m p e r a t u r e f o r 2 , w e e k s , a f f o r d e d v e r y t h i n y e l l o w p l a t e l e t s i n 5 2 % y i e l d . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( I I I ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f I n 1 8 1 4 . 0 4 P 2 . 1 5 M e t h o d ( B ) I n a p y r e x t u b e w a s a d d e d 0 . 0 5 0 g ( 0 . 2 2 6 m m o l ) I n C 1 3 , 0 . 1 8 4 g ( 0 . 6 8 0 m m o l ) K 2 8 5 a n d 0 . 1 7 0 g ( 0 . 4 5 4 m m o l ) P h 4 P C l a n d 0 . 5 m l o f m e t h a n o l . T h e m i x t u r e w a s f r o z e n i n l i q u i d n i t r o g e n a n d f l a m e s e a l e d u n d e r v a c u u m . T h e t u b e w a s g a s e q u e n t l y h e a a t m o s p i n e r t an : n s t a l s 5 1 2 3 0 1 a : a ’ y s i s w n p e d e r r e f 9 . 3 2 1 1 1 3 3 " : t i s l : : i a m f i n o a r n c o m p o s i t i o n o f I r B i s ( t e t r 8 - t ; - S u l f l d 0 ) ° l h ; - t t t r a s u t f i d o - i i i n d a t e l l l l l l s l i l l ” ) T o a s o l u t i : m o l ‘ ) P h a P C l i s o l u t i o n o f O . l 0 0 f o r c a . 2 0 m i n u fi l t r a t i o n ( t o r e r r i n c i p i e n t c r y s t a l l i d a y s , y e l l o w p l a t y i e l d , ~ t 8 % _ , 1 n u m b e r o f c r y s t : 1 5 0 s u b s e q u e n t l y h e a t e d t o 1 1 0 ° C f o r t e n d a y s . T h e t u b e w a s o p e n e d i n a n i n e r t a t m o s p h e r e g l o v e b o x a n d l a r g e ( ~ 2 - 3 m m i n s i z e ) y e l l o w c r y s t a l s w e r e i s o l a t e d b y f i l t r a t i o n , w a s h e d q u i c k l y w i t h m e t h a n o l , e t h a n o l a n d f i n a l l y w i t h e t h e r , y i e l d 5 8 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( I I I ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f I n 1 8 1 3 , 9 3 P 2 . 0 5 B i s ( t e t r a p h e n y l p h o s p h o n i u m ) - { b i s ( t e t r a s u l f i d o ) - ( u — s u l f i d o ) - ( u - p e n t a s u l f i d o ) - d i i n d a t e ( I I I ) } a n d { - t e t r a s u l f i d o - h e x a s u l f i d o - ( u - s u l f i d o ) - ( u — p e n t a s u l f i d o ) - d i i n d a t e ( I I I ) } . ( P h 4 P ) 2 [ { I n 2 8 ( S s ) ( S 4 ) 2 } o . s { 1 n 2 5 ( S s ) ( S 4 ) ( S t s ) } o . s l ( I V ) T o a s o l u t i o n o f 0 . 2 1 6 g ( 1 . 1 3 2 m m o l ) K 2 8 5 a n d 0 . 1 7 0 g ( 0 . 4 5 4 m m o l ) P h 4 P C l i n 1 5 m l o f D M F w a s a d d e d d r o p w i s e a 5 m l D M F s o l u t i o n o f 0 . 1 0 0 g ( 0 . 4 5 2 m m o l ) I n C l 3 . T h e m i x t u r e w a s t h e n s t i r r e d f o r c a . 2 0 m i n u t e s u n t i l i t s c o l o r b e c a m e p a l e y e l l o w . F o l l o w i n g f i l t r a t i o n ( t o r e m o v e K C l ) , 2 0 m l o f e t h e r w a s l a y e r e d o v e r i t t o i n c i p i e n t c r y s t a l l i z a t i o n . U p o n s t a n d i n g a t r o o m t e m p e r a t u r e f o r 2 d a y s , y e l l o w p l a t e l e t s o f ( I V ) w e r e f o r m e d a n d i s o l a t e d b y f i l t r a t i o n ; y i e l d . 4 8 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( I V ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f I n 1 8 7 , 9 9 P 1 , 1 7 . - x X p d s . h i l l i i e r e a s u r e d y R u - r a X C . h n g ‘ n w e f r e e d d r a m o f t . C P t : r s ; : i e a t r : t a : c i : fi t } t s e r a y C f : w C t i p O O a 3 i e d h - a m l O h l W u e c s v h t : I t l G r P T l t o a W t a r e c o m p i l e t 1 5 1 X - r a y C r y s t a l l o g r a p h i c S t u d i e s . X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e r e c o r d e d w i t h a P h i l l i p s X R G - 3 0 0 0 c o m p u t e r c o n t r o l l e d p o w d e r d i f f r a c t o m e t e r . N i - f i l t e r e d , C u - r a d i a t i o n w a s u s e d . D - s p a c i n g s ( A ) f o r a l l m a t e r i a l s w e r e m e a s u r e d . T h e X - r a y p o w d e r p a t t e r n s o b t a i n e d f r o m t h e c o m p l e x e s , m a t c h e d w e l l w i t h t h o s e c a l c u l a t e d f r o m t h e a t o m c o o r d i n a t e s o b t a i n e d f r o m t h e X - r a y s i n g l e c r y s t a l d i f f r a c t i o n s t u d i e s , u s i n g t h e p r o g r a m P O W D - 1 0 1 7 . T h i s c o n f i r m e d t h e h o m o g e n e i t y a n d t h e p u r i t y o f t h e c o m p l e x e s , a s s u m i n g n o a m o r p h o u s p h a s e s w e r e p r e s e n t . C a l c u l a t e d a n d o b s e r v e d d - s p a c i n g s ( A ) f o r ( I ) , ( I I I ) a n d ( I V ) a r e c o m p i l e d i n T a b l e s 3 . 1 - 2 . 3 . T a b l e 3 1 - C a l e t ' l ’ l ‘ . . : l ’ l l l m l s " ° 3 h k l 1 1 0 - 1 1 1 0 0 2 l l l - 1 1 2 0 2 1 1 2 0 2 0 2 1 1 2 1 3 0 - 1 1 4 2 2 3 2 0 4 2 1 2 - 3 0 2 - 1 3 3 2 3 2 0 2 4 1 4 1 ' 3 1 1 ~ 3 l 4 0 3 4 3 2 1 2 2 3 3 3 0 . 4 1 2 1 5 2 T a b l e 3 . 1 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n 0 f ( P M P ) 2 [ I n ( S 4 ) ( 3 6 ) B r ] ( I ) - h H d c j l d A ) d o b s t A ) I / I m § x ( 0 b 5 ) 1 1 0 1 0 . 7 9 - 1 l l 1 0 . 6 8 1 0 . 6 6 9 . 1 0 0 2 9 . 9 5 1 1 1 8 . 6 2 8 . 5 5 1 6 . 4 - 1 l 2 8 . 4 5 0 2 1 8 . 0 9 4 8 . 0 9 5 3 6 . 6 7 . 9 4 9 1 0 0 . 0 1 2 O 7 . 4 2 6 7 . 4 0 9 4 . 2 - 2 0 2 6 . 6 9 3 6 . 6 9 2 2 1 . 6 1 1 2 6 . 5 4 0 6 . 5 3 7 1 3 . 8 1 3 0 5 . 4 1 9 5 . 4 1 6 2 6 . 1 - 1 1 4 5 . 0 2 2 5 . 0 3 0 4 9 . 2 - 2 2 3 4 . 8 2 2 4 . 8 2 2 6 0 . 1 - 2 0 4 4 . 8 0 7 2 1 2 4 . 7 5 4 4 . 7 3 9 3 7 . 1 - 3 0 2 4 . 7 3 4 - 1 3 3 4 . 4 8 3 4 . 4 9 3 8 0 . 1 - 2 3 2 4 . 4 2 9 4 . 4 2 4 4 4 . 6 0 2 4 4 . 3 3 7 4 . 3 2 8 3 1 . 9 - 1 4 1 4 . 2 0 6 4 . 1 9 1 3 7 . 1 ‘ 3 1 1 4 . 0 3 9 4 . 0 2 7 7 3 . 1 - 3 1 4 3 . 9 5 1 3 . 9 4 5 3 1 . 7 0 3 4 3 . 8 0 4 3 . 8 0 2 2 7 . 4 3 2 1 3 . 7 5 6 3 . 7 5 1 2 6 . 7 2 2 3 3 . 7 5 0 - 3 3 2 3 . 6 9 4 3 . 6 9 4 2 5 . 0 3 3 0 3 . 5 9 9 3 . 5 9 8 2 4 . 1 - 4 1 2 3 . 5 1 6 3 . 5 1 0 2 5 . 9 3 : 1 : - b k l 2 1 4 2 3 3 . 3 3 4 4 2 1 2 2 6 4 2 4 4 1 5 4 2 1 4 0 2 2 2 5 - 3 5 2 - 3 5 3 - 5 1 4 - 2 4 6 4 4 4 0 4 6 5 3 3 4 5 3 1 7 1 - 5 3 5 4 4 5 3 5 6 3 3 8 2 2 7 1 5 3 T a b l e 3 . 1 ( c o n t ' d ) . h k 1 d c m fl t ) d o b 3 ( A ) I / I m n t o b s ) 2 1 4 3 . 4 5 1 3 . 4 5 4 2 7 . 1 2 3 3 3 . 3 8 9 3 . 3 8 8 3 6 . 4 - 3 3 4 3 . 3 4 2 3 . 3 4 3 4 3 . 0 - 4 2 1 3 . 2 9 3 3 . 2 9 4 9 4 . 2 - 2 2 6 3 . 2 0 8 3 . 2 1 4 2 5 . 0 - 4 2 4 3 . 1 3 1 3 . 1 3 0 1 9 . 5 - 4 1 5 3 . 0 7 4 3 . 0 7 5 1 8 . 6 4 2 1 3 . 0 0 2 3 . 0 1 7 2 7 . 1 4 o 2 2 . 9 4 6 2 . 9 4 1 2 8 . 3 2 2 5 2 . 8 7 5 2 . 8 7 2 2 2 . 3 - 3 5 2 2 . 8 3 7 2 . 8 3 7 2 7 . 1 - 3 5 3 2 . 7 7 5 2 . 7 7 9 2 4 . 4 - 5 1 4 2 . 7 5 6 2 . 7 5 1 1 8 . 6 2 4 6 2 H 7 2 H 5 2 & 3 - 4 4 4 2 . 6 7 0 2 . 6 6 9 2 0 . 4 0 4 6 2 . 6 5 4 2 . 6 5 8 2 2 . 2 - 5 3 3 2 . 5 7 2 2 . 5 7 0 2 2 . 2 - 4 5 3 2 . 4 9 5 2 . 4 9 5 1 9 . 8 1 7 1 2 . 4 5 2 2 . 4 5 8 2 1 . 2 - 5 3 5 2 . 4 3 8 2 . 4 3 4 2 3 . 4 - 4 4 6 2 . 4 1 1 2 . 4 1 2 2 4 . 4 - 3 5 6 2 . 3 7 7 2 . 3 7 7 3 5 . 9 - 3 3 8 2 . 3 3 9 2 . 3 3 1 7 1 . 3 2 2 7 2 . 2 8 8 2 . 2 8 5 2 3 . 8 - 6 2 1 2 . 2 6 1 2 . 2 5 8 2 9 . 8 - 3 7 1 2 . 2 3 5 2 . 2 2 8 2 0 . 4 0 4 8 2 . 1 6 1 2 . 1 7 0 2 2 . 2 - 4 6 5 2 . 1 4 5 2 . 1 4 7 2 1 . 2 - 4 4 8 2 . 1 1 2 2 . 1 0 8 2 6 . 1 - 6 2 7 2 . 0 7 4 2 . 0 6 9 3 6 . 6 9 . . . ] : 3 . 2 . C a l c u l - J i l ’ h s l ’ l t i l l n j s ‘ / _ _ _ _ _ h _ _ k — — l — — — — — — . 1 0 1 1 2 0 - l - 2 1 - 1 2 0 0 2 1 1 3 0 1 0 1 1 - 1 1 - 2 0 1 2 1 0 - 1 0 2 0 4 1 0 l 2 - 1 2 2 0 - 3 2 2 4 0 . 3 0 1 . 2 2 2 . 2 5 3 2 3 1 . 3 1 2 1 5 4 T a b l e 3 . 2 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n 0 1 ' ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( 3 6 ) 2 ( S 7 ) l ( 1 1 1 ) . h k 1 ( 1 . 3 1 . 4 . 4 ) d o n g ) I / I m fl m b s ) - 1 0 1 9 . 3 3 9 . 2 9 1 5 1 2 0 8 . 3 2 8 . 3 0 9 - 1 - 2 1 7 . 8 9 7 . 9 1 1 2 - 1 2 0 7 . 2 6 6 7 . 2 7 4 2 5 0 2 1 6 . 9 3 2 6 . 9 2 0 2 8 1 3 0 6 . 4 1 4 6 . 5 5 7 2 4 1 0 1 6 . 4 0 0 6 . 3 9 1 3 4 1 - 1 1 6 . 1 1 5 6 . 1 3 2 2 2 - 2 0 1 5 . 8 9 5 5 . 9 1 1 3 4 2 1 0 5 . 6 2 6 5 . 6 2 4 5 3 - 1 0 2 5 . 3 3 2 5 . 3 4 7 6 6 0 - 4 1 4 . 9 2 6 4 . 9 3 9 5 8 0 1 2 4 . 7 4 8 4 . 7 6 5 7 7 — 1 2 2 4 . 4 6 4 4 . 4 8 5 7 8 0 - 3 2 4 . 3 0 4 4 . 2 9 1 4 7 ‘ 2 4 0 4 . 1 6 0 4 . 1 6 8 1 0 0 - 3 0 1 4 . 0 2 0 4 . 0 2 4 6 1 - 2 2 2 3 . 9 7 6 3 . 9 6 2 4 8 - 2 - 5 1 3 . 8 4 9 3 . 8 4 6 5 5 2 3 1 3 . 7 6 3 3 . 7 7 4 5 2 - 3 1 2 3 . 5 3 1 3 . 5 4 3 5 7 T a b l e 3 . 2 ( c o n t ' d ) . h i t 1 d fl l c Q t ) 6 3 1 , 3 0 1 ) m m fl h s ) 0 4 2 3 . 4 6 6 3 . 4 7 7 4 0 1 . 4 2 3 . 2 8 5 3 . 3 0 0 4 2 - 3 - 5 1 3 . 2 4 5 3 . 2 4 9 2 9 - 3 - 2 3 3 . 1 6 9 3 . 1 7 9 2 8 - 1 - 7 1 3 . 0 9 7 3 . 1 0 3 2 9 0 - 7 1 3 . 0 0 5 3 . 0 0 3 4 8 - 3 1 3 2 . 9 8 8 1 0 3 2 . 9 1 5 2 . 9 1 6 2 5 1 - 2 3 2 . 8 5 4 2 . 8 5 6 3 5 - 3 2 3 2 . 8 2 9 2 . 8 3 4 2 4 1 2 3 2 . 7 7 2 2 . 7 7 3 2 0 - 1 6 2 2 . 7 4 3 2 . 7 3 9 1 9 - 4 - 5 2 / - 4 - 5 1 2 . 6 9 6 2 . 6 9 0 4 4 3 5 1 2 . 6 3 9 2 . 6 3 6 2 1 3 1 2 / - 2 - 4 4 2 . 5 7 4 2 . 5 8 2 2 1 3 - 1 2 2 . 5 5 1 2 . 5 5 6 1 6 ' 0 8 1 2 . 5 1 2 2 . 5 1 5 1 2 - 4 - 7 2 2 . 3 7 5 2 . 3 7 3 1 8 4 - 3 2 2 . 2 7 8 2 . 2 7 7 2 1 - 4 5 0 2 . 2 1 4 2 . 2 2 3 2 1 4 1 2 2 . 1 4 1 2 . 1 4 9 1 7 - 5 - 7 1 2 . 0 5 5 5 2 . 0 5 2 1 0 - 6 0 1 1 . 9 7 6 1 . 9 8 1 1 4 - ' n 5 — o o — . O — . F . — u ' # # ~ o N . . . — . u . ) J C . J ‘ I o b H ( ‘ ' ' — g u fl . . o . a b o . I _ A w ~ ‘ C H N N J . . w . , ) fi . ‘ . . 1 . 3 3 3 c a l C U l T a t e - - 3 { 1 1 3 1 2 1 1 1 1 1 2 3 1 3 - \ - 2 2 ~ 1 4 ] 1 1 7 - 3 0 6 3 2 4 1 - l 3 6 1 - 3 6 0 5 1 1 4 5 3 4 1 4 . 2 4 4 . 1 5 0 0 1 0 4 . 3 3 1 5 6 T a b l e 3 . 3 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n 0 1 ’ ( P h 4 P ) 2 [ { I n 2 8 ( 3 5 ) ( 3 4 ) 2 } 0 . 5 { 1 0 2 3 ( 3 5 ) ( S 4 ) ( S 6 ) } 0 . 5 ] ( 1 V ) - h H 4 . 3 1 . 0 1 ) d o t s t A ) I / I m j x t o b s ) 1 0 0 1 0 . 8 1 1 0 . 9 4 6 3 0 - 1 1 1 0 . 4 0 1 0 . 5 5 2 8 - l 1 O 8 . 1 6 8 . 3 4 7 1 l 1 0 7 . 8 4 8 . 0 2 4 7 l 0 2 7 . 1 5 7 . 3 1 1 6 - 1 1 2 6 . 8 1 6 . 9 6 1 5 0 2 0 5 . 9 4 6 . 0 3 7 4 2 0 0 5 . 4 0 5 . 4 4 9 1 1 - 2 1 5 . 0 7 5 . 1 3 8 1 - l - 1 4 4 . 6 3 4 . 7 0 4 6 - 1 0 5 4 . 1 6 4 . 1 5 4 1 - 2 2 l 4 . 0 8 2 0 3 4 . 0 6 2 2 0 3 . 9 2 3 . 9 7 1 1 - 2 - 1 4 3 . 8 2 3 . 8 7 8 - 1 3 2 3 . 6 0 2 3 . 6 0 6 1 0 0 1 3 2 3 . 4 2 5 3 . 4 4 0 1 3 l - 2 5 3 . 2 2 9 3 . 2 2 2 2 0 2 - 3 1 3 . 1 8 2 3 . 1 7 3 1 5 2 3 1 3 . 0 7 0 3 . 0 8 5 3 3 - 3 - 2 2 3 . 0 0 1 2 . 9 9 6 7 3 - 1 4 1 2 . 8 8 0 2 . 8 7 6 1 8 1 1 7 2 . 7 5 8 2 . 7 5 6 1 3 - 3 0 6 2 . 7 1 4 2 . 7 0 0 8 - ' 2 4 1 2 . 6 4 7 2 . 6 4 3 1 6 - 1 3 6 2 . 6 4 6 1 - 3 6 2 . 5 3 3 2 . 5 3 1 1 6 0 5 1 2 . 3 6 1 2 . 3 5 5 2 3 1 - 4 5 2 . 3 6 0 3 4 1 2 . 2 1 8 2 . 2 2 9 9 4 - 2 4 2 . 1 6 4 2 . 1 6 1 1 8 4 - 1 5 2 . 1 3 8 2 . 1 3 7 1 8 0 0 1 0 2 . 1 3 7 4 - 3 3 2 . 1 0 1 2 . 0 9 5 9 . 3 m e e t m e t “"1111 f u l l - h m o d s a t r i x The s t r u c t u r e 0 T h e c r y s t a l ( 3 3 3 3 5 d i f f r a c t o fl 3 . . c r y s t a l s O f T h e c r y s t a l s o f e p o x y a n d C 0 “ a n d o n l y t h e U r f o u r - c i r c l e a u t o r ? - 1 5 i t h a d s i m i l ' d p a t t e r n a s ( l ) . l 3 1 1 g l a s s f i b e r : e m p e r a t u r e s . l f o u r - c i r c l e a u t o r 1 1 0 1 1 0 r a d i a t i o n N i c o l e t P 3 f o u r s c a n m o d e 1 9 a n d d e t e r m i n e d f r o m r e fl e c t i o n s . T h e 5 ' 5 0 1 0 0 - 1 5 0 I t t h e i r i n t e n s i t i e s a b S o r p t i o n C o r r e c ” 3 1 1 1 S c a n s f o r 3 3 ' l l £ 1 0 m 1 : ‘ a m s , U S i n g 1 5 7 T h e c r y s t a l l o g r a p h i c d a t a f o r ( I ) w e r e c o l l e c t e d o n a n E N R A F N o n i u s d i f f r a c t o m e t e r u s i n g a 0 / 2 0 s c a n m o d e a n d M o K 0 1 r a d i a t i o n ” . T h e c r y s t a l s o f ( I ) w e r e m o u n t e d i n s i d e g l a s s c a p i l l a r i e s a n d s e a l e d . T h e c r y s t a l s o f ( I I ) w e r e m o u n t e d o n t h e t i p o f a g l a s s f i b e r w i t h e p o x y a n d c o v e r e d w i t h K r y l o n T M t o p r o t e c t t h e i r s u r f a c e f r o m a i r a n d o n l y t h e u n i t c e l l d i m e n s i o n s w e r e o b t a i n e d o n R i g a k u A F C 6 S f o u r - c i r c l e a u t o m a t e d d i f f r a c t o m e t e r . D a t a w e r e n o t c o l l e c t e d f o r ( 1 1 ) a s i t h a d s i m i l a r u n i t c e l l d i m e n s i o n s a n d p o w d e r x - r a y d i f f r a c t i o n p a t t e r n a s ( I ) . T h e c r y s t a l s o f ( I I I ) a n d ( I V ) w e r e m o u n t e d o n t h e t i p o f a g l a s s f i b e r w i t h s i l i c o n g r e a s e a n d t h e d a t a w e r e c o l l e c t e d a t l o w t e m p e r a t u r e s . T h e d a t a f o r ( 1 1 1 ) w e r e c o l l e c t e d o n R i g a k u A F C 6 S f o u r - c i r c l e a u t o m a t e d d i f f r a c t o m e t e r w i t h 1 0 - 2 0 s c a n t e c h n i q u e a n d M o K 0 1 r a d i a t i o n . T h e c r y s t a l l o g r a p h i c d a t a f o r ( I V ) w e r e c o l l e c t e d o n N i c o l e t P 3 f o u r - c i r c l e a u t o m a t e d d i f f r a c t o m e t e r u s i n g a 0 - 2 0 s t e p s c a n m o d e 1 9 a n d C u K 0 1 r a d i a t i o n . A c c u r a t e u n i t c e l l d i m e n s i o n s w e r e d e t e r m i n e d f r o m t h e 2 0 , m , ¢ , x a n g l e s o f 1 5 - 2 5 m a c h i n e c e n t e r e d r e f l e c t i o n s . T h e i n t e n s i t i e s o f t h r e e c h e c k r e f l e c t i o n s w e r e m o n i t o r e d e v e r y 1 0 0 - 1 5 0 r e fl e c t i o n s a n d d i d n o t s h o w a n y a p p r e c i a b l e l o s s i n t h e i r i n t e n s i t i e s o v e r t h e d a t a c o l l e c t i o n p e r i o d . A n e m p i r i c a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d t o t h e d a t a o f ( I ) a n d ( I I I ) b a s e d o n 1 1 1 s c a n s f o r 3 ( x ~ 9 0 ° ) r e fl e c t i o n s . T h e s t r u c t u r e s w e r e s o l v e d w i t h d i r e c t m e t h o d s a n d d i f f e r e n c e F o u r i e r S y n t h e s i s m a p s a n d r e f i n e d w i t h f u l l - m a t r i x l e a s t s q u a r e t e c h n i q u e s . A n a d d i t i o n a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d b e f o r e a n i s o t r o p i c r e f i n e m e n t u s i n g D I F A B 8 2 0 . T h e s t r u c t u r e o f ( I ) w a s s o l v e d w i t h d i r e c t m e t h o d s u s i n g S H E L X S - 8 6 2 1 a n d w a s r e f i n e d w i t h t h e 8 D P 2 2 p a c k a g e o f c r y s t a l l o g r a p h i c p r o g r a m s , u s i n g a V A X s t a t i o n 2 0 0 0 c o m p u t e r . T h e s t r u c t u r e s o f ( I I I ) : . ‘ 4 S i t ' t t o n a l l y ( i . t s . 1 1 1 ( I V ! ) w e r e m t a l l o g l a p h i c : 3 r p 0 1 ' 3 1 1 0 1 ' 1 , u s i n g w h e n a n d “ o r ” . 3 3 3 1 a t o m s W 6 1 a g i r o g e n a t o m S : c s i t i o n s w e r e : a ‘ t z u l a t i o n s b u t v 3 3 1 1 s e p a r a t e d c a t e r a h e d r a l s t r u c t L T h e s t r u c t u : t a t b r i d g e s t h e t e i o n [ 1 n 3 ( 8 4 ) 3 1 5 3 1 s y m m e t r y h a l : e s i t i o n a l d i s o r d t i t e m w i t h a h a l l 2 1 m i n a l a t o m 1 5 8 a n d ( I V ) w e r e s o l v e d w i t h d i r e c t m e t h o d s u s i n g t h e T E X S A N c r y s t a l l o g r a p h i c s o f t w a r e p a c k a g e f r o m M o l e c u l a r S t r u c t u r e C o r p o r a t i o n , u s i n g a V A X s t a t i o n 3 1 0 0 / 7 6 c o m p u t e r . I n ( I ) a l l n o n - c a r b o n a n d n o n - h y d r o g e n a t o m s w e r e r e f i n e d a n i s o t r o p i c a l l y . T h e c a r b o n a t o m s w e r e r e f i n e d i s o t r o p i c a l l y . F o r ( 1 1 1 ) a n d ( I V ) a l l n o n - h y d r o g e n a t o m s w e r e r e f i n e d a n i s o t r o p i c a l l y . T h e h y d r o g e n a t o m p o s i t i o n s w e r e c a l c u l a t e d a n d i n c l u d e d i n t h e s t r u c t u r e f a c t o r c a l c u l a t i o n s b u t w e r e n o t r e f i n e d . A l l c o m p o u n d s c o n s i s t o f d i s c r e t e , w e l l s e p a r a t e d c a t i o n s a n d a n i o n s . T h e P h 4 P + c a t i o n s h a v e t h e u s u a l t e t r a h e d r a l s t r u c t u r e a n d w i t h n o d i s o r d e r . T h e s t r u c t u r e o f ( I I I ) h a s d i s o r d e r i n t h e b r i d g i n g 8 7 2 ' c h a i n t h a t b r i d g e s t h e t w o t r i g o n a l b i p y r a m i d a l c o o r d i n a t e d I n a t o m s . T h e a n i o n [ I n 2 ( 8 4 ) 2 ( 8 5 ) 2 ( 8 7 ) ] 4 ' h a s a c r y s t a l l o g r a p h i c a l l y i m p o s e d c e n t e r o f s y m m e t r y h a l f w a y b e t w e e n t h e I n - - - I n v e c t o r . T h i s i n d u c e s a p o s i t i o n a l d i s o r d e r o f t h e c e n t r a l 8 ( 1 4 ) a t o m o f t h e b r i d g i n g 8 7 2 ' c h a i n w i t h a h a l f p o s i t i o n a l o c c u p a n c y o f t h e 8 ( 1 4 ) a t o m . 8 ( 1 1 ) t h e t e r m i n a l a t o m a n d 8 ( 1 2 ) o f t h e b r i d g i n g 8 7 2 ' c h a i n a r e b o t h p o s i t i o n a l l y d i s o r d e r e d o v e r t w o s i t e s o f e q u a l o c c u p a n c y t h u s l e a d i n g t o t w o d i f f e r e n t c o n f o r m a t i o n s o f t h e 8 7 2 ' c h a i n i n t h e s o l i d s t a t e , T h e s t r u c t u r e o f ( I V ) h a s d i s o r d e r i n t h e 8 x 2 : l i g a n d c h e l a t i n g I n ( 2 ) . T h e r e a r e t w o d i f f e r e n t c h a i n l e n g t h s o f t h e c h e l a t i n g p o l y s u l f i d e , 8 4 2 ' a n d 8 6 2 ' r e s p e c t i v e l y , d i s o r d e r e d o n t h e s a m e c r y s t a l l o g r a p h i c s i t e . T h e 8 4 2 ' c o n s i s t s o f 8 ( 1 1 ) 8 ( 1 2 ) 8 ( 1 3 ) 8 ( l 4 ) a t o m s w h e r e a s 8 6 2 ' c o n s i s t s o f 8 ( 1 1 ) 8 ( 1 5 ) S ( 1 6 ) 8 ( l 7 ) S ( 1 8 ) S ( l 9 ) a t o m s . A l l a t o m s i n t h e s e t w o d i f f e r e n t 8 8 ' c h a i n s w e r e r e f i n e d w i t h h a l f o c c u p a n c y e x c e p t 8 ( 1 1 ) . h e T s s ' a c t u r e c o m p l u t i s o s a n m a n z e d i n '1 3 d t h e 1:51:15 f o r e S t t h e i m a t h t 1 5 9 T h e c o m p l e t e d a t a c o l l e c t i o n p a r a m e t e r s a n d d e t a i l s o f t h e s t r u c t u r e s o l u t i o n a n d r e f i n e m e n t f o r ( I ) , ( I I I ) a n d ( I V ) a r e s u m m a r i z e d i n T a b l e s 3 . 4 . T h e f i n a l c o o r d i n a t e s , t e m p e r a t u r e f a c t o r s a n d t h e e s t i m a t e d s t a n d a r d d e v i a t i o n s ( e s d ' s ) o f a l l n o n - h y d r o g e n a t o m s f o r t h e t h r e e c o m p o u n d s , a r e s h o w n i n T a b l e s 3 . 5 - 3 . 7 . T a b l e 3 . 4 . l l t M P e a S a P . ? 2 P } 3 1 1 1 0 2 5 ( S j .1 o. o f v a n a n l m b / m a x t h b s a C O a l ' M m e r l X n H \ F o r m u l a C 7 , 1 5 1 . 1 1 c o l o r l e m p , t ° c ) 1 . 3 1 1 ' 2 1 ) : 1 1 1 1 ’ ) 1 " » T - ‘ t 1 1 1 . 1 3 ) S m : 8 1 0 0 p D i a l c l g C m - 3 ) L t : m - l ) C 0 5 1 1 ] S i z q m m ) 3 3 m a i l " ) t o t d a t a C o l l e q D a t a ( 1 ) 3 0 3 1 ) ) 1 6 0 T a b l e 3 . 4 . S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r ( P h 4 P ) 2 [ I n ( S 4 ) ( S 6 ) B r l ( I ) . ( P h 4 P ) 4 I I n 2 ( S 4 ) 2 ( S 6 ) 2 ( S 7 ) l ( I I I ) a n d ( P h 4 P ) 2 [ { I n 2 8 ( 3 5 ) ( 8 4 ) 2 l o . 5 { 1 n 2 3 ( 5 5 ) ( S 4 ) ( S 6 ) 1 0 . 5 l ( I V ) . 1 1 1 1 I V F o r m u l a C 4 3 H 4 0 P 2 I n 8 1 o B r C 9 5 H 3 0 P 4 I n 2 8 2 7 C 4 3 H 4 0 P 2 I n 2 S 1 5 F W 1 1 9 4 . 1 7 2 4 5 2 . 9 6 1 3 8 9 . 4 0 C r y s t a l c o l o r p a l e y e l l o w p a l e y e l l o w p a l e y e l l o w T e m p . ( ° C ) 2 3 - 9 0 - 8 0 a ( A ) 1 4 . 3 5 5 ( 7 ) 1 2 . 2 7 6 ( 3 ) 1 0 . 9 0 6 ( 2 ) 1 5 ( A ) 1 7 . 7 2 3 ( 4 ) 2 1 . 8 4 9 ( 8 ) 1 1 . 8 9 2 ( 2 ) e ( A ) 2 0 . 9 7 4 ( 7 ) 1 0 . 8 5 2 ( 2 ) 2 1 . 5 5 4 ( 3 ) a ( ° ) 9 0 . 0 0 9 9 5 7 ( 2 ) 8 9 . 8 1 ( 1 ) 1 3 ( ° ) 1 0 8 . 5 0 1 1 2 . 4 4 ( 2 ) 9 7 . 4 6 ( 1 ) 1 ( ° ) 9 0 . 0 0 7 9 . 2 8 ( 3 ) 9 2 2 5 ( 1 ) z , V ( A 3 ) 4 , 5 0 6 0 . 6 1 , 2 6 2 8 ( 1 ) 2 , 2 7 6 9 . 7 ( 1 ) S p a c e g r o u p P 2 1 / c ( # 1 4 ) P - l ( # 2 ) P - l ( # 2 ) D c a l c . ( 8 c m ' 3 ) 1 . 5 7 1 . 5 5 1 . 6 6 u ( c m ‘ 1 ) 1 7 . 3 M o ( K 0 1 ) 1 0 . 5 1 M o ( K 0 1 ) 1 2 8 . 7 C u ( K 0 1 ) C r y s t a l s i z e ( m m ) — 0 . 5 2 , 0 . 2 9 , 0 . 1 6 0 . 7 4 , 0 . 2 4 , 0 . 1 2 2 9 m a i ( ° ) 4 0 ( M o ) 5 0 ( M 0 ) 1 1 4 ( C u ) # o f d a t a C o l l e c t 5 2 8 8 9 9 4 9 8 1 5 3 D a t a ( I > 3 o ( I ) ) 2 9 8 9 5 3 1 6 5 9 9 3 N o . o f v a r i a b l e s 3 1 9 6 0 4 6 4 0 m i n / m a x a b s c o r 0 . 8 2 3 - 0 . 9 9 9 0 . 9 0 2 - 1 . 0 0 0 0 . 6 2 7 - 1 . 6 5 2 F i n a l R / R w ( % ) 6 . 6 / 9 . 6 9 . 5 / 1 2 . 0 7 . 6 / 8 . 6 3 5 ' . 1 ' F r c t a s P l fi l n l s n l b l s W 1 5 P e : i F a r e n t h e s i s . / t o m A 4 ) o L . , 5 1 9 . 4 9 9 - £ ' J J 1 9 ' J J ' 3 ” 3 . 0 " 3 0 3 5 5 ’ A 0 . 0 . . 0 0 — I — — — I n B r S t 5 2 S 3 S 4 S S 3 6 $ 7 8 8 S 9 8 1 0 P 1 P 2 C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 1 0 C 1 1 C 1 2 C 1 3 C 1 4 C 1 5 C 1 5 ( : 1 7 C 1 3 C 1 9 1 6 1 T a b l e 3 . 5 . F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ I n ( S 4 ) ( S 5 ) B r ] ( I ) w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q “ , A 2 I n 0 . 2 5 0 0 8 ( 9 ) 0 . 6 2 6 7 3 ( 7 ) 0 . 2 5 0 5 9 ( 6 ) 3 . 1 8 ( 3 ) B r 0 . 2 2 1 6 ( 2 ) 0 . 5 0 6 4 ( 2 ) 0 . 3 1 4 1 ( 1 ) 9 . 8 2 ( 9 ) 8 1 0 . 4 0 9 2 ( 4 ) 0 . 6 2 6 6 ( 3 ) 0 . 3 4 7 0 ( 2 ) 4 . 8 ( 1 ) 8 2 0 . 4 9 5 4 ( 4 ) 0 . 7 0 9 8 ( 3 ) 0 . 3 2 5 9 ( 3 ) 5 . 3 ( 1 ) S 3 0 . 3 9 6 4 ( 4 ) 0 . 7 9 1 5 ( 3 ) 0 . 2 7 9 7 ( 2 ) 5 . 1 ( 1 ) 8 4 0 . 3 0 9 6 ( 3 ) 0 . 7 3 9 8 ( 3 ) 0 . 1 9 5 0 ( 2 ) 4 . 3 ( 1 ) 8 5 0 . 2 2 2 6 ( 4 ) 0 . 5 6 1 3 ( 4 ) 0 . 1 4 0 2 ( 2 ) 6 . 2 ( 2 ) S 6 0 . 0 9 1 7 ( 4 ) 0 . 5 0 8 5 ( 3 ) 0 . 1 1 7 5 ( 3 ) 6 . 5 ( 2 ) 8 7 - 0 . 0 1 3 2 ( 5 ) 0 . 5 8 3 0 ( 4 ) 0 . 0 6 2 6 ( 3 ) 7 . 5 ( 2 ) 8 8 - 0 . 0 7 1 0 ( 4 ) 0 . 6 3 7 7 ( 4 ) 0 . 1 2 9 2 ( 3 ) 7 . 5 ( 2 ) 8 9 0 . 0 2 0 1 ( 4 ) 0 . 7 2 4 2 ( 3 ) 0 . 1 7 1 6 ( 3 ) 5 . 6 ( 2 ) 8 1 0 0 . 1 0 2 0 ( 3 ) 0 . 6 9 0 1 ( 3 ) 0 . 2 6 6 0 ( 2 ) 3 . 8 ( 1 ) P l 0 . 0 7 8 7 ( 3 ) 0 . 3 7 1 1 ( 2 ) 0 . 6 0 5 8 ( 2 ) 2 . 7 ( 1 ) P 2 0 . 4 9 9 8 ( 3 ) 0 . 6 6 6 7 ( 2 ) 0 . 0 4 2 4 ( 2 ) 2 . 5 ( 1 ) C 1 - 0 . 0 4 4 ( 1 ) 0 . 3 4 8 1 ( 8 ) 0 . 5 5 6 5 ( 7 ) 2 . 2 ( 3 ) C 2 - 0 . 0 6 0 ( 1 ) 0 . 2 8 7 5 ( 9 ) 0 . 5 1 1 6 ( 7 ) 3 . 3 ( 4 ) C 3 - 0 . 1 5 6 ( 1 ) 0 . 2 7 2 ( 1 ) 0 . 4 7 1 9 ( 8 ) 4 . 2 ( 4 ) C 4 - 0 . 2 3 2 ( 1 ) 0 . 3 1 4 ( 1 ) 0 . 4 7 5 2 ( 8 ) 4 . 1 ( 4 ) C 5 - 0 . 2 1 6 ( 1 ) 0 . 3 7 2 ( 1 ) 0 . 5 1 9 5 ( 8 ) 4 . 6 ( 4 ) C 6 - 0 . 1 2 0 ( 1 ) 0 . 3 9 2 4 ( 9 ) 0 . 5 6 1 8 ( 8 ) 3 . 5 ( 4 ) C 7 0 . 0 8 6 ( 1 ) 0 . 4 5 9 9 ( 8 ) 0 . 6 4 7 3 ( 6 ) 2 . 1 ( 3 ) C 8 0 . 1 3 1 ( 1 ) 0 . 5 2 1 5 ( 9 ) 0 . 6 2 9 3 ( 8 ) 3 . 7 ( 4 ) C 9 0 . 1 3 7 ( 1 ) 0 . 5 8 9 ( 1 ) 0 . 6 6 6 0 ( 8 ) 4 . 4 ( 4 ) C 1 0 0 . 1 0 3 ( 1 ) 0 . 5 9 4 ( 1 ) 0 . 7 1 6 5 ( 9 ) 4 . 9 ( 4 ) C 1 1 0 . 0 5 5 ( 1 ) 0 . 5 3 4 ( 1 ) 0 . 7 3 4 5 ( 8 ) 4 . 4 ( 4 ) C 1 2 0 . 0 5 0 ( 1 ) 0 . 4 6 7 1 ( 9 ) 0 . 7 0 0 2 ( 8 ) 3 . 9 ( 4 ) C 1 3 0 . 1 2 8 ( 1 ) 0 . 3 0 1 5 ( 8 ) 0 . 6 7 0 9 ( 7 ) 2 . 7 ( 3 ) C 1 4 0 . 1 9 9 ( 1 ) 0 . 3 2 2 ( 1 ) 0 . 7 2 8 8 ( 8 ) 4 . 9 ( 4 ) C 1 5 0 . 2 4 3 ( 2 ) 0 . 2 6 9 ( 1 ) 0 . 7 7 7 ( 1 ) 7 . 0 ( 6 ) C 1 6 0 . 2 1 0 ( 1 ) 0 . 1 9 6 ( 1 ) 0 . 7 6 7 9 ( 9 ) 5 . 6 ( 5 ) C 1 7 0 . 1 3 8 ( 1 ) 0 . 1 7 5 ( 1 ) 0 . 7 1 2 8 ( 8 ) 4 . 3 ( 4 ) C 1 8 0 . 0 9 4 ( 1 ) 0 . 2 2 9 ( 1 ) 0 . 6 6 2 7 ( 8 ) 4 . 5 ( 4 ) C 1 9 0 . 1 5 2 ( 1 ) 0 . 3 7 7 6 ( 9 ) 0 . 5 4 9 5 ( 7 ) 2 . 8 ( 3 ) O O O O O O O Q Q O O O O O O fi r n fi ‘ r t ‘ r fi r fi fi A T a b l e 3 5 ( c o n t ' d l A t o m C 2 0 C 2 1 C 2 2 C 2 3 C 2 4 C 2 5 C 2 6 C 2 7 C 2 8 C 2 9 C 3 0 C 3 1 C 3 2 C 3 3 C 3 4 C 3 5 C 3 6 C 3 7 C 3 8 C 3 9 C 4 0 C 4 1 C 4 2 C 4 3 C 4 4 C 4 5 C 4 6 C 4 7 1 : 3 2 2 + C 2 3 3 3 3 A t o m C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 2 2 2 2 2 2 3 2 2 2 2 3 3 3 3 4 3 3 3 3 3 4 4 4 4 4 4 4 4 1 3 5 1 0 2 4 7 6 8 3 1 9 5 2 0 4 6 7 8 9 3 5 0 2 6 7 8 4 x 8 3 5 7 3 5 3 5 4 9 0 5 6 9 3 1 6 0 8 3 4 7 1 8 5 7 9 1 1 8 0 6 6 0 5 0 1 1 0 8 9 7 6 6 2 0 5 7 3 3 8 3 2 4 2 5 3 1 9 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ( 1 ) 1 1 1 1 1 1 1 1 1 1 1 1 1 ) ) ) ) ) ) ) ) ) ) ) ) ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . 0 . . . . . . . . 1 1 2 3 2 5 5 5 . 5 4 4 5 6 7 7 5 3 3 2 1 2 3 5 6 6 5 6 4 y 9 2 2 3 8 8 4 0 9 4 1 0 0 9 7 5 9 9 8 4 0 6 0 6 8 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 7 7 9 8 6 6 6 5 6 5 . . . . . . . . . . . . . . . . . . 8 6 8 1 1 5 1 4 7 0 6 4 4 3 3 8 8 6 6 6 6 5 6 6 6 5 5 5 6 ) ) ) ) ) ) ) ) ) ) ) 3 9 6 0 8 5 5 7 7 9 1 0 2 1 5 8 5 5 5 1 4 1 3 2 2 3 8 2 0 ( ( ( ( ( ( ( ( ( ( ( 9 8 9 9 9 8 9 9 9 8 9 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 3 3 0 7 7 0 5 1 5 1 1 8 3 z 4 9 3 0 5 1 1 3 8 0 6 0 2 7 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - - - - - . . . . . . . . . . . . . . . . . . . 0 0 0 0 0 0 0 0 0 0 4 4 4 5 5 0 1 1 1 0 0 0 0 1 1 1 2 2 1 . . . . . . . . . . 8 4 7 3 7 7 3 5 0 4 2 0 1 1 1 7 2 1 6 0 0 0 1 0 0 0 0 1 0 2 3 0 3 7 4 5 8 2 1 3 4 6 2 9 4 2 1 2 0 1 6 3 6 5 6 9 0 3 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 7 8 9 9 8 7 8 8 8 8 7 8 7 7 7 8 8 8 8 7 8 9 8 8 7 8 9 9 8 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 1 6 8 3 3 2 2 0 6 6 B e q a . A 2 4 4 3 5 4 2 3 3 4 4 3 2 4 4 4 4 4 4 3 2 3 5 4 4 4 4 2 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 9 1 1 5 6 5 6 1 0 5 3 5 6 9 4 7 5 1 0 8 7 7 1 1 2 2 7 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 4 4 4 5 4 3 4 4 4 4 3 3 4 4 4 4 4 3 4 4 4 5 4 3 3 4 4 4 4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) T a b l e 3 . 5 ( c o n t ' d ) . 1 6 2 a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 B 1 1 + b 2 8 2 2 + c 2 B 3 3 + a b ( c o s y ) B 1 2 + a c ( c o s B ) B 1 3 + b c ( c o s o 1 ) B 2 3 ] l a P b } : n P i 3 ' . 6 J d I m ‘ P S . I y t i a t i o n s i n 1 6 3 T a b l e 3 . 6 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( 8 5 ) 2 ( S 7 ) ] ( I I I ) w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q “ , A 2 I n ( l ) 0 . 5 6 5 3 ( 1 ) 0 . 2 5 0 8 8 ( 7 ) 0 . 4 9 9 1 ( 1 ) 3 . 2 2 ( 5 ) S ( l ) 0 . 7 1 5 7 ( 4 ) 0 . 2 0 2 8 ( 2 ) 0 . 7 1 6 4 ( 5 ) 3 . 8 ( 2 ) S ( 2 ) 0 . 6 5 0 3 ( 4 ) 0 . 2 5 0 9 ( 2 ) 0 . 8 5 9 0 ( 5 ) 3 . 9 ( 2 ) 3 ( 3 ) 0 . 6 1 4 0 ( 4 ) 0 . 3 4 1 9 ( 2 ) 0 . 8 1 8 2 ( 4 ) 3 . 3 ( 2 ) S ( 4 ) 0 . 4 8 2 5 ( 4 ) 0 . 3 4 0 0 ( 2 ) 0 . 6 3 2 5 ( 5 ) 3 . 9 ( 2 ) S ( 5 ) 0 . 4 0 4 2 ( 5 ) 0 . 2 9 4 9 ( 4 ) 0 . 2 8 3 6 ( 5 ) 6 . 4 ( 3 ) 3 ( 6 ) 0 . 4 3 9 9 ( 5 ) 0 . 3 8 0 3 ( 4 ) 0 . 2 6 7 6 ( 6 ) 6 . 8 ( 3 ) S ( 7 ) 0 . 5 1 8 6 ( 5 ) 0 . 3 6 5 3 ( 3 ) 0 . 1 2 7 2 ( 5 ) 5 . 1 ( 3 ) 8 ( 8 ) 0 . 6 9 7 9 ( 5 ) 0 . 3 4 3 1 ( 3 ) 0 . 2 2 3 6 ( 5 ) 4 . 4 ( 2 ) 8 ( 9 ) 0 . 7 2 8 3 ( 5 ) 0 . 2 5 2 4 ( 3 ) 0 . 2 6 5 4 ( 6 ) 5 . 1 ( 3 ) S ( 1 0 ) 0 . 7 5 4 7 ( 4 ) 0 . 2 5 2 8 ( 3 ) 0 . 4 6 3 2 ( 6 ) 4 . 5 ( 2 ) S ( l 1 ) 0 . 4 3 6 ( 2 ) 0 . 1 6 4 ( 1 ) 0 . 4 1 7 ( 2 ) 8 ( 1 ) S ( l l ' ) 0 . 4 7 9 ( 2 ) 0 . 1 5 1 ( 1 ) 0 . 3 8 0 ( 3 ) 9 ( 1 ) S ( 1 2 ) 0 . 5 3 8 ( 2 ) 0 . 0 9 0 ( 1 ) 0 . 4 1 2 ( 1 ) 7 . 8 ( 9 ) S ( 1 2 ' ) 0 . 4 4 1 ( 2 ) 0 . 1 1 4 ( 2 ) 0 . 4 8 2 ( 3 ) 1 5 ( 2 ) S ( 1 3 ) 0 . 5 6 8 6 ( 7 ) 0 . 0 6 1 5 ( 6 ) 0 . 5 7 8 0 ( 7 ) 1 0 . 4 ( 6 ) 8 ( 1 4 ) 0 . 4 2 6 ( 1 ) 0 . 0 1 6 ( 1 ) 0 . 5 5 7 ( 2 ) 9 ( 1 ) P ( 1 ) 0 . 0 2 8 5 ( 3 ) 0 . 4 2 5 2 ( 2 ) 0 . 2 3 7 4 ( 4 ) 2 . 0 ( 2 ) P ( 2 ) 0 . 1 5 8 8 ( 4 ) 0 . 0 7 9 5 ( 2 ) 0 . 8 9 7 9 ( 4 ) 2 . 9 ( 2 ) C ( l ) 0 . 0 3 9 ( 1 ) 0 . 3 7 8 4 ( 6 ) 0 . 0 9 3 ( 1 ) 1 . 9 ( 5 ) C ( 2 ) 0 . 1 1 6 ( 1 ) 0 . 3 8 7 9 ( 7 ) 0 . 0 3 3 ( 2 ) 2 . 4 ( 6 ) C ( 3 ) 0 . 1 1 8 ( 2 ) 0 . 3 4 6 9 ( 9 ) - 0 . 0 8 5 ( 2 ) 3 . 8 ( 8 ) C ( 4 ) 0 . 0 4 0 ( 2 ) 0 . 3 0 1 ( 1 ) - 0 . 1 3 9 ( 2 ) 4 ( 1 ) C ( 5 ) - 0 . 0 3 4 ( 2 ) 0 . 2 9 2 ( 1 ) - 0 . 0 7 9 ( 2 ) 3 . 9 ( 8 ) C ( 6 ) - 0 . 0 3 2 ( 1 ) 0 . 3 2 7 5 ( 8 ) 0 . 0 3 7 ( 2 ) 2 . 8 ( 7 ) . ‘ i m . T a b l e 3 . 6 ( c o n t ' d ) . 1 6 4 A t o m x y z B e q “ , A 2 C ( 7 ) 0 . 0 4 7 ( 1 ) 0 . 3 7 2 9 ( 7 ) 0 . 3 5 8 ( 1 ) 2 . 1 ( 6 ) C ( 8 ) 0 . 1 4 4 ( 1 ) 0 . 3 2 7 6 ( 8 ) 0 . 3 8 3 ( 1 ) 2 . 6 ( 7 ) C ( 9 ) 0 . 1 6 7 ( 1 ) 0 . 2 8 6 1 ( 8 ) 0 . 4 7 8 ( 2 ) 3 . 1 ( 7 ) C ( 1 0 ) 0 . 0 8 7 ( 2 ) 0 . 2 9 2 8 ( 8 ) 0 . 5 4 7 ( 2 ) 3 . 8 ( 8 ) C ( 1 1 ) - 0 . 0 1 2 ( 2 ) 0 . 3 3 7 6 ( 8 ) 0 . 5 1 9 ( 2 ) 3 . 2 ( 7 ) C ( 1 2 ) - 0 . 0 3 1 ( 1 ) 0 . 3 8 0 6 ( 7 ) 0 . 4 2 8 ( 2 ) 2 . 4 ( 6 ) C ( 1 3 ) 0 . 1 4 0 ( 1 ) 0 . 4 7 5 5 ( 7 ) 0 . 3 0 7 ( 1 ) 2 . 2 ( 6 ) C ( 1 4 ) 0 . 2 4 2 ( 1 ) 0 . 4 6 4 5 ( 8 ) 0 . 4 2 0 ( 2 ) 3 . 1 ( 7 ) C ( 1 5 ) 0 . 3 2 5 ( 2 ) 0 . 5 0 6 7 ( 8 ) 0 . 4 7 1 ( 2 ) 3 . 6 ( 8 ) C ( 1 6 ) 0 . 3 0 7 ( 2 ) 0 . 5 5 9 ( 1 ) 0 . 4 1 2 ( 2 ) 4 . 1 ( 9 ) C ( 1 7 ) 0 . 2 1 2 ( 2 ) 0 . 5 7 2 7 ( 8 ) 0 . 2 9 9 ( 2 ) 3 . 7 ( 8 ) C ( 1 8 ) 0 . 1 2 4 ( 2 ) 0 . 5 3 0 9 ( 8 ) 0 . 2 4 7 ( 2 ) 3 . 4 ( 7 ) C ( 1 9 ) - 0 . 1 1 4 ( 1 ) 0 . 4 7 2 6 ( 7 ) 0 . 1 9 6 ( 2 ) 2 . 4 ( 6 ) C ( 2 0 ) - 0 . 1 3 2 ( 2 ) 0 . 5 2 4 0 ( 7 ) 0 . 2 8 8 ( 2 ) 3 . 0 ( 7 ) C ( 2 1 ) - 0 . 2 4 0 ( 2 ) 0 . 5 5 8 6 ( 8 ) 0 . 2 5 9 ( 2 ) 3 . 6 ( 8 ) C ( 2 2 ) - 0 . 3 3 3 ( 2 ) 0 . 5 4 8 5 ( 8 ) 0 . 1 4 1 ( 2 ) 3 . 6 ( 8 ) C ( 2 3 ) - 0 . 3 1 3 ( 2 ) 0 . 5 0 0 ( 1 ) 0 . 0 5 2 ( 2 ) 4 . 5 ( 9 ) C ( 2 4 ) - 0 . 2 0 6 ( 2 ) 0 . 4 6 2 1 ( 8 ) 0 . 0 7 5 ( 2 ) 3 . 2 ( 7 ) C ( 2 5 ) 0 . 1 0 2 ( 2 ) 0 . 1 1 2 0 ( 8 ) 1 . 0 2 6 ( 2 ) 2 . 9 ( 7 ) C ( 2 6 ) - 0 . 0 1 4 ( 2 ) 0 . 1 3 3 7 ( 9 ) 0 . 9 9 7 ( 2 ) 3 . 4 ( 8 ) C ( 2 7 ) - 0 . 0 6 2 ( 2 ) 0 . 1 6 5 5 ( 8 ) 1 . 0 9 4 ( 2 ) 3 . 3 ( 7 ) C ( 2 8 ) 0 . 0 1 8 ( 2 ) 0 . 1 7 2 5 ( 8 ) 1 . 2 2 7 ( 2 ) 4 . 4 ( 9 ) C ( 2 9 ) 0 . 1 3 9 ( 2 ) 0 . 1 4 6 ( 1 ) 1 . 2 5 8 ( 2 ) 6 ( 1 ) C ( 3 0 ) 0 . 1 7 7 ( 2 ) 0 . 1 1 9 ( 1 ) 1 . 1 6 1 ( 2 ) 4 ( 1 ) C ( 3 1 ) 0 . 0 3 7 ( 1 ) 0 . 0 5 9 8 ( 7 ) 0 . 7 4 7 ( 2 ) 3 . 0 ( 7 ) C ( 3 2 ) - 0 . 0 3 2 ( 2 ) 0 . 1 0 4 7 ( 7 ) 0 . 6 6 2 ( 2 ) 3 . 9 ( 8 ) C ( 3 3 ) - 0 . 1 2 6 ( 2 ) 0 . 0 9 1 ( 1 ) 0 . 5 4 8 ( 2 ) 5 ( 1 ) C ( 3 4 ) - 0 . 1 5 5 ( 2 ) 0 . 0 3 0 ( 1 ) 0 . 5 2 1 ( 2 ) 5 ( 1 ) C ( 3 5 ) - 0 . 0 9 5 ( 2 ) - 0 . 0 1 3 ( 1 ) 0 . 6 0 5 ( 2 ) 5 ( 1 ) ‘ : i q n u i s o t i v a l e r n o t p i c a l l d i S v p } r m : 3 . 6 ( “ m i d / _ _ _ _ _ A t o m / _ _ _ _ C ( 3 6 ) C ( 3 7 ) C ( 3 3 ) C ( 3 9 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) C ( 4 3 ) C ( 4 4 ) C ( 4 5 ) C ( 4 6 ) C ( 4 7 ) C ( 4 8 ) A A A A A A A A A A A f - ‘ fi / 5 ‘ 3 2 : + c 2 3 3 3 + T a b l e 3 . 6 ( c o n t ' d ) . 1 6 5 A t o m x y z B e q ) ! ” C ( 3 6 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 0 8 ( 7 ) 0 . 7 2 1 ( 2 ) 3 . 6 ( 8 ) C ( 3 7 ) 0 . 2 5 6 ( 2 ) 0 . 0 0 9 8 ( 7 ) 0 . 9 4 5 ( 2 ) 3 . 1 ( 7 ) C ( 3 8 ) 0 . 3 4 0 ( 2 ) - 0 . 0 1 2 7 ( 8 ) 0 . 8 8 4 ( 2 ) 3 . 8 ( 8 ) C ( 3 9 ) 0 . 4 0 8 ( 2 ) - 0 . 0 7 3 ( 1 ) 0 . 9 0 6 ( 3 ) 5 ( 1 ) C ( 4 0 ) 0 . 3 9 9 ( 2 ) - 0 . 1 0 8 ( 1 ) 0 . 9 9 5 ( 3 ) 6 ( 1 ) C ( 4 1 ) 0 . 3 1 2 ( 2 ) - 0 . 0 8 2 4 ( 8 ) 1 . 0 6 2 ( 2 ) 4 . 3 ( 9 ) C ( 4 2 ) 0 . 2 4 8 ( 2 ) - 0 . 0 2 5 3 ( 9 ) 1 . 0 3 8 ( 2 ) 4 . 3 ( 9 ) C ( 4 3 ) 0 . 2 3 3 ( 1 ) 0 . 1 3 3 8 ( 7 ) 0 . 8 6 4 ( 2 ) 2 . 8 ( 7 ) C ( 4 4 ) 0 . 2 7 8 ( 2 ) 0 . 1 8 3 9 ( 9 ) 0 . 9 5 8 ( 2 ) 5 ( 1 ) C ( 4 5 ) 0 . 3 4 2 ( 2 ) 0 . 2 2 1 ( 1 ) 0 . 9 2 7 ( 3 ) 6 ( 1 ) C ( 4 6 ) 0 . 3 5 0 ( 2 ) 0 . 2 1 3 ( 1 ) 0 . 7 9 8 ( 3 ) 6 ( 1 ) C ( 4 7 ) 0 . 3 1 4 ( 2 ) 0 . 1 6 1 ( 1 ) 0 . 7 0 7 ( 3 ) 5 ( 1 ) C ( 4 8 ) 0 . 2 4 7 ( 2 ) 0 . 1 2 9 ( 1 ) 0 . 7 3 9 ( 2 ) 4 ( 1 ) a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 B 1 1 + b 2 B 2 2 + c 2 B 3 3 + a b ( c o s y ) B 1 2 + a c ( c o s B ) 8 1 3 + b c ( c o s a ) B 2 3 ] r a F 3 . 7 . T i t l e ? : . P \ - 2 l { 1 n 2 $ ( S E s : i m a t c d S t a n d a : 0 9 0 9 9 9 9 9 0 C E 3 4 1 6 6 T a b l e 3 . 7 . F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ { I n 2 5 ( S s ) ( S 4 ) 2 1 0 . 5 { 1 n 2 3 ( 5 5 ) ( S 4 ) ( 3 6 ) } o . 5 ] ( I V ) w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q “ , A 2 I n ( l ) 0 . 2 7 5 1 3 ( 8 ) 0 . 2 4 7 1 8 ( 7 ) 0 . 8 3 3 7 7 ( 4 ) 2 . 5 3 ( 4 ) I n ( 2 ) 0 . 2 7 4 7 5 ( 9 ) 0 . 2 7 9 2 6 ( 8 ) 0 . 6 5 5 3 1 ( 4 ) 3 . 1 6 ( 4 ) 8 ( 1 ) 0 . 3 8 8 4 ( 3 ) 0 . 4 0 8 1 ( 3 ) 0 . 8 9 3 8 ( 1 ) 2 . 8 ( 1 ) 8 ( 2 ) 0 . 3 1 4 1 ( 4 ) 0 . 3 9 0 6 ( 3 ) 0 . 9 7 6 7 ( 1 ) 3 . 9 ( 2 ) 8 ( 3 ) 0 . 2 8 7 9 ( 3 ) 0 . 2 2 4 3 ( 3 ) 0 . 9 8 9 2 ( 1 ) 3 . 8 ( 1 ) 8 ( 4 ) 0 . 1 5 0 2 ( 3 ) 0 . 1 7 6 7 ( 3 ) 0 . 9 1 7 0 ( 2 ) 3 . 2 ( 1 ) 8 ( 5 ) 0 . 1 4 6 7 ( 3 ) 0 . 2 7 6 9 ( 5 ) 0 . 7 3 7 8 ( 2 ) 6 . 4 ( 2 ) 8 ( 6 ) 0 . 4 1 6 2 ( 4 ) 0 . 0 8 5 6 ( 3 ) 0 . 8 4 1 5 ( 2 ) 4 . 3 ( 2 ) 8 ( 7 ) 0 . 5 0 2 1 ( 4 ) 0 . 1 0 7 3 ( 3 ) 0 . 7 6 4 3 ( 2 ) 4 . 7 ( 2 ) 8 ( 8 ) 0 . 6 2 1 6 ( 4 ) 0 . 2 3 9 5 ( 3 ) 0 . 7 8 3 5 ( 2 ) 5 . 0 ( 2 ) 8 ( 9 ) 0 . 5 2 0 7 ( 3 ) 0 . 3 7 8 0 ( 3 ) 0 . 7 6 5 9 ( 1 ) 3 . 0 ( 1 ) 8 ( 1 0 ) 0 . 4 7 7 1 ( 4 ) 0 . 3 8 4 8 ( 4 ) 0 . 6 7 1 3 ( 2 ) 4 . 8 ( 2 ) 8 ( 1 1 ) 0 . 1 6 4 0 ( 4 ) 0 . 3 8 2 9 ( 3 ) 0 . 5 6 5 7 ( 2 ) 4 . 4 ( 2 ) 8 ( 1 2 ) 0 . 0 6 2 7 ( 8 ) 0 . 2 3 0 ( 1 ) 0 . 5 2 3 6 ( 4 ) 7 . 0 ( 5 ) S ( 1 3 ) 0 . 2 0 3 ( 1 ) 0 . 1 2 7 ( 1 ) 0 . 5 1 7 3 ( 5 ) 7 . 4 ( 6 ) 8 ( 1 4 ) 0 . 2 6 7 ( 1 ) 0 . 0 8 6 5 ( 8 ) 0 . 6 1 0 9 ( 4 ) 5 . 9 ( 5 ) 8 ( 1 5 ) 0 . 0 0 9 5 ( 7 ) 0 . 2 9 5 8 ( 7 ) 0 . 5 5 1 0 ( 3 ) 3 . 8 ( 3 ) S ( 1 6 ) 0 . 0 1 4 ( 1 ) 0 . 1 8 7 3 ( 8 ) 0 . 4 8 0 8 ( 4 ) 5 . 6 ( 4 ) 8 ( 1 7 ) 0 . 1 0 2 ( 1 ) 0 . 0 4 6 0 ( 8 ) 0 . 5 1 4 0 ( 4 ) 6 . 0 ( 4 ) 8 ( 1 8 ) 0 . 2 8 7 ( 1 ) 0 . 0 9 8 ( 1 ) 0 . 5 1 9 6 ( 5 ) 5 . 8 ( 5 ) S ( 1 9 ) 0 . 3 5 1 2 ( 8 ) 0 . 1 0 3 6 ( 7 ) 0 . 6 1 1 3 ( 4 ) 4 . 0 ( 4 ) P ( 1 ) 0 . 0 6 7 7 ( 3 ) 0 . 7 5 9 5 ( 2 ) 0 . 8 5 5 8 ( 1 ) 1 . 8 ( 1 ) P ( 2 ) 1 . 3 6 8 0 ( 3 ) 0 . 2 4 1 6 ( 3 ) 1 . 3 4 4 3 ( 1 ) 2 . 3 ( 1 ) C ( 1 ) 0 . 1 2 4 ( 1 ) 0 . 7 6 3 ( 1 ) 0 . 7 8 1 3 ( 5 ) 1 . 8 ( 4 ) C ( 2 ) 0 . 2 0 1 ( 1 ) 0 . 8 5 5 ( 1 ) 0 . 7 6 6 4 ( 6 ) 3 . 1 ( 5 ) C ( 3 ) 0 . 2 3 7 ( 1 ) 0 . 8 6 1 ( 1 ) 0 . 7 0 8 0 ( 6 ) 3 . 7 ( 6 ) 1 6 7 T a b l e 3 . 7 ( c o n t ' d ) . A t o m x y z B e q “ , A 2 C ( 4 ) 0 . 2 0 5 ( 1 ) 0 . 7 8 0 ( 1 ) 0 . 6 6 3 7 ( 6 ) 4 . 4 ( 7 ) C ( 5 ) 0 . 1 3 0 ( 1 ) 0 . 6 8 7 ( 1 ) 0 . 6 7 7 6 ( 6 ) 4 . 2 ( 6 ) C ( 6 ) 0 . 0 8 9 ( 1 ) 0 . 6 8 0 ( 1 ) 0 . 7 3 7 0 ( 6 ) 3 . 3 ( 6 ) C ( 7 ) - 0 . 0 2 3 ( 1 ) 0 . 6 3 2 ( 1 ) 0 . 8 6 3 9 ( 5 ) 2 . 2 ( 5 ) C ( 8 ) 0 . 0 3 1 ( 1 ) 0 . 5 2 8 ( 1 ) 0 . 8 6 1 0 ( 6 ) 3 . 4 ( 6 ) C ( 9 ) - 0 . 0 3 8 ( 1 ) 0 . 4 3 1 ( 1 ) 0 . 8 6 9 0 ( 6 ) 3 . 6 ( 6 ) C ( 1 0 ) - 0 . 1 6 2 ( 1 ) 0 . 4 3 6 ( 1 ) 0 . 8 7 8 2 ( 6 ) 3 . 4 ( 6 ) C ( 1 1 ) - 0 . 2 1 6 ( 1 ) 0 . 5 3 8 ( 1 ) 0 . 8 7 9 4 ( 5 ) 2 . 7 ( 5 ) C ( 1 2 ) - 0 . 1 4 9 ( 1 ) 0 . 6 3 8 ( 1 ) 0 . 8 7 2 4 ( 5 ) 2 . 3 ( 5 ) C ( 1 3 ) 0 . 1 9 6 ( 1 ) 0 . 7 7 0 ( 1 ) 0 . 9 1 9 1 ( 5 ) 2 . 0 ( 5 ) C ( 1 4 ) 0 . 2 3 5 ( 1 ) 0 . 6 7 9 ( 1 ) 0 . 9 5 5 7 ( 5 ) 2 . 8 ( 5 ) C ( 1 5 ) 0 . 3 3 1 ( 1 ) 0 . 6 9 4 ( 1 ) 1 . 0 0 2 3 ( 5 ) 2 . 8 ( 5 ) C ( 1 6 ) 0 . 3 8 9 ( 1 ) 0 . 7 9 7 ( 1 ) 1 . 0 1 4 2 ( 5 ) 3 . 1 ( 6 ) C ( 1 7 ) 0 . 3 5 1 ( 1 ) 0 . 8 8 9 ( 1 ) 0 . 9 7 6 9 ( 6 ) 3 . 0 ( 5 ) C ( 1 8 ) 0 . 2 5 4 ( 1 ) 0 . 8 7 6 ( 1 ) 0 . 9 2 9 8 ( 5 ) 2 . 3 ( 5 ) C ( 1 9 ) - 0 . 0 2 4 ( 1 ) 0 . 8 8 0 ( 1 ) 0 . 8 6 4 6 ( 5 ) 1 . 8 ( 4 ) C ( 2 0 ) - 0 . 0 5 7 ( 1 ) 0 . 9 5 4 ( 1 ) 0 . 8 1 4 4 ( 5 ) 2 . 6 ( 5 ) C ( 2 1 ) - 0 . 1 2 7 ( 1 ) 1 . 0 4 5 ( 1 ) 0 . 8 2 4 0 ( 6 ) 3 . 4 ( 6 ) C ( 2 2 ) - 0 . 1 6 4 ( 1 ) 1 . 0 6 3 ( 1 ) 0 . 8 8 1 9 ( 6 ) 2 . 7 ( 5 ) C ( 2 3 ) - 0 . 1 3 1 ( 1 ) 0 . 9 9 2 ( 1 ) 0 . 9 3 0 8 ( 5 ) 2 . 5 ( 5 ) C ( 2 4 ) - 0 . 0 6 0 ( 1 ) 0 . 9 0 0 ( 1 ) 0 . 9 2 3 1 ( 5 ) 2 . 2 ( 5 ) C ( 2 5 ) 1 . 2 7 9 ( 1 ) 0 . 1 1 0 ( 1 ) 1 . 3 4 7 2 ( 5 ) 2 . 8 ( 5 ) C ( 2 6 ) 1 . 1 5 2 ( 1 ) 0 . 1 1 4 ( 1 ) 1 . 3 5 1 4 ( 5 ) 3 . 2 ( 6 ) C ( 2 7 ) 1 . 0 8 2 ( 1 ) 0 . 0 1 2 ( 1 ) 1 . 3 5 2 8 ( 6 ) 4 . 0 ( 6 ) C ( 2 8 ) 1 . 1 4 0 ( 2 ) - 0 . 0 8 7 ( 1 ) 1 . 3 5 0 8 ( 6 ) 4 . 7 ( 7 ) C ( 2 9 ) 1 . 2 6 7 ( 2 ) - 0 . 0 9 0 ( 1 ) 1 . 3 4 7 0 ( 6 ) 4 . 1 ( 7 ) C ( 3 0 ) 1 . 3 3 6 ( 1 ) 0 . 0 0 9 ( 1 ) 1 . 3 4 4 5 ( 6 ) 3 . 2 ( 6 ) C ( 3 1 ) 1 . 4 3 5 ( 1 ) 0 . 2 4 5 ( 1 ) 1 . 2 7 2 6 ( 5 ) 2 . 2 ( 5 ) C ( 3 2 ) 1 . 3 8 7 ( 1 ) 0 . 1 7 5 ( 1 ) 1 . 2 2 3 1 ( 6 ) 2 . 8 ( 5 ) C ( 3 3 ) 1 . 4 2 9 ( 1 ) 0 . 1 8 7 ( 1 ) 1 . 1 6 4 5 ( 6 ) 3 . 1 ( 6 ) 1 e . q " ) n 1 S O U 0 p i C a n y u i v a l e n t d i S p j 4 . . . . ) Y b 3 8 1 2 4 . c 2 8 3 3 + T a b l e 3 . 7 ( c o n t ' d ) . 1 6 8 A t o m x y z B e q a , A 2 C ( 3 4 ) 1 . 5 1 9 ( 1 ) 0 . 2 7 1 ( 1 ) 1 . 1 5 7 5 ( 6 ) 3 . 6 ( 6 ) C ( 3 5 ) 1 . 5 6 6 ( 1 ) 0 . 3 4 0 ( 1 ) 1 . 2 0 6 6 ( 6 ) 3 . 2 ( 6 ) C ( 3 6 ) 1 . 5 2 9 ( 1 ) 0 . 3 2 7 ( 1 ) 1 . 2 6 4 4 ( 6 ) 2 . 9 ( 5 ) C ( 3 7 ) 1 . 4 8 5 ( 1 ) 0 . 2 5 6 ( 1 ) 1 . 4 1 1 7 ( 5 ) 2 . 5 ( 5 ) C ( 3 8 ) 1 . 5 3 7 ( 1 ) 0 . 1 6 5 ( 1 ) 1 . 4 4 4 1 ( 6 ) 3 . 9 ( 6 ) C ( 3 9 ) 1 . 6 2 5 ( 1 ) 0 . 1 7 9 ( 1 ) 1 . 4 9 4 7 ( 7 ) 5 . 2 ( 8 ) C ( 4 0 ) 1 . 6 6 5 ( 1 ) 0 . 2 8 8 ( 1 ) 1 . 5 1 4 4 ( 6 ) 4 . 7 ( 7 ) C ( 4 1 ) 1 . 6 1 9 ( 1 ) 0 . 3 7 8 ( 1 ) 1 . 4 8 1 8 ( 7 ) 4 . 7 ( 7 ) C ( 4 2 ) 1 . 5 2 7 ( 1 ) 0 . 3 6 3 ( 1 ) 1 . 4 3 0 9 ( 6 ) 4 . 2 ( 7 ) C ( 4 3 ) 1 . 2 7 1 ( 1 ) 0 . 3 5 9 ( 1 ) 1 . 3 4 5 1 ( 5 ) 2 . 3 ( 5 ) C ( 4 4 ) 1 . 2 1 8 ( 1 ) 0 . 3 8 3 ( 1 ) 1 . 3 9 9 7 ( 5 ) 2 . 8 ( 5 ) C ( 4 5 ) 1 . 1 4 3 ( 1 ) 0 . 4 7 3 ( 1 ) 1 . 4 0 0 5 ( 6 ) 3 . 1 ( 6 ) C ( 4 6 ) 1 . 1 2 1 ( 1 ) 0 . 5 4 2 ( 1 ) 1 . 3 4 7 9 ( 6 ) 2 . 9 ( 5 ) C ( 4 7 ) 1 . 1 7 5 ( 1 ) 0 . 5 2 1 ( 1 ) 1 . 2 9 5 2 ( 6 ) 3 . 0 ( 5 ) C ( 4 8 ) 1 . 2 4 9 ( 1 ) 0 . 4 3 1 ( 1 ) 1 . 2 9 3 0 ( 5 ) 2 . 5 ( 5 ) a A n i s o t r o p i c a ‘ l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 B 1 1 + b 2 8 2 2 + c 2 B 3 3 + a b ( c o s y ) B 1 2 + a c ( c o s B ) B 1 3 + b c ( c o s a ) B 2 3 ] e s u l t s 3 R S D P y u ) d r 2 t n t h e s i n g i f [ 1 h f n e ( r S r o K a r w 2 4 e s n h ) ( i t e e i : t 5 v c 3 4 q ( t s fi u i t e P h p n r t a y x 4 c s c n h e s i s t u r e o f ZlnC13 + 5 K 2 8 5 - T h e a d d i x g r o w t h ( “ S u m c i e m f o r : 3 e q fl ) . F u r t h e r , i n fl f o r d e d a n e w g o o d c r y s l a l s S y n t h e s i s . H 1 6 9 R e s u l t s a n d D i s c u s s i o n S y n t h e s i s a n d S p e c t r o s c o p i c S t u d i e s D u r i n g t h i s s t u d y w e l e a r n e d q u i c k l y t h a t I n / s z ‘ c h e m i s t r y i s q u i t e d i f f e r e n t t h a n I n / S e x z ‘ c h e m i s t r y . T h e s y n t h e s i s o f ( P h 4 P ) 2 [ I n ( S 4 ) ( S 5 ) X ] ( X = B r , C l ) w a s n o t e x p e c t e d a s t h e s e c o m p l e x e s r e p r e s e n t r a r e e x a m p l e s o f m i x e d l i g a n d p o l y s u l f i d e s . T h e i r s y n t h e s i s h o w e v e r i s a c c o m p l i s h e d r e a d i l y f r o m I n X 3 a n d K 2 S 5 ( o r a m i x t u r e o f K 2 8 4 a n d K 2 8 5 ) i n D M F i n t h e p r e s e n c e o f P h 4 P + a c c o r d i n g t o e q ( l ) . D M F I n X 3 + 2 K 2 8 5 + 2 P h 4 P X - - - - - > ( P h 4 P ) 2 [ I n ( S 4 ) ( S ( , ) X ] + 4 K X e q ( l ) ( X = B r , C l ) F u r t h e r , i n o r d e r t o i s o l a t e a h o m o l e p t i c i n d i u m p o l y s u l f i d e , w e i n c r e a s e d t h e a m o u n t o f p o l y s u l f i d e a c c o r d i n g t o e q ( 2 ) . T h i s a f f o r d e d a n e w m i c r o c r y s t a l l i n e y e l l o w c o m p o u n d i n 5 2 % y i e l d . D M F 2 1 n C 1 ‘ 3 + 5 K 2 8 5 + 4 P h 4 P C l - - - - > ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( 8 6 ) 2 ( S 7 ) ] + I O K C I e q ( 2 ) T h e a d d i t i o n o f a s m a l l a m o u n t o f m e t h a n o l a s s i s t e d i n t h e g r o w t h o f v e r y t h i n p l a t e l e t s o f ( 1 1 1 ) , b u t t h e c r y s t a l q u a l i t y w a s i n s u f f i c i e n t f o r s i n g l e c r y s t a l X - r a y d i f f r a c t i o n . T h e f a i l u r e t o g r o w g o o d c r y s t a l s e n c o u r a g e d u s t o r e s o r t t o h y d r o ( m e t h a n o l ) - t h e r m a l s y n t h e s i s . H y d r o - t h e r m a l t e c h n i q u e h a s s h o w n v e r y p r o m i s i n g 5 1 “ : e w 1 6 n 3 5 - : 3 ,5 1 e a K t : d l e r d i z o e n t r t d h e ‘ h e x 0 a y g “ w s b g o P r e t q u . n e i n p n l c n h a o l f i o n r a b t u e d t o o r l l r i u y e a s t t a m e p r c o o f e g v e t i o n h t i C h n i a t e f ; m v i n t t r a l a h u u d h w n C e e . c ' m m e ' e r e a c t b e i u a t c t o n n d f a o i s t t s l a f f o r d s ( 1 V ) , i a n a T h e U V / m m 3 3 a b s o r p t i o n r i s i r b a n : I “ I n C l g + 6 1 ( 2 5 6 + h a v t o " 0 C h a r l e 1 7 0 r e s u l t s i n t h e g r o w t h o f l a r g e s i n g l e c r y s t a l s o f s o m e k n o w n a s w e l l a s n e w a n d n o v e l m e t a l c h a l c o g e n i d e s ” . T h e r e a c t i o n o f I n C l 3 w i t h K 2 8 5 i n t h e p r e s e n c e o f P h 4 P + i n m e t h a n o l a t 1 1 0 ° C i n a n e v a c u a t e d s e a l e d p y r e x t u b e a f f o r d e d l a r g e ( ~ 2 - 3 m m i n s i z e ) c r y s t a l s o f ( 1 1 1 ) , a c c o r d i n g t o e q . ( 4 ) . M e O H Z l n C l 3 + 6 K z S 5 + 4 P h 4 P C l - - - - > ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( S 6 ) 2 ( S 7 ) ] + 1 2 K C l e q ( 4 ) 1 1 0 ° C I n p r e v i o u s w o r k w e r e c o g n i z e d t h a t t h e s t r u c t u r e o f m e t a l p o l y c h a l c o g e n i d e c o m p l e x e s a r e d r a m a t i c a l l y i n f l u e n c e d b y t h e n a t u r e o f t h e c o u n t e r i o n s , t h e s o l v e n t e m p l o y e d , a n d / o r t h e v a r i a t i o n o f t h e s z ' ( Q = S , S e ; x = 2 - 6 ) . T h i s h a s b e e n e x q u i s i t e l y i l l u s t r a t e d i n t h e C u / S x 2 4 , A g / S x 2 5 , A u / S e , ‘ 2 6 a n d W / S e x 2 7 s y s t e m s , t o n a m e b u t a f e w . H o w e v e r , t h e I n / S x / P h 4 P + s y s t e m e x h i b i t s a r a t h e r r a r e b u t d i s t i n c t i v e s t r u c t u r a l d e p e n d e n c e o n t h e s t o i c h i o m e t r y o f t h e r e a c t a n t s a n d i s f u r t h e r v a l i d a t e d b y t h e p r e c e d i n g r e a c t i o n . T h e r e a c t i o n o f I n C l 3 w i t h K 2 8 6 a n d P h 4 P + i n 1 : 2 : 1 m o l a r r a t i o i n D M F a f f o r d s ( I V ) , a n d t h e r e a c t i o n c a n b e r e p r e s e n t e d b y e q . ( 5 ) . D M F I n C l 3 + 2 K 2 8 5 + P h 4 P C 1 - - - - - > 1 / 2 ( P h 4 P ) 2 [ I n 2 8 ( 8 5 ) ( S 4 ) 1 , 5 ( 8 6 ) o , 5 ] + 4 K C 1 e q ( S ) T h e U V / v i s s p e c t r a o f ( I ) - ( I V ) i n D M F ( p a l e y e l l o w ) s o l u t i o n s h a v e n o c h a r a c t e r i s t i c a b s o r p t i o n b a n d s ( 3 0 0 t o 8 0 0 n m ) a n d f e a t u r e s a r i s i n g a b s o r b a n c e a t h i g h e r e n e r g i e s . T h e a b s e n c e o f a n a b s o r p t i o n b a n d a r o u n d 6 5 0 n m s u g g e s t s t h a t t h e c o m p l e x e s d o n o t s o c a t i e s i l r e s p o n s i b l e i n f o r 1 1 ” tl I n r a l a t b h s e o r p t i o n s a s f a r - t s i h o c t e s o t t a s n . _ _ g C o m p k 2 g I , P h ; P ’ ) 2 [ l n ( S a ) ( S v ' P h 4 P l 2 l I n ( S a ) ( s i P h t P l 4 l 1 n 2 ( S 4 ) A fPhaP)2[{lnzS(S [ 1 “ 2 3 ( 3 5 ) ( 3 4 ) ( 3 » i \ f a l l t h e c o m P l e T a b l e 3 . 8 . F r e q l l . ( 1 1 ) , ( I I I ) a k ‘ 1 l l ‘ 1 7 1 d i s s o c i a t e i n t h i s s o l v e n t t o f o r m S x ' r a d i c a l a n i o n s w h i c h a r e r e s p o n s i b l e f o r t h i s a b s o r p t i o n ” . I n t h e f a r - I R r e g i o n a l l t h e c o m p l e x e s r e p o r t e d h e r e e x h i b i t s p e c u ' a l a b s o r p t i o n s d u e t o S - S , M - S a n d / o r M - X ( X = B r , C l ) s t r e t c h i n g v i b r a t i o n s a s s h o w n i n F i g u r e 3 . 1 . O b s e r v e d a b s o r p t i o n f r e q u e n c i e s o f a l l t h e c o m p l e x e s a r e g i v e n i n T a b l e 3 . 8 . T a b l e 3 . 8 . F r e q u e n c i e s ( c m ' l ) o f t h e I n f r a r e d S p e c t r a l A b s o r p t i o n s o f ( I ) , ( I I ) , ( I I I ) a n d ( I V ) . C o m p l e x e s F r e q u e n c i e s ( c m ' l ) ( P h 4 P ) 2 [ I n ( S 4 ) ( S 6 ) B r ] 4 9 0 ( 8 ) 4 5 8 ( 8 ) 2 9 9 ( 8 ) 2 9 0 ( 8 ) 2 6 3 ( 8 ) 2 1 7 ( 8 ) 1 9 9 ( m ) 1 8 7 ( 8 ) 1 7 2 ( m ) 1 4 1 ( m ) ( P h 4 P ) 2 [ I n ( S 4 ) ( S e ) C l ] 4 9 1 ( m ) 4 5 9 ( m ) 2 9 7 ( s ) 2 9 0 ( s ) 2 6 0 ( m ) 2 4 1 ( s ) 2 0 1 ( w ) 1 9 4 ( w ) 1 7 3 ( m ) 1 4 2 ( m ) ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( 8 5 ) 2 ( S 7 ) ] 4 8 5 ( 8 ) 4 5 7 ( m ) 2 3 9 ( 8 ) 2 6 0 0 " ) 1 8 6 ( m ) 1 3 7 ( w ) ( P h 4 P ) 2 [ { 1 n 2 8 ( 3 5 ) ( 3 4 ) 2 } o . 5 4 9 1 0 ! ! ) 4 7 9 ( W ) 4 6 3 ( m ) 4 5 8 ( W ) 3 5 5 ( 8 ) { I D 2 3 ( S S ) ( S 4 ) ( 3 6 ) 1 0 . 5 1 2 9 0 ( 5 ) 2 5 8 0 1 1 ) 2 3 1 ( m ) 1 9 2 ( W ) 1 4 7 ( W ) 1 7 2 ( D ) ( C ) m ( B ) D Z < [ - E r é a ( A ) < H [ - a ? I l I f I 4 7 0 4 0 5 3 4 0 2 7 5 2 1 0 1 4 5 W A V E N U M B E R F i g u r e 3 . 1 F a r - I R s p e c t r a o f ( A ) ( P h 4 P ) 2 [ I n ( 8 4 ) ( 8 5 ) B r ] ( I ) , ( B ) ( P h 4 P ) 2 [ I n ( S 4 ) ( 8 6 ) C 1 ] ( I I ) . ( C ) ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( 8 6 ) 2 ( S 7 ) ] ( I I I ) a n d ( D ) ( P h 4 P ) 2 [ { I n 2 $ ( S s ) ( S 4 ) 2 ) o . s { 1 n 2 $ ( S s ) ( S 4 ) ( S 6 ) ) 0 . 5 ] ( I V ) - O n i i l e e [ o f d s C f s d u n s d p a r e o F l ' t u v s i c . F : i a i z b l s n i r l e t a s r p l e x a m . m - l ‘ " a I R a j : n "he : a f o r of s l s i n - S o e d e m e r r i o p r e t g r u b i a a a t n n n y c s t i a a u l f i n t h t e m b b s 4 9 y b C 0 o i 1 z v 2 i a e n t d : m O 3 [ s 0 3 c i l F ' f “ 9 h u c p a 3 c u s t . r r 8 e e 1 [ B t n t r d r i d g e h e o r a l l C C t r i r o f f T a l n e s c o , ( C r e q u e n m ' e s f a l l . T h e r m a l T fl o w i n g 4 3 5 ° C . O n s e t salts o t f G A e x a t i t r o o o n ~ m D e 2 p O e I r y a s e t g ° t - 1 7 3 F o r a l l c o m p l e x e s t w o s p e c t r a l a b s o r p t i o n s a r e o b s e r v e d i n v i c i n i t y o f 4 9 0 a n d 4 5 8 c m ' l . T h e s e b a n d s c a n b e a s s i g n e d t o S - S v i b r a t i o n s b y c o m p a r i s o n w i t h t h e s p e c t r a o f o t h e r k n o w n p o l y s u l f i d e c o m p l e x e s l . T h e u S - S a b s o r p t i o n s i n t h i s r e g i o n h a s b e e n o b s e r v e d p r e v i o u s l y i n v a r i o u s c o m p o u n d s a n d s o m e r e p r e s e n t a t i v e e x a m p l e s a r e [ F e 2 S 1 2 1 2 ' o 2 8 a t 4 7 4 c m ' l , [ P d 2 S 2 3 1 4 W 2 9 a t 4 8 2 a n d 4 5 3 c m ' l , [ C u 3 S 1 2 ] 3 ° v 2 4 a t 4 6 8 a n d 4 5 5 c m ] . [ C u 2 S 2 o l 4 W Z 4 a t 4 8 4 a n d 4 5 6 c m ' 1 a n d [ B i 2 8 3 4 1 2 ' v 1 0 a t 5 0 0 , 4 6 5 , 4 5 6 a n d 4 4 8 c m ' l . F u r t h e r m o r e , t h e I R s p e c t r a o f t h e I n 3 + l e 2 ' c o m p l e x e s s h o w t w o a d d i t i o n a l s t r o n g b a n d s a r o u n d 2 9 0 a n d 2 6 0 c m ’ l . T h e s e m i g h t b e p o s s i b l e c a n d i d a t e s f o r I n - S s t r e t c h i n g v i b r a t i o n b y c o m p a r i s o n t o t h e s p e c t r a r e p o r t e d o f s o m e i n d i u m ( I I I ) h a l i d e c o m p l e x e s w i t h t r i m e t h y l p h o s p h i n e s u l f i d e a n d t r i m e t h y l a r s i n e s u l f i d e 3 0 e x h i b i t i n g a s t r o n g a b s o r p t i o n s i n t h e r a n g e o f 2 5 1 - 2 7 7 c m ' l . I t s h o u l d b e n o t e d t h a t i t i s d i f f i c u l t t o i n t e r p r e t t h e f a r I R s p e c t r a o f t h e c o m p l e x e s ( I ) a n d ( I I ) w i t h o u t a m b i g u i t y . T h e m a j o r d i f f i c u l t y i s a s s i g n i n g t h e o b s e r v e d I R a b s o r b a n c e s c o r r e s p o n d i n g t o t h e M - 8 a n d M - X ( X = B r , C l ) s t r e t c h i n g f r e q u e n c i e s f a l l i n t h e s a m e l o w f r e q u e n c y r e g i o n o f ( 3 0 0 - 1 0 0 c m ' l ) . . T h e r m a l G r a v i m e t r i c S t u d i e s T G A e x a m i n a t i o n o f t h e t h e r m o l y s i s o f ( I ) ( I I I ) a n d ( I V ) u n d e r fl o w i n g n i t r o g e n s h o w s t h a t t h e c o m p o u n d s b e g i n s t o l o s e w e i g h t a t ~ 3 3 5 ° C , ~ 2 6 0 ° C a n d 2 7 0 ° C , r e s p e c t i v e l y , a s s h o w n i n F i g u r e 3 . 2 . T h i s o n s e t t e m p e r a t u r e o f i n i t i a l w e i g h t l o s s , i s s h a r e d b y o t h e r P h a P + s a l t s o f p o l y s e l e n i d e c o m p l e x e s . I t r e p r e s e n t s t h e t h e r m a l s t a b i l i t y o f t h e P h 4 P + i o n w i t h r e s p e c t t o n u c l e o p h i l i c a t t a c k f r o m t h e 3 x 2 ' 1 0 0 7 ‘ . “ % T H G I E W I g l ’ h t P ) 3 ( I n ( S 4 ) l . P h a P ) 3 [ { 1 n 2 8 ( S . r ' . t g u r e 3 . 2 1 7 4 r a t V 1 T T T I Y I I I W T r T T I V I 1 0 0 e ? [ - I 9 3 t a : 3 0 . — 1 l 1 L 1 1 1 1 P l 1 1 l l 4 1 1 l 0 2 5 0 5 0 0 7 5 0 1 0 0 0 T E M P E R A T U R E ( ° C ) F i g u r e 3 . 2 T G A d i a g r a m s ( u n d e r n i t r o g e n ) o f ( A ) ( P h 4 P ) 2 [ I n ( S 4 ) ( S e ) B r ] ( I ) . ( B ) ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( S e ) 2 ( S 7 ) ] ( I I I ) a n d ( C ) ( P h 4 P ) 2 [ { I n 2 $ ( S s ) ( S 4 ) 2 } o . s { I n 2 $ ( S s ) ( S 4 ) ( 3 6 ) } o . 5 ] ( I V ) - lizards. T h f e l i n e d p e t M e r l t :siase. A t m o t i o n s o m p o s i e c i a h t t w e e a u w x e 1 0 0 ' l o g e t e o o n i o f E i d e r 1333’? : o t t a i n e d e r n t t a p P h a s e s . S / i n D e s c r i p t i o n 0 r ( u 8 S t ( i s I n s t r u c t u r e c a o o r c c e s d s i n a i b l e t . c t u r e 4 ) ( 8 6 [ I o i f o n ? n i T h e s u l f u r a n O d C a b y C u p i c s a i n t d i l p C i o h g s t o n i s P r i a t e d b y : ‘ l l a t o n ' a l P o s d e i t i p h a m i d W i t h T h e e q u a t o r i a l S I P C C K Q d . A 1 7 5 l i g a n d s . T h e w e i g h t l o s s c u r v e o f ( I ) i s c o m p l i c a t e d l a c k i n g a n y w e l l d e f i n e d p l a t e a u x . ( I I I ) a n d ( I V ) e x h i b i t a p l a t e a u a r o u n d 5 7 0 ° C , h o w e v e r t h e w e i g h t l o s s d o e s n o t c o r r e s p o n d t o a n y b i n a r y I n / S p h a s e . A t 1 0 0 0 ° C , t h e h i g h e s t t e m p e r a t u r e s t u d i e d t h e c o m p o u n d s c o n t i n u e s t o l o s e w e i g h t . T h e g r e y - b l a c k r e s i d u e o b t a i n e d f r o m t h e d e c o m p o s i t i o n o f ( 1 ) c o n t a i n s I n , S a n d P i n t h e 2 : 2 : 1 r a t i o . I t s X - r a y p o w d e r p a t t e r n d o e s n o t s h o w t h e p r e s e n c e o f k n o w n I n / S , I a n o r I n / S / P p h a s e s . T h e b l a c k r e s i d u e s o b t a i n e d f r o m ( I I I ) a n d ( I V ) c o n t a i n e d I n / S i n a p p r o x i m a t e l y 1 : 3 r a t i o a n d t h e X - r a y d i f f r a c t i o n p a t t e r n c o u l d n o t b e m a t c h e d t o a n y o f t h e k n o w n p h a s e s . D e s c r i p t i o n o f t h e S t r u c t u r e s S t r u c t u r e o f ( P h 4 P ) 2 [ I n ( S 4 ) ( 8 5 ) B r ] ( I ) T h e s t r u c t u r e o f t h e [ I n ( S 4 ) ( S 5 ) B r ] 2 ‘ a n i o n i s s h o w n i n F i g u r e 3 . 3 . I n v i e w o f t h e s t r u c t u r e o f [ I n 2 S e 2 1 1 4 ' a n d t h a t d e s c r i b e d h e r e , i t a p p e a r s t h a t f i v e c o o r d i n a t i o n i n i n d i u m p o l y c h a l c o g e n i d e c h e m i s t r y i s r e a d i l y a c c e s s i b l e . T h e c o o r d i n a t i o n o f i n d i u m i s b e s t d e s c r i b e d a s a t r i g o n a l b i p y r a m i d w i t h t h r e e e q u a t o r i a l s u l f u r l i g a n d s a n d t w o a x i a l ( a s u l f u r a n d a b r o m i d e ) , l i g a n d s . I t i s s o m e w h a t s u r p r i s i n g t h a t t h e B r l i g a n d o c c u p i e s a n a x i a l s i t e i n t h e m o l e c u l e s i n c e a n e q u a t o r i a l p o s i t i o n i s p r e d i c t e d b a s e d o n V S E P R a r g u m e n t s . T h e i n d i u m a t o m i s c h e l a t e d b y a S 4 2 ‘ a n d a S 5 2 ‘ l i g a n d . T h e l a t t e r o c c u p i e s t w o e q u a t o r i a l p o s i t i o n s . T h e a v e r a g e I n - S b o n d d i s t a n c e i s 2 . 5 3 5 ( 3 5 ) A . T h e e q u a t o r i a l I n - S b o n d s a r e s h o r t e r t h a n t h e a x i a l I n - S ( 4 ) b o n d a s e x p e c t e d . A l i s t i n g o f s e l e c t e d b o n d d i s t a n c e s a n d a n g l e s f o r ) y B s r r u 1 a l 2 n - g f i d ‘ i I I 6 t n ) o e t i . w t i c h p b p e n 8 e ( l - s o m i v o r a t o d e l l v e e a q r S a o a l ) - r r r i n l : a 3 : a e s : i t 5 a ( t e n r 6 n e w a a 3 o l 6 l r e t h . t ( p g n m a i s S a e l E s f e h a l ' h e y t t w h i o t e v t q u f i i e u a t c s 9 ) 3 b i m 1 M B o 3 g n e e t 3 c f m n ' i l i t r a l o r i a 1 0 e e n a n a m ( b i o n m r e I d n i t e 9 e g n L b s ) d u g w i 2 e h n 1 i a d A t O m E g a l d e i n n g g b h c ( d e r h i , g ; e S n b a h o w m f I i I l r t 1 7 6 [ I n ( S 4 ) ( S 5 ) B r ] 2 ' i s g i v e n i n T a b l e 3 . 9 . T h e o b s e r v e d S - S b o n d s a r e i n t h e n o r m a l r a n g e o f s i n g l e S - S b o n d d i s t a n c e s r e p o r t e d f o r o t h e r m e t a l - p o l y s u l f i d e c o m p o u n d s “ . T h e o c c u r r e n c e o f S 5 2 ' l i g a n d i s r a t h e r r a r e . I t i s i n t e r e s t i n g t o n o t e t h a t i n t h e s e v e n m e m b e r e d I n S 6 r i n g t h e I n , S ( 5 ) , S ( 7 ) , S ( 8 ) a n d S ( 1 0 ) a t o m s l i e v e r y c l o s e t o a p l a n e w i t h 8 ( 6 ) a n d S ( 9 ) p o s i t i o n e d r e s p e c t i v e l y 1 . 1 6 A a n d 1 . 1 9 A a b o v e a n d b e l o w i t . T h e s a m e c o n f o r m a t i o n h a s a l s o b e e n o b s e r v e d i n t h e s e v e n - m e m b e r e d H g S 5 r i n g o f t h e [ H g ( S 6 ) 2 ] 2 ' c o m p l e x ” . T h e e q u a t o r i a l p o s i t i o n o f t h e S 5 2 ' l i g a n d i n ( I ) i s r a t i o n a l i z e d b y i t s a b i l i t y t o p r o v i d e a w i d e e n o u g h " b i t e " t o s p a n t h e 4 . 2 5 A n e e d e d b e t w e e n e q u a t o r i a l l i g a n d s . T h e s m a l l e r S 4 2 ‘ l i g a n d c a n n o t o f f e r s u c h a l a r g e b i t e ( 3 . 7 A m a x ) a n d t h u s i s b e t t e r s t a b i l i z e d i n t h e f a s h i o n i n w h i c h i t i s f o u n d i n [ I n ( S 4 ) ( S 5 ) B r ] 2 ' . T h e p o s i t i o n o f t h e S ( 9 ) a t o m i n t h e S 5 2 ’ l i g a n d a f f e c t s t h e S ( 4 ) - I n - S ( 1 0 ) a n g l e w h i c h b e c o m e s 1 2 d e g l a r g e r t h a n t h e S ( 4 ) - I n - S ( 5 ) a n g l e s u g g e s t i n g t h a t t h e S ( 9 ) a t o m e x e r t s a s i g n i f i c a n t s t e r i c r e p u l s i o n o n S ( 4 ) . T h e F i v e - m e m b e r e d I n S 4 r i n g a d o p t s a n e n v e l o p e c o n f o r m a t i o n w i t h S ( 3 ) l y i n g 1 . 1 A a b o v e t h e I n S ( l ) S ( 2 ) S ( 4 ) p l a n e . F i g u r e 3 . 4 r e p r e s e n t s t h e p a c k i n g d i a g r a m o f ( P h 4 P ) 2 [ I n ( 8 4 ) ( S 6 ) B r ] ( I ) i n t h e u n i t c e l l . T h e I n - B r b o n d l e n g t h i n [ I n ( S 4 ) ( S 5 ) B r ] 2 ' i s 2 . 6 1 5 ( 3 ) A , i n t h e r i g h t r a n g e f o r a x i a l b i n d i n g f i v e - c o o r d i n a t e i n d i u m b e i n g 0 . 0 5 5 A s h o r t e r t h a n t h e I n - B r b o n d i n t h e s i x - c o o r d i n a t e [ I n B r 5 l 3 ' » 3 3 a n d l o n g e r t h a n t h e s a m e b o n d i n t h e t e t r a h e d r a l [ I n B r 4 ] 1 ' v 3 3 . W h e n B r i s e q u a t o r i a l l y b o u n d t o f i v e - c o o r d i n a t e i n d i u m s u c h a s i n I n B r 3 ( M e 3 A s S ) 2 , i t f o r m s a s h o r t e r I n - B r d i s t a n c e i n t h e r a n g e o f 2 . 5 3 - 2 . 5 5 A 3 ° . fi g u r e 3 . 3 “ ” 3 0 8 6 ” S ( l ) 8 ( 2 ) S ( 3 ) F i g u r e 3 . 3 O R T E P r e p r e s e n t a t i o n o f t h e t w o v i e w s o f t h e [ I n ( S 4 ) ( 8 5 ) B r ] 2 ' a n i o n i n ( I ) w i t h l a b e l i n g s c h e m e ) 3 1 8 3 ) 2 ( 9 “ . . . a . ‘ _ 1 . . F i g u r e 3 . 4 ( P h g p ) f “ ( 3 4 T l ' ( P h 4 P ) 2 [ 1 n ( S 4 ) ( 3 6 ) B r ] ( 1 ) - O R T E P F i g u r e 3 . 4 r e p r e s e n t a t i o n o f t h e u n i t c e l l o f 1 7 8 Table 3 . 9 . S e l e c t e , z t s t u S t s l e 1 2 ‘ f i - S ( 5 ) I i - S i l O ) I i ~ S ( m e a n ) I i i - B r S " T h i n - 8 ( 4 ) S l l ) - l n - s ( 5 ) S ‘ 7 ' 4 1 l - l n ~ S ( S ) 3 i i ) - 1 n - S ( 1 0 ) S ( M n - S ( 1 0 ) S ” M n - B r S ” M n - B r S i s ) ~ l n - B r S ( 1 0 ) - ( m g r \ 1 7 9 T a b l e 3 . 9 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) i n t h e [ I n ( S 4 ) ( S 6 ) B r ] 2 ' A n i o n . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . I n - S ( 1 ) 2 . 5 2 6 ( 4 ) 8 ( 1 ) - 8 ( 2 ) 2 . 0 6 1 ( 8 ) I n - S ( 4 ) 2 . 5 9 6 ( 5 ) S ( 2 ) - S ( 3 ) 2 . 0 4 5 ( 7 ) I n - S ( 5 ) 2 . 5 0 6 ( 5 ) S ( 3 ) - 8 ( 4 ) 2 . 0 3 5 ( 6 ) I n - 8 ( 1 0 ) 2 . 5 1 4 ( 5 ) S ( 5 ) - S ( 6 ) 2 . 0 1 7 ( 8 ) I n - S ( m e a n ) 2 . 5 3 5 ( 3 5 ) S ( 6 ) - S ( 7 ) 2 . 0 6 0 ( 3 ) S ( 7 ) - S ( 8 ) 2 . 0 8 0 ( 1 0 ) I n - B r 2 . 6 1 5 ( 3 ) S ( 8 ) - S ( 9 ) 2 . 0 2 9 ( 8 ) S ( 9 ) - S ( 1 0 ) 2 . 0 4 8 ( 6 ) S - S ( m e a n ) 2 . 0 4 6 ( 1 9 ) S ( 1 ) - I n - S ( 4 ) 9 1 . 0 ( 2 ) I n - S ( l ) - S ( 2 ) 1 0 6 . 3 ( 2 ) S ( 1 ) - I n - S ( 5 ) 1 2 5 . 2 ( 2 ) I n - S ( 5 ) - S ( 6 ) 1 0 7 . 1 ( 3 ) S ( 4 ) - I n - S ( 5 ) 8 5 . 4 ( 2 ) I n - S ( 4 ) - S ( 3 ) 9 8 . 8 ( 2 ) S ( 4 ) - I n - S ( 1 0 ) 9 7 . 2 ( 2 ) I n - S ( 1 0 ) - S ( 9 ) 1 0 5 . 0 ( 3 ) S ( 5 ) - I n — S ( 1 0 ) 1 1 5 . 7 ( 2 ) S ( 1 ) - S ( 2 ) - S ( 3 ) 1 0 3 . 5 ( 3 ) S ( 1 ) - I n - B r 8 0 . 8 ( 1 ) S ( 2 ) - S ( 3 ) - S ( 4 ) 1 0 3 . 7 ( 3 ) S ( 4 ) - I n - B r 1 7 0 . 3 ( 1 ) S ( 5 ) - S ( 6 ) - S ( 7 ) 1 0 7 . 2 ( 4 ) S ( 5 ) - I n - B r 9 5 . 2 ( 2 ) S ( 6 ) - S ( 7 ) - S ( 8 ) 1 0 7 . 4 ( 4 ) S ( 1 0 ) - I n - B r 9 1 . 4 ( 2 ) S ( 7 ) - S ( 8 ) - S ( 9 ) 1 0 7 . 9 ( 4 ) S ( 8 ) - S ( 9 ) - S ( 1 0 ) 1 0 7 . 0 ( 3 ) { O r i t t c t e d e x l r a t i o n a l i z e d w O U l d S i t a i n b \ . l S t r u c t u r e a l i e n ' s t h e s t r u C t ‘ j j n t S a ) ( S 6 ) ] - ' n g o n a l - b i p y r a m 5 : 3 - a n d 3 6 2 ' b . 5 . 3 - c h a i n . T : Q Z I Q I O I l a l a t o m o i e r e o f i n d i u t e q u a t o r i a l S - l n - f a i d S ( l l ) a t o c o r r e s p o n d i n g 1 3 . 9 4 . 4 s h o r t e r t l i g a n d w h i c h 0 t : i l f c h a i r c o n f o a b o v e a n d b e l o 5 6 2 ' a l s o o c c u s i m i l a r c o n f o r m “ l g t h e 8 ( 5 ) 3 ( “ 0 1 d e v i a t e m S l i m i t e t r i c a l l y E s p e c t i v e l y . ' 1 m a l t “ i m m o r t a l I n - S t t o ) b o n d 1 8 0 S t r u c t u r e o f ( P h 4 P ) 4 [ I n 2 ( 8 4 ) 2 ( 8 5 ) 2 ( 8 7 ) ] ( I I I ) . F i g u r e 3 . 5 s h o w s t h e s t r u c t u r e o f [ I n 2 ( 8 4 ) 2 ( S 6 ) 2 ( S 7 ) ] 4 ' a n i o n . I t c o n s i s t s o f t w o [ I n ( S 4 ) ( S 6 ) ] ’ u n i t s b r i d g e d b y a S 7 2 ' c h a i n . T h e I n a t o m h a s a t r i g o n a l - b i p y r a m i d a l c o o r d i n a t i o n g e o m e t r y , a n d i s c h e l a t e d b y a S 4 2 ‘ a n d S 5 2 ' b i d e n t a t e l i g a n d a n d b o u n d t o a t e r m i n a l S a t o m o f t h e S 7 2 ' c h a i n . T w o a x i a l s u l f u r a t o m s S ( l ) a n d S ( 5 ) , a n d t h e t h r e e e q u a t o r i a l a t o m s S ( 5 ) , S ( 1 0 ) a n d S ( l l ) c o m p o s e t h e c o o r d i n a t i o n s p h e r e o f i n d i u m . T h e a x i a l S ( l ) - I n — S ( 5 ) a n g l e i s l 7 6 . 1 ( 2 ) ° . T h e e q u a t o r i a l S - I n - S a n g l e s a v e r a g e t o 1 1 9 . 9 ( 2 ) ° a n d t h e I n , S ( 5 ) , S ( 1 0 ) a n d S ( l l ) a t o m s d o n o t d e v i a t e m o r e t h a n 0 . 0 1 1 A f r o m t h e c o r r e s p o n d i n g l e a s t s q u a r e s p l a n e . T h e e q u a t o r i a l I n - S b o n d s a r e 0 . 9 4 A s h o r t e r t h a n t h e a x i a l b o n d s a s e x p e c t e d . T h e c h e l a t i n g S 4 2 “ l i g a n d w h i c h o c c u p i e s a n a x i a l a n d a n e q u a t o r i a l p o s i t i o n a d o p t s a h a l f c h a i r c o n f o r m a t i o n . A t o m s S ( 2 ) a n d S ( 3 ) a r e 0 . 4 7 8 A a n d 0 6 8 1 . 4 a b o v e a n d b e l o w t h e I n S ( 1 ) S ( 4 ) p l a n e , r e s p e c t i v e l y . T h e b i d e n t a t e S 5 2 ' a l s o o c c u p i e s a n a x i a l a n d a n e q u a t o r i a l p o s i t i o n , a n d h a s a s i m i l a r c o n f o r m a t i o n a s f o u n d i n ( I ) . I n t h e s e v e n m e m b e r e d I n S 6 r i n g t h e S ( 5 ) S ( 7 ) S ( 8 ) S ( 1 0 ) a t o m s l i e o n a l e a s t s q u a r e s p l a n e a n d d o n o t d e v i a t e m o r e t h a n 0 . 0 0 5 4 , t h e S ( 6 ) a n d S ( 9 ) a t o m s a r e s y m m e t r i c a l l y p o s i t i o n e d 1 . 1 9 6 A a b o v e a n d b e l o w t h e p l a n e r e s p e c t i v e l y . T h e I n a t o m i s s i t u a t e d 0 . 4 3 4 A a b o v e t h e p l a n e . T h e a x i a l - e q u a t o r i a l c h e l a t i o n m o d e o f t h e S 5 2 ' l i g a n d i n f l u e n c e s t h e S ( 5 ) - I n - S ( 1 0 ) b o n d a n g l e t h u s e x t e n d i n g i t m o r e t h a n 1 2 d e g l a r g e r t h a n e x p e c t e d f o r t h e t r i g o n a l - b i p y r a m i d a l g e o m e t r y . T h i s c a n b e r a t i o n a l i z e d b y t h e f a c t t h a t S 5 2 ' l i g a n d h a s a l a r g e b i t e s i z e a n d w o u l d s t r a i n t h e c h a i n i f t h e S ( 5 ) a n d S ( 1 0 ) a t o m s c o m e i n c l o s e r p r o x i m i t y . T h e S ( l l ) a n d S ( 1 2 ) a t o m s o f t h e b r i d g i n g S 7 2 ' c h a i n a r e i I , g t ’ e r e e Y e d d m . s s i a o g z r u o t h o r e b 1 5 f r 7 l 4 c a e s l t E i h e e S P - s t a r g i ( n n a ‘ a P : t d - i 2 a C T ) d ' i f h i i i i a " i s C 3 t 1 t r 1 ' l a q “ u n : t : a c c u r a c y o f t i 1 8 1 d i s o r d e r e d a n d p o s i t i o n a l l y d i s t r i b u t e d o v e r t w o s i t e s o f e q u a l o c c u p a n c y . T h e a n i o n [ I n 2 ( S 4 ) 2 ( S 6 ) 2 ( S 7 ) ] 4 ' h a s a c r y s t a l l o g r a p h i c a l l y i m p o s e d c e n t e r o f s y m m e t r y s i t u a t e d h a l f w a y b e t w e e n t h e I n - - - I n v e c t o r . T h i s i n d u c e s a p o s i t i o n a l d i s o r d e r o f t h e c e n t r a l S ( 1 4 ) a t o m o f t h e b r i d g i n g 8 7 2 ' c h a i n , t h u s r e s u l t s i n t w o d i f f e r e n t c o n f o r m a t i o n s o f t h e S 7 2 ' c h a i n i n t h e s o l i d s t a t e w i t h a h a l f p o s i t i o n a l o c c u p a n c y o f t h e S ( 1 4 ) a t o m . F i g u r e 3 . 6 r e p r e s e n t s t h e p a c k i n g d i a g r a m o f ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( S 6 ) 2 ( S 7 ) ] ( I I I ) i n t h e u n i t c e l l . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e n i n T a b l e 3 . 1 0 - 3 . 1 1 . D u e t o t h e m a r g i n a l q u a l i t y o f t h e d a t a s e t a n d t h e e x t e n t o f d i s o r d e r t h e a c c u r a c y o f t h e S - - S b o n d s i n t h e b r i d g i n g 8 7 2 ' c h a i n i s l o w . ‘ 3 5 ( 4 ) 5 ( 5 5 ( 6 ) : 2 C A ( g o — — ' 9 . » 8 ( 8 ) H i m 3 5 1 8 2 S ( 3 ) S ( 2 ) S ( 1 4 ) s h a g . ) I I a S ( 1 3 ) . _ @ / S ( 6 ) S ( l l ' ) % \ S ( 1 0 ) S ( 7 ) S ( 8 ) 5 ‘ ” S ( 3 ) S ( 2 ) S ( l ) S ( 1 3 ) S ( l l ) F i g u r e 3 . 5 O R T E P r e p r e s e n t a t i o n o f t h e t w o c o n f o r m a t i o n s o f t h e [ I n 2 ( S 4 ) 2 ( S s ) 2 ( S 7 ) ] 4 ‘ a n i o n i n ( I I I ) w i t h l a b e l i n g s c h e m e . ( C l l o f ( P i m p ) : fi g u r e 3 . 6 1 8 3 F i g u r e 3 . 6 O R T E P r e p r e s e n t a t i o n o f t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( P h 4 P ) 4 [ I n 2 ( S 4 ) 2 ( S t s ) 2 ( 8 7 ) ] ( I I I ) - T b k 3 1 : 0 S . t a 3 n 8 d 1 a 5 r ‘ d ‘ - 1 1 1 1 0 1 1 - h i l l - 3 ( 1 ) l a t h - 3 ( 4 ) l h l ) S ( 5 ) l i l l l l ‘ S U O ) i t ‘ l ‘ ) - S ( l l ) h i l l - S ( l 1 ' ) 5 2 1 - 5 ( m e a n ) T a b l e 3 . 1 0 . S e l e c t e d B o n d D i s t a n c e s ( A ) i n t h e [ l n 2 ( S 7 ) ( S 4 ) 2 ( 8 5 ) 2 ] 4 ' 1 8 4 A n i o n . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . I n ( 1 ) - S ( 1 ) 2 . 6 1 9 ( 5 ) 8 ( 1 ) - S ( 2 ) 2 . 0 5 7 ( 7 ) I n ( 1 ) - S ( 4 ) 2 . 5 2 3 ( 5 ) S ( 2 ) - S ( 3 ) 2 . 0 3 9 ( 7 ) I n ( l ) - S ( 5 ) 2 . 6 1 0 ( 6 ) S ( 3 ) - 8 ( 4 ) 2 . 0 4 4 ( 7 ) I n ( 1 ) - S ( 1 0 ) 2 . 5 1 0 ( 5 ) S ( 5 ) - S ( 6 ) 2 . 0 4 ( l ) I n ( 1 ) - S ( 1 1 ) 2 . 5 2 ( 2 ) S ( 6 ) - S ( 7 ) 2 . 0 5 1 ( 8 ) I n ( 1 ) - S ( 1 1 ' ) 2 . 5 3 ( 2 ) S ( 7 ) - S ( 8 ) 2 . 0 4 5 ( 8 ) I n - S ( m e a n ) 2 . 5 5 2 S ( 8 ) - S ( 9 ) 2 . 0 4 1 ( 8 ) S ( 9 ) - S ( 1 0 ) 2 . 0 4 6 ( 8 ) S ( l l ) - S ( 1 2 ) l . 8 6 ( 3 ) S ( 1 1 ' ) - S ( 1 2 ' ) 1 . 7 2 ( 4 ) S ( 1 2 ) - S ( 1 3 ) 1 . 8 9 ( 2 ) S ( 1 2 ' ) - S ( 1 3 ) l . 8 3 ( 3 ) S ( 1 3 ) - S ( 1 4 ) 2 . 0 9 ( 2 ) S ( 1 3 ) - S ( 1 4 ' ) 2 . 0 6 ( 2 ) S - S ( m e a n ) 1 . 9 8 7 h fi e 3 . 1 1 . 1 t h a n . S t a n i l h l n ( l ) - S i H l n ( l ) - S i n n ( l ) - S S H l n ( l ) - S i U l n ( l ) - S S i i ' : t . l n ( l ) - s S M ) - l n ( l ) — E h i h l n ( l ) - E h t ) 1 n ( 1 ) , 5 $ 5 ) I n ( ] ) - t h S ) l n ( ] ) - : S ‘ 5 l ~ l n ( 1 ) - : S U 0 ) I n ( 1 ) S fl 0 ) 1 n ( 1 ) T a b l e 3 . 1 1 . S e l e c t e d B o n d A n g l e s ( d e g ) i n t h e [ I n 2 ( S 7 ) ( S 4 ) 2 ( S 5 ) 2 ] 4 ‘ A n i o n . 1 8 5 S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . S ( 1 ) - I n ( 1 ) - S ( 4 ) S ( 1 ) - I n ( 1 ) - S ( 5 ) S ( 1 ) - I n ( l ) - S ( 1 0 ) S ( 1 ) - I n ( . l ) - S ( 1 1 ) S ( l ) - I n ( l ) - S ( 1 1 ' ) S ( 4 ) - I n ( 1 ) - S ( 5 ) S ( 4 ) - I n ( 1 ) - S ( 1 0 ) S ( 4 ) - I n ( 1 ) - S ( 1 1 ) S ( 4 ) - I n ( l ) - S ( 1 1 ' ) S ( 5 ) - I n ( 1 ) - S ( 1 0 ) S ( 5 ) - I n ( 1 ) - S ( 1 1 ) S ( 5 ) - I n ( l ) - S ( 1 1 ' ) S ( 1 0 ) ‘ - I n ( l ) - S ( 1 1 ) S ( 1 0 ) - I n ( 1 ) - S ( 1 1 ' ) 9 2 . 2 ( 2 ) 1 7 6 . 1 ( 2 ) 8 1 . 4 ( 2 ) 9 6 . 4 ( 7 ) 9 6 . 7 ( 2 ) 8 7 . 3 ( 2 ) 1 2 1 . 7 ( 2 ) 1 1 1 . 0 ( 5 ) 1 2 8 . 7 ( 7 ) 1 0 2 . 2 ( 2 ) 8 0 . 1 ( 7 ) 8 0 . 6 ( 7 ) 1 2 7 . 2 ( 5 ) 1 0 9 . 6 ( 7 ) I n ( 1 ) - S ( 1 ) - S ( 2 ) I n ( 1 ) - S ( 4 ) - S ( 3 ) I n ( l ) - S ( 5 ) - S ( 6 ) I n ( l ) - S ( 1 0 ) - S ( 9 ) I n ( 1 ) - S ( 1 1 ) - S ( 1 2 ) I n ( 1 ) - S ( 1 1 ' ) - S ( 1 2 ' ) S ( 1 ) - S ( 2 ) - S ( 3 ) S ( 2 ) - S ( 3 ) - S ( 4 ) S ( 5 ) - S ( 6 ) - S ( 7 ) S ( 6 ) - S ( 7 ) - S ( 8 ) S ( 7 ) - S ( 8 ) - S ( 9 ) S ( 8 ) - S ( 9 ) - S ( 1 0 ) S ( 1 1 ) - S ( 1 2 ) - S ( 1 3 ) S ( 1 1 ' ) - S ( 1 2 ' ) - S ( 1 3 ) S ( 1 2 ) - S ( 1 3 ) - S ( 1 4 ' ) S ( 1 2 ' ) - S ( l 3 ) - S ( 1 4 ) S ( 1 3 ) - S ( 1 4 ) - S ( 1 3 ' ) 1 0 1 . 5 ( 2 ) 1 0 3 . 0 ( 2 ) 1 0 9 . 1 ( 3 ) 1 1 2 . 3 ( 3 ) 1 0 6 ( 1 ) 1 1 2 ( 2 ) 1 0 4 . 7 ( 3 ) 1 0 3 . 7 ( 3 ) 1 0 6 . 3 ( 4 ) 1 0 8 . 1 ( 3 ) 1 0 7 . 6 ( 3 ) 1 0 3 . 8 ( 3 ) 1 0 2 . 3 ( 9 ) 1 1 0 ( 1 ) 1 0 7 . 7 ( 7 ) 1 0 4 ( 1 ) 1 0 5 . 6 ( 7 ) o f c e ) ( 3 4 ) S t r u c t u r e 1 1 ' ) i ? n ; n t h 5 e l q T . 5 h 5 u a l : z t r i l e d r a l w 353' t o : i u o c y c l 3 : : s y 8 5 4 3 4 f e m a o m s r m h e a t s h 1 o 2 c n 1 2 c n a y o v o o s r / \ T h e S ( P l a n e ‘ a n d d o P ‘ O S i t i O n e d 1 . S ( 7 ) 3 1 0 m g b r i d g i n g m o 1 3 7 7 A a n d t h i s c o m p l e x e i g h t m e m e : 0 - O r d l n E i t i o n 1 8 6 S t r u c t u r e o f ( P h 4 P ) 2 [ { I n 2 8 ( S s ) ( S 4 ) 2 } o . s { I n 2 S ( S s ) ( S 4 ) ( S 6 ) } o . s ] ( I V ) T h e c o m p l e x ( I V ) c a n b e c o n s i d e r e d a s t h e c o c r y s t a l l i z a t i o n o f [ I n 2 8 ( S 5 ) ( S 4 ) 2 ] 2 ' a n d [ I n z S ( S 5 ) ( S 4 ) ( S 5 ) ] 2 ' a n i o n s i n t h e t r i c l i n i c c e l l w i t h e q u a l o c c u p a n c i e s . T h e t w o a n i o n s c o n t a i n I n 3 + w i t h a t e t r a h e d r a l c o o r d i n a t i o n , t h e I n a t o m s a r e b r i d g e d b y t h e S 2 ‘ a n d S 5 2 ' t o f o r m a e i g h t m e m b e r e d [ I n S I n ( S 5 ) ] 2 + r i n g a s t h e c o r e . T h i s h e t r o c y c l e h a s a n e x t r e m e c r a d l e c o n f o r m a t i o n w i t h a n a p p r o x i m a t e D 2 d s y m m e t r y a n d t h e c o n f o r m a t i o n r e s e m b l e s t h a t o f A 8 4 S 4 a n d N 4 8 4 3 4 a s s h o w n s c h e m a t i c a l l y b e l o w . N 4 8 4 [ I n 8 1 n ( 8 5 ) ] 2 + T h e S ( 5 ) S ( 6 ) S ( 8 ) S ( 1 0 ) a t o m s a r e s i t u a t e d o n a l e a s t s q u a r e s p l a n e a n d d o n o t d e v i a t e m o r e t h a n 0 . 1 5 A , I n ( l ) a n d S ( 9 ) a t o m s a r e p o s i t i o n e d 1 . 2 5 7 A a n d 1 . 1 7 6 1 1 b e l o w t h e p l a n e w h e r e a s I n ( 2 ) a n d S ( 7 ) a t o m s a r e 1 . 1 4 7 A a n d 1 . 1 4 6 A a b o v e i t r e s p e c t i v e l y . T h e b r i d g i n g m o n o s u l f i d e S ( 5 ) a t o m h a s s h o r t I n - S b o n d d i s t a n c e s o f 2 . 3 7 7 A a n d 2 . 3 9 9 A c o m p a r e d t o t h e a v . I n - S d i s t a n c e o f 2 . 4 7 3 A i n t h i s c o m p l e x . T h e a v e r a g e b o n d a n g l e b e t w e e n t h e a t o m s i n t h e e i g h t m e m b e r e d [ I n S I n ( S 5 ) ] 2 + r i n g i s 1 0 8 . 3 ° . T h e r e m a i n i n g t w o c o o r d i n a t i o n s i t e s o n I n ( l ) a t o m a r e o c c u p i e d b y t h e 8 4 2 ' b i d e n t a t e O ( S r i e l ) P e h l 4 m P e ) d 2 1 ( b r e 1 o n n 1 2 t g r i l l i n - r e f o r m a t i o n T a e c o o r d i n a 2 e 5 6 2 ' b i d m . A n O t h e 3 } h g a n d s f u n d i n [ 5 a d o p t s a h a l 0 . 8 7 6 1 1 5 s h o w n i l S i l l l S ( l 6 ) S ( d e v i a t e m o r e 1 . 1 0 1 1 a n d a i m i s p o s i l i g a n d i s i n W e t t e r i n ( s q u a r e s p l a r l a n e s i n t h M o m s a r e l u l 2 ) 3 ( l l ) S ( d i f f e r e n t C h l i m e “ t h e . 1 8 7 c h e l a t e . T h e F i v e - m e m b e r e d I n S 4 r i n g a d o p t s a n e n v e l o p e c o n f o r m a t i o n w i t h S ( 3 ) l y i n g 1 . 1 1 A a b o v e t h e I n S ( 1 ) S ( 2 ) S ( 4 ) p l a n e . T h e c o o r d i n a t i o n s p h e r e o n I n ( 2 ) a t o m i s c o m p l e t e d b y t h e 8 4 2 ' a n d t h e S 5 2 ' b i d e n t a t e l i g a n d s d i s o r d e r e d o n t h e s a m e c r y s t a l l o g r a p h i c s i t e . A n o t h e r e x a m p l e o f p o l y s u l f i d e c o m p l e x i n w h i c h b o t h 8 4 2 ' a n d S 5 2 ' l i g a n d s a r e d i s o r d e r e d a b o u t t h e s a m e c r y s t a l l o g r a p h i c s i t e i s f o u n d i n [ S n ( S 5 ) ( S 4 ) 2 ] 2 ' v 1 1 . T h e S 4 2 ' l i g a n d c o o r d i n a t e d t o I n ( 2 ) a d o p t s a h a l f c h a i r c o n f o r m a t i o n , a t o m s S ( 1 2 ) a n d S ( 1 3 ) a r e 0 . 3 8 8 A a n d 0 . 8 7 6 A a b o v e a n d b e l o w t h e I n ( 2 ) S ( l l ) S ( 1 4 ) p l a n e , r e s p e c t i v e l y , a s s h o w n i n F i g u r e 3 . 7 . I n t h e s e v e n m e m b e r e d I n 8 6 r i n g t h e S ( 1 1 ) S ( 1 6 ) S ( l 7 ) S ( 1 9 ) a t o m s l i e o n a l e a s t s q u a r e s p l a n e a n d d o n o t d e v i a t e m o r e t h a n 0 . 0 6 A , t h e S ( 1 8 ) a n d S ( 1 5 ) a t o m s a r e p o s i t i o n e d 1 . 2 0 1 A a n d 0 . 9 9 7 A a b o v e a n d b e l o w t h e p l a n e r e s p e c t i v e l y . T h e I n a t o m i s p o s i t i o n e d 0 . 9 7 1 A b e l o w t h e p l a n e . T h u s t h e c h e l a t i n g S 6 2 ' l i g a n d i s i n a c h a i r c o n f o r m a t i o n a s f o u n d p r e v i o u s l y i n ( I ) a n d ( I I I ) , h o w e v e r i n ( I V ) t h e I n a t o m e x h i b i t s a l a r g e d e v i a t i o n f r o m t h e l e a s t s q u a r e s p l a n e . I n t e r e s t i n g l y , t h e r e i s a n o t h e r s e t o f l e a s t s q u a r e p l a n e s i n t h i s s e v e n m e m b e r e d I n S 5 r i n g . T h e S ( 1 1 ) S ( 1 5 ) S ( 1 7 ) S ( 1 8 ) a t o m s a r e i n a p l a n e w i t h S ( l 9 ) 1 . 8 3 6 A a b o v e i t a n d I n ( 2 ) S ( l l ) S ( 1 8 ) S ( 1 9 ) a t o m s d e f i n e a n o t h e r p l a n e l e a d i n g t o a d i f f e r e n t c h a i r c o n f o r m a t i o n o f t h e I n s t ; r i n g . T h e d i h e d r a l a n g l e b e t w e e n t h e s e t w o p l a n e s i s 1 0 6 . 0 1 ° . T w o d i f f e r e n t v i e w s o f t h e s e v e n m e m b e r e d I n S e r i n g a r e s h o w n i n F i g u r e 3 . 8 . F i g u r e 3 . 9 i s a n o r t e p r e p r e s e n t a t i o n o f t h e p a c k i n g d i a g r a m o f ( P h 4 P ) 2 [ { 1 n 2 8 ( S s ) ( S 4 ) 2 ) 0 . 5 ( 1 n 2 8 ( S s ) ( S 4 ) ( 3 6 ) } 0 . s ] ( I V ) i n t h e u n i t c e l l - S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e n i n T a b l e 3 . 1 2 - 3 . 1 3 . E l i o t ] l l l 1 8 8 S ( 1 0 ) 8 0 1 ) S 9 ) “ f ‘ m ‘ \ ‘ S ‘ s ) I n ( 2 ) Q ‘ s t l z ) ‘ \ ( D A . S ( 8 ) 1 ' } Q 3 S ( 1 3 ) S ( 1 4 ) 8 ( 6 ) S ( 7 ) 1 S ( 2 ) 8 “ ) I I ’ 8 ( 4 ) S ( S ) ‘ \ ' S ( 1 2 ) v ; . \ ‘ S ( 1 ) \ . \ ’ D 1 ( 1 ) A S ( 3 ) ‘ 1 4 1 n ( 2 ) V ) \ C ( a 8 ( 9 ) S ( 1 0 ) ' S ( 6 ) @ ' ~ ’ S ( 1 3 ) * S ( 1 4 ) \ ) S ( 3 ) S ( 7 ) F i g u r e 3 . 7 O R T E P r e p r e s e n t a t i o n o f t w o v i e w s o f t h e [ I n g S ( S 5 ) ( S 4 ) 2 ] 2 ‘ a n i o n i n ( I V ) w i t h l a b e l i n g s c h e m e S ( Z « r ‘ n S U N j F i g u r e 3 . 8 ” W 8 5 ) ( S 1 8 9 S ( 8 ) 3 ' . S ( 1 0 ) V t N S ( 9 ) \ C ' 8 ( 1 ) ( 6 ‘ . ( 8 ( 7 ) v 8 ( 2 ) 8 ( 6 ) S ( l 9 ) / I n 2 ’ 9 ( “ ( ( 1 1 ) . S ( 1 8 ) ( - S ( 3 ) ‘ I n ( l ) ‘ ) 1 ‘ S ( 5 ) , . \ S ” ‘ ) ‘ 9 S ( l S ) 5 ( 4 ) S ( l 7 ) F i g u r e 3 . 8 O R T E P r e p r e s e n t a t i o n o f t w o v i e w s o f t h e [ I n z S ( S 5 ) ( S 4 ) ( S 6 ) ] 2 ' a n i o n i n ( I V ) w i t h l a b e l i n g s c h e m e Figure 3 . 9 unit cell o f ( P h fl 1 9 0 $ . 2 9 . ( 9 5 9 " D 7 F i g u r e 3 . 9 O R T E P r e p r e s e n t a t i o n o f t h e p a c k i n g d i a g r a m i n t h e u n i t c e l l o f ( P h 4 P ) 2 [ { I n 2 3 ( S s ) ( S 4 ) 2 l 0 . 5 { 1 n 2 $ ( 3 5 ) ( 3 4 ) ( 3 6 ) 1 0 . 5 ] ( 1 V ) - T a b l e 3 . 1 2 . i r o n . S t a 8 n 6 t T a b l e 3 . 1 2 . S e l e c t e d B o n d D i s t a n c e s ( A ) i n t h e [ I n 2 8 ( S 5 ) ( S 4 ) 1 , 5 ( 8 5 ) o , 5 ] 2 ' A n i o n . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . I n ( l ) - S ( l ) I n ( 1 ) - S ( 4 ) I n ( 1 ) - S ( 5 ) I n ( 1 ) - S ( 6 ) I n ( 2 ) - S ( 5 ) I n ( 2 ) - S ( 1 0 ) I n ( 2 ) — S ( 1 1 ) I n ( 2 ) - S ( 1 4 ) I n ( 2 ) - S ( 1 9 ) I n - S ( m e a n ) 2 . 5 0 5 ( 3 ) 2 . 5 1 3 ( 3 ) 2 . 3 7 7 ( 4 ) 2 . 5 0 0 ( 4 ) 2 . 3 9 9 ( 4 ) 2 . 4 8 1 ( 4 ) 2 . 4 9 0 ( 4 ) 2 . 4 8 0 ( 1 0 ) 2 . 5 1 3 ( 9 ) 2 . 4 7 3 S ( 1 ) - S ( 2 ) S ( 2 ) - S ( 3 ) S ( 3 ) - 8 ( 4 ) S ( 6 ) - S ( 7 ) S ( 7 ) - S ( 8 ) S ( 8 ) - S ( 9 ) S ( 9 ) - S ( 1 0 ) S ( 1 1 ) - S ( 1 2 ) S ( 1 2 ) - S ( 1 3 ) S ( 1 3 ) - S ( 1 4 ) S ( 1 1 ) - S ( 1 5 ) S ( 1 5 ) - S ( 1 6 ) S ( 1 6 ) - S ( 1 7 ) S ( 1 7 ) - S ( 1 8 ) S ( 1 8 ) - S ( 1 9 ) S - S ( m e a n ) 2 . 0 6 4 ( 4 ) 2 . 0 0 9 ( 5 ) 2 . 0 8 1 ( 5 ) 2 . 0 2 4 ( 5 ) 2 . 0 1 1 ( 6 ) 2 . 0 2 5 ( 5 ) 2 . 0 3 4 ( 5 ) 2 . 2 3 ( 1 ) 2 . 0 1 ( 2 ) 2 . 1 1 ( 2 ) 1 . 9 4 ( 1 ) 2 . 0 0 ( 1 ) 2 . 0 5 ( 1 ) 2 . 0 8 ( 2 ) 2 . 0 1 ( 1 ) 2 . 0 4 5 i r o n . S t a n d a r d t a u t 3 . 1 3 5 6 1 “ S . l l r l n ( 1 ) - S ( 4 ) E l i - I n ( l ) - S ( 5 ) i l l - I n ( l ) - S ( 6 ) 5 . 1 ‘ ) - l n ( l ) - S ( S ) S J ) - l n ( l ) - S ( 6 ) S - S l - l n ( l ) - S ( 6 ) 5 ( 5 ’ l - l n ( 2 ) - S ( 1 0 f S S t - I n ( 2 ) - S ( l l S ' f i - l r 1 ( 2 ) t 8 ( l t 5 5 5 l - l n ( 2 ) - s ( 1 9 , S ' l O i l - l n ( 2 ) - S ( l l S t , ’ 1 0 ) - l n ( 2 ) - S ( l t u t t i - I n ( 2 ) - S ( l S ‘ l l ) ‘ - l n ( 2 ) - s ( ‘ l l l l ) . [ n ( 2 ) _ s ( 1 9 2 T a b l e 3 . 1 3 S e l e c t e d B o n d A n g l e s ( d e g ) i n t h e [ I n 2 S ( S 5 ) ( S 4 ) 1 , 5 ( S 5 ) o , 5 ] 2 ' A n i o n . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . S ( 1 ) - I n ( 1 ) - S ( 4 ) 9 8 . 0 ( 1 ) I n ( l ) - S ( l ) - S ( 2 ) 9 9 . 4 ( 1 ) S ( 1 ) - I n ( 1 ) - S ( 5 ) 1 2 1 . 2 ( 2 ) I n ( 1 ) - S ( 4 ) - S ( 3 ) 9 3 . 0 ( 1 ) S ( 1 ) - I n ( l ) - S ( 6 ) 1 0 7 . 4 ( 1 ) I n ( 1 ) - S ( 5 ) - I n ( 2 ) 1 0 8 . 0 ( 2 ) S ( 4 ) - I n ( 1 ) - S ( 5 ) 1 1 1 . 2 ( 1 ) I n ( 1 ) - S ( 6 ) - S ( 7 ) 1 0 1 . 9 ( 2 ) S ( 4 ) - I n ( 1 ) - S ( 6 ) 9 5 . 3 ( 1 ) I n ( 2 ) - S ( 1 0 ) - S ( 9 ) 1 0 1 . 9 ( 2 ) S ( 5 ) - I n ( 1 ) - S ( 6 ) 1 1 8 . 6 ( 2 ) I n ( 2 ) - S ( l l ) - S ( 1 2 ) 9 4 . 1 ( 3 ) S ( 5 ) - I n ( 2 ) - S ( 1 0 ) 1 1 8 . 9 ( 1 ) I n ( 2 ) - S ( 1 1 ) - S ( 1 5 ) 1 0 1 . 3 ( 3 ) S ( 5 ) - I n ( 2 ) - S ( 1 1 ) 1 0 7 . 3 ( 1 ) I n ( 2 ) - S ( 1 4 ) - S ( l 3 ) 9 8 . 2 ( 5 ) S ( 5 ) - I n ( 2 ) - S ( l 4 ) 1 0 7 . 6 ( 3 ) I n ( 2 ) - S ( 1 9 ) - S ( 1 8 ) 1 0 7 . 6 ( 5 ) S ( 5 ) - I n ( 2 ) - S ( 1 9 ) 1 2 3 . 0 ( 2 ) S ( 1 ) - S ( 2 ) - S ( 3 ) 1 0 6 . 0 ( 2 ) S ( 1 0 ) - I n ( 2 ) - S ( 1 1 ) 1 0 1 . 5 ( 1 ) S ( 2 ) - S ( 3 ) - S ( 4 ) 1 0 4 . 0 ( 2 ) S ( 1 0 ) - I n ( 2 ) - S ( 1 4 ) 1 1 8 . 4 ( 3 ) S ( 6 ) - S ( 7 ) - S ( 8 ) 1 0 5 . 6 ( 2 ) S ( 1 0 ) - I n ( 2 ) - S ( l 9 ) 9 6 . 8 ( 2 ) S ( 7 ) - S ( 8 ) - S ( 9 ) 1 0 5 . 7 ( 2 ) S ( 1 1 ) - I n ( 2 ) - S ( 1 4 ) 1 0 0 . 6 ( 2 ) S ( 8 ) - S ( 9 ) - S ( 1 0 ) 1 0 6 . 0 ( 2 ) S ( l 1 ) . - I n ( 2 ) - S ( l 9 ) 1 0 6 . 9 ( 2 ) S ( 1 1 ) - S ( 1 2 ) - S ( 1 3 ) 1 0 1 . 5 ( 5 ) S ( 1 2 ) - S ( 1 3 ) - S ( 1 4 ) 1 0 4 . 2 ( 6 ) S ( l 1 ) - S ( 1 5 ) - S ( 1 6 ) 1 1 0 . 1 ( 5 ) S ( 1 5 ) - S ( 1 6 ) - S ( l 7 ) 1 0 9 . 6 ( 5 ) S ( 1 6 ) — S ( l 7 ) - S ( 1 8 ) 1 0 2 . 2 ( 6 ) S ( 1 7 ) - S ( 1 8 ) - S ( 1 9 ) 1 0 5 . 9 ( 6 ) T c C a U n P a ( I 1 ) 0 O S P b ‘ n d 1 d 1 l 4 1 n b n 2 t o t n t a n a i t l h i i e ' [ y o B r n i a s i n n e u s n i l i ( i u o f d 2 m g I n ( 1 1 ) ( a t all. e r t h e o n c o : 5 a 7 8 d n 1 i 0 d a e ) b i i S e n g b l e l a e a l r s q m e u t a b o t s m a i r l u i r e z - p a t p m r s e i o r m i a t o l t a r h e b i t c h T f r s s n h s f S g t g e e a t b c d a h i i l r l p g 2 r o i n 1 i 8 t n a a e o a u " t t p e 0 t 3 h l e m e a o l m l t e l r l ' y i n e i t s l° b t i p i l u P y i a r t o r a r t m i “ i l i a o t F P I C V i o u r n s l y 1 9 3 C o m p a r i s o n o f t h e S t r u c t u r e s I n r e t r o s p e c t o f a l l t h e s e i n d i u m p o l y s u l f i d e s , t h e a n i o n s i n ( I ) a n d ( I I ) c a n b e c o n s i d e r e d a s i n t e r m e d i a t e s t o t h e d i m e r i c a n i o n o f ( I I I ) . ( I ) a n d ( I I ) h a v e n o s e l e n i u m a n a l o g s b u t ( 1 1 1 ) r e s e m b l e s v e r y c l o s e l y t o ( P h 4 P ) 4 [ 1 1 1 2 ( S C 4 ) 4 ( S C § ) ] 1 2 i n b o t h t h e c o o r d i n a t i o n g e o m e t r y a n d ' t h e b o n d i n g m o d e s o f t h e I n 3 + c e n t e r s . T h e [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ‘ a n i o n c o n t a i n s t r i g o n a l b i p y r a m i d a l c o o r d i n a t e d I n a t o m c h e l a t e d b y t w o b i d e n t a t e S e 4 2 ‘ l i g a n d s f o r m i n g a [ I n ( S e 4 ) 2 ] ' u n i t . T w o o f t h e s e [ I n ( S e 4 ) 2 ] ' u n i t s a r e b r i d g e d v i a t h e t e r m i n a l a t o m s o f a S e 5 2 ' c h a i n f o r m i n g t h e d i m e r . T h e d i m e r i c s t r u c t u r e s o f t h e a n i o n i n ( 1 1 1 ) a l s o r e s e m b l e [ B i 2 ( S 7 ) 4 S 5 ] 4 ' v 5 o w h i c h i s c o m p o s e d o f t w o h i g h l y d i s t o r t e d s q u a r e - p y r a m i d a l [ B i ( S 7 ) 2 ] ' u n i t s b r i d g e d b y a S 6 2 ' c h a i n . T h e s t a b i l i z a t i o n o f ( I I I ) t h e s u l f i d e a n a l o g w i t h l o n g e r c h a i n l e n g t h s i s n o t s u r p r i s i n g a n d c a n b e r a t i o n a l i z e d b y t h e d e c r e a s e i n t h e s i z e o f t h e a t o m s g o i n g f r o m S e t o S t h u s r e q u i r i n g a l o n g e r c h a i n t o a t t a i n a s i m i l a r b i t e s i z e . T h i s i s a l s o e v i d e n t b y o b s e r v i n g t h e S - I n - S a n g l e f o r t h e c h e l a t i n g S 4 2 ' b i d e n t a t e i n ( I V ) , 9 8 . 0 ° a n d 1 0 0 . 6 ° a l m o s t 1 0 ° s m a l l e r t h a n e x p e c t e d l e a d i n g t o h i g h l y d i s t o r t e d t e t r a h e d r a l g e o m e t r y a r o u n d t h e I n a t o m s . T h e f l e x i b i l i t y o f t h e 3 5 2 ‘ l i g a n d t o t u n e i t s " b i t e " s i z e i s e v i d e n t b y t h e f a c t t h a t i t h a s n o w b e e n f o u n d t o p a r t i c i p a t e i n a c h e l a t i n g f a s h i o n i n t e t r a h e d r a l , t r i g o n a l b i p y r a m i d a l ( o n b o t h t h e a x i a l - e q u a t o r i a l a n d t h e e q u a t o r i a l - e q u a t o r i a l p o s i t i o n s ) a n d o c t a h e d r a l c o o r d i n a t i o n “ . F r o m t h e r e s u l t s r e p o r t e d h e r e a n d o u r p r e v i o u s I n / S e x w o r k a p r e v i o u s l y l e s s a p p r e c i a t e d p r o p e r t y o f I n 3 + h a s e m e r g e d a s a : a r n i n a n t f e a o r d i n T e e a a h : 1 g l e e a g l e t i o n e i n a h m i g a t d r a l n c e a t l i i o n y c d s h r t e e f i e c i v e o u l o m b : C . i i t c o u l t s a a v u p b e f i p n y : l i o e t c 5 m a W s h t e a b l e n c 8 1 ‘ s i m i l a r i t i e s W i t 1 3 3 + h a v e : o m p l e x “ the C C D h v t e a r l ’ S y l i z e d n o t l b “ S S i r 2 3 : t a b w l j T C S p e o S t a b i l i t y f t h e j fi ' d s a r a m a o t n t s t h r a c t i i i n 1 3 3 t h “ r e p ‘ I n Z S C Z ( S 6 4 ’ P r e s u m a b l y t h 1 9 4 d o m i n a n t f e a t u r e : i t s a b i l i t y a n d p e r h a p s t e n d e n c y t o e x p a n d i t s c o o r d i n a t i o n s p h e r e t o f i v e w h e n s u r r o u n d e d b y s o f t l i g a n d s . T h e i n a b i l i t y t o c r y s t a l l i z e a [ I n ( S x ) 2 ] ' a n i o n i n w h i c h I n i s t e t r a h e d r a l m a y b e d u e t o t h e f a c t t h a t t h e p r o p o s e d a n i o n h a s a s i n g l e n e g a t i v e c h a r g e t h u s r e q u i r e s o n l y o n e c a t i o n t o b a l a n c e i t . A s i n g l e c a t i o n f o r e a c h a n i o n i n t h e c r y s t a l l a t t i c e w o u l d n o t b e a b l e t o e f f e c t i v e l y s h i e l d o r s p a c e t h e a n i o n s a w a y f r o m e a c h o t h e r a n d C o u l o m b i c r e p u l s i o n s w o u l d d e s t a b i l i z e t h e l a t t i c e . T h i s [ I n ( S x ) 2 ] ' u n i t c o u l d t e n d t o d i m e r i z e t o f o r m a t i g h t e r a g g r e g a t e i n o r d e r t o f o r m a s t a b l e c r y s t a l l a t t i c e , t h u s f a c i l i t a t i n g t h e f o r m a t i o n o f ( I V ) . W h e n s t u d y i n g I n / s z ' c h e m i s t r y w e m a y c o n s i d e r p o t e n t i a l s i m i l a r i t i e s w i t h F e / s z ' c h e m i s t r y . I n v i e w o f t h e f a c t t h a t F e 3 + a n d I n 3 + h a v e s i m i l a r i o n i c r a d i i o n e m a y w o n d e r w h y t h e d i m e r i c c o m p l e x [ I n 2 S 2 ( S 5 ) 2 ] 2 ' w a s n o t o b s e r v e d i n t h i s s y s t e m a s o p p o s e d t o t h e v e r y s t a b l e [ F e 2 8 2 ( S 5 ) 2 ] 2 " 2 3 . T h e i r o n c o m p l e x h a s b e e n c r y s t a l l i z e d w i t h t h e P h 4 P + a n d t h e r e f o r c r y s t a l p a c k i n g f o r c e s c a n n o t b e r e s p o n s i b l e f o r n o t c r y s t a l l i z i n g ( P h 4 P ) 2 [ I n 2 S 2 ( S 5 ) 2 ] . T h e s t a b i l i t y o f t h e [ F e 2 8 2 ] 2 + c o r e m a y a r i s e f r o m t h e w e a k b u t s i g n i f i c a n t d 5 - d 5 a t t r a c t i v e i n t e r a c t i o n s i n t h i s c o r e . T h e a b s e n c e o f s u c h i n t e r a c t i o n s i n t h e d 1 0 I n 3 + a n a l o g c o u l d d e s t a b i l i z e a [ I n 2 S 2 ] 2 + v i a 1 n 3 + - - I n 3 + r e p u l s i o n s . T h i s r e p u l s i v e f o r c e i s s o m e w h a t d i s s i p a t e d i n [ I n 2 S e 2 ( S e 4 ) 2 ] 2 ' d u e t o t h e l a r g e r s i z e o f t h e [ I n 2 S e 2 ] 2 + a n d p r e s u m a b l y t h e I n - - I n d i s t a n c e . ( i n c l u s i o n I n s u t h e p r ( t r y i n g e m s o m e m n a l c e l a r l n t [ a S i t i o n s : I i i : S ( S s ) ( S 4 ) 2 l 3 a u c t u r a s l l i n l y o f t e e a m ' S t u t s t a b i l s t l e f e g a i d (it) c a l l t 1 1 ) 0 1 2 ' C h e m i h h ( s n d n o S y l o o s e b e a v Q = S , t r y , r y t i o n e 3 3 e : r s a t e r n a q S u t o i c h i o m e t r i l i t m i s t r y , 1 9 5 C o n c l u s i o n I n s u m m a r y t h e r e a c t i o n s o f p e n t a s u l f i d e a n i o n , S 5 2 3 w i t h I n 3 + i n t h e p r e s e n c e o f t e t r a p h e n y l p h o s p h o n i u m c a t i o n i n D M F , i n s l i g h t l y v a r y i n g m o l a r r a t i o s , a f f o r d s e v e r a l n e w i n d i u m ( I I I ) p o l y s u l f i d e a n i o n s : [ 1 0 ( 3 4 ) ( S 6 ) B r ] 2 ' . [ 1 0 ( 3 4 ) ( 8 6 ) C 1 1 2 ' . [ 1 0 2 ( 8 4 ) 2 ( S 6 ) 2 ( S 7 ) l 4 ' . [ I n 2 8 ( 8 5 ) ( S 4 ) 2 ] 2 ' a n d [ I n 2 S ( S 5 ) ( S 4 ) ( S s ) ] 2 ° . T h e s e a n i o n s c o n t a i n u n i q u e s t r u c t u r a l f e a t u r e s n o t f o u n d w i t h o t h e r m e t a l p o l y s u l f i d e s . T h e I n / S x s y s t e m e x h i b i t s c e r t a i n s i m i l a r i t i e s w i t h t h e I n / S e x s y s t e m i n r e g a r d t o s t a b i l i z i n g t h e [ I n 2 ( S 4 ) 2 ( 8 6 ) 2 ( S 7 ) ] 4 ' a n i o n w h i c h r e s e m b l e s v e r y c l o s e l y t o [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' i n b o t h t h e c o o r d i n a t i o n g e o m e t r y a n d t h e b o n d i n g m o d e s o f t h e I n 3 + c e n t e r s . H o w e v e r , ( I ) , ( I I ) a n d ( I V ) h a v e n o s e l e n i u m a n a l o g s , r e a f f i r m i n g t h e f a c t t h a t o f t e n t h e s z ' ( Q = S , S e , T e ) h a v e t h e i r o w n d i s t i n c t i v e l y d i f f e r e n t c o o r d i n a t i o n c h e m i s t r y . S i m i l a r i n v e s t i g a t i o n i n t h i s I n / S x s y s t e m w i t h o t h e r q u a t e r n a r y a m m o n i u m a n d p h o s p h o n i u m c a t i o n s i n d i f f e r e n t s t o i c h i o m e t r i e s c o u l d p o s s i b l y u n c o v e r a d d i t i o n a l n e w s t r u c t u r a l c h e m i s t r y . ', ( a ) M i i l l e r . R a u c h f u s s . 7 5 7 . . ( a ) C o u c c C o u c o u v a r ' . K r a u s l t o p i M c G r a w - l . ( a ) D h i n g C h e m i s t r y ( h ) K i m , C h e m i c a l D h i n g r a , 1 o f M i c r o 1 9 9 1 , 2 9 ' - ( a ) S t r a s 8 ; 1 1 1 - 1 1 9 8 8 , g . ( a ) K a n a 1 6 0 - 7 6 1 . E d . E n g l G - I n o r g K i m . K . - ' A d a m s , I P O l y h e d , L I S T O F R E F E R E N C E S ( 3 ) M i i l l e r , A . P o l y h e d r o n 1 9 8 6 , 5 _ , 3 2 3 - 3 4 0 . ( b ) D r a g a n j a c , M . ; R a u c h f u s s , T . B . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 5 , 1 4 , 7 4 2 - 7 5 7 . ( a ) C o u c o u v a n i s , D . A c c . C h e m . R e s . 1 9 8 1 , 1 4 , 2 0 1 - 2 0 9 . ( b ) C o u c o u v a n i s , D . A c c . C h e m . R e s . 1 9 9 1 , 2 _ 4 _ , 1 - 8 . K r a u s k o p f , K . B . " I n t r o d u c t i o n t o G e o c h e m i s t r y " 2 n d E d . M c G r a w - H i l l , N e w Y o r k 1 9 7 9 ( a ) D h i n g r a , S . ; K a n a t z i d i s M . G . i n " B e t t e r C e r a m i c s T h r o u g h C h e m i s t r y I V " M a t . R e s . S o c . S y m p . P r o c . l 9 9 0 , _ 1 _ 8 _ Q , 8 2 5 - 8 3 0 . ( b ) K i m , K . - W . ; D h i n g r a , S . ; K a n a t z i d i s , M . G . 1 9 9 t h A m e r i c a n C h e m i c a l S o c i e t y M e e t i n g , B o s t o n M A 1 9 9 0 , I N O R 1 4 1 ( c ) D h i n g r a , S . ; K i m , K . - W . ; K a n a t z i d i s , M . G . " C h e m i c a l P e r s p e c t i v e s o f M i c r o e l e c t r o n i c M a t e r i a l s I I " M a t . R e s . S o c . S y m p . P r o c . 1 9 9 1 , 2 0 5 1 , 1 6 3 - 1 6 8 . ( a ) S t r a s d e i t , H . ; K r e b s , B . ; H e n k e l , G . I n o r g . C h i m . A c t a 1 9 8 4 , 8 1 , L l l - L 1 3 ( b ) A d e l , 1 . ; W e l l e r , F . ; D e h n i c k e , K . Z . N a t u r f o r s c h 1 9 8 8 , 4 3 8 , 1 0 9 4 - 1 1 0 0 . ~ ( a ) K a n a t z i d i s , M . G . ; H u a n g , S . - P . J . A m . C h e m . S o c . 1 9 8 9 , 1 _ 1 _ _ l _ , 7 6 0 - 7 6 1 . ( b ) K a n a t z i d i s , M . 6 . ; H u a n g , S . - P . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 9 , 2 8 , , 1 5 1 3 - 1 5 1 4 . ( c ) H u a n g , S . - P . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 1 , 3 1 1 4 5 5 - 1 4 6 6 . K i m , K . - W . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 1 , 3 0 , 1 9 6 6 - 1 9 6 9 . A d a m s , R . D . ; W o l f e , T . A . ; E i c h h o r n , B . W . ; H a u s h a l t e r , R . C . P o l y h e d r o n l 9 8 9 , 8 _ , 7 0 1 - 7 0 3 . 1 9 6 . ) ’ . 0 - . ‘ _ - _ ‘ , ~ . ( a ) K 1 9 5 . 1 9 . 9 4 , 1 9 5 - . i , M i l l i e E n g ! M i l l i e E l t z n t 2 7 K a n a t 2 0 2 6 ( a ) H 2 , 1 3 C r a i g B a n d : P o l y } D h i n i D h i n ‘ 1 S m i t l I V P v e r s i W e 1 . E n r a c t y s t N i c o P a r t D I F } D a t a 0 3 ’ s 1 0 . 1 1 . 1 2 . l 3 . 1 4 . 1 5 . 1 6 . 1 7 . 1 8 . 1 9 . 2 0 . 1 9 7 ( a ) K a n a t z i d i s , M . G . C o m m e n t s I n o r g . C h e m . 1 9 9 0 , 1 9 , 1 6 1 - 1 9 5 . ( b ) A n s a r i , M . A . ; I b e r s , J . A . C o o r d . C h e m . R e v . 1 9 9 0 , 1 _ 0 _ Q , 2 2 3 - 2 6 6 . ( c ) K o l i s , J . W . C o o r d . C h e m . R e v . 1 9 9 0 , L 0 1 , 1 9 5 - 2 1 9 . M i i l l e r , A . ; Z i m m e r m a n n , M . ; B o g g e , H . A n g e w . C h e m . I n t . E d . E n g l 1 9 8 6 , 2 1 , 2 7 3 - 2 7 4 . M i i l l e r , A . ; S c h i m a n s k i , 1 . ; R o m e r , M . ; B o g g e , H . ; B a u m a n n , F . - W . ; B l t z n e r , W . ; K r i c k e m e y e r , E . ; B i l l e r b e c k , U C h i m i a 1 9 8 5 , 1 2 , 2 5 - 2 7 K a n a t z i d i s , M . G . ; D h i n g r a , S . I n o r g . C h e m . 1 9 8 9 , 2 3 , 2 0 2 4 - 2 0 2 6 . ( 3 ) H u a n g , S . - P . ; D h i n g r a , S . ; K a n a t z i d i s , M . G . P o l y h e d r o n 1 9 9 0 , 2 , 1 3 8 9 - 1 3 9 5 . ( b ) B a n d a , R . M . H . ; C u s i c k , J . ; S c u d d e r , M . L . ; C r a i g , D . C . ; D a n c e , 1 . G . P o l y h e d r o n 1 9 8 9 , 8 , , 1 9 9 9 - 2 0 0 1 . B a n d a , R . M . H . ; C u s i c k , J . ; S c u d d e r , M . L . ; C r a i g , D . C . ; D a n c e , 1 . G . P o l y h e d r o n 1 9 8 9 , 8 _ , 1 9 9 5 - 1 9 9 8 . D h i n g r a , S . ; K a n a t z i d i s , M . G . ( S e e C h a p t e r - 2 ) . D h i n g r a , S . ; K a n a t z i d i s , M . G . P o l y h e d r o n 1 9 9 1 , 1 0 , 1 0 6 9 - 1 0 7 3 . S m i t h , D . K . ; N i c h o l s , M . C . ; Z o l e n s k y , M . E . " P O W D I O : A F o r t r a n I V P r o g r a m f o r C a l c u l a t i n g X - r a y P o w d e r D i f f r a c t i o n P a t t e r n " , v e r s i o n 1 0 , P e n n s y l v a n i a S t a t e U n i v e r s i t y , 1 9 8 3 . W e t h a n k D r s . G r a h a m e W i l l i a m s , K a y F a i r a n d J a m e s P h i l l i p s o f . E n r a f N o n i u s C o r p o r a t i o n f o r t h e k i n d c o l l e c t i o n o f X - r a y c r y s t a l l o g r a p h i c d a t a f o r ( I ) . N i c o l e t X R D C o r p o r a t i o n : " D a t a C o l l e c t i o n O p e r a t i o n M a n u a l " , p a r t n o . 1 0 0 6 2 , 1 9 8 2 . D I F A B S : " A n E m p i r i c a l M e t h o d f o r C o r r e c t i n g D i f f r a c t o m e t e r D a t a f o r A b s o r p t i o n C o r r e c t i o n ” W a l k e r , N . ; S t u a r t , D . A c t a . C r y s t a l l o g r . 1 9 8 3 , A 1 2 , 1 5 8 . :3. ( a ) S h e l d r i i B L a u m a n n 8 . g 1 , S h e l d r i c k . C M . ; K r u g c l p 1 7 5 - 1 8 9 . F T C I I Z » B ' A i n C r y s t a l . p . 6 4 - 7 1 . 1 7 . ' - ( a ) M i i l l e " Q ) K a n S h e l d r i c k 1 9 8 1 0 4 . ( c 1 9 8 8 . 5 1 1 C h e m . 1 9 1 G . Z . N a t l N a t u r f o r s c 1 9 9 1 , 2 _ 5 _ C o m m u n . A m . C h e K a n a t z i d i s K . - W . ; K a . ( a ) M u l l ! K r i c k e m c : L l . 6 3 2 - 6 5 . ; S c h m i B é g g c , H L 6 9 - L 7 1 . Q 4 6 6 9 . ( t 3 5 7 2 . 3 f l W a r d l e , C h e m . ° S t r a s d e i L l - L 1 3 2 1 . 2 2 . 2 3 . 2 4 . 2 5 . 2 6 . 2 7 . 2 8 . 1 9 8 S h e l d r i c k , G . M . i n " C r y s t a l l o g r a p h i c C o m p u t i n g 3 " ; S h e l d r i c k , G . M . ; K r u g e r , C . ; D o d d a r d , R . O x f o r d U n i v e r s i t y P r e s s , 1 9 8 5 , p . 1 7 5 - 1 8 9 . F r e n z , B . A . T h e E n r a f - N o n i u s C A D 4 S D P S y s t e m i n " C o m p u t i n g i n C r y s t a l l o g r a p h y " ; D e l f t U n i v e r s i t y P r e s s : D e l f t H o l l a n d , 1 9 7 8 , p . 6 4 - 7 1 . ( a ) S h e l d r i c k , W . S . Z . A n o r g . A l l g . C h e m . 1 9 8 8 , 1 6 1 , 2 3 - 3 0 . ( b ) S h e l d r i c k W . S . ; H a u s e r , H . - J . Z . A n o r g . A l l g . C h e m . 1 9 8 8 . 5 1 1 , 9 8 - 1 0 4 . ( c ) S h e l d r i c k W . S . ; H a u s e r , H . - J . Z . A n o r g . A l l g . C h e m . 1 9 8 8 , 5 5 1 , 1 0 5 - 1 1 1 . ( d ) S h e l d r i c k , W . S . ; K a u b I . Z . A n o r g . A l l g . C h e m . 1 9 8 6 , 5 1 1 , 1 7 9 - 1 8 5 . ( e ) S h e l d r i c k , W . S . ; B r a u n b e c k , H . G . Z . N a t u r f o r s c h 1 9 8 9 , 4 1 1 1 , 8 5 1 - 8 5 2 . ( f ) S h e l d r i c k , W . S . Z . N a t u r f o r s c h 1 9 8 8 , 4 1 1 1 , 2 4 9 - 2 5 2 . ( g ) P a r i s e , J . B . S c i e n c e 1 9 9 1 , 2 . 1 1 . . 2 9 3 - 2 9 4 . ( h ) P a r i s e , J . B . J . C h e m . S o c . , C h e m . C o m m u n . 1 9 9 0 , 1 5 5 3 - 1 5 5 4 . ( i ) L i a o , J . - H . ; K a n a t z i d i s , M . G . J . A m . C h e m . S o c . 1 9 9 0 , 1 _ 1 _ 2 _ , 7 4 0 0 - 7 4 0 2 . ( j ) L i a o , J . - H . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 2 , 3 4 , 4 3 1 - 4 3 9 . ( k ) K i m , K . - W . ; K a n a t z i d i s , M . G . J . A m . C h e m . S o c . 1 9 9 2 i n p r e s s . ( a ) M i i l l e r , A . ; B a u m a n n , F . - W . ; B o g g e , H . ; R o m e r , M . ; K r i c k e m e y e r , B . ; S c h m i t z , K . A n g e w . C h e m . I n t . E d . E n g l 1 9 8 4 , 2 3 , , 6 3 2 - 6 3 3 . ( b ) M i i l l e r , A . ; R o m e r , M . ; B o g g e , H . ; K r i c k e m e y e r , B . ; S c h m i t z , K . I n o r g . C h e m . A c t a . 1 9 8 4 , 8 1 , L 3 9 - L 4 1 . ( a ) M i i l l e r , A . ; K r i c k e m e y e r , B . ; Z i m m e r m a n n , M . ; R o m e r , M . ; B b g g e , H . ; P e n k , M . ; S c h m i t z , K . I n o r g . C h e m . A c t a . 1 9 8 4 , 2 Q , L 6 9 - L 7 1 . ( b ) M i i l l e r , A . ; R o m e r , M . ; B o g g e , H . ; K r i c k e m e y e r , B . ; B a u m a n n , F . - W . ; S c h m i t z , K . I n o r g . C h e m . A c t a . 1 9 8 4 , 8 2 , L 7 - L 8 . . ( a ) K a n a t z i d i s , M . G . ; H u a n g , S . - P . I n o r g . C h e m . 1 9 8 9 , 2 8 , , 4 6 6 7 - 4 6 6 9 . ( b ) H u a n g , S . - P . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 1 , 3 _ 0 _ , 3 5 7 2 - 3 5 7 5 . W a r d l e , R . W . M . ; M a h l e r , C . H . ; C h a n , C . - N . ; I b e r s , J . A . I n o r g . C h e m . 1 9 8 8 , 2 1 , 2 7 9 0 - 2 7 9 5 . S t r a s d e i t , H . ; K r e b s , B . ; H e n k e l , G . I n o r g . C h i m . A c t a 1 9 8 4 , 8 2 , L l - L 1 3 . 3 . M i l l e r , A . ; “ g m , C h e R o b i n s o n , W T r a n s . 1 9 3 = , ( a ) C o u c o u ‘ B a c n z i g c r , ' K r i c k e m e y e 7 8 . 3 . . M i l l e r , A . ; K a h n , M . A E n g l . 1 9 3 4 l . G r e e n w o o d P c r g a m o n 2 9 . 3 0 . 3 1 . 3 2 . 3 3 . 3 4 . 1 9 9 M i i l l e r , A . ; S c h m i t z , K . ; K r i c k e m e y e r , B . ; P e n k , M . ; B o g g e , H . A n g e w . C h e m . I n t . E d . E n g l 1 9 8 6 , 2 5 , 4 5 3 - 4 5 4 . R o b i n s o n , W . T . ; W i l k i n s , C . 1 . ; Z e y i n g , Z . J . C h e m . S o c . D a l t o n T r a n s . 1 9 8 8 , 2 1 8 7 - 2 1 9 2 . ( a ) C o u c o u v a n i s , D . ; P a t i l , P . R . ; K a n a t z i d i s , M . G . ; D e t e r i n g B . ; B a e n z i g e r , N . C . I n o r g . C h e m . 1 9 8 5 , 2 3 , 2 4 - 3 1 . ( b ) M i i l l e r , A . ; K r i c k e m e y e r , B . ; B o g g e , H . Z . A n o r g . A l l g . C h e m . 1 9 8 7 , 1 5 1 , 6 1 - 7 8 . M i i l l e r , A . ; S c h i m a n s k i , 1 . ; S c h i m a n s k i , U . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 4 , 2 1 . 1 5 9 - 1 6 0 . K a h n , M . A . ; T u c k , D . G . A c t a . C r y s t . 1 9 8 1 , B 3 2 , 6 8 3 - 6 8 5 . G r e e n w o o d , N . N . ; E a r n s h a w , A . " C h e m i s t r y o f t h e E l e m e n t s " P e r g a m o n P r e s s , N e w Y o r k , 1 9 8 6 . S l N T H E S l - Z S C H A P T E R 4 S Y N T H E S E S A N D C H A R A C T E R I Z A T I O N O F N E W T H A L L I U M - P O L Y S U L F I D E C O M P L E X E S : 2 0 0 b s t a r a c t T c s n n b i : : e i 7 z m n o a - - l e ’ P i P i m m ( o h ! ! t a , u 1 T 2 1 1 1 h t e h y l r c a c o r m P + l l i f 4 a ) 2 [ T T [ i 3 ) 2 [ 2 s s h h P P e n P t l 4 h h i o l : r l y : s n 4 l N ) l i z e 7 3 i 4 ‘ 1 = m 8 5 1 i 3 7 r i : 9 : 1 { 1 : : " 2 “ W i Y = ' ' i n . 1 s ) s 3 o . ° , a y c t 3 ( 3 x s - t r ) r u T 3 3 0 2 l : 3 . 1 4 8 8 3 l i 0 1 1 9 c o z i . ( 0 ( s ‘ s u m e n s 1 2 ( n : u e 1 ) 5 ) i 9 Y d a 5 3 A r A ) A n h 8 1 ( 2 l s 2 S . ' : l ( l 9 ‘ 1 1 7 - 3 6 ( 1 ) ° . a t s a f a L y C r n g e R I ' 2 0 0 ( 6 ) A , C O m p o u n d ( \ 5 1 3 a 2 0 1 A b s t r a c t T h e r e a c t i o n o f p o t a s s i u m t e t r a s u l f i d e w i t h t h a l l i u m c h l o r i d e i n d i m e t h y l f o r m a m i d e ( D M F ) w a s i n v e s t i g a t e d . T h e a d d i t i o n o f t h e c a t i o n s P h 4 P + , E t 4 N + a n d M e 4 N + t o t h i s r e a c t i o n a f f o r d e d s i x n e w s o l u b l e t h a l l i u m ( I ) p o l y s u l f i d e c o m p l e x e s , a - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] ( I ) , B - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F ( I I ) . B ' - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 l - Z D M F ( I I I ) Y - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . D M F ( 1 V ) . ( E t 4 N ) 2 [ T 1 2 ( S 4 ) 2 l ( V ) a n d ( M e 4 N ) 2 [ T 1 2 ( 8 4 ) 2 ] ( V I ) . C o m p o u n d ( I ) ( p a l e y e l l o w p l a t e l e t s ) c r y s t a l l i z e s i n t h e t r i c l i n i c s p a c e g r o u p P - l ( # . 2 ) w i t h u n i t c e l l d i m e n s i o n s a = 9 . 9 0 7 ( 3 ) A , b = l l . 0 1 4 ( 3 ) A , c = 1 2 . 7 9 4 ( 4 ) A , a = 7 1 . 0 5 ( 3 ) ° , B = 8 7 . 3 3 ( 3 ) ° , y = 6 8 . 7 9 ( 2 ) ° , V = 1 2 2 7 ( 1 ) A 3 ( a t 2 3 ° C ) a n d 2 : 1 . S i n g l e - c r y s t a l x - r a y d i f f r a c t i o n s t u d i e s s h o w t h a t c o m p o u n d s ( 1 1 ) a n d ( I I I ) a r e i s o s t r u c t u r a l a n d c r y s t a l l i z e i n t h e m o n o c l i n i c s p a c e g r o u p P 2 1 / c ( # . 1 4 ) . T h e u n i t c e l l d i m e n s i o n s o f t h e p a l e o r a n g e c r y s t a l s o f ( I I ) a r e a = 1 0 . 8 1 5 ( 3 ) A , b = 1 4 . 4 8 6 ( 5 ) A , c = 1 8 . 2 8 1 ( 5 ) A , 5 : 9 7 . 2 9 ( 3 ) ° , V = 2 8 4 1 ( 1 ) A 3 ( a t 2 3 ° C ) , 2 : 2 a n d t h e d e e p r e d c r y s t a l s o f ( I I I ) a r e a = 1 0 . 8 1 0 ( 5 ) A , b = 1 4 . 4 8 0 ( 8 ) A , c = 1 8 . 2 9 4 ( 7 ) A , B = 9 7 . 3 7 ( 3 ) ° . V = 2 8 3 9 ( 2 ) A 3 ( a t 2 3 ° C ) , Z = 2 . C o m p o u n d ( I V ) ( o r a n g e c r y s t a l s ) c r y s t a l l i z e s i n t h e m o n o c l i n i c s p a c e g r o u p C 2 / c ( # . 1 5 ) w i t h u n i t c e l l d i m e n s i o n s a = 2 6 . 3 2 4 ( 6 ) A , b = 9 . 2 6 9 ( 1 0 ) A , c = 2 4 . 0 6 2 ( 5 ) A , B = 1 1 7 . 3 6 ( 1 ) ° , v = 5 2 1 3 ( 4 ) A 3 ( a t - 1 2 0 ° C ) a n d 2 : 4 . C o m p o u n d ( V ) ( o r a n g e c r y s t a l s ) c r y s t a l l i z e s i n t h e m o n o c l i n i c s p a c e g r o u p P 2 1 / n ( # . 1 4 ) w i t h u n i t c e l l d i m e n s i o n s a = 1 1 . 8 8 0 ( 1 0 ) A , b = 1 7 . 2 0 2 ( 6 ) A , c = 7 . 2 0 0 ( 6 ) A , B = 9 7 - 2 9 ( 3 ) ° . v = 1 4 5 7 ( 2 ) A 3 ( a t - 1 0 0 ° C ) a n d z = 2 . . C o m p o u n d ( V I ) ( p a l e o r a n g e p l a t e l e t s ) c r y s t a l l i z e s i n t h e t r i c l i n i c s p a c e g r o u p P - l ( # . 2 ) w i t h u n i t c e l l d i m e n s i o n s a = 6 . l 6 0 ( 3 ) A , : 9 . 6 8 3 ( 6 ) A , “ ) 5 1 : 6 0 c : ( a t t 1 m i c 5 1 r r g a RT; a b i l i s t tic-nil p y e z r 1 d t h e t h i r a d t e r m i n a l This o n d b i n g m e r g i n i c r i n l e S z r i n g . i t a r u g z a n fi o n . m g in t h e [ T 1 d o . a n c o n f c A r e a c t i a c e t o n i t r i l e [ i m p o u n d P 3 1 2 1 2 1 9 4 6 “ o '95 n k ( # . M 9 w n :11 ( 1 1 . K 2 o I e a c C h a r g e is s o l u t ' m n o f A l l t h a b s o r l i t i o n s p t h e m ° ° m y o n d u u o e R S S i g n m e m S 2 0 2 b = 9 . 6 8 3 ( 6 ) A , c = 1 0 . 1 6 0 ( 5 ) A , a = 6 6 . 0 5 ( 4 ) ° , B = 8 4 . 8 8 ( 4 ) ° , 7 : 8 0 . o 4 ( 4 ) ° , V = 5 4 6 ( 1 ) A 3 ( a t - 1 0 0 ° C ) a n d 2 : 1 . S u r p r i s i n g l y , a l l t h e c o m p l e x e s ( 1 ) - ( V I ) s t a b i l i z e t h e s a m e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n s . T h e a n i o n s f e a t u r e s t w o t r i g o n a l p y r a m i d a l T l + c e n t e r s e a c h c h e l a t e d b y a t e t r a s u l f i d e l i g a n d s a n d t h e t h i r d c o o r d i n a t i o n s i t e i s s a t i s f i e d b y c o o r d i n a t i o n t o o n e o f t h e t e r m i n a l s u l f u r a t o m o f t h e o t h e r T 1 8 4 u n i t , f o r m i n g a d i m e r . . T h i s b o n d i n g m o d e o f t h e 8 4 2 ' l i g a n d s r e s u l t s i n a n o v e l c o n d e n c e d i n o r g a n i c r i n g s y s t e m w i t h a c e n t r a l , s t r i c t l y p l a n a r , f o u r m e m b e r e d T 1 2 8 2 r i n g , a n d t w o f i v e m e m b e r e d r i n g s o f T 1 8 4 i n a n e n v e l o p e c o n f i g u r a t i o n . T h e e n v e l o p e c o n f i g u r a t i o n o f t h e f i v e m e m b e r e d T 1 8 4 r i n g i n t h e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n s r e s u l t s i n e i t h e r t h e e n d o , e n d o o r t h e e x o , e x o c o n f o r m a t i o n . A r e a c t i o n o f p o t a s s i u m t e t r a s u l f i d e w i t h t h a l l i u m c h l o r i d e i n a c e t o n i t r i l e a f f o r d e d o r a n g e r e d c r y s t a l s o f K o . 5 3 T 1 1 , 3 2 8 5 ( V I I ) . C o m p o u n d ( V I I ) c r y s t a l l i z e s i n t h e o r t h o r h o m b i c s p a c e g r o u p P 2 1 2 1 2 1 ( # . 1 9 ) w i t h u n i t c e l l d i m e n s i o n s o f a = 6 . 6 3 0 ( 4 ) A , b = 1 6 . 9 8 9 A , c = 6 . 4 9 9 ( 2 ) A , v = 7 2 7 ( 1 ) A 3 , z = 4 . C o m p o u n d ( v 1 1 ) i s i s o s t r u c t u r a l t o t h e k n o w n K 2 8 5 a n d T 1 2 8 5 , a n d c o n s i s t o f a 8 5 2 ' c h a i n w i t h T l f a n d K + a s c h a r g e c o m p e n s a t i n g c a t i o n s . ( V I I ) c a n b e c o n s i d e r e d a s a s o l i d s o l u t i o n o f t h e t w o k n o w n c o m p o u n d s . A l l t h e c o m p l e x e s s h o w s i m i l a r U V / v i s s p e c t r a i n D M F w i t h t w o a b s o r p t i o n s a t ~ 4 3 2 a n d ~ 6 1 7 n m . T h e s o l i d s t a t e f a r I R s p e c t r a o f a l l t h e c o m p o u n d s e x h i b i t s t r o n g a b s o r p t i o n s i n t h e 5 0 0 - 1 0 0 c m ' 1 r e g i o n d u e t o t h e 8 - 8 a n d M - S s t r e t c h i n g f r e q u e n c i e s , t e n t a t i v e a s s i g n m e n t s a r e r e p o r t e d h e r e i n . lnlisalif ” n o d u c ‘ I n 1 6 g i l l l l l c m r e s e a r c h l ' f 3 ; i n d u s U g i é f u r t r a l ' J ‘ v ’ e t h l i m m e n s e : i i l c o g e m i i i r a b l l l : a m p l e x e s c h a r a c t l g i l y c h a l c n o t b e e : i i e s t i g a l m e t a l s ' i u m b e r : l n g S e z c 2 0 3 I n t r o d u c t i o n I n r e c e n t y e a r s t h e s y n t h e s i s , c h a r a c t e r i z a t i o n a n d r e a c t i v i t y o f s o l u b l e m e t a l p o l y c h a l c o g e n i d e s h a s b e c o m e a n a c t i v e a r e a o f r e s e a r c h l . T h e s e c o m p l e x e s h a v e b e e n s t u d i e d a s m o d e l c o m p o u n d s f o r i n d u s t r i a l h e t e r o g e n e o u s c a t a l y s t s z , b i o l o g i c a l s y s t e m s 3 a n d m e t a l s u l f u r t r a n s p o r t a g e n t s i n g e o c h e m i s t r y “ . T h i s c l a s s o f c o m p o u n d s h a v e e x h i b i t e d a r e m a r k a b l y d i v e r s e s t r u c t u r a l c h e m i s t r y . T h i s i m m e n s e s t r u c t u r a l d i v e r s i t y e m e r g e s f r o m t h e t e n d e n c y o f t h e c h a l c o g e n s t o b i n d s i m u l t a n e o u s l y t o m u l t i p l e m e t a l c e n t e r s a n d a l s o t h e i r a b i l i t y t o c a t e n a t e . A s a r e s u l t , a n u m b e r o f p o l y c h a l c o g e n i d e c o m p l e x e s w i t h t r a n s i t i o n m e t a l s h a v e b e e n i s o l a t e d a n d s t r u c t u r a l l y c h a r a c t e r i z e d 1 ' 4 . B y c o n t r a s t , t h e p r e p a r a t i o n o f s o l u b l e p o l y c h a l c o g e n i d e c o m p o u n d s c o n t a i n i n g m a i n - g r o u p e l e m e n t s h a s n o t b e e n p u r s u e d t o a n y c o n s i d e r a b l e e x t e n t s . I n o u r i n i t i a l i n v e s t i g a t i o n o f p o l y c h a l c o g e n i d e c h e m i s t r y o f t h e m a i n g r o u p I I I - A m e t a l s w e s u c c e s s f u l l y i s o l a t e d a n d s t r u c t u r a l l y c h a r a c t e r i z e d a n u m b e r o f c o m p l e x e s : [ G a 2 S e 2 ( S e 5 ) 2 ] 2 - - 5 , [ I n 2 ( 8 e 4 ) 4 ( S e 5 ) ] 4 ' o 7 - 3 , [ I n 2 8 6 2 ( S e 4 ) 2 1 2 ' ° 8 . [ M 3 8 6 3 ( S e 4 ) 3 ] 3 " 3 ( M = I n . T l ) . [ T 1 4 8 6 4 ( S c z ) 2 ( S e 4 ) 2 ] 4 ' ° 9 . [ I n ( S 4 ) ( S o ) X ] 2 ' ° 1 ° ( X = B r , C 1 ) . [ I n 2 ( S 4 ) 2 ( S o ) 2 ( S 7 ) ] 4 " 1 ° [ I n 2 $ ( S s ) ( S 4 ) 2 ] 2 ' ° 1 ° a n d [ I n 2 8 ( 8 5 ) ( 8 4 ) ( 8 5 ) ] 2 ‘ - 1 0 . T o f u r t h e r e x p l o r e t h i s s y s t e m a n d i n a n a t t e m p t t o p r e p a r e t h e s u l f u r a n a l o g o f t h e t h a l l i u m - p o l y s e l e n i d e c o m p l e x e s w e i n v e s t i g a t e d t h e c o r r e s p o n d i n g p o l y s u l f i d e c h e m i s t r y . I n t h i s c h a p t e r w e p r e s e n t t h e s y n t h e s i s a n d s t r u c t u r a l c h a r a c t e r i z a t i o n o f s o m e n e w t h a l l i u m - p o l y s u l f i d e c o m p l e x e s : 0 1 - ( P h 4 P ) 2 l T 1 2 ( S 4 ) 2 ] . B - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] - 2 D M F . B ' - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F . Y - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] - D M F . ( E t 4 N ) 2 [ T 1 2 ( S 4 ) 2 l . ( M 6 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] a n d K 0 . 6 8 ' “ 1 . 3 2 8 5 E X P E l R e l i g - T h e c o m m e r c i a l l t h t t l n g C l l a l l l n c k r m C e r a c I n t : P h : P C l ) , p u r i t y , l e t C h e m i c a l a n a l y t i c a l e m a w T h e f i r s r l l i l l l n c l t r . h y d r i d e C l l fi m i c a l w i t h s o g l y c o l - d : C a u l i o r e a c t i o n [ M i a 2 0 4 E X P E R I M E N T A L S E C T I O N R e a g e n t s T h e c h e m i c a l s i n t h i s r e s e a r c h w e r e u s e d a s o b t a i n e d c o m m e r c i a l l y : s u l f u r , 9 9 . 9 9 9 % p u r i t y , A m e r i c a n S m e l t i n g a n d R e f i n i n g C o m p a n y , D e n v e r , C O . ; p o t a s s i u m m e t a l , a n a l y t i c a l r e a g e n t , M a l l i n c k r o d t I n c . , P a r i s , K Y . ; t h a l l i u m ( l ) c h l o r i d e , 9 9 . 9 9 9 % p u r i t y , C e r a c I n c . M i l w a u k e e , W I . ; t e t r a p h e n y l p h o s p h o n i u m c h l o r i d e ( P h 4 P C l ) , 9 8 % p u r i t y , t e t r a e t h y l a m m o n i u m b r o m i d e ( E t 4 N B r ) , 9 8 % p u r i t y , t e t r a m e t h y l a m m o n i u m c h l o r i d e ( M e 4 N C l ) , 9 8 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y I n c . , M i l w a u k e e , W I . D i m e t h y l f o r m a m i d e ( D M F ) , a n a l y t i c a l r e a g e n t , w a s s t o r e d o v e r 4 A L i n d e m o l e c u l a r s i e v e s f o r o v e r a w e e k a n d t h e n d i s t i l l e d u n d e r r e d u c e d p r e s s u r e a t 2 5 - 3 0 ° C . T h e f i r s t 5 0 m l w a s d i s c a r d e d . A c e t o n i t r i l e ( a n a l y t i c a l r e a g e n t , M a l l i n c k r o d t I n c . , P a r i s , K Y ) w a s d i s t i l l e d a f t e r r e f l u x i n g w i t h c a l c i u m h y d r i d e f o r 8 h o u r s . D i e t h y l e t h e r ( A . C . S . a n h y d r o u s , C o l u m b u s C h e m i c a l I n d u s t r i e s I n c . , C o l u m b u s , W I . ) w a s d i s t i l l e d a f t e r r e f l u x i n g w i t h s o d i u m / p o t a s s i u m a l l o y , w i t h b e n z o p h e n o n e a n d t r i e t h y l e n e - g l y c o l - d i m e t h y l e t h e r f o r 1 2 h o u r s . C a u t i o n a r y N o t e : E x t r a p r e c a u t i o n s h a s t o b e t a k e n i n t h e s e r e a c t i o n s t o h a n d l e a l l t h a l l i u m s a l t s a n d c o m p l e x e s , a s T 1 i s m y t o x i c a n d a p p r o p r i a t e w a s t e d i s p o s a l i s v e r y e s s e n t i a l . 2 0 5 P h y s i c o c h e m i c a l S t u d i e s I n f r a r e d s p e c t r a o f t h e c o m p l e x e s w e r e r e c o r d e d a s s o l i d s i n a C s I m a t r i x o n a N i c o l e t 7 4 0 F T - I R s p e c t r o m e t e r . E a c h s a m p l e w a s g r o u n d a l o n g w i t h C 8 ] t o a f i n e p o w d e r a n d a t r a n s l u c e n t p e l l e t w a s m a d e b y a p p l y i n g ~ 1 5 0 0 0 p s i p r e s s u r e t o t h e m i x t u r e . T h e s p e c t r a w e r e r e c o r d e d i n t h e F a r I R r e g i o n ( 5 0 0 t o 1 0 0 c m ' l ) . U V / V i s s p e c t r a o f t h e c o m p l e x e s w e r e m e a s u r e d o n a H i t a c h i U - 2 0 0 0 s p e c t r o p h o t o m e t e r . Q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s o f t h e c o m p o u n d s w a s p e r f o r m e d o n a s c a n n i n g e l e c t r o n m i c r o s c o p y ( S E M ) J E O L 1 S M - 3 5 C e q u i p p e d w i t h a n x - r a y m i c r o a n a l y s i s a t t a c h m e n t f r o m T r a c o r N o r t h e r n T N 5 5 0 0 , f o r e n e r g y d i s p e r s i v e s p e c t r o s c o p y ( E D S ) . S i n g l e c r y s t a l s o f e a c h s a m p l e w e r e m o u n t e d o n a n a l u m i n u m s t u b u s i n g c o n d u c t i v e c a r b o n p a i n t f o r a d h e s i o n t o t h e s t u b a s w e l l a s t o d i s s i p a t e c h a r g e t h a t i s d e v e l o p e d o n t h e s a m p l e u n d e r a n e l e c t r o n b e a m . E n e r g y d i s p e r s i v e s p e c t r a w e r e o b t a i n e d u s i n g t h e f o l l o w i n g e x p e r i m e n t a l s e t - u p : X - r a y d e t e c t o r p o s i t i o n : 5 5 m m W o r k i n g d i s t a n c e : 3 9 m m A c c e l e r a t i n g v o l t a g e : 2 0 K V T a k e - o f f a n g l e : 2 7 d e g B e a m c u r r e n t : 2 0 0 p i c o a m p s A c c u m u l a t i o n t i m e : 6 0 s e c s D e t e c t o r W i n d o w : B e r y l l i u m A s t a n d a r d l e s s q u a n t i t a t i v e ( S Q a n a l y s i s ) p r o g r a m w a s u s e d t o a n a l y z e t h e x - r a y s p e c t r a o b t a i n e d . T h e a n a l y s i s c o u l d n o t b e u s e d a h e t fat a b s o r p t i o n l t z c c t o r . n i i t i d u a l n m p o u n d S y n A l l a t n o s p h e r g l o v e b o x . s ‘ t a p p i n g l s o s t o r c o m p o u n d 5 . 0 m l i g h P o t . u . d i l h a l a t t o f 1 1 C ] m m o l ) j s t i r r e d f l i m o v e C r l ' S l h l l i ; 2 0 6 f o r t h e a t o m s b e l o w a t o m i c n u m b e r 1 1 ( s o d i u m ) d u e t o t h e a b s o r p t i o n o f t h e l o w e n e r g y x - r a y s b y t h e B e w i n d o w o f t h e d e t e c t o r . T h e a n a l y s i s r e p o r t e d h e r e a r e a n a v e r a g e o f t h r e e t o f o u r i n d i v i d u a l m e a s u r e m e n t s o n s e v e r a l d i f f e r e n t s i n g l e c r y s t a l s o f e a c h c o m p o u n d . S y n t h e s e s A l l t h e e x p e r i m e n t s a n d s y n t h e s e s w e r e p e r f o r m e d u n d e r a n a t m o s p h e r e o f d r y n i t r o g e n i n a V a c u u m A t m o s p h e r e s D r i - L a b g l o v e b o x . A l l t h e s y n t h e s e s w e r e c a r r i e d o u t i n t h e d a r k b y w r a p p i n g t h e r e a c t i o n f l a s k s w i t h a l u m i n u m f o i l a n d t h e f l a s k w e r e a l s o s t o r e d i n t h e d a r k d u r i n g c r y s t a l g r o w t h . T h e i s o l a t e d c o m p o u n d s w e r e a l w a y s k e p t u n d e r a n i t r o g e n a t m o s p h e r e , a w a y f r o m l i g h t . P o t a s s i u m t e t r a s u l f i d e , K 2 8 4 . S e e C h a p t e r 3 ‘ a - b i s ( t e t r a p h e n y l p h o s p h o n i u m ) - b i s ( t t - t e t r a s u l f i d o ) - d i t h a l a t e fl ) , a - ( P h 4 P ) 2 [ T l 2 ( S 4 ) 2 ] ( I ) A 0 . 2 0 0 g ( 0 . 8 3 4 m m o l ) o f T l C l w a s a d d e d t o a 8 0 m l D M F s o l u t i o n c o n t a i n i n g 0 . 1 7 2 g ( 0 . 8 3 3 m m o l ) K 2 8 4 a n d 0 . 3 1 3 g ( 0 . 8 3 5 m m o l ) P h 4 P C l . T h e m i x t u r e w a s s t i r r e d f o r c a . 6 h r s a n d t h e r e s u l t i n g b l u e s o l u t i o n w a s f i l t e r e d t o r e m o v e K C l . T o t h e f i l t r a t e w a s a d d e d 6 0 m l o f e t h e r t o i n c i p i e n t c r y s t a l l i z a t i o n . U p o n s t a n d i n g f o r 2 4 h o u r s p a l e y e l l o w s i n g l e 3 : f t 2 0 7 c r y s t a l s o f a - ( P h 4 P ) 2 [ T l 2 ( 8 4 ) 2 ] ( I ) w e r e f o r m e d . T h e y w e r e i s o l a t e d b y f i l t r a t i o n a n d w a s h e d w i t h e t h e r ; y i e l d 5 2 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( I ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f T 1 1 , o S 4 , 1 2 P 1 _ o 2 . B - b i s ( t e t r a p h e n y l p h o s p h o n i u m ) - b i s ( t t - t e t r a s u l f i d o ) - d i t h a l a t e ( I ) b i s ( d i m e t h y l f o r m a m i d e ) , ( P h 4 P ) 2 [ T l 2 ( S 4 ) 2 ] . 2 D M F ( I I ) A 0 . 2 0 0 g ( 0 . 8 3 4 m m o l ) o f T l C l w a s a d d e d t o a 8 0 m l D M F s o l u t i o n c o n t a i n i n g 0 . 1 7 2 g ( 0 . 8 3 3 m m o l ) K 2 8 4 a n d 0 . 3 1 3 g ( 0 . 8 3 5 m m o l ) P h 4 P C l . T h e m i x t u r e w a s s t i r r e d f o r c a . 6 h r s a n d t h e r e s u l t i n g b l u e s o l u t i o n w a s f i l t e r e d t o r e m o v e K C l . T o t h e fi l t r a t e w a s a d d e d 6 0 m 1 o f e t h e r t o i n c i p i e n t c r y s t a l l i z a t i o n . U p o n s t a n d i n g f o r 3 d a y s p a l e o r a n g e c r y s t a l s o f B - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F ( I I ) w e r e f o r m e d . T h e y w e r e i s o l a t e d b y f i l t r a t i o n a n d w a s h e d w i t h e t h e r ; y i e l d 4 2 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( I I ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f “ 1 , 0 8 4 , 0 5 P m 5 . [ 3 ' - b i s ( t e t r a p h e n y l p h o s p h o n i u m ) - b i s ( u - t e t r a s u l f i d o ) - d i t h a l a t e fl ) b i s ( d i m e t h y l f o r m a m i d e ) , ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F ( I I I ) A 0 . 2 0 0 g ( 0 . 8 3 4 m m o l ) o f T l C l w a s a d d e d t o a 8 0 m l D M F s o l u t i o n c o n t a i n i n g 0 . 1 7 2 g ( 0 . 8 3 3 m m o l ) K 2 8 4 a n d 0 . 3 1 3 g ( 0 . 8 3 5 m m o l ) P h 4 P C l . T h e m i x t u r e w a s s t i r r e d f o r c a . 6 h r s a n d t h e r e s u l t i n g b l u e s o l u t i o n w a s f i l t e r e d t o r e m o v e K C l . T o t h e fi l t r a t e w a s a d d e d 6 0 m 1 o f e t h e r t o i n c i p i e n t c r y s t a l l i z a t i o n . U p o n s t a n d i n g f o r 3 d a y s d e e p r e d c r y s t a l s o f B ' - ( P h 4 P ) 2 [ T l 2 ( S 4 ) 2 ] . 2 D M F ( I I I ) w e r e f o r m e d . T h e y w e r e i s o l a t e d b y f i l t r a t i o n a n d w a s h e d w i t h e t h e r ; c o m p o s i t f u m b e r 0 f 3 7 1 0 0 5 1 1 1 0 t - b l i t h a l a t e l l l - f l A ( s o l u t i o n t n m o l l 1 r e s u l t i n g ‘ a d d e d 6 0 d a y s p a l e f o r m e d . y i e l d 6 2 n u m b e r . B i l i l h a l a l “ C 1 . w e m m o l ) s t i r r e d r C m o v e c r l ‘ S t a l l i l E t i N ) ; a l l d W e 2 0 8 y i e l d 3 8 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( I I I ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f T 1 1 . o S 4 , 0 9 P 1 , 1 o . y - b i s ( t e t r a p h e n y 1 p h o s p h o n i u m ) - b i s ( u - t e t r a s u l f i d o ) - d i t h a l a t e ( I ) d i m e t h y l f o r m a m i d e , ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . D M F ( I V ) A 0 . 2 0 0 g ( 0 . 8 3 4 m m o l ) o f T l C l w a s a d d e d t o a 4 0 m l D M F s o l u t i o n c o n t a i n i n g 0 . 1 7 2 g ( 0 . 8 3 3 m m o l ) K 2 8 4 a n d 0 . 3 1 3 g ( 0 . 8 3 5 m m o l ) P h 4 P C 1 . T h e m i x t u r e w a s s t i r r e d f o r c a . 6 h r s a n d t h e r e s u l t i n g b l u e s o l u t i o n w a s f i l t e r e d t o r e m o v e K C l . T o t h e f i l t r a t e w a s a d d e d 6 0 m l o f e t h e r t o i n c i p i e n t c r y s t a l l i z a t i o n . U p o n s t a n d i n g f o r 3 d a y s p a l e o r a n g e c r y s t a l s o f y - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . D M F ( I V ) w e r e f o r m e d . T h e y w e r e i s o l a t e d b y f i l t r a t i o n a n d w a s h e d w i t h e t h e r ; y i e l d 6 2 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( I V ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f T 1 1 , o S 4 , 1 4 P o _ 9 3 . B i s ( t e t r a e t h y l a m m o n i u m ) - b i s ( t e t r a s u 1 f i d o ) - d i t h a l a t e fl ) , ( E t 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] ( V ) A 0 . 2 0 0 g ( 0 . 8 3 4 m m o l ) o f T l C l . w a s a d d e d t o a 8 0 m l D M F s o l u t i o n c o n t a i n i n g 0 . 1 7 2 g ( 0 . 8 3 3 m m o l ) K 2 8 4 a n d 0 . 3 1 3 g ( 0 . 8 3 5 m m o l ) P h 4 P C l . T h e m i x t u r e w a s s t i r r e d f o r c a . 6 h r s a n d t h e r e s u l t i n g b l u e s o l u t i o n w a s f i l t e r e d t o r e m o v e K C l . T o t h e f i l t r a t e w a s a d d e d 6 0 m l o f e t h e r t o i n c i p i e n t c r y s t a l l i z a t i o n . U p o n s t a n d i n g f o r 3 d a y s p a l e o r a n g e c r y s t a l s o f ( E t 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] ( V ) w e r e f o r m e d . T h e y w e r e i s o l a t e d b y f i l t r a t i o n a n d w a s h e d w i t h e t h e r ; y i e l d 7 0 % . A q u a n t i t a t i v e m i c r o p r o b e d i l y S l S 9 6 7 s h i m g 3 “ B i s i h t t a t a t e t ‘ i d u a l ) o f ' i 3 . 3 3 3 r u n i s s u r r e c n r e m o v e : s ' s t z t l l i z a t l l t i N ' l z l ' a n d w a s h a n a l y s i s r s y s t e m g a P o t 0 . 2 0 0 g s o l u t i o n S t i r r e d f o 9 ‘ 3 fi l t r a o r a n g e c i s o l a t e d l l a n t i t a n o f ( V 1 1 ) K O - l m t t 2 0 9 a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( V ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f 1 1 1 , 0 8 4 . 0 2 . B i s ( t e t r a m e t h y l a m m o n i u m ) - b i s ( t e t r a s u l f i d o ) - d i t h a l a t e fl ) , ( M e 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] ( V I ) A 0 . 2 0 0 g ( 0 . 8 3 4 m m o l ) o f T 1 C l w a s a d d e d t o a 8 0 m l D M F s o l u t i o n c o n t a i n i n g 0 . 1 7 2 g ( 0 . 8 3 3 m m o l ) K 2 8 4 a n d 0 . 3 1 3 g ( 0 . 8 3 5 m m o l ) P h 4 P C 1 . T h e m i x t u r e w a s s t i r r e d f o r c a . 6 h r s a n d t h e r e s u l t i n g b l u e s o l u t i o n w a s f i l t e r e d t o r e m o v e K C l . T o t h e f i l t r a t e w a s a d d e d 6 0 m l o f e t h e r t o i n c i p i e n t c r y s t a l l i z a t i o n . U p o n s t a n d i n g f o r 3 d a y s p a l e o r a n g e c r y s t a l s o f ( M e 4 N ) 2 [ T 1 2 ( 8 4 ) 2 ] ( V I ) w e r e f o r m e d . T h e y w e r e i s o l a t e d b y f i l t r a t i o n a n d w a s h e d w i t h e t h e r ; y i e l d 7 4 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( V 1 ) w i t h E D S / 8 1 5 M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f 1 1 1 , 0 8 4 . 3 3 . P o t a s s i u m t h a l l i u m p e n t a s u l f i d e , K o , 6 3 T 1 1 , 3 2 8 5 ( V I I ) A 0 . 2 0 0 g ( 0 . 8 3 4 m m o l ) o f T l C l w a s a d d e d t o a 8 0 m l a c e t o n i t i l e s o l u t i o n c o n t a i n i n g 0 . 1 7 2 g ( 0 . 8 3 3 m m o l ) K 2 8 4 . T h e m i x t u r e w a s s t i r r e d f o r c a . 6 h r s a n d t h e r e s u l t i n g b l u e s o l u t i o n w a s f i l t e r e d . T o t h e f i l t r a t e w a s a d d e d 6 0 m l o f e t h e r . U p o n s t a n d i n g f o r 4 d a y s o r a n g e c r y s t a l s o f K o , 5 3 T 1 1 . 3 2 S 5 ( V I I ) w e r e f o r m e d . T h e y w e r e i s o l a t e d b y f i l t r a t i o n a n d w a s h e d w i t h e t h e r ; y i e l d 5 8 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( V I I ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f K 0 . 8 7 T 1 1 . 0 3 5 . 0 2 - x . l h t ‘ h t n s : i l c r e d . t r e a s u r e w e r e i : n n r d i n u s i n g t . t h e p u r i g t e s c n t . a u t u m n 2 1 0 X - r a y C r y s t a l l o g r a p h i c S t u d i e s . X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e r e c o r d e d w i t h a P h i l l i p s X R G - 3 0 0 0 c o m p u t e r c o n t r o l l e d p o w d e r d i f f r a c t o m e t e r . N i - f i l t e r e d , C u - r a d i a t i o n w a s u s e d . D - s p a c i n g s ( A ) f o r a l l m a t e r i a l s w e r e m e a s u r e d . T h e X - r a y p o w d e r p a t t e r n s o b t a i n e d f r o m t h e c o m p l e x e s w e r e i n g o o d a g r e e m e n t w i t h t h o s e c a l c u l a t e d , f r o m t h e a t o m c o o r d i n a t e s o b t a i n e d f r o m t h e X - r a y s i n g l e c r y s t a l d i f f r a c t i o n s t u d i e s , u s i n g t h e p r o g r a m P O W D - l O “ . T h i s c o n fi r m e d t h e h o m o g e n e i t y a n d t h e p u r i t y o f t h e c o m p l e x e s , a s s u m i n g n o a m o r p h o u s p h a s e s w e r e p r e s e n t . C a l c u l a t e d a n d o b s e r v e d d - s p a c i n g s ( A ) f o r a l l t h e c o m p o u n d s a r e c o m p i l e d i n T a b l e s 4 . 1 - 4 . 6 . idol: 1 ti u - i P T a b l e 4 . 1 . 0 f a - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n h I n d c a l c . ( A ) d o b s . ( A ) I / I m a x t a b s . ) 0 0 1 1 2 . 0 6 1 2 . 1 6 6 3 0 1 0 9 . 6 9 9 . 7 3 5 2 1 0 0 9 . 2 1 9 . 2 5 5 7 0 1 1 9 . 1 8 0 9 . 1 8 8 5 2 - l 0 1 7 . 6 2 0 7 . 6 4 9 4 6 1 0 1 7 . 0 4 9 7 . 0 4 9 2 3 0 - l 1 6 . 5 6 8 6 . 5 9 1 2 7 - 1 - 1 1 6 . 2 8 8 6 . 3 1 4 4 8 0 0 2 6 . 0 3 0 6 . 0 7 6 1 0 0 - l 0 2 5 . 2 4 1 5 . 2 5 9 8 5 0 2 1 5 . 1 1 9 5 . 1 3 2 6 8 1 0 2 4 . 8 6 8 4 . 8 7 6 5 9 - 1 1 2 4 . 7 7 0 4 . 7 8 2 6 2 0 - l 2 4 . 4 9 6 4 . 4 9 8 5 0 - 2 - 1 1 4 . 4 2 7 4 . 4 2 8 4 4 2 2 1 4 . 2 5 0 4 . 2 6 0 9 3 2 2 0 4 . 1 9 2 4 . 1 9 0 8 1 0 - 2 1 4 . 0 5 6 4 . 0 6 7 7 8 . 2 1 2 3 . 9 7 2 3 . 9 7 8 5 8 - l 0 3 3 . 7 9 8 3 . 7 9 7 6 4 - 2 - 2 1 3 . 7 2 1 3 . 7 1 7 8 6 l - l 2 3 . 7 1 6 - 2 1 0 3 . 6 6 8 3 . 6 6 9 4 3 2 0 2 3 . 5 2 5 3 . 5 3 1 4 2 0 3 1 3 . 4 1 5 3 . 4 1 8 7 4 0 3 2 3 . 3 4 5 3 . 3 4 9 5 1 2 3 0 3 . 2 6 7 3 . 2 6 6 6 8 T a b l e 4 . 1 ( c o n t ' d ) . 2 1 2 1 1 k 1 d c a l c . ( A ) d o b s . ( A ) I / I m a x ( o b s . ) 3 2 0 3 . 1 7 1 3 . 1 6 7 5 6 0 3 3 3 . 0 6 0 3 . 0 6 4 7 7 - 3 - 2 1 2 . 9 7 1 2 . 9 7 9 3 0 2 0 3 2 . 9 1 4 2 . 9 1 2 3 6 3 3 1 2 . 8 6 0 2 . 8 5 8 4 0 1 0 4 2 . 8 0 0 2 . 7 9 7 2 5 3 3 0 2 . 7 9 5 0 3 4 2 . 6 9 2 2 . 6 9 1 6 1 2 1 4 2 . 6 6 9 2 . 6 6 7 6 7 - 3 - 2 2 2 . 6 6 4 - 3 - 3 1 2 . 6 0 4 2 . 5 9 9 2 0 2 4 3 2 . 5 4 4 2 . 5 4 5 2 2 - 3 0 3 2 . 5 4 0 - 1 3 4 2 . 4 3 5 2 . 4 3 8 3 5 2 0 4 2 . 4 3 4 2 - 2 2 2 . 3 6 6 2 . 3 6 5 2 9 - 1 2 5 2 . 3 6 4 3 - 1 2 2 . 2 9 9 2 . 2 9 6 2 0 0 - 3 3 2 . 1 8 9 2 . 1 8 7 1 7 2 - 2 3 2 . 0 9 8 2 . 0 9 0 2 6 l 1 6 2 . 0 5 7 2 . 0 5 9 2 9 - 1 0 6 1 . 9 9 8 1 . 9 9 9 2 3 5 2 1 1 . 9 6 8 1 . 9 6 6 1 6 5 3 2 1 . 9 0 5 1 . 9 0 6 3 3 2 6 2 1 . 8 3 4 1 . 8 3 4 1 5 1 3 7 1 . 7 9 3 1 . 7 9 4 1 7 4 5 5 1 . 6 9 1 1 . 6 9 0 1 0 - 3 - 5 3 1 . 6 1 6 1 . 6 1 7 1 3 2 1 3 T a b l e 4 . 2 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f B - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F a n d B ' - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F . h k 1 d c a l c . ( A ) d o b s . ( A ) I / I m a x ( o b s . ) 0 1 1 1 1 . 3 2 1 1 . 4 0 5 2 1 0 0 1 0 . 7 2 1 0 . 8 4 2 1 0 0 2 9 . 0 7 9 . 0 9 5 7 - 1 1 l 8 . 1 1 8 . 1 5 1 2 1 1 1 7 . 4 9 7 . 5 2 4 6 0 2 0 7 . 2 3 9 7 . 2 4 0 1 9 1 0 2 6 . 5 2 4 6 . 5 3 6 1 0 0 0 1 3 5 . 5 8 0 5 . 5 8 3 3 9 2 0 0 5 . 3 6 0 5 , 3 9 6 5 0 - 2 0 2 4 . 8 9 8 4 . 8 8 8 6 5 1 1 3 4 . 7 2 6 4 . 7 3 5 7 0 0 0 4 4 . 5 3 6 4 . 5 4 4 6 6 2 0 2 4 . 3 7 7 4 . 3 9 5 8 4 - 1 1 4 4 . 1 9 6 4 . 2 0 5 3 9 1 2 3 4 . 1 1 4 4 . 1 2 6 6 3 - 2 2 2 4 . 0 5 6 4 . 0 6 3 7 4 - 1 3 2 4 . 0 4 4 - 1 2 4 3 . 7 5 0 3 . 7 5 8 4 7 - 2 0 4 3 . 7 0 5 3 . 7 1 5 8 1 2 3 0 3 . 5 8 7 3 . 5 9 4 4 8 1 3 1 1 3 . 4 8 7 3 . 4 9 8 6 1 0 4 2 3 . 3 6 2 3 . 3 6 7 2 8 0 3 4 3 . 3 0 5 3 . 3 1 4 7 4 - 1 3 4 3 . 2 4 5 3 . 2 5 1 8 9 0 2 5 3 . 2 4 4 - 3 1 3 3 . 1 8 5 3 . 1 8 6 3 8 0 4 3 3 . 1 0 6 3 . 1 1 3 4 1 - 1 4 3 3 . 0 3 7 3 . 0 4 7 5 7 l 2 1 4 T a b l e 4 . 2 ( c o n t ' d ) . h k l d c a l c . ( A ) d o b s . ( A ) I / I m a x ( 0 9 8 - ) 1 2 5 3 . 0 1 1 3 . 0 1 5 8 0 2 4 1 2 . 9 2 6 2 . 9 3 7 4 2 - 2 0 6 2 . 7 9 1 2 . 7 9 5 3 9 - 1 5 2 2 . 6 9 7 2 . 6 9 2 2 5 - 4 0 2 2 . 6 6 4 2 . 6 7 0 2 9 0 4 5 / 0 3 6 2 . 5 6 3 2 . 5 6 9 7 3 - 4 1 3 2 . 5 3 6 2 . 5 3 8 1 6 - 4 2 2 2 . 5 0 1 2 . 5 0 8 1 6 0 5 4 2 . 4 4 1 2 . 4 4 1 3 2 3 3 4 2 . 3 2 1 2 . 3 2 4 1 8 0 0 8 2 . 2 6 8 2 . 2 6 9 3 7 4 3 2 2 . 2 0 9 2 . 2 0 1 2 7 3 0 6 2 . 1 7 5 2 . 1 7 8 2 6 0 7 1 2 . 0 5 6 2 . 0 5 8 7 1 4 7 2 . 0 2 9 2 . 0 3 3 2 0 - 2 3 8 1 . 9 9 6 1 . 9 9 8 3 1 4 4 3 1 . 9 6 6 1 . 9 6 6 3 8 - 3 4 7 1 . 9 0 4 1 . 9 0 7 1 6 - 1 6 6 1 . 8 8 4 1 . 8 8 3 1 2 2 3 8 1 . 8 4 7 1 . 8 4 9 1 3 0 0 1 0 1 . 8 1 4 1 . 8 1 6 1 6 - 3 7 1 1 . 7 9 3 1 . 7 9 7 1 3 1 0 1 0 1 . 7 5 2 1 . 7 5 0 1 8 - 3 0 1 0 1 . 7 0 9 1 . 7 1 0 1 4 - 2 3 1 0 1 . 6 7 8 1 . 6 7 7 9 - 1 6 8 1 . 6 5 7 1 . 6 5 7 9 - 1 7 7 1 . 6 1 8 1 . 6 1 6 9 1 1 1 1 1 . 5 9 0 1 . 5 9 1 4 - 3 1 1 1 1 . 5 6 7 1 . 5 6 7 8 2 1 5 T a b l e 4 . 3 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ‘ t - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . D M F - h k l d c a l c . ( A ) d o b s . ( A ) I / I m a x ( 0 1 1 8 - ) 2 0 0 1 1 . 6 8 1 1 . 6 7 2 5 - 2 0 2 1 0 . 7 1 1 0 . 7 1 2 8 0 0 2 1 0 . 6 8 - 1 1 l 8 . 5 1 8 . 5 6 8 - 4 0 2 6 . 5 4 6 . 5 2 4 2 2 . 0 2 6 . 5 3 - 3 l l 6 . 3 5 6 . 3 6 1 9 - 2 0 4 6 . 0 2 6 . 0 2 2 8 4 0 0 5 . 8 4 5 . 8 5 2 4 - 4 0 4 5 . 3 5 5 . 3 7 4 2 - 3 1 4 4 . 9 4 4 . 9 5 3 3 3 1 2 4 . 5 6 4 . 5 2 4 3 - 5 1 3 4 . 5 0 - 2 2 1 4 . 3 7 4 . 3 8 7 2 - 6 0 2 4 . 3 6 2 2 0 4 . 3 1 4 . 3 2 7 9 - 2 2 2 4 . 2 5 4 . 2 7 6 8 0 2 2 4 . 2 5 - 6 0 4 4 . 2 0 4 . 2 0 4 4 2 0 4 4 . 1 9 - 1 1 5 4 . 1 2 4 . 1 4 3 4 - 4 0 6 3 . 9 5 3 . 9 7 1 0 0 - 2 0 6 3 . 9 5 6 0 0 3 . 9 0 3 . 9 1 4 3 1 4 2 2 3 . 7 8 3 . 8 0 6 7 2 2 2 3 . 7 8 - 2 2 4 3 . 6 7 3 . 7 0 4 7 4 2 0 3 . 6 3 3 . 6 5 7 7 - 6 0 6 3 . 5 6 9 3 . 5 8 7 2 9 - 5 l 6 3 . 5 1 3 3 . 5 2 3 9 6 - 7 1 2 3 . 4 4 3 3 . 4 5 2 2 6 - 2 2 5 3 . 3 3 0 3 . 3 4 3 2 5 - 8 0 4 3 . 2 7 3 3 . 2 7 9 4 8 4 0 4 3 . 2 6 5 T a b l e 4 . 3 ( c o n t ' d ) . 2 1 6 h k 1 d c a l c . ( A ) d o b s . ( A ) m u m t a b s . ) - 8 0 2 3 . 2 1 9 3 . 2 3 1 4 8 - 6 2 2 3 . 1 7 6 3 . 1 9 2 9 0 4 2 2 3 . 1 7 3 - 6 2 4 3 . 1 1 1 3 . 1 2 7 7 3 2 2 4 3 . 1 0 6 3 . 0 6 0 6 0 2 0 6 3 . 0 3 9 3 . 0 2 9 5 8 6 2 0 2 . 9 8 2 2 . 9 9 5 5 7 8 0 0 2 . 9 2 1 2 . 9 3 2 8 6 - 2 0 8 2 . 9 1 0 0 2 6 2 . 8 2 4 2 . 8 4 4 3 6 - 9 1 4 2 . 7 8 7 2 . 8 0 1 2 2 1 3 3 2 . 7 5 4 2 . 7 6 8 2 1 - 9 1 2 2 . 7 1 6 2 . 7 2 7 2 6 - 8 0 8 2 . 6 7 7 2 . 6 8 7 7 7 - 8 2 2 2 . 6 4 3 2 . 6 5 7 6 0 6 2 2 2 . 6 4 1 - 8 2 6 2 . 5 4 6 2 . 5 4 6 4 3 - 4 2 8 2 . 5 2 2 2 . 5 1 1 2 4 9 1 0 2 . 5 0 0 2 . 4 8 2 4 5 5 3 1 2 . 4 8 5 - 6 0 1 0 2 . 3 9 4 2 . 4 1 1 2 9 - 8 2 8 2 . 3 1 8 2 . 3 3 0 4 8 - 1 0 2 4 2 . 2 8 7 2 . 2 8 1 7 0 - 2 4 2 2 . 2 6 4 2 . 2 5 7 4 2 4 2 6 2 . 2 4 2 2 . 2 3 6 3 2 , 8 2 2 2 . 2 2 5 2 . 1 9 7 4 7 - 4 4 2 2 . 1 8 4 2 . 1 8 9 5 8 - 2 4 4 2 . 1 6 2 2 . 1 6 6 3 5 - 1 0 0 1 0 2 . 1 4 1 2 . 1 3 8 4 3 2 2 8 2 . 1 1 5 2 . 1 0 1 3 6 1 1 1 0 2 . 0 7 1 2 . 0 7 5 3 5 - 8 2 1 0 2 . 0 6 0 2 . 0 5 7 2 5 - 2 2 1 0 2 . 0 5 8 - 6 0 1 2 2 . 0 0 5 2 . 0 1 4 2 4 - 2 4 6 1 . 9 9 8 1 . 9 8 4 4 5 0 4 6 1 . 9 4 2 1 . 9 5 7 3 9 2 1 7 T a b l e 4 . 4 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( E t 4 N ) 2 l l e ( S 4 ) 2 ] . h I n d c a c 1 . ( A ) d o b s . ( A ) I / I m a x ( o b s ) 1 1 0 9 . 7 1 9 . 7 3 5 5 0 2 0 8 . 6 0 8 . 6 4 1 0 1 2 0 6 . 9 4 6 . 9 9 5 0 1 1 6 . 5 9 6 . 6 3 6 - 1 1 1 6 . 0 9 6 . 0 6 1 6 2 0 0 5 . 8 8 5 . 9 1 1 1 1 0 1 5 . 7 5 5 . 7 9 1 4 2 1 0 5 . 5 6 5 . 6 0 2 1 1 3 0 5 . 1 5 5 . 1 8 1 8 2 2 0 4 . 8 5 4 . 8 8 1 4 1 2 1 4 . 7 8 4 . 8 0 1 1 - 2 l 1 4 . 7 0 4 . 7 3 1 2 0 3 1 4 . 4 6 4 . 4 2 8 - 1 3 1 4 . 3 1 4 . 3 3 1 3 - 2 2 l 4 . 2 5 4 . 2 6 1 0 0 2 1 1 4 . 1 3 4 . 1 5 1 4 1 4 0 4 . 0 4 4 . 0 7 1 3 - 2 3 1 3 . 7 2 3 . 7 5 1 9 . - 1 4 1 3 . 5 9 3 . 5 9 1 8 - 1 l 2 3 . 4 8 3 . 5 0 7 2 2 3 1 3 . 4 2 3 . 4 4 1 0 - 3 2 1 3 . 3 7 3 . 3 9 2 2 0 2 2 3 . 2 9 3 . 3 1 1 3 3 0 1 3 . 2 5 3 . 2 7 2 4 - 2 2 2 3 . 0 5 3 . 0 7 3 7 - 1 5 1 3 . 0 4 3 . 0 6 3 8 i i h l e ‘ 2 1 8 T a b l e 4 . 4 ( c o n t ' d ) . h k l d c a c l . ( A ) d o b s . ( A ) I / I m a x ( 0 1 1 8 - ) 3 2 1 3 . 0 3 7 3 . 0 3 4 4 2 - 1 3 2 3 . 0 2 0 3 . 0 1 4 8 6 2 5 0 2 . 9 6 9 2 . 9 6 1 2 2 1 5 1 2 . 9 5 1 2 . 9 1 4 1 2 1 3 2 2 . 8 4 9 2 . 8 4 4 1 5 - 4 1 1 2 . 8 2 5 2 . 8 0 5 2 0 - 3 4 1 2 . 7 8 7 2 . 7 6 7 9 1 6 0 2 . 7 8 5 - 3 2 2 2 . 7 0 1 2 . 6 9 9 3 1 0 6 1 2 . 6 5 9 2 . 6 6 4 8 3 4 1 2 . 5 9 0 2 . 5 8 1 1 0 - 2 6 1 2 . 4 7 3 2 . 4 6 3 1 0 - 1 5 2 2 . 4 7 1 3 1 2 2 . 4 4 3 2 . 4 4 1 7 2 6 1 2 . 3 7 7 2 . 3 8 8 7 5 1 0 2 . 3 3 1 2 . 3 4 5 3 4 - 1 7 1 2 . 2 9 9 2 . 2 9 1 9 2 7 0 2 . 2 6 7 2 . 2 6 3 2 0 4 0 2 2 . 1 2 5 2 . 1 3 8 4 0 - 4 1 3 1 . 9 7 7 1 . 9 7 2 1 7 2 3 3 1 . 9 7 4 6 2 0 1 . 9 1 1 1 . 9 1 3 1 0 2 9 0 1 . 8 1 7 1 . 8 1 4 1 0 - 5 7 1 1 . 6 9 2 1 . 6 8 3 1 8 0 1 0 1 1 . 6 7 2 1 . 6 7 2 1 2 - 6 6 1 1 . 6 1 9 1 . 6 1 9 1 3 2 1 9 T a b l e 4 . 5 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( M e 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] . h k 1 d c a c l . ( A ) d o b s . ( A ) I / I m a x ( 0 9 8 - ) 0 0 1 9 . 2 8 2 9 . 2 5 9 1 9 0 1 1 8 . 2 1 0 8 . 2 3 1 1 0 0 0 1 2 5 . 0 0 9 5 . 0 0 7 7 1 0 2 1 4 . 7 6 2 4 . 7 4 5 5 2 0 2 2 4 . 1 0 5 4 . 1 1 5 7 0 1 1 2 4 . 0 8 5 4 . 0 8 7 5 6 1 - 1 1 3 . 8 9 8 3 . 8 9 9 5 1 1 0 2 3 . 7 3 4 3 . 6 8 3 1 6 0 1 3 3 . 3 6 8 3 . 3 6 6 4 9 0 2 3 3 . 1 9 8 3 . 1 9 8 5 4 2 0 0 3 . 0 3 8 3 . 0 3 9 7 0 1 3 2 2 . 9 5 6 2 . 9 3 8 5 6 2 0 1 2 . 9 0 9 2 . 9 0 2 6 3 0 3 3 2 . 7 3 7 2 . 7 4 2 9 4 2 1 2 2 . 7 3 0 2 2 2 2 . 6 4 3 2 . 6 5 1 4 1 - 1 3 2 2 . 5 8 6 2 . 5 8 4 3 0 - 2 0 2 2 . 5 1 2 2 . 5 1 2 3 7 1 - 1 3 2 . 3 8 1 2 . 3 8 8 3 9 2 2 3 2 . 3 5 8 2 . 3 5 5 4 8 ‘ 0 3 4 2 . 3 2 3 2 . 3 2 6 3 7 - 1 1 4 2 . 2 6 2 2 . 2 6 2 2 4 1 0 4 2 . 1 8 6 2 . 1 7 7 1 5 - 1 - 2 3 2 . 0 6 4 2 . 0 6 3 2 5 l 2 5 1 . 9 7 5 1 . 9 8 6 2 5 - 1 2 5 1 . 8 6 8 1 . 8 6 7 1 1 - 3 - 2 1 1 . 8 3 0 1 . 8 2 4 1 6 - 3 2 0 1 . 7 4 8 1 . 7 4 9 2 0 2 2 0 T a b l e 4 . 6 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f K 0 . 6 2 n 1 . 3 8 3 5 - n k l d c a c 1 . ( A ) d o b s . ( A ) I / I m a x ( o b s ) 0 2 0 8 . 4 5 8 . 4 2 3 0 1 0 1 4 . 6 4 4 . 5 8 3 7 l 1 1 4 . 4 8 4 . 4 8 1 0 0 1 3 0 4 . 3 0 4 . 3 6 2 3 0 4 0 4 . 2 3 4 . 2 3 6 6 1 2 1 4 . 0 7 4 . 0 2 2 3 1 3 1 3 . 5 8 3 . 6 1 6 0 0 4 1 3 . 5 4 3 . 5 5 2 5 0 0 2 3 . 2 5 3 . 2 9 2 6 0 1 2 3 . 1 9 3 . 2 3 1 7 1 4 1 3 . 1 3 3 . 1 6 1 2 2 2 0 3 . 0 9 3 . 0 5 1 7 1 5 0 3 . 0 1 3 . 0 2 1 6 2 0 1 2 . 9 5 5 2 . 9 9 5 1 3 2 1 1 2 . 9 1 0 2 . 8 8 9 2 8 2 3 0 2 . 8 5 9 2 . 8 5 9 1 7 ‘ 0 6 0 2 . 8 1 7 2 . 8 2 2 1 8 1 5 1 2 . 7 3 2 2 . 7 2 8 1 1 2 3 1 2 . 6 1 6 2 . 6 1 3 1 3 1 6 1 2 . 4 0 1 2 . 3 8 5 0 8 0 2 . 1 1 2 2 . 1 1 6 3 3 0 2 . 0 5 9 2 . 0 6 5 3 ' 3 ; w e r e r e f i n e d a n i s o t r o p i c a l l y . I n ( 1 1 ) a n d ( 1 1 1 ) a l l a t o m s o f t h e a n i o n , 2 2 1 A l l t h e c o m p l e x e s a r e v e r y a i r a n d m o i s t u r e s e n s i t i v e t h u s t h e c r y s t a l s o f ( I ) , ( I I ) a n d ( I I I ) w e r e m o u n t e d i n s i d e g l a s s c a p i l l a r i e s a n d s e a l e d , w h e r e a s t h e c r y s t a l s o f ( I V ) - ( V I I ) w e r e m o u n t e d o n t h e t i p o f a g l a s s f i b e r w i t h s i l i c o n g r e a s e a n d t h e d a t a w e r e c o l l e c t e d a t l o w t e m p e r a t u r e s . T h e c r y s t a l l o g r a p h i c d a t a f o r ( I ) , ( I I I ) a n d ( V I ) w e r e c o l l e c t e d o n N i c o l e t P 3 f o u r - c i r c l e a u t o m a t e d d i f f r a c t o m e t e r u s i n g a 9 - 2 0 s t e p s c a n m o d e 1 2 a n d M o K 0 1 r a d i a t i o n . T h e d a t a f o r t h e r e s t o f t h e c o m p l e x e s w e r e c o l l e c t e d o n R i g a k u A F C 6 S f o u r - c i r c l e a u t o m a t e d d i f f r a c t o m e t e r w i t h ( 0 - 2 9 s c a n t e c h n i q u e a n d M o K 0 1 r a d i a t i o n . A c c u r a t e u n i t c e l l d i m e n s i o n s w e r e d e t e r m i n e d f r o m t h e 2 0 , m , ¢ , x a n g l e s o f 1 5 - 2 5 m a c h i n e c e n t e r e d r e f l e c t i o n s . T h e i n t e n s i t i e s o f t h r e e c h e c k r e f l e c t i o n s w e r e m o n i t o r e d e v e r y 1 0 0 - 1 5 0 r e f l e c t i o n s . T h e d a t a f o r ( I I ) s h o w e d 7 % d e c a y i n t h e i r i n t e n s i t i e s o v e r t h e d a t a c o l l e c t i o n p e r i o d t h u s a d e c a y c o r r e c t i o n w a s a p p l i e d t o t h e c o m p l e t e d a t a - s e t . A n e m p i r i c a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d t o t h e d a t a o f a l l c o m p l e x e s b a s e d o n 1 1 ! s c a n s f o r 3 ( x ~ 9 0 ° ) r e f l e c t i o n s . T h e s t r u c t u r e s w e r e s o l v e d w i t h d i r e c t m e t h o d s a n d d i f f e r e n c e F o u r i e r S y n t h e s i s m a p s a n d r e f i n e d w i t h f u l l - m a t r i x l e a s t s q u a r e t e c h n i q u e s . A n a d d i t i o n a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d b e f o r e a n i s o t r o p i c r e f i n e m e n t u s i n g D I F A B S I 3 . T h e s t r u c t u r e o f ( I ) - ( I V ) w e r e s o l v e d w i t h d i r e c t m e t h o d s u s i n g S H E L X S - 8 6 1 4 a n d w e r e r e f i n e d w i t h t h e S D P 1 5 p a c k a g e o f c r y s t a l l o g r a p h i c p r o g r a m s , u s i n g a V A X s t a t i o n 2 0 0 0 c o m p u t e r . T h e s t r u c t u r e s o f ( V ) - ( V I I ) w e r e s o l v e d w i t h d i r e c t m e t h o d s u s i n g t h e T E X S A N c r y s t a l l o g r a p h i c s o f t w a r e p a c k a g e f r o m M o l e c u l a r S t r u c t u r e C o r p o r a t i o n , u s i n g a V A X s t a t i o n 3 1 0 0 / 7 6 c o m p u t e r . I n ( I ) , ( V ) a n d ( V I ) a l l n o n - h y d r o g e n a t o m s m E a ; . . E . a ; 2 2 2 t h e p h o s p h o r o u s a t o m o f t h e c a t i o n a n d t h e a t o m s o f t h e D M F m o l e c u l e w e r e r e f i n e d a n i s o t r o p i c a l l y . T h e c a r b o n a t o m s o f t h e c a t i o n w e r e r e f i n e d i s o t r o p i c a l l y . F o r ( I V ) a l l n o n - h y d r o g e n a t o m s e x c e p t t h e a t o m s o f t h e D M F m o l e c u l e w e r e r e f i n e d a n i s o t r o p i c a l l y . T h e h y d r o g e n a t o m p o s i t i o n s w e r e c a l c u l a t e d a n d i n c l u d e d i n t h e s t r u c t u r e f a c t o r c a l c u l a t i o n s b u t w e r e n o t r e f i n e d . A l l t h e s t r u c t u r e s c o n s i s t o f d i s c r e t e , w e l l s e p a r a t e d c a t i o n s a n d a n i o n s . I n ( V I I ) o n l y t h e T 1 a t o m s w e r e r e f i n e d a n i s o t r o p i c a l l y t h e p o t a s s i u m a n d t h e s u l f u r a t o m s w e r e r e f i n e d i s o t r o p i c a l l y . I n ( I V ) t h e D M F m o l e c u l e h a s a n u n u s u a l d i s o r d e r e d , w i t h t h e n i t r o g e n a n d o x y g e n a t o m s s i t u a t e d o n a c r y s t a l l o g r a p h i c C 2 a x i s w i t h h a l f o c c u p a n c i e s . D u e t o t h e C 2 a x i s t h e c a r b o n a t o m s o f t h i s m o l e c u l e a r e p o s i t i o n a l l y d i s o r d e r e d o v e r t w o s i t e s w i t h h a l f o c u u p a n c y , t h u s g i v i n g r i s e t o t w o d i f f e r e n t o r i e n t a t i o n s o f t h e D M F m o l e c u l e i n t h e c r y s t a l l a t t i c e . A l l t h e c r y s t a l s o f ( V I ) w e r e f o u n d t o t w i n n e d w i t h t w o o r t h r e e p l a t e l e t s g l u e d t o g e t h e r a l o n g t h e f l a t f a c e . T h e d a t a w a s c o l l e c t e d o n a t w i n n e d c r y s t a l a n d t h e t w i n h a d r e l a t i v e l y w e a k i n t e n s i t y i n t h e a x i a l p h o t o g r a p h s . O u r a t t e m p t s t o r e f i n e t h e s t r u c t u r e d i d n o t g i v e g o o d r e s u l t s d u e t o t h i s p r o b l e m . I n K o , 6 3 T 1 1 , 3 2 8 5 ( V I I ) a t h a l l i u m a n d p o t a s s i u m a t o m a r e d i s o r d r e d o v e r t h e s a m e c r y s t a l l o g r a p h i c s i t e a n d t h e o c c u p a n c i e s o f T l ( 2 ) a n d K ( 2 ) w e r e e s t i m a t e d a s 0 . 5 a n d 0 . 5 . T h e y w e r e t h e n r e f i n e d w i t h t h e r e s t r i c t i o n t h a t t h e s u m o f t h e i r o c c u p a n c i e s b e e q u a l t o u n i t y . T h i s r e f i n e m e n t r e s u l t e d i n t h e o c c u p a n c i e s o f 0 . 3 2 a n d 0 . 6 8 , r e s p e c t i v e l y . 2 2 3 T h e c o m p l e t e d a t a c o l l e c t i o n p a r a m e t e r s a n d d e t a i l s o f t h e s t r u c t u r e s o l u t i o n a n d r e f i n e m e n t f o r t h e c o m p o u n d s ( I ) - ( V I I ) a r e s u m m a r i z e d i n T a b l e s 4 . 7 - 4 . 9 . T h e f i n a l c o o r d i n a t e s , t e m p e r a t u r e f a c t o r s a n d t h e i r e s t i m a t e d s t a n d a r d d e v i a t i o n s ( e s d ' s ) o f a l l n o n - h y d r o g e n a t o m s f o r t h e c o m p o u n d s , a r e s h o w n i n T a b l e s 4 . 1 0 - 4 . 1 6 . 2 2 4 T a b l e 4 . 7 . S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r a - ( P h 4 P ) 2 [ T l 2 ( S 4 ) 2 ] ( I ) . B - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 l - 2 D M F ( I I ) a n d B ' - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F ( I I I ) . I 1 1 1 1 1 F o r m u l a C 4 3 H 4 0 P 2 ‘ l 1 2 8 3 C 5 4 H 5 4 P 2 N 2 0 2 1 1 2 8 3 C 5 4 H 5 4 P 2 N 2 0 2 T 1 2 $ 3 F W 1 3 4 4 . 0 6 1 4 9 0 . 2 4 1 4 9 0 . 2 4 C r y s t a l c o l o r y e l l o w o r a n g e d e e p - r e d T e m p . ( ° C ) 2 3 2 3 2 3 a ( A ) 9 . 9 0 7 ( 3 ) 1 0 . 8 1 5 ( 3 ) 1 0 . 8 1 0 ( 5 ) b ( A ) 1 1 . 0 1 4 ( 3 ) 1 4 . 4 8 6 ( 5 ) 1 4 . 4 8 0 ( 8 ) c ( A ) 1 2 . 7 9 4 ( 4 ) 1 8 . 2 8 1 ( 5 ) 1 8 . 2 9 4 ( 7 ) a ( ° ) 7 1 . 0 5 ( 3 ) 9 0 . 0 0 9 0 . 0 0 B ( ° ) 8 7 . 3 3 ( 3 ) 9 7 2 9 ( 3 ) 9 7 3 7 ( 3 ) 7 ( ° ) 6 8 . 7 9 ( 2 ) 9 0 . 0 0 9 0 . 0 0 Z , V ( A 3 ) 1 , 1 2 2 7 ( 1 ) 2 , 2 8 4 1 ( 1 ) 2 , 2 8 3 9 ( 2 ) S p a c e g r o u p P - l ( # 2 ) P 2 1 / c ( # 1 4 ) P 2 1 / c ( # 1 4 ) D c a l c . ( g c m ' 3 ) 1 . 8 1 9 1 . 7 4 2 1 . 7 4 5 i d e m - 1 ) M 0 ( K a ) 7 0 . 5 2 6 0 . 9 9 6 1 . 1 3 C r y s t a l s i z e ( m m ) 0 . 1 6 , 0 . 3 2 , 0 . 5 0 0 . 1 8 , 0 . 3 0 , 0 . 4 0 0 . 3 8 , 0 . 4 3 , 0 . 3 1 2 4 . 8 . 1 0 ) 4 5 4 0 4 3 # o f d a t a C o l l e c t 3 5 3 8 3 0 7 6 4 0 1 7 D a t a ( 1 > 3 o ( 1 ) ) 2 3 4 1 1 4 6 1 1 8 2 1 N o . o f v a r i a b l e s 2 7 1 1 9 6 1 9 6 m i n / m a x a b s c o r 0 . 3 9 2 / 0 . 9 9 8 0 . 4 7 5 / 1 . 0 0 0 0 . 8 4 7 / 0 . 9 9 8 F i n a l R / R W ( % ) 5 . 0 / 5 . 5 7 . 7 / 9 . 7 4 . 4 / 4 . 8 ‘ 2 2 5 T a b l e 4 . 8 . S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r y - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] D M F ( I V ) . ( E M N ) 2 [ T 1 2 ( S 4 ) 2 ] ( V ) a n d ( M e 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] ( V 1 ) - I V V V I F o r m u l a C 5 1 H 4 7 P 2 N O T I 2 8 3 C 1 6 H 4 0 N 2 T I 2 $ 3 C 3 H 2 4 N 2 T I 2 $ 3 F W 1 4 1 7 . 1 5 9 2 5 . 7 8 8 1 3 . 5 7 C r y s t a l c o l o r o r a n g e o r a n g e p a l e o r a n g e T e m p . ( ° C ) - 1 2 0 - 1 0 0 - 1 0 0 a ( A ) 2 6 . 3 2 4 ( 6 ) 1 1 . 8 8 0 ( 1 0 ) 6 . 1 6 0 ( 3 ) b ( A ) 9 . 2 6 9 ( 1 0 ) 1 7 . 2 0 2 ( 6 ) 9 . 6 8 3 ( 6 ) c ( A ) 2 4 . 0 6 2 ( 5 ) 7 . 2 0 0 ( 6 ) 1 0 . 1 6 0 ( 5 ) a ( ° ) 9 0 . 0 0 9 0 . 0 0 6 6 . 0 5 ( 4 ) B ( ° ) 1 1 7 . 3 6 ( 1 ) 9 7 2 9 ( 3 ) 8 4 . 8 8 ( 4 ) 7 ( ° ) 9 0 . 0 0 9 0 . 0 0 8 0 . 6 4 ( 4 ) z , V ( A 3 ) 4 , 5 2 1 3 ( 4 ) 2 , 1 4 5 7 ( 2 ) 2 , 5 4 6 ( 1 ) S p a c e g r o u p C 2 / c ( # 1 5 ) P 2 1 , “ ( # 1 4 ) P - l ( # 2 ) D c a l c . ( 8 c m ‘ 3 ) 1 . 7 9 7 2 . 1 1 0 2 . 4 7 3 M o m - 1 ) M o ( K a ) 6 6 . 4 3 4 1 1 7 . 2 0 1 5 6 . 1 0 C r y s t a l s i z e ( m m ) 0 . 1 6 , 0 . 2 2 , 0 . 4 0 0 . 1 0 , 0 . 2 1 , 0 . 5 7 0 . 0 4 , 0 . 2 0 , 0 . 3 6 2 9 m a x ( ° ) 5 0 4 0 6 0 # o f d a t a C o l l e c t 5 1 5 1 1 5 5 0 3 5 4 2 D a t a ( I > 3 0 ( I ) ) 3 2 6 7 1 1 2 0 2 3 9 7 N o . o f v a r i a b l e s 2 8 7 1 2 7 9 1 m i n / m a x a b s c o r 0 . 6 1 6 / 1 . 0 0 0 0 . 2 6 3 / 1 . 0 0 0 0 . 0 3 3 / 1 . 0 0 0 F i n a l R / R w ( % ) 3 . 6 / 4 . 6 2 . 3 / 3 . 7 1 6 . 2 / 2 1 . 3 l z 2 2 6 T a b l e 4 . 9 . S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r K o , 5 3 T l 1 , 3 2 8 5 ( V I I ) . V I I F o r m u l a K 0 . 5 3 ' I ' 1 1 . 3 2 $ 5 F W 4 5 6 . 6 9 C r y s t a l c o l o r d e e p - r e d T e m p . ( ° C ) - 1 0 0 a ( A ) 6 . 6 3 0 ( 4 ) b ( A ) 1 6 . 9 8 9 ( 6 ) c ( A ) 6 . 4 9 9 ( 2 ) a ( ° ) 9 0 . 0 0 B ( ° ) 9 0 . 0 0 7 ( ° ) 9 0 . 0 0 2 , V ( A 3 ) 4 , 7 2 7 ( 1 ) S p a c e g r o u p P 2 1 2 1 2 1 ( # 1 9 ) D c a l c . ( 8 c m ‘ 3 ) 4 . 1 6 2 1 1 ( c m " ) M 0 ( K a ) 3 1 1 . 5 3 C r y s t a l s i z e ( m m ) 0 . 1 6 , 0 . 2 1 , 0 . 3 1 2 9 m a x ( ° ) 5 0 # o f d a t a C o l l e c t 8 2 3 D a t a ( I > 3 o ( I ) ) 5 6 3 N o . o f v a r i a b l e s 4 4 m i n / m a x a b s c o r 0 . 5 6 3 / 1 . 0 0 0 F i n a l R / R w ( % ) 7 . 5 / 9 . 4 S J 2 2 7 T a b l e 4 . 1 0 . F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r a - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y 2 3 6 ‘ 1 “ . A 2 T 1 1 0 . 3 0 7 6 0 ( 8 ) - 0 . 0 0 2 9 1 ( 7 ) 0 . 4 5 6 7 8 ( 5 ) 5 . 7 2 ( 2 ) 8 1 0 . 4 7 3 1 ( 4 ) - 0 . 1 5 2 9 ( 4 ) 0 . 3 2 0 0 ( 3 ) 5 . 0 0 ( 9 ) 8 2 0 . 4 8 7 8 ( 4 ) 0 . 3 3 1 4 ( 4 ) 0 . 5 4 9 5 ( 3 ) 5 . 9 ( 1 ) S 3 0 . 3 4 6 2 ( 5 ) 0 . 3 3 5 4 ( 4 ) 0 . 4 3 6 0 ( 4 ) 6 . 3 ( 1 ) S 4 0 . 4 6 4 6 ( 5 ) 0 . 1 8 9 1 ( 4 ) 0 . 3 6 3 3 ( 3 ) 6 . 2 ( 1 ) P 0 . 0 4 8 2 ( 3 ) - 0 . 2 1 8 0 ( 3 ) 0 . 8 7 1 3 ( 3 ) 3 . 2 9 ( 7 ) C 1 - 0 . 0 5 0 ( 1 ) 1 . 0 5 1 ( 1 ) 0 . 2 0 6 8 ( 9 ) 3 . 2 ( 3 ) C 2 0 . 0 7 9 ( 1 ) 0 . 9 4 1 ( 1 ) 0 . 2 5 2 ( 1 ) 4 . 1 ( 3 ) C 3 0 . 0 8 1 ( 2 ) 0 . 8 1 4 ( 1 ) 0 . 3 2 5 ( 1 ) 6 . 5 ( 5 ) C 4 - 0 . 0 5 5 ( 2 ) 0 . 8 0 2 ( 1 ) 0 . 3 5 2 ( 1 ) 5 . 7 ( 4 ) C 5 - 0 . 1 8 4 ( 1 ) 0 . 9 0 8 ( 1 ) 0 . 3 0 5 ( 1 ) 5 . 2 ( 4 ) C 6 - O . 1 8 4 ( 1 ) 1 . 0 3 5 ( 1 ) 0 . 2 3 3 ( 1 ) 4 . 6 ( 3 ) C 7 0 . 1 2 0 ( 1 ) 0 . 2 0 1 ( 1 ) 0 . 0 6 6 6 ( 9 ) 3 . 2 ( 3 ) C 8 0 . 1 3 0 ( 1 ) 0 . 2 1 9 ( 1 ) - 0 . 0 4 5 ( 1 ) 4 . 3 ( 3 ) C 9 0 . 2 5 9 ( 1 ) 0 . 2 0 7 ( 1 ) - 0 . 0 9 4 ( 1 ) 5 . 5 ( 4 ) C 1 0 0 . 3 8 5 ( 1 ) 0 . 1 6 9 ( 1 ) - 0 . 0 2 7 ( 1 ) 5 . 2 ( 4 ) C 1 1 0 . 3 7 9 ( 1 ) 0 . 1 5 2 ( 1 ) 0 . 0 8 4 ( 1 ) 4 . 9 ( 4 ) C 1 2 0 . 2 4 9 ( 1 ) 0 . 1 6 7 ( 1 ) 0 . 1 3 3 ( 1 ) 3 . 9 ( 3 ) A t o m C C C C C C C C C C C C 1 1 1 1 1 1 2 1 2 2 2 2 3 5 1 4 6 7 8 9 3 0 2 4 x 0 3 1 8 5 9 2 6 0 7 6 4 7 ( ( ( ( ( ( ( ( ( ( ( ( 1 1 2 2 1 1 1 1 1 2 1 1 ) ) ) ) ) ) ) ) ) ) ) ) - 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . 0 1 2 1 0 1 3 2 3 3 2 0 7 8 0 2 1 9 2 3 9 6 6 y 8 8 0 2 2 0 9 7 9 6 8 5 4 5 7 6 4 0 8 1 9 0 6 6 ( ( ( ( ( ( ( ( ( ( ( ( 1 1 1 1 1 1 1 1 2 2 2 1 ) ) ) ) ) ) ) ) ) ) ) ) 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . 6 6 6 5 5 6 6 7 6 5 4 5 2 0 2 6 7 0 3 6 8 9 9 0 0 8 2 ( ( ( ( ( ( ( ( ( ( ( ( 9 ) 1 1 1 1 1 1 1 1 1 1 1 ) ) ) ) ) ) ) ) ) ) ) 0 . 7 8 - 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . 7 6 6 7 7 0 1 1 1 0 0 0 3 4 1 8 3 2 5 1 0 B e q a a A 2 5 4 4 3 5 5 3 5 5 6 6 5 . . . . . . . . . . . . 9 6 5 8 5 3 5 0 7 1 4 1 ( ( ( ( ( ( ( ( ( ( ( ( 3 4 4 4 4 3 3 4 4 5 5 4 ) ) ) ) ) ) ) ) ) ) ) ) T a b l e 4 . 1 0 ( c o n t ' d ) . 2 2 8 a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 B 1 1 + b 2 B 2 2 ‘ + c 2 B 3 3 + a b ( c o s y ) B 1 2 + a c ( c o s B ) B 1 3 + b c ( c o s a ) B z 3 ] 2 2 9 T a b l e 4 . 1 1 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r B - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F w i t h t h e E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q a , A 2 T l 1 . 1 2 1 4 ( 2 ) 0 . 5 7 4 3 ( 1 ) - 0 . 0 5 7 6 ( 1 ) 4 . 4 ( 1 ) 8 ( 1 ) 1 . 0 7 8 ( 1 ) 0 . 4 5 1 ( 1 ) - 0 . 1 7 9 3 ( 6 ) 5 . 6 ( 7 ) S ( 2 ) 0 . 9 7 8 ( 1 ) 0 . 3 6 1 9 ( 9 ) - 0 . 1 2 2 2 ( 7 ) 4 . 9 ( 7 ) 8 ( 3 ) 1 . 0 9 8 ( 1 ) 0 . 3 0 7 0 ( 9 ) - 0 . 0 3 8 9 ( 7 ) 6 2 ( 8 ) 8 ( 4 ) 1 . 1 4 3 ( 1 ) 0 . 4 1 0 ( 1 ) 0 . 0 3 4 7 ( 6 ) 4 . 6 ( 6 ) P ( 1 ) 1 . 4 8 5 6 ( 9 ) 0 . 5 1 4 6 ( 7 ) - 0 . 2 4 7 4 ( 6 ) 2 . 1 ( 5 ) 0 ( 1 ) 0 . 7 3 2 ( 4 ) 0 . 3 9 5 ( 3 ) 0 . 4 7 8 ( 2 ) 8 ( 3 ) N ( 1 ) 0 . 9 0 0 ( 5 ) 0 . 4 2 6 ( 4 ) 0 . 5 6 3 ( 3 ) 7 ( 3 ) C ( 1 ) 1 . 3 6 6 ( 3 ) 0 . 5 9 4 ( 2 ) - 0 . 2 3 6 ( 2 ) 1 . 4 ( 7 ) C ( 2 ) 1 . 2 5 2 ( 3 ) 0 . 5 8 7 ( 3 ) - 0 . 2 8 8 ( 2 ) 3 . 4 ( 9 ) C ( 3 ) 1 . 1 6 0 ( 4 ) 0 . 6 6 0 ( 3 ) - 0 . 2 8 0 ( 2 ) 5 ( 1 ) C ( 4 ) 1 . 1 8 1 ( 3 ) 0 . 7 2 3 ( 3 ) - 0 . 2 3 1 ( 2 ) 3 . 3 ( 9 ) C ( 5 ) 1 . 2 8 9 ( 4 ) 0 . 7 2 5 ( 3 ) - 0 . 1 8 1 ( 3 ) 5 ( 1 ) C ( 6 ) 1 . 3 8 0 ( 3 ) 0 . 6 6 0 ( 3 ) - 0 . 1 8 8 ( 2 ) 2 . 3 ( 8 ) C ( 7 ) 1 . 6 1 4 ( 3 ) 0 . 5 8 2 ( 2 ) - 0 . 2 6 5 ( 2 ) 1 . 4 ( 6 ) C ( 8 ) 1 . 7 3 4 ( 3 ) 0 . 5 7 2 ( 3 ) - 0 . 2 2 6 ( 2 ) 2 . 2 ( 7 ) C ( 9 ) 1 . 8 3 4 ( 3 ) 0 . 6 2 7 ( 3 ) - 0 . 2 3 7 ( 2 ) 3 . 4 ( 9 ) C ( 1 0 ) 1 . 8 1 3 ( 3 ) 0 . 6 9 9 ( 3 ) - 0 . 2 9 0 ( 2 ) 2 . 6 ( 8 ) C ( 1 1 ) 1 . 6 9 1 ( 3 ) 0 . 7 1 2 ( 2 ) - 0 . 3 2 9 ( 2 ) 2 . 4 ( 8 ) A C C C C C C C C C C C C C C C C t o m ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) x 9 4 4 2 7 6 9 2 5 7 6 3 1 3 3 5 2 0 9 0 3 1 7 0 3 5 6 8 4 0 6 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 . . . . . . . . . . . . . . . . 5 4 3 3 3 4 4 5 4 4 5 6 6 0 8 8 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 3 3 3 3 4 4 3 3 3 4 4 3 3 7 5 6 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) y 5 3 7 1 1 7 4 4 5 9 3 2 7 7 8 1 5 7 6 0 0 9 4 5 8 8 9 1 4 0 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . 6 4 3 3 3 3 4 4 4 3 3 3 3 3 3 5 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 2 2 3 3 3 3 3 2 2 3 3 3 2 4 4 5 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) z 1 2 1 7 3 4 8 6 0 4 4 6 5 1 9 7 8 5 9 ( ( ( ( ( ( ( ( ( ( ( ( 8 2 7 6 8 7 7 5 7 6 3 6 ( ( ( ( 2 2 2 2 3 2 2 2 2 2 3 2 2 4 3 4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) - - - - - - - - - - - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . . . . . . . . . . . . . . . 3 3 3 3 4 4 3 1 1 0 0 1 0 5 5 5 B e q “ . 1 1 2 3 3 4 3 2 2 . . . . . . . . . 4 4 5 3 7 6 8 3 0 4 0 1 1 2 ( ( ( ( ( ( ( ( ( ( ( ( ( ( 1 1 1 1 4 1 1 1 0 ( ( 4 4 Z 8 7 9 9 9 9 8 ) 8 ) ) ) ) 8 ) ) ) ) ) ) ) ) ) A ) ) T a b l e 4 . 1 1 ( c o n t ' d ) . 2 3 0 a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 B 1 1 + b 2 8 2 2 + c 2 B 3 3 + a b ( c o s y ) B 1 2 + a c ( c o s B ) B 1 3 + b c ( c o s 0 1 ) B 2 3 ] 2 3 1 T a b l e 4 . 1 2 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r B ' - ( P h 4 P ) 2 [ T 1 2 ( 8 4 ) 2 ] . 2 D M F w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q “ , A 2 T I 0 . 1 2 1 4 8 ( 7 ) 0 . 0 7 4 3 7 ( 5 ) 0 . 4 4 2 3 6 ( 4 ) 4 . 7 7 ( 1 ) 8 ] 0 . 0 7 8 0 ( 5 ) - 0 . 0 5 0 6 ( 4 ) 0 . 3 2 0 4 ( 3 ) 5 . 9 ( 1 ) $ 2 - 0 . 0 2 2 3 ( 4 ) - 0 . 1 3 7 4 ( 4 ) 0 . 3 7 7 1 ( 3 ) 5 . 4 ( 1 ) S 3 0 . 0 9 8 8 ( 5 ) - 0 . 1 9 3 2 ( 3 ) 0 . 4 6 1 1 ( 3 ) 5 . 9 ( 1 ) S 4 0 . 1 4 2 2 ( 5 ) - 0 . 0 8 9 7 ( 4 ) 0 . 5 3 5 7 ( 2 ) 5 . 4 ( 1 ) P 0 . 4 8 6 5 ( 4 ) 0 . 0 1 4 2 ( 3 ) 0 . 2 5 2 1 ( 2 ) 2 . 3 3 ( 8 ) C 1 0 . 3 8 3 ( 1 ) 0 . 5 8 3 ( 1 ) 0 . 2 6 4 6 ( 7 ) 2 . 1 ( 3 ) C 2 0 . 4 0 2 ( 1 ) 0 . 6 5 2 ( 1 ) 0 . 3 1 7 5 ( 8 ) 3 . 1 ( 3 ) C 5 0 . 3 0 8 ( 1 ) 0 . 7 1 0 ( 1 ) 0 . 3 2 9 8 ( 8 ) 3 . 2 ( 3 ) C 4 0 . 1 8 8 ( 1 ) 0 . 7 0 0 ( 1 ) 0 . 2 8 9 4 ( 8 ) 3 . 2 ( 3 ) C 5 0 . 1 6 9 ( 1 ) 0 . 6 3 0 ( 1 ) 0 . 2 3 8 1 ( 8 ) 3 . 4 ( 3 ) C 6 0 . 2 6 4 ( 1 ) 0 . 5 7 2 ( 1 ) 0 . 2 2 3 4 ( 7 ) 2 . 9 ( 3 ) C 7 0 . 4 8 1 ( 1 ) 0 . 4 4 3 9 ( 9 ) 0 . 1 6 7 2 ( 7 ) 2 . 0 ( 3 ) C 8 0 . 3 8 8 ( 1 ) 0 . 3 7 9 ( 1 ) 0 . 1 6 4 8 ( 8 ) 2 . 9 ( 3 ) C 9 0 . 3 6 3 ( 2 ) 0 . 3 2 2 ( 1 ) 0 . 1 0 2 6 ( 9 ) 4 . 0 ( 4 ) C 1 0 0 . 4 3 0 ( 2 ) 0 . 3 3 1 ( 1 ) 0 . 0 4 4 9 ( 9 ) 3 . 8 ( 4 ) C 1 1 0 . 5 2 4 ( 2 ) 0 . 3 9 6 ( 1 ) 0 . 0 4 7 5 ( 9 ) 3 . 8 ( 4 ) C 1 2 0 . 5 5 4 ( 1 ) 0 . 4 5 3 ( 1 ) 0 . 1 0 9 2 ( 8 ) 3 . 1 ( 3 ) C 1 3 0 . 4 4 3 ( 1 ) 0 . 5 6 4 ( 1 ) 0 . 6 7 6 0 ( 7 ) 2 . 9 ( 3 ) A t o m C C C C C C C C C C C C C 2 1 1 2 3 2 1 1 1 1 1 1 2 2 2 2 2 N 3 0 3 4 6 0 5 7 9 8 2 2 3 4 1 1 + c 2 B 3 3 + B e q a , A Z 3 3 4 4 2 3 3 4 4 4 3 8 7 5 0 0 . . . . . . . . . . . . . . . . 4 1 8 1 1 2 1 5 2 1 1 9 0 4 5 1 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 3 4 3 4 3 3 3 4 4 4 3 5 6 3 8 8 ) ) ) ) ) ) ) ) ) ) ) ) ) 1 1 ) ) x 1 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a - . . . . . . . . . . . . . . . 0 4 4 3 3 3 3 2 1 1 2 3 1 1 2 1 . b ( 9 6 7 1 5 6 5 6 8 9 8 0 4 7 7 0 c y 5 5 1 8 8 3 0 4 7 7 3 2 9 1 9 7 6 8 4 9 0 8 1 5 1 6 6 3 5 6 7 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 . . . . . . . . . . . . . . . 0 5 6 6 6 6 4 3 2 2 3 4 3 5 3 3 7 3 2 9 2 3 3 6 2 3 5 7 2 5 1 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 0 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) s y ) B 1 2 + a c ( c o s z 1 4 1 5 3 0 2 1 1 1 4 8 3 6 1 2 9 5 9 8 0 2 2 9 0 4 ( ( ( ( ( ( ( ( ( ( ( ( ( 2 0 8 2 4 6 ( ( ( 2 1 1 S O I ) 3 1 5 6 2 8 6 1 2 7 2 1 3 2 6 5 5 6 6 7 7 7 8 7 8 4 5 4 4 4 O ) ) ) ) ) ) ) ) ) ) ) ) ) 8 9 9 9 8 7 8 9 9 9 8 7 9 ) ) ) 2 3 1 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 ) ) ) ) ) 9 ) ) ) ) ) ) ) ) ) ) ) 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . 0 0 0 . . . ) B 1 3 + b C ( C 6 B T a b l e 4 . 1 2 ( c o n t ' d ) . 2 3 2 C 3 3 a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 3 1 1 + 2 3 3 T a b l e 4 . 1 3 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r y - ( P h 4 P ) 2 [ T l 2 ( S 4 ) 2 ] . D M F w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . a t o m x y z B e q “ , A 2 T l 0 . 2 4 1 2 4 ( 1 ) 0 . 9 8 5 2 9 ( 4 ) - 0 . 0 0 4 3 7 ( 2 ) 2 . 4 4 ( 1 ) 8 ( 1 ) 0 . 2 1 6 9 ( 1 ) 0 . 9 5 8 8 ( 3 ) - 0 . 1 3 1 8 ( 1 ) 3 . 4 ( 1 ) S ( 2 ) 0 . 2 9 6 2 ( 1 ) 0 . 7 5 9 7 ( 3 ) 0 . 1 4 3 9 ( 1 ) 2 . 7 ( 1 ) S ( 3 ) 0 . 3 6 3 1 ( 1 ) 0 . 8 0 3 4 ( 3 ) 0 . 1 2 5 2 ( 1 ) 2 . 6 ( 1 ) 8 ( 4 ) 0 . 3 3 1 8 ( 1 ) 0 . 7 7 1 8 ( 2 ) 0 . 0 3 0 2 ( 1 ) 2 . 1 3 ( 9 ) P ( 1 ) 0 . 1 2 6 1 ( 1 ) 1 . 1 0 3 8 ( 2 ) 0 . 1 0 1 8 ( 1 ) 1 . 5 4 ( 8 ) 0 ( 1 ) 1 . 0 0 0 0 0 . 3 2 8 ( 2 ) 3 / 4 8 . 8 ( 4 ) N ( 1 ) 1 . 0 0 0 0 0 . 0 9 4 ( 1 ) 3 / 4 4 . 0 ( 3 ) C ( 1 ) 0 . 1 0 6 5 ( 3 ) 0 . 9 1 9 ( 1 ) 0 . 1 0 0 2 ( 4 ) 1 . 7 ( 3 ) C ( 2 ) 0 . 0 5 5 8 ( 3 ) 0 . 8 7 5 ( 1 ) 0 . 0 9 9 9 ( 4 ) 1 . 9 ( 3 ) C ( 3 ) 0 . 0 4 1 7 ( 4 ) 0 . 7 3 1 ( 1 ) 0 . 0 9 4 0 ( 5 ) 2 . 5 ( 4 ) C ( 4 ) 0 . 0 7 7 3 ( 4 ) 0 . 6 2 9 ( 1 ) 0 . 0 8 8 3 ( 4 ) 2 . 2 ( 3 ) C ( 5 ) 0 . 1 2 8 1 ( 4 ) 0 . 6 7 2 ( 1 ) 0 . 0 8 8 6 ( 4 ) 2 . 1 ( 4 ) C ( 6 ) 0 . 1 4 3 2 ( 3 ) 0 . 8 1 6 ( 1 ) 0 . 0 9 6 2 ( 4 ) 2 . 1 ( 3 ) C ( 7 ) 0 . 2 0 0 9 ( 3 ) 1 . 1 1 7 ( 1 ) 0 . 1 5 7 2 ( 4 ) 1 . 6 ( 3 ) C ( 8 ) 0 . 2 2 0 4 ( 3 ) 1 . 0 5 4 ( 1 ) 0 . 2 1 6 4 ( 4 ) 2 . 4 ( 3 ) C ( 9 ) 0 . 2 7 6 8 ( 4 ) 1 . 0 6 3 ( 1 ) 0 . 2 5 7 1 ( 4 ) 2 . 7 ( 4 ) C ( 1 0 ) 0 . 3 1 5 2 ( 4 ) 1 . 1 2 7 ( 1 ) 0 . 2 4 2 1 ( 5 ) 3 . 2 ( 4 ) C ( 1 1 ) 0 . 2 9 7 0 ( 4 ) 1 . 1 8 7 ( 1 ) 0 . 1 8 3 7 ( 5 ) 2 . 9 ( 4 ) b 2 B 2 2 + c 2 B 3 3 + a b ( c o s y ) B 1 2 + a c ( c o s B ) B 1 3 + b c ( c o s 0 1 ) B 2 3 ] T a b l e 4 . 1 3 ( c o n t ' d ) . 2 3 4 A t o m x y z B e q a , A 2 C ( 1 2 ) 0 . 2 3 9 9 ( 4 ) 1 . 1 8 3 ( 1 ) 0 . 1 4 1 8 ( 5 ) 2 . 5 ( 4 ) C ( 1 3 ) 0 . 1 1 3 7 ( 3 ) 1 . 1 5 9 5 ( 9 ) 0 . 0 2 5 1 ( 3 ) 1 . 3 ( 3 ) C ( 1 4 ) 0 . 1 2 0 9 ( 4 ) 1 . 3 0 3 ( 1 ) 0 . 0 1 3 8 ( 5 ) 2 . 3 ( 4 ) C ( 1 5 ) 0 . 1 1 5 5 ( 4 ) 1 . 3 4 5 ( 1 ) - 0 . 0 4 2 9 ( 5 ) 2 . 6 ( 4 ) C ( 1 6 ) 0 . 1 0 2 8 ( 4 ) 1 . 2 4 4 ( 1 ) - 0 . 0 8 9 8 ( 4 ) 2 . 6 ( 4 ) C ( 1 7 ) 0 . 0 9 5 4 ( 4 ) 1 . 1 0 2 ( 1 ) - 0 . 0 7 9 1 ( 4 ) 2 . 5 ( 4 ) C ( 1 8 ) 0 . 1 0 0 5 ( 3 ) 1 . 0 5 9 ( 1 ) - 0 . 0 2 3 0 ( 4 ) 1 . 9 ( 3 ) C ( 1 9 ) 0 . 0 8 3 0 ( 3 ) 1 . 2 1 5 7 ( 8 ) 0 . 1 2 5 3 ( 4 ) 1 . 7 ( 3 ) C ( 2 0 ) 0 . 1 0 4 0 ( 4 ) 1 . 2 7 7 ( 1 ) 0 . 1 8 4 4 ( 4 ) 2 . 0 ( 4 ) C ( 2 1 ) 0 . 0 6 8 7 ( 4 ) 1 . 3 5 7 ( 1 ) 0 . 1 9 9 2 ( 4 ) 2 . 2 ( 3 ) C ( 2 2 ) 0 . 0 1 2 9 ( 4 ) 1 . 3 7 9 ( 1 ) 0 . 1 5 8 2 ( 5 ) 2 . 5 ( 4 ) C ( 2 3 ) - 0 . 0 0 8 7 ( 4 ) 1 . 3 2 0 ( 1 ) 0 . 0 9 8 9 ( 4 ) 2 . 4 ( 4 ) C ( 2 4 ) 0 . 0 2 6 0 ( 4 ) 1 . 2 3 8 ( 1 ) 0 . 0 8 1 6 ( 4 ) 1 . 9 ( 3 ) C ( 2 5 ) 0 . 9 7 5 ( 1 ) 0 . 2 2 3 ( 3 ) 0 . 7 5 6 ( 1 ) 6 . 3 ( 7 ) C ( 2 6 ) 1 . 0 5 3 ( 1 ) 0 . 0 6 0 ( 3 ) 0 . 7 4 6 ( 1 ) 5 . 0 ( 6 ) 0 . 9 7 1 ( 1 ) - 0 . 0 3 3 ( 3 ) 0 . 7 5 9 ( 1 ) 6 . 2 ( 7 ) C ( 2 7 ) a - A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 8 1 1 + e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 B 1 1 + 2 3 5 T a b l e 4 . 1 4 ( E t 4 N ) 2 [ T 1 2 ( 8 4 ) 2 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r P a r e n t h e s i s . A t o m x y z 3 6 4 ‘ . A Z T l ( 1 ) 0 . 0 9 1 1 5 ( 4 ) 0 . 0 2 9 5 1 ( 2 ) 0 . 2 8 0 2 7 ( 6 ) 2 . 0 6 ( 3 ) 8 ( 1 ) 0 . 2 8 2 6 ( 3 ) 0 . 0 5 1 7 ( 2 ) 0 . 5 7 3 9 ( 5 ) 2 . 9 ( 2 ) S ( 2 ) 0 . 1 9 7 6 ( 3 ) 0 . 0 4 8 2 ( 2 ) 0 . 8 0 0 9 ( 5 ) 2 . 6 ( 2 ) S ( 3 ) 0 . 0 8 7 2 ( 3 ) 0 . 1 4 0 8 ( 2 ) 0 . 7 7 3 0 ( 4 ) 2 . 3 ( 1 ) 8 ( 4 ) - 0 . 0 3 1 9 ( 3 ) 0 . 1 1 4 5 ( 2 ) 0 . 5 4 3 8 ( 4 ) 2 . 0 ( 1 ) N ( 1 ) 0 . 6 6 9 6 ( 8 ) 0 . 1 8 3 2 ( 5 ) 0 . 8 2 1 ( 1 ) 1 . 5 ( 4 ) C ( 1 ) 0 . 6 6 1 ( 1 ) 0 . 1 3 1 4 ( 6 ) 0 . 6 4 7 ( 2 ) 2 . 1 ( 6 ) C ( 2 ) 0 . 5 6 3 ( 1 ) 0 . 1 4 7 5 ( 7 ) 0 . 4 9 3 ( 2 ) 3 . 0 ( 6 ) C ( 3 ) 0 . 7 7 3 ( 1 ) 0 . 1 5 4 9 ( 7 ) 0 . 9 5 0 ( 2 ) 2 . 1 ( 6 ) C ( 4 ) 0 . 7 9 8 ( 1 ) 0 . 2 0 0 3 ( 7 ) 1 . 1 3 3 ( 2 ) 2 . 9 ( 6 ) C ( 5 ) 0 . 6 8 1 ( 1 ) 0 . 2 6 7 2 ( 6 ) 0 . 7 6 9 ( 2 ) 2 . 0 ( 6 ) C ( 6 ) 0 . 7 8 4 ( 1 ) 0 . 2 8 7 6 ( 7 ) 0 . 6 7 9 ( 2 ) 2 . 7 ( 6 ) C ( 7 ) 0 . 5 6 2 ( 1 ) 0 . 1 7 6 1 ( 7 ) 0 . 9 1 2 ( 2 ) 2 . 0 ( 6 ) C ( 8 ) 0 . 5 3 2 ( 1 ) 0 . 0 9 4 9 ( 7 ) 0 . 9 7 2 ( 2 ) 2 . 6 ( 6 ) a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c b 2 8 2 2 + c 2 B 3 3 + a b ( c o s y ) B 1 2 + a c ( c o s B ) B 1 3 + b c ( c o s a ) B 2 3 ] T a b l e 4 . 1 5 : 2 3 6 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( M e 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q “ , A 2 T l ( l ) 0 . 2 3 7 4 ( 4 ) 0 . 0 7 9 3 ( 3 ) 0 . 4 3 1 5 ( 3 ) 1 . 8 ( 1 ) S ( l ) 0 . 5 2 1 ( 3 ) 0 . 0 6 1 ( 2 ) 0 . 1 9 9 ( 2 ) 3 ( 1 ) 8 ( 2 ) 0 . 5 3 1 ( 3 ) 0 . 2 9 1 ( 2 ) 0 . 1 3 1 ( 2 ) 3 ( 1 ) 8 ( 3 ) 0 . 7 6 4 ( 3 ) 0 . 3 1 4 ( 2 ) 0 . 2 4 9 ( 2 ) 3 ( 1 ) 8 ( 4 ) 0 . 6 2 2 ( 3 ) 0 . 2 5 9 ( 2 ) 0 . 4 5 4 ( 2 ) 3 ( 1 ) N ( 1 ) 0 . 9 7 8 ( 6 ) 0 . 2 9 6 ( 5 ) 0 . 7 8 3 ( 4 ) 1 . 1 ( 7 ) C ( 1 ) 0 . 8 8 ( 1 ) 0 . 1 5 4 ( 7 ) 0 . 8 1 5 ( 7 ) 2 ( 1 ) C ( 2 ) 1 . 1 1 1 ( 9 ) 0 . 2 7 5 ( 6 ) 0 . 9 2 5 ( 6 ) 2 ( 1 ) C ( 3 ) l . 1 3 ( 1 ) 0 . 3 3 0 ( 7 ) 0 . 6 5 7 ( 7 ) 3 ( 1 ) C ( 4 ) 0 . 8 0 ( 1 ) 0 . 4 3 2 ( 7 ) 0 . 7 5 1 ( 7 ) 2 ( 1 ) a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r 0 p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 B 1 1 + b 2 B 2 2 + c 2 B 3 3 + a b ( c o s y ) B 1 2 + a c ( c o s B ) B 1 3 + b c ( c o s o r ) B 2 3 ] 2 3 7 T a b l e 4 . 1 6 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r K o , 6 3 T 1 1 , 3 2 8 5 w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q " , A 2 T l ( l ) 0 . 9 0 3 1 ( 4 ) 0 . 0 1 3 4 ( 1 ) 0 . 8 7 1 6 ( 4 ) 2 . 6 ( 1 ) T l ( 2 ) 1 . 2 5 8 ( 3 ) 0 . 1 6 0 ( 1 ) 0 . 5 8 3 ( 2 ) 1 . 7 ( 5 ) K ( 2 ) 1 . 2 5 ( 1 ) 0 . 1 4 8 ( 3 ) 0 . 5 5 1 ( 8 ) 3 ( 1 ) 3 ( 1 ) 1 . 2 4 4 ( 2 ) 0 . 3 3 9 5 ( 7 ) 0 . 4 5 5 ( 2 ) 0 . 1 ( 2 ) S ( 2 ) 1 . 3 2 7 ( 2 ) 0 . 3 4 9 2 ( 7 ) 0 . 7 6 1 ( 2 ) 0 . 5 ( 2 ) S ( 3 ) 1 . 1 0 7 ( 2 ) 0 . 3 0 1 0 ( 6 ) 0 . 9 4 7 ( 2 ) 0 . 3 ( 2 ) 8 ( 4 ) 0 . 8 6 1 ( 2 ) 0 . 3 7 6 6 ( 7 ) 0 . 9 2 3 ( 2 ) 0 . 3 ( 2 ) S ( 5 ) 0 . 9 2 4 ( 2 ) 0 . 4 7 7 7 ( 6 ) 1 . 0 8 1 ( 2 ) 0 . 4 ( 2 ) a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 B 1 1 + b 2 B 2 2 + c 2 B 3 3 + a b ( c o s ' y ) B 1 2 + a c ( c o s [ 3 ) B 1 3 + b c ( c o s a ) B 2 3 ] 2 3 8 R e s u l t s a n d D i s c u s s i o n S y n t h e s e s a n d S p e c t r o s c o p i c S t u d i e s T h e s y n t h e s e s o f c o m p l e x e s ( I ) - ( V I ) i s r e a d i l y a c c o m p l i s h e d b y a c o m m o n r e a c t i o n b e t w e e n T l C l a n d K 2 8 4 , i n 1 : 1 m o l a r r a t i o i n t h e p r e s e n c e o f d i f f e r e n t q u a t e r n a r y p h o s p h o n i u m o r q u a t e r n a r y a m m o n i u m c a t i o n s i n D M F a s r e p r e s e n t e d b y e q ( l ) . D M F 2 T 1 C l + 2 K 2 S 4 + 2 R 4 E X - - - - - - - - > ( R 4 E ) 2 [ T 1 2 ( S 4 ) 2 ] + 2 K C 1 + 2 K X e q ( 1 ) ( R = P h : E = P ; R = M e , E t : E = N ; X = C l , B r ) I n i t i a l l y , t h e r e a c t i o n s b e t w e e n T 1 C l a n d K 2 8 4 w e r e r u n i n t h e 1 : 2 r a t i o i n o r d e r t o g e t a p o l y s u l f i d e c o m p l e x a n a l o g o u s t o t h e k n o w n p o l y s e l e n i d e , [ T 1 3 8 e 3 ( 8 e 4 ) 3 ] 3 ' - 3 , w h e r e w e h a d o b s e r v e d a n u n e x p e c t e d t w o e l e c t r o n o x i d a t i o n o f T 1 + t o T 1 3 + . I n s t e a d w e i s o l a t e d [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n , w h i c h w a s c o n t a m i n a t e d w i t h s o m e ( R 4 E ) 2 S x c r y s t a l s . S u b s e q u e n t l y w e r a n t h e r e a c t i o n b e t w e e n T l C l a n d K 2 8 4 i n 1 : 1 r a t i o a n d o b t a i n e d ( R 4 E ) 2 [ T 1 2 ( S 4 ) 2 ] a s a s i n g l e p h a s e p r o d u c t , i n h i g h y i e l d s . I n a d d i t i o n , t h e [ T l 2 ( S 4 ) 2 ] 2 ' a n i o n d i s p l a y s c o n s i d e r a b l e s t a b i l i t y i n t h e s o l i d s t a t e a n d a s l i g h t v a r i a t i o n o f t h e c o m p o s i t i o n o f K Z S x ( x = 4 - 6 ) u s e d , d i d n o t a f f e c t t h e c o u r s e o f t h e r e a c t i o n . O f t e n t h e s t r u c t u r e o f m e t a l p o l y c h a l c o g e n i d e c o m p l e x e s i s h i g h l y i n f l u e n c e d b y t h e n a t u r e o f t h e c o u n t e r i o n s . T h i s h a s b e e n 2 3 9 s e e n i n t h e A g / S e x z ' t w , C u / S x 2 ' 9 1 7 a n d M o / s z " 1 8 s y s t e m s , t o n a m e j u s t a f e w . T h i s d e p e n d e n c e o n c o u n t e r i o n w a s p r o b e d b u t w a s n o t o b s e r v e d i n t h i s s t u d y a s t h e s a m e [ T 1 2 ( 8 4 ) 2 ] 2 ' c o m p l e x w a s i s o l a t e d w i t h t h r e e d i f f e r e n t c a t i o n s ( P h 4 P + , E t 4 N + a n d M e 4 N + ) f r o m D M F . I t i s i n t e r e s t i n g t o n o t e t h a t c o m p l e x e s ( I ) - ( I V ) a r e i s o l a t e d f r o m t h e s a m e s t o i c h i o m e t r y o f T l + / 8 4 2 ' / P h 4 P + . T h e [ T 1 2 ( 8 4 ) 2 ] 2 ' a n i o n h a s c r y s t a l l i z e d i n f o u r d i f f e r e n t c r y s t a l m o r p h o l o g i e s o r c o l o r s d e p e n d i n g o n t h e c o n f o r m a t i o n a n d t h e a m o u n t o f s o l v e n t i n t h e c r y s t a l l a t t i c e . T h e p a l e y e l l o w p l a t e l e t s o f ( I ) a r e o b t a i n e d w i t h i n 6 - 8 h o u r s a f t e r t h e r e a c t i o n i s o v e r . O n c e ( I ) h a v e b e e n i s o l a t e d t h e s o l u t i o n u p o n f u r t h e r s t a n d i n g a t r o o m t e m p e r a t u r e f o r t w o d a y s a f f o r d s a m i x t u r e o f o r a n g e c r y s t a l o f ( I I ) a n d d e e p r e d c r y s t a l s o f ( 1 1 1 ) . W e c h a r a t e r i z e d t h e c o m p l e x e s ( 1 1 ) a n d ( I I I ) b y s i n g l e c r y s t a l X - r a y d i f f r a c t i o n e v e n w h e n w e f o u n d t h e y w e r e i s o s t r u c t u r a l e x p e c t i n g t o s e e s u b t l e d i f f e r e n c e s i n t h e t w o c o m p o u n d s . T h e c r y s t a l l o g r a p h i c i n v e s t i g a t i o n r e v e a l e d t h a t t h e t w o c o m p o u n d s a r e i d e n t i c a l i n a l l r e s p e c t s a n d t h e d i f f e r e n c e i n t h e c o l o r s i s p r o b a b l y d u e t o s o m e i m p u r t i e s a s d o p a n t s . ( 1 ) s e e m s t o b e a m e t a s t a b l e c o m p o u n d a s i t i s t h e f i r s t t o c r y s t a l l i z e o u t o f s o l u t i o n a n d a l s o h a s b e e n . o b s e r v e d t o s l o w l y c o n v e r t t o ( I I ) a n d ( I I I ) u p o n s t a n d i n g i n s o l u t i o n o v e r a p e r i o d o f t w o w e e k s . ( I V ) w a s o b t a i n e d a s a s i n g l e p h a s e p r o d u c t w h e n t h e r e a c t i o n w a s c a r r i e d o u t i n 4 0 m l o f D M F t h a t i s h a l f t h e u s u a l a m o u n t o f s o l v e n t e m p l o y e d i n t h e o t h e r r e a c t i o n s . T h e c o m p l e x e s ( I ) - ( V I ) a r e e x t r e m e l y a i r , m o i s t u r e a n d l i g h t s e n s i t i v e e v e n i n t h e s o l i d s t a t e . T h e s o l u t i o n s o f ( R 4 E ) 2 [ T 1 2 ( S 4 ) 2 ] i n D M F a r e d e e p g r e e n i s h b l u e a n d a r e a i r - s e n s i t i v e . 2 4 0 S i n c e t h e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n w a s t h e o n l y c o m p l e x i s o l a t e d f r o m D M F w e c h a n g e d o u r a p p r o a c h a n d u s e d a c e t o n i t r i l e a s s o l v e n t . T h e r e a c t i o n o f T l C l , K 2 8 4 a n d M e 4 N C 1 i n a c e t o n i t r i l e r e s u l t e d i n a d i f f e r e n t t h a n a n t i c i p a t e d c o m p l e x , K o , 5 3 ' l ‘ 1 1 , 3 2 8 5 ( V I I ) , a n d w a s s u b s e q u e n t l y p r e p a r e d b y r e a c t i n g T l C l a n d K 2 8 5 a c c o r d i n g t o e q ( 2 ) . C H 3 C N T 1 C l + K 2 3 5 - - - - - - > K 0 . 6 8 T | 1 . 3 2 3 5 6 9 ( 2 ) ( V I I ) i s a s o l i d s o l u t i o n b e t w e e n K 2 8 5 1 9 a n d T 1 2 8 5 2 0 t o w h i c h i t i s i s o s t r u c t u r a l . T h e s i n g l e c r y s t a l s o f ( V I I ) b y E D S / 8 1 3 M m i c r o p r o b e a n a l y s i s s h o w e d a s l i g h t v a r i a t i o n o f t h e K t o T 1 r a t i o a n d a m o r e a p p r o p r i a t e r e p r e s e n t a t i o n o f t h e f o r m u l a f o r t h i s c o m p o u n d i s K x T 1 2 - x S 5 ( X = 0 . 3 5 - 0 . 7 5 ) . T h e U V / v i s s p e c t r u m o f a l l c o m p l e x e s i n D M F a n d a c e t o n i t r i l e s o l u t i o n s h o w s i m i l a r s p e c t r a w i t h t w o a b s o r p t i o n s a t ~ 4 3 2 a n d ~ 6 1 7 n m . T h e s p e c t r u m o f ( I ) i n t h e t w o s o l v e n t s a r e s h o w n i n F i g u r e 4 . 1 , a s r e p r e s e n t a t i v e e x a m p l e s , a n d a r e s i m i l a r t o t h e s p e c t r a o b s e r v e d f o r ( P h 4 P ) 2 S x o r K 2 8 4 . T h i s i n d i c a t e s t h a t a l l c o m p l e x e s d i s s o c i a t e i n D M F - s o l u t i o n a n d g i v e r i s e t o 8 x 2 : s p e c i e s . T h e s e a b s o r p t i o n s h a v e b e e n o b s e r v e d p r e v i o u s l y i n v a r i o u s p o l y s u l f i d e s s o l u t i o n s a n d h a d b e e n s t u d i e d e x t e n s i v e l y . T h e U V / v i s , R a m a n a n d r e s o n a n c e R a m a n s p e c t r o s c o p i c s t u d i e s o n p o l y s u l f i d e s i n l i q u i d a m m o n i a o r p o l a r s o l v e n t s s u c h a s D M F s u g g e s t t h a t d i f f e r e n t s z ' l i g a n d s a r e i n e q u i l i b r i u m w i t h t h e r a d i c a l a n i o n 8 3 ' - a n d o t h e r s p e c i e s s u c h a s 8 2 ' - - 2 1 . T h e s e s t u d i e s h a v e c o n c l u d e d t h a t t h e a b s o r p t i o n a t ~ 6 2 0 n m i s 2 4 1 ( A ) m m < ' T I I 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 1 . ( n m ) ( 3 ) m : 1 < r 1 * I U 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 1 ( n m ) F i g u r e 4 . 1 T y p i c a l U V / V i s s p e c t r a o f a - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] i n ( A ) D M F a n d ( B ) A c e t o n t r i l e s o l v e n t s . 2 4 2 d u e t o t h e p r e s e n c e o f t h e 8 3 ' - s p e c i e s w h i c h a l s o c o n f e r s t h e b l u e c o l o r t o t h e s e s o l u t i o n s a n d t h e b a n d a t ~ 4 5 0 n m i s d u e t o t h e 8 2 ' - s p e c i e s . A l l t h e c o m p l e x e s ( I ) - ( V I I ) d i s s o c i a t e i n D M F a s d e p i c t e d i n e q ( 3 ) . T h i s i s n o t e n t i r e l y s u r p r i s i n g i f w e c o n s i d e r t h a t m o n o v a l e n t m e t a l s i o n s d o n o t u s u a l l y f o r m c o m p l e x e s w i t h h i g h s t a b i l i t y 6 0 1 1 8 1 3 1 1 1 8 . [ 1 1 2 ( 5 4 ) 2 ] 2 ' < = = = = > 2 1 1 1 0 3 1 9 1 1 9 3 1 1 ] + + 2 3 4 2 ' 6 ( 1 ( 3 3 2 1 ) 2 S 4 2 ‘ < = = = = > 8 3 ' - + 8 2 ' - + 8 3 2 ' e q ( 3 b ) I n t h e f a r - I R r e g i o n a l l t h e c o m p l e x e s r e p o r t e d h e r e e x h i b i t s p e c t r a l a b s o r p t i o n s d u e t o 8 - 8 a n d M - 8 s t r e t c h i n g v i b r a t i o n s a s s h o w n i n F i g u r e 4 . 2 - 4 . 3 . O b s e r v e d a b s o r p t i o n f r e q u e n c i e s o f a l l t h e c o m p l e x e s a r e g i v e n i n T a b l e 4 . 1 7 . F o r a l l c o m p l e x e s t h r e e s p e c t r a l a b s o r p t i o n s a r e o b s e r v e d i n t h e v i c i n i t y o f 4 8 7 , 4 6 0 a n d 4 4 8 c m ‘ l . C o m p l e x e s ( V ) , ( V I ) a n d ( V I I ) s h o w a n a d d i t i o n a l a b s o r p t i o n a t 5 3 3 c m ' l . T h e s e b a n d s c a n b e a s s i g n e d t o 8 - 8 v i b r a t i o n s b y c o m p a r i s o n W i t h t h e s p e c t r a o f o t h e r k n o w n p o l y s u l f i d e c o m p l e x e s z . T h e u S - S a b s o r p t i o n s i n t h i s r e g i o n h a s b e e n o b s e r v e d p r e v i o u s l y i n v a r i o u s C o m p o u n d s a n d s o m e r e p r e s e n t a t i v e e x a m p l e s a r e [ F e 2 8 1 2 ] 2 ' t 2 2 a t 4 7 4 c m ' l , [ P d 2 8 2 g l 4 ' - 2 3 a t 4 8 2 a n d 4 5 3 c m - 1 , [ C u 3 8 1 2 ] 3 ' - 1 7 a t 4 6 8 a n d 4 5 5 c m ' l t [ C u 2 8 2 o l 4 ‘ J 7 a t 4 8 4 a n d 4 5 6 c m ' 1 a n d [ B i 2 8 3 4 ] 2 ' - 2 4 a t 5 0 0 , 4 6 5 , 4 5 6 a n d 4 4 8 c m ' l . I n a l l t h e T l + / S x 2 ' c o m p l e x e s a n a d d i t i o n a l S t r o n g b a n d a r o u n d 2 5 7 c m ' 1 i s o b s e r v e d . T h i s i s a p o s s i b l e C a n d i d a t e f o r T l - S s t r e c h i n g f r e q u e n c y . T h e t h r e e s t r o n g a b s o r p t i o n i n ( 1 1 ) , ( 1 1 1 ) a n d ( v 1 ) a r o u n d 4 0 0 , 3 5 0 a n d 3 1 7 c m - 1 a r e d u e t o t h e D M F m o l e c u l e s i n t h e c r y s t a l l a t t i c e . M A ) E C N A T T I M S N A R T % t 2 4 3 ( B ) ( C ) f I I t r I i “ 4 7 0 4 0 5 3 4 0 2 7 5 2 1 0 1 4 5 8 0 W A V E N U M B E R F i g u r e 4 . 2 F a r - I R s p e c t r a o f ( A ) a - ( P h 4 P ) 2 [ T 1 2 ( 8 4 ) 2 ] , ( B ) B a n d B ' - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 l . 2 D M F a n d ( C ) Y - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . D M F - ( A ) ( B ) I l l 0 Z < [ - b E t o Z < e : [ - B ? ( C ) 6 0 0 5 3 5 4 7 0 4 0 5 3 4 0 2 7 5 2 1 0 1 4 5 W A V E N U M B E R F i g u r e 4 . 3 F a r - I R s p e c t r a o f ( A ) ( E t 4 N ) 2 [ T l 2 ( S 4 ) 2 ] ( B ) ( M e 4 N ) 2 [ T l 2 ( S 4 ) 2 ] a n d ( C ) K 0 . 6 8 T 1 1 . 3 2 8 5 C o m p l e x e s F r e q u e n c i e s ( c m ' l ) 2 4 5 T a b l e 4 . 1 7 . F r e q u e n c i e s ( c m ‘ l ) o f t h e S p e c t r a l A b s o r p t i o n s o f ( I ) , ( I I ) , ( I I I ) ( I V ) , ( V ) , ( V I ) a n d ( V I I ) . a - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 1 ( I ) 4 8 9 4 6 2 4 4 6 2 5 4 1 6 7 1 5 0 ( S ) ( S ) ( W ) ( I n ) ( W ) ( W ) B & B ' - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 l . 4 8 7 4 6 5 4 4 8 4 0 1 3 4 7 3 1 8 2 9 2 2 5 7 1 9 4 1 4 0 Z D M F ( I I ) a n d ( I I I ) ( S ) ( S ) ( m ) ( m ) ( S ) ( S ) ( S ) ( S ) ( W ) ( W ) t — ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 1 . D M F 4 8 5 4 6 4 4 4 6 3 9 6 3 5 0 3 1 6 2 5 9 2 1 0 1 7 1 1 5 5 ( V I ) ( S ) ( S ) ( W ) ( W ) ( S ) ( m ) ( S ) ( m ) ( S ) ( S ) ( E u N ) 2 [ T 1 2 ( S 4 ) 2 1 ( V ) 5 3 5 4 8 9 4 6 6 4 4 5 4 1 7 2 5 7 2 4 6 2 0 2 1 4 7 ( W ) ( S ) ( S ) ( W ) ( W ) ( s ) ( W ) ( I n ) ( W ) ( M c 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] ( V I ) 5 3 4 5 0 2 4 8 4 4 5 4 4 3 2 2 6 6 2 5 4 2 4 6 2 0 0 ‘ ( W ) ( W ) ( S ) ( W ) ( W ) ( W ) ( m ) ( S ) ( W ) K o . 6 8 T 1 1 . 3 2 8 5 ( V I I ) 5 3 3 5 0 3 4 8 8 4 7 4 4 4 7 2 6 7 2 5 7 2 3 8 1 8 4 ( W ) ( m ) ( S ) ( W ) ( W ) ( m ) ( I n ) ( W ) ( I n ) 2 4 6 D e s c r i p t i o n o f t h e S t r u c t u r e s S t r u c t u r e o f a - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] ( I ) F i g u r e 4 . 4 s h o w s t h e s t r u c t u r e o f t h e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n i n ( I ) . T h e a n i o n s f e a t u r e s t w o t r i g o n a l p y r a m i d a l T l + c e n t e r s e a c h c h e l a t e d b y a t e t r a s u l f i d e l i g a n d s a n d t h e t h i r d c o o r d i n a t i o n s i t e i s s a t i s f i e d b y c o o r d i n a t i o n t o o n e o f t h e t e r m i n a l s u l f u r a t o m o f t h e o t h e r T 1 8 4 u n i t , f o r m i n g a d i m e r . . T h i s b o n d i n g m o d e o f t h e 8 4 2 ' l i g a n d s r e s u l t s i n a c o n d e n c e d i n o r g a n i c r i n g s y s t e m w i t h a c e n t r a l , s t r i c t l y p l a n a r , f o u r m e m b e r e d T 1 2 8 2 r i n g , a n d t w o fi v e m e m b e r e d r i n g s o f T 1 8 4 . T h e T 1 2 8 2 r h o m b u s , h a s a c e n t e r o f i n v e r s i o n h a l f w a y b e t w e e n t h e T l - - T l v e c t o r ( 4 . 0 4 7 A ) . I t i s i n a p p r o x i m a t e l y a s q u a r e g e o m e t r y w i t h s l i g h t l y l o n g e r T l - 8 ( 4 ) b o n d d i s t a n c e s o f 2 . 9 8 1 ( 3 ) A a n d 2 . 9 4 4 ( 3 ) A ( a v T l - S b o n d i s 2 . 9 2 6 4 i n ( 1 ) ) , a n d t h e 8 ( 4 ) - T l - S ( 4 ) a n d T l - S ( 4 ) - T l a n g l e s o f 9 3 . 8 4 ( 7 ) ° a n d 8 6 . 1 6 ( 7 ) ° , r e s p e c t i v e l y . T h e c h e l a t i n g 8 4 2 ' l i g a n d s a d o p t a n e n v e l o p e c o n f i g u r a t i o n . I n t h e f i v e m e m b e r e d T 1 8 4 m e t a l l a c y c l e t h e T 1 8 ( 1 ) S ( 3 ) S ( 4 ) a t o m s l i e o n a l e a s t s q u a r e p l a n e a n d d o n o t d e v i a t e m o r e t h a n 0 0 8 4 4 . , t h e S ( 2 ) a t o m i s t i p p e d a w a y f r o m t h e c e n t r a l f o u r m e m b e r e d T 1 2 8 2 r i n g . T h e p o s i t i o n o f t h e S ( 2 ) a t o m s r e s u l t s i n a s o - c a l l e d e x o , e x o c o n f o r m a t i o n f o r t h e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n . T h e o v e r a l l g e o m e t r y o f t h e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n c o u l d t h u s b e c o n s i d e r e d a s t w o m e t a l l o c y c l i c " c h a i r s " f u s e d t o g e t h e r a l o n g t h e i r s q u a r e " b a c k s " . F i g u r e 4 . 5 r e p r e s e n t s t h e p a c k i n g d i a g r a m o f a - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] ( I ) i n t h e u n i t c e l l . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s f o r t h e a n i o n i n ( I ) a r e g i v e n i n T a b l e 4 . 1 8 . 2 4 7 F i g u r e 4 . 4 O R T E P r e p r e s e n t a t i o n o f t w o v i e w s o f t h e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n i n ( I ) w i t h l a b e l i n g s c h e m e . 2 4 8 F i g u r e 4 . 5 O R T E P r e p r e s e n t a t i o n o f t h e u n i t c e l l o f “ ‘ ( P h 4 P ) 2 l T 1 2 ( S 4 ) 2 l 2 4 9 T a b l e 4 . 1 8 . C o m p a r i s o n o f S o m e S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f t h e [ T 1 2 ( S 4 ) 2 ] 2 ‘ A n i o n i n ( I ) , ( I I ) , ( I I I ) , ( I V ) , ( V ) a n d ( V I ) . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . ( I ) ( I I ) ( I I I ) ( I V ) ( V ) ( V I ) T l - T l ' 4 . 0 4 7 4 . 1 7 4 . 1 6 8 4 . 3 8 1 4 . 2 0 4 3 . 4 9 8 T l - S ( 1 ) 2 . 8 5 2 ( 2 ) 2 . 8 5 ( 1 ) 2 . 8 6 0 ( 1 ) 2 . 8 4 0 ( 3 ) 2 . 9 0 3 ( 5 ) 2 . 8 6 ( 2 ) T 1 - 8 ( 4 ) 2 . 9 8 1 ( 3 ) 2 . 9 0 ( 1 ) 2 . 9 1 7 ( 1 ) 2 . 9 4 2 ( 3 ) 2 . 9 4 3 ( 4 ) 3 . 2 4 ( 1 ) T 1 - 8 ( 4 ' ) 2 . 9 4 4 ( 3 ) 2 . 9 5 ( 1 ) 2 . 9 4 0 ( 1 ) 2 . 9 0 9 ( 3 ) 2 . 9 1 4 ( 3 ) 3 . 0 0 ( 2 ) T l - S ( m e a n ) 2 . 9 2 6 2 . 9 2 2 . 9 0 6 2 . 8 9 7 2 . 9 2 0 3 . 0 3 3 S ( 1 ) - S ( 2 ) 2 . 0 4 5 ( 4 ) 2 . 0 5 ( 2 ) 2 . 0 2 8 ( 2 ) 2 . 0 5 3 ( 4 ) 2 . 0 4 0 ( 5 ) 2 . 0 6 ( 2 ) S ( 2 ) - S ( 3 ) 2 . 0 4 4 ( 4 ) 2 . 0 3 ( 2 ) 2 . 0 5 5 ( 2 ) 2 . 0 4 8 ( 4 ) 2 . 0 5 6 ( 4 ) 2 0 7 ( 2 ) S ( 3 ) - 8 ( 4 ) 2 . 0 8 4 ( 4 ) 2 . 0 3 ( 2 ) 2 . 0 3 9 ( 2 ) 2 . 0 6 5 ( 3 ) 2 . 0 6 6 ( 5 ) 2 . 0 6 ( 2 ) S - S ( m e a n ) 2 . 0 5 8 2 . 0 3 2 2 . 0 4 1 2 . 0 5 5 2 . 0 5 4 2 . 0 6 3 3 ( 1 ) - T 1 - S ( 4 ) 8 5 . 3 2 ( 7 ) 8 6 . 1 ( 4 ) 8 6 1 3 ( 3 ) 8 4 3 0 ( 7 ) 8 2 . 8 ( 1 ) 8 0 . 2 ( 5 ) S ( 1 ) - T l - S ( 4 ' ) 8 7 . 1 4 ( 7 ) 9 5 3 ( 4 ) 9 5 0 3 ( 3 ) 8 9 9 1 ( 7 ) 9 0 . 4 ( 1 ) 8 0 . 6 ( 4 ) S ( 4 ) - T 1 - S ( 4 ' ) 9 3 . 8 4 ( 7 ) 8 9 . 2 ( 3 ) 8 9 . 2 5 ( 3 ) 8 3 . 0 5 ( 8 ) 8 8 . 3 ( 1 ) 1 1 2 . 2 ( 1 ) T l - S ( 4 ) - T l ' 8 6 2 ( 1 ) 9 0 8 ( 3 ) 9 0 7 5 ( 3 ) 9 6 . 9 5 ( 8 ) 9 1 . 7 ( 1 ) 6 7 8 ( 1 ) T l - S ( 1 ) - S ( 2 ) 8 8 . 8 ( 1 ) 9 2 . 4 ( 5 ) 9 2 4 2 ( 5 ) 1 0 0 . 3 ( 1 ) 9 8 . 8 ( 2 ) 8 8 . 0 ( 6 ) T l - 8 ( 4 ) - 8 ( 3 ) 9 5 . 8 ( 1 ) 1 0 2 . 9 ( 5 ) 1 0 2 . 3 ( 1 ) 1 0 3 . 8 ( 1 ) 1 0 6 . 1 ( 2 ) 9 7 6 ( 6 ) T l - S ( 4 ' ) - S ( 3 ' ) 1 0 0 . 0 ( 1 ) 8 9 . 8 ( 5 ) 9 0 . 0 4 ( 5 ) 9 4 . 4 0 ) 9 1 . 1 0 ) 9 9 . 6 0 5 ) S ( 1 ) - S ( 2 ) - S ( 3 ) 1 0 7 . 2 ( 1 ) 1 0 7 . 3 ( 7 ) 1 0 6 . 9 ( 1 ) 1 0 5 . 6 ( 2 ) 1 0 6 . 3 ( 2 ) 1 0 7 ( 1 ) S ( 2 ) - S ( 3 ) - 8 ( 4 ) 1 0 6 . 4 ( 2 ) 1 0 6 . 5 ( 7 ) 1 0 6 . 5 ( 1 ) 1 0 5 . 6 ( 1 ) 1 0 5 . 3 ( 2 ) 1 0 5 ( 1 ) \ 2 5 0 S t r u c t u r e o f B - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F ( I I ) T h e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n i n ( I I ) i s s i m i l a r t o t h a t i n ( I ) a n d i t i s s h o w n i n F i g u r e 4 . 6 . T h e d i f f e r e n c e b e t w e e n t h e s e t w o a n i o n s l i e s i n t h e i r c o n f o r m a t i o n . T h e c e n t r a l T 1 2 8 2 r h o m b o s i n t h i s a n i o n i s a l m o s t i n a s q u a r e g e o m e t r y w i t h s l i g h t l y l o n g e r T l - S ( 4 ) b o n d d i s t a n c e s o f 2 . 9 0 ( 1 ) A a n d 2 . 9 5 ( 1 ) A ( a v T l - S b o n d i s 2 . 9 0 2 1 i n ( 1 ) ) , a n d t h e 8 ( 4 ) - T l - S ( 4 ' ) a n d T 1 - S ( 4 ) - T l ' a n g l e s o f 8 9 . 2 ( 3 ) ° a n d 9 0 . 8 ( 3 ) ° , r e s p e c t i v e l y . T h e c h e l a t i n g 8 4 2 ' l i g a n d s a d o p t a n e n v e l o p e c o n f i g u r a t i o n i n t h e fi v e m e m b e r e d T 1 8 4 r i n g w i t h T 1 8 ( 1 ) S ( 3 ) S ( 4 ) a t o m s l y i n g o n a l e a s t s q u a r e p l a n e a n d d o n o t d e v i a t e m o r e t h a n 0 . 0 6 9 A . H o w e v e r , t h e S ( 2 ) a t o m i s t i p p e d t o w a r d s t h e c e n t r a l f o u r m e m b e r e d r i n g b y 1 . 1 3 8 A . T h e p o s i t i o n o f t h e S ( 2 ) a t o m s r e s u l t s i n t h e s o - c a l l e d e n d o , e n d o c o n f o r m a t i o n f o r t h e [ T l 2 ( 8 4 ) 2 ] 2 ‘ a n i o n i n ( I I ) . T h e o v e r a l l g e o m e t r y o f t h e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n c o u l d b e t h u s c o n s i d e r e d a s t w o m e t a l l o c y c l i c " b o a t s " f u s e d t o g e t h e r a l o n g t h e i r s q u a r e " b a c k s " . A c o m p a r i s o n o f s o m e s e l e c t e d b o n d d i s t a n c e s a n d a n g l e s f o r t h e a n i o n i n ( I I ) a r e g i v e n i n T a b l e 4 . 1 8 . D u e t o t h e d e c a y i n t h e c r y s t a l d u r i n g t h e s i n g l e c r y s t a l X - r a y d a t a c o l l e c t i o n s a s w e l l a s t h e f a s t s p e e d f o r t h e d a t a c o l l e c t i o n t h e s t a n d a r d d e v i a t i o n s o n t h e b o n d d i s t a n c e s a n d a n g l e s a r e h i g h . ( 1 1 ) h a s t w o n o n - i n t e r a c t i n g D M F m o l e c u l e c o - c r y s t a l l i z e d i n t h e c r y s t a l l a t t i c e . F i g u r e 4 . 7 r e p r e s e n t s t h e p a c k i n g d i a g r a m o f B - ( P h 4 P ) 2 [ T l 2 ( 8 4 ) 2 ] . 2 D M F i n t h e u n i t c e l l . S t r u c t u r e o f B ' - ( P h 4 P ) 2 [ T 1 2 ( 8 4 ) 2 ] . 2 D M F ( I I I ) T h e a n i o n m o i e t y o f ( I I I ) i s i d e n t i c a l t o t h a t o f ( I I ) , a s t h e t w o c o m p o u n d s a r e i s o s t r u c t u r a l . A c o m p a r i s o n o f s o m e s e l e c t e d b o n d d i s t a n c e s a n d a n g l e s f o r t h e a n i o n i n ( I I I ) a r e g i v e n i n T a b l e 4 . 1 8 . 2 5 1 F i g u r e 4 . 6 O R T E P r e p r e s e n t a t i o n o f t h e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n i n o f B a n d B ' - ( P h 4 P ) 2 [ T l 2 ( S 4 ) 2 ] . 2 D M F w i t h t h e l a b e l i n g s c h e m e . 2 5 2 F i g u r e 4 . 7 O R T E P r e p r e s e n t a t i o n o f t h e u n i t c e l l o f B a n d B ' - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] 2 5 3 S t r u c t u r e o f y - ( P h 4 P ) 2 [ T 1 2 ( 8 4 ) 2 ] . D M F ( I V ) T h e a n i o n m o i e t y o f ( I V ) i s s i m i l a r t o t h a t o f ( I I ) a s i t c o n t a i n s a s i m i l a r s t r u c t u r a l u n i t a s [ T 1 2 ( S 4 ) 2 ] 2 ' a n d i n t h e s a m e e n d o , e n d o c o n f o r m a t i o n . F i g u r e 4 . 8 s h o w s t h e s t r u c t u r e o f t h e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n i n ( I V ) . T h e c h e l a t i n g 8 4 2 ' l i g a n d s a d o p t a n e n v e l o p e c o n fi g u r a t i o n i n t h e f i v e m e m b e r e d T 1 8 4 r i n g w i t h T 1 8 ( 1 ) S ( 3 ) S ( 4 ) a t o m s l y i n g o n a l e a s t s q u a r e p l a n e a n d d o n o t d e v i a t e m o r e t h a n 0 . 0 8 A , a n d t h e S ( 2 ) a t o m i s t i p p e d t o w a r d s t h e c e n t r a l f o u r m e m b e r e d r i n g b y 1 . 0 6 6 A . ( I V ) h a s o n e D M F m o l e c u l e c o - c r y s t a l l i z i n g i n t h e c r y s t a l l a t t i c e a n d i s d i s o r d e r e d a s m e n t i o n e d e a r l i e r . A c o m p a r i s o n o f s o m e s e l e c t e d b o n d d i s t a n c e s a n d a n g l e s f o r t h e a n i o n i n ( I V ) a r e g i v e n i n T a b l e 4 . 1 8 . F i g u r e 4 . 9 r e p r e s e n t s t h e p a c k i n g d i a g r a m o f y - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] i n t h e u n i t c e l l . S t r u c t u r e o f ( E t 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] ( V ) T h e a n i o n m o i e t y o f ( V ) i s s i m i l a r t o t h a t o f ( I I ) a s i t c o n t a i n s a s i m i l a r s t r u c t u r a l u n i t a s [ T 1 2 ( 8 4 ) 2 ] 2 ' a n d a l s o i n t h e s a m e e n d o , e n d o c o n f o r m a t i o n . F i g u r e 4 . 8 s h o w s t h e s t r u c t u r e o f t h e [ T 1 2 ( 8 4 ) 2 ] 2 ' a n i o n i n ( V ) . T h e c h e l a t i n g 8 4 2 ' l i g a n d s a d o p t a n e n v e l o p e c o n f i g u r a t i o n i n t h e f i v e m e m b e r e d T 1 8 4 . r i n g w i t h T 1 8 ( 1 ) S ( 3 ) S ( 4 ) a t o m s l y i n g o n a l e a s t s q u a r e p l a n e a n d d o n o t d e v i a t e m o r e t h a n 0 . 0 1 2 A , a n d t h e S ( 2 ) a t o m i s t i p p e d t o w a r d s t h e c e n t r a l f o u r m e m b e r e d r i n g b y 1 . 0 9 1 A . A c o m p a r i s o n o f s o m e s e l e c t e d b o n d d i s t a n c e s a n d a n g l e s f o r t h e a n i o n i n ( V ) a r e g i v e n i n T a b l e 4 . 1 8 . F i g u r e 4 . 1 0 r e p r e s e n t s t h e p a c k i n g d i a g r a m o f ( E t 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] i n t h e u n i t c e l l . ( A ) ( B ) 7 : . 8 ( 1 ) / / - > / S ( 3 ) ‘ T l ( l ' ) 8 ( 4 ) { $ 1 , . . \ I ~ ‘ 9 4 , , 4 ' ) ' T l ( 1 ) \ S ( . 8 ( S c h e m e . 2 5 5 F i g u r e 4 . 9 O R T E P r e p r e s e n t a t i o n o f t h e u n i t c e l l o f y - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . D M F . 2 5 6 ‘ 3 ) e s / / _ . a ’ F i g u r e 4 . 1 0 O R T E P r e p r e s e n t a t i o n ( E t 4 N ) 2 l T 1 2 ( S 4 ) 2 ] o f t h e u n i t c e l l o f 2 5 7 S t r u c t u r e o f ( M e 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] ( V I ) T h e a n i o n m o i e t y o f ( V 1 ) i s s i m i l a r t o t h a t o f ( I ) a s i t c o n t a i n s a s i m i l a r s t r u c t u r a l u n i t a s [ T 1 2 ( S 4 ) 2 ] 2 ' a n d i n t h e e x o , e x o c o n f o r m a t i o n . T h e c h e l a t i n g S 4 2 “ l i g a n d s a d o p t a n e n v e l o p e c o n f i g u r a t i o n i n t h e f i v e m e m b e r e d T 1 8 4 r i n g w i t h T 1 8 ( 1 ) S ( 3 ) S ( 4 ) a t o m s l y i n g o n a l e a s t s q u a r e p l a n e a n d d o n o t d e v i a t e m o r e t h a n 0 . 2 7 A , a n d t h e 8 ( 2 ) a t o m i s t i p p e d a w a y f r o m t h e c e n t r a l f o u r m e m b e r e d r i n g b y 1 . 2 5 A . A c o m p a r i s o n o f s o m e s e l e c t e d b o n d d i s t a n c e s a n d a n g l e s f o r t h e a n i o n i n ( V ) a r e g i v e n i n T a b l e 4 . 1 8 . A s a l l t h e s i n g l e c r y s t a l s w e r e t w i n n e d t h u s t h e a c c u r a c y o n t h e b o n d d i s t a n c e s a n d a n g l e s a r e l o w . S t r u c t u r e o f K o , 6 g T 1 1 , 3 2 8 5 ( V I I ) ( V I I ) i s a t h r e e d i m e n s i o n a l a r r a y o f d i s c r e t e 8 5 2 ' c h a i n w i t h T l + a n d K + i o n s ( a s s h o w n i n t h e p a c k i n g d i a g r a m F i g u r e 4 . 1 2 ) . T h e 8 5 2 ' c h a i n h a s fi v e c o v a l e n t l y l i n k e d s u l f u r a t o m s i n a u n b r a n c h e d a n d n o n p l a n a r , h e l i c a l c o n f o r m a t i o n . T h e a n i o n p o s s e s s e s n o c r y s t a l l o g r a p h i c s y m m e t r y , h o w e v e r i t “ d o e s h a v e a n a p p r o x i m a t e t w o f o l d s y m m e t r y , p a s s i n g t h r o u g h t h e c e n t r a l S ( 3 ) a t o m b i s e c t i n g t h e S ( 2 ) - S ( 3 ) - 8 ( 4 ) a n g l e , a s s h o w n i n F i g u r e 4 . 1 1 . T h e p o l y s u l f i d e c h a i n a s s u m e s a r i g h t - h a n d e d h e l i x c o n f o r m a t i o n w i t h a n a v e r a g e S - S - S a n g l e o f 1 0 8 . 1 ° . T h e 1 1 + a n d K + i o n s h a v e s e v e r a l c o n t a c t s w i t h t h e i n d i v i d u a l s u l f u r a t o m s o f t h e c h a i n a n d i t i s o b s e r v e d t h a t t h e c l o s e s t c o n t a c t s o f c a . 3 . 2 A o c c u r s w i t h t h e t e r m i n a l 8 a t o m s w i t h t h e i r n e a r e s t n e i g h b o u r i n g c a t i o n s . A c o m p r e h e n s i v e l i s t o f t h e b o n d d i s t a n c e s a n d b o n d a n g l e i n t h e a n i o n a s w e l l a s t h e c a t i o n a n i o n c o n t a c t s a r e c o m p l i e d i n T a b l e 4 . 1 9 . 2 5 8 F i g u r e 4 . 1 1 O R T E P r e p r e s e n t a t i o n o f t h e 8 5 2 ' a n i o n i n K o , 5 3 T 1 1 , 3 2 8 5 . 2 5 9 q 3 3 ; ( [ 5 , t F i g u r e 4 . 1 2 O R T E P r e p r e s e n t a t i o n o f t h e u n i t c e l l o f K o , 5 3 T 1 1 , 3 2 8 5 , 2 6 0 T a b l e 4 . 1 9 . S o m e S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) f o r K o , 5 3 T 1 1 _ 3 2 8 5 ( V I I ) . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . 8 ( 1 ) - S ( 2 ) 2 0 7 ( 2 ) S ( 1 ) - S ( 2 ) - S ( 3 ) 1 1 0 . 0 ( 7 ) S ( 2 ) - S ( 3 ) 2 0 7 ( 2 ) S ( 2 ) - S ( 3 ) - 8 ( 4 ) 1 0 5 . 6 ( 6 ) S ( 3 ) - 8 ( 4 ) 2 0 7 ( 2 ) S ( 3 ) - S ( 4 ) - 8 ( 5 ) 1 0 8 . 6 ( 7 ) 8 ( 4 ) - 8 ( 5 ) 2 0 4 ( 1 ) S ( l ) S ( 2 ) S ( 3 ) / S ( 2 ) S ( 3 ) 8 ( 4 ) 6 8 . 8 6 S ( 2 ) S ( 3 ) S ( 4 ) / 8 ( 3 ) S ( 4 ) S ( 5 ) 7 3 . 1 6 T l ( 1 ) - S ( 1 ) 3 4 3 ( 1 ) T l ( 2 ) - 8 ( 4 ) 3 4 1 ( 2 ) T l ( 1 ) - S ( 1 ) 3 3 0 ( 1 ) T l ( 2 ) - 8 ( 4 ) 3 3 4 ( 1 ) T l ( 1 ) - S ( 2 ) 3 3 7 ( 1 ) T l ( 2 ) - S ( 5 ) 3 3 7 ( 1 ) T l ( 1 ) - S ( 2 ) 3 . 2 8 ( 1 ) T l ( 2 ) - S ( 5 ) 3 4 7 ( 1 ) T l ( 1 ) - S ( 4 ) 3 3 9 ( 1 ) K ( 2 ) - 8 ( 1 ) 3 3 0 ( 5 ) T l ( l ) - S ( 5 ) 3 2 0 ( 1 ) K ( 2 ) - 8 ( 1 ) 3 . 4 0 ( 6 ) T l ( 1 ) - S ( 5 ) 3 4 7 ( 1 ) K ( 2 ) - 8 ( 1 ) 3 . 2 5 ( 6 ) T l ( 1 ) - S ( 5 ) 3 2 2 ( 1 ) K ( 2 ) - 8 ( 2 ) 3 . 4 9 ( 6 ) T l ( 2 ) - 8 ( 1 ) 3 . 1 5 ( 2 ) K ( 2 ) - 8 ( 4 ) 3 . 1 9 ( 5 ) T l ( 2 ) - 8 ( 1 ) 3 2 3 ( 2 ) K ( 2 ) - S ( 5 ) 3 3 9 ( 6 ) T l ( 2 ) - S ( 2 ) 3 4 4 ( 2 ) K ( 2 ) - S ( 5 ) 3 2 3 ( 5 ) T l ( 1 ) - T l ( l ) 3 . 8 5 8 ( 4 ) T l ( 1 ) - K ( 2 ) 3 . 8 7 ( 6 ) T l ( 1 ) - T l ( 2 ) 3 9 0 ( 2 ) T l ( 1 ) - K ( 2 ) 3 . 7 4 ( 6 ) T l ( l ) - T l ( 2 ) 3 . 9 4 ( 2 ) K ( 2 ) - K ( 2 ) 4 . 8 3 ( 8 ) 2 6 1 C o m p a r i s o n o f t h e S t r u c t u r e s T h e s t r u c t u r e s o f c o m p o u n d s ( I ) - ( V I ) s u g g e s t t h a t i n t h e s o l i d s t a t e t h e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n h a s c o n s i d e r a b l e s t a b i l i t y , a s i t c r y s t a l l i z e s i n s i x d i f f e r e n t c r y s t a l m o r p h o l o g i e s d e p e n d i n g o n t h e c o n f o r m a t i o n o f t h e a n i o n , t h e e x t e n t o f s o l v e n t i n t h e c r y s t a l l a t t i c e a n d t h e c o u n t e r c a t i o n e m p l o y e d . T h i s w a s a l i t t l e s u r p r i s i n g a t f i r s t , a s o f t e n t h e m o n o v a l e n t m e t a l s h a v e e x h i b i t e d a r i c h s t r u c t u r a l d i v e r s i t y w i t h p o l y c h a l c o g e n i d e l i g a n d s e g . C u / s z ' o ” , A g / S x 2 ' 9 2 5 , A g / S e x i ’ W “ S a n d A u / S e x z ‘ o 2 5 s y s t e m s . T h i s s t a b i l i t y o f t h e [ T l 2 ( 8 4 ) 2 ] 2 ' a n i o n c a n b e r a t i o n a l l i z e d i f w e a s c r i b e t h e T l + a t e t r a h e d r a l c o o r d i n a t i o n e n v i r o n m e n t , c o m p r i s i n g o f t h r e e s u l f u r a t o m s a n d t h e i n e r t e l e c t r o n p a i r . T h e i n e r t e l e c t r o n p a i r d i c t a t e s t h i s m o l e c u l a r a r r a n g e m e n t a s i n t h i s o v e r a l l g e o m e t r y o f t h e a n i o n t h e l o n e p a i r o f t h e t w o T l + a r e t h e f a r t h e s t a p a r t . T h e l o n g T l - T l d i s t a n c e s i n t h e s e c o m p l e x e s r u l e s o u t a n y d 1 0 - d 1 0 i n t e r a c t i o n s ( T l - T l d i s t a n c e i n T 1 m e t a l i s 3 . 4 0 7 6 A ) . I n f a c t , a n y o t h e r s t r u c t u r a l m o d i f i c a t i o n w o u l d b e h i n d e r e d d u e t o t h e c o l u m b i c r e p u l s i o n s f r o m t h e e l e c t r o n p a i r w h i c h a r e r a t h e r d i f f u s e d i n s p a c e . T h e i n f l u e n c e o f t h e i n e r t e l e c t r o n p a i r o n t h e s t r u c t u r e o f t h e a n i o n i s a l s o e v i d e n t t h r o u g h t h e i n s p e c t i o n o f t h e S - T l - S a n g l e s , w h i c h a r e c a . 8 8 . 4 ° ( s e e T a b l e 4 . 1 8 ) . T h i s e f f e c t i s c o n s i s t e n t w i t h t h e p r e d i c t i o n s b a s e d o n t h e V a l e n c e S h e l l E l e c t r o n P a i r R e p u l s i o n ( V S E P R ) t h e o r y . O u r i n i t i a l a t t e m p t s t o m a k e a p o l y s u l f i d e c o m p l e x a n a l o g o u s t o t h e t h a l l i u m p o l y s e l e n i d e , [ T 1 3 8 e 3 ( 8 e 4 ) 3 ] 3 ‘ t 3 , w h e r e w e h a d o b s e r v e d t w o e l e c t r o n o x i d a t i o n o f ’ I ‘ l + t o T 1 3 + , w e r e u n s u c c e s s f u l . T h i s c o u l d m a i n l y b e d u e t o t h e e a s e o f r e d u c i n g a S e 2 ' c o m p a r e d t o a 8 3 ' b y 2 6 2 w e a k r e d u c t a n t l i k e T l + ( T l ‘ l ' o x i d a t i o n p o t e n t i a l i s - 1 . 2 4 7 V ) . S i m i l a r r e d o x c h e m i s t r y h a s b e e n i n v e s t i g a t e d i n t h e A u / p o l y c h a l c o g e n i d e s y s t e m w h e r e b o t h b y c o n v e n t i o n a l s o l u t i o n m e t h o d s 2 7 a n d m o l t e n s a l t t e c h n i q u e ” , o n l y A u + ( A u + o x i d a t i o n p o t e n t i a l i s - 1 . 2 9 V ) c o m p l e x e s h a v e b e e n s t a b l i z e d w i t h t h e 8 8 ' l i g a n d s w h e r e a s a r i c h r e d o x c h e m i s t r y o f A u + a n d A u 3 + e x i s t s w i t h t h e S e x z ' l i g a n d s . T h e [ T 1 2 ( 8 4 ) 2 ] 2 ' a n i o n r e s e m b l e s [ R e 2 ( C O ) 5 ( Q 4 ) 2 ] 2 ' ( Q = 8 2 9 a , 8 e 2 9 b ) a n d [ M n 2 ( C O ) 6 ( S e 4 ) 2 ] 2 ' 9 1 ( C ) , t h e s e c o m p o u n d s c o n s i s t s o f t h e t w o Q 4 2 ' l i g a n d s ( Q = S , S e ) b r i d g i n g a s w e l l a s c h e l a t i n g t h e t w o R e o r M n a t o m s s y m m e t r i c a l l y a n d t h r e e C O l i g a n d s c o m p l e t e t h e s l i g h t l y d i s t o r t e d o c t a h e d r a l e n v i o r n m e n t a r o u n d e a c h o f t h e m e t a l a t o m s . I f w e o m i t t h e t h r e e C O l i g a n d s a r o u n d e a c h m e t a l t h e s t r u c t u r e s a r e v e r y s i m i l a r t o t h e [ T 1 2 ( S 4 ) 2 ] 2 ‘ a n i o n w i t h t h e [ R e 2 ( 8 4 ) 2 ] 2 ' t o t h e e n d o , e n d o c o n f o r m a t i o n w h e r e a s t h e [ R e 2 ( 8 e 4 ) 2 ] 2 ' a n d [ M n 2 ( 8 e 4 ) 2 ] 2 ' t o t h e e x o , e x o c o n f o r m a t i o n . T h e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n a l s o b e a r s c l o s e r e s e m b a l n c e t o [ A g 2 ( 8 5 ) 2 ] 2 ' t 2 5 , w h i c h c o n s i s t s o f t w o 8 5 2 ‘ l i g a n d s b r i g d i n g a n d c h e l a t i n g s y m m e t r i c a l l y t h e t w o t r i g o n a l p l a n a r A g + a t o m s . T o t h e b e s t o f o u r k n o w l e d g e c o m p l e x e s ( I ) - ( V I ) a r e t h e fi r s t m o l e c u l a r t h a l l i u m p o l y s u l f i d e s k n o w n t o d a t e . . T h e s t r u c t u r e o f ( V I I ) i s i s o t y p i c t o a n u m b e r o f c o m p o u n d s s u c h a s K 2 8 5 1 9 , T 1 2 8 5 2 0 , R b 2 8 5 3 o a n d C 8 2 8 5 3 1 . T h e r i g h t h a n d e d h e l i c a l c o n f o r m a t i o n o f t h e 8 5 2 ' a n i o n h a s b e e n o b s e r v e d i n a l l t h e i s o t y p i c c o m p o u n d s a n d i n v a r i o u s o t h e r p o l y s u l f i d e c h a i n l e n g t h s e g . 8 5 2 % ” , 8 7 2 7 - 3 3 a n d 8 3 2 % “ . I n ( V I I ) t h e b o n d l e n g t h s a l o n g t h e 8 5 2 ' c h a i n a n d t h e a n g l e s b e t w e e n t h e b o n d s d o n o t s u g g e s t a n y s i g n i f i c a n t l o c a l i z a t i o n o f t h e e l e c t r o n i c c h a r g e . I t h a s b e e n s u g g e s t e d b y H o r d v i k 3 S t h a t t h e 8 - 8 b o n d l e n g t h s v a r y a c c o r d i n g t o t h e d i h e d r a l 2 6 3 a n g l e , b e i n g a m a x i m u m ( c a . 2 1 0 4 ) f o r a c i s p l a n a r d i s u l fi d e a n d a m i n i m u m ( c a . 2 . 0 3 A ) w h e n t h e d i h e d r a l a n g l e i s 9 0 ° . O u r r e s u l t s c o m p l y w i t h t h e e x p e c t e d v a l u e s f o r t h e 8 - 8 b o n d s c a . 2 . 0 7 A f o r a d i h e d r a l a n g l e s c a . 7 0 ° . H o w e v e r , w e d o n o t s e e a n y s i g n i fi c a n t s h o r t e n i n g o f t h e t e r m i n a l 8 - 8 b o n d s a s o b s e r v e d i n t h e K 2 8 5 s t r u c t u r e , b u t f o u n d r a t h e r h i g h s t a n d a r d d e v i a t i o n i n t h e b o n d d i s t a n c e s a n d a n g l e s s i m i l a r t o t h o s e o b s e r v e d i n T 1 2 8 5 s t r u c t u r e . C o n c l u s i o n I n s u m m a r y t h e r e a c t i o n s o f t e t r a s u l fi d e a n i o n , 8 4 2 ' , w i t h T 1 + i n t h e p r e s e n c e o f d i f f e r e n t q u a t e r n a r y p h o s p h o n i u m o r q u a t e r n a r y a m m o n i u m c a t i o n s i n D M F , a f f o r d s s e v e r a l n e w c o m p o u n d s : 0 1 - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . B - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 l - 2 D M F . B ' - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 ] . 2 D M F . Y - ( P h 4 P ) 2 [ T 1 2 ( S 4 ) 2 l . D M F . ( E 1 4 N ) 2 [ T 1 2 ( S 4 ) 2 ] a n d ( M C 4 N ) 2 [ T 1 2 ( S 4 ) 2 1 a l l o f w h i c h c o n t a i n t h e [ T 1 2 ( S 4 ) 2 ] 2 ' i n o n e o f t w o d i f f e r e n t c o n f o r m a t i o n e x o , e x o f o r ( I a n d V I ) a n d e n d o , e n d o f o r t h e r e s t . I t h a s e x c l u s i v e l y i l l u s t r a t e d e x t r a o r d i n a r y s t a b l i t y o f t h e [ T 1 2 ( S 4 ) 2 ] 2 ' a n i o n i n t h e s o l i d s t a t e , a n d t h e p r o f o u n d i n f l u e n c e o f t h e i n e r t e l e c t r o n p a i r o f t h e T H o n t h e c o u r s e o f t h e r e a c t i o n . T h i s s t u d y h a s i n d i c a t e d t h a t t h e T l + d o e s n o t p o s s e s s u f f i c i e n t r e d u c i n g p o w e r t o r e d u c e p o l y s u l fi d e s a n d t h u s t h e T l l e z ' c h e m i s t r y d o e s n o t p a r a l l e l t h a t o f t h e T l / S e x z ‘ c h e m i s t r y . T h e r e a c t i o n o f t h a l l i u m c h l o r i d e a n d p o t a s s i u m t e t r a s u l f i d e i n a c e t o n i t r i l e a f f o r d e d K o , 5 g T 1 1 , 3 2 8 5 . T h i s c o m p o u n d h a s o p e n e d a n a v e n u e t o m a k e s o l i d s o l u t i o n o f s i m i l a r c o m p o u n d s a n d o n e c o u l d s y s t e m a t i c a l l y v a r y t h e T l / K r a t i o . T h e n o n - l i n e a r o p t i c a l p r o p e r t i e s o f t h e s e s o l i d s o l u t i o n s a r e c u r r e n t l y u n d e r s t u d y . L I S T O F R E F E R E N C E S ( a ) K a n a t z i d i s , M . G . C o m m e n t s I n o r g . C h e m . 1 9 9 0 , 1 1 ) , 1 6 1 - 1 9 5 . ( b ) A n s a r i , M . A . ; I b e r s , 1 . A . C o o r d . C h e m . R e v 1 9 9 0 , 1 _ D _ Q , 2 2 3 - 2 6 6 . ( c ) K o l i s , 1 . W . C o o r d . C h e m . R e v 1 9 9 0 , 1 1 1 2 , 1 9 5 - 2 1 9 . ( a ) M u l l e r , A . P o l y h e d r o n 1 9 8 6 , 1 , 3 2 3 - 3 4 0 . ( b ) D r a g a n j a c , M . ; R a u c h f u s s , T . B . A n g e w . C h e m , I n t . E d . E n g l . 1 9 8 5 , 2 _ 4 . , 7 4 2 - 7 5 7 . ( a ) C o u c o u v a n i s , D . A c c . C h e m . R e s . 1 9 8 1 , 1 4 , 2 0 1 - 2 0 9 . ( b ) C o u c o u v a n i s , D . A c c . C h e m . R e s . 1 9 9 1 , 2 3 1 , 1 - 8 . K r a u s k o p f , K . B . " I n t r o d u c t i o n t o G e o c h e m i s t r y " 2 n d E d . M c G r a w - H i l l , N e w Y o r k 1 9 7 9 ( a ) H u a n g , 8 . - P . ; D h i n g r a , S . ; K a n a t z i d i s , M . G . P o l y h e d r o n 1 9 9 0 , 2 , 1 3 8 9 - 1 3 9 5 . ( b ) B a n d a , R . M . H . ; C u s i c k , 1 . ; S c u d d e r , M . L . ; C r a i g , D . C . ; D a n c e , 1 . G . P o l y h e d r o n 1 9 8 9 , 8 , 1 9 9 9 - 2 0 0 1 . ( c ) M u l l e r , A . ; Z i m m e r m a n n , M . ; B 0 g g e , H . A n g e w . C h e m i e . I n t . E d . E n g l 1 9 8 6 , 2 _ 5 , 2 7 3 - 2 7 4 . ( d ) M u l l e r , A . ; S c h i m a n s k i , 1 . ; R o m e r , M . ; B é g g e , H . ; B a u m a n n , F . - W . ; E l t z n e r , W . ; K r i c k e m e y e r , B . ; B i l l e r b e c k , U C h i m i a 1 9 8 5 , Q , 2 5 - 2 7 ( e ) B a n d a , R . M . H . ; , C u s i c k , 1 . ; S c u d d e r , M . L . ; C r a i g , D . C . ; D a n c e , 1 . G . P o l y h e d r o n l 9 8 9 , 8 _ , 1 9 9 5 - 1 9 9 8 . D h i n g r a , S . ; K a n a t z i d i s , M . G . U n p u b l i s h e d r e s u l t s . K a n a t z i d i s , M . G . ; D h i n g r a , S . I n o r g . C h e m . 1 9 8 9 , 2 8 , 2 0 2 4 - 2 0 2 6 . D h i n g r a , S . ; K a n a t z i d i s , M . G . ( S e e C h a p t e r - 2 ) . D h i n g r a , S . ; L i u , F ; K a n a t z i d i s , M . G . m a n u s c r i p t i n p r e p a r a t i o n . 2 6 4 1 0 . 1 1 . 1 2 . 1 3 . 1 4 . 1 5 . l 6 . 1 7 . 1 8 . 1 9 . 2 0 . 2 1 . 2 6 5 ( a ) D h i n g r a , 8 . ; K a n a t z i d i s , M . G . P o l y h e d r o n 1 9 9 1 , 1 _ 0 _ , 1 0 6 9 - 1 0 7 3 . ( b ) D h i n g r a , S . ; K a n a t z i d i s , M . G . ( S e e C h a p t e r - 3 ) . S m i t h , D . K . ; N i c h o l s , M . C . ; Z o l e n s k y , M . E . " P O W D I O : A F o r t r a n I V P r o g r a m f o r C a l c u l a t i n g X - r a y P o w d e r D i f f r a c t i o n P a t t e r n " , v e r s i o n 1 0 , P e n n s y l v a n i a S t a t e U n i v e r s i t y , 1 9 8 3 . N i c o l e t X R D C o r p o r a t i o n : " D a t a C o l l e c t i o n O p e r a t i o n M a n u a l " , p a r t n o . 1 0 0 6 2 , 1 9 8 2 . D I F A B S : " A n E m p i r i c a l M e t h o d f o r C o r r e c t i n g D i fi r a c t o m e t e r D a t a f o r A b s o r p t i o n C o r r e c t i o n " W a l k e r , N . ; S t u a r t , D . A c t a . C r y s t a l l o g r . 1 9 8 3 , A 1 2 , 1 5 8 . S h e l d r i c k , G . M . i n " C r y s t a l l o g r a p h i c C o m p u t i n g 3 " , S h e l d r i c k , G . M . ; K r u g e r , C . ; D o d d a r d , R . O x f o r d U n i v e r s i t y P r e s s , 1 9 8 5 , p . 1 7 5 - l 8 9 . F r e n z , B . A . T h e E n r a f - N o n i u s C A D 4 S D P S y s t e m i n " C o m p u t i n g i n C r y s t a l l o g r a p h y " ; D e l f t U n i v e r s i t y P r e s s : D e l f t H o l l a n d , 1 9 7 8 , p . 6 4 - 7 1 . ( a ) K a n a t z i d i s , M . G . ; H u a n g , S . - P . J . A m . C h e m . S o c . 1 9 8 9 , 1 _ L 1 _ , 7 6 0 - 7 6 1 . ( b ) K a n a t z i d i s , M . G . ; H u a n g , S . - P . A n g e w . C h e m i e . I n t . E d . E n g l 1 9 8 9 , 2 8 , 1 5 1 3 - 1 5 1 4 . ( c ) H u a n g , S . - P . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 1 , 2 ( 1 2 1 4 5 5 - 1 4 6 6 . ( a ) M i i l l e r , A . ; B a u m a n n , F . - W . ; B i i g g e , H . ; R d m e r , M . ; K r i c k e m e y e r , B . ; S c h m i t z , K . A n g e w . C h e m i e . I n t . E d . E n g l 1 9 8 4 , 2 2 , 6 3 2 - 6 3 3 . ( b ) M i i l l e r , A . ; R i i m e r , M . ; B é g g e , H . ; K r i c k e m e y e r , B . ; S c h m i t z , K . I n o r g . C h e m . A c t a . 1 9 8 4 , 8 1 , L 3 9 - L 4 1 . H a d j i k y r i a c o u , A . I . ; C o u c o u v a n i s , D . I n o r g . C h e m . 1 9 8 7 , 2 1 , 2 4 0 0 - 2 4 0 8 . K e l l e y , B . ; W o o d w a r d , P . J . C h e m . S o c . , D a l t o n T r a n s 1 9 7 6 , 1 3 1 4 - 1 3 1 6 . L e c l e r c , B . ; K a b r e , T . 8 . A c t a C r y s t a l l o g r . , S e c t i o n B 1 9 7 5 , fi 3 _ 1 _ , 1 6 7 5 - 1 6 7 7 . ( a ) D u b o i s , P . ; L e l i e u r , 1 . P . ; L e p o u r t e , G . I n o r g . C h e m . 1 9 8 8 , 2 1 , 7 3 - 8 0 . ( b ) C l a r k , R . 1 . H . ; W a l t o n , 1 . R . J . C h e m . S o c . D a l t o n T r a n s . 2 2 . 2 3 . 2 4 . 2 5 . 2 6 . 2 7 . 2 8 . 2 9 . 3 0 . 3 1 . 3 2 . 3 3 . 3 4 . 3 5 . 2 6 6 1 9 8 7 , 1 5 3 5 - 1 5 4 4 . ( b ) C l a r k , R . 1 . H . ; D i n e s , T . 1 . ; P r o u d , G . P . J . C h e m . S o c . D a l t o n T r a n s . 1 9 8 3 , 2 2 9 9 - 2 3 0 2 . S t r a s d e i t , H . ; K r e b s , B . ; H e n k e l , G . I n o r g . C h i m . A c t a 1 9 8 4 , 8 2 , L 1 - L 1 3 . M i i l l e r , A . ; S c h m i t z , K . ; K r i c k e m e y e r , B . ; P e n k , M . ; B o g g e , H . A n g e w . C h e m i e . I n t . E d . E n g l . 1 9 8 6 , 2 1 , 4 5 3 - 4 5 4 . M i i l l e r , A . ; Z i m m e r m a n n , M . ; B o g g e , H . A n g e w . C h e m i e . I n t . E d . E n g l . 1 9 8 6 , 2 5 . , 2 7 3 - 2 7 4 . ( a ) M i i l l e r , A . ; K r i c k e m e y e r , B . ; Z i m m e r m a n n , M . ; R i i m e r , M . ; B 6 g g e , H . ; P e n k , M . ; S c h m i t z , K . I n o r g . C h e m . A c t a . 1 9 8 4 , 2 Q , L 6 9 - L 7 1 . ( b ) M i i l l e r , A . ; R 6 m e r , M . ; B l i g g e , H . ; K r i c k e m e y e r , E . ; B a u m a n n , F . - W . ; S c h m i t z , K . I n o r g . C h e m . A c t a . 1 9 8 4 , 8 2 , L 7 - L 8 . ( 8 ) K a n a t z i d i s , M . G . ; H u a n g , S . - P . I n o r g . C h e m . 1 9 8 9 , 2 8 , 4 6 6 7 - 4 6 6 9 . ( b ) H u a n g , S . - P . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 1 , 3 8 , 3 5 7 2 - 3 5 7 5 . M a r b a c k , G . ; S t r i i h l e , 1 . A n g e w . C h e m i e . I n t . E d . E n g l . 1 9 8 4 , 2 _ 3 _ , 2 4 6 . ( b ) M i i l l e r , A . ; R 6 m e r , M . ; B i i g g e , H . ; K r i c k e m e y e r , B . ; S c h m i t z , K . I n o r g . C h e m . A c t a . 1 9 8 4 , 8 1 , L 3 9 - L 4 l . K a n a t z i d i s , M . G . C h e m . M a t e r . 1 9 9 0 . 2 , 3 5 3 - 3 6 3 ( a ) H o r , T . S . A . ; W a g n e r , B . ; B e c k , W . O r g a n o m e t a l l i c s 1 9 9 0 , 2 , 2 1 8 3 - 2 1 8 5 . ( b ) O ' N e a l , 8 . C . ; P e n n i n g t o n , W . T . ; K o l i s , J . W . C a n d . J . C h e m . 1 9 8 9 , 6 1 , 1 9 8 0 - 1 9 8 3 . B 6 t t c h e r , P . Z . K r i t a l l o g r . 1 9 7 9 , 1 8 2 , 6 5 - 7 3 . B l i t t c h e r , P . ; K r u s e , K . J . L e s s - C o m m o n M e t . 1 9 8 2 , 8 8 , 1 1 5 . ( a ) T e l l e r , R . G . ; K r a u s e , L . 1 . ; H a u s h a l t e r , R . C . I n o r g . C h e m . . 1 9 8 3 , 2 _ 2 , 1 8 0 9 - 1 8 1 2 . ( b ) B d t t c h e r , P . ; B u c h k r e m e r - H e r m a n n s , H . ; B a r o n , 1 . Z . N a t u r f o r s c h . 1 9 8 4 , 2 2 8 , 4 1 6 . ( c ) B i i t t c h e r , P . ; F l a m m , W . Z . N a t u r f o r s c h . 1 9 8 6 , 4 1 8 , 4 0 5 . ( a ) K a n a t z i d i s , M . G . ; B a e n z i g e r , N . C . ; C o u c o u v a n i s , D . I n o r g . C h e m . 1 9 8 3 , 2 2 , 2 9 0 - 2 9 2 . ( b ) B i i t t c h e r , P . ; F l a m m , W . Z . N a t u r f o r s c h . 1 9 8 6 , 4 1 8 , 1 0 0 0 . S c h l i e p h a k e , A . ; F a l l i u s , H . ; B u c h k r e m e r - H e r m a n n s , H . ; B 6 t t c h e r , P . Z . N a t u r f o r s c h . 1 9 8 8 , 4 8 8 , 2 1 . H o r d v i k , A . A c t a C h e m . S c a n d . 1 9 6 6 , 2 1 ) , 1 8 8 5 . C H A P T E R 5 T O W A R D S M I C R O P O R O U S C H A L C O G E N I D E S : O P E N F R A M E W O R K S T R U C T U R E S B A S E D O N S e x z ' F R A G M E N T S . S Y N T H E S I S O F ( P h 4 P ) [ M ( S e 6 ) 2 ] ( M = G a , I n , T l ) I N M O L T E N ( P h 4 P ) 2 S e x . 2 6 7 2 6 8 A B S T R A C T T h e r e a c t i o n o f G a , I n a n d T 1 m e t a l w i t h ( P h 4 P ) 2 8 e 5 w i t h e x c e s s o f e l e m e n t a l S e i n a s e a l e d e v a c u a t e d P y r e x t u b e a t 2 0 0 ° C y i e l d e d s m a l l r e d c r y s t a l s o f ( P h 4 P ) [ G a ( S e 6 ) 2 ] ( I ) , ( P h 4 P ) [ I n ( S e 5 ) 2 ] ( I I ) a n d ( P h 4 P ) [ T l ( S e 6 ) 2 ] ( 1 1 1 ) , r e s p e c t i v e l y . S i n g l e c r y s t a l X - r a y d i f f r a c t i o n s t u d i e s r e v e a l e d t h a t ( I ) , ( I I ) a n d ( I I I ) a r e i s o s t r u c t u r a l a n d - c r y s t a l l i z e i n t h e t e t r a g o n a l s p a c e g r o u p P - 4 ( # 8 1 ) w i t h u n i t c e l l d i m e n s i o n s a = 1 0 . 3 7 8 ( 1 ) A , 1 0 . 5 2 7 ( 6 ) A , 1 0 . 5 2 5 ( 2 ) A ; c = 7 . 6 l 8 ( 3 ) A , 7 . 6 4 7 ( 6 ) A , 7 . 6 1 1 ( 3 ) A ; V = 8 2 0 ( 1 ) A 3 , 8 4 7 ( 1 ) A 3 , 8 4 3 ( 1 ) A 3 ; 2 : 1 ; r e s p e c t i v e l y . T h e [ M ( 8 e 6 ) 2 ] ' f o r m a n u n p r e c e d e n t e d o p e n t w o - d i m e n s i o n a l f r a m e w o r k f i l l e d w i t h P h 4 P + i o n s . T h e [ M ( S e 6 ) 2 ] n n ' ( M = G a , I n , T l ) a n i o n c o n s i s t o f M 3 + c e n t e r s i n t e t r a h e d r a l c o o r d i n a t i o n w i t h f o u r 8 e 5 2 ' l i g a n d s , w h i c h i n t u r n a r e b r i d g i n g t w o m e t a l a t o m s l e a d i n g t o e x t e n d e d s t r u c t u r e i n t w o d i m e n s i o n s . T h e s e l a y e r s s t a c k p e r f e c t l y o n e o n t o p o f t h e o t h e r g i v i n g r i s e t o o n e d i m e n s i o n a l c h a n n e l s r u n n i n g d o w n t h e c - a x i s w h i c h a r e f i l l e d w i t h ( P h 4 P ) + c a t i o n s . S u r p r i s i n g l y , t h e s e c a t i o n s a r e s i t u a t e d i n t h e l a y e r s a n d c a n b e v i e w e d a s t e m p l a t e s . . ( I ) , ( I I ) a n d ( I I I ) s h o w s r e m a r k a b l e t h e r m a l s t a b i l i t y a n d m e l t s c o n g r u e n t l y a t 2 7 2 ° C , 2 4 2 ° C a n d 2 1 3 ° C , r e s p e c t i v e l y , t o a g l a s s y p h a s e s a n d r e c r y s t a l i z e s u p o n s u b s e q u e n t h e a t i n g t o a r o u n d 1 3 0 ° C - 1 7 0 ° C . F a r I R s p e c t r a o f t h e t h r e e c o m p o u n d s s h o w t w o s t r o n g a b s o r p t i o n s i n t h e 3 0 0 - 1 0 0 c m ‘ 1 r e g i o n d u e t o t h e S e - S e a n d M - S e s t r e t c h i n g f r e q u e n c i e s . 2 6 9 I n t r o d u c t i o n T h e i m p o r t a n c e o f e x p l o r a t o r y s y n t h e s i s o f n e w s o l i d s t a t e m a t e r i a l s a n d t h e n e e d f o r m o r e r e s e a r c h i n t h i s a r e a h a s b e e n r e c o g n i z e d i n r e c e n t y e a r s l , e s p e c i a l l y i n v i e w o f t h e d i s c o v e r y , o f h i g h - T c c e r a m i c s u p e r c o n d u c t o r s z , n o v e l m i c r o p o r o u s o x i d e s 3 a n d n e w f o r m s o f c a r b o n 4 . T h e r e i s a n e v e r i n c r e a s i n g i n t e r e s t i n n e w a n d u n u s u a l s y n t h e t i c c o n d i t i o n s w h i c h m a y h e l p s t a b i l i z e n e w c o m p o u n d s w i t h n o v e l s t r u c t u r a l f r a m e w o r k s a n d i n t e r e s t i n g p h y s i c a l p r o p e r t i e s t h a t w o u l d n o t b e p o s s i b l e b y c o n v e n t i o n a l t e c h n i q u e s . T h e c h e m i s t r y o f s o l u b l e a n d s o l i d s t a t e m e t a l c h a l c o g e n i d e s i s a n a r e a o f i n t e n s e i n v e s t i g a t i o n d u e t o t h e i r i n t e r e s t i n g e l e c t r i c a l 5 , o p t i c a l 6 a n d c a t a l y t i c p r o p e r t i e s 7 a s w e l l a s t h e i r u n u s u a l s t r u c t u r a l f e a t u r e 3 3 - 9 v 1 0 v 1 1 . C o n v e n t i o n a l l y , s y n t h e s e s o f m o l e c u l a r m e t a l p o l y c h a l c o g e n i d e s a r e c a r r i e d i n s o l u t i o n a t a m b i e n t t e m p e r a t u r e 8 w h i l e s y n t h e s e s o f s o l i d s t a t e m e t a l c h a l c o g e n i d e s a r e c a r r i e d a t t e m p e r a t u r e s h i g h e r t h a n 5 0 0 ° C 9 . I n t h e p a s t f e w y e a r s , m o l t e n a l k a l i m e t a l p o l y c h a l c o g e n i d e s f l u x e s 1 0 h a v e a l s o b e e n u s e d a s r e a c t i o n m e d i a t o s y n t h e s i z e n o v e l s o l i d s t a t e m a t e r i a l s i n t h e r e l a t i v e l y l o w t e m p e r a t u r e r e g i m e o f 1 5 0 ° C t o 5 0 0 ° C . R e c e n t l y , w e h a v e s h o w n t h a t t h e h y d r o t h e r m a l t e c h n i q u e r e p r e s e n t s a n e w d i r e c t i o n f o r t h e s y n t h e s i s o f s o m e e x o t i c m e t a l p o l y c h a l c o g e n i d e s m a t e r i a l s “ . G i v e n t h e e n o r m o u s u t i l i t y o f m i c r o p o r o u s o x i d e s ( i . e . Z e o l i t e s ) i n c h e m i c a l t e c h n o l o g y a n d t h e c o r r e s p o n d i n g p r o m i n e n c e o f m e t a l c h a l c o g e n i d e s i n e l e c t r o n i c a p p l i c a t i o n s , i t i s i n t r i g u i n g t o e n v i s i o n m a t e r i a l s t h a t w o u l d c o m b i n e t h e u s e f u l p r o p e r t i e s o f b o t h c l a s s e s o f m a t e r i a l s i n t o o n e n e w c l a s s 2 7 0 o f m i c r o p o r o u s c h a l c o g e n i d e s . A l t h o u g h s u c h m a t e r i a l s h a v e n o t b e e n r e p o r t e d t o e x i s t t h i s f a r , a f e w p u b l i c a t i o n s h a v e m a d e r e f e r e n c e t o t h i s c o n c e p 1 1 2 o 1 3 . I n o r d e r t o a c h i e v e t h i s g o a l w e u n d e r t o o k a n e w s y n t h e t i c a p p r o a c h o f u s i n g t h e r e a c t i v e ( P h 4 P ) 2 S e x i n m o l t e n f o r m a s a r e a c t i o n m e d i a t o i n c o r p o r a t e l a r g e o r g a n i c c a t i o n s a s t e m p l a t e s i n o r d e r t o s t a b i l i z e o p e n a n i o n i c m e t a l p o l y s e l e n i d e f r a m e w o r k s . T o t h e b e s t o f o u r k n o w l e d g e t h i s i s t h e fi r s t t i m e a n o r g a n i c p o l y c h a l c o g e n i d e s a l t h a s b e e n u s e d a s a f l u x m e d i u m . H e r e i n w e r e p o r t t h e s y n t h e s i s , s t r u c t u r a l c h a r a c t e r i z a t i o n a n d t h e r m a l p r o p e r t i e s o f t h r e e n e w i s o s t r u c t u r a l c o m p o u n d s ( P h 4 P ) [ G a ( S e 6 ) 2 l ( I ) . ( P h 4 P ) [ I n ( S C 6 ) 2 l ( I I ) a n d ( P h 4 P ) [ T l ( S e 6 ) 2 l ( I I I ) . w h i c h e x h i b i t a n u n u s u a l a n d o p e n l a y e r e d f r a m e w o r k . E X P E R I M E N T A L S E C T I O N R e a g e n t s T h e c h e m i c a l s i n t h i s r e s e a r c h w e r e u s e d a s o b t a i n e d c o m m e r c i a l l y : s e l e n i u m , 9 9 . 9 9 9 % p u r i t y ; t h a l l i u m ( m e t a l ) , 9 9 . 9 9 9 % p u r i t y , A m e r i c a n S m e l t i n g a n d R e f i n i n g C o m p a n y , D e n v e r , C O . ; i n d i u m ( m e t a l ) , 9 9 . 9 9 9 % p u r i t y , g a l l i u m ( m e t a l ) , 9 9 . 9 9 % p u r i t y , C e r a c I n c . M i l w a u k e e , W I . ; t e t r a p h e n y l p h o s p h o n i u m c h l o r i d e ( P h 4 P C l ) , 9 8 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y I n c . , M i l w a u k e e , W I . 2 7 1 P h y s i c o c h e m i c a l S t u d i e s I n f r a r e d s p e c t r a o f t h e c o m p l e x e s w e r e r e c o r d e d a s s o l i d s i n a C s I m a t r i x o n a N i c o l e t 7 4 0 F T - I R s p e c t r o m e t e r . E a c h s a m p l e w a s g r o u n d a l o n g w i t h C s I t o a f i n e p o w d e r a n d a t r a n s l u c e n t p e l l e t w a s m a d e b y a p p l y i n g ~ 1 5 0 0 0 p s i p r e s s u r e t o t h e m i x t u r e . T h e s p e c t r a w e r e r e c o r d e d i n t h e F a r I R r e g i o n ( 5 0 0 t o 1 0 0 c m ’ l ) . U V / V i s s p e c t r a o f t h e c o m p l e x e s w e r e m e a s u r e d o n a H i t a c h i U - 2 0 0 0 s p e c t r o p h o t o m e t e r . T h e s a m p l e s w e r e p r e p a r e d b y h e a t i n g ( I I ) t o ~ 2 5 0 ° C , u n d e r a n i n e r t a t m o s p h e r e , a n d p r e s s i n g b e t w e e n t w o g l a s s s l i d e s . T h i s p r o c e d u r e r e s u l t e d i n s m o o t h t h i n h o m o g e n o u s fi l m s u p o n c o o l i n g . T h e s p e c t r a o f t h e f i l m s o f ( I I ) w e r e r e c o r d e d w i t h t w o p l a i n g l a s s s l i d e s i n t h e r e f e r e n c e c o m p a r t m e n t o f t h e s p e c t r o p h o t o m e t e r . T h e r m a l g r a v i m e t r i c a n a l y s i s ( T G A ) a n d d i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y D S C o f t h e c o m p o u n d s w e r e r e c o r d e d o n a s h i m a d z u T G A - 5 0 a n d D S C - 5 0 , r e s p e c t i v e l y . I n t h e T G A e x p e r i m e n t s t h e s o l i d s a m p l e s w e r e h e a t e d f r o m r o o m t e m p e r a t u r e t o 1 0 0 0 ° C a t a r a t e o f 5 ° C / m i n u n d e r a s t e a d y f l o w o f d r y n i t r o g e n . D S C r e s u l t s w e r e o b t a i n e d a t t e m p e r a t u r e s b e t w e e n 2 0 ° C t o 3 0 0 ° C u n d e r n i t r o g e n w i t h t h e h e a t i n g a n d c o o l i n g r a t e s o f 5 ° C p e r m i n u t e . Q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s o f t h e c o m p o u n d s w a s p e r f o r m e d o n a s c a n n i n g e l e c t r o n m i c r o s c o p y ( S E M ) J E O L 1 8 M - 3 5 C e q u i p p e d w i t h a n x - r a y m i c r o a n a l y s i s a t t a c h m e n t f r o m T r a c o r N o r t h e r n T N 5 5 0 0 , f o r e n e r g y d i s p e r s i v e s p e c t r o s c o p y ( E D S ) . S i n g l e c r y s t a l s o f e a c h s a m p l e w e r e m o u n t e d o n a n a l u m i n u m s t u b u s i n g c o n d u c t i v e c a r b o n p a i n t f o r a d h e s i o n t o t h e s t u b a s w e l l a s t o 2 7 2 d i s s i p a t e c h a r g e t h a t i s d e v e l o p e d o n t h e s a m p l e u n d e r a n e l e c t r o n b e a m . E n e r g y d i s p e r s i v e s p e c t r a w e r e o b t a i n e d u s i n g t h e f o l l o w i n g e x p e r i m e n t a l s e t - u p : X - r a y d e t e c t o r p o s i t i o n : 5 5 m m W o r k i n g d i s t a n c e : 3 9 m m A c c e l e r a t i n g v o l t a g e : 2 0 K V T a k e - o f f a n g l e : 2 7 d e g B e a m c u r r e n t : 2 0 0 p i c o a m p s A c c u m u l a t i o n t i m e : 6 0 s e c s D e t e c t o r W i n d o w : B e r y l l i u m A s t a n d a r d l e s s q u a n t i t a t i v e ( 8 Q a n a l y s i s ) p r o g r a m w a s u s e d t o a n a l y z e t h e x - r a y s p e c t r a o b t a i n e d . T h e a n a l y s i s c o u l d n o t b e u s e d f o r t h e a t o m s b e l o w a t o m i c n u m b e r 1 1 ( s o d i u m ) d u e t o t h e a b s o r p t i o n o f t h e l o w e n e r g y x - r a y s b y t h e B e w i n d o w o f t h e d e t e c t o r . S i n c e t h e s e l e n i u m r a t i o i s a l w a y s u n d e r e s t i m a t e d d u e t o a n a r t i f a c t i n t h e p r o g r a m , a c o r r e c t i o n f a c t o r ( x 1 . 9 6 ) , w h i c h w a s d e t e r m i n e d b y t a k i n g a k n o w n P / I n / S e c o m p o u n d a s a s t a n d a r d t o e v a l u a t e t h e S c r a t i o . T h e a n a l y s i s r e p o r t e d h e r e a r e a n a v e r a g e o f t h r e e t o f o u r i n d i v i d u a l m e a s u r e m e n t s o n s e v e r a l d i f f e r e n t s i n g l e c r y s t a l s o f e a c h c o m p o u n d . S y n t h e s e s A l l t h e e x p e r i m e n t s a n d s y n t h e s e s w e r e p e r f o r m e d u n d e r a n a t m o s p h e r e o f d r y n i t r o g e n i n a V a c u u m A t m o s p h e r e s D r i - L a b g l o v e b o x . 2 7 3 B i s ( t e t r a p h e n y l p h o s p h o n i u m ) - p e n t a s e l e n i d e , ( P h 4 P ) 2 8 e 5 T o 0 . 5 0 0 g ( 1 . 0 5 7 m m o l ) K 2 S e 5 a d d e d 0 . 7 9 3 g ( 2 . 1 1 9 m m o l ) P h 4 P C l i n 1 0 0 m l o f D M F . T h e m i x t u r e w a s s t i r r e d f o r c a . 2 0 m i n u t e s u n t i l i t s c o l o r b e c a m e d e e p g r e e n . F o l l o w i n g fi l t r a t i o n ( t o r e m o v e K C l ) , 1 0 0 m l o f e t h e r w a s l a y e r e d o v e r i t t o i n c i p i e n t c r y s t a l l i z a t i o n . U p o n s t a n d i n g a t r o o m t e m p e r a t u r e f o r 2 d a y s , g r e e n - b l a c k c r y s t a l s o f ( P h 4 P ) 2 S e 5 w e r e f o r m e d a n d i s o l a t e d b y f i l t r a t i o n . T e t r a p h e n y I p h o s p h o n i u m - b i s ( h e x a s e l e n i d e ) - g a 1 1 a t e ( I I I ) ( P h 4 P ) [ G a ( S e 5 ) 2 ] ( I ) . T h e r e a c t i o n o f 0 . 0 2 6 g ( 0 . 3 7 2 m m o l e ) o f G a , 0 . 2 0 0 g ( 0 . 1 8 6 m m o l e ) o f ( P h 4 P ) 2 8 e 5 a n d 0 . 2 3 6 g ( 2 . 9 8 9 m o l e ) o f e l e m e n t a l S e i n a s e a l e d e v a c u a t e d p y r e x t u b e a t 2 0 0 ° C f o r 2 d a y s a f f o r d e d l a r g e r e d c u b i c c r y s t a l s o f ( P h 4 P ) [ G a ( S e 5 ) 2 ] ( I ) i n 6 0 % y i e l d . T h e c r y s t a l s w e r e i s o l a t e d b y r e m o v i n g a n y u n r e a c t e d ( P h 4 P ) 2 S e x w i t h a c e t o n i t r i l e , a n d w a s h e d w i t h e t h e r . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( I ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f G a 1 8 e 1 1 , 2 P 1 , 2 . T e t r a p h e n y l p h o s p h o n i u m - b i s ( h e x a s e l e n i d e ) - i n d a t e ( I I I ) ( P h 4 P ) [ I n ( S e 6 ) 2 ] ( 1 1 ) . M e t h o d ( A ) T h e r e a c t i o n o f 0 . 0 2 2 g ( 0 . 1 9 2 m m o l e ) o f I n , 0 . 1 0 0 g ( 0 . 0 9 3 m m o l e ) o f ( P h 4 P ) 2 S e 5 a n d 0 . 1 1 8 g ( 1 . 4 9 4 m m o l e ) o f S e i n a s e a l e d e v a c u a t e d p y r e x t u b e a t 2 0 0 ° C f o r 2 d a y s a f f o r d e d s m a l l d e e p r e d c u b i c c r y s t a l s o f ( P h 4 P ) [ I n ( S e 6 ) 2 ] ( I I ) i n 9 5 % y i e l d . T h e c r y s t a l s w e r e i s o l a t e d b y r e m o v i n g a n y u n r e a c t e d ( P h 4 P ) 2 S e x w i t h a c e t o n i t r i l e a n d w a s h e d w i t h e t h e r . A q u a n t i t a t i v e 2 7 4 m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( I I ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f l n 1 8 e 1 2 , o P 1 , 1 . M e t h o d ( B ) ( P h 4 P ) [ I n ( S e 5 ) 2 ] ( I I ) c a n a l s o b e s y n t h e s i z e d b y h y d r o t h e r m a l t e c h n i q u e . I n a p y r e x t u b e w a s a d d e d 0 . 0 5 0 g ( 0 . 2 2 6 m m o l ) I n C l 3 , 0 . 2 1 4 g ( 0 . 4 5 2 m m o l ) K 2 8 e 5 a n d 0 . 0 8 5 g ( 0 . 2 2 7 m m o l ) P h 4 P C l a n d 0 . 5 m l o f w a t e r . T h e m i x t u r e w a s f r o z e n i n l i q u i d n i t r o g e n a n d f l a m e s e a l e d u n d e r v a c u u m . T h e t u b e w a s s u b s e q u e n t l y h e a t e d t o 1 1 0 ° C f o r t w o d a y s . T h e t u b e w a s o p e n e d i n a n i n e r t a t m o s p h e r e g l o v e b o x a n d s m a l l d e e p r e d c u b i c c r y s t a l s w e r e i s o l a t e d b y f i l t r a t i o n , w a s h e d w i t h w a t e r , e t h a n o l a n d f i n a l l y w i t h e t h e r , y i e l d 8 8 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( I I ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f I n 1 8 e 1 2 _ 1 P 1 , 2 . T e t r a p h e n y l p h o s p h o n i u m - b i s ( h e x a s e l e n i d e ) - t h a l l a t e ( I I I ) ( P h 4 P ) [ T 1 ( S e 5 ) 2 ] ( I ) . T h e r e a c t i o n o f 0 . 0 3 8 g ( 0 . 1 8 6 m m o l e ) o f T 1 , 0 . 1 0 0 g ( 0 . 0 9 3 m o l e ) o f ( P h 4 P ) 2 S e 5 a n d 0 . 1 1 8 g ( 1 . 4 9 4 m m o l e ) o f S e i n a s e a l e d e v a c u a t e d p y r e x t u b e a t 2 0 0 ° C f o r 2 d a y s a f f o r d e d v e r y l a r g e d e e p r e d c r y s t a l s o f ( P h 4 P ) [ T l ( S e 5 ) 2 ] ( I I I ) a n d s m a l l a m o u n t o f s e l e n i u m c r y s t a l s . T h e c r y s t a l s w e r e i s o l a t e d b y r e m o v i n g a n y u n r e a c t e d ( P h 4 P ) 2 S e x w i t h a c e t o n i t r i l e , a n d w a s h e d w i t h e t h e r . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s p e r f o r m e d o n a n u m b e r o f c r y s t a l s o f ( I I I ) w i t h E D S / S E M s y s t e m g a v e a n a v e r a g e c o m p o s i t i o n o f ' 1 ‘ 1 1 3 6 1 2 4 P 0 9 - 2 7 5 X - r a y C r y s t a l l o g r a p h i c S t u d i e s . X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e r e c o r d e d o n a P h i l l i p s X R G - 3 0 0 0 c o m p u t e r c o n t r o l l e d p o w d e r d i f f r a c t o m e t e r . N i - f i l t e r e d , C u - r a d i a t i o n w a s u s e d . D - s p a c i n g s ( A ) f o r t h e t h r e e c o m p l e x e s o b t a i n e d f r o m t h e X - r a y p o w d e r p a t t e r n s , w e r e i n g o o d a g r e e m e n t w i t h t h o s e c a l c u l a t e d f r o m t h e a t o m c o o r d i n a t e s b t a i n e d f r o m t h e X - r a y s i n g l e c r y s t a l d i f f r a c t i o n s t u d i e s u s i n g t h e p r o g r a m P O W D - 1 0 1 5 . T h i s c o n f i r m e d t h e h o m o g e n e i t y a n d t h e p u r i t y o f t h e c o m p l e x e s , a s s u m i n g n o a m o r p h o u s p h a s e s w e r e p r e s e n t . C a l c u l a t e d a n d o b s e r v e d d - s p a c i n g s ( A ) f o r a l l c o m p l e x e s a r e c o m p i l e d i n T a b l e s 5 . 1 - 5 . 3 . I n t h e f o l l o w i n g t a b l e s t h e r e a r e t w o c a l c u l a t e d p o w d e r p a t t e r n s f o r ( I ) a n d ( I I I ) d c a l c a a n d d c a l c b . T h e d c a l c a a r e f r o m t h e u n i t c e l l p a r a m e t e r s f r o m t h e X - r a y s i n g l e c r y s t a l d a t a c o l l e c t e d a t l o w t e m p e r a t u r e a n d t h e d c a l c b a r e f o r t h e c o r r e s p o n d i n g u n i t c e l l a t r o o m t e m p e r t a u r e , w h i c h w a s o b t a i n e d b y a v e r a g i n g a n u m b e r o f h 0 0 a n d 0 0 1 r e f l e c t i o n s f r o m t h e r o o m t e m p e r a t u r e X - r a y p o w d e r p a t t e r n . 2 7 6 T a b l e 5 . 1 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( P h 4 P ) [ G a ( S C 6 ) 2 l ( I ) . h k 1 d c a l c . a ( A ) d c a l c . b ( A ) d o b s . ( A ) I / I m g x ( 0 1 3 8 - ) 1 0 0 1 0 . 3 8 1 1 0 . 4 3 4 1 0 . 4 3 4 5 0 0 1 7 . 6 2 8 7 . 6 4 5 7 . 6 4 5 1 0 0 1 1 0 6 . 1 4 6 6 . 1 6 6 6 . 1 6 4 4 7 2 0 0 5 . 1 9 1 5 . 2 1 7 5 . 2 0 2 1 5 2 0 1 4 . 2 9 1 4 . 3 0 9 4 . 3 0 6 3 6 2 1 1 / 1 2 1 3 . 9 6 7 3 . 9 8 2 3 . 9 8 1 1 1 0 0 2 3 . 8 1 4 3 . 8 2 3 3 . 8 3 0 8 1 1 0 2 3 . 5 8 0 3 . 5 8 9 3 . 5 9 6 4 0 2 2 1 3 . 3 0 7 3 . 3 2 2 3 . 3 1 9 3 7 2 0 2 3 . 0 7 3 3 . 0 8 3 3 . 0 8 7 2 3 1 2 / 1 2 2 2 . 9 4 7 2 . 9 5 7 2 . 9 5 9 7 1 2 1 / 2 3 1 2 . 6 9 4 2 . 7 0 6 2 . 7 0 3 1 0 2 2 2 2 . 6 4 5 2 . 6 5 5 2 . 6 5 6 2 8 3 1 2 / 1 3 2 2 . 4 8 8 2 . 4 9 2 2 . 4 8 1 1 1 4 1 1 / 1 4 1 2 . 3 9 1 2 . 4 0 3 2 . 4 1 4 7 2 1 3 / 1 2 3 2 . 2 3 0 2 . 2 3 6 2 . 2 4 0 1 6 4 2 1 / 2 4 1 2 . 2 2 1 2 . 2 3 1 4 1 2 / 1 4 2 2 . 1 0 1 2 . 1 1 0 2 . 1 0 1 1 0 2 2 3 2 . 0 9 0 2 . 0 9 6 3 0 3 2 . 0 4 9 2 . 0 5 6 2 . 0 5 9 1 7 3 1 3 / 1 3 3 2 . 0 1 0 2 . 0 1 7 2 . 0 2 0 1 6 3 2 3 / 2 3 3 1 . 9 0 6 1 . 9 1 3 1 . 9 1 7 2 2 5 2 1 / 2 5 1 1 . 8 6 9 1 . 8 7 8 1 . 8 8 7 1 3 l 1 4 1 . 8 4 6 1 . 8 5 0 1 . 8 5 6 2 0 ‘ 4 4 0 1 . 8 3 5 1 . 8 4 5 4 0 3 1 . 8 1 6 1 . 8 2 3 1 . 8 2 4 2 5 4 1 3 / 1 4 3 1 . 7 8 9 1 . 7 9 6 1 . 7 9 8 2 7 2 1 4 / 1 2 4 1 . 7 6 3 1 . 7 6 8 1 . 7 7 2 2 7 4 2 3 / 2 4 3 1 . 7 1 4 1 . 7 2 1 1 . 7 2 3 4 6 0 1 1 . 6 8 7 1 . 6 9 5 1 . 6 9 9 4 1 6 1 / 6 1 1 1 . 6 6 5 1 . 6 7 4 1 . 6 7 4 6 4 4 2 1 . 6 5 3 1 . 6 6 1 1 . 6 5 6 7 5 3 2 1 . 6 1 3 1 . 6 2 0 1 . 6 1 6 6 3 2 4 l 2 3 4 1 . 5 9 0 1 . 5 9 5 1 . 5 9 8 8 2 7 7 T a b l e 5 . 2 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( P h 4 P ) [ I n ( S e 5 ) 2 ] ( I I ) . h k l d c a l c . ( A ) d o b s . ( A ) I / I m a x ( 0 s t l 0 0 1 0 . 5 2 7 1 0 . 6 4 7 1 0 0 O 1 7 . 6 4 7 7 . 7 2 2 4 0 1 0 1 6 . 1 8 7 6 . 2 4 7 3 8 2 0 0 5 . 2 6 4 5 . 3 0 6 1 0 2 1 0 / 1 2 0 4 . 7 0 8 4 . 7 4 5 5 2 0 1 4 . 3 3 6 4 . 3 6 7 6 8 2 1 1 / 1 2 1 4 . 0 0 8 4 . 0 4 0 2 8 0 O 2 3 . 8 2 4 3 . 8 4 4 2 8 1 0 2 3 . 5 9 4 3 . 6 1 0 2 2 ' 2 2 1 3 . 3 4 6 3 . 3 3 8 1 0 0 2 0 2 3 . 0 9 3 3 . 0 8 5 2 9 2 1 2 / 1 2 2 2 . 9 6 8 2 . 9 5 7 9 4 3 2 1 / 2 3 1 2 . 7 2 7 2 . 7 1 9 4 0 2 2 2 2 . 6 6 6 2 . 6 5 9 4 5 3 1 ‘ 2 / 1 3 2 2 . 5 1 1 2 . 5 0 4 2 3 3 3 0 2 . 4 8 1 2 . 4 7 3 2 1 4 1 1 / 1 4 1 2 . 4 2 2 2 . 4 1 4 1 1 3 3 1 2 . 3 6 0 2 . 3 5 1 7 3 2 2 / 2 3 2 2 . 3 2 1 2 . 3 1 8 6 4 2 1 / 2 4 1 2 . 2 4 9 2 . 2 4 4 1 4 2 1 3 / 1 2 3 2 . 2 4 1 2 . 2 3 9 1 5 T a b l e 5 . 2 ( c o n t ' d ) . 2 7 8 1 : k 1 d c a l c . ( A ) d o b s . ( A ) I / I m a x ( 0 s t 4 0 2 2 . 1 6 8 2 . 1 6 2 6 4 1 2 / 1 4 2 2 . 1 2 3 2 . 1 2 1 1 1 3 4 0 2 . 1 0 5 2 . 1 0 3 3 8 3 0 3 2 . 0 6 2 2 . 0 6 1 2 7 3 1 3 / 1 3 3 2 . 0 2 4 2 . 0 2 3 3 4 5 1 1 / 1 5 1 1 . 9 9 3 1 . 9 9 1 3 6 3 2 3 / 2 3 3 1 . 9 2 0 1 . 9 1 9 1 0 5 2 1 / 2 5 1 1 . 8 9 4 1 . 8 9 4 1 8 4 4 0 1 . 8 6 1 1 . 8 6 1 1 2 5 0 2 1 . 8 4 4 1 . 8 4 4 2 5 4 0 3 1 . 8 3 1 1 . 8 3 0 3 1 4 1 3 / 1 4 3 1 . 8 0 4 1 . 8 0 3 2 9 2 1 4 / 1 2 4 1 . 7 7 1 1 . 7 7 1 1 5 5 3 1 / 3 5 1 1 . 7 5 7 1 . 7 5 5 5 2 2 / 2 5 2 1 . 7 4 1 1 . 7 3 9 4 4 2 3 / 2 4 3 1 . 7 2 9 1 . 7 2 9 7 1 6 1 / 6 1 1 1 . 6 8 7 1 . 6 8 7 1 6 5 3 2 / 2 5 2 1 . 6 3 3 1 . 6 3 2 8 4 3 3 / 3 4 3 1 . 6 2 3 1 . 6 2 3 1 0 3 2 4 / 2 3 4 1 . 5 9 9 1 . 5 9 9 7 6 1 2 / 1 6 2 1 . 5 7 7 1 . 5 7 3 2 2 7 9 T a b l e 5 . 3 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n o f ( P h 4 P ) [ T l ( S e 5 ) 2 ] ( I I I ) . h k l d c a l c . a ( A ) d c a l c . b ( A ) d o b s . ( A ) H I M 1 0 0 1 0 . 5 2 5 1 0 . 7 0 8 1 0 . 7 5 4 2 7 0 0 1 7 . 6 1 1 7 . 6 9 0 7 . 7 6 3 1 0 0 1 o 1 6 . 1 6 7 6 . 2 4 6 6 . 2 7 4 6 7 1 1 1 5 . 3 2 1 5 . 3 9 5 5 . 4 0 6 3 4 2 0 0 5 . 2 6 3 5 . 3 5 4 5 . 3 3 1 3 2 2 0 1 4 . 3 2 9 4 . 3 9 3 4 . 3 8 2 6 2 2 1 1 / 1 2 1 4 . 0 0 3 4 . 0 6 5 4 . 0 5 4 2 2 0 0 2 3 . 8 0 6 3 . 8 4 5 3 . 8 0 9 2 1 1 0 2 3 . 5 7 9 3 . 6 1 9 3 . 6 2 6 1 1 2 2 1 3 . 3 4 2 3 . 3 9 6 3 . 3 8 0 5 5 2 0 2 3 . 0 8 4 3 . 1 2 3 3 . 1 1 9 3 2 2 1 2 / 1 2 2 2 . 9 5 9 2 . 9 9 8 2 . 9 9 1 7 3 3 2 1 / 2 3 1 2 . 7 2 6 2 . 7 7 0 2 . 7 5 1 1 8 2 2 2 2 . 6 6 1 2 . 6 9 4 2 . 6 8 5 2 8 3 0 2 2 . 5 7 9 2 . 6 1 5 2 . 6 0 5 1 0 3 1 2 / 1 3 2 2 . 5 0 5 2 . 5 4 1 2 . 5 2 8 2 0 3 3 0 2 . 4 8 1 2 . 5 2 3 2 . 4 9 3 1 7 1 1 3 2 . 4 2 0 2 . 4 2 7 2 . 4 2 3 1 5 3 2 2 / 2 3 2 2 . 3 1 6 2 . 3 5 0 2 . 3 4 1 1 7 4 2 1 / 2 4 1 2 . 2 4 8 2 . 2 8 6 2 . 2 5 8 1 1 ' 4 0 2 2 . 1 6 4 2 . 1 9 6 2 . 1 8 9 1 1 4 3 0 / 3 4 0 2 . 1 0 5 2 . 1 4 1 2 . 1 2 1 1 4 3 0 3 2 . 0 5 6 2 . 0 8 2 2 . 0 7 5 2 6 5 1 1 / 1 5 1 1 . 9 9 2 2 . 0 2 7 2 . 0 3 7 2 4 5 2 1 / 2 5 1 1 . 8 9 3 1 . 9 9 8 2 . 0 0 9 1 3 4 4 0 1 . 8 6 1 1 . 8 9 2 1 . 8 8 9 1 3 4 0 3 1 . 8 4 3 1 . 8 5 1 1 . 8 5 8 2 6 2 8 0 T h e s i n g l e c r y s t a l s o f ( I I ) w e r e m o u n t e d o n t h e t i p o f a g l a s s f i b e r w i t h e p o x y a n d c o v e r e d w i t h K r y l o n ' r M t o p r o t e c t t h e i r s u r f a c e f r o m a i r . T h e c r y s t a l s o f ( I ) a n d ( I I I ) w e r e m o u n t e d o n t h e t i p o f a g l a s s f i b e r w i t h s i l i c o n g r e a s e a n d t h e d a t a w e r e c o l l e c t e d a t l o w t e m p e r a t u r e s . T h e d a t a f o r a l l t h e c o m p o u n d s w e r e c o l l e c t e d o n R i g a k u A F C 6 S f o u r - c i r c l e a u t o m a t e d d i f f r a c t o m e t e r w i t h 0 1 1 - 2 6 s c a n t e c h n i q u e . A c c u r a t e u n i t c e l l d i m e n s i o n s w e r e d e t e r m i n e d f r o m t h e 2 0 , 0 1 , 6 , x a n g l e s o f 2 5 m a c h i n e c e n t e r e d r e f l e c t i o n s . T h e i n t e n s i t i e s o f t h r e e c h e c k r e f l e c t i o n s w e r e m o n i t o r e d e v e r y 1 5 0 r e f l e c t i o n s a n d d i d n o t s h o w a n y a p p r e c i a b l e l o s s i n t h e i r i n t e n s i t i e s o v e r t h e d a t a c o l l e c t i o n p e r i o d . A n e m p i r i c a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d t o a l l d a t a b a s e d o n 1 1 ! s c a n s f o r 3 ( x ~ 9 0 ° ) r e f l e c t i o n s . T h e s t r u c t u r e s w e r e s o l v e d w i t h d i r e c t m e t h o d s a n d d i f f e r e n c e F o u r i e r S y n t h e s i s m a p s a n d r e f i n e d w i t h f u l l - m a t r i x l e a s t s q u a r e t e c h n i q u e s . A n a d d i t i o n a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d b e f o r e a n i s o t r o p i c r e f i n e m e n t u s i n g D I F A B S I S . T h e c a l c u l a t i o n s w e r e p e r f o r m e d o n a V A X s t a t i o n 3 1 0 0 / 7 6 c o m p u t e r u s i n g t h e T E X S A N c r y s t a l l o g r a p h i c s o f t w a r e p a c k a g e f r o m t h e M o l e c u l a r S t r u c t u r e C o r p o r a t i o n . I n s t r u c t u r e ( I ) a l l n o n - c a r b o n a n d n o n - h y d r o g e n a t o m s w e r e r e f i n e d a n i s o t r o p i c a l l y . T h e c a r b o n a t o m s w e r e r e f i n e d i s o t r o p i c a l l y . I n s t r u c t u r e ( 1 1 ) a l l n o n - h y d r o g e n a t o m s w e r e r e f i n e d i s o t r o p i c a l l y w e r e ' a s i n s t r u c t u r e ( 1 1 1 ) a l l n o n - h y d r o g e n a t o m s w e r e r e f i n e d a n i s o t r o p i c a l l y . T h e h y d r o g e n a t o m p o s i t i o n s w e r e c a l c u l a t e d a n d i n c l u d e d i n t h e s t r u c t u r e f a c t o r c a l c u l a t i o n s b u t w e r e n o t r e f i n e d . T h e c o m p l e t e d a t a c o l l e c t i o n p a r a m e t e r s a n d d e t a i l s o f t h e s t r u c t u r e s o l u t i o n a n d r e f i n e m e n t f o r a l l t h e c o m p o u n d s a r e s u m m a r i z e d i n T a b l e 5 . 4 . T h e f i n a l c o o r d i n a t e s , t e m p e r a t u r e f a c t o r s a n d t h e i r e s t i m a t e d s t a n d a r d d e v i a t i o n s ( e s d ' s ) o f a l l a t o m s i n t h e a n i o n s . f o r a l l t h e c o m p o u n d s , a r e s h o w n i n T a b l e s 5 . 5 - 5 . 7 . 2 8 1 T a b l e 5 . 4 . S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r ( P h 4 P ) [ G a ( S e 6 ) 2 ] ( l ) , ( P h 4 P ) [ I n ( S ¢ 6 ) 2 ] ( 1 1 ) a n d ( P h 4 P ) [ T l ( S C 6 ) 2 ] ( 1 1 1 ) - I 1 1 1 1 1 F o r m u l a C 2 4 H 2 0 P G a S e 1 2 C 2 4 H 2 0 P I n S e 1 2 C 2 4 H 2 0 P T l S e 1 2 F W 1 3 5 6 . 6 4 1 4 0 1 . 5 8 1 4 9 1 . 3 0 C r y s t a l c o l o r d e e p - r e d d e e p - r e d d e e p - r e d T e m p . ( ° C ) - 1 0 0 2 3 - 1 0 0 a ( A ) 1 0 . 3 7 8 ( 1 ) 1 0 . 5 2 7 ( 6 ) 1 0 . 5 2 5 ( 2 ) 6 ( A ) 1 0 . 3 7 8 ( 1 ) 1 0 . 5 2 7 ( 6 ) 1 0 . 5 2 5 ( 2 ) 6 ( A ) 7 . 6 1 8 ( 3 ) 7 . 6 4 7 ( 6 ) 7 . 6 1 1 ( 3 ) a ( ° ) 9 0 . 0 0 9 0 . 0 0 9 0 . 0 0 B ( ° ) 9 0 . 0 0 9 0 . 0 0 9 0 . 0 0 7 ( ° ) 9 0 . 0 0 9 0 . 0 0 9 0 . 0 0 z , V ( A 3 ) 1 , 8 2 0 ( 1 ) 1 , 8 4 7 ( 1 ) 1 , 8 4 3 ( 1 ) S p a c e g r o u p P - 4 ( # 8 1 ) P - 4 ( # 8 1 ) P - 4 ( # 8 1 ) D c a l c . ( g c m ' 3 ) 2 . 7 4 0 2 . 7 4 7 2 . 9 3 7 M c m " ) M o ( K a ) 1 4 0 . 5 4 1 3 5 . 1 2 1 7 7 . 2 7 C r y s t a l s i z e ( m m ) 0 1 3 , 0 0 5 , 0 0 5 0 1 3 , 0 0 5 , 0 0 3 0 2 3 , 0 1 3 , 0 1 0 2 9 m a ~ x ( ° ) 5 0 4 5 5 0 # o f d a t a C o l l e c t 9 0 4 2 4 0 0 9 3 4 D a t a ( 1 > 3 6 ( 1 ) ) 4 1 9 3 0 1 7 4 8 N o . o f v a r i a b l e s 5 6 3 9 8 6 m i n / m a x a b s 0 . 6 8 3 / 1 . 0 0 0 0 . 4 8 8 / 1 . 0 0 0 0 . 3 8 9 / 1 . 0 0 0 C O l ' F i n a l R / R w ( % ) 6 . 5 / 7 . 1 5 . 7 / 5 . 7 3 . 0 / 4 . 0 2 8 2 T a b l e 5 . 5 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P h 4 P ) [ G a ( S e 5 ) 2 ] ( I ) w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q a , A 2 G a ( 1 ) 1 / 2 1 / 2 0 1 . 6 ( 3 ) S e ( l ) 0 . 6 4 5 9 ( 4 ) 0 . 3 7 1 5 ( 4 ) 0 . 1 7 2 3 ( 7 ) 1 . 7 ( 2 ) S e ( 2 ) 0 . 4 9 2 5 ( 4 ) 0 . 2 4 7 1 ( 4 ) 0 . 3 2 0 5 ( 6 ) 2 . 0 ( 2 ) S e ( 3 ) 0 . 4 2 6 7 ( 4 ) 0 . 0 8 7 3 ( 4 ) 0 . 1 2 3 5 ( 6 ) 1 . 8 ( 2 ) P ( 1 ) 1 . 0 0 0 0 0 0 1 . 2 ( 6 ) C ( 1 ) 0 . 8 5 8 ( 3 ) 0 . 0 0 7 ( 4 ) - 0 . 1 4 1 ( 6 ) 1 . 1 ( 7 ) C ( 2 ) 0 . 7 6 8 ( 4 ) 0 . 0 9 5 ( 3 ) - 0 . 1 4 4 ( 6 ) 1 . 3 ( 7 ) C ( 3 ) 0 . 6 7 6 ( 4 ) 0 . 0 9 3 ( 4 ) - 0 . 2 6 6 ( 6 ) 1 . 4 ( 8 ) C ( 4 ) 0 . 6 7 8 ( 4 ) 0 . 0 0 5 ( 4 ) - 0 . 3 8 1 ( 6 ) 2 . 1 ( 8 ) C ( 5 ) 0 . 7 5 7 ( 4 ) - 0 . 0 9 1 ( 4 ) - 0 . 3 9 9 ( 6 ) 1 . 4 ( 7 ) C ( 6 ) 0 . 8 6 5 ( 5 ) - 0 . 0 8 9 ( 4 ) - 0 . 2 7 8 ( 7 ) 3 . 0 ( 1 ) a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 B 1 1 + b 2 B 2 2 + 0 2 B 3 3 + a b ( c o s y ) B l z + a c ( c o s B ) B l 3 + b c ( c o s a ) B 2 3 ] T a b l e 5 . 6 2 8 3 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P h 4 P ) [ I n ( S e 5 ) 2 ] ( I I ) w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q a . A 2 I n ( l ) 1 / 2 1 / 2 0 2 . 2 ( 2 ) S e ( l ) 0 . 6 4 9 3 ( 4 ) 0 . 3 6 1 4 ( 4 ) 0 . 1 8 6 5 ( 7 ) 3 . 1 ( 1 ) S e ( 2 ) 0 . 4 8 9 6 ( 5 ) 0 . 2 4 0 2 ( 5 ) 0 . 3 2 2 6 ( 7 ) 3 . 8 ( 1 ) S e ( 3 ) 0 . 4 2 7 3 ( 4 ) 0 . 0 8 4 5 ( 5 ) 0 . 1 2 2 3 ( 6 ) 3 . 1 ( 1 ) P ( 1 ) 1 . 0 0 0 0 0 0 1 . 4 0 0 C ( 1 ) 0 . 8 6 6 ( 3 ) 0 . 0 1 3 ( 3 ) - 0 . 1 4 3 ( 5 ) 1 . 7 ( 8 ) C ( 2 ) 0 . 7 7 0 ( 3 ) 0 . 0 9 6 ( 3 ) - 0 . 1 3 3 ( 5 ) 0 . 8 ( 7 ) C ( 3 ) 0 . 6 7 1 ( 4 ) 0 . 1 0 0 ( 4 ) - 0 . 2 5 3 ( 5 ) 2 . 0 ( 8 ) C ( 4 ) 0 . 6 7 7 ( 4 ) 0 . 0 0 6 ( 4 ) - 0 . 3 8 2 ( 6 ) 2 . 5 ( 8 ) C ( 5 ) 0 . 7 5 8 ( 4 ) - 0 . 0 8 0 ( 4 ) - 0 . 4 0 4 ( 5 ) 1 . 7 ( 8 ) C ( 6 ) 0 . 8 5 1 ( 4 ) - 0 . 0 7 7 ( 4 ) - 0 . 2 8 0 ( 7 ) 3 . 7 ( 9 ) a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 3 1 1 + b 2 3 2 2 + c 2 B 3 3 + a b ( c o s y ) B 1 2 + a c ( c o s B ) B 1 3 + b c ( c o s 0 1 ) B 2 3 ] 2 8 4 T a b l e 5 . 7 F r a c t i o n a l A t o m i c C o o r d i n a t e s a n d B e q V a l u e s f o r ( P h 4 P ) [ T l ( S e 5 ) 2 ] ( I I I ) w i t h T h e i r E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s i s . A t o m x y z B e q ‘ l , A 2 T l ( l ) 1 / 2 1 / 2 0 1 . 4 4 ( 3 ) S e ( l ) 0 . 6 5 0 3 ( 2 ) 0 . 3 5 7 6 ( 2 ) 0 . 1 9 5 7 ( 2 ) 2 . 1 6 ( 8 ) S e ( 2 ) 0 . 4 8 8 6 ( 2 ) 0 . 2 3 8 8 ( 2 ) 0 . 3 2 6 5 ( 2 ) 2 . 2 9 ( 8 ) S e ( 3 ) 0 . 4 2 7 2 ( 2 ) 0 . 0 8 5 3 ( 2 ) 0 . 1 2 0 8 ( 2 ) 2 . 1 2 ( 8 ) P ( 1 ) 1 . 0 0 0 0 0 0 1 . 4 ( 2 ) C ( 1 ) 0 . 8 5 9 ( 2 ) 0 . 0 0 5 ( 2 ) - 0 . 1 4 5 ( 2 ) 1 . 1 ( 6 ) C ( 2 ) 0 . 7 7 0 ( 2 ) 0 . 0 9 7 ( 2 ) - 0 . 1 3 2 ( 2 ) 1 . 7 ( 7 ) C ( 3 ) 0 . 6 7 6 ( 2 ) 0 . 1 0 2 ( 2 ) - 0 . 2 5 6 ( 2 ) 2 . 0 ( 8 ) C ( 4 ) 0 . 6 7 3 ( 2 ) 0 . 0 1 4 ( 2 ) - 0 . 3 8 9 ( 2 ) 2 . 5 ( 9 ) C ( 5 ) 0 . 7 6 4 ( 2 ) - 0 . 0 8 1 ( 2 ) - 0 . 4 0 3 ( 2 ) 2 . 2 ( 8 ) C ( 6 ) 0 . 8 5 9 ( 2 ) - 0 . 0 8 5 ( 2 ) - 0 . 2 8 2 ( 2 ) 1 . 9 ( 8 ) a A n i s o t r o p i c a l l y r e f i n e d a t o m s a r e g i v e n i n t h e f o r m o f t h e i s o t r o p i c e q u i v a l e n t d i s p l a c e m e n t p a r a m e t e r d e f i n e d a s B e q = ( 4 / 3 ) [ a 2 B 1 1 + b Z B z z + c 2 B 3 3 + a b ( c o s y ) 8 1 2 + a c ( c o s B ) B 1 3 + b c ( c o s o t ) B 2 3 ] . 2 8 5 R E S U L T S & D I S C U S S I O N . S y n t h e s e s : T h e s y n t h e s i s o f a l l t h e c o m p o u n d s h a s b e e n s u c c e s s f u l l y a c c o m p l i s h e d b y t a k i n g t h e a p p r o p r i a t e m e t a l ( G a , I n , T 1 ) w i t h ( P h 4 P ) 2 S e 5 a n d e x c e s s e l e m e n t a l S e i n a n e v a c u a t e d s e a l e d p y r e x t u b e a t 2 0 0 ° C . T h e r e a c t i o n o c c u r s i n m o l t e n ( P h 4 P ) 2 S e x a n d t h e p r o d u c t s c r y s t a l l i z e a t t h e i s o t h e r m t e m p e r a t u r e , m a k i n g t h e c r y s t a l l i z a t i o n i n d e p e n d e n t o f t h e c o o l i n g r a t e . T h i s i s a r e d o x r e a c t i o n i n w h i c h t h e m e t a l i s o x i d i z e d , a s S e x z ' i s r e d u c e d , t o f o r m s m a l l e r S e x z ' f r a g m e n t s w h i c h t h e n b i n d s t o t h e M 3 + c e n t e r . T h e r e a c t i o n s o c c u r r i n g h e r e a r e r e p r e s e n t e d i n e q . ( 1 ) a n d e q . ( 2 ) . ( P h 4 P ) : S e 5 + n S e - - - - > ( P h 4 P ) 2 S e x ( x = n + 5 ) e q . ( l ) 2 M + ( P h 4 P ) 2 S e x - - - - > 2 ( P h 4 P ) [ M ( S e 5 ) 2 ] + ( P h 4 P ) 2 $ e y e q . ( 2 ) T h e ( P h 4 P ) 2 S e x m e l t s e r v e s a d u a l f u n c t i o n , a s a s o l v e n t a n d a s t h e r e a c t a n t . T h e p r o d u c t s w e r e i s o l a t e d b y r e m o v i n g a n y u n r e a c t e d ( P h 4 P ) 2 S e x w i t h a c e t o n i t r i l e , a n d w a s h e d w i t h e t h e r . D M F h a d b e e n e m p l o y e d i n i t i a l l y a n d w o r k e d w e l l f o r t h e i s o l a t i o n o f ( I I ) . F o r ( I ) a n d ( I I I ) t h e D M F s o l u t i o n s l o w l y d i s s o l v e d t h e c r y s t a l s d u e t o t h e p r e s e n c e o f f r e e p o l y s e l e n i d e , S e x z ‘ , l i g a n d s r e a c t i n g w i t h t h e c o m p o u n d s . O n c e i s o l a t e d t h e s e c o m p o u n d s a r e i n s o l u b l e i n a l l c o m m o n o r g a n i c s o l v e n t s a n d s t a b l e w i t h r e g a r d t o h y d r o l y s i s i n d e g a s s e d w a t e r . 2 8 6 I n o u r s y n t h e t i c a p p r o a c h w e u s e d a l a r g e e x c e s s o f e l e m e n t a l S e a n d M / ( P h 4 P ) 2 S e 5 / S e r a t i o o f 2 : 1 : 1 6 a f f o r d e d v e r y h i g h y i e l d o f t h e c o m p o u n d s . H o w e v e r , w h e n h i g h e r r a t i o s o f S e w e r e e m p l o y e d w e g o t l a r g e r c r y s t a l s b u t c o n t a m i n a t e d w i t h b l a c k s e l e n i u m c r y s t a l s . L o w e r r a t i o s o f S e u p t o 2 : 1 : 1 2 s t i l l g a v e ( P h 4 P ) 2 M S e 1 2 ( M = G a , I n , T l ) a s t h e c r y s t a l l i n e p r o d u c t b u t i n l o w e r y i e l d s . F u r t h e r d e c r e a s i n g t h e a m o u n t o f S e d i d n o t y i e l d h o m o g e n o u s m e l t s a t t h e t e m p e r a t u r e e m p l o y e d . F a r - I R s t u d i e s I n t h e f a r - I R r e g i o n a l l t h e c o m p l e x e s r e p o r t e d h e r e e x h i b i t t w o s p e c t r a l a b s o r p t i o n s d u e t o S e - S e a n d M - S e s t r e t c h i n g v i b r a t i o n s , r e s p e c t i v e l y , a s s h o w n i n F i g u r e 5 . 1 . O b s e r v e d a b s o r p t i o n f r e q u e n c i e s o f a l l t h e c o m p l e x e s a r e g i v e n i n T a b l e 5 . 8 . T a b l e 5 . 8 . F r e q u e n c i e s ( c m - 1 ) o f t h e S p e c t r a l A b s o r p t i o n s o f ( I ) , ( I I ) a n d ( I I I ) . ( P h 4 P ) [ G a ( S e 6 ) ; ] ( I ) ( P h 4 P ) [ I n ( S e 5 ) ; ] ( I I ) ( P h 4 P ) [ T l ( S e § ) 2 I ( I I I ) 2 6 0 ( s ) 2 6 5 ( m ) 2 6 6 ( m ) 2 4 6 ( w ) 2 1 4 ( s ) 1 7 9 ( s ) E C N A T T I M S N A R T % W V 2 8 7 ( A ) ( B ) I I I I T 4 7 0 4 0 5 3 4 0 2 7 5 2 1 0 1 4 5 W A V E N U M B E R F i g u r e 5 . 1 F a r - I R s p e c t r a o f ( A ) ( P h 4 P ) [ G a ( S e 5 ) 2 ] ( I ) , ( B ) ( P h 4 P ) [ I n ( S C 6 ) 2 ] ( I I ) . ( C ) ( P h 4 P ) [ T l ( S e 6 ) 2 1 ( I I I ) 2 8 8 A l l t h e c o m p l e x e s s h o w a s p e c t r a l a b s o r p t i o n a r o u n d ~ 2 6 5 . T h i s b a n d c a n b e a s s i g n e d t o S e - S e v i b r a t i o n s b y c o m p a r i s o n w i t h t h e s p e c t r a o f o t h e r k n o w n p o l y s e l e n i d e c o m p l e x e s a n d w i t h t h a t o f t h e u n b o u n d l i g a n d ( P h 4 P ) 2 S e 5 1 5 ( u S e - S e a t 2 6 7 c m ' l ) . I n a d d i t i o n , t h e u S e - S e a b s o r p t i o n s i n t h i s r e g i o n h a s b e e n o b s e r v e d p r e v i o u s l y i n v a r i o u s c o m p o u n d s e g . S e x z ' o ” ( x = 1 - 6 ) a t 2 5 8 c m ' l , 0 8 % ” a t 2 5 3 c m ' l , [ F e z S e l z l z ‘ v l 9 a t 2 5 8 c m “ , [ S n S e 1 2 1 2 ' a 2 0 a t 2 7 3 a n d 2 5 6 c m ' l , [ A g S e x l ' o 1 6 ( x = 4 , 5 ) a r o u n d 2 6 5 c m ' 1 a n d [ P d S e g l z ' o 2 1 a t 2 4 7 c m ‘ l . I n t h e s p e c t r u m o f ( I ) a w e a k a b s o r p t i o n i s o b s e r v e d a t 2 4 6 c m ' 1 a n d i s p o s s i b l e c a n d i d a t e f o r a G a - S e s t r e c h i n g v i b r a t i o n . S p e c t r u m o f ( I I ) e x h i b i t s a s t r o n g a b s o r p t i o n a t 2 1 4 c m ‘ 1 a n d c a n b e a s s i g n e d t o t h e I n - S e s t r e c h i n g v i b r a t i o n b y c o m p a r i s o n t o t h e s p e c t r a o f o t h e r I n p o l y s e l e n i d e c o m p l e x e s 2 2 w h e r e s i m i l a r s p e c t r a l a b s o r p t i o n s i n t h e r a n g e o f 1 9 7 - 2 0 5 c m ' 1 a r e o b s e r v e d . S i m i l a r l y t h e s p e c t r u m o f ( I I I ) e x h i b i t s a s t r o n g a b s o r p t i o n a t 1 7 9 c m ' 1 a n d c a n b e a s s i g n e d t o t h e T l - S e s t r e c h i n g v i b r a t i o n b y c o m p a r i s o n t o t h e s p e c t r a o f [ T l 3 S e 1 5 ] 3 ' . 2 2 ( o ' l ‘ l - S e a t 1 7 0 c m ' l ) . 2 8 9 D i s c r i p t i o n o f t h e S t r u c t u r e s S t r u c t u r e o f ( P h 4 P ) [ M ( S e 5 ) 2 ] ( M = G a , I n , T l ) S i n g l e c r y s t a l X - r a y d i f f r a c t i o n a n a l y s i s r e v e a l e d t h a t ( I ) , ( I I ) a n d ( I I I ) a r e i s o s t r u c t u r a l a n d c o m p o s e d o f a u n i q u e [ M ( S e 5 ) 2 ] n n ' ( M = G a , I n , T l ) a t w o - d i m e n s i o n a l f r a m e w o r k p o l y m e r . A r e p r e s e n t a t i v e u n i t c e l l i s s h o w n i n F i g u r e 5 . 2 . T h e a n i o n s a r e p o l y m e r i c a n d c o m p o s e d o f t e t r a h e d r a l M 3 + c e n t e r s c o o r d i n a t e d b y f o u r S e a z ‘ l i g a n d s . E a c h 8 e 6 2 ' l i g a n d b r i d g e s t w o M 3 + c e n t e r s v i a t h e i r t e r m i n a l S e a t o m s . T h e 8 e 5 2 ' c h a i n s h a v e a h e l i c a l c o n f o r m a t i o n a n d l i e a l o n g t h e c r y s t a l l o g r a p h i c a a n d b a x e s . T h i s u n i q u e b r i d g i n g m o d e l e a d s t o a n e x t e n d e d a n i o n i c t w o - d i m e n s i o n a l f r a m e w o r k a l o n g t h e a - b p l a n e . T h e s e l a y e r s s t a c k p e r f e c t l y o n e o n t o p o f t h e o t h e r g i v i n g r i s e t o o n e - d i m e n s i o n a l c h a n n e l s r u n n i n g d o w n t h e c r y s t a l l o g r a p h i c c - a x i s . T h e c h a n n e l s a r e f i l l e d w i t h P h 4 P + c a t i o n s . F i g u r e 5 . 3 s h o w s s e v e r a l u n i t c e l l s f r o m w h i c h t h e l a r g e P h 4 P + i o n s h a v e b e e n o m i t t e d t o i l l u s t r a t e t h e p r e s e n c e a n d s i z e o f t h e o n e - d i m e n s i o n a l t u n n e l s i n t h e s t r u c t u r e . S u r p r i s i n g l y , t h e s e c a t i o n s a r e n o t s i t u a t e d b e t w e e n t h e l a y e r s b u t l i e w i t h i n t h e m a s s h o w n i n F i g u r e 5 . 4 . T h e r e f o r e , t h e y c a n b e v i e w e d a s t e m p l a t e s , h e l p i n g t o s t a b i l i z e t h e s t r u c t u r e . T h e p h o s p h o r o u s a t o m i s s i t u a t e d o n a c r y s t a l l o g r a p h i c - 4 a x i s . T h e P h 4 P + c a t i o n a p p e a r s t o b e a n e x a c t f i t i n t h e 2 8 - m e m b e r [ M . ; ( S e t 5 ) 4 ] ‘ 4 + r i n g ( s e e F i g u r e 5 . 2 ) . T h e n o t i o n t h a t t h e c a t i o n p l a y s a t e m p l a t e r o l e c o m e s f r o m t h e f a i l u r e t o s t a b i l i z e t h i s f r a m e w o r k w i t h o t h e r c a t i o n s o f t h e t y p e R . ; N + ( R = M e , E t , P r , B u ) . I f w e c o n s i d e r e a c h 8 e 5 2 ' c h a i n t o b e a s i n g l e h y p o t h e t i c a l a t o m t h e n t h e s t r u c t u r e o f [ M ( S e 5 ) 2 ] ' c a n b e t h o u g h t t o b e d e r i v e d f r o m t h a t o f H g 1 2 2 3 . 2 9 0 T h e m e t a l c e n t e r s a r e s i t u a t e d o n a c r y s t a l l o g r a p h i c S 4 s y m m e t r y a x i s a n d p o s s e s s a t e t r a h e d r a l c o o r d i n a t i o n . T h e r e i s a g o o d p r e c e d e n c e f o r t h e t e t r a h e d r a l c o o r d i n a t i o n g e o m e t r y o f g r o u p I I I - A m e t a l s i n t h e i r M 3 + o x i d a t i o n s t a t e w i t h s e l e n i d e l i g a n d s e g . [ I n 3 S e 3 ( S e 4 ) 3 ] 5 ' 2 2 , [ I n z S e 2 ( S e 4 ) 2 ] 2 ' 2 2 , [ G a S e 2 ] ' 3 8 , [ G a 4 8 e 1 0 ] 3 ' 3 8 , [ G a 5 S e 1 4 ] 1 0 ' 3 8 ; [ I n S e 2 ] 1 ' 3 8 1 4 . 2 5 , [ I n 2 8 e 5 1 4 ' 3 8 . 2 5 , a n d [ I n 4 S e 1 0 ] 3 ' 3 8 . T h e M - S e b o n d d i s t a n c e s f o r ( I ) , ( I I ) a n d ( I I I ) a r e g i v e n i n T a b l e 3 . 9 a n d a s e x p e c t e d t h e y i n c r e a s e f r o m G a t o T 1 . T h e l a y e r s a r e h e l d t o g e t h e r b y v a n d e r W a a l s f o r c e s a n d t h e a v e r a g e i n t e r l a y e r s p a c i n g i s ~ 7 . 6 3 A ( i . e . t h e c - a x i s ) . T h e S e - S e d i s t a n c e s a r e c o m p a r a b l e t o t h o s e f o u n d i n o t h e r p o l y s e l e n i d e c o m p l e x e s s . ? G / e 7 i 9 3 fl : $ / ? / 8 fi J g i i j y g 8 — i fi : v / E 3 R / k : W 9 / j 1 ‘ / fl 9 6 3 / p / g h E j i E / B G f t i \ i r g ( P h 4 P ) [ M ( S e 6 ) 2 ] a l o n t h e c r y s t a l l o g r a p h i c a b l a n e a ) . 5 % 2 a E E K / 9 % l a y e r s a l o n g t h e a b p l a n e w i t h t h e P h 4 P + c a t i o n s o m i t t e d . F i g u r e 5 . 3 O R T E P r e p r e s e n t a t i o n o f t h e v i e w o f t h e [ M ( S e 5 ) 2 ] n n ' 2 9 2 2 9 3 F i g u r e 5 . 4 O R T E P r e p r e s e n t a t i o n o f t h e v i e w o f t h e l a y e r s p r e p e n d i c u l a r t o t h e c - a x i . 2 9 4 T a b l e 5 . 9 . C o m p a r i s o n o f S o m e S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f t h e A n i o n [ M ( S e 5 ) 2 ] n n ' i n ( I ) , ( I I ) a n d ( I I I ) . S t a n d a r d D e v i a t i o n s a r e g i v e n i n P a r e n t h e s e s . ( P h 4 P ) G a ( S e 6 ) g ( P h 4 P ) I n ( S e § ) L ( P h 4 P ) T l ( S ¢ 5 ) L M - S e ( 1 ) 2 . 4 0 9 ( 4 ) 2 . 5 7 6 ( 5 ) 2 . 6 3 9 ( 2 ) S e ( 1 ) - S e ( 2 ) 2 . 3 4 1 ( 6 ) 2 . 3 5 3 ( 7 ) 2 . 3 3 4 ( 3 ) S e ( 2 ) - S e ( 3 ) 2 . 3 4 0 ( 6 ) 2 . 3 3 7 ( 7 ) 2 . 3 4 1 ( 3 ) S e ( 3 ) - S e ( 3 ) 2 . 3 6 7 ( 9 ) 2 . 3 5 0 ( 1 0 ) 2 . 3 6 0 ( 4 ) S e - S e ( m e a n ) 2 . 3 4 9 2 . 3 4 7 2 . 3 4 5 S e ( 1 ) - M - S e ( 1 ) 1 0 7 . 3 ( 1 ) 1 0 7 . 9 ( 1 ) 1 0 8 . 6 ( 1 ) S e ( 1 ) - M - S e ( 1 ) 1 1 3 . 9 ( 2 ) 1 1 2 . 7 ( 1 ) 1 1 1 . 3 ( 1 ) M - S e ( 1 ) - S e ( 2 ) 9 8 . 1 ( 2 ) 9 6 . 7 ( 2 ) 9 6 . 2 ( 1 ) S e ( 1 ) - S e ( 2 ) - S e ( 3 ) 1 0 6 . 2 ( 2 ) 1 0 6 . 9 ( 3 ) 1 0 6 . 6 ( 1 ) S e ( 2 ) - S e ( 3 ) - S e ( 3 ) 1 1 0 . 8 ( 2 ) 1 1 0 . 4 ( 2 ) 1 1 0 . 2 ( 1 ) 2 9 5 T h e r m a l G r a v i m e t r i c A n a l y s i s a n d D i f f e r e n t i a l S c a n n i n g C a l o r i m e t r i c S t u d i e s B e i n g p o l y c h a l c o g e n i d e s , ( I ) ( I I ) a n d ( I I I ) e x h i b i t r e m a r k a b l e t h e r m a l s t a b i l i t y . T h e r m a l g r a v i m e t r i c a n a l y s i s ( T G A ) o f ( I ) a n d ( I I ) s h o w s n o w e i g h t l o s s u p t o ~ 3 5 0 ° C a s s h o w n i n F i g u r e 5 . 5 . T h i s o n s e t t e m p e r a t u r e o f i n i t i a l w e i g h t l o s s , i s s h a r e d b y o t h e r P h 4 P + s a l t s o f p o l y s e l e n i d e c o m p l e x e s . I t r e p r e s e n t s t h e t h e r m a l s t a b i l i t y o f t h e P h 4 P + i o n w i t h r e s p e c t t o n u c l e o p h i l i c a t t a c k f r o m t h e S e x z ' l i g a n d s . A t h i g h e r t e m p e r a t u r e s ( 1 1 ) d e c o m p o s e s t o I n S e . T h e t h e r m a l b e h a v i o r o f ( I I ) w a s f u r t h e r s t u d i e d b y D i f f e r e n t i a l S c a n n i n g C a l o r i m e t r y ( D S C ) i n w h i c h w e u n c o v e r e d a v e r y u n u s u a l r e s u l t . U p o n h e a t i n g ( I I ) a s h a r p e n d o t h e r m a t 2 4 2 ° C i s o b s e r v e d , c o r r e s p o n d i n g t o c o n g r u e n t m e l t i n g . H o w e v e r , o n c o o l i n g n o c o r r e s p o n d i n g e x o t h e r m i c p e a k i s o b s e r v e d i n d i c a t i n g t h a t n o c r y s t a l l i z a t i o n o c c u r r e d . X - r a y d i f f r a c t i o n d a t a a t r o o m t e m p e r a t u r e s h o w e d t h a t t h e m a t e r i a l i s t r a p p e d i n a g l a s s y s t a t e . U p o n s u b s e q u e n t r e h e a t i n g , a b r o a d e x o t h e r m i s o b s e r v e d s t a r t i n g a t 1 3 5 ° C a n d p e a k i n g a t 1 6 0 ° C f o l l o w e d b y t h e s a m e s h a r p e n d o t h e r m 2 4 2 ° C . T h e D S C p l o t s f o r ( 1 1 ) a r e s h o w n i n F i g u r e 5 . 6 . X - r a y d i f f r a c t i o n s t u d i e s s h o w t h a t t h e e x o t h e r m a t 1 6 0 ° C i s d u e t o c r y s t a l l i z a t i o n o f t h e m a t e r i a l . T h i s c o n f i r m s t h a t o n c e m e l t e d , i t c a n b e c o o l e d t o a l a t e n t g l a s s y s t a t e a t r o o m t e m p e r a t u r e , F i g u r e 5 . 7 . ( P h 4 P ) [ G a ( S e 5 ) 2 ] ( I ) a n d ( P h 4 P ) [ T l ( S e 5 ) 2 ] ( I I I ) a l s o m e l t c o n g r u e n t l y a t 2 7 2 ° C a n d 2 1 3 ° C , r e s p e c t i v e l y , a n d u p o n s u b s e q u e n t h e a t i n g r e c r y s t a l l i z e a t 1 7 0 ° C a n d 1 3 0 ° C , r e s p e c t i v e l y . T h i s u n u s u a l m e l t - 2 9 6 g l a s s - c r y s t a l l i z a t i o n p r o p e r t y i s r e v e r s i b l e a n d s u g g e s t s t h a t t h e s e c o m p l e x e s c o u l d h a v e p o t e n t i a l a p p l i c a t i o n s a s e n e r g y s t o r a g e m a t e r i a l s . S i n c e ( P h 4 P ) [ M ( S e 5 ) 2 ] m e l t w i t h o u t d e c o m p o s i t i o n o n e s h o u l d b e a b l e t o e a s i l y f a b r i c a t e u n i f o r m t h i n f i l m s a n d f i b e r s w h i c h w i l l f u r t h e r a l l o w s t u d y o f t h e i r p r o p e r t i e s . T h i s i s i n d e e d p o s s i b l e b y h e a t i n g ( I I ) t o ~ 2 5 0 ° C , u n d e r a n i n e r t a t m o s p h e r e , a n d p r e s s i n g b e t w e e n t w o g l a s s s l i d e s w e w e r e a b l e t o f a b r i c a t e s m o o t h t h i n h o m o g e n o u s f i l m s . P r e l i m i n a r y r e s u l t s f r o m U V / V i s s p e c t r a o f t h i n f i l m s o f ( I I ) i n t h e g l a s s y s t a t e r e v e a l e d a b r o a d a b s o r p t i o n f r o m 9 0 0 - 6 0 0 n m . T h e a b s o r p t i o n s p e c t r u m o f t h e g l a s s y f i l m o f ( I I ) i s s h o w n i n F i g u r e 5 . 8 . I t h a s b e e n w e l l e s t a b l i s h e d t h a t d i r e c t b a n d - g a p m a t e r i a l s e x h i b i t a l i n e a r r e l a t i o n s h i p o f t h e s q u a r e o f a b s o r p t i o n w i t h r e s p e c t t o e n e r g y , 0 1 ( h u ) = A ( h 1 ) - E g ) 1 / 2 w h e r e a s i n d i r e c t b a n d - g a p m a t e r i a l s e x h i b i t a l i n e a r r e l a t i o n s h i p o f t h e s q u a r e r o o t o f a b s o r p t i o n w i t h r e s p e c t t o e n e r g y ” . A h u - E g 2 ( 1 0 1 1 ) ) = ( E ) : 1 - e x p - 4 k T F i g u r e 5 . 8 ( i n s e t ) s h o w s t h a t t h e s e f i l m s e x h i b i t a l i n e a r r e l a t i o n s h i p o f t h e s q u a r e r o o t o f a b s o r p t i o n v e r s u s e n e r g y i n t h e r a n g e o f 1 . 6 - 2 . 2 e V , t h u s i n d i c a t i n g a n i n d i r e c t b a n d - g a p o f ~ 1 . 4 e V . F u r t h e r w o r k i s n e e d e d f o r m o r e a c c u r a t e c h a r a c t e r i z a t i o n o n t h e o p t i c a l p r o p e r t i e s o f s i n g l e c r y s t a l s , a n d a r e c u r r e n t l y u n d e r w a y . % T H G I E W 0 2 5 0 5 0 0 7 5 0 1 0 0 0 2 9 7 1 0 0 T E M P E R A T U R E ( ° C ) F i g u r e 5 . 5 T G A d i a g r a m s ( u n d e r n i t r o g e n ) o f ( A ) ( P h 4 P ) [ G a ( S e 5 ) 2 ] ( I ) a n d ( B ) ( P h 4 P ) [ I n ( S e 6 ) 2 ] ( I I ) . 2 9 8 r v v r r T — v v r 1 . 0 1 - ( A ) ' 1 . " 1 p J b d ' 2 4 2 _ . 9 ' 0 p 1 1 1 1 L 1 1 0 4 0 0 B ) 1 . 0 ' - 1 ( “ r 6 5 . L 1 3 5 f ‘ ‘ B E b « 1 ) - . 1 . - J 1 - a t 2 4 2 . 4 ' 0 h A 1 1 1 1 1 1 - o 4 0 0 T E M P E R A T U R E ( ° C ) F i g u r e 5 . 6 D S C d i a g r a m s ( u n d e r n i t r o g e n ) o f ( P h 4 P ) [ I n ( S e 5 ) 2 ] ( I I ) ( A ) I n i t i a l c y c l e o f h e a t i n g a n d c o o l i n g ( B ) S u b s e q u e n t c y c l e . ) ) ) A C 3 ( ( ( 0 . 5 t a d e s s e c o r P ) B ( , s ) ) A B ( ( ‘ ' ' . . a . 6 l a t s y r c 0 e . l 0 g 6 n . i S ) n o i t ) a A z ( i l l ) a 0 . 5 t 5 I l ( ] s y r c 2 e ) r 6 ( e S 0 ( ) C 8 n ° . 0 « 0 I 5 ( 6 [ 0 ) P 4 1 2 h o 0 . 5 4 0 . 0 4 0 . P t ( g f n o i t a s e n h r e t t a r e t f p a n ) o C i ( t c a d r n f a f i d ) e t 5 a 3 y t a s r - y X s 7 s a l . g 5 ( e r u C ° g 0 i 0 F 3 ( C ) 2 9 9 2 1 1 * s b A S B A 3 0 0 1 . 0 - 0 . 8 - 0 . 6 - 0 . 4 5 1 0 . 2 - 0 . 0 1 9 , . 1 . 0 1 . 2 1 T ' T ' T ' l fl 4 1 6 1 8 2 0 2 2 e V I 1 r r 4 0 0 6 0 0 8 0 0 1 0 0 0 1 . ( n m ) F i g u r e 5 . 8 T h e a b s o r p t i o n s p e c t r u m o f t h e g l a s s y f i l m s o f ( P h 4 P ) [ I n ( S e 5 ) 2 ] ( I I ) . ( I n s e t a b s o r p t i o n “ 2 v e r s u s e n e r g y ( e V ) ) . 3 0 1 P r e l i m i n a r y r e s u l t s s h o w t h a t i o n - e x c h a n g e r e a c t i o n s w i t h o t h e r R 4 E + c a t i o n s i s p o s s i b l e . W e h a v e o b s e r v e d t h a t t h e o p e n s t r u c t u r e o f t h e [ M ( S e 5 ) 2 ] ' f r a m e w o r k c a n b e s u p p o r t e d b y o t h e r R 4 N + i o n s ( R = B u , 1 3 1 , H ) , i n t r o d u c e d v i a i o n - e x c h a n g e . T h e r e a c t i o n s b e t w e e n ( P h 4 P ) [ M ( S e 6 ) 2 ] a n d e i g h t f o l d e x c e s s o f R 4 N X ( X = C l , B r ) c a r r i e d o u t i n a c e t o n i t r i l e o r d e g a s s e d w a t e r a f f o r d e d m a t e r i a l s w i t h p a r t i a l i o n e x c h a n g e . T h e s e n e w m a t e r i a l s w e r e c h a r a c t e r i z e d b y X - r a y d i f f r a c t i o n p a t t e r n s , I R s p e c t r o s c o p y a n d e l e c t r o n m i c r o c o p y . T h e p o w d e r p a t t e r n s o f t h e t h e s e m a t e r i a l s d i d n o t c h a n g e b u t t h e M i d - I R s h o w e d t h e p r e s c e n c e o f b o t h c a t i o n s . Q u a n t i t a i v e m i c r o a n a l y s i s b y E D S / S E M s h o w e d a d e c r e a s e i n t h e p h o s p h o r o u s r a t i o a n d b y S E M n o a m o r p h o u s p h a s e s i s p r e s e n t . T h e s e r e s u l t s i n d i c a t e t h a t w e w e r e s u c c e s s f u l i n p a r t i a l l y i n t r o d u c i n g R 4 N + i o n s v i a i o n - e x c h a n g e , a n d f u r t h e r s t u d i e s a r e u n d e r i n v e s t i g a t i o n . C o n c l u s i o n T h e p o t e n t i a l u t i l i t y o f t h e ( R 4 E ) 2 Q x ( R = a l k y l o r a r y l g r o u p ; E = N o r P ) ( Q = S , S e , T e ) m o l t e n s a l t s a s s o l v e n t s a n d r e a g e n t s f o r s y n t h e s i s h a s n o t b e e n p r e v i o u s l y r e c o g n i z e d . S y n t h e s i s a t 2 0 0 ° C u t i l i z i n g t h e ( P h 4 P ) 2 S e x f l u x e s c a n p r o v i d e a n a v e n u e t o n e w m a t e r i a l s p o s s e s s i n g n o v e l f r a m e w o r k s a n d u n i q u e p r o p e r t i e s . W e b e l i e v e t h e s e r e a c t i o n s c a n b e e x p l o i t e d t o p r o d u c e o t h e r m e t a l p o l y c h a l c o g e n i d e s w i t h o p e n s t r u c t u r e s i n w h i c h a c t u a l m i c r o p o r o s i t y c o u l d b e a c h i e v e d . T h e s t r u c t u r e o f t h e s e m a t e r i a l s c o u l d b e d i c t a t e d b y t h e n a t u r e o f t h e t e m p l a t i n g o r g a n i c c a t i o n s , R 4 E + , w i t h s m a l l e r c a t i o n s l e a d i n g t o d e n s e r a n d p o s s i b l y 3 - d i m e n s i o n a l s t r u c t u r e s . L I S T O F R E F E R E N C E S ( a ) A m a t o , I S c i e n c e 1 9 9 1 , 2 5 2 , 6 4 4 - 6 4 6 . ( b ) D i S a l v o , F . J . S c i e n c e 1 9 9 0 , 2 4 : 2 , 6 4 9 - 6 5 5 . ( a ) S l e i g h t , A . W . S c i e n c e 1 9 8 8 , 2 4 2 , 1 5 1 9 . ( b ) P o o l , R . i b i d 1 9 8 9 , 2 4 4 , 9 1 4 ( a ) N e n o f , T . M . ; H a r r i s o n , W . T . A . ; G i e r , T . E . ; S t u c k y , G . D . J . A m . C h e m . S o c . 1 9 9 1 , 1 1 3 , 3 7 8 - 3 7 9 . ( b ) H a u s h a l t e r , R . C . ; S t r o h m a i r , K . G . ; L a i , F . W . S c i e n c e 1 9 8 9 , 1 4 1 1 , 1 2 8 9 - 1 2 9 1 . ( c ) S m i t h , J . V . C h e m . R e v . 1 9 8 8 , 8 8 , 1 4 9 - 1 8 2 . ( a ) K r o t o , H . W . ; H e a t h , J . R . ; O ' B r i e n , S . C . ; C u r l , R . F . ; S m a l l e y , R . E . N a t u r e ( L o n d o n ) 1 9 8 5 , 3 1 8 , 1 6 2 - 1 6 3 . ( b ) K r o t o , H . W . ; A l l a f , A . W . ; B a l m , S . P . C h e m . R e v . l 9 9 l , 2 1 _ , 1 2 1 3 - 1 2 3 5 . ( a ) S h a y , J . L . ; W e r n i c k , J . H . I n T e r n a r y C h a l c o p y r i t e S e m i c o n d u c t o r s : G r o w t h , E l e c t r o n i c P r o p e r t i e s a n d A p p l i c a t i o n ; P e r g a m o n P r e s s : E l m s f o r d , N Y , 1 9 7 5 . ( b ) M e a k i n , J . D . P r o c . S P l E - I n t . S o c . O p t . E n g . 1 9 8 5 M , 5 4 3 . ( a ) O i k k o n e n , M . ; T a m m e n m a a , M . ; A s p l u n d , M . M a t . R e s . B u l l . 1 9 8 8 , 2 1 , 1 3 3 - 1 4 2 . ( b ) Y a m a g a , S . ; Y o s h i k a w a , A . ; K a s a i , H . J p n . J . A p p l . P h y s . 1 9 8 7 , 2 6 , 1 0 0 2 . ( c ) F o n a s h , S . I . C R C C r i t i c a l R e v i e w s i n S o l i d S t a t e a n d M a t e r i a l s S c i e n c e 1 9 8 0 , 2 _ , 1 0 7 . ( a ) C h i a n e l l i , R . R . C a t a l . R e v - S c i . E n g . 1 9 8 4 , 2 _ 6 _ , 3 6 1 - 3 9 3 . ( b ) H o l m , R . H . ; S i m h o n , E . D . i n " M o l y b d e n u m E n z y m e s " ; S p i r o , T . 6 . ; E d . ; W i l y - I n t e r s c i e n c e : N Y , 1 9 8 5 ; C h a p t e r 1 ( c ) C o u c o u v a n i s , D . A c c . C h e m . R e s . 1 9 8 1 , 1 4 , 2 0 1 - 2 0 9 ( d ) C o u c o u v a n i s , D . A c c . C h e m . R e s . 1 9 9 1 , 2 _ 4 , 1 - 8 ( a ) K a n a t z i d i s , M . G . C o m m e n t s I n o r g . C h e m . 1 9 9 0 , 1 0 , 1 6 1 - 1 9 5 . ( b ) A n s a r i , M . A . ; I b e r s , J . A . I n o r g . C h e m . . 1 9 8 9 , 2 8 , 3 0 2 1 0 . 1 1 . 1 2 . 1 3 . 1 4 . 1 5 . 1 6 . 3 0 3 4 0 6 8 - 4 0 6 9 . ( c ) K o l i s , I . W . C o o r d . C h e m . R e v . 1 9 9 0 , 1 1 1 3 , 1 9 5 - 2 1 9 . ( d ) M i i l l e r , A ; D i e m a n n , E . A d v . I n o r g . C h e m . R a d i o c h e m . l 9 8 7 , 3 1 _ , 8 9 - 1 2 2 . ( e ) M i i l l e r , A . P o l y h e d r o n 1 9 8 6 . 3 , 3 2 3 - 3 4 0 . ( f ) D r a g a n j a c , M . ; R a u c h f u s s , T . B . A n g e w . C h e m i e . I n t . E d . E n g l . 1 9 8 5 , 2 4 , , 7 4 2 - 7 5 7 . ( g ) K r e b s , B A n g e w . C h e m i e . I n t . E d . E n g l 1 9 8 3 , 2 2 . . 1 1 3 - 1 3 4 . ( a ) R a o , C . N . R . ; G o p a l l a k r i s h n a n , J . N e w D i r e c t i o n i n S o l i d S t a t e C h e m i s t r y ; C a m b r i d g e U n i v e r s i t y P r e s s : N Y , 1 9 8 6 . ( b ) H a n g e n m u l l e r , P . P r e p a r a t i v e M e t h o d s i n S o l i d S t a t e C h e m i s t r y ; A c a d e m i c P r e s s : N Y , 1 9 7 2 . ( c ) C o r b e t t , I . D . I n S o l i d S t a t e C h e m i s t r y ; C h e e t a m , A . K . ; D a y , P . E d s . ; O x f o r d , 1 9 8 7 . ( d ) W e s t , A . R . S o l i d S t a t e C h e m i s t r y a n d I t s A p p l i c a t i o n s ; J o h n W i l e y a n d S o n s : N Y , 1 9 8 4 . ( a ) S u n s h i n e , 8 . A . ; K a n g , D . ; I b e r s , J . A . J . A m . C h e m . S o c . 1 9 8 7 , 1 0 2 , 6 2 0 2 - 6 2 0 4 . ( b ) K a n a t z i d i s , M . G . C h e m . M a t . 1 9 9 0 . 2 . 3 5 3 - 3 6 3 . ( c ) P a r k , Y . ; K a n a t z i d i s , M . G . C h e m . M a t . 1 9 9 1 . 3 , 7 8 1 - 7 8 3 . ( d ) K e a n e , P . M . ; L u , Y . - J . ; I b e r s , J . A . A c c . C h e m . R e s . 1 9 9 1 , 4 2 2 3 - 2 2 9 . ( a ) L i a o , I . - H . ; K a n a t z i d i s , M . G . J . A m . C h e m . S o c . 1 9 9 0 , 1 _ 1 _ 2 , , 7 4 0 0 - 7 4 0 2 . ( b ) L i a o , J . - H . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 2 , 3 1 , 4 3 1 - 4 3 9 . ( c ) K i m . K . - W . ; K a n a t z i d i s , M . G . J . A m . C h e m . S o c . ( i n p r e s s ) . B e d a r d , R . L . ; W i l s o n , S . T . ; V a i l , L . D . ; B e n n e t < E . M . ; F l a n i g e n , E . M . Z e o l i t e s : F a c t s , F i g u r e s , F u t u r e ; J a c o b s , P . A . , v a n S a n t e n , R . A . E d s . ; 1 9 8 9 E l s e v i e r S c i e n c e P u b l i s h e r s B . V . : A m s t e r d a m ; p p 3 7 5 - 3 8 7 . . P a r i s e , J . B . S c i e n c e 1 9 9 1 , 2 5 1 , 2 9 3 - 2 9 4 . S m i t h , D . K . ; N i c h o l s , M . C . ; Z o l e n s k y , M . E . " P O W D I O : A F o r t r a n I V P r o g r a m f o r C a l c u l a t i n g X - r a y P o w d e r D i f f r a c t i o n P a t t e r n " , v e r s i o n 1 0 , P e n n s y l v a n i a S t a t e U n i v e r s i t y , 1 9 8 3 . D I F A B S : " A n E m p i r i c a l M e t h o d f o r C o r r e c t i n g D i fi ' r a c t o m e t e r D a t a f o r A b s o r p t i o n C o r r e c t i o n " W a l k e r , N . ; S t u a r t , D . A c t a . C r y s t a l l o g r . 1 9 8 3 , A 3 2 , 1 5 8 - 1 6 6 . H u a n g , S . - P . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 1 , 3 0 . 1 4 5 5 - 1 4 6 6 . 1 7 . 1 8 . 1 9 . 2 0 . 2 1 . 2 2 . 2 3 . 2 4 . 2 5 . 2 6 . 2 7 . 3 0 4 W e l l e r , F . ; A d e l , J . ; D e h n i c k e , K . Z . A n o r g . A l l g . C h e m . 1 9 8 7 , 5 : 1 8 , 1 2 5 - 1 3 2 . N a g a t a , K . ; T s h i b a s h i , K . ; M i y a m o t o , Y . J p n J . A p p l . P h y s . 1 9 8 0 , 1 2 , 1 5 6 9 - 1 5 7 3 . S t r a s d e i t , H . ; K r e b s , B . ; H e n k e l , G . I n o r g . C h i m . A c t a 1 9 8 4 , 8 2 , L 1 - L 1 3 . H u a n g , S . - P . ; D h i n g r a , S . ; K a n a t z i d i s , M . G . P o l y h e d r o n 1 9 9 0 , 2 , 1 3 8 9 - 1 3 9 5 . K r i i u t e r , G . ; D e h n i c k e , K . ; F e n s k e , D . C h e m . - Z t g . 1 9 9 0 , ] _ 1 _ 4 _ , 7 - 9 . D h i n g r a , S . ; K a n a t z i d i s , M . G . m a n u s c r i p t i n p r e p a r a t i o n , S e e C h a p t e r 2 . J e f f e r y , G . A . ; V l a s s e , M . I n o r g . C h e m . 1 9 6 7 , Q , 3 9 6 — 3 9 9 . P a r k e s , J . ; T o m l i n s o n , R . D . ; H a m p s h i r e , M . J . J . A p p l . C r y s t a l o g r . 1 9 7 3 , 4 1 4 - 4 1 6 . M i i l l e r , D . ; E u l e n b e r g e r , G . ; H a h n , M . Z . A n o r g . A l l g . C h e m 1 9 7 3 , 3 2 3 , 2 0 7 - 2 2 0 . E i s e n m a n n , B . ; H o f m a n n , A . Z . A n o r g . A l l g . C h e m 1 9 9 0 , 3 8 1 1 , 1 5 1 - 1 5 9 . P a n k o v e , J . 1 . " O p t i c a l P r o c e s s e s i n S e m i c o n d u c t o r s " D o v e r P u b l i c a t i o n s , I n c . , N e w Y o r k , 1 9 8 8 ( C h a p t e r 3 ) . C H A P T E R 6 T H E U S E O F S O L U B L E M E T A L - P O L Y S E L E N I D E C O M P L E X E S A S P R E C U R S O R S T O B I N A R Y A N D T E R N A R Y S O L I D M E T A L S E L E N I D E S 3 0 5 3 0 6 A B S T R A C T T h e r m a l g r a v i m e t r i c a n a l y s i s ( T G A ) d a t a , u n d e r i n e r t a t m o s p h e r e , o f t h e m o l e c u l a r c o m p o u n d s s u c h a s ( P h 4 P ) 2 [ C d ( S e 4 ) 2 ] , ( P h 4 P ) 4 [ C u z ( S c s ) 2 ( S c 4 ) 1 . ( P h 4 P ) 2 [ C u 4 ( S e 4 ) 3 ] . ( P h 4 P ) 4 [ 1 n 2 ( S C 4 ) 4 ( S e s ) ] a n d ( E t 4 N ) 3 [ M 3 8 e 3 ( S e 4 ) 3 ] , ( M = I n , T l ) , s h o w t h a t t h e c o r r e s p o n d i n g b i n a r y s o l i d s t a t e c o m p o u n d s a r e f o r m e d a s s i n g l e p h a s e s a t t e m p e r a t u r e s a s l o w a s 5 3 0 ° C . W e h a v e g r o w n f i l m s o f C d S e , C u 2 - x S e , B - I n 2 8 e 3 , T l S e a n d C u I n S e 2 u s i n g t h e s e c o m p l e x e s a s p r e c u r s o r s . T h e f i l m s w e r e p r e p a r e d b y p y r o l y s i s o f g r e e n p r e c u r s o r fi l m s , c a s t f r o m D M F s o l u t i o n s u n d e r a n i n e r t a t m o s p h e r e . C u l n S e z w a s p r e p a r e d b y c o - t h e r m o l y s i s o f C u / S e x a n d I n / S e x c o m p l e x e s i n t h e a p p r o p r i a t e s t o i c h i o m e t r i e s . T h e c h e m i c a l , X - r a y , s p e c t r o s c o p i c a n d e l e c t r o n m i c r o s c o p i c c h a r a c t e r i z a t i o n o f t h e s e m o l e c u l a r p r e c u r s o r - d e r i v e d f i l m s a s w e l l a s t h e c h a r g e t r a n s p o r t c h a r a c t e r i z a t i o n o f C u I n S e z a r e r e p o r t e d 3 0 7 I N T R O D U C T I O N C o m p a r e d t o t h e e x t e n s i v e i n v e s t i g a t i o n s o f t h e c h e m i s t r y o f m o l e c u l a r p r e c u r s o r m a t e r i a l s f o r t h e s y n t h e s i s o f m e t a l o x i d e c e r a m i c s a n d s e m i c o n d u c t o r s l , l i t t l e w o r k h a s b e e n c a r r i e d o u t i n t h e a r e a o f c h a l c o g e n i d e s o l i d s t a t e m a t e r i a l s 2 v 3 , p a r t i c u l a r l y i n v o l v i n g t h e h e a v i e r c h a l c o g e n s . O f t h e m o l e c u l a r c h a l c o g e n i d e s , s u l f i d e s a r e t h e m o s t s t u d i e d . T h e w o r k o n s u l f i d e s h a s c o n c e n t r a t e d o n v o l a t i l e s p e c i e s p r i m a r i l y f o r m e t a l - o r g a n i c c h e m i c a l v a p o r d e p o s i t i o n ( M O C V D ) e . g s y n t h e s i s o f Z n S , C d S 4 a n d T i S 2 5 . T h e v o l a t i l i t y o f m o l e c u l a r m e t a l - c h a l c o g e n i d e s d e c r e a s e s r a p i d l y f r o m S t o T e . T h e t a s k o f p r o d u c i n g s t a b l e v o l a t i l e M / Q ( Q - - S e , T e ) c o m p o u n d s f o r M O C V D i s e x t r e m e l y c h a l l e n g i n g . O n t h e c o n t r a r y , i t i s c o n s i d e r a b l y e a s i e r t o s y n t h e s i z e p u r e n o n - v o l a t i l e c o m p l e x e s o f m e t a l - c h a l c o g e n i d e s . I t w o u l d t h u s b e h i g h l y d e s i r a b l e i f m e t h o d s w e r e d e v e l o p e d t o f a b r i c a t e c h a l c o g e n i d e f i l m s o f c o m p a r a b l e q u a l i t y t o t h o s e o b t a i n e d b y M O C V D u s i n g n o n - v o l a t i l e p r e c u r s o r s . T h e m o l e c u l a r c h a l c o g e n i d e c h e m i s t r y w e h a v e b e e n d e v e l o p i n g i n o u r l a b o r a t o r y 5 , i s w e l l s u i t e d f o r t h e p e r s u e d o f s u c h a g o a l . S o l i d s t a t e c h a l c o g e n i d e s e n j o y m a n y p r a c t i c a l a p p l i c a t i o n s s u c h a s I R d e t e c t i o n a n d i m a g i n g 7 , e l e c t r o - l u m i n e s c e n t d e v i c e s 7 v 3 , o p t o e l e c t r o n i c s 9 , s o l a r c e l l s 1 0 a n d h i g h e n e r g y d e n s i t y r e c h a r g e a b l e b a t t e r i e s 1 1 e t c . T o d a t e , m o s t o f t h e s e m a t e r i a l s a r e m a d e a t t e m p e r a t u r e s g r e a t e r t h a n 7 0 0 ° C . H e r e w e r e p o r t o u r r e s u l t s o n t h e u s e o f s o l u b l e m e t a l / p o l y s e l e n i d e s a s p r e c u r s o r s t o p r e p a r e f i l m s o f t h e s o l i d s t a t e b i n a r y a n d t e r n a r y s e l e n i d e s o f C d S e , C u 2 - x S e , B - I n 2 8 e 3 , ' I ‘ l S e a n d C u I n S e 2 ( a n i m p o r t a n t n e x t g e n e r a t i o n m a t e r i a l f o r f u t u r e s p a c e 3 0 8 p h o t o v o l t a i c a p p l i c a t i o n s ” ) . A p r e l i m i n a r y a c c o u n t o f t h i s w o r k h a s a p p e a r e d ” . E X P E R I M E N T A L S E C T I O N R e a g e n t s T h e c h e m i c a l s i n t h i s r e s e a r c h w e r e u s e d a s o b t a i n e d c o m m e r c i a l l y : s e l e n i u m , 9 9 . 9 9 9 % p u r i t y , A m e r i c a n S m e l t i n g a n d R e f i n i n g C o m p a n y , D e n v e r , C O . ; i n d i u m ( I I I ) c h l o r i d e , 9 9 . 9 9 9 % p u r i t y ; C e r a c I n c . M i l w a u k e e , W I . ; t h a l l i u m ( l ) c h l o r i d e , 9 9 % p u r i t y , c o p p e r ( I ) c h l o r i d e , 9 7 % p u r i t y , c a d m i u m ( I I ) c h l o r i d e , 9 9 % p u r i t y , t e t r a p h e n y l p h o s p h o n i u m c h l o r i d e ( P h 4 P C l ) , 9 8 % p u r i t y , t e t r a e t h y l a m m o n i u m b r o m i d e ( E t 4 N B r ) , 9 8 % p u r i t y ; A l d r i c h C h e m i c a l C o m p a n y I n c . , M i l w a u k e e , W I . D i m e t h y l f o r m a m i d e ( D M F ) , a n a l y t i c a l r e a g e n t , w a s s t o r e d o v e r 4 A L i n d e m o l e c u l a r s i e v e s f o r o v e r a w e e k a n d t h e n d i s t i l l e d u n d e r r e d u c e d p r e s s u r e a t 2 5 - 3 0 ° C . T h e f i r s t 5 0 m l w a s d i s c a r d e d . P h y s i c o c h e m i c a l S t u d i e s T h e r m a l g r a v i m e t r i c a n a l y s i s ( T G A ) o f t h e p r e c u r s o r c o m p l e x e s w e r e r e c o r d e d o n e i t h e r a C a h n T G s y s t e m 1 2 1 o r a S h i m a d z u T G A - 5 0 . T h e s o l i d s a m p l e s w e r e h e a t e d f r o m r o o m t e m p e r a t u r e t o 8 0 0 ° C a t a r a t e o f 5 ° C / m i n u n d e r a s t e a d y f l o w o f d r y n i t r o g e n . 3 0 9 X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e r e c o r d e d o n a P h i l l i p s X R G - 3 0 0 0 c o m p u t e r c o n t r o l l e d p o w d e r d i f f r a c t o m e t e r . N i - f i l t e r e d , C u - r a d i a t i o n w a s u s e d . D - s p a c i n g s ( A ) f o r a l l m a t e r i a l s w e r e m e a s u r e d a n d t h e X - r a y p o w d e r p a t t e r n s o b t a i n e d f r o m t h e f i l m s w e r e i n g o o d a g r e e m e n t w i t h t h o s e g i v e n i n t h e J C P D S P o w d e r D i f f r a c t i o n F i l e 1 3 . S c a n n i n g e l e c t r o n m i c r o s c o p y ( S E M ) a n d Q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s o f t h e f i l m s w e r e p e r f o r m e d o n a J E O L J S M - 3 5 C e q u i p p e d w i t h a n X - r a y m i c r o a n a l y s i s a t t a c h m e n t f r o m T r a c o r N o r t h e r n T N 5 5 0 0 , f o r e n e r g y d i s p e r s i v e s p e c t r o s c o p y ( E D S ) . T h e f i l m s w e r e m o u n t e d o n a n a l u m i n u m s t u b a l o n g w i t h t h e s u b s t r a t e u s i n g d o u b l e s i d e d t a p e a n d c o n d u c t i v e c a r b o n p a i n t w a s a p p l i e d t o t h e s i d e s o f t h e f i l m t o d i s s i p a t e c h a r g e t h a t i s d e v e l o p e d o n t h e s a m p l e u n d e r a n e l e c t r o n b e a m . E n e r g y d i s p e r s i v e s p e c t r a w e r e o b t a i n e d u s i n g t h e e x p e r i m e n t a l s e t - u p a s g i v e n i n t h e p r e v i o u s c h a p t e r s . T r a n s m i s s i o n e l e c t r o n m i c r o s c o p y ( T E M ) a n d s e l e c t e d a r e a e l e c t r o n d i f f r a c t i o n ( S A E D ) s t u d i e s w e r e p e r f o r m e d w i t h a J E O L - 1 0 0 C X ( I I ) a t 1 0 0 K V . T h e s a m p l e s w e r e p r e p a r e d b y d i s p e r s i n g t h e m a t e r i a l s i n a c e t o n e , s o n i c a t e d f o r 2 m i n u t e s t h e n d e p o s i t e d o n h o l e y f i l m - c o a t e d c o p p e r g r i d s . T h e d - s p a c i n g s c a l c u l a t e d f r o m t h e d i f f r a c t i o n p a t t e r n s w e r e f u r t h e r c a l i b r a t e d b y a l u m i n u m s t a n d a r d s a f t e r e a c h m e a s u r e m e n t . I n f r a r e d s p e c t r a o f t h e c o m p l e x e s w e r e r e c o r d e d a s s o l i d s i n a K B r o r C s I m a t r i x o n a N i c o l e t 7 4 0 F ' T - I R s p e c t r o m e t e r . E a c h s a m p l e w a s s c r a p p e d o f f t h e s u b s t r a t e a n d w a s g r o u n d a l o n g w i t h K B r o r C s I t o a f i n e p o w d e r , a n d a t r a n s l u c e n t p e l l e t w a s m a d e b y a p p l y i n g 3 1 0 ~ 1 5 0 0 0 p s i p r e s s u r e t o t h e m i x t u r e . T h e s p e c t r a w e r e r e c o r d e d i n t h e M i d I R ( 4 0 0 0 t o 4 0 0 c m ' l ) a n d F a r I R r e g i o n ( 5 0 0 t o 1 0 0 c m ' l ) . T h e c h a r g e t r a n s p o r t m e a s u r e m e n t s w e r e d o n e b y P r o f . C a r l R . K a n n e w u r f a n d c o w o r k e r s a t t h e E l e c t r i c a l E n g i n e e r i n g D e p a r t m e n t , N o r t h w e s t e r n U n i v e r s i t y . T h e p r o t o c o l f o r c h a r g e t r a n s p o r t m e a s u r e m e n t s h a s b e e n r e p o r t e d b y P r o f . K a n n e w u r f e t a l . 1 4 . S y n t h e s e s A l l t h e e x p e r i m e n t s a n d s y n t h e s e s w e r e p e r f o r m e d u n d e r a n a t m o s p h e r e o f d r y n i t r o g e n i n a V a c u u m A t m o s p h e r e s D r i - L a b g l o v e b o x . T h e p r e c u r s o r p o l y s e l e n i d e c o m p l e x e s w e r e p r e p a r e d a s d e s c r i b e d p r e v i o u s l y . 1 5 ' 1 9 . V a r i o u s s u b s t r a t e s ( p y r e x g l a s s , q u a r t z , s t a i n l e s s s t e e l , c a r b o n a n d c o p p e r ) w e r e s t u d i e d i n o r d e r t o e v a l u a t e t h e i r i n f l u e n c e o n f i l m q u a l i t y a n d h o m o g e n e i t y . P r e p a r a t i o n o f B - I n z s e 3 f i l m s U n d e r i n e r t a t m o s p h e r e ( g l o v e b o x ) 0 . 3 g ( 0 . 1 5 6 m m o l ) o f ( E t 4 N ) 3 [ I n 3 8 e 3 ( S e 4 ) 3 ] w a s d i s s o l v e d i n c a . 2 m l o f D M F a n d w a s f i l t e r e d t o o b t a i n a n o r a n g e r e d s o l u t i o n . T h i s . s o l u t i o n w a s c a s t d r o p w i s e o n t o a h e a t e d s u b s t r a t e ( 1 5 0 ° C - 1 6 0 ° C ) . A s t h e D M F s l o w l y e v a p o r a t e d , i t l e f t b e h i n d a c o n t i n u o u s " g r e e n " f i l m ( w i t h o u t b u b b l e s o r c r a c k s ) . T h e p r o c e s s c a n b e r e p e a t e d i f n e c e s s a r y t o i n c r e a s e t h e f i l m t h i c k n e s s . T h e ” g r e e n " f i l m s w e r e p l a c e d i n s i d e a p y r e x t u b e u n d e r a s t e a d y f l o w o f d r y n i t r o g e n a n d w e r e h e a t e d t o 5 5 0 ° C f o r 6 h o u r s . T h e r e s u l t i n g I n 2 8 e 3 f i l m s w e r e m e t a l l i c g r a y i n c o l o r . 3 1 1 P r e p a r a t i o n o f T l S e f i l m s T h i s w a s c a r r i e d o u t i n D M F u s i n g ( E t 4 N ) 3 [ T l 3 S e 3 ( S e 4 ) 3 ] i n a n i d e n t i c a l p r o c e d u r e d e s c r i b e d f o r t h e B - I n 2 8 e 3 f i l m s a b o v e . P r e p a r a t i o n o f C d S e f i l m s T h i s w a s c a r r i e d o u t i n D M F u s i n g ( P h 4 P ) 2 [ C d ( S e 4 ) 2 ] i n a n i d e n t i c a l p r o c e d u r e d e s c r i b e d f o r t h e B - I n z s e a fi l m s a b o v e . T h e f i l m s t h u s o b t a i n e d o f C d S e w e r e d a r k b r o w n i n c o l o r . P r e p a r a t i o n o f C u 2 . x S e f i l m s T h i s w a s c a r r i e d o u t i n D M F u s i n g ( P h 4 P ) 2 [ C u 4 ( S e 4 ) 3 ] i n a n i d e n t i c a l p r o c e d u r e d e s c r i b e d f o r t h e B - I n 2 8 e 3 f i l m s a b o v e . T h e r e s u l t i n g C u 2 - x S e f i l m s w e r e b l a c k i n c o l o r . P r e p a r a t i o n o f C u I n S e z f i l m s 0 . 5 g ( 0 . 2 6 1 m m o l ) o f ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] a n d 0 . 4 9 g ( 0 . 2 6 1 m m o l ) o f ( P h 4 P ) 2 [ C u 4 ( S e 4 ) 3 ] w e r e d i s s o l v e d i n c a . 4 m 1 o f d i s t i l l e d D M F . T h e r e d c o l o r e d s o l u t i o n w a s t h e n c a s t o n h e a t e d s u b s t r a t e s ( p y r e x g l a s s , q u a r t z , c a r b o n , c o p p e r a n d s t a i n l e s s s t e e l ) a t 1 5 0 ° C - 1 6 0 ° C . T h e D M F e v a p o r a t e d s l o w l y t o d r y n e s s t o l e a v e s m o o t h a n d c o n t i n u o u s , d e e p r e d , " g r e e n " f i l m s , T h e s u b s t r a t e s w e r e l e f t t o c o o l a n d t h e n b r o u g h t o u t o f t h e g l o v e - b o x a n d p l a c e d i n s i d e a p y r e x t u b e u n d e r a s t e a d y f l o w o f d r y n i t r o g e n . T h e t e m p e r a t u r e w a s r a m p e d t o 5 5 0 ° C w i t h i n a n h o u r . F o l l o w i n g 6 h o u r s a t 5 5 0 ° C t h e f i l m s w e r e c o o l e d t o r o o m t e m p e r a t u r e i n 6 - 7 h o u r s . T h e r e s u l t i n g g r e y b l a c k f i l m s o f C u I n S e z w e r e s t o r e d u n d e r v a c u u m . 3 1 2 R E S U L T S A N D D I S C U S S I O N T h e s t r u c t u r e s o f t h e a n i o n s i n t h e p o l y s e l e n i d e c o m p l e x e s ( P h 4 P ) 2 [ C d ( S e 4 ) 2 ] 1 5 . ( P h 4 P ) 2 [ C U 4 ( S e 4 ) 3 ] ‘ 5 . ( P h 4 P ) 4 [ C 0 2 ( S e s ) 2 ( S e 4 ) l 1 7 . ( P h 4 P ) 4 [ l n z ( S e 4 ) 4 ( S e s ) ] 1 8 a n d ( E t 4 N ) 3 [ M 3 3 6 3 ( S e 4 ) 3 1 1 9 ( M = I n , T 1 ) . a r e s h o w n s c h e m a t i c a l l y i n F i g u r e 6 . 1 . T h e r m a l g r a v i m e t r i c a n a l y s i s ( ' T G A ) d a t a , u n d e r i n e r t a t m o s p h e r e , o f t h e s e c o m p o u n d s s h o w t h a t t h e c o r r e s p o n d i n g b i n a r y s o l i d s t a t e c o m p o u n d s a r e f o r m e d a s s i n g l e p h a s e s a t t e m p e r a t u r e s a s l o w a s 5 3 0 ° C . T h e T G A p l o t s f o r t h e C d a n d C u c o m p l e x e s a r e s h o w n i n F i g u r e 6 . 2 w h e r e a s t h e I n a n d T 1 c o m p l e x e s a r e r e p o r t e d i n C h a p t e r 2 . T h e T G A d i a g r a m s o f t h e c o m p o u n d s s h o w t h a t t h e o n s e t t e m p e r a t u r e f o r w e i g h t - l o s s c o r r e l a t e s w i t h t h e s t a b i l i t y o f t h e o r g a n i c c o u n t e r i o n i . e P h 4 P + > E t 4 N + . T h i s i m p l i e s t h a t t h e r a t e d e t e r m i n i n g s t e p f o r t h e d e c o m p o s i t i o n i s t h e n u c l e o p h i l i c a t t a c k o f a c o o r d i n a t e d S e 2 ' l i g a n d i n t h e a n i o n o n t h e a l k y l ( o r a r y l ) g r o u p o f a c a t i o n t o f o r m a n a l k y l a t e d S e s p e c i e s . B a s e d o n t h e T G A r e s u l t s , w e s e t o u t t o u s e t h e s e c o m p l e x e s a s p r e c u r s o r s t o s o l i d s t a t e c h a l c o g e n i d e s . T h e s e c o m p l e x e s a r e e x c e l l e n t s i n g l e s o u r c e p r e c u r s o r s f o r f i l m f a b r i c a t i o n o f t h e s o l i d s t a t e m a t e r i a l s a s t h e y i n h e r e n t l y c o n t a i n o n l y M - S e b o n d s . W e h a v e s u c c e s s f u l l y g r o w n s i n g l e - p h a s e s o l i d f i l m s o f t h e c o r r e s p o n d i n g c r y s t a l l i n e b i n a r y p h a s e s ( i . e . C d S e , C u 2 - x S e , B - I n 2 8 e 3 , T l S e ) a s e v i d e n c e d f r o m t h e X - r a y d i f f r a c t i o n p a t t e r n s . T h e f i l m s w e r e p r e p a r e d b y p y r o l y s i s o f g r e e n p r e c u r s o r f i l m s c a s t f r o m D M F s o l u t i o n s u n d e r a n i n e r t a t m o s p h e r e a n d s u b s e q u e n t h e a t i n g t o 5 5 0 ° C u n d e r a s t e a d y f o l l o w o f d r y n i t r o g e n a s s h o w n s c h e m a t i c a l l y i n F i g u r e 6 . 3 . 3 1 3 - . a . » - 2 7 . . . . . 2 4 4 7 7 ? C u S k s f ” \ s e ’ s ‘ s z s ° \ s z é " \ s / L ° . 1 T a d / S “ . . . . b ’ 8 0 _ - . , " \ s ? 8 : 5 8 1 ? 4 3 1 5 / S l d k s f k s é s e h h ‘ s é ! 5 6 / 8 0 ) " ! 8 . 2 . 3 1 . a . s 1 . . . » \ . . _ . . / L " 8 9 . s g \ s o \ _ \ v s - s F i g u r e 6 . 1 S c h e m a t i c r e p r e s e n t a t i o n o f t h e p o l y s e l e n i d e a n i o n s i n t h e p r e c u r s o r c o m p l e x e s . % T H G I E W 3 1 4 1 0 0 T E M P E R A T U R E ( ° C ) F i g u r e 6 . 2 T G A d i a g r a m s ( u n d e r N i t r o g e n ) o f ( A ) ( P h 4 P ) 2 [ C d ( S e 4 ) 2 ] , ( B ) ( P h 4 P ) 2 [ C u 4 ( S e 4 ) 3 1 a n d ( C ) ( P h 4 P ) 4 [ C u z ( S e s ) 2 ( S e 4 ) ] - 3 1 5 C o n c e n t r a t e d D M F s o l u t i o n s p r e p a r e d i n i n e r t a t m o s p h e r e ‘ / P r e h e a t e d S u b s t r a t e a t 1 5 0 ° C C a s t i n g o f t h e fi l m s S u b s e q u e n t h e a t i n g t o 5 5 0 ° C ‘ P F i g u r e 6 . 3 S c h e m a t i c r e p r e s e n t a t i o n o f t h e f i l m f a b r i c a t i o n p r o c e s s . 3 1 6 F a b r i c a t i o n o f C d S e F i l m s T h e t h e r m a l d e c o m p o s i t i o n o f ( P h 4 P ) 2 [ C d ( S e 4 ) 2 ] r e s u l t s i n t h e f o r m a t i o n o f C d S e a s t h e o n l y p r o d u c t a c c o r d i n g t o e q 1 . T h e v o l a t i l e o r g a n i c b y - p r o d u c t s a r e c a r r i e d o f f b y t h e fl o w i n g n i t r o g e n g a s . ( P h 4 P ) 2 [ C d ( S e 4 ) 2 ] - - - - - > C d S e + t h s e T + P h 3 P T + P h 3 P S e T + S e e q . 1 C d S e f i l m s w e r e d e p o s i t e d o n v a r i o u s s u b s t r a t e s ( p y r e x g l a s s , q u a r t z , s t a i n l e s s s t e e l , c a r b o n a n d c o p p e r ) i n o r d e r t o e v a l u a t e t h e s u b s t r a t e i n f l u e n c e o n f i l m q u a l i t y a n d h o m o g e n e i t y . B y o u r p r o c e s s t h e b e s t f i l m s w e r e o b t a i n e d o n c a r b o n s u b s t r a t e s w h i c h e x h i b i t e d r e l a t i v e l y s m o o t h f i l m s w i t h a u n i f o r m g r a i n s i z e o f C d S e p a r t i c l e s i n t h e s u b m i c r o n r a n g e ( ~ 0 . 5 1 1 m ) . F i g u r e 6 . 4 s h o w s a s c a n n i n g e l e c t r o n ( S E M ) m i c r o g r a p h o f a C d S e fi l m o n c a r b o n . T h e C d S e f i l m s s h o w e d n o a b s o r p t i o n s i n t h e M i d - I R r e g i o n i n d i c a t i n g t h e a b s e n c e o f a n y o r g a n i c g r o u p s a s r e s i d u e f r o m t h e c a t i o n s p r e s e n t i n t h e p r e c u r s o r . T h e F a r - I R r e g i o n e x h i b i t o n e s t r o n g a b s o r p t i o n a t 1 8 4 c m ' 1 w h i c h i s g o o d c a n d i d a t e f o r C d - - S e s t r e t c h i n g v i b r a t i o n . . W e d e t e c t e d , b y X - r a y d i f f r a c t i o n ( F i g u r e 6 . 5 ) , b o t h h e x a g o n a l ( m a j o r ) a n d c u b i c ( m i n o r ) p o l y t y p e s o f C d S e i n a l l t h e f i l m s r e g a r d l e s s o f t h e s u b s t r a t e e m p l o y e d . S i n c e t h e r e i s s i g n i f i c a n t o v e r l a p o f t h e l o w a n g l e d i f f r a c t i o n p e a k s o f t h e h e x a g o n a l a n d c u b i c f o r m s , t h e p r e s e n c e o f c u b i c C d S e w a s c o n f i r m e d f r o m t h e h i g h a n g l e d a t a . T h e c o n d u c t i v i t y o f t h e C d S e f i l m s a s a p r e s s e d p e l l e t i s o f t h e o r d e r o f 1 0 ‘ 7 Q ' l c m ' l . T h e v e r y l o w c o n d u c t i v i t y d i d n o t a l l o w f o r r e l i a b l e t h e r m o p o w e r m e a s u r e m e n t s t o b e m a d e . 3 1 7 F i g u r e 6 . 4 S E M m i c r o g r a p h o f a C d S e f i l m o n C a r b o n 0 1 1 0 : 0 4 1 7 . 1 5 5 ) ( ! 1 8 0 0 0 ( . 0 2 1 T ) 1 1 1 0 4 ( ) C 0 3 ) 5 1 ( 1 5 0 ) ? 1 ' 2 3 1 2 ( ( . 0 1 0 5 2 ( 1 m l i f e S d C a t a p n o i t c a r f d y a r - X 5 . . 0 4 6 e r u g i F 0 . 0 2 0 . 0 ( ) ) n m o “ ) n “ ( " ) , 2 ( ” ) 3 1 3 1 . 2 0 ) 1 1 3 H 1 ( 1 5 2 8 3 3 ) 8 H 0 1 5 0 0 o fl f 0 . n r ) e 0 t g 8 e d 1 ( ( 3 3 ( , ) C ° 0 0 . 9 0 f 6 2 i 4 m ( 2 0 2 ( ) " 2 0 “ ; 1 0 ) C ) ! 1 1 2 1 1 3 1 ( ( ) ) C ! 1 0 0 2 1 2 1 ( ( ) ) C “ 1 2 1 0 1 0 . ( ( . . . . . } " 3 0 1 ) 1 1 1 0 1 f i g s u a l u l 4 - 0 5 1 3 . 2 0 : 2 . 4 5 4 1 . 3 0 - 1 . 2 5 4 0 . 8 0 ‘ 0 . 4 5 - 0 . 2 0 1 0 . 0 5 1 3 1 8 3 1 9 F a b r i c a t i o n o f C u 2 . x S e F i l m s T h e t h e r m a l d e c o m p o s i t i o n r e a c t i o n o f ( P h 4 P ) 4 [ C u 2 ( S e 5 ) 2 ( S e 4 ) ] o r ( P h 4 P ) 2 [ C u 4 ( S e 4 ) 3 ] r e s u l t s i n t h e f o r m a t i o n o f C u 2 - x S e a s t h e s i n g l e p h a s e p r o d u c t . T h e f i l m s e x h i b i t e d a r a t h e r r o u g h m o r p h o l o g y w h e n e x a m i n e d u n d e r S E M a n d c o n s i s t e d o f r e l a t i v e l y l a r g e c r y s t a l l i t e s ( ~ 1 5 u m ) . F i g u r e 6 . 6 s h o w s a n S E M m i c r o g r a p h o f C u 2 - x S e f i l m o n p y r e x a s a r e p r e s e n t a t i v e e x a m p l e s t o i l l u s t r a t e t h e p o i n t . E v e n t h o u g h w e o b s e r v e fi n e p l a t e l e t s i n t h e m i c r o g r a p h s w e d i d n o t f i n d a n y s i g n i f i c a n t p r e f e r e n t i a l o r i e n t a t i o n o f t h e f i l m s b y X - r a y d i f f r a c t i o n s t u d i e s ( F i g u r e 6 . 7 ) . T h e M i d - I R s p e c t r a o f t h e f i l m s s h o w e d n o r e s i d u a l h y d r o c a r b o n p e a k s ( f r o m t h e o r g a n i c c a t i o n s ) . F a b r i c a t i o n o f B - I n 2 8 e 3 F i l m s F i l m s o f t h e b i n a r y p h a s e B - I n 2 8 e 3 w e r e p r e p a r e d b y t h e t h e r m o l y s i s o f e i t h e r ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e s ) ] o r ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] , a n d w e r e c h a r a c t e r i z e d b y X - r a y d i f f r a c t i o n . B - I n 2 8 e 3 f i l m s o b t a i n e d f r o m t h e ( P h 4 P ) 4 [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] c o m p l e x o n Q u a r t z a s s u b s t r a t e s w e r e . o f b e t t e r m o r p h o l o g i c a l q u a l i t y a s e v i d e n t b y S E M s t u d i e s . F i g u r e 6 . 8 s h o w s a n S E M m i c r o g r a p h o f t h e B - I n z S e g f i l m o n Q u a r t z a n d o n e c a n v e r y c l e a r l y o b s e r v e t h e h e x a g o n a l m o r p h o l o g y o f t h e c r y s t a l s . I t i s i n t e r e s t i n g t o n o t e t h a t r e g a r d l e s s o f t h e s u b s t a r t e b o t h p r e c u r s o r c o m p l e x e s g a v e B - I n 2 8 e 3 c o n s i s t i n g o f s i m i l a r c r y s t a l l i t e s i z e o f ~ 5 - 1 0 1 1 m . T h e f i l m s a r e v e r y c l e a n a n d f u r t h e r c h a r a c t e r i z a t i o n b y s e l e c t e d a r e a e l e c t r o n d i f f r a c t i o n p a t t e r n s ( S A E D ) b y T E M c o n fi r m e d t h e b i n a r y B - I n z S e g . p h a s e 2 0 a ( F i g u r e 6 . 9 ) . 3 2 0 . - { ‘ 1 7 . _ 1 ' . r . 3 ‘ r V h ‘ i ‘ x 1 B B _ B U C E U Q H F i g u r e 6 . 6 S E M m i c r o g r a p h o f a C u 2 - x S e f i l m o n P y r e x ) 4 4 4 ( ) 3 3 3 . 5 1 1 ) ( 4 2 2 ( ) 3 3 1 ( ) “ 0 ( ) 2 0 0 ( 0 . 0 4 1 0 . 0 2 1 0 . 0 0 s m l i f e S x - 2 1 u C a f o n 0 . 0 r ' ' 8 1 0 . e t t a p n o i t c a 0 r 6 T 0 7 , . 0 4 U 0 . U f f i d y a r - X 7 . 6 e r u g i F ‘ ‘ 1 ‘ 3 “ 1 4 “ 1 4 9 6 5 6 9 1 4 8 6 4 3 2 1 0 0 0 . . . . . . . . . 5 1 1 8 1 1 3 1 1 1 ] 2 0 ( 0 2 2 ) O H ) 2 0 ( d e g ) 3 2 1 3 2 2 I S K U H 2 0 0 - - n ' 1 fi fi _ B U [ £ 0 9 9 F i g u r e 6 . 8 S E M m i c r o g r a p h o f a B - I n z S e 3 fi l m o n Q u a r t z . F i g u r e 6 . 9 S e l e c t e d A r e a E l e c t r o n D i f f r a c t i o n o f a B - I n 2 8 e 3 f i l m . T h e u n i t c e l l d i m e n s i o n s o f B - I n 2 S e 3 a r e a = b = 3 . 9 9 3 ( 1 ) A , c = 2 8 . 3 9 1 ( 5 ) A , 0 1 = B = 9 0 . 0 ° , v = 1 2 0 . 0 ° . T h e S A E D i s f r o m t h e " 1 1 0 ” c r y s t a l d i r e c t i o n . 3 2 4 B - I n 2 8 e 3 f i l m s d i d n o t e x h i b i t a n y s i g n i f i c a n t p r e f e r e n t i a l o r i e n t a t i o n . T h e M i d - I R s p e c t r a o f t h e f i l m s s h o w e d n o r e s i d u a l h y d r o c a r b o n p e a k s ( f r o m t h e o r g a n i c c o u n t e r i o n s ) . O n e s t r o n g a b s o r p t i o n w a s o b s e r v e d i n t h e F a r - I R s p e c t r a a t 1 8 1 c m ' 1 w h i c h i s p r o b a b l y d u e t o t h e I n — - S e s t r e t c h i n g v i b r a t i o n b y c o m p a r i s o n t o t h e s p e c t r a o f a - I n 2 8 e 3 ( H ) a n d a - I n 2 8 e 3 ( R ) w h i c h e x h i b i t t w o s t r o n g a b s o r p t i o n s a t 1 8 8 , 1 6 3 c m “ 1 a n d 1 8 9 , 1 6 4 c m ' l , r e s p e c t i v e l y 2 1 . F a b r i c a t i o n o f T l S e F i l m s T h e t h e r m a l d e c o m p o s i t i o n r e a c t i o n o f ( E t 4 N ) 3 [ T l 3 S e 3 ( S e 4 ) 3 ] r e s u l t s i n t h e f o r m a t i o n o f T l S e a s ‘ t h e s i n g l e p h a s e p r o d u c t . T h e f i l m s e x h i b i t e d a r a t h e r r o u g h m o r p h o l o g y . W e f o u n d t h a t t h e b o u n d a r i e s o f t h e T l S e p a r t i c l e s w e r e v e r y d i f f u s e d , w h e n e x a m i n e d u n d e r S E M . F i g u r e 6 . 1 0 s h o w s a n S E M m i c r o g r a p h o f T l S e f i l m o n Q u a r t z a s a r e p r e s e n t a t i v e e x a m p l e s t o i l l u s t r a t e t h e p o i n t . H o w e v e r , f i l m s o f T l S e s h o w e d c o n s i d e r a b l e p r e f e r e n t i a l o r i e n t a t i o n r e g a r d l e s s o f s u b s t r a t e . W e o b s e r v e d i n t h e X - r a y d i f f r a c t i o n p a t t e r n s o f t h e T l S e f i l m s t h e h 0 0 a n d M O c l a s s o f r e f l e c t i o n s a r e g r e a t l y e n h a n c e d w h i l e . h 0 1 r e f l e c t i o n s a r e d i m i n i s h e d , F i g u r e 6 . 1 1 . T h i s i n d i c a t e s t h a t t h e c - a x i s o f t h e t e t r a g o n a l u n i t c e l l 2 0 b o f t h e T l S e c r y s t a l l i t e s a r e p a r a l l e l t o t h e s u b s t r a t e . T h i s i s p r o b a b l t d u e t o t h e p a r t i a l m e l t i n g o f T l S e ( m . p t . o f T l S e 3 5 0 ° C ) d u r i n g fi l m f o r m a t i o n a t 5 3 0 ° C a s o b s e r v e d i n t h e S E M m i c r o g r a p h s . T h e M i d - I R s p e c t r a o f t h e f i l m s s h o w e d n o r e s i d u a l h y d r o c a r b o n p e a k s ( f r o m t h e o r g a n i c c o u n t e r i o n s ) . 3 2 5 1 9 E U C E Q B B F i g u r e 6 . 1 0 S E M m i c r o g r a p h o f a T l S e fi l m o n Q u a r t z . ( . 0 4 1 Y v 0 . 0 2 1 0 . m l i f e S l 0 T 0 1 a f o n r 0 e ) . g 0 e t t a 8 p n o i t c a r f f i d y a r - X 1 1 . 6 e r u g i F I Y d ( 0 0 . 2 0 6 ) 0 2 2 ( ) 0 0 2 0 . 0 4 0 ( . ) O l l ( 0 2 0 . 0 ' ‘ ‘ 5 0 0 2 . . 4 3 . ( u s u a i u l 3 2 6 6 “ 3 . O 0 . 2 0 ‘ 0 . 0 5 3 2 7 F a b r i c a t i o n o f C u I n S e z F i l m s F i l m s o f t h e t e r n a r y p h a s e C u I n S e z w e r e p r e p a r e d b y t h e c o - t h e r m o l y s i s o f C u / S e x a n d I n / S e x c o m p l e x e s i n t h e a p p r o p r i a t e s t o i c h i o m e t r y . I n a t y p i c a l e x p e r i m e n t ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] a n d ( P h 4 P ) 2 [ C u 4 ( S e 4 ) 3 ] o r ( P h 4 P ) 4 [ C u 2 ( S e 5 ) 2 ( S e 4 ) ] w e r e d i s s o l v e d i n D M F i n a 4 : 3 a n d 2 : 3 m o l a r r a t i o r e s p e c t i v e l y . T h e s e p r o p o r t i o n s r e s u l t i n a C u z l n r a t i o o f 1 : 1 . T h e d e c o m p o s i t i o n r e a c t i o n f o r C u I n S e z i s s h o w n e q . 2 . C a r e m u s t b e t a k e n i n t h e m o l a r r a t i o s o f t h e I n / S e a n d C u / S e p r e c u r s o r s i n o r d e r t o a v o i d i m p u r i t y o f I n 2 S e 3 a n d C u 2 - x S e p h a s e s . 4 ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] + 3 ( P h 4 P ) 2 [ C U 4 ( S e 4 ) 3 ] - - - > l Z C u I n S e z + 1 2 E t 3 N T + P h 3 P T + 6 E t 2 8 e T + 3 P h 2 8 e T + P h 3 P S e T + n S e e q ( 2 ) A t y p i c a l X - r a y d i f f r a c t i o n p a t t e r n o b t a i n e d f r o m t h e C u I n S e z f i l m s i s s h o w n i n F i g u r e 6 . 1 2 . C u I n S e 2 f i l m s d i d n o t s h o w a n y s i g n i f i c a n t p r e f e r e n t i a l o r i e n t a t i o n . T h e q u a l i t y o f t h e C u I n S e z f i l m s d e p e n d e d o n t h e s u b s t r a t e . I n g e n e r a l , t h e b e s t q u a l i t y f i l m s i n t e r m s o f s m o o t h n e s s a n d c o n t i g u i t y w e r e o b t a i n e d o n c a r b o n a n d p y r e x ‘ s u b s t r a t e s . T h e m o r p h o l o g y o f C u I n S e z f i l m s o n v a r i o u s s u b s t r a t e s w e r e e x a m i n e d b y S E M . F i g u r e 6 . 1 3 - 6 . 1 4 s h o w s e v e r a l m i c r o g r a p h s o f t h e f i l m s o f C u I n S e 2 o n d i f f e r e n t s u b s t r a t e s . T h e f i l m s h a v e a g r a n u l a r m i c r o c r y s t a l l i n e n a t u r e w i t h a n a v e r a g e c r y s t a l l i t e g r a i n s i z e o f 1 - 5 u m . T h e v a r i a b l e t e m p e r a t u r e c o n d u c t i v i t y o f C u I n S e 2 p r o d u c e d f r o m t h e c o - t h e r m o l y s i s r e a c t i o n o f e q . 2 e x h i b i t e d t h e i n c r e a s e i n c o n d u c t i v i t y w i t h r i s i n g t e m p e r a t u r e 3 2 8 a n d t h e r o o m t e m p e r a t u r e c o n d u c t i v i t y i s ~ 1 0 ' 4 Q ' 1 c m ' 1 . T h i s d e p e n d e n c e o f c o n d u c t i v i t y a s a f u n c t i o n o f t e m p e r a t u r e i s a t y p i c a l t h e r m a l l y a c t i v a t e d b e h a v i o r d o m i n a t e d b y i n t e r p a r t i c l e c o n t a c t r e s i s t a n c e . T h e r m o e l e c t r i c p o w e r ( T P ) m e a s u r e m e n t s s h o w a h i g h a n d p o s i t i v e S e e b e c k c o e f f i c i e n t w i t h i n c r e a s i n g v a l u e s a t h i g h e r t e m p e r a t u r e s . T h i s t h e r m o p o w e r b e h a v i o r i s f o r m e t a l b u t t h e v a l u e s a r e i n t h e s e m i c o n d u c t o r r a n g e , i n d i c a t i n g t h a t t h e C u I n S e z f i l m s a r e p - t y p e s e m i c o n d u c t o r s . T h i s i s c o n s i s t e n t w i t h h e a v y d o p i n g w i t h n i t r o g e n a n d / o r p h o s p h o r o u s ” . M o s t p h o t o v o l t a i c a p p l i c a t i o n s o f t h i s m a t e r i a l r e q u i r e p - t y p e c o n d u c t i v i t y . T h e c o n d u c t i v i t y a n d t h e r m o e l e c t r i c p o w e r d a t a a s a f u c t i o n o f t e m p e r a t u r e a r e s h o w n i n F i g u r e 6 . 1 5 - 6 . 1 6 , r e s p e c t i v e l y . T h e I R s p e c t r a o f t h e f i l m s s h o w e d n o r e s i d u a l h y d r o c a r b o n p e a k s ( f r o m t h e o r g a n i c c o u n t e r i o n s ) . E x a m i n a t i o n o f t h e s e f i l m s b y s e l e c t e d a r e a e l e c t r o n d i f f r a c t i o n ( S A E D ) w i t h a T E M a l s o c o n f i r m e d t h e i d e n t i t y o f t h e p h a s e a s s h o w n i n F i g u r e 6 . 1 6 . T h e q u a l i t y o f t h e p r e c u r s o r g r e e n f i l m s ( s m o o t h n e s s a n d t h i c k n e s s h o m o g e n e i t y ) w a s r e f l e c t e d i n t h e q u a l i t y o f t h e f i n a l c h a l c o g e n i d e f i l m . O f t e n f i l m s s h o w e d c r a c k s o r p i n h o l e s a r i s i n g f r o m . t h e r e l a t i v e l y l a r g e s h r i n k a g e a s s o c i a t e d w i t h t h e p y r o l y s i s o f t h e p r e c u r s o r c o m p l e x e s . I t s h o u l d b e n o t e d f o r e x a m p l e t h a t ( P h 4 P ) 2 [ C d ( S e 4 ) 2 ] w i l l l o s e 8 6 . 5 % o f i t s m a s s t o y i e l d t h e f i n a l C d S e p r o d u c t . F o r C u I n S e z t h e w e i g h t - l o s s i s 7 0 % . I n o r d e r t o i m p r o v e t h e q u a l i t y o f t h e f i n a l f i l m s a n d r e d u c e t h e e x t e n t o f s h r i n k a g e , c o m p l e x e s w i t h h i g h e r M / S e r a t i o a r e n e e d e d w h i c h w i l l n o t r e q u i r e s u c h a d r a s t i c w e i g h t - l o s s . A t t h i s s t a g e o n l y r e l a t i v e l y t h i c k f i l m s ( 2 5 - 3 5 1 1 1 1 1 ) w e r e m a d e i n o r d e r t o e v a l u a t e t h e f i l m f o r m i n g a b i l i t y ) ' 1 . 0 4 1 1 ‘ ( ) 1 2 3 ( ) 4 5 0 0 2 5 ( . ) 7 7 ) 0 3 2 4 5 3 ( 5 . 6 1 5 ( ) ‘ 8 4 0 ( ) 2 1 5 . 6 3 3 ( ) 4 2 . 4 ( ) 2 3 3 . 6 1 3 ( ) 0 0 4 ( 0 . 0 2 1 0 . 0 0 1 s m l i f z e S n I u 7 C 1 U ‘ f o n r e t ) g e t a d p I ( - ) 7 ' H 2 4 " ) ) n o i t c 0 3 ( 3 I 2 . 0 a 3 ) r ‘ ) 2 1 3 . 6 1 1 ( ) 0 2 2 . 4 2 ) ] 0 3 ( 5 3 0 0 1 ( 1 2 C 5 1 ) ( . ) 2 f f i d y a r - X ( ( ) 2 1 1 ( . " ‘ 2 ‘ ) 1 0 1 ( . . ‘ ‘ ( ‘ 5 5 0 0 ' i E B 0 4 8 E 5 5 4 4 0 2 . . 2 . . . . . 1 4 3 2 ( 0 1 1 K i t s u e t u l 4 « ) ( . ) C 2 2 ) ( . ) ( ( ) . 1 3 C ) ' ( 1 0 3 ) 0 . 0 5 ‘ F i g u r e 6 . 1 2 1 3 C ) . ( ) V 1 fi 3 2 9 F i g u r e 6 . 1 3 S E M m i c r o g r a p h o f C u I n S e 2 F i l m s o n ( A ) Q u a r t z a n d ( B ) P y r e x s u b s t r a t e s . F i g u r e 6 . 1 4 S E M m i c r o g r a p h o f C u I n S e z F i l m s o n ( A ) S t a i n l e s s S t e e l a n d ( B ) C a r b o n s u b s t r a t e s . 3 3 2 2 _ . 7 ‘ 0 _ \ E u E ' - — Q 2 Q \ . > . — 4 — — K k . > . I : - 5 — L 1 8 2 - 3 _ _ Q 0 U o O Q 0 0 — 1 o - — c ? “ l — 1 2 L — 9 l l 1 1 l 1 l L 1 l l l l L J L 1 1 I l l l 1 L l l l 1 l l l 0 5 0 . 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 T E M P E F P A T U B E ( K ) F i g u r e 6 . 1 5 V a r i a b l e t e m p e r a t u r e C o n d u c t i v i t y d a t a o f a p r e s s e d p e l l e t o f C u I n S e z . fi T I I K / V u ( ? F E H O P O M R E H T O 8 i 9 0 1 4 0 1 9 0 T E M P E R A T U R E 2 4 0 ( K ) 2 9 0 3 4 a 3 3 3 7 0 — 6 0 5 0 \ “ “ 1 4 0 + — « 9 " 3 o — - « # “ F ’ 2 0 1 0 L — l l 1 l 1 1 l l l 1 1 L 1 l l 1 1 _ l l 1 1 1 4 1 l l F i g u r e 6 . 1 6 V a r i a b l e t e m p e r a t u r e t h e r m o e l e c t r i c p o w e r d a t a o f a p r e s s e d p e l l e t o f C u I n S e z . F i g u r e 6 . 1 7 S e l e c t e d A r e a E l e c t r o n D i f f r a c t i o n o f C u I n S e z F i l m 3 3 5 o f t h e p r e c u r s o r s . T h i n f i l m s s h o u l d b e f a b r i c a b l e w i t h t h e u s e o f a s p e c i a l s p i n - c o a t e r e q u i p p e d w i t h a s u b s t r a t e h e a t e r a n d o p e r a t i n g u n d e r a n i n e r t a t m o s p h e r e . F u r t h e r w o r k i n t h i s d i r e c t i o n i s i n p r o g r e s s . C o n c l u s i o n S i n g l e p h a s e b i n a r y a n d t e r n a r y c h a l c o g e n i d e f i l m s o f C d S e , C u 2 - x S e , B - I n 2 8 e 3 , T l S e a n d C u I n S e z h a v e b e e n p r e p a r e d a t 5 3 0 ° C u s i n g m o l e c u l a r p r e c u r s o r p o l y s e l e n i d e c o m p l e x e s . T o t h e b e s t o f o u r k n o w l e d g e t h i s i s t h e f i r s t t i m e C u 2 - x S e , B - I n 2 8 e 3 , T l S e a n d C u I n S e z h a v e b e e n m a d e b y m o l e c u l a r p r e c u r s o r m e t h o d s . P r e p a r e d b y t h i s m e t h o d , C u I n S e z i s p - t y p e , t h e c o r r e c t d o p i n g n e e d e d f o r p h o t o v o l t a i c a p p l i c a t i o n s . O n e o f t h e l i m i t a t i o n s o f t h e s e m o l e c u l a r p r e c u r s o r c o m p l e x e s i s t h e l a r g e w e i g h t - l o s s a s s o c i a t e d w i t h p y r o l y s i s w h i c h c a n r e s u l t i n c r a c k e d a n d d i s c o n t i n u o u s f i l m s . A l t h o u g h t h i s c o u l d b e a v o i d e d b y p r e p a r i n g g o o d g r e e n p r e c u r s o r fi l m s , m o l e c u l a r p r e c u r s o r s w i t h h i g h M / S e r a t i o a r e d e s i r e d t o h e l p s o l v e . t h i s p r o b l e m . 1 0 . L I S T O F R E F E R E N C E S ( a ) G a o , Y . - M . ; W u , P . ; D w i g h t , K . ; W o l d , A J . S o l i d S t a t e C h e m . 1 9 9 1 , 2 Q , 2 2 8 . ( b ) Q i a n , Y . - T . ; N i u , C . - M . ; H a n n i g a n , C . ; Y a n g , S . ; D w i g h t , K . ; W o l d , A J . S o l i d S t a t e C h e m . 1 9 9 1 , 2 2 , 2 0 8 . ( a ) N o m u r a , R . ; F u j i i , S . ; K a n a y a , K . ; M a t s u d a , H . P o l y h e d r o n 1 9 9 0 , 2 , 3 6 1 . ( b ) B r e n n a n , J . G . ; S i e g r i s t , T . ; C a r r o l l , J . P . ; S t r u c z y n s k i , S . M . ; B r u s , L . B . ; S t e i g e r w a l d , M . L . J . A m . C h e m . S o c . 1 9 8 9 , L L L , 4 1 4 1 - 4 1 4 3 . ( c ) S t e i g e r w a l d , M . L . ; R i c e , C . E . J . A m . C h e m . S o c . 1 9 8 8 , & , 4 2 2 8 - 4 2 3 1 . ( ( 1 ) Z a o , X . K . ; B a r a l , S . ; R o l a n d i , R . ; F e n d l e r , J . H . J . A m . C h e m . S o c . 1 9 8 8 , 1 1 1 1 , 1 0 1 2 - 1 0 2 4 . A l b i n , D . S . ; R i s b u d , S . H . A d v . C e r a m . M a t e r . 1 9 8 7 , _ 2 _ , 2 4 3 F a n , G . ; W i l l i a m s , J . O . J . C h e m . S o c . F a r a d a y T r a n s . 1 9 8 7 , 3 3 , 3 2 3 - 3 3 8 . B o c h m a n n , M . ; H a w k i n s , 1 . ; W i l s o n , L . M . J . C h e m . S o c . , C h e m . C o m m u n . 1 9 8 8 , 3 4 4 . K a n a t z i d i s , M . G . C o m m e n t s I n o r g . C h e m . 1 9 9 0 , . 1 _ Q , 1 6 1 - 1 9 5 . . ( a ) S m i t h , R . A . i n " S e m i c o n d u c t o r s " p p . 4 3 8 , C a m b r i d g e U n i v e r s i t y P r e s s , 1 9 7 8 . ( b ) B a r t l e t t , B . E . e t a l . I n f r a r e d P h y s . 1 9 6 9 , 2 , 3 5 . K u n , Z . K . S o l i d S t a t e T e c h n o l o g y 1 9 8 8 , 3 1 , , L 7 7 - 7 9 . B a l l m a n , A . A . ; B y e r , R . L . ; E i m e r l , D . ; F e i g e l s o n , R . S . ; F e l d m a n , B . J . ; G o l d b e r g . L . S . ; M e n y u k , N . ; T a n g , C . L . A p p l i e d O p t i c s 1 9 8 7 , 2 _ 6 _ , 2 2 4 - 2 2 7 . ( a ) M i c k e l s e n , R . A . ; C h e n , W . S . i n " T e r n a r y a n d M u l t i n a r y 3 3 6 1 1 . 1 2 . 1 3 . 1 4 . 1 5 . 1 6 . 1 7 . 1 8 . 1 9 . 2 0 . 2 1 . 2 2 . 3 3 7 C o m p o u n d s , " P r o c e e d i n g s o f t h e 7 t h C o n f e r e n c e , D e b , S . K . a n d Z u n g e r , A . E d s . , M a t e r i a l s R e s e a r c h S o c i e t y . 1 9 8 7 , p p . 3 9 - 4 7 . ( b ) S t e w a r d , J . M . ; C h e n , W . S . ; D e v a n e y , W . E . ; M i c k e l s e n , R . A . D e b , S . K . a n d Z u n g e r , A . E d s . , M a t e r i a l s R e s e a r c h S o c i e t y , 1 9 8 7 . p p . 5 9 - 6 4 . ( a ) W h i t t i n g h a m , M . S . S c i e n c e 1 9 7 6 , 1 2 2 , 1 1 2 5 . ( b ) W h i t t i n g h a m , M . S . J . S o l i d S t a t e C h e m . 1 9 7 9 , 2 2 . 3 0 3 - 3 1 0 . D h i n g r a , S . ; K a n a t z i d i s M . G . i n " B e t t e r C e r a m i c s T h r o u g h C h e m i s t r y I V " M a t . R e s . S o c . S y m p . P r o c . 1 9 9 0 . 1 3 2 , 8 2 5 - 8 3 0 . J C P D S P o w d e r D i f f r a c t i o n F i l e : I n t e r n a t i o n a l C e n t e r f o r D i f f r a c t i o n D a t a . 1 9 8 3 , S w a r t h m o r e , P A , U S A . ( C d S e ) ( H ) # 8 - 4 5 9 ; ( C d S e ) ( C ) 8 E # 1 9 - 1 9 1 ; ( C u 2 - x S e ) ( x ~ 0 . 1 5 ) # 6 - 0 6 8 0 ; ( T l S e ) 1 6 L L # 2 2 - 1 4 7 6 ; ( C u I n S e 2 ) 1 6 L L # 2 3 - 2 0 9 D i e l . B . N . ; l n a b e , T . ; L y d i n g , J . W . ; S c h o c k , K . F . ; K a n n e w u r f . C . R . ; T o b i n , M . J . J . A m . C h e m . S o c . 1 9 8 3 , L 0 3 , 1 5 5 1 - 1 5 6 7 . B a n d a , R . M . H . ; C u s i c k , 1 . ; S c u d d e r , M . L . ; C r a i g , D . C . ; D a n c e , I . G . P o l y h e d r o n 1 9 8 9 , 3 . 1 9 9 5 - 1 9 9 8 . C u s i c k , J . ; S c u d d e r , M . L . ; C r a i g , D . C . ; D a n c e , 1 . G . P o l y h e d r o n 1 9 8 9 . 3 , 1 1 3 9 - 1 1 4 1 . M u l l e r . U . ; H a - E i e r d a n z . M . ; K r i i u t e r , G . ; D e h n i c k e , K . Z . N a t u r f o r s c h . 1 9 9 0 , 4 5 b , 1 1 2 8 - 1 1 3 2 . K a n a t z i d i s , M . G . ; D h i n g r a , S . I n o r g . C h e m . 1 9 8 9 , 2 8 , 2 0 2 4 - 2 0 2 6 . D h i n g r a . S . ; K a n a t z i d i s , M . G . ( S e e C h a p t e r 2 ) ( a ) B - I n 2 8 e 3 : P o p o v i c . S . ; T o n e j e , A . ; G r z e t a - P l e n k o v i c , B . ; C e l u s t k a . B . ; T r o j k o . R . J . A p p l . C r y s t a l l o g r . 1 9 7 9 , 1 2 , 4 1 6 - 4 2 0 ( b ) T l S e : K e t e l a a r , J . A . A . ; t ' H a r t . W . H . ; M o e r e l . M . ; P o l d e r , D . Z . K r i s t a l l o g r . 1 9 3 9 . 1 _ Q _ 1 _ , 3 9 6 - 4 0 5 . L u t z . H . D . ; F i s c h e r . M . ; B a l d u s , H . - P . ; B l a n c h n i k . R . J . L e s s - C o m m o n M e t . 1 9 8 8 , 1 4 3 . 8 3 - 9 2 . S E M - E D S a n a l y s i s o f t h e C u I n S e 2 f i l m s i n d i c a t e d t h e p r e s e n c e o f t r a c e s o f P ( < 0 . 0 7 % p e r w e i g h t ) C H A P T E R 7 P O L Y C H A L C O G E N I D E C O M P L E X E S A S L O W T E M P E R A T U R E P R E C U R S O R S F O R Q U A N T U M S I Z E A N D B U L K B I N A R Y A N D T E R N A R Y S E M I C O N D U C T O R S 3 3 8 3 3 9 A B S T R A C T W e p r e s e n t o u r r e c e n t i n v e s t i g a t i o n s o f [ C u 4 ( S e 4 ) 3 ] 2 ' a n d [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ' a s c o n v e n i e n t l o w t e m p e r a t u r e p r e c u r s o r s t o s e m i c o n d u c t i n g C u S e a n d C u l n S e z . D M F s o l u t i o n s o f t h e s e c o m p l e x e s r e a c t w i t h S e a b s t r a c t i n g r e a g e n t s s u c h a s C N ' a n d ( n - B u ) 3 P t o y i e l d t h e c o r r e s p o n d i n g b i n a r y s o l i d s a t 1 5 5 ° C o r l e s s . A p p r o p r i a t e s t o i c h i o m e t r i c m i x t u r e s o f [ C u 4 ( S e 4 ) 3 ] 2 ' a n d [ I n 3 8 e 3 ( S e 4 ) 3 ] 3 ' r e a c t t o g i v e C u I n S e 2 i n t h e t e m p e r a t u r e r a n g e o f 6 0 - 1 5 5 ° C . T h e s e m i c o n d u c t i n g s o l i d s w e r e c h a r a c t e r i z e d w i t h U V / V i s s p e c t r o s c o p i c , I n f r a r e d s p e c t r o s c o p i c , X - r a y c r y s t a l l o g r a p h i c , e l e c t r o n ( s c a n n i n g a n d t r a n s m i s s i o n ) m i c r o s c o p i c t e c h n i q u e s a n d c h a r g e t r a n s p o r t m e a s u r e m e n t s ( C u I n S e z ) . T h e p a r t i c l e s i z e o f t h e s e m a t e r i a l s c a n r a n g e f r o m t h e q u a n t u m - s i z e r e g i m e t o t h e b u l k r e g i m e . d e p e n d i n g o n r e a c t i o n c o n d i t i o n s , m e t a l p r e c u r s o r c o m p l e x e s a n d S e a b s t r a c t i n g r e a g e n t u s e d . 3 4 0 I N T R O D U C T I O N T h e m o l e c u l a r a p p r o a c h t o s o l i d s t a t e c h e m i s t r y i s c u r r e n t l y a n a r e a o f i n t e n s e i n v e s t i g a t i o n l . T h e d r i v i n g f o r c e i s a n e v e r i n c r e a s i n g n e e d t o p r o d u c e b e t t e r m a t e r i a l s f o r e l e c t r o n i c s a n d o p t o e l e c t r o n i c s a p p l i c a t i o n s , w i t h i m p r o v e d p r o p e r t i e s a n d u n d e r m i l d c o n d i t i o n s z . I n t h e c a s e o f s e m i c o n d u c t o r s , t h e m a i n i m p e t u s h a s c o n c e n t r a t e d o n t h e p y r o l y s i s o f o r g a n o m e t a l l i c o r m e t a l o r g a n i c p r e c u r s o r s f o r b u l k s y n t h e s i s a n d t h i n f i l m d e p o s i t i o n ( e g . Z n S , C d S 3 a n d T 1 8 2 4 ) a n d o n t h e l o w t e m p e r a t u r e s o l u t i o n s y n t h e s i s o f q u a n t u m - s i z e c r y s t a l l i t e s o f b i n a r y I I - V I a n d I I I - V m a t e r i a l s z . S o l i d s t a t e c h a l c o g e n i d e s p o s s e s s m a n y p r a c t i c a l a p p l i c a t i o n s s u c h a s I R d e t e c t i o n a n d i m a g i n g 5 ( e g . H g 1 - x C d e e ) . e l e c t r o l u m i n e s c e n t d e v i c e s 6 ( e g . Z n S , C d S e ) . o p t o e l e c t r o n i c s 7 ( e g . T 1 3 A s S e 3 ) . s o l a r c e l l s 8 ( c g . C u I n S e z , C d T e ) a n d h i g h e n e r g y d e n s i t y r e c h a r g e a b l e b a t t e r i e s 9 e t c . T o d a y , m o s t o f t h e s e m a t e r i a l s a r e m a d e a t h i g h t e m p e r a t u r e s . M o l e c u l a r b i n a r y m e t a l - p o l y c h a l c o g e n i d e a n i o n s w i t h a v a r i e t y o f m e t a l s a n d c h a l c o g e n s a r e n o w a v a i l a b l e l a r g e l y d u e t o e x t e n s i v e s y n t h e t i c e f f o r t s i n o u r g r o u p a n d e l s e w h e r e d u r i n g t h e l a s t d e c a d e " ) . W h i l e t h e p r o p e r t i e s o f t h e s e m o l e c u l e s a r e n o w b e g i n n i n g t o b e e x p l o r e d , t h e i r p o t e n t i a l a s p r e c u r s o r s f o r t h e l o w t e m p e r a t u r e d e p o s i t i o n o f c o r r e s p o n d i n g s e m i c o n d u c t i n g c h a l c o g e n i d e s h a s n o t b e e n e x p l o r e d . M e t a l p o l y c h a l c o g e n i d e s a r e s t a b l e . e a s y t o p r e p a r e a n d h a n d l e a n d d o n o t s u f f e r f r o m o d o r p r o b l e m s a s s o m e s e l e n i u m a n d t e l l u r i u m r e a g e n t s c a n . T h i s p r o m p t e d u s t o i n v e s t i g a t e s u c h m o l e c u l e s f o r p o s s i b l e u t i l i t y a s p r e c u r s o r s t o s o l i d s t a t e c h a l c o g e n i d e s . W e r e p o r t h e r e t h a t s o l u b l e b i n a r y m e t a l 3 4 1 p o l y c h a l c o g e n i d e s [ C u 4 , ( S e 4 ) 3 ] 2 ' ~ 1 1 a n d [ I n 3 8 e 3 ( S e 4 ) 3 ] 3 ' v 1 2 c a n , u n d e r a p p r o p r i a t e c o n d i t i o n s , b e e x c e l l e n t n o n - p y r o l y t i c 1 3 , l o w t e m p e r a t u r e m o l e c u l a r p r e c u r s o r s t o b i n a r y ( I - V I ) a n d m o r e i m p o r t a n t l y t e r n a r y ( I I I I V 1 2 ) s o l i d s t a t e s e m i c o n d u c t o r s i n t h e q u a n t u m - s i z e o r b u l k f o r m . A r e c o r d l o w t e m p e r a t u r e s y n t h e s i s o f C u I n S e z . a n i m p o r t a n t n e x t g e n e r a t i o n m a t e r i a l f o r f u t u r e s p a c e p h o t o v o l t a i c a p p l i c a t i o n s s . i s d e m o n s t r a t e d . E X P E R I M E N T A L S E C T I O N R e a g e n t s T h e c h e m i c a l s i n t h i s r e s e a r c h w e r e u s e d a s o b t a i n e d c o m m e r c i a l l y : s e l e n i u m , 9 9 . 9 9 9 % p u r i t y , A m e r i c a n S m e l t i n g a n d R e f i n i n g C o m p a n y , D e n v e r . C O . ; i n d i u m ( I I I ) c h l o r i d e , 9 9 . 9 9 9 % p u r i t y ; C e r a c I n c . M i l w a u k e e , W I . ; c o p p e r ( I ) c h l o r i d e , 9 7 % p u r i t y , t e t r a p h e n y l p h o s p h o n i u m c h l o r i d e ( P h 4 P C l ) , 9 8 % p u r i t y , t e t r a e t h y l a m m o n i u m b r o m i d e ( E t 4 N B r ) , 9 8 % p u r i t y , t r i - n - b u t y l - p h o s p h i n e s ( ( n - B u ) 3 P ) , 9 9 % p u r i t y , p o t a s s i u m c y a n i d e ( K C N ) , 9 7 % p u r i t y ; A l d r i c h C h e m i c a l C o m p a n y I n c . , M i l w a u k e e . W I . D i m e t h y l f o r m a m i d e ( D M F ) , a n a l y t i c a l r e a g e n t , w a s s t o r e d o v e r 4 A L i n d e m o l e c u l a r s i e v e s f o r o v e r a w e e k a n d t h e n d i s t i l l e d u n d e r r e d u c e d p r e s s u r e a t 2 5 - 3 0 ° C . T h e f i r s t 5 0 m l w a s d i s c a r d e d . D i e t h y l e t h e r ( A . C . S . a n h y d r o u s , C o l u m b u s C h e m i c a l I n d u s t r i e s I n c . , C o l u m b u s . W I . ) w a s d i s t i l l e d a f t e r r e f l u x i n g w i t h p o t a s s i u m , b e n z o p h e n o n e a n d t r i e t h y l e n e - g l y c o l - d i m e t h y l e t h e r f o r 1 2 h o u r s . 3 4 2 P h y s i c o c h e m i c a l S t u d i e s X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e r e c o r d e d o n a P h i l l i p s X R G - 3 0 0 0 c o m p u t e r c o n t r o l l e d p o w d e r d i f f r a c t o m e t e r . N i - f i l t e r e d . C u - r a d i a t i o n w a s u s e d . D - s p a c i n g s ( A ) f o r a l l c r y s t a l l i t e s w e r e m e a s u r e d a n d t h e X - r a y p o w d e r p a t t e r n s o b t a i n e d f r o m t h e m a t e r i a l s w e r e i n a g r e e m e n t w i t h t h o s e g i v e n i n t h e J C P D S P o w d e r D i f f r a c t i o n F i l e ” . . T h e p e a k b r o a d e n i n g o f t h e X - r a y p o w d e r p a t t e r n s w e r e m e a s u r e d a t h a l f w i d t h t o d e t e r m i n e t h e p a r t i c l e s i z e o f t h e c r y s t a l l i t e s u s i n g t h e S c h e r r e r f o r m u l a . K r 7 . * 5 7 . 3 6 1 / 2 " c o s e W h e r e D i s t h e a v e r a g e p a r t i c l e s i z e ( i n A ) , 7 1 i s t h e w a v e l e n g t h o f r a d i a t i o n ( C u K 0 1 = 1 . 5 4 2 A ) , 8 1 / 2 h a l f w i d t h o f t h e p e a k ( i n d e g ) a n d 0 i s t h e B r a g g a n g l e ( i n d e g ) . K i s a c o n s t a n t d e p e n d i n g o n t h e s h a p e o f t h e c r y s t a l l i t e s . w e a s s u m e t h e c r y s t a l l i t e s a r e p e r f e c t s p h e r e s t h u s K = 0 . 9 , a n d 5 7 . 3 i s t h e c o n v e r s i o n f a c t o r f o r r a d i a n s t o d e g r e e s . T h e f o r m u l a c a n b e s i m p l i f i e d a n d e x p r e s s e d a s : _ 7 9 . 5 2 1 ' 5 1 / 2 * c 0 8 9 3 4 3 S c a n n i n g e l e c t r o n m i c r o s c o p y ( S E M ) a n d Q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s o f t h e f i l m s w e r e p e r f o r m e d o n a J E O L I S M - 3 5 C e q u i p p e d w i t h a n X - r a y m i c r o a n a l y s i s a t t a c h m e n t f r o m T r a c o r N o r t h e r n T N 5 5 0 0 , f o r e n e r g y d i s p e r s i v e s p e c t r o s c o p y ( E D S ) . T h e c r y s t a l l i t e s o f e a c h s a m p l e w e r e m o u n t e d o n a n a l u m i n u m s t u b u s i n g c o n d u c t i v e c a r b o n p a i n t f o r a d h e s i o n t o t h e s t u b a s w e l l a s t o d i s s i p a t e c h a r g e t h a t i s d e v e l o p e d o n t h e s a m p l e u n d e r a n e l e c t r o n b e a m . E n e r g y d i s p e r s i v e s p e c t r a w e r e o b t a i n e d u s i n g t h e f o l l o w i n g e x p e r i m e n t a l s e t - u p : X — r a y d e t e c t o r p o s i t i o n : 5 5 m m W o r k i n g d i s t a n c e : 3 9 m m A c c e l e r a t i n g v o l t a g e : 2 0 K V T a k e - o f f a n g l e : 2 7 d e g B e a m c u r r e n t : 2 0 0 p i c o a m p s A c c u m u l a t i o n t i m e : 6 0 s e c s D e t e c t o r W i n d o w : B e r y l l i u m A s t a n d a r d l e s s q u a n t i t a t i v e ( S Q a n a l y s i s ) p r o g r a m w a s u s e d t o a n a l y z e t h e x - r a y s p e c t r a o b t a i n e d . T h e a n a l y s i s c o u l d n o t b e u s e d f o r t h e a t o m s b e l o w a t o m i c n u m b e r 1 1 ( s o d i u m ) d u e t o t h e a b s o r p t i o n o f t h e l o w e n e r g y x - r a y s b y t h e B e w i n d o w o f t h e d e t e c t o r . S i n c e t h e s e l e n i u m r a t i o i s a l w a y s u n d e r e s t i m a t e d d u e t o a n a r t i f a c t i n t h e p r o g r a m , a c o r r e c t i o n f a c t o r ( x 1 . 6 ) . w h i c h w a s d e t e r m i n e d b y t a k i n g c o m m e r c i a l I n 2 8 e 3 a s a s t a n d a r d t o e v a l u a t e t h e S e r a t i o . T h e a n a l y s i s r e p o r t e d h e r e a r e a n a v e r a g e o f t h r e e t o f o u r i n d i v i d u a l m e a s u r e m e n t s o n a n u m b e r o f d i f f e r e n t c r y s t a l l i t e s o f e a c h m a t e r i a l . 3 4 4 T r a n s m i s s i o n e l e c t r o n m i c r o s c o p y ( T E M ) a n d s e l e c t e d a r e a e l e c t r o n d i f f r a c t i o n ( S A E D ) s t u d i e s w e r e p e r f o r m e d a t 1 0 0 K V w i t h a J E O L - 1 0 0 C X ( I I ) e q u i p p e d w i t h a n X - r a y a n a l y z e r f r o m L i n k A N 1 0 0 0 0 , f o r e n e r g y d i s p e r s i v e s p e c t r o s c o p y ( E D S ) . T h e s a m p l e s w e r e p r e p a r e d b y d i s p e r s i n g t h e c r y s t a l l i t e s i n D M F o r e t h e r , s o n i c a t e d f o r 2 m i n u t e s t h e n d e p o s i t e d o n h o l e y f i l m - c o a t e d c o p p e r o r t i t a n i u m g r i d s u n d e r a n i n e r t a t m o s p h e r e o f d r y n i t r o g e n . T h e d - s p a c i n g s c a l c u l a t e d f r o m t h e d i f f r a c t i o n p a t t e r n s w e r e f u r t h e r c a l i b r a t e d b y a l u m i n u m s t a n d a r d s a f t e r e a c h m e a s u r e m e n t . I n f r a r e d s p e c t r a o f t h e c o m p l e x e s w e r e r e c o r d e d a s s o l i d s i n a K B r m a t r i x o n a N i c o l e t 7 4 0 F T - I R s p e c t r o m e t e r . E a c h s a m p l e w a s g r o u n d a l o n g w i t h K B r t o a fi n e p o w d e r . a n d a t r a n s l u c e n t p e l l e t w a s m a d e b y a p p l y i n g ~ 1 5 0 0 0 p s i p r e s s u r e t o t h e m i x t u r e . T h e s p e c t r a w e r e r e c o r d e d i n t h e M i d I R r e g i o n ( 4 0 0 0 t o 4 0 0 c m ' l ) . U V / V i s / N I R s p e c t r a o f t h e C u I n S e z p a r t i c l e s i n D M F w e r e m e a s u r e d o n a V a r i a n C a r y - 2 3 0 0 s p e c t r o p h o t o m e t e r . T h e a b s o r b a n c e w a s m e a s u r e d i n a q u a r t z c e l l w h o s e p a t h l e n g t h i s k n o w n t o b e 1 . 0 0 0 : I : 0 . 0 0 2 m m . T h e D M F s o l u t i o n w a s p r e p a r e d b y t a k i n g t h e a p p r o p r i a t e a m o u n t s o f [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ' a n d [ C u 4 ( S e 4 ) 3 ] 2 ' u n d e r . a n i n e r t a t m o s p h e r e a n d t h e c e l l w a s k e p t i n a n o i l b a t h a t 6 0 ° C . t h e s p e c t r a w e r e r e c o r d e d e v e r y f i v e m i n u t e s a f t e r t h e a d d i t i o n o f ( n - B u ) 3 P . T h e c h a r g e t r a n s p o r t m e a s u r e m e n t s w e r e d o n e b y P r o f . C a r l R . K a n n e w u r f a n d c o w o r k e r s a t t h e E l e c t r i c a l E n g i n e e r i n g D e p a r t m e n t . N o r t h w e s t e r n U n i v e r s i t y . T h e p r o t o c o l f o r c h a r g e t r a n s p o r t m e a s u r e m e n t s h a s b e e n r e p o r t e d b y P r o f . K a n n e w u r f e t a l . 1 5 . 3 4 5 S y n t h e s e s A l l e x p e r i m e n t s a n d s y n t h e s e s w e r e p e r f o r m e d u n d e r a n a t m o s p h e r e o f d r y n i t r o g e n i n e i t h e r a V a c u u m A t m o s p h e r e s D r i - L a b g l o v e b o x o r s c h l e n k l i n e s . T h e p r e c u r s o r p o l y s e l e n i d e c o m p l e x e s w e r e p r e p a r e d a s d e s c r i b e d p r e v i o u s l y . 1 1 » 1 2 . P r e p a r a t i o n o f C u S e u s i n g K C N T o a d e e p r e d s o l u t i o n o f 0 . 5 0 0 g ( 0 . 2 6 6 m m o l ) o f ( P h 4 P ) 2 [ C u 4 ( S e 4 ) 3 ] i n c a . 7 5 m l o f D M F , 0 . 1 0 4 g ( 1 . 6 0 0 m m o l ) o f K C N w a s a d d e d . T h e m i x t u r e w a s t r a n s f e r r e d t o a s c h l e n k l i n e a n d r e fl u x e d f o r 1 2 h o u r s . T h e c o l o r o f t h e s o l u t i o n t u r n e d s l o w l y f r o m r e d t o b r o w n a n d f i n a l l y b l a c k u p o n r e f l u x i n g a n d a b l a c k p r e c i p i t a t e w a s o b s e r v e d a f t e r 4 h o u r s . U p o n c o o l i n g t o r o o m t e m p e r a t u r e . t h e s u p e r n a t a n t s o l u t i o n w a s p a l e y e l l o w w i t h b l a c k p r o d u c t , C u S e , s e t t l e d a t t h e b o t t o m o f t h e f l a s k . T h e b l a c k m i c r o c r y s t a l l i n e p r o d u c t w a s i s o l a t e d b y f i l t r a t i o n t h r o u g h a m e d i u m p o r o u s g l a s s f r i t w a s h e d t h o r o u g h l y w i t h D M F , e t h e r a n d d r i e d i n v a c u o . Y i e l d 8 7 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s E D S / S E M p e r f o r m e d o n t h e p r o d u c t g a v e a n a v e r a g e c o m p o s i t i o n o f 9 1 1 0 3 6 1 0 9 . P r e p a r a t i o n o f C u S e u s i n g ( n - B u ) 3 P T o a d e e p r e d s o l u t i o n o f 0 . 3 6 7 g ( 0 . 1 9 5 m m o l ) o f ( P h 4 P ) 2 [ C u 4 ( S e 4 ) 3 ] i n c a . 7 5 m l o f D M F w a s a d d e d v e r y s l o w l y ( d r o p w i s e ) 0 . 4 0 m l ( 0 . 3 2 5 g ( 1 . 6 0 9 m m o l ) ) o f ( n - B u ) 3 P u s i n g a m i c r o s y r i n g e . T h e s o l u t i o n i m m e d i a t e l y t u r n e d f r o m d e e p r e d t o p a l e b r o w n a n d f i n a l l y t o p a l e y e l l o w i n c o l o r . T h e m i x t u r e w a s t r a n s f e r r e d t o a s c h l e n k l i n e a n d r e f l u x e d f o r f i l t r a t i o n t h r o u g h a f i n e p o r o u s f r i t w a s h e d w i t h D M F , e t h e r a n d 3 4 6 2 4 h o u r s . T h e c o l o r o f t h e s o l u t i o n t u r n e d b l a c k a s s o o n a s r e fl u x i n g c o m m e n c e d a b l a c k p r e c i p i t a t e w a s o b s e r v e d a f t e r 6 h o u r s . T h e b l a c k m i c r o c r y s t a l l i n e p r o d u c t , C u S e , w a s i s o l a t e d b y f i l t r a t i o n t h r o u g h a f i n e p o r o u s f r i t w a s h e d w i t h D M F , e t h e r a n d d r i e d i n v a c u o ( Y i e l d 8 3 % ) . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s E D S / S E M p e r f o r m e d o n t h e p r o d u c t g a v e a n a v e r a g e c o m p o s i t i o n o f C u 1 , o S e o , 9 5 . P r e p a r a t i o n o f I n x S e y u s i n g K C N T o a n o r a n g e s o l u t i o n o f 0 . 5 0 0 g ( 0 . 2 6 1 m m o l ) o f ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] i n c a . 7 5 m l o f D M F 0 . 1 5 2 g ( 2 . 3 3 9 m m o l ) o f K C N w a s a d d e d . T h e m i x t u r e w a s t r a n s f e r e d t o a s c h l e n k l i n e a n d r e fl u x e d f o r 2 4 h o u r s . T h e c o l o r o f t h e s o l u t i o n c h a n g e d f r o m o r a n g e t o y e l l o w a n d a y e l l o w p r e c i p i t a t e w a s o b s e r v e d a f t e r 2 4 h o u r s . T h e y e l l o w p o w d e r w a s i s o l a t e d b y f i l t r a t i o n t h r o u g h a f i n e p o r o u s f r i t w a s h e d w i t h D M F , e t h e r a n d d r i e d i n v a c u o . T h e p r o d u c t I n x S e y w a s s t o r e d u n d e r n i t r o g e n . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s E D S / S E M p e r f o r m e d o n t h e y e l l o w p r o d u c t g a v e a n a v e r a g e c o m p o s i t i o n o f I n 2 8 e 3 , 2 3 . P r e p a r a t i o n o f I n x S e y u s i n g ( n - B u ) 3 P T o a n o r a n g e s o l u t i o n o f 0 . 5 0 0 g ( 0 . 2 6 1 m m o l ) o f ( E t 4 N ) 3 [ l t h e 3 ( S e 4 ) 3 ] i n c a . 7 5 m l o f D M F w a s a d d e d v e r y s l o w l y ( d r o p w i s e ) 0 . 5 8 m l ( 0 . 4 7 1 g ( 2 . 3 3 2 m m o l ) ) o f ( n - B u ) 3 P u s i n g a m i c r o s y r i n g e . T h e s o l u t i o n i m m e d i a t e l y t u r n e d f r o m o r a n g e t o y e l l o w a n d f i n a l l y t o p a l e y e l l o w i n c o l o r . T h e m i x t u r e w a s t r a n s f e r e d t o a s c h l e n k l i n e a n d r e fl u x e d f o r 2 4 h o u r s . T h e c o l o r o f t h e s o l u t i o n d i d n o t c h a n g e a n d a y e l l o w p r e c i p i t a t e w a s o b s e r v e d a f t e r 2 4 h o u r s . T h e y e l l o w p o w d e r w a s i s o l a t e d b y 3 4 7 d r i e d i n v a c u o . T h e p r o d u c t I n x S e y w a s s t o r e d u n d e r n i t r o g e n . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s E D S / S E M a n d E D S / T E M p e r f o r m e d o n t h e p r o d u c t g a v e a n a v e r a g e c o m p o s i t i o n o f I n 2 8 e 3 , 0 9 . P r e p a r a t i o n o f C u I n S e z u s i n g K C N A m i x t u r e o f 0 . 5 0 0 g ( 0 . 2 6 1 m m o l ) o f ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] a n d 0 . 3 6 7 g ( 0 . 1 9 5 m m o l ) o f ( P h 4 P ) 2 [ C u 4 ( S e 4 ) 3 ] w e r e d i s s o l v e d i n c a . 7 5 m l o f D M F . A d e e p r e d s o l u t i o n w a s o b t a i n e d u p o n s t i r r i n g t h e m i x t u r e f o r a b o u t 1 0 m i n u t e s . T o t h i s s o l u t i o n w a s a d d e d 0 . 2 6 7 g ( 4 . 1 0 8 m m o l ) o f K C N . T h e m i x t u r e w a s t r a n s f e r r e d t o a s c h l e n k l i n e a n d r e fl u x e d f o r 1 2 h o u r s . T h e c o l o r t u r n e d s l o w l y f r o m r e d t o b r o w n a n d f i n a l l y b l a c k u p o n r e fl u x i n g a n d a b l a c k p r e c i p i t a t e w a s o b s e r v e d a f t e r 3 h o u r s . U p o n c o o l i n g t o r o o m t e m p e r a t u r e t h e s u p e r n a t a n t s o l u t i o n w a s p a l e y e l l o w w i t h b l a c k m i c r o c r y s t a l l i n e p r o d u c t , C u l n S e z , s e t t l e d a t t h e b o t t o m o f t h e fl a s k . T h e b l a c k m i c r o c r y s t a l l i n e p r o d u c t w a s i s o l a t e d b y f i l t r a t i o n t h r o u g h a m e d i u m p o r o u s g l a s s f r i t w a s h e d t h o r o u g h l y w i t h D M F , e t h e r a n d d r i e d i n v a c u o , Y i e l d 7 0 % . A q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s E D S / S E M p e r f o r m e d o n t h e p r o d u c t g a v e a n a v e r a g e c o m p o s i t i o n o f C u 1 , 1 I n 1 , o S e 1 , 9 9 . P r e p a r a t i o n o f C u I n S e z u s i n g ( n - B u ) 3 P A m i x t u r e o f 0 . 5 0 0 g ( 0 . 2 6 1 m m o l ) o f ( E t 4 N ) 3 [ I n 3 8 e 3 ( S e 4 ) 3 ] a n d 0 . 3 6 7 g ( 0 . 1 9 5 m m o l ) o f ( P h 4 P ) 2 [ C u 4 ( S e 4 ) 3 ] w e r e d i s s o l v e d i n c a . 7 5 m l o f D M F . A d e e p r e d s o l u t i o n w a s o b t a i n e d u p o n s t i r r i n g t h e m i x t u r e f o r a b o u t 1 0 m i n u t e s . T o t h i s v i g o r o u s l y s t i r r i n g s o l u t i o n a d d e d v e r y s l o w l y ( d r o p w i s e ) 1 . 0 2 m l ( 0 . 8 2 8 g ( 4 . 0 9 9 m m o l ) ) o f ( n - B u ) 3 P w i t h t h e h e l p o f a m i c r o s y r i n g e . T h e s o l u t i o n i m m e d i a t e l y t u r n e d f r o m d e e p r e d t o 3 4 8 p a l e b r o w n a n d f i n a l l y t o p a l e y e l l o w i n c o l o r . T h e m i x t u r e w a s t r a n s f e r e d t o a s c h l e n k l i n e a n d r e fl u x e d f o r 2 4 h o u r s . T h e c o l o r o f t h e s o l u t i o n t u r n e d b l a c k a s s o o n a s t h e s o l u t i o n s t a r t e d t o r e fl u x a n d a b l a c k p r e c i p i t a t e w a s o b s e r v e d a f t e r 1 2 h o u r s . T h e b l a c k p r o d u c t w a s i s o l a t e d b y f i l t r a t i o n t h r o u g h a f i n e p o r o u s f r i t w a s h e d w i t h D M F a n d e t h e r . T h e b l a c k p r o d u c t C u I n S e 2 ( y i e l d 8 5 % ) w a s s t o r e d u n d e r n i t r o g e n . A q u a n t i t a t i v e m i c r o p r o b e E D S / S E M a n d E D S / T E M a n a l y s i s p e r f o r m e d o n t h e p r o d u c t g a v e a n a v e r a g e c o m p o s i t i o n o f 0 1 1 3 1 1 1 1 0 8 9 2 1 5 . P r e p a r a t i o n o f C u I n S e z u s i n g ( E t 4 N ) C N A m i x t u r e o f 0 . 5 0 0 g ( 0 . 2 6 1 m m o l ) o f ( E t 4 N ) 3 [ I n 3 8 e 3 ( S e 4 ) 3 ] a n d 0 . 3 6 7 g ( 0 . 1 9 5 m m o l ) o f ( P h 4 P ) 2 [ C u 4 ( S e 4 ) 3 ] w e r e d i s s o l v e d i n c a . 7 5 m l o f D M F . A d e e p r e d s o l u t i o n w a s o b t a i n e d u p o n s t i r r i n g t h e m i x t u r e f o r a b o u t 1 0 m i n u t e s . T o t h i s s o l u t i o n a d d e d 0 . 6 4 0 g ( 4 . 1 0 2 m m o l ) o f ( E t 4 N ) C N . T h e s o l u t i o n t u r n e d f r o m d e e p r e d t o b r o w n a n d f i n a l l y t o p a l e b r o w n i n c o l o r . T h e m i x t u r e w a s t r a n s f e r e d t o a s c h l e n k l i n e a n d r e fl u x e d f o r 2 4 h o u r s . T h e c o l o r o f t h e s o l u t i o n t u r n e d b l a c k a f t e r r e fl u x i n g f o r 3 0 m i n u t e s a n d a b l a c k p r e c i p i t a t e w a s o b s e r v e d a f t e r 1 2 h o u r s . T h e b l a c k p r o d u c t , C u I n S e z c o n t a m i n a t e d w i t h C u S e w a s i s o l a t e d b y f i l t r a t i o n t h r o u g h a m e d i u m p o r o u s f r i t w a s h e d w i t h D M F . e t h e r a n d d r i e d i n v a c u o . T h e s u p e r n a t a n t w a s p a l e y e l l o w i n c o l o r . T h e p r o d u c t w a s s t o r e d a n d f u r t h e r c h a r a c t e r i z a t i o n s w e r e d o n e u n d e r n i t r o g e n . 3 4 9 R E S U L T S A N D D I S C U S S I O N T h e s t r u c t u r e s o f t h e a n i o n s i n t h e c o m p l e x e s [ C u 4 ( S e 4 ) 3 ] 2 ' a n d [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ' u s e d i n t h i s s t u d y a r e s h o w n i n F i g u r e 7 . 1 . I n o r d e r f o r p o l y c h a l c o g e n i d e c o m p l e x e s t o b e e m p l o y e d a s s u i t a b l e p r e c u r s o r s w e h a d t o f i n d a w a y t o r e m o v e c l e a n l y a n d e f f i c i e n t l y t h e e x c e s s c h a l c o g e n f r o m t h e c o m p l e x e s a n d p r e v e n t i t f r o m c o n t a m i n a t i n g t h e d e s i r e d p r o d u c t . I n o u r a p p r o a c h , w e a c h i e v e d t h i s b y d e p l e t i n g t h e e x c e s s s e l e n i u m f r o m t h e c o m p l e x e s b y w e l l k n o w n S e a b s t r a c t i o n c h e m i s t r y “ . I f a l l t h e f o r m a l l y z e r o - v a l e n t s e l e n i u m a r e a b s t r a c t e d t h e n t h e r e m a i n i n g c o o r d i n a t i v e l y u n s a t u r a t e d f r a g m e n t c o u l d s t a r t t o p o l y m e r i z e i n t h r e e d i m e n s i o n s a n d b u i l d - u p a n e x t e n d e d l a t t i c e . T h i s i s s h o w n s c h e m a t i c a l l y i n F i g u r e 7 . 2 . T h i s f i n a l s t e p o f p o l y m e r i z a t i o n i s t h e r m o d y n a m i c a l l y d r i v e n b y t h e g a i n i n l a t t i c e e n e r g y u p o n f o r m a t i o n o f t h e s o l i d s t a t e c h a l c o g e n i d e s . T h e r e a g e n t o f c h o i c e f o r S e - a b s t r a c t i o n i n t h i s w o r k w e r e t r i - n - b u t y l - p h o s p h i n e s . ( n - B u ) 3 P , a n d K C N 1 5 . T h e b y p r o d u c t s o f t h e s e , r e a c t i o n . ( n - B u ) 3 P S e a n d K S e C N r e s p e c t i v e l y a r e s o l u b l e i n s e v e r a l s o l v e n t s a n d t h u s c a n b e r e m o v e d e a s i l y . T h e r e a c t i o n s a r e t y p i c a l l y r u n i n p o l a r s o l v e n t s s u c h a s D M F . I n i t i a l l y , r e fl u x c o n d i t i o n s w e r e a p p l i e d t o s e e w h e t h e r c r y s t a l l i n e b u l k s e m i c o n d u c t o r s c o u l d b e p r o d u c e d . L a t e r w e v a r i e d t h e t e m p e r a t u r e a n d r e a c t i o n t i m e i n o r d e r t o a r r e s t t h e g r o w t h o f t h e p a r t i c l e a t a c e r t a i n s i z e ” . _ _ 2 _ < \ S e \ C S e S e ‘ I u \ S e a r s e \ I \ S l e — / C U S e S f ‘ T C “ \ . \ . / _ S e / S e _ _ S e \ _ 3 6 9 / S e \ / S e — l n ’ s e S e S e / \ ( I n / \ S e s \ & _ _ _ S e \ S — | n / 1 \ S e S e \ _ 3 9 , 3 9 F i g u r e 7 . 1 S c h e m a t i c r e p r e s e n t a t i o n o f t h e t w o a n i o n s i n t h e p r e c u r s o r c o m p l e x e s . 3 5 1 ‘ [ - S e 7 2 - f S e / S e 2 - S e / \ S e \ ’ S ° \ S e ’ \ l M ' + R P * 7 I M V 3 S e / v S e / S e 3 S e \ / 8 9 ’ e . . \ S e 1 . . S e J + R 3 P R 3 P S e , S e 2 ‘ S e < > M > S e S e ' 3 9 + R 3 P S I K M " ? e ’ 3 9 2 S e / V S e : / M + R 3 P s e W U . I ( M S e ) x I F i g u r e 7 . 2 S c h e m a t i c r e p r e s e n t a t i o n o f t h e e x h a u s t i v e r e m o v a l S e ° f r o m a S e - r i c h c o m p l e x . 3 5 2 F o r m a t i o n o f C u S e C r y s t a l l i t e s C u S e i s f o r m e d f r o m t h e e x h a u s t i v e r e m o v a l o f S e b y K C N o r ( n - B u ) 3 P f r o m [ C u 4 ( S e 4 ) 3 ] 2 ' i n D M F . T h e r e a c t i o n s w e r e c a r r i e d o u t a t 1 5 5 ° C t h e r e fl u x t e m p e r a t u r e . T h e o v e r a l l r e a c t i o n l e a d i n g t o C u S e c a n b e r e p r e s e n t e d a c c o r d i n g t o e q . 1 . [ C u 4 ( S e 4 ) 3 ] 2 ' + 6 K C N - - - - - > 4 C u S e + 6 K S e C N + 2 S e 2 ’ o r e q . 1 ( n - B u ) 3 P - - - - - > ( n - B u ) 3 P S e R e fl u x i n g a s o l u t i o n o f [ C u 4 ( S e 4 ) 3 ] 2 ' a n d K C N ( 1 : 6 r a t i o ) i n D M F a f f o r d s a b l a c k m i c r o c r y s t a l l i n e p r o d u c t . C u S e p a r t i c l e s b e g i n t o p r e c i p i t a t e s o o n a f t e r t h e t e m p e r a t u r e g e t s t o 1 5 5 ° C . H o w e v e r , h e a t i n g a s o l u t i o n o f [ C u 4 ( S e 4 ) 3 ] 2 ' a n d ( n - B u ) 3 P i n D M F a t 1 5 5 ° C r e s u l t s i n a y e l l o w c o l l o i d a l s u s p e n s i o n . R e fl u x i n g r e s u l t s i n a b l a c k m i c r o c r y s t a l l i n e p r o d u c t a f t e r a c o n s i d e r a b l y l o n g e r t i m e . U s i n g t h e S c h e r r e r f o r m u l a , i t c a n b e s h o w n t h a t t h e p a r t i c l e s i z e o f C u S e i s i n t h e n a n o m e t e r s i z e r e g i m e . T h e m a x i m u m c r y s t a l l i t e s i z e i s o b t a i n e d u n d e r r e fl u x c o n d i t i o n s . T r i b u t y l p h o s p h i n e y i e l d s 1 8 0 A c r y s t a l l i t e s , w h i l e . K C N y i e l d s 3 0 0 A c r y s t a l l i t e s . T h e X - r a y d i f f r a c t i o n p o w d e r p a t t e r n o f C u S e ” c r y s t a l l i t e s o b t a i n e d f r o m K C N i s s h o w n i n F i g u r e 7 . 3 . T h e M i d - I R s p e c t r a o f C u S e c r y s t a l l i t e s f r o m b o t h r e a c t i o n s s h o w n o a b s o r p t i o n s , w h i c h i n d i c a t e t h a t t h e c r y s t a l l i t e s a r e n o t c a p p e d o r c o n t a m i n a t e d w i t h a n y o r g a n i c s p e c i e s . H o w e v e r , i f e x c e s s S e a b s t r a c t i n g r e a g e n t i s u s e d i n ( 1 : 9 r a t i o ) w e o b s e r v e t h e f o r m a t i o n o f a n o t h e r b i n a r y p h a s e , C u 2 - x S e 1 4 , a s a n i m p u r i t y t o t h e m a j o r C u S e p h a s e . y t i s n e t n I 3 5 3 g “ a r r f r 4 . r . . . r 1 fl > ‘ 0 . 0 5 . 0 1 0 . 0 1 5 . 0 2 0 . 0 3 0 . 0 . 3 « 2 5 . 0 3 . : A . g 4 . M J W A 4 M I L . 1 “ . . v a w : ~ : " " " " 3 5 . 0 ' 4 0 . 0 ' 4 5 . 0 5 0 . 0 5 5 . 0 6 0 . 0 5 5 . 0 2 9 ( d e g ) F i g u r e 7 . 3 X - r a y D i f f r a c t i o n p a t t e r n o f C u S e o b t a i n e d w h e n K C N w a s u s e d a s t h e S e - a b s t r a c t i n g r e a g e n t . 3 5 4 F o r m a t i o n o f I n x S e y P a r t i c l e s T h e r e a c t i o n s o f ( E t 4 N ) 3 [ I n 3 S e 3 ( S e 4 ) 3 ] w i t h e i t h e r K C N o r ( n - B u ) 3 P i n D M F a t 1 5 5 ° C d i d n o t a f f o r d a n y k n o w n l n / S e p h a s e . T h e p r o d u c t s o b t a i n e d w e r e y e l l o w p o w d e r s a n d w e r e f o u n d t o b e a m o r p h o u s b y p o w d e r X - r a y d i f f r a c t i o n s t u d i e s . T h e S E M / E D S s t u d i e s o n t h e s e p a r t i c l e s g a v e t h e r a t i o n s o f I n : S e a s 2 : 3 . F u r t h e r , i n t h e M i d - I R r e g i o n t h e p r o d u c t s s h o w e d a b s o r p t i o n f r o m b o t h ( E t 4 N ) + c a t i o n s a s w e l l a s C N ' o r ( n - B u ) 3 P r e s p e c t i v e l y . T h e s e r e s u l t s h a v e s e v e r a l p o s s i b l e e x p l a n a t i o n s : ( i ) T h e f o r m a t i o n o f s m a l l a n i o n i c I n 2 8 e 3 c l u s t e r s c a p p e d b y e i t h e r S e C N ‘ o r ( n - B u ) 3 P S e r e s p e c t i v e l y , a n d ( E t 4 N ) + b a l a n c e t h e c h a r g e . ( i i ) T h e I n 2 8 e 3 c l u s t e r s h a v e d a n g l i n g S e a t o m s ( c o o r d i n a t i v e l y u n s a t u r a t e d ) o n t h e s u r f a c e m a k i n g t h e c l u s t e r s a n i o n i c t h u s r e q u i r i n g t h e o r g a n i c c a t i o n s . ( i i i ) T h e I n 2 8 e 3 c l u s t e r s a r e v e r y s m a l l i n s i z e a n d t h e o r g a n i c s p e c i e s a r e a d h e r i n g t o t h e e x t r e m e l y h i g h s u r f a c e a r e a o f t h e s e p a r t i c l e s . A t t e m p t s t o s t u d y t h i s m a t e r i a l b y s e l e c t e d a r e a e l e c t r o n d i f f r a c t i o n a n d t r a n s m i s s i o n e l e c t r o n m i c r o s c o p y d i d n o t g i v e c o n c l u s i v e r e s u l t s a s t h e e l e c t r o n d i f f r a c t i o n r i n g p a t t e r n s o b t a i n e d f r o m t h e p a r t i c l e s w e r e r a t h e r d i f f u s e a n d t h e T E M m i c r o g r a p h s s h o w e d l a r g e a g g l o m e r i z a t i o n o f t h e p a r t i c l e s . T h e E D S / T E M r e s u l t s a s c e r t a i n e d t h e s t o i c h i o m e t r y o f I n : S e i s v e r y c l o s e t o 2 : 3 i n t h e s e p a r t i c l e s . T h e v e r y s m a l l c l u s t e r s o f I n x S e y c o u l d b e r a t i o n a l i z e d b y t h e f a c t t h a t i t c o n t a i n s I n 3 + a t o m s w h i c h c a r r y a h i g h c h a r g e a n d t h u s c a n n o t m o v e a r o u n d i n t h e l a t t i c e f r e e l y t o f i l l d e f e c t s o r h e l p i n t h e g r o w t h o f t h e c r y s t a l l i t e s ( s l o w d i f f u s i o n ) . A n a d d i t i o n a l r e a s o n c o u l d b e t h e l a y e r e d n a t u r e o f I n 2 8 e 3 p h a s e s , w h i c h d o e s n o t p r o v i d e 3 5 5 s u f f i c i e n t g a i n i n l a t t i c e e n e r g y t o d r i v e t h e c l u s t e r s t o p o l y m e r i z e a n d h e l p i n t h e f o r m a t i o n o f l a r g e r c r y s t a l l i t e s . F o r m a t i o n o f C u l n S e z C r y s t a l l i t e s T h e r e a c t i o n o f a ' m i x t u r e o f ( E t 4 N ) 3 [ I n 3 8 e 3 ( S e 4 ) 3 ] a n d ( P h 4 P ) 2 [ C u 4 ( S e 4 ) 3 ] i n 4 : 3 m o l a r r a t i o w i t h t h e a p p r o p r i a t e a m o u n t o f K C N ( o r ( n - B u ) 3 P ) i n D M F a t 6 0 - 1 5 5 ° C a f f o r d s C u I n S e z i n g o o d y i e l d a c c o r d i n g t o e q . 2 : 4 [ I n 3 ( S e 4 ) 3 ( S e 4 ) 3 ] 3 ' + 3 [ C U 4 ( S e 4 ) 3 ] 2 ‘ + 6 3 K C N - - > l Z C u I n S e z + 6 3 K S e C N + 9 S e 2 ' ( o r ( n - B u ) 3 P ) - - > ( o r ( n - B u ) 3 P S e ) S u c c e s s i v e d a r k e n i n g o f t h e s o l u t i o n i s o b s e r v e d t o f o r m a c o l l o i d a l s u s p e n s i o n o f C u I n S e z w h i c h e v e n t u a l l y p r e c i p i t a t e s . C u I n S e z d e p o s i t s d i r e c t l y i n c r y s t a l l i n e f o r m a n d a s u b s e q u e n t a n n e a l i n g s t e p i s n o t r e q u i r e d . W h e n t h i s S e - a b s t r a c t i o n r e a c t i o n i s c a r r i e d o u t i n d i v i d u a l l y w i t h [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ' o r [ C u 4 ( S e 4 ) 3 ] 2 ‘ t h e c o r r e s p o n d i n g b i n a r y I n x S e y a n d C u S e a r e o b t a i n e d a s m e n t i o n e d a b o v e . I t i s t h u s v e r y i n t e r e s t i n g t h a t a p h a s e s e p a r a t e d m i x t u r e o f I n x S e y a n d C u S e d o e s n o t f o r m i n e q 2 . I t i s p l a u s i b l e t h a t e x t r e m e l y s m a l l " e m b r y o " c l u s t e r s o f I n x S e y a n d C u S e f o r m f i r s t w h i c h i m m e d i a t e l y r e a c t t o f o r m C u I n S e z . T h e d r i v i n g f o r c e f o r t h i s w o u l d b e t h e v e r y h i g h s u r f a c e a r e a o f s u c h s m a l l c l u s t e r s , t h e i r i n t i m a t e s t a t e o f m i x i n g , t h e f a v o r a b l e e n t r o p i c c o m p o n e n t o f t h e r e a c t i o n ( d u e t o t h e f o r m a t i o n o f a t e r n a r y p h a s e ) a n d t h e c o n s i d e r a b l e l a t t i c e 3 5 6 e n e r g y a t t a i n e d f r o m t h e f o r m a t i o n o f t h e v e r y s t a b l e c h a l c o p y r i t e s t r u c t u r e ” . C u I n S e 2 o b t a i n e d f r o m t h e r e a c t i o n w i t h K C N w a s u n i q u e l y i d e n t i f i e d b y i t s X - r a y p o w d e r d i f f r a c t i o n p a t t e r n w h i c h i s r e m a r k a b l y c l e a n w i t h r e g a r d t o o t h e r c r y s t a l l i n e p h a s e s , a s s h o w n i n F i g u r e 7 . 4 . T h e c r y s t a l l i t e s a r e i n t h e r a n g e o f 5 , 0 0 0 - 1 0 , 0 0 0 4 . T h e X - r a y d i f f r a c t i o n p a t t e r n s o f t h e C u I n S e 2 o b t a i n e d f r o m ( n - B u ) 3 P a r e v e r y b r o a d a n d u s i n g t h e s c h e r r e r s f o r m u l a t h e a v e r a g e c r y s t a l l i t e s i z e w a s e s t i m a t e d t o b e ~ 6 O A . S e l e c t e d a r e a e l e c t r o n d i f f r a c t i o n ( S A E D ) p a t t e r n s u n e q u i v o c a l l y c o n f i r m s t h a t t h e c r y s t a l l i t e s a r e p u r e C u I n S e z ( F i g u r e 7 . 5 ) a n d t h e o b s e r v e d d - s p a c i n g s a r e g i v e n i n T a b l e 7 . 1 . T a b l e 7 . 1 C o m p a r i s o n o f t h e D - S p a c i n g O b s e r v e d i n t h e S A E D o f C u I n S e 2 O b t a i n e d f r o m ( n - B u ) 3 P R e a c t i o n w i t h t h e B u l k C u I n S e 2 1 4 . h k l d o b : C u I n S e z d a m C u I n S e z B u l k 1 l 2 3 . 3 4 6 3 . 3 4 2 0 4 , 2 2 0 2 . 0 3 8 2 . 0 4 1 1 6 , 3 1 2 1 . 7 2 8 1 . 7 4 3 4 0 0 1 . 4 2 8 1 . 4 4 6 3 1 6 , 3 3 2 1 . 3 1 2 1 . 3 2 7 4 2 4 1 . 1 6 6 1 . 1 8 1 3 3 6 , 5 1 2 1 . 0 9 2 1 . 1 1 4 ) s t i y n u t l s y r n a r e t t i b n r a I ( 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 1 . 7 0 3 | , 3 6 3 ’ 4 2 4 3 3 5 5 . 2 0 8 0 . 0 9 0 . 0 0 4 1 8 0 5 1 6 . 5 3 2 6 2 0 . 0 6 4 0 . 0 1 1 0 . 0 1 2 0 . 0 3 5 7 2 0 4 . 2 2 0 I 1 2 1 1 6 . 3 1 2 4 0 0 2 9 ( d e g ) F i g u r e 7 . 4 X - r a y D i f f r a c t i o n p a t t e r n o f C u I n S e z o b t a i n e d w h e n K C N w a s u s e d a s t h e S e - a b s t r a c t i n g r e a g e n t . F i g u r e 7 . 5 S e l e c t e d A r e a E l e c t r o n D i f f r a c t i o n p a t t e r n o f C u I n S e z o b t a i n e d w h e n ( n - B u ) 3 P w a s u s e d a s t h e S e - a b s t r a c t i n g r e a g e n t . S u r p r i s i n g l y , T E M s t u d i e s r e v e a l t h a t t h e C u I n S e z p a r t i c l e s a r e i n t h e s u b m i c r o n r a n g e w i t h a v e r a g e c r y s t a l l i t e d i a m e t e r s o f ~ 3 0 0 A a s s h o w n i n t h e T E M m i c r o g r a p h i n F i g u r e 7 . 6 . T h i s d i s c r e p a n c y b e t w e e n t h e c r y s t a l l i t e d i a m e t e r d e t e r m i n e d b y X - r a y d i f f r a c t i o n a n d b y T E M i s a t t r i b u t e d t o t h e m o s a i c n a t u r e o f t h e n a n o c r y s t a l l i t e s . T h e s e r e s u l t s c a n b e s a t i s f a c t o r i l y e x p l a i n e d i f w e c o n s i d e r t h e 3 0 0 A n a n o c r y s t a l l i t e s c o n t a i n w e l l o r d e r e d c r y s t a l l i n e d o m a i n s o f t h e s i z e e s t i m a t e d b y t h e X - r a y d i f f r a c t i o n e x p e r i m e n t ( ~ 6 0 A ) , a s s h o w n i n t h e s c h e m a t i c s b e l o w . T h e U V / V i s / N I R s p e c t r a i n F i g u r e 7 . 7 i l l u s t r a t e s t h e g r o w t h o f C u I n S e z p a r t i c l e s a s a m i x t u r e o f [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ‘ , [ C u 4 ( S e 4 ) 3 ] 2 ' i s h e a t e d a t 6 0 ° C w i t h t r i b u t y l p h o s p h i n e a s t h e a b s t r a c t i n g r e a g e n t . F i g u r e 7 . 6 T E M M i c r o g r a p h o f C u I n S e z c r y s t a l l i t e s o b t a i n e d w h e n t r i b u t y l p h o s p h i n e w a s u s e d a s t h e S e - a b s t r a c t i n g r e a g e n t . 3 6 1 1 l u : 0 Z < m a : 0 ( D m < 4 0 0 8 0 0 1 2 0 0 1 6 0 0 W A V E L E N G T H ( n m ) F i g u r e 7 . 7 E v o l u t i o n o f C u I n S e z c r y s t a l l i t e s i n D M F a t 6 0 ° C . T r i b u t y l p h o s p h i n e w a s u s e d a s t h e S e - a b s t r a c t i n g r e a g e n t . 3 6 2 T h e U V / V i s a b s o r p t i o n e d g e s h i f t s t o l o w e r e n e r g i e s w i t h t i m e , a p p r o a c h i n g ~ 1 2 0 0 n m , t h e b a n d - g a p o f C u I n S e 2 1 9 . T h e o b s e r v e d s h i f t o f t h e a b s o r p t i o n e d g e i n t h e U V / V i s s p e c t r a i s c o n s i s t e n t w i t h q u a n t u m s i z e p a r t i c l e g r o w t h a n d r e s e m b l e s t h e o n e o b s e r v e d d u r i n g t h e s y n t h e s i s o f q u a n t u m s i z e p a r t i c l e s o f C d S e 1 7 ’ 2 0 m . T o t h e b e s t o f o u r k n o w l e d g e , t h i s i s t h e f i r s t t i m e C u I n S e 2 h a s b e e n p r e p a r e d f r o m a n y m o l e c u l a r p r e c u r s o r s a n d u n d e r s u c h m i l d c o n d i t i o n s . N o r m a l l y , C u I n S e z i s p r e p a r e d a t h i g h t e m p e r a t u r e s > 8 0 0 ° C . A l o w t e m p e r a t u r e s y n t h e s i s o f C u I n S e z m a y m a k e i t p o s s i b l e t o d e p o s i t t h i n f i l m s o f t h e m a t e r i a l o n t o f l e x i b l e p l a s t i c s u b s t r a t e s a f i r s t s t e p i n t h e f a b r i c a t i o n o f f l e x i b l e l i g h t w e i g h t s o l a r c e l l s . T h e v a r i a b l e t e m p e r a t u r e c o n d u c t i v i t y o f C u I n S e 2 o b t a i n e d f r o m K C N a n d ( n - B u ) 3 P e x h i b i t i n c r e a s e i n c o n d u c t i v i t y w i t h r i s i n g t e m p e r a t u r e a n d t h e r o o m t e m p e r a t u r e c o n d u c t i v i t i e s a r e ~ 1 0 ' 4 0 ‘ 1 c m " a n d ~ 1 0 ' 7 Q ‘ 1 c m ' 1 , r e s p e c t i v e l y . T h i s d e p e n d e n c e o f c o n d u c t i v i t y a s a f u n c t i o n o f t e m p e r a t u r e i s a t y p i c a l t h e r m a l l y a c t i v a t e d b e h a v i o r d o m i n a t e d b y i n t e r p a r t i c l e c o n t a c t r e s i s t a n c e . T h e l o w e r c o n d u c t i v i t y f o r C u I n S e z o b t a i n e d f r o m ( n - B u ) 3 P i s c o n s i s t e n t w i t h t h e i n c r e a s e i n t h e i n t e r p a r t i c l e r e s i s t a n c e d u e t o t h e m u c h . s m a l l e r s i z e o f t h e s e p a r t i c l e s . T h e r m o e l e c t r i c p o w e r ( T P ) m e a s u r e m e n t s f o r t h e C u I n S e z o b t a i n e d f r o m K C N s h o w a p o s i t i v e S e e b e c k c o e f f i c i e n t w i t h i n c r e a s i n g v a l u e s a t h i g h e r t e m p e r a t u r e s . T h i s t h e r m o p o w e r b e h a v i o r i s e x h i b i t e d b y m e t a l s b u t t h e v a l u e s a r e h i g h a n d i n t h e s e m i c o n d u c t o r r a n g e , i n d i c a t i n g t h a t t h e C u I n S e z i s a p - t y p e s e m i c o n d u c t o r . T h e c o n d u c t i v i t y a n d t h e r m o e l e c t r i c p o w e r d a t a a s a f u c t i o n o f t e m p e r a t u r e a r e s h o w n i n F i g u r e 7 . 8 - 7 . 9 , r e s p e c t i v e l y . T h e v e r y l o w c o n d u c t i v i t y f o r C u I n S e 2 o b t a i n e d f r o m 3 6 3 - 2 L : ( A ) - 4 , _ A L : 0 0 0 E _ 3 - 6 — 9 _ b I 8 ‘ 8 — _ | . - 1 0 : - 1 2 . . f l . . . . 1 . . . . 1 . . . + 1 . . . . 1 . . m t 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 T e m p e r a t u r e ( K ) F i g u r e 7 . 8 V a r i a b l e t e m p e r a t u r e C o n d u c t i v i t y d a t a o f a p r e s s e d p e l l e t o f C u I n S e 2 o b t a i n e d f r o m t h e ( A ) K C N a n d ( B ) ( B u 3 ) P r e a c t i o n . 3 6 4 4 0 L 2 3 0 : > e 3 . _ g : 0 2 0 . . 0 . r - o - E r g r - F 1 0 6 0 0 2 . . . . 1 . 9 + L . 1 . . 1 1 . . . 1 1 . . 1 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 T e m p e r a t u r e ( K ) F i g u r e 7 . 9 V a r i a b l e t e m p e r a t u r e t h e r m o e l e c t r i c p o w e r d a t a o f a p r e s s e d p e l l e t o f C u I n S e z o b t a i n e d f r o m t h e K C N r e a c t i o n . 3 6 5 ( n - B u ) 3 P d i d n o t a l l o w f o r r e l i a b l e t h e r m o p o w e r m e a s u r e m e n t s t o b e m a d e . I t a p p e a r s t h a t d e p e n d i n g o n t h e t i m e a n d t h e S e - a b s t r a c t i o n - r e a g e n t u s e d t h e w h o l e r a n g e o f q u a n t u m - s i z e p a r t i c l e s c a n b e o b t a i n e d ” . T h e n a n o p a r t i c l e s i z e i s o b t a i n e d w h e n t h e r e a c t i o n s a r e r u n w i t h K C N u n d e r r e f l u x c o n d i t i o n . I n g e n e r a l , ( n - B u ) 3 P y i e l d s m u c h s m a l l e r p a r t i c l e s i z e s t h a n K C N . I n o r d e r t o a s s e s s t h e e f f e c t o f C N ' o n t h e c r y s t a l l i z a t i o n c h a r a c t e r i s t i c s o f t h e s o l i d s t a t e p r o d u c t s a n d t h e r o l e o f 1 0 ' i o n , w e e x a m i n e d o t h e r s o u r c e s o f C N ' s u c h a s ( E 1 4 N ) C N - T h e r e a c t i o n o f a m i x t u r e o f [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ' a n d [ C u 4 ( S e 4 ) 3 ] 2 ' i n 4 : 3 m o l a r r a t i o w i t h t h e a p p r o p r i a t e a m o u n t o f ( B t 4 N ) C N i n D M F a t 1 5 5 ° C a f f o r d s C u I n S e 2 c o n t a m i n a t e d w i t h C u S e a c c o r d i n g t o e q . 3 : 4 [ I n 3 ( S e 4 ) 3 ( S e 4 ) 3 ] 3 ' + 3 [ C u 4 ( S e 4 ) 3 ] 2 - + 6 3 ( E t 4 N ) C N - - - > C u I n S e 2 + C u S e 6 3 K S e C N + 9 S e 2 ‘ e q . 3 . T h e c r y s t a l l i t e s o f C u I n S e 2 o b t a i n e d i n t h i s r e a c t i o n w e r e s i m i l a r i n s i z e t o t h e o n e s o b t a i n e d f r o m ( n - B u ) 3 P ( ~ 6 0 A ) t h u s i n d i c a t i n g t h a t t h e C N ' d o e s n o t p l a y a n s i g n i f i c a n t r o l e i n t h e p a r t i c l e g r o w t h b u t p e r h a p s K + i o n s a r e r e s p o n s i b l e f o r l a r g e r c r y s t a l l i t e s . E x p e r i m e n t s o f a n n e a l i n g C u I n S e 2 o b t a i n e d f r o m ( n - B u ) 3 P a n d ( E t 4 N ) C N w i t h K + i o n s a r e i n p r o g r e s s t o c o n f i r m t h e r o l e o f K + i o n s i n t h e g r o w t h o f t h e p a r t i c l e s . 3 6 6 C O N C L U S I O N S T h e r e a c t i o n r e p o r t e d h e r e b y w h i c h c h a l c o g e n - a b s t r a c t i o n r e a g e n t s t r a n s f o r m s o l u b l e m e t a l - p o l y c h a l c o g e n i d e c o m p l e x e s t o s o l i d s t a t e c h a l c o g e n i d e s i s g e n e r a l . I t i s a l s o s u i t a b l e f o r t h e p r e p a r a t i o n o f s o l i d s o l u t i o n s ( e . g . C d 1 - n g ; S e , C d 1 - a n x S e ) f r o m w h i c h i n t e r e s t i n g m a t e r i a l s s u c h a s d i l u t e m a g n e t i c s e m i c o n d u c t o r s a r e o b t a i n e d ” . I n a d d i t i o n t o b e i n g a m i l d a n d c o n v e n i e n t r o u t e t o s o l i d c h a l c o g e n i d e s t h i s m e t h o d a l s o p r o v i d e s a n o p p o r t u n i t y t o o b t a i n a n d s t u d y m a n y s e m i c o n d u c t o r s i n t h e q u a n t u m - s i z e r e g i m e a n d s t a b i l i z e n e w p h a s e s ” . T h i s i s e s p e c i a l l y u s e f u l i n c a s e s w h e r e t h e p u b l i s h e d m e t h o d s ( w h i c h w o r k w e l l f o r I I - V I m a t e r i a l s ) c a n n o t b e g e n e r a l i z e d t o o t h e r b i n a r y a n d p a r t i c u l a r l y t e r n a r y s e m i c o n d u c t o r s . L I S T O F R E F E R E N C E S 0 0 ( a ) " C h e m i c a l P e r s p e c t i v e s i n M i c r o e l e c t r o n i c M a t e r i a l s r e f e r e n c e s t h e r i n . , G r o s s , M . B . ; J a s i n s k i , J . M . ; Y a t e s , J . T . ( E d s ) M a t e r i a l s R e s e a r c h S o c i e t y S y m p o s i a P r o c e e d i n g s , V o l . 1 . 1 L , 1 9 8 9 . ( b ) " B e t t e r C e r a m i c s T h r o u g h C h e m i s t r y 1 1 1 " r e f e r e n c e s t h e r i n . , B r i n k e r , C . J . ; C l a r k , D . W . ; U l r i c h , D . R . ( E d s ) M a t e r i a l s R e s e a r c h S o c i e t y S y m p o s i a P r o c e e d i n g s , V o l . 1 2 1 , 1 9 8 8 . ( a ) B r e n n a n , J . G . ; S i e g r i s t , T . ; C a r r o l l , J . P . ; S t r u c z y n s k i , S . M . ; B r u s , L . B . ; S t e i g e r w a l d , M . L . J . A m . C h e m . S o c . 1 9 8 9 , L l _ 1 , 4 1 4 1 - 4 1 4 3 . ( b ) S t e i g e r w a l d , M . L . ; R i c e , C . E . J . A m . C h e m . S o c . 1 9 8 8 , 1 _ 1 _ Q , 4 2 2 8 - 4 2 3 1 . F a n , G . ; W i l l i a m s , J . O . J . C h e m . S o c . F a r a d a y T r a n s . 1 9 8 7 , 8 3 , 3 2 3 - 3 3 8 . B o c h m a n n , M . ; H a w k i n s , 1 . ; W i l s o n , L . M . C h e m . C o m m u n . 1 9 8 8 , 3 4 4 . ( a ) S m i t h , R . A . i n " S e m i c o n d u c t o r s " p p . 4 3 8 , C a m b r i d g e U n i v e r s i t y P r e s s , 1 9 7 8 . ( b ) B a r t l e t t , B . E . e t a 1 . I n f r a r e d P h y s . 1 9 6 9 , 2 , 3 5 . K m , Z . K . S o l i d S t a t e T e c h n o l o g y 1 9 8 8 , 3 _ 1 _ , L 7 7 - 7 9 . B a l l m a n , A . A . ; B y e r , R . L . ; E i m e r l , D . ; F e i g e l s o n , R . S . ; F e l d m a n , B . J . ; G o l d b e r g . L . S . ; M e n y u k , N . ; T a n g , C . L . A p p l i e d O p t i c s 1 9 8 7 , 2 _ § _ , 2 2 4 - 2 2 7 . ( a ) T u t t l e , J . R . ; A l b i n , D . S . ; N o u fi , R . S o l a r C e l l s 1 9 8 9 , 2 1 , 2 3 1 - 2 3 6 . ( b ) Z e i b e l , K . " T h e P o t e n t i a l o f C u I n S e z a n d C d T e f o r S p a c e A p p l i c a t i o n s . 2 3 r d I n t e r s o c i e t y E n e r g y C o n v e r s i o n E n g i n e e r i n g C o n f e r e n c e " V o l . 3 G o s w a m i , D . Y . ( E d ) , A S M E , 1 9 8 8 , p p 9 7 - 1 0 2 . 3 6 7 1 0 . 1 1 . 1 2 . 1 3 . 1 4 . 1 5 . 1 6 . 1 7 . 1 8 . 1 9 . 2 0 . 3 6 8 ( a ) W h i t t i n g h a m , M . S . S c i e n c e 1 9 7 6 , L 2 2 , 1 1 2 5 . ( b ) W h i t t i n g h a m , M . S . J . S o l i d S t a t e C h e m . 1 9 7 9 , 2 2 , 3 0 3 - 3 1 0 . ( a ) K a n a t z i d i s , M . G . C o m m e n t s I n o r g . C h e m . 1 9 9 0 , 1 9 , 1 6 1 - 1 9 5 . ( b ) A n s a r i , M . A . ; I b e r s , J . A . C o o r d . C h e m . R e v . 1 9 9 0 , 1 _ 0 _ 0 _ , 2 2 3 - 2 6 6 . ( c ) K o l i s , J . W . C o o r d . C h e m . R e v . 1 9 9 0 , 1 1 1 1 , 1 9 5 - 2 1 9 . C u s i c k , J . ; S c u d d e r , M . L . ; C r a i g , D . C . ; D a n c e , 1 . G . P o l y h e d r o n l 9 8 9 , 8 _ , 1 1 3 9 - 1 1 4 1 . D h i n g r a . S . ; K a n a t z i d i s , M . G . ( S e e C h a p t e r 2 ) D h i n g r a , S . ; K a n a t z i d i s M . G . i n ” B e t t e r C e r a m i c s T h r o u g h C h e m i s t r y I V ” M a t . R e s . S o c . S y m p . P r o c . 1 9 9 0 , 1 3 1 1 . 8 2 5 - 8 3 0 . J C P D S P o w d e r D i f f r a c t i o n F i l e : I n t e r n a t i o n a l C e n t e r f o r D i f f r a c t i o n D a t a . 1 9 8 3 , S w a r t h m o r e , P A , U S A . ( C u S e ) 1 2 H # 2 0 - 1 0 2 0 ; ( C u 2 - x S e ) ( x ~ 0 . 1 5 ) # 6 - 0 6 8 0 ; ( C u I n S e 2 ) l 6 L L # 2 3 - 2 0 9 D i e l , B . N . ; l n a b e , T . ; L y d i n g , J . W . ; S c h o c k , K . F . ; K a n n e w u r f , C . R . ; T o b i n , M . J . J . A m . C h e m . S o c . 1 9 8 3 , 1 9 5 , 1 5 5 1 - 1 5 6 7 . ( a ) B o l i n g e r , C . M . ; R a u c h f u s s , T . B . J . A m . C h e m . S o c . 1 9 8 1 , 1 0 3 , 5 6 2 0 - 5 6 2 1 . ( b ) H a d j i k y t i a c o u , A . 1 . ; C o u c o u v a n i s , D . I n o r g . C h e m . 1 9 8 7 , 2 _ 6 _ , 2 4 0 0 - 2 4 0 8 . ( a ) D h i n g r a , S . ; K i m , K . - W . ; K a n a t z i d i s M . G . i n " C h e m i c a l P e r s p e c t i v e s i n M i c r o e l e c t r o n i c M a t e r i a l s " M a t . R e s . S o c . S y m p . P r o c . l 9 9 l , 2 _ 0 _ 4 _ , 1 6 3 - 1 6 8 . ( b ) K i m , K . - W . ; K a n a t z i d i s M . G . u n p u b l i s h e d r e s u l t s . C u F e 8 2 s t r u c t u r e t y p e . W e l l s , A . F . " S t r u c t u r a l I n o r g a n i c C h e m i s t r y " 5 t h E d . C l e r e n d o n P r e s s , O x f o r d , 1 9 8 4 , p p 7 7 9 . T h e b a n d g a p o f C u I n S e z i s 1 . 0 4 e V ( o r 1 1 9 2 n m ) . ( a ) R o s e t t i , R . ; H u l l , R . ; G i b s o n , J . M . ; B r u s , L . E . J . C h e m . P h y . 1 9 8 5 , 8 2 , , 5 5 2 - 5 5 9 . ( b ) C h e s t n o y , N . ; H a r r i s , T . D . ; H u l l , R . ; B r u s , L . E . J . C h e m . P h y . 1 9 8 6 , 2 0 , 3 3 9 3 - 3 3 9 9 . ( c ) S t e i g e r w a l d , M . L . ; A l i v i z a t o s , A . P . ; G i b s o n , J . M . ; H a r r i s , T . D . ; K o r t a n , R . ; M u l l e r , A . J . ; T a y e r , A . M . ; D u n c a n , T . M . ; D u g l a s s , D . C . ; B r u s , L . E . J . A m . C h e m . S o c . 1 9 8 8 , 1 1 1 1 , 3 0 4 6 - 3 0 5 0 . 2 1 . 2 2 . 3 6 9 ( a ) W a n g , Y . ; M a h l e r , W . O p t . C o m m . 1 9 8 7 , § _ l _ , 2 3 3 - 2 3 6 . ( b ) W a n g , Y . ; H e r o n , N . J . C h e m . P h y . 1 9 8 7 , 2 1 , 2 5 7 - 2 6 0 . ( c ) W a n g , Y . ; D u k e , C . P h y s . R e v . 1 9 8 8 , B _ 3 1 , 6 4 1 7 - 6 4 2 3 . ( d ) Z a o , X . K . ; B a r a l , S . ; R o l a n d i , R . ; F e n d l e r , J . H . J . A m . C h e m . S o c . 1 9 8 8 , L L Q , 1 0 1 2 - 1 0 2 4 . ( a ) K i m , K . - W . ; C o w e n , J . A . ; D h i n g r a , S . ; K a n a t z i d i s M . G . i n " C h e m i c a l P r o c e s s e s i n I n o r g a n i c M a t e r i a l s : M e t a l a n d S e m i c o n d u c t o r C l u s t e r s a n d C o l l o i d s " M a t . R e s . S o c . S y m p . P r o c . 1 9 9 2 , i n p r e s s . ( b ) K i m , K . - W . ; K a n a t z i d i s M . G . w o r k i n p r o g r e s s . N S T A T E U N I V . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5