. 4 ~ . . t . l \ I . . . . . 4 4 1 . : ‘ } \ : t l 3 . : l 1 . \ v . ‘ n a . e o t : a . . . . . v . ’ . v i o ‘ . , 9 . 4 ‘ . 3 . . . A ‘ . . . . . . A ” . n . . O a . . . £ i ‘ § q J m . . s ] Y a v ‘ fi . . fi a . r z fi a r fi . v v l . t ' c l l l ‘ : 4 : 1 . . x » l b C 5 v i . : , J s . t . s w r % ; v . : A a a 1 { 1 a ” 5 . . . ‘ . a . 0 ! i ; . 3 : . i x 1 a 3 fl u 9 fi d 4 G ‘ : a - . d . I . I . 1 ( 1 ‘ I 1 . ) 3 n 1 - l 1 0 i . o o t A . . . . I O n l i l 3 . 1 1 . 1 3 . u n a l o l ' v i a v i q l q a i t ] : . 3 . 1 . . . ) I t I . 3 1 . ~ : 2 7 1 . ! i t ) . . . : v . . . 7 ! a n . . . 2 : 1 I V I T Y I B R A R I E I l l l l l l l l l i l i l l l ' l l l l l l l l l l l l l l 3 1 2 9 3 0 0 9 0 3 2 1 5 6 l l T h i s i s t o c e r t i f y t h a t t h e t h e s i s e n t i t l e d E x p l o r a t o r y S y n t h e s i s o f N e w T r a n s i t i o n M e t a l C o m p l e x e s w i t h P o l y c h a l c o g e n i d e L i g a n d s U s i n g C o n v e n t i o n a l S o l u t i o n R e a c t i o n s a n d H y d r o ( s o l v o ) t h e r m a l T e c h n i q u e s p r e s e n t e d b y S o n g p i n g H u a n g h a s b e e n a c c e p t e d t o w a r d s f u l f i l l m e n t o f t h e r e q u i r e m e n t s f o r P h . D . C h e m i s t r y d e g r e e i n M a j o r p r o f e s s o r 3 1 2 5 ' ; B 0 - 7 6 3 9 M S U i s a n A f fi r m a t i v e A c t i o n / E q u a l O p p o r t u n i t y I n s t i t u t i o n L I B R A R Y M i c h i g a n S t a t e U n i v e r s i t y P L A C E I N R E T U R N B O X t o r e m o v e t h i s c h e c k o u t f r o m y o u r r e c o r d . T O A V O I D F I N E S r e t u r n o n o r b e f o r e d a t e d u e . D A T E D U E D A T E D U E D A T E D U E l _ _ _ l l ‘ — — l fi n e r — “ x i M S U I s A n A f f i r m a t i v e A c t i o n / E q u a l O p p o r t u n i t y I n s t i t u t i o n 6 W 1 , E X P L O R A T O R Y S Y N T H E S I S O F N E W T R A N S I T I O N M E T A L C O M P L E X E S W I T H P O L Y C H A L C O G E N I D E L I G A N D S U S I N G C O N V E N T I O N A L S O L U T I O N R E A C T I O N S A N D H Y D R O ( S O L V O ) T H E R M A L T E C H N I Q U E S B y S o n g p i n g H u a n g A D I S S E R T A T I O N S u b m i t t e d t o M i c h i g a n S t a t e U n i v e r s i t y i n p a m ' a l f u l fi l l m e n t o f t h e r e q u i r e m e n t s f o r t h e d e g r e e o f D O C T O R O F P H I L O S O P H Y D e p a r t m e n t o f C h e m i s t r y 1 9 9 3 A B S T R A C T E X P L O R A T O R Y S Y N T H E S I S O F N E W T R A N S I T I O N M E T A L ( D M P L E X E S W I T H P O L Y C H A L C O G E N I D E L I G A N D S U S I N G C O N V E N T I O N A L S O L U T I O N R E A C T I O N S A N D H Y D R O ( S O L V O ) T H E R M A L T E C H N I Q U E S B y S o n g p i n g H u a n g T h e c o o r d i n a t i o n c h e m i s t r y o f m e t a l p o l y c h a l c o g e n i d e s i s f a s c i n a t i n g i n t e r m s o f s t r u c t u r a l d i v e r s i t y a n d w e a l t h i n e s s . I n t h e p a s t t w o d e c a d e s , t h e c h e m i s t r y o f m e t a l p o l y s u l fi d e s h a s b e e n e x t e n s i v e l y s t u d i e d , w h i l e a g r e a t d e a l o f a t t e n t i o n i s c u r r e n t l y b e i n g p a i d t o m e t a l p o l y s e l e n i d c s a n d p o l y t e l l u r i d e s . B y u s i n g s o l v e n t e x t r a c t e d Z i n t l p h a s e s A 2 Q x ( A = N a o r K ; Q = S e o r T e ; x = 2 - 6 ) a s t h e s t a r t i n g m a t e r i a l s , w e h a v e p r e p a r e d a n u m b e r o f m e t a l h e a v y p o l y c h a l c o g e n i d e c o m p o u n d s f r o m s o l u t i o n o r u n d e r h y d r o ( s o l v o ) t h e r m a l c o n d i t i o n s . I n t h e A u ‘ W s z ' ( Q = S e a n d T e ) s y s t e m , s i x n e w g o l d p o l y c h a l c o g e n i d e c o m p l e x e s a r e s y n t h e s i z e d f r o m s o l u t i o n . T h e s e i n c l u d e ( P P N ) 2 [ A u 2 8 e 2 ( S e 4 5 2 ] , ( P h 4 P ) 2 [ A U 2 ( S c z ) ( S e z ) ] . ( P P N ) 2 [ A U 2 ( 3 6 2 ) ( S C 3 ) ] . ( P h 4 P ) 2 [ A U 2 ( S c z ) ( S e 4 ) ] . ( P h 4 P ) 2 [ A u 2 ( T e z ) 2 ] a n d ( E t 4 N ) 3 [ N a A u 1 2 $ e 3 ] . A l s o i s o l a t e d f r o m r e a c t i o n o f A u C l 3 w i t h N a z s e s i s a s p i r e — c y c l i c p o l y s e l e n i d e c o m p o u n d a - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] , w h i l e B - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] a n d ( P h 4 P ) 2 [ T e ( S e 5 ) 2 ] c a n b e o b t a i n e d b y u s i n g 1 2 o r N a 2 8 e 5 a s o x i d a n t . I n t h e r e a c t i o n o f R u 3 ( C O ) 1 2 / F e ( C O ) 5 w i t h N a 2 8 e 5 i n s o l u t i o n a t a m b i e n t t e m p e r a t u r e s , p a r t i a l o x i d a t i v e d e c a r b o n y l a t i o n o f t h e m e t a l c e n t e r b y p o l y s e l e n i d e l i g a n d s a f f o r d s ( l o - c o n t a i n i n g o c m h e d r a l c o m p l e x e s ( E t 4 N ) 1 . 5 N a o . 5 [ R U ( C O ) 2 ( S e 4 ) 2 ] . ( P h 4 P ) 2 [ R u ( C O ) 2 ( S e 4 ) 2 a n d ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] . W h e n s u c h o x i d a t i v e d e c a r b o n y l a t i o n r e a c t i o n s a r e c a r r i e d o u t u n d e r h y d r o ( s o l v o ) t h e r m a l c o n d i t i o n s , s i x t e e n n o v e l m e t a l c a r b o n y l c h a l c o g e n i d e c l u s t e r s a r e o b t a i n e d . T h e s e i n c l u d e ( P h 4 P ) 2 [ R u 6 ( T e z ) 7 ( C 0 ) 1 2 ] . ( P h 4 P ) 2 [ { F c 4 T c 4 ( C O ) t o l 2 0 6 2 ) ] . W h l c h z S C ( C O ) 6 } 2 ( S e z ) ] . ( P h 4 P ) 2 [ M n 3 ( Q 2 ) 2 ( Q R ) ( C 0 ) 9 ] ( R = H 0 r C H 3 w h e n Q = S ; R = C H s w h e n Q = S e a n d T e ) . ( P h 4 P ) 3 [ R e 4 ( T e z ) 3 ( ' l ' e C H 3 ) ( C 0 ) 1 2 1 - C H 3 0 H . ( P h 4 P ) W n 2 ( Q C H s ) 3 ( C O ) 6 ] ( Q = S . S e a n d T e ) . ( P h 4 P ) 2 [ ( C O ) 4 M ( M S 4 ) ] N = M o a n d W ) a n d ( P h 4 P ) 2 [ ( C O ) 4 M ( M S 4 ) M ( C O ) 4 ] ( M = M 0 a n d W ) . I n t h i s d i s s e r t a t i o n , t h e s y n t h e s i s , X - r a y c r y s t a l s t r u c t u r e s a n d t h e s p e c t r o s c o p i c c h a r a c t e r i z a t i o n o f t h e s e n e w l y p r e p a r e d c o m p o u n d s a r e r e p o r t e d . i v A C K N O W L F E E M E N T S I s i n c e r e l y w i s h t o t h a n k P r o f . D r . M e r c o u r i G . K a n a t z i d i s f o r s u g g e s t i n g t h e s t u d i e s i n t h i s a r e a o f c h e m i s t r y , f o r h i s e x p e r t g u i d a n c e , s u p p o r t a n d p a t i e n c e t h r o u g h o u t t h e c o u r s e o f t h e e x p e r i m e n t s a n d t h e p r e p a r a t i o n o f t h i s d i s s e r t a t i o n . I w o u l d l i k e t o e x p r e s s s p e c i a l t h a n k s t o a l l m e m b e r s i n K a n a t z i d i s g r o u p f o r t h e f r i e n d s h i p a n d s u p p o r t . E a c h o n e o f t h e m h a s t a u g h t m e m a n y i n v a l u a b l e t h i n g s . A p p r e c i a t i o n i s a l s o e x t e n d e d t o t h e D e p a r t m e n t o f C h e m i s t r y , t h e C e n t e r f o r F u n d a m e n t a l M a t e r i a l s R e s e a r c h ( C F M R ) a t M i c h i g a n S t a t e U n i v e r s i t y , t h e P e t r o l e u m R e s e a r c h F u n d a d m i n i s t e r e d b y t h e A m e r i c a n C h e m i c a l S o c i e t y a n d t h e N a t i o n a l S c i e n c e F o u n d a t i o n f o r fi n a n c i a l s u p p o r t i n t h e f o r m s o f c h e m i c a l s , s u p p l i e s , t e a c h i n g a n d r e s e a r c h a s s i s t a n t s h i p . F i n a l l y , I t h a n k m y w i f e a n d m y d a u g h t e r f o r t h e i r u n d e r s t a n d i n g a n d e n c o m ' a g e m e n t d u r i n g t h e p r e p a r a t i o n o f t h i s d i s s e r t a t i o n a n d t h e o t h e r m a n u s c r i p t s . T A B L E O F C O N T E N T S C H A P T E R 1 I N T R O D U C T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 I . G e n e r a l B a c k g r o u n d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 I I . S u m m a r y o f S y n t h e t i c M e t h o d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 . U s e o f p o l y c h a l c o g e n i d e a n i o n s g e n e r a t e d i n s i t u a s r e a g e n t s . . . . . . . . . . 6 2 . U s e o f e l e m e n t a l c h a l c o g e n s a s r e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 . E x t r a c t i o n o f t r a n s i t i o n m e t a l / c h a l c o g e n - c o n t a i n i n g a l l o y s . . . . . . . . . . . . . . 9 4 . U s e o f o t h e r r e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 . T h e r m o l y s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 6 . T h e m o l t e n s a l t t e c h n i q u e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 7 . U s e o f Z i n t l p h a s e s o f a l k a l i m e t a l p o l y c h a l c o g e n i d e s a s r e a g e n t s . . . . . 1 3 8 . H y d r o ( s o l v o ) t h e r m a l r e a c t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 I I I . S p e c t r o s c o p i c S t u d i e s o f M e t a l H e a v y P o l y c h a l c o g e n i d e s . . . . . . . . . . . . . . . . . . . . . 1 5 1 . T h e I R a n d U V / v i s S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 2 . N M R S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 I V . C o n c l u d i n g R e m a r k s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 R E F E R E N C E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 C H A P T E R 2 P O L Y S E L E N I D E A N D P O L Y T E L L U R I D E C H E M I S T R Y O F G O L D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 I . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 v i [ 1 . E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 1 . R e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 2 . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 3 . S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 P r e p a r a t i o n o f ( P P N ) 2 [ A u 2 8 e 2 ( S e 4 ) 2 ] ( 2 - 1 ) . . . . . . . . . . . . . . . . . . . . . . . 3 9 P r e p a r a t i o n o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 - 2 ) . . . . . . . . . . . . . . . . . . . . . . 3 9 P r e p a r a t i o n o f ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 - 3 ) . . . . . . . . . . . . . . . . . . . . . . . 4 0 P r e p a r a t i o n o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] ( 2 - 4 ) . . . . . . . . . . . . . . . . . . . . . . 4 0 P r e p a r a t i o n o f ( E t 4 N ) 3 [ N a A u 1 2 8 e 3 ] ( 2 - 5 ) . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 P r e p a r a t i o n o f ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] ( 2 - 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 4 . X - r a y D i f f r a c t i o n a n d C r y s t a l l o g r a p h i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 I I I . R e s u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 1 . D e s c r i p t i o n o f C r y s t a l a n d M o l e c u l a r S t r u c t u r e s o f t h e C o m p o u n d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 S t r u c t u r e o f ( P P N ) 2 [ A u Z S e 2 ( S e 4 ) 2 ] ( 2 . 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 S t r u c t u r e o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 . 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 S t r u c t u r e o f ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 - 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . 7 0 S t r u c t u r e o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] ( 2 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . 7 0 S t r u c t u r e o f ( E t 4 N ) 3 [ N a A u l e e 3 ] ( 2 - 5 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 S t r u c t u r e o f ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] ( 2 - 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 2 . S p e c t r o s c o p i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 3 . T h e r m a l D e c o m p o s i t i o n P r o p e r t i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 v i i I V . D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 R E F E R E N C E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 0 C H A P T E R 3 C H E M I S T R Y O F H O M O - A N D H E T E R O C H A L C O G E N I D E C O M P O U N D S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 5 I . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 5 I I . E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 6 1 . R e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 6 2 . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 6 3 . S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 7 P r e p a r a t i o n o f O t - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 4 - 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 7 P r e p a r a t i o n o f fl - ( P h 4 P ) 2 [ S e ( S e s ) 2 ] ( 4 - 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 7 P r e p a r a t i o n o f ( P h 4 P ) 2 [ T e ( S e 5 ) 2 ] ( 4 - 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 8 4 . X - r a y D i f f r a c t i o n a n d C r y s t a l l o g r a p h i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 8 I I I . R e s u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 8 1 . D e s c r i p t i o n o f C r y s t a l a n d M o l e c u l a r S t r u c t u r e s o f t h e C o m p o u n d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 8 S t r u c t u r e o f O t - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 4 - l ) a n d fi - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 4 - 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 8 2 . S p e c t r o s c o p i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 4 3 . T h e r m a l D e c o m p o s i t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 5 I V . D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 9 R E F E R E N C E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 4 v i i i C H A P T E R 4 C H E M I S T R Y O F P O L Y S E L F N I D E L I G A N D S W I T H I R O N A N D R U T H E N I U M C A R B O N Y L S I N S O L U T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 0 I . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 0 1 1 . E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 1 . R e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 2 . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 3 . S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 2 P r e p a r a t i o n o f ( E t 4 N ) 1 5 N a o , 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 3 - 1 ) . . . . . . . . . . . . . 1 4 2 P r e p a r a t i o n o f ( P h 4 P ) 2 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 3 - 2 ) . . . . . . . . . . . . . . . . . . . . . 1 4 2 P r e p a r a t i o n o f ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] ( 3 - 3 ) . . . . . . . . . . . . . . . . . . . . . . 1 4 3 4 . X - r a y D i f f r a c t i o n a n d C r y s t a l l o g r a p h i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 3 I I I . R e s u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 4 1 . D e s c r i p t i o n o f C r y s t a l a n d M o l e c u l a r S t r u c t u r e s o f t h e C o m p o u n d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 4 S t r u c t u r e o f ( E t 4 N ) 1 5 N a o 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 3 - 1 ) . . . . . . . . . . . . . . . 1 5 4 S t r u c t u r e o f ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] ( 3 - 3 ) . . . . . . . . . . . . . . . . . . . . . . . . 1 5 9 2 . S p e c t r o s c o p i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 3 3 . T h e r m a l D e c o m p o s i t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 8 I V . D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 1 R E F E R E N C E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 4 C H A P T E R 5 H Y D R O ( M E T H A N O ) T H E R M A L S Y N T H E S I S O F M E T A L C A R B O N Y L C H A L C O G E N I D E C L U S T E R S O F G R O U P 8 E L E M E N T S . . . . . . . . . . . . . 1 7 9 i x I . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 9 1 1 . E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 0 1 . R e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 0 2 . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 1 3 . S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 1 P r e p a r a t i o n o f ( P h 4 P ) 2 [ R U 5 ( T e 2 ) 7 ( C O ) 1 2 ] ( 5 - 1 ) . . . . . . . . . . . . . . . . . . . 1 8 1 P r e p a r a t i o n o f ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 o } 2 ( T e 2 ) ] ( 5 - 2 ) . . . . . . . . . . . . 1 8 2 P r e p a r a t i o n o f ( P h 4 P ) 2 [ { F e z S e ( C O ) 5 } 2 ( S e 2 ) ] ( 5 - 3 ) . . . . . . . . . . . . . . 1 8 2 4 . X - r a y D i f f r a c t i o n a n d C r y s t a l l o g r a p h i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 3 I I I . R e s u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 8 1 . D e s c r i p t i o n o f C r y s t a l a n d M o l e c u l a r S t r u c t u r e s o f t h e C o m p o u n d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 8 S t r u c t u r e o f ( P h 4 P ) 2 [ R u 5 ( T e 2 ) 7 ( C O ) 1 2 ] ( 5 - 1 ) . . . . . . . . . . . . . . . . . . . . . 1 9 8 S t r u c t u r e o f ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 0 } 2 ( T e 2 ) ] ( 5 - 2 ) . . . . . . . . . . . . . . . 2 0 5 S t r u c t u r e o f ( P h 4 P ) 2 [ { F e 2 S e ( C O ) 6 } 2 ( S e 2 ) ] ( 5 - 3 ) . . . . . . . . . . . . . . . . . 2 1 1 2 . S p e c t r o s c o p i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 7 3 . T h e r m a l D e c o m p o s i t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 7 I V . D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 4 R E F E R E N C E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 9 C H A P T E R 6 M E N T H A N O T H E R M A L S Y N T H E S I S O F C H A I J C O G E N I D E — C O N T A I N I N G M E T A L C A R B O N Y L C L U S T E R S O F G R O U P 7 E L E M E N I T S . . . . . . . 2 3 5 I . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 5 I I . E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 8 1 . R e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 8 2 . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 8 3 . S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 8 P r e p a r a t i o n o f ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] ( 6 - 1 ) . . . . . . . . . . . . . . . 2 3 9 P r e p a r a t i o n o f ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C H 3 ) ( C O ) 9 ] ( 6 - 2 ) . . . . . . . . . . . 2 3 9 P r e p a r a t i o n o f ( P h 4 P ) 2 [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] ( 6 - 3 ) . . . . . . . . . 2 4 0 P r e p a r a t i o n o f a - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] ( 6 - 4 ) . . . . . . 2 4 0 P r e p a r a t i o n o f fi - ( P h 4 P ) 2 [ M n 3 ( T e z ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 5 ) - - - - - - 2 4 1 P r e p a r a t i o n o f ( P h 4 P ) 3 [ R e 4 ( T 8 2 ) 3 ( T e C H a ) ( C 0 ) 1 2 ] - C H 3 0 H ( 6 - 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 1 P r e p a r a t i o n o f ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 5 ] ( 6 - 7 ) . . . . . . . . . . . . . . . . . . 2 4 2 P r e p a r a t i o n o f ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 5 ] ( 6 - 8 ) . . . . . . . . . . . . . . . . 2 4 2 P r e p a r a t i o n o f ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 6 ] ( 6 - 9 ) . . . . . . . . . . . . . . . . 2 4 3 4 . X - r a y D i f f r a c t i o n a n d C r y s t a l l o g r a p h i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 3 I I I . R e s u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 6 1 . D e s c r i p t i o n o f C r y s t a l a n d M o l e c u l a r S t r u c t u r e s o f t h e C o m p o u n d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 6 S t r u c t u r e s 0 1 ’ ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C 0 ) 9 ] ( 6 ' 1 ) a n d ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C H 3 ) ( C O ) 9 ] ( 6 - 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 6 S t r u c t u r e o f ( P h 4 P ) 2 [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] ( 6 - 3 ) . . . . . . . . . . . . 2 9 6 S t r u c t u r e s o f a - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( ' I ‘ e C H 3 ) ( C O ) 9 ] ( 6 - 4 ) a n d B - ( P h 4 P ) 2 [ M n 3 ( T 6 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 - 5 ) . . . . . . . . . . . . . . . . . . . 3 0 2 x i S t r u c t u r e o f ( P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C 0 ) r z l - C H 3 0 H ( 6 - 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 3 S t r u c t u r e s o f ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 5 ] ( 6 - 7 ) , ( P h 4 P ) [ M 1 1 2 ( S e C H 3 ) 3 ( C 0 ) 6 ] ( 6 ‘ 3 ) a n d ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 5 ] ( 6 - 9 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 9 2 . S p e c t r o s c o p i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 6 3 . T h e r m a l D e c o m p o s i t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 4 I V . D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 8 R E F E R E N C E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 5 C H A P T E R 7 M E N T H A N U T H E R M A L S Y N T H E S I S O F M E T A L C A R B O N Y L S U L F I D O C L U S T E R S O F G R O U P 6 E L E M E N T S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 8 I . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 8 I I . E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 9 1 . R e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 9 2 . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 9 3 . S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 9 P r e p a r a t i o n o f ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) ] ( 7 - 1 ) . . . . . . . . . . . . . . . . . . . 3 5 9 P r e p a r a t i o n o f ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) ] ( 7 - 2 ) . . . . . . . . . . . . . . . . . . . . . . 3 6 0 P r e p a r a t i o n o f ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) M o ( C O ) 4 ] ( 7 - 3 ) . . . . . . . . 3 6 0 P r e p a r a t i o n o f ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) W ( C O ) 4 ] ( 7 - 4 ) . . . . . . . . . . . . 3 6 1 4 . X - r a y D i f f r a c t i o n a n d C r y s t a l l o g r a p h i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 1 I I I . R e s u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 9 x i i 1 . D e s c r i p t i o n o f C r y s t a l a n d M o l e c u l a r S t r u c t u r e s o f t h e C o m p o u n d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 9 S t r u c t u r e o f ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) ] ( 7 - 2 ) . . . . . . . . . . . . . . . . . . . . . . . . 3 7 9 S t r u c t u r e o f ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) M o ( C O ) 4 ] ( 7 - 3 ) a n d ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) W ( C O ) 4 ] ( 7 - 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 4 2 . S p e c t r o s c o p i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 9 3 . T h e r m a l D e c o m p o s i t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 5 I V . D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 8 R E F E R E N C E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 1 C H A P T E R 8 C O N C L U S I O N S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 5 R E F E R E N C E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 8 x i i i L I S T I N G O F T A B L E S T a b l e 1 1 . T y p i c a l C o o r d i n a t i o n M o d e s o f P o l y s u l fi d e L i g a n d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 T a b l e 1 - 2 . 7 7 S e a n d 1 2 5 T e N M R d a t a f o r t h e [ M X ( Q 4 ) 2 ] 2 ' ( M = M o , W . . . . . . . . . . . . . . . . . . . . 1 8 T a b l e 2 - 1 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f ( P P N ) 2 [ A u 2 8 e 2 ( S e 4 ) 2 ] ( 2 - 1 ) , ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 - 2 ) a n d ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 - 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 T a b l e 2 - 2 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] ( 2 - 4 ) , ( E t 4 N ) 3 [ N a A u 1 2 8 e 3 ] ( 2 - 5 ) a n d ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] ( 2 - 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 T a b l e 2 - 3 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P P N ) 2 [ A u Z S e 2 ( S e 4 ) 2 ] ( 2 - 1 ) . . . . . 4 6 T a b l e 2 - 4 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 - 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 8 T a b l e 2 - 5 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 - 3 ) . . . . . 5 0 T a b l e 2 - 6 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] ( 2 - 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 T a b l e 2 - 7 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( E t 4 N ) 3 [ N a A u 1 2 8 e g ] ( 2 - 5 ) . . . . . . . . 5 3 T a b l e 2 - 8 . P o s i t i o n a l P a r a m e t e r s a n d B r , q V a l u e s f o r ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] ( 2 - 6 ) . . . . . . . . . 5 4 T a b l e 2 - 9 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P P N ) 2 [ A u Z S e 2 ( S e 4 ) 2 ] ( 2 - 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 T a b l e 2 - 1 0 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ A U 2 ( S e z ) ( S e 3 ) ] ( 2 ' 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7 T a b l e 2 - 1 1 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 - 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 8 x i v T a b l e 2 - 1 2 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ A u 2 ( S e z ) ( S e 4 ) ] ( 2 - 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 9 T a b l e 2 - 1 3 . C a l c u l a t e d a n d O b s e r v e d X — r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( E t 4 N ) 3 [ N a A u 1 2 8 e g ] ( 2 - 5 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 T a b l e 2 - 1 4 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] ( 2 - 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 T a b l e 2 - 1 5 . S e l e c t e d G e o m e t r i c D a t a f o r ( P P N ) 2 [ A u 2 8 e 2 ( S e 4 ) 2 ] ( 2 - 1 ) . . . . . . . . . . . . . . . . . . . . 6 5 T a b l e 2 1 6 . S e l e c t e d G e o m e t r i c D a t a f o r ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 - 2 ) . . . . . . . . . . . . . . . . . . . 6 5 T a b l e 2 - 1 7 . S e l e c t e d G e o m e t r i c D a t a f o r ( P h 4 P ) 2 [ A u z ( S e 2 ) ( S e 4 ) ] ( 2 - 4 ) . . . . . . . . . . . . . . . . . . . 7 4 T a b l e 2 - 1 8 . S e l e c t e d G e o m e t r i c D a t a f o r ( E t 4 N ) 3 [ N a A u 1 2 8 e g ] ( 2 - 5 ) . . . . . . . . . . . . . . . . . . . . . . 7 6 T a b l e 2 - 1 9 . S e l e c t e d G e o m e t r i c D a t a f o r ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] ( 2 - 6 ) a n d C o m p a r i s o n w i t h ( P P N ) 2 [ A u 2 ( T e 2 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 T a b l e 2 2 0 E l e c t r o n i c S p e c t r a l D a t a f o r ( P P N ) 2 [ A u 2 8 e 2 ( S e 4 ) 2 ] ( 2 - 1 ) , ( P h 4 P ) 2 [ A u z ( S e 2 ) ( S e 3 ) ] ( 2 ' 2 ) , ( P P N ) 2 [ A U 2 ( S e 2 ) ( S e 3 ) ] ( 2 ' 3 ) . ( P h 4 P ) 2 [ A u z ( S e z ) ( S e 4 ) l ( 2 ' 4 ) , ( E t 4 N ) 3 [ N a A U 1 2 3 e 8 ] ( 2 ' 5 ) a n d ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] ( 2 - 6 ) i n D M F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 T a b l e 2 - 2 1 . T h e r m a l G r a v i m e t r i c A n a l y s i s D a t a f o r ( P P N ) 2 [ A u Z S e 2 ( S e 4 ) 2 ] ( 2 - 1 ) , ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 ' 2 ) , ( P P N ) 2 [ A U Z ( S B Z ) ( S C 3 ) ] ( 2 ’ 3 ) , ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] ( 2 ' 4 ) , ( E M l e l N a A u u S e s l ( 2 ' 5 ) a n d ( P h 4 P ) 2 [ A u z ( T e 2 ) 2 ] ( 2 ' 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 T a b l e 3 - 1 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f t x - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 3 - 1 ) a n d [ 3 - ( P h 4 P ) 2 [ S e ( S e s ) 2 ] ( 3 - 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 T a b l e 3 - 2 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r a - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 3 - 1 ) . . . . . . . . 1 1 2 T a b l e 3 - 3 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r B - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 3 - 2 ) . . . . . . . . 1 1 4 T a b l e 3 4 . C a l c u l a t e d a n d O b s e r v e d X — r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r a t - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 3 - 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 l 6 X V T a b l e 3 - 5 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r B - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 3 - 2 ) a n d ( P h 4 P ) 2 [ T e ( S e 5 ) 2 ] ( 3 - 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 7 T a b l e 3 - 6 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f o r - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 3 ' 1 ) a n d fi - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 3 ' 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 4 T a b l e 4 1 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f ( E t 4 N ) 1 , 5 N a o 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 1 ) , ( P h 4 P ) 2 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 2 ) a n d ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 3 ) . . . . . . . . . . . . . . 1 4 6 T a b l e 4 - 2 . P o s i t i o n a l P a r a m e t e r s a n d B e , q V a l u e s f o r ( E t 4 N ) 1 , 5 N a o , 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 7 T a b l e 4 - 3 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 3 ) . . . . 1 4 9 T a b l e 4 - 4 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( E t 4 N ) 1 . 5 N a o . 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 4 ' 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 2 T a b l e 4 - 5 . C a l c u l a t e d a n d O b s e r v e d X — r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 3 T a b l e 4 - 6 . S e l e c t e d G e o m e t r i c D a t a f o r ( E t 4 N ) 1 , 5 N a o , 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 1 ) . . . . . . . . . . . 1 5 5 T a b l e 4 - 7 . S e l e c t e d G e o m e t r i c D a t a f o r ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 3 ) . . . . . . . . . . . . . . . . . . . . 1 5 9 T a b l e 4 - 8 . T h e r m a l G r a v i m e t r i c A n a l y s i s D a t a f o r ( E t 4 N ) 1 5 N a o , 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 1 ) , ( P h 4 P ) 2 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 2 ) a n d ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] ( 4 ' 3 ) . . . . . . . . . . . . . . . 1 6 8 T a b l e 5 - 1 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f ( P h 4 P ) 2 [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 ] ( 5 - 1 ) , ( P h 4 P ) 2 [ { F e 4 T e 4 ( C 0 ) 1 o } 2 ( T e 2 ) ] ( 5 ' 2 ) a n d ( P h 4 P ) 2 [ { F e 2 $ e ( C 0 ) 6 } 2 ( S e 2 ) ] ( 5 ' 3 ) - - - - - - - 1 8 4 T a b l e 5 - 2 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 ] ( 5 - 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 5 T a b l e 5 - 3 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 0 } 2 ( ' T e 2 ) ] ( 5 - 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l 8 7 T a b l e 5 4 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ { F e Z S e ( C O ) 5 } 2 ( S e 2 ) ] ( 5 - 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 1 x v i T a b l e 5 - 5 . C a l c u l a t e d a n d O b s e r v e d X — r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 ] ( 5 - 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 4 T a b l e 5 - 6 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 o } 2 ( T e 2 ) ] ( 5 . 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 5 T a b l e 5 - 7 . C a l c u l a t e d a n d O b s e r v e d X — r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ { F e 2 8 e ( C O ) 6 } 2 ( S e 2 ) ] ( 5 - 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 6 T a b l e 5 - 8 . S e l e c t e d G e o m e t r i c D a t a f o r ( P h 4 P ) 2 [ R u 5 ( T e 2 ) 7 ( C O ) 1 2 ] ( 5 - 1 ) . . . . . . . . . . . . . . . . . 1 9 9 T a b l e 5 9 . S e l e c t e d G e o m e t r i c D a t a f o r ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 o } 2 ( T e 2 ) ] ( 5 - 2 ) . . . . . . . . . . 2 0 6 T a b l e 5 1 0 . S e l e c t e d G e o m e t r i c D a t a f o r ( P h 4 P ) 2 [ { F e 2 8 e ( C O ) 5 } 2 ( S e 2 ) ] ( 5 . 3 ) . . . . . . . . . . . 2 1 2 T a b l e 6 1 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] ( 6 ' 1 ) . ( P h 4 P ) 2 [ M n 3 ( 3 2 ) 2 ( S C H 3 ) ( C 0 ) 9 ] ( 6 2 ) , ( P h 4 P ) 2 [ M u 3 ( S e 2 ) 2 ( S e C H 3 ) ( C 0 ) 9 l ( 6 - 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 5 T a b l e 6 2 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f a t - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 ' 4 ) , B — ( P h 4 P ) 2 [ M u 3 ( T e 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 l ( 6 - 5 ) , ( P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 ] . C H 3 O H ( 6 - 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 6 T a b l e 6 - 3 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 6 ] ( 6 ' 7 ) , ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 5 ] ( 6 3 ) a n d ( P h 4 P ) [ a n ( T e C H 3 ) 3 ( C 0 ) 6 ] ( 6 9 ) - - - - - 2 4 7 T a b l e 6 4 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] ( 6 - 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 8 T a b l e 6 - 5 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C H 3 ) ( C O ) 9 ] ( 6 - 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 1 T a b l e 6 6 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ M n 3 ( S e z ) 2 ( S C C H 3 ) ( C O ) 9 ] ( 6 - 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 6 T a b l e 6 7 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r o r - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] ( 6 - 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 9 x v i i T a b l e 6 8 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r [ 3 - ( P h 4 P ) 2 [ M r l 3 ( T e z ) 2 ( ' T e C H 3 ) ( C O ) 9 ] ( 6 ' 5 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 2 T a b l e 6 9 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 ] . C H 3 0 H ( 6 - 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 5 T a b l e 6 1 0 . P o s i t i o n a l P a r a m e t e r s a n d B r , q V a l u e s f o r ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) ( , ] ( 6 - 7 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 9 T a b l e 6 1 1 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 5 ] ( 6 - 8 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 1 T a b l e 6 1 2 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 5 ] ( 6 - 9 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 3 T a b l e 6 1 3 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ M n 3 ( S 2 ) 2 ( S H ) ( C O ) 9 ] ( 6 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 5 T a b l e 6 - 1 4 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C H 3 ) ( C O ) 9 ] ( 6 ' 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 6 T a b l e 6 1 5 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] ( 6 - 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 7 T a b l e 6 1 6 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r o r - ( P h 4 P ) 2 [ M n 3 ( T e z ) 2 ( T e C H 3 ) ( C O ) 9 ] ( 6 - 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 8 T a b l e 6 1 7 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r B - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C I - I 3 ) ( C O ) 9 ] ( 6 5 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 0 T a b l e 6 1 8 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 ] . C H 3 O H ( 6 - 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 1 T a b l e 6 - 1 9 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 5 ] ( 6 - 7 ) a n d ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 5 ] ( 6 - 8 ) . . . . . . . . . . . . . . . 2 8 3 T a b l e 6 - 2 0 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P 1 1 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 5 ] ( 6 - 9 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 4 x v i i i T a b l e 6 2 1 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f ( P h 4 P ) 2 [ M n 3 ( 3 2 ) 2 ( S H ) ( C 0 ) 9 ] ( 6 ' 1 ) a n d ( P h 4 P ) 2 [ M n 3 ( 5 2 ) 2 ( S C H 3 ) ( C 0 ) 9 ] ( 6 ' 2 ) - - - - - T a b l e 6 2 2 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f ( P h 4 P ) 2 N n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] ( 6 ' 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T a b l e 6 2 3 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f a - ( P h 4 P ) 2 [ M n 3 ( T e z ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 ‘ 4 ) a n d f 3 - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] ( 6 5 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T a b l e 6 2 4 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f ( P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 ] . C H 3 O H ( 6 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T a b l e 6 2 5 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) c ] ( 6 7 ) , ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) s ] ( 6 8 ) a n d ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 6 ] ( 6 ' 9 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T a b l e 6 2 6 . I R S p e c t r a l D a t a f o r ( P h 4 P ) 2 [ M n 3 ( S 2 ) 2 ( S H ) ( C O ) 9 ] ( 6 1 ) , ( P 1 1 4 ? ) 2 [ M n 3 ( 3 2 ) 2 ( S C H 3 ) ( C 0 ) 9 ] ( 6 ' 2 ) , ( P h 4 P ) 2 [ M n 3 ( S e z ) 2 ( S e C H 3 ) ( C 0 ) 9 l ( 6 ' 3 ) , a - ( P h 4 P ) 2 [ M n 3 ( T e z ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 ' 4 ) , fi - ( P h 4 P ) 2 [ M n 3 ( T 6 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 ‘ 5 ) , ( P h 4 P ) 3 [ R e 4 ( T 6 2 ) 3 ( T e C H 3 ) ( C 0 ) l z l - C H 3 0 H ( 6 ' 6 ) . ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C 0 ) 6 ] ( 6 7 ) . ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C 0 ) 6 ] ( 6 ' 8 ) a n d ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 5 ] ( 6 ' 9 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T a b l e 6 2 7 . T h e r m a l G r a v i m e t r i c A n a l y s i s D a t a f o r ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] ( 6 ' 1 ) . ( P h 4 P ) 2 a n s ( S z ) 2 ( S C H 3 ) ( C 0 ) 9 ] ( 6 ' 2 ) , ( P h 4 P ) 2 W n 3 ( S e z ) 2 ( S e C H 3 ) ( C 0 ) 9 ] ( 6 ' 3 ) , O I - ( P h 4 P ) 2 a n 3 ( T e z ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 ' 4 ) , 1 3 - ( P 1 1 4 ? ) 2 [ M n 3 ( T 6 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 ' 5 ) , ( P h 4 P ) 3 [ R e 4 ( T 6 2 ) 3 ( T e C H 3 ) ( C 0 ) l z l - C H 3 0 H ( 6 6 ) , ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C 0 ) 6 ] ( 6 ' 7 ) , ( W ) [ M n 2 ( S e C H 3 ) 3 ( C 0 ) 6 ] ( 6 ' 8 ) a n d ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C 0 ) 6 ] ( 6 ' 9 ) T a b l e 7 1 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) ] ( 7 - 1 ) , ( P h 4 P ) 2 [ ( C 0 ) 4 W ( W S 4 ) ] ( 7 ' 2 ) , ( P h 4 P ) 2 [ ( C 0 ) 4 M 0 ( M 0 8 4 ) M 0 ( C 0 ) 4 ] ( 7 ' 3 ) a n d ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) W ( C O ) 4 ] ( 7 ' 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T a b l e 7 - 2 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) ] ( 7 ' 2 ) . . . . . 2 8 8 . . 2 9 7 . . 3 0 3 . . 3 1 4 . . 3 1 9 . . 3 2 7 . . 3 4 4 . . 3 6 4 . 3 6 6 x i x T a b l e 7 - 3 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) M o ( C O ) 4 ] ( 7 ° 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 9 T a b l e 7 - 4 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s f o r ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) W ( C O ) 4 ] ( 7 - 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 2 T a b l e 7 - 5 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) ] ( 7 - 1 ) a n d ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) ] ( 7 ' 2 ) . . . . . . . . . . . . . . . . . . . . . 3 7 6 T a b l e 7 - 6 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ ( C 0 ) 4 M 0 ( M 0 5 4 ) M 0 ( C 0 ) 4 ] ( 7 ' 3 ) a n d ( P h 4 P ) 2 [ ( C 0 ) 4 W ( W S 4 ) W ( C 0 ) 4 ] ( 7 ' 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 8 T a b l e 7 7 . C o m p a r i s o n o f G e o m e t r i c D a t a B e t w e e n ( P h 4 P ) 2 [ ( C O ) 4 W ( W 8 4 ) ] ( 7 2 ) a n d ( E t 4 N ) 2 [ ( C O ) 4 W ( W S 4 ) ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 0 T a b l e 7 - 8 . G e o m e t r i c D a t a o f ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) M o ( C O ) 4 ] ( 7 - 3 ) a n d ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) W ( C O ) 4 ] ( 7 - 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 4 T a b l e 7 9 E l e c t r o n i c S p e c t r a l D a t a f o r [ { M ( C O ) 4 } n ( M S 4 ) ] 2 ' ( M = M o , W ) . . . . . . . . . . . . . . . . . 3 9 5 X X L I S T I N G O F F I G U R E S F i g u r e 2 1 . T w o V i e w s o f t h e [ A u 2 S e 2 ( S e 4 ) 2 ] 2 ‘ A n i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 F i g u r e 2 - 2 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P P N ) 2 [ A u 2 S e 2 ( S e 4 ) 2 ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 7 F i g u r e 2 3 . T w o V i e w s o f t h e [ A u 2 ( S e 2 ) ( S e 3 ) ] 2 ' A n i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 F i g u r e 2 - 4 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 9 F i g u r e 2 - 5 . T h e O R T E P R e p r e s e n t a t i o n o f t h e [ A u 2 ( S e 2 ) ( S e 3 ) ] 2 ' A n i o n i n ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] , S h o w i n g S t r u c t u r a l D i s o r d e r C a u s e d B y t h e I n v e r s i o n C e n t e r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1 F i g u r e 2 6 . T w o V i e w s o f t h e [ A u 2 ( S e 2 ) ( S e 4 ) ] 2 ' A n i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 F i g u r e 2 - 7 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 F i g u r e 2 - 8 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( E t a N ) 3 [ N a A u 1 2 S e 3 ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 8 F i g u r e 2 - 9 . T h e S t r u c t u r e o f t h e [ N a A u 1 2 8 e 3 1 3 ' A n i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 9 F i g u r e 2 1 0 . T w o V i e w s o f t h e [ A u 2 ( T e 2 ) 2 ] 2 ’ A n i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 0 F i g u r e 2 - 1 1 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1 F i g u r e 2 - 1 2 . T h e s o l i d - s t a t e f a r I R S p e c t r a o f ( A ) ( P P N ) 2 [ A u 2 8 e 2 ( S e 4 ) 2 ] , ( B ) ( P h 4 P ) 2 [ A U 2 ( S e 2 ) ( S e 3 ) ] , ( C ) ( P P N ) 2 [ A U 2 ( S e z ) ( S e s ) ] , ( D ) ( P h 4 P ) 2 [ A u z ( S e z ) ( S e 4 ) ] , ( E ) ( E t 4 N ) 3 [ N a A 0 1 2 S e s l a n d ( F ) ( P h 4 P ) 2 [ A U 2 ( T e z ) 2 ] - - - - - - - 8 6 x x i F i g u r e 2 - 1 3 . T h e U V / v i s S p e c t r a o f ( A ) ( P P N ) 2 [ A u 2 8 e 2 ( S e 4 ) 2 ] a n d ( B ) ( P h 4 P ) 2 [ A U 2 ( S e z ) ( S e 4 ) ] i n D M F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 7 F i g u r e 2 - 1 4 . T h e U V / v i s S p e c t r a o f ( A ) ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] a n d ( B ) ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] i n D M F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 7 F i g u r e 2 - 1 5 . T h e U V / v i s S p e c t r u m o f ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] i n D M F . . . . . . . . . . . . . . . . . . . . . . . . 8 8 F i g u r e 2 - 1 6 . T h e 7 7 S e N M R S p e c t r a o f ( A ) ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] , ( B ) ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] a n d ( C ) ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] i n D M F . . . . . . . . . . . . . . . . . . . . . . . . . 8 9 F i g u r e 2 - 1 7 . T h e 7 7 S e N M R S p e c t r u m ( A ) a n d 2 3 N a N M R S p e c t r u m ( B ) o f ( E t 4 N ) 3 [ N a A U 1 2 8 e 8 ] i n D M F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 0 F i g u r e 2 - 1 8 . T h e T G A D i a g r a m s o f ( A ) ( P P N ) 2 [ A u 2 8 e 2 ( S e 4 ) 2 ] , ( B ) ( P h 4 P ) 2 [ A U 2 ( S e z ) ( S e a ) ] . ( C ) ( P P N ) 2 [ A 0 2 ( 8 6 2 ) ( 3 6 3 ) ] a n d ( D ) ( P h 4 P ) 2 [ A u z ( S e 2 ) ( S e 4 ) ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 F i g u r e s 2 1 9 . T h e T G A D i a g r a m s o f ( A ) ( E t 4 N ) 3 [ N a A u 1 2 S e 3 ] a n d ( B ) ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 F i g u r e 3 - 1 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f a ~ ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 0 F i g u r e 3 - 2 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f fi - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 1 F i g u r e 3 - 3 . T h e S t r u c t u r e o f t h e [ S e ( S e 5 ) 2 ] 2 ' A n i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 2 F i g u r e 3 4 . C o m p a r i s o n o f S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) i n ( A ) a - A n d ( B ) f l - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 3 F i g u r e 3 - 5 . T h e S o l i d - S t a t e F a r I R S p e c t r a o f ( A ) ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] a n d ( B ) ( P h 4 P ) 2 [ T e ( S e s ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 6 F i g u r e 3 6 . T h e U V / v i s S p e c t r u m o f ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] i n D M F . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 7 F i g u r e 3 - 7 . T h e T G A d i a g r a m s o f ( A ) ( P h 4 P ) 2 [ S e ( S e s ) 2 ] A n d ( B ) ( P h 4 P ) 2 [ T e ( S e 5 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 8 x x i i F i g u r e 4 - 1 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( E t 4 N ) 1 5 N a o 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 6 F i g u r e 4 2 . T h e S t r u c t u r e o f t h e [ R u ( C O ) 2 ( S e 4 ) 2 ] 2 ' A n i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 7 F i g u r e 4 - 3 . O R T E P R e p r e s e n t a t i o n o f t h e { N a [ R u ( C O ) 2 ( S e 4 ) 2 ] 2 } 3 + S t r u c t u r e , S h o w i n g t h e C o o r d i n a t i o n o f a N a + b y T w o [ R u ( C O ) 2 ( S e 4 ) 2 ] 2 ‘ A n i o n s . . . . . . . . . . . . . . . . . . 1 5 8 F i g u r e 4 - 4 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 1 F i g u r e 4 - 5 . T h e S t r u c t u r e o f t h e [ F e ( C O ) 2 ( S e 4 ) 2 ] 2 ' A n i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 2 F i g u r e 4 - 6 T h e S o l i d - S t a t e I R S p e c t r a i n t h e C O R e g i o n f o r ( — ) ( E t 4 N ) 1 5 N 3 0 5 [ R U ( C 0 ) 2 ( S e 4 ) 2 ] , ( - X - X - X - ) ( P h 4 P ) 2 [ R U ( C 0 ) 2 ( S e 4 ) 2 ] a n d ( - - - - ) ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 5 F i g u r e 4 - 7 T h e S o l i d - S t a t e F a r I R S p e c t r a o f ( — ) ( E t 4 N ) 1 5 N a o _ 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] , ( - x - x - x - ) ( P h 4 P ) 2 [ R u ( C O ) 2 ( S e 4 ) 2 ] a n d ( - - - ) ) ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] . . . . . . . . . . . . . . . . . . . 1 6 6 F i g u r e 4 - 8 . T h e 7 7 S e N M R S p e c t r a o f ( A ) ( E t 4 N ) 1 5 N a o 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] a n d ( B ) ( P h 4 P ) 2 [ R u ( C O ) 2 ( S e 4 ) 2 ] , ( C ) ( P 1 1 4 ? ) 2 [ F 0 ( C 0 ) 2 ( S € 4 ) 2 ] 3 0 d 2 3 N a N M R S p e c t r u m o f ( D ) ( E t 4 N ) 1 5 N a 0 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 7 F i g u r e 4 - 9 . T h e T G A d i a g r a m s o f ( A ) ( E t 4 N ) 1 5 N a o 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] , ( B ) ( P h 4 P ) 2 [ R u ( C O ) 2 ( S e 4 ) 2 ] a n d ( C ) ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 0 F i g u r e 5 - 1 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 1 F i g u r e 5 - 2 . T h e S t r u c t u r e o f t h e [ R u 5 ( T e 2 ) 7 ( C O ) 1 2 ] 2 ' A n i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 2 F i g u r e 5 - 3 . T h e S t r u c t u r e o f t h e [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 1 2 ‘ A n i o n w i t h C O G r o u p s O m i t t e d , S h o w i n g t h e S t a g g e r i n g C o n f o r m a t i o n o f t h e R U 3 T e - T e R u 3 F r a g m e n t . . . . . . . . . 2 0 3 F i g u r e 5 4 . C o m p a r i s o n B e t w e e n t h e [ R u 5 ( T e 2 ) 7 ] 2 ' C o r e a n d a S m a l l - C o r e F r a g m e n t o f R u T e z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 4 x x i i i F i g u r e 5 - 5 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 0 } 2 ( T e 2 ) ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 8 F i g u r e 5 6 . T h e S t r u c t u r e o f t h e [ { F e 4 T e 4 ( C O ) 1 o } 2 ( T e 2 ) ] 2 ‘ A n i o n . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 9 F i g u r e 5 - 7 . T h e S t r u c t u r e o f t h e [ { F e 4 T e 4 ( C O ) 1 o } 2 ( T e 2 ) ] 2 ' A n i o n w i t h C O G r o u p s O m i t t e d , E m p h a s i z i n g t h e T w o F e 4 T e 4 C o r e s a n d T h e i r C o u p l i n g v i a t h e T e 2 2 ' L i g a n d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 0 F i g u r e 5 - 8 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ { F e 2 8 e ( C O ) 5 } 2 ( S e 2 ) ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 4 F i g u r e 5 9 . T h e S t r u c t u r e o f t h e [ { F e 2 S e ( C O ) 5 } 2 ( S e 2 ) ] 2 ‘ A n i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 5 F i g u r e 5 - 1 0 . A D i f f e r e n t V i e w o f t h e [ { F e Z S e ( C O ) 5 } 2 ( S e 2 ) ] 2 ' A n i o n , S h o w i n g t h e D o u b l e ” B u t t e r fl y ” C o n f o r m a t i o n o f t h e M o l e c u l e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 6 F i g m ' e 5 - 1 1 . T h e S o l i d - S t a t e I R S p e c t r a i n t h e C O R e g i o n f o r ( A ) W ) 2 I R U 6 ( T 0 2 ) 7 ( C 0 ) 1 2 L ( B ) ( P I M P h I { 1 : 9 4 ' 1 ‘ 3 4 ( C O ) 1 0 } 2 ( T e 2 ) ] a n d ( C ) ( P h 4 P ) 2 [ { F e 2 8 6 ( C 0 ) 6 } 2 ( S e z ) ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 9 F i g u r e 5 - 1 2 . T h e S o l i d - S t a t e F a r I R S p e c t r u m o f ( P h 4 P ) 2 [ R u 5 ( T e 2 ) 7 ( C O ) 1 2 ] . . . . . . . . . . . . 2 2 0 F i g u r e 5 - 1 3 . T h e S o l i d - S t a t e F a r I R S p e c t r a f o r ( — ) ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 o } 2 ( T e 2 ) ] a n d ( — - - ) ( P h 4 P ) 2 [ { F 6 2 8 8 ( C 0 ) 6 } 2 ( S e z ) ] . . . . . . . . . . . . . . . . 2 2 0 F i g u r e 5 - 1 4 . T h e U V / v i s S p e c t r u m o f ( P h 4 P ) 2 [ { F e Z S e ( C O ) 5 } 2 ( S e 2 ) ] i n D M F . . . . . . . . . . . 2 2 1 F i g u r e 5 - 1 5 . T h e 7 7 S e N M R S p e c t r u m o f ( P h 4 P ) 2 [ { F e 2 S e ( C O ) 5 } 2 ( S e 2 ) ] i n D M F . . . . . . 2 2 2 F i g u r e 5 - 1 6 . T h e T G A d i a g r a m s o f ( A ) ( P h 4 P ) 2 [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 ] , ( B ) ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 o } 2 ( T e 2 ) ] a n d ( C ) ( P h 4 P ) 2 [ { F 6 2 3 6 ( C 0 ) 6 } 2 ( 5 6 2 ) ] - - - - - - - - - - - - - - - - 2 2 3 F i g u r e 6 1 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 2 F i g u r e 6 2 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C I - I 3 ) ( C O ) 9 ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 3 F i g u r e 6 - 3 . T h e S t r u c t u r e o f t h e [ M n 3 ( S z ) 2 ( S I - I ) ( C O ) 9 ] 2 ' A n i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 4 x x i v F i g u r e 6 4 . S t r u c t u r e s o f t h e T w o C r y s t a l l o g r a p h i c a l l y I n d e p e n d e n t [ M n 3 ( 3 2 ) 2 ( S H ) ( C 0 ) 9 ] 2 ' A n i o n s F o u n d i n t h e ( P h 4 P ) 2 [ 1 \ 4 n 3 ( 3 2 ) 2 ( S H ) ( C 0 ) 9 ] U n i t C e l l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 5 F i g u r e 6 5 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ M n 3 ( S e z ) 2 ( S e C I - I 3 ) ( C O ) 9 ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 9 F i g u r e 6 6 . T h e S t r u c t u r e o f t h e [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] 2 ‘ A n i o n . . . . . . . . . . . . . . . . . . . . . 3 0 0 F i g u r e 6 7 . T w o O p t i c a l I s o m e r s o f t h e [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] 2 ' A n i o n F o u n d i n t h e ( P h 4 P ) 2 [ M fl 3 ( S € 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] U n i t C e l l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 1 F i g u r e 6 8 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( x - ( P h 4 P ) 2 [ M n 3 ( T e z ) 2 ( T e C H 3 ) ( C O ) 9 ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 7 F i g u r e 6 9 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f B - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 8 F i g u r e 6 1 0 . S t r u c t u r e o f t h e ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] 2 ' A n i o n F o u n d i n a - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 9 F i g u r e 6 1 1 . S t r u c t u r e o f t h e [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] 2 ' A n i o n F o u n d i n B - ( P h 4 P ) 2 [ M n 3 ( T e z ) 2 ( T e C H 3 ) ( C O ) 9 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 0 F i g u r e 6 1 2 . T w o O p t i c a l I s o m e r s o f t h e [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] 2 ' A n i o n F o u n d i n t h e a - ( P h 4 P ) 2 [ M n 3 ( ' l " e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] U n i t C e l l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 1 F i g u r e 6 1 3 . T w o O p t i c a l I s o m e r s o f t h e [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] 2 ' A n i o n F o u n d i n t h e f l — ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] U n i t C e l l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 2 F i g u r e 6 1 4 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 3 [ R e 4 ( T e g ) 3 ( T e C H 3 ) ( C O ) 1 2 ] . C H 3 O H ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 6 F i g u r e 6 1 5 . T h e S t r u c t u r e o f t h e [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 ] 3 ‘ A n i o n . . . . . . . . . . . . . . . . . . . . 3 1 7 F i g u r e 6 1 6 . T h e [ R e 4 ( T e 2 ) 3 ( T e ) ] 4 ' C l u s t e r C o r e , S h o w i n g a P s e u d o - C 3 A x i s . . . . . . . . . . 3 1 8 F i g u r e 6 1 7 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) [ M n 2 ( Q C H 3 ) 3 ( C O ) 5 ] ( Q = S a n d S e ) ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 2 X X V F i g u r e 6 1 8 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 5 ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 3 F i g u r e 6 1 9 . T h e S t r u c t u r e o f t h e [ M n 2 ( Q C H 3 ) 3 ( C O ) ( , ] 2 ’ ( Q = S a n d S e ) A n i o n s . . . . . . . . . 3 2 4 F i g u r e 6 2 0 . T h e S t r u c t u r e o f t h e [ M n 2 ( T e C H 3 ) 3 ( C O ) 5 ] 2 ‘ A n i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 5 F i g l n e 6 2 1 . T h e S o l i d - S t a t e I R S p e c t r a i n t h e C O R e g i o n f o r ( A ) ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] a n d ( B ) ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C H 3 ) ( C O ) 9 ] . . . . . . . . . . . . . . . . 3 2 9 F i g u r e 6 2 2 . T h e S o l i d - S t a t e I R S p e c t r a i n t h e C O R e g i o n f o r ( A ) ( P h 4 P ) 2 [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] 3 1 1 d ( B ) ( P h 4 P ) 3 [ R e 4 ( T e z ) 3 ( T e C H 3 ) ( C O ) 1 2 ] - C H 3 O H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 0 F i g u r e 6 2 3 . T h e S o l i d - S t a t e I R S p e c t r a i n t h e C O R e g i o n f o r ( A ) O l - ( P h 4 P ) 2 I M n 3 ( T e z ) 2 ( T e C H 3 ) ( C 0 ) 9 ] a n d ( B ) B - ( P I M P ) 2 [ M n 3 ( T e z ) 2 ( T e C H 3 ) ( C 0 ) 9 I - - - - - 3 3 1 F i g u r e 6 2 4 . T h e S o l i d - S t a t e I R S p e c t r a i n t h e C O R e g i o n f o r ( A ) ( P h 4 P ) [ M D Z ( S C H 3 ) 3 ( C O ) 6 L ( B ) ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 5 ] a n d ( C ) ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 6 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 2 F i g u r e 6 2 5 . T h e S o l i d - S t a t e F a r I R S p e c t r a o f ( A ) ( P b 4 P ) 2 [ M n 3 ( S 2 ) 2 ( S H ) ( C O ) 9 ] a n d ( B ) ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C H 3 ) ( C O ) 9 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 3 F i g u r e 6 2 6 . T h e S o l i d - S t a t e F a r I R S p e c t r u m o f ( P h 4 P ) 2 [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 4 F i g u r e 6 2 7 . T h e S o l i d - S t a t e F a r I R S p e c t r a o f ( A ) a - ( P h 4 P ) 2 [ M n 3 ( T 6 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] a n d ( B ) B - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] - - - - - 3 3 5 F i g u r e 6 2 8 . T h e S o l i d - S t a t e F a r I R S p e c t r u m o f ( P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 ] ° C H 3 O H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 6 F i g u r e 6 2 9 . T h e S o l i d - S t a t e F a r I R S p e c t r u m o f ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 6 ] . . . . . . . . . . . 3 3 7 F i g u r e 6 3 0 . T h e S o l i d - S t a t e F a r I R S p e c t r u m o f ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 5 ] . . . . . . . . . . 3 3 8 F i g u r e 6 3 1 . T h e S o l i d - S t a t e F a r I R S p e c t r u m o f ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 5 ] . . . . . . . . . . 3 3 9 x x v i F i g u r e 6 - 3 2 . T h e U V / v i s S p e c t r a o f ( — ) ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 6 ] , ( - - - ) ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 5 ] a n d ( . . . ) ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 6 ] i n C H 3 C N . . . . . . . . . 3 4 1 F i g u r e 6 3 3 . T h e U V / v i s S p e c t r u m o f ( P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 1 - C H 3 O H i n C H 3 C N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 1 F i g u r e 6 3 4 . T h e 1 H N M R S p e c t r a o f ( A ) ( P h 4 P ) 2 [ M n 3 ( 8 2 ) 2 ( S C H 3 ) ( C O ) 9 ] , ( B ) ( P h 4 P ) 2 [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] , ( C ) ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] a n d ( D ) ( P h 4 P ) 3 [ R e 4 ( T e z ) 3 ( T e C H 3 ) ( C O ) 1 2 ] ' C H 3 O H i n ( C D 3 ) 2 C O . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 2 F i g u r e 6 3 5 . T h e 1 H N M R S p e c t r a o f ( A ) ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 6 ] , ( B ) ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 5 ] a n d ( C ) ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 5 ] i n C D C 1 3 . . . . . . . . . . . 3 4 2 F i g u r e 6 3 6 . T h e T G A d i a g r a m s o f ( A ) ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] , ( B ) ( P I M P ) 2 [ M D 3 ( 3 2 ) 2 ( S C H 3 ) ( C 0 ) 9 L ( C ) ( P h 4 P ) 2 [ M n 3 ( S e z ) 2 ( S e C H 3 ) ( C 0 ) 9 ] a n d ( D ) ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 6 F i g u r e 6 3 7 . T h e T G A d i a g r a m s o f ( A ) ( P h 4 P ) 3 [ R e 4 ( T 6 2 ) 3 ( T e C H 3 ) ( C 0 ) 1 2 1 ° C H 3 0 H , ( B ) ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C 0 ) 6 ] , ( C ) ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 5 ] a n d ( D ) ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 6 ] . . . . . . . . . . . . . . . . . . . . . . . 3 4 7 F i g u r e 7 - 1 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) ] ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 2 F i g u r e 7 - 2 . T h e S t r u c t u r e o f t h e [ ( C O ) 4 W ( W S 4 ) ] 2 ‘ A n i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 3 F i g u r e 7 - 3 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ ( C O ) 4 M ( M S 4 ) M ( C O ) 4 ] ( M = M o a n d W ) ( S t e r e o v i e w ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 7 F i g u r e 7 - 4 . T h e S t r u c t u r e o f t h e [ ( C O ) 4 M ( M S 4 ) M ( C O ) 4 ] 2 ' ( M = M o a n d W ) A n i o n s . . . . . 3 8 8 F i g u r e 7 - 5 . T h e S o l i d - S t a t e I R S p e c t r a i n t h e C O R e g i o n f o r ( A ) ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) ] a n d ( B ) ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 0 F i g u r e 7 6 . T h e S o l i d - S t a t e I R S p e c t r a i n t h e C O R e g i o n f o r ( A ) ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) M o ( C O ) 4 ] a n d ( B ) ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) W ( C O ) 4 ] . . . . . . . . . . 3 9 1 F i g u r e 7 - 7 . T h e S o l i d - S t a t e F a r I R S p e c t r a o f ( A ) ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) ] a n d ( B ) ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 2 x x v i i F i g u r e 7 - 8 . T h e S o l i d - S t a t e F a r I R S p e c t r a o f ( A ) ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) M o ( C O ) 4 ] a n d ( B ) ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) W ( C O ) 4 ] . . . . . . . . . . 3 9 3 F i g u r e 7 - 9 . T h e U V / v i s S p e c t r a o f ( — ) ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) ] a n d ( - - - ) ( P h 4 P ) 2 [ ( C O ) W ( W S 4 ) ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 4 F i g u r e 7 - 1 0 . T h e U V / v i s S p e c t r a o f ( - - - ) ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) M o ( C O ) 4 ] a n d ( — ) ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) W ( C O ) 4 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 4 F i g u r e 7 - 1 1 . T h e T G A d i a g r a m s o f ( A ) ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) ] , ( B ) ( P h 4 P ) 2 [ ( C 0 ) 4 W ( W S 4 ) ] , ( C ) ( P h 4 P ) 2 [ ( C O ) 4 M 0 ( M 0 8 4 ) M 0 ( C 0 ) 4 ] a n d ( D ) ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) W ( C O ) 4 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 7 x x v i i i A B B R E V I A T I O N B u 4 N + = t e t r a b u t y l a m m o n i u m c a t i o n B u 3 P = t r i b u t y l p h o s p h i n e C p = c y c l o p e n t a d i e n y l , C 5 H 5 c r y p t = 4 , 7 , 1 3 , 1 6 , 2 1 , 2 4 - h e x a o x a - 1 , 1 0 - d i a z a b i c y c l o [ 8 , 8 , 8 ] h e x a c o s a n e , N ( C H 2 C H 2 0 C H 2 C H 2 0 C H 2 C H 2 ) 3 N D M F = N , N ' - d i m e t h y l f o r m a m i d e , H C ( O ) N ( C H 3 ) 2 d m o s = d i r n e t h y l o c t y l s i l y l , ( C 7 H 1 5 C H 2 ) S i ( C H 3 ) 2 d m p e = l , 2 - b i s ( d i m e t h y l p h o s p h i n o ) e t h a n e , ( C H 3 ) 2 P C H 2 C H 2 P ( C H 3 ) 2 D M S O = d i m e t h y l s u l f o x i d e , ( C H 3 ) 2 S O d p p e = 1 , 2 - b i S ( d i p h e n y l p h o s p h i n o ) e t h a n e , t h P C H z C H z P t h e n = e h y l e n e d i a m i n e , H z N C H z C H z N H z E t 4 N + = t e t r a e t h y l a m m o n i u m c a t i o n M e 4 N + = t e t r a m e t h y l a m m o n i u m c a t i o n N - M e l m = N - m e t h y l i m i d a z o l e , P h 3 P = t r i p h e n y l p h o s p h i n e = t e t r a p h e n y l p h o s p h o n i u m c a t i o n P P N + = b i s ( t r i p h e n y l p h o s p h i n o ) i m i d i u m c a t i o n , [ ( P h 3 P ) 2 N ] + T H F = t e t r a h y d r o f u r a n , C 4 H g O t m e d a = N , N , N ' , N ‘ - t e t r a m e t h y l e h y l e n e d i a m i n e , ( C H 3 ) 2 N C H 2 C H 2 N ( C H 3 ) 2 C H A P T E R 1 I N T R O D U C T I O N 1 . G e n e r a l B a c k g r o u n d A l l t h r e e e l e m e n t s o f g r o u p 1 6 , S , S e a n d T e , h a v e a t e n d e n c y t o c a t e n a t e . T h i s r e s u l t s n o t o n l y i n t h e r i n g s o r c h a i n s o f t h e i r s e v e r a l e l e m e n t a l f o r m s [ 1 ] , b u t a l s o i n t h e p o l y c h a l c o g e n i d e a n ' ( Q = S , S e , T e ; n = 2 - 6 ) i o n s t h a t c a n e x i s t i n s o l u t i o n s [ 2 — 3 ] o r i n t h e s o l i d - s t a t e [ 4 - 2 1 ] i n v a r i o u s s i z e s . A m o n g t h e e a r l i e s t s y s t e m a t i c i n v e s t i g a t o r s t o s t u d y t h e s o l u t i o n c h e n r i s t r y o f t h e e l e c t r o p o s i t i v e m e t a l s a n d m a n y p o s t t r a n s i t i o n n o n - m e t a l s , i n c l u d i n g c h a l c o g e n s , w e r e Z i n t l a n d c o - w o r k e r s [ 2 e ] . S o c o m p o u n d s l i k e A 2 Q n ( A = a l k a l i m e t a l ) o r B Q n ( B = a l k a l i n e — e a r t h m e t a l ) a r e o f t e n c a l l e d a s Z i n t l p h a s e s . M a n y s u c h p o l y h o m o a t o n r i c a n i o n s h a v e b e e n i s o l a t e d a n d s t r u c t u r a l l y c h a r a c t e r i z e d a s t h e ‘ a l k a l i / a l k a l i n e - e a r t h s a l t s , a l k a l i — c r y p t a t e s , o r a s m o l e c u l e s w i t h o r g a n i c c a t i o n s . T h e s e i n c l u d e S n ' ( n = 2 - 7 ) [ 4 - 9 ] , S e n z ' ( n = 2 - 9 ) [ 1 0 - 1 7 ] , a n d T e n z ‘ ( n = 2 - 5 ) [ 1 8 — 2 1 ] . A l l t h e s e a n i o n s a r e f o u n d t o b e u n b r a n c h e d h e l i c a l c h a i n s i n t h e s o l i d - s t a t e . T h e h o m o a t o m i c b o n d i n g i n t h e p o l y c h a l c o g e n i d e a n i o n s r e p r e s e n t s a r e t e n t i o n , t o a c e r t a i n d e g r e e , o f t h e c h a r a c t e r i s t i c s o f t h e e l e m e n t . I n a d d i t i o n t o t h e n o r m a l 0 b o n d s t h a t c o n n e c t c h a l c o g e n a t o m s i n t h e c h a i n , t h e n e g a t i v e c h a r g e s a r e e x p e c t e d t o fi l l i n a i t m o l e c u l a r o r b i t a l a n d d e l o c a l i z e o v e r t h e w h o l e c h a i n . H o w e v e r , w i t h t h e i n c r e a s e d c h a i n l e n g t h , t h e n e g a t i v e c h a r g e w i l l p r i m a r i l y r e s i d e o n t h e t e r m i n a l a t o m s [ 2 2 ] . N e v e r t h e l e s s , t h e t e r m i n a l a t o m s i n t h e p o l y c h a l c o g e n i d e c h a i n s a r e o f t e n s i m p l y c o n s i d e r e d t o h a v e t h e f o r m a l o x i d a t i o n s t a t e - 1 , a n d t h e i n t e r n a l a t o m s 0 . T h i s f o r m a l d e s c r i p t i o n i s e s p e c i a l l y e f f e c t i v e i n d e a l i n g w i t h t h e c o o r d i n a t i n g p r o p e r t i e s o f t h e s e l i g a n d s , a n d a c c o u n t s f o r t h e i r o b s e r v e d b e h a v i o r t o w a r d s m e t a l i o n s . T h e p o l y c h a l c o g e n i d e a n ' l i g a n d s a r e f a s c i n a t i n g i n v i e w o f t h e i r v e r s a t i l e c h e l a t i n g a b i l i t i e s t o w a r d s v i r t u a l l y a l l m e t a l i o n s . T h i s h a s a n d c o n t i n u e s t o b r e e d a n e w b r a n c h o f c o o r d i n a t i o n c h e m i s t r y w h i c h i s l a r g e l y c h a r a c t e r i z e d b y s t r u c t u r a l d i v e r s i t y a n d w e a l t h i n e s s . I n t h e p a s t t w o d e c a d e s , t h e c h e m i s t r y o f m e t a l p o l y s u l fi d e s h a s b e e n e x t e n s i v e l y s t u d i e d b e e a u s e e v i d e n c e h a s b e e n a c c u m u l a t e d t h a t t h i s s y s t e m i s r e l e v a n t t o m a n y p r o c e s s e s o f b i o l o g i c a l , g e o l o g i c a l a n d c a t a l y t i c i m p o r t a n c e , s u c h a s b i o s y n t h e s i s o f m e t a l l o p r o t e i n s [ 2 3 ] , h y d r o t h e r m a l c o n v e r s i o n o f m e t a l s t o t h e i r b i n a r y c h a l c o g e n i d e m i n e r a l s i n n a t u r e [ 2 4 ] , h y d r o d e s u l f u r i m t i o n ( H D S ) o f c r u d e o i l [ 2 5 ] , a n d h y d r o g e n a t i o n s o f u n s a t u r a t e d a n d a r o m a t i c h y d r o e a r b o n s [ 2 6 ] . T h e c h e m i s t r y o f m e t a l p o l y s u l fi d e s i s r i c h a n d d i v e r s e . S e v e r a l c o m p r e h e n s i v e r e v i e w a r t i c l e s h a v e a p p e a r e d i n t h e l i t e r a t u r e [ 2 7 - 2 8 ] . I n c o n t r a s t , u n t i l c . a . 1 9 8 7 , t h e c h e m i s t r y o f m e t a l h e a v y p o l y c h a l c o g e n i d e s ( i . e . p o l y s e l e n i d e s a n d p o l y t e l l u r i d e s ) f a i l e d t o k e e p a b r e a s t w i t h t h a t o f m e t a l p o l y s u l fi d e s , a s w i t n e s s e d b y t h e v e r y f e w s p o r a d i c r e p o r t s o f m e t a l c o m p o u n d s c o n t a i n i n g p o l y s e l e n i d e o r p o l y t e l l u r i d e l i g a n d s , n a m e l y M e - C ( C H 2 P P h 2 ) 3 C o ( S e 4 ) [ 2 9 ] , [ ( d m p e ) 2 1 r ( S e 4 ) ] C l ( d e 6 = M e z P C H 2 C H 2 P M e z ) I 3 0 ] , ( H S - C p ) 2 T i ( S e s ) [ 3 1 ] , ( n s - C P ) 2 V ( S e s ) [ 3 2 ] , ( n 5 - C P ) 2 M ( S e 4 ) W = M 0 , W ) [ 3 3 ] , ( P h 4 P ) 2 [ F 6 2 5 6 2 ( S e s ) 2 l [ 3 4 ] , ( B U 4 N ) 4 [ H g 4 ( T e ) 2 ( T e z ) 2 ( T 6 3 ) 2 ] [ 3 5 ] a n d ( P h 4 P ) 2 [ n g ( T e ) ( T 6 2 ) 2 ] [ 3 5 ] - T W O r e a s o n s s e e m t o b e p r i m a r i l y r e s p o n s i b l e f o r t h i s d e l a y e d d e v e l o p m e n t . F i r s t , t h e r e w a s a c o n s i d e r a b l e s y n t h e t i c d i f fi c u l t y i n i n t r o d u c i n g h e a v y p o l y c h a l c o g e n i d e l i g a n d s i n t o t h e m e t a l c e n t e r s b e c a u s e t h e m o s t c o n v e n i e n t m e t h o d f o r s y n t h e s i z i n g m e t a l p o l y s u l fi d e c o m p l e x e s i n v o l v e d t h e u s e o f H 2 8 , a n d t h i s w a s f o u n d t o b e u n a t t r a c t i v e f o r t h e p o l y s e l e n i d e o r p o l y t e l l u r i d e s y s t e m ( 1 - 1 2 8 e i s e x t r e m e l y p o i s o n o u s , a n d H z T e h i g h l y u n s t a b l e ) . S e c o n d , i n i t i a l p e r c e p t i o n t h a t t h e c h e m i s t r y o f m e t a l h e a v y p o l y c h a l c o g e n i d e s w o u l d m o r e o r l e s s p a r a l l e l t h a t o f m e t a l p o l y s u l fi d e s h a d g r e a t l y h i n d e r e d r e s e a r c h e n t h u s i a s m i n t h i s a r e a . A s a r e s u l t , m u c h o f o u r u n d e r s t a n d i n g o f m e t a l p o l y c h a l c o g e n i d e c h e m i s t r y u p t o t h e m i d 8 0 ' s h a d b e e n d e r i v e d f r o m t h e m e t a l p o l y s u l fi d e s y s t e m . T a b l e 1 - 1 s u m m a r i z e s t h e m o s t c o m m o n l y o b s e r v e d c o o r d i n a t i o n m o d e s f o r p o l y s u l fi d e l i g a n d s . T a b l e 1 - 1 . T y p i c a l C o o r d i n a t i o n M o d e s o f P o l y s u l fi d e L i g a n d s T y p e E x a m p l e R e f e r e n c e ( ) / S [ ( d p p e ) 2 1 r ( 8 2 ) l * . s z M o ( 8 2 ) [ 3 6 a - b l , [ 3 6 c ] a M \ | S / M [ M 0 4 ( N 0 ) 4 ( 8 2 ) 5 5 3 ] 4 ‘ . [ 3 7 a ] , / 3 C P 2 F e 2 ( 5 2 ) 2 C 0 [ 3 7 " ] ( b ) M \ l S M M n 4 ( 3 2 ) 2 ( C 0 ) 1 5 [ 3 8 1 S / / ( c ) M \ | S \ “ t 2 M \ s / M n 4 ( 3 2 ) 2 ( C 0 ) 1 5 [ 3 8 1 / ( d ) M \ | S \ M / M l t N H s ) s R u < S z > R u ( N H s ) s l 4 + . [ 3 9 a - b ] , S C p ( C O ) 2 M n ( 8 2 ) M n ( C O ) 2 C p [ 3 9 c ] ( e ) I S M / M \ / M C P 4 F 6 4 3 2 ( 5 2 ) 2 . [ 4 0 3 - 1 3 1 , S C P 4 C 0 4 3 2 ( 3 2 ) 2 [ 4 0 6 } ( t ) | S \ T a b l e 1 - 1 . ( c o n t ' d ) T y p e E x a m p l e R e f e r e n c e M \ / M [ { S M 0 3 ( C 0 ) 7 } 2 8 2 L [ 4 1 a ] , [ C p M n ( N 0 ) ( 8 2 ) l n [ 4 1 b ] ( g ) I s / \ M M ( y / s ’ \ [ M 0 2 ( 5 2 ) ] 2 ' . F 6 2 ( 5 2 ) ( C 0 ) 6 [ 4 2 a - b ] , W e ] 3 M \ M / S " \ ( C p * ) 2 T i ( 8 3 ) . [ N i ( S 4 ) 2 l z ' . [ 4 3 a ] , [ 4 3 b ] , ( 9 S \ / 3 [ P t ( S s ) 3 1 2 ‘ . [ H g ( 5 6 ) 2 ] 2 ‘ . [ 4 3 0 4 1 ] , [ 4 3 6 1 , M [ A 8 5 9 l ' [ 4 3 f ] n = - 4 , 7 / S " \ [ C U 3 ( S 4 ) 3 l 3 ‘ . [ A g 2 ( 8 6 ) 2 1 2 ’ [ 4 4 a ] , [ 4 4 b ] 0 ) S S \ / \ M M n = 2 o r 4 / S " \ S ( M e C p ) 4 T i 2 ( 8 3 ) 2 . [ A u 2 ( 8 4 ) 2 1 2 - . [ 4 5 a ] , [ 4 5 b ] , ( l e i / [ M 0 2 ( 0 H ) ( N 0 ) 2 ( 3 2 ) 3 ( 5 5 ) l 3 ‘ . [ 4 5 c ] , M M [ B i 2 ( S 7 ) 4 ( 3 6 ) ] 4 ‘ . [ P d 2 ( S 7 ) 4 1 2 ‘ . [ 4 5 d 1 , [ 4 5 e ] , n = 1 - 6 [ C u 2 ( 3 6 ) 2 ( S s ) l 4 ' [ 4 5 a ] ( l ) / 3 2 \ S [ C u 6 ( 3 4 ) 3 ( 5 5 ) 1 2 ’ [ 4 6 1 / S \ / \ $ 2 / S \ s 2 ( M e a P ) 3 O S ( S 7 ) [ 4 7 ] ( m ) I I 8 ‘ , s T h e i m p e t u s t o s c r u t i n i z e t h e m e t a l h e a v y p o l y c h a l c o g e n i d e c h e m i s t r y i n t h e l a t e 1 9 8 0 3 c a m e f r o m t h e r e a l i z a t i o n t h a t t h i s c h e m i s t r y w o u l d b e q u i t e d i f f e r e n t f r o m t h a t o f m e t a l p o l y s u l fi d e s . F o r m o s t m e t a l p o l y s e l e n i d e ( p o l y t e l l u r i d e ) c o m p l e x e s s y n t h e s i z e d b y t h a t t i m e , f e w h a d s u l f u r a n a l o g u e s . I n s o m e c a s e s , t h e s t r u c t u r e s o f m e t a l p o l y s e l e n i d e s o r p o l y t e l l u r i d e s t u r n e d o u t t o b e m o r e n o v e l . S o c o m p o u n d s s u c h a s ( E t 4 N 3 2 W 2 S e l 3 l l 4 3 l , ( P h 4 P ) 3 l e T e l o l ' D M F [ 4 9 ] , ( P h 4 P ) 3 [ C r 3 ( Q 4 ) 6 ] [ Q = S e 0 r T 6 1 5 0 ] , ( B u 4 N ) 4 [ H g 4 ( T e ) 2 ( T e 2 ) 2 ( T e 3 ) 2 l l 3 5 ] a n d ( P h 4 P ) 2 n g 2 ( T e ) ( T e z ) 2 ] [ 3 5 ] , t o j u s t n a m e a f e w , h a d n e v e r b e e n s e e n i n t h e m e t a l p o l y s u l fi d e c h e m i s t r y . P l a u s i b l e r e a s o n s f o r t h i s d i f f e r e n t c o o r d i n a t i o n c h e m i s t r y o f t h e h e a v y p o l y c h a l c o g e n i d e l i g a n d s a r e : ( a ) t h e p r o p e n s i t y f o r c a t e n a t i o n o f c h a l c o g e n a t o m s d e c r e a s e s f r o m S t o T e , w h i c h g r e a t l y a f f e c t s s z ' l i g a n d s i z e s . T h u s f a r , t h e l o n g e s t p o l y s u l fi d e c h a i n o b s e r v e d i n a m e t a l c o m p l e x i s 8 9 2 ' [ 4 3 f ] . S i m i l a r s i z e d l i g a n d s h a v e n o t y e t b e e n k n o w n f o r t h e m e t a l p o l y s e l e n i d e o r p o l y t e l l u r i d e c o m p o u n d s ; ( b ) t h e r e d u c t i o n p o t e n t i a l s r e q u i r e d t o s p l i t t h e Q — Q b o n d s v a r y w i t h t h e n a t u r e o f t h e e l e m e n t a n d t h e l i g a n d S i z e . T h i s r e s u l t s i n d i f f e r e n t i n t e r n a l r e d o x c h e m i s t r y i n v a r i o u s m e t a l / s z ' s y s t e m s ; ( c ) t h e i n c r e a s e i n t h e Q — Q b o n d l e n g t h s f r o m S t o T e a f f e c t s t h e c h e m i c a l n a t u r e a n d d i m e n s i o n s o f t h e s z ‘ l i g a n d s . T h e i n i t i a l e f f o r t s n e e d e d i n t h i s fi e l d w e r e t h e s y n t h e t i c e x p l o r a t i o n s i n e s t a b l i s h i n g v i a b l e r o u t e s t o n e w c o m p o u n d s . W e [ 5 1 ] , a n d o t h e r s [ 5 2 - 5 3 ] , w e r e a m o n g t h e fi r s t t o d e v o t e a t t e n t i o n t o t h e d e v e l o p m e n t o f s y n t h e t i c m e t h o d o l o g y i n t h i s c h e m i s t r y . O u r b r o a d i n t e r e s t i n m e t a l c h a l c o g e n i d e c h e m i s t r y h a s p r o m p t e d u s t o a d o p t m u l t i p l e a p p r o a c h e s t o t h e n o v e l m e t a l p o l y c h a l c o g e n i d e c o m p o u n d s . F o r i n s t a n c e , b y u s i n g t h e m o l t e n s a l t t e c h n i q u e , m e t a - s t a b l e s o l i d - s t a t e c o m p o u n d s o f m e t a l p o l y c h a l c o g e n i d e s w e r e s o u g h t b y s e v e r a l r e s e a r c h e r s i n t h i s g r o u p [ 5 4 ] . W h i l e t h e h y d r o ( s o l v o ) t h e r m a l m e t h o d w a s e m p l o y e d t o m a k e m e t a l p o l y c h a l c o g e n i d e c l u s t e r s [ 5 5 - 5 6 ] , h o m o l e p t i c c o m p l e x e s w e r e p r e p a r e d f r o m t h e c o n v e n t i o n a l s o l u t i o n s y n t h e s i s [ 5 7 ] . A S a r e fl e c t i o n o f t h e a b o v e d i v e r s e e n d e a v o r , t h e r e s u l t s p r e s e n t e d i n t h i s d i s s e r t a t i o n c a n b e e s s e n t i a l l y d i v i d e d i n t o t w o d i f f e r e n t t y p e s : ( i ) t h e c o n v e n t i o n a l s o l u t i o n s y n t h e s i s f o r m a k i n g h o m o l e p t i c S p e c i e s , a n d ( i i ) t h e h y d r o ( s o l v o ) t h e r m a l s y n t h e s i s f o r m a k i n g c h a l c o g e n - c o n t a i n i n g m e t a l c a r b o n y l c l u s t e r s . T o p u t t h e a b o v e t w o t y p e s o f s y n t h e t i c w o r k i n t o p e r s p e c t i v e , a b r i e f e v o l u t i o n o f v a r i o u s s y n t h e t i c m e t h o d s f o r m a k i n g m e t a l h e a v y p o l y c h a l c o g e n i d e c o m p o u n d s i s g i v e n b e l o w . I I . S u m m a r y o f S y n t h e t i c M e t h o d s 1 . U s e o f p o l y c h a l c o g e n i d e a n i o n s g e n e r a t e d i n s i t u a s r e a g e n t s T h e s i m p l e s t m e t h o d o f p r o d u c i n g p o l y s u l fi d e l i g a n d s i s t o p a s s a s t r e a m o f H 2 8 t h r o u g h a n a q u e o u s N H 3 s o l u t i o n i n t h e p r e s e n c e o f e l e m e n t a l s u l f u r : H 2 8 + ( x - l ) S + 2 N H 3 M ( N l r , , ) 2 S x e q . ( 1 - 1 ) = 2 - 6 T h e p o l y s u l fi d e a n i o n s g e n e r a t e d f r o m s u c h a p r o c e d u r e c a n t h e n r e a c t w i t h a p p r o p r i a t e m e t a l s a l t s . T h i s h a s b e e n v e r y s u c c e s s f u l i n p r e p a r i n g m e t a l p o l y s u l fi d e s . T h u s , t h e m o s t r a t i o n a l s y n t h e t i c a p p r o a c h f o r m e t a l h e a v y p o l y c h a l c o g e n i d e s w o u l d b e t o d u p l i c a t e t h i s r e a c t i o n . H o w e v e r , H 2 8 e g a s i s e x p e n s i v e a n d p o i s o n o u s , a n d H 2 T e h i g h l y u n s t a b l e . S u c h a p r e p a r a t i v e r o u t e i s a c t u a l l y i m p r a c t i c a l , a n d p o t e n t i a l l y i r r e p r o d u c i b l e . I n n o n - p r o t i c s o l v e n t s , r e a c t i o n s o f a l k a l i m e t a l s w i t h e l e m e n t a l c h a l c o g e n s c a n a l s o g e n e r a t e t h e p o l y c h a l c o g e n i d e a n i o n s i n - s i t u . A n o t h e r a d v a n t a g e o f u s i n g n o n a q u e o u s s o l v e n t s i s t o a l l o w t h e u s e o f v a r i o u s o r g a n i c c o u n t e r i o n s . W h e n a p p r o p r i a t e m e t a l s a l t s a r e a d d e d t o t h e s e s o l u t i o n s , m e t a l c o m p l e x e s w i l l f o r m . T h e fi r s t c o m p o u n d p r e p a r e d b y t h i s m e t h o d w a s t h e ( P h 4 P ) 2 [ F e Z S e 2 ( S e 5 ) 2 ] [ 3 4 ] : 6 N a + 1 2 S e + 2 F e C 1 2 D M F ’ 7 0 T a » N 3 2 [ F 9 2 3 6 2 ( S e s ) 2 ] + 4 N a C 1 e q . ( 1 - 2 ) M a n y o t h e r m e t a l c o m p l e x e s h a v e n o w b e e n p r e p a r e d i n a s i m i l a r m a n n e r , t h e y i n c l u d e ( P h 4 P ) 2 [ S n ( S e 4 ) 3 ] [ 5 8 l , ( P h 4 P ) [ ( n S - C P ) M 0 ( S e 4 ) 2 ] [ 5 8 L ( P h 4 P ) 2 [ M ( S e 4 ) 2 ] ( N I = N i , Z n , C d , H g a n d P b ) [ 5 9 ] , ( t h P ) 2 [ C U 4 ( S e 4 ) 2 . 4 ( S e 5 ) o . 6 ] [ 6 0 ] a n d ( t h P ) 2 [ A g 4 ( S e 4 ) 2 , 1 ( S e 5 ) o , 9 ] [ 6 0 ] . A l t h o u g h t h e c u r r e n t p r e p a r a t i v e e x a m p l e s a l l i n v o l v e p o l y s e l e n i d e c o m p o u n d s , t h e m e t h o d i t s e l f i s e x t e n d a b l e t o t h e p o l y t e l l u r i d e s y s t e m . T h e o n l y d r a w b a c k s e e m s t o b e t h e u s e o f r e a c t i v e a l k a l i m e t a l s , w h i c h m a k e s t h e r e a c t i o n h e t e r o g e n e o u s a n d c o n t r o l o f s t o i c h i o m e t r y d i f fi c u l t . A s y n t h e t i c m o d i fi c a t i o n o f u s i n g A 2 8 e x ( A q l k a l i m e t a l , x = 1 , 2 ) a n d e l e m e n t a l s e l e n i u m i s o f t e n a d o p t e d : D M F 2 N a 2 8 e + 6 8 c + M ( A c ) 2 — — > [ N a ( 1 5 - c r o w n - 5 ) 2 ] [ M ( S e 4 ) 2 ] + 2 N a A c e q . ( 1 ' 3 ) [ 6 1 ] l S - c r o w n — S M = Z n , C d a n d H g D M F 2 N a Z S e Z + 4 S e + l > d C 1 2 , ( P h 4 P ) 2 [ P d ( S e 4 ) 2 ] + 4 N a C l e q . ( 1 - 4 ) [ 1 3 d ] 2 P h 4 P C 1 2 . U s e o f e l e m e n t a l c h a l c o g e n s a s r e a g e n t s I n o r d e r t o a c h i e v e a s u c c e s s f u l a d d i t i o n o f e l e m e n t a l c h a l c o g e n t o a m e t a l i o n , t h e r e a c t i o n r e q u i r e s t h a t a c o o r d i n a t i v e l y u n s a t u r a t e d e l e c t r o n - r i c h m e t a l c o m p l e x , o r a c o m p o u n d c o n t a i n i n g m e t a l - m e t a l b o n d s b e u s e d a s t h e s t a r t i n g m a t e r i a l . S u c h a p r o c e s s o f t e n r e s u l t s i n c h a n g e o f t h e o x i d a t i o n S t a t e o f t h e m e t a l , a n d i s b o u n d t o p r o d u c e c o m p o u n d s w i t h p a r t i a l c h a l c o g e n i d e - c o o r d i n a t i o n e n v i r o n m e n t b e c a u s e n o m e t a t h e s i s c a n t a k e p l a c e b e t w e e n t h e a l l a n c i l l a r y g r o u p s a n d t h e e l e m e n t a l c l m l c o g e n a t o m s . T h u s , t h i s 2 [ W S e 4 ] 2 ’ + 1 / 4 S e 8 C I ' I a C N , 8 5 “ C ’ [ w 2 [ 8 M e o 1 S 0 e ] ( 2 S ‘ e ( ) t 2 4 w ] o 2 ' i s o m e r s ) e q . ( 1 - 7 ) [ 6 3 ] e q . ( 1 - 8 ) [ 6 4 ] m e t h o d i s r e s p o n s i b l e f o r t h e s y n t h e s e s o f m o s t o r g a n o m e t a l l i c c o m p o u n d s . E x a m p l e s a r e g i v e n i n e q . 1 5 a n d e q . 1 6 : r . t . f o r 8 d a y s [ ( d m p e ) 2 1 r ] C 1 + 1 / 2 8 e 3 L , [ ( d m p e ) I r ( S e 4 ) ] C l e q . ( l - 5 ) [ 3 0 ] T H F / C 6 H 6 ( 1 : 1 ) C C C O t l u e n e e C p " C * é \ M = N < P + 8 / 5 5 6 3 M C p S E M — C p a k e q . ( 1 - 6 ) [ 6 2 ] / 0 T e l S e I S e M = C o , R h D u e t o t h e l a c k o f s u i t a b l e s t a r t i n g m e t a l c o m p l e x e s w h i c h p o s s e s s e n o u g h r e a c t i v i t y t o w a r d s e l e m e n t a l c h a l c o g e n , t h i s m e t h o d i s f a r l e s s t h a n u n i v e r s a l . N o o r g a n o m e t a l l i c c o m p o u n d s o f p o l y t e l l u r i d e s h a v e b e e n r e p o r t e d t o b e p r e p a r e d f r o m t h i s r o u t e , e i t h e r b e c a u s e t h e r e a c t i v i t y o f e l e m e n t a l t e l l u r i u m i s l o w e r t h a n t h a t o f s e l e n i u m o r , p e r h a p s , b e c a u s e n o s u c h r e a c t i o n s h a v e b e e n e x t e n s i v e l y p u r s u e d . E l e m e n t a l s e l e n i u m i s r e a d i l y i n c o r p o r a t e d i n t o s o m e m e t a l m o n o s e l e n i d e c o m p o u n d s , f o r m i n g m e t a l p o l y s e l e n i d e r i n g s v i a a r e d o x p r o c e s s : [ M o S e 4 ] 2 ' + 5 3 6 D M F , a t 1 2 L , T h e a b o v e r e s u l t s a r e a n a l o g o u s t o t h o s e k n o w n f o r s u l f u r [ 6 5 ] . S i m i l a r r e a c t i o n s b e t w e e n c o m p l e x e s c o n t a i n i n g S e — S e b o n d s a n d e l e m e n t a l s e l e n i u m c a n a l s o t a k e p l a c e , r e s u l t i n g i n M S e x r i n g a u g m e n t a t i o n : D M F [ M n ( S e , ) 2 ( C 0 ) g ] 2 ' + 4 S e — — ' N n ( S e 4 ) 2 ( C 0 ) s ] 2 ' e q . ( 1 - 9 ) [ 6 6 ] 2 F e ( C O ) _ ; + S e 8 N - M e l m , 2 5 ' C , [ F e ( N - M e l m ) ] [ F c ( S e 4 ) 2 ( C 0 ) , ] + 8 C 0 e q . ( 1 - 1 0 ) [ 6 7 ] 3 P ‘ h t 1 P 4 B r “ t m M e e O ) H ; ( ( B P u h 4 4 N P ) ) 4 [ I - I g 4 ( ' 1 ‘ e ) 2 [ I ' 1 8 2 ( T e ) ( 2 T ( e T z e ) 2 z ) 2 ( T e / 3 ) 2 ] l R e c e n t l y , R a u c h f u s s a n d c o - w o r k e r s h a v e d i s c o v e r e d t h a t N - a l k y l i m i d a z o l e s c a n g r e a t l y p r o m o t e t h e r e a c t i v i t y o f e l e m e n t a l c h a l c o g e n s ( i . e . S a n d S e ) t o w a r d s l o w v a l e n t m e t a l s p e c i e s , p a r t i c u l a r l y m e t a l p o w d e r s a n d m e t a l c a r b o n y l s . T h u s , t h e N - a l k y l i m i d a z o l e s u s p e n s i o n o f e l e m e n t a l s e l e n i u m i s f o u n d t o r e a c t w i t h F e ( C O ) 5 o r e v e n z i n c d u s t t o p r o d u c e p o l y s e l e n i d e c o m p l e x e s : Z n 4 1 / 2 S e 8 ” M e n “ , 1 0 0 " L [ Z n ( S e 4 ) ( N - M e I m ) 2 ] e q . ( 1 - 1 1 ) [ 6 8 ] T h e p a r t i a l c o o r d i n a t i o n o f s e l e n i u m l i g a n d i n [ Z n ( S e 4 ) ( N - M e I m ) 2 ] i s t h e r e s u l t o f c o m p e t i t i o n o f t h e s o l v e n t N - m e t h y l i m i d a z o l e w h i c h i s a s t r o n g o — d o n o r l i g a n d . 3 . E x t r a c t i o n o f t r a n s i t i o n m e t a l l c h a l c o g e n - c o n t a i n i n g a l l o y s S o m e t e r n a r y o r q u a t e r n a r y a l k a l i m e t a l a l l o y s c a n b e " s o l u b i l i z e d " i n p o l a r o r g a n i c s o l v e n t s ( e . g . e n ) . S u c h a p r o c e s s o f t e n i n v o l v e s t h e d i s r u p t i o n o f s o l i d - s t a t e b o n d i n g w i t h t h e a s s i s t a n c e o f a s t r o n g c o o r d i n a t i o n s o l v e n t . A s a r e s u l t , m e t a l p o l y c h a l c o g e n i d e c l u s t e r s c a n b e i s o l a t e d b y a d d i t i o n o f o r g a n i c c o u n t e r i o n s : e n K s z a T e e e q . ( 1 - 1 2 ) [ 3 5 ] K A u T e ) ( K 2 A u A s T e 3 o r K 3 A u o e r e 3 ) M L “ . ( P P N ) 2 [ A u 2 ( T e 2 ) 2 ] e Q - ( 1 ' 1 3 ) [ 6 9 ] 4 . U s e o f o t h e r r e a g e n t s ( i ) . B i s ( t l i a l k y l s i l y l ) s e l e n i d e s [ ( d m p e ) 2 1 r ( 3 e 4 ) l C 1 + 2 P h s P M » [ ( d m p e ) 2 1 r ( 8 e r > l a + 2 1 > h s P S e e q . ( 1 - 1 4 ) [ 3 0 ] 1 0 I t i s k n o w n t h a t b i s ( t r i m e t h y l s i l y l ) s u l fi d e ( M e 3 S i ) 2 8 c a n b e u s e d i n p l a c e o f H 2 5 t o s y n t h e s i z e s u l fi d o c o m p l e x e s [ 7 0 ] . I b e r s a n d c o - w o r k e r s e x p l o r e d t h e u s e o f s e v e r a l b i s ( t r i a l k y l s i l y l ) s e l e n i d e s a s p o s s i b l e ” s e l e n i z a t i o n " a g e n t s , a n d f o u n d t h a t [ ( C H 3 ) 2 C 3 H 1 7 S i ) ] 2 S e p r o v i d e s t h e b e s t c o m p r o m i s e [ 4 8 , 7 1 ] . U s e o f t h i s r e a g e n t a s w e l l a s t h e o t h e r b i s ( t r i a l k y l s i l y l ) s e l e n i d e s ( m a i n l y [ M e 3 8 i ] 2 8 e ) w a s f o u n d i n t h e s y n t h e s i s o f ( B M N ) 2 [ V 2 ( S e 2 ) 4 ( S e 5 ) ] [ 4 8 ] . [ M S e 4 l z ' ( M = M o , W ) [ 7 1 ] , [ ( n 5 - C p ) 4 T i 4 ( u 4 - 0 ) ( u 2 - S e ) ( u 3 - S e ) 2 ( u 3 - S e 2 ) 2 ] [ 7 2 ] , I n S - M e C m V 2 ( u 2 - S e ) ( u 2 - S e 2 ) ( u 2 - n 2 - S e 2 ) ] [ 7 3 ] - I t s h o u l d b e P o i n t e d o u t t h a t b i s ( t r i a l k y l s i l y l ) s e l e n i d e s a r e m o n o s e l e n i d e - t r a n s f e r a g e n t s , a s c a n b e s e e n i n t h e s y n t h e s i s o f a l a r g e n u m b e r o f m e t a l m o n o s e l e n i d e c l u s t e r s b y F e n s k e [ 7 3 ] . ( i i ) . H y d r o g e n c h a l c o g e n i d e s s t e w a s e m p l o y e d t o s y n t h e s i z e [ ( n 5 - M e C p ) 2 V 2 ( u 2 - S e ) ( u z - S e 2 ) ( u 2 4 1 2 - S e 2 ) ] [ 7 4 ] . B e c a u s e o f i t s p o o r S t a b i l i t y , H 2 T e i s g e n e r a t e d f r o m r e a c t i o n o f A 1 2 T e 3 w i t h H C l a n d u s e d i n - s i t u t o p r e p a r e [ ( n 5 — C p * ) 2 R e 2 ( T e 2 ) ( C O ) 4 ] [ 7 5 ] . A g a i n , h y d r o g e n c h a l c o g e n i d e s a r e c o n c e i v a b l y m o n o s e l e n i d e - t r a n s f e r a g e n t s . G e n e r a t i o n o f Q — Q b o n d s i n t h e p r o d u c t s m u s t r e l y o n a r e d o x p r o c e s s d u r i n g t h e r e a c t i o n . ( i i i ) . R e a c t i v i t y o f Q 3 ’ l i g a n d s t o w a r d s o r g a n i c p h o s p h i n e s W i t h a b s t r a c t i o n o f i n t e r n a l s e l e n i u m a t o m s f r o m M S e x r i n g s , t h i s r e a c t i o n c a n l e a d t o c o m p o u n d s w i t h s h o r t e r S e x z ‘ l i g a n d s . S o m e t i m e s t h e s e r e a c t i v e i n t e r m e d i a t e s p e c i e s g e n e r a t e d i n - s i t u w i l l c o n d e n s e t o a l a r g e r c l u s t e r . F o r i n s t a n c e : [ M n 2 ( S e 4 ) 2 ( C O ) 6 ] 2 ' D M F ’ 9 0 . C r [ M n ( S e 4 ) 2 ] 2 ' + l / 2 M n 2 C 0 m + C O e q - ( 1 - 1 7 ) [ 6 6 1 1 1 R C C H C l R C R 0 9 2 ' s e — s t w 6 P h 3 P ( o r B u s ? ) 4 % ” V a s e — 8 9 ‘ T I < R R C P / S e — S e R C p / S e — S e ’ C D + 6 P h 3 P S e ( o r B u 3 P S e ) R = H , M e , i - P r e q . ( 1 - 1 5 ) [ 7 6 ] ( i v ) . O t h e r c h a l c o g e n - c o n t a i n i n g a g e n t s M a n y o t h e r c h a l c o g e n - c o n t a i n i n g r e a g e n t s , s u c h a s S e O 3 2 ‘ , T e O 3 2 ' , C O S e a n d C S e z , h a v e a l l b e e n o c c a s i o n a l l y u s e d t o s y n t h e s i z e m e t a l c h a l c o g e n i d e c o m p l e x e s . R e a c t i o n s i n v o l v i n g t h e s e r e a g e n t s l a c k r a t i o n a l e , s o t h e i r s y n t h e t i c v a l u e i s l i m i t e d [ 7 7 ] . 5 . T h e r m o l y s i s T h e t h e r m a l r e a r r a n g e m e n t r e a c t i o n s h a v e b e e n u s e d t o p r e p a r e n e w c o m p o u n d s . F o r e x a m o l e , ( n S - M e C p t h S e s ) i s t r a n s f o r m e d t o [ ( n 5 - M e C p ) 2 V 2 ( u 2 - S e ) ( u 2 - S e 2 ) ( u 2 4 1 2 - S e 2 ) ] u p o n r e fl u x i n g i n T H F : S e e k M e C p ‘ [ S e — S ‘ e ; S T H F , r e fl _ . . / v \ ’ 3 9 — — ‘ 5 w a V \ | / V M e C p e q . ( l 1 6 ) [ 7 4 ] M e C p 8 9 — 8 9 3 9 / S e S e H e a t i n g a D M F s o l u t i o n o f [ M n 2 ( S e 4 ) 2 ( C O ) 5 ] 2 ‘ a t 9 0 ' C l e a d s t o t h e h o m o l e p t i c c o m p l e x [ M n ( S e 4 ) 2 ] 2 ‘ . I R s p e c t r o s c o p i c s t u d i e s s u g g e s t t h a t t h e p r o c e s s i s a t h e r m a l l y i n d u c e d d i s p r o p o r t i o n a t i o n r e a c t i o n : 6 . T h e m o l t e n s a l t t e c h n i q u e 1 2 T h e u s e o f m o l t e n a l k a l i m e t a l p o l y c h a l c o g e n i d e s f o r m a k i n g s o l i d - s t a t e c o m p o u n d s i s a v e r y a c t i v e a r e a o f r e s e a r c h [ 5 4 ] . A s f a r a s t h e s y n t h e s i s o f m o l e c u l a r c o m p o u n d s i s c o n c e r n e d , t h e m o l t e n s a l t m e t h o d d i f f e r s f r o m c o n v e n t i o n a l , n o n - a q u e o u s , r e a c t i o n s i n m a n y r e s p e c t s . F o r e x a m p l e , r e a c t i o n t e m p e r a t u r e s a t t a i n a b l e b y m o l t e n s a l t s a r e o f t e n h i g h e r t h a n t h o s e u s i n g o r g a n i c s o l v e n t s . T h i s t e n d s t o i n c r e a s e t h e c h e m i c a l r e a c t i o n r a t e s a n d e v e n c h a n g e t h e r e a c t i o n p a t h w a y s . T h e h i g h l y i o n i c n a t u r e o f t h e m e l t s p r o v i d e s e n h a n w d s o l u b i l i t y f o r m a n y c o m p o u n d s a n d t h u s , h i g h c o n c e n t r a t i o n s o f r e a c t a n t s c a n b e o b t a i n e d . T h e n r a i n a d v a n t a g e i s t h e e l i m i n a t i o n o f a n y " w e t ” s o l v e n t , w h i c h m a k e s t h e s y s t e m o x y g e n - f r e e . T h i s m a y p r o v e t o b e i m p o r t a n t i n t h e s y n t h e s i s o f e a r l y t r a n s i t i o n m e t a l , o r l a n t h a n i d e a n d a c t i n i d e c o m p o u n d s . T h u s f a r , t h e r e h a v e s e e n s e v e r a l s u c h e x a m p l e s : 3 0 0 ° C U + 2 K 2 8 e + 8 8 e — — y K [ U ( S ) 1 . 1 0 d a y s 4 e a 4 e q . ( ] 1 8 ) [ 7 8 ] 3 7 5 ° C N b + 3 K z s e + 1 0 8 6 W K G I N D 4 S C 4 ( S % ) 9 ] e q . ( l ° 1 9 ) [ 7 9 ] T h e r e c e n t a p p l i c a t i o n o f p o l y c h a l c o g e n i d e s a l t s o f l a r g e o r g a n i c c a t i o n s ( e . g . W ) a s r e a c t i v e fl u x e s o p e n e d u p a n e w s y n t h e t i c d i m e n s i o n i n t h i s r e s e a r c h a r e a . T h e u s e o f o r g a n i c c o u n t e r i o n s i n p l a c e o f a l k a l i m e t a l i o n s n o t o n l y l o w e r s t h e m e l t i n g p o i n t , b u t a l s o r e s u l t s i n n e w a n d o f t e n o p e n s t r u c t u r e t y p e s ( i . e . s i z e o r t e m p l a t e e f f e c t ) . F o r e x a m p l e , t h r e e i s o t y p i c a l c o m p o u n d s w i t h a l a y e r e d s t r u c t u r e h a v e b e e n p r e p a r e d a s f o l l o w s : 2 M + ( P h 4 P ) 2 S e 5 + 8 S e 3 2 0 7 i ) ? ? ? ” ( P h 4 P ) [ M ( S e c ) 2 ] e q . ( 1 - 2 0 ) [ 8 0 ] M = G a , 1 n a n d T l X Q + 2 A r A Z Q x e q ( l - 2 1 ) 1 3 l a r g e c h a n n e l s c a u s e d b y t h e p r e s e n c e o f P h 4 P + c a t i o n s a r e f o u n d i n t h e c o m p o u n d s . H o w e v e r , i t s h o u l d b e n o t e d t h a t t h e s e c o m p o u n d s h a v e a n e x t e n d e d p o l y m e r i c s t r u c t u r e . I n g e n e r a l , t h e m o l t e n s a l t t e c h n i q u e f a v o r s f o r m a t i o n o f s o l i d - s t a t e c o m p o u n d s . T h e s y n t h e s i s o f m o l e c u l a r c o m p o u n d s b y t h e m o l t e n s a l t m e t h o d h a s b e e n p u r e l y s e r e n d i p i t o u s , a n d l i t t l e i s k n o w n a b o u t h o w t o c o n t r o l t h e r e a c t i o n s f r o m w h i c h n e w s m a l l m o l e c u l a r a n i o n s c a n b e m a d e r e p r o d u c i b l y . 7 . U s e o f Z i n t l p h a s e s o f a l k a l i m e t a l p o l y c h a l c o g e n i d e s B y f a r , t h i s i s t h e m o s t s u c c e s s f u l s y n t h e t i c m e t h o d f o r m a k i n g m e t a l h e a v y p o l y c h a l c o g e n i d e c o m p o u n d s . I t i s g e n e r a l l y a p p l i c a b l e t o s u l fi d e , s e l e n i d e a n d t e l l u r i d e s y s t e m s . M o s t o f t h e s e Z i n t l p h a s e s c a n b e o b t a i n e d f r o m e i t h e r h i g h - t e m p e r a t u r e o r l i q u i d a m m o n i a r e a c t i o n s o f a l k a l i m e t a l s a n d c h a l c o g e n s . O u r e a r l y m e t h o d o f p r e p a r i n g t h e s t a r t i n g m a t e r i a l s o f A n g w a s t o r e a c t s t o i c h i o m e t r i c a m o u n t s o f e l e m e n t a l c h a l c o g e n s w i t h a l k a l i m e t a l s i n s e a l e d P y r e x t u b e s a t e l e v a t e d t e m p e r a t u r e s ( i . e . 4 5 0 ' C f o r p o l y s e l e n i d e a n d 4 9 0 ’ C f o r p o l y t e l l u r i d e ) . H o w e v e r , t h e e x o t h e r m i c r e a c t i o n s a t s u c h h i g h t e m p e r a t u r e s o f t e n c a u s e d c r a c k s i n t h e t u b e s a n d t h e a l l o y p r o d u c t s u s u a l l y l e f t s o m e i n s o l u b l e r e s i d u e , w h i c h m a d e s t o i c h i o m e t r i c c o n t r o l d i f fi c u l t . S u b s e q u e n t l y , w e u s e d a l i q u i d - a m m o n i a m e t h o d : L i q . N H 3 - 7 8 ° C ( d r y - i c e / a c e t o n e ) A = L i , N a , K , R b , C s ; Q = S , S e , T e I n o u r h a n d s t h i s m e t h o d p r o v i d e d e x c e l l e n t p o l y c h a l c o g e n i d e a n i o n s f o r s y n t h e t i c r e a c t i o n s . W h e n S i m p l e m e t a l s a l t s s u c h a s h a l i d e s o r o x i d e s a r e u s e d a s s t a r t i n g m a t e r i a l s , t h e r e a c t i o n s l e a d i n g t o m e t a l c o m p l e x e s a r e m o s t l y m e t a t h e t i c a l . O c c a s i o n a l l y , r e d o x p r o c e s s e s c a n a l s o o c c u r : 1 4 S n C l 4 + 3 N a Z S e 4 + 2 1 3 1 1 4 1 2 0 M ( P h 4 P ) 2 [ S n ( S e 4 ) 3 ] + 6 N a C l e q . ( 1 - 2 2 ) [ 5 7 e ] D M F K 2 T e 4 + ( P h 3 P ) 3 C u C l a » ( M e 4 N ) [ C u ( T e 4 ) ] + 2 K C 1 + 3 P h 3 P M C 4 N e q . ( l - 2 3 ) [ 8 1 ] 2 A u C N + 2 N a , S e 5 + 2 P P N C 1 9 . 4 1 1 5 2 9 , ( P P N ) 2 [ A u Z S e 2 ( S e , , ) 2 ] + 2 N a C l + 2 N a C N e q . ( 1 ‘ 2 4 ) [ 5 7 c ] O x i d a t i v e d e c a r b o n y l a t i o n o f m e t a l c a r b o n y l s b y p o l y c h a l c o g e n i d e l i g a n d s a n ' ( Q = S , S e a n d T e ; n = 2 - 6 ) p r o v i d e s a n o t h e r c o n v e n i e n t r o u t e f o r i n t r o d u c i n g c h a l c o g e n - a t o m s i n t o m e t a l c e n t e r s [ 5 3 ] . D e p e n d i n g o n t h e r e a c t i v i t y o f t h e m e t a l c a r b o n y l a n d t h e p o l y c h a l c o g e n i d e l i g a n d , t h e p r o d u c t i s o l a t e d c a n b e e i t h e r h o m o l e p t i c o r C O — c o n t a i n i n g c o m p l e x e s : M ( C 0 ) 6 + n K Z S e 3 — D + M - E r [ M S e 4 ] 2 ’ o r [ M S e ( S e 4 ) 2 ] 2 ‘ + 6 C 0 e q . ( 1 - 2 5 ) [ 6 4 ] M = M o , W M ( C 0 ) , + l t z r e 4 + 2 P b 4 P B r W W M M M C N X C O M + 2 C 0 + 2 K B r M = C r , M o , W e q . ( l - 2 6 ) [ 8 2 ] T h i s s h o w s t h a t t h e r e a c t i o n s a r e o f t e n c o n t r o l l e d b y r e d o x i n t e r p l a y b e t w e e n t h e m e t a l c e n t e r a n d t h e p o l y c h a l c o g e n i d e l i g a n d . S i n c e m o s t o f t h e t r a n s i t i o n m e t a l c a r b o n y l s a r e r e a d i l y a v a i l a b l e , t h i s s y n t h e t i c m e t h o d h a s b e e n s u c c e s s f u l l y a p p l i e d t o t h e p r e p a r a t i o n s o f m a n y t r a n s i t i o n m e t a l p o l y c h a l c o g e n i d e c o m p o u n d s . 8 . H y d r o ( s o l v o ) t h e r m a l r e a c t i o n s 1 5 D e s p i t e t h e s u c c e s s f u l a p p l i c a t i o n o f h y d r o t h e r m a l t e c h n i q u e s t o t h e p r e p a r a t i o n o f m a n y t e c h n o l o g i c a l l y i m p o r t a n t m a t e r i a l s , s u c h a s a — q u a r t z a n d z e o l i t e s , t h e h y d r o t h e r m a l s y n t h e s i s o f c h a l c o g e n i d e s i s l i t t l e s t u d i e d [ 5 6 ] . S e v e r a l e x a m p l e s o f p r e p a r i n g m o n o c h a l c o g e n i d s u n d e r h y d r o ( m e t h a n o ) t h e r m a l c o n d i t i o n s a r e k n o w n [ 5 6 ] . T h e s e r e a c t i o n s o f t e n e m p l o y a l k a l i c a r b o n a t e s a s ” m i n e r a l i z e r s " ( c o m p l e x i n g a g e n t s ) t o i n c r e a s e d i s s o l u t i o n o f r e a c t a n t s a s w e l l a s t o f a c i l i t a t e c r y s t a l g r o w t h [ 5 6 ] . R e s e a r c h e r s i n o u r g r o u p h a v e f o u n d t h a t u n d e r h y d r o ( s o l v o ) t h e r m a l c o n d i t i o n s , a l k a l i m e t a l p o l y c h a l c o g e n i d e s c a n a c t a s r e a g e n t s a s w e l l a s " m i n e r a l i z e r s " . T h e l a t t e r h e l p w i t h o r p r o m o t e c r y s t a l g r o w t h . T h e s e r e a c t i o n s p r o v i d e a u n i q u e r o u t e t o n o v e l m e t a l p o l y s e l e n i d e c l u s t e r s , m o s t o f w h i c h h a v e , t h u s f a r , p r o v e n t o b e i n a c c e s s i b l e b y o t h e r s y n t h e t i c m e t h o d s : H 2 0 , 1 4 0 ° C f o r 6 0 h ? s e a l e d t u b e M o + 2 K 2 8 e 4 K 1 2 [ M 0 1 2 8 e 8 ( S e 2 ) 1 8 ( S e 3 ) 4 ] e q . ( 1 - 2 7 ) [ 5 5 ] T h i s m e t h o d w a s a p p l i e d t o t r a n s i t i o n m e t a l c a r b o n y l / p o l y c h a l c o g e n i d e s y s t e m s i n a t t e m p t t o s y n t h e s i z e c h a l c o g e n - c o n t a i n i n g m e t a l c a r b o n y l c l u s t e r s . I t t u r n e d o u t t h a t t h e a p p l i c a t i o n o f t h e h y d r o ( s o l v o ) t h e r m a l t e c h n i q u e t o t h e s y n t h e s i s o f m e t a l c a r b o n y l c l u s t e r s i s f e a s i b l e . M a n y n o v e l c l u s t e r s h a v e b e e n s y n t h e s i z e d b y s u c h t e c h n i q u e . T h i s c h e m i s t r y w i l l b e d i s c u s s e d i n d e t a i l i n l a t e r c h a p t e r s [ 8 3 ] . R e s e a r c h i n p o l y c h a l c o g e n i d e c h e m i s t r y h a s b e e n m o s t l y d r i v e n b y t h e n e e d t o e x p a n d o u r k n o w l e d g e o f s t r u c t u r a l p r i n c i p l e s a n d b o n d i n g i n t h e s e l i g a n d s . T h e r e f o r e , t h e e m p h a s i s i s p r i m a r i l y p l a c e d o n f u n d a m e n t a l c h e m i s t r y r a t h e r t h a n o n p r a c t i c a l a p p l i c a t i o n s . F o r t h i s r e a s o n , t h e f u l l c l m a c t e r i z a t i o n o f t h e n e w l y s y n t h e s i z e d c o m p o u n d s i s p r e r e q u i s i t e f o r t h e s t u d y o f t h e i r c h e m i s t r y . T h e u s e o f d i f f e r e n t s p e c t r o s c o p i c t e c h n i q u e s f o r c h a r a c t e r i z i n g m e t a l p o l y c h a l c o g e n i d e s i s g i v e n i n t h e f o l l o w i n g s e c t i o n . I I I . S p e c t r o s c o p i c S t u d i e s o f M e t a l H e a v y P o l y c h a l c o g e n i d e s 1 6 1 . T h e I R a n d U V / v i s S p e c t r o s c o p y B o t h I R a n d U V / v i s s p e c t r o s c o p i c s t u d i e s a r e l i t t l e i n f o r m a t i v e i n t h e c h a r a c t e r i z a t i o n o f m e t a l h e a v y p o l y c h a l c o g e n i d e s . U n l e s s C O g r o u p s a r e p r e s e n t i n t h e m o l e c u l e s , t h e m i d - I R r e g i o n i s i n v a r i a b l y d o m i n a t e d b y t h e h y d r o c a r b o n s k e l e t o n s o f a n c i l l m y l i g a n d s o r t h e o r g a n i c c o u n t e r i o n s . I n t h e f a r I R r e g i o n , M - S e a n d S e — S e o f t e n s h o w a b s o r p t i o n s i n t h e 2 0 0 — 4 0 0 c m ' 1 w i t h t h e c o r r e s p o n d i n g M - T e a n d T e - T e b a n d s s h i f t e d t o e v e n l o w e r e n e r g i e s . I R s p e c t r o s c o p y c o u l d b e u s e d t o c o n fi r m t h e p r e s e n c e o f Q — Q b o n d s i n t h e c o m p o u n d . H o w e v e r , o n e s h o u l d b e c a u t i o u s i n a s s i g n i n g t h e s e b a n d s i n v i e w o f t h e a b s e n c e o f a n y s y s t e m a t i c s t u d i e s u s i n g i s o t o p e l a b e l i n g . T h e p r o b l e m a s s o c i a t e d w i t h t h e U V / v i s s p e c t r o s c o p y i s t w o - f o l d . F i r s t , s o m e m e t a l c o m p l e x e s d o n o t r e t a i n t h e i r i d e n t i t y i n a p o l a r s o l v e n t s u c h a s D M F o r C H 3 C N . I f M + i o n s a r e i n v o l v e d , s u c h a d i s s o c i a t i o n i s l i k e l y . I n t h i s c a s e , t h e U V / v i s s p e c t r u m o f t h e m e t a l c o m p l e x i s s i m i l a r t o t h a t o f t h e f r e e p o l y c h a l c o g e n i d e l i g a n d . S e c o n d , m o s t c o m p o u n d s t h a t r e m a i n i n t a c t i n p o l a r s o l v e n t s S h o w f e a t u r e l e s s U V / v i s s p e c t r a y i e l d i n g n o i n f o r m a t i o n a b o u t t h e c o o r d i n a t i o n e n v i r o n m e n t o f t h e m e t a l i o n s . T h e f o l l o w i n g e x a m p l e i s o n e o f t h e v e r y f e w o c c a s i o n s w h e n t h e U V l v i s s p e c t r a a r e u s e f u l i n i d e n t i f y i n g t h e d i f f e r e n t s p e c i e s p r e s e n t i n s o l u t i o n s . D M F s o l u t i o n s o f t h e [ F e 2 8 e 2 ( S e § ) 2 ] 2 ' g i v e fi v e a b s o r p t i o n m a x i m a a t 3 1 2 ( S h ) , 3 8 6 ( s h ) , 4 1 5 ( s h ) , 4 9 8 a n d 6 7 0 ( s h ) n m , w h i c h a r e c h a r a c t e r i s t i c o f t h i s F e ( I I I ) s p e c i e s [ 3 4 ] , w h i l e t h e U V / v i s s p e c t r u m o f t h e [ F e ( S e 4 ) 2 ] 2 ‘ i n t h e s a m e s o l v e n t i s f e a t u r e l e s s [ 8 4 ] . 2 . N M R S p e c t r o s c o p y B o t h s e l e n i u m a n d t e l l u r i u m h a v e s p i n - h a l f n u c l e i w i t h m o d e r a t e N M R r e c e p t i v i t y . 7 7 S e ( I = l l 2 , n a t u r a l a b u n d a n c ¢ 7 . 5 8 % , r e c e p t i v i t y r e l a t i v e t o l 3 C = 2 . 9 8 ) , 1 2 5 T e ( I = 1 / 2 , n a t u r a l a b u n d a n c e = 6 . 9 9 % , r e c e p t i v i t y r e l a t i v e t o l 3 C = 1 2 . 5 ) a n d 1 2 3 ' T e ( I = 1 / 2 , n a t u r a l 1 7 a b u n d a n c e = 0 . 8 7 % , r e c e p t i v i t y r e l a t i v e t o 1 3 C = 1 0 . 8 9 ) a r e a l l N M R a c t i v e , b u t 1 2 3 T e i s s e l d o m u s e d b e c a u s e o f i t s l o w e r n a t u r a l a b u n d a n c e [ 8 5 ] . I n 7 7 S e a n d 1 2 5 T e N M R s t u d i e s , t h e c o n v e n t i o n i s t h a t t h e i r c h e m i c a l s h i f t s a r e r e f e r e n c e d r e s p e c t i v e l y t o ( C H 3 ) 2 S e a n d ( C H 3 ) 2 T e a t 5 = 0 p p m w i t h t h e d o w n fi e l d S h i f t a s s o c i a t e d w i t h p o s i t i v e p p m v a l u e s . 7 7 S e N M R s p e c t r o s c o p y h a s b e e n a p p l i e d t o a l a r g e r e x t e n t t h a n 1 2 5 T e , a l t h o u g h b o t h e q u a l l y h a v e t h e p o t e n t i a l f o r c h a r a c t e r i z i n g m e t a l c o m p l e x e s i n s o l u t i o n . T h e c h e m i c a l S h i f t s o f b o t h 7 7 S e a n d 1 2 5 T e a r e f o u n d t o b e e x t r e m e l y s e n s i t i v e t o t h e i r c h e m i c a l e n v i r o n m e n t s . D u e t o l o w n a t u r a l a b u n d a n c e o f t h e s e t w o n u c l e i , t h e S e - S e , o r T e - T e c o u p l i n g s a r e o f t e n u n o b s e r v a b l e . O c c a s i o n a l l y , M - Q b o n d c o u p l i n g t o a n N M R a c t i v e m e t a l c a n b e o b s e r v e d . I n a t y p i c a l m e t a l p o l y c h a l c o g e n i d e c o m p l e x , t h e l i g a n d a t o m s a r e o f t e n i n v e r y d i f f e r e n t c h e m i c a l e n v i r o n m e n t s ( m e t a l - b o u n d , i n t e r n a l o r b r i d g i n g , e t c . ) , t h u s t h e r e s o n a n c e p a t t e r n i n i t s N M R s p e c t r u m c a n b e v e r y c o m p l e x . I n t h e a b s e n c e o f a n y h o m o - n u c l e a r c o u p l i n g i n f o r m a t i o n , t h e a s s i g n m e n t o f t h e d i f f e r e n t N M R r e s o n a n c e s i s n o t e a s y b u t s e v e r a l a s s i g n m e n t s h a v e b e e n m a d e . F o r e x a m p l e , i n t h e s e r i e s o f [ M X ( Q 4 ) 2 ] 2 ' ( M = M o , W ; X = O , S e ; Q = S e , T e ) a n d [ M ( S e 4 ) 2 ] 2 ‘ ( M = N i , P d , P t , Z n , C d , H g ) c o m p l e x e s t h e N M R s p e c t r a h a v e c o m p l e t e l y c h a r a c t e r i z e d . W i t h i n t h e [ W Q ( S e 4 ) 2 ] 2 ' ( Q = O , S , S e ) s e r i e s , t h e r e s o n a n c e s c o r r e s p o n d i n g t o t h e m e t a l - b o u n d s e l e n i u m s a l l e x h i b i t c o u p l i n g s t o W ( 1 3 3 W , I = 1 / 2 , n a t u r a l a b u n d a n c e = l 4 . 3 % ) [ 6 4 a — b ] . T h i s o b s e r v a t i o n h e l p s i n a s s i g n i n g t h e r e s o n a n c e s o f b o t h t h e t e r m i n a l a n d t h e i n t e r n a l s e l e n i u m a t o m s i n t h e c o m p o u n d s . B y a n a l o g y , s i m i l a r a s s i g n m e n t s a r e t h e n e x t e n d e d t o t h e M o ( t w o q u a d r o p o l a r n u c l e i : 9 5 M o , I = 5 / 2 , n a t u r a l a b u n d a n c e = 1 5 . 7 % ; 9 " M o , I = 5 / 2 , n a t u r a l a b u n d a n c e = 9 . 5 % ) a n a l o g u e s o f t h e a b o v e c o m p o u n d s [ 7 1 ] , a s w e l l a s t o t h e [ M O ( T e 4 ) 2 ] 2 ' ( M = M o , W ) s y s t e m , w h e r e t h e M o - S e , M o - T e o r W — T e c o u p l i n g s a r e n o t o b s e r v e d [ 8 6 ] . T a b l e 1 . 2 . g i v e s t h e N M R d a t a o f t h e s e c o m p o u n d s . 1 8 W i t h i n t h e [ M ( S e 4 ) 2 ] 2 ’ ( M = N i , P d , P t ) s e r i e s , P t h a s a s p i n - h a l f n u c l e u s ( 1 9 5 P t , I = 1 / 2 , n a t u r a l a b u n d a n c e = 3 3 . 8 % ) . I n s o l u t i o n t h e [ P t ( S e 4 ) 2 ] 2 ' s p e c i e s g e n e r a t e d i l l - s i t u g i v e s a t w o - l i n e 7 " S e N M R S p e c t r u m w i t h 0 : 7 2 7 a n d 6 4 2 p p m . T h e r e s o n a n c e a t 7 2 7 p p m s h o w s c o u p l i n g t o 1 9 5 P t , t h u s i s a s s i g n e d t o m e t a l - b o u n d s e l e n i u m a n d t h e r e m a i n i n g t o t h e i n n e r t w o s e l e n i u m a t o m s o f t h e S e t ’ l i g a n d . B y a n a l o g y , s i m i l a r a s s i g n m e n t s a r e m a d e f o r t h e N i a n d P d a n a l o g u e s [ 8 7 ] . T h e d e t a i l e d d a t a a r e a l s o g i v e n i n T a b l e 1 2 . W i t h i n t h e [ M ( S e 4 ) 2 ] 2 ‘ ( M = Z n , C d , H g ) s e r i e s , b o t h C d a n d H g h a v e s p i n - h a l f n u c l e i ( l l l C d , I = 1 / 2 , n a t u r a l a b u n d a n c ¢ 1 2 . 3 % ; 1 1 3 C d , I = 1 / 2 , n a t u r a l a b u n d a n c e = 1 2 . 8 % a n d 1 1 9 H g , I = 1 / 2 , n a t u r a l a b u n d a n c e = 1 6 . 8 % ) . T h e o b s e r v e d c o u p l i n g s i n t h e s e t w o c o m p l e x e s a l l o w u n e q u i v o c a l a s s i g n m e n t s f o r t h e i r 7 7 S e N M R s p e c t r a . T h e 7 7 S e N M R s p e c t r u m o f t h e [ Z n ( S e 4 ) 2 ] 2 ' i s t h e n a s s i g n e d b y a n a l o g y a s s h o w n i n T a b l e l - 2 [ 8 7 ] . T a b l e 1 2 . 7 7 S e a n d 1 2 5 T e N M R d a t a f o r t h e [ M X ( Q 4 ) 2 ] 2 ' ( M = M o , W ; X = O , S , S e ; Q = S e , T e ) a n d [ M ( S e 4 ) 2 ] 2 - ( M = N i , P d , P t , Z n , C d , H g ) s e r i e s C o m p o u n d M e t a l d 5 0 1 0 M , R e f e r e n c e m m a t i o n H z ) ’ p p m M e t a l - b o u n d R i n g A p i c a l [ w 0 ( S e 4 ) 2 ] 2 ' d 2 8 2 8 ( 9 8 ) 2 8 0 / [ 7 1 ] [ W S ( S e 4 ) 2 ] 2 ' d 2 9 9 3 ( 1 0 6 ) 3 1 3 / [ 7 1 ] [ W S e ( S e 4 ) 2 ] 2 ‘ d 2 1 0 3 4 ( 1 0 8 ) 3 2 4 1 7 8 7 [ 7 1 ] [ M o o r 8 e 4 m 2 - d 2 9 4 6 3 8 0 / [ 7 1 ] [ M o S ( S e 4 ) 2 ] 2 ‘ d 2 1 1 2 2 3 9 6 / [ 7 1 ] [ M o S e ( S e 4 ) 2 ] 2 ’ d 2 1 1 6 3 4 0 3 2 3 5 7 [ 7 1 ] [ w o r ' r e t r z l z - d 2 9 0 3 1 2 0 / [ 8 6 ] 1 9 T a b l e 1 - 2 . ( c o n t ' d ) C o m p o u n d M e t a l ( 1 5 ( 1 J Q _ M , R e f e r e n c e g h e f l fi t g n m a t i o n H z ) , p p m [ M o O ( r e 4 ) 2 ] 2 ' d 2 7 1 7 ( 9 8 ) 8 9 / [ 8 6 ] [ N i ( S e 4 ) 2 ] 2 ' d 8 8 2 0 7 4 8 / [ 8 7 ] [ P d ( S e 4 ) 2 ] 2 ‘ d 8 8 9 3 7 5 8 / [ 8 7 ] [ P t ( S e 4 ) 2 ] 2 ‘ d 8 7 2 7 ( 3 8 4 ) 6 4 2 / [ 8 7 ] [ Z n ( S e 4 ) 2 ] 2 ' d 1 0 1 2 7 5 9 8 / [ 8 7 ] [ C d ( S e 4 ) 2 ] 2 ' d 1 0 6 2 ( 2 5 5 ) 6 0 8 / [ 8 7 ] fl l _ g ( S e i ) 2 _ ] : d l o 7 6 ( 1 2 6 5 ) 5 9 4 / [ 8 7 ] B y c o m p a r i n g t h e a b o v e a s s i g n m e n t s , a g e n e r a l s h i e l d i n g a r g u m e n t b a s e d o n t h e m e t a l d e l e c t r o n c o n fi g u r a t i o n h a s b e e n a d v a n c e d [ 8 7 ] . I n t h e f r e e Q 4 2 " l i g a n d s , t h e s h i e l d i n g a r g u m e n t s w o u l d p r e d i c t t h a t t h e t e r m i n a l a t o m s r e s o n a t e u p fi e l d o f t h e i n t e r n a l a t o m s i n a c c o r d a n c e w i t h t h e f o r m a l c h a r g e a s s i g n m e n t s o n t h e s e a t o m s . U p o n c h e l a t i n g t o a m e t a l i o n w i t h p a r t i a l l y fi l l e d d o r b i t a l s , t h e e l e c t r o n d e n s i t y o f t h e s e t e r m i n a l ( n o w m e t a l - b o u n d ) a t o m s w i l l d e c r e a s e b e c a u s e o f e l e c t r o n d o n a t i o n f r o m t h e Q 4 ‘ l i g a n d t o t h e d o r b i t a l s o f t h e m e t a l . T h i s w i l l l e a d t o N M R s i g n a l s d o w n fi e l d o f t h e r e s o n a n c e s d u e t o n o n - m e t a l b o u n d s e l e n i u m a t o m s ( T a b l e 1 - 2 ) . H o w e v e r , i f t h e m e t a l i o n h a s fi l l e d d o r b i t a l s ( i . e . Z n , C d o r H g ) , t h e e l e c t r o n d o n a t i o n f r o m t h e l i g a n d t o t h e m e t a l i s c l a i m e d t o b e n e g l i g i b l e l e a d i n g t o r e s o n a n c e s u p fi e l d o f t h e n o n - m e t a l b o u n d s e l e n i u m a t o m s ( T a b l e 1 2 ) . T h o u g h t h i s a r g u m e n t i s e m p i r i c a l , i t a p p e a r s t o b e c o n s i s t e n t t h u s f a r . I t s h o u l d b e n o t e d t h a t t h e 7 7 S e N M R s p e c t r u m o f [ P t ( S e 4 ) 3 ] 2 ' g i v e s t w o s i g n a l s a t 6 8 0 a n d 7 9 0 p p m . T h e r e s o n a n c e a t 6 8 0 p p m i s a s s i g n e d t o t h e m e t a l - b o u n d S e a t o m s b e c a u s e o f t h e o b s e r v e d S e — P t c o u p l i n g [ 8 8 ] . T h i s i s o p p o s i t e t o t h e a b o v e i d e n t i fi e d t r e n d . 2 0 A p p a r e n t l y , o t h e r f a c t o r s m u s t a l s o b e o p e r a t i v e i n a f f e c t i n g t h e r e s o n a n c e p o s i t i o n s o f S e a t o m s i n p o l y s e l e n i d e s . 7 7 S e N M R s p e c t r o s c o p y w a s a l s o u s e d t o c h a r a c t e r i z e t h e s o l u t i o n b e h a v i o r o f t h e I n / S e x z ' f a m i l y o f c o m p o u n d s [ 8 9 — 9 0 ] . T h e 7 7 S e N M R s p e c t r a o f [ I n 2 ( S e 4 ) 4 ( S e 5 ) ] 4 ' , [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ' a n d [ I n 2 8 e 2 ( S e 4 ) 2 ] 2 ‘ i n D M F s o l u t i o n s a r e a l l i d e n t i c a l a n d s h o w t h r e e p e a k s i n 2 : 2 : 1 r a t i o a t 6 4 3 p p m , 1 9 7 p p m a n d - 2 4 4 p p m r e s p e c t i v e l y . T h e r e f o r e , i t h a s b e e n p r o p o s e d t h a t t h e m o s t s t a b l e c o m p l e x i n s o l u t i o n i s [ I n 3 S e 3 ( S e 4 ) 3 ] 3 ' . T h e p e a k a t 6 4 3 p p m c a n b e a s s i g n e d t o r e s o n a n c e f r o m t h e t e r m i n a l S e a t o m s o f t h e c h e l a t i n g S e 4 ' l i g a n d s a n d 1 9 7 p p m f r o m t h e i n n e r a t o m s o f t h e S e 4 2 ' l i g a n d s w h i l e t h e - 2 4 4 p p m i s m o r e r e a s o n a b l y a s s i g n e d t o t h e b r i d g i n g S e z ' l i g a n d . T h i s a s s i g n m e n t i s c o n s i s t e n t w i t h t h e 7 7 S e N M R r e s u l t s r e p o r t e d f o r o t h e r m e t a l p o l y s e l e n i d e c o m p l e x e s d i s c u s s e d a b o v e . I V . C o n c l u d i n g R e m a r k s T h u s f a r , r e s e a r c h i n m e t a l h e a v y - p o l y c h a l c o g e n i d e s h a s c o v e r e d a l m o s t e v e r y g r o u p o f p — b l o c k a n d d — b l o c k e l e m e n t s w i t h a f a i r d e g r e e o f s u c c e s s a t l e a s t f o r t h e p o l y s e l e n i d e s y s t e m . Y e t , t h e fi e l d i s s t i l l e x p a n d i n g , a s e v i d e n c e d b y m a n y n e w r e s e a r c h p a p e r s c o n s t a n t l y a p p e a r i n g i n t h e l i t e r a t u r e [ 7 7 ] . D i f f e r e r t s y n t h e t i c m e t h o d s , s u c h a s c o n v e n t i o n a l s o l u t i o n r e a c t i o n s , h y d r o ( s o l v o ) t h e r m a l t e c h n i q u e s a n d m o l t e n s a l t s y n t h e s e s ( i . e . b y u s i n g t h e o r g a n i c c a t i o n s ) , a r e e n j o y i n g c o n t i n u e d a p p l i c a t i o n i n t h i s r e s e a r c h a r e a . E x p l o r a t i o n o f t h e s e d i f f e r e n t m e t h o d s h a s b r o a d e n e d t h e h o r i z o n o f c o o r d i n a t i o n c h e m i s t r y o f p o l y c h a l c o g e n i d e l i g a n d s . S i n c e a l a r g e n u m b e r o f m e t a l p o l y c h a l c o g e n i d e c o m p o u n d s h a v e b e e n s y n t h e s i z e d , m a n y a s p e c t s o f t h e i r r e a c t i o n c h e m i s t r y [ 3 0 , 7 6 , 8 6 , 9 1 - 9 2 ] a s w e l l a s t h e p o t e n t i a l o f u s i n g s o m e o f t h e s e c o m p o u n d s a s s o l u b l e l o w t e m p e r a t u r e p r e c u r s o r s t o s o l i d - s t a t e m a t e r i a l s [ 9 3 — 9 5 ] a r e b e i n g e x p l o r e d . F o r e x a m p l e , b y u s i n g s u i t a b l e m e t a l p o l y s e l e n i d e C o m p l e x e s , s o l i d - s t a t e t h i n fi l m s o r n a n o c l u t a s o f t e c h n o l o g i c a l l y r e l e v a n t b i n a r y a n d 2 1 t e r n a r y m e t a l c h a l c o g e n i d e s [ 9 6 - 1 0 0 ] h a v e b e e n f a b r i c a t e d i n t h i s l a b o r a t o r y [ 9 3 - 9 5 ] . H o w e v e r , m e c h a n i s t i c i s s u e s i n m e t a l p o l y c h a l c o g e n i d e c h e m i s t r y h a v e s e l d o m b e e n a d d r e s s e d t h u s f a r . I n t e r e s t i n t h i s a r e a , a l o n g w i t h t h e s y n t h e s i s o f y e t n e w m e t a l h e a v y p o l y c h a l c o g e n i d e c o m p o u n d s , i s e x p e c t e d t o g r o w [ 7 7 ] . I n t h e f o l l o w i n g c h a p t e r s , I w i l l fi r s t d i s c u s s t h e s y n t h e s i s , X - r a y s t r u c t u r e s a n d s p e c t r o s c o p i c c h a r a c t e r i z a t i o n o f m e t a l h e a v y p o l y c h a l c o g e n i d e c o m p l e x e s m a d e b y s o l u t i o n m e t h o d , f o l l o w e d b y t h o s e o f t r a n s i t i o n m e t a l c a r b o n y l c h a l c o g e n i d e c l u s t e r s p r e p a r e d b y h y d r o ( s o l v o ) t h e r m a l t e c h n i q u e . F o r c l a r i t y , c o m p o u n d s a r e a r r a n g e d i n d i f f e r e n t c h a p t e r s a c c o r d i n g t o p e r i o d i c g r o u p s . 2 2 R E F E R E N C E S ( a ) N . N . G r e e n w o o d a n d A . E a m s h a w , C h e m i s t r y o f t h e E l e m e n t s , P e r g a m o n P r e s s , O x f o r d U K , 1 9 8 9 , p 7 5 7 - 9 1 7 . ( b ) F . A . C o t t o n a n d G . W i l k i n s o n , A d v a n c e d I n o r g a n i c C h e m i s t r y , 5 t h E d ; J o h n W i l e y & S o n s , N e w Y o r k , 1 9 8 8 , p 4 9 1 - 5 4 3 . E a r l y i n v e s t i g a t i o n s o n t h e e x i s t e n c e o f t h e h o m o p o l y c h a l c o g e n i d e a n i o n s i n l i q u i d a m m o n i a s o l u t i o n c a n b e f o u n d i n ( a ) C . C . H u g o t R , H e b d . S e a n c e s A c a d . S c i , ( 1 8 9 9 ) , 2 1 9 , 2 9 9 , 3 8 8 . ( b ) C . C . H u g o t , A n n . C h i m P h y s . , 2 1 ( 1 9 0 0 ) , 7 2 . ( c ) C . A . K r a u s a n d C . Y . C h i u , J . A m C h e m . S o c , 1 4 ( 1 9 2 2 ) , 1 9 9 9 - 2 0 0 9 . ( d ) F . W . B e r g s t r o m , J . A m C h e m . S o c . , 4 8 ( 1 9 2 6 ) , 1 4 6 - 1 5 1 . ( e ) E . Z i n t l , J . G o u b e a u a n d W . D u l l e n k o p f , Z . P h y s . C h e m , A b t . A , 1 5 4 ( 1 9 3 1 ) , 1 . ( t ) W . K l e m m , H . S o d o m a n n a n d P . L a n g m e s s e r , Z A n o r g . A l l g . C h e m , 2 4 1 ( 1 9 3 9 ) , 2 8 1 - 3 0 4 . F o r r e c e n t s p e c t r o s c o p i c s t u d i e s o f t h e s e s p e c i e s i n p o l a r s o l v e n t s ( i . e . e n , N H 3 a n d M D F , e t c . ) , s e e ( a ) F . S e e l , H . J . G u t t l e r , G . S i m o n a n d A . W i e c k o w s k i , P u r e A p p l . C h e m , 4 9 ( 1 9 7 7 ) , 4 5 — 5 4 . ( b ) K . W . S h a r p a n d W . H . K o e h l e r , I n o r g . C h e m , 1 6 ( 1 9 7 7 ) , 2 5 2 8 - 2 5 6 5 . ( c ) L . D . S c h u l t z a n d W . H . K o e h l e r , I n o r g . C h e m , 2 6 ( 1 9 8 7 ) , 1 9 8 9 - 1 9 9 3 . ( d ) P . D u b o i s , J . P . L e l i e u r a n d G . L e p o u t r e , I n o r g . C h e m , 2 6 ( 1 9 8 7 ) , 1 8 9 7 - 1 9 0 2 . ( e ) P . D u b o i s , J . P . L e l i e u r a n d G . L e p o u t r e , I n o r g . C h e m , 2 7 ( 1 9 8 7 ) , 7 3 - 8 0 . ( t ) P . D u b o i s , J . P . L e l i e u r a n d G . L e p o u t r e , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 1 8 8 3 - 1 8 9 0 . ( g ) V . P i n o n a n d J . P . L e l i e u r , I n o r g . C h e m , 3 0 ( 1 9 9 1 ) , 2 2 6 0 - 2 2 6 4 . ( h ) M . B j o r g v i n s s o n a n d G . J . S c h r o b i l g e n , I n o r g . C h e m , 3 0 ( 1 9 9 1 ) , 2 5 4 0 - 2 5 4 7 . F o r 8 2 2 ' , s e e ( a ) H . F o p p l , A n g e w . C h e m , 7 0 ( 1 9 5 8 ) , 4 0 1 - 4 0 1 . ( b ) H . F o p p l , E . B u s m a n n a n d F . - K . F r o r a t h , Z . A n o r g . A l l g . C h e m , 3 1 4 ( 1 9 6 2 ) , 1 2 - 2 0 . 1 0 . 1 1 . 1 2 . 2 3 F o r 8 3 2 ‘ , s e e W . S . M i l l e r a n d A . J . K i n g , Z K r i s t a l l o g n , K n ' s t a l l g e o m , K fi s t a l l p h y s . , K r i s t a l l c h e m , 9 4 ( 1 9 3 6 ) , 4 3 9 . F o r S 4 2 ” , s e e ( a ) S . C . A b r a h a m s , A c t a C r y s t a l l o g r . , 7 ( 1 9 5 4 ) , 4 2 3 — 4 2 9 . ( b ) S . C . A b r a h a m s a n d J . L . B e r n s t e i n , A c t a C r y s t a l l o g r . , 2 5 B ( 1 9 6 9 ) , 2 3 6 5 - 2 3 7 0 . ( c ) R . T e g m a n , A c t a C r y s t a l l o g r . , 2 9 B ( l 9 7 3 ) , 1 4 6 3 - 1 4 6 9 . F o r 8 5 2 ' , s e e ( a ) B . L e c l e r c a n d T . S . K a b r e , A c t a C r y s t a l l o g r . , 3 l B ( 1 9 7 5 ) , 1 6 7 5 - 1 6 7 7 . ( b ) B . K e l l y a n d P . W o o d w a r d , . 1 . C h e m S o c . D a l t o n T r a n s . , ( 1 9 7 6 ) , 1 3 1 4 - 1 3 1 6 . ( c ) P . B o t t c h e r , K fi s t a l l o g r . , 1 5 0 ( 1 9 7 4 ) , 6 5 - 7 3 . ( d ) P . B o t t c h e r a n d K . K r u s e , J . L e s s - c o m m o n M e n , 8 3 ( 1 9 8 2 ) , 1 1 5 - 1 2 5 . F o r S 5 2 3 s e e ( a ) S . C . A b r a h a m s a n d E . G r i s o n , A c t a C r y s t a l l o g r . , 6 ( 1 9 5 3 ) , 2 0 6 — 2 1 3 . ( b ) A . H o r d v i k a n d E . S t e t t e n , A c t a C h e m S c a n d . , 2 2 ( 1 9 6 8 ) , 3 0 2 9 — 3 0 5 2 . ( c ) R . G . T e l l e r , L . J . K r a u s e a n d R . C . H a u s h a l t e r , I n o r g . C h e m , 2 2 ( 1 9 8 3 ) , 1 8 0 9 - 1 8 1 2 . F o r 8 7 2 ' , s e e ( a ) H . K r e b s a n d K . H . M u l l e r , Z . A n o r g . A l l g . C h e m , 2 7 5 ( 1 9 5 4 ) , 1 4 7 - 1 5 1 . ( b ) M . G . K a n a t z i d i s , N . C . B a e n z i g e r a n d D . C o u c o u v a n i s , I n o r g . C h e m , 2 2 ( 1 9 8 3 ) , 2 9 0 - 2 9 2 . F o r S e 2 2 ' , s e e ( a ) G . C o r d i e r , R . C o o k a n d H . S c h a f e r , A n g e w . C h e m I n t . E d . E n g L , 1 9 ( 1 9 8 0 ) , 3 2 4 - 3 2 5 . ( b ) r e f . [ 5 b ] . F o r S e 3 2 ‘ , s e e ( a ) H . G . V o n S c h n e r i n g a n d N . K . G o h , N a t u r w i s s e n s h a fi e n , 6 1 ( 1 9 7 4 ) , 2 7 2 . ( b ) P . B é t t c h e r , Z A n o r g . A l l g . C h e m , 4 6 1 ( 1 9 8 0 ) , 1 3 - 2 1 . F o r S e 4 2 ‘ , s e e ( a ) O . F o s s a n d V . J a n i c k i s , J . C h e m S o c . D a l t o n T r a n s . , ( 1 9 8 0 ) , 6 2 0 - 6 2 3 . ( b ) T . K o n i g , B . E i s e n m a n n a n d H . S c h a f e r , Z . N a t u r fi r r s c h , 3 7 B ( 1 9 8 2 ) , 1 2 4 5 - 1 2 4 9 . ( c ) T . K o n i g , B . E i s e n m a n n a n d H . S c h a f e r , Z . A n o r g . 1 3 . 1 4 . 1 5 . 1 6 . 1 7 . 1 8 . 1 9 . 2 4 A l l g . C h e m , 4 9 8 ( 1 9 8 3 ) , 9 9 - 1 0 4 . ( ( 1 ) N . E . B r e s e , C . R . R a n d a l l a n d J . A . I b e r s , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 9 4 0 - 9 4 3 . F o r S e s z ‘ , s e e ( a ) U . K r e t s c h m a n n a n d P . B o t t c h e r , Z N a t u r f o r s c h . , 4 O B ( 1 9 8 5 ) , 8 9 5 - 8 9 9 . ( b ) C . - N . C h a u , R . W . M . W a r d l e a n d J . A . I b e r s , A c t a C r y s t a l l o g r . , 4 4 C ( 1 9 8 8 ) , 8 8 3 - 8 8 5 . ( c ) W . S . S h e l d r i c k a n d H . G . B r a u n b a c k , Z N a t u r f o r s c h , 4 4 B ( 1 9 8 9 ) , 1 3 9 7 — 1 4 0 1 . ( ( 1 ) G . K r a u t e r , K . D e h n i c k e a n d D . F e n s k e , C h e m - Z t g . , 1 1 4 ( 1 9 9 0 ) , 7 - 9 . ( e ) J . D i e t z , U . M u l l e r , V . M u l l e r a n d K . D e h n i c k e , Z N a t u r f o r s c h . , 4 6 B ( 1 9 9 1 ) , 1 2 9 3 - 1 2 9 9 . ( f ) V . M u l l e r , G . F r e n z e n , K . D e h n i c k e a n d D . F e n s k e , Z N a t u r f o r s c h , 4 7 B ( 1 9 9 2 ) , 2 0 5 - 2 1 0 . ( g ) r e f . [ 8 c ] . ( h ) r e f . [ l 3 d ] . F o r 8 8 6 2 ' , s e e ( a ) F . W e l l e r , J . A d e l a n d K . D e h n i c k e , Z A n o r g . A l l g . C h e m , 5 4 8 ( 1 9 8 7 ) , 1 2 5 - 1 3 2 . ( b ) D . F e n s k e , C . K r a u s a n d K . D e h n i c k e , Z A n o r g . A l l g . C h e m , 6 0 7 ( 1 9 9 2 ) , 1 0 9 - 1 1 2 . ( c ) r e f . [ 9 c ] . F o r S e 7 2 ‘ , s e e V . M u l l e r , K . D e h n i c k e , D . F e n s k e a n d G . B a u m , Z N a t w f o r s c h . , 4 6 B ( 1 9 9 1 ) , 6 3 - 6 7 . F o r S e s z ' , s e e R . S t a f f e l , U . M u l l e r , A . A h l e a n d K . D e h n i c k e , Z N a t u r f o r s c h , 4 6 B ( 1 9 9 1 ) , 1 2 8 7 - 1 2 9 2 . F o r S e 9 2 ' , s e e V . M u l l e r , C . G r e b e , U . M u l l e r a n d K . D e h n i c k e , Z A n o r g . A l l g . C h e m , 6 1 9 ( 1 9 9 3 ) , 4 1 6 - 4 2 0 . F o r T e 2 2 ' , s e e R . C . B u r n s a n d J . D . C o r b e t t , J . A m C h e m S o c . , 1 0 3 ( 1 9 8 1 ) , 2 6 2 7 - 2 6 3 2 . F o r T e 3 2 ' , s e e ( a ) A . C i s a r a n d J . D . C o r b e t t , I n o r g . C h e m , 1 6 ( 1 9 7 7 ) , 6 3 2 - 6 3 5 . ( b ) E i s e n m a n n a n d H . S c h a f e r , A n g e w . C h e m I n t . E d . E n g l , 1 7 ( 1 9 7 8 ) , 6 8 4 - 6 8 6 . ( c ) P . B o t t c h e r , J . L e s s - c o m m o n M e n , 7 0 ( 1 9 8 0 ) , 2 6 3 - 2 7 1 . 2 0 . 2 1 . 2 2 . 2 3 . 2 4 . 2 5 . 2 6 . 2 7 . 2 5 F o r T e 4 2 ' , s e e ( a ) J . C . H u f f m a n a n d R . C . H a u s h a l t e r , Z A n o r g . A l l g . C h e m , 5 1 8 ( 1 9 8 4 ) , 2 0 3 - 2 0 9 . ( b ) L . A . D e v e r e u x , G . J . S c h r o b i l g e n a n s J . F . S a w y e r , A c t a C r y s t a l l o g r . , 4 1 C ( 1 9 8 5 ) , 1 7 3 0 - 1 7 3 3 . ( c ) K . W . K l i n k m a m m e r a n d P . B o t t c h e r , Z N a t u r j h r s c h , 4 5 8 ( 1 9 9 0 ) , 1 4 1 - 1 4 7 . ( d ) H . W o l k e r , B . S c h r e i n e r , R . S t a f f e l , U . M u l l e r a n d K . D e h n i c k e , Z N a t u r f o r s c h , 4 6 B ( 1 9 9 1 ) , 1 0 1 5 - 1 0 1 9 . ( e ) B . S c h r e i n e r a n d K . D e h n i c k e , C h e m - Z t g . , 1 1 5 ( 1 9 9 1 ) , 3 2 6 . ( f ) D . F e n s k e , G . B a u m , H . W o l k e r s , B . S c h r e i n e r , F . W e l l e r a n d K . D e h n i c k e , Z A n o r g . A l l g . C h e m , ( 1 9 9 2 ) , i n p r e s s . F o r T e 5 2 ‘ , s e e ( a ) P . B o t t c h e r a n d U . K r e t s c h m a n n , J . L e s s - c o m m o n M e t . , 9 5 ( 1 9 8 3 ) , 8 1 - 9 1 . ( b ) P . B o t t c h e r a n d U . K r e t s c h m a n n , Z A n o r g . A l l g . C h e m , 4 9 1 ( 1 9 8 2 ) , 3 9 - 4 6 . ( c ) r e f . [ 9 c ] . ( d ) r e f . [ 2 1 f ] . A . H o r d v i k , A c t a C h e m S c a n d . , 2 0 ( 1 9 6 6 ) , 1 8 8 5 . ( b ) M . G . K a n a t z i d i s , N . C . B a e n z i g e r a n d D . C o u c o u v a n i s I n o r g . C h e m , 2 2 ( 1 9 8 3 ) , 2 9 0 - 2 9 2 . D . C o u c o u v a n i s , D . S w e n s o n , P . S t r e m p l e a n d C . N . B a e n z i g e r , J . A m C h e m S o c . , 1 0 1 ( 1 9 7 9 ) , 3 3 9 2 - 3 3 9 4 . K . B . K r a u s k o p f , I n t r o d u c t i o n t o G e o c h e m i s t r y , M c G r a w H i l l , N e w Y o r k , 1 9 7 9 . ( a ) R . R . C h i a n e l l i , C a t a l . R e v - S c i . E n g , 2 6 ( 1 9 8 4 ) , 3 6 1 - 3 9 3 . ( b ) F . E . M a s s o t h a n d G . M u r a l i d h a r , i n P r o c e e d i n g s o f t h e C l i m a x F o u r t h I n t e r n a t i o n a l C o n fi r r e n c e o n t h e C h e m i s t r y a n d U s e s o f M o l y b d e n u m , H . P . B a r r y a n d P . C . M i t c h e l l , E d s ; p 3 4 3 , C l i m a x M o l y b d e n u m C o m p a n y , A n n A r b o r , M i c h i g a n , 1 9 8 2 . M . R . D u b o i s , C h e m R e v . , 8 9 ( 1 9 8 9 ) , 1 - 8 . M . D r a g a n j a c a n d T . B . R a u c h f u s s , A n g e w . C h e m . I n t . E d . E n g l , 2 4 ( 1 9 8 5 ) , 7 4 2 - 7 5 7 . 2 8 . 2 9 . 3 0 . 3 1 . 3 2 . 3 3 . 3 4 . 3 5 . 3 6 . 3 7 . 3 8 . 2 6 ( a ) A . M u l l e r , P o l y h e d r o n , 5 ( 1 9 8 6 ) , 3 2 3 - 3 4 0 . ( b ) A . M u l l e r a n d E . D i e m a n n , A d v . I n o r g . C h e m , 3 1 ( 1 9 8 7 ) , 8 9 - 1 2 2 . M . S c h m i d t a n d R . H o l l e r , R e v . C h i m M i n e r . , 2 0 ( 1 9 8 3 ) , 7 6 3 - 7 6 8 . A . P . G i n s b e r g , W . E . L i n d s e l l , C . R . S p r i n r l e , K . W . W e s t a n d R . L . C o h e n , I n o r g . C h e m , 2 2 ( 1 9 8 3 ) , 1 7 8 1 - 1 7 9 0 . H . K o p f , B . B l o c k a n d M . S c h m i d t , C h e m B e r . , 1 0 1 ( 1 9 6 8 ) , 2 7 2 - 2 7 6 . H . K o p f , A . W i r l a n d W . K a h l , A n g e w . C h e m I n t . E d . E n g l . , 1 0 ( 1 9 7 1 ) , 1 3 7 - 1 3 8 . H . K o p f , W . K a h l a n d A . W i r l , A n g e w . C h e m I n t . E d . E n g l . , 9 ( 1 9 7 0 ) , 8 0 1 - 8 0 2 . H . S t r a s d e i t , B . K r e b s a n d G . H e n k e l , I n o r g . C h i m . A c t a , 8 9 ( 1 9 8 4 ) , L 1 1 - L l 3 . R . C . H a u s h a l t e r , A n g e w . C h e m I n t . E d . E n g l . , 2 4 ( 1 9 8 5 ) , 4 3 3 - 4 3 5 . ( a ) A . P . G i n s b e r g a n d W . E L i n d s e l l , J . C h e m S o c . , C h e m C o m m u n , 1 9 7 1 , 2 3 2 - 2 3 3 . ( b ) W . D . B o n d s , J r . a n d J . A . I b e r s , J . A m C h e m S o c . , 9 4 ( 1 9 7 2 ) , 3 4 1 3 - 3 4 1 9 . ( c ) H . K o p f , S . K . S . H a z a r i a n d M . L e i t n e r , Z N a t u r f o r s c h . , 3 3 B ( l 9 7 8 ) , 1 3 9 8 - 1 4 0 4 . ( a ) A . M u l l e r , W . E l t z n e r a n d N . M o h a n , A n g e w . C h e m . I n t . E d . E n g l , 1 8 ( 1 9 7 9 ) , 1 6 8 - 1 6 9 . ( b ) C . G i a n n o t t i , A . M . D u c o u r a n t , H . C h a n a u d , A . C h i a r o n i a n d C . R i c h e , J . O r g a n o m e t . C h e m , 1 4 0 ( 1 9 7 7 ) , 2 8 9 - 2 9 5 . ( a ) V . K i ' l l l m e r , E . R o t t i n g e r a n d H . V a h r e n k a m p , J . C h e m S o c . , C h e m C o m m u n , 1 9 7 7 , 7 8 2 - 7 8 3 . ( b ) V . K fi l l m e r , E . R o t t i n g e r a n d H . V a h r e n k a m p Z N a t u t j h r s c h , 3 4 B ( 1 9 7 9 ) , 2 2 4 - 2 2 9 . 3 9 . 4 0 . 4 1 . 4 2 . 4 3 . 4 4 . 2 7 ( a ) C . R . B r u l e t , S . S . I s i e d a n d H . T a u b e , J . A m C h e m S o c . , 9 5 ( 1 9 7 3 ) , 4 7 5 8 - 4 7 5 9 . ( b ) R . C . E l d e r a n d M . T r k u l a , I n o r g . C h e m , 1 6 ( 1 9 7 7 ) , 1 0 4 8 - 1 0 5 1 . ( c ) M . H e r b e r h o l d , D . R e i n e r , B . Z i m m e r - G a s s e r a n d U . S c h u b e r t Z N a t w f o r s c h , 3 5 8 ( 1 9 8 0 ) , 1 2 8 1 - 1 2 8 5 . ( a ) P . J . V e r g a m i n i a n d G . J . K u b a s P r o g . I n o r g . C h e m , 2 1 ( 1 9 7 6 ) , 2 6 1 - 2 8 2 . ( b ) G . J . K u b a s a n d P . J . V e r g a m i n i I n o r g . C h e m , 2 0 ( 1 9 8 1 ) , 2 6 6 7 - 2 6 7 6 . ( c ) V . A . U c h t m a n a n d L . F . D a h l J . A m C h e m S o c . , 9 1 ( 1 9 6 9 ) , 3 7 5 6 - 3 7 6 3 . ( a ) D . L . S t e v e n s o n , V . R . M a g n u s o n a n d L . F . D a h l , J . A m C h e m S o c . , 8 9 ( 1 9 6 7 ) , 3 7 2 7 - 3 7 3 2 . ( b ) T . S . P i p e r a n d G . W i l k i n s o n , J . A m C h e m S o c . , 7 8 ( 1 9 5 6 ) , 9 0 0 - 9 0 0 . ( a ) A . M i ‘ l l l e r , W . - O . N o l t e a n d B . K r e b s , A n g e w . C h e m I n t . E d . E n g l . , 1 7 ( 1 9 7 8 ) , 2 7 9 - 2 7 9 . ( b ) A . M u l l e r , W . - O . N o l t e a n d B . K r e b s , I n o r g . C h e m , 1 9 ( 1 9 8 0 ) , 2 8 3 5 — 2 8 3 6 . ( c ) C . H . W e i a n d L . F . D a h l I n o r g . C h e m , 4 ( 1 9 6 5 ) , 1 - l 1 . ( a ) P . H . B i r d , J . M . M c C a l l , A . S h a v e r a n d U . S i r i w a r d a n e , A n g e w . C h e m I n t . E d . E n g l . , 2 1 ( 1 9 8 2 ) , 3 8 4 - 3 8 5 . ( b ) D . C o u c o u v a n i s , P . R . P a t i l , M . G . K a n a t z i d i s , B . D e t e r i n g a n d N . C . B a e n z i g e r , I n o r g . C h e m , 2 4 ( 1 9 8 5 ) , 2 4 - 3 1 . ( c ) P . E . J o n e s a n d L . K a t z , J . C h e m S o c . C h e m C o m m u n , 1 9 6 7 , 8 4 2 - 8 4 3 . ( ( 1 ) P . E . J o n e s a n d L . K a t z , A c t a C r y s t a l l o g r . , 2 5 B ( 1 9 6 9 ) , 7 4 5 - 7 5 3 . ( e ) A . M u l l e r , J . S c h i m a n s k i , U . S c h i m a n s k i , A n g e w . C h e m . I n t . E d . E n g l . , 2 3 ( 1 9 8 4 ) , 1 5 9 - 1 6 0 . ( f ) A . M u l l e r , M . R o m e r , H . B o g g e , E . K r i c k e m e y e r a n d M . Z i m m e r m a n n , Z A n o r g . A l l g . C h e m , 5 3 4 ( 1 9 8 6 ) , 6 9 - 7 6 . ( a ) A . M u l l e r , F . - W . B a u m a n n , H . B o g g e , M . R o m e r , E . K r i c k e m e y e r a n d K . S c h n r i t z , A n g e w . C h e m I n t . E d . E n g l . , 2 3 ( 1 9 8 4 ) , 6 3 2 - 6 3 3 . ( b ) A . M u l l e r , E 4 5 . 4 6 . 4 7 . 4 8 . 4 9 . 5 0 . 5 1 . 5 2 . 5 3 . 2 8 K r i c k e m e y e r , M . Z i m m e r m a n n , M . R o m e r , H . B o g g e , M . P e n k a n d K . S c h m i t z , I n o r g . C h i m A c t a , 9 0 ( 1 9 8 4 ) , L 6 9 - L 7 l . ( a ) C . M . B o l i n g e r , T . B . R a u c h f u s s a n d S . R . W i l s o n , J . A m . C h e m . S o c . , 1 0 3 ( 1 9 8 1 ) , 5 6 2 0 - 5 6 2 1 . ( b ) A . M u l l e r , M . R o m e r , H . B o g g e , E . K r i c k e m e y e r a n d K . S c h m i t z , I n o r g . C h i m A c t a , 8 5 ( 1 9 8 4 ) , L 3 9 - L 4 1 . ( c ) A . M i ' l l l e r , W . E l t z n e r , H . B o g g e a n d E . K r i c k e m e y e r , A n g e w . C h e m . I n t . E d . E n g l . , 2 2 ( 1 9 8 3 ) , 8 8 4 — 8 8 5 . ( ( 1 ) A . M u l l e r , M . Z i m m e r m a n n a n d H . B o g g e , A n g e w . C h e m I n t . E d . E n g l . , 2 5 ( 1 9 8 6 ) , 2 7 3 - 2 7 3 . ( e ) A . M u l l e r , K . S c h m i t z , E . K r i c k e m e y e r , M . P e n k a n d H . B o g g e , A n g e w . C h e m I n t . E d . E n g l . , 2 5 ( 1 9 8 6 ) , 4 5 3 - 4 5 4 . A . M u l l e r , M . R o m e r , H . B o g g e , E . K r i c k e m e y e r a n d D . B e r g m a n n , J . C h e m . S o c . C h e m . C o m m u n , 1 9 8 4 , 3 4 8 - 3 4 9 . J . G o t z i g , A . L . R h e i n g o l d a n d H . W e r n e r , A n g e w . C h e m I n t . E d . E n g l . , 2 3 ( 1 9 8 4 ) , 8 1 4 - 8 1 5 . C . - N . C h a u , R . W . M . W a r d l e a n d J . A . I b e r s , I n o r g . C h e m , 2 6 ( 1 9 8 7 ) , 2 7 4 0 - 2 7 4 1 . W . A . F l o m e r a n d J . W . K o l i s , J . A m . C h e m S o c . , 1 1 0 ( 1 9 8 8 ) , 3 6 8 2 - 3 6 8 3 . W . A . F l o m e r , S . C . O ' N e a l , W . T . P e n n i n g t o n , D . J e t e r , A . W . C o r d e s a n d J . W . K o l i s A n g e w C h e m I n t . E d . E n g l . , 2 7 ( 1 9 8 8 ) , 1 7 0 2 - 1 7 0 3 . M . G . K a n a t z i d i s C o m m e n t s I n o r g . C h e m , 1 0 ( 1 9 9 0 ) , 1 6 1 - 1 9 5 . M . A . A n s a r i a n d J . A . I b e r s C o o r d . C h e m R e v . , 1 0 0 ( 1 9 9 0 ) , 2 2 3 - 2 6 6 . J . W . K o l i s C o o r d . C h e m R e v . , 1 0 5 ( 1 9 9 0 ) , 1 9 5 - 2 1 9 . 5 4 . 5 5 . 5 6 . 5 7 . 5 8 . 2 9 S y n t h e s i s o f s o l i d - s t a t e c o m p o u n d s b y u s i n g m o l t e n a l k a l i m e t a l p o l y c h a o c o g e n i d e s a s fl u x e s a t m i l d t e m p e r a t u r e s ( i . e . b e l o w 5 0 0 ' C ) i s c u r r e n t l y a v e r y a c t i v e a r e a o f r e s e a r c h . F o r r e c e n t r e s u l t s f r o m t h i s r e s e a r c h g r o u p s e e , M . G . K a n a t z i d i s , C h e m M a t e r . , 2 ( 1 9 9 0 ) , 3 5 3 - 3 6 3 . ( a ) J . - H . L i a o a n d M . G . K a n a t z i d i s , J . A m . C h e m S o c . , 1 1 2 ( 1 9 9 0 ) , 7 4 0 0 - 7 4 0 2 . ( b ) J . - H . L i a o a n d M . G . K a n a t z i d i s , I n o r g . C h e m , 3 1 ( 1 9 9 2 ) , 4 3 1 - 4 3 9 . H y d r o t h e r m a l c o n d i t i o n s h a v e a l s o b e e n u s e d t o p r e p a r e d m e t a l m o n o c h a l c o g e n i d e s , s e e ( a ) W . S . S h e l d r i c k , Z A n o r g . A l l g . C h e m , 5 6 2 ( 1 9 8 8 ) , 2 3 - 3 0 . ( b ) W . S . S h e l d r i c k a n d H . - J . H a u s e r , Z A n o r g . A l l g . C h e m , 5 5 7 ( 1 9 8 8 ) , 9 8 - 1 0 4 . ( c ) W . S . S h e l d r i c k a n d H . - J . H a u s e r , Z A n o r g . A l l g . C h e m , 5 5 7 ( 1 9 8 8 ) , 1 0 5 - 1 1 1 . ( d ) W . S . S h e l d r i c k a n d J . K a u b , Z A n o r g . A l l g . C h e m , 5 3 5 ( 1 9 8 6 ) , 1 7 9 - 1 8 5 . ( c ) J . B . P a r i s e , S c i e n c e , 2 5 1 ( 1 9 9 1 ) , 2 9 3 - 2 9 4 . ( f ) I . B . P a r i s e , J . C h e m S o c . , C h e m . C o m m u n , ( 1 9 9 0 ) , 1 5 5 3 - 1 5 5 4 . F o r e a r l y e x a m p l e s o f t h e c o m p o u n d s m a d e i n s o l u t i o n s , s e e ( a ) M . G . K a n a t z i d i s a n d S . - P . H u a n g , J . A m . C h e m S o c . , 1 1 1 ( 1 9 8 9 ) , 7 6 0 - 7 6 1 . ( b ) M . G . K a n a t z i d i s a n d S . - P . H u a n g , A n g e w . C h e m I n t . E d . E n g l . , 2 8 ( 1 9 8 9 ) , 1 5 1 3 - 1 5 1 4 . ( c ) M . G . K a n a t z i d i s a n d S . - P . H u a n g , I n o r g . C h e m , 2 8 ( 1 9 8 9 ) , 4 6 6 7 - 4 6 6 9 . ( d ) M . G . K a n a t z i d i s a n d S . D h i n g r a , I n o r g . C h e m , 2 8 ( 1 9 8 9 ) , 2 0 2 4 - 2 0 2 6 . ( e ) S . - P . H u a n g , S . D h i n g r a a n d M . G . K a n a t z i d i s , P o l y h e d r o n , 9 ( 1 9 9 0 ) , 1 3 8 9 - 1 3 9 5 . ( f ) M . D r a g a n j a c , S . D h i n g r a , S . - P . H u a n g a n d M . G . K a n a t z i d i s , I n o r g . C h e m , 2 9 ( 1 9 9 0 ) , 5 9 0 - 5 9 1 . R . M . H . B a n d a , J . C u s i c k , M . L . S c u d d e r , D . C . C r a i g a n d I . G . D a n c e , P o l y h e d r o n , 8 ( 1 9 8 9 ) , 1 9 9 9 - 2 0 0 1 . 5 9 . 6 0 . 6 1 . 6 2 . 6 3 . 6 4 . 6 5 . 6 6 . 6 7 . 6 8 . 6 9 . 3 0 R . M . H . B a n d a , J . C u s i c k , M . L . S c u d d e r , D . C . C r a i g a n d I . G . D a n c e , P o l y h e d r o n , 8 ( 1 9 8 9 ) , 1 9 9 5 - 1 9 9 8 . J . C u s i c k , M . L . S c u d d e r , D . C . C r a i g a n d I . G . D a n c e , P o l y h e d r o n , 8 ( 1 9 8 9 ) , 1 1 3 9 — 1 1 4 1 . J . A d e l , F . W e l l e r a n d K . D e h n i c k e , Z N a t u r f o r s c h . , 4 3 B ( 1 9 8 8 ) , 1 0 9 4 - 1 1 0 0 . W . A . H e r r m a n n a n d J . R o h r m a n n , C h e m B e r . , 1 1 9 ( 1 9 8 6 ) , 1 4 3 7 - 1 4 4 0 . ( a ) R . W . M . W a r d l e , C . - N . C h a u a n d J . A . I b e r s , J . A m C h e m S o c . , 1 0 9 ( 1 9 8 7 ) , 1 8 5 9 - 1 8 6 0 . ( b ) R . W . M . W a r d l e , S . B h a d u r i , C . - N . C h a u a n d J . A . I b e r s , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 1 7 4 7 - 1 7 5 5 . S . C . O ' N e a l a n d J . W . K o l i s , J . A m . C h e m . S o c . , 1 1 0 ( 1 9 8 8 ) , 1 9 7 1 - 1 9 7 3 . ( a ) W . C l e g g , G . C h r i s t o u , C . D . G a r n e r a n d G . M . S h e l d r i c k I n o r g . C h e m , 2 0 ( 1 9 8 1 ) , 1 5 6 2 - 1 5 6 6 . ( b ) M . D r a g a n j a c , E . S i m h o n , L . T . C h a n , M . G . K a n a t z i d i s , N . C . B a e n z i g e r a n d D . C o u c o u v a n i s , I n o r g . C h e m , 2 1 ( 1 9 8 2 ) , 3 3 2 1 - 3 3 3 2 . ( c ) W . - H . P a n , M . A . H a r m e r , T . R . H a l b e r t a n d E . I . S t i e f e l , J . A m C h e m . S o c . , 1 0 6 ( 1 9 8 4 ) , 4 5 9 - 4 6 0 . S . C . O ' N e a l , W . T . P e n n i n g t o n a n d J . W . K o l i s , I n o r g . C h e m , 2 9 ( 1 9 9 0 ) , 3 1 3 4 - 3 1 3 8 . T . A . R a u c h f u s s , S . D e v a n d S . R . W i l s o n , I n o r g . C h e m , 3 1 ( 1 9 9 2 ) , 1 5 3 - 1 5 4 . S . D e v , E . R a m l i , T . B . R a u c h f u s s a n d C . L . S t e r n , J . A m C h e m S o c . , 1 1 2 ( 1 9 9 0 ) , 6 3 8 5 - 6 3 8 6 . R . C . H a u s h a l t e r , I n o r g . C h i m A c t a , 1 0 2 ( 1 9 8 5 ) , L 3 7 - L 3 8 . 7 0 . 7 1 . 7 2 . 7 3 . 7 4 . 7 5 . 7 6 . 7 7 . 7 8 . 7 9 . 8 0 . 8 1 . 3 1 J . S o l a , Y . D o , J . M . B e r g a n d R . H . H o l m , I n o r g . C h e m , 2 4 ( 1 9 8 5 ) , 1 7 0 6 - 1 7 1 3 . R . W . M . W a r d l e , C . H . M a h l e r C . - N . C h a u a n d J . A . I b e r s , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 2 7 9 0 - 2 7 9 5 . P . G . M a u é a n d D . F e n s k e , Z N a t u r f o r s c h , 4 3 B ( 1 9 8 8 ) , 1 2 1 3 - 1 2 1 8 . D . F e n s k e , J . O h m e r , J . H a c h g e n e i a n d K . M e r z w e i l e r , A n g e w . C h e m I n t . E d . E n g l . , 2 7 ( 1 9 8 8 ) , 1 2 7 7 - 1 2 9 6 . ( a ) C . M . B o l i n g e r , T . B . R a u c h f u s s a n d A . L . R h e i n g o l d , O r g a n o m e t a l l i c s , 1 ( 1 9 8 2 ) , 1 5 5 1 - 1 5 5 3 . ( b ) A . L . R h e i n g o l d , C . M . B o l i n g e r a n d T . B . R a u c h f u s s , A c t a C t y s t a l l o g r . , 4 2 C ( 1 9 8 6 ) , 1 8 7 8 - 1 8 8 0 . W . A . H e r r m a n n , C . H e c h t , E . H e r d t w e c k a n d H . — J . K n e u p e r , A n g e w . C h e m . I n t . E d . E n g l . , 2 6 ( 1 9 8 7 ) , 1 3 2 - 1 3 4 . D . M . G i o l a n d o , M . P a p a v a s s i l i o u , J . P i c k a r d t T . B . R a u c h f u s s a n d R . S t e u d e l , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 2 5 9 6 - 2 6 0 0 . M . G . K a n a t z i d i s a n d S . - P . H u a n g , s u b m i t t e d t o C o o r d . C h e m . R e v . A . C . S u t o r i k a n d M . G . K a n a t z i d i s , J . A m C h e m . S o c . , 1 1 3 ( 1 9 9 1 ) , 7 7 5 4 - 7 7 5 5 . S . S c h r e i n e r , L . E . A l e a n d r i , D . K a n g a n d J . A . I b e r s , I n o r g . C h e m , 2 8 ( 1 9 8 9 ) , 3 9 2 - 3 9 3 . S . D h i n g r a a n d M . G . K a n a t z i d i s , S c i e n c e , 2 5 8 ( 1 9 9 2 ) , 1 7 6 9 - 1 7 7 2 . K . - W . K i m a n d M . G . K a n a t z i d i s , s u b m i t t e d t o J . A m . C h e m S o c . 8 2 . 8 3 . 8 4 . 8 5 . 8 6 . 8 7 . 8 8 . 8 9 . 9 0 . 9 1 . 9 2 . 9 3 . 9 4 . 3 2 W . A . F l o m e r , S . C . O ' N e a l , J . W . K o l i s , D . J e t e r a n d A . W . C o r d e s , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 9 7 1 - 9 7 3 . S e e c h a p t e r s 5 , 6 a n d 7 . K . - W . K i m a n d M . G . K a n a t z i d i s , m a n u s c r i p t i n p r e p a r a t i o n . H . C . E . M c F a r l a n e a n d W . M c F a r l a n e , N M R a n d t h e p e r i o d i c t a b l e , R . K . H a r r i s a n d B . E . M a n n , E d s ; A c a d e m i c P r e s s , N e w Y o r k , 1 9 7 8 , p 4 0 2 - 4 1 9 . W . A . F l o m e r a n d J . W . K o l i s , I n o r g . C h e m , 2 8 ( 1 9 8 9 ) , 2 5 1 3 - 2 5 1 7 . M . A . A n s a r i , C . H . M a h l e r , G . S . C h o r g h a d e , Y . - J . L u a n d J . A . I b e r s , I n o r g . C h e m , 2 9 ( 1 9 9 0 ) , 3 8 3 2 - 3 8 3 9 . M . A . A n s a r i a n d J . A . I b e r s , I n o r g . C h e m , 2 8 ( 1 9 8 9 ) , 4 0 6 8 - 4 0 6 9 . S . D h i n g r a a n d M . G . K a n a t z i d i s , I n o r g . C h e m , i n p r e s s . S . D h i n g r a , P h . D . T h e s i s , M i c h i g a n S t a t e U n i v e r s i t y , 1 9 9 2 . M . A . A n s a r i , C . H . M a h l e r a n d J . A . I b e r s , I n o r g . C h e m , 2 8 ( 1 9 8 9 ) , 2 6 6 9 - 2 6 7 4 . C . M . B o l i n g e r a n d T . A . R a u c h f u s s , I n o r g . C h e m , 2 1 ( 1 9 8 2 ) , 3 9 4 7 - 3 9 5 4 . S . D h i n g r a a n d M . G . K a n a t z i d i s i n B e t t e r C e r a m i c s T h r o u g h C h e m i s t r y I V , M a t . R e s . S o c . S y m p . P r o c . , 1 8 0 ( 1 9 9 0 ) , 8 2 5 - 8 3 0 . S . D h i n g r a , K . - W . K i m a n d M . G . K a n a t z i d i s i n C h e m i c a l P e r s p e c t i v e s i n M i c r o e l e c t r o n i c M a t e r i a l s , M a t . R e s . S o c . S y m p . P r o c . , 2 0 4 ( 1 9 9 1 ) , 1 6 3 - 1 6 8 . 9 5 . 9 6 . 9 7 . 9 8 . 9 9 . 1 0 0 . 3 3 K . - W . K i m , J . A . C o w e n , S . D h i n g r a a n d M . G . K a n a t z i d i s i n C h e m i c a l P r o c e s s e s i n I n o r g a n i c M a t e r i a l s : M e t a l a n d S e m i c o n d u c t o r C l u s t e r s a n d C o l l o i d s , M a t . R e s . S o c . S y m p . P r o c . , 1 9 9 2 , i n p r e s s . ( a ) R . A . S m i t h i n S e m i c o n d u c t o r s , C a m b r i d g e U n i v e r s i t y P r e s s , C a m b r i d g e U K , 1 9 7 8 , p 4 3 8 . ( b ) B . E . B a r t l e t t , e t a 1 , I n f r a r e d P h y s , 9 ( 1 9 6 9 ) , 3 5 . Z . K . K u n , S o l i d S t a t e T e c h n o l o g y , 3 1 ( 1 9 8 8 ) , L 7 7 — 7 9 . A . A . B a l l m a n , R . L . B y e r , D . E i m e r l , R . S . F e i g e l s o n , B . J . F e l d m a n , L . S . G o l d b e r g , N . M e n y u k a n d C . L . T a n g , A p p l i e d O p t i c s , 2 6 ( 1 9 8 7 ) , 2 2 4 - 2 2 7 . ( a ) J . R . T u t t l e , D . S . A l b i n a n d R . N o u fi , S o l a r C e l l s , 2 7 ( 1 9 8 9 ) , 2 3 1 - 2 3 6 . ( b ) K . Z e i b e l i n T h e P o t e n t i a l o f C u I n S e z a n d C d T e f o r S p a c e A p p l i c a t i o n s . 2 3 r d I n t e r s o c i e t y E n e r g y C o n v e r s i o n E n g i n e e r i n g C o n f e r e n c e , V o l . 3 , p 9 7 - 1 0 2 . D . Y . G o s w a m i E d : A S M E , 1 9 8 8 . ( a ) M . S . W h i t t i n g h a m , S c i e n c e , 1 9 2 ( 1 9 7 6 ) , 1 1 2 6 - 1 1 2 7 . ( b ) M . S . W h i t t i n g h a m , J . S o l i d S t a t e C h e m , 2 9 ( 1 9 7 9 ) , 3 0 3 - 3 1 0 . C H A P T E R 2 P O L Y S E L E N I D E A N D P O L Y T E L L U R I D E C H E M I S T R Y O F G O L D I . I n t r o d u c t i o n W e c h o s e c o i n a g e m e t a l s a s o u r s t a r t i n g p o i n t f o r s y n t h e s i z i n g n e w s o l u b l e h o m o l e p t i c m e t a l p o l y s e l e n i d e a n d p o l y t e l l u r i d e c o m p o u n d s b e c a u s e p r i o r t o o u r w o r k , t h e r e h a d b e e n n o r e p o r t e d p o l y s e l e n i d e o r p o l y t e l l u r i d e c o m p l e x e s o f c o p p e r o r s i l v e r [ 1 - 2 ] . A s a m a t t e r o f f a c t , [ A u 2 ( T e 2 ) 2 ] 2 ’ w a s t h e o n l y k n o w n h e a v y p o l y c h a l c o g e n i d e c o m p o u n d f r o m t h i s g r o u p a t t h a t t i m e [ 3 ] , w h e r e a s t h e p o l y s u l fi d e c o m p l e x e s o f t h i s g r o u p r e p r e s e n t e d o n e o f t h e m o s t f r u i t f u l t r i a d s i n t h e p e r i o d i c t a b l e [ 4 ] . I n t h e g o l d p o l y s e l e n i d e s y s t e m , w e e n c o u n t e r e d a v a c i l l a t i n g r e d o x c h e m i s t r y b e t w e e n A u n + ( n = 1 , 3 ) a n d S e x z ‘ . I n D M F s o l u t i o n t h e r e a c t i o n o f A u C 1 3 w i t h N a 2 8 e 5 r e s u l t e d i n t h e i s o l a t i o n o f a - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] , a n o x i d a t i o n p r o d u c t o f t h e S e 5 2 ' b y A u 3 + . T h e s t r u c t u r e o f t h i s c o m p o u n d w i l l b e d i s c u s s e d i n a l a t e r c h a p t e r a l o n g w i t h t h o s e i n t h e [ A ( Q 5 ) 2 ] 2 ' ( A = T e , Q = S , S e o r A = S e , Q = S e ) f a m i l y [ 5 ] . T o a v o i d t h e a b o v e r e d o x p r o c e s s a n d s o a s t o i s o l a t e t h e g o l d - c o n t a i n i n g p o l y s e l e n i d e c o m p l e x , w e u s e d A u C N a s t h e s t a r t i n g m a t e r i a l . S u r p r i s i n g l y , a r e v e r s e r e d o x r e a c t i o n o c c u r r e d i n t h e s e c o n d s y n t h e s i s , t h a t i s , A u ” i s o x i d i z e d b y t h e 8 e 5 2 ' t o A u 3 + , y i e l d i n g t h e d i m e r i c c o m p l e x ( P P N ) 2 [ A u 2 8 e 2 ( S e 4 ) 2 ] ( 2 - 1 ) . I n a f u r t h e r a t t e m p t a t s t a b i l i z i n g a A u + p o l y s e l e n i d e c o m p o u n d , s h o r t e r p o l y s e l e n i d e S e x z ' ( x = 2 - 4 ) l i g a n d s w e r e u s e d . T h r e e n e w c o m p o u n d s c o n t a i n i n g A u + w e r e t h e n o b t a i n e d . ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 ' 2 ) a n d ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 - 3 ) w e r e s y n t h e s i z e d b y u s i n g N a z s e z o r N a 2 8 e 3 , w h i l e ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] ( 2 - 4 ) w a s o b t a i n e d b y u s i n g N a 2 8 e 4 . W h e n t h e s h o r t e s t p o s s i b l e 3 4 3 5 l i g a n d S e 2 ' i s u s e d , b o t h r e d o x c h e m i s t r y a n d l i g a n d s i z e e f f e c t c e a s e t o o p e r a t e w h i l e s u r p r i s i n g l y , a n e w f a c t o r , t h e i n t e r a c t i o n o f A u ” w i t h a n a l k a l i i o n ( i . e . N a + ) , e m e r g e s a s a s t r u c t u r e d i r e c t i n g f o r c e . C o n s e q u e n t l y , a c r y p t a n d - l i k e n o v e l c l u s t e r ( E t 4 N ) 3 [ N a A u 1 2 S e 8 ] ( 2 5 ) w a s i s o l a t e d . I n t h e c o r r e s p o n d i n g A u V T e x z ‘ s y s t e m , a v e r y s t a b l e s y m m e t r i c d i m e r s e e m s t o d o m i n a t e t h e c h e m i s t r y . T h u s f a r , w e h a v e o n l y b e e n a b l e t o i s o l a t e a n d s t r u c t u r a l l y c h a r a c t e r i z e o n e c o m p o u n d , ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] ( 2 6 ) . T h e a n i o n i n ( 2 6 ) w a s c r y s t a l l i z e d e a r l i e r a s t h e P P N + s a l t t h r o u g h a d i f f e r e n t s y n t h e t i c m e t h o d [ 3 ] . I n t h i s c h a p t e r , w e w i s h t o d e s c r i b e t h e s y n t h e s i s , X - r a y s t r u c t u r e s a n d s p e c t r o s c o p i c s t u d i e s o f t h e n e w l y p r e p a r e d h o m o l e p t i c c o m p o u n d s , ( P P N ) 2 [ A U 2 8 6 2 ( S e 4 ) 2 l ( 2 ' 1 ) , ( P h 4 P ) 2 [ A U 2 ( S e z ) ( S e s ) l ( 2 ' 2 ) , ( P P N ) 2 [ A U 2 ( S e z ) ( S e s ) ] ( 2 ' 3 ) , ( P h 4 P ) 2 [ A U 2 ( S e 2 ) ( S e 4 ) ] ( 2 ‘ 4 ) , ( E t 4 N ) 3 [ N a A u 1 2 8 e g ] ( 2 ' 5 ) a n d ( P h 4 P ) 2 [ A u z ( T e z ) 2 ] ( 2 6 ) . I I . E x p e r i m e n t a l S e c t i o n 1 . R e a g e n t s C h e m i e a l s i n t h i s w o r k o t h e r t h a n s o l v e n t s w e r e u s e d a s o b t a i n e d : ( i ) s e l e n i u m p o w d e r , ~ 1 0 0 m e s h , 9 9 . 5 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I ; ( i i ) t e l l u r i u m p o w d e r , ~ 2 0 0 m e s h , 9 9 . 8 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I ; ( i i i ) s o d i u m s t i c k s i n k e r o s e n e , 9 9 % p u r i t y , M a l l i n c k r o d t I n c . , P a r i s , K y . ; ( i v ) p o t a s s i u m s t i c k s i n m i n e r a l o i l , 9 9 % M a l l i n c k r o d t I n c . , P a r i s , K y . ; ( v ) g o l d ( I I I ) c h l o r i d e , S t r e m C h e m i c a l s , I n c . , N e w b u r y p o r t , M A ; ( v i ) g o l d ( I ) c y a n i d e , S t r e m C h e m i c a l s , I n c . , N e w b u r y p o r t , M A ; ( v i i ) t e t r a p h e n y l p h o s p h o n i u m c h l o r i d e ( P h 4 P C l ) , 9 8 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I ; ( v i i i ) b i 3 ( t r i p h e n y l p h o s p h o r a n y l i d e n e ) a m m o r 1 i u m c h l o r i d e ( P P N C I ) , 9 8 % p u r i t y , A l d r i c h 3 6 C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I ; ( i x ) t e t r a e t h y l a m m o n i u m c h l o r i d e h y d r a t e ( E t 4 N C l - x H 2 0 ) , 9 7 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I . D i m e t h y l f o r m a m i d e ( D M F , a n a l y t i c a l r e a g e n t , M a l l i n c k r o d t I n c . , P a r i s , K y ) w a s s t o r e d o v e r 4 A L i n d e m o l e c u l a r s i e v e s f o r s e v e r a l d a y s a n d t h e n d i s t i l l e d u n d e r r e d u c e d p r e s s u r e a t ~ 3 0 ° C [ 6 ] . D i e t h y l e t h e r ( A . C . S . a n h y d r o u s , C o l u m b u s C h e m i c a l I n d u s t r i e s I n c . , C o l u m b u s , W 1 ) w a s d i s t i l l e d u n d e r a d r y N 2 b l a n k e t a f t e r b e i n g r e fl u x e d w i t h p o t a s s i u m m e t a l , b e n z o p h m o n e a n d t r i e t h y l e n e g l y c o l d i m e t h y l e t h e r f o r 1 2 h o u r s [ 6 ] . M e t h a n o l ( G R a n h y d r o u s , E M S c i e n c e I n c . , G i b b s t o w n , N Y ) w a s r e fl u x e d f o r 4 - 5 h w i t h m a g n e s i u m m e t h o x i d e ( p r e p a r e d f r o m d r y m a g n e s i u m t u r n i n g s a n d a b s o l u t e m e t h a n o l ) , a n d d i s t i l l e d u n d e r a n i t r o g e n a t m o s p h e r e [ 6 ] . 2 . P h y s i c a l M e a s u r e m e n t s S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s f o r t h e e l e m e n t s h a v i n g a n a t o m i c n u m b e r l e w e r e r o u t i n e l y p e r f o r m e d o n a J E O L I S M — 3 5 C s c a n n i n g e l e c t r o n m i c r o s c o p e ( S E M ) e q u i p p e d w i t h a n X - r a y m i c r o a n a l y s i s a t t a c h m e n t . S a m p l e s w e r e m o u n t e d o n a n a l u m i n u m s t u b w i t h c o n d u c t i v e c a r b o n p a i n t t o a v o i d t h e c h a r g e b u i l d u p o n s a m p l e s u n d e r t h e e l e c t r o n b e a m . A f t e r o b t a i n i n g t h e e n e r g y d i s p e r s i v e s p e c t r u m ( E D S ) f o r t h e s a r n p l e , a p r o g r a m c a l l e d “ s t a n d a r d l e s s q u a n t i t a t i o n " w a s u s e d t o a n a l y z e t h e e n e r g y a n d i n t e n s i t y o f t h e c h a r a c t e r i s t i c X - r a y s i n t h e s p e c t r u m , t h u s i d e n t i f y i n g t h e e l e m e n t s p r e s e n t a n d t h e a t o m p e r c e n t a g e f o r e a c h e l e m e n t . S u c h a m e t h o d i s o f t e n r e f e r r e d t o a s E D A X ( E n e r g y D i s p e r s i v e M i c r o a n a l y s i s o f K — r a y s ) i n t h e l i t e r a t u r e . T h e t y p i c a l w o r k i n g c o n d i t i o n s f o r c a r r y i n g o u t t h e e l e m e n t a l a n a l y s i s o n t h i s t y p e o f S E M a r e a s f o l l o w s [ 7 ] : 3 7 X - r a y d e t e c t o r p o s i t i o n : 5 5 m m ; W o r k i n g d i s t a n c e : 3 9 m m ; A c c e l e r a t i n g v o l t a g e : 2 0 k V ; T a k e - o f f a n g l e : 2 7 ° ; B e a m c u r r e n t : 2 0 0 p i c o a m p s ; A c c u m u l a t i o n t i m e : 6 0 s e c . B e c a u s e t h e X - r a y d e t e c t o r i n t h e s c a n n i n g e l e c t r o n m i c r o s c o p e i s p r o t e c t e d w i t h a b e r y l l i u m w i n d o w , t h e X - r a y s e m i t t e d b y t h e e l e m e n t w i t h a n a t o m i c n u m b e r l o w e r t h a n 1 1 w i l l b e a b s o r b e d b y t h e w i n d o w . T h e r e f o r e , t h e e l e m e n t a l a n a l y s e s f o r s u c h e l e m e n t s c a n n o t b e p e r f o r m e d . F T - I R s p e c t r a o f t h e c o m p o u n d s w e r e d e t e r m i n e d a s s o l i d s i n t h e C s I m a t r i x . E a c h s a m p l e w a s g r o u n d w i t h d r y a l k a l i m e t a l h a l i d e i n t o a fi n e p o w d e r , a n d a p r e s s u r e o f a b o u t 6 t o n s w a s a p p l i e d t o t h e m i x t u r e t o m a k e a t r a n s l u c e n t p e l l e t . T h e s p e c t r a w e r e r e c o r d e d i n t h e r e g i o n o f 5 0 0 t o 1 0 0 c m ‘ 1 w i t h t h e u s e o f a N r c o l e t 7 4 0 F T — I R s p e c t r o m e t e r i 8 ] . U V / v i s s p e c t r a o f t h e c o m p o u n d s w e r e m e a s u r e d o n a H i t a c h i U — 2 0 0 0 s p e c t r o p h o t o m e t e r [ 9 ] . T h e s o l u t i o n s t o b e m e a s u r e d h a d a c c u r a t e l y k n o w n c o n c e n t r a t i o n s o b t a i n e d b y w e i g h i n g t h e s a m p l e s w i t h a m i c r o b a l a n c e a n d d i s s o l v i n g t h e m i n v o l u m e t r i c fl a s k s . T h e s e s o l u t i o n s w e r e t h e n m e a s u r e d i n a c e l l w h o s e p a t h l e n g t h i s l m o w n t o b e 1 0 0 0 1 0 . 0 0 2 m m a l o n g w i t h a s e c o n d c e l l c o n t a i n i n g t h e p u r e s o l v e n t i n t h e r e f e r e n c e b e a m . T h e p o s i t i o n s o f t h e a b s o r p t i o n p e a k s w e r e p l o t t e d a s a b s o r b a n c e ( A , l o g I o / I o v s . w a v e l e n g t h ( A i n a m ) . T h e m o l a r e x t i n c t i o n c o e f fi c i e n t s a t m a x i m u m a b s o r p t i o n w e r e e a l c u l a t e d a c c o r d i n g t o t h e B e e r - L a m b e r t l a w : A = 1 0 g l o fl t = e c l W h e r e c i s t h e c o n c e n t r a t i o n i n m o l e s p e r l i t e r a n d l i s t h e s a m p l e p a t h l e n g t h i n c m . 7 7 S e ( I = 1 / 2 , n a t . a b u n d . 7 . 5 8 % ) N M R s p e c t r a w e r e o b t a i n e d o n a V a r i a n V X R — 5 0 0 p u l s e s p e c t r o m e t e r e q u i p p e d w i t h S u n / 3 6 0 w o r k s t a t i o n [ 1 0 ] . T h e s p e c t r a w e r e 3 8 r e c o r d e d a t r o o m t e m p e r a t u r e ( 2 5 ° C ) . T h e o b s e r v i n g f r e q u e n c y f o r 7 7 S e w a s 9 5 . 3 5 8 M H z . T h e a c q u i s i t i o n t i m e w a s 0 . 3 2 2 s e c w i t h S p e C t r a l w i d t h o f 3 8 . 3 5 K H z f o r 7 7 S e w h i c h g a v e d a t a p o i n t r e s o l u t i o n o f 1 . 1 4 H z . T h e p u l s e w i d t h u s e d i n t h e s e e x p e r i m e n t s w a s 6 m s e c a n d n o r e l a x a t i o n d e l a y w a s a p p l i e d . T h e n u m b e r o f f r e e i n d u c t i o n d e c a y s a c c u m u l a t e d w e r e > 7 0 , 0 0 0 . T h e s p e c t r a w e r e r e f e r e n c e d r e l a t i v e t o M e Z S e a t 5 : 0 p p m i n D M F . S o l u t i o n s o f P h 2 8 e 2 ( 5 : 4 6 0 p p m ) i n D M F w e r e u s e d a s e x t e r n a l r e f e r e n c e . T h e c o n v e n t i o n u s e d f o r t h e c h e m i c a l s h i f t s i s t h a t a p o s i t i v e s i g n s i g n i fi e s a s h i f t t o h i g h f r e q u e n c y c o m p a r e d t o t h e r e f e r e n c e c o m p o u n d . T h e r m a l g r a v i m e t r i c a n a l y s e s ( T G A ) o f t h e c o m p o u n d s w e r e p e ' f o r m e d o n a S h i m a d z u T G A - 5 0 s y s t e m [ 1 1 ] . T h e s o l i d s a m p l e s w e r e h e a t e d u p t o 8 0 0 0 C f r o m r o o m t e m p e r a t u r e a t a r a t e o f 5 ' C l m i n u n d e r a s t e a d y fl o w o f d r y n i t r o g e n . 3 . S y n t h e s e s A l l s y n t h e s e s w e r e c a r r i e d o u t u n d e r a d r y n i t r o g e n a t m o s p h e r e i n a V a c u u m A t m o s p h e r e s D r i - L a b g l o v e b o x . ( i ) . P r e p a r a t i o n o f a l k a l i m e t a l p o l y c h a l c o g e n i d e s i n l i q u i d a m m o n i a I n a t y p i e a l p r e p a r a t i o n o f N a 2 8 e 5 , 1 8 . 8 g ( ~ 0 2 3 9 m o l ) o f e l e m e n t a l s e l e n i u m w a s c o m b i n e d w i t h 2 . 2 g ( ~ 0 . 0 9 5 6 m o l ) o f s l i c e d s o d i u m m e t a l u n d e r n i t r o g e n i n a r o u n d - b o t t o m fl a s k e q u i p p e d w i t h a t e fl o n v a l v e a n d a s t i r b a r . 8 0 m l l i q u i d a m m o n i a w a s t h e n c o n d e n s e d t o t h e fl a s k a t - 7 8 ‘ C ( d r y i c e / a c e t o n e b a t h ) t h r o u g h a s p e c i a l l y d e s i g n e d c o n d e n s e r . T h e m i x t u r e w a s s t i r r e d f o r t h r e e t o f o u r h o u r s u n t i l a d a r k g r e e n s o l u t i o n f o r m e d . C a r e w a s t a k e n t o e n s u r e t h a t a l l s o d i u m m e t a l h a d d i s s o l v e d . T h e N H ; w a s r e m o v e d f r o m t h e s o l u t i o n b y e v a p o r a t i o n a t r o o m t e m p e r a t u r e ( b y a l l o w i n g t h e c o l d b a t h t o w a r m u p s l o w l y ) u n d e r a fl o w o f n i t r o g e n . T h e r e s u l t i n g s o l i d w a s t h e n fl a m e - d r i e d 3 9 u n d e r v a c u u m . T h e p r o d u c t w a s g r o u n d t o a fi n e p o w d e r i n t h e g l o v e b o x . T h e b l a c k m i c r o c r y s t a l l i n e p o w d e r d i s s o l v e s i n D M F a n d C H 3 C N . T h e o t h a ' a l k a l i m e t a l p o l y c h a l c o g e n i d e s w e r e p r e p a r e d i n a s i m i l a r m a n n e r . T h e s e i n c l u d e N a z s e , N a z S e z , N a 2 8 e 3 , N a 2 8 e 4 , K 2 T e a n d K 2 T e 2 . ( i i ) . P r e p a r a t i o n o f ( P P N ) 2 [ A u 2 $ e 2 ( S e 4 ) 2 ] ( 2 - 1 ) A 6 7 m g ( 0 . 3 m m o l ) s a m p l e o f s o l i d A u C N w a s a d d e d t o a 5 0 m l D M F s o l u t i o n o f 2 7 0 m g ( 0 . 6 1 m m o l ) N a 2 8 e 5 i n t h e p r e s e n c e o f 3 4 5 m g ( 0 . 6 1 m m o l ) o f P P N C l . A f t e r s t i r r e d f o r 2 h , t h e s o l u t i o n w a s fi l t e r e d t o r e m o v e N a C l a n d N a C N , a n d t h e n d i l u t e d w i t h 3 0 m l e t h e r . W h e n t h e m i x t u r e w a s a l l o w e d t o s t a n d f o r 3 d a y s , a n a l y t i c a l l y p u r e o r a n g e - b r o w n n e e d l e s o f ( P P N ) 2 [ A u 2 8 e 2 ( S e 4 ) 2 ] w e r e i s o l a t e d i n 6 9 % y i e l d . F a r I R s p e c t r u m ( o f s o l i d - s t a t e ) : 2 7 6 ( w ) , 2 5 6 ( m , b ) a n d 2 3 6 ( s ) c m ‘ l ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : A u : S e : P = 1 3 : 6 0 : 2 7 ; U V / v i s s p e c t r u m ( i n D M F ) : 3 1 4 n m ( 8 : 2 8 6 0 0 M ' 1 c m ' l ) , 3 9 8 n m ( 5 : 9 6 9 0 M ' 1 c m ‘ l ) . ( i i i ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ A u z ( S e z ) ( S E 3 ) ] ( 2 2 ) M e t h o d ( A ) : A 4 5 m g ( 0 . 2 m m o l ) s a m p l e o f s o l i d A u C N w a s a d d e d t o a 3 0 m l D M F s u s p e n s i o n o f 1 2 0 m g ( 0 . 6 m m o l ) N a z s e z i n t h e p r e s e n c e o f 7 5 m g ( 0 . 2 m m o l ) o f P h 4 P C l . U p o n s t i r r i n g , a r e d s o l u t i o n w a s g r a d u a l l y f o r m e d i n a b o u t 1 h . F o l l o w i n g fi l t r a t i o n o f a n y f o r m e d p r e c i p i t a t e s , 3 0 m l e t h e r w a s a d d e d t o t h e fi l t r a t e . R e d , n e e d l e - s h a p e d X - r a y q u a l i t y s i n g l e c r y s t a l s o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] w e r e o b t a i n e d i n 5 6 % y i e l d w i t h i n t w o d a y s . M e t h o d ( B ) : T h e r e a c t i o n o f A u C N w i t h N a 2 8 e 3 i n t h e s a m e m o l a r r a t i o a n d u n d e r t h e s a m e c o n d i t i o n s a l s o g a v e ( 2 2 ) i n 5 8 % y i e l d . F a r I R s p e c t r u m ( o f s o l i d - s t a t e ) : 2 6 4 ( m , b ) a n d 2 3 6 ( s ) c m ' l ; 7 7 S e N M R : 3 6 6 a n d 5 0 4 p p m . S e m i - q u a n t i t a t i v e e l e m e n t a l 4 0 a n a l y s e s b y E D A X ( a t o m % ) : A u : S e : P = 2 5 z 4 7 z 2 8 . U V / v i s s p e c t r u m ( i n D M F ) : 4 9 7 n m ( b , e = 3 1 6 0 M ‘ 1 c m ' l ) . ( i v ) . P r e p a r a t i o n o f ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 - 3 ) T h e r e a c t i o n o f 4 5 m g ( 0 . 2 m m o l ) o f s o l i d A u C N w i t h 1 1 3 m g ( 0 . 4 m m o l ) N a 2 8 e 3 a n d 2 3 0 m g ( 0 . 4 m m o l ) P P N C l i n 3 0 m l D M F g a v e a r e d s o l u t i o n w i t h i n 1 h . F i l t r a t i o n o f t h e r e a c t i o n s o l u t i o n , f o l l o w e d b y s l o w d i f f u s i o n o f 1 5 m l e t h e r i n t o t h e fi l t r a t e , r e s u l t e d i n r e d c r y s t a l s o f ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] i n 5 2 % y i e l d w i t h i n 6 d a y s . F a r I R s p e c t r u m ( o f s o l i d - s t a t e ) : 2 7 7 ( w ) , 2 6 4 ( m , s h ) a n d 2 3 6 ( s ) c m ' l ; 7 7 S e N M R : 3 6 6 a n d 5 0 4 p p m . S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : A u : S e : P = 1 8 : 4 5 : 3 7 . U V / v i s s p e c t r u m ( i n D M F ) : 5 0 1 n m ( b , e = 2 9 4 0 M ' l c m ' l ) . ( v ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] ( 2 - 4 ) T h e p r o c e d u r e w a s i d e n t i c a l w i t h t h e o n e d e s c r i b e d a b o v e i n m e t h o d ( A ) e x c e p t 1 4 0 m g ( 0 . 4 m m o l ) o f K Z S e 4 w a s u s e d . A n a l y t i c a l l y p u r e r e d n e e d l e s o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] w e r e i s o l a t e d i n 7 6 % y i e l d w i t h i n 4 d a y s . F a r I R s p e c t r u m ( o f s o l i d - s t a t e ) : 2 7 8 ( w ) , 2 6 6 ( m ) , 2 5 7 ( m , b ) a n d 2 3 6 ( m ) c m ' l ; 7 7 S e N M R : - 3 , 1 4 6 , 1 5 7 , 3 6 5 , 4 0 8 , 4 2 1 , 5 0 3 , 6 3 5 a n d 7 0 2 p p m . S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : A u : S e : P = 2 0 : 5 4 : 2 6 . U V / v i s s p e c t r u m ( i n D M F ) : 2 9 2 n m ( s h , e = 1 1 5 0 0 M ‘ 1 c m ' 1 ) , 3 8 7 n m ( b , 8 : 3 9 3 0 M ' l c m ' l ) . ( v i ) . P r e p a r a t i o n o f ( E t 4 N ) 3 [ N a A u 1 2 8 e 3 ] ( 2 . 5 ) A 4 5 m g ( 0 . 2 m m o l ) s a m p l e o f s o l i d A u C N w a s a d d e d t o t o a 2 0 m l m e t h a n o l s o l u t i o n o f 2 5 m g N 3 2 8 e ( 0 . 2 m m o l ) a n d 3 3 m g E t 4 N C 1 ( 0 . 2 m m o l ) . A s l o w c o l o r c h a n g e f r o m r e d t o l i g h t y e l l o w w a s o b s e r v e d . A d d i t i o n o f 2 5 m l e t h e r t o t h i s r e a c t i o n m i x t u r e a f f o r d e d a p a l e y e l l o w p o w d e r i n c a a d a y . C o l l e c t i o n a n d r e c r y s t a l l i z a t i o n o f t h e p r o d u c t w i t h a s l o w d i f f u s i o n t e c h n i q u e i n ~ 1 : 1 D M F / e t h e r s o l u t i o n o f a t o t a l 2 0 m l v o l u m e o v e r a ( E t P P ” q u a r D M l t r ‘ i i ) . . 7 m i m e 4 1 p e r i o d o f t w o w e e k s g a v e a m b e r - c o l o r e d , c u b e - l i k e s i n g l e c r y s t a l s o f ( E t 4 N ) 3 [ N a A u 1 2 S e g ] . T h e o v e r a l l y i e l d o f t h e s y n t h e s i s w a s e s t i m a t e d a s c a 3 3 % b a s e d o n t h e A u C N . F a r I R s p e c t r u m ( o f s o l i d - s t a t e ) : 2 3 9 ( m ) c m ‘ l ; 2 3 N a N M R : — 1 2 . 0 ( s i n g l e t ) p p m ( r e l a t i v e t o N a B P h 4 i n D M F a t 6 : 0 p p m ) ; 7 7 S e N M R : 7 5 8 ( s i n g l e t ) p p m ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : A u : S e = 6 3 : 3 7 ; U V / v i s s p e c t r u m ( i n D M F ) : f e a t u r e l e s s . ( v i i ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] ( 2 6 ) M e t h o d ( A ) : A 1 0 m l D M F s o l u t i o n o f 3 0 m g ( 0 . 1 m m o l ) A u C l 3 w a s a d d e d t o a 2 0 m l D M F s o l u t i o n o f 4 1 m g K z T e ( 0 . 2 m m o l ) a n d 7 5 m g ( 0 . 2 m m o l ) P h 4 P C l d r o p w i s e . A b r o w n s o l u t i o n w a s f o r m e d u n d e r v i g o r o u s s t i r r i n g . T h e fi l t r a t i o n w a s f o l l o w e d b y a d d i t i o n o f 1 0 m l e t h e r t o t h e fi l t r a t e . D a r k b r o w n p l a t e l e t s o f ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] w e e i s o l a t e d i n ~ 4 0 % y i e l d f r o m t h e s o l u t i o n a f t e r 4 d a y s s t a n d i n g a t r o o m t e m p e a t u r e . M e t h o d ( B ) : T h e r e a c t i o n o f A u C N w i t h K z T e z i n a 1 : 2 m o l a r r a t i o i n t h e p r e s e n c e o f P h 4 P C 1 i n D M F g a v e ( 2 6 ) i n 6 3 % y i e l d . T h e p r o d u c t i s o l a t e d f r o m s u c h a r e a c t i o n i s o f t e n c o n t a m i n a t e d w i t h t e t r a p h e n y l p h o s p h o n i u m p o l y t e l l u r i d e s . F a r I R s p e c t r u m ( o f s o l i d - s t a t e ) : 1 8 8 ( w ) c m ' l ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : A u : T e : P = 2 8 : 4 4 : 2 8 . U V / v i s s p e c t r u m ( i n D M F ) : 5 3 0 n m ( d e c o m p o s i n g ) . 4 . X - r a y D i f f r a c t i o n a n d C r y s t a l l o g r a p h i c S t u d i e s T h e s i n g l e c r y s t a l X - r a y d i f f r a c t i o n s t u d i e s w e r e p e r f o r m e d b y u s i n g e i t h e r a N i c o l e t P 3 f o u r - c i r c l e d i f r a c t o m e t e r [ 1 2 ] o r a R i g a k u a u t o m a t e d A F C 6 S f o u r - c i r c l e s i n g l e c r y s t a l d i f fi a c t o m e t e [ l 3 ] . T h e c r y s t a l l o g r a p h i c d a t a s e t s o f ( 2 - 1 ) a n d ( 2 - 2 ) w e r e c o l l e c t e d o n t h e N i c o l e t P 3 d i f f r a c t o m e t e r u s i n g a 0 - 2 0 s c a n m o d e a n d M o K a r a d i a t i o n , w h i l e t h o s e o f ( 2 - 3 ) , ( 2 4 ) , ( 2 - 5 ) a n d ( 2 6 ) w e e c o l l e c t e d o n t h e R i g a k u A F C 6 S d i f f r a c t o m e t e r u s i n g 0 3 - 2 6 s c a n i n n r e t l 0 0 ‘ m fi m G e r m T Q D X Q . m E m b e “ \ m \ m 4 2 t e c h n i q u e s a n d M o K o r r a d i a t i o n . T h e s t a b i l i t y o f t h e e x p e r i m e n t a l s e t u p a n d c r y s t a l i n t e g r i t y f o r e a c h d a t a c o l l e c t i o n w a s m o n i t o r e d b y m e a s u r i n g t h r e e r e p r e s e n t a t i v e r e fl e c t i o n s p e r i o d i c a l l y ( e v e r y 1 0 0 f o r N i c o l e t P 3 a n d 1 5 0 f o r R i g a k u A F C 6 S ) . N o c r y s t a l d e c a y w a s d e t e c t e d . E m p i r i c a l a b s o r p t i o n c o r r e c t i o n s w e r e a p p l i e d t o a l l t h e d a t a s e t s b a s e d o n t p s c a n s o f s e v e r a l s t r o n g r e fl e c t i o n s w i t h x ~ 9 0 ° . T h e s t r u c t u r e s w e r e s o l v e d w i t h d i r e c t m e t h o d s a n d r e fi n e d w i t h f u l l - m a t r i x l e a s t s q u a r e s t e c h n i q u e s . D I F A B S c o r r e c t i o n s w e r e a p p l i e d t o t h e s t r u c t u r e - f a c t o r s a l t e r a l l t h e a t o m s i n t h e s t r u c t u r e s w e r e l o c a t e d a n d r e fi n e d i s o t r o p i e a l l y [ 1 4 ] . T h e c a l c u l a t i o n s w e r e p e ' f o r m e d u s i n g t h e T E X S A N c r y s t a l l o g r a p h i c s o f t w a r e p a c k a g e o f M o l e c u l a r S t r u c t r n e C o r p o r a t i o n [ 1 5 ] o r t h e S H E L X S - 8 6 a n d S D P c o m b i n e d p a c k a g e o f c r y s t a l l o g r a p h i c p m g r a m s [ l 6 ] . T a b l e s 2 - 1 a n d 2 2 g i v e c r y s t a l d a t a a n d d e t a i l s f o r s t r u c t u r e a n a l y s i s o f a l l c o m p o u n d s . A t o m s i n t h e a n i o n s w e r e r e fi n e d a n i s o t r o p i c a l l y , a n d a t o m s i n t h e c a t i o n s w e e r e fi n e d i s o t r o p i c a l l y . T h e h y d r o g e n p o s i t i o n s w e r e c a l c u l a t e d b u t n o t r e fi n e d T h e fi n a l c o o r d i n a t e s a n d a v e r a g e t e m p e r a t u r e f a c t o r s o f t h e a t o m s i n e a c h c o m p o u n d a r e g i v e r i n T a b l e s 2 - 3 — 2 - 8 , r e s p e c t i v e l y . T h e s t r u c t u r e o f ( 2 - 3 ) w a s f o u n d t o b e d i s o r d e r e d a t t h e a n i o n s i t e . T h e s e v e n m e m b e r e d r i n g o f [ A u 2 ( S e 2 ) ( S e 3 ) ] 2 ' i s p o s i t i o n e d o n a n i n v e r s i o n c e n t e r , c a u s i n g t h e m o l e c u l e t o s t a c k i n t w o o p p o s i t e d i r e c t i o n s i n t h e c r y s t a l l a t t i c e . T h e t w o m o l e c u l a r o r i e n t a t i o n s s h a r e a c o m m o n A u — A u a x i s . T h e i n v e s i o n c e n t e r i s s i t u a t e d i n t h e m i d d l e o f t h e A u — A u v e c t o r . T h e s t r u c t u r e r e fi n e m e n t f o r t h i s c o m p o u n d w a s e a r r i e d o u t o n a d i s o r d e r e d m o d e l w i t h fi v e S e a t o m s h a v i n g h a l f o c c u p a n c y . N o a c c u r a t e s t r u c t u r a l p a r a m e t e r s w e r e o b t a i n e d d u e t o t h e c l o s e p r o x i m i t y o f t h e d i s o r d e r e d S e a t o m s . ( 2 5 ) c r y s t a l l i z e s i n t h e s p a c e g r o u p P - 1 ( # 2 ) h a v i n g a n a s y m m e t r i c u n i t o f ( E t 4 N ) 1 5 [ N a o , 5 A u 6 8 8 4 ] . I n a d d i t i o n t o N a “ , o n e o f t h e t e t r a h e d r a l E t 4 N ’ r c a t i o n s w a s 4 3 f o u n d t o s i t o n a c r y s t a l l o g r a p h i c i n v e r s i o n c e n t e r , c a u s i n g a p o s i t i o n a l d i s o r d e r o f t h e e t h y l g r o u p s o n t h i s c a t i o n s i t e . T h e r e fi n e m e n t o f t h e a t o m s i n t h i s c a t i o n w a s c a r r i e d o u t w i t h a d i s o r d e r e d m o d e l w h e r e a l l t h e C a t o m s e x c e p t f o r a t e r m i n a l o n e ( i . e . C 1 6 ) p o s s e s s h a l f - o c c u p a n c y . C 1 6 c o u l d n o t b e f o u n d , b u t i t s p o s i t i o n w a s c a l c u l a t e d a n d i n c l u d e d i n t h e s t r u c t u r e f a c t o r e a l c u l a t i o n . F i n a l l y , e a c h c o m p o u n d w a s e x a m i n e d b y X - r a y p o w d e r d i f f r a c t i o n f o r t h e p u r p o s e o f p h a s e c h a r a c t e r i z a t i o n a n d i d e n t i fi c a t i o n . A D e b y e — S c h e r r e c a m e a w a s e m p l o y e d t o r e c o r d t h e X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s . N i - fi l t e r e d C u r a d i a t i o n w a s u s e d . T h e c r y s t a l s w e r e g r o u n d t o fi n e p o w d e r a n d p a c k e d i n t o 0 . 5 m m g l a s s c a p i l l a r i e s w h i c h w e r e s e a l e d a n d m o u n t e d t o t h e s t a n d a r d D e b y e - S c h e ' r e r p o w d e r c a m e r a w h i c h h a s a d i a m e t e r o f 1 1 4 . 6 m m ( 1 m m c o r r e s p o n d s t o 1 d e g r e e f o r 2 0 ) . X - r a y s w e r e g e n e r a t e d b y a P h i l l i p s N o r e l c o X R G - 5 0 0 0 X - r a y g e n e r a t o r o p e r a t i n g a t 4 0 k V a n d 2 0 m A . A p p r o x i m a t e l y , a s i x h o u r e x p o s u r e t i m e w a s u s e d . A c c u r a t e d - s p a c i n g s ( A ) o f e a c h c o m p o u n d w e r e c a l c u l a t e d fi o m t h e p o w d e r p a t t e r n s r e c o r d e d o n a P h i l l i p s X R G - 3 0 0 0 c o m p u t e r c o n t r o l l e d p o w d e r d i f fi a c t o m e t e d 1 7 ] . T o v e r i f y t h e h o m o g e n e i t i e s o f t h e p r o d u c t s , t h e d - s p a c i n g s o b s e r v e d f o r t h e b u l k m a t e i a l s w e r e c o m p a r e d w i t h t h e c a l c u l a t e d d - s p a c i n g s f r o m t h e X - r a y s i n g l e - c r y s t a l s t r u c t u r e a n a l y s i s d a t a [ 1 8 ] . L i s t i n g s o f c a l c u l a t e d a n d o b s e r v e d d - s p a c i n g s ( A ) a l o n g w i t h t h e o b s e r v e d r e l a t i v e d i f f r a c t i o n i n t e n s i t i e s o f t h e s e c o m p o u n d s a r e g i v e r i n T a b l e s 2 - 9 — 2 - 1 4 . 4 4 T a b l e 2 1 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f ( P P N ) 2 [ A u 2 8 e 2 ( S e 4 ) 2 ] ( 2 ' 1 ) , ( P h 4 P ) 2 I A U 2 ( 5 6 2 ) ( 5 6 3 ) ] ( 2 ' 2 ) a n d ( P P N ) 2 [ A U 2 ( 5 6 2 ) ( S B 3 ) ] ( 2 ' 3 ) c o m p o u n d f o r m u l a a , A b , A c , A o r , d e g 6 , d e g v . d e g z ; v , A 3 s p a c e g r o u p D c a l c , g / c m 3 r i ( M o K a ) , c m ' 1 c r y s t s i z e , m m 2 0 m , d e g T e m p e a t u r e ( 0 C ) n o . o f d a t a c o l l c d n o . o f d a t a u s e d ( F 0 2 > 3 o ( F 0 2 ) ) m i n , m a x a b s c o r n o . o f v a r i a b l e s n o . o f a t o m s p e r a s y m u i n t ( i n c l u d i n g H ) fi n a l R / R w , % 2 - 1 C 7 2 H 6 0 P 4 N 2 A U 2 5 6 1 0 1 1 . 8 7 2 ( 4 ) 1 1 . 4 1 9 ( 4 ) 2 6 . 9 1 0 ( 1 2 ) 9 0 . 0 0 9 4 . 0 2 ( 6 ) 9 0 . 0 0 2 ; 3 6 3 9 ( 2 ) P 2 1 / n 1 . 7 1 9 0 0 . 0 4 , 0 . 7 5 , 0 . 5 8 4 . 6 / 5 . 7 2 - 2 C 4 3 H 4 0 P 2 A u 2 8 e 5 1 0 . 3 8 1 ( 4 ) 1 1 . 0 0 2 ( 5 ) 2 1 . 1 8 1 ( 9 ) 7 5 5 0 ( 4 ) 7 4 . 7 4 ( 3 ) 8 1 . 4 0 ( 4 ) 2 ; 2 2 5 0 ( 2 ) P — l 2 . 1 7 1 0 6 0 . 0 5 , 0 . 0 8 , 0 . 2 1 4 5 - 9 3 5 9 2 7 3 2 3 0 0 . 7 8 , 0 . 9 8 2 7 4 9 7 5 . 5 / 6 . 8 2 - 3 C 7 2 H 6 0 P 4 N 2 A u 2 8 e 5 1 2 . 1 6 6 ( 3 ) 1 2 . 9 6 0 ( 5 ) 2 1 . 6 7 3 ( 6 ) 9 0 . 0 0 1 0 5 . 1 5 ( 3 ) 9 0 . 0 0 2 ; 3 2 9 9 ( 2 ) P 2 1 / n 1 . 8 8 7 3 0 . 0 7 , 0 . 1 0 , 0 . 3 1 4 0 2 3 3 4 7 3 1 3 5 1 0 . 7 3 , 1 . 4 6 2 1 1 7 5 6 . 2 / 6 . 5 4 5 T a b l e 2 2 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] ( 2 ° 4 ) , ( E t 4 N ) 3 l N a A U 1 2 8 6 8 l ( 2 ' 5 ) a n d l P h 4 P ) 2 l A U 2 ( T 6 2 ) 2 J ( 2 4 5 ) c o m p o u n d f o r m u l a a , A b , A c , A 0 1 , d e g 6 , d e g 7 , d e g Z ; V , A 3 s p a c e g r o u p D c a l c , g / c m 3 u ( M o K a ) , c m " l c r y s t s i z e , m m 2 6 m , d e g T e m p e r a t u r e ( 0 C ) n o . o f d a t a c o l l c d n o . o f d a t a u s e d ( F 0 2 > 3 o ( F 0 2 ) ) m i n , m a x a b s c o r n o . o f v a r i a b l e s n o . o f a t o m s p e r a s y m u i n t ( i n c l u d i n g H ) fi n a l R / R w , % 2 - 4 C 4 3 H 4 0 P 2 A u 2 8 e 6 2 8 . 4 0 9 ( 7 ) 1 0 . 9 7 ( 1 ) l 9 . 7 6 2 ( 5 ) 9 0 . 0 0 1 3 0 . 4 9 ( 1 ) 9 0 . 0 0 4 ; 4 6 8 0 ( 5 ) C 2 / c 2 . 1 9 1 1 0 0 . 1 0 , 0 . 1 3 , 0 . 3 1 4 5 2 3 3 3 5 8 1 4 7 5 0 . 6 7 , 1 . 1 7 1 4 2 4 9 7 . 6 / 7 . 9 2 - 5 C 2 4 H 6 0 N 3 N a A U 1 2 8 e 3 1 1 . 9 5 6 ( 4 ) 1 2 . 7 3 3 ( 4 ) 1 0 . 7 8 4 ( 3 ) 1 0 3 . 9 4 ( 3 ) 1 0 8 . 9 6 ( 3 ) 1 1 3 . 6 3 ( 2 ) 2 ; 1 2 8 5 ( 2 ) P — l 4 . 4 0 3 9 6 0 . 1 4 , 0 . 1 4 , 0 . 1 6 4 5 2 3 3 5 5 7 1 8 7 2 0 . 7 5 , 1 . 3 9 1 6 7 5 5 7 . 2 / 8 . 4 2 - 6 C 4 8 H 4 0 P 2 A 0 2 T 6 2 1 0 . 5 2 6 ( 3 ) 1 1 . 2 3 7 ( 2 ) 1 0 . 4 5 3 ( 4 ) 1 0 3 . 0 3 ( 2 ) 1 0 6 . 9 5 ( 3 ) 8 1 6 6 ( 2 ) 2 ; 1 1 4 8 ( 1 ) P - l 2 . 2 9 9 0 0 . 0 3 , 0 . 0 9 , 0 . 2 4 5 0 - 9 5 4 3 0 3 2 6 0 9 0 . 7 5 , 1 . 3 8 1 3 3 4 8 5 . 2 / 5 . 9 a A S S S S $ P P C N C c C C C C C ( C C C c C C C C C C C C C l : e e e e 8 1 2 1 2 3 4 5 8 1 6 7 1 1 1 1 1 1 1 2 2 2 o m t l l 2 3 4 5 9 1 1 0 1 2 4 3 6 7 0 8 1 2 5 9 ) ( 1 5 ) ) ) ) ) ) ) ) x 3 9 6 3 5 1 1 8 2 3 9 3 8 8 4 9 9 1 7 9 7 4 0 0 3 8 0 6 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 8 8 0 1 1 0 0 0 2 3 3 3 3 2 1 2 1 0 8 7 4 3 9 9 8 9 8 5 5 3 2 5 5 0 3 7 0 8 1 4 2 3 4 8 5 9 6 9 4 1 0 3 0 8 7 6 1 9 8 3 8 4 4 8 9 6 6 7 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 2 ( ( ( ( ( ( ( ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 9 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 6 ) ) ) ) ) ) ) y 7 8 3 0 8 6 4 8 8 4 7 5 2 3 9 4 0 2 4 7 0 6 0 3 3 5 6 0 5 9 1 6 8 2 5 6 8 8 0 5 3 7 9 3 1 2 0 7 6 8 9 3 9 0 5 0 3 2 1 9 2 3 8 8 1 1 8 6 4 2 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 4 2 2 2 1 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 2 1 2 2 ( 2 2 2 2 4 4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 2 1 1 0 2 3 3 2 2 3 4 5 6 7 6 5 4 4 4 4 4 3 4 3 0 0 1 1 0 - - - — 3 ' 8 8 8 8 ) D ) ) ) ) 2 8 2 5 2 6 7 4 1 2 6 0 6 2 8 4 8 1 9 9 4 8 4 1 6 2 7 3 1 1 3 5 3 7 1 2 6 9 5 4 5 1 4 2 6 2 9 7 6 3 2 0 6 6 2 5 5 6 5 8 8 4 9 7 9 1 1 9 1 3 0 0 3 3 5 6 6 5 5 4 7 2 4 0 5 1 6 3 8 4 4 2 9 9 3 9 7 3 ( 0 0 ( ( ( ( ( ( 2 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 2 5 5 6 7 7 6 6 6 6 7 7 6 7 6 7 6 7 6 6 6 7 8 8 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3 4 3 3 1 6 6 6 6 3 6 6 6 6 6 6 7 7 7 5 5 4 5 4 4 1 3 2 2 B e t 1 3 2 5 4 4 4 2 2 2 2 4 3 3 2 2 3 3 3 3 3 2 3 3 3 3 3 2 4 5 4 9 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 0 6 7 4 0 4 8 9 8 2 5 5 4 8 6 2 1 4 7 6 7 5 0 0 2 9 0 6 8 h ( ( ( ( ( 3 4 3 4 3 4 4 4 3 4 4 4 4 4 3 4 4 4 4 4 4 5 5 0 3 5 6 7 ( 2 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( A 4 5 5 4 5 9 1 8 ( ( ( Z ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 4 6 I T a b l e 2 - 3 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r ( P P N ) 2 [ A u Z S e 2 ( S e 4 ) 2 ] ( 2 . 1 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) 0 . 4 4 2 ( 2 ) m a t 2 2 2 3 2 2 2 2 3 3 3 3 3 3 C C C C C C C C C C C C C C o 3 5 4 6 7 8 9 0 2 3 5 4 6 1 7 8 3 5 5 8 8 0 X 0 6 6 4 2 9 1 1 1 1 1 1 1 1 0 0 0 0 0 0 . . . . . . . . . . . . . . 3 5 6 6 5 3 4 4 4 4 5 5 6 5 3 3 8 6 6 3 7 6 2 2 6 3 3 6 ( ( ( ( ( ( ( ( ( ( ( ( ( ( 2 1 1 1 1 1 1 2 1 1 2 2 1 1 ) ) ) ) ) ) ) ) ) ) ) ) ) ) y 9 2 3 1 6 7 7 1 0 8 4 8 9 7 1 1 2 9 1 1 0 0 3 0 7 3 9 5 ( ( ( ( ( ( ( ( ( ( ( ( ( ( 2 2 2 1 2 2 2 2 2 2 1 2 2 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . 0 1 1 5 4 5 6 4 2 5 1 1 1 2 2 0 0 2 8 9 4 2 6 7 1 1 1 0 3 4 0 7 5 7 5 4 0 5 7 9 0 2 2 3 6 7 6 8 5 9 8 4 3 5 8 2 1 ( ( ( ( ( ( ( ( ( ( ( ( ( ( 7 7 6 7 8 8 7 8 6 6 7 7 7 7 ) ) ) ) ) ) ) ) ) ) ) ) ) ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . 3 3 3 6 3 5 5 6 6 5 4 4 5 5 B e d , A Z 4 2 4 3 5 4 3 3 3 3 3 3 3 3 . . . . . . . . . . . . . . 7 9 5 4 6 2 7 5 2 0 9 7 9 6 ( ( ( ( ( ( ( ( ( ( ( ( ( ( 5 4 3 4 5 5 4 4 4 4 4 4 4 4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) 4 7 T a b l e 2 - 3 . ( c o n t ' d ) a . B e q i s d e fi n e d a s 4 / 3 [ a 2 0 1 1 + b 2 0 2 2 + c 2 0 3 3 + a b ( c o s y ) fi 1 2 + a c ( c o s fi ) 0 1 3 + b c ( c o s a ) 0 2 3 ] . T a b l e 2 - 4 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 - 2 ) 4 8 ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e a , A 2 A u l 0 . 0 1 2 0 ( 1 ) 0 . 1 5 2 5 ( 1 ) 0 . 2 4 5 7 5 ( 5 ) 2 3 0 ( 2 ) A u 2 - 0 . 0 7 7 9 ( 1 ) - 0 . 1 0 5 1 ( 1 ) 0 . 2 6 7 7 4 ( 6 ) 3 . 1 2 ( 3 ) S e l 0 . 0 1 5 2 ( 3 ) 0 . 0 8 3 6 ( 3 ) 0 . 3 6 1 6 ( 1 ) 3 . 4 2 ( 7 ) S e 2 - 0 . 0 6 5 0 ( 3 ) - 0 . 1 1 9 4 ( 3 ) 0 . 3 8 0 8 ( 2 ) 3 6 6 ( 8 ) 5 8 3 - 0 . 1 0 4 1 ( 3 ) - 0 . 0 8 7 2 ( 3 ) 0 . 1 5 6 4 ( 2 ) 4 5 2 ( 7 ) S e 4 0 . 0 5 8 3 ( 4 ) 0 . 0 4 1 9 ( 4 ) 0 . 0 9 4 0 ( 2 ) 5 . 9 ( 1 ) S e 5 0 . 0 0 0 3 ( 3 ) 0 . 2 2 5 1 ( 3 ) 0 . 1 3 0 4 ( 1 ) 3 . 5 1 ( 7 ) P l 0 . 4 3 3 7 ( 6 ) 0 . 6 6 1 9 ( 6 ) 0 . 3 6 8 0 ( 3 ) 1 . 6 ( 1 ) P 2 0 . 5 2 3 1 ( 6 ) 0 . 3 5 5 5 ( 6 ) 0 . 1 4 3 6 ( 3 ) 1 . 6 ( 1 ) C 1 0 . 4 0 5 ( 2 ) 0 . 7 5 0 ( 2 ) 0 . 4 3 4 ( 1 ) 1 . 9 ( 5 ) C 2 0 . 4 9 6 ( 2 ) 0 . 7 4 2 ( 2 ) 0 . 4 7 1 ( 1 ) 1 . 6 ( 4 ) C 3 0 . 4 7 2 ( 3 ) 0 . 8 2 1 ( 3 ) 0 . 5 1 4 ( 1 ) 3 . 5 ( 6 ) C 4 0 . 3 5 7 ( 2 ) 0 . 8 9 9 ( 2 ) 0 . 5 2 3 ( 1 ) 1 . 9 ( 5 ) C 5 0 . 2 5 8 ( 2 ) 0 . 9 0 3 ( 2 ) 0 . 4 8 7 ( 1 ) 1 . 9 ( 5 ) C 6 0 . 2 8 8 ( 2 ) 0 . 8 2 6 ( 2 ) 0 . 4 4 1 ( 1 ) 2 . 2 ( 5 ) C 7 0 . 4 0 6 ( 2 ) 0 . 4 2 2 ( 2 ) 0 . 6 4 2 ( 1 ) 1 . 2 ( 4 ) C 8 0 . 2 8 4 ( 3 ) 0 . 3 6 7 ( 3 ) 0 . 6 5 1 ( 1 ) 3 . 1 ( 6 ) C 9 0 . 1 6 5 ( 3 ) 0 . 4 3 0 ( 3 ) 0 . 6 6 1 ( 2 ) 3 . 9 ( 7 ) C 1 0 0 . 1 5 4 ( 2 ) 0 . 5 5 9 ( 2 ) 0 . 6 6 0 ( 1 ) 1 . 7 ( 5 ) C 1 1 0 . 2 6 5 ( 3 ) 0 . 6 2 0 ( 2 ) 0 . 6 4 7 ( 1 ) 2 . 5 ( 5 ) C 1 2 0 . 3 8 8 ( 2 ) 0 . 5 5 2 ( 2 ) 0 . 6 3 8 ( 1 ) 2 . 1 ( 5 ) C 1 3 0 . 4 2 2 ( 2 ) 0 . 7 6 5 ( 2 ) 0 . 2 9 2 ( 1 ) 1 . 4 ( 4 ) C 1 4 0 . 3 0 3 ( 3 ) 0 . 8 1 7 ( 2 ) 0 . 2 7 9 ( 1 ) 2 . 5 ( 5 ) C 1 5 0 . 2 9 1 ( 2 ) 0 . 9 1 3 ( 2 ) 0 . 2 2 2 ( 1 ) 2 . 3 ( 5 ) C 1 6 0 . 4 0 3 ( 2 ) 0 . 9 5 5 ( 2 ) 0 . 1 7 4 ( 1 ) 2 . 2 ( 5 ) C 1 7 0 . 5 2 5 ( 3 ) 0 . 9 0 2 ( 3 ) 0 . 1 8 7 ( 1 ) 3 . 4 ( 6 ) C 1 8 0 . 5 3 8 ( 2 ) 0 . 8 1 0 ( 2 ) 0 . 2 4 2 ( 1 ) 2 . 3 ( 5 ) C 1 9 0 . 3 0 8 ( 2 ) 0 . 5 5 3 ( 2 ) 0 . 3 9 2 ( 1 ) 2 . 0 ( 5 ) C 2 0 0 . 2 5 2 ( 2 ) 0 . 5 0 9 ( 2 ) 0 . 4 5 8 ( 1 ) 1 . 7 ( 5 ) C 2 1 0 . 1 6 8 ( 3 ) 0 . 4 1 4 ( 3 ) 0 . 4 7 6 ( 2 ) 3 . 9 ( 7 ) C 2 2 0 . 1 3 7 ( 3 ) 0 . 3 6 2 ( 2 ) 0 - 4 3 2 ( 1 L 2 . 9 ( 6 ) 4 9 T a b l e 2 - 4 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 2 3 0 . 1 9 5 ( 3 ) 0 . 4 1 0 ( 3 ) 0 . 3 6 1 ( 2 ) 3 . 9 ( 7 ) C 2 4 0 . 2 7 6 ( 3 ) 0 . 5 0 7 ( 2 ) 0 . 3 4 2 ( 1 ) 2 . 9 ( 6 ) C 2 5 0 . 5 1 9 ( 2 ) 0 . 2 4 3 ( 2 ) 0 . 2 2 4 ( 1 ) 1 . 5 ( 4 ) C 2 6 0 . 4 0 3 ( 3 ) 0 . 1 9 6 ( 2 ) 0 . 2 6 3 ( 1 ) 2 . 7 ( 5 ) C 2 7 0 . 4 0 3 ( 2 ) 0 . 1 0 1 ( 2 ) 0 . 3 2 1 ( 1 ) 3 . 1 ( 6 ) C 2 8 0 . 5 1 8 ( 3 ) 0 . 0 6 3 ( 2 ) 0 . 3 4 0 ( 1 ) 2 . 7 ( 5 ) C 2 9 0 . 6 3 7 ( 3 ) 0 . 1 1 0 ( 3 ) 0 . 3 0 2 ( 1 ) 3 . 1 ( 6 ) C 3 0 0 . 6 3 9 ( 2 ) 0 . 2 0 5 ( 2 ) 0 . 2 4 3 ( 1 ) 1 . 5 ( 4 ) C 3 1 0 . 3 4 5 ( 2 ) 0 . 5 4 7 ( 2 ) 0 . 8 8 0 ( 1 ) 1 . 8 ( 5 ) C 3 2 0 . 3 1 6 ( 3 ) 0 . 4 8 9 ( 3 ) 0 . 8 3 2 ( 1 ) 3 . 4 ( 6 ) C 3 3 0 . 2 2 1 ( 3 ) 0 . 4 0 6 ( 3 ) 0 . 8 4 9 ( 1 ) 3 . 6 ( 6 ) C 3 4 0 . 1 5 0 ( 3 ) 0 . 3 7 8 ( 3 ) 0 . 9 1 7 ( 1 ) 3 . 2 ( 6 ) C 3 5 0 . 1 7 4 ( 3 ) 0 . 4 3 0 ( 3 ) 0 . 9 6 6 ( 2 ) 3 . 7 ( 6 ) C 3 6 0 . 2 6 8 ( 2 ) 0 . 5 1 8 ( 2 ) 0 . 9 4 4 ( 1 ) 1 . 8 ( 5 ) C 3 7 0 . 4 5 0 ( 2 ) 0 . 7 3 9 ( 2 ) 0 . 9 1 7 ( 1 ) 1 . 1 ( 4 ) C 3 8 0 . 3 3 3 ( 3 ) 0 . 8 2 0 ( 2 ) 0 . 9 2 4 ( 1 ) 2 . 4 ( 5 ) C 3 9 0 . 3 0 6 ( 2 ) 0 . 8 9 2 ( 2 ) 0 . 9 7 3 ( 1 ) 2 . 1 ( 5 ) C 4 0 0 . 3 9 4 ( 3 ) 0 . 8 8 2 ( 2 ) 1 . 0 1 2 ( 1 ) 2 . 9 ( 6 ) C 4 1 0 . 5 0 9 ( 3 ) 0 . 8 0 3 ( 2 ) 1 . 0 0 5 ( 1 ) 2 . 5 ( 5 ) C 4 2 0 . 5 3 9 ( 2 ) 0 . 7 2 6 ( 2 ) 0 . 9 5 9 ( 1 ) 2 . 3 ( 5 ) C 4 3 0 . 3 7 0 ( 2 ) 0 . 4 5 4 ( 2 ) 0 . 1 4 7 ( 1 ) 2 . 1 ( 5 ) C 4 4 0 . 3 6 5 ( 2 ) 0 . 5 8 1 ( 2 ) 0 . 1 4 6 ( 1 ) 1 . 6 ( 4 ) C 4 5 0 . 2 4 9 ( 3 ) 0 . 6 6 0 ( 2 ) 0 . 1 5 2 ( 1 ) 2 . 7 ( 5 ) C 4 6 0 . 1 3 2 ( 3 ) 0 . 6 0 3 ( 3 ) 0 . 1 6 5 ( 1 ) 3 . 6 ( 6 ) C 4 7 0 . 1 2 9 ( 3 ) 0 . 4 8 4 ( 2 ) 0 . 1 6 5 ( 1 ) 2 . 8 ( 6 ) C 4 8 0 . 2 4 4 ( 2 ) 0 . 4 0 5 Q ) 0 . 1 5 7 ( 1 ) 2 . 2 ( 5 ) a . B e q i s d e fi n e d a s 4 / 3 [ a 2 0 1 1 + b 2 0 2 2 + c 2 0 3 3 + a b ( c o s y ) 0 1 2 + a c ( c o s fl ) 0 1 3 + b c ( c o s a ) 0 2 3 ] . 5 0 T a b l e 2 - 5 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 3 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y 2 B e t a A 2 A u 0 . 0 7 7 3 ( 1 ) 0 . 4 1 0 6 ( 1 ) 0 . 4 8 5 0 5 ( 7 ) 7 . 3 4 ( 9 ) S e l 0 . 1 4 3 ( 3 ) 0 . 3 8 7 ( 2 ) 0 . 6 0 9 ( 1 ) 1 0 ( 1 ) S e 2 - 0 . 0 3 1 ( 1 ) 0 . 4 6 4 ( 1 ) 0 . 3 6 9 7 ( 8 ) 1 0 ( 1 ) S e 3 0 . 1 3 9 ( 2 ) 0 . 3 5 3 ( 2 ) 0 . 5 8 2 7 ( 9 ) 7 . 6 ( 8 ) S e 4 0 . 1 4 7 0 ( 7 ) 0 . 5 0 9 4 ( 7 ) 0 . 6 3 5 2 ( 4 ) 6 . 0 ( 4 ) 8 8 5 0 . 0 4 5 ( 1 ) 0 . 4 4 1 ( 2 ) 0 . 3 8 0 6 ( 8 ) 6 . 2 ( 6 ) P 1 - 0 . 0 7 5 5 ( 6 ) 0 . 0 8 9 3 ( 6 ) 0 . 7 2 2 4 ( 3 ) 3 . 6 ( 4 ) P 2 - 0 . 2 9 6 4 ( 6 ) 0 . 1 0 0 1 ( 6 ) 0 . 6 2 8 5 ( 3 ) 3 . 2 ( 4 ) N - 0 . 1 9 9 ( 2 ) 0 . 1 3 2 ( 1 ) 0 . 6 9 0 ( 1 ) 4 ( 1 ) C 1 - 0 . 0 1 1 ( 2 ) 0 . 0 1 2 ( 2 ) 0 . 6 7 1 ( 1 ) 3 . 7 ( 6 ) C 2 0 . 0 3 3 ( 2 ) 0 . 0 6 5 ( 2 ) 0 . 6 2 8 ( 1 ) 4 . 2 ( 6 ) C 3 0 . 0 6 7 ( 2 ) 0 . 0 0 8 ( 2 ) 0 . 5 8 2 ( 1 ) 5 . 7 ( 7 ) C 4 0 . 0 5 9 ( 2 ) - 0 . 0 9 9 ( 2 ) 0 . 5 8 0 ( 1 ) 5 . 3 ( 7 ) C 5 0 . 0 1 4 ( 3 ) - 0 . 1 4 8 ( 2 ) 0 . 6 2 4 ( 1 ) 6 . 2 ( 8 ) C 6 - 0 . 0 2 4 ( 2 ) - 0 . 0 9 4 ( 2 ) 0 . 6 7 0 ( 1 ) 4 . 1 ( 6 ) C 7 0 . 0 1 8 ( 2 ) 0 . 1 9 9 ( 2 ) 0 . 7 4 6 ( 1 ) 3 . 1 ( 6 ) C 8 - 0 . 0 2 3 ( 2 ) 0 . 2 9 6 ( 2 ) 0 . 7 4 4 ( 1 ) 3 . 4 ( 6 ) C 9 0 . 0 4 8 ( 2 ) 0 . 3 7 8 ( 2 ) 0 . 7 6 2 ( 1 ) 4 . 5 ( 7 ) C 1 0 0 . 1 6 8 ( 2 ) 0 . 3 6 2 ( 2 ) 0 . 7 8 7 ( 1 ) 4 . 4 ( 6 ) C 1 1 0 . 2 1 0 ( 2 ) 0 . 2 6 2 ( 2 ) 0 . 7 8 9 ( 1 ) 4 . 4 ( 6 ) C 1 2 0 . 1 3 5 ( 2 ) 0 . 1 7 9 ( 2 ) 0 . 7 6 9 ( 1 ) 4 . 3 ( 7 ) C 1 3 - 0 . 0 7 7 ( 2 ) 0 . 0 1 9 ( 2 ) 0 . 7 9 6 ( 1 ) 3 . 6 ( 6 ) C 1 4 - 0 . 1 7 4 ( 2 ) 0 . 0 1 3 ( 2 ) 0 . 8 1 6 ( 1 ) 4 . 3 ( 6 ) C 1 5 - 0 . 1 7 1 ( 3 ) - 0 . 0 3 4 ( 2 ) 0 . 8 7 4 ( 1 ) 5 . 5 ( 7 ) C 1 6 - 0 . 0 6 9 ( 3 ) 0 . 0 7 1 ( 2 ) 0 . 9 1 1 ( 2 ) 7 . 6 ( 9 ) C 1 7 0 . 0 2 0 ( 3 ) - 0 . 0 7 3 ( 3 ) 0 . 8 9 0 ( 2 ) 9 ( 1 ) C 1 8 0 . 0 2 5 ( 3 ) - 0 . 0 2 6 ( 2 ) 0 . 8 3 1 ( 2 ) 6 . 0 ( 8 ) C 1 9 - 0 . 2 9 0 ( 2 ) 0 . 1 8 0 ( 2 ) 0 . 5 6 3 ( 1 ) 3 . 0 ( 6 ) C 2 0 - 0 . 2 0 5 ( 2 ) 0 . 2 4 6 ( 2 ) 0 . 5 6 2 ( 1 ) 3 . 7 ( 6 ) C 2 1 - 0 . 1 9 8 ( 2 ) 0 . 3 1 0 ( 2 ) 0 . 5 1 5 ( 1 ) 3 . 6 ( 6 ) C 2 2 0 2 8 6 ( 3 ) 0 . 3 0 0 ( 2 ) 0 . 4 5 9 ( 1 ) 5 . 7 m 5 1 T a b l e 2 - 5 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 2 3 - 0 . 3 7 7 ( 2 ) 0 . 2 3 4 ( 2 ) 0 . 4 5 3 ( 1 ) 4 . 8 ( 7 ) C 2 4 - 0 . 3 7 9 ( 2 ) 0 . 1 7 5 ( 2 ) 0 . 5 0 4 ( 1 ) 4 . 5 ( 7 ) C 2 5 - 0 . 3 0 0 ( 2 ) - 0 . 0 3 5 ( 2 ) 0 . 6 0 4 ( 1 ) 3 . 8 ( 6 ) C 2 6 - 0 . 3 1 8 ( 2 ) - 0 . 1 0 7 ( 2 ) 0 . 6 4 7 ( 1 ) 3 . 5 ( 6 ) C 2 7 - 0 . 3 1 3 ( 2 ) 0 . 2 1 2 ( 2 ) 0 . 6 3 2 ( 1 ) 4 . 4 ( 7 ) C 2 8 - 0 . 2 8 6 ( 2 ) - 0 . 2 4 2 ( 2 ) 0 . 5 8 0 ( 1 ) 4 . 9 ( 7 ) C 2 9 - 0 . 2 6 1 ( 3 ) - 0 . 1 7 0 ( 2 ) 0 . 5 3 6 ( 1 ) 3 . 9 ( 6 ) C 3 0 - 0 . 2 6 6 ( 2 ) - 0 . 0 6 5 ( 2 ) 0 . 5 5 2 ( 1 ) 4 . 4 ( 7 ) C 3 1 - 0 . 4 4 3 ( 2 ) 0 . 1 2 0 ( 2 ) 0 . 6 4 6 ( 1 ) 2 . 7 ( 5 ) C 3 2 - 0 . 4 4 4 ( 3 ) 0 . 1 8 3 ( 2 ) 0 . 6 9 3 ( 1 ) 5 . 4 ( 7 ) C 3 3 - 0 . 5 4 9 ( 3 ) 0 . 1 9 8 ( 2 ) 0 . 7 0 5 ( 2 ) 7 . 2 ( 9 ) C 3 4 - 0 . 6 4 2 ( 3 ) 0 . 1 5 3 ( 2 ) 0 . 6 6 9 ( 2 ) 6 . 5 ( 8 ) C 3 5 - 0 . 6 3 3 ( 2 ) 0 . 0 8 6 ( 2 ) 0 . 6 2 4 ( 1 ) 5 . 4 ( 7 ) C 3 6 - 0 . 5 2 8 ( 3 ) 0 . 0 6 6 ( 2 ) 0 . 6 1 1 ( 1 ) 4 . 6 ( 6 ) a . B e q i s d e fi n e d a s 4 / 3 [ a 2 0 1 1 + b 2 0 2 2 + c 2 0 3 3 + a b ( c o s y ) 0 1 2 + a c ( c o s f l ) 0 1 3 + b c ( c o s a ) 0 2 3 ] . 5 2 T a b l e 2 - 6 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s 8 f o r ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] ( 2 4 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e c h A z A u 0 . 9 3 1 8 0 ( 6 ) 0 . 1 5 5 7 ( 2 ) 0 . 6 5 9 5 ( 1 ) 5 . 2 3 ( 7 ) S e l 0 . 9 5 7 1 ( 2 ) 0 . 3 7 0 2 ( 4 ) 0 . 6 6 8 9 ( 3 ) 8 . 5 ( 3 ) $ 6 2 0 . 8 8 9 3 ( 2 ) - 0 . 0 3 9 0 ( 4 ) 0 . 6 3 8 7 ( 2 ) 5 . 4 ( 2 ) S e 3 0 . 9 6 3 5 ( 2 ) - 0 . 1 7 3 1 ( 4 ) 0 . 6 7 3 5 ( 2 ) 5 . 3 ( 2 ) P 1 0 . 1 7 4 8 ( 3 ) 0 . 1 2 7 6 ( 7 ) 0 . 2 0 2 2 ( 5 ) 2 . 4 ( 3 ) C 1 0 . 2 2 3 ( 1 ) 0 . 1 3 7 ( 3 ) 0 . 1 7 3 ( 2 ) 2 . 2 ( 5 ) C 2 0 . 1 9 7 ( 1 ) 0 . 1 3 4 ( 3 ) 0 . 0 8 6 ( 2 ) 3 . 5 ( 7 ) C 3 0 . 2 3 5 ( 1 ) 0 . 1 4 1 ( 3 ) 0 . 0 6 1 ( 2 ) 3 . 7 ( 7 ) C 4 0 . 2 9 9 ( 1 ) 0 . 1 6 2 ( 3 ) 0 . 1 3 2 ( 2 ) 4 . 5 ( 7 ) C 5 0 . 3 2 4 ( 1 ) 0 . 1 6 9 ( 3 ) 0 . 2 1 7 ( 2 ) 3 . 9 ( 7 ) C 6 0 . 2 8 6 ( 1 ) 0 . 1 5 5 ( 3 ) 0 . 2 3 9 ( 2 ) 3 . 0 ( 6 ) C 7 0 . 1 3 1 ( 1 ) 0 . 2 6 6 ( 3 ) 0 . 1 7 3 ( 2 ) 3 . 0 ( 6 ) C 8 0 . 1 2 2 ( 1 ) 0 . 3 4 1 ( 3 ) 0 . 1 1 0 ( 2 ) 3 . 9 ( 7 ) C 9 0 . 0 8 6 ( 1 ) 0 . 4 5 1 ( 3 ) 0 . 0 8 7 ( 2 ) 4 . 4 ( 8 ) C 1 0 0 . 0 6 1 ( 1 ) 0 . 4 7 1 ( 3 ) 0 . 1 2 5 ( 2 ) 4 . 4 ( 8 ) C l 1 0 . 0 6 9 ( 1 ) 0 . 3 9 3 ( 4 ) 0 . 1 8 4 ( 2 ) 5 . 6 ( 9 ) C 1 2 0 . 1 0 4 ( 1 ) 0 . 2 8 8 ( 3 ) 0 . 2 1 2 ( 2 ) 4 . 1 ( 7 ) C 1 3 0 . 1 2 2 ( 1 ) - 0 . 0 0 2 ( 3 ) 0 . 1 4 3 ( 2 ) 2 . 9 ( 6 ) C 1 4 0 . 1 3 1 ( 1 ) - 0 . 0 9 2 ( 3 ) 0 . 0 9 9 ( 2 ) 2 . 9 ( 6 ) C 1 5 0 . 0 9 0 ( 1 ) - 0 . 1 8 0 ( 3 ) 0 . 0 5 7 ( 2 ) 4 . 4 ( 7 ) C 1 6 0 . 0 4 1 ( 1 ) - 0 . 1 8 9 ( 3 ) 0 . 0 5 5 ( 2 ) 4 . 4 ( 8 ) C 1 7 0 . 0 3 4 ( 1 ) - 0 . 1 1 0 ( 3 ) 0 . 0 9 6 ( 2 ) 5 . 0 ( 8 ) C 1 8 0 . 0 7 5 ( 1 ) - 0 . 0 1 2 ( 3 ) 0 . 1 4 6 ( 2 ) 4 . 1 ( 7 ) C 1 9 0 . 2 2 2 ( 1 ) 0 . 1 1 2 ( 3 ) 0 . 3 2 0 ( 2 ) 1 . 9 ( 5 ) C 2 0 0 . 2 4 8 ( 1 ) 0 . 2 1 1 ( 3 ) 0 . 3 7 4 ( 2 ) 2 . 7 ( 6 ) C 2 1 0 . 2 8 9 ( 1 ) 0 . 2 0 1 ( 3 ) 0 . 4 6 3 ( 2 ) 3 . 9 ( 7 ) C 2 2 0 . 3 1 3 ( 1 ) 0 . 0 9 8 ( 3 ) 0 . 5 0 2 ( 2 ) 4 . 7 ( 8 ) C 2 3 0 . 2 8 9 ( 1 ) - 0 . 0 1 0 ( 3 ) 0 . 4 5 0 ( 2 ) 4 . 0 ( 7 ) C 2 4 0 . 2 4 5 ( 1 ) 0 . 0 0 2 ( 3 ) 0 . 3 5 8 ( 2 ) 3 . 3 ( 7 ) 3 - B e q i s d e fi n e d a s 4 3 0 1 2 1 3 1 1 + b 2 5 2 2 + 0 2 f 3 3 3 + a b ( 0 0 8 Y ) fi 1 2 + a C ( C O S fi ) B 1 3 + b C ( C O S O I ) 1 3 2 3 ] - T a b l e 2 - 7 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s 8 1 f o r ( E t 4 . N ) 3 [ N a A u 1 2 S e 3 ] ( 2 5 ) ( S t a n d a r d 5 3 D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e a , A 2 A u l 0 . 8 3 3 9 ( 2 ) 0 . 1 4 9 5 ( 2 ) 0 . 8 7 5 2 ( 2 ) 3 . 9 8 ( 8 ) A u 2 0 . 6 4 9 4 ( 2 ) - 0 . 1 6 5 1 ( 2 ) 0 . 8 0 3 8 ( 2 ) 4 . 4 6 ( 8 ) A u 3 0 . 8 4 0 7 ( 2 ) - 0 . 2 2 3 1 ( 2 ) 0 . 6 7 1 0 ( 2 ) 3 . 4 7 ( 7 ) A u 4 0 . 9 7 6 7 ( 2 ) - 0 . 0 9 3 4 ( 2 ) 1 2 6 2 2 ( 2 ) 3 . 4 3 ( 7 ) A u 5 0 . 8 1 3 4 ( 2 ) — 0 . 3 1 6 4 ( 2 ) 0 . 9 3 0 3 ( 2 ) 3 . 8 5 ( 8 ) A u 6 0 . 8 0 9 0 ( 2 ) 0 . 0 5 8 1 ( 2 ) 1 . 1 3 6 3 ( 2 ) 3 . 5 0 ( 7 ) S e l 0 . 9 7 8 8 ( 7 ) - 0 . 2 8 3 5 ( 6 ) 1 . 1 5 6 7 ( 7 ) 5 . 2 ( 2 ) S e 2 0 . 6 4 2 5 ( 7 ) 0 . 0 2 0 3 ( 7 ) 0 . 9 0 7 2 ( 8 ) 6 . 1 ( 3 ) S e 3 0 . 6 4 7 8 ( 7 ) - 0 . 3 5 5 2 ( 5 ) 0 . 6 9 9 5 ( 7 ) 5 . 7 ( 2 ) 8 6 4 0 . 9 7 2 8 ( 6 ) 0 . 0 9 3 6 ( 6 ) 1 . 3 6 6 0 ( 6 ) 4 . 5 ( 2 ) N a 1 . 0 0 0 0 0 1 . 0 0 0 0 2 . 7 8 9 ( 9 ) N 1 0 . 4 6 8 ( 3 ) 0 . 2 4 9 ( 3 ) 0 . 7 3 8 ( 3 ) 1 . 3 8 0 ( 7 ) N 2 1 . 0 0 0 0 1 / 2 1 / 2 2 . 8 6 7 ( 4 ) C 1 0 . 5 9 6 ( 6 ) 0 . 2 6 0 ( 6 ) 0 . 7 4 8 ( 6 ) 5 . 0 1 9 ( 3 ) C 2 0 . 6 2 0 ( 5 ) 0 . 2 7 9 ( 5 ) 0 . 6 1 7 ( 6 ) 3 . 7 1 6 ( 4 ) C 3 0 . 4 5 3 ( 5 ) 0 . 3 5 4 ( 5 ) 0 . 7 2 9 ( 6 ) 3 . 5 4 4 ( 4 ) C 4 0 . 3 3 1 ( 7 ) 0 . 3 6 1 ( 7 ) 0 . 7 3 5 ( 7 ) 6 . 7 1 5 ( 3 ) C 5 0 . 4 4 4 ( 5 ) 0 . 2 1 7 ( 5 ) 0 . 8 4 7 ( 6 ) 3 . 9 6 0 ( 4 ) C 6 0 . 5 3 7 ( 7 ) 0 . 3 2 9 ( 6 ) 1 . 0 0 3 ( 7 ) 6 . 2 0 7 ( 3 ) C 7 0 . 3 5 3 ( 6 ) 0 . 1 2 5 ( 6 ) 0 . 5 9 9 ( 7 ) 5 . 2 4 2 ( 3 ) C 8 0 . 3 6 1 ( 7 ) 0 . 0 0 6 ( 7 ) 0 . 5 6 5 ( 8 ) 6 . 4 1 5 ( 3 ) C 9 1 . 0 5 2 ( 7 ) 0 . 4 3 4 ( 6 ) 0 . 4 0 8 ( 7 ) 0 . 2 9 5 ( 3 ) C 1 0 0 . 9 7 7 ( 8 ) 0 . 4 3 1 ( 8 ) 0 . 2 4 9 ( 9 ) 2 . 1 2 9 ( 3 ) C 1 1 0 . 8 4 4 ( 8 ) 0 . 4 4 8 ( 7 ) 0 . 4 2 9 ( 8 ) 1 . 5 3 9 ( 2 ) C 1 2 0 . 7 5 3 ( 7 ) 0 . 3 0 2 ( 7 ) 0 . 3 6 8 ( 8 ) 0 . 8 7 8 ( 3 ) C 1 3 1 . 0 4 2 ( 6 ) 0 . 4 7 5 ( 1 ) 0 . 6 1 9 ( 9 ) 8 . 8 1 9 ( 1 ) C 1 4 0 . 9 9 3 ( 4 ) 0 . 5 4 3 ( 3 ) 0 . 7 1 5 ( 5 ) 6 . 7 0 4 ( 5 ) C 1 5 1 . 1 0 ( 2 ) 0 . 6 2 ( 1 ) 0 5 7 ( 2 ) 7 . 5 7 3 ( 1 ) C 1 6 1 . 0 5 7 4 0 . 7 0 1 4 0 . 6 6 4 9 9 . 6 a - B e q i s d e fi n e d a s 4 3 1 2 1 2 5 1 1 + b 2 5 2 2 + 0 2 5 3 3 + a b ( C O S Y ) 5 1 2 + a C ( C O S B ) 1 3 1 3 + b C ( C O S O I ) 1 3 2 3 ] - 5 4 T a b l e 2 - 8 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] ( 2 6 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B a h A 2 A u 0 . 5 4 4 5 3 ( 8 ) 0 . 6 2 2 0 1 ( 7 ) 0 . 0 2 8 0 ( 1 ) 2 . 1 7 ( 3 ) T e l 0 . 4 6 4 1 ( 1 ) 0 . 4 0 8 0 ( 1 ) 0 . 2 2 5 7 ( 1 ) 2 . 8 2 ( 6 ) T e 2 0 . 5 5 4 9 ( 1 ) 0 . 6 4 2 8 ( 1 ) 0 . 2 8 0 9 ( 1 ) 3 . 0 1 ( 6 ) P 0 . 9 6 0 8 ( 4 ) 0 . 1 5 8 8 ( 4 ) 0 . 7 7 2 7 ( 4 ) 1 . 2 ( 1 ) C 1 0 . 9 2 7 ( 2 ) 0 . 2 5 0 ( 1 ) 0 . 6 4 4 ( 2 ) 1 . 6 ( 3 ) C 2 0 . 8 1 2 ( 2 ) 0 . 3 2 8 ( 2 ) 0 . 6 2 9 ( 2 ) 2 . 0 ( 3 ) C 3 0 . 7 8 3 ( 2 ) 0 . 4 0 0 ( 2 ) 0 . 5 3 1 ( 2 ) 2 . 3 ( 3 ) C 4 0 . 8 6 7 ( 2 ) 0 . 3 9 7 ( 2 ) 0 . 4 5 3 ( 2 ) 2 . 9 ( 4 ) C 5 0 . 9 8 1 ( 2 ) 0 . 3 2 1 ( 2 ) 0 . 4 6 6 ( 2 ) 2 . 7 ( 3 ) C 6 1 . 0 1 4 ( 2 ) 0 . 2 4 4 ( 2 ) 0 . 5 6 3 ( 2 ) 2 . 1 ( 3 ) C 7 0 . 8 3 3 ( 1 ) 0 . 0 5 6 ( 1 ) 0 . 7 2 4 ( 2 ) 1 . 4 ( 3 ) C 8 0 . 7 6 3 ( 2 ) 0 . 0 2 3 ( 1 ) 0 . 5 9 1 ( 2 ) 1 . 8 ( 3 ) C 9 0 . 6 7 0 ( 2 ) — 0 . 0 6 4 ( 2 ) 0 . 5 5 2 ( 2 ) 2 . 6 ( 3 ) C 1 0 0 . 6 4 5 ( 2 ) - 0 . 1 1 7 ( 2 ) 0 . 6 5 1 ( 1 ) 2 . 6 ( 3 ) C 1 1 0 . 7 1 4 ( 2 ) - 0 . 0 8 1 ( 2 ) 0 . 7 9 0 ( 2 ) 2 . 8 ( 4 ) C 1 2 0 . 8 0 7 ( 2 ) 0 . 0 0 6 ( 2 ) 0 . 8 2 7 ( 2 ) 2 . 2 ( 3 ) C 1 3 0 . 9 5 7 ( 1 ) 0 . 2 6 1 ( 1 ) 0 . 9 3 0 ( 2 ) 1 . 2 ( 3 ) C 1 4 1 . 0 7 4 ( 2 ) 0 . 3 0 9 ( 1 ) 1 . 0 1 9 ( 2 ) 2 . 0 ( 3 ) C 1 5 1 . 0 6 8 ( 2 ) 0 . 4 0 1 ( 2 ) 1 . 1 3 2 ( 2 ) 2 . 2 ( 3 ) C 1 6 0 . 9 4 8 ( 2 ) 0 . 4 4 3 ( 1 ) 1 . 1 6 1 ( 2 ) 1 . 9 ( 3 ) C 1 7 0 . 8 3 3 ( 2 ) 0 . 3 9 4 ( 2 ) 1 . 0 7 4 ( 2 ) 2 . 2 ( 3 ) C 1 8 0 . 8 3 5 ( 2 ) 0 . 3 0 2 ( 1 ) 0 . 9 6 1 ( 2 ) 1 . 6 ( 3 ) C 1 9 1 . 1 1 8 ( 2 ) 0 . 0 7 1 ( 1 ) 0 . 7 8 8 ( 2 ) 1 . 4 ( 3 ) C 2 0 1 . 2 3 5 ( 2 ) 0 . 1 2 8 ( 1 ) 0 . 8 0 7 ( 2 ) 1 . 7 ( 3 ) C 2 1 1 . 3 5 8 ( 2 ) 0 . 0 5 9 ( 2 ) 0 . 8 2 8 ( 2 ) 2 . 0 ( 3 ) C 2 2 1 . 3 6 2 ( 2 ) - 0 . 0 6 7 ( 2 ) 0 . 8 2 6 ( 2 ) 2 . 3 ( 3 ) C 2 3 1 . 2 5 1 ( 2 ) - 0 . 1 2 5 ( 2 ) 0 . 8 0 6 ( 2 ) 2 . 4 ( 3 ) C 2 4 1 . 1 2 7 ( 2 ) - 0 . 0 5 6 ( 1 ) 0 . 7 8 5 ( 2 ) 1 . 9 ( 3 ) a . B e q i s d e fi n e d a s 4 / 3 [ a 2 0 1 1 + b 2 0 2 2 + c 2 0 3 3 + a b ( c o s y ) 0 1 2 + a c ( c o s fi ) 0 1 3 + b c ( c o s a ) 0 2 3 ] . 5 5 T a b l e 2 - 9 . C a l c u l a t e d a n d O b s e r v e d X — r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P P N ) 2 [ A 1 1 2 5 6 2 1 3 8 4 ) 2 J ( 2 ' 1 ) h k l d a r e d ) d e b s . ( A ) m g . . . ( o b s ) 0 0 2 1 3 . 4 2 1 3 . 5 9 3 1 - 1 0 1 1 1 . 1 3 1 1 . 2 4 1 0 0 1 0 1 1 0 . 5 7 1 0 . 6 3 9 0 0 1 1 1 0 . 5 1 / I 0 1 2 8 . 7 0 8 . 7 4 3 7 1 1 0 8 . 2 2 8 . 2 7 1 0 0 - 1 1 1 7 . 9 7 8 . 0 3 5 0 l l 1 7 . 7 6 7 . 8 1 2 1 1 0 3 6 . 9 1 0 6 . 9 1 5 2 6 0 0 4 6 . 7 1 1 6 . 7 4 3 2 4 - 1 l 3 6 . 2 0 6 6 . 2 6 2 1 8 2 0 0 5 . 9 2 1 5 . 9 8 9 4 3 0 2 1 5 . 5 8 4 5 . 6 4 5 5 5 0 2 2 5 . 2 5 4 5 . 2 9 6 4 7 2 l 1 5 . 0 9 9 5 . 1 3 1 5 0 - 1 2 1 5 . 0 7 9 / / 1 2 1 5 . 0 2 2 5 . 0 6 5 2 7 - l 2 2 4 . 8 5 2 4 . 9 0 5 6 1 0 2 3 4 . 8 1 3 / / 1 2 2 4 . 7 5 4 4 . 7 9 4 5 3 - 1 2 3 4 . 5 1 9 4 . 5 6 1 5 3 l 2 3 4 . 4 0 1 4 . 4 4 2 3 9 0 1 6 4 . 1 6 6 4 . 1 9 3 1 8 - 2 2 2 3 . 9 8 4 4 . 0 2 8 1 5 0 3 2 3 . 6 6 2 3 . 6 8 9 1 9 — l 3 2 3 . 5 1 7 3 . 5 4 5 2 3 0 3 4 3 . 3 1 1 3 . 3 2 8 2 6 - 2 1 7 3 . 1 9 4 3 . 2 1 8 2 1 - 2 3 4 2 . 9 3 3 2 . 9 8 3 1 1 2 3 4 2 . 8 4 8 2 . 8 5 3 3 1 5 6 T a b l e 2 - 9 . ( c o n t ' d ) h k 1 d c g l c . ( A ) d e b s . ( A ) m m a x . L 0 b S - ) 2 0 8 2 . 8 3 5 / / 1 1 9 2 . 7 6 1 2 . 7 7 1 1 6 2 2 7 2 . 7 3 8 / / - 3 2 6 2 . 7 0 3 2 . 7 2 0 1 9 - 3 1 8 2 . 5 8 1 2 . 5 9 5 3 1 - 3 3 5 2 . 4 9 0 2 . 4 9 9 1 6 3 l 8 2 . 4 1 7 2 . 4 2 4 1 3 - 2 4 5 2 . 3 4 7 2 . 3 5 2 1 0 3 2 1 0 2 . 0 1 3 2 . 0 1 8 1 2 - 2 6 2 1 . 8 0 1 1 . 8 1 3 1 2 5 7 T a b l e 2 - 1 0 . C a l c u l a t e d a n d O b s e r v e d X — r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ A U 2 ( S e fl § 8 3 ) ] ( 2 ' 2 ) h 1 ‘ 1 d c a l c . ( A ) d o b s . ( A ) I l l m a x . ( o b s . ) 0 1 0 1 0 . 6 1 0 . 7 4 8 1 0 0 9 . 9 1 0 . 1 1 0 0 0 0 2 9 . 9 / / 0 1 2 8 . 2 3 8 . 3 5 4 5 1 1 0 7 . 6 2 7 . 6 7 2 3 - 1 1 0 6 . 9 6 7 . 0 3 2 7 - 1 0 2 6 . 3 4 6 . 4 0 1 8 1 - 1 2 5 . 7 6 5 . 8 7 1 2 2 0 0 4 . 9 9 5 . 0 5 3 5 2 0 2 4 . 9 5 / / 2 1 2 4 . 8 7 4 . 8 6 1 2 - 2 1 0 4 . 3 7 4 . 4 3 3 9 - 2 1 1 4 . 1 7 4 . 2 1 2 7 0 2 4 4 . 1 1 4 . 1 0 1 2 - 2 1 2 3 . 8 4 3 3 . 8 4 7 1 3 2 2 0 3 . 8 1 4 / / 0 3 2 3 . 5 9 2 3 . 6 4 1 1 2 1 3 0 3 . 4 3 7 3 . 4 5 0 1 3 - 3 1 0 3 . 0 9 1 3 . 1 1 6 1 1 2 3 0 3 . 0 1 0 3 . 0 1 3 1 0 1 4 2 2 . 7 2 8 2 . 7 3 2 1 1 l l 8 2 . 6 4 6 2 . 6 1 8 1 0 3 3 0 2 . 5 3 6 2 . 5 2 9 1 0 5 8 T a b l e 2 - 1 1 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r l P P N 7 2 L A U 2 § § 2 X S e 3 H ( 2 ' 3 ) h k 1 d c a l c , ( A ) d o b s . ( A ) I / I m a x . ( o b s . ) - 1 0 1 1 1 . 6 1 1 . 8 5 7 0 1 1 1 1 . 0 1 1 . 2 7 3 0 0 2 1 0 . 5 1 0 . 6 2 4 1 0 1 9 . 2 6 9 . 3 6 6 6 l 1 0 8 . 7 0 8 . 7 7 7 4 - 1 1 2 7 . 4 4 7 . 4 9 1 0 0 0 2 0 6 . 4 8 6 . 5 2 2 2 2 0 0 5 . 8 7 5 . 9 2 2 4 - 2 l 1 5 . 5 1 5 . 5 7 5 2 2 1 0 5 . 3 5 5 . 3 6 4 3 1 2 1 5 . 3 1 / / 2 2 0 4 . 3 5 4 . 3 9 2 1 0 2 4 4 . 0 7 4 . 1 1 3 3 - 3 1 l 3 . 8 6 3 . 8 8 1 5 - 1 3 3 3 . 6 5 3 . 6 9 2 8 2 3 0 3 . 4 8 3 . 5 0 1 6 - 3 2 2 3 . 4 2 3 . 4 4 1 8 3 2 0 3 . 3 5 3 . 3 7 1 6 - 3 3 1 2 . 9 5 2 . 9 6 2 2 - 4 2 3 2 . 7 2 2 . 7 4 1 7 5 9 T a b l e 2 - 1 2 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ A u z ( S e 2 _ L S e 4 ) ] ( 2 ' 4 ) h M d c a l c . ( A ) d o b s . ( A ) I / I m a x . t a b s . ) 1 1 0 1 0 . 2 1 0 . 8 3 9 0 O 2 9 . 6 9 . 8 9 1 - 1 1 1 9 . 3 / I - 2 0 2 9 . 0 / / - 1 1 2 7 . 3 1 7 . 4 9 3 0 - 3 1 1 7 . 0 4 7 . 0 4 1 0 0 - 4 0 2 6 . 3 5 l / - 1 1 3 5 . 6 5 5 . 6 6 1 8 4 0 2 5 . 0 7 5 . 1 4 1 4 5 1 0 4 . 9 3 4 . 9 5 5 0 2 2 1 4 . 8 3 4 . 9 2 4 0 6 0 0 4 . 6 0 4 . 6 4 1 0 - 4 0 4 4 . 4 6 I / 3 l 3 4 . 3 7 4 . 4 0 9 0 2 0 4 4 . 2 4 4 . 2 3 2 1 1 1 4 4 . 2 1 l / - 5 1 4 3 . 8 7 2 3 . 8 7 8 2 8 6 0 2 3 . 8 2 0 3 . 8 0 4 3 0 - 6 0 4 3 . 7 8 6 3 . 7 6 4 3 0 1 3 0 3 . 6 2 7 3 . 6 2 0 2 5 - 6 2 2 3 . 5 2 8 3 . 5 3 0 1 3 8 0 O 3 . 4 5 2 3 . 4 5 4 2 5 6 2 1 3 . 3 6 4 3 . 3 6 8 1 9 - 2 0 6 3 . 2 8 6 3 . 2 7 7 1 1 — 1 1 6 3 . 1 2 7 3 . 1 2 1 3 9 - 9 l 1 3 . 0 3 1 3 . 0 3 6 3 4 4 2 4 2 . 9 8 9 2 . 9 7 4 2 0 - 8 2 1 2 . 9 6 1 2 . 9 7 2 2 8 0 4 0 2 . 7 4 4 2 . 7 4 2 1 6 - 8 O 6 2 . 6 8 2 2 . 6 9 0 2 5 3 4 6 4 9 h 4 4 1 6 1 - - - - - l 1 4 2 5 0 8 3 1 0 k 1 2 3 4 O 3 4 2 4 5 0 4 1 . ( A ) d 2 2 2 2 2 2 2 2 c . . . . . . . . a 3 1 6 5 5 3 3 4 1 1 . . 9 8 l 6 9 8 5 2 0 5 0 4 9 1 c 7 3 3 5 3 1 0 0 4 2 2 2 2 d 2 2 2 2 o b s . ( A ) I / I m a x . ( o b s ) . . . . . . . . 5 3 6 5 4 3 1 2 1 1 . . 9 8 1 9 5 3 4 6 7 9 4 9 8 7 6 0 2 1 3 5 1 0 2 2 2 2 1 1 1 1 1 1 0 4 0 8 6 7 5 7 4 7 6 0 T a b l e 2 - 1 2 . ( c o n t ' d ) 6 1 T a b l e 2 - 1 3 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( E M N ) 3 [ N a A u r 2 $ e s l ( 2 ' 5 ) 1 1 k 1 d c a l c . ( A ) d o b s . ( A ) 1 ” m a x . ( 0 1 3 8 - ) 0 1 0 1 0 . 5 4 1 0 . 7 3 1 0 0 - 1 1 0 1 0 . 2 7 1 0 . 4 5 6 7 1 0 0 9 . 6 4 9 . 8 2 5 3 0 0 1 9 . 2 1 9 . 3 2 8 3 - 1 0 1 9 . 1 8 / / 0 - 1 1 9 . 1 5 / / 1 0 1 5 . 4 9 5 . 5 0 4 9 - 2 0 1 5 . 4 7 / / - 1 - 1 2 5 . 1 2 0 5 . 1 5 7 4 6 0 - 1 2 5 . 0 9 9 / / - 1 2 1 4 . 7 1 6 4 . 7 5 8 5 6 - 2 2 1 4 . 6 6 2 4 . 6 9 7 5 9 0 0 2 4 . 6 0 8 / / ~ 1 - 2 1 4 . 4 3 9 4 . 4 7 8 3 2 2 - 2 1 4 . 3 2 7 4 . 3 2 6 6 3 - 2 - 1 1 4 . 2 9 7 / / ~ 2 - 1 2 4 . 1 0 5 4 . 1 3 4 7 6 1 - 2 2 4 . 1 0 4 4 . 1 0 1 8 1 1 - 1 2 4 . 0 7 3 4 . 0 3 6 4 5 - 3 2 0 3 . 7 4 9 3 . 7 7 6 3 1 0 - 3 2 3 . 6 4 7 3 . 6 7 9 3 4 - 2 0 3 3 . 4 2 3 3 . 4 8 5 4 2 - 2 1 3 3 . 1 6 4 3 . 1 8 5 2 1 - 3 - 1 2 3 . 1 3 1 3 . 1 4 7 1 9 1 2 1 3 . 0 5 2 3 . 0 7 1 4 1 0 — 3 3 3 . 0 4 8 3 . 0 1 5 4 7 1 - 4 2 2 . 9 9 4 2 . 9 9 6 4 0 - 4 2 1 2 . 9 8 0 I / 2 2 0 2 . 8 8 0 2 . 8 9 9 4 1 0 - 4 2 2 . 8 8 0 / / 6 2 T a b l e 2 - 1 3 . ( c o n t ' d ) h k l d c a l c . ( A ) d o b s . ( 1 3 ) I / I m a x . ( o b s ) - 4 2 0 2 . 8 1 9 2 . 8 2 3 3 7 - 4 3 0 2 . 7 7 6 2 . 7 8 5 5 4 - 2 4 1 2 . 7 6 7 / I - 3 4 1 2 . 7 4 6 2 . 7 6 0 4 2 - 3 - 2 2 2 . 6 5 2 2 . 6 6 7 4 6 0 — 4 3 2 . 6 3 4 / / - 2 0 4 2 . 6 1 7 2 . 6 2 6 5 3 - 3 - 2 3 2 . 5 7 0 2 . 5 7 9 5 6 2 — 2 3 2 . 5 4 0 2 . 5 5 2 7 0 - 2 1 4 2 . 4 2 7 2 . 4 2 8 6 7 - 3 1 4 2 . 4 2 1 / / - 4 - 1 3 2 . 4 0 0 2 . 4 0 4 5 7 ~ - 1 S 0 2 . 3 2 9 2 . 3 2 1 5 0 - 3 5 1 2 . 2 8 5 2 . 2 9 6 4 6 - 2 - 4 2 2 . 2 1 9 2 . 2 2 3 2 1 - 4 - 2 3 2 . 1 5 6 2 . 1 6 2 3 0 2 - 2 4 2 . 0 3 7 2 . 0 4 0 3 0 - 6 3 4 1 . 7 6 4 1 . 7 6 3 1 9 5 0 1 1 . 7 3 1 1 . 7 3 8 2 3 T a b l e 2 - 1 4 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r 6 3 ( P h 4 P ) [ A u z T e 4 1 ( 2 ' 6 ) h k 1 d c a l c . ( A ) d o b s . ( A ) I / I m a x . ( 0 1 3 8 - ) 0 1 0 1 0 . 9 1 1 . 4 8 8 1 0 0 1 0 . 0 1 0 . 1 1 0 0 0 0 1 9 . 8 / / 1 0 — 1 8 . 2 1 8 . 2 7 3 1 0 1 - 1 8 . 1 2 8 . 2 7 3 1 1 1 0 7 . 7 2 3 7 . 7 7 0 4 5 1 - 1 0 7 . 0 9 4 7 . 0 9 9 7 1 1 0 1 6 . 2 3 5 6 . 2 3 7 1 6 1 - 1 - 1 5 . 9 3 9 5 . 9 4 1 1 1 2 0 - 1 5 . 0 5 1 5 . 0 5 0 2 3 2 0 0 5 . 0 1 7 5 . 0 1 4 2 8 2 - 1 0 4 . 4 1 8 4 . 4 2 0 7 7 2 2 0 3 . 8 6 2 3 . 8 6 7 1 9 0 3 0 3 . 6 4 0 3 . 6 4 4 1 7 1 3 0 3 . 5 1 9 3 . 5 2 6 1 3 3 - 1 0 3 . 1 2 5 3 . 1 1 7 2 6 2 3 0 3 . 0 7 3 3 . 0 7 1 8 3 - 2 0 2 . 7 5 0 2 . 7 4 9 1 6 0 4 0 2 . 7 3 0 2 . 7 3 5 1 1 1 1 - 4 2 . 6 1 5 2 . 6 1 8 1 6 3 3 0 2 . 5 7 5 2 . 5 7 7 1 2 2 0 — 4 2 . 4 8 6 2 . 4 8 3 1 2 4 - 1 0 2 . 4 0 1 2 . 4 0 6 8 4 2 0 2 . 3 5 7 2 . 3 4 7 1 0 1 - 1 4 2 . 2 7 7 2 . 2 6 9 9 4 0 - 4 2 . 0 5 2 2 . 0 5 0 1 4 2 — 2 4 1 . 9 6 1 1 . 9 6 3 7 4 - 1 - 4 1 . 9 3 8 1 . 9 3 0 8 5 - 2 0 1 . 8 3 3 1 . 8 3 0 7 6 4 I I I . R e s u l t s 1 . D e s c r i p t i o n o f C r y s t a l a n d M o l e c u l a r S t r u c t u r e s o f t h e C o m p o u n d s ( i ) . S t r u c t u r e o f ( P P N ) 2 [ A u 2 S e 2 ( S e 4 ) 2 ] ( 2 1 ) T h e c r y s t a l l a t t i c e o f t h i s c o m p o u n d i s m a d e u p o f w e l l s e p a r a t e d P P N + c a t i o n s a n d [ A u 2 S e 2 ( S e 4 ) 2 ] 2 ' a n i o n s . T h e P P N + c a t i o n s h a v e t h e n o r m a l s t r u c t u r e , a n d w a r r a n t n o f u r t h e r c o m m e n t s . T h e [ A q u e 2 ( S e 4 ) 2 ] 2 ‘ a n i o n i s s i t u a t e d o n a c r y s t a l l o g r a p h i c a l l y i m p o s e d i n v e r s i o n c e n t e r . I n t h e s t r u c t u r e , t w o s q u a r e - p l a n a r ( ( 1 8 c o n fi g u r a t i o n ) A u 3 + i o n s a r e b o n d e d b y t w o u z - S e z ‘ a n d t w o b i d e n t a t e c h e l a t i n g S e 4 2 ‘ l i g a n d s . T h e m o l e c u l e p o s s e s s e s i d e a l i z e d C 2 1 , s y m m e t r y . F i g u r e 2 - 1 s h o w s t w o d i f f e r e n t v i e w s o f t h i s m o l e c u l e , w h i l e a p a c k i n g d i a g r a m o f t h i s c o m p o u n d i s g i v e n i n F i g u r e 2 2 . T h e f o u r - m e m b e r e d [ A u g S e z ] 2 + c o r e i s p e r f e c t l y p l a n a r b e c a u s e o f t h e i n v e s i o n c e n t e r ( a t t h e m i d p o i n t o f t h e A u - u A u v e c t o r ) . T h e d i s t a n c e o f 3 . 6 6 0 ( 1 ) A f o r t h e A u - - - A u s e p a r a t i o n i n t h i s s t r u c t u r e r e p r e s e n t s a n o n - i n t e r a c t i n g s i t u a t i o n o f t w o g o l d a t o m s i n t h e s a m e m o l e c u l e . T h e fi v e - m e m b e r e d A u S e 4 r i n g h a s a t w i s t - b o a t c o n f o r m a t i o n . S e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s a s g i v e n i n T a b l e 2 1 5 . ( i i ) . S t r u c t u r e o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 - 2 ) T h e s t r u c t u r e o f ( 2 2 ) i s c o m p o s e d o f w e l l s e p a r a t e d P h 4 P + c a t i o n s a n d [ A u 2 ( S e 2 ) ( S e 3 ) ] 2 ‘ a n i o n s i n t h e c r y s t a l l a t t i c e . T h e P h 4 P ’ r e a t i o n s h a v e t h e n o r m a l t e t r a h e d r a l s t r u c t u r e , a n d w i l l n o t b e d i s c u s s e d f u r t h e r . T h e [ A u 2 ( S e 2 ) ( S e 3 ) ] 2 ' a n i o n f o r m s a n e n v e l o p e - s h a p e d s e v e n - m e m b e r e d r i n g w h i c h c o n t a i n s t w o g o l d a n d fi v e s e l e n i u m a t o m s . T w o d i f f e r e n t v i e w s o f t h i s m o l e c u l e a r e s h o w n i n F i g u r e 2 - 3 . F i g u r e 2 4 i s t h e p a c k i n g d i a g r a m o f t h i s c o m p o u n d . S u c h a r i n g m o l e c u l e f e a t u r e s t w o l i n e a r l y - c o o r d i n a t e d A u ” c e n t e r s b r i d g e d b y a S e 2 2 ' a n d a S e 3 2 ‘ l i g a n d . T w o A u + i o n s a n d t h e i r a d j a c e n t S e a t o m s ( e . g . A u ( 1 ) / S e ( 1 ) / S e ( 2 ) / A u ( 2 ) / S e ( 3 ) / S e ( 5 ) ) f o r m a l m o s t a p e r f e c t p l a n e w i t h t h e 6 5 S e ( 4 ) a t o m l y i n g 1 . 1 7 2 A a b o v e i t . T h e A u - - - A u d i s t a n c e o f 3 . 0 0 4 ( 2 ) A i n d i c a t e s d I O - l e i n t e r a c t i o n s b e t w e e n t h e t w o a t o m s . T h e S e ( 1 ) - S e ( 2 ) d i s t a n c e i n t h e d i s e l e n i d e u n i t i s r a t h e r l o n g a t 2 . 4 0 2 ( 5 ) A . O t h e r s e l e c t e d m e t r i c p a r a m e t e r s a r e g i v e n i n T a b l e 2 - 1 6 . T a b l e 2 1 5 . S e l e c t e d G e o m e t r i c D a t a f o r ( P P N ) 2 [ A q u e 2 ( S e 4 ) 2 ] Q U P B o n d D i s t a n c e s ( A ) A u - S e ( 1 ) 2 . 4 6 1 ( 2 ) A u - S e ( 4 ) 2 . 4 5 0 ( 2 ) A u - S e ( 5 ) 2 . 4 4 4 ( 2 ) A u - S e ( 5 ) ' 2 . 4 4 9 ( 2 ) A u - S e ( m e a n ) 2 . 4 5 1 ( 4 ) S e ( 1 ) - S e ( 2 ) 2 . 3 5 7 ( 3 ) S e ( 2 ) - S e ( 3 ) 2 . 3 0 4 ( 3 ) S e ( 3 ) - S e ( 4 ) 2 . 3 3 2 ( 3 ) S e - S e ( m e a n ) 2 . 3 3 1 ( 1 5 ) B o n d A n g l e s ( d e g ) S e ( 1 ) - A u - S e ( 4 ) 1 0 0 . 4 3 ( 7 ) S e ( 1 ) - A u - S e ( 5 ) 8 8 . 3 1 ( 6 ) S e ( 5 ) - A u - S e ( 5 ) ' 8 2 9 5 ( 6 ) T a b l e 2 1 6 . S e l e c t e d G e o m e t r i c D a t a f o r ( P h 4 B Q L A Q ( S e ; ) ( S e 3 ) ] ( 2 - 2 ) b B o n d D i s t a n c e s ( A ) A u ( 1 ) - S e ( 1 ) 2 . 3 8 8 ( 3 ) A u ( 1 ) - S e ( 5 ) 2 . 4 0 1 ( 3 ) A u ( 2 ) - S e ( 2 ) 2 . 3 9 9 ( 4 ) A u ( 2 ) - S e ( 3 ) 2 . 4 0 1 ( 4 ) A u - S e ( m e a n ) 2 . 3 9 7 ( 3 ) S e ( 1 ) - S e ( 2 ) S e ( 1 ) - S e ( 2 ) S e ( 3 ) - S e ( 4 ) 2 . 2 8 3 ( 5 ) S e ( 4 ) — S e ( 5 ) 2 . 2 7 9 ( 6 ) S e - S e ( m e a n ) 2 . 3 2 1 ( 4 0 ) A u ( 1 ) - - - A u ( 2 ) 3 . 0 0 4 ( 2 ) B o n d A n g l e s ( d e g ) S e ( 1 ) - A u ( 1 ) - S e ( 5 ) 1 7 7 . 9 ( 1 ) S e ( 2 ) - A u ( 2 ) - S e ( 3 ) 1 7 6 . 8 ( 1 ) A u ( l ) - S e ( 1 ) — S e ( 2 ) 9 7 . 7 ( 2 ) A u ( 2 ) - S e ( 2 ) - S e ( 1 ) 9 6 . 8 ( 1 ) A u ( 1 ) - S e ( 5 ) - S e ( 4 ) 1 0 0 . 8 ( 1 ) A u ( 2 ) - S e ( 3 ) - S e ( 4 ) 1 0 1 . 3 ( 2 ) S e ( 3 ) - S e ( 4 ) - S e ( 5 ) 1 0 5 . 2 ( 2 ) b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n o l = { £ n ( l n - l ) 2 / n ( n - l ) } “ 2 , w h e r e 1 , . i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . 6 6 F i g u r e 2 1 . T w o V i e w s o f t h e [ A u 2 8 e 2 ( S c 4 ) 2 ] 2 ' A n i o n 6 7 F i g u r e 2 - 2 . T h e P a c k i n ' ' 3 D i a g r a m 1 n t h e U n i t C e l l o f ( P P N ) 2 [ A u 2 8 e 2 ( S e 4 ) 2 ] ( S t e e o v i e w ) ( 5 8 S e ( Z ) F i g u r e 2 - 3 . T w u V i e w s o f t h e [ A u 2 ( S e 2 ) ( S e 3 ) ] 2 ‘ A n i o n 6 9 F i g u r e 2 4 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ A u 2 ( S e 7 _ ) ( S e 3 ) ] ( S t e e o v i e w ) 7 0 ( i i i ) . S t r u c t u r e o f ( P P N ) 2 [ A u 2 ( S e z ) ( S e 3 ) ] ( 2 3 ) T h i s c o m p o u n d i s a l s o c o n s i s t e d o f P P N + c a t i o n s a n d [ A u 2 ( S e 2 ) ( S e 3 ) ] 2 ' a n i o n s i n t h e c r y s t a l l a t t i c e , a n d c r y s t a l l i z e s i n t h e c e n t r o s y m m e t i c s p a c e g r o u p P 2 1 / n ( # 1 4 ) . D e s p i t e l a c k i n g o f c e n t r o s y m m e t r y , t h e [ A u 2 ( S e 2 ) ( S e 3 ) ] 2 ' a n i o n i s s i t u a t e d o n t h e i n v e r s i o n c e n t e r . T h i s c a u s e s a n o r i e n t a t i o n d i s o r d e r o n t h i s m o l e c u l e . F i g u r e 2 - 5 i s t h e O R T E P r e p r e s e n t a t i o n o f t h e d i s o r d e r e d a n i o n . T w o o p p o s i t e m o l e c u l a r o r i e n t a t i o n s s h a r e a c o m m o n A u — A u a x i s . T h e i n v e s i o n c e n t e r i s l o c a t e d a t t h e m i d d l e o f t h e A u — A u v e c t o r . N o m e a n i n g f u l s t r u c t u r a l p a r a m e t e r s c a n b e o b t a i n e d f r o m t h e r e fi n e m e n t . N e v e r t h e l e s s , t h i s a n i o n h a s e s s e n t i a l l y t h e s a m e s t r u c t u r e a s t h a t f o u n d i n ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] ( 2 2 ) . ( i v ) . S t r u c t u r e o f ( P h 4 P ) 2 [ A u 2 ( S e z ) ( S e 4 ) ] ( 2 - 4 ) T h e [ A u 2 ( S e 2 ) ( S e 4 ) ] 2 ' a n i o n i n t h i s c o m p o u n d i s s t r u c t u r a l l y s i m i l a r t o [ A u 2 ( S e 2 ) ( S e 3 ) ] 2 ' a s s h o w n i n F i g u r e 2 - 6 . F i g u r e 2 - 7 s h o w s a p a c k i n g d i a g r a m o f t h e c o m p o u n d T h e [ A u 2 ( S e 2 ) ( S e 4 ) ] 2 ' a n i o n h a s a C 2 s y m m e t r y w i t h t h e t w o - f o l d a x i s r u n n i n g a c r o s s t h e c e n t e r s o f t h e A u - - - A u a n d S e ( 1 ) - S e ( 1 ) a x e s . T h e A u — A u s e p a r a t i o n b e t w e e n t h e t w o l i n e a r l y - c o o r d i n a t e d A u + i o n s a t 3 . 1 3 2 ( 3 ) A ( v s . 3 . 0 0 4 A i n ( 2 2 ) ) i s p e r h a p s d u e t o t h e l o n g e r S e 4 2 ' l i g a n d p r e s e n t i n t h e s t r u c t u r e . I n t e e s t i n g l y , t h e A u - S e b o n d l e n g t h s s e p a r a t e i n t o t w o s e t s . T h e A u - S e b o n d s t o S e 2 2 ' a r e l o n g a t 2 . 4 3 3 ( 5 ) A , w h i l e t h e A u - S e b o n d s t o S e 4 2 ' a r e s h o r t a t 2 . 3 5 5 ( 5 ) A . A l t h o u g h t h e S e - S e b o n d d i s t a n c e s i n S e ; ' a r e a l l n o r m a l , t h e S e - S e d i s t a n c e o f 2 . 4 6 ( 1 ) A i n S e 2 2 ' i s e v e n l o n g e r t h a n t h a t i n ( 2 - 2 ) . T h e e i g h t - m e m b e r e d r i n g i s p u c k e r e d . O t h e r s e l e c t e d m e t r i c p a r a m e t e r s a r e g i v e n i n F i g u r e 2 1 7 . 7 1 8 ° 1 3 ) . S e ( S ) F i g u r e 2 - 5 . T h e O R T E P R e p r e s e l t a t i o n o f t h e [ A u 2 ( S e 2 ) ( S e 3 ) ] 2 ' A n i o n i n ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] , S h o w i n g S t r u c t u r a l D i s o r d e r C a u s e d B y t h e I n v e r s i o n C e n t e r 7 2 F i g u r e 2 6 . T w o V i e w s o f t h e [ A u 2 ( S e 2 ) ( S e 4 ) ] 2 ‘ A n i o n 7 3 F i g u r e 2 - 7 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] ( S t e e o v i e w ) 7 4 T a b l e 2 1 7 . S e l e c t e d G e o m e t r i c D a t a f o r ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] ( 2 - 4 ) b B o n d D i s t a n c e s ( A ) A u - S e ( 1 ) 2 . 4 3 3 ( 5 ) A u - S e ( 2 ) 2 . 3 5 5 ( 5 ) A u - S e ( m e a n ) 2 . 3 9 4 ( 3 9 ) . S e ( 1 ) - S e ( 1 ) 2 . 4 6 ( 1 ) S e ( 2 ) - S e ( 2 ) 2 . 2 8 0 ( 6 ) S e ( 3 ) - S e ( 3 ) 2 . 3 0 1 ( 7 ) S e — S e ( m e a n ) 2 . 3 4 7 ( 5 0 ) A u - - - A u 3 . 1 3 2 ( 3 ) B o n d A n g l e s ( d e g ) S e ( l ) - A u - S e ( 2 ) 1 6 9 . 6 ( 1 ) A u - S e ( 1 ) - S e ( 1 ) 9 5 . 4 ( 1 ) A u - S e ( 2 ) - S e ( 3 ) 1 0 5 . 3 ( 2 ) S e ( 2 ) - S e ( 3 ) - S e ( 3 ) 1 0 5 . 3 ( 2 ) b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n o l = { £ n ( l n - l ) 2 / n ( n - 1 ) } 1 / 2 , w h e r e 1 , , i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . ( v ) . S t r u c t u r e o f ( E t 4 N ) 3 [ N a A u l e e 3 ] ( 2 - 5 ) T h e c r y s t a l l a t t i c e o f ( 2 5 ) c o m p r i s e s o f E t 4 N + c a t i o n s a n d [ N a A u 1 2 8 e 3 ] 3 ‘ a n i o n s . T h e c o m p o u n d c r y s t a l l i z e s i n t h e s p a c e g r o u p P - l ( # 2 ) . T h e N a + i o n a n d o n e o f t h e N a t o m s f r o m t h e E t 4 N c a t i o n s a r e l o c a t e d , r e s p e c t i v e l y , o n t h e i n v e r s i o n c e n t e r s 1 , 0 , 1 a n d 1 , 1 / 2 , 1 / 2 . T h i s i m p o s e s a s t r u c t u r a l d i s o r d e r o n t h e t e t r a h e d r a l m o l e c u l e 5 1 4 N + . A n o t h e r E t 4 N + c a t i o n i s s i t u a t e d i n a g e n e r a l p o s i t i o n , a n d h a s t h e n o r m a l t e t r a h e d r a l s t r u c t u r e . T h u s , t h e c o m p o u n d p o s s e s s e s a n a s y m m e t r i c u n i t o f ( E t 4 N ) 1 , 5 [ N a o , 5 A u 5 8 e 4 ] . W i t h t h e d i s o r d e r e d m o d e l o n t h i s E t 4 N + e a t i o n t h e s t r u c t u r a l r e fi n e m e n t y i e l d e d s a t i s f a c t o r y r e s u l t s , a n d t h e a n i o n s i t e w a s w e l l r e s o l v e d A p a c k i n g d i a g r a m o f t h e c o m p o u n d i s s h o w n i n F i g u r e 2 - 8 . F i g u r e 2 - 9 i s t h e O R T E P r e p r e s e n t a t i o n o f t h e [ N a A u 1 2 S e 3 ] 3 ' a n i o n . T h e s t r u c t u r e f e a t u r e s a n a l m o s t p e r f e c t c u b e w i t h t w e l v e l i n e a r l y - c o o r d i n a t e d A u ’ r i o n s p o s i t i o n e d a t t h e m i d - p o i n t s o f t h e e d g e s a n d e i g h t t r i g o n a l S e a t o m s o c c u p y i n g t h e c o m e r s o f t h e c u b e . T h e m o l e c u l e p o s s e s s e s a n i d a l i z e d 0 ] , s y m m e t r y . T h e c a p t u r e d N a + i o n i s s i t u a t e d a t t h e c e n t e r o f t h e c u b e , a n d i n t e a c t s w i t h t h e A u " a t 3 . 3 2 7 ( 3 ) A t o 3 . 4 6 7 ( 3 ) A . 7 5 T h e a f fi n i t y o f t h e [ A u 1 2 S e g l 4 ‘ c a g e f o r N a + i s r e m i n i s c e n t o f t h e b e h a v i o r o f o r g a n i c - b a s e d c r y p t a n d m o l e c u l e s . S e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s a s g i v e n i n T a b l e 2 - 1 8 . ( v i ) . S t r u c t u r e o f ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] ( 2 6 ) T h e c r y s t a l l a t t i c e o f ( 2 6 ) i s m a d e u p o f n o n - i n t e r a c t i n g P h 4 P + c a t i o n s a n d [ A u 2 ( T e 2 ) 2 ] 2 ‘ a n i o n s . T h e P h 4 P + e a t i o n s h a v e t h e n o r m a l t e t r a h e d r a l s t r u c t u r e , a n d w i l l n o t b e d i s c u s s e d f u r t h e r . T h e s t r u c t u r e o f t h e [ A u 2 ( T e 2 ) 2 ] 2 ' a n i o n i s s h o w n i n F i g u r e 2 1 0 , w h i l e t h e p a c k i n g d i a g r a m o f t h e c o m p o u n d i s s h o w n i n F i g u r e 2 - 1 1 . T h e [ A u 2 ( T e 2 ) 2 ] 2 ‘ a n i o n i s a p e r f e c t l y p l a n a r m o l e c u l e w i t h D 2 1 . s y m m e t r y b e c a u s e i t i s s i t u a t e d o n a n c r y s t a l l o g r a p h i c a l l y i m p o s e d i n v e r s i o n c e n t e r . T h e s t r u c t u r a l m o t i f i s a n a l o g o u s t o t h e [ A u 2 ( S e 2 ) ( S e x ) ] 2 ' ( x = 3 , 4 ) a n i o n s d e s c r i b e d a b o v e . T h e s i m i l a r l e n g t h s o f t h e A u — A u a n d T e - T e v e c t o r s i n t h i s s t r u c t u r e a r e p r o b a b l y r e s p o n s i b l e f o r t h e s t a b i l i t y o f s u c h a s y m m e t r i c e n t i t y . T h e s a m e m o l e c u l e h a s b e e n i s o l a t e d a s t h e P P N “ s a l t , a n d s t r u c t u r a l l y c h a r a c t e r i z e d b e f o r e [ 3 ] . T h e m e t r i c p a r a m e t e r s i n t h e c u r r e n t a n i o n a r e s i m i l a r t o t h o s e f o u n d i n ( P P N ) 2 [ A u 2 ( T e 2 ) 2 ] , a n d a r e c o m p a r e d i n T a b l e 2 - 1 9 . 7 6 T a b l e 2 1 8 . S e l e c t e d G e o m e t r i c D a t a f o r ( E t 4 N ) 3 L N a A u 1 2 8 e 3 ] ( 2 . 5 ) b B o n d D i s t a n c e s ( A ) A u ( 1 ) - S e ( 1 ) 2 . 4 0 0 ( 7 ) A u ( l ) - S e ( 2 ) 2 . 4 1 4 ( 8 ) A u ( 2 ) - S e ( 2 ) 2 . 4 0 2 ( 8 ) A u ( 2 ) - S e ( 3 ) 2 . 4 0 0 ( 8 ) A u ( 3 ) - S e ( 3 ) 2 . 4 1 7 ( 7 ) A u ( 3 ) - S e ( 4 ) 2 . 4 0 8 ( 6 ) A u ( 4 ) - S e ( l ) 2 . 4 2 8 ( 7 ) A u ( 4 ) - S e ( 4 ) 2 . 4 0 1 ( 6 ) A u ( 5 ) - S e ( 1 ) 2 . 3 9 9 ( 7 ) A u ( 5 ) - S e ( 3 ) 2 . 4 0 4 ( 7 ) A u ( 6 ) - S e ( 2 ) 2 . 4 0 1 ( 7 ) A u ( 6 ) - S e ( 4 ) 2 . 4 0 2 ( 6 ) A u - S e ( m e a n ) 2 . 4 0 6 ( 5 ) N a - - - A u ( 1 ) 3 . 4 5 1 ( 2 ) N a - - - A u ( 2 ) 3 . 3 9 1 ( 3 ) N a - - - A u ( 3 ) 3 . 2 7 2 ( 3 ) N a - - A u ( 4 ) 3 . 3 6 9 ( 3 ) N a - - - A u ( 5 ) 3 . 4 6 7 ( 3 ) N a - - - A u ( 6 ) 3 . 3 0 6 ( 2 ) B o n d A n g l e s ( d e g ) S e ( 1 ) — A u ( 1 ) - S e ( 2 ) 1 7 7 . 8 ( 2 ) S e ( 2 ) - A u ( 2 ) — S e ( 3 ) 1 7 7 . 8 ( 2 ) S e ( 3 ) - A u ( 3 ) - S e ( 4 ) 1 7 8 . 0 ( 2 ) S e ( 1 ) - A u ( 4 ) - S e ( 4 ) 1 7 9 . 6 ( 2 ) S e ( 1 ) - A u ( 5 ) - S e ( 3 ) 1 7 8 . 2 ( 3 ) S e ( 2 ) - A u ( 6 ) - S e ( 4 ) 1 7 9 . 1 ( 2 ) A u ( 1 ) - S e ( 1 ) - A u ( 4 ) 8 5 . 8 ( 2 ) A u ( 1 ) - S e ( 1 ) - A u ( 5 ) 9 0 . 5 ( 2 ) A u ( 4 ) - S e ( 1 ) - A u ( 5 ) 8 5 . 9 ( 2 ) A u ( 1 ) - S e ( 2 ) - A u ( 2 ) 9 1 . 1 ( 3 ) A u ( 1 ) — S e ( 2 ) - A u ( 6 ) 8 8 . 2 ( 2 ) A u ( 2 ) - S e ( 2 ) - A u ( 6 ) 8 6 . 7 ( 2 ) A u ( 2 ) - S e ( 3 ) - A u ( 3 ) 8 6 . 0 ( 2 ) A u ( 2 ) - S e ( 3 ) - A u ( 5 ) 9 2 . 1 ( 2 ) A u ( 3 ) - S e ( 3 ) - A u ( 5 ) 8 8 . 0 ( 2 ) A u ( 3 ) - S e ( 4 ) - A u ( 4 ) 9 2 . 4 ( 2 ) A u ( 3 ) - S e ( 4 ) - A u ( 6 ) 8 9 . 5 ( 2 ) A u ( 4 ) - S e ( 4 ) - A u ( 6 ) 9 3 . 2 ( 2 ) b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n o 1 = { £ n ( l n - l ) 2 / n ( n - 1 ) } 1 / 2 , w h e r e 1 , 1 i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . 7 7 T a b l e 2 1 9 . S e l e c t e d G e o m e t r i c D a t a f o r ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] ( 2 6 ) a n d C o m p a r i s o n w i t h ( P P N ) 2 [ A U 2 ( T 6 2 ) 2 ] [ 3 ] P h 4 P + s a l t P P N “ s a l t A u - - - A u 2 . 9 0 5 ( 2 ) 2 . 9 0 8 A u — T e ( l ) 2 . 5 7 3 ( 2 ) 2 . 5 4 3 A u - T e ( 2 ) 2 . 5 7 2 ( 2 ) 2 . 5 5 2 T e ( 1 ) - T e ( 1 ) 2 . 8 1 6 ( 2 ) 2 . 7 8 1 T e ( 1 ) - A u - T e ( 2 ) 1 7 7 . 7 2 ( 6 ) 1 7 6 . 6 4 A u - T e ( 1 ) — T e ( 2 ) 9 1 . 6 9 ( 6 ) 8 8 . 7 9 A u - T e ( 2 ) - T e ( l ) 9 0 3 0 ( 6 ) 9 4 . 0 5 b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n o l = { £ n ( 1 n - l ) 2 / n ( n - 1 ) } 1 ’ 2 , w h e r e 1 , , i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . F i g u r e 2 - 8 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( F 2 4 N ) 3 [ N a A u 1 2 8 e g ] ( S t e r e o v i e w ) . O n e E t 4 N + I s L o c a t e d o n a n I n v e r s i o n C e n t e r ( 1 , 1 / 2 , 1 / 2 ) , S h o w i n g D i s o r d e ' 7 8 ( I l l ‘ ‘ U 7 9 F i g u r e 2 9 . T h e S t r u c t u r e o f t h e [ N a A u n S e g P ' A n i o n 8 0 F i g u r e 2 1 0 . T w o V i e w s o f t h e [ A u z ( T e 2 ) 2 ] 2 ' A n i o n 8 1 F i g u r e 2 - 1 1 . ' ’ ' T h e P a c k l n g D i a g r a m 1 n t h e U n i t C e l l o f ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] ( S t e r e o v i e w ) 8 2 2 . S p e c t r o s c o p i c S t u d i e s T h e s o l i d - s t a t e f a r I R s p e c t r a o f a l l s e l e n i d e c o m p o u n d s s h o w a s t r o n g a b s o r p t i o n a t ~ 2 3 6 c m ' 1 a s s h o w n i n F i g u r e 2 - 1 2 . T h i s b a n d i s t h e o n l y f a r I R a b s o r p t i o n f o r ( E t 4 N ) 3 [ N a A u 1 2 S e g ] ( i . e . a t 2 3 9 c m ' l ) . B a s e d o n t h i s o b s e r v a t i o n , t h e p e a k i s a s s i g n e d t o t h e A u - S e s t r e t c h i n g v i b r a t i o n . I n a d d i t i o n , a b r o a d p e a k c e n t e r e d a r o u n d 2 0 2 c m ’ 1 a p p e a r s i n a l l t h e s e s p e c t r a . A l t h o u g h t h i s m i g h t b e a g o o d c a n d i d a t e f o r a n o t h e r A u - S e s t r e t c h i n g v i b r a t i o n , t h e p e a k i s n o t a s s i g n e d a t t h i s s t a g e d u e t o l a c k i n g o f a n y c o n fi r m a t o r y e v i d e n c e f r o m o t h e r k n o w n g o l d s e l e n i d e c o m p o u n d s . C o m p o u n d s ( 2 - 1 ) — ( 2 - 4 ) a l s o s h o w a b s o r p t i o n s i n t h e r e g i o n o f 2 7 6 o r / a n d 2 5 0 c m ‘ l , i . e . ( P P N ) 2 [ A u 2 S e 2 ( S e 4 ) 2 ] h a s t w o p e a k s a t 2 7 6 ( w ) a n d 2 5 6 ( m , b r o a d ) . ( P h 4 P ) 2 [ A u z ( S e 2 ) ( S e 3 ) ] a n d ( P P N ) 2 [ A u 2 ( S e z ) ( S e 3 ) ] h a v e a s i m i l a r I R p a t t e r n i n t h i s r e g i o n , b e i n g c h a r a c t e r i z e d b y a p e a k a t 2 6 5 c m ‘ 1 a l t h o u g h t h i s p e a k h a s t w o s h o u l d e r s f o r ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] . T h e s p e c t r u m o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] i n t h e s a m e r e g i o n s h o w s t h r e e p e a k s a t 2 7 8 ( w ) , 2 6 6 ( m ) a n d 2 5 7 ( m , b r o a d ) c m ' l . A l l t h e s e a b s o r p t i o n s c a n b e a t t r i b u t e d t o S e — S e s t r e t c h i n g v i b r a t i o n s . T h e s i m i l a r a s s i g n m e n t h a s a l s o b e e n m a d e i n t h e f a r I R s p e c t r a o f o t h e m e t a l p o l y s e l e l i d e c o m p o u n d s o r u n b o u n d l i g a n d s , [ F e Z S e l z l z ' ( v s e . s e = 2 5 8 c m ' 1 ) [ 1 9 ] , [ S n S e l z l z ‘ ( v s e . s e = 2 7 3 a n d 2 5 6 c m ' 1 ) [ 2 0 ] , [ A n g e y l n ‘ ( v s e - s e = 2 6 5 c m ' 1 ) [ 2 1 ] , [ S e x ] 2 ' ( x = 2 - 6 , v w s e = 2 8 5 c m ‘ 1 ) [ 2 2 ] a n d c y c l o — S e 6 ( v s e - s e = 2 5 3 c m ' 1 ) [ 2 3 ] . ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] s h o w s a w e a k a b s o r p t i o n a t 1 8 8 c m ‘ l . T h i s p e a k i s t e n t a t i v e l y a s s i g n e d t o t h e T e - T e s t r e t c h i n g v i b r a t i o n . T h e s i m i l a r a s s i g n m e n t h a s b e e n k n o w n i n t h e l i t e r a t u r e , i . e . v T e . T e = 2 0 0 c m ' 1 f o r ( P l u P ) 2 [ P d ( T e 4 ) 2 l - D M F [ 2 4 ] a n d v r e - r e = 1 8 8 c m ' 1 f o r ( P h 4 P ) 2 [ T e 4 ] [ 2 5 ] . A l l p o l y s e l e n i d e c o m p o u n d s i n D M F g i v e U V / v i s a b s o r p t i o n s i n t h e 2 0 0 — 8 0 0 n m r e g i o n a s s h o w n i n F i g u r e s 2 - 1 3 — 2 - 1 4 . T h e D M F s o l u t i o n o f ( E t 4 N ) 3 [ N a A u 1 2 S e 3 ] s h o w s a f e a t u r e l e s s U V / v i s s p e c t r u m . ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] i s i n s o l u b l e i n c o m m o n o r g a n i c s o l v e n t s , b u t d e c o m p o s e s i n D M F , g i v i n g a U V / v i s s p e c t r u m s i m i l a r t o t h a t o f p o l y t e l l u r i d e 8 3 a s s h o w n i n F i g u r e 2 - 1 5 . T a b l e 2 - 2 0 s u m m a r i z e s t h e s o l u t i o n U V / v i s d a t a f o r t h e s e c o m p o u n d s . T a b l e 2 2 0 E l e c t r o n i c S p e c t r a l D a t a f o r ( P P N ) 2 [ A u 2 S e 2 ( S e 4 ) 2 ] ( 2 - 1 ) , ( P h 4 P ) 2 [ A U 2 ( S e 2 ) ( S e s ) ] ( 2 ' 2 ) , ( P P N ) 2 [ A 0 2 ( 5 6 2 ) ( 5 6 3 ) ] ( 2 ' 3 ) , ( P h 4 P ) 2 [ A U 2 ( S e z ) ( S e 4 ) ] ( 2 ' 4 ) . ( E 1 4 N ) 3 1 N a A 0 1 2 $ e 8 ] ( 2 ' 5 ) a n d ( P h 4 P ) 2 [ A U 2 ( T e z ) 2 1 ( 2 6 ) i n D M F c o m p o u n d A m , n m ( e , M ' l c m ‘ l ) ( P P N ) 2 [ A u Z S e 2 ( S e 4 ) 2 ] 3 1 4 ( 2 8 6 0 0 ) , 3 9 8 ( 9 6 9 0 ) ( P h 4 P ) 2 [ A u z ( S e z ) ( S e s ) ] 4 9 7 ( b r o a d , 3 1 6 0 ) ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] 5 0 1 ( b r o a d , 2 9 4 0 ) ( P h 4 P ) 2 [ A U 2 ( S e z ) ( S e 4 ) ] 2 9 2 ( 8 1 1 . 1 1 5 0 0 ) , 3 8 7 0 M “ . 3 9 3 0 ) ( E t 4 N ) 3 [ N a A u 1 2 S e 3 ] f e a t u r e l e s s ( P h 4 P ) 2 | A u n g g z p l 5 3 0 ( d e c o m p o s i n g ) I n D M F b o t h ( P h 4 P ) 2 [ A U 2 ( S e 2 ) ( S e 3 ) 1 a n d ( P P N ) 2 [ A U 2 ( S € = 2 ) ( 5 6 3 ) 1 g i v e t w o 7 7 3 6 N M R r e s o n a n c e s a t 3 6 6 a n d 5 0 4 p p m a s s h o w n i n F i g u r e 2 - 1 6 . I n a d d i t i o n , a v e r y w e a k p e a k a t 4 1 0 p p m i s o b s e r v e d f o r ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] , b u t n o t f o r ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] . T h e p e a k s a t 3 6 6 a n d 5 0 4 p p m a l s o a p p e a r i n t h e 7 7 S e N M R s p e c t r u m o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] i n D M F a t 3 6 5 a n d 5 0 3 p p m , a l o n g w i t h s e v e a l o t h e r p e a k s , i . e . - 3 , 1 4 6 , 1 5 7 , 4 0 8 , 4 2 1 , 6 3 5 a n d 7 0 2 p p m . D u e t o t h e l a c k o f c o u p l i n g i n f o r m a t i o n a n d c h e m i c a l s h i f t p a r a m e t e r s f o r o t h e r k n o w n A u / S e c o m p l e x e s , t h e s p e c t r a c a n n o t b e e a s i l y i n t e r p r e t e d T h r e e p o s s i b l e s c e n a r i o s a r e ( a ) ( P h 4 P ) 2 [ A n z ( S e z ) ( S e 3 ) l / ( P P N ) 2 [ A U 2 ( S e z ) ( S e s ) l r e m a i n i n t a c t i n s o l u t i o n . b u t ( P h 4 P ) 2 [ A u z ( S e z ) ( S e 4 ) l d i s s o c i a t e s t o g i v e ( P h 4 P ) 2 [ A u z ( S e z ) ( S e 3 ) l a n d o t h e r u n k n o w n S p e c i e s . B a s e d o n t h e r a t i o o f p e a k i n t e n s i t i e s , a r e a s o n a b l e s p e c t r a l a s s i g n m e n t f r o m t h i s s c e n a r i o w o u l d b e t h a t t h e p e a k a t 5 0 4 p p m c o m e s f r o m f o u r g o l d - b o u n d S e a t o m s a n d t h e P e a k a t 3 6 6 p p m f r o m t h e i n t e n a l S e a t o m ; ( b ) A l l c o m p o u n d s d i s s o c i a t e i n s o l u t i o n , B i V i n g a t l e a s t o n e c o m m o n s p e c i e s , w h i c h i s r e s p o n s i b l e f o r t h e p e a k s a t 5 0 4 a n d 3 6 6 8 4 p p m ; ( c ) [ A u 2 ( S e 2 ) ( S e 3 ) ] 2 ‘ a n d [ A u 2 ( S e 2 ) ( S e 4 ) ] 2 ‘ d i s s o c i a t e v i a d i f f e r e n t p a t h w a y s , b u t t h e c h e m i c a l s h i f t s o f s o m e S p e c i e s i n v o l v e d i n b o t h e q u i l i b r i a h a p p e n t o c o i n c i d e w i t h o n e a n o t h e r . O n a n y a c c o u n t , i t i s f a i r t o c o n j e c t u r e t h a t s p e c i e s g e n e r a t e d i n D M F s o l u t i o n o f t h e s e c o m p o u n d s m a y n o t b e n e c e s s a r i l y t h e s a m e a s t h o s e i n t h e s o l i d - s t a t e . F i n a l l y , t h e w e a k r e s o n a n c e a t 4 0 0 p p m f o r ( P P N ) 2 [ A u 2 ( S e 2 ) ( S e 3 ) ] , w h i c h h a p p e n s t o b e t h e s t r o n g e s t r e s o n a n c e i n t h e 7 7 S e N M R s p e c t r u m o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] , m a y b e a n i n d i c a t i o n t h a t t h e s a m p l e c o n t a i n s a t i n y a m o u n t o f ( P h 4 P ) 2 [ A u 2 ( S e 2 ) ( S e 4 ) ] w h i c h i s n o t d e t e c t e d b y X R D s t u d i e s ( i . e . < 5 % ) . ( P P N ) 2 [ A u 2 S e 2 ( S e 4 ) 2 ] i s s p a r i n g l y s o l u b l e i n D M F . A d d i t i o n o f B u 4 N B r t o t h e s o l u t i o n i n c r e a s e s t h e s o l u b i l i t y o f t h i s c o m p o u n d , b u t e v e r t h e s a t u r a t e d s o l u t i o n i s n o t c o n c e n t r a t e d e n o u g h t o a l l o w f o r 7 7 S e N M R s t u d y . T h e 7 7 S e N M R s p e c t r u m o f ( F 1 4 N ) 3 [ N a A u 1 2 S e g ] i n D M F s h o w s a s i n g l e r e s o n a n c e a t 7 5 8 p p m ( r e l a t i v e t o P h 2 8 e 2 i n D M F a t 6 : 4 6 0 p p m ) a s s h o w n i n F i g u r e 2 - 1 7 . T h e s a m e s o l u t i o n g i v e s a s i n g l e 2 3 N a N M R s i g n a l a t - 1 2 . 0 p p m ( r e l a t i v e t o N a B P h 4 i n D M F a t 8 : 0 p p m ) ( s e e F i g u r e 2 - 1 7 ) . T h e u p fi e l d s h i f t o f t h e r e s o n a n c e i n d i c a t e s t h a t t h e N a + i o n i s s o m e w h a t " n a k e d " c o m p a r e d t o t h e " f r e e " s o d i u m i o n o f t h e N a B P h 4 s o l u t i o n . T h e l a t t e r i s a c t u a l l y h i g h l y s h i e l d e d b y s o l v e n t m o l e c u l e s . T h e N M R d a t a s u g g e s t t h a t i n s o l u t i o n , ( E t 4 N ) 3 [ N a A u 1 2 S e 3 ] r e t a i n s i t s s t r u c t u r a l i n t e g r i t y a n d a r e c o n s i s t e n t w i t h a m o l e c u l e p o s s e s s i n g 0 ] , s y m m e t r y . 3 . T h e r m a l D e c o m p o s i t i o n P r o p e ' t i e s F i g u r e s 2 1 8 a n d 2 1 9 s h o w t h e T G A d i a g r a m s o f t h e s i x c o m p o u n d s i n t h e l e m m a “ ? r a n g e o f 2 5 t o 3 0 0 ' C - ( P P N ) 2 [ A 0 2 3 6 2 ( 3 6 4 ) 2 ] . ( P h 4 P ) 2 [ A 0 2 ( S e z ) ( S e s ) ] . ( P P P D 2 1 A U 2 ( 3 6 2 ) ( 5 6 3 ) ] . a n d ( P h 4 P ) 2 [ A U 2 ( S e z ) ( S e 4 ) ] u n d e r g o 6 1 w ! t h e r m a l d e c o m p o s i t i o n s b e l o w 5 3 0 ' C , g i v i n g v a r i o u s i n t e r m e d i a t e s a s l i s t e d i n T a b l e 2 - 2 1 . H o w e v e , a t t e m p e r a t u r e s h i g h e r t h a n 7 2 0 ° C , a l l i n t e r n e d i a t e s s t a r t l o s i n g w e i g h t a g a i n — p r e s u m a b l y g i v i n g u p s e l e n i u m . T h e fi n a l p r o d u c t i n a l l t h e c o m p o u n d s a t 8 3 0 ' C w a s 8 5 a n y w e l l - d e fi n e d i n t e r m e d i a t e s a c c o r d i n g t o t h e i r T G A d i a g r a m s . I n b o t h c a s e s , t h e w e i g h t l o s s c o n t i n u e s a f t e r 8 0 0 ° C . M ( B ) E C N A T T I M S N A R T E V I T A L E R 8 6 ( A ) ( C ) ( D ) * ( E ) J 1 d 3 2 1 3 2 8 2 8 5 2 5 2 1 9 9 1 5 6 W A V E N U M I E R F i g u r e 2 - 1 2 . T h e s o l i d - s t a t e f a r I R s p e c t r a o f ( A ) ( P P N ) 2 [ A u 2 $ e z ( S e 4 ) 2 ] , ( B ) ( P h 4 P ) 2 [ A u z ( S e z ) ( S e a ) l . ( C ) ( P P N ) 2 [ A 9 2 ( S e 2 ) ( S e 3 ) l . ( D ) ( P h 4 P ) 2 [ A u z ( S e z ) ( S e 4 ) l . ( E ) ( M a m a A U l e e s l a n d ( F ) ( P h 4 P ) 2 [ A u z ( T e z ) 2 l - * a b s o r p t i o n fl o w t h e P P N ” c a t i o n F i g u r e 2 . 1 4 . T h e U V / v P ( i P s N S p ) 2 e 1 c A t u r 2 a ( o e S f z ( ) A ( ) S ¢ ( 3 P ) h l 4 P i ) n 2 D [ A M u F 2 ( S e 2 ) ( S e 3 ) ] a n d ( B ) 8 7 A B S 2 0 0 4 0 0 6 0 0 8 0 0 W A V E L E N G T H . n m F i g u r e 2 - 1 3 . T h e U V / v i s S p e c t r a o f ( A ) ( P P N ) 2 [ A u 2 8 e 2 ( S e 4 ) 2 ] a n d ( B ) ( P h 4 P ) 2 [ A u z ( S c z ) ( S e 4 ) l I n D M F A B S 2 0 0 4 0 0 6 0 0 3 0 0 W A V E L E N G T H , n m 0 0 3 . l _ . — J ~ 0 m n 6 , \ . H T G N E L E V 0 A 0 W 4 0 0 2 S B A A F i g u r e 2 - 1 5 . T h e U V / v i s S p e c t r u m o f ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 | i n D M F 8 8 T m f p p | r fi r l l ' o fi p T ‘ I T l l 0 — r ‘ 0 4 4 | 1 3 W l l t l l l l 3 m ‘ f ‘ r ‘ T ‘ T T — t . ) ) C C ( ( n i d n t l a ) l L ’ 0 fi 6 U | I 3 ' T T T ' T ‘ t o T t T r T l ) 0 l — 8 l r i J ' 3 t ’ r ‘ T — m T ' T l l l l l t ) l t t ) u 2 B e S , ( ) 2 B ( u A d [ n 2 a ) N ) P A ( i . m t u t 0 0 4 r ' l T 1 ( n i ) B t e ' P ' T I ‘ W T T T ‘ 0 I 0 — 4 r F I ' T ‘ T T T — ( m , | a ) S 3 e e h S t ( ) e 2 r e A S ( e z l u a A c S 1 [ T 0 1 4 4 W l J l l l I . W I ‘ I l l l » M f i | t I I I I l W l l l 1 1 4 ' 1 I I I I W I 1 1 3 . I H I I I I t W l ) A ( . ' l l l W l l t t l I I I 1 I I 1 r i m 1 W l l t l l l I I W I 0 1 1 4 ‘ I I I I | | I I I * 1 5 I 4 I I I 1 I I I I 1 0 8 I 4 I I I I I I I 1 ) 0 I 1 0 I 5 I I 0 I 5 I M I I O I | 1 I — r ’ T ‘ f 3 ‘ 3 t 5 n e r e ) f 3 f e i S d ( 2 ) m P p 4 p h P e ( h t ) t A ( a f T o e a t r o t N c e p . S F R M D M n N i e ] ) S 4 7 e 7 S e ( h ) 2 T e . S 6 ( 1 2 - u 2 A e l r 2 u ) l 0 ) h ' P t ' 1 fi ‘ 1 ‘ T ‘ 1 ) B ( g i 4 F h P ( W W ) W M W ’ * W W M M A M J W ” M W W W u w s r i d ‘ V D - W M r W 8 9 m p p n i 1 0 4 2 - o m o m o n . e ) A ( m 1 I 1 1 [ I h 1 I I 1 ‘ I 1 I I l I | 1 4 1 F M D n i | g e 8 2 1 u A a N [ 3 ) N 4 t E ( f o ) B ( m | u I I ‘ 3 1 2 ‘ 1 - ‘ , ‘ , # ' _ ' ‘ 7 ‘ " ) . I s r t c e p S R M N a N 3 2 d n a ) i A ' 3 ~ ' C ‘ T - i l l ' - I “ I ' I . | | I ‘ A " ( m u r t c e p S R M N e S 7 7 e h T . 7 1 - 2 e - r u g i F ' H T . - ] ’ ” - I ‘ ' 1 ' " ) B ( 9 0 - 0 0 8 0 0 8 J 0 l 0 7 r o ) U ( l o s r o 1 o s L ! 0 l W 0 4 M r “ 0 l 0 3 r 0 L 0 2 r 0 1 0 1 r 0 0 0 0 0 0 0 2 0 8 6 4 2 1 1 e b 3 1 7 0 0 8 1 0 1 0 7 r 0 D C ( 1 0 6 1 o 1 o s 1 I C 0 l 1 0 p 4 m r e T 0 1 0 3 r o 1 o z r 0 i 1 0 C 7 ( ’ i ) 0 3 L 1 0 e 6 S r ( ) z 0 1 e 0 5 S ( r I 2 0 C u l N 0 A m 1 4 ] 1 a 2 T ) ) 0 P 4 l 0 3 4 e h s P ( r ( ) o ) e 2 1 B S o z ( ( 2 r , u ] A 0 2 [ 1 0 ) 2 1 4 ) l P e 4 S h ( P 0 2 ( e 0 0 8 ) 4 2 2 n ( 0 A d 1 n 2 ! ‘ 0 M 0 a 8 P l P ) ( s e 0 ) S 0 A ( 7 ( ) 0 f 2 o e S L 1 1 t I 0 s ( 6 m 2 1 a u r A 0 g l l 0 a e 5 i l l ] D P C P 0 l A ( l 0 p 4 m G A e T T 0 e l h 0 3 T 1 . 0 I - 8 1 0 2 1 2 e r u 0 0 1 0 l g 0 1 1 i F 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 0 8 7 6 1 0 9 8 7 6 5 4 3 1 1 1 1 % M 5 0 4 0 3 0 % M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 7 7 7 p — : - l — - l - r — u ) - L — p - p - p - — h - h ' I V ‘ V Y I ' ( A ) ' V I Y ' I I T 1 " ? I 1 1 O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l T 1 7 1 1 1 1 1 ' V I I I 1 1 1 ' 1 1 1 1 I V Y 0 1 2 0 1 0 0 8 0 h e 3 . 6 0 9 1 0 0 8 0 0 7 0 0 6 0 0 5 l C 0 l 0 p 4 m e r T _ 0 1 0 ) B ( d n a ] 3 : 3 t 0 8 2 | 0 u 2 A 0 0 0 0 0 0 0 0 0 1 0 9 8 7 6 5 4 3 1 1 £ l 0 0 1 0 « i ) i . 0 8 a N l 3 ) N u l E ( 2 ) 2 ) 6 A T ( ( 2 f U o A s m a [ 2 ) L P r 4 0 g h 1 0 a P 7 i ( 1 0 1 0 6 r 0 D A G T e 1 h 0 5 ] C T . 4 9 0 [ 1 0 p 4 m 1 2 1 e s T e r u g i F . 0 0 3 1 1 0 1 0 2 1 0 1 0 . 1 4 0 fi 1 j I I I I T U ) A ( ’ 0 5 0 . 1 8 1 7 3 1 5 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 1 l 1 1 A L 1 J 1 1 1 T T T I I ‘ l l T T T T I T T T T I I T T I ‘ Y T l l r q . 4 1 0 9 2 9 3 T a b l e 2 - 2 1 . T h e r m a l G r a v i m e t r i c A n a l y s i s D a t a f o r ( P P N ) 2 [ A u Z S e 2 ( S e 4 ) 2 ] ( 2 - 1 ) , ( P h 4 P ) 2 [ A U 2 ( S e z ) ( S e 3 ) ] ( 2 ' 2 ) ( P P N ) 2 [ A U 2 ( S e z ) ( S e 3 ) ] ( 2 ' 3 ) , ( P h 4 P ) 2 [ A u z ( S e z ) ( S e 4 ) ] ( 2 ‘ 4 ) , ( E t 4 N ) 3 [ N a A U I 2 _ S e s l ( 2 ' 5 ) a n d ( P h 4 P ) ; [ A u z ( T e 2 _ ) ; ] ( 2 ' 6 ) o o m p d o n s e t t e m p fi n a l t e m p o b s d % c a l c d % p r o p o s e d ° C ° C w t l o s s w t l o s s r e s i d u e f o r m u l a ( 2 - 1 ) 3 6 7 5 2 5 6 2 . 6 5 6 1 . 5 9 A u 2 8 e 6 ( 2 - 2 ) 2 3 5 4 0 8 6 6 . 1 5 6 7 . 7 8 A u z s e z ( 2 - 3 ) 3 2 9 5 2 9 6 1 . 5 5 6 1 . 9 4 A u g S e 4 ( 2 - 4 ) 2 6 0 4 1 7 6 9 . 6 9 6 9 . 4 1 A U Z S e ( 2 . 5 ) 1 9 3 2 1 0 1 5 . 8 3 / I 3 4 1 3 7 9 5 . 6 4 / I 6 6 2 8 0 0 / A u T e 2 ( 2 - 6 ) 1 5 9 3 6 2 3 6 . 6 2 / / 5 3 3 ? I V . D i s c u s s i o n T h e s y n t h e s i s o f f o u r g o l d p o l y s e l e n i d e c o m p l e x e s a n d a g o l d m o n o s e l e n i d e c l u s t e r w a s r e a d i l y a c c o m p l i s h e d t h r o u g h r e a c t i o n s b e t w e e n A u C N a n d s u i t a b l e s o d i u m p o l y s e l e n i d e s N a z s e x ( x = 2 - 5 ) , o r s o d i u m m o n o s e l e n i d e N a Z S e i n t h e p r e s e n c e o f t h e o r g a n i c c o u n t e r i o n s u c h a s W , P P N “ o r E t 4 N + . S i m i l a r r e a c t i o n s o f A u C N / A u C 1 3 w i t h K 2 T e 2 / K 2 T e g a v e t h e A u + p o l y t e l l u r i d e [ A u 2 ( T e 2 ) 2 ] 2 ‘ c o m p l e x : A U + + 2 8 8 4 2 - A u + + 3 S e 2 2 ' ( o r S e g z ’ ) D M F ( P h 4 P ) 2 [ A U 2 ( S € ' q ) ( S € 3 ) ] e C 1 - ( 2 ‘ 1 ) W ( P h 4 P ) 2 [ A u 2 ( S e Z ) ( S e 4 ) ] e q . ( 2 - 2 ) 4 A u + + 2 A h a r l a t r a o n i t p e u e , d o o l y A u h 8 , i + o e e m c c s t e , . e 5 h l x t r a o s s e e s n u [ t c e h l x o , 2 m e c A “ o n b O d c d , i . t a e e r p i l ' l i . f S t F v b e s a d e t e f g 2 e + d o ' c e r t i s , c i f n h i t a f e h o d t e t T a h n i t s H x e e n h f h o e z r r g f e m h c h n n s ' o e i o m o p x b o i e p s S m u s v a r o o a a q a r n r a s i t f o e n e f b l a r D i t S o z n w u s e u v x e t i e a d f u A d o n e e r M l ’ g . t e 3 i c n l e i v c n h o fl i 4 e i e p o d e w n s e f r r o t s m b t e t l t h e i o l p s y m l c o m o i a " e v e o s a p n h c t e c f o m a a d g l c t u g r d u e 8 + i q w a l u e 5 2 ' — — > D M I 1 / 2 ( P 2 T e o s t s p n a ” T m e e i i ' c u h ( c e Z e n t i o e y a l l s t i ) e v w o e i i a h a t S t s h a f o e b n i e o d c m e t a S 2 e g e e 2 n o e e m n e u 2 i b b l h l p ( o f l h x g e e e 2 o r ' n t t r i a r t p a l e e e o o S 4 i n i r n n e 2 u [ o e a h f o fl n t e c i n h w s e g g 4 o e ' A . e f ) r d 2 u i e r 6 d f p o e d r x S t — h l m j c t a a 2 c s b , h — h 9 e o c [ ' n e m — i s e a t “ n f l n , 2 W ] 1 ] t x t e o a e s e s s e S A a , e i : r t i . l o l n v a e [ s S e l u n e e 2 i ? a e e e i 3 d l t n c M i s o g 0 v c r m x t ( b n h S o u z S 1 / a e - a y a t i a . g o e n o n s 1 t i r 3 s l c ' d e 2 h e e 5 s e n s e s s 2 ] t i l . o h ( p y a o e t ( s . r a b a f a f S r n f d l I n d s c ) 2 ' P i m i c N P s ( a h i e l t T S f t i e e c ) I S e z e h n e i n s 4 a ) a t i h t n t A h i e t P ) q S b f n p u l n o e u r r 4 d e o a n , t e f y a r n i o e g i s 2 n n 5 e ] h e ) e n o n t e o r , e t ' 2 a i o e e [ a t l d h t x , g u t e r o m d h e c r 2 b c ' e h 2 n h s d a w A i y c t n n u o s t h d e r e l o x o t h d e o i e p t c n e s o f o e l P t x u ( s t T e a e T e g ) 2 l l c o n q d r e m n c e e i p i e ) n o o e h e r e m a c i m t c h P e s s s a i N e e g p e e o s x n l e i n s t u s b m n + p d a i , a t y i i t r p , r k l s o i l a e o t s c i e i t e c s a . o a r a v e r e . e d s v t t s q l o u a y t g . i p w i h l v m i b a u o r s l + e n e . 5 s i n e f c e v a ( g e n o c e n t o n s o 2 r e t m e f I ' 6 o g x f . t n s t 2 a r n - i e n a o i d v h o t g e w n h e e m P c e e a d a e e r a y 3 o S d e t r a h h t b x b n i s r u ) d s s , u e t s w h a i t l p h . e a s u i e i o « e S s A d r n 2 [ A u 2 ( S e ) 2 ( S e 4 2 ] e q . ( 2 - I 3 ) a s f a a x o o P e n o e w u g o , s r t d u s b n e o ' k d l h u o i c f , s d y , c t l a ( t o l “ i n d b n p i c s u e h n w z r e e x n n t + e i c n o t l a g x e t N b s t t a i y s e h v i a a n o r t b t i y r a c t y a g r c = i b s h o , i e h 1 e o n i d i o j i n e n , n u u t z h e d o H 3 s t e g o d u p o u s t r d 3 ) s e u t t s b e d 9 4 P P N + + M e O H / D M F A u + N a z s e + ’ ( E t 4 N ) 3 [ N a A u l z s e g l e q . ( 2 . 4 ) E t 4 N 3 + 2 - D M F A “ + 2 T 6 W 1 / 2 ( P h 4 P ) 2 [ A u 2 ( T e 2 ) 2 ] e q . ( 2 - 5 ) 4 b y A u 3 + , r e s u l t i n g i n t h e i s o l a t i o n o f a n o x i d a t i o n p r o d u c t o f 8 e 5 2 ’ [ 5 ] w i t h t h e f a t e o f A u + 9 5 u n k n o w n ; ( b ) g i v e n t h e i r s t r u c t u r a l s i m i l a r i t y , [ A u 2 ( S e 2 ) ( S e 3 ) ] 2 ' a n d [ A u 2 ( S e 2 ) ( S e 4 ) 1 2 s h o u l d h a v e c o m p a r a b l e f o r m a t i o n c o n s t a n t s i n s o l u t i o n . I n t h i s c a s e , t h e e q u i l i b r i u m c o n c e n t r a t i o n o f c a b i n p o l y s e l e n i d e l i g a n d p r e s e n t i n s o l u t i o n m i g h t h a v e o v e r r i d d e n t h e g o l d i o n ' s a b i l i t y o f c h o o s i n g s u i t a b l e l i g a n d s . T h e r e f o r e , t h e u l t i m a t e c o m p o s i t i o n s o f t w o A u + c o m p o u n d s [ A u 2 ( S e 2 ) ( S e 3 ) ] 2 ' a n d [ A u 2 ( S e 2 ) ( S e 4 ) ] 2 c a n b e d e t e r m i n e d b y t h e p o l y s e l e n i d e l i g a n d s u s e d i n t h e s y n t h e s i s . A s s u m i n g t h a t t h e i n i t i a l s t e p i n t h e r e a c t i o n o f A u C N w i t h 8 e 5 2 ' i s a s i m p l e c o o r d i n a t i o n t o f o r m A u “ , t h e f o r m a t i o n o f [ A u z s e 2 ( S e 4 ) 2 ] 2 ' c a n b e s p e c u l a t e d t h r o u g h a n i n t e r n a l t w o - e l e c t r o n t r a n s f e r f r o m t h e A u + t o t h e t e r m i n a l S e — S e b o n d o f t h e S e 5 2 ‘ l i g a n d . T h i s w i l l r e s u l t i n t h e s p l i t t i n g o f t h e S e — S e b o n d , c r e a t i n g S e Z ' a n d S e 4 2 ‘ l i g a n d s a s s h o w n i n t h e f o l l o w i n g s c h e m e : r — - 2 - S e — A u — S e \ S e w S e F _ _ 3 t r a n s f e r / \ S e e ~ — — — ’ I A u A u A S e e l — _ . S c h e m e 2 1 . T r a n s f o r m a t i o n F r o m [ A u 2 ( S e 5 ) 2 ] 2 ' t o [ A u 2 8 e 2 ( S e 4 ) 2 ] 2 ' v i a a n I n t e r n a l E l e c t r o n T r a n s f e r P r o c e s s A s i m i l a r p r o c e s s i s a l s o b e l i e v e d t o b e r e s p o n s i b l e f o r t h e g e n e r a t i o n o f T l 3 + f r o m T ' l + w i t h t h e c o n c o m i t a n t f o r m a t i o n o f a t r i m e r i c c o m p l e x [ ' I ' l 3 S e 3 ( S e 4 ) 3 ] 3 ' i n t h e r e a c t i o n o f T ' l C l w i t h N a 2 8 e 5 [ 3 3 - 3 4 ] A l t h o u g h t h e A u + i n t e r m e d i a t e [ A u 2 ( S e 5 ) 2 ] 2 ‘ h a s n o t b e e n i s o l a t e d o r d e t e c t e d , t h e e n v i s i o n i n g o f s u c h a c o m p l e x , w i t h s a m e S e x z ' l i g a n d o n e i t h e r s i d e o f t h e A u — A u u n i t , i s j u s t i fi e d b y t h e e x i s t e n c e o f [ A u 2 ( S 4 ) 2 ] 2 ' a c l o s e s t r u c t u r a l s u l f u r a n a l o g u e , [ 3 2 ] . 9 6 O t h e r s y s t e m s i n w h i c h t h e m e t a l i o n s u n d e r g o r e d o x r e a c t i o n s w i t h t h e p o l y s e l e n i d e l i g a n d s i n c l u d e F e m / S e x } ( n = 2 , o r 3 ) [ 3 5 ] , a n d N i n + / S e x 2 ' ( n = 2 o r 4 ) [ 3 6 ] . I n b o t h F e m / S e x } a n d N i “ + / S e x 2 ' s y s t e m s , c o m p o u n d s c o n t a i n i n g F e 2 + o r F e 3 + , a n d N i 2 + o r N i 4 + a r e k n o w n , i . e . [ F e ( S e 4 ) 2 ] 2 ' v s . [ F e 2 8 e 2 ( S e 5 ) ] 2 ' , a n d [ N i ( S e 4 ) 2 ] 2 ' v s . [ N i 4 8 e 4 ( S e 3 ) 5 ( S e 4 ) ] 4 ‘ . G e n e r a l l y s p e a k i n g , p o l y s e l e n i d e l i g a n d s a r e m o r e t o l e r a n t t h a n t h e i r s u l f u r c o u n t e r p a r t s t o w a r d s s t a b i l i z i n g m e t a l c e n t e r s i n d i f f e r e n t o x i d a t i o n s t a t e s [ 3 0 b ] . W h e n s h o r t e r p o l y s e l e n i d e S e x z ‘ ( x = 2 - 4 ) l i g a n d s a r e u s e d , i n o r d e r t o a v o i d t h e a b o v e r e d o x r e a c t i o n , t h r e e c o m p o u n d s c o n t a i n i n g A u + c a n b e o b t a i n e d . I n t e r e s t i n g l y , t h e s e c o m p o u n d s a r e a l l u n s y m m e t r i c d i m e r s . I n s t e a d o f f o r m i n g a m o l e c u l e w i t h S e z z ‘ l i g a n d s o n b o t h s i d e s , ( 2 2 ) a n d ( 2 - 3 ) a d o p t a S e 3 2 ' l i g a n d o n o n e s i d e a n d a S e 2 2 ' o n t h e o t h e r . T h e S e - S e b o n d i n S e z z ' e a n n o t b e s t r e t c h e d t o s u c h a d i s t a n c e a s t o a c c o m m o d a t e t w o A u a t o m s 2 . 9 - 3 . 0 A a p a r t , t o f o r m a p l a n a r m o l e c u l e o f [ A u 2 ( S e 2 ) 2 ] 2 ‘ . T h i s w o u l d c a u s e s e v e r e d e v i a t i o n s i n t h e l i n e a r c o o r d i n a t i o n o f A u + i o n . S u c h a s t r u c t u r e i s f o u n d p o s s i b l e i n t h e A u V T e z z ' s y s t e m , i . e . [ A u 2 ( T e 2 ) 2 ] 2 ' , w h e r e t h e T e - T e d i s t a n c e i s 2 . 7 8 1 A , c l o s e r t o t h e A u - A u d i s t a n c e o f 2 . 9 0 8 A . I n a n t i c i p a t i o n t h a t a s y m m e t r i c m o l e c u l e s u c h a s [ A u 2 ( S e 3 ) 2 ] 2 ' o r [ A u 2 ( S e 4 ) 2 ] 2 ' m i g h t f o r m w i t h h i g h e r c o n c e n t r a t i o n o f l o n g e r p o l y s e l e n i d e s i n s o l u t i o n , w e u s e d S e 4 2 ‘ i n s t e a d o f t h e o r i g i n a l S e 2 2 ‘ a n d S e 3 2 ' . U n e x p e c t e d l y , t h e i s o l a t e d m o l e c u l e , ( 2 4 ) c o n t a i n s a S e 2 2 ‘ u n i t b r i d g i n g t h e t w o g o l d a t o m s w h i l e a S e 4 2 ' l i g a n d i s a d o p t e d o n t h e o t h a ' s i d e . T h e f a c t t h a t t h e m o r e s y m m e t r i c c o m p o u n d ( P h 4 P ) 2 [ A u 2 ( S e x ) 2 ] ( x = 3 o r 4 ) d o e s n o t f o r m i n t h i s r e a c t i o n w h e n S e 3 2 ' o r e v e n S e 4 2 ' a r e u s e d i s i n t r i g u i n g , i n v i e w o f t h e a p p a r e n t s t a b i l i t y o f t h e s u l f u r a n a l o g u e , [ A u 2 ( S 4 ) 2 ] 2 ‘ [ 3 2 ] . T h e r e a s o n o f t h e p r e f e r e n t i a l f o r m a t i o n o f ( 2 - 2 ) - ( 2 4 ) m i g h t r e s t o n t h e s t a b i l i t y o f t h e A u z ( S e 2 ) u n i t . I t m i g h t b e r e a s o n a b l y s p e c u l a t e d t h a t i f i n d e e d [ A u 2 ( S e x ) 2 ] 2 ' ( x = 3 o r 4 ) f o r m e d i n s o l u t i o n , i t c o u l d b e s u s c e p t i b l e t o i n t e r n a l r e d o x e l e c t r o n t r a n s f e r b e t w e e n A u + a n d S e - S e b o n d s a c c o r d i n g t o S c h e m e 2 3 . T h i s i s s i m i l a r t o 9 7 t h e a b o v e t w o - e l e c t r o n - t r a n s f a p r o c e s s w h i c h m i g h t b e r e s p o n s i b l e f o r t h e f o r m a t i o n o f ( P P N ) 2 [ A 0 2 5 6 2 ( S e 4 ) 2 ] = r “ a / i r g t e g g a l _ S e \ \ / S e T ) " " " " I ‘ " i / “ \ . / “ \ L S e / S e S c h e m e 2 3 H y p o t h e t i c a l I n t e r n a l E l e c t r o n T r a n s f e r P r o c e s s i n [ A u z ( S e x ) 2 ] 7 - ‘ ( x = 3 o r 4 ) I t s h o u l d b e n o t e d t h a t i t i s m o r e d i f fi c u l t t o r e d u c e t h e S e - S e b o n d s i n S e 2 2 ' t h a n t h o s e i n S e 3 2 ‘ o r S e 4 2 ‘ . T h e s p e c i e s o f [ A u 2 8 e 2 ( S e x ) 2 ] 2 ' ( x = 2 o r 3 ) f o r m e d b y t h e i n t e r n a l e l e c t r o n t r a n s f e r m a y n o t b e f a v o r e d u n d e r s u c h c o n d i t i o n s d u e t o t h e s m a l l s i z e o f t h e S e x z ' l i g a n d w h i c h c a n n o t s p a n t h e s q u a r e - p l a n a r g o l d c o o r d i n a t i o n s i t e . A t t h i s p o i n t i t i s r e l e v a n t t o d i s c u s s t h e c h e m i s t r y o f A u n + ( n = l , 3 ) a n d A z s e x ( A = a l k a l i m e t a l , x = 1 - 5 ) i n t h e s o l i d - s t a t e [ 3 8 ] . I t i s f o u n d t h a t s i m i l a r A u ‘ “ I A u 3 + r e d o x r e a c t i o n s c a n a l s o t a k e p l a c e i n A z s e x fl u x e s i n t h e t e m p e r a t u r e r a n g e o f 2 5 0 t o 3 5 0 ° C . T h r o u g h p r o p e r c o n t r o l o f t h e r e a c t i o n t e m p e r a t u r e , t h e c o m p o s i t i o n o f p o l y s e l e n i d e fl u x e s , a n d t h e n a t u r e o f t h e a l k a l i c a t i o n , b o t h A u + a n d A u 3 + c o m p o u n d s , h a v i n g p o l y m e r i c s t r u c t u r e s , c a n b e s y n t h e s i z e d . F o r e x a m p l e , K A u S e s a n d C s A u S e 3 a r e m a d e u p o f d i m e r i c o n e - d i m e n s i o n a l [ A u S e 5 ] n n ' o r [ A u S e 3 ] n n ' a n i o n i c c h a i n s w i t h l i n e a r l y - c o o r d i n a t e d A u ” a t o m s b r i d g e d b y h e l i c a l o p e n c h a i n s o f S e 5 2 ' o r S e 3 2 ' l i g a n d s , w h i l e t w o s e l e n i u m - r i c h p h a s e s K 3 A u S e 1 3 a n d N a 3 A u S e 3 c o n t a i n s q u a r e - p l a n a r A u 3 + c e n t e r s b r i d g e d b y a S e 3 2 ’ ( i n K 3 A u S e 1 3 ) o r S e z z ‘ ( i n N a 3 A u S e g ) , a n d c o o r d i n a t e d b y t w o S e 5 2 ' ( i n K 3 A u S e 1 3 ) o r S e 3 2 ' ( i n N a 3 A u S e g ) l i g a n d s i n a t r a n s f a s h i o n v i a o n e o f t h e i r t e r m i n a l S e a t o m s . A l t h o u g h t h e s e c o m p o u n d s w e r e p r e p a r e d f r o m m o l t e n S e x z ' i n w h i c h d i f f e r e n t e q u i l i b r i a 9 8 m i g h t b e i n v o l v e d , t h e u n d e r l y i n g r e d o x c h e m i s t r y b e t w e e n A u “ 1 + a n d S e x ? ” s e e m s t o b e o f t h e s a m e o r i g i n . T h e [ N a A u 1 2 8 e 3 ] 3 ' i s a r a r e e x a m p l e o f a n i n o r g a n i c c r y p t a n d . A l t h o u g h o n e m i g h t b e a m a z e d b y t h e s t r u c t u r a l s i m p l i c i t y o f [ N a A u 1 2 8 e 3 ] 3 ' , t h e a s s e m b l y a n d s t a b i l i z a t i o n o f t h i s u n i q u e c o m p l e x r e v e a l a c h e m i c a l l o g i c . F i r s t o f a l l , t h e s t r o n g p r e f e r e n c e o f A u + t o l i n e a r c o o r d i n a t i o n a n d t h e t r i g o n a l p y r a m i d a l g e o m e t r y o f S e z ‘ a c c o u n t f o r t h e b u i l d u p o f a c u b e w i t h e d g e s a n d c o r n e r s o c c u p i e d b y a t o m s . I n a d d i t i o n , t h e c a v i t y s i z e o f t h e c u b e , w h i c h i s p r o - d e t e r m i n e d b y b o t h t h e A u ” a n d t h e S e 2 “ r a d i i , h a p p e n s t o b e a p e r f e c t fi t f o r a n a l k a l i m e t a l i o n , a N a + i n t h i s c a s e . A c o m m o n f e a t u r e w o r t h y o f n o t e i n a c u b e i s t h a t t h e d i s t a n c e s f r o m t h e c e n t e r t o i t s c o r n e r s a r e l o n g e r t h a n t h e d i s t a n c e s f r o m t h e c e n t e r t o t h e m i d - p o i n t s o f i t s e d g e s . C o n s e q u e n t l y , t h e N a + i o n m u s t i n t e r a c t w i t h t h e t w e l v e A u a t o m s r a t h e r t h a n t h e e i g h t S e a t o m s . I t h a s b e e n f o u n d t h a t A u + h a s a r e m a r k e d a f fi n i t y t o p o s i t i v e l y c h a r g e d a l k a l i m e t a l i o n s . S u c h i n t e r a c t i o n s h a v e b e e n o b s e r v e d i n o t h e r A u + c h a l c o g e n i d e c o m p l e x e s , i . e . [ K A u g T e 7 ] 4 ‘ [ 4 O ] [ K 2 A u 4 T e 4 ( e n ) 4 ] 2 ' [ 3 9 ] a n d [ K z A u 4 T e 4 ( D M P ) 2 ] 2 ' [ 4 O ] . T h u s , t h e f o r m a t i o n o f [ N a A u l g s e g P ‘ m a y n o t b e c o i n c i d e n t a l , b u t r e s u l t s i n s t e a d f r o m t h e c o m b i n a t i o n o f c u b e - c a v i t y s i z e a n d t h e t e n d e n c y o f A u + t o i n t e r a c t w i t h a l k a l i - m e t a l i o n s . I t s h o u l d b e n o t e d t h a t t h e S 2 ‘ l i g a n d c a n a l s o f o r m c u b e - l i k e m o l e c u l e s w i t h e i t h e r A u + o r C u + [ 4 1 - 4 2 ] . T h e [ C u 1 2 8 3 ] 4 * c u b e i s h i g h l y d i s t o r t e d o n t h e e d g e s b e e a u s e t h e C u + a t o m s d e v i a t e f r o m t h e i d e a l l i n e a r c o o r d i n a t i o n g e o m e t r y b e c a u s e o f a t t r a c t i v e C u » - C u d l o - d 1 0 i n t e r a c t i o n s [ 4 3 ] . H o w e v e r , n o a l k a l i - m e t a l i o n i s e n c a p s u l a t e d i n e i t h e r o f t h e c o m p o u n d s . A c o m p a r i s o n o f t h e v o l u m e o f t h e [ A u 1 2 8 3 ] 4 * a n d [ A u 1 2 S e g l 4 ‘ c l u s t e r s s h o w s t h a t t h e s u l fi d e c l u s t e r i s 1 2 % s m a l l e r t h a n i t s s e l e n i d e a n a l o g u e ( i . e . 9 8 A 3 v s . 1 1 1 A 3 ) . T h i s e x p l a i n s w h y t h e c o r r e s p o n d i n g [ N a A u 1 2 8 3 ] 3 ' c a n n o t b e m a d e . I t s u g g e s t s , h o w e v e r , t h a t [ L i A u l z s g P ' m a y b e a c c e s s i b l e . O n t h e o t h e r h a n d , t h e v o l u m e o f t h e [ A u l z T e 3 ] 4 ‘ ( i . e . 9 9 1 3 6 A ) i s 2 3 % l a r g e r t h a n t h a t o f t h e [ A u 1 2 8 e 3 ] 4 ” , w h i c h s u g g e s t s t h a t K “ , R b “ , o r e v e n C s ’ r m i g h t b e g o o d c a n d i d a t e s f o r i n c l u s i o n . T h e e n c a p s u l a t i o n o f N a + i o n i n t h e [ A u 1 2 8 e 3 ] 4 ' m a y n o t b e d u e o n l y t o t h e r i g h t c a v i t y s i z e b u t a l s o t o a t e n d e n c y o f t h e c u b e t o r e d u c e i t s h i g h n e g a t i v e c h a r g e . W h e n t h e s y n t h e s i s w a s c a r r i e d o u t w i t h K 2 S e , n o c o r r e s p o n d i n g [ K A u 1 2 S e 3 1 3 ‘ s p e c i e s w a s f o u n d , p r e s u m a b l y b e c a u s e o f t h e i n a b i l i t y o f K “ t o fi t i n t h e [ A u 1 2 8 e 3 ] 4 " c a g e . T h e e m p t y [ A u 1 2 8 e 3 ] 4 ‘ c a g e c o u l d n o t b e i s o l a t e d t h u s f a r . I t s h o u l d b e m e n t i o n e d t h a t c o m p l e t e e n c a p s u l a t i o n o f s o d i u m i o n s b y m e t a l c h a l c o g e n i d e c o m p l e x e s w a s a l s o f o u n d i n [ N a 2 ( F e 6 8 9 ( S M e ) 2 ) 2 ] 5 ‘ [ 4 4 ] w h e r e t h e N a + i o n s c a u s e t h e a g g r e g a t i o n o f t w o F e 6 8 9 c l u s t e r s , a n d i n t h e r e c e n t l y r e p o r t e d [ N a z F e 1 3 S 3 o ] 8 ‘ [ 4 5 ] , w h e r e t w o N a + i o n s a r e e n t i r e l y c o m p l e x e d b y t h e t o r o i d a l F e 1 8 S 3 o c l u s t e r . T h r o u g h t h e s y n t h e s i s o f s i x g o l d p o l y c h a l c o g e n i d e c o m p l e x e s w e h a v e s h o w n t h a t t h e r e a c t i o n o f s z ' ( Q = S e , x = 1 - 5 ; Q = T e , x = 1 - 2 ) s o l u t i o n s e x t r a c t e d f r o m t h e Z i n t l p h a s e s A Z Q x ( A = N a o r K ) w i t h m e t a l s a l t s i s n o t o n l y a r a t i o n a l b u t a f a r m o r e c o n v e n i e n t r o u t e t o m e t a l p o l y c h a l c o g e n i d e c o m p l e x e s t h a n a n y p r e v i o u s m e t h o d s . I n a d d i t i o n , w e h a v e n o t e d t h a t t h e v a r i a t i o n o f t h e n o m i n a l c o m p o s i t i o n s o f t h e s t a r t i n g m a t e r i a l s c a n p r o f o u n d l y a f f e c t t h e r e a c t i o n o u t c o m e s b e c a u s e o f t h e i n t r i g u i n g r e d o x i n t e r p l a y b e t w e e n A u ‘ " 3 + a n d s z ' . A n a l o g o u s r e d o x c h e m i s t r y w i t h c o r r e s p o n d i n g 8 3 ‘ l i g a n d s r e m a i n s t o b e s e e n [ 4 6 ] . 1 0 0 R E F E R E N C E S M . D r a g a n j a c a n d T . B . R a u c h f u s s , A n g e w . C h e m . I n t . E d . E n g l , 2 4 ( 1 9 8 5 ) , 7 4 2 - 7 5 7 . ( a ) A . M i i l l e r , P o l y h e d r o n , 5 ( 1 9 8 6 ) , 3 2 3 - 3 4 0 . ( b ) A . M i i l l e r a n d E . D i e m a n n , A d v . I n o r g . C h e m , 3 1 ( 1 9 8 7 ) , 8 9 - 1 2 2 . R . C . H a u s h a l t e r , I n o r g . C h i m . A c t a , 1 0 2 ( 1 9 8 5 ) , L 3 7 - L 3 8 . ( a ) C . B u r s c h k a , Z N a t u r f o r s c h , B 3 5 ( 1 9 8 0 ) , 1 5 1 1 — 1 5 1 3 . ( b ) A . M fi l l e r a n d U . S c h i m a n s k i , I n o r g . C h i m A c t a , 7 7 ( 1 9 8 3 ) , L 1 8 7 - L 1 8 8 . ( c ) A . M i ' l l l e r , F . - W . B a u m a n n , H . B o g g e , M . R o m e r , E . K r i c k e m e y e r a n d K . S c h m i t z , A n g e w . C h e m . I n t . E d . E n g l . , 2 3 ( 1 9 8 4 ) , 6 3 2 - 6 3 3 . ( d ) A . M i i l l e r , N . H . S c h l a n d e r b e c k , E . K r i c k e m e y e r , H . B o g g e K . S c h m i t z , E . B i l l a n d A . X . T r a u t w e i n , Z . A n o r g . A l l g . C h e m , 5 7 0 ( 1 9 8 9 ) , 7 - 3 6 . ( e ) G . K i e l , G . G a t t o w a n d T . D i n g e l d e i n , Z . A n o r g . A l l g . C h e m , 5 9 6 ( 1 9 9 1 ) , 1 1 1 - 1 1 9 . S e e c h a p t e r 3 . D . D . P e r r i n , W . L . F . A r m a r e g o a n d D . R . P e r r i n , P u r i f i c a t i o n o f L a b o r a t o r y C h e m i c a l s , 2 n d E d . , P e r g a m o n P r e s s , O x f o r d U K , 1 9 8 0 . S . F l e g l e r , I n s t r u c t i o n s f o r E n e r g y D i s p e r s i v e X - r a ' y M i c r o a n a l y s i s , M i c h i g a n S t a t e U n i v e r s i t y , 1 9 9 1 . I n t r o d u c t i o n t o t h e 7 4 0 F o u r i e r T r a n s f o r m I n fi a r e d S p e c t r o m e t e r , N i c o l e t A n a l y t i c a l I n s t r u m e n t s , 1 9 8 8 , M a d i s o n , W i s c o n s i n . I n s t r u c t i o n M a n u a l f o r M o d e l ( 1 . 2 0 0 0 D o u b l e - B e a m S p e c t r o p h o t o m e t e r , H i t a c h i , L t d . , T o k y o , J a p a n . 1 0 . 1 1 . 1 2 . 1 3 . 1 4 . 1 5 . l 6 . 1 7 . 1 8 . 1 9 . 1 0 1 V X R - S e r i e s S N M R S p e c t r o m e t e r S y s t e m s , V a r i a n N M R I n s t r u m e n t D i v i s i o n , 1 9 8 7 . T G A - 5 0 T h e m r o g r a v i m e t r i c A n a l y z e r I n s t r u c t i o n M a n u a l , S h i m a d z u C o r p o r a t i o n , K y o t o , J a p a n . P 3 / V D a t a C o l l e c t i o n M a n u a l , S i e m e n s A n a l y t i c a l X — r a y I n s t r u m e n t s , I n c . , 1 9 8 9 . M S C / A F C D l fi r a c t o m e t e r C o n t r o l S o fi w a r e , M o l e c u l a r S t r u c t u r e C o r p o r a t i o n , T h e W o o d l a n d s , T e x a s . N . W a l k e r a n d D . S t u a r t , A c t a C r y s t a l l o g r . , 3 9 A ( 1 9 8 3 ) , 1 5 8 — 1 6 6 . T I D K S A N : S i n g l e C r y s t a l S t r u c t u r e A n a l y s i s S o fi w a r e , V e r s i o n 5 . 0 , M o l e c u l a r S t r u c t u r e C o r p o r a t i o n , T h e W o o d l a n d s , T e x a s . ( a ) G . M . S h e l d r i c k i n C r y s t a l l o g r a p h i c C o m p u t i n g , G . M . S h e l d r i c k , C . K r u g e r , a n d R . D o d d a r d , O x f o r d U n i v e r s i t y P r e s s , 1 9 8 5 , p . 1 7 5 - l 8 9 . ( b ) B . A . F r e n z , T h e E n r a f - N o n i u s C A D 4 S D P S y s t e m . i n C o m p u t i n g i n C r y s t a l l o g r a p h y ; D e l f t U n i v e r s i t y P r e s s , D e l f t H o l l a n d , 1 9 7 8 ; p . 6 4 - 7 1 . H . P . K l u g a n d L . E . A l e x a n d e r , X - r a y D l fi i a c t i o n P r o c e d u r e s f o r P o l y c r y s t a l l i n e a n d A m o r p h o u s M a t e r i a l s , J o h n W i l e y a n d S o n s , N e w Y o r k , 1 9 7 4 . D . K . S m i t h , M . C . N i c h o l s a n d M . E . Z o l e n s k y , P O W D I O : A F o r t r a n I V P r o g r a m f o r C a l c u l a t i n g X - r a y P o w d e r D i fi ‘ i ' a t i o n P a t t e r n s , V e r s i o n 1 0 , P e n n s y l v a n i a S t a t e U n i v e r s i t y , 1 9 8 3 . H . S t r a s d e i t , B . K r e b s a n d G . H e n k e l , I n o r g . C h i m . A c t a , 8 9 ( 1 9 8 4 ) , L l 1 - L 1 3 . 2 0 . 2 1 . 2 2 . 2 3 . 2 4 . 2 5 . 2 6 . 2 7 . 2 8 . 2 9 . 3 0 . 1 0 2 S . - P . H u a n g , S . D h i n g r a a n d M . G . K a n a t z i d i s , P o l y h e d r o n , 9 ( 1 9 9 0 ) , 1 3 8 9 — 1 3 9 5 . S . - P . H u a n g a n d M . G . K a n a t z i d i s , I n o r g . C h e m , 3 0 ( 1 9 9 1 ) , 1 4 5 5 — 1 4 6 6 . F . W e l l e r , J . A d e l a n d K . D e h n i c k e , Z . A n o r g . A l l g . C h e m , 5 4 8 ( 1 9 8 7 ) , 1 2 5 - 1 3 2 . K . N a g a t a , K . T s h i b a s h i a n d Y . M i y a m o t o , J p n . J . A p p l . P h y s , 1 9 ( 1 9 8 0 ) , 1 5 6 9 - 1 5 7 3 . H . W o l k e r s , K . D e h n i c k e , D . F e n s k e , A . K h a s s a n o v a n d S . S . H a f n e r , A c t a C r y s t a l l o g r . , 4 7 C ( 1 9 9 1 ) , 1 6 2 7 - 1 6 3 2 . J . D i e t z , U . M i ' l l l e r , V . M i i l l e r a n d K . D e h n i c k e , Z . N a t u r f o r s c h . , 4 6 B ( 1 9 9 1 ) , 1 2 9 3 - 1 2 9 9 . ( a ) F . S e e l , H . J . G u t t l e r , G . S i m o n a n d A . W i e c k o w s k i , P u r e A p p l . C h e m , 4 9 ( 1 9 7 7 ) , 4 5 - 5 4 . ( b ) K . W . S h a r p a n d W . H . K o e h l e r , I n o r g . C h e m , 1 6 ( 1 9 7 7 ) , 2 5 2 8 - 2 5 6 5 . L . D . S c h u l t z a n d W . H . K o e h l e r , I n o r g . C h e m , 2 6 ( 1 9 8 7 ) , 1 9 8 9 - 1 9 9 3 . ( a ) P . D u b o i s , J . P . I e l i e u r a n d G . L e p o u t r e , I n o r g . C h e m , 2 6 ( 1 9 8 7 ) , 1 8 9 7 — 1 9 0 2 . ( b ) P . D u b o i s , J . P . I e l i e u r a n d G . L e p o u t r e , I n o r g . C h e m , 2 7 ( 1 9 8 7 ) , 7 3 - 8 0 . ( c ) P . D u b o i s , J . P . L e l i e u r a n d G . L e p o u t r e , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 1 8 8 3 - 1 8 9 0 . ( d ) V . P i n o n a n d J . P . L e l i e u r , I n o r g . C h e m , 3 0 ( 1 9 9 1 ) , 2 2 6 0 - 2 2 6 4 . M . B j o r g v i n s s o n a n d G . J . S c h r o b i l g e n , I n o r g . C h e m , 3 0 ( 1 9 9 1 ) , 2 5 4 0 — 2 5 4 7 . ( a ) M . G . K a n a t z i d i s , C o m m e n t s I n o r g . C h e m , 1 0 ( 1 9 9 0 ) , 1 6 1 - 1 9 5 . ( b ) M . G . K a n a t z i d i s a n d S . - P . H u a n g , C o o r d . C h e m R e v . , i n p r e s s . 3 1 . 3 2 . 3 3 . 3 4 . 3 5 . 3 6 . 3 7 . 3 8 . 3 9 . 4 0 . 4 1 . 4 2 . 4 3 . 4 4 . 1 0 3 M . A . A n s a r i a n d J . A . I b e r s , C o o r d . C h e m R e v . , 1 0 0 ( 1 9 9 0 ) , 2 2 3 - 2 6 6 . A . M i i l l e r , M . R o m e r , H . B o g g e , E . K r i c k e m e y e r a n d K . S c h m i t z , I n o r g . C h i m . A c t a , 8 5 ( 1 9 8 4 ) , L 3 9 - L 4 1 . S . D h i n g r a a n d M . G . K a n a t z i d i s , I n o r g . C h e m , i n p r e s s . S . D h i n g r a , P h . D . T h e s i s , M i c h i g a n S t a t e U n i v e r s i t y , 1 9 9 2 . K . - W . K i m a n d M . G . K a n a t z i d i s , m a n u s c r i p t i n p r e p a r a t i o n . ( a ) J . M . M c C o n n a c h i e , M . A . A n s a r i a n d J . A . I b e r s , J . A m C h e m S o c . , 1 1 3 ( 1 9 9 1 ) , 7 0 7 8 - 7 0 7 9 . ( b ) J . M . M c C o n n a c h i e , M . A . A n s a r i a n d J . A . I b e r s , I n o r g . C h i m A c t a , 1 9 8 - 2 0 0 ( 1 9 9 2 ) , 8 5 - 9 3 . G . M a r b a c h , J . S t r a h l e r , A n g e w . C h e m . I n t . E d . E n g l . , 2 3 ( 1 9 8 4 ) , 2 4 6 - 2 4 7 . Y . P a r k , P h . D . T h e s i s , M i c h i g a n S t a t e U n i v e r s i t y , 1 9 9 2 . R . C . H a u s h a l t e r , A n g e w . C h e m I n t . E d . E n g l . , 2 4 ( 1 9 8 5 ) , 4 3 2 - 4 3 3 . M . G . K a n a t z i d i s , S . - P . H u a n g , P h o s p h o r o u s a n d S u l fi r r , 6 4 ( 1 9 9 2 ) , 1 5 3 - 1 6 0 . G . M a r b a c h , J . S t r a h l e , A n g e w . C h e m I n t . E d . E n g l . , 2 3 ( 1 9 8 4 ) , 7 1 5 - 7 1 6 . P . B e t z , B . K r e b s , G . H e n k e l , A n g e w . C h e m I n t . E d . E n g l . , 2 3 ( 1 9 8 4 ) , 3 1 1 - 3 1 2 . ( a ) P . K . M e h r o t r a a n d R . H o f f m a n n , I n o r g . C h e m , 1 7 ( 1 9 7 8 ) , 2 1 8 7 - 2 1 8 9 . ( b ) K . M . M e r z a n d R . H o f f m a n n , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 2 1 2 0 - 2 1 2 7 . J . - F . Y o u , B . S . S n y d e r , G . C . P a p a e f t h y m i o u a n d R . H . H o l m , J . A m C h e m . S o c , 1 1 2 ( 1 9 9 0 ) , 6 5 8 9 - 6 5 9 1 . 1 0 4 4 5 . J . F . Y o u , B . S . S n y d e r a n d R . H . H o l m , J . A m . C h e m . S o c . , 1 1 0 ( 1 9 8 8 ) , 6 5 8 9 - 6 5 9 1 . 4 6 . S . - P . H u a n g a n d M . G . K a n a t z i d i s , w o r k c o n t i n u e s . C H A P T E R 3 C H E M I S T R Y O F H O M O - A N D H E T E R O P O L Y C H A I C O G E N I D E C O M P O U N D S 1 . I n t r o d u c t i o n I t i s g e n e r a l l y r e c o g n i z e d t h a t i n s o l u t i o n s o f p o l a r s o l v e n t s s u c h a s N H 3 o r D M F p o l y c h a l c o g e n i d e s e x i s t a s v a r i o u s s p e c i e s i n v o l v e d i n c o m p l e x e q u i l i b r i a [ 1 - 2 ] . B y u s i n g d i f f e r e n t s o l v e n t s , t e m p e r a t u r e s a n d c o u n t e r i o n s , a v a r i e t y o f p o l y c h a l c o g e n i d e s , S n z ' ( n = 2 - 7 ) [ 3 - 8 ] , S e n z ' ( n = 2 - 9 ) [ 9 - 1 6 ] , a n d T e ? ” ( n = 2 - 5 ) [ 1 7 - 2 0 ] , h a v e b e e n i s o l a t e d a n d s t r u c t u r a l l y c h a r a c t e r i z e d . W i t h t h e e x c e p t i o n o f t h e b i c y c l i c d e e a s e l e n i d e [ S e l o ] 2 ' [ 2 1 ] a l l t h e a n i o n s a r e f o u n d t o b e u n b r a n c h e d h e l i c a l c h a i n s i n t h e s o l i d s t a t e . H o w e v e r , u n d e r c e r t a i n c o n d i t i o n s , a n o x i d i z e d c h a l c o g e n a t o m ( i n t h e + 2 o r + 4 o x i d a t i o n s t a t e ) i t s e l f c a n b e c h e l a t e d b y p o l y c h a l c o g e n i d e l i g a n d s t o f o r m a c l o s e d c y c l i c s t r u c t u r e — a n a l o g o u s t o c e r t a i n m e t a l p o l y c h a l c o g e n i d e c o m p l e x e s . F o r i n s t a n c e , i n D M F s o l u t i o n t h e r e a c t i o n o f A u C l 3 w i t h N a z s e s r e s u l t e d i n t h e i s o l a t i o n o f a - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] , a n o x i d a t i o n p r o d u c t o f t h e 8 e 5 2 ' b y A u 3 + [ 2 2 ] . T h e e x i s t e n c e o f t h i s p e c u l i a r m o l e c u l e h a d b e e n m e n t i o n e d b e f o r e i n a r e v i e w a r t i c l e [ 2 3 ] . H o w e v e r , i t s a c c u r a t e p a r a m e t e r s a s w e l l a s t h e s y n t h e t i c m e t h o d w e r e n o t r e v e a l e d u n t i l o u r s e r e n d i p i t o u s d i s c o v e r y o f t h i s m o l e c u l e d u r i n g o u r i n v e s t i g a t i o n o f t h e A u 3 + l N a 2 8 e 5 c h e m i s t r y [ 2 4 ] . T o r a t i o n a l i z e t h e s y n t h e s i s o f ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] , 1 2 w a s u s e d a s a n o x i d a n t t o r e a c t w i t h N a Z S e s . I n t e r e s t i n g l y , a d i f f e r e n t c r y s t a l m o d i fi c a t i o n o f u n d e c a s e l e n i d e , B - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] , w a s a f f o r d e d u s i n g t h i s p r o c e d u r e . T o f u r t h e r i n v e s t i g a t e w h e t h e r s e l e n i u m a n d t e l l u r i u m w o u l d f o r m a s i m i l a r h e t e r o p o l y c h a l c o g e n i d e t o t h e a b o v e , w e r e a c t e d p o l y s e l e n i d e l i g a n d s w i t h d i f f e r e n t t e l l u r i u m s o u r c e s . A s a r e s u l t o f t h i s e f f o r t , t h e t e l l u r o d e c a s e l e n i d e ( P h 4 P ) 2 [ T e ( S e 5 ) 2 ] w a s 1 0 5 1 0 6 o b t a i n e d f r o m t h e r e a c t i o n b e t w e e n p e n t a s e l e n i d e a n d e l e m e n t a l t e l l u r i u m . T h i s c o m p o u n d i s i s o s t r u c t u r a l t o B — ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] . I n t h i s c h a p t e r w e d e s c r i b e t h e s y n t h e s i s , s p e c t r o s c o p i c s t u d i e s o f t h r e e m i x e d v a l e n c e p o l y c h a l c o g e n i d e s , o r - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 3 - 1 ) , fi - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 3 ' 2 ) a n d ( P h 4 P ) 2 [ T e ( S s ) 2 ] ( 3 3 ) , a n d t h e X - r a y s t r u c t u r e s o f a - a n d B - ( P h 4 P ) 2 [ S e ( S e s ) 2 l - 1 1 . E x p e r i m e n t a l S e c t i o n 1 . R e a g e n t s C h e m i c a l s i n t h i s w o r k o t h e r t h a n s o l v e n t s w e r e u s e d a s o b t a i n e d : ( i ) s e l e n i u m p o w d e r , ~ 1 0 0 m e s h , 9 9 . 5 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I ; ( i i ) t e l l u r i u m p o w d e r , ~ 2 0 0 m e s h , 9 9 . 8 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I ; ( i i i ) s o d i u m s t i c k s i n k e r o s e n e , 9 9 % p u r i t y , M a l l i n c k r o d t I n c . , P a r i s , K y . ; ( i v ) i o d i n e , 9 9 . 8 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I ; ( v ) g o l d ( I I I ) c h l o r i d e , S t r e m C h e m i c a l s , I n c . , N e w b u r y p o r t , M A ; ( v i ) t e t r a p h e n y l p h o s p h o n i u m c h l o r i d e ( P h 4 P C l ) , 9 8 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I . D i m e t h y l f o r m a m i d e ( D M F , a n a l y t i c a l r e a g e n t , M a l l i n c k r o d t I n c . , P a r i s , K y ) w a s s t o r e d o v e r 4 A L i n d e m o l e c u l a r s i e v e s f o r s e v e r a l d a y s a n d t h e n d i s t i l l e d u n d e r r e d u c e d p r e s s u r e a t ~ 3 0 ° C [ 2 5 ] . D i e t h y l e t h e r ( A . C . S . a n h y d r o u s , C o l u m b u s C h e m i c a l I n d u s t r i e s I n c . , C o l u m b u s , W I ) w a s d i s t i l l e d u n d e r a d r y N 2 b l a n k e t a f t e r b e i n g r e fl u x e d w i t h p o t a s s i u m m e t a l , b e n z o p h e n o n e a n d t r i e t h y l e n e g l y c o l d i m e t h y l e t h e r f o r 1 2 h o u r s [ 2 5 ] . 2 . P h y s i c a l M e a s u r e m e n t s 1 0 7 S e m i — q u a n t i t a t i v e e l e m e n t a l a n a l y s e s , F T - I R a n d U V / v i s s p e c t r o s c o p i c s t u d i e s , a n d t h e r m a l g r a v i m e t r i c a n a l y s e s ( T G A ) o f t h e c o m p o u n d s w e r e c a r r i e d o u t a s d e s c r i b e d p r e v i o u s l y [ 2 4 ] . 3 . S y n t h e s e s A l l s y n t h e s e s w e r e c a r r i e d o u t u n d e r a d r y n i t r o g e n a t m o s p h e r e i n a V a c u u m A t m o s p h e r e s D r i - I a b g l o v e b o x . ( i ) . P r e p a r a t i o n o f s o d i u m p e n t a s e l e n i d e i n l i q u i d a m m o n i a T h i s m a t e r i a l w a s p r e p a r e d b y r e a c t i n g s t o i c h i o m e t r i c a m o u n t o f s e l e n i u m a n d s o d i u m m e t a l i n a r o u t i n e p r o c e d u r e u s e d i n t h i s l a b o r a t o r y [ 2 4 ] . ( i i ) . P r e p a r a t i o n o f a - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 3 . 1 ) T h e d r o p w i s e a d d i t i o n o f a 2 0 m l D M F s o l u t i o n o f 0 . 0 9 1 g ( 0 . 3 0 m m o l ) o f A u C l 3 t o a s t i r r e d 3 0 c m ] D M F s o l u t i o n o f 0 . 2 7 0 g ( 0 . 6 0 m m o l ) N a 2 8 e 5 a n d 0 . 2 2 0 g ( 0 . 6 0 m m o l ) P h 4 P C 1 r e s u l t e d i n a n i m m e d i a t e c o l o r c h a n g e f r o m d a r k g r e e n t o b r o w n . T h e s t i r r i n g c o n t i n u e d f o r 1 h , a f t e r w h i c h t h e s o l u t i o n w a s fi l t e r e d t o r e m o v e N a C l a n d t h e n d i l u t e d w i t h e t h e r . W h e n t h e m i x t u r e w a s a l l o w e d t o s t a n d f o r 3 d a y s , r e d - b r o w n n e e d l e s o f ( x - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] w e r e i s o l a t e d i n 5 0 % y i e l d . F a r I R s p e c t r u m ( o f s o l i d - s t a t e ) : 2 6 5 ( s ) a n d 2 1 6 ( s ) c m ' l ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : S e : P = 8 1 : l 9 ; U V / v i s s p e c t r u m ( i n D M F ) : 6 5 3 n m ( 5 : 2 8 4 1 M ' l c m ' l ) , 4 5 7 n m ( 5 : 9 4 3 2 M ‘ l c m ' l ) a n d 4 0 0 n m ( s h , e = 9 1 5 4 M ‘ l c m ' l ) . ( i i i ) . P r e p a r a t i o n o f B - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 3 . 2 ) A ~ 1 0 m l D M F s o l u t i o n o f 0 . 0 7 6 g ( 0 . 3 0 m m o l ) 1 2 w a s a d d e d d r o p w i s e t o a ~ 5 0 m l d e e p g r e e n D M F s o l u t i o n o f 0 . 2 7 0 g ( 0 . 6 0 m m o l ) N a 2 8 e 5 a n d 0 . 2 2 0 g ( 0 . 6 0 m m o l ) 1 0 8 P h 4 P C 1 . T h e r e s u l t i n g b r o w n s o l u t i o n w a s fi l t e r e d , a n d t h e fi l t r a t e w a s d i l u t e d w i t h ~ 4 0 m l d i e t h y l e t h a . T h e r e a c t i o n m i x t u r e g a v e r e d - b r o w n c r y s t a l s w i t h i n 2 d a y s i n 7 2 % y i e l d ( b a s e d o n S e c o n t e n t ) . C r y s t a l s s u i t a b l e f o r X - r a y s i n g l e c r y s t a l s t r u c t u r e a n a l y s i s w e r e g r o w n f r o m d i e t h y l e t h e r / D M F s o l u t i o n ( 1 : 1 ) a t r o o m t e m p e r a t u r e . F a r I R s p e c t r u m ( o f s o l i d - s t a t e ) : 2 6 5 ( s ) a n d 2 1 6 ( s ) c m ‘ l ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : S e : P = 7 6 : 2 4 ; U V / v i s s p e c t r u m ( i n D M F ) : 6 5 3 n m ( 5 : 2 8 4 1 M ' l c m ' l ) , 4 5 7 n m ( 8 : 9 4 3 2 M ‘ l - c m ' l ) a n d 4 0 0 n m ( s h , e = 9 1 5 4 M ‘ l c m ‘ l ) . ( i i i ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ T e ( S e 5 ) 2 ] ( 3 3 ) 0 . 0 2 5 g ( 0 . 2 0 m m o l ) o f e l e m e n t a l T e w a s a d d e d d i r e c t l y i n t o a ~ 4 0 m l d e e p g r e e n D M F s o l u t i o n o f 0 . 1 8 0 g ( 0 . 4 0 m m o l ) N a 2 8 e 5 a n d 0 . 1 4 6 g ( 0 . 4 0 m m o l ) P h 4 P C l . A f t e r 3 0 r r r i n . s t i r r i n g , t h e s o l u t i o n t u r n e d s l i g h t l y b r o w n a n d w a s fi l t e r e d . T h e fi l t r a t e w a s d i l u t e d w i t h ~ 4 0 m l d i e t h y l e t h e r . L a r g e d a r k b r o w n s i n g l e c r y s t a l s w e r e a f f o r d e d w i t h i n 2 d a y s ( 6 0 % y i e l d b a s e d o n T e ) . F a r I R s p e c t r u m ( o f s o l i d - s t a t e ) : 2 7 7 c m " 1 ( s ) a n d 2 5 8 ( w , b ) c m ' l ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : T e : S e : P = 7 8 : 7 3 : 1 9 ; U V / v i s s p e c t r u m ( i n D M F ) : f e a t u r e l e s s . X - r a y p o w d e r d i f f r a c t i o n ( X R D ) p a t t e r n : s a m e a s t h a t o f B — ( P h 4 P ) 2 [ S e ( S e s ) 2 l - 4 . X - r a y D i f f r a c t i o n a n d C r y s t a l l o g r a p h i c S t u d i e s T h e s i n g l e c r y s t a l X - r a y d i f f r a c t i o n s t u d i e s w e r e p e r f o r m e d b y u s i n g a N i c o l e t P 3 f o u r - c i r c l e d i f f r a c t o m e t e d 2 6 ] . T h e c r y s t a l l o g r a p h i c d a t a s e t s o f ( 3 - 1 ) a n d ( 3 . 2 ) w e r e c o l l e c t e d u s i n g a 0 - 2 0 s c a n m o d e a n d M o K a r a d i a t i o n . T h e s t a b i l i t y o f t h e e x p e r i m e n t a l s e t u p a n d c r y s t a l i n t e g r i t y f o r e a c h d a t a c o l l e c t i o n w a s m o n i t o r e d b y m e a s u r i n g t h r e e r e p r e s e n t a t i v e r e fl e c t i o n s p e r i o d i c a l l y ( e v e r y 1 ( 1 ) ) . N o c r y s t a l d e c a y w a s d e t e c t e d . E m p i r i c a l a b s o r p t i o n c o r r e c t i o n s w e r e a p p l i e d t o a l l t h e d a t a s e t s b a s e d o n 1 4 ) s c a n s o f s e v e r a l s t r o n g r e fl e c t i o n s w i t h x ~ 9 0 ° . 1 0 9 T h e s t r u c t u r e s w e r e s o l v e d w i t h d i r e c t m e t h o d s a n d r e fi n e d w i t h f u l l - m a t r i x l e a s t s q u a r e s t e c h n i q u e s . D I F A B S c o r r e c t i o n s w e r e a p p l i e d t o t h e s t r u c t u r e - f a c t o r s a f t e r a l l t h e a t o m s i n t h e s t r u c t u r e s w e r e l o c a t e d a n d r e fi n e d i s o t r o p i c a l l y [ 2 7 ] . T h e c a l c u l a t i o n s w e r e p e r f o r m e d u s i n g t h e S H E L X S - 8 6 a n d S D P c o m b i n e d p a c k a g e o f c r y s t a l l o g r a p h i c p r o g r a m s [ 2 8 ] . T a b l e 3 1 g i v e s c r y s t a l d a t a a n d d e t a i l s f o r s t r u c t u r e a n a l y s i s o f t h e t w o c o m p o u n d s . A l l n o n - h y d r o g e n a t o m s i n t h e s e s t r u c t u r e s w e r e r e fi n e d e i t h e r i s o t r o p i c a l l y o r a n i s o t r o p i c a l l y . T h e h y d r o g e n p o s i t i o n s w e r e c a l c u l a t e d b u t n o t r e fi n e d . T h e fi n a l c o o r d i n a t e s a n d a v e r a g e t e m p e r a t u r e f a c t o r s o f t h e a t o m s i n e a c h c o m p o u n d a r e g i v e n i n T a b l e s 3 - 2 a n d 3 - 3 , r e s p e c t i v e l y . C o m p o u n d ( 3 3 ) w a s f o u n d t o b e i s o s t r u c t u r a l t o fi - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] b y X - r a y p o w d e r d i f f r a c t i o n ( X R D ) s t u d i e s ( v i d e i n f r a ) . T h e s i n g l e c r y s t a l s t r u c t u r e a n a l y s i s w a s n o t c a r r i e d o u t f o r t h i s c o m p o u n d b e c a u s e t h e s a m e a n i o n h a d b e e n r e p o r t e d a s i t s [ K - 2 2 2 - c r y p t ] + a n d [ 1 3 3 - 2 2 2 t h ” s a l t s [ 2 9 ] . F i n a l l y , e a c h c o m p o u n d w a s e x a m i n e d b y X - r a y p o w d e r d i f f r a c t i o n f o r t h e p u r p o s e o f p h a s e c h a r a c t e r i z a t i o n a n d i d e n t i fi c a t i o n . A D e b y e — S c h e r r e r c a m e a w a s e m p l o y e d t o r e c o r d t h e X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s . N i - fi l t e r e d C u r a d i a t i o n w a s u s e d . T h e c r y s t a l s w e r e g r o u n d t o fi n e p o w d e r a n d p a c k e d i n t o 0 . 5 m m g l a s s c a p i l l a r i e s w h i c h w e r e s e a l e d a n d m o u n t e d t o t h e s t a n d a r d D e b y e - S c h e r r e r p o w d e r c a m e r a w h i c h h a s a d i a m e t e r o f 1 1 4 . 6 m m ( 1 m m c o r r e s p o n d s t o 1 d e g r e e f o r 2 0 ) . X - r a y s w e r e g e n e r a t e d b y a P h i l l i p s N o r e l c o X R G - 5 0 0 0 X - r a y g e n e r a t o r o p e r a t i n g a t 4 0 k V a n d 2 0 m A . A p p r o x i m a t e l y , 3 s i x h o u r e x p o s u r e t i m e w a s u s e d . A c c u r a t e d - s p a c i n g s ( A ) o f e a c h c o m p o u n d w e r e c a l c u l a t e d f r o m t h e p o w d e r p a t t e r n s r e c o r d e d o n a P h i l l i p s X R G - 3 0 0 0 c o m p u t e r c o n t r o l l e d p o w d e r d i f f r a c t o m e t e r [ 3 0 ] . T o v e r i f y t h e h o m o g e n e i t i e s o f t h e p r o d u c t s , t h e d - s p a c i n g s o b s e r v e d f o r t h e b u l k m a t e r i a l s w e r e c o m p a r e d w i t h t h e c a l c u l a t e d d - s p a c i n g s f r o m t h e X - r a y s i n g l e - 1 1 0 c r y s t a l s t r u c t u r e a n a l y s i s d a t a [ 3 1 ] . L i s t i n g s o f c a l c u l a t e d a n d o b s e r v e d d — s p a c i n g s ( A ) a l o n g w i t h t h e o b s e r v e d r e l a t i v e d i f f r a c t i o n i n t e n s i t i e s o f t h e s e c o m p o u n d s a r e g i v e n i n T a b l e s 3 - 4 a n d 3 - 5 . 1 1 1 T a b l e 3 1 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f a — ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 3 - 1 ) a n d [ 3 — c o m p o u n d f o r m u l a a , A b , A c , A ( 1 , d e g 6 . d e g Y . d e g Z ; V , A 3 s p a c e g r o u p I ) c a l c , g / c m 3 1 1 , c m " 1 ( M o K a ) c r y s t s i z e , m m 2 9 m a x , d e g t e m p e r a t u r e ( ‘ C ) n o . o f d a t a c o l l c d n o . o f d a t a u s e d ( F 0 2 > 3 0 ( F o 2 ) ) m i n , m a x a b s c o r n o . o f v a r i a b l e s n o . o f a t o m s p e r a s y m u n i t ( i n c l u d i n g H ) fi n a l R / R w , % ( P h 4 P ) 2 | S § 5 6 5 2 2 1 ( 3 ' 2 ) 3 - l C 4 8 H 4 0 P 2 3 6 1 l 1 2 . 8 7 1 ( 3 ) l 4 . 8 2 2 ( 3 ) 1 4 . 1 4 4 ( 3 ) 9 0 . 0 1 0 8 . 6 7 ( 2 ) 9 0 . 0 2 , 2 5 5 6 ( 2 ) P 2 1 / n ( # 1 4 ) 2 . 0 1 1 1 4 . 6 0 . 0 4 x 0 . 0 6 x 0 . 3 8 4 8 2 5 3 7 2 8 1 8 8 2 0 . 4 9 , 0 . 9 9 2 7 7 5 1 6 . 1 / 6 . 5 3 2 C 4 8 H 4 0 P 2 8 6 1 1 9 . 9 6 7 ( 4 ) l 3 . 8 8 9 ( 4 ) 1 8 . 6 6 8 ( 4 ) 9 0 . 0 1 0 2 . 6 0 ( 3 ) 9 0 . 0 2 , 2 5 2 2 ( 2 ) P 2 1 / n ( # 1 4 ) 2 . 0 4 8 0 . 0 0 . 1 2 , 0 . 2 2 , 0 . 4 5 4 5 2 3 3 7 1 7 1 5 3 8 0 . 8 0 , 1 . 1 2 2 0 4 5 1 5 . 2 / 5 . 8 1 1 2 T a b l e 3 - 2 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r a - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 3 1 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e q , A 2 S e 0 . 0 0 0 0 . 0 0 0 0 . 5 0 0 ( 1 ) 4 . 6 7 ( 7 ) S e ( 1 ) 0 . 0 9 0 0 ( 2 ) - 0 . 0 5 7 8 ( 2 ) 0 . 6 8 6 3 ( 2 ) 6 2 3 ( 6 ) S e ( 2 ) - 0 . 0 4 3 5 ( 2 ) — 0 . 1 2 7 7 ( 2 ) 0 . 7 3 4 8 ( 2 ) 6 . 2 8 ( 6 ) S e ( 3 ) - 0 . 1 5 8 9 ( 2 ) - 0 . 0 1 2 8 ( 3 ) 0 . 7 5 1 0 ( 2 ) 9 . 0 3 ( 8 ) S e ( 4 ) - 0 . 2 7 0 9 ( 2 ) 0 . 0 0 6 9 ( 2 ) 0 . 5 8 6 8 ( 2 ) 7 . 6 0 ( 7 ) S e ( 5 ) - 0 . 1 7 6 3 ( 2 ) 0 . 0 9 4 2 ( 2 ) 0 . 5 0 4 0 ( 2 ) 6 . 7 8 ( 7 ) P 0 . 6 7 6 1 ( 3 ) 0 . 1 2 1 9 ( 3 ) - 0 . 0 5 1 2 ( 3 ) 2 . 5 8 ( 9 ) C l 0 . 7 7 1 ( 1 ) 0 . 1 9 2 ( 1 ) - 0 . 0 8 0 ( 1 ) 3 . 7 ( 4 ) C 2 0 . 7 7 2 ( 2 ) 0 . 2 1 7 ( 1 ) - 0 . 1 7 2 ( 1 ) 4 . 8 ( 5 ) C 3 0 . 8 5 4 ( 2 ) 0 . 2 7 1 ( 2 ) - 0 . 1 9 0 ( 1 ) 6 . 7 ( 5 ) C 4 0 . 9 3 5 ( 1 ) 0 . 3 0 4 ( 1 ) - 0 . 1 0 8 ( 2 ) 5 . 5 ( 5 ) C 5 0 . 9 3 6 ( 1 ) 0 . 2 8 5 ( 1 ) - 0 . 0 1 5 ( 1 ) 5 . 1 ( 5 ) C 6 0 . 8 5 8 ( 1 ) 0 . 2 3 2 ( 1 ) - 0 . 0 0 1 ( 1 ) 3 . 6 ( 4 ) C 7 0 . 7 3 2 ( 1 ) 0 . 0 0 9 ( 1 ) - 0 . 0 2 5 ( 1 ) 3 . 0 ( 4 ) C 8 0 . 6 6 0 ( 1 ) - 0 . 0 6 4 ( 1 ) - 0 . 0 4 6 ( 1 ) 3 . 2 ( 4 ) C 9 0 . 7 0 1 ( 2 ) - 0 . 1 5 3 ( 1 ) — 0 . 0 2 9 ( 1 ) 4 . 5 ( 5 ) C 1 0 0 . 8 0 9 ( 2 ) - 0 . 1 6 6 ( 1 ) 0 . 0 1 6 ( 1 ) 4 . 1 ( 5 ) C 1 1 0 . 8 8 1 ( 1 ) - 0 . 0 8 8 ( 1 ) 0 . 0 3 9 ( 1 ) 4 . 9 ( 5 ) C 1 2 0 . 8 4 1 ( 1 ) - 0 . 0 0 5 ( 1 ) 0 . 0 1 9 ( 1 ) 4 . 1 ( 4 ) C 1 3 0 . 6 4 5 ( 1 ) 0 . 1 6 5 ( 1 ) 0 . 0 5 2 ( 1 ) 2 . 5 ( 4 ) C 1 4 0 . 6 1 6 ( 1 ) 0 . 2 5 5 ( 1 ) 0 . 0 5 6 ( 1 ) 2 . 9 ( 4 ) C 1 5 0 . 5 8 6 ( 1 ) 0 . 2 9 0 ( 1 ) 0 . 1 3 4 ( 1 ) 3 . 6 ( 4 ) C 1 6 0 . 5 9 5 ( 1 ) 0 . 2 3 3 ( 1 ) 0 . 2 1 5 ( 1 ) 3 . 3 ( 4 ) C 1 7 0 . 6 2 7 ( 1 ) 0 . 1 4 7 ( 1 ) 0 . 2 1 5 ( 1 ) 4 . 1 ( 5 ) C 1 8 0 . 6 5 1 ( 1 ) 0 . 1 0 9 ( 1 ) 0 . 1 3 3 ( 1 ) 3 . 5 ( 4 ) C 1 9 0 . 5 5 4 ( 1 ) 0 . 1 1 6 ( 1 ) - 0 . 1 5 5 ( 1 ) 3 . 3 ( 4 ) 1 1 3 T a b l e 3 - 2 . ( c o n t ' d ) a t o m x y z B e g , A 2 C 2 0 0 . 4 5 6 ( 1 ) 0 . 1 5 6 ( 1 ) - 0 . 1 5 2 ( 2 ) 3 . 4 ( 4 ) C 2 1 0 . 3 6 2 ( 1 ) 0 . 1 5 1 ( 1 ) - O . 2 3 2 ( 1 ) 4 . 8 ( 5 ) C 2 2 0 . 3 6 0 ( 1 ) 0 . 0 9 8 ( 1 ) - 0 . 3 1 6 ( 1 ) 5 . 1 ( 5 ) C 2 3 0 . 4 5 4 ( 1 ) 0 . 0 5 9 ( 1 ) 0 . 3 1 9 ( 1 ) 4 . 4 ( 5 ) C 2 4 0 . 5 5 1 ( 1 ) 0 . 0 6 5 ( 1 ) - 0 . 2 4 1 ( 1 ) 3 . 5 ( 4 ) a . B e q i s d e fi n e d a s 4 / 3 [ a 2 0 1 1 + b 2 0 2 2 + c 2 0 3 3 + a b ( c o s y ) 0 1 2 + a c ( c o s fi ) fi 1 3 + b c ( c o s a ) 6 2 3 ] . 1 1 4 T a b l e 3 - 3 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r B - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] ( 3 . 2 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e g , A 2 S e 0 . 0 0 0 0 . 5 0 0 0 . 5 0 0 4 . 0 9 ( 7 ) S e ( l ) 0 . 1 0 9 2 ( 2 ) 0 . 3 6 3 1 ( 2 ) 0 . 5 9 3 9 ( 1 ) 3 . 6 9 ( 5 ) S e ( 2 ) 0 . 0 3 5 0 ( 2 ) 0 . 4 0 3 7 ( 2 ) 0 . 6 9 8 6 ( 1 ) 4 . 4 3 ( 5 ) S e ( 3 ) - 0 . 1 8 9 7 ( 2 ) 0 . 3 4 3 9 ( 2 ) 0 . 6 7 8 9 ( 1 ) 4 . 2 5 ( 5 ) S e ( 4 ) - 0 . 3 1 7 7 ( 2 ) 0 . 4 6 0 6 ( 2 ) 0 . 6 0 4 2 ( 1 ) 5 . 3 0 ( 6 ) S e ( 5 ) - 0 . 2 6 4 5 ( 2 ) 0 . 4 5 1 3 ( 2 ) 0 . 4 9 1 7 ( 1 ) 5 . 2 5 ( 6 ) P 0 . 2 6 9 6 ( 5 ) 0 . 4 6 5 3 ( 4 ) 0 . 1 0 8 3 ( 3 ) 2 . 8 ( 1 ) C l 0 . 5 7 3 ( 2 ) 0 . 5 4 3 ( 1 ) 0 . 8 2 3 2 ( 8 ) 2 . 4 ( 3 ) C 2 0 . 5 4 2 ( 2 ) 0 . 4 7 3 ( 1 ) 0 . 7 6 9 6 ( 9 ) 3 . 2 ( 4 ) C 3 0 . 4 2 7 ( 2 ) 0 . 4 8 6 ( 1 ) 0 . 7 1 2 ( 1 ) 3 . 6 ( 4 ) C 4 0 . 3 4 3 ( 2 ) 0 . 5 6 5 ( 1 ) 0 . 7 1 0 ( 1 ) 3 . 9 ( 4 ) C 5 0 . 3 7 6 ( 2 ) 0 . 6 3 5 ( 2 ) 0 . 7 6 3 ( 1 ) 4 . 7 ( 5 ) C 6 0 . 4 9 3 ( 2 ) 0 . 6 2 3 ( 1 ) 0 . 8 2 1 ( 1 ) 3 . 5 ( 4 ) C 7 0 . 7 8 9 ( 2 ) 0 . 0 7 5 ( 1 ) 0 . 5 1 8 8 ( 9 ) 2 . 5 ( 4 ) C 8 0 . 7 6 5 ( 2 ) 0 . 0 1 3 ( 2 ) 0 . 4 6 0 ( 1 ) 4 . 6 ( 5 ) C 9 0 . 7 7 8 ( 2 ) 0 . 0 4 6 ( 2 ) 0 . 3 9 2 ( 1 ) 5 . 2 ( 5 ) C 1 0 0 . 8 1 6 ( 2 ) 0 . 1 3 8 ( 2 ) 0 . 3 8 3 ( 1 ) 4 . 1 ( 4 ) C 1 1 0 . 8 3 8 ( 2 ) 0 . 2 0 3 ( 2 ) 0 . 4 4 1 ( 1 ) 4 . 4 ( 5 ) C 1 2 0 . 8 2 0 ( 2 ) 0 . 1 6 9 ( 1 ) 0 . 5 1 0 5 ( 9 ) 3 . 1 ( 4 ) C 1 3 0 . 6 4 3 ( 2 ) 0 . 1 0 7 ( 1 ) 0 . 6 3 8 ( 1 ) 3 . 5 ( 4 ) C 1 4 0 . 6 4 1 ( 2 ) 0 . 1 0 7 ( 1 ) 0 . 7 1 2 ( 1 ) 4 . 1 ( 5 ) C 1 5 0 . 5 4 1 ( 2 ) 0 . 1 5 9 ( 2 ) 0 . 7 3 7 ( 1 ) 5 . 2 ( 5 ) C 1 6 0 . 4 5 3 ( 2 ) 0 . 2 1 6 ( 2 ) 0 . 6 8 8 ( 1 ) 4 . 6 ( 5 ) C 1 7 0 . 4 5 8 ( 2 ) 0 . 2 2 1 ( 2 ) 0 . 6 1 6 ( 1 ) 4 . 6 ( 5 ) C 1 8 0 . 5 5 0 ( 2 ) 0 . 1 6 4 ( 1 ) 0 . 5 8 9 3 ( 9 ) 3 . 4 ( 4 ) C 1 9 0 . 2 8 3 ( 2 ) 0 . 0 8 9 ( 1 ) 0 . 3 9 8 8 ( 9 ) 3 . 1 ( 4 ) 1 1 5 T a b l e 3 - 3 . ( c o n t ' d ) a t o m x y z B e g , A 2 C 2 0 0 . 4 1 1 ( 2 ) 0 . 1 1 6 ( 1 ) 0 . 3 8 2 ( 1 ) 3 . 4 ( 4 ) C 2 1 0 . 4 5 6 ( 2 ) 0 . 2 0 9 ( 2 ) 0 . 3 8 8 ( 1 ) 5 5 ( 5 ) C 2 2 0 . 3 7 2 ( 3 ) 0 . 2 8 0 ( 2 ) 0 . 4 0 9 ( 1 ) 6 . 6 ( 6 ) C 2 3 0 . 2 4 7 ( 2 ) 0 . 2 5 5 ( 2 ) 0 . 4 2 1 ( 1 ) 5 . 4 ( 5 ) C 2 4 0 . 1 9 7 ( 2 ) 0 . 1 6 0 ( 2 ) 0 . 4 1 5 ( 1 ) 4 . 5 ( 5 ) a . B e q i s d e fi n e d a s 4 / 3 [ a 2 0 1 1 + b 2 0 2 2 + c 2 6 3 3 + a b ( c o s v ) fi 1 2 + a c ( c o s fi ) fi 1 3 + b c ( c o s o t ) 0 2 3 ] . 1 1 6 T a b l e 3 - 4 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f fi a c t i o n P a t t e r n s f o r 0 1 - ( l ’ h 4 P ) 2 [ S e ( S e s ) 2 ] ( 3 E 1 1 k 1 d c g c . ( A ) d o b s . ( A ) “ m i n . ( 0 1 3 8 - ) 0 1 1 9 . 9 4 9 . 8 7 5 2 l l 0 9 . 4 1 9 . 3 8 7 1 - 1 1 1 8 . 7 9 8 . 7 4 2 1 l 0 1 7 . 8 5 7 . 7 6 7 0 0 2 0 7 . 4 1 7 . 3 9 5 7 1 2 0 6 . 3 3 6 . 2 4 2 4 1 2 l 5 . 3 9 5 . 4 2 5 1 1 3 0 4 . 5 8 4 . 5 1 3 2 - 2 2 2 4 . 3 9 7 4 . 3 0 1 2 3 l 3 1 4 . 1 8 2 4 . 2 1 2 1 0 0 2 2 1 4 . 1 3 4 3 . 9 9 6 4 1 0 0 4 3 . 3 5 0 3 . 3 6 0 2 1 - 3 3 2 3 . 1 5 8 3 . 1 6 0 4 5 2 0 2 2 . 9 2 7 3 . 0 0 8 3 2 1 1 4 2 . 9 3 5 2 . 9 4 5 2 5 - 3 4 1 2 . 8 0 4 2 . 8 0 7 1 5 - 4 3 1 2 . 6 8 7 2 . 6 9 1 1 2 - 3 4 3 2 . 5 9 7 2 . 5 6 0 1 5 1 0 5 2 . 4 5 7 2 . 4 5 8 1 9 l 2 5 2 . 3 3 3 2 . 3 3 0 5 1 9 — 3 3 6 2 . 0 7 9 2 . 0 7 7 3 0 - 2 4 6 1 . 9 8 7 1 . 9 9 9 1 6 1 1 7 T a b l e 3 - 5 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r f } - ( P h 4 P ) 2 I S e § 8 6 5 2 2 ] ( 3 ' 2 ) a n d ( P h 4 P ) 2 [ T e ( S e s ) 2 l ( 3 ° 3 ) h H d c a l c . ( A ) d o b s . ( A ) , m m a x d o b s . ( A ) , m a t r i x f o r ( 3 - 2 ) f o r ( 3 - 3 ) 0 1 1 1 1 . 0 5 1 1 . 1 8 , 9 0 1 1 . 2 0 , 5 2 0 0 2 9 . 1 1 9 . 1 5 , 1 3 9 . 0 9 , 2 0 l 1 0 7 . 9 7 7 . 9 8 , 1 0 0 7 . 8 5 , 1 0 0 1 0 l 7 . 9 0 I / - l 1 1 7 . 8 3 / / 0 1 2 7 . 6 2 7 . 6 9 , 6 0 7 . 6 4 , 4 2 0 2 0 6 . 9 5 7 . 0 2 , 4 4 7 . 0 2 , 3 3 0 2 1 6 . 4 9 6 . 5 5 , 6 0 6 . 5 4 , 4 4 0 2 2 5 . 5 2 3 5 . 5 7 0 , 2 6 5 . 5 1 7 , 2 1 ~ 1 2 2 5 . 1 0 0 5 . 1 3 1 , 3 1 5 . 1 1 4 , 2 7 2 0 0 4 . 8 6 3 4 . 8 9 3 , 2 4 4 . 8 7 3 , 1 9 0 2 3 4 . 5 7 1 4 . 5 9 1 , 5 6 4 . 5 9 1 , 2 9 0 1 4 4 . 3 3 0 4 . 3 5 3 , 3 5 4 . 3 5 1 , 2 0 1 3 0 4 . 1 8 1 / 4 . 2 2 0 , 4 5 - l 3 1 4 . 1 6 3 4 . 1 9 1 , 8 0 / 0 3 2 4 . 1 3 4 / / - 2 1 3 4 . 0 9 1 / I - 2 2 1 4 . 0 5 2 3 . 9 7 9 , 7 1 3 . 9 6 4 , 4 4 - 2 0 4 3 . 7 6 5 3 . 7 7 3 , 3 1 3 . 7 1 8 , 4 9 - 1 0 5 3 . 6 9 0 3 . 7 0 0 , 5 4 / 0 l 5 3 . 5 2 2 3 . 5 4 1 , 2 2 / 2 3 0 3 . 3 5 3 3 . 3 7 5 , 4 2 3 . 3 1 3 , 5 9 - l 2 5 3 . 2 6 8 3 . 2 6 6 , 2 7 / - 3 1 2 3 . 2 0 4 3 . 2 1 0 , 3 6 / 3 1 0 3 . 1 6 4 3 . 1 7 4 , 2 9 / 1 4 2 3 . 0 0 3 3 . 0 2 1 , 5 2 / 1 3 4 2 . 9 5 1 2 . 9 5 3 , 3 4 2 . 9 8 0 , 2 0 - 1 2 6 2 . 8 3 3 2 . 8 3 3 , 2 2 2 . 8 2 6 2 2 9 1 1 8 I I I . R e s u l t s 1 . D e s c r i p t i o n o f C r y s t a l a n d M o l e c u l a r S t r u c t u r e s o f a - a n d fi - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] T h e c r y s t a l l a t t i c e o f t h e s e t w o c o m p o u n d s i s m a d e u p o f w e l l s e p a r a t e d P h 4 P + c a t i o n s a n d [ S e ( S e 5 ) 2 ] 2 ' a n i o n s . A l t h o u g h t w o c o m p o u n d s c r y s t a l l i z e a s d i f f e r e n t u n i t c e l l s , t h e s t r u c t u r e s o f t h e a n i o n s i n t w o c r y s t a l m o d i fi c a t i o n s a r e e s s e n t i a l l y t h e s a m e . F i g u r e s 3 1 a n d 3 - 2 a r e t h e p a c k i n g d i a g r a m s o f t h e t w o c o m p o u n d s , w h i l e F i g u r e 3 - 3 d e p i c t s t h e s t r u c t u r e o f t h e a n i o n i n b o t h c o m p o u n d s . A c o m p a r i s o n o f s e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s i n t w o a n i o n s f o u n d i n t w o c r y s t a l f o r m s i s g i v e n i n F i g u r e 3 - 4 . T h e P h 4 P + c a t i o n s h a v e t h e n o r m a l t e t r a h e d r a l s t r u c t u r e a n d w a r r a n t n o f u r t h e r c o m m e n t s . T h e [ S e ( S e 5 ) 2 ] 2 ‘ a n i o n c a n b e t h o u g h t o f a s a S e 2 + i o n , w h i c h i s s i t u a t e d o n a c r y s t a l l o g r a p h i c i n v e r s i o n c e n t e r , c h e l a t e d b y t w o S e 5 2 ' c h a i n s , f o r m i n g a s p i r o c y c l i c r i n g w i t h C 2 1 1 s y m m e t r y . T h i s a s s i g n m e n t o f o x i d a t i o n s t a t e m i g h t b e f o r m a l , b u t t h e a r g u m e n t h e ' e i s w e l l s u p p o r t e d b y t h e o b s e r v e d s q u a r e - p l a n a r c o o r d i n a t i o n g e o m e t r y a r o u n d t h e c e n t r a l S e a t o m . T h i s g e o m e t r y i s p r e d i c t e d b y v a l e n c e - s h e l l e l e c t r o n - p a i r r e p u l s i o n t h e o r y ( V S E P R ) f o r S e ” . T h e b o n d s o f t h e c e n t r a l S e a t o m t o t h e f o u r l i g a n d s o f t h e s q u a r e — p l a n e a r e v e r y l o n g . T h e t w o s e t s o f S e - S e b o n d d i s t a n c e s a r e , S e — S e ( l ) = 2 . 6 5 9 ( 2 ) A a n d S e - S e ( 5 ) = 2 . 6 8 0 ( 3 ) A i n ( 3 4 ) , a n d S e - S e ( 1 ) = 2 . 6 5 3 ( 2 ) A a n d S e - S e ( 5 ) = 2 . 6 9 3 ( 3 ) A i n ( 3 - 2 ) . T h e s e d i s t a n c e s a r e c o n s i d e r a b l y l o n g e r t h a n t h e i r s u m o f t h e c o v a l e n t r a d i i o f t h e a t o m s i n v o l v e d , s u g g e s t i n g a s t r o n g i o n i c c h a r a c t e r i n t h e b o n d s . I t i s o b v i o u s t h a t t h e S e - S e d i s t a n c e s a r o u n d S e c e n t r a l a t o m s a r e n o t e q u a l . T h e d i f f e r e n c e , 0 . 0 2 1 A i n ( 3 - 1 ) a n d 0 . 0 4 0 A i n ( 3 - 2 ) , i s s t a t i s t i c a l l y s i g n i fi c a n t . I n c o n t r a s t , n o s i g n i fi c a n t d i f f e r e n c e w a s f o u n d i n t h e t w o [ T e ( S e 5 ) 2 ] 2 ' a n i o n s t h a t w e r e c r y s t a l l i z e d w i t h d i f f e r e n t c o u n t e r i o n s a n d i n a d i f f e r e n t s p a c e g r o u p [ 2 9 ] . T h e r e f o r e , i t i s t e m p t i n g t o a t t r i b u t e t h i s e f f e c t t o d i s t o r t i o n s e f f e c t e d b y l a t t i c e p a c k i n g . I t i s a l s o n o t e w o r t h y t h a t t h e S e - S e d i s t a n c e s o f t h e 8 e 5 2 ' c h e l a t e i n a - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] s h o w t w o s h o r t t e r m i n a l b o n d s a n d t w o s l i g h t l y l o n g e r 1 1 9 i n t e r n a l S e - S e b o n d s i n c o n t r a s t w i t h t h e s t r u c t u r e o f a - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] w h i c h s h o w s n o s u c h d i f f e r e n t i a t i o n . T h e c o n f o r m a t i o n o f t h e s i x - m e m b e r e d r i n g o f S e / S e ( 1 ) / S e ( 2 ) l S e ( 3 ) / S e ( 4 ) I S e ( 5 ) c a n b e b e s t d e s c r i b e d a s " c h a i r " i n b o t h s t r u c t u r e s . I n ( 3 - 1 ) t h e f o u r S e a t o m s , S e ( l ) , S e ( 2 ) , S e ( 4 ) a n d S e ( 5 ) a r e l y i n g a l m o s t o n a p l a n e , w i t h t h e m e a n d e v i a t i o n o f 0 . 0 3 4 A f r o m t h e l e a s t s q u a r e p l a n e . T h e r e m a i n i n g t w o a t o m s o f t h e s i x - m e m b e r e d r i n g , S e ( 3 ) a n d S e a r e p o s i t i o n e d 1 . 7 5 0 A a n d 1 . 8 2 0 A a b o v e a n d b e l o w t h e p l a n e , r e s p e c t i v e l y , w h i l e i n ( 3 2 ) S e ( l ) , S e ( 2 ) , S e ( 4 ) , a n d S e ( 5 ) , f o r m a p l a n e w i t h t h e m e a n d e v i a t i o n o f 0 . 0 9 0 A f r o m t h e l e a s t s q u a r e p l a n e , t h e fi f t h a n d s i x t h a t o m s , S e ( 3 ) a n d S e , p o s i t i o n e d 1 . 5 1 7 A a n d 1 . 3 4 9 A a b o v e a n d b e l o w t h e p l a n e , r e s p e c t i v e l y . T h e c o r r e s p o n d i n g b o n d d i s t a n c e s a n d b o n d a n g l e s i n t h e t w o c r y s t a l m o d i fi c a t i o n s a r e s i m i l a r b u t n o t i d e n t i c a l . F o r c o m p a r i s o n , s e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s f o r t h e [ S e ( S e 5 ) 2 ] 2 ‘ a n i o n i n t h e t w o c o m p o u n d s a r e g i v e n i n T a b l e 3 - 6 . 1 2 0 F i g u r e 3 - 1 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f a - ( P h 4 P ) 2 [ S e ( S e s ) 2 ] ( S t e r e o v i e w ) ' 1 . e \ . ‘ I 0 " . ’ o . O . ‘ " - . \ 1 0 ’ . 1 ' ' F i g u r e 3 - 2 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f fl - ( H I 4 P ) 2 [ S e ( S e 5 ) 2 ] ( S t e r c O V i e w ) 1 2 1 I 7 0 ‘ n o i n A ' 2 ] 2 ) 5 e S ( e S [ e h t f o e r u t c u r t S e h T . 3 - 3 e r u g i F 1 2 2 ( 7 ( 5 ) H ) ( 3 I 3 8 Z ( C 8 ' Z ( $ 1 . 2 1 ( € ” ! 1 3 8 ( f l i t - ( " z ( 2 ) 3 3 “ £ 6 9 I ( 1 . 1 1 5 1 6 ( I N S € § T > ! ( l ) a s ( ( 7 9 ) ) 3 3 8 8 . ( 0 ( j 0 8 8 1 1 9 5 Z ' 5 1 . C 1 8 1 : ' 6 0 1 ' ( € 1 1 . . t h z ( C l a s ( H G I C ' Z ( ( H 2 O ) 3 Z ( C ' 1 8 Z ) 0 3 ® { 9 . f l F . . ( N ) . g . { l 9 a ) ( ) . ( l a l S J . . 1 2 3 ( H ) ( V ) 1 2 4 T a b l e 3 6 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f a - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] a n d 1 3 - ( 1 ’ 1 1 4 1 ’ ) 2 [ S e ( 8 6 5 ) 2 1 ‘ “ b C o m p o u n d a - ( P h 4 P ) [ S e ( S e s ) 2 ] B - ( P h 4 P ) [ S e ( S e s ) 2 ] A — Q l 2 . 6 5 9 ( 2 ) 2 . 6 5 3 ( 2 ) A — Q S 2 . 6 8 0 ( 3 ) 2 . 6 9 3 ( 2 ) A - a n 2 . 6 7 0 ( 1 1 ) 2 . 6 7 3 ( 2 0 ) Q 1 - Q 2 2 . 3 2 0 ( 4 ) 2 . 3 0 6 ( 3 ) Q 2 - Q 3 2 . 3 1 9 ( 4 ) 2 . 3 4 1 ( 3 ) Q 3 - Q 4 2 . 3 2 7 ( 3 ) 2 . 3 2 8 ( 3 ) Q 4 - Q 5 2 . 3 3 2 ( 4 ) 2 . 2 8 1 ( 4 ) Q - a n 2 . 3 2 5 ( 4 ) 2 . 3 1 4 ( 1 3 ) Q l - A - Q S 1 0 4 . 4 9 ( 8 ) 9 6 5 1 ( 7 ) A - Q l - Q 2 1 0 8 . 1 9 ( 9 ) 1 0 2 . 9 1 ( 1 0 ) Q 1 - Q 2 - Q 3 1 0 5 . 2 4 ( 1 5 ) 1 0 4 6 7 0 1 ) @ 0 3 6 4 1 0 1 . 8 6 ( 1 4 ) 1 0 3 . 1 5 0 2 ) Q 3 — Q 4 — Q 5 1 0 8 . 3 3 ( 1 3 ) 1 0 7 . 8 0 ( l 4 ) Q 4 - Q S - A 1 0 7 . 6 6 ( 1 2 ) 1 1 0 . 7 5 ( 1 0 ) Q 1 — 0 2 A 0 3 \ l a b e l i n g S c h e m e : a . 0 5 " Q 4 b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n 0 1 = { £ n ( l n - 1 ) 2 / n ( n - 1 ) } 1 ’ 2 , w h e r e 1 , , i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . 2 . S p e c t r o s c o p i c S t u d i e s 1 2 5 T h e s o l i d - s t a t e f a r I R s p e c t r a o f a - a n d B - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] a r e i d e n t i c a l . F i g u r e 3 - 5 s h o w s t h e f a r I R s p e c t r a o f ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] a n d ( P h 4 P ) 2 [ T e ( S e 5 ) 2 ] . T w o s t r o n g p e a k s a t 2 6 5 a n d 2 1 6 c m - 1 a r e o b s e r v e d f o r ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] , w h i l e ( P h 4 P ) 2 [ T e ( S e 5 ) 2 ] g i v e s t w o p e a k s a t 2 7 7 c m " 1 ( s t r o n g ) a n d 2 5 8 c m ' 1 ( w e a k , b r o a d ) . T h e y a r e a l l a s s i g n e d t o t h e S e - S e s t r e t c h i n g v i b r a t i o n s ( v i d e i n f r a ) . T h e s o l u t i o n o f ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] i n D M F h a s a d e n s e g r e e n t i n t , a n d s h o w s a b r o a d U V / v i s a b s o r p t i o n a t 6 5 3 n m ( 3 : 2 8 4 1 M ' l c m ' l ) , a n d a n e x t r e m e l y b r o a d s h o u l d e r f r o m ~ 3 8 0 - 4 8 0 n m w i t h t w o i d e n t i fi a b l e a b s o r p t i o n m a x i m a a t 4 5 7 n m ( 8 : 9 4 3 2 M ' l - c m ' l ) a n d 4 0 0 n m ( s h , 5 : 9 1 5 4 M ‘ l c m ‘ l ) a s s h o w n i n F i g u r e 3 6 , w h i l e t h e s o l u t i o n o f ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] i s r e d d i s h , a n d s h o w s a f e a t u r e l e s s U V / v i s s p e c t r u m w i t h a r i s i n g a b s o r b a n c e . 3 . T h e r m a l D e c o m p o s i t i o n F i g u r e 3 - 7 s h o w s t h e r m a l d e c o m p o s i t i o n d i a g r a m s o f ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] a n d ( P h 4 P ) 2 [ T e ( S e 5 ) 2 ] u n d e r n i t r o g e n . B o t h c o m p o u n d s b e g i n t o l o s e w e i g h t a t ~ 2 6 5 ' C . T h e o b s e r v e d w e i g h t l o s s f o r ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] a t 4 4 2 “ C i s 9 3 . 1 0 % , w h i c h c o r r e s p o n d s t o c a . o n e e q u i v a l e n t e l e m e n t a l s e l e n i u m ( i . e . t h e c a l c u l a t e d w e i g h t l o s s i s 9 4 . 8 9 % ) . A t 5 5 7 ° C , t h e w e i g h t l o s s f o r t h i s c o m p o u n d s t a r t s a g a i n , p r e s u m a b l y t h a t t h e e l e m e n t a l s e l e n i u m i s e v a p o r a t i n g . U p t o ~ 8 0 0 ’ C , t h e o b s e r v e d w e i g h t l o s s a p p r o a c h e s 1 ( X ) % , i n d i c a t i n g t h a t a l l s e l e n i u m h a s b e e n e v a p o r a t e d . T h e o b s e r v e d w e i g h t l o s s a t 4 2 7 ' C f o r ( P h 4 P ) 2 [ T e ( S e 5 ) 2 ] i s 9 1 . 6 4 % , w h i c h c o r r e s p o n d s t o o n e e q u i v a l e n t e l e m e n t a l t e l l u r i u m ( i . e . t h e c a l c u l a t e d w e i g h t l o s s i s 9 2 . 0 0 % ) . F u r t h e r w e i g h t l o s s f o r t h i s c o m p o u n d g o e s b e y o n d 8 0 0 ' C . 1 ( A ) 2 9 2 6 2 2 6 5 2 4 8 2 R 3 V 1 E N 2 E 5 1 R N U H B 1 6 7 1 6 0 1 6 3 1 1 6 1 2 6 ( 3 0 F i g u r e 3 - 5 . T h e S o l i d - S t a t e F a r I R S p e c t r a o f ( A ) ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] a n d ( B ) ( P h 4 P ) 2 [ T ‘ e ( S e s ) 2 ] 0 0 8 0 0 m 1 6 n , H T G N E L E V A W 0 I 0 4 S B A 2 0 0 F i g u r e 3 - 6 . T h e U V / v i s S p e c t r u m o f ( P h 4 P ) 2 [ S e ( S e s ) 2 ] i n D M F 1 2 7 Y j Y I f T V r V I V I T I Y 1 0 0 8 a 0 1 0 7 r 0 2 l 1 0 6 ) s = ¢ 1 3 ) 0 0 1 ( ¢ ‘ l ' B ( 5 [ r I C 0 l M 0 2 ) ’ l t c m I 4 1 l H J 0 1 0 3 L 0 1 0 2 1 0 I 0 " I ( ) B ( d n A l 2 ) s 1 e _ 4 S ’ o 0 0 0 0 0 0 o 2 0 ‘ 1 8 6 4 2 0 ( e S [ 2 ) P 4 h P ( ) fi ' J D 0 A 3 ( 1 0 L 0 7 a ' 1 0 s m a r 0 g J 6 1 0 a i d A G T e h T ' J ‘ I J I r o J o s a J K 0 1 m 0 m 4 % . J 7 1 0 1 0 3 ' 3 e r ' 1 u J T J ' 0 2 o g i 1 o F z 1 0 1 0 1 1 o 0 0 1 1 0 0 0 0 0 8 6 4 2 % M % M 1 2 8 1 2 9 I V . D i s c u s s i o n T h r e e h o m o - o r h e t e r o p o l y c h a l c o g e n i d e c o m p o u n d s i n t h e [ A ( S e 5 ) 2 ] 2 ' f a m i l y ( A = S e a n d T e ) h a v e b e e n m a d e b y r e d o x r e a c t i o n s i n D M F s o l u t i o n . E i t h e r t h e e x t e r n a l r e a g e n t A u C l 3 , 1 2 o r t h e p o l y c h a l c o g e n i d e l i g a n d S e 5 2 ‘ w e r e u s e d a s o x i d a n t : 2 N a 2 8 e 5 + A u C l 3 + 2 P h 4 P C l L M — F y a — ( P h a P ) 2 [ S e ( S e s ) 2 l + A u C I + N a C 1 e q - ( B - l ) 2 N a 2 8 e 5 + 1 2 + 2 P h 4 P C l M y B - ( P h s P ) 2 [ S e ( S e s ) 2 l + N a l + N a C l e q . ( 3 - 2 ) T e + 2 N a 2 S e 5 + 2 P h 4 P C l — D — M £ > ( P h 4 P ) 2 l T e ( S e s ) 2 l + N a C l e q - ( 3 ' 3 ) N o n e o f t h e a b o v e r e a c t i o n s i s b a l a n c e d . I n a b i l i t y t o d o s o r e fl e c t s t h e c o m p l e x i t y o f t h e r e a c t i o n s w h i c h p o l y c h a l c o g e n i d e l i g a n d s u n d e r g o i n s o l u t i o n s a s fi e q u e n t l y o b s e r v e d i n m e t a l / p o l y c h a l c o g e n i d e s y s t e m s [ 3 2 - 3 4 ] . T h e s o l i d - s t a t e f a r I R s p e c t r a o f a - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] a n d B — ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] a r e i d e n t i c a l t o e a c h o t h e r , s h o w i n g t w o s t r o n g a b s o r p t i o n s a t 2 6 5 a n d 2 1 6 c m ‘ l , w h i l e ( P h 4 P ) 2 [ T e ( S e 5 ) 2 ] s h o w s a s t r o n g b a n d a t 2 7 7 c m ' 1 a n d a w e a k b r o a d a b s o r p t i o n c e n t e r e d a r o u n d 2 5 8 c m ' l . A l l t h e s e a b s o r p t i o n s a r e a s s i g n e d t o t h e S e - S e s t r e t c h i n g v i b r a t i o n s . T h i s i s b a s e d o n t h e p r e v i o u s l y r e p o r t e d f a r I R a s s i g n m e n t m a d e f o r t h e o t h e r u n l i g a n d e d p o l y s e l e n i d e c o m p o u n d s . F o r e x a m p l e , [ S e x ] 2 ’ ( x = 2 - 6 ) s h o w s a v 5 . 3 - 3 , , a t 2 8 5 c m ' 1 [ 3 5 ] , c y c l o - S e 6 s h o w s a v w s e a t 2 5 3 c m ‘ 1 [ 3 6 ] , a n d ( P h 4 P ) 2 [ S e 5 ] s h o w s a v s e . s e a t 2 6 7 c m ‘ 1 [ 3 7 ] . T h e s o l u t i o n U V / v i s a b s o r p t i o n s o f ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] a t 6 5 3 , 4 5 7 a n d 4 0 0 n m a r e a s s o c i a t e d w i t h f r e e S e x z ’ s p e c i e s i n s o l u t i o n w h i c h a r e t h o u g h t t o b e d i s s o c i a t e d i n t o r a d i c a l a n i o n c h a i n s . T h e p r e s e n c e o f t h e s e a b s o r p t i o n b a n d s i n d i c a t e s t h a t t h e c o m p o u n d s d o n o t m a i n t a i n t h e i r i n t e g r i t y i n t h i s s o l v e n t , b u t r a t h e r t h e y d i s s o c i a t e t o v a r i o u s S e x z ' 1 3 0 s p e c i e s [ 3 7 ] . I n t e r e s t i n g l y , t h e r e d s o l u t i o n o f ( P h 4 P ) 2 [ T e ( S e 5 ) 2 ] i n D M F s h o w s a a f e a t u r e l e s s U V / v i s s p e c t r u m w i t h a r i s i n g a b s o r b a n c e . T h i s s u g g e s t s t h a t ( P h 4 P ) 2 [ T e ( S e 5 ) 2 ] d o e s n o t u n d e r g o t h e s a m e d i s s o c i a t i o n a s a - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] a n d B - ( P h 4 P ) 2 [ S e ( S e 5 ) 2 ] , o r a t l e a s t n o t t o t h e s a m e e x t e n t . F o u r c o o r d i n a t e d s q u a r e - p l a n a r S e 2 + w i t h c h a l c o g e n l i g a n d s i s s c a r c e . T o o u r k n o w l e d g e t h e o n l y e x a m p l e o f m i x e d v a l e n c e p o l y s e l e n i d e c o n t a i n i n g a f o r m a l S e 2 + u n i t i s C S 4 [ S e l 6 ] i n w h i c h a s q u a r e — p l a n a r S e 2 + i s c h e l a t e d b y t h r e e S e 5 2 ' c h a i n s , o f w h i c h o n e a c t s a s b i d e n t a t e w h i l e t h e o t h e r t w o a c t a s m o n o d e t a t e l i g a n d s , r e s u l t i n g i n a s t r u c t u r e o f a s i x - m e m b e r e d r i n g o n o n e s i d e w i t h t w o S e s z ‘ " t a i l s " d a n g l i n g o n o t h e r , a s s h o w n i n S c h e m e 3 - 1 [ 3 8 ] . A s i n [ S e ( S e 5 ) 2 ] 2 ' , [ S e 1 5 ] 4 ' s h o w s f o u r l o n g S e - S e b o n d d i s t a n c e s a r o u n d t h e S e 2 + a t o m . — - - S 9 S e \ / I S 6 S 9 " , , " ‘ . \ \ “ ‘ S 9 S e ‘ 8 9 3 9 / \ S e ’ s e \ 3 S e S c h e m e 3 1 . T h e S t r u c t u r e o f [ S e 1 5 ] 2 ' I n o r d e r t o p u t t h e a b o v e d e s c r i p t i o n o f n r i x e d - v a l e n c e p o l y c h a l c o g e n i d e s i n p e r s p e c t i v e , t w o m o r e r e l a t e d f r e e p o l y s e l e n i d e s m u s t b e d i s c u s s e d . T h e ( P P N ) 2 [ S e l o ] - D M F [ 2 1 ] a n d [ S r ( l S - c r o w n - 5 ) 2 ] [ S e 9 ] [ l 6 ] , c r y s t a l l i z e d f r o m a D M F s o l u t i o n o f p o l y s e l e n i d e s w i t h r e s p e c t i v e l y P P N + o r S r 2 + i n t h e p r e s e n c e o f t h e c r o w n e t h e r , r e p r e s e n t t w o i n c r e d i b l e e x a m p l e s o f h o w l a r g e p o l y s e l e n i d e l i g a n d s s t a b i l i z e t h e m s e l v e s i n t h e a b s e n c e o f m e t a l i o n s . T h e [ S e l o ] 2 ‘ a n i o n f o r m s a d e c a l i n - l i k e m o l e c u l e , i . e . i t c o n s i s t s o f t w o f u s e d s i x - m e m b e r e d S e ( s r i n g s a s s h o w n i n S c h e m e 3 2 . T h e 1 3 1 m o l e c u l e i s s i t u a t e d o n a c r y s t a l l o g r a p h i c C 2 a x i s , a n d b o t h i n d i v i d u a l r i n g s h a v e t h e c h a i r c o n f o r m a t i o n . S e s ' S e . S c h e m e 3 2 . T h e S t r u c t u r e o f [ S e 1 0 ] 2 ' T h e r e a s o n f o r t h i s i s e l e c t r o n i c . F i r s t , t w o s e l e n i u m a t o m s i n t h e c e n t r a l S e - S e u n i t h a v e a d i s t o r t e d t r i g o n a l - b i p y r a m i d a l g e o m e t r y , a n d a r e l i n k e d t o g e t h e r t h r o u g h o n e o f t h e e q u a t o r i a l p o s i t i o n s o f e a c h a t o m . T h e S e - S e b o n d d i s t a n c e o f 2 . 4 6 0 2 ( 2 ) A i n t h e c e n t r a l S e 2 u n i t i s s l i g h t l y l o n g e r t h a n t y p i c a l S e — S e d i s t a n c e s i n m o s t u n b r a n c h e d S e x z ' c h a i n s ( e . g . S e - S e = 2 . 3 8 ( 5 ) A i n N a 2 S e 2 ) . S e c o n d l y , S e ( 3 ) f o r m s t w o l o n g b o n d s w i t h S e ( 2 ) a n d S e ( 4 ) a t 2 . 7 5 9 ( 3 ) a n d 2 . 5 7 2 ( 3 ) A . T h e r e f o r e , t h e m o l e c u l e m i g h t b e c o n v e n i e n t l y d e s c r i b e d a s a { S e 2 } 2 + u n i t c h e l a t e d b y t w o S e 4 2 ' l i g a n d s w i t h c h e m i c a l b o n d s h a v i n g c e r t a i n i o n i c c h a r a c t e r . T h i s a l s o a c c o u n t s f o r t h e c o o r d i n a t i o n g e o m e t r y o b s e r v e d f o r t h e c e n t r a l { S e 2 } + u n i t a s s h o w n b e l o w , a s w e l l a s t h e b o n d d i s t a n c e l e n g t h e n i n g i n t h i s c e n t r a l u n i t . \ \ § 1 s | c . 1 1 ! ” I . . 1 1 \ N O I I I I H . S _ * _ _ S : O a s , 9 3 ‘ . O I ' — 1 3 . . , I ’ / C 2 S c h e m e 3 3 . G e o m e t r y o f t h e T e n V a l e n c e E l e c t r o n S p e c i e s { S e 2 } 2 + $ 3 9 9 / 3 6 1 8 9 : , S e a S e r \ S e e " ” - 8 6 1 \ s e z 1 3 2 I n a l a r g e p o l y s e l e n i d e s y s t e m s u c h a s [ S e 1 0 1 2 ‘ , t h e c a t e n a t i o n a b i l i t y o f s e l e n i u m m a y n o t a l l o w t h e a n i o n t o m a i n t a i n a n u n b r a n c h e d h e l i c a l c h a i n s t r u c t u r e i n t h e s o l i d s t a t e . S t a b i l i t y i s t h u s g a i n e d t h r o u g h i n t e r n a l e l e c t r o n t r a n s f e r . T h i s i s a l s o f o u n d t o b e o p e r a t i v e i n t h e [ S e 9 ] 2 ' s y s t e m . S c h e m e 3 4 s h o w s t h e s t r u c t u r e o f t h e [ S e 9 ] 2 ' a n i o n [ 1 6 ] . I n s t e a d o f b e i n g a z i g - z a g c h a i n , t h i s m o l e c u l e h a s a n a s t o n i s h i n g r e s e m b l a n c e t o [ S e l o l z i T o p o l o g i c a l l y , [ S e 9 ] 2 ‘ c a n b e v i e w e d a s f o r m e d t h r o u g h t h e [ S e l o l z ' b y r e m o v i n g a t e r m i n a l s e l e n i u m a t o m f r o m o n e o f t h e S e 4 2 ' l i g a n d s . T h e r e m a i n i n g 8 % r i n g s t i l l h a s t h e c h a i r c o n f o r m a t i o n . A l t h o u g h t h e d i s t a n c e o f t h e ” c e n t r a l " S e 2 u n i t , i . e . S e ( 5 ) - S e ( 6 ) a t 2 . 4 7 3 A , i s c o m p a r a b l e t o t h a t f o u n d i n [ S e 1 0 ] 2 ' , t h e n o r m a l b o n d d i s t a n c e o f S e 4 - S e 5 a t 2 . 3 4 1 ( 4 ) A , a s w e l l a s t h e w e a k i n t e r a c t i o n b e t w e e n S e ( 1 ) a n d S e ( 6 ) ( i . e . 2 . 9 5 3 ( 4 ) A ) r e n d e r s t h e m o l e c u l e c e r t a i n c h a r a c t e r i s t i c s o f t h e o p e n c h a i n s t r u c t u r e . T h i s c l e a r l y i n d i c a t e s a t r a n s i t i o n s t a t e o f t h e m o l e c u l e f r o m a b a n d o n i n g t h e u n b r a n c h e d h e l i c a l c h a i n s t r u c t u r e b y s e e k i n g a s i m i l a r e l e c t r o n i c c o n fi g u r a t i o n t o t h a t i n [ S e l o l z ' o r i n [ S e 1 1 ] 2 ‘ . S c h e m e 3 4 . T h e S t r u c t u r e o f [ S e g l z ' T h e i s o l a t i o n o f t w o c r y s t a l m o d i fi c a t i o n s o f t h e [ S e ( S e 5 ) 2 ] 2 ' fi ' o m p o l y s e l e n i d e s o l u t i o n s i n D M F w i t h d i f f e r e n t o x i d a n t s s u g g e s t s t h a t t h i s c o m p o u n d i s t h e s t a b l e e n d - p r o d u c t o f s u c h s o l v e n t - e x t r a c t e d p o l y s e l e n i d e s o l u t i o n s . E v e n t i n t h e p r e s e n c e o f o t h e r o r g a n i c c o u n t e r i o n ( i . e . P m N “ ) , t h e s a m e m o l e c u l e c a n b e i s o l a t e d f r o m t h e r e a c t i o n o f N a 2 S e 2 w i t h I 2 [ 3 9 ] . U n l i k e t h e o r d i n a r y p o l y s e l e n i d e s o l u t i o n s , t h i s c l o s e d - r i n g m o l e c u l e i s m u c h l e s s r e a c t i v e w i t h m e t a l i o n s t o f o r m c o m p l e x e s , w h i c h a c c o u n t s f o r t h e f a i l u r e t o i s o l a t e a n y A u / S e x z ' c o m p o u n d s f r o m t h e A u C l 3 / N a 2 S e 5 s y s t e m [ 2 4 ] . F u r t h e r m o r e , a n a n a l o g o u s c h e m i s t r y h a s b e e n s e e n i n t h e T e / S e 5 2 ' s y s t e m . T h e f o r m a t i o n o f [ T e ( S e 5 ) 2 ] 2 ‘ 1 3 3 i s a l s o t h e r e s u l t o f a r e d o x r e a c t i o n b e t w e e n 8 e 5 2 ' a n d T e , a r e a s o n a b l e ( b u t n o t n e c e s s a r i l y e x p e c t e d ) o u t c o m e d e t e r m i n e d b y t h e i r e l e c t r o n e g a t i v i t i e s . T h e r e s u l t s p r e s e n t e d h e r e s u g g e s t t h a t t h e s t a b i l i z a t i o n o f m i x e d [ S e x T e y F ' ( x 2 y > 1 ) a n i o n s w i t h c h a i n s t r u c t u r e s i s p r o b a b l y u n l i k e l y b e c a u s e o f t h e e n s u i n g i n t e r n a l e l e c t r o n t r a n s f e r t o y i e l d s p e c i e s w i t h o x i d i z e d T e . 1 3 4 R E F E R E N C E S E a r l y i n v e s t i g a t i o n s o n t h e e x i s t e n c e o f t h e h o m o p o l y c h a l c o g e n i d e a n i o n s i n l i q u i d a m m o n i a s o l u t i o n c a n b e f o u n d i n ( a ) C . C . H u g o t R , H e b d . S e a n c e s A c a d . S c i , ( 1 8 9 9 ) , 2 1 9 , 2 9 9 , 3 8 8 . ( b ) C . C . H u g o t , A n n . C h i m P h y s , 2 1 ( 1 9 0 0 ) , 7 2 . ( c ) C . A . K r a u s a n d C . Y . C h i n , J . A m C h e m S o c , 1 4 ( 1 9 2 2 ) , 1 9 9 9 - 2 0 0 9 . ( ( 1 ) F . W . B e r g s t r o m , J . A m C h e m . S o c . , 4 8 ( 1 9 2 6 ) , 1 4 6 - 1 5 1 . ( e ) E . Z i n t l , J . G o u b e a u a n d W . D u l l e n k o p f , Z . P h y s . C h e m , A b t . A , 1 5 4 ( 1 9 3 1 ) , 1 . ( 1 ) W . K l e m m , H . S o d o m a n n a n d P . L a n g m e s s e r , Z . A n o r g . A l l g . C h e m , 2 4 1 ( 1 9 3 9 ) , 2 8 1 - 3 0 4 . F o r r e c e n t s p e c t r o s c o p i c s t u d i e s o f t h e s e s p e c i e s i n p o l a r s o l v e n t s ( i . e . e n , N H 3 a n d M D F , e t c . ) , s e e ( a ) F . S e e l , H . J . G u t t l e r , G . S i m o n a n d A . W i e c k o w s k i , P u r e A p p l . C h e m , 4 9 ( 1 9 7 7 ) , 4 5 - 5 4 . ( b ) K . W . S h a r p a n d W . H . K o e h l e r , I n o r g . C h e m , 1 6 ( 1 9 7 7 ) , 2 5 2 8 - 2 5 6 5 . ( c ) L . D . S c h u l t z a n d W . H . K o e h l e r , I n o r g . C h e m , 2 6 ( 1 9 8 7 ) , 1 9 8 9 - 1 9 9 3 . ( ( 1 ) P . D u b o i s , J . P . I e l i e u r a n d G . I e p o u t r e , I n o r g . C h e m , 2 6 ( 1 9 8 7 ) , 1 8 9 7 - 1 9 0 2 . ( e ) P . D u b o i s , J . P . L e l i e u r a n d G . L e p o u t r e , I n o r g . C h e m , 2 7 ( 1 9 8 7 ) , 7 3 - 8 0 . ( f ) P . D u b o i s , J . P . I e l i e u r a n d G . L e p o u t r e , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 1 8 8 3 - 1 8 9 0 . ( g ) V . P i n o n a n d J . P . I e l i e u r , I n o r g . C h e m , 3 0 ( 1 9 9 1 ) , 2 2 6 0 - 2 2 6 4 . ( h ) M . B j o r g v i n s s o n a n d G . J . S c h r o b i l g e n , I n o r g . C h e m , 3 0 ( 1 9 9 1 ) , 2 5 4 0 - 2 5 4 7 . F o r S 2 2 " , s e e ( a ) H . F o p p l , A n g e w . C h e m , 7 0 ( 1 9 5 8 ) , 4 0 1 - 4 0 1 . ( b ) H . F o p p l , E . B u s m a n n a n d F . - K . F r o r a t h , Z . A n o r g . A l l g . C h e m , 3 1 4 ( 1 9 6 2 ) , 1 2 - 2 0 . F o r S 3 2 3 s e e W . S . M i l l e r a n d A . J . K i n g , Z . K r i s t a l l o g r . , K r i s t a l l g e o m , K r i s t a l l p h y s . , K r i s t a l l c h e m , 9 4 ( 1 9 3 6 ) , 4 3 9 . 1 0 . 1 1 . 1 3 5 F o r S 4 2 ‘ , s e e ( a ) S . C . A b r a h a m s , A c t a C r y s t a l l o g r . , 7 ( 1 9 5 4 ) , 4 2 3 — 4 2 9 . ( b ) S . C . A b r a h a m s a n d J . L . B e r n s t e i n , A c t a C r y s t a l l o g r . , 2 5 B ( 1 9 6 9 ) , 2 3 6 5 - 2 3 7 0 . ( c ) R . T e g m a n , A c t a C r y s t a l l o g r . , 2 9 B ( l 9 7 3 ) , 1 4 6 3 - 1 4 6 9 . F o r S 5 2 ‘ , s e e ( a ) B . L e c l e r c a n d T . S . K a b r e , A c t a C r y s t a l l o g r . , 3 1 B ( 1 9 7 5 ) , 1 6 7 5 - 1 6 7 7 . ( b ) B . K e l l y a n d P . W o o d w a r d , J . C h e m S o c . D a l t o n T r a n s , ( 1 9 7 6 ) , 1 3 1 4 - 1 3 1 6 . ( c ) P . B é t t c h e r , K r i s t a l l o g r . , 1 5 0 ( 1 9 7 4 ) , 6 5 - 7 3 . ( ( 1 ) P . B o t t c h e r a n d K . K r u s e , J . L e s s - c o m m o n M e t . , 8 3 ( 1 9 8 2 ) , 1 1 5 - 1 2 5 . F o r S 6 2 3 s e e ( a ) S . C . A b r a h a m s a n d E . G r i s o n , A c t a C r y s t a l l o g r . , 6 ( 1 9 5 3 ) , 2 0 6 — 2 1 3 . ( b ) A . H o r d v i k a n d E . S t e t t e n , A c t a C h e m . S c a r l e t , 2 2 ( 1 9 6 8 ) , 3 0 2 9 - 3 0 5 2 . ( c ) R . G . T e l l e r , L . J . K r a u s e a n d R . C . H a u s h a l t e r , I n o r g . C h e m , 2 2 ( 1 9 8 3 ) , 1 8 0 9 - 1 8 1 2 . F o r S 7 2 " , s e e ( a ) H . K r e b s a n d K . H . M l ’ i l l e r , Z A n o r g . A l l g . C h e m , 2 7 5 ( 1 9 5 4 ) , 1 4 7 - 1 5 1 . ( b ) M . G . K a n a t z i d i s , N . C . B a e n z i g e r a n d D . C o u c o u v a n i s , I n o r g . C h e m , 2 2 ( 1 9 8 3 ) , 2 9 0 — 2 9 2 . F o r S e 2 2 ' , s e e ( a ) G . C o r d i e r , R . C o o k a n d H . S c h a f e r , A n g e w . C h e m I n t . E d . E n g l . , 1 9 ( 1 9 8 0 ) , 3 2 4 - 3 2 5 . ( b ) r e f . [ 3 b ] . F o r S e 3 2 ' , s e e ( a ) H . G . V o n S c h n e r i n g a n d N . K . G o h , N a t u m r i s s e n s h a fi e n , 6 1 ( 1 9 7 4 ) , 2 7 2 . ( b ) P . B t ' i t t c h e r , Z A n o r g . A l l g . C h e m , 4 6 1 ( 1 9 8 0 ) , 1 3 - 2 1 . F o r S e 4 ' , s e e ( a ) O . F o s s a n d V . J a n i c k i s , J . C h e m S o c . D a l t o n T r a n s , ( 1 9 8 0 ) , 6 2 0 - 6 2 3 . ( b ) T . K é n i g , B . E i s e n m a n n a n d H . S c h i l f e r , Z N a t u r f o r s c h , 3 7 B ( 1 9 8 2 ) , 1 2 4 5 - 1 2 4 9 . ( c ) T . K é n i g , B . E i s e n m a n n a n d H . S c h i i f e r , Z A n o r g . A l l g . C h e m , 4 9 8 ( 1 9 8 3 ) , 9 9 - 1 0 4 . ( d ) N . E . B r e s e , C . R . R a n d a l l a n d J . A . I b e r s , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 9 4 0 - 9 4 3 . 1 2 . 1 3 . 1 4 . 1 5 . 1 6 . 1 7 . 1 8 . 1 9 . 1 3 6 F o r S e s z ' , s e e ( a ) U . K r e t s c h m a n n a n d P . B o t t c h e r , Z N a t u r f o r s c h , 4 O B ( 1 9 8 5 ) , 8 9 5 - 8 9 9 . ( b ) C . - N . C h a u , R . W . M . W a r d l e a n d J . A . I b e r s , A c t a C r y s t a l l o g r . , 4 4 C ( 1 9 8 8 ) , 8 8 3 - 8 8 5 . ( c ) W . S . S h e l d r i c k a n d H . G . B r a u n b a c k , Z N a t u r f o r s c h , 4 4 B ( 1 9 8 9 ) , 1 3 9 7 - 1 4 0 1 . ( ( 1 ) G . K r a u t e r , K . D e h n i c k e a n d D . F e n s k e , C h e m - Z t g . , 1 1 4 ( 1 9 9 0 ) , 7 - 9 . ( c ) J . D i e t z , U . M i i l l e r , V . M i i l l e r a n d K . D e h n i c k e , Z N a t u r f o r s c h . , 4 6 B ( 1 9 9 1 ) , 1 2 9 3 - 1 2 9 9 . ( 1 ) V . M i i l l e r , G . F r e n z e n , K . D e h n i c k e a n d D . F e n s k e , Z N a t u r f o r s c h , 4 7 B ( 1 9 9 2 ) , 2 0 5 - 2 1 0 . ( g ) r e f . [ 6 c ] . ( h ) r e f . [ l 1 d ] . F o r S e 6 2 " , s e e ( a ) F . W e l l e r , J . A d e l a n d K . D e h n i c k e , Z A n o r g . A l l g . C h e m , 5 4 8 ( 1 9 8 7 ) , 1 2 5 - 1 3 2 . ( b ) D . F e n s k e , C . K r a u s a n d K . D e h n i c k e , Z A n o r g . A l l g . C h e m , 6 0 7 ( 1 9 9 2 ) , 1 0 9 - 1 1 2 . ( c ) r e f . [ 7 c ] . F o r S e 7 2 ' , s e e V . M i i l l e r , K . D e h n i c k e , D . F e n s k e a n d G . B a u m , Z N a t u r f o r s c h , 4 6 B ( 1 9 9 1 ) , 6 3 - 6 7 . F o r 5 6 3 2 ' , s e e R . S t a f f e l , U . M i i l l e r , A . A h l e a n d K . D e h n i c k e , Z N a t u r f o r s c h , 4 6 B ( 1 9 9 1 ) , 1 2 8 7 - 1 2 9 2 . F o r 8 6 9 2 ' , s e e V . M i i l l e r , C . G r e b e , U . M i i l l e r a n d K . D e h n i c k e , Z A n o r g . A l l g . C h e m , 6 1 9 ( 1 9 9 3 ) , 4 1 6 - 4 2 0 . F o r T e 2 2 ' , s e e R . C . B u r n s a n d J . D . C o r b e t t , J . A m C h e m S o c . , 1 0 3 ( 1 9 8 1 ) , 2 6 2 7 - 2 6 3 2 . F o r T e 3 2 ‘ , s e e ( a ) A . C i s a r a n d J . D . C o r b e t t , I n o r g . C h e m , 1 6 ( 1 9 7 7 ) , 6 3 2 — 6 3 5 . ( b ) E i s e n m a n n a n d H . S c h i f e r , A n g e w . C h e m I n t . E d . E n g l . , 1 7 ( 1 9 7 8 ) , 6 8 4 - 6 8 6 . ( c ) P . B é t t c h e r , J . L e s s - C o m m o n M e t . , 7 0 ( 1 9 8 0 ) , 2 6 3 - 2 7 1 . F o r T e 4 2 ' , s e e ( a ) J . C . H u f f m a n a n d R . C . H a u s h a l t e r , Z A n o r g . A l l g . C h e m , 5 1 8 ( 1 9 8 4 ) , 2 0 3 - 2 0 9 . ( b ) L . A . D e v e r e u x , G . J . S c h r o b i l g e n a n s J . F . S a w y e r , 2 0 . 2 1 . 2 2 . 2 3 . 2 4 . 2 5 . 2 6 . 2 7 . 2 8 . 1 3 7 A c t a C r y s t a l l o g r . , 4 1 C ( 1 9 8 5 ) , 1 7 3 0 - 1 7 3 3 . ( c ) K . W . K l i n k m a m m e r a n d P . B t ' i t t c h e r , Z N a t u r f o r s c h . , 4 5 B ( 1 9 9 0 ) , 1 4 1 - 1 4 7 . ( ( 1 ) H . W o l k e r , B . S c h r e i n e r , R . S t a f f e l , U . M i i l l e r a n d K . D e h n i c k e , Z N a t u r f o r s c h , 4 6 B ( 1 9 9 1 ) , 1 0 1 5 — 1 0 1 9 . ( e ) B . S c h r e i n e r a n d K . D e h n i c k e , C h e m - Z t g . , 1 1 5 ( 1 9 9 1 ) , 3 2 6 . ( f ) D . F e n s k e , G . B a u m , H . W o l k e r s , B . S c h r e i n e r , F . W e l l e r a n d K . D e h n i c k e , Z A n o r g . A l l g . C h e m , ( 1 9 9 2 ) , i n p r e s s . F o r T e 5 2 ‘ , s e e ( a ) P . B é t t c h e r a n d U . K r e t s c h m a n n , J . L e s s — c o m m o n M e t . , 9 5 ( 1 9 8 3 ) , 8 1 - 9 1 . ( h ) P . B c ' i t t c h e r a n d U . K r e t s c h m a n n , Z A n o r g . A l l g . C h e m , 4 9 1 ( 1 9 8 2 ) , 3 9 - 4 6 . ( C ) r e f . [ 7 c ] . ( d ) r e f . [ 1 9 f ] . D . F e n s k e , G . K r i i u t e r a n d K . D e h n i c k e , A n g e w . C h e m . I n t . E d . E n g l . , 2 9 ( 1 9 9 0 ) , 3 9 0 - 3 0 1 . M . G . K a n a t z i d i s a n d S . - P . H u a n g , I n o r g . C h e m , 2 8 ( 1 9 8 9 ) , 4 6 6 7 - 4 6 6 9 . P . B é t t c h e r , A n g e w . C h e m . I n t . E d . E n g l . , 2 7 ( 1 9 8 8 ) , 7 5 9 - 8 6 4 . S e e c h a p t e r 2 . D . D . P e r r i n , W . L . F . A r m a r e g o a n d D . R . P e r r i n , P u r i fi c a t i o n o f L a b o r a t o r y C h e m i c a l s , 2 n d E d . , P e r g a m o n P r e s s , O x f o r d U K , 1 9 8 0 . P 3 / V D a t a C o l l e c t i o n M a n u a l , S i e m e n s A n a l y t i e a l X - r a y I n s t r u m e n t s , I n c . , 1 9 8 9 . N . W a l k e r a n d D . S t u a r t , A c t a C r y s t a l l o g r . , 3 9 A ( 1 9 8 3 ) , 1 5 8 - 1 6 6 . ( a ) G . M . S h e l d r i c k i n C r y s t a l l o g r a p h i c C o m p u t i n g , G . M . S h e l d r i c k , C . K r u g e r , a n d R . D o d d a r d , O x f o r d U n i v e r s i t y P r e s s , 1 9 8 5 , p . 1 7 5 - 1 8 9 . ( b ) B . A . F r e n z , T h e E n r a f - N o n i u s C A D 4 S D P S y s t e m . i n C o m p u t i n g i n C r y s t a l l o g r a p h y ; D e l f t U n i v e r s i t y P r e s s , D e l f t H o l l a n d , 1 9 7 8 ; p . 6 4 - 7 1 . 2 9 . 3 0 . 3 1 . 3 2 . 3 3 . 3 4 . 3 5 . 3 6 . 3 7 . 3 8 . 3 9 . 1 3 8 R . Z a g l e r a n d B . E i s e n m a n n , Z N a t u r f o r s c h , 4 6 B ( 1 9 9 1 ) , 5 9 3 - 6 0 1 . H . P . K l u g a n d L . E . A l e x a n d e r , X - r a y D z fi r a c t i o n P r o c e d u r e s f o r P o l y c r y s t a l l i n e a n d A m o r p h o u s M a t e r i a l s , J o h n W i l e y a n d S o n s , N e w Y o r k , 1 9 7 4 . D . K . S m i t h , M . C . N i c h o l s a n d M . E . Z o l e n s k y , P O W D I O : A F o r t r a n I V P r o g r a m f o r C a l c u l a t i n g X - r a y P o w d e r D i fi ‘ i w i o n P a t t e r n s , V e r s i o n 1 0 , P e n n s y l v a n i a S t a t e U n i v e r s i t y , 1 9 8 3 . ( a ) M . G . K a n a t z i d i s , C o m m e n t s I n o r g . C h e m , 1 0 ( 1 9 9 0 ) , 1 6 1 - 1 9 5 . ( b ) M . G . K a n a t z i d i s a n d S . - P . H u a n g , C o o r d . C h e m . R e v . , i n p r e s s . M . A . A n s a r i a n d J . A . I b e r s , C o o r d . C h e m R e v . , 1 0 0 ( 1 9 9 0 ) , 2 2 3 - 2 6 6 . J . W . K o l i s , C o o r d . C h e m . R e v . , 1 0 5 ( 1 9 9 0 ) , 1 9 5 - 2 1 9 . F . W e l l e r , J . A d e l a n d K . D e h n i c k e , Z A n o r g . A l l g . C h e m , 5 4 8 ( 1 9 8 7 ) , 1 2 5 - 1 3 2 . K . N a g a t a , K . T s h i b a s h i a n d Y . M i y a m o t o , J p n . J . A p p l . P h y s , 1 9 ( 1 9 8 0 ) , 1 5 6 9 - 1 5 7 3 . S . - P . H u a n g a n d M . G . K a n a t z i d i s , I n o r g . C h e m , 3 0 ( 1 9 9 1 ) , 1 4 5 5 - 1 4 6 6 . W . S . S h e l d r i c k a n d H . G . B r a u n b e c k , Z N a t u r f o r s c h , 4 4 B ( 1 9 8 9 ) , 1 3 9 7 - 1 4 0 1 . J . D i e t z , U . M i i l l e r , V . M i ’ r l l e r a n d K . D e h n i c k e Z N a t u r f o r s c h . , 4 6 B ( 1 9 9 1 ) , 1 2 9 3 - 1 2 9 9 . C H A P T E R 4 C H E M I S T R Y O F P O L Y S E L E N I D E L I G A N D S W I T H I R O N A N D R U T H E N I U M C A R B O N Y L S I N S O L U T I O N I . I n t r o d u c t i o n I n p a r a l l e l t o o u r s y s t e m a t i c i n v e s t i g a t i o n s o n t h e h e a v y p o l y c h a l c o g e n i d e c h e m i s t r y o f c o i n a g e m e t a l s [ 1 ] , w e a l s o e x p l o r e d t h e c o r r e s p o n d i n g t r a n s i t i o n m e t a l c a r b o n y l s i n o r d e r t o p r e p a r e C O — c o n t a i n i r r g c o m p o u n d s i n w h i c h t h e m e t a l c e n t e r s h a v e a p a r t i a l p o l y c h a l c o g e n i d e e n v i r o n m e n t . S y n t h e s e s o f s u c h c o m p o u n d s r e p r e s e n t t h e i n t e r f a c e b e t w e e n o r g a n o m e t a l l i c c h e m i s t r y o f t h e t r a n s i t i o n m e t a l s a n d t h e c h e m i s t r y o f m a i n g r o u p e l e m e n t s . R e s e a r c h i n t h i s p a r t i c u l a r fi e l d o f o r g a n o m e t a l l i c c h e m i s t r y h a s b e e n a c t i v e [ 2 - 5 ] . T h e s i m p l e s t m e t h o d f o r s y n t h e s i z i n g m e t a l c h a l c o g e n i d e c o m p o u n d s w i t h o r g a n o m e t a l l i c l i g a n d s i n g e n e r a l , a n d c a r b o n y l g r o u p s i n p a r t i c u l a r , h a s b e e n t o r e a c t e l e m e n t a l c h a l c o g e n w i t h c o o r d i n a t i v e l y u n s a t u r a t e d e l e c t r o n - r i c h m e t a l c o m p l e x e s , o r w i t h c o m p o u n d s c o n t a i n i n g m e t a l - m e t a l b o n d s [ 3 , 5 , 6 — 1 2 ] . S u c h a p r o c e s s o f t e n r e s u l t s i n a c h a n g e i n t h e o x i d a t i o n s t a t e o f t h e m e t a l , a n d u s u a l l y p r o d u c e s c o m p o u n d s w i t h p a r t i a l c h a l c o g e n i d e - c o o r d i n a t i o n e n v i r o n m e n t b e e a u s e n o m e t a t h e s i s c a n t a k e p l a c e b e t w e e n t h e a l l a n c i l l a r y g r o u p s a n d t h e e l e m e n t a l c h a l c o g e n a t o m s . D u e t o t h e l a c k o f s u i t a b l e s t a r t i n g m e t a l c o m p l e x e s w h i c h p o s s e s s e n o u g h r e a c t i v i t y t o w a r d s t h e e l e m e n t a l c h a l c o g e n s , t h i s m e t h o d i s l e s s t h a n u n i v e r s a l [ l 3 ] . O n t h e o t h e r h a n d , o x i d a t i v e d e c a r b o n y l a t i o n o f m e t a l c a r b o n y l s b y p o l y c h a l c o g e n i d e l i g a n d s a n ‘ ( Q = S , S e a n d T e ; n = 2 - 6 ) p r o v i d e s a c o n v e n i e n t r o u t e f o r i n t r o d u c i n g c h a l c o g e n - a t o m s i n t o m e t a l c e n t e r s [ 1 4 ] . T h i s a p p r o a c h 1 3 9 1 4 0 w a s fi r s t i n i t i a t e d b y K o l i s a n d c o - w o r k e r s i n t h e s y n t h e s i s o f g r o u p 6 m e t a l c a r b o n y l p o l y c h a l c o g e n i d e c o m p l e x e s [ 1 5 - 1 8 ] . S i n c e m o s t o f t h e t r a n s i t i o n m e t a l c a r b o n y l s a r e r e a d i l y a v a i l a b l e , t h i s s y n t h e t i c m e t h o d i s p o t e n t i a l l y e x t e n d a b l e t o t h e p r e p a r a t i o n o f o t h e r t r a n s i t i o n m e t a l c a r b o n y l p o l y c h a l c o g e n i d e c o m p o u n d s . O u r i n t e r e s t i n s y n t h e s i z i n g s o l u b l e r u t h e n i u m p o l y c h a l c o g e n i d e , e s p e c i a l l y p o l y s u l fi d e , c o m p l e x e s s t e m s f r o m t h e h y d r o d e s u l f u r i z a t i o n ( H D S ) p r o b l e m [ 1 9 ] . R u S 2 i s o n e o f t h e m o s t a c t i v e c a t a l y s t s l m o w n f o r t h e h y d r o d e s u l f u r i z a t i o n o f c r u d e o i l [ 2 0 ] . A s w i t h t h e o t h e r H D S c a t a l y s t s ( i . e . M 0 8 2 , W S 2 a n d " C o M o S " ) , t h e m e c h a n i s m o f i t s a c t i o n i s c u r r e n t l y u n k o w n [ 2 1 ] . W e w e r e i n t e r e s t e d i n p r o b i n g t h e R u S 2 / H D S p r o b l e m f r o m t h e s t a n d p o i n t o f m i m i c k i n g t h e a c t i v e s i t e s p r e s e n t i n R u S 2 b y u s i n g s o l u b l e h o m o l e p t i c r u t h e n i u m p o l y s u l fi d e s a s m o d e l c o m p o u n d s [ 2 2 ] . H o w e v e r , R u l S c h e m i s t r y h a s p r o v e n t o b e s o m e w h a t r e c a l c i t r a n t t o s t u d y i n t h e s e n s e t h a t , t o d a t e , n o h o m o l e p t i c R u / S c o m p l e x e s h a v e b e e n i s o l a t e d i n p u r e f o r m a n d / o r s t r u c t u r a l l y c h a r a c t e r i z e d . N u m e r o u s a t t e m p t s m a d e i n o u r g r o u p t o p r e p a r e h o m o l e p t i c p o l y s u l fi d o ( s e l e n i d o ) c o m p l e x e s o f r u t h e n i u m b y r e a c t i n g p o l y s u l fi d o ( s e l e n i d o ) l i g a n d s w i t h v a r i o u s r u t h e n i u m s a l t s s u c h a s R u C 1 3 , R u ( D M S O ) 2 C 1 2 o r R u ( a c a c ) 3 , e t c . w e r e a l s o u n s u c c e s s f u l [ 2 3 ] . D u e t o c o m p l e x e l e c t r o n t r a n s f e r p r o c e s s e s b e t w e e n R u ! ” a n d Q x 2 ' ( Q = S o r S e , x = 2 - 4 ) , t h e s e r e a c t i o n s o f t e n y i e l d e d v e r y i l l - d e fi n e d m i x t u r e s p o s s i b l y c o n t a i n i n g r u t h e n i u m i n d i f f e r e n t o x i d a t i o n s t a t e s . N o p u r e s p e c i e s c o u l d b e e x t r a c t e d f r o m s u c h m i x t u r e s b y f r a c t i o n a l c r y s t a l l i z a t i o n . B y e x p l o r i n g t h e f u n d a m e n t a l s o f R u 2 + l p o l y c h a l c o g e n i d e c h e m i s t r y , w e a i m e d t o e s t a b l i s h t h e c u r r e n t u n k n o w n c o o r d i n a t i o n p r e f e r e n c e s o f t h i s m e t a l w i t h c h a l c o g e n i d e l i g a n d s . T o m i n i m i z e t h e a b o v e e l e c t r o n t r a n s f e r b e t w e e n R u n ” i o n s a n d p o l y c h a l c o g e n i d e l i g a n d s , o n e o f t h e s t r a t e g i e s w e a d o p t e d w a s t o i n t r o d u c e C O g r o u p s i n t o t h e t a r g e t m o l e c u l e b y u s i n g o x i d a t i v e d e c a r b o n y l a t i o n r e a c t i o n i n t h e h o p e t h a t s u c h a s t r o n g n - a c i d c o u l d e l i m i n a t e t h e m u l t i p l e e l e c t r o n t r a n s f e r , t h u s s t a b i l i z i n g a r u t h e n i u m c o m p l e x t h a t c o n t a i n s p o l y c h a l c o g e n i d e l i g a n d s . T h i s r e s u l t e d i n i s o l a t i o n o f t h e fi r s t s t a b l e a n i o n i c 1 4 1 R u 2 + l p o l y s e l e n i d e c o m p l e x , [ R u ( C O ) 2 ( S e 4 ) 2 ] 2 ' . l a t e r , s i m i l a r c h e m i s t r y w a s s u c c e s s f u l l y e x t e n d e d t o t h e F e y / p o l y s e l e n i d e s y s t e m . I n t h i s c h a p t e r , w e d e s c r i b e t h e s y n t h e s i s , X - r a y d i f f r a c t i o n s t u d i e s a n d s p e c t r o s c o p i c c h a r a c t e r i z a t i o n o f ( E t 4 N ) l . 5 N a o . 5 [ R U ( C 0 ) 2 ( S e 4 ) 2 ] ( 4 ' 1 ) , ( P h 4 P ) 2 [ R U ( C 0 ) 2 ( S e 4 ) 2 ] ( 4 ' 2 ) a n d ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] ( 4 3 ) . A l t h o u g h C O a n d S e l i g a n d s a r e n o t H D S - r e l e v a n t , s t r u c t u r e s s t a b i l i z e d o n l y b y t h e s e l i g a n d s m a y r e p r e s e n t d i f fi c u l t y i n i s o l a t i n g r e a c t i v e i n t e r m e d i a t e s i n s u l f u r c h e m i s t r y , a n d t h u s p r o v i d e u s e f u l i n s i g h t i n t o t h a t c h e m i s t r y . I I . E x p e r i m e n t a l S e c t i o n 1 . R e a g e n t s C h e m i c a l s i n t h i s w o r k o t h e r t h a n s o l v e n t s w e r e u s e d a s o b t a i n e d : ( i ) s e l e n i u m p o w d e r , ~ 1 0 0 m e s h , 9 9 . 5 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I ; ( i i ) s o d i u m s t i c k s i n k e r o s e n e , 9 9 % p u r i t y , M a l l i n c k r o d t I n c . , P a r i s , K y . ; ( i i i ) i r o n p e n t a c a r ' b o n y l , F e ( C O ) 5 , S t r e m C h e m i c a l s , I n c . , N e w b u r y p o r t , M A ; ( i v ) r u t h e n i u m c a r b o n y l , R u 3 ( C O ) 1 2 , S t r e m C h e m i c a l s , I n c . , N e w b u r y p o r t , M A ; ( v ) t e t r a p h e n y l p h o s p h o n i u m c h l o r i d e ( P h 4 P C l ) , 9 8 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I ; ( v i ) t e t r a e t h y l a m m o n i u m c h l o r i d e h y d r a t e ( E t 4 N C l - x H 2 O ) , 9 7 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I . A c e t o n e ( a n a l y t i c a l r e a g e n t , M a l l i n c k r o d t I n c . , P a r i s , K y ) w a s d e g a s s e d , a n d u s e d w i t h o u t f u r t h e r p u r i fi c a t i o n . D i e t h y l e t h e r ( A . C . S . a n h y d r o u s , C o l u m b u s C h e m i c a l I n d u s t r i e s I n c . , C o l u m b u s , W I ) w a s d i s t i l l e d u n d e r a d r y N 2 b l a n k e t a f t e r b e i n g r e fl u x e d w i t h p o t a s s i u m m e t a l , b e n z o p h e n o n e a n d t r i e t h y l e n e g l y c o l d i m e t h y l e t h e r f o r 1 2 h o u r s [ 2 4 ] . 2 . P h y s i c a l M e a s u r e m e n t s 1 4 2 S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s , F T — I R , U V / v i s , S e 7 7 N M R s p e c t r o s c O p i c s t u d i e s , a n d t h e r m a l g r a v i m e t r i c a n a l y s e s ( T G A ) o f t h e c o m p o u n d s w e r e c a r r i e d o u t a s d e s c r i b e d p r e v i o u s l y [ 2 5 ] . 3 . S y n t h e s e s A l l s y n t h e s e s w e r e c a r r i e d o u t u n d e r a d r y n i t r o g e n a t m o s p h e r e i n a V a c u u m A t m o s p h e r e s D r i - I a b g l o v e b o x . ( 1 ) . P r e p a r a t i o n o f s o d i u m p e n t a s e l e n i d e i n l i q u i d a m m o n i a T h i s m a t e r i a l w a s p r e p a r e d b y r e a c t i n g s t o i c h i o m e t r i c a m o u n t o f s e l e n i u m a n d s o d i u m m e t a l i n a r o u t i n e p r o c e d u r e u s e d i n t h i s l a b o r a t o r y [ 2 5 ] . ( i i ) . P r e p a r a t i o n o f ( E t 4 N ) 1 , 5 N a 0 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 4 . 1 ) A 1 5 m l a c e t o n e s u s p e n s i o n o f 6 4 m g ( 0 . 1 0 m m o l ) R U 3 ( C O ) 1 2 w a s a d d e d d r o p w i s e t o a 5 0 m l a c e t o n e s o l u t i o n o f 2 7 0 m g ( 0 . 6 0 m m o l ) N a 2 S e 5 i n t h e p r e s e n c e o f 1 0 0 m g ( 0 . 6 0 m m o l ) o f E t 4 N C l . A f t e r s t i r r e d f o r 1 0 h , t h e r e s u l t i n g b r o w n s o l u t i o n w a s fi l t e r e d t o r e m o v e N a C l , a n d t h e n d i l u t e d w i t h 3 0 m l e t h e r . W h e n t h e m i x t u r e w a s a l l o w e d t o s t a n d f o r 3 d a y s , a n a l y t i c a l l y p u r e r e d - o r a n g e c r y s t a l s o f ( E t 4 N ) 1 _ 5 N a o 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] w e r e i s o l a t e d i n 7 0 % y i e l d . M i d - I R s p e c t r u m ( K B r p e l l e t ) : l 9 9 9 ( s , b ) a n d 1 9 3 9 ( m , b ) c m ' l ; F a r I R s p e c t r u m ( C s I p e l l e t ) : 2 6 8 ( s ) a n d 2 4 9 ( m ) c m ‘ l ; S e m i — q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : R u : S e = l 4 : 8 6 ; 7 7 S e N M R ( i n D M F ) : 7 1 7 , 6 5 0 , 6 3 0 a n d 3 9 5 p p m ; 1 3 C N M R ( i n D M F ) : 1 9 9 p p m ; 2 3 N a N M R ( i n D M F ) : 0 . 7 ( s i n g l e t ) p p m . ( i i i ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 2 ) 1 4 3 T h i s c o m p o u n d i s p r e p a r e d i n a s i m i l a r m a n n e r a s a b o v e , e x c e p t t h a t 2 2 0 ( 0 . 6 m m o l ) P h 4 P C l w a s u s e d i n p l a c e o f M C I . A n a l y t i c a l l y p u r e r e d - o r a n g e c r y s t a l s o f ( P h 4 P ) 2 [ R u ( C O ) 2 ( S e 4 ) 2 ] w e r e o b t a i n e d i n 8 3 % y i e l d . M i d - I R s p e c t r u m ( K B r p e l l e t ) : 1 9 8 1 ( 3 ) a n d 1 9 1 5 ( m ) c m ' l ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : R u : S e : P = 1 4 : 6 4 : 2 2 ; F a r I R s p e c t r u m ( C s I p e l l e t ) : 2 6 9 ( m ) , 2 5 0 ( s ) a n d 1 9 9 ( m ) c m ' l ; 7 7 S e N M R ( i n D M F ) : 7 1 7 , 6 5 0 , 6 3 0 a n d 3 9 5 p p m . ( i v ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 3 ) T o a 5 0 m l a c e t o n e s o l u t i o n o f 2 7 0 m g ( 0 . 6 0 m m o l ) N a 2 S e 5 a n d 2 2 0 m g ( 0 . 6 0 m m o l ) P h 4 P C l a t t h e b o i l i n g p o i n t , 0 . 1 m l ( 0 . 7 6 m m o l ) n e a t F e ( C O ) 5 w a s a d d e d . T h e s o l u t i o n w a s k e p t s t i r r i n g b e l o w t h e b o i l i n g p o i n t u n t i l a b r o w n s o l u t i o n w a s g r a d u a l l y f o r m e d i n a b o u t 1 h o u r . F o l l o w i n g fi l t r a t i o n o f a n y f o r m e d p r e c i p i t a t e s , 3 0 m l e t h e r w a s a d d e d t o t h e fi l t r a t e . D a r k b r o w n , n e e d l e - s h a p e d X - r a y q u a l i t y s i n g l e c r y s t a l s o f ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] w e r e o b t a i n e d i n 4 3 % y i e l d w i t h i n t w o d a y s . M i d - I R s p e c t r u m ( K B r p e l l e t ) : 1 9 5 8 ( 8 ) a n d 1 9 0 5 ( m ) c m ‘ l ; F a r I R s p e c t r u m ( C s I p e l l e t ) : 2 6 8 ( s ) , 2 5 0 ( m ) a n d 2 0 7 ( m ) c m 4 ; S e m i — q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : P : F e : S e = 2 6 : 1 7 : 5 7 ; 7 7 S e N M R ( i n D M F ) : 7 2 0 , 7 0 6 , 6 7 9 a n d 4 4 5 p p m ; 1 3 C N M R ( i l l D M F ) : 2 0 9 p p m . 4 . X - r a y D i f f r a c t i o n a n d C r y s t a l l o g r a p h i c S t u d i e s T h e s i n g l e c r y s t a l X - r a y d i f f r a c t i o n s t u d i e s w e r e p e r f o r m e d b y u s i n g a N i c o l e t P 3 f o u r - c i r c l e d i f r a c t o m e t e r . T h e c r y s t a l l o g r a p h i c d a t a s e t s o f ( 4 - 1 ) , ( 4 - 2 ) a n d ( 4 - 3 ) w e r e c o l l e c t e d u s i n g a 0 - 2 0 s c a n m o d e . T h e s t a b i l i t y o f t h e e x p e r i m e n t a l s e t u p a n d c r y s t a l i n t e g r i t y f o r e a c h d a t a c o l l e c t i o n w a s m o n i t o r e d b y m e a s u r i n g t h r e e r e p r e s e n t a t i v e r e fl e c t i o n s p e r i o d i c a l l y ( e v e r y 1 0 0 ) . T h e i n t e n s i t i e s o f t h e t h r e e s t a n d a r d r e fl e c t i o n s i n ( 4 - 1 ) a n d ( 4 2 ) s h o w e d n o s t a t i s t i c a l l y s i g n i fi c a n t c h a n g e . A ~ 3 3 % d e c a y i n t h e i n t e n s i t i e s o f t h r e e s t a n d a r d 1 4 4 r e fl e c t i o n s i n ( 4 - 3 ) w a s o b s e r v e d . L i n e a r d e c a y c o r r e c t i o n w a s a p p l i e d t o t h e d a t a s e t . E m p i r i c a l a b s o r p t i o n c o r r e c t i o n s w e r e a p p l i e d t o b o t h d a t a s e t s b a s e d o n 1 p s c a n s o f s e v e r a l s t r o n g r e fl e c t i o n s w i t h x ~ 9 0 ° . T h e s t r u c t u r e s w e r e s o l v e d w i t h d i r e c t m e t h o d s a n d r e fi n e d w i t h f u l l - m a t r i x l e a s t s q u a r e s t e c h n i q u e s . D I F A B S c o r r e c t i o n s w e r e a p p l i e d t o t h e s t r u c t u r e - f a c t o r s a fi e r a l l t h e a t o m s i n t h e s t r u c t u r e s w e r e l o c a t e d a n d r e fi n e d i s o t r o p i c a l l y [ 2 6 ] . T h e c a l c u l a t i o n s w e r e p e r f o r m e d u s i n g t h e S H E L X S - 8 6 a n d S D P c o m b i n e d p a c k a g e o f c r y s t a l l o g r a p h i c p r o g r a m s [ 2 7 ] . T a b l e 4 1 g i v e s c r y s t a l d a t a a n d d e t a i l s f o r s t r u c t u r e a n a l y s i s o f t h e t w o c o m p o u n d s . A l l n o n - h y d r o g e n a t o m s i n t h e s e s t r u c t u r e s w e r e r e fi n e d e i t h e r i s o t r o p i c a l l y o r a n i s o t r o p i c a l l y . T h e h y d r o g e n p o s i t i o n s w e r e c a l c u l a t e d b u t n o t r e fi n e d . T h e fi n a l c o o r d i n a t e s a n d a v e r a g e t e m p e r a t u r e f a c t o r s o f t h e a t o m s i n e a c h c o m p o u n d a r e g i v e n i n T a b l e s 4 2 a n d 4 - 3 , r e s p e c t i v e l y . ( 4 1 ) c r y s t a l l i z e s i n t h e s p a c e g r o u p P — 1 ( # 2 ) h a v i n g a n a s y m m e t r i c u n i t o f ( E t 4 N ) 1 , 5 N a o 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] . I n a d d i t i o n t o t h e N a ” ( 0 , 1 / 2 , 0 ) , o n e o f t h e t e t r a h e d r a l E t a N + c a t i o n s w a s f o u n d t o s i t o n a c r y s t a l l o g r a p h i c i n v e r s i o n c e n t e r ( 0 , 0 , 1 0 ) , c a u s i n g a p o s i t i o n a l d i s o r d e r o f t h e e t h y l g r o u p s o n t h i s c a t i o n s i t e . T h e r e fi n e m e n t o f t h e a t o m s i n t h i s c a t i o n w a s c a r r i e d o u t w i t h a d i s o r d e r m o d e l . T h u s f a r , w e h a v e b e e n u n s u c c e s s f u l i n s o l v i n g t h e s t r u c t u r e o f ( 4 2 ) . S t r u c t u r a l s o l u t i o n s o b t a i n e d f r o m d i r e c t m e t h o d s o f t e n r e v e a l e d t w o c r y s t a l l o g r a p h i c a l l y i n d e p e n d e n t o c t a h e d r a l f r a g m e n t s o f [ R u ( C O ) 2 ( S e 4 ) 2 ] 2 ' w h i c h a r e s i t u a t e d i n g e n e r a l p o s i t i o n s , b u t n o P h 4 P + c a t i o n s c o u l d b e f o u n d . A l t h o u g h t h e i n i t i a l F o u r i e r d i f f e r e n c e m a p s h o w e d a f r a g m e n t r e s e m b l i n g t h e P h 4 P + c a t i o n . T h e s t r u c t u r a l r e fi n e m e n t i n c l u d i n g s u c h a g r o u p w o u l d b e c o m e d i v e r g e n t . T h e p o s s i b l e r e a s o n f o r t h i s m i g h t b e t h a t t h e P a t o m i s s i t u a t e d t o c l o s e t o a c r y s t a l l o g r a p h i c i n v e r s i o n c e n t e r . B a s e d o n 7 7 S e N M R , M i d - a n d f a r - I R , 1 4 5 e l e m e n t a l a n a l y s i s b y E D A X a n d T G A , t h i s c o m p o u n d i s f o r m u l a t e d a s ( P h 4 P ) 2 [ R U ( C 0 ) 2 ( S e 4 ) 2 ] ( v i d e i n f r a ) - F i n a l l y , e a c h c o m p o u n d w a s e x a m i n e d b y X - r a y p o w d e r d i f f r a c t i o n f o r t h e p u r p o s e o f p h a s e c h a r a c t e r i z a t i o n a n d i d e n t i fi c a t i o n . A D e b y e - S c h e r r e r c a m e r a w a s e m p l o y e d t o r e c o r d t h e X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s . N i - fi l t e r e d C u r a d i a t i o n w a s u s e d . T h e c r y s t a l s w e r e g r o u n d t o fi n e p o w d e r a n d p a c k e d i n t o 0 . 5 m m g l a s s c a p i l l a r i e s w h i c h w e r e s e a l e d a n d m o u n t e d t o t h e s t a n d a r d D e b y e - S c h e r r e r p o w d e r c a m e r a w h i c h h a s a d i a m e t e r o f 1 1 4 . 6 m m ( 1 m m c o r r e s p o n d s t o 1 d e g r e e f o r 2 0 ) . X - r a y s w e r e g e n e r a t e d b y a P h i l l i p s N o r e l c o X R G - 5 0 0 0 X - r a y g e n e r a t o r o p e r a t i n g a t 4 0 k V a n d 2 0 m A . A p p r o x i m a t e l y , a s i x h o u r e x p o s u r e t i m e w a s u s e d . A c c u r a t e d — s p a c i n g s ( A ) o f e a c h c o m p o u n d w e r e e a l c u l a t e d f r o m t h e p o w d e r p a t t e r n s r e c o r d e d o n a P h i l l i p s X R G - 3 0 0 0 c o m p u t e r c o n t r o l l e d p o w d e r d i f f r a c t o m e t e d 2 8 ] . T o v e r i f y t h e h o m o g e n e i t i e s o f t h e p r o d u c t s , t h e d - s p a c i n g s o b s e r v e d f o r t h e b u l k m a t e r i a l s w e r e c o m p a r e d w i t h t h e c a l c u l a t e d d - s p a c i n g s f r o m t h e X - r a y s i n g l e - c r y s t a l s t r u c t u r e a n a l y s i s d a t a [ 2 9 ] . L i s t i n g s o f c a l c u l a t e d a n d o b s e r v e d d — s p a c i n g s ( A ) a l o n g w i t h t h e o b s e r v e d r e l a t i v e d i f fi a c t i o n i n t e n s i t i e s o f t h e s e c o m p o u n d s a r e g i v e n i n T a b l e s 4 - 4 a n d 4 - 5 . 1 4 6 T a b l e 4 1 D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f ( E t 4 N ) 1 5 N a o 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 1 ) , ( P h 4 P ) 2 | § u g C 0 2 2 § S e 4 2 2 1 ( 4 ' 2 ) a n d £ P h 4 P ) 2 [ F e ( C 0 ) 2 ( S e 4 ) 2 ] ( 4 ' 3 ) c o m p o u n d f o r m u l a a , A b , A c , A 0 1 , d e g 1 3 . d e g v . d e g Z ; V , A 3 s p a c e g r o u p D c a l c , g / C l n 3 1 1 ( M o K 0 1 ) , c m " l c r y s t s i z e , m m 2 0 m “ , d e g T e m p e r a m r e ( 0 ( 3 ) n o . o f d a t a c o l l c d n o . o f d a t a u s e d ( F 0 2 > 3 0 ( 1 : 0 2 ) ) m i n , m a x a b s c o r n o . o f v a r i a b l e s n o . o f a t o m s p e r a s y m u n i t ( i n c l u d i n g H ) fi n a l R / R w , % 4 - 1 C 1 4 H 3 0 N 1 . 5 N a o . 5 0 2 R u S e g 1 0 . 9 8 6 ( 3 ) 1 0 . 9 7 9 ( 2 ) 1 3 . 8 7 6 ( 4 ) 1 0 2 . 1 2 ( 2 ) 1 0 4 . 0 9 ( 1 ) l l 3 . 3 3 ( 1 ) 2 , 1 3 9 9 . 6 1 P - l ( # 2 ) 2 . 4 3 1 1 0 . 3 ( M o K 0 1 ) 0 . 0 5 x 0 . 0 9 x 0 . l 1 4 8 . 3 2 5 4 4 7 2 2 8 2 1 0 . 4 0 , 0 . 9 9 2 4 0 5 . 4 / 6 . 1 4 . 2 C 5 0 H 4 0 P 2 0 2 R u 5 6 8 1 5 . 7 5 2 ( 4 ) 1 8 . 2 1 1 ( 4 ) 3 1 . 1 7 2 ( 5 ) 9 0 . 0 0 9 9 9 8 ( 2 ) 9 0 . 0 0 4 ; 8 8 0 6 ( 3 ) C 2 / c ( # 1 5 ) 2 . 2 2 ( D o b s ) / 0 . 0 2 x 0 . 3 7 x l . 1 7 4 5 — 9 5 8 2 3 1 5 3 1 0 0 . 7 8 , 0 . 9 8 I / 4 - 3 € 5 0 H 4 0 P 2 0 2 F e 8 6 8 1 1 . 5 2 5 ( 2 ) 1 4 . 9 5 1 ( 3 ) 1 6 . 5 5 3 ( 5 ) 9 3 8 7 ( 2 ) 1 0 3 . 8 9 ( 2 ) 1 1 1 5 6 ( 2 ) 2 , 2 5 3 7 ( 1 ) P - l ( # 2 ) 1 . 8 6 1 0 0 . 9 ( C u K 0 1 ) 0 . 0 5 x 0 . 4 8 x 0 . 6 2 1 0 5 . 1 2 0 5 8 1 2 2 5 0 2 0 . 4 1 , 1 . 4 9 3 0 8 1 0 3 1 0 . 5 / 1 1 . 9 T a b l e 4 - 2 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r ( E t 4 N ) 1 5 N a o 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] 1 4 7 ( 4 1 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e a , A 2 R u 0 . 7 1 3 5 ( 1 ) 0 . 3 1 7 4 ( 1 ) 0 . 7 0 7 4 ( 1 ) 3 4 0 ( 3 ) S e l 0 . 5 8 4 4 ( 2 ) 0 . 1 7 1 4 ( 2 ) 0 . 8 0 2 7 ( 2 ) 4 . 7 1 ( 5 ) S e 2 0 . 7 6 6 2 ( 2 ) 0 . 1 8 7 1 ( 2 ) 0 . 9 4 3 2 ( 1 ) 4 . 7 5 ( 5 ) 8 6 3 0 . 8 9 9 7 ( 2 ) 0 . 1 3 5 8 ( 2 ) 0 . 8 5 0 4 ( 2 ) 4 9 6 ( 5 ) 5 6 4 0 . 9 5 5 3 ( 2 ) 0 . 3 2 7 8 ( 2 ) 0 . 7 8 8 8 ( 1 ) 3 . 7 6 ( 4 ) $ 8 5 0 . 8 5 5 7 ( 2 ) 0 . 4 8 0 2 ( 2 ) 0 . 6 2 7 9 ( 1 ) 4 . 9 2 ( 5 ) S 6 6 0 . 1 8 5 5 ( 2 ) 0 . 3 2 7 3 ( 2 ) 0 . 3 1 9 8 ( 2 ) 6 . 0 8 ( 5 ) S e 7 0 . 0 9 2 6 ( 2 ) 0 . 2 6 7 1 ( 2 ) 0 . 1 3 8 0 ( 2 ) 5 . 2 5 ( 5 ) S e 8 0 . 7 5 5 8 ( 2 ) 0 . 5 1 4 6 ( 2 ) 0 . 8 7 1 4 ( 1 ) 3 7 4 ( 4 ) N a 0 . 0 0 0 0 . 5 0 0 0 . 0 0 0 4 . 2 ( 2 ) ( ) 1 0 . 6 5 4 ( 1 ) 0 . 0 6 3 ( 1 ) 0 . 5 3 5 ( 1 ) 7 . 7 ( 5 ) O 2 0 . 4 4 9 ( 1 ) 0 . 3 2 8 ( 1 ) 0 . 5 9 8 ( 1 ) 6 . 4 ( 4 ) N 1 0 . 0 0 0 0 . 0 0 0 0 . 5 0 0 3 . 3 ( 4 ) N 2 0 . 5 6 9 ( 1 ) 0 . 2 9 7 ( 1 ) 0 . 1 8 7 ( 1 ) 3 . 6 ( 3 ) C 1 0 . 6 7 6 ( 2 ) 0 . 1 5 9 ( 2 ) 0 . 5 9 9 ( 1 ) 5 . 1 ( 5 ) C 2 0 . 5 5 0 ( 1 ) 0 . 3 2 5 ( 2 ) 0 . 6 4 1 ( 1 ) 5 . 2 ( 5 ) C 3 0 . 0 9 7 ( 4 ) 0 . 1 4 5 ( 4 ) 0 . 5 0 6 ( 3 ) 5 . 3 ( 8 ) C 4 0 . 0 7 1 ( 3 ) 0 . 2 6 4 ( 3 ) 0 . 5 4 2 ( 2 ) 3 . 9 ( 6 ) C 5 ' 0 . 1 5 2 ( 3 ) 0 . 0 5 5 ( 3 ) 0 . 5 8 2 ( 2 ) 4 . 0 ( 7 ) C 5 0 . 9 7 1 ( 3 ) 0 . 0 0 2 ( 3 ) 0 . 6 0 6 ( 3 ) 5 . 1 ( 8 ) C 6 0 . 1 3 1 ( 3 ) 0 . 0 6 1 ( 2 ) 0 . 6 9 7 ( 2 ) 8 4 ( 8 ) 1 4 8 T a b l e 4 - 2 . ( c o n t ' d ) a t o m x y 2 B 6 0 , A 2 C 7 0 . 9 4 1 ( 3 ) 0 . 1 0 3 ( 3 ) 0 . 5 2 5 ( 3 ) 5 . 1 ( 8 ) C 8 1 . 0 0 8 ( 3 ) 0 . 2 4 0 ( 3 ) 0 . 5 1 9 ( 3 ) 4 . 3 ( 7 ) C 9 0 . 7 2 1 ( 3 ) 0 . 3 3 6 ( 3 ) 0 . 2 4 1 ( 3 ) 4 . 8 ( 8 ) C 9 ' 0 . 5 9 7 ( 4 ) 0 . 1 6 9 ( 4 ) 0 . 1 5 5 ( 3 ) 6 . 0 ( 9 ) C 1 0 0 . 7 4 4 ( 2 ) 0 . 2 0 1 ( 2 ) 0 . 2 3 0 ( 2 ) 7 . 0 ( 6 ) C 1 1 0 . 5 6 1 ( 3 ) 0 . 4 3 8 ( 3 ) 0 . 2 0 9 ( 3 ) 4 . 5 ( 7 ) C l 1 ' 0 . 6 6 0 ( 4 ) 0 . 4 0 7 ( 4 ) 0 . 1 4 1 ( 3 ) 5 . 7 ( 9 ) C 1 2 0 . 6 3 2 ( 2 ) 0 . 5 3 2 ( 2 ) 0 . 1 5 1 ( 2 ) 7 . 8 ( 7 ) C 1 3 0 . 4 7 1 ( 3 ) 0 . 2 0 7 ( 3 ) 0 . 2 3 9 ( 3 ) 4 . 4 ( 7 ) C l 3 ' 0 . 5 9 9 ( 4 ) 0 . 3 6 3 ( 4 ) 0 . 2 9 7 ( 3 ) 7 ( 1 ) C 1 4 0 . 5 1 7 ( 2 ) 0 . 2 5 9 ( 2 ) 0 . 3 5 3 ( 2 ) 7 . 7 ( 7 ) C 1 5 ' 0 . 4 1 0 ( 3 ) 0 . 2 3 8 ( 3 ) 0 . 1 2 0 ( 3 ) 4 . 8 ( 8 ) C 1 5 0 . 5 0 9 ( 3 ) 0 . 2 1 8 ( 3 ) 0 . 0 7 2 ( 3 ) 4 . 7 ( 8 ) C 1 6 0 . 3 6 3 ( 2 ) 0 . 1 8 8 ( 2 ) 0 . 0 0 4 ( 2 ) 6 . 1 ( 6 ) 3 - B e q i s d e fi n e d a s 4 3 1 2 1 2 6 1 l + b 2 6 2 2 + 0 2 5 3 3 + a b ( c o s r ) l 3 1 2 + a C ( C O S l 3 ) B l 3 + b C ( C O S < X ) 5 2 3 ] . T a b l e 4 - 3 . P o s i t i o n a l P a r a m e t e r s a n d B f , q V a l u e s “ f o r ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] ( 4 3 ) 1 4 9 ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x j z B e g h A 2 S e l 0 . 3 6 9 3 ( 4 ) 0 . 8 8 8 7 ( 3 ) 0 . 2 9 5 9 ( 3 ) 5 . 6 ( 1 ) S e 2 0 . 5 5 1 0 ( 5 ) 1 . 0 1 1 6 ( 3 ) 0 . 3 9 4 2 ( 3 ) 6 . 4 ( 1 ) S e 3 0 . 6 8 7 3 ( 5 ) 1 . 0 4 8 5 ( 4 ) 0 . 3 0 7 8 ( 4 ) 6 . 7 ( 2 ) S e 4 0 . 6 8 4 6 ( 4 ) 0 . 8 9 1 3 ( 4 ) 0 . 2 7 7 5 ( 3 ) 5 . 7 ( 1 ) S e 5 0 . 5 4 6 3 ( 5 ) 0 . 6 7 8 3 ( 4 ) 0 . 1 7 7 1 ( 3 ) 7 . 1 ( 2 ) S e 6 0 . 4 8 6 1 ( 6 ) 0 . 5 4 3 2 ( 4 ) 0 . 2 4 3 7 ( 4 ) 9 . 1 ( 2 ) S e 7 0 . 5 7 0 6 ( 5 ) 0 . 6 2 9 4 ( 4 ) 0 . 3 8 1 2 ( 4 ) 8 . 0 ( 2 ) S e 8 0 . 4 5 1 7 ( 4 ) 0 . 7 2 6 5 ( 3 ) 0 . 3 6 6 9 ( 3 ) 5 . 6 ( 1 ) F e 0 . 4 5 3 5 ( 6 ) 0 . 7 8 2 8 ( 5 ) 0 . 2 3 3 5 ( 4 ) 5 . 2 ( 2 ) P 1 0 . 0 9 4 0 ( 9 ) 0 . 0 3 6 7 ( 7 ) 0 . 1 8 6 5 ( 7 ) 4 . 3 ( 3 ) P 2 0 . 0 9 6 ( 1 ) 0 . 5 1 2 8 ( 7 ) 0 . 6 8 8 7 ( 7 ) 4 . 9 ( 3 ) O l 0 . 4 3 5 ( 3 ) 0 . 8 7 6 ( 2 ) 0 . 0 8 7 ( 2 ) 9 ( 1 ) ( 2 0 . 2 0 0 ( 3 ) 0 . 6 2 7 ( 2 ) 0 . 1 7 1 ( 2 ) 8 . 6 ( 9 ) C 1 0 . 5 5 1 ( 4 ) 0 . 1 6 9 ( 3 ) 0 . 8 5 9 ( 3 ) 7 ( 1 ) C 2 0 . 7 1 2 ( 5 ) 0 . 3 2 3 ( 4 ) 0 . 8 0 6 ( 3 ) 9 ( 2 ) C 3 0 . 9 6 1 ( 3 ) 0 . 0 9 5 ( 2 ) 0 . 8 5 5 ( 2 ) 4 . 3 ( 9 ) C 4 1 . 0 6 2 ( 4 ) 0 . 1 5 6 ( 3 ) 0 . 8 2 8 ( 3 ) 6 ( 1 ) C S 1 . 1 1 1 ( 4 ) 0 . 2 5 5 ( 3 ) 0 . 8 6 2 ( 3 ) 8 ( 1 ) C 6 1 . 0 5 5 ( 4 ) 0 . 2 8 8 ( 3 ) 0 . 9 1 3 ( 3 ) 6 ( 1 ) C 7 0 . 9 5 5 ( 4 ) 0 . 2 2 7 ( 3 ) 0 . 9 4 1 ( 3 ) 8 ( 1 ) C 8 0 . 9 1 1 ( 4 ) 0 . 1 2 6 ( 3 ) 0 . 9 1 4 ( 3 ) 7 ( 1 ) C 9 0 . 1 4 0 ( 3 ) 0 . 0 6 2 ( 2 ) 0 . 2 9 8 ( 2 ) 4 . 3 ( 9 ) 1 5 0 T a b l e 4 - 3 . ( c o n t ' d ) a t o m x y z B fl , A 2 C 1 0 0 . 2 5 9 ( 3 ) 0 . 0 8 4 ( 3 ) 0 . 3 4 7 ( 2 ) 4 . 7 ( 9 ) C 1 1 0 . 2 8 7 ( 3 ) 0 . 1 0 3 ( 2 ) 0 . 4 3 5 ( 2 ) 4 . 7 ( 9 ) C 1 2 0 . 1 9 6 ( 3 ) 0 . 0 9 2 ( 3 ) 0 . 4 7 4 ( 2 ) 4 . 9 ( 9 ) C 1 3 0 . 0 6 8 ( 4 ) 0 . 0 6 9 ( 3 ) 0 . 4 2 0 ( 3 ) 6 ( 1 ) C 1 4 0 . 0 3 9 ( 3 ) 0 . 0 4 5 ( 3 ) 0 . 3 3 4 ( 2 ) 4 . 8 ( 9 ) C 1 5 0 . 0 4 1 ( 3 ) 0 . 9 3 0 ( 3 ) 0 . 8 5 6 ( 2 ) 5 . 0 ( 9 ) C 1 6 0 . 0 2 0 ( 4 ) 0 . 8 3 4 ( 3 ) 0 . 8 1 6 ( 3 ) 6 ( 1 ) C 1 7 0 . 1 1 5 ( 4 ) 0 . 7 9 8 ( 3 ) 0 . 8 4 1 ( 3 ) 6 ( 1 ) C 1 8 0 . 2 3 4 ( 4 ) 0 . 8 5 9 ( 3 ) 0 . 9 0 1 ( 3 ) 6 ( 1 ) C 1 9 0 . 2 5 2 ( 3 ) 0 . 9 5 2 ( 3 ) 0 . 9 3 0 ( 3 ) 5 ( 1 ) C 2 0 0 . 1 5 5 ( 3 ) 0 . 9 8 8 ( 2 ) 0 . 9 0 2 ( 2 ) 4 . 7 ( 9 ) C 2 1 0 . 2 3 5 ( 3 ) 0 . 1 0 2 ( 2 ) 0 . 1 5 0 ( 2 ) 4 . 3 ( 9 ) C 2 2 0 . 3 3 6 ( 3 ) 0 . 0 8 0 ( 3 ) 0 . 1 6 2 ( 3 ) 5 ( 1 ) C 2 3 0 . 4 4 4 ( 4 ) 0 . 1 3 1 ( 3 ) 0 . 1 3 5 ( 3 ) 5 ( 1 ) C 2 4 0 . 4 4 1 ( 4 ) 0 . 2 0 2 ( 3 ) 0 . 0 8 9 ( 3 ) 6 ( 1 ) C 2 5 0 . 3 3 6 ( 4 ) 0 . 2 2 1 ( 3 ) 0 . 0 7 2 ( 3 ) 6 ( 1 ) C 2 6 0 . 2 2 5 ( 3 ) 0 . 1 7 6 ( 3 ) 0 . 1 0 2 ( 3 ) 5 ( 1 ) C 2 7 0 . 0 1 6 ( 3 ) 0 . 4 3 1 ( 3 ) 0 . 3 4 6 ( 2 ) 4 . 7 ( 9 ) C 2 8 0 . 1 3 8 ( 4 ) 0 . 4 6 4 ( 3 ) 0 . 3 2 9 ( 3 ) 6 ( 1 ) 0 2 9 0 . 2 1 8 ( 3 ) 0 . 4 1 2 ( 3 ) 0 . 3 5 4 ( 3 ) 5 ( 1 ) C 3 0 0 . 1 7 5 ( 4 ) 0 . 3 3 2 ( 3 ) 0 . 3 9 1 ( 3 ) 6 ( 1 ) ( : 3 1 0 . 0 6 2 ( 3 ) 0 . 3 0 4 ( 3 ) 0 . 4 1 0 ( 3 ) 5 ( 1 ) 1 5 1 T a b l e 4 - 3 . ( c o n t ' d ) a t o m x y z A B E - 1 A 2 C 3 2 - 0 . 0 1 5 ( 4 ) 0 . 3 5 1 ( 3 ) 0 . 3 8 7 ( 3 ) 6 ( 1 ) C 3 3 0 . 2 3 7 ( 3 ) 0 . 5 6 9 ( 2 ) 0 . 6 5 3 ( 2 ) 4 . 4 ( 9 ) C 3 4 0 . 2 4 8 ( 3 ) 0 . 5 3 0 ( 3 ) 0 . 5 7 8 ( 2 ) 4 . 8 ( 9 ) C 3 5 0 . 3 4 6 ( 4 ) 0 . 5 7 5 ( 3 ) 0 . 5 4 5 ( 3 ) 7 ( 1 ) C 3 6 0 . 4 4 0 ( 4 ) 0 . 6 6 8 ( 3 ) 0 . 5 9 1 ( 3 ) 8 ( 1 ) C 3 7 0 . 4 2 9 ( 4 ) 0 . 7 0 8 ( 3 ) 0 . 6 6 4 ( 3 ) 8 ( 1 ) C 3 8 0 . 3 2 6 ( 4 ) 0 . 6 6 2 ( 3 ) 0 . 6 9 7 ( 3 ) 7 ( 1 ) C 3 9 - 0 . 0 1 6 ( 4 ) 0 . 6 1 5 ( 3 ) 0 . 3 5 6 ( 3 ) 6 ( 1 ) C 4 0 0 . 1 1 3 ( 3 ) 0 . 6 5 9 ( 3 ) 0 . 4 1 0 ( 3 ) 5 ( 1 ) C 4 1 0 . 1 5 9 ( 4 ) 0 . 7 6 6 ( 3 ) 0 . 4 4 3 ( 3 ) 6 ( 1 ) C 4 2 0 . 0 9 2 ( 3 ) 0 . 8 1 4 ( 3 ) 0 . 4 2 4 ( 3 ) 6 ( 1 ) C 4 3 - 0 . 0 3 5 ( 4 ) 0 . 7 7 3 ( 2 ) 0 . 3 7 8 ( 3 ) 7 ( 1 ) C 4 4 - 0 . 0 9 6 ( 4 ) 0 . 6 7 1 ( 3 ) 0 . 3 4 3 ( 3 ) 6 ( 1 ) C 4 5 0 . 1 5 5 ( 3 ) 0 . 5 3 4 ( 3 ) 0 . 8 0 4 ( 3 ) 6 ( 1 ) C 4 6 0 . 0 8 6 ( 3 ) 0 . 5 5 1 ( 3 ) 0 . 8 5 3 ( 3 ) 5 ( 1 ) C 4 7 0 . 1 3 5 ( 4 ) 0 . 5 6 7 ( 3 ) 0 . 9 4 1 ( 3 ) 6 ( 1 ) C 4 8 0 . 2 4 7 ( 4 ) 0 . 5 6 6 ( 3 ) 0 . 9 7 6 ( 3 ) 7 ( 1 ) C 4 9 0 . 3 1 7 ( 3 ) 0 . 5 4 0 ( 3 ) 0 . 9 2 6 ( 3 ) 5 ( 1 ) C 5 0 0 . 2 6 3 ( 4 ) 0 . 5 2 4 ( 3 ) 0 . 8 3 6 ( 3 ) 7 ( 1 ) a . B a g i s d e fi n e d a s 4 / 3 [ a 2 0 1 1 + b 2 0 2 2 + c 2 6 3 3 + a b ( c o s y ) fi 1 2 + a c ( c o s fi ) 0 1 3 + b c ( c o s a ) 0 2 3 ] . 1 5 2 T a b l e 4 - 4 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( E t 4 N ) 1 . 5 N a o . 5 [ R U L C 0 ) 2 ( S e 4 ) 2 l 1 4 ' 1 ) h k 1 d c a l c . ( A ) d o b s . ( A ) I ” m a x . ( o b s . ) 0 0 1 1 2 . 6 1 2 . 9 1 7 0 1 0 9 . 5 / 4 1 1 0 - 1 9 . 3 4 9 . 4 7 1 0 0 1 - 1 0 9 . 1 7 / / 1 - 1 - 1 7 . 3 5 7 . 3 9 3 0 1 0 1 6 . 4 9 6 . 5 4 6 9 0 0 2 6 . 3 1 9 6 . 3 2 7 1 7 2 - 1 0 5 . 3 2 6 5 . 3 3 2 3 2 1 - 1 - 2 5 . 2 5 7 5 . 2 7 1 1 4 0 2 - 1 5 . 0 3 8 5 . 0 3 8 8 0 2 0 4 . 7 3 3 4 . 7 4 0 1 3 1 - 2 - 1 4 . 6 4 3 4 . 6 4 6 7 2 - 1 2 3 . 6 9 3 3 . 6 9 1 1 1 3 - 1 1 3 . 1 5 9 3 . 1 5 7 1 8 1 - 2 - 3 3 . 0 5 4 3 . 0 5 5 2 1 3 - 2 2 2 . 8 6 5 2 . 8 6 8 9 1 3 - 3 2 . 7 7 6 2 . 7 8 8 1 8 2 0 3 2 . 6 8 9 2 . 6 9 2 1 0 1 - 4 3 2 . 5 5 6 2 . 5 5 7 4 - 2 1 2 . 4 9 8 2 . 4 9 3 9 2 3 - 3 2 . 3 7 5 2 . 3 7 7 1 3 2 3 - 4 2 . 2 8 5 2 . 2 8 6 1 1 1 2 - 6 2 . 2 5 4 2 . 2 5 3 9 1 5 3 T a b l e 4 - 5 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ F e ( C 0 ) 2 ( S e 4 ) 2 ] ( 4 ' 3 ) h H d c a l c . ( A ) d o b s . ( A ) I / I m a x . ( o b s . ) 0 1 0 1 3 . 7 1 3 . 9 2 2 0 1 - 1 1 1 . 4 1 1 . 6 5 4 1 0 0 1 0 . 2 7 1 0 . 4 7 1 0 0 0 1 1 9 . 5 7 9 . 5 9 7 7 1 - 1 - 1 9 . 4 3 / / 1 - 1 1 8 . 1 4 8 . 2 2 4 9 0 0 2 7 . 9 1 4 7 . 9 2 6 8 1 l 0 1 7 . 6 7 5 7 . 6 6 3 3 1 1 1 1 5 . 8 1 9 / / 2 - 1 - 1 5 . 7 2 2 5 . 7 4 1 2 0 2 0 0 5 . 1 3 6 5 . 1 3 7 2 4 2 0 2 5 . 0 1 1 4 . 9 8 0 2 7 2 - 1 1 4 . 9 1 5 / / 0 2 - 3 4 . 5 7 8 4 . 5 8 1 9 1 - 1 3 4 . 4 3 4 4 . 4 3 7 2 6 0 3 1 4 . 1 9 8 4 . 1 9 7 1 1 2 - 3 1 4 . 1 4 0 4 . 1 5 9 1 3 0 0 4 3 . 9 5 7 3 . 9 6 2 1 0 2 1 - 3 3 . 9 3 5 / / 2 0 4 3 . 6 8 4 3 . 6 9 3 9 2 - 4 0 3 . 5 7 7 3 . 5 8 7 1 3 1 - 3 4 3 . 1 7 2 3 . 1 8 1 7 1 5 4 I I I . R e s u l t s 1 . D e s c r i p t i o n o f C r y s t a l a n d M o l e c u l a r S t r u c t u r e s o f t h e C o m p o u n d s ( i ) . S t r u c t u r e o f ( E t 4 N ) 1 5 N a o , 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 1 ) T h e c r y s t a l l a t t i c e o f t h i s c o m p o u n d i s m a d e u p o f n o n - i n t e r a c t i n g E t 4 N + c a t i o n s , i n t e r a c t i n g N a + i o n s a n d [ R u ( C O ) 2 ( S e 4 ) 2 ] 2 ' a n i o n s a s s h o w n i n F i g u r e 4 - 1 . T h e r e a r e t w o c r y s t a l l o g r a p h i c a l l y i n d e p e n d e n t E t 4 N + i o n s . O n e i s s i t u a t e d i n a g e n e r a l p o s i t i o n , a n d h a s t h e n o r m a l t e t r a h d e d r a l s t r u c t u r e . A n o t h e r E t 4 N + c a t i o n i s l o c a t e d o n a n i n v e r s i o n c e n t e r 0 , 0 , 1 / 2 . T h i s c a u s e s a s t r u c t u r a l d i s o r d e r o n t h e t e t r a h e d r a l m o l e c u l e E t 4 N + . T h e N a “ i o n i s f o u n d i n t h e s e c o n d i n v e r s i o n c e n t e r 0 , 1 / 2 , 0 , c l o s e l y a s s o c i a t e d w i t h t w o [ R u ( C O ) 2 ( S e 4 ) 2 ] 2 ' a n i o n s . [ R u ( C O ) 2 ( S e 4 ) 2 ] 2 ' a d o p t s a n o c t a h e d r a l g e o m e t r y w i t h t w o c i s C O g r o u p s a n d t w o c h e l a t i n g S e 4 ' l i g a n d s a s s h o w n F i g u r e 4 . 2 . T h e m o l e c u l e p o s s e s s e s a n o n c r y s t a l l o g r a p h i c 2 - f o l d a x i s t h a t b i s e c t s t h e C ( 1 ) - R u - C ( 2 ) a n d S e ( 4 ) - R u — S e ( 8 ) a n g l e s . T h e R u - C ( 1 ) a n d R u - C ( 2 ) d i s t a n c e s a r e 1 . 8 5 8 ( 7 ) a n d 1 . 8 4 6 ( 7 ) A , r e s p e c t i v e l y , w i t h a C ( 1 ) - R u - C ( 2 ) a n g l e o f 9 5 . 0 ( 2 ) ° . T h e R u — S e b o n d s a r e d i v i d e d i n t o t w o s e t s o f s h o r t a n d l o n g d i s t a n c e s . T h e R u - S e ( 1 ) a n d R u - S e ( 5 ) b o n d s a r e t r a n s t o e a c h o t h e r a t 2 . 5 1 7 ( 1 ) a n d 2 . 5 1 3 ( 1 ) A , a n d a r e s h o r t e r t h a n t h e c o r r e s p o n d i n g c i s R u - S e ( 4 ) a n d R u - S e ( 8 ) a t 2 . 5 6 6 ( 1 ) a n d 2 . 5 8 8 ( 1 ) A , r e s p e c t i v e l y . T h e l e n g t h e n i n g o f t h e R u - S e b o n d s t h a t a r e d i s p o s e d t r a n s t o t h e C O g r o u p s r e fl e c t s t h e e f f e c t i v e c o m p e t i t i o n b e t w e e n t h e l a t t e r a n d t h e S e 4 ' l i g a n d s f o r b o t h 0 ( x y o r b i t a l ) a n d t o a l e s s e r e x t e n t 1 r ( x z a n d y z o r b i t a l s ) b o n d i n g t o t h e m e t a l c e n t e r . T h e S e 4 2 ' l i g a n d s a d o p t b o t h h a l f - b o a t ( S e ( 1 ) l S e ( 2 ) / S e ( 3 ) / S e ( 4 ) ) a n d e n v e l o p e ( S e ( 5 ) l S e ( 6 ) I S e ( 7 ) / S e ( 8 ) ) c o n f o r m a t i o n s . I n b o t h S e 4 2 ‘ l i g a n d s t h e r e i s a n a l t e r n a t i o n o f a l o n g S e ( e x t e m a l ) — S e ( i n t e r n a l ) a v e r a g e 2 . 3 5 2 ( 1 1 ) A a n d a s h o r t S e ( i n t e r n a l ) - S e ( i n t e r n a l ) a v e r a g e o f 2 . 3 1 9 ( 4 ) A . T h e N a + i s c o o r d i n a t e d b y t w o c e n t r o s y m m e t r i m l l y d i s p o s e d [ R u ( C O ) 2 ( S e 4 ) 2 ] 2 ' a n i o n s t h r o u g h t h e S e ( 2 ) , S e ( 4 ) a n d S e ( 8 ) a t o m s a s s h o w n i n F i g u r e 4 - 3 . T h e s i x S e a t o m s c r e a t e a n e x c e l l e n t o c t a h e d r a l p o c k e t f o r N a t T h e S e - - - N a d i s t a n c e s 1 5 5 r a n g e f r o m 2 . 9 2 1 ( 1 ) t o 3 . 1 4 8 ( 1 ) A . S e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s a r e g i v e n i n T a b l e 4 - 6 . T a b l e 4 6 . S e l e c t e d G e o m e t r i c D a t a f o r ( 1 3 6 1 4 » , s t 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 1 ) b B o n d D i s t a n c e s ( A ) R u - S e ( 1 ) 2 . 5 1 7 ( 1 ) R u - S e ( 4 ) 2 . 5 6 6 ( 1 ) R u - S e ( 5 ) 2 . 5 1 3 ( 1 ) R u - S e ( 8 ) 2 . 5 8 8 ( 1 ) R u - S e ( m e a n ) 2 . 5 4 6 ( 1 8 ) S e ( 1 ) - S e ( 2 ) 2 . 3 4 6 ( 2 ) S e ( 2 ) - S e ( 3 ) 2 . 3 2 3 ( 1 ) S e ( 3 ) - S e ( 4 ) 2 . 3 5 3 ( 1 ) S e ( 5 ) - S e ( 6 ) 2 . 3 3 9 ( 2 ) S e ( 6 ) — S e ( 7 ) 2 . 3 1 5 ( 2 ) S e ( 7 ) - S e ( 8 ) 2 . 3 6 9 ( 1 ) S e - S e ( m e a n ) 2 . 3 4 1 ( 8 ) S e ( 2 ) - N a 3 . 1 4 8 ( 1 ) S e ( 4 ) - N a 2 . 9 3 9 5 ( 9 ) S e ( 8 ) - N a 2 . 9 2 1 5 ( 9 ) R u - C ( 1 ) 1 . 8 5 8 ( 7 ) R u — C ( 2 ) 1 . 8 4 6 ( 7 ) B o n d A n g l e s ( d e g ) S e ( 1 ) — R u - S e ( 4 ) 9 7 . 3 2 ( 4 ) S e ( 1 ) - R u - S e ( 5 ) l 7 4 . 9 5 ( 5 ) S e ( 1 ) - R u - S e ( 8 ) 7 9 . 4 5 ( 4 ) S e ( 4 ) - R u - S e ( 5 ) 8 0 . 7 2 ( 4 ) S e ( 4 ) - R u - S e ( 8 ) 9 3 5 8 ( 3 ) S e ( 5 ) - R u - S e ( 8 ) 9 5 . 9 9 ( 4 ) S e ( 1 ) - S e ( 2 ) - S e ( 3 ) 9 9 . 2 5 ( 5 ) S e ( 2 ) - S e ( 3 ) - S e ( 4 ) 9 7 . 1 9 ( 5 ) S e ( 5 ) - S e ( 6 ) - S e ( 7 ) 9 9 6 4 ( 5 ) S e ( 6 ) - S e ( 7 ) - S e ( 8 ) 9 7 2 8 ( 5 ) C ( 1 ) - R u - S e ( 1 ) 9 3 . 4 ( 2 ) C ( 1 ) - R u - S e ( 4 ) 8 5 . 4 ( 2 ) C ( 1 ) - R u - S e ( 5 ) 9 1 . 1 ( 2 ) C ( 1 ) - R u - S e ( 8 ) 1 7 2 . 6 ( 2 ) C ( 2 ) - R u - S e ( 1 ) 8 9 . 4 ( 2 ) C ( 2 ) - R u - S e ( 4 ) 1 7 3 . 2 ( 2 ) C ( 2 ) - — R u — S e ( 5 ) 9 2 . 5 ( 2 ) C ( 2 ) - R u — S e ( 8 ) 8 6 . 9 ( 2 ) C ( 1 ) — R u - C ( 2 ) 9 5 . 0 ( 2 ) b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n 0 1 = { £ n ( l n - 1 ) 2 / n ( n - l ) } 1 ’ 2 , w h e r e I n i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . 1 5 6 F i g u r e 4 - 1 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( E t 4 N ) 1 5 N a o _ 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( S t e r e o v i e w ) . O n e P A N " I s L n e a t e d o n a n I n v e r s i o n C e n t e r ( ( 0 , 0 , 1 / 2 ) ) , S h o w i n g D i s o r d e r § ; \ \ \ \ \ \ \ \ " \ 1 5 7 F i g u r e 4 - 2 . T h e S t r u c t u r e o f t h e [ R u ( C O ) 2 ( 5 : 0 2 1 } A n i o n y b + a N a f o n o i t a n i d r o o C e h t g n i w o h 2 0 1 ‘ ' t / e S S , e r u t s c n u o r i t S n A + 3 ' } 2 2 ] ] 2 2 ) ) 4 4 e e S S ( ( 2 2 ) ) O O C C ( ( u u R R [ [ a o J ~ w I T { e h t f o n o i t a t n e s e r p e R P E T R O . 3 - 4 e r u g i F I 1 5 8 1 5 9 ( i i ) . S t r u c t u r e o f ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 3 ) T h e s t r u c t u r e o f ( 4 - 3 ) i s c o m p o s e d o f w e l l s e p a r a t e d P h 4 P + c a t i o n s a n d [ F e ( C O ) 2 ( S e 4 ) 2 ] 2 ' a n i o n s i n t h e c r y s t a l l a t t i c e a s s h o w n i n F i g u r e 4 4 . T h e P h 4 P + c a t i o n s h a v e t h e n o r m a l t e t r a h e d r a l s t r u c t u r e , a n d w i l l n o t b e d i s c u s s e d f u r t h e r . T h e [ F e ( C O ) 2 ( S e 4 ) 2 ] 2 ' i s a n a l o g o u s t o i t s r u t h e n i u m c o u n t e r p a r t . F i g u r e 4 - 5 s h o w s t h e s t r u c t u r e o f t h e [ F e ( C O ) 2 ( S e 4 ) 2 ] 2 ' a n i o n . D u e t o t h e l a r g e s t a n d a r d d e v i a t i o n s i n t h e m e t r i c p a r a m e t e r s r e s u l t e d f r o m t h e c r y s t a l d e c a y , a m e a n i n g f u l d i s c u s s i o n o n t h e b o n d d i s t a n c e s a n d b o n d a n g l e s f o r t h e s t r u c t u r e c a n n o t b e m a d e . H o w e v e r , t h e s i m i l a r s t r u c t u r a l f e a t u r e s o b s e r v e d i n t h e r u t h e n i u m a n a l o g u e s e e m t o a p p e a r i n t h e c u r r e n t s t r u c t u r e a l s o . S e l e c t e d m e t r i c p a r a m e t e r s f o r t h i s a n i o n a r e g i v e n i n T a b l e 4 . 7 . T a b l e 4 7 . S e l e c t e d G e o m e t r i c D a t a f o r ( P h 4 P ) 2 [ F e c o 2 S e t 2 ] ( 4 3 ) b B o n d D i s t a n c e s ( A ) F e - S e ( 1 ) 2 . 4 4 ( 1 ) F e — S e ( 4 ) 2 . 4 4 8 ( 7 ) F e - S e ( 5 ) 2 . 4 4 ( 1 ) F e — S e ( 8 ) 2 . 4 1 7 ( 9 ) S e ( l ) - S e ( 2 ) 2 . 3 5 4 ( 5 ) S e ( 2 ) - S e ( 3 ) 2 . 3 1 6 ( 9 ) S e ( 3 ) - S e ( 4 ) 2 . 3 5 7 ( 8 ) S e ( 5 ) - S e ( 6 ) 2 . 3 2 7 ( 9 ) S e ( 6 ) - S e ( 7 ) 2 . 3 2 5 ( 9 ) S e ( 7 ) - S e ( 8 ) 2 . 3 2 3 ( 9 ) S e - S e ( m e a n ) 2 . 3 3 4 ( 7 ) F e - C ( 1 ) 1 . 7 3 ( 5 ) F e - C ( 2 ) 1 9 0 ( 4 ) B o n d A n g l e s ( d e g ) S e ( 1 ) - F e - S e ( 4 ) 9 8 . 9 ( 3 ) S e ( l ) - F e - S e ( 5 ) 1 7 7 . 3 ( 3 ) S e ( 1 ) - F e - S e ( 8 ) 8 0 . 0 ( 3 ) S e ( 4 ) - F e — S e ( 5 ) 7 9 . 2 ( 3 ) S e ( 4 ) - F e - S e ( 8 ) 9 5 . 3 3 ) S e ( 5 ) - F e - S e ( 8 ) 9 8 . 3 ( 3 ) 1 6 0 T a b l e 4 - 7 . ( c o n ' t ) B o n d A n g l e s ( d e g ) S e ( 1 ) - S e ( 2 ) - S e ( 3 ) 9 7 . 5 ( 3 ) S e ( 2 ) - S e ( 3 ) - S e ( 4 ) 9 7 . 4 ( 3 ) S e ( 5 ) - S e ( 6 ) - S e ( 7 ) 9 6 . 6 ( 3 ) S e ( 6 ) - S e ( 7 ) - S e ( 8 ) 9 7 . 8 ( 3 ) C ( 1 ) - F e - S e ( 1 ) 9 5 ( 2 ) C ( 1 ) - F e - S e ( 4 ) 8 5 ( 1 ) C ( 1 ) - F e - S e ( 5 ) 8 7 ( 2 ) C ( 1 ) - F e - S e ( 8 ) 1 7 5 ( 2 ) C ( 2 ) — F e - S e ( 1 ) 9 4 ( 2 ) C ( 2 ) — F e — S e ( 4 ) 1 6 7 ( 2 ) C ( 2 ) - F e - S e ( 5 ) 8 8 ( 2 ) C ( 2 ) - F e - S e ( 8 ) 8 4 ( 2 ) C ( 1 ) - F e - C ( 2 ) 9 7 ( 2 ) b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n o 1 = { 2 n ( l n - l ) 2 / n ( n - 1 ) } 1 ’ 2 , w h e r e 1 , , i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . 1 6 1 F i g u r e 4 - 4 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( M h E d C O h S e d z j ( S t e r e o v i e w ) 1 6 2 S e ( 2 ) F i g u r e 4 - 5 . T h e S t r u c t u r e o f t h e [ F e ( C O ) 2 ( S e 4 ) 2 ] 2 ' A n i o n 1 6 3 2 . S p e c t r o s c o p i c S t u d i e s T h r e e c o m p o u n d s e a c h g i v e t w o w e l l - r e s o l v e d p e a k s f o r t h e C O g r o u p s a s e x p e c t e d f o r t h e c i s - M L 4 ( C O ) 2 t y p e m o l e c u l e . F i g l n ' e 4 - 6 s h o w t h e s o l i d - s t a t e I R s p e c t r a o f ( E t 4 N ) 1 5 N a 0 . 5 [ R U ( C O ) 2 ( S e 4 ) 2 ] ( 4 ' 1 ) , ( P h 4 P ) 2 [ R U ( C 0 ) 2 ( S e 4 ) 2 ] ( 4 ' 2 ) a n d ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] ( 4 3 ) , r e s p e c t i v e l y , i n t h e C O r e g i o n . T h e t w o p e a k s a t 1 9 9 9 a n d 1 9 3 9 c m ‘ 1 f o r ( 4 - 1 ) , 1 9 8 1 a n d 1 9 1 5 f o r ( 4 - 2 ) , a n d 1 9 5 8 a n d 1 9 0 5 c m ' 1 f o r ( 4 3 ) a r e a s s i g n e d t o t h e s y m m e t r i c a n d a n t i - s y m m e t r i c C O s t r e t c h i n g v i b r a t i o n s , r e s p e c t i v e l y . T h e b l u e s h i f t o f t w o C O v i b r a t i o n s i n ( E t 4 N ) 1 , 5 N a o , 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] w i t h r e s p e c t t o t h o s e i n ( P h 4 P ) 2 [ R u ( C O ) 2 ( S e 4 ) 2 ] i s c o n s i s t e n t w i t h t h e r e d u c e d e l e c t r o n - w i t h d r a n g a b i l i t y o f t h e S e 4 2 ' l i g a n d s i n t h i s c o m p o u n d b e c a u s e t h e y a r e c o r r d i n a t e d t o a N a + i o n . I n t h e f a r I R s p e c t r u m o f ( E t 4 N ) 1 5 N 3 0 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] t w o s t r o n g a b s o r p t i o n s a r e o b s e r v e d a t 2 6 8 a n d 2 4 8 c m ' l , w h i l e t h e f a r I R s p e c t r a o f ( P h 4 P ) 2 [ R u ( C O ) 2 ( S e 4 ) 2 ] a n d ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] a r e a l m o s t s u p e r i m p o s a b l e , e a c h s h o w i n g t h r e e a b s o r p t i o n s a t 2 6 9 ( m ) , 2 5 0 ( s ) a n d 1 9 9 ( m ) f o r R u c o m p o u n d , a n d 2 6 8 ( s ) , 2 5 5 ( m ) a n d 2 0 7 ( m ) c m ' 1 f o r F e c o m p o u n d , r e s p e c t i v e l y ( F i g u r e 4 - 7 ) . T h e t w o p e a k s b e t w e e n 2 7 0 - 2 5 0 i n e a c h c o m p o u n d a r e a s s i g n e d t o S e - S e s t r e t c h i n g v i b r a t i o n s . T h e s i m i l a r a s s i g n m e n t h a s a l s o b e e n m a d e i n t h e f a r I R s p e c t r a o f o t h e r m e t a l p o l y s e l e n i d e c o m p o u n d s o r u n b o u n d l i g a n d s , [ F e 2 8 e 1 2 ] 2 ‘ ( v s e . s e = 2 5 8 c m ' 1 ) [ 3 0 ] , [ S n S e 1 2 ] 2 ' ( v s e . s e = 2 7 3 a n d 2 5 6 c m ' 1 ) [ 3 1 ] , [ A n g e y P l ‘ ( v s e - s e = 2 6 5 c m ' 1 ) [ 3 2 ] , [ S e x ] 2 ' ( x = 2 - 6 , v s e - s e = 2 5 8 c m ' 1 ) [ 3 3 ] a n d c y c l o - S e 6 ( v s e . s e = 2 5 8 c m ' 1 ) [ 3 4 ] . H o w e v e r , t h e m e d i u m p e a k a t 1 9 9 c m " 1 f o r ( P h 4 P ) 2 [ R U ( C 0 ) 2 ( S e 4 ) 2 ] a n d 2 0 7 c m " f o r ( P h 4 P ) 2 [ F e ( C 0 ) 2 ( S e 4 ) 2 ] c a n n o t b e a s s i g n e d a t t h i s t i m e . A l l t h r e e c o m p o u n d s a r e s o l u b l e i n C H 3 C N a n d D M F , g i v i n g f e a t u r e l e s s U V / v i s s p e c t r a . T h e a b s e n c e o f a n y a b s o r p t i o n s d u e t o S e x z ‘ s p e c i e s s u g g e s t s t h a t t h e c o m p o u n d s m a i n t a i n t h e i r i n t e g r i t y i n t h e s e s o l v e n t s . T h e D M F s o l u t i o n o f e a c h c o m p o u n d g i v e s a s i n g l e 1 3 C r e s o n a n c e , a t t r i b u t a b l e t o t w o C O g r o u p s , a t 1 9 9 f o r R u , a n d 2 0 9 f o r t h e F e , a s 1 6 4 e x p e c t e d f o r a s p e c i e s w i t h C 2 s y m m e t r y . C o n s i s t e n t w i t h t h e C 2 g r o u p s y m m e t r y , f o u r p e a k s a r e o b s e r v e d a t 7 1 7 , 6 5 0 , 6 3 0 a n d 3 9 5 p p m f o r R u , a n d 7 2 0 , 7 0 6 , 6 7 9 a n d 4 4 5 p p m f o r t h e F e i n t h e 7 7 S e N M R s p e c t r a o f D M F s o l u t i o n s a s s h o w n i n F i g u r e 4 8 . T h e D M F s o l u t i o n o f ( E t 4 N ) 1 _ 5 N a o _ 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] s h o w s a s i n g l e 2 3 N a r e s o n a n c e a t 0 . 7 p p m ( s e e F i g u r e 4 8 ) , i n d i c a t i n g t h a t i n s o l u t i o n t h e N a “ i o n i s n o l o n g e r a s s o c i a t e d w i t h t h e t h e a n i o n s . ‘ fi — T " - m ' r ' r ' 7 1 ' r “ x ’ — r — ' fi ' V " “ S R " T E H B " M " U r N E V A H 1 1 r 0 0 1 2 r I I I i [ B O W l l I fl S N V H l Z r l r i i g 1 6 5 \ [ I I I I I I . T U I I I I T T F i g u r e 4 6 T h e S o l i d - S t a t e I R S p e c t r a i n t h e C O R e g i o n f o r ( - — - ) ( E t 4 N ) t _ 5 N a o , 5 [ R u ( C O ) 2 ( S e 4 ) 2 | , ( ~ x - x - x - ) ( P h 4 P ) 2 [ R U ( C 0 ) 2 ( S e 4 ) 2 I a n d ( - - ) ) ( P h 4 P ) 2 l F e ( C 0 ) 2 ( S € 4 ) 2 l 3 4 1 " ] 2 ) 4 e S ( 2 " ) 6 6 O C ( u R | 1 2 5 ) P ' 4 h P ( ) - x 9 6 - 1 - x x — ( , | 2 ) 2 4 1 e S 1 2 ( 2 2 ) ) 4 O e C S ( ( u 2 R 1 5 [ 0 R 5 C 5 E 2 , ( o 0 B F a 5 M 5 U ) 2 , N l N ) 1 P 4 N h a 4 E V ( E P t 2 ( R ) ’ N ) ) - — - ( ( f d o n 1 a a 6 2 5 6 3 r t c e p S R 1 r a F e t a t S - d i 7 l 2 3 o S e h T 7 - 4 o e r u a g i F B O N H L J . I N S N U H J . 7 . 1 6 6 1 6 7 fi r ! 1 % 1 7 . 4 4 & 1 . . w ‘ _ “ , _ _ _ _ r _ “ . . _ * 7 _ _ W . ‘ . _ _ _ : J ‘ W m 1 r r 1 r v v v T r r p r r r v r r y r 7 # Y 1 r r 1 f j v r r f 7 0 0 6 5 0 6 0 0 5 5 0 5 0 0 4 5 0 4 0 0 0 0 t h ( D ) W N W q ' W — T — I “ l — r ‘ l I ’ m — l j v - Y Y T W T T F ‘ H W T ’ T ' T ’ F I I r r r r I I T T t l r r r r l r r t v l r r r f T r Y V Y 3 0 2 5 2 0 1 5 1 0 5 0 ‘ 5 ' 1 0 - 1 5 ‘ 2 0 D D . F i g u r e 4 ° 8 - T h e " 5 6 N M R S p e c t r a o f ( A ) ( E t 4 N ) 1 5 N 8 0 5 1 R 0 ( C 0 ) 2 ( S e 4 ) 2 l a n d ( B ) ( P h 4 P ) 2 [ R u ( C O ) 2 ( S e 4 ) 2 ] , ( C ) ( l e F d C O M S fl h l 3 1 " ! ” N a N M R S p e c t r u m 0 f 1 ” ) ( M I J N M J I R M C O M S Q h L " M F r o m m 5 “ - 1 6 8 3 . T h e r m a l D e c o m p o s i t i o n U n d e r N 2 f l o w , a l l t h r e e c o m p o u n d s u n d e r g o m u l t i p l e - s t e p t h e r m a l d e c o m p o s i t i o n s a s s h o w n i n F i g u r e 4 - 9 . T h e o b s e r v e d a n d c a l c u l a t e d v a l u e s o f w e i g h t l o s s f o r e a c h s t e p o f t h e r m o l y s i s a r e c o m p a r e d i n T a b l e 4 8 a l o n g w i t h t h e p r o p o s e d r e s i d u e f o r m u l a . T h e fi n a l p r o d u c t f r o m t h e t h e r m o l y s i s o f ( E t 4 N ) 1 5 N a o 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] c o r r e s p o n d s t o a c o m p o s i t i o n N a o , 5 R u S e . T h e X R D s t u d i e s s h o w e d t h e p r o d u c t d o e s n o t c o n t a i n R u S e z - t h e o n l y k n o w n R u / S e b i n a r y p h a s e [ 3 5 a ] . S i n c e t h e r e i s n o k n o w n t e r n a r y N a / R u / S e p h a s e t h e X R D p a t t e r n c a n n o t b e i n d e x e d a t t h i s m o m e n t . B o t h ( P h 4 P ) 2 [ R I I ( C 0 ) 2 ( S e 4 ) 2 ] a n d ( P h 4 P ) 2 [ F e ( C 0 ) 2 ( S e 4 ) 2 ] f o l l o w a s i m i l a r t h e r m a l d e c o m p o s i t i o n p a t h w a y . T h e fi n a l p r o d u c t s d e d u c e d f r o m t h e w e i g h t l o s s h a v e t h e f o r m u l a s R u S e 2 a n d F e S e z , r e s p e c t i v e l y . T h e X R D p a t t e r n s c o n fi r m e d t h a t t h e y a r e r u t h e n i u m s e l e n i d e R u S e 2 [ 3 5 b ] a n d f e r r o s e l i t e F e S e 2 [ 3 5 c ] . T a b l e 4 8 . T h e r m a l G r a v i m e t r i c A n a l y s i s D a t a f o r ( E t 4 N ) 1 5 N a o 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] ( 4 - 1 ) , ( P h 4 P ) ; ! E e ( C O ) 2 ( S e 4 ) z | ( 4 - 2 ) a n d ( P h 4 P ) ; l § e ( C O ) z ( S e 5 ) z ] ( 4 ' 3 ) S t e p o n s e t t e m p fi n a l t e m p o b s d % c a l c d % p r o p o s e d ° C ° C w t l o s s " w t l o s s * r e s i d u e I f o r m u l a ( 4 ' 1 ) 1 1 3 5 2 7 5 4 4 . 2 6 4 3 . 8 7 1 / 4 N 2 2 S e + R u S e s , 4 2 3 5 0 4 8 4 7 1 . 6 0 7 0 . 8 4 1 l 4 N a 2 $ e + R u S e z 3 4 8 4 7 7 2 8 1 . 6 7 8 0 . 7 5 N a o , 5 R u S e ( 4 ° 2 ) 1 1 9 3 2 2 4 4 . 0 2 3 . 8 2 ( P h 4 P ) 2 [ R u S e g ] 2 2 2 4 4 2 3 6 1 . 5 2 6 0 . 8 4 F e S e 6 3 4 2 3 6 9 8 8 4 . 9 6 8 2 . 3 5 R u S e j L 1 6 9 T a b l e 4 - 8 . ( c o n t ' d ) S t e p o n s e t t e m p fi n a l t e m p o b s d % c a l c d % p r o p o s e d ° C ° C w t l o s s * w t l o s s * r e s i d u e f o r m u l a ( 4 ' 3 ) 1 1 4 8 1 7 5 4 . 0 1 3 . 9 4 ( P h 4 P ) 2 [ F e S e 3 ] 2 2 6 5 3 2 9 5 8 . 3 8 5 7 . 2 0 F e S e 7 3 3 2 9 4 0 2 7 6 . 6 5 7 6 . 6 3 F e S e 3 , 5 4 5 2 5 7 4 5 8 6 . 4 7 8 4 . 9 6 F e S e z g a t i n i t i a l s a m p l e w e i g h b 1 0 0 % : 0 0 1 L 8 ) C ( r r 1 r r r v r l r v r r [ r 1 t v l r r r I ] r r T Y I 0 0 8 1 0 0 L 1 0 0 V W T T I 1 I 6 I I d J n 0 J 0 a U 7 l I I I L 1 L 1 1 1 1 1 | I 0 2 ) 4 0 e 6 S ( 2 0 ) 0 O 5 C l ( C u 0 l R 0 ( 0 p m l 4 2 e T 0 0 ) P 4 h 3 P ( L L + 1 1 1 1 . 1 ) 0 1 B 0 2 ; 1 1 0 1 0 1 1 4 ( . l 2 ) l e h S ( u 2 S ) . , . , . 7 ] T 1 J 0 0 T Y ~ 1 l , 0 1 5 . , . , . . . , l 0 0 ° M 0 0 O O 1 8 C 2 0 4 2 C 1 1 0 l 0 p 1 4 m e 1 T 0 0 1 3 4 t 0 4 0 2 1 v l v r r 0 0 L 8 J A l 0 l 0 A 7 L A 0 v A 0 1 0 ' l 0 O ( C u R d [ e 5 l 0 a l N P 5 m 1 ) P N ( 4 t E ( . r A A 1 6 v A ) 0 0 0 0 0 0 o r ] v I A 5 2 0 8 4 2 ) A s C 1 1 6 r e 3 A 0 l 0 o 1 r v ' A ( A 0 l 0 f $ T ( V V V r V I T V I T r ‘ T I r ' V ' i 0 p m A m 4 s L e a A T L 0 i l 0 d l A L 3 A G T I 0 0 3 2 1 I A J L J 0 ‘ 0 1 1 . 9 1 4 A J A 0 0 0 0 0 o 2 0 8 4 2 1 1 m 0 g ' “ $ 8 0 B e 3 5 0 I l l v r v r v v — r ' y v v v ' v v T T T a 1 ‘ I l V V V I # L l l L l l l l l 1 l A J l l 4 l l A J L 1 7 0 1 7 1 I V . D i s c u s s i o n R u 3 ( C O ) 1 2 a n d F e ( C O ) 5 r e a c t r e a d i l y w i t h s o d i u m p e n t a s e l e n i d e i n a c e t o n e t o f o r m t h e a n i o n i c c o m p l e x e s [ M ( C O ) 2 ( S e 4 ) 2 ] ( M = R u a n d F e ) . S u c h o x i d a t i v e d e c a r b o n y l a t i o n r e a c t i o n s r e s u l t i n a c h a n g e i n t h e o x i d a t i o n s t a t e o f t h e m e t a l c e n t e r w i t h c o n c o m i t a n t p a r t i a l l o s s o f i t s C O g r o u p s : a c e t o n e , r . t . R u 3 ( C O ) 1 2 + N a 2 S e 5 ? ( E t 4 N ) 1 _ 5 N a o _ 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] + N a C l + C O e q . ( 4 - l ) t 4 l R “ 3 ( C 0 ) 1 2 + N a 2 3 3 5 “ : f ‘ fi é l ’ fi ( P h 4 P ) 2 t R u < C O > 2 < S e . ) 2 1 + N a c 1 + c o e q . ( 4 - 2 ) 4 a c e t o n e , b . p . r F e ( C O ) + N S e 5 a 2 5 P h 4 P C l ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] + N a C l + C O e q . ( 4 - 3 ) T h e s t r u c t u r e s o f b o t h ( E t 4 N ) 1 . 5 N a o , 5 [ R u ( C O ) 2 ( S e 4 ) 2 ] a n d ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] a r e e s t a b l i s h e d b y X — r a y s i n g l e c r y s t a l a n a l y s i s . A l t h o u g h w e h a v e n o t b e e n a b l e t o s o l v e t h e X - r a y s t r u c t u r e o f ( P h 4 P ) 2 [ R u ( C O ) 2 ( S e 4 ) 2 ] , t h e r e i s l i t t l e d o u b t f r o m t h e s p e c t r o s c o p i c d a t a t h a t t h i s c o m p o u n d i s a n a l o g o u s t o ( P h 4 P ) 2 [ F e ( C O ) 2 ( S e 4 ) 2 ] . I n t h e p r e p a r a t i o n o f a l l t h e s e c o m p o u n d s , t h e S e 5 2 ' l i g a n d i s b e l i e v e d t o a c t a s o x i d a n t b y s p l i t t i n g i t s S e - S e b o n d s [ l 4 ] . S i m i l a r r e a c t i o n s h a v e b e e n o b s e r v e d t o o c c u r b e t w e e n R u 3 ( C O ) 1 y F e ( C O ) 5 a n d K 2 T e 4 . I n e a c h c a s e , t h e I R s p e c t r u m i n t h e C O r e g i o n s u g g e s t s t h a t t h e [ M ( C O ) 2 ( T e n ) 2 ] 2 ' - t y p e m o l e c u l e a l s o f o r m s . T h u s f a r w e h a v e n o t b e e n s u c c e s s f u l i n i s o l a t i n g a n y o f t h e s e p r o d u c t s i n p u r e f o r m . A l t h o u g h s e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X o n t h e f r e s h l y f o r m e d p r o d u c t s i n d i c a t e t h a t t h e y c o n t a i n t h e m e t a l a n d t e l l u r i u m i n t h e 1 : 8 - 1 : 1 0 r a t i o s , u p o n s t a n d i n g d u r i n g c r y s t a l l i z a t i o n / r e c r y s t a l l i z a t i o n , t h e p r o d u c t s o f t e n d e c o m p o s e t o g i v e e l e m e n t a l t e l l u r i u m . 1 7 2 R e c e n t l y , R a u c h f u s s a n d c o - w o r k e r s h a v e d i s c o v e r e d t h a t N — a l k y l i m i d a z o l e s c a n g r e a t l y p r o m o t e t h e r e a c t i v i t y o f e l e m e n t a l c h a l c o g e n s ( i . e . S a n d S e ) t o w a r d s l o w v a l e n t m e t a l s p e c i e s , p a r t i c u l a r l y m e t a l p o w d e r s a n d m e t a l c a r b o n y l s [ 3 6 ] . T h e N — a l k y l i m i d a z o l e s u s p e n s i o n o f e l e m e n t a l s e l e n i u m i s f o u n d t o r e a c t w i t h F e ( C O ) 5 t o p r o d u c e a p o l y s e l e n i d e c o m p o u n d [ 3 6 b ] : 2 F e < C 0 ) s + S e a N ' M e ‘ m ’ 2 5 ° C , [ F e ( N - M 6 1 m ) 6 ] [ F e ( S e 4 ) 2 ( C 0 ) 2 l + s c o c t r - ( 4 ' 4 ) T h e i d e n t i t y o f t h i s c o m p o u n d h a s b e e n e s t a b l i s h e d b y X - r a y s i n g l e c r y s t a l a n a l y s i s . T h e a n i o n o f t h i s c o m p o u n d h a s e s s e n t i a l l y t h e s a m e s t r u c t u r e a s t h a t i n ( 4 3 ) . T h e a b o v e r e a c t i o n c o n s t i t u t e s a n o t h e r u s e f u l s y n t h e t i c r o u t e t o t h e o c t a h e d r a l c o m p l e x o f t h e i r o n p o l y s e l e n i d e . I t i s i n t e r e s t i n g t o n o t e t h a t c o m p o u n d s ( 4 - l ) — ( 4 - 3 ) c o n t a i n S e 4 2 ‘ l i g a n d s w h i l e t h e n o m i n a l c o m p o s i t i o n o f t h e l i g a n d u s e d w a s N a z s e s . T h i s i s b e c a u s e a c o m p l e x e q u i l i b r i u m o f d i f f e r e n t S e n z ‘ s p e c i e s i s e s t a b l i s h e d i n s o l u t i o n [ 3 7 — 4 0 ] , w h i c h a l l o w s f o r t h e m e t a l t o c h o o s e a p r e f e r a b l e c h a i n l e n g t h . S u c h a p h e n o m e n o n h a s b e e n o b s e r v e d f o r m a n y o t h e r m e t a l p o l y s u l fi d e , p o l y s e l e n i d e a n d p o l y t e l l u r i d e s y s t e m s [ 1 3 - 1 4 , 3 2 , 3 7 - 3 8 , 4 1 - 4 2 ] . T h e [ R u ( S e 4 ) 2 ( C O ) 2 ] 2 ‘ i s t h e fi r s t s t r u c t u r a l l y c h a r a c t e r i z e d r u t h e n i u m p o l y s e l e n i d e c o m p l e x . T w o c a t i o n i c s p e c i e s c o n t a i n i n g t h e d i s e l e n i d e , [ { C p R u ( P h 3 P ) 2 } 2 8 e 2 ] ( O T f ) 2 a n d [ { ( M e C p ) R u ( P h 3 P ) } 2 ( S e 2 ) 2 ] ( O I ‘ t ) 2 , h a v e b e e n r e c e n t l y r e p o r t e d [ 1 2 ] , w h e r e a s i r o n p o l y s e l e n i d e c o m p l e x e s a r e r e l a t i v e l y c o m m o n . S t r u c t u r a l l y c h a r a c t e r i z e d c o m p o u n d s i n c l u d e [ F e 2 ( S e 2 ) ( C 0 ) 6 ] [ 4 3 ] . ( P h 4 P ) 2 [ F e 4 $ e 2 ( S e 2 ) ( C 0 ) 1 2 ] [ 4 4 ] . ( P h 4 P ) 2 [ F e 2 8 e 2 ( S e 5 ) 2 ] [ 3 0 ] a n d ( P h 4 P ) 2 [ F e ( S e 4 ) 2 ] [ 4 5 ] . I t s h o u l d b e n o t e d t h a t t h e l a t t e r t w o h o m o l e p t i c c o m p o u n d s c o n t a i n S e s z ‘ a n d S e 4 2 ‘ , r e s p e c t i v e l y , w i t h t h e m e t a l c e n t e r h a v i n g a f o r m a l o x i d a t i o n s t a t e 3 + a n d 2 + . I t a p p e a r s t h a t i n t h e F e n + ( n = 2 , 3 ) l S e x 2 ' 1 7 3 s y s t e m , t h e h i g h o x i d a t i o n s t a t e o f t h e m e t a l c e n t e r f a v o r s t h e s i x - m e m b e r e d F e S e s r i n g , w h i l e t h e fi v e - m e m b e r e d F e S e 4 r i n g i s f o r m e d i f t h e m e t a l c e n t e r i s i n t h e l o w o x i d a t i o n s t a t e . T h e r i n g s i z e o f t h e c u r r e n t i r o n c a r b o n y l p o l y s e l e n i d e c o m p o u n d s e e m s t o b e c o n s i s t e n t w i t h t h i s n o t i o n . C o o r d i n a t i o n o f a N a + i o n b y t w o [ R u ( C O ) 2 ( S e 4 ) 2 ] 2 ‘ m o l e c u l e s i n t h e c r y s t a l l a t t i c e i s , i n a s e n s e , r e m i n i s c e n t o f o r g a n i c c r o w n e t h e r s . T h e s i m i l a r i n t e r a c t i o n s b e t w e e n t h e N a ’ r a n d t h e S e 2 ' l i g a n d s h a v e a l s o b e e n o b s e r v e d i n a n i n d i u m p o l y s e l e n i d e c l u s t e r [ N a I n 5 S e 3 0 ] 5 ' [ 3 8 c ] , w h e r e a N a + i o n i s e n c a p s u l a t e d i n a n o c t a h e d r a l p o c k e t c r e a t e d b y s i x S e z ‘ l i g a n d s f r o m t h e t w e l v e - m e m b e r e d [ I n 1 5 S e 6 ] 6 + r i n g . O t h e r k n o w n i n o r g a n i c c r o w n e t h e r - l i k e m e t a l c h a l c o g e n i d e c o m p l e x e s t h a t a c t a s c h e l a t e s t o e n c a p s u l a t e a l k a l i - m e t a l i o n s a r e [ N 8 2 ( F 6 6 3 9 ( S M 6 ) 2 ) 2 ] 6 ' [ 4 6 ] a n d [ N a z F e r 8 S 3 0 1 8 ‘ l 4 7 l - I n s u m m a r y , b o t h R u 3 ( C O ) 1 2 a n d F e ( C O ) 5 e x h i b i t w e l l b e h a v e d r e a c t i v i t y t o w a r d s p o l y s e l e n i d e l i g a n d s i n s o l u t i o n a t a m b i e n t t e m p e r a t u r e s . T h e p a r t i a l o x i d a t i v e d e c a r b o n y l a t i o n o f t h e m e t a l c e n t e r b y p o l y s e l e n i d e l i g a n d s i n s u c h r e a c t i o n s r e t a i n s t w o s t r o n g i t l i g a n d s , i . e . C O , i n t h e i s o l a t e d c o m p l e x . T h i s h a s s o f a r p r o v e n t o b e n e c e s s a r y i n p r e v e n t i n g t h e c o m p l e x e l e c t r o n t r a n s f e r b e t w e e n R u ! 1 + ( n = 2 , 3 a n d 4 ) i o n s a n d p o l y c h a l c o g e n i d e l i g a n d s , t h u s a l l o w i n g f o r t h e i s o l a t i o n o f t h e fi r s t r u t h e n i u m c o m p l e x c o n t a i n i n g S e 4 ‘ l i g a n d s . T h i s fi n d i n g a l s o d e fi n e s n e w o p p o r t u n i t i e s i n R u + l e 2 ‘ c h e m i s t r y . 1 0 . 1 1 . 1 7 4 R E F E R E N C E S S e e c h a p t e r 2 . H . V a h r e n k a m p , A d v . O r g a n o m e t . C h e m , 2 2 ( 1 9 8 3 ) , 1 6 9 - 2 0 8 . W . A . H e r r m a n n , A n g e w . C h e m . I n t . E d . E n g l . , 2 5 ( 1 9 8 6 ) , 5 6 — 7 6 . K . H . W h i t m i r e , J . C o o r d . C h e m , 1 7 ( 1 9 8 8 ) , 9 5 - 2 0 3 . J . W a c h t e r , A n g e w . C h e m I n t . E d . E n g l . , 2 8 ( 1 9 8 9 ) , 1 6 1 3 - 1 6 2 6 . D . H . F a r r a r , K . R . G r u n d y , N . C . P a y n e , W . R . R o p e r a n d A . W a l k e r , J . A m C h e m S o c . , 1 0 1 ( 1 9 7 9 ) , 6 5 7 7 - 6 5 8 2 . ( a ) A . P . G i n s b e r g , W . E . L i n d s e l l , C . R . S p r i n r l e , K . W . W e s t a n d R . L . C o h e n , . I n o r g . C h e m , 2 1 ( 1 9 8 2 ) , 3 6 6 6 - 3 6 8 1 . ( b ) A . P . G i n s b e r g , W . E . L i n d s e l l , C . R . S p r i n r l e , K . W . W e s t a n d R . L . C o h e n , I n o r g . C h e m , 2 2 ( 1 9 8 3 ) , 1 7 8 1 - 1 7 9 0 . M . H e r b e r h o l d , D . R e i n e r a n d U . T h e w a l t , A n g e w . C h e m I n t . E d . E n g l . , 2 2 ( 1 9 8 3 ) , 1 0 0 0 - 1 0 0 1 . L . Y . G o h , C . W e i a n d E . S i n n , J . C h e m . S o c . , C h e m C o m m u n , ( 1 9 8 5 ) , 4 6 2 - 4 6 4 . W . A . H e r r m a n n a n d J . R o h r m a n n , C h e m B e r . , 1 1 9 ( 1 9 8 6 ) , 1 4 3 7 - 1 4 4 0 . ( a ) H . B r u n n e r , W . M e i e r , B . N u b e r , J . W a c h t e r a n d M . L . Z i e g l e r , A n g e w . C h e m I n t . E d . E n g l . , 2 5 ( 1 9 8 6 ) , 9 0 7 - 9 0 8 . ( b ) H . B r u n n e r , N . J a n i e t z , W . M e i e r , J . W a c h t e r , E . H e r d t w e c k , W . A . H e r r m a n n , O . S e r h a d l i a n d M . L . Z i e g l e r , J . O r g a n o m e t . C h e m , 3 4 7 ( 1 9 8 8 ) , 2 3 7 - 2 5 2 . 1 2 . 1 3 . 1 4 . 1 5 . 1 6 . 1 7 . l 8 . 1 9 . 2 0 . 2 1 . 2 2 . 1 7 5 J . A m a r a s e k e r a , E . J . H o u s e r , T . A . R a u c h f u s s a n d C . L . S t e r n , I n o r g . C h e m , 3 1 ( 1 9 9 2 ) , 1 6 1 4 - 1 6 2 0 . M . G . K a n a t z i d i s a n d S . - P . H u a n g , s u b m i t t e d t o C o o r d . C h e m . R e v . J . W . K o l i s , C o o r d . C h e m . R e v . , 1 0 5 ( 1 9 9 0 ) , 1 9 5 - 2 1 9 . S . C . O ' N e a l a n d J . W . K o l i s , J . A m . C h e m . S o c . , 1 1 0 ( 1 9 8 8 ) , 1 9 7 1 - 1 9 7 3 . W . A . F l o m e r , S . C . O ' N e a l , J . W . K o l i s , D . J e t e r , a n d A . W . C o r d e s , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 9 6 9 - 9 7 1 . S . C . O ' N e a l a n d J . W . K o l i s , I n o r g . C h e m , 2 8 ( 1 9 8 9 ) , 2 7 8 0 - 2 7 8 3 . L . C . R o o f , W . T . P e n n i n g t o n a n d J . W . K o l i s , J . A m . C h e m . S o c . , 1 1 2 ( 1 9 9 0 ) , 8 1 7 2 - 8 1 7 4 . ( a ) B . C . G a t e s , J . R . K a t z e r a n d G . C . A . S c h u i t , C h e m i s t r y o f C a t a l y t i c P r o c e s s e s , M c G r a w - H i l l , N e w Y o r k , 1 9 7 9 . ( b ) O . W e i s s e r a n d S . L a n d a , S u l fi d e C a t a l y t s i s : T h e i r P r o p e r t i e s a n d A p p l i c a t i o n s , P e r g a m o n , O x f o r d , 1 9 7 3 . ( a ) R . R . C h i a n e l l i , C a t a l . R e v - S c i . E n g . , 2 6 ( 1 9 8 4 ) , 3 6 1 - 3 9 3 . ( b ) R . R . C h i a n e l l i , T . A . P e c o r a r o , T . R . H a l b e r t , W . - H . P a n a n d E . I . S t i e fl e l , J . C a t a l . , 8 6 ( 1 9 8 4 ) , 2 2 6 — 2 3 0 . ( c ) S . H a r r i s a n d R . R . C h i a n e l l i , J . C a t a l . , 8 6 ( 1 9 8 4 ) , 4 0 0 - 4 1 2 . ( ( 1 ) T . A . P e c o r a r o a n d R . R . C h i a n e l l i , J . C a t a l , 6 7 ( 1 9 8 1 ) , 4 3 0 - 4 4 5 . ( a ) E . G . D e r o u a n e , E . P e d e r s e n , B . S . C l a u s e n , Z . G a b e l i c a , R . C a n d i a a n d H . T o p s o e , J . C a t a l . , 9 9 ( 1 9 8 6 ) , 2 5 3 - 2 6 1 . ( b ) J . T . R o b e r t s a n d C . M . F r i e n , J . A m . C h e m . S o c . , 1 0 8 ( 1 9 8 6 ) , 7 2 0 4 - 7 2 1 0 . R . J . A n g e l i c i , A c c . C h e m . R e s . , 2 1 ( 1 9 8 8 ) , 3 8 7 - 3 9 4 . 2 3 . 2 4 . 2 5 . 2 6 . 2 7 . 2 8 . 2 9 . 3 0 . 3 1 . 3 2 . 3 3 . 3 4 . 1 7 6 S . — P . H u a n g a n d M . G . K a n a t z i d i s , u n p u b l i s h e d r e s u l t s . D . D . P e r r i n , W . L . F . A r m a r e g o a n d D . R . P e r r i n , P u r i fi c a t i o n o f L a b o r a t o r y C h e m i c a l s , 2 n d E d . , P e r g a m o n P r e s s , O x f o r d U K , 1 9 8 0 . S e e c h a p t e r 2 . N . W a l k e r a n d D . S t u a r t , A c t a C r y s t a l l o g r . , 3 9 A ( 1 9 8 3 ) , 1 5 8 - 1 6 6 . ( a ) G . M . S h e l d r i c k i n C r y s t a l l o g r a p h i c C o m p u t i n g , G . M . S h e l d r i c k , C . K r u g e r , a n d R . D o d d a r d , O x f o r d U n i v e r s i t y P r e s s , 1 9 8 5 , p . 1 7 5 - 1 8 9 . ( b ) B . A . F r e n z , T h e E n r a f - N o n i u s C A D 4 S D P S y s t e m . i n C o m p u t i n g i n C r y s t a l l o g r a p h y ; D e l f t U n i v e r s i t y P r e s s , D e l f t H o l l a n d , 1 9 7 8 ; p . 6 4 - 7 1 . H . P . K l u g a n d L . E . A l e x a n d e r , X - r a y D i fi ' r a c t i o n P r o c e d u r e s f o r P o l y c r y s t a l l i n e a n d A m o r p h o u s M a t e r i a l s , J o h n W i l e y a n d S o n s , N e w Y o r k , 1 9 7 4 . D . K . S m i t h , M . C . N i c h o l s a n d M . E . Z o l e n s k y , P O W D I O : A F o r t r a n I V P r o g r a m fi r C a l c u l a t i n g X - r a y P o w d e r D r fl ‘ r a t i o n P a t t e r n s , V e r s i o n 1 0 , P e n n s y l v a n i a S t a t e U n i v e r s i t y , 1 9 8 3 . H . S t r a s d e i t , B . K r e b s a n d G . H e n k e l , I n o r g . C h i m . A c t a , 8 9 ( 1 9 8 4 ) , L 1 1 - L 1 3 . S . - P . H u a n g , S . D h i n g r a a n d M . G . K a n a t z i d i s , P o l y h e d r o n , 9 ( 1 9 9 0 ) , 1 3 8 9 - 1 3 9 5 . S . - P . H u a n g a n d M . G . K a n a t z i d i s , I n o r g . C h e m , 3 0 ( 1 9 9 1 ) , 1 4 5 5 — 1 4 6 6 . F . W e l l e r , J . A d e l a n d K . D e h n i c k e , Z . A n o r g . A l l g . C h e m , 5 4 8 ( 1 9 8 7 ) , 1 2 5 - 1 3 2 . K . N a g a t a , K . T s h i b a s h i a n d Y . M i y a m o t o , J p n . J . A p p l . P h y s , 1 9 ( 1 9 8 0 ) , 1 5 6 9 - 1 5 7 3 . 3 5 . 3 6 . 3 7 . 3 8 . 3 9 . 4 0 . 4 1 . 4 2 . 4 3 . 4 4 . 4 5 . 4 6 . 1 7 7 J C P D S I n t e r n a t i o n a l C e n t e r f o r D i f f r a t i o n D a t a , ( a ) P o w d e r D i f f r a t i o n F i l e 3 - 1 1 9 8 ( b ) P o w d e r D i f f r a t i o n F i l e 3 — 1 1 9 8 . ( c ) P o w d e r D i f f r a t i o n F i l e 2 1 - 4 3 2 . ( a ) S . D e v , E . R a m l i , T . B . R a u c h f u s s a n d C . L . S t e r n , J . A m . C h e m S o c . , 1 1 2 ( 1 9 9 0 ) , 6 3 8 5 - 6 3 8 6 . ( b ) T . A . R a u c h f u s s , S . D e v a n d S . R . W i l s o n , I n o r g . C h e m , 3 1 ( 1 9 9 2 ) , 1 5 3 - 1 5 4 . M . G . K a n a t z i d i s , C e m e n t s I n o r g . C h e m , 1 0 ( 1 9 9 0 ) , 1 6 1 - 1 9 5 . ( a ) M . G . K a n a t z i d i s a n d S . D h i n g r a , I n o r g . C h e m , 2 8 ( 1 9 8 9 ) , 2 0 2 4 - 2 0 2 6 . ( b ) S . D h i n g r a a n d M . G . K a n a t z i d i s , s u b m i t t e d t o I n o r g . C h e m ( c ) S . D h i n g r a , P h . D . T h e s i s , M i c h i g a n S t a t e U n i v e r s i t y , 1 9 9 2 . L . D . S c h u l t z a n d W . H . K o e h l e r , I n o r g . C h e m , 2 6 ( 1 9 8 7 ) , 1 9 8 9 - 1 9 9 3 . M . B j o r g v i n s s o n a n d G . J . S c h r o b i l g e n , I n o r g . C h e m , 3 0 ( 1 9 9 1 ) , 2 5 4 0 - 2 5 4 7 . M . D r a g a n j a c a n d T . B . R a u c h f u s s , A n g e w . C h e m I n t . E d . E n g l , 2 4 ( 1 9 8 5 ) , 7 4 2 - 7 5 7 . ( a ) A . M i ' l l l e r , P o l y h e d r o n , 5 ( 1 9 8 6 ) , 3 2 3 - 3 4 0 . ( b ) A . M u l l e r a n d E . D i e m a n n , A d v . I n o r g . C h e m , 3 1 ( 1 9 8 7 ) , 8 9 - 1 2 2 . ( a ) W . H i e b e r a n d J . G r u b e r , Z . A n o r g . A l l g . C h e m , 2 9 6 ( 1 9 5 8 ) , 9 1 - 1 0 3 . ( b ) C . F . C a r n p a n a , F . Y . - K L o a n d L . F . D a h l , I n o r g . C h e m , 1 8 ( 1 9 7 9 ) , 3 0 6 0 - 3 0 6 4 . S e e C h a p t e r 5 . K . - W . K i m a n d M . G . K a n a t z i d i s , m a n u s c r i p t i n p r e p a r a t i o n . J . - F . Y o u , B . S . S n y d e r , G . C . P a p a e f t h y m i o u a n d R . H . H o l m , J . A m C h e m . S o c , 1 1 2 ( 1 9 9 0 ) , 6 5 8 9 - 6 5 9 1 . 1 7 8 4 7 . J . F . Y o u , B . S . S n y d e r a n d R . H . H o l m , J . A m C h e m S o c . , 1 1 0 ( 1 9 8 8 ) , 6 5 8 9 - 6 5 9 1 . C H A P T E R 5 H Y D R O ( M E T H A N O ) T H E R M A L S Y N T H E S I S O F M E I ‘ A L C A R B O N Y L C H A L C O G E N I D E C L U S T E R S O F G R O U P 8 E L E M E N T S I . I n t r o d u c t i o n R e c e n t l y , r e s e a r c h c a r r i e d o u t i n t h i s g r o u p h a s d e m o n s t r a t e d t h a t t h e a p p l i c a t i o n o f h y d r o t h e r m a l t e c h n i q u e t o t h e s y n t h e s i s o f t r a n s i t i o n m e t a l p o l y c h a l c o g e n i d e c o m p o u n d s c a n a f f o r d n o v e l m e t a l p o l y c h a l c o g e n i d e c l u s t e r s i n a c c e s s i b l e b y s o l u t i o n m e t h o d [ 1 - 2 ] . T h i s w a s fi r s t s h o w n b y t h e p r e p a r a t i o n o f a l a r g e c l u s t e r K 1 2 [ M o 1 z S e g ( S e 2 ) 1 g ( S e 3 ) 4 ] a s t h e p r e l u d e [ 2 ] , f o l l o w e d b y t h e s y n t h e s e s o f s e v e r a l o t h e r t r a n s i t i o n m e t a l p o l y s e l e n i d e c l u s t e r s [ 3 ] . S u c h a d i s c o v e r y h a s o p e n e d u p a n e w a v e n u e t o t h e c l u s t e r c h e m i s t r y o f t r a n s i t i o n m e t a l p o l y c h a l c o g e n i d e s . E n c o u r a g e d b y t h e a b o v e r e s u l t s , w e s e t o u t t o e x p l o r e t h e p o s s i b i l i t y o f a p p l y i n g h y d r o ( s o l v o ) t h e r m a l t e c h n i q u e t o t h e s y n t h e s i s o f c h a l c o g e n - c o n t a i n i n g t r a n s i t i o n m e t a l c a r b o n y l c l u s t e r s . T h e i n c o r p o r a t i o n o f m a i n g r o u p e l e m e n t s i n t o t r a n s i t i o n m e t a l c l u s t e r s o f t e n i n t r o d u c e s u n i q u e s t r u c t u r a l f e a t u r e s a n d u n u s u a l r e a c t i v i t i e s , t h u s p r o v i d i n g m a n y n e w o p p o r t u n i t i e s f o r s t u d i e s o f s t r u c t u r a l p r i n c i p l e s a n d n e w c h e m i c a l r e a c t i o n s [ 4 - 6 ] . O n e p a r t i c u l a r a r e a o f c m ' r e n t i n t e r e s t i s t h e p r e p a r a t i o n o f c h a l c o g e n - c o n t a i n i n g m e t a l c a r b o n y l c l u s t e r s [ 7 - 1 0 ] . S y n t h e s e s d e s i g n e d t o p r o d u c e n o v e l m e t a l c a r b o n y l c l u s t e r s c o n t a i n i n g c h a l c o g e n s h a v e i m p o s e d a g r e a t c h a l l e n g e t o t h e c l u s t e r c h e m i s t a n d s t i l l o c c u p y a p r o m i n e n t p o s i t i o n i n t h i s r e s e a r c h a r e a [ 6 — 1 0 ] . A c o m m o n a p p r o a c h t o o b t a i n i n g l a r g e c l u s t e r s i s t o r e a c t a c h a l c o g e n - c o n t a i n i n g c l u s t e r e i t h e r w i t h a c o m p l e x h a v i n g l a b i l e g r o u p s o r w i t h a c o o r d i n a t i v e l y u n s a t u r a t e d s p e c i e s g e n e r a t e d i n - s i t u b y U V i r r a d i a t i o n [ l 1 ] . T h i s 1 7 9 1 8 0 h a s b e e n p a r t i c u l a r l y s u c c e s s f u l i n t h e s y n t h e s i s o f m a n y s u l f u r - c o n t a i n i n g m e t a l c l u s t e r s [ 6 , 7 b , l l b - c ] . H o w e v e r , s u c h r e a c t i o n s o f t e n s u f f e r l o w y i e l d s a n d r e q u i r e l e n g t h y s e p a r a t i o n p r o c e d u r e s . W e d e m o n s t r a t e d f o r t h e fi r s t t i m e t h a t u n d e r t h e h y d r o ( s o l v o ) t h e r m a l c o n d i t i o n s d i r e c t r e a c t i o n s b e t w e e n m e t a l c a r b o n y l s a n d p o l y c h a l c o g e n i d e l i g a n d s c a n l e a d t o t h e f o r m a t i o n o f n o v e l m e t a l c a r b o n y l c h a l c o g e n i d e c l u s t e r s . I n t h i s c h a p t e r w e w i s h t o d e s c r i b e t h r e e n o v e l m e t a l c a r b o n y l / h e a v y p o l y c h a l c o g e n i d e c l u s t e r s o f g r o u p 8 e l e m e n t s , ( P h 4 P ) 2 [ R u 5 ( T e 2 ) 7 ( C O ) 1 2 ] ( 5 ~ l ) , ( P h 4 P ) 2 [ { F e 4 T e 4 ( C 0 ) 1 0 } 2 ( T 6 2 ) ] ( 5 ' 2 ) a n d ( P h 4 P ) 2 [ { F C Z S e ( C 0 ) 6 } 2 ( S e z ) ] ( 5 3 ) , o b t a i n e d f r o m h y d r o ( m e t h a n o ) t h e r m a l r e a c t i o n s . I I . E x p e r i m e n t a l S e c t i o n 1 . R e a g e n t s C h e m i e a l s i n t h i s w o r k o t h e r t h a n s o l v e n t s w e r e u s e d a s o b t a i n e d : ( i ) s e l e n i u m p o w d e r , ~ 1 0 0 m e s h , 9 9 . 5 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I ; ( i i ) t e l l u r i u m p o w d e r , ~ 2 0 0 m e s h , 9 9 . 8 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I ; ( i i i ) s o d i u m s t i c k s i n k e r o s e n e , 9 9 % p u r i t y , M a l l i n c k r o d t I n c . , P a r i s , K y . ; ( i v ) i r o n p e n t a c a r b o n y l , F e ( C O ) 5 , S t r e m C h e m i c a l s , I n c . , N e w b u r y p o r t , M A ; ( v ) r u t h e n i u m c a r b o n y l , R u 3 ( C O ) 1 2 , S t r e m C h e m i c a l s , I n c . , N e w b u r y p o r t , M A ; ( v i ) t e t r a p h e n y l p h o s p h o n i u m c h l o r i d e , P h 4 P C 1 , 9 8 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I . D i e t h y l e t h e r ( A . C . S . a n h y d r o u s , C o l u m b u s C h e m i c a l I n d u s t r i e s I n c . , C o l u m b u s , W I ) w a s d i s t i l l e d u n d e r a d r y N 2 b l a n k e t a f t e r b e i n g r e fl u x e d w i t h p o t a s s i u m m e t a l , b e n z o p h e n o n e a n d t r i e t h y l e n e g l y c o l d i m e t h y l e t h e r f o r 1 2 h o u r s [ 1 2 ] . 1 8 1 M e t h a n o l ( G R a n h y d r o u s , E M S c i e n c e I n c . , G i b b s t o w n , N Y ) w a s r e fl u x e d f o r 4 - 5 h w i t h m a g n e s i u m m e t h o x i d e ( p r e p a r e d f r o m d r y m a g n e s i u m t u m i n g s a n d a b s o l u t e m e t h a n o l ) , a n d d i s t i l l e d u n d e r a n i t r o g e n a t m o s p h e r e [ 1 2 ] . 2 . P h y s i c a l M e a s u r e m e n t s S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s , F T - I R , U V / v i s a n d 7 7 S e N M R s p e c t r o s c o p i c s t u d i e s , a n d t h e r m a l g r a v i m e t r i c a n a l y s e s ( T G A ) o f t h e c o m p o u n d s w e r e c a r r i e d o u t a s d e s c r i b e d p r e v i o u s l y [ 1 3 ] . 3 . S y n t h e s e s A l l s y n t h e s e s w e r e c a r r i e d o u t u n d e r a d r y n i t r o g e n a t m o s p h e r e i n a V a c u u m A t m o s p h e r e s D r i - L a b g l o v e b o x . ( i ) . P r e p a r a t i o n o f N a 2 S e 2 a n d N a z T e z T h e s e m a t e r i a l s w e r e p r e p a r e d b y r e a c t i n g s t o i c h i o m e t r i c a m o u n t o f c h a l c o g e n a n d s o d i u m m e t a l i n a r o u t i n e p r o c e d u r e u s e d i n t h i s l a b o r a t o r y [ 1 3 ] . ( i i ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ R u 6 ( T e z ) 7 ( C O ) 1 2 ] ( 5 - 1 ) 6 4 m g ( 0 . 1 m m o l ) R u 3 ( C O ) 1 2 w a s m i x e d w i t h 1 5 0 m g ( 0 . 5 m m o l ) N a z T e z a n d 2 2 0 m g ( 0 . 6 m m o l ) P h 4 P C 1 . T h e r e a c t a n t s w e r e s e a l e d w i t h 0 . 5 m l H 2 0 i n a 2 5 c m l o n g t h i c k - w a l l e d P y r e x t u b e ( ~ 4 m l v o l u m e ) b y f r e e z i n g w i t h l i q u i d N 2 , a n d e v a c u a t e d . T h e t u b e w a s h e a t e d a t 1 1 0 0 C f o r 6 5 h o u r s . W a s h i n g o f t h e r e a c t i o n m i x t u r e w i t h m e t h a n o l a n d d i e t h y l - e t h e r a f f o r d e d b l a c k n e e d l e - l i k e s i n g l e c r y s t a l s o f ( P h 4 P ) 2 [ R u 5 ( T e 2 ) 7 ( C O ) 1 2 ] ( ~ 7 0 m g ) a n d s o m e d a r k b r o w n c r y s t a l l i n e p o w d e r ( ~ 6 0 m g ) . C r y s t a l s s u i t a b l e f o r X - r a y s i n g l e - c r y s t a l a n a l y s i s w e r e h a r v e s t e d b y m e c h a n i c a l s e p a r a t i o n . l a t e r , t h e X - r a y p o w d e r d i f f r a c t i o n ( X R D ) a n d I R s p e c t r o s c o p i c s t u d i e s s h o w e d t h a t t h e d a r k b r o w n p o w d e r i s 1 8 2 i d e n t i c a l t o t h e b l a c k c r y s t a l s ( t o t a l y i e l d o f 7 1 % b a s e d o n R u ) . M i d - I R s p e c t r u m ( o f s o l i d - s t a t e ) : l 9 9 7 ( s ) , 1 9 6 6 ( w ) , 1 9 5 7 ( s h ) a n d 1 9 4 8 ( m ) c m ' l ; F a r I R s p e c t r u m ( o f s o l i d - s t a t e ) : 2 2 8 ( m , b ) , 1 8 8 ( 8 ) , 1 7 5 ( s ) a n d 1 6 4 ( w ) c m ‘ l ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : T e : R u : P = 5 9 : 2 9 : 1 2 . ( i i i ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 0 } 2 ( T e 2 ) ] ( 5 - 2 ) 1 2 0 m g ( 0 . 4 m m o l ) N a z T e 2 a n d 2 2 0 m g ( 0 . 6 m m o l ) P h 4 P C l w e r e t h o r o u g h l y m i x e d a n d l o a d e d i n t o a 2 5 c m l o n g t h i c k - w a l l e d P y r e x t u b e ( 9 m m i n d i a m e t e r ) i n w h i c h 0 . 1 5 m l ( 1 . 1 4 m m o l ) F e ( C O ) 5 h a d a l r e a d y b e e n a d d e d . A f t e r 0 . 5 m l H 2 0 w a s s y r i n g e d i n , t h e t u b e w a s f r o z e n w i t h l i q u i d N 2 , t h e n e v a c u a t e d a n d s e a l e d ( t h e t o t a l v o l u m e i s ~ 4 m l a f t e r s e a l i n g ) . C o n t i n u o u s h e a t i n g o f t h e t u b e a t 1 1 0 0 C f o r 6 0 h r e s u l t e d i n l a r g e p l a t e l i k e b l a c k c r y s t a l s . S u c c e s s i v e w a s h i n g o f t h e p r o d u c t w i t h M e O H a n d e t h e r a f f o r d e d 1 0 0 m g a n a l y t i c a l l y p u r e s i n g l e c r y s t a l s ( 6 7 % y i e l d b a s e d o n N a z T e z ) . M i d - [ R s p e c t r u m ( o f s o l i d - s t a t e ) : 2 0 1 3 ( s , m u l t i p l e ) , 1 9 6 8 ( s ) , 1 9 5 1 ( s h ) , 1 9 4 0 ( s h ) , 1 9 1 2 ( m ) a n d 1 9 0 0 ( m ) c m ' 1 ; F a r I R s p e c t r u m ( o f s o l i d - s t a t e ) : 2 0 9 ( w , b a n d t r i p l e t ) , 1 5 1 ( m ) a n d 1 4 0 ( m ) c m ‘ l ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : T e : F e : P = 1 4 : 3 6 : 5 0 . ( i v ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ { F e 2 8 e ( C O ) 6 } 2 ( S e 2 ) ] ( 5 . 3 ) T h i s c o m p o u n d i s p r e p a r e d i n a s i m i l a r m a n n e r a s a b o v e , e x c e p t t h a t t h e s e a l e d t u b e c o n t a i n e d 0 . 1 5 m l ( 1 . 1 4 m m o l ) F e ( C O ) 5 , 8 2 m g ( 0 . 4 m m o l ) N a Z S e z , 2 2 0 ( 0 . 6 m m o l ) P h 4 P C 1 a n d 0 . 8 m l M e O H . T h e r e a c t i o n w a s c a r r i e d o u t a t 8 0 ° C f o r 9 6 h . D u r i n g t h i s t i m e , t h e t u b e h a d b e e n t a k e n o u t a n d s h a k e n t h r e e t i m e s i n a ~ 2 4 h i n t e r v a l t o h o m o g e n i z e t h e t u b e c o n t e n t . 1 1 7 m g n e e d l e - l i k e b l a c k c r y s t a l s w e r e o b t a i n e d ( 7 5 % y i e l d b a s e d o n N 2 2 S e 2 ) . M i d - I R s p e c t r u m ( o f s o l i d - s t a t e ) : 2 0 2 0 ( m ) , 1 9 8 4 ( s ) a n d l 9 3 9 ( s ) a n d 1 9 1 7 ( s h ) c m 4 ; F a r I R s p e c t r u m ( o f s o l i d - s t a t e ) : 2 4 3 ( m ) , 2 2 4 ( w ) 2 0 6 ( w ) a n d 1 9 8 ( w , d o u b l e t ) c m ' l ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : S e : F e : P = 3 1 : 4 4 : 2 5 ; 7 7 S e N M R ( i n D M F ) : 4 5 0 a n d - 3 2 p p m . f a t l a g 1 8 3 4 . X - r a y D i f f r a c t i o n a n d C r y s t a l l o g r a p h i c S t u d i e s T h e s i n g l e c r y s t a l X - r a y d i f fi a c t i o n s t u d i e s w e r e p e r f o r m e d b y u s i n g e i t h e r a N i c o l e t P 3 f o u r - c i r c l e d i fi a c t o m e t e r o r a R i g a k u a u t o m a t e d A F C 6 S s i n g l e c r y s t a l d i f f r a c t o m e t e r . T h e c r y s t a l l o g r a p h i c d a t a s e t o f ( 5 - 1 ) w a s c o l l e c t e d o n t h e N i c o l e t P 3 d i f f r a c t o m e t e r u s i n g a 0 - 2 0 s c a n m o d e a n d M o K 0 1 r a d i a t i o n . T h e c r y s t a l l o g r a p h i c d a t a s e t s o f ( 5 - 2 ) a n d ( 5 - 3 ) w e r e c o l l e c t e d o n a R i g a k u A F C 6 S f o u r - c i r c l e d i f f r a c t o m e t e r u s i n g c t r - 2 0 s c a n t e c h n i q u e s a n d M o K 0 1 r a d i a t i o n . A c r y s t a l o f ( 5 - 2 ) w a s m o u n t e d i n a g l a s s c a p i l l a r y a n d s e a l e d . C r y s t a l s o f ( 5 . 1 ) a n d ( 5 . 3 ) w e r e e a c h a f fi x e d t o t h e t i p o f a g l a s s fi b e r , a n d t h e i n t e n s i t y d a t a w e r e m e a s u r e d a t l o w t e m p e r a t u r e s . T h e s t a b i l i t y o f t h e e x p e r i m e n t a l s e t u p a n d c r y s t a l i n t e g r i t y f o r e a c h d a t a c o l l e c t i o n w a s m o n i t o r e d b y m e a s u r i n g t h r e e r e p r e s e n t a t i v e r e fl e c t i o n s p e r i o d i c a l l y ( e v e r y 1 5 0 ) . N o s t a t i s t i c a l l y s i g n i fi c a n t c h a n g e o f i n t e n s i t i e s w a s d e t e c t e d f o r t h e s t a n d a r d s . E m p i r i c a l a b s o r p t i o n c o r r e c t i o n s b a s e d o n t p s c a n s o f t h r e e s t r o n g r e fl e c t i o n s w i t h x ~ 9 0 ° w e r e a p p l i e d t o e a c h d a t a s e t . T h e s t r u c t u r e s w e r e s o l v e d w i t h d i r e c t m e t h o d s a n d r e fi n e d w i t h f u l l - m a t r i x l e a s t s q u a r e s t e c h n i q u e s . D I F A B S c o r r e c t i o n s , a f t e r i s o t r o p i c r e fi n e m e n t o f a l l a t o m s , w e r e t h e n a p p l i e d [ l 4 ] . T h e c a l c u l a t i o n s w e r e p e r f o r m e d o n a V A X s t a t i o n 3 1 0 0 c o m p u t e r u s i n g t h e T E X S A N c r y s t a l l o g r a p h i c s o f t w a r e p a c k a g e o f M o l e c u l a r S t r u c t u r e C o r p o r a t i o n [ 1 5 ] . T a b l e 5 1 g i v e s c r y s t a l d a t a a n d d e t a i l s f o r s t r u c t u r e a n a l y s i s o f t h e t h r e e c o m p o u n d s . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d e i t h e r i s o t r o p i c a l l y o r a n i s o t r o p i c a l l y . T h e h y d r o g e n p o s i t i o n s w e r e c a l c u l a t e d b u t n o t r e fi n e d . T h e fi n a l c o o r d i n a t e s a n d a v e r a g e t e m p e r a t u r e f a c t o r s ( B 1 3 0 ) o f t h e a t o m s i n ( 5 - 1 ) , ( 5 - 2 ) a n d ( 5 - 3 ) a r e g i v e n i n T a b l e s 5 2 5 0 4 , r e s p e c t i v e l y . 1 8 4 T a b l e 5 1 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f ( P h 4 P ) 2 [ R u 5 ( T e 2 ) 7 ( C O ) 1 2 ] ( 5 ° 1 ) , ( P h 4 P ) 2 [ { F e 4 T e 4 ( C 0 ) 1 0 } 2 ( T 6 2 ) ] ( 5 ' 2 ) a n d ( P h 4 P ) 2 [ { F C Z S e ( C 0 ) 6 } 2 ( S B Z ) ] ( 5 3 ) c o m p o u n d f o r m u l a a , A b , A c , A 0 1 , d e g 1 3 . d e g v . d e g z ; v , A 3 s p a c e g r o u p D c a l c , 8 / 0 m 3 1 1 ( M o K a ) , c m ' 1 c r y s t s i z e , m m 2 0 1 1 , ” , d e g T e m p e r a t u r e ( ° C ) n o . o f d a t a c o l l c d n o . o f d a t a u s e d ( F 0 2 > 3 0 ' ( F o 2 ) ) m i n , m a x a b s c o r n o . o f v a r i a b l e s n o . o f a t o m s p e r a s y m u n i t ( i n c l u d i n g H ) fi n a l R / R w , % 5 - l C 6 0 H 4 0 0 1 2 P 2 R U 6 T 6 1 4 1 3 . 4 9 2 ( 3 ) 1 3 . 4 7 4 ( 4 ) 1 4 . 4 3 8 ( 3 ) 1 1 4 7 7 ( 2 ) 1 1 6 5 0 ( 2 ) 9 0 7 4 ( 2 ) 2 , 2 0 6 7 ( 3 ) P — 1 ( # 2 ) 2 . 7 4 5 9 . 9 0 . 0 7 x 0 . 1 0 x 0 . 2 1 4 5 . 0 - 9 4 5 7 4 3 4 3 6 8 0 . 7 8 , 1 . 2 7 4 2 4 6 7 5 . 2 / 5 . 8 5 - 2 C 6 8 H 4 0 0 2 0 P 2 F 6 8 T e 1 0 1 4 . 9 3 0 ( 4 ) 2 4 . 0 7 0 ( 3 ) 1 3 . 0 4 5 ( 2 ) 9 3 . 1 9 ( 1 ) 1 1 3 . 3 6 ( 1 ) 7 6 . 6 1 ( 2 ) 2 , 4 1 8 3 ( 3 ) P - 1 ( # 2 ) 2 . 3 5 4 8 . 8 0 . 1 3 x 0 . 1 9 x 0 . 3 7 5 0 . 0 2 3 1 5 3 3 2 8 7 5 7 0 . 7 6 , 1 . 1 1 9 7 3 1 4 8 4 . 3 / 5 . 7 5 - 3 C 6 0 H 4 0 P 2 0 1 2 F B 4 S C 4 1 0 . 5 6 1 ( 6 ) 1 4 . 0 2 1 ( 5 ) 2 0 . 4 6 ( 1 ) 9 0 . 0 0 9 1 . 8 9 ( 4 ) 9 0 . 0 0 4 , 3 0 2 8 ( 2 ) P 2 1 / n ( # 1 4 ) 1 . 7 1 3 4 . 3 0 . 0 9 x 0 . 1 1 x 0 . 2 0 4 5 . 0 - 1 0 0 4 4 2 2 1 2 7 3 0 . 7 9 , 1 . 1 7 2 2 0 6 1 6 . 0 / 7 . 0 T a b l e 5 - 2 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r ( P h 4 P ) 2 [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 ] ( 5 - 1 ) 1 8 5 ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B 1 , , h A 2 T 6 1 1 . 1 5 6 5 ( 1 ) 0 . 7 9 1 0 6 ( 9 ) 1 . 2 3 2 1 ( 1 ) 1 . 6 6 ( 3 ) T 6 2 1 . 3 4 1 8 ( 1 ) 0 . 7 4 3 8 ( 1 ) 1 . 2 0 1 8 ( 1 ) 1 9 8 ( 4 ) T 6 3 1 . 2 6 7 6 ( 1 ) 0 . 5 3 6 2 5 ( 9 ) 1 . 2 5 6 7 2 ( 9 ) 1 . 7 3 ( 3 ) T 6 4 0 . 8 1 0 9 ( 1 ) 0 . 6 8 2 9 ( 1 ) 0 . 8 0 2 3 ( 1 ) 2 . 2 1 ( 4 ) T 6 5 0 . 8 2 8 2 ( 1 ) 0 . 7 0 2 7 4 ( 9 ) 1 . 0 5 9 5 ( 1 ) 1 . 7 8 ( 3 ) T 6 6 0 . 9 3 9 7 ( 1 ) 0 . 7 4 1 0 ( 1 ) 1 . 2 8 9 2 ( 1 ) 2 . 0 0 ( 4 ) T 6 7 0 . 9 5 8 8 ( 1 ) 0 . 4 6 3 8 0 ( 9 ) 1 . 0 5 3 7 ( 1 ) 1 . 5 1 ( 3 ) R u l 1 . 1 0 0 1 ( 1 ) 0 . 6 2 8 3 ( 1 ) 1 . 2 7 9 5 ( 1 ) 1 . 6 0 ( 4 ) R u 2 1 . 2 6 0 0 ( 1 ) 0 . 5 2 0 3 ( 1 ) 1 . 0 5 8 4 ( 1 ) 1 . 6 6 ( 4 ) R u 3 0 . 9 9 6 0 ( 1 ) 0 . 7 4 4 4 ( 1 ) 1 . 0 1 4 1 ( 1 ) 1 . 6 8 ( 4 ) P 0 . 2 4 6 3 ( 4 ) 0 . 2 2 5 3 ( 4 ) 0 . 5 0 1 6 ( 4 ) 1 . 8 ( 1 ) ( ) 1 1 . 0 1 9 ( 1 ) 0 . 4 8 3 ( 1 ) 1 . 3 5 5 ( 1 ) 3 . 5 ( 5 ) ( ) 2 1 . 2 6 8 ( 1 ) 0 . 7 9 6 ( 1 ) 1 . 5 3 4 ( 1 ) 3 . 2 ( 4 ) ( B 1 . 2 9 0 ( 1 ) 0 . 5 5 1 ( 1 ) 0 . 8 7 5 ( 1 ) 4 . 0 ( 5 ) ( ) 4 1 . 4 8 5 ( 1 ) 0 . 4 6 7 ( 1 ) 1 . 1 5 1 ( 1 ) 3 . 2 ( 5 ) 0 5 0 . 9 5 6 ( 1 ) 0 . 9 8 0 ( 1 ) 1 . 0 8 4 ( 1 ) 3 . 3 ( 5 ) 0 6 1 . 1 6 0 ( 1 ) 0 . 7 9 9 ( 1 ) 0 . 9 4 4 ( 1 ) 3 . 8 ( 5 ) c 1 0 . 0 9 5 ( 2 ) 0 . 1 8 1 ( 1 ) 0 . 4 2 2 ( 1 ) 2 . 3 ( 6 ) C 2 0 . 0 3 9 ( 1 ) 0 . 0 8 8 ( 1 ) 0 . 4 1 7 ( 2 ) 2 . 2 ( 6 ) C 3 - 0 . 0 7 8 ( 2 ) 0 . 0 5 5 ( 2 ) 0 . 3 5 5 ( 2 ) 3 . 1 ( 7 ) C 4 - 0 . 1 4 0 ( 1 ) 0 . 1 0 7 ( 2 ) 0 . 2 9 8 ( 2 ) 2 . 7 ( 6 ) C 5 - 0 . 0 8 8 ( 2 ) 0 . 2 0 1 ( 2 ) 0 . 3 0 1 ( 2 ) 3 . 5 ( 7 ) C 6 0 . 0 3 1 ( 2 ) 0 . 2 3 5 ( 2 ) 0 . 3 6 4 ( 2 ) 2 . 7 ( 6 ) C 7 0 . 3 0 7 ( 1 ) 0 . 1 9 9 ( 1 ) 0 . 6 2 6 ( 1 ) 1 . 8 ( 5 ) C 8 0 . 3 4 9 ( 1 ) 0 . 2 8 9 ( 1 ) 0 . 7 3 8 ( 1 ) 2 . 2 ( 6 ) C 9 0 . 3 9 6 ( 2 ) 0 . 2 6 9 ( 2 ) 0 . 8 3 3 ( 2 ) 2 . 6 ( 6 ) C 1 0 0 . 3 9 4 ( 2 ) 0 . 1 5 9 ( 2 ) 0 . 8 1 6 ( 2 ) 2 . 7 ( 7 ) C 1 1 0 . 3 5 0 ( 2 ) 0 . 0 7 0 ( 1 ) 0 . 7 0 1 ( 2 ) 2 . 6 ( 6 ) C 1 2 0 . 3 1 0 ( 1 ) 0 . 0 9 0 ( 1 ) 0 . 6 1 2 ( 1 ) 2 . 2 ( 6 ) C 1 3 0 . 2 8 8 ( 1 ) 0 . 3 7 2 ( 1 ) 0 . 5 5 1 ( 1 L 2 . 2 ( 6 ) 1 8 6 T a b l e 5 - 2 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 1 4 0 . 2 3 1 ( 2 ) 0 . 4 4 6 ( 2 ) 0 . 5 9 9 ( 2 ) 2 . 8 ( 6 ) C 1 5 0 . 2 6 4 ( 2 ) 0 . 5 5 6 ( 2 ) 0 . 6 3 2 ( 2 ) 4 . 2 ( 8 ) C 1 6 0 . 3 5 5 ( 2 ) 0 . 6 0 1 ( 2 ) 0 . 6 2 8 ( 2 ) 4 . 2 ( 8 ) C 1 7 0 . 4 0 9 ( 2 ) 0 . 5 2 9 ( 2 ) 0 . 5 8 3 ( 2 ) 4 . 2 ( 8 ) C 1 8 0 . 3 7 6 ( 2 ) 0 . 4 1 7 ( 2 ) 0 . 5 4 4 ( 2 ) 3 . 1 ( 7 ) C 1 9 0 . 3 0 2 ( 1 ) 0 . 1 4 8 ( 1 ) 0 . 4 0 7 ( 1 ) 2 . 0 ( 5 ) C 2 0 0 . 4 1 2 ( 2 ) 0 . 1 3 6 ( 2 ) 0 . 4 5 5 ( 2 ) 3 . 5 ( 7 ) C 2 1 0 . 4 5 5 ( 2 ) 0 . 0 8 0 ( 2 ) 0 . 3 8 5 ( 2 ) 3 . 1 ( 7 ) C 2 2 0 . 3 8 8 ( 2 ) 0 . 0 3 7 ( 2 ) 0 . 2 6 2 ( 2 ) 3 . 5 ( 8 ) C 2 3 0 . 2 7 7 ( 2 ) 0 . 0 4 7 ( 2 ) 0 . 2 1 3 ( 2 ) 2 . 9 ( 6 ) C 2 4 0 . 2 3 4 ( 2 ) 0 . 1 0 4 ( 1 ) 0 . 2 8 7 ( 2 ) 2 . 2 ( 6 ) C 2 5 1 . 0 5 4 ( 2 ) 0 . 5 3 2 ( 1 ) 1 . 3 2 8 ( 1 ) 2 . 3 ( 6 ) C 2 6 1 . 2 0 4 ( 2 ) 0 . 7 3 4 ( 2 ) 1 . 4 3 6 ( 2 ) 2 . 6 ( 6 ) C 2 7 1 . 2 7 5 ( 2 ) 0 . 5 3 6 ( 1 ) 0 . 9 3 9 ( 2 ) 2 . 6 ( 6 ) C 2 8 1 . 4 0 5 ( 2 ) 0 . 4 9 0 ( 1 ) 1 . 1 2 3 ( 2 ) 2 . 4 ( 6 ) C 2 9 0 . 9 7 1 ( 1 ) 0 . 8 9 4 ( 2 ) 1 . 0 6 2 ( 1 ) 2 . 6 ( 7 ) C 3 0 1 . 0 9 9 ( 2 ) 0 . 7 7 6 ( 1 ) 0 . 9 7 0 ( 2 ) 2 . 5 ( 6 ) a - B e q i s d e fi n e d a s 4 / 3 l a z f i l 1 + b 2 6 2 2 + 9 2 6 3 3 + a b ( c o s v ) 1 3 1 2 + a C ( C O S B ) 5 1 3 + b C ( c o s a ) & 2 3 ] . T a b l e 5 - 3 . P o s i t i o n a l P a r a m e t e r s a n d B a , q V a l u e s “ f o r ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 0 } 2 ( T e 2 ) ] 1 8 7 ( 5 2 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y 2 B a n A 2 T 6 1 0 . 8 3 8 8 2 ( 7 ) 0 . 1 4 5 1 5 ( 5 ) 0 . 6 9 3 2 4 ( 8 ) 3 . 4 1 ( 5 ) T 6 2 1 . 0 8 0 2 7 ( 7 ) 0 . 1 2 7 7 7 ( 5 ) 0 . 8 8 3 0 6 ( 8 ) 3 . 7 4 ( 5 ) T 6 3 0 . 9 8 9 2 1 ( 8 ) 0 . 2 2 0 1 6 ( 5 ) 0 . 6 4 4 9 1 ( 8 ) 4 . 0 4 ( 6 ) T 6 4 0 . 9 2 2 1 9 ( 7 ) 0 . 2 6 1 3 9 ( 5 ) 0 . 8 6 2 2 2 ( 8 ) 3 . 4 5 ( 5 ) T 6 5 0 . 5 0 6 5 7 ( 7 ) 0 . 2 9 6 5 8 ( 4 ) 0 . 8 5 3 6 3 ( 8 ) 3 . 0 8 ( 5 ) T 6 6 0 . 5 9 4 1 9 ( 7 ) 0 . 3 1 4 4 4 ( 5 ) 1 . 1 3 7 7 9 ( 8 ) 3 3 6 ( 5 ) T 6 7 0 . 5 5 0 7 1 ( 7 ) 0 . 4 2 6 7 6 ( 4 ) 0 . 9 5 4 0 3 ( 7 ) 2 9 4 ( 4 ) T 6 8 0 . 7 5 4 5 9 ( 7 ) 0 . 3 1 6 4 0 ( 4 ) 1 . 0 0 9 3 7 ( 7 ) 2 9 0 ( 4 ) T 6 9 0 . 6 5 6 8 7 ( 7 ) 0 . 2 7 3 5 4 ( 4 ) 0 . 7 0 3 7 6 ( 7 ) 3 . 0 1 ( 5 ) T 6 1 0 0 . 7 2 1 8 8 ( 7 ) 0 . 1 8 6 4 0 ( 4 ) 0 . 8 7 1 2 6 ( 8 ) 3 . 0 3 ( 5 ) F 6 1 0 . 8 1 4 3 ( 2 ) 0 . 2 5 5 1 ( 1 ) 0 . 6 5 2 3 ( 2 ) 3 . 5 ( 1 ) F 6 2 0 . 9 1 3 0 ( 2 ) 0 . 1 5 9 4 ( 1 ) 0 . 9 0 9 3 ( 2 ) 3 . 2 ( 1 ) F 6 3 1 . 0 0 9 2 ( 2 ) 0 . 1 0 9 9 ( 1 ) 0 . 6 6 6 8 ( 2 ) 4 . 1 ( 1 ) F 6 4 1 . 1 0 2 7 ( 2 ) 0 . 2 3 0 0 ( 1 ) 0 . 8 5 6 1 ( 2 ) 4 . 2 ( 1 ) F 6 5 0 . 6 1 2 6 ( 1 ) 0 . 3 6 0 6 8 ( 9 ) 0 . 8 1 9 9 ( 2 ) 2 . 8 ( 1 ) F 6 6 0 . 6 6 1 2 ( 2 ) 0 . 2 3 8 9 ( 1 ) 1 . 0 1 9 6 ( 2 ) 3 . 2 ( 1 ) F 6 7 0 . 4 3 0 7 ( 1 ) 0 . 3 6 7 8 ( 1 ) 0 . 9 7 3 8 ( 2 ) 3 . 3 ( 1 ) F 6 8 0 . 6 9 9 4 ( 2 ) 0 . 3 8 9 1 ( 1 ) 1 . 1 4 4 3 ( 2 ) 3 . 4 ( 1 ) P l 0 . 8 1 3 5 ( 3 ) 0 . 5 9 3 7 ( 2 ) 0 . 6 6 6 2 ( 3 ) 3 . 6 ( 2 ) P 2 0 . 4 0 5 2 ( 4 ) 0 . 0 0 9 9 ( 2 ) 0 . 2 3 5 9 ( 4 ) 4 . 6 ( 2 ) ( ) 1 0 . 8 0 0 ( 1 ) 0 . 3 7 3 9 ( 6 ) 0 . 6 1 2 ( 1 ) 8 ( 1 ) ( ) 2 0 . 7 0 5 ( 1 ) 0 . 2 3 8 9 ( 7 ) 0 . 4 1 5 ( 1 ) 9 ( 1 ) 0 3 0 . 9 1 2 ( 1 ) 0 . 0 4 2 6 ( 5 ) 0 . 9 6 7 ( 1 ) 7 . 4 ( 8 ) ( ) 4 1 . 0 0 0 ( 1 ) 0 . 1 9 1 5 ( 6 ) 1 . 1 4 0 ( 1 ) 8 ( 1 ) ( ) 5 1 . 0 2 9 ( 1 ) - 0 . 0 0 9 6 ( 6 ) 0 . 7 2 7 ( 1 ) 8 ( 1 ) 0 6 0 . 8 9 0 ( 1 ) 0 . 1 0 3 8 ( 7 ) 0 . 4 2 6 ( 1 ) 9 ( 1 ) ( ) 7 1 . 2 0 4 ( 1 ) 0 . 0 9 2 5 ( 6 ) 0 . 6 4 8 ( 1 ) 6 . 4 ( 8 ) O 8 1 . 1 0 7 ( 1 ) 0 . 3 4 4 9 ( 6 ) 0 . 7 9 8 ( 1 ) 8 ( 1 ) 0 9 1 . 1 9 3 ( 1 ) 0 . 2 3 9 1 ( 7 ) 1 . 1 0 1 ( 1 ) 9 ( 1 ) 0 1 0 1 . 2 9 1 ( 1 ) 0 . 1 8 1 5 ( 8 ) 0 . 8 3 1 ( 1 ) 1 0 ( 1 ) 1 8 8 T a b l e 5 - 3 . ( c o n t ' d ) a t o m x y z B e a , A 2 0 1 1 0 . 7 4 3 ( 1 ) 0 . 4 3 0 0 ( 5 ) 0 . 8 0 2 ( 1 ) 6 . 2 ( 8 ) 0 1 2 0 . 4 3 4 1 ( 8 ) 0 . 4 1 3 5 ( 6 ) 0 . 6 2 8 5 ( 8 ) 6 . 6 ( 7 ) 0 1 3 0 . 5 3 5 ( 1 ) 0 . 1 6 2 6 ( 6 ) 1 . 0 1 7 ( 1 ) 6 9 ( 9 ) 0 1 4 0 . 8 3 2 ( 1 ) 0 . 1 7 9 3 ( 6 ) 1 . 2 1 3 ( 1 ) 8 ( 1 ) 0 1 5 0 . 3 4 0 ( 1 ) 0 . 2 8 0 5 ( 6 ) 1 . 0 1 9 ( 1 ) 8 ( 1 ) 0 1 6 0 . 2 7 0 6 ( 9 ) 0 . 4 1 7 6 ( 5 ) 0 . 7 6 2 ( 1 ) 6 . 5 ( 7 ) 0 1 7 0 . 3 7 4 3 ( 8 ) 0 . 4 5 3 2 ( 5 ) 1 . 1 2 2 ( 1 ) 5 . 3 ( 7 ) 0 1 8 0 . 8 0 3 1 ( 9 ) 0 . 4 7 1 3 ( 5 ) 1 . 1 1 3 ( 1 ) 6 . 0 ( 7 ) 0 1 9 0 . 8 7 1 ( 1 ) 0 . 3 2 4 1 ( 6 ) 1 . 3 3 3 ( 1 ) 8 . 1 ( 9 ) 0 2 0 0 . 6 0 6 7 ( 9 ) 0 . 4 6 5 6 ( 5 ) 1 . 2 8 0 ( 1 ) 6 . 0 ( 8 ) C 1 0 . 8 6 7 ( 1 ) 0 . 5 3 1 3 ( 6 ) 0 . 6 1 3 ( 1 ) 3 . 7 ( 8 ) C 1 ' 0 . 8 0 4 ( 1 ) 0 . 3 2 8 4 ( 8 ) 0 . 6 2 9 ( 2 ) 6 ( 1 ) C 2 0 . 9 6 4 ( 1 ) 0 . 4 9 9 1 ( 8 ) 0 . 6 6 9 ( 1 ) 4 . 6 ( 9 ) C 2 ' 0 . 7 4 9 ( 1 ) 0 . 2 4 6 7 ( 9 ) 0 . 5 0 9 ( 1 ) 6 ( 1 ) ( : 3 1 . 0 0 7 ( 1 ) 0 . 4 5 4 8 ( 6 ) 0 . 6 2 6 ( 1 ) 4 . 4 ( 8 ) C 3 ' 0 . 9 1 5 ( 1 ) 0 . 0 8 6 9 ( 8 ) 0 . 9 4 4 ( 1 ) 5 ( 1 ) C 4 0 . 9 5 2 ( 1 ) 0 . 4 3 4 3 ( 6 ) 0 . 5 2 3 ( 1 ) 4 . 6 ( 8 ) C 4 ' 0 . 9 6 6 ( 1 ) 0 . 1 7 6 7 ( 7 ) 1 . 0 4 9 ( 1 ) 3 . 9 ( 8 ) C 5 0 . 8 5 2 ( 1 ) 0 . 4 6 4 4 ( 8 ) 0 . 4 6 5 ( 1 ) 5 ( 1 ) C 5 ' 1 . 0 1 8 ( 1 ) 0 . 0 3 5 ( 1 ) 0 . 7 0 0 ( 2 ) 5 ( 1 ) C 6 0 . 8 1 4 ( 1 ) 0 . 5 1 1 0 ( 7 ) 0 . 5 0 9 ( 1 ) 4 . 5 ( 9 ) C 6 ' 0 . 9 3 7 ( 1 ) 0 . 1 0 5 7 ( 8 ) 0 . 5 2 0 ( 2 ) 6 ( 1 ) C 7 0 . 8 2 2 ( 1 ) 0 . 6 5 9 0 ( 8 ) 0 . 6 0 5 ( 1 ) 5 ( 1 ) C 7 ' 1 . 1 3 0 ( 1 ) 0 . 0 9 9 6 ( 8 ) 0 . 6 5 9 ( 1 ) 5 ( 1 ) C 8 0 . 8 3 9 ( 2 ) 0 . 7 0 3 0 ( 7 ) 0 . 6 6 3 ( 1 ) 7 ( 1 ) C 8 ' 1 . 1 0 2 ( 1 ) 0 . 2 9 8 0 ( 9 ) 0 . 8 1 8 ( 2 ) 6 ( 1 ) C 9 0 . 8 4 4 ( 2 ) 0 . 7 5 4 ( 1 ) 0 . 6 1 5 ( 2 ) 9 ( 2 ) C 9 ' 1 . 1 5 8 ( 1 ) 0 . 2 3 6 2 ( 8 ) 1 . 0 0 6 ( 2 ) 5 ( 1 ) C 1 0 0 . 8 2 8 ( 2 ) 0 . 7 5 1 ( 1 ) 0 . 5 0 5 ( 2 ) 9 ( 2 ) C 1 0 ' 1 . 2 1 7 ( 1 ) 0 . 1 9 8 6 ( 7 ) 0 . 8 3 9 ( 1 ) 5 ( 1 ) C 1 1 0 . 8 0 9 ( 2 ) 0 . 7 0 7 0 ( 7 ) 0 . 4 4 3 ( 2 ) 6 ( 1 ) 1 8 9 T a b l e 5 - 3 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 1 1 ' 0 . 6 9 1 ( 1 ) 0 . 4 0 2 5 ( 7 ) 0 . 8 0 8 ( 1 ) 3 . 7 ( 8 ) C 1 2 0 . 8 0 4 ( 2 ) 0 . 6 5 7 ( 1 ) 0 . 4 9 1 ( 1 ) 7 ( 1 ) C 1 2 ' 0 . 5 0 6 ( 1 ) 0 . 3 9 0 6 ( 8 ) 0 . 7 0 4 ( 1 ) 4 . 5 ( 9 ) C 1 3 0 . 6 8 5 ( 1 ) 0 . 5 9 7 8 ( 7 ) 0 . 6 3 5 ( 1 ) 3 . 8 ( 8 ) C 1 3 ' 0 . 5 8 5 ( 1 ) 0 . 1 9 3 1 ( 7 ) 1 . 0 1 7 ( 1 ) 5 ( 1 ) C 1 4 0 . 6 5 1 ( 1 ) 0 . 5 4 8 ( 1 ) 0 . 6 3 1 ( 1 ) 6 ( 1 ) C 1 4 ' 0 . 7 6 5 ( 1 ) 0 . 2 0 3 9 ( 7 ) 1 . 1 3 7 ( 1 ) 4 . 2 ( 8 ) C 1 5 0 . 5 5 0 ( 1 ) 0 . 5 5 2 ( 1 ) 0 . 6 1 1 ( 1 ) 6 ( 1 ) C 1 5 ' 0 . 3 7 1 ( 1 ) 0 . 3 1 6 4 ( 8 ) 0 . 9 9 6 ( 1 ) 5 ( 1 ) C 1 6 0 . 4 8 7 ( 1 ) 0 . 6 1 0 ( 1 ) 0 . 5 9 7 ( 2 ) 9 ( 2 ) C 1 6 ' 0 . 3 3 4 ( 1 ) 0 . 3 9 8 2 ( 7 ) 0 . 8 4 5 ( 1 ) 4 . 0 ( 8 ) C 1 7 0 . 5 2 2 ( 2 ) 0 . 6 4 9 ( 1 ) 0 . 5 9 7 ( 2 ) 9 ( 2 ) ( 2 1 7 ' 0 . 4 0 0 ( 1 ) 0 . 4 1 7 0 ( 8 ) 1 . 0 6 6 ( 1 ) 4 ( 1 ) C 1 8 0 . 6 2 0 ( 1 ) 0 . 6 5 0 0 ( 8 ) 0 . 6 2 0 ( 1 ) 6 ( 1 ) C 1 8 ' 0 . 7 6 2 ( 1 ) 0 . 4 4 0 7 ( 7 ) 1 . 1 2 4 ( 1 ) 3 . 8 ( 8 ) C 1 9 0 . 8 8 3 ( 1 ) 0 . 5 9 2 8 ( 6 ) 0 . 8 1 6 ( 1 ) 3 . 6 ( 7 ) C 1 9 ' 0 . 8 0 2 ( 1 ) 0 . 3 4 7 6 ( 8 ) 1 . 2 5 8 ( 1 ) 5 ( 1 ) C 2 0 0 . 9 7 4 ( 1 ) 0 . 6 0 5 0 ( 7 ) 0 . 8 6 1 ( 1 ) 4 . 4 ( 9 ) C 2 0 ' 0 . 6 4 0 ( 1 ) 0 . 4 3 8 3 ( 7 ) 1 . 2 2 5 ( 1 ) 4 . 2 ( 9 ) C 2 1 1 . 0 2 6 ( 1 ) 0 . 5 9 9 5 ( 7 ) 0 . 9 7 8 ( 1 ) 5 ( 1 ) C 2 2 0 . 9 8 9 ( 1 ) 0 . 5 8 2 1 ( 8 ) 1 . 0 4 6 ( 1 ) 5 ( 1 ) C 2 3 0 . 9 0 0 ( 1 ) 0 . 5 6 6 9 ( 8 ) 0 . 9 9 9 ( 1 ) 5 ( 1 ) C 2 4 0 . 8 4 4 ( 1 ) 0 . 5 7 3 3 ( 7 ) 0 . 8 8 6 ( 1 ) 4 . 1 ( 9 ) C 2 5 0 . 3 0 4 ( 1 ) 0 . 0 4 5 3 ( 6 ) 0 . 2 7 3 ( 1 ) 3 . 7 ( 7 ) C 2 6 0 . 3 2 7 ( 1 ) 0 . 0 7 0 8 ( 8 ) 0 . 3 7 7 ( 1 ) 5 ( 1 ) C 2 7 0 . 2 4 8 ( 2 ) 0 . 0 9 2 8 ( 8 ) 0 . 4 1 1 ( 2 ) 6 ( 1 ) C 2 8 0 . 1 5 2 ( 2 ) 0 . 0 8 9 4 ( 9 ) 0 . 3 4 4 ( 2 ) 6 ( 1 ) C 2 9 0 . 1 3 1 ( 1 ) 0 . 0 6 6 7 ( 8 ) 0 . 2 3 9 ( 2 ) 6 ( 1 ) C 3 0 0 . 2 0 7 ( 1 ) 0 . 0 4 3 5 ( 9 ) 0 . 2 0 4 ( 1 ) 6 ( 1 ) C 3 1 0 . 4 5 6 ( 1 ) - 0 . 0 6 1 2 ( 7 ) 0 . 3 0 1 ( 1 ) 4 . 0 ( 8 ) C 3 2 0 . 4 2 5 ( 1 ) 0 . 0 7 7 3 ( 8 ) 0 . 3 7 9 ( 1 ) 5 ( 1 ) 1 9 0 T a b l e 5 - 3 . ( c o n t ' d ) a t o m x y z B 6 1 1 , A 2 C 3 3 0 . 4 6 3 ( 1 ) - 0 . 1 3 5 9 ( 9 ) 0 . 4 2 4 ( 1 ) 6 ( 1 ) C 3 4 0 . 5 3 2 ( 1 ) - 0 . 1 7 0 9 ( 8 ) 0 . 3 9 1 ( 1 ) 5 ( 1 ) C 3 5 0 . 5 6 3 ( 1 ) - 0 . 1 5 4 ( 1 ) 0 . 3 1 6 ( 2 ) 6 ( 1 ) C 3 6 0 . 5 2 6 ( 1 ) - 0 . 0 9 7 3 ( 9 ) 0 . 2 7 0 ( 2 ) 6 ( 1 ) C 3 7 0 . 3 6 4 ( 1 ) 0 . 0 0 1 3 ( 9 ) 0 . 0 8 8 ( 1 ) 5 ( 1 ) C 3 8 0 . 3 0 8 ( 2 ) — 0 . 0 3 8 8 ( 8 ) 0 . 0 4 2 ( 2 ) 6 ( 1 ) C 3 9 0 . 2 7 2 ( 1 ) - 0 . 0 4 4 1 ( 8 ) 0 . 0 7 1 ( 1 ) 6 ( 1 ) C 4 0 0 . 2 8 9 ( 2 ) - 0 . 0 1 3 4 ( 9 ) - 0 . 1 4 1 ( 1 ) 6 ( 1 ) C 4 1 0 . 3 4 3 ( 1 ) 0 . 0 2 9 ( 1 ) - 0 . 0 9 5 ( 2 ) 7 ( 1 ) C 4 2 0 . 3 8 1 ( 1 ) 0 . 0 3 6 1 ( 9 ) 0 . 0 2 0 ( 2 ) 6 ( 1 ) C 4 3 0 . 5 0 0 ( 2 ) 0 . 0 5 2 2 ( 8 ) 0 . 2 8 1 ( 1 ) 5 ( 1 ) C 4 4 0 . 4 6 8 ( 2 ) 0 . 1 0 8 2 ( 8 ) 0 . 2 5 0 ( 2 ) 6 ( 1 ) C 4 5 0 . 5 3 9 ( 2 ) 0 . 1 4 3 ( 1 ) 0 . 2 7 9 ( 2 ) 9 ( 2 ) C 4 6 0 . 6 3 7 ( 2 ) 0 . 1 1 5 ( 1 ) 0 . 3 4 9 ( 2 ) 8 ( 2 ) C 4 7 0 . 6 7 0 ( 2 ) 0 . 0 5 7 ( 1 ) 0 . 3 8 5 ( 2 ) 7 ( 1 ) C 4 8 0 . 5 9 8 ( 2 ) 0 . 0 3 2 ( 1 ) 0 . 3 5 2 ( 2 ) 6 ( 1 ) a . B e q i s d e fi n e d a s 4 / 3 [ a 2 0 1 1 + b 2 0 2 2 + c 2 0 3 3 + a b ( c o s y ) 5 1 2 + a c ( c o s fi ) fi 1 3 + b c ( c o s a ) 6 2 3 ] . T a b l e 5 - 4 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s “ f o r ( P h 4 P ) 2 [ { F e 2 8 e ( C O ) 6 } 2 ( S e 2 ) ] ( 5 - 3 ) 1 9 1 ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e a , A 2 S e l 0 . 0 3 7 4 ( 3 ) 0 . 4 2 0 5 ( 2 ) 0 . 4 8 3 4 ( 1 ) 2 . 8 ( 2 ) S e 2 0 . 1 0 1 3 ( 3 ) 0 . 2 6 9 6 ( 2 ) 0 . 3 9 7 5 ( 1 ) 3 . 0 ( 2 ) F e l 0 . 0 7 1 9 ( 4 ) 0 . 3 8 1 2 ( 3 ) 0 . 3 8 5 0 ( 2 ) 2 . 8 ( 2 ) F e 2 0 . 1 5 9 0 ( 4 ) 0 . 4 3 5 9 ( 3 ) 0 . 3 8 9 4 ( 2 ) 2 . 6 ( 2 ) P 0 . 7 1 8 1 ( 7 ) - 0 . 0 1 4 4 ( 6 ) 0 . 3 9 6 2 ( 4 ) 2 . 5 ( 4 ) 0 1 - 0 . 3 0 1 ( 2 ) 0 . 3 1 6 ( 2 ) 0 . 4 4 9 ( 1 ) 6 ( 1 ) 0 2 0 . 1 0 0 ( 2 ) 0 . 2 9 7 ( 2 ) 0 . 2 5 4 ( 1 ) 6 ( 1 ) 0 3 - 0 . 1 6 6 ( 2 ) 0 . 5 7 4 ( 2 ) 0 . 3 4 7 ( 1 ) 5 ( 1 ) 0 4 0 . 4 2 2 ( 2 ) 0 . 4 3 2 ( 1 ) 0 . 4 4 0 ( 1 ) 5 ( 1 ) 0 5 0 . 1 9 7 ( 2 ) 0 . 4 0 1 ( 1 ) 0 . 2 5 1 ( 1 ) 4 ( 1 ) ( ) 6 0 . 1 4 8 ( 2 ) 0 . 6 4 6 ( 2 ) 0 . 3 7 8 4 ( 9 ) 4 ( 1 ) C 1 0 . 6 4 7 ( 3 ) - 0 . 1 2 9 ( 2 ) 0 . 4 0 6 ( 1 ) 3 . 0 ( 7 ) C 1 ' - 0 . 2 l 5 ( 3 ) 0 . 3 4 0 ( 2 ) 0 . 4 2 6 ( 2 ) 4 . 0 ( 9 ) c 2 0 . 7 1 4 ( 2 ) 0 . 2 0 6 ( 2 ) 0 . 4 2 6 ( 1 ) 2 . 9 ( 6 ) C 2 ' - 0 . 0 9 1 ( 3 ) 0 . 3 2 9 ( 2 ) 0 . 3 0 7 ( 2 ) 4 . 3 ( 8 ) C 3 0 . 6 5 3 ( 3 ) - 0 . 2 9 2 ( 2 ) 0 . 4 3 3 ( 1 ) 3 . 2 ( 7 ) c 3 0 . 1 3 2 ( 3 ) 0 . 4 9 8 ( 2 ) 0 . 3 6 4 ( 1 ) 3 . 4 ( 7 ) C 4 0 . 5 3 3 ( 3 ) - 0 . 3 0 1 ( 2 ) 0 . 4 2 2 ( 2 ) 4 . 7 ( 8 ) C 4 ' 0 . 3 1 8 ( 3 ) 0 . 4 3 3 ( 2 ) 0 . 4 2 0 ( 1 ) 2 . 7 ( 6 ) C 5 0 . 4 5 5 ( 3 ) - 0 . 2 2 7 ( 2 ) 0 . 4 0 1 ( 1 ) 3 . 8 ( 7 ) C 5 ' 0 . 1 8 4 ( 3 ) 0 . 4 1 4 ( 3 ) 0 . 3 0 5 ( 2 ) 4 . 9 ( 9 ) C 6 0 . 5 1 6 ( 3 ) - 0 . 1 3 6 ( 2 ) 0 . 3 9 3 ( 1 ) 3 . 4 ( 7 ) C 6 ' 0 . 1 4 7 ( 3 ) 0 . 5 6 3 ( 2 ) 0 . 3 8 4 ( 1 ) 3 . 0 ( 7 ) C 7 0 . 7 9 0 ( 2 ) 0 . 0 2 1 ( 2 ) 0 . 4 7 1 ( 1 ) 2 . 8 ( 6 ) C 8 0 . 8 5 7 ( 2 ) 0 . 1 0 1 ( 2 ) 0 . 4 7 7 ( 1 ) 2 . 9 ( 6 ) C 9 0 . 9 0 4 ( 3 ) 0 . 1 4 2 ( 2 ) 0 . 5 3 4 ( 1 ) 3 . 3 ( 7 ) 1 9 2 T a b l e 5 - 4 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 1 0 0 . 8 7 4 ( 3 ) 0 . 0 9 7 ( 2 ) 0 . 5 9 1 ( 1 ) 3 . 8 ( 7 ) C 1 1 0 . 8 0 5 ( 3 ) 0 . 0 1 5 ( 2 ) 0 . 5 9 0 ( 2 ) 4 . 6 ( 8 ) C 1 2 0 . 7 6 2 ( 3 ) - 0 . 0 2 5 ( 2 ) 0 . 5 3 0 ( 1 ) 4 . 3 ( 7 ) C 1 3 0 . 6 0 2 ( 2 ) 0 . 0 7 3 ( 2 ) 0 . 3 7 3 ( 1 ) 2 . 3 ( 6 ) C 1 4 0 . 5 5 9 ( 3 ) 0 . 0 7 1 ( 3 ) 0 . 3 0 9 ( 1 ) 5 . 0 ( 8 ) C 1 5 0 . 4 5 7 ( 3 ) 0 . 1 3 3 ( 2 ) 0 . 2 9 1 ( 1 ) 4 . 4 ( 8 ) C 1 6 0 . 4 0 4 ( 2 ) 0 . 1 9 4 ( 2 ) 0 . 3 3 9 ( 1 ) 2 . 8 ( 6 ) C 1 7 0 . 4 5 1 ( 3 ) 0 . 1 9 1 ( 2 ) 0 . 3 9 8 ( 1 ) 2 . 7 ( 6 ) C 1 8 0 . 5 4 5 ( 2 ) 0 . 1 3 0 ( 2 ) 0 . 4 1 7 ( 1 ) 2 . 4 ( 6 ) C 1 9 0 . 8 1 8 ( 3 ) ~ 0 . 0 2 4 ( 2 ) 0 . 3 3 1 ( 1 ) 3 . 3 ( 7 ) C 2 0 0 . 8 7 9 ( 3 ) 0 . 0 5 9 ( 2 ) 0 . 3 0 9 ( 1 ) 4 . 6 ( 8 ) C 2 1 0 . 9 6 3 ( 3 ) 0 . 0 6 6 ( 3 ) 0 . 2 5 7 ( 2 ) 6 . 0 ( 9 ) C 2 2 0 . 9 8 1 ( 3 ) - 0 . 0 2 2 ( 3 ) 0 . 2 2 6 ( 2 ) 5 5 ( 9 ) C 2 3 0 . 9 2 2 ( 3 ) - 0 . 1 0 3 ( 2 ) 0 . 2 4 5 ( 2 ) 5 . 0 ( 8 ) C 2 4 0 . 8 4 6 ( 3 ) 0 . 1 0 2 ( 2 ) 0 . 2 9 9 ( 1 ) 3 . 9 ( 7 ) a . B e q i s d e fi n e d a s 4 / 3 [ a 2 0 1 1 + b 2 0 2 2 + c 2 6 3 3 + a b ( c o s y ) fi 1 2 + a c ( c o s fi ) f l 1 3 + b c ( c o s o t ) 0 2 3 ] . 1 9 3 F i n a l l y , a l l c o m p o u n d s w e r e e x a m i n e d b y X - r a y p o w d e r d i f f r a c t i o n f o r t h e p u r p o s e o f p h a s e c h a r a c t e r i z a t i o n a n d i d e n t i fi c a t i o n . A D e b y e - S c h e r r e r c a m e r a w a s e m p l o y e d t o r e c o r d t h e X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s . N i - fi l t e r e d C u r a d i a t i o n w a s u s e d . T h e c r y s t a l s w e r e g r o u n d t o fi n e p o w d e r a n d p a c k e d i n t o 0 . 5 m m g l a s s c a p i l l a r i e s w h i c h w e r e s e a l e d a n d m o u n t e d t o t h e s t a n d a r d D e b y e - S c h e r r e r p o w d e r c a m e r a w h i c h h a s a d i a m e t e r o f 1 1 4 . 6 m m ( 1 m m c o r r e s p o n d s t o 1 d e g r e e f o r 2 0 ) . X - r a y s w e r e g e n e r a t e d b y a P h i l l i p s N o r e l c o X R G - 5 0 0 0 X - r a y g e n e r a t o r o p e r a t i n g a t 4 0 k V a n d 2 0 m A . A p p r o x i m a t e l y , a S i x h o u r e x p o s u r e t i m e w a s u s e d . A c c u r a t e d - s p a c i n g s ( A ) o f e a c h c o m p o u n d w e r e c a l c u l a t e d f r o m t h e p o w d e r p a t t e r n s r e c o r d e d o n a P h i l l i p s X R G — 3 0 0 0 c o m p u t e r c o n t r o l l e d p o w d e r d i f f r a c t o m e t e r [ 1 6 ] . T o v e r i f y t h e h o m o g e n e i t i e s o f t h e p r o d u c t s , t h e d - s p a c i n g s o b s e r v e d f o r t h e b u l k m a t e r i a l s w e r e c o m p a r e d w i t h t h e c a l c u l a t e d d - s p a c i n g s f r o m t h e X — r a y s i n g l e - c r y s t a l s t r u c t u r e a n a l y s i s d a t a [ 1 7 ] . L i s t i n g s o f c a l c u l a t e d a n d o b s e r v e d d - s p a c i n g s ( A ) a l o n g w i t h t h e o b s e r v e d r e l a t i v e d i f f r a c t i o n i n t e n s i t i e s o f t h e s e c o m p o u n d s a r e g i v e n i n T a b l e s 5 - 5 — 5 - 7 . 1 9 4 T a b l e 5 - 5 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ R u 6 ( T 6 2 ) 7 ( C 0 ) 1 2 1 1 5 ' 1 ) h 1 ‘ 1 d c a l c . ( A ) d o b s . ( A ) I l l m a x . ( 0 1 3 8 - ) 0 1 0 1 1 . 8 5 / / 1 0 0 1 1 . 7 0 1 1 . 6 9 1 0 0 - 1 0 1 1 1 . 5 0 1 1 . 4 6 4 4 0 0 1 1 1 . 3 7 / I 0 - 1 1 1 1 . 3 2 1 1 . 2 4 6 3 - 1 - 1 1 9 . 4 6 9 . 3 4 3 4 - 2 - 2 3 4 . 2 9 4 . 1 3 3 7 0 - 4 1 3 . 2 7 2 3 . 2 6 6 3 5 - 4 1 1 3 . 2 5 0 / / 1 0 3 3 . 1 7 3 3 . 1 9 0 3 6 - 1 4 0 3 . 0 5 8 3 . 0 3 7 2 2 0 4 0 2 . 9 6 4 2 . 9 4 9 3 4 - 1 - 4 4 2 . 9 3 0 2 . 9 3 1 1 9 - 4 2 0 2 . 9 2 4 2 . 9 1 8 1 7 - 2 - 4 1 2 . 7 1 1 2 . 7 0 7 2 3 0 - 5 1 2 . 5 7 9 2 . 5 5 1 1 3 - 5 2 3 2 . 3 8 8 2 . 3 4 6 3 5 1 - 3 5 2 . 3 2 0 2 . 3 2 1 1 6 - 2 - 5 1 2 . 2 3 5 2 . 2 2 4 1 8 5 - 2 1 2 . 2 0 0 2 . 2 0 3 1 0 - 4 2 6 1 . 8 2 4 1 . 8 2 6 1 6 1 9 5 T a b l e 5 - 6 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ { F e 4 T e 4 ( C 0 ) 1 0 1 2 0 9 2 ) ] ( 5 ' 2 ) h H d c a l c . ( t ’ 1 - ) d o b s . ( A ) 1 ” m a x . ( 0 1 3 8 - ) 1 1 0 1 2 . 9 3 1 3 . 0 7 7 0 0 0 1 1 1 . 9 6 1 2 . 0 5 4 7 0 2 0 1 1 . 7 0 1 1 . 9 1 5 7 0 1 1 1 0 . 8 3 1 0 . 8 5 4 1 0 - 1 1 1 0 . 4 8 1 0 . 5 0 8 0 - 1 - 2 1 8 . 9 0 9 . 1 1 3 1 0 - 2 1 8 . 2 0 8 . 3 7 3 2 1 0 1 7 . 5 4 9 7 . 6 8 1 1 0 0 1 1 1 7 . 5 3 3 7 . 5 4 6 2 4 1 3 0 7 . 5 2 3 7 . 5 3 7 2 1 0 - 3 1 6 . 4 1 6 6 . 4 3 3 2 3 2 - 2 2 3 . 4 3 9 3 . 4 7 8 1 6 - 2 5 3 2 . 9 9 3 3 . 0 0 2 2 7 - 3 4 3 2 . 9 8 5 2 . 9 8 8 4 4 - 5 - 1 2 2 . 9 6 2 2 . 9 7 3 2 5 - 5 1 2 2 . 8 0 1 2 . 8 2 1 2 5 - 5 0 3 2 . 7 8 3 2 . 7 9 6 2 1 2 - 3 - 3 2 . 6 4 6 2 . 6 4 8 2 4 - 1 - 9 1 2 . 6 2 6 2 . 6 2 9 1 7 - 2 5 4 2 . 5 8 9 2 . 5 8 3 1 2 2 - 5 3 2 . 3 5 9 2 . 3 7 0 1 5 0 3 5 2 . 3 1 4 2 . 3 1 1 1 3 1 9 6 T a b l e 5 - 7 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ { F e 2 8 e ( C 0 ) 6 } 2 ( S e 2 ) ] ( 5 - 3 ) h k l d c a l c . ( A ) d o b s . ( A ) m m a x . ( o b s ) 0 1 1 1 1 . 6 1 1 . 7 4 5 0 O 2 1 0 . 2 1 0 . 4 4 1 1 0 - 1 9 . 4 9 9 . 5 1 6 7 l O 1 9 . 2 3 9 . 2 7 5 4 1 1 0 8 . 4 2 8 5 0 1 0 0 0 1 2 8 . 2 6 8 . 2 4 4 3 1 1 - 1 7 . 8 6 2 7 . 8 6 7 3 7 0 1 0 7 . 0 1 2 7 . 0 1 7 1 3 0 2 1 6 . 6 3 3 6 . 5 8 6 2 9 1 1 2 6 . 4 1 6 6 . 4 2 7 5 7 1 2 - 1 5 . 6 4 1 5 . 6 4 6 8 1 1 - 3 5 . 3 6 9 5 . 3 7 8 1 1 0 0 4 5 . 1 1 1 5 . 1 1 3 3 7 1 2 - 2 5 . 1 1 0 / / O 2 3 4 . 8 8 7 4 . 8 7 3 2 2 2 l 1 4 . 7 5 8 4 . 7 6 1 1 5 2 0 2 4 . 6 1 8 4 . 6 1 6 1 0 1 1 4 4 . 4 2 3 4 . 4 2 8 1 4 1 3 0 4 . 2 7 3 4 . 2 8 0 1 1 2 1 - 3 4 . 0 5 6 4 . 0 5 3 1 4 1 3 2 3 . 9 2 3 3 . 9 2 7 2 1 2 0 4 3 . 6 0 7 3 . 6 0 1 8 0 2 5 3 . 5 3 2 3 . 5 3 7 1 2 0 0 6 3 . 4 0 7 3 . 4 0 4 1 7 l 4 0 3 . 3 2 6 3 . 3 2 4 2 3 2 2 - 4 3 . 2 9 4 3 . 2 8 8 1 4 3 0 3 3 . 0 7 9 3 . 0 7 5 2 0 3 2 - 2 3 . 0 2 7 3 . 0 2 1 9 3 2 2 2 . 9 7 6 2 . 9 8 3 7 2 3 - 4 2 . 9 1 6 2 . 9 1 9 9 1 9 7 T a b l e 5 - 7 . ( c o n t ' d ) h H d c a l c . ( A ) d o b s . ( A ) I ” m a x . ( o b s . ) 3 2 - 3 2 . 8 8 5 2 . 8 8 6 1 1 1 0 - 7 2 . 8 3 9 2 . 8 3 7 1 5 2 4 - 2 2 . 8 2 0 / / 3 1 4 2 . 7 9 2 2 . 7 8 8 1 1 1 5 - 1 2 . 6 9 0 2 . 6 6 9 7 3 3 - 3 2 . 6 2 0 2 . 6 1 7 1 0 2 5 0 2 . 4 7 6 2 . 4 7 7 1 2 2 5 - 3 2 . 3 3 9 2 . 3 3 7 9 1 9 8 I I I . R e s u l t s 1 . D e s c r i p t i o n o f C r y s t a l a n d M o l e c u l a r S t r u c t u r e s o f t h e C o m p o u n d s ( i ) . S t r u c t u r e o f ( P h 4 P ) 2 [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 ] ( 5 - 1 ) T h e s t r u c t u r e o f ( 5 - 1 ) i s c o m p o s e d o f w e l l s e p a r a t e d P h 4 P + c a t i o n s a n d [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 ] 2 ' a n i o n s i n t h e c r y s t a l l a t t i c e a s S h o w n i n F i g u r e 5 - 1 . T h e P h 4 P + c a t i o n s h a v e t h e n o r m a l t e t r a h e d r a l s t r u c t u r e , a n d w i l l n o t b e d i s c u s s e d f u r t h e r . T h e c e n t r o s y m m e t r i c c l u s t e r [ R u ( , ( T e 2 ) 7 ( C O ) 1 2 ] 2 ‘ , w i t h a n i d e a l i z e d 8 5 m o l e c u l a r s y m m e t r y , c o n t a i n s a n o c t a h e d r a l a r r a y o f s i x r u t h e n i u m a t o m s u p h e l d b y a c e n t r a l d i t e l l u r i d e T e 2 2 ' a s s h o w n i n F i g l n ' e 5 2 . T h e t e l l u r i u m a t o m s i n t h i s u n i t e a c h b i n d t o t h r e e r u t h e n i u m a t o m s , f o r m i n g a R U 3 T 6 - T 6 R l l 3 e t h a n e - l i k e f r a g m e n t w i t h a s t a g g e r e d c o n f o r m a t i o n . F u r t h e r m o r e , t h e r u t h e n i u m a t o m s a r e b r i d g e d b y s i x T e 2 2 ' u n i t s i n t h e p e r i p h e r y . I n t h e b r i d g i n g T e 2 2 ' l i g a n d s , o n e T e a t o m b o n d s t o a r u t h e n i u m a t o m w h i l e t h e o t h e r T e a t o m b r i d g e s t w o r u t h e n i u m a t o m s , a c t i n g o n t h e w h o l e a s 1 1 3 - t y p e c h e l a t i n g l i g a n d s . A n O R T E P r e p r e s e n t a t i o n o f t h e c l u s t e r c o r e w i t h a l l C O g r o u p s o m i t t e d i s g i v e n i n F i g u r e 5 3 . F i n a l l y , t h e o c t a h e d r a l c o o r d i n a t i o n g e o m e t r y o f a l l t h e R u a t o m s i s e a c h c o m p l e t e d b y t w o c i s C O g r o u p s . T h e c l u s t e r c o r e { R u 6 ( T e 2 ) 7 } 2 ' h a s a s t r i k i n g r e s e m b l a n c e t o t h e R u T e z l a t t i c e . F i g u r e 5 4 c o m p a r e s t h e [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 ] 2 ' c l u s t e r c o r e w i t h a s m a l l f r a g m e n t o f R u T e z . T h e T e - T e b o n d d i s t a n c e s f r o m 2 . 7 1 7 A t o 2 . 7 6 3 A a r e i n t h e n o r m a l r a n g e o f t h e T e - T e s i n g l e b o n d [ 1 8 - 2 0 ] , w h i l e t h e R u - T e b o n d d i s t a n c e s , r a n g i n g f r o m 2 . 6 7 3 ( 2 ) A t o 2 . 7 4 7 ( 2 ) A , c a n b e c o m p a r e d w i t h t h e R u - T e d i s t a n c e s o f 2 . 7 5 5 A ( m e a n ) i n R U 4 ( C 0 ) 1 o ( P h 3 P ) ( T 6 ) 2 [ 2 1 ] , a n d 2 . 6 7 8 A ( m e a n ) i n R 0 3 ( C 0 ) 5 ( P h 3 P ) 3 ( T 6 ) 2 [ 2 1 ] . O t h e r i m p o r t a n t b o n d d i s t a n c e s a n d b o n d a n g l e s a e g i v e n i n T a b l e 5 - 8 . 1 9 9 T a b l e 5 - 8 . S e l e c t e d G e o m e t r i c D a t a f o r ( P h 4 P ) 2 B u 6 Q e 2 ) 7 ( C O ) 1 ; ] ( 5 . 1 ) b B o n d D i s t a n c e s ( A ) R u ( 1 ) - T e ( l ) 2 . 7 4 7 ( 2 ) R u ( 1 ) - T e ( 3 ) 2 . 6 7 3 ( 2 ) R u ( 1 ) - T e ( 6 ) 2 . 6 8 1 ( 2 ) R u ( 1 ) - T e ( 7 ) 2 . 7 3 3 ( 4 ) R u ( 2 ) - T e ( 2 ) 2 . 6 9 0 ( 3 ) R u ( 2 ) - T e ( 3 ) 2 . 7 3 5 ( 2 ) R u ( 2 ) - T e ( 5 ) 2 . 6 7 8 ( 3 ) R u ( 2 ) - T e ( 7 ) 2 . 7 2 1 ( 2 ) R u ( 3 ) - T e ( 1 ) 2 . 6 8 3 ( 3 ) R u ( 3 ) - T e ( 4 ) 2 . 6 9 6 ( 3 ) R u ( 3 ) - T e ( 5 ) 2 . 7 3 7 ( 2 ) R u ( 3 ) - T e ( 7 ) 2 . 7 3 4 ( 2 ) R u - T e ( m e a n ) 2 . 7 0 9 ( 8 ) T e ( 1 ) - T e ( 2 ) 2 . 7 6 3 ( 2 ) T e ( 3 ) - T e ( 4 ) 2 . 7 5 4 ( 3 ) T e ( 5 ) - T e ( 6 ) 2 . 7 5 8 ( 3 ) T e ( 7 ) - T e ( 7 ) 2 . 7 1 7 ( 2 ) T e - T e ( m e a n ) 2 . 7 4 8 ( 1 0 ) R u ( 1 ) - C ( 2 5 ) 1 . 9 l ( 2 ) R u ( 1 ) - C ( 2 6 ) 1 . 8 7 ( 2 ) R u ( 2 ) - C ( 2 7 ) 1 . 9 1 ( 2 ) R u ( 2 ) - C ( 2 8 ) 1 . 8 9 ( 2 ) R u ( 3 ) - C ( 2 9 ) 1 . 9 3 ( 2 ) R u ( 3 ) - C ( 3 0 ) 1 . 8 7 ( 2 ) B o n d A n g l e s ( d e g ) R u ( 1 ) - T e ( 7 ) - R u ( 2 ) 1 1 7 . 7 4 ( 7 ) R u ( 1 ) - T e ( 7 ) - R u ( 3 ) 1 1 8 . 0 8 ( 8 ) R u ( 2 ) - T e ( 7 ) - R u ( 3 ) 1 1 8 . 7 5 ( 9 ) T e ( 7 ) - T e ( 7 ) - R u ( 1 ) 9 7 . 8 4 ( 9 ) T e ( 1 ) - R u ( l ) - T e ( 3 ) 9 0 5 5 ( 6 ) T e ( 1 ) - R u ( 1 ) - T e ( 6 ) 8 0 . 4 0 ( 6 ) T e ( 1 ) - R u ( 1 ) - T e ( 7 ) 9 8 6 5 ( 8 ) T e ( l ) - R u ( 1 ) - C ( 2 6 ) 8 3 . 4 ( 5 ) T e ( 3 ) - R u ( 1 ) - C ( 2 5 ) 9 7 . 0 ( 5 ) T e ( 2 ) - R u ( 2 ) - T e ( 3 ) 7 9 . 2 1 ( 8 ) T e ( 2 ) - R u ( 2 ) - T e ( 7 ) 9 3 . 7 2 ( 9 ) T e ( 3 ) - R u ( 2 ) - T e ( 5 ) 9 2 . 1 7 ( 8 ) T e ( 5 ) - R u ( 2 ) - C ( 2 7 ) 9 8 . 0 ( 5 ) T e ( 5 ) - R u ( 2 ) - C ( 2 8 ) 8 7 . 3 ( 5 ) T e ( 4 ) - R u ( 3 ) - T e ( 5 ) 8 0 . 4 5 ( 8 ) T e ( 4 ) - R u ( 3 ) - T e ( 7 ) 9 3 . 7 ( 1 ) T e ( 4 ) - R u ( 3 ) - C ( 2 9 ) 8 7 . 4 ( 5 ) T e ( 4 ) - R u ( 3 ) - C ( 3 Q ) 9 3 . 7 ( 5 ) 2 0 0 T a b l e 5 - 8 . ( c o n t ' d ) B o n d A n g l e s ( d e g ) R u ( 1 ) - T e ( 1 ) - R u ( 3 ) 1 0 8 . 2 4 ( 9 ) T e ( 2 ) - T e ( 1 ) - R u ( l ) 1 0 4 . 3 6 ( 6 ) T e ( 1 ) - T e ( 2 ) - R u ( 2 ) 9 8 8 2 ( 8 ) R u ( 1 ) - T e ( 3 ) - R u ( 2 ) 1 0 8 . 7 3 ( 7 ) T e ( 4 ) - T e ( 3 ) - R u ( 2 ) 1 0 4 . 1 0 ( 8 ) T e ( 3 ) - T e ( 4 ) - R u ( 3 ) 9 8 . 7 ( 1 ) R u ( 2 ) - T e ( 5 ) - R u ( 3 ) 1 0 7 . 6 9 ( 7 ) T e ( 6 ) - T e ( 5 ) - R u ( 3 ) 1 0 5 . 8 3 ( 7 ) T e ( 5 ) - T e ( 6 ) - R u Q ) 9 8 . 1 2 ( 7 ) b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n o 1 = { £ n ( l n - l ) 2 / n ( n - 1 ) } 1 ’ 2 , w h e r e 1 , , i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . 2 0 1 F i g u r e 5 - 1 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ R u s ( T e 2 ) 7 ( C O ) 1 2 ] ( S t a ' e o v i e w ) 2 0 2 T e ( 1 ) \ 1 f r " I fl C ( 2 6 ) . ( z ) m 2 0 3 F i g u r e 5 - 3 . T h e S t r u c t u r e o f t h e [ R u 5 ( T e 7 _ ) 7 ( C O ) 1 2 1 2 ' A n i o n w i t h C O G r o u p s O m i t t e d . S h o w i n g t h e S t a g g e r i n g C o n f o r m a t i o n o f t h e R u 3 T e - T e R u 3 F r a g m e n t F i g u r e 5 4 . C o m p a r i s o n B e t w e e n t h e [ R u o ( ' l ‘ e 2 ) 7 ] 2 ' C o r e ( L e f t ) a n d a S m a l l - C o r e F r a g m e n t o f R u ' l ‘ e 2 ( R i g h t ) 2 0 4 2 0 5 ( i i ) . S t r u c t u r e o f ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 0 1 2 ( T e 2 ) ] ( 5 - 2 ) T h e s t r u c t u r e o f ( 5 2 ) c o m p r i s e s o f P h 4 P + c a t i o n s a n d [ { F e 4 T e 4 ( C O ) 1 o } 2 ( T e 2 ) ] 2 ‘ a n i o n s i n t h e c r y s t a l l a t t i c e a s S h o w n i n F i g u r e 5 - 5 . T h e [ { F e 4 T e 4 ( C O ) 1 o } 2 ( I ‘ e 2 ) ] 2 ' a n i o n c o n t a i n s t w o F e 4 T e 4 c u b a n e — l i k e c a g e s b r i d g e d b y a T e z z ' u n i t a s s h o w n i n F i g u r e 5 - 6 . A n O R T E P r e p r e s e n t a t i o n o f t h e c l u s t e r c o r e w i t h a l l C O g r o u p s o m i t t e d i s g i v e n i n F i g u r e 5 - 7 . T h e T e z z ' a c t s o v e r a l l a s a 1 1 4 - t y p e l i g a n d . T h e s e e a g e s c a n b e e a c h d e s c r i b e d a s b e i n g f o r m e d b y t h e i n t e r p e n e t r a t i n g t e t r a h e d r a l a r r a y s o f f o u r i r o n a n d t e l l u r i u m a t o m s . S u c h a s t r u c t u r e i s a n a l m o s t o m n i p r e s e n t t h e m e i n i r o n - s u l f u r c h e m i s t r y [ 2 2 ] . H o w e v e r , t h e o c t a h e d r a l c o o r d i n a t i o n g e o m e t r y o f a l l t h e i r o n a t o m s , b e i n g c o m p l e t e d b y t e r m i n a l C O g r o u p s , d i f f e r s f r o m m a n y i r o n — s u l f u r c u b a n e s [ 2 2 ] . T h e T e - T e d i s t a n c e i n t h e b r i d g i n g u n i t i s 2 . 8 2 9 ( 2 ) A , a n d c a n b e c o n s i d e r e d a n o r m a l S i n g l e b o n d [ 2 3 ] . O t h e r c o m p o u n d s c o n t a i n i n g s u c h a 1 1 4 t y p e T e 2 2 ' l i g a n d a r e [ K - ( c r y p t ) ] 2 M 0 4 T e 1 5 ( e n ) 4 [ 2 7 ] a n d ( B u 4 N ) 4 [ H g 4 T e 1 2 ] [ 2 4 ] . T h e F e - T e b o n d d i s t a n c e s , r a n g i n g f r o m 2 . 5 8 5 ( 2 ) A t o 2 . 6 5 7 ( 2 ) A ( a v e r a g e 2 . 6 1 9 ( 4 ) A ) , a r e r a t h e r u n i f o r m , a n d c o m p a r a b l e w i t h t h o s e f o u n d i n C S 7 [ F e 4 T e 4 ( T e ) 4 ] [ 2 5 2 ] a n d a n u m b e r o f i r o n - t e l l u r i d e — t e l l u r o l a t e c o m p l e x e s h a v i n g c u b a n e - l i k e c o r e s [ 2 5 b - c ] . O t h e r s e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s a r e g i v e n i n T a b l e 5 - 9 . I f t h e c h a r g e o f b o t h t h e d i t e l l u r i d e a n d t h e m o n o t e l l u r i d e l i g a n d s i n t h i s s t r u c t u r e i s t a k e n a s 2 — , t h e e i g h t i r o n a t o m s w o u l d h a v e a f o r m a l o x i d a t i o n s t a t e 2 + . C o n s i s t e n t w i t h t h i s o x i d a t i o n s t a t e , t h e o b s e r v e d l o n g F e - F e d i s t a n c e s i n b o t h c u b a n e s ( t h e s h o r t e s t d i s t a n c e i S 3 . 7 5 A ) e x c l u d e a n y p o s s i b l e M - M b o n d i n g i n ( 5 2 ) . A S a r e s u l t , t h e t w o F e 4 T e 4 c u b e s h a v e a p p r o x i m a t e l o c a l T d s y m m e t r y ( s e e F i g u r e 5 - 7 ) . 2 0 6 T a b l e 5 9 . S e l e c t e d G e o m e t r i c D a t a f o r ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 0 } 2 ( T e 2 ) ] ( 5 - 2 ) b B o n d D i s t a n c e s ( A ) F e ( l ) - T e ( l ) 2 . 6 4 2 ( 3 ) F e ( 1 ) - T e ( 3 ) 2 . 5 9 0 ( 2 ) F e ( 1 ) - T e ( 4 ) 2 . 5 8 5 ( 2 ) F e ( 1 ) - T e ( 9 ) ) 2 . 6 2 8 ( 2 ) F e ( 2 ) - T e ( 1 ) 2 . 6 2 3 ( 2 ) F e ( 2 ) - T e ( 2 ) 2 . 5 8 9 ( 2 ) F e ( 2 ) - T e ( 4 ) 2 . 6 1 2 ( 3 ) F e ( 2 ) - T e ( 4 ) 2 . 6 2 0 ( 2 ) F e ( 3 ) - T e ( l ) 2 . 6 4 1 ( 2 ) F e ( 3 ) - T e ( 2 ) 2 . 6 4 0 ( 2 ) F e ( 3 ) - T e ( 3 ) 2 . 6 2 0 ( 3 ) F e ( 4 ) - T e ( 2 ) 2 . 6 2 0 ( 3 ) F e ( 4 ) - T e ( 3 ) 2 . 6 3 2 ( 3 ) F e ( 4 ) - T e ( 4 ) 2 . 6 5 7 ( 2 ) F e ( 5 ) - T e ( 5 ) 2 . 6 1 5 ( 2 ) F e ( 5 ) - T e ( 7 ) 2 . 5 9 5 ( 2 ) F e ( 5 ) - T e ( 8 ) 2 . 6 1 3 ( 2 ) F e ( 5 ) - T e ( 9 ) 2 . 6 3 3 ( 2 ) F e ( 6 ) - T e ( 5 ) 2 . 6 1 4 ( 2 ) F e ( 6 ) - T e ( 6 ) 2 . 5 9 8 ( 2 ) F e ( 6 ) - T e ( 8 ) 2 . 6 1 2 ( 2 ) F e ( 6 ) - T e ( 1 0 ) 2 . 5 9 9 ( 2 ) F e ( 7 ) - T e ( 5 ) 2 . 6 2 5 ( 2 ) F e ( 7 ) - T e ( 6 ) 2 . 6 2 7 ( 2 ) F e ( 7 ) - T e ( 7 ) 2 . 6 2 2 ( 2 ) F e ( 8 ) - T e ( 6 ) 2 . 6 2 5 ( 3 ) F e ( 8 ) - T e ( 7 ) 2 . 6 1 9 ( 2 ) F e ( 8 ) - T e ( 8 ) 2 . 6 4 1 ( 2 ) F e - T e ( m e a n ) 2 . 6 1 9 ( 4 ) T e ( 9 ) - T e ( 1 0 ) 2 . 8 2 9 ( 2 ) F e - C ( m e a n ) 1 . 7 8 ( 7 ) B o n d A n g l e s ( d e g ) F e ( 1 ) - T e ( 1 ) - F e ( 2 ) 9 0 . 9 7 ( 7 ) F e ( 1 ) - T e ( 1 ) - F e ( 3 ) 9 6 9 8 ( 8 ) F e ( 2 ) - T e ( l ) - F e ( 3 ) 9 8 3 9 ( 7 ) F e ( 2 ) - T e ( 2 ) - F e ( 3 ) 9 9 2 9 ( 7 ) F e ( 2 ) - T e ( 2 ) - F e ( 4 ) 9 7 . 4 1 ( 8 ) F e ( 3 ) - T e ( 2 ) - F e ( 4 ) 9 3 7 8 ( 8 ) F e ( l ) - T e ( 3 ) - F e ( 3 ) 9 8 8 0 ( 8 ) F e ( 1 ) - T e ( 3 ) - F e ( 4 ) 9 9 . 4 0 ( 8 ) F e ( 3 ) - T e ( 3 ) - F e ( 4 ) 9 8 9 5 ( 8 ) F e ( 1 ) - T e ( 4 ) - F e ( 2 ) 9 2 5 2 ( 8 ) F e ( 1 ) - T e ( 4 ) - F e ( 4 ) 9 8 9 0 ( 8 ) F e ( 2 ) - T e ( 4 ) - F e ( 4 ) 9 5 9 4 ( 8 ) 2 0 7 T a b l e 5 - 9 . ( c o n t ' d ) B o n d A n g l e s ( d e g ) F e ( 5 ) - T e ( 5 ) - F e ( 6 ) 9 2 5 2 ( 7 ) F e ( 5 ) - T e ( 5 ) - F e ( 7 ) 9 7 . 4 2 ( 7 ) F e ( 6 ) - T e ( 5 ) - F e ( 7 ) 9 7 . 2 8 ( 7 ) F e ( 6 ) - T e ( 6 ) - F e ( 7 ) 9 7 . 6 1 ( 7 ) F e ( 6 ) - T e ( 6 ) - F e ( 8 ) 9 8 2 8 ( 7 ) F e ( 7 ) - T e ( 6 ) - F e ( 8 ) 9 5 2 6 ( 7 ) F e ( 5 ) - T e ( 7 ) - F e ( 7 ) 9 8 0 0 ( 7 ) F e ( 5 ) - T e ( 7 ) - F e ( 8 ) 9 9 . 2 9 ( 7 ) F e ( 7 ) - T e ( 7 ) - F e ( 8 ) 9 5 5 2 ( 7 ) F e ( 5 ) - T e ( 8 ) - F e ( 6 ) 9 2 . 6 0 ( 7 ) F e ( 5 ) - T e ( 8 ) - F e ( 8 ) 9 8 2 6 ( 7 ) F e ( 6 ) - T e ( 8 ) - F e ( 8 ) 9 7 5 1 ( 7 ) F e - T e - F e ( m e a n ) 9 6 5 ( 5 ) F e ( 1 ) - T e ( 9 ) - F e ( 5 ) 1 2 2 . 9 4 ( 8 ) F e ( 2 ) - T e ( 1 0 ) - F e ( 6 ) 1 2 0 . 4 7 ( 7 ) T e ( 1 ) - F e ( l ) - T e ( 3 ) 8 2 1 7 ( 7 ) T e ( 1 ) - F e ( 1 ) - T e ( 4 ) 8 7 . 1 5 ( 7 ) T e ( 1 ) - F e ( 1 ) - T e ( 9 ) 8 7 . 6 0 ( 8 ) T e ( 1 ) - F e ( 2 ) - T e ( 2 ) 8 1 . 7 7 ( 7 ) T e ( l ) - F e ( 2 ) - T e ( 4 ) 8 7 . 0 1 ( 7 ) T e ( 1 ) - F e ( 2 ) - T e ( 1 0 ) 8 0 9 4 ( 7 ) T e ( 1 ) - F e ( 3 ) - T e ( 2 ) 8 0 . 4 9 ( 7 ) T e ( l ) - F e ( 3 ) - T e ( 3 ) 8 1 . 6 4 ( 8 ) T e ( 2 ) - F e ( 3 ) - T e ( 3 ) 8 4 . 3 2 ( 8 ) T e ( 2 ) - F e ( 4 ) - T e ( 3 ) 8 4 . 4 8 ( 8 ) T e ( 2 ) - F e ( 4 ) - T e ( 4 ) 8 2 3 1 ( 7 ) T e ( 3 ) - F e ( 4 ) - T e ( 4 ) 7 9 . 7 4 ( 7 ) T e ( 5 ) - F e ( 5 ) - T e ( 7 ) 8 2 4 1 ( 6 ) T e ( 5 ) - F e ( 5 ) - T e ( 8 ) 8 6 . 4 0 ( 7 ) T e ( 5 ) - F e ( 5 ) - T e ( 9 ) 8 2 3 9 ( 7 ) T e ( 5 ) - F e ( 6 ) - T e ( 6 ) 8 2 7 9 ( 7 ) T e ( 5 ) - F e ( 6 ) - T e ( 8 ) 8 6 4 7 ( 7 ) T e ( 5 ) - F e ( 6 ) - T e ( 1 0 ) 8 7 . 3 4 ( 7 ) T e ( 5 ) - F e ( 7 ) - T e ( 6 ) 8 2 0 1 ( 7 ) T e ( 5 ) - F e ( 7 ) - T e ( 7 ) 8 1 . 7 2 ( 7 ) T e ( 6 ) - F e ( 7 ) - T e ( 7 ) 8 3 2 3 ( 7 ) T e ( 6 ) - F e ( 8 ) - T e ( 7 ) 8 3 . 3 4 ( 7 ) T e ( 6 ) - F e ( 8 ) - T e ( 8 ) 8 1 . 3 7 ( 7 ) T e ( 7 ) - F e ( 8 ) - T e ( 8 ) 8 0 5 7 ( 6 ) T e - F e - T e ( m e a n ) 8 3 . 3 ( 5 ) C - F e - C ( m e a n ) 9 7 ( 6 ) b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n o 1 = { 2 n ( l n - l ) 2 / n ( n - l ) } 1 / 2 , w h e r e I n i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . A E E E : a b e e z o o c x e a m z a a a é . 6 : 6 0 a 5 a : a 5 9 5 a n y o n e 2 F o n 2 5 E n e w . g . w ‘ e r n o c i ) e t 4 a ; r ‘ a ” u c ‘ _ fi m t c t ) ‘ 3 0 0 ‘ n A ‘ 2 ] ) z e T ( 2 } o 1 ) 1 O 6 1 5 ' . “ ) 4 0 C ) 0 0 1 . ) 4 ( 0 . C ( 4 e T 4 e F { [ e h t f o e r u t c u r t S e h T . 6 5 e r u g i F ~ 2 0 9 F i g u r e 5 - 7 . T h e S t r u c t u r e o f t h e [ { F e a T e 4 ( C O ) 1 o } 2 ( T e 2 ) ] 2 ' A n i o n w i t h C O G r o u p s O m i t t e d , E m p h a s i z i n g t h e T w o F e 4 T e 4 C o r e s a n d T h e i r C o u p l i n g v i a t h e T e z z ' L i g a n d 2 1 0 2 1 1 ( i i i ) . S t r u c t u r e o f ( P h 4 P ) 2 [ { F e 2 $ e ( C O ) 6 } 2 ( S e 2 ) ] ( 5 3 ) T h e l a t t i c e o f ( 5 - 3 ) i s m a d e u p o f P h 4 P + c a t i o n s a n d d i s c r e t e [ { F e 2 8 e ( C O ) 6 } 2 ( S e 2 ) ] 2 ‘ a n i o n s a s s h o w n i n F i g u r e 5 - 8 T h e l a t t e r h a s a k n o w n s u l f u r a n a l o g [ { F e 2 S ( C O ) 6 } 2 ( S z ) ] 2 ‘ [ 2 6 ] . T h e [ { F e 2 S e ( C O ) 6 } 2 ( S e 2 ) ] 2 ' , a s d e p i c t e d i n F i g u r e 5 . 9 , p o s s e s s e s a S e - S e l i n k a g e ( a l s o a 1 1 4 - t y p e l i g a n d ) b e t w e e n t w o F e 2 8 e 2 ( C O ) 6 u n i t s w h i c h a r e c r y s t a l l o g r a p h i c a l l y r e l a t e d t o e a c h o t h e r b y a n i n v e r s i o n c e n t e r a t t h e m i d p o i n t o f t h e d i s e l e n i d e S e z z ' l i g a n d . T h e a s y m m e t r i c u n i t [ F e 2 S e 2 ( C O ) 6 ] ' c a n b e v i e w e d a s b e i n g f o r m e d b y t w o s q u a r e p y r a m i d s o f t h e F e S e 2 ( C O ) 3 f r a g m e n t s t h r o u g h s h a r i n g o n e e d g e ( i . e . S e ( 1 ) - S e ( 2 ) ) o f t h e i r b a s a l p l a n e s . T h e s e b a s a l p l a n e s o f t h e p y r a m i d s a r e e a c h d e fi n e d b y S e ( 1 ) / S e ( 2 ) / C ( 2 ) / C ( 3 ) o r S e ( l ) / S e ( 2 ) / C ( 5 ) / C ( 6 ) , a n d t h e a p e x e s b y C ( l ) o r C ( 4 ) , r e s p e c t i v e l y . T h e p l a n a r i t y o f t w o b a s a l p l a n e s i s a s f o l l o w i n g : S e ( 1 ) , S e ( 2 ) , C ( 2 ) a n d C ( 3 ) d e v i a t e f r o m t h e b e s t l e a s t - s q u a r e s p l a n e b y - 0 . 0 0 3 , 0 . 0 0 4 , - 0 . 3 0 1 a n d 0 . 2 4 9 A r e s p e c t i v e l y , a n d F e ( l ) i s d i s p l a c e d f r o m t h e p l a n e b y 0 . 3 7 2 A ; S e ( 1 ) , S e ( 2 ) , ( 2 ( 5 ) a n d C ( 6 ) d e v i a t e f r o m t h e b e s t l e a s t - s q u a r e s p l a n e b y 0 . 0 0 1 , 0 . 0 0 1 , 0 . 1 1 2 a n d 0 . 0 8 3 A r e s p e c t i v e l y w i t h F e ( 2 ) l y i n g 0 . 3 4 3 A a b o v e i t . I f t h e c h a r g e o f t h e d i s e l e n i d e a n d t h e m o n o s e l e n i d e l i g a n d s i s e a c h t a k e n a s 2 - , t h e f o u r i r o n a t o m s w o u l d h a v e a f o r m a l o x i d a t i o n s t a t e 1 + . T h e c o o r d i n a t i o n g e o m e t r y a r o u n d t h e i r o n a t o m s i s b e s t d e s c r i b e d a s d i s t o r t e d o c t a h e d r a l b e c a u s e , i n a d d i t i o n t o t h e n o r m a l c h e m i c a l b o n d s t o t h e c o r n e r s o f t h e s q u a r e p y r a m i d s , t h e i r o n a t o m s a r e v e r y c l o s e a t 2 . 5 5 5 ( 6 ) A t o e a c h o t h e r . T h i s i s c o n s i s t e n t w i t h a n F e - F e s i n g l e b o n d , a n d c o m p a r a b l e w i t h t h a t f o u n d i n F e 2 ( S e 2 ) ( C O ) 5 ( 2 . 5 7 5 ( 2 ) A ) [ 2 7 ] a n d i n ( P h 4 A s ) 2 [ { F e 2 S ( C O ) 6 } 2 ( S 2 ) ] ( 2 . 5 1 6 ( 1 ) A ) [ 2 6 ] . T h e s h o r t F e - F e b o n d g i v e s r i s e t o t h e n o n - p l a n a r c o n f o r m a t i o n o f t w o F e 2 S e 2 u n i t s , h e n c e t h e w h o l e m o l e c u l e l o o k s l i k e t w o b u t t e r fl i e s j o i n i n g t h e i r w i n g s i n a s i d e - b y - s i d e f a s h i o n a s s h o w n i n F i g u r e 5 - 1 0 . T h e b o n d d i s t a n c e o f t h e S e 2 2 ' u n i t ( i . e . S e ( 1 ) - S e ( 1 ) = 2 . 4 6 7 ( 7 ) A ) a p p r o a c h e s t h e u p p e r l i m i t o f a s i n g l e S e - S e b o n d [ 2 8 - 2 9 ] w h i l e t h e i n t r a - m o l e c u l a r S e - S e d i s t a n c e ( i . e . S e ( 1 ) - S e ( 2 ) ) o f 2 . 8 4 7 ( 5 ) i s s i g n i fi e a n t l y s h o r t e r t h a n t h e i r v a n d e r W a a l s 2 1 2 c o n t a c t ( i . e . 4 . 0 0 A ) [ 3 0 ] . T h i s i n d i c a t e s t h a t t h e v a l e n c e e l e c t r o n s i n t h e S c a t o m s a r e m o r e o r l e s s d e l o c a l i z e d a m o n g t h e s e f o u r S e a t o m s . T h e s a m e s t r u c t u r a l f e a t u r e h a s a l s o b e e n o b s e r v e d i n t h e s u l f u r a n a l o g [ 2 6 ] . I t a p p e a r s t h a t S e ( 1 ) a n d S e ( 2 ) f o r m a p a r t i a l b o n d b y r e m o v a l o f e l e c t r o n d e n s i t y f r o m t h e s e a t o m s a n d t r a n s f e r t o t h e S e ( 1 ) - S e ( 1 ) b o n d a n d t o t h e C O l i g a n d s . S e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s a r e s u m m a r i z e d i n T a b l e 5 - 1 0 . T a b l e 5 - 1 0 . S e l e c t e d G e o m e t r i c D a t a f o r ( P h 4 P ) 2 [ { F e 2 S e ( C O ) 6 } 2 ( S e 2 ) ] ( 5 - 3 ) b B o n d D i s t a n c e s ( A ) F e ( 1 ) - F e ( 2 ) 2 . 5 5 5 ( 6 ) S e ( 1 ) - S e ( l ) 2 . 4 6 7 ( 7 ) F e ( l ) - S e ( 2 ) 2 . 4 1 5 ( 5 ) F e ( 2 ) - S e ( 1 ) 2 . 3 5 8 ( 5 ) F e ( l ) - S e ( 1 ) 2 . 3 5 4 ( 5 ) F e ( 2 ) - S e ( 2 ) 2 . 4 1 7 ( 5 ) F e - S e ( m e a n ) 2 . 3 8 6 ( 1 7 ) F e - C ( m e a n ) 1 . 8 0 ( 1 ) S e ( 1 ) - - - S e ( 2 ) 2 . 8 4 7 ( 5 ) B o n d A n g l e s ( d e g ) F e ( 1 ) - S e ( 1 ) - F e ( 2 ) 6 5 . 7 ( 2 ) F e ( 1 ) - S e ( 2 ) - F e ( 2 ) 6 3 . 8 ( 2 ) S e ( 1 ) - S e ( 1 ) - F e ( 1 ) 1 0 7 . 1 ( 2 ) S e ( l ) - S e ( 1 ) - F e ( 2 ) 1 0 9 . 2 ( 2 ) S e ( 1 ) - F e ( 1 ) - S e ( 2 ) 7 3 . 3 ( 2 ) S e ( 1 ) - F e ( 2 ) - S e ( 2 ) 7 3 . 2 ( 2 ) S e ( 1 ) - F e ( 1 ) - C ( 1 ) ' 9 4 ( 1 ) S e ( l ) - F e ( 1 ) - C ( 2 ) ' 1 5 6 ( 1 ) S e ( l ) - F e ( 1 ) - C ( 3 ) ' 9 8 . 5 ( 9 ) S e ( 1 ) - F e ( 2 ) - C ( 4 ) ' 1 0 4 . 0 ( 8 ) S e ( 1 ) - F e ( 2 ) - C ( 5 ) ' 1 5 1 ( 1 ) S e ( 1 ) - F e ( 2 ) - C ( 6 ) ' 9 6 . 1 ( 9 ) S e ( 2 ) - F e ( 1 ) - C ( l ) ' 1 1 2 ( 1 ) S e ( 2 ) - F e ( 1 ) - C ( 2 ) ' 8 4 ( 1 ) 2 1 3 T a b l e 5 . 1 0 . @ o n t ' d ) B o n d A n g l e s ( d e g ) S e ( 2 ) - F e ( 1 ) - C ( 3 ) ' 1 5 1 ( 1 ) S e ( 2 ) - F e ( 2 ) - C ( 4 ) ' 1 0 1 ( 1 ) S e ( 2 ) - F e ( 2 ) - C ( 5 ) ' 8 7 ( 1 ) S e ( 2 ) - F e ( 2 ) - C ( 6 ) ' 1 6 1 ( 1 ) F e ( 2 ) - F e ( 1 ) - C ( 1 ) ' 1 1 2 ( 1 ) F e ( 2 ) - F e ( 1 ) - C ( 2 ) ' 8 4 ( 1 ) F e ( 2 ) - F e ( 1 ) - C ( 3 ) ' 1 5 1 ( 1 ) F e ( 1 ) - F e ( 2 ) - C ( 4 ) ' 1 5 3 . 8 ( 9 ) F e ( l ) - F e ( 2 ) - C ( 5 ) ' 9 5 ( 1 ) F e ( 1 ) - F e ( 2 ) - C ( 6 ) ' 1 0 3 . 5 ( 9 ) C ( l ) ' - F e ( 1 ) - C ( 2 ) ' 1 0 2 ( 1 ) C ( 1 ) ' - F e ( 1 ) - C ( 3 ) ' 9 6 ( 1 ) C ( 2 ) ' - F e ( 1 ) - C ( 3 ) ' 9 8 ( 1 ) C ( 4 ) ' — F e ( 2 ) - C ( 5 ) ' 1 0 0 ( 1 ) C ( 4 ) ' - F e ( 2 ) - C ( 6 ) ' 9 6 ( 1 ) C ( 5 ) ' - F e ( 2 ) - C ( 6 ) ' 9 7 ( 1 ) C ( 4 ) ' - F e ( 2 ) - C @ ) ' 9 6 ( 1 ) C ( 5 ) ' - F e ( 2 ) - C ( 6 ) ' 9 7 ( 1 ) b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n o l = { £ n ( l n - l ) 2 / n ( n - 1 ) } 1 ’ 2 , w h e r e 1 1 1 i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . 2 1 4 F i g u r e 5 - 8 T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ { F e 2 S e ( C O ) 6 } 2 ( S e 2 ) ] ( S t u ' e o v i e w ) “ . ’ Q 1 ( ) 4 1 o ' ' ) ) n o i n A ' 2 ] ) 2 e S ( 2 } 6 ) O C ( e S 2 e F { [ e h t f o e r u t c u r t S e 4 ( C e ) h l T e F ( e F . ) ) 5 . 2 ( 1 ( 3 . e ( S ) " 5 1 ( 0 . 9 5 e r u g i F ’ l l 0 1 2 ) C a r L 2 1 5 ) 2 ) ) 5 ( 2 . 1 0 0 ) 5 ( ( 0 ) 2 e ‘ ( S 8 ' m C 1 ‘ ' w ) e ) l e 1 ( F ( C F 0 8 , ( ‘ " I ‘ ° I ( . ) 6 ) 3 ( 6 ( C 0 ) 6 ( 0 ) “ 1 f . S 0 ‘ ' V " ‘ - C . 8 8 ° “ ) 6 ’ a l i k e 6 1 ‘ \ 4 F i g u r e 5 - 1 0 . A D i f f e r e n t V i e w o f t h e [ { F e z S e ( C O ) 6 } 2 ( S e 2 ) ] 2 ‘ A n i o n , S h o w i n g t h e D o u b l e “ B u t t e r fl y ” C o n f o r m a t i o n o f t h e M o l e c u l e 2 1 6 2 1 7 2 . S p e c t r o s c o p i c S t u d i e s F i g u r e 5 1 1 s h o w s t h e s o l i d - s t a t e I R S p e c t r a o f t h e t h r e e c o m p o u n d s i n t h e C O r e g i o n . ( P h 4 P ) 2 [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 ] s h o w s a n o v e r l a p p e d a b s o r p t i o n p a t t e r n i n t h i s r e g i o n , a b r o a d p e a k c e n t e r e d a t 1 9 9 7 c m ' 1 a n d t h r e e s u p e r i m p o s e d p e a k s a t 1 9 6 6 , 1 9 5 7 a n d 1 9 4 8 c m ‘ l . F o u r b r o a d b a n d s a r e i d e n t i fi a b l e f o r ( P h 4 P ) 2 [ { F e 4 T e 4 ( C 0 ) 1 0 } 2 ( T 6 2 ) ] a t 2 0 1 3 , 1 9 6 8 , 1 9 1 2 a n d 1 9 0 0 c m ‘ l , w h i l e ( P h 4 P ) 2 [ { F e z S e ( C O ) 6 } 2 ( S e 2 ) ] g i v e s t h r e e a b s o r p t i o n s a t 2 0 2 0 , 1 9 8 4 a n d 1 9 3 9 c m ‘ l . F i g u r e 5 ' 1 2 - 5 - 1 3 s h o w t h e f a r I R s p e c t r a o f t h e t h r e e c o m p o u n d s . ( P h 4 P ) 2 [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 ] s h o w s t w o s t r o n g a b s o r p t i o n s a t 1 8 8 a n d 1 7 5 c m ' l , a m e d i u m a b s o r p t i o n a t 2 2 8 c m ' l , a n d a w e a k a b s o r p t i o n a t 1 6 4 c m ] . I n t h e s p e c t r u m o f ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 0 } 2 ( T e 2 ) ] , t h r e e w e a k b a n d s a r e o b s e r v e d a t 2 0 9 ( w ) , 1 5 1 ( m ) a n d 1 4 0 ( m ) c m ‘ l , w h i l e ( P h 4 P ) 2 [ { F e 2 8 e ( C O ) 6 } 2 ( S e 2 ) ] g i v e s f o u r a b s o r p t i o n s a t 2 4 3 ( m ) , 2 2 4 ( w ) , 2 0 6 ( w ) a n d 1 9 8 ( w ) c m ' l . T h e a s s i g n m e n t o f t h e s e f a r - I R p e a k s i s g i v e n i n t h e n e x t s e c t i o n . T h e U V / v i s s p e c t r a o f ( P h 4 P ) 2 [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 ] a n d ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 o } 2 ( T e 2 ) ] i n D M F s o l u t i o n a r e b o t h f e a t u r e l e s s , w h i l e ( P h 4 P ) 2 [ { F e 2 S e ( C O ) 5 } 2 ( S e 2 ) ] i n t h e s a m e s o l u t i o n s h o w s a p l a t e a u i n t h e r e g i o n 3 0 0 t o 3 8 5 n m ( F i g u r e s 5 1 4 ) . T h e 7 7 S e N M R s p e c t r u m o f ( 5 - 3 ) i n D M F g a v e t w o p e a k s a t 4 5 0 a n d - 3 2 p p m , a s s h o w n i n F i g u r e 5 - 1 5 , a n d i s c o n s i s t e n t w i t h t w o t y p e s o f S e l i g a n d s p r e s e n t i n t h i s c l u s t e r . H o w e v e r , n o u n a m b i g u o u s a s s i g n m e n t o f t h e p e a k s c a n b e g i v e n b a s e d o n t h e r e s o n a n c e f r e q u e n c i e s . 3 . T h e r m a l D e c o m p o s i t i o n F i g u r e 5 1 6 s h o w s t h e T G A d i a g r a m s o f c o m p o u n d s ( 5 - 1 ) - ( 5 - 3 ) i n t h e t e m p e r a t u r e r a n g e o f 2 5 t o 8 0 0 ° C . F o r a l l c o m p o u n d s , t h e w e i g h t l o s s c o n t i n u e s b e y o n d 2 1 8 8 0 0 ° C . A l t h o u g h a w e l l — d e f m e d p l a t e a u c a n b e f o u n d i n e a c h d i a g r a m , t h e r e s i d u a l w e i g h t d o e s n o t s u g g e s t a s i m p l e b i n a r y m e t a l c h a l c o g e n i d e . I n s t e a d , s u c h a n i n t e r m e d i a t e m a y c o n t a i n c a r b o n a s w e l l . H E B M U N L V R N s a u e l l l N S N e u l 2 1 9 7 . 2 4 0 3 9 7 0 7 2 1 5 5 9 2 0 3 9 7 2 1 5 1 3 8 N ” 2 1 1 9 1 9 7 1 1 ~ 7 6 2 9 “ ” 5 1 6 — 8 1 1 1 6 3 3 9 - 5 1 7 9 1 1 F i g u r e 5 - 1 1 . T h e S o l i d - S t a t e 1 R S p e c t r a i n t h e C O R e g i o n f o r ( A ) ( P h 4 P ) 2 [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 ] , ( B ) ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 o } 2 ( T e 2 ) ] a n d ( C ) ( P h 4 P ) 2 I { F c 2 8 e ( C m 6 } 2 ( S e 2 ) l E C M T T I H S N R H T X ” ? T I M 2 2 2 0 J 2 0 9 2 5 2 2 2 7 2 1 6 2 6 5 l § i 1 6 3 1 7 2 1 6 1 1 5 0 u n v e u u n a r a F i g u r e 5 - 1 2 . T h e S o l i d - S t a t e F a r I R S p e c t r u m o f ( P h 4 P ) 2 [ R u 5 ( T e 2 ) 7 ( C O ) 1 2 ] 5 2 3 3 6 0 2 7 5 2 3 6 ’ 2 2 5 ’ 2 6 0 1 7 3 1 8 5 ’ 1 2 3 n a m e F i g u r e 5 - 1 3 . T h e S o l i d - S t a t e F a r I R S p e c t r u m f o r ( — ) ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 o } 2 ( T e 2 ) ] a n d ( - . . ) ( P h 4 P ) 2 [ { F e 2 $ e ( C 0 ) 6 } 2 ( S e 2 ) l 0 0 F 8 M D n i ] ) z e S ( 2 } 6 ) O C ( e S Q e fi 0 ' 0 m 6 n F , H { l 2 ) P T 4 G h P N ( E L E V A W 0 1 0 4 f o m u r t c e p S s i v / V U e h T . 4 1 - 5 e r u g i F 0 0 2 S B A 2 2 1 O 9 I 1 F M D n i l ) 2 e S ( 2 } 6 ) O C ( e 8 2 e F t l 2 ) P 4 h P ( f o m u r t c e p S R M N e S 7 7 e h T . 5 1 - 5 e r u g i F I n 0 0 ) C ( 8 d r I j T I I A 0 a 1 l 0 7 l L z 0 J 0 e z 6 s L l 0 1 h o 0 5 O l l C C m 0 l I T ; _ - - - j - T w — fi I 0 0 8 j r 0 1 0 7 1 0 0 1 6 I l I I l 0 p 4 m u 1 . e F T { 0 1 0 3 4 0 J 0 l 2 ) P 4 h P ( 2 l J ) ) B Z 0 ( C 1 0 1 S j ( 1 1 0 I 2 1 2 } I ) 0 1 1 5 . l 0 C ) 0 6 ( 0 C 5 5 0 C 0 5 7 0 2 l . . 6 1 ( 1 2 0 n 1 9 7 3 4 m e T 1 0 0 1 3 ) 2 e e S T Z ( C 6 F U { R [ [ 2 2 ) ) P ° 0 3 ° 0 4 P 7 h 4 h P P ( ( 1 l ° l 0 1 I I — 1 I r — ' I f v l 1 0 1 0 2 1 0 1 0 r 1 6 ) F 1 5 A ( ° f r l 0 0 o 0 0 0 0 0 0 0 1 0 9 7 6 5 4 3 0 1 1 3 5 l l C ° l L 0 p s m a r g 4 m a 1 e i T d 0 l 0 3 r 0 1 0 2 l 0 l 0 1 0 0 0 0 0 0 2 0 1 1 8 4 2 A G T e h T 6 1 5 e r u g i F 8 0 ( A ) V V r I r r r fi v r r r y r v 1 1 1 1 A a n d ; L a n a v v u — r 1 1 v A A A L L A I J Z M 3 6 M 6 0 2 2 3 R u 3 ( C O ) 1 2 + 5 N a 2 T e / 2 ( P h 4 P ) 2 [ R U 6 ( T e o ) 7 ( C O ) 1 2 ] e q . ( S - l ) 2 2 4 I V . D i s c u s s i o n T h e o n e - s t e p a s s e m b l y o f t h r e e t r a n s i t i o n m e t a l c a r b o n y l p o l y c h a l c o g e n i d e c l u s t e r s i s r e a d i l y a c c o m p l i s h e d t h r o u g h o x i d a t i v e d e c a r b o n y l a t i o n o f F e ( C O ) 5 b y N a z Q z ( Q = T e o r S e ) u n d e r h y d r o ( m e t h a n o ) t h e r m a 1 c o n d i t i o n s : H 2 0 , 1 1 0 “ C f o r 6 5 h ? 6 P h 4 P C l , s e a l e d t u b e F B ( C 0 ) 5 ( 6 X C C S S ) + N 3 2 T € > 2 m a g m a " , ( P h 4 P l a l t F e 4 T e u c 0 ) t o m e / 2 ) ] e q . ( 5 - 2 ) F e ( C O ) 5 ( e x c e s s ) + N a a s e a “ $ 1 8 3 , 1 1 3 ? ( P h 4 P ) 2 [ { F 0 2 $ e ( C 0 ) 6 } 2 ( S € a ) l e q . ( 5 - 3 ) T h e m o s t i n t r i g u i n g f e a t u r e o f t h e s e r e a c t i o n s i s t h e c o n c o m i t a n t g r o w t h o f s i n g l e c r y s t a l s o f t h e p r o d u c t s . U n d e r h y d r o ( s o l v o ) t h e r m a l c o n d i t i o n s t h e c h e m i c a l r e a c t i o n i s c o m b i n e d w i t h a t r a n s p o r t p r o c e s s . T h e l a t t e r c a n f a c i l i t a t e c r y s t a l l i z a t i o n o f t h e r e a c t i o n p r o d u c t . G e n e r a l l y , b o t h s o l u b i l i t y a n d c r y s t a l l i z a t i o n p r o c e s s o f a h y d r o t h e r m a l r e a c t i o n a r e i m p r o v e d b y t h e p r e s e n c e o f a c o m p l e x i n g a g e n t - a " m i n e r a l i z e r " i n g e o l o g i c a l t e r m i n o l o g y . I n t h e t h e a b o v e r e a c t i o n s , d i c h a l c o g e n i d e l i g a n d s a c t a s r e a g e n t s a s w e l l a s T h e u l t i m a t e m o l a r r a t i o o f t h e r e a c t a n t s i n e a c h s y n t h e s i s w a s d e t e r m i n e d b y o p t i m i z i n g t h e s y n t h e t i c y i e l d , a n d / o r b y a v o i d i n g t h e f o r m a t i o n o f p o l y c h a l c o g e n i d e / e l e m e n t a l c h a l c o g e n c r y s t a l s . I n t h e s y n t h e t i c r e a c t i o n s t h a t i n v o l v e N 2 2 S e 2 , H 2 0 i s f o u n d t o c a u s e d e c o m p o s i t i o n o f t h e l i g a n d , a f f o r d i n g s i n g l e c r y s t a l s o f e l e m e n t a l s e l e n i u m . T h e u s e o f M e O H g a v e s a t i s f a c t o r y r e s u l t 2 2 5 T h e ( P h 4 P ) 2 [ R u 5 ( T e 2 ) 7 ( C O ) 1 2 ] h a s s o f a r p r o v e n t o b e i n a c c e s s i b l e b y c o n v e n t i o n a l s o l u t i o n r e a c t i o n s . A t t e m p t s t o s y n t h e s i z e [ R u 5 ( T e 2 ) 7 ( C O ) 1 2 1 2 ' b y r e a c t i n g R u 3 ( C 0 ) 1 2 o r ( P h 3 P ) 2 R u ( C O ) 2 C 1 2 w i t h N a z T e x ( X = 2 o r 4 ) i n n o n - a q u e o u s s o l u t i o n s ( i . e . D M F o r C H 3 C N ) a t a m b i e n t t e m p e r a t u r e s y i e l d e d [ R u ( C O ) 2 ( T e 4 ) 2 ] 7 - ‘ , i s o m o r p h o u s t o [ R u ( C O ) 2 ( S e 4 ) 2 ] 2 ’ [ 3 1 ] . R e c e n t l y , K o l i s a n d c o - w o r k e r s h a v e s u c c e s s f u l l y s y n t h e s i z e d ( P h 4 P ) 2 [ { F e 4 T e 4 ( C O ) 1 o } 2 ( T e 2 ) ] t h r o u g h a s o l u t i o n r e a c t i o n [ 3 2 ] . T h e ( P h 4 P ) 2 [ { F e 2 8 e ( C O ) 6 } 2 ( S e 2 ) ] m a y a l s o b e a c c e s s i b l e b y c o n v e n t i o n a l s o l u t i o n r e a c t i o n s i n l i g h t t h a t i t s s u l f u r a n a l o g u e h a s b e e n d o n e s o b y A v e r i l l e t a l [ 2 6 ] . T h e s i g n i fi e a n c e o f o u r s y n t h e t i c d i s c o v e r i e s l i e s i n t h e m e t h o d o l o g y i t s e l f . I n a d d i t i o n , i t d o e s p r o v i d e a n i n t e r e s t i n g a l t e r n a t i v e f o r m a k i n g t h e s e t w o c o m p o u n d s . F o r a l o n g t i m e , t h e h y d r o ( m e t h a n o ) t h e r m a 1 t e c h n i q u e h a s b e e n p e r c e i v e d t o b e u n s u i t a b l e f o r t h e s y n t h e s e s o f c o m p o u n d s c o n t a i n i n g t r a n s i t i o n m e t a l e a r b o n y l s , p r e s u m a b l y , s u c h a p r o c e s s w i l l b e h i n d e r e d b y e i t h e r t h e p o o r t h e r m a l s t a b i l i t y o f m e t a l c a r b o n y l s , o r t h e l o w s o l u b i l i t y o f b o t h r e a c t a n t s a n d p r o d u c t s i n H 2 0 o r M e O H . T h r o u g h t h e s u c c e s s f u l s y n t h e s e s o f t h e s e c o m p o u n d s , w e h a v e p r o v e n t h e a p p l i c a b i l i t y o f t h e h y d r o ( m e t h a n o ) t h e r r n a l t e c h n i q u e t o t h e p r e p a r a t i o n o f i n o r g a n i c c o m p o u n d s i n v o l v i n g o r g a n o m e t a l l i c m o l e c u l e s . T h e s t r u c t u r e o f [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 ] 2 ' i s p e c u l i a r i n t h a t i t s c e n t r a l { R u 6 ( T e 2 ) 7 } 2 ' c o r e i s r e m i n i s c e n t o f a n e x c i s e d f r a g m e n t o f t h e R u T e z p y r i t e - t y p e l a t t i c e . T h e m i d - p o i n t o f t h e c e n t r a l T e 2 2 ‘ u n i t i n [ R u 5 ( T e 2 ) 7 ( C O ) 1 2 ] 2 ' i s s i t u a t e d a t t h e o c t a h e d r a l c e n t e r w i t h s i x R u a t o m s b e i n g i t s n e i g h b o r s . T h i s i s e x a c t l y t h e s a m e e n v i r o n m e n t f o r t h e T e 2 2 ' u n i t s f o u n d i n p y r i t e [ 3 3 ] . I t i s t e m p t i n g t o c o n j e c t u r e t h a t i f f u r t h e r a g g r e g a t i o n t a k e s p l a c e t o f o r m t h e p y r i t e s t r u c t u r e , t h i s c l u s t e r c o r e c o u l d b e a c t i n g a s t h e n u c l e u s f o r c r y s t a l l i t e g r o w t h . T h e c l o s e r e s e m b l a n c e o f t h i s c l u s t e r c o r e t o t h e c o r r e s p o n d i n g p y r i t e s o l i d - s t a t e l a t t i c e i m p o s e s a n u n p r e c e d e n t e d b o n d i n g f e a t u r e o n t h e c e n t r a l d i t e l l m i d e T e z z ' w h i c h h a s n o t b e e n f o u n d i n a n y m o l e c u l a r s p e c i e s c o n t a i n i n g e i t h e r 8 2 2 ' o r S e z z ' l i g a n d s [ 3 4 - 3 5 ] . T h e o n l y e x a m p l e w h i c h c a n b e c i t e d f o r c o m p a r i s o n i s [ W 5 ( T e 2 ) 4 ( C O ) 1 3 1 2 1 3 6 ] , w h e r e t h e 2 2 6 t e l l u r i u m a t o m s i n t h e c e n t e r T e z z ' e a c h b i n d t o t h r e e m e t a l a t o m s . H o w e v e r , t h e s i x t u n g s t e n a t o m s a r e i n t r i g o n a l p r i s m a t i c a r r a n g e m e n t d u e t o t h e W - W m e t a l b o n d s , w h i c h c o n s t r a i n s t h e W 3 T e - T e W 3 f r a g m e n t t o a n e c l i p s e c o n f o r m a t i o n . T h e 1 1 3 - t y p e b r i d g i n g m o d e o f t h e s i x p e r i p h e r a l T e 2 2 ' u n i t s i n [ R u 6 ( T e 2 ) 7 ( C O ) 1 2 1 2 ' i s n o t k n o w n f o r p o l y t e l l u r i d e s [ 3 7 ] . T h u s f a r , t h e m a j o r i t y o f t h e [ F e 4 Q 4 ( X ) 4 ] n ’ ( Q = S , S e a n d T e ) c u b a n e s f o u n d i n t h e l i t e r a t u r e a r e m i x e d - v a l e n t w i t h e x t e n s i v e M - M b o n d i n g i n t h e F e 4 Q 4 c o r e s [ 2 2 , 2 5 ] . T h e r e f o r e , t h e f o r m a l o x i d a t i o n s t a t e o f i r o n a t o m s i s o f t e n a n o n - i n t e g r a l v a l u e b e t w e e n 2 a d ? ! a n d 3 . D a h l a n d c o — w o r k e r s s h o w e d t h a t w h e n t h e n i t r o s y l c l u s t e r s [ F e 4 Q 4 ( N O ) 4 ] ( Q = S , S e ) w e r e r e a c t e d w i t h C O t o f o r m [ F e 4 Q 4 ( C O ) 1 2 ] ( Q = S , S e ) , t h e F e - F e d i s t a n c e s e x p a n d e d f r o m 2 . 6 5 A t o 3 . 4 7 A ( f o r Q = S ) , o r 2 . 7 1 A t o 3 . 6 2 A ( f o r Q = S e ) [ 3 8 ] . T h i s w a s i n a c c o r d a n c e w i t h t h e a n a l y s i s o f t h e q u a l i t a t i v e M O ' s o f c u b a n e - l i k e F e 4 Q 4 c l u s t e r s ( Q = S , , S e a n d T e ) , w h i c h h a d p r e d i c t e d t h a t i f t h e 6 0 c n i t r o s y l c u b a n e c l u s t e r w a s t o e x p a n d t o a 7 2 e c l u s t e r , t h e a d d i t i o n a l 1 2 v a l e n c e e l e c t r o n s w o u l d h a v e t o o c c u p y t h e s i x e m p t y t e t r a - i r o n a n t i b o n d i n g M O ' s ( i . e . t 1 + t 2 ) o f t h e c l u s t e r , r e s u l t i n g i n c o m p l e t e b r e a k a g e o f t h e M - M b o n d i n g [ 3 9 ] . A s i m i l a r a r g u m e n t a p p l i e s i n ( 5 - 2 ) . E l i m i n a t i o n o f t h e m e t a l - m e t a l b o n d i n g i n ( 5 2 ) l i b e r a t e s t h e t w o c u b a n e s f r o m s e v e r e d i s t o r t i o n . I t h a s b e e n s h o w n t h a t t h e F e 2 Q 2 ( Q = S o r S e ) u n i t i s a f u n d a m e n t a l b u i l d i n g b l o c k t o a l a r g e f a m i l y o f i r o n - s u l f u r ( - s e l e n i u m ) c l u s t e r s [ 4 0 ] , w h e r e t h e F e 2 Q 2 r h o m b c a n b e e i t h e r p l a n a r o r n o n - p l a n a r . H o w e v e r , w h e n t w o i r o n a t o m s a r e e a c h c o o r d i n a t e d b y t h r e e C O g r o u p s a n d t w o r i g - t y p e b r i d g i n g l i g a n d s a c t i n g o v e r a l l a s 3 - e l e c t r o n d o n o r s , t h e m o l e c u l e w i l l i n v a r i a b l y a d o p t a " b u t t e r fl y " c o n f o r m a t i o n w i t h a n F e - F e s i n g l e b o n d [ 4 1 ] . T h i s s a l i e n t f e a t u r e h a s b e e n m a n i f e s t e d b y a v a r i e t y o f s t r u c t u r a l l y r e l a t e d c o m p o u n d s c o n t a i n i n g a r n i d o , p h o s p h i d o a n d t h i o l a t o l i g a n d s [ 4 2 ] . I n v i e w o f i t s e l e c t r o n i c s t r u c t u r e , t h e { F e 2 8 e ( C O ) 6 } 2 ( S e 2 ) ] 2 ' m o l e c u l e a p p a r e n t l y f a l l s i n t o t h i s c a t e g o r y . I t i s w a r d r w h i l e t o n o t e t h a t t h e i r o n - t e l l u r i u m c l u s t e r [ F e 2 ( ' l ‘ e ) ( T e 2 ) ( C O ) 5 ] 2 ‘ a l s o b e l o n g s t o t h i s g r o u p [ 4 3 ] . 2 2 7 T h e u n u s u a l T e 2 2 ' a c t s a s a u z - n l - l i g a n d w h i c h b r i d g e s t w o i r o n c e n t e r s u s i n g o n e t e l l u r i u m a t o m w h i l e a n o t h e r t e l l u r i u m a t o m a s s u m e s a t e r m i n a l p o s i t i o n . T h i s m o l e c u l e h a s a " b u t t e r fl y " s t r u c t u r e t o o . T h e s o l i d - s t a t e I R s p e c t r a o f t h e s e c o m p o u n d s a l l s h o w e d o v e r l a p p e d a b s o r p t i o n p a t t e r n s i n t h e C O r e g i o n b e e a u s e t h e y a r e c o m p l i c a t e d b y t h e o v e r l a p o f t h e C O a b s o r p t i o n s f r o m d i f f e r e n t m e t a l c e n t e r s i n t h e c r y s t a l l a t t i c e . H o w e v e r , t h e o v e r a l l p a t t e r n o f e a c h s p e c t r u m i s v e r y c h a r a c t e r i s t i c o f t h e c o m p o u n d a n d t h e a b s o r p t i o n e n e r g i e s a r e c o n s i s t e n t w i t h t h e t e r m i n a l l i g a t i o n f o r a l l C O g r o u p s . I n t h e f a r I R r e g i o n , t h r e e a b s o r p t i o n s a t 1 8 8 , 1 7 5 , 1 6 4 c m ' 1 f o r ( 5 - 1 ) , a n d a w e a k a b s o r p t i o n a t 2 0 9 ( w , b a n d t r i p l e t ) c m ' 1 f o r ( 5 - 2 ) , a r e t e n t a t i v e l y a s s i g n e d t o t h e T e - T e s t r e t c h i n g v i b r a t i o n s . T h e s i m i l a r a s s i g n m e n t h a s a l s o b e e n m a d e b e f o r e f o r o t h e r p o l y t e l l u r i d e c o m p o u n d s , i . e . v T e . T e = 2 0 0 c m ' 1 f o r ( P h 4 P ) 2 [ P d ( ' l ‘ e 4 ) 2 l - D M F [ 4 4 ] a n d V T e — T e = 1 8 8 c m " 1 f o r ( P h 4 P ) 2 [ T e 4 ] [ 4 5 ] . T h e p e a k o b s e r v e d a t h i g h e r e n e r g y , i . e . 2 2 8 c m ‘ 1 f o r ( 5 1 ) i s a g o o d c a n d i d a t e f o r t h e R u — T e s t r e t c h i n g v i b r a t i o n . H o w e v e r , t w o p e a k s o b s e r v e d a t 1 5 1 a n d 1 4 0 c m ' 1 f o r ( 5 2 ) c a n n o t b e i n t e r p r e t e d . T h e w e a k a b s o r p t i o n a t 2 4 3 c m ‘ 1 f o r ( 5 3 ) c a n b e a s s i g n e d t o t h e S e - S e s t r e t c h i n g v i b r a t i o n , f o r e x a m p l e , [ F e 2 8 e 1 2 1 2 ' ( v s e . s e = 2 5 8 c m ' 1 ) [ 4 6 ] , [ S n S e 1 2 1 2 ' ( v s e . s e = 2 7 3 a n d 2 5 6 c m ' 1 ) [ 4 7 ] , [ A n g e y P l ' ( v s e - s e = 2 6 5 c m ' 1 ) [ 4 8 ] , [ S e x ] 2 ' ( x = 2 - 6 , v w s e = 2 8 5 c m ' 1 ) [ 4 9 ] a n d c y c l o - S e 6 ( v s e - s e = 2 5 3 c m ' 1 ) [ 5 0 ] . S i m i l a r l y , t h r e e w e a k a b s o r p t i o n s f o r ( 5 3 ) a t 2 2 4 , 2 0 6 a n d 1 9 8 c m ' 1 c a n n o t b e a s s i g n e d . I n c o n c l u s i o n , t h r e e m e t a l c a r b o n y l c h a l c o g e n i d e c l u s t e r s h a v e b e e n m a d e h y d r o ( m e t h a n o ) t h e r m a l l y . T h e s u c c e s s f u l s y n t h e s i s o f t h e s e c l u s t e r s i l l u s t r a t e s t h e a p p l i c a b i l i t y o f t h e h y d r o t h e r m a l t e c h n i q u e t o t h e p r e p a r a t i o n o f i n o r g a n i c c o m p o u n d s i n v o l v i n g o r g a n o m e t a l l i c m o l e c u l e s . T h e r e a c t i o n s r e p o r w d h e r e a r e u n e x p e c t e d i n t w o w a y s : ( a ) t r a d i t i o n a l l y , w a t e r a n d m e t h a n o l a r e b e l i e v e d t o b e p o o r s o l v e n t s f o r m e t a l c a r b o n y l s a t a m b i e n t t e m p e r a t u r e s a n d t h u s u n d e s i r a b l e f o r c h e m i c a l r e a c t i o n s , ( b ) i n g e n e r a l P h 4 P + s a l t s o f i n o r g a n i c c l u s t e r s a r e a l s o i n s o l u b l e i n w a t e r o r m e t h a n o l . T h u s , w e 2 2 8 d e m o n s t r a t e f o r t h e fi r s t t i m e , t h a t w i t h t h e a l t e r e d s o l v e n t b e h a v i o r o f w a t e r o r m e t h a n o l a t s u p e r h e a t e d c o n d i t i o n s a n d i n t h e p r e s e n c e o f a l k a l i p o l y c h a l c o g e n i d e s , t h e d i s a d v a n t a g e o f i n s u f fi c i e n t s o l u b i l i t y o f m e t a l c a r b o n y l s a n d P h 4 P + s a l t s c a n b e o v e r c o m e . T h i s m a y p r o v e t o b e s i g n i fi c a n t a s i t o p e n s u p a n e w d i m e n s i o n i n s y n t h e t i c o r g a n o m e t a l l i c r e s e a r c h . S u c h a m e t h o d m a y c r e a t e n e w e x c i t i n g s y n t h e t i c o p p o r t u n i t i e s f o r o r g a n o m e t a l l i c - m a i n g r o u p c o m p o u n d s . A p p l i c a t i o n s o f t h i s t e c h n i q u e t o o r g a n o m e t a l l i c s y n t h e s i s s h o u l d b y n o m e a n s b e l i m i t e d t o m e t a l c a r b o n y l s [ S 1 ] . 2 2 9 R E F E R E N C E S H y d r o t h e r m a l c o n d i t i o n s h a v e a l s o b e e n u s e d t o p r e p a r e d m e t a l m o n o c h a l c o g e n i d e s , s e e ( a ) W . S . S h e l d r i c k , Z A n o r g . A l l g . C h e m , 5 6 2 ( 1 9 8 8 ) , 2 3 - 3 0 . ( b ) W . S . S h e l d r i c k a n d H . - J . H a u s e r , Z . A n o r g . A l l g . C h e m , 5 5 7 ( 1 9 8 8 ) , 9 8 - 1 0 4 . ( c ) W . S . S h e l d r i c k a n d H . - J . H a u s e r , Z . A n o r g . A l l g . C h e m , 5 5 7 ( 1 9 8 8 ) , 1 0 5 - 1 1 1 . ( ( 1 ) W . S . S h e l d r i c k a n d J . K a u b , Z A n o r g . A l l g . C h e m , 5 3 5 ( 1 9 8 6 ) , 1 7 9 - 1 8 5 . ( e ) J . B . P a r i s e , S c i e n c e , 2 5 1 ( 1 9 9 1 ) , 2 9 3 - 2 9 4 . ( f ) J . B . P a r i s e , J . C h e m S o c . , C h e m . C o m m u n , ( 1 9 9 0 ) , 1 5 5 3 - 1 5 5 4 . J . - H . L i a o a n d M . G . K a n a t z i d i s , J . A m C h e m S o c . , 1 1 2 ( 1 9 9 0 ) , 7 4 0 0 - 7 4 0 2 . ( a ) J . - H . L i a o a n d M . G . K a n a t z i d i s , I n o r g . C h e m , 3 1 ( 1 9 9 2 ) , 4 3 1 - 4 3 9 . ( b ) J . — H . L i a o , L . H i l l a n d M . G . K a n a t z i d i s , s u b m i t t e d t o I n o r g . C h e m ( c ) J . - H . L i a o a n d M . G . K a n a t z i d i s , m a n u s c r i p t i n p r e p a r a t i o n . S e e , f o r e x a m p l e : ( a ) C o m p r e h e n s i v e O r g a n o m e t a l l i c C h e m i s t r y , V o l . 6 , C h a p t e r 4 1 - 4 3 , p 8 7 9 - 1 0 4 3 , G . W i l k i n s o n , F . G . A . S t o n e , E . A b e l , E d s , P e r g a m o n , O x f o r d , E n g l a n d , 1 9 8 2 . ( b ) H . V a h r e n k a m p , A d v . O r g a n o m e t . C h e m , 2 2 ( 1 9 8 3 ) , 1 6 9 - 2 0 8 . W . A . H e r r m a n n , A n g e w . C h e m I n t . E d . E n g l . , 2 5 ( 1 9 8 6 ) , 5 6 7 6 . K . H . W h i t m i r e , J . C o o r d . C h e m , 1 7 ( 1 9 8 8 ) , 9 5 - 2 0 3 . ( a ) H . V a h r e n k a m p , A n g e w . C h e m I n t . E d . E n g l . , 1 4 ( 1 9 7 5 ) , 3 2 2 - 3 2 9 . ( b ) R . D . A d a m s , P o l y h e d r o n , 4 ( 1 9 8 5 ) , 2 0 0 3 - 2 0 2 5 . ( c ) J . W a c h t e r , J . C o o r d . C h e m , 1 5 ( 1 9 8 7 ) , 2 1 9 - 2 3 5 . ( d ) A . M t ’ i l l e r , P o l y h e d r o n , 5 ( 1 9 8 6 ) , 3 2 3 - 3 4 0 . ( e ) J . W a c h t e r , A n g e w . C h e m I n t . E d . E n g l . , 2 8 ( 1 9 8 9 ) , 1 6 1 3 - 1 6 2 6 . 1 0 . 1 1 . 1 2 . 1 3 . 1 4 . 1 5 . 2 3 0 D . F e n s k e , J . O h m e r , J . H a c h g e n e i a n d K . M e r z w e i l e r , A n g e w . C h e m I n t . E d . E n g l . , 2 7 ( 1 9 8 8 ) , 1 2 7 7 - 1 2 9 6 . ( a ) V . W . D a y , D . A . L e s c h a n d T . B . R a u c h f u s s , J . A m C h e m S o c . , 1 0 4 ( 1 9 8 2 ) , 1 2 9 0 - 1 2 9 5 . ( b ) D . A . L e s c h a n d T . B . R a u c h f u s s , I n o r g . C h e m , 2 2 ( 1 9 8 3 ) , 1 8 5 4 - 1 8 5 7 . ( c ) L . E . B o g a n , J r , T . B . R a u c h f u s s a n d A . L . R h e i n g o l d , J . A m . C h e m . S o c . , 1 0 7 ( 1 9 8 5 ) , 3 8 4 3 - 3 8 5 0 . ( a ) P . M a t h u r , I . J . M a v u n k a l a n d V . R u g m i n i , I n o r g . C h e m , 2 8 ( 1 9 8 9 ) , 3 6 1 6 - 3 6 1 8 . ( b ) P . M a t h u r , I . J . M a v u n k a l a n d A . L . R h e i n g o l d , J . C h e m S o c . , C h e m C o m m u n , 1 9 8 9 , 3 8 2 - 3 8 4 . ( c ) P . M a t h u r , B . H . S . T h i m m a p p a a n d A . L . R h e i n g o l d , I n o r g . C h e m , 2 9 ( 1 9 9 0 ) , 4 6 5 8 - 4 6 6 5 . ( ( 1 ) P . M a t h u r , I . J . M a v u n k a l , V . R u g m i n i a n d M . F . M a h o n , I n o r g . C h e m , 2 9 ( 1 9 9 0 ) , 4 8 3 8 - 4 8 4 0 . F o r r e c e n t e x a m p l e s , s e e ( a ) P . M a t h u r , D . C h a k r a b a r t y , M d . M . H o s s a i n a n d R . S . R a s h i d , J . O r g a n o m e t . C h e m , 4 2 0 ( 1 9 9 1 ) , 7 9 - 8 6 . ( b ) R . D . A d a m s , J . E . B a b i n , J . - G . W a n g a n d W . W u , I n o r g . C h e m , 2 8 ( 1 9 8 9 ) , 7 0 3 - 7 0 9 . ( c ) R . D . A d a m s , J . E . B a b i n , J . E s t r a d a , J . - G . W a n g , M . B . W a n g a n d A . A . L o w , P o l y h e d r o n , 8 ( 1 9 8 9 ) , 1 8 8 5 - 1 8 9 0 . D . D . P e r r i n , W . L . F . A r m a r e g o a n d D . R . P e r r i n , P u r i fi c a t i o n o f L a b o r a t o r y C h e m i c a l s , 2 n d E d . , P e r g a m o n P r e s s , O x f o r d U K , 1 9 8 0 . S e e c h a p t e r 2 . N . W a l k e r a n d D . S t u a r t , A c t a C r y s t a l l o g r . , 3 9 A ( 1 9 8 3 ) , 1 5 8 - 1 6 6 . T E X S A N : S i n g l e C r y s t a l S t r u c t u r e A n a l y s i s S o fi w a r e , V e r s i o n 5 . 0 , M o l e c u l a r S t r u c t u r e C o r p o r a t i o n , T h e W o o d l a n d s , T e x a s . 1 6 . 1 7 . 1 8 . 1 9 . 2 0 . 2 1 . 2 2 . 2 3 . 2 4 . 2 5 . 2 3 1 H . P . K l u g a n d L . E . A l e x a n d e r , X - r a y D i fi ‘ r a c t i o n P r o c e d u r e s f o r P o l y c r y s t a l l i n e a n d A m o r p h o u s M a t e r i a l s , J o h n W i l e y a n d S o n s , N e w Y o r k , 1 9 7 4 . D . K . S m i t h , M . C . N i c h o l s a n d M . E . Z o l e n s k y , P O W D I O : A F o r t r a n I V P r o g r a m 1 h r C a l c u l a t i n g X - r a y P o w d e r D r fi ' r a t i o n P a t t e r n s , V e r s i o n 1 0 , P e n n s y l v a n i a S t a t e U n i v e r s i t y , 1 9 8 3 . H . D . L u t z , M . J u n g a n d G . W a s c h e n b a c h , Z . A n o r g . A l l g . C h e m , 5 5 4 ( 1 9 8 7 ) , 8 7 - 9 1 . M . D i V a i r a , M . P e r u z z i n i a n d P . S t o p p i o n i , A n g e w . C h e m I n t . E d . E n g l . , 2 6 ( 1 9 8 7 ) , 9 1 6 - 9 1 7 . B . W . E i c h h o r n , R . C . H a u s h a l t e r , F . A . C o t t o n a n d B . W i l s o n , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 4 0 8 4 - 4 0 8 5 . P . M a t h u r , B . H . S . T h i m m a p p a a n d A . L . R h e i n g o l d , I n o r g . C h e m , 2 9 ( 1 9 9 0 ) , 4 6 5 8 - 4 6 6 5 . ( a ) J . M . B e r g a n d R . H . H o l m i n I r o n - S u l fi l r P r o t e i n s , C h a p t e r 1 , T . G . S p i r o , E d . , J o h n W i l e y a n d S o n s , I n c . , N e w Y o r k , 1 9 8 2 . ( b ) B . K r e b s , G . H e n k e l , A n g e w . C h e m I n t . E d . E n g l . , 3 0 ( 1 9 9 1 ) , 7 6 9 - 7 8 8 . M . D i V a i r a , M . P e r u z z i n i a n d P . S t o p p i o n i , A n g e w . C h e m I n t . E d . E n g l . , 2 6 ( 1 9 8 7 ) , 9 1 6 - 9 1 7 . R . C . H a u s h a l t e r , A n g e w . C h e m I n t . E d . E n g l . , 2 4 ( 1 9 8 5 ) , 4 3 3 - 4 3 5 . ( a ) W . B r o n g e r , M . K i m p e l a n d D . S c h m i t z , A n g e w . C h e m I n t . E d . E n g l . , 2 1 ( 1 9 8 2 ) , 5 4 4 - 5 4 5 . ( b ) W . S i m o n , A . W i l k , B K r e b s a n d G . H e n k e l , A n g e w . 2 6 . 2 7 . 2 8 . 2 9 . 3 0 . 3 1 . 3 2 . 3 3 . 3 4 . 3 5 . 2 3 2 C h e m I n t . E d . E n g l . , 2 6 ( 1 9 8 7 ) , 1 0 0 9 - 1 0 1 0 . ( c ) G . H e n k e l , W . S i m o n a n d B . K r e b s , Z K r i s t a l l o g r . , 1 8 6 ( 1 9 8 9 ) , 1 2 5 - 1 2 7 . K . S . R o s e , E . S i n n , B . A . A v e r i l l , O r g a n o m e t a l l i c s s , 3 ( 1 9 8 4 ) , 1 1 2 6 - 1 1 2 8 . C . F . C a m p a n a , F . Y . - K . L o a n d L . F . D a h l , I n o r g . C h e m , 1 8 ( 1 9 7 9 ) , 3 0 6 0 — 3 0 6 4 . S . - P . H u a n g a n d M . G . K a n a t z i d i s , I n o r g . C h e m , 3 0 ( 1 9 9 1 ) , 3 5 7 2 - 3 5 7 5 . ( a ) M . G . K a n a t z i d i s , C o m m e n t s I n o r g . C h e m , 1 0 ( 1 9 9 0 ) , 1 6 1 - 1 9 5 . ( b ) M . A . A n s a r i a n d J . A . I b e r s , C o o r d . C h e m R e v . , 1 0 0 ( 1 9 9 0 ) , 2 2 3 - 2 6 6 . L . P a u l i n g , T h e N a t u r e o f t h e C h e m i c a l B o n d , 2 n d E d , C o r n e l l U n i v e r s i t y P r e s s , I t h a c a , N e w Y o r k , 1 9 6 0 , p 2 6 0 . S e e c h a p t e r 3 . L . A . R o o f , W . T . P e n n i n g t o n a n d J . W . K o l i s , A n g e w . C h e m . I n t . E d . E n g l . , 3 1 ( 1 9 9 2 ) , 9 1 3 - 9 1 9 1 5 . A . F . W e l l s , S t r u c t u r a l I n o r g a n i c C h e m i s t r y , 5 t h E d . , C l a r e n d o n P r e s s , O x f o r d U K , 1 9 8 4 , p 7 5 8 - 7 5 9 . ( a ) M . D r a g a n j a c a n d T . B . R a u c h f u s s , A n g e w . C h e m I n t . E d . E n g l . , 2 4 ( 1 9 8 5 ) , 7 4 2 - 7 5 7 . ( b ) A . M i i l l e r , P o l y h e d r o n , 5 ( 1 9 8 6 ) , 3 2 3 - 3 4 0 . ( c ) A . M i i l l e r a n d E . D i e m a n n , A d v . I n o r g . C h e m , 3 1 ( 1 9 8 7 ) , 8 9 - 1 2 2 . ( a ) M . G . K a n a t z i d i s , C o m m e n t s I n o r g . C h e m , 1 0 ( 1 9 9 0 ) , 1 6 1 - 1 9 5 . ( b ) M . A . A n s a r i a n d J . A . I b e r s , C o o r d . C h e m . R e v . , 1 0 0 ( 1 9 9 0 ) , 2 2 3 - 2 6 6 . ( c ) J . W . K o l i s , C o o r d . C h e m R e v . , 1 0 5 ( 1 9 9 0 ) , 1 9 5 - 2 1 9 . i i — F 3 6 . 3 7 . 3 8 . 3 9 . 4 0 . 4 1 . 4 2 . 4 3 . 4 4 . 2 3 3 L . C . R o o f , W . T . P e n n i n g t o n a n d J . W . K o l i s , J . A m C h e m . S o c . , 1 1 2 ( 1 9 9 0 ) , 8 1 7 2 - 8 1 7 4 . T h i s b r i d g i n g m o d e h a s b e e n o b s e r v e d i n s u l f u r a n d s e l e n i u m c h e m i s t r y , s e e ( a ) P . J . V e r g a m i n i a n d G . J . K u b a s , P r o g . I n o r g . C h e m , 2 1 ( 1 9 7 6 ) , 2 6 1 - 2 8 2 . ( b ) V . A . U c h t m a n a n d L . F . D a h l , J . A m C h e m S o c . , 9 1 ( 1 9 6 9 ) , 3 7 5 6 - 3 7 6 3 . ( c ) P . M . F r i t z , W . B e c k , U . N a g e l , K . P o l b o r n , W . A . H e r r m a n n , C . H e c h t a n d J . R o h r m a n n , Z . N a t u r f o r s c h , 4 3 B ( 1 9 8 8 ) , 6 6 5 - 6 7 0 . L . N e l s o n , F . Y . - K . L o , A . D . R a e a n d L . F . D a h l , J . O r g a n o m e t . C h e m , 2 2 5 ( 1 9 8 2 ) , 3 0 9 - 3 2 9 . ( a ) T r i n h - T o a n , P h . D . T h e s i s , U n i v e r s i t y o f W i s c o n s i n - M a d i s o n , 1 9 7 2 . ( b ) B . K . T e o , P h . D . T h e s i s , U n i v e r s i t y o f W i s c o n s i n - M a d i s o n , 1 9 7 3 . ( a ) J . - F . Y o u , B . S . S n y d e r , G . C . P a p a e f t h y m i o u a n d R . H . H o l m , J . A m . C h e m S o c . , 1 1 2 ( 1 9 9 0 ) , 1 0 6 7 - 1 0 7 6 . ( b ) S . - B . Y u , G . C . P a p a e f t h y m i o u a n d R . H . H o l m , I n o r g . C h e m , 3 0 ( 1 9 9 1 ) , 3 4 7 6 - 3 4 8 5 . M . R . A d a m s , J . G a l l u c c i a n d A . W o j c i c k i , I n o r g . C h e m , 3 1 ( 1 9 9 2 ) , 2 - 4 . D . F . S h r i v e r a n d K . H . W h i t r n i r e i n C o m p r e h e n s i v e O r g a n o m e t a l l i c C h e m i s t r y , V o l . 4 , C h a p t e r 3 1 . 1 , p 2 4 3 - 3 2 4 . , G . W i l k i n s o n , F . G . A . S t o n e , E . A b e l , E d s . , P e r g a m o n , O x f o r d , E n g l a n d , 1 9 8 2 . B . W . E i c h h o r n , R . C . H a u s h a l t e r a n d J . S . M e r o l a , I n o r g . C h e m , 2 9 ( 1 9 9 0 ) , 7 2 8 - 7 3 1 . H . W o l k e r s , K . D e h n i c k e , D . F e n s k e , A . K h a s s a n o v a n d S . S . H a f n e r , A c t a C r y s t a l l o g r . , 4 7 C ( 1 9 9 1 ) , 1 6 2 7 - 1 6 3 2 . 4 5 . 4 6 . 4 7 . 4 8 . 4 9 . 5 0 . 5 1 . 2 3 4 J . D i e t z , U . M i i l l e r , V . M i i l l e r a n d K . D e h n i c k e , Z N a t u r f o r s c h . , 4 6 B ( 1 9 9 1 ) , 1 2 9 3 - 1 2 9 9 . H . S t r a s d e i t , B . K r e b s a n d G . H e n k e l , I n o r g . C h i m . A c t a , 8 9 ( 1 9 8 4 ) , L 1 1 - L 1 3 . S . - P . H u a n g , S . D h i n g r a a n d M . G . K a n a t z i d i s , P o l y h e d r o n , 9 ( 1 9 9 0 ) , 1 3 8 9 - 1 3 9 5 . S . - P . H u a n g a n d M . G . K a n a t z i d i s , I n o r g . C h e m , 3 0 ( 1 9 9 1 ) , 1 4 5 5 - 1 4 6 6 . F . W e l l e r , J . A d e l a n d K . D e h n i c k e , Z . A n o r g . A l l g . C h e m , 5 4 8 ( 1 9 8 7 ) , 1 2 5 - 1 3 2 . K . N a g a t a , K . T s h i b a s h i a n d Y . M i y a m o t o , J p n . J . A p p l . P h y s . , 1 9 ( 1 9 8 0 ) , 1 5 6 9 - 1 5 7 3 . S e e c h a p t e r 8 . “ l i i l l l l t l i l l l . } s ’ ! t l l I g l i i l J a { ‘ I ( \ . , . 2 . ~ . 3 3 i 1 . : . 3 2 : ‘ . . : i 0 ‘ fi “ t : I 1 . . . - . . . . c 1 E . 4 . . : . . h u k A J . 3 1 . . ‘ . 4 V _ I . . . a w . . . m . . . . . . fl . . . o y ‘ n V 3 ‘ . , m ‘ l ‘ . . l fi . \ 5 ( i fi . | : } . . . J . . V 3 I $ . - » , 1 . . k . a . n 1 h 3 1 3 fi 1 n . 1 _ 1 . a J A l 4 l § a § a i o b . 4 6 } : o » . . - u m m m m m m m m w l 3 1 2 9 3 — — — _ _ _ ‘ L I B R A R Y M i c h i g a n S t a t e U n i v e r s i t y L . J P L A C E I N R E T U R N B O X t o r e m o v e t h i s c h e c k o u t f r o m y o u r r e c o r d . T O A V O I D F I N E S r e t u r n o n o r b e f o r e d a t e d u e . D A T E D U E D A T E D U E D A T E D U E w l l _ _ J | fl _ _ ] M S U I s A n A f f i r m a t i v e A c t i o n / E q u a l O p p o r t u n i t y I n s t i t u t i o n 7 , 7 « c r e w m a n C H A P T E R 6 M E N T I - I A N O T H E R M A L S Y N T H E S I S O F C H A L C O G E N I D E — C O N T A I N I N G M E T A L C A R B O N Y L C L U S T E R S O F G R O U P 7 E L E M E N T S I . I n t r o d u c t i o n T h r o u g h o x i d a t i v e d e c a r b o n y l a t i o n r e a c t i o n s o f m e t a l c a r b o n y l s b y p o l y c h a l c o g e n i d e l i g a n d s a n ‘ ( Q = S , S e a n d T e ; n = 2 - 6 ) a t h y d r o ( s o l v o ) t h e r m a l c o n d i t i o n s , w e h a v e o p e n e d u p a n e w a v e n u e f o r c l u s t e r c h e m i s t r y o f c h a l c o g e n - c o n t a i n i n g t r a n s i t i o n m e t a l w b o n y l s fl ] . W i t h t h e t e c h n i c a l e x p e r t i s e g a i n e d i n t h e s t u d y o f g r o u p 8 m e t a l c a r b o n y l / p o l y c h a l c o g e n i d e c h e m i s t r y , w e m o v e d o n t o e x p l o r e s i m i l a r s y n t h e t i c o p p o r t u n i t i e s i n g r o u p 7 . C o m p a r e d t o e l e m e n t s i n g r o u p 6 a n d 8 , t h e o r g a n o m e t a l l i c c h e m i s t r y o f g r o u p 7 m e t a l s w i t h p o l y c h a l c o g e n i d e s h a s n o t e n j o y e d e x t e n s i v e d e v e l o p m e n t [ Z - S ] . T h u s f a r , o n l y a f e w C O / C p — c o n t a i n i n g p o l y c h a l c o g e n i d e c o m p l e x e s o f M n o r R e h a v e b e e n d e s c r i b e d i n t h e l i t e r a t u r e . F o r i n s t a n c e , H e r b e r h o l d a n d c o - w o r k e r s o n c e e x p l o r e d t h e r e a c t i v i t y o f C p M ( C O ) 2 ( L ) ( M = M n o r R e ; L = C 0 o r T H F ) w i t h C O Q ( Q = S o r S e ) o r e l e m e n t a l s u l f u r ( s e l e n i u m ) [ 6 - 8 ] . C o m p o u n d s i s o l a t e d f r o m t h e s e r e a c t i o n s a r e o f t e n m o n o m e r s o r d i m e r s c o n t a i n i n g e i t h e r m o n o c h a l o o g e n i d e o r d i c h a l c o g e n i d e l i g a n d s , s u c h a s C p M ( C O ) 2 ( Q 2 ) ( w h e n M = M n , Q = S a n d S e ; w h e n M = R e , Q = S ) [ 6 - 7 ] , C p 2 M 2 ( C O ) 4 ( u - Q ) ( w h e n M = M n , Q = S a n d S e ; w h e n M = R e , Q = S ) [ 6 - 7 ] , s z M n 2 ( C O ) 4 ( u - Q 2 ) ( Q = S a n d S e ) [ 6 - 7 ] a n d s z R e 2 ( C O ) 2 ( u - S z ) ( u - S g ) [ 8 ] . T h e s t r u c t u r e s o f t h e s e c o m p o u n d s c a n b e v i e w e d a s b e i n g f o r m e d b y r e p l a c i n g C 0 g r o u p s i n t h e C p M ( C O ) 3 m o l e c u l e w i t h c h a l o o g e n i d e l i g a n d s a s s h o w n i n t h e f o l l o w i n g s c h e m e : 2 3 5 2 3 6 Q c o @ o 8 ‘ 3 M . \ \ \ \ \ \ Q \ M / \ ‘ M “ ‘ \ ” c o / M \ \ Q ’ \ s l \ C O c o 0 ° c o @ ( u ( H ) ( fi n c o Q 0 0 Q _ _ M / ; K \ ' x f s \ P ‘ R N M o c / M 0 0 c o ‘ 0 ’ ( i v ) ( v ) S c h e m e 6 - 1 . S t r u c t u r e s o f C p M ( C O ) 3 ( i ) , a n d t h e C h a l c o g e n - C o n t a i n i n g C o m p o u n d s D e r i v e d F r o m T h i s M o l e c u l e A s i m i l a r r e a c t i o n b e t w e e n C p R e ( C O ) 2 ( T l - I P ) a n d H z T e ( g e n e r a t e d w i t h A l z T e 3 / H C 1 ) g a v e C p * 2 R e 2 ( C O ) 4 ( T e 2 ) [ 9 ] . T h e s t r u c t u r e o f t h i s c o m p o u n d i s s l i g h t l y d i f f e r e n t f r o m t h a t o f s z M n 2 ( C O ) 4 ( u - Q 2 ) ( Q = S a n d S e ) a s s h o w n b e l o w : C : Q C ‘ / T e \ . “ R e \ / R ? \ e ‘ \ T e 0 0 C O S c h e m e 6 - 2 . T h e S t r u c t u r e o f C p * 2 R e 2 ( C O ) 4 ( T e 2 ) A l a r g e m a n g a n e s e c a r b o n y l d i s u l fi d e c l u s t e r [ M n 4 ( S z ) 2 ( C O ) 1 5 ] w a s p r e p a r e d b y t h e o x i d a t i v e r e m o v a l o f S a n g r o u p s f r o m t h e S - S n M e 3 l i g a n d s i n [ ( C O ) 4 M n ( u - S S n M e 3 ) 2 M n ( C O ) 4 ] b y 1 2 [ 1 0 ] . I t c o n t a i n s f o u r M n ( C O ) x ( x = 3 , 4 o r 5 ) f r a g m e n t s b r i d g e d b y t w o d i s u l fi d e l i g a n d s i n d i f f e r e n t c o o r d i n a t i o n m o d e s ( s e e s e c t i o n i v o f t h i s c h a p t e r ) . R e c e n t l y , K o l i s a n d c o - w o r k e r s h a v e s h o w n t h a t g r o u p 7 m e t a l c a r b o n y l c o m p l e x e s 2 3 7 c o n t a i n i n g l o n g e r p o l y s u l fi d e o r p o l y s e l e n i d e c h a i n s ( i . e . 8 4 2 ' o r 8 e 4 2 ‘ ) c a n b e o b t a i n e d b y o x i d a t i v e d e c a r b o n y l a t i o n o f M 2 ( C O ) 1 o ( M = M n o r R e ) w i t h p o l y c h a l c o g e n i d e s [ 4 , 1 1 - 1 2 ] . T h e c o m p o u n d s ( P h 4 P ) 2 [ M 2 ( Q 4 ) 2 ( C O ) 5 ] ( M = M n o r R e a n d Q = S o r S e ) , p r e p a r e d f r o m t h e c o r r e s p o n d i n g d i m e t a l d e c a c a r b o n y l a n d K z Q x ( Q = S o r S e ; x = 3 o r 4 ) i n D M F , a r e c o m p r i s e d o f t w o M ( C O ) 3 f r a g m e n t s b r i d g e d b y t w o Q 4 ' l i g a n d s ( a l s o s e e s e c t i o n i v o f t h i s c h a p t e r ) . G i v e n t h e s e i n t e r e s t i n g r e s u l t s w e s e t o u t t o i n v e s t i g a t e s i m i l a r r e a c t i v i t y p a t t e r n s u n d e r s u p e r h e a t e d b u t s u b c r i t i c a l h y d r o ( m e t h a n o ) t h e r m a l c o n d i t i o n s . I n t h e m e t h a n o t h e r m a l s y n t h e s i s o f g r o u p 7 m e t a l e a r b o n y l p o l y c h a l c o g e n i d e c o m p l e x e s , w e e n c o u n t e r e d a n u n u s u a l m e t h y l a t i o n r e a c t i o n o f c o o r d i n a t e d c h a l c o g e n i d e l i g a n d s , t h e M e - g r o u p o r i g i n a t i n g m o s t p r o b a b l y f r o m M e O H . R e a c t i o n s o f M n 2 ( C O ) 1 o w i t h N a z Q z ( Q = S , S e a n d T e ) u n d a ' s u p e r - h e a t e d m e t h a n o l ( i . e . a t 8 0 ' C i n a s e a l e d t u b e ) g a v e a s e r i e s o f n o v e l c l u s t e r c o m p o u n d s ( P h a P ) 2 [ M n 3 ( Q 2 ) 2 ( Q R ) ( C O ) 9 ] ( R = H o r C H 3 w h e n Q = S ; R = C H 3 w h e n @ S e a n d T e ) . T h e s e c l u s t e r s c a n b e f u r t h e r t r a n s f o r m e d , u n d e r t h e s a m e c o n d i t i o n s , i n t o d i n u c l e a r m e t h y l c h a l c o g e n i d e c o m p l e x e s ( P h 4 P ) [ M n 2 ( Q C H 3 ) 3 ( C O ) 5 ] . T h e r e a c t i o n o f C p R e ( C O ) 3 w i t h K 2 T e 4 u n d e r t h e s a m e c o n d i t i o n s g a v e ( P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( ' 1 ‘ e C H 3 ) ( C O ) 1 2 ] C H 3 0 H . T h i s c o m p o u n d c o u l d n o t b e t r a n s f o r m e d i n t o t h e c o r r e s p o n d i n g d i m e r i c m e t h y l t e l l u r i d e c o m p o u n d . I n t h i s c h a p t e r w e d e s c r i b e t h e m e t h a n o t h e r m a l s y n t h e s i s , s p e c t r o s c o p i c a n d t h e r m a l c h a r a c t e r i z a t i o n a n d X - r a y s t r u c t u r e s o f n i n e c l u s t e r s : ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] ( 6 4 ) , ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C H 3 ) ( C 0 ) 9 ] ( 6 ' 2 ) , ( P h 4 P ) 2 [ M n 3 ( S e z ) 2 ( S e C H 3 ) ( C 0 ) 9 ] ( 6 ' 3 ) , 0 ! - ( P h 4 P ) 2 [ M n 3 ( T e z ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 ' 4 ) , 5 - ( P h 4 P ) 2 I M n 3 ( T e z ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 ' 5 ) , ( P h 4 P ) 3 [ R e 4 ( T 8 2 ) 3 ( T e C H 3 ) ( C 0 ) 1 2 1 ° C H 3 0 H ( 6 ' 6 ) , ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C 0 ) 6 ] ( 6 ' 7 ) , ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C 0 ) 6 ] ( 6 ' 8 ) a n d ( P 1 1 4 ? ) [ M n 2 ( T e C H 3 ) 3 ( C 0 ) 6 ] ( 6 9 ) . A m o n g t h e m , ( 6 4 ) , ( 6 - 5 ) a n d ( 6 9 ) a r e t h e fi r s t s t r u c t u r a l l y c h a r a c t e r i z e d m a n g a n e s e c a r b o n y l t e l l u r i d e c o m p o u n d s , a n d ( 6 — 6 ) t h e fi r s t s t r u c t u r a l l y c h a r a c t e r i z e d r h m i u m c a r b o n y l p o l y t e l l u r i d e . I I . E x p e r i m e n t a l S e c t i o n 2 3 8 1 . R e a g e n t s C h e m i c a l s i n t h i s w o r k o t h e r t h a n s o l v e n t s w e r e u s e d a s o b t a i n e d : ( i ) s u l f u r p o w d e r , ~ 1 0 0 m e s h , 9 9 . 9 % p r u ' i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I ; ( i i ) s e l e n i u m p o w d e r , ~ 1 0 0 m e s h , 9 9 . 5 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I ; ( i i i ) t e l l u r i u m p o w d e r , ~ 2 0 0 m e s h , 9 9 . 8 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I ; ( i v ) s o d i u m s t i c k s i n k e r o s e n e , 9 9 % p u r i t y , M a l l i n c k r o d t I n c . , P a r i s , K y . ; ( v ) d i m a n g a n e s e d e c a c a r b o n y l , M n 2 ( C O ) 1 o , S t r e m C h e m i c a l s , I n c . , N e w b u r y p o r t , M A ; ( v i ) c y c l o p e n t a d i e n y l r h e n i u m t r i c a r ' b o n y l , C p R e ( C O ) 3 , S t r e m C h e m i c a l s , I n c . , N e w b u r y p o r t , M A ; ( v i i ) t e t r a p h e n y l p h o s p h o n i u m c h l o r i d e , P h 4 P C l , 9 8 % p u r i t y , A l d r i c h C h e n r i c a l C o m p a n y , I n c . , M i l w a u k e e , W I . D i e t h y l e t h e r ( A . C . S . a n h y d r o u s , C o l u m b u s C h e m i c a l I n d u s t r i e s I n c . , C o l u m b u s , W I ) w a s d i s t i l l e d u n d e r a d r y N 2 b l a n k e t a f t e r b e i n g r e fl u x e d w i t h p o t a s s i u m m e t a l , b e n z o p h e n o n e a n d t r i e t h y l e n e g l y c o l d i m e t h y l e t h e r f o r 1 2 h o u r s [ 1 2 ] . M e t h a n o l ( A . C . S . a n h y d r o u s , C o l u m b u s C h e m i c a l I n d u s t r i e s I n c . , C o l u m b u s , W I ) w a s r e fl u x e d f o r 4 - 5 h w i t h m a g n e s i u m m e t h o x i d e ( p r e p a r e d f r o m d r y m a g n e s i u m t u r n i n g s a n d a b s o l u t e m e t h a n o l ) , a n d d i s t i l l e d u n d e r a n i t r o g e n a t m o s p h e r e [ 1 3 ] . 2 . P h y s i c a l M e a s u r e m e n t s S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s , F T - I R , U V / v i s a n d 7 7 S e N M R s p e c t r o s c o p i c s t u d i e s , a n d t h e r m a l g r a v i m e t r i c a n a l y s e s ( T G A ) o f t h e c o m p o u n d s w e r e e a r r i e d o u t a s d e s c r i b e d p r e v i o u s l y [ 1 4 ] . 3 . S y n t h e s e s A l l s y n t h e s e s w e r e e a r r i e d o u t u n d e r a d r y n i t r o g e n a t m o s p h e r e i n a V a c u u m A t m o s p h e r e s D r i - L a b g l o v e b o x . 2 3 9 ( i ) . P r e p a r a t i o n o f N a z S z , K 2 T e 4 , N a z S e z a n d N a z T e z T h e s e m a t e r i a l s w e ' e p r e p a r e d b y r e a c t i n g s t o i c h i o m e t r i c a m o u n t o f c h a l c o g e n a n d a l k a l i m e t a l i n a r o u t i n e p r o c e d u r e u s e d i n t h i s l a b o r a t o r y [ 1 4 ] . ( i i ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] ( 6 1 ) M e t h o d ( A ) . 4 0 m g ( 0 . 1 m m o l ) M n 2 ( C O ) 1 o , 4 4 m g ( 0 . 4 m m o l ) N a 2 8 2 a n d 2 2 0 m g ( 0 . 6 m m o l ) P h 4 P C l w e r e m i x e d a n d s e a l e d w i t h 0 . 5 m l M e O H i n a 2 5 c m l o n g t h i c k - w a l l e d P y r e x t u b e u n d e r v a c u u m , w h i l e t h e c h a r g e w a s k e p t f r o z e n w i t h l i q u i d N 2 . A f t e r t h e t u b e w a s h e a t e d a t 8 0 0 C f o r 8 h o u r s , s i n g l e c r y s t a l s w e r e f o u n d t o d e p o s i t o n t h e g l a s s w a l l f r o m a y e l l o w s o l u t i o n . W a s h i n g o f t h e r e a c t i o n m i x t u r e w i t h m e t h a n o l a n d d i e t h y l — e t h e r a f f o r d e d a n a l y t i c a l l y p u r e o r a n g e s i n g l e c r y s t a l s o f ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] ( 6 1 ) i n 7 6 % y i e l d . M e t h o d ( B ) . I f 0 . 5 m l E t O H i s u s e d i n p l a c e o f M e O H , t h i s c o m p o u n d c a n a l s o b e p r e p a r e d i n t h e s a m e m a n n e r a s a b o v e i n ~ 4 0 % y i e l d . M i d - I R s p e c t r u m i n t h e C O r e g i o n : 2 0 0 2 ( w ) , 1 9 7 4 ( 3 ) , 1 9 5 3 ( s ) , 1 9 1 3 ( m ) , 1 9 0 0 ( 3 ) , 1 8 7 7 ( s ) , 1 8 5 9 ( s ) a n d 1 8 5 3 ( s ) c m ' l ; U V l v i s s p e c t r u m ( i n C H 3 C N ) : f e a t u r e l e s s ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : M n : S : P = 2 7 : 5 6 : 1 7 . ( i i i ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C H 3 ) ( C O ) 9 ] ( 6 2 ) 4 0 m g ( 0 . 1 m m o l ) M n 2 ( C O ) 1 0 , 9 9 m g ( 0 . 9 m m o l ) N a 2 8 2 a n d 2 2 0 m g ( 0 . 6 m m o l ) P h 4 P C l w e r e m i x e d a n d s e a l e d w i t h 0 . 5 m l M e O H i n a 2 5 c m l o n g t h i c k - w a l l e d P y r e x t u b e u n d e r v a c u u m , w h i l e t h e c h a r g e w a s k e p t f r o z e n w i t h l i q u i d N 2 . A f t e r t h e r e a c t i o n w a s c a r r i e d o u t a t 8 0 ' C f o r 7 0 h o u r s , o r a n g e r e d c r y s t a l s w e r e f o u n d t o d e p o s i t o n t h e g l a s s w a l l . A s m a l l a m o u n t o f y e l l o w p o w d e r w a s a l s o p r e s e n t . A n a l y t i e a l l y p u r e s i n g l e c r y s t a l s o f ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C H 3 ) ( C O ) 9 ] ( 6 - 2 ) w e r e o b t a i n e d i n 6 2 % y i e l d b y w a s h i n g t h e 2 4 0 r e a c t i o n m i x t u r e w i t h m e t h a n o l a n d d i e t h y l - e t h e r , w h i l e t h e p o w d e r w a s r e a d i l y r e m o v e d b y d e c a n t i n g t h e fi r s t t w o w a s h i n g s . M i d - I R s p e c t r u m i n t h e C O r e g i o n : 1 9 9 8 ( w ) , 1 9 6 9 ( 3 ) , 1 9 5 6 ( 3 ) a n d 1 8 8 5 ( 5 ) , 1 8 6 3 ( s ) c m ' l ; U V / v i s s p e c t r u m ( i n C H 3 C N ) : f e a t u r e l e s s ; 1 H N M R ( i n a c e t o n e ) : 2 . 1 6 p p m ( s i n g l e t , 3 H ) ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : M n : S : P = 3 0 : 5 1 : 1 9 . ( i v ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] ( 6 3 ) T h i s c o m p o u n d w a s p r e p a r e d i n a s i m i l a r m a n n e r , e x c e p t t h a t t h e s e a l e d t u b e c o n t a i n e d 4 0 m g ( 0 . 1 m m o l ) M n 2 ( C O ) 1 o , 8 2 m g ( 0 . 4 m m o l ) N a 2 8 e 2 a n d 2 2 0 m g ( 0 . 6 m m o l ) P h 4 P C 1 . T h e r e a c t i o n w a s c a r r i e d o u t a t 8 0 ’ C f o r 4 6 h o u r s . T h e t u b e c o n t a i n e d d a r k b r o w n s i n g l e c r y s t a l s , s o m e b r o w n i s h p o w d e r a n d a r e d d i s h s o l u t i o n . P u r e s i n g l e c r y s t a l s o f ( P h 4 P ) 2 [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] ( 6 3 ) w e r e o b t a i n e d i n 3 8 % y i e l d b y w a s h i n g t h e r e a c t i o n m i x t u r e w i t h m e t h a n o l a n d d i e t h y l — e t h e r . M i d - I R s p e c t r u m i n t h e C O r e g i o n : 1 9 6 0 ( s ) , 1 9 0 6 ( m ) , 1 8 9 4 ( m ) , 1 8 8 5 ( m ) a n d 1 8 6 4 ( s ) c m ' l ; U V / v i s s p e c t r u m ( i n C H 3 C N ) : f e a t u r e l e s s ; 1 H N M R ( i n a c e t o n e ) : 2 . 0 0 p p m ( s i n g l e t , 3 H ) ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : M n : S e : P = 2 7 : 4 7 : 2 6 . ( v ) . P r e p a r a t i o n o f a - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] ( 6 - 4 ) T h i s c o m p o u n d w a s p r e p a r e d i n a s i m i l a r m a n n e r , e x c e p t t h a t t h e s e a l e d t u b e c o n t a i n e d 4 0 m g ( 0 . 1 m m o l ) M n 2 ( C O ) 1 0 , 1 2 0 m g ( 0 . 4 m m o l ) N a z T e z a n d 2 2 0 m g ( 0 . 6 m m o l ) P h 4 P C 1 . A f t e r t h e r e a c t i o n w a s c a r r i e d o u t a t 8 0 ' C f o r 1 4 d a y s , b l a c k c r y s t a l s s e p a r a t e d f r o m a p u r p l e - r e d s o l u t i o n i n t h e t u b e . A n a l y t i c a l l y p u r e s i n g l e c r y s t a l s o f a - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] ( 6 4 ) w e r e o b t a i n e d i n 6 1 % y i e l d b y w a s h i n g t h e r e a c t i o n m i x t u r e w i t h m e t h a n o l a n d d i e t h y l - e t h e r . M i d - I R s p e c t r u m i n t h e C O r e g i o n : 1 9 7 9 ( s h ) , 1 9 4 8 ( 8 ) , 1 8 9 1 ( m ) , 1 8 8 1 ( m ) , 1 8 7 2 ( m ) a n d 1 8 5 7 ( m ) c m ' 1 ; U V l v i s s p e c t r u m ( i n C H 3 C N ) : f e a t r u e l e s s ; 1 H N M R ( i n a c e t o n e ) : 1 . 9 6 p p m ( s i n g l e t , 3 H ) ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : M n : T e : P = 2 8 : 4 8 : 2 4 . 2 4 1 ( v i ) . P r e p a r a t i o n o f B - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] ( 6 - 5 ) T h i s c o m p o u n d w a s p r e p a r e d i n a s i m i l a r m a n n e r , e x c e p t t h a t t h e s e a l e d t u b e c o n t a i n e d 8 0 m g ( 0 . 2 m m o l ) M n 2 ( C O ) 1 o , 1 2 0 m g ( 0 . 4 m m o l ) N a z T e z a n d 2 2 0 m g ( 0 . 6 m m o l ) P h 4 P C l . T h e r e a c t i o n w a s c a r r i e d o u t a t 8 0 ° C f o r 1 0 d a y s . B l a c k s i n g l e c r y s t a l s o f fi - ( P h 4 P ) 2 [ M n 3 ( T 6 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 ‘ 5 ) , a l o n g W i t h “ 5 d P l a t C I B t S 0 1 ’ ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 5 ] ( 6 - 9 ) ( v i d e i n f r a ) i n a w e i g h t p e r c e n t a g e r a t i o o f 6 0 % : 4 0 % ( t o t a l 1 9 2 m g ) , w e r e f o u n d t o b e m i x e d t o g e t h e r a n d s e p a r a t e f r o m a p u r p l e - r e d s o l u t i o n . A f t e r w a s h i n g t h e r e a c t i o n m i x t u r e w i t h m e t h a n o l a n d d i e t h y l - e t h e r , c r y s t a l s o f ( 6 5 ) a n d ( 6 9 ) w e r e s e p a r e t e d f r o m e a c h o t h e r b y h a n d . T h e y i e l d i s e s t i m a t e d 4 9 % f o r ( 6 5 ) , a n d 3 7 % f o r ( 6 9 ) , r e s p e c t i v e l y . T h e a m o u n t o f ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 5 ] c a n b e r e d u c e d b y u s i n g a s h o r t e r r e a c t i o n t i m e , e . g . h e a t i n g b e t w e e n 6 — 8 d a y s r e s u l t e d i n > 9 0 % 0 - ( P h 4 P ) 2 [ l \ r I n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] i n t h e r e a c t i o n m i x t u r e . H o w e v e r , t h e c o m p o u n d t h u s o b t a i n e d w a s m i c r o c r y s t a l l i n e . M i d - I R s p e c t r u m i n t h e C O r e g i o n : 1 9 4 8 ( s ) , 1 8 9 7 ( m ) , 1 8 7 9 ( m ) , 1 8 6 5 ( m ) a n d 1 8 4 3 ( m ) c m ' l ; U V / v i s s p e c t r u m ( i n C H 3 C N ) : f e a t u r e l e s s ; 1 H N M R ( i n a c e t o n e ) : 1 . 9 6 p p m ( s i n g l e t , 3 H ) ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : M n : T e : P = 2 9 z 5 0 z 2 1 . ( v i i ) . P r e p a r a t i o n o f ( P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 ] ° C H 3 O H ( 6 - 6 ) T h i s c o m p o u n d w a s p r e p a r e d i n a s i m i l a r m a n n e r , e x c e p t t h a t t h e s e a l e d t u b e c o n t a i n e d 1 7 m g ( 0 . 0 5 m m o l ) C p R e ( C O ) 3 , 1 1 8 m g ( 0 . 2 m m o l ) K z T e 4 a n d 1 4 6 m g ( 0 . 4 m m o l ) P h 4 P C l . T h e r e a c t i o n w a s c a r r i e d o u t a t 8 0 ‘ C f o r 9 d a y s . D a r k r e d n e e d l e s o f ( P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 ] - C H 3 0 H ( 6 6 ) w e r e f o u n d t o b e m i x e d w i t h b l a c k c r y s t a l s o f ( P h 4 P ) 2 T e 4 , a n d s e p a r a t e f r o m t h e m o t h e r l i q u o r w h i c h r e m a i n e d d a r k r e d . A f t e r w a s h i n g t h e r e a c t i o n m i x t u r e w i t h m e t h a n o l a n d d i e t h y l - e t h e r , t h e t w o p r o d u c t s w e r e e a s i l y s e p a r a t e d b y h a n d . T h e e s t i m a t e d y i e l d f o r ( P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 ] - C H 3 0 H i s 4 6 % . M i d - I R s p e c t r u m i n t h e C O r e g i o n : 2 4 2 1 9 9 6 ( w ) , 1 9 6 9 ( 3 ) , 1 8 8 3 ( s h ) a n d 1 8 6 4 ( m ) c m ' l ; U V l e s p e c t r u m ( i n C H 3 C N ) : 3 6 1 ( 6 . = 1 . 2 7 x 1 0 3 M c m ‘ l ) n m ; 1 H N M R ( i n a c e t o n e ) : 2 . 4 0 p p m ( s i n g l e t , 3 H ) ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : R e : T e : P = 2 4 : 4 8 : 2 8 . ( v i i i ) . P r e p a r a t i o n o f ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 6 ] ( 6 7 ) S e e P r e p a r a t i o n o f ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] ( 6 1 ) . W h e n t h e r e a c t i o n w a s c a r r i e d o u t a t 8 0 ° C f o r 4 8 h o u r s , p a l e y e l l o w s i n g l e c r y s t a l s w e r e s e p a r a t e d f r o m a g r e e n i s h y e l l o w s o l u t i o n . A n a l y t i c a l l y p u r e c r y s t a l s o f ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 5 ] ( 6 7 ) w e r e o b t a i n e d i n 9 0 % y i e l d b y w a s h i n g t h e r e a c t i o n m i x t u r e w i t h m e t h a n o l a n d d i e t h y l - e t h e r . M i d - I R s p e c t r u m i n t h e C O r e g i o n : 2 0 0 1 ( w ) , 1 9 7 7 ( m ) , 1 9 0 3 ( m ) , 1 8 8 2 ( 3 ) a n d 1 8 6 4 ( m ) c m ' l ; U V / v i s s p e c t r u m ( i n C H 3 C N ) : 3 7 9 n m ( b r , s = 2 . 2 9 x 1 0 3 M c m ' l ) a n d 2 8 8 n m ( s h , t - : = 7 . 6 9 x 1 0 3 M c m ‘ l ) ; 1 H N M R ( i n C D C 1 3 ) : 1 . 9 9 p p m ( s i n g l e t , 9 H ) ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : M n : S : P = 3 1 : 5 5 : 1 4 . ( i x ) . P r e p a r a t i o n o f ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 6 ] ( 6 8 ) S e e P r e p a r a t i o n o f ( P h 4 P ) 2 [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] ( 6 3 ) . W h e n t h e r e a c t i o n w a s c a r r i e d o u t a t 8 0 ° C f o r 2 1 d a y s , o r a n g e - r e d s i n g l e c r y s t a l s w e r e s e p a r a t e d f r o m a c o l o r l e s s s o l u t i o n w h i c h c o n t a i n e d a c o n s i d e a b l e a m o u n t o f g r e y a n d p i n k p o w d e r . B y w a s h i n g t h e r e a c t i o n m i x t u r e a n d d e c a n t i n g t h e fi r s t f e w w a s h i n g s w i t h m e t h a n o l , a n a l y t i c a l l y p u r e c r y s t a l s o f ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 5 ] ( 6 8 ) w e e o b t a i n e d i n 4 3 % y i e l d . M i d - I R s p e c t r u m i n t h e C O r e g i o n : 1 9 9 3 ( w ) , 1 9 6 6 ( m ) , 1 8 9 6 ( m ) , 1 8 7 6 ( 3 ) a n d 1 8 5 9 ( m ) c m ' l ; U V / v i s s p e c t r u m ( i n C H 3 C N ) : 3 9 5 n m ( b r , t : = 3 . 1 3 x 1 0 3 M c m ‘ l ) a n d 2 8 9 n m ( s h , e = l . 2 2 x 1 0 4 M c m ‘ l ) ; 1 H N M R ( i n C D C 1 3 ) : 1 . 7 3 p p m ( s i n g l e t , 9 H ) ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : M n : S e : P = 4 1 : 4 6 : 1 3 . ( x i ) . P r e p a r a t i o n o f ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 6 ] ( 6 9 ) 2 4 3 S e e P r e p a r a t i o n o f fi - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 5 ) . T h e y i e l d o f ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 5 ] ( 6 9 ) i n c r e a s e s w i t h t h e r e a c t i o n t i m e . U p t o 2 7 d a y s t h e p r o d u c t i s o l a t e d w a s m a i n l y ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] a l t h o u g h a f e w s i n g l e c r y s t a l s o f B - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] w e r e s t i l l f o u n d . I n t h i s c a s e , t h e p r o d u c t o f ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 5 ] w a s m i c r o c r y s t a l l i n e , a n d a l a r g e a m o u n t o f e l e m e n t a l t e l l u r i u m f o r m e d . T h i s m a k e s t h e s e p a r a t i o n o f ( 6 9 ) f r o m t h e e l e m e n t a l T e v e r y d i f fi c u l t . M i d - I R s p e c t r u m i n t h e C O r e g i o n : 1 9 5 1 ( 3 ) , 1 8 7 5 ( m ) a n d 1 8 6 1 ( m ) c m ‘ l ; U V / v i s s p e c t r u m ( i n C H 3 C N ) : 4 0 4 n m ( s h , s = 2 . 7 4 x 1 0 3 M c m ‘ l ) a n d 2 9 8 n m ( b r s h , e = 1 . 1 3 x 1 0 4 M - c m ' l ) ; 1 H N M R ( i n C D C 1 3 ) : 1 . 3 8 p p m ( s i n g l e t , 9 H ) ; S e m i ~ q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : M n : S : P = 3 2 : 5 1 : 1 7 . 4 . X - r a y D i f f r a c t i o n a n d C r y s t a l l o g r a p h i c S t u d i e s T h e s i n g l e c r y s t a l X - r a y d i f f r a c t i o n s t u d i e s w e r e p e r f o r m e d b y u s i n g e i t h e r a N i c o l e t P 3 f o u r - c i r c l e d i f r a c t o m e t e ' o r a R i g a k u a u t o m a t e d A F C 6 S s i n g l e c r y s t a l d i f f r a c t o m e t e r [ 1 5 - 1 6 ] . T h e c r y s t a l l o g r a p h i c d a t a s e t o f ( 6 7 ) w a s c o l l e c t e d o n t h e N i c o l e t P 3 d i f f r a c t o m e t e r u s i n g a 0 - 2 0 s c a n m o d e . T h e c r y s t a l l o g r a p h i c d a t a s e t s o f ( 6 1 ) — ( 6 6 ) a n d ( 6 8 ) — ( 6 9 ) w e e c o l l e c t e d o n a R i g a k u A F C 6 S f o u r - c i r c l e d i f f r a c t o m e t e r u s i n g 0 0 - 2 0 s c a n t e c h n i q u e s . M o K a r a d i a t i o n w a s u s e d i n t h e d a t a c o l l e c t i o n o f ( 6 1 ) — ( 6 7 ) a n d ( 6 9 ) , w h i l e C u K a r a d i a t i o n w a s u s e d f o r ( 6 8 ) . T h e s t a b i l i t y o f t h e e x p e r i m e n t a l s e t u p a n d c r y s t a l i n t e g r i t y f o r e a c h d a t a c o l l e c t i o n w a s m o n i t o r e d b y m e a s u r i n g t h r e e r e p r e s e n t a t i v e r e fl e c t i o n s p e r i o d i c a l l y . N o s t a t i s t i e a l l y s i g n i fi c a n t c h a n g e o f i n t e n s i t i e s w a s d e t e c t e d f o r t h e s t a n d a r d s . A n e m p i r i e a l a b s o r p t i o n c o r r e c t i o n b a s e d o n t p s c a n s o f t h r e e s t r o n g r e fl e c t i o n s w i t h x ~ 9 0 ° w a s a p p l i e d t o a l l d a t a s e t s . 2 4 4 T h e s t r u c t u r e s w e r e s o l v e d w i t h d i r e c t m e t h o d s a n d r e fi n e d w i t h f u l l - m a t r i x l e a s t s q u a r e s t e c h n i q u e s . D I F A B S c o r r e c t i o n a f t e r i s o t r o p i c r e fi n e m e n t o f a l l a t o m s w a s t h e n a p p l i e d t o a l l d a t a [ 1 7 ] . T h e c a l c u l a t i o n s w e e p e r f o r m e d o n a V A X s t a t i o n 3 1 0 0 c o m p u t e r u s i n g t h e T E X S A N c r y s t a l l o g r a p h i c s o f t w a r e p a c k a g e o f M o l e c u l a r S t r u c t u r e C o r p o r a t i o n [ l 8 ] . T a b l e s 6 1 — 6 3 g i v e c r y s t a l d a t a a n d d e t a i l s f o r s t r u c t u r e a n a l y s i s o f t h e c o m p o u n d s . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d e i t h e r i s o t r o p i c a l l y o r a n i s o t r o p i c a l l y . T h e h y d r o g e n p o s i t i o n s w e r e c a l c u l a t e d b u t n o t r e fi n e d . T h e fi n a l c o o r d i n a t e s a n d a v e r a g e t e m p e r a t u r e f a c t o r s ( B a g ) o f t h e a t o m s i n c o m p o u n d s ( 6 1 ) — ( 6 9 ) a r e g i v e n i n T a b l e s 6 - 4 - 6 1 2 , r e s p e c t i v e l y . F i n a l l y , a l l c o m p o u n d s w e r e e x a m i n e d b y X - r a y p o w d e r d i f f r a c t i o n f o r t h e p u r p o s e o f p h a s e c h a r a c t e r i z a t i o n a n d i d e n t i fi c a t i o n . A D e b y e — S c h e r r e r c a m e r a w a s e m p l o y e d t o r e c o r d t h e X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s . N i - fi l t e r e d C u r a d i a t i o n w a s u s e d . T h e c r y s t a l s w e r e g r o u n d t o fi n e p o w d e r a n d p a c k e d i n t o 0 . 5 m m g l a s s c a p i l l a r i e s w h i c h w e r e s e a l e d a n d m o u n t e d t o t h e s t a n d a r d D e b y e - S c h e r r e r p o w d e r c a m e r a w h i c h h a s a d i a m e t e r o f 1 1 4 . 6 m m ( 1 m m c o r r e s p o n d s t o 1 d e g r e e f o r 2 0 ) . X - r a y s w e r e g e n e r a t e d b y a P h i l l i p s N o r e l c o X R G - 5 0 0 0 X - r a y g e n e r a t o r o p e r a t i n g a t 4 0 k V a n d 2 0 m A . A p p r o x i m a t e l y , a s i x h o u r e x p o s u r e t i m e w a s u s e d . A c c u r a t e d - s p a c i n g s ( A ) o f e a c h c o m p o u n d w e e c a l c u l a t e d f r o m t h e p o w d e r p a t t e r n s r e c o r d e d o n a P h i l l i p s X R G - 3 0 0 0 c o m p u t e r c o n t r o l l e d p o w d e r d i f f r a c t o m e t e r . T o v e r i f y t h e h o m o g e n e i t i e s o f t h e p r o d u c t s , t h e d - s p a c i n g s o b s e r v e d f o r t h e b u l k m a t e r i a l s w e e c o m p a r e d w i t h t h e c a l c u l a t e d d — s p a c i n g s f r o m t h e X - r a y s i n g l e - c r y s t a l s t r u c t u r e a n a l y s i s d a t a . L i s t i n g s o f c a l c u l a t e d a n d o b s e r v e d d — s p a c i n g s ( A ) a l o n g w i t h t h e o b s e r v e d r e l a t i v e d i f f r a c t i o n i n t e n s i t i e s o f t h e s e c o m p o u n d s a r e g i v e n i n T a b l e s 6 1 3 — 6 - 2 0 . 2 4 5 T a b l e 6 1 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f ( P h 4 P ) 2 [ M n 3 ( S 2 ) 2 ( S H ) ( C O ) 9 ] ( 6 1 ) , Q ’ h 4 P l l e n 3 ( S z ) 2 L S C H 3 ) 1 C 0 ) 9 ] ( 6 ' 2 ) , ( P h 4 P ) 2 W n 3 ( 8 6 2 ) 2 ( S e C H 3 ) ( C 0 ) 9 ] ( 6 ' 3 ) c o m p o u n d f o r m u l a a , A b , A c , A o r , d e g 6 , d e g v , d e g Z ; V , A 3 s p a c e 8 1 0 0 1 3 D e a l t » g / 0 m 3 u ( M o K a t ) , c m ” l c r y s t s i z e , m m 2 0 m , d e g T e m p e r a t u r e ( 0 C ) n o . o f d a t a c o l l c d n o . o f d a t a u s e d ( F 0 2 > 3 0 ( F 0 2 ) ) m i n , m a x a b s c o r n o . o f v a r i a b l e s n o . o f a t o m s p e r a s y m u n i t ( i n c l u d i n g H ) fi n a l R l R w , % 6 - 1 C 5 7 H 4 1 0 9 P 2 8 5 M n 3 2 6 . 7 4 1 ( 8 ) 1 6 . 0 5 5 ( 6 ) 1 2 . 9 8 5 ( 4 ) 9 0 . 0 0 9 7 . 0 1 ( 2 ) 9 0 . 0 0 4 , 5 5 3 3 ( 6 ) P 2 1 / a ( # 1 4 ) 1 . 5 1 9 . 4 0 . 0 7 x 0 . 0 8 x 0 . 1 1 4 5 . 1 - 9 6 7 7 3 9 3 7 3 6 0 . 8 4 , 1 . 1 1 3 0 5 1 1 7 6 . 4 / 6 . 2 6 2 C 5 3 H 4 3 0 9 P 2 8 5 M n 3 2 0 . 7 0 ( 1 ) 2 3 . 4 0 ( 1 ) 1 2 . 8 3 7 ( 5 ) 9 1 8 6 ( 4 ) 9 0 5 0 ( 4 ) 6 9 8 4 ( 4 ) 2 , 5 8 3 5 ( 9 ) P - 1 ( # 2 ) 1 . 4 5 8 . 9 0 . 0 9 x 0 . 2 0 x 0 . 2 8 4 5 . 1 2 3 1 2 3 0 9 4 3 9 8 0 . 8 1 , 1 . 1 1 8 0 7 2 4 0 9 . 2 / 1 1 . 5 6 ° 3 C 5 8 H 4 3 0 9 P 2 8 6 5 M n 3 1 1 . 0 8 9 ( 6 ) 2 9 . 8 4 4 ( 8 ) 1 8 . 1 2 3 ( 5 ) 9 0 . 0 0 9 5 . 8 0 ( 3 ) 9 0 . 0 0 4 , 5 9 6 6 ( 2 ) P 2 1 / n ( # 1 4 ) 1 . 6 8 3 7 . 3 0 . 0 6 x 0 . 0 6 x 0 . 1 2 4 5 . 0 2 3 7 8 5 2 2 4 1 1 0 . 8 3 , 0 . 9 8 3 4 9 1 2 0 8 . 3 / 9 . 8 2 4 6 T a b l e 6 2 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f a — ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] ( 6 ' 4 ) , B - ( P h 4 P ) 2 [ M n 3 ( T 6 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 ' 5 ) , 1 P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( ' 1 ‘ 6 C H 3 ) 1 C O ) 1 2 1 0 1 3 0 1 4 ( 6 ‘ 6 ) c o m p o u n d f o r m u l a a , A b , A c , A 0 1 , d e g 6 . d e g v , d e g Z ; V , A 3 s p a c e g r o u p D a r e . g l c m 3 1 1 ( M o K 0 1 ) , c m ' l c r y s t s i z e , m m 2 0 “ , “ , d e g T e m p e r a t u r e ( 0 C ) n o . o f d a t a c o l l c d n o . o f d a t a u s e d ( F 0 2 > 3 0 0 : 0 2 ) ) m i n , m a x a b s c o r n o . o f v a r i a b l e s n o . o f a t o m s p e r a s y m u n i t ( i n c l u d i n g H ) fi n a l R / R V L , % 6 - 4 C 5 8 H 4 3 0 9 P 2 T 6 5 M n 3 1 1 . 4 3 7 ( 1 ) 1 2 . 0 0 7 ( 2 ) 2 4 . 3 0 0 ( 3 ) 1 0 3 . 7 2 0 ) 9 7 . 7 4 2 ( 9 ) 1 0 3 . 6 6 0 ) 2 , 3 0 8 5 ( 3 ) P — 1 ( # 2 ) 1 . 8 8 3 0 . 1 0 . 1 8 x 0 . 3 5 x 0 . 5 3 4 5 . 1 2 3 8 5 8 5 5 0 8 1 0 . 8 0 , 1 . 1 8 4 5 4 1 2 0 4 . 2 / 4 . 7 6 - 5 C 5 8 1 1 4 3 0 9 P 2 T 6 5 M n 3 1 2 . 2 8 5 ( 5 ) 2 7 . 5 9 1 ( 6 ) 1 8 . 0 7 6 ( 3 ) 9 0 . 0 0 1 0 0 . 8 6 ( 3 ) 9 0 . 0 0 ‘ 4 , 6 0 1 7 ( 5 ) P 2 1 / n ( # 1 4 ) 1 . 9 3 3 0 . 8 0 . 5 1 x 0 . 5 3 x 0 . 6 5 4 5 . 0 - 1 0 0 7 4 7 9 5 6 6 0 0 . 8 0 , 1 . 1 4 4 5 4 1 2 0 8 . 0 / 1 1 . 4 6 - 6 C 8 6 H 6 6 P 3 0 1 3 T 6 7 R e 4 1 5 . 4 5 4 ( 4 ) 2 2 . 4 0 1 ( 4 ) 1 4 . 8 1 0 ( 5 ) 9 5 . 1 7 ( 2 ) l 1 5 4 6 ( 2 ) 8 0 . 1 2 ( 2 ) 2 , 4 5 6 0 ( 2 ) P - 1 ( # 2 ) 2 . 2 1 7 6 . 7 0 . 1 1 x 0 . 1 1 x 0 . 5 0 5 0 . 0 - 9 0 1 6 4 4 8 1 1 3 1 3 0 . 4 3 , 1 . 1 8 5 2 3 1 7 9 6 4 / 8 7 2 4 7 T a b l e 6 3 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 5 ] ( 6 7 ) , ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 6 ] ( 6 8 ) a n d ( P h 4 P ) [ M n 2 ( T e C H 3 1 3 ( C O ) 6 ] ( 6 - 9 ) c o m p o u n d f o r m u l a a , A b , A c , A 0 1 , d e g 6 , d e g 1 ! . d e g z ; v , A 3 s p a c e g r o u p D e a n e . g l c m 3 1 1 , c m ' 1 c r y s t s i z e , m m 2 0 m , d e g T e m p e r a t u r e ( 0 C ) n o . o f d a t a c o l l c d n o . o f d a t a u s e d ( F 0 2 > 3 ° ' ( F 0 2 ) ) m i n , m a x a b s c o r n o . o f v a r i a b l e s n o . o f a t o m s p e r a s y m u n i t ( i n c l u d i n g H ) fi n a l R / R w , % 6 - 7 C 3 3 H 2 9 0 6 P S 3 M I I 2 1 0 . 1 6 2 ( 6 ) 1 1 . 6 6 7 ( 7 ) 1 6 . 6 6 5 ( 9 ) 1 0 7 . 1 5 ( 5 ) 9 2 . 7 5 ( 5 ) 1 1 3 . 4 4 ( 4 ) 2 , 1 7 0 1 ( 4 ) P — l ( # 2 ) 1 . 1 8 9 . 8 ( M o K 0 1 ) 0 . 0 9 x 0 . l 1 x 0 . 3 0 4 5 . 0 0 . 9 1 , 1 . 0 8 2 8 6 7 4 4 . 6 / 5 . 7 6 - 8 C 3 3 H 2 9 0 6 P 8 6 3 M n 2 1 0 . 1 9 2 ( 4 ) 1 1 . 9 3 7 ( 5 ) 1 6 . 8 2 2 ( 4 ) 1 0 7 . 2 4 ( 2 ) 9 3 . 1 6 ( 2 ) 1 1 2 9 2 ( 2 ) 2 , 1 7 6 6 ( 3 ) P — 1 ( # 2 ) ' 1 . 6 9 1 0 2 . 9 ( C u K 0 1 ) 0 . 0 6 x 0 . 0 7 x 0 . l 1 1 1 0 . 1 2 3 4 7 1 0 3 2 8 2 0 . 7 7 , 1 . 3 4 2 8 6 7 4 5 . 8 / 6 . 8 6 ° 9 C 3 3 H 2 9 0 6 P T 6 3 M I 1 2 1 0 . 3 7 5 ( 2 ) 2 6 . 6 2 9 ( 5 ) 1 3 . 1 4 7 ( 2 ) 9 0 . 0 0 9 7 . 9 0 ( 1 ) 9 0 . 0 0 4 , 3 5 9 8 ( 1 ) P 2 1 / c ( # 1 4 ) 1 . 9 3 3 1 . 5 ( M o K 0 1 ) 0 . 0 5 x 0 . 2 3 x 0 . 2 6 4 5 . 0 - 1 0 0 5 1 3 9 3 8 9 2 0 . 7 5 , 1 . 1 9 2 8 6 7 4 3 . 5 / 5 . 5 T a b l e 6 - 4 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] ( 6 1 ) 2 4 8 ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e a , A 2 M n l 0 . 1 1 0 0 7 ( 6 ) 0 . 6 8 6 7 ( 1 ) 0 . 2 7 6 6 ( 1 ) 2 3 8 ( 4 ) M n 2 0 . 0 8 3 6 5 ( 6 ) 0 . 8 6 1 9 ( 1 ) 0 . 0 5 7 3 ( 1 ) 2 4 0 ( 4 ) M n 3 0 . 0 3 9 8 2 ( 6 ) 0 . 9 0 7 4 ( 1 ) 0 . 2 9 5 3 ( 1 ) 2 5 3 ( 4 ) 3 1 0 . 0 5 9 0 ( 1 ) 0 . 7 3 5 0 ( 2 ) 0 . 1 2 7 8 ( 2 ) 2 5 9 ( 6 ) 3 2 0 . 0 3 4 1 ( 1 ) 0 . 7 6 2 2 ( 2 ) 0 . 2 7 0 6 ( 2 ) 2 4 0 ( 6 ) 3 3 0 . 1 1 7 1 ( 1 ) 0 . 9 0 3 1 ( 2 ) 0 . 2 2 5 7 ( 2 ) 2 6 2 ( 6 ) S 4 0 . 1 6 0 7 ( 1 ) 0 . 8 0 7 2 ( 2 ) 0 . 2 9 1 4 ( 2 ) 2 7 6 ( 6 ) 3 5 0 . 0 0 8 0 ( 1 ) 0 . 9 1 4 8 ( 2 ) 0 . 1 1 5 2 ( 2 ) 2 8 0 ( 6 ) P 1 0 . 2 0 9 5 ( 1 ) 0 . 2 1 9 5 ( 2 ) 0 . 2 4 7 3 ( 2 ) 2 2 6 ( 6 ) P 2 0 . 1 2 0 9 ( 1 ) 0 . 6 1 2 2 ( 2 ) 0 . 3 3 2 7 ( 2 ) 2 5 4 ( 6 ) 0 1 0 . 1 4 2 8 ( 3 ) 0 . 6 6 6 5 ( 5 ) 0 . 5 0 1 1 ( 6 ) 3 . 6 ( 2 ) 0 2 0 . 1 9 3 9 ( 3 ) 0 . 5 9 9 0 ( 5 ) 0 . 1 9 8 9 ( 6 ) 4 . 2 ( 2 ) 0 3 0 . 0 5 6 5 ( 3 ) 0 . 5 2 6 3 ( 6 ) 0 . 2 6 9 4 ( 6 ) 5 . 0 ( 2 ) 0 4 0 . 1 1 7 0 ( 3 ) 1 . 0 2 2 5 ( 5 ) 0 . 0 1 8 2 ( 6 ) 4 . 7 ( 2 ) 0 5 0 . 0 4 1 4 ( 3 ) 0 . 8 1 6 0 ( 5 ) 0 . 1 5 4 1 ( 7 ) 4 . 9 ( 2 ) 0 6 0 . 1 7 9 1 ( 3 ) 0 . 7 8 9 2 ( 5 ) 0 . 0 1 0 7 ( 6 ) 4 . 5 ( 2 ) c 7 0 . 0 4 7 0 ( 3 ) 1 . 0 8 8 5 ( 6 ) 0 . 3 1 1 6 ( 6 ) 5 . 0 ( 2 ) 0 8 0 . 0 5 8 8 ( 3 ) 0 . 9 2 2 4 ( 5 ) 0 . 3 7 3 9 ( 6 ) 5 . 0 ( 2 ) ( ) 9 0 . 0 8 8 1 ( 3 ) 0 . 8 8 4 9 ( 6 ) 0 . 5 0 7 8 ( 7 ) 6 . 0 ( 2 ) C 1 0 . 2 5 5 0 ( 4 ) 0 . 3 0 2 4 ( 6 ) 0 . 2 4 3 6 ( 7 ) 1 . 8 ( 2 ) C 2 0 . 2 4 2 3 ( 4 ) 0 . 3 7 7 9 ( 7 ) 0 . 2 0 0 3 ( 8 ) 2 6 ( 2 ) C 3 0 . 2 7 9 0 ( 4 ) 0 . 4 3 8 9 ( 7 ) 0 . 1 9 7 0 ( 8 ) 3 . 4 ( 3 ) C 4 0 . 3 2 8 1 ( 4 ) 0 . 4 2 2 4 ( 7 ) 0 . 2 3 8 1 ( 8 ) 3 . 3 ( 3 ) C 5 0 . 3 4 1 7 ( 4 ) 0 . 3 4 6 1 ( 7 ) 0 . 2 8 0 0 ( 8 ) 3 . 1 ( 2 ) C 6 0 . 3 0 5 1 ( 4 ) 0 . 2 8 5 4 ( 7 ) 0 . 2 8 3 7 ( 8 ) 3 . 0 ( 2 ) C 7 0 . 2 3 1 6 ( 4 ) 0 . 1 3 2 1 ( 6 ) 0 . 1 7 9 0 ( 7 ) 1 . 8 ( 2 ) C 8 0 . 2 1 1 3 ( 4 ) 0 . 0 5 3 4 ( 7 ) 0 . 1 9 0 6 ( 8 ) 3 . 2 ( 3 ) C 9 0 . 2 2 7 3 ( 4 ) 0 . 0 1 4 7 ( 7 ) 0 . 1 3 4 3 ( 9 ) 3 . 4 ( 3 ) C 1 0 0 . 2 6 2 4 ( 4 ) 0 . 0 0 1 1 ( 7 ) 0 . 0 6 7 0 ( 8 ) 2 5 ( 2 ) C 1 1 0 . 2 8 1 0 ( 4 ) 0 . 0 7 6 1 ( 7 ) 0 . 0 5 5 0 ( 8 ) 2 5 ( 2 ) 2 4 9 T a b l e 6 - 4 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 1 2 0 . 2 6 5 5 ( 4 ) 0 . 1 4 3 2 ( 7 ) 0 . 1 0 8 3 ( 8 ) 2 . 5 ( 2 ) C 1 3 0 . 1 4 8 9 ( 4 ) 0 . 2 5 2 5 ( 6 ) 0 . 1 8 7 7 ( 7 ) 2 1 ( 2 ) C 1 4 0 . 1 2 0 1 ( 5 ) 0 . 3 0 7 6 ( 8 ) 0 . 2 3 8 4 ( 9 ) 3 . 7 ( 3 ) C 1 5 0 . 0 7 3 4 ( 5 ) 0 . 3 3 2 9 ( 8 ) 0 . 1 9 2 ( 1 ) 4 . 7 ( 3 ) C 1 6 0 . 0 5 4 1 ( 4 ) 0 . 3 0 3 4 ( 7 ) 0 . 0 9 7 ( 1 ) 3 . 6 ( 3 ) C 1 7 0 . 0 8 0 3 ( 5 ) 0 . 2 4 7 1 ( 9 ) 0 . 0 4 7 ( 1 ) 5 . 0 ( 3 ) C 1 8 0 . 1 2 8 6 ( 4 ) 0 . 2 1 9 1 ( 7 ) 0 . 0 9 3 6 ( 9 ) 3 . 6 ( 3 ) C 1 9 0 . 2 0 2 5 ( 4 ) 0 . 1 9 2 1 ( 6 ) 0 . 3 7 9 8 ( 7 ) 2 . 0 ( 2 ) C 2 0 0 . 1 6 1 9 ( 4 ) 0 . 1 4 0 2 ( 7 ) 0 . 3 9 4 7 ( 8 ) 2 . 5 ( 2 ) C 2 1 0 . 1 5 5 3 ( 4 ) 0 . 1 1 5 3 ( 7 ) 0 . 4 9 5 9 ( 8 ) 2 . 8 ( 2 ) C 2 2 0 . 1 8 9 1 ( 4 ) 0 . 1 4 3 2 ( 7 ) 0 . 5 7 8 3 ( 8 ) 2 . 9 ( 2 ) C 2 3 0 . 2 2 8 4 ( 4 ) 0 . 1 9 4 1 ( 7 ) 0 . 5 6 3 7 ( 8 ) 3 . 1 ( 2 ) C 2 4 0 . 2 3 5 5 ( 4 ) 0 . 2 1 9 7 ( 7 ) 0 . 4 6 3 5 ( 8 ) 2 . 8 ( 2 ) C 2 5 - 0 . 1 0 6 9 ( 4 ) 0 . 5 3 1 0 ( 7 ) 0 . 2 4 6 6 ( 8 ) 2 . 8 ( 2 ) C 2 6 - 0 . 1 1 3 2 ( 4 ) 0 . 4 4 7 8 ( 8 ) 0 . 2 6 9 7 ( 9 ) 3 . 6 ( 3 ) C 2 7 - 0 . 1 0 0 2 ( 5 ) 0 . 3 8 6 2 ( 8 ) 0 . 2 0 2 ( 1 ) 4 . 5 ( 3 ) C 2 8 - 0 . 0 8 0 9 ( 5 ) 0 . 4 0 7 6 ( 8 ) 0 . 1 1 4 ( 1 ) 4 . 6 ( 3 ) C 2 9 ~ 0 . 0 7 5 8 ( 5 ) 0 . 4 8 9 ( 1 ) 0 . 0 8 6 ( 1 ) 5 . 4 ( 3 ) C 3 0 - 0 . 0 8 7 5 ( 5 ) 0 . 5 5 1 7 ( 8 ) 0 . 1 5 6 ( 1 ) 4 . 6 ( 3 ) C 3 1 - 0 . 1 6 4 9 ( 4 ) 0 . 5 7 5 5 ( 7 ) 0 . 4 1 7 2 ( 9 ) 3 . 1 ( 3 ) C 3 2 0 . 1 4 7 8 ( 4 ) 0 . 5 5 7 8 ( 7 ) 0 . 5 1 7 9 ( 9 ) 3 . 5 ( 3 ) C 3 3 — 0 . 1 8 2 1 ( 5 ) 0 . 5 3 1 8 ( 8 ) 0 . 5 8 4 6 ( 9 ) 4 . 1 ( 3 ) C 3 4 - 0 . 2 3 0 4 ( 5 ) 0 . 5 2 4 4 ( 8 ) 0 . 5 5 5 ( 1 ) 4 . 2 ( 3 ) C 3 5 0 . 2 4 8 7 ( 6 ) 0 . 5 4 3 ( 1 ) 0 . 4 5 6 ( 1 ) 7 . 4 ( 4 ) C 3 6 - 0 . 2 1 3 2 ( 6 ) 0 . 5 6 7 ( 1 ) 0 . 3 8 6 ( 1 ) 7 . 2 ( 4 ) C 3 7 - 0 . 0 6 5 2 ( 4 ) 0 . 6 4 2 0 ( 7 ) 0 . 4 1 3 8 ( 7 ) 2 . 3 ( 2 ) C 3 8 0 . 0 6 6 8 ( 4 ) 0 . 7 1 3 3 ( 7 ) 0 . 4 7 6 6 ( 9 ) 3 . 8 ( 3 ) C 3 9 0 . 0 2 4 9 ( 5 ) 0 . 7 3 5 9 ( 8 ) 0 . 5 4 5 ( 1 ) 4 . 3 ( 3 ) C 4 0 0 . 0 1 8 1 ( 5 ) 0 . 6 8 6 6 ( 8 ) 0 . 5 5 1 0 ( 9 ) 3 . 7 ( 3 ) C 4 1 0 . 0 1 8 7 ( 4 ) 0 . 6 1 7 6 ( 7 ) 0 . 4 9 2 8 ( 9 ) 3 . 3 ( 3 ) C 4 2 0 . 0 2 1 6 ( 4 ) 0 . 5 9 4 8 ( 7 ) 0 . 4 2 2 3 ( 8 ) 2 5 ( 2 ) 2 5 0 T a b l e 6 4 . ( c o n t ' d ) a t o m x y z B a h A 2 C 4 3 — 0 . 1 4 3 7 ( 4 ) 0 . 7 0 0 2 ( 6 ) 0 . 2 5 6 4 ( 7 ) 1 . 9 ( 2 ) C 4 4 - 0 . 1 9 3 9 ( 4 ) 0 . 7 0 6 4 ( 7 ) 0 . 2 1 1 4 ( 9 ) 3 . 3 ( 3 ) C 4 5 - 0 . 2 0 8 8 ( 4 ) 0 . 7 7 6 6 ( 7 ) 0 . 1 5 0 7 ( 8 ) 3 . 1 ( 3 ) C 4 6 - 0 . 1 7 6 0 ( 4 ) 0 . 8 3 6 9 ( 7 ) 0 . 1 3 4 5 ( 8 ) 2 . 5 ( 2 ) C 4 7 - 0 . 1 2 6 5 ( 4 ) 0 . 8 3 0 6 ( 7 ) 0 . 1 7 8 7 ( 8 ) 3 . 0 ( 2 ) C 4 8 0 . 1 1 0 1 ( 4 ) 0 . 7 6 1 0 ( 7 ) 0 . 2 3 9 5 ( 8 ) 2 7 ( 2 ) C 4 9 0 . 1 3 0 7 ( 4 ) 0 . 6 7 4 9 ( 7 ) 0 . 4 1 2 5 ( 9 ) 3 . 1 ( 2 ) C 5 0 0 . 1 6 1 7 ( 4 ) 0 . 6 3 5 4 ( 7 ) 0 . 2 3 0 4 ( 8 ) 3 . 1 ( 3 ) C 5 1 0 . 0 7 6 9 ( 4 ) 0 . 5 9 2 7 ( 7 ) 0 . 2 7 0 7 ( 8 ) 3 . 1 ( 2 ) C 5 2 0 . 1 0 2 2 ( 4 ) 0 . 9 5 8 5 ( 8 ) 0 . 0 1 0 0 ( 9 ) 3 . 6 ( 3 ) C 5 3 0 . 0 5 5 9 ( 5 ) 0 . 8 3 3 7 ( 8 ) - 0 . 0 6 8 ( 1 ) 4 . 1 ( 3 ) C 5 4 0 . 1 4 0 6 ( 4 ) 0 . 8 1 7 2 ( 7 ) 0 . 0 3 0 2 ( 8 ) 3 . 2 ( 3 ) C 5 5 0 . 0 4 4 7 ( 4 ) 1 . 0 1 5 8 ( 8 ) 0 . 3 0 6 8 ( 9 ) 3 . 6 ( 3 ) C 5 6 - 0 . 0 1 9 6 ( 5 ) 0 . 9 1 2 4 ( 8 ) 0 . 3 4 0 8 ( 9 ) 3 . 7 ( 3 ) C 5 7 0 . 0 6 8 4 ( 5 ) 0 . 8 9 3 9 ( 8 ) 0 . 4 2 0 ( 1 ) 4 . 0 ( 3 ) a . B e q i s d e fi n e d a s 4 / 3 [ a 2 0 1 1 + b 2 1 3 2 2 + 0 2 1 3 3 3 + a b ( c o s y ) 6 1 2 + a c ( c o s fi ) 5 1 3 + b c ( c o s a ) 6 2 3 1 ] T a b l e 6 5 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C H 3 ) ( C O ) 9 ] 2 5 1 ( 6 2 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e a , A 2 M n l A 0 . 1 1 8 8 ( 3 ) 0 . 6 9 4 7 ( 2 ) 0 . 6 0 2 7 ( 4 ) 4 . 8 ( 4 ) M n 1 3 0 . 3 2 6 1 ( 3 ) 0 . 1 8 2 0 ( 2 ) 0 . 0 0 2 9 ( 4 ) 4 . 5 ( 4 ) M n 2 A 0 . 1 8 1 9 ( 2 ) 0 . 8 2 8 8 ( 2 ) 0 . 5 0 2 9 ( 4 ) 4 . 0 ( 4 ) M n Z B 0 . 3 9 0 1 ( 3 ) 0 . 3 2 4 9 ( 2 ) ~ 0 . 0 2 1 9 ( 4 ) 4 . 1 ( 4 ) M n 3 A 0 . 1 2 7 5 ( 3 ) 0 . 7 4 5 3 ( 2 ) 0 . 3 1 0 1 ( 4 ) 4 . 4 ( 4 ) M n 3 B 0 . 3 7 9 3 ( 3 ) 0 . 2 7 7 4 ( 2 ) 0 . 2 3 1 5 ( 4 ) 4 . 2 ( 4 ) S 1 A 0 . 0 9 3 9 ( 4 ) 0 . 7 9 9 3 ( 4 ) 0 . 5 7 5 8 ( 6 ) 4 . 2 ( 6 ) S I B 0 . 4 1 4 9 ( 4 ) 0 . 2 1 9 0 ( 3 ) - 0 . 0 3 2 3 ( 6 ) 4 . 0 ( 6 ) 3 2 A 0 . 0 6 3 0 ( 4 ) 0 . 7 5 0 6 ( 4 ) 0 . 4 6 2 1 ( 6 ) 4 . 7 ( 7 ) 3 2 1 3 0 . 4 1 2 4 ( 4 ) 0 . 1 9 0 6 ( 4 ) 0 . 1 1 7 8 ( 6 ) 4 . 4 ( 6 ) S 3 A 0 . 2 2 5 1 ( 4 ) 0 . 7 3 1 9 ( 4 ) 0 . 4 1 8 8 ( 7 ) 5 . 1 ( 7 ) 8 3 B 0 . 3 0 5 0 ( 4 ) 0 . 3 3 2 1 ( 3 ) 0 . 1 0 1 4 ( 6 ) 4 . 1 ( 6 ) 8 4 A 0 . 2 2 8 5 ( 4 ) 0 . 6 6 7 7 ( 4 ) 0 . 5 2 5 1 ( 8 ) 5 . 9 ( 7 ) 8 4 3 0 . 2 4 8 5 ( 4 ) 0 . 2 7 8 4 ( 4 ) 0 . 0 4 8 7 ( 7 ) 5 . 0 ( 7 ) 3 5 A 0 . 1 2 2 3 ( 4 ) 0 . 8 4 7 2 ( 4 ) 0 . 3 4 1 1 ( 6 ) 4 . 3 ( 6 ) 8 5 B 0 . 4 5 3 0 ( 4 ) 0 . 3 1 6 6 ( 4 ) 0 . 1 3 7 5 ( 6 ) 4 . 4 ( 6 ) P 1 0 . 5 4 6 8 ( 4 ) 0 . 4 4 1 3 ( 4 ) 0 . 2 9 0 5 ( 6 ) 3 . 5 ( 6 ) P 2 0 . 8 3 2 5 ( 5 ) 0 . 0 5 1 5 ( 4 ) 0 . 9 4 3 9 ( 7 ) 4 . 6 ( 7 ) P 3 0 . 0 5 2 8 ( 5 ) 0 . 4 3 3 1 ( 4 ) 0 . 7 8 6 5 ( 7 ) 4 . 4 ( 7 ) P 4 0 . 3 3 5 4 ( 5 ) 0 . 0 7 4 2 ( 4 ) 0 . 5 1 7 9 ( 7 ) 4 . 6 ( 7 ) 0 1 A 0 . 1 2 0 ( 1 ) 0 . 5 7 0 ( 1 ) 0 . 5 4 7 ( 2 ) 9 ( 2 ) 0 1 3 0 . 2 4 5 ( 1 ) 0 . 1 3 4 ( 1 ) 0 . 1 3 7 ( 2 ) 8 ( 2 ) 0 2 A 0 . 1 9 1 ( 1 ) 0 . 6 6 9 ( 1 ) 0 . 8 0 3 ( 2 ) 9 ( 2 ) 0 2 1 3 0 . 2 4 5 ( 1 ) 0 . 1 9 3 ( 1 ) - 0 . 1 8 7 ( 2 ) 1 1 ( 3 ) 0 3 A 0 . 0 0 8 ( 1 ) 0 . 7 1 6 ( 1 ) 0 . 7 1 9 ( 2 ) 8 ( 2 ) 0 3 8 0 . 4 1 2 ( 1 ) 0 . 0 5 6 ( 1 ) - 0 . 0 5 6 ( 2 ) 9 ( 2 ) 0 4 A 0 . 2 9 4 ( 1 ) 0 . 8 6 4 ( 1 ) 0 . 4 1 2 ( 2 ) 7 ( 2 ) 0 4 1 3 0 . 3 6 5 ( 1 ) 0 . 4 5 4 ( 1 ) 0 . 0 0 8 ( 2 ) 7 ( 2 ) 0 5 A 0 . 1 1 6 ( 1 ) 0 . 9 5 1 ( 1 ) 0 . 5 9 5 ( 2 ) 7 ( 2 ) 0 5 1 3 0 . 5 0 2 ( 1 ) 0 . 3 0 9 ( 1 ) 0 . 1 7 4 ( 2 ) 8 ( 2 ) 2 5 2 T a b l e 6 5 . ( c o n t ' d ) a t o m x y z B e a , A 2 0 6 A 0 . 2 6 1 ( 1 ) 0 . 7 9 3 ( 1 ) 0 . 6 9 6 ( 2 ) 8 ( 2 ) 0 6 3 0 . 2 8 9 ( 1 ) 0 . 3 4 3 ( 1 ) 0 . 1 9 0 ( 2 ) 7 ( 2 ) 0 7 A 0 . 2 0 7 ( 1 ) 0 . 7 3 8 ( 1 ) 0 . 1 2 2 ( 2 ) 9 ( 2 ) 0 7 1 3 0 . 3 2 7 ( 1 ) 0 . 3 8 5 ( 1 ) 0 . 3 7 1 ( 2 ) 8 ( 2 ) 0 8 A 0 . 0 0 1 ( 1 ) 0 . 7 7 7 ( 1 ) 0 . 1 9 8 ( 2 ) 9 ( 2 ) 0 8 8 0 . 4 8 3 ( 1 ) 0 . 2 0 9 ( 1 ) 0 . 3 8 1 ( 2 ) 9 ( 2 ) 0 9 A 0 . 1 5 0 ( 1 ) 0 . 6 1 3 ( 1 ) 0 . 2 9 0 ( 2 ) 9 ( 3 ) 0 9 1 3 0 . 2 7 5 ( 1 ) 0 . 2 3 7 ( 1 ) 0 . 3 2 8 ( 2 ) 7 ( 2 ) C 1 0 . 6 0 4 ( 2 ) 0 . 4 7 5 ( 1 ) 0 . 3 4 1 ( 2 ) 4 . 0 ( 7 ) C 2 0 . 6 2 4 ( 2 ) 0 . 5 1 1 ( 1 ) 0 . 2 7 2 ( 3 ) 6 ( 1 ) C 3 0 . 6 7 0 ( 2 ) 0 . 5 4 1 ( 2 ) 0 . 3 0 6 ( 3 ) 7 ( 1 ) C 4 0 . 6 9 7 ( 2 ) 0 . 5 3 1 ( 2 ) 0 . 4 0 4 ( 3 ) 7 ( 1 ) C 5 0 . 6 7 9 ( 2 ) 0 . 4 9 5 ( 1 ) 0 . 4 6 9 ( 2 ) 4 . 7 ( 8 ) C 6 0 . 6 3 5 ( 1 ) 0 . 4 6 6 ( 1 ) 0 . 4 3 5 ( 2 ) 3 . 4 ( 7 ) C 7 0 . 4 6 1 ( 2 ) 0 . 4 9 8 ( 1 ) 0 . 2 8 0 ( 2 ) 4 . 4 ( 7 ) C 8 0 . 4 5 1 ( 2 ) 0 . 5 5 6 ( 1 ) 0 . 3 1 1 ( 2 ) 4 . 7 ( 8 ) C 9 0 . 3 8 3 ( 2 ) 0 . 6 0 1 ( 1 ) 0 . 3 1 1 ( 2 ) 5 . 6 ( 8 ) C 1 0 0 . 3 3 3 ( 2 ) 0 . 5 7 7 ( 1 ) 0 . 2 7 4 ( 2 ) 4 . 8 ( 8 ) C 1 1 0 . 3 3 9 ( 2 ) 0 . 5 2 4 ( 2 ) 0 . 2 4 1 ( 2 ) 5 . 4 ( 8 ) C 1 2 0 . 4 0 7 ( 1 ) 0 . 4 7 7 ( 1 ) 0 . 2 4 4 ( 2 ) 3 . 3 ( 7 ) C 1 3 0 . 5 8 1 ( 2 ) 0 . 4 1 1 ( 1 ) 0 . 1 6 0 ( 3 ) 5 . 5 ( 8 ) C 1 4 0 . 6 4 9 ( 2 ) 0 . 3 6 5 ( 2 ) 0 . 1 5 5 ( 3 ) 7 ( 1 ) C 1 5 0 . 6 6 9 ( 2 ) 0 . 3 4 4 ( 2 ) 0 . 0 5 6 ( 3 ) 8 ( 1 ) C 1 6 0 . 6 3 3 ( 2 ) 0 . 3 5 7 ( 2 ) - 0 . 0 2 9 ( 3 ) 7 ( 1 ) C 1 7 0 . 5 7 1 ( 2 ) 0 . 4 0 0 ( 1 ) - 0 . 0 2 2 ( 2 ) 5 . 4 ( 8 ) C 1 8 0 . 5 4 0 ( 2 ) 0 . 4 2 9 ( 1 ) 0 . 0 7 4 ( 3 ) 5 . 6 ( 9 ) C 1 9 0 . 5 4 2 ( 2 ) 0 . 3 8 4 ( 1 ) 0 . 3 7 8 ( 2 ) 4 . 5 ( 8 ) C 2 0 0 . 6 0 5 ( 2 ) 0 . 3 3 1 ( 2 ) 0 . 3 9 3 ( 3 ) 6 . 0 ( 9 ) C 2 1 0 . 6 0 4 ( 2 ) 0 . 2 8 9 ( 2 ) 0 . 4 6 2 ( 3 ) 7 ( 1 ) C 2 2 0 . 5 4 2 ( 2 ) 0 . 2 9 6 ( 1 ) 0 . 5 1 8 ( 2 ) 5 0 ( 8 ) C 2 3 0 . 4 8 7 ( 2 ) 0 . 3 4 6 ( 1 ) 0 . 5 0 3 ( 2 ) 4 . 3 ( 7 ) C 2 4 0 . 4 8 9 ( 2 ) 0 . 3 8 9 ( 1 ) 0 . 4 3 3 ( 2 ) 4 . 2 ( 7 ) 2 5 3 T a b l e 6 5 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 2 5 0 . 8 7 0 ( 2 ) 0 . 0 1 4 ( 1 ) 0 . 8 2 5 ( 2 ) 5 0 ( 8 ) C 2 6 0 . 8 3 0 ( 2 ) 0 . 0 2 7 ( 1 ) 0 . 7 3 4 ( 3 ) 6 . 0 ( 9 ) C 2 7 0 . 8 6 6 ( 2 ) - 0 . 0 1 0 ( 2 ) 0 . 6 4 2 ( 3 ) 7 ( 1 ) C 2 8 0 . 9 3 1 ( 2 ) - 0 . 0 4 6 ( 1 ) 0 . 6 5 0 ( 3 ) 7 ( 1 ) C 2 9 0 . 9 7 2 ( 2 ) - 0 . 0 5 5 ( 2 ) 0 . 7 3 6 ( 3 ) 7 ( 1 ) C 3 0 0 . 9 4 0 ( 2 ) - 0 . 0 2 7 ( 2 ) 0 . 8 2 9 ( 3 ) 7 ( 1 ) C 3 1 0 . 8 4 4 ( 1 ) - 0 . 0 0 6 ( 1 ) 1 . 0 3 6 ( 2 ) 4 . 2 ( 7 ) C 3 2 0 . 8 6 7 ( 2 ) — 0 . 0 0 2 ( 1 ) 1 . 1 3 8 ( 3 ) 5 . 4 ( 8 ) C 3 3 0 . 8 7 0 ( 2 ) - 0 . 0 4 9 ( 2 ) 1 . 2 0 5 ( 3 ) 7 ( 1 ) C 3 4 0 . 8 6 2 ( 2 ) - 0 . 1 0 1 ( 1 ) 1 . 1 7 1 ( 3 ) 5 . 6 ( 9 ) C 3 5 0 . 8 4 3 ( 2 ) - 0 . 1 0 4 ( 1 ) 1 . 0 6 9 ( 3 ) 5 . 7 ( 9 ) C 3 6 0 . 8 3 2 ( 2 ) - 0 . 0 5 8 ( 2 ) 1 . 0 0 3 ( 3 ) 6 . 1 ( 9 ) C 3 7 0 . 7 4 1 ( 2 ) 0 . 0 9 3 ( 1 ) 0 . 9 2 7 ( 2 ) 5 . 7 ( 9 ) C 3 8 0 . 7 2 2 ( 2 ) 0 . 1 4 9 ( 2 ) 0 . 8 6 9 ( 3 ) 8 ( 1 ) C 3 9 0 . 6 5 2 ( 2 ) 0 . 1 8 2 ( 2 ) 0 . 8 5 9 ( 3 ) 8 ( 1 ) C 4 0 0 . 6 0 6 ( 2 ) 0 . 1 6 4 ( 2 ) 0 . 9 1 0 ( 3 ) 7 ( 1 ) C 4 1 0 . 6 1 8 ( 2 ) 0 . 1 1 1 ( 2 ) 0 . 9 5 9 ( 3 ) 9 ( 1 ) C 4 2 0 . 6 9 1 ( 2 ) 0 . 0 7 7 ( 1 ) 0 . 9 7 2 ( 2 ) 5 . 4 ( 8 ) C 4 3 0 . 8 7 3 ( 2 ) 0 . 1 0 4 ( 1 ) 0 . 9 9 1 ( 2 ) 4 . 0 ( 7 ) C 4 4 0 . 8 3 5 ( 2 ) 0 . 1 4 3 ( 1 ) 1 . 0 7 6 ( 3 ) 6 . 1 ( 9 ) C 4 5 0 . 8 7 4 ( 2 ) 0 . 1 7 9 ( 2 ) 1 . 1 2 4 ( 3 ) 1 0 ( 1 ) C 4 6 0 . 9 2 8 ( 2 ) 0 . 1 8 2 ( 2 ) 1 . 0 8 1 ( 3 ) 7 ( 1 ) C 4 7 0 . 9 6 0 ( 2 ) 0 . 1 4 8 ( 2 ) 0 . 9 9 8 ( 3 ) 6 ( 1 ) C 4 8 0 . 9 3 0 ( 2 ) 0 . 1 0 9 ( 2 ) 0 . 9 5 1 ( 3 ) 7 ( 1 ) C 4 9 0 . 0 8 4 ( 2 ) 0 . 3 9 0 ( 1 ) 0 . 6 7 3 ( 2 ) 4 . 7 ( 8 ) C 5 0 0 . 0 5 4 ( 3 ) 0 . 3 5 6 ( 3 ) 0 . 6 2 8 ( 4 ) 1 4 ( 2 ) C 5 1 0 . 0 8 0 ( 3 ) 0 . 3 1 7 ( 2 ) 0 . 5 3 4 ( 4 ) 1 3 ( 2 ) C 5 2 0 . 1 3 9 ( 3 ) 0 . 3 1 7 ( 2 ) 0 . 4 9 6 ( 3 ) 1 0 ( 1 ) C 5 3 0 . 1 7 4 ( 2 ) 0 . 3 5 0 ( 2 ) 0 . 5 3 9 ( 4 ) 1 0 ( 1 ) C 5 4 0 . 1 5 1 ( 2 ) 0 . 3 8 4 ( 2 ) 0 . 6 3 4 ( 3 ) 9 ( 1 ) C 5 5 0 . 0 3 6 ( 2 ) 0 . 3 8 5 ( 1 ) 0 . 8 7 5 ( 2 ) 3 . 8 ( 7 ) C 5 6 0 . 0 8 4 ( 2 ) 0 . 3 3 2 ( 2 ) 0 . 9 0 4 ( 3 ) 5 . 9 ( 9 ) 2 5 4 T a b l e 6 5 . ( c o n t ' d ) a t o m x y 2 B e a m A 2 C 5 7 0 . 0 7 4 ( 2 ) 0 . 2 9 1 ( 2 ) 0 . 9 8 0 ( 3 ) 7 ( 1 ) C 5 8 0 . 0 1 4 ( 2 ) 0 . 3 0 8 ( 2 ) 1 . 0 2 4 ( 3 ) 7 ( 1 ) C 5 9 - 0 . 0 4 1 ( 2 ) 0 . 3 6 0 ( 2 ) 0 . 9 9 9 ( 3 ) 7 ( 1 ) C 6 0 - 0 . 0 3 1 ( 2 ) 0 . 3 9 9 ( 1 ) 0 . 9 2 2 ( 2 ) 5 . 9 ( 9 ) C 6 1 - 0 . 0 2 7 ( 1 ) 0 . 4 9 3 ( 1 ) 0 . 7 6 1 ( 2 ) 3 . 7 ( 7 ) C 6 2 - 0 . 0 4 4 ( 2 ) 0 . 5 4 6 ( 2 ) 0 . 8 1 7 ( 3 ) 8 ( 1 ) C 6 3 - 0 . 1 0 1 ( 2 ) 0 . 5 9 6 ( 1 ) 0 . 7 9 9 ( 3 ) 6 . 0 ( 9 ) C 6 4 - 0 . 1 4 9 ( 2 ) 0 . 5 8 4 ( 2 ) 0 . 7 3 8 ( 3 ) 8 ( 1 ) C 6 5 - 0 . 1 3 8 ( 2 ) 0 . 5 3 9 ( 2 ) 0 . 6 7 7 ( 3 ) 9 ( 1 ) C 6 6 - 0 . 0 7 0 ( 2 ) 0 . 4 8 8 ( 2 ) 0 . 6 8 5 ( 3 ) 8 ( 1 ) C 6 7 0 . 1 1 2 ( 1 ) 0 . 4 6 4 ( 1 ) 0 . 8 4 0 ( 2 ) 3 . 5 ( 7 ) C 6 8 0 . 1 4 2 ( 2 ) 0 . 4 4 9 ( 1 ) 0 . 9 3 6 ( 2 ) 5 . 1 ( 8 ) C 6 9 0 . 1 8 8 ( 2 ) 0 . 4 8 7 ( 1 ) 0 . 9 7 5 ( 2 ) 5 . 2 ( 8 ) C 7 0 0 . 2 0 6 ( 2 ) 0 . 5 1 6 ( 1 ) 0 . 9 1 7 ( 3 ) 5 . 9 ( 9 ) C 7 1 0 . 1 7 7 ( 2 ) 0 . 5 3 3 ( 2 ) 0 . 8 2 2 ( 3 ) 7 ( 1 ) C 7 2 0 . 1 2 4 ( 2 ) 0 . 5 0 9 ( 1 ) 0 . 7 8 4 ( 3 ) 6 . 0 ( 9 ) C 7 3 0 . 3 4 1 ( 2 ) 0 . 0 1 3 ( 2 ) 0 . 6 0 2 ( 3 ) 7 ( 1 ) C 7 4 0 . 3 4 5 ( 3 ) 0 . 0 2 1 ( 2 ) 0 . 7 0 3 ( 5 ) 1 3 ( 2 ) C 7 5 0 . 3 4 9 ( 4 ) - 0 . 0 2 8 ( 4 ) 0 . 7 7 5 ( 6 ) 2 1 ( 2 ) C 7 6 0 . 3 5 5 ( 2 ) - 0 . 0 8 2 ( 2 ) 0 . 7 3 0 ( 4 ) 1 0 ( 1 ) C 7 7 0 . 3 5 5 ( 4 ) - 0 . 0 8 6 ( 3 ) 0 . 6 4 5 ( 7 ) 1 9 ( 2 ) C 7 8 0 . 3 5 8 ( 3 ) - 0 . 0 4 3 ( 3 ) 0 . 5 6 5 ( 5 ) 1 6 ( 2 ) C 7 9 0 . 3 6 2 ( 2 ) 0 . 1 3 0 ( 2 ) 0 . 5 7 8 ( 2 ) 5 . 2 ( 8 ) C 8 0 0 . 4 2 6 ( 3 ) 0 . 1 1 4 ( 2 ) 0 . 6 3 1 ( 4 ) 1 2 ( 1 ) C 8 1 0 . 4 5 8 ( 3 ) 0 . 1 4 9 ( 3 ) 0 . 6 7 6 ( 4 ) 1 5 ( 2 ) C 8 2 0 . 4 2 1 ( 3 ) 0 . 2 1 5 ( 2 ) 0 . 6 6 7 ( 4 ) 1 1 ( 1 ) C 8 3 0 . 3 6 1 ( 2 ) 0 . 2 3 2 ( 2 ) 0 . 6 2 5 ( 3 ) 8 ( 1 ) C 8 4 0 . 3 3 7 ( 2 ) 0 . 1 8 9 ( 2 ) 0 . 5 7 6 ( 3 ) 8 ( 1 ) C 8 5 0 . 2 4 8 ( 2 ) 0 . 1 0 9 ( 1 ) 0 . 4 8 8 ( 3 ) 4 . 6 ( 8 ) C 8 6 0 . 1 9 7 ( 3 ) 0 . 1 2 1 ( 2 ) 0 . 5 6 7 ( 3 ) 1 1 ( 1 ) C 8 7 0 . 1 3 2 ( 3 ) 0 . 1 5 0 ( 2 ) 0 . 5 4 2 ( 4 ) 1 1 ( 1 ) C 8 8 0 . 1 1 0 ( 2 ) 0 . 1 6 7 ( 1 ) 0 . 4 4 1 ( 3 ) 6 . 0 4 9 ) 2 5 5 T a b l e 6 - 5 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 8 9 0 . 1 5 7 ( 2 ) 0 . 1 5 6 ( 1 ) 0 . 3 6 6 ( 2 ) 5 . 1 ( 8 ) C 9 0 0 . 2 2 9 ( 2 ) 0 . 1 2 5 ( 1 ) 0 . 3 8 9 ( 3 ) 6 . 0 ( 9 ) C 9 1 0 . 3 8 1 ( 2 ) 0 . 0 5 0 ( 2 ) 0 . 3 9 3 ( 3 ) 5 . 8 ( 9 ) C 9 2 0 . 3 6 5 ( 3 ) 0 . 0 0 2 ( 2 ) 0 . 3 4 2 ( 4 ) 1 4 ( 2 ) C 9 3 0 . 4 0 6 ( 4 ) — 0 . 0 1 9 ( 3 ) 0 . 2 3 8 ( 5 ) 1 7 ( 2 ) C 9 4 0 . 4 3 5 ( 3 ) 0 . 0 1 1 ( 2 ) 0 . 2 0 9 ( 4 ) 1 0 ( 1 ) C 9 5 0 . 4 5 5 ( 2 ) 0 . 0 5 2 ( 2 ) 0 . 2 5 2 ( 4 ) 1 2 ( 1 ) C 9 6 0 . 4 2 9 ( 2 ) 0 . 0 7 3 ( 2 ) 0 . 3 6 5 ( 4 ) 1 1 ( 1 ) C 9 7 A 0 . 1 2 4 ( 2 ) 0 . 6 1 6 ( 1 ) 0 . 5 7 0 ( 2 ) 4 . 3 ( 8 ) C 9 7 3 0 . 2 7 8 ( 2 ) 0 . 1 5 1 ( 1 ) 0 . 0 8 1 ( 2 ) 4 . 0 ( 8 ) C 9 8 A 0 . 1 6 6 ( 2 ) 0 . 6 7 8 ( 2 ) 0 . 7 1 9 ( 3 ) 7 ( 1 ) C 9 8 3 0 . 2 7 9 ( 2 ) 0 . 1 8 8 ( 2 ) - 0 . 1 1 3 ( 3 ) 6 ( 1 ) C 9 9 A 0 . 0 3 8 ( 2 ) 0 . 7 0 9 ( 1 ) 0 . 6 7 3 ( 2 ) 3 . 8 ( 8 ) C 9 9 3 0 . 3 7 6 ( 2 ) 0 . 1 0 8 ( 2 ) - 0 . 0 3 2 ( 3 ) 5 ( 1 ) C 1 0 0 A 0 . 2 4 9 ( 2 ) 0 . 8 5 1 ( 1 ) 0 . 4 4 5 ( 2 ) 3 . 6 ( 7 ) C 1 0 0 3 0 . 3 7 3 ( 2 ) 0 . 4 0 1 ( 2 ) - 0 . 0 1 0 ( 3 ) 7 ( 1 ) C 1 0 1 A 0 . 1 4 5 ( 2 ) 0 . 9 0 2 ( 2 ) 0 . 5 5 9 ( 3 ) 7 ( 1 ) C 1 0 1 3 0 . 4 5 7 ( 2 ) 0 . 3 1 6 ( 1 ) - 0 . 1 1 3 ( 3 ) 5 . 0 ( 9 ) C 1 0 2 A 0 . 2 2 8 ( 2 ) 0 . 8 0 9 ( 1 ) 0 . 6 1 9 ( 3 ) 4 . 3 ( 8 ) C 1 0 2 3 0 . 3 2 7 ( 2 ) 0 . 3 3 3 ( 1 ) - 0 . 1 2 2 ( 3 ) 4 . 5 ( 9 ) C 1 0 3 A 0 . 1 7 8 ( 2 ) 0 . 7 4 0 ( 2 ) 0 . 1 9 5 ( 3 ) 7 ( 1 ) C 1 0 3 3 0 . 3 5 2 ( 2 ) 0 . 3 4 3 ( 2 ) 0 . 3 1 4 ( 3 ) 6 ( 1 ) C 1 0 4 A 0 . 0 5 2 ( 3 ) 0 . 7 6 0 ( 2 ) 0 . 2 3 6 ( 4 ) 1 0 ( 8 ) C 1 0 4 3 0 . 4 5 0 ( 2 ) 0 . 2 3 1 ( 2 ) 0 . 3 1 6 ( 3 ) 5 ( 1 ) C 1 0 5 A 0 . 1 4 1 ( 2 ) 0 . 6 6 8 ( 2 ) 0 . 2 9 7 ( 2 ) 4 . 6 ( 8 ) C 1 0 5 3 0 . 3 1 5 ( 2 ) 0 . 2 5 2 ( 1 ) 0 . 2 8 9 ( 3 ) 4 . 6 ( 8 ) C 1 0 6 A 0 . 0 3 1 ( 2 ) 0 . 8 9 6 ( 2 ) 0 . 3 6 2 ( 3 ) 7 ( 1 ) C 1 0 6 B 0 . 5 4 0 ( 2 ) 0 . 2 5 2 ( 2 ) 0 . 1 3 1 ( 3 ) 8 ( 1 ) a . B e q i s d e fi n e d a s 4 3 0 1 2 5 1 l + b 2 6 2 2 + 0 2 6 3 3 + a b ( c o s v ) 6 1 2 + a c ( c o s fi ) t 3 1 3 + b c ( c o s a ) 6 2 3 T a b l e 6 6 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s 8 f o r ( P h 4 P ) 2 [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] 2 5 6 ( 6 3 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e a , A 2 S e l 0 . 8 4 3 3 ( 4 ) 0 . 0 8 5 1 ( 1 ) 0 . 8 7 7 3 ( 2 ) 3 . 7 ( 2 ) 8 6 2 0 . 6 6 6 4 ( 4 ) 0 . 0 5 9 5 ( 1 ) 0 . 8 0 6 0 ( 2 ) 3 . 6 ( 2 ) S e 3 0 . 8 1 4 0 ( 4 ) 0 . 1 4 8 6 ( 1 ) 0 . 7 2 5 9 ( 2 ) 3 . 5 ( 2 ) S e 4 0 . 6 0 6 3 ( 4 ) 0 . 1 5 3 0 ( 1 ) 0 . 6 8 4 4 ( 2 ) 4 . 0 ( 2 ) 8 6 5 0 . 6 2 3 4 ( 4 ) 0 . 1 7 4 0 ( 1 ) 0 . 8 6 4 2 ( 2 ) 3 . 5 ( 2 ) M n l 0 . 8 5 2 4 ( 6 ) 0 . 0 6 7 8 ( 2 ) 0 . 7 4 3 0 ( 3 ) 3 . 8 ( 4 ) M n 2 0 . 8 4 5 0 ( 6 ) 0 . 1 6 7 2 ( 2 ) 0 . 8 6 0 9 ( 3 ) 3 . 7 ( 3 ) M n 3 0 . 5 0 9 4 ( 5 ) 0 . 1 1 7 5 ( 2 ) 0 . 7 8 4 6 ( 3 ) 3 . 5 ( 3 ) P 1 1 . 0 4 3 ( 1 ) - 0 . 1 5 3 0 ( 4 ) 0 . 5 8 8 9 ( 6 ) 3 . 3 ( 2 ) P 2 0 . 4 7 4 ( 1 ) 0 . 1 0 4 3 ( 4 ) 0 . 1 8 2 4 ( 6 ) 3 . 8 ( 3 ) 0 1 0 . 9 0 7 ( 3 ) - 0 . 0 2 7 ( 1 ) 0 . 7 5 9 ( 2 ) 6 . 2 ( 8 ) 0 2 0 . 7 7 5 ( 4 ) 0 . 0 5 4 ( 1 ) 0 . 5 8 6 ( 2 ) 1 1 ( 1 ) 0 3 1 . 1 0 2 ( 3 ) 0 . 0 7 7 ( 1 ) 0 . 7 2 2 ( 2 ) 9 ( 1 ) 0 4 0 . 8 9 3 ( 3 ) 0 . 1 8 1 ( 1 ) 1 . 0 2 2 ( 2 ) 6 . 5 ( 8 ) 0 5 0 . 8 4 5 ( 2 ) 0 . 2 6 3 9 ( 8 ) 0 . 8 3 7 ( 1 ) 4 . 7 ( 7 ) 0 6 1 . 1 0 4 ( 3 ) 0 . 1 6 0 ( 1 ) 0 . 8 4 5 ( 2 ) 7 . 1 ( 9 ) ( ) 7 0 . 3 9 6 ( 3 ) 0 . 0 7 8 ( 1 ) 0 . 9 0 8 ( 2 ) 6 . 4 ( 8 ) 0 8 0 . 3 2 2 ( 3 ) 0 . 1 8 4 ( 1 ) 0 . 7 6 5 ( 2 ) 5 . 7 ( 7 ) ( ) 9 0 . 3 9 3 ( 3 ) 0 . 0 5 7 ( 1 ) 0 . 6 7 3 ( 2 ) 9 ( 1 ) C 1 1 . 0 8 6 ( 3 ) - 0 . 0 9 7 ( 1 ) 0 . 5 8 5 ( 2 ) 2 . 0 ( 8 ) C 2 1 . 0 0 4 ( 4 ) - 0 . 0 6 2 ( 1 ) 0 . 5 8 8 ( 2 ) 5 ( 1 ) C 3 1 . 0 4 2 ( 5 ) - 0 . 0 1 8 ( 2 ) 0 . 5 9 2 ( 3 ) 8 ( 1 ) C 4 1 . 1 5 9 ( 4 ) - 0 . 0 0 5 ( 1 ) 0 . 5 9 0 ( 2 ) 5 ( 1 ) C 5 1 . 2 4 4 ( 4 ) 0 . 0 4 0 ( 1 ) 0 . 5 8 8 ( 2 ) 5 ( 1 ) C 6 1 . 2 0 9 ( 4 ) - 0 . 0 8 6 ( 1 ) 0 . 5 8 5 ( 2 ) 5 ( 1 ) C 7 1 . 1 6 4 ( 3 ) - 0 . 1 8 9 ( 1 ) 0 . 5 6 4 ( 2 ) 3 . 2 ( 9 ) C 8 1 . 1 7 7 ( 4 ) 0 . 1 9 4 ( 1 ) 0 . 4 8 9 ( 3 ) 6 ( 1 ) C 9 1 . 2 7 3 ( 5 ) - 0 . 2 1 9 ( 2 ) 0 . 4 6 7 ( 3 ) 8 ( 1 ) C 1 0 1 . 3 6 1 ( 5 ) - 0 . 2 3 6 ( 2 ) 0 . 5 2 1 ( 3 ) 9 ( 2 ) C 1 1 1 . 3 4 4 ( 4 ) 0 . 2 2 9 ( 1 ) 0 . 5 9 5 ( 3 ) 5 ( 1 ) 2 5 7 T a b l e 6 6 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 1 2 1 . 2 4 9 ( 4 ) 0 . 2 0 5 ( 1 ) 0 . 6 1 7 ( 2 ) 3 . 3 ( 9 ) C 1 3 1 . 0 0 6 ( 3 ) 0 . 1 7 1 ( 1 ) 0 . 6 8 3 ( 2 ) 3 . 2 ( 9 ) C 1 4 0 . 9 9 5 ( 5 ) - 0 . 2 1 6 ( 2 ) 0 . 7 0 0 ( 3 ) 7 ( 1 ) C 1 5 0 . 9 6 8 ( 5 ) - 0 . 2 2 8 ( 2 ) 0 . 7 6 7 ( 3 ) 1 0 ( 2 ) C 1 6 0 . 9 4 5 ( 4 ) 0 . 1 9 0 ( 1 ) 0 . 8 1 6 ( 2 ) 5 ( 1 ) C 1 7 0 . 9 6 2 ( 4 ) - 0 . 1 4 6 ( 1 ) 0 . 8 0 2 ( 2 ) 4 ( 1 ) C 1 8 1 . 0 0 3 ( 4 ) 0 . 1 2 9 ( 1 ) 0 . 7 3 1 ( 2 ) 5 ( 1 ) C 1 9 0 . 9 0 7 ( 4 ) 0 . 1 6 1 ( 1 ) 0 . 5 2 6 ( 2 ) 4 ( 1 ) C 2 0 0 . 8 9 4 ( 4 ) 0 . 1 3 3 ( 1 ) 0 . 4 6 2 ( 2 ) 5 ( 1 ) C 2 1 0 . 7 8 7 ( 4 ) 0 . 1 3 9 ( 1 ) 0 . 4 1 4 ( 2 ) 6 ( 1 ) C 2 2 0 . 7 0 6 ( 4 ) 0 . 1 7 1 ( 2 ) 0 . 4 2 7 ( 2 ) 6 ( 1 ) C 2 3 0 . 7 1 8 ( 4 ) 0 . 2 0 1 ( 1 ) 0 . 4 8 5 ( 3 ) 6 ( 1 ) ( : 2 4 0 . 8 2 3 ( 5 ) 0 . 1 9 4 ( 1 ) 0 . 5 3 6 ( 3 ) 7 ( 1 ) C 2 5 0 . 5 8 7 ( 4 ) 0 . 0 6 7 ( 1 ) 0 . 1 5 2 ( 2 ) 4 ( 1 ) C 2 6 0 . 5 8 6 ( 4 ) 0 . 0 5 6 ( 1 ) 0 . 0 8 0 ( 3 ) 6 ( 1 ) 0 2 7 0 . 6 8 2 ( 4 ) 0 . 0 2 8 ( 1 ) 0 . 0 5 8 ( 3 ) 6 ( 1 ) C 2 8 0 . 7 6 7 ( 4 ) 0 . 0 2 1 ( 1 ) 0 . 1 1 4 ( 3 ) 6 ( 1 ) C 2 9 0 . 7 7 5 ( 4 ) 0 . 0 2 6 ( 1 ) 0 . 1 8 8 ( 2 ) 4 ( 1 ) C 3 0 0 . 6 7 5 ( 4 ) 0 . 0 5 4 ( 2 ) 0 . 2 0 8 ( 3 ) 6 ( 1 ) C 3 1 0 . 4 4 7 ( 4 ) 0 . 0 9 5 ( 2 ) 0 . 2 7 5 ( 2 ) 5 ( 1 ) C 3 2 0 . 4 2 9 ( 4 ) 0 . 0 5 4 ( 1 ) 0 . 2 9 3 ( 2 ) 5 ( 1 ) C 3 3 0 . 3 9 5 ( 6 ) 0 . 0 3 5 ( 2 ) 0 . 3 6 5 ( 4 ) 1 2 ( 2 ) C 3 4 0 . 4 0 9 ( 5 ) 0 . 0 6 6 ( 2 ) 0 . 4 1 5 ( 3 ) 9 ( 2 ) C 3 5 0 . 4 2 5 ( 5 ) 0 . 1 1 1 ( 2 ) 0 . 4 0 4 ( 3 ) 9 ( 1 ) C 3 6 0 . 4 4 7 ( 4 ) 0 . 1 2 6 ( 1 ) 0 . 3 3 3 ( 3 ) 6 ( 1 ) C 3 7 0 . 5 3 1 ( 4 ) 0 . 1 5 9 ( 1 ) 0 . 1 8 3 ( 2 ) 5 ( 1 ) C 3 8 0 . 4 5 1 ( 4 ) 0 . 1 9 6 ( 2 ) 0 . 1 9 1 ( 2 ) 6 ( 1 ) C 3 9 0 . 4 9 6 ( 4 ) 0 . 2 3 6 ( 2 ) 0 . 1 8 6 ( 2 ) 6 ( 1 ) C 4 0 0 . 6 0 7 ( 4 ) 0 . 2 5 0 ( 1 ) 0 . 1 7 7 ( 2 ) 5 ( 1 ) C 4 1 0 . 6 8 4 ( 3 ) 0 . 2 1 5 ( 1 ) 0 . 1 6 6 ( 2 ) 4 ( 1 ) C 4 2 0 . 6 5 3 ( 4 ) 0 . 1 7 0 ( 1 ) 0 . 1 6 6 ( 2 ) 5 ( 1 ) 2 5 8 T a b l e 6 6 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 4 3 0 . 3 3 7 ( 4 ) 0 . 1 0 1 ( 1 ) 0 . 1 1 9 ( 2 ) 5 ( 1 ) C 4 4 0 . 3 0 8 ( 3 ) 0 . 1 3 3 ( 1 ) 0 . 0 6 8 ( 2 ) 2 . 5 ( 8 ) C 4 5 0 . 2 0 5 ( 4 ) 0 . 1 2 7 ( 1 ) 0 . 0 1 8 ( 2 ) 4 ( 1 ) C 4 6 0 . 1 3 5 ( 4 ) 0 . 0 8 8 ( 2 ) 0 . 0 1 6 ( 3 ) 7 ( 1 ) C 4 7 0 . 1 7 1 ( 4 ) 0 . 0 5 4 ( 1 ) 0 . 0 6 8 ( 2 ) 5 ( 1 ) C 4 8 0 . 2 7 7 ( 3 ) 0 . 0 6 0 ( 1 ) 0 . 1 2 1 ( 2 ) 3 . 3 ( 9 ) C 4 9 0 . 8 8 7 ( 4 ) 0 . 0 0 9 ( 1 ) 0 . 7 5 6 ( 2 ) 4 ( 1 ) C 5 0 0 . 7 9 9 ( 5 ) 0 . 0 5 8 ( 2 ) 0 . 6 4 5 ( 4 ) 1 0 ( 2 ) C 5 1 1 . 0 0 4 ( 6 ) 0 . 0 7 7 ( 2 ) 0 . 7 2 7 ( 3 ) 1 0 ( 2 ) C 5 2 0 . 8 7 0 ( 4 ) 0 . 1 7 7 ( 1 ) 0 . 9 6 0 ( 3 ) 5 ( 1 ) C 5 3 0 . 8 3 8 ( 4 ) 0 . 2 2 1 ( 1 ) 0 . 8 4 5 ( 2 ) 5 ( 1 ) C 5 4 0 . 9 9 9 ( 4 ) 0 . 1 6 3 ( 1 ) 0 . 8 4 8 ( 2 ) 5 ( 1 ) C 5 5 0 . 4 4 5 ( 4 ) 0 . 0 9 7 ( 1 ) 0 . 8 6 2 ( 3 ) 6 ( 1 ) C 5 6 0 . 4 0 3 ( 4 ) 0 . 1 5 9 ( 2 ) 0 . 7 7 2 ( 2 ) 6 ( 1 ) C 5 7 0 . 4 3 5 ( 3 ) 0 . 0 8 2 ( 1 ) 0 . 7 1 6 ( 2 ) 1 . 9 ( 8 ) C 5 8 0 . 5 9 3 ( 3 ) 0 . 1 6 2 ( 1 ) 0 . 9 6 9 ( 2 ) 3 . 2 ( 9 ) a . B e q i s d e fi n e d a s 4 / 3 l a 2 6 1 1 + b 2 f 5 2 2 + 0 2 6 3 3 + a b ( c o s v ) 6 1 2 + a c ( c o s t 3 ) fi 1 3 + b c ( c o s a ) 6 2 3 T a b l e 6 7 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r a - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] 2 5 9 ( 6 4 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e a , A 2 T e l 0 . 8 9 2 4 3 ( 8 ) 1 . 0 4 5 6 9 ( 7 ) 0 . 1 9 3 8 2 ( 3 ) 3 . 4 2 ( 3 ) T 6 2 0 . 6 4 4 2 7 ( 8 ) 1 . 0 1 6 1 2 ( 7 ) 0 . 1 7 2 2 3 ( 3 ) 3 . 4 9 ( 3 ) T 6 3 0 . 8 2 4 8 7 ( 8 ) 1 . 2 3 6 3 1 ( 7 ) 0 . 3 1 6 9 3 ( 3 ) 3 . 4 4 ( 3 ) T 6 4 0 . 5 9 3 5 4 ( 8 ) 1 . 1 2 9 1 2 ( 7 ) 0 . 3 2 7 6 2 ( 4 ) 4 . 1 7 ( 3 ) T e 5 0 . 7 4 9 3 3 0 ) 0 . 8 9 8 2 1 ( 7 ) 0 . 3 0 1 1 6 ( 3 ) 3 . 2 6 ( 3 ) M n l 0 . 8 0 1 1 ( 2 ) 1 . 2 3 4 4 ( 2 ) 0 . 2 0 6 4 7 ( 8 ) 3 3 1 ( 7 ) M n 2 0 . 9 4 7 1 ( 2 ) 1 . 0 7 2 3 ( 2 ) 0 . 3 0 6 7 6 ( 8 ) 3 2 7 ( 7 ) M n 3 0 . 5 4 1 6 ( 2 ) 0 . 9 2 2 0 ( 2 ) 0 . 2 4 8 2 1 ( 8 ) 3 . 2 6 ( 7 ) P 1 0 . 2 8 6 7 ( 3 ) 0 . 3 4 7 6 ( 3 ) 0 . 5 6 2 8 ( 1 ) 3 . 5 ( 1 ) P 2 0 . 1 5 5 2 ( 3 ) 0 . 3 4 6 8 ( 3 ) 0 . 0 5 8 9 ( 1 ) 3 . 4 ( 1 ) 0 1 0 . 7 5 4 9 ( 9 ) 1 . 2 4 7 2 ( 9 ) 0 . 0 8 6 5 ( 4 ) 5 . 8 ( 4 ) ( ) 2 0 . 6 7 4 7 ( 9 ) 1 . 4 2 0 9 ( 9 ) 0 . 2 2 8 7 ( 4 ) 6 . 5 ( 5 ) 0 3 1 . 0 4 0 6 ( 9 ) 1 . 4 0 9 4 ( 8 ) 0 . 2 3 6 7 ( 4 ) 5 . 3 ( 4 ) 0 4 1 . 1 0 0 ( 1 ) 0 . 9 0 8 7 ( 9 ) 0 . 2 8 5 5 ( 4 ) 5 . 7 ( 4 ) ( ) 5 0 . 9 9 0 ( 1 ) 1 . 1 1 0 5 ( 9 ) 0 . 4 3 2 6 ( 4 ) 6 . 4 ( 5 ) 0 6 1 . 1 6 9 ( 1 ) 1 . 2 6 7 ( 1 ) 0 . 3 2 2 7 ( 5 ) 7 . 0 ( 5 ) 0 7 0 . 4 8 6 8 ( 8 ) 0 . 6 8 3 3 ( 8 ) 0 . 1 6 5 7 ( 4 ) 5 . 5 ( 4 ) 0 8 0 . 4 1 9 ( 1 ) 0 . 8 1 9 2 ( 8 ) 0 . 3 3 0 8 ( 4 ) 6 . 0 ( 4 ) ( D 0 . 3 0 8 ( 1 ) 0 . 9 5 7 ( 1 ) 0 . 2 0 2 0 ( 5 ) 6 . 7 ( 5 ) C 1 0 . 1 5 2 ( 1 ) 0 . 3 0 9 ( 1 ) 0 . 5 9 1 9 ( 5 ) 2 . 8 ( 2 ) C 2 0 . 0 7 6 ( 1 ) 0 . 1 9 6 ( 1 ) 0 . 5 7 6 1 ( 5 ) 4 . 1 ( 3 ) C 3 - 0 . 0 3 2 ( 1 ) 0 . 1 7 3 ( 1 ) 0 . 5 9 8 6 ( 6 ) 5 . 0 ( 3 ) C 4 - 0 . 0 6 1 ( 1 ) 0 . 2 6 3 ( 1 ) 0 . 6 3 5 0 ( 6 ) 5 . 2 ( 3 ) C 5 0 . 0 1 7 ( 1 ) 0 . 3 7 6 ( 1 ) 0 . 6 5 0 5 ( 6 ) 4 . 8 ( 3 ) C 6 0 . 1 2 0 ( 1 ) 0 . 3 9 9 ( 1 ) 0 . 6 2 9 2 ( 5 ) 4 . 3 ( 3 ) C 7 0 . 4 2 3 ( 1 ) 0 . 4 0 4 ( 1 ) 0 . 6 1 7 6 ( 5 ) 3 . 5 ( 2 ) C 8 0 . 4 2 0 ( 1 ) 0 . 4 2 1 ( 1 ) 0 . 6 7 4 9 ( 6 ) 4 . 4 ( 3 ) C 9 0 . 5 3 1 ( 1 ) 0 . 4 6 5 ( 1 ) 0 . 7 1 7 4 ( 6 ) 4 . 9 ( 3 ) C 1 0 0 . 6 4 0 ( 1 ) 0 . 4 8 7 ( 1 ) 0 . 6 9 9 7 ( 6 ) 5 . 7 ( 3 ) C 1 1 0 . 6 4 2 ( 1 ) 0 . 4 6 6 ( 1 ) 0 . 6 4 1 7 ( 7 ) 5 . 7 ( 3 ) 2 6 0 T a b l e 6 - 7 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 1 2 0 . 5 3 5 ( 1 ) 0 . 4 2 3 ( 1 ) 0 . 5 9 9 8 ( 6 ) 5 . 3 ( 3 ) C 1 3 0 . 3 0 7 ( 1 ) 0 . 2 2 1 ( 1 ) 0 5 1 3 1 ( 5 ) 3 . 7 ( 3 ) C 1 4 0 . 3 0 4 ( 1 ) 0 . 2 1 7 ( 1 ) 0 . 4 5 4 0 ( 6 ) 4 . 9 ( 3 ) C 1 5 0 . 3 2 8 ( 1 ) 0 . 1 1 5 ( 1 ) 0 . 4 1 9 9 ( 7 ) 6 . 5 ( 4 ) C 1 6 0 . 3 4 7 ( 1 ) 0 . 0 3 0 ( 1 ) 0 . 4 3 9 1 ( 7 ) 6 . 2 ( 4 ) C 1 7 0 . 3 4 6 ( 1 ) 0 . 0 3 0 ( 1 ) 0 . 4 9 5 9 ( 7 ) 6 . 7 ( 4 ) C 1 8 0 . 3 2 8 ( 1 ) 0 . 1 2 8 ( 1 ) 0 . 5 3 4 0 ( 6 ) 4 . 6 ( 3 ) C 1 9 0 . 2 6 4 ( 1 ) 0 . 4 6 0 ( 1 ) 0 . 5 2 8 1 ( 5 ) 3 . 7 ( 3 ) C 2 0 0 . 1 5 7 ( 1 ) 0 . 4 3 0 ( 1 ) 0 . 4 8 6 4 ( 6 ) 5 . 6 ( 3 ) C 2 1 0 . 1 2 9 ( 1 ) 0 . 5 1 9 ( 1 ) 0 . 4 6 2 4 ( 7 ) 6 . 7 ( 4 ) C 2 2 0 . 2 0 9 ( 2 ) 0 . 6 3 2 ( 2 ) 0 . 4 8 1 5 ( 8 ) 7 . 4 ( 4 ) C 2 3 0 . 3 1 3 ( 1 ) 0 . 6 5 9 ( 1 ) 0 . 5 2 0 9 ( 7 ) 6 . 4 ( 4 ) C 2 4 0 . 3 4 6 ( 1 ) 0 . 5 7 3 ( 1 ) 0 . 5 4 5 7 ( 6 ) 5 . 4 ( 3 ) C 2 5 0 . 1 1 1 ( 1 ) 0 . 4 6 5 ( 1 ) 0 . 1 0 5 4 ( 5 ) 3 . 1 ( 2 ) C 2 6 0 . 2 0 2 ( 1 ) 0 . 5 4 9 ( 1 ) 0 . 1 4 9 6 ( 5 ) 4 . 2 ( 3 ) C 2 7 0 . 1 6 7 ( 1 ) 0 . 6 3 9 ( 1 ) 0 . 1 8 3 3 ( 6 ) 5 . 0 ( 3 ) C 2 8 0 . 0 4 8 ( 1 ) 0 . 6 4 6 ( 1 ) 0 . 1 7 5 2 ( 6 ) 5 . 9 ( 3 ) C 2 9 - 0 . 0 3 7 ( 1 ) 0 . 5 6 2 ( 1 ) 0 . 1 3 2 0 ( 6 ) 4 . 7 ( 3 ) C 3 0 - 0 . 0 0 9 ( 1 ) 0 . 4 7 1 ( 1 ) 0 . 0 9 8 0 ( 5 ) 3 . 6 ( 2 ) C 3 1 0 . 2 3 9 ( 1 ) 0 . 4 0 2 ( 1 ) 0 . 0 1 0 1 ( 5 ) 3 . 6 ( 2 ) C 3 2 0 . 2 6 1 ( 1 ) 0 . 3 1 9 ( 1 ) - 0 . 0 3 6 6 ( 6 ) 4 . 7 ( 3 ) C 3 3 0 . 3 3 2 ( 1 ) 0 . 3 6 2 ( 1 ) - 0 . 0 7 3 9 ( 7 ) 6 . 1 ( 3 ) C 3 4 0 . 3 7 3 ( 1 ) 0 . 4 7 6 ( 1 ) - 0 . 0 6 6 9 ( 6 ) 5 . 7 ( 3 ) C 3 5 0 . 3 5 1 ( 1 ) 0 . 5 5 8 ( 1 ) - 0 . 0 2 3 9 ( 7 ) 6 . 1 ( 4 ) C 3 6 0 . 2 8 4 ( 1 ) 0 . 5 2 1 ( 1 ) 0 . 0 1 5 7 ( 6 ) 4 . 5 ( 3 ) C 3 7 0 . 0 2 3 ( 1 ) 0 . 2 3 2 ( 1 ) 0 . 0 1 8 6 ( 5 ) 4 . 0 ( 3 ) C 3 8 - 0 . 0 2 9 ( 2 ) 0 . 2 3 8 ( 1 ) - 0 . 0 3 4 8 ( 7 ) 6 . 9 ( 4 ) C 3 9 - 0 . 1 4 0 ( 2 ) 0 . 1 4 5 ( 2 ) - 0 . 0 6 7 7 ( 8 ) 9 . 0 ( 5 ) C 4 0 - 0 . 1 8 5 ( 2 ) 0 . 0 6 0 ( 1 ) - 0 . 0 4 4 7 ( 8 ) 6 . 9 ( 4 ) C 4 1 - 0 . 1 3 6 ( 1 ) 0 . 0 5 5 ( 1 ) 0 . 0 0 6 9 ( 7 ) 6 . 7 ( 4 ) C 4 2 - 0 . 0 3 0 ( 1 ) 0 . 1 4 0 ( 1 ) 0 . 0 4 0 5 ( 6 ) 5 . 2 ( 3 ) 2 6 1 T a b l e 6 - 7 . ( c o n t ' d ) a t o m x y z B e g , A 2 C 4 3 0 . 2 5 2 ( 1 ) 0 . 2 9 3 ( 1 ) 0 . 1 0 3 3 ( 5 ) 3 . 2 ( 2 ) C 4 4 0 . 3 5 8 ( 1 ) 0 . 2 7 5 ( 1 ) 0 . 0 9 0 7 ( 6 ) 4 . 5 ( 3 ) C 4 5 0 . 4 3 3 ( 1 ) 0 . 2 3 7 ( 1 ) 0 . 1 2 8 9 ( 6 ) 5 . 4 ( 3 ) C 4 6 0 . 3 9 9 ( 1 ) 0 . 2 1 7 ( 1 ) 0 . 1 7 9 2 ( 6 ) 5 . 1 ( 3 ) C 4 7 0 . 2 9 0 ( 1 ) 0 . 2 3 1 ( 1 ) 0 . 1 9 1 1 ( 6 ) 5 . 0 ( 3 ) C 4 8 0 . 2 1 8 ( 1 ) 0 . 2 7 3 ( 1 ) 0 . 1 5 4 3 ( 6 ) 4 . 5 ( 3 ) C 4 9 0 . 7 7 7 ( 1 ) 1 . 2 3 8 ( 1 ) 0 . 1 3 2 8 ( 6 ) 4 . 0 ( 5 ) C 5 0 0 . 7 2 0 ( 1 ) 1 . 3 4 3 ( 1 ) 0 . 2 2 1 6 ( 5 ) 4 . 0 ( 5 ) C 5 1 0 . 9 4 6 ( 1 ) 1 . 3 4 0 ( 1 ) 0 . 2 2 4 8 ( 6 ) 3 . 9 ( 5 ) C 5 2 1 . 0 3 4 ( 1 ) 0 . 9 6 7 ( 1 ) 0 . 2 9 2 7 ( 5 ) 4 . 0 ( 5 ) C 5 3 0 . 9 7 2 ( 1 ) 1 . 0 9 5 ( 1 ) 0 . 3 8 3 7 ( 6 ) 4 . 1 ( 5 ) C 5 4 1 . 0 8 1 ( 1 ) 1 . 1 9 3 ( 1 ) 0 . 3 1 4 6 ( 5 ) 4 . 0 ( 5 ) C 5 5 0 . 5 0 9 ( 1 ) 0 . 7 7 7 ( 1 ) 0 . 1 9 6 7 ( 5 ) 3 . 6 ( 5 ) C 5 6 0 . 4 7 2 ( 1 ) 0 . 8 6 1 ( 1 ) 0 . 2 9 9 5 ( 5 ) 4 . 0 ( 5 ) C 5 7 0 . 4 0 2 ( 1 ) 0 . 9 4 4 ( 1 ) 0 . 2 1 8 6 ( 6 ) 4 . 4 ( 6 ) C 5 8 0 . 7 8 3 ( 1 ) 0 . 7 4 9 ( 1 ) 0 . 2 4 3 8 ( 6 ) 4 . 6 ( 5 ) a . B e q i s d e fi n e d a s 4 / 3 I a 2 5 1 1 + b 2 5 2 2 + 0 2 5 3 3 + a b ( c o s v ) fi 1 2 + a C ( C O S B ) B l 3 + b C ( C O S O I ) 1 5 2 3 ] . ] 2 6 2 T a b l e 6 - 8 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r fi - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] ( 6 5 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B 9 0 , A 2 T e l 0 . 5 4 3 2 ( 1 ) 0 . 1 7 1 9 2 ( 7 ) 0 . 2 8 9 0 ( 1 ) 2 . 4 9 ( 7 ) T 6 2 0 . 6 8 2 8 ( 1 ) 0 . 1 4 4 8 3 ( 7 ) 0 . 4 1 7 9 9 ( 9 ) 2 . 4 6 ( 7 ) T e 3 0 . 7 7 6 9 ( 1 ) 0 . 1 1 4 0 3 ( 7 ) 0 . 2 3 3 7 0 ( 9 ) 2 5 4 ( 7 ) T 6 4 0 . 9 6 0 1 ( 2 ) 0 . 1 3 0 8 0 ( 7 ) 0 . 3 4 3 3 ( 1 ) 3 . 0 5 ( 8 ) T e 5 0 . 8 1 9 8 ( 1 ) 0 . 2 4 3 3 4 ( 7 ) 0 . 3 0 9 7 ( 1 ) 2 . 5 9 ( 8 ) M n l 0 . 6 2 3 7 ( 3 ) 0 . 0 8 1 7 ( 1 ) 0 . 3 0 7 1 ( 2 ) 2 . 6 ( 2 ) M n 2 0 . 6 7 8 7 ( 3 ) 0 . 1 9 9 2 ( 1 ) 0 . 1 9 9 7 ( 2 ) 2 . 3 ( 2 ) M n 3 0 . 8 7 4 3 ( 3 ) 0 . 1 8 9 6 ( 2 ) 0 . 4 3 3 3 ( 2 ) 2 . 5 ( 2 ) P 1 0 . 5 4 3 6 ( 6 ) 0 . 1 1 9 4 ( 2 ) 0 . 6 8 2 4 ( 4 ) 2 . 4 ( 3 ) P 2 0 . 9 7 1 0 ( 6 ) 0 . 1 1 2 9 ( 3 ) 0 . 9 6 1 6 ( 4 ) 3 . 2 ( 3 ) 0 1 0 . 4 6 0 ( 2 ) 0 . 0 4 4 ( 1 ) 0 . 3 8 9 ( 1 ) 6 ( 1 ) ( ) 2 0 . 7 6 4 ( 2 ) — 0 . 0 0 3 9 ( 8 ) 0 . 3 6 1 ( 1 ) 6 ( 1 ) 0 3 0 . 5 0 5 ( 2 ) 0 . 0 4 2 5 ( 7 ) 0 . 1 6 3 ( 1 ) 4 ( 1 ) ( ) 4 0 . 5 6 0 ( 2 ) 0 . 2 9 1 2 ( 6 ) 0 . 1 7 0 ( 1 ) 4 ( 1 ) 0 5 0 . 8 3 6 ( 2 ) 0 . 2 1 8 3 ( 8 ) 0 . 0 9 7 ( 1 ) 5 ( 1 ) 0 6 0 . 5 2 2 ( 2 ) 0 . 1 5 4 2 ( 7 ) 0 . 0 7 6 ( 1 ) 3 . 6 ( 9 ) O 7 0 . 7 8 9 ( 2 ) 0 . 2 6 7 2 ( 7 ) 0 . 5 2 2 ( 1 ) 5 ( 1 ) 0 8 1 . 0 8 7 ( 2 ) 0 . 2 4 3 3 ( 8 ) 0 . 4 6 8 ( 1 ) 5 ( 1 ) ( ) 9 0 . 9 4 4 ( 2 ) 0 . 1 2 3 2 ( 8 ) 0 . 5 6 0 ( 1 ) 4 ( 1 ) C 1 0 . 5 0 4 ( 2 ) 0 . 1 1 0 ( 1 ) 0 . 7 7 1 ( 1 ) 2 . 9 ( 5 ) C 2 0 . 4 3 1 ( 2 ) 0 . 0 7 6 ( 1 ) 0 . 7 8 2 ( 2 ) 3 . 5 ( 6 ) C 3 0 . 3 9 9 ( 2 ) 0 . 0 6 8 ( 1 ) 0 . 8 5 1 ( 2 ) 3 . 8 ( 6 ) C 4 0 . 4 3 5 ( 3 ) 0 . 1 0 0 ( 1 ) 0 . 9 0 9 ( 2 ) 4 . 1 ( 6 ) C 5 0 . 5 0 5 ( 2 ) 0 . 1 3 8 ( 1 ) 0 8 9 8 ( 2 ) 3 . 5 ( 6 ) C 6 0 . 5 3 7 ( 2 ) 0 . 1 4 4 ( 1 ) 0 . 8 2 9 ( 1 ) 3 . 2 ( 6 ) C 7 0 . 4 2 2 ( 2 ) 0 . 1 1 9 ( 1 ) 0 . 6 1 4 ( 1 ) 2 . 1 ( 5 ) C 8 0 . 4 0 7 ( 2 ) 0 . 0 8 8 ( 1 ) 0 . 5 5 0 ( 2 ) 3 . 7 ( 6 ) C 9 0 . 3 1 0 ( 2 ) 0 . 0 8 8 ( 1 ) 0 . 4 9 9 ( 2 ) 3 . 5 ( 6 ) C 1 0 0 . 2 2 1 ( 3 ) 0 . 1 1 4 ( 1 ) 0 . 5 1 2 ( 2 ) 5 . 1 ( 8 ) C 1 1 0 . 2 2 9 ( 3 ) 0 . 1 4 5 ( 1 ) 0 . 5 7 4 ( 2 ) 5 . 8 ( 8 ) 2 6 3 T a b l e 6 - 8 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 1 2 0 . 3 3 0 ( 3 ) 0 . 1 4 5 ( 1 ) 0 . 6 2 6 ( 2 ) 4 . 6 ( 7 ) C 1 3 0 . 6 3 8 ( 2 ) 0 . 0 7 2 ( 1 ) 0 . 6 6 9 ( 1 ) 2 . 9 ( 5 ) C 1 4 0 . 6 7 9 ( 2 ) 0 . 0 4 3 ( 1 ) 0 . 7 2 7 ( 2 ) 3 . 5 ( 6 ) C 1 5 0 . 7 6 2 ( 3 ) 0 . 0 0 9 ( 1 ) 0 . 7 1 9 ( 2 ) 5 . 9 ( 9 ) C 1 6 0 . 8 0 4 ( 3 ) 0 . 0 0 7 ( 1 ) 0 . 6 5 3 ( 2 ) 5 . 0 ( 8 ) C 1 7 0 . 7 6 4 ( 3 ) 0 . 0 4 0 ( 1 ) 0 . 5 9 6 ( 2 ) 4 . 8 ( 7 ) C 1 8 0 . 6 8 2 ( 3 ) 0 . 0 7 1 ( 1 ) 0 . 6 0 4 ( 2 ) 4 . 0 ( 6 ) C 1 9 0 . 6 1 5 ( 2 ) 0 . 1 7 7 ( 1 ) 0 . 6 8 3 ( 2 ) 3 . 2 ( 6 ) C 2 0 0 . 7 3 1 ( 2 ) 0 . 1 7 4 ( 1 ) 0 . 6 9 0 ( 2 ) 3 . 8 ( 6 ) C 2 1 0 . 7 8 7 ( 2 ) 0 . 2 2 2 ( 1 ) 0 . 6 9 7 ( 2 ) 3 . 3 ( 6 ) C 2 2 0 . 7 2 8 ( 3 ) 0 . 2 6 4 ( 1 ) 0 . 6 9 7 ( 2 ) 4 . 9 ( 7 ) C 2 3 0 . 6 1 3 ( 3 ) 0 . 2 6 2 ( 1 ) 0 . 6 8 8 ( 2 ) 4 . 9 ( 7 ) C 2 4 0 . 5 5 6 ( 3 ) 0 . 2 1 8 ( 1 ) 0 . 6 8 4 ( 2 ) 4 . 6 ( 7 ) C 2 5 0 . 8 5 1 ( 2 ) 0 . 0 7 6 ( 1 ) 0 . 9 7 0 ( 1 ) 2 . 5 ( 5 ) C 2 6 0 . 7 8 5 ( 2 ) 0 . 0 9 1 ( 1 ) 1 . 0 2 0 ( 1 ) 2 . 2 ( 5 ) C 2 7 0 . 6 9 5 ( 2 ) 0 . 0 6 3 ( 1 ) 1 . 0 2 9 ( 2 ) 3 . 4 ( 6 ) C 2 8 0 . 6 6 3 ( 2 ) 0 . 0 2 4 ( 1 ) 0 . 9 8 4 ( 1 ) 3 . 0 ( 5 ) C 2 9 0 . 7 3 2 ( 3 ) 0 . 0 0 7 ( 1 ) 0 . 9 3 3 ( 2 ) 3 . 8 ( 6 ) C 3 0 0 . 8 2 6 ( 2 ) 0 . 0 3 5 ( 1 ) 0 . 9 2 6 ( 2 ) 3 . 4 ( 6 ) C 3 1 1 . 0 7 9 ( 2 ) 0 . 1 0 5 ( 1 ) 1 . 0 4 3 ( 1 ) 2 . 4 ( 5 ) C 3 2 1 . 0 4 8 ( 3 ) 0 . 0 9 9 ( 1 ) 1 . 1 1 5 ( 2 ) 4 . 0 ( 6 ) C 3 3 1 . 1 3 2 ( 3 ) 0 . 0 9 8 ( 1 ) 1 . 1 7 9 ( 2 ) 4 . 0 ( 6 ) C 3 4 1 . 2 4 4 ( 2 ) 0 . 1 1 0 ( 1 ) 1 . 1 7 2 ( 1 ) 2 . 9 ( 5 ) C 3 5 1 . 2 6 8 ( 3 ) 0 . 1 1 7 ( 1 ) 1 . 1 0 3 ( 2 ) 4 . 0 ( 6 ) C 3 6 1 . 1 8 9 ( 3 ) 0 . 1 1 6 ( 1 ) 1 . 0 3 8 ( 2 ) 4 . 1 ( 6 ) C 3 7 0 . 9 3 3 ( 2 ) 0 . 1 7 7 ( 1 ) 0 . 9 5 1 ( 1 ) 2 . 2 ( 1 ) C 3 8 1 . ( X ) 3 ( 2 ) 0 . 2 1 4 ( 1 ) 0 . 9 8 2 ( 1 ) 2 . 7 ( 5 ) C 3 9 0 . 9 7 2 ( 3 ) 0 . 2 5 8 ( 1 ) 0 . 9 7 2 ( 2 ) 3 . 9 ( 6 ) C 4 0 0 . 8 7 2 ( 3 ) 0 . 2 7 0 ( 1 ) 0 . 9 3 1 ( 2 ) 5 6 ( 8 ) C 4 1 0 . 7 9 9 ( 3 ) 0 . 2 3 5 ( 1 ) 0 . 8 9 9 ( 2 ) 4 . 5 ( 7 ) C 4 2 0 . 8 2 8 ( 2 ) 0 . 1 8 6 ( 1 ) 0 . 9 1 0 ( 2 ) 3 . 7 ( 6 ) 2 6 4 T a b l e 6 8 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 4 3 1 . 0 2 3 ( 2 ) 0 . 0 9 2 ( 1 ) 0 . 8 8 1 ( 1 ) 2 . 6 ( 5 ) C 4 4 0 . 9 9 6 ( 2 ) 0 . 1 1 4 ( 1 ) 0 . 8 1 3 ( 2 ) 3 . 7 ( 6 ) C 4 5 1 . 0 2 6 ( 3 ) 0 . 0 9 8 ( 1 ) 0 . 7 5 0 ( 2 ) 4 . 7 ( 7 ) C 4 6 1 . 0 7 9 ( 3 ) 0 . 0 5 2 ( 1 ) 0 . 7 5 3 ( 2 ) 5 . 2 ( 8 ) C 4 7 1 . 1 0 5 ( 3 ) 0 . 0 2 5 ( 1 ) 0 . 8 2 3 ( 2 ) 5 . 0 ( 7 ) C 4 8 1 . 0 7 8 ( 3 ) 0 . 0 4 6 ( 1 ) 0 . 8 8 6 ( 2 ) 3 . 9 ( 6 ) C 4 9 0 . 5 2 5 ( 3 ) 0 . 0 6 1 9 ( 8 ) 0 . 3 5 6 ( 2 ) 3 ( 1 ) C 5 0 0 . 7 1 3 ( 3 ) 0 . 0 3 2 5 ( 7 ) 0 . 3 4 2 ( 2 ) 3 ( 1 ) C 5 1 0 . 5 5 2 ( 3 ) 0 . 0 5 9 ( 1 ) 0 . 2 2 1 ( 2 ) 4 ( 2 ) C 5 2 0 . 6 0 7 ( 3 ) 0 . 2 5 3 ( 1 ) 0 . 1 8 2 ( 2 ) 4 ( 1 ) C 5 3 0 . 7 7 5 ( 3 ) 0 . 2 1 3 4 ( 8 ) 0 . 1 4 2 ( 2 ) 4 ( 1 ) C 5 4 0 . 5 8 3 ( 3 ) 0 . 1 6 9 ( 1 ) 0 . 1 2 5 ( 1 ) 4 ( 2 ) C 5 5 0 . 8 1 9 ( 3 ) 0 . 2 3 0 ( 2 ) 0 . 4 8 9 ( 2 ) 5 ( 2 ) C 5 6 1 . 0 0 4 ( 3 ) 0 . 2 2 1 ( 2 ) 0 . 4 5 3 ( 2 ) 4 ( 2 ) C 5 7 0 . 9 1 6 ( 3 ) 0 . 1 5 1 ( 1 ) 0 . 5 1 0 ( 1 ) 3 ( 1 ) C 5 8 0 . 7 1 9 ( 3 ) 0 . 1 5 1 ( 1 ) 0 . 5 1 0 ( 1 ) 3 ( 1 ) a . B e q i s d e fi n e d a s 4 / 3 [ a 2 6 1 1 + b 2 6 2 2 + c 2 6 3 3 + a b ( c o s y ) fi 1 2 + a c ( c o s fi ) 6 1 3 + b c ( c o s a ) 1 3 2 3 ] . ] 2 6 5 T a b l e 6 9 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r ( P h 4 P ) 3 [ R e 4 ( I e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 ] - C H 3 O H ( 6 6 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e a , A 2 R 6 1 0 . 7 8 1 6 1 ( 6 ) 0 . 1 3 4 2 3 ( 4 ) 0 . 1 9 8 0 7 ( 7 ) 1 . 6 1 ( 3 ) R 6 2 1 . 0 8 7 4 0 ( 6 ) 0 . 1 7 1 3 5 ( 4 ) 0 . 2 4 1 6 5 ( 7 ) 1 5 9 ( 3 ) R 6 3 0 . 8 0 5 3 6 0 ) 0 . 2 8 7 2 5 ( 5 ) 0 . 0 1 1 6 3 ( 7 ) 1 9 9 ( 4 ) R 6 4 0 . 8 9 4 3 1 ( 7 ) 0 . 3 1 4 7 0 ( 4 ) 0 . 3 6 0 0 4 ( 7 ) 1 . 7 3 ( 4 ) T 6 1 0 . 9 2 2 2 ( 1 ) 0 . 1 2 5 3 2 ( 7 ) 0 . 3 9 3 7 ( 1 ) 2 . 0 9 ( 6 ) T 6 2 1 . 0 3 2 3 ( 1 ) 0 . 2 0 9 0 6 0 ) 0 . 3 9 6 3 1 ( 1 ) 1 . 7 4 ( 6 ) T 6 3 1 . 1 0 0 8 ( 1 ) 0 . 2 9 2 3 4 ( 7 ) 0 . 2 3 3 5 ( 1 ) 2 . 2 1 ( 6 ) T 6 4 0 . 9 1 4 4 ( 1 ) 0 . 3 4 4 8 4 ( 7 ) 0 . 1 9 1 5 ( 1 ) 2 . 0 2 ( 6 ) T 6 5 0 . 6 5 4 1 ( 1 ) 0 . 3 0 9 7 3 ( 8 ) 0 . 0 6 9 0 ( 1 ) 2 . 3 9 ( 7 ) T 6 6 0 . 7 3 5 6 ( 1 ) 0 . 2 5 3 4 5 ( 7 ) 0 . 2 4 9 9 ( 1 ) 1 . 6 5 ( 6 ) T 6 7 0 . 8 8 9 9 ( 1 ) 0 . 1 8 0 7 4 ( 7 ) 0 . 1 1 8 3 ( 1 ) 1 5 6 ( 5 ) P 1 0 . 3 9 1 2 ( 4 ) 0 . 0 8 8 8 ( 3 ) 0 . 7 3 7 0 ( 5 ) 1 . 9 ( 2 ) P 2 0 . 2 3 6 2 ( 4 ) 0 . 3 4 0 9 ( 3 ) 0 . 9 6 2 8 ( 5 ) 1 . 9 ( 2 ) P 3 0 . 5 2 8 7 ( 4 ) 0 . 3 5 4 5 ( 3 ) 0 . 4 7 9 9 ( 4 ) 1 . 8 ( 2 ) ( ) 1 0 . 6 1 8 ( 1 ) 0 . 1 3 7 9 ( 9 ) - 0 . 0 1 1 ( 1 ) 3 . 5 ( 4 ) 0 2 0 . 8 6 3 ( 2 ) 0 . 0 0 4 ( 1 ) 0 . 1 7 2 ( 2 ) 4 . 4 ( 4 ) ( ) 3 0 . 6 4 7 ( 1 ) 0 . 0 9 3 3 ( 8 ) 0 . 2 7 6 ( 1 ) 3 . 1 ( 3 ) 0 4 1 . 0 7 6 ( 1 ) 0 . 0 3 5 6 ( 8 ) 0 . 2 4 5 ( 1 ) 2 . 6 ( 3 ) ( ) 5 1 . 1 4 6 ( 1 ) 0 . 1 4 8 ( 1 ) 0 . 0 6 8 ( 2 ) 3 . 9 ( 4 ) 0 6 1 . 3 0 0 ( 2 ) 0 . 1 5 6 ( 1 ) 0 . 3 9 6 ( 2 ) 4 . 5 ( 5 ) 0 7 0 . 9 6 7 ( 1 ) 0 . 2 5 9 6 ( 9 ) - 0 . 0 6 0 ( 1 ) 3 . 4 ( 4 ) 0 8 0 . 6 7 9 ( 2 ) 0 . 2 2 0 ( 1 ) - 0 . 1 7 5 ( 2 ) 4 . 9 ( 5 ) ( D 0 . 7 2 2 ( 2 ) 0 . 4 1 0 ( 1 ) - 0 . 0 9 1 ( 2 ) 4 . 8 ( 5 ) 0 1 0 0 . 7 4 8 ( 1 ) 0 . 4 3 0 4 ( 9 ) 0 . 3 3 3 ( 1 ) 3 . 5 ( 4 ) 0 1 1 0 . 8 6 4 ( 2 ) 0 . 2 8 8 ( 1 ) 0 . 5 4 3 ( 2 ) 4 . 1 ( 4 ) 0 1 2 1 . 0 6 4 ( 1 ) 0 . 3 8 3 ( 1 ) 0 . 4 9 1 ( 2 ) 3 . 9 ( 4 ) 0 1 3 0 . 0 1 8 ( 2 ) 0 . 4 9 1 ( 1 ) 0 . 2 8 9 ( 2 ) 5 . 4 ( 5 ) C 1 0 . 2 9 5 ( 2 ) 0 . 0 5 7 ( 1 ) 0 . 6 3 5 ( 2 ) 2 . 2 ( 4 ) C 2 0 . 2 1 5 ( 2 ) 0 . 0 4 8 ( 1 ) 0 . 6 5 1 ( 2 ) 2 . 5 ( 4 ) C 3 0 . 1 4 2 ( 2 ) 0 . 0 2 3 ( 2 ) 0 . 5 7 6 ( 3 ) 4 . 3 g ) 2 6 6 T a b l e 6 9 . ( c o n t ' d ) a t o m x y z 3 9 9 , A 2 C 4 0 . 1 5 1 ( 3 ) 0 . 0 0 2 ( 2 ) 0 . 4 8 5 ( 3 ) 5 . 0 ( 7 ) C 5 0 . 2 3 3 ( 2 ) 0 . 0 1 2 ( 2 ) 0 . 4 7 2 ( 3 ) 4 . 2 ( 6 ) C 6 0 . 3 0 3 ( 2 ) 0 . 0 3 8 ( 1 ) 0 . 5 4 8 ( 2 ) 3 . 7 ( 6 ) C 7 0 . 3 8 0 ( 2 ) 0 . 1 6 9 ( 1 ) 0 . 7 1 7 ( 2 ) 2 . 6 ( 5 ) C 8 0 . 4 4 2 ( 2 ) 0 . 2 0 3 ( 1 ) 0 . 7 8 9 ( 2 ) 2 . 2 ( 4 ) C 9 0 . 4 3 8 ( 2 ) 0 . 2 6 2 ( 1 ) 0 . 7 7 0 ( 2 ) 3 . 9 ( 6 ) C 1 0 0 . 3 6 9 ( 2 ) 0 . 2 9 0 ( 1 ) 0 . 6 7 8 ( 2 ) 3 . 3 ( 5 ) C 1 1 0 . 3 0 8 ( 2 ) 0 . 2 5 2 ( 1 ) 0 . 6 0 4 ( 2 ) 3 . 1 ( 5 ) C 1 2 0 . 3 1 6 ( 2 ) 0 . 1 9 0 ( 1 ) 0 . 6 2 2 ( 2 ) 2 . 0 ( 4 ) C 1 3 0 . 3 7 5 ( 2 ) 0 . 0 8 1 ( 1 ) 0 . 8 4 7 ( 2 ) 1 . 9 ( 4 ) C 1 4 0 . 3 9 6 ( 2 ) 0 . 0 2 6 ( 1 ) 0 . 8 8 9 ( 2 ) 2 . 8 ( 5 ) C 1 5 0 . 3 7 2 ( 2 ) 0 . 0 1 6 ( 1 ) 0 . 9 6 6 ( 2 ) 2 . 5 ( 4 ) C 1 6 0 . 3 2 8 ( 2 ) 0 . 0 6 3 ( 1 ) 1 . 0 0 0 ( 2 ) 3 . 1 ( 5 ) C 1 7 0 . 3 0 9 ( 2 ) 0 . 1 1 9 ( 1 ) 0 . 9 6 2 ( 2 ) 3 . 7 ( 6 ) C 1 8 0 . 3 3 4 ( 2 ) 0 . 1 3 0 ( 1 ) 0 . 8 9 0 ( 2 ) 3 . 2 ( 5 ) C 1 9 0 . 5 0 5 ( 2 ) 0 . 0 4 9 ( 1 ) 0 . 7 4 3 ( 2 ) 1 . 7 ( 4 ) C 2 0 0 . 5 1 9 ( 2 ) - 0 . 0 1 3 ( 1 ) 0 . 7 3 2 ( 2 ) 2 . 4 ( 4 ) C 2 1 0 . 6 0 4 ( 2 ) - 0 . 0 4 6 ( 1 ) 0 . 7 3 1 ( 2 ) 2 . 7 ( 5 ) C 2 2 0 . 6 7 6 ( 2 ) - 0 . 0 1 4 ( 2 ) 0 . 7 5 6 ( 2 ) 4 . 1 ( 6 ) C 2 3 0 . 6 7 0 ( 3 ) 0 . 0 4 8 ( 2 ) 0 . 7 6 3 ( 3 ) 5 . 0 ( 7 ) C 2 4 0 . 5 8 2 ( 2 ) 0 . 0 7 7 ( 1 ) 0 . 7 5 6 ( 2 ) 3 . 1 ( 5 ) C 2 5 0 . 1 7 8 ( 2 ) 0 . 2 9 6 ( 1 ) 0 . 8 5 7 ( 2 ) 1 . 8 ( 4 ) C 2 6 0 . 1 3 8 ( 2 ) 0 . 2 4 7 ( 1 ) 0 . 8 6 7 ( 2 ) 2 . 4 ( 4 ) C 2 7 0 . 0 9 5 ( 2 ) 0 . 2 0 9 ( 1 ) 0 . 7 8 8 ( 2 ) 2 . 9 ( 5 ) C 2 8 0 . 0 8 5 ( 2 ) 0 . 2 2 3 ( 2 ) 0 . 6 9 1 ( 2 ) 4 . 2 ( 6 ) C 2 9 0 . 1 2 6 ( 3 ) 0 . 2 6 8 ( 2 ) 0 . 6 8 1 ( 3 ) 4 . 8 ( 7 ) C 3 0 0 . 1 7 2 ( 2 ) 0 . 3 0 7 ( 1 ) 0 . 7 6 2 ( 2 ) 3 . 9 ( 6 ) C 3 1 0 . 2 8 9 ( 2 ) 0 . 3 9 8 ( 1 ) 0 . 9 3 2 ( 2 ) 2 . 1 ( 4 ) C 3 2 0 . 2 3 7 ( 3 ) 0 . 4 5 0 ( 2 ) 0 . 8 9 8 ( 3 ) 5 . 7 ( 8 ) C 3 3 0 . 2 7 1 ( 3 ) 0 . 5 0 1 ( 2 ) 0 . 8 7 4 ( 3 ) 5 . 9 ( 9 ) C 3 4 0 . 3 6 2 ( 2 ) 0 . 4 8 8 ( 1 ) 0 . 8 8 2 ( 2 ) 2 . 8 ( 5 ) C 3 5 0 . 4 2 1 ( 2 ) 0 . 4 3 3 ( 1 ) 0 . 9 1 6 ( 2 ) 3 . 2 ( 5 ) 2 6 7 T a b l e 6 9 . ( c o n t ' d ) a t o m x y z B E , A 2 C 3 6 0 . 3 8 3 ( 2 ) 0 . 3 8 6 ( 1 ) 0 . 9 4 0 ( 2 ) 3 . 3 ( 5 ) C 3 7 0 . 1 4 7 ( 2 ) 0 . 3 8 2 ( 1 ) 1 . 0 0 2 ( 2 ) 2 . 0 ( 4 ) C 3 8 0 . 0 5 0 ( 2 ) 0 . 3 7 9 ( 1 ) 0 . 9 4 7 ( 2 ) 1 . 9 ( 4 ) C 3 9 - 0 . 0 1 3 ( 2 ) 0 . 4 0 9 ( 1 ) 0 . 9 8 3 ( 2 ) 2 . 5 ( 4 ) C 4 0 0 . 0 1 7 ( 2 ) 0 . 4 4 2 ( 1 ) 1 . 0 7 2 ( 2 ) 2 . 8 ( 5 ) C 4 1 0 . 1 1 4 ( 2 ) 0 . 4 4 6 ( 1 ) 1 . 1 2 6 ( 2 ) 3 . 9 ( 6 ) C 4 2 0 . 1 8 4 ( 2 ) 0 . 4 1 2 ( 1 ) 1 . 0 9 7 ( 2 ) 1 . 6 ( 4 ) C 4 3 0 . 3 2 2 ( 2 ) 0 . 2 9 0 ( 1 ) 1 . 0 5 8 ( 2 ) 1 . 6 ( 4 ) C 4 4 0 . 3 0 1 ( 2 ) 0 . 2 8 0 ( 1 ) 1 . 1 3 8 ( 2 ) 3 . 5 ( 6 ) C 4 5 0 . 3 6 7 ( 2 ) 0 . 2 3 7 ( 1 ) 1 . 2 1 3 ( 2 ) 3 . 5 ( 6 ) C 4 6 0 . 4 4 9 ( 2 ) 0 . 2 0 7 ( 1 ) 1 . 2 0 5 ( 2 ) 4 . 1 ( 6 ) C 4 7 0 . 4 6 7 ( 2 ) 0 . 2 1 8 ( 1 ) 1 . 1 2 4 ( 2 ) 2 . 9 ( 5 ) C 4 8 0 . 4 0 6 ( 2 ) 0 . 2 5 8 ( 1 ) 1 . 0 5 3 ( 2 ) 3 . 1 ( 5 ) C 4 9 0 . 5 5 3 ( 2 ) 0 . 2 7 5 ( 1 ) 0 . 4 7 6 ( 2 ) 2 . 0 ( 4 ) C 5 0 0 . 4 9 8 ( 2 ) 0 . 2 3 6 ( 1 ) 0 . 4 9 0 ( 2 ) 3 . 5 ( 6 ) C 5 1 0 . 5 2 7 ( 2 ) 0 . 1 7 3 ( 2 ) 0 . 4 9 2 ( 3 ) 4 . 3 ( 6 ) C 5 2 0 . 6 0 7 ( 2 ) 0 . 1 5 0 ( 1 ) 0 . 4 8 2 ( 2 ) 3 . 6 ( 6 ) C 5 3 0 . 6 6 6 ( 2 ) 0 . 1 8 8 ( 1 ) 0 . 4 6 7 ( 2 ) 2 . 8 ( 5 ) C 5 4 0 . 6 3 9 ( 2 ) 0 . 2 4 9 ( 1 ) 0 . 4 6 3 ( 2 ) 2 . 5 ( 4 ) C 5 5 0 . 4 3 4 ( 2 ) 0 . 3 7 9 ( 1 ) 0 . 5 2 0 ( 2 ) 1 . 5 ( 4 ) C 5 6 0 . 3 3 9 ( 2 ) 0 . 3 7 0 ( 1 ) 0 . 4 5 9 ( 2 ) 2 . 4 ( 4 ) C 5 7 0 . 2 6 2 ( 2 ) 0 . 3 9 5 ( 1 ) 0 . 4 7 6 ( 2 ) 3 . 5 ( 5 ) C 5 8 0 . 2 8 0 ( 2 ) 0 . 4 3 1 ( 1 ) 0 . 5 5 9 ( 2 ) 2 . 9 ( 5 ) C 5 9 0 . 3 7 1 ( 2 ) 0 . 4 4 4 ( 1 ) 0 . 6 2 3 ( 2 ) 2 . 6 ( 5 ) C 6 0 0 . 4 5 0 ( 2 ) 0 . 4 1 5 ( 1 ) 0 . 6 0 4 ( 2 ) 2 . 0 ( 4 ) C 6 1 0 . 6 4 2 ( 2 ) 0 . 3 7 9 ( 1 ) 0 . 5 6 8 ( 2 ) 2 . 1 ( 4 ) C 6 2 0 . 6 7 9 ( 2 ) 0 . 4 2 4 ( 1 ) 0 . 5 4 2 ( 2 ) 2 . 3 ( 4 ) C 6 3 0 . 7 7 0 ( 2 ) 0 . 4 3 6 ( 1 ) 0 . 6 0 5 ( 2 ) 3 . 1 ( 5 ) C 6 4 0 . 8 2 0 ( 2 ) 0 . 4 0 8 ( 1 ) 0 . 6 9 6 ( 2 ) 3 . 1 ( 5 ) C 6 5 0 . 7 8 4 ( 2 ) 0 . 3 6 6 ( 1 ) 0 . 7 2 2 ( 2 ) 3 . 7 ( 6 ) C 6 6 0 . 6 9 4 ( 2 ) 0 . 3 4 7 ( 1 ) 0 . 6 5 4 ( 2 ) 3 . 8 ( 6 ) C 6 7 0 . 4 8 9 ( 1 ) 0 . 3 9 2 ( 1 ) 0 . 3 6 2 ( 2 ) 1 . 4 ( 3 ) 2 6 8 T a b l e 6 9 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 6 8 0 . 4 2 6 ( 2 ) 0 . 4 4 6 ( 1 ) 0 . 3 4 3 ( 2 ) 2 . 0 ( 4 ) C 6 9 0 . 4 0 1 ( 2 ) 0 . 4 7 4 ( 1 ) 0 . 2 5 6 ( 2 ) 1 . 9 ( 4 ) C 7 0 0 . 4 4 3 ( 2 ) 0 . 4 4 9 ( 1 ) 0 . 1 8 9 ( 2 ) 2 . 7 ( 5 ) C 7 1 0 . 5 0 2 ( 2 ) 0 . 3 9 6 ( 1 ) 0 . 2 0 4 ( 2 ) 3 . 9 ( 6 ) C 7 2 0 . 5 2 8 ( 2 ) 0 . 3 6 6 ( 1 ) 0 . 2 9 6 ( 2 ) 2 . 9 ( 5 ) C 7 3 0 . 6 8 1 ( 2 ) 0 . 1 3 8 ( 1 ) 0 . 0 6 7 ( 2 ) 2 . 3 ( 4 ) C 7 4 0 . 8 3 2 ( 2 ) 0 . 0 5 4 ( 1 ) 0 . 1 8 2 ( 2 ) 2 . 6 ( 5 ) C 7 5 0 . 7 0 2 ( 2 ) 0 . 1 0 9 ( 1 ) 0 . 2 4 9 ( 2 ) 1 . 7 ( 4 ) C 7 6 1 . 0 7 7 ( 2 ) 0 . 0 8 5 ( 1 ) 0 . 2 4 5 ( 2 ) 1 . 8 ( 4 ) C 7 7 1 . 1 2 3 ( 2 ) 0 . 1 5 8 ( 1 ) 0 . 1 3 4 ( 2 ) 2 . 6 ( 5 ) C 7 8 1 . 2 2 0 ( 2 ) 0 . 1 6 2 ( 1 ) 0 . 3 3 9 ( 2 ) 3 . 0 ( 1 ) C 7 9 0 . 9 0 9 ( 2 ) 0 . 2 7 2 ( 1 ) - 0 . 0 2 9 ( 2 ) 2 . 6 ( 5 ) C 8 0 0 . 7 2 5 ( 2 ) 0 . 2 4 6 ( 1 ) - 0 . 1 0 6 ( 2 ) 3 . 0 ( 5 ) C 8 1 0 . 7 5 4 ( 2 ) 0 . 3 6 2 ( 1 ) - 0 . 0 5 3 ( 2 ) 3 . 0 ( 5 ) C 8 2 0 . 8 0 7 ( 2 ) 0 . 3 8 5 ( 1 ) 0 . 3 4 4 ( 2 ) 2 . 5 ( 4 ) C 8 3 0 . 8 7 7 ( 2 ) 0 . 2 9 8 ( 1 ) 0 . 4 7 4 ( 2 ) 2 1 ( 4 ) C 8 4 1 . 0 0 0 ( 2 ) 0 . 3 5 7 ( 1 ) 0 . 4 4 1 ( 2 ) 2 . 7 ( 5 ) C 8 5 0 . 8 8 8 ( 2 ) 0 . 1 1 2 ( 1 ) 0 . 0 0 2 ( 2 ) 3 . 2 ( 5 ) C 8 6 0 . 0 1 5 ( 3 ) 0 . 5 2 7 ( 2 ) 0 . 3 6 0 ( 3 ) 6 ( 1 ) 2 L B e q i s d e fi n e d a s 4 / 3 1 3 2 1 5 1 1 + b 2 5 2 2 + 0 2 5 3 3 + a b ( c o s v ) fi 1 2 + a C ( C O S B ) f 5 1 3 + b C ( C o s a ) 1 3 2 3 T a b l e 6 1 0 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 5 ] ( 6 7 ) 2 6 9 ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e g , A 2 M n l 0 . 4 7 7 5 ( 1 ) 0 . 8 2 2 4 ( 1 ) 0 . 1 3 8 3 4 ( 6 ) 1 . 7 4 ( 3 ) M n 2 0 . 2 6 6 8 ( 1 ) 0 . 9 3 5 6 ( 1 ) 0 . 2 3 2 0 9 ( 6 ) 1 . 6 9 ( 3 ) S I 0 . 2 5 4 1 ( 2 ) 0 . 7 1 8 4 ( 2 ) 0 . 1 8 2 3 ( 1 ) 1 . 7 9 ( 5 ) S 2 0 . 3 4 7 3 ( 2 ) 0 . 9 3 4 7 ( 2 ) 0 . 1 0 0 2 ( 1 ) 2 . 0 2 ( 6 ) S 3 0 . 5 1 6 4 ( 2 ) 0 . 9 8 3 5 ( 2 ) 0 . 2 7 5 9 ( 1 ) 1 . 9 0 ( 6 ) P 0 . 0 9 4 7 ( 2 ) 0 . 4 0 5 5 ( 2 ) 0 . 3 1 4 4 ( 1 ) 1 . 6 1 ( 6 ) 0 1 0 . 7 5 1 4 ( 5 ) 0 . 9 8 3 6 ( 5 ) 0 . 0 9 3 8 ( 3 ) 3 . 4 ( 2 ) 0 2 0 . 6 2 0 2 ( 6 ) 0 . 6 8 7 9 ( 5 ) 0 . 2 0 7 1 ( 4 ) 4 . 3 ( 2 ) 0 3 0 . 3 8 3 2 ( 6 ) 0 . 6 1 5 8 ( 5 ) 0 . 0 3 1 7 ( 3 ) 4 . 1 ( 2 ) 0 4 0 . 3 2 5 6 ( 5 ) 1 . 2 1 8 2 ( 5 ) 0 . 2 8 9 9 ( 3 ) 3 . 4 ( 2 ) ( ) 5 0 . 1 8 0 2 ( 6 ) 0 . 9 1 3 7 ( 5 ) 0 . 3 9 5 1 ( 3 ) 3 . 8 ( 2 ) ( E - 0 . 0 4 0 1 ( 6 ) 0 . 8 4 8 9 ( 6 ) 0 . 1 5 7 0 ( 3 ) 3 . 9 ( 2 ) C l - 0 . 0 5 8 4 ( 7 ) 0 . 4 4 2 7 ( 6 ) 0 . 3 0 7 7 ( 4 ) 1 . 9 ( 1 ) C 2 - 0 . 1 8 3 5 ( 7 ) 0 . 3 8 0 0 ( 6 ) 0 . 3 3 8 1 ( 4 ) 2 . 1 ( 1 ) c s 0 . 3 0 1 0 ( 8 ) 0 . 4 0 9 8 m 0 . 3 2 9 7 ( 5 ) 3 . 2 ( 2 ) C 4 - 0 . 2 9 4 0 ( 8 ) 0 . 5 0 4 6 ( 7 ) 0 . 2 9 3 5 ( 5 ) 3 . 3 ( 2 ) C 5 — 0 . 1 6 9 2 ( 8 ) 0 . 5 6 8 6 ( 8 ) 0 . 2 6 3 9 ( 5 ) 3 . 4 ( 2 ) C 6 - 0 . 0 5 3 2 ( 8 ) 0 . 5 3 8 7 ( 7 ) 0 . 2 7 1 4 ( 5 ) 2 . 8 ( 1 ) C 7 0 . 0 4 5 6 ( 7 ) 0 . 2 6 9 6 ( 6 ) 0 . 3 5 4 3 ( 4 ) 1 . 5 ( 1 ) c s 0 . 0 7 3 7 ( 7 ) 0 . 2 9 9 3 ( 7 ) 0 . 4 4 2 9 ( 4 ) 2 3 ( 1 ) C 9 0 . 0 2 2 4 ( 8 ) 0 . 1 9 5 4 ( 7 ) 0 . 4 7 5 2 ( 4 ) 2 . 6 ( 1 ) C 1 0 — 0 . 0 5 5 8 ( 7 ) 0 . 0 6 6 6 ( 7 ) 0 . 4 2 1 5 ( 4 ) 2 . 5 ( 1 ) C 1 1 0 . 0 8 2 2 ( 7 ) 0 . 0 3 7 9 ( 7 ) 0 . 3 3 4 9 ( 4 ) 2 2 ( 1 ) C 1 2 - 0 . 0 3 1 0 ( 7 ) 0 . 1 3 9 0 ( 6 ) 0 . 3 0 1 4 ( 4 ) 2 . 2 ( 1 ) C 1 3 0 . 2 4 6 4 ( 7 ) 0 . 5 4 4 5 ( 6 ) 0 . 3 8 9 6 ( 4 ) 1 . 8 ( 1 ) C 1 4 0 . 2 2 9 0 ( 8 ) 0 . 6 5 7 2 ( 7 ) 0 . 4 3 5 0 ( 4 ) 2 . 7 ( 1 ) C 1 5 0 . 3 4 3 4 ( 8 ) 0 . 7 6 0 4 ( 7 ) 0 . 4 9 8 4 ( 5 ) 3 . 0 ( 1 ) C 1 6 0 . 4 7 3 6 ( 9 ) 0 . 7 5 4 8 ( 8 ) 0 . 5 1 5 4 ( 5 ) 3 . 5 ( 2 ) C 1 7 0 . 4 9 1 3 ( 8 ) 0 . 6 4 2 8 ( 7 ) 0 . 4 6 9 4 ( 5 ) 3 . 0 ( 1 ) C 1 8 0 . 3 7 7 5 ( 7 ) 0 . 5 3 7 5 ( 6 ) 0 . 4 0 8 7 ( 4 ) 2 1 ( 1 ) 2 7 0 T a b l e 6 - 1 0 . ( c o n t ' d ) a t o m x y z B e a , A : 2 C 1 9 0 . 1 3 8 0 ( 7 ) 0 . 3 6 4 6 ( 6 ) 0 . 2 0 9 5 ( 4 ) 1 . 6 ( 1 ) C 2 0 0 . 0 2 2 5 ( 7 ) 0 . 2 7 4 3 ( 7 ) 0 . 1 4 1 1 ( 4 ) 2 . 4 ( 1 ) C 2 1 0 . 0 5 5 0 ( 8 ) 0 . 2 3 6 9 ( 7 ) 0 . 0 6 1 5 ( 5 ) 3 . 1 ( 1 ) C 2 2 0 . 1 9 4 8 ( 8 ) 0 . 2 9 0 7 ( 7 ) 0 . 0 4 6 6 ( 5 ) 3 . 0 ( 1 ) C 2 3 0 . 3 0 7 0 ( 8 ) 0 . 3 8 4 9 ( 7 ) 0 . 1 1 3 8 ( 4 ) 2 . 6 ( 1 ) C 2 4 0 . 2 7 6 9 ( 7 ) 0 . 4 2 2 1 ( 6 ) 0 . 1 9 4 7 ( 4 ) 1 . 6 ( 1 ) C 2 5 0 . 6 4 4 0 ( 8 ) 0 . 9 2 1 6 ( 7 ) 0 . 1 1 1 2 ( 4 ) 2 . 3 ( 2 ) C 2 6 0 . 5 6 1 2 ( 7 ) 0 . 7 4 0 1 ( 7 ) 0 . 1 7 8 8 ( 4 ) 2 . 3 ( 2 ) C 2 7 0 . 4 2 1 0 ( 8 ) 0 . 6 9 7 5 ( 7 ) 0 . 0 3 5 6 ( 5 ) 2 . 6 ( 3 ) C 2 8 0 . 3 0 2 4 ( 7 ) 1 . 1 0 6 7 ( 7 ) 0 . 2 6 6 4 ( 4 ) 2 . 1 ( 2 ) C 2 9 0 . 2 1 6 6 ( 7 ) 0 . 9 2 1 1 ( 6 ) 0 . 3 3 0 7 ( 4 ) 2 . 0 ( 2 ) C 3 0 0 . 0 8 2 5 ( 8 ) 0 . 8 8 2 3 ( 7 ) 0 . 1 8 5 1 ( 4 ) 2 . 2 ( 2 ) C 3 1 0 . 1 1 1 0 ( 8 ) 0 . 6 1 5 9 ( 7 ) 0 . 0 8 7 6 ( 5 ) 2 . 8 ( 3 ) C 3 2 0 . 4 7 6 5 ( 8 ) 1 . 1 0 3 1 ( 7 ) 0 . 1 1 2 4 ( 5 ) 3 . 1 ( 3 ) C 3 3 0 . 5 1 8 0 ( 8 ) 0 . 9 0 1 1 ( 7 ) 0 . 3 5 2 6 ( 5 ) 3 . 3 ( 3 ) a . B e q i s d e fi n e d a s 4 / 3 1 3 2 5 1 1 + b 2 1 3 2 2 + 0 2 5 3 3 + a b ( c o s v ) 5 1 2 + a C ( C O S B ) B l 3 + b C ( C O S < 1 ) 5 2 3 T a b l e 6 - 1 1 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 5 ] ( 6 8 ) 2 7 1 L S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B E A 2 S e l 0 . 2 6 2 2 ( 1 ) 0 . 7 1 7 7 ( 1 ) 0 . 1 8 9 5 8 ( 7 ) 3 . 1 5 ( 4 ) 8 6 2 0 . 3 5 0 6 ( 1 ) 0 . 9 3 5 0 ( 1 ) 0 . 0 9 9 1 6 ( 7 ) 3 3 4 ( 4 ) 3 6 3 0 . 5 3 5 2 ( 1 ) 0 . 9 9 3 2 ( 1 ) 0 . 2 8 2 9 2 ( 7 ) 2 . 9 9 ( 4 ) M n l 0 . 4 8 9 9 ( 2 ) 0 . 8 2 3 6 ( 2 ) 0 . 1 4 1 7 ( 1 ) 2 . 8 8 ( 6 ) M n 2 0 . 2 7 3 7 ( 2 ) 0 . 9 3 9 9 ( 2 ) 0 . 2 3 7 9 ( 1 ) 2 . 8 0 ( 6 ) P 0 . 0 9 2 7 ( 3 ) 0 . 3 9 8 8 ( 3 ) 0 . 3 1 3 2 ( 2 ) 2 . 7 4 ( 9 ) 0 1 0 . 7 5 4 ( 1 ) 0 . 9 7 9 4 ( 9 ) 0 . 0 9 6 0 ( 5 ) 5 . 5 ( 4 ) ( ) 2 0 . 6 3 1 ( 1 ) 0 . 6 9 3 ( 1 ) 0 . 2 1 1 4 ( 7 ) 7 . 3 ( 5 ) 0 3 0 . 3 9 3 ( 1 ) 0 . 6 1 6 ( 1 ) - 0 . 0 2 6 3 ( 6 ) 7 . 2 ( 4 ) ( ) 4 0 . 3 2 9 ( 1 ) 1 . 2 1 4 ( 1 ) 0 . 2 9 0 1 ( 6 ) 5 . 7 ( 4 ) 0 5 0 . 1 9 3 ( 1 ) 0 . 9 2 1 ( 1 ) 0 . 4 0 0 6 ( 5 ) 6 . 1 ( 4 ) ( X - 0 . 0 3 1 ( 1 ) 0 . 8 4 8 ( 1 ) 0 . 1 5 9 7 ( 6 ) 7 . 2 ( 4 ) C 1 - 0 . 0 6 0 ( 1 ) 0 . 4 3 7 ( 1 ) 0 . 3 0 5 3 ( 6 ) 2 . 8 ( 2 ) C 2 - 0 . 1 8 0 ( 1 ) 0 . 3 7 8 ( 1 ) 0 . 3 3 7 5 ( 7 ) 4 . 3 ( 3 ) C 3 - 0 . 2 9 9 ( 1 ) 0 . 4 0 9 ( 1 ) 0 . 3 2 9 9 ( 7 ) 4 . 8 ( 3 ) C 4 - 0 . 2 9 5 ( 2 ) 0 . 4 9 6 ( 1 ) 0 . 2 9 1 5 ( 8 ) 5 . 4 ( 3 ) C 5 - 0 . 1 7 3 ( 2 ) 0 . 5 5 6 ( 1 ) 0 . 2 6 0 6 ( 9 ) 6 . 5 ( 3 ) C 6 - 0 . 0 5 8 ( 1 ) 0 . 5 2 1 ( 1 ) 0 . 2 6 7 0 ( 8 ) 5 . 2 ( 3 ) C 7 0 . 0 4 7 ( 1 ) 0 . 2 7 0 ( 1 ) 0 . 3 5 4 9 ( 6 ) 2 . 5 ( 2 ) C 8 0 . 0 7 4 ( 1 ) 0 . 3 0 0 ( 1 ) 0 . 4 4 2 1 ( 7 ) 4 . 1 ( 2 ) C 9 0 . 0 2 2 ( 1 ) 0 . 1 9 8 ( 1 ) 0 . 4 7 4 3 ( 7 ) 4 . 6 ( 3 ) C 1 0 - 0 . 0 4 7 ( 1 ) 0 . 0 7 4 ( 1 ) 0 . 4 2 2 5 ( 8 ) 4 . 7 ( 3 ) C 1 1 - 0 . 0 7 1 ( 1 ) 0 . 0 4 3 ( 1 ) 0 . 3 3 7 0 ( 7 ) 4 . 1 ( 2 ) C 1 2 - 0 . 0 2 3 ( 1 ) 0 . 1 4 1 ( 1 ) 0 . 3 0 2 0 ( 6 ) 3 . 5 ( 2 ) C 1 3 0 . 2 4 2 ( 1 ) 0 . 5 3 6 ( 1 ) 0 . 3 8 8 8 ( 6 ) 3 . 1 ( 2 ) C 1 4 0 . 2 2 5 ( 1 ) 0 . 6 4 7 ( 1 ) 0 . 4 3 2 4 ( 7 ) 3 . 8 ( 2 ) C 1 5 0 . 3 3 9 ( 1 ) 0 . 7 4 9 ( 1 ) 0 . 4 9 2 7 ( 8 ) 5 . 2 ( 3 ) C 1 6 0 . 4 6 5 ( 1 ) 0 . 7 4 2 ( 1 ) 0 . 5 0 8 9 ( 8 ) 5 . 2 ( 3 ) C 1 7 0 . 4 8 6 ( 1 ) 0 . 6 3 3 ( 1 ) 0 . 4 6 7 0 ( 8 ) 4 . 9 ( 3 ) C 1 8 0 . 3 7 2 ( 1 ) 0 . 5 2 8 ( 1 ) 0 . 4 0 6 3 ( 7 ) 3 . 9 ( 2 ) 2 7 2 T a b l e 6 1 1 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 1 9 0 . 1 3 6 ( 1 ) 0 . 3 5 9 ( 1 ) 0 . 2 0 9 7 ( 6 ) 2 . 8 ( 2 ) C 2 0 0 . 0 2 5 ( 1 ) 0 . 2 6 9 ( 1 ) 0 . 1 4 1 3 ( 7 ) 4 . 4 ( 3 ) C 2 1 0 . 0 5 4 ( 1 ) 0 . 2 3 2 ( 1 ) 0 . 0 6 0 8 ( 8 ) 5 . 2 ( 3 ) C 2 2 0 . 1 9 1 ( 2 ) 0 . 2 8 8 ( 1 ) 0 . 0 4 7 9 ( 8 ) 5 . 4 ( 3 ) C 2 3 0 . 3 0 2 ( 1 ) 0 . 3 8 0 ( 1 ) 0 . 1 1 4 7 ( 8 ) 4 . 7 ( 3 ) C 2 4 0 . 2 7 3 ( 1 ) 0 . 4 1 5 ( 1 ) 0 . 1 9 5 5 ( 6 ) 3 . 2 ( 2 ) 0 2 5 0 . 6 4 9 ( 1 ) 0 . 9 1 8 ( 1 ) 0 . 1 1 4 7 ( 7 ) 3 . 7 ( 4 ) C 2 6 0 . 5 7 8 ( 1 ) 0 . 7 4 5 ( 1 ) 0 . 1 8 3 6 ( 8 ) 4 . 3 ( 5 ) C 2 7 0 . 4 3 0 ( 1 ) 0 . 7 0 0 ( 1 ) 0 . 0 4 0 6 ( 8 ) 4 . 7 ( 5 ) C 2 8 0 . 3 0 7 ( 1 ) 1 . 1 0 6 ( 1 ) 0 . 2 6 8 7 ( 7 ) 3 . 6 ( 4 ) C 2 9 0 . 2 2 8 ( 1 ) 0 . 9 2 8 ( 1 ) 0 . 3 3 6 3 ( 7 ) 4 . 1 ( 4 ) C 3 0 0 . 0 8 6 ( 1 ) 0 . 8 8 4 ( 1 ) 0 . 1 8 9 5 ( 7 ) 4 . 6 ( 5 ) C 3 1 0 . 1 1 0 ( 1 ) 0 . 6 1 0 ( 1 ) 0 . 0 8 7 0 ( 7 ) 4 . 8 ( 5 ) C 3 2 0 . 4 8 8 ( 1 ) 1 . 1 1 1 ( 1 ) 0 . 1 1 4 0 ( 7 ) 4 . 9 ( 5 ) C 3 3 0 . 5 3 8 ( 1 ) 0 . 9 0 5 ( 1 ) 0 . 3 6 6 2 ( 7 ) 4 . 6 ( 5 ) a . B e q i s d e fi n e d a s 4 / 3 1 3 2 5 1 l + b 2 1 3 2 2 + 6 2 5 3 3 + a b ( 0 0 s v ) 1 3 1 2 + a C ( C O S B ) 5 1 3 + b C ( C O S G ) 1 3 2 3 2 7 3 T a b l e 6 - 1 2 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s a f o r ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 5 ] ( 6 9 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e a , A 2 T e l 0 . 1 4 0 2 3 ( 5 ) 0 . 6 9 4 1 2 ( 2 ) 0 . 5 4 2 0 0 ( 4 ) 2 . 2 5 ( 3 ) T e 2 0 . 0 1 0 2 9 ( 5 ) 0 . 5 7 2 6 5 ( 2 ) 0 . 5 5 5 4 2 ( 4 ) 2 . 2 3 ( 3 ) T e 3 - 0 . 0 6 2 8 0 ( 6 ) 0 . 6 6 5 6 8 ( 2 ) 0 . 7 2 3 6 2 ( 4 ) 2 7 6 ( 3 ) M n l - 0 . 1 0 4 2 ( 1 ) 0 . 6 6 1 9 9 ( 5 ) 0 . 5 2 0 1 ( 1 ) 2 . 2 1 ( 5 ) M n 2 0 . 1 6 4 0 ( 1 ) 0 . 6 2 6 7 8 ( 5 ) 0 . 6 9 3 9 ( 1 ) 2 . 4 1 ( 6 ) P 0 . 4 5 1 7 ( 2 ) 0 . 6 1 9 8 9 ( 9 ) 0 . 1 2 6 9 ( 2 ) 2 . 1 ( 1 ) 0 1 - 0 . 3 6 8 8 ( 7 ) 0 . 6 2 6 1 ( 3 ) 0 . 5 3 1 8 ( 7 ) 6 . 6 ( 5 ) ( I 2 — 0 . 1 9 2 1 ( 6 ) 0 . 7 6 7 1 ( 3 ) 0 . 4 9 9 5 ( 6 ) 4 . 2 ( 3 ) ( B - 0 . 1 2 0 4 ( 7 ) 0 . 6 4 3 3 ( 3 ) 0 . 2 9 7 1 ( 5 ) 4 . 4 ( 4 ) O 4 0 . 1 4 9 8 ( 6 ) 0 . 5 4 6 5 ( 3 ) 0 . 8 4 6 9 ( 5 ) 4 . 0 ( 3 ) ( B 0 . 2 9 9 0 ( 7 ) 0 . 6 9 5 4 ( 3 ) 0 . 8 4 8 8 ( 6 ) 5 . 3 ( 4 ) 0 6 0 . 4 0 4 4 ( 6 ) 0 . 5 9 1 4 ( 3 ) 0 . 6 2 1 0 ( 5 ) 4 . 4 ( 3 ) C 1 0 . 2 7 8 6 ( 8 ) 0 . 6 0 8 3 ( 3 ) 0 . 1 0 6 9 ( 6 ) 2 . 5 ( 2 ) C 2 0 . 1 9 2 5 ( 9 ) 0 . 6 4 7 2 ( 4 ) 0 . 0 8 5 2 ( 7 ) 3 . 4 ( 2 ) C 3 0 . 0 5 9 ( 1 ) 0 . 6 3 7 5 ( 5 ) 0 . 0 6 9 9 ( 9 ) 4 . 8 ( 2 ) C 4 0 . 0 1 6 ( 1 ) 0 . 5 8 9 0 ( 5 ) 0 . 0 7 6 7 ( 8 ) 4 . 8 ( 2 ) C 5 0 . 1 0 2 ( 1 ) 0 . 5 5 0 0 ( 4 ) 0 . 0 9 8 4 ( 7 ) 3 . 8 ( 2 ) C 6 0 . 2 3 3 8 ( 8 ) 0 . 5 5 9 0 ( 4 ) 0 . 1 1 3 1 ( 7 ) 2 . 9 ( 2 ) C 7 0 . 4 8 7 9 ( 8 ) 0 . 6 8 3 9 ( 3 ) 0 . 1 5 9 1 ( 6 ) 2 . 1 ( 1 ) C 8 0 . 5 4 0 2 ( 9 ) 0 . 6 9 7 0 ( 4 ) 0 . 2 5 9 0 ( 7 ) 3 . 3 ( 2 ) C 9 0 . 5 7 1 ( 1 ) 0 . 7 4 6 7 ( 4 ) 0 . 2 8 1 4 ( 8 ) 4 . 1 ( 2 ) C 1 0 0 . 5 5 1 0 ( 9 ) 0 . 7 8 3 2 ( 4 ) 0 . 2 0 6 8 ( 7 ) 3 . 4 ( 2 ) C 1 1 0 . 4 9 8 4 ( 9 ) 0 . 7 6 9 6 ( 4 ) 0 . 1 0 9 7 ( 7 ) 3 . 1 ( 2 ) C 1 2 0 . 4 6 7 5 ( 8 ) 0 . 7 2 0 9 ( 3 ) 0 . 0 8 5 0 ( 6 ) 2 . 8 ( 2 ) C 1 3 0 . 5 2 7 1 ( 8 ) 0 . 5 8 0 0 ( 3 ) 0 . 2 2 7 2 ( 6 ) 2 . 3 ( 2 ) C 1 4 0 . 4 6 2 ( 1 ) 0 . 5 6 8 4 ( 4 ) 0 . 3 0 9 9 ( 7 ) 3 . 4 ( 2 ) C 1 5 0 . 5 2 3 ( 1 ) 0 . 5 4 1 6 ( 4 ) 0 . 3 9 1 5 ( 8 ) 4 . 2 ( 2 ) C 1 6 0 . 6 4 9 ( 1 ) 0 . 5 2 4 3 ( 4 ) 0 . 3 9 0 7 ( 8 ) 4 . 7 ( 2 ) C 1 7 0 . 7 1 2 ( 1 ) 0 . 5 3 5 6 ( 4 ) 0 . 3 0 8 4 ( 7 ) 3 . 6 ( 2 ) C 1 8 0 . 6 5 2 5 ( 8 ) 0 . 5 6 2 9 ( 3 ) 0 . 2 2 6 2 ( 7 ) 2 . 9 ( 2 ) 2 7 4 T a b l e 6 1 2 . ( c o n t ' d ) a t o m x y z 3 9 9 , A 2 C 1 9 0 . 5 1 9 3 ( 7 ) 0 . 6 0 6 0 ( 3 ) 0 . 0 1 1 7 ( 6 ) 2 . 1 ( 1 ) C 2 0 0 . 6 3 3 5 ( 8 ) 0 . 6 2 9 6 ( 3 ) - 0 . 0 0 5 5 ( 7 ) 2 . 8 ( 2 ) C 2 1 0 . 6 9 0 8 ( 9 ) 0 . 6 1 8 2 ( 4 ) - 0 . 0 9 2 5 ( 7 ) 3 . 6 ( 2 ) C 2 2 0 . 6 3 3 ( 1 ) 0 . 5 8 3 0 ( 4 ) - 0 . 1 6 0 6 ( 7 ) 3 . 6 ( 2 ) C 2 3 0 . 5 2 0 0 ( 8 ) 0 . 5 5 8 3 ( 4 ) - 0 . 1 4 3 5 ( 7 ) 3 . 1 ( 2 ) C 2 4 0 . 4 6 3 8 ( 8 ) 0 . 5 7 0 5 ( 3 ) - 0 . 0 5 6 2 ( 6 ) 2 . 6 ( 2 ) C 2 5 - 0 . 2 6 5 ( 1 ) 0 . 6 3 8 4 ( 4 ) 0 . 5 2 6 8 ( 8 ) 3 . 6 ( 5 ) C 2 6 - 0 . 1 5 6 9 ( 8 ) 0 . 7 2 6 6 ( 4 ) 0 . 5 0 7 7 ( 6 ) 2 . 7 ( 4 ) C 2 7 - 0 . 1 1 4 4 ( 8 ) 0 . 6 5 0 7 ( 3 ) 0 . 3 8 2 8 ( 8 ) 2 . 7 ( 4 ) C 2 8 0 . 1 5 4 4 ( 8 ) 0 . 5 7 8 7 ( 4 ) 0 . 7 8 9 1 ( 7 ) 2 . 9 ( 4 ) C 2 9 0 . 2 4 8 ( 1 ) 0 . 6 6 9 1 ( 4 ) 0 . 7 8 7 2 ( 7 ) 3 . 4 ( 4 ) C 3 0 0 . 3 1 0 8 ( 9 ) 0 . 6 0 4 8 ( 3 ) 0 . 6 5 0 8 ( 7 ) 2 . 8 ( 4 ) C 3 1 0 . 2 2 4 ( 1 ) 0 . 6 5 9 3 ( 4 ) 0 . 4 1 8 0 ( 7 ) 3 . 7 ( 5 ) C 3 2 - 0 . 1 1 5 ( 1 ) 0 . 5 3 1 0 ( 4 ) 0 . 6 4 6 7 ( 7 ) 3 . 4 ( 4 ) C 3 3 0 . 0 2 5 ( 1 ) 0 . 7 4 3 2 ( 4 ) 0 . 7 6 2 5 ( 9 ) 4 . 7 ( 5 ) a » B a g i s d e fi n e d a s 4 / 3 1 a 2 5 1 r + b 2 5 2 2 + 0 2 1 3 3 3 + a b ( c o s v ) 1 3 1 2 + a C ( 0 0 8 1 3 ) 5 1 3 + b C ( C o s a ) 5 2 3 2 7 5 T a b l e 6 1 3 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ 1 \ 4 n 3 ( 3 2 ) 2 ( S H ) ( C 0 ) 9 ] ( 6 ' 1 ) h H d c a l c . ( A ) d o b s . ( A ) I ” m a x . ( o b s . ) 2 1 0 1 0 . 2 1 0 . 7 8 8 0 1 1 1 0 . 0 1 0 . 3 7 0 1 1 - 1 9 . 6 9 9 . 6 6 3 1 2 0 1 8 . 7 2 8 . 8 6 1 9 2 1 - 1 8 . 4 0 8 . 4 7 3 8 0 2 0 8 . 0 3 8 . 0 6 1 0 0 4 0 0 6 . 6 4 6 . 7 2 6 0 0 0 2 6 . 4 3 6 . 3 9 6 8 4 1 0 6 . 1 3 6 . 1 8 8 1 3 2 0 5 . 9 5 6 . 0 1 7 2 4 1 - 1 5 . 8 0 5 . 8 2 6 0 3 2 1 5 . 2 3 5 . 2 0 9 8 1 2 - 2 5 . 0 1 9 5 . 0 1 7 9 6 4 1 - 2 4 . 7 1 1 4 . 7 1 3 9 0 5 2 - 1 4 . 3 2 4 4 . 3 1 2 8 0 0 1 3 4 . 1 4 2 4 . 1 4 3 6 7 3 1 - 3 3 . 9 3 4 3 . 9 3 3 7 4 6 0 - 2 3 . 8 7 2 3 . 8 6 9 6 6 1 4 - 1 3 . 8 1 1 3 . 8 0 2 4 9 4 1 - 3 3 . 7 1 6 3 . 7 1 3 5 0 4 3 - 2 3 . 6 2 5 3 . 6 2 6 3 0 5 3 1 3 . 5 3 5 3 . 5 2 9 2 8 6 0 2 3 . 4 5 3 3 . 4 5 4 3 3 8 0 0 3 . 3 1 7 3 . 3 2 0 3 0 2 0 4 3 . 0 4 3 3 . 0 4 0 2 4 3 5 - 1 2 . 9 6 6 2 . 9 6 7 2 0 4 3 3 2 . 8 7 9 2 . 8 7 7 1 1 8 3 0 2 . 8 2 0 2 . 8 2 2 1 8 5 5 0 2 . 7 4 7 2 . 7 4 4 1 0 4 5 - 2 2 . 6 9 0 2 . 7 0 2 2 2 1 4 - 4 2 . 5 0 1 2 . 5 0 1 2 4 9 4 1 2 . 2 9 7 2 . 2 9 6 4 1 2 7 6 T a b l e 6 - 1 4 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h i ) 2 1 M n 3 1 8 2 ) 2 1 8 C H 3 ) ( C 0 ) 9 1 ( 6 2 1 h k l d c a l c . ( A ) d o b s . ( A ) I / I m a x . ( o b s ) 1 1 - 1 1 0 . 6 1 0 . 6 3 8 2 l 0 1 0 . 3 1 0 . 3 2 8 2 2 0 8 . 9 7 8 . 9 5 5 7 1 2 1 8 . 3 9 8 . 4 3 3 9 2 - 1 0 7 . 9 3 7 . 9 5 1 0 0 1 - 2 - 1 7 . 1 1 7 . 1 5 2 7 0 0 2 6 . 4 2 6 . 4 4 1 3 0 l 2 6 . 1 0 7 6 . 1 0 4 1 6 3 2 1 5 . 8 8 3 5 . 8 9 0 2 3 1 - 3 1 5 . 6 3 0 5 . 6 3 9 1 8 2 0 - 2 5 . 3 4 7 5 . 3 5 0 2 6 2 - 3 0 5 . 0 6 7 . 5 . 0 5 9 2 7 4 0 0 4 . 8 5 9 4 . 8 4 7 6 3 3 4 1 4 . 7 3 8 4 . 7 3 6 5 9 4 0 - 1 4 . 5 4 0 4 . 5 4 6 2 2 2 4 - 2 4 . 3 2 5 4 . 3 2 7 1 8 0 4 2 4 . 2 3 7 4 . 2 3 1 2 2 4 - 2 0 3 . 9 6 6 3 . 9 6 1 2 4 4 4 - 2 3 . 7 1 6 3 . 7 1 9 2 8 3 0 3 3 . 5 7 3 3 . 5 6 1 1 9 6 2 0 3 . 4 4 6 3 . 4 4 2 1 6 1 7 1 3 . 1 5 3 3 . 1 5 6 3 7 2 - 4 3 3 . 0 3 4 3 . 0 3 7 2 0 2 - 1 4 2 . 9 8 7 2 . 9 8 1 2 5 5 4 - 3 2 . 8 9 4 2 . 8 9 2 2 7 0 6 3 2 . 7 3 9 2 . 7 4 0 1 0 4 5 - 4 2 . 5 4 0 2 . 5 4 1 1 4 4 9 1 2 . 4 9 8 2 . 4 9 0 1 8 2 3 - 5 2 . 4 3 8 2 . 4 3 2 1 9 8 3 2 2 . 3 9 3 2 . 3 9 1 1 8 2 7 7 T a b l e 6 1 5 . C a l c u l a t e d a n d O b s e r v e d X — r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 [ M n 3 ( S e z ) 2 ( S e C H 3 ) ( C 0 ) 9 ] 1 6 ' 3 ) h H d c a l c . ( A ) d o b s . ( A ) I ” m a x . ( 0 1 3 8 - ) 0 2 1 1 1 . 5 1 1 . 6 1 0 0 1 0 - 1 9 . 8 7 9 . 9 0 2 1 0 0 2 9 . 0 2 9 . 0 2 6 8 1 0 1 9 . 0 1 I I 1 2 0 8 . 8 7 8 . 9 1 5 7 0 1 2 8 . 6 3 8 . 7 0 3 1 0 4 0 7 . 4 6 7 . 4 7 2 1 1 1 - 2 7 . 1 5 7 . 1 5 1 3 1 2 - 2 6 . 6 0 3 6 . 6 0 1 1 9 1 3 - 2 5 . 9 1 8 5 . 9 1 4 2 3 1 4 1 5 . 7 4 5 5 . 7 4 8 2 0 0 2 3 5 . 5 7 9 5 . 5 7 7 1 8 1 5 - 1 5 . 1 0 5 5 . 1 0 9 2 7 2 2 1 4 . 8 5 1 4 . 8 4 9 2 1 0 4 3 4 . 6 8 2 4 . 6 8 0 1 4 2 0 2 4 . 5 0 6 4 . 5 1 1 2 5 1 5 - 3 4 . 0 5 3 4 . 0 5 5 1 6 1 7 - 1 3 . 9 1 2 3 . 9 2 1 1 1 0 8 0 3 . 7 2 8 3 . 7 2 3 2 0 2 2 - 4 3 . 5 7 5 3 . 5 7 4 1 7 2 7 - 3 3 . 0 2 3 3 . 0 3 1 1 5 0 1 0 1 2 . 9 4 2 2 . 9 4 4 2 2 4 2 - 1 2 . 7 2 3 2 . 7 2 2 1 3 4 3 - 1 2 . 6 6 8 2 . 6 6 4 1 8 2 7 8 T a b l e 6 1 6 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r 0 1 - ( P h 4 P ) 2 [ M n 3 ( T 6 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 ' 4 ) 1 1 k 1 d c a l c . ( A ) d o b s . ( A ) I ” m a x . ( O b S - ) 0 o 2 1 1 . 6 1 1 . 6 1 0 0 0 1 - 1 1 1 . 4 / / 0 I 0 1 1 . 2 / / 1 0 - 1 1 0 . 8 1 0 . 8 5 0 0 1 - 2 9 . 5 0 9 . 5 4 4 5 l 0 I 9 . 1 9 9 . 2 1 8 0 0 I 1 9 . 1 5 / / 1 - 1 1 8 . 7 3 8 . 7 7 3 6 1 - 1 - 1 8 . 3 9 8 . 4 0 4 1 1 - 1 2 7 . 4 2 7 . 4 7 2 3 0 1 2 7 . 1 2 5 7 . 1 3 5 4 6 1 1 - 3 6 . 1 6 5 6 . 1 6 3 1 8 1 - 2 0 5 . 6 7 5 5 . 6 7 7 2 6 1 - 1 4 5 . 0 3 2 5 . 0 2 8 1 8 1 - 2 - 2 4 . 7 7 2 4 . 7 7 4 1 3 1 1 5 4 . 5 3 3 4 . 5 4 2 2 1 2 - 2 2 4 . 3 6 8 4 . 3 7 5 2 6 0 2 3 4 . 0 3 5 4 . 0 3 0 2 3 0 0 6 3 . 8 5 7 3 . 8 6 1 4 6 1 - 1 6 3 . 6 3 3 3 . 6 3 2 2 4 3 - 2 1 3 . 4 8 6 3 . 4 8 3 4 2 0 1 6 3 . 3 6 9 3 . 3 7 1 2 2 3 1 - 1 3 . 3 0 5 3 . 3 0 9 3 0 3 - 1 3 3 . 2 5 3 3 . 2 4 9 4 2 0 2 5 3 . 1 6 4 3 . 1 7 2 4 0 3 1 1 3 . 0 7 9 3 . 0 7 7 3 3 0 1 - 8 3 . 0 1 2 3 . 0 1 8 4 2 0 0 8 2 . 8 9 3 2 . 8 9 8 4 1 3 2 - 2 2 . 8 5 0 2 . 8 5 0 4 2 4 - 1 1 2 . 7 7 6 2 . 7 8 8 2 3 2 7 9 T a b l e 6 - 1 6 . ( c o n t ' d ) h H d c a l c . ( A ) d o b s . ( A ) I ” m a x . ( 0 1 3 8 - ) 4 - 2 - 3 2 . 6 7 4 2 . 6 7 1 1 6 4 - 2 3 2 . 5 5 8 2 . 5 5 8 2 1 3 3 - 2 2 . 4 1 2 2 . 4 0 9 2 7 3 2 - 8 2 . 3 5 4 2 . 3 5 6 2 5 4 2 - 3 2 . 3 1 9 2 . 3 2 0 2 7 4 - 4 - 2 2 . 2 3 4 2 . 2 3 4 3 1 1 5 - 2 2 . 1 7 4 2 . 1 7 5 2 2 5 1 - 2 2 . 1 0 1 2 . 1 0 0 1 9 3 - 4 8 2 . 0 5 3 2 . 0 5 4 1 7 2 8 0 T a b l e 6 1 7 . C a l c u l a t e d a n d O b s e r v e d X — r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r B — L P M P W H 3 ( T 6 2 ) 2 C F 6 C H 3 ) L C O ) 9 ] ( 6 ' 5 ) h H d c a l c . ( A ) d o b s . ( A ) m m a x . ( 0 1 3 8 - ) 0 2 0 1 3 . 8 1 4 . 2 1 8 1 0 - 1 1 1 . 0 1 1 . 1 7 8 0 2 1 1 0 . 9 / / l 0 1 9 . 2 0 9 . 3 1 1 0 0 1 2 0 9 . 0 8 / / 1 2 - 1 8 . 5 9 8 . 6 3 3 4 1 1 - 2 7 . 5 9 7 . 6 0 1 9 0 4 0 6 . 9 0 6 . 8 7 2 2 1 2 - 2 6 . 8 5 / / 0 4 1 6 . 4 3 6 . 4 7 2 0 1 3 - 2 5 . 9 9 6 . 0 2 3 1 0 1 3 5 . 7 9 5 . 8 1 2 4 1 1 - 3 5 . 6 4 5 . 6 6 2 6 2 2 - 2 5 . 1 0 5 . 1 8 2 7 2 1 - 3 4 . 6 2 4 . 6 1 2 6 2 3 - 3 4 . 1 7 7 4 . 1 7 9 2 1 1 7 - 1 3 . 7 1 0 3 . 7 1 7 1 4 1 7 1 3 . 6 2 3 3 . 6 2 5 9 1 7 2 3 . 3 8 2 3 . 3 8 3 7 2 4 - 4 3 . 2 1 1 3 . 2 1 4 1 1 3 3 4 3 . 1 1 1 3 . 1 0 7 1 0 2 8 1 T a b l e 6 - 1 8 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 3 [ R e 4 ( T e z ; 3 C T e C H 3 ) ( C 0 ) 1 2 1 ' C H 3 0 H ( 6 ‘ 0 h H d c a l c . ( A ) d o b s . ( A ) I ” m a x . ( 0 1 3 8 - ) 1 0 0 1 3 . 7 1 3 . 8 4 8 1 0 - 1 1 2 . 6 1 2 . 9 5 2 1 1 0 1 2 . 6 / / 1 1 - 1 1 1 . 8 1 1 . 8 4 6 0 1 - 1 1 1 . 5 1 1 . 4 1 0 0 0 1 1 1 1 . 3 / / 0 2 0 1 1 . 0 1 1 . 1 8 3 1 - 1 0 1 0 . 9 8 / / 1 - 1 - 1 1 0 . 2 9 1 0 . 4 0 8 6 1 2 0 9 . 3 3 9 . 4 1 3 7 1 2 - 1 9 . 0 2 9 . 0 7 2 1 0 2 l 8 . 4 4 8 . 4 5 1 8 1 0 1 8 . 0 5 8 . 0 7 3 6 1 ~ 2 0 8 . 0 4 7 8 . 0 5 3 1 5 1 1 1 7 . 7 5 9 7 . 7 6 4 1 3 2 0 - 1 7 . 5 6 0 7 . 5 6 2 2 7 1 - 1 1 7 . 3 8 2 7 . 3 8 5 1 2 1 3 0 6 . 9 3 9 6 . 9 3 6 8 1 2 1 6 . 7 5 8 6 . 7 6 1 1 4 0 l 2 6 . 3 6 5 6 . 3 7 2 1 4 2 3 - 1 5 . 8 0 3 5 . 8 0 3 1 2 2 0 1 5 . 2 8 6 5 . 2 8 4 7 1 1 2 5 . 1 2 3 5 . 1 2 1 9 2 2 1 4 . 9 8 3 4 . 9 8 2 1 7 2 2 - 3 4 . 5 8 5 4 . 5 8 1 6 1 3 2 4 . 3 4 4 4 . 3 4 1 2 2 0 5 - 1 4 . 2 1 4 4 . 2 1 4 1 6 1 - 5 - 1 3 . 9 8 1 3 . 9 8 2 1 3 3 1 - 4 3 . 5 2 0 3 . 5 2 1 2 4 1 - 6 0 3 . 4 2 9 3 . 4 2 7 1 9 2 8 2 T a b l e 6 - 1 8 . ( c o n t ' d ) h 1 ‘ 1 d c a l c . ( A ) d o b s . ( A ) I ” m a x . ( 0 1 3 5 - ) 3 4 2 3 . 3 7 3 3 . 3 7 5 8 1 4 3 3 . 1 6 8 3 . 1 7 0 1 3 3 - 1 2 3 . 1 3 2 3 . 1 3 1 8 2 - 6 - 1 3 . 1 0 2 3 . 1 0 4 1 3 5 3 2 2 . 9 9 9 3 . 0 0 2 8 3 2 - 5 2 . 8 8 8 2 . 8 9 0 1 3 2 8 3 T a b l e 6 - 1 9 . C a l c u l a t e d a n d O b s e r v e d X — r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C 0 ) 6 ] ( 6 ‘ 7 ) a n d ( P h 4 P ) [ M 0 2 ( S e C H 3 ) 3 ( C 0 ) 6 ] ( 6 ' 8 ) h 1 ‘ 1 d c a l c . ( A ) d o b s . ( A ) , I / I m a x d o b s . ( A ) , I / I m a x f o r ( 6 - 7 ) f o r ( 6 - 8 ) 0 1 0 1 0 . 3 1 0 . 5 , 1 7 1 0 . 5 , 1 1 1 0 0 9 . 2 0 9 . 3 4 , 2 6 9 . 3 8 , 3 2 1 - 1 0 9 . 0 4 9 . 1 2 , 1 0 0 9 . 1 0 , 1 0 0 0 0 2 7 . 8 8 7 . 9 4 , 6 8 7 . 8 9 , 4 9 0 1 - 2 7 . 6 7 7 . 7 0 , 3 9 7 . 6 8 , 4 4 l 0 1 7 . 3 5 4 7 . 3 6 7 , 3 3 7 . 3 6 9 , 1 2 1 0 - 2 6 . 6 5 9 6 . 6 6 2 , 9 6 . 6 5 8 , 5 1 - 1 2 6 . 3 0 2 6 . 3 0 7 , 2 1 6 . 3 0 9 , 1 2 1 - 2 0 5 . 6 3 8 5 . 6 4 4 , 1 9 5 . 6 4 1 , 2 0 0 2 - 1 5 . 4 9 6 5 . 4 9 9 , 1 7 5 . 4 9 5 , 2 1 0 2 - 2 5 . 2 2 2 5 . 2 1 9 , 1 4 5 . 2 2 6 , 1 8 1 1 1 4 . 9 3 3 4 . 9 3 7 , 2 3 4 . 9 3 6 , 2 0 0 2 - 3 4 . 5 5 0 4 . 5 5 4 , 9 4 . 5 5 9 , 1 1 0 1 4 4 . 1 9 6 4 . 2 0 1 , 1 3 4 . 2 0 5 , 7 1 - 3 2 3 . 9 0 9 3 . 9 0 3 , 1 1 3 . 9 0 5 , 9 2 1 - 2 3 . 7 4 2 3 . 7 4 0 , 9 3 . 7 3 9 , 1 1 1 - 3 3 3 . 6 4 0 3 . 6 4 6 , 1 4 3 . 6 4 6 , 1 0 2 - 3 3 3 . 2 9 7 3 . 2 9 3 , 2 2 3 . 2 8 7 , 2 0 0 2 3 3 . 1 7 3 3 . 1 7 7 , 1 4 3 . 1 7 9 , 1 6 3 - 2 - 2 3 . 0 5 7 3 . 0 5 8 , 2 9 3 . 0 5 3 , 2 5 3 - 1 2 2 . 9 8 4 2 . 9 9 1 , 2 0 2 . 9 9 7 , 1 6 2 - 4 1 2 . 9 0 9 2 . 9 0 9 , 1 2 2 . 9 0 2 , 1 3 2 2 - 4 2 . 7 7 7 2 . 7 7 1 , 1 5 2 . 7 7 4 , 1 7 3 - 4 2 2 . 6 0 7 2 . 6 0 9 , 1 3 2 . 6 1 2 , 1 3 3 - 4 3 2 . 5 1 4 2 . 5 1 0 , 2 1 2 . 5 1 8 , 1 9 l 1 5 2 . 4 5 9 2 . 4 6 1 , 1 7 2 . 4 6 3 , 1 4 0 2 5 2 . 3 5 2 2 . 3 6 2 , 8 2 . 3 5 7 , 1 3 1 2 - 7 2 . 3 1 7 2 . 3 1 6 , 1 4 2 . 3 2 1 , 1 1 2 8 4 T a b l e 6 - 2 0 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P 2 [ M n 2 ( T e C H 3 ) 3 ( C 0 ) 6 ] ( 6 ' 9 ) h H d c a l c . ( A ) d o b s . ( A ) I / I m a x . ( 0 9 8 - ) 0 2 O 1 3 . 3 1 3 . 7 2 9 0 1 1 1 1 . 7 1 1 . 9 8 9 1 0 0 1 0 . 3 1 0 . 6 1 0 0 0 2 l 9 . 3 1 9 . 4 2 9 3 1 1 - 1 8 . 2 4 8 . 3 2 9 8 0 3 l 7 . 3 3 7 . 3 9 4 3 1 1 1 7 . 2 9 / / 1 2 - 1 7 . 2 6 / I 0 4 0 6 . 6 6 6 . 7 0 6 5 l 2 l 6 . 5 8 / / 0 l 2 6 . 3 2 6 . 3 5 4 4 1 3 - 1 6 . 1 9 6 . 2 2 3 8 0 4 1 5 . 9 3 5 . 9 7 1 9 1 0 2 5 . 8 7 / l l 3 1 5 . 7 6 2 5 . 7 6 8 3 2 l 4 0 5 . 5 8 6 5 . 5 8 2 2 7 0 3 2 5 . 2 5 0 5 . 2 5 6 1 8 2 0 0 5 . 1 3 4 5 . 1 3 6 3 6 1 4 1 5 . 0 0 0 5 . 0 0 7 1 8 1 3 - 2 4 . 8 9 9 4 . 9 0 2 2 6 l 4 2 4 . 0 9 1 4 . 0 8 8 2 2 1 6 0 4 . 0 7 4 / / 2 1 2 3 . 7 4 9 3 . 7 4 1 3 1 2 5 0 3 . 6 9 6 3 . 6 8 9 2 3 2 2 2 3 . 6 4 3 3 . 6 4 7 3 7 1 6 - 2 3 . 5 4 1 3 . 5 4 1 2 1 1 7 - 1 3 . 4 8 3 3 . 4 8 1 1 8 3 1 0 3 . 3 9 5 3 . 3 9 8 2 0 0 8 0 3 . 3 2 8 3 . 3 2 1 2 6 1 0 - 4 3 . 2 3 4 3 . 2 3 7 2 9 h k 3 3 0 3 2 3 4 1 1 1 1 1 1 1 1 3 1 8 2 8 7 3 5 4 7 6 3 9 8 1 - - - - - - - - - l 2 4 6 1 0 4 1 1 3 2 3 3 3 2 1 . ( A ) 3 d 3 2 2 2 2 2 3 3 3 3 2 2 2 2 c . . . . . . . . . . . . . . . a 1 1 1 8 8 1 1 0 9 8 6 4 5 3 1 l 9 9 6 9 2 6 0 6 3 4 8 7 8 1 7 c 8 6 7 7 6 2 3 3 3 3 9 3 0 9 8 / / d 3 3 2 2 2 2 2 2 2 3 3 3 2 o b s . ( 1 3 3 ) m m . . . . . . . . . . . . . 1 8 6 1 1 1 0 9 8 5 4 3 1 9 9 4 9 6 0 6 3 3 8 6 1 7 1 1 1 8 7 5 9 5 0 7 6 3 7 ( o b s . ) . / 2 / 2 2 3 3 3 3 2 2 2 2 6 9 6 8 2 5 8 6 6 6 1 1 1 9 6 2 8 5 T a b l e 6 - 2 0 . ( c o n t ' d ) 2 8 6 I I I . R e s u l t s 1 . D e s c r i p t i o n o f C r y s t a l a n d M o l e c u l a r S t r u c t u r e s o f t h e C o m p o u n d s ( i ) . S t r u c t u r e s o f ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] ( 6 1 ) a n d ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C H 3 ) ( C O ) 9 ] ( 6 2 ) T h e c r y s t a l l a t t i c e o f t h e s e t w o c o m p o u n d s i s m a d e u p o f n o n - i n t e r a c t i n g P h 4 P + c a t i o n s a n d [ M n 3 ( 8 2 ) 2 ( S H ) ( C O ) 9 ] 2 ‘ o r [ M n 3 ( 8 2 ) 2 ( S C H 3 ) ( C O ) 9 ] 2 " c l u s t e r a n i o n s . F i g u r e s 6 1 a n d 6 - 2 s h o w t h e p a c k i n g d i a g r a m s o f t h e t w o c o m p o u n d s . ( 6 1 ) b e l o n g s t o t h e s p a c e g r o u p P 2 1 / a ( # 1 4 ) , w h i l e ( 6 2 ) c r y s t a l l i z e s i n t h e s p a c e g r o u p P - l ( # 2 ) w i t h t w o c r y s t a l l o g r a p h i c a l l y i n d e p e n d e n t , b u t s t r u c t u r a l l y s i m i l a r [ M n 3 ( 8 2 ) 2 ( S C H 3 ) ( C O ) 9 ] 2 ‘ a n i o n s f o u n d i n t h e u n i t c e l l . N e v e r t h e l e s s , t h e s e a n i o n s h a v e e s s e n t i a l l y t h e s a m e s t r u c t u r e a s s h o w n i n F i g u r e s 6 3 a n d 6 4 . E a c h m o l e c u l e c o n t a i n s a t r i a n g l e o f M n a t o m s b r i d g e d b y t w o d i s u l fi d e 8 2 2 ' l i g a n d s , a n d a m e t h y l s u l fi d e C H 3 8 ' i n ( 6 2 ) o r a p r o t o n a t e d s u fi d e H S ' i n ( 6 1 ) . I n t h e l a t t e r , t h e H a t o m c o u l d n o t b e l o c a t e d f r o m t h e X - r a y s t r u c t u r e . I t s p r e s e n c e w a s r e v e a l e d b y o t h e r e x p e r i m e n t a l e v i d e n c e ( v i d e i n f r a ) . T w o d i s u l f i d e u n i t s i n e a c h c l u s t e r a d a p t d i f f e r e n t c o o r d i n a t i o n m o d e s , i . e . o n e i s 1 1 3 - 1 ] 1 , 1 1 L u z - t y p e a n d a n o t h e r i s o v e r a l l u 3 - t y p e . T h e h y d r o s u l f i d e H S ‘ o r m e t h y l s u l fi d e C H 3 8 ' a c t s a s a u z - t y p e l i g a n d . T h e s e c l u s t e r s p o s s e s s C s m o l e c u l a r s y m m e t r y w i t h t h e m i r r o r r u n n i n g t h r o u g h O ( 3 ) / C ( 5 l ) / l \ r l n ( 1 ) / S ( 4 ) / S ( 3 ) I S ( 5 ) i n ( 6 1 ) , a n d O ( 3 A ) l C ( 9 9 A ) / M n ( 1 A ) I S ( 4 A ) / S ( 3 A ) / S ( 5 A ) / C ( l O 6 A ) / H ( 8 3 ) o r O ( 3 B ) / C ( 9 9 B ) / M n ( 1 B ) / S ( 4 B ) / S ( 3 B ) / S ( 5 B ) / C ( 1 0 6 B ) / H ( 8 4 ) i n ( 6 2 ) , r e s p e c t i v e l y . A l l M n a t o m s , b e i n g b o n d e d b y t h r e e S l i g a n d s a n d t h r e e c i s C O g r o u p s , a r e i n a n a p p r o x i m a t e l y o c t a h e d r a l e n v i r o n m e n t T h e o b s e r v e d M — M d i s t a n c e s i n t h e c l u s t e r s r a n g e f r o m 3 . 5 1 t o 4 . 0 4 A , w h i c h e x c l u d e s a n y p o s s i b l e M — M b o n d i n g . A l l M n a t o m s i n t h e s e c l u s t e r s h a v e a + 1 f o r m a l o x i d a t i o n s t a t e . T h e M n - S b o n d d i s t a n c e s a r e s p l i t i n t o t w o g r o u p s . T h e d i s t a n c e s o f M n a t o m s t o t h e h y d r o s u l fi d e l m e t h y l s u l fi d e l i g a n d s a r e l o n g e r , a v e r a g i n g 2 8 7 2 . 3 9 6 ( 3 ) i n ( 6 1 ) , a n d 2 . 3 7 5 ( 6 ) A f o r m o l e c u l e A a n d 2 . 3 9 2 ( 2 ) A f o r m o l e c u l e B i n ( 6 2 ) , t h a n t h e M n - S b o n d s a s s o c i a t e d w i t h t h e d i s u l fi d e u n i t s , w h i c h a v e r a g e 2 . 3 5 6 ( 9 ) i n ( 6 2 ) , a n d 2 . 3 5 6 ( 7 ) A f o r m o l e c u l e A a n d 2 . 3 4 5 ( 5 ) A f o r m o l e c u l e B m ( 6 2 ) . S u c h M n - S d i s t a n c e s a r e c o m p a r a b l e t o t h o s e o f 2 3 4 — 2 3 8 A f o u n d i n [ M n 4 ( 8 2 ) 2 ( C O ) 1 5 ] [ 1 0 ] . T h e S - 8 b o n d d i s t a n c e s , a v e r a g i n g 2 . 0 7 3 ( 2 0 ) A m ( 6 1 ) , 2 . 0 5 5 ( 5 ) a n d 2 0 7 ( 2 ) A i n ( 6 2 ) , c a n b e c o n s i d e r e d n o r m a l s i n g l e b o n d s [ l 9 ] . S e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s f o r t h e [ M n 3 ( 8 2 ) 2 ( S R ) ( C O ) 9 ] 2 ‘ ( R = H , C H 3 ) a n i o n s i n t h e t w o c o m p o u n d s a r e c o m p a r a t i v e l y s h o w n i n T a b l e 6 2 1 . D u e t o h i g h e r s t a n d a r d d e v i a t i o n s o f t h e b o n d d i s t a n c e s i n ( 6 2 ) , c o m p a r i s o n w i t h t h o s e w i l l n o t b e m e a n i n g f u l . T h e b o n d a n g l e s o f t h e s e a n i o n s a r e s i m i l a r t o e a c h o t h e r , e x c e p t f o r t h o s e a n g l e s t h a t i n v o l v e 8 ( 5 ) a t o m . T h e n o t i c e a b l e d i f f e r e n c e i s t h a t t h e S ( 1 ) - M n ( 2 ) - S ( 5 ) a n d S ( 2 ) - M n ( 3 ) - S ( 5 ) a n g l e s a r e l a r g e r i n ( 6 2 ) t h a n i n ( 6 1 ) , w h i l e S ( 3 ) - M n ( 2 ) - S ( 5 ) a n d S ( 3 ) - M n ( 3 ) - S ( 5 ) a r e s m a l l e r i n ( 6 2 ) t h a n i n ( 6 1 ) ( s e e T a b l e 6 2 0 ) . T h i s m a y o r i g i n a t e f r o m t h e n e e d o f t h e m e t h y l g r o u p t o a v o i d t h e s t e r i c r e p u l s i o n w i t h t h e c l u s t e r . T h e m e t h y l g r o u p c a n t h u s b e v i e w e d a s a n e n v e l o p f l a p i n t h e m o t i o n o f b e i n g o p e n e d u p ( s e e F i g u r e s 6 - 3 a n d 6 4 ) . 2 8 8 T a b l e 6 2 1 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f ( P h 4 P ) 2 [ M n 3 ( 8 2 ) 2 ( S H ) ( C 0 ) 9 ] ( 6 ' 1 2 a n d ( P h 4 P ) 2 [ M n 3 ( S 2 ) 2 ( S C H 3 ) ( C O ) 9 1 ( 6 2 ) “ , b c o m p o u n d [ M n 3 ( 8 2 ) 2 ( S H ) ( C O ) 9 ] 2 ' m o l e c u l e A o f m o l e c u l e B o f i n ( 6 1 ) [ M n 3 ( 8 2 ) 2 ( S H ) ( C O ) 9 1 2 - [ M n 3 ( 8 2 ) 2 ( S H ) ( C 0 ) 9 ] 2 ' i n ( 6 2 ) i n ( 6 2 ) M n ( 1 ) - S ( 1 ) 2 . 3 5 7 ( 3 ) 2 . 3 5 9 ( 9 ) 2 . 3 3 8 ( 9 ) M n ( 1 ) - S ( 2 ) 2 . 3 5 9 ( 3 ) 2 . 3 2 0 ( 9 ) 2 . 3 6 5 ( 9 ) M n ( 1 ) - S ( 4 ) 2 . 3 5 5 ( 3 ) 2 . 3 6 ( 1 ) 2 . 3 3 ( l ) M n ( 2 ) - S ( 1 ) 2 . 3 6 0 ( 3 ) 2 . 3 6 7 ( 9 ) 2 . 3 5 1 ( 9 ) M n ( 2 ) - S ( 3 ) 2 . 3 5 4 ( 3 ) 2 . 3 5 8 ( 9 ) 2 . 3 3 7 ( 9 ) M n ( 2 ) - S ( 5 ) 2 . 3 9 9 ( 3 ) 2 . 3 8 ( 1 ) 2 . 3 9 3 ( 9 ) M n ( 3 ) - S ( 2 ) 2 . 3 5 5 ( 4 ) 2 . 3 5 0 ( 9 ) 2 . 3 6 3 ( 9 ) M n ( 3 ) - S ( 3 ) 2 . 3 5 5 ( 3 ) 2 . 3 8 ( 1 ) 2 . 3 5 2 ( 9 ) M n ( 3 ) - S ( 5 ) 2 . 3 9 3 ( 3 ) 2 . 3 6 9 ( 9 ) 2 . 3 9 ( 1 ) M n - S ( m e a n ) ( t o 8 2 2 ‘ ) 2 . 3 5 6 ( 9 ) 2 . 3 5 6 ( 7 ) 2 . 3 4 8 ( 5 ) M n - S ( m e a n ) , ( t o 8 2 ' ) 2 . 3 9 6 ( 3 ) 2 . 3 7 5 ( 6 ) 2 . 3 9 2 ( 2 ) S ( l ) - S ( 2 ) 2 . 0 9 3 ( 4 ) 2 . 0 5 ( 1 ) 2 . 0 5 ( 1 ) S ( 3 ) - S ( 4 ) 2 . 0 5 3 ( 4 ) 2 . 0 6 ( 1 ) 2 . 0 9 ( 1 ) S - S ( m e a n ) 2 . 0 7 3 ( 2 0 ) 2 . 0 5 5 ( 5 ) 2 . 0 7 ( 2 ) S ( 5 ) - C j / 1 . 8 6 ( 4 ) l . 9 2 ( 4 ) M n ( 1 ) - C a 1 . 7 9 ( 1 ) 1 . 8 4 ( 3 ) l . 7 6 ( 3 ) M n ( 1 ) — C b 1 . 7 7 ( 1 ) 1 . 7 5 ( 4 ) l . 7 6 ( 4 ) M n ( 1 ) - C c 1 . 7 5 ( 1 ) 1 . 8 2 ( 3 ) 1 . 7 4 ( 4 ) M n ( 2 ) - C d l . 7 6 ( 1 ) 1 . 8 2 ( 3 ) 1 . 7 0 ( 4 ) 2 8 9 T a b l e 6 2 1 . ( c o n t ' d ) c o m p o u n d [ M n 3 ( s z ) 2 ( S H ) ( C O ) 9 ] 2 ' m o l e c u l e A o f m o l e c u l e B o f i n ( 6 - 1 ) [ M n 3 ( 8 2 ) 2 ( S H ) ( c 0 ) 9 1 2 - 1 M n 3 ( 8 2 ) 2 ( S H ) ( c 0 ) 9 1 2 - i n ( 6 2 ) i n ( 6 2 ) M n ( 2 ) - C e l . 7 6 ( 1 ) 1 . 7 5 ( 4 ) 1 . 7 7 ( 4 ) M n ( 2 ) - C f l . 7 6 ( 1 ) 1 . 7 5 ( 3 ) l . 7 8 ( 3 ) M n ( 3 ) - C g 1 . 7 5 ( 1 ) 1 8 0 ( 4 ) l . 7 6 ( 4 ) M n ( 3 ) - C h l . 7 6 ( 1 ) 1 . 7 7 ( 5 ) 1 8 5 ( 4 ) M n ( 3 ) - C i 1 . 7 1 ( 1 ) 1 . 7 4 ( 3 ) 1 8 0 ( 4 ) a n m e m ) , l . 7 6 ( 7 ) l . 7 8 ( 1 0 ) 1 . 7 7 ( l 4 ) S ( l ) - M n ( 1 ) - S ( 2 ) 5 2 . 7 ( 1 ) 5 2 . 1 ( 3 ) 5 2 . 1 ( 3 ) S ( l ) - M n ( 1 ) - S ( 4 ) 9 3 8 ( 1 ) 9 2 8 ( 3 ) 9 3 . 3 ( 3 ) S ( 2 ) - M n ( 1 ) - S ( 4 ) 9 3 . 7 ( 1 ) 9 3 . 6 ( 4 ) 9 3 . 9 ( 3 ) S ( l ) - M n ( 2 ) - S ( 3 ) 8 8 . 5 ( 1 ) 8 8 . 4 ( 3 ) 8 8 . 7 ( 3 ) S ( l ) - M n ( 2 ) - S ( 5 ) 8 4 . 2 ( 1 ) 9 0 . 5 ( 3 ) 9 1 . 2 ( 3 ) S ( 3 ) - M n ( 2 ) - S ( 5 ) 8 1 . 3 ( 1 ) 7 8 . 4 ( 3 ) 7 8 . 5 ( 3 ) S ( 2 ) - M n ( 3 ) - S ( 3 ) 8 8 . 0 ( 1 ) 8 7 . 9 ( 3 ) 8 8 . 9 ( 3 ) S ( 2 ) - M n ( 3 ) - S ( 5 ) 8 4 . 7 ( 1 ) 9 0 . 3 ( 3 ) 8 9 . 2 ( 3 ) S ( 3 ) - M n ( 3 ) - S ( 5 ) 8 1 . 4 ( 1 ) 7 8 . 2 ( 3 ) 7 8 . 3 ( 3 ) S ( l ) - M n ( 1 ) - C a 1 5 6 . 8 ( 4 ) 1 5 7 ( 1 ) 1 5 5 ( 1 ) S ( 2 ) - M n ( l ) - C b 1 5 8 . 5 ( 4 ) 1 5 9 ( 1 ) 1 5 8 ( 1 ) S ( 4 ) - M n ( 1 ) - C c 1 7 5 . 2 ( 4 ) 1 7 4 ( 1 ) 1 7 3 ( 1 ) S ( l ) - M n Q ) - C d 1 7 7 . 6 ( 4 ) 1 7 9 . 1 ( 9 ) 1 7 8 ( 1 ) 2 9 0 T a b l e 6 2 1 . ( c o n t ' d ) c o m p o u n d [ M n 3 ( 8 2 ) 2 ( S H ) ( C O ) 9 ] 2 ‘ m o l e c u l e A o f m o l e c u l e B o f i n ( 6 - 1 ) [ M n 3 ( 8 2 ) 2 ( S H ) ( C 0 ) 9 ] 2 ’ 0 4 n 3 ( 8 2 > 2 ( s m ( c 0 ) 9 1 2 - i n ( 6 2 ) i n ( 6 2 ) S ( 3 ) - M n ( 2 ) — C e 1 7 7 . 2 ( 4 ) 1 7 6 ( 1 ) 1 7 7 ( 1 ) S ( 5 ) - M n ( 2 ) - C f 1 7 2 . 8 ( 4 ) 1 7 5 ( 1 ) 1 6 7 ( 1 ) S ( 2 ) - M n ( 3 ) - C g 1 7 7 . 0 ( 4 ) 1 7 9 ( 1 ) 1 7 8 ( 1 ) S ( 3 ) - M n ( 3 ) - C h 1 7 6 . 9 ( 4 ) 1 7 6 ( 1 ) 1 7 0 ( 1 ) S ( 5 ) - M n ( 3 ) - C i 1 7 2 . 7 ( 4 ) 1 7 3 ( 1 ) 1 7 2 ( 1 ) C a - M n ( 1 ) - C b 9 7 . 2 ( 5 ) 9 6 ( 1 ) 9 8 ( 1 ) C a - M n ( 1 ) - C c 9 2 . 6 ( 5 ) 9 1 ( 1 ) 8 7 ( 1 ) C b — M n ( 1 ) - C c 8 9 . 7 ( 5 ) 9 1 ( 1 ) 9 0 ( 1 ) C d — M n ( 2 ) - C e 9 0 . 6 ( 5 ) 9 1 ( 1 ) 9 2 ( 1 ) C d — M n ( 2 ) - C f 9 0 . 1 ( 5 ) 9 2 ( 1 ) 9 3 ( 1 ) C e - M n ( 2 ) - C f 8 9 . 3 ( 5 ) 8 7 ( 1 ) 9 3 ( 1 ) C g - M n ( 3 ) - C h 8 9 . 2 ( 6 ) 9 1 ( 2 ) 9 7 ( 2 ) C g - M n ( 3 ) - C i 9 1 . 4 ( 6 ) 9 0 ( 2 ) 8 9 ( 1 ) C h - M n ( 3 ) — C i 9 0 . 4 ( 5 ) 8 9 ( 2 ) 9 4 ( 1 ) M n ( 1 ) - S ( 1 ) - M n ( 2 ) 1 1 6 . 2 ( 1 ) 1 1 7 . 4 ( 4 ) 1 1 8 . 1 ( 4 ) M n ( 1 ) - S ( 2 ) - M n ( 3 ) 1 1 7 . 6 ( 1 ) 1 1 7 . 8 ( 4 ) 1 1 5 . 7 ( 4 ) M n ( 2 ) - S ( 3 ) - M n ( 3 ) 9 6 . 5 ( 1 ) 9 5 8 ( 3 ) 9 6 . 7 ( 3 ) M n ( 2 ) - S ( 5 ) - M n ( 3 ) 9 4 . 3 ( 1 ) 9 5 . 5 ( 3 ) 9 4 . 3 ( 3 ) M n ( 1 ) - S ( 1 ) - S ( 2 ) 6 3 . 7 ( 1 ) 6 3 . 0 ( 3 ) 6 4 . 6 ( 3 ) M n ( 2 ) - S ( 1 ) - S ( 2 ) 1 0 7 . 3 ( 1 ) 1 0 7 . 2 ( 4 ) 1 0 7 . 1 ( 4 ) 2 9 1 T a b l e 6 2 1 . ( c o n t ' d ) c o m p o u n d [ M n 3 ( 8 2 ) 2 ( S H ) ( C O ) 9 ] 2 ' m o l e c u l e A o f m o l e c u l e B o f i n ( 6 1 ) [ M n 3 ( 5 2 ) 2 ( S H ) ( C 0 ) 9 ] 2 ‘ [ M n 3 ( 8 2 ) 2 ( S H ) ( C O ) 9 1 2 - i n ( 6 2 ) i n ( 6 2 ) M n ( l ) - S ( 2 ) - S ( 1 ) 6 3 . 6 ( 1 ) 6 4 . 9 ( 3 ) 6 3 . 3 ( 3 ) M n ( 3 ) - S ( 2 ) - S ( 1 ) 1 0 7 . 7 ( 1 ) 1 0 8 . 9 ( 4 ) 1 0 8 . 4 ( 4 ) M n ( 2 ) - S ( 3 ) - S ( 4 ) 1 0 7 . 9 ( 2 ) 1 0 8 . 3 ( 5 ) 1 0 8 . 5 ( 4 ) M n ( 3 ) - S ( 3 ) — S ( 4 ) 1 1 0 . 0 ( 2 ) 1 0 8 . 1 ( 5 ) 1 0 6 . 7 ( 4 ) M n ( 1 ) - S ( 4 ) - S ( 3 ) 1 0 6 . 9 ( 2 ) 1 0 8 . 0 ( 4 ) 1 0 7 . 9 ( 4 ) M n ( 2 ) - S ( 5 ) - C j / 1 1 0 ( 1 ) 1 1 3 ( 1 ) M n ( 3 ) — S @ ) £ L / 1 0 9 ( 1 ) 1 0 5 ( 1 ) a . l a b e l i n g s c h e m e : b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n 6 1 = { £ n ( l n - l ) 2 / n ( n - l ) } 1 ’ 2 , w h e r e 1 “ i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . 2 9 2 F i g u r e 6 - 1 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S l - I ) ( C O ) 9 ] ( S t a e o v r e w ) 2 9 3 F i g u r e 6 2 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C 1 - l 3 ) ( C O ) 9 ] ( S t a e o v i e w ) 2 9 4 0 ‘ 0 2 A I . ‘ ' l 0 5 C 5 1 c s 3 c s o ’ 9 \ 7 $ 1 I . ‘ M n 2 I : M n l ( ‘ c s : S S ‘ , / ‘ / 8 2 0 1 M n 3 / 0 7 " ‘ C 5 6 \ 0 9 1 ‘ a s F i g u r e 6 3 . T h e S t r u c t u r e o f t h e [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] 2 ’ A n i o n 6 8 6 0 > ( 2 0 0 . \ ‘ t 8 1 0 8 1 5 C 0 e h t n i d n u o F s n o i n A ' 2 ] 9 ) 0 C ( ) l 3 l H e C C S t ( i 2 n ) U 2 8 ] ( 9 3 ) n O M C [ ( t ) n 3 e H d C n S e ( p 2 e ) d z n S I ( y 3 l n l M a [ c 2 i ) h p P a 4 ) r h ” ) 1 7 x 2 0 “ , C “ “ O ' G 0 4 A I O I C ) ) 5 A O O 6 f I C A 5 0 “ 0 g P o ( l l a t s y r C o w T e h t f o s e r u t c u r t S . 4 6 e r u g i F I / ! ~ ’ . / 2 9 6 ( i i ) . S t r u c t u r e o f ( P h 4 P ) 2 [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] ( 6 3 ) T h e s t r u c t u r e o f ( 6 3 ) c o m p r i s e s o f P h 4 P + c a t i o n s a n d [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] 2 ' a n i o n s i n t h e c r y s t a l l a t t i c e a s s h o w n i n F i g u r e 6 5 . T h e P h 4 P + c a t i o n s h a v e t h e n o r m a l t e u ' a h e d r a l s t r u c t u r e , a n d w i l l n o t b e d i s c u s s e d f u r t h e r . T h e [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] 2 ‘ c l u s t e r a n i o n , a l t h o u g h c o n t a i n i n g t h e s a m e t y p e o f l i g a n d s a s f o u n d i n ( 6 2 ) , i s a s s e m b l e d d i f f e r e n t l y . F i g u r e 6 6 s h o w s t h e s t r u c t u r e o f t h i s a n i o n . T h i s c l u s t e r c a n b e e a s i l y d e r i v e d f r o m i t s s u l fi d e c o u n t e r p a r t s i n ( 6 2 ) b y r o t a t i n g t h e 1 1 3 — d i c h a l c o g e n i d e l i g a n d 1 2 0 ' c l o c k w i s e a s s h o w n b e l o w : C O C O O Q I I M I . | ' . . \ \ “ ' Q Q I H I H H ; a n ? \ ; C O . 0 0 ’ I . Q 1 l 0 0 : > Q 0 1 \ 5 ‘ = 0 2 M o ’ \ = , _ / 2 1 3 1 1 3 1 0 ? M 9 3 0 ‘ 3 3 0 6 0 0 0 0 8 ( 1 3 3 0 0 S - C l u s t e r S e - C l u s t e r S c h e m e 6 3 . S t r u c t u r a l R e l a t i o n s h i p B e t w e e n [ M n 3 ( S z ) 2 ( S C H ; ) ( C O ) 9 ] 2 ‘ a n d [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] 2 ‘ T h e Q ( 3 ) ( Q = S , S e ) a t o m i s t u r n e d f r o m b r i d g i n g M n ( 2 ) a n d M n ( 3 ) t o b r i d g i n g M n ( l ) a n d M n ( 2 ) , a n d Q ( 4 ) i s m o v e d f r o m M n ( l ) t o M n ( 3 ) . S u c h a n a c t i o n r e m o v e s t h e m i r r o r p l a n e f r o m t h e s t r u c t u r e . A s a r e s u l t , t h e c u r r e n t c l u s t e r i s a c h i r a l m o l e c u l e . H o w e v e r , ( 6 3 ) c r y s t a l l i z e s i n t h e c e n t r o s y m m e t n ' c s p a c e g r o u p P 2 1 l n ( # 1 4 ) w h i c h n e c e s s i t a t e s a r a c e m i c m i x t u r e i n t h e s o l i d s t a t e . F i g u r e 6 7 s h o w s t h e t w o o p t i c a l i s o m e r s o f t h e c l u s t e r f o u n d i n t h e u n i t c e l l . T h e a v e r a g e M n - S e b o n d d i s t a n c e a t 2 . 4 6 8 ( 6 ) A c a n b e c o m p a r e d w i t h 2 . 4 7 8 ( 4 ) A f o u n d i n ( P h 4 P ) 2 [ M n 2 ( S e 2 ) 2 ( C O ) 5 ] - E t z O [ l 1 ] , w h i l e t h e S e — S e d i s t a n c e s o f 2 . 3 6 5 ( 6 ) a n d 2 . 3 5 3 ( 6 ) A a r e i n t h e r a n g e o f n o r m a l s i n g l e b o n d [ 5 ] . ' I h e M n — 2 9 7 M n d i s t a n c e s o f M n ( l ) - M n ( 2 ) = 3 . 6 6 A , M n ( 2 ) - M n ( 3 ) = 4 . l l A a n d M n ( l ) - M n ( 3 ) = 4 . 2 2 A s u g g e s t n o M — M b o n d i n g . S e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s a r e g i v e n i n T a b l e 6 2 2 . T a b l e 6 2 2 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f Q ’ h 4 P ) 2 [ M n 3 ( S e g ) 2 ( S e C H 3 ) ( C 0 ) 9 ] ( 6 3 ) ” B o n d D i s t a n c e s ( A ) M n ( 1 ) - S e ( 1 ) 2 . 5 0 0 ( 8 ) M n ( 1 ) - S e ( 2 ) 2 . 4 6 8 ( 8 ) M n ( l ) - S e ( 3 ) 2 . 4 6 3 ( 8 ) M n ( 2 ) - S e ( 1 ) 2 . 4 6 7 ( 7 ) M n ( 2 ) - S e ( 3 ) 2 . 4 6 3 ( 8 ) M n ( 2 ) - S e ( 5 ) 2 . 4 7 2 ( 8 ) M n ( 3 ) - S e ( 2 ) 2 . 4 5 8 ( 7 ) M n ( 3 ) - S e ( 4 ) 2 . 4 4 2 ( 7 ) M n ( 3 ) - S e ( 5 ) 2 . 4 8 0 ( 8 ) M n - S e ( m e a n ) 2 . 4 6 8 ( 6 ) S e ( 1 ) - S e ( 2 ) 2 . 3 6 5 ( 6 ) M S e ( 3 ) - S e ( 4 ) 2 . 3 5 3 ( 6 ) S e - S e ( m e a n ) 2 . 3 5 9 ( 6 ) S e ( 5 ) - C ( 5 8 ) 2 . 0 0 ( 3 ) M n ( 1 ) - C ( 4 9 ) 1 . 8 0 ( 4 ) M n ( 1 ) - C ( 5 0 ) 1 . 8 4 ( 6 ) M n ( 1 ) - C ( 5 1 ) 1 . 7 5 ( 6 ) M n ( 2 ) - C ( 5 2 ) 1 . 8 2 ( 5 ) M n ( 2 ) - C ( 5 3 ) 1 . 6 3 ( 4 ) M n ( 2 ) - C ( 5 4 ) 1 . 7 5 ( 5 ) M n ( 3 ) - C ( 5 5 ) 1 . 7 4 ( 5 ) M n ( 3 ) - C ( 5 6 ) 1 . 7 1 ( 5 ) M n ( 3 ) - C ( 5 7 ) l . 7 8 ( 3 ) M i l - C ( m e a n ) l . 7 6 ( 2 ) B o n d A n g l e s ( d e g ) S e ( 1 ) - M n ( 1 ) - S e ( 2 ) 5 6 . 8 ( 2 ) S e ( 1 ) - M n ( 1 ) — S e ( 3 ) 8 4 . 0 ( 2 ) S e ( 2 ) - M n ( 1 ) - S e ( 3 ) 9 0 . 8 ( 2 ) S e ( 1 ) - M n ( 2 ) - S e ( 3 ) 8 4 . 0 ( 2 ) S e ( 1 ) - M n ( 2 ) - S e ( 5 ) 9 3 . 4 ( 2 ) S e ( 3 ) — M n ( 2 ) - S e ( 5 ) 9 0 . 2 ( 2 ) S e ( 2 ) - M n ( 3 ) - S e ( 4 ) 9 3 . 7 ( 3 ) S e ( 2 ) - M n ( 3 ) - S e ( 5 ) 9 4 . 3 ( 2 ) S e ( 4 ) - M n ( 3 ) - S e ( 5 ) 8 4 . 3 ( 2 ) S e ( 1 ) - M n ( l ) - C ( 5 0 ) 1 5 9 ( 2 ) 2 9 8 T a b l e 6 2 2 . ( c o n t ' d ) B o n d A n g l e s ( d e g ) S e ( 2 ) - M n ( 1 ) - C ( 5 1 ) 1 6 2 ( 2 ) S e ( 3 ) - M n ( l ) - C ( 4 9 ) 1 7 8 ( 1 ) S e ( l ) - M n ( 2 ) — C ( 5 3 ) S e ( 3 ) — M n ( 2 ) - C ( 5 2 ) S e ( 3 ) — M n ( 2 ) - C ( 5 2 ) 1 7 6 ( 1 ) S e ( 5 ) - M n ( 2 ) - C ( 5 4 ) 1 7 4 ( 1 ) S e ( 2 ) - M n ( 3 ) - C ( 5 6 ) 1 7 8 ( 2 ) S e ( 4 ) - M n ( 3 ) — C ( 5 5 ) 1 7 4 ( 1 ) S e ( 5 ) - M n ( 3 ) - C ( 5 7 ) 1 7 1 ( 1 ) C ( 4 9 ) - M n ( 1 ) - C ( 5 0 ) 9 1 ( 2 ) C ( 4 9 ) - M n ( 1 ) - C ( 5 1 ) 8 9 ( 2 ) C ( 5 0 ) - M n ( 1 ) - C ( 5 1 ) 9 5 ( 3 ) C ( 5 2 ) - M n ( 2 ) - C ( 5 3 ) 9 1 ( 2 ) C ( 5 2 ) - M n ( 2 ) - C ( 5 4 ) 9 5 ( 2 ) C ( 5 3 ) - M n ( 2 ) - C ( 5 4 ) 9 4 ( 2 ) C ( 5 5 ) - M n ( 3 ) - C ( 5 6 ) 9 2 ( 2 ) C ( 5 5 ) - M n ( 3 ) - C ( 5 7 ) 9 8 ( 2 ) C ( 5 6 ) - M n ( 3 ) - C ( 5 7 ) 9 4 ( 2 ) M n ( l ) - S e ( l ) - M n ( 2 ) 9 5 . 0 ( 3 ) M n ( 1 ) - S e ( 2 ) - M n ( 3 ) 1 1 7 . 9 ( 3 ) 4 M n ( l ) - S e ( 3 ) - M n ( 2 ) 9 5 . 1 ( 3 ) M n ( 2 ) - S e ( 5 ) - M n ( 3 ) 1 1 2 . 4 ( 3 ) M n ( 1 ) - S e ( l ) - S e ( 2 ) 6 0 . 9 ( 2 ) M n ( 1 ) - S e ( 2 ) - S e ( 1 ) 6 2 . 3 ( 2 ) M n ( 2 ) - S e ( l ) - S e ( 2 ) 1 0 5 . 8 ( 2 ) M n ( 1 ) - S e ( 3 ) - S e ( 4 ) 1 0 4 . 2 ( 2 ) M n ( 2 ) - S e ( 3 ) - S e ( 4 ) 1 0 9 . 5 ( 2 ) M n ( 3 ) - S e ( 4 ) - S e ( 3 ) 1 0 3 . 2 ( 2 ) M n ( 2 ) - S e ( 5 ) - C ( 5 8 ) 1 0 6 ( 1 ) M n ( 3 ) - S e ( 5 ) - C ( 5 8 ) 1 0 8 ( 1 ) b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n o l = { 2 n ( l n - l ) 2 1 n ( n - l ) } 1 ’ 2 , w h e r e 1 , , i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . F i g u r e 6 5 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] ( S t e r e o v i e w ) 3 0 0 F i g u r e 6 6 . T h e S t r u c t u r e o f t h e [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] 2 ' A n i o n . . m A g r ® F i g u r e 6 7 . T w o O p t i c a l l s o m e r s o f t h e [ M n 3 ( S e z ) 2 ( S c C H 3 ) ( ( I ) ) 9 ] 2 ‘ A n i o n F o u n d i n t h e ( P h 4 P ) 2 a n 3 ( S ¢ 2 ) 2 ( S C C H 3 ) ( C 0 ) 9 I U n i t C e l l 3 0 1 3 0 2 ( i i i ) . S t r u c t u r e s o f a - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] ( 6 4 ) a n d B - ( P h 4 P ) 2 [ M n 3 ( T e z ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 ' 5 ) C o m p o u n d s ( 6 4 ) a n d ( 6 5 ) a r e t w o c r y s t a l m o d i fi c a t i o n s o f t h e s a m e c o m p o u n d t h a t c r y s t a l l i z e s i n d i f f e r e n t s p a c e g r o u p s , i . e . P — l f o r ( 6 4 ) a n d P 2 1 / n f o r ( 6 5 ) . T h e c r y s t a l l a t t i c e o f t h e t w o p h a s e s i s m a d e u p o f w e l l s e p a r a t e d P h 4 P + c a t i o n s a n d [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] 2 ' a n i o n s a s s h o w n i n F i g u r e s 6 8 a n d 6 9 . T h e P h 4 P + c a t i o n s h a v e t h e n o r m a l t e t r a h e d r a l s t r u c t u r e a n d w a r r a n t n o f u r t h e r c o m m e n t s , w h i l e t h e [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] 2 ‘ a n i o n s h a v e e x a c t l y t h e s a m e s t r u c t u r e a s t h e i r s e l e n i d e a n a l o g u e . F i g u r e s 6 1 0 a n d 6 1 1 a r e O R T E P r e p r e s e n t a t i o n s o f t h e a n i o n s f o u n d i n e a c h u n i t c e l l . I t s h o u l d b e n o t e d t h a t e a c h c o m p o u n d m u s t b e a r a c e m i c m i x t u r e i n t h e c r y s t a l l a t t i c e b e c a u s e b o t h c r y s t a l m o d i fi c a t i o n s b e l o n g t o c e n t r o s y m m e t l i c s p a c e g r o u p s . F i g u r e s 6 1 2 a n d 6 1 3 s h o w t w o o p t i c a l i s o m e r s f o r t h e c l u s t e r a n i o n f o u n d i n e a c h u n i t c e l l , r e s p e c t i v e l y . T h e a v e r a g e M n - T e b o n d d i s t a n c e a r e 2 . 6 5 5 ( 2 ) A i n ( 6 4 ) a n d 2 . 6 6 0 ( 4 ) A i n ( 6 5 ) . N o s t r u c t u r a l d a t a f o r M n - T e b o n d l e n g t h s f r o m m a n g a n e s e p o l y t e l l u r r i d e c o m p o u n d s a r e a v a i l a b l e f o r c o m p a r i s o n b e c a u s e s u c h m o l e c u l e s a r e h i t h e r t o u n k n o w n . A s a m a t t e r o f f a c t , t h e t w o c o m p o u n d s r e p o r t e d i n t h i s w o r k a r e t h e fi r s t e x a m p l e s . A h e t e r o n u c l e a r c l u s t e r C p * M n ( C O ) 2 ( T e ) F e 2 ( C O ) 5 f e a t u r i n g a 1 1 3 - T e b o n d e d t o t h e t h r e e m e t a l c e n t e r s w a s f o u n d t o h a v e a M n - T e d i s t a n c e a t 2 . 5 1 8 ( 1 ) A a n d t w o F e — T e d i s t a n c e s a t 2 . 4 7 2 ( 1 ) a n d 2 . 4 7 6 ( 1 ) A 1 2 0 ] , w h i l e t h e a v e r a g e T e - T e d i s t a n c e s o f 2 . 7 3 4 ( 3 ) i n ( 6 4 ) a n d 2 . 7 3 5 ( 9 ) A i n ( 6 5 ) a r e i n t h e r a n g e o f n o r m a l s i n g l e b o n d [ 5 , 2 1 ] . T h e M n - M n d i s t a n c e s , r a n g i n g f r o m 3 . 9 0 t o 4 . 6 1 A , i n d i c a t e t h a t t h e r e a r e n o M — M b o n d i n g i n t e r a c t i o n s i n t h e c l u s t e r s . T h e c o r r e s p o n d i n g b o n d d i s t a n c e s a n d b o n d a n g l e s i n t h e t w o c r y s t a l m o d i fi c a t i o n s a r e s i m i l a r b u t n o t i d e n t i c a l . F o r c o m p a r i s o n , s e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s f o r t h e [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] a n i o n s i n t h e t w o c o m p o u n d s a r e g i v e n i n T a b l e 6 2 3 . 3 0 3 T a b l e 6 2 3 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f 0 1 - ( P h 4 P ) 2 [ M n 3 ( T e z ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 ' 4 ) a n d fi - ( P h 4 P ) 2 W n 3 ( T e z ) 2 ( T e C H 3 ) ( C 0 ) 9 l ( 6 ' 5 ) b c o m p o u n d [ M n 3 C T e z ) 2 ( T e C H 3 ) ( C 0 ) 9 ] 2 ' i n a n s C r e z ) 2 ( r e C H 3 ) ( c 0 ) 9 1 2 - i n ( 6 4 ) ( 6 5 ) M n ( 1 ) - T e ( 1 ) 2 . 6 8 2 ( 2 ) 2 . 6 7 5 ( 4 ) M n ( 1 ) - T e ( 2 ) 2 . 6 6 9 ( 2 ) 2 . 6 5 1 ( 4 ) M n ( 1 ) - T e ( 3 ) 2 . 6 5 5 ( 2 ) 2 . 6 5 4 ( 4 ) M n ( 2 ) - T e ( 1 ) 2 . 6 5 6 ( 2 ) 2 . 6 3 8 ( 4 ) M n ( 2 ) - T e ( 3 ) 2 . 6 5 6 ( 2 ) 2 . 6 6 0 ( 4 ) M n ( 2 ) - T e ( 5 ) 2 . 6 5 5 ( 2 ) 2 . 6 7 3 ( 4 ) M n ( 3 ) - T e ( 2 ) 2 . 6 4 8 ( 2 ) 2 . 6 2 5 ( 5 ) M n ( 3 ) - T e ( 4 ) 2 . 6 4 2 ( 2 ) 2 . 6 5 3 ( 4 ) M n ( 3 ) - T e ( 5 ) 2 . 6 5 5 ( 2 ) 2 . 6 6 0 ( 4 ) M n - T e ( m e a n ) 2 . 6 5 8 ( 4 ) 2 . 6 5 4 ( 5 ) T e ( 1 ) - T e ( 2 ) 2 . 7 3 7 ( 1 ) 2 . 7 2 6 ( 3 ) T e ( 3 ) - T e ( 4 ) 2 . 7 3 1 ( 1 ) 2 . 7 4 3 ( 3 ) T e - T e ( m e a n ) , 2 . 7 3 4 ( 3 ) 2 . 7 3 5 ( 9 ) T e ( 5 ) - C ( 5 8 ) 2 1 4 ( 1 ) 2 1 2 ( 3 ) M n ( 1 ) - C ( 4 9 ) 1 . 7 9 ( 1 ) 1 . 7 2 ( 3 ) M n ( 1 ) - C ( 5 0 ) 1 . 7 7 ( 1 ) l . 7 8 ( 3 ) M n ( 1 ) - C ( 5 1 ) l . 7 6 ( 1 ) l . 7 6 ( 3 ) M n ( 2 ) - C ( 5 2 ) l . 7 8 ( 1 ) 1 . 7 2 ( 3 ) M n ( 2 ) — C ( 5 3 ) 1 8 0 ( 1 ) l . 7 6 ( 3 ) 3 0 4 T a b l e 6 - 2 3 . ( c o n t ' d ) c o m m u n d [ M n 3 ( T e z ) 2 ( T e C H 3 ) ( C 0 ) 9 ] 2 ‘ i n [ M n 3 ( 1 ‘ 9 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] 2 ' i n ( 6 4 ) ( 6 - 5 ) M n ( 2 ) - C ( 5 4 ) 1 . 7 9 ( 1 ) 1 8 1 ( 3 ) M n ( 3 ) - C ( 5 5 ) 1 8 1 ( 1 ) 1 . 7 2 ( 4 ) M n ( 3 ) - C ( 5 6 ) 1 . 7 7 ( 1 ) 1 . 7 9 ( 4 ) M n ( 3 ) — C ( 5 7 ) 1 . 7 7 ( 1 ) 1 . 7 5 ( 3 ) M n - C ( m e t t n ) l . 7 8 ( 6 ) l . 7 6 ( 1 ) T e ( 1 ) - M n ( 1 ) - T e ( 2 ) 6 1 5 3 ( 5 ) 6 1 . 6 ( 1 ) T e ( 1 ) - M n ( l ) - T e ( 3 ) 8 4 9 8 ( 6 ) 8 4 . 7 ( 1 ) T e ( 2 ) - M n ( 1 ) - T e ( 3 ) 9 2 0 3 ( 6 ) 9 2 . 2 ( 1 ) T e ( l ) - M n ( 2 ) - T e ( 3 ) 8 5 . 4 8 ( 6 ) 8 5 . 3 ( 1 ) T e ( l ) - M n ( 2 ) - T e ( 5 ) 9 1 . 9 7 ( 6 ) 9 4 . 0 ( 1 ) T e ( 3 ) - M n ( 2 ) - T e ( 5 ) 9 3 1 9 ( 6 ) 9 1 . 6 ( 1 ) T e ( 2 ) - M n ( 3 ) - T e ( 4 ) 9 3 9 9 ( 6 ) 9 5 . 7 ( 1 ) T e ( 2 ) - M n ( 3 ) - T e ( 5 ) 9 4 . 4 6 ( 6 ) 9 5 . 5 ( 1 ) T e ( 4 ) - M n ( 3 ) - T e ( 5 ) 8 6 0 9 ( 6 ) 8 3 8 ( 1 ) T e ( l ) - M n ( 1 ) - C ( 5 0 ) 1 6 8 . 6 ( 4 ) 1 6 0 . 2 ( 9 ) T e ( 2 ) - M n ( 1 ) - C ( 5 1 ) 1 5 6 . 0 ( 4 ) 1 5 8 ( 1 ) T e ( 3 ) - M n ( l ) - C ( 4 9 ) 1 7 6 . 2 ( 4 ) 1 7 8 . 7 ( 8 ) T e ( l ) - M n ( 2 ) - C ( 5 3 ) 1 7 4 . 9 ( 4 ) 1 7 5 . 8 ( 9 ) T e ( 3 ) - M n ( 2 ) - C ( 5 2 ) 1 7 3 . 2 ( 4 ) 1 7 5 ( 1 ) T e ( 5 ) - M n ( 2 ) - C ( 5 4 ) 1 7 6 . 9 ( 4 ) 1 7 9 . 9 ( 9 ) T e ( 2 ) - M n ( 3 ) - C ( 5 6 ) 1 7 9 . 0 ( 4 ) 1 7 4 . 7 ( 9 ) 3 0 5 T a b l e 6 - 2 3 . ( c o n t ' d ) c o m m a n d [ M n 3 ( T 9 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] 2 ‘ i n [ M n 3 ( ' 1 ' 6 2 ) 2 ( ' 1 ‘ e C H 3 ) ( C 0 ) 9 ] 2 ’ i n ( 6 4 ) ( 6 - 5 ) T e ( 4 ) - M n ( 3 ) - C ( 5 5 ) 1 7 7 . 2 ( 4 ) 1 7 7 ( 1 ) T e ( 5 ) - M n ( 3 ) - C ( 5 7 ) 1 7 5 . 3 ( 4 ) 1 7 5 ( 1 ) C ( 4 9 ) - M n ( 1 ) - C ( 5 0 ) 8 8 . 5 ( 6 ) 9 1 ( 1 ) C ( 4 9 ) - M n ( 1 ) - C ( 5 1 ) 9 3 . 3 ( 6 ) 9 3 ( 1 ) C ( 5 0 ) — M n ( 1 ) - C ( 5 1 ) 9 4 . 1 ( 6 ) 1 0 2 ( 1 ) C ( 5 2 ) - M n ( 2 ) - C ( 5 3 ) 9 5 9 ( 6 ) 9 4 ( 1 ) C ( 5 2 ) - M n ( 2 ) - C ( 5 4 ) 9 0 . 5 ( 6 ) 9 1 ( 1 ) C ( 5 3 ) - M n ( 2 ) — C ( 5 4 ) 9 1 . 0 ( 6 ) 9 4 ( 1 ) C ( 5 5 ) - M n ( 3 ) - C ( 5 6 ) 9 2 9 ( 5 ) 9 0 ( 2 ) C ( 5 5 ) - M n ( 3 ) - C ( 5 7 ) 9 2 . 1 ( 6 ) 9 1 ( 1 ) C ( 5 6 ) - M n ( 3 ) — C ( 5 7 ) 9 0 9 ( 6 ) 9 1 ( 1 ) M n ( 1 ) - T e ( 1 ) - M n ( 2 ) 9 3 8 6 ( 6 ) 9 4 . 5 ( 1 ) M n ( 1 ) - T e ( 2 ) - M n ( 3 ) 1 2 0 . 3 1 ( 6 ) 1 2 0 . 1 ( 1 ) M n ( 1 ) - T e ( 3 ) - M n ( 2 ) 9 4 . 4 6 ( 6 ) 9 4 . 5 ( 1 ) M n ( 2 ) - T e ( 5 ) - M n ( 3 ) 1 1 4 . 0 0 ( 6 ) 1 1 3 . 3 ( 1 ) M n ( 1 ) - T e ( 1 ) - T e ( 2 ) 5 9 0 0 ( 5 ) 5 8 8 ( 1 ) M n ( l ) - T e ( 2 ) - T e ( 1 ) 5 9 4 7 ( 5 ) 5 9 . 7 ( 1 ) M n ( 2 ) - T e ( 1 ) — T e ( 2 ) 1 0 3 . 4 9 ( 5 ) 1 0 3 . 5 ( 1 ) M n ( 1 ) - T e ( 3 ) - T e ( 4 ) 1 0 4 . 4 6 ( 5 ) 1 0 5 . 0 ( 1 ) M n ( 2 ) - T e ( 3 ) - T e ( 4 ) 1 0 7 . 0 2 ( 5 ) 1 0 7 . 0 ( 1 ) M n ( 3 ) - T e ( 4 ) — T e ( 3 ) 1 0 1 . 4 6 ( 5 ) 1 0 0 3 ( 1 L 3 0 6 T a b l e 6 2 3 . ( c o n t ' d ) c o m p o u n d [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] 2 ' i n [ M n 3 C T 9 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] 2 ‘ i n ( 6 4 ) ( 6 ' 5 ) M n ( 2 ) - T e ( 5 ) — C ( 5 8 ) 1 0 1 . 4 ( 3 ) 1 0 1 . 8 ( 9 ) M n ( 3 ) - T e ( 5 ) - C ( 5 8 ) 1 0 5 . 2 ( 4 ) 1 0 3 . 5 ( 9 ) b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n 0 1 = { £ n ( 1 n - 1 ) 2 / n ( n - 1 ) } 1 ’ 2 , w h e r e 1 , , i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . 3 0 7 F i g u r e 6 - 8 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f a - ( P h 4 P ) 2 [ M n 3 ( T e z ) 2 ( T e C H 3 ) ( C O ) 9 ] ( S t a e o v i e w ) 3 0 8 ‘ . k i n ' i n t h e U n i t C e l l o f B — ( H 1 4 P ) 2 [ M n 3 ( T e z ) 2 ( T e C H 3 ) ( C O ) 9 l F i g u r e 6 9 T h e P a e g D i a g r a m ( S ' e w ) 3 0 9 0 ( 3 ) ( " 0 ( 6 ) ( " C ( 5 1 ) ( ‘ C ( 5 4 ) t ‘ C ( 5 0 ( 2 ) 0 ) " 0 ( 5 ) C ( 5 3 ) ( M n ( 2 ) I I n ” . 6 9 ’ 0 ( 4 ) C ( 5 2 ) ( ‘ " ‘ 1 1 6 ( 5 ) H r " : ~ 4 4 “ T e ( 2 ) 0 C ( 5 8 ) . . \ \ \ \ 1 1 \ I M n ( 3 ) ‘ C G D . 0 ( 9 ) 6 C ( 5 6 ) 0 ( 8 ) C ( 5 5 ) 0 ( 7 ) F i g u r e 6 1 0 . S t n l c t u r e o f t h e [ M n 3 ( ' l ' e 2 ) 2 ( ' l ‘ e C 1 - l 3 ) ( C O ) 9 ] 2 ' A n i o n F o u n d i n a - M M N T 0 2 1 2 a G C H E I X C O M M n ( 3 ) / , ' 9 . 1 C ( 5 7 ) ’ . 8 § C ( 5 8 ) 0 3 1 0 0 ( 3 ) . w O ( 6 ) 5 C ( 5 1 ) b e w a s “ 0 ( 5 ) 0 ' C ( 5 0 ) M n ( l ) ~ ' 1 - / / / / M n ( 2 ) 2 v ' r , 7 , T e ( 4 ) ‘ T e a ) L t T e ( 5 ) 0 ( 9 ) C ( 5 5 ) t ' C ( 5 6 ) 0 ( 8 ) 0 ( 7 ) F i g u r e 6 1 1 . S t r u c t u r e o f t h e [ M n 3 ( ' l ' e 2 ) 2 ( ' 1 ‘ e C l - 1 3 ) ( C O ) 9 ] 2 ' A n i o n F o u n d i n D - ( P h 4 P ) 2 [ M n 3 ( ' l ‘ e z ) 2 ( T e C l ‘ l 3 ) ( C 0 ) 9 1 ~ a e h t n i d n u o F n o i n A ‘ 2 l ] l e 9 C ) O t C i fl U ( ) 3 1 H 9 C ) e 0 T C ( ( ) 2 3 ) 1 2 ' e 1 T C ( 0 3 T ( n 2 M ) [ 2 0 e T h ( t 3 “ f 4 o ‘ 1 s [ r 2 ) e ’ m 1 o 4 1 s 1 l ’ 1 l ( a c i t p O o N . 2 1 6 e r u g i F 3 1 1 - B e h t n i d n u o F n o i n A ' 2 l l | e 9 C ) O t C i n U ( ) 3 1 H 9 C ) e 0 T C ( ( 2 ) ) 3 2 H e C T 6 ( T 3 ( n 2 M ) [ 2 8 e h T t ( f 3 o n a s r 2 e ) m P o 4 s h I P l ( a c i t p O o w T . 3 1 6 e r u g i F 3 1 2 3 1 3 ( i v ) . S t r u c t u r e o f ( P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 ] - C H 3 O H ( 6 - 6 ) T h i s c o m p o u n d c o m p r i s e s o f P h 4 P + c a t i o n s , s o l v e n t C H 3 O H m o l e c u l e s , a n d [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 ] 3 ‘ a n i o n s i n t h e c r y s t a l l a t t i c e a s s h o w n i n F i g u r e 6 1 4 . T h e [ R e 4 ( T e 2 ) 3 ( T e C l - I 3 ) ( C O ) 1 2 ] 3 ‘ a n i o n c o n s i s t s o f a t e t r a h e d r a l a r r a y o f R e a t o m s h e l d b y a u 3 - t y p e m e t h y l t e l l u r i d e C H 3 T e ' , t h r e e u 3 - t y p e d i t e l l u r i d e T e 2 2 ' l i g a n d s , a n d n i n e t e r m i n a l C O g r o u p s a s s h o w n i n F i g u r e 6 1 5 . T h e m o l e c u l e p o s s e s s e s a p s e u d o - C 3 a x i s w h i c h p a s s e s t h r o u g h T e ( 7 ) a n d R e ( 4 ) , t h u s d i v i d i n g f o u r R e a t o m s i n t o t w o d i f f e r e n t t y p e s ( s e e F i g u r e 6 1 6 ) . T h r e e o f t h e m a r e i n t h e t r i a n g u l a r b a s e o f t h e t e t r a h e d r o n b r i d g e d b y t h e 1 1 3 - C H 3 T e ' l i g a n d . T h r e e 1 1 3 - t y p e T e 2 2 ' l i g a n d s e a c h b r i d g e t w o b a s a l R e a t o m s a n d t h e f o u r t h R e a t o m w h i c h o c c u p i e s t h e t o p t e t r a h e d r a l v e r t e x . A l t e r n a t i v e l y , t h e c l u s t e r c o r e [ R e 4 ( T e 2 ) 3 ( T e ) ] 4 ‘ c a n b e d e s c r i b e d a s b e i n g f o r m e d b y c a p p i n g e a c h f a c e o f t h e R e t e t r a h e d r o n w i t h a 1 1 3 - T e 2 ' a n d t h r e e 1 1 3 - T e 2 2 ' l i g a n d s . T h e R e m e t a l c e n t e r s h a v e t h e f o r m a l o x i d a t i o n s t a t e + 1 , a n d a r e o c t a h e d r a l l y s u r r o u n d e d b y t h r e e T e a t o m s a n d t h r e e c i s C O g r o u p s . T h e a v e r a g e b o n d d i s t a n c e s o f R e - T e a t 2 . 7 8 8 ( 1 0 ) A m a y b e c o n s i d e r e d n o r m a l s i n g l e b o n d , a l t h o u g h a m o r e e x t e n s i v e c o m p a r i s o n o f t h i s d i s t a n c e w i t h o t h e r k n o w n R e - T e b o n d s c a n n o t b e m a d e a t t h i s s t a g e . T h e o n l y o t h e r s t r u c t u r a l l y c h a r a c t e r i z e d r h e n i u m p o l y t e l l u r i d e c o m p o u n d , [ ( q 5 - C p * ) 2 R e 2 ( T e 2 ) ( C O ) 4 ] , c o n t a i n s t h r e e d i f f e r e n t R e - T e d i s t a n c e s a t 2 . 7 9 3 ( 1 ) , 2 . 8 0 6 ( 1 ) A a n d 2 . 6 3 2 A [ 9 ] . T h e l a t t e r w a s i n t e r p r e t e d a s a R e - T e d o u b l e b o n d [ 9 ] . T h e a v e r a g e T e - T e a t 2 . 7 3 6 ( 4 ) A i s i n t h e n o r m a l r a n g e o f t h e T e - T e s i n g l e b o n d [ S , 2 1 ] . A g a i n , t h e R e a t o m s d o n o t f o r m M — M b o n d s t o o n e a n o t h e r i n t h i s c l u s t e r b e c a u s e t h e s h o r t e s t R e — R e d i s t a n c e i s 4 . 7 0 A . S e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s a r e g i v e n i n T a b l e 6 2 4 . 3 1 4 T a b l e 6 2 4 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f ( P h 4 P ) 3 [ R e 4 C F e z ) 3 C T e C H 3 ) ( C 0 ) 1 2 1 ° C H 3 0 H ( 6 0 b B o n d D i s t a n c e s ( A ) R e ( l ) - T e ( 1 ) 2 . 7 7 4 ( 2 ) R e ( l ) - T e ( 6 ) 2 . 7 7 1 ( 2 ) R e ( 1 ) - T e ( 7 ) 2 . 7 9 3 ( 2 ) R e ( 2 ) - T e ( 2 ) 2 . 7 8 7 ( 2 ) R e ( 2 ) - T e ( 3 ) 2 . 7 7 1 ( 2 ) R e ( 2 ) - T e ( 7 ) 2 . 7 8 4 ( 2 ) R e ( 3 ) - T e ( 4 ) 2 . 8 0 5 ( 2 ) R e ( 3 ) - T e ( 5 ) 2 . 7 6 9 ( 2 ) R e ( 3 ) - T e ( 7 ) 2 . 7 8 1 ( 2 ) R e ( 4 ) - T e ( 2 ) 2 . 8 2 0 ( 2 ) R e ( 4 ) - T e ( 4 ) 2 . 7 9 7 ( 2 ) R e ( 4 ) - T e ( 6 ) 2 . 8 0 5 ( 2 ) R e - T e ( m c a n ) 2 . 7 8 8 ( 1 0 ) T e ( 1 ) - T e ( 2 ) 2 . 7 2 7 ( 2 ) T e ( 3 ) — T e ( 4 ) 2 . 7 3 8 ( 2 ) T e ( 5 ) - T e ( 6 ) 2 . 7 4 2 ( 2 ) T e - T e ( m c a n ) 2 . 7 3 6 ( 4 ) T e ( 7 ) - C ( 8 5 ) 2 1 9 ( 3 ) R e ( l ) - C ( 7 3 ) 1 9 0 ( 2 ) ’ R e ( 1 ) - C ( 7 4 ) 1 8 7 ( 3 ) R e ( l ) - C ( 7 5 ) 1 . 8 7 ( 2 ) R e ( 2 ) - C ( 7 6 ) 1 9 7 ( 2 ) R e ( 2 ) - C ( 7 7 ) 1 8 8 ( 3 ) R e ( 2 ) - C ( 7 8 ) 1 9 3 ( 3 ) R e ( 3 ) - C ( 7 9 ) 1 9 1 ( 3 ) R e ( 3 ) - C ( 8 0 ) 1 9 2 ( 3 ) R e ( 3 ) - C ( 8 1 ) 1 8 8 ( 3 ) R e ( 4 ) - C ( 8 2 ) 1 8 6 ( 3 ) R e ( 4 ) - C ( 8 3 ) 1 . 8 9 ( 2 ) R e ( 4 ) - C ( 8 4 ) 1 9 1 ( 3 ) R e - C ( m e a n ) 1 9 0 ( 1 ) B o n d A n g l e s ( d e g ) T e ( 1 ) - R e ( 1 ) - T e ( 6 ) 8 5 . 1 4 ( 6 ) T e ( 1 ) - R e ( 1 ) - T e ( 7 ) 9 6 9 3 ( 6 ) T e ( 6 ) - R e ( 1 ) - T e ( 7 ) 8 5 8 8 ( 5 ) T e ( 2 ) - R e ( 2 ) - T e ( 3 ) 8 5 . 0 2 ( 6 ) T e ( 2 ) - R e ( 2 ) - T e ( 7 ) 8 5 9 1 ( 5 ) T e ( 3 ) - R e ( 2 ) - T e ( 7 ) 9 5 9 5 ( 6 ) T e ( 4 ) - R e ( 3 ) - T e ( 5 ) 8 6 7 3 ( 6 ) T e ( 4 ) - R e ( 3 ) - T e ( 7 ) 8 4 9 9 ( 6 ) T e ( 5 ) - R e ( 3 ) - T e ( 7 ) 9 4 . 6 4 ( 6 ) T e ( 2 ) - R e ( 4 ) — T e ( 4 ) 9 3 6 6 ( 5 ) T e ( 2 ) - R e ( 4 ) - T e ( 6 ) 9 4 2 5 ( 5 ) T e ( 4 ) - R e ( 4 ) — T e ( 6 ) 9 4 8 8 ( 6 ) 3 1 5 T a b l e 6 2 4 . ( c o n t ' d ) B o n d A n g l e s ( d e g ) T e ( l ) - R e ( 1 ) - C ( 7 3 ) 1 7 6 . 6 ( 7 ) T e ( 6 ) - R e ( l ) - C ( 7 4 ) 1 7 0 . 5 ( 8 ) T e ( 7 ) - R e ( 1 ) - C ( 7 5 ) 1 7 5 . 0 ( 7 ) T e ( 2 ) - R e ( 2 ) - C ( 7 7 ) 1 7 1 . 7 ( 8 ) T e ( 3 ) - R e ( 2 ) - C ( 7 6 ) 1 7 9 . 0 ( 7 ) T e ( 7 ) - R e ( 2 ) - C ( 7 8 ) 1 7 3 . 1 ( 8 ) T e ( 4 ) - R e ( 3 ) - C ( 8 0 ) 1 7 5 . 3 ( 8 ) T e ( 5 ) - R e ( 3 ) - C ( 7 9 ) 1 7 9 . 4 ( 8 ) T e ( 7 ) - R e ( 3 ) - C ( 8 1 ) 1 7 6 . 4 ( 9 ) T e ( 2 ) - R e ( 4 ) - C ( 8 2 ) 1 7 6 . 7 ( 8 ) T e ( 4 ) - R e ( 4 ) - C ( 8 3 ) 1 7 7 . 1 ( 7 ) T e ( 6 ) - R e ( 4 ) - C ( 8 4 ) 1 7 6 . 6 ( 8 ) C ( 7 3 ) - R e ( 1 ) - C ( 7 4 ) 9 4 ( 1 ) C ( 7 3 ) — R e ( 1 ) - C ( 7 5 ) 9 1 ( 1 ) C ( 7 4 ) - R e ( 1 ) - C ( 7 5 ) 9 2 ( 1 ) C ( 7 6 ) - R e ( 2 ) - C ( 7 7 ) 9 2 ( 1 ) C ( 7 6 ) - R e ( 2 ) - C ( 7 8 ) 9 4 ( 1 ) C ( 7 7 ) - R e ( 2 ) - C ( 7 8 ) 9 3 ( 1 ) C ( 7 9 ) - R e ( 3 ) - C ( 8 0 ) 9 0 ( 1 ) 1 C ( 7 9 ) - R e ( 3 ) - C ( 8 1 ) 9 4 ( 1 ) C ( 8 0 ) - R e ( 3 ) - C ( 8 1 ) 9 1 ( 1 ) C ( 8 2 ) — R e ( 4 ) - C ( 8 3 ) 8 8 ( 1 ) C ( 8 2 ) - R e ( 4 ) - C ( 8 4 ) 9 1 ( 1 ) C ( 8 3 ) - R e ( 4 ) - C ( 8 4 ) 9 1 ( 1 ) R e ( 1 ) - T e ( 6 ) - R e ( 4 ) 1 1 5 . 3 8 ( 6 ) R e ( 2 ) - T e ( 2 ) - R e ( 4 ) 1 1 5 . 5 3 ( 6 ) R e ( 3 ) - T e ( 4 ) - R e ( 4 ) 1 1 5 . 7 5 ( 6 ) R e ( l ) - T e ( 7 ) - R e ( 2 ) 1 1 4 . 7 7 ( 6 ) R e ( l ) - T e ( 7 ) - R e ( 3 ) 1 1 6 . 7 1 ( 6 ) R e ( 2 ) - T e ( 7 ) - R e ( 3 ) 1 1 6 . 0 9 ( 6 ) R e ( 1 ) - T e ( 1 ) - T e ( 2 ) 1 0 0 . 9 l ( 6 ) R e ( 2 ) - T e ( 3 ) - T e ( 4 ) 1 0 0 . 9 2 ( 6 ) R e ( 3 ) - T e ( 5 ) — T e ( 6 ) 1 0 1 . 5 3 ( 6 ) R e ( l ) - T e ( 6 ) - T e ( 5 ) 1 0 2 . 3 8 ( 7 ) R e ( 2 ) - T e ( 2 ) - T e ( l ) 1 0 4 . 1 2 ( 6 ) R e ( 3 ) - T e ( 4 ) - T e ( 3 ) 1 0 3 . 1 9 ( 7 ) R e ( 4 ) - T e ( 2 ) - T e ( 1 ) 9 9 7 8 ( 6 ) R e ( 4 ) - T e ( 4 ) - T e ( 3 ) 1 0 1 . 5 0 ( 7 ) R e ( 4 ) - T e ( 6 ) - T e ( 5 ) 1 0 2 . 3 3 ( 7 ) R e ( l ) - T e ( 7 ) — C ( 8 5 ) 1 0 1 . 0 ( 7 ) R e ( 2 ) - T e ( 7 ) - C ( 8 5 ) 1 0 1 . 4 ( 7 ) R e ( 3 ) - T e ( 7 L — C ( 8 5 ) 1 0 3 . 3 ( 7 ) b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n c ] = { 2 n ( l n - l ) 2 / n ( n - l ) } 1 / 2 , w h e r e I n i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . 3 1 6 F i g t n ' e 6 l 4 . T h e P a : k i n g D i a g r a m i n t h e U n i t C e l l o f ( “ 1 4 1 9 3 1 1 1 9 4 0 e z ) 3 ( T e C H 3 ) ( C 0 ) 1 l e H 3 0 H ( S u w v i e W ) 3 1 7 0 1 1 1 1 0 1 1 : . ) h e T e “ ) T e ( 5 ) T ! T 9 ( 6 ) ( \ 8 \ T e ( l ) ( ) 1 3 ) T 6 0 ) T e ( 2 ) C ) ( " ( 7 5 , a ( ) ( 9 ) \ ’ ( W 8 1 ) ( R e m _ - R 3 9 ) T e ( 7 ) R e ( l ) C ( 7 9 ) \ 8 \ C ( 7 3 ) ‘ 4 \ ‘ 0 3 0 ’ ; C n é ’ 0 : 1 1 C ( 7 4 ) 0 ( 7 ) V c m } g o m 0 ( 2 1 C ( 8 5 0 ( 4 ) ) \ \ 0 ( 5 ) ‘ F i g u r e 6 - 1 5 . T h e S t r u c t u r e o f t h e [ R e q ( T e 7 ) 3 ( T e C H 3 ) ( C O ) 1 2 1 3 ‘ A n i o n . \ ‘ " A ) . 5 T e ( 6 ) 3 1 8 F i g u r e 6 1 6 . T h e [ R e c ( T e 2 ) 3 ( T e ) ] 4 ' C l u s t e r C o r e , S h o w i n g a P s e u d o - C 3 A x i s 3 1 9 ( v ) . S t r u c t u r e s o f ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 6 ] ( 6 7 ) , ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 6 ] ( 6 ' 8 ) a n d ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 6 ] ( 6 9 ) ( 6 7 ) a n d ( 6 8 ) a r e i s o s t r u c t u r a l t o e a c h o t h e r ( s p a c e g r o u p P - l , # 2 ) , w h i l e ( 6 9 ) c r y s t a l l i z e s i n a d i f f e r e n t s p a c e g r o u p ( P 2 1 / c , # 1 4 ) . N e v e r t h e l e s s , t h e y a r e a l l m a d e u p o f n o n - i n t e r a c t i n g P h 4 P + c a t i o n s a n d [ M n 2 ( Q C H 3 ) 3 ( C O ) 5 ] 2 ‘ ( Q = S , S e o r T e ) a n i o n s . F i g u r e s 6 - 1 7 a n d 6 1 8 s h o w t h e p a c k i n g d i a g r a m s o f t h e t h r e e c o m p o u n d s . T h e a n i o n s [ a n ( S C H 3 ) 3 ( C 0 ) 6 ] 2 ' . [ M n 2 ( S e C H 3 ) 3 ( C 0 ) 6 1 2 ‘ a n d [ M n 2 ( T e C H 3 ) 3 ( C 0 ) 6 ] 2 ' . s h o w n i n F i g u r e s 6 1 9 a n d 6 - 2 0 , h a v e e s s e n t i a l l y t h e s a m e s t r u c t u r e . T w o M n ( I ) c e n t e r s a r e b r i d g e d b y t h r e e u z - C H 3 Q ' ( Q = S , S e o r T e ) l i g a n d s . T h e o c t a h e d r a l c o o r d i n a t i o n o f t h e M n a t o m s a r e t h e n e a c h c o m p l e t e d b y t h r e e c i s C O g r o u p s . T h e s e m o l e c u l e s a r e a n a l o g o u s t o t h e c a t i o n i c s p e c i e s [ F e 2 ( S C H 3 ) 3 ( C O ) 6 ] + T [ 3 2 ] . I f H a t o m s o f t h e m e t h y l g r o u p s w e r e i g n o r e d , s u c h a m o l e c u l e w o u l d h a v e C 3 1 , s y m m e t r y . T h e M n - M n d i s t a n c e s o f 3 . 1 8 A i n ( 6 7 ) , 3 . 2 9 A i n ( 6 8 ) a n d 3 . 4 8 A i n ( 6 9 ) s u g g e s t n o M — M b o n d i n g i n t e r a c t i o n s . S e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s a r e g i v e n i n T a b l e 6 2 5 . T a b l e 6 2 5 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C 0 ) 6 ] ( 6 ' 7 ) , ( P h 4 P ) [ a n ( S G C H 3 ) 3 ( C 0 ) 6 l ( 6 ' 3 ) a n d ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C 0 ) 6 ] ( 6 ' 9 ) b c o m p o u n d [ M n 2 ( S C H 3 ) 3 ( C 0 ) 6 ] 2 ' [ M n 2 ( S e C H 3 ) 3 ( C O ) 6 ] 2 ’ [ a n f l ‘ o C H 3 ) 3 ( C O ) 6 ] 2 ‘ i n ( 6 7 ) i n ( 6 8 ) i n ( 6 9 ) M n ( 1 ) - Q ( 1 ) 2 . 3 7 8 ( 2 ) 2 . 4 8 2 ( 2 ) 2 . 6 5 4 ( 1 ) M n ( 1 ) - Q ( 2 ) 2 . 3 7 9 ( 2 ) 2 . 4 9 4 ( 2 ) 2 . 6 7 1 ( 1 ) M n ( l ) - Q ( 3 ) 2 . 3 9 2 ( 3 ) 2 . 5 0 2 ( 2 ) 2 . 6 5 3 ( 1 ) M n ( 2 ) - Q ( l ) 2 . 3 6 9 ( 2 ) 2 . 4 8 6 ( 2 ) 2 . 6 7 0 ( 1 ) M n ( 2 ) - Q ( 2 ) 2 . 3 8 0 ( 2 ) 2 . 4 9 4 ( 2 ) 2 . 6 7 1 ( 1 ) 3 2 0 T a b l e 6 2 5 . ( c o n t ' d ) c o m p o u n d [ M n 2 ( S C H 3 ) 3 ( C 0 ) 6 ] 2 ‘ [ M n 2 ( S o C H 3 ) 3 ( C 0 ) 6 1 2 ‘ [ M 1 1 2 0 o C H 3 ) 3 ( C 0 ) 6 ] 2 ‘ i n ( 6 7 ) i n ( 6 8 ) i n ( 6 9 ) M n ( 2 ) - Q ( 3 ) 2 . 3 9 3 ( 3 ) 2 . 5 0 0 ( 2 ) 2 . 6 4 9 ( 1 ) M n - Q ( m e a n ) 2 . 3 8 1 ( 4 ) 2 . 4 9 3 ( 3 ) 2 . 6 6 1 ( 4 ) M n ( 1 ) - C ( 2 5 ) 1 . 7 5 5 ( 7 ) 1 . 7 6 ( 1 ) 1 . 7 9 ( 1 ) M n ( 1 ) - C ( 2 6 ) 1 . 7 9 8 ( 7 ) 1 . 7 8 ( 1 ) 1 . 8 1 ( 1 ) M n ( 1 ) - C ( 2 7 ) 1 . 7 7 6 ( 7 ) 1 . 7 7 ( 1 ) 1 8 2 ( 1 ) M n ( 2 ) - C ( 2 8 ) 1 . 7 8 2 ( 7 ) 1 . 7 8 ( 1 ) 1 . 8 0 ( 1 ) M n ( 2 ) — C ( 2 9 ) 1 . 7 8 0 ( 7 ) 1 . 7 8 ( 1 ) 1 . 8 0 ( 1 ) M n ( 2 ) - C ( 3 0 ) 1 . 7 7 6 ( 7 ) 1 8 1 ( 1 ) 1 . 7 9 4 ( 9 ) M i l - C ( m e a n ) 1 . 7 7 8 ( 6 ) l . 7 8 ( 1 ) 1 . 8 0 ( 1 ) Q ( 1 ) - C ( 3 1 ) 1 . 8 2 3 ( 7 ) 1 . 9 7 ( 1 ) 2 . 1 6 1 ( 9 ) Q ( 2 ) - C ( 3 2 ) 1 . 8 2 0 ( 7 ) 1 . 9 4 ( 1 ) 2 . 1 8 5 ( 8 ) Q ( 3 ) - C ( 3 3 ) 1 . 8 1 4 ( 7 ) 1 . 9 9 ( l ) 2 . 1 5 ( 1 ) Q - C ( r n e a n ) 1 . 8 1 9 ( 3 ) 1 . 9 7 ( 4 ) 2 . 1 6 5 ( 1 0 ) Q ( 1 ) - M n ( l ) - Q ( 2 ) 8 0 2 5 ( 8 ) 8 1 8 7 ( 7 ) 8 2 7 1 ( 4 ) Q ( 1 ) - M n ( 1 ) - Q ( 3 ) 7 9 . 4 6 ( 9 ) 8 0 . 4 2 ( 7 ) 8 1 9 0 ( 4 ) Q ( 2 ) - M n ( 1 ) - Q ( 3 ) 8 1 . 0 1 ( 8 ) 8 1 5 5 ( 6 ) 8 1 . 4 4 ( 4 ) Q ( l ) - M n ( 2 ) — Q ( 2 ) 8 0 . 4 0 ( 8 ) 8 1 8 0 ( 6 ) 8 2 4 0 ( 4 ) Q ( l ) - M n ( 2 ) - Q ( 3 ) 7 9 . 6 1 ( 9 ) 8 0 . 3 7 ( 7 ) 8 1 . 6 7 ( 4 ) Q ( 2 ) - M n ( 2 ) - Q ( 3 ) 8 0 . 9 5 ( 8 ) 8 1 5 7 ( 7 ) 8 1 . 5 1 ( 4 ) M n ( l ) - Q ( 1 ) - M n ( 2 ) 8 4 . 1 4 ( 8 ) 8 3 . 0 8 ( 7 ) 8 1 5 6 ( 4 ) M n ( l ) - Q ( 2 ) - M n ( 2 ) 8 3 8 9 ( 7 ) 8 2 6 5 ( 7 ) 8 1 2 1 ( 4 ) 3 2 1 T a b l e 6 2 5 . ( c o n t ' d ) c o m p o u n d [ M n 2 ( S C H 3 ) 3 ( C 0 ) 6 ] 2 ‘ [ M n 2 ( S o C H 3 ) 3 ( C 0 ) 6 1 2 ' [ a n f l ' o C H 3 ) 3 ( C 0 ) 6 l z ' i n ( 6 7 ) i n ( 6 8 ) i n ( 6 9 ) M n ( 1 ) - Q ( 3 ) - M n ( 2 ) 8 3 3 2 ( 9 ) 8 2 8 7 ( 7 ) 8 1 9 7 ( 4 ) Q ( l ) - M n ( 1 ) - C ( 2 5 ) 1 7 2 . 3 ( 2 ) 1 7 0 . 9 ( 3 ) 1 7 0 . 9 ( 3 ) Q ( 2 ) - M n ( 1 ) - C ( 2 6 ) 1 7 2 . 0 ( 2 ) 1 7 0 . 5 ( 3 ) 1 7 0 . 5 ( 3 ) Q ( 3 ) - M n ( 1 ) — C ( 2 7 ) 1 7 1 . 6 ( 2 ) 1 7 0 . 6 ( 3 ) 1 7 0 . 6 ( 3 ) Q ( l ) - M n ( 2 ) - C ( 2 8 ) 1 7 1 . 7 ( 2 ) 1 7 1 . 7 ( 4 ) 1 7 1 . 1 ( 3 ) Q ( 2 ) - M n ( 2 ) - C ( 2 9 ) 1 7 2 . 4 ( 2 ) 1 7 2 . 6 ( 4 ) 1 7 1 . 8 ( 3 ) Q ( 2 ) - M n ( 2 ) - C ( 3 0 ) 1 7 1 . 3 ( 2 ) 1 7 0 . 7 ( 4 ) 1 6 9 . 7 ( 3 ) C ( 2 5 ) - M n ( l ) - C ( 2 6 ) 9 2 1 ( 3 ) 9 2 5 ( 6 ) 9 3 8 ( 4 ) C ( 2 5 ) - M n ( 1 ) - C ( 2 7 ) 9 2 2 ( 3 ) " 9 3 4 ( 5 ) 9 3 6 ( 4 ) C ( 2 6 ) - M n ( l ) - C ( 2 7 ) 9 1 . 4 ( 3 ) 9 2 2 ( 6 ) 9 5 8 ( 4 ) C ( 2 8 ) - M n ( 2 ) - C ( 2 9 ) 9 1 . 9 ( 3 ) 9 3 0 ( 5 ) 9 2 2 ( 4 ) C ( 2 8 ) - M n ( 2 ) - C ( 3 0 ) 9 2 9 ( 3 ) 9 3 . 3 ( 6 ) 9 6 8 ( 4 ) C ( 2 9 ) - M n ( 2 ) — C ( 3 0 ) 9 1 . 6 ( 3 ) 9 2 5 ( 5 ) 9 3 9 ( 4 ) b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n o 1 = { £ n ( l n - l ) 2 / n ( n - 1 ) } 1 / 2 , w h e r e 1 . , i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . 3 2 2 F ‘ 6 1 7 . T h e P a c k i n D r a g n m ' ° t h e U n i t C e l l o f ( P h 4 P ) [ M n 2 ( Q ( I H a ) 3 ( C O ) 5 ] ( Q = S 1 8 “ " 8 m i ? ! S e ) ( S t e r e o v i e w ) 3 2 3 ‘ _ \ ' \ ( I . 5 - ’ a , 3 | I . . ' / , i I o o I " v " ‘ ' ' 4 5 . 9 . “ - ' ‘ — ~ ‘ ‘ ' 1 ' F i g u r e 6 1 8 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f W ) M n 2 ( F e C H 3 b ( C O ) 5 ] ( S t e r e o v i e w ) % 5 0 0 ) 1 3 ( C s n o i n A ) e S d n a S = Q ( ' 2 ] 6 ) O C ( 3 ) é 3 t ‘ ) 3 ( 0 c‘ é H C Q ( 2 n M [ e h t f o e r u t c u r t S e h T . 9 1 6 e r u g i F \ x ‘ 3 2 4 n o i n A ' 2 ] 6 ) O C ( 3 ) 3 H C e T ( 2 n M [ e h t f o e r u t c u r t S e h T . 0 2 - 6 e r u g i F ) 1 ' 3 d ( \ C ) ! ( n M ‘ \ \ \ \ ( ) 6 o - ( C x . a v \ ) . 7 . 1 0 \ § a ' ( 3 2 5 3 2 6 2 . S p e c t r o s c o p i c S t u d i e s F i g u r e s 6 - 2 1 — 6 2 4 S h o w t h e s o l i d - s t a t e I R s p e c t r a o f ( 6 1 ) - ( 6 9 ) i n t h e C O r e g i o n , w h i l e t h e f a r I R s p e c t r a o f t h e s e c o m p o u n d s a r e s h o w n i n F i g u r e s 6 2 5 - 6 3 1 . A l l t h e s e c l u s t e r s c o n t a i n m e t a l c e n t e r s w i t h l o c a l i z e d C 3 v s y m m e t r y , w h i c h a r e e x p e c t e d t o g i v e t w o s t r e t c h i n g v i b r a t i o n s f o r t h e C O g r o u p s . T h e a s s i g n m e n t o f t h e C O v i b r a t i o n s a c c o r d i n g t o t h e s y m m e t r i c a n d a n t i s y m m e t r i c s t r e t c h i n g s i s g i v e n i n T a b l e 6 2 6 , a l o n g w i t h t h e f a r I R s p e c t r a l d a t a o f t h e n i n e c o m p o u n d s . I n g e n e r a l , t h e Q 3 M ( C O ) 3 f r a g m e n t s a r e a l l c r y s t a l l o g r a p h i c a l l y d i f f e r e n t i n t h e l a t t i c e . ' l h e i r C O a b s o r p t i o n s o f t e n o v e r l a p e a c h o t h e r , r e s u l t i n g i n a c e r t a i n p a t t e r n c h a r a c t e r i s t i c o f t h e c o m p o u n d . S u c h a f e a t u r e h a s b e e n u s e d , a l o n g w i t h t h e i r X R D p a t t e r n s , f o r t h e p u r p o s e o f p h a s e i d e n t i fi c a t i o n . O n t h e o t h e r h a n d , i n t e r p r e t a t i o n o f t h e f a r I R s p e c t r a o f t h e s e c o m p o u n d s i s m u c h m o r e d i f fi c u l t . T h e s p e c t r a a r e o f t e n c o m p l i c a t e d b y t h e o v e r l a p o f t h e Q - Q s t r e t c h i n g m o d e s w i t h t h e o t h e r I R v i b r a t i o n s , e . g . v M . Q , e t c . I t i s k n o w n t h a t m e t a l c o m p l e x e s c o n t a i n i n g d i s u l fi d e u n i t s u s u a l l y s h o w t h e v s - s f r e q u e n c i e s i n 4 8 0 t o 6 0 0 c m ' 1 r e g i o n [ 1 9 ] . H o w e v e r , n o i d e n t i fi a b l e I R p e a k s i n t h i s r e g i o n , e x c e p t a s t r o n g b r o a d b a n d f r o m t h e P h 4 P + c a t i o n a t 5 2 5 c m ' l , a r e p r e s e n t i n t h e I R s p e c t r a o f ( P h 4 P ) 2 [ M n 3 ( S 2 ) 2 ( S I - I ) ( C O ) 9 ] a n d ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C H 3 ) ( C O ) 9 ] . T h e I R p e a k s o b s e r v e d i n t h e l o w e r e n e r g y r e g i o n i n t h e i r I R s p e c t r a m a y b e a n . s s t r e t c h i n g m o d e s . S i m i l a r v i b r a t i o n s i n t h i s r e g i o n a r e a l s o p r e s e n t i n t h e s p e c t r u m o f ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 5 ] . W h e n c o m p a r i n g t h e I R s p e c t r u m o f ( P h 4 P ) 2 [ M n 3 ( S e z ) 2 ( S e C H 3 ) ( C 0 ) 9 ] w i t h t h a t o f ( P h 4 P ) N n 2 ( S e C H 3 ) 3 ( C 0 ) 6 L t W O p e a k s a t 2 6 7 a n d 2 6 0 c m ‘ 1 p r e s e n t i n t h e f o r m e r , b u t a b s e n t i n t h e l a t t e r , c a n b e a s s i g n e d t o t h e 1 1 5 3 . 5 6 v i b r a t i o n s . T h i s a s s i g n m e n t i s c o n s i s t e n t w i t h o t h e r o b s e r v a t i o n s , e . g . v s e . 3 3 : 2 5 8 c m ‘ 1 f o r [ F e 2 8 e 1 2 ] 2 ' [ 2 2 ] a n d v w s e = 2 6 5 c m ' 1 f o r [ A n g e y ] n ' [ 2 3 ] . T w o o t h e r p e a k s i n t h i s a r e a a p p e a r i n b o t h s p e c t r a a t ~ 2 7 5 a n d 2 4 4 c m ‘ l , a n d m i g h t b e c a n d i d a t e s f o r t h e v a S e v i b r a t i o n s . I n t h e s p e c t r a o f c r - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] a n d B - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] , a g r o u p o f s t r o n g a b s o r p t i o n s s h o w i n t h e 2 0 0 — 1 7 9 3 2 7 c m ' 1 r e g i o n . T h e s e m a y c o n t a i n t h e V 1 9 1 } , v i b r a t i o n s b e c a u s e t h e T e — T e s t r e t c h i n g f r e q u e n c i e s a r e k n o w n t o b e i n t h e r a n g e o f 2 0 0 t 0 1 8 0 c m ' 1 [ 2 4 ] . H o w e v e r , a c l e a r a s s i g n m e n t o f t h e s e p e a k s i s h a m p e r e d b y t h e p r e s e n c e o f t w o s t r o n g p e a k s i n t h e s a m e a r e a i n t h e I R s p e c t r u m o f ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 5 ] w h i c h d o e s n o t c o n t a i n T e - T e b o n d s . I n t h e I R s p e c t r u m o f ( P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 ] - C H 3 O H , t h e s t r o n g p e a k c e n t e r e d a t 1 8 0 c m ‘ 1 i s t e n t a t i v e l y a s s i g n m e n t t o t h e n g T e v i b r a t i o n s , w h i l e p e a k s a t 1 7 0 a n d 1 4 8 c m ' 1 p r o b a b l y o r i g i n a t e f r o m R e — T e s t r e t c h i n g . H o w e v e r , a m e d i u m p e a k a t 2 6 0 c m ” 1 c a n n o t b e i n t e r p r e t e d . T a b l e 6 2 6 . I R S p e c t r a l D a t a f o r ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] ( 6 1 ) , ( P h 4 P ) 2 [ M n 3 ( 3 2 ) 2 ( S C H 3 ) ( C O ) 9 1 ( 6 ' 2 ) , ( P h 4 P ) 2 [ M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 ] ( 6 ‘ 3 ) , 0 ! - ( P h 4 P ) 2 [ M n 3 ( T 6 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 ' 4 ) . B - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 1 ( G 5 ) . ( P h 4 P ) 3 [ R e 4 ( T 6 2 ) 3 ( T e C H 3 ) ( C 0 ) 1 2 1 ' C H 3 0 H ( 6 ' 0 . ( P h 4 P ) W r 1 2 ( S C H 3 ) 3 ( C 0 ) 6 ] ( 6 ' 7 ) . ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C 0 ) 6 ] ( 6 ‘ 8 ) a n d ( P h 4 P ) [ M 0 2 ( T e C H 3 ) 3 ( C 0 ) 6 1 ( 6 ' 9 ) c o m p o u n d M i d - I R i n t h e C O r e g i o n , c m ' l F a r — I R , c m “ l S y m V C O A n t i s y m v c o ( 6 - 1 ) 2 0 0 2 ( w ) , 1 9 7 4 ( 8 ) , 1 9 1 3 ( m ) , 1 9 0 0 ( 8 ) , 3 0 8 ( w ) , 2 9 9 ( w ) , 1 9 5 3 ( s ) 1 8 7 7 ( s ) , 1 8 5 9 ( s ) , 2 7 6 ( w ) , 2 6 1 ( s ) , 1 8 5 3 ( s ) 1 9 8 ( m u l t i p l e , m ) , ( 6 2 ) 1 9 9 8 ( w ) , 1 9 6 9 ( 5 ) , 1 8 8 5 ( s ) , 1 8 6 3 ( s ) 3 4 4 ( m ) , 3 3 2 ( m ) , 1 9 5 6 ( s ) 3 0 6 ( m ) . 2 9 0 ( m ) . 2 7 7 ( m ) , 2 5 6 ( m ) , 2 4 4 ( s h ) , 2 2 9 ( w ) , 2 1 7 ( w ) , 2 1 4 ( w ) , 1 9 8 ( m u l t i p l e , m ) , 1 7 8 ( w ) , 1 7 1 ( w ) , 1 6 7 ( w ) , ( 6 3 ) 1 9 6 0 ( s ) 1 9 0 6 ( m ) , 1 8 8 5 ( m ) , 2 7 7 ( m ) , 2 6 7 ( m ) , 1 8 6 4 ( s ) , 1 8 9 4 ( m ) g g g g m g , 2 4 4 ( w ) , m 9 1 9 8 ( m u l t i p l e , s ) 3 2 8 T a b l e 6 2 6 . ( c o n t ' d ) c o m p o u n d M i d - I R i n t h e C O r e g i o n , c m ' 1 F a r - I R , c m ' l S y m V C O A n t i s y m v c o ( 6 ' 4 ) 1 9 7 9 ( s h ) , 1 9 4 8 ( 8 ) 1 8 9 1 ( m ) , ] 8 8 l ( m ) , 2 1 0 ( 8 h ) , 2 0 2 ( 8 ) , 1 8 7 2 ( m ) , 1 8 5 7 ( m ) ( 6 5 ) 1 9 4 8 ( 8 ) 1 8 9 7 ( m ) , 1 8 7 9 ( m ) , 1 8 6 5 ( m ) , 1 8 4 3 ( m ) ( 6 6 ) 1 9 9 6 ( w ) , 1 9 6 9 ( 8 ) , 1 8 8 3 ( 8 h ) , 1 8 6 4 ( m ) ( 6 7 ) 2 0 0 1 ( w ) , 1 9 7 7 ( m ) 1 9 0 3 ( m ) , 1 8 8 2 ( 8 ) , 1 8 6 4 ( m ) ( 6 8 ) 1 9 9 3 ( w ) , 1 9 6 6 ( m ) 1 8 9 6 ( m ) , 1 8 7 6 ( 8 ) , 1 8 5 9 ( m ) ( 6 9 ) 1 9 5 1 ( 8 ) 1 8 7 5 ( m ) , 1 8 6 1 ( m ) 1 9 8 ( 8 ) , 1 9 0 ( m ) , 1 7 9 ( 8 ) 2 1 4 ( s h ) , 2 0 2 ( 8 ) , 1 9 8 ( 8 ) , 1 8 9 ( 8 ) , 1 9 ( 8 ) 2 6 0 ( m ) , 1 8 7 ( s h ) , 1 8 0 ( 8 ) , 1 7 0 ( m ) , 1 4 8 ( m u l t i p l e , m ) 3 1 3 ( m ) , 2 9 8 ( w ) , 2 9 0 ( m ) , 2 7 9 ( 8 ) , 2 5 9 ( 8 ) , 2 4 5 ( w ) , 1 9 3 ( b r , m ) 2 9 0 ( w ) , 2 7 4 ( w ) , 2 5 7 ( w ) , 2 4 4 ( w ) , 2 2 5 ( w ) , 2 0 3 ( 8 ) , 1 9 4 ( m ) , 1 7 0 ( m u l t i p l e , m ) 2 8 1 ( w ) , 2 5 6 ( m ) , 2 4 9 ( s h ) , 2 0 0 ( s ) , 1 9 5 ( s h ) , 1 8 7 ( m ) ) A ( ) B ( d n a ] 9 ) O C ( ) H S ( 2 ) z S ( 3 n M | 2 ) P 4 h P l ( 9 ) ) 0 A C ( ( r ) o 3 f H n o i g e R o C S ( 2 ) 2 5 ( 3 c n e M h [ t 2 n ) i P 4 a h r P t c ( e p S R I e t a t S - d i l o S e h T . 1 2 6 e r u g i F 3 1 3 N 9 1 1 . I H S N U H L 7 . L 2 1 . 9 9 2 1 1 1 9 " " 2 0 9 9 2 0 8 9 1 9 9 9 1 9 8 9 * " 1 6 9 9 1 8 8 9 1 7 9 9 F 7 8 9 N R V E N U M B E R 3 2 9 9 9 7 1 ) B ( 9 d 9 7 n a ] 1 9 ) O C ( ) 3 H 9 9 C 0 e S 1 ( 2 ) 2 e S ( 3 9 9 n 0 M H [ 0 1 2 3 ) H P C 4 1 h 2 P 1 ( ) 0 ) 9 1 C A 0 ( R ( 1 E r ) 3 1 1 l / o 1 1 l l B f H M n C c . 1 T l o l 1 U i ( ‘ ‘ 1 \ 9 N g e 9 R E 3 ) z 0 V e 1 H O T C ( N 4 e h e t R n [ i 3 a ) r P t 4 9 9 0 c h 2 e P p S ( R 1 e t a 9 9 t S 0 - 2 i d l o S e h T . 2 2 9 8 1 2 6 e r u g i 9 F 9 | 4 ‘ 2 3 1 3 N 9 1 1 I N S N U H J . Z 3 3 0 ( V ) I r 6 8 4 1 6 6 2 4 1 ( ( 1 ) 9 0 8 [ 1 6 ( o o ) ( € B H fi o o g r l - ) Z ( Z - o “ 6 . l ) € § u § 1 S w l Z ( d 1 t 6 l ( l 0 d 3 ) ) - ( h o £ u H ( 3 a 1 9 r 0 . a L l ) w o ; Z n ( 0 Z 6 w 0 G 6 a 1 . 3 L ) 6 h 9 8 £ 1 u U n ; ] 0 W 6 ) Z ( o d n : ’ q o d 8 r ) 9 2 2 9 d e 2 1 1 6 6 o w 9 l 2 6 s - 9 1 1 0 8 o % u } ? t $ 2 9 o m 6 fi l d 6 l 2 3 3 1 3 1 3 N 9 1 1 I H S N U H I ' / . d n a ] 6 ) 0 C 9 8 7 1 “ ) W W ( ” 9 9 7 1 M 1 ’ p 4 ‘ " 9 ( 0 ’ B 0 ( 1 , ' 6 ) O C ( 9 3 ) 9 3 0 H 1 9 C t S , ( ) 2 o n c M ( [ s ) ) 8 P s 0 H l 4 1 E h r P c B c ( M ) r A t U ( a N r n 9 o M 9 1 E f 0 V n 1 1 R o M i ( N g ) e C R ( O 9 C 9 e 0 t h 2 n i a r t c e p S R 1 e t a t S - d i l o S e h T . 4 2 - 6 9 9 0 2 9 4 1 2 9 9 e 1 2 r u g i e F 3 1 3 N 9 1 1 I H S N U U I ' / . 3 3 2 l ] 9 ) O C — ( ) 3 I - 1 C S ( 2 ) z S ( 3 n M [ 2 ) P 4 h P ( ) B ( d n a ] 9 ) O C ( ) H S ( 2 ) z S ( a n M [ 2 ) P 4 h P ( ) A ( f o a r t c e p S R I r a F e t a t S - d i l o S e h T . 5 2 6 e r u g i F ) A ( B O N U L J . I N S N U H L ' / . A 3 ' 0 3 2 7 3 0 4 2 0 1 2 5 6 2 0 5 2 1 2 1 0 9 1 0 6 1 8 3 N H V E N U M B E R 3 3 3 3 & 1 6 0 1 9 0 1 2 1 2 5 H 0 E 2 B M U N 6 E 0 V 2 R N 1 0 2 9 0 3 7 2 3 E O N H L J . I N S N U H L ' / . 3 5 0 F i g u r e 6 2 6 . T h e S o l i d - S t a t e F a r I R S p e c t r u m o f ( P h 4 P ) 2 | M n 3 ( S e 2 ) 2 ( S e C H 3 ) ( C O ) 9 | 3 3 4 ] 9 ) ) X ( ( ) 3 H C e T ( 2 ) 2 e ‘ I ' ( 3 n M [ 2 ) P 4 h P ( — B ) B ( d n a | 9 ) O C ( ) 3 I ~ l C e T ( 2 ) z e T ( 3 n M [ 2 ) P 4 h P ( - a ) A ( f o a r t c e p S R I r a F e t a t S - d i l o S e h T . 7 2 6 e r u g i F R I - T F T E L U C I N A \ o “ \ ' \ V \ 3 3 5 S S W L L I W L Z ‘ 1 2 8 9 2 0 6 2 2 7 2 1 0 2 0 0 1 0 8 1 0 3 1 7 2 1 0 1 1 0 0 u n v e n u n a e n 5 2 1 0 0 1 5 7 1 0 0 2 5 n 2 e 2 a m u n 0 e 0 v 2 n u 5 7 2 0 0 3 5 2 3 0 a B O N U L J . I N S N U H L ' A 3 3 6 F i g u r e 6 2 8 . T h e S o l i d - S t a t e F a r l R S p e c t r u m o f ( P h 4 P ) 3 l R e 4 ( T e z ) 3 ( T e C H 3 ) ( C O ) 1 2 | C H 3 O H 3 0 1 ‘ 6 0 1 | 6 ) 9 O 0 1 2 1 C ( 3 ) 3 H C S ( 2 n M | 2 ) P 4 h P ( f o 5 R 0 m E u 2 r B t M c e U p N S R 6 I E 0 r V 2 H N 1 : 2 4 0 a F e t a t S - d i l o S e h T . 9 2 6 e r 3 u g i F 7 2 3 0 5 3 a a N U I I I N S N e u l % 3 3 7 2 0 1 9 7 1 6 0 1 6 1 2 ‘ 0 R 4 E 2 B M U N E 2 0 V 2 H N 4 0 2 6 0 6 6 2 ‘ 3 0 5 3 B U N U L J . I N S N U H L % 3 3 8 F i g u r e 6 3 0 . T h e S o l i d - S t a t e F a r I R S p e c t r u m o f ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 6 ] 3 8 1 6 0 1 l 6 ) O 9 C 0 ( 3 1 ) 3 H C e T ( 2 2 n 1 M [ 2 ) P 4 h P ( f o 5 R m 0 E u 2 r B t M c e U p N S R 6 I E 0 r V 2 R N 1 0 2 9 0 a F e t a t S - d i l o S e h T . 1 3 6 e r 3 u g i F 7 2 0 7 0 B U N B I J . I H S N U H I ' / . 3 3 9 3 4 0 C o m p o u n d s i n t h e ( P h 4 P ) 2 [ M n 3 ( Q 2 ) 2 ( Q R ) ( C 0 ) 9 ] ( Q = S , R = H o r C H 3 ; Q = S e o r T e , R = C H 3 ) f a m i l y s h o w f e a t u r e l e s s U V / v i s s p e c t r a i n C H 3 C N , w h i l e c o m p o u n d s ( P h 4 P ) [ M n 2 ( Q C H 3 ) 3 ( C O ) 5 ] ( Q = S , S e o r T 6 ) e a c h g i v e a b r o a d a b s o r p t i o n a t ~ 4 0 0 1 1 m a n d a s h o u l d e r a t ~ 2 9 0 n m i n t h e s a m e s o l v e n t ( F i g u r e 6 3 2 ) . T h e a b s o r p t i o n m a x i m a f o r t h e s e t w o b a n d s a r e 3 7 9 n m ( b r , 6 : 2 . 2 9 x 1 0 3 M c m ' l ) a n d 2 8 8 n m ( s h , 6 : 7 . 6 9 x 1 0 3 M - c m ' l ) f o r ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 5 ] , 3 9 5 n m ( b r , 8 : 3 . 1 3 x 1 0 3 M c m ‘ l ) a n d 2 8 9 n m ( s h , e = 1 . 2 2 x 1 0 4 M c m ‘ l ) f o r ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 6 ] a n d 4 0 4 n m ( s h , e = 2 . 7 4 x 1 0 3 M c m ' 1 ) a n d 2 9 8 n m ( b r o a d s h , 6 = 1 . 1 3 x 1 0 4 M c m ' l ) f o r ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 6 ] . T h e U V / v i s s p e c t r u m o f ( P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 ] - C H 3 O H s h o w s a s h o u l d e r a t 3 6 1 n m ( b r o a d , r - : = 1 . 2 7 x 1 0 3 M c m ' l ) a s S h o w n i n F i g u r e 6 - 3 3 . 1 H N M R S p e c t r a o f ( P h 4 P ) m [ M n ( Q z ) x ( Q R ) ( C 0 ) y ] ( w h e n M = M n a n d Q = S , R = H o r C H 3 , m = 2 , n = 3 , x = 2 , y = 9 ; o r 1 2 ) i n d 6 - a c e t o n e a l l S h o w a s i n g l e t f o r t h e Q C H 3 ‘ a t 0 : 2 1 6 p p m f o r ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C H 3 ) ( C O ) 9 ] , 0 : 2 . 0 0 p p m f o r ( P h 4 P ) 2 [ M h 3 ( S e z ) 2 ( S e C H 3 ) ( C 0 ) 9 ] , 5 = 1 - 9 6 p p m f o r ( P h 4 P ) 2 [ M n 3 ( T 6 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] a n d 0 = 2 . 4 0 p p m f o r ( P h 4 P ) 3 [ R e 4 ( T e 2 ) 3 ( T e C H 3 ) ( C O ) 1 2 ] - C H 3 O H r e s p e c t i v e l y , a l o n g w i t h m u l t i p l e t s f o r t h e P h 4 P + c a t i o n s i n 7 - 8 p p m r e g i o n ( 8 6 6 F i g u r e 6 3 4 ) . T h e i n t e g r a t i o n i n ( P h 4 P ) 2 [ M n 3 ( Q 2 ) 2 ( Q C H 3 ) ( C O ) 9 ] ( Q = S , S e a n d T e ) g i v e s a r a t i o o f m e t h y l p r o t o n v s . p h e n y l p r o t o n ~ 3 : 4 0 , w h i l e t h e r a t i o i n ( P h 4 P ) 3 [ R e 4 ( T e z ) 3 ( T e C H 3 ) ( C O ) 1 2 ] - C H 3 O H i s ~ 3 : 6 0 . I n d 3 - c h l o r o f o r m , t h e m e t h y l g r o u p s i n ( P h 4 P ) [ M n 2 ( Q C H 3 ) 3 ( C O ) 5 ] ( Q = S , S e a n d T e ) a l s o g i v e a s i n g l e t 1 H N M R s i g n a l a t 0 : 1 9 9 p p m f o r ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 6 ] , 0 : 1 . 7 3 p p m f o r ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) 5 ] a n d 0 : 1 . 3 8 p p m ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C O ) 5 ] r e s p e c t i v e l y , a s e x p e c t e d f o r a m o l e c u l e w i t h t h r e e - f o l d s y m m e t r y ( s e e F i g r u e 6 - 3 5 ) . T h e c h a n g e i n t h e c h e m i c a l s h i f t s o f t h e m e t h y l g r o u p s i n a l l m a n g a n e s e c o m p o u n d s c a n b e e x p l a i n e d b y t h e d e c r e a s e d s h i e l d i n g e f f e c t o f t h e d i f f e r e n t c h a l c o g e n a t o m s ( i . e . f r o m S t o T e ) . T h e 1 H s i g n a l o f t h e T e C H 3 ' g r o u p i n ( P h 4 P ) 3 [ R e 4 ( T e z ) 3 ( T e C H 3 ) ( C O ) 1 2 ] - C H 3 O H a p p e a r s i n t h e d o w n fi e l d . I t s h o u l d b e n o t e d t h a t t h e T e C H 3 ' g r o u p i n t h i s c o m p o u n d i s a 1 1 3 - t y p e l i g a n d . 3 4 1 A B S 7 . . 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 W A V E L E N G T H , n m F i g u r e 6 3 2 . T h e U V l v i s S p e c t r a o f ( - ) ( P h 4 P ) [ a n ( S C I - I 3 ) 3 ( C O ) 5 ] , ( . . . ) ( P h 4 P ) W 0 2 ( S ¢ C 3 3 ) 3 ( C 0 ) 6 1 3 M ( “ ) ( P h 4 P ) [ a n ( T o C H 3 ) 3 ( C 0 ) 6 l i n C H 3 C N A B S r ‘ 7 f : 2 0 0 4 0 0 6 0 0 8 0 0 W A V E L E N G T H , n m F i g u r e 6 3 3 . T h e U V I v i s S p e c t r u m o f ( M ) 3 [ R e 4 ( T e z ) 3 ( ' l ‘ e C H 3 ) ( C O ) 1 2 1 0 1 3 0 1 ! i n C H 3 C N 1 I _ _ _ _ _ _ _ J ‘ _ _ _ , " ( A ) 1 , . . I 1 ‘ 1 I V l . 1 \ _ g ‘ m t 1 1 1 - . . _ _ 1 1 1 0 9 8 7 7 6 5 | - 4 3 9 I P P H * I ) " ’ 7 J . , ¥ , _ I J \ - J l J u n ” - ( B ) r [ 2 1 1 0 1 7 2 5 5 a i c o o t t ‘ A J l 2 , 1 1 I . ) I T r r r , , , v , . r . m — 1 0 9 a 7 6 s 4 3 2 ' ' l ' p o t t ( C ) i ‘ 4 l l ' ' . 2 i l l - i t . . 2 1 0 T 9 7 W e - 7 7 7 5 ' s 4 ' 3 W 2 . { 7 0 7 ( D ) r M ‘ l 1 1 ‘ 4 M . — w , 2 ‘ I - , . - . . v . . , . , . . . , . . 0 9 8 7 6 5 4 3 2 I P P M F i a n n a 6 3 4 - T h e ‘ H N M R S p e c t r a o f ( A ) ( P h 4 P ) 2 [ M n 3 ( 8 2 ) 2 ( S C H 3 ) ( C 0 ) 9 1 . ( B ) ( W 3 ( S e z ) 2 ( S e C H 3 ) ( C 0 ) 9 1 . ( C ) ( P h 4 P ) 2 [ M m ( T e z ) 2 ( T o C H 3 ) ( C 0 ) 9 ] a n d ( D ) ( P h 4 P ) 3 [ R e 4 ( T e z ) 3 ( T e C H 3 ) ( S C 0 ) 1 2 1 C H 3 O H 1 0 ( C D 3 ) 2 C 0 “ S i g n a l o f Q C H 3 ( Q = S S o a n d . T ’ e ) T h e l n s e t s S t h e E x p n n d e d A r e a s A r m m t h e M e t h y l G r o u p s A . M J J L ‘ T Y ‘ — I I . : ' 9 Y 9 ' 1 i Y T ' 1 1 7 Y ' Y i 2 r U Y U . Y Y T Y ' ' f 0 1 8 0 8 3 B 5 $ , - l 0 a : f ( ¥ C N - . - . D ' & : a Y ‘ J H I C Z T S i _ 3 _ _ Y . U ' ( 3 n a I 6 ) 0 C . 4 ) T ) T Y T } Y ' ? 2 4 ( e : 3 T 1 ) d 1 3 n ( H a C u ° ) e A T S V ( ( ' 5 ' , 2 f S : n V a o = . V I 7 1 a Q ) r ( M t ( c ' e ) 3 p C H 0 S ( ' I b R C d Q n Y ' X ' W T I I T V 7 ‘ M a N ] 6 n ) I 0 e h T C ( 3 ) . z T 5 3 H - C 6 e e S r ( u 2 g n i a F ) P 4 h P ( Y O L V T T W — I V A a V ' U I I I I U I ' V 9 I I U T T ' Y I V O F I ' ' - _ _ _ _ _ _ L \ M _ ) A . ) B ( ( / fi 3 4 3 3 4 4 3 . T h e r m a l D e c o m p o s i t i o n C o m p o u n d s ( 6 - 1 ) t h r o u g h ( 6 9 ) u n d e r g o s t e p w i s e o r c o n t i n u o u s t h e r m a l d e c o m p o s i t i o n s u n d e r N 2 fl o w i n t h e t e m p e r a t u r e r a n g e o f 2 5 t o 8 0 0 ' C a s s h o w n i n F i g u r e s 6 3 6 a n d 6 3 7 . F o r m o s t o f t h e c o m p o u n d s , t h e w e i g h t l o s s o f t e n c o n t i n u e s b e y o n d 8 0 0 ' C . T a b l e 6 - 2 7 s u m m a r i z e s t h e t h e r m o l y s i s d a t a f o r t h e s e c o m p o u n d s . A l t h o u g h w e l l - d e fi n e d p l a t e a u s c a n b e f o u n d i n t h e T G A d i a g r a m s o f t h e s e r i e s ( P h 4 P ) m [ M n ( Q 2 ) x ( Q R ) ( C O ) y ] ( w h e n M = M n a n d Q = S , R = H o r C H 3 , m = 2 , n = 3 , x = 2 , y = 9 ; o r 1 2 ) , t h e i r r e s i d u a l w e i g h t s d o n o t c o r r e s p o n d t o a n y s i m p l e b i n a r y m e t a l c h a l c o g e n i d e s , s u g g e s t i n g t h a t c a r b o n i s s t i l l r e t a i n e d i n t h e d e c o m p o s i t i o n p r o d u c t s . S i m i l a r l y , r e s i d u a l p r o d u c t s f r o m t h e r m a l d e c o m p o s i t i o n s o f ( P h 4 P ) [ M n 2 ( Q C H 3 ) 3 ( C O ) 6 ] ( Q = S , S e a n d T e ) a r e n o t s i n g l e p h a s e s o r m i x t u r e s o f b i n a r y m a n g a n e s e c h a l c o g e n i d e s , a s s h o w n b y t h e i r o b s e r v e d w e i g h t l o s s e s a n d t h e X R D s t u d i e s . T h e s e p r o d u c t s m a y a l s o b e M n c a r b i d e p h a s e s . T a b l e 6 - 2 7 . T h e r m a l G r a v i m e t r i c A n a l y s i s D a t a f o r ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S H ) ( C O ) 9 ] ( 6 - 1 ) , ( P h 4 P ) 2 [ M n 3 ( 3 2 ) 2 ( S C H 3 ) ( C 0 ) 9 ] ( 6 ' 2 ) . ( P h 4 P ) 2 [ M n 3 ( S e z ) 2 ( S e C H 3 ) ( C 0 ) 9 l ( 6 ' 3 ) , 0 ! - ( P h 4 P ) 2 a n 3 ( T e z ) 2 ( T e C H 3 ) ( C 0 ) 9 l ( 6 ' 4 ) , fi - ( P h 4 P ) 2 [ M n 3 ( T 6 2 ) 2 ( T e C H 3 ) ( C 0 ) 9 ] ( 6 ' 5 ) , ( P h 4 P ) 3 [ R e 4 ( T e z ) 3 ( ' l ' e C H 3 ) ( C 0 ) 1 2 1 ° C H 3 0 H ( 6 ' 6 ) , ( P h 4 P ) a n 2 ( S C H 3 ) 3 ( C 0 ) 6 ] ( 6 7 ) . ( P h 4 P ) a n 2 ( S e C H 3 ) 3 ( C 0 ) 6 ] ( 6 ' 8 ) a n d ( P h 4 P ) [ M n 2 ( T e C H 3 ) 3 ( C 0 6 ] ( 6 ' 9 ) o o m p d o n s e t t e m p fi n a l t e m p o b s d 0 ° C ° C w t l o s s ( 6 1 ) 1 7 1 1 9 7 2 5 . 7 8 1 9 7 3 3 3 6 9 . 8 1 6 8 7 / I ( 6 2 ) 1 8 5 3 8 8 7 2 . 5 5 6 5 0 / / ( 6 - 3 ) 1 7 0 3 5 2 7 3 . 7 1 7 4 4 l I 3 4 5 T a b l e 6 - 2 7 . ( c o n t ' d ) e o m p d o n s e t t e m p fi n a l t e m p o b s d % ° C ° C w t l o s s ( 6 4 ) 1 9 3 2 8 6 5 4 . 0 6 7 0 4 / / ( 6 5 ) 1 9 3 2 8 6 5 4 . 0 6 7 0 4 / / ( 6 - 6 ) 2 4 6 2 9 9 1 6 . 3 7 2 9 9 3 7 7 4 2 . 9 9 3 7 7 5 2 6 4 6 . 9 0 7 5 7 / / ( 6 - 7 ) 1 9 7 3 8 3 6 9 . 1 5 ( 6 8 ) 2 0 0 5 2 3 7 7 . 6 4 ( 6 9 ) 2 0 2 5 3 3 6 8 . 2 5 « 0 0 8 1 0 l 0 7 1 0 C ) I 0 8 1 0 l 0 ( . 1 9 ) 0 7 C 1 ( 0 L l 0 6 1 0 l 0 5 1 ] 0 3 ) 0 H 6 C 1 1 S l ( 9 0 2 ) 0 0 ) 5 0 z 1 ( ] S C ( ) ) B L ( C 0 [ 0 p 4 m ) 3 0 [ 3 D J 0 H p n ( 4 C m M 1 e T 0 L 0 3 1 0 1 0 1 e [ e T 2 T 0 ( ) l P 0 2 3 1 0 4 ) h z P e ( T L ( 0 ) 2 2 1 1 0 0 B 3 ( n M . [ l L 0 1 l 2 0 1 9 ) ) P O M C I ( P o ) ( H 0 0 0 0 0 0 0 0 0 0 S ) 0 0 0 0 0 2 0 8 6 4 2 1 0 9 8 7 6 5 4 3 ( D 1 1 e 1 1 b 3 I L v 0 l I 0 0 ‘ 8 I 0 0 ‘ 0 2 ( ) d z n S a ( 3 l 8 9 0 ) M 0 [ 3 0 2 L l ( ( 7 ) ) l l 0 a H W C e 0 ( S 0 7 l I 0 l I 0 l ] r C 0 [ 6 6 ( ) 2 A . 1 ) 0 0 | l A 2 ( : < 0 5 1 0 S f 5 o ( 9 3 l ] s : C : 0 [ l 0 p m r d I 1 I I f r 0 l , I . z I I I ’ 0 3 0 1 3 A 4 ' 1 1 I \ T 0 T i 2 0 ) d 0 T 0 T I G l ’ p § 4 m l e 4 m l e l l I 0 J l ' J 2 I l I ‘ I ' 0 l 0 1 1 r 0 0 0 o 0 0 0 0 0 0 2 4 2 0 6 8 2 1 1 1 2 ‘ 0 2 1 0 l 0 1 1 ( e 1 1 1 . 6 3 6 0 m e g l ' F 1 0 0 8 0 6 0 % M 2 0 M 4 0 % M 0 I L L ] 1 J 1 ] 1 1 1 1 l e l 1 1 1 1 I l l ] 1 1 1 1 l a L L L I I I I I I I I I I I I V I I I ‘ I I T I r 1 1 1 T T I I I 1 3 4 6 . ‘ . T I I I I 0 0 8 I L I 0 0 7 l l 0 0 l 6 l 0 I I I I I I I 7 1 I f I ) l C B 0 [ I ( 0 p 0 l 5 ] I l 4 m e I L T 0 0 l 3 l 0 I I J 0 I 2 f I L I 0 L 0 I 1 ) C ( . l 6 ) 0 0 8 0 C ( 0 3 0 ) 7 3 H C 0 S 0 ( 6 2 n M 0 [ 0 ) 5 P ] M ] C I 6 0 P ) [ 0 p ( 0 4 m e T 0 0 3 0 0 C ) ( B 3 ( ) . 3 H H 0 C 3 C T H ( C 2 - 2 I 0 1 I 2 M 1 [ ) 0 ) 1 P O T l C I M t L 0 0 2 0 1 1 f I r I r I — v Y 0 0 2 ° 0 8 ° 4 0 7 1 I I 1 ° 0 I 1 6 1 ° 0 1 5 T 1 ] I 0 0 o 0 2 0 s 6 1 1 e a b 0 0 0 ( I ) P 3 ( H C ) e D T ( ( d 3 n ) a z c l r ) 8 6 T ( 4 0 0 e C 0 ( R 7 [ 3 0 0 3 ) ) 3 P H 4 C 6 h ¢ P S ( ( 0 2 0 n ) 5 M A ] ( [ I A ° [ C 0 [ o P ) f ) 1 C ) C ( 0 0 I p ( p 1 4 m m 4 I s M r e I I 1 T 0 I 0 I e T 0 1 0 3 3 m a P r ( g a i I 0 0 1 d T I I I 1 0 I 2 1 I 0 1 0 1 # I r 0 2 A G T 0 e 0 h 1 T 0 - 7 3 6 0 0 0 0 0 0 0 1 0 e 9 8 7 6 4 0 0 0 0 1 1 2 0 8 6 r 1 1 u g i F T 1 r T T fi L L l J I I I I T 1 1 1 1 1 1 1 1 L 1 j I I r I o w » % M % M 0 < 0 1 1 ! ! 1 1 1 1 I I I I O V 5 0 l l l L l l l l O % M 4 0 4 o " ' l E . 3 . 2 0 1 J 1 1 1 1 1 l L L 1 1 — 1 1 J 2 0 1 l 1 l 1 L 1 j 1 l 1 l 1 1 1 3 4 7 3 4 8 I V . D i s c u s s i o n N i n e g r o u p 7 m e t a l c a r b o n y l p o l y c h a l c o g e n i d e l a l k y l c h a l c o g e n i d e c o m p o u n d s h a v e b e e n s y n t h e s i z e d t h r o u g h m e t h a n o t h e r m a l r e a c t i o n s . T h e m o s t u n e x p e c t e d o u t c o m e o f t h e s e r e a c t i o n s i s t h a t t h e c o m p o u n d s , e x c e p t f o r ( P h 4 P ) 2 [ l \ d n 3 ( S z ) 2 ( S I - I ) ( C O ) 9 ] , c o n t a i n t h e m e t h y l a t e d m o n o c h a l c o g e n i d e l i g a n d s . T h e m e t h y l a t i o n p r o b a b l y o r i g i n a t e s f r o m t h e e l e c t r o p h i l i c a t t a c k o f C H 3 O H o n t h e c h a l c o g e n i d e l i g a n d u n d e r t h e r e a c t i o n c o n d i t i o n s b e c a u s e i f C H 3 C H 2 0 H i s u s e d i n p l a c e o f C H 3 O H t h e i s o l a t e d c o m p o u n d s c o n t a i n n o a l k y l a t e d c h a l c o g e n i d e l i g a n d s a s c o n fi r m e d b y 1 H N M R s t u d i e s . A l k y l a t i o n o f c o o r d i n a t e d c h a l c o g e n i d e l i g a n d s c a n r e a d i l y o c c u r i n s o m e m e t a l s u l fi d e [ 2 5 ] , s e l e n i d e [ 2 6 ] , a n d t e l l u r i d e [ 9 ] c o m p l e x e s . A m o n g v a r i o u s a l k y l a t i n g a g e n t s s u c h a s C H 3 8 0 3 F , C H 3 S O 3 C F 3 , C H 3 I , e t c . , h o w e v e r , C H 3 O H i s b y n o m e a n s a s u i t a b l e c h o i c e . T o t h e b e s t o f o u r k n o w l e d g e , t h e c u r r e n t m o t i o n s a r e t h e fi r s t e x a m p l e s o f c o o r d i n a t e d c h a l c o g e n i d e s b e i n g a l k y l a t e d b y C H 3 O H . T h e r e s u l t s o f t h i s w o r k u n d e r s c o r e t h e i n t r i n s i c d i f f e r e n c e o f t h e c h e m i s t r y u n d e r h y d r o ( s o l v o ) t h e r m a l c o n d i t i o n s a n d t h a t a t a m b i e n t t e m p e r a t u r e s a n d p r e s s u r e s . T h i s a l s o p r o v i d e s a c o n v e n i e n t e n t r y i n t o t h e m e t a l a l k y l c h a l c o g e n i d e c o m p l e x e s , e s p e c i a l l y t h o s e o f m e t a l a l k y l t e l l u r i d e s w h e r e t h e f o u l - s m e l l i n g , a i r - s e n s i t i v e l i q u i d s o f f r e e o r g a n o t e l l u r i d e s w i t h l o w e r a l k y l c h a i n s h a v e l o n g d i s c o u r a g e d a t t e m p t s a t e x p l o r i n g i t s c o o r d i n a t i o n c h e m i s t r y [ 2 7 ] . I n t h e M n 2 ( C O ) 1 o / N a 2 S 2 s y s t e m , t h e f o r m a t i o n o f e i t h e r ( P h 4 P ) 2 a n 3 ( S z ) 2 ( S H ) ( C 0 ) 9 ] ( 6 1 ) o r ( P h 4 P ) 2 [ M n 3 ( S z ) 2 ( S C H 3 ) ( C 0 ) 9 ] ( 0 2 ) w a s f o u n d t o b e e n t i r e l y d e p e n d e n t o n t h e m o l a r r a t i o o f M n 2 ( C O ) 1 0 t o N a 2 8 2 i n t h e r e a c t i o n . F o r i n s t a n c e , t h e r a t i o 1 : 4 g a v e e x c l u s i v e l y ( 6 1 ) , w h i l e t h e r a t i o 1 : 9 y i e l d e d ( 6 2 ) . A n y r a t i o s b e t w e e n t h e s e t w o w o u l d r e s u l t i n a m i x t u r e o f t h e t w o c o m p o u n d s . M o r e o v e r , u n d e r t h e r e a c t i o n c o n d i t i o n s , t h e t w o c o m p o u n d s d i d n o t i n t e r c h a n g e t o e a c h o t h e r , i n s t e a d t h e y w e r e b o t h t r a n s f o r m e d t o ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C O ) 5 ] ( 6 - 7 ) , a s s h o w n i n t h e f o l l o w i n g e q u a t i o n : 3 4 9 M n 2 ( C 0 ) 1 0 + 4 1 8 8 2 5 2 M e O H , 8 0 ' C + 6 P h 4 P C l s e a l e d t u b e , 8 h r ( P h 4 P ) 2 l 1 \ 4 ( n g : 2 ) M S H X C O ) 9 ] m ( P h 4 P ) [ M n 2 ( S C H 3 ) 3 ( C 0 ) o ] ( 6 ' 7 ) e q . ( 6 - l ) M n 2 ( C 0 ) 1 o + 9 N 8 2 3 2 M e O H , 8 0 ' C 5 d a y s + 6 P h 4 P C l s e a l e d t u b e , fi r ( P m P h I M t z fi g g n S C m X C O b l T h e t r a n s f o r m a t i o n o f ( 6 1 ) i n t o ( 6 7 ) s t a r t e d a f t e r h e a t i n g t h e r e a c t i o n f o r ~ 1 2 h o u r s , a n d w e r e c o m p l e t e i n ~ 4 0 h o u r s . D u r i n g t h i s t i m e , t h e p r o d u c t w a s a m i x t u r e w i t h t h e r a t i o o f ( 6 7 ) t o ( 6 1 ) i n c r e a s i n g w i t h t h e h e a t i n g t i m e . A s i m i l a r t r a n s f o r m a t i o n a l s o o c c u r r e d i n ( 6 2 ) , b u t w a s r e l a t i v e l y s l o w . C o m p l e t e c o n v e r s i o n o f ( 6 2 ) t o ( 6 7 ) o f t e n t a k e s ~ 6 d a y s . A l l t h e s e r e a c t i o n s m u s t h a v e i n v o l v e d , b e s i d e s C H 3 O H , s o m e u n i d e n t i fi e d i n t e r m e d i a t e s p e c i e s g e n e r a t e d i n t h e r e a c t i o n b e c a u s e u n d e r t h e s a m e c o n d i t i o n s , p u r e ( 6 1 ) o r ( 6 2 ) f a i l e d t o r e a c t w i t h C H 3 0 H t o g i v e ( 6 7 ) . T h e p r o t o n a t e d m o n o s u l fi d e l i g a n d i n ( 6 - 1 ) w a s f o r m u l a t e d f r o m t h e r e s u l t s o f X - r a y s i n g l e c r y s t a l a n a l y s i s , 1 H N M R a n d m a g n e t i c s u s c e p t i b i l i t y m e a s u r e m e n t s . B e c a u s e a m e t h y l g r o u p w a s f o u n d o n t h e m o n o c h a l c o g e n i d e l i g a n d i n a l l o t h e r a n i o n s o f t h i s s e r i e s , a g r e a t d e a l o f a t t e n t i o n w a s p a i d t o t h e d i f f e r e n c e F o u r i e r m a p s o f ( 6 - 1 ) a t v a r i o u s s t a g e o f i t s r e fi n e m e n t t o d i s c e r n p o s s i b l e m e t h y l g r o u p s . H o w e v e r , t h e s u r r o u n d i n g a r e a o f t h e m o n o s u l fi d e w a s q u i t e c l e a r o f r e s i d u a l e l e c t r o n d e n s i t y , p r o v i d i n g t h e fi r s t e v i d e n c e o f i t s a b s e n c e . O f c o u r s e , s u c h e v i d e n c e c o u l d b e e a s i l y u n d e r m i n e d b y t h e d i s o r d e r o f t h i s C a t o m , o r i n a c c u r a c y o f t h e d i f f e r e n c e F o u r i e r m a p s r e s u l t i n g f r o m t h e d o m i n a t i o n o f t h e h e a v y a t o m s , i . e . M n ' s a n d S ' s . H o w e v e r , t h e f o l l o w i n g o b s e r v a t i o n s s h o u l d b e m o r e c o n v i n c i n g : ( i ) o u r c o n t r o l r e a c t i o n o f p r e p a r i n g ( 6 1 ) b y u s i n g E t O H a s s o l v e n t g a v e t h e s a m e p r o d u c t , a l b e i t i n a l o w e r y i e l d , a s c o n fi r m e d b y X - r a y p o w d e r d i f f r a c t i o n ( X R D ) , F T - I T a n d 1 H N M R s t u d i e s ; ( i i ) t h e 1 H N M R s p e c t r u m o f t h i s c o m p o u n d , u n l i k e t h e o t h e r M u m » , . w a s . » 2 M e O H , 8 ° ’ C ' ( P h 4 P ) 2 [ M n 3 ( S e z ) 2 ( S e C H 3 ) ( C 0 ) 9 ] 3 5 0 c o m p o u n d s i n t h i s s e r i e s , g a v e n o C H 3 r e s o n a n c e i n t h e e x p e c t e d r e g i o n , w h i l e i t i s d i a m a g n e t i c a s m e a s u r e d b y s u p e r c o n d u c t i n g q u a n t u m i n t e r f e r e n c e d e v i c e ( S Q U I D ) a n d E P R . T h e s e d a t a s t r o n g l y s u g g e s t t h a t t h e m o n o s u l fi d e l i g a n d i s p r o t o n a t e d . I t s h o u l d b e n o t e d t h a t , l i k e m e t h y l a t i o n o f c o o r d i n a t e d c h a l c o g e n i d e l i g a n d s , p r o t o n a t i o n o f s u c h l i g a n d s i s a l s o k n o w n t o o c c u r w i t h t h e u s e o f a s t r o n g a c i d [ 2 6 c , 2 8 ] . H o w e v e r , a t t e m p t s t o u s e I R a n d 1 H N M R t o c o n fi r m / l o c a t e t h i s H a t o m h a v e t h u s f a r b e e n u n s u c c e s s f u l . T h e I R s p e c t r u m o f t h e d i m e r i c S H — b r i d g e d c o m p l e x [ M n 2 ( S H ) 2 ( C O ) 3 ] g a v e t h r e e w e a k V S H v i b r a t i o n s a t 2 5 7 1 , 2 5 3 1 a n d 2 4 8 1 c m ‘ 1 [ 2 9 ] . H o w e v e r , ( 6 1 ) s h o w e d n o i d e n t i fi a b l e 1 R b a n d s i n t h i s r e g i o n . I t i s g e n e r a l l y a c c e p t e d t h a t V S H s t r e t c h i n g m o d e s a r e s o w e a k t h a t t h e i r a b s o r p t i o n s i n t h e I R s p e c t r u m a r e o f t e n o b s c u r e d [ 3 0 ] . O n t h e o t h e r h a n d , a t r a c e a m o u n t o f a c i d s o r b a s e s i n s o l u t i o n c o u l d c a u s e e x c h a n g e b r o a d e n i n g a n d c o l l a p s e o f t h e S H p r o t o n N M R s i g n a l , a s i t h a s b e e n p r o v e n t o b e t h e c a s e i n o t h e r m e t a l h y d r o s u l fi d o c o m p l e x e s [ 3 1 ] . T h i s m a y a c c o u n t f o r t h e f a i l u r e o f o b s e r v i n g t h e 1 H N M R p e a k o f t h e S H g r o u p i n ( 6 ] ) . R e a c t i o n s b e t w e e n M n 2 ( C O ) 1 0 a n d N a 2 8 e 2 p r o c e e d i n a s i m i l a r m a n n e r a s t h e S - a n a l o g u e s a b o v e : + 6 P h 4 P C l s e a l e d t u b e , 4 6 h ( 6 ' 3 ) 1 9 d a y s e q . ( 6 - 2 ) ( P h 4 P ) [ M n 2 ( S e C H 3 ) 3 ( C O ) o ] ( 6 ' 8 ) T h u s f a r w e h a v e n o t b e e n a b l e t o i s o l a t e d t h e p r o t o n a t e d s p e c i e s a n a l o g o u s t o ( 6 1 ) , a l t h o u g h v a r i o u s m o l a r r a t i o s o f M n 2 ( C O ) 1 0 t o N a z s e z a n d d i f f e r e n t r e a c t i o n t i m e s a r e e x a m i n e d . T h i s i s c o n s i s t e n t w i t h t h e h i g h e r n u c l e o p h i l i c i t y o f t h e c o o r d i n a t e d s e l e n i u m l i g a n d s . S i m i l a r l y , t h e s e a r c h f o r s u c h a p r o t o n a t e d s p e c i e s i n t h e M n 2 ( C O ) 1 o / N a 2 T e 2 s y s t e m r e s u l t e d i n i s o l a t i o n o f t w o d i f f e r e n t c r y s t a l m o d i fi c a t i o n s o f M + n 2 6 ( P C h 0 4 ) P , C o l + 4 N a 2 ' r e 2 M e e l a s O e H d , t 8 e 0 , C ' 4 l u b y s a M E h g l o l i g r e t h O C H 3 X C O b ] 2 0 d a y s I 3 5 1 t h e s a m e c o m p o u n d , a - a n d B - ( P h 4 P ) 2 [ M n 3 ( T e 2 ) 2 ( T e C H 3 ) ( C O ) 9 ] . T h e y a r e b o t h m e t h y l a t e d p r o d u c t s : ( P h 4 P ) [ M n 2 ( T 6 C H 3 ) 3 ( C 0 ) 6 ] ( 6 ' 9 ) + T e M n 2 ( C O ) 1 0 + Z N a z T e z M e O H , 8 0 ‘ C W M N D 3 a e z h C T G C H 3 X C O b ] 1 7 d a y s + 3 P h 4 P C l s e a l e d t u b e , 1 0 ( E y s ( 6 . 5 ) e q . ( 6 - 3 ) I n t e r e s t i n g l y , t h e t r a n s f o r m a t i o n o f b o t h ( 6 4 ) a n d ( 6 5 ) i n t o ( 6 9 ) w a s f o u n d t o b e s l o w a n d o f t e n i n c o m p l e t e . B e c a u s e t h e p r o d u c t s f o r m e d i n t h e fi r s t s t e p o f t h e s e r e a c t i o n s a r e m u c h l e s s s o l u b l e i n M e O H t h a n t h e i r s u l fi d e o r s e l e n i d e c o u n t e r p a r t s , r e a c t i o n o f s u c h c o m p o u n d s w i t h t h e m e t h y l a t i n g a g e n t s h o u l d t a k e l o n g e r t i m e . I n t h i s c a s e , t h e s e c o n d - s t e p r e a c t i o n t o ( 6 - 9 ) o f t e n c o m p e t e s w i t h t h e t h e r m a l d e g r a d a t i o n o f ( 6 4 ) a n d ( 6 5 ) . U n l i k e t h e r e a c t i o n s o f M n 2 ( C O ) 1 0 w i t h N a 2 Q 2 ( S , S e a n d T e ) w h i c h a r e r e d o x i n n a t u r e , t h e r e a c t i o n o f C p R e ( C O ) 3 w i t h K 2 T e 4 i s m e t a t h e t i c a l : M e O H , 8 0 ' c ( P h 4 P ) 3 [ R e 4 ( T e z ) 3 C F e C H 3 ) ( C O ) 1 2 ] C d e C O h + 8 K 2 T e 4 4 ‘ 8 % ] H o w e v e r , u s e o f N a z T e z a s t h e s t a r t i n g m a t e r i a l i n t h e a b o v e r e a c t i o n f a i l e d t o g i v e a n y r h e n i u m t e l l u r i d e c o m p l e x e x c e p t ( P h 4 P ) 2 T e 4 , s u g g e s t i n g t h a t t h e r e a c t i o n m e c h a n i s m m a y b e m o r e c o m p l i c a t e d t h a n i t a p p e a r s . F u r t h e r m o r e , i t w a s f o u n d t h a t K 2 T e 4 n e e d s t o b e i n e x c e s s . T h i s m e a n s t h a t t h e r e a c t i o n w o u l d g i v e ( P h 4 P ) 2 T e 4 a s a b y - p r o d u c t . A r a t i o o f C p R e ( C O ) 3 t o K 2 T e 4 l o w e r t h a n 1 : 8 w o u l d l e a d t o a p r o d u c t c o n t a i n i n g ( P h 4 P ) 2 T e 4 a n d T e p o w d e r o n l y . ( 6 6 ) d o e s n o t u n d e r g o s i m i l a r t r a n s f o r m a t i o n t o t h e c o r r e s p o n d i n g c o m p l e t e l y m e t h y l a t e d m o n o t e l l u r i d e c o m p o u n d . P r o l o n g e d h e a t i n g d e g r a d e s t h e 3 5 2 c o m p o u n d s l o w l y . A f t e r h e a t e d a t 8 0 ' C f o r 2 8 d a y s , o n l y ( P h 4 P ) 2 T e 4 ( c r y s t a l f o r m ) a n d e l e m e n t a l T e ( m i c r o c r y s t a l l i n e ) c a n b e f o u n d i n t h e s o l i d p h a s e o f t h e p r o d u c t . A l l s t r u c t u r e s i n t h e h o m o l o g o u s s e r i e s o f ( P h 4 P ) m [ M n ( Q 2 ) x ( Q R ) ( C O ) y ] ( w h e n M = M n a n d Q = S , R = H o r C H 3 , m = 2 , n = 3 , x = 2 , y = 9 ; o r 1 2 ) a r e h i t h e r t o u n k n o w n . M a n g a n e s e o r r h e n i u m c a r b o n y l c l u s t e r s c o n t a i n i n g p o l y c h a l c o g e n i d e l i g a n d s a r e r e l a t i v e l y s c a r c e . A m o n g t h e s t r u c t u r a l l y c h a r a c t e r i z e d c o m p o u n d s a r e [ M n 4 ( S z ) 2 ( C O ) 1 5 ] [ 1 0 ] a n d ( P h 4 P ) 2 [ M 2 ( S e n ) 2 ( C O ) 5 ] ( w h e n M = M n , n = 2 o r 4 ; w h e n M = R e , n = 4 ) [ 1 1 - 1 2 ] . T h e n e u t r a l c l u s t e r [ M n 4 ( 8 2 ) 2 ( C 0 ) 1 5 ] c o n t a i n s a u r n ‘ J I ‘ J I R I F - t y p e . a n d a u s - n 1 . n 1 . n 2 - t y p e 3 2 2 ‘ l i g a n d s . T h e l a t t e r i s t h e s a m e a s o n e o f t h o s e f o u n d i n e i t h e r ( 6 1 ) o r ( 6 2 ) . A l t h o u g h [ M n 4 ( 8 2 ) 2 ( C O ) 1 5 ] b e a r s c e r t a i n s t r u c t u r a l s i m i l a r i t y t o b o t h ( 6 1 ) a n d ( 6 - 2 ) , t h e m o s t n o t i c e a b l e f e a t u r e o f t h i s t e t r a m e r i s t h e p r e s e n c e o f a S - b o u n d M n ( C O ) 5 f r a g m e n t i n t h e s t r u c t u r e a s s h o w n i n t h e f o l l o w i n g s c h e m e : / M n ( C O ) 4 \ ' s > : \ \ ; s \ \ é s ‘ M n ( C O ) 5 ( C O ) 3 M n \ / \ M n ( c o ) 3 S c h e m e 6 3 . T h e S t r u c t u r e o f [ M n 4 ( S z ) 2 ( C O ) 1 5 ] A l l M n a t o m s i n t h i s c l u s t e r , h a v i n g a + 1 f o r m a l o x i d a t i o n s t a t e , d o n o t f o r m M - M b o n d s . T h e o c t a h e d r a l c o o r d i n a t i o n o f t h e m e t a l c e n t e r s i s c o m p l e t e d b y v a r i o u s S l i g a n d s a n d C 0 g r O U P S - T h e ( P h 4 P ) 2 [ M n 2 ( S e z ) 2 ( C 0 ) 6 l a n d ( P h 4 P ) 2 [ M 2 ( 5 6 2 ) 2 ( C 0 ) 6 ] M = M n 0 1 ‘ R e ) a r e s t r u c t u r a l l y r e l a t e d d i m e r s . T h e c e n t r o s y m m e t r i c [ M n 2 ( S e 2 ) 2 ( C O ) 5 ] 2 ‘ a n i o n i s f o r m e d f r o m t w o M n ( C O ) 3 f r a g m e n t s b r i d g e d b y t w o S e z z ‘ l i g a n d s a s s h o w n i n S c h e m e 6 3 . T h e c o o r d i n a t i o n m o d e o f t h e s e t w o S e z z ‘ l i g a n d s c a n b e d e s c r i b e d a s u - n 1 , n 2 - t y p e , 3 5 3 i . e . t h e S e z z ‘ i s b o n d e d t o a m a n g a n e s e c e n t e r i n t h e s i d e - o n f a s h i o n , w h i l e o n e s e l e n i u m a t o m b r i d g e s a n o t h e r m a n g a n e s e c e n t e r . c o / S . . . \ 8 0 " ' J " \ n ‘ ” ” M u m s a n . . . “ a n c o \ / ‘ ° ‘ / “ ° ° S c h e m e 6 4 . T h e S t r u c t u r e o f [ M n 2 ( S e 2 ) 2 ( C O ) 5 ] 2 ' A n i o n T h e s t r u c t u r e o f [ M 2 ( S e 4 ) 2 ( C O ) 6 ] 2 ' ( M = M n o r R e ) , a s s h o w n i n S c h e m e 6 4 , i s s i m i l a r t o t h a t o f [ M n 2 ( S e 2 ) 2 ( C O ) 5 ] 2 ' . T h e m o l e c u l e i s a l s o c e n t r o s y m m e t r i c , a n d t h e M S e 4 r i n g a d o p t s a p u c k e r e d c o n f o r m a t i o n . T e 0 0 " ” , _ . _ . u l ‘ " " ‘ “ l \ “ s e ” " " n . M “ C O 4 1 1 M . . Q C \ s / l k c o $ 9 | 0 0 I / 3 6 S e S c h e m e 6 5 . T h e S t r u c t u r e o f [ M 2 ( S e 4 ) 2 ( C O ) 5 ] 2 ‘ ( M = M n o r R e ) A n i o n W e n o t e t h a t t h e t w o n o n - i n t e r a c t i n g M n a t o m s i n e a c h o f t h e s e c o m p o u n d s a l s o h a v e t h e + 1 f o r m a l o x i d a t i o n s t a t e w i t h o c t a h e d r a l c o o r d i n a t i o n . I n t e r e s t i n g l y , h e a t i n g o f [ M n 2 ( S e 4 ) 2 ( C O ) 5 ] 2 ‘ a t 9 0 ' C i n D M F l e a d s t o c o m p l e t e d e c a r b o n y l a t i o n o f t h e m e t a l c e n t e r s v i a a n i n t e r n a l r e d o x p r o c e s s , p r o d u c i n g t h e h o m o l e p t i c c o m p l e x [ M n ( S e 4 ) 2 ] 2 ' . T h e [ M n 2 ( Q C H 3 ) 3 ( C O ) 6 ] ' ( Q = S , S e o r T e ) a n i o n s a r e i s o e l e c t r o n i c t o t h e c a t i o n i c s p e c i e s [ F e 2 ( S C l - 1 3 ) 3 ( C O ) 6 ] + . T h e l a t t e r w a s p r e p a r e d f r o m r e a c t i o n o f F e 2 ( C O ) 5 ( S C H 3 ) 2 3 5 4 w i t h d i t h i e t e n e 8 2 C 2 ( C F 3 ) 2 , a n d i t s s t r u c t u r e w a s s h o w n t o b e e s s e n t i a l l y t h e s a m e a s t h e M n a n a l o g u e s o f t h e c u r r e n t s e r i e s , i . e a C 3 1 , m o l e c u l e c o n t a i n i n g t w o n o n - i n t e r a c t i n g i r o n c e n t e r s i n t h e f o r m a l + 2 o x i d a t i o n s t a t e [ 3 2 ] . I n c l o s i n g , i t i s w o r t h w h i l e o n c e a g a i n p o i n t i n g o u t t h e i n t r i n s i c d i f f e r e n c e o f t h e o r g a n o m e t a l l i c - p o l y c h a l c o g e n i d e c h e m i s t r y u n d e r h y d r o ( s o l v o ) t h e r m a l c o n d i t i o n s a s o p p o s e d t o a m b i e n t t e m p e r a t u r e s a n d p r e s s u r e s . O n t h e o t h e r h a n d , t h i s s y n t h e t i c m e t h o d h a s p r o v i d e d a n e a s y a c c e s s t o s o m e n e w m e t a l c o m p l e x e s o f a l k y l a t e d c h a l c o g e n i d e s w h i c h c o u l d s e r v e a s e x c e l l e n t s t a r t i n g m a t e r i a l s f o r o t h e r c h e m i s t r y . W h i l e t h e c u r r e n t r e s u l t s a r e v a y e n c o u r a g i n g , f u r t h e r s t u d y i s n e e d e d t o e x t e n d t h i s c h e m i s t r y t o o t h e r s y s t e m s a n d t o c l a r i f y t h e m e c h a n i s m o f t h e m e t h y l a t i o n r e a c t i o n s . T h e l a t t e r m a y p r o v e t o b e o f f u n d a m e n t a l i n t e r e s t . A l l t h i s p r o m i s e s m a n y n e w o p p o r t u n i t i e s f o r t h e e x p l o r a t o r y s y n t h e t i c c h e m i s t r y . 1 0 . 1 1 . 1 2 . 1 3 . 1 4 . 1 5 . 3 5 5 R E F E R E N C E S S e e c h a p t e r s 5 & 7 . H . V a h r e n k a m p , A n g e w . C h e m I n t . E d . E n g l , 1 4 ( 1 9 7 5 ) , 3 2 2 - 3 2 9 . J . W a c h t e r , A n g e w . C h e m I n t . E d . E n g ] . , 2 8 ( 1 9 8 9 ) , 1 6 1 3 - 1 6 2 6 . J . W . K o l i s , C o o r d . C h e m . R e v . , 1 0 5 ( 1 9 9 0 ) , 1 9 5 - 2 1 9 . M . G . K a n a t z i d i s a n d S . - P . H u a n g , s u b m i t t e d t o C o o r d . C h e m . R e v . M . H e r b e r h o l d , D . R e i n e r a n d U . T h e w a l t , Z . N a t u r f o r s c h , 3 5 B ( 1 9 8 0 ) , 1 2 8 1 - 1 2 8 5 . M . H e r b e r h o l d , D . R e i n e r a n d U . T h e w a l t , A n g e w . C h e m . I n t . E d . E n g l , 2 2 ( 1 9 8 3 ) , 1 0 0 0 - 1 0 0 1 M . H e r b e r h o l d , D . R e i n e r , K . A c k e r m a n n , U . T h e w a l t a n d T . D e b a e r d e m a e k e r , Z . N a t w j b r s c h , 3 9 B ( 1 9 8 4 ) , 1 1 9 9 - 1 2 0 5 . W . A . H e r r m a n n , C . H e c h t , E . H e r d t w e c k a n d H . - J . K n e u p e r , A n g e w . C h e m . I n t . E d . E n g L , 2 6 ( 1 9 8 7 ) , 1 3 2 - 1 3 4 . V . K fi l l m e r , E . R o t t i n g e r a n d H . V a h r e n k a m p , J . C h e m . S o c . , C h e m . C o m m u n , ( 1 9 7 7 ) , 7 8 2 - 7 8 3 . S . C . O ' N e a l , W . T . P e n n i n g t o n a n d J . W . K o l i s , I n o r g . C h e m , 2 9 ( 1 9 9 0 ) , 3 1 3 4 - 3 1 3 8 . S . C . O ' N e a l , W . T . P e n n i n g t o n a n d J . W . K o l i s , C a n . J . C h e m , 6 7 ( 1 9 8 9 ) , 1 9 8 0 - 1 9 8 3 . D . D . P e r r i n , W . L . F . A r m a r e g o a n d D . R . P e r r i n , P u n fi c a t i o n o f l a b o r a t o r y C h e m i c a l s , 2 n d E d , P e r g a m o n P r e s s , O x f o r d U K , 1 9 8 0 . S e e c h a p t e r 2 . P 3 / V D a t a C o l l e c t i o n M a n u a l , S i e m e n s A n a l y t i c a l X - r a y I n s t r u m e n t s , I n c . , 1 9 8 9 . 1 6 . 1 7 . 1 8 . 1 9 . 2 0 . 2 1 . 2 2 . 2 3 . 2 4 . 2 5 . 3 5 6 M S C / A F C D i fi ‘ i a c t o m e t e r C o n t r o l S o fl w a r e , M o l e c u l a r S t r u c t u r e C o r p o r a t i o n , T h e W o o d l a n d s , T e x a s . N . W a l k e r a n d D . S t u a r t , A c t a C r y s t a l l o g r . , 3 9 A ( 1 9 8 3 ) , 1 5 8 - 1 6 6 . T E X S A N : S i n g l e C r y s t a l S t r u c t u r e A n a l y s i s S o f t w a r e , V e r s i o n 5 . 0 , M o l e c u l a r S t r u c t u r e C o r p o r a t i o n , T h e W o o d l a n d s , T e x a s . A . M fi l l e r , W . J a e g e r m a n n a n d J . H . E n e m a r k , C o o r d . C h e m . R e v . , 4 6 ( 1 9 8 2 ) , 2 4 5 - 2 8 0 . W . A . H e r r m a n n a n d C . H e c h t , J . O r g a n o m e t . C h e m , 2 7 3 ( 1 9 8 4 ) , 3 2 3 - 3 3 1 . ( a ) H . D . L u t z , M . J u n g a n d G . W a s c h e n b a c h , Z . A n o r g . A l l g . C h e m , 5 5 4 ( 1 9 8 7 ) , 8 7 - 9 1 . ( b ) M . D i V a i r a , M . P e r u z z i n i a n d P . S t o p p i o n i , A n g e w . C h e m I n t . E d . E n g l , 2 6 ( 1 9 8 7 ) , 9 1 6 - 9 1 7 . ( c ) B . W . E i c h h o r n , R . C . H a u s h a l t e r , F . A . C o t t o n a n d B . W i l s o n , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 4 0 8 4 - 4 0 8 5 . H . S t r a s d e i t , B . K r e b s a n d G . H e n k e l , I n o r g . C h i m . A c t a , 8 9 ( 1 9 8 4 ) , L 1 1 - L 1 3 . S . - P . H u a n g a n d M . G . K a n a t z i d i s , I n o r g . C h e m , 3 0 ( 1 9 9 1 ) , 1 4 5 5 - 1 4 6 6 . ( a ) H . W o l k e r s , K . D e h n i c k e , D . F e n s k e , A . K h a s s a n o v a n d S . S . H a f n e r , A c t a C r y s t a l l o g r . , 4 7 C ( 1 9 9 1 ) , 1 6 2 7 - 1 6 3 2 . ( b ) J . D i e t z , U . M i i l l e r , V . M i i l l e r a n d K . D e h n i c k e , Z N a t u r f o r s c h , 4 6 B ( 1 9 9 1 ) , 1 2 9 3 - 1 2 9 9 . ( a ) P . M . T r e i c h e l a n d G . P . W e r b e r , J . A m C h e m S o c , 9 0 ( 1 9 6 8 ) , 1 7 5 3 - 1 7 5 6 . ( b ) G . R . C l a r k a n d D . R . R u s s e l l , J . O r g a n o m e t . C h e m , 1 7 3 ( 1 9 7 9 ) , 3 7 7 - 3 8 6 . ( c ) K . L . K . P l u t e , R . C . H a l t i w a n g e r a n d M . R a k o w s k i D u B o i s , I n o r g . C h e m , 1 8 0 9 7 9 ) , 3 2 4 6 - 3 2 5 1 . 2 6 . 2 7 . 2 8 . 2 9 . 3 0 . 3 1 . 3 2 . 3 5 7 ( a ) D . H . F a r r a r , K . R . G r u n d y , N . C . P a y n e , W . R . R o p e r a n d A . W a l k e r , J . A m C h e m S o c . , 1 0 1 ( 1 9 7 9 ) , 6 5 7 7 — 6 5 7 9 . ( b ) G . R . C l a r k a n d D . R . R u s s e l l , W . R . R o p e r a n d A . W a l k e r , J . O r g a n o m e t . C h e m , 1 3 6 ( 1 9 7 7 ) , C 1 - C 3 . ( c ) J . E . H o o t s a n d T . B . R a u c h f u s s , I n o r g . C h e m , 2 2 ( 1 9 8 3 ) , 2 8 0 6 - 2 8 1 2 . H . J . G y s l i n g , C o o r d . C h e m R e v . , 4 2 ( 1 9 8 2 ) , 1 3 3 — 2 4 4 . I . K . A d z a m l i , D . L . N o s c o a n d E . D e u t s c h , J . I n o r g . N u c l . C h e m , 4 2 ( 1 9 8 0 ) , 1 3 6 4 - 1 3 6 6 . W . B e c k , W . D a n z e r a n d R . H o f e r , A n g e w . C h e m I n t . E d . E n g l , 1 2 ( 1 9 7 3 ) , 7 7 - 7 8 . H . - J . B a c h , H . B r u n n e r , J . W a c h t e r , M . M . K u b i c k i , J . - C . L e b l a n c , C . M o i s e a n d F . V o l p a t o , O r g a n o m e t a l l i c s , 1 1 ( 1 9 9 2 ) , 1 4 0 3 — 1 4 0 7 . D . K w o n , J . R e a l , D . C u r t i s , A . R h e i n g o l d a n d B . S . H a g g e r t y , O r g a n o m e t a l l i c s , 1 0 ( 1 9 9 1 ) , 1 4 3 - 1 4 8 . A . J . S c h u l t z a n d R . E i s e n b e r g , I n o r g . C h e m , 1 2 ( 1 9 7 3 ) , 5 1 8 - 5 2 5 . C H A P T E R 7 M E N T H A N O T H E R M A L S Y N T H E S I S O F M E T A L C A R B O N Y L S U L F I D O C L U S T E R S O F G R O U P 6 E L E M E N T S I . I n t r o d u c t i o n O r g a n o m e t a l l i c c h e m i s t r y o f g r o u p 6 m e t a l s w i t h p o l y c h a l c o g e n i d e s h a s b e e n r e c e n t l y d e v e l o p e d t o s o m e e x t e n t b y K o l i s a n d c o — w o r k e r s [ 1 ] . ' l l u ' o u g h o x i d a t i v e d e c a r b o n y l a t i o n o f m e t a l e a r b o n y l s b y p o l y c h a l c o g e n i d e s a n ' ( Q = S , S e a n d T e ; n = 2 - 6 ) s e v e r a l n e w c o m p o u n d s o f t h i s g r o u p h a v e b e e n p r e p a r e d a n d s t r u c t u r a l l y c h a r a c t e r i z e d [ 2 - 5 ] . T h e p r o d u c t s i s o l a b l e f r o m s o l u t i o n r e a c t i o n s o f t e n c o n t a i n t h e m e t a l c e n t e r w i t h i t s f o r m a l o x i d a t i o n s t a t e t u n e d b y r e d o x c h e m i s t r y . F o r i n s t a n c e , t h e r e a c t i o n o f t e t r a t e l l u r i d e T e 4 2 ' w i t h g r o u p 6 m e t a l c a r b o n y l s i n D M F a f f o r d e d c a r b o n y l - c o n t a i n i n g m e t a l p o l y t e l l u r i d e s [ M ( C O ) 4 T e 4 ] 2 ' ( M = C r , M o o r W ) [ 2 ] , w h e r e b y t h e m e t a l c e n t e r s a r e a t t h e i r l o w e s t o x i d a t i o n s t a t e ( 0 ) . H o w e v e r , w h e n s i m i l a r r e a c t i o n s w e r e c a r r i e d o u t w i t h p o l y s u l fi d e s o r p o l y s e l e n i d e s i n p l a c e o f p o l y t e l l u r i d e s , t h e p r o d u c t s i s o l a t e d w e r e e x c l u s i v e l y t e t r a t h i o ( s e l e n o ) m e t a 1 a t e s [ M Q 4 ] 2 ' ( M = M o , W ; Q = S , S e ) [ l , 4 ] . T h i s r e q u i r e s a n o x i d a t i o n o f t h e m e t a l c e n t e r f r o m O t o i t s m a x i m u m v a l u e o f + 6 , a l o n g w i t h t h e l o s s o f a l l C O g r o u p s . A l t h o u g h t h e s p e c u ’ o s c o p i c d a t a p o i n t e d o u t t h a t t h e f o r m a t i o n o f t h e [ M Q 4 ] 2 ‘ s p e c i e s i n v o l v e s s o m e i n t e r m e d i a t e s i n w h i c h t h e m e t a l c e n t e r s h a v e a l o w e r o x i d a t i o n s t a t e [ 6 ] , n o n e o f t h e s e i n t e r m e d i a t e s c a n b e i s o l a t e d f r o m s o l u t i o n [ 4 ] . O n t h e o t h e r h a n d , R o s e n h e i n a n d M c D o n a l d h a v e f o u n d t h a t g r o u p 6 m e t a l s ( M o , W ) f o r m a s e r i e s o f p o l y n u c l e a r , s u l fi d o — b r i d g e d e a r b o n y l c l u s t e r s w h e r e t h e m e t a l c e n t e r s h a v e w i d e l y s e p a r a t e d f o r m a l c h a r g e s [ 7 ] . B a s e d o n t h e e l e m e n t a l a n a l y s e s a n d s p e c t r o s c o p i c 3 5 8 3 5 9 d a t a , t h e s e c l u s t e r s w e r e f o r m u l a t e d a s [ { M o ( C O ) 4 } n ( M S 4 ) ] 2 ' ( M = M o , W ; n = 1 , 2 ) [ 7 ] . l a t e r , t h e s t r u c t u r e s o f t w o d i m e r s , [ ( C O ) 4 M o ( W 8 4 ) ] 2 1 8 ] a n d [ ( C O ) 4 W ( W S 4 ) ] 2 ' [ 9 ] f r o m t h i s h o m o l o g o u s f a m i l y , w e r e c o n fi r m e d b y X - r a y s i n g l e c r y s t a l a n a l y s i s . T h e r e s t o f t h e c l u s t e r s , e s p e c i a l l y t h e t r i m e r s , h a v e n o t b e e n s t r u c t u r a l l y a u t h e n t i c a t e d . W e h a v e d i s c o v e r e d t h a t u n d e r h y d r o ( s o l v o ) t h e r m a l c o n d i t i o n s , t h e o x i d a t i v e d e c a r b o n y l a t i o n o f m e t a l c a r b o n y l s b y p o l y c h a l c o g e n i d e s c a n o f t e n p r o c e e d v i a d i f f e r e n t p a t h w a y s , p r e s u m a b l y i n fl u e n c e d b y t h e a l t e r e d s o l v e n t b e h a v i o r u n d e r t h e s u p e r - h e a t e d c o n d i t i o n s [ 1 0 ] . F u r t h e r m o r e , d u e t o l i m i t e d s o l u b i l i t i e s o f b o t h r e a c t a n t s a n d p r o d u c t s u n d e r t h e s e c o n d i t i o n s , s u c h a p r o c e s s i s o f t e n c a p a b l e o f i n t e r c e p t i n g i n s o l u b l e i n t e r m e d i a t e s i n a m u l t i p l e - s t e p r e a c t i o n . W e h a v e s u c c e e d e d i n s y n t h e s i z i n g f o u r c l u s t e r s f r o m t h e h o m o n u c l e a r f a m i l y [ { M ( C O ) 4 } n ( M S 4 ) ] 2 ‘ ( M = M o , W ; n = 1 , 2 ) i n p u r e s i n g l e c r y s t a l f o r m u s i n g h y d r o ( s o l v o ) t h e r m a l c o n d i t i o n s . I n t h i s c h a p t e r w e d e s c r i b e t h e o n e - s t e p m e t h a n o t h e r m a l s y n t h e s i s , s p e c t r o s c o p i c c h a r a c t e r i z a t i o n o f t h e c l u s t e r s ( P h 4 P ) 2 [ ( C 0 ) 4 M 0 ( M 0 8 4 ) ] ( 7 ' 1 ) . ( P h 4 P ) 2 [ ( C 0 ) 4 W ( W S 4 ) ] ( 7 ' 2 ) . ( P h 4 P ) 2 [ ( C 0 ) 4 M 0 ( M 0 5 4 ) M 0 ( C 0 ) 4 l ( 7 ' 3 ) a n d ( P h 4 P ) 2 [ ( C 0 ) 4 W ( W S 4 ) W ( C 0 ) 4 ] ( 7 4 ) - T h e X - r a y s t r u c t u r e s o f ( 7 - 2 ) , ( 7 - 3 ) a n d ( 7 4 ) a r e r e p o r t e d . T h e s e m u l t i n u c l e a r c l u s t e r s a r e c h a r a c t e r i z e d b y t h e p r e s e n c e o f t h e w e l l k n o w n t e t r a t h i o m e t a l a t e [ M S 4 ] 2 ' ( M = M o , W ) l i g a n d w h o s e c h e m i s t r y h a s b e e n e x t e n s i v e l y d e v e l o p e d b y M u l l e r e t a l [ 1 1 - 1 2 ] a n d C o u c o u v a n i s e t a 1 [ 1 3 - 1 4 ] . 1 1 . E x p e r i m e n t a l S e c t i o n 1 . R e a g e n t s C h e m i c a l s i n t h i s w o r k o t h e r t h a n s o l v e n t s w e r e u s e d a s o b t a i n e d : ( i ) s u l f u r p o w d e r , ~ 1 0 0 m e s h , 9 9 . 9 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I ; ( i i i ) s o d i u m s t i c k s i n k e r o s e n e , 9 9 % p u r i t y , M a l l i n c k r o d t I n c . , P a r i s , K y . ; ( i v ) m o l y b d e n u m h e x a c a r b o n y l , M o ( C O ) 6 , S t r e m C h e m i c a l s , I n c . , N e w b u r y p o r t , M A ; ( v ) 3 6 0 t u n g s t e n h e x a c a r b o n y l , W ( C O ) 5 , S t r e m C h e m i c a l s , I n c . , N e w b u r y p o r t , M A ; ( v i ) t e t r a p h e n y l p h o s p h o n i u m c h l o r i d e , P h 4 P C 1 , 9 8 % p u r i t y , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I . D i e t h y l e t h e r ( A . C . S . a n h y d r o u s , C o l u m b u s C h e m i c a l I n d u s t r i e s I n c . , C o l u m b u s , W I ) w a s d i s t i l l e d u n d e r a d r y N 2 b l a n k e t a f t e r b e i n g r e fl u x e d w i t h p o t a s s i u m m e t a l , b e n z o p h e n o n e a n d t r i e t h y l e n e g l y c o l d i m e t h y l e t h e r f o r 1 2 h o u r s [ 1 5 ] . A c e t o n i t r i l e ( G R a n h y d r o u s , E M S c i e n c e I n c . , G i b b s t o w n , N Y ) w a s d i s t i l l e d u n d e r a d r y N 2 a t m o s p h e r e f r o m C a H 2 [ 1 5 ] . M e t h a n o l ( G R a n h y d r o u s , E M S c i e n c e I n c . , G i b b s t o w n , N Y ) w a s r e fl u x e d f o r 4 — 5 h w i t h m a g n e s i u m m e t h o x i d e ( p r e p a r e d f r o m d r y m a g n e s i u m t u m i n g s a n d a b s o l u t e m e t h a n o l ) , a n d d i s t i l l e d u n d e r a n i t r o g e n a t m o s p h e r e [ 1 5 ] . 2 . P h y s i c a l M e a s u r e m e n t s S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s , F T - I R a n d l e i s s p e c t r o s c o p i c s t u d i e s , a n d t h e r m a l g r a v i m e t r i c a n a l y s e s ( T G A ) o f t h e c o m p o u n d s w e r e c a r r i e d o u t a s d e s c r i b e d p r e v i o u s l y [ 1 6 ] . 3 . S y n t h e s e s A l l s y n t h e s e s w e r e e a r r i e d o u t u n d e r a d r y n i t r o g e n a t m o s p h e r e i n a V a c u u m A t m o s p h e r e s D r i - I a b g l o v e b o x . ( i ) . P r e p a r a t i o n o f s o d i u m d i s u l f i d e N a z s z T h i s m a t e r i a l w a s p r e p a r e d b y r e a c t i n g s t o i c h i o m e t r i c a m o u n t o f s u l f u r a n d s o d i u m m e t a l i n a r o u t i n e p r o c e d u r e u s e d i n t h i s l a b o r a t o r y [ l 6 ] . ( i i ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) ] . ( 7 - 1 ) 3 6 1 5 3 m g ( 0 . 2 m m o l ) M o ( C O ) 6 , 4 4 m g ( 0 . 4 m m o l ) N a 2 S 2 a n d 1 4 5 m g ( 0 . 4 m m o l ) P h 4 P C l w e r e t h o r o u g h l y m i x e d a n d l o a d e d i n t o a 2 5 c m l o n g t h i c k - w a l l e d P y r e x t u b e ( 9 m m i n d i a m e t e r ) . A f t e r 0 . 3 m l M e O H w a s a d a d , t h e t u b e w a s f r o z e n w i t h l i q u i d N 2 , t h e n e v a c u a t e d a n d s e a l e d ( t h e t o t a l v o l u m e i s ~ 4 m l a f t e r s e a l e d ) . C o n t i n u o u s h e a t i n g o f t h e t u b e a t 8 0 0 C f o r 3 h r e s u l t e d i n b l a c k t h i n n e e d l e s . S u c c e s s i v e w a s h i n g o f t h e p r o d u c t w i t h M e O H a n d e t h e r a f f o r d e d 7 1 m g a n a l y t i c a l l y p u r e s i n g l e c r y s t a l s o f ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) ] ( 6 4 % y i e l d ) . I R s p e c t r u m ( i n K B r ) , v c 0 : 2 0 0 4 ( m ) , 1 9 0 2 ( s ) , 1 8 6 7 ( s ) a n d 1 8 3 7 ( s ) c m ' l ; v m . s : 4 7 7 ( s ) a n d 4 3 1 ( m ) c m ' l ; S e m i — q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : M o : S : P = 3 6 . 5 : 3 5 . 8 : 2 7 . 7 . ( i i i ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) ] ( 7 2 ) A s d e s c r i b e d a b o v e , t h e s e a l e d P y r e x t u b e c o n t a i n e d 7 0 m g ( 0 . 2 m m o l ) W ( C O ) 5 , 4 4 m g ( 0 . 4 m m o l ) N a 2 S 2 , 1 4 7 m g ( 0 . 4 m m o l ) P h 4 P C l a n d 0 . 5 m 1 M e O H . T h e r e a c t i o n w a s c a r r i e d o u t a t 8 0 0 C f o r 8 h . 6 8 m g p u r p l e p l a t e - l i k e s i n g l e c r y s t a l s o f ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) ] w e r e o b t a i n e d b y a s i m i l a r i s o l a t i o n p r o c e d u r e ( 5 3 % y i e l d ) . I R s p e c t r u m ( i n K B r ) , v c o : 1 9 9 8 ( m ) , 1 8 8 0 ( s ) , 1 8 5 6 ( 3 ) a n d 1 8 2 6 ( 8 ) c m ‘ l ; v m _ s : 4 8 1 ( s h ) , 4 7 4 ( 5 ) , 4 2 6 ( m ) a n d 4 2 0 ( s h ) c m ' l ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : W : S : P = 2 4 . 8 : 4 8 . 8 : 2 6 . 4 . ( i v ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ M n ( C O ) 4 ( M o S 4 ) M o ( C O ) 4 ] ( 7 3 ) M e t h o d ( A ) . A s d e s c r i b e d a b o v e , t h e s e a l e d P y r e x t u b e c o n t a i n e d 7 9 m g ( 0 . 3 m m o l ) M o ( C O ) 5 , 3 3 m g ( 0 . 3 m m o l ) N a 2 S 2 , 1 1 0 m g ( 0 . 3 m m o l ) P h 4 P C l a n d 0 . 5 m l M e O H . T h e r e a c t i o n w a s c a r r i e d o u t a t 8 0 0 C f o r 1 4 h . 7 9 m g l a r g e b l a c k c r y s t a l s o f ( P h 4 P ) 2 [ M o ( C O ) 4 ( M o S 4 ) M o ( C O ) 4 ] w e r e o b t a i n e d b y a s i m i l a r i s o l a t i o n p r o c e d u r e ( 5 9 % y i e l d ) . I R s p e c t r u m ( i n K B r ) , v c o : 2 0 1 7 ( s h ) , 1 9 9 8 ( m ) , 1 9 0 3 ( 3 ) , 1 8 7 5 ( s h ) a n d 1 8 5 9 ( s ) 3 6 2 c m ’ l ; v m . s : 4 3 3 ( m ) c m ‘ l ; S e m i - q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : M o : S : P = 2 2 . 7 : 4 9 . 9 : 2 7 . 4 . M e t h o d ( B ) . 3 0 m g ( 0 . 0 2 7 m m o l ) ( 7 1 ) , 1 5 m g ( 0 . 0 5 4 m m o l ) M o ( C O ) 5 a n d 0 . 5 m l M e O H w e r e s e a l e d i n a P y r e x t u b e . A f t e r h e a t e d a t 8 0 ° C f o r 1 2 h o u r s , p u r e s i n g l e c r y s t a l s o f ( 7 3 ) w e r e o b t a i n e d i n a q u a n t i t a t i v e y i e l d . ( v ) . P r e p a r a t i o n o f ( P h 4 P ) 2 [ W ( C O ) 4 ( W S 4 ) W ( C O ) 4 ] ( 7 4 ) M e t h o d ( A ) . A s d e s c r i b e d a b o v e , t h e s e a l e d P y r e x t u b e c o n t a i n e d 1 0 6 m g ( 0 . 3 m m o l ) W ( C O ) 5 , 3 3 m g ( 0 . 3 m m o l ) N a 2 S 2 , 1 1 0 m g ( 0 . 3 m m o l ) P h 4 P C l a n d 0 . 7 m l M e O H . T h e r e a c t i o n w a s c a r r i e d o u t a t 8 0 0 C f o r 2 4 h . 6 4 m g l a r g e d a r k r e d h e x a g o n a l p r i s m - l i k e s i n g l e c r y s t a l s o f ( P h 4 P ) 2 [ W ( C O ) 4 ( W S 4 ) W ( C O ) 4 ] , a l o n g w i t h 5 m g p u r p l e c r y s t a l s o f ( 7 - 2 ) , w e r e o b t a i n e d b y a s i m i l a r i s o l a t i o n p r o c e d u r e ( 4 0 % y i e l d ) . T w o c o m p o u n d s w e r e e a s i l y s e p a r a t e d m e c h a n i c a l l y . I R s p e c t r u m ( i n K B r ) , v c o : 2 0 1 7 ( s h ) , 1 9 9 8 ( m ) , 1 9 0 3 ( s ) , 1 8 7 5 ( s h ) a n d 1 8 5 9 ( s ) c m ‘ l ; v m - s : 4 3 0 ( 3 ) c m ' l ; S e m i — q u a n t i t a t i v e e l e m e n t a l a n a l y s e s b y E D A X ( a t o m % ) : W : S : P = 2 5 . 6 : 5 1 . 5 : 2 2 . 9 . M e t h o d ( B ) . 2 0 m g ( 0 . 0 1 5 m m o l ) ( 8 2 ) , 1 0 m g ( 0 . 0 3 m m o l ) W ( C O ) 5 a n d 0 . 3 m l M e O H w e r e s e a l e d i n a P y r e x t u b e . A f t e r h e a t e d a t 8 0 0 C f o r 5 d a y s , p u r e s i n g l e c r y s t a l s o f ( 7 4 ) w e r e o b t a i n e d i n a q u a n t i t a t i v e y i e l d . 4 . X - r a y D i f f r a c t i o n a n d C r y s t a l l o g r a p h i c S t u d i e s T h e s i n g l e c r y s t a l X - r a y d i f f r a c t i o n s t u d i e s w e r e p e r f o r m e d b y u s i n g a R i g a k u a u t o m a t e d A F C 6 S s i n g l e c r y s t a l d i f f r a c t o m e t e r w h i c h w a s c o n t r o l l e d b y a n i n t e g r a t e d s o f t w a r e p a c k a g e [ 1 7 ] . C r y s t a l w e r e e i t h e ' a f fi x e d t o t h e t i p o f g l a s s fi b e r s ( f o r l o w t e m p e r a t u r e d a t a c o l l e c t i o n ) o r s e a l e d i n g l a s s c a p i l l a r i e s ( f o r r o o m t e m p e r a t u r e d a t a c o l l e c t i o n ) . 3 6 3 U n i t c e l l c o n s t a n t s o f a l l c o m p o u n d s w e r e o b t a i n e d f r o m a l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e s e t t i n g a n g l e s o f 2 0 - 2 4 c a r e f u l l y c e n t e r e d r e fl e c t i o n s i n t h e r a n g e 1 5 . 0 ' < 2 6 < 3 9 . 9 ° . I n t e n s i t y d a t a o f ( 7 ‘ 2 ) , ( 7 ' 3 ) a n d ( 7 4 ) w e r e c o l l e c t e d w i t h w - 2 6 s c a n t e c h n i q u e s a n d M o K a t r a d i a t i o n . T h e s t a b i l i t y o f t h e e x p e r i m e n t a l s e t u p a n d c r y s t a l i n t e g r i t y f o r e a c h d a t a c o l l e c t i o n w a s m o n i t o r e d b y m e a s u r i n g t h r e e r e p r e s e n t a t i v e r e fl e c t i o n s p e r i o d i c a l l y ( e v e r y 1 5 0 ) . N o c r y s t a l d e c a y w a s d e t e c t e d . E m p i r i c a l a b s o r p t i o n c o r r e c t i o n s w e r e a p p l i e d t o a l l d a t a b a s e d o n t p s c a n s o f s e v e r a l s t r o n g r e fl e c t i o n s w i t h x ~ 9 0 ° . C r y s t a l s o f ( 7 0 1 ) a r e s e n s i t i v e t o X - r a y s . T h e y l o s e c r y s t a l l i n i t y w i t h i n 4 - 5 h o u r s u n d e r t h e X - r a y b e a m , w h i c h d o e s n o t a l l o w f o r i n t e n s i t y d a t a c o l l e c t i o n . S e v e r a l a t t e m p t s w e r e m a d e , o n l y u n i t c e l l p a r a m e t e r s o b t a i n e d . T h e s t r u c t u r e s w e r e s o l v e d w i t h d i r e c t m e t h o d s a n d r e fi n e d w i t h f u l l - m a t r i x l e a s t s q u a r e s t e c h n i q u e s [ 1 8 ] . D I F A B S c o r r e c t i o n s a fi e r i s o t r o p i c r e fi n e m e n t o f a l l a t o m s w e r e t h e n a p p l i e d [ 1 9 ] . T h e c a l c u l a t i o n s w e r e p e r f o r m e d w i t h t h e T E X S A N c r y s t a l l o g r a p h i c s o f t w a r e p a c k a g e o f M o l e c u l a r S t r u c t u r e C o r p o r a t i o n [ 2 0 ] . T a b l e 7 1 g i v e s c r y s t a l d a t a o f a l l c o m p o u n d s , a n d i n f o r m a t i o n o f s t r u c t u r e a n a l y s i s f o r ( 7 . 2 ) , ( 7 - 3 ) a n d ( 7 4 ) . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d e i t h e r i s o t r o p i c a l l y o r a n i s o t r o p i c a l l y . T h e h y d r o g e n p o s i t i o n s w e r e c a l c u l a t e d b u t n o t r e fi m d . T h e fi n a l c o o r d i n a t e s a n d a v e r a g e t e m p e r a t u r e f a c t o r s o f t h e a t o m s i n ( 7 - 2 ) , ( 7 8 ) a n d ( 7 4 ) a r e g i v e n i n T a b l e s 7 - 2 , & 7 - 3 a n d 7 4 , r e s p e c t i v e l y . 3 W 4 8 2 P 8 0 ) ) ) ) ) 0 3 . 0 , 5 1 3 4 l ) ) 2 2 0 ( ( ( ( 2 ) ( 4 0 ( 2 8 4 5 9 6 8 0 2 # ( 7 1 1 H 6 4 4 8 . 0 6 9 ( 9 8 7 . . 0 5 2 9 . . l . . 0 , 5 2 5 1 0 0 . 8 2 0 - 5 ; . 7 C 2 9 8 P 2 6 0 1 1 1 1 3 0 M 4 S Z P 8 ) ) ) ) ) 3 3 . 0 , 6 0 3 4 4 3 ) ) 1 2 0 ( ( ( ( 6 4 5 7 2 2 ( 3 ) 2 4 H 1 3 1 5 2 # ( ( 3 . 0 0 2 6 9 6 . . l . 4 3 6 5 ( 8 . 7 0 9 . 0 , 1 2 - 5 1 8 0 0 . 2 - 8 ; . 1 7 C 2 9 2 8 P 8 0 1 1 1 1 2 W 4 5 2 P 7 2 . 0 , 4 ) ) 3 ) ) ) ) 0 3 4 2 2 1 1 ) ( 0 ( ( ( ( ( 2 1 ) 4 0 4 6 6 9 9 1 6 6 4 1 ( 2 # 2 . 0 H , 3 3 . 8 5 . 0 ( 0 4 2 2 . . 4 2 7 1 . 2 . 1 2 2 - 1 5 2 9 0 1 1 ; . - 9 . 7 C 7 2 P 4 0 1 l 1 1 l 1 2 0 M 4 1 7 3 2 P . 0 , 4 4 ) ) ) ) ) ) 0 6 5 8 9 5 ) 3 1 0 ) ( ( ( ( ( 5 ( 4 H 3 3 9 9 4 ( 2 2 9 0 3 0 5 2 1 # 3 3 . 3 9 . 5 6 6 ( . 0 , 9 2 . 1 2 4 . . 2 . l . 0 5 2 0 9 1 1 . 3 ; - 3 . C 7 2 0 P 6 1 1 1 1 1 1 d n u a o p l u m l ‘ m c , ) m m ' 3 p m u , o e c a 3 r / z ( A s g g 1 i g g g e , e , t e o e c d M s d v m m d A A a A r y o o . ; r , p e ( , , : , . c a f b c 0 6 v 2 S D u c T a b l e 7 . 1 . D a t a f o r C r y s t a l S t r u c t u r e A n a l y s i s o f ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) | ( 7 - 1 ) , ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) l ( 7 2 ) , 7 - 1 ( P I M P ) 2 l ( C 0 ) 4 M 0 ( M O S 4 ) M 0 ( C 0 ) 4 l ( 7 ' 3 ) a 1 1 d ( P h 4 P ) ; [ ( C 0 ) 4 W ( W S 4 ) W ( C 0 ) 4 I ( 7 ' 4 ) 3 6 4 0 . 3 0 5 3 7 4 2 4 3 1 1 8 2 . 1 , 0 2 0 . 8 / 5 3 7 4 5 1 . . 6 0 5 1 6 1 . 1 5 . 0 1 , 5 . 9 7 4 7 6 8 / 5 3 2 1 0 . . 4 2 3 0 4 3 1 3 2 m y s ) ) d r ) 2 C r c H o 0 l e c 0 s ( l p F e g ) a o % ( s l n e b i c b o s g 3 r a m , a d e u > o w t r l t a i u a d t 2 x a a a c t R a 0 d d v n a / a , r F m i R “ e ( ( f f f f , p d , l o o o o t “ m e n a . . . . n 0 e s i n o o o o i 2 n n u m T n fi n u T a b l e 7 1 . ( c o n t ' d ) 5 0 , 0 - 1 0 0 6 5 8 0 . 6 1 , 1 . 3 2 3 7 8 6 . 9 / 9 . 2 3 6 5 3 6 6 T a b l e 7 - 2 . P o s i t i o n a l P a r a m e t e r s a n d B a g V a l u e s a f o r ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) ] ( 7 - 2 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e a , A 2 W 1 0 . 5 2 2 8 4 ( 7 ) 0 . 7 6 0 7 8 ( 4 ) 0 . 0 3 3 7 9 ( 7 ) 4 . 2 6 ( 5 ) w 2 0 . 7 6 0 3 4 ( 7 ) 0 . 7 2 7 0 9 ( 4 ) 0 . 2 3 3 9 7 0 ) 4 5 9 ( 5 ) S 1 0 . 6 9 9 3 ( 4 ) 0 . 7 1 5 4 ( 2 ) 0 . 0 0 2 9 ( 4 ) 5 . 1 ( 3 ) 8 2 0 . 5 4 6 4 ( 5 ) 0 . 7 7 8 1 ( 3 ) 0 . 2 3 1 9 ( 5 ) 6 . 1 ( 3 ) S 3 0 . 4 0 7 3 ( 5 ) 0 . 6 8 6 4 ( 3 ) - 0 . 0 6 0 5 ( 5 ) 5 . 7 ( 3 ) S 4 0 . 4 4 0 8 ( 5 ) 0 . 8 6 3 7 ( 3 ) — 0 . 0 3 7 1 ( 6 ) 6 . 8 ( 3 ) P l 0 . 2 6 4 5 ( 4 ) 0 . 4 4 9 5 ( 3 ) 0 . 3 3 2 0 ( 4 ) 4 . 2 ( 2 ) P 2 0 . 1 6 7 6 ( 4 ) 0 . 0 1 6 9 ( 3 ) 0 . 3 1 2 4 ( 5 ) 4 . 6 ( 3 ) ( ) 1 0 . 8 4 3 ( 1 ) 0 . 7 4 0 9 ( 8 ) 0 . 5 1 8 ( 1 ) 8 ( 1 ) 0 2 1 . 0 2 4 ( 1 ) 0 . 6 6 3 6 ( 9 ) 0 . 2 3 9 ( 2 ) 1 0 ( 1 ) 0 3 0 . 7 3 3 ( 2 ) 0 . 5 6 9 0 ( 8 ) 0 . 2 2 5 ( 2 ) 1 0 ( 1 ) ( ) 4 0 . 8 0 9 ( 1 ) 0 . 8 8 0 6 ( 8 ) 0 . 2 5 5 ( 1 ) 9 ( 1 ) C I 0 . 3 7 6 ( 1 ) 0 . 3 6 9 3 ( 9 ) 0 . 3 7 9 ( 1 ) 4 . 0 ( 4 ) C 2 0 . 3 7 3 ( 2 ) 0 . 3 3 8 ( 1 ) 0 . 4 6 9 ( 2 ) 5 . 7 ( 5 ) C 3 0 . 4 5 0 ( 2 ) 0 . 2 6 9 ( 1 ) 0 . 4 9 6 ( 2 ) 6 . 9 ( 5 ) C 4 0 . 5 3 2 ( 2 ) 0 . 2 3 7 ( 1 ) 0 . 4 3 6 ( 2 ) 7 . 1 ( 5 ) C 5 0 . 5 3 5 ( 2 ) 0 . 2 6 9 ( 1 ) 0 . 3 4 8 ( 2 ) 7 . 1 ( 5 ) C 6 0 . 4 5 5 ( 2 ) 0 . 3 3 6 ( 1 ) 0 . 3 1 7 ( 2 ) 5 . 7 ( 4 ) C 7 0 . 3 1 4 ( 2 ) 0 . 5 0 1 ( 1 ) 0 . 2 6 0 ( 2 ) 4 . 5 ( 4 ) C 8 0 . 3 3 6 ( 2 ) 0 . 4 7 1 ( 1 ) 0 . 1 5 2 ( 2 ) 5 . 4 ( 4 ) C 9 0 . 3 7 9 ( 2 ) 0 . 5 1 0 ( 1 ) 0 . 0 9 9 ( 2 ) 6 . 7 ( 5 ) C 1 0 0 . 3 9 7 ( 2 ) 0 . 5 7 5 ( 1 ) 0 . 1 5 8 ( 2 ) 6 . 8 ( 5 ) € 1 1 0 . 3 7 3 ( 2 ) 0 . 6 1 2 ( 1 ) 0 . 2 6 4 ( 2 ) 6 . 7 ( 5 ) C 1 2 0 . 3 3 1 ( 2 ) 0 . 5 6 9 ( 1 ) 0 . 3 1 5 ( 2 ) 5 . 9 ( 5 ) C 1 3 0 . 2 3 4 ( 2 ) 0 . 5 0 4 7 ( 9 ) 0 . 4 6 3 ( 1 ) 4 . 0 ( 4 ) c 1 4 0 . 3 3 0 ( 2 ) 0 . 5 1 5 ( 1 ) 0 . 5 6 7 ( 2 ) 6 . 1 ( 5 ) C 1 5 0 . 3 1 1 ( 2 ) 0 . 5 6 3 ( 1 ) 0 . 6 6 7 ( 2 ) 6 . 9 ( 5 ) C 1 6 0 . 1 9 8 ( 2 ) 0 . 5 9 8 ( 1 ) 0 . 6 6 3 ( 2 ) 7 . 0 ( 5 ) C 1 7 0 . 1 0 1 ( 2 ) 0 . 5 8 7 ( 1 ) 0 . 5 6 3 ( 2 ) 7 . 0 ( 5 ) 3 6 7 T a b l e 7 - 2 . ( c o n t ' d ) a t o m x y z 1 3 % A 2 C 1 8 0 . 1 2 0 ( 2 ) 0 . 5 4 0 ( 1 ) 0 . 4 6 0 ( 2 ) 5 . 2 ( 4 ) C 1 9 0 . 1 3 3 ( 2 ) 0 . 4 2 2 ( 1 ) 0 . 2 2 9 ( 1 ) 4 . 2 ( 4 ) C 2 0 0 . 0 4 8 ( 2 ) 0 . 4 7 2 ( 1 ) 0 . 1 5 9 ( 2 ) 5 . 7 ( 5 ) C 2 1 - 0 . 0 6 2 ( 2 ) 0 . 4 5 5 ( 1 ) 0 . 0 8 6 ( 2 ) 7 . 1 ( 5 ) C 2 2 - 0 . 0 7 8 ( 2 ) 0 . 3 8 9 ( 1 ) 0 . 0 8 1 ( 2 ) 8 . 2 ( 6 ) C 2 3 0 . 0 0 2 ( 2 ) 0 . 3 3 6 ( 1 ) 0 . 1 5 1 ( 2 ) 7 . 3 ( 5 ) C 2 4 0 . 1 1 3 ( 2 ) 0 . 3 5 7 ( 1 ) 0 . 2 3 0 ( 2 ) 5 . 7 ( 5 ) C 2 5 0 . 1 4 1 ( 2 ) - 0 . 0 6 9 ( 1 ) 0 . 2 4 2 ( 2 ) 5 . 0 ( 4 ) C 2 6 0 . 0 2 8 ( 2 ) - 0 . 0 8 1 ( 1 ) 0 . 1 8 8 ( 2 ) 6 . 5 ( 5 ) C 2 7 0 . 0 1 2 ( 2 ) - 0 . 1 5 4 ( 1 ) 0 . 1 3 2 ( 2 ) 7 . 8 ( 6 ) C 2 8 0 . 1 0 9 ( 2 ) - 0 . 2 0 8 ( 1 ) 0 . 1 3 1 ( 2 ) 7 . 4 ( 6 ) C 2 9 0 . 2 2 3 ( 2 ) - 0 . 1 9 7 ( 1 ) 0 . 1 7 9 ( 2 ) 6 . 5 ( 5 ) C 3 0 0 . 2 3 5 ( 2 ) - 0 . 1 2 7 ( 1 ) 0 . 2 3 5 ( 2 ) 7 . 5 ( 6 ) C 3 1 0 . 2 6 6 ( 2 ) 0 . 0 0 4 ( 1 ) 0 . 4 6 5 ( 2 ) 4 . 9 ( 4 ) C 3 2 0 . 2 4 2 ( 2 ) - 0 . 0 4 2 ( 1 ) 0 . 5 2 7 ( 2 ) 6 . 1 ( 5 ) C 3 3 0 . 3 1 3 ( 2 ) - 0 . 0 5 1 ( 1 ) 0 . 6 4 6 ( 2 ) 6 . 5 ( 5 ) C 3 4 0 . 4 0 3 ( 2 ) - 0 . 0 1 6 ( 1 ) 0 . 7 0 1 ( 2 ) 7 . 5 ( 6 ) C 3 5 0 . 4 2 3 ( 2 ) 0 . 0 3 1 ( 1 ) 0 . 6 4 7 ( 2 ) 6 . 8 ( 5 ) C 3 6 0 . 3 5 8 ( 2 ) 0 . 0 4 1 ( 1 ) 0 . 5 2 6 ( 2 ) 6 . 5 ( 5 ) C 3 7 0 . 2 2 8 ( 2 ) 0 . 0 5 2 ( 1 ) 0 . 2 2 8 ( 2 ) 4 . 6 ( 4 ) C 3 8 0 . 2 3 9 ( 2 ) 0 . 1 2 4 ( 1 ) 0 . 2 6 3 ( 2 ) 6 . 0 ( 5 ) C 3 9 0 . 2 8 2 ( 2 ) 0 . 1 5 1 ( 1 ) 0 . 1 9 2 ( 2 ) 6 . 5 ( 5 ) C 4 0 0 . 3 0 6 ( 2 ) 0 . 1 1 5 ( 1 ) 0 . 0 9 0 ( 2 ) 6 . 0 ( 5 ) C 4 1 0 . 2 9 4 ( 2 ) 0 . 0 4 3 ( 1 ) 0 . 0 5 5 ( 2 ) 5 . 9 ( 5 ) C 4 2 0 . 2 5 6 ( 2 ) 0 . 0 1 2 ( 1 ) 0 . 1 2 5 ( 2 ) 5 . 2 ( 4 ) C 4 3 0 . 0 3 4 ( 2 ) 0 . 0 8 4 ( 1 ) 0 . 3 2 2 ( 2 ) 6 . 1 ( 5 ) C 4 4 0 . 0 1 9 ( 2 ) 0 . 1 1 3 ( 1 ) 0 . 4 3 1 ( 2 ) 6 . 4 ( 5 ) C 4 5 - 0 . 0 8 2 ( 2 ) 0 . 1 7 3 ( 1 ) 0 . 4 3 6 ( 2 ) 9 . 2 ( 7 ) C 4 6 0 . 1 4 7 ( 2 ) 0 . 1 9 2 ( 1 ) 0 . 3 2 5 ( 2 ) 8 . 4 ( 6 ) 3 6 8 T a b l e 7 - 2 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 4 7 - 0 . 1 4 3 ( 2 ) 0 . 1 6 8 ( 1 ) 0 . 2 1 9 ( 3 ) 9 . 9 ( 7 ) C 4 8 - 0 . 0 4 4 ( 2 ) 0 . 1 0 8 ( 1 ) 0 . 2 1 0 ( 2 ) 8 . 1 ( 6 ) C 4 9 0 . 8 1 4 ( 2 ) 0 . 7 3 7 ( 1 ) 0 . 4 1 4 ( 2 ) 5 . 9 ( 5 ) C 5 0 0 . 9 2 9 ( 2 ) 0 . 6 8 8 ( 1 ) 0 . 2 3 9 ( 2 ) 6 . 1 ( 5 ) C 5 1 0 . 7 4 0 ( 2 ) 0 . 6 2 9 ( 1 ) 0 . 2 3 0 ( 2 ) 5 . 6 ( 5 ) C 5 2 0 . 7 8 2 ( 2 ) 0 . 8 2 9 ( 1 ) 0 . 2 4 4 ( 2 ) 5 . 7 ( 5 L a . 3 0 8 ° ) i s d e fi n e d a s 4 / 3 1 a 2 6 1 1 + b 2 6 2 2 + 9 2 6 3 3 + a b ( c o s v ) 5 1 2 + a 9 ( c o s fi ) 6 1 3 + b 9 ( c o s a ) f 3 2 3 ] . 3 6 9 T a b l e 7 - 3 . P o s i t i o n a l P a r a m e t e r s a n d B e q V a l u e s ‘ 1 f o r ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) M o ( C O ) 4 ] ( 7 - 3 ) @ t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y 2 B 6 0 , A 2 M o l 0 . 1 0 2 8 0 ( 8 ) 0 . 2 6 2 6 0 ( 4 ) 0 . 0 4 3 4 4 ( 8 ) 0 . 9 0 ( 3 ) M 0 2 0 . 3 5 1 7 0 ( 8 ) 0 . 2 5 0 6 6 ( 4 ) 0 . 0 1 5 8 0 ( 8 ) 0 9 5 ( 3 ) M 0 3 - 0 . 1 6 0 4 6 ( 8 ) 0 . 2 6 1 3 0 ( 4 ) 0 . 0 2 1 5 2 ( 8 ) 0 9 7 ( 3 ) 3 1 0 . 1 5 9 9 ( 2 ) 0 . 2 3 0 9 ( 1 ) 0 . 1 3 2 8 ( 2 ) 1 . 3 ( 1 ) 3 2 0 . 2 5 6 5 ( 2 ) 0 . 2 8 6 6 ( 1 ) 0 . 1 9 3 9 ( 2 ) 1 . 5 ( 1 ) s 3 0 . 0 1 4 9 ( 2 ) 0 . 3 4 1 8 ( 1 ) 0 . 0 0 6 4 ( 3 ) 1 . 5 ( 4 ) 3 4 0 . 0 0 5 1 ( 2 ) 0 . 1 8 9 5 ( 1 ) 0 . 1 1 4 2 ( 3 ) 1 . 6 ( 1 ) P 1 0 . 7 7 8 9 ( 2 ) 0 . 0 1 0 8 ( 1 ) 0 . 6 4 7 3 ( 2 ) 1 . 1 ( 1 ) P 2 0 . 2 6 3 9 ( 3 ) 0 . 4 2 0 0 ( 1 ) 0 . 5 3 4 6 ( 2 ) 1 . 7 ( 1 ) o r 0 . 5 8 4 7 ( 7 ) 0 . 2 7 0 9 ( 5 ) 0 . 2 1 5 3 ( 8 ) 3 . 9 ( 4 ) o 2 0 . 4 9 2 0 ( 8 ) 0 . 2 1 0 1 ( 4 ) 0 . 1 9 7 1 ( 8 ) 2 . 8 ( 4 ) o 3 0 . 3 4 4 ( 1 ) 0 . 3 8 6 8 ( 4 ) 0 . 0 6 4 ( 1 ) 4 . 9 ( 5 ) 0 4 0 . 3 5 4 1 ( 8 ) 0 . 1 1 5 4 ( 4 ) 0 . 0 9 1 3 ( 8 ) 3 . 3 ( 4 ) 0 5 0 . 3 2 1 4 ( 7 ) 0 . 1 5 8 0 ( 4 ) 0 . 0 7 6 3 ( 8 ) 2 . 7 ( 4 ) 0 6 0 . 3 7 3 3 ( 7 ) 0 . 3 4 3 8 ( 4 ) 0 . 0 9 8 0 ( 7 ) 2 . 4 ( 3 ) 0 7 0 . 1 9 1 6 ( 8 ) 0 . 2 0 9 9 ( 4 ) 0 . 2 5 6 3 ( 7 ) 2 . 7 ( 4 ) 0 8 0 . 1 7 1 9 ( 8 ) 0 . 3 2 2 8 ( 4 ) 0 . 2 8 7 3 ( 7 ) 2 . 8 ( 4 ) c 1 0 . 9 1 9 4 ( 9 ) 0 . 0 1 5 1 ( 4 ) 0 . 7 5 4 9 ( 8 ) 0 . 9 ( 4 ) c 2 0 . 9 6 0 ( 1 ) 0 . 0 7 0 8 ( 5 ) 0 . 8 0 2 ( 1 ) 1 . 6 ( 4 ) c 3 1 . 0 6 7 ( 1 ) 0 . 0 7 4 4 ( 5 ) 0 . 8 8 7 ( 1 ) 1 . 9 ( 5 ) C 4 1 . 1 3 3 ( 1 ) 0 . 0 2 4 1 ( 5 ) 0 . 9 2 4 ( 1 ) 1 . 7 ( 4 ) c s 1 . 0 9 3 ( 1 ) 0 . 0 3 0 7 ( 5 ) 0 . 8 7 6 ( 1 ) 1 . 9 ( 5 ) C 6 0 . 9 8 6 ( 1 ) 0 . 0 3 5 0 ( 5 ) 0 . 7 9 2 ( 1 ) 1 . 7 ( 4 ) C 7 0 . 6 5 5 ( 1 ) 0 . 0 1 4 3 ( 5 ) 0 . 7 2 8 7 ( 8 ) 1 . 2 ( 4 ) C 8 0 . 5 5 4 ( 1 ) 0 . 0 1 9 4 ( 4 ) 0 . 6 8 6 ( 1 ) 1 . 4 ( 4 ) C 9 0 . 4 5 8 ( 1 ) 0 . 0 1 5 7 ( 5 ) 0 . 7 4 6 ( 1 ) 2 . 1 ( 5 ) C 1 0 0 . 4 5 7 ( 1 ) 0 . 0 2 6 1 ( 6 ) 0 . 8 4 3 ( 1 ) 2 . 5 ( 5 ) C 1 1 0 . 5 5 5 ( 1 ) 0 . 0 5 9 8 ( 6 ) 0 . 8 8 2 ( 1 ) 2 . 5 ( 5 ) C 1 2 0 . 6 5 3 ( 1 ) 0 . 0 5 6 2 ( 5 ) 0 . 8 2 6 ( 1 ) 1 . 6 ( 4 ) C 1 3 0 . 7 6 9 ( 1 ) 0 . 0 7 3 4 ( 4 ) 0 . 5 4 4 9 ( 9 ) 1 . 3 ( 4 ) C 1 4 0 . 8 6 5 ( 1 ) 0 . 0 8 7 2 ( 5 ) 0 . 4 8 8 ( 1 ) 2 . 3 ( 5 ) 3 7 0 T a b l e 7 - 3 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 1 5 0 . 8 5 7 ( 1 ) 0 . 1 3 4 2 ( 5 ) 0 . 4 0 7 ( 1 ) 3 . 0 ( 6 ) C 1 6 0 . 7 5 6 ( 1 ) 0 . 1 6 8 6 ( 5 ) 0 . 3 8 5 ( 1 ) 3 . 2 ( 6 ) C 1 7 0 . 6 5 9 ( 1 ) 0 . 1 5 7 1 ( 5 ) 0 . 4 4 1 ( 1 ) 2 . 7 ( 5 ) C 1 8 0 . 6 6 5 ( 1 ) 0 . 1 0 8 5 ( 4 ) 0 . 5 2 2 ( 1 ) 1 . 8 ( 4 ) C 1 9 0 . 7 7 1 4 ( 9 ) - 0 . 0 5 7 7 ( 4 ) 0 . 5 6 1 4 ( 9 ) 0 . 9 ( 4 ) C 2 0 0 . 7 5 6 ( 1 ) - 0 . l 1 0 4 ( 5 ) 0 . 6 2 2 ( 1 ) 1 . 4 ( 4 ) C 2 1 0 . 7 4 8 ( 1 ) - 0 . 1 6 4 0 ( 5 ) 0 . 5 5 8 ( 1 ) 2 . 0 ( 5 ) C 2 2 0 . 7 5 6 ( 1 ) - 0 . 1 6 6 7 ( 5 ) 0 . 4 3 2 ( 1 ) 2 . 3 ( 5 ) C 2 3 0 . 7 7 2 ( 1 ) — 0 . 1 1 4 9 ( 5 ) 0 . 3 6 9 ( 1 ) 2 . 1 ( 5 ) C 2 4 0 . 7 8 1 ( 1 ) 0 . 0 6 0 5 ( 4 ) 0 . 4 3 4 ( 1 ) 1 . 5 ( 4 ) C 2 5 0 . 3 9 7 ( 1 ) 0 . 3 7 9 7 ( 5 ) 0 . 5 1 5 ( 1 ) 1 . 9 ( 5 ) C 2 6 0 . 4 6 0 ( 1 ) 0 . 3 9 5 5 ( 5 ) 0 . 4 2 2 ( 1 ) 2 . 0 ( 5 ) C 2 7 0 . 5 6 7 ( 1 ) 0 . 3 6 5 4 ( 5 ) 0 . 4 1 6 ( 1 ) 2 . 2 ( 5 ) C 2 8 0 . 6 0 8 ( 1 ) 0 . 3 2 0 2 ( 5 ) 0 . 4 9 8 ( 1 ) 2 . 1 ( 5 ) C 2 9 0 . 5 4 5 ( 1 ) 0 . 3 0 5 0 ( 5 ) 0 . 5 8 9 ( 1 ) 2 . 4 ( 5 ) C 3 0 0 . 4 3 9 ( 1 ) 0 . 3 3 3 8 ( 5 ) 0 . 5 9 7 ( 1 ) 2 . 3 ( 5 ) C 3 1 0 . 3 0 2 ( 1 ) 0 . 4 6 9 9 ( 6 ) 0 . 6 6 9 ( 1 ) 2 . 6 ( 5 ) C 3 2 0 . 2 1 3 ( 1 ) 0 . 5 0 6 1 ( 6 ) 0 . 7 0 6 ( 1 ) 3 . 7 ( 6 ) C 3 3 0 . 2 4 5 ( 2 ) 0 . 5 4 3 3 ( 6 ) 0 . 8 0 9 ( 1 ) 4 . 8 ( 8 ) C 3 4 0 . 3 6 3 ( 2 ) 0 . 5 4 5 4 ( 6 ) 0 . 8 7 1 ( 1 ) 4 . 8 ( 8 ) C 3 5 0 . 4 4 8 ( 2 ) 0 . 5 1 3 0 ( 7 ) 0 . 8 3 2 ( 1 ) 4 . 6 ( 7 ) C 3 6 0 . 4 2 0 ( 1 ) 0 . 4 7 3 2 ( 5 ) 0 . 7 3 0 ( 1 ) 2 . 4 ( 5 ) C 3 7 0 . 1 5 2 ( 1 ) 0 . 3 6 7 7 ( 5 ) 0 . 5 5 7 ( 1 ) 1 . 8 ( 4 ) C 3 8 0 . 1 3 2 ( 1 ) 0 . 3 2 0 2 ( 5 ) 0 . 4 7 0 ( 1 ) 1 . 8 ( 5 ) C 3 9 0 . 0 4 6 ( 1 ) 0 . 2 7 9 8 ( 5 ) 0 . 4 7 9 ( 1 ) 2 . 1 ( 5 ) C 4 0 - 0 . 0 2 0 ( 1 ) 0 . 2 8 5 5 ( 6 ) 0 . 5 7 3 ( 1 ) 2 . 6 ( 5 ) C 4 1 0 . 0 0 1 ( 1 ) 0 . 3 3 0 6 ( 7 ) 0 . 6 6 0 ( 1 ) 2 . 9 ( 6 ) C 4 2 0 . 0 8 7 ( 1 ) 0 . 3 7 1 3 ( 5 ) 0 . 6 5 3 ( 1 ) 2 . 3 ( 5 ) C 4 3 0 . 2 1 6 ( 1 ) 0 . 4 6 4 3 ( 4 ) 0 . 3 9 6 ( 1 ) 1 . 7 ( 4 ) C 4 4 0 . 2 5 5 ( 1 ) 0 . 5 2 1 5 ( 6 ) 0 . 3 9 3 ( 1 ) 3 . 2 ( 6 ) C 4 5 0 . 2 3 0 ( 1 ) 0 . 5 5 5 4 ( 6 ) 0 . 2 8 5 ( 1 ) 3 . 2 ( 6 ) 3 7 1 T a b l e 7 - 3 . ( c o n t ' d ) a t o m x y z B a g , A 2 C 4 6 0 . 1 6 6 ( 1 ) 0 . 5 3 0 1 ( 6 ) 0 . 1 7 9 ( 1 ) 3 . 6 ( 6 ) C 4 7 0 . 1 2 3 ( 2 ) 0 . 4 7 3 8 ( 6 ) 0 . 1 8 1 ( 1 ) 4 . 4 ( 7 ) C 4 8 0 . 1 4 9 ( 1 ) 0 . 4 3 9 4 ( 7 ) 0 . 2 8 7 ( 1 ) 3 . 9 ( 6 ) C 4 9 0 . 5 0 1 ( 1 ) 0 . 2 6 4 5 ( 6 ) 0 . 1 3 9 ( 1 ) 2 . 3 ( 5 ) C 5 0 0 . 4 4 1 ( 1 ) 0 . 2 2 3 4 ( 4 ) - 0 . 1 2 1 ( 1 ) 1 . 2 ( 4 ) C 5 1 0 . 3 4 6 ( 1 ) 0 . 3 3 8 2 ( 5 ) - 0 . 0 3 7 ( 1 ) 2 . 1 ( 5 ) C 5 2 0 . 3 5 3 ( 1 ) 0 . 1 6 4 8 ( 6 ) 0 . 0 6 6 ( 1 ) 2 . 2 ( 5 ) C 5 3 - 0 . 2 6 5 ( 1 ) 0 . 1 9 6 9 ( 4 ) 0 . 0 5 4 ( 1 ) 1 . 1 ( 4 ) C 5 4 - 0 . 2 9 6 ( 1 ) 0 . 3 1 3 0 ( 5 ) - 0 . 0 5 2 ( 1 ) 1 . 5 ( 4 ) C 5 5 - 0 . 1 7 2 ( 1 ) 0 . 2 2 7 0 ( 4 ) - 0 . 1 5 6 ( 1 ) 1 . 4 ( 4 ) C 5 6 0 . 1 6 4 ( 1 ) 0 . 3 0 0 1 ( 5 ) 0 . 1 9 5 ( 1 ) 1 . 4 ( 4 ) a . B e q i s d e fi n e d a s 4 / 3 [ a 2 0 1 1 + b 2 0 2 2 + c 2 0 3 3 + a b ( c o s y ) 0 1 2 + a c ( c o s fi ) 0 1 3 + b c ( c o s a ) 0 2 3 ] . 3 7 2 T a b l e 7 4 . P o s i t i o n a l P a r a m e t e r s a n d B e g V a l u e s a f o r ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) W ( C O ) 4 ] ( 7 4 ) ( S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s ) a t o m x y z B e l , A 2 W 1 0 . 1 0 0 8 ( 1 ) 0 . 2 6 2 1 2 ( 5 ) 0 . 0 4 1 7 ( 1 ) 2 9 4 ( 5 ) W 2 0 . 3 4 8 7 ( 1 ) 0 . 2 5 1 5 4 ( 5 ) 0 . 0 1 5 6 ( 1 ) 2 . 9 1 ( 6 ) W 3 - 0 . 1 6 0 5 ( 1 ) 0 . 2 6 0 5 4 ( 5 ) 0 . 0 2 0 4 ( 1 ) 2 . 8 8 ( 6 ) S 1 0 . 1 5 9 4 ( 6 ) 0 . 2 3 2 8 ( 3 ) — 0 . 1 3 2 2 ( 6 ) 3 . 1 ( 3 ) S 2 0 . 2 5 0 9 ( 7 ) 0 . 2 8 6 1 ( 4 ) 0 . 1 9 1 3 ( 7 ) 4 . 2 ( 4 ) S 3 — 0 . 0 1 7 7 ( 7 ) 0 . 3 4 0 3 ( 3 ) - 0 . 0 0 6 5 ( 7 ) 3 . 8 ( 4 ) S 4 0 . 0 0 5 7 ( 7 ) 0 . 1 8 9 5 ( 4 ) 0 . 1 1 1 4 ( 8 ) 4 . 4 ( 4 ) P 1 0 . 7 8 0 0 ( 7 ) 0 . 0 1 1 7 ( 3 ) 0 . 6 4 8 9 ( 6 ) 3 . 2 ( 4 ) P 2 0 . 2 6 6 5 ( 8 ) 0 . 4 2 0 7 ( 4 ) 0 . 5 3 1 6 ( 7 ) 4 . 2 ( 4 ) ( ) 1 0 . 5 8 1 ( 2 ) 0 . 2 7 4 ( 1 ) 0 . 2 0 8 ( 2 ) 1 0 ( 2 ) ( ) 2 0 . 4 8 4 ( 2 ) 0 . 2 1 5 4 ( 9 ) - 0 . 1 9 3 ( 2 ) 5 ( 1 ) 0 3 0 . 3 3 9 ( 3 ) 0 . 3 8 5 ( 1 ) - 0 . 0 7 1 ( 3 ) 1 1 ( 2 ) ( ) 4 0 . 3 5 6 ( 2 ) 0 . 1 - 1 8 ( 1 ) 0 . 0 9 0 ( 2 ) 6 ( 1 ) 0 5 - 0 . 3 1 9 ( 2 ) 0 . 1 5 7 5 ( 9 ) 0 . 0 7 9 ( 2 ) 5 ( 1 ) ( E - 0 . 3 7 1 ( 2 ) 0 . 3 4 6 ( 1 ) - 0 . 0 9 5 ( 2 ) 6 ( 1 ) ( ) 7 - 0 . 1 9 0 ( 2 ) 0 . 2 1 3 ( 1 ) - 0 . 2 5 6 ( 2 ) 6 ( 1 ) 0 8 - 0 . 1 6 9 ( 2 ) 0 . 3 1 5 5 ( 8 ) 0 . 2 8 7 ( 2 ) 6 ( 1 ) C 1 0 . 9 1 8 ( 2 ) 0 . 0 1 7 ( 1 ) 0 . 7 5 5 ( 2 ) 2 . 3 ( 5 ) C 2 0 . 9 6 3 ( 2 ) 0 . 0 7 1 ( 1 ) 0 . 8 0 5 ( 3 ) 3 . 7 ( 6 ) C 3 1 . 0 6 4 ( 2 ) 0 . 0 7 6 ( 1 ) 0 . 8 8 4 ( 2 ) 3 . 6 ( 6 ) C 4 1 . 1 3 2 ( 3 ) 0 . 0 2 5 ( 1 ) 0 . 9 1 7 ( 3 ) 4 . 1 ( 6 ) C 5 1 . 0 9 0 ( 3 ) - 0 . 0 2 9 ( 1 ) 0 . 8 6 6 ( 3 ) 5 . 4 ( 8 ) C 6 0 . 9 8 4 ( 3 ) - 0 . 0 3 2 ( 1 ) 0 . 7 8 6 ( 3 ) 4 . 0 ( 6 ) C 7 0 . 6 5 8 ( 2 ) 0 . 0 1 6 ( 1 ) 0 . 7 2 7 ( 2 ) 3 . 0 ( 6 ) C 8 0 . 5 6 1 ( 3 ) - 0 . 0 1 7 ( 1 ) 0 . 6 9 4 ( 3 ) 4 . 2 ( 7 ) C 9 0 . 4 6 2 ( 3 ) - 0 . 0 1 2 ( 1 ) 0 . 7 4 8 ( 3 ) 4 . 7 ( 7 ) C 1 0 0 . 4 6 2 ( 3 ) 0 . 0 2 7 ( 1 ) 0 . 8 4 2 ( 3 ) 4 . 6 ( 7 ) C 1 1 0 . 5 5 7 ( 3 ) 0 . 0 6 1 ( 1 ) 0 . 8 8 2 ( 3 ) 5 . 0 ( 7 ) C 1 2 0 . 6 5 6 ( 2 ) 0 . 0 5 3 ( 1 ) 0 . 8 2 4 ( 3 ) 3 . 7 ( 6 ) C 1 3 0 . 7 6 8 ( 2 ) 0 . 0 7 4 ( 1 ) 0 . 5 4 3 ( 2 ) 3 . 4 ( 6 ) C 1 4 0 . 8 5 6 ( 3 ) 0 . 0 8 7 ( 1 ) 0 . 4 9 1 ( 3 ) 4 . 4 ( 7 ) 3 7 3 T a b l e 7 4 . ( c o n t ' d ) a t o m x y z B 9 9 , A 2 C 1 5 0 . 8 4 8 ( 4 ) 0 . 1 3 2 ( 2 ) 0 . 4 0 8 ( 4 ) 7 ( 1 ) C 1 6 0 . 7 5 0 ( 4 ) 0 . 1 6 9 ( 2 ) 0 . 3 8 8 ( 3 ) 7 ( 1 ) C 1 7 0 . 6 5 4 ( 3 ) 0 . 1 5 6 ( 2 ) 0 . 4 3 9 ( 3 ) 7 ( 1 ) C 1 8 0 . 6 6 9 ( 3 ) 0 . 1 0 2 ( 2 ) 0 . 5 1 8 ( 3 ) 6 . 1 ( 8 ) C 1 9 0 . 7 7 1 ( 2 ) — 0 . 0 5 5 ( 1 ) 0 . 5 6 5 ( 2 ) 2 . 3 ( 5 ) C 2 0 0 . 7 5 6 ( 2 ) - 0 . 1 0 8 ( 1 ) 0 . 6 2 0 ( 3 ) 3 . 9 ( 6 ) C 2 1 0 . 7 4 5 ( 3 ) - 0 . 1 6 0 ( 1 ) 0 . 5 6 0 ( 3 ) 4 . 9 ( 7 ) C 2 2 0 . 7 5 4 ( 3 ) - 0 . 1 6 3 ( 2 ) 0 . 4 3 5 ( 3 ) 5 . 8 ( 8 ) C 2 3 0 . 7 7 1 ( 2 ) - 0 . 1 1 3 ( 1 ) 0 . 3 7 5 ( 3 ) 4 . 0 ( 6 ) C 2 4 0 . 7 7 7 ( 3 ) - 0 . 0 5 8 ( 1 ) 0 . 4 4 0 ( 3 ) 4 . 4 ( 7 ) C 2 5 0 . 3 9 9 ( 3 ) 0 . 3 8 1 ( 1 ) 0 . 5 1 7 ( 3 ) 4 . 7 ( 7 ) C 2 6 0 . 4 6 2 ( 3 ) 0 . 3 9 4 ( 2 ) 0 . 4 2 4 ( 3 ) 6 . 1 ( 9 ) C 2 7 0 . 5 6 5 ( 3 ) 0 . 3 6 5 ( 1 ) 0 . 4 1 7 ( 3 ) 3 . 9 ( 6 ) C 2 8 0 . 6 0 8 ( 3 ) 0 . 3 2 1 ( 2 ) 0 . 5 0 3 ( 3 ) 6 . 0 ( 8 ) C 2 9 0 . 5 3 9 ( 3 ) 0 . 3 0 7 ( 2 ) 0 . 5 8 9 ( 3 ) 6 . 0 ( 8 ) C 3 0 0 . 4 4 1 ( 3 ) 0 . 3 3 4 ( 1 ) 0 . 5 9 6 ( 3 ) 4 . 5 ( 7 ) C 3 1 0 . 3 0 2 ( 3 ) 0 . 4 7 3 ( 2 ) 0 . 6 7 0 ( 3 ) 5 . 6 ( 8 ) C 3 2 0 . 2 1 3 ( 4 ) 0 . 5 0 7 ( 2 ) 0 . 6 9 2 ( 4 ) 9 ( 1 ) C 3 3 0 . 2 5 1 ( 4 ) 0 . 5 5 1 ( 2 ) 0 . 7 9 9 ( 4 ) 8 ( 1 ) C 3 4 0 . 3 6 3 ( 4 ) 0 . 5 4 5 ( 2 ) 0 . 8 6 2 ( 4 ) 8 ( 1 ) C 3 5 0 . 4 5 0 ( 4 ) 0 . 5 1 2 ( 2 ) 0 . 8 3 6 ( 4 ) 8 ( 1 ) C 3 6 0 . 4 1 7 ( 3 ) 0 . 4 7 3 ( 2 ) 0 . 7 3 3 ( 3 ) 6 . 2 ( 9 ) C 3 7 0 . 1 5 6 ( 3 ) 0 . 3 7 2 ( 1 ) 0 . 5 6 1 ( 3 ) 4 . 5 ( 7 ) C 3 8 0 . 1 3 9 ( 3 ) 0 . 3 2 1 ( 1 ) 0 . 4 7 3 ( 3 ) 4 . 1 ( 6 ) C 3 9 0 . 0 5 0 ( 3 ) 0 . 2 8 6 ( 1 ) 0 . 4 8 3 ( 3 ) 4 . 6 ( 7 ) C 4 0 - 0 . 0 1 6 ( 3 ) 0 . 2 9 0 ( 1 ) 0 . 5 7 5 ( 3 ) 4 . 9 ( 7 ) C 4 1 0 . 0 0 6 ( 3 ) 0 . 3 3 7 ( 2 ) 0 . 6 5 2 ( 3 ) 5 . 4 ( 8 ) C 4 2 0 . 0 9 3 ( 3 ) 0 . 3 7 9 ( 2 ) 0 . 6 5 1 ( 3 ) 6 . 1 ( 9 ) C 4 3 0 . 2 2 3 ( 3 ) 0 . 4 6 5 ( 1 ) 0 . 3 9 5 ( 3 ) 4 . 3 ( 7 ) C 4 4 0 . 2 5 9 ( 3 ) 0 . 5 2 0 ( 2 ) 0 . 3 9 4 ( 3 ) 6 . 3 ( 9 ) C 4 5 0 . 2 3 1 ( 3 ) 0 . 5 5 5 ( 2 ) 0 . 2 7 7 ( 4 ) 7 ( 1 ) 3 7 4 T a b l e 7 - 4 . ( c o n t ' d ) a t o m x y z B e a , A 2 C 4 6 0 . 1 6 9 ( 4 ) 0 . 5 3 2 ( 2 ) 0 . 1 6 9 ( 4 ) 1 0 ( 1 ) C 4 7 0 . 1 2 6 ( 4 ) 0 . 4 8 0 ( 2 ) 0 . 1 7 8 ( 4 ) 9 ( 1 ) C 4 8 0 . 1 5 2 ( 3 ) 0 . 4 4 0 ( 2 ) 0 . 2 9 4 ( 4 ) 7 ( 1 ) C 4 9 0 . 4 8 4 ( 3 ) 0 . 2 7 7 ( 1 ) 0 . 1 2 9 ( 3 ) 5 . 3 ( 8 ) C 5 0 0 . 4 2 1 ( 3 ) 0 . 2 2 4 ( 2 ) - 0 . 1 2 3 ( 3 ) 5 . 3 ( 9 ) C 5 1 0 . 3 4 3 ( 3 ) 0 . 3 3 9 ( 2 ) — 0 . 0 3 4 ( 3 ) 5 . 5 ( 9 ) C 5 2 0 . 3 5 3 ( 3 ) 0 . 1 7 0 ( 1 ) 0 . 0 7 2 ( 3 ) 3 . 8 ( 6 ) C 5 3 - 0 . 2 6 6 ( 2 ) 0 . 1 9 5 ( 1 ) 0 . 0 5 5 ( 2 ) 3 . 3 ( 6 ) C 5 4 - 0 . 2 9 4 ( 2 ) 0 . 3 1 2 ( 1 ) - 0 . 0 4 8 ( 2 ) 3 . 1 ( 6 ) C 5 5 - 0 . 1 7 3 ( 2 ) 0 . 2 2 8 ( 1 ) - 0 . 1 5 1 ( 2 ) 2 . 0 ( 5 ) C 5 6 - 0 . 1 5 8 ( 2 ) 0 . 3 0 0 ( 1 ) 0 . 1 9 1 ( 3 ) 3 . 4 ( 6 ) a . B e q i s d e fi n e d a s 4 / 3 [ a 2 0 1 1 + b 2 0 2 2 + c 2 0 3 3 + a b ( c o s y ) 0 1 2 + a c ( c o s fl ) 0 1 3 + b c ( c o s a ) B 2 3 ] . 3 7 5 F i n a l l y , a l l c o m p o u n d s w e e e x a m i n e d b y X - r a y p o w d e d i f f r a c t i o n f o r t h e p u r p o s e o f p h a s e c h a r a c t e r i z a t i o n a n d i d e n t i fi c a t i o n . A D e b y e - S c h e r r e c a m e a w a s e m p l o y e d t o r e c o r d t h e X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s . N i - fi l t e r e d C u r a d i a t i o n w a s u s e d . T h e c r y s t a l s w e r e g r o u n d t o fi n e p o w d e r a n d p a c k e d i n t o 0 . 5 m m g l a s s c a p i l l a r i e s w h i c h w e r e s e a l e d a n d m o u n t e d t o t h e s t a n d a r d D e b y e - S c h e ' r e r p o w d e c a m e r a w h i c h h a s a d i a m e t e r o f 1 1 4 . 6 m m ( 1 m m c o r r e s p o n d s t o 1 d e g r e e f o r 2 0 ) . X - r a y s w e r e g e n e r a t e d b y a P h i l l i p s N o r e l c o X R G - 5 0 0 0 X - r a y g e n e r a t o r o p e r a t i n g a t 4 0 k V a n d 2 0 m A . A p p r o x i m a t e l y , a s i x h o u r e x p o s u r e t i m e w a s u s e d . A c c u r a t e d - s p a c i n g s ( A ) o f e a c h c o m p o u n d w e e c a l c u l a t e d f r o m t h e p o w d e ' p a t t e r n s r e c o r d e d o n a P h i l l i p s X R G - 3 0 0 0 c o m p u t e r c o n t r o l l e d p o w d e r d i f f r a c t o m e t e r [ 2 1 ] . T o v e r i f y t h e h o m o g e n e i t i e s o f t h e p r o d u c t s , t h e d — s p a c i n g s o b s e r v e d f o r t h e b u l k m a t e i a l s w e r e c o m p a r e d w i t h t h e c a l c u l a t e d d - s p a c i n g s f r o m t h e X - r a y s i n g l e - c r y s t a l s t r u c t u r e a n a l y s i s d a t a [ 2 2 ] . L i s t i n g s o f c a l c u l a t e d a n d o b s e r v e d d — s p a c i n g s ( A ) a l o n g w i t h t h e o b s e r v e d r e l a t i v e d i f f r a c t i o n i n t e n s i t i e s o f t h e s e c o m p o u n d s a r e g i v e n i n T a b l e s 7 ' 5 - 7 - 6 . 3 7 6 T a b l e 7 - 5 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r ( P h 4 P ) 2 E 0 ) 4 M 0 ( M 0 3 4 ) ] ( 7 ' 1 ) a n l e l u P l z [ ( C 0 ) 4 W ( W S 4 ) 1 @ 2 ) h k 1 d c a l c . ( A ) d o b s . ( 4 ) , m m d o b s . ( 4 ) , m m f o r ( 7 - 1 ) f o r ( 7 ~ 2 L 1 0 0 1 1 . 2 3 1 1 . 4 7 , 1 4 1 1 . 5 1 , 2 2 0 0 1 1 0 . 9 5 1 0 . 9 1 , 2 1 1 0 . 9 6 , 2 6 1 1 0 1 0 . 7 1 1 0 . 4 9 , 7 7 1 0 . 2 0 , 4 5 0 - 1 1 9 . 9 8 9 . 6 6 , 4 0 9 . 7 2 , 3 2 - 1 0 1 9 . 5 4 9 . 4 1 , 2 3 9 . 3 6 , 2 7 0 2 0 9 . 1 8 9 . 2 3 , 1 6 9 . 1 6 , 2 3 0 1 l 8 . 9 1 8 . 9 9 , 4 5 8 . 9 1 , 3 0 - 1 1 0 8 . 7 4 8 . 7 7 , 2 0 8 . 7 3 , 1 9 1 2 0 8 . 0 5 8 . 0 6 , 8 5 8 . 0 5 , 1 0 0 - 1 - 2 1 7 . 9 2 8 I I 0 — 2 1 7 . 5 2 6 7 . 5 9 9 , 7 3 7 . 5 4 3 , 2 1 0 2 1 6 . 6 2 7 6 . 6 8 2 , 2 7 6 . 6 1 3 , 2 3 1 1 1 6 . 5 0 7 6 . 5 4 5 , 1 6 6 . 5 1 1 , 1 2 - 2 - 1 1 6 . 1 0 9 6 . 2 1 6 , 2 1 6 . 2 0 0 , 2 5 - 1 - 1 2 5 . 8 7 8 5 . 8 8 7 , 8 3 5 . 8 6 5 , 5 6 - 1 0 2 5 . 7 0 5 5 . 7 1 3 , 3 4 5 . 7 4 4 , 3 1 0 3 1 5 . 0 7 1 5 . 1 3 3 , 7 9 5 . 0 7 0 , 5 2 - 2 - 2 2 4 . 8 8 4 4 . 9 1 4 , 1 0 0 4 . 9 0 3 , 7 8 - 2 0 2 4 . 7 7 0 4 . 7 8 1 , 2 0 4 . 7 9 0 , 4 3 1 4 0 4 . 6 3 0 4 . 6 5 3 , 8 1 4 . 6 4 8 , 4 0 0 4 0 4 . 5 8 8 / 4 . 5 8 0 , 2 9 2 1 1 4 . 4 5 0 4 . 4 4 1 , 2 8 4 . 4 8 8 , 4 1 - 1 2 2 4 . 3 8 0 4 . 3 0 9 , 1 5 4 . 3 7 3 , 2 3 - 2 - 2 3 3 . 7 6 6 3 . 7 5 1 , 2 3 3 . 7 7 8 , 2 7 0 — 1 3 3 . 6 7 1 / 3 . 6 8 2 , 1 8 - 3 1 0 3 . 5 1 5 / 3 . 5 1 3 , 1 9 2 0 2 3 . 4 0 5 3 . 4 2 3 , 1 9 3 . 4 1 8 , 1 5 - 3 2 0 3 . 2 2 1 I 3 . 2 2 4 , 2 2 - 1 - 6 1 3 . 2 1 1 / 3 . 2 0 7 , 2 0 3 7 7 T a b l e 7 - 5 ( c o n t ' d ) h k l d c a l c . ( A ) d o b s . ( A L I / 1 m . . . d o b s . ( A l l / 1 . . . . x f o r ( 7 - 1 ) f o r ( 7 - 2 ) 1 — 2 3 3 . 0 5 1 3 . 0 6 0 , 1 1 3 . 0 5 7 , 1 9 - 4 0 1 2 . 9 6 1 2 . 9 0 6 , 5 3 2 . 9 5 8 , 1 2 3 - 2 1 2 . 9 1 0 I 2 . 9 1 4 , 1 2 4 0 0 2 . 8 0 4 2 . 8 3 1 , 5 3 2 . 8 1 5 , 2 2 O 0 4 2 . 7 3 7 2 . 7 5 2 , 2 6 2 . 7 2 6 , 2 0 3 - 1 2 2 . 6 4 0 2 . 6 9 7 , 9 2 . 6 4 8 , 1 5 - 4 - 2 4 2 . 5 0 1 2 . 5 0 7 , 1 5 2 . 5 0 3 , 1 5 1 1 4 2 . 4 3 6 2 . 4 2 7 , 2 3 2 . 4 3 5 , 1 2 - 4 0 4 2 . 3 8 5 / 2 . 3 8 7 , 1 7 - l - 2 5 2 . 3 2 7 2 . 3 3 8 , 1 8 2 . 3 2 0 , 1 3 - l - 4 5 2 . 2 1 9 2 . 2 2 1 , 1 7 2 . 2 1 9 , 1 5 - 3 6 0 2 . 1 4 3 2 . 1 3 4 , 1 3 2 . 1 4 7 , 1 6 - 4 1 5 2 . 0 0 9 2 . 0 0 1 , 3 0 2 . 0 0 4 , 2 2 3 7 8 T a b l e 7 - 6 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r J P m m I L C O M M M M o S o n C O M ] ( 7 ° 3 1 a n d ( P h 4 P ) 2 [ ( C 0 ) 4 W ( W S 4 ) W ( C 9 4 1 1 7 - 4 ) h k l d c a l c . ( A ) d o b s . ( A L I / 1 m . . . d o b s . ( A ) . m m . . . f o r ( 7 - 3 ) f o r ( 7 4 ) 0 2 0 1 1 . 3 0 1 1 . 6 1 , 2 6 1 1 . 2 0 , 7 7 0 0 1 1 0 . 6 7 1 0 . 9 0 , 2 6 1 0 . 8 4 , 4 0 0 — 2 1 7 . 8 0 7 . 9 2 , 1 0 0 8 . 1 0 , 1 0 0 0 2 1 7 . 7 1 l 7 . 7 3 , 2 9 0 4 0 5 . 6 4 8 5 . 7 4 7 , 3 0 5 . 7 4 3 , 5 4 0 0 2 5 . 3 3 5 5 . 4 1 3 , 3 3 5 . 5 3 6 , 2 6 0 — 4 1 5 . 0 1 6 5 . 0 4 7 , 3 7 5 . 0 2 2 , 3 6 0 4 1 4 . 9 6 8 4 . 9 6 5 , 4 6 4 . 9 4 2 , 3 1 0 - 2 2 4 . 8 4 5 4 . 8 5 0 , 2 7 / 0 2 2 4 . 8 0 2 I 4 . 7 9 6 , 4 9 2 l 1 4 . 5 5 9 4 . 6 0 3 , 2 3 4 . 6 0 1 , 2 7 - 2 3 0 4 . 4 6 9 4 . 4 7 2 , 1 7 / - 2 1 2 4 . 2 0 5 4 . 2 1 6 , 1 3 4 . 2 4 2 , 1 0 0 6 0 3 . 7 6 5 3 . 7 7 8 , 9 3 . 7 5 5 , 1 3 0 - 6 1 3 . 5 6 4 3 . 5 7 8 , 1 1 3 . 5 7 3 , 1 0 0 2 3 3 . 3 8 1 3 . 3 8 9 , 1 4 3 . 3 4 8 , 1 2 - 2 1 3 3 . 2 5 6 3 . 2 6 2 , 1 6 3 . 2 4 6 , 1 1 0 — 6 2 3 . 0 9 3 3 . 1 0 3 , 1 0 3 . 0 7 3 , 1 1 0 8 0 2 . 8 2 4 2 . 8 2 6 , 1 1 2 . 8 8 8 , 1 3 4 2 0 2 . 7 5 3 2 . 7 6 4 , 8 2 . 7 5 8 , 1 0 0 - 8 1 2 . 7 3 7 / 2 . 7 3 3 , 9 4 O 1 2 . 6 0 9 2 . 6 0 4 , 1 0 2 . 6 0 5 , 9 0 2 4 2 . 5 8 9 2 . 5 9 3 , 1 2 2 . 5 5 9 , 1 3 0 - 8 2 2 . 5 0 8 I 2 . 4 8 4 , 1 1 - 4 - 1 3 2 . 4 3 9 2 . 4 0 5 , 7 2 . 4 4 0 , 1 3 4 4 1 2 . 3 8 5 I 2 . 3 7 9 , 8 - 4 - 6 1 2 . 3 0 9 2 . 3 1 3 , 8 2 . 3 1 1 , 1 0 - 4 5 2 2 . 2 9 9 2 . 2 9 7 , 8 2 . 2 5 4 , 1 1 3 7 9 I I I . R e s u l t s 1 . D e s c r i p t i o n o f C r y s t a l a n d M o l e c u l a r S t r u c t u r e s o f t h e C o m p o u n d s ( i ) . S t r u c t u r e o f ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) ] ( 7 - 2 ) T h i s c o m p o u n d i s c o m p o s e d o f n o n - i n t e r a c t i n g P h 4 P + c a t i o n s a n d [ ( C O ) 4 W ( W S 4 ) ] 2 ' c l u s t e r a n i o n s i n t h e c r y s t a l l a t t i c e a s s h o w n i n F i g u r e 7 - 1 . T h e l a t t e h a s b e e n i s o l a t e d e a r l i e r a s t h e E t 4 N + s a l t a n d s t r u c t u r a l l y c h a r a c t e r i z e d [ 9 ] . F i g u r e 7 - 2 s h o w s t h e s t r u c t u r e o f t h e c u r r e n t [ ( C O ) 4 W ( W S 4 ) ] 2 ‘ a n i o n t h a t h a s b e e n f o u n d a s t h e P h 4 P + s a l t . I t f e a t u r e s a t e t r a h e d r a l [ W S 4 ] 2 ‘ m o l e c u l e a c t i n g a s a b i d e n t a t e l i g a n d t o a n o t h e r W m e t a l w h i c h i s f u r t h e r s u r r o u n d e d b y f o u r C O g r o u p s , r e s u l t i n g i n o c t a h e d r a l c o o r d i n a t i o n f o r t h i s m e t a l . S u c h a s t r u c t u r a l d e s c r i p t i o n n a t u r a l l y i m p l i e s t h e a s s i g n m e r t o f t w o e x t r e m e f o r m a l o x i d a t i o n s t a t e s , 6 + a n d 0 , t o t h e s a m e m e t a l i n t w o d i f f e r e l t f r a g m e n t s . T h i s a r g u m e n t i s p a r t l y s u p p o r t e d b y t h e t e t r a h e d r a l g e o m e t r y o f t h e b r i d g i n g [ W S 4 ] 2 ' l i g a n d i n t h e m o l e c u l e . T h e c l u s t e r p o s s e s s e s C 2 v s y m m e t r y , i . e . a C 2 r u n n i n g t h r o u g h t w o W a t o m s , a m i r r o r c o n t a i n i n g t w o W m e t a l s , t w o b r i d g i n g S a t o m s a n d t w o C O g r o u p s , a n d t h e s e c o n d m i r r o r b e i n g p e r p e n d i c u l a r t o t h e fi r s t o n e . T h e b o n d d i s t a n c e s o f t w o b r i d g i n g s u l f u r a t o m s t o t h e t e t r a h e d r a l m e t a l a t 2 . 2 4 4 ( 5 ) a n d 2 . 2 2 1 ( 5 ) A a r e , a s e x p e c t e d , l o n g e r t h a n t h o s e o f t w o t e m i n a l s u l f u r a t o m s t o t h i s m e t a l a t 2 . 1 5 8 ( 5 ) a n d 2 . 1 5 5 ( 5 ) A . T h e l a t t e r a r e s i m i l a r t o t h a t f o u n d i n t h e p a r e n t a l t e t r a t h i o t u n g s t a t e ( N H 4 ) 2 [ W S 4 ] ( i . e . w - s = 2 . 1 6 5 A ) [ 2 2 ] . T h e b o n d d i s t a n c e s o f t w o b r i d g i n g s u l f u r a t o m s t o t h e o c t a h e d r a l m e t a l a r e 2 . 5 4 0 ( 5 ) a n d 2 . 5 4 4 ( 5 ) A . T h e W - - - W d i s t a n c e i s 3 . 0 3 1 A . A l l t h e s e v a l u e s a r e f o u n d c o m p a r a b l e w i t h t h o s e i n t h e p r e v i o u s l y r e p o r t e d s t r u c t u r e o f t h e s a m e a n i o n [ 9 ] . T a b l e 7 7 g i v e s a c o m p a r i s o n o f s o m e i m p o r t a n t b o n d d i s t a n c e s a n d b o n d a n g l e s o f t h e a n i o n i n t w o d i f f e r e n t c o m p o u n d s . 3 8 0 T a b l e 7 . 7 . C o m p a r i s o n o f G e o m e t r i c D a t a B e t w e e n ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) ] ( 7 - 2 ) b a n d ( M 2 1 1 0 0 ) 4 W ( W 8 0 ] [ 9 1 ° B o n d D i s t a n c e s ( A ) P h 4 P + s a l t E t 4 N + s a l t W ( 1 ) - S ( 1 ) 2 . 2 4 4 ( 5 ) 2 . 2 3 8 ( 3 ) W ( 1 ) - S ( 2 ) 2 . 2 2 1 ( 5 ) 2 . 2 3 7 ( 3 ) W ( 1 ) - S ( 3 ) 2 . 1 5 8 ( 5 ) 2 . 1 6 1 ( 3 ) W ( 1 ) - S ( 4 ) 2 . 1 5 5 ( 5 ) I 2 . 1 6 1 ( 3 ) W ( 2 ) - S ( 1 ) 2 . 5 4 0 ( 5 ) 2 . 5 3 1 ( 3 ) W ( 2 ) - S ( 2 ) 2 . 5 4 4 ( 5 ) 2 . 5 3 9 ( 3 ) W ( 2 ) - c a 1 . 9 7 ( 2 ) 1 9 1 ( 1 ) w o m b 1 9 9 ( 2 ) 1 9 2 ( 1 ) W ( 2 ) - c c 1 . 9 7 ( 2 ) 2 0 3 ( 1 ) W ( 2 ) - C d 2 0 4 ( 2 ) 2 0 3 ( 1 ) w - - - w 3 . 0 3 1 ( 1 ) 3 . 0 1 0 ( 1 ) B o n d A n g l e s ( d e g ) P h 4 P + s a l t E t 4 N + s a l t S ( l ) - W ( 1 ) - S ( 2 ) 1 1 0 . 5 ( 2 ) 1 1 0 . 9 ( 1 ) S ( l ) — W ( l ) - S ( 3 ) 1 0 9 . 6 ( 2 ) 1 0 8 . 6 ( 1 ) S ( l ) - W ( 1 ) - S ( 4 ) 1 0 9 . 6 ( 2 ) 1 0 8 . 6 ( 1 ) S ( 2 ) - W ( 1 ) - S ( 3 ) 1 0 9 . 6 ( 2 ) 1 0 9 . 2 ( 1 ) S ( 2 ) - W ( 1 ) - S ( 4 ) 1 0 8 . 7 ( 2 ) 1 0 9 . 2 ( 1 ) S ( 3 ) - W ( l ) - S ( 4 ) 1 0 8 . 7 ( 2 ) 1 1 0 . 4 ( 2 ) S ( l ) - W ( 2 ) - S ( 2 ) 9 2 . 4 ( 2 ) 9 3 . 2 ( 1 ) 3 ( 1 ) - w o w c 9 2 . 5 ( 6 ) 9 0 . 0 ( 2 ) a C c n u ” u l r l I u l . . . « \ I " “ “ ' N S 8 Z I I ’ 1 H " . I “ 3 8 1 T a b l e 7 - 7 . ( c o n t ' d ) B o n d A n g l e s ( d e g ) S ( l ) - W ( 2 ) - C d 8 9 . 1 ( 6 ) 9 0 . 0 ( 2 ) S ( 2 ) - W ( 2 ) - C a 8 9 . 7 ( 6 ) 9 0 . 5 ( 5 ) S ( 2 ) - W ( 2 ) - C b 1 7 8 . 9 ( 6 ) 1 7 7 . 9 ( 3 ) C a — W ( 2 ) - C b 8 9 . 2 ( 8 ) 9 1 . 6 ( 5 ) C a - W ( 2 ) - C c 8 8 . 8 ( 8 ) 9 0 . 0 ( 2 ) C c - W ( 2 ) - C d 1 7 8 . 3 ( 8 ) 1 7 7 . 2 ( 5 ) W ( l ) - S ( 1 ) - W ( 2 ) 7 8 . 4 ( 1 ) 7 8 . 4 ( 1 ) W ( 1 ) - S ( 2 ) - W ( 2 ) 7 8 . 7 ( 1 ) 7 7 . 9 ( 1 ) b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n m = { 2 n ( l n - l ) 2 / n ( n - l ) } 1 / 2 , w h e r e 1 , , i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . c . L a b e l i n g s c h e m e f o r t h i s m o l e c u l e i s a s f o l l o w i n g : C c 4 S 3 C a X - r a y p o w d e r d i f f r a c t i o n ( X R D ) s t u d i e s o f t h e ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) ] c o n fi r m e d t h a t t h i s c o m p o u n d i s i s o s t r u c t u r a l t o ( 7 . 2 ) ( s e e T a b l e 7 - 5 ) . 3 8 2 F i g u r e 7 - 1 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( M 2 [ ( C O ) 4 W ( W S 4 ) ] ( S t e r e o v i e w ) ( 5 2 ) ( ” W C e ( C r ) 3 ‘ W o { ' 0 7 ) $ 5 @ 0 ( 2 ) 4 W 9 ) ( 1 2 ) / / / / ) 4 4 / / C ( 5 / ( i 1 $ ~ ‘ ) 4 I ( 7 2 / ) } 5 5 5 1 W \ § ( 0 l ) A \ 3 ) ( 1 » ) ~ ( \ R 3 ‘ ( ) 4 4 V ) x / ' ’ ( \ \ 3 ¢ \ \ ) 3 ’ \ \ 3 \ ( F i g u r e 7 - 2 . T h e S t r u c t u r e o f t h e [ ( C 0 ) 4 W ( W S 4 ) ] 2 ' A n i o n 3 8 3 4 7 7 3 0 ‘ " ' 6 ‘ ) 3 8 4 ( i i ) . S t r u c t u r e o f ( P h 4 P ) 2 [ ( C O ) 4 M 0 ( M o S 4 ) M o ( C O ) 4 ] ( 7 - 3 ) a n d ( P h 4 P ) 2 [ ( C 0 ) 4 W ( W S 4 ) W ( C O ) 4 ] ( 7 : 4 ) T h e s t r u c t u r e s o f t h e s e t w o c o m p o u n d s , i s o t y p i c a l t o e a c h o t h e r , a r e h i t h e t o u n k n o w n . T h e c r y s t a l l a t t i c e i s m a d e u p o f P 1 1 4 P + c a t i o n s a n d [ ( C O ) 4 M ( M S 4 ) M ( C O ) 4 ] 2 ‘ ( M = M o o r W ) a n i o n s a s s h o w n i n F i g u r e 7 - 3 . T h e s t r u c t u r e o f t h e t r i n u c l e a r c l u s t e r a n i o n i s d e p i c t e d i n F i g u r e 7 - 4 . T h i s m o l e c u l e c o n t a i n s a l i n e a r a r r a y o f t h r e e m e t a l c e n t e r s , a p p r o a c h i n g a n i d e a l i z e d D 2 d s y m m e t r y w i t h t h e p r i n c i p a l a x i s r u n n i n g t h r o u g h t h r e e m e t a l a t o m s . A g a i n , i f t h e m o l e c u l e i s v i e w e d a s t w o M ( C O ) 4 f r a g m e n t s b r i d g e d b y a t e t r a t h i o m e t a l a t e [ M S 4 ] 2 ‘ , t h e t w o t e m i n a l M a t o m s w o u l d h a v e a f o r m a l o x i d a t i o n s t a t e 0 , a n d t h e c e n t r a l M a t o m a f o r m a l o x i d a t i o n s t a t e 6 + . T h e b o n d d i s t a n c e s o f t h e b r i d g i n g s u l f u r a t o m s t o t h e t e t r a h e d r a l t u n g s t e n a v e r a g e 2 . 2 1 1 A i n ( 7 4 ) , s i m i l a r t o t h o s e f o u n d i n t h e a b o v e W d i m e r , w h i l e t h e i r c o u n t e r p a r t s i n t h e M o c o m p o u n d a v e a g e 2 . 2 2 8 A , a r e l o n g e r t h a n t h a t f o u n d i n ( N H 4 ) 2 [ M o S 4 ] ( i . e . 2 . 1 7 8 A ) [ 2 3 ] . T h e M — M d i s t a n c e s a r e 2 . 9 2 1 ( 2 ) a n d 2 . 9 7 1 ( 2 ) A i n t h e w t r i m e r , a n d 2 . 9 1 8 ( 2 ) a n d 2 . 9 7 2 ( 2 ) A i n M 0 t r i m e r . T h e d i f f e r e r c e s i n b o n d d i s t a n c e s a n d b o n d a n g l e s f o u n d i n t h e M o c o m p o u n d a n d i t s W a n a l o g u e a r e v e ' y s m a l l . T h e i m p o r t a n t b o n d d i s t a n c e s a n d b o n d a n g l e s f o r t h e t w o c o m p o u n d s a r e g i v e n i n T a b l e 7 - 8 . T a b l e 7 - 8 . G e o m e t r i c D a t a o f ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) M o ( C O ) 4 ] ( 7 - 3 ) a n d ( P h 4 P ) } _ I ( C 0 ) 4 W ( W S 4 ) W 1 C 0 ) 4 ] L 7 4 ) ” B o n d D i s t a n c e s ( A ) M o c o m p o u n d W c o m p o u n d M ( 1 ) - S ( 1 ) 2 . 2 2 6 ( 3 ) 2 . 2 0 9 ( 7 ) M ( 1 ) - S ( 2 ) 2 . 2 3 0 ( 3 ) 2 . 2 0 9 ( 8 ) M ( 1 ) - 3 ( 3 ) 2 . 2 2 7 ( 3 ) 2 . 2 1 2 ( 7 ) 3 8 5 T a b l e 7 - 8 . ( c o n t ' d ) B o n d D i s t a n c e s ( A ) M ( 1 ) - S ( 4 ) 2 . 2 2 8 ( 3 ) 2 . 2 1 4 ( 8 ) M a n u a l - S ( m e a n ) 2 . 2 2 8 2 . 2 1 1 M ( 2 ) - S ( 1 ) 2 . 5 0 9 ( 3 ) 2 . 4 9 0 ( 7 ) M ( 2 ) - S ( 2 ) 2 . 4 9 6 ( 3 ) 2 . 4 9 7 ( 7 ) M ( 3 ) — S ( 3 ) 2 . 5 4 0 ( 3 ) 2 . 5 2 5 ( 8 ) M ( 3 ) - S ( 4 ) 2 . 5 3 9 ( 3 ) 2 . 5 2 8 ( 8 ) M a m m a l - S ( m e a n ) 2 . 5 2 1 2 . 5 1 0 M ( 1 ) - - - M ( 2 ) 2 . 9 1 8 ( 2 ) 2 . 9 2 1 ( 2 ) M ( 1 ) - - - M ( 3 ) 2 . 9 7 2 ( 2 ) 2 . 9 7 1 ( 2 ) M ( 2 ) - C ( 4 9 ) 1 . 9 9 ( 1 ) 1 8 9 ( 4 ) M ( 2 ) - C ( 5 0 ) 2 . 0 3 ( 1 ) 1 . 9 4 ( 3 ) M ( 2 ) - C ( 5 1 ) 2 . 0 6 ( 1 ) 2 . 0 5 ( 4 ) M ( 2 ) - C ( 5 2 ) 2 . 0 2 ( 1 ) 1 . 9 4 ( 3 ) M ( 3 ) - C ( 5 3 ) 1 . 9 7 ( 1 ) 2 . 0 2 ( 3 ) M ( 3 ) - C ( 5 4 ) 1 . 9 8 ( 1 ) 1 . 9 4 ( 3 ) M ( 3 ) - C ( 5 5 ) 2 . 0 3 ( 1 ) 1 . 9 7 ( 2 ) M ( 3 ) - C ( 5 6 ) 2 . 0 7 ( 1 ) 2 . 0 5 ( 3 ) B o n d A n g l e s ( d e g ) M o c o m p o u n d W c o m p o u n d S ( 1 ) - M ( 1 ) - S ( 2 ) 1 1 2 . 5 ( 1 ) 1 1 2 . 2 ( 3 ) S ( 1 ) - M ( 1 ) - S ( 3 ) 1 0 6 . 8 ( 1 ) 1 0 6 . 9 ( 3 ) S ( l ) - M ( 1 ) - S ( 4 ) 1 0 8 . 1 ( 1 ) 1 0 9 . 3 ( 3 ) 3 8 6 T a b l e 7 8 . ( c o n t ' d ) B o n d A n g l e s ( d e g ) . . S ( 2 ) - M ( 1 ) - S ( 3 ) 1 1 0 . 0 ( 1 ) 1 0 9 . 6 ( 3 ) S ( 2 ) - M ( 1 ) - S ( 4 ) 1 0 8 . 0 ( 1 ) 1 0 8 . 0 ( 3 ) S ( 3 ) - M ( 1 ) - S ( 4 ) 1 1 1 . 4 ( 1 ) 1 1 0 . 9 ( 3 ) S ( 1 ) - M ( 2 ) - S ( 2 ) 9 5 . 5 6 ( 9 ) 9 4 . 6 ( 2 ) S ( 3 ) - M ( 3 ) - S ( 4 ) 9 2 . 8 5 ( 9 ) 9 2 . 3 ( 2 ) S ( 1 ) - M ( 2 ) - C ( 5 0 ) 8 8 . 8 ( 3 ) 8 4 ( 1 ) S ( l ) - M ( 2 ) - C ( 5 2 ) 8 7 . 7 ( 3 ) 9 0 . 0 ( 9 ) S ( 2 ) - M ( 2 ) - C ( 4 9 ) 8 2 . 9 ( 3 ) 8 1 ( 1 ) S ( 2 ) - M ( 2 ) - C ( 5 1 ) 8 5 . 9 ( 3 ) 8 6 ( 1 ) S ( 3 ) - M ( 3 ) - C ( 5 4 ) 9 0 . 6 ( 3 ) 9 0 . 7 ( 8 ) S ( 3 ) - M ( 3 ) - C ( 5 6 ) 8 6 . 1 ( 3 ) 8 4 . 0 ( 8 ) S ( 4 ) - M ( 3 ) - C ( 5 3 ) 8 3 . 7 ( 3 ) 8 4 . 0 ( 8 ) S ( 4 ) - M ( 3 ) - C ( 5 5 ) 9 3 . 3 ( 3 ) 9 3 . 3 ( 7 ) M ( 1 ) - S ( 1 ) - M ( 2 ) 7 5 . 8 3 ( 8 ) 7 6 . 6 ( 2 ) M ( 1 ) - S ( 2 ) - M ( 2 ) 7 6 . 0 3 ( 8 ) 7 6 . 5 ( 2 ) M ( 1 ) - S ( 3 ) - M ( 3 ) 7 6 . 8 1 ( 9 ) 7 7 . 4 ( 2 ) M ( 1 ) - S ( 4 ) - M ( 3 ) 7 6 8 4 ( 9 ) 7 7 . 3 ( 2 ) M ( 2 ) - M Q ) - M ( 3 ) 1 6 8 . 2 4 1 4 ) 1 6 8 . 8 1 ( 5 ) b . T h e e s t i m a t e d s t a n d a r d d e v i a t i o n s i n t h e m e a n b o n d l e n g t h s a n d t h e m e a n b o n d a n g l e s a r e c a l c u l a t e d b y t h e e q u a t i o n m = { 2 n ( l n - l ) 2 / n ( n - l ) } 1 ’ 2 , w h e r e I n i s t h e l e n g t h ( a n g l e ) o f t h e n t h b o n d , 1 t h e m e a n l e n g t h ( a n g l e ) , a n d n t h e n u m b e r o f b o n d s . 3 8 7 F i g u r e 7 - 3 . T h e P a c k i n g D i a g r a m i n t h e U n i t C e l l o f ( P h 4 P ) 2 [ ( C O ) 4 M ( M S 4 ) M ( C O ) 4 ] ' ( M = M o a n d W ) ( S t e r e o v i e w ) m o o s t z j t ) ! C . q M H / ) ) L 8 “ ( 0 ( C ) : } 2 m ( 8 s n o i n A ) W d n a o M = M ( - 2 1 4 ) O C ( M ) & M ( M 4 ) O C ( [ e h t f o e r u t c u r t S e h T . 4 7 e r u g i F 3 8 8 3 8 9 2 . S p e c t r o s c o p i c S t u d i e s F i g u r e 7 5 s h o w s t h e s o l i d - s t a t e I R s p e c t r a o f t h e d i n u c l e a r c o m p o u n d s i n t h e C O r e g i o n . F a c h s h o w s f o u r w e l l - r e s o l v e d p e a k s a s e x p e c t e d f o r a c i s - M L 2 ( C O ) 4 t y p e m o l e c u l e . T h e t w o s p e c t r a a r e s i m i l a r , a n d a l m o s t s u p e r i m p o s a b l e . T h e s p e c t r a o f t w o t r i n u c l e a r c o m p o u n d s h a v e a S i m i l a r p a t t e r n t o t h o s e o f t h e d i m e s , a s s h o w n i n F i g u r e 7 - 6 . H o w e v e r , t h r e e p e a k s i n t h e l o w e r e n e r g y r e g i o n o v e r l a p w i t h e a c h o t h e r , r e s u l t i n g i n p o o r l y r e s o l v e d a b s o r p t i o n b a n d s . T h i s i s b e c a u s e t w o M S 2 ( C O ) 4 f r a g m e n t s i n t h e t r i m e r s a r e c r y s t a l l o g r a p h i c a l l y d i f f e r e n t . I n t h e m e t a l - s u l f u r s t r e t c h i n g r e g i o n , t h e t r i m e r s S h o w a s i n g l e a b s o r p t i o n a s t o t h e i r p a r e n t a l [ M S 4 ] 2 ' i n t h e s a m e r e g i o n ( F i g u r e 7 . 7 ) , w h i l e t h e d i m e r s h a v e t w o a b s o r p t i o n s ( F i g u r e 7 - 8 ) . T h e l a t t e r a r e f u r t h e r s p l i t i n t o t w o d o u b l e t s f o r W c o m p o u n d . T h i s i s a c l e a r i n d i c a t i o n o f t h e r e d u c e d s y m m e t r y o f t h e [ M S 4 ] 2 ‘ l i g a n d ( D 2 d v s . C 2 , ) i n t h e d i m e r s . T h e U V / v i s s p e c t r a o f a l l c o m p o u n d s i n C H 3 C N s h o w c h a r a c t e r i s t i c a b s o r p t i o n s a s s h o w n i n F i g u r e s 7 - 9 a n d 7 1 0 . T a b l e 7 - 9 c o m p a r e s t h e e l e c t r o n i c s p e c t r a l d a t a o f t h e c u r r e n t f o u r c o m p o u n d s w i t h t h o s e o f t h e p r e v i o u s l y r e p o r t e d c o m p o u n d s i n t h i s f a m i l y a n d t h e f r e e [ M S 4 ] 2 ' l i g a n d s . T h e t w o b a n d s i n t h e h i g h e n e r g y r e g i o n , 3 6 0 a n d 4 6 0 n m f o r M o d i m e r , 3 4 0 a n d 4 0 8 n m f o r W d i m e r , 3 3 2 ( s h ) a n d 4 6 2 n m f o r M o t r i m e r , a n d 3 3 0 ( s h ) a n d 4 3 1 n m f o r W t r i m e r , o r i g i n a t e f r o m l i g a n d t o m e t a l c h a r g e t r a n s f e r ( L M C I ' ) w i t h i n t h e [ M 8 4 ] 2 ' l i g a n d s . T h e a s s i g n m e n t o f [ M 8 4 ] 2 ' a b s o r p t i o n b a n d s h a s b e e n e x t e n s i v e l y d i s c u s s e d i n t h e l i t e r a t u r e [ 1 1 ] . B e c a u s e o f t h e W e c o o r d i n a t i o n o f t h e S a t o m s t o t h e o t h e r m e t a l c e n t e ' s , t h e s e b a n d s s h o w s i g n i fi c a n t p u r t e ' b a t i o n i n e n e r g i e s . F i n a l l y , t h e l o w e n e g y b a n d i n e a c h s p e c t r u m , 5 7 4 n m f o r M o d i m e r , 4 7 9 n m f o r W d i m e r , 6 9 6 n m f o r M o t r i m e r , a n d 5 6 6 n m f o r W t r i m e r , c a n b e t e n t a t i v e l y a s s i g n e d t o t h e M o l l t d ‘ 5 + — > M 1 + l l v l 5 + v a l e n c e c h a r g e t r a n s f e r a b s o r p t i o n [ 1 3 ] . E C N A T ' I ' I M S N A R T E V I T A L E R 3 9 0 ( A ) q q q d ( B ) d " U T T V T r I V — U W 2 1 9 9 2 1 4 9 2 0 9 9 2 0 4 9 1 9 9 9 1 9 4 9 1 8 9 9 1 8 4 9 1 7 9 9 1 7 4 9 W A V E N U M B E R F i g u r e 7 - 5 . T h e S o l i d - S t a t e I R S p e c t r a i n t h e C O R e g i o n f o r ( A ) ( W ) 2 1 ( C 0 ) 4 M 0 M 0 8 4 ) l a n d ( B ) ( P h 4 P ) 2 [ ( C 0 ) 4 W ( W S 4 ) l E C N A T ‘ I ' I M S N A R ‘ I ' E V I T A L E R ( A ) q d ( B ) . U r r T r I I l U r 2 1 9 9 2 1 4 9 2 0 9 9 2 0 4 9 1 9 9 9 1 9 4 9 1 8 9 9 1 8 4 9 1 7 9 9 1 7 4 9 W A V E N U M B E R F ’ 7 6 . T h e S o l i d - S t a t e “ ! S p e c t r a i n t h e C O R e g i o n f a ( A ) ( W h l i E g M d M fi d e O M 3 1 1 6 ( 3 ) ( P h 4 P ) 2 [ ( C 0 ) 4 W ( W S 4 ) W ( C 0 ) 4 l E C N A T T I M S N A R T E V I T A L E R 3 9 2 ( A ) ‘ ( B ) r I I r r 4 5 2 4 4 0 4 2 8 4 1 6 4 0 4 3 9 2 W A V E N U M B E R F i g u r e 7 - 7 . T h e S o l i d - S t a t e F a r I R S p e c t r a o f ( A ) ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) M o ( C O ) 4 ] a n d ( B ) ( P h 4 P ) 2 [ ( C 0 ) 4 W ( W S 4 ) W ( C 0 ) 4 l 3 9 3 ( A ) : 2 . . . 5 ( B ) 3 ' 1 : Z < d E T f I . I T j 5 0 0 4 8 3 4 6 6 4 4 9 4 3 2 4 1 5 3 9 8 W A V E N U M B E R F i g u r e 7 - 8 . T h e S o l i d - S t a t e F a r I R S p e c t r a o f ( A ) ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) ] a n d ( B ) ( P h 4 P ) 2 [ ( C 0 ) 4 W ( W S 4 ) 1 2 0 0 I 0 0 4 W A F i g u r e 7 - 1 0 . T h e U — / V ) ( v ( i P s h S 4 p P e ) c 2 t I V r a ( E C o L f E ( - 0 ) 4 N - W G ) ( ( W T 5 P H h , 4 P 4 ) W n 2 C ) ( m 6 [ 0 I 0 0 8 0 0 ( ) C 4 O l ) i 4 n M o ( M 0 C 1 1 3 8 0 4 ! ) M o ( C O ) 4 1 a n d 3 9 4 A a s 2 0 0 4 0 0 6 0 0 3 0 0 W A V E L E N G T H , n m F i g u r e 7 - 9 . T h e l e i s S p e c t r a o f ( — - ) ( P h 4 P ) C O . ( m u l t c o n w m s m fl } , 3 & “ 0 1 M 0 8 0 1 a n d ( « 1 A B S \ M 3 9 5 T a b l e 7 9 E l e c t r o n i c S p e c t r a l D a t a f o r J { M ( C O ) 4 } 1 _ I Q I I S Q ] 2 ' ( M = M o , w ; n = 0 , 1 , 2 ) & c o m p o u n d A m , n m ( e , M - c m ' l ) r e f e r e l c e ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) ] 3 2 4 ( s h , 1 1 . 1 x 1 0 3 ) , 3 6 0 ( 8 . 3 7 x 1 0 3 ) , t h i s w o r k 4 6 0 ( 1 0 . 4 x 1 0 3 ) , 5 7 4 ( 3 . 2 0 x 1 0 3 ) ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) ] 2 9 3 ( s h , 1 4 . 0 x 1 0 3 ) , 3 4 0 ( 9 . 0 9 x 1 0 3 ) , t h i s w o r k 4 0 8 ( 1 6 . 0 x 1 0 3 ) , 4 7 9 ( 4 . 5 2 x 1 0 3 ) ( P h 4 P ) 2 [ ( C O ) g M 0 2 ( M o S 4 ) ] 3 3 2 ( S h , 1 1 . 7 x 1 0 3 ) , 4 6 2 ( 1 5 9 x 1 0 3 ) , t h i s w o r k 6 9 6 ( 4 . 6 3 x 1 0 3 ) ( P h 4 P ) 2 [ ( C O ) 3 W 2 ( W S 4 ) ] 3 3 0 ( s h , 1 4 . 6 x 1 0 3 ) , 4 3 1 ( 2 0 . 2 x 1 0 3 ) , t h i s w o r k 5 6 6 ( 5 . 7 0 7 1 1 0 3 ) ( E t 4 N ) 2 [ ( C O ) 4 M o ( M o S 4 ) ] 3 6 0 ( 1 0 . 0 0 x 1 0 3 ) , 4 6 0 ( 8 . 8 x 1 0 3 ) , [ 7 ] 5 6 5 ( 3 . 1 6 x 1 0 3 ) ( E t 4 N ) 2 [ ( C O ) 4 M o ( W S 4 ) ] 4 0 5 ( 8 . 8 6 x 1 0 3 ) , 4 6 0 ( 3 . 7 4 x 1 0 3 ) [ 7 ] ( E t 4 N ) 2 [ ( C 0 ) 8 M 0 2 ( M o S 4 ) l 3 7 5 ( s h ) , 4 5 5 0 9 0 1 1 1 0 3 ) . [ 7 ] 6 7 5 ( 5 . 3 8 x 1 0 3 ) ( E t 4 N ) 2 [ ( C O ) g M 0 2 ( W S 4 ) ] 4 2 6 ( 1 6 . 5 x 1 0 3 ) , 5 4 5 ( 5 . 2 2 x 1 0 3 ) [ 7 ] ( P h 4 P ) 2 [ M o S 4 ] 3 2 3 ( 2 . 5 3 x 1 0 4 ) , 4 7 6 ( l . 6 8 x 1 0 4 ) t h i s w o r k ( 3 1 1 $ d e 2 8 2 ( 2 . 6 7 x 1 0 4 ) , 4 0 0 ( 1 8 7 x 1 0 4 ) t h i s w o r k a . i n C H 3 C N A l t h o u g h t h e I R a n d l e i s s p e c t r a o f t h e s e c l u s t e s s h o w c e r t a i n s i m i l a r i t i e s t o e a c h o t h e , t h e y a r e c h a r a c t e r i s t i c o f t h e c o m p o u n d i t s e l f , n a m e l y t h e s p e c t r u m p a t t e r n s r e p r e s e n t t h e c l u s t e r s t r u c t u r e w h i l e t h e p e a k e n e r g i e s d e p e n d o n t h e m e t a l c e n t e r s . T h u s , t h e y c a n b e u s e d f o r d i a g n o s t i c p u r p o s e s . 3 . T h e r m a l D e c o m p o s i t i o n 3 9 6 F i g u r e 7 1 1 s h o w s t h e T G A d i a g r a m s o f t h e f o u r c o m p o u n d s i n t h e t e m p e r a t u r e r a n g e o f 2 5 t o 8 0 0 ' C . N o n e o f t h e c o m p o u n d s i s f o u n d t o u n d e r g o a w e l l d e fi n e d t h e m a l d e c o m p o s i t i o n t h a t r e s u l t s i n t h e l o s s o f a l l t h e o r g a n i c c o m p o n e n t s . F o r i n s t a n c e , t h e o b s e r v e d w e i g h t l o s s o f 5 7 . 2 % u p t o 5 6 0 ° C f o r ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) ] i s l e s s t h a n t h a t c a l c u l a t e d f o r t h e l o s s o f 2 P h 4 P + c a t i o n s p l u s 4 C O g r o u p s ( 7 1 . 2 % ) , o r e v e n l e s s t h a n t h a t o f 2 P h 4 P + c a t i o n s o n l y ( 6 1 . 1 % ) . A s i m i l a r b e h a v i o r i s e x h i b i t e d b y ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) ] . T h e e x p e c t e d w e i g h t l o s s f o r 2 P h 4 P + c a t i o n s p l u s 4 C O g r o u p s , o r f o r 2 P h 4 P + c a t i o n s o n l y i s 6 1 . 4 % a n d 5 2 . 7 % , r e s p e c t i v e l y . H o w e v e r , c . a . 4 1 . 9 % w e i g h t l o s s i s o b s e r v e d u p t o 3 5 5 “ C i n t h e T G A d i a g r a m o f ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) ] , a n d t h e c o m p o u n d i s s t i l l l o s i n g w e i g h t b e y o n d 8 0 0 ° C . T h e c a l c u l a t e d w e i g h t l o s s f o r 2 P h 4 P + c a t i o n s p l u s 8 C O g r o u p s i s 6 8 . 4 % f o r ( P h 4 P ) 2 [ ( C 0 ) 4 M O ( M 0 $ 4 ) M 0 ( C 0 ) 4 ] , a n d 5 1 0 % f o r ( P h 4 P ) 2 [ ( C 0 ) 4 W ( W S 4 ) W ( C 0 ) 4 ] - T h e o b s e r v e d w e i g h t l o s s i s 6 2 % f o r ( P h 4 P ) 2 [ ( C O ) 4 M o ( M o S 4 ) M o ( C O ) 4 ] u p t o 5 5 5 ° C , a n d 4 4 % f o r ( P h 4 P ) 2 [ ( C O ) 4 W ( W S 4 ) W ( C O ) 4 ] u p t o 5 3 6 ° C . T h e s e r e s u l t s i n d i c a t e t h a t c a r b o n i s r e t a i n e d i n t h e r e s i d u a l p r o d u c t s , p e r h a p s f o r m i n g M o a n d W e a r b i d e p h a s e s . 1 I 0 L 0 6 I 1 r 0 J 0 5 ) 4 S W ( l W 4 4 ) ) 0 ) B ( ] ' C 0 [ 0 T p 4 ‘ m e T T 0 0 3 l ) D ( 1 l 0 C C C ( 0 ( W [ I 0 p [ ) 4 m 2 4 1 ) S e T P W 0 I 0 M ( P W 3 ( 4 l 1 ) 0 0 0 0 l I ( C ) 0 B 0 0 8 ' 0 l 0 7 0 0 6 0 0 5 2 0 I 0 I 1 ' 0 . 0 0 8 ) 0 C I ( 0 7 . L 1 2 . [ ( 1 1 2 ) ) 0 4 I P 0 3 1 0 4 1 M h ( P 0 ( o M ) 4 D ) ( ( m 0 a r M g 4 a ) 1 ] C i 0 0 p 4 m A [ 1 G e 2 T ) 0 ? T I 1 0 4 8 3 1 ‘ “ H ( - 0 I 1 0 1 2 ' L 7 0 I 0 e r u 1 g 1 i F 0 0 0 0 0 0 0 1 0 8 9 7 6 1 1 £ b T I T I ' I I ) A ( 0 0 0 0 o 1 0 7 6 s 0 1 1 0 0 8 d C ( n [ a 0 1 2 0 4 ) 8 ) P T 1 0 0 4 0 h C P ( 0 7 l ' I ( 0 0 7 ) M 1 A ) ( 4 0 0 0 0 l I f 5 6 6 O 0 M 1 s T 0 0 0 0 r I 5 5 ] C r 0 [ ) d C 0 [ 0 l p C I ( J ( m ‘ F ' I V I Y O 4 e T r 0 0 l 3 0 r 0 I 2 0 0 I 1 r ‘ r I 0 0 0 0 0 0 0 0 0 0 0 o 0 8 9 7 6 5 1 0 8 6 5 4 I 1 1 1 T W — I I I I I I I I I I I I 1 1 1 1 V I I I 1 1 1 1 I I I I I I I I 1 1 1 1 T T I T I I I I I I I I % M t I I I I I I I I I I I I V I I I 1 1 1 1 I l l l R A I L J i l l 5 0 4 0 4 o l l l l l l l i l l l j ‘ T “ 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 " I I I I I I I ] I I I I T I 1 1 1 1 J r I I I I I L J O I I I I I I I I I I I I J _ . L I I J I I I I I I I I I I I I 9 0 9 0 I I I I I I I T L I I L I I I I $ 8 0 7 0 I I I I I I I I I I L L L L 1 1 1 1 4 1 % M 1 I I I I I I I I T I I I I I I I I I I ] I I I L I _ I I I 1 1 1 1 3 9 7 3 9 8 I V . D i s c u s s i o n F o m ' m i x e d v a l e n c e c l u s t e r s o f t h e t y p e [ { M ( C O ) 4 } n ( M S 4 ) ] 2 ' ( M = M o , W ; n = 1 , 2 ) h a v e b e e n p r e p a r e d f r o m t h e d i r e c t r e a c t i o n s o f M ( C O ) 5 ( M = M o , W ) w i t h N a 2 S 2 i n a o n e - s t e p f a s h i o n u n d e s u p e r h e a t e d M e O H c o n d i t i o n s . B a l a n c e d e q u a t i o n s a r e s h o w n b e l o w : M e O H , 8 0 ' C 2 M ( C O ) 6 + 2 N 3 2 8 2 + 2 P h 4 P C 1 W ( P h 4 P ) 2 1 ( C O ) 4 M ( M 8 4 ) ] + 2 N a C l + 8 C O + 2 N a z s e q . ( 7 - l ) e M e O H , 8 0 ' C 3 M ( C O ) 6 + 3 N 8 2 S 2 + 2 P h 4 P C 1 — W ( P h 4 P ) 2 [ ( C O ) 4 M ( M S 4 ) M ( C O ) 4 ] + 2 N a C l + 1 0 C O + 2 N 8 2 8 C e q - ( 7 - 2 ) M = M o a n d W P u r e s i n g l e c r y s t a l s o f e a c h c o m p o u n d c a n b e o b t a i n e d b y t h e p o p e c o n t r o l o f m o l a r r a t i o s o f t h e r e a c t a n t s a n d r e a c t i o n t i m e s . I n t h e p r e p a r a t i o n s o f t h e t w o t r i m e r s , i n s u f fi c i e n t h e a t i n g t i m e ( i . e a t l e a s t 9 h f o r t h e M o c o m p o u n d a n d 2 0 h f o r t h e W c o m p o u n d ) o f t e n r e s u l t e d i n a m i x t u r e o f d i m e a n d t r i m e r . l i k e w i s e p r o l o n g e d h e a t i n g ( u p t o 6 h ) o n t h e p r e p a r a t i o n o f t h e M o d i m e r a c c o r d i n g t o e q ( 7 1 ) a l s o a f f o r d e d a m i x t u r e o f t h e t w o . H o w e v e r , l o n g e r h e a t i n g t i m e s e e m s t o h a v e l e s s e r e f f e c t o n t h e p r e p a r a t i o n o f t h e W d i m e r . T h e p r o d u c t r e m a i n e d p u r e e v e n t a f t e r 3 0 h h e a t i n g . I n t h e p r e v i o u s l y r e p o r t e d s y n t h e t i c r o u t e s , t h e m e t a l c e n t e r s a t t h e l o w o x i d a t i o n s t a t e i n t h e d i - o r t r i n u c l e a r c l u s t e s w e r e i n t r o d u c e d b y r e a c t i n g [ M S 4 ] 2 ' ( M = M o o r W ) w i t h d i e t h y l d i t h i o c a r b o m a t o c a r b o n y l c o m p l e x e s [ ( C O ) 4 M ( 8 2 C N E t 2 ) ] ° [ 8 - 9 ] , o r w i t h n o r b o r n a d i e n e c a r b o n y l c o m p l e x e s [ ( C O ) 4 M ( C 7 H 3 ) ] [ 7 ] . I n a n a t t e m p t a t p r e p a r i n g t h e s e c l u s t e ‘ s f r o m c o n v e r t i o n a l s o l u t i o n m e t h o d , w e r e a c t e d [ M S 4 ] 2 ' w i t h M ( C O ) 5 i n C H 3 C N a t e l e v a t e d t e m p e r a t u r e ( ~ 8 0 0 C ) . T h e r e a c t i o n s , m o n i t o r e d b y U V / v i s s p e c t r o s c o p y , g a v e n o e v i d e r c e f o r t h e i r f o r m a t i o n . T h e p r o d u c t s i s o l a t e d f r o m t h e r e a c t i o n s w e r e e x c l u s i v e l y [ M S 4 ] 2 ' . T h i s o b s e r v a t i o n i s c o n s i s t e n t w i t h t h e f a c t t h a t r e a c t i o n o f M ( C O ) 5 w i t h K 2 S 4 ( o r K 2 S e 4 ) i n D M F s o l u t i o n g a v e c l e a n [ M S 4 ] 2 ‘ i n q u a n t i t a t i v e y i e l d [ 1 , 4 ] . T h e M ( C O ) 6 + 3 3 ' fl » [ M 3 4 1 2 ' + c o e q . ( 7 - 3 ) 3 9 9 s t a b i l i m t i o n o f t h e c l u s t e r s r e p o r t e d h e r e i s m a i n l y d u e t o t h e f a c t t h a t t h e y a r e r e m o v e d f r o m s o l u t i o n a s s o o n a s t h e y f o r m , s i n c e s u c h c o m p o u n d s a r e i n s o l u b l e i n M e O H . C o n c e p t u a l l y , t h e a b o v e o n e - s t e p s y n t h e t i c r e a c t i o n s u n c l e s o l v o t h e r m a l c o n d i t i o n s r e q u i r e s a n u n e v e n a t t a c k o f d i s u l fi d e o n m e t a l c a r b o n y l m o l e c u l e s i n t h e s a m e s y s t e m : s o m e c a r b o n y l m o l e c u l e s a r e o x i d i z e d t o i t s m a x i m u m o x i d a t i o n s t a t e o f + 6 w i t h l o s s o f a l l C O g r o u p s , o t h e r s r e m a i n i n t a c t i n t h e i r s t a t e 0 w h i l e t w o C O g r o u p s f r o m e a c h m o l e c u l e a r e d i s p l a c e d . T h u s , t h e y r e p r e s e l t r e a c t i v e i n t e r m e d i a t e s i n t h e c o m p l e t e o x i d a t i v e d e c a r b o n y l a t i o n r e a c t i o n r e p o r t e d b y K o l i s a n d c o - w o r k e r s , s e e e q u a t i o n ( 7 3 ) . I t i s w o r t h w h i l e t o n o t e t h a t r e p l a c e m e n t o f K 2 S 4 i n p l a c e o f N a 2 S 2 f o r a l l p r e p a r a t i o n s g a v e t h e s a m e p r o d u c t s , b u t a s m a l l a m o u n t o f ( P h 4 P ) 2 [ M S 4 ] w e r e a l w a y s p r e s e n t . T h e X - r a y d i f f r a c t i o n s t u d i e s h a v e fi r m l y e s t a b l i s h e d t h e i d e l t i t i e s o f t h e c o m p o u n d s . A l l s t r u c t u r e s a r e b a s e d o n t h e c o o r d i n a t i o n o f [ M 8 4 ] 2 ' l i g a n d s t o M ( C O ) 4 f r a g m e n t s , r e s u l t i n g i n f o r m a l l y m i x e d v a l e n c e s y s t e m s . I t s h o u l d b e n o t e d t h a t t h e m e t a l — m e t a l d i s t a n c e s i n b o t h d i n u c l e a r a n d t r i n u c l e a r c l u s t e r s a r e a p p r o a c h i n g n o r m a l m e t a l - m e t a l s i n g l e b o n d s . T h e M — M d i s t a n c e s o f s o m e c o m p l e x e s c o n t a i n i n g [ M ( u - S ) 2 M ] ( M = M o , W ) m o i e t i e s w i t h s i n g l e M — M b o n d , o r e v e n m u l t i p l e M — M b o n d s a r e i n t h e v i c i n i t y o f 2 . 8 0 A f o r M o — M o [ 2 4 - 2 5 ] , a n d 2 . 9 0 A f o r W - W [ 2 6 — 2 7 ] . H o w e v e r , w e b e l i e v e t h a t t h e m e t a l — m e t a l d i s t a n c e s i n t h e c u r r e n t c l u s t e r s a r e t h e c o n s e q u e n c e o f c o n s t r a i n t s c a u s e d b y t h e b r i d g i n g S 2 ' l i g a n d s , n o t n e c e s s a r i l y i m p o s e d b y b o n d i n g n e c e s s i t y . O n t h e o t h e r h a n d , s o m e e l e c t r o n b a c k t r a n s f e r f r o m M 0 t o M 5 + m a y b e e x p e c t e d f r o m t h e s t r o n g a c c e p t o r p r o p e r t i e s o f t h e [ M S 4 ] 2 ‘ l i g a n d s [ 2 8 ] . T h e o b s e r v e d l o w - e n e r g y t r a n s i t i o n , 4 0 0 a t t r i b u t a b l e t o t h e v a l e n t c h a r g e t r a n s f e r , i n t h e i r e l e c t r o n i c s p e c t r a s e e m s t o s u p p o r t t h i s a r g u m e n t [ 1 3 ] . I n s u m m a r y , d e s p i t e t h e i n t e n s i v e s t u d i e s o f u s i n g t e t r a t h i o m e t a l a t e s a s m o l e c u l a r l i g a n d s t o m u l t i n u c l e a r c o m p l e x e s [ 1 1 - 1 4 ] , c o m p o u n d s w i t h [ M S 4 ] 2 ‘ c o o r d i n a t e d t o t h e o r g a n o m e t a l l i c f r a g m e r t s r e m a i n r e l a t i v e l y r a r e [ 2 9 ] . A r g u m e n t s h a v e b e e n a d v a n c e d t h a t o r g a n o m e t a c h c o m p o u n d s c o n t a i n i n g m e t a l c e n t e r s i n d i f f e r e n t o x i d a t i o n s t a t e s m a y d i s p l a y u n u s u a l c a t a l y t i c p r o p e ' t i e s [ 2 8 b ] . G i v e n t h e i m p o r t a n c e o f t h e s e m o l e c u l a r l i g a n d s i n b i o - i n o r g a n i c c h e m i s t r y , t h e s t u d y o f t e t r a t h i o m e t a l a t e c o o r d i n a t i o n c h e m i s t r y w i l l r e m a i n a p r o m i n e n t s u b j e c t . R e c e r t l y , a m m o n i u m t e t r a t h i o m o l y b d a t e a n d a m m o n i u m t e t r a t h i o t u n g s t a t e h a v e b e e r c o m m e c i a l i z e d a s r e a g e n t s [ 3 0 ] . T h e r e l e v a n t q u e s t i o n t o u s a t t h i s s t a g e s e e m s t o b e w h e t h e r h y d r o ( s o l v o ) t b e r m a l m e t h o d c a n a l s o c r e a t e s o m e s y n t h e t i c e x c i t e m e n t i n t h i s fi e l d . F o r e x a m p l e , i s s u c h a m e t h o d c a p a b l e o f p r o v i d i n g a n e w e n t r y t o n o v e l h e t e r o n u c l e a r m e t a l c l u s t e r s c o n t a i n i n g [ M S 4 ] 2 ' u n i t s ? T h e a n s w e r t o t h i s q u e s t i o n m u s t a w a i t f u r t h e r e x p l o r a t i o n [ 3 1 ] . 1 0 . 1 1 . 4 0 1 R E F E R E N C E S J . W . K o l i s , C o o r d . C h e m . R e v . , 1 0 5 ( 1 9 9 0 ) , 1 9 5 - 2 1 9 . W . A . F l o m e r , S . C . O ' N e a l , J . W . K o l i s , D . J e t e r a n d A . W . C o r d e s , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 9 6 9 - 9 7 3 . L . C . R o o f , W . T . P e n n i n g t o n a n d J . W . K o l i s , J . A m C h e m S o c . , 1 1 2 ( 1 9 9 0 ) , 8 1 7 2 - 8 1 7 4 . S . C . O ' N e a l . a n d J . W . K o l i s , J . A m C h e m S o c . , 1 1 0 ( 1 9 8 8 ) , 1 9 7 1 - 1 9 7 3 . L . A . R o o f , W . T . P e n n i n g t o n a n d J . W . K o l i s , I n o r g . C h e m , 3 1 ( 1 9 9 2 ) , 2 0 5 6 - 2 0 6 4 . S . C . O ' N e a l . a n d J . W . K o l i s , I n o r g . C h e m , 2 8 ( 1 9 8 9 ) , 2 7 8 0 - 2 7 8 3 . L . D . R o s e n h e i n a n d J . W . M c D o n a l d , I n o r g . C h e m , 2 6 ( 1 9 8 7 ) , 3 4 1 4 - 3 4 1 6 . B . Z h u a n g , P . Y u , L . H u a n g a n d J . L u , I n o r g . C h i m A c t a , 1 6 2 ( 1 9 8 9 ) , 1 2 1 - 1 2 6 . B . Z h u a n g , P . Y u , L . H u a n g , L . H e a n d J . L u , I n o r g . C h i m A c t a , 1 7 7 ( 1 9 9 0 ) , 2 3 9 - 2 4 6 . S e e c h a p t e r s 5 & 6 . ( a ) A . M i ‘ r l l e r , E . D i e m a n n a n d C . K . J o r g e n s e n , S t r u c t . B o n d i n g , 1 4 ( 1 9 7 3 ) , 2 3 — 4 7 . ( b ) E . D i e m a n n a n d A . M fi l l e r , C o o r d . C h e m R e v . , 1 0 ( 1 9 7 3 ) , 7 9 - 1 2 2 . ( c ) A . M l ’ i l l e r , E . D i e m a n n , R . J o s t e s a n d H . B o g g e , A n g e w . C h e m . I n t . E d . E n g L , 2 0 ( 1 9 8 1 ) , 9 3 4 - 9 5 5 . 1 2 . 1 3 . 1 4 . 1 5 . 1 6 . 1 7 . 1 8 . 1 9 . 2 0 . 4 0 2 ( a ) A . M fi l l e r , R . J o s t e s , V . F l e m m i n g a n d R . P o t t h a s t , I n o r g . C h i m A c t a , 4 4 ( 1 9 8 0 ) , L 3 3 - L 3 5 . ( b ) A . M l ’ i l l e r , W . H e l l m a n n , J . S c h n e i d e r , U . S c h i m a n s k i , U . D e m m e r , A . T r a u t w e i n a n d U . B e n d e r , I n o r g . C h i m A c t a , 6 5 ( 1 9 8 2 ) , L 4 1 - L 4 2 . ( c ) A . M i ‘ l l l e r , W . H e l l m a n n , U . S c h i m a n s k i , R . J o s t e s a n d W . E . N e w t o n , Z . N a t u r f o r s c h , 3 8 B ( 1 9 8 3 ) , 5 2 8 - 5 2 9 . D . C o u c o u v a n i s , A c c . C h e m R e s . , 1 4 ( 1 9 8 1 ) , 2 0 1 - 2 0 9 . ( a ) P . S t r e m p l e , N . C . B a e n z i g e r , D . C o u c o u v a n i s , J . A m C h e m S o c . , 1 0 3 ( 1 9 8 1 ) , 4 6 0 1 — 4 6 0 3 . ( b ) D . C o u c o u v a n i s , E . D . S i m h o n , P . S t r e m p l e , M . R y a n , D . S w e n s o n , N . C . B a e n z i g e r , A . S i m o p o u l o s , V . P a p a e f t h y m i o u , A . K o s t i k a s a n d V . P e t r o u l e a s , I n o r g . C h e m , 2 3 ( 1 9 8 4 ) , 7 4 1 - 7 4 9 . ( c ) D . C o u c o u v a n i s a n d A . H a d j i k y r i a c o u , I n o r g . C h e m , 2 6 ( 1 9 8 7 ) , 1 - 2 . D . D . P e r r i n , W . L . F . A r m a r e g o a n d D . R . P e r r i n , P u r i fi c a t i o n o f L a b o r a t o r y C h e m i c a l s , 2 n d E d , P e r g a m o n P r e s s , O x f o r d U K , 1 9 8 0 . S e e c h a p t e r 2 . M S C / A F C D i fi i ' a c t o m e t e r C o n t r o l S o fl w a r e , M o l e c u l a r S t r u c t u r e C o r p o r a t i o n , T h e W o o d l a n d s , T e x a s . G . M . S h e l d r i c k i n C r y s t a l l o g r a p h i c C o m p u t i n g , G . M . S h e l d r i c k , C . K r u g e r , a n d R . D o d d a r d , O x f o r d U n i v e r s i t y P r e s s , 1 9 8 5 , p . 1 7 5 - 1 8 9 . N . W a l k e r a n d D . S t u a r t , A c t a C r y s t a l l o g r . , 3 9 A ( 1 9 8 3 ) , 1 5 8 - 1 6 6 . T E X S A N : S i n g l e C r y s t a l S t r u c t u r e A n a l y s i s S o f t w a r e , V e r s i o n 5 . 0 , M o l e c u l a r S t r u c t u r e C o r p o r a t i o n , T h e W o o d l a n d s , T e x a s . 2 1 . 2 2 . 2 2 . 2 3 . 2 4 . 2 5 . 2 6 . 4 0 3 H . P . K l u g a n d L . E . A l e x a n d e r , X - r a y D i fi i a c t i o n P r o c e d u r e s f o r P o l y c r y s t a l l i n e a n d A m o r p h o u s M a t e r i a l s , J o h n W i l e y a n d S o n s , N e w Y o r k , 1 9 7 4 . D . K . S m i t h , M . C . N i c h o l s a n d M . E . Z o l e n s k y , P O W D I O : A F o r t r a n I V P r o g r a m f o r C a l c u l a t i n g X - r a y P o w d e r D i fi a t i o n P a t t e r n s , V e r s i o n 1 0 , P e n n s y l v a n i a S t a t e U n i v e r s i t y , 1 9 8 3 . K . S a s v a r i , A c t a C r y s t a l l o g r . , 1 6 ( 1 9 6 3 ) , 7 1 9 - 7 2 4 . P . J . I a p a s s e t , N . C h e z e a u a n d P . B e l o u g n e , A c t a C r y s t a l l o g r . , 3 2 B ( 1 9 7 6 ) , 3 0 8 7 - 3 0 8 8 . ( a ) G . B u n z e y , J . H . E n e m a r k , J . K . H o w i e a n d D . T . S a w y e r , J . A m . C h e m S o c . , 9 9 ( 1 9 7 7 ) , 4 1 6 8 - 4 1 6 9 . ( b ) G . B u n z e y a n d J . H . E n e m a r k , I n o r g . C h e m , 1 7 ( 1 9 7 8 ) , 6 8 2 - 6 8 8 . ( c ) J . T . H u n e k e a n d J . H . E n e m a r k , I n o r g . C h e m , 1 7 ( 1 9 7 8 ) , 3 6 9 8 - 3 6 9 9 . ( a ) A . M l ’ i l l e r , W . O . N o l t e a n d B . K r e b s , A n g e w . C h e m I n t . E d . E n g l , 1 7 ( 1 9 7 8 ) , 2 7 9 - 2 7 9 . ( b ) A . M i i l l e r , W . O . N o l t e a n d B . K r e b s , I n o r g . C h e m , 1 9 ( 1 9 8 0 ) , 2 8 3 5 - 2 8 3 6 . ( c ) W . C l e g g , G . C h r i s t o u , C . D . G a r n e r a n d G . M . S h e l d r i c k , I n o r g . C h e m , 2 0 ( 1 9 8 1 ) , 1 5 6 2 - 1 5 6 6 . ( ( 1 ) W . - H . P a n , M . A . H a r m e r , T . R . H a l b e ' t a n d E . I . S t i e f e l , J . A m C h e m S o c . , 1 0 6 ( 1 9 8 4 ) , 4 5 9 - 4 6 0 . ( a ) A . M i i l l e r , M . R o m e r , C . R t ' i m e r , U . R e i n s c h - V o g e l l , H . E d g e a n d U . S c h i m a n s k i , M o n a t s c h . C h e m , 1 1 6 ( 1 9 8 5 ) , 7 1 1 - 7 1 7 . ( b ) A . M i i l l e r , H . B é g g e , E . K r i c k e m e y e r , G . H e n k e l a n d B . K r e b s , Z N a t u r f o r s c h , 3 7 B ( 1 9 8 2 ) , 1 0 1 4 - 1 0 1 9 . ( c ) S . A . C o h e n a n d E . I . S t i e f e l , I n o r g . C h e m , 2 4 ( 1 9 8 5 ) , 4 6 5 7 - 4 6 6 2 . 2 7 . 2 8 . 2 9 . 3 0 . 3 1 . 4 0 4 ( a ) S . B h a d u r a n d J . A . I b e r s , I n o r g . C h e m , 2 5 ( 1 9 8 6 ) , 3 4 . ( a b ) R . W . M . W a r d l e , S . B h a d u r i , C . - N . C h a u a n d J . A . I b e r s , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 1 7 4 7 - 1 7 5 5 . ( a ) K . E . H o w a r d , T . B . R a u c h f u s s a n d S . R . W i l s o n , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 1 7 1 0 - 1 7 1 6 . ( D ) K . E . H o w a r d , J . R . L o c k e m e y e r , M . A . M a s s a , T . B . R a u c h f u s s , S . R . W i l s o n a n d X . Y a n g , I n o r g . C h e m , 2 9 ( 1 9 9 0 ) , 4 3 8 5 - 4 3 9 0 . ( a ) K . E . H o w a r d , T . B . R a u c h f u s s a n d S . R . W i l s o n , I n o r g . C h e m , 2 7 ( 1 9 8 8 ) , 3 5 6 1 - 3 5 6 7 . ( b ) M . K a t o , M . K a w a n o , H . T a n i g u c h i , M . F u n a k i , H . M o r i y a m a , T . S a t o a n d K M a t s u m o t o , I n o r g . C h e m , 3 1 ( 1 9 9 2 ) , 2 6 - 3 5 . T h e S t r e m C h e m i k e r , V o l . X I V N o . 1 , O c t o b e t , 1 9 9 2 . S e e c h a p t e r 8 . C H A P T E R 8 C O N C L U S I O N S I n t h i s w o r k w e h a v e d e v e l o p e d s u i t a b l e s y n t h e t i c m e t h o d s f o r m a k i n g v a r i o u s m e t a l p o l y c h a l c o g e r i d e c o m p o u n d s . F i r s t , r e a c t i o n s o f D M F e x t r a c t e d Z i n t l a n i o n s s z ‘ ( Q = S e , T e ; n = 1 - 5 ) w i t h p r o p e r g o l d s a l t s p r o v i d e u s w i t h a c o n v e n i e n t e r t r y i n t o t h e p o l y s e l e r i d e c h e m i s t r y o f t h i s c o i n a g e m e t a l . S i m i l a r l y , t h e s y n t h e s i s o f t h e C O — c o n t a i n i n g t r a n s i t i o n m e t a l c o m p l e x e s , a n d t h e h o m o - a n d h e t e o p o l y c h a l c o g e n i d e c o m p o u n d s i n D M F s o l u t i o n i s a l s o r e a d i l y a c h i e v e d b y t h e s a m e m e t h o d . T h u s , w e h a v e d e m o n s t r a t e d t h a t i n s o l u t i o n , a l k a l i m e t a l c h a l c o g e n i d e s A 2 Q x ( A = N a o r K ; Q = S , S e a n d T e ) a r e g o o d s t a r t i n g m a t e i a l s f o r m a k i n g m e t a l p o l y c h a l c o g e n i d e c o m p l e x e s . T h i s s y n t h e t i c a p p r o a c h i s n o t o n l y r a t i o n a l b u t a f a r m o r e a c c e s s i b l e r o u t e t h a n a n y p r e v i o u s m e t h o d s . S e c o n d , o u r e x p l o r a t i o n i n a p p l y i n g h y d r o ( s o l v o ) t h e ' m a l t e c h n i q u e t o t h e s y n t h e s i s o f t r a n s i t i o n m e t a l c a r b o n y l c h a l c o g e n i d e c o m p o u n d s h a s b e e n r e w a r d e d w i t h d i s c o v e r i e s o f m a n y n o v e l c l u s t e r s . A l t h o u g h h y d r o ( s o l v o ) t h e r m a l m e t h o d h a s b e e n k n o w n f o r m o r e t h a n a c e n t u r y , t h e c u r r e n t i n t e r e s t o f u s i n g t h i s t e c h n i q u e t o i n o r g a n i c s y n t h e s i s i s f o c u s e d o n s o l i d - s t a t e c o m p o u n d s [ l ] . R e s e a r c h e f f o r t s a t e x p l o r i n g t h e u s e o f t h i s t e c h n i q u e t o s y n t h e s i z e o r g a n o m e t a l l i c c o m p o u n d s h a v e n o t b e e n m a d e t o a n y a p p r e c i a b l e e x t e n t [ 2 ] . O u r w o r k w i l l c h a n g e t h e m i s c o n c e p t i o n t h a t h y d r o ( s o l v o ) t h e r m a l c h e m i s t r y i s a p p l i e a b l e o n l y t o m e t a l o x i d e s , s i l i c a t e s , e t c [ 3 ] . T h e r e m a r k a b l e f e a t u r e e x h i b i t e d b y t h e c o m p o u n d s d e s c r i b e d i n t h i s d i s s e r t a t i o n i s t h e fl e x i b i l i t y o f t h e p o l y c h a l c o g e r i d e l i g a n d s t o w a r d s m e t a l i o n s . W e h o p e t h a t t h e r e a d e r s h a v e b e e n c o n v i n c e d t h a t h e a v y p o l y c h a l c o g e n i d e a n i o n s S e n z “ a n d T e n z ’ , l i k e 4 0 5 4 0 6 p o l y s u l fi d e s S n z ' , a r e s o v e r s a t i l e t h a t t h e i r c o o r d i n a t i o n c h e m i s t r y t o w a r d s m e t a l i o n s i s v i r t u a l l y i n e x h a u s t i b l e . T h i s c a n b e c h i e fl y a t t r i b u t e d t o t h e f a c t t h a t p o l y c h a l c o g e n i d e l i g a n d s a r e k e e n t o r e s p o n d , b y a d j u s t i n g t h e i r c o o r d i n a t i o n m o d e s , t o t h e d e m a n d s o f t h e m e t a l i o n s , w h e t h e r t h e s e d e m a n d s a r e o f e l e c t r o n i c o r s t e r i c n a t u r e . S u c h v e r s a t i l e c o o r d i n a t i o n a b i l i t i e s o f t h e p o l y c h a l c o g e n i d e l i g a n d s a r e t h e n m a n i f e s t e d b y v a r i e t y o f s t r u c t u r e s e x h i b i t e d b y t h e i r m e t a l c o m p l e x e s . F o r e x a m p l e , t h e y c a n b e d i s c r e t e m o l e c u l e s , c l u s t e r s o r e v e n p o l y m e r i c n e t w o r k s [ 4 - 5 ] . O f c o u r s e , a l l t h i s a l s o u n d e r m i n e s o u r a b i l i t y t o p r e d i c t t h e i r s t r u c t u r e s . A t t h i s s t a g e , a t l e a s t t w o d i r e c t i o n s m a y b e t a k e n t o f u r t h e r i n v e s t i g a t e t h e fi e l d . T h e s y n t h e s i s o f s o l u b l e m e t a l p o l y t e l l u r i d e c o m p l e x e s s e e m s t o b e a g r e a t e ' c h a l l e n g e t h a n t h a t o f p o l y s e l e n i d e s . U n d e r t h e s a m e c o n d i t i o n s , m e t a l p o l y t e l l u r i d e c o m p l e x e s a r e m u c h l e s s s t a b l e . T h e r e a c t i o n m i x t u r e s o f M a i / T e x } i n t h e p o l a r s o l v e n t s t e r d t o d e p o s i t e T e fi l m s o n t h e r e a c t o r w a l l s [ 6 ] . I n o r d e r t o e s t a b l i s h t h e f u n d a m e n t a l s o f m e t a l p o l y c h a l c o g e n i d e c h e m i s t r y , m o r e a t t e n t i o n m u s t b e n o w p a i d t o m e t a l p o l y t e l l u r i d e s [ 4 b , 7 ] . F o r t h e h y d r o ( s o l v o ) t h e ' r n a l s y n t h e s i s o f o r g a n o m e t a l l i c c o m p o u n d s , r e a c t i o n s i n v o l v i n g o t h e ' l i g a n d s s u c h a s c y c l o p e n t a d i e n y l s , p h o s p h i n e s , e t c m u s t b e e x p l o r e d . C o n v e r t i o n a l l y , s y n t h e s e s o f o r g a n o m e t a l l i c c o m p o u n d s r e q u i r e t h e s e l e c t i o n o f s u i t a b l e s o l v e n t s f o r p r o d u c i n g h o m o g e n o u s s o l u t i o n s i n w h i c h c h e m i c a l r e a c t i o n s c a n t a k e p l a c e [ 8 ] . W h e n s o l v e r t s a r e b r o u g h t t o n e a r - o r s u p e r c r i t i c a l c o n d i t i o n s , r e a c t a n t s n e e d n o t b e c o m p l e t e l y d i s s o l v e d , m a i n l y b e e a u s e t h e d i f f u s i o n p r o c e s s e s a r e r a p i d e n o u g h t o e x t r a c t t h e u n d i s s o l v e d s o l i d s t o b r i n g a b o u t r e a c t i o n s . T h e r e f o r e , r e a c t a n t s a n d p r o d u c t s t h a t a r e i n s o l u b l e u n d e r ” n o r m a l ” c o n d i t i o n s m a y b e c o m e s o l u b l e a t s u b - o r s u p e r - c r i t i c a l t e m p e r a t u r e s . T h e g r e a t e s t a d v a n t a g e o f u s i n g s u c h a t e c h n i q u e t o c a r r y o u t o r g a n o m e t a l l i c s y n t h e s i s s e e m s t o b e i t s f a c i l i t a t i o n o f c r y s t a l g r o w t h f o r n e w c o m p o u n d s , w h i c h i s n o t a l w a y s a n e a s y t a s k f o r t h e o r g a n o m e t a l l i c c h e m i s t . M o r e o v e , t h e c h e m i s t r y a t t h e s e c o n d i t i o n s s h o u l d b e l a r g e l y d i f f e r e n t f r o m t h a t a t a m b i e r t t e m p e a t u r e s a n d p r e s s u r e s a s 4 0 7 t h e r e s u l t o f t h i s d i f f e r e n t s o l v e n t b e h a v i o r . T h r o u g h t h e s y n t h e s i s o f y e t n e w h o m o n u c l e a r a n d h e t e r o n u c l e a r t r a n s i t i o n m e t a l o r g a n o m e t a l l i c / p o l y c h a l c o g e n i d e c l u s t e r s , t h i s m e t h o d w i l l f u r t h e r b r o a d e n t h e h o r i z o n o f p o l y c h a l c o g e n i d e c h e m i s t r y [ 9 ] . 4 0 8 R E F E R E N C E S S e v e r a l r e v i e w a r t i c l e s d e a l i n g w i t h d i f f e r e n t a s p e c t s o f h y d r o t h e r m a l r e s e a r c h a r e a v a i l a b l e , s e e ( a ) A . J . E l l i s a n d W . S . F y f e , R e v . P u r e a n d A p p l . C h e m , 7 ( 1 9 5 7 ) , 2 6 1 - 3 1 6 . ( b ) R . A . L a u d i s e , P r o g . I n o r g . C h e m , 3 ( 1 9 6 2 ) , 1 - 4 7 . ( c ) L . M . D e m i a n e t s a n d A . N . L o b a c h e v i n C r y s t a l l i z a t i o n P r o c e s s u n d e r H y d r o t h e r m a l C o n d i t i o n s , A . N . L o b a c h e v E d , C o n s u l t a n t s B u r e a u , N e w Y o r k , 1 9 7 3 , p 1 . H . K . C h a e , W . G . K l e m p e r e r , D . E . P . L o y o , V . W . D a y a n d T . A . E b e r s p a c h e r , I n o r g . C h e m , 3 1 ( 1 9 9 2 ) , 3 1 8 7 - 3 1 8 9 , a n d r e f e r e n c e s t h e r e i n . ( a ) R . M . B a r r e r , H y d r o t h e r m a l C h e m i s t r y o f Z e o l i t e s , A c a d e m i c P r e s s , N e w Y o r k , 1 9 8 2 . ( b ) A . R a b e n a u , A n g e w . C h e m . I n t . E d . E n g l , 2 4 ( 1 9 8 5 ) , 1 0 2 6 - 1 0 4 0 . ( c ) R . A . I a u d i s e , C h e m & E n g i n . N e w s , S e p t 2 8 ( 1 9 8 7 ) , 3 0 - 4 3 . ( a ) S . D h i n g r a a n d M . G . K a n a t z i d i s , S c i e n c e , 1 9 9 2 , i n p r e s s . ( b ) K . - W . K i m a n d M . G . K a n a t z i d i s , s u b m i t t e d t o I n o r g . C h e m ( c ) . S . - P . H u a n g a n d M . G . K a n a t z i d i s , I n o r g . C h e m , 3 0 ( 1 9 9 1 ) , 1 4 5 5 - 1 4 6 6 . ( d ) K . - W . K i m a n d M . G . K a n a t z i d i s , J . A m C h e m S o c . , 1 1 4 ( 1 9 9 2 ) , 4 8 7 8 - 4 8 8 3 . ( e ) J . — H . L i a o a n d M . G . K a n a t z i d i s , I n o r g . C h e m , 3 1 ( 1 9 9 2 ) , 4 3 1 - 4 3 9 . R . C . H a u s h a l t e r , A n g e w . C h e m I n t . E d . E n g l , 2 4 ( 1 9 8 5 ) , 4 3 3 — 4 3 5 . S . - P . H u a n g , S . D h i n g r a , K . - W . K i m a n d M . G . K a n a t z i d i s , u n p u l i s h e d r e s u l t s . K . - W . K i m , G r o u p M e e t i n g P r e s e n t a t i o n , M i c h i g a n S t a t e U n i v e r s i t y , 1 9 9 2 . C h . E l s c h e n b r o i c h a n d A . S a l z e r , O r g a n o m e t a l l i c s : A C o n c i s e I n t m d u c t i o n , 2 n d E d . , V C H P u b l i s h e r s , I n c . , N e w Y o r k , 1 9 9 2 . S . - P . H u a n g a n d M . G . K a n a t z i d i s , w o r k i n p r o g r e s s . " I l l l l ’ l l l l l l l l l l l 1 ' “