it g
i il
g it

s
A
S T A AT I e



THESIS

ER I

293 01050 6339

This is to certify that the
dissertation entitled
The Effect of Interface and Arrangement of Inclusions

on Local Stress Fields and Fracture of Model Composites

presented by

Ahmed Al-Ostaz

has been accepted towards fulfillment
of the requirements for

Ph.D. degree in Mechanics
nona 1. W
Major professor
May 3, 1996

Date

MSU is an Affirmative Action/Equal Opportunity Institution 0-12m



LIBRARY

Michigan State
University

PLACE N RETURN BOX to remove this checkout from your record.
TO AVOID FINES retum on or before date due.

DATE DUE DATE DUE DATE DUE

T
|

MSU ls An Affirmative Action/E qual Opportunity Institution
cAcirc\datedus.

pm3-p.1




THE EFFECT OF INTERFACE AND ARRANGEMENT OF
INCLUSIONS ON LOCAL STRESS FIELDS AND FRACTURE
OF MODEL COMPOSITES

By

Ahmed Al-Ostaz

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Materials Science and Mechanics

1996



ABSTRACT

THE EFFECT OF INTERFACE
AND ARRANGEMENT OF INCLUSIONS

ON LOCAL STRESS FIELDS AND FRACTURE

OF MODEL COMPOSITES

By

Ahmed Al-Ostaz

We consider a model composite material consisting of a thin epoxy plate (matrix)
reinforced with circular copper disks (inclusions) and subjected to either a uniaxial tension
or to thermal strains. At each inclusion-matrix interface there is an interfacial layer, the
interphase, which has uniform properties. Inclusions are arranged in the matrix at random
but with the restriction that they are not allowed to overlap and there is a minimum separa-
tion distance between them. For a comparison we also consider two periodic arrange-
ments: square and triangular. We study elastic fields of such a composite both
experimentally using a photoelasticity method and numerically with a finite element
method. For a more basic understanding of this problem we consider a single inclusion

and several inclusions solutions, too.
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We also investigate crack initiation and propagation in both elastic-brittle (epoxy) and
ductile (aluminum) sheets, each containing randomly distributed holes and subjected to a
uniaxial tension. In this study, which includes both numerical and experimental results,
we find that the crack paths in sheets containing holes are not unique and thus a stochastic
fracture analysis is needed. This study also sets a basis for a fracture analysis of more
complex material systems involving two phase composite materials with randomly
arranged inclusions.

Finally, we study a problem involving an elastic circular inclusion embedded in a
half-plane and subjected to transformation strains. The inclusion-matrix interface is either
perfectly bonded or is allowed to slip, while the straight edge of the half-plane is either
fixed or is allowed to move freely in the horizontal direction (frictionless). We compare
our results with a recently obtained solution of an inclusion in a half-plane with a traction-
free edge (Lee et al., 1992) and show that the boundary conditions have a significant effect

on stress fields.
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around an isolated hole for an applied uniaxial tensile loading in the vertical direction.
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Fig. 4.3 Isochromatic fringe pattern obtained by photoelasticity for an epoxy matrix with a

holes and subjected to a uniaxial tensile loading of 1 ksi.

Fig. 4.4 Isochromatic fringe pattern obtained by photoelasticity for an epoxy matrix with a
23% volume fraction holes at the middle portion of the specimen and subjected to a uniax-

ial tensile loading of 492.5 psi in the vertical direction.

Fig. 4.5 Isochromatic fringe pattern obtained by photoelasticity for an epoxy matrix with a
31% volume fraction holes at the middle portion of the specimen and subjected to a uniax-

ial transverse loading of 492.5 psi in the vertical direction.

Fig. 4.6 Stress contours of (al - 0'2)/ S in an elastic sheet perforated with holes of vol-

ume fraction 23% and subjected to a uniaxial tensile loading in the vertical direction.

Fig. 4.7 Stress contours of (o] - 02)/ % in an elastic sheet perforated with holes of vol-

ume fraction 31% and subjected to a uniaxial tensile loading in the vertical direction.

Fig. 4.8 Stress contours of (max(c], 0‘2))/ S, in an elastic sheet with two holes aligned

ata) €, =0 ,b)0,, = n/2,andc)6,,. = ®/4 for an applied uniaxial tensile load-

ing in the vertical direction.
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Fig. 4.9 Effect of inclination angle 6,, . on the maximum principal stress

(max(ol, 0’2))/ S, in an elastic sheet with two holes separated by a constant distance d

Fig 4.10 Effect of separation distance between two holes inclined at 6,

inc =0 or

0,,c = T/2 on the maximum principal stress (max(ol, 0'2))/ c, in an elastic sheet.
Fig 4.11 Effect of number of holes in a row inclinedat 6,,. = 0 or0, = n/2 witha

separation distance of d = a between each two holes on the maximum principal stress in

an elastic sheet.

Fig. 4.12 Crack propagation between two isolated holes using a) adaptive meshing tech-

nique b) a relatively crude mesh.

Fig. 4.13 Crack initiation and propagation in an epoxy sheet, with randomly distributed
holes of volume fraction f = 31%, subjected to a uniaxial displacement in the vertical

direction (experimentally).
Fig. 4.14 Crack initiation and propagation in an epoxy sheet with randomly distributed

holes of volume fraction (f = 23%), subjected to a uniaxial displacement loading (experi-

mentally), for two different samples.
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Fig. 4.15 Crack initiation and propagation in an epoxy sheet, with randomly distributed
holes, subjected to a uniaxial tensile loading using the elastic strain energy fracture crite-
rion with a mesh size = 0.4a around the holes (selected 12 steps) as obtained by a finite

element method.

Fig. 4.16 The final crack pattern obtained numerically by finite element method using (a)
the maximum principal stress criterion with a mesh size of 0.4a around the holes, (b) the

maximum principal stress fracture criterion with a mesh size of 0.2a around the holes, and
(c) the elastic strain energy fracture criterion with a mesh size of 0.4a around the holes for

a brittle elastic material with volume fraction f = 23%.

Fig. 4.17 The final crack pattern obtained numerically by finite element method using (a)
the maximum principal stress criterion with a mesh size of.4a around the holes, (b) the
maximum principal stress fracture criterion with a mesh size of.2a around the holes, and
(c) the elastic strain energy fracture criterion with a mesh size of.4a around the holes for a

brittle elastic material with volume fraction f = 31%

Fig. 4.18 (a-g) The final crack pattern in a brittle elastic material with holes of volume
fraction f = 23% obtained numerically using finite difference method for different mesh

sizes.

Fig. 4.19 Final crack pattern in an epoxy sheet with randomly distributed holes, subjected

to a uniaxial displacement loading, obtained experimentally from two samples with the
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same hole arrangement with volume fraction f = 31%.

Fig. 4.20 Final crack pattern in an epoxy sheet with randomly distributed holes, subjected
to a uniaxial displacement loading as obtained experimentally from two samples with the

same hole arrangement with volume fraction f = 23%.

Fig. 4.21 Schematic plot of the final crack pattern in an epoxy sheet with randomly distrib-
uted holes and subjected to a uniaxial displacement loading, obtained experimentally,

from seven samples with the same hole arrangement with volume fraction f=23%.

Fig. 4.22 Schematic plot of the final crack pattern in an epoxy sheet with randomly distrib-
uted holes, subjected to a uniaxial displacement loading, obtained experimentally from

five samples with the same hole arrangement with volume fraction f = 31%.

Fig. 4.23 Schematic plot of the final crack pattern in an epoxy sheet with randomly dis-
tributed coated inclusions with a compliant coating subjected to a uniaxial displacement

loading, obtained experimentally from four samples with the same arrangement.

Fig. 4.24 Schematic plot of the final crack pattern in an epoxy sheet with randomly distrib-
uted holes or inclusions coated with a compliant coating and subjected to a uniaxial dis-
placement loading obtained experimentally from nine samples with the same hole

arrangement.
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Fig. 4.25a. Crack initiation and propagation in an epoxy sheet with randomly distributed

coated inclusions subjected to a uniaxial displacement loading (experimentally)

Fig. 4.25b Crack branching in an epoxy sheet with randomly distributed coated inclusions.

Fig 4.26 Stress contours of (01 - 02)/ o, of a partially cracked specimens subjected to a

uniaxial tensile loading in the vertical direction using photoelasticity.

Fig 4.27 Stress contours of (max(cl, 0'2))/ ©, of a partially cracked specimen subjected

to a uniaxial tensile loading in the vertical direction using FEM.

Fig 4.28 Stress contours of (0, -0,)/0, of an elastic material perforated with holes of f

= 31% and subjected to a uniaxial tensile loading in the vertical direction which shows a

localization of stresses.

Fig 4.29 A typical stress strain curve of an epoxy sheet with perforated holes for a) seven
different specimens of the same geometric arrangement with f = 23%, b) a comparison
between elastic response of two sheets having two volume fractions of holes for the same

locations of holes centers.

Fig. 4.30 (a-b) Crack initiation and propagation in an aluminum sheet, with randomly dis-

tributed holes of volume fraction (f=23%), subjected to a uniaxial displacement loading
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(experimentally) for two selected samples.

Fig. 4.31 Final crack pattern in an aluminum sheet, with randomly distributed holes, sub-
jected to a uniaxial displacement loading obtained experimentally from two samples with

the same hole arrangement with volume fraction f= 23%.

Fig. 4.32 Schematic plot of the final crack pattern in an aluminum sheet, with randomly
distributed holes and subjected to a uniaxial displacement loading, obtained experimen-

tally from seven samples with the same hole arrangement with volume fraction f= 23%.

Fig. 4.33 (a-b) Crack initiation and propagation in an aluminum sheet, with randomly dis-
tributed holes of volume fraction f= 31% and subjected to a uniaxial displacement loading

(experimentally), for two selected samples.

Fig. 4.34 Final crack pattern in an aluminum sheet, with randomly distributed holes, sub-
jected to a uniaxial displacement loading obtained experimentally from two samples with

the same hole arrangement with volume fraction f = 31%.

Fig. 4.35 Schematic plot of the final crack pattern in an aluminum sheet, with randomly
distributed holes and subjected to a uniaxial displacement loading, obtained experimen-
tally from seven samples with the same hole arrangement with volume fraction f = 31%.

Fig. 4.36 Strain energy density stress contours using finite element around randomly dis-
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tributed holes of volume fraction a) f=23% b) f=31% in an aluminum sheet at the initiation

of cracking (when €,,= -0.25.

Fig.437 o, f_'f/ o y stress contours using finite element around randomly distributed holes

of volume fraction a) f = 23% and b) f = 31% in an aluminum sheet at the initiation of

cracking (when € 2= -0.25 where oy is the yield stress of the aluminum.

Fig. 4.38 Final crack pattern obtained numerically by finite element method using the min-
imum strain criterion with a mesh size of 0.4a around the holes for a) f =23% and b) f =

31%.

Fig 4.39 A typical stress strain curve of an aluminum sheet with holes a) for five different
specimens of the same geometric arrangement with f = 23% and b) a comparison between
elastic response of two sheets having two volume fractions of holes for the same geomet-

ric arrangement.

Fig. 5.1 A circular inclusion in a half-plane.

Fig. 5.2 The hoop stress Ggg = o, in the matrix at point M versus the inclusion radius a
when

x X -
&, =g, =¢,*and T = 100.
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Fig. 5.3 The hoop stress Gg¢ = O, in the matrix at point N versus the inclusion radius a

when

€. * = e”,* =g,* and T = 100.
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Fig. 5.4 The hoop stress Ggq = O, in the matrix at point P versus the inclusion radius a

when

&, =€, =¢,*andI = 100.
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Fig. 5.5 The radial stress 6, = &, in the matrix at point M versus the inclusion radius

XX

a when

* * * -
g, =€, =€, *and T = 100.

Fig. 5.6 The radial stress 6,, = G,, in the matrix at point N versus the inclusion radius a

xx
when
* = * - * =
€ =g, =€, and T = 100.

Fig. 5.7 The radial stress 6,, = &, in the matrix at point P versus the inclusion radius a

XX

when

x - * - * -
&, =€, =€, *andI = 100.
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Fig. 5.8 The effective stress 6, in the matrix at point M versus the inclusion radius a

when

x X - * -
€.F =€, =€, and I' = 100.

Fig. 5.9 The effective stress G, in the matrix at point N versus the inclusion radius a

when

* - * — * =
€, =§&,* =¢,*and " = 100.

Fig. 5.10 The hoop stress Ggq = O, in the matrix at point N versus I when
v=v=03,

* = x * -
€, = €,* =€, * anda=08.

Fig. 5.11 The radial stress 6,, = 6, in the matrix at point N versus the shear moduli

XX

ratio I’

wheng * =¢ *=¢ . *,v=V=03,anda=038.

Fig. 5.12 The stress G, in the matrix and in the inclusion along the x-axis when

g, =¢,*=¢,*v=v=03T=100,anda=0.6.

Fig. 5.13 The stress 6,4 along the matrix-inclusion interface versus the angle 8 when
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€' =€, =¢€,*v=V=03T=100,anda=06.
Fig. 5.14 The jump in the tangential displacement 2G[ug] along the matrix-inclusion
interface

versus the angle 6 whene ,* = ¢, * =€,*,v=V =03, =100,anda=

0.6.

Fig. 5.15 The stress 0,4 along the matrix-inclusion interface versus the angle @ when

€,* =26,* =¢,*v="9=03T=100,anda=08.

Fig. 5.16 The stress 0,y along the matrix-inclusion interface versus the angle 6 when

2e * = ey),* = ezz"‘,v =v=03,T =100,anda=0.8.
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CHAPTER 1

INTRODUCTION

Finding local stress fields in matrix-inclusion composite materials is very important
since the presence of inclusions may give rise to stress concentrations in the composite
which in turn may result in an initiation of cracking and/or plasticity. The magnitude of
these stresses depends on many factors which include the material constants of constitu-
ents, the shape and relative size of inclusions, the boundary conditions at the inclusion-
matrix interfaces, the geometric arra;ngement of inclusions and the proximity to the sur-
face. Physically, inclusions may represent reinforcing bars in a concrete slab or fibers in a
composite material, for example.

Inclusion problems have been addressed by many researchers, but most of the solu-
tions involved a single perfectly bonded inclusion embedded in an infinite material
(Eshelby, 1957; Mura, 1987).

The geometric distribution of fibers in a composite material is often approximated by
assuming a periodic arrangement of inclusions. This simplifies considerably this compli-
cated problem and enables one to solve it either numerically or analytically for the local
fields by considering a unit cell (e.g., Zhang, 1988; Zhu and Achenbach, 1991). However,
since the fiber distribution in composite materials is usually non-uniform, this approach
may not capture the true behavior of composites.  Such an approximation may be ade-
quate to describe the effective elastic response of a composite but will not serve as a good
model for a study of local stress fields and crack initiation and propagation in composites

with randomly arranged inclusions because fracture is a highly localized phenomenon
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influenced by the local geometric and material disorder (e.g. Basista and Krajcinovic,
1991; Brockenbrough et al. 1991; Ostoja-Starzewski et al. 1994; Pyrz and Bochenek,
1995). The unit cell is not sufficient to investigate the random distribution of fibers and,
rather, it is important to redefine the representative volume element (RVE) so that it con-
tains enough fibers and cracks to represent the microstructure (here scale effects will enter,
see e.g., Bazant et al. 1990). The issue of elasticity and fracture has been addressed to
some extent in Ostoja-Starzewski et al. (1994), for example, where the out-of-plane elas-
ticity of a unidirectional fiber reinforced composite was considered. That research points
out that the arrangement of inclusions has a small influence on the effective elastic moduli
of the pre;damage state, but the random arrangement of inclusions, as compared with a
periodic one, has a weakening effect on the moduli in the damage stage and on the overall
strength. The magnitude of these effects, however, depends on the combination of elastic
constants and the mismatch in strain-to-failure ratio. Similar observations about the
reduced strength and the fracture strain of a material with randomly distributed holes have
been made by Becker and Smelser (1994), Magnusen e? al. (1988), and others.

The issues of the influence of random arrangement of fibers on the effective properties
and local fields were addressed by several researchers. For example, the papers involving
a spring network model include Day ez al. (1992) and Snyder et al. (1992) where the effec-
tive elastic moduli of a material with randomly arranged holes and inclusions, respec-
tively, were studied. The finite element studies include Brokenbrough et al. (1991) where
the elasto-plastic stress-strain curves were computed and the effect of random versus peri-
odic arrangement was addressed. Effective elastic moduli of composites with randomly

arranged and rigid inclusions were investigated numerically (by using a spring network or



a finite element method) and analytically by Davis et al. (1994) and Chen et al. (1995).
The local elastic fields of randomly arranged inclusions were studied by Ghosh and
Mukhopadhyay (1993) and Zhang and Katsube (1995) by using a new finite element
method in which an n-sided polygonal network was formed and each polygon contained a
single inclusion and served as an element. The analytical solution for a material with sev-
eral inclusions was given by Gong and Meguid (1993). Also, the recent works of Honein
et al. (1994) and Bird and Steele (1993) dealt with a solution of a multiple inclusions
problem. The more basic studies focusing on inclusion interactions involved a solution of
two neighboring inclusions with either perfectly bonded or slipping interfaces (Kouris and
Tsuchida, 1991 and Kouris, 1993) and a multiple inclusion case of particular geometry
(Kouris, 1995).

The study of fracture, including crack initiation and propagation, of materials with
multiple holes or inclusions is a very complex problem which requires, in principle, a
numerical solution. Numerical approaches, which can be used to simulate the crack prop-
agation through a material, include spring networks, finite elements, and boundary ele-
ment methods. |

In the spring network approach, a fine mesh model of the matrix-inclusion composite
forms a basis for computer simulations. A specimen or an RVE is subjected to kinematic
boundary conditions (e.g. Ostoja-Starzewski et al. 1994; Pyrz and Bochenek, 1994). The
increase in load is simulated by raising the applied strain by small increments. In every
run a relaxation method or a conjugate gradient method, for example, is used to solve for
the equilibrium of a lattice and then the search for bonds in either matrix or inclusions,

which exceed the local fracture criterion, is carried out. If the fracture condition is met,



the given bond is removed from the lattice, thus representing a crack increment. The
increase in loading is usually conducted by first unloading the entire lattice and then
reloading it. These steps are repeated until a crack is formed through a specimen.

The use of finite elements to simulate fracture requires either removing finite ele-
ments or disconnecting them. This may include remeshing which involves a considerable
numerical effort.

The boundary element method has an advantage in that it involves considerably less
remeshing as only the line of crack needs to be remeshed. However, since this method
employs Green’s function it can cover a limited scope of problems.

The recent paper which is most closely related to the present study is by Becker and
Smelser (1994) and deals with the elasto-plastic response and fracture of a thin aluminum
sheet with 40 randomly arranged holes under a uniaxial tension. They use a finite element
method and simulate local fracture by the element removal at a critical thickness strain.
They find that both the load bearing capacity and the fracture strain of a sheet with ran-
domly arranged holes are significantly reduced as compared with a sheet with a periodic
array of holes.

Similar studies, also involving ductile fracture, are due to Xu and Needleman (1991)
who simulated ductile failure with two size scales of randomly distributed voids in an elas-
tic-viscoplastic material. Ohno and Hutchinson (1984) proposed a model for an elasto-
plastic solid with voids in a disk-shaped cluster to study the plastic flow localization
caused by a non-uniform void distribution. The effect of void distribution on the void
linkage and plastic flow during fracture was studied experimentally by Magnusen et al.

(1988) and analytically by Needleman and Kushner (1990). They found that the influence



of random versus periodic arrangement of holes on the effective response was small for
the elastic range but large in the plastic range and the materials with random arrays of
holes were less ductile. The fracture behavior was found to be a function of the minimum
void spacing, void size, and strain hardening.

The combined finite element or boundary element and spring network approaches
were also considered. For example, Balanger et al. (1994, 1995) proposed a large-scale
fracture analysis which combined a boundary element method used for remote regions and
a lattice network for the area surrgunding a crack, which, by using adaptive meshing
guided by a fuzzy logic scheme, can move with the crack tip. Schlangen (1993) and
Schlangen and van Mier (1992) used a finite element method to model remote regions and
a lattice network with beam elements in the areas where the crack propagates.

Fracture of brittle heterogeneous materials was discussed in Herrmann et al. (1989)
and Herrmann and Roux (1990), for example. A similar approach was used by Schlangen
and van Mier (1992) and Schlangen (1993) who employed a triangular lattice spring net-
work to simulate cracking of a concrete. Recently Schlangen and Garboczi (1995) pro-
posed a new method to simulate cracking of brittle materials using a lattice with a small
scale random geometry to avoid crack mesh dependence in homogeneous media. Jagoda
and Bennison (1993) presented a comparison between the fracture results using a random
spring network and a random finite element mesh. Similar studies included the works of
Jirasek and Bazant (1994/1995) and Bazant et al. (1990) who represented concrete as a
collection of particles which have elastic but only axial interactions as in a truss
(Zubelewicz and Bazant, 1987). The matrix layers between the particles were described

by a strain softening behavior. Crack initiation and localization was simulated and size



effects were addressed. Related works are due to Pyrz and his coworkers, who also used a
Voronoi-type of truss and studied the effects of inclusion arrangement in a transverse
plane of a unidirectional composite material on the strength of a material and related it to
the second order statistics of microstructure (Pyrz, 1994; Pyrz and Bochenek, 1994, 1995;
Axelsen and Pyrz, 1995).

Recently, a new method, called the Element Free Galerkin (EFG) method, has been
employed by Belytschko et al. (1994, 1995) to study crack propagation in materials with
holes. This method needs a description of geometry and a set of nodes, but as the name
implies does not require elements. When simulating crack propagation by using this
method the region in front of the crack tip requires an increased number of nodes. This
method can easily model crack growth in an arbitrary direction.

An important factor in simulating crack propagation is the choice of a proper crack
criterion. Some of the cracking criteria are: the maximum circumferential stress (Erdogan
and Sih, 1963), the minimum elastic strain energy density (Sih, 1974), the maximum prin-
cipal stress (e.g. Ugural and Fenster, 1995), the maximum energy release rate (Griffith,
1921; Hussain ez al., 1974), the quadratic failure theories (Theocaris, 1995), and other.
The choice of a criterion depends on the type of material.

Whereas crack propagation in ductile matrial is slow, crack propagation in brittle
material is often fast and usually associated with an unpredictable scatter. Thus a probabi-
listic model will be a good method to understand the fracture behavior of such material.
This area of study was the focus of many researchers in the last few years. Kunin (1994)
adressed a stochastic prediction of a slow crack growth in a brittle material. Chudnovsky

and Kunin (1987) studied the probability of a brittle crack formation in an elastic solid



with a fluctuating strength. Their study was applied on first mode cracking of a notched
specimen. Their evaluation of specific fracture energy showed a large scatter of the pre-
dicted crack paths. Jeulin (1994) presented a statistical model to study the crack propaga-
tion in a heterogeneous medium. He proposed a probabilistic model for mode I crack
propagation in brittle materials with random distribution of fracture energy which enabled
him to calculate the probability of fracture involving the crack nucleation and propagation.
Many other reasearchers studied and proposed different probabilistic models for the crack
propagation in brittle materials, e.g. Lin and Yang (1983), Moet ez al. (1992) and Breysse
et al., (1994). To our knowledge there is no stochastic model in literature which can be
used directly for our case of study which involves both material and geometric disorders.

Another important and complicating factor which influences the composite response
is the matrix-inclusion interface. The interface is often represented as a thin layer or coat-
ing around the fiber, called interphase (Drzal, 1983). For reviews see e.g. Kerans e? al.
(1989), Wright (1990), and Hughes (1991). The interphase may be due to a chemical
reaction, diffusion, or other complex processes which occur during manufacturing.

The effect of interphase on the local fields and effective properties of composites has
been the subject of study in the last decade. For example, Hashin (1991), Benveniste and
Miloh (1986), Pukanszky and Voros (1993), Benveniste et al. (1989), and many others
studied the effective elastic properties of composites with coated inclusions. The effective
properties of composite materials subjected to thermal strain were studied by Hashin
(1990), Takao and Taya (1985), Taya et al. (1990), Mikata and Taya (1985), Hatta and
Taya (1986), Pagano and Tandon (1988), Ammold and Wilt (1993), and others.

Experimentally local stress fields due to a cast-in place inclusion or inclusions in peri-



odic arrangement in composites under thermal loading were studied by Javornicky (1970),
Marloff and Daniel (1969), Daniel and Durelli (1962), Herrera and Drzal (1992), and oth-
ers. The temperature dependence of some cured epoxy resin systems was studied by Gupta
et al. (1985).

According to our knowledge, the joint effect of geometric arrangement of inclusions
and inclusion-matrix interface on local stress fields and damage initiation in composite
materials under various loading has not been yet explored in detail.

Another geometric effect in composite materials is the proximity of inclusions to the
surface. In structural applications inclusions often are present near a surface, which is not
necessarily traction-free and the bonding at the inclusion-matrix interface is not always
perfect. Thus, it is of interest to investigate the effects of other boundary conditions, at
both the matrix surface and the inclusion’s interface, on the stress fields. In the context of
plane elasticity the problems of a circular hole or a perfectly bonded inclusion in a half-
plane with a traction free surface were considered by Jeffery (1920), Mindlin (1948),
Saleme (1958), Shioya (1967), and Richardson (1969), among others. The case involving
a sliding circular inclusion in an infinite plane was first considered by Muskhelishvili
(1953), while the problem of a sliding inclusion in a half-space with a traction-free edge
was solved by Lee ez al. (1992).

In this dissertation we study the local stress fields in a transverse plane of unidirec-
tional fiber-reinforced composites (Fig. 1.1). We also consider a problem of an inclusion
with either perfectly bonded or slipping interface embedded in a half plane in which sur-
face is either fixed or is allowed to move freely in the horizontal direction (frictionless sur-

face)



Fig. 1.1 Random geometric distribution of glass fibers in an epoxy matrix.
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OBJECTIVES

The main objectives of this research are:

1. To study experimentally, numerically, and theoretically the joint effect of random
arrangement of inclusions and interface on the local stress field in a model composite

material subjected to a uniaxial loading.

2. To investigate experimentally, numerically, and analytically the joint effect of random

arrangement and coating on thermal stresses of a composite with cast-in-place inclusions.

3. To predict the crack initiation and propagation in a composite with coated and randomly
arranged inclusions under a transverse uniaxial loading on the basis of experimental and
numerical observations with the emphasis on damage initiation and propagation in an elas-

tic brittle (epoxy) or elasto-plastic (aluminum) sheet with randomly distributed holes.

4. To study the joint effect of the matrix-inclusion interface and boundary conditions at the

surface of a half-plane for a single inclusion case embedded near a surface.

METHODOLOGY OF THE RESEARCH

To achieve these objectives the following tasks were conducted:

Task 1. The study of the effect of interface and random arrangement of inclusions on the

local elastic stresses in model composite materials subjected to a mechanical loading (a
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uniaxial tension).

Task 2. The study of the effect of interface and random arrangement of inclusions on the

thermal stresses in a model composite material.

Task 3. Investigation of damage in composite materials: study of the effect of interface and
fiber arrangement on the damage in composite materials with an emphasis on damage ini-
tiation and propagation of elastic-brittle and elasto-plastic sheets with randomly distrib-

uted holes.

Task 4. The study of the effect of interface and boundary conditions at the surface of a
half-plane on stress concentration when a single elastic circular inclusion is embedded

near the surface.

Tasks 1, 2 and 3 were solved experimentally and numerically. Analytical solution was

implemented for simpler cases. Task 4 was solved analytically.



CHAPTER 2

TASK1: THE INFLUENCE OF INTERFACE AND RANDOM
ARRANGEMENT OF INCLUSIONS ON LOCAL STRESSES IN

COMPOSITE MATERIALS

In this phase of study we focus on the influence of the geometric arrangement of
inclusions and the matrix-inclusion interface on the local elastic fields. We conduct this
analysis by considering a plane elasticity problem involving a model composite material.

More specifically, we investigate the stresses in a model composite made of an epoxy
sheet reinforced with circular copper inclusions. At each matrix-inclusion interface there
is an interfacial layer, which we refer to as an interphase or a coating. Experimentally, we
consider two different interphases, which are more compliant than the matrix, by using
two commercially available adhesives, and denote them as coatings 1 and 2, and a third
coating having the same properties as the matrix. Material properties of the composite’s
constituents used in experiments are given in Table 2.1. Numerically we use six types of
coatings ranging from very compliant to relatively stiff ones. The properties of these coat-
ings are given in Table 2.2.

Inclusions are arranged randomly in the matrix but with a restriction that they are not
allowed to overlap and that there is a minimum distance between them. For a comparison
we also include composites with triangular and square periodic arrangements. We subject

12
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Table 2.1 Mechanical properties of materials used in the experimental analysis.

Material \Y E (ksi)
coating 1 4 1
coating 2 4 30
matrix .36 450
inclusions 34 17,400

Table 2.2 Mechanical properties of coatings used in the numerical analysis.

EC (ksi) ve Description
co*ating 1 1 0.36 very compliant
coating 2 30 0.36 compliant
coating 3 120 0.36 optimum (Carman et al., 1992)
coating 4 450 0.36 ES=E™
coating 5 9000 | 036 stiff ES=(E™+ E')/2
coating 6 90000 0.36 very stiff
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these composites to a mechanical loading, the uniaxial tension, and analyze the local stress
fields experimentally by using the photoelasticity method and numerically via the finite
element method. We also consider a single coated inclusion problem, which we study
analytically, numerically and experimentally, as well as other simple geometries.

THE SINGLE INCLUSION SOLUTION

A fundamental problem in micromechanics is one involving a single inclusion in an
infinite matrix. The famous result dealing with a single inclusion is due to Eshelby (1957)
who found that the stress field in an ellipsoidal and perfectly bonded inclusion, subjected
to either a uniform transformation strain or a uniform remote loading, is constant. The
solution of a single inclusion is applicable for the dilute case in which inclusions are far
enough from each other so they don’t interact, but it also gives a basic understanding of
the stress fields in composite materials in general.

Thus, we first briefly consider a single coated inclusion solution and discuss the influ-
ence of several parameters on the local stress fields. In the analysis we assume that all the
componénts of the composite are linearly elastic and isotropic. We denote the Young’s
modulus and the Poisson’s ratio of the constituents by E and v, and use the superscripts i,
¢, and m to denote the inclusion, coating (interphase), and matrix, respectively. The geom-
etry involves a large plate containing a small circular inclusion of radius a with the inter-
phase of thickness  (Fig. 2.1). Thus we have an elasticity problem of a plane stress type.

The applied loading is a remote uniaxial tension. In the analysis it is convenient to
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Fig. 2.1 A single coated inclusion embedded in an infinite matrix.
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employ the polar coordinate system(r,8). We assume perfect bonding conditions
between the inclusion-coating (r = a) and the coating-matrix (r = a + ?) interfaces, which

imply continuity of tractions and displacements. Thusatr =a

i _ ~C i _ «C
Cyr = Cpr °r9 =%
. @.1)
i_,C i _ .C
u, = u, ug = ug
andatr=a+t
m _ ~C m _ ~C
Crr Crr crO - Gre
2.2)
m_ .cC m_ ,C
u' = u ug = ug

where Or1 and u k (k, I =r, ©) are stresses and displacements, respectively.
For the applied uniaxial tension & o = O, & infinity, the remote boundary condi-

tions in polar coordinates are (e.g. Timoshenko and Goodier, 1953)

m %
O'rr = ?(l + cos26) (2.3)
c0 .
0';”6 = —-E-sm26 2.4)

Then, our plane elasticity problem can be solved by using the following Airy stress func-

tions @
% 2_.2 2 Ba%cos20
oM = oy it cos20 + Aa logr+—2+Ca2cos29 (2.5)
r
. O,
ol = T(1)r2+1rr2<:osze+c;r4<;os29) (2.6)
. % 2 cos20 2 4
@< = T(Hr +Jlogr + L222 & Mcos20 + Nr2cos20 + Or cos26) 2.7
r

The problem involves twelve unknown constants: A, B, C, D, F, G, H, J, L, M, N, Q, which

are evaluated by solving twelve equations given by the boundary conditions (2.1)-(2.2).
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Note thatc, and u  each give two equations. The boundary conditions (2.3)-(2.4) are
automatically satisfied by o™ given in eqn. (2.5). The results of a parametric study are
shown in Figs. 2.3a-d and Tables 2.3-4.

If the initiation of plasticity were of interest then it would be convenient to use an
equivalent or effective stress o eff based on the Huber-Mises yield criterion (e.g. Mendel-
son,1968), and defined as

1
oeff = ﬁ[(orr- 090)2 + (GZZ - 069)2 + (Gn_— (‘Jzz)2 + 6(0"2,9 + ng + 0’2.2)02-8

where for a plane stress case, considered in this paper, 22 = %0z = Orz = 0.

THE MULTI-INCLUSION SOLUTION

When more than one inclusion is present in the material the problem of finding local
stresses becomes very complex due to the inclusions’ interactions. The analytical solu-
tion for a problem of multiple coated inclusions is possible, in principle, by using the
approach of Gong and Meguid (1993) or Honein et al. (1994), for example, but it would
be computationally very involved. Alternately, the numerical means, such as finite ele-
ment, boundary element, and finite difference methods; or experimental means, such as
optical methods, can be used. In this dissertation, fé)t simplicity, we use the finite element
program ANSYS 5.1 (1995) and the photoelasticity method (e.g. Dally and Rilley, 1991)
to calculate the elastic fields in a composite with randomly arranged inclusions. For a
comparison we consider composites with square and triangular periodic arrangements of

inclusions, too. Also, we use these two methods to find the solutions for a single inclusion
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problem and compare them with the analytical solution in order to check the accuracy of

our experimental and numerical approaches.

The Experimental Approach

The experimental set-up involved epoxy plates, with dimensions of 3.2x13.0x0.125
inches, containing 31 randomly distributed non-overlapping coated circular copper inclu-
sions (Fig. 2.2), which are 0.25 inches in diameter (volume fraction of inclusions is
approximately 23% in the middle portion of the specimen). To create a non-uniform
arrangement of inclusions the random numbers, indicating the centers of inclusions, were
generated by a computer according to a planar Poisson’s distribution. We imposed restric-
tions that the coated inclusions didn’t overlap, were located at least one diameter away
from the edge of the specimen, and there was a minimum clear distance 0./a between any
two inclusions (a is the inclusion radius). Inclusions were introduced in the following
way. First, the epoxy plates were cut to the desired dimensions. Then, the epoxy plates
were placed one at a time between two steel plates and holes were drilled at a slow speed
to reduce residual stresses and to minimize microcracks. The holes were drilled according
to the random distribution as described above and they were of the size equal the com-
bined size of inclusions and the coatings. To remove any remaining residual stresses due
to machining, the specimens were heated to 260°F (which is beyond the glass transition
temperature), were held at this temperature for two hours and then cooled at the rate of

5°F/hr 10 150°F , and finally cooled in 7 hours to a room temperature. To simulate dif
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Fig. 2.2 Schematic plot of a model composite specimen used in experimental and

numerical studies.
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ferent interphases the inclusions were coated with two different adhesive materials.
Mechanical properties of these materials are shown in Table 2.1. After the preparation of
samples the photoelasticity method was used to find the stress distributions in these bire-
fringent composite plates. A more detailed description of experimental set-up and materi-

als used is given in the Appendix.

Phot jc measurement.

Photoelasticity is an experimental stress analysis method which takes advantage of
the property of double refraction exhibited by certain isotropic transparent materials when
subjected to stress or strain. This optical phenomenon manifests itself in the form of inter-
ference fringes or alternate dark and light bands when the material is viewed in a field of
polarized monochromatic light. These fringes, referred to as isochromatics are ordered
according to the number of darkness-brightness cycles that occur at any given point as the
load is increased from zero to its final value.

To obtain stresses with this method of analysis, typically, a model is fabricated from a
transparent plastic known to possess the required photoelastic properties. The model is
machined to be geometrically similar to the prototype. and loaded also similarly to the
prototype loading.

In the case of inserts a somewhat different procedure is required. The photoelastic material
is cast around the insert, and, if desired, allowed to bond to the insert. If a shrinkage load is
desired, advantage is taken of the curing shrinkage of the matrix (this includes a large pro-

portion of ordinary thermal shrinkage). Mechanical loading may be superposed on the
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shrinkage load, or special precautions may be taken to avoid any shrinkage loading and

then stresses due to mechanical loading are obtained separately.

1. TWO-DIMENSIONAL TESTS.

In two-dimensional problems the loaded model is examined in a field of polarized
light. The fringe pattern gives the stress distribution and direct visual observation can ordi-
narily be used to locate regions of high and low stresses.

Essentially, two patterns can be obtained. If the polariscope is set to produce the max-
imum darkness in the background outside the model (dark field), then the fringes are
ordered n = 0,1,2,3,... If the polariscope is arranged to produce the maximum light in the
field outside the model (light field), then the fringes have the values of the intermediate
orders n=1/2,1 1/2,2 1/2, 3 172, ......etc. By the simple process of counting the fringes and
multiplying their order by a calibration constant, the maximum shear stress distribution
can be determined throughout the body of the model. The model stress distribution can
then be converted by the use of appropriate scaling laws to the stress distribution in the

prototype.

The relation between fringe numbers and the maximum shear stress is given by:

G1-0, = 2Tmax

=nfs/h (29)
where
n = fringe order

h = model thickness

T max = Maximum in-plane shear stress
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G, 0y= in-plane principal stresses

f 5= material fringe coefficient

When the applied stress is uniaxial, one of the principal stresses at the boundary is
zero and the other can be determined directly from the photoelastic data. At the interior
points of the model an additional information is required for determining each of the prin-
cipal stresses. The evaluation of them becomes appreciably more complicated. A number

of methods are available, however, to solve the two-dimensional problem completely.

2. THREE-DIMENSIONAL TESTS.

For the photoelasticity solution of a three-dimensional problem a somewhat more
involved technique is necessary, since the observation of the loaded model in a field of
polarized light does not result in a fringe pattern which can readily be interpreted. To over-
come this difficulty, a stress pattern is “locked - in” or “frozen” in the model, and thin
slices are removed from the model wherever the stress distribution is required. By viewing
the slices in polarized light, a fringe pattern is obtained which corresponds to the stress
distribution in the three-dimensional model at the time of stress freezing.

In this phase of study we consider the model composite in a form of a thin plate in
order to simplify the experimental analysis. By having the plane stress case we reduce the
free edge effects, i.e. the disturbance of stresses near the traction free surface due to a
relaxation of stresses there, and in this case, we can see the photoelastic fringes more eas-

ily. Alternately, we could simulate directly the plane strain case by using a fringe freezing
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technique.

In order to calibrate the epoxy matrix material for the fringe value f pu different levels
of loading were applied to either specimens involving thin sheets with a hole or to a four-
point-loaded beam. The average value of number of fringes was used to determine the
material fringe value f G For our case f G Was found to be 53 Ib/in/fringe at room tem-

perature.

The Finite Element Solution

In this study we used a commercially available finite elements package ANSYS 5.1
(1995). We utilized quadrilateral plane elements, such that each element was defined by
eight nodes having two degrees of freedom: translations in the nodal x and y directions,
with the element edge size of .25a. We simulated in this analysis the exact geometry of
the experimental specimens (described in the previous section) with the following bound-
ary conditions: traction-free conditions at two side edges and an applied uniaxial tension
at the third edge with a fixed displacement condition at the remaining edge. Numerically,
we used six different coatings (Table 2.2) and we considered seven different configura-
tions of inclusions arranged randomly but with no overlap and a minimum distance of 0./a
between them. Other studied geometric configurations included square and triangular

periodic arrangements, and two, three and four inclusion cases.
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RESULTS AND DISCUSSION

The Single Inclusion Case

In the parametric study of a single coated inclusion solution we illustrate the influence
of three parameters characterizing the coating (interphase): the Young’s modulus ES, the
Poisson’s ratio v°, and the thickness ¢, on the stress fields in the matrix. The composite
system is a thin epoxy plate with copper inclusions with the properties given in Table 2.1.

Figs. 2.3a-b illustrate the joint effect of the non-dimensionalized Young’s modulus of
the coating E° with respect to the Young’s modulus of the matrix E" (EC/Em ) and the
non-dimensionalized thickness ¢ with respect to the inclusion radius a (#/a) on c'r':, at
0 = 0 and c'e"e at @ = m/2 respectively, at r = a + t when v¢ = 0.36. Observe that
both the thickness ¢ and the Young’s modulus of the coating E€ contribute to tﬁe stress
fields. The effect of the Young’s modulus of the coating E° on the stresses in the matrix is
more pronounced when the coating is verycompliant, i.e. ES/E™ is small, and is highly
influenced by the thickness. Thus, we only plot the results in the range 0 < ES/E™<1. It

7t/2 when the thick-

is interesting to observe that this effect of E° is larger on ogg at 0
ness is very small while the opposite behavior is true for o:_ atf = 0.

The effect of the Poisson’s ratio of the coating material is very small in comparison to
the influence of the other two parameters as shown in Figs. 2.3 c-d. This effect increases
somewhat as the thickness increases, as illustrated in Fig. 2.3c, which gives o";e at

0 = /2 and r = a + ¢, when the coating 2 is used (see Table 2.1). Also, note the much
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Fig. 2.3a The joint effect of the coating stiffness E° (EC/E”l ) and coating thickness ¢

m
(#a) on o, /coalr=a+1and 0=0.
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Fig. 2.3b The joint effect of the coating stiffness EC (Ec/ Em ) and coating thickness

t (t/a) on Geem/o‘a atr=a+tand ® = /2.
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m
cee/oo

Fig. 2.3c The joint effect of coating thickness ¢ (a) and Poisson’s ratio v on

oeem/co atr=a+tand 6 = n/2.
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Fig 2.3d The joint effect of the,coating stiffness E© (E°/E™) and the coating Poisson’s

n/2.

/0, atr=a+tand 6

ratio v° on Ggg
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larger influence of the thickness on Ggg in comparison to v for this case. Fig. 2.3d pre-
sents the joint effect of the Poisson’s ratio v and ES/E™ for the same stress component
and location. Again, the influence of ve is negligible in comparison to the influence of E°.
Thus, in the finite element calculations we assume a common value of v = 0.36 for all
the coating types considerd.

In order to check the accuracy of both our photoelastic results and finite element out-
puts, we compared the contours of ceﬁobtained analytically (Fig. 2.4a), and numerically
(Fig. 2.4b) and experimentally (the photoelastic fringe patterns are illustrated in Figs. 2.5-
2.7). These results, given in Table 2.3, show a good agreement between our numerical,
experimental, and analytical solutions.

Note, that in the case of perfect bonding, experimentally, the fringes start forming at
the inclusion-matrix interface along the line of action of the applied load and then they
propagate to the other side of the inclusion (Fig. 2.5). The opposite behavior is observed in
cases of an inclusion with a compliant coating (Fig. 2.6-2.7) or a hole, where fringes start
forming in a plane perpendicular to the line of action of the applied load and eventually
migrate to the line of action of the applied load.

Fig. 2.8 illustrates the maximum effective stress in the matrix, inclusion, and the coat-
ing as a function of E°/E™ for the single inclusion case (dilute concentration). Note that
for the case of a compliant coating the maximum stress is in a plane perpendicular to the

applied loading (8 = 0), while for the case of E°/E™ > 1 the maximum stress is located
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Fig. 2.4a Contour plot of .5/ O, around a single inclusion of radius a with coating 2 of

thickness t = a/4.
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177.287

542.582
588.243

690,711

Coated (Ex=1E3),t=1/32 Coated (Ex=.00001), t=.00001

Fig. 2.4h G,4,/G, ol a single copper inclusion embedded in an epoxy matrix with ditier-

ent coating interfaces and subjected to an axial stress of 0.4 ksi in the vertical direction.
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a) Light Field b) Dark Field

Fig. 2.5 Isochromatic fringe patterns in an epoxy matrix around a circular perfectly

bonded copper inclusion for an applied uniaxial stress of 1.75 ksi in the vertical direction.
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a) Light Field b) Dark Field

Fig. 2.6 Isochromatic fringe patterns in an epoxy matrix around a circular coated inclu-

sion of coating 1 for an applied uniaxial stress of 1 ksi in the vertical direction.
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a) Light Field b) Dark Field

Fig. 2.7 Isochromatic fringe patterns in an epoxy matrix around a circular coated

inclusion of coating 2 for an applied uniaxial stress of 1 ksi in the vertical direction.
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Table 2.3 A comparison between experimental, numerical and analytical results for
o, ff and 0, -0, for a single inclusion case and a unit uniaxial applied load.

Analysis E€ (ksi) Material
Type 1 30 120 450 | 9,000 | 90,000
FEM Oy 2.68 1.98 1.28 1.38 1.37 1.38
6,-0, 2.62 1.93 1.19 1.33 1.32 1.35
Analytical Oy 2.96 2.17 1 '343 1.40 1.40 1.40 ;é
6,-6, 2.96 225 1.45 1.35 1.35 1.35
Experimental 0,-0, 2.85 2.12 N.A. 1.34 N.A. N.A.
FEM Oy 0.034 | 0.63 1.13 1.40 1.55 3.92
c,-o, | 0026 | 050 0.99 1.39 1.50 3.81 é"
Analytical Oy 0.033 | 062 1.13 1.40 1.55 4.64 5
c,-o, | 0025 | 050 0.96 1.32 1.61 4.81
FEM Ooy 0.040 | 0.76 1.31 1.47 1.65 1.44
o,-0, | 0037 | 0.69 1.46 1.46 1.62 1.69 -g
Analytical Oy 0.043 | 0.78 1.35 1.49 1.69 1.52 g
c,-0, | 0047 | 084 1422 | 150 1.66 1.67

N.A. Experimental results are not available.
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Fig. 2.8 The influence of the coating stiffnessE° on O.4/ O, in the matrix, the coating

and the inclusion at r= a+t.
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along the line of action of the applied load (6 = n/2 ). Carman et al. (1992) observed
that when the hoop stress at 8 = 0 and at 8 = ©t/2 is equal, then the stress in the matrix
is minimum. They refer to this case as the optimum one with respect to stresses. In the
case of a compliant coating the maximum stress is located in the matrix, and the inclusion
and coating carry almost no load, even though the inclusion is much stiffer. As the value
of E® increases both the coating and the inclusion start carrying the load. In the case of a
stiff coating the maximum stress in the composite is located in the coating. Note that
when ES/E™ > 1 and the inclusion is stiff the stress field in the matrix remains almost
unchanged, as seen in Fig. 2.8

These results are also given in Table 2.4 which summarizes the magnitudes and loca-
tions of the maximum stress G, and ¢, - o, in different constituents of the model com-
posite (matrix, coating and inclusion) with a single coated inclusion when ¢ = 0.25a. Note
that the location of the maximum stress is not necessarily at one of the interfaces. In the
matrix the maximum stress is at the coating-matrix interface for a compliant coating, but
as the coating stiffness increases, the locations of the maximum stress in the matrix move

further away from the interface.

The Multi-inclusion Case
A similar behavior, in terms of the fringe pattern formation, to that observed for a sin-

gle inclusion case, illustrated in Figs. 2.5-2.7, is seen in the case of a composite with the
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Table 2.4 The magnitude and the location of the maximum stress (G eff and G- 62)

for a single inclusion case and a unit uniaxial applied load as obtained analytically.

Stress E° (ksi) Angle
1 30 120 450 9,000 90,000
—_—  — ——— ————————. 3
G. 0.995 1.07 1.33 1.40 1.40 1.40
o r=125a | r=125a |r=125a |r=1267a |r=1.57a |r=1.60a| o
¢,-0, |101 1.25 1.41 1.35 1.35 1.35
r=125a [r=125a |r=1.25a |r=143a |r=1.73a |r=1.77a
»
=
g p 2.96 2.17 1.33 1.00 1.00 1.00
o r=125a |r=125a |r=125 | r=oo r=oo == 500
6,-6, |29 225 1.45 1.00 1.00 1.00
r=125a |[r=125a |[r=1.2532 | =co r=oo r=oo
Gy 0.034 0.624 1.13 1.40 1.55 1.85
r=1.06 |r=1.07a |[r=1.125 |r=125a [r=1.25a | r=a 0°
6,-0, |0254 0.496 0.955 1.32 1.61 2.10
r=1.06 r=1.15a [r=1.22a [r=1.25a [r=1.25a | r=a
80
=
‘g Oy 0.012 0.227 0434 0.663 1.30 4.64
& r=1.25a |r=1.25a |r=1.25 r=1.25 r=1.25a r=a 90°
6,-c, |0014 0.256 0.503 0.736 1.31 4.81
r=1.25 r=1.25a |[r=1.25a |(r=125a |r=1.25a |atr=a
EED 0043 Jo782 [135 [149 169 | 152
_g Osr<a 0°-90°
2lo,-0, [0047 0844 [142 [150 J1e6 [167
0<r<a
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23% volume fraction of randomly distributed inclusions (Figs. 2.9a-d). The values of the
maximum shear stress (principal stress difference) in the matrix, obtained by the photo-
elastic method and also using finite element calculations, were compared in Table 2.5 and
showed a good agreement. Fig. 2.9a gives the fringe patterns, which denote the contours
of the difference in the in-plane principal stresses, 6, —G,, or the maximum in-plane

shear stress, 1, = (G, - G,)/2 , for a composite with no coating (E° = E™) and Fig.

max
2.9c-d for a composite with a very compliant interphase (coating 1 and coating 2) for the
same applied load of 6, = 492.5 psi in the horizontal direction. Note that the stress fields
in the matrix are very non-uniformly distributed in both cases and the stresses are much
higher for compliant interphase cases (Fig. 2.9c-d) as expected. Note that the numbers
denote the fringe numbers and the higher the number, the higher the stresses (Dally and
Rilly, 1991).

In Figs. 2.10a-c the finite element outputs illustrate the joint effect of random arrange-

ment and interface on G, for the same arrangement of inclusions and the corresponding

properties as in Figs. 2.9a, c-d. The finite element calculations also included three addi-
tional interphase cases given in Table 2 (Figs. 2.10d-f).

We observe that when the interface is very weak (interphase is very compliant - coat-
ing 1), then almost no load is transferred from the matrix to the inclusions and it is carried

by the matrix (Fig. 2.10b). If the interface is weak (interphase is compliant - coating 2),

but yet capable of transferring some loads to the inclusions, then the loads will be car-
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Fig. 2.9-a Isochromatic fringe patterns in an epoxy matrix with randomly distributed and
perfectly bonded copper inclusions for an applied stress of 6, = 492.3 psi in the horizon-
tal direction when the volume fraction f = 23%.

Fig. 2.9-b Isochromatic fringe patterns in an epoxy matrix with randomly distributed cop-
per inclusions with a weak interface bonding for an applied stress of 6, = 492.3 psi in the
horizontal direction when the volume fraction f = 23%.
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Fig. 2.9-c Isochromatic fringe patterns in an epoxy matrix with randomly distributed cop-
per inclusion coated with coating 2 (E€ = 30 ksi) for an applied stress of 6 = 492.3 psi in
the horizontal direction when f = 23%.

Fig. 2.9-d Isochromatic fringe patterns in an epoxy matrix with randomly distributed cop-
per inclusion coated with coating 1 (E = / ksi) for an applied stress of 6, = 492.3 psi in
the horizontal direction when f = 23%.
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Table 2.5 A comparison between experimental and numerical and results for

(0, -0,)/06, for multi-inclusion cases with volume fraction f = 23%.

Experimental FEM
_
Perfect bond 1.74 1.80
coating 1 5.64 5.17
¢ = 1/450
coating 2 2.63 2.57
Ire=1/15
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%f/% (NAVG)
DMX =0.190E-04
SMN =0.353193
SMX =1.782

0.353193
0.511945

L
»H
N

Fig.2.10a g, ff/ o, in a model composite with volume fraction f = 23% of randomly

distributed and perfectly bonded copper inclusions obtained by FEM for a uniaxial

loading in the horizontal direction.
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Fig. 2.10b o, ff/ g, in a model composite with volume fraction f = 23% of randomly

distributed and coated inclusions with coating 1 (E€ = 1 ksi) obtained by FEM for a

uniaxi4i loading in the horizontal direction.
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Geff/oo (NAVG)
DMX =0.232E-04
SMN =0.153643

SMX =2.842

0.153643

0.452375

0.751106

1.05
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2.245

2.543

2.842

lommn

Fig. 2.10c o, ff/ g, in a model composite with volume fraction f = 23% of randomly

distributed and coated inclusions with coating 2 (E€ = 30 ksi) obtained by FEM for a

uniaxial loading in the horizontal direction.
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Fig.2.10d o, ff/ S, in a model composite with volume fraction f = 23% of randomly

distributed and coated inclusions with coating 4 (E€ = 120 ksi) obtained by FEM for a

uniaxial loading in the horizontal direction.
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O fr/ O NAVG)
DMX  =0.185E-04
SMN  =0.042202
SMNB  =-0.674238
SMX  =2.393
SMXB =3.032
v - =
‘DIST  =1.918

14

XE =

Fig. 2.10e o, ff/ °, in a model composite with volume fraction f = 23% of randomly

distributed and coated inclusions with coating 5 (E°= 9000 ksi) obtained by FEM for a

uniaxial loading in the horizontal direction.
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Fig. 2.10f o, ff/ [ in a model composite with volume fraction f = 23% of randomly

distributed and coated inclusions with coating 6 (E€ = 90,000 ksi) obtained by FEM

for a uniaxial loading in the horizontal direction.
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ried by both the inclusions and the matrix with the maximum stress occurring in the matrix
(Fig. 2.10c). In case of optimum coating (minimum stress condition), the load will be

shared almost equally between the matrix, the coating and the inclusion (Fig. 2.10d). If

the interphase elastic modulus E° increases further and a good bond is maintained between
interfaces then the load will be carried by the stiff inclusions and the coatings (Fig. 2.10a).
But if the coating is very stiff then the highest stress will occur in the coating (Fig. 2.10e-
f). Note that a similar behavior, as observed for a single inclusion case and illustrated in
Fig. 2.8, is present for the multi-inclusion case discussed here (Fig. 2.11).

In Fig. 2.10a there is bridging of stresses through the inclusions along the line of action
of applied load. Inclusions close to each other and aligned in the direction of the load,
behave like longitudinal fibers subjected to an axial loading. For inclusions with a compli-
ant interphase, as shown in Fig. 2.10b-c, the maximum stress around each inclusion is
located in a plane perpendicular to the applied loading, as was observed in the single inclu-
sion case. A similar behavior occurs in elastic sheets with holes. Fig. 2.10a shows that the
load is distributed very unevenly between the inclusions. This is in contrast to periodic
arrangements in which inclusions share loads equally. In Fig. 2.10b-c we see a localization
of maximum stress in the matrix. For a periodic arrangement this maximum stress would
be distributed throughout the composite and be lower in magnitude as shown in Table 2.6.
Thus, the non-uniform arrangement leads to stress localization and higher maximum

stresses and thus to an earlier initiation of damage, and consequently, to a lower strength.
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Fig. 2.11 The influence of the coating stiffness E* on G,/ O, of the matrix, the coating

and the inclusion for coated and randomly distributed inclusions case.
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Table 2.6 Effect of the arrangement of inclusions on the maximum ( G, - 0'2)/ o, for

a multi-inclusion composite as obtained by the FEM.

E® (ksi)
Arrangement
1 30 120 | 450 | 9,000 | 90,000

Square 3.38 2.29 142|203 247 |252
Triangular 3.10 1.81 115 132|202  |209
Random AVG. | <8.17> <4.07> <1.51> [ <241> | <3.09> | <2.98>

STD. | 2.45 1.461 0101 |oa112 |0113 |0.113 g
Twofrom | AVG.|<520> |<351> |<150> |<2.50> |<3.20> |<3.19> |=
Random | <rp. [225 1352 0.161 |0.164 [0.165 |0.168
Two in AVG. | <5.19> <3.43> <146> | <2.53> | <3.25> | <3.25>
Effecivem.| o1 [2.04 1.33 0.157 |0.160 |0.162 |0.165
Square 0.003 0.534 124 [213  [240 [407
Triangular 0.002 0.426 120 [144 [231 3386
Random | AVG. | <0.034> |<0.701> |<1.30> |<237> | <3.10> | <6.26>

STD. | 0.007 0.068 0104 |0113 |1541 |232 |E
Two from AVG. | <0.020> <0.65> <1.30> | <240> | <3.34> | <6.68> g
Random | o1p. [0.007 0.054 0055 |0063 |1523 |224
Two in AVG. | <0.011> <0.643> <1.29> | <2.38> | <3.30> | <6.43>
Effecivem.| b, [0.006 0.052 0054 |0.060 {1510 |221
Square 0.009 0.693 139 (211 [340 [3.a4
Triangular 0.001 0.599 126 |158 |280 |262
Random AVG. | <0.044> <0.745> <l46> | <2.50> |[<4.78> | <4.ll> |

STD. | 0.005 0.063 0089 (0115 112 |101 %
Twofrom | AVG, |<0.018> |<0.601> |<146> |<230> |<5.19> |<4.65> |&
Random | o [0.004 0.052 0061 (0065 |1.10 |0981
Twoin AVG. | <0015> |<0.532> |[<146> |<225> | <5.10> |<4.59>
Effectvem) . [0.004 0.049 0054 |0062 |0995 |0.976
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These issues were also discussed in detail in Basista and Krajcinovic (1991), Ostoja-Starze-
wski et al. (1994), Becker and Smelser (1994), Pyrz and Bochenek (1994), Pyrz (1994),
Brockenbrough et al. (1991‘), Day et al. (1992), Snyder et al. (1992), Davis et al. (1994),
Chen et al. (1995), and others.

A similar behavior in terms of load carrying mechanisms is observed for the maximum
shear stress distribution 6,-0, (Fig 2.12a-f and 2.13).

Table 2.6 summarizes the results of maximum o, - o, in the matrix, coating, and

inclusions for seven random arrangements and two periodic arrangements (square and tri-
angular). The volume fraction used in these calculations is 23% for both random and peri-
odic arrangements. We also include the results for two isolated inclusions, embedded in
an epoxy matrix or in an effective medium. The effective medium properties are deter-
mined by using the Mori-Tanaka method (Tong and Jasiuk, 1990). The location of these
two inclusions is determined by their geometric arrangement and they have the maximum
stress in their vicinity in the multi-inclusion configuration.

Table 2.6 shows that periodic arrangement underestimates the magnitude of the maxi-
mum stress present in a real composite where the fiber arrangement is non-uniform. This
is due to a locatization of stresses as discussed before. Also, the triangular arrangement
gives lower stresses than the square one for the same volume fraction. This is due to the
fact that inclusions are further apart in the triangular arrangement for the same volume

fraction.
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PO o)

RS ALRON L A

(04-05)/ 0, (NAVG)
DMX  =0.190E-04
SMN  =0.314825
SMX  =1.775

Fig.2.12a (0,-0, )/00 in a model composite with volume fraction f = 23% of ran-

domly distributed and perfecly bonded copper inclusions obtained by FEM for a

uniaxial loading in the horizontal direction.
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(o4 -02)/ 9, (NAVG)
DMX  =0.286E-04
SMN =0.079
SMX  =9.222

0.079
1.082
2.087
3.092
4.097
5.102
6.107
7.112
8.117
9.222

jonn

Fig. 2.12b (ol -0, )/00 in a model composite with volume fraction f = 23% of ran-

domly distributed and coated inclusions with coating 4 (E€ = I ksi) obtained by FEM

for a uniaxial loading in the horizontal direction.
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(04-05)/ o, (NAVG)
DMX  =0.232E-04
SMN =0.018608

SMX =2.815

0.018608
0.329288
., 539068
0.950648
1.261

Fig. 2.12¢ (o1 - 02)/00 in a model composite with volume fraction f = 23% of ran-

domly distributed and coated inclusions with coating 2 (E€ = 30 ksi) obtained by

FEM for a uniaxial loading in the horizontal direction.
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(cl1 —02)/ 9, (NAVG)

DMX =0.200E-04
SMN =0.196187

SMX =1.271
V=
*DIST =1.918
XF =14
“YF =15
mmm 0.196187
mm 0.315628
mmm 0.435069
2
83;93391
912832
=%
. {271

Fig.2.12d (o, - 0,)/0_ ina model composite with volume fraction f = 23% of ran-
1 27 %o

domly distributed and coated inclusions with coating 4 (E€ = 120 ksi) obtained by

FEM for a uniaxial loading in the horizontal direction.
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(01 —02)/ 0, (NAVG)

DMX =0.185E-04

SMN =0.076234

SMX =2.228

zV =1

*DIST =1.918

*XF =14

‘YF =15

PRECISE HIDDEN
0.07
0.315309

-
o
w
w

Fig. 2.12¢ (o] - 02)/00 in a model composite with volume fraction f = 23% of ran-

domly distributed and coated inclusions with coating 5 (E€ = 9000 ksi) obtained by

FEM for a uniaxial loading in the horizontal direction.
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(04-05)/ G, (NAVG)
DMX =0.184E-04
SMN  =0.04495
SMX =3.757

v =t

*DIST =1.918

Fig. 2.12f (ol -0, )/ S, in a model composite with volume fraction f = 23% of ran-

domly distributed and coated inclusions with coating 6 (E€ = 90,000 ksi) obtained by

FEM for a uniaxial loading in the horizontal direction.
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Fig.2.13 Influence of the coating stiffness E° on (6, - 6,)/6,, of the matrix, the coating

and the inclusion for randomly distributed coated inclusions case.
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For cases of compliant coating two inclusions embedded in either the matrix or the
effective medium under a uniaxial loading give a lower magnitude of stress than the one in
the actual composite, and the stresses are higher for the two inclusions in the matrix as
expected because of a higher mismatch in elastic moduli. The opposite behavior is
observed for cases of stiff coatings. Also, the maximum stresses in the matrix are highest
when the interphase is most compliant. This is expected since in this case the matrix car-
ries most of the load even though the inclusions are much stiffer than the matrix material.
Another important observation is that there is a very large scatter in data for compliant
coating cases and it decreases as the coating stiffness increases.

Two inclusions

In order to gain an insight into the inclusions’ interaction we focus now on a two-
inclusion solution. The local stress fields due to two inclusions are a function of the incli-
nation angle between the two inclusions with respect to the applied loading, the separation

distance between the two inclusions, and the presence of other inclusions. The angle of

inclination 6, is the angle between the line connecting the centers of two inclusions and

the line perpendicular to the applied uniaxial tension. We conduct this study numerically.
We compared our numerical calculations for a very compliant coating (which has similar
stress fields to those produced in an elastic sheet with holes) and for a perfect bonding case
with the analytical solution of Kouris (1993) and found a very good agreement between

our finite element and his analytical results (Fig. 2.14).
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Fig. 2.14 Comparison between analytical (Kouris, 1991) and our numerical (FEM) results

of G,/ 0, around two inclusions separated by d=a.
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1) Effect of the inclination angle on the local elastic stress fields
First, we explore the effect of the angle of inclination 0,,.. We consider numerically
two coated inclusions separated by a constant distance d = a and inclined by the angle

0.

inc- The influence of the inclination angle on the effective stress ¢ eff in the matrix,

coating, and inclusion is shown in Figs. 2.15-2.17. The location of the maximum o:}f is
at around 6 = O for cases of compliant coating (when the two inclusions are aligned in a
plane perpendicular to the applied loading). For cases of stiffer coatings, the location of
the maximum o'e'}f is at around 6 = n/2 (when the two inclusions are aligned along the
line of action of the applied loading) as in the case of a single inclusion as discussed
before. For the case of an optimum coating the effective stress (oeff) in the matrix will be
the same at any angle of inclination of the two inclusions (Carman et al., 1992). A similar
behavior is observed for effective stresses in the coating and the inclusion. So we can
define two extreme angles of inclinations: critical and optimum. We denote the critical
angle of inclination as the angle which will produce the maximum stress. The optimum
angle of inclination is the angle that gives the minimum stress. We are interested in the
critical angle, which is for soft coatings at around 6 = 0 and for the stiff coatings at
around 6 = n/2.
2) Effect of separation distance between two inclusions.

Next we vary the separation distance between the two coated inclusions inclined at

either ® = 0 or 6 = n/2 . Figs. 2.18-2.19 show that increasing the separation distance
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Fig. 2.15 Effect of the inclination angle 6 on the maximum shear stress (0, - G,)/0, in

the matrix for a two-inclusions solution.
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Fig. 2.16 Effect of inclination angle © on the maximum shear stress (6, —G,)/G,, in the

coating for a two-inclusions solution.
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Fig. 2.17 Effect of inclination angle 6 on the maximum shear stress (6, — G,)/G, in the

inclusion for two-inclusions solution.
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Fig. 2.18 Effect of separation distance between two inclusions on the effective stress in the

matrix ¢ effnf/ o, for a uniaxial loading & , and 8 =0°.



67
11 , |
10, 6 1 EC=1ksi |
2 E=30ksi
PRALRALL iz
g4 Oy 5 E°=9000ksi |
o d=a ° 6 E°=90,000ksi
e
S gl
S | bbb
4|
3l
2|
1 i.g\-% & © )4 ¥
0 0.5 15
d/a

Fig. 2.19 Effect of separation distance between two inclusions on the effective stress in the

. m . )
matrix. © eff - /oo for a uniaxial tension 0'0 and 6 = /2.
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reduces the local effective stress in the matrix, the coating, and the inclusion when the two
inclusions are aligned along a critical path. On the other hand, increasing the separation
distance will slightly

increase the effective stresses if the two inclusions are aligned along the optimum path.

3) effect of the presence of other inclusions.

Finally, we explore the effect of the presence of more than two inclusions on the stress
field. We do so by considering three and four inclusions in a row aligned along a line per-
pendicular or parallel to the line of loading, which correspond to angles 6 = 0 and
0 = m/2, respectively, and three or four inclusions with their centers forming an equilat-
eral triangle or a square, respectively.

a) effect of number of aligned inclusions along © = 0 and ® = /2.

Figs 2.20-2.21 show that when the inclusions are aligned at the critical angle, then,
increasing the number of inclusions increases the effective stress in the matrix. However,
if the inclusions are aligned along an optimum path, then, increasing the number of inclu-
sions will decrease the effective stress in the matrix. The effect of inclusion number will
decrease as inclusions are added. The similar behavior was observed for stresses in the
coating and the inclusion.

b) effect of arrangement.
Three and four inclusions arranged in triangular or square arrangements and separated

by a constant distance d = a are studied and compared to the case of two inclusions sepa-
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Fig. 2.20 Effect of number of inclusion on the maximum shear stress, (c‘1 - 0’2)/60 in

the matrix for-a uniaxial loading S, when 6 = 0.
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Fig. 2.21 Effect of number of inclusions on the maximum shear stress (()'1 - 0'2)/ c, in

the matrix for a uniaxial loading G, when 0 =mn/2
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rated by the same distance and subjected to the same transverse uniaxial loading (Table
2.7). For the four inclusions arrangement the effective stress c:}f between any two inclu-
sions is more than c:}f between two isolated inclusions inclined along optimum path but
slightly less than o:}f between two inclusions aligned along critical path. Same behavior

was observed for stresses in the coating and the inclusions.

Plane Stress Versus Plane Strain, Other Volume Fractions and Statis-
tics

All our numerical examples are for a plane stress case because experimentally we
used thin epoxy plates for the reasons mentioned on page 21. We also explored a compar-
ison between plane stress and plane strain cases numerically and we found that the plane
stress case is more critical for both single and multi-inclusions geometries (Figs 2.22a-d) .

We have also considered the case with volume fraction f = 0.46 for the cases of ran-
domly distributed and either perfecly bonded or coated inclusions with compliant coatings
(coatings 1 and 2). The magnitudes of the maximum stresses (G eff and G, - O, ) were
found to be higher for f=0.46 than those for f = 23%. The actual numbers, however,
depend on the given geometric arrangement. To study the correlation between geometric
distribution of the non-uniformly distributed fibers and the stress fields, Delaunay net-
works with 10 different distributions are used (Fig. 2.23). Each vertex of the Delaunay
cell represents the location of a fiber. Then the probability of inclination angles between

each of the neighboring inclusions, P(0), (Fig. 2.24), the probability of closest neighbor,
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Table 2.7 The maximum effective stress in two, three, and four inclusion arrangement
separated by a constant distance for a unit applied loading in the vertical direction.

E° (ksi) Ly Oy cif,
E— I S———
1 3.94 0.012 0.048
30 2.64 0.377 0.833
120 1.26 1.13 1.36
450 1.27 1.28 1.49
9,000 1.32 1.35 1.75
90,000 1.32 3.01 1.40
1 2.26 0.012 0.036
30 1.82 0.732 0.726
120 1.26 1.14 1.36
450 1.74 1.70 1.70
9,000 2.07 249 1.94
90,000 2.19 4.50 1.74
1 3.68 0.011 0.021
30 2.10 0.742 0.883
120 1.28 1.13 1.27
450 1.40 1.45 1.59
9,000 1.59 1.68 1.79
90,000 1.63 3.24 1.64
1 3.82 0.041 0.053
30 2.54 0.784 0.915
120 1.28 1.16 1.27
L 450 1.67 1.62 1.65
9,000 1.98 1.93 1.90
90,000 1.96 445 1.72

36
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Fig. 2.22a o, ff/ g, in a model composite with volume fraction f = 23% of randomly dis-

tributed and perfectly bonded copper inclusions obtained by FEM ( plane strain) for a uniax-

ial loading in the horizontal direction.
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SMN  =0.005559

SMX =6.201

0.005559
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2.071

Fig.2.22b o, ff/ S, in a model composite with volume fraction f = 23% of randomly

distributed and coated inclusions with coating 1 (E€ = I ksi) obtained by FEM (plane

strain) for a uniaxial loading in the horizontal direction.
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Fig. 2.22¢ (ol -0, )/ S, in a model composite with volume fraction f = 23% of ran-

domly distributed and perfecly bonded copper inclusions obtained by FEM (plane

strain) for a uniaxial loading in the horizontal direction.
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Fig. 2.22d (o] -0, )/00 in a model composite with volume fraction f = 23% of ran-

domly distributed and coated inclusions with coating 4 (E€ = I ksi) obtained by FEM

(plane strain) for a uniaxial loading in the horizontal direction.
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Fig. 2.23 A typical Delaunay network of randomly distributed fibers.
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Fig. 2.24 Probability distribution of inclination angle between the closest neighboring
inclusions.
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P(n), (Fig. 2.25), and the separation distance, P(d), (Fig. 2.26) were studied. Since we
have a finite medium bounded by the size of the specimen, then our results will be limited
to the given geometry of the tested sample. Note that if we ignore the edge lines (effect of
discontinuity of the model) then P(6) will have a constant value (dashed line). Thus for
the random arrangement, with restrictions of non-overlapping, we have no preferential

angle, as expected.

CLOSURE

In this phase of the study we investigated the influence of the inclusion-matrix inter-
face and the geometric arrangement on the local stress fields of a model composite having
circular copper inclusions in the photoelastic matrix. We find that both of these factors
significantly contribute to the local stress fields. We note that the study of the effects of
geometric arrangement of inclusions requires a more complete statistical analysis. a more
complete discussion of the results from this chapter is included in the conclusions section

on pages 244-247.
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CHAPTER 3

TASK 2: THE INFLUENCE OF INTERFACE AND RANDOM
ARRANGEMENT OF INCLUSIONS ON THE RESIDUAL STRESSES

IN A MODEL COMPOSITE MATERIAL

When a composite material is subjected to a temperature change, thermal stresses are
created due to a mismatch in thermal expansion coefficients. The temperature change may
be due to thermal cooling of a composite material after being manufactured at an elevated
temperature; such stresses are called residual stresses. These thermal stresses cause stress
concentrations, which may initiate yielding and / or cracking. Therefore, for design pur-
poses it is important to know the magnitude of these stresses.

In this phase of study we analyse the local stress field in a model composite made of an
epoxy matrix and coated copper inclusions. We study such a composite experimentally
using a photoelastic technique and numerically using a finite element method. Experimen-
tally we focus on studying the stress distributions around cast-in-place copper inclusions
in either random or regular arrangement (triangular). More specifically we consider two
random arrangements, one periodic arrangement, two inclusions separated by different
separation distances, and a single inclusion configuration. Numerically, we study the local
stress fields by considering two random arrangements and two periodic arrangements (tri-

angular and square) of coated copper inclusions. In this case we vary both the elastic mod-

ulus of the coaiing E° and the coefficient of thermal expansion (CTE) of the coating a.° .

80
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THE SINGLE INCLUSION SOLUTION

Initially, we consider a single coated inclusion solution in order to gain a more basic
understanding of the problem and we discuss the influence of different parameters on the
thermal stress field in a composite with a dilute concentration of fibers.

We consider a three phase composite material consisting of a circular inclusion of
radius a coated with a material of thickness ¢ and embedded in an infinitely extended
matrix. The inclusion, the coating layer and the matrix are assumed to be linearly elastic
and isotropic. They have distinct material properties: the elastic modulus E, the Poisson’s
ratio v and the coefficient of thermal expansion (CTE) a. In the notation used the super-
scripts i, ¢, and m refer to the inclusion, coating and matrix, respectively.

When the above composite is subjected to a uniform temperature change AT , then

the displacement and stress fields in polar coordinates (7,0 ) are:

a) in the inclusion

u, = (<= 1)ra/2p’ + U,

] 3.1
O,, = Ogg = 24
b) in the coating
uS = C(x* = 1)r/2p°-D/2p°r + U;
65 =2C+D/r* (3.2)

rr

4 = 2C-D/r°

c) in the matrix
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u; = -B/2rp" + U,

o B (3.3)
O, = —096 = r
where
L) 5
< = ((3—\' )Y/ (1+Vv) plane stress s=icm (3.4)
3-4Vv° plane strain

The other displacement and stress components are zero due to a radial symmetry.
Note that the radial displacements in the constituents are the sums of the deformation

due to thermal strain in the absence of the remaining components as given by
Ul = (1+0°)a’ ATr s=icm (3.5)

where

_ (V plane strain (3.6)

0 plane stress
and the deformation due to elastic strains. A,B,C and D are the unknown constants to be
determined using the boundary conditions. We assume perfect bonding boundary condi-

tions at the inclusion-coating and coating-matrix interfaces, which are given as follows

i _ .C i _ ¢ _
c,, =G, u, = u, atr=a

c,, = o, u, = u at r=a+t (3.7
o =0 at r— oo

Note, that stresses in the matrix are chosen in such a way so that the condition of van-
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ishing tractions at infinity is automatically satisfied.

THE MULTI INCLUSIONS SOLUTION

While finding local stress fields of a composite with a single inclusion is relatively
simple, determining the local stress fields of a composite with many inclusions, where the
interaction of inclusions’ takes place, is very complicated to do analytically. Thus, alter-

natively, experimental and numerical techniques can be used.

Experimental Procedure
Sample Preparation
The epoxy resin used was Epon 828 which is based in diglycidyl ether of Bisphenol-A

and has the following chemical structure (Gupta et al. 1985)
O,
/) lCH) OH CH, / \
AW g W TEm N g W @ SRR
b a

The curing agent used was metaphenylene diamine having the following chemical

structure NH,
f NH,

The curing agent concentration was calculated by Gupta et al. (1985) to be 14.5 parts

per hundred parts of resin so that the epoxy amine ratio is 1:1.
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To prepare the epoxy matrix, the resin and the curing agent were heated in separate

containers at 75%C for approximately 15 minutes (until the curing agent melted), then they
were mixed together. The mixture was then vacuum-gassed. Next, the epoxy resin mix-
ture was poured into silicone rubber models to form 1.6x3.5x0.125 inch rectangular speci-
mens or dogbone standard shape control specimens. Inclusions were placed at least a
distance of one diameter away from the free surface to minimize the free surface effect

(Lee et al. 1992). The model epoxy-copper composite was then cured in a pre-programed
oven. The curing cycle used was 75°C (167 °F) for two hours followed by 125°C (257 °F)

for another two hours, then the composite was either heated to 160°C (320 °F) ,which is

the glass transition temperature for this epoxy, held for two hours and then cooled to room

temperature at slow cooling at rate of 2.5°C (5°F)/our (post curing), or cooled directly to

room temperature without post curing (standard curing).

Mechanical P ies of E, Matri
To study the temperature dependence of various mechanical properties of the epoxy
resin three sets of experiments were conducted. In the first set, the tensile tester (MTS)

was used. Using a small environmental chamber, the stress-strain data and the axial-trans-

verse strain data were recorded for 55°C and 85°C at a strain rate of 7%. The average
results of three specimens for each case were used to find the elastic modulus and the Pois-
son’s ratio for both post and standard curing conditions.

In the second set of experiments, Instron tensile measurements were used to find the

mechanical properties of the epoxy matrix at room temperature. The laser extensometer

was used to measure strain. Stress-strain curves of epoxy matrix for various temperatures
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and for the two cooling conditions are plotted in Figures 3.1a and 3.1b. The dashed curve
in Figure 3.1a was obtained by Gupta et al. (1985). Using a regression analysis, the varia-

tion of the elastic modulus of the epoxy matrix as a function of temperature T is given by

E™(T) = 6.2974 (10)° - 6.7798 (10°T + 49.7354T° - 0.1577997T° psi (3.8)

This variation of elastic modulus with temperature is represented in Fig. 3.2 . The
effect of temperature on the Poisson’s ratio of the matrix is shown in Figure 3.3 and has

the following form

V*(T) = 0.2704417 + 0.00368067T - 1.335529 T2 - 4.26119T° 3.9)

In the third set of experiments, the variation of thermal expansion with temperature
was used to calculate the coefficient of thermal expansion (CTE) of the epoxy-matrix,
coating materials and copper inclusions.

Deformation of epoxy, coating and inclusion samples as a function of temperature is
plotted in Figures 3.4 through 3.7. The derivative of those curves will give a variation of
thermal coefficients of expansion with temperature which are found using regression anal-

ysis

o™ (T)=2.91 (10)3 - 4.59 (10°T +3.11 (10)7T2 - 1.18 (10)3T3 + 2.78 (10)1°T* - 4.21

(10y°2T3 + 4.10 (10) 14T - 2.48 (10)1T7 + 8.49 (10) 918 - 1.25 (10)2'T? °C (3.10)

Similar expressions were obtained for the coatings and the inclusion.
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Fig. 3.1 Stress-strain curves of epoxy matrix (Epon 828) for various tempera-

tures and for the two cooling conditions: a) standard curing and b) post curing.
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Photoelastic measurements.

The photoelasticity method was used to study the effect of interphase and random
arrangement of inclusions on thermal stresses in composites with cast-in-place inclusions
for two curing conditions: standard curing and post curing. In this analysis we used two
compliant coatings. The mechanical properties of the epoxy matrix, inclusion and coatings
are shown in Table 3.1.

To study the effect of geometric distribution, two random arrangements of inclusions
with volume fraction 14% and 20% were used. The location of these fibers was digitized
to be incorporated in the finite element analysis as will be mentioned in next section. For a
comparison we also studied a periodic arrangement (triangular) with a volume fraction of
27.5%. The matrix was cured in accordance to standard curing for the case of randomly
and regularly arranged inclusions.

In our study we considered the model composite in a form of a thin plate in order to
simplify the experimental analysis. By having the plane stress case we reduce the free
edge effects, i.e. the disturbance of the stresses near the two traction-free surfaces due to a
relaxation of stresses there, and, in this case, we can see the photoelastic fringes more eas-
ily. Alternatively, we could simulate directly the plane strain case by using a fringe freez-
ing technique as mentioned before.

In order to calibrate the epoxy matrix material for the fringe value f, different levels
of loading were applied to a four-point-loaded beam (Figure 3.8). The average value of
number of fringes was used to determine the material fringe value f ; according to the for-

Nfs e
mula 0, -0, = el For our case f was found to be 14.5 Ib/in/fringe at room tempera-

ture.
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The Finite Element Solution

In this study we used a commercially available finite element package ANSYS 5.1.
We utilized quadrilateral plane elements, such that each element was defined by eight
nodes having two degrees of freedom: translations in the nodal x and y directions with the
element edge size of.25a. We used the following boundary conditions: traction free condi-
tions at three side edges and a symmetric boundary condition at the remaining edge.

We did two types of analyses. First, to study the effect of interface numerically, we
varied the elastic properties of the coating keeping the same elastic properties of the
matrix and the inclusion as that given in Table 3.1. In this case the random geometric dis-
tribution of fibers was generated by the computer as discussed in Chapter 2. We also stud-
ied two periodic arrangements: triangular and square. For more basic understanding we
also studied single, two, and three inclusions in a row or in an equilateral arrangement.

In the second set of runs, to check the accuracy of our numerical and experimental
resﬁlts, we simulated the exact geometry of the experimental specimens (described in the
previous section) and used the mechanical and thermal properties of tested materials as

obtained experimentally (eqns. 3.8-3.10); thus we utilized a nonlinear analysis in this case.

RESULTS AND DISCUSSION
The Single Inclusion Solution.

In the parametric study of a single coated inclusion we studied the influence of four
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Table 3.1. The elastic and thermal properties of composite’s constituents used in the

analytical solution.

E° P a‘/°C
ksi (MPa) (x 1076 )
m
matrix 450 0.36 64
(3.11x10%)
inclusion 1.74x103 0.34 16.7
(1.20x10°)
coating | 1 0.36 246
(6.89)
coating 2 30 0.36 ‘ 219
(206.84)
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parameters characterizing the coating (interphase): the Young’s modulus E®, the Poisson’s
ratio v°, the thermal coefficient of expansion o.° and the thickness ¢, on the stress fields in
the matrix. The com-

posite system is a thin epoxy plate with copper inclusions with the properties given in
Table 3.1.

Fig. 3.9 illustrates the joint effect of the non-dimensionalized Young’s modulus of the
coating E° with respect to the Young’s modulus of the matrix E" (l‘.’c/l':'"l ) and the non-
dimensionalized thickness ¢ with respect to the inclusion radius a (#/a) on c:': atr=a+t
when v¢ = 0.36and o“= o, Observe that both the thickness ¢ and the Young’s modulus
of the coating E° contribute to the stress fields. The effect of changing the coating thick-
ness is more pronounced for the cases of thin coating. Increasing the coating thickness
will always increase the radial stress in the matrix regardless of the elastic modulus of the
coating. If E€/7E™>1, thenand increasing the elastic modulus of the coating increases the
radial stress in the matrix. The opposite behavior is observed when ES/E™<1.

Increasing the thermal coefficient of expansion of the coating will increase the radial
stresses (Figs. 3.10 and 3.11). This influence increases as the value of the elastic modulus
of the coating E°/E™ increases. The effect of changing the Poisson’s ratio of the coating
(v*) increases as the elastic modulus of the coating increases (E/E™) as shown in Fig.
3.12. Also note that increasing the Poisson’s ratio of the coating (v°) will increase the

radial stress in the matrix (6}, ) for the cases of compliant coatings; this effect will be
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Fig. 3.9 The joint effect of the non-dimensionalized Young’s modulus of the coating
EC with respect to the Young’s modulus of the matrix Em (Ec/Em) and the non-

dimensionalized thickness t with respect to the inclusion radius a (/a) on c:':/ AT atr
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Fig. 3.10 The joint effect of the non-dimensionalized Young’s modulus of the coat-
ing ES with respect to the Young’s modulus of the matrix E™ (EC/ E" ) and the

. . . c
coefficient of thermal expansion of the coating & on o’r':/ AT atr = a + t when

v€ = 0.36and t/a = .25.
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reversed in cases of stiff coatings.

Figs. 3.13 demonstrates the effect of the elastic modulus of the coating E° on the
effective stresses G, in the matrix, coating and inclusion when o = &”, v= V" and 1
=.25 a. If the elastic modulus of the coating E¢ < E™= 450 ksi then the matrix, coating,
and inclusion carry almost the same amount of loading. However when E°>E™ then the
loading is carried by the coating and the inclusion with the maximum stress being in the
matrix. Note that the stress in the matrix will be almost constant when E°>E™

For a constant ¢ = .25a, E° = E™ and V* = V", increasing the coefficient of thermal
expansion (CTE) of the coating o° will reduce the effective stresses & eff in the matrix but
will increase the effective stress in the coating and the stress in the inclusion will not
change (Fig. 3.14). Figure 3.15 shows the distribution of ¢, — 6, in the matrix, coating
and inclusion along the radial direction for the case of a constant ¢ = .25a, o.° = " and V*
= V™. Note that the stresses are uniform inside the inclusion as expected from Eshelby’s
solution (1957).

To study the effect of curing conditions, experimental and numerical results of
G, — O, stress distribution in the matrix along the radial direction were compared in Figure
3.16b for two curing conditions: post curing and standard curing for the case of perfectly
bonded inclusions. In the finite element analysis the mechanical properties shown in Fig-
ures 3.1-3.8 were used. Fig. 3.16b shows that post curing will reduce residual stress in the

matrix. Figure 3.16a represents typical stress patterns of both curing conditions as
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(i)

Fig. 3.16a. Isochromatic fringe patterns around a cast-in-place copper inclusion in an

epoxy matrix for two curing conditions: i) post curing, and ii) standard curing.
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Fig. 3.16b. The effect of two curing conditions: experimental (EXP.) and numerical

(F.E.M.) results for G, — O, stress distribution in the matrix along the radial direction.
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obtained via photoelasticity.

In order to check the accuracy of both our photoelastic results and finite element out-
puts, we compared the contours of the max( 6} - 67 ), obtained numerically and experi-
mentally with the analytical results. These results, given in Table 3.2, show a good
agreement between our numerical, experimental, and analytical solutions. Note, also, the
similarity in stress distributions of the three methods (Fig. 3.17a). In case of compliant

coatings no stresses were observed in the birefringe material (Fig. 3.17bi-ii).

Two inclusions case.

In order to gain an insight about the inclusions’ interaction we focus now on the two
inclusions solution. The local stress fields due to two inclusions are a function of the sepa-
ration distance between the two inclusions, and the presence of other inclusions.

1) Effect of separation distance between two inclusions.

Numerically, we vary the separation distance between the two coated inclusions. Figs.
3.18-3.22 show that increasing the separation distance reduces the local effective stress in
the matrix, the coating, and the inclusion. For the case of the coating thickness t=.25a, the
thermal coefficient of expansion of the coating o = o = 64x 10" /°C and the Pois-
son’s ratio of the coating v* = V" = .36 (Fig.3.16-3.18), the maximum stress between the
two inclusions always increases as the elastic Young’s modulus of the coating E°

increases. The same influence was observed for the case of o° = 219x10-6 rc
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Table 3.2. A comparison of experimental, numerical and analytical results of the max-

imum (6'1" - o’zn)/ AT (psi/ oC ) for the single inclusion case.

Experimental FEM Analytical
perfect bond 139 14.5 14.46
(no coating)
coating | 0 6.61 6.32
coating 2 0 203 0.185




F

Fig

gle (



107

Fig. 3.17a-i. The contours of 0,-0, in the epoxy matrix around a perfectly bonded

single copper i ion as ined experi y.

Note: Each contour line =1.46 psi

Fig. 3.17a-ii. The contours of G, -0, in the epoxy matrix around a perfectly bonded sin-

gle copper inclusion as obtained analytically.
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Fig. 3.17a-iii. The contours of (6, —G,)/AT (psi/°C) in the epoxy matrix around a per-

fectly bonded single copper inclusion as obtained numerically.
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Fig. 3.17b. Isochromatic fringe pattern obtained by photoelasticity for an
epoxy matrix with either coated single inclusion using i) coating 1 and ii)
coating 2, or (iii) no coating case.
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Fig. 3.18 Effect of separation distance d on the effective stress in the matrix

O'Zlff/ AT (psi/ °c ) for a coating thickness ¢ = .25a, the thermal coefficient of

expansion of the coating o =a” = 64xlO-6 /°C and the Poisson’s ratio of the

coating v¢ = V" = 0.36.
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Fig. 3.19 Effect of separation distance d on the effective stress in the inclusion
cleff/ AT (psi/ oC ) for a coating thickness t=.25a, the thermal coefficient of

expansion of the coating of =a" = 64.1:10-6 / °C and the Poisson’s ratio of the

coating v* =v" = 0.36.
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Fig. 3.21 Effect of separation distance d on the effective stress in the matrix

GZ}f/AT (psi/ OC) for a coating thickness ¢ = 0.25a, the thermal coefficient of

expansion of the coating o = 219x10™° /°C and the Poisson’s ratio of the coating

Ve = V" =0.36.
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Fig. 3.22 Effect of separation distance d on the effective stress in the matrix
c:'ff/AT (psi/OC) for a coating thickness 7=.254, an elastic Young’s modulus of

the coating E€ = E™ and a Poisson’s ratio of the coating v¢ = v" = . 36.
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(Fig.3.21). Fig. 3.22 shows that for the case of E° = E™, t=.25and v °= V" = .36 the
effective stress between two inclusions always increases by increasing the thermal coeffi-
cient of expansion o.° of the coating regardless of the separation distance between the two
inclusions.

Experimentally, we vary the separation distance between two perfectly bonded inclu-
sions and we use the standard curing condition (Fig. 3.23a-h). When we compared results
of our numerical calculations for a perfect bonding case with our experimental results for

the case of standard curing, we found a very good agreement between the finite element

and experimental results of 0'," - 0'2" (Fig.3.24).

2) effect of I f other inclusi

Finally, we explore the effect of the presence of more than two inclusions on the stress
field. We do so by considering three inclusions in a row and three inclusions with their
centers forming an equilateral triangle. We study these effects for the case of either a two-
phase material (no coating) or a three phase material (with a coating). For the case of two
phase material system we vary the mismatch between the two materials (E‘i/E'") and we
use Kouris’ solution (1991). Fig. 3.25 shows that increasing the number of inclusions in a
row increases the compressive of radial stress in the matrix regardless of degree of mis-
match between the inclusion and the matrix. This effect decays as we increase the number
of inclusions. Fig. 3.25 also shows that three inclusions in the row configuration will pro-

duce a larger compressive stress than the three inclusions in a triangular arrangement.
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Fig. 3.23a. Isochromatic fringe pattern obtained by photoelasticity for an epoxy matrix of
thickness t=0.124 in. with two perfectly bonded copper inclusions located at a/D=0.154.

J e y LN

; .5
Fig. 3.23b. Isochromatic fringe pattern 0btained4by photoelasticity for an epoxy matrix
of thickness t=0.95 in. with two perfectly bonded copper inclusions located at a/D=0.222
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Fig. 3.23c. Isochromatic fringe pattern obtained by photoelasticity for an epoxy matrix of

thickness t=0.115 in. with two perfectly bonded copper inclusions located at a/D=0.257.

Fig. 3.23d. Isochromatic fringe pattern obtained by photoelasticity for an epoxy matrix of

thickness t=0.0877 in. with two perfectly bonded copper inclusions located at a/D=0.347.
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Fig. 3.23e. Isochromatic fringe pattern obtained by photoelasticity for an epoxy matrix of

thickness t=0.071 in. with two perfectly bonded copper inclusions located at a/D=0.348
1

Fig. 3.23f. Isochromatic fringe pattern obtained by photoelasticity for an epoxy matrix of

thickness t=0.074 in. with two perfectly bonded copper inclusions located at a/D=0.396.
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Fig. 3.23g. Isochromatic fringe pattern obtained by photoelasticity for an epoxy matrix
of thickness t=0.075 in. with two perfectly bonded copper inclusions located at a/
D=0.442.

Fig. 3.23h. Isochromatic fringe pattern obtained by photoelasticity for an epoxy matrix of
thickness t=0.081 in. with two perfectly bonded copper inclusions located at a/D=0.4803.
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Fig. 3.24 Effect of separation distance between two perfectly bonded copper inclu-
sions in an epoxy matrix on (o"ln - 0'2'1)/ AT (psi”C) experimentally and numeri-

cally.
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Radial compressive stress in the matrix is found to be larger at the inclusion/matrix inter-

face than the stress at the mid-distance between the two inclusions; actually the stress

becomes tensile at the mid-distance between the two inclusion in the case of triangular
. m i m i

arrangement (Fig. 3.25). Note that €* = (¢ -0 )AT where oo, are CTE of the

matrix and inclusion respectively and G is the shear modulus of the matrix. These effects

are observed to be the same for the case of a coated inclusion subjected to a uniform ther-

mal change (Fig. 3.26).

The Multi-Inclusions Solution.

The values of the maximum shear stress (principal stress difference, 6] — 67 ) in the

matrix, obtained by the photoelastic method and also using finite element calculations for
the case of perfectly bonded inclusions for two random randomly arranged inclusions of
volume fractions 14% (Fig. 3.27) and 20% (Fig. 3.28) and a regular arrangement for the
volume fraction of 27% (Fig. 3.29) were compared in Table 3.3 which shows a good
agreement between experimental and numerical results. Table 3.3 shows that increasing
the volume fraction of the inclusions will increase the maximum shear stress. The periodic
arrangement produces a lower stress than that of random arrangement even if the volume
fraction of the periodic arrangement is higher. Note the similarity between stress field con-

tours obtained experimentally (Figs 3.27-3.29) and numerically (Figs. 3.30-3.32).
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Fig. 3.26 Effect of elastic Young’s modulus of the coating E° on radial stress in the

matrix o'rnr/ (AT) for v = V™ = .36 using a finite element method.
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34

Fig. 3.27 Isochromatic fringe patterns obtained by photoelasticity for an epoxy
matrix with a 14% volume fraction of cast-in-place and randomly arranged copper
inclusions.



Fig. 3.28 Isochromatic fringe patterns obtained by photoelasticity for an epoxy matrix

with a 17% volume fraction of cast-in-place and randomly arranged copper inclusions.

Fig. 3.29 Isochromatic fringe patterns obtained by photoelasticity for an epoxy matrix
with a 20% volume fraction of cast-in-place copper inclusions arranged in a periodic

arrangement...
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Table 3.3. A comparison of experimental and numerical results of the maximum
(0’1" - c'zn)/ AT (psi/ OC) for the case of perfectly bonded and randomly distrib-

uted multi-inclusions.

Arrangement Experimental FEM
—_—
random 899.6 911.6

(f=0.17)

random 504.3 5404
(f=.14)

periodic 690 (max) 723 (max)
(f=0.2) 414 (mid) 390 (mid)

Note: (max) represents the maximum stress value in the matrix for the entire sample
considered numerically, and (mid) represents the maximum stress value in the matrix

at the middle portion of the same sample (i.e. away from the free surface effect).
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Fig. 330 0, -0, (psi) in a model composite with volume fraction f = 14% of ran-
domly distributed and perfectly bonded copper inclusions obtained by FEM for a uni-

form temperature loading of AT = -50°C using a non-linear analysis.
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Fig. 3.31 G,-0, (psi) in a model composite with volume fraction f = 17% of randomly
distributed and perfectly bonded copper inclusions obtained by FEM for a uniform tem-

perature loading of AT = -50°C using a non-linear analysis.
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Fig. 3.32 o, — 6, (psi) in a model composite with volume fraction f = 20% of randoml
1 X po! y

distributed and perfectly bonded copper inclusions in a regular arrangement obtained by

FEM for a uniform temperature loading of AT = -50°C using a non-linear analysis.
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Figs. 3.33-3.34 show the influence of the elastic modulus of the coating E° on the

location and maximum value of effective stress and principal stress difference for the case

of t = .25a, V¥ = V™= .36 and either & = 219x10™° AC or & = 64x107° /°C with the
properties of the matrix and inclusion given in Table 3.1. Note that (c) and (m) notations
represent the location of the maximum stress (i.e. in the matrix (m) or in the coating (c)).
Figs. 3.33-3.34 show that increasing the elastic modulus of the coating will always

increase the maximum stress in the composite material. Whereas for the case of
o = 219x107°% 2C the maximum stress is always in the coating material, the maximum

stress will be in the matrix for the case of E°< E™ when o = 64x10°° /°C.

The effect of the thermal coefficient of expansion o° is shown in Figs. 3.35-3.36. The
maximum stress in the composite material will increase by increasing the thermal coeffi-

cient of expansion of the coating. For the case of no coating the maximum stress is always

in the matrix and for a stiff coating material (E°=9000 ksi) the maximum stress is basi-
cally carried by the coating.

We compared the effect of the inclusions’ arrangement using two periodic arrange-
ments (square and triangular) and random arrangements (Tables 3.4-7). Using random
arrangement always gives higher values of stresses than regular arrangements. This effect

is more noticeable when the maximum stress is located in the matrix. Typical stress field

contours (G, ) due to thermal residual stresses are shown in Figs. 3.37-3.44.

We also studied the local stresses around a single inclusion at elevated temperature by
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Fig. 3.33 The influence of elastic modulus of the coating E° on the effective stress
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Fig. 3.34 The effect of elastic modulus of the coating E° on (o, -02)/ AT for the

case of t = .25a, V¢ = V"= .36.
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Fig. 3.35 The effect of coefficient of thermal expansion of the coating (a°) on the

effective stress o, ff/ AT for the case of t = 0.25a, V¢ = V= 0.36.
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Fig. 3.36 The effect of coefficient of thermal expansion of the coating (ac) on

(6, —0,)/AT for the case of 1 =.25a, V¢ =Vv"=36.
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Table 3.4. Effect of arrangement on the maximum stress in a model composite material

when ac =a" = 64x10—6/°C, t=.25aand v¢ = v" = 0.36 for various values of

E.

Stress E¢=1 30 120 450 4500 | 9000 | 45000 | 90000

(0si’°C) | (ksi) | (ksi) | (ksi) | (ksi) | (ksi) | (ksi) | (ksi) | (ksi)
o ../AT 0.49 6.3 21.7 33.7 172.2 | 3974 | 1313 2475
eff m|{m|m|oo| ||| ©

Random

(6,-06,)/AT | 045 44 159 | 209 | 350.0 | 3753 | 1312 | 2238
(m) | (m) | (m) © © © © ©

o, jf/AT 0.28 5.2 17.2 | 222 | 170.0 | 391.2 | 1293 | 2404

m|m|m| ||| o e g

(6,-0,)/AT | 027 [ 324( | 130 | 153 | 3412 | 3693 | 1297 | 2210 |&
(m) m) (m) (©) (c) (c) (c) ©

S /AT 0.22 4.3 12.3 19.1 161.8 | 382.7 1287 2372 5

off m | m|m| ||| ool

(01 _52)/AT 0.20 3.0 114 134 337.1 | 361.9 1290 2201 E

(m) (m) (m) (c) (© (©) (©) ©

Note: (c and m) represent the location of the maximum stress i.e. in the coating (c) or
in the matrix (m). The random arrangement results are the average values obtained

from three different arrangements of the same volume fraction.
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Table 3.5. Effect of arrangement on the maximum stress in a model composite material

when of = 2l9J|:10-6 /°C, 1=.25a and v° = v"™ = 0.36 for various values of EF.

Stress Ec=1 30 120 | 450 | 4500 | 9000 | 45000 | 90000
(psi/°C) (ksi) | (ksi) | (ksi) | (ksi) | (ksi) | (ksi) | (ksi) | (ksi)

°eff’AT 0.18 6.4 23.7 | 89.2 | 740 16='75 7717 | 10669
(m) ©) (©) (©) © © ©) ()

(6,-6,)/AT 0.15 6.2 224 81.8 710 1519 | 7250 | 9683
© (9] (c) (©) © (c) (c) (©)

Random

o, ff/AT 0.18 5.7 20.1 69.3 610 1590 | 7003 | 9290
() (c) (©) © () © () ) | §
=
(6, -0,)/AT 0.15 4.3 19.0 62.0 601 1485 | 6810 | 8710 |&
(© (c) (c) © | (o (© (c) (c)
o, 1 /AT 0.17 5.0 18.3 544 | 550 1410 | 6520 | 7230 5
(©) © | © [ @ | @ | @ | @ | © [B
(6,-06,)/AT 0.13 3.6 17.6 533 | 532 1390 | 6010 | 6960 §
@l ©@ ]| @@ || ]| olF
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Table 3.6. Effect of arrangement on the maximum stress in a model composite mate-

rial when E¢ =Eavg=9x103 psi, t = .25a and v¢ = v = 0.36 for various values of

thermal coefficients of expansions.

Stress a= 167 40.35 64 219
(psi /°C) (108,c) | (10%,C) | (10°,C) | (10°FC)
6 /AT 393 | 2065 39745 | 1675
i (m) © © © |£
(6,-0,)/AT | 238 173.0 375.31 1519 |2
(m) () (c) ©)
O /AT 26.9 170.4 391.24 1590
(m) © (© © g
=
(6, -0,)/AT 203 152.3 369.3 1485 |&
(m) (c) (©) (©)
0,/ AT 24.0 159.3 3827 | 1410 |y
(m) () () © B
(G, - 0,)/AT 17.3 1436 619 | 1390 | &
(m) © © © |°
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Table 3.7. Effect of arrangement on the maximum stress in a model composite mate-

rial when E€= E™= 450 ksi, t = .25a and v° = v™ = 0.36 for various values of ther-

mal coefficients of expansions.

Stress a= 167 40.35 64 219
(psi/°C) (108,c) | (10°,PC) | (105PC) | (10°,C)
G /AT 379 32.6 337 89.1 |
eff (m) (m) © © |E
(6, -6,)/AT 20.1 17.3 20.9 81.7 |8
(m) (m) (©) (c)
S 4/ AT 24.6 20.1 222 69.3
(m) (m) (©) (c) 8
(0, -0,)/AT 17.6 14.9 154 62.0 £
(m) (m) © (c) @
O/ AT 223 19.0 19.1 54.4 5
(m) (m) (c) (c) =
(6,-0,)/AT 15.9 13.0 134 533 g
(m) (m) (c) z (c)
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Fig. 3.37 S, ff(psi) in a model composite with volume fraction f = 23% randomly
arranged of coated copper inclusions with elastic modulus of the coating E€=1Iksi,

thermal coefficient of expansion of the coating of = 64)(10_6 /°C obtained by FEM

for a uniform temperature loading of AT = -1°C using a linear analysis.
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kig. 3.38 Soff (psi) in a model composite with .olume fraction f = 23% randomly
arranged of coated copper inclusions with elastic modulus of the coating E=30 ksi,

thermal coefficient of expansion of the coating of = 64,\'10_6 /°C obtained by FEM

for a uniform temperature loading of AT = -1°C using a linear analysis.
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Fig. 3.39 Geff (psi) in a model composite with volume fraction f = 23% ran.domly
arranged of coated copper inclusions with elastic modulus of the coating E°=120 ksi,

thermal coefficient of expansion of the coating of = 64,\:10_6 /°C obtained by FEM

for a uniform temperature loading of AT =-1°C using a linear analysis.
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Fig. 3.40 Oej] (ps1) in a model composite with volume fraction f = 23% randomly
arranged of coated copper inclusions with elastic modulus of the coating E = E™ =

450 ksi, thermal coefficient of expansion of the coating of = 64)510-6 /°C obtained

by FEM for a uniform temperature loading of AT = -1°C using a linear analysis.
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Fig. 2 41 Gefj (psi) in a model composite with volume fraction f = 23% randomly
arranged of coated copper inclusions with elastic modulus of the coating E°=9000 ksi,

thermal coefficient of expansion of the coating of = 64;(10_6 /°C obtained by FEM

for a uniform temperature loading of AT =-1°C using a linear analysis.
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Fig. 3.42 o, (psi) in a model composite with volume traction f = 23% randomly
arranged of coated copper inclusions with elastic modulus of the coating E° = E™ =

450 ksi, thermal coefficient of expansion of the coating o = 16.7Jt10_6 'l of

obtained by FEM for a uniform temperature loading of AT = -1°C using a linear anal-
ysis.
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Fig. 3.43 ©,, (psi) in a mode! coriposite with voiume fraction j = 23% randomly
arranged of coated copper inclusions with elastic modulus of the coating E° = E™ =

450 ksi, thermal coefficient of expansion of the coating of = 40.35,1:10—6 PG

obtained by FEM for a uniform temperature loading of AT =-1°C using a linear anal-

ysis.
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Fig. 3.44 0, (psi) in . model composite with volume fraction f = 23% randomly
arranged of coated copper inclusions with elastic modulus of the coating E€ = E™ =

450 ksi, thermal coefficient of expansion of the coating of = 219):10-6/" C obtained

by FEM for a uniform temperature loading of AT = -1°C using a linear analysis.
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considering cast-in-place copper inclusions in an epoxy matrix and subjected it to a con-
tinuous increase in temperature. The specimen was placed in a small chamber and the
change in stresses was monitored and recorded continuously. The results of stresses at six

selected temperatures are shown in Fig. 3.45. The experimental and numerical results of
G| — 0, are in good agreement at relatively low temperatures (T<77 °C) as shown in Fig

3.46. At high temperature, there is a big difference between the two methods. This could
be due to viscoelastic effect and change of birefringe coefficient with temperature. These

two effects were not considered in our calculations.

CLOSURE

In this phase of the study we investigated the influence of the inclusion-matrix inter-
face and the geometric arrangement on the residual stresses in a model composite made of
an epoxy matrix and circular copper inclusions. We find that both of these factors signifi-
cantly contribute to the local stress fields. The study of the effects of geometric arrange-
ment of inclusions requires a more complete statistical analysis and more study is needed
to investigate the viscoelastic effect,

specially at high temperatures.
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Fig. 3.45. Isochromatic fringe pattem obtamed by photoelasucnty around a single cast-

in-place copper inclusion subj p
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CHAPTER 4

TASK 3: THE DAMAGE INITIATION AND PROPAGATION IN A
MODEL COMPOSITE WITH AN EMPHASIS ON CRACK INITIA-
TION AND PROPAGATION IN AN ELASTIC PLATE WITH RAN-

DOMLY DISTRIBUTED HOLES.

In this chapter we consider the crack initiation and propagation in elastic-brittle
(epoxy) and elasto-plastic (aluminum) thin sheets containing randomly arranged circular
holes. The specimens are subjected to a uniaxial tension. We study a single configuration
" of a random arrangement both numerically, by using a finite element method, and experi-
mentally. The goal of this study is to predict numerically the crack path which is in agree-
ment with the crack patterns obtained experimentally. This study will set a framework for
a fracture analysis of more complex two or three phase composite materials with ran-

domly arranged inclusions.

EXPERIMENTAL STUDY

The experimental set-up involved thin perforated sheets made of either an epoxy or an
aluminum, each containing 31 randomly distributed non-overlapping circular holes of the
same size (volume fraction of holes is 23% in the portion of the specimen away from the
edges). The distribution of holes was obtained by generating random numbers to simulate

the loci of the holes’ centers. We imposed restrictions that the holes did not overlap, they
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were located at least one diameter away from the edges of the specimen and the distance
between the holes was at least 0.1 a, where a was the hole radius. The dimensions of each
epoxy plate were 3.5”x13.0”x0.125” and the holes were 0.25” in diameter. The holes
were introduced in the following way. For the case of an epoxy material the plates were
placed one at a time between the two steel plates and drilled at a slow speed to reduce
residual stresses caused by machining. Then, the remaining residual stresses were
removed by annealing the epoxy plate to a temperature beyond the glass transition temper-
ature which was for our case 160°C. For the case of aluminum sheets the holes were
drilled according to the desired random arrangement.

After the preparation of the epoxy samples the photoelasticity method was used to
find the stress distributions in these birefringent perforated plates. In order to determine
the material fringe value f o for the epoxy material used, different levels of loading were
applied to either specimens with a hole or to a four-point-loaded beam. It is known from
theory of plane elasticity (Michell, 1899; Timoshenko and Goodier, 1956) that, when a
material with holes is subjected to tractions and the resultant of forces over each hole
boundary vanishes, the stress field is independent of elastic constants. Thus, the stresses
obtained from the analysis of fringe patterns are applicable for both material systems stud-
ied, when they are in the elastic range.

The crack propagation tests were conducted using an Instron testing machine that
could apply a constant displacement rate boundary condition. An ASTM standard D2343
requires the use of a cross head speed of 2 mm/min. This recommended cross head speed
is used by many other ASTM standards in cases where the stress is distributed uniformly

along the tested cross section. In a material with holes the stress is not uniform and thus
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the stress concentration is more than 1.0. In our experiments we used a cross head speed
of 0.1 mm/min. (.04 in/min). To monitor crack propagation and final crack pattern a high
speed camera, which could capture 3000 frames/sec., was used. The video camera was
connected to an image digitizer and the output was directed either to a super VCR or a
thermal printer. The recorded image was then stored in the computer and studied frame by
frame to determine a site of crack initiation and crack paths. This experiment was done
for a single random configuration of holes only but it was repeated on several epoxy and
aluminum specimens. More details on experimental set up is included in the Appendix

(pp. 272-280).

NUMERICAL SIMULATIONS OF FRACTURE

In addition to conducting experiments we also studied the above problem numeri-
cally. We used a commercial finite element program ANSYS 5.1 to explore the issue of
crack initiation and propagation in elastic-brittle epoxy and elasto-plastic aluminum sheets
perforated with circular and randomly arranged holes of equal size as described in the pre-

vious section. We subjected the boundary of the tested specimens to the kinematic bound-

ary conditions u; = eg.xj where eg. = e: y" In the modeling of crack initiation and growth

we used the approach involving a removal of elements. For the epoxy sheet we simulated
cracking by either removing the elements with the highest strain energy or the elements
that had a maximum principal stress exceeding the tensile strength of the material. In the
second case for example, if the largest of the in-plane principal stresses 6, and o, in an
element exceeded a tensile strength of the matrix, we removed that element and repeated

the same steps under the same loading until a stable condition was reached (i.e. no element
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had a stress exceeding the tensile strength of the matrix); then we increased the load by a
small increment and repeated the procedure until the whole specimen fractured. For the
aluminum sheet we employed the criterion used by Becker and Smelser (1994) which pre-
dicts the onset of fracture when the strain in the thickness direction €,, in a shin sheet is
reduced by 25%. We also used two different mesh sizes by assigning element sizes of
0.2a and 0.4a around the boundary of each hole. In our numerical modeling we were
interested not only in the final crack patterns but also in the crack growth. We may also
point out that we did not do remeshing, i.e. we stayed with the same fine mesh for the
whole crack simulation process. We have used this crude approach for simplicity. Also,

we only did a static fracture analysis and neglected viscoelastic effects.

RESULTS AND DISCUSSION
The local stress fields

Studying the local stress field will give an insight in the damage initiation, especially
for brittle materials. The local stress field in a material with randomly arranged holes
under a remote tension, as considered in our numerical examples and experiments, is very
complex and will differ for each random arrangement. Thus, in order to gain a fundamen-
tal understanding of the stress fields and the sites of crack initiation in a material with ran-
domly arranged and interacting holes we first consider simpler geometries involving a
single hole and two holes. The single hole solution is applicable for the dilute case in
which holes are far away from each other and they don’t interact, but it also gives a basic
understanding of the stress fields in a perforated sheet with many holes. The results of a

single hole solution using analytical, numerical and experimental techniques are illus-
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trated in Figs. 4.1-4.3 and the Table 4.1 which shows a good agreement between our solu-
tions using these three methods. The fringes around a single hole start forming in a plane
perpendicular to the applied loading, at ® = 0, which is a location of the maximum stress,
then migrate along its line of action, 6 = n/2.

When more than one hole is present the problem of finding local stresses becomes

very complex due to the elastic fields interaction. The elasticity problems of two holes or
inclusions were solved analytically by Kouris and Tsuchida (1991), and the problem of
multiple holes or inclusions by Gong and Meguid (1993). These solutions involved a con-
siderable mathematical effort. In this chapter, for simplicity, we use the photoelasticity
and finite element methods to evaluate the stress field in a sheet with randomly distributed
holes.

A similar behavior, in terms of the fringe pattern formation, to that observed for a sin-
gle hole case, illustrated in Figs. 4.1-3, is seen in the case of a composite with the 23% and
31% volume fraction of randomly distributed holes both experimentally (Figs. 4.4-5) and
numerically (Figs 4.6-7). Figs. 4.4-5 show the isochromatic fringe patterns obtained by
the photoelasticity method for an epoxy matrix with randomly distributed holes of volume
fractions of 23% and 31%. In the latter case the holes’ centers are in the same locations
but the hole size is larger and it is 0.3125” in diameter. Figs. 4.6-7 give typical finite ele-
ment stress contours of (6, -0,)/c,, . Both numerical and experimental results show a
good agreement (Table 4.2). For the same geometric distribution, the stress field in the
perforated sheet with a higher volume fraction of holes (larger holes) is higher in magni-
tude, which means an earlier sign of cracking and a lower overall strength. Figs. 4.4-7

show a localization and a nonuniform distribution of stresses between the holes. This
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Note: contour value=0.3

Figure 4.1 Analytical stress contours of (o) 02)/00 around an isolated hole for an
applied loading in the vertical direction.
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Figure 4.2 Finite element contours of a) (61 - 02)/60 and b) (max(cl, 02))/60

around an isolated hole for an applied uniaxial tensile loading in the vertical direction.
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Fig. 4.3 Isochromatic friage pattern obtained by photoelasticity for an epoxy matrix with a

holes and subjected to a uniaxial tensile loading of 1 ksi.
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4.1 A comparison between analytical, experimental and numerical results for

(

m

G

- c'zn)/ G, for an elastic plate with a single hole.

Analytical | Experimental | Numerical
0= 3.0 3.0 28
0 =n/2 1.0 09 0.9
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Fig. 4.4 Isochromatic fringe pattern obtained by photoelasticity for an epoxy
with a 23% volume fraction holes at the middle portion of specimen and sub-
jectedto uniaxial transverse loading of 492.5 psi in the vertical direction.

N =

Fig. 4.5 Isochromatic fringe pattern obtained by photoelasticity for an epoxy
matrix with a 31% volume fraction holes at the middle portion of the specimen
and subjected to a uniaxial load of 492.5 psi in the vertical direction.
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Fig. 4.6 Stress contours of ((51 - 02)/ g, in an elastic sheet with holes of volume

fraction 23% and subjected to a uniaxial tensile loading in the vertical direction.
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Fig. 4.7 Stress contours of (ol -0,)/6,, inan elastic sheet with holes of volume

fraction 31% and subjected to a unit uniaxial tensile loading in the vertical direction.
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4.1 A comparison between analytical, experimental and numerical results for

(0'1" - o"zn)/ c, for an elastic plate with randomly arranged holes holes.

(m

m
0, -6,

Vs,

volume

fraction (f) Experimental Numerical
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is in contrast with the periodic arrangement in which the distribution of stresses is more
uniformly distributed and each hole will have the same stress in its vicinity. The maxi-
mum stress and thus the possible location of damage initiation in an elastic sheet with ran-
domly distributed holes will be between the two inclusions arranged in the most critical
geometric arrangement. The stress field disturbed by the presence of two holes depends
on the separation distance between the holes, their location with respect to the applied
loading, and the surrounding environment (neighboring inclusions). Figs. 4.8a-c show
the stress contours of the maximum in-plane principal stress, max(G,,G,) , in an elastic
sheet with two holes aligned at different inclination angles. Note that the maximum stress
is always at a plane perpendicular to the applied loading regardless of the inclination of the
two holes with respect to one another. Thus, the worst scenario of arrangement of two
holes will occur when the holes are aligned in a direction almost perpendicular to the
applied loading, as shown in Fig. 4.9, which represents the maximum principal stress
between two holes separated by a constant distance d, which we take as d = a. This is not
surprising as that geometry resembles the nucleation of a crack from a chain of voids.
When the holes are aligned along the line of action of the applied loading, the stress is
minimum and less or equal to the one in the case of an isolated hole, which has a stress
concentration of 3, depending on the separation distance. As the two holes get closer to
each other the stress concentration increases if the two holes are aligned in a plane perpen-
dicular to the applied loading but it decreases if they are aligned along the line of action of
the applied loading as illustrated in Fig. 4.10. The effect of adding more holes along a par-

ticular path is summarized in Fig. 4.11 and Table 4.3.
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Fig. 4.9 Effect of inclination angle 8,, . on the maximum principal stress
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number of holes in a row

Fig 4.11 Effect of number of holes in a row inclinedat 0,,. = 0 or9,, = n/2 witha

separation distance of d = a between each two holes on the maximum principal stress in

an elas’ic sheet.



Table 4.3. Effect of arrangement on maximum principal stress in an elastic brittle sheet

with holes.
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Crack initiation and propagation in a sheet with non-uniformly arranged holes.

To study the crack initiation and propagation experimental and numerical techniques
were used. Numerically, crack propagation was simulated by removal of elements and
either adaptive meshing (Fig. 4.12a) or random meshing (4.12b). Experimentally a high
speed camera was used to monitor the crack initiation and propagation. Note that in Fig-
ure 4.12b, where both holes aré located along the line of action of the applied uniaxial ten-

sile loading, 8. . = ®/2, and if we assume that the material is perfectly homogeneous

in¢
and the holes are identical, both holes give rise to the same stress concentration factor and
thus have the same chance for the crack initiation. However, due to small numerical dif-

ferences, small differences in the mesh, one of them will have a slightly higher stress con-

centration factor and the crack will initiate at that hole. The similar behavior can be

observed experimentally and is due to material imperfections, for example.

Cracking of a brittle material

Fig. 4.13 demonstrates crack progress in an epoxy matrix with 31% volume fraction
holes as recorded by a high speed camera with 1000 frames/second. Fig. 4.14 shows a
crack propagation in two epoxy samples with 23% volume fraction using a high speed
camera with 1000 and 2000 frames/ second. Our experimental study of crack initiation
and propagation in a brittle material (epoxy) with randomly distributed holes indicates a
catastrophic failure, as shown in Figs. 4.13 and 4.14, where the crack propagates with a
speed approximately equal to the sonic speed (1020 ft/s or 340 m/s). In our numerical
study of a specimen with 31 randomly arranged holes four fracture criteria are used to

identify the location of a crack initiation, namely the maximum principal stress criterion,
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a)

b)

Fig. 4.12 Crack propagation between two isolated holes using a) adaptive meshing tech-

nique b) a relatively crude mesh.
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DATE 87,31 /95 e _13:34:32 DATE 073195

Fig. 4.13 Crack initiation and propagation in an epoxy sheet, with randomly distributed
holes of volume fraction f = 31%, subjected to a uniaxial displacement in the vertical

direction (experimentally).
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Fig. 4.14 Crack initiation and propagation in an epoxy sheet with randomly distributed

holes of volume fraction (f = 23%), subjected to a uniaxial displ loading (experi-

) P

mentally), for two different samples.
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the minimum strain energy criterion, the maximum circumferential stress criterion, and
the minimum thickness criterion. In Fig. 4.15 the minimum strain energy criterion was
used and twelve selected steps of crack propagation are shown as obtained using FEM.
The location of the crack initiation is found to be the same regardless of the criterion used
and it is between the two most closely spaced holes as shown, for example, in Figs. 4.6-7.
This agrees with our experimental and numerical results for all samples considered. How-
ever our numerical results using finite element (Figs. 4.16-17) and finite difference
(Ostoja-Starzewski and Lee, 1996) (Fig. 4.18) methods show different crack paths for dif-
ferent failure criteria.

Similarly, we obtain experimentally several different crack patterns by fracturing sev-
eral specimens with the identical hole arrangements; different crack patterns are shown in
Figs. 4.19 and 4.20 for cases of volume (area) fraction f = 31% and f = 23%, respectively.
Schematic plot of final crack paths of seven specimens of the same geometric arrangement
with f = 23% and subjected to the same loading conditions is shown in Fig. 4.21. A simi-
lar response in terms of crack scatter was observed for the case of a higher volume fraction
of f =31% (Fig. 4.22).

In spite of the crude way of simulating the crack propagation, at least two of the crack
patterns (the outer crack paths shown in Fig. 4.21) are predicted numerically by using two
different fracture criteria: the maximum principal stress criterion (Figs. 4.18a,b) and the
minimum elastic strain energy (Fig. 4.18c) and using the spring removal technique in the
finite difference approach (Fig. 4.20). However, the middle path of Figs. 4.21 is not pre-
dicted numerically by using a deterministic static analysis. The scatter in crack pattern is

larger at the right portion of the test specimens. Since, as observed experimentally, this
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Fig. 4.15 Crack initiation and propagation in an epoxy sheet, with randomly distributed
holes, subjected to a uniaxial tensile loading using the elastic strain energy fracture crite-
rion with a mesh size = 0.4a around the holes (selected 12 steps) as obtained by a finite

element method.
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Fig. 4.16a The final crack pattern obtained numerically by finite element method using the max-
imum principal stress criterion with a mesh size of 0.4a around the holes for a brittle elastic

Material with volume fraction f=23% of holes for the vertical uniaxial displacement.
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Fig. 4.16b The final crack pattern obtained numerically by finite element method
using the maximum principal stress fracture criterion with a mesh size of 0.2a around
the holes for a brittle elastic material with volume fraction f=23% of holes for the

vertical uniaxial displacement.
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Fig. 4.16¢ The final crack pattern obtained numerically by finite element method
using the elastic strain energy fracture criterion with a mesh size of 0.4a around the
holes for a brittle elastic material with volume fraction f=23% of holes for the vertical

uniaxial displacement.
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Fig. 4.17a The final crack pattern obtained numerically by finite element method
using the maximum principal stress criterion with a mesh size of 0.4a around the
holes for a brittle elastic material with volume fraction f=31% of holes for the vertical

uniaxial displacement.
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Fig. 4.17b The final crack pattern obtained numerically by finite element method
using the elastic strain energy fracture criterion with a mesh size of 0.4a around the

holes for a brittle elastic material with volume fraction f=31% of holes for the vertical
uniaxial displacement.
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Fig. 4.18a Final crack pattern in a brittle elastic material with holes of volume frac-
tion f = 23% obtained numerically using the finite difference method for a mesh size
of 0.67a.
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Fig. 4.18b Final crack pattern in a brittle elastic material with holes of volume frac-

tion f = 23% obtained numericall

sing the finite difference method for a mesh size

of 0.4a.

Fig. 4.18c Final crack pattern in a brittle elastic material with holes of volume frac-
tion f = 23% obtained numerically using the finite difference method for a mesh size

of 0.25a.



Fig. 4.18d Final crack pattern in a brittle elastic material with holes of volume frac-
tion f = 23% obtained numerically using the finite difference method for a mesh size
of 0.2a.

Fig. 4 18¢ Final crack pattern in a brittle elastic material with holes ot volume frac-
tion £ = 23% obtained numerically using the finite difference method for a mesh size
of 0.767a.



184

Fig. 4.1 8f Final crack pattern in a brittle elastic material with holes of volume frac-

tion f = 239 obtained numerically using the finite difference method for a mesh size
of 0.134,
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Fig. 419 Final crack pattern in an epoxy sheet with randomly distributed holes, subjected

'0 a uniaxial displ loading, obtained experi Ily from two samples with the

Same hole arrangement with volume fraction f = 31%.



Fig. 4.20 Final crack pattern in an epoxy sheet with randomly distributed holes, subjected

htai 1}

with the

to a uniaxial displ loading as d experi Ily from two

same hole arrangement with volume fraction f = 23%.
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Sample # 1
Sample #2
Sample # 3
Sample # 4
————  Sample # 5
---------- Sample # 6
~—--——== Sample #7

Fig. 421 Schematic plot of the tinal crack pattern in an epoxy sheet with randomly dis-
tributed holes and subjected to a uniaxial displacement loading, obtained experimentally,

from seven samples with the same hole arrangement with volume fraction f=23%.



188

Sample # 1
Sample #2
Sample # 3
Sample # 4
Sample # 5

Fig. 4.22 Schematic plot of the final crack pattern in an epoxy sheet with randoinly dis-
tributed holes, subjected to a uniaxial displacement loading, obtained experimentally from

i ve samples with the same hole arrangement with volume fraction f = 31%.
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is the final portion of the crack and the crack length is already large, we have a cata-
strophic failure with a dynamic crack propagation. Therefore, a dynamic analysis will be
considered in the future.

We also studied crack initiation and propagation in an epoxy matrix with randomly
arranged inclusions coated with a very compliant layer. Since the local stress field of such
composite is very similar to the stress field around circular holes (Fig. 2.10a) of volume
fraction of 31% we combine the results of crack paths in case of random holes with f=31%
(Fig. 4.22) with crack paths obtained in case of a compliant coating (Fig. 4.23). The
results are shown in Fig. 4.24. Fig. 4.25a represents crack propagation in an epoxy matrix
with randomly distributed and coated inclusions with a compliant coating. Note the simi-
larity with the results obtained in the case of a similar random arrangement of holes of the
same size. Note also branching of cracks in case of cracking of a brittle material (Fig.
4.25b). The non-uniqueness of the experimental results may be understood as follows: in a
sheet with thirty one inclusions there is, on purely combinatorial grounds, a very large
number of geometrically acceptable crack paths cutting the specimen across. The energy
release values associated with all these paths do not differ much from one another, and
thus, a subset of them has practically the same numerical value. Therefore, minute mate-
rial and geometric imperfections decide which crack path will actually take place in a par-
ticular specimen that is nominally (on the macroscopic scales) the same as the rest of the
bunch. Thus, both experimental and numerical methods showed that the crack path is not
unique and several crack paths were observed.

However, there are two major paths that are most likely for the specimen to crack

along. To understand the cracking behavior better we considered partially cracked speci-
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Sample # 1
Sample #2
Sample # 3
Sample # 4

Fi:. 4.23 Schematic plot of the final crack patten in an epoxy sheet with randomly dis-
tributed coated inclusions with a compliant coating subjected to a uniaxial displacement

loading, obtained experimentally from four samples with the same arrangement.
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Sample # 1
Sample #2
Sample # 3
Sample # 4
—————— Sample # 5
________ Sample # 6
.......... Sample # 7
_____ Sample # 8
————— Sample # 9

Fig 4.24 Schematic plot of the final crack pattern in an epoxy shect with randomiy distrib-
Qted holes or inclusions coated with a compliant coating and subjected to a uniaxial dis-

Placement loading obtained experimentally from nine samples with the same hole

Arrangement.



192

TME 15:81:52 DATE 87712795

= PLAY/STOP 8] ET 6000000066

DATE 87/12/95

Fig. 4.25a. Crack initiation and propagation in an epoxy sheet  ith randon ly distribute 1

loading (experi ly)

Coated inclusions subjected to a uniaxial disp



DATE 86/22/95

Fig. 4.25b Crack branching i1 an epoxy sheet with randomly distributcd coated inclusions.
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mens experimentally (Fig. 4.26) and numerically (Fig. 4.27). Both experimental and
numerical results of partially cracked specimens show that all stresses are localized along
two paths which are the major cracking paths. Also, to understand the relation between
stress field and the final crack path we compare Figures 4.28 and 4.21 which show that the
final crack path distribution is the same as the localized maximum stress distributions.
Failure of the epoxy matrix with randomly distributed holes is a brittle failure as
shown in Fig. 4.29, which represents the stress-strain curve of seven different specimens
of the same geometry and loading conditions. The failure load is higher for the specimens

with a lower volume fraction of holes, as expected.

Cracking of ductile material

To further understand the nature of the crack propagation problem we also conducted
experiments using aluminum sheets of the same geometry as the epoxy samples and the
same distribution of holes which allow a slow crack propagation (Figs. 4.30 and 4.33).
‘Whereas the final crack path of the brittle material contains many branches (Fig. 4.22 b),
the final crack path of the aluminum sheet is associated with a plastic flow (Fig.4.31 and
Fig.4.34). Experiments on the aluminum sheet show a major plastic flow in the two direc-
tions, then one path will dominate, and cracking will proceed in that direction. The sche-
Tatics of the final crack paths in cases of f = 23% and f = 31% are shown in Figs. 4.32 and
4.35, and typical cracked specimens are shown in Figs. 4.31 and 4.34. Note both the plas-
tic flow aud the cracking in these figures. Numerically we used a minimum strain criterion
(necking between holes) (Fig. 4.36). The aluminum sheet will crack if E,, is abogt -0.25,

this value is based on an empirical formula (Becker and Smelser, 1994). Before cracking
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ked specimen

Fig. 4.26 Isochromatic fringe patterns of two partially crac

using photoelasticity
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ELEMENT SOLUTION
STEP=1
SUB =1
TIME=1

SMAX (NOAVG)
DMX =0.482E-03
SMx =31.335

0

Fig 4.27 Stress contours of (maxi Sp 02))/0'0 of a partially cracked specimen subjected

to a uniaxial tensile loading in the vertical direction using FEM.
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ANSYS 5.1
oV 4 1995

23:33:22

PLOT NO. 3
ELEMENT SOLUTION
STEP=1

SUB =1

TIME=1

(NOAVG)
.291E-04
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001313
713289
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Fig 4.28 Stress contours of (csl -0, )/ G, of an elastic material perforated with holes of f

= 31% and subjected to a uniaxial tensile loading in the vertical direction which shows a

localization of stresses.
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Fig 4.29 A typical stress-strain curve of an epoxy sheet with perforated holes a) seven
different specimens of the same geometric arrangement with f=23% b) a comparison

between elastic response of two sheets having two volume fractions of holes but
same locations of hole centers.
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> e

DATE 872195

REC/STOP

Fig. 4.30a Crack initiation and propagation in an aluminum sheet, with randomly distrib-
uted holes of volume fraction (f=23%), subjected to a uniaxial displacement loading

(experimentally) for a selected sample
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TE 18:18:44 OATE 87,2795 DRTE_87/27/95

Fig. 4.30b Crack initiation and pr inan sheet, with randomly distrib-

Pag:

uted holes of volume fraction (f=23%), subjected to a uniaxial displacement loading

(experimentally) for another selected sample.
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Fig. 4.31 Final crack pattern in an aluminum sheet, with randomly distributed holes, sub-

jected to a uniaxial displ loading d experi lly from three selected

samples with the same hole arrangement with volume fraction f= 23%.
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——— Sample # 1 (Cracking)
.......... Sample # | (Plastic deformation)
~——————— Sample # 2 (Cracking)
---------- Sample # 2 (Plastic deformation)
e Sample # 3 (Cracking)
.......... Sample # 3 (Plastic deformation)
———————— Sample # 4 (Cracking)
---------- Sample # 4 (Plastic deformation)
—————— Suample # 5 (Cracking)
.......... Sample # 5 (Plastic deformation)

Fig. 4.32 Schematic plot of the final crack pattern in an aluminum sheet, with randomly
distributed holes and subjected to a uniaxial displacement loading, obtained experimen-

tally from seven samples with the same hole arrangement with volume fraction f= 23%.
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Fig. 4.33a Crack iritiation and propagation in an aluminum sheet. with randomly distrib-
uted holes of volume fraction f= 31% and subjected to a uniaxial displacement loading

(experimentally), for a selected sample.
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Fig. 4.33b Crack initiation and propagation in an aluminum sheet. with randomly distrib-
uted holes of volun.c fraction f= 31% and subjected to a uniaxial displacement loading

(experimentally), for another selected sample.



b)

Fig. 4.34 Fina: crack pattern in an aluminum sheet, with randomly distributed holes, sub-
jected to a unizxial displacement loading obtained experimentally from two samples with

the same hole arrangement with volume fraction f = 31%.



206

Sample #1 (Cracking)
---------- Sample # 1 (Plastic deformation)

Sample #2 (Cracking)
cessmecsccc Sample # 2 (Plastic deformation)

Fig. 4.35 Schematic plot of the final crack pattern in an aluminum sheet, with randomly
distributed holes and subjected to a uniaxial displacement loading, obtained experimen-

tally from seven samples with the same hole arrangement with volume fraction f = 31%.
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Fig. 4.36a Strain energy density contours using finite elements around randomly dis-

tributed holes of volume fraction f=23% in an aluminum sheet at the initiation of

cracking when €= -0.25 " foran applied loading in the vertical direction.
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Fig. 4.36b Strain energy density contours using finite elements around randomly dis-

tributed holes of volume fraction f=31% in an aluminum sheet at the initiation of

Cracking when €.~ ~0.25 " for an applied loading in the vertical direction.
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the aluminum sheet undergoes a very large plastic deformation as shown in Figs. 4.37,
which illustrates the non-dimensionalized ¢ e ff/ c y when & 2z = -.25, where o, is the
yield stress of aluminum. Note that if ¢ ejf/ o, >1 then plasticity will start. Our numerical
results of the final crack path using minimum thickness criterion are shown in Fig 4.38.
Stress-strain curves of five different samples of aluminum sheets with randomly dis-
tributed holes of volume fraction 23% are shown in Fig. 4.39a. Fig. 4.39b represents a
comparison between the stress-strain curve of two aluminum sheets with different volume
fractions for the same random distribution of holes. In Fig. 4.39b the sudden drop in the

stress value in the case of f = 31% was associated with the first cracking between two

holes.

CLOSURE

In this study we have considered the problem of a crack initiation and propagation in
materials containing randomly arranged holes. We have observed that the location of the
Crack initiation depends on a distance between the holes and their orientation with respect
to the applied loading. The crack propagation obtained numerically depended on the mesh
shape, size, and orientation of elements. Also, experimental results gave several different
Crack paths for the same hole arrangement. This may be due to material imperfections and
an unstable crack growth. Thus, we have obtained non-unique crack paths both numeri-
Cally and experimentally. This research illustrates the complexity of fracture phenomena

and a need for a stochastic fracture analysis.
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Fig. 4.37a o, ff/ cy stress contours using finite element around randomly distributed
holes of volume fraction f=23% in an aluminum sheet at the initiation of cracking

‘When €.~ —0.25" for an applied loading in the vertical direction.
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Fig. 4.37b g, ff/ oy stress contours using finite elements around randomly distrib-
uted holes of volume fraction f=31% in an aluminum sheet at the initiation of crack-

ing when ¢, ~-0.25 " for an applied loading in the vertical direction.
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Fig. 438a Final crack pattern obtained numerically by finite element method using the

Minimum strain criterion with a mesh size of 0.4a around the holes for f = 23%.
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Fig. 4.38b Final crack pattern obtained numerically by finite element method using the

™inimum strain criterion with a mesh size of 0.4a around the holes for f = 31%.
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Fig439A typical stress-strain curve of an aluminum sheet with holes a) five different
Specimens of the same geometric arrangement with f=23% b) a comparison between
€lastic response of two sheets having two volume fractions of holes when centers are

Qt the same location.



CHAPTER 5

TASK 4: AN ELASTIC CIRCULAR INCLUSION IN A HALF-PLANE:
THE EFFECT OF BOUNDARY CONDITIONS ON STRESS CON-

CENTRATIONS

In the previous sections we focussed on the joint effect of the geometric arrangement
of inclusions and the interface. Of interest there was the fact that stress field is affected by
inclusions interactions. There we considered multi-inclusions embedded in an infinite
plane.

Another important factor influencing the stress is the interaction of inclusions with the
surface; this surface can be a neighboring lamina or an edge of a specimen, for example.
The proximity of such a surface may give rise to high stress concentrations. In this chap-
ter we investigate this issue by considering a single inclusion in a half-plane and vary the
boundary conditions at the edge of the half-plane as well as at the inclusion-matrix inter-
face.

In this phase of study we extend the results obtained by Lee et al. (1992) by consider-
ing the plane elasticity problem of an elastic circular (or cylindrical) inclusion embedded
in a half-plane. The inclusion undergoes an eigenstrain (Mura, 1987), which can be a
transformation strain, a thermal strain, a plastic strain, or a misfit strain. The matrix-inclu-

sion interface is either perfectly bonded or allows slip without friction, while the edge of

215
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the half-plane is either fixed or is allowed to move in the horizontal direction. We com-
pare these results with a recent solution of a circular inclusion in a half-space with a trac-

tion-free edge (Lee et al., 1992).

METHOD OF SOLUTION

We study the elastic fields when a circular inclusion is embedded in an elastic half-
plane and subjected to an eigenstrain loading of non-shear type. Both the inclusion and
the matrix are linear elastic and isotropic and they have distinct elastic constants. The
interface between the inclusion and the matrix is either perfectly bonded (displacements
and tractions are continuous) or is allowed to slip without friction with no separation in the
normal direction (tractions and normal displacements are continuous, and shear tractions
vanish), while the straight edge of the half-plane is either fixed (constrained in motion -
displacements are zero) or frictionless (can move freely in the horizontal direction - verti-
cal displacement and shear traction are zero). The method of analysis is similar to the one
used in Lee et al. (1992). In this chapter we briefly summarize the method of solution and
focus on the results.

In the analysis we use the Cartesian coordinate system (x,y) and the polar coordinates
(r, ©). We let the origin of coordinates be at the center of the circular inclusion (see Fig.

5.1) and the x-axis be directed down into the interior of the half-plane. We set the edge of
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Fig. 5.1 A circular inclusion in a half-plane.
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the half-plane at x = -1 and denote the radius of the inclusion by r = a.
The boundary conditions are as follows:
a) At the surface at x = -1

- either a fixed surface

(), oy =), =0 G.1)

- or a surface which is allowed to move with no restriction in the horizontal direction (or to
slip with no friction with respect to a rigid material in contact with an elastic half-plane);

we refer to this surface as frictionless

()2, = (0g),__, =0 (5.2)

- or a traction-free surface condition

(Or)=y =(Ogy) o =0 (5.3)

which was solved by Lee et al. (1992), and is included here for a comparison;
b) At the inclusion-matrix interface at r = a

- either slipping with no friction and no separation in the normal direction

”)r=a = (6”)r=a (u")r=a = (a")r-a

(Or0),-, = (Gg),_, =0 (5.4)
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where the quantities denoted by the bar refer to the inclusion (Note that in this chapter we
do not use the superscripts to denote the matrix and the inclusion in order to simplify the

notation),

- or perfect bonding conditions

(o"")r=a = (aff)r=a (Ofe)r--a = (afe)r=a

w),_,=@) _, (u),_,= @) _, (5.5)
¢) Vanishing tractions at infinity

We solve the above boundary value problems by using Papkovich-Neuber displacement

potentials ¢, and ¢, , which for the matrix (r > a) are

r

_ - cosm®
oo = Aologr+m§-:lA,,, -
(1) .
_ cosmoO
) (5.7)
¢ = [w,(MeMcoshydh
(I1); 0

6, = j Ay,(L)e~ M cosdydA
0 (5.8)
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and for the inclusion (7 < a) are

'¢0 = Y A,r"cosn®
amy "7
¢, = ), B,r"cosn6
-on=l (5.9)

where A, B,, A, B, are the unknown constants and y,(1) , y,(A) are the unknown

functions. Note that the potentials () account for the disturbance in the matrix due to the
presence of the inclusion, while the potentials (1I) allow to satisfy the boundary conditions
at the surface at

x = -1. Since the applied loading is the non-shear eigenstrain in the inclusion with compo-

nents €,.,*, € .*. and €,,* the displacements inside the inclusion are the sum of the dis-

placements in the unconstrained inclusion with no matrix present given by

u* = %{27‘15&* + (€, +€),%) +(g,,* —€,,*)cos26

r

(5.10)
ug* = %(exx"'—eyy“')sinZO
where
11
- _ |V for plane strain .11y
n= 0 for plane stress

and the elastic displacements obtained from the potentials (//I), which account for trac-
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tions imposed by the matrix. In (5.11) V denotes the Poisson’s ratio of the inclusion.

In order to satisfy the boundary conditions (5.1), (5.2), or (5.3) at the surface x = -1

we use the following mathematical relations

cosm® _ (=)™ rapm_ s
- (m-l)' k e’ cosAydA

x<0 (5.12)

sil::te = (’(n‘l)l";! J' Am-leAxsindydA
0

Then, we can express potentials (/) in the Cartesian coordinates via eqn. (5.12) and use the
potentials (1) and (1), now both expressed in terms of integrals, to find the stresses and dis-
placements in the matrix, and to satisfy the boundary conditions at the surface x = -1.

Then, the quantities for the conditions (5.1) and (5.2) at x=-1 are

(2Gu,) __, = J‘ [Age™ - Ay, (A)er + Z (f;l);)!hme"‘f\m-&-kz\uz(l)e’*-
_ 0 = (5.13)
Y (( 1)1)'8,,,1’% - XAy, (A)er —x Z ( ))'Bme"‘l"'"]coslydl=0
m=1
(2Gu,) = }[—A Y (M)er - 2 (=D" =2 A AmeA 4 A2y, (A)er
y/x=-1 0 ¥ ( -1)°m ValA)e
0

(5.149)
B nAme~>]sindyd\ = 0

$ I
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© 4 (D™ oy
(O, -y = j;.Z[ \vl(l)e"+( k)\vz(l)e" A,,, Lam-teh

(m
(5.15)
Ll ~2,A_ A A-le-Msi _
Z "'(m—l)'( A)M e - Agr-le=*]sindydA = 0
where
3-4v for plane strain (5.16)
=16V for plane stress
1+v

and G denotes the shear modulus.
For the case of a fixed surface, with the boundary conditions given by (5.1), we set the

quantities in brackets in equations (5.13) and (5.14) to zero. Thus, we have two equations

for the two unknown functions y,;(A) and y,(A) , which we find to be

Vi(A) = Age A (-AT 4+ 2x7 1) + Z (( 1)1),A,,,7u"e-21(-x-'+2x—1)-

(5.17)

Vy(R) = 24,201k 42 2 (( 1)1)',4",1"' le-2h-1 -

e—21(2)~m - lx—l + )‘m-2)

o (1)
In%l(m_

(5.18)
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Similarly for the case of the frictionless edge, with the boundary conditions given by
(5.2), we find y,(A) and y,(A) by setting the quantities in brackets in equations (5.13)

and (5.15) to zero. These functions are found to be

m(m-1)! "(m -

v(A) = Agh-le2h 4 2 A, "D am-1-2 223 CLZ LUam-1e2 (s.19)

Yo(A) = ZB,,, (( 1)1)'1"--%-2* (5.20)

In order to satisfy the boundary conditions at the inclusion-matrix interface, given by

either (5.4) or (5.5), we use the following relation

(lr)

eMcoshy = Z( -1)"*=—=cosn@ (5.21)

n=0

Then we rewrite potentials (I/) by using eqn. (5.21) as follows

¢ = Co Y, @,r"cosn6

(D% "=0 (5.22)
¢, = Cy Y, B,r*cosnb
: n=0

where

o, = [rmELEq
(5.23)

P _1)mAn
B, = {wz(x)( = dA

It is convenient to express eqn. (5.23) in the following form
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o, = Aoanl+ Z ur'ln2Am+ z a:s m

m=1 m=1 (5.24)
ﬁn = AOBnl + 2 Br'z"2Am+ Z BITSBM
m=1 m=1
where for the case of a fixed-surface at x = -1
20 1 2
a, = ;Yn"'en (1,':'2 = Y:l +—mY: am3 = ‘;""Y:'
20 2 -1 2
Bai=2Ya Bm=Imyy BB =v, -Imy] (5.25)
and for the case of a frictionless-surface at x = -1
10 -1 -1
Opy = =Yn_1 om =Y, om =2y,
-1
B =Bm =0  Bm =1y, (5.26)
where
m_ (=1)m*n o (=1)*7(m +n)!
Tn = T jk’"“‘e dh = min! Hm+n+l (5.27)
0
and
log2 n=20
g, =40 (5.28)
" y"n_l n21

since
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—ax b b!
e ibax = BL ap>0 (5.29)
0 a
[ ée{zd& = —logz (5.30)
0

Then, using the boundary conditions at the matrix-inclusion interface, either (5.4) or
(5.5), we have four sets of equations to find the unknown constants A,, B,, 4,, B,. We

evaluate these constants by truncating the infinite series to n = N; for more details see Lee

et al. (1992).

In the potentials (II*) the constants &, and B, correspond to the same rigid body

motion of the matrix in the x-direction. We set one of these constants to zero. In the
potentials (III) the constants A, and By, represent the same rigid body motion of the inclu-

sion in the x-direction. Thus, again, we can set one of these constants to zero. For the

cases of fixed and frictionless surfaces at x = -1 we need to allow for the rigid body dis-
placements in both the matrix and the inclusion. Thus, we take a, # 0 and A; # 0, while
Bo = Bo = 0 (By#0, By#0,and a; = A, = 0 would give the same results). For the

traction-free surface case, discussed in Lee ez al. (1992), only one rigid body displacement
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needed to be specified. Thus, we allowed for the rigid body motion of the inclusion and
took A, #0, while 0ty = B, = By = 0. Again By #0 with the other constants vanish-

ing would give the same solution.

RESULTS AND DISCUSSION
In the numerical examples we assume a plane strain case. This case is of interest
when the inclusion represents a long cylindrical reinforcing bar in concrete or a continu-
ous fiber in a composite material, for example. In most figures, unless otherwise stated,

we assume the same Poisson’s ratio of the inclusion and the matrix such that
v = V = 0.3 and consider dilatational eigenstrains €,,* = €,* = €,* in the inclusion
as a loading. Physically, these eigenstrains may represent thermal strains such that

€,* = GAT when a = 0, for example. Also, we take the ratio of the shear moduli of

the inclusion and matrix I' = G/G = 100. We choose such a high mismatch so the dif-
ferences between perfect bonding and sliding cases are more pronounced. In each of these
figures we give the results for both types of boundary conditions at the inclusion-matrix
interface: perfect bonding (PB), denoted by solid lines, and sliding (SL), denoted by
dashed lines, and for the three cases of boundary conditions at x = -1: fixed (FIXED), fric-
tionless (FRICL) and traction-free (FREE). In Figs. 5.2-9 the radius, denoted by an a,
ranges from O to 0.98, while the distance from the center of the inclusion to the closest
point on the straight edge is unity. Thus, the radius a close to zero corresponds to the limit
case of an inclusion in the infinite material while a close to 1 implies that the inclusion is

located very close to the surface given by x = -1.
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Fig. 5.2 gives the hoop stress G,, = Ggq in the matrix versus the radius a on the sur-

face x = -1 at point M (see Fig. 5.1) for the six cases (both types of boundary conditions at
the inclusion-matrix interface and the three types of conditions at the surface x = -1). Note
that the boundary conditions at the surface begin influencing the hoop stress when the
inclusion radius is about 0.1, i.e. the inclusion is a distance of about 9 radii away from the
surface. Perfect bonding and sliding conditions at the inclusion-matrix interface enter
later when a is about 0.5, i.e the inclusion is located a distance of one radius away from the
surface. The highest tensile stress in the matrix develops when the surface is traction-free
for the sliding inclusion case, with a frictionless surface with a sliding inclusion also giv-
ing a high stress. The high compressive stress develops in the frictionless and fixed sur-
face cases with a perfectly bonded inclusion when the inclusion is very close to the
surface. The interesting tendency is observed for the case of the perfectly bonded inclu-
sion near the frictionless surface as the hoop stress changes a sign and becomes compres-

sive when a > 0.9.

Fig. 5.3 illustrates the hoop stress G,, = Ogq at the matrix-inclusion interface at
point N (see Fig. 5.1). When the inclusion has a radius of about 0.2 or less, which implies
that it is two or more diameters away from the edge, then the results are almost indistin-

guishable for the six cases being considered. In the limit case when the inclusion is very

small, which corresponds to the case of inclusion embedded in the infinite matrix,

Cge/2GE,,* = 1.2948. When the distance between the inclusion and the edge decreases

the hoop stress increases to high tensile values for the cases of traction free and friction-

less surfaces when sliding occurs at the inclusion-matrix interface as at point M. For the
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case of a traction-free edge and a perfectly bonded inclusion case the magnitude of the
hoop stress remains almost unchanged while for the cases of a fixed edge with a perfectly
bonded inclusion and fixed and frictionless edges with .a slipping inclusion the stress

decreases and at around a = 0.9 becomes negative.

Fig. 5.4 illustrates the hoop stress 0,, = Ggq in the matrix at the matrix-inclusion

interface at point P (see Fig. 5.1). Here the effects of both edge and matrix-inclusion inter-
face boundary conditions are small for all six cases, as expected, and for the radius a close
to zero, i.e. the case of inclusion embedded in the infinite medium, the non-dimensional-
ized hoop stress equals to 1.2948 as expected. The hoop stress in the matrix remains ten-
sile for all six cases with a small increase observed for the frictionless and fixed edges
with a slipping inclusion cases and the traction-free and perfectly bonded inclusion case,

and a small decrease observed for the remaining three cases.

Fig. 5.5 illustrates the radial stress 6,, = G, in the matrix at the edge (x = -1) at

point M. As expected the stress field is zero when a is close to zero, i.e. an inclusion is
embedded in an infinite plate. Then, as the size of the inclusion increases, for the traction
free edge the stress is tensile but very small, while for the frictionless and fixed edge it
becomes compressive with the highest compressive stress being for the frictionless edge
case and both matrix-inclusion interface conditions cases. Note that the effect of bound-
ary conditions at the inclusion-matrix interface is almost negligible for the traction free
and frictionless edge cases but it is noticeable for the fixed edge case when a > 0.5, with
the perfect bonding case giving the higher compressive stress than the sliding inclusion

case.

Fig. 5.6 illustrates the radial stress 6, = ©,, at the matrix-inclusion interface at
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point N. When a is close to zero, i.e. the inclusion is very small,
0,,/2Ge* = -1.2948 as expected. As the inclusion radius increases the stress

behavior is similar to the one at point M (Fig. 5.5) but with a difference that the stress

remains compressive for all cases and the whole range of a.

Fig. 5.7 gives 6, = ©,, at the matrix-inclusion interface at point P. The stress is
compressive for all six cases and all geometries with rather small differences between
each case. Thus, again the effect of boundary conditions at this point is small.

In summary, the effect of boundary conditions is pronounced at points M and N, illus-
trated in Figs. 5.2-3 and 5.5-6, but small at point P as given in Figs. 5.4 and 5.7.

Figs. 5.8-9 give the effective stress 0, which is defined, using the Huber-Mises cri-

terion(e.g. Mendelson, 1986), as

1 172
[(0,,— Cgg) 2 + (Ggg - G,,)2 +(6,,~ G,,)2 + 6(6% + 63, +62)] '~ (5.31)

Ocfr = N/

where 6, = 6,, = 0 for plane elasticity and G,, = v(0,,+Ggq) for a plane strain
Case and 0,, = 0 for a case stress case. Physically, this quantity defines the onset of plas-

ticity in metals. Fig. 5.8 gives G, at point M and Fig. 5.9 at point N. In both cases a slid-

Ing inclusion embedded in a half-plane with a frictionless edge gives the highest effective
Stress, then a sliding inclusion near a free surface and a perfectly bonded inclusion near a
Frictionless surface follow, while the cases of a perfectly bonded inclusion near a traction-
Free surface and a slipping inclusion near a fixed edge give the lowest effective stresses,

and thus will cause yielding last.
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Fig. 5.10 gives the hoop stress G, = Opg in the matrix versus I' = G/G at point N
when when e, * = €, * = €,*,v = V = 0.3,and a=0.8. Note that the effect of I on

stress is very pronounced when I' is small and the stress remains almost unchanged for I"
greater than about 20. Again, the effect of boundary conditions is pronounced as the stress
varies from about 0.5 to 3. It is interesting to note that the fixed and traction-free surfaces
with sliding inclusions behave very similarly when I" is large.

Fig. 5.11 illustrates the radial stress 6,, = ©,, in the matrix versus I" at point N

when a =0.8. Note that there is a large influence of I" on stress when T" is less than about
5 and the stress remains almost unchanged when I" > 10 for both traction-free cases with

both a perfectly bonded and slipping inclusion and when TI" is greater 20 to 40 for the
other four cases. Again the influence of boundary conditions is pronounced with stress
being compressive and close to zero for traction-free and perfect bonding inclusion case
and approximately -3 for the frictionless surface with sliding inclusion case. Fixed and
frictionless surfaces with perfectly bonded inclusions behave similarly to each other in the

Whole range of T.

Fig. 5.12 gives the stress O,, in both the inclusion and the matrix along the x-axis

Whene, * =¢,* =¢,*,v="=03,T = 100, and a = 0.6 for the six cases. Note

thag the stress is not uniform in the perfectly bonded inclusion (Eshelby, 1957) due to the
Presence of the surface. The stress is lower in the inclusion than in the matrix as expected
Que (o the high shear modulus mismatch (high I'). The effect of boundary conditions is

Quite pronounced near the surface and this effect decreases as the distance from the sur-
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face increases. The more complete information on the stress at x = -1 (point M) is
included in Fig. 5.2 and at x = -0.6 (point N) in Fig. 5.3. The stress in the inclusion is neg-
ative and the highest compressive values are at x = -0.6 for the frictionless surface with

sliding inclusion and the fixed surface with perfectly bonded inclusion cases.

Figs. 5.13, 5.15-5.16 show the tangential stress G,o at the matrix-inclusion interface

versus the angle 0 for the perfect bonding case when v = vV = 0.3, T = 100,and a =

0.8, for different eigenstrain loadings. Fig. 5.15 corresponds to the dilatational eigenstrain

case, such that e, * = ¢ * = €, *, considered in all the previous discussions of the

results, while Fig. 5.17 gives the loading €,,*/2 = ¢ * = ¢,,*, and Fig. 5.18 the case of
€, = 2¢,* =¢€,* Note
that when €,.* = € ,* = €,* and the inclusion is embedded in the infinite plane then

the shear stress is zero for all angles 8 due to the radial symmetry. This is not the case
anymore when the inclusion is embedded near a surface (Fig. 5.15).

Fig. 5.16 gives a jump in the tangential displacement 2G[ug] for the same parame-
ters as in Fig. 5.15. Note that both 6, and 2G[ug] are zeroat 6 = 0 and 180° due to

symmetry about the x axis.

CLOSURE

There is a strong influence of boundary conditions on the local stress concentration due to
a cricular inclusion in a half plane. This influence becomes more pronounced as the inclu-

sion approaches the surface.
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CONCLUSIONS

STRESS LOCALIZATION DUE TO RANDOM ARRANGEMENT
FOR A UNIAXIAL TRANSVERSE LOADING.

ingle- n .
1-Both the thickness ¢ and the Young’s modulus of the coating E€ contribute to the stress

fields.

2-The effect of the Young’s modulus of the coating E° on the stresses in the matrix is
more pronounced when the coating is very compliant and is highly influenced by the
thickness. This effect of E° is higher on Ggg at 8 = 1/2 when the thickness is very small

while the opposite behavior is true for o:_"r at® =0.

3-The effect of the Poisson’s ratio of the coating material is very small in comparison to
the influence of the other two parameters. This effect increases somewhat as the thickness

increases.

4- In the case of perfect bonding, experimentally, the fringes start forming at the inclusion-

matrix interface along the line of action of the applied load and then they propagate to the

247
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other side of the inclusion. The opposite behavior is observed in cases of an inclusion with
a compliant coating or a hole, where fringes start forming in a plane perpendicular to the
line of action of the applied load and eventually migrate to the line of action of the applied

load.

5- In the case of a compliant coating the maximum stress is located in the matrix, and the
inclusion and coating carry almost no load, even though the inclusion is much stiffer. As
the value of E° increases both the coating and the inclusion start carrying the load. In the

case of a stiff coating the maximum stress in the composite is located in the coating.

Two-inclusion case.

1-The location of maximum c:}f isat @ = 0 for cases of compliant coating (when the
two inclusions are aligned in a plane perpendicular to the applied loading) and for cases of
stiffer coatings, the location of the maximum G’fo is at 8 = n/2 (when the two inclu-

sions are aligned along the line of action of the applied loading).

2- Increasing the separation distance reduces the local effective stress in the matrix, the
coating, and the inclusion when the two inclusions are aligned along a critical path. On the
other hand increasing the separation distance will slightly increase the effective stresses if

the two inclusions are aligned along the optimum path.
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3- When the inclusions are aligned at the critical angle then increasing the number of
inclusions increases the effective stress in the matrix. However if the inclusions are
aligned along an optimum path then increasing the number of inclusions will decrease the
effective stress in the matrix. 4-The effect of inclusion number on the local stress fields in

the matrix, coating and inclusion will decrease as inclusions are added.

1- When the coated inclusions are distributed unevenly in the matrix the stresses are dis-
tributed unevenly between the inclusions. Thus, the non-uniform arrangement leads to
stress localization and higher maximum stresses and therfore to an earlier initiation of
damage, and consequently, to a lower strength. This in contrast to the periodic arrange-

ment in which inclusions share the load equally.

2- When the interface is very weak (interphase is very compliant - coating 1), then almost
no load is transferred from the matrix to the inclusions and it is carried by the matrix. If

the interface is weak (interphase is compliant - coating 2), but yet capable of transferring
some loads to the inclusions, then the loads will be carried by both the inclusions and the

matrix with the maximum stress occurring in the matrix.

3- In case of optimum (minimum stress condition) coating the load will be shared almost

equally between the matrix, the coating and the inclusion.
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4- If a good bond is maintained between interfaces then the load will be carried by the stiff
inclusions and the coatings. But if the coating is very stiff then the highest stress will occur

in the coating.

5- For the case of no bonding (perfect bonding), the load is carried by the stiff inclusions

lying in the direction of the load and there is bridging of stresses through the inclusions
along the line of action of applied load. Inclusions close to each other and aligned in the

direction of the load behave like longitudinal fibers subjected to an axial loading.

6-For inclusions with a compliant interphase, the maximum stress around each inclusion is
located in a plane perpendicular to the applied loading, as was observed in the single

inclusion case. A similar behavior occurs in elastic sheets with holes.

7-The periodic arrangements of inclusions under estimate the magnitude of the maximum

local stress given by random arrangements.

8-When the interface is more compliant the difference between the maximum stress in

random versus periodic arrangements is more pronounced.

9- The two-inclusion model gives a good approximation to the stresses in muti-inclusion
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method in the case of stiff coating only.

10-The local stresses depend on number of neighboring inclusions, volume fraction, the

separation distance between them, the inclination angle and the interface conditions.

STRESS LOCALIZATION DUE TO RANDOM ARRANGEMENT

FOR A THERMAL LOADING.

1-The effect of changing the coating thickness is more pronounced for the cases of thin
coating. Increasing the coating thickness will always increase the radial stress in the
matrix regardless of the elastic modulus of the coating if ES/E™ <1, and increasing the
elastic modulus of the coating increases the radial stress in the matrix. The opposite

behavior is observed when ES/E™ >1.

2- Increasing the thermal coefficient of expansion of the coating will increase the radial
stresses. This influence increases as the value of the elastic modulus of the coating

E C/ Em increases.

3-The effect of the rate of change in the Poisson’s ratio of the coating (V) increases as the

elastic modulus of the coating increases (E/E™). Also, increasing the Poisson’s ratio of
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the coating (v°) will increase the radial stress in the matrix (o',",) for the cases of compliant

coatings; this effect will be reversed in cases of stiff coatings.

4- If the elastic modulus of the coating E€ < E™= 450 ksi then the matrix, coating, and
inclusion carry almost the same amount of loading. However when E°>E™ then the load-
ing is carried by the coating and the inclusion with the maximum stress being in the

matrix.

S- For a constant t =.25a, E° = E™ and v* = V", increasing the coefficient of thermal
expansion (CTE) of the coating o° will reduce the effective stresses O, in the matrix but
will increase the effective stress in the coating and the stress in the inclusion will not

change.

6- Experimental and numerical results indicate that post curing will reduce residual

stresses in the used composite material as compared to standard curing.

7- Although we have used a constant value for the material fringe coefficient (f ), and we
have used a nonlinear elasticity method of analysis (no viscoelastic effect), there is a good
agreement between numerical and experimental stress values of residual stresses at room

temperature. On the other hand, there is a large disagreement between both experimental
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and numerical results of stresses for the case of stresses at elevated temperature.

I 3 I (]
1-The effective stress between two inclusions always increases by decreasing the separa-

tion distance between the two inclusions.

2- Increasing the number of inclusions in a row increases the radial stress in the matrix
regardless of degree of mismatch between the inclusion and the matrix. This effect decays

as we increase the number of inclusions.

3-Although we used a constant value for the material fringe coefficient (f), and nonlin-
ear elasticity (no viscoelastic effect), there was a good agreement between numerical and

experimental stress values.

1-Increasing the volume fraction of the inclusions will increase the maximum shear stress

in the matrix.

2-The periodic arrangement produces a lower stress than that of random arrangement even

if the volume fraction of the periodic arrangement is higher.
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3- Increasing the elastic modulus of the coating will always increase the maximum stress

in the composite material.

4-Whereas for the case of a° = 219x10™° 2C the maximum stress is always in the coat-

ing material, the maximum stress will be in the coating only if E°< E™ for the case of

o = 64x10°° r°C.

5- The maximum stress in the composite material will increase by increasing the thermal

coefficient of expansion of the coating.

6- For the case of no-coating the maximum stress is always in the matrix and for a stiff

coating material (E°=9000 ksi) the maximum stress is basically carried by the coating.

7-Using random arrangement always gives higher values of stresses than regular arrange-

ments. This effect is more noticeable when the maximum stress is located in the matrix.

.CRACK INITIATION AND PROPAGATION.

1- Fracture in composite materials is a highly localized phenomenon depending on geo-

metric and material disorder.
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2- In order to investigate the local stress fields in a composite with random distribution of

fibers, the unit cell concept is not sufficient.

3- In case of uniaxial loading, the crack initiation depends on both the distance between

holes and their orientation with respect to the applied loading.

4- The numerically predicted crack pattern is highly dependent on the mesh size, shape

and the used fracture criterions. Experimentally, we don’t get unique crack also.

5- In case of randomly distributed holes there is a very large number of geometrically
acceptable crack paths cutting across the specimen. The energy release or maximum stress
values associated with all these paths do not differ much from one another, and thus, a
subset of them has practically the same numerical value. Therefore, minute material and
geometric imperfections decide which crack path will actually take place in a particular
specimen that is normally (on the macroscopic scales) the same as the rest of the bunch.
Thus, both experimental and numerical methods showed that the crack path is not unique

and several crack paths were observed.

6- While crack propagation in ductile materials (aluminum) is slow, the crack propagation
in brittle epoxy matrix is very fast causing catastrophic failure. Thus, in this case dynamic

fracture analysis needs to be considered.
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7- Using a very crude way in simulating the crack propagation we could predict closely

the crack paths obtained experimentally.

EFFECT OF BOUNDARY CONDITIONS ON STRESS CONCENTRA-
TIONS DUE TO AN ELASTIC CIRCULAR INCLUSION IN A HALF-

PLANE.

In this phase of the study, an exact elasticity solution (given in a series form) is presented
for either a sliding or perfectly bonded circular inclusion embedded in a half plane in order
to investigate the joint defect of boundary conditions and interface on the local stress and

displacement fields.

1- There is a strong influence of boundary conditions on the local stress concentration due
to a circircular inclusion in a half-plane. This influence becomes more pronounced as the

inclusion approaches the surface.

2-The effect of interface (sliding or perfect bonding) is more noticeable when the inclu-

sion is stiffer than the matrix.

3-The effect of material mismatch (I’ = G/G) on both radial (o,,)and hoop
(O¢gg) stresses at point N is pronounced when I' is small and the stress remains unchanged

for large I".
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TASK1: THE INFLUENCE OF INTERFACE AND RANDOM
ARRANGEMENT OF INCLUSIONS ON LOCAL STRESSES IN

COMPOSITE MATERIALS

Sample Preparation

The experimental set-up involved epoxy plates manufactured by the Measurement
Group, Inc. (PHOTOELASTIC DIVISION. MEASUREMENT GROUP, INC. P. 0. BOX
27777, RALEIGH, NORTH CAROLINA 27611, USA. TELEPHONE (919) 365-3800.
FAX (919) 365-365-3945) under a commercial name of PSM-S. The epoxy plates were
cut with a band saw, operated at a slow rate to the dimensions of 3.2x13.0x0.125 inches.
The pitch of the teeth on the band saw blade was about 0.1 in. so that at least two teeth are
always in contact with the edge of the epoxy plate. Then the cut edges were milled using a
vertical milling machine, cutting on the side of an end mill using sharp cutters with an air
jet directed at the point of tool contact with the model to minimize heating. The cutlers
used were 0.125 in. in diameter and the used cutter speed was 750 rpm. Then 31 randomly
distributed non-overlapping coated circular copper inclusions (Fig. 2.2), which were 0.25
inches in diameter (volume fraction of inclusions is approximately 23% in the middle por-
tion of the specimen) were introduced in the epoxy plates. To create a non-uniform

arrangement of inclusions the random numbers, indicating the centers of inclusions, were
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generated by a computer according to a planar Poisson’s distribution. We imposed restric-
tions that the coated inclusions didn’t overlap, were located at least one diameter away
from the edge of the specimen, and there was a minimum clear distance 0./a between any
two inclusions (a is the inclusion radius). Inclusions were introduced in the following way.
After cutting the epoxy plates to the desired dimensions (3.2x13x0.125 inches), the epoxy
plates were placed one at a time between two steel plates and holes were drilled at a slow
speed of 1000 rpm with a steady but slow feeds of the material to reduce residual stresses
and to minimize microcracks. The holes were drilled according to the random distribution
as described above and they were of the size equal the combined size of inclusions and the
coatings. To remove any remaining residual stresses due to machining, the specimens
were heated to 260°F (which is beyond the glass transition temperature), were held at this
temperature for two hours and then cooled at the rate of (SoF )/hr to 150°F , and finally
cooled in 7 hours to a room temperature. In order to allow free expansion of the model, the
epoxy surface was coated with a very thin uniform layer of releasing agent, then it was
placed on a smooth flat plate in the oven to support the model during annealing. To simu-
late different interphases the inclusions were coated with two different adhesive materials
with a coating thickness equal to 0.25 a (coating | and coating 2) or using a thin adhesive
material which had the same properties of the matrix to simulate a no coating condition
(coating 4). The mechanical properties of these materials are shown in Table 2.1. All coat-

ings (adhesives) were purchased from the MEASUREMENT GROUP, INC. and all of
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them were Bisphenol-A based epoxy resin materials made of two components: a resin and
a hardener. One gram of mixed adhesive would cover approximately 1.5 in.2 area. The
mixing proportion for coating 1 which had a commercial name of PC-1 were 90.9% resin
to 9.1% hardener and a mixture proportion of 50% of resin to 50% of hardener was used to
prepare coating 2 which had a commercial name of PC-6. Coating 3 had a commercial
name PC-11. The used mixture proportions for PC-11 were 40% of resin to 60% of hard-
ener. Whereas PC-11 and PC-6 can be mixed at room temperature, PC-11 required a pre-
heating prior to mixing order to obtain a smooth homogeneous mixture of a highly viscous
material. The pot life of all used adhesives was approximately 20-30 minutes. Both the
surface of the inclusions and the holes needed to be clean before spreading the adhesives,
so we used Asiton to clean those surfaces. Also, it is recommended that the test part sur-
face to be warmed prior to spreading of the adhesive material in case of using PC-11 adhe-
sive. After preparation of the adhesives masking tape was used to place the inclusions at
the centers of the holes then the gaps between the holes and inclusions were filled with the
desired coating material. The coatings were allowed to set for at least 24 hours before test-

ing.

Photoelastic measurements.
After the preparation of samples the photoelasticity method was used to find the stress

distributions in these birefringent composite plates subjected to a uniaxial transverse load-
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ing. The loading was applied by fixing the bottom side of the specimen and then applying
a uniaxial force on the other side of the specimen. We used Modular Transmission Polari-
scope model 061 manufactured by the MEASUREMENT GROUP. This instrument was
equipped with glass laminated paralyzer, analyzer, and quarter wave plate filters. The
angular readings of this set up were readable to 1/2 degree. In the circular polariscope con-
dition, the analyzer was independently rotatable to provide fractional fringe measurement
by Tardy Compensation. The analyzer rotation was shown on the measuring dial and was
readable to 0.1 of a fringe. To have a monochromatic light we used a sodium lamp with a
wave length of 589 nm. In order to calibrate the epoxy matrix material for the fringe
value f . different levels of loading were applied to either specimens involving thin sheets
with a hole or to a two-point-loaded beam. The average value of number of fringes was
used to determine the material fringe value f ;. For our case f o Was found to be 53 Ib/in/

fringe at room temperature.

TASK 2: THE INFLUENCE OF INTERFACE AND RANDOM
ARRANGEMENT OF INCLUSIONS ON THE RESIDUAL STRESSES
IN A MODEL COMPOSITE MATERIAL

ample Preparation

The epoxy resin used was Epon 828 which is based in diglycidyl ether of Bisphenol-A

and has the following chemical structure (Gupta et al. 1985)
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/0\ Ny OH CH, /O\
H , -CH-CH,-0- @f@mr&«mz@ c--@..o.cn2 CH-CH.
CH, CH3

The curing agent used was metaphenylene diamine having the following chemical

structure
NH,

..,

The curing agent concentration was calculated by Gupta et al. (1985) to be 14.5 parts
per hundred parts of resin so that the epoxy amine ratio is 1:1.

To prepare the epoxy matrix, the resin and the curing agent were heated in separate

containers at 75°C (167°F) for approximately 15 minutes (until the curing agent melted),
then they were mixed together. The mixture was then vacuum-gassed. Next, the epoxy
resin mixture was poured into silicone rubber models to form 1.6x3.5x0.125 inch rectan-
gular specimens or dogbone standard shape control specimens. Inclusions were placed in
random at the middle portion of the specimen and they were at least a distance of one
diameter away from the free surface to minimize the free surface effect (Lee et al. 1992).
We used either uncoated copper inclusions or coated copper inclusions. The coating was
applied to the inclusions and allowed to set for at least 24 hours before placing the coated
inclusions in the liquid epoxy matrix. Pre-made silicone molds with cavities equal to the

combined size of the inclusions and the coatings were used, the inclusions were placed in
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the center of theses cavities and the coating adhesives were used to fill the remaining gap.
In this task we used the same coatings described in task 1. The mechanical properties of
the epoxy matrix, inclusion and coatings used in this phase of the study are shown in Table
3.1

To study the effect of geometric distribution, two random arrangements of inclusions
with volume fraction 14% and 20% were prepared. The location of these fibers was digi-
tized to be incorporated in the finite element analysis. For a comparison we also prepared
periodic arrangement (triangular) with a volume fraction of 27.5% samples..

The model epoxy-copper composite was then cured in a pre-programed oven. The
curing cycle used was 75°C (167 °F) for two hours followed by 125°C (257 °F) for

another two hours, then the composite was either heated to 160°C (320 °F), which is the

glass transition temperature for this epoxy, held for two hours and then cooled to room

temperature at slow cooling at rate of 2.5°C (5°F)/our (post curing), or cooled directly to
room temperature without post curing (standard curing).

In our study we considered the model composite in a form of a thin plate in order to
simplify the experimental analysis. By having the plane stress case we reduce the free
edge effects, i.e. the disturbance of the stresses near the two traction-free surfaces due to a
relaxation of stresses there, and, in this case, we can see the photoelastic fringes more eas-
ily. Alternatively, we could simulate directly the plane strain case by using a fringe freez-

ing technique as mentioned before.

Mechanical P s of Epoxy Marri

To study the temperature dependence of various mechanical properties of the epoxy
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resin three sets of experiments were conducted. In the first set, the tensile tester (MTS)

was used. Using a small environmental chamber, the stress-strain data and the axial-trans-

verse strain data were recorded for 55°C and 85%C at a strain rate of 7%. The average
results of three specimens for each case were used to find the elastic modulus and the Pois-
son’s ratio for both post and standard curing conditions.

In the second set of experiments, Instron tensile measurements were used to find the
mechanical properties of the epoxy matrix at room temperature. The laser extensometer
was used to measure strain. Stress-strain curves of epoxy matrix for various temperatures
and for the two cooling conditions are plotted in Figures 3.1a and 3.1b. The dashed curve
in Figure 3.1a was obtained by Gupta et al. (1985). Using a regression analysis, the varia-

tion of the elastic modulus of the epoxy matrix as a function of temperature T is given by:

E™(T) = 6.2974 (10)° - 6.7798 (10)°T + 49.7354T* - 0.1577997 psi (3.8)

This variation of elastic modulus with temperature is represented in Fig. 3.2. The
effect of temperature on the Poisson’s ratio of the matrix is shown in Figure 3.3 and has

the following form

V™ (T) = 0.2704417 + 0.00368067T - 1.335529 T - 4.26119T° (3.9)

In the third set of experiments, the variation of thermal expansion with temperature
was used to calculate coefficient of thermal expansion (CTE) of the epoxy-matrix, coating

materials and copper inclusions.
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Deformation of epoxy, coating and inclusion samples as a function of temperature is
plotted in Figures 3.4 through 3.7. The derivative of those curves will give a variation of
thermal coefficients of expansion with temperature which are found using regression anal-

ysis

o™ (T) = 2.911 (10)°3 - 4.595 (10)5T + 3.10816 (10T - 1.1816 (10)3T° + 2.7798
(10)19T% - 4.205 (10)2T° + 4.096 (101416 - 2.4814 (10)5T7 + 8.487 (10)1°T8 -

1.25342 (1003 7? (3.10)

Similar expressions were obtained for the coatings and the inclusion.

Ph tic measurements.

Photoelasticity method was used to study the effect of interphase and the random
arrangement of inclusions on thermal stresses in composites with cast-in-place inclusions
for two curing conditions: standard curing and post curing. In this analysis we used two

compliant coatings. We used in the phase the same polariscope described in the previous

section. In order to calibrate the epoxy matrix material for the fringe value f; different

levels of loading were applied to a two point loaded beam (Figure 3.8). The average value

of number of fringes was used to determine the material fringe value f;according to the

2

formula 6,-0, = ;

. For our case f was found to be 14.5 Ib/in/fringe at room temper-

ature.
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TASK 3: THE DAMAGE INITIATION AND PROPAGATION IN A MODEL COM-
POSITE WITH AN EMPHASIS ON CRACK INITIATION AND PROPAGATION

IN AN ELASTIC PLATE WITH RANDOMLY DISTRIBUTED HOLES

Sample Preparation

The experimental set-up involved thin perforated sheets made of either an epoxy or an
aluminum (2024-T4), each containing 31 randomly distributed non-overlapping circular
holes of the same size (volume fraction of holes is 23% in the portion of the specimen
away from the edges). The distribution of holes was obtained by generating random num-
bers to simulate the loci of the holes’ centers. We imposed restrictions that the holes did
not overlap, they were located at least one diameter away from the edges of the specimen
and the distance between the holes was at least 0.1 a, where a was the hole radius. The
dimensions of each epoxy plate were 3.5”°x9°x0.125” produced in the same manner
described for phase 1 of this study. The holes were either 0.25”or 0.3125” in diameter. The
holes were introduced in the manner described in task 1. After the preparation of the
epoxy samples the photoelasticity method was used to find the stress distributions in these
birefringent perforated plates. In order to determine the material fringe value f o for the
epoxy material used, different levels of loading were applied to either specimens with a
hole or to a four-point-loaded beam. It is known from theory of plane elasticity (Michell,
1899; Timoshenko and Goodier, 1956) that, when a material with holes is subjected to
tractions and the resultant of forces over each hole boundary vanishes, the stress field is

independent of elastic constants. Thus, the stresses obtained from the analysis of fringe



279

patterns are applicable for both material systems studied, when they are in the elastic

range.

Crack propagation

The crack propagation tests were conducted using an Instron testing machine that
could apply a constant displacement rate boundary condition. An ASTM standard D2343
requires the use of a cross head speed of 2 mm/min. This recommended cross head speed
is used by many other ASTM standards in cases where the stress is distributed uniformly
along the tested cross section. In a material with holes the stress is not uniform and thus
the stress concentration is more than 1.0. In our experiments we used a cross head speed
of 0.1 mm/min. (.04 in/min). To monitor crack propagation and final crack pattern a high
speed camera, which could capture 3000 frames/sec., was used. The video camera was
connected to an image digitizer and the output was directed either to a super VCR or a
thermal printer. The recorded image was then stored in the computer and studied frame by
frame to determine a site of crack initiation and crack paths. This experiment was done for
a single random configuration of holes only but it was repeated on several epoxy and alu-

minum specimens.
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