E . . : t V t x " I k A m « . h : } T L - x n i J . - ‘ . . . . 3 : . 1 2 . : . - 2 n i ; u v Q , . . 1 . ? . a . ” . 3 . . i 3 t . e 5 . . 5 9 . ¢ . i , . 1 . . 1 u M . I , . . . . . . I I . . . . » r . 3 . . l . 4 n } 4 0 h a : . I . 3 r . . E . . t v . . m a . 3 n 5 . i . : . . r 5 . I 3 z . i - . M ? r m i L w m x 5 I d . F . . 3 n : ‘ . t 3 i { c l f fi r - » n . 0 . n . 1 1 i . : . . . . v . . . “ . . . . 3 5 3 . . 5 3 2 3 . . . . 7 3 5 2 1 1 5 . 7 . 5 ! ; t i . . . ) 1 3 : 3 1 1 . é h t a r m , fl . h s fl t v i u e t z s n ( i i i , . . : . { 0 . 9 . 3 . 3 ; . . J . 4 . . c . 1 1 ; . ‘ . : . 8 . w u z P u r i t a n h . ‘ L . . . E d : 5 . ; . ‘ 1 g v v a M - N ‘ . a , ‘ u u ‘ . A . A . a I . ) I . v # 5 . I J £ 3 . 3 5 . 1 . : F V V . r x w . 1 . 1 a . . < 3 ; - V r ‘ i f ‘ v ‘ I ‘ I t I . h . l n i . . 1 : t . i : . c : A . , . . l ) . . . . ¢ . T H E S I S U S N N E R I T Y L I B R A R I E I I I I H H I I ' I I I I ‘ l l l l n i l l i fl l ‘ fl l l ’ I I 3 1 2 9 3 0 1 4 0 2 7 2 9 0 l I H I L I B R A R Y M i c h i g a n S t a t e U n i v e r s i t y T h i s i s t o c e r t i f y t h a t t h e d i s s e r t a t i o n e n t i t l e d H Y D R O T H E R M A L ( S O L V O T H E R M A L ) A N D M O L T E N P O L Y - C H A L C O G E N I D E S A L T S Y N T H E S I S O F T E R N A R Y A N D Q U A T E R N A R Y C H A L C O G E N I D E S p r e s e n t e d b y J u - H s i o u L i a o h a s b e e n a c c e p t e d t o w a r d s f u l f i l l m e n t o f t h e r e q u i r e m e n t s f o r P h D d e g r e e i n C h e m i s t r y W k \ M a j o r p r o f e s s o r D a t e A / O V 4 1 / ? ? 3 M S U i s a n A f fi r m a t i v e A c t i o n / E q u a l O p p o r t u n i t y I n s t i t u t i o n 0 - 1 2 7 7 1 _ . _ . q — — - . — — — < ‘ fi — ‘ - — — . P T L o A A D C V A E O N I T D E R F E I T N U E S D U R N n E B u O m t X t o e u c e k . o o n D m r A o b v t a e o n T E c e i a t h d D s t U h d E o u t f r o m y o u r r e c o r d . D A T E D U E M S U I . A n A f fl n n l fl v o A t i a V E q u a l O p p o r t u n i t y c . n fl h t l W o n fl m t H Y D R O T H E R M A L ( S O L V O T H E R M A L ) A N D M O L T E N P O L Y C H A L C O G E N I D E S A L T S Y N T H E S I S O F T E R N A R Y A N D Q U A T E R N A R Y C H A L C O G E N I D E S V o l u m e I B y J u - H s i o u L i a o A D I S S E R T A T I O N S u b m i t t e d t o M i c h i g a n S t a t e U n i v e r s i t y i n p a r t i a l f u l f i l l m e n t o f t h e r e q u i r e m e n t s f o r t h e d e g r e e o f D O C T O R O F P H I L O S O P H Y D e p a r t m e n t o f C h e m i s t r y 1 9 9 3 A B S T R A C T H Y D R O T H E R M A L ( S O L V O T H E R M A L ) A N D M O L T E N P O L Y C H A L C O G E N I D E S A L T S Y N T H E S I S O F T E R N A R Y A N D Q U A T E R N A R Y C H A L C O G E N I D E S B y J u - H s i o u L i a o M e t a l ( p o l y ) c h a l c o g e n i d e s h a v e r e c e i v e d g r e a t a t t e n t i o n b e c a u s e t h e y e x h i b i t i n t e r e s t i n g e l e c t r o n i c , o p t i c a l a n d c a t a l y t i c p r o p e r t i e s w h i c h c a n b e a p p l i e d i n n o n l i n e a r o p t i c s , r e c h a r g e a b l e b a t t e r y c a t h o d e s , o p t i c a l s t o r a g e , r a d i a t i o n d e t e c t i o n , s o l a r e n e r g y c o n v e r s i o n o r c a t a l y s t s . A l o t o f e f f o r t h a s b e e n e x p a n d e d s y n t h e s i z i n g m e t a l ( p o l y ) c h a l c o g e n i d e s b y u s i n g t r a d i t i o n a l s o l u t i o n m e t h o d s a t a m b i e n t t e m p e r a t u r e s a n d s o l i d s t a t e m e t h o d s a t h i g h t e m p e r a t u r e s ( > 5 0 0 0 C ) . W e a r e i n t e r e s t e d i n i n v e s t i g a t i n g t w o n e w s y n t h e t i c t e c h n i q u e s f o r t h e c h a l c o g e n i d e c h e m i s t r y t o e x p l o r e n e w m a t e r i a l s . U s i n g p o l y s e l e n i d e s a s s t a r t i n g m a t e r i a l s a n d " m i n e r a l i z e r s " u n d e r h y d r o t h e r m a l c o n d i t i o n s , w e s u c c e s s f u l l y s y n t h e s i z e d d i s c r e t e c l u s t e r s s u c h a s ( M e 4 N ) 2 M 0 3 S e l 3 , K 2 M 0 3 S e 1 3 , a - K 3 M 0 9 8 e 4 0 - 4 H 2 0 , B - K 8 M 0 9 S e 4 o , K 6 M 0 6 8 e 2 7 - 6 H 2 0 , K 1 2 M 0 1 2 8 6 5 6 , C s z M o n z S e 6 a n d ( M e 4 N ) 4 S n 4 8 e 1 0 , a n d e x t e n d e d s t r u c t u r e s s u c h a s K 2 M 0 3 S e 1 3 , K l o M o l z s e s g a n d ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 . A l l t h e m o l y b d e n u m c o m p o u n d s c o n t a i n p o l y s e l e n i d e l i g a n d s a n d s p e c i a l t n ' n u c l e a r [ M 0 3 S e 7 ] 4 + c o r e s e x c e p t f o r C s z M o n z S e 6 . U s i n g m e t h a n o l a s s o l v e n t u n d e r t h e s i m i l a r c o n d i t i o n s , w e s y n t h e s i z e d d i m e r i c K 4 V 2 0 2 8 e 1 0 - 2 M e O H a n d K 4 V 2 0 2 8 e 3 - O . 6 5 M e O H c l u s t e r s , a s w e l l a s K 3 N b O S e 3 a n d K 2 [ ( W 0 2 S e z ) o . 5 ( W O S e 3 ) 0 . 5 ) ] a n i o n s . M o l t e n p o l y c h a l c o g e n i d e fl u x e s s e r v e a s g o o d r e a c t i o n m e d i a . T h e p r e p a r a t i o n o f n o v e l S n ( p o l y ) c h a l c o g e n i d e c o m p o u n d s , K z s n z S g , a - s z S n z S g , B - s z S n z S g , K 2 8 n 2 5 5 , C s z S n z S 6 , C s z S n S l 4 a n d K z s n T e s , r e v e a l s t h e s t r u c t u r a l d i v e r s i t y o f t h e ( p o l y ) c h a l c o g e n i d e l i g a n d s . W e f u r t h e r i n v e s t i g a t e d m i x e d m e t a l s y s t e m s w h i c h p o t e n t i a l l y a l l o w l a r g e r s t r u c t u r a l v a r i e t i e s a n d m a y l e a d t o i n t e r e s t i n g p h y s i c a l p r o p e r t i e s . U s i n g [ M Q 4 ] 4 - a n d [ M 2 Q 6 ] 4 - ( M = G e , S n ; Q = S , S e ) a n i o n s a s b u i l d i n g b l o c k s i n p o l y c h a l c o g e n i d e fl u x e s m i x e d w i t h o t h e r c a t i o n s w i t h d i f f e r e n t c o o r d i n a t i o n p r e f e r e n c e , s i z e a n d c h a r g e , w e s y n t h e s i z e d n o v e l q u a t e r n a r y c h a l c o g e n i d e c o m p o u n d s , s z C q u n S 4 , A 2 C u 2 8 n 2 Q 6 ( A = N a , K , R b , C s ; Q = S , S e ) , K 2 A u 2 8 n S 4 , K 2 A u 2 5 n 2 8 6 , K 2 H g S n 2 8 6 , K 2 G e l n 2 8 6 , K 2 H g 3 S n 2 8 3 , K 2 H g 3 G e 2 8 8 , K 6 Z n 4 S n 5 8 1 7 , R b 2 2 n S n 2 8 6 , C s z M n S n z S 6 , K 2 M n S n S 4 , C s z I n z G e z S g , C s z M n S n 3 S e 8 a n d R b 2 C d G e 2 8 6 . A l l t h e s e c o m p o u n d s a r e s e m i c o n d u c t o r s . A m o n g t h e m , A 2 C u 2 8 n 2 Q 6 h a v e b a n d g a p s c o m p a r a b l e t o t h o s e i n p h o t o v o l t a i c m a t e r i a l s ; C u I a n , C d T e , G a A s a n d S i , a n d a r e p o t e n t i a l c a n d i d a t e s f o r s o l a r c e l l a p p l i c a t i o n s . K 2 H g 3 S n 2 8 8 , K 2 H g 3 G e z S g , K 6 2 n 4 S n 5 8 1 7 , s z Z n S n 2 8 6 , C s z M n S n z S e p o s s e s s n o v e l n o n c e n t r o s y m m e t r i c s t r u c t u r e s a n d c o u l d b e p r o m i s i n g n o n l i n e a r o p t i c a l m a t e r i a l s . I n t h i s d i s s e r t a t i o n , t h e s y n t h e s i s , c h a r a c t e r i z a t i o n a n d p r o p e r t i e s o f t h e a b o v e c o m p o u n d s w i l l b e d i s c u s s e d . A C K N O W L E D G M E N T S I w o u l d l i k e t o t h a n k m y r e s e a r c h a d v i s o r , P r o f e s s o r M e r c o u r i G . K a n a t z i d i s , f o r h i s p a t i e n t g u i d a n c e a n d s u p p o r t . I a l s o w o u l d l i k e t o t h a n k t h e o t h e r m e m b e r s o f m y c o m m i t t e e : P r o f e s s o r s H a r r y A . E i c k , J a c k s o n a n d T h o m a s J . P i n n a v a i a , t h e s e c o n d r e a d e r o f m y t h e s i s , f o r t h e i r h e l p f u l c o m m e n t s o n m y r e s e a r c h . I a l s o t h a n k D r . D o n a l d W a r d f o r h i s h e l p o n s o l v i n g X - r a y c r y s t a l l o g r a p h i c p r o b l e m s , P r o f e s s o r J i n g L i f o r h e r a s s i s t a n c e a n d h e l p f u l d i s c u s s i o n s o n t h e E x t e n d e d H i i c k e l c a l c u l a t i o n s o f M o / S e , a n d M s . L a u r i e E . H i l l f o r h e r h e l p o n s y n t h e s i z i n g V / S e a n d s o m e q u a t e r n a r y c h a l c o g e n i d e s y s t e m s . I a l s o w o u l d l i k e t o e x p r e s s m y d e e p e s t g r a t i t u d e t o a l l t h e K a n a t z i d i s g r o u p m e m b e r s w h o c r e a t e a f r i e n d l y a t m o s p h e r e a n d m a k e o u r r e s e a r c h a n d d i s c u s s i o n s e n j o y a b l e . M o s t i m p o r t a n t l y , I w o u l d l i k e t o g i v e m y l o v e a n d h o n o r t o m y p a r e n t s , P e i - C h e n L i a o a n d S u - J a n e L i n , f o r t h e i r l i f e - l o n g s u p p o r t a n d e n c o u r a g e m e n t . F i n a l l y , fi n a n c i a l s u p p o r t g i v e n b y C e n t e r f o r F u n d a m e n t a l M a t e r i a l s R e s e a r c h , t h e D e p a r t m e n t o f C h e m i s t r y , M i c h i g a n S t a t e U n i v e r s i t y , a n d N a t i o n a l S c i e n c e F o u n d a t i o n i s g r e a t l y a c k n o w l e d g e d a n d a p p r e c i a t e d . T o M y P a r e n t s , P e i - C h e n L i a o a n d S u - J a n e L i n T A B L E O F C O N T E N T S L i s t o f T a b l e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x i v L i s t o f F i g u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x x v P a g e I . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . I n t r o d u c t i o n t o M e t a l C h a l c o g e n i d e C h e m i s t r y . . . . . . . . . . . . . . . . . . . . . . . . 1 2 . " C o n v e n t i o n a l " P r e p a r a t i v e M e t h o d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 I I . 2 . 1 . T h e " C o n v e n t i o n a l " S o l u t i o n M e t h o d : S y n t h e s i s f r o m S o l u t i o n a t A m b i e n t C o n d i t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 . 2 . " C o n v e n t i o n a l " H i g h T e m p e r a t u r e S o l i d S t a t e S y n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 . U n u s u a l P r e p a r a t i v e M e t h o d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 3 . 1 . S o l v o t h e r m a l S y n t h e t i c M e t h o d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 3 . 2 . M o l t e n S a l t ( F l u x ) S y n t h e t i c M e t h o d s a t I n t e r m e d i a t e T e m p e r a t u r e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 H y d r o t h e r m a l S y n t h e s i s a n d C h a r a c t e r i z a t i o n o f N e w M o l y b d e n u m P o l y s e l e n i d e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 O 1 . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 2 . E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 2 . 1 . R e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 2 . 2 . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 2 . 3 . S y n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 K z S e z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 K 2 8 6 3 , K 2 8 6 4 , N a z S e z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 C s z S e z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 v i ( M e 4 N ) 2 M 0 3 S e l 3 ( l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 K 2 M 0 3 S e 1 3 ( l l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 6 a - K 3 M 0 9 S e 4 0 - 4 H 2 0 ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 6 B - K g M o g S e 4 0 ( I V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 6 K 6 M o 6 S e 2 7 - 6 H 2 0 ( V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7 K 2 M o 3 S e 1 8 ( V I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7 K 1 2 M 0 1 2 8 e 5 6 ( V I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7 K 1 0 M o 1 2 8 6 5 8 ( V I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7 C s z M o n z S e 6 ( I X ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 8 2 . 4 . X - R a y C r y s t a l l o g r a p h y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 8 3 . R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 3 . 1 . S y n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 3 . 2 . D e s c r i p t i o n o f S t r u c t u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 0 S t r u c t u r e s o f ( M e 4 N ) 2 M o 3 S e l 3 ( I ) a n d K 2 M o 3 S e 1 3 ( I I ) . . . . . . . 8 0 S t r u c t u r e s o f a - K 3 M 0 9 8 e 4 0 o 4 H 2 0 ( I I I ) , fi - K 8 M 0 9 8 e 4 0 ( I V ) a n d K 6 M o 6 S e z 7 o 6 H z O ( V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 S t r u c t u r e o f [ K 2 M o 3 S e i s l n ( V I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 9 S t r u c t u r e o f K 1 2 M o 1 z S e 5 6 ( V I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 7 S t r u c t u r e o f K 1 0 M o 1 2 8 e 5 3 ( V I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 7 S t r u c t u r e o f C s z M o n z S e 6 ( I X ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 0 3 . 3 . E l e c t r o n A f fi n i t y o f [ M o 3 S e ( S e 2 ) 3 ] 4 + C o r e . . . . . . . . . . . . . . . 1 4 0 A M o l e c u l a r O r b i t a l S t u d y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 0 3 . 4 . S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 5 V i b r a t i o n a l S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 5 7 7 S e N u c l e a r M a g n e t i c R e s o n a n c e S p e c t r o s c o p y . . . . . . . . . . . . . . . . . 1 5 5 E l e c t r i n i c S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 8 3 . 5 . C o n c l u s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 0 v i i I I I . H y d r o t h e r m a l S y n t h e s i s a n d C h a r a c t e r i z a t i o n o f ( M e 4 N ) 4 S n 4 8 e 1 0 a n d ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 8 1 . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 8 2 . E x p e r i m e n t a l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 9 2 . 1 . R e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 9 2 . 2 . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 9 2 . 3 . S y n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 0 S n S e z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 0 ( M e 4 N ) 4 S n 4 S e 1 0 ( I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 0 ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 ( l l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 1 I o n E x c h a n g e o f ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 ( I l ) . . . . . . . . . . . . . . . . . . . . . . . . 1 7 1 2 . 4 . X - R a y C r y s t a l l o g r a p h y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 2 3 . R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 0 3 . 1 . S y n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 0 3 . 2 . D e s c r i p t i o n o f T h e S t r u c t u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 1 S t r u c t u r e o f ( M e 4 N ) 4 S n 4 S e 1 0 ( I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 1 S t r u c t u r e o f ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 ( l l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 5 3 . 3 . I o n E x c h a n g e E x p e r i m e n t s w i t h ( M e 4 N ) z S n 3 S e 7 - 2 H 2 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 1 3 . 4 . T h e r m o g r a v i m e t r i c A n a l y s i s o f ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 2 3 . 5 . S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 4 O p t i c a l S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 4 V i b r a t i o n a l S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 7 v i i i I V . M e t h a n o t h e r m a l S y n t h e s i s a n d C h a r a c t e r i z a t i o n o f V a n a d i u m , N i o b i u m a n d T u n g s t e n ( P o l y ) s e l e n i d e s S y s t e m s . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 1 1 . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 1 2 . E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 2 2 . 1 . R e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 2 2 . 2 . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 2 2 . 3 . S y n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 2 K 4 V 2 0 2 8 e 1 0 - 2 M e O H ( l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 2 K 4 V 2 0 2 8 e 3 - 0 . 6 5 M e O H ( l l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 3 K 3 N b O S e 3 ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 3 K 2 [ W O z S e 2 ) o , 5 ( W O S e 3 ) 0 , 5 ] ( I V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 3 2 . 4 . X - R a y C r y s t a l l o g r a p h y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 4 3 . R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 5 3 . 1 . S y n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 5 3 . 2 . D e s c r i p t i o n o f S t r u c t u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 6 S t r u c t u r e s o f K 4 V 2 0 2 8 e 1 0 - 2 M e O H a n d K 4 V 2 0 2 8 e 8 - 0 . 6 5 M e O H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 6 S t r u c t u r e s o f K 3 N b O S e 3 a n d K 2 [ ( W 0 2 S e 2 ) 0 , 5 ( W O S e 3 ) 0 _ 5 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 5 3 . 4 . S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 9 V . M o l t e n S a l t S y n t h e s i s a n d C h a r a c t e r i z a t i o n o f T e r n a r y A l k a l i M e t a l T i n ( P o l y ) c h a l c o g e n i d e S y s t e m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 5 1 . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 5 2 . E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 6 2 . 1 . R e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 6 2 . 2 . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 7 i x V 1 . 2 . 3 . . S y n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 7 K z s n z S g ( l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 7 a - R b 2 8 n z S g ( l l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 8 B - s z S n z S g ( l l l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 8 K 2 8 n 2 8 5 ( I V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 9 C s z S n z S 6 ( V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 9 C s z S n S l 4 ( V l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 0 K z S n T e s ( V I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 0 2 . 4 . X - R a y C r y s t a l l o g r a p h y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 0 3 . R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 4 3 . 1 . S y n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 4 3 . 2 . D e s c r i p t i o n o f S t r u c t u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 6 S t r u c t u r e s o f K z s n z S g ( l ) , a - s z S n z S g ( I I ) a n d B - s z S n z S g ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 6 S t r u c t u r e o f K z S n 2 S 5 ( I V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 9 T h e S t r u c t u r e o f C s z S n z S 6 ( V ) a n d I t s R e l a t i o n s h i p t o K 2 8 n 2 S 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 4 S t r u c t u r e o f C s z S n S 1 4 ( V I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 1 S t r u c t u r e o f K 2 8 n T e 5 ( V I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 6 3 . 3 . S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 0 V i b r a t i o n a l S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 0 U V / V i s / N e a r — I R R e fl e c t a n c e S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . 3 0 4 T h e Q u a t e r n a r y s z C q u n S 4 , A 2 C u 2 $ n 2 8 6 ( A = N a , K , R b , C s ) , A 2 C u 2 8 n 2 8 e 6 ( A = K , R b ) , K z A q u n S 4 a n d K z A q u n z S g . S y n t h e s e s , S t r u c t u r e s a n d P r o p e r t i e s o f N e w S o l i d S t a t e C h a l c o g e n i d e s B a s e d o n T e t r a h e d r a l [ S n S 4 l 4 ‘ U n i t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 3 X 1 . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 3 2 . E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 5 2 . 1 . R e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 5 2 . 2 . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 5 2 . 3 . S y n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 6 R b 2 C u 2 8 n S 4 ( I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 6 R b 2 C u 2 S n z S 6 ( I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 6 K 2 A u 2 8 n S 4 ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 7 K 2 A u 2 8 n 2 S 6 ( I V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 8 2 . 4 . X - R a y C r y s t a l l o g r a p h y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 8 3 . R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 0 3 . 1 . S y n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 0 3 . 2 . D e s c r i p t i o n o f S t r u c t u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 1 S t r u c t u r e o f s z C q u n S 4 ( l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 1 S t r u c t u r e o f R b 2 C u 2 8 n 6 ( I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 6 S t r u c t u r e s K 2 A q u n S 4 ( I I I ) a n d K 2 A u 2 8 n 2 S 6 ( I V ) . . . . . . . . . . . . . 3 4 3 3 . 3 . S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 5 O p t i c a l S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 5 V i b r a t i o n a l S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 9 3 . 4 . C o n c l u s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 2 V I I . M o l t e n S a l t S y n t h e s i s a n d C h a r a c t e r i z a t i o n o f Q u a t e r n a r y C h a l c o g e n i d e s C o n t a i n i n g M a i n G r o u p a n d T r a n s i t i o n M e t a l s . . . . . 3 6 9 1 . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 9 2 . E x p e r i m e n t a l S e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 0 2 . 1 . R e a g e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 0 2 . 2 . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 1 x i 2 . 3 . S y n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 1 K 2 H g S n z S 6 ( l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 2 K z G e l n 2 8 6 ( l l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 2 K 2 H g 3 S n 2 5 3 ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 3 K 2 H g 3 G e 2 S 3 ( V I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 3 K 6 2 n 4 8 n 5 8 1 7 ( V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 3 R b 2 Z n S n z S 6 ( V I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 4 C s z M n S n z S 6 ( V I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 4 K 2 M n S n S 4 ( V l l l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 5 C s z G e z I n z S g ( l X ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 5 C s z M n S n 3 S e g ( X ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 5 s z C d G e z S 6 ( X I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 6 2 . 4 . X - R a y C r y s t a l l o g r a p h y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 6 3 . R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 9 3 . 1 . S y n t h e s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 9 3 . 2 . D e s c r i p t i o n o f S t r u c t u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 0 S t r u c t u r e o f K 2 H g S n 2 8 6 ( I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 0 S t r u c t u r e o f K z G e l n 2 8 6 ( I I ) a n d C o m p a r i s o n w i t h K 2 H g S n 2 S 6 ( I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 5 S t r u c t u r e s o f K 2 H g 3 S n 2 8 3 ( I I I ) a n d K 2 H g 3 G e 2 S 8 ( I V ) . . . . . . . 4 0 9 S t r u c t u r e o f K 6 Z n 4 8 n 5 8 1 7 ( V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 5 S t r u c t u r e s o f R b 2 Z n S n z S 6 ( V I ) a n d C s z M n S n z S 6 ( V I I ) . . . . . . 4 2 2 S t r u c t u r e o f K 2 M n S n S 4 ( V I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 9 S t r u c t u r e o f C s z l n z G e z S g ( I X ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3 C s z M n S n g S e g ( X ) a n d i t s C o m p a r i s o n t o C s z l n z G e z S g . . . . . . . 4 3 8 S t r u c u t u r e o f s z C d G e z S 6 ( X I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 3 3 . 3 . S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 8 x i i 3 . 4 . M a g n e t i c S u s c e p t i b i l i t y M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . 4 4 8 C s z M n S n z S 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 8 K 2 M n S n S 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 9 S o l i d S t a t e O p t i c a l S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 5 V i b r a t i o n a l S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 5 x i i i 1 - 1 . 1 - 2 . 1 - 3 . 1 - 4 . 2 - 1 . 2 - 2 . 2 - 3 . 2 - 5 . 2 - 6 . 2 - 7 . 2 - 8 . L I S T O F T A B L E S E x a m p l e s f o r F o u r C o m m o n M Q S t r u c t u r e T y p e s : R o c k s a l t , Z i n c B l e n d e , W u r t z i t e a n d N i A s - T y p e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 E x a m p l e s o f O t h e r C o m m o n C h a l c o g e n i d e S t r u c t u r e T y p e s . . . . . . . . . 1 9 M e l t i n g P o i n t s ( 0 C ) o f S o m e K n o w n A l k a l i M e t a l P o l y c h a l c o g e n i d e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 S u m m a r y o f Y o u n b o n g P a r k ' s W o r k o n M o l t e n S a l t S y n t h e s i s o f L a t e T r a n s i t i o n M e t a l C h a l c o g e n i d e s w i t h D i m e n s i o n a l i t y a n d S y n t h e t i c T e m p e r a t u r e s G i v e n i n t h e P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r ( M e 4 N ) 2 M o 3 S e 1 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 2 M o 3 S e 1 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n f o r 0 ( - K 8 M o 9 S e 4 0 - 4 H 2 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r B - K 8 M o 9 S e 4 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 6 M o 6 S e 2 7 - 6 H 2 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 6 C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 2 M o 3 S e 1 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 1 2 M 0 1 2 8 e 5 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 9 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r ( M e 4 N ) 2 M o 3 S e 1 3 , K 2 M o 3 S e 1 3 , a - K 8 M 0 9 8 e 4 0 - 4 H 2 0 , B - K 3 M 0 9 8 e 4 0 , K 6 M 0 6 3 e 2 7 - 6 H 2 0 , K 2 M 0 3 3 6 1 8 , K 1 2 M 0 1 2 8 6 5 6 , K 1 0 M 0 1 2 8 6 5 8 x i v 2 - 9 . 2 - 1 0 . 2 - 1 1 . 2 - 1 2 . 2 - 1 3 . 2 - 1 4 . 2 - 1 5 . 2 - 1 6 . 2 - 1 7 . a n d C s z M o n z S e 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r ( M e 4 N ) 2 M o 3 S e 1 3 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 2 M o 3 S e 1 3 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r a - K g M o 9 S e 4 0 - 4 H 2 0 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r fi - K 8 M o 9 S e 4 0 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 6 M o 6 S e 2 7 - 6 H 2 0 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 2 M o 3 S e 1 8 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 1 2 M o 1 2 8 e 5 6 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r ( M e 4 N ) 2 M o 3 S e 1 3 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 2 M o 3 S e 1 3 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 9 X V 2 - 1 8 . 2 - 1 9 . 2 - 2 0 . 2 - 2 1 . 2 - 2 2 . 3 - 1 . 3 - 2 . 3 - 3 . 3 - 4 . 3 - 6 . 3 - 7 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r o r - K 8 M o 9 S e 4 0 - 4 H 2 0 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r fi - K 8 M 0 9 S e 4 0 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 3 S e l e c t e d B o n d D i s t a n c e S ( A ) a n d A n g l e s ( d e g ) f o r K 6 M o 6 S e 2 7 - 6 H 2 0 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 3 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 2 M o 3 S e 1 8 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 4 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 1 2 M 0 1 2 S e 5 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 2 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r ( M e 4 N ) 4 S n 4 S e 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 3 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 4 C r y s t a l D a t a f o r ( M e 4 N ) 4 S n 4 S e 1 0 a n d ( M e 4 N ) 2 S n 3 S e 7 o 2 H z O . . . . . 1 7 5 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r ( M e 4 N ) 4 S n 4 S e 1 0 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 6 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 8 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r ( M e 4 N ) 4 S n 4 8 e 1 0 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . 1 8 3 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 9 x v i 4 — 3 . 4 — 4 . 4 — 5 . 4 — 6 . 4 - 7 . 4 - 8 . 4 — 8 . 4 - 1 0 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 4 V 2 0 2 8 e 1 0 - 2 M e O H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 6 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 4 V 2 0 2 S e 8 - 0 . 6 5 M e O H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 7 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 3 N b O S e 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 8 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 2 [ ( W O z S e 2 ) 0 , 5 ( W O S e 3 ) 0 , 5 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 9 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r K 4 V 2 0 2 8 e 1 0 - 2 M e O H , K 4 V z O z S e 8 - 0 . 6 5 M e O H , K 3 N b O S e 3 a n d K 2 [ ( W 0 2 8 e 2 ) 0 . 5 ( W O S e 3 ) o , 5 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 0 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 4 V 2 0 2 8 e 1 0 - 2 M e O H w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 2 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 4 V 2 0 2 8 e 8 - 0 . 6 5 M e O H w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 3 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 3 N b O S e 3 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 4 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 2 [ ( W 0 2 8 e 2 ) 0 , 5 ( W O S e 3 ) 0 , 5 ] w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 4 S e l e c t e d B o n d D i s t a n c e S ( A ) a n d A n g l e s ( d e g ) f o r K 4 V 2 0 2 8 e l o t 2 M e O H w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2 x v i i 4 - 1 1 . 4 - 1 2 . 4 - 1 3 . 5 - 3 . 5 - 4 . 5 - 5 . 5 - 6 . 5 - 8 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 4 V 2 0 z S e 8 - 0 . 6 5 M e O H w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 4 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 3 N b O S e 3 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 7 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 2 [ ( W 0 2 S e 2 ) 0 , 5 ( W O S e 3 ) 0 , 5 ] w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 8 C a l c u l a t e d a n d O b s e r v e d X — R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K Z S D Z S S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 2 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r o r - R b 2 8 n 2 8 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 3 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r [ 5 - R b 2 8 n 2 8 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 5 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 2 S n 2 3 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 6 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r C s 2 8 n 2 8 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 8 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r C s Z S n 8 1 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 9 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 2 S n T e 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 1 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r K 2 5 n 2 S 8 ( I ) , a - R b 2 8 n 2 8 8 ( 1 1 ) , fi - R b Z S I I Z S B U I I ) , K Z S n Z S S U V ) , C 8 2 5 n 2 5 6 ( V ) , C s 2 8 n S l 4 ( V I ) a n d K 2 8 n T e 5 ( V I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 4 x v i i i 5 — 9 . 5 - 1 0 . 5 - 1 1 . 5 - 1 2 . 5 - 1 3 . 5 - 1 4 . 5 - 1 5 . 5 - 1 6 . 5 - 1 7 . 5 - 1 8 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 2 8 n 2 8 8 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 7 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r a - R b 2 3 n 2 8 8 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 8 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r fi - s z S n s t w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 9 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r C s Z S n z S 6 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 0 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 2 8 n 2 8 5 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 1 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r C s z S n 8 1 4 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 2 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K z S n T e s w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 3 C o m p a r i s o n o f B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 2 S n 2 8 8 ( I ) , a - s z S n s t ( I I ) a n d B - s z S n z s s ( I I I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 0 C o m p a r i s o n o f S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 2 8 n 2 8 5 ( I V ) a n d l e S i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 3 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r C s 2 3 n 2 5 6 ( v 1 ) w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 0 x i x 5 - 1 9 . 5 - 2 0 . 5 - 2 1 . 6 - 1 . 6 - 2 . 6 - 3 . 6 — 4 . 6 - 6 . 6 - 7 . 6 — 8 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r C s z S n S l 4 ( V I ) w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 5 C o m p a r i s o n o f S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e ( d e g ) f o r K 2 8 n T e 5 a n d l e S n T e 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 9 I n f r a r e d a n d R a m a n F r e q u e n c i e s ( c m ' l ) o f K 2 S n 2 8 8 , K 2 S n 2 8 5 , C s z S n z S 6 a n d C s z S n S 1 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 1 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r R b 2 C u 2 8 n S 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 0 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r R b 2 C u 2 8 n 2 S 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 1 C a l c u l a t e d a n d O b s e r v e d X — R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r K 2 A q u n S 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 2 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r K 2 A u 2 $ n 2 8 6 . . . . . . 3 2 3 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r s z S n C q u 4 , R b 2 S n 2 C u 2 8 6 , K 2 A u Z S n S 4 a n d K 2 A u 2 8 n 2 S 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 4 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r R b 2 C u Z S n S 4 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 6 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r R b 2 C u 2 $ n 2 8 6 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 7 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 2 A u 2 S n S 4 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 8 X X 6 — 9 . 6 — 1 0 . 6 — 1 1 . 6 - 1 2 . 6 - 1 3 . 6 - 1 4 . 6 - 1 5 . 7 - 1 . 7 - 2 . 7 - 3 . 7 - 4 . 7 - 5 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 2 A u 2 8 n 2 8 6 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 9 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f s z C q u n S 4 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 5 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f R b 2 C u 2 8 n z S 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 1 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f K 2 A u 2 S n S 4 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 3 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f K 2 A u 2 8 n z S 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 4 S u m m a r y o f t h e O p t i c a l B a n d G a p s ( e V ) f o r s z C u z s n S 4 , A 2 C u 2 8 n 2 8 6 ( A = K , R b ) A 2 C u 2 8 n 2 $ e 6 ( A = K , R b ) , K 2 A u 2 S n S 4 a n d K 2 A u 2 8 n 2 8 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 8 F r e q u e n c i e s ( c m ‘ l ) o f S p e c t r a l A b s o r p t i o n s f o r R b 2 C q u n S 4 , R b 2 C u 2 3 n z S 6 , K 2 A u 2 8 n S 4 a n d K 2 A u 2 S n z S 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 8 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r K 2 H g 3 S n 2 8 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 8 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r K 2 H g 3 G e 2 8 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 9 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r K 6 Z n 4 S n 5 5 1 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 0 C a l c u l a t e d a n d O b s e r v e d X — R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r R b 2 2 n S n 2 8 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 1 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r C s z M n S n 2 $ 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 3 x x i 7 - 7 . 7 - 8 . 7 - 9 . 7 - 1 0 . 7 - 1 1 7 - 1 2 . 7 - 1 3 . 7 - 1 4 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r K 2 M n S n S 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 4 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r C s z l n z G e 2 5 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 5 C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r R b 2 C d G 6 2 8 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 6 S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r K 2 H g S n 2 5 6 ( I ) , K 2 G e I n 2 S 6 ( I I ) , K 2 H g 3 S n 2 8 8 ( I I I ) , K 2 H g 3 G e 2 8 8 ( I V ) , K 6 Z n 4 8 n 5 8 1 7 ( V ) , s z Z n S n 2 8 6 ( V l ) , C s 2 M n S n 2 8 6 ( V I I ) , K 2 M n S n S 4 ( V I I I ) , C s z G e 2 1 n 2 8 8 ( I X ) , C s 2 M n S n 3 S e 8 ( X ) a n d R b 2 C d G e z S 6 ( X I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 7 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 2 H g S n 2 8 6 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 1 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 2 G e I n 2 8 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . 3 9 2 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 2 H g 3 S n 2 8 8 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 3 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 2 H g 3 G e 2 S 8 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 3 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 6 Z n 4 S n 5 8 1 7 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 4 x x i i 7 - 1 5 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r R b 2 Z n S n 2 $ 6 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 5 7 - 1 6 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r C s z M n S n z S é w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 5 7 - 1 7 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r K 2 M n S n S 4 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 6 7 - 1 8 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r C s z l n z G e z S g w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 7 7 - 1 9 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r C s z M n S n 3 S e 8 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 8 7 - 2 0 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) f o r R b 2 C d G e 2 8 6 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 8 7 - 2 1 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 2 H g S n 2 S 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 4 7 - 2 2 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 2 G e l n 2 8 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 8 7 - 2 3 . C o m p a r i s o n o f S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) o f K 2 H g 3 S n 2 S 8 ( I ) a n d K 2 H g 3 G e 2 8 8 ( I I ) w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 4 7 - 2 4 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 6 Z n 4 S n 5 S 1 7 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 1 x x i i i 7 - 2 5 7 - 2 6 . 7 - 2 7 . 7 - 2 8 . 7 - 2 9 . 7 - 3 0 . 7 - 3 1 . 7 - 3 2 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r R b 2 Z n S n 2 5 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 7 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e q ) o f C s z M n S n 2 $ 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 8 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 2 M n S n S 4 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 2 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) o f C s z l n z G e z S g w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 7 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r C s 2 M n S n 3 S e 8 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 1 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r s z C d G e 2 8 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 6 S u m m a r y o f t h e O p t i c a l B a n d G a p s ( e V ) f o r K 2 H g 3 S n 2 8 8 ( I I I ) K 2 H g 3 G e 2 8 8 ( I V ) K 6 Z n 4 S n 5 S 1 7 ( V ) R b 2 2 n S n 2 8 6 ( V I ) C s z M n S n 2 8 6 ( V I I ) K 2 M n S n S 4 ( V I I I ) C s z l n z G e z S g ( I X ) R b 2 C d G e z S 6 ( X I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 6 S u m m a r y o f A b s o r p t i o n F r e q u e n c i e s ( c m - 1 ) o f V i b r a t i o n a l S p e c t r a f o r K 2 H g 3 S n 2 8 3 ( I l l ) K 2 H g 3 G e 2 8 3 ( I V ) K 6 Z n 4 S n 5 8 1 7 ( V ) R b 2 2 n S n 2 8 6 ( V I ) C s 2 M n S n 2 8 6 ( V I I ) K 2 M n S n S 4 ( V I I I ) C s z l n z G e z S S ( I X ) C s z M n S n 3 S e 8 ( X ) , R b 2 C d G e 2 8 6 ( X I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 6 x x i v 1 - 1 : 1 - 4 : 1 - 5 : 1 - 7 : 2 - 1 : 2 - 2 : 2 - 3 : L I S T O F F I G U R E S O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f ( A ) [ A g ( S e 5 ) ] n n ' ( B ) [ A g ( S e 4 ) ] 4 ' a n d ( C ) [ F e ( S e 4 ) 2 ] 2 ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 P h a s e d i a g r a m s o f ( A ) N a 2 S x ( B ) K 2 S x s y s t e m . T e m p e r a t u r e ( ° C ) v s . % w e i g h t o f s u l f u r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 C r y s t a l s t r u c t u r e s o f c o m m o n M Q s t r u c t u r e t y p e s : ( A ) r o c k s a l t ( N a C l ) ( B ) z i n c b l e n d e ( Z n S ) ( C ) w u r t z i t e ( Z n S ) a n d ( D ) N i A s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 C r y s t a l s t r u c t u r e s o f ( A ) S n S ( B ) P t S a n d ( C ) H g S . . . . . . . . . . . . . . . . . . . . . . . 1 0 C r y s t a l s t r u c t u r e s o f ( A ) P b O ( B ) T h C r 2 S i 2 ( C ) fl u o r i t e ( C a F 2 ) ( D ) M 0 8 2 ( E ) T i S z ( C d l z - t y p e ) ( F ) S i S 2 ( G ) F e S Z ( H ) T i 0 2 ( I ) Z r S e 3 ( J ) N b S e 3 ( K ) T a S e 3 ( L ) p e r o v s k i t e ( A B Q 3 ) a n d ( M ) s t e r e o v i e w s o f s p i n e l ( A B z Q 4 ) , A : o c t a n t — S h a d e d c i r c l e s ; B : o c t a n t c i r c l e s ; Q : o p e n c i r c l e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f ( A ) a - [ C u S 4 ] ‘ a n d ( B ) fi - [ C u S 4 ] ‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f ( A ) K A u S e 2 a n d ( B ) a n a n i o n i c l a y e r o f N a A u S e 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f [ M o 3 S e 1 3 ] 2 ' . . . . . . . . . 8 3 L a b e l i n g s c h e m e a n d p a c k i n g d i a g r a m o f ( M e 4 N ) 2 M o 3 S e 1 3 . V i e w d o w n ( A ) c - a x i s a n d ( B ) a - a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 L a b e l i n g s c h e m e a n d p a c k i n g d i a g r a m o f K 2 M o 3 S e 1 3 . V i e w d o w n ( A ) c - a x i s a n d ( B ) a - a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 l a b e l i n g s c h e m e a n d p a c k i n g d i a g r a m o f ( A ) ( M e 4 N ) 2 M o 3 S e 1 3 a n d ( B ) K 2 M o 3 S e 1 3 . D a s h e d l i n e s S h o w S e u - S e c o n t a c t s . . . . . . . . . . . . . . . . . . . . 8 7 X X V 2 - 7 : 2 - 8 : 2 - 9 : 2 - 1 0 : 2 - 1 1 : 2 - 1 2 : 2 - 1 3 : 2 - 1 4 : 2 - 1 5 : 2 - 1 6 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f a - [ M o 9 S e 4 0 ] 8 ' ( I I I ) a n d B - [ M o 9 S e 4 0 ] 8 ' ( I V ) . D a s h e d l i n e s S h o w S e n - S e S h o r t c o n t a c t s . 9 4 O R T E P r e p r e s e n t a t i o n o f t h e c e n t r o s y m m e t r i c r e l a t i o n s h i p b e t w e e n t w o c l u s t e r s o f a - [ M 0 9 8 e 4 0 ] 8 ' . T h e s h o r t c o n t a c t b e t w e e n t w o t e r m i n a l d i s e l e n i d e s i s S h o w n b y a d a s h e d l i n e . B l a c k c i r c l e s r e p r e s e n t M o a t o m s . O p e n c i r c l e s r e p r e s e n t S e a t o m s . . . . . . . . . . . . . . . . . . 9 5 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f [ M 0 6 S e 2 7 ] 6 ' . D a s h e d l i n e s r e p r e s e n t S e m S e s h o r t c o n t a c t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 2 O R T E P r e p r e s e n t a t i o n o f [ M o 3 S e 1 8 ] n 2 n ' c h a i n s . D a s h e d l i n e s S h o w S e - - - S e s h o r t c o n t a c t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 1 L a b e l i n g s c h e m e o f t h e r e p e a t i n g u n i t o f [ M o 3 S e 1 8 ] n 2 n ' . . . . . . . . . . . . 1 2 2 O R T E P r e p r e s e n t a t i o n o f t h e i n t e r a c t i o n b e t w e e n t h e S e 3 2 ' l i g a n d a n d t h e [ M o 3 ( u 3 - S e ) ( p 2 - S e 2 ) 4 ] 4 + c o r e i n [ M o 3 S e 1 8 ] n 2 n ‘ . . . . . . . . . . . 1 2 3 O R T E P r e p r e s e n t a t i o n o f t h e m o l e c u l a r s t r u c t u r e o f t h e [ M 0 1 2 8 e 5 6 1 1 2 ' a n i o n . T h e b l a c k c i r c l e s r e p r e s e n t M o a t o m s . T h e o p e n c i r c l e s r e p r e s e n t S e a t o m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 9 T h e i n d i v i d u a l s t r u c t u r e s a n d l a b e l i n g s c h e m e o f t h e M o / S e t r i n u c l e a r s u b c l u s t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 0 P a c k i n g d i a g r a m o f K 1 2 M 0 1 2 8 e 5 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 1 O R T E P r e p r e s e n t a t i o n o f t h e s t r u c t u r e o f [ M 0 1 2 8 e 5 8 ] 1 0 ' . B l a c k c i r c l e s r e p r e s e n t M o a t o m s . O p e n c i r c l e s r e p r e s e n t S e a t o m s . D a s h e d l i n e s i n d i c a t e S e - ~ - S e s h o r t c o n t a c t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 8 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f [ M o n z S e 6 ] 2 ‘ . . . . . . 1 3 9 S e — S e b o n d c o r r e l a t i o n . T h e h o r i z o n t a l a x i s r e p r e s e n t s t h e S e a p - S e a b o n d v a r i a t i o n i n d i f f e r e n t M o s e l e n i d e m o l e c u l e s , a n d t h e c o r r e s p o n d i n g S e a - S e b b o n d i s p l o t t e d a s a f u n c t i o n o f t h e S e a p - S e a d i s t a n c e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 x x v i 2 - 1 7 : C h a n g e s i n t h e o v e r l a p p o p u l a t i o n , A ( O ) , a s f u n c t i o n s o f d , t h e p e r p e n d i c u l a r d i s t a n c e b e t w e e n t h e S e z ‘ a n d t h e M 0 3 p l a n e . ( A ) M o - S e z ' b o n d s , ( B ) S e a - S e b b o n d s , ( C ) S e 2 ' - S e a b o n d s a n d ( D ) t h e M o - M o b o n d s . t h e S e 2 - i s l a b e l e d a s S e ( 1 7 ) , S e a a s S e ( 8 ) , S e ( 9 ) a n d S e b a s S e ( 5 ) , S e ( 6 ) . S e ( 7 ) a n d S e ( 1 0 ) a r e e q u i v a l e n t t o S e ( 5 ) a n d S e ( 8 ) r e s p e c t i v e l y a n d a r e n o t s h o w n i n t h e F i g u r e . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 8 2 - 1 8 : E l e c t r o n d e n s i t y c h a n g e f o r a l l a t o m s . A e " i s t h e d i f f e r e n c e b e t w e e n t h e e l e c t r o n d e n s i t y o f a n a t o m i n [ M o 3 S e 1 4 ] 4 ‘ a t v a r i o u s d i s t a n c e s a n d i n t h e e x t r e m e c a s e , d = ° ° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 1 2 - 1 9 : O r b i t a l i n t e r a c t i o n d i a g r a m f o r t h e [ M o 3 S e 1 4 ] 4 ‘ m o d e l s y s t e m . T h r e e s i t u a t i o n s a r e c o n s i d e r e d : ( a ) d = 3 . 4 A , ( b ) d = 3 . 8 A a n d ( c ) d = 4 . 2 A . T h e i n t e r e s t e d m o l e c u l a r o r b i t a l l e v e l s a r e s k e t c h e d i n t h e c e n t r a l a r e a i n e a c h c a s e a n d a r e o u t l i n e d w i t h i n a b o x . a ' a n d a " a r e t h e s y m m e t r y l a b e l s f o r t h e s e o r b i t a l s . T h e c o r r e s p o n d i n g f r a g m e n t o r b i t a l e n e r g i e s o f [ M o 3 S e 1 3 ] 2 ' a n d S e z ‘ a r e d r a w n o n e i t h e r s i d e o f e a c h b o x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 2 2 - 2 0 : C o n t r i b u t i o n s o f t h e f r a g m e n t m o l e c u l a r o r b i t a l s ( F M O ) o f [ M o 3 S e 1 3 ] 2 ' t o t h e m o l e c u l a r o r b i t a l s ( M O ) 3 1 a ' , 3 2 a " ( d = 3 . 4 A ) , 3 3 a , 3 4 a " ( d = 3 . 8 A ) a n d 3 7 a ' , 3 8 a " ( d = 4 . 2 A ) . c i s t h e c o e f fi c i e n t o f t h e F M O i n t h e M O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 4 2 - 2 1 : V a r i a b l e t e m p e r a t u r e 7 7 S e N M R s p e c t r a o f a - K 8 M o 9 S e 4 0 - 4 H 2 0 i n D M F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 7 2 - 2 2 : S o l i d s t a t e o p t i c a l s p e c t r u m o f ( M e 4 N ) 2 M o 3 S e 1 3 . . . . . . . . . . . . . . . . . . . . 1 5 9 3 - 1 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e f o r t w o c r y s t a l l o g r a p h i c a l l y i n d e p e n d e n t [ S n 4 S e 1 o ] 4 ' c l u s t e r s . . . . . . . . . . . . . . . 1 8 2 x x v i i 3 - 3 : 3 - 4 : 3 - 5 : 3 - 7 : 3 - 8 : 4 - 1 : 4 - 2 : 4 - 3 : 4 - 4 : 4 - 6 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f a b u i l d i n g u n i t i n ( M e 4 N ) 2 8 n 3 S e 7 ~ 2 H 2 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 6 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f a s i n g l e l a y e r o f ( M e 4 N ) 2 8 n 3 S e 7 - 2 H 2 0 . V i e w d o w n t h e a - a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 7 T h e s t r u c t u r e o f ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 v i e w e d p a r a l l e l t o t h e l a y e r s . D o u b l e l a y e r s o f M e 4 N + c a t i o n s a r e l o c a t e d b e t w e e n t h e [ S n 3 S e 7 ] 2 ' l a y e r s . W a t e r m o l e c u l e s , s h o w n b y c r o s s e d c i r c l e s , a r e l o c a t e d i n s i d e t h e h o l e s o f t h e [ S n 3 S e 7 ] 2 ' l a y e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 8 T h e r m o g r a v i m e t r i c a n a l y s i s ( T G A ) d a t a o f ( M e 4 N ) 2 S n 3 S e 7 - 2 H z O . T h e h e a t i n g r a t e w a s 5 O C / m i n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 3 S o l i d s t a t e o p t i c a l s p e c t r u m o f ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 . T h e a b s o r p t i o n s i n t h e 0 . 5 ~ 0 . 6 e V r e g i o n a r e d u e t o v i b r a t i o n a l e x c i t a t i o n s w i t h i n t h e M e 4 N + m o l e c u l e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 5 S o l i d s t a t e o p t i c a l s p e c t r u m o f ( M e 4 N ) 4 S n 4 S e 1 0 . . . . . . . . . . . . . . . . . . . . . . . 1 9 6 I n f r a r e d s p e c t r a o f ( A ) ( M e 4 N ) 4 S n 4 S e 1 0 a n d ( B ) ( M e 4 N ) 2 8 n 3 S e 7 - 2 H 2 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 8 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e f o r t w o c r y s t a l l o r g r a p h i c a l l y i n d e p e n d e n t a n i o n s o f [ V 2 0 2 S e 1 0 ] 4 ' . . . . . . . . . . 2 1 8 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e f o r [ V 2 0 2 8 e 8 ] 4 ' . . . . . . 2 1 9 P a c k i n g d i a g r a m f o r a n u n i t c e l l o f K 4 [ V 2 0 2 8 e 1 0 ] ° 2 M e O H . . . . . . . . . 2 2 0 P a c k i n g d i a g r a m f o r a n u n i t c e l l o f K 4 [ V 2 0 2 8 e 8 ] ' 0 . 6 5 M e O H . T h e M e O H m o l e c u l e s a r e o m i t t e d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 1 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e f o r ( A ) [ N b O S e 3 ] 3 ' a n d ( B ) [ ( w o z s c 2 ) ( w o s c 3 ) ] 4 - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 6 I n f r a r e d s p e c t r a f o r ( A ) K 4 [ V 2 0 2 8 e 1 0 ] ' 2 M e O H a n d ( B ) K 4 [ V 2 0 2 8 e 8 ] ° 0 . 6 5 M e O H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 0 x x v i i i 4 - 7 : 5 - 1 : 5 - 3 : 5 - 4 : 5 - 5 : 5 - 6 : 5 - 7 : 5 - 8 : U V - V i s s p e c t r a f o r ( A ) K 4 [ V 2 0 2 8 e 1 0 ] ' 2 M e O H i n D M F a n d ( B ) K 4 [ V 2 0 2 S e 8 ] ' 0 . 6 5 M e O H i n D M F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 1 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f [ S n 2 8 8 ] n 2 n ‘ i n ( I ) . T h e d a s h e d l i n e s i n d i c a t e t h e s h o r t e s t n o n b o n d i n g S n - ~ - S c o n t a c t s ( 2 . 9 3 4 ( 5 ) A ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 8 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f [ S n 2 8 8 ] n 2 n ' i n ( m ) . T h e d a s h e d l i n e s i n d i c a t e t h e s h o r t e s t n o n b o n d i n g S n m S c o n t a c t s ( 2 . 8 7 5 ( 3 ) A ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 9 U n i t c e l l s o f ( A ) K 2 8 n 2 8 8 o r a - R b 2 8 n 2 5 8 ( B ) fi - s z S n 2 S 8 . C a t i o n s l o c a t e d b e t w e e n l a y e r s . V i e w d o w n t h e b - a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 7 S t r u c t u r e a n d l a b e l i n g s c h e m e o f K 2 8 n 2 8 5 : ( A ) V i e w d o w n t h e a - a x i s . ( B ) V i e w d o w n t h e b - a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 1 ( A ) O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f C 3 2 S n 2 8 6 a n d p a c k i n g d i a g r a m o f C 8 2 8 n 2 8 6 : ( B ) V i e w d o w n t h e b - a x i s . ( C ) V i e w d o w n t h e c — a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 6 S c h e m a t i c c o m p a r i s o n o f t h e o r i e n t a t i o n s o f t h e ( S n S 2 ) n c h a i n s i n K 2 8 n 2 8 5 a n d C s z s n z s é . B l a c k s o l i d l i n e s r e p r e s e n t t h e ( S n 8 2 ) n c h a i n s l y i n g a b o v e , w h i l e t h e b r o k e n l i n e s r e p r e s e n t ( S n 8 2 ) n c h a i n s l y i n g b e l o w t h e p l a n e o f t h e p a p e r . ( A ) s h o w s t w o p a r a l l e l s e t s o f ( S n 8 2 ) n c h a i n s i n K 2 8 n 2 8 5 o r i e n t e d a l o n g t h e [ 1 1 0 ] a n d [ 1 - 1 0 ] d i r e c t i o n s , r e s p e c t i v e l y , a n d l i n k e d b y S 2 " . ( B ) s h o w s p a r a l l e l s e t s o f ( S n 8 2 ) n c h a i n s i n C s z S n 2 8 6 o r i e n t e d a l o n g t h e [ 1 0 0 ] d i r e c t i o n a n d l i n k e d b y S 2 2 ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 9 T w o v i e w s a n d l a b e l i n g s c h e m e o f t h e [ S n ( S 4 ) 2 ( S 6 ) ] 2 ' a n i o n . . . . 2 9 3 T h e u n i t c e l l o f C s Z S n S 1 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 4 x x i x 5 - 9 : 5 — 1 0 : 5 - 1 1 : 5 - 1 2 : 5 - 1 3 : 6 - 1 : 6 — 2 : 6 - 4 : 6 - 5 : 6 - 7 : 6 - 8 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K z S n T e s : ( A ) V i e w d o w n t h e a - a x i s . ( B ) V i e w d o w n t h e b — a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 7 ( A ) R a m a n s p e c t r u m o f K z s n z s g ( B ) R a m a n S p e c t r u m o f C s z S n 2 8 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 2 I n f r a r e d ( l e f t ) a n d R a m a n ( r i g h t ) s p e c t r u m o f K z S n s t . . . . . . . . . . . . . 3 0 3 O p t i c a l a b s o r p t i o n s p e c t r a o f K z S n z S S , o r - R b 2 8 n 2 8 8 a n d B - R b Z S n 2 S 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 5 O p t i c a l a b s o r p t i o n s p e c t r a o f K 2 8 n 2 8 5 a n d C s z S n 2 S 6 . . . . . . . . . . . . . . . . . 3 0 6 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f [ C q u n S 4 ] 2 ' . V i e w d o w n t h e c - a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 3 T h e s t r u c t u r e o f R b 2 C q u n S 4 v i e w e d p a r a l l e l t o t h e l a y e r s . A m o n o l a y e r o f r u b i d i u m c a t i o n s i s l o c a t e d b e t w e e n l a y e r s . D a s h l i n e s s h o w t h e c o o r d i n a t i o n e n v i r o n m e n t o f t h e R b + c a t i o n s . . . . . . . . 3 3 4 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f R b 2 C u Z S n z S 6 . V i e w d o w n t h e c — a x i S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 8 T h e s t r u c t u r e o f R b 2 C q u n 2 S 6 v i e w e d p a r a l l e l t o t h e l a y e r s . . . . . . . . 3 3 9 T h e c o o r d i n a t i o n e n v i r o n m e n t f o r R b ( l ) a n d R b ( 2 ) . W h i l e 5 ( 1 ) , 3 ( 2 ) , 3 ( 3 ) a n d S ( 4 ) b e l o n g t o t h e [ C u 2 8 n 2 8 6 ] 2 ' S l a b w h i c h h o s t s t h e R b + c a t i o n s , 8 ( 5 ) a n d 8 ( 6 ) b e l o n g t o a n o t h e r [ C u 2 8 n 2 8 6 ] 2 ' s l a b . . . 3 4 0 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f ( A ) a s i n g l e c h a i n o f K 2 A q u n S 4 . A n n - A u s h o r t c o n t a c t s a r e s h o w n b y d a s h e d l i n e s ( B ) v i e w d o w n t h e b - a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 7 O R T E P r e p r e s e n t a t i o n o f t h e a n i o n i c s t r u c t u r e o f B a A u 2 8 n S 4 . . . . . 3 4 9 C o m p a r i s o n b e t w e e n t h e u n i t c e l l s o f ( A ) K 2 A u 2 S n S 4 v i e w e d d o w n t h e < 1 0 1 > a x i s . ( B ) B a A q u n S 4 v i e w e d d o w n t h e < 0 1 0 > a x i s . . . . . . 3 5 0 X X X 6 — 9 : 6 - 1 0 : 6 — 1 1 : 6 - 1 2 : 7 - 2 : 7 - 3 : 7 - 4 : 7 - 5 : 7 - 6 : 7 - 8 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K 2 A u 2 S n 2 8 6 . A u m A u s h o r t c o n t a c t s a r e s h o w n b y d a s h e d l i n e s . ( A ) v i e w d o w n t h e b - a x i s . ( B ) v i e w d o w n t h e c - a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 1 O p t i c a l a b s o r p t i o n s p e c t r a o f ( A ) R b 2 C u 2 S n S 4 ( B ) R b 2 C q u n 2 8 6 ( C ) K 2 C u 2 8 n 2 8 e 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 6 O p t i c a l a b s o r p t i o n s p e c t r a o f ( A ) K 2 A u 2 8 n S 4 ( B ) K 2 A q u n 2 8 6 . . 3 5 7 I n f r a r e d s p e c t r a o f ( A ) R b 2 C u 2 8 n S 4 ( B ) R b 2 C q u n z S 6 ( C ) K 2 A q u n S 4 ( D ) K 2 A u 2 8 n 2 S 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 0 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f K 2 H g S n 2 8 6 . V i e w d o w n t h e b - a x i s . T h e d a s h e d l i n e s r e p r e s e n t t h e w a y [ H g S n 2 8 6 ] 2 ‘ l a y e r s a r e f o l d e d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 2 T h e s t r u c t u r e o f K 2 H g S n z S 6 v i e w e d p a r a l l e l t o t h e l a y e r s . A m o n o l a y e r o f p o t a s s i u m c a t i o n s i s l o c a t e d b e t w e e n l a y e r s . . . . . . . . . . . . 4 0 3 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f K 2 G e I n 2 8 6 . V i e w d o w n t h e a - a x i s . T h e d a s h e d l i n e s r e p r e s e n t t h e w a y [ G e l n 2 8 6 ] 2 ‘ l a y e r s a r e f o l d e d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 6 T h e s t r u c t u r e o f K 2 G e I n 2 8 6 v i e w e d p a r a l l e l t o t h e l a y e r s . A m o n o l a y e r o f p o t a s s i u m c a t i o n s i s l o c a t e d b e t w e e n l a y e r s . . . . . . . . . . . . 4 0 7 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K 2 H g 3 S n 2 5 8 o r K 2 H g 3 G e 2 8 8 . V i e w d o w n t h e b - a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 2 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K 2 H g 3 S n 2 8 8 o r K 2 H g 3 G e 2 8 8 . V i e w d o w n t h e < 1 1 0 > d i r e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 3 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K 6 Z n 4 S n 5 8 1 7 . V i e w d o w n t h e c - a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 7 [ Z n 4 8 n 4 S 1 7 ] 1 0 ' c l u s t e r , t h e b u i l d i n g b l o c k o f K 6 Z n 4 S n s S 1 7 , i s a f r a g m e n t o f W u r t z i t e t y p e s t r u c t u r e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 8 x x x i 7 - 9 : 7 - 1 0 : 7 - 1 1 : 7 - 1 2 : 7 - 1 3 : 7 - 1 4 : 7 - 1 5 : 7 - 1 6 : 7 - 1 7 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K 6 Z n 4 8 n 5 S 1 7 . V i e w d o w n t h e a o r b - a x i s . T h i s v i e w s h o w s t h e p o l a r c h a r a c t e r o f t h e s t r u c t u r e . K ( l ) c a t i o n s a r e l o c a t e d i n s i d e t h e w i d e a n d n a r r o w t u n n e l s p a r a l l e l t o t h e a - o r b - a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 9 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K 6 Z n 4 S n 5 S 1 7 . V i e w d o w n t h e a o r < 1 1 0 > o r < 1 1 0 > d i r e c t i o n . K ( 2 ) a n d K ( 3 ) a r e l o c a t e d i n s i d e t h e t u n n e l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 0 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f ( A ) R b 2 Z n S n z S 6 a n d ( B ) C s z M n S n 2 S 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 4 A s i n g l e l a y e r o f t h e [ M S n 2 8 6 ] 2 ‘ ( M = Z n o r M n ) f r a m e w o r k . I t s a d j a c e n t l a y e r s a b o v e a n d b e l o w a r e r e l a t e d a c c o r d i n g t o P 2 1 s y m m e t r y . V i e w d o w n ( A ) b - a x i s a n d ( B ) a - a x i s . . . . . . . . . . . . . . . . . . . . . . . . 4 2 6 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K 2 M n S n S 4 . V i e w d o w n t h e c - a x i s . M n 2 + a n d S n 4 + i o n s a r e s t a t i s t i c a l l y d i s o r d e r e d a m o n g t h e M s i t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 0 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K 2 M n S n S 4 . V i e w p a r a l l e l t o t h e l a y e r s . D o u b l e l a y e r s o f p o t a s s i u m c a t i o n s a r e l o c a t e d b e t w e e n t h e [ M n S n S 4 ] 2 ‘ s l a b s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 1 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f C s z l n z G e 2 8 8 . V i e w d o w n t h e c - a x i s . I n a n d G e a r e d i s o r d e r e d a m o n g t h e M s i t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 5 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f C s Z I n 2 G e 2 8 8 . V i e w p a r a l l e l t o t h e l a y e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 6 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f C s z M n S n 3 S e 8 . V i e w d o w n t h e a - a x i s . N o t e t h a t t h e r e i s n o d i s o r d e r a m o n g M n a n d S n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 9 x x x i i 7 - 1 8 : 7 - 1 9 : 7 - 2 0 : 7 - 2 1 : 7 - 2 2 : 7 - 2 3 : 7 - 2 4 : 7 - 2 5 : 7 - 2 6 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f C s z M n S n 3 S e 8 . V i e w p a r a l l e l t o t h e l a y e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 0 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f R b 2 C d G e 2 S 6 . V i e w d o w n t h e c - a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 5 O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f R b 2 C d G e 2 8 6 . V i e w d o w n t h e ( A ) a - a x i s a n d ( B ) < 1 1 0 > d i r e c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 6 T h e r e l a t i o n s h i p s o f m a g n e t i z a t i o n v s . a p p l i e d m a g n e t i c fi e l d f o r C s z M n S n z S fi a t 5 K a n d 3 0 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 1 T h e r e l a t i o n s h i p o f l / X m v s . T s h o w s p a r a m a g n e t i s m o f C s z M n S n 2 8 6 a b o v e T N = 9 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 2 T h e r e l a t i o n s h i p o f s a m p l e m a g n e t i z a t i o n v s . a p p l i e d m a g n e t i c fi e l d f o r K 2 M n S n S 4 a t 5 K a n d 3 0 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 3 T h e X m v s . T p l o t s f o r K 2 M n S n S 4 a t b o t h 1 0 0 0 a n d 5 0 0 0 G a u s s e x h i b i t a s m o o t h v e r y b r o a d a n t i f e r r o m a g n e t i c t r a n s i t i o n . . . . . . . . . . . . 4 5 4 O p t i c a l a b s o r p t i o n s p e c t r a o f ( A ) K 2 H g 3 S n 2 8 8 , ( B ) K 2 H g 3 G e 2 S 8 , ( C ) K 6 2 n 4 8 n 5 8 1 7 , ( D ) R b 2 Z n S n z S 6 , ( E ) C s Z M n S n 2 S 6 , ( F ) K 2 M n S n S 4 , ( G ) C s z l n z G e Z S S a n d ( H ) R b 2 C d G e z S 6 . . . . . . . . . . . . . . . . . . 4 5 8 I n f r a r e d s p e c t r a o f ( A ) K 2 H g 3 S n 2 S 8 , ( B ) K 2 H g 3 G e 2 8 8 , ( C ) K 6 2 n 4 S n s S 1 7 , ( D ) R b 2 2 n S n 2 8 6 , ( E ) C s z M n S n 2 S 6 , ( F ) K 2 M n S n S 4 , ( G ) C s z l n z G e Z S S ( H ) C s z M n S n 3 S e 8 a n d ( I ) R b 2 C d G e 2 $ 6 . . . . . . . . . . 4 6 3 x x x i i i C H A P T E R 1 1 . I n t r o d u c t i o n t o M e t a l C h a l c o g e n i d e C h e m i s t r y I n t h e l a s t 1 5 y e a r s , m e t a l ( p o l y ) c h a l c o g e n i d e s h a v e r e c e i v e d g r e a t a t t e n t i o n i n t h e f i e l d o f c o o r d i n a t i o n c h e m i s t r y a n d s o l i d s t a t e s c i e n c e d u e t o t h e i r i n t e r e s t i n g s t r u c t u r a l , r e a c t i v i t y , e l e c t r o n i c , o p t i c a l a n d c a t a l y t i c p r o p e r t i e s . “ 5 T h e m e t a l ( p o l y ) c h a l c o g e n i d e s e x h i b i t l a r g e s t r u c t u r a l d i v e r s i t y b e c a u s e : ( a ) v a r i o u s l e n g t h s o f s z ‘ ( x = 1 t o 9 ) l i g a n d s a r e a v a i l a b l e , ( b ) b o t h t e r m i n a l a n d i n t e r n a l c h a l c o g e n a t o m s o f s z ‘ l i g a n d s a r e c a p a b l e o f b i n d i n g t o o n e o r m o r e m e t a l c e n t e r s a n d ( c ) v a r i o u s m e t a l t o l i g a n d r a t i o s a r e p o s s i b l e w i t h a p p r o p r i a t e n u m b e r a n d S i z e o f c o u n t e r i o n s t o b a l a n c e t h e c h a r g e a n d t o s t a b i l i z e a c r y s t a l l a t t i c e . T h e v a r i o u s b o n d i n g m o d e s h a v e b e e n s u m m a r i z e d e l s e w h e r e . 6 T h e s p e c i a l a b i l i t y o f t h e c h a l c o g e n a t o m t o b i n d m u l t i p l e m e t a l c e n t e r s a l s o p r o v i d e s a s y n t h e t i c r o u t e t o h e t e r o m e t a l l i c c l u s t e r s . F o r e x a m p l e , t e t r a t h i o m e t a l l a t e s , [ M S 4 ] 2 ' , h a v e b e e n u s e d a s p r e c u r s o r s t o b i n d o t h e r t r a n s i t i o n m e t a l s M ' v i a S a t o m s t o f o r m [ M ' ( M S 4 ) 2 ] 2 - ( M = M o , W ; M ' = F e , C o , N i , P d , P t , Z n , C d , H g ) 7 . T h e s e c o m p l e x e s , e s p e c i a l l y m i x e d M o / F e / S c l u s t e r s , a r e e n z y m o l o g i c a l l y i n t e r e s t i n g . 8 H e t e r o m e t a l l i c c h a l c o g e n i d e c l u s t e r s c a n a l s o b e g o o d c a n d i d a t e s a s p r e c u r s o r s f o r s y n t h e s i z i n g t e r n a r y c h a l c o g e n i d e 1 s e m i c o n d u c t o r s s u c h a s C u I a n ( Q = S , S e ) w h i c h i s a g o o d p h o t o v o l t a i c m a t e r i a l f o r s o l a r e n e r g y c o n v e r s i o n . 9 F u r t h e r m o r e , t h e r e i s a g r e a t d r i v e f o r n e w m a t e r i a l s a n d t h i s m o t i v a t e s t h e d e v e l o p m e n t o f n e w s y n t h e t i c s t r a t e g i e s . 1 0 C o n v e n t i o n a l s o l u t i o n m e t h o d s a n d h i g h t e m p e r a t u r e s o l i d s t a t e m e t h o d s h a v e l o n g b e e n u s e d a s s y n t h e t i c t e c h n i q u e s i n m e t a l ( p o l y ) c h a l c o g e n i d e c h e m i s t r y . H o w e v e r , t h e f o r m e r i s l i m i t e d t o p r o d u c e m o s t l y d i s c r e t e m o l e c u l a r c o m p l e x e s a n d t h e l a t t e r p r o d u c e s m a i n l y t h e r m o d y n a m i c a l l y s t a b l e m e t a l m o n o - a n d d i — c h a l c o g e n i d e s . W e a r e i n t e r e s t e d i n u n u s u a l s y n t h e t i c a p p r o a c h e s s u c h a s h y d r o ( s o l v o ) t h e r m a l a n d m o l t e n s a l t m e t h o d s t o s y n t h e s i z e n e w m a t e r i a l s i n a c c e s s i b l e b y t h e c o n v e n t i o n a l m e t h o d s . 2 . " C o n v e n t i o n a l " P r e p a r a t i v e M e t h o d s 2 . 1 . T h e " C o n v e n t i o n a l " S o l u t i o n M e t h o d : S y n t h e s i s f r o m S o l u t i o n a t A m b i e n t C o n d i t i o n s C o n v e n t i o n a l l y , m e t a l ( p o l y ) c h a l c o g e n i d e s y n t h e s i s i s a p p r o a c h e d b y u s i n g t h e s t r a t e g i e s o f c o m m o n h o m o g e n e o u s c o o r d i n a t i o n c h e m i s t r y . T h o s e c o n v e n t i o n a l m e t h o d s a r e o f t e n p e r f o r m e d a t a m b i e n t c o n d i t i o n s b u t d i f f e r m o s t l y i n t h e c h o i c e s o f c h a l c o g e n s o u r c e s . 1 1 I n t h e e a r l y d a y s , p o l y c h a l o g e n i d e s w e r e p r o d u c e d i n s i t u b y p a s s i n g H 2 Q ( Q = S , S e , T e ) t h r o u g h a n a q u e o u s N H 3 s o l u t i o n i n t h e p r e s e n c e o f e l e m e n t a l c h a l c o g e n . 1 2 H o w e v e r , t h e t o x i c i t y o f H 2 0 g a s e s a n d t h e p o o r s t a b i l i t y o f H 2 T e ( s t a b i l i t y : H z S > H 2 8 e > H 2 T e ) m a k e t h i s s y n t h e t i c a p p r o a c h i m p r a c t i c a l . I n n o n - a q u e o u s s o l u t i o n s , p o l y c h a l c o g e n i d e s c a n b e p r o d u c e d b y t h e i n s i t u A A F g g e “ “ + + 2 z 8 s e e 5 5 2 2 - - + + 2 + + 2 S e 4 2 - + E M 2 t c P 4 + 4 N N + h 4 P + - - - - - - - - - - > - - - - > > [ ( M e [ ( ( P E h t 4 4 P N ) ) 4 2 A N [ ) g A ( g S F e ( S ( e e S 4 4 e ) ) 5 ] 2 ) 4 ] ( ] n ( I 1 I 1 I 1 ) ( ) ) + . . . e q e e q q 1 . . 1 1 4 4 ( ( a ) a ) 2 3 . 1 5 3 r e a c t i o n s o f a l k a l i m e t a l s a n d e l e m e n t a l c h a l c o g e n s . 1 3 T h i s m e t h o d i s m o s t l y u s e d f o r p o l y s e l e n i d e c o m p o u n d s a n d c a n b e e x t e n d e d t o p o l y t e l l u r i d e s . H o w e v e r , a l k a l i m e t a l s a r e t o o r e a c t i v e a n d i n t h e s e h e t e r o g e n e o u s r e a c t i o n s t h e s t o i c h i o m e t r i e s c a n n o t b e w e l l c o n t r o l l e d . S o f a r , t h e m o s t c o n v e n i e n t c h a l c o g e n s o u r c e s a r e a l k a l i m e t a l p o l y c h a l c o g e n i d e s w h i c h d i s s o l v e i n w a t e r a n d p o l a r o r g a n i c s o l v e n t s s u c h a s D M F , D M S O , a c e t o n i t r i l e , m e t h a n o l , e t h y l e n e d i a m i n e e t c , f o r m i n g h o m o g e n e o u s s o l u t i o n s ” , 1 5 I n t h e s e r e a c t i o n s , s t o i c h i o m e t r i e s c a n b e a d j u s t e d e a s i l y . B i s ( t r i a l k y l s i l y l ) s u l fi d e a n d b i s ( t r i a l k y l s i l y l ) s e l e n i d e a r e l e s s c o m m o n c h a l c o g e n s o u r c e s w h i c h w e r e p r i m i t i v e l y d e s i g n e d t o r e p l a c e H 2 O . 1 6 O t h e r r e a g e n t s s u c h a s S e O 3 2 ' , T e O 3 2 ' , C O S e , C 8 2 a n d C S e 2 a l s o h a v e b e e n o c c a s i o n a l l y u s e d t o s y n t h e s i z e m e t a l c h a l c o g e n i d e c o m p o u n d s . 1 7 C h a l c o g e n e l e m e n t s o x i d i z e e l e c t r o n - r i c h u n s a t u r a t e d m e t a l - m e t a l b o n d s a t a m b i e n t c o n d i t i o n s . 1 8 T h e y a l s o o x i d i z e m e t a l p o w d e r a n d m e t a l c a r b o n y l s w i t h t h e a s s i s t a n c e o f a s p e c i a l s o l v e n t , N - a l k y l i m i d a z o l e ( N - M e l m ) . 1 9 T h e s e c o n v e n t i o n a l s o l u t i o n m e t h o d s h a v e b e e n e x t e n s i v e l y u s e d a n d y i e l d p r i m a r i l y d i s c r e t e m o l e c u l a r m e t a l ( p o l y ) c h a l c o g e n i d e c o m p l e x e s w i t h f e w e x c e p t i o n s w h i c h g i v e e x t e n d e d s t r u c t u r e s . ” L a r g e o r g a n i c c a t i o n s s u c h a s t e t r a a l k y l a m m o n i u m a n d t e t r a l k y l p h o s p h o n i u m a r e o f t e n u s e d t o c r y s t a l l i z e t h e p r o d u c t s . T y p i c a l e x a m p l e s a r e s h o w n b e l o w : 5 9 ( 3 ) ( C ) " 2 ) S e l l ) S e t h ) F i g u r e 1 - 1 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f ( A ) l A g ( S e s ) l n " ' ( B ) l A g ( S e 4 ) l 4 “ ” a n d ( C ) l F e ( S e 4 ) 2 l 2 ' - E q 1 g i v e s o n e o f t h e f e w e x a m p l e s o f f o r m a t i o n o f p o l y m e r i c c o m p l e x e s a n i o n s b y r o o m t e m p e r a t u r e s o l u t i o n s y n t h e s i s . T h e s t r u c t u r e s o f ( I ) ~ ( I I I ) a r e s h o w n i n F i g u r e 1 - 1 . T h e p o l y c h a l c o g e n i d e l i g a n d s o b s e r v e d i n t h e s e p r o d u c t s d o n o t n e c e s s a r i l y h a v e t h e s a m e l e n g t h a s t h e s t a r t i n g p o l y c h a l c o g e n i d e s u s e d . T h e c r y s t a l l i z a t i o n o f m e t a l p o l y c h a l c o g e n i d e c o m p o u n d s i s m o s t l y i n fl u e n c e d b y t h e c h o i c e o f o r g a n i c c a t i o n s . 2 . 2 . " C o n v e n t i o n a l " H i g h T e m p e r a t u r e S o l i d S t a t e S y n t h e s i s T h e m o s t c o m m o n m e t h o d f o r t h e p r e p a r a t i o n o f s o l i d s t a t e m e t a l c h a l c o g e n i d e s i s p e r f o r m e d b y r e a c t i n g t h e c o m p o n e n t m a t e r i a l s i n p r o p e r r a t i o s a t e l e v a t e d t e m p e r a t u r e s ( > 5 0 0 0 C ) . I f a l l t h e c o m p o n e n t s a r e s o l i d s , i t i s c a l l e d t h e ” c e r a m i c m e t h o d " . 2 0 T h e s e t y p i c a l s o l i d s t a t e r e a c t i o n s a r e d i f f e r e n t f r o m " w e t " r e a c t i o n s b e c a u s e t h e y a r e l i m i t e d b y ( 1 ) t h e d i f f u s i b i l i t y o f r e a c t i n g s p e c i e s , ( 2 ) t h e s u r f a c e a r e a o f p a r t i c l e s a n d ( 3 ) t h e r a t e o f n u c l e a t i o n o f t h e p r o d u c t p h a s e . F a c t o r ( 1 ) c a n b e o v e r c o m e b y i n c r e a s i n g t h e r e a c t i o n t e m p e r a t u r e . T h e r e a c t i o n t e m p e r a t u r e h o w e v e r n o t o n l y k i n e t i c a l l y e n h a n c e s t h e r e a c t i o n r a t e , b u t a l s o d e t e r m i n e s t h e r m o d y n a m i c a l l y w h i c h p h a s e w i l l b e f o r m e d . S i n c e t h e t o t a l s u r f a c e a r e a d e p e n d s i n v e r s e l y o n t h e p a r t i c l e s i z e , f a c t o r ( 2 ) c a n b e o v e r c o m e b y u s i n g fi n e p o w d e r f o r t h e r e a c t i o n . P r e s s i n g t h e r e a c t i n g p o w d e r i n t o a p e l l e t a t h i g h t e m p e r a t u r e w i l l a l s o i n c r e a s e t h e c o n t a c t a r e a o f r e a c t a n t s . F a c t o r ( 3 ) i n v o l v e s t h e r e o r i e n t a t i o n a n d r e a r r a n g e m e n t o f t h e b u i l d i n g b l o c k s i n s t a r t i n g m a t e r i a l s a n d p r o d u c t s a n d i s c o n t r o l l e d b y t h e i r s t r u c t u r a l s i m i l a r i t y . C h o i c e o f s t a r t i n g m a t e r i a l s i s c r u c i a l f o r f a c t o r ( 3 ) a n d e l e v a t e d r e a c t i o n t e m p e r a t u r e w i l l a s s i s t t h e r e q u i r e d b o n d - b r e a k i n g a n d b o n d - f o r m i n g p r o c e s s . 6 D e s p i t e t h e l i m i t a t i o n s o f t h e c o n v e n t i o n a l h i g h t e m p e r a t u r e s o l i d s t a t e m e t h o d , i t h a s b e e n w i d e l y u s e d t o s y n t h e s i z e v a r i o u s m e t a l c h a l c o g e n i d e c o m p o u n d s . V a r i o u s s t r u c t u r e t y p e s o f m e t a l c h a l c o g e n i d e s f o r m b a s e d o n ( a ) s t o i c h i o m e t r y ( M Q , M 2 Q 3 , M Q 2 , M Q 3 , M M ' Q z , M M ' Q 3 e t c ) , ( b ) c o o r d i n a t i o n n u m b e r , ( 0 ) r e l a t i v e i o n i c s i z e a n d ( d ) t h e s t r u c t u r e p r e f e r e n c e o f m e t a l c e n t e r s . T h e m o s t c o m m o n b i n a r y m e t a l c h a l c o g e n i d e s s t r u c t u r e t y p e s w i t h t h e c o m p o s i t i o n o f M Q a r e ( 1 ) R o c k s a l t o r N a C l - t y p e ( o c t a h e d r a l m e t a l c e n t e r s ) , ( 2 ) Z i n c b l e n d e ( t e t r a h e d r a l m e t a l c e n t e r s ) , ( 3 ) W u r t z i t e ( t e t r a h e d r a l m e t a l c e n t e r s ) , a n d ( 4 ) H e x a g o n a l N i A s - t y p e ( t r i g o n a l p r i s m a t i c m e t a l c e n t e r s ) . T h e s e f o u r c o m m o n M Q s t r u c t u r e t y p e s a r e s h o w n i n F i g u r e 1 - 2 a n d t h e i r e x a m p l e s a r e l i s t e d i n T a b l e 1 - 1 . O t h e r l e s s c o m m o n M Q s t r u c t u r e t y p e s a r e S n S , P t S a n d H g S w h o s e S t r u c t u r e s d o n o t b e l o n g t o t h e a b o v e s t r u c t u r e t y p e s b e c a u s e o f t h e s p e c i a l s t r u c t u r e p r e f e r e n c e s o f t h e m e t a l c e n t e r s , a s S h o w n i n F i g u r e 1 - 3 . I n S n S , t h e m e t a l c e n t e r s p o s s e s s s t e r e o c h e m i c a l l y a c t i v e 4 5 2 e l e c t r o n p a i r s , w h i l e i n H g S a n d P t S t h e m e t a l c e n t e r s a d o p t l i n e a r a n d s q u a r e - p l a n a r g e o m e t r i e s r e s p e c t i v e l y . A f o r m o f F e S a d o p t s t h e P b O - t y p e s t r u c t u r e a s S h o w n i n F i g u r e 1 — 4 . T h i s s t r u c t u r e t y p e c a n a l s o b e f o u n d i n t h e [ C u T e ] n “ ' l a y e r s o f N a C u T e a n d i n t h e [ M 2 Q 2 ] n " ' l a y e r s o f t h e T h C r z S i z s t r u c t u r e t y p e . M a n y t e r n a r y m e t a l c h a l c o g e n i d e s a r e d e r i v a t i v e s o f t h e a b o v e c o m m o n s t r u c t u r e t y p e s . A t y p i c a l e x a m p l e i s c h a l c o p y r i t e , C u F e S z , w h i c h c o n s i s t s o f o r d e r e d m o n o v a l e n t C u + a n d t r i v a l e n t F e 3 + c a t i o n s a t t h e z i n c s i t e s o f Z n S s t r u c t u r e . T h e r e a r e m a n y m o r e d e r i v a t i v e s t r u c t u r e t y p e s f o r m e d v i a d e f e c t s o r a t o m s u b s t i t u t i o n s . . r u f l u s f o t h g i e w % . s v ) C ° ‘ K 8 ‘ I 5 5 L 1 ’ K D [ 0 8 0 7 0 % 6 t \ h g ) B : ( 5 I 0 e i ( 2 K . 5 w e 8 r s , x - ° 0 0 8 f i 0 0 5 0 I 0 4 I 0 3 0 0 1 0 0 1 0 ° 9 . u t a r e p m e T . m e t s y s x s z K ) B 1 ( 5 “ 2 9 0 I z I s % t 0 I 7 h ) g A i ( e w 0 5 a N ) A ( f 6 o 0 I s 5 m 0 a r 5 7 4 " ’ ° ’ ° 4 g o 0 0 0 0 d 0 6 0 0 o o 0 0 0 0 0 0 0 0 o 8 7 g 5 5 4 3 2 1 l a i d e s a h P : 2 - l e r u g i F 1 0 § 3 5 ‘ . " _ _ ’ s ‘ l m ° o s ‘ é ' fi ' " ' s ‘ B N fl ? 0 n O . , - ’ N 0 O N a N 0 ) a 8 I O O N ” I 0 e d n e l b c n i z ) B ( ) l C a N ( t l ) B ( a s k c o r ) A ( : s e p y t e r u t c u r t s Q M n . S A i N o ) D ( m m o ) c f o s e r u t c u S n Z ( e t i z t r u w ) r t A ) s ( C ( ) S l a t s y n r Z C ( : 3 — l e r u g i F ) C ( . S g H ) C ( d n a S t P ) B ( S ) n B S ( ) A ( f o s e r u t c u r t s l a t s y r C : 4 1 e r u g i F ) A ( . o 1 1 T a b l e 1 - 1 . E x a m p l e s f o r F o u r C o m m o n M Q S t r u c t u r e T y p e s : R o c k s a l t , Z i n c B l e n d e , W u r t z i t e a n d N i A s - T y p e S t r u c t u r e t y p e E x a m p l e R o c k s a l t M g S , C a S , S r S , B a S , M g S e , C a S e , S r S e , B a S e , C a T e , S r T e , B a T e Z i n c B l e n d e B — M n S ( r e d ) , fi - M n S e , B e S , B e S e , B e T e , fi - Z n S , Z n S e , Z n T e , fi - C d S , C d S e , C d T e , L I g S , H g S e , H g T e W u r t z i t e Z n S , Z n S e , Z n T e , C d S , C d S e , M n S , M n S e N i A s — t y p e N i S , N i S e , N i T e , F e S , F e S e , F e T e , C o S , C o S e , C o T e , C r S e , C r T e , M n T e A m o n g M Q 2 s t r u c t u r e s a r e t h e fl u o r i t e ( C a F 2 ) , r u t i l e ( T i O z ) , p y r i t e ( F e S z ) , M 0 8 2 , T i S z ( C d 1 2 ) , S i S z , w h i l e M Q 3 i n c l u d e s Z r S e 3 , T a S e 3 , N b S e 3 s t r u c t u r e t y p e s . P e r o v s k i t e ( A B Q 3 ) a n d s p i n e l ( A B 2 Q 4 ) a r e a l s o s t r u c t u r e t y p e s a d o p t e d b y s o m e c h a l c o g e n i d e s . F l u o r i t e a n d r u t i l e a r e n o t c o m m o n s t r u c t u r e t y p e s f o r c h a l c o g e n i d e s . P e r f e c t c u b i c p e r o v s k i t e i s n o t a s t a b l e p h a s e f o r c h a l c o g e n i d e s w h i c h u s u a l l y f o r m d i s t o r t e d p e r o v s k i t e s w i t h l o w e r s y m m e t r y . T h e s e n o n - M Q s t r u c t u r e t y p e s a r e i l l u s t r a t e d i n F i g u r e 1 - 5 a n d t h e i r e x a m p l e s a r e g i v e n i n T a b l e 1 - 2 . T h e l a r g e v a r i e t y a n d q u a n t i t y o f c o m p o u n d s r e fl e c t s t h e r i c h n e s s a n d s t r u c t u r a l d i v e r s i t y o f s o l i d s t a t e m e t a l c h a l c o g e n i d e c o m p o u n d s . F i g u r e 1 - 5 : 1 2 C r y s t a l s t r u c t u r e s o f ( A ) P b O ( B ) T h C r 2 8 i 2 ( C ) fl u o r i t e ( C a F 2 ) ( D ) M 0 8 2 ( E ) T i 8 2 ( C d I 2 - t y p e ) ( F ) S i 8 2 ( G ) F e S 2 ( H ) T i O 2 ( I ) Z r S e 3 ( J ) N b S e 3 ( K ) T a S e 3 ( L ) p e r o v s k i t e ( A B Q 3 ) a n d ( M ) s t e r e o v i e w s o f s p i n e l ( A B 2 Q 4 ) , A : o c t a n t - s h a d e d c i r c l e s ; B : o c t a n t c i r c l e s ; Q : o p e n c i r c l e s . l 3 7 ‘ ) B ( l 4 G \ \ 0 c . ‘ ( H ) l 6 ( L ) ( M ) 1 9 T a b l e 1 - 2 . E x a m p l e s o f O t h e r C o m m o n C h a l c o g e n i d e S t r u c t u r e T y p e s S t r u c t u r e t y p e E x a m p l e P y r i t e M ( Q 2 ) < - > N a C l F e 8 2 , F e 8 e 2 , F e T e 2 , C u 8 2 , C u 8 e 2 , C u T e 2 , C d 8 2 , C d 8 e 2 , C 0 8 2 , C 0 8 e 2 , C o T e 2 , M n 8 2 , M n S e 2 , M n T e 2 , N i 8 2 , N i 8 e 2 , N i T e 2 , R h 8 2 , R h S e 2 , R h T e 2 , R u 8 2 , R u S e 2 , R u T e 2 M 0 8 2 M 0 8 2 , M 0 8 e 2 , M o T e 2 , W 8 2 , W 8 e 2 , W T e 2 , a — N b 8 e 2 , a - T a 8 2 , a - T a S e 2 C d 1 2 T i 8 2 , T i 8 e 2 , C 0 8 e T e , N b T e 2 , N i S e T e , V 8 2 , V 8 e 2 , N i T e 2 , P r T e 2 , R h T e 2 , T a S 2 , T a 8 e 2 , Z r 8 2 , Z r S e 2 , S n 8 2 F l u o r i t e ( C a F 2 ) L i 2 8 , N a 2 8 , K 2 8 , R b 2 8 ( a n t i - fl u o r i t e ) P e r o v s k i t e C a S i 8 3 , 8 r 8 i 8 3 , B a Z r S 3 , 8 r Z r 8 3 , B a T i 8 3 , 8 r T i 8 3 , ( A B Q 3 ) P b T i 8 3 , P b Z r S 3 S p i n e l C r 3 8 4 , C 0 8 e 4 , H g C r 2 8 4 , H g C r 2 8 e 4 , Z n C r 2 8 e 4 , ( A B 2 Q 4 ) M n C r I n S 4 , N i C r I n S 4 , F e 3 8 4 , N i 3 8 4 , M n g 2 8 4 , M g 8 c 8 4 , M g 8 c 8 e 4 , Z n M n 2 8 4 , Z n a n S e 4 T h C r 2 8 i 2 T l C o 2 8 2 , T 1 F e 2 8 e 2 , T l C u 2 8 e 2 3 . U n u s u a l P r e p a r a t i v e M e t h o d s 3 . 1 . S o l v o t h e r m a l S y n t h e t i c M e t h o d s H y d r o t h e r m a l c o n d i t i o n s ( a q u e o u s m e d i u m o v e r 1 0 0 0 C a n d a u t o g e n o u s p r e s s u r e ) c a n b e f o u n d b e n e a t h t h e s u r f a c e o f t h e e a r t h . A n u m b e r o f m i n e r a l s h a v e f o r m e d u n d e r s u c h c o n d i t i o n s . T h u s , t h e 2 0 h y d r o t h e r m a l s y n t h e t i c m e t h o d h a s b e e n e x t e n s i v e l y s t u d i e d b y g e o l o g i s t s a t t e m p t i n g t o s i m u l a t e t h e r e a c t i o n c o n d i t i o n s i n n a t u r e t h a t g i v e r i s e t o m i n e r a l s . I t h a s b e e n s u c c e s s f u l l y a p p l i e d i n i n d u s t r y f o r t h e g r o w t h o f q u a r t z c r y s t a l s o f l a r g e s i z e a n d e x t r e m e p u r i t y a n d f o r t h e s y n t h e s i s o f z e o l i t e 3 2 1 . G r o w t h o f s i n g l e c r y s t a l s o f r e a s o n a b l e s i z e a n d p u r i t y i s i m p o r t a n t f o r s t r u c t u r e d e t e r m i n a t i o n a n d m e a s u r e m e n t s o f p h y s i c a l p r o p e r t i e s o f s o l i d s . M o s t c h e m i s t s g r o w c r y s t a l s f r o m s o l u t i o n s a t a m b i e n t o r n e a r - a m b i e n t c o n d i t i o n s . U n d e r s u c h c o n d i t i o n s , s o m e m a t e r i a l s d o n o t g r o w b e c a u s e t h e y a r e i n s o l u b l e . F o r e x a m p l e , q u a r t z ( S i O z ) i s n e a r l y i n s o l u b l e i n w a t e r a t a m b i e n t t e m p e r a t u r e . T h e l o w s o l u b i l i t y p r o b l e m c a n b e o v e r c o m e b y h y d r o t h e r m a l c o n d i t i o n s b e c a u s e a t e l e v a t e d t e m p e r a t u r e t h e s o l u b i l i t y o f s o l u t e s i n c r e a s e s . O f t e n a n a d d i t i o n a l a g e n t c a l l e d m i n e r a l i z e r c a n b e a d d e d t o f o r m s o l u b l e c o m p l e x e s w i t h t h e s o l u t e a n d t h i s i n c r e a s e s t h e o v e r a l l s o l u b i l i t y . T h e m i n e r a l i z e r e f f e c t i s i l l u s t r a t e d i n S c h e m e ( 1 ) . T h e c o m p l e x e s f o r m e d w i t h m i n e r a l i z e r s a r e l a b i l e . T h e y e a s i l y d i s s o c i a t e a n d r e d e p o s i t t h e s o l u t e s p e c i e s o n t h e s u r f a c e o f c r y s t a l s . T h i s d i s s o l u t i o n / r e p r e c i p i t a t i o n p r o c e s s o r c h e m i c a l t r a n s p o r t p r o c e s s , e n h a n c e d b y m i n e r a l i z e r s , i s n e c e s s a r y f o r s i n g l e c r y s t a l g r o w t h . T h e h y d r o t h e r m a l t e c h n i q u e h a s b e e n s u c c e s s f u l l y u s e d a s a s y n t h e t i c t o o l 2 2 t o m a k e n e w m a t e r i a l s e s p e c i a l l y w i t h e x t e n d e d m i c r o p o r o u s f r a m e w o r k s w h i c h a r e o f t e n i n a c c e s s i b l e u n d e r a m b i e n t c o n d i t i o n s . 2 1 d i s s o l u t i o n o f s o l u t e r e p r e c i p i t a t i o n o f s o l u t e ( G r o w i n g C r y s t a l ) M l : m i n e r a l i z e r ® : s o l u t e ( S ) M : s o l u b l e c o m p l e x S c h e m e ( 1 ) 2 2 D e S é n a r m o n t w a s t h e fi r s t t o i n t r o d u c e h y d r o t h e r m a l s y n t h e s i s i n t o g e o l o g i c a l s c i e n c e a n d s y n t h e s i z e d n u m e r o u s o x i d e , c a r b o n a t e , fl u o r i d e , s u l f a t e a n d s u l fi d e m i n e r a l s d u r i n g m i d n i n e t e e n t h c e n t u r y . 2 3 T o d a y , t h e h y d r o t h e r m a l t e c h n i q u e i s r o u t i n e l y u s e d f o r t h e s y n t h e s i s o f z e o l i t e s . H a u s h a l t e r e t a l . 2 4 a n d J a c o b s o n e t a l . 2 5 r e p o r t e d g r e a t s u c c e s s i n s y n t h e s i z i n g t r a n s i t i o n m e t a l p h o s p h a t e s a n d o r g a n o p h o s p h o n a t e s r e s p e c t i v e l y , u s i n g h y d r o t h e r m a l t e c h n i q u e s . S o m e o f t h e s e p h o s p h a t e c o m p o u n d s c o n t a i n o p e n f r a m e w o r k s w h i c h p r o v i d e t h e s i z e a n d s h a p e s e l e c t i v i t y o f z e o l i t e s a n d , i n a d d i t i o n , p r o v i d e d - b l o c k t r a n s i t i o n m e t a l s a s p o s s i b l e r e a c t i o n c e n t e r s f o r r e d o x c h e m i s t r y . A p p l i c a t i o n o f h y d r o t h e r m a l t e c h n i q u e s o n m e t a l c h a l c o g e n i d e s 2 6 i s l e s s e x t e n s i v e l y s t u d i e d t h a n o n m e t a l o x i d e s b u t i t i s a n e x c i t i n g fi e l d t o e x p l o r e b e c a u s e m e t a l - c h a l c o g e n b a s e d m i c r o p o r o u s s o l i d s r e s e m b l i n g t h e i r m e t a l - o x i d e s c o u n t e r p a r t s c o u l d l e a d h e t e r o g e n e o u s c a t a l y s i s i n t o a n e w e r a . S c h a f e r 2 7 , K r e b s 2 8 a n d S h e l d r i c k 2 9 h a v e b e e n u s i n g a l k a l i m e t a l c a r b o n a t e s a s m i n e r a l i z e r s t o s y n t h e s i z e a s e r i e s o f g e r m a n i u m a n d t i n c h a l c o g e n i d e s . T h e r e a c t i o n s o l v e n t s u s e d i n t h e s e s y s t e m s w e r e w a t e r a n d i n s o m e c a s e s m e t h a n o l . O n e a d v a n t a g e o f h y d r o t h e r m a l ( s o l v o t h e r m a l ) r e a c t i o n s o v e r c o n v e n t i o n a l s o l i d s t a t e r e a c t i o n s i s t h a t o r g a n i c c a t i o n s c a n b e u s e d a s s t r u c t u r e d i r e c t i n g t e m p l a t e s f o r m i c r o p o r o u s m a t e r i a l s y n t h e s i s s i n c e t h e y a r e s t i l l t h e r m a l l y s t a b l e u n d e r h y d r o t h e r m a l c o n d i t i o n s . E v e n t h o u g h t h e p u r s u i t o f t h e c h a l c o g e n - b a s e d " z e o l i t e s " i s s t i l l a t a v e r y e a r l y s t a g e , s o m e m a i n g r o u p m e t a l c h a l c o g e n i d e s w i t h o p e n f r a m e w o r k s h a v e b e e n m a d e h y d r o t h e r m a l l y b y u s i n g t e t r a a l k y l a m m o n i u m c a t i o n s a s t e m p l a t e a g e n t s . 2 6 a 3 0 O u r r e s e a r c h a p p r o a c h i s t o i n v e s t i g a t e t h e f e a s i b i l i t y o f u s i n g p o l y c h a l c o g e n i d e s a s r e a c t a n t s a n d m i n e r a l i z e r s i n t h e h y d r o ( s o l v o ) t h e r m a l 2 3 r e a c t i o n s t o s y n t h e s i z e n e w m e t a l ( p o l y ) c h a l c o g e n i d e c o m p o u n d s . T h e e x p l o r a t i o n o f t h i s s y n t h e t i c t e c h n i q u e o n M 0 s y s t e m s g a v e a s e r i e s o f m o l e c u l a r a n d p o l y m e r i c M o p o l y c h a l c o g e n i d e c o m p o u n d s w i t h i n t e r e s t i n g s t r u c t u r a l f e a t u r e s . T h e r e s u l t s w i l l b e d e s c r i b e d i n C h a p t e r 2 . T h e i n v e s t i g a t i o n s o f a m a i n g r o u p m e t a l ( 8 n ) a n d o t h e r e a r l y t r a n s i t i o n m e t a l s ( V , N b , W ) w i l l b e d i s c u s s e d i n C h a p t e r s 3 a n d 4 r e s p e c t i v e l y . 3 . 2 . M o l t e n S a l t ( F l u x ) S y n t h e t i c M e t h o d s a t I n t e r m e d i a t e T e m p e r a t u r e S o l v e n t s p l a y a v e r y i m p o r t a n t r o l e i n t h e d e v e l o p m e n t o f c h e m i s t r y . M o s t c h e m i c a l r e a c t i o n s c a n n o t p r o c e e d w i t h o u t u s i n g s o l v e n t s a s r e a c t i o n m e d i a . T h e t e r m , " s o l v e n t " , i s d o m i n a n t l y r e p r e s e n t e d b y w a t e r a n d o t h e r n o n a q u e o u s r o o m t e m p e r a t u r e l i q u i d s s i m p l y d u e t o t h e i r a b u n d a n c e a n d c o n v e n i e n c e o f h a n d l i n g . I n f a c t , l i q u i d p h a s e s i n o t h e r t e m p e r a t u r e r a n g e s , l o w e r o r h i g h e r t h a n a m b i e n t t e m p e r a t u r e , c a n a l s o s e r v e a s r e a c t i o n m e d i a w i t h s p e c i a l f u n c t i o n s . F o r e x a m p l e , l i q u i d a m m o n i a i s a g o o d l o w - t e m p e r a t u r e s o l v e n t t o d i s s o l v e a l k a l i m e t a l s d u e t o t h e e x c e l l e n t a b i l i t y o f a m m o n i a m o l e c u l e s t o s o l v a t e a l k a l i c a t i o n s a n d e l e c t r o n s . M o l t e n s a l t s a r e h i g h t e m p e r a t u r e s o l v e n t s w h i c h f o r m b y m e l t i n g i o n i c s o l i d s s u c h a s m e t a l h a l i d e s , m e t a l c h a l c o g e n i d e s a n d a l k a l i p o l y c h a l c o g e n i d e s . T h e y p o s s e s s c o m p a r a b l e c o m m o n l i q u i d p h a s e p r o p e r t i e s o f c o n v e n t i o n a l r o o m t e m p e r a t u r e s o l v e n t s s u c h a s d i f f u s i b i l t y , v i s c o s i t y , s u r f a c e t e n s i o n , e t c . , a n d t h e r e f o r e c a n a l s o b e u s e d f o r t h e p u r p o s e o f r e a c t i o n m e d i a a n d c r y s t a l g r o w t h . I n s p i t e o f t h e o b v i o u s d i f fi c u l t i e s o f h a n d l i n g , m o l t e n s a l t s h a v e s o m e a d v a n t a g e s n o t o f f e r e d b y c o m m o n r o o m t e m p e r a t u r e s o l v e n t s . 2 4 ( 1 ) W i d e t e m p e r a t u r e r a n g e : T h e a p p l i c a b l e m e l t i n g t e m p e r a t u r e o f i n o r g a n i c m o l t e n s a l t s c a n b e a s l o w a s 8 9 ° C ( m e l t i n g p o i n t o f e u t e c t i c m i x t u r e o f A l C l 3 + N a C l + K C l ) o r a s h i g h a s t h o u s a n d s o f d e g r e e s . ( 2 ) S p e c i a l s o l u b i l i t y : M o l t e n s a l t s c a n d i s s o l v e m i n e r a l s s u c h a s m e t a l o x i d e s w h i c h a r e n o t s o l u b l e i n c o n v e n t i o n a l r o o m t e m p e r a t u r e s o l v e n t s . N o b l e g a s e s h a v e a l s o b e e n f o u n d t o d i s s o l v e i n m o l t e n s a l t s . 3 1 M o s t o r g a n i c c o m p o u n d s d e c o m p o s e a t e l e v a t e d t e m p e r a t u r e s a n d t h e r e f o r e m o l t e n s a l t s c a n n o t b e e m p l o y e d a s r e a c t i o n m e d i a . H o w e v e r , s o m e c h e m i c a l r e a c t i o n s w e r e f o u n d b e t w e e n o r g a n i c m a t e r i a l s d i s s o l v e d i n m o l t e n s a l t s . 3 2 A c e t y l e n e u n d e r g o e s c h l o r i n a t i o n w i t h C 1 2 a n d C C 1 4 i n a N a C l + A l C l 3 + F e C l 3 m e l t a t 2 0 0 ° C , w h e r e t h e m o l t e n s a l t a l s o s e r v e s a s c a t a l y s t . S o m e o r g a n i c c o m p o u n d s c a n " s u r v i v e " i n i n o r g a n i c m e l t s a t l o w e n o u g h t e m p e r a t u r e . A n i n t e r e s t i n g e x a m p l e i s t h e s y n t h e s i s o f ( P h 4 P ) [ I n S e 1 2 ] b y r e a c t i n g I n m e t a l i n m o l t e n ( P h 4 P ) 2 8 e x a t 2 0 0 ° C . ( P h 4 P ) + s u r v i v e s a t t h i s t e m p e r a t u r e a n d s e r v e s a s a c h a r g e - c o m p e n s a t i n g a n d s p a c e - fi l l i n g ( s t r u c t u r e d i r e c t i n g ) c a t i o n f o r t h e o p e n a n i o n i c f r a m e w o r k . 3 3 ( 3 ) H i g h r e a c t i v i t y : S o m e m o l t e n s a l t s a r e r e a c t i v e s o l v e n t s a n d t a k e p a r t i n c h e m i c a l r e a c t i o n s . M o l t e n s a l t s h a v e a w i d e r a n g e o f o x i d i z i n g a b i l i t y a n d d i f f e r e n t a c i d i t i e s . F o r e x a m p l e , N a 2 8 i s v e r y r e d u c i n g a n d b a s i c w h i l e N a 2 8 5 i s m o r e o x i d i z i n g a n d c o n s i d e r a b l y l e s s b a s i c . T h e r e f o r e , d i f f e r e n t c h o i c e s o f m o l t e n s a l t s a s r e a c t i o n m e d i a w i l l l e a d t o d i f f e r e n t r e a c t i o n c h e m i s t r y . ( 4 ) H i g h i o n i c c o n d u c t i v i t y : N u m e r o u s m o l t e n s a l t s p o s s e s s g o o d i o n i c c o n d u c t i v i t y a n d c a n b e u t i l i z e d a s s o l i d e l e c t r o l y t e s f o r e l e c t r o c h e m i c a l r e a c t i o n s . Q x 2 - . . . . . . . . . . > Q x - n 2 - + n Q e q 4 . 2 5 O u r r e s e a r c h g r o u p i s i n t e r e s t e d i n a p p l y i n g a l k a l i p o l y c h a l c o g e n i d e m o l t e n s a l t s f o r s y n t h e s i s o f n e w m e t a l ( p o l y ) c h a l c o g e n i d e c o m p o u n d s . S c h e e l e t a l . h a d n o t i c e d t h e " s o l v e n t " p r o p e r t i e s o f s o d i u m p o l y s u l fi d e m e l t s a n d u s e d t h e m t o g r o w s i n g l e c r y s t a l s o f n u m e r o u s k n o w n b i n a r y a n d t e r n a r y m e t a l s u l fi d e s s u c h a s Z n S , C d S , M n S , P b S , H g S , F e 8 2 , N i 8 2 , C 0 8 2 , M 0 8 2 , N b 8 2 , L a 8 2 - x , N a C r 8 2 , K C r 8 2 , N a l n S 2 , K F e 8 2 , C u 3 V S 3 a t h i g h t e m p e r a t u r e s ( > 7 0 0 0 C ) . 3 4 D u r i n g h i s s t u d i e s , h e w a s a w a r e o f t h e p o t e n t i a l r e a c t i v i t y o f p o l y s u l fi d e s f o r u s e a s r e a c t a n t s . H o w e v e r h e d i d n o t p r o c e e d f u r t h e r t o i n v e s t i g a t e . T h e p o l y c h a l c o g e n i d e , a n ' , a n i o n a s d e p i c t e d i n s c h e m e ( I I ) , h a s n e g a t i v e c h a r g e s f o r m a l l y l o c a t e d a t t h e t w o t e r m i n a l c h a l c o g e n a t o m s . T h e i n t e r n a l a t o m s a r e n e u t r a l a n d c a n s e r v e a s e l e c t r o n a c c e p t o r s o r o x i d i z i n g a g e n t s . R a e S c h e m e ( I I ) A l l c h a l c o g e n a t o m s , e s p e c i a l l y t h e n e g a t i v e l y c h a r g e d t e r m i n a l a t o m s , a r e e f f e c t i v e b i n d i n g s i t e s , w h i c h m a k e p o l y c h a l c o g e n i d e s g o o d m u l t i - d e n t a t e n u c l e o p h i l e s c a p a b l e o f f o r m i n g s t r o n g b o n d s w i t h m e t a l i o n s . H o w e v e r , p o l y c h a l c o g e n i d e l i g a n d s a r e n o t s t a b l e a t h i g h t e m p e r a t u r e s a n d s p l i t i n t o s h o r t e r c h a i n s a n d e l e m e n t a l c h a l c o g e n a s s h o w n i n e q 4 . 2 6 T h e t e m p e r a t u r e a t w h i c h t h i s h a p p e n s d e p e n d s o n x a n d o n Q . A t y p i c a l e x a m p l e i s t h e t r a n s f o r m a t i o n o f T i S ( S 2 ) t o T i 8 2 a n d 8 a b o v e 5 0 0 ° C . 3 5 T o i n c o r p o r a t e p o l y c h a l c o g e n i d e i n t o s o l i d s t a t e s t r u c t u r e s , l o w e r t e m p e r a t u r e r e a c t i o n s h a v e t o b e u s e d A s s h o w n i n t h e p h a s e d i a g r a m s o f N a 2 8 / S 3 6 a n d K 2 8 / S s y s t e m s } 7 t h e m e l t i n g p o i n t s o f N a 2 8 x a n d K 2 8 , . a r e w e l l b e l o w 4 0 0 ° C w h e n x > 3 a n d r e a c h t o 1 4 5 0 C f o r K 2 8 4 . T h i s a l l o w s t h e p o l y s u l fi d e m o l t e n s a l t r e a c t i o n s t o b e p e r f o r m e d i n s u c h a m e d i u m t e m p e r a t u r e r e g i m e . A l i s t o f t h e m e l t i n g p o i n t s o f k n o w n p o l y c h a l c o g e n i d e s i s g i v e n i n T a b l e 1 - 3 T a b l e 1 - 3 . M e l t i n g P o i n t s ( 0 C ) o f S o m e K n o w n A l k a l i M e t a l P o l y c h a l c o g e n i d e s 3 6 ” 3 9 L i 2 8 L i 2 8 2 9 0 0 - 9 7 5 3 6 9 . 5 N a 2 8 N a 2 8 2 N a 2 8 3 N a 2 8 4 N a 2 8 5 1 1 8 0 4 9 0 2 2 8 . 8 2 7 5 2 5 1 . 8 N a 2 8 e N a 2 S e 2 N a 2 S e 3 N a 2 8 e 4 N a 2 8 e 6 > 8 7 5 4 9 5 3 1 3 2 9 0 2 5 8 N a 2 T e N a 2 T e 2 N a 2 T C 6 9 5 3 3 4 8 4 3 6 K 2 8 K 2 8 2 K 2 8 3 K 2 8 4 K 2 8 5 K 2 8 6 8 4 0 4 7 0 2 5 2 1 4 5 2 0 6 1 8 9 K 2 S e K 2 8 e 2 K 2 8 e 3 K 2 S e 4 K 2 S e 5 4 6 0 3 8 0 2 0 5 1 9 0 s z S R b 2 8 2 R b 2 8 3 R b 2 8 4 R b 2 8 5 R b 2 8 6 5 3 0 4 2 0 2 1 3 1 6 0 2 2 5 2 0 1 C 8 2 8 C s 2 8 2 C s 2 8 3 C 8 2 8 4 C 5 2 8 5 C 8 2 8 6 4 6 0 2 1 7 1 6 0 2 1 0 1 8 6 2 7 T h e f o r m a t i o n o f a l k a l i p o l y c h a l c o g e n i d e s c a n b e a c h i e v e d e i t h e r b y r e a c t i n g s t o i c h i o m e t r i c a m o u n t s o f a l k a l i m e t a l a n d c h a l c o g e n i n l i q u i d a m m o n i u m o r b y h e a t i n g s t o i c h i o m e t r i c a m o u n t s o f a l k a l i m o n o c h a l c o g e n i d e a n d c h a l c o g e n a t a p p r o p r i a t e t e m p e r a t u r e s a s i l l u s t r a t e d b y e q 5 . A 2 Q + ( x - 1 ) Q - - - - - - - - - - > A 2 Q x e q 5 - M o s t a l k a l i p o l y c h a l c o g e n i d e s a r e a i r a n d m o i s t u r e s e n s i t i v e a n d n e e d t o b e h a n d l e d u n d e r i n e r t a t m o s p h e r e . T h e y d i s s o l v e i n w a t e r a n d o t h e r n o n a q u e o u s p o l a r s o l v e n t s s u c h a s M e O H , D M F a n d a c e t o n i t r i l e a n d a r e t h e r e f o r e e a s y t o r e m o v e f r o m t h e p r o d u c t s d u r i n g i s o l a t i o n . T h e m e l t i n g p o i n t , a c i d i t y a n d t h e o x i d i z i n g p o w e r o f a l k a l i p o l y c h a l c o g e n i d e s r e l i e s o n t h e c h a i n l e n g t h s w h i c h c a n b e c o n t r o l l e d b y a d j u s t i n g t h e p a r a m e t e r s o f e q . 5 . R e d o x c h e m i s t r y i s i n v o l v e d i n t h e r e a c t i o n s o f m e t a l s w i t h A 2 Q x a s s h o w n i n e q . 6 a n d 7 . M 0 - - - - - - - > M n + + n e ' e q . 6 . Q x 2 - + 2 e ' . . . . . . . . . . - > Q y 2 - + s z - w h e r e y + z = x e q . 7 M e t a l s a r e o x i d i z e d b y p o l y c h a l c o g e n i d e s , s z ' , w h i l e p o l y c h a l c o g e n i d e s a r e r e d u c e d a n d s p l i t i n t o s h o r t e r c h a i n s . T h e r e s u l t i n g M ! 1 + c a t i o n s , a l k a l i m e t a l c a t i o n s a n d v a r i o u s ( p o l y ) c h a l c o g e n i d e s c h a i n s , i n t h e fl u x e s , a s s o c i a t e t o f o r m v a r i o u s s t r u c t u r e s , d e p e n d i n g o n t h e i r r e l a t i v e c o n c e n t r a t i o n s , t h e d i s t r i b u t i o n o f p o l y c h a l c o g e n i d e l e n g t h s , t h e s i z e o f a l k a l i c a t i o n s , t h e n a t u r e o f t h e M M c e n t e r s a n d t h e r e a c t i o n t e m p e r a t u r e s . I n 1 9 8 7 , I b e r s , e t a l . p u b l i s h e d t h e fi r s t u s e o f r e a c t i v e p o l y c h a l c o g e n i d e fl u x e s t o s y n t h e s i z e n e w m e t a l c h a l c o g e n i d e c o m p o u n d s 2 8 a t 3 7 5 - 4 7 0 9 C , K 4 T i 3 8 1 4 4 0 a n d N a 2 T i 2 S e g . 4 1 T h e s e c o m p o u n d s a r e o n e - d i m e n s i o n a l c h a i n s w h i c h a r e c o m p o s e d o f T i 4 + a n d Q 2 2 ' a n d Q 2 ' l i g a n d s . N o l o n g e r p o l y c h a l c o g e n i d e l i g a n d s ( Q x 2 - , x > 2 ) w e r e o b t a i n e d b e c a u s e o f t h e r e l a t i v e l y h i g h t e m p e r a t u r e s u s e d . I n o u r l a b o r a t o r y , Y . P a r k h a s e x t e n s i v e l y e x p l o r e d t h e l o w e r t e m p e r a t u r e r e g i m e ( 2 1 5 ° C - 4 5 0 0 C ) o n l a t e t r a n s i t i o n m e t a l s y s t e m s i n w h i c h a l a r g e n u m b e r o f n e w m e t a l ( p o l y ) c h a l c o g e n i d e s c o n t a i n i n g l o n g e r Q x 2 ' ( x = 2 , 3 , 4 a n d 5 ) w e r e o b t a i n e d . 4 2 A s s h o w n b y t h e r e s u l t s o f h i s w o r k s u m m a r i z e d i n T a b l e 1 - 4 , a l l t h e p o l y c h a l c o g e n i d e c o m p o u n d s w e r e s y n t h e s i z e d i n t h e 2 1 5 ° C ~ 3 1 0 ° C r e g i m e a n d a l l o f t h e m a r e l o w - d i m e n s i o n a l s t r u c t u r e s . T h e s e p o l y c h a l c o g e n i d e s a r e l i m i t e d t o p o l y s u l fi d e s a n d p o l y s e l e n i d e s w h i l e n o p o l y t e l l u r i d e s w e r e f o u n d . I n f a c t , a s s h o w n i n T a b l e 1 — 4 , s u l f u r a n d s e l e n i u m u n d e r g o s i m i l a r c h e m i s t r y w h i l e t e l l u r i u m d e v i a t e s t o f o r m i t s o w n c a t e g o r y . T h e e f f e c t o f r e a c t i o n t e m p e r a t u r e i s d e m o n s t r a t e d b y t h e f o r m a t i o n o f a - K C u S 4 a n d B - K C u S 4 . S e e F i g u r e 1 - 6 . T h e t h e r m o d y n a m i c a l l y m o r e s t a b l e B - K C u 8 4 w a s o b t a i n e d a t s l i g h t l y h i g h e r t e m p e r a t u r e ( 2 5 0 ° C ) t h a n t h e a - p h a s e ( 2 1 5 ° C ) i n K 2 8 5 fl u x . T h e e f f e c t o f a l k a l i m e t a l c a t i o n s i z e c a n b e s h o w n b y c o m p a r i n g t h e s t r u c t u r e s o f K A u S e 2 ( o n e - d i m e n s i o n a l ) a n d N a A u S e 2 ( t w o - d i m e n s i o n a l ) . S e e F i g u r e 1 - 7 . S u b s t i t u t i o n o f s m a l l e r N a + f o r K + i n K A u S e 2 b r i n g s t h e [ A u 8 e 2 ] n n ' c h a i n s c l o s e r a n d d e s t a b i l i z e s t h e a n i o n i c f r a m e w o r k d u e t o c o u l o m b i c r e p u l s i o n . T h i s f o r c e s t h e [ A u S e 2 ] n n - c h a i n s t o r e a r r a n g e t o f o r m t w o - d i m e n s i o n a l f r a m e w o r k s . B e s i d e s t h e e x t e n s i v e l y s t u d i e d a l k a l i m e t a l c o n t a i n i n g t e r n a r y c h a l c o g e n i d e s , t h i s n e w s y n t h e t i c t e c h n i q u e a l s o s h o w s g r e a t p o t e n t i a l f o r p r e p a r i n g n e w s t r u c t u r e s b y i n c o r p o r a t i n g d i f f e r e n t m e t a l s a n d d i f f e r e n t c h a l c o g e n s . T h i s m a k e s i t p o s s i b l e t o fi n e - t u n e t h e p h y s i c a l p r o p e r t i e s . 2 9 ( B ) 3 ( 3 ) 3 1 2 ) q F i g u r e 1 - 6 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f ( A ) a - [ C u 8 4 l ' a n d ( B ) B - [ C u 8 4 l ' . 3 0 F i g u r e l - 7 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f ( A ) K A u S e 2 a n d ( B ) a n a n i o n i c l a y e r o f N a A u S e 2 . 3 1 E n c o u r a g e d b y P a r k ' s s u c c e s s , I c o n t i n u e d t h e e x p l o r a t i o n o f a m a i n g r o u p m e t a l , S n , a n d e x p a n d e d t o m i x e d m e t a l q u a t e r n a r y s y s t e m s u s i n g a l k a l i m e t a l p o l y c h a l c o g e n i d e fl u x e s a t t e m p e r a t u r e s b e l o w 5 0 0 ° C . T h e r e s u l t s w i l l b e i l l u s t r a t e d i n C h a p t e r s 5 ~ 7 . T a b l e 1 - 4 . S u m m a r y o f Y o u n b o n g P a r k ' s W o r k o n M o l t e n S a l t S y n t h e s i s o f L a t e T r a n s i t i o n M e t a l C h a l c o g e n i d e s w i t h D i m e n s i o n a l i t y a n d S y n t h e t i c T e m p e r a t u r e s G i v e n i n t h e P a r e n t h e s e s . a C u a - K C u S 4 ( 1 D , 2 1 5 ° C ) , B - K C u S 4 ( 1 D , 2 5 0 ° C ) , a - K C u S e 4 ( 1 D , 2 5 0 ° C ) , a - C S C u S e 4 ( 1 D , 2 5 0 ° C ) , N a 3 C u 4 8 e 4 ( 1 D , 3 5 0 ° C ) , N a 1 , 9 C u 2 S e 2 - C u 2 O ( 2 D , 3 4 0 ° C ) , K 2 C u 5 T e 5 ( 2 D , 3 5 0 ° C ) , N a C u T e ( 2 D , 4 0 0 ° C ) , K 4 C u 3 T e 1 1 ( 3 D , 3 5 0 ° C ) , C S 3 C u s T e 1 0 ( 2 D , 4 5 0 ° C ) , K C u 4 8 2 T e ( 2 D , 4 5 0 ° C ) , K 3 C u 3 8 4 T e 2 ( 2 D , 4 5 0 ° C ) , C u 1 7 , 6 T e g S 2 6 ( 3 D , 3 5 0 ° C ) A u K A u 8 5 ( 1 D , 2 5 0 ° C ) , K A u S e 5 ( 1 D , 2 5 0 ° C ) , C s A u S e 3 ( l D , 3 5 0 0 C ) , K 3 A u S e 1 3 ( 1 D , 2 5 0 ° C ) , K A u 8 e 2 ( 1 D , 2 9 0 ° C ) , N a 3 A u S e 3 ( 1 D , 3 1 0 ° C ) , N a A u S e 2 ( 2 D , 2 9 0 ° C ) H g K 2 H g 3 S 4 ( 1 D , 2 2 0 ° C ) , K 2 H g 3 S e 4 ( 1 D , 2 5 0 ° C ) , C s z H g 3 S e 4 ( 1 D , 2 5 0 ° C ) , K 2 H g 6 8 7 ( 3 - D , 3 7 0 ° C ) , C s 2 H g 6 8 e 7 ( 3 D , 3 7 5 ° C ) C u / A u A u C u S e 4 ( 3 D , 3 1 0 ° C ) 3 C o m p o u n d s i n b o l d c o n t a i n p o l y c h a l c o g e n i d e s . 1 ) 2 ) 3 ) 3 2 L i s t o f R e f e r e n c e s : ( a ) F i n l a y s o n , N . ; B a n y a i , W . C . ; S e a t o n , C . T . ; S t e g e m a n , G . I . ; O ' N e i l , M . ; C u l l e n , T . J . ; I r o n s i d e , G . N . J . O p t . S o c . A m . 1 9 8 9 , 6 1 3 , 6 7 5 - 6 8 4 . ( b ) W a n g , Y . ; H e r r o n , N . ; M a h l e r , W . ; S u n a , A . J . O p t . S o c . A m . 1 9 8 9 , 6 B , 8 0 8 - 8 1 3 . ( c ) B a l l m a n , A . A . ; B y e r , R . L . ; E i m e r l , D . ; F e i g e l s o n , R . 8 . ; F e l d m a n , B . J . ; G o l d b e r g , L . 8 . ; M e n y u k , N . ; T a n g , C . L . A p p l i e d O p t i c s 1 9 8 7 , E , 2 2 4 - 2 2 7 . ( a ) W h i t t i n g h a m , M . 8 . P r o g . S o l i d S t a t e C h e m 1 9 7 8 , 2 , 4 1 - 9 9 . ( b ) W h i t t i n g h a m , M . 8 . i n S o l i d S t a t e I o n i c D e v i c e s , J u l y 1 8 - 2 3 , 1 9 8 8 , S i n g a p o r e ; C h o w d a r i , B . V . R . , R a d h a k r i s h n a , 8 . , E d s . ; W o r l d S c i e n t i fi c : S i n g a p o r e , 1 9 8 8 ; p p 5 5 - 7 4 . ( c ) B o w d e n , W . L . ; B a m e t t e , L . H . ; D e M u t h , D . L . J . E l e c t r o c h e m . S o c . 1 9 8 9 , 1 3 6 , 1 6 1 4 - 1 6 1 8 . ( d ) M u r p h y , D . W . ; T r u m b o r e , F . A . J . E l e c t r o c h e m . S o c . 1 9 8 7 , 1 3 4 , 2 5 0 6 - 2 5 0 7 . ( e ) W h i t t i n g h a m , M . S . S c i e n c e 1 9 7 6 , 1 2 2 , 1 1 2 5 . ( f ) W h i t t i n g h a m , M . S . J . S o l i d S t a t e C h e m . 1 9 7 9 , 2 _ 9 _ , 3 0 3 - 3 1 0 . ( a ) E c k e r t , H . A n g e w C h e m . I n t . E d . E n g l . A d v . M a t e r . 1 9 8 9 , _ 2 _ 8 _ , 1 7 2 3 - 1 7 3 2 . ( b ) Z a l l e n , R . i n P h y s i c s o f A m o r p h o u s S o l i d s , W i l e y , N e w Y o r k , 1 9 8 3 . ( c ) S t r a n d , D . ; A d l e r , D . P r o c . S P I E I n t . S o c . O p t . E n g . 1 9 8 3 , £ 0 , 2 0 0 . ( d ) Y a m a d a , N . ; O h n o , N . ; A k a h i r a , N . ; N i s h i u c h i , K . ; N a g a t a , K . ; T a k a o , M . P r o c . I n t . S y m p . O p t i c a l M e m o r y , 1 9 8 7 , J p n . J . A p p l . P h y s . 1 9 8 7 , 2 6 , S u p p l . 2 6 4 , p 6 1 . 4 ) 5 ) 6 ) 7 ) 8 ) 3 3 ( a ) S m i t h , R . A . i n S e m i c o n d u c t o r s p p . 4 3 8 , C a m b r i d g e U n i v e r s i t y P r e s s , 1 9 7 8 . ( b ) B a r t l e t t , B . E . e t a l . I n fi a r e d P h y s . 1 9 6 9 , 2 , 3 5 . ( a ) C h i a n e l l i , R . R . ; P e c o r a r o , T . A . ; H a l b e r , T . R . ; P a n , W . - H . ; S t i e f e l , E . I . J . C a t a l . 1 9 8 4 , 8 _ 6 , 2 2 6 - 2 3 0 . ( b ) P e c o r a r o , T . A . ; C h i a n e l l i , R . R . J . C a t a l . 1 9 8 1 , 6 _ 7 , 4 3 0 - 4 4 5 . ( c ) H a r r i s , 8 . ; C h i a n e l l i , R . R . J . C a t a l . 1 9 8 4 , 8 6 , 4 0 0 - 4 1 2 . ( a ) K a n a t z i d i s , M . G . C o m m e n t s I n o r g . C h e m . 1 9 9 0 , 1 0 , 1 6 1 - 1 9 5 . ( b ) A n s a r i , M . A . ; I b e r s , J . A . C o o r d . C h e m . R e v . 1 9 9 0 , 1 0 0 , 2 2 3 - 2 6 6 . ( c ) K o l i s , J . W . C o o r d . C h e m . R e v . 1 9 9 0 , 1 _ 0 6 , 1 9 5 - 2 1 9 . ( c ) H u a n g , S . - P . ; K a n a t z i d i s , M . G . C o o r d . C h e m . R e v . 1 9 9 3 , i n p r e s s . ( a ) M i i l l e r , A . S a r k a r , 8 . A n g e w . C h e m . I n t . E d . E n g l . 1 9 7 7 , 1 6 , 7 0 5 . ( b ) M t ’ i l l e r , A . ; A h l b o m , E . ; H e i n s e n , H . H . Z A n o r g . A l l g . C h e m . 1 9 7 1 , 3 8 6 , 1 0 2 . ( c ) M i i l l e r , A . ; D i e m a n n , E . C h e m . C o m m u n . 1 9 7 1 , 6 5 . ( d ) C a l l a h a n , K . P . ; P i l i e r o , P . A . J . C h e m . S o c . , C h e m . C o m m u n . 1 9 7 9 , 1 3 . ( e ) M i i l l e r , A . ; D i e m a n n , E . ; H e i n s e n , H . H . C h e m . B e r . 1 9 7 1 , Q , 9 7 5 . ( f ) M i i l l e r , A . ; J o s t e s , R . ; F l e m m i n g , V . P o t t h a s t , R . I n o r g . C h i m . A c t a 1 9 8 0 , 1 . _ 3 _ 3 _ , 4 4 . ( g ) S o t o f t e , 1 . A c t a C h i m . S c a n d . 1 9 7 6 , A 3 0 , 1 5 7 . ( h ) P a u l a t - B t ' i s c h e n 1 . ; K r e b s , B . ; M i i l l e r , A . ; K 0 n i g e r - A h l b o r n , E . ; D o r n f e l d , H . ; S c h e l z , H . I n o r g . C h e m . 1 9 7 8 , 1 1 , 1 4 4 0 . ( i ) M i i l l e r , A . ; M o h a n , N . ; B 0 g g e , H . Z N a t u r f o r s c h , 1 9 7 8 , 3 3 b , 9 7 8 . ( a ) C o u c o u v a n i s , D . A c c . C h e m . R e s . 1 9 8 1 , 1 _ 4 , 2 0 1 - 2 0 9 . ( b ) H o l m , R . H . C h e m . S o c . R e v . 1 9 8 1 , 1 6 , 4 5 5 - 4 9 0 . 9 ) 1 0 ) 1 1 ) 1 2 ) 1 3 ) 1 4 ) 1 5 ) 3 4 ( a ) Z w e i b e l , K . ; M i t c h e l l , R . I n C u I n S e 2 a n d C d T e : S c a l e - U p f o r M a n u f a c t u r i n g , 1 9 8 9 ; S E R I P u b l i c a t i o n , p r e p a r e d f o r U S D O E u n d e r C o n t r a c t N o . D E - A C 0 2 - 8 3 C H 1 0 0 9 3 . ( b ) C h a m p n e s s , C . H . P h o s p h o r u s a n d S u l f u r 1 9 8 8 , 3 8 , 3 8 5 - 3 9 7 . S t e i n , 8 . ; K e l l e r , W . ; M a l l o u k , T . E . S c i e n c e 1 9 9 3 , fl , 1 5 5 8 - 1 5 6 4 . H u a n g , S . - P . P h . D . d i s s e r t a t i o n , 1 9 9 3 , M i c h i g a n S t a t e U n i v e r s i t y . M i i l e r , A . ; D i a m a n n , E . ; J o s t e s , R . ; B 0 g g e , H . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 1 , 2 0 , 9 3 4 - 9 5 5 . ( a ) S t r a s d e i t , H . ; K r e b s , B . ; H e n k e l , G . I n o r g . C h i m . A c t a 1 9 8 4 , 8 2 , L 1 1 - L 1 3 . ( b ) B a n d a , R . M . H . ; C u s i c k , J . ; S c u d d e r , M . L . ; C r a i g , D . C . ; D a n c e , 1 . G . P o l y h e d r o n , 1 9 8 9 , 8 , 1 9 9 9 - 2 0 0 0 . ( c ) B a n d a , R . M . H . ; C u s i c k , J . ; S c u d d e r , M . L . ; C r a i g , D . C . ; D a n c e , I . G . P o l y h e d r o n , 1 9 8 9 , 8 , 1 9 9 5 - 1 9 9 8 . ( ( 1 ) C u s i c k , J . ; S c u d d e r , M . L . ; C r a i g , D . C . ; D a n c e , 1 . G . P o l y h e d r o n , 1 9 8 9 , _ 8 _ , 1 1 3 9 - 1 1 4 1 . ( a ) H u a n g , S . - P . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 1 , 3 0 , 1 4 5 5 - 1 4 6 6 . ( b ) B i n n i e , W . P . ; R e d m a n , M . J . ; M a l l i o , W . J . I n o r g . C h e m . 1 9 7 0 , 2 , 1 4 4 9 - 1 4 5 2 . K i m , K . - W . ; K a n a t z i d i s , M . G . m a n u s c r i p t i n p r e p a r a t i o n . 1 6 ) 1 7 ) 1 8 ) 1 9 ) 2 0 ) 2 1 ) 3 5 ( a ) C h a u , C . - N . ; W a r d l e , R . W . M . ; I b e r s , J . A . ; J . A m . C h e m S o c . 1 9 8 8 , 1 m , 3 6 8 2 - 3 6 8 3 . ( b ) S o l a , J . ; D o , Y . ; B e r g , J . M . ; H o l m , R . H . I n o r g . C h e m . 1 9 8 5 , 2 _ 4 , 1 7 0 6 - 1 7 1 3 . ( c ) W a r d l e , R . W . M . ; M a h l e r , C . H . ; C h a n , C . - N . ; I b e r s , J . A . I n o r g . C h e m . 1 9 8 8 , 2 _ 7 , 2 7 9 0 - 2 7 9 5 . ( ( 1 ) M a u é , P . G . ; F e n s k e , D . Z N a t u r f o r s c h 1 9 8 8 , 4 _ 3 _ l _ 3 _ , 1 2 1 3 - 1 2 1 8 . ( e ) F e n s k e , D . ; O h m e r , J . ; H a c h g e n e i , J . ; M e r z w e i l e r , K . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 8 , 2 ' 1 , 1 2 7 7 - 1 2 9 6 . K a n a t z i d i s , M . G . ; H u a n g , S . - P . s u b m i t t e d t o C o o r d . C h e m . R e v . ( a ) G i n s b e r g , A . P . ; L i n d s e l l , W . E . ; S p r i n r l e , C . R . ; W e s t , K . W . ; C o h e n , R . L . I n o r g . C h e m . 1 9 8 3 , 2 , 1 7 8 1 - 1 7 9 0 . ( b ) H e r r m a n n , W . A . ; R o h r m a n n , J . C h e m . B e r . 1 9 8 6 , 1 2 , 1 4 3 7 - 1 4 4 0 . ( a ) R a u c h f u s s , T . A . ; D e v , 8 . ; W i l s o n , 8 . R . I n o r g . C h e m . 1 9 9 2 , 3 1 , 1 5 3 - 1 5 4 . ( b ) D e v , 8 . ; R a m l i , E . ; R a u c h f u s s , T . A . ; S t e i n , C . L . J . A m . C h e m . S o c . 1 9 9 0 , 1 _ 1 2 _ , 6 3 8 5 - 6 3 8 6 . ( a ) R a o , C . N . R . ; G o p a l a k r i s h n a n , J . i n " N e w D i r e c t i o n s i n S o l i d S t a t e C h e m i s t r y " C a m b r i d g e U n i v e r s i t y P r e s s , C a m b r i d g e , 1 9 8 6 . ( b ) W e s t , A . R . i n " S o l i d S t a t e C h e m i s t r y a n d i t s A p p l i c a t i o n s " J o h n W i l e y a n d S o n s , L t d . , N e w Y o r k , 1 9 8 6 . ( c ) H o n i g , J . M . ; R a o , C . N . R . i n " P r e p a r a t i o n a n d C h a r a c t e r i z a t i o n o f M a t e r i a l s " A c a d e m i c P r e s s , N e w Y o r k , 1 9 8 1 . ( a ) L a u d i s e , R . A . C h e m . & E n g . N e w s 1 9 8 7 , _ 6 _ 5 _ , 3 0 - 3 4 . ( b ) B a r r e r , R . M . i n H y d r o t h e r m a l C h e m i s t r y o f Z e o l i t e s ; A c a d e m i c P r e s s : N e w 2 2 ) 2 3 ) 2 4 ) 2 5 ) 2 6 ) 2 7 ) 3 6 Y o r k , 1 9 8 2 . ( c ) B a l l m a n , A . A . ; L a u d i s e , R . A . i n T h e A r t a n d S c i e n c e o f G r o w i n g C r y s t a l s , E d . b y G i l m a n , J . J . , W i l e y , N e w Y o r k , 1 9 6 3 . R a b e n a u , A . A n g e w . C h e m I n t . E d . E n g l . 1 9 8 5 , 2 4 , 1 0 2 6 - 1 0 4 0 . D e S e n a r m o n t , H . A n n . C h i m . P h y s . 1 8 5 1 , 2 2 , 1 2 9 . ( a ) H a u s h a l t e r , R . C . ; M u n d i , L . A . C h e m . M a t e r . 1 9 9 2 , 4 , 3 1 - 4 8 . ( b ) L i i , K . H . ; H a u s h a l t e r , R . C . J . S o l i d S t a t e C h e m . 1 9 8 7 , 6 2 , 3 2 0 . ( c ) M u n d i , L . A . ; H a u s h a l t e r , R . C . I n o r g . C h e m . 1 9 9 0 , 2 9 , 2 8 7 9 . ( d ) H a u s h a l t e r , R . C . ; M u n d i , L . A . ; S t r o h m a i e r , K . G . ; K i n g , J r . , H . E . J . S o l i d S t a t e C h e m . 1 9 9 1 , 9 2 , 1 5 4 . ( a ) H u a n , G . ; J o h n s o n , J . W . ; J a c o b s o n , A . J . ; M e r o l a , J . S . J . S o l i d S t a t e C h e m . 1 9 8 9 , 8 _ 9 _ , 2 2 0 — 2 2 5 . ( b ) H u a n , G . ; J a c o b s o n , A . J . ; J o h n s o n , J . W . ; C o r c o r a n , J r . , E . W . C h e m . M a t e r . 1 9 9 0 , 2 , 9 1 . ( c ) L e o n o w i c z , M . E . ; J o h n s o n , J . W . ; S h a n n o n , H . F . ; B r o d y , J r . , J . F . ; N e w s a m , J . M . J . S o l i d S t a t e C h e m . 1 9 8 5 , 6 6 , 3 7 0 . B e d a r d , R . L . ; W i l s o n , 8 . T . ; V a i l , L . D . ; B e n n e t t , E . M . ; F l a n i g e n , E . M . Z e o l i t e s ; F a c t s , F i g u r e s , F u t u r e ; J a c o b s , P . A . , v a n S a n t e n , R . A . , E d s . ; E l s e v i e r : N e w Y o r k , 1 9 8 9 , p p 3 7 5 - 3 8 7 . ( a ) D i t t m a r , G . ; S c h a f e r , H . A c t a C r y s t a l l o g r . 1 9 7 5 , 1 3 _ 3 _ 1 _ , 2 0 6 0 - 2 0 6 4 . ( b ) E i s e n m a n n , B . ; S c h r o d , H . ; S c h a f e r , H . M a t . R e s . B u l l . 3 7 1 9 8 4 , 1 9 , 2 9 3 — 2 9 8 . ( c ) E i s e n m a n n , B . ; K i e s e l b a c k , E . ; S c h a f e r , H . Z A n o r g . A l l g . C h e m . 1 9 8 4 , 5 1 6 , 4 9 - 5 4 . 2 8 ) ( a ) K r e b s , B . ; P o h l , S . ; S c h i w y , W . Z A n o r g . A l l g . C h e m . 1 9 7 2 , 3 9 2 , 2 4 1 - 2 5 2 . ( b ) K r e b s , B . ; P o h l , 8 . ; S c h i w y , W . Z A n o r g . A l l g . C h e m . 1 9 7 2 , 3 _ 9 _ 3 , 2 4 1 - 2 5 2 . ( c ) K r e b s , B . ; S c h i w y , W . Z A n o r g . A l l g . C h e m . 1 9 7 3 , 5 9 8 , 6 3 - 7 1 . ( d ) S c h i w y , W . ; P o h l , 8 . ; K r e b s , B . Z A n o r g . A l l g . C h e m 1 9 7 3 , 4 6 2 , 7 7 - 8 6 . ( e ) K r e b s , B . ; M l ’ i l l e r , H . Z A n o r g . A l l g . C h e m . 1 9 8 3 , 4 9 6 , 4 7 - 5 7 . 2 9 ) ( a ) S h e l d r i c k . W . 8 . Z . A n o r g . A l l g . C h e m . 1 9 8 8 , 5 6 2 , 2 3 - 3 0 ( b ) S h e l d r i c k , W . 8 . ; H a u s e r , H . - J . Z A n o r g . A l l g . C h e m . 1 9 8 8 , 5 5 _ 7 _ , 9 8 - 1 0 4 ( c ) S h e l d r i c k , W . 8 . ; H a u s e r , H . - J . Z A n o r g . A l l g . C h e m . 1 9 8 8 , _ 5 _ 5 1 , 1 0 5 - 1 1 1 . ( ( 1 ) S h e l d r i c k , W . 8 . ; K a u b , J . Z A n o r g . A l l g . C h e m . 1 9 8 6 , 5 2 5 , 1 7 9 - 1 8 5 . ( e ) S h e l d r i c k , W . 8 . ; B r a u n b e c k , H . G . Z N a t u r f o r s c h 1 9 8 9 3 0 ) ( a ) P a r i s e , J . B . S c i e n c e 1 9 9 1 , 2 5 1 , 2 9 3 - 2 9 4 . ( b ) P a r i s e , J . B . ; K 0 , Y . C h e m . M a t e r . 1 9 9 2 , 4 , 1 4 4 6 - 1 4 5 0 . ( c ) P a r i s e , J . B . J . C h e m . S o c . , C h e m . C o m m u n . 1 9 9 0 , 1 5 5 3 . 3 1 ) G r i m e s , W . R . ; S m i t h , N . V . ; W a t s o n , G . M . J . P h y s . C h e m . 1 9 5 8 , 6 2 , 8 6 2 . 3 2 ) S u n d e r m e y e r , W . A n g e w C h e m . I n t . E d . E n g l . 1 9 6 5 , 4 , 2 2 2 . 3 3 ) D h i n g r a , 8 . ; K a n a t z i d i s , M . G . S c i e n c e 1 9 9 2 , 2 8 5 , 1 9 6 9 - 1 7 7 2 . u . . . ‘ r ‘ d 3 4 ) 3 5 ) 3 6 ) 3 7 ) 3 8 ) 3 9 ) 4 0 ) 3 8 S c h e e l , H . J . J . C r y s t . G r o w t h 1 9 7 4 , 2 4 / 2 5 , 6 6 9 - 6 7 3 . S a n j i n e s , R . ; B e r g e r , H . ; L e v y , F . M a t e r . R e s . B u l l . 1 9 8 8 , 2 2 , 5 4 9 - 5 5 3 . G a r n e r , R . W . ; W h i t e , W . B . J . C r y s t . G r o w t h 1 9 7 0 , 1 , 3 4 3 - 3 4 7 . H e r a l d s e n , H . ; K j e k s h u s , A . ; R o s t , E . ; S t e f f e n s e n , A . A c t a C h e m . S c a n d . 1 9 6 3 , 1 ’ ] _ , 1 2 8 3 - 1 2 9 2 . G m e l i n ' s H a n d b u c h d e r A n o r g a n i s c h e n C h e m i e ; V e r l a g C h e m i e : W e i h e i m / B r g s t r . , F R G , 1 9 6 6 ; S o d i u m , S u p p l . P a r t 3 , p p 1 2 0 2 - 1 2 0 5 a n d r e f e r e n c e t h e r e i n . P e a r s o n , T . G . ; R o b i n s o n , P . L . J . C h e m . S o c . 1 9 3 1 , 5 2 , 1 3 0 4 - 1 3 1 4 . ( a ) T h e S o d i u m - S u l f u r B a t t e r y ; S u d w o r t h , J . L . ; T i l l y , A . R . , E d s . ; C h a p m a n & H a l l : L o n d o n ; N e w Y o r k , 1 9 8 5 . ( b ) F i s c h e r , W . M a t . R e s . S o c . S y m p . P r o c . 1 9 8 9 , 1 _ 3 5 , 5 4 1 - 5 5 1 . ( c ) P o w e r s , R . W . ; K a r a s , B . R . J . E l e c t r o c h e m . S o c . 1 9 8 9 , 1 3 6 , 2 7 8 7 - 2 7 9 3 . ( a ) M a t h e w s o n , G . H . J . A m . C h e m . S o c . 1 9 0 7 , 2 9 , 8 6 7 - 8 8 0 . ( b ) K l e m m , W . ; S o d o m a n n , H . ; L a n g m e s s e r , P . Z A n o r g . A l l g . C h e m , . 1 9 3 9 , 2 4 _ 1 , 2 8 1 - 3 0 4 . ( a ) S u n s h i n e , 8 . A . ; K a n g , D . ; I b e r s , J . A . J . A m . C h e m . S o c . 1 9 8 7 , 1 _ ( 1 9 , 6 2 0 2 - 6 2 0 4 . ( b ) S u n s h i n e , 8 . A . ; K a n g , D . ; I b e r s , J . A . M a t e r . R e s . S o c . S y m p . P r o c . 1 9 8 7 , 9 7 _ , 3 9 1 - 3 9 6 . 4 1 ) 4 2 ) 3 9 K a n g , D . ; I b e r s , J . A . I n o r g . C h e m . 1 9 8 8 , 2 1 , 5 4 9 - 5 5 1 . ( a ) K a n a t z i d i s , M . G . C h e m . M a t e r . 1 9 9 0 , 2 , 3 5 3 - 3 6 3 . ( b ) K a n a t z i d i s , M . G . ; P a r k , Y . J . A m . C h e m . S o c . 1 9 8 9 , Q 1 , 3 7 6 7 - 3 7 6 9 . ( c ) K a n a t z i d i s , M . G . ; P a r k , Y . C h e m . M a t e r . 1 9 9 0 , 2 , 9 9 - 1 0 1 . ( ( 1 ) P a r k , Y . ; K a n a t z i d i s , M . G . A n g e w C h e m . I n t . E d . E n g l . 1 9 9 0 , 3 , 9 1 4 - 9 1 5 . ( e ) P a r k , Y . P h . D . d i s s e r t a t i o n , 1 9 9 2 , M i c h i g a n S t a t e U n i v e r s i t y . C H A P T E R 2 H y d r o t h e r m a l S y n t h e s i s a n d C h a r a c t e r i z a t i o n o f N e w M o l y b d e n u m P o l y s e l e n i d e s 1 . I n t r o d u c t i o n M o l y b d e n u m - s u l f u r c h e m i s t r y h a s b e e n e x t e n s i v e l y s t u d i e d i n t h e l a s t t w o d e c a d e s . I n t e r e s t i n t h i s c h e m i s t r y a r i s e s f r o m t h e i n d u s t r i a l a p p l i c a t i o n o f s u l fi d e - b a s e d c a t a l y s t s f o r t h e h y d r o d e s u l f u r i z a t i o n r e a c t i o n 1 ( H D S ) a s w e l l a s t h e i m p o r t a n c e o f t h e a c t i v e s i t e s o f m o l y b d o e n z y m e s 2 i n b i o l o g i c a l s y s t e m s . T o d a t e , a v a r i e t y o f m o l y b d e n u m p o l y s u l fi d e c o m p l e x e s 3 h a v e b e e n s y n t h e s i z e d a n d s t r u c t u r a l l y c h a r a c t e r i z e d . I n c o n t r a s t , n o c o r r e s p o n d i n g M o / S e c h e m i s t r y h a s b e e n r e p o r t e d e x c e p t f o r [ M o S e 4 ] 2 ' a n d [ M o S e 9 ] 2 ' . 4 C o n v e n t i o n a l l y , s y n t h e s e s o f m o l y b d e n u m c h a l c o g e n i d e s a r e c a r r i e d o u t i n s o l u t i o n a t a m b i e n t t e m p e r a t u r e . H i g h t e m p e r a t u r e s o l i d s t a t e r e a c t i o n s o f m o l y b d e n u m / c h a l c o g e n s y s t e m s g a v e t h e r m o d y n a m i c a l l y s t a b l e b i n a r y p h a s e s 5 a n d t e r n a r y C h e v r e l p h a s e s 6 w h i c h a r e e l e c t r o n i c a l l y a n d c a t a l y t i c a l l y i n t e r e s t i n g . T h e p r o d u c t s o b t a i n e d f r o m h i g h t e m p e r a t u r e r e a c t i o n s a r e o f t e n e x t e n d e d s t r u c t u r e s a n d c o n t a i n m o n o c h a l c o g e n i d e s . O u r i n t e r e s t i n e x p l o r i n g u n u s u a l c o n d i t i o n s f o r t h e s t a b i l i z a t i o n a n d 4 0 4 1 c r y s t a l l i z a t i o n o f n e w m o l y b d e n u m - c h a l c o g e n i d e f r a m e w o r k s l e d u s t o c o n s i d e r h y d r o t h e r m a l t e c h n i q u e s a s a p o s s i b l e a l t e r n a t i v e . H y d r o t h e r m a l a n d m e t h a n o t h e r m a l c o n d i t i o n s w i t h C 0 3 2 : a n d O H ' a s m i n e r a l i z e r s w e r e u s e d t o d i g e s t s u l fi d e s a n d s e l e n i d e s o f m a i n g r o u p m e t a l s t o y i e l d n e w p h a s e s s u c h a s C S 4 S n 5 8 1 2 - 2 H 2 O 7 a , R b S b 3 S e 5 7 b , R b 2 S b 4 S 7 7 C , K A s S e 3 - H 2 O 7 d , R b A s S e 3 - 0 . 5 H 2 O 7 d , C S A S S C 3 ° O . 5 H 2 0 7 d , C S 4 S n 2 8 e 6 7 e a n d K 4 S n 3 S e 3 7 f . F u r t h e r m o r e , B e d a r d e t a l . r e p o r t e d t h a t n o v e l g e r m a n i u m - s u l fi d e n e t w o r k s t r u c t u r e s c o u l d b e s y n t h e s i z e d b y h y d r o t h e r m a l m e t h o d s s i m i l a r t o t h o s e u s e d f o r z e o l i t e s . 8 T h e fi r s t t h r e e c o m p o u n d s a r e e x t e n d e d s t r u c t u r e s a n d a l l o f t h e m c o n t a i n o n l y m o n o c h a l c o g e n i d e s . W e f e l t t h a t i f p o l y c h a l c o g e n i d e l i g a n d s w e r e u s e d i n s t e a d a s m i n e r a l i z e r s a s w e l l a s r e a g e n t s , n e w p o l y c h a l c o g e n i d e p h a s e s w i t h e x t e n d e d f r a m e w o r k s m i g h t b e a c c e s s i b l e . I n t h i s c h a p t e r , w e i l l u s t r a t e t h e h y d r o t h e r m a l s y n t h e s i s o f a s e r i e s o f t e r n a r y m o l y b d e n u m p o l y s e l e n i d e c o m p o u n d s w i t h u n u s u a l s t r u c t u r e s : ( M e 4 N ) 2 M 0 3 S e 1 3 , 9 K 2 M o 3 S e 1 3 , 9 O t - K 3 M 0 9 8 e 4 o - 4 H 2 O , 1 0 0 - K 3 M 0 9 8 e 4 o , K 6 M 0 6 8 e 2 7 - 6 H 2 O , K 2 M o 3 8 e 1 3 , 1 0 K 1 2 M o 1 2 8 e 5 5 , 1 1 K 1 0 M 0 1 2 8 e 5 8 a n d C s 2 M o 2 O 2 S e 6 . A l l o f t h e m e x c e p t [ M 0 2 0 2 8 e 6 ] 2 ' c o n t a i n t r i n u c l e a r [ M 0 3 S e ( 8 e 2 ) 3 ] 4 + c o r e s w h i c h a p p e a r t o b e v e r y s t a b l e u n d e r h y d r o t h e r m a l c o n d i t i o n s . 2 . E x p e r i m e n t a l S e c t i o n 2 . 1 . R e a g e n t s M o w a s p u r c h a s e d f r o m A l p h a P r o d u c t s I n c . M o l y b d e n u m t r i o x i d e ( M 0 0 3 ) , 9 9 . 9 5 % , J o h n s o n , M a t t h e y C a t a l o g C 0 . , W a r d H i l l , M A . S e l e n i u m p o w d e r , - 1 0 0 m e s h , 9 9 . 5 + % ; T e t r a m e t h y l a m m o n i u m c h l o r i d e ( M e 4 N C l ) , 4 2 9 7 % , A l d r i c h C h e m i c a l C o . , I n c . , M i l w a u k e e , W I . C e s i u m m e t a l , 9 9 . 9 8 % p u r i t y , A E S A R , J o h n s o n M a t t h e y , S e a b r o o k , N H . P o t a s s i u m m e t a l , B a k e r a n a l y z e d , J . T . B a k e r , I n c . , P h i l l i p s b u r g , N J 0 8 8 6 5 . S o d i u m m e t a l , a n a l y t i c a l r e a g e n t s , M a l l i n c k r o d t I n c . , P a r i s , K . Y . M e t h a n o l , a n h y d r o u s , r e a g e n t g r a d e ; E t h e r , a n h y d r o u s , r e a g e n t g r a d e , E . M e r c k , D a r m s t a d t , G e r m a n y . 2 . 2 . P h y s i c a l M e a s u r e m e n t s F a r - I R s p e c t r a ( 6 0 0 - 1 0 0 c m - l ) w e r e r e c o r d e d a s C s l p e l l e t s w h i l e M i d - I R s p e c t r a ( 4 0 0 0 - 4 0 0 c m ’ l ) w e r e r e c o r d e d a s K B r p e l l e t s . E a c h s a m p l e w a s g r o u n d w i t h d r y C S ] o r K B r h o m o g e n e o u s l y i n t o a fi n e p o w d e r a n d a p r e s s u r e o f ~ 6 t o n s w a s a p p l i e d t o t h e m i x t u r e t o m a k e a t r a n s l u c e n t p e l l e t . T h e s p e c t r a w e r e r e c o r d e d w i t h a N i c o l e t 7 4 0 F o u r i e r T r a n s f o r m i n f r a r e d s p e c t r o m e t e r i n 4 c m ‘ 1 r e s o l u t i o n . Q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s w a s p e r f o r m e d o n a J E O L 3 5 C F s c a n n i n g e l e c t r o n m i c r o s c o p e ( S E M ) e q u i p p e d w i t h T r a c o r N o r t h e r n T N 5 5 0 0 X - r a y m i c r o a n a l y s i s a t t a c h m e n t . S i n g l e c r y s t a l s o f e a c h s a m p l e w e r e m o u n t e d o n a n a l u m i n u m s t u b w h i c h w a s c o a t e d w i t h c o n d u c t i n g g r a p h i t e p a i n t t o a v o i d c h a r g e a c c u m u l a t i o n o n t h e s a m p l e s u r f a c e u n d e r t h e b o m b a r d m e n t o f t h e e l e c t r o n b e a m d u r i n g m e a s u r e m e n t s . E n e r g y D i s p e r s i v e S p e c t r a ( E D S ) w e r e o b t a i n e d b y u s i n g t h e f o l l o w i n g e x p e r i m e n t a l s e t - u p : X - r a y d e t e c t o r p o s i t i o n : 5 5 m m W o r k i n g d i s t a n c e : 3 9 m m A c c e l e r a t i n g v o l t a g e : 2 0 K V T a k e - o f f a n g l e : 2 7 d e g 4 3 B e a n c u r r e n t : 2 0 0 p i c o a m p s A c c u m u l a t i o n t i m e : 6 0 s e c o n d s W i n d o w : B e A s t a n d a r d l e s s q u a n t i t a t i v e ( S Q ) a n a l y s i s p r o g r a m w a s u s e d t o a n a l y z e t h e X - r a y s p e c t r a o b t a i n e d . T h e s e l e n i u m r a t i o i s a l w a y s u n d e r e s t i m a t e d d u e t o a n a r t i f a c t o f t h e p r o g r a m . A e m p i r i c a l c o r r e c t i o n f a c t o r ( x l . 6 ) w a s a p p l i e d t o t h e M o / S e c o m p o u n d s t o c o r r e c t l y e v a l u a t e t h e s e l e n i u m c o n t e n t . T h e a n a l y s e s r e p o r t e d h e r e a r e b a s e d o n t h e a v e r a g e o f m o r e t h a n t h r e e i n d e p e n d e n t m e a s u r e m e n t s o n d i f f e r e n t c r y s t a l s o f e a c h c o m p o u n d . 7 7 8 c ( I = 1 / 2 , n a t u r a l a b u n d a n c e 7 . 5 8 % ) N M R S p e c t r a w e r e m e a s u r e d o n a V a r i a n V X R - 5 0 0 ( s u p e r c o n d u c t i n g c y o m a g n e t ; 1 1 . 7 4 T ) p u l s e s p e c t r o m e t e r e q u i p p e d w i t h a S u n / 3 6 0 w o r k s t a t i o n . T h e s p e c t r a w e r e r e c o r d e d a t v a r i o u s t e m p e r a t u r e s ( - 5 5 ° C t o 2 0 ° C ) b y u s i n g a b r o a d - b a n d 5 - m m p r o b e ( f r e q u e n c y r a n g e 5 0 - 2 0 2 M H z ) . T h e o b s e r v i n g f r e q u e n c y f o r 7 7 S e w a s 9 5 . 3 5 8 M H z . T h e a c q u i s i t i o n t i m e w a s 6 m s , a n d n o r e l a x a t i o n d e l a y w a s a p p l i e d . T h e n u m b e r o f f r e e i n d u c t i o n d e c a y s a c c u m u l a t e d w e r e 3 6 0 0 0 . A l i n e b r o a d e n i n g o f 8 0 H z w a s a p p l i e d . T h e s p e c t r a w e r e r e f e r e n c e d r e l a t i v e t o M e 2 S e a t 0 : 0 p p m i n D M F . S o l u t i o n s o f P h 2 8 e 2 ( 0 : 4 6 0 p p m ) i n D M F w e r e u s e d a s a n e x t e r n a l r e f e r e n c e . T h e c o n v e n t i o n u s e d i n r e p o r t i n g t h e c h e m i c a l s h i f t s i s t h a t a p o s i t i v e S i g n s i g n i fi e s a s h i f t t o h i g h e r f r e q u e n c y c o m p a r e d t o t h a t o f t h e r e f e r e n c e c o m p o u n d . O p t i c a l d i f f u s e r e fl e c t a n c e s p e c t r a w e r e m e a s u r e d a t r o o m t e m p e r a t u r e w i t h a S h i m a d z u U V - 3 1 0 1 P C d o u b l e b e a m , d o u b l e m o n o c h r o m a t e d s p e c t r o p h o t o m e t e r . T h e s a m p l e w a s g r o u n d i n t o p o w d e r a n d p r e s s e d i n t o a t h i n l a y e r a b o v e B a S O 4 o n a s a m p l e h o l d e r . B a S O 4 p o w d e r w a s u s e d a s r e f e r e n c e . T h e a b s o r p t i o n s p e c t r u m w a s c a l c u l a t e d f r o m t h e r e fl e c t a n c e d a t a b y u s i n g t h e K u b e l k a - M u n k f u n c t i o n 1 2 : 0 t / 8 = ( 1 - 4 4 R ) 2 / 2 R . R i s t h e r e fl e c t a n c e , o r i s t h e a b s o r p t i o n c o e f fi c i e n t a n d S i S t h e s c a t t e r i n g c o e f fi c i e n t w h i c h i s p r a c t i c a l l y w a v e l e n g t h i n d e p e n d e n t w h e n t h e p a r t i c l e s i z e i s l a r g e r t h a n 5 p m . 2 . 3 . S y n t h e s i s S y n t h e s i s : A l l p r e p a r a t i o n s a n d h a n d l i n g w e r e d o n e u n d e r a n i t r o g e n a t m o s p h e r e i n a g l o v e b o x . K 2 8 e 2 , K 2 S e 3 , K 2 S e 4 , C s 2 S e 2 a n d N a 2 S e 2 s t a r t i n g m a t e r i a l s w e r e p r e p a r e d b y u s i n g a m o d i fi e d p r o c e d u r e d e s c r i b e d i n t h e l i t e r a t u r e . 1 3 K 2 8 e 2 : A n a m o u n t o f 1 4 . 7 7 2 g ( 0 . 1 8 7 m o l ) o f s e l e n i u m w a s c o m b i n e d w i t h 7 . 1 3 5 g ( 0 . 1 8 7 m o l ) o f s l i c e d p o t a s s i u m m e t a l u n d e r n i t r o g e n i n a 2 5 0 - m l r o u n d - b o t t o m fl a s k e q u i p p e d w i t h a T e fl o n v a l v e a n d a s t i r r i n g b a r . A p p r o x i m a t e l y 8 0 - m l v o l u m e o f l i q u i d a m m o n i a w a s c o n d e n s e d i n t o t h e fl a s k w h i c h w a s k e p t a t - 7 8 ° C b y a d r y i c e / a c e t o n e b a t h . T h e m i x t u r e w a s s t i r r e d f o r a c o u p l e o f h o u r s u n t i l t h e p o t a s s i u m m e t a l w a s d i s s o l v e d c o m p l e t e l y . W h e n a d a r k b l u e s o l u t i o n f o r m e d , t h e a m m o n i a w a s r e m o v e d s l o w l y b y e v a p o r a t i o n a s t h e c o l d b a t h w a s a l l o w e d t o w a r m t o r o o m t e m p e r a t u r e u n d e r a fl o w o f n i t r o g e n . T h e r e s u l t i n g a i r - s e n s i t i v e r e d d i s h b r o w n s o l i d w a s d r i e d i n v a c u u m o v e r n i g h t , fl a m e - d r i e d , g r o u n d t o fi n e p o w d e r a n d k e p t i n a d r y n i t r o g e n g l o v e b o x . Y i e l d : 9 8 % . K 2 8 e 3 , K 2 8 e 4 , N a 2 8 e 2 : T h e p r e p a r a t i o n p r o c e d u r e o f K 2 S e 3 , K 2 S e 4 , N a 2 8 e 2 i s t h e s a m e a s t h a t o f K 2 8 e 2 . 4 5 C s z S e z . A n a m o u n t o f 5 . 2 5 8 g ( 0 . 0 4 0 m o l ) o f c e s i u m m e t a l w a s p l a c e d i n a 2 5 0 - m l r o u n d - b o t t o m fl a s k e q u i p p e d w i t h a T e fl o n v a l v e i n a N 2 g l o v e b o x . B e c a u s e c e s i u m m e t a l w i l l r e a c t w i t h T e fl o n a n d s u l f u r v i g o r o u s l y u p o n c o n t a c t i n t h e s o l i d s t a t e ( c a u t i o n l ) , a r o u n d a 4 0 - m l v o l u m e o f l i q u i d a m m o n i a w a s fi r s t c o n d e n s e d i n t o t h e fl a s k k e p t a t - 7 8 ° C b y a d r y i c e / a c e t o n e b a t h t o d i s s o l v e t h e c e s i u m m e t a l . A s a m p l e o f 3 . 1 5 8 g ( 0 . 0 4 0 m o l ) e l e m e n t a l s e l e n i u m a n d a T e fl o n s t i r r i n g b a r w e r e t h e n a d d e d t o t h e d a r k b l u e s o l u t i o n . A p p r o x i m a t e l y a n a d d i t i o n a l 4 0 m l o f l i q u i d a m m o n i a w a s c o n d e n s e d i n t o t h e fl a s k . T h e m i x t u r e w a s s t i r r e d f o r a b o u t 1 h o u r . T h e s u b s e q u e n t p r o c e d u r e i s t h e s a m e a s t h a t f o r K 2 8 e 2 . T h e r e s u l t i n g a i r - s e n s i t i v e r e d d i s h b r o w n f i n e p o w d e r w a s k e p t i n a d r y n i t r o g e n g l o v e b o x . ( M e 4 N ) 2 M 0 3 S e 1 3 ( I ) : A m i x t u r e o f M 0 0 3 ( 0 . 0 7 2 g , 0 . 5 0 m m o l ) , N a 2 8 e 2 ( 0 . 3 0 6 g , 1 . 5 m m o l ) a n d M e 4 N C l ( 0 . 1 0 9 g , 1 . 0 m m o l ) w a s l o a d e d i n t o a n ~ 5 m l h e a v y - w a l l P y r e x t u b e i n w h i c h 0 . 3 m l o f d e g a s s e d w a t e r w a s a d d e d . T h e t u b e w a s f r o z e n i n l i q u i d n i t r o g e n a n d s e a l e d u n d e r a v a c u u m o f ~ 1 0 ' 3 t o r r . T h e r e a c t i o n a m p o u l e w a s m a i n t a i n e d a t 1 3 5 ° C u n d e r a u t o g e n o u s p r e s s u r e f o r 3 d a y s a n d t h e n c o o l e d t o r o o m t e m p e r a t u r e . T h e g r o w t h o f n e e d l e l i k e c r y s t a l s w a s o b s e r v e d u n d e r 1 3 5 ° C . T h e p r o d u c t w a s i s o l a t e d w i t h D M F a n d w a t e r t o r e m o v e e x c e s s S e x z ' a n d N a C l a n d d r i e d w i t h a c e t o n e a n d e t h e r . D a r k r e d n e e d l e l i k e c r y s t a l s w e r e o b t a i n e d i n ~ 6 8 % y i e l d ( b a s e d o n M 0 0 3 ) . S e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s p e r f o r m e d o n S E M / E D S i n d i c a t e d M 0 1 , o S e 3 , 7 . A m i d - I R s p e c t r u m i n d i c a t e d t h e p r e s e n c e o f M e 4 N + . T h e p r o d u c t w a s f o u n d i n s o l u b l e i n H 2 0 , D M F , D M S O a n d o t h e r c o m m o n s o l v e n t s , t h e r e f o r e n o s o l u t i o n U V - V i s a n d 7 7 S e N M R S p e c t r a o f t h i s c o m p o u n d w e r e m e a s u r e d . 4 6 K 2 M 0 3 S e 1 3 ( I I ) : A m i x t u r e o f M 0 0 3 ( 0 . 3 6 g , 2 . 5 m m o l ) a n d K 2 8 e 2 ( 1 . 1 8 g , 5 . 0 m m o l ) w a s l o a d e d i n t o a 2 1 - m l a u t o c l a v e t o w h i c h 1 . 5 m l o f d e g a s s e d w a t e r w a s a d d e d . T h e a u t o c l a v e w a s m a i n t a i n e d a t 1 3 5 ° C u n d e r a u t o g e n o u s p r e s s u r e f o r ~ 2 7 d a y s a n d t h e n c o o l e d t o r o o m t e m p e r a t u r e . T h e p r o d u c t w a s i s o l a t e d w i t h m e t h a n o l a n d d r i e d w i t h e t h e r . Y i e l d : 6 1 % ( b a s e d o n M 0 0 3 ) . T h e n e e d l e l i k e c r y s t a l s a r e s t a b l e i n a i r . T h e y w e r e p u t i n H 2 0 a n d D M F f o r o n e m o n t h a n d f o u n d t o b e i n s o l u b l e i n b o t h s o l v e n t s a n d o t h e r c o m m o n o r g a n i c s o l v e n t s l i k e D M S O , a c e t o n i t r i l e , e t h y l e n e d i a m i n e e t c . S e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s p e r f o r m e d o n S E M / E D S i n d i c a t e d K 0 , 3 7 M 0 1 , 0 8 e 3 , 3 . a - K 3 M 0 9 8 e 4 0 - 4 H 2 0 ( I I I ) : T h e r e a c t i o n o f M 0 0 3 ( 0 . 0 7 2 g , 0 . 5 m m o l ) , K 2 8 e 2 ( 0 . 2 3 6 g , 1 . 0 m m o l ) a n d 0 . 2 m l H 2 O i n a n ~ 5 - m l h e a v y - w a l l P y r e x t u b e a t 1 3 5 0 C f o r 3 d a y s y i e l d e d b l a c k c h u n k y c r y s t a l s o f o r - K 8 M o 9 8 e 4 0 - 4 H 2 0 ( I I I ) . T h e p r o d u c t s w e r e i s o l a t e d b y fi l t r a t i o n a n d w a s h e d w i t h m e t h a n o l i n ~ 2 0 % y i e l d ( b a s e d o n M 0 0 3 ) . T h e b l a c k c r y s t a l s d e g r a d e i n a i r a n d d i s s o l v e s l o w l y i n w a t e r , D M F a n d D M S O . S E M / E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d K o , 7 7 M 0 1 _ o S e 4 _ 4 . B - K 3 M 0 9 8 e 4 o ( I V ) : T h e r e a c t i o n o f M 0 0 3 ( 0 . 2 8 8 g , 2 . 0 m o l ) , K 2 8 e 2 ( 2 . 8 3 2 g , 1 2 . 0 m o l ) , E t 4 N C l ( 1 . 3 2 4 g , 8 . 0 m o l ) a n d 2 . 0 - m l d e g a s s e d H 2 O i n a 2 1 m l a u t o c l a v e a t 1 3 5 ° C f o r 8 0 h o u r s a f f o r d e d b l a c k r e c t a n g u l a r c r y s t a l s o f B - K 3 M 0 9 8 e 4 o ( I V ) i n ~ 1 0 % y i e l d ( b a s e d o n M 0 0 3 ) . T h e p r o d u c t w a s w a s h e d w i t h M e O H i n a d r y n i t r o g e n g l o v e b o x . T h e c r y s t a l s a r e s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r , D M F , D M S O , a c e t o n i t r i l e a n d 4 7 o t h e r c o m m o n o r g a n i c s o l v e n t s . S E M / E D S i n d i c a t e d K 0 , 9 M 0 1 , ( ) S e 4 , 3 . M i d - I R s p e c t r u m i n d i c a t e d t h e c r y s t a l s d o n o t c o n t a i n E t 4 N + . K 6 M 0 6 8 e 2 7 - 6 H 2 0 ( V ) : T h e r e a c t i o n o f M 0 0 3 ( 0 . 0 7 2 g , 0 . 5 0 m m o l ) , K 2 8 e 2 ( 0 . 4 7 2 g , 2 . 0 m m o l ) a n d 0 . 3 - m l H 2 O i n a n ~ 5 m l h e a v y - w a l l P y r e x t u b e a t 1 3 5 ° C f o r 3 d a y s a f f o r d e d b l a c k c h u n k y c r y s t a l s o f K 6 M 0 6 8 e 2 7 - 6 H 2 O ( V ) i n ~ 3 4 % y i e l d ( b a s e d o n M 0 0 3 ) . T h e p r o d u c t w a s i s o l a t e d w i t h m e t h a n o l t o r e m o v e e x c e s s S e x z ' a n d d r i e d w i t h e t h e r . T h e b l a c k c r y s t a l s d e g r a d e s l o w l y i n a i r a n d a r e v e r y s o l u b l e i n D M F a n d w a t e r f o r m i n g r e d d i s h b r o w n s o l u t i o n s w h i c h a r e u n s t a b l e i n a i r a n d b e c o m e c l o u d y i n s e v e r a l m i n u t e s . S E M / E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d K 1 , 0 M o 2 , 0 8 e 4 , 3 . K 2 M 0 3 S e 1 s ( V I ) : T h e r e a c t i o n o f M o ( 0 . 0 4 8 g , 0 . 5 m m o l ) , K 2 S e 4 ( 0 . 2 9 6 g , 0 . 7 5 m m o l ) a n d 0 . 2 - m l d e g a s s e d H 2 0 i n a n ~ 5 - m l h e a v y - w a l l P y r e x t u b e a t 1 3 5 ° C f o r 3 d a y s a f f o r d e d p l a t e - l i k e c r y s t a l s o f K 2 M o 3 S e 1 3 ( V I ) i n ~ 2 0 % y i e l d ( b a s e d o n M 0 ) . T h e p r o d u c t w a s i s o l a t e d b y fi l t r a t i o n a n d w a s h e d w i t h m e t h a n o l . T h e c r y s t a l s a r e s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r , D M F , D M S O , a c e t o n i t r i l e a n d o t h e r c o m m o n o r g a n i c s o l v e n t s . S E M / E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d K 0 , 3 M o 1 , 0 8 e 5 , 7 . K 1 2 M 0 1 2 8 e 5 6 ( V I I ) : T h e r e a c t i o n o f M o ( 0 . 1 4 4 g , 1 . 5 m m o l ) , M 0 0 3 ( 0 . 1 4 4 g , 1 . 0 m m o l ) , K 2 S e 3 ( 0 . 9 4 5 g , 3 . 0 m m o l ) a n d 0 . 3 - m l d e g a s s e d H 2 O i n a n ~ 5 - m l h e a v y - w a l l P y r e x t u b e a t 1 3 5 ° C f o r 3 d a y s a f f o r d e d b l a c k c h u n k y c r y s t a l s o f K 1 2 M o 1 2 8 e 5 6 ( V I I ) i n ~ 1 0 . 5 % y i e l d ( b a s e d o n M 0 ) . T h e p r o d u c t w a s i s o l a t e d w i t h m e t h a n o l t o r e m o v e e x c e s s S e x z ' a n d d r i e d w i t h e t h e r . A v e r y s m a l l a m o u n t o f u n r e a c t e d M o m e t a l p o w d e r w a s 4 8 o b t a i n e d a s c o n t a m i n a t i o n . T h e c r y s t a l s a r e s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . S E M / E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d K 1 , 0 M o 2 , 0 8 e 4 _ 8 , K 1 0 M 0 1 2 8 e 5 3 ( V I I I ) : T h e r e a c t i o n o f M o ( 0 . 0 4 8 g , 0 . 5 0 m m o l ) a n d K 2 S e 4 ( 0 . 2 3 6 g , 1 . 0 0 m m o l ) 0 . 3 - m l d e g a s s e d w a t e r i n a n ~ 5 m l h e a v y - w a l l P y r e x t u b e a t 1 3 5 ° C f o r 3 d a y s a f f o r d e d b l a c k n e e d l e - l i k e c r y s t a l s c o n t a m i n a t e d w i t h u n r e a c t e d M o m e t a l i n ~ 1 5 % y i e l d ( b a s e d o n M 0 ) . T h e p r o d u c t w a s i s o l a t e d w i t h m e t h a n o l t o r e m o v e e x c e s s S e x z - a n d d r i e d w i t h e t h e r . T h e c r y s t a l s a r e s t a b l e i n a i r a n d a r e i n s o l u b l e w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . S E M / E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d K 1 . 0 M 0 1 . o S e 4 . 8 . C 8 2 M 0 2 0 2 8 e 6 ( I X ) : T h e r e a c t i o n o f M 0 0 3 ( 0 . 0 7 2 g , 0 . 5 0 m m o l ) , C s 2 S e 2 ( 0 . 3 1 8 g , 7 . 5 m m o l ) a n d 0 . 3 - m l o f d e g a s s e d w a t e r i n a n ~ 5 m l h e a v y - w a l l P y r e x t u b e a t 1 3 5 ° C f o r 3 6 h o u r s a f f o r d e d b l a c k c h u n k y c r y s t a l s i n l o w y i e l d ( l e s s t h e 5 % ) . T h e p r o d u c t w a s i s o l a t e d w i t h M e O H a n d d r i e d w i t h e t h e r . T h e c r y s t a l s d e g r a d e s l o w l y i n a i r a n d a r e s o l u b l e i n w a t e r a n d D M F . S E M / E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d C 8 1 . 5 M 0 1 . 0 8 6 2 . 5 . 2 . 4 . X - R a y C r y s t a l l o g r a p h y X - r a y d i f f r a c t i o n ( X R D ) p o w d e r p a t t e r n s w e r e u s e d f o r t h e p u r p o s e o f p h a s e c h a r a c t e r i z a t i o n a n d i d e n t i fi c a t i o n . T h e X R D p a t t e r n s w e r e r e c o r d e d w i t h a P h i l l i p s X R D - 3 0 0 0 c o n t r o l l e d b y P D P 1 1 c o m p u t e r a n d o p e r a t i n g a t 4 0 k V / 3 5 m A . G r a p h i t e - m o n o c h r o m a t e d C u r a d i a t i o n w a s 4 9 u s e d . I n o r d e r t o e n s u r e t h e h o m o g e n e i t y , d - s p a c i n g s o b t a i n e d f r o m X R D p o w d e r m e a s u r e m e n t s o f t h e p r o d u c t s w e r e c o m p a r e d , a n d f o u n d t o b e i d e n t i c a l , w i t h t h o s e c a l c u l a t e d f r o m u s i n g t h e a t o m i c c o o r d i n a t e s d e t e r m i n e d f r o m t h e S i n g l e c r y s t a l d a t a . T h e c a l c u l a t i o n o f d - s p a c i n g s w a s p e r f o r m e d b y u s i n g t h e P O W D 1 0 1 4 p r o g r a m . T h e c o m p a r i s o n t a b l e s b e t w e e n t h e c a l c u l a t e d a n d o b s e r v e d d - s p a c i n g s f o r t h e s e c o m p o u n d s a r e s h o w n i n T a b l e s 2 - 1 ~ 2 - 7 . T h e c r y s t a l l o g r a p h i c d a t a f o r a - K 3 M 0 9 8 e 4 0 - 4 H 2 O ( I I I ) a n d K 2 M o 3 S e 1 3 ( V I ) w e r e c o l l e c t e d o n a N i c o l e t P 3 / F d i f f r a c t o m e t e r w i t h g r a p h i t e m o n o c h r o m a t e d M o K a t r a d i a t i o n u s i n g a n 0 0 - 2 0 s c a n m o d e . T h e d a t a f o r ( M e 4 N ) 2 M o 3 S e 1 3 ( I ) , K 2 M o 3 8 e 1 3 ( I I ) , K 6 M 0 6 8 e 2 7 ~ 6 H 2 O ( V ) a n d K 1 2 M o 1 2 8 e 5 3 ( V I I I ) w e r e c o l l e c t e d o n a R i g a k u A F C 6 S d i f f r a t o m e t e r w i t h g r a p h i t e m o n o c h r o m a t e d M o K 0 : r a d i a t i o n u s i n g a n 0 0 - 2 0 s c a n m o d e f o r ( I ) , ( I I ) a n d t o s c a n m o d e f o r ( V ) , ( V I I I ) . T h e d a t a f o r fi - K 3 M 0 9 8 e 4 0 ( I V ) a n d K 1 2 M o 1 2 8 e 5 6 ( V I I ) w e r e c o l l e c t e d o n a R i g a k u A F C 6 R w i t h a g r a p h i t e m o n o c h r o m a t e d M o K a r a d i a t i o n a n d a r o t a t i n g a n o d e g e n e r a t o r u s i n g a n w - 2 0 s c a n m o d e . T h e d a t a f o r C s 2 M o n 2 8 e 6 ( I X ) w e r e c o l l e c t e d o n a N i c o l e t P 3 d i f f r a c t o m e t e r w i t h g r a p h i t e m o n o c h r o m a t e d C u K a t r a d i a t i o n a n d r o t a t i n g a n o d e t u b e u s i n g a n 0 3 - 2 0 s c a n m o d e . T h e c r y s t a l s o f ( I ) ~ ( V I I I ) w e r e m o u n t e d o n t h e t i p o f g l a s s fi b e r s . T h e c r y s t a l o f ( I X ) w a s s e a l e d i n a c a p i l l a r y . A c c u r a t e u n i t c e l l p a r a m e t e r s f o r a l l c o m p o u n d s w e r e o b t a i n e d f r o m t h e l e a s t - s q u a r e s r e fi n e m e n t o f t h e 2 0 , 0 . ) , x , ( I ) v a l u e s o f 2 0 — 2 5 m a c h i n e - c e n t e r e d r e fl e c t i o n s . T h e i n t e n s i t i e s o f t h r e e c h e c k r e fl e c t i o n s w e r e m o n i t o r e d e v e r y 1 0 0 ( N i c o l e t ) o r 1 5 0 ( R i g a k u ) r e fl e c t i o n s t o d e t e c t p o s s i b l e d e c a y d u r i n g t h e d a t a c o l l e c t i o n p e r i o d . A n e m p i r i c a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d t o a l l d a t a b a s e d o n 1 p s c a n s f o r t h r e e r e fl e c t i o n s . A n a d d i t i o n a l a b s o r p t i o n c o r r e c t i o n f o l l o w i n g t h e D I F A B S 1 5 3 3 1 m l ' . L - ' ' ' . ‘ ‘ ‘ f , r , ~ . , | - I . . - . - I - " I t ' d ” : 2 ‘ 1 “ “ . I n c . I 5 0 p r o c e d u r e w a s a p p l i e d t o i s o t r o p i c a l l y r e fi n e d d a t a . S t r u c t u r e s o f ( I I I ) , ( V I ) a n d ( I X ) w e r e r e fi n e d b y f u l l - m a t r i x l e a s t - s q u a r e s t e c h n i q u e s w i t h t h e S D P 1 6 p a c k a g e o f c r y s t a l l o g r a p h i c p r o g r a m s r u n n i n g o n a V A X s t a t i o n 2 0 0 0 c o m p u t e r . T h e s t r u c t u r e s w e r e s o l v e d w i t h d i r e c t m e t h o d s b y u s i n g S H E L X S - 8 6 1 7 a n d w e r e r e fi n e d n o r m a l l y . T h e s t r u c t u r e s ( 1 ) , ( I I ) , ( I V ) , ( V ) , ( V I I ) a n d ( V I I I ) w e r e r e fi n e d w i t h t h e T E X S A N 1 8 p a c k a g e o f c r y s t a l l o g r a p h i c p r o g r a m s r u n n i n g o n a V A X s t a t i o n 3 1 0 0 / 7 6 c o m p u t e r . T h e e n a n t i o m o r p h s o f ( I ) , ( I I ) , ( V I ) a n d ( V I I ) w e r e c h e c k e d b y r e fi n i n g t h e i r ( - x , - y , - z ) c o o r d i n a t e s a n d n o S i g n i fi c a n t i m p r o v e m e n t o f R / R w v a l u e s a n d s t a n d a r d d e v i a t i o n s o f b o n d d i s t a n c e s a n d b o n d a n g l e s w a s o b s e r v e d . ( I V ) d e c o m p o s e d d u r i n g d a t a c o l l e c t i o n w i t h 2 0 b e t w e e n 3 0 - 4 0 0 . T h e s t r u c t u r e o f ( I V ) w a s r e fi n e d b y u s i n g t h e i n c o m p l e t e d a t a s e t . T h e s t r u c t u r e s o f ( V I I I ) a n d ( I X ) w e r e s o l v e d b u t c a n n o t b e r e fi n e d t o r e a s o n a b l e R v a l u e s d u e t o a n i n s u f fi c i e n t n u m b e r o f o b s e r v e d r e fl e c t i o n s a n d a s e r i o u s a b s o r p t i o n p r o b l e m o f C u K a r a d i a t i o n , r e s p e c t i v e l y . T h e d a t a c o l l e c t i o n p a r a m e t e r s a n d d e t a i l s o f t h e s t r u c t u r e s o l u t i o n a n d r e fi n e m e n t a r e g i v e n i n T a b l e 2 - 8 . T h e f i n a l a t o m i c c o o r d i n a t e s , t e m p e r a t u r e f a c t o r s a n d t h e i r e s t i m a t e d s t a n d a r d d e v i a t i o n s f o r ( I ) ~ ( V I I ) a r e g i v e n i n T a b l e s 2 - 9 ~ 2 - 1 5 . 5 1 T a b l e 2 - 1 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r ( M e 4 N ) 2 M 0 3 8 6 1 3 h k 1 d c a l c . ( A ) d o b s . ( A ) 9 5 1 0 1 3 3 . 1 0 0 1 0 . 0 2 6 8 1 0 . 2 4 0 9 1 0 0 . 0 0 0 0 1 6 . 1 1 0 0 6 . 0 9 6 5 1 7 . 9 8 1 1 0 5 . 7 8 9 0 5 . 8 7 1 3 2 5 . 6 4 1 0 1 5 . 2 1 7 6 5 . 2 4 1 3 3 1 . 7 3 1 1 1 4 . 2 0 2 3 4 . 2 2 1 5 1 0 . 0 1 3 0 0 3 . 3 4 2 3 3 . 3 7 3 3 1 7 . 8 7 2 1 1 3 . 2 2 0 6 3 . 2 3 5 6 4 3 . 3 2 3 0 1 2 . 9 3 2 2 2 . 9 1 7 1 4 2 . 4 9 2 2 0 2 . 8 9 4 5 1 1 2 2 . 7 0 1 9 2 . 7 0 0 4 1 4 . 4 7 2 2 1 2 . 6 1 5 8 2 . 6 2 5 1 2 5 . 1 4 3 1 1 2 . 5 3 1 1 2 . 5 4 0 4 3 2 . 4 3 4 0 1 2 . 3 1 9 1 2 . 3 1 0 9 2 4 . 3 6 3 2 0 2 . 3 0 0 3 4 1 0 2 . 1 8 8 0 2 . 1 9 0 4 5 0 . 2 5 3 2 1 2 . 1 5 2 8 2 . 1 6 5 3 5 0 . 2 5 1 0 3 1 . 9 9 5 9 2 . 0 0 5 8 1 9 . 4 4 1 1 3 1 . 9 2 1 2 5 0 1 1 . 9 0 5 4 1 . 9 0 6 3 1 2 . 1 2 3 3 1 1 . 8 4 0 1 1 . 8 3 7 9 2 2 . 5 4 3 2 2 1 . 8 3 7 6 3 0 3 1 . 7 3 9 2 1 . 7 3 3 7 4 . 1 0 5 1 1 1 . 7 2 7 4 6 0 0 1 . 6 7 1 1 1 . 6 7 9 8 1 3 . 5 5 3 3 2 1 . 6 3 1 5 1 . 6 4 2 5 2 3 . 1 3 5 2 T a b l e 2 - 2 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 2 M o 3 8 e 1 3 h k 1 d c a l c . ( A ) d o b s . ( A ) % I o b s . 1 1 0 8 . 9 7 6 8 9 . 1 5 9 7 1 0 0 . 0 0 0 2 0 8 . 4 1 7 0 8 . 7 0 2 1 2 4 . 6 1 1 1 ' 1 5 . 4 9 4 4 5 . 6 0 0 6 4 6 . 1 5 2 0 0 5 . 3 0 5 7 5 . 3 7 3 4 1 5 . 3 8 0 0 1 5 . 2 0 0 7 5 . 2 5 0 4 2 0 . 0 0 1 3 0 4 . 9 6 0 5 5 . 1 0 2 3 2 2 . 3 1 3 1 0 3 . 4 6 1 5 3 . 4 8 9 8 2 7 . 6 9 2 4 0 3 . 2 9 7 2 3 . 3 1 2 4 6 1 . 5 4 0 4 1 3 . 2 7 1 5 3 . 2 7 3 1 2 0 . 1 0 2 4 ' 1 3 . 2 2 0 1 3 . 2 2 1 0 1 6 . 9 2 1 5 0 3 . 2 0 9 1 3 3 0 2 . 9 9 2 3 3 . 0 1 3 8 5 8 . 4 6 1 5 ' 1 2 . 9 1 3 4 2 . 9 2 7 2 1 4 . 6 1 0 6 0 2 . 8 0 5 7 2 . 8 1 9 4 2 0 . 1 2 4 2 ' 1 2 . 7 9 3 4 4 0 0 2 . 6 5 2 8 2 . 6 7 1 2 1 8 . 4 6 0 0 2 2 . 6 0 0 3 2 . 6 2 6 8 1 3 . 8 4 1 5 1 2 . 5 7 9 1 2 . 5 9 1 6 2 3 . 8 4 2 4 1 2 . 4 8 8 6 2 . 4 9 4 5 2 6 . 1 5 3 3 ' 2 2 . 4 8 4 3 2 . 4 8 1 5 3 5 . 3 8 0 6 1 2 . 4 6 9 3 3 5 0 2 . 4 3 8 7 2 . 4 5 0 2 2 7 . 6 9 4 2 ' 2 2 . 3 9 7 0 2 . 3 7 5 4 2 6 . 1 5 2 4 ’ 2 2 . 3 9 1 5 5 1 ' 1 2 . 3 4 9 0 2 . 3 5 3 0 2 3 . 0 5 1 7 0 2 . 3 4 5 4 1 1 2 2 . 2 7 7 3 2 . 2 8 8 5 2 1 . 5 4 5 3 ‘ 1 2 . 1 8 4 9 2 . 1 7 7 5 1 2 . 3 1 3 5 ’ 2 2 . 1 3 9 3 2 . 1 1 8 4 1 5 . 6 4 5 1 0 2 . 1 0 5 6 2 6 1 2 . 0 7 5 9 2 . 0 8 4 3 1 6 . 9 5 2 . 0 7 0 8 1 8 . 5 6 1 7 1 2 . 0 6 2 7 3 7 ‘ 1 2 . 0 3 6 8 2 . 0 5 2 1 2 3 . 0 5 4 6 ' 1 2 . 0 3 6 7 4 0 1 2 . 0 2 4 0 2 . 0 3 1 8 1 2 . 2 8 2 0 2 2 . 0 0 6 3 2 . 0 1 2 6 1 1 . 0 8 3 7 0 1 . 9 8 8 7 1 . 9 9 4 3 1 9 . 3 8 5 3 0 1 . 9 8 5 0 3 1 ‘ 3 1 . 9 2 4 9 2 0 ' 3 1 . 9 2 1 9 1 . 9 4 7 7 1 9 . 3 5 6 0 ' 2 1 . 9 1 5 6 1 . 9 1 8 7 2 1 . 8 5 6 2 ' 1 1 . 9 1 3 0 0 6 2 1 . 9 0 7 2 2 2 ‘ 3 1 . 8 7 3 7 1 . 8 8 7 8 2 4 . 0 4 6 ‘ 2 1 . 8 6 6 7 5 5 ' 2 1 . 8 3 9 4 1 . 8 3 0 3 1 2 . 0 5 3 T a b l e 2 - 2 . ( c o n t ' d ) h k 1 d c a l c . ( A ) d o b s . ( X ) % I o b s . 5 5 0 1 . 7 9 5 4 1 . 8 0 3 4 1 6 . 9 5 3 1 2 1 . 7 4 3 7 1 . 7 4 2 1 1 6 . 8 3 2 8 1 1 . 7 3 8 5 0 1 0 0 1 . 6 8 3 4 1 . 6 8 9 1 1 3 . 8 3 9 ‘ 1 1 . 6 8 0 8 3 9 0 1 . 6 5 3 5 1 . 6 5 0 5 1 2 . 6 2 4 8 ‘ 2 1 . 6 1 0 0 1 . 6 0 0 7 1 0 . 9 2 7 3 ' 1 1 . 6 0 1 1 1 . 5 9 4 4 8 . 9 2 5 4 T a b l e 2 - 3 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n f o r o r - K 3 M 0 9 8 e 4 0 - 4 H 2 0 h k 1 d c a c h A ) d o b s . ( A ) % I o b s . 0 1 1 1 3 . 3 2 6 1 1 3 . 7 0 3 1 1 1 . 1 0 0 2 9 . 2 7 0 0 9 . 5 2 7 4 7 3 . 3 - 1 0 1 8 . 8 2 7 1 9 . 0 1 8 1 8 3 . 5 1 1 1 8 . 5 5 5 9 8 . 7 7 4 7 7 0 . 4 - 1 - 1 1 8 . 1 9 0 4 8 . 3 4 5 6 2 9 . 8 0 - 2 2 6 . 4 2 0 6 6 . 5 3 5 6 3 5 . 7 1 - 2 1 6 . 1 5 2 5 6 . 2 4 2 0 1 0 0 . 0 0 3 0 6 . 1 4 5 1 0 - 3 1 5 . 7 6 8 5 5 . 8 5 2 0 3 2 . 4 1 - 2 2 5 . 3 3 1 2 5 . 4 2 5 4 2 4 . 4 - 1 1 3 4 . 9 8 2 4 5 . 0 5 2 2 2 1 . 7 - 1 3 1 4 . 8 8 4 0 4 . 9 2 9 5 1 7 . 6 0 4 1 4 . 5 1 2 7 4 . 5 5 3 2 1 2 . 7 - 2 2 0 4 . 2 9 4 7 4 . 3 2 2 6 1 1 . 5 0 - 1 5 3 . 6 0 9 0 3 . 6 5 8 8 2 1 . 7 2 3 3 3 . 5 3 9 7 3 . 5 3 3 2 2 0 . 6 1 0 5 3 . 5 3 0 3 0 2 5 2 . 4 8 5 9 2 . 4 2 6 2 4 0 . 7 - 2 0 4 3 . 3 7 3 7 3 . 3 2 9 4 2 6 . 8 3 2 1 3 . 2 9 3 5 3 . 2 9 7 3 3 8 . 5 3 - 1 1 3 . 2 6 4 6 3 . 2 6 1 8 4 6 . 0 - 1 - 2 5 3 . 2 3 6 2 3 . 2 0 1 2 3 6 . 4 1 3 5 3 . 1 6 0 0 3 . 1 0 0 1 2 8 . 6 2 5 2 3 . 0 3 4 9 3 . 0 2 7 5 1 9 . 1 - 3 - 1 3 2 . 9 3 8 1 2 . 9 5 9 6 5 0 . 8 - 1 - 1 6 2 . 8 8 8 6 2 . 9 2 6 4 2 4 . 4 0 3 6 2 . 8 0 3 4 2 . 8 3 3 0 2 9 . 8 3 4 3 2 . 6 7 6 3 2 . 7 0 1 4 1 4 . 0 0 7 0 2 . 6 3 3 6 2 . 6 4 1 6 3 5 . 0 2 6 3 2 . 5 7 5 7 2 . 5 8 4 2 2 4 . 4 - 4 0 1 2 . 5 2 4 8 2 . 5 2 7 0 2 6 . 2 - 2 6 0 2 . 5 2 3 1 0 - 4 6 2 . 5 2 2 9 - 1 6 4 2 . 4 6 2 9 2 . 4 6 8 1 4 4 . 4 - 3 - 5 5 2 . 4 6 0 0 2 6 4 2 . 4 3 6 1 2 . 4 2 7 6 4 7 . 6 - 3 1 5 2 . 4 2 8 6 1 7 4 2 . 3 2 3 6 2 . 3 2 2 5 3 1 . 7 2 5 6 2 . 2 7 0 2 2 . 2 7 6 5 2 2 . 2 - 1 - 8 1 2 . 2 6 9 2 2 - 2 7 2 . 2 6 9 1 - 2 - 7 3 2 . 2 3 4 7 2 . 2 3 5 1 3 4 . 4 - 1 - 1 8 2 . 2 2 2 0 3 4 6 2 . 1 7 2 4 2 . 1 6 8 5 2 0 . 6 1 - 7 4 2 . 1 6 9 6 3 1 7 2 . 1 4 2 2 2 . 1 3 7 1 1 9 . 1 5 5 T a b l e 2 - 4 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r B - K 8 M 0 9 8 e 4 0 h k 1 d c a c h t é l d o b S , ( A ) s r o b s , 1 - 1 0 1 4 . 4 2 1 8 1 4 . 5 3 2 6 1 0 0 . 0 0 0 2 0 1 0 . 1 3 0 3 1 0 . 2 0 5 4 5 . 6 4 0 1 - 1 1 0 . 0 2 5 0 1 0 . 0 5 2 1 6 . 5 4 1 o — 1 9 . 4 5 7 4 9 . 5 0 5 3 1 0 . 2 5 1 1 - 1 9 . 0 7 9 7 9 . 0 8 3 2 6 4 . 2 8 1 o 1 8 . 7 0 7 5 8 . 7 1 2 9 2 1 . 4 2 1 — 1 1 8 . 6 6 2 5 8 . 6 7 0 5 3 6 . 9 4 1 2 0 8 . 6 6 0 0 0 1 1 8 . 5 3 2 5 8 . 5 4 3 4 1 8 . 6 5 2 1 0 8 . 3 4 5 0 8 . 3 3 6 5 9 . 1 5 1 - 2 1 7 . 3 8 4 9 7 . 3 8 5 2 3 . 6 4 2 - 2 0 7 . 2 1 0 9 7 . 2 2 6 5 2 1 . 0 3 0 3 0 6 . 7 5 3 6 6 . 7 6 0 2 6 . 2 5 2 - 1 1 6 . 7 0 2 7 6 . 7 0 6 8 8 . 1 0 1 — 3 0 6 . 5 2 5 4 6 . 5 2 6 4 8 . 1 1 3 - 1 0 6 . 1 7 5 8 6 . 1 7 5 0 8 . 2 7 2 - 3 0 5 . 7 1 6 6 5 . 7 1 5 6 1 1 . 2 3 3 - 2 0 5 . 5 6 3 4 5 . 5 6 7 0 7 . 2 4 2 0 - 3 3 . 3 3 8 0 3 . 3 2 9 1 4 . 2 1 2 1 3 3 . 0 0 5 2 2 . 9 9 4 3 4 . 0 5 4 5 0 2 . 9 6 8 7 2 . 9 6 1 4 3 . 9 4 4 2 - 3 2 . 9 0 2 6 2 . 9 0 2 7 3 . 6 6 1 5 - 3 2 . 8 9 9 2 5 6 T a b l e 2 - 5 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 6 M 0 6 S e z 7 - 6 H 2 0 h k 1 d c a l c . ( A ) d o b s . ( A ) S Z S I o b s . 0 2 0 8 . 9 2 1 0 8 . 7 6 8 2 1 0 0 . 0 0 1 1 ' 1 8 . 6 9 6 7 1 1 1 8 . 0 3 2 1 8 . 0 7 1 6 1 8 . 8 5 0 0 4 6 . 6 7 9 1 6 . 7 1 9 7 , 6 . 3 4 1 4 5 . 4 8 , 2 0 . 2 2 1 2 3 5 . 1 0 2 3 5 . 0 9 9 8 2 0 . 2 2 1 5 0 3 . 3 6 4 3 3 . 3 8 8 1 1 6 . 8 8 0 6 0 2 . 9 7 3 7 2 . 9 5 3 6 2 3 . 1 0 2 4 ' 5 2 . 9 7 2 6 3 3 ‘ 1 2 . 9 5 3 7 0 6 2 2 . 9 0 2 6 2 . 8 8 3 4 2 6 . 1 8 2 4 4 2 . 8 7 4 0 1 2 8 2 . 8 7 2 8 3 3 1 2 . 8 6 9 3 2 5 1 2 . 8 6 9 0 2 4 ' 7 2 . 6 5 1 5 2 . 6 5 7 6 1 1 . 1 1 3 1 5 2 . 6 3 8 7 0 4 9 2 . 4 7 1 2 2 . 4 7 2 3 2 0 . 2 2 0 2 1 1 2 . 3 4 3 4 2 . 3 2 5 8 1 3 . 5 8 3 4 ' 7 2 . 3 3 5 4 3 5 ' 5 2 . 3 2 6 0 2 3 ‘ 1 0 2 . 3 2 5 8 4 3 0 2 . 3 2 2 6 1 5 8 2 . 3 1 1 7 3 3 ' 9 2 . 2 3 9 6 2 . 2 2 2 0 1 2 . 1 7 1 1 ' 1 2 2 . 2 3 0 3 1 2 1 1 2 . 2 1 1 6 2 6 ' 7 2 . 2 0 8 3 2 . 1 8 9 2 1 7 . 5 2 3 6 1 2 . 2 0 1 8 4 0 ' 8 2 . 1 8 0 6 2 3 ' 1 1 2 . 1 7 1 8 4 4 ‘ 5 2 . 1 3 3 9 2 . 1 3 4 3 1 3 . 8 5 0 7 7 2 . 1 1 9 6 4 2 ‘ 8 2 . 1 1 8 2 4 0 6 2 . 0 6 3 4 2 . 0 5 7 8 2 1 . 6 3 1 1 ' 1 3 2 . 0 6 3 2 3 1 9 2 . 0 5 9 5 3 6 4 2 . 0 5 1 8 4 1 7 1 . 9 5 8 2 1 . 9 5 8 1 1 0 . 6 0 3 3 9 1 . 9 5 7 8 3 2 ’ 1 2 1 . 9 5 4 9 « 4 5 3 1 . 9 5 4 0 2 3 1 1 1 . 9 5 3 1 1 7 8 1 . 9 5 1 7 6 3 0 1 . 6 1 8 5 1 . 6 1 7 8 8 . 2 3 5 3 7 1 . 6 1 7 4 2 5 1 3 1 . 6 1 3 3 5 5 ' 9 1 . 6 0 9 1 ‘ J : | x _ ) c 3 4 < > r O O r O u c 3 - < I ( - I I r q r ~ I q r ‘ c h c . l ) r — 1 a c _ ‘ ) r l q H D m r ~ r 3 I r < 1 r 0 — 4 F t Q - l — 4 O N t r l r — 4 < I l ' l ( \ l 0 W r l fi w I v v — O O H N ‘ 1 a ' . . . . / l a f - — 1 ( “ \ l I 5 7 T a b l e 2 - 6 . C a l c u l a t e d a n d O b s e r v e d X - r a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 2 M o 3 S e 1 8 h k 1 d c a l c : . ( A ) d o b s . ( A ) % I o b s . 0 0 1 9 . 4 8 0 4 9 . 3 6 8 6 2 7 . 1 1 O 0 9 . 1 7 1 2 0 1 1 7 . 5 8 7 9 7 . 7 3 0 4 4 1 . 4 1 1 0 7 . 4 2 6 5 7 . 3 9 6 9 4 4 . 4 ' 1 1 1 7 . 2 7 8 3 0 2 0 6 . 3 2 8 5 6 . 4 3 1 6 1 9 . 2 0 2 1 5 . 2 6 3 5 5 . 2 8 0 1 3 9 . 2 1 2 0 5 . 2 0 8 8 5 . 1 9 8 5 3 4 . 9 ' 2 0 2 4 . 4 4 8 1 4 . 4 9 4 9 2 3 . 6 1 2 1 4 . 1 3 9 3 4 . 1 0 6 4 7 . 6 2 2 0 3 . 7 1 3 2 3 . 7 4 4 9 1 2 . 7 ' 2 2 2 3 . 6 3 9 1 3 . 6 7 1 8 1 5 . 8 2 1 1 3 . 4 1 6 2 3 . 4 0 9 2 2 7 . 1 ‘ 2 1 3 3 . 3 0 3 1 3 . 3 0 2 4 3 7 . 0 0 4 0 3 . 1 6 4 2 3 . 1 8 1 3 3 9 . 2 0 0 3 3 . 1 6 0 1 ' 1 2 3 3 . 0 7 3 6 3 . 0 8 1 7 3 7 . 7 0 1 3 3 . 0 6 6 0 ' 2 2 3 3 . 0 0 9 9 3 . 0 1 1 8 4 6 . 8 1 4 0 2 . 9 9 1 2 2 . 9 9 1 3 5 0 . 1 ' 3 2 1 2 . 9 8 8 6 ' 3 1 3 2 . 8 8 7 2 2 . 9 0 6 7 2 5 . 9 1 4 1 2 . 7 3 9 2 2 . 7 5 9 4 2 6 . 5 ' 1 4 2 2 . 7 1 6 5 2 . 7 1 3 6 1 4 . 9 2 4 0 2 . 6 0 4 4 2 . 6 0 3 3 5 5 . 2 ‘ 1 0 4 2 . 5 9 6 0 ' 2 1 4 2 . 5 9 2 6 ' 4 0 2 2 . 5 6 7 5 2 . 5 5 1 9 2 4 . 1 ’ 1 1 4 2 . 5 4 3 0 ' 4 l 2 2 . 5 1 6 3 2 . 5 2 9 3 3 7 . 7 2 2 2 2 . 5 1 1 4 ' 4 1 1 2 . 4 5 3 9 2 . 4 4 9 9 6 2 . 3 ' 3 1 4 2 . 4 4 9 2 ‘ 4 1 3 2 . 4 1 0 9 2 . 4 0 8 9 5 6 . 0 ‘ 4 2 2 2 . 3 7 9 2 2 . 3 8 6 1 1 9 . 8 ‘ 1 4 3 2 . 3 5 2 1 2 . 3 3 3 2 2 6 . 5 0 1 4 2 . 3 2 9 6 1 5 1 2 . 2 9 7 5 2 . 3 0 7 3 4 6 . 0 2 3 2 2 . 2 9 5 6 ’ 4 2 3 2 . 2 8 9 3 2 . 2 4 3 3 2 . 2 3 6 4 1 0 0 . 0 2 . 2 3 7 9 2 . 2 3 5 7 4 2 0 2 . 1 5 5 7 2 . 1 6 0 6 3 1 . 5 T a b l e 2 - 6 ( c o n t ' d ) 5 8 h k 1 0 6 . 1 1 c h ) d o b s . ( A ) % I o b s . - 3 3 4 2 . 1 4 8 5 2 . 1 3 8 5 1 6 . 3 3 1 2 2 . 1 3 1 9 1 5 2 2 . 0 7 0 7 2 . 0 7 0 7 3 0 . 9 2 4 2 2 . 0 6 9 6 0 3 4 2 . 0 6 6 4 2 2 3 2 . 0 6 5 1 3 2 2 2 . 0 4 6 6 2 . 0 4 0 3 1 9 . 2 - 2 5 3 2 . 0 3 5 0 - 2 2 5 2 . 0 1 2 6 2 . 0 0 9 9 1 4 . 9 - 5 1 3 2 . 0 0 8 4 - 1 4 4 2 . 0 0 7 0 - 4 4 2 1 . 9 9 3 8 1 . 9 8 2 4 1 8 . 7 - 3 2 5 1 . 9 8 2 5 - 5 O 1 1 . 9 7 4 7 1 . 9 5 9 9 3 7 . 7 - 2 3 5 1 . 8 9 6 3 1 . 9 0 2 2 2 4 . 7 0 0 5 1 . 8 9 6 1 0 1 5 1 . 8 7 5 1 1 . 8 7 2 1 1 1 . 1 - 3 3 5 1 . 8 7 1 1 - 1 3 5 1 . 8 4 3 3 1 . 8 3 9 9 1 3 . 6 5 0 0 1 . 8 3 4 2 - 5 3 3 1 . 8 3 2 3 - 2 5 4 1 . 8 3 0 0 3 4 2 1 . 7 8 5 5 1 . 7 8 2 8 1 7 . 7 - 3 6 2 1 . 7 8 4 7 2 1 4 1 . 7 8 2 1 - 4 3 5 1 . 7 7 6 2 1 . 7 6 8 5 1 9 . 8 0 7 1 1 . 7 7 6 1 1 7 0 1 . 7 7 4 0 - 5 4 2 1 . 7 2 0 5 1 . 7 1 6 7 1 8 . 7 - 1 4 5 1 . 7 2 0 0 5 3 0 1 . 6 8 2 1 1 . 6 8 0 4 1 1 . 9 2 7 0 1 . 6 8 2 1 - 6 1 2 1 . 6 8 0 3 - 5 4 1 1 . 6 7 5 2 - 6 2 3 1 . 6 5 2 3 1 . 6 5 8 3 1 1 . 1 5 1 1 1 . 6 5 1 8 - 4 6 1 1 . 6 1 5 6 1 . 6 1 5 3 8 . 4 - 3 6 4 1 . 6 1 1 3 0 0 6 1 . 5 8 0 1 1 . 5 7 8 5 2 5 . 3 5 9 T a b l e 2 - 7 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 1 2 M 0 1 2 S e 5 6 1 ' 1 k 1 C 1 c a l < ; . ( l ’ ; ‘ ) d o _ b s . ( A ) S i i l o b s . 1 1 0 1 4 . 1 8 9 2 1 4 . 6 2 7 0 8 . 0 0 1 1 2 8 . 2 9 1 2 8 . 1 4 9 5 1 6 . 3 2 0 2 1 8 . 1 2 1 8 2 0 2 7 . 7 4 2 3 7 . 7 7 6 2 3 3 . 7 3 2 2 0 7 . 0 9 4 6 7 . 1 1 8 2 1 0 0 . 0 0 2 2 1 6 . 7 0 2 1 6 . 7 1 9 7 5 8 . 1 6 0 2 2 6 . 6 8 9 8 0 2 3 5 . 3 9 8 0 5 . 4 3 0 3 1 6 . 7 4 4 0 2 5 . 1 3 0 5 5 . 1 4 9 8 2 8 . 1 2 4 2 2 4 . 4 3 8 7 4 . 4 4 5 3 1 7 . 5 7 0 4 0 4 . 4 2 5 5 0 2 4 4 . 4 2 4 4 0 2 5 3 . 7 1 0 4 3 . 7 1 1 4 4 . 5 0 6 2 1 3 . 5 5 5 9 3 . 5 4 9 5 1 7 . 5 7 4 2 4 3 . 5 4 6 7 2 2 5 3 . 5 4 1 3 6 2 3 3 . 1 9 0 4 3 . 1 9 9 2 1 8 . 0 0 0 2 6 3 . 1 7 8 5 4 4 3 3 . 1 4 6 2 3 . 1 4 0 1 1 3 . 5 9 4 2 5 3 . 1 4 5 8 6 0 4 3 . 1 2 7 4 8 0 0 2 . 9 6 6 4 2 . 9 7 4 0 2 4 . 5 0 4 0 6 2 . 9 5 3 6 6 2 4 2 . 9 4 8 7 6 4 1 2 . 9 1 8 8 2 . 9 2 3 2 2 1 . 1 2 4 4 4 2 . 9 1 3 7 4 2 6 2 . 8 0 1 7 2 . 7 9 1 4 2 8 . 1 2 8 2 1 2 . 7 8 6 3 6 4 3 2 . 7 0 6 3 2 . 7 0 7 8 1 8 . 0 0 2 2 7 2 . 6 9 9 6 0 4 6 2 . 6 9 9 0 4 4 5 2 . 6 7 8 9 4 6 1 2 . 6 1 9 9 2 . 6 2 5 1 3 9 . 8 6 6 4 4 2 . 5 5 4 0 2 . 5 5 8 8 3 0 . 8 6 2 0 8 2 . 4 9 7 0 2 . 4 9 9 0 1 7 . 1 5 6 2 6 2 . 4 7 7 6 8 4 0 2 . 4 6 4 0 2 . 4 6 9 2 2 6 . 5 4 8 4 2 2 . 3 9 5 4 2 . 4 0 0 1 2 6 . 5 4 3 7 1 2 . 3 9 2 2 6 6 1 2 . 3 4 9 2 2 . 3 4 9 1 1 8 . 0 0 4 6 4 2 . 3 4 6 5 2 6 5 2 . 3 4 4 9 1 0 2 1 2 . 2 7 7 9 2 . 2 7 2 8 9 . 4 9 3 7 3 2 . 2 7 0 9 4 2 8 2 . 2 6 7 7 I — N . N i N m w w m N N N N N N N N w N q m w w ‘ — l ‘ - l ‘ - m l o p u m ‘ - l ‘ - F H ‘ m - w p m m l H ‘ — l d l ‘ p - m o m m - r a v l ‘ - l ‘ - l ‘ m - p m l ‘ - l H ' w E - H I w J H F o P T a b l e 2 - 7 . ( c o n t ' s ) [ — I 1 " . m m o o o r - a o o o o o w o w o q o m o o w o m o o w p o o m m o o o : r g . . . l b w w o o o m p m p o o m w m p d o o r k m o o o m m o o p m o o u b m w o 7 5 ‘ H H d c a l c . ( A ) 2 3 6 8 . 2 3 6 5 . 2 3 4 0 . 2 2 9 4 . 1 6 2 6 . 0 7 5 1 . 0 7 2 8 . 0 7 2 1 . 0 4 9 3 . 0 4 6 9 . 0 4 3 4 . 0 0 1 4 . 9 9 9 7 . 9 9 6 3 . 9 4 5 8 . 9 4 2 8 . 9 3 5 5 . 9 0 6 0 . 9 0 1 6 . 9 0 0 5 . 8 5 5 5 . 8 5 5 2 . 7 8 2 5 . 7 8 2 2 . 6 7 9 5 . 6 7 2 6 . 6 7 2 5 . 6 7 2 2 . 6 5 1 9 . 5 7 2 9 d o b s . ( A ) 2 . 2 2 6 9 2 . 1 6 7 5 2 . 0 7 6 9 2 . 0 4 9 0 2 . 0 0 3 2 1 . 9 4 5 1 1 . 9 0 4 0 1 . 8 5 7 2 1 . 7 8 5 8 1 . 6 7 5 7 1 . 5 7 4 8 % I o b s . 5 8 . 1 6 . 1 5 . 1 9 4 1 . 1 3 . 1 6 . 1 2 . 1 1 . 9 3 7 4 1 2 . 3 1 1 4 2 2 . 1 8 . 3 8 3 2 1 4 1 1 T a b l e 2 - 8 . S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r ( M e 4 N ) 2 M o 3 S e 1 3 , K 2 M o g S e 1 3 , 0 1 - K 8 M 0 9 5 e 4 0 - 4 H 2 0 . B - K 8 M 0 9 8 6 4 0 , K 6 M 0 6 S e 2 7 - 6 H 2 0 , K 2 M o 3 S e 1 8 , K 1 2 M 0 1 2 8 9 5 6 , K 1 0 M 0 1 2 S e 5 3 a n d C 8 2 M 0 2 0 2 S e 6 . ( I ) ( I I ) ( I I I ) f o r m u l a ( M e 4 N ) 2 M o 3 S e l 3 K 2 M 0 3 S e 1 3 0 1 - K 8 M 0 9 8 6 4 0 - 4 H 2 0 f w 1 4 6 2 . 5 9 1 3 9 2 . 5 0 4 3 9 8 . 7 a , A 1 1 . 5 7 8 ( 1 ) 1 1 . 8 7 4 ( 3 ) 1 0 . 3 1 2 ( 8 ) b , A 1 1 . 5 7 8 ( 1 ) 1 6 . 8 3 4 ( 3 ) 1 8 5 5 ( 3 ) c , A 6 . 1 1 0 ( 2 ) 5 . 8 2 0 ( 3 ) 1 8 5 7 ( 2 ) 0 1 , d e g 9 0 . 0 9 0 . 0 8 7 . 6 ( 1 ) B . d e g 1 2 0 . 0 1 1 6 . 6 5 ( 2 ) 8 7 5 7 ( 7 ) 1 1 , d e g 9 0 . 0 9 0 . 0 8 4 . 0 ( 1 ) 2 , v , A 3 1 , 7 0 9 . 4 ( 3 ) 2 , 1 0 4 0 ( 1 ) 2 , 3 5 2 3 ( 8 ) s p a c e g r o u p P 3 1 m ( # 1 5 7 ) C m ( # 8 ) P _ 1 ( # 2 ) d c a l c . g / c m 3 3 . 4 2 3 4 . 4 4 8 4 . 0 8 r a d i a t i o n M o K 0 1 M o K 0 1 M o K 0 1 ( A = O . 7 1 0 6 9 A ) ( 1 : 0 . 7 1 0 6 9 A ) ( 1 : 0 . 7 1 0 6 9 4 ) 1 1 ( M o K a ) . c m ' 1 1 7 7 . 9 6 2 4 6 . 6 4 2 2 4 2 6 m “ , d e g 4 9 . 9 5 0 . 1 4 5 s c a n t y p e 0 1 / 2 6 0 1 / 2 6 0 1 / 2 6 s c a n r a t e , 0 [ m i n 4 4 2 n o . o f d a t a c o l l e c t e d 9 9 2 9 9 7 9 8 8 8 n o . o f u n i q u e d a t a 5 0 2 9 5 1 8 6 3 8 n o . o f o b s e r v e d d a t a 4 3 8 ( I > 3 o ( l ) ) 8 4 9 ( I > 3 o ( I ) ) 3 5 9 2 ( I > 4 o ( l ) ) n o . o f v a r i a b l e s 4 2 8 9 5 4 6 fi n a l R I R W , % 6 0 / 7 5 5 1 / 6 3 9 . 2 / 1 0 . 8 t e m p e r a t u r e , 0 C 2 3 - 1 0 0 - 1 2 0 T a b l e 2 — 8 . ( c o n t ' d ) ( I V ) ( V ) ( V I ) f o r m u l a B - K 3 M 0 9 S e 4 0 K 6 M 0 6 S e 2 7 - 6 H 2 0 K 2 M 0 3 S e 1 3 f w 4 3 3 4 . 6 5 3 0 4 4 . 2 0 1 7 2 4 . 3 a , A 1 9 1 0 ( 2 ) 1 0 2 1 ( 2 ) 1 0 . 2 7 7 ( 6 ) b , A 2 0 7 1 ( 2 ) 1 7 . 8 4 ( 1 ) 1 2 6 6 ( 1 ) c , A 1 0 5 6 ( 1 ) 2 7 0 4 ( 2 ) 1 0 . 6 2 4 ( 8 ) 0 1 , d e g 1 0 1 . 0 4 ( 8 ) 9 0 . 0 9 0 . 0 0 . d e g 9 4 . 9 ( 1 ) 9 8 . 8 ( 3 ) 1 1 6 . 8 2 ( 5 ) Y , d e g 9 3 . 4 ( 1 ) 9 0 . 0 9 0 . 0 2 , v , A 3 2 , 4 0 7 0 ( 1 6 ) 4 , 4 8 6 8 ( 2 1 ) 2 , 1 2 3 3 ( 2 ) s p a c e g r o u p P — 1 ( # 2 ) P 2 1 / n ( # 1 4 ) P 2 1 ( # 4 ) d c a l c , g / e m 3 3 . 5 3 6 4 . 1 5 3 4 . 6 4 4 r a d i a t i o n M o K 0 1 M o K 0 1 M o K 0 1 ( A = 0 . 7 1 0 6 9 A ) ( A = 0 . 7 1 0 6 9 A ) ( A = O . 7 1 0 6 9 A ) u ( M o K a ) . c m ‘ 1 1 9 4 . 4 6 2 1 9 . 9 8 2 6 6 . 5 3 2 9 m a x , d e g 4 5 4 8 . 0 4 5 s c a n t y p e M 0 t o 0 1 / 2 0 s c a n r a t e , 0 / m i n 8 2 2 n o . o f d a t a c o l l e c t e d 9 5 3 5 8 7 0 6 1 8 2 4 n o . o f u n i q u e d a t a 9 0 5 7 7 9 2 0 1 6 0 8 n o , o f o b s e r v e d d a t a 2 9 4 6 ( I > 3 0 ’ ( I ) ) 3 5 2 0 ( I > 3 0 ’ ( I ) ) 1 3 8 2 ( I > 3 0 ’ ( I ) ) n o . o f v a r i a b l e s 2 4 9 3 9 1 2 0 7 fi n a l R I R w . % 8 . 8 / 1 0 . 9 7 . 2 / 9 . 2 5 . 2 / 8 . 6 t e m p e r a t u r e , ° C 2 3 - 1 3 0 - 1 2 0 T a b l e 2 - 8 . ( c o n t ' d ) ( V I I ) ( V I I I ) ( I X ) f o r m u l a K 1 2 M 0 1 2 3 6 5 6 K 1 0 M 0 1 2 S e 5 8 C 8 2 M 0 2 0 2 5 6 6 f w 6 0 4 2 . 2 6 6 1 2 1 . 9 4 9 9 5 . 4 4 8 a , A 2 3 7 3 ( 2 ) 1 7 . 9 0 0 ( 6 ) 2 2 . 2 1 9 ( 5 ) b , A 1 7 7 0 ( 1 ) 2 4 . 6 1 1 ( 6 ) 8 . 6 8 5 ( 3 ) c , A 2 0 . 4 3 4 ( 9 ) 1 0 . 4 5 7 ( 5 ) 2 0 . 1 6 2 ( 5 ) 0 1 , d e g 9 0 . 0 9 2 1 7 ( 4 ) 9 0 . 0 6 , d e g 9 0 . 0 9 0 4 7 ( 3 ) 4 9 6 4 ( 2 ) v . d e g 9 0 . 0 8 3 2 6 ( 2 ) 9 0 . 0 2 , v , A 3 4 , 8 5 8 4 ( 9 ) 2 , 4 5 7 1 ( 5 ) 8 , 2 9 6 4 ( 2 ) s p a c e g r o u p C m c 2 1 P _ 1 ( # 2 ) C 2 / c d e a l c . g / c m 3 4 . 6 7 5 4 . 4 4 7 4 . 4 6 0 r a d i a t i o n M o K 0 1 M o K 0 1 C u K 0 1 ( A = 0 . 7 1 0 6 9 A ) ( A = 0 . 7 1 0 6 9 A ) ( A = 1 . 5 4 1 7 8 0 A ) u ( M o K o o , c m " 1 2 5 7 . 7 5 2 4 8 . 9 7 7 0 2 . 7 9 2 0 a m , d e g 5 0 . 1 0 5 0 5 0 s c a n t y p e 0 3 - 2 0 ( 0 1 0 s c a n r a t e , 0 / m i n 8 2 4 n o . o f d a t a c o l l e c t e d 4 1 5 3 8 8 6 5 2 4 2 0 n o . o f u n i q u e d a t a 2 5 3 1 8 4 9 5 2 3 5 9 n o , o f o b s e r v e d d a t a 2 3 9 4 ( I > 3 o ( I ) ) 2 6 6 8 ( I > 2 . 5 0 ’ ( I ) ) 1 3 6 1 ( I > 3 0 ’ ( I ) ) n o . o f v a r i a b l e s 1 7 4 2 9 3 9 9 fi n a l R / R w , % 8 . 0 / 5 . 1 1 7 . 9 / 2 1 . 2 1 2 . 4 / 1 4 . 5 t e m p e r a t u r e , 0 C 2 3 2 3 2 3 n h t ( ) ) t I r ( 2 7 h 1 r ( : r ( ) I D ( ( : 3 4 ' 2 . ) ‘ ( ) " I ' n I d : i ) . . : C - b : ) j a . c b ) J D - ( ( r h n 1 D ( ( x E ) . 1 D ‘ ( ( u L ) D - U & ( 0 n h ( ( n 4 ) I D 3 I ( ) ( 6 4 T a b l e 2 - 9 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r ( M e 4 N ) 2 M o 3 S e 1 3 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) M O 0 0 . 1 3 8 8 ( 3 ) 0 . 5 2 6 2 1 . 6 ( 2 ) S e ( 1 ) O 0 0 . 8 2 7 ( 1 ) 2 . 3 ( 2 ) S e ( 2 ) ' 0 . 2 5 9 6 ( 4 ) 0 0 . 5 6 2 ( 1 ) 2 . 3 ( 2 ) S e ( 3 ) - O . 1 7 l 9 ( 4 ) 0 0 . 2 2 6 5 ( 9 ) 2 . 1 ( 2 ) S e ( 4 ) 0 0 . 3 5 8 5 ( 4 ) 0 . 4 2 3 ( 1 ) 3 . 1 ( 2 ) S e ( 5 ) 0 0 . 3 0 5 7 ( 4 ) 0 . 7 9 0 ( 1 ) 2 . 9 ( 2 ) N 1 / 3 2 / 3 1 . 0 1 4 ( 8 ) 3 ( 1 ) C ( 1 ) 1 / 3 2 / 3 0 . 7 4 ( 1 ) 0 . 1 C ( 2 ) 0 . 2 0 8 ( 5 ) 0 . 6 5 7 ( 5 ) 1 . 0 5 5 ( 7 ) 5 ( 1 ) a B ( e q ) = 4 / 3 [ a 2 1 3 1 1 + b 2 1 3 2 2 + 0 2 1 3 3 3 + a b ( c o s v ) ( 3 1 2 + 2 1 0 0 2 0 8 1 8 6 1 3 + b C ( c o s a ) 1 3 2 3 ] - T a b l e 2 - 1 0 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r K 2 M o 3 S e 1 3 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m 2 1 y z B ( e q ) M o ( 1 ) 1 . 0 0 0 0 0 0 1 . 0 ( 1 ) M o ( 2 ) 0 . 7 7 3 5 ( 4 ) 0 . 0 8 2 4 ( 1 ) - 0 . 2 0 2 5 ( 8 ) 0 . 8 6 ( 9 ) S e ( 1 ) 0 . 8 4 6 0 ( 9 ) 0 0 . 1 6 1 7 6 . 4 ( 4 ) S e ( 2 ) 0 . 5 6 6 0 ( 5 ) 0 - 0 . 3 4 0 ( 1 ) 1 . 4 ( 2 ) S e ( 3 ) 0 . 6 6 0 7 ( 6 ) 0 — 0 . 6 1 0 ( 1 ) 1 . 1 ( 1 ) S e ( 4 ) 0 . 6 4 9 0 ( 5 ) 0 . 2 1 2 3 ( 2 ) - o . 4 1 5 ( 1 ) 1 . 8 ( 1 ) S e ( S ) 0 . 6 8 5 4 ( 5 ) 0 . 1 8 3 7 ( 2 ) 0 . 0 0 6 ( 1 ) 2 . 0 ( 1 ) S e ( 6 ) 0 . 9 8 9 6 ( 5 ) 0 . 1 5 4 8 ( 2 ) 0 . 0 4 3 ( 1 ) 1 . 4 ( 1 ) S e ( 7 ) 0 . 9 4 1 5 ( 4 ) 0 . 1 0 2 6 ( 2 ) - 0 . 3 5 7 2 ( 9 ) 1 . 1 ( 1 ) S e ( 8 ) 1 . 2 3 7 4 ( 6 ) 0 0 . 1 0 4 ( 1 ) 3 . 0 ( 2 ) S e ( 9 ) 1 . 1 8 8 3 ( 6 ) 0 0 . 4 5 2 ( 1 ) 1 . 7 ( 2 ) K ( l ) 0 . 8 5 1 ( 1 ) 0 . 3 2 7 5 ( 6 ) 0 . 4 5 9 ( 3 ) 4 . 3 ( 4 ) a B ( e q ) = 4 1 3 1 4 2 1 1 1 1 + b 2 1 1 2 2 + c 2 0 3 3 + a b ( c o s v ) 0 1 2 + a c ( c o s 0 ) 0 1 3 + b c ( c o s a ) 0 2 3 1 . 6 5 T a b l e 2 - 1 1 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r 0 1 - K 3 M 0 9 S e 4 0 4 H 2 0 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) M 0 1 0 . 1 8 0 3 ( 6 ) 0 . 9 0 0 3 ( 5 ) 0 . 6 4 7 6 ( 3 ) 3 . 9 ( 2 ) M 0 2 — 0 . 0 4 9 0 ( 5 ) 0 . 8 8 6 6 ( 4 ) 0 . 7 2 6 6 ( 3 ) 2 . 9 ( 2 ) M 0 3 - 0 . 0 1 8 9 ( 5 ) 0 . 8 3 6 4 ( 5 ) 0 . 5 8 9 1 ( 3 ) 3 . 5 ( 2 ) M 0 4 0 . 3 9 6 0 ( 6 ) 0 . 6 0 6 5 ( 4 ) 0 . 7 7 0 6 ( 3 ) 2 . 6 ( 2 ) M 0 5 0 . 1 6 4 2 ( 5 ) 0 . 5 9 2 2 ( 4 ) 0 . 8 5 0 6 ( 3 ) 2 . 2 ( 1 ) M 0 6 0 . 2 0 3 0 ( 6 ) 0 . 5 3 2 8 ( 5 ) 0 . 7 1 5 9 ( 4 ) 3 . 9 ( 2 ) M 0 7 0 . 4 9 0 7 ( 5 ) 1 . 1 6 1 6 ( 4 ) 0 . 9 1 1 2 ( 4 ) 3 . 0 ( 2 ) M 0 8 0 . 5 1 3 7 ( 6 ) 1 . 1 8 0 8 ( 4 ) 0 . 7 6 2 5 ( 4 ) 3 . 4 ( 2 ) M 0 9 0 . 2 7 0 1 ( 6 ) 1 . 1 8 4 9 ( 4 ) 0 . 8 2 9 5 ( 4 ) 3 . 7 ( 2 ) S e 1 - 0 . 0 3 2 1 ( 7 ) 0 . 9 6 7 7 ( 6 ) 0 . 6 1 5 2 ( 5 ) 5 . 0 ( 2 ) S e 2 0 . 4 3 2 5 ( 7 ) 0 . 9 0 5 9 ( 6 ) 0 . 6 5 1 3 ( 4 ) 4 . 9 ( 2 ) S e 3 0 . 3 0 6 5 ( 8 ) 1 . 0 0 9 6 ( 6 ) 0 . 6 1 3 0 ( 5 ) 7 . 7 ( 3 ) S e 4 - 0 . 2 1 9 1 ( 8 ) 0 . 9 7 7 4 ( 5 ) 0 . 7 8 7 5 ( 5 ) 5 . 1 ( 2 ) S e 5 - O . 1 5 7 6 ( 7 ) 0 . 8 6 9 1 ( 5 ) 0 . 8 5 3 2 ( 4 ) 3 . 5 ( 2 ) S e 6 - 0 . 0 7 6 1 ( 7 ) 0 . 7 3 8 0 ( 7 ) 0 . 5 0 2 5 ( 4 ) 5 . 6 ( 3 ) S e 7 - 0 . 1 5 0 5 ( 7 ) 0 . 8 5 9 6 ( 6 ) 0 . 4 7 4 3 ( 4 ) 6 . 1 S e 8 0 . 1 7 1 2 ( 6 ) 0 . 8 3 1 7 ( 5 ) 0 . 7 7 0 8 ( 3 ) 2 . 2 ( 2 ) S e 9 0 . 1 3 7 0 ( 7 ) 0 . 9 5 6 0 ( 5 ) 0 . 7 7 3 5 ( 5 ) 4 . 7 ( 2 ) S e 1 0 - 0 . 0 7 6 7 ( 6 ) 0 . 7 5 5 0 ( 5 ) 0 . 6 9 8 4 ( 3 ) 2 . 2 ( 2 ) S e l l - 0 . 2 4 3 2 ( 6 ) 0 . 8 4 1 4 ( 5 ) 0 . 6 6 1 1 ( 3 ) 3 . 1 ( 2 ) S e 1 2 0 . 1 8 9 3 ( 7 ) 0 . 8 6 5 5 ( 7 ) 0 . 5 1 2 3 ( 4 ) 6 . 5 ( 3 ) S e 1 3 0 . 2 1 0 9 ( 6 ) 0 . 7 7 3 1 ( 6 ) 0 . 5 9 9 4 ( 3 ) 4 . 0 ( 2 ) S e 1 4 0 . 1 8 0 9 ( 6 ) 0 . 6 6 6 5 ( 5 ) 0 . 7 3 7 1 ( 3 ) 2 . 9 ( 2 ) $ 0 1 5 0 . 6 4 7 3 ( 7 ) 0 . 6 1 9 3 ( 6 ) 0 . 7 6 5 2 ( 4 ) 4 . 4 ( 2 ) S e l 6 0 . 5 0 9 1 ( 7 ) 0 . 7 2 0 5 ( 5 ) 0 . 7 2 6 0 ( 4 ) 3 . 8 ( 2 ) S e 1 7 - 0 . 0 0 9 2 ( 6 ) 0 . 6 9 0 2 ( 5 ) 0 . 9 0 1 3 ( 3 ) 2 . 7 ( 2 ) S e 1 8 0 . 0 4 0 3 ( 7 ) 0 . 5 8 5 7 ( 6 ) 0 . 9 7 7 8 ( 4 ) 3 . 8 ( 2 ) S e 1 9 0 . 0 7 6 4 ( 8 ) 0 . 5 4 8 9 ( 7 ) 0 . 5 9 9 0 ( 4 ) 6 . 7 ( 3 ) S e 2 0 0 . 1 5 2 ( 1 ) 0 . 4 3 0 8 ( 6 ) 0 . 6 3 1 2 ( 5 ) 8 . 6 ( 3 ) S e 2 1 0 . 3 8 9 6 ( 7 ) 0 . 5 4 4 9 ( 5 ) 0 . 8 9 6 3 ( 4 ) 3 . 6 ( 2 ) T a b l e 2 - 1 1 . ( c o n t ' d ) 6 6 a t o m x y z B ( e q ) S e 2 2 0 . 3 3 9 6 ( 7 ) 0 . 6 7 2 2 ( 5 ) 0 . 8 9 1 2 ( 3 ) 2 . 6 ( 2 ) $ 0 2 3 0 . 1 5 7 4 ( 7 ) 0 . 4 5 7 4 ( 5 ) 0 . 8 3 0 6 ( 5 ) 4 . 1 ( 2 ) $ 0 2 4 — 0 . 0 2 0 6 ( 6 ) 0 . 5 3 7 4 ( 5 ) 0 . 7 8 8 8 ( 4 ) 3 . 1 ( 2 ) S e 2 5 0 . 4 3 2 7 ( 7 ) 0 . 4 7 3 1 ( 6 ) 0 . 7 3 6 1 ( 5 ) 5 . 2 ( 2 ) $ 0 2 6 0 . 4 0 7 8 ( 7 ) 0 . 5 6 6 3 ( 6 ) 0 . 6 3 9 9 ( 4 ) 5 . 8 ( 2 ) S e 2 7 0 . 4 2 8 4 ( 7 ) 1 . 0 7 2 3 ( 5 ) 0 . 8 2 5 0 ( 4 ) 2 . 8 ( 2 ) S e 2 8 0 . 5 7 7 9 ( 7 ) 1 . 0 6 3 0 ( 5 ) 1 . 0 0 2 7 ( 4 ) 4 . 2 ( 2 ) $ 0 2 9 0 . 5 9 7 2 ( 7 ) 1 . 1 8 2 1 ( 5 ) 1 . 0 3 4 9 ( 4 ) 4 . 5 ( 2 ) S e 3 0 0 . 6 3 5 2 ( 7 ) 1 . 1 0 0 7 ( 6 ) 0 . 6 6 4 4 ( 4 ) 4 . 1 ( 2 ) S e 3 1 0 . 6 4 6 6 ( 8 ) 1 . 2 2 6 9 ( 6 ) 0 . 6 4 9 8 ( 5 ) 5 . 3 ( 2 ) S e 3 2 0 . 0 6 7 5 ( 7 ) 1 . 1 1 6 4 ( 6 ) 0 . 8 2 2 6 ( 5 ) 4 . 9 ( 2 ) S e 3 3 0 . 0 2 7 7 ( 8 ) 1 . 2 4 3 3 ( 7 ) 0 . 8 2 2 6 ( 8 ) 9 . 4 ( 4 ) S e 3 4 0 . 6 1 1 2 ( 7 ) 1 . 2 6 1 0 ( 5 ) 0 . 8 4 8 8 ( 5 ) 4 . 1 ( 2 ) S e 3 5 0 . 7 1 6 4 ( 6 ) 1 . 1 4 3 4 ( 5 ) 0 . 8 4 0 0 ( 4 ) 3 . 2 ( 2 ) S e 3 6 0 . 3 0 3 4 ( 7 ) 1 . 1 8 3 2 ( 6 ) 0 . 6 9 0 0 ( 5 ) 5 . 2 ( 2 ) S e 3 7 0 . 3 4 3 0 ( 7 ) 1 . 2 8 7 5 ( 6 ) 0 . 7 4 9 8 ( 6 ) 5 . 4 ( 2 ) S e 3 8 0 . 3 1 4 2 ( 7 ) 1 . 2 6 7 8 ( 6 ) 0 . 9 2 8 6 ( 6 ) 5 . 4 ( 3 ) S e 3 9 0 . 2 5 7 5 ( 7 ) 1 . 1 5 1 4 ( 6 ) 0 . 9 6 7 6 ( 5 ) 4 . 9 ( 2 ) S e 4 0 0 . 4 2 3 9 ( 8 ) 0 . 3 9 3 5 ( 6 ) 0 . 8 6 6 7 ( 7 ) 6 . 9 ( 3 ) K 1 0 . 4 7 4 ( 2 ) 0 . 1 3 7 ( 2 ) 0 . 5 1 5 8 ( 9 ) 7 . 8 ( 8 ) K 2 0 . 5 1 6 ( 2 ) 0 . 8 9 3 ( 1 ) 0 . 8 1 7 ( 1 ) 5 . 2 ( 5 ) K 3 0 . 0 5 3 ( 2 ) 0 . 8 4 7 ( 2 ) 0 . 3 3 2 ( 1 ) 9 . 2 ( 9 ) K 4 0 . 3 2 9 ( 2 ) 0 . 2 9 3 ( 1 ) 0 . 1 0 1 ( 1 ) 6 . 4 ( 6 ) K 5 0 . 0 9 0 ( 2 ) 0 . 8 2 1 ( 2 ) 0 . 0 0 2 ( 2 ) 6 ( 1 ) K S ' 0 . 0 9 7 ( 3 ) - 1 . 0 2 6 ( 2 ) 0 . 0 5 0 ( 2 ) 4 . 5 ( 9 ) K 6 0 . 2 7 0 ( 3 ) 0 . 5 6 5 ( 2 ) 0 . 1 1 0 ( 1 ) 6 ( 1 ) K 6 ' 0 . 1 3 7 ( 3 ) 0 . 7 1 8 ( 3 ) 0 . 0 4 8 ( 2 ) 2 . 9 ( 8 ) K 7 - 0 . 2 3 3 ( 4 ) 0 . 5 0 6 ( 3 ) 0 . 6 3 9 ( 2 ) 4 ( 1 ) K 7 ' 0 . 2 6 0 ( 3 ) 0 . 4 3 1 ( 3 ) 0 . 0 5 1 ( 2 ) 7 ( 1 ) K 8 - 0 . 5 2 7 ( 4 ) 1 . 3 7 5 ( 3 ) 0 . 5 4 7 ( 2 ) 7 ( 1 ) K 8 ' 0 . 3 4 5 ( 5 ) 0 . 5 2 1 ( 3 ) 0 . 4 7 4 ( 3 ) 9 ( 1 ) 6 7 T a b l e 2 - 1 1 . ( c o n t ' d ) a t o m x y z B ( e q ) 0 1 0 . 2 3 8 ( 6 ) 0 . 6 2 1 ( 5 ) 0 . 4 5 3 ( 4 ) 1 0 ( 2 ) 0 2 0 . 0 8 6 ( 6 ) 0 . 6 6 8 ( 5 ) 0 . 3 5 3 ( 3 ) 9 ( 2 ) 0 3 0 . 3 9 8 ( 5 ) 0 . 2 8 1 ( 4 ) 0 . 4 5 5 ( 3 ) 6 ( 1 ) 0 4 0 . 1 9 5 ( 4 ) 0 . 6 1 3 ( 3 ) 0 . 2 5 3 ( 2 ) 5 ( 1 ) 3 ‘ B ( e q ) = 4 3 1 2 1 2 6 1 1 + b 2 1 3 2 2 + 0 2 5 3 3 + a b ( c o s 1 ' ) ( 3 1 2 + a C ( C O S B ) B l 3 + b C ( c o s a ) B 2 3 ] . T a b l e 2 - 1 2 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r 6 8 B - K g M o g S e 4 0 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) M 0 ( 1 ) 0 . 7 5 6 5 ( 5 ) 0 . 1 9 5 9 ( 3 ) 0 . 1 8 8 1 ( 6 ) 3 . 1 ( 2 ) M 0 ( 2 ) 0 . 8 3 2 5 ( 5 ) 0 . 2 3 6 9 ( 3 ) 0 . 0 0 0 8 ( 6 ) 3 . 2 ( 2 ) M 0 ( 3 ) 0 . 7 3 4 1 ( 5 ) 0 . 1 2 7 7 ( 3 ) - 0 . 0 6 6 9 ( 6 ) 3 . 1 ( 2 ) M 0 ( 4 ) 0 . 8 1 9 2 ( 5 ) 0 . 5 5 3 0 ( 3 ) 0 . 1 3 5 3 ( 6 ) 2 . 8 ( 2 ) M 0 ( 5 ) 0 . 8 8 2 9 ( 5 ) 0 . 5 8 7 9 ( 3 ) 0 . 3 8 8 9 ( 6 ) 3 . 3 ( 2 ) M 0 ( 6 ) 0 . 7 4 4 9 ( 5 ) 0 . 5 2 3 1 ( 3 ) 0 . 3 3 5 0 ( 6 ) 3 . 1 ( 2 ) M 0 ( 7 ) 0 . 5 4 3 1 ( 5 ) 0 . 7 8 9 4 ( 3 ) 0 . 4 8 1 6 ( 6 ) 2 . 7 ( 2 ) M 0 ( 8 ) 0 . 5 1 0 8 ( 5 ) 0 . 7 2 6 8 ( 3 ) 0 . 2 2 6 3 ( 6 ) 2 . 9 ( 2 ) M 0 ( 9 ) 0 . 5 7 2 4 ( 5 ) 0 . 8 5 3 1 ( 3 ) 0 . 2 8 2 5 ( 6 ) 2 . 7 ( 2 ) S e ( 1 ) 0 . 8 4 9 0 ( 6 ) 0 . 1 3 3 8 ( 4 ) 0 . 0 7 6 2 ( 8 ) 3 . 9 ( 2 ) S e ( 2 ) 0 . 7 9 7 1 ( 6 ) 0 . 1 6 2 1 ( 4 ) 0 . 4 0 3 3 ( 8 ) 4 . 0 ( 2 ) S e ( 3 ) 0 . 7 0 0 3 ( 6 ) 0 . 2 2 9 4 ( 4 ) 0 . 4 1 0 1 ( 8 ) 4 . 1 ( 2 ) S e ( 4 ) 0 . 9 6 6 5 ( 6 ) 0 . 2 6 1 1 ( 4 ) - 0 . 0 2 9 5 ( 9 ) 4 . 8 ( 2 ) S e ( 5 ) 0 . 8 9 0 7 ( 6 ) 0 . 3 3 7 9 ( 4 ) - 0 . 0 7 5 7 ( 8 ) 3 . 7 ( 2 ) S e ( 6 ) 0 . 7 4 0 1 ( 6 ) 0 . 0 0 8 5 ( 4 ) - 0 . 1 7 5 3 ( 8 ) 4 . 4 ( 2 ) S e ( 7 ) 0 . 6 4 2 7 ( 6 ) 0 . 0 5 9 0 ( 4 ) - 0 . 2 4 8 3 ( 8 ) 3 . 6 ( 2 ) S e ( 8 ) 0 . 8 6 0 6 ( 6 ) 0 . 2 9 1 6 ( 4 ) 0 . 2 4 5 3 ( 8 ) 3 . 8 ( 2 ) S e ( 9 ) 0 . 7 5 3 8 ( 6 ) 0 . 3 0 8 8 ( 4 ) 0 . 1 3 9 3 ( 7 ) 3 . 3 ( 2 ) S e ( 1 0 ) 0 . 6 7 0 5 ( 5 ) 0 . 0 8 7 2 ( 4 ) 0 . 1 1 7 6 ( 7 ) 3 . 3 ( 2 ) S e ( 1 1 ) 0 . 6 3 5 0 ( 5 ) 0 . 1 7 8 8 ( 4 ) 0 . 0 5 2 4 ( 7 ) 3 . 0 ( 2 ) S e ( 1 2 ) 0 . 8 1 9 2 ( 6 ) 0 . 1 6 1 2 ( 4 ) ~ 0 . 2 3 2 7 ( 8 ) 3 . 9 ( 2 ) S e ( 1 3 ) 0 . 7 2 6 7 ( 5 ) 0 . 2 2 6 2 ( 4 ) - 0 . 1 7 1 7 ( 8 ) 3 . 4 ( 2 ) S e ( 1 4 ) 0 . 8 5 5 3 ( 6 ) 0 . 4 7 3 8 ( 4 ) 0 . 2 6 9 5 ( 8 ) 3 . 9 ( 2 ) S e ( 1 5 ) 0 . 8 5 8 1 ( 6 ) 0 . 4 8 6 3 ( 4 ) ~ 0 . 0 7 6 0 ( 8 ) 4 . 2 ( 2 ) S e ( 1 6 ) 0 . 8 1 2 7 ( 6 ) 0 . 5 8 3 6 ( 4 ) - 0 . 0 9 3 2 ( 8 ) 4 . 2 ( 2 ) S e ( 1 7 ) 1 . 0 0 4 6 ( 6 ) 0 . 5 7 1 9 ( 5 ) 0 . 5 0 6 ( 1 ) 5 . 6 ( 3 ) S e ( 1 8 ) 0 . 9 6 7 7 ( 6 ) 0 . 6 7 3 8 ( 4 ) 0 . 5 6 3 7 ( 9 ) 4 . 8 ( 2 ) S e ( 1 9 ) 0 . 6 8 3 2 ( 6 ) 0 . 4 1 7 4 ( 4 ) 0 . 3 8 8 2 ( 8 ) 4 . 3 ( 2 ) S e ( 2 0 ) 0 . 6 1 8 4 ( 6 ) 0 . 5 0 7 8 ( 4 ) 0 . 4 1 9 2 ( 8 ) 4 7 ( 2 ) T a b l e 2 - 1 2 . ( c o n t ' d ) 6 9 a t o m x y z B ( e g ) S e ( 2 1 ) 0 . 9 5 3 7 ( 6 ) 0 . 6 0 1 4 ( 4 ) 0 . 1 9 3 0 ( 8 ) 3 . 9 ( 2 ) S e ( 2 2 ) 0 . 8 6 3 7 ( 6 ) 0 . 6 6 9 3 ( 4 ) 0 . 2 4 4 6 ( 7 ) 3 . 4 ( 2 ) S e ( 2 3 ) 0 . 8 1 7 5 ( 6 ) 0 . 5 4 3 5 ( 4 ) 0 . 5 6 4 7 ( 8 ) 3 . 9 ( 2 ) S e ( 2 4 ) 0 . 7 7 4 2 ( 6 ) 0 . 6 3 2 3 ( 4 ) 0 . 4 8 9 1 ( 8 ) 3 . 5 ( 2 ) S e ( 2 5 ) 0 . 6 9 4 3 ( 6 ) 0 . 4 8 1 8 ( 4 ) 0 . 0 9 1 4 ( 8 ) 4 . 0 ( 2 ) S e ( 2 6 ) 0 . 6 9 7 9 ( 6 ) 0 . 5 9 2 6 ( 4 ) 0 . 1 7 8 9 ( 8 ) 3 . 9 ( 2 ) S e ( 2 7 ) 0 . 4 4 9 7 ( 6 ) 0 . 8 1 7 9 ( 4 ) 0 . 3 2 9 1 ( 8 ) 3 . 4 ( 2 ) S e ( 2 8 ) 0 . 4 7 2 4 ( 6 ) 0 . 8 0 9 5 ( 4 ) 0 . 6 8 5 1 ( 8 ) 4 . 0 ( 2 ) S e ( 2 9 ) 0 . 5 8 9 1 ( 6 ) 0 . 7 8 3 6 ( 4 ) 0 . 7 2 0 7 ( 8 ) 3 . 9 ( 2 ) S e ( 3 0 ) 0 . 3 9 3 1 ( 6 ) 0 . 6 6 9 7 ( 4 ) 0 . 0 8 4 0 ( 8 ) 3 . 6 ( 2 ) S e ( 3 1 ) 0 . 4 9 7 9 ( 6 ) 0 . 6 1 5 6 ( 4 ) 0 . 0 5 7 7 ( 8 ) 4 . 1 ( 2 ) S e ( 3 2 ) 0 . 5 3 4 1 ( 6 ) 0 . 9 5 8 5 ( 4 ) 0 . 2 1 3 7 ( 8 ) 3 . 5 ( 2 ) S e ( 3 3 ) 0 . 6 5 6 9 ( 6 ) 0 . 9 4 0 8 ( 4 ) 0 . 2 0 7 6 ( 8 ) 4 . 1 ( 2 ) S e ( 3 4 ) 0 . 4 7 0 4 ( 6 ) 0 . 6 7 4 6 ( 4 ) 0 . 4 1 7 7 ( 8 ) 3 . 3 ( 2 ) S e ( 3 5 ) 0 . 5 9 5 7 ( 6 ) 0 . 6 8 5 8 ( 4 ) 0 . 3 8 8 6 ( 8 ) 3 . 5 ( 2 ) S e ( 3 6 ) 0 . 5 2 7 8 ( 6 ) 0 . 7 9 3 6 ( 4 ) 0 . 0 4 6 9 ( 8 ) 3 . 4 ( 2 ) S e ( 3 7 ) 0 . 6 3 1 0 ( 5 ) 0 . 7 6 0 6 ( 4 ) 0 . 1 5 1 6 ( 7 ) 3 . 2 ( 2 ) S e ( 3 8 ) 0 . 5 8 3 4 ( 5 ) 0 . 9 1 3 7 ( 4 ) 0 . 5 2 4 4 ( 7 ) 3 . 1 ( 2 ) S e ( 3 9 ) 0 . 6 6 7 3 ( 6 ) 0 . 8 4 0 4 ( 4 ) 0 . 4 5 9 3 ( 8 ) 3 . 4 ( 2 ) S e ( 4 0 ) 0 . 7 3 5 8 ( 6 ) 0 . 7 2 9 1 ( 5 ) 0 . 3 3 8 8 ( 9 ) 5 . 1 ( 3 ) K ( l ) 0 . 5 7 8 ( 1 ) - 0 . 0 6 6 3 ( 8 ) - O . 1 0 7 ( 2 ) 3 . 5 ( 5 ) K ( 2 ) 1 . 0 1 6 ( 1 ) 0 . 4 1 1 ( 1 ) 0 . 1 7 3 ( 2 ) 4 . 7 ( 5 ) K ( 3 ) 0 . 6 3 5 ( 1 ) 0 . 0 7 5 ( 1 ) 0 . 4 3 8 ( 2 ) 5 . 6 ( 6 ) K ( 4 ) 0 . 4 5 7 ( 1 ) 0 . 6 7 0 ( 1 ) 0 . 7 7 7 ( 2 ) 6 . 3 ( 6 ) K ( 5 ) 0 . 5 3 8 ( 2 ) 0 . 5 0 0 ( 1 ) 0 . 7 8 1 ( 2 ) 3 . 9 ( 7 ) K ( S ' ) 0 . 3 3 0 ( 3 ) - 0 . 4 8 7 ( 2 ) 0 . 2 7 0 ( 4 ) 3 ( 1 ) K ( 6 ) 0 . 7 3 1 ( 2 ) 0 . 3 7 8 ( 1 ) 0 . 7 1 1 ( 2 ) 4 . 1 ( 7 ) K ( 6 ' ) 0 . 8 3 0 ( 4 ) 0 . 3 6 6 ( 3 ) - 0 . 4 2 0 ( 5 ) 4 ( 2 ) T a b l e 2 - 1 2 . ( c o n t ' d ) 7 O a t o m 3 1 y z B ( e q ) K ( 8 ) 0 . 9 1 8 ( 2 ) 0 . 2 7 2 ( 1 ) - 0 . 3 8 4 ( 2 ) 3 . 2 ( 7 ) K ( 8 ' ) 0 . 9 9 2 ( 3 ) 0 . 1 2 5 ( 2 ) - 0 . 3 9 4 ( 5 ) 4 ( 1 ) K ( 9 ) 1 . 0 1 5 ( 4 ) 0 . 0 2 1 ( 3 ) - 0 . 3 5 0 ( 6 ) 6 ( 2 ) K ( 9 ' ) 0 . 9 5 1 ( 4 ) 0 . 0 8 2 ( 3 ) - 0 . 6 0 7 ( 5 ) 5 ( 2 ) K ( 9 * ) 0 . 9 1 4 ( 4 ) 0 . 0 5 4 ( 3 ) - 0 . 2 8 6 ( 5 ) 4 ( 1 ) a B ( e q ) = 4 3 1 2 1 2 6 1 1 + b 2 1 3 2 2 + c 2 6 3 3 + a b ( c o s v ) fi 1 2 + a c ( c o s B ) B 1 3 + b c ( c o s a ) fi 2 3 ] . 7 1 T a b l e 2 - 1 3 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r K 6 M o 6 S e 2 7 - 6 H 2 0 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) M 0 ( 1 ) 0 . 3 9 6 3 ( 4 ) 0 . 2 0 2 7 ( 3 ) 0 . 1 5 9 8 ( 1 ) 0 . 6 ( 2 ) M 0 ( 2 ) 0 . 5 9 2 1 ( 4 ) 0 . 2 6 5 2 ( 2 ) 0 . 1 1 1 6 ( 1 ) 0 . 6 ( 2 ) M 0 ( 3 ) 0 . 3 7 4 6 ( 4 ) 0 . 3 5 0 1 ( 3 ) 0 . 1 2 8 5 ( 1 ) 0 . 5 ( 2 ) M 0 ( 4 ) 0 . 4 4 7 1 ( 4 ) 0 . 2 7 8 3 ( 2 ) 0 . 3 8 7 7 ( 1 ) 0 . 6 ( 2 ) M 0 ( 5 ) 0 . 6 7 2 3 ( 4 ) 0 . 3 5 5 1 ( 2 ) 0 . 4 2 8 7 ( 2 ) 0 . 7 ( 2 ) M 0 ( 6 ) 0 . 6 8 8 8 ( 4 ) 0 . 2 0 5 1 ( 2 ) 0 . 4 0 5 3 ( 2 ) 0 . 7 ( 2 ) S e ( 1 ) 0 . 3 5 9 0 ( 5 ) 0 . 2 4 1 7 ( 3 ) 0 . 0 7 0 1 ( 2 ) 1 . 0 ( 2 ) S e ( 2 ) 0 . 5 8 9 4 ( 5 ) 0 . 1 2 3 3 ( 3 ) 0 . 1 3 2 1 ( 2 ) 1 . 1 ( 2 ) S e ( 3 ) 0 . 6 3 8 5 ( 5 ) 0 . 2 0 9 0 ( 3 ) 0 . 1 9 9 1 ( 2 ) 1 . 0 ( 2 ) S e ( 4 ) 0 . 5 4 5 0 ( 5 ) 0 . 3 9 8 7 ( 3 ) 0 . 0 7 3 7 ( 2 ) 0 . 9 ( 2 ) S e ( 5 ) 0 . 6 1 2 3 ( 5 ) 0 . 3 8 7 6 ( 3 ) 0 . 1 6 1 1 ( 2 ) 0 . 9 ( 2 ) S e ( 6 ) 0 . 1 8 4 1 ( 5 ) 0 . 2 8 0 9 ( 3 ) 0 . 1 6 2 9 ( 2 ) 1 . 2 ( 2 ) S e ( 7 ) 0 . 3 7 7 1 ( 5 ) 0 . 3 1 1 2 ( 3 ) 0 . 2 1 8 7 ( 2 ) 0 . 8 ( 2 ) S e ( 8 ) 0 . 2 5 0 2 ( 5 ) 0 . 0 8 4 6 ( 3 ) 0 . 1 4 1 1 ( 2 ) 1 . 5 ( 2 ) S e ( 9 ) 0 . 3 3 2 5 ( 6 ) 0 . 1 0 6 8 ( 3 ) 0 . 2 2 6 2 ( 2 ) 1 . 5 ( 2 ) S e ( 1 0 ) 0 . 6 9 3 0 ( 5 ) 0 . 2 3 1 5 ( 3 ) 0 . 0 3 1 5 ( 2 ) 1 . 3 ( 2 ) S e ( 1 1 ) 0 . 8 4 7 2 ( 5 ) 0 . 2 6 5 9 ( 3 ) 0 . 1 0 2 3 ( 2 ) 1 . 1 ( 2 ) S e ( 1 2 ) 0 . 1 9 5 5 ( 6 ) 0 . 4 2 6 0 ( 3 ) 0 . 0 7 0 9 ( 2 ) 1 . 6 ( 2 ) S e ( 1 3 ) 0 . 2 8 0 4 ( 6 ) 0 . 4 8 1 9 ( 3 ) 0 . 1 4 7 5 ( 2 ) 1 . 7 ( 2 ) S e ( 1 4 ) 0 . 5 7 0 4 ( 5 ) 0 . 2 5 2 8 ( 3 ) 0 . 4 7 3 5 ( 2 ) 0 . 8 ( 2 ) S e ( 1 5 ) 0 . 4 3 5 9 ( 5 ) 0 . 4 1 4 8 ( 3 ) 0 . 4 2 1 3 ( 2 ) 0 . 9 ( 2 ) S e ( 1 6 ) 0 . 5 2 8 8 ( 5 ) 0 . 3 9 3 7 ( 3 ) 0 . 3 4 6 9 ( 2 ) 0 . 9 ( 2 ) S e ( 1 7 ) 0 . 8 8 9 8 ( 5 ) 0 . 2 7 7 8 ( 3 ) 0 . 4 5 2 5 ( 2 ) 1 . 0 ( 2 ) S e ( 1 8 ) 0 . 8 2 0 1 ( 5 ) 0 . 3 0 5 6 ( 3 ) 0 . 3 6 7 9 ( 2 ) 0 . 7 ( 2 ) S e ( 1 9 ) 0 . 4 6 4 6 ( 5 ) 0 . 1 3 3 6 ( 3 ) 0 . 3 7 6 6 ( 2 ) 0 . 7 ( 2 ) S e ( 2 0 ) 0 . 5 4 9 5 ( 5 ) 0 . 2 1 3 0 ( 3 ) 0 . 3 1 9 8 ( 2 ) 0 . 8 ( 2 ) S e ( 2 1 ) 0 . 2 1 0 9 ( 5 ) 0 . 2 5 6 1 ( 3 ) 0 . 4 0 9 9 ( 2 ) 1 . 1 ( 2 ) T a b l e 2 - 1 3 . ( c o n t ' d ) 7 2 a t o m x y z B ( e q ) S e ( 2 2 ) 0 . 2 2 3 1 ( 5 ) 0 . 2 8 7 8 ( 3 ) 0 . 3 2 6 7 ( 2 ) 1 . 3 ( 2 ) S e ( 2 3 ) 0 . 7 4 7 6 ( 6 ) 0 . 4 2 8 5 ( 3 ) 0 . 5 1 0 3 ( 2 ) 1 . 4 ( 2 ) S e ( 2 4 ) 0 . 7 8 7 9 ( 5 ) 0 . 4 8 7 7 ( 3 ) 0 . 4 3 7 6 ( 2 ) 1 . 2 ( 2 ) S e ( 2 5 ) 0 . 7 8 7 3 ( 5 ) 0 . 0 8 7 6 ( 3 ) 0 . 4 5 6 0 ( 2 ) 1 . 1 ( 2 ) S e ( 2 6 ) 0 . 8 2 5 9 ( 6 ) 0 . 0 9 6 5 ( 3 ) 0 . 3 7 1 5 ( 2 ) 1 . 3 ( 2 ) S e ( 2 7 ) 0 . 6 5 8 4 ( 5 ) 0 . 3 3 9 6 ( 3 ) 0 . 2 6 6 5 ( 2 ) 1 . 0 ( 2 ) K ( 1 ) 0 . 3 7 8 ( 1 ) 0 . 5 8 2 2 ( 8 ) 0 . 0 5 1 8 ( 5 ) 3 . 1 ( 3 ) K ( 2 ) 0 . 6 1 0 ( 1 ) - 0 . 0 4 7 4 ( 7 ) 0 . 3 9 9 9 ( 4 ) 1 . 6 ( 2 ) K ( 3 ) 0 . 0 6 3 ( 2 ) 0 . 1 3 5 7 ( 9 ) 0 . 2 9 1 9 ( 5 ) 3 . 7 ( 3 ) K ( 4 ) 0 . 9 5 5 ( 1 ) 0 . 1 0 2 8 ( 8 ) 0 . 0 5 4 8 ( 5 ) 2 . 5 ( 3 ) K ( 5 ) 0 . 5 9 3 ( 2 ) 0 . 0 7 6 ( 1 ) 0 . 9 3 8 5 ( 6 ) 4 . 1 ( 4 ) K ( 6 ) 0 . 6 2 6 ( 2 ) 0 . 0 0 8 ( 1 ) 0 . 2 4 2 9 ( 6 ) 4 . 2 ( 4 ) 0 ( 1 ) 0 . 1 3 4 ( 4 ) 0 . 6 0 5 ( 2 ) — 0 . 0 0 2 ( 1 ) 2 . 6 ( 8 ) 0 ( 2 ) 0 . 4 9 9 ( 3 ) - 0 . 0 7 1 ( 2 ) 0 . 3 0 2 ( 1 ) 1 . 3 ( 7 ) 0 ( 3 ) 0 . 8 8 7 ( 4 ) 0 . 0 2 9 ( 2 ) 0 . 2 4 7 ( 1 ) 2 . 3 ( 8 ) 0 ( 4 ) - 0 . 0 3 1 ( 4 ) 0 . 1 2 4 ( 2 ) 0 . 1 7 7 ( 1 ) 4 ( 1 ) 0 ( 5 ) - 0 . 0 5 0 ( 5 ) 0 . 2 7 9 ( 3 ) 0 . 2 4 3 ( 2 ) 6 ( 1 ) 0 ( 6 ) 0 . 4 6 2 ( 5 ) - 0 . 0 5 9 ( 3 ) 0 . 1 6 5 ( 2 ) 5 ( 1 ) a B ( e q ) = 4 / 3 [ a 2 6 1 1 + b 2 1 5 2 2 + c 2 6 3 3 + a b ( c o s v ) ( 5 1 2 + 2 1 9 0 0 8 1 8 6 1 3 + b C ( c o s a ) 5 2 3 l . T a b l e 2 - 1 4 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t 1 ' 0 p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r 7 3 K 2 M o 3 S e 1 8 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) M 0 1 0 . 9 1 0 1 ( 5 ) 0 . 2 3 0 6 ( 4 ) 0 . 5 0 9 6 ( 5 ) 0 . 6 ( 1 ) M 0 2 0 . 7 5 1 4 ( 5 ) 0 . 2 3 9 0 . 6 6 0 9 ( 5 ) 0 . 7 ( 1 ) M 0 3 1 . 0 5 4 0 ( 5 ) 0 . 2 5 1 7 ( 4 ) 0 . 8 0 1 3 ( 5 ) 0 . 6 ( 1 ) S e l 0 . 8 9 5 5 ( 6 ) 0 . 3 9 0 9 ( 6 ) 0 . 6 3 5 8 ( 6 ) 1 . 3 ( 1 ) S e 2 0 . 9 1 0 0 ( 7 ) 0 . 1 5 5 1 ( 6 ) 0 . 2 7 5 9 ( 7 ) 1 . 7 ( 2 ) S e 3 0 . 8 9 1 9 ( 7 ) 0 . 3 3 8 1 ( 6 ) 0 . 2 9 2 3 ( 6 ) 1 . 3 ( 1 ) S e 4 0 . 8 8 9 4 ( 7 ) 0 . 9 0 5 4 ( 6 ) 0 . 6 8 9 1 ( 7 ) 2 . 0 ( 2 ) S e S 1 . 1 0 0 6 ( 6 ) 0 . 1 0 1 4 ( 6 ) 0 . 6 6 7 8 ( 6 ) 1 . 2 ( 1 ) S e 6 1 . 1 9 0 9 ( 6 ) 0 . 2 6 4 2 ( 6 ) 0 . 6 4 0 9 ( 7 ) 1 . 5 ( 1 ) S e 7 0 . 8 9 2 8 ( 7 ) 0 . 2 8 2 0 ( 6 ) 0 . 9 3 0 8 ( 6 ) 1 . 3 ( 1 ) S e 8 0 . 9 0 7 7 ( 6 ) 0 . 1 1 1 1 ( 5 ) 0 . 8 5 4 3 ( 6 ) 1 . 1 ( 1 ) S e 9 0 . 7 3 6 3 ( 6 ) 0 . 0 8 5 7 ( 5 ) 0 . 4 9 6 0 ( 6 ) 1 . 1 ( 1 ) S e 1 0 0 . 6 2 6 9 ( 6 ) 0 . 2 4 5 0 ( 6 ) 0 . 3 8 5 4 ( 6 ) 1 . 1 ( 1 ) S e 1 1 1 . 1 7 4 0 ( 7 ) 0 . 4 3 4 8 ( 6 ) 0 . 9 0 2 4 ( 7 ) 1 . 8 ( 2 ) S e 1 2 1 . 4 2 1 7 ( 7 ) 0 . 4 2 8 2 ( 6 ) 1 . 0 7 3 8 ( 6 ) 1 . 5 ( 1 ) S e 1 3 0 . 5 6 4 2 ( 7 ) - 0 . 0 3 6 3 ( 6 ) 0 . 7 0 2 7 ( 7 ) 1 . 5 ( 1 ) S e 1 4 0 . 5 2 6 3 ( 6 ) 0 . 1 4 9 5 ( 5 ) 0 . 6 7 1 4 ( 6 ) 1 . 1 ( 1 ) S e 1 5 1 . 2 8 3 1 ( 7 ) 0 . 1 8 9 1 ( 6 ) 1 . 0 3 4 0 ( 7 ) 1 . 4 ( 1 ) S e l 6 1 . 2 3 7 5 ( 8 ) 0 . 0 0 4 3 ( 6 ) 1 . 0 1 9 0 ( 8 ) 2 . 2 ( 2 ) $ 0 1 7 0 . 5 3 8 9 ( 6 ) 0 . 4 2 6 5 ( 6 ) 0 . 8 3 1 0 ( 6 ) 1 . 3 ( 1 ) S e 1 8 0 . 5 5 4 4 ( 6 ) 0 . 3 8 7 1 ( 6 ) 0 . 6 2 1 7 ( 6 ) 1 . 5 ( 1 ) K 1 0 . 7 3 6 ( 2 ) 0 . 6 5 2 ( 2 ) 0 . 6 6 1 ( 2 ) 3 . 2 ( 4 ) K 2 0 . 5 8 5 ( 2 ) 0 . 1 9 0 ( 2 ) 1 . 0 0 7 ( 2 ) 3 . 7 ( 5 ) a B ( e q ) = 4 / 3 l a 2 6 1 1 + b 2 6 3 2 2 + c 2 6 3 3 + a b ( c o s v ) 6 1 2 + a c ( c o s B ) 6 1 3 + b c ( c o s a ) 6 2 3 l . T a b l e 2 - 1 5 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r 7 4 K 1 2 M 0 1 2 S e 5 6 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) M 0 ( 1 ) 0 . 3 1 4 2 ( 2 ) 0 . 4 5 4 3 ( 3 ) 0 . 5 7 5 6 0 . 0 ( 1 ) M 0 ( 2 ) 0 . 2 5 3 4 ( 2 ) 0 . 4 9 1 4 ( 3 ) 0 . 6 8 6 0 ( 4 ) 0 . 3 ( 1 ) M 0 ( 3 ) 0 . 1 9 7 8 ( 2 ) 0 . 4 4 9 6 ( 3 ) 0 . 5 7 3 1 ( 4 ) 0 . 1 ( 1 ) M 0 ( 4 ) 0 . 0 5 7 6 ( 2 ) 0 . 6 9 4 5 ( 3 ) 0 . 3 9 3 3 ( 3 ) - 0 . 2 ( 1 ) M 0 ( 5 ) 0 3 / 4 0 . 2 8 7 8 ( 5 ) 0 . 2 ( 2 ) M 0 ( 6 ) 0 . 0 5 6 9 ( 2 ) 0 . 2 3 3 8 ( 3 ) 0 . 3 9 1 1 ( 3 ) 0 . 1 ( 1 ) M 0 ( 7 ) 0 1 / 4 0 . 2 7 5 7 ( 5 ) 0 . 1 ( 2 ) S e ( 1 ) 0 . 2 5 3 4 ( 3 ) 0 . 5 6 9 9 ( 4 ) 0 . 5 8 4 8 ( 4 ) 0 . 4 ( 1 ) S e ( 2 ) 0 . 4 0 7 6 ( 3 ) 0 . 3 9 5 3 ( 4 ) 0 . 5 3 1 1 ( 4 ) 1 . 0 ( 1 ) S e ( 3 ) 0 . 3 9 1 4 ( 3 ) 0 . 5 2 4 4 ( 4 ) 0 . 5 0 9 9 ( 4 ) 0 . 9 ( 1 ) S e ( 4 ) 0 . 2 5 4 0 ( 3 ) 0 . 4 8 2 6 ( 4 ) 0 . 8 1 6 6 ( 4 ) 1 . 1 ( 1 ) S e ( 5 ) 0 . 2 5 1 7 ( 3 ) 0 . 6 0 4 3 ( 4 ) 0 . 7 6 9 1 ( 4 ) 1 . 1 ( 1 ) S e ( 6 ) 0 . 2 5 8 1 ( 3 ) 0 . 4 3 1 8 ( 4 ) 0 . 4 6 8 9 ( 4 ) 0 . 4 ( 1 ) S e ( 7 ) 0 . 2 5 8 7 ( 3 ) 0 . 3 3 6 1 ( 4 ) 0 . 5 4 9 9 ( 4 ) 0 . 3 ( 1 ) S e ( 8 ) 0 . 3 6 2 5 ( 3 ) 0 . 5 0 7 9 ( 4 ) 0 . 6 8 3 6 ( 4 ) 0 . 6 ( 1 ) S e ( 9 ) 0 . 3 2 4 0 ( 3 ) 0 . 3 8 2 5 ( 4 ) 0 . 6 8 4 2 ( 4 ) 0 . 6 ( 1 ) S e ( 1 0 ) 0 . 1 4 4 0 ( 3 ) 0 . 5 0 5 8 ( 4 ) 0 . 6 7 3 6 ( 4 ) 0 . 6 ( 1 ) S e ( 1 1 ) 0 . 1 8 9 8 ( 3 ) 0 . 3 7 4 5 ( 4 ) 0 . 6 8 2 5 ( 4 ) 0 . 4 ( 1 ) S e ( 1 2 ) 0 . 2 5 2 7 ( 3 ) 0 . 2 5 7 0 ( 4 ) 0 . 6 7 6 2 ( 4 ) 0 . 9 ( 1 ) S e ( 1 3 ) 0 . 1 2 2 3 ( 3 ) 0 . 5 1 5 5 ( 4 ) 0 . 4 9 6 8 ( 4 ) 0 . 5 ( 1 ) S e ( 1 4 ) 0 . 1 1 0 7 ( 3 ) 0 . 3 5 9 3 ( 4 ) 0 . 5 5 1 0 ( 4 ) 0 . 5 ( 1 ) S e ( 1 5 ) 0 0 . 8 1 0 4 ( 6 ) 0 . 4 0 0 8 ( 5 ) 0 . 6 ( 2 ) S e ( 1 6 ) 0 . 1 5 3 0 ( 3 ) 0 . 6 2 3 6 ( 4 ) 0 . 4 3 3 4 ( 4 ) 0 . 6 ( 1 ) S e ( 1 7 ) 0 . 1 3 4 4 ( 3 ) 0 . 7 4 9 5 ( 4 ) 0 . 4 7 2 6 ( 4 ) 0 . 8 ( 1 ) S e ( 1 8 ) 0 0 . 5 7 4 9 ( 6 ) 0 . 4 0 8 1 ( 5 ) 0 . 6 ( 2 ) S e ( 1 9 ) 0 0 . 6 5 7 1 ( 6 ) 0 . 4 9 8 4 ( 5 ) 0 . 3 ( 2 ) S e ( 2 0 ) 0 0 . 8 7 6 1 ( 7 ) 0 . 2 2 4 4 ( 6 ) 1 . 7 ( 2 ) T a b l e 2 - 1 5 . ( c o n t ' d ) 7 5 a t o m 3 1 y z B ( e q ) S e ( 2 1 ) 0 0 . 7 6 3 4 ( 7 ) 0 . 1 6 2 1 ( 6 ) 1 . 7 ( 2 ) S e ( 2 2 ) 0 . 1 1 0 0 ( 3 ) 0 . 7 6 5 1 ( 4 ) 0 . 2 9 9 5 ( 4 ) 0 . 5 ( 1 ) S e ( 2 3 ) 0 . 0 6 7 0 ( 3 ) 0 . 6 3 8 9 ( 4 ) 0 . 2 7 8 3 ( 4 ) 0 . 5 ( 1 ) S e ( 2 4 ) 0 0 . 5 2 0 3 ( 6 ) 0 . 2 6 7 3 ( 6 ) 1 . 0 ( 2 ) S e ( 2 5 ) 0 0 . 3 5 0 8 ( 6 ) 0 . 3 6 7 2 ( 5 ) 0 . 4 ( 2 ) S e ( 2 6 ) 0 . 1 3 4 6 ( 3 ) 0 . 3 1 5 1 ( 4 ) 0 . 4 4 5 5 ( 4 ) 0 . 5 ( 1 ) S e ( 2 7 ) 0 . 1 5 0 7 ( 3 ) 0 . 1 8 5 5 ( 4 ) 0 . 4 5 0 7 ( 4 ) 1 . 0 ( 1 ) S e ( 2 8 ) 0 0 . 2 3 5 5 ( 6 ) 1 / 2 0 . 4 ( 2 ) S e ( 2 9 ) 0 0 . 1 2 2 4 ( 5 ) 0 . 4 3 4 1 ( 5 ) 0 . 3 ( 2 ) S e ( 3 0 ) 0 0 . 3 5 9 5 ( 6 ) 0 . 1 8 9 4 ( 6 ) 0 . 9 ( 2 ) S e ( 3 1 ) 0 0 . 2 3 5 7 ( 7 ) 0 . 1 4 8 0 ( 6 ) 1 . 4 ( 2 ) S e ( 3 2 ) 0 . 1 0 9 5 ( 3 ) 0 . 2 7 3 4 ( 4 ) 0 . 2 8 5 4 ( 4 ) 0 . 9 ( 1 ) S e ( 3 3 ) 0 0 6 8 0 ( 3 ) 0 . 1 4 4 0 ( 4 ) 0 . 2 9 6 2 ( 4 ) 0 . 6 ( 1 ) S e ( 3 4 ) 0 0 . 0 2 7 9 ( 7 ) 0 . 3 2 2 1 ( 6 ) 1 . 8 ( 2 ) K ( 1 ) 1 / 2 0 . 4 6 7 ( 2 ) 0 . 6 3 5 ( 2 ) 3 . 2 ( 7 ) K ( 2 ) 0 3 7 2 6 ( 8 ) 0 . 1 8 4 ( 1 ) 0 . 6 1 9 ( 1 ) 2 . 4 ( 4 ) K ( 3 ) 0 . 2 5 3 ( 1 ) 0 . 2 2 2 ( 1 ) 0 . 3 4 0 ( 1 ) 3 . 0 ( 4 ) K ( 4 ) 0 . 3 7 8 ( 1 ) 0 . 4 4 1 ( 1 ) 0 . 3 6 0 ( 1 ) 3 . 1 ( 5 ) K ( 5 ) 0 1 2 9 7 ( 8 ) 0 . 1 8 5 ( 1 ) 0 . 6 2 1 ( 1 ) 2 . 4 ( 4 ) K ( 6 ) 0 0 . 4 8 0 ( 2 ) 0 . 5 9 3 ( 1 ) 3 . 2 ( 6 ) K ( 7 ) 0 1 2 4 0 ( 7 ) 0 . 4 6 0 ( 1 ) 0 . 3 2 9 9 ( 9 ) 1 . 6 ( 3 ) a B ( e q ) = 4 / 3 [ a 2 6 1 1 + b 2 1 3 2 2 + c 2 0 3 3 + a b ( c o s v ) 6 1 2 + a c ( c o s fi ) ( 3 1 3 + b c ( c o s a ) 6 2 3 ] . 7 6 3 . R e s u l t s a n d D i s c u s s i o n 3 . 1 . S y n t h e s i s T h e s y n t h e s e s o f ( I ) ~ ( I X ) w e r e p e r f o r m e d i n e i t h e r t h i c k w a l l P y r e x - g l a s s t u b e s o r a u t o c l a v e s a t ~ 1 3 5 0 C . A v e r y s m a l l a m o u n t o f w a t e r i s u s e d ( ~ 6 % fi l l i n g ) , a n d a t n o t i m e d u r i n g t h e r e a c t i o n i s i t c o m p l e t e l y e v a p o r a t e d . T h e c r y s t a l s g r o w i n t h e l i q u i d p h a s e o f t h e c o n t a i n e r . T h e s m a l l v o l u m e o f w a t e r u s e d i s b e n e f i c i a l b e c a u s e i t g e n e r a t e s s u p e r s a t u r a t i o n c o n d i t i o n s a n d p r o m o t e s c r y s t a l g r o w t h . T h e c r y s t a l s f o r m e d d u r i n g t h e i s o t h e r m o f 1 3 5 ° C a n d n o t d u r i n g t h e c o o l - d o w n p e r i o d . T h e s e r e a c t i o n s i n v o l v e c o m p l i c a t e d r e d o x c h e m i s t r y b e t w e e n M o m e t a l a n d S e 4 2 ‘ o r b e t w e e n M 0 0 3 a n d S e 2 2 ' . A l l t h e s t r u c t u r e s e x c e p t ( I X ) c o n t a i n t r i m e r i c [ M 0 3 S e 7 ] 4 + c o r e s a s b u i l d i n g b l o c k s i n w h i c h t h e f o r m a l o x i d a t i o n s t a t e o f M o c a n b e a s s i g n e d a s + 4 . ( I X ) c o n t a i n s a d i m e r i c [ M o n z S e z ] 2 + c o r e i n w h i c h t h e f o r m a l o x i d a t i o n s t a t e o f M 0 i s + 5 . M 0 0 3 w a s c h o s e n a s a s t a r t i n g m a t e r i a l b e c a u s e i t p o s s e s s e s t h e a d v a n t a g e o f g i v i n g c l e a n r e a c t i o n s b y r e p l a c i n g o x y g e n a t o m s w i t h S e , f o r m i n g [ M o S e x O 4 - x ] 2 ‘ a n d h y d r o x i d e i n a q u e o u s s o l u t i o n . [ M Q 4 ] n ' ( M = M o , W ; Q = S , S e ) h a v e b e e n u s e d a s s t a r t i n g m a t e r i a l s 4 i n c h a l c o g e n i d e s s y n t h e s i s a t a m b i e n t t e m p e r a t u r e . S u b s e q u e n t r e a c t i o n s a r e p r e s u m i n g l y i n t r a m o l e c u l a r e l e c t r o n t r a n s f e r o r s e l f - r e d o x r e a c t i o n s f o l l o w e d b y a s s e m b l i n g o f m e t a l c e n t e r s a n d c h e l a t i n g p o l y c h a l c o g e n i d e l i g a n d s . T h e x v a l u e s o f S 0 3 - p o l y s e l e n i d e c h a i n s a r e c r u c i a l f o r t h e s e r e a c t i o n s . L o n g e r p o l y s e l e n i d e c h a i n s s e r v e a s o x i d i z i n g a g e n t s w h i c h a c c e p t e l e c t r o n s f r o m M o m e t a l a n d b r e a k a p a r t i n t o s h o r t e r ( p o l y ) s e l e n i d e c h a i n s . H e a t i n g l o n g p o l y s e l e n i d e s 7 7 ( x 2 4 ) t h e m s e l v e s a t t h e s a m e h y d r o t h e r m a l c o n d i t i o n r e s u l t s i n t h e f o r m a t i o n e l e m e n t a l S e c r y s t a l s a n d s h o r t e r S e y z ' ( y < 4 ) s p e c i e s d u e t o t h e s e l f — r e d o x c h e m i s t r y b e t w e e n t h e p o l y s e l e n i d e s . M 0 0 3 , i n w h i c h M o h a s t h e + 6 o x i d a t i o n s t a t e , a l s o s e r v e s a s a n o x i d i z i n g a g e n t . I t i s t h u s n o t s u r p r i s i n g t h a t t h e r e a c t i o n o f M 0 0 3 a n d 8 0 4 2 ' a l s o g i v e s e l e m e n t a l S e c r y s t a l s . T o a v o i d t h e f o r m a t i o n o f e l e m e n t a l s e l e n i u m , s h o r t e r p o l y s e l e n i d e c h a i n s h a v e t o b e u s e d . S e 2 2 ' w a s f o u n d t o b e t h e b e s t p o l y s e l e n i d e l e n g t h i f M 0 0 3 i s u s e d a s t h e m o l y b d e n u m s o u r c e . T o u s e l o n g e r p o l y s e l e n i d e c h a i n s a s s t a r t i n g m a t e r i a l , m o l y b d e n u m m e t a l w a s f o u n d s u i t a b l e b e c a u s e i t i s a r e d u c i n g a g e n t , g i v i n g e l e c t r o n s t o b r e a k p o l y s e l e n i d e s i n t o s h o r t e r c h a i n s , a n d t h u s d r i v i n g t h e r e a c t i o n s a w a y f r o m s e l e n i u m f o r m a t i o n . I t i s i n t e r e s t i n g t o c o m m e n t o n h o w t h e s e K / M o / S e p h a s e s m i g h t f o r m . T h e f a c t t h a t t h e [ M 0 3 S e 7 ] 4 + c o r e o c c u r s i n a l l e i g h t p h a s e s c h a r a c t e r i z e d t h u s f a r s u g g e s t s t h a t t h e c o r e h a s c o n s i d e r a b l e t h e r m o d y n a m i c s t a b i l i t y a n d f o r m s r e a d i l y u n d e r h y d r o t h e r m a l c o n d i t i o n s . I n s o l u t i o n t h e t r i n u c l e a r [ M 0 3 S e 7 ] 4 + c o r e i s p r o b a b l y l i g a t e d b y S e x z ‘ l i g a n d s . T h e v a r i o u s { [ M o 3 S e 7 ] ( S e x ) n } Z ‘ c o m p l e x e s p r e s e n t i n s o l u t i o n d u r i n g t h e r e a c t i o n p r o v i d e a n e f fi c i e n t m a s s - t r a n s p o r t a n d d i s s o l u t i o n - r e p r e c i p i t a t i o n m e c h a n i s m , b o t h o f w h i c h a r e n e c e s s a r y f o r c r y s t a l g r o w t h . T h u s t h e e x c e s s S e x z ' l i g a n d s a c t a s e f f e c t i v e " m i n e r a l i z e r s " . T h e r o l e o f c o u n t e r i o n i n p h a s e f o r m a t i o n i s n o t c l e a r a t t h e m o m e n t b u t p r e l i m i n a r y o b s e r v a t i o n s i n d i c a t e t h a t i t m u s t b e s i g n i fi c a n t . F o r e x a m p l e , t h e f o r m a t i o n a n d c r y s t a l l i z a t i o n o f [ M 0 2 0 2 S 0 5 ] 2 ' i n t h e p r e s e n c e o f C s + s u g g e s t s t h a t m o r e t h a n o n e s p e c i e s o t h e r t h a n [ M 0 3 S e 7 ] 4 + e x i s t i n t h e p o l y s e l e n i d e s o l u t i o n s . S o f a r , n o [ M 0 3 S e 7 ] 4 + c o n t a i n i n g p h a s e h a s b e e n 7 8 i s o l a t e d a s a C s + s a l t . T h e s i z e o f c o u n t e r i o n i s a n i m p o r t a n t f a c t o r f o r t h e c r y s t a l l i z a t i o n o f c e r t a i n s p e c i e s . T h e r e a c t i o n o f M 0 0 3 a n d K 2 S e z i n 1 : 2 r a t i o f o r t h r e e d a y s c o n s i s t e n t l y g a v e c r y s t a l s o f a - K 6 [ M 0 3 S e 1 3 ] 3 - ( K 2 8 e ) - 4 H 2 0 ( I I I ) . S u r p r i s i n g l y , t h e s a m e r e a c t i o n f o r a n e l o n g a t e d r e a c t i o n t i m e a f f o r d e d K 2 M o 3 S e 1 3 ( I I ) c r y s t a l s . H o w e v e r , t h e r e a c t i o n i s n o t c o n s i s t e n t . S o m e t i m e s a f e w v e r y l a r g e c r y s t a l s ( u p t o ~ 7 m m i n l e n g t h ) o f 0 1 - K 6 [ M o 3 S e 1 3 ] 3 - ( K 2 $ e ) - 4 H 2 0 ( I I I ) w e r e o b t a i n e d w i t h p r o l o n g e d r e a c t i o n t i m e . K 2 M o 3 S e 1 3 i s l i k e l y t o b e s l i g h t l y m o r e t h e r m o d y n a m i c a l l y s t a b l e ( i n s o l u b l e ) t h a n 0 1 - K 6 [ M o 3 S e 1 3 ] 3 - ( K 2 8 e ) - 4 H 2 0 ( I I I ) . T h e r e f o r e s m a l l fl u c t u a t i o n s i n r e a c t i o n c o n d i t i o n s m a y a l t e r t h e r e a c t i o n r o u t e t o t h e g r o w t h o f l a r g e r c r y s t a l s o f K 6 [ M 0 3 S e 1 3 ] 3 ~ ( K 2 8 0 ) - 4 H 2 0 ( I I I ) . W i t h t h e a d d i t i o n o f [ M e 4 N ] + , [ M 0 3 S e 1 3 ] 2 " c a n b e c r y s t a l l i z e d c o n s i s t e n t l y a s a n o r g a n i c c o u n t e r i o n s a l t , ( M e 4 N ) 2 [ M o 3 S e 1 3 ] ( I ) . N o [ ( M 0 3 S e 1 3 ) n ( S e ) ] 2 ( n + 1 ) - p h a s e s w e r e o b s e r v e d w i t h t h e a d d i t i o n o f o r g a n i c c o u n t e r i o n s . N a z s e z w a s u s e d a s s t a r t i n g m a t e r i a l t o a v o i d t h e c o m p e t i t i o n o f K / M o / S e p h a s e s . fi - K 8 M 0 9 S 0 4 o ( I V ) f o r m e d c o n s i s t e n t l y o n l y a t t h e p r e s e n c e o f [ E t 4 N ] + b u t d i d n o t i n c l u d e t h e o r g a n i c c a t i o n s i n t h e c r y s t a l l a t t i c e . T h e f u n c t i o n o f [ E t 4 N ] + i s n o t c l e a r . B a s e d o n t h e f a c t t h a t ( I V ) d o e s n o t c o n t a i n s o l v a t e d w a t e r m o l e c u l e s a n d i s i n s o l u b l e i n w a t e r , i t i s l i k e l y t h e ( I V ) c r y s t a l l i z e d i n a h y d r o p h o b i c p h a s e p r o v i d e d b y t h e o r g a n i c E t 4 N + c a t i o n . a - K 3 M 0 9 S e 4 o - 4 H 2 0 ( I I I ) , B - K g M o g S e 4 o ( I V ) a n d K 6 M o 6 S e 2 7 - 6 H 2 0 ( V ) c a n b e e x p r e s s e d b y t h e g e n e r a l f o r m u l a , K m [ M 0 3 S e l 3 ] n o ( K 2 8 0 ) - X H Z O ( m = 6 , n = 3 f o r ( 1 1 1 ) a n d ( I V ) ; m = 4 , n = 2 f o r ( V ) ) . T h e y a r e t h e c o c r y s t a l l i z a t i o n p r o d u c t s o f t h e [ M 0 3 S e 1 3 ] 2 ' c l u s t e r a n d t h e S e z z ' a n i o n i n t h e r a t i o o f 3 : 1 a n d 2 : 1 , r e s p e c t i v e l y . T h e t e n d e n c y o f s u c h 7 9 c o c r y s t a l l i z a t i o n i s d u e t o t h e a f fi n i t y o f [ M 0 3 S e 7 ] 4 + c o r e s f o r S e z - a n i o n s a n d w i l l b e d i s c u s s e d i n S e c t i o n 3 . 3 . ( I I I ) a n d ( I V ) a r e i s o s t r u c t u r a l a n d d i f f e r i n t h e w a y t h e [ M 0 3 S e 1 3 ] 2 — c l u s t e r s a n d S e 2 7 a n i o n s a r e p a c k e d i n t h e c r y s t a l l a t t i c e . ( V ) w a s o b t a i n e d u n d e r t h e s a m e c o n d i t i o n a s ( I I I ) e x c e p t t w o m o r e e q u i v a l e n t s o f K 2 8 e 2 w e r e a d d e d t o t h e r e a c t i o n m i x t u r e . W i t h m o r e S e x z ' l i g a n d i n s o l u t i o n , ( V ) , w h i c h h a s a l a r g e r K 2 S e t o K 2 M o 3 S e 1 3 r a t i o t h a n ( I I I ) , i s c r y s t a l l i z e d . K 2 M o 3 S e 1 3 ( V I ) w a s o b t a i n e d b y r e a c t i n g M o a n d K 2 S e 4 i n 1 : 1 5 r a t i o . U p o n u s i n g 2 ~ 3 e q u i v a l e n t s o f K 2 8 e 4 , K 1 0 M 0 1 2 S 0 5 8 ( V I I I ) w a s o b t a i n e d . U n l i k e t h e c r y s t a l s o f ( I ) ~ ( V ) , p l a t e - l i k e c r y s t a l s o f ( V I ) r a r e l y g r o w l a r g e r t h a n 0 . 5 m m . ( V I I I ) t e n d s t o g r o w t i n y h a i r - l i k e c r y s t a l s w i t h p o o r c r y s t a l l i n i t y . B o t h ( V I ) a n d ( V I I I ) a r e e x t e n d e d s t r u c t u r e s w i t h [ M 0 3 8 e 7 ] 4 + c o r e s l i n k e d b y t e t r a s e l e n i d e s i n ( V I ) a n d d i s e l e n i d e , h e x a s e l e n i d e s i n ( V I I I ) ( s e e S e c t i o n 3 . 2 . 3 a n d 3 . 2 . 5 ) . T h i s i n d i c a t e s t h e M o m e t a l i s o x i d i z e d b y S e 4 2 ‘ a n d s i m i l a r { [ M o 3 S e 7 ] ( S e x ) n } l ' c o m p l e x e s a r e p r e s e n t i n t h e p o l y s e l e n i d e s o l u t i o n s . T h e f o r m a t i o n o f ( V I ) a n d ( V I I I ) i n s t e a d o f K m [ M o 3 S e 1 3 ] n - ( K 2 S e ) p h a s e s i n t h e M o / S e 4 2 ‘ s o l u t i o n s i s l i k e l y b e c a u s e m o r e l o n g e r S e x ? " c h a i n s a r e a v a i l a b l e a n d t h u s d i r e c t t h e r e a c t i o n s t o t h e c r y s t a l l i z a t i o n o f ( V I ) a n d ( V I I I ) . I n v e r y f e w i n s t a n c e s , t h e r e a c t i o n o f M o a n d K 2 S e 4 i n a 1 : 2 r a t i o g a v e c r y s t a l s o f K 1 2 M 0 1 2 8 0 5 6 ( V I I ) , w h i c h w e r e f o u n d t o b e r e p r o d u c i b l e b y r e a c t i n g a m i x t u r e o f M o , M 0 0 3 a n d K 2 8 e 3 i n a r a t i o o f 3 : 2 : 6 . S i n c e b o t h M o a n d M 0 0 3 w e r e u s e d i n t h i s r e a c t i o n , S e 3 2 ' w h i c h h a s m e d i u m p o l y s e l e n i d e l e n g t h b e t w e e n S 0 2 2 - a n d S e 4 2 ' w a s c h o s e n . W e n o t e h e r e t h a t k n o w n M o / S e a n i o n s s u c h a s [ M o S e 4 ] 2 ‘ a n d [ ‘ M o S e 9 ] 2 ' , 4 t y p i c a l l y s y n t h e s i z e d a t a m b i e n t t e m p e r a t u r e b y u s i n g c o n v e n t i o n a l s o l u t i o n m e t h o d s , w e r e n o t o b s e r v e d u n d e r o u r h y d r o t h e r m a l 8 0 c o n d i t i o n s n o r d i d w e o b s e r v e a n y M o S 0 2 i m p u r i t y . W e a l s o d i d n o t d e t e c t f o r m a t i o n o f r e d u c e d M o / S e C h e v r e l p h a s e s , s u c h a s t h e m e m b e r s o f t h e A n _ 2 [ M 0 3 n S e 3 n + 2 ] ( A = a l k a l i i o n ) f a m i l y 6 , t y p i c a l l y p r e p a r e d b y h i g h t e m p e r a t u r e c e r a m i c m e t h o d s . 3 . 2 . D e s c r i p t i o n o f S t r u c t u r e s S t r u c t u r e s o f ( M e 4 N ) 2 M 0 3 S e 1 3 ( I ) a n d K 2 M 0 3 S e 1 3 ( I I ) T h e s t r u c t u r e s o f ( I ) a n d ( 1 1 ) c o n t a i n t h e s a m e [ M 0 3 S e l 3 ] 2 ' a n i o n . T h e [ M o 3 S e 1 3 ] 2 ' a n i o n i s i s o s t r u c t u r a l t o [ M 0 3 8 1 3 ] 2 ' a n d i s s h o w n i n F i g u r e 2 - 1 . I t i s c o m p o s e d o f a M 0 3 t r i a n g u l a r c o r e , a t r i p l y b r i d g i n g m o n o s e l e n i d e , t h r e e d o u b l y b r i d g i n g d i s e l e n i d e s a n d t h r e e t e r m i n a l d i s e l e n i d e s i n a n o v e r a l l C 3 v s y m m e t r y . T h e r e f o r e , t h e f o r m u l a c a n b e e x p r e s s e d a s [ M o 3 ( u 3 - S e ) ( u z - S e z ) 3 ( S e z ) 3 ] 2 ' . B y a s s i g n i n g t h e c h a r g e s t o 8 0 2 ‘ a n d S e 2 2 ‘ , t h e f o r m a l o x i d a t i o n s t a t e o f M o a t o m s i s 4 + . T h e t h r e e a x i a l S e a t o m s o f t h e t h r e e b r i d g i n g d i s e l e n i d e s ( S e ( 3 ) ) a r e i n t h e o p p o s i t e s i d e o f t h e M 0 3 p l a n e t o t h a t o f t h e t r i p l y b r i d g i n g m o n o s e l e n i d e ( S e ( 1 ) ) . T h e o t h e r t h r e e e q u a t o r i a l S e a t o m s ( S e ( 2 ) ) l i e v e r y c l o s e t o t h e M 0 3 p l a n e . T h i s r e s u l t s i n a [ M 0 3 S e 7 ] 4 + c o r e w h i c h h a s b e e n o b s e r v e d a l s o i n M o 3 S e 7 X 4 ( X = C l , B r ) 1 9 a n d M 0 3 S e 7 ( E t 2 N C 8 2 ) 4 2 0 . E a c h M o o n t h e c o m e r o f t h e [ M o 3 S e 7 ] 4 + c o r e i s c o o r d i n a t e d b y a t e r m i n a l S e z z ' l i g a n d i n a s i d e - o n f a s h i o n . T h e t h r e e t e r m i n a l d i s e l e n i d e s c a n a l s o b e d i v i d e d i n t o t h r e e a x i a l S e a t o m s ( S e ( 4 ) ) l o c a t e d b e l o w t h e M 0 3 p l a n e a n d t h r e e e q u a t o r i a l S e a t o m s ( S e ( 5 ) ) s l i g h t l y a b o v e t h e M 0 3 p l a n e . C o m p o u n d ( I ) c r y s t a l l i z e s i n a t r i g o n a l s p a c e g r o u p . A s s h o w n i n t h e p a c k i n g d i a g r a m o f F i g u r e 2 - 2 , a l l t h e d i s e l e n i d e s a r e s i t t i n g i n t h e t h r e e 8 1 m i r r o r p l a n e s . T h e c h a r g e c o m p e n s a t i n g t e t r a m e t h y l a m m o n i u m c a t i o n s a r e s i t t i n g i n 3 f o l d r o t a t i o n a x e s . ( I I ) c r y s t a l l i z e s i n t h e s a m e m o n o c l i n i c s p a c e g r o u p a s ( N H 4 ) 2 M 0 3 8 1 3 . 2 1 T h e p a c k i n g d i a g r a m o f ( I I ) i s s h o w n i n F i g u r e 2 - 3 . T h e l a t t i c e o f ( I I ) h a s l o w e r s y m m e t r y t h a n t h a t o f ( I ) b e c a u s e b y r e p l a c i n g t e t r a m e t h y l a m m o n i u m w i t h s m a l l e r K “ c a t i o n s , t h e l a t t i c e h a s t o b e s q u e e z e d t o a c h i e v e a m o r e e f fi c i e n t p a c k i n g . T h i s r e s u l t s i n a s h i f t o f t h e K “ c a t i o n s t o w a r d t h e [ M o 3 S e 1 3 ] 2 ' a n d l o s s o f t h e t h r e e f o l d r o t a t i o n a x e s . S e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s o f ( I ) a n d ( I I ) a r e g i v e n i n T a b l e 2 - 1 6 a n d 2 - 1 7 r e s p e c t i v e l y . T h e a v e r a g e M o - M o d i s t a n c e s f o r ( I ) a n d ( I I ) a r e n o r m a l a t 2 . 7 8 4 ( 6 ) ) 3 1 a n d 2 . 7 7 4 ( 5 ) A r e s p e c t i v e l y . T h e a v e r a g e M o t o t h e t r i p l y b r i d g i n g S e ( 1 ) d i s t a n c e i s 2 . 4 4 4 ( 7 ) ) 3 . i n ( I ) a n d i s c o m p a r a b l e t o t h o s e i n t h e [ M 0 3 S e 7 ] 4 + c o n t a i n i n g c o m p o u n d s . H o w e v e r , t h e c o r r e s p o n d i n g d i s t a n c e i n ( I I ) i s s u r p r i s i n g l y s h o r t a t 2 . 3 7 ( 4 ) Z \ . T h e r e a s o n i s n o t c l e a r . S h o r t i n t e r c l u s t e r S e - - - S e c o n t a c t s w i t h a [ M o 3 S e 1 3 ] 2 ' b e l o w S e ( 1 ) a s s h o w n b y t h e d a s h e d l i n e s i n F i g u r e 2 - 4 b a r e p r o b a b l y a t t r i b u t e d t o t h e s h o r t e n i n g o f t h e M o — S e d i s t a n c e s ( s e e d i s c u s s i o n b e l o w ) . T h e M o t o t h e a x i a l S e ( S e ( 3 ) i n ( I ) ; S e ( 3 ) a n d S e ( 7 ) i n ( I I ) ) d i s t a n c e s i n t h e b r i d g i n g d i s e l e n i d e s a r e s i g n i f i c a n t l y s h o r t e r t h a n t h o s e t o t h e e q u a t o r i a l S e a t o m s ( S e ( 2 ) i n ( I ) ; S e ( 2 ) a n d S e ( 6 ) i n ( 1 1 ) ) . T h e f o r m e r a v e r a g e 2 . 5 8 9 ( 4 ) } . a n d 2 . 5 4 9 ( 3 ) ) 3 1 ; t h e l a t t e r a v e r a g e 2 . 6 1 4 ( 4 ) ) 5 1 a n d 2 . 6 2 1 ( 7 ) A f o r ( I ) a n d ( I I ) r e s p e c t i v e l y . T h e d i f f e r e n c e s i n b o n d s t r e n g t h a r e c o n s i s t e n t w i t h t h e f a c t t h a t t h e e q u a t o r i a l s e l e n i d e s c a n b e e x t r a c t e d b y P h 3 P t o f o r m [ M 0 3 8 0 4 ] 4 + c o r e s . 2 2 S i m i l a r d i f f e r e n c e s a r e a l s o o b s e r v e d i n t h e M o t o t h e t e r m i n a l d i s e l e n i d e d i s t a n c e s . T h e M 0 t o t h e a x i a l S e ( S e ( 5 ) i n ( 1 ) ; S e ( 5 ) a n d S e ( 9 ) i n ( 1 1 ) ) d i s t a n c e s a v e r a g e 2 . 5 1 5 ( 6 ) A a n d 2 . 5 7 4 ( 2 ) A f o r ( I ) a n d ( I I ) r e s p e c t i v e l y . T h e M 0 t o t h e e q u a t o r i a l S e ( S e ( 4 ) i n ( I ) ; 8 2 S e ( 4 ) a n d S e ( 8 ) i n ( 1 1 ) ) a v e r a g e 2 . 6 2 0 ( 6 ) A a n d 2 . 6 1 4 ( 1 0 ) A f o r ( I ) a n d ( I I ) r e s p e c t i v e l y . T h e a v e r a g e b r i d g i n g d i s e l e n i d e d i s t a n c e s a r e 2 . 2 9 0 ( 6 ) A a n d 2 . 3 0 6 ( 6 ) A f o r ( I ) a n d ( I I ) ; t h e a v e r a g e t e r m i n a l d i s e l e n i d e d i s t a n c e s a r e s l i g h t l y l o n g e r a t 2 . 3 2 0 ( 7 ) A a n d 2 . 3 4 3 ( 7 ) A f o r ( I ) a n d ( I I ) r e s p e c t i v e l y . T h e s e v a l u e s a r e b e t w e e n t h e S e - S e d i s t a n c e ( 2 . 3 7 A ) o f e l e m e n t a l s e l e n i u m a n d t h a t o f t h e 8 0 2 m o l e c u l e i n t h e g a s p h a s e ( 2 . 1 9 1 1 ) . 2 3 T h e [ M 0 3 S e 1 3 ] 2 ' a n i o n s i n ( I ) a n d ( I I ) a r e s t a c k e d o n t o p o f o n e a n o t h e r v i a i n t e r c l u s t e r S e ~ ~ S e c o n t a c t s . T h e t r i p l y b r i d g i n g S e ( 1 ) a t o m i n t e r a c t s w i t h t h e t h r e e a x i a l s e l e n i u m a t o m s o f t h e t h r e e b r i d g i n g d i s e l e n i d e s i n a n o t h e r [ M o 3 S e 1 3 ] 2 ‘ a n i o n b e l o w i t a s s h o w n i n F i g u r e 2 - 4 . B o t h S e m S e c o n t a c t s a r e s i g n i fi c a n t l y s h o r t e r t h a n t h e s u m o f t h e v a n d e r W a a l s r a d i u s o f S e a t o m s . T h e S e n - S e s h o r t c o n t a c t s a r e s i g n i fi c a n t l y d i f f e r e n t a t 3 . 1 4 7 ( 7 ) A a n d 3 . 0 4 ( 1 ) A f o r ( I ) a n d ( I I ) r e s p e c t i v e l y . T h e d i f f e r e n c e i s l i k e l y d u e t o t h e s i z e s o f t h e c o u n t e r c a t i o n s . P o t a s s i u m c a t i o n s a r e s m a l l e r t h a n t h e t e t r a m e t h y l a m m o n i u m i o n s o t h a t t h e [ M 0 3 S e 1 3 ] 2 ' a r e f o r c e d t o p a c k m o r e c l o s e l y i n ( 1 1 ) . A s m e n t i o n e d e a r l i e r , ( N H 4 ) 2 M 0 3 8 1 3 i s i s o s t r u c t u r a l t o ( I I ) . T h e s i z e o f N H 4 + i s c o m p a r a b l e t o K ” . T h e c o r r e s p o n d i n g d i s t a n c e o f t h e S - - - S s h o r t c o n t a c t s i s 3 . 0 2 6 A . S i n c e t h e s i z e o f s u l f u r a t o m s i s s m a l l e r , t h i s i n t e r a c t i o n i s n o t a s p r o f o u n d a s i n t h e s e l e n i u m s y s t e m . 8 3 F i g u r e 2 - 1 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f [ M 0 3 8 e 1 3 1 2 ' . F i g u r e 2 - 2 : L a b e l i n g s c h e m e a n d p a c k i n g d i a g r a m o f ( M e 4 N ) 2 M 0 3 8 e 1 3 . V i e w d o w n ( A ) c - a x i s a n d ( B ) a - a x i s . 8 5 ( B ) C . : 1 " " I — u - r l — I ” 7 2 " " . - . \ ‘ fl a - S R V ’ s z . a v : 2 - o ‘ . _ l \ ? . m j § ‘ 3 4 R 0 ! 1 ' ‘ 7 ’ ‘ b ’ 4 R 0 ! 1 ' " ; 9 1 . — . 2 - - 4 0 " . 4 " “ ; V ‘ o . . ‘ o v u . o . ' . 0 . . ' o u t I ' O . O 1 ‘ V I ' 7 " , ‘ . 0 " . " 1 — 0 7 0 2 ‘ 3 1 ! ‘ v ’ . o . § ( 2 ‘ § 7 a . a ‘ - A \ ‘ i . a ' A - o ! ‘ \ t f a § ; . « 3 ‘ w . . A \ 3 7 ' « 1 " p ‘ 7 ' = ¥ 4 w a r m - r i 1 . 2 7 ‘ s : ’ 4 . . g ‘ 7 ‘ ! . O . o I u . . 7 , 3 4 . ) ' 6 . ‘ U ' F i g u r e 2 - 3 : L a b e l i n g s c h e m e a n d p a c k i n g d i a g r a m o f K 2 M o g S e l 3 . V i e w d o w n ( A ) c - a x i s a n d ( B ) a - a x i s . S e ( 3 ) S e ( 7 ) S e ( 3 ) F i g u r e 2 - 4 : L a b e l i n g s c h e m e a n d p a c k i n g d i a g r a m o f ( A ) ( M e 4 N ) 2 M 0 3 8 0 1 3 a n d ( B ) K 2 M 0 3 8 e 1 3 . D a s h e d l i n e s s h o w S e n - S e c o n t a c t s . 8 8 T a b l e 1 6 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r ( M e 4 N ) 2 M o 3 S e 1 3 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) M o - M o 2 . 7 8 4 ( 6 ) M o - S e ( 5 ) 2 . 5 1 5 ( 6 ) M o — S e ( l ) 2 . 4 4 4 ( 7 ) S e ( 2 ) - S e ( 3 ) 2 . 2 9 0 ( 6 ) M o - S e ( 2 ) 2 . 6 1 4 ( 4 ) S e ( 4 ) - S e ( 5 ) 2 . 3 2 0 ( 7 ) M o — S e ( 3 ) 2 . 5 8 9 ( 4 ) N ( 1 ) — C ( 1 ) 1 6 7 ( 8 ) M O - S e ( 4 ) 2 . 6 2 0 ( 6 ) N ( 1 ) - C ( 2 ) 1 4 2 ( 4 ) S e l e c t e d B o n d A n g l e s ( d e g ) M o - M o - M o 6 0 . 0 0 S e ( 3 ) - M o - S e ( 3 ) 8 3 . 5 ( 2 ) M o — M o — S e ( 1 ) 5 5 . 3 ( 1 ) S e ( 3 ) - M o - S e ( 4 ) 9 3 . 4 ( 1 ) M o - M o — S e ( 2 ) 5 7 . 8 3 ( 9 ) S e ( 3 ) — M o - S e ( 5 ) 1 2 9 . 4 ( 1 ) M o - M o — S e ( 3 ) 5 7 . 4 7 ( 8 ) S e ( 4 ) - M o - S e ( 5 ) 5 3 . 7 ( 2 ) S e ( 1 ) - M o — S e ( 2 ) 8 4 . 8 ( 1 ) M o — S e ( 1 ) - M o 6 9 . 4 ( 2 ) S e ( 1 ) - M o — S e ( 3 ) 1 1 2 . 2 ( 1 ) M o - S e ( 2 ) - M o 6 4 . 3 ( 2 ) S e ( 1 ) - M o — S e ( 4 ) 1 4 5 . 0 ( 2 ) M o — S e ( 3 ) - M o 6 5 . 1 ( 2 ) S e ( 1 ) - M o — S e ( 5 ) 9 1 . 3 ( 2 ) M o - S e ( 2 ) - S e ( 3 ) 6 3 . 3 ( 1 ) S e ( 2 ) - M o - S e ( 2 ) 1 6 9 . 3 ( 3 ) M o - S e ( 3 ) - S e ( 2 ) 6 4 . 5 ( 1 ) S e ( 2 ) - M o — S e ( 3 ) 5 2 . 2 ( 1 ) M o - S e ( 4 ) - S e ( 5 ) 6 0 . 8 ( 2 ) S e ( 2 ) - M o - S e ( 3 ) 1 3 5 . 5 ( 2 ) M o — S e ( 5 ) - S e ( 4 ) 6 5 . 5 ( 2 ) S e ( 2 ) - M o - S e ( 4 ) 9 3 3 8 ( 9 ) C ( 1 ) - N - C ( 2 ) 1 0 0 ( 3 ) S e ( 2 ) - M o - S e ( 5 ) 8 8 . 7 ( 1 ) C ( 2 ) - N - C ( 2 ) 1 1 7 ( 2 ) T a b l e 1 7 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 2 M o 3 S e 1 3 w i t h S t a n d a r d 8 9 D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) M 0 ( 1 ) - M 0 ( 2 ) 2 . 7 7 5 ( 4 ) M 0 ( 2 ) - S e ( 7 ) 2 . 5 5 3 ( 4 ) M 0 ( 2 ) - M 0 ( 2 ) 2 . 7 7 3 ( 5 ) S e ( 2 ) - S e ( 3 ) 2 . 3 0 6 ( 6 ) M 0 ( 1 ) - S e ( 1 ) 2 . 4 0 ( 1 ) S e ( 4 ) - S e ( 5 ) 2 . 3 4 3 ( 5 ) M 0 ( 1 ) - S e ( 6 ) 2 . 6 2 6 ( 3 ) S e ( 6 ) - S e ( 7 ) 2 . 3 0 6 ( 5 ) M 0 ( 1 ) - S e ( 7 ) 2 . 5 4 8 ( 4 ) S e ( 8 ) - S e ( 9 ) 2 . 3 4 2 ( 7 ) M 0 ( 1 ) - S e ( 8 ) 2 . 6 0 3 ( 6 ) S e ( 2 ) - K 3 7 0 ( 1 ) M 0 ( 1 ) - S e ( 9 ) 2 . 5 7 7 ( 6 ) S e ( 4 ) - K 3 3 5 ( 1 ) M 0 ( 2 ) - S e ( 1 ) 2 . 3 4 9 ( 4 ) S e ( 4 ) - K 3 . 4 0 ( 1 ) M 0 ( 2 ) - S e ( 2 ) 2 . 6 2 0 ( 4 ) S e ( 5 ) - K 3 . 4 7 ( 1 ) M 0 ( 2 ) — S e ( 3 ) 2 . 5 4 7 ( 5 ) S e ( 5 ) - K 3 . 8 2 ( 1 ) M 0 ( 2 ) - S e ( 4 ) 2 . 6 2 0 ( 4 ) S e ( 8 ) - K 3 . 4 7 ( 1 ) M 0 ( 2 ) - S e ( 5 ) 2 . 5 7 3 ( 4 ) S e ( 9 ) - K 3 . 4 7 ( 1 ) M 0 ( 2 ) - S e ( 6 ) 2 . 6 1 2 ( 4 ) S e l e c t e d B o n d A n g l e s ( d e g ) M o ( 2 ) - M o ( l ) - M o ( 2 ) 5 9 . 9 ( 1 ) S e ( 3 ) - M o ( 2 ) - S e ( 7 ) 8 5 . 0 ( 1 ) M o ( l ) - M o ( 2 ) — M o ( 2 ) 6 0 0 3 ( 6 ) S e ( 4 ) - M o ( 2 ) - S e ( 5 ) 5 3 . 6 ( 1 ) M o ( 2 ) - M o ( 1 ) - S e ( 1 ) 5 3 . 4 ( 1 ) S e ( 4 ) - M o ( 2 ) — S e ( 6 ) 9 4 . 4 ( 1 ) M o ( 2 ) — M o ( 1 ) - S e ( 6 ) 5 7 . 8 ( 1 ) S e ( 4 ) - M o ( 2 ) - S e ( 7 ) 9 4 . 9 ( 1 ) M o ( 2 ) - M o ( 1 ) — S e ( 7 ) 5 7 . 1 ( 1 ) S e ( 5 ) - M o ( 2 ) - S e ( 6 ) 8 6 . 6 ( 1 ) M o ( 2 ) - M o ( 1 ) - S e ( l ) 5 3 . 4 ( 1 ) S e ( 5 ) - M o ( 2 ) - S e ( 7 ) 1 2 8 . 7 ( 1 ) S e ( 1 ) - M o ( l ) - S e ( 6 ) 8 3 . 5 ( 1 ) S e ( 6 ) - M o ( 2 ) — S e ( 7 ) 5 3 . 0 ( 1 ) S e ( 1 ) - M o ( l ) - S e ( 7 ) 1 1 0 . 0 ( 1 ) M o ( l ) - M o ( 2 ) - S e ( 1 ) 5 5 . 2 ( 3 ) S e ( 1 ) - M o ( l ) - S e ( 8 ) 1 4 7 . 5 ( 2 ) M o ( 1 ) - M o ( 2 ) - S e ( 6 ) 5 8 . 2 ( 1 ) S e ( 1 ) — M o ( l ) - S e ( 9 ) 9 3 . 7 ( 2 ) M o ( l ) - M o ( 2 ) - S e ( 7 ) 5 6 . 9 ( 1 ) S e ( 6 ) - M o ( 1 ) — S e ( 6 ) 1 6 5 . 9 ( 2 ) M o ( 2 ) - M o ( 2 ) - S e ( 1 ) 5 3 8 3 ( 8 ) S e ( 6 ) - M o ( 1 ) - S e ( 7 ) 5 2 . 9 ( 1 ) M o ( 2 ) - M o ( 2 ) — S e ( 2 ) 5 8 . 0 5 ( 7 ) S e ( 6 ) - M o ( l ) - S e ( 7 ) 1 3 7 . 9 ( 2 ) M o ( 2 ) — M o ( 2 ) - S e ( 3 ) 5 7 0 2 ( 8 ) S e ( 6 ) - M o ( l ) - S e ( 8 ) 9 4 . 0 ( 1 ) S e ( 1 ) - M o ( 2 ) - S e ( 2 ) 8 2 . 9 ( 2 ) S e ( 6 ) - M o ( l ) — S e ( 9 ) 8 7 . 7 ( 1 ) M o ( l ) - S e ( 1 ) - M o ( 2 ) 7 1 . 5 ( 2 ) S e ( 7 ) - M o ( 1 ) - S e ( 7 ) 8 5 . 4 ( 2 ) M o ( 2 ) - S e ( 1 ) - M o ( 2 ) 7 2 . 3 ( 2 ) S e ( 7 ) - M o ( 1 ) - S e ( 8 ) 9 3 . 5 ( 1 ) M o ( 2 ) - S e ( 2 ) — M o ( 2 ) 6 3 . 9 ( 1 ) S e ( 7 ) - M o ( 1 ) - S e ( 9 ) 1 2 8 . 8 ( 1 ) M o ( 2 ) — S e ( 2 ) — S e ( 3 ) 6 1 . 9 ( 1 ) T a b l e 1 7 . ( c o n t ' d ) S e ( 8 ) - M o ( l ) - S e ( 9 ) S e ( 1 ) - M o ( 2 ) - S e ( 3 ) S e ( 1 ) - M o ( 2 ) - S e ( 4 ) S e ( l ) - M o ( 2 ) - S e ( 5 ) S e ( 1 ) — M o ( 2 ) - S e ( 6 ) S e ( 1 ) - M o ( 2 ) — S e ( 7 ) S e ( 2 ) - M o ( 2 ) - S e ( 3 ) S e ( 2 ) - M o ( 2 ) - S e ( 4 ) S e ( 2 ) - M o ( 2 ) - S e ( 5 ) S e ( 2 ) - M o ( 2 ) - S e ( 6 ) S e ( 2 ) - M o ( 2 ) - S e ( 7 ) S e ( 3 ) - M o ( 2 ) - S e ( 4 ) S e ( 3 ) - M o ( 2 ) - S e ( 5 ) S e ( 3 ) - M o ( 2 ) - S e ( 6 ) 5 3 . 8 ( 2 ) 1 1 0 . 2 ( 1 ) 1 4 5 . 1 ( 2 ) 9 1 . 6 ( 2 ) 8 4 . 8 ( 2 ) 1 1 1 . 6 ( 3 ) 5 3 . 0 ( 1 ) 9 2 . 5 ( 1 ) 8 8 . 2 ( 1 ) 1 6 6 . 6 ( 2 ) 1 3 7 . 7 ( 2 ) 9 3 7 ( 1 ) 1 3 0 . 2 ( 2 ) 1 3 7 . 7 ( 2 ) M o ( 1 ) - S e ( 7 ) — S e ( 6 ) M o ( 2 ) - S e ( 7 ) - S e ( 6 ) M o ( l ) - S e ( 8 ) - S e ( 9 ) M o ( 1 ) - S e ( 9 ) - S e ( 8 ) M o ( 2 ) - S e ( 2 ) - S e ( 3 ) M o ( 2 ) - S e ( 3 ) - M o ( 2 ) M o ( 2 ) — S e ( 3 ) - S e ( 2 ) M o ( 2 ) - S e ( 4 ) - S e ( 5 ) M o ( 2 ) - S e ( 5 ) - S e ( 4 ) M o ( l ) - S e ( 6 ) — M o ( 2 ) M o ( 1 ) - S e ( 6 ) - S e ( 7 ) M o ( 2 ) - S e ( 6 ) - S e ( 7 ) M o ( 1 ) - S e ( 7 ) - M o ( 2 ) 6 5 . 3 ( 1 ) 6 4 . 8 ( 1 ) 6 2 . 5 ( 2 ) 6 3 7 ( 2 ) 6 1 . 9 ( 1 ) 6 6 . 0 ( 2 ) 6 5 . 1 ( 1 ) 6 2 . 2 ( 1 ) 6 4 . 2 ( 1 ) 6 4 . 0 ( 1 ) 6 1 . 8 ( 1 ) 6 2 . 2 ( 1 ) 6 5 . 9 ( 1 ) 9 1 S t r u c t u r e s o f 0 1 - K 3 M 0 9 S e 4 o - 4 H 2 0 ( I I I ) , 0 - K 3 M 0 9 S e 4 o ( I V ) a n d K 5 M 0 6 8 e 2 7 - 6 H 2 0 ( V ) T h e f o r m u l a o f ( I I I ) ~ ( V ) c a n b e e x p r e s s e d a s a g e n e r a l f o r m , [ K m ( M 0 3 S e 1 3 ) n - ( K 2 8 e ) ] - t z O ( w h e r e m = 6 , n = 3 f o r ( I I I ) a n d ( I V ) ; m = 4 , n = 2 f o r ( V ) ) . T h e y c a n b e v i e w e d a s a g g r e g a t e s o f n [ M 0 3 S e 1 3 ] 2 ' t r i n u c l e a r c l u s t e r s a n d o n e S e z ‘ . ( I I I ) a n d ( I V ) h a v e t h e s a m e f o r m u l a e x c e p t t h a t ( 1 1 ] ) h a s f o u r c o c r y s t a l l i z e d w a t e r m o l e c u l e s . T h e y d i f f e r i n t h e w a y t h e t h r e e [ M 0 3 S e 1 3 ] 2 ‘ a n d S e ? " a r e p a c k e d . T h e [ M o g S e 4 o ] 8 ' a n i o n s o f ( I I I ) a n d ( I V ) h a v e v e r y u n u s u a l a n d a s y m m e t r i c s t r u c t u r e s w h i c h a r e s h o w n i n F i g u r e 2 - 5 . T h e y h a v e s e v e r a l u n e x p e c t e d f e a t u r e s . T h e y a r e c o m p o s e d o f t h r e e d i f f e r e n t t r i n u c l e a r m o l y b d e n u m p o l y s e l e n i d e s u b c l u s t e r s , ( A ) , ( B ) , ( C ) , i n w h i c h t h e t r i n u c l e a r [ M 0 3 ( u z - S e 2 ) 3 ( u 3 - S e ) ] 4 + c o r e i s r e a d i l y r e c o g n i z a b l e . I n ( I I I ) , t h e t r i p l y b r i d g i n g S e ( 1 4 ) a t o m i s p a r t o f s u b c l u s t e r ( B ) b y c o v a l e n t l y b i n d i n g i t s t h r e e M o a t o m s a n d a t t h e s a m e t i m e f o r m s u n u s u a l S e m S e c o n t a c t s w i t h t h e t h r e e S e a t o m s o f t h e b r i d g i n g S e z ' u n i t s o f s u b c l u s t e r ( A ) . T h e a v e r a g e b o n d d i s t a n c e i s 3 . 1 3 ( 6 ) A , w h i c h i s s i g n i fi c a n t l y s m a l l e r t h a n t h e v a n d e r W a a l s d i s t a n c e b e t w e e n t w o S e a t o m s . T h i s S e m S e i n t e r a c t i o n i s p r o b a b l y n o t b o n d i n g a n d d o e s n o t c a u s e s i g n i fi c a n t b o n d l e n g t h e n i n g o f t h e b r i d g i n g d i s e l e n i d e s i n c l u s t e r ( A ) . I n ( I V ) , t h e t r i p l y b r i d g i n g S e ( 1 4 ) a t o m s o f s u b c l u s t e r ( B ) d o e s n o t h a v e s u c h S e - - - S e s h o r t c o n t a c t s w i t h s u b c l u s t e r ( A ) a s f o u n d i n ( I I I ) . T h e a v e r a g e S e - S e d i s t a n c e s i n t h e b r i d g i n g 8 0 2 2 - l i g a n d s i n s u b c l u s t e r ( A ) a r e 2 . 3 1 ( 2 ) A a n d 2 . 3 1 ( 4 ) A f o r ( I I I ) a n d ( I V ) r e s p e c t i v e l y . S e l e c t e d d i s t a n c e s a n d a n g l e s i n t h e M o / S e f r a m e w o r k a r e s h o w n i n T a b l e s 2 - 1 8 a n d 2 - 1 9 . T h e c o o r d i n a t i o n a r o u n d t h e K 4 ’ i o n s i s n o t w e l l d e fi n e d a n d d i s o r d e r a m o n g t h e K ” p o s i t i o n s w a s f o u n d i n ( I V ) . 9 2 A n o t h e r u n p r e c e d e n t e d i n t e r a c t i o n w h i c h i s a c o m m o n f e a t u r e f o r b o t h ( I I I ) a n d ( I V ) i s t h a t b e t w e e n s u b c l u s t e r ( B ) a n d s u b c l u s t e r ( C ) . T h e s e s u b c l u s t e r s a r e c o n n e c t e d b y a S e z - a t o m w h i c h i s w e a k l y i n t e r a c t i n g w i t h s i x S e a t o m s o f t h e s i x M o - b r i d g i n g S e z z ' u n i t s o f t h e t w o s u b c l u s t e r s . T h i s f o r m s a n i n t r i g u i n g [ S 0 1 3 ] X ' " d o u b l e - u m b r e l l a " f r a g m e n t s h o w n i n S c h e m e ( 1 ) , w i t h l o n g S e a p - S e a d i s t a n c e s a s s h o w n i n F i g u r e 2 - 5 . T h e d i s t a n c e b e t w e e n t h i s S e a p a t o m a n d t h e s i x S e a t o m s r a n g e s f r o m 2 . 8 0 ( 2 ) A t o 3 . 1 8 2 ( 9 ) A f o r ( 1 1 1 ) a n d f r o m 2 . 8 6 ( 1 ) A t o 3 . 0 1 ( 1 ) A f o r ( I V ) . A n i n v e r s e c o r r e l a t i o n e x i s t s b e t w e e n t h e S e a p - S e a d i s t a n c e a n d t h e c o r r e s p o n d i n g S e a - S e t , d i s t a n c e . F o r e x a m p l e , t h e s h o r t e s t S e a p - S e a d i s t a n c e , 2 . 8 0 ( 2 ) A , r e s u l t s i n t h e m a x i m u m l e n g t h e n i n g o f c o r r e s p o n d i n g d i s e l e n i d e t o 2 . 4 4 ( 1 ) A , w h i c h i s 0 . 1 4 4 . l o n g e r t h a n a v e r a g e b r i d g i n g S e - S e d i s t a n c e i n ( I ) . T h e s e r e s u l t s m a k e i t a p p a r e n t t h a t t h e p o c k e t c r e a t e d b y t h e t h r e e b r i d g i n g S e 2 2 ' l i g a n d s o f a t r i n u c l e a r [ M 0 3 S e 7 ] 4 + c o r e i s s p e c i a l a n d i t h a s a f fi n i t y f o r a d d i t i o n a l e l e c t r o n - r i c h s p e c i e s s u c h a s 8 0 2 ' a n i o n s . S e a 7 9 3 , S e , \ ‘ : I ” \ \ I I \ ' 1 ' \ - l I ” ' § e a p s - , o ’ l : 7 . 8 6 a S e a 1 I S e e 3 5 ’ S c h e m e ( 1 ) 9 3 F i n a l l y , i n ( I I I ) , t h e r e i s a n u n u s u a l l y s h o r t i n t e r c l u s t e r S e ( 2 8 ) - S e ( 2 8 ) d i s t a n c e o f 2 . 9 8 ( 1 ) A b e t w e e n t w o d i f f e r e n t [ M 0 9 S e 4 0 ] 3 ‘ c l u s t e r s t h a t i n v o l v e s a t e r m i n a l d i s e l e n i d e l i g a n d i n s u b c l u s t e r ( C ) . T h e t w o [ M o g S e 4 o ] 8 ' c l u s t e r s i n v o l v e d i n t h i s c l o s e S e n - S e c o n t a c t a r e r e l a t e d b y a c r y s t a l l o g r a p h i c c e n t e r o f s y m m e t r y a s s h o w n i n F i g u r e 2 - 6 . A s i m i l a r d i s t a n c e w a s a l s o o b s e r v e d i n t h e e l e c t r o n - p o o r [ W ( C O ) 5 S e 2 ] 2 2 + d i m e r ( S e - S e 3 . 0 1 5 A ) 2 5 a n d S e 4 S , 7 _ N 2 2 + c a t i o n ( S e - S e 3 . 1 3 5 A ) 2 6 , i n w h i c h i t w a s c h a r a c t e r i z e d a s a b o n d i n g w e a k S e n - S e i n t e r a c t i o n . T h e s e s h o r t S e m S e c o n t a c t s a r e e l e c t r o n i c i n o r i g i n . I f t h e e l e c t r o n d e fi c i e n c y i n t h e M o ( S e z ) f r a g m e n t w a s c a u s i n g t h i s u n u s u a l S e n - S e c o n t a c t , s h o r t e r t h a n a v e r a g e M o — S e a n d S e - S e b o n d s w o u l d b e e x p e c t e d . H o w e v e r , t h e n o r m a l M o - S e a n d S e - S e d i s t a n c e s , a r o u n d t h e M o — S e z f r a g m e n t a s s o c i a t e d w i t h t h i s c l o s e c o n t a c t , d o n o t h i n t a n y l a c k o f e l e c t r o n d e n s i t y i n t h i s p a r t o f t h e m o l e c u l e . T h u s , t h e c l o s e S e m S e d i s t a n c e m a y b e t h e r e s u l t o f c r y s t a l p a c k i n g f o r c e s . . ) V I ( ' 3 l o 4 e S g o M l - B d n a ) I I I ( ' 8 I O 4 0 8 9 0 M I - a f o e m . e s t h c c a s t n g o n c i l t r e o b h a s l e d S n - a u e n ? S c o S i \ " . / / c l i 0 2 0 3 ” i c S c w S { t a o t h n e s s s e e r n p i e l r d P e h E s T a R D O : 5 - 2 e r u g i F « 1 9 5 F i g u r e 2 - 6 : O R T E P r e p r e s e n t a t i o n o f t h e c e n t r o s y m m e t r i c r e l a t i o n s h i p b e t w e e n t w o c l u s t e r s o f a - [ M o o S e 4 o | 8 ‘ . T h e s h o r t c o n t a c t b e t w e e n t w o t e r m i n a l d i s e l e n i d e s i s s h o w n b y a d a s h e d l i n e . B l a c k c i r c l e s r e p r e s e n t M o a t o m s . O p e n c i r c l e s r e p r e s e n t S e a t o m s . 9 6 T a b l e 2 - 1 8 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r 0 1 - K 8 M 0 9 8 e 4 0 - 4 H 2 0 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) M o l - M o 2 2 . 7 6 0 ( 6 ) M o 6 - S e 2 4 2 . 6 2 0 ( 6 ) M 0 1 - M 0 3 2 . 7 5 9 ( 5 ) M o 6 - S e 2 5 2 . 5 4 3 ( 8 ) M 0 2 - M o 3 2 . 7 4 9 ( 6 ) M o 6 ~ S e 2 6 2 . 6 0 6 ( 6 ) M o 4 - M 0 5 2 . 7 9 1 ( 5 ) M 0 7 — S e 2 7 2 . 4 9 9 ( 6 ) M 0 4 - M 0 6 2 . 7 7 8 ( 5 ) M o 7 - S e 2 8 2 . 5 6 2 ( 8 ) M o 5 - M o 6 2 . 7 7 2 ( 6 ) M o 7 - S e 2 9 2 . 6 4 6 ( 6 ) M 0 7 - M 0 8 2 . 7 7 3 ( 6 ) M o 7 - S e 3 4 2 . 5 4 3 ( 7 ) M 0 7 - M 0 9 2 . 7 7 5 ( 5 ) M o 7 - S e 3 5 2 . 6 2 5 ( 6 ) M o 8 - M o 9 2 . 7 5 0 ( 6 ) M o 7 - S e 3 8 2 . 5 5 9 ( 7 ) M o l - S e l 2 . 4 8 9 ( 7 ) M o 7 - S e 3 9 2 . 6 0 4 ( 6 ) M o l - S e 2 2 . 6 1 7 ( 6 ) M 0 8 - S e 2 7 2 . 5 0 3 ( 7 ) M 0 1 - S e 3 2 . 5 6 8 ( 8 ) M 0 8 - S e 3 0 2 . 5 9 4 ( 7 ) M 0 1 - S e 8 2 . 5 7 4 ( 6 ) M 0 8 - S e 3 ] 2 . 6 1 6 ( 7 ) M 0 1 - S e 9 2 . 5 9 9 ( 8 ) M 0 8 — S e 3 4 2 . 5 3 6 ( 7 ) M 0 1 - 8 0 1 2 2 . 6 1 5 ( 7 ) M o 8 — S e 3 5 2 . 6 0 6 ( 6 ) M o l - S e l 3 2 . 5 4 2 ( 9 ) M 0 8 - S e 3 6 2 . 5 9 6 ( 5 ) M 0 2 - S e ] 2 . 5 1 7 ( 7 ) M o 8 - S e 3 7 2 . 5 1 7 ( 7 ) M 0 2 - S 0 4 2 . 5 6 0 ( 8 ) M 0 9 — S e 2 7 2 . 5 1 4 ( 7 ) M o Z - S e S 2 . 5 8 4 ( 6 ) M o 9 - S e 3 2 2 . 5 6 7 ( 6 ) M 0 2 - S e 8 2 . 5 4 4 ( 5 ) M o 9 - S e 3 3 2 . 6 2 4 ( 7 ) M o 2 - S e 9 2 . 6 1 6 ( 6 ) M 0 9 - S e 3 6 2 . 5 9 9 ( 7 ) M 0 2 - S e 1 0 2 . 5 6 5 ( 7 ) M o 9 - S e 3 7 2 . 5 2 0 ( 8 ) M 0 2 — S e ] 1 2 . 6 1 5 ( 5 ) M o 9 - S e 3 8 2 . 5 3 1 ( 8 ) M o 3 - S e 1 2 . 4 9 1 ( 9 ) M o 9 - S e 3 9 2 . 6 1 5 ( 7 ) M o 3 — S e 6 2 . 6 0 9 ( 8 ) S e 2 - S e 3 2 . 3 2 ( 1 ) M o 3 - S e 7 2 . 5 7 2 ( 5 ) S e 4 - S e 5 2 . 3 5 0 ( 9 ) M o 3 — S e l O 2 . 5 6 7 ( 6 ) S e 6 — S e 7 2 3 5 ( 1 ) M 0 3 - S e ] 1 2 . 6 1 7 ( 6 ) S e 8 - S e 9 2 . 2 9 7 ( 8 ) M 0 3 - S e 1 2 2 . 6 1 8 ( 6 ) S e 1 0 - S e 1 1 2 . 3 2 9 ( 7 ) M 0 3 - S e 1 3 2 . 5 4 3 ( 7 ) S e 1 2 - S e 1 3 2 . 3 0 7 ( 8 ) T a b l e 2 - 1 8 . ( c o n t ' d ) M o 4 - S e 1 4 2 . 4 6 7 ( 6 ) S e 1 5 - S e 1 6 2 . 3 4 4 ( 9 ) M 0 4 - S e 1 5 2 . 6 2 4 ( 6 ) S e 1 7 - S e 1 8 2 . 3 8 0 ( 8 ) M 0 4 - S e l 6 2 . 6 0 9 ( 7 ) S e 1 9 — S e 2 0 2 . 3 1 ( 1 ) M 0 4 - S e 2 1 2 . 5 5 8 ( 6 ) $ 0 2 1 - $ 0 2 2 2 . 3 6 2 ( 8 ) M o 4 — S e 2 2 2 . 6 0 8 ( 6 ) S e 2 1 - $ 0 4 0 2 . 8 6 6 ( 9 ) M o 4 - S e 2 5 2 . 5 6 7 ( 8 ) $ 0 2 3 - $ 0 2 4 2 . 3 7 3 ( 8 ) M 0 4 - S 0 2 6 2 . 5 6 3 ( 6 ) S e 2 3 - S e 4 0 2 . 9 6 9 ( 7 ) M o S - S e l 4 2 . 4 8 1 ( 6 ) S e 2 5 - S e 2 6 2 . 4 4 ( 1 ) M 0 5 - S e 1 7 2 . 5 8 9 ( 6 ) S e 2 5 - S e 4 0 2 . 8 0 ( 1 ) M 0 5 - S e 1 8 2 . 6 4 1 ( 6 ) S e Z 8 - S e 2 8 2 . 9 8 ( 1 ) M 0 5 - S e 2 1 2 . 5 6 3 ( 6 ) S e 2 8 - S e 2 9 2 . 3 4 2 ( 8 ) M o S - S e 2 2 2 . 6 1 1 ( 6 ) S e 3 0 - S e 3 1 2 . 3 6 0 ( 9 ) M 0 5 - S e 2 3 2 . 5 5 2 ( 8 ) S e 3 2 - S e 3 3 2 3 5 ( 1 ) M 0 5 - S e 2 4 2 . 5 8 4 ( 6 ) S e 3 4 - S e 3 5 2 . 3 4 0 ( 8 ) M o 6 - S e l 4 2 . 5 1 3 ( 8 ) S e 3 4 - S e 4 0 2 . 9 8 4 ( 8 ) M o 6 - S e 1 9 2 . 5 7 1 ( 7 ) S e 3 6 - S e 3 7 2 . 3 4 9 ( 9 ) M o 6 - S e 2 0 2 . 6 1 7 ( 7 ) S e 3 8 - S e 3 9 2 . 3 7 ( 1 ) M o 6 — S e 2 3 2 . 5 5 3 ( 8 ) S e 3 8 - S e 4 0 2 . 8 7 ( 1 ) S e 3 7 - S e 4 0 3 . 1 8 2 ( 9 ) S e l - K 3 3 5 9 ( 2 ) S e 2 4 - K 7 3 7 2 ( 2 ) S e 2 - K l 3 . 3 2 ( 1 ) S e 2 4 — K 7 ' 3 . 8 1 ( 2 ) S e 2 - K 2 3 . 2 3 ( 1 ) S e 2 5 - K 7 3 9 3 ( 3 ) S e 3 - K 1 3 . 4 8 ( 2 ) S e 2 6 - K 7 3 7 6 ( 3 ) S e 4 - K 2 3 . 3 0 ( 1 ) S e 2 6 - K 8 3 9 9 ( 3 ) S e 4 - K 5 ' 3 5 1 ( 2 ) S e 2 6 — K 8 3 7 9 ( 3 ) S e 5 - K 2 3 . 4 4 ( l ) S e 2 6 - K 8 ' 3 3 3 ( 3 ) S e 5 - K 4 3 7 0 ( 2 ) S e 2 6 — K 8 ’ 3 . 5 6 ( 3 ) S e 5 - K 5 3 . 8 5 ( 2 ) S e 2 7 - K 2 3 . 3 7 ( 1 ) S e S - K 5 ' 3 . 6 0 ( 2 ) S e 2 8 — K 2 3 . 5 5 ( 1 ) S e 6 - K 3 3 9 4 ( 2 ) S e 2 8 - K 5 ' 3 . 4 6 ( 2 ) S e 7 - K 1 3 . 3 2 ( 1 ) S e 2 9 - K 2 3 . 2 5 ( l ) S e 7 - K 3 3 . 3 0 ( 2 ) S e 2 9 - K 4 3 . 4 8 ( 1 ) T a b l e 2 - 1 8 . ( c o n t ' d ) 9 8 S e 8 - K 2 3 . 9 8 ( 1 ) S e 2 9 - K 5 3 . 2 7 ( 2 ) S e l 1 - K 2 3 . 8 2 ( 1 ) S e 2 9 - K 6 ' 3 7 1 ( 2 ) S e 1 2 - K 1 3 . 4 9 ( 1 ) S e 3 0 — K 1 3 . 3 0 ( 1 ) S e 1 2 - K 3 3 . 7 2 ( 1 ) S e 3 0 - K 3 3 . 4 5 ( 1 ) S e l S - K 7 3 3 3 ( 3 ) S e 3 1 - K 1 3 . 6 8 ( 1 ) S e l S - K 7 ‘ 3 6 4 ( 2 ) S e 3 1 - K 3 3 . 2 7 ( 1 ) S e l 6 - K 2 3 . 6 8 ( 1 ) S e 3 1 — K 8 3 . 6 5 ( 3 ) S e 1 6 - K 4 3 . 6 7 ( 1 ) S e 3 2 - K 3 3 . 2 0 ( 1 ) S e 1 7 - K 4 3 2 9 ( 1 ) S e 3 2 - K 5 3 7 5 ( 2 ) S e 1 7 - K 5 3 3 9 ( 2 ) S e 3 2 - K 5 ' 3 3 6 ( 3 ) S e 1 7 - K 6 ' 3 . 2 7 ( 2 ) S e 3 3 - K 3 3 5 6 ( 2 ) S e 1 7 - K 7 ' 3 . 6 5 ( 2 ) S e 3 3 - K 5 3 . 6 2 ( 3 ) S e 1 8 - K 6 3 . 4 6 ( 2 ) S e 3 4 - K 6 3 . 6 9 ( 3 ) S e 1 8 - K 6 ' 3 . 1 0 ( 3 ) S e 3 4 - K 6 ' 3 . 3 5 ( 2 ) S e 1 8 — K 7 ' 3 7 3 ( 3 ) S e 3 5 - K 3 3 . 9 1 ( 2 ) S e 1 8 - K T 3 . 2 1 ( 2 ) S e 3 5 - K 5 3 7 4 ( 2 ) S e 1 9 — K 7 3 . 4 1 ( 3 ) S e 3 5 - K 5 ' 3 . 4 2 ( 2 ) S e 1 9 - K 8 ' 3 5 4 ( 3 ) S e 3 5 - K 6 ' 3 . 8 3 ( 3 ) S e 2 0 - K 8 3 . 6 8 ( 3 ) S e 3 6 - K 1 3 7 1 ( 1 ) S e 2 0 - K 8 ' 3 8 8 ( 3 ) S e 3 6 — K 3 3 . 8 2 ( 1 ) S e 2 1 - K 6 3 . 8 7 ( 2 ) S e 3 8 - K 4 3 . 2 6 ( 1 ) S e 2 1 - K T 3 7 9 ( 2 ) S e 3 8 - K 7 ' 3 8 4 ( 3 ) S e 2 1 - K T 3 . 8 6 ( 2 ) S e 3 9 - K 4 3 . 8 3 ( 1 ) S e 2 2 - K 4 3 5 5 ( 1 ) S e 3 9 - K 5 3 5 9 ( 2 ) S e 2 2 - K 6 ' 3 . 6 0 ( 2 ) S e 4 0 - K 6 3 . 3 8 ( 2 ) S e 2 4 - K 6 3 7 5 ( 2 ) S e 4 0 - K 7 ' 3 . 8 1 ( 2 ) S e l e c t e d B o n d A n g l e s ( d e g ) S u b c l u s t e r A S e 2 - M o l - S e 3 5 3 . 0 ( 2 ) S e 1 - M o 3 - S e 1 2 8 3 . 0 ( 3 ) S e 2 - M o l - S e 8 9 2 . 0 ( 6 ) S e 6 - M o 3 - S e 7 5 3 . 9 ( 2 ) T a b l e 2 - 1 8 . ( c o n t ' d ) S e Z — M o l - S e 9 9 2 . 0 ( 9 ) S e 1 0 - M o 3 - S e 1 3 8 5 . 3 ( 2 ) S e Z - M o l - S e 1 2 9 3 . 9 ( 2 ) S e 7 - M o 3 - S e l 2 8 8 . 3 ( 2 ) S e 2 - M o l - S e 1 3 9 2 . 1 ( 2 ) M o l - S e 1 — M 0 2 6 6 . 9 ( 2 ) S e 3 - M o l - S e 9 8 6 . 9 ( 3 ) M 0 1 - S e l — M o 3 6 7 . 3 ( 2 ) S e 3 - M o l - S e 1 2 8 9 . 8 ( 3 ) M o Z - S e l — M o B 6 6 . 6 ( 3 ) S e 8 - M o l - S e 9 5 2 7 ( 2 ) M o l - S e 2 - S e 3 6 2 . 4 ( 2 ) S e 8 - M o l - S e 1 3 8 3 . 3 ( 2 ) M o l — S e 3 — S e 2 6 4 7 ( 2 ) S e 9 - M o l - S e 1 2 1 6 8 . 4 ( 3 ) M 0 2 - S e 4 - S e 5 6 3 . 3 ( 2 ) S e l Z - M o l - S e l 3 5 3 . 1 ( 2 ) M o Z - S e S - S e 4 6 2 . 3 ( 2 ) S e 1 - M o l - S e 3 9 2 5 ( 3 ) M o 3 - S e 6 — S e 7 6 2 . 2 ( 2 ) S e 1 - M o l - S e 9 8 6 . 0 ( 2 ) M o 3 - S e 7 - S e 6 6 3 . 9 ( 2 ) S e 1 - M o l - S e 1 2 8 3 . 1 ( 2 ) M o l - S e 8 - M 0 2 6 5 . 2 ( 2 ) S e l - M o 2 - S e 4 9 2 . 4 ( 3 ) M o l - S e 8 - S e 9 6 4 . 2 ( 2 ) S e 1 - M o 2 - S e 9 8 5 . 1 ( 2 ) M o 2 - S e 8 - S e 9 6 5 . 2 ( 2 ) S e l - M 0 2 - S e 1 0 1 1 3 . 0 ( 2 ) M o l - S e 9 — M o 2 6 3 . 9 ( 2 ) S e l - M 0 2 — S e 1 1 8 3 5 ( 2 ) M o l - S e 9 - 8 0 8 6 3 . 2 ( 2 ) S e 4 - M 0 2 - S e S 5 4 . 4 ( 2 ) M 0 2 - S e 9 - S e 8 6 2 . 0 ( 2 ) S e 4 - M 0 2 - S e l l 8 6 . 6 ( 2 ) M o Z - S e l O — M o 3 6 4 . 8 ( 2 ) S e S - M 0 2 - S e 9 9 4 . 0 ( 2 ) M o 2 - S e 1 0 — S e l 1 6 4 . 4 ( 2 ) S e 5 - M 0 2 - S e 1 0 9 0 5 ( 2 ) M 0 2 - S e l 1 - M o 3 6 3 . 4 ( 2 ) S e 5 - M 0 2 - S e l 1 9 3 . 3 ( 2 ) M 0 2 - S e l 1 - S e 1 0 6 2 . 2 ( 2 ) S e 8 - M 0 2 - S e 9 5 2 . 8 ( 2 ) M 0 3 - S e l 1 - S e 1 0 6 2 . 2 ( 2 ) S e 8 - M 0 2 - S e 1 0 8 3 . 5 ( 2 ) M o l - S e 1 2 - M o 3 6 3 . 6 ( 2 ) S e 9 - M 0 2 - S e 1 1 1 6 7 . 9 ( 3 M o l - S e 1 2 - S e l 3 6 1 . 9 ( 2 ) S e I O — M O Z - S e l l 5 3 . 4 ( 2 ) M o 3 - S e l Z - S e 1 3 6 1 . 8 ( 2 ) S e 6 — M o 3 - S e 1 0 9 0 . 1 ( 2 ) M o l - S e 1 3 - M o 3 6 5 7 ( 2 ) S e 6 - M o 3 - S e l 1 9 4 . 2 ( 2 ) M o l - S e l 3 - S e 1 2 6 5 . 1 ( 3 ) S e 1 2 - M o 3 - S e l 3 5 3 . 1 ( 2 ) M o Z - M o l - M o 3 5 9 . 8 ( 1 ) S e 6 - M o 3 - S e 1 2 9 3 . 7 ( 2 ) M o l - M o Z - M o 3 6 0 . 1 ( 1 ) S e 6 - M 0 3 - S e 1 3 9 0 . 4 ( 3 ) M o l - M 0 3 - M 0 2 6 0 . 1 ( 1 ) S e l - M 0 3 - S e 7 9 3 . 3 ( 3 ) S e l 1 - S e 1 0 — S e l 4 1 6 7 . 6 ( 4 ) S e l O — M o 3 - S e 1 1 5 3 fl 2 ) S e 8 - S e 9 - S e 1 4 ‘ 1 6 7 . 5 ( 3 ) T a b l e 2 - 1 8 . ( c o n t ' d ) 1 0 0 S e 7 - M o 3 - S e 1 l 8 6 . 9 ( 2 ) S e 1 2 - S e 1 3 - S e 1 4 1 6 6 . 3 ( 4 ) S e l — M o 3 - S e 1 1 8 4 . 0 ( 2 ) S u b c l u s t e r B S e 1 4 - M o 4 - S e l 6 9 1 . 1 ( 2 ) S e 2 0 - M o 6 - S e 2 3 9 3 . 2 ( 3 ) S e 1 4 - M o 4 - S e 2 2 8 3 . 1 ( 2 ) S e 2 0 - M o 6 - S e 2 4 9 5 . 1 ( 2 ) S e l 4 - M o 4 - S e 2 6 8 3 . 4 ( 2 ) S e 2 0 - M o 6 - S e 2 5 9 2 . 4 ( 3 ) S e l S - M o 4 — S e l 6 5 3 . 2 ( 2 ) S e 2 0 - M o 6 - S e 2 6 9 4 . 8 ( 2 ) S e 1 5 - M o 4 - S e 2 1 9 6 . 0 ( 2 ) M o 3 — S e 1 3 - S e 1 2 6 5 . 1 ( 2 ) S e 1 5 - M 0 4 - S e 2 2 9 7 . 2 ( 2 ) M 0 4 - S e 1 4 — M 0 5 6 8 7 ( 2 ) S e 1 5 - M o 4 - S e 2 5 9 2 . 4 ( 2 ) M o 4 - S e 1 4 — M o 6 6 7 . 9 ( 2 ) S e 1 5 - M o 4 - S e 2 6 9 0 . 9 ( 2 ) M 0 5 - S e 1 4 - M o 6 6 7 . 4 ( 2 ) S e 1 6 - M o 4 - S e 2 2 8 7 . 1 ( 2 ) M o 4 - S e 1 5 - S e 1 6 6 3 . 1 ( 2 ) S e 1 6 - M o 4 - S e 2 5 1 3 2 . 1 ( 2 ) M o 4 - S e 1 6 - S e 1 5 6 3 . 7 ( 2 ) S e 1 6 - M o 4 — S e 2 6 8 8 . 3 ( 2 ) M o S - S e l 7 - S e 1 8 6 4 . 1 ( 2 ) S e 2 1 - M o 4 - S e 2 2 5 4 . 5 ( 2 ) M o S - S e l S - S e l 7 6 1 . 8 ( 2 ) S e 2 1 - M o 4 - S e 2 2 8 0 . 3 ( 2 ) M o 6 - S e 1 9 - S e 2 0 6 4 . 6 ( 3 ) S e 2 2 - M o 4 - S e Z S 1 6 5 . 6 ( 3 M o 6 - S e 2 0 — S e 1 9 6 2 . 5 ( 3 ) S e 2 5 - M o 4 - S e 2 6 5 6 . 8 ( 2 ) M 0 4 - S e 2 1 - M 0 5 6 6 . 1 ( 2 ) S e l 7 - M o S - S e 2 4 8 8 . 3 ( 2 ) M 0 4 - S e 2 1 - S e 2 2 6 4 . 0 ( 2 ) S e 1 8 - M o S - S e 2 1 9 5 7 ( 2 ) M o S — S e 2 1 - S e 2 2 6 3 . 9 ( 2 ) S e l 8 - M o S - S e 2 2 9 5 . 4 ( 2 ) M o 4 - S e 2 2 - M 0 5 6 4 . 6 ( 2 ) S e l 8 - M o 5 - S e 2 3 9 3 . 2 ( 2 ) M o 4 - S e 2 2 - S e 2 1 6 1 . 7 ( 2 ) S e 2 1 - M o S - S e 2 2 5 4 . 3 ( 2 ) M o S - S e 2 2 — S e 2 l 6 1 . 8 ( 2 ) S e 2 1 - M o S - S e 2 3 8 1 . 2 ( 2 ) M o S — S e 2 3 - M o 6 6 5 . 8 ( 2 ) S e 2 2 - M 0 5 - S e 2 4 1 6 6 . 7 ( 2 ) M o S - S e 2 3 - S e 2 4 6 3 . 2 ( 2 ) S e 2 3 - M o 5 - S 0 2 4 5 5 . 0 ( 2 ) M o 4 - S e 2 5 - M o 6 6 5 . 9 ( 2 ) S e l 4 - M 0 5 - S e l 7 8 9 . 6 ( 2 ) M 0 4 - S e 2 5 - S e 2 6 6 1 . 6 ( 2 ) S e 1 4 - M o S — 8 0 2 2 8 2 . 8 ( 2 ) M o 6 - S e 2 5 - S e 2 6 6 3 . 1 ( 2 ) S e 1 4 - M o S - S e 2 4 8 4 . 8 ( 2 ) M o 4 - S e 2 6 - M o 6 6 5 . 0 ( 2 ) S e 1 7 - M o S - S e l 8 5 4 . 2 ( 2 ) M o 4 — S e 2 6 - S e 2 5 6 1 . 7 ( 2 ) T a b l e 2 - 1 8 . ( c o n t ' d ) S e 1 7 - M o S - S e 2 2 8 6 . 9 ( 2 ) M o 6 — S e 2 6 - S e 2 5 6 0 5 ( 2 ) S e 2 3 - M o 6 - S e 2 4 5 4 . 6 ( 2 ) M o 6 - S e 2 3 - S e 2 4 6 4 . 1 ( 2 ) S e 2 3 - M o 6 - S e 2 5 8 1 . 0 ( 2 ) M 0 5 - S e 2 4 - M o 6 6 4 . 4 ( 2 ) S e 2 4 - M o 6 — S e 2 6 1 6 4 . 3 ( 3 ) M o S - S e 2 4 - S e 2 3 6 1 . 9 ( 2 ) S e 2 5 - M o 6 - S e 2 6 5 6 5 ( 2 ) M o 6 - S e 2 4 - S e 2 3 6 1 . 3 ( 2 ) S e l 4 - M o 6 — S e 1 9 9 3 . 3 ( 3 ) S e Z Z - S e 2 1 - S e 4 0 1 6 5 . 5 ( 3 ) S e 1 4 - M o 6 - S e 2 4 8 3 . 4 ( 2 ) S e 2 6 - S e 2 5 - S e 4 0 1 6 5 . 3 ( 3 ) S e 1 4 - M o 6 — S e 2 6 8 1 . 7 ( 2 ) S e 2 4 - S e 2 3 - S e 4 0 1 6 2 . 9 ( 3 ) S e l 9 - M o 6 - S e 2 0 5 2 . 9 ( 3 ) M o S - M o 4 — M o 6 5 9 . 7 ( 1 ) S e 1 9 - M o 6 - S e 2 4 8 8 . 6 ( 2 ) M o 4 - M o S - M o 6 5 9 . 9 ( 1 ) S e 1 9 - M o 6 - S e 2 6 8 7 . 6 ( 2 ) M o 4 - M o 6 — M 0 5 6 0 . 4 ( 1 ) S u b c l u s t e r C S e 2 7 - M o 7 - S e 2 8 9 3 . 6 ( 2 ) S e 3 2 - M o 9 - S e 3 9 8 5 . 4 ( 2 ) S e 2 7 - M o 7 - S e 3 5 8 3 . 1 ( 2 ) S e 3 3 - M o 9 — S e 3 7 8 9 . 8 ( 3 ) S e 2 7 - M o 7 — S e 3 9 8 4 . 0 ( 2 ) S e 3 3 - M o 9 - S e 3 8 9 1 . 6 ( 3 ) S e 2 8 - M o 7 - S e 3 5 8 8 5 ( 2 ) S e 3 3 - M o 9 - S e 3 9 9 5 7 ( 3 ) S e 2 9 - M o 7 - S e 3 9 9 5 . 1 ( 2 ) S e 3 6 - M o 9 - S e 3 7 5 4 . 6 ( 2 ) S e 2 8 - M o 7 - S e 2 9 5 3 . 4 ( 2 ) S e 3 6 - M o 9 - S e 3 9 1 6 5 . 3 ( 3 ) S e 2 8 - M o 7 — S e 3 9 8 8 5 ( 2 ) S e 3 8 - M o 9 - S e 3 9 5 4 . 9 ( 2 ) S e 2 9 - M o 7 - S e 3 5 9 3 7 ( 2 ) M o 8 — S e 3 4 - S e 3 5 6 4 . 4 ( 2 ) S e 3 4 - M o 7 - S e 3 5 5 3 . 8 ( 2 ) M o 7 - S e 3 5 - M 0 8 6 4 . 0 ( 2 ) S e 3 4 - M o 7 - S e 3 8 8 1 7 ( 2 ) M o 7 - S e 3 5 - S e 3 4 6 1 . 3 ( 2 ) S e 3 5 — M o 7 - S e 3 9 1 6 6 . 4 ( 3 ) M o 8 - S e 3 5 - S e 3 4 6 1 . 4 ( 2 ) S e 3 8 - M o 7 - S e 3 9 5 4 7 ( 2 ) M o 8 - S e 3 6 — M o 9 6 3 . 9 ( 2 ) S e 3 1 - M o 8 - S e 3 4 9 4 . 0 ( 2 ) M 0 8 - S e 3 6 - S e 3 7 6 0 . 9 ( 2 ) S e 3 0 - M 0 8 - S e 3 l 5 3 . 9 ( 2 ) M o 9 - S e 3 6 - S e 3 7 6 1 . 0 ( 2 ) S e 3 0 - M 0 8 - S e 3 5 8 5 . 8 ( 2 ) M 0 8 - S e 3 7 - M o 9 6 6 . 3 ( 2 ) S e 3 0 — M o 8 - S e 3 6 8 8 . 5 ( 2 ) M 0 8 - S e 3 7 - S e 3 6 6 4 . 4 ( 2 ) S e 3 1 - M o 8 — S e 3 6 9 2 . 0 ( 2 ) M o 9 - S e 3 7 - S e 3 6 6 4 . 4 ( 2 ) S e 3 l - M 0 8 - S e 3 7 9 1 . 2 ( 3 ) M o 7 - S e 3 8 - M o 9 6 6 . 1 ( 2 ) T a b l e 2 - 1 8 . ( c o n t ' d ) 1 0 2 S e 3 4 - M o 8 - S e 3 5 S e 3 4 - M o 8 - S e 3 7 S e 3 5 - M 0 8 - S e 3 6 S e 3 6 - M 0 8 - S e 3 7 S e 2 7 - M 0 8 - S e 3 0 S e 2 7 - M 0 8 - S e 3 5 S e 2 7 - M 0 8 - S e 3 6 S e 2 7 - M o 8 - S e 3 7 S e 2 7 - M o 9 - S e 3 2 S e 3 3 - M o 9 - S e 3 6 S e 2 7 - M o 9 - S e 3 6 S e 2 7 - M o 9 - S e 3 7 S e 2 7 - M o 9 - S e 3 8 S e 2 7 - M o 9 - S e 3 9 S e 3 2 - M o 9 - S e 3 3 S e 3 2 - M o 9 — S e 3 6 S e 3 7 — M o 9 - S e 3 8 5 4 . 1 ( 2 ) 8 3 . 6 ( 2 ) 1 6 5 . 3 ( 3 ) 5 4 . 7 ( 2 ) 9 1 . 3 ( 2 ) 8 3 . 4 ( 2 ) 8 3 . 2 ( 2 ) 1 1 3 . 2 ( 2 9 4 . 4 ( 2 ) 9 3 . 1 ( 3 ) 8 2 . 9 ( 2 ) 1 1 2 7 ( 2 ) 1 1 3 . 1 ( 2 ) 8 3 . 5 ( 2 ) 5 3 7 ( 2 ) 9 0 . 2 ( 2 ) 8 2 5 ( 3 ) M 0 7 - S e 3 8 - S e 3 9 M o 9 — S e 3 8 - S e 3 9 M o 7 - S e 3 9 — M o 9 M o 7 - S e 3 9 - S e 3 8 M o 9 - S e 3 9 - S e 3 8 S e 3 4 - S e 4 0 - S e 3 8 S e 2 1 - S e 4 0 — S e 2 3 S e 2 1 — S e 4 0 — S e 2 5 S e 2 3 — S e 4 0 - S e 2 5 S e 2 3 — S e 4 0 - S e 3 8 S e 2 5 - S e 4 0 - S e 3 4 S e 3 5 — S e 3 4 - S e 4 0 S e 3 9 - S e 3 8 - S e 4 0 M o 8 - M o 7 - M o 9 M o 7 - M o S - M o 9 M o 7 - M o 9 - M o 8 6 3 . 6 ( 2 ) 6 4 . 4 ( 2 ) 6 4 . 2 ( 2 ) 6 1 7 ( 2 ) 6 0 . 8 ( 2 ) 6 9 . 5 ( 2 ) 6 9 . 6 ( 2 ) 7 1 . 4 ( 2 ) 7 0 . 0 ( 2 ) 8 9 . 2 ( 2 ) 1 0 6 . 4 ( 3 ) 1 6 7 . 1 ( 3 ) 1 6 9 . 0 ( 3 ) 5 9 . 4 ( 1 ) 6 0 . 3 ( 1 ) 6 0 . 2 ( 1 ) 1 0 3 T a b l e 2 - 1 9 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r B - K 3 M 0 9 8 e 4 0 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) M 0 ( 1 ) - M 0 ( 2 ) 2 7 8 ( 1 ) S e ( 6 ) - S e ( 7 ) 2 3 3 ( 2 ) M 0 ( 1 ) - M 0 ( 3 ) 2 7 8 ( 1 ) S e ( 8 ) - S e ( 9 ) 2 . 3 2 ( 1 ) M 0 ( 2 ) - M 0 ( 3 ) 2 7 9 ( 1 ) S e ( 1 0 ) - S e ( 1 1 ) 2 2 6 ( 1 ) M 0 ( 4 ) - M 0 ( 5 ) 2 7 9 ( 1 ) S e ( 1 2 ) - S e ( 1 3 ) 2 3 4 ( 2 ) M 0 ( 4 ) - M 0 ( 6 ) 2 7 8 ( 1 ) S e ( 1 5 ) - S e ( 1 6 ) 2 2 7 ( 1 ) M 0 ( 5 ) - M 0 ( 6 ) 2 . 8 5 ( 1 ) S e ( 1 7 ) - S e ( 1 8 ) 2 2 5 ( 1 ) M 0 ( 8 ) - M 0 ( 9 ) 2 . 7 4 ( 1 ) S e ( 1 9 ) - S e ( 2 0 ) 2 2 9 ( 1 ) M 0 ( 7 ) — M o ( 8 ) 2 7 6 ( 1 ) S e ( 2 1 ) - S e ( 2 2 ) 2 . 3 2 ( 1 ) M 0 ( 7 ) - M 0 ( 9 ) 2 . 7 6 ( 1 ) S e ( 2 3 ) - S e ( 2 4 ) 2 3 1 ( 1 ) M 0 ( 1 ) - S e ( 1 ) 2 . 4 9 ( 1 ) S e ( 2 5 ) - S e ( 2 6 ) 2 3 0 ( 1 ) M 0 ( 1 ) - S e ( 2 ) 2 5 7 ( 1 ) S e ( 2 8 ) - S e ( 2 9 ) 2 3 4 ( 2 ) M 0 ( 1 ) - S e ( 3 ) 2 6 5 ( 1 ) S e ( 3 0 ) - S e ( 3 1 ) 2 3 6 ( 2 ) M 0 ( 1 ) - S e ( 8 ) 2 . 6 7 ( 1 ) S e ( 3 2 ) - S e ( 3 3 ) 2 . 4 0 ( 2 ) M 0 ( 1 ) - S e ( 9 ) 2 4 9 ( 1 ) S e ( 3 4 ) - S e ( 3 5 ) 2 . 4 4 ( 2 ) M 0 ( 1 ) - S e ( 1 0 ) 2 6 5 ( 1 ) S e ( 3 6 ) - S e ( 3 7 ) 2 3 8 ( 1 ) M 0 ( 1 ) - S e ( 1 1 ) 2 5 9 ( 1 ) S e ( 3 8 ) - S e ( 3 9 ) 2 3 3 ( 1 ) M 0 ( 2 ) — S e ( 1 ) 2 . 4 4 ( 1 ) S e ( 6 ) - K ( 1 ) 3 5 7 ( 2 ) M 0 ( 2 ) - S e ( 4 ) 2 6 4 ( 1 ) S e ( 7 ) - K ( 1 ) 3 4 5 ( 2 ) M 0 ( 2 ) - S e ( 5 ) 2 6 1 ( 1 ) S e ( 1 0 ) - K ( 1 ) 3 . 8 2 ( 2 ) M 0 ( 2 ) - S e ( 8 ) 2 6 1 ( 1 ) S e ( 2 8 ) - K ( 1 ) 3 . 4 6 ( 2 ) M 0 ( 2 ) - S e ( 9 ) 2 5 3 ( 1 ) S e ( 2 9 ) — K ( 1 ) 3 3 2 ( 2 ) M 0 ( 2 ) - S e ( 1 2 ) 2 6 4 ( 1 ) S e ( 3 2 ) - K ( 1 ) 3 5 0 ( 2 ) M 0 ( 2 ) - S e ( 1 3 ) 2 5 7 ( 1 ) S e ( 3 2 ) - K ( 1 ) 3 . 4 6 ( 2 ) M 0 ( 3 ) - S e ( 1 ) 2 5 4 ( 1 ) S e ( 3 3 ) - K ( 1 ) 3 5 0 ( 2 ) M 0 ( 3 ) - S e ( 6 ) 2 . 5 3 ( 1 ) S e ( 3 6 ) - K ( 1 ) 3 7 0 ( 2 ) M 0 ( 3 ) - S e ( 7 ) 2 6 1 ( 1 ) S e ( 4 ) - K ( 2 ) 3 . 4 4 ( 2 ) M 0 ( 3 ) - S e ( 1 0 ) 2 6 2 ( 1 ) S e ( 5 ) - K ( 2 ) 3 4 4 ( 2 ) M 0 ( 3 ) - S e ( 1 1 ) 2 5 4 ( 1 ) S e ( 1 4 ) - K ( 2 ) 3 5 6 ( 3 ) M 0 ( 3 ) - S e ( 1 2 ) 2 6 5 ( 1 ) S e ( 1 5 ) - K ( 2 ) 3 . 4 7 ( 2 ) M 0 ( 3 ) - S e ( 1 3 ) 2 5 1 ( 1 ) S e ( 1 6 ) - K ( 2 ) 3 4 5 ( 3 ) T a b l e 2 - 1 9 . ( c o n t ' d ) 1 0 4 M 0 ( 4 ) - S e ( 1 4 ) 2 4 6 ( 1 ) S e ( 1 7 ) - K ( 2 ) 3 4 0 ( 2 ) M 0 ( 4 ) - S e ( 1 5 ) 2 5 8 ( 1 ) S e ( 1 8 ) - K ( 2 ) 3 5 6 ( 2 ) M 0 ( 4 ) - S e ( 1 6 ) 2 6 0 ( 1 ) S e ( 2 ) - K ( 3 ) 3 5 7 ( 3 ) M 0 ( 4 ) - S e ( 2 1 ) 2 6 8 ( 1 ) S e ( 3 ) - K ( 3 ) 3 4 3 ( 2 ) M 0 ( 4 ) - S e ( 2 2 ) 2 5 2 ( 1 ) S e ( 7 ) - K ( 3 ) 3 3 9 ( 2 ) M 0 ( 4 ) - S e ( 2 5 ) 2 6 9 ( 1 ) S e ( 1 0 ) - K ( 3 ) 3 5 5 ( 2 ) M 0 ( 4 ) - S e ( 2 6 ) 2 5 5 ( 1 ) S e ( 2 7 ) - K ( 3 ) 3 5 5 ( 2 ) M 0 ( 5 ) - S e ( 1 4 ) 2 4 6 ( 1 ) S e ( 2 8 ) - K ( 3 ) 3 . 6 0 ( 2 ) M 0 ( 5 ) - S e ( 1 7 ) 2 6 1 ( 1 ) S e ( 3 2 ) - K ( 3 ) 3 4 1 ( 2 ) M 0 ( 5 ) - S e ( 1 8 ) 2 6 6 ( 1 ) S e ( 3 3 ) - K ( 3 ) 3 4 0 ( 2 ) M 0 ( 5 ) - S e ( 2 1 ) 2 6 1 ( 1 ) S e ( 3 8 ) - K ( 3 ) 3 7 3 ( 2 ) M 0 ( 5 ) - S e ( 2 2 ) 2 5 0 ( 1 ) S e ( 1 9 ) - K ( 4 ) 3 2 9 ( 2 ) M 0 ( 5 ) - S e ( 2 3 ) 2 6 0 ( 1 ) S e ( 2 8 ) - K ( 4 ) 3 2 2 ( 2 ) M 0 ( 5 ) - S e ( 2 4 ) 2 5 5 ( 1 ) S e ( 2 9 ) - K ( 4 ) 3 5 2 ( 2 ) M 0 ( 6 ) - S e ( 1 4 ) 2 4 9 ( 1 ) S e ( 3 0 ) - K ( 4 ) 3 5 6 ( 2 ) M 0 ( 6 ) - S e ( 1 9 ) 2 6 0 ( 1 ) S e ( 3 1 ) — K ( 4 ) 3 . 4 2 ( 2 ) M 0 ( 6 ) - S e ( 2 0 ) 2 6 7 ( 1 ) S e ( 3 6 ) - K ( 4 ) 3 5 6 ( 2 ) M 0 ( 6 ) - S e ( 2 3 ) 2 6 4 ( 1 ) S e ( 2 0 ) - K ( 5 ) 3 4 9 ( 3 ) M 0 ( 6 ) - S e ( 2 4 ) 2 5 2 ( 1 ) S e ( 3 1 ) - K ( 5 ) 3 5 7 ( 3 ) M 0 ( 6 ) - S e ( 2 5 ) 2 6 3 ( 1 ) S e ( 3 1 ) - K ( 5 ) 3 2 7 ( 3 ) M 0 ( 6 ) - S e ( 2 6 ) 2 5 3 ( 1 ) S e ( 3 4 ) — K ( 5 ) 3 . 8 0 ( 3 ) M 0 ( 7 ) - S e ( 2 7 ) 2 4 8 ( 1 ) S e ( 1 9 ) - K ( 5 ' ) 3 6 6 ( 5 ) M 0 ( 7 ) - S e ( 2 8 ) 2 6 1 ( 1 ) S e ( 2 0 ) - K ( 5 ' ) 3 4 6 ( 5 ) M 0 ( 7 ) - S e ( 2 9 ) 2 6 3 ( 1 ) S e ( 1 6 ) - K ( 5 ' ) 3 4 5 ( 5 ) M 0 ( 7 ) - S e ( 3 4 ) 2 6 2 ( 1 ) S e ( 2 3 ) - K ( 5 ' ) 3 6 8 ( 6 ) M 0 ( 7 ) - S e ( 3 5 ) 2 4 9 ( 1 ) S e ( 2 5 ) - K ( 5 ' ) 3 . 8 2 ( 5 ) M 0 ( 7 ) - S e ( 3 8 ) 2 5 9 ( 1 ) S e ( 1 3 ) - K ( 6 ) 3 5 9 ( 3 ) M 0 ( 7 ) - S e ( 3 9 ) 2 5 9 ( 1 ) S e ( 1 5 ) — K ( 6 ) 3 5 3 ( 3 ) M o ( 8 ) - S e ( 2 7 ) 2 4 1 ( 1 ) S e ( 1 9 ) - K ( 6 ) 3 7 1 ( 3 ) M o ( 8 ) — S e ( 3 0 ) 2 . 6 7 ( 1 ) S e ( 3 0 ) - K ( 6 ) 3 5 5 ( 3 ) M o ( 8 ) - S e ( 3 1 ) 2 6 1 ( 1 ) S e ( 3 ) - K ( 6 ) 3 7 2 ( 6 ) T a b l e 2 - 1 9 . ( c o n t ' d ) 1 0 5 M o ( 8 ) - S e ( 3 4 ) 2 . 6 2 ( ] ) S e ( 8 ) - K ( 6 ' ) 3 . 6 9 ( 6 ) M o ( 8 ) - S e ( 3 5 ) 2 . 5 6 ( 1 ) S e ( 1 7 ) - K ( 6 ) 3 . 5 9 ( 7 ) M o ( 8 ) - S e ( 3 6 ) 2 . 5 8 ( 1 ) S e ( 1 9 ) - K ( 6 ) 3 . 6 4 ( 7 ) M o ( 8 ) - S e ( 3 7 ) 2 5 9 ( 1 ) S e ( 2 3 ) - K ( 6 ) 3 . 7 2 ( 6 ) M 0 ( 9 ) - S e ( 2 7 ) 2 . 5 3 ( 1 ) S e ( 2 ) - K ( 7 ) 3 . 4 6 ( 7 ) M 0 ( 9 ) - S e ( 3 2 ) 2 . 5 6 ( 1 ) S e ( 6 ) - K ( 7 ' ) 3 . 7 4 ( 6 ) M 0 ( 9 ) - S e ( 3 3 ) 2 . 6 3 ( 1 ) S e ( 1 2 ) - K ( 7 ' ) 2 . 9 5 ( 6 ) M 0 ( 9 ) - S e ( 3 6 ) 2 . 6 0 ( 1 ) S e ( 2 ) - K ( 8 ) 3 . 4 8 ( 3 ) M 0 ( 9 ) - S e ( 3 7 ) 2 5 2 ( 1 ) S e ( 5 ) - K ( 8 ) 3 3 8 ( 3 ) M 0 ( 9 ) - S e ( 3 8 ) 2 . 6 1 ( 1 ) S e ( 1 2 ) - K ( 8 ) 3 . 5 8 ( 3 ) M 0 ( 9 ) - S e ( 3 9 ) 2 . 5 5 ( 1 ) S e ( 1 8 ) - K ( 8 ) 3 2 9 ( 3 ) S e ( 2 ) - S e ( 3 ) 2 3 8 ( 2 ) S e ( 2 1 ) - K ( 8 ) 3 . 6 5 ( 3 ) S e ( 4 ) - S e ( 5 ) 2 . 3 1 ( 1 ) S e l e c t e d B o n d A n g l e s fi i e g ) M o ( 2 ) - M o ( 1 ) - M o ( 3 ) 6 0 . 4 ( 3 ) S e ( 2 4 ) - M o ( 6 ) - S e ( 2 6 ) 8 4 . 5 ( 4 ) M o ( 2 ) — M o ( l ) - S e ( 1 ) 5 5 . 0 ( 3 ) S e ( 2 5 ) - M o ( 6 ) - S e ( 2 6 ) 5 2 . 8 ( 3 ) M o ( 2 ) - M o ( 1 ) - S e ( 8 ) 5 7 . 3 ( 3 ) M o ( 8 ) - M o ( 7 ) - M o ( 9 ) 5 9 . 4 ( 3 ) M o ( 2 ) - M o ( 1 ) - S e ( 9 ) 5 7 . 2 ( 3 ) M o ( 8 ) - M o ( 7 ) - S e ( 2 7 ) 5 4 . 5 ( 3 ) M o ( 3 ) - M o ( 1 ) - S e ( 1 ) 5 7 . 3 ( 3 ) M o ( 8 ) - M o ( 7 ) - S e ( 3 4 ) 5 8 . 2 ( 3 ) M o ( 3 ) - M o ( 1 ) - S e ( 1 0 ) 5 7 . 7 ( 3 ) M o ( 8 ) - M o ( 7 ) - S e ( 3 5 ) 5 8 . 1 ( 3 ) M o ( 3 ) - M o ( 1 ) - S e ( 1 1 ) 5 6 . 3 ( 3 ) M o ( 9 ) - M o ( 7 ) — S e ( 2 7 ) 5 7 . 4 ( 3 ) S e ( 1 ) - M o ( 1 ) - S e ( 2 ) 9 1 . 3 ( 4 ) M o ( 9 ) - M o ( 7 ) - S e ( 3 8 ) 5 8 . 2 ( 3 ) S e ( 1 ) - M o ( 1 ) - S e ( 3 ) 1 4 5 . 4 ( 4 ) M o ( 9 ) - M o ( 7 ) - S e ( 3 9 ) 5 6 . 8 ( 3 ) S e ( 1 ) - M o ( 1 ) - S e ( 8 ) 8 2 . 2 ( 4 ) S e ( 2 7 ) - M o ( 7 ) - S e ( 2 8 ) 9 6 . 1 ( 4 ) S e ( 1 ) - M o ( 1 ) - S e ( 9 ) 1 1 1 . 4 ( 4 ) S e ( 2 7 ) - M 0 ( 7 ) - S e ( 2 9 ) 1 4 8 . 8 ( 5 ) S e ( 1 ) — M o ( 1 ) — S e ( 1 0 ) 8 7 . 9 ( 4 ) S e ( 2 7 ) - M o ( 7 ) - S e ( 3 4 ) 8 1 . 1 ( 4 ) S e ( 1 ) - M o ( l ) - S e ( 1 1 ) 1 1 3 . 2 ( 4 ) S e ( 2 7 ) - M o ( 7 ) - S e ( 3 5 ) 1 1 2 . 0 ( 4 ) S e ( 2 ) - M o ( l ) - S e ( 3 ) 5 4 . 1 ( 4 ) S e ( 2 7 ) - M o ( 7 ) - S e ( 3 8 ) 8 4 . 7 ( 4 ) S e ( 2 ) - M o ( 1 ) - S e ( 8 ) 8 7 . 4 ( 4 ) S e ( 2 7 ) - M o ( 7 ) - S e ( 3 9 ) 1 1 3 6 ( 4 ) _ § e ( 2 ) - M o ( 1 ) — S e ( 9 ) 1 2 8 . 6 ( 4 ) S e ( 2 8 ) — M o ( 7 ) - S e ( 2 9 ) 5 3 . 0 ( 4 ) T a b l e 2 - 1 9 . ( c o n t ' d ) 1 0 6 S e ( 2 ) - M o ( l ) - S e ( 1 0 ) 9 0 . 9 ( 4 ) S e ( 2 8 ) - M o ( 7 ) - S e ( 3 4 ) 8 5 . 9 ( 4 ) S e ( 2 ) - M o ( l ) - S e ( 1 1 ) 1 3 1 . 1 ( 4 ) S e ( 2 8 ) - M o ( 7 ) - S e ( 3 5 ) 1 2 6 . 7 ( 4 ) S e ( 3 ) - M o ( l ) - S e ( 8 ) 9 5 . 0 ( 4 ) S e ( 2 8 ) - M o ( 7 ) - S e ( 3 8 ) 8 9 . 9 ( 4 ) S e ( 3 ) - M o ( l ) - S e ( 9 ) 9 3 5 ( 4 ) S e ( 2 8 ) - M 0 ( 7 ) - S e ( 3 9 ) 1 2 7 . 5 ( 4 ) S e ( 3 ) - M o ( l ) — S e ( 1 0 ) 9 2 . 0 ( 4 ) S e ( 2 9 ) - M o ( 7 ) - S e ( 3 4 ) 9 8 7 ( 4 ) S e ( 3 ) - M o ( l ) - S e ( 1 1 ) 9 2 . 9 ( 4 ) S e ( 2 9 ) - M o ( 7 ) - S e ( 3 5 ) 9 3 . 0 ( 4 ) S e ( 8 ) - M o ( l ) - S e ( 9 ) 5 3 4 ( 3 ) S e ( 2 9 ) - M 0 ( 7 ) - S e ( 3 8 ) 9 0 4 ( 3 ) S e ( 8 ) - M o ( l ) - S e ( 1 0 ) 1 6 9 . 9 ( 5 ) S e ( 2 9 ) - M o ( 7 ) - S e ( 3 9 ) 8 7 3 ( 4 ) S e ( 8 ) - M o ( l ) - S e ( 1 1 ) 1 3 5 . 5 ( 4 ) S e ( 3 4 ) - M o ( 7 ) - S e ( 3 5 ) 5 7 . 0 ( 4 ) S e ( 9 ) - M o ( l ) - S e ( 1 0 ) 1 3 3 . 4 ( 5 ) S e ( 3 4 ) - M o ( 7 ) - S e ( 3 8 ) 1 6 4 . 7 ( 5 ) S e ( 9 ) - M o ( l ) - S e ( 1 1 ) 8 2 4 ( 4 ) S e ( 3 4 ) - M o ( 7 ) - S e ( 3 9 ) 1 3 8 . 6 ( 4 ) S e ( 1 0 ) - M o ( l ) - S e ( 1 1 ) 5 1 . 1 ( 3 ) S e ( 3 5 ) - M o ( 7 ) — S e ( 3 8 ) 1 3 5 . 1 ( 5 ) M o ( l ) - M o ( 2 ) - M o ( 3 ) 5 9 . 8 ( 3 ) S e ( 3 5 ) - M o ( 7 ) - S e ( 3 9 ) 8 1 . 9 ( 4 ) M o ( l ) - M o ( 2 ) — S e ( 1 ) 5 6 6 ( 3 ) S e ( 3 8 ) - M o ( 7 ) - S e ( 3 9 ) 5 3 . 5 ( 3 ) M o ( l ) - M o ( 2 ) - S e ( 8 ) 5 9 2 ( 3 ) M 0 ( 7 ) - M o ( 8 ) - M o ( 9 ) 6 0 4 ( 3 ) M o ( l ) - M o ( 2 ) - S e ( 9 ) 5 5 7 ( 3 ) M o ( 7 ) - M o ( 8 ) — S e ( 2 7 ) 5 6 . 8 ( 3 ) M o ( 3 ) - M o ( 2 ) - S e ( 1 ) 5 7 5 ( 3 ) M o ( 7 ) — M o ( 8 ) - S e ( 3 4 ) 5 8 3 ( 3 ) M o ( 3 ) - M o ( 2 ) — S e ( 1 2 ) 5 8 2 ( 3 ) M o ( 7 ) - M o ( 8 ) - S e ( 3 5 ) 5 5 . 7 ( 3 ) M o ( 3 ) - M o ( 2 ) - S e ( 1 3 ) 5 5 5 ( 3 ) M o ( 9 ) - M o ( 8 ) - S e ( 2 7 ) 5 8 4 ( 3 ) S e ( 1 ) - M o ( 2 ) - S e ( 4 ) 9 5 . 1 ( 5 ) M o ( 9 ) - M o ( 8 ) — S e ( 3 6 ) 5 8 5 ( 3 ) S e ( 1 ) - M o ( 2 ) - S e ( 5 ) 1 4 7 . 3 ( 5 ) M o ( 9 ) - M o ( 8 ) - S e ( 3 7 ) 5 6 3 ( 3 ) S e ( 1 ) - M o ( 2 ) - S e ( 8 ) 8 4 3 ( 4 ) S e ( 2 7 ) - M o ( 8 ) - S e ( 3 0 ) 9 1 . 9 ( 4 ) S e ( 1 ) - M o ( 2 ) - S e ( 9 ) 1 1 1 . 5 ( 4 ) S e ( 2 7 ) - M o ( 8 ) - S e ( 3 1 ) 1 4 5 . 1 ( 5 ) S e ( 1 ) - M o ( 2 ) - S e ( 1 2 ) 8 4 6 ( 4 ) S e ( 2 7 ) - M o ( 8 ) - S e ( 3 4 ) 8 2 . 4 ( 4 ) S e ( 1 ) - M o ( 2 ) - S e ( 1 3 ) 1 1 2 4 ( 4 ) S e ( 2 7 ) - M o ( 8 ) - S e ( 3 5 ) 1 1 1 . 9 ( 4 ) S e ( 4 ) - M o ( 2 ) - S e ( 5 ) 5 2 2 ( 4 ) S e ( 2 7 ) - M o ( 8 ) - S e ( 3 6 ) 8 6 . 1 ( 4 ) S e ( 4 ) - M o ( 2 ) - S e ( 8 ) 8 8 3 ( 4 ) S e ( 2 7 ) - M o ( 8 ) - S e ( 3 7 ) 1 1 4 4 ( 4 ) S e ( 4 ) - M o ( 2 ) - S e ( 9 ) 1 2 8 . 5 ( 4 ) S e ( 3 0 ) - M o ( 8 ) - S e ( 3 1 ) 5 3 . 1 ( 4 ) S e ( 4 ) - M o ( 2 ) - S e ( 1 2 ) 8 7 7 ( 4 ) S e ( 3 0 ) - M o ( 8 ) - S e ( 3 4 ) 8 8 2 ( 4 ) S e ( 4 ) - M o ( 2 ) - S e ( 1 3 ) 1 2 7 . 2 ( 4 ) S e ( 3 0 ) - M o ( 8 ) - S e ( 3 5 ) 1 3 1 . 6 ( 4 ) S e ( 5 ) - M o ( 2 ) - S e ( 8 ) 9 2 7 ( 4 ) S e ( 3 0 ) - M o ( 8 ) - S e ( 3 6 ) 8 7 2 ( 4 ) i d S ) - M o ( 2 ) - S e ( 9 ) 9 2 . 1 ( 4 ) S e ( 3 0 ) - M o ( 8 ) - S e ( 3 7 ) 1 2 9 . 3 ( 4 ) T a b l e 2 - 1 9 . ( c o n t ' d ) 1 0 7 S e ( 5 ) - M o ( 2 ) - S e ( 1 2 ) 9 3 . 9 ( 4 ) S e ( 3 1 ) - M o ( 8 ) - S e ( 3 4 ) 9 5 . 0 ( 4 ) S e ( 5 ) - M o ( 2 ) - S e ( 1 3 ) 9 2 . 1 ( 4 ) S e ( 3 1 ) - M o ( 8 ) - S e ( 3 5 ) 9 4 6 ( 4 ) S e ( 8 ) - M o ( 2 ) - S e ( 9 ) 5 3 7 ( 4 ) S e ( 3 1 ) - M o ( 8 ) - S e ( 3 6 ) 9 1 6 ( 3 ) S e ( 8 ) - M o ( 2 ) - S e ( 1 2 ) 1 6 7 . 8 ( 5 ) S e ( 3 1 ) - M o ( 8 ) - S e ( 3 7 ) 9 1 . 9 ( 4 ) S e ( 8 ) - M o ( 2 ) - S e ( 1 3 ) 1 3 6 . 5 ( 5 ) S e ( 3 4 ) - M o ( 8 ) - S e ( 3 5 ) 5 6 3 ( 4 ) S e ( 9 ) - M o ( 2 ) - S e ( 1 2 ) 1 3 6 . 1 ( 5 ) S e ( 3 4 ) - M o ( 8 ) - S e ( 3 6 ) 1 6 7 . 5 ( 5 ) S e ( 9 ) - M o ( 2 ) - S e ( 1 3 ) 8 2 . 9 ( 4 ) S e ( 3 4 ) - M o ( 8 ) - S e ( 3 7 ) 1 3 5 . 3 ( 4 ) S e ( 1 2 ) - M o ( 2 ) - S e ( 1 3 ) 5 3 5 ( 4 ) S e ( 3 5 ) - M o ( 8 ) - S e ( 3 6 ) 1 3 3 . 8 ( 5 ) M o ( l ) - M o ( 3 ) - M o ( 2 ) 5 9 . 8 ( 3 ) S e ( 3 5 ) - M o ( 8 ) - S e ( 3 7 ) 7 9 2 ( 4 ) M o ( l ) - M o ( 3 ) - S e ( 1 ) 5 5 . 7 ( 3 ) S e ( 3 6 ) - M o ( 8 ) - S e ( 3 7 ) 5 4 . 8 ( 3 ) M o ( l ) - M o ( 3 ) - S e ( 1 0 ) 5 8 . 8 ( 3 ) M o ( 7 ) - M o ( 9 ) - M o ( 8 ) 6 0 2 ( 2 ) M o ( l ) - M o ( 3 ) - S e ( 1 1 ) 5 8 . 2 ( 3 ) M o ( 7 ) - M o ( 9 ) - S e ( 2 7 ) 5 5 . 5 ( 3 ) M o ( 2 ) - M o ( 3 ) - S e ( 1 ) 5 4 . 3 ( 3 ) M o ( 7 ) - M o ( 9 ) - S e ( 3 8 ) 5 7 . 5 ( 3 ) M o ( 2 ) - M o ( 3 ) - S e ( 1 2 ) 5 8 . 0 ( 3 ) M o ( 7 ) — M o ( 9 ) — S e ( 3 9 ) 5 8 . 0 ( 3 ) M o ( 2 ) - M o ( 3 ) - S e ( l 3 ) 5 7 . 8 ( 3 ) M o ( 8 ) - M o ( 9 ) - S e ( 2 7 ) 5 4 2 ( 3 ) S e ( 1 ) - M o ( 3 ) - S e ( 6 ) 9 4 7 ( 4 ) M o ( 8 ) - M o ( 9 ) — S e ( 3 6 ) 5 7 7 ( 3 ) S e ( 1 ) - M o ( 3 ) - S e ( 7 ) 1 4 8 . 7 ( 4 ) M o ( 8 ) - M o ( 9 ) - S e ( 3 7 ) 5 8 . 8 ( 3 ) S e ( 1 ) - M o ( 3 ) - S e ( 1 0 ) 8 7 6 ( 4 ) S e ( 2 7 ) - M o ( 9 ) - S e ( 3 2 ) 9 3 4 ( 4 ) S e ( 1 ) - M o ( 3 ) - S e ( 1 1 ) 1 1 3 5 ( 4 ) S e ( 2 7 ) - M o ( 9 ) - S e ( 3 3 ) 1 4 8 . 4 ( 5 ) S e ( 1 ) - M o ( 3 ) - S e ( 1 2 ) 8 2 6 ( 4 ) S e ( 2 7 ) - M o ( 9 ) - S e ( 3 6 ) 8 3 . 3 ( 4 ) S e ( 1 ) - M o ( 3 ) - S e ( 1 3 ) 1 1 1 . 5 ( 4 ) S e ( 2 7 ) - M o ( 9 ) - S e ( 3 7 ) 1 1 2 7 ( 4 ) S e ( 6 ) - M o ( 3 ) - S e ( 7 ) 5 4 . 0 ( 4 ) S e ( 2 7 ) — M o ( 9 ) - S e ( 3 8 ) 8 3 3 ( 4 ) S e ( 6 ) - M o ( 3 ) - S e ( 1 0 ) 8 8 . 9 ( 4 ) S e ( 2 7 ) - M o ( 9 ) - S e ( 3 9 ) 1 1 2 . 9 ( 4 ) S e ( 6 ) - M o ( 3 ) - S e ( 1 1 ) 1 2 7 . 8 ( 5 ) S e ( 3 2 ) — M o ( 9 ) - S e ( 3 3 ) 5 5 . 0 ( 4 ) S e ( 6 ) - M o ( 3 ) - S e ( l 2 ) 8 8 . 2 ( 4 ) S e ( 3 2 ) - M o ( 9 ) - S e ( 3 6 ) 8 6 . 0 ( 3 ) S e ( 6 ) - M o ( 3 ) - S e ( 1 3 ) 1 2 8 . 0 ( 4 ) S e ( 3 2 ) - M o ( 9 ) - S e ( 3 7 ) 1 2 7 . 7 ( 4 ) S e ( 7 ) - M o ( 3 ) - S e ( 1 0 ) 9 2 5 ( 4 ) S e ( 3 2 ) - M o ( 9 ) - S e ( 3 8 ) 8 9 7 ( 3 ) S e ( 7 ) - M o ( 3 ) - S e ( 1 1 ) 9 0 5 ( 4 ) S e ( 3 2 ) - M o ( 9 ) - S e ( 3 9 ) 1 2 8 . 9 ( 4 ) S e ( 7 ) - M o ( 3 ) - S e ( 1 2 ) 9 4 . 0 ( 4 ) S e ( 3 3 ) — M o ( 9 ) - S e ( 3 6 ) 9 3 . 9 ( 4 ) S e ( 7 ) - M o ( 3 ) - S e ( 1 3 ) 9 0 6 ( 4 ) S e ( 3 3 ) - M o ( 9 ) - S e ( 3 7 ) 9 0 . 5 ( 4 ) S e ( 1 0 ) - M o ( 3 ) - S e ( 1 1 ) 5 2 . 0 ( 3 ) S e ( 3 3 ) - M o ( 9 ) - S e ( 3 8 ) 9 4 . 9 ( 3 ) _ s e ( 1 0 ) - M o ( 3 ) - S e ( 1 2 ) 1 6 9 . 5 ( 5 ) S e ( 3 3 ) - M o ( 9 ) - S e ( 3 9 ) 9 0 2 ( 4 ) T a b l e 2 - 1 9 . ( c o n t ' d ) 1 0 8 S e ( 1 0 ) - M o ( 3 ) - S e ( 1 3 ) 1 3 4 . 2 ( 5 ) S e ( 3 6 ) - M o ( 9 ) - S e ( 3 7 ) 5 5 4 ( 3 ) S e ( 1 1 ) - M o ( 3 ) - S e ( 1 2 ) 1 3 6 . 2 ( 4 ) S e ( 3 6 ) - M o ( 9 ) - S e ( 3 8 ) 1 6 5 . 6 ( 5 ) S e ( 1 1 ) - M o ( 3 ) - S e ( 1 3 ) 8 2 . 4 ( 4 ) S e ( 3 6 ) - M o ( 9 ) - S e ( 3 9 ) 1 3 7 . 7 ( 4 ) S e ( 1 2 ) - M o ( 3 ) - S e ( 1 3 ) 5 4 . 1 ( 4 ) S e ( 3 7 ) - M o ( 9 ) - S e ( 3 8 ) 1 3 5 . 9 ( 4 ) M o ( 5 ) - M o ( 4 ) - M o ( 6 ) 6 1 5 ( 3 ) S e ( 3 7 ) - M o ( 9 ) - S e ( 3 9 ) 8 2 . 6 ( 4 ) . M o ( 5 ) - M o ( 4 ) - S e ( 1 4 ) 5 5 . 5 ( 3 ) S e ( 3 8 ) - M o ( 9 ) - S e ( 3 9 ) 5 3 7 ( 3 ) M o ( 5 ) - M o ( 4 ) - S e ( 2 1 ) 5 7 . 1 ( 3 ) M o ( l ) - S e ( 1 ) - M o ( 2 ) 6 8 5 ( 4 ) M o ( S ) - M o ( 4 ) - S e ( 2 2 ) 5 5 . 9 ( 3 ) M o ( l ) - S e ( 1 ) - M o ( 3 ) 6 7 . 0 ( 4 ) M o ( 6 ) - M o ( 4 ) - S e ( 1 4 ) 5 6 4 ( 3 ) M o ( 2 ) — S e ( 1 ) - M o ( 3 ) 6 8 . 1 ( 4 ) M 0 ( 6 ) - M 0 ( 4 ) - S e ( 2 5 ) 5 7 . 5 ( 3 ) M o ( l ) - S e ( 2 ) - S e ( 3 ) 6 4 5 ( 4 ) M o ( 6 ) - M o ( 4 ) - S e ( 2 6 ) 5 6 4 ( 3 ) M o ( l ) - S e ( 3 ) - S e ( 2 ) 6 1 . 3 ( 4 ) S e ( 1 5 ) - M o ( 4 ) — S e ( 2 1 ) 8 6 . 9 ( 4 ) M o ( 2 ) - S e ( 4 ) - S e ( 5 ) 6 3 2 ( 4 ) S e ( 1 5 ) - M o ( 4 ) - S e ( 2 2 ) 1 2 6 . 6 ( 4 ) M o ( 2 ) - S e ( 5 ) - S e ( 4 ) 6 4 6 ( 4 ) S e ( 1 5 ) - M 0 ( 4 ) - S e ( 2 5 ) 9 0 . 1 ( 4 ) M o ( 3 ) — S e ( 6 ) - S e ( 7 ) 6 4 . 9 ( 4 ) S e ( 1 5 ) - M o ( 4 ) - S e ( 2 6 ) 1 2 8 . 6 ( 4 ) M o ( 3 ) - S e ( 7 ) — S e ( 6 ) 6 1 . 1 ( 4 ) S e ( 1 6 ) - M o ( 4 ) — S e ( 2 1 ) 9 2 . 7 ( 4 ) M o ( l ) — S e ( 8 ) — M o ( 2 ) 6 3 5 ( 3 ) S e ( 1 6 ) - M o ( 4 ) — S e ( 2 2 ) 9 1 . 9 ( 3 ) M o ( l ) - S e ( 8 ) - S e ( 9 ) 5 9 4 ( 4 ) S e ( 1 6 ) - M 0 ( 4 ) - S e ( 2 5 ) 9 4 . 6 ( 4 ) M o ( 2 ) - S e ( 8 ) - S e ( 9 ) 6 1 . 5 ( 4 ) S e ( 1 6 ) - M o ( 4 ) - S e ( 2 6 ) 9 3 . 1 ( 4 ) M o ( l ) — S e ( 9 ) - M o ( 2 ) 6 7 . 1 ( 3 ) S e ( 2 1 ) - M o ( 4 ) - S e ( 2 2 ) 5 2 . 9 ( 4 ) M o ( l ) - S e ( 9 ) - S e ( 8 ) 6 7 2 ( 4 ) S e ( 2 1 ) - M o ( 4 ) - S e ( 2 5 ) 1 6 8 . 1 ( 4 ) M o ( 2 ) — S e ( 9 ) - S e ( 8 ) 6 4 . 8 ( 4 ) S e ( 2 1 ) - M o ( 4 ) - S e ( 2 6 ) 1 3 7 . 1 ( 4 ) M o ( l ) - S e ( 1 0 ) - M o ( 3 ) 6 3 . 5 ( 3 ) S e ( 2 2 ) - M o ( 4 ) - S e ( 2 5 ) 1 3 6 . 1 ( 5 ) M o ( l ) - S e ( 1 0 ) — S e ( 1 1 ) 6 3 . 1 ( 4 ) S e ( 2 2 ) - M o ( 4 ) - S e ( 2 6 ) 8 4 . 4 ( 4 ) M o ( 3 ) - S e ( 1 0 ) - S e ( 1 1 ) 6 2 . 0 ( 4 ) S e ( 2 5 ) - M o ( 4 ) - S e ( 2 6 ) 5 2 . 0 ( 3 ) M o ( l ) - S e ( 1 1 ) - M o ( 3 ) 6 5 6 ( 4 ) S e ( 1 4 ) - M o ( 4 ) - S e ( 1 5 ) 9 4 . 8 ( 4 ) M o ( l ) - S e ( 1 1 ) - S e ( 1 0 ) 6 5 . 9 ( 4 ) S e ( 1 4 ) - M o ( 4 ) — S e ( 1 6 ) 1 4 6 . 8 ( 4 ) M o ( 3 ) - S e ( 1 1 ) - S e ( 1 0 ) 6 6 . 0 ( 4 ) S e ( 1 4 ) - M o ( 4 ) - S e ( 2 1 ) 8 3 2 ( 4 ) M o ( 2 ) - S e ( 1 2 ) - M o ( 3 ) 6 3 . 8 ( 3 ) S e ( 1 4 ) - M o ( 4 ) - S e ( 2 2 ) 1 1 0 . 8 ( 4 ) M o ( 2 ) - S e ( 1 2 ) - S e ( l 3 ) 6 1 . 8 ( 4 ) S e ( 1 4 ) - M o ( 4 ) - S e ( 2 5 ) 8 5 6 ( 4 ) M o ( 3 ) - S e ( 1 2 ) - S e ( 1 3 ) 5 9 . 9 ( 4 ) i e ( 1 4 ) - M o ( 4 ) - S e ( 2 6 ) 1 1 2 3 ( 4 ) M o ( 2 ) - S e ( 1 3 ) - M o ( 3 ) 6 6 7 ( 3 ) T a b l e 2 - 1 9 . ( c o n t ' d ) 1 0 9 S e ( 1 5 ) - M o ( 4 ) - S e ( 1 6 ) M 0 ( 4 ) - M 0 ( 5 ) - M 0 ( 6 ) M 0 ( 4 ) - M o ( 5 ) - S e ( 1 4 ) M o ( 4 ) - M o ( 5 ) - S e ( 2 1 ) M 0 ( 4 ) - M o ( 5 ) - S e ( 2 2 ) M 0 ( 6 ) — M o ( 5 ) - S e ( 1 4 ) M o ( 6 ) - M o ( 5 ) - S e ( 2 3 ) M o ( 6 ) - M o ( 5 ) — S e ( 2 4 ) S e ( 1 4 ) - M o ( 5 ) - S e ( 1 7 ) S e ( 1 4 ) - M o ( 5 ) - S e ( 1 8 ) S e ( 1 4 ) - M o ( 5 ) — S e ( 2 1 ) S e ( 1 4 ) - M o ( 5 ) - S e ( 2 2 ) S e ( 1 4 ) — M o ( 5 ) - S e ( 2 3 ) S e ( 1 4 ) - M o ( 5 ) - S e ( 2 4 ) S e ( 1 7 ) - M o ( 5 ) - S e ( 1 8 ) S e ( 1 7 ) - M o ( 5 ) - S e ( 2 1 ) S e ( l 7 ) - M o ( 5 ) - S e ( 2 2 ) S e ( 1 7 ) - M o ( 5 ) - S e ( 2 3 ) S e ( 1 7 ) - M o ( 5 ) - S e ( 2 4 ) S e ( 1 8 ) - M o ( 5 ) - S e ( 2 1 ) S e ( 1 8 ) - M o ( 5 ) - S e ( 2 2 ) S e ( 1 8 ) - M o ( 5 ) - S e ( 2 3 ) S e ( 1 8 ) - M o ( 5 ) - S e ( 2 4 ) S e ( 2 1 ) - M o ( 5 ) - S e ( 2 2 ) S e ( 2 1 ) - M o ( 5 ) - S e ( 2 3 ) S e ( 2 1 ) - M o ( 5 ) - S e ( 2 4 ) S e ( 2 2 ) - M 0 ( 5 ) - S e ( 2 3 ) S e ( 2 2 ) - M o ( 5 ) - S e ( 2 4 ) S e ( 2 3 ) - M o ( 5 ) - S e ( 2 4 ) M 0 ( 4 ) - M 0 ( 6 ) - M o ( 5 ) M 0 ( 4 ) - M o ( 6 ) - S e ( 1 4 ) fl d 4 ) - M 0 ( 6 ) - S e ( 2 5 ) 5 2 . 0 ( 3 ) 5 9 . 2 ( 3 ) 5 5 . 4 ( 3 ) 5 9 . 3 ( 3 ) 5 6 7 ( 3 ) 5 5 . 4 ( 3 ) 5 7 . 7 ( 3 ) 5 5 . 4 ( 3 ) 9 8 . 0 ( 4 ) 1 4 8 . 4 ( 5 ) 8 4 5 ( 4 ) 1 1 1 . 5 ( 4 ) 8 2 3 ( 4 ) 1 1 0 . 1 ( 5 ) 5 0 . 6 ( 4 ) 8 5 4 ( 4 ) 1 2 4 . 5 ( 5 ) 9 0 . 9 ( 4 ) 1 2 8 . 5 ( 4 ) 9 5 . 1 ( 4 ) 9 2 . 9 ( 4 ) 9 3 . 1 ( 4 ) 9 1 3 ( 4 ) 5 3 . 9 ( 4 ) 1 6 5 . 7 ( 4 ) 1 3 8 . 0 ( 4 ) 1 3 7 . 3 ( 5 ) 8 4 4 ( 4 ) 5 3 3 ( 3 ) 5 9 . 4 ( 3 ) 5 5 2 ( 3 ) 5 9 . 4 ( 3 ) M 0 ( 2 ) - S e ( 1 3 ) - S e ( 1 2 ) M o ( 3 ) - S e ( 1 3 ) - S e ( 1 2 ) M 0 ( 4 ) - S e ( 1 4 ) - M 0 ( 5 ) M 0 ( 4 ) - S e ( 1 4 ) - M 0 ( 6 ) M o ( 5 ) - S e ( 1 4 ) - M o ( 6 ) M o ( 4 ) - S e ( 1 5 ) - S e ( 1 6 ) M o ( 4 ) - S e ( 1 6 ) - S e ( 1 5 ) M o ( 5 ) - S e ( 1 7 ) - S e ( 1 8 ) M o ( 5 ) - S e ( 1 8 ) - S e ( 1 7 ) M 0 ( 6 ) - S e ( 1 9 ) - S e ( 2 0 ) M o ( 6 ) - S e ( 2 0 ) - S e ( 1 9 ) M 0 ( 4 ) - S e ( 2 1 ) - M o ( 5 ) M o ( 4 ) - S e ( 2 1 ) - S e ( 2 2 ) M o ( 5 ) - S e ( 2 1 ) - S e ( 2 2 ) M o ( 4 ) - S e ( 2 2 ) - M o ( 5 ) M o ( 4 ) - S e ( 2 2 ) - S e ( 2 1 ) M o ( 5 ) - S e ( 2 2 ) - S e ( 2 1 ) M 0 ( 5 ) - S e ( 2 3 ) - M o ( 6 ) M o ( 5 ) - S e ( 2 3 ) - S e ( 2 4 ) M o ( 6 ) - S e ( 2 3 ) - S e ( 2 4 ) M o ( 5 ) - S e ( 2 4 ) - S e ( 2 3 ) M o ( 6 ) - S e ( 2 4 ) - S e ( 2 3 ) M 0 ( 4 ) - S e ( 2 5 ) - M o ( 6 ) M 0 ( 4 ) - S e ( 2 5 ) - S e ( 2 6 ) M 0 ( 6 ) - S e ( 2 5 ) - S e ( 2 6 ) M o ( 4 ) - S e ( 2 6 ) - M o ( 6 ) M 0 ( 4 ) - S e ( 2 6 ) - S e ( 2 5 ) M o ( 6 ) - S e ( 2 6 ) - S e ( 2 5 ) M 0 ( 7 ) - S e ( 2 7 ) - M 0 ( 8 ) M o ( 7 ) - S e ( 2 7 ) - M o ( 9 ) M o ( 8 ) - S e ( 2 7 ) - M o ( 9 ) M 0 ( 7 ) - S e ( 2 8 ) - S e ( 2 9 ) 6 4 7 ( 4 ) 6 6 . 0 ( 4 ) 6 9 . 1 ( 3 ) 6 8 4 ( 4 ) 7 0 2 ( 4 ) 6 4 . 5 ( 4 ) 6 3 5 ( 4 ) 6 5 . 9 ( 4 ) 6 3 4 ( 4 ) 6 5 7 ( 4 ) 6 2 . 8 ( 4 ) 6 3 6 ( 3 ) 6 0 2 ( 4 ) 6 0 6 ( 4 ) 6 7 4 ( 3 ) 6 6 . 9 ( 4 ) 6 5 5 ( 4 ) 6 5 . 9 ( 3 ) 6 2 3 ( 4 ) 6 0 . 9 ( 3 ) 6 4 4 ( 4 ) 6 6 . 0 ( 4 ) 6 3 . 1 ( 3 ) 6 1 . 0 ( 4 ) 6 1 4 ( 3 ) 6 6 4 ( 4 ) 6 7 . 0 ( 4 ) 6 5 . 8 ( 4 ) 6 8 . 8 ( 4 ) 6 7 . 1 ( 4 ) 6 7 3 ( 4 ) 6 3 . 8 ( 4 ) T a b l e 2 - 1 9 . ( c o n t ' d ) 1 1 0 M 0 ( 4 ) - M o ( 6 ) - S e ( 2 6 ) M o ( 5 ) - M o ( 6 ) — S e ( 1 4 ) M o ( 5 ) - M o ( 6 ) — S e ( 2 3 ) M 0 ( 5 ) - M o ( 6 ) - S e ( 2 4 ) S e ( 1 4 ) - M 0 ( 6 ) - S e ( 1 9 ) S e ( 1 4 ) - M o ( 6 ) - S e ( 2 0 ) S e ( 1 4 ) - M 0 ( 6 ) - S e ( 2 3 ) S e ( 1 4 ) - M o ( 6 ) — S e ( 2 4 ) S e ( 1 4 ) - M o ( 6 ) - S e ( 2 5 ) S e ( 1 4 ) - M o ( 6 ) - S e ( 2 6 ) S e ( 1 9 ) - M o ( 6 ) - S e ( 2 0 ) S e ( 1 9 ) - M o ( 6 ) - S e ( 2 3 ) S e ( 1 9 ) - M o ( 6 ) - S e ( 2 4 ) S e ( 1 9 ) - M o ( 6 ) - S e ( 2 5 ) S e ( 1 9 ) - M o ( 6 ) - S e ( 2 6 ) S e ( 2 0 ) - M o ( 6 ) - S e ( 2 3 ) S e ( 2 0 ) - M o ( 6 ) - S e ( 2 4 ) S e ( 2 0 ) - M o ( 6 ) - S e ( 2 5 ) S e ( 2 0 ) - M o ( 6 ) - S e ( 2 6 ) S e ( 2 3 ) - M o ( 6 ) - S e ( 2 4 ) S e ( 2 3 ) - M o ( 6 ) - S e ( 2 5 ) S e ( 2 3 ) - M 0 ( 6 ) - S e ( 2 6 ) S e ( 2 4 ) - M o ( 6 ) - S e ( 2 5 ) 5 7 2 ( 3 ) 5 4 4 ( 3 ) 5 6 5 ( 3 ) 5 6 . 4 ( 3 ) 9 6 . 9 ( 4 ) 1 4 8 . 5 ( 4 ) 8 1 . 0 ( 4 ) 1 1 0 . 0 ( 5 ) 8 6 . 1 ( 4 ) 1 1 1 . 9 ( 4 ) 5 1 6 ( 4 ) 8 8 6 ( 4 ) 1 2 6 . 3 ( 4 ) 8 8 5 ( 4 ) 1 2 7 . 4 ( 5 ) 9 6 3 ( 4 ) 9 2 4 ( 4 ) 9 2 . 3 ( 4 ) 9 1 5 ( 4 ) 5 3 2 ( 3 ) 1 6 6 . 3 ( 5 ) 1 3 7 . 1 ( 4 ) 1 3 7 . 2 ( 4 ) M o ( 7 ) - S e ( 2 9 ) - S e ( 2 8 ) M o ( 8 ) - S e ( 3 0 ) - S e ( 3 1 ) M o ( 8 ) — S e ( 3 1 ) - S e ( 3 0 ) M o ( 9 ) - S e ( 3 2 ) — S e ( 3 3 ) M o ( 9 ) - S e ( 3 3 ) - S e ( 3 2 ) M o ( 7 ) — S e ( 3 4 ) - M o ( 8 ) M o ( 7 ) - S e ( 3 4 ) - S e ( 3 5 ) M o ( 8 ) - S e ( 3 4 ) - S e ( 3 5 ) M o ( 7 ) - S e ( 3 5 ) - M o ( 8 ) M 0 ( 7 ) - S e ( 3 5 ) - S e ( 3 4 ) M o ( 8 ) - S e ( 3 5 ) - S e ( 3 4 ) M o ( 8 ) - S e ( 3 6 ) - M o ( 9 ) M o ( 8 ) - S e ( 3 6 ) - S e ( 3 7 ) M o ( 9 ) - S e ( 3 6 ) - S e ( 3 7 ) M o ( 8 ) - S e ( 3 7 ) - M o ( 9 ) M o ( 8 ) - S e ( 3 7 ) - S e ( 3 6 ) M o ( 9 ) — S e ( 3 7 ) - S e ( 3 6 ) M o ( 7 ) - S e ( 3 8 ) - M o ( 9 ) M o ( 7 ) - S e ( 3 8 ) - S e ( 3 9 ) M o ( 9 ) - S e ( 3 8 ) - S e ( 3 9 ) M o ( 7 ) - S e ( 3 9 ) - M o ( 9 ) M o ( 7 ) - S e ( 3 9 ) - S e ( 3 8 ) M o ( 9 ) - S e ( 3 9 ) - S e ( 3 8 ) 6 3 . 1 ( 4 ) 6 2 . 1 ( 4 ) 6 4 . 8 ( 4 ) 6 4 . 1 ( 4 ) 6 0 . 8 ( 4 ) 6 3 6 ( 3 ) 5 8 . 8 ( 3 ) 6 0 6 ( 3 ) 6 6 3 ( 3 ) 6 4 2 ( 4 ) 6 3 . 1 ( 4 ) 6 3 . 8 ( 3 ) 6 2 . 8 ( 4 ) 6 0 5 ( 3 ) 6 4 . 8 ( 3 ) 6 2 4 ( 4 ) 6 4 . 1 ( 4 ) 6 4 4 ( 3 ) 6 3 . 2 ( 4 ) 6 2 . 0 ( 3 ) 6 5 . 1 ( 3 ) 6 3 . 2 ( 4 ) 6 4 3 ( 4 ) 1 1 1 T h e s t r u c t u r e o f ( V ) c o n t a i n s t w o [ M 0 3 S e 1 3 ] 2 ' a n i o n s a t t a c h e d t o a m o n o s e l e n i d e , a s s h o w n i n F i g u r e 2 - 7 . T h e t w o [ M 0 3 S e 1 3 ] 2 - a n i o n s a r e i n t e r a c t i n g w i t h a S e 2 " a n i o n v i a t h e s i x a x i a l S e a t o m s o f t h e d o u b l y b r i d g i n g d i s e l e n i d e s i n t h e t w o [ M 0 3 S e 1 3 ] 2 - c l u s t e r s . T h i s i s v e r y s i m i l a r t o t h e i n t e r a c t i o n b e t w e e n s u b c l u s t e r ( B ) a n d ( C ) i n ( I I I ) a n d ( I V ) . T h e t w o [ M 0 3 S e 1 3 ] 2 ‘ c l u s t e r s i n ( V ) a l s o f e a t u r e i n t e r e s t i n g s t r u c t u r a l m o d i fi c a t i o n s o n t h e l e n g t h e n i n g o f b r i d g i n g d i s e l e n i d e s i n t r o d u c e d t h r o u g h t h e s p e c i a l S e n - S e s h o r t c o n t a c t s m e n t i o n e d a b o v e . S e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s o f ( V ) a r e g i v e n i n T a b l e 2 - 2 0 . T h e a v e r a g e M o - M o d i s t a n c e i s 2 . 7 7 ( 1 ) A . F o r b o t h b r i d g i n g a n d t e r m i n a l d i s e l e n i d e s , t h e a v e r a g e M o - ( e q u a t o r i a l S e ) d i s t a n c e i s a l s o l o n g e r t h a n t h e a v e r a g e M o — ( a x i a l S e ) d i s t a n c e ( 2 . 6 1 ( 2 ) A a n d 2 5 4 4 f o r b r i d g i n g d i s e l e n i d e s ; 2 6 3 ( 1 ) } . a n d 2 . 6 1 ( 2 ) A f o r t e r m i n a l d i s e l e n i d e s ) . T h e a v e r a g e M o t o t h e t r i p l y b r i d g i n g s e l e n i d e ( S e ( 1 ) a n d S e ( 1 4 ) ) d i s t a n c e i s 2 . 4 9 5 ( 9 ) } 1 . I t i s s l i g h t l y l o n g e r t h a n t h a t o f ( I ) b u t f a l l s i n t h e r a n g e o f o t h e r [ M o 3 S e 7 ] 4 + c o n t a i n i n g c o m p o u n d s . I n t e r e s t i n g l y , t h e a v e r a g e b r i d g i n g d i s e l e n i d e d i s t a n c e ( 2 . 3 6 ( 2 ) A ) i s s i g n i fi c a n t l y l o n g e r t h a n t h o s e i n ( I ) a n d ( 1 1 ) , w h i l e t h e a v e r a g e t e r m i n a l d i s e l e n i d e d i s t a n c e ( 2 . 3 4 ( 2 ) A ) r e m a i n s a p p r o x i m a t e l y t h e s a m e . T h e d i s t a n c e s o f t h e S e - ~ - S e s h o r t c o n t a c t s b e t w e e n S e ( 2 7 ) a n d t h e s i x a x i a l s e l e n i u m a t o m s o f t h e b r i d g i n g d i s e l e n i d e s i n t h e t w o [ M o 3 S e 1 3 ] 2 ‘ c l u s t e r s r a n g e f r o m 2 . 8 1 ( 1 ) A t o 3 . 0 3 5 ( 9 ) A . A s o b s e r v e d e a r l i e r i n ( I I I ) a n d ( I V ) , i t i s a g a i n t h e S e - - - S e s h o r t c o n t a c t s t h a t c a u s e t h e l e n g t h e n i n g o f t h e b r i d g i n g d i s e l e n i d e s . 1 1 2 F i g u r e 2 - 7 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f [ M o s S e z ' fl ‘ h D a s h e d l i n e s r e p r e s e n t S e n - S e s h o r t c o n t a c t s . 1 1 3 T a b l e 2 - 2 0 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 6 M 0 6 S e 2 7 - 6 H 2 0 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c w d B o n d D i s t a n c e s ( A ) M 0 ( 1 ) - M 0 ( 2 ) 2 . 7 8 1 ( 9 ) S e ( 1 7 ) - S e ( 1 8 ) 2 . 3 4 1 ( 8 ) M 0 ( 1 ) - M o ( 3 ) 2 . 7 6 1 ( 7 ) S e ( 1 9 ) - S e ( 2 0 ) 2 . 3 5 1 ( 8 ) M 0 ( 2 ) - M 0 ( 3 ) 2 . 7 8 2 ( 8 ) S e ( 2 1 ) - S e ( 2 2 ) 2 . 3 4 1 ( 7 ) M 0 ( 4 ) - M 0 ( 5 ) 2 . 7 5 9 ( 9 ) S e ( 2 3 ) - S e ( 2 4 ) 2 . 3 2 3 ( 8 ) M 0 ( 4 ) - M 0 ( 6 ) 2 . 7 6 9 ( 8 ) S e ( 2 5 ) - S e ( 2 6 ) 2 . 3 8 2 ( 8 ) M 0 ( 5 ) - M 0 ( 6 ) 2 . 7 6 0 ( 7 ) S e ( 4 ) - K ( 1 ) 3 7 0 ( 2 ) M 0 ( 1 ) - S e ( 1 ) 2 . 4 9 5 ( 7 ) S e ( 4 ) - K ( 1 ) 3 6 2 ( 2 ) M 0 ( 1 ) - S e ( 2 ) 2 . 6 2 9 ( 9 ) S e ( 1 2 ) - K ( 1 ) 3 4 3 ( 2 ) M 0 ( 1 ) - S e ( 3 ) 2 5 4 ( 1 ) S e ( 1 3 ) - K ( 1 ) 3 . 4 2 ( 2 ) M 0 ( 1 ) - S e ( 6 ) 2 . 5 9 1 ( 8 ) S e ( 2 1 ) - K ( 1 ) 3 4 4 ( 2 ) M 0 ( 1 ) - S e ( 7 ) 2 . 5 3 5 ( 7 ) S e ( 2 5 ) - K ( 1 ) 3 . 4 6 ( 2 ) M o ( 1 ) - S e ( 8 ) 2 . 5 8 6 ( 8 ) S e ( 2 6 ) - K ( 1 ) 3 4 1 ( 2 ) M 0 ( 1 ) - S e ( 9 ) 2 . 6 3 3 ( 8 ) S e ( 4 ) - K ( 2 ) 3 6 2 ( 2 ) M 0 ( 2 ) - S e ( 1 ) 2 5 1 ( 1 ) S e ( 5 ) - K ( 2 ) 3 6 8 ( 2 ) M 0 ( 2 ) - S e ( 2 ) 2 . 5 9 4 ( 7 ) S e ( 1 1 ) - K ( 2 ) 3 3 6 ( 1 ) M o ( 2 ) - S e ( 3 ) 2 . 5 4 5 ( 7 ) S e ( 1 2 ) - K ( 2 ) 3 3 6 ( 2 ) M 0 ( 2 ) - S e ( 4 ) 2 . 6 0 9 ( 7 ) S e ( 1 9 ) - K ( 2 ) 3 5 7 ( 1 ) M o ( 2 ) - S e ( 5 ) 2 . 5 5 2 ( 7 ) S e ( 2 5 ) - K ( 2 ) 3 2 5 ( 1 ) M 0 ( 2 ) - S e ( 1 0 ) 2 . 6 0 9 ( 9 ) S e ( 2 6 ) - K ( 2 ) 3 5 5 ( 1 ) M 0 ( 2 ) - S e ( 1 1 ) 2 . 6 5 6 ( 9 ) S e ( 9 ) - K ( 3 ) 3 5 3 ( 2 ) M 0 ( 3 ) - S e ( 1 ) 2 . 4 8 6 ( 7 ) S e ( 1 3 ) - K ( 3 ) 3 . 4 6 ( 2 ) M 0 ( 3 ) - S e ( 4 ) 2 . 6 0 1 ( 9 ) S e ( 2 2 ) - K ( 3 ) 3 2 3 ( 2 ) M 0 ( 3 ) - S e ( 5 ) 2 . 5 4 2 ( 9 ) S e ( 2 6 ) - K ( 3 ) 3 5 5 ( 2 ) M o ( 3 ) - S e ( 6 ) 2 . 5 9 5 ( 9 ) S e ( 8 ) - K ( 4 ) 3 5 4 ( 2 ) M 0 ( 3 ) - S e ( 7 ) 2 . 5 3 3 ( 6 ) S e ( 1 0 ) - K ( 4 ) 3 5 0 ( 2 ) M 0 ( 3 ) - S e ( 1 2 ) 2 5 9 ( 1 ) S e ( 1 1 ) - K ( 4 ) 3 4 3 ( 2 ) M 0 ( 3 ) - S e ( 1 3 ) 2 . 6 2 2 ( 8 ) S e ( 1 4 ) - K ( 4 ) 3 7 0 ( 2 ) M 0 ( 4 ) - S e ( 1 4 ) 2 . 5 0 5 ( 9 ) S e ( 1 5 ) - K ( 4 ) 3 6 0 ( 1 ) M 0 ( 4 ) - S e ( 1 5 ) 2 . 6 0 7 ( 7 ) S e ( 1 5 ) - K ( 4 ) 3 5 6 ( 1 ) M 0 ( 4 ) - S e ( 1 6 ) 2 . 5 3 5 ( 7 ) S e ( 2 3 ) - K ( 4 ) 3 4 4 ( 2 ) T a b l e 2 - 2 0 . ( c o n t ' d ) 1 1 4 M 0 ( 4 ) - S e ( 1 9 ) 2 . 6 0 9 ( 7 ) S e ( 2 4 ) - K ( 4 ) 3 . 2 5 ( 2 ) M o ( 4 ) - S e ( 2 0 ) 2 . 5 3 2 ( 8 ) S e ( 1 0 ) - K ( 5 ) 3 . 7 8 ( 2 ) M 0 ( 4 ) - S e ( 2 1 ) 2 . 6 0 4 ( 9 ) S e ( 1 5 ) - K ( 5 ) 3 . 6 1 ( 2 ) M 0 ( 4 ) - S e ( 2 2 ) 2 . 6 1 ( 1 ) S e ( I ‘ D - K ( 5 ) 3 3 9 ( 2 ) M o ( 5 ) - S e ( 1 4 ) 2 . 5 0 4 ( 8 ) S e ( 1 8 ) - K ( 5 ) 3 . 7 7 ( 2 ) M 0 ( 5 ) - S e ( 1 5 ) 2 . 6 1 9 ( 9 ) S e ( 2 1 ) - K ( 5 ) 3 . 3 7 ( 2 ) M 0 ( 5 ) - S e ( 1 6 ) 2 5 5 ( 1 ) S e ( 2 3 ) - K ( 5 ) 3 2 8 ( 2 ) M 0 ( 5 ) - S e ( 1 7 ) 2 . 6 0 9 ( 8 ) S e ( 2 4 ) - K ( 5 ) 3 3 1 ( 2 ) M 0 ( 5 ) - S e ( 1 8 ) 2 . 5 5 3 ( 9 ) S e ( 2 4 ) - K ( 5 ) 3 . 7 3 ( 2 ) M 0 ( 5 ) - S e ( 2 3 ) 2 . 5 8 0 ( 8 ) S e ( 2 ) - K ( 6 ) 3 6 1 ( 2 ) M 0 ( 5 ) - S e ( 2 4 ) 2 . 6 3 9 ( 7 ) S e ( 3 ) - K ( 6 ) 3 7 9 ( 2 ) M 0 ( 6 ) - S e ( 1 4 ) 2 . 5 0 3 ( 9 ) S e ( 9 ) - K ( 6 ) 3 4 4 ( 2 ) M 0 ( 6 ) - S e ( 1 7 ) 2 . 5 9 2 ( 9 ) S e ( 2 7 ) - K ( 6 ) 3 . 7 6 ( 2 ) M 0 ( 6 ) - S e ( 1 8 ) 2 . 5 4 0 ( 8 ) K ( 1 ) - 0 ( 1 ) 2 . 7 1 ( 4 ) M o ( 6 ) - S e ( 1 9 ) 2 . 6 3 2 ( 9 ) K ( 2 ) - 0 ( 1 ) 2 . 8 2 ( 4 ) M 0 ( 6 ) - S e ( 2 0 ) 2 . 5 3 ( 1 ) K ( 2 ) - 0 ( 2 ) 2 . 7 5 ( 3 ) M 0 ( 6 ) - S e ( 2 5 ) 2 . 6 1 9 ( 7 ) K ( 3 ) — 0 ( 3 ) 2 . 7 8 ( 4 ) M 0 ( 6 ) - S e ( 2 6 ) 2 . 6 3 5 ( 8 ) K ( 3 ) - 0 ( 4 ) 3 . 1 1 ( 4 ) S e ( 2 ) - S e ( 3 ) 2 . 3 6 5 ( 8 ) K ( 3 ) - 0 ( 5 ) 3 . 0 2 ( 5 ) S e ( 4 ) - S e ( 5 ) 2 . 3 6 5 ( 8 ) K ( 4 ) - 0 ( 4 ) 3 3 1 ( 4 ) S e ( 6 ) - S e ( 7 ) 2 . 3 5 ( 1 ) K ( 5 ) - 0 ( 6 ) 2 . 7 8 ( 5 ) S e ( 8 ) - S e ( 9 ) 2 . 3 5 8 ( 9 ) K ( 6 ) - 0 ( 2 ) 2 . 6 1 ( 4 ) S e ( 1 0 ) — S e ( 1 1 ) 2 . 3 6 ( 1 ) K ( 6 ) - 0 ( 3 ) 2 . 6 8 ( 4 ) S e ( 1 2 ) - S e ( 1 3 ) 2 . 3 4 3 ( 9 ) K ( 6 ) - 0 ( 6 ) 2 . 7 5 ( 5 ) S e ( 1 5 ) — S e ( l 6 ) 2 . 3 8 1 ( 9 ) S e l e c t e d B o n d A n g l e s ( d e g ) M o ( 2 ) - M o ( 1 ) - M o ( 3 ) 6 0 . 3 ( 2 ) M o ( 2 ) - M o ( 1 ) - S e ( 1 ) 5 6 . 4 ( 3 ) M o ( 2 ) - M o ( 1 ) - S e ( 2 ) 5 7 2 ( 2 ) M o ( 5 ) - M o ( 4 ) - M o ( 6 ) 5 9 . 9 ( 2 ) M o ( 5 ) - M o ( 4 ) - S e ( l 4 ) 5 6 . 5 ( 3 ) M o ( 5 ) - M o ( 4 ) - S e ( 1 5 ) 5 8 3 ( 2 ) M o ( 2 ) - M o ( 1 ) - S e ( 3 ) 5 6 . 9 ( 2 ) M o ( 5 ) - M o ( 4 ) - S e ( 1 6 ) 5 7 5 ( 2 ) M o ( 3 ) - M o ( 1 ) - S e ( 1 ) 5 6 2 ( 2 ) M o ( 6 ) - M o ( 4 ) - S e ( 1 4 ) 5 6 . 4 ( 3 ) M o ( 3 ) - M o ( 1 ) - S e ( 6 ) 5 7 . 9 ( 2 ) M o ( 6 ) - M o ( 4 ) — S e ( 1 9 ) 5 8 5 ( 2 ) T a b l e 2 - 2 0 . ( c o n t ' d ) 1 1 5 M o ( 3 ) - M o ( 1 ) - S e ( 7 ) 5 7 . 0 ( 2 ) M o ( 6 ) - M o ( 4 ) - S e ( 2 0 ) 5 6 . 7 ( 3 ) S e ( 1 ) - M o ( l ) - S e ( 2 ) 8 3 3 ( 3 ) S e ( 1 4 ) - M o ( 4 ) - S e ( 1 5 ) 8 3 7 ( 2 ) S e ( 1 ) - M o ( l ) - S e ( 3 ) 1 1 2 . 8 ( 4 ) S e ( 1 4 ) — M o ( 4 ) - S e ( 1 6 ) 1 1 3 . 4 ( 2 ) S e ( 1 ) - M o ( l ) - S e ( 6 ) 8 3 . 0 ( 3 ) S e ( 1 4 ) - M o ( 4 ) - S e ( 1 9 ) 8 3 . 8 ( 2 ) S e ( 1 ) - M o ( l ) - S e ( 7 ) 1 1 2 5 ( 2 ) S e ( 1 4 ) - M o ( 4 ) - S e ( 2 0 ) 1 1 2 . 5 ( 2 ) S e ( 1 ) - M o ( l ) - S e ( 8 ) 9 2 3 ( 3 ) S e ( 1 4 ) - M o ( 4 ) - S e ( 2 1 ) 9 6 4 ( 3 ) S e ( 1 ) - M o ( l ) - S e ( 9 ) 1 4 5 . 8 ( 3 ) S e ( 1 4 ) - M o ( 4 ) - S e ( 2 2 ) 1 4 9 . 7 ( 3 ) S e ( 2 ) - M o ( l ) - S e ( 3 ) 5 4 . 4 ( 2 ) S e ( 1 5 ) - M o ( 4 ) - S e ( 1 6 ) 5 5 . 1 ( 2 ) S e ( 2 ) - M o ( l ) - S e ( 6 ) 1 6 5 . 4 ( 2 ) S e ( 1 5 ) - M o ( 4 ) — S e ( 1 9 ) 1 6 6 . 4 ( 2 ) S e ( 2 ) - M o ( l ) - S e ( 7 ) 1 3 6 . 4 ( 3 ) S e ( 1 5 ) - M o ( 4 ) - S e ( 2 0 ) 1 3 6 . 7 ( 2 ) S e ( 2 ) - M o ( l ) - S e ( 8 ) 8 6 6 ( 2 ) S e ( 1 5 ) - M o ( 4 ) - S e ( 2 1 ) 8 8 3 ( 2 ) S e ( 2 ) - M o ( l ) - S e ( 9 ) 9 6 . 8 ( 3 ) S e ( 1 5 ) - M o ( 4 ) - S e ( 2 2 ) 9 4 5 ( 2 ) S e ( 3 ) - M o ( l ) - S e ( 6 ) 1 3 6 . 7 ( 3 ) S e ( 1 6 ) - M o ( 4 ) - S e ( 1 9 ) 1 3 6 . 1 ( 3 ) S e ( 3 ) - M o ( l ) - S e ( 7 ) 8 2 4 ( 3 ) S e ( 1 6 ) — M o ( 4 ) - S e ( 2 0 ) 8 1 . 9 ( 2 ) S e ( 3 ) - M o ( l ) - S e ( 8 ) 1 2 7 . 8 ( 3 ) S e ( 1 6 ) - M o ( 4 ) - S e ( 2 1 ) 1 2 7 . 0 ( 3 ) S e ( 3 ) - M o ( 1 ) - S e ( 9 ) 9 4 . 0 ( 3 ) S e ( l 6 ) - M o ( 4 ) - S e ( 2 2 ) 8 9 3 ( 2 ) S e ( 6 ) - M o ( l ) - S e ( 7 ) 5 4 7 ( 3 ) S e ( 1 9 ) - M o ( 4 ) - S e ( 2 0 ) 5 4 . 4 ( 2 ) S e ( 6 ) - M o ( 1 ) - S e ( 8 ) 8 9 . 1 ( 3 ) S e ( 1 9 ) - M o ( 4 ) — S e ( 2 1 ) 8 7 6 ( 2 ) S e ( 6 ) - M o ( l ) — S e ( 9 ) 9 1 . 8 ( 3 ) S e ( 1 9 ) - M o ( 4 ) - S e ( 2 2 ) 9 3 . 5 ( 2 ) S e ( 7 ) - M o ( l ) - S e ( 8 ) 1 3 0 . 3 ( 3 ) S e ( 2 0 ) — M o ( 4 ) - S e ( 2 1 ) 1 2 6 . 7 ( 3 ) S e ( 7 ) - M o ( l ) — S e ( 9 ) 9 0 . 9 ( 2 ) S e ( 2 0 ) - M o ( 4 ) - S e ( 2 2 ) 8 9 5 ( 3 ) S e ( 8 ) - M o ( l ) - S e ( 9 ) 5 3 7 ( 2 ) S e ( 2 1 ) - M o ( 4 ) - S e ( 2 2 ) 5 3 3 ( 2 ) M o ( l ) - M o ( 2 ) - M o ( 3 ) 5 9 5 ( 2 ) M o ( 4 ) - M o ( 5 ) - M o ( 6 ) 6 0 . 2 ( 2 ) M o ( l ) - M o ( 2 ) - S e ( l ) 5 6 . 0 ( 2 ) M o ( 4 ) - M o ( 5 ) - S e ( 1 4 ) 5 6 6 ( 2 ) M o ( l ) - M o ( 2 ) - S e ( 2 ) 5 8 4 ( 2 ) M o ( 4 ) - M o ( 5 ) - S e ( 1 5 ) 5 7 . 9 ( 2 ) M o ( 1 ) - M o ( 2 ) - S e ( 3 ) 5 6 . 8 ( 3 ) M o ( 4 ) - M o ( 5 ) - S e ( 1 6 ) 5 6 . 9 ( 3 ) M o ( 3 ) - M o ( 2 ) - S e ( l ) 5 5 . 8 ( 2 ) M o ( 6 ) - M o ( 5 ) — S e ( 1 4 ) 5 6 . 5 ( 2 ) M o ( 3 ) - M o ( 2 ) - S e ( 4 ) 5 7 6 ( 2 ) M o ( 6 ) - M o ( 5 ) - S e ( 1 7 ) 5 7 7 ( 2 ) M o ( 3 ) — M o ( 2 ) — S e ( 5 ) 5 6 7 ( 2 ) M o ( 6 ) - M o ( 5 ) - S e ( l 8 ) 5 7 . 0 ( 2 ) S e ( 1 ) - M o ( 2 ) - S e ( 2 ) 8 3 . 8 ( 2 ) S e ( 1 4 ) - M o ( 5 ) - S e ( 1 5 ) 8 3 5 ( 3 ) S e ( 1 ) - M o ( 2 ) - S e ( 3 ) 1 1 2 . 3 ( 4 ) S e ( 1 4 ) - M o ( 5 ) - S e ( 1 6 ) 1 1 2 . 9 ( 3 ) S e ( 1 ) - M o ( 2 ) - S e ( 4 ) 8 2 6 ( 2 ) S e ( 1 4 ) - M o ( 5 ) - S e ( l 7 ) 8 4 . 1 ( 3 ) T a b l e 2 - 2 0 . ( c o n t ' d ) 1 1 6 S e ( 1 ) - M o ( 2 ) - S e ( 5 ) S e ( 1 ) - M o ( 2 ) - S e ( 1 0 ) S e ( 1 ) - M o ( 2 ) - S e ( 1 1 ) S e ( 2 ) - M o ( 2 ) - S e ( 3 ) S e ( 2 ) - M o ( 2 ) — S e ( 4 ) S e ( 2 ) - M o ( 2 ) - S e ( 5 ) S e ( 2 ) - M o ( 2 ) - S e ( 1 0 ) S e ( 2 ) - M o ( 2 ) - S e ( l 1 ) S e ( 3 ) - M o ( 2 ) - S e ( 4 ) S e ( 3 ) - M 0 ( 2 ) ~ S e ( 5 ) S e ( 3 ) — M o ( 2 ) - S e ( 1 0 ) S e ( 3 ) - M o ( 2 ) - S e ( 1 1 ) S e ( 4 ) - M o ( 2 ) - S e ( 5 ) S e ( 4 ) - M o ( 2 ) - S e ( 1 0 ) S e ( 4 ) - M o ( 2 ) - S e ( 1 1 ) S e ( 5 ) - M o ( 2 ) - S e ( 1 0 ) S e ( 5 ) - M o ( 2 ) - S e ( 1 1 ) S e ( 1 0 ) - M o ( 2 ) - S e ( 1 1 ) M o ( 1 ) - M o ( 3 ) - M o ( 2 ) M o ( 1 ) - M o ( 3 ) — S e ( 1 ) M o ( 1 ) - M o ( 3 ) - S e ( 6 ) M o ( l ) - M o ( 3 ) - S e ( 7 ) M o ( 2 ) — M o ( 3 ) — S e ( 1 ) M 0 ( 2 ) - M o ( 3 ) - S e ( 4 ) M o ( 2 ) - M o ( 3 ) - S e ( 5 ) S e ( 1 ) - M o ( 3 ) - S e ( 4 ) S e ( l ) - M o ( 3 ) - S e ( 5 ) S e ( 1 ) - M o ( 3 ) - S e ( 6 ) S e ( 1 ) - M 0 ( 3 ) - S e ( 7 ) S e ( 1 ) — M o ( 3 ) - S e ( 1 2 ) S e ( 1 ) - M o ( 3 ) — S e ( 1 3 ) S e ( 4 ) - M o ( 3 ) - S e ( 5 ) 1 1 1 . 9 ( 3 ) 9 3 4 ( 3 ) 1 4 6 . 7 ( 2 ) 5 4 . 8 ( 2 ) 1 6 5 . 5 ( 2 ) 1 3 6 . 6 ( 2 ) 8 8 . 3 ( 2 ) 9 3 . 9 ( 2 ) 1 3 6 . 2 ( 2 ) 8 2 . 1 ( 2 ) 1 2 9 . 8 ( 3 ) 9 2 6 ( 4 ) 5 4 5 ( 2 ) 8 7 5 ( 2 ) 9 4 7 ( 3 ) 1 2 8 . 5 ( 2 ) 9 2 . 5 ( 3 ) 5 3 . 4 ( 3 ) 6 0 . 2 ( 2 ) 5 6 . 5 ( 2 ) 5 7 . 8 ( 2 ) 5 7 . 0 ( 2 ) 5 6 . 5 ( 3 ) 5 7 . 8 ( 2 ) 5 7 . 1 ( 2 ) 8 3 2 ( 2 ) 1 1 3 . 0 ( 3 ) 8 3 . 1 ( 3 ) 1 1 2 . 9 ( 2 ) 9 3 . 1 ( 3 ) 1 4 6 . 4 ( 3 ) 5 4 . 7 ( 2 ) S e ( 1 4 ) — M o ( 5 ) - S e ( 1 8 ) S e ( 1 4 ) - M o ( 5 ) - S e ( 2 3 ) S e ( 1 4 ) - M o ( 5 ) - S e ( 2 4 ) S e ( 1 5 ) - M o ( 5 ) - S e ( 1 6 ) S e ( 1 5 ) - M o ( 5 ) - S e ( 1 7 ) S e ( 1 5 ) - M o ( 5 ) — S e ( 1 8 ) S e ( 1 5 ) - M o ( 5 ) - S e ( 2 3 ) S e ( 1 5 ) — M o ( 5 ) - S e ( 2 4 ) S e ( 1 6 ) - M o ( 5 ) - S e ( 1 7 ) S e ( 1 6 ) - M o ( 5 ) - S e ( 1 8 ) S e ( 1 6 ) — M o ( 5 ) - S e ( 2 3 ) S e ( 1 6 ) - M o ( 5 ) — S e ( 2 4 ) S e ( 1 7 ) - M o ( 5 ) - S e ( 1 8 ) S e ( 1 7 ) - M o ( 5 ) - S e ( 2 3 ) S e ( 1 7 ) - M o ( 5 ) - S e ( 2 4 ) S e ( 1 8 ) - M o ( 5 ) - S e ( 2 3 ) S e ( 1 8 ) - M o ( 5 ) - S e ( 2 4 ) S e ( 2 3 ) - M o ( 5 ) - S e ( 2 4 ) M o ( 4 ) - M o ( 6 ) — M o ( 5 ) M o ( 4 ) ~ M o ( 6 ) - S e ( 1 4 ) M o ( 4 ) - M o ( 6 ) - S e ( 1 9 ) M o ( 4 ) - M o ( 6 ) - S e ( 2 0 ) M o ( 5 ) - M o ( 6 ) - S e ( 1 4 ) M o ( 5 ) - M o ( 6 ) - S e ( 1 7 ) M o ( 5 ) - M o ( 6 ) - S e ( 1 8 ) S e ( 1 4 ) - M o ( 6 ) - S e ( 1 7 ) S e ( 1 4 ) - M o ( 6 ) - S e ( 1 8 ) S e ( 1 4 ) - M o ( 6 ) - S e ( 1 9 ) S e ( 1 4 ) - M o ( 6 ) — S e ( 2 0 ) S e ( 1 4 ) - M o ( 6 ) — S e ( 2 5 ) S e ( 1 4 ) — M o ( 6 ) - S e ( 2 6 ) S e ( 1 7 ) - M o ( 6 ) - S e ( 1 8 ) 1 1 2 . 9 ( 3 ) 9 2 . 8 ( 2 ) 1 4 5 . 4 ( 2 ) 5 4 . 8 ( 3 ) 1 6 6 . 9 ( 3 ) 1 3 6 . 1 ( 3 ) 9 0 5 ( 3 ) 9 2 . 1 ( 2 ) 1 3 5 . 2 ( 3 ) 8 1 6 ( 2 ) 1 3 1 . 3 ( 3 ) 9 1 5 ( 3 ) 5 3 . 9 ( 2 ) 8 5 . 8 ( 3 ) 9 5 . 7 ( 3 ) 1 2 6 . 7 ( 3 ) 9 3 . 9 ( 3 ) 5 2 . 9 ( 2 ) 5 9 . 9 ( 2 ) 5 6 . 5 ( 3 ) 5 7 . 7 ( 2 ) 5 6 . 9 ( 3 ) 5 6 . 5 ( 2 ) 5 8 2 ( 2 ) 5 7 4 ( 2 ) 8 4 4 ( 3 ) 1 1 3 . 4 ( 3 ) 8 3 4 ( 3 ) 1 1 2 . 8 ( 3 ) 9 4 4 ( 2 ) 1 4 7 . 9 ( 3 ) 5 4 3 ( 2 ) T a b l e 2 - 2 0 . ( c o n t ' d ) 1 1 7 S e ( 4 ) - M o ( 3 ) - S e ( 6 ) S e ( 4 ) - M o ( 3 ) - S e ( 7 ) S e ( 4 ) - M o ( 3 ) - S e ( 1 2 ) S e ( 4 ) - M o ( 3 ) - S e ( 1 3 ) S e ( 5 ) - M o ( 3 ) - S e ( 6 ) S e ( 5 ) - M 0 ( 3 ) - S e ( 7 ) S e ( 5 ) - M 0 ( 3 ) - S e ( 1 2 ) S e ( 5 ) - M o ( 3 ) - S e ( 1 3 ) S e ( 6 ) - M 0 ( 3 ) - S e ( 7 ) S e ( 6 ) - M o ( 3 ) - S e ( 1 2 ) S e ( 6 ) - M o ( 3 ) - S e ( 1 3 ) S e ( 7 ) - M o ( 3 ) - S e ( 1 2 ) S e ( 7 ) - M o ( 3 ) - S e ( 1 3 ) S e ( 1 2 ) - M o ( 3 ) - S e ( 1 3 ) M o ( 1 ) — S e ( 1 ) - M o ( 2 ) M o ( 1 ) - S e ( 1 ) - M o ( 3 ) M o ( 2 ) - S e ( 1 ) - M o ( 3 ) M o ( 1 ) - S e ( 2 ) - M o ( 2 ) M o ( 1 ) - S e ( 2 ) - S e ( 3 ) M o ( 2 ) - S e ( 2 ) - S e ( 3 ) M o ( l ) - S e ( 3 ) - M o ( 2 ) M 0 ( 1 ) - S e ( 3 ) - S e ( 2 ) M o ( 2 ) - S e ( 3 ) - S e ( 2 ) M 0 ( 2 ) - S e ( 4 ) - M o ( 3 ) M o ( 2 ) — S e ( 4 ) - S e ( 5 ) M o ( 3 ) - S e ( 4 ) - S e ( 5 ) M o ( 2 ) - S e ( 5 ) - M o ( 3 ) M o ( 2 ) - S e ( 5 ) - S e ( 4 ) M o ( 3 ) — S e ( 5 ) — S e ( 4 ) M o ( 1 ) - S e ( 6 ) - M o ( 3 ) M 0 ( 1 ) - S e ( 6 ) - S e ( 7 ) M 0 ( 3 ) - S e ( 6 ) - S e ( 7 ) 1 6 5 . 3 ( 2 ) 1 3 7 . 0 ( 3 ) 8 7 . 5 ( 2 ) 9 6 3 ( 3 ) 1 3 6 . 9 ( 2 ) 8 2 . 6 ( 4 ) 1 2 8 . 2 ( 3 ) 9 3 2 ( 2 ) 5 4 6 ( 3 ) 8 8 . 0 ( 3 ) 9 2 2 ( 3 ) 1 2 8 . 6 ( 3 ) 9 0 4 ( 2 ) 5 3 4 ( 2 ) 6 7 6 ( 3 ) 6 7 3 ( 2 ) 6 7 7 ( 2 ) 6 4 . 4 ( 2 ) 6 0 . 9 ( 3 ) 6 1 6 ( 2 ) 6 6 . 3 ( 3 ) 6 4 7 ( 3 ) 6 3 . 6 ( 2 ) 6 4 . 6 ( 2 ) 6 1 . 5 ( 2 ) 6 1 4 ( 3 ) 6 6 2 ( 2 ) 6 4 . 0 ( 2 ) 6 3 . 9 ( 3 ) 6 4 3 ( 2 ) 6 1 . 4 ( 2 ) 6 1 3 ( 2 ) S e ( 1 7 ) - M o ( 6 ) - S e ( 1 9 ) S e ( 1 7 ) - M o ( 6 ) - S e ( 2 0 ) S e ( 1 7 ) - M o ( 6 ) - S e ( 2 5 ) S e ( 1 7 ) - M o ( 6 ) - S e ( 2 6 ) S e ( 1 8 ) - M o ( 6 ) - S e ( 1 9 ) S e ( 1 8 ) - M 0 ( 6 ) - S e ( 2 0 ) S e ( 1 8 ) — M o ( 6 ) - S e ( 2 5 ) S e ( 1 8 ) - M o ( 6 ) - S e ( 2 6 ) S e ( 1 9 ) - M o ( 6 ) - S e ( 2 0 ) S e ( 1 9 ) - M o ( 6 ) - S e ( 2 5 ) S e ( 1 9 ) - M o ( 6 ) — S e ( 2 6 ) S e ( 2 0 ) - M o ( 6 ) - S e ( 2 5 ) S e ( 2 0 ) - M o ( 6 ) - S e ( 2 6 ) S e ( 2 5 ) - M o ( 6 ) - S e ( 2 6 ) M o ( 4 ) - S e ( 1 4 ) - M o ( 5 ) M o ( 4 ) - S e ( 1 4 ) - M o ( 6 ) M o ( 5 ) - S e ( 1 4 ) - M o ( 6 ) M o ( 4 ) - S e ( 1 5 ) - M o ( 5 ) M o ( 4 ) - S e ( 1 5 ) - S e ( 1 6 ) M o ( 5 ) - S e ( 1 5 ) — S e ( 1 6 ) M o ( 4 ) - S e ( 1 6 ) - M o ( 5 ) M o ( 4 ) - S e ( 1 6 ) - S e ( 1 5 ) M o ( 5 ) - S e ( 1 6 ) - S e ( 1 5 ) M o ( 5 ) - S e ( 1 7 ) - M o ( 6 ) M o ( 5 ) - S e ( 1 7 ) - S e ( l 8 ) M o ( 6 ) - S e ( 1 7 ) - S e ( 1 8 ) M 0 ( 5 ) - S e ( 1 8 ) - M 0 ( 6 ) M 0 ( 5 ) - S e ( 1 8 ) - S e ( 1 7 ) M o ( 6 ) - S e ( 1 8 ) - S e ( 1 7 ) M o ( 4 ) - S e ( 1 9 ) - M o ( 6 ) M o ( 4 ) - S e ( 1 9 ) - S e ( 2 0 ) M o ( 6 ) — S e ( 1 9 ) - S e ( 2 0 ) 1 6 7 . 2 ( 2 ) 1 3 5 . 6 ( 3 ) 8 6 . 1 ( 3 ) 9 6 7 ( 2 ) 1 3 5 . 5 ( 2 ) 8 1 . 6 ( 2 ) 1 2 6 . 1 ( 3 ) 9 2 . 3 ( 3 ) 5 4 . 2 ( 3 ) 9 0 7 ( 3 ) 9 1 5 ( 2 ) 1 2 9 . 8 ( 2 ) 8 8 7 ( 2 ) 5 3 . 9 ( 2 ) 6 6 . 9 ( 2 ) 6 7 . 1 ( 2 ) 6 6 . 9 ( 2 ) 6 3 . 7 ( 2 ) 6 0 . 9 ( 2 ) 6 1 2 ( 3 ) 6 5 . 7 ( 2 ) 6 4 . 0 ( 2 ) 6 4 . 0 ( 2 ) 6 4 . 1 ( 2 ) 6 1 . 8 ( 3 ) 6 1 7 ( 3 ) 6 5 6 ( 2 ) 6 4 . 3 ( 2 ) 6 4 . 0 ( 3 ) 6 3 . 8 ( 2 ) 6 1 . 1 ( 2 ) 6 0 . 6 ( 3 ) T a b l e 2 - 2 0 . ( c o n t ' d ) 1 1 8 M o ( 1 ) - S e ( 7 ) - M o ( 3 ) M o ( 1 ) - S e ( 7 ) - S e ( 6 ) M 0 ( 3 ) - S e ( 7 ) - S e ( 6 ) M o ( 1 ) - S e ( 8 ) — S e ( 9 ) M o ( 1 ) - S e ( 9 ) — S e ( 8 ) M 0 ( 2 ) - S e ( 1 0 ) - S e ( 1 1 ) M 0 ( 2 ) - S e ( l 1 ) - S e ( 1 0 ) M 0 ( 3 ) - S e ( 1 2 ) - S e ( 1 3 ) M o ( 3 ) — S e ( 1 3 ) - S e ( 1 2 ) 6 6 . 0 ( 2 ) 6 3 . 9 ( 2 ) 6 4 . 0 ( 3 ) 6 4 2 ( 3 ) 6 2 . 1 ( 2 ) 6 4 . 3 ( 2 ) 6 2 3 ( 3 ) 6 3 . 9 ( 3 ) 6 2 7 ( 3 ) M o ( 4 ) - S e ( 2 0 ) - M o ( 6 ) M o ( 4 ) - S e ( 2 0 ) — S e ( 1 9 ) M o ( 6 ) - S e ( 2 0 ) - S e ( 1 9 ) M o ( 4 ) - S e ( 2 1 ) — S e ( 2 2 ) M o ( 4 ) — S e ( 2 2 ) - S e ( 2 1 ) M o ( 5 ) - S e ( 2 3 ) - S e ( 2 4 ) M o ( 5 ) - S e ( 2 4 ) - S e ( 2 3 ) M o ( 6 ) - S e ( 2 5 ) - S e ( 2 6 ) M o ( 6 ) - S e ( 2 6 ) - S e ( 2 5 ) 6 6 4 ( 2 ) 6 4 5 ( 2 ) 6 5 2 ( 2 ) 6 3 . 5 ( 4 ) 6 3 2 ( 3 ) 6 4 . 9 ( 2 ) 6 2 3 ( 2 ) 6 3 4 ( 2 ) 6 2 . 7 ( 3 ) 1 1 9 S t r u c t u r e o f [ K 2 M 0 3 S e l s l n ( V I ) [ M 0 3 S e 1 8 ] n 2 n - ( V I ) i s t h e fi r s t k n o w n m o l y b d e n u m p o l y s e l e n i d e p o l y m e r . T h e s t r u c t u r e o f [ M 0 3 S e 1 3 ] n 2 n ' i s i l l u s t r a t e d i n F i g u r e 2 - 8 . I t i s c o m p o s e d o f a z i g z a g c h a i n - l i k e s t r u c t u r e c o n t a i n i n g t h e r e p e a t i n g u n i t s h o w n i n F i g u r e 2 - 9 . I t i s a l s o w o r t h w h i l e t o p o i n t o u t t h a t t h e c o m p o u n d c o n t a i n s f o u r d i f f e r e n t p o l y s e l e n i d e s S e 2 ' , S e z z ‘ , S e 3 2 ' a n d S e 4 2 ' a s l i g a n d s , e v e n t h o u g h o n l y S e 4 2 - w a s u s e d a s s t a r t i n g m a t e r i a l . T h e s t a r t i n g t e t r a s e l e n i d e i s r e d u c e d b y M o m e t a l t o f o r m s h o r t e r s e l e n i d e s , w h i l e M o m e t a l i s o x i d i z e d t o t h e f o r m a l o x i d a t i o n s t a t e o f 4 + . T h e p r e s e n c e o f a l l t h e d i f f e r e n t p o l y s e l e n i d e s a l s o a t t e s t s t o t h e c o m p l e x i t y o f p o l y s e l e n i d e s o l u t i o n s ” . T h e z i g z a g c h a i n o f [ M o 3 ( u 2 - S e 2 ) 3 ( u 3 - S e ) ( S e 4 ) 2 ( S e 3 ) ] n 2 0 ' c a n b e v i e w e d a s p a r a l l e l [ M o 3 ( u 2 - S e 2 ) 3 ( u 3 - S e ) ] 4 + c o r e s , f a c i n g i n t h e s a m e d i r e c t i o n a n d c r o s s - l i n k e d b y b r i d g i n g S e 4 2 ' l i g a n d s . T h e l a t t e r b o n d t o t h e t w o M o a t o m s ( M 0 ( 2 ) a n d M 0 ( 3 ) ) o f t h e [ M o 3 ( 1 . 1 2 - S e 2 ) 3 ( u 3 - S e ) ] 4 + c o r e s . T h e z i g z a g c h a i n s a r e n o n c e n t r o s y m m e t r i c . A l l t h e t r i p l y b r i d g i n g S e a t o m s i n t h e [ M o 3 ( 1 1 2 - S e 2 ) 3 ( 1 1 3 - S e ) ] 4 + u n i t s w i t h i n a s i n g l e z i g z a g c h a i n a r e p o i n t e d t o t h e < 0 1 0 > d i r e c t i o n . T h e t h i r d M o a t o m , M 0 ( 3 ) i s b o n d e d t o a t e r m i n a l S e 3 2 ' l i g a n d i n a n u n u s u a l f a s h i o n . I n t h i s t r i s e l e n i d e l i g a n d , t w o a d j a c e n t S e a t o m s , S e ( 2 ) a n d S e ( 3 ) , a r e b o n d e d t o M 0 ( 3 ) , w h i l e t h e t h i r d t e r m i n a l S e ( 4 ) a t o m i s l e f t a l o n e . W h a t i s u n p r e c e d e n t e d i s t h a t S e ( 4 ) s t r e t c h e s o u t t o t h e c e n t e r o f a t r i a n g l e o f t h e t h r e e S e a t o m s o f t h e t h r e e b r i d g i n g d i s e l e n i d e s o f a n o t h e r [ M o 3 ( u 2 - S e 2 ) 3 ( u 3 - S e ) ] 4 + c l u s t e r i n a n e i g h b o r i n g c h a i n . T h i s g e n e r a t e s a n u n u s u a l f a s h i o n o f S e - - - S e s h o r t c o n t a c t s s i m i l a r t o b u t d i f f e r e n t f r o m t h o s e f o u n d a b o v e . T h i s f r a g m e n t i s s h o w n i n F i g u r e 2 - 1 0 . T h e b o n d d i s t a n c e s i n t h e t r i s e l e n i d e u n i t a r e 1 2 0 2 . 3 3 6 ( 3 ) A a n d 2 . 3 2 7 ( 3 ) . 4 r e s p e c t i v e l y , w h i c h a r e i n t h e r a n g e o f o t h e r n o r m a l S e - S e d i s t a n c e s 2 4 a 2 5 . T h e a v e r a g e d i s t a n c e b e t w e e n S e a p a n d S e a i s 3 . 1 5 ( 1 6 ) A ( s e e S c h e m e ( 2 ) ) . T h e d i s t a n c e b e t w e e n t w o p a r a l l e l [ M 0 3 0 1 2 - S e 2 ) 3 ( u 3 - S e ) ] 4 + t r i a n g l e s i n e a c h i n d i v i d u a l c h a i n i s 1 2 . 6 6 A w h i c h a l l o w s f o r t h e i n s e r t i o n o f a n o t h e r s u c h t r i a n g l e f r o m t h e n e i g h b o r i n g c h a i n . T h i s b r i n g s t h e z i g z a g c h a i n s t o g e t h e r s i d e b y s i d e i n a s t a g g e r e d a r r a n g e m e n t t o m a k e t w o d i m e n s i o n a l s h e e t s . T h e s i n g l e c h a i n s i n t e r l o c k i n a " z i p p e r f a s h i o n " . T h e a v e r a g e d i s t a n c e b e t w e e n t h e s e s h e e t s i s 9 . 1 7 1 4 , w i t h t h e p o t a s s i u m a t o m s l o c a t e d i n b e t w e e n . S e l e c t e d d i s t a n c e s a n d a n g l e s i n t h e M o / S e f r a m e w o r k a r e s h o w n i n T a b l e 2 - 2 1 . T h e r e a r e t w o c r y s t a l l o g r a p h i c a l l y d i f f e r e n t p o t a s s i u m a t o m s w i t h c o o r d i n a t i o n n u m b e r s o f 9 a n d 1 0 r e s p e c t i v e l y . T h e a v e r a g e K - S e d i s t a n c e i s 3 . 6 ( 2 ) A . T h e a v e r a g e S e - S e d i s t a n c e s i n t h e t e t r a s e l e n i d e l i g a n d s a r e n o r m a l a t 2 . 3 6 ( 2 ) A . T h e t h r e e b r i d g i n g d i s e l e n i d e s i n t h e [ M 0 3 ( u 2 - S e 2 ) 3 ( u 3 - S e ) ] 4 + c o r e h a v e t h e a v e r a g e b o n d d i s t a n c e o f 2 . 3 4 ( 1 ) A , w h i c h i s s l i g h t l y l o n g e r t h a n t h o s e i n t h e d i s c r e t e [ M o 3 S e 1 3 ] 2 ' o f ( I ) a n d ( I I ) . 1 2 1 F i g u r e 2 - 8 : O R T E P r e p r e s e n t a t i o n o f [ M 0 3 8 e t g l n 2 n ' c h a i n s . D a s h e d l i n e s s h o w S e - - - S e s h o r t c o n t a c t s . 2 0 2 n | 3 1 e S 3 ‘ 4 1 0 e M 3 | S 1 e S f o t i n u g n i t a e p e r e h t f o e m e h c s g n i l J e b a L : 9 - 2 e r u g i F 1 2 2 1 2 3 S e 2 M o l S e 3 F i g u r e 2 - 1 0 : O R T E P r e p r e s e n t a t i o n o f t h e i n t e r a c t i o n b e t w e e n t h e S e 3 2 - I i g a n d a n d t h e [ M 0 3 ( u 3 - S e ) ( u 2 - S e 2 ) 4 l 4 + c o r e i n 1 M 0 3 8 ¢ l 8 1 n 2 n ' - T a b l e 2 - 2 1 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 2 M o 3 S e 1 8 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s 1 2 4 S e l e c t e d B o n d D i s t a n c e s ( A ) M 0 1 - M 0 2 2 . 7 5 9 ( 2 ) S e 3 - S e 4 2 . 3 2 7 ( 3 ) M 0 1 - M 0 3 2 . 7 7 9 ( 2 ) S e 4 - S e 5 3 . 3 7 0 ( 3 ) M 0 2 - M 0 3 2 . 7 8 1 ( 2 ) S e 4 - S e 8 3 . 0 9 7 ( 3 ) M 0 1 - S e l 2 . 4 7 3 ( 3 ) S e 4 - S e 9 2 . 9 9 6 ( 3 ) M 0 1 - S e 2 2 . 6 6 0 ( 3 ) S e 5 - S e 6 2 . 3 3 0 ( 3 ) M 0 1 - S e 3 2 . 6 1 3 ( 3 ) S e 7 — S e 8 2 . 3 4 0 ( 3 ) M o l - S e 5 2 . 5 2 2 ( 3 ) S e 9 - S e 1 0 2 . 3 5 0 ( 3 ) M o l - S e 6 2 . 6 1 2 ( 3 ) S e 1 1 - S e 1 2 2 . 3 7 0 ( 3 ) M 0 1 - S e 9 2 . 5 1 9 ( 3 ) S e 1 3 - S e 1 4 2 . 3 8 2 ( 3 ) M o l - S e l O 2 . 6 0 4 ( 2 ) S e 1 5 - S e l 6 2 . 3 7 6 ( 3 ) M 0 2 - S e l 2 . 5 1 3 ( 3 ) S e 1 7 - S e 1 8 2 . 3 5 4 ( 3 ) M 0 2 — S e 7 2 . 6 2 1 ( 3 ) S e l - K 1 3 . 7 4 7 ( 7 ) M 0 2 - S e 8 2 . 5 3 9 ( 3 ) S e 4 - K 1 3 . 5 3 2 ( 7 ) M 0 2 - S e 9 2 . 5 7 2 ( 3 ) S e 1 0 — K l 3 . 7 2 8 ( 6 ) M 0 2 - S e 1 0 2 . 6 1 3 ( 2 ) S e 1 4 - K 1 3 . 3 4 1 ( 6 ) M 0 2 — S e 1 4 2 . 6 2 5 ( 3 ) S e 1 8 - K 1 3 . 7 6 3 ( 7 ) M o 2 - S e 1 8 2 . 6 5 0 ( 3 ) S e 2 - K 2 3 . 3 0 0 ( 6 ) M o 3 - S e 1 2 . 5 0 3 ( 3 ) S e 3 - K 2 3 . 7 4 0 ( 6 ) M o 3 - S e 5 2 . 5 4 4 ( 3 ) S e 7 - K 2 3 . 7 8 5 ( 7 ) M o 3 — S e 6 2 . 6 6 0 ( 3 ) S e 1 0 — K 2 3 . 9 0 4 ( 7 ) M o 3 - S e 7 2 . 6 1 5 ( 3 ) S e 1 2 - K 2 3 . 6 6 8 ( 7 ) M 0 3 - S e 8 2 . 5 5 1 ( 3 ) S e 1 4 - K 2 3 . 3 7 9 ( 7 ) M 0 3 - S e 1 1 2 . 6 1 7 ( 3 ) S e 1 5 - K 2 3 . 2 4 1 ( 7 ) M o 3 - S e 1 5 2 . 6 5 1 ( 2 ) S e 1 7 - K 2 3 . 4 4 4 ( 7 ) S e 2 - S e 3 2 . 3 3 6 ( 3 ) S e l e c t e d B o n d A n g l e s ( d e g ) M o Z - M o l - M o 3 6 0 2 7 ( 6 ) M o l - M o 3 - S e 1 5 5 . 5 3 ( 7 ) M o l - M o Z - M o 3 6 0 2 2 ( 6 ) M o l - M o 3 - S e 5 5 6 3 6 ( 6 ) M o l - M o 3 - M o 2 5 9 5 1 ( 6 ) M o l - M o 3 - S e 6 5 7 . 3 5 ( 6 ) T a b l e 2 - 2 1 . ( c o n t ' d ) 1 2 5 M 0 2 - M 0 1 - S e 1 5 7 . 0 9 ( 7 ) M o Z - M o 3 - S e l 5 6 4 9 ( 7 ) M o 2 - M o l - S e 9 5 8 . 1 0 ( 7 ) M 0 2 - M o 3 - S e 7 5 8 . 0 2 ( 6 ) M 0 2 - M 0 1 - S e 1 0 5 8 2 3 ( 6 ) M 0 2 - M o 3 - S e 8 5 6 6 9 ( 6 ) M 0 3 - M 0 1 - S e 1 5 6 5 7 ( 7 ) S e 1 - M o 3 - S e 5 1 1 1 . 1 8 ( 9 ) M 0 3 — M 0 1 - S e 5 5 7 . 1 1 ( 7 ) S e l - M o 3 - S e 6 8 2 6 6 ( 8 ) M o 3 - M o l - S e 6 5 9 . 0 3 ( 7 ) S e 1 - M o 3 - S e 7 8 4 3 0 ( 8 ) S e l - M o l - S e 2 1 4 5 . 7 ( 1 ) S e l — M o 3 - S e 8 1 1 2 6 4 ( 9 ) S e 1 - M o l - S e 3 9 3 . 1 1 ( 9 ) S e 1 - M o 3 - S e 1 1 7 2 6 4 ( 8 ) S e l - M o l - S e 5 1 1 2 . 9 3 ( 9 ) S e 1 - M o 3 - S e 1 5 1 5 2 . 6 ( 1 ) S e 1 - M o l - S e 6 8 4 2 3 ( 8 ) S e 5 - M o 3 - S e 6 5 3 . 1 4 ( 8 ) S e 1 - M o l - S e 9 1 1 4 . 4 5 ( 9 ) S e 5 - M o 3 - S e 7 1 3 6 . 5 8 ( 9 ) S e l - M o l - S e I O 8 3 . 7 0 ( 8 ) S e S - M 0 3 - S e 8 8 3 . 0 9 ( 8 ) S e 2 - M 0 1 - S e 3 5 2 5 8 ( 7 ) S e 5 - M o 3 - S e 1 1 1 3 5 9 0 ( 9 ) S e 2 - M 0 1 - S e 5 9 3 5 7 ( 8 ) S e 5 - M o 3 - S e 1 5 8 9 . 1 2 ( 8 ) S e 2 - M o l - S e 6 9 5 2 8 ( 9 ) S e 6 — M o 3 - S e 7 1 6 6 . 4 3 ( 9 ) S e 2 - M o l - S e 9 8 9 0 3 ( 8 ) S e 6 — M o 3 - S e 8 1 3 5 . 8 9 ( 9 ) S e 2 - M 0 1 - S e 1 0 9 1 2 8 ( 8 ) S e 6 r M o 3 - S e 1 1 8 5 5 5 ( 8 ) S e 3 - M o l - S e 5 1 3 0 . 6 ( 1 ) S e 6 ~ M o 3 - S e 1 5 9 6 3 8 ( 8 ) S e 3 - M o 1 - S e 6 9 0 . 4 8 ( 8 ) S e 7 - M o 3 - S e 8 5 3 8 5 ( 7 ) S e 3 - M o l - S e 9 1 2 4 . 2 1 ( 9 ) S e 7 - M o 3 - S e 1 1 8 7 . 0 0 ( 8 ) S e 3 - M 0 1 - S e 1 0 8 4 . 1 3 ( 8 ) S e 7 - M o 3 — S e 1 5 9 3 . 4 7 ( 8 ) S e 5 - M o 1 - S e 6 5 3 9 4 ( 8 ) S e 8 - M o 3 - S e 1 1 1 3 8 . 0 ( 1 ) S e 5 - M o l - S e 9 8 3 3 0 ( 8 ) S e 8 - M o 3 - S e 1 5 8 7 . 1 2 ( 8 ) S e 5 - M o l - S e 1 0 1 3 7 . 5 0 ( 9 ) S e l l - M o 3 - S e 1 5 7 9 9 9 ( 8 ) S e 6 - M o l - S e 9 1 3 7 . 1 7 ( 9 ) M 0 1 - S e l - M o 2 6 7 2 0 ( 7 ) S e 6 - M o l - S e 1 0 1 6 6 . 5 ( 1 ) M 0 1 - S e l - M o 3 6 7 9 0 ( 7 ) S e 9 - M 0 1 - S e 1 0 5 4 . 5 7 ( 8 ) M 0 2 - S e l — M o 3 6 7 3 3 ( 7 ) M o l - M o 2 - S e 1 5 5 7 1 ( 7 ) M o l - S e 2 - S e 3 6 2 6 7 ( 8 ) M o l - M o 2 - S e 9 5 6 2 6 ( 7 ) M o l - S e 3 - S e 2 6 4 7 4 ( 9 ) M o l - M o Z - S e l O 5 7 9 0 ( 6 ) M o l - S e S - M o 3 6 6 5 3 ( 7 ) M 0 3 - M 0 2 - S e 1 5 6 . 1 8 ( 7 ) M o l - S e 5 - S e 6 6 4 9 9 ( 8 ) M o 3 - M o Z - S e 7 5 7 . 8 2 ( 7 ) M o 3 - S e 5 - S e 6 6 5 9 8 ( 8 ) T a b l e 2 - 2 1 . ( c o n t ' d ) 1 2 6 M o 3 - M o Z - S e 8 S e 1 - M o Z - S e 7 S e l - M 0 2 - S e 8 S e l - M 0 2 - S e 9 S e 1 - M o 2 - S e 1 0 S e 1 - M o Z - S e l 4 S e l - M 0 2 - S e 1 8 S e 7 - M 0 2 - S e 8 S e 7 - M 0 2 - S e 9 S e 7 - M o 2 - S e 1 0 S e 7 — M o 2 - S e 1 4 S e 7 - M 0 2 — S e 1 8 S e 8 - M 0 2 - S e 9 S e 8 - M 0 2 - S e 1 0 S e 8 - M 0 2 - S e 1 4 S e 8 - M o 2 - S e 1 8 S e 9 - M 0 2 - S e 1 0 S e 9 - M 0 2 - S e 1 4 S e 9 - M o 2 — S e 1 8 S e 1 0 — M o Z - S e 1 4 S e 1 0 — M o 2 - S e 1 8 S e 1 4 - M 0 2 - S e 1 8 5 7 0 9 ( 6 ) 8 3 9 9 ( 8 ) 1 1 2 7 2 ( 9 ) 1 1 1 2 8 ( 9 ) 8 2 7 4 ( 8 ) 1 5 5 . 3 ( 1 ) 8 3 5 5 ( 8 ) 5 3 9 0 ( 7 ) 1 3 7 . 2 8 ( 9 ) 1 6 5 . 8 ( 1 ) 9 6 1 4 ( 9 ) 9 1 8 6 ( 8 ) 8 3 7 5 ( 8 ) 1 3 7 . 4 ( 1 ) 8 6 4 1 ( 8 ) 1 3 7 . 5 1 ( 9 ) 5 3 8 9 ( 8 ) 8 5 3 5 ( 8 ) 1 2 8 2 9 ( 9 ) 9 3 7 0 ( 8 ) 8 1 4 0 ( 8 ) 7 1 7 2 ( 8 ) M o l - S e 6 - M o 3 M o l - S e 6 - S e 5 M o 3 - S e 6 — S e 5 M o 2 - S e 7 - M o 3 M 0 2 - S e 7 - S e 8 M o 3 - S e 7 - S e 8 M 0 2 - S e 8 - M o 3 M 0 2 - S e 8 — S e 7 M o 3 - S e 8 - S e 7 M o l - S e 9 — M 0 2 M o l — S e 9 - S e 4 M o l - S e 9 — S e 1 0 M 0 2 - S e 9 - S e 4 M 0 2 - S e 9 - S e 1 0 S e 4 - S e 9 - S e 1 0 M o l - S e l O — M 0 2 M o l - S e l O — S e 9 M o Z - S e l O — S e 9 M o 3 - S e 1 1 - S e 1 2 M 0 2 — S e 1 4 - S e 1 3 M o 3 - S e 1 5 - S e 1 6 M o 2 - S e 1 8 - S e 1 7 6 3 6 3 ( 7 ) 6 1 0 8 ( 8 ) 6 0 8 9 ( 8 ) 6 4 . 1 6 ( 7 ) 6 1 2 8 ( 8 ) 6 1 6 9 ( 8 ) 6 6 2 2 ( 7 ) 6 4 8 2 ( 8 ) 6 4 4 7 ( 8 ) 6 5 6 5 ( 7 ) 1 1 2 . 0 5 ( 9 ) 6 4 5 5 ( 8 ) 1 0 4 . 9 1 ( 8 ) 6 3 9 5 ( 8 ) 1 6 8 . 9 ( 1 ) 6 3 8 7 ( 6 ) 6 0 8 7 ( 8 ) 6 2 1 6 ( 8 ) 1 1 5 4 ( 1 ) 1 0 9 . 9 ( 1 ) 9 9 6 ( 1 ) 1 1 2 . 0 ( 1 ) T a b l e 2 - 2 1 . ( c o n t ' d ) 1 2 6 M o 3 - M 0 2 — S e 8 5 7 . 0 9 ( 6 ) M o l - S e 6 — M o 3 6 3 6 3 ( 7 ) S e l - M 0 2 - S e 7 8 3 9 9 ( 8 ) M o l - S e 6 — S e 5 6 1 . 0 8 ( 8 ) S e l - M 0 2 - S e 8 1 1 2 . 7 2 ( 9 ) M o 3 - S e 6 - S e 5 6 0 8 9 ( 8 ) S e l - M o Z - S e 9 1 1 1 2 8 ( 9 ) M o 2 - S e 7 - M o 3 6 4 . 1 6 ( 7 ) S e l - M o 2 - S e 1 0 8 2 7 4 ( 8 ) M o 2 - S e 7 - S e 8 6 1 2 8 ( 8 ) S e l - M 0 2 - S e l 4 1 5 5 . 3 ( 1 ) M o 3 - S e 7 - S e 8 6 1 6 9 ( 8 ) S e l - M 0 2 - S e 1 8 8 3 5 5 ( 8 ) M o 2 - S e 8 - M o 3 6 6 2 2 ( 7 ) S e 7 - M 0 2 - S e 8 5 3 9 0 ( 7 ) M 0 2 — S e 8 - S e 7 6 4 8 2 ( 8 ) S e 7 - M o 2 - S e 9 1 3 7 . 2 8 ( 9 ) M o 3 - S e 8 - S e 7 6 4 . 4 7 ( 8 ) S e 7 - M o 2 - S e 1 0 1 6 5 . 8 ( 1 ) M o l - S e 9 - M o 2 6 5 6 5 ( 7 ) S e 7 - M 0 2 - S e l 4 9 6 . 1 4 ( 9 ) M o l - S e 9 - S e 4 1 1 2 . 0 5 ( 9 ) S e 7 - M 0 2 - S e 1 8 9 1 . 8 6 ( 8 ) M o l - S e 9 - S e 1 0 6 4 5 5 ( 8 ) S e 8 - M 0 2 - S e 9 8 3 . 7 5 ( 8 ) M o 2 — S e 9 - S e 4 1 0 4 . 9 1 ( 8 ) S e 8 - M 0 2 - S e 1 0 1 3 7 . 4 ( 1 ) M 0 2 — S e 9 - S e 1 0 6 3 9 5 ( 8 ) S e 8 - M 0 2 - S e l 4 8 6 . 4 1 ( 8 ) S e 4 - S e 9 - S e 1 0 1 6 8 . 9 ( 1 ) S e 8 — M 0 2 - S e 1 8 1 3 7 . 5 1 ( 9 ) M o l - S e l O — M o 2 6 3 8 7 ( 6 ) S e 9 - M 0 2 - S e 1 0 5 3 8 9 ( 8 ) M o l - S e 1 0 - S e 9 6 0 . 8 7 ( 8 ) S e 9 - M 0 2 - S e 1 4 8 5 3 5 ( 8 ) M o Z - S e l O — S e 9 6 2 1 6 ( 8 ) S e 9 - M 0 2 - S e 1 8 1 2 8 2 9 ( 9 ) M o 3 - S e 1 1 — S e 1 2 1 1 5 . 4 ( 1 ) S e 1 0 - M o Z - S e 1 4 9 3 . 7 0 ( 8 ) S e 1 0 - M o 2 - S e 1 8 8 1 . 4 0 ( 8 ) S e 1 4 - M 0 2 — S e 1 8 7 1 . 7 2 ( 8 ) M 0 2 - S e 1 4 - S e 1 3 1 0 9 . 9 ( 1 ) M o 3 - S e 1 5 - S e 1 6 9 9 . 6 ( 1 ) M o 2 - S e 1 8 - S e 1 7 1 1 2 . 0 ( 1 ) 1 2 7 S t r u c t u r e o f K 1 2 M 0 1 2 8 e 5 6 T h e s t r u c t u r e o f ( V I I ) i s s h o w n i n F i g u r e 2 - 1 1 . ( V I I ) i s a d i s c r e t e m o l e c u l e w h i c h c a n b e v i e w e d a s a c l u s t e r o f f o u r s m a l l e r [ M 0 3 S e 1 4 ] 3 ' t r i n u c l e a r , s l i g h t l y d i f f e r e n t s u b c l u s t e r s . C o n c e p t u a l l y , ( V I I ) c a n d i v i d e d i n t o t w o t y p e ( A ) s u b c l u s t e r s , o n e t y p e ( B ) s u b c l u s t e r s a n d o n e t y p e ( C ) c l u s t e r a s s h o w n i n F i g u r e 2 - 1 2 . A l l t h e s u b c l u s t e r s c o n t a i n [ M o 3 S e 7 ] 4 + c o r e s w h i c h c o n t a i n a t r i p l y b r i d g i n g S e 2 - a n d t h r e e b r i d g i n g S e 2 2 ' l i g a n d s . I n c l u s t e r ( A ) , t w o M o c e n t e r s e a c h c o o r d i n a t e t o a t e r m i n a l S e 2 2 ‘ l i g a n d . T h e t h i r d M o c e n t e r i s b o u n d t o t w o S e 3 2 ' l i g a n d s w h i c h a r e l i n k e d t o c l u s t e r ( B ) a n d c l u s t e r ( C ) r e s p e c t i v e l y . T h e b o n d i n g m o d e o f t h e S e 3 2 - l i g a n d i s r a r e . I n c l u s t e r ( B ) a n d ( C ) , o n e M o c e n t e r c o o r d i n a t e s t o a t e r m i n a l S e 2 2 ' l i g a n d a n d t h e o t h e r t w o M o c e n t e r s e a c h c o o r d i n a t e t o o n e t e r m i n a l S e 3 2 ' l i g a n d w h i c h l i n k s t h e f o u r s u b c l u s t e r s . O n t h e t o p o f e a c h [ M O 3 S e 7 ] 4 + c o r e , a n e x t r a S e z ' a n i o n i n t e r a c t s w i t h t h e t h r e e S e a t o m s o f t h e t h r e e b r i d g i n g S e 2 2 “ l i g a n d s t o f o r m a f o r m a l l y [ S e 7 ] 8 ' " u m b r e l l a " - l i k e f r a g m e n t a s s h o w n i n S c h e m e ( 2 ) . T h e S e a p - S e a d i s t a n c e s r a n g e f r o m 2 . 5 6 ( 1 ) A t o 1 8 ? ? ! 9 / \ ‘ x I \ s ‘ I \ x I \ ~ I ‘ “ \ s ‘ " ‘ ‘ S e S e a S e a a 8 6 b S e b S e b S c h e m e ( 2 ) 1 2 8 3 . 0 3 ( 1 ) A w i t h a n a v e r a g e o f 2 . 7 6 ( 1 5 ) A w h i c h i s m u c h s h o r t e r t h a n t h e s u m o f v a n d e r W a a l r a d i i o f t w o S e a t o m s . T h e [ S e 7 ] 8 - u n i t h a s n e v e r b e e n p r e v i o u s l y o b s e r v e d . T h e p a c k i n g d i a g r a m s o f ( V I I ) i n F i g u r e 2 - 1 3 s h o w t h e t e t r a m e r s a r e w e l l p a c k e d w i t h K ’ r c a t i o n s l o c a t e d b e t w e e n t h e c l u s t e r s . T h e a v e r a g e K o o - S e d i s t a n c e i s 3 . 4 7 ( 9 ) A . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e i n T a b l e 2 - 2 2 . T h e a v e r a g e M o — M o d i s t a n c e i n ( V I I ) ( 2 . 7 5 ( 2 ) A ) i s s l i g h t l y s h o r t e r t h a n t h o s e o f t h e a b o v e [ M 0 3 S e 7 ] 4 + c o n t a i n i n g c o m p o u n d s w h i l e h e a v e r a g e t e r m i n a l S e z z ‘ b o n d l e n g t h ( 2 . 3 6 ( 3 ) A ) i s c o m p a r a b l e . T h e s h o r t e r M o — M o d i s t a n c e s o r i g i n a t e f r o m t h e s t r o n g e r S e a p - - - S e a i n t e r a c t i o n s i n ( V I I ) a n d w i l l b e d i s c u s s e d i n S e c t i o n 3 . 3 . T h e p r e s e n c e o f t h e a p i c a l S e a t o m s p r o f o u n d l y c a u s e s t h e l e n g t h e n i n g o f b r i d g i n g S e 2 2 ' l i g a n d s w h i c h h a v e a n a v e r a g e v a l u e o f 2 . 4 5 ( 7 ) A . I t i s n o t e w o r t h y t h a t t h e l e n g t h e n i n g o f t h e b r i d g i n g S e 2 2 ' i s i n v e r s e l y p r o p o r t i o n a l t o t h e S e a p - S e a d i s t a n c e s . T h e e f f e c t o f t h e e x t r a S e a t o m o n t h e l e n g t h e n i n g o f t h e b r i d g i n g S e 2 2 ‘ i s t h e l a r g e s t f o u n d a m o n g t h e [ M 0 3 S e 7 ] 4 + c o n t a i n i n g c o m p o u n d s . 1 2 9 $ 6 3 4 1 \ \ \ ¥ C L U S T E R ( B ) \ 1 , , / \ 8 ' . - ' l S e l l J ( C L U S T E R ( C ) F i g u r e 2 - 1 1 : O R T E P r e p r e s e n t a t i o n o f t h e m o l e c u l a r s t r u c t u r e o f t h e I M o l e e 5 6 l l z ' a n i o n . T h e b l a c k c i r c l e s r e p r e s e n t M o a t o m s . T h e o p e n c i r c l e s r e p r e s e n t S e a t o m s . 1 3 0 C l u s r e r 1 C ) F i g u r e 2 - 1 2 : T h e i n d i v i d u a l s t r u c t u r e s a n d l a b e l i n g s c h e m e o f t h e M o / S e t r i n u c l e a r s u b c l u s t e r s . 1 3 1 F i g u r e 2 - 1 3 : P a c k i n g d i a g r a m o f K 1 2 M 0 1 2 8 e 5 6 . 1 3 2 T a b l e 2 - 2 2 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 1 2 M 0 1 2 S e 5 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) M o ( l ) - M o ( 2 ) 2 . 7 5 8 ( 7 ) M o ( 4 ) - S e ( 1 7 ) 2 . 6 2 2 ( 8 ) M 0 ( 1 ) - M 0 ( 3 ) 2 . 7 6 4 ( 7 ) M 0 ( 7 ) - S e ( 2 5 ) 2 5 9 ( 1 ) M 0 ( 2 ) - M 0 ( 3 ) 2 . 7 5 6 ( 7 ) M 0 ( 7 ) — S e ( 3 0 ) 2 . 6 2 ( 1 ) M 0 ( 4 ) - M 0 ( 4 ) 2 . 7 3 ( 1 ) M 0 ( 7 ) - S e ( 3 1 ) 2 . 6 1 ( 1 ) M o ( 4 ) - M o ( 5 ) 2 . 7 3 3 ( 8 ) M 0 ( 7 ) - S e ( 3 2 ) 2 . 6 4 1 ( 7 ) M 0 ( 6 ) - M 0 ( 6 ) 2 . 7 0 ( 1 ) M 0 ( 7 ) - S e ( 3 3 ) 2 . 5 1 5 ( 7 ) M 0 ( 6 ) - M 0 ( 7 ) 2 . 7 3 5 ( 8 ) S e ( 2 ) - S e ( 3 ) 2 . 3 5 ( 1 ) M 0 ( 1 ) - S e ( 1 ) 2 . 5 0 5 ( 8 ) S e ( 4 ) — S e ( 5 ) 2 . 3 7 ( 1 ) M 0 ( 1 ) - S e ( 2 ) 2 . 6 1 1 ( 9 ) S e ( 6 ) - S e ( 7 ) 2 . 3 7 5 ( 9 ) M 0 ( 1 ) - S e ( 3 ) 2 . 5 8 6 ( 9 ) S e ( 8 ) - S e ( 9 ) 2 . 4 0 7 ( 9 ) M 0 ( 1 ) - S e ( 6 ) 2 . 5 9 3 ( 8 ) S e ( 1 0 ) - S e ( 1 1 ) 2 . 5 6 8 ( 9 ) M 0 ( 1 ) - S e ( 7 ) 2 . 5 3 3 ( 8 ) S e ( 1 3 ) - S e ( 1 4 ) 3 . 0 0 0 ( 9 ) M 0 ( 1 ) - S e ( 8 ) 2 . 6 6 4 ( 9 ) S e ( 7 ) - S e ( 1 2 ) 2 . 9 3 4 ( 9 ) M 0 ( 1 ) - S e ( 9 ) 2 . 5 5 7 ( 9 ) S e ( 9 ) - S e ( 1 2 ) 2 . 7 9 6 ( 9 ) M 0 ( 2 ) - S e ( 1 ) 2 . 4 8 9 ( 8 ) S e ( 1 1 ) - S e ( 1 2 ) 2 . 5 6 1 ( 9 ) M 0 ( 2 ) - S e ( 4 ) 2 . 6 6 9 ( 8 ) S e ( 1 3 ) - S e ( l 6 ) 2 . 4 1 1 ( 9 ) M 0 ( 2 ) - S e ( 5 ) 2 . 6 2 0 ( 8 ) S e ( 1 4 ) - S e ( 2 6 ) 2 . 3 6 2 ( 9 ) M 0 ( 2 ) - S e ( 8 ) 2 . 6 1 7 ( 8 ) S e ( 1 6 ) - S e ( 1 7 ) 2 . 4 1 8 ( 9 ) M 0 ( 2 ) - S e ( 9 ) 2 . 5 5 3 ( 8 ) S e ( 1 8 ) - S e ( 1 9 ) 2 3 5 ( 1 ) M 0 ( 2 ) - S e ( 1 0 ) 2 . 6 1 8 ( 8 ) S e ( 2 0 ) - S e ( 2 1 ) 2 . 3 7 ( 2 ) M 0 ( 2 ) - S e ( ] 1 ) 2 . 5 6 1 ( 8 ) S e ( 2 2 ) - S e ( 2 3 ) 2 . 4 8 7 ( 9 ) M 0 ( 3 ) - S e ( 1 ) 2 . 5 2 2 ( 8 ) S e ( 1 8 ) - S e ( 2 4 ) 3 0 3 ( 1 ) M 0 ( 3 ) - S e ( 6 ) 2 . 5 8 9 ( 8 ) S e ( 2 3 ) - S e ( 2 4 ) 2 6 5 ( 1 ) M 0 ( 3 ) - S e ( 7 ) 2 . 5 1 8 ( 8 ) S e ( 2 6 ) - S e ( 2 7 ) 2 3 3 ( 1 ) M 0 ( 3 ) - S e ( 1 0 ) 2 . 6 1 3 ( 8 ) S e ( 2 8 ) - S e ( 2 9 ) 2 . 4 1 ( 1 ) M 0 ( 3 ) - S e ( 1 1 ) 2 . 5 9 8 ( 8 ) S e ( 3 0 ) - S e ( 3 1 ) 2 . 3 5 ( 1 ) M 0 ( 3 ) - S e ( 1 3 ) 2 . 6 5 8 ( 8 ) S e ( 3 2 ) - S e ( 3 3 ) 2 . 4 9 3 ( 9 ) M 0 ( 3 ) - S e ( 1 4 ) 2 . 6 4 7 ( 8 ) S e ( 2 9 ) - S e ( 3 4 ) 2 . 8 3 ( 1 ) M o ( 4 ) - S e ( 1 5 ) 2 . 4 8 6 ( 9 ) S e ( 3 3 ) - S e ( 3 4 ) 2 6 7 ( 1 ) M o ( 4 ) - S e ( 1 6 ) 2 . 7 1 2 ( 8 ) S e ( 2 ) - K ( 1 ) 3 3 0 ( 3 ) T a b l e 2 - 2 2 . ( c o n t ' d ) M o ( 4 ) - S e ( 1 8 ) 2 . 5 4 2 ( 9 ) S e ( 3 ) - K ( 4 ) 3 . 4 2 ( 2 ) M o ( 4 ) - S e ( 1 9 ) 2 . 6 3 3 ( 9 ) S e ( 8 ) - K ( 1 ) 3 . 4 9 ( 1 ) M o ( 4 ) - S e ( 2 2 ) 2 . 5 9 5 ( 8 ) S e ( 1 2 ) - K ( 2 ) 3 3 8 ( 2 ) M o ( 4 ) - S e ( 2 3 ) 2 . 5 5 1 ( 8 ) S e ( 1 2 ) — K ( 5 ) 3 3 8 ( 2 ) M 0 ( 5 ) - S e ( 1 5 ) 2 5 4 ( 1 ) S e ( 1 3 ) - K ( 6 ) 3 5 8 ( 2 ) M 0 ( 5 ) - S e ( 2 0 ) 2 5 9 ( 1 ) S e ( 1 3 ) - K ( 7 ) 3 5 7 ( 2 ) M 0 ( 5 ) - S e ( 2 1 ) 2 . 5 8 ( 1 ) S e ( 1 4 ) - K ( 5 ) 3 . 4 6 ( 2 ) M 0 ( 5 ) - S e ( 2 2 ) 2 . 6 2 9 ( 7 ) S e ( 1 4 ) - K ( 6 ) 3 5 1 ( 2 ) M 0 ( 5 ) - S e ( 2 3 ) 2 . 5 4 2 ( 6 ) S e ( 2 3 ) - K ( 7 ) 3 5 7 ( 2 ) M 0 ( 6 ) - S e ( 2 5 ) 2 5 2 ( 1 ) S e ( 2 4 ) - K ( 7 ) 3 3 5 ( 2 ) M 0 ( 6 ) - S e ( 2 6 ) 2 . 5 9 5 ( 8 ) S e ( 2 5 ) - K ( 7 ) 3 . 6 0 ( 2 ) M 0 ( 6 ) - S e ( 2 7 ) 2 . 6 7 1 ( 9 ) S e ( 2 6 ) - K ( " D 3 5 2 ( 2 ) M 0 ( 6 ) — S e ( 2 8 ) 2 . 6 0 7 ( 5 ) S e ( 2 7 ) - K ( 3 ) 3 3 8 ( 2 ) M 0 ( 6 ) - S e ( 2 9 ) 2 . 5 4 5 ( 9 ) S e ( 2 7 ) - K ( 5 ) 3 5 4 ( 2 ) M 0 ( 6 ) - S e ( 3 2 ) 2 . 5 8 7 ( 8 ) S e ( 3 2 ) - K ( 7 ) 3 . 4 6 ( 2 ) M 0 ( 6 ) - S e ( 3 3 ) 2 . 5 2 5 ( 8 ) S e l e c t e d B o n d A n g l e s ( d e g ) M o ( 2 ) - M o ( l ) - M o ( 3 ) 5 9 9 ( 2 ) S e ( 1 5 ) — M o ( 5 ) - S e ( 2 0 ) 9 4 . 8 ( 3 ) M o ( 2 ) - M o ( 1 ) - S e ( 1 ) 5 6 3 ( 2 ) S e ( 1 5 ) - M o ( 5 ) - S e ( 2 1 ) 1 4 9 . 4 ( 3 ) M o ( 2 ) - M o ( l ) - S e ( 8 ) 5 7 . 7 ( 2 ) S e ( 1 5 ) - M o ( 5 ) - S e ( 2 2 ) 8 2 . 8 ( 2 ) M o ( 2 ) - M o ( 1 ) - S e ( 9 ) 5 7 3 ( 2 ) S e ( 1 5 ) - M o ( 5 ) - S e ( 2 3 ) 1 1 3 . 5 ( 3 ) M o ( 3 ) - M o ( 1 ) - S e ( l ) 5 6 9 ( 2 ) S e ( 2 0 ) - M o ( 5 ) - S e ( 2 1 ) 5 4 6 ( 4 ) M o ( 3 ) - M o ( 1 ) - S e ( 6 ) 5 7 . 7 ( 2 ) S e ( 2 0 ) - M o ( 5 ) - S e ( 2 2 ) 8 7 . 6 ( 2 ) M o ( 3 ) - M o ( 1 ) - S e ( 7 ) 5 6 . 6 ( 2 ) S e ( 2 0 ) - M o ( 5 ) - S e ( 2 3 ) 1 2 9 . 2 ( 3 ) S e ( 1 ) - M o ( 1 ) - S e ( 2 ) 1 4 7 . 1 ( 3 ) S e ( 2 1 ) - M o ( 5 ) - S e ( 2 2 ) 9 4 6 ( 2 ) S e ( 1 ) - M o ( l ) - S e ( 3 ) 9 3 . 4 ( 3 ) S e ( 2 1 ) - M o ( 5 ) - S e ( 2 3 ) 8 9 . 8 ( 3 ) S e ( 1 ) - M o ( l ) - S e ( 6 ) 8 3 9 ( 3 ) S e ( 2 2 ) — M o ( 5 ) - S e ( 2 3 ) 5 7 . 5 ( 2 ) S e ( 1 ) - M o ( l ) - S e ( 7 ) 1 1 3 . 1 ( 3 ) M o ( 7 ) - M o ( 6 ) - S e ( 2 5 ) 5 8 . 7 ( 2 ) S e ( 1 ) - M o ( l ) - S e ( 8 ) 8 3 9 ( 2 ) M o ( 7 ) - M o ( 6 ) - S e ( 3 2 ) 5 9 . 4 ( 2 ) S e ( 1 ) - M o ( l ) — S e ( 9 ) 1 1 3 . 1 ( 3 ) M o ( 7 ) - M o ( 6 ) - S e ( 3 3 ) 5 7 . 0 ( 2 ) S e ( 2 ) - M o ( l ) - S e ( 3 ) 5 3 . 8 ( 2 ) S e ( 2 5 ) - M o ( 6 ) - S e ( 2 6 ) 9 0 6 ( 3 ) T a b l e 2 - 2 2 . ( c o n t ' d ) S e ( 2 ) - M o ( l ) - S e ( 6 ) 9 4 5 ( 3 ) S e ( 2 5 ) - M o ( 6 ) - S e ( 2 7 ) 1 4 3 . 0 ( 3 ) S e ( 2 ) - M o ( l ) - S e ( 7 ) 9 2 . 0 ( 3 ) S e ( 2 5 ) - M o ( 6 ) - S e ( 2 8 ) 8 3 . 1 ( 3 ) S e ( 2 ) - M o ( l ) - S e ( 8 ) 9 3 9 ( 3 ) S e ( 2 5 ) - M o ( 6 ) - S e ( 2 9 ) 1 1 4 6 ( 3 ) S e ( 2 ) - M o ( l ) - S e ( 9 ) 9 1 . 5 ( 3 ) S e ( 2 5 ) - M o ( 6 ) - S e ( 3 2 ) 8 3 . 0 ( 3 ) S e ( 3 ) - M o ( 1 ) - S e ( 6 ) 9 0 . 1 ( 3 ) S e ( 2 5 ) — M o ( 6 ) - S e ( 3 3 ) 1 1 5 . 1 ( 3 ) S e ( 3 ) - M o ( l ) - S e ( 7 ) 1 3 1 . 0 ( 3 ) S e ( 2 6 ) - M o ( 6 ) - S e ( 2 7 ) 5 2 6 ( 2 ) S e ( 3 ) - M o ( l ) - S e ( 8 ) 8 7 3 ( 3 ) S e ( 2 6 ) - M o ( 6 ) - S e ( 2 8 ) 8 9 9 ( 2 ) S e ( 3 ) - M o ( l ) - S e ( 9 ) 1 2 8 . 4 ( 3 ) S e ( 2 6 ) - M o ( 6 ) - S e ( 2 9 ) 1 3 1 . 3 ( 3 ) S e ( 6 ) - M o ( l ) - S e ( 7 ) 5 5 2 ( 2 ) S e ( 2 6 ) - M o ( 6 ) - S e ( 3 2 ) 8 2 2 ( 3 ) S e ( 6 ) - M o ( l ) - S e ( 8 ) 1 6 7 . 4 ( 3 ) S e ( 2 6 ) - M o ( 6 ) - S e ( 3 3 ) 1 2 7 . 2 ( 3 ) S e ( 6 ) - M o ( l ) - S e ( 9 ) 1 3 4 . 3 ( 3 ) S e ( 2 7 ) - M o ( 6 ) — S e ( 2 8 ) 9 2 6 ( 2 ) S e ( 7 ) - M o ( l ) - S e ( 8 ) 1 3 3 . 9 ( 3 ) S e ( 2 7 ) - M o ( 6 ) - S e ( 2 9 ) 9 1 9 ( 2 ) S e ( 7 ) - M o ( l ) - S e ( 9 ) 7 9 3 ( 2 ) S e ( 2 7 ) - M o ( 6 ) - S e ( 3 2 ) 9 3 8 ( 3 ) S e ( 8 ) - M o ( l ) - S e ( 9 ) 5 4 9 ( 2 ) S e ( 2 7 ) - M o ( 6 ) - S e ( 3 3 ) 9 3 5 ( 3 ) M o ( l ) - M o ( 2 ) - M o ( 3 ) 6 0 . 2 ( 2 ) S e ( 2 8 ) - M o ( 6 ) — S e ( 2 9 ) 5 5 . 7 ( 3 ) M o ( l ) - M o ( 2 ) - S e ( l ) 5 6 8 ( 2 ) S e ( 2 8 ) - M o ( 6 ) — S e ( 3 2 ) 1 6 3 . 8 ( 3 ) M o ( l ) - M o ( 2 ) - S e ( 8 ) 5 9 4 ( 2 ) S e ( 2 8 ) - M o ( 6 ) - S e ( 3 3 ) 1 3 6 . 0 ( 3 ) M o ( l ) - M o ( 2 ) - S e ( 9 ) 5 7 . 4 ( 2 ) S e ( 2 9 ) - M o ( 6 ) - S e ( 3 2 ) 1 3 8 . 8 ( 3 ) S e ( 5 ) - M o ( 2 ) - S e ( 9 ) 1 2 6 . 6 ( 3 ) S e ( 2 9 ) - M o ( 6 ) - S e ( 3 3 ) 8 0 5 ( 3 ) S e ( 5 ) — M o ( 2 ) - S e ( 1 0 ) 8 8 7 ( 3 ) S e ( 3 2 ) - M o ( 6 ) - S e ( 3 3 ) 5 8 . 4 ( 2 ) S e ( 5 ) - M o ( 2 ) - S e ( 1 1 ) 1 2 8 . 9 ( 3 ) M o ( 6 ) - M o ( 7 ) - S e ( 2 5 ) 5 6 . 5 ( 2 ) S e ( 8 ) - M o ( 2 ) - S e ( 9 ) 5 5 5 ( 2 ) M o ( 6 ) - M o ( 7 ) - S e ( 3 2 ) 5 7 . 5 ( 2 ) S e ( 8 ) - M o ( 2 ) - S e ( 1 0 ) 1 6 6 . 3 ( 3 ) M 0 ( 6 ) - M o ( 7 ) - S e ( 3 3 ) 5 7 . 4 ( 2 ) S e ( 8 ) - M o ( 2 ) - S e ( l l ) 1 3 2 . 5 ( 3 ) S e ( 2 5 ) - M o ( 7 ) - S e ( 3 0 ) 8 8 . 7 ( 3 ) S e ( 9 ) - M o ( 2 ) - S e ( 1 0 ) 1 3 6 . 1 ( 3 ) S e ( 2 5 ) - M o ( 7 ) - S e ( 3 1 ) 1 4 1 . 8 ( 3 ) S e ( 9 ) — M o ( 2 ) — S e ( l l ) 7 6 9 ( 2 ) S e ( 2 5 ) - M o ( 7 ) - S e ( 3 2 ) 8 0 8 ( 2 ) S e ( 1 0 ) - M o ( 2 ) — S e ( l l ) 5 9 . 4 ( 2 ) S e ( 2 5 ) - M o ( 7 ) - S e ( 3 3 ) 1 1 3 3 ( 3 ) M o ( 3 ) - M o ( 2 ) - S e ( l ) 5 7 . 3 ( 2 ) S e ( 3 0 ) - M o ( 7 ) - S e ( 3 1 ) 5 3 2 ( 4 ) M o ( 3 ) - M o ( 2 ) - S e ( 1 0 ) 5 8 . 2 ( 2 ) S e ( 3 0 ) - M o ( 7 ) - S e ( 3 2 ) 8 6 4 ( 2 ) M o ( 3 ) - M o ( 2 ) - S e ( l l ) 5 8 . 4 ( 2 ) S e ( 3 0 ) - M o ( 7 ) - S e ( 3 3 ) 1 3 1 . 6 ( 3 ) S e ( 1 ) . M o ( 2 ) - S e ( 4 ) 1 4 9 . 6 ( 3 ) S e ( 3 1 ) - M o ( 7 ) — S e ( 3 2 ) 9 5 2 ( 2 ) S e ( 1 ) - M o ( 2 ) - S e ( 5 ) 9 6 5 ( 3 ) S e ( 3 1 ) - M o ( 7 ) - S e ( 3 3 ) 9 5 4 ( 3 ) S e ( 1 ) - M o ( 2 ) - S e ( 8 ) 8 5 3 ( 3 ) S e ( 3 2 ) - M o ( 7 ) - S e ( 3 3 ) 5 7 8 ( 2 ) T a b l e 2 - 2 2 . ( c o n t ' d ) 1 3 5 S e ( 1 ) - M o ( 2 ) - S e ( 9 ) 1 1 3 8 ( 3 ) M o ( l ) - S e ( 1 ) - M o ( 2 ) 6 7 . 0 ( 2 ) S e ( 1 ) - M o ( 2 ) - S e ( 1 0 ) 8 2 6 ( 3 ) M o ( l ) - S e ( 1 ) - M o ( 3 ) 6 6 7 ( 2 ) S e ( 1 ) - M o ( 2 ) - S e ( 1 1 ) 1 1 5 3 ( 3 ) M o ( 2 ) - S e ( l ) - M o ( 3 ) 6 6 . 7 ( 2 ) S e ( 4 ) - M o ( 2 ) - S e ( 5 ) 5 3 . 1 ( 2 ) M o ( l ) — S e ( 2 ) - S e ( 3 ) 6 2 6 ( 3 ) S e ( 4 ) - M o ( 2 ) - S e ( 8 ) 9 1 2 ( 3 ) M o ( l ) - S e ( 3 ) - S e ( 2 ) 6 3 7 ( 3 ) S e ( 4 ) - M o ( 2 ) - S e ( 9 ) 8 8 3 ( 3 ) M o ( 2 ) - S e ( 4 ) - S e ( 5 ) 6 2 4 ( 3 ) S e ( 4 ) - M o ( 2 ) - S e ( 1 0 ) 9 6 2 ( 3 ) M o ( 2 ) - S e ( 5 ) - S e ( 4 ) 6 4 6 ( 3 ) S e ( 4 ) - M o ( 2 ) - S e ( 1 1 ) 8 9 . 1 ( 3 ) M o ( l ) - S e ( 6 ) - M o ( 3 ) 6 4 . 5 ( 2 ) S e ( 5 ) - M o ( 2 ) - S e ( 8 ) 8 6 6 ( 3 ) M o ( 3 ) - S e ( 6 ) - S e ( 7 ) 6 0 9 ( 2 ) M o ( l ) - M o ( 3 ) - M o ( 2 ) 5 9 . 9 ( 2 ) M o ( l ) - S e ( 7 ) - M o ( 3 ) 6 6 . 4 ( 2 ) M o ( l ) - M o ( 3 ) — S e ( 1 ) 5 6 . 3 ( 2 ) M o ( l ) - S e ( 7 ) - S e ( 6 ) 6 3 8 ( 2 ) M o ( l ) - M o ( 3 ) — S e ( 6 ) 5 7 . 8 ( 2 ) M o ( 3 ) - S e ( 7 ) - S e ( 6 ) 6 3 . 8 ( 2 ) M o ( l ) - M o ( 3 ) - S e ( 7 ) 5 7 . 1 ( 2 ) S e ( 6 ) - S e ( 7 ) - S e ( 1 2 ) 1 6 2 . 6 ( 3 ) M o ( 2 ) - M o ( 3 ) - S e ( l ) 5 6 . 1 ( 2 ) M o ( l ) — S e ( 8 ) - M o ( 2 ) 6 3 . 0 ( 2 ) M o ( 2 ) - M o ( 3 ) - S e ( 1 0 ) 5 8 . 3 ( 2 ) M o ( l ) - S e ( 8 ) - S e ( 9 ) 6 0 3 ( 3 ) M o ( 2 ) — M o ( 3 ) - S e ( 1 1 ) 5 7 . 1 ( 2 ) M o ( 2 ) — S e ( 8 ) - S e ( 9 ) 6 0 . 9 ( 2 ) S e ( 1 ) - M o ( 3 ) - S e ( 6 ) 8 3 7 ( 3 ) M o ( l ) - S e ( 9 ) - M o ( 2 ) 6 5 3 ( 2 ) S e ( 1 ) - M o ( 3 ) - S e ( 7 ) 1 1 3 . 0 ( 3 ) M o ( l ) — S e ( 9 ) — S e ( 8 ) 6 4 9 ( 3 ) S e ( 1 ) - M o ( 3 ) - S e ( 1 0 ) 8 2 . 1 ( 3 ) M o ( 2 ) - S e ( 9 ) - S e ( 8 ) 6 3 . 6 ( 2 ) S e ( 1 ) - M o ( 3 ) - S e ( 1 1 ) 1 1 2 9 ( 3 ) S e ( 8 ) — S e ( 9 ) - S e ( 1 2 ) 1 6 5 . 0 ( 4 ) S e ( 1 ) - M o ( 3 ) - S e ( 1 3 ) 9 2 . 0 ( 3 ) M o ( 2 ) - S e ( 1 0 ) - M o ( 3 ) 6 3 . 6 ( 2 ) S e ( 1 ) - M o ( 3 ) - S e ( 1 4 ) 1 5 9 . 2 ( 3 ) M o ( 2 ) - S e ( 1 0 ) - S e ( 1 1 ) 5 9 2 ( 2 ) S e ( 6 ) - M o ( 3 ) - S e ( 7 ) 5 5 4 ( 2 ) M o ( 3 ) - S e ( l O ) - S e ( l l ) 6 0 . 2 ( 2 ) S e ( 6 ) - M o ( 3 ) — S e ( 1 0 ) 1 6 4 . 5 ( 3 ) M o ( 2 ) - S e ( 1 1 ) - M o ( 3 ) 6 4 . 6 ( 2 ) S e ( 6 ) - M o ( 3 ) - S e ( 1 1 ) 1 3 3 . 3 ( 3 ) M o ( 2 ) - S e ( 1 1 ) - S e ( 1 0 ) 6 1 . 4 ( 2 ) S e ( 6 ) - M o ( 3 ) - S e ( 1 3 ) 8 6 7 ( 3 ) M o ( 2 ) - S e ( 1 1 ) - S e ( 1 2 ) 1 0 8 . 4 ( 3 ) S e ( 6 ) - M o ( 3 ) — S e ( 1 4 ) 1 0 2 . 4 ( 3 ) M o ( 3 ) - S e ( 1 1 ) — S e ( 1 0 ) 6 0 8 ( 2 ) S e ( 7 ) - M o ( 3 ) ~ S e ( 1 0 ) 1 3 7 . 0 ( 3 ) M o ( 3 ) - S e ( l l ) - S e ( 1 2 ) 1 0 9 . 3 ( 3 ) S e ( 7 ) ~ M o ( 3 ) - S e ( l l ) 7 8 3 ( 2 ) S e ( 1 0 ) - S e ( 1 1 ) - S e ( 1 2 ) 1 6 7 . 5 ( 3 ) S e ( 7 ) - M o ( 3 ) - S e ( 1 3 ) 1 2 9 . 1 ( 3 ) M o ( 3 ) - S e ( 1 3 ) - S e ( 1 4 ) 5 5 . 4 ( 2 ) S e ( 7 ) - M o ( 3 ) - S e ( l 4 ) 8 6 2 ( 2 ) M o ( 3 ) — S e ( 1 4 ) - S e ( l 3 ) 5 5 8 ( 2 ) S e ( 1 0 ) - M o ( 3 ) - S e ( 1 1 ) 5 9 . 1 ( 2 ) M o ( 4 ) - S e ( 1 5 ) - M o ( 5 ) 6 5 9 ( 3 ) S e ( 1 0 ) - M o ( 3 ) - S e ( l 3 ) 8 7 8 ( 3 ) M o ( 4 ) - S e ( 1 6 ) - S e ( l 7 ) 6 1 2 ( 2 ) T a b l e 2 - 2 2 . ( c o n t ' d ) 1 3 6 S e ( 1 0 ) - M o ( 3 ) - S e ( l 4 ) 8 9 . 0 ( 3 ) M o ( 4 ) - S e ( 1 7 ) - S e ( l 6 ) 6 5 . 0 ( 3 ) S e ( 1 1 ) - M o ( 3 ) - S e ( 1 3 ) 1 3 3 . 0 ( 3 ) M o ( 4 ) - S e ( 1 8 ) - S e ( l 9 ) 6 5 . 0 ( 3 ) S e ( 1 1 ) - M o ( 3 ) - S e ( 1 4 ) 7 7 5 ( 2 ) M o ( 4 ) - S e ( 1 9 ) — S e ( l 8 ) 6 1 . 1 ( 3 ) S e ( 1 3 ) - M o ( 3 ) - S e ( 1 4 ) 6 8 9 ( 2 ) M o ( 5 ) — S e ( 2 0 ) - S e ( 2 1 ) 6 2 6 ( 4 ) M o ( 5 ) - M o ( 4 ) - S e ( 1 5 ) 5 8 . 0 ( 2 ) M o ( 5 ) - S e ( 2 1 ) - S e ( 2 0 ) 6 2 8 ( 4 ) M o ( 5 ) - M o ( 4 ) - S e ( 2 2 ) 5 9 . 0 ( 2 ) M o ( 4 ) - S e ( 2 2 ) - M o ( 5 ) 6 3 . 2 ( 2 ) M o ( 5 ) - M o ( 4 ) - S e ( 2 3 ) 5 7 . 4 ( 2 ) M o ( 4 ) - S e ( 2 2 ) - S e ( 2 3 ) 6 0 . 2 ( 2 ) S e ( 1 5 ) - M o ( 4 ) - S e ( l 6 ) 1 4 5 . 8 ( 3 ) M o ( 5 ) - S e ( 2 2 ) - S e ( 2 3 ) 5 9 6 ( 2 ) S e ( 1 5 ) - M o ( 4 ) - S e ( l 7 ) 9 1 . 9 ( 3 ) M o ( 4 ) - S e ( 2 3 ) - M o ( 5 ) 6 4 9 ( 2 ) S e ( 1 5 ) — M o ( 4 ) - S e ( 1 8 ) 1 1 2 8 ( 3 ) M o ( 4 ) - S e ( 2 3 ) - S e ( 2 2 ) 6 2 . 0 ( 2 ) S e ( 1 5 ) - M o ( 4 ) — S e ( 1 9 ) 8 2 8 ( 3 ) M o ( 5 ) - S e ( 2 3 ) - S e ( 2 2 ) 6 3 . 0 ( 2 ) S e ( 1 5 ) - M o ( 4 ) - S e ( 2 2 ) 8 4 5 ( 3 ) M o ( 5 ) - S e ( 2 3 ) - S e ( 2 4 ) 1 0 3 . 9 ( 2 ) S e ( 1 5 ) - M o ( 4 ) - S e ( 2 3 ) 1 1 5 . 1 ( 3 ) S e ( 2 2 ) — S e ( 2 3 ) - S e ( 2 4 ) 1 6 6 . 0 ( 3 ) S e ( l 6 ) - M o ( 4 ) - S e ( 1 7 ) 5 3 . 9 ( 2 ) M o ( 6 ) - S e ( 2 5 ) - M o ( 7 ) 6 4 . 9 ( 3 ) S e ( l 6 ) - M o ( 4 ) - S e ( 1 8 ) 9 1 6 ( 2 ) M o ( 6 ) — S e ( 2 6 ) — S e ( 2 7 ) 6 5 5 ( 3 ) S e ( 1 6 ) - M o ( 4 ) - S e ( 1 9 ) 9 4 . 0 ( 2 ) M o ( 6 ) - S e ( 2 7 ) - S e ( 2 6 ) 6 2 . 1 ( 3 ) S e ( l 6 ) - M o ( 4 ) - S e ( 2 2 ) 9 3 . 0 ( 3 ) M o ( 6 ) - S e ( 2 8 ) - S e ( 2 9 ) 6 0 . 8 ( 2 ) S e ( l 6 ) - M o ( 4 ) - S e ( 2 3 ) 9 1 . 6 ( 3 ) M o ( 6 ) - S e ( 2 9 ) - S e ( 2 8 ) 6 3 . 5 ( 3 ) S e ( 1 7 ) - M o ( 4 ) - S e ( 1 8 ) 1 2 7 . 5 ( 3 ) M o ( 7 ) - S e ( 3 0 ) - S e ( 3 l ) 6 3 3 ( 4 ) S e ( 1 7 ) - M o ( 4 ) - S e ( l 9 ) 8 7 . 0 ( 2 ) S e ( 2 4 ) - S e ( 3 0 ) — S e ( 3 l ) 1 7 1 . 9 ( 5 ) S e ( 1 7 ) - M o ( 4 ) - S e ( 2 2 ) 8 7 . 1 ( 3 ) M o ( 7 ) - S e ( 3 1 ) - S e ( 3 0 ) 6 3 . 5 ( 4 ) S e ( 1 7 ) - M o ( 4 ) - S e ( 2 3 ) 1 3 0 . 8 ( 3 ) M o ( 6 ) - S e ( 3 2 ) - M o ( 7 ) 6 3 . 1 ( 3 ) S e ( 1 8 ) - M o ( 4 ) - S e ( l 9 ) 5 3 . 9 ( 3 ) M o ( 6 ) - S e ( 3 2 ) - S e ( 3 3 ) 5 9 . 6 ( 2 ) S e ( 1 8 ) - M o ( 4 ) - S e ( 2 2 ) 1 3 8 . 3 ( 3 ) M o ( 7 ) - S e ( 3 2 ) - S e ( 2 5 ) 4 8 8 ( 2 ) S e ( 1 8 ) — M o ( 4 ) — S e ( 2 3 ) 8 0 7 ( 3 ) M o ( 7 ) - S e ( 3 2 ) - S e ( 3 3 ) 5 8 6 ( 2 ) S e ( 1 9 ) - M o ( 4 ) - S e ( 2 2 ) 1 6 5 . 8 ( 3 ) M o ( 6 ) - S e ( 3 3 ) - M o ( 7 ) 6 5 7 ( 3 ) S e ( 1 9 ) - M o ( 4 ) - S e ( 2 3 ) 1 3 4 . 3 ( 3 ) M o ( 6 ) - S e ( 3 3 ) - S e ( 3 2 ) 6 2 . 1 ( 2 ) S e ( 2 2 ) - M o ( 4 ) - S e ( 2 3 ) 5 7 . 8 ( 2 ) M o ( 7 ) - S e ( 3 3 ) - S e ( 3 2 ) 6 3 . 6 ( 2 ) M o ( 4 ) - M o ( 5 ) - S e ( 1 5 ) 5 6 . 1 ( 2 ) M o ( 7 ) - S e ( 3 3 ) - S e ( 3 4 ) 1 0 2 . 5 ( 3 ) M o ( 4 ) - M o ( 5 ) - S e ( 2 2 ) 5 7 9 ( 2 ) S e ( 3 2 ) - S e ( 3 3 ) - S e ( 3 4 ) 1 6 3 . 7 ( 4 ) M o ( 4 ) - M o ( 5 ) - S e ( 2 3 ) 5 7 . 7 ( 2 ) 1 3 7 S t r u c t u r e o f K 1 0 M 0 1 2 8 e 5 3 ( V I I I ) T h e s t r u c t u r e o f ( V I I I ) i s v e r y c o m p l i c a t e d a s s h o w n i n F i g u r e 2 - 1 4 . I t s a n i o n i c f o r m u l a c a n b e w r i t t e n i n a m o r e d e s c r i p t i v e w a y : [ ( M o 3 S e 1 5 ) 2 ( M 0 3 S e 1 3 ) 2 ( S e 2 ) ] 1 0 ' , w h i c h c o n t a i n s t h r e e s e p a r a t e s p e c i e s c o c r y s t a l l i z e d i n a n u n i t c e l l : z i g z a g [ M o 3 S e 1 5 ] 2 ' c h a i n s , [ M o 3 S e 1 3 ] 2 ' t n ' n u c l e a r c l u s t e r s a n d S e 2 2 ' a n i o n s i n a r a t i o o f 2 2 : 1 . T h e [ M o 3 S e 1 5 ] 2 ' c h a i n s c o n t a i n r o w s o f t r i n u c l e a r [ M o 3 S e 7 ] 4 + c o r e s i n w h i c h t w o M o c e n t e r s c o o r d i n a t e e a c h t o o n e t e r m i n a l S e z z ' l i g a n d a n d t h e t h i r d M o c e n t e r s a r e l i n k e d b y a S e 2 2 ‘ l i g a n d a n d a S e 6 2 ' l i g a n d a l t e r n a t e l y t o f o r m o n e - d i m e n s i o n a l c h a i n s . [ M o 3 S e 1 3 ] 2 ' c l u s t e r s a r e i n s e r t e d b e t w e e n t h e [ M o 3 S e 1 5 ] 2 ‘ c h a i n s . T h e t r i p l y b r i d g i n g S e a t o m s o f t h e [ M o 3 S e 1 3 ] 2 ‘ c l u s t e r s a r e r i g h t a b o v e t h e t h r e e b r i d g i n g S e 2 2 ' l i g a n d s o f t h e [ M o g S e 7 ] 4 + c o r e s i n t h e [ M o 3 S e 1 5 ] 2 ' c h a i n s , f o r m i n g s h o r t S e n - S e c o n t a c t s . B e t w e e n t w o [ M o 3 S e 1 3 ] 2 ' c l u s t e r s , o n e S e 2 2 ' a n i o n i s i n s e r t e d w i t h e a c h o f t h e t w o n e g a t i v e l y c h a r g e d S e a t o m s s i t t i n g a b o v e t h e t h r e e b r i d g i n g d i s e l e n i d e s o f t h e [ M o 3 S e 7 ] 4 + c o r e s i n t h e [ M o 3 S e 1 3 ] 2 ' c l u s t e r s r e s p e c t i v e l y . T h e s e s p e c i a l S e n - S e i n t e r a c t i o n s a r e s h o w n b y t h e d a s h e d l i n e i n F i g u r e 2 - 1 4 . B e c a u s e t h e X - r a y d i f f r a c t i o n d a t a s e t o b t a i n e d w a s n o t i n t e n s e a n d e n o u g h , p o s i t i o n s o f p o t a s s i u m c a t i o n s c o u l d n o t b e d e t e r m i n e d . I n a d d i t i o n t o t h e i o n i c a t t r a c t i o n b e t w e e n p o t a s s i u m c a t i o n s a n d t h e a n i o n i c s p e c i e s , t h e s p e c i a l S e n - S e a t t r a c t i o n s a p p e a r t o b e i m p o r t a n t f o r t h e c r y s t a l l i z a t i o n o f t h e s t r u c t u r e . 1 3 8 F i g u r e 2 - 1 4 : O R T E P r e p r e s e n t a t i o n o f t h e s t r u c t u r e o f [ M 0 1 2 8 e 5 3 1 1 0 ' . B l a c k c i r c l e s r e p r e s e n t M o a t o m s . O p e n c i r c l e s r e p r e s e n t S e a t o m s . D a s h e d l i n e s i n d i c a t e S e - - - S e s h o r t c o n t a c t s . 1 3 9 F . - ' l g u r e 2 1 5 . O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f [ M o n q u s I Z ‘ 1 4 0 S t r u c t u r e o f C s 2 M 0 2 0 2 S e 6 ( I X ) [ M o n z S e d Z ' h a s a d i s c r e t e d i m e r i c s t r u c t u r e c o n t a i n i n g t w o e d g e - s h a r i n g d i s t o r t e d p y r a m i d a l M o c e n t e r s . E a c h M o a t o m b i n d s a n o x y g e n a t o m a t i t s a x i a l p o s i t i o n , a t e r m i n a l S e 2 2 - l i g a n d a n d t w o b r i d g i n g S e 2 - i o n s a t i t s e q u a t o r i a l p o s i t i o n s , a s s h o w n i n F i g u r e 2 - 1 5 . T h e s t r u c t u r e o f ( I X ) w a s s o l v e d b u t c o u l d n o t b e w e l l r e fi n e d d u e t o t h e f a s t d e c o m p o s i t i o n o f t h e c r y s t a l i n X - r a y b e a m a n d i t s l a r g e a b s o r p t i o n c o e f fi c i e n t w i t h r e s p e c t t o C u K a t r a d i a t i o n . S i n c e ( I X ) i s t h e s e l e n i u m a n a l o g o f [ M 0 2 0 2 S 6 ] 2 * , n o f u r t h e r e f f o r t w a s m a d e t o c h a r a c t e r i z e t h e c o m p o u n d . 3 . 3 . E l e c t r o n A f f i n i t y o f [ M o 3 S e ( S e 2 ) 3 ] 4 + C o r e A M o l e c u l a r O r b i t a l S t u d y A s p o i n t e d e a r l i e r , t h e u n u s u a l p h e n o m e n o n o b s e r v e d i n a l l o f t h e s e m o l y b d e n u m p o l y s e l e n i d e c o m p o u n d s i s t e n d e n c y i f t h e [ M o 3 S e 7 ] 4 + c l u s t e r s t o b i n d , v i a S e - - - S e i n t e r a c t i o n s , n e g a t i v e l y c h a r g e d s p e c i e s s u c h a s S e z ' a n d S e x z ' . T h e r e i s a n i n v e r s e c o r r e l a t i o n b e t w e e n t h e S e a p - S e a a n d t h e S e a - S e ( , d i s t a n c e s , w h e r e S e a a n d S e b f o r m t h e d o u b l y b r i d g i n g d i s e l e n i d e S e 2 2 ' i n t h e [ M o 3 ( u 3 — S e ) ( u 2 - S e 2 ) 3 ] 4 + c o r e , a n d S e a p c a n b e a t r i p l y b r i d g i n g s e l e n i u m f r o m a n o t h e r [ M o 3 S e 1 3 ] 2 ‘ a n i o n , o r i t c a n b e a n i s o l a t e d S e 2 ' o r t h e t e r m i n a l S e a t o m o f a S e x z ' l i g a n d . T h i s i n v e r s e c o r r e l a t i o n i s c l e a r l y d e m o n s t r a t e d i n F i g u r e 2 - 1 6 f o r v a r i o u s S e a p - S e a a n d S e a - S e t , d i s t a n c e s . 1 4 1 ’ S ‘ e a p I , \ “ ‘ I ” ‘ \ “ ‘ . S e ' a \ ‘ . S e a S e a S e b S e b S e b 2 . 6 ' 1 - 1 . 4 L J 4 4 0 3 2 . 5 1 1 1 i 2 . 5 ‘ L ( ” ‘ 7 2 3 1 — ; 3 2 . 4 " ’ 1 — S e a n - S e ( , 1 O x ( A ) 2 . 4 - 1 3 " " 1 ( ‘ 9 , n , ‘ 1 2 3 ( E U : 2 0 , 3 4 t A : x C 1 0 O O i 2 . 3 ‘ 1 O P O : 2 1 - J . 2 . 2 , 1 . 1 . 1 2 . 5 3 3 . 5 S e a p u - S e a ( A ) F i g u r e 2 - 1 6 : S e - S e b o n d c o r r e l a t i o n . T h e h o r i z o n t a l a x i s r e p r e s e n t s t h e S e a p — S e a b o n d v a r i a t i o n i n d i f f e r e n t M o s e l e n i d e m o l e c u l e s , a n d t h e c o r r e s p o n d i n g S e a - S e ( , b o n d i s p l o t t e d a s a f u n c t i o n o f t h e S e a p - S e a d i s t a n c e . 1 4 2 @ S e ( 1 7 ) " 2 ' 1 S e ( 1 2 ) S e ( 1 0 ) / 8 c m S e ( 8 ) 7 ? \ / S e ( 1 3 ) S e ( 1 1 ) “ c m S e ( 2 . ) S e ( 7 ) M 0 ( 3 ) \ S e ( 5 ) S e ( 1 5 ) S c h e m e ( 3 ) 1 4 3 T o u n d e r s t a n d t h e n a t u r e o f t h i s t y p e o f [ M 0 3 S e 7 ] 4 + - - - S e i n t e r a c t i o n w e h a v e p e r f o r m e d a m o l e c u l a r o r b i t a l s t u d y e m p l o y i n g t h e e x t e n d e d H fi c k e l m e t h o d 2 6 . T h e a t o m i c p a r a m e t e r s a n d a d e t a i l e d d e s c r i p t i o n o f t h e c o m p u t a t i o n s a r e g i v e n i n r e f e r e n c e 2 7 . T h e o r e t i c a l i n v e s t i g a t i o n s o n t h e e l e c t r o n i c s t r u c t u r e s o f t r i n u c l e a r e a r l y t r a n s i t i o n m e t a l c l u s t e r s h a v e b e e n c a r r i e d o u t o n s e v e r a l m o l e c u l a r s y s t e m s , i n c l u d i n g [ M o 3 S 1 3 ] 2 ' , 2 3 " ” [ M o 3 ( 1 l 3 - X ) ( 1 1 2 - Y ) 3 L 9 ] 4 + ( M = T i , N b , M o , W ) ” , a n d [ M 3 ( u 3 - X ) 2 ( u 2 - 0 2 Y ) 6 L 3 ] ( M = M o , W ) . 2 8 I m p o r t a n t b o n d i n g f e a t u r e s i n t h e s e t r i n u c l e a r c l u s t e r s h a v e b e e n d i s c u s s e d i n m u c h d e t a i l a n d a r e i n a c c o r d a n c e w i t h o u r c a l c u l a t i o n r e s u l t s o n t h e [ M o 3 S e 1 3 ] 2 ' c l u s t e r . T h e r e f o r e , o u r f o c u s i n t h e f o l l o w i n g d i s c u s s i o n s w i l l b e m a i n l y o n t h e s y s t e m s i n w h i c h a n a d d i t i o n a l l i g a n d , s u c h a s a S e 2 ' a n i o n , i s a d d e d t o t h e [ M o 3 S e 1 3 ] 2 ' c l u s t e r . T h e b o n d i n g i n t e r a c t i o n s b e t w e e n t h e c l u s t e r a n d t h e l i g a n d , a n d t h e c o n s e q u e n c e o f s u c h i n t e r a c t i o n s w i l l b e a n a l y z e d . T h e m o d e l s y s t e m t h a t w e h a v e u s e d i n m o s t o f o u r c o m p u t a t i o n s c o n s i s t s o f a [ M o 3 S e 1 3 ] 2 ' t r i n u c l e a r c l u s t e r a n d a S e 2 ' a n i o n s a s S e a p . T h e g e o m e t r y o f [ M o 3 S e 1 3 ] 2 ' i s t a k e n f r o m t h e e x p e r i m e n t a l d a t a . 3 1 T h e S e 2 - a p p r o a c h e s t h e t r i n u c l e a r c l u s t e r f r o m t h e o p p o s i t e s i t e o f t h e 1 1 3 - S e , a s s h o w n i n S c h e m e ( 3 ) . T h e i n t e r a t o m i c d i s t a n c e b e t w e e n S e ( 8 ) a n d S e z ‘ ( o r b e t w e e n S e ( 1 0 ) a n d S e z ‘ , n o t i n g t h a t S e ( 1 0 ) i s e q u i v a l e n t t o S e ( 8 ) b y s y m m e t r y ) w a s c h o s e n t o b e s l i g h t l y d i f f e r e n t f r o m t h a t b e t w e e n S e ( 9 ) a n d S e 2 ; a s w a s f o u n d i n t h e c r y s t a l s t r u c t u r e . C h a n g e s i n b o n d s t r e n g t h f o r v a r i o u s S o a p - S e a d i s t a n c e s a r e p l o t t e d i n F i g u r e 2 - 1 7 a s t h e d i f f e r e n c e i n t h e o v e r l a p p o p u l a t i o n 3 2 A ( O ) = O P ( d ) - O P ( o o ) , w h e r e O P ( d ) i s t h e o v e r l a p p o p u l a t i o n a t d ( A ) , a p e r p e n d i c u l a r d i s t a n c e b e t w e e n S e 2 " a n d t h e M 0 3 p l a n e , a n d O P ( O O ) , t h e c o r r e s p o n d i n g o v e r l a p p o p u l a t i o n a s d a p p r o a c h e s i n fi n i t y . I t i s c l e a r f r o m t h e s e p l o t s t h a t 1 4 4 o u r p r e d i c t i o n i s c o n s i s t e n t w i t h t h e e x p e r i m e n t a l fi n d i n g s : s t r o n g b o n d i n g i n t e r a c t i o n s a r e o b s e r v e d b e t w e e n S e a ( l a b e l e d S e ( 8 ) , S e ( 9 ) a n d S e ( 1 0 ) ) a n d S e 2 : ( l a b e l e d S e ( 1 7 ) ) w h e n S e 2 : i s b r o u g h t c l o s e t o t h e [ M 0 3 S e 1 3 ] 2 - t n ' n u c l e a r c l u s t e r . A t d = 3 . 6 A , w h i c h c o r r e s p o n d s t o a n i n t e r a t o m i c d i s t a n c e o f S e ( 8 ) - S e ( 1 7 ) = 2 . 6 0 A a n d S e ( 9 ) - S e ( 1 7 ) = 2 . 8 1 A , t h e o v e r l a p p o p u l a t i o n s f o r t h e t w o b o n d s a r e i n c r e a s e d f r o m z e r o t o 0 . 1 0 6 a n d 0 . 0 1 8 r e s p e c t i v e l y . A t t h e s a m e t i m e , t h e d e c r e a s e i n t h e o v e r l a p p o p u l a t i o n b e t w e e n S e a a n d S e ( ) , t h a t i s S e ( 5 ) - S e ( 8 ) ( o r S e ( 7 ) - S e ( 1 0 ) , e q u i v a l e n t b y s y m m e t r y ) a n d S e ( 6 ) ~ S e ( 9 ) , i n d i c a t e s a s i g n i fi c a n t b o n d w e a k e n i n g b e t w e e n t h e t w o a t o m s . F o r e x a m p l e a t d = 3 . 6 A , 1 5 ( 0 ) i s - 0 . 1 5 4 f o r S e ( 5 ) - S e ( 8 ) a n d i s - 0 . 0 7 2 f o r S e ( 6 ) - S e ( 9 ) . N o t i c e t h e s t r o n g c o r r e l a t i o n b e t w e e n t h e S e a p - S e a a n d S e a - S e l ) p a i r s : a t a g i v e n ( 1 , t h e s t r o n g e r t h e b o n d b e t w e e n S e a p a n d S e a , t h e b i g g e r t h e d e c r e a s e i n t h e S e a - S e l , b o n d s t r e n g t h . I t i s a l s o i n t e r e s t i n g t o o b s e r v e t h e o v e r l a p p o p u l a t i o n i n c r e a s e i n t h e M o - M o b o n d s a n d t h e r e p u l s i v e i n t e r a c t i o n s b e t w e e n t h e s e m e t a l s a n d t h e S e 2 ' a t o m . A t d = 3 . 6 A , o r e q u i v a l e n t l y a t S e ( 8 ) - S e ( 1 7 ) = 2 . 6 A a n d S e ( 9 ) - S e ( 1 7 ) = 2 . 8 1 A , t h e i n c r e a s e i n t h e o v e r l a p p o p u l a t i o n i s c a l c u l a t e d t o b e 0 . 0 1 9 a n d 0 . 0 2 6 f o r t h e M o ( l ) - M o ( 2 ) a n d M 0 ( 1 ) - M 0 ( 3 ) b o n d s r e s p e c t i v e l y . T h i s m e t a l - m e t a l b o n d s t r e n g t h e n i n g a p p e a r e d t o b e m o s t p r o n o u n c e d i n K 1 2 M o 1 2 S e 5 6 w h i c h h a s t h e g r e a t e s t [ M o 3 S e 7 ] 4 + - - - S e a p i n t e r a c t i o n s , r e s u l t i n g i n s h o r t e r a v e r a g e M o - M o d i s t a n c e o f 2 . 7 5 ( 2 ) A w h i l e t h o s e i n ( M e 4 N ) 2 M o 3 S e 1 3 a n d K 2 M o 3 S e 1 3 a r e 2 . 7 8 4 ( 6 ) A a n d 2 . 7 7 4 ( 5 ) A r e s p e c t i v e l y . F o r t h e s a m e ( 1 , t h e d e c r e a s e s i n t h e M 0 ( 1 ) - S e ( 1 7 ) a n d M 0 ( 3 ) - S e ( 1 7 ) o v e r l a p p o p u l a t i o n s a r e u p t o 0 . 0 5 1 a n d 0 . 0 7 3 . O t h e r b o n d s , m a i n l y t h e M o — ( u 3 — S e ) , M o - S e a , M o - S e b , M o - S e 2 ( t e r m i n a l ) , a n d t e r m i n a l S e - S e b o n d s , r e m a i n a l m o s t u n a f f e c t e d . 1 4 5 T h e c a l c u l a t e d e l e c t r o n d i s t r i b u t i o n i n [ M 0 3 S e 1 3 ] 2 - h e l p s i n u n d e r s t a n d i n g w h y a n i n c o m i n g S e a p a t o m n e g a t i v e l y c h a r g e d t e n d s t o f o r m b o n d s w i t h t h e t r i n u c l e a r c l u s t e r a n d w h y i t a p p r o a c h e s p r e f e r a b l y t h e d o u b l y b r i d g e d S e 2 2 ' r a t h e r t h a n o t h e r S e a t o m s i n t h e c l u s t e r . O f t h e fi v e t y p e s o f s e l e n i u m a t o m s p r e s e n t i n a [ M o 3 S e 1 3 ] 2 - c l u s t e r t h e t e r m i n a l d i s e l e n i d e s a r e t h e m o s t n e g a t i v e l y c h a r g e d . W h i l e 1 1 3 - S e c a r r i e s a s m a l l e r n e g a t i v e c h a r g e , t h e d o u b l y b r i d g i n g S e a a t o m s a r e t h e m o s t e l e c t r o n p o o r w i t h a c a l c u l a t e d 0 . 1 8 5 e l e c t r o n l o s s . T h e r e f o r e S e a b e c o m e s t h e m o s t s u i t a b l e s i t e f o r a n i o n i c a t t a c k b y a S e a p a t o m s u c h a s S e 2 ” . C h a n g e s i n t h e e l e c t r o n d e n s i t y o f i n d i v i d u a l a t o m s i n t h e [ M 0 3 S e 1 3 ] 2 " m o d e l s y s t e m , a s a f u c n t i o n o f t h e M o « - S e a p 2 ‘ d i s t a n c e a r e g i v e n i n F i g u r e 2 - 1 8 , w h i c h c l e a r l y s h o w s t h a t c h a r g e t r a n s f e r o c c u r s a s t h e S e a p z ' a t o m a p p r o a c h e s t h e t r i n u c l e a r c l u s t e r . S e a p ' a p p e a r s t o s u f f e r t h e g r e a t e s t e l e c t r o n l o s s o f 0 . 9 6 , g o i n g f r o m d = ° ° t o d = 3 . 6 A . T h i s e l e c t r o n d e n s i t y e n d s u p l a r g e l y o n t h e m e t a l a t o m s a n d t h e S e b a t o m s , a s i n d i c a t e d i n t h e p l o t . A t d = 3 . 6 A , a t o t a l g a i n o f 0 . 1 4 5 e l e c t r o n s f o r e a c h M o a t o m , a n d 0 . 2 8 4 e l e c t r o n s f o r S e ( 5 ) a n d S e ( 7 ) a r e c a l c u l a t e d . T h e S e a a t o m s , p r e v i o u s l y c h a r g e d , h a v e a f u r t h e r l o s s o f 0 . 1 5 0 e l e c t r o n s f o r S e ( 8 ) a n d S e ( 1 0 ) , a n d 0 . 0 8 3 e l e c t r o n f o r S e ( 9 ) . I n t h e a b o v e d i s c u s s i o n w e h a v e s h o w e d w h a t h a p p e n s w h e n a n a d d i t i o n a l l i g a n d , S e a p , i n t e r a c t s w i t h t h e t r i n u c l e a r c l u s t e r [ M o 3 S e 1 3 ] 2 ' . T o u n d e r s t a n d t h e b o n d i n g n a t u r e o f s u c h i n t e r a c t i o n s i t i s u s e f u l t o t a k e a c l o s e r l o o k a t t h e o r b i t a l i n t e r a c t i o n d i a g r a m s k e t c h e d i n F i g u r e 2 - 1 9 . O u t l i n e d i n t h e t h r e e b o x e s a r e t h e i m p o r t a n t f r o n t i e r m o l e c u l a r o r b i t a l s f o r d = 3 . 4 A ( l e f t ) , 3 . 8 A ( m i d d l e ) a n d 4 . 2 A ( r i g h t ) r e s p e c t i v e l y . T h e o r b i t a l e n e r g i e s o f t h e t w o f r a g m e n t s [ M 0 3 S e 1 3 ] 2 ‘ a n d S e 2 " a r e d r a w n o n e i t h e r s i d e o f e a c h b o x . T h e h i g h e s t o c c u p i e d m o l e c u l a r o r b i t a l s ( H O M O ) a r e # 3 1 1 4 6 a n d # 3 2 i n a l l t h r e e c a s e s . A t l a r g e d i s t a n c e b e t w e e n t h e t w o f r a g m e n t s , f o r e x a m p l e d = 3 . 8 A a n d 4 . 2 A a s i n ( b ) a n d ( 0 ) , t h e s e o r b i t a l s a r e m o s t l y c o n t r i b u t e d f r o m t h e m e t a l 4 d o r b i t a l s . F o r s m a l l e r ( 1 a s i n ( a ) , h o w e v e r , t h e s e m e t a l c e n t e r e d o r b i t a l s b e c o m e s # 3 3 a n d # 3 4 . T h e M O 3 1 a " a n d 3 2 a ' i n ( a ) , o r e q u i v a l e n t l y t h e M O 3 3 a ' l 3 4 a " i n ( b ) , a n d M O 3 7 a ' / 3 8 a " i n ( c ) , c o n t a i n l a r g e l y c o n t r i b u t i o n s f r o m s e v e r a l h i g h - l y i n g u n o c c u p i e d [ M o 3 S e 1 3 ] 2 ‘ o r b i t a l s , s u c h a s # 1 9 , # 2 2 - 2 4 a n d # 2 7 . O r b i t a l o v e r l a p p o p u l a t i o n a n a l y s i s s h o w s t h a t , i n g e n e r a l , t h e s e o r b i t a l s a r e b o n d i n g b e t w e e n t h e m e t a l a t o m s ( M o - M o ) a n d a n t i b o n d i n g b e t w e e n t h e d o u b l y b r i d g i n g S e 2 2 ‘ a t o m s ( S e a a n d S e b ) , a n d o n a v e r a g e , i s g r e a t e r i n m a g n i t u d e f o r t h e l a t t e r . F o r e x a m p l e , t h e f r a g m e n t m o l e c u l a r o r b i t a l ( F M O ) # 1 9 a n d # 2 4 o f [ M o 3 S e 1 3 ] 2 ' c o n t r i b u t e a n o v e r l a p p o p u l a t i o n o f 0 . 0 2 2 a n d 0 . 0 3 1 r e s p e c t i v e l y t o b o t h M 0 ( 1 ) - M 0 ( 2 ) a n d M 0 ( 1 ) - M 0 ( 3 ) b o n d s , a n d - 0 . 0 4 3 , - 0 . 0 6 1 r e s p e c t i v e l y t o b o t h S e ( 5 ) - S e ( 8 ) a n d S e ( 6 ) - S e ( 9 ) b o n d s w h e n o c c u p i e d b y t w o e l e c t r o n s . U p o n t h e f o r m a t i o n o f [ M 0 3 S e 1 3 ] Z ' - S e 2 ' a g g r e g a t e , t h e s e o r b i t a l s i n t e r a c t w i t h t h e S e a p z ' o r b i t a l s i n a b o n d i n g f a s h i o n . W h e n t h e t w o f r a g m e n t s i n t e r a c t s t r o n g l y a s i n ( a ) , t h e o r b i t a l o v e r l a p s a r e t h e g r e a t e s t w h i c h l e a d t o a l a r g e c o n t r i b u t i o n o f t h e s e o r b i t a l s t o t h e M O 3 1 a " a n d 3 2 3 ' t h a t a r e f u l l y o c c u p i e d . T h e F M O # 2 4 a n d # 2 7 , f o r i n s t a n c e , h a s a 3 0 % c o n t r i b u t i o n t o M 0 3 2 a " a n d 3 1 a ' r e s p e c t i v e l y . A s t h e t w o f r a g m e n t s a r e p u l l e d a p a r t a s i n ( b ) a n d ( c ) , t h e o r b i t a l o v e r l a p s a r e s i g n i fi c a n t l y r e d u c e d . C o n s e q u e n t l y t h e i n t e r a c t i o n s b e t w e e n t h e t w o f r a g m e n t s a r e m u c h w e a k e n e d a n d t h e s e v a c a n t h i g h - l y i n g [ M o 3 S e 1 3 ] 2 ' f r a g m e n t o r b i t a l s c o n t r i b u t e m u c h l e s s t o t h e c o r r e s p o n d i n g m o l e c u l a r o r b i t a l s ( 3 3 a ' a n d 3 4 a " i n ( b ) , 3 7 a ' a n d 3 8 a " i n ( c ) ) . I n f a c t , t h e f r a g m e n t o r b i t a l s # 1 9 , # 2 2 - 2 3 a n d # 2 7 o f [ M 0 3 S e 1 3 ] 2 - g i v e e s s e n t i a l l y n o c o n t r i b u t i o n s t o t h e m o l e c u l a r o r b i t a l 3 7 a ' a n d 3 8 a " i n c a s e ( c ) . T h e s e 1 4 7 F M O c o n t r i b u t i o n s a r e p l o t t e d i n F i g u r e 2 - 2 0 a s a f u n c t i o n o f t h e d i s t a n c e . N o t i c e t h a t t h e m e t a l c e n t e r e d m o l e c u l a r o r b i t a l s , t h a t i s 3 3 a ' a n d 3 4 a " i n ( a ) , 3 1 a ' a n d 3 2 a ” i n b o t h ( b ) a n d ( c ) , a r e e s s e n t i a l l y t h e s a m e a t a l l d i s t a n c e s . T h e c o n c l u s i o n t h a t w e m a y d r a w f r o m t h e a b o v e a n a l y s i s i s t h a t t h e e x t e n t o f t h e i n t e r a c t i o n s b e t w e e n t h e t w o f r a g m e n t s , S e z ‘ a n d [ M o 3 S e 1 3 ] 2 ' , d e t e r m i n e s t h e a m o u n t o f t h e S e a - S e t , a n t i b o n d i n g c h a r a c t e r i n t h e h i g h e s t o c c u p i e d m o l e c u l a r o r b i t a l s ( S e c e n t e r e d ) . T h e s t r o n g e r t h e i n t e r a c t i o n s b e t w e e n t h e t w o , t h e m o r e t h e S e a — S c h b o n d s a r e w e a k e n e d . C o r r e s p o n d i n g l y a l e s s p r o n o u n c e d a n d o p p o s i t e e f f e c t a p p l i e s t o t h e M 0 - M 0 b o n d s . F i g u r e 2 - 1 7 : 1 4 8 C h a n g e s i n t h e o v e r l a p p o p u l a t i o n , A ( O ) , a s f u n c t i o n s o f d , t h e p e r p e n d i c u l a r d i s t a n c e b e t w e e n t h e S e 2 ' a n d t h e M 0 3 p l a n e . ( A ) M o - S e z ' b o n d s , ( B ) S e a — S e t , b o n d s , ( C ) S e 2 ‘ - S e a b o n d s a n d ( D ) t h e M o - M o b o n d s . t h e S e 2 : i s l a b e l e d a s S e ( 1 7 ) , S e a a s S e ( 8 ) , S e ( 9 ) a n d S e b a s S e ( 5 ) , S e ( 6 ) . S e ( 7 ) a n d S e ( 1 0 ) a r e e q u i v a l e n t t o S e ( 5 ) a n d S e ( 8 ) r e s p e c t i v e l y a n d a r e n o t s h o w n i n t h e F i g u r e . r e I I T - 0 0 l 2 I I I I I I 1 ' I I I I I I I I 1 4 9 - 0 . 0 2 — M 0 ( 3 ) - S e ( 1 7 ) ( A ) ” 0 ° 0 4 ‘ M 0 ( 1 ) - S e ( 1 7 ) - 0 . 0 6 — A ( 0 ) ” - 0 . 0 8 I 3 . 4 - 3 . 6 3 . 8 4 4 . 2 d i s t a n c e ( A ) O 1 1 1 1 1 1 1 l 1 1 1 l l 1 1 i l d I S e ( 6 ) - S e ( 9 ) / . / . / / ; / / E . - 0 . 0 5 1 / / ( B ) 1 ' — O . l I , / / — / / A ( 0 ) 5 : - 0 . 1 5 « 5 _ / / 7 f : K E / e / - 0 . 2 « h / S e ( 5 ) - S e ( 8 ) F a ' 0 . 2 5 7 l T l 1 T r I l T I I 1 1 l 1 r r l 3 . 4 3 . 6 3 . 8 4 4 . 2 d i s t a n c e ( A ) 0 0 “ 0 0 . 0 . 0 . 0 0 0 0 0 0 A ( O ) 0 2 0 . 0 . 0 . 0 5 . . 1 3 2 5 1 5 0 5 . 0 4 5 3 5 2 5 , 5 0 . 0 . 0 - 3 0 2 0 1 0 0 — : — - f 9 a . E f ; 1 E r E E 4 4 1 1 3 f i : 4 1 4 . 3 : 4 1 1 t S e ( 8 ) b : S ) 5 7 1 I ) T 1 ? ( ( 9 S e 7 - e T Y 4 1 \ . _ 3 x g . 1 ) 6 - M 0 ( 1 l l l . 6 3 M ( \ 0 2 ( ) ‘ 0 \ \ M 1 1 ( C ) - S e ( l 7 ) 2 . . — I 1 ( 4 ) I l A l 1 I I 4 . 4 1 2 I l ( I I D ) l 1 4 \ l 1 l r l l . 2 4 r 4 I 1 \ 3 \ ) I . l - d e I t 8 i s M 0 a ( n c e 3 ) \ \ 1 l l . 8 3 * - 3 : : - ‘ 3 j : : 7 . . , 1 . — e _ — — _ 4 — — ~ 4 1 1 : : : 1 3 1 3 r i . i 1 5 0 d i s t a n c e ( A ) . 5 1 1 1 1 1 1 l 1 1 l 1 1 1 1 l 1 1 1 1 1 1 1 1 1 l 1 1 1 1 S l ( e 1 7 ) 1 A e — l 1 0 0 0 0 _ ‘ d ~ J 1 1 _ 4 L F _ * r I - 1 1 [ 5 . . ' ' - 1 7 3 5 1 1 1 1 3 _ _ _ ” _ - 1 a 2 1 a 1 _ “ 7 7 ‘ \ \ 0 . T 1 1 T 1 3 1 . 6 1 1 1 1 1 1 1 1 1 1 1 4 1 r 1 1 1 1 1 1 . 2 8 9 0 5 r 6 3 , ) , ) 1 7 1 S 2 ) 0 ) c ' ) ) s r o S S M M t S S C e e h c 0 0 ( ( e ( ( ( d i s t a n c e ( A ) F i g u r e 2 - 1 8 : E l e c t r o n d e n s i t y c h a n g e f o r a l l a t o m s . A e ‘ i s t h e d i f f e r e n c e b e t w e e n t h e e l e c t r o n d e n s i t y o f a n a t o m i n I M O 3 8 6 1 4 1 4 ' a t v a r i o u s d i s t a n c e s a n d i n t h e e x t r e m e c a s e , d = ° ° . F i g u r e 2 - 1 9 : 1 5 2 O r b i t a l i n t e r a c t i o n d i a g r a m f o r t h e [ M o 3 S e 1 4 ] 4 ' m o d e l s y s t e m . T h r e e s i t u a t i o n s a r e c o n s i d e r e d : ( a ) d = 3 . 4 A , ( b ) d = 3 . 8 A a n d ( c ) d = 4 2 A . T h e i n t e r e s t e d m o l e c u l a r o r b i t a l l e v e l s a r e s k e t c h e d i n t h e c e n t r a l a r e a i n e a c h c a s e a n d a r e o u t l i n e d w i t h i n a b o x . a ' a n d a " a r e t h e s y m m e t r y l a b e l s f o r t h e s e o r b i t a l s . T h e c o r r e s p o n d i n g f r a g m e n t o r b i t a l e n e r g i e s o f [ M o 3 S e 1 3 ] 2 ‘ a n d S e z ‘ a r e d r a w n o n e i t h e r s i d e o f e a c h b o x . ' ' ” a 9 1 a a 3 7 2 2 1 1 1 ' a 9 1 ” ' a a 1 2 3 3 ’ a 9 1 ' . a 5 2 1 ? ” ; . 9 7 3 3 1 a 4 3 ‘ / 1 - 3 1 - - 2 1 3 1 3 3 3 0 4 1 1 ) ) 1 ( ' 2 e S ) a ( ’ z l g q s g o M [ ( e V ) - 1 1 - - 1 5 _ . ” N M I n M M M I N 3 1 a " 2 7 " _ _ ~ . I n 3 3 2 ' 3 4 a » 3 7 a ' 3 8 8 " ( C ) 1 5 3 1 1 1 1 F o 1 1 4 L 1 1 t ) o 0 1 I I I T Y I I n I e i c fi f e o c 1 1 1 1 0 N 4 1 1 1 1 1 1 1 1 1 F i g u r e 2 - 2 0 : C l ( i o M d s I I I I I I I I I I I T I I o ( r 3 b M 8 a ) O i a t " l s ( 3 d ( 1 = ' a F 4 M . 2 O ) o f 3 ) 2 . a " C A l a 7 O a l a r s ' . , o o n . t e ' f t t 3 h 4 t o e e a h f " t a t A f m h r o ( e g e = a l d F c m M 3 l n 8 u e . O r ) i n m o l o e c u r b i t 3 M a t n h d e n t r i b u t i z o n s ' 3 3 a e 4 1 A 3 ) l . c o e f fi c i o = t g 3 h S . e 1 5 4 o 0 " 9 N h l l o L . O 4 . 4 c . ) n o N ( A ) . h m 0 5 Q ' — o n A . 5 N 1 5 5 3 . 4 . S p e c t r o s c o p y V i b r a t i o n a l S p e c t r o s c o p y T h e I R s p e c t r u m o f ( I ) s h o w s c h a r a c t e r i s t i c p e a k s o f t e t r a m e t h y l a m m o n i u m i n t h e m i d - I R r e g i o n . I n t h e f a r - I R r e g i o n , p e a k s a t 4 5 1 , 3 7 0 , 3 3 3 , 3 0 8 , 2 7 9 a n d 1 6 5 c m - 1 w e r e o b s e r v e d f o r ( I ) a n d p e a k s a t 4 3 9 , 3 6 4 , 3 3 4 , 3 1 2 , 2 9 7 , 2 1 0 , 1 6 5 c m - 1 w e r e o b s e r v e d f o r ( I I ) . W e a s s i g n t h e p e a k a t 4 5 1 c m - 1 ( I ) a n d 4 3 9 c m ' 1 ( I I ) a s t h e v i b r a t i o n o f t h e ( M 0 3 - 1 1 3 - S e ) m o i e t y b y c o m p a r i n g t o t h e I R - s p e c t r u m o f ( N I - I 4 ) 2 M o 3 S 1 3 , i n w h i c h t h e ( M o 3 - u 3 - S ) v i b r a t i o n i s a s s i g n e d a t 4 5 9 c m - 1 . T h e p e a k a t 1 6 5 c m : 1 ( ( I ) a n d ( 1 1 ) ) c a n b e a s s i g n e d a s a M o — M o v i b r a t i o n . T h e p e a k s b e t w e e n 2 1 0 c m : 1 a n d 3 7 0 c m : 1 c a n b e a s s i g n e d a s M o - S e o r S e - S e v i b r a t i o n s . W e e x p e c t t h e I R s p e c t r u m o f ( I I I ) ~ ( V ) t o b e s i m i l a r t o t h o s e o f ( I ) a n d ( I I ) . T h e I R s p e c t r a o f ( I I I ) ~ ( V ) a n d t h e r e s t o f t h e M o / S e c o m p o u n d s d o n o t g i v e a n y p e a k s i n t h e F a r - I R r e g i o n , e v e n t h o u g h v e r y c o n c e n t r a t e d s a m p l e s w e r e u s e d . 7 7 S e N u c l e a r M a g n e t i c R e s o n a n c e S p e c t r o s c o p y 7 7 S e N M R s p e c t r a o f K 6 M 0 6 S e 2 7 - 6 H 2 0 a n d a - K g M o g S e 4 o - 4 H 2 0 w e r e r e c o r d e d i n s e v e r a l p o l a r s o l v e n t s . B a s e d o n t h e i r f o r m u l a , ( K 2 M o 3 S e 1 3 ) n ( K 2 S e ) - m H z O ( w h e r e n = 2 , 3 ; m = 6 , 4 ) , w e s i m p l y e x p e c t e d t h e m t o d i s s o c i a t e i n t o [ M 0 3 S e 1 3 ] 2 ' , S e 2 - , K + a n d H 2 0 i n s o l u t i o n . W e i n d e e d f o u n d t h a t K 6 M o 6 S e 2 7 - 6 H 2 0 a n d a - K 3 M 0 9 8 e 4 o - 4 H 2 0 h a v e i d e n t i c a l 7 7 S e N M R s p e c t r a . W i t h o u t c o u n t i n g S e 2 ; w e e x p e c t fi v e r e s o n a n c e p e a k s f r o m t h e [ M 0 3 S e 1 3 ] 2 - . H o w e v e r , w e f o u n d t h a t t h e [ M 0 3 S e 1 3 ] 2 - f r a g m e n t 1 5 6 d o e s n o t r e m a i n i n t a c t i n s o l v e n t s l i k e D M F , D M S O a n d D 2 0 . T h e 7 7 S e N M R i n D 2 0 a t r o o m t e m p e r a t u r e g a v e f o u r p e a k s a t 1 4 9 p p m , 1 4 3 p p m , - 2 7 p p m a n d - 1 4 4 p p m . I n D M S O a t r o o m t e m p e r a t u r e , f r e s h s o l u t i o n s a l s o g a v e f o u r p e a k s b u t a t c o m p l e t e l y d i f f e r e n t p o s i t i o n s , 2 1 7 p p m , 1 2 3 p p m , 1 2 p p m a n d - 7 7 p p m . A p e a k a t - 1 1 3 p p m g r e w g r a d u a l l y a f t e r 2 w e e k s , w h i l e t h e r e l a t i v e i n t e n s i t i e s o f t h e i n i t i a l p e a k s d e c r e a s e d . T h e s p e c t r a i n D M F a t o r a b o v e r o o m t e m p e r a t u r e ( 1 8 ° C ) s h o w o n l y n o i s y p e a k s w h i c h c a n n o t b e p h a s e d p r o p e r l y . T h i s m a y b e d u e t o f a s t e q u i l i b r i a i n D M F . W e a t t e m p t e d t o s l o w d o w n t h e e q u i l i b r i u m b y c o o l i n g t h e s o l u t i o n . A s s h o w n i n F i g u r e 2 - 2 1 , a t 1 0 0 C , j u s t 8 d e g r e e s b e l o w r o o m t e m p e r a t u r e , w e s t a r t e d t o s e e f o u r d i s t i n c t p e a k s a t 2 2 7 p p m , 1 1 9 p p m , 1 1 p p m a n d - 1 0 0 p p m p r o b a b l y r e l a t e d t o t h o s e o b s e r v e d i n t h e s p e c t r u m i n D M S O . T h e s p e c t r u m a t - 1 0 0 C a n d - 1 5 ° C a r e p r a c t i c a l l y s i m i l a r t o t h a t a t 1 0 0 C . U p o n f u r t h e r c o o l i n g b e l o w « 3 0 ° C , t h r e e e x t r a p e a k s s t a r t e d t o g r o w a t 1 3 3 p p m , - 1 0 5 p p m a n d - 1 2 4 p p m , a n d t h e i r r e l a t i v e i n t e n s i t i e s i n c r e a s e d a t - 5 0 ° C . T h e f o u r i n i t i a l p e a k s o b s e r v e d a t 1 0 a n d - 1 5 0 C s h o w e d s l i g h t d o w n fi e l d o r u p fi e l d s h i f t s a s t h e t e m p e r a t u r e w a s c o o l i n g d o w n . I t i s p o s s i b l e t h a t t h e t e r m i n a l l i g a n d s a r e e q u i v a l e n t o r t h e e q u i l i b r i u m e x i s t s , s h o w n b e l o w : [ M o 3 S e * ( S e z ) 6 ] 2 ' + S e z ' ; _ — : [ M o 3 8 e ( 8 e , ) 6 ] 2 ‘ + s e * 2 ‘ B a s e d o n t h e s y n t h e t i c r e s u l t s r e p o r t e d h e r e w e b e l i e v e t h a t a t l e a s t t h e [ M o 3 S e 7 ] 4 + c o r e e x i s t s i n s o l u t i o n , e i t h e r s o l v a t e d o r l i g a t e d b y S e x z ' . 1 5 7 I . l l a m a - 1 1 1 1 1 1 1 1 1 1 0 4 : W F i g u r e 2 2 1 : V a r i o u s t e m p e r a t u r e 7 7 $ e N M R s p e c t r a o f o r - K 8 M 0 9 $ e 4 o - 4 H z O i n D M F . 1 5 7 1 I I . “ E m u “ 1 W | 1 I 1 1 0 ° C W W W I W W J W l l l 1 5 0 » M : ~ 2 5 ; - 3 3 . : p p m F i g u r e 2 2 1 : V a r i o u s t e m p e r a t u r e 7 7 8 e N M R s p e c t r a o f o r - K 8 M 0 9 8 6 4 o - 4 H z O i n D M F . 1 5 8 E l e c t r o n i c S p e c t r o s c o p y T h e U V - V i s i b l e s p e c t r a o f K 6 M o 6 S e 2 7 - 6 H 2 0 w e r e t a k e n i n D M F a n d D M S O . B o t h s o l u t i o n s p r e p a r e d i n a N 2 g l o v e b o x g a v e r e d d i s h b r o w n c o l o r s a n d g a v e t w o b r o a d b a n d s a t a r o u n d 4 0 5 n m a n d 4 8 0 n m . S i n c e t h e 7 7 S e N M R d a t a i n d i c a t e t h e [ M o 3 S e 1 3 ] 7 - ' a n i o n d o e s n o t r e m a i n i n t a c t i n t h e D M F a n d D M S O s o l u t i o n s , w e a r e u n a b l e t o a s s i g n t h e b a n d s . T h e s o l i d s t a t e o p t i c a l s p e c t r u m o f ( M e 4 N ) 2 M o 3 S e 1 3 i s s h o w n i n F i g u r e 2 - 2 2 . T h e p e a k s b e t w e e n 0 . 5 0 e V a n d 0 . 5 6 e V a r e c h a r a c t e r i s t i c a b s o r p t i o n s o f M e 4 N + . ( M e 4 N ) 2 M o 3 S e 1 3 g i v e s a b s o r p t i o n b a n d s a b o v e 1 . 6 e V ( 7 7 5 n m ) a t 1 . 9 3 e V ( 6 4 2 n m ) , 2 . 3 1 e V ( 5 3 7 n m ) , 3 . 1 5 e V ( 3 9 4 n m ) , 3 . 5 4 e V ( 3 5 0 n m ) a n d 5 . 5 0 e V ( 2 2 5 n m ) . 1 5 9 3 . 5 1 L 1 1 1 L 1 1 1 1 1 1 1 1 1 1 . 1 2 ' 3 ' 3 . 1 5 ( M e 4 N ) 2 M o 3 S e 1 3 1 a 1 . 9 3 _ 2 . 6 — - 1 - a 1 — _ 1 1 . 7 1 — — a / S » a 1 . _ 0 . 8 — / , . . _ I I E 7 e l g - A o I } ; ' 5 t h 0 5 7 2 7 6 3 5 6 1 5 4 7 6 3 7 5 ' ' 6 ' 5 6 7 6 . 1 5 7 5 6 . 5 5 a ‘ 0 . l 1 1 1 r 1 1 1 1 1 l i n c I r g y t h Y 1 1 1 1 O 1 . 6 2 5 3 . 2 5 4 . 8 7 5 6 . 5 E n e r g y ( e V ) F i g u r e 2 2 2 : S o l i d s t a t e o p t i c a l s p e c t r u m o f ( M e 4 N ) 2 M 0 3 S e 1 3 . 1 6 0 3 . 5 . C o n c l u s i o n T h u s f a r , a l l M o / S e p h a s e s i s o l a t e d e x c e p t ( I X ) c o n t a i n r e c o g n i z a b l e [ M o 3 ( u 2 - S e 2 ) 3 S e ] 4 + c l u s t e r s c o n n e c t e d t o g e t h e r b y b r i d g i n g s e l e n i d e o r p o l y s e l e n i d e l i g a n d s . T h i s e x t r a o r d i n a r i l y s t a b l e [ M o 3 ( 1 . 1 2 - S e 2 ) 3 S e ] 4 + t r i n u c l e a r c o r e c o n t a i n s a t r i a n g u l a r c a v i t y c r e a t e d b y t h e s e l e n i u m a t o m s o f t h e 1 1 2 - S e 2 2 ' l i g a n d s w h i c h h a v e t h e h i t h e r t o u n r e c o g n i z e d p r o p e r t y o f a t t r a c t i n g n e g a t i v e l y c h a r g e d s p e c i e s s u c h a s S e z ' o r S e x z ‘ l i g a n d s . H y d r o t h e r m a l s y n t h e s i s w i t h p o l y c h a l c o g e n i d e l i g a n d s i s a f e a s i b l e a n d c o n v e n i e n t t e c h n i q u e t o n o v e l c l u s t e r o r p o l y m e r i c p h a s e s . O u r w o r k i n t h i s s y s t e m a l o n e p o i n t s t o a n e n o r m o u s w e a l t h o f n e w a n d d i f f e r e n t K / M o / S e p h a s e s t o b e d i s c o v e r e d . T h i s s y n t h e s i s i s a p p l i c a b l e t o a n y c a t i o n / m e t a l / c h a l c o g e n i d e s y s t e m a n d t h u s h a s a v e r y b r o a d s c o p e . W e b e l i e v e t h a t f u t u r e w o r k i n t h i s n e w a r e a o f c h a l c o g e n i d e s y n t h e s i s w i l l l e a d t o a n a b u n d a n c e o f n o v e l s t r u c t u r e t y p e s w h i c h m a y r i v a l , i n n u m b e r , t h o s e o f z e o l i t e s . 1 ) 2 ) 3 ) 1 6 1 L i s t o f R e f e r e n c e s ( a ) C h i a n e l l i , R . R . ; P e c o r a r o , T . A . ; H a l b e r , T . R . ; P a n , W . - H . ; S t i e f e l , E . I . J . C a t a l . 1 9 8 4 , 8 _ 6 , 2 2 6 - 2 3 0 . ( b ) P e c o r a r o , T . A . ; C h i a n e l l i , R . R . J . C a t a l . 1 9 8 1 , 6 1 , 4 3 0 - 4 4 5 . ( c ) H a r r i s , 8 . ; C h i a n e l l i , R . R . J . C a t a l . 1 9 8 4 , E , 4 0 0 4 1 2 . ( a ) B u r g e s s , B . K . , I n A d v a n c e s i n N i t r o g e n F i x a t i o n R e s e a r c h ; V e e g e r , C . ; N e w t o n , W . D . , E d s . ; N i j h o f f - J u n k - P u d o c : W a g e n i n g e n , T h e N e t h e r l a n d , 1 9 8 3 , a n d r e f e r e n c e s t h e r e i n . ( b ) D e n n a r d , A . E . ; W i l l i a m s , R . J . P . T r a n s i t i o n M e t . C h e m . 1 9 6 6 , 2 , 1 1 5 ( c ) B r a y , R . C . ; M e r i w e t h e r , L . S . N a t u r e , 1 9 6 6 , 2 1 _ 2 , 4 6 7 ( d ) H u g h e s , M . N . T h e I n o r g a n i c C h e m i s t r y o f B i o l o g i c a l P r o c e s s . W i l e y , N e w Y o r k , 1 9 7 4 . ( a ) C o u c o u v a n i s , D . ; H a d j i k y r i a c o u , A . 1 . ; D r a g a n j a c , M . ; K a n a t z i d i s , M . G . ; I l e p e r u m a , O . P o l y h e d r o n , 1 9 8 6 , 5 , 3 4 9 - 3 5 6 . ( b ) H e r b e r h o l d , M . ; J i n , G . - X . ; M l ' i l l e r , A . ; P e n k , M . Z N a t u t f o r s c h . 1 9 9 1 , £ 1 2 , 2 5 - 3 4 . ( c ) C o u c o u v a n i s , D . ; K o o , S . - M . I n o r g . C h e m . 1 9 8 9 , 2 8 , 2 - 5 . ( ( 1 ) C o u c o u v a n i s , D . , T o u p a d a k i s , A . ; K o o , S . - M . ; H a d j i k y r i a c o u , A . I . P o l y h e d r o n , 1 9 8 9 , _ 8 _ , 1 7 0 5 - 1 7 1 6 . ( e ) H a d j i k y r i a c o u , A . 1 . ; C o u c o u v a n i s , D . I n o r g . C h e m . 1 9 8 7 , 2 6 , 2 4 0 0 - 2 4 0 8 . ( 1 ) H a d j i k y r i a c o u , A . 1 . ; C o u c o u v a n i s , D . I n o r g . C h e m . 1 9 8 9 , _ 2 _ 8 , 2 1 6 9 - 2 1 7 7 . ( g ) D r a g a n j a c , M . ; S i m h o n , E . ; C h a n , L . T . ; K a n a t z i d i s , M . G . ; B a e n z i g e r , N . C . ; C o u c o u v a n i s , D . I n o r g . C h e m . 1 9 8 2 , _ 2 _ 1 , 3 3 2 1 - 3 3 3 2 . ( h ) C l e g g , W . ; M o h a n , N . ; M l ’ i l l e r , A . ; N e u m a n n , A . ; R i t t n e r , W . ; S h e l d r i c k , G . M . I n o r g . C h e m . 1 9 8 0 , 1 9 , 4 ) 5 ) 6 ) 1 6 2 2 0 6 6 - 2 0 6 9 . ( i ) M l ’ i l l e r , A . P o l y h e d r o n 1 9 8 6 , 5 , 3 2 3 - 3 4 0 . ( 1 ) M l ' i l l e r , A . ; N o l t e , W . - O . ; K r e b s , B . A n g e w . C h e m . I n t . E d . E n g l . 1 9 7 8 , u , 2 7 9 . ( k ) M l ' i l l e r , A . ; N o l t e , W . - O . ; K r e b s , B . I n o r g . C h e m . 1 9 8 0 , 1 2 , 2 8 3 5 - 2 8 3 6 . ( 1 ) X i n , X . Q . ; M o r r i s , N . L . ; J a m e s o n , G . B . P o p e , M . T . I n o r g . C h e m . 1 9 8 5 , 2 _ 4 , 3 4 8 2 - 3 4 8 5 . ( m ) M l ’ i l l e r , A . ; R t ' i m e r , M . ; R é m e r , C . ; R e i n s c h - V o g e l l , U . ; B é i g g e , H . ; S c h i m a n s k i , U . M o n a t s c h . C h e m . 1 9 8 5 , 1 1 6 , 7 1 1 — 7 1 7 . ( a ) M i i l l e r , A . D i e m a n n , E . ; J o s t e s , R . ; B 6 g g e , H . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 1 , 2 _ 0 , 9 3 4 . ( b ) M l ' i l l e r , A . P o l y h e d r o n 1 9 8 6 , 5 , 3 2 3 . ( c ) O ' N e a l , S . C . ; K o l i s , J . W . J . A m C h e m . S o c . 1 9 8 8 , 1 _ 1 _ Q , 1 9 7 1 - 1 9 7 3 . ( a ) B r o n s e m a , K . D . ; d e B o e r , J . L . ; J e l l i n e k , R ; Z A n o r g . A l l g . C h e m . 1 9 8 6 , 5 4 E , 1 5 - 1 7 . ( b ) T a r a s c o n , J . M . ; D i S a l v o , F . J . ; M u r p h y , D . W . ; H u l l , G . ; W a s z c z a k , J . V . P h y s . R e v . S e c . B : C o n d e n s e d M a t t e r 1 9 8 4 , _ 2 _ 9 _ , 1 7 2 - 1 8 0 . ( c ) B a r s , 0 . ; G u i l l e v i c , J . ; G r a n d j e a n , D . J . S o l i d S t a t e C h e m . 1 9 7 3 , 5 , 4 8 - 5 7 . ( ( 1 ) G o u g e o n , P . ; P o t e l , M . ; P a d i o u , J . ; S e r g e n t , M . ; B o u l a n g e r , C . ; L e c u i r e , J . M . J . S o l i d S t a t e C h e m . 1 9 8 7 , 1 1 , 5 4 3 - 5 5 1 . ( a ) P o t e l , M . ; G o u g e o n , P . ; C h e v r e l , R . ; S e r g e n t , M . R e v . C h i m . M i n e r . 1 9 8 4 , 2 _ 1 _ , 5 0 9 - 5 3 6 ( b ) C h e v r e l , R . ; S e r g e n t , M . T o p i c s i n C u r r e n t P h y s i c s . S u p e r c o n d u c t i v i t y i n T e r n a r y C o m p o u n d s . F i s h e r , 0 . ; M a p l e , M . P . ( e d s ) B e r l i n , S p r i n g e r - V e r l a g , 1 9 8 2 ( c ) G o u g e o n , P . ; P o t e l , M . ; S e r g e n t , M . A c t a C r y s t . 1 9 8 9 , C 4 5 , 1 8 2 - 1 8 5 7 ) 9 ) 1 0 ) 1 1 ) 1 2 ) 1 6 3 ( a ) S h e l d r i c k . W . S . Z . A n o r g . A l l g . C h e m . 1 9 8 8 , 5 6 _ 2 , 2 3 - 3 0 ( b ) S h e l d r i c k , W . S . ; H a u s e r , H . - J . Z A n o r g . A l l g . C h e m . 1 9 8 8 , m , 9 8 - 1 0 4 ( 0 ) S h e l d r i c k , W . S . ; H a u s e r , H . - J . Z A n o r g . A l l g . C h e m . 1 9 8 8 , 5 5 7 , 1 0 5 - 1 1 1 . ( ( 1 ) S h e l d r i c k , W . 8 . ; K a u b , J . Z A n o r g . A l l g . C h e m . 1 9 8 6 , 5 g , 1 7 9 - 1 8 5 . ( e ) S h e l d r i c k , W . S . ; B r a u n b e c k , H . G . Z N a t u r f o r s c h 1 9 8 9 , 5 4 1 5 , 8 5 1 - 8 5 2 . ( f ) S h e l d r i c h , W . S . Z . N a t u r f o r s c h 1 9 8 8 , £ 1 5 , 2 4 9 - 2 5 2 . B e d a r d , R . L . ; W i l s o n , S . T . ; V a i l , L . D . ; B e n n e t t , E . M . ; F l a n i g e n , E . M . Z e o l i t e s ; F a c t s , F i g u r e s , F u t u r e ( J a c o b s , P . A . ; v a n S a n t e n , R . A . e d . ) 1 9 8 9 , 3 7 5 — 3 8 7 . L i a o , J . - H . ; K a n a t z i d i s , M . G . m a n u s c r i p t i n p r e p a r a t i o n . L i a o , J . - H . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 2 , 5 1 , 4 3 1 - 4 3 9 . L i a o , J . - H . ; K a n a t z i d i s , M . G . J . A m . C h e m . S o c . 1 9 9 0 , 1 _ 1 2 , 7 4 0 0 - 7 4 0 2 . ( a ) K u b e l k a , P . ; M u n k , F . Z T e c h . P h y s . 1 9 3 1 , g , 5 3 9 . ( b ) K u b e l k a , P . J . O p t . S o c . A m . 1 9 4 8 , E , 4 4 8 . ( c ) W e n d l a n d t , W . W . ; H e c h t , H . G . " R e fl e c t a n c e S p e c t r o s c o p y " , I n t e r s c i e n c e P u b l i s h e r s , 1 9 6 6 . ( d ) K o t l ' i m , G . " R e fl e c t a n c e S p e c t r o s c o p y " , S p r i n g e r V e r l a g , N e w Y o r k , 1 9 6 9 . ( e ) T a n d o n , S . P . ; G u p t a , J . P . P h y s . S t a t . S o l i d i 1 9 7 0 , 3 _ 8 _ , 3 6 3 - 3 6 7 . 1 3 ) 1 4 ) 1 5 ) 1 6 ) 1 7 ) 1 8 ) 1 9 ) 1 6 4 K l e m m , W . ; S o d o m a n n , H . ; L a n g m e s s e r , P . Z . A n o r g . A l l g . C h e m i e , 1 9 3 9 , 2 ; ] , 2 8 1 - 3 0 4 . S m i t h , D . K . ; N i c h o l s , M . C . ; Z o l e n s k y , M . E . " P O W D 1 0 : A F O R T R A N P r o g r a m f o r C a l c u l a t i n g X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s " V e r s i o n 1 0 . P e n n s y l v a n i a S t a t e U n i v e r s i t y , 1 9 8 3 . D I F A B S : W a l k e r , N . ; S t u a r t , D . D I F A B S : A n E m p i r i c a l M e t h o d f o r C o r r e c t i n g D i f f r a c t i o n D a t a f o r A b s o r p t i o n E f f e c t s . A c t a . C r y s t a l l o g r . 1 9 8 3 , A _ 3 2 , 1 5 8 - 1 6 6 . B . A . F e n z T h e E n r a f - N o n i u s C A D 4 S D P S y s t e m . I n C o m p u t i n g i n C r y s t a l l o g r a p h y ; D e l f t U n i v e r s i t y P r e s s : D e l f t H o l l a n d , 1 9 7 8 ; p p 6 4 - 7 1 . S h e l d r i c k , G . M . I n C r y s t a l l o g r a p h i c C o m p u t i n g 3 ; S h e l d r i c k , G . M . K r u g e r , C . ; G o d d a r d , R . , E d s . ; O x f o r d U n i v e r s i t y P r e s s : O x f o r d , U . K . , 1 9 8 5 ; p p 1 7 5 - 1 8 9 . T E X S A N - T E X R A Y S t r u c t u r e A n a l y s i s P a c k a g e , M o l e c u l a r S t r u c t u r e C o r p o r a t i o n ( 1 9 8 5 ) . ( a ) F e d i n , V . P . ; G u b i n , S . P . ; M i s h c h e n k o , A . V . ; F e d o r o v , V . Y e . K o o r d . K h i m . 1 9 8 4 , 1 _ Q , 9 0 1 - 9 0 6 . ( b ) F e d o r o v , V . Y e . ; M i r o n o v , A . V . ; K u z ' m i n a , O . A . ; F e d i n , V . P . R u s s . J . I n o r g . C h e m . 1 9 8 6 , 1 _ Q , 1 4 2 9 - 1 4 3 1 . 2 0 ) 2 1 ) 2 2 ) 2 3 ) 2 4 ) 1 6 5 F e d i n , V . P . ; S o k o l o v , M . N . ; G e r a s ' k o , O . A . ; V i r o v e t s , A . V . ; P o d b e r e z s k a y a , N . V . ; F e d o r o v , V . Y e . I n o r g . C h i m . A c t a . 1 9 9 1 , 1 _ 8 _ 7 , 8 1 - 9 0 . ( a ) M fi l l e r , A . ; W i t t n e b e n , V . ; K r i c k e n m e y e r , E . ; B é g g e , H . ; L e m k e , M . Z A n o r g . A l l g . C h e m . 1 9 9 1 , Q 5 , 1 7 5 - 1 8 8 . ( b ) F e d i n , V . P . ; K o l e s o v , B . A . ; M i r o n o v , Y u . V . ; F e d o r o v , V . Y e . P o l y h e d r o n , 1 9 8 9 , 5 , 2 4 1 9 - 2 4 2 3 . ( c ) M i i l l e r , A . ; J o s t e s , R . ; J a e g e r m a n n , W . ; B h a t t a c h a r y y a , R . G . I n o r g . C h i m . A c t a . 1 9 8 0 , 4 _ l _ , 2 5 9 - 2 6 3 . ( ( 1 ) M l ’ i l l e r , A . ; B h a t t a c h a r y y a , R . G . ; P f e f f e r k o m , B . C h e m . B e r . 1 9 7 9 , 1 _ 1 2 , 7 7 8 - 7 8 0 . ( e ) M i i l l e r , A . ; D a r t m a n n , M . ; C o h e n , J . P . ; B e n n e t t , J . M . ; K i r c h n e r , R . M . Z N a t u r f o r s c h . 1 9 7 9 , 3 _ 4 b _ , 4 3 4 - 4 3 6 . ( f ) M l ' i l l e r , A . ; S a r k a r , S . ; B h a t t a c h a r y y a , R . G . ; P o h l , S . ; D a r t m a n n , M . A n g e w . C h e m . I n t . E d . E n g l . 1 9 7 8 , _ l _ 7 _ , 5 3 5 . ( g ) F e d i n , V . P . ; K o l e s o v , B . A . ; M i r o n o v , Y u . V . ; F e d o r o v , V . Y e . P o l y h e d r o n , 1 9 8 9 , 5 , 2 4 1 9 - 2 4 2 3 . F e d i n , V . P . ; S o k o l o v , M . N . ; G e r a s ' k o , O . A . ; V i r o v e t s , A . V . ; P o d b e r e z s k a y a , N . V . ; F e d o r o v , V . Y e . I n o r g . C h i m . A c t a . 1 9 9 1 , 1 _ 8 _ 7 _ , 8 1 - 9 0 . W e l l s , A . F . S t r u c t u r a l I n o r g a n i c C h e m i s t r y . O x f o r d U n i v e r s i t y P r e s s , O x f o r d , 1 9 8 6 . K a n a t z i d i s , M . G . C o m m e n t s I n o r g . C h e m . 1 9 9 0 , 1 Q , 1 6 1 - 1 9 5 2 5 ) 2 6 ) 2 7 ) 1 6 6 ( a ) A n s a r i , M . A . ; I b e r s , J . A . C o o r d . C h e m . R e v . 1 9 9 0 , 1 _ 0 0 , 2 2 3 - 2 6 6 ( b ) K o l i s , J . W . C o o r d . C h e m . R e v . 1 9 9 0 , 1 _ 0 5 , 1 9 5 - 2 1 9 ( c ) D r a g a n j a c , M . ; R a u c h f u s s , T . B . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 5 , _ 2 _ 4 , 7 4 2 - 7 5 7 ( ( 1 ) M i i l l e r , A . P o l y h e d r o n 1 9 8 6 , 5 , 3 2 3 - 3 4 0 ( e ) F l o m e r , W . A . ; O ' N e a l , S . C . , C o r d e s , A . W . ; J e t t e r , D . ; K o l i s , J . W . I n o r g . C h e m . 1 9 8 8 , 2 1 , 9 6 9 - 9 7 1 ( 1 ) W a r d l e , R . W . M . ; M a h l e r , C . H . ; C h a u , C . - N . ; I b e r s , J . A . I n o r g . C h e m . 1 9 8 8 , 2 1 , 2 7 9 0 - 2 7 9 5 ( g ) A d e l , J . ; W e l l e r , F . ; D e h n i c k e , K . Z N a t u r f o r s c h 1 9 8 8 , 4 5 1 5 , 1 0 9 4 - 1 1 0 0 , ( h ) E i c h h o r n , B . W . ; H a u s h a l t e r , R . C . ; C o t t o n , F . A . ; W i l s o n , B . I n o r g . C h e m . 1 9 8 8 , 2 _ 7 , 4 0 8 5 — 4 0 9 5 ( i ) S t r a s d e i t , H . ; K r e b s , B . ; H e n k e l , G . I n o r g . C h i m . A c t a . 1 9 8 4 , Q , L 1 1 - L l 3 . ( a ) H o f f m a n n , R . J . C h e m . P h y s . 1 9 6 3 , Q , 1 3 9 7 . ( b ) H o f f m a n n , R . ; L i p s c o m b , W . N . i b i d 1 9 6 2 , _ 3 _ 6 , 2 1 7 9 , 3 4 8 9 ; 1 9 6 2 , 3 _ 7 _ , 2 8 7 2 . ( c ) A m m e t e r , J . H . ; B u r g i , H . - B . T h i b e a u l t , J . C . ; H o f f m a n n , R . J . A m . C h e m . S o c . 1 9 7 8 , 1 0 0 , 3 6 8 6 . T h e a t o m i c p a r a m e t e r s f o r t h e M o a n d S e a t o m s a r e t a k e n f r o m R e f e r e n c e 3 3 a n d 3 4 . T h e H i i ' s ( e V ) a r e - 9 . 6 6 ( 5 8 ) , - 6 . 3 6 ( 5 p ) , - 1 2 . 3 0 ( 4 d ) f o r M o , a n d a r e - 2 0 . 5 0 ( 4 s ) , - 1 4 . 4 ( 4 p ) f o r S e . T h e e x p o n e n t s a n d c o e f fi c i e n t s f o r d o u b l e - z e t a f u n c t i o n s a r e 1 9 6 ( 5 8 ) , 1 9 0 ( 5 p ) , 4 . 5 4 , 0 . 5 8 9 9 ( 4 d ) , 1 . 9 0 , 0 . 5 8 9 9 ( 4 d ) f o r M o , a n d a r e 2 . 4 4 ( 4 s ) , 2 . 0 7 ( 4 p ) f o r S e . T h e [ M 0 3 S e 1 3 ] 2 ' i s o r i e n t e d i n s u c h a w a y t h a t i t s M 0 3 p l a n e c o i n c i d e s w i t h t h e x y p l a n e o f t h e c a r t e s i a n c o o r d i n a t e s y s t e m , a n d i t s t h r e e - f o l d r o t a t i o n a x i s i s p a r a l l e l t o t h e z - a x i s . T h e S e 2 : i s p l a c e d a t a p e r p e n d i c u l a r d i s t a n c e , d , f r o m t h e M 0 3 2 8 ) 2 9 ) 3 0 ) 3 1 ) 3 2 ) 3 3 ) 3 4 ) 1 6 7 p l a n e . C a l c u l a t i o n s o n t h e m o d e l s y s t e m [ M 0 3 S e 1 4 ] 4 ' h a v e b e e n c a r r i e d o u t a t d = 3 . 4 , 3 . 6 , 3 . 8 , 4 . 0 , 4 . 2 a n d 4 . 4 A , w h i c h c o r r e s p o n d t o a n S e ( 8 ) - S e ( 1 7 ) i n t e r a t o m i c d i s t a n c e o f 2 . 4 6 6 , 2 . 5 9 8 , 2 . 7 3 8 , 2 . 8 8 5 , 3 . 0 3 8 , 3 . 1 9 7 A a n d a n S e ( 9 ) - S e ( 1 7 ) d i s t a n c e s o f 2 . 6 9 0 , 2 . 8 1 1 , 2 . 9 4 1 , 3 . 2 2 3 , 3 3 7 2 A r e s p e c t i v e l y . M i i l l e r , A . ; J o s t e s , R . ; C o t t o n , F . A . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 0 , 1 _ 9 _ , 8 7 5 . M i i l l e r , A . ; J o s t e s , R . ; J a e g e r m a n n , W . ; B h a t t a c h a r y y a , R . G . I n o r g . C h i m . A c t a 1 9 8 0 , fl , 2 5 9 . M i i l l e r , A . ; W i t t n e b e n , V . ; K r i c k e m e y e r , E . ; B é g g e , H . ; L e m k e , M . Z A n o r g . A l l g . C h e m . 1 9 9 1 , 5 0 5 , 1 7 5 . T h e g e o m e t r y o f [ M 0 3 S e 1 3 ] 2 ' i s t a k e n f r o m t h e a t o m i c c o o r d i n a t e s o f ( M e 4 N ) 2 M 0 3 S e 1 3 d e t e r m i n e d b y X - r a y d i f f r a c t i o n . S e e S e c t i o n 3 . 2 . M u l l i k e n , R . S . J . C h e m . P h y s . 1 9 5 5 , 2 _ 3 , 1 8 3 3 , 1 8 4 1 , 2 3 3 8 , 2 3 4 3 . S u m m e r v i l l e , R . H . ; H o f f m a n n , R . J . A m . C h e m . S o c . 1 9 7 9 , 1 _ _ 1 _ , 3 8 2 1 . H o f f m a n n , R . ; S h a i k , S . ; S c o t t , J . C . ; W h a n g b o , M . - H . ; F o s h e e , M . J . J . S o l i d S t a t e C h e m . 1 9 8 0 , 5 4 , 2 6 3 . C H A P T E R 3 H y d r o t h e r m a l S y n t h e s i s a n d C h a r a c t e r i z a t i o n o f ( M e 4 N ) 4 S n 4 S e 1 0 a n d ( M e 4 N ) 2 S n 3 S e 7 ~ 2 H 2 0 1 . I n t r o d u c t i o n S c h e l d r i c k e t a l . h a v e s u c c e s s f u l l y a p p l i e d t h e h y d r o t h e r m a l ( o r s o l v o t h e r m a l ) t e c h n i q u e t o p r e p a r e a n u m b e r o f a l k a l i m e t a l m a i n g r o u p c h a l c o g e n i d e s , u s i n g a l k a l i m e t a l c a r b o n a t e s a s m i n e r a l i z e r s . 1 I n C h a p t e r 2 , w e h a v e s h o w n t h a t u s i n g p o l y s e l e n i d e s a s m i n e r a l i z e r s u n d e r h y d r o t h e r m a l c o n d i t i o n s , a s e r i e s o f M o / S e c o m p o u n d s c o u l d b e s y n t h e s i z e d . 2 O u r i n v e s t i g a t i o n s o n ( p o l y ) c h a l c o g e n i d e s t o d a t e c o n c l u d e t h a t t h e s t r u c t u r e o f t h e a n i o n i c c o m p l e x d e p e n d s g r e a t l y o n t h e c o u n t e r i o n s u s e d . 3 I t i s a l s o w e l l k n o w n t h a t o r g a n i c t e m p l a t e s l e a d s t h e f o r m a t i o n o f m i c r o p o r o u s m e t a l o x i d e s . 4 T h e r e f o r e , u s i n g t h e h y d r o t h e r m a l t e c h n i q u e w e a t t e m p t e d t o s y n t h e s i z e c h a l c o g e n - b a s e d m i c r o p o r o u s s o l i d s t a t e c o m p o u n d s b y i n t r o d u c t i o n o f o r g a n i c c o u n t e r i o n s . I n t h i s C h a p t e r , w e s h a l l d e s c r i b e t h e a p p l i c a t i o n o f h y d r o t h e r m a l s y n t h e s i s o n t h e S n / S e s y s t e m w i t h p o l y s e l e n i d e s a s m i n e r a l i z e r s a n d w i t h o r g a n i c c a t i o n s . T h i s s y n t h e t i c a p p r o a c h r e s u l t e d i n ( M e 4 N ) 4 S n 4 S e 1 0 , a c l u s t e r c o m p o u n d , a n d i n ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 , a l a y e r e d s o l i d s t a t e c o m p o u n d . 1 6 8 1 6 9 T h e a l k a l i m e t a l s a l t s o f t h e f o r m e r a n d t h e C s + s a l t o f t h e l a t t e r h a v e b e e n m a d e b y P o h l 5 a n d S h e l d r i c k 6 e t a l . 2 . E x p e r i m e n t a l 2 . 1 . R e a g e n t s C h e m i c a l s w e r e u s e d a s o b t a i n e d . S n m e t a l w a s p u r c h a s e d f r o m C E R A C I n c . ~ 3 2 5 m e s h , 9 9 . 8 % . S e l e n i u m p o w d e r , - 1 0 0 m e s h , 9 9 . 5 + % ; T e t r a m e t h y l a m m o n i a c h l o r i d e ( M e 4 N C l ) , 9 7 % , A l d r i c h C h e m i c a l C o . , I n c . , M i l w a u k e e , W I . P o t a s s i u m m e t a l , B a k e r a n a l y z e d , J . T . B a k e r , I n c . , P h i l l i p s b u r g , N J 0 8 8 6 5 . K 2 S e 2 w a s s y n t h e s i z e d b y r e a c t i n g s t o i c h i o m e t r i c a m o u n t o f p o t a s s i u m a n d s e l e n i u m i n l i q u i d a m m o n i a . 2 . 2 . P h y s i c a l M e a s u r e m e n t s T h e i n s t r u m e n t s a n d e x p e r i m e n t a l s e t u p s f o r I n f r a r e d m e a s u r e m e n t a n d q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s o n S E M / E D S a r e t h e s a m e a s t h o s e i n S e c t i o n 2 . 2 i n C h a p t e r 2 . O p t i c a l d i f f u s e r e fl e c t a n c e s p e c t r a w e r e m e a s u r e d a t r o o m t e m p e r a t u r e w i t h a S h i m a d z u U V - 3 1 0 1 P C d o u b l e b e a m , d o u b l e m o n o c h r o m a t e d s p e c t r o p h o t o m e t e r . T h e s a m p l e w a s g r o u n d i n t o p o w d e r a n d p r e s s e d i n t o a t h i n l a y e r o v e r B a S O 4 o n a s a m p l e h o l d e r . B a S O 4 p o w d e r w a s u s e d a s r e f e r e n c e . T h e a b s o r p t i o n s p e c t r u m w a s c a l c u l a t e d f r o m t h e r e fl e c t a n c e d a t a b y u s i n g t h e K u b e l k a - M u n k f u n c t i o n 7 : a / S = ( 1 - R ) 2 / 2 R . R i s t h e r e fl e c t a n c e , o r i s t h e a b s o r p t i o n c o e f fi c i e n t a n d S i s t h e 1 7 0 s c a t t e r i n g c o e f fi c i e n t w h i c h i s p r a c t i c a l l y w a v e l e n g t h i n d e p e n d e n t w h e n t h e p a r t i c l e s i z e i s l a r g e r t h a n 5 1 1 m . T h e r m o g r a v i m e t r i c A n a l y s i s ( T G A ) w a s p e r f o r m e d o n S h i m a d z u T G A - S O . 8 . 2 5 9 m g o f ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 w a s l o a d e d i n a q u a r t z c r u c i b l e a n d h e a t e d f r o m r o o m t e m p e r a t u r e t o 5 0 0 ° C a t a h e a t i n g r a t e o f S O C / m i n u n d e r t h e fl o w o f n i t r o g e n . 2 . 3 . S y n t h e s i s S n S e 2 : A m i x t u r e o f t i n p o w d e r ( 0 . 5 9 4 g , 5 . 0 m m o l ) , s e l e n i u m p o w d e r ( 0 . 7 9 0 g , 1 0 . 0 m m o l ) a n d N H 4 C 1 ( 1 . 0 7 0 g , 2 0 . 0 m m o l ) w a s l o a d i n a h e a v y w a l l P y r e x t u b e . ( N o t e : N H 4 C 1 w a s u s e d a s c a t a l y s t i n t h i s r e a c t i o n . I n t h e a b s e n c e o f N H 4 C 1 , S n S e i n s t e a d o f S n S e 2 w i l l b e o b t a i n e d . ) T h e t u b e w a s e v a c u a t e d a n d fl a m e s e a l e d a t a p r e s s u r e o f ~ 1 0 ‘ 3 t o r r . A f t e r h e a t i n g a t 4 0 0 0 C f o r 2 d a y s , q u a n t i t a t i v e a m o u n t o f s m a l l b l a c k t h i n p l a t e - l i k e c r y s t a l s w a s o b t a i n e d . T h e p r o d u c t w a s w a s h e d w i t h w a t e r t o r e m o v e r e m a i n i n g N H 4 C 1 a n d d r i e d w i t h r i n s e s o f a c e t o n e a n d d i e t h y l e t h e r . T h e X - r a y d i f f r a c t i o n p o w d e r p a t t e r n w a s i d e n t i c a l t o t h a t o f S n S e 2 r e p o r t e d i n t h e l i t e r a t u r e . 8 S E M / E D S s e m i q u a n t i t a t i v e a n a l y s i s a l s o c o n fi r m e d t h e s t o i c h i o m e t r y o f t h e p r o d u c t t o b e S n S e 2 , 0 3 . ( M e 4 N ) 4 S n 4 S e 1 0 ( I ) A m i x t u r e o f S n S e 2 p o w d e r ( 0 . 1 3 8 g , 0 . 5 m m o l ) , K 2 8 e 2 p o w d e r ( 0 . 2 3 6 g , 1 . 0 m m o l ) a n d M e 4 N C l ( 0 . 2 1 9 g , 2 . 0 m m o l ) w a s l o a d e d i n a h e a v y w a l l P y r e x t u b e ( ~ 5 m l ) i n w h i c h 3 - m l d e g a s s e d w a t e r w a s a d d e d . T h e t u b e w a s f r o z e n i n l i q u i d N 2 a n d t h e n fl a m e s e a l e d u n d e r a p r e s s u r e o f ~ 1 0 ‘ 3 t o r r . A f t e r t h e t u b e w a s h e a t e d i n a n o v e n a t 1 3 5 0 C f o r 1 d a y , o r a n g e c r y s t a l s o f ( M e 4 N ) 4 S n 4 S e 1 0 w e r e f o u n d 1 7 1 d e p o s i t e d o n t h e w a l l s o f t h e t u b e . T h e i s o l a t i o n w a s p e r f o r m e d i n a g l o v e b o x u n d e r a n i n e r t n i t r o g e n a t m o s p h e r e . T h e p r o d u c t w a s w a s h e d w i t h H 2 0 t o r e m o v e e x c e s s M e 4 N C l a n d K C l a n d w a s h e d w i t h m e t h a n o l a n d d i e t h y l e t h e r . Y i e l d : 0 . 0 2 3 g , 1 2 % ( b a s e d o n S n ) . T h e o r a n g e c r y s t a l s a r e i n s o l u b l e i n w a t e r a n d D M F b u t d e g r a d e s l o w l y i n a i r . S E M / E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d S n 1 , 0 S e 3 , 0 . T h e m i d - I R s p e c t r u m i n d i c a t e d t h e p r e s e n c e o f t e t r a m e t h y l a m m o n i u m c a t i o n s . ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 ( I I ) T h e p r o c e d u r e f o r p r e p a r a t i o n a n d i s o l a t i o n o f ( I I ) i s t h e s a m e a s t h a t g i v e n a b o v e e x c e p t t h a t t h e t u b e w a s h e a t e d a t 1 3 5 ° C f o r a l o n g e r p e r i o d o f t i m e . R e d c r y s t a l s o f ( M e 4 N ) 2 S n 3 S e 7 ' 2 H z O f o r m e d a f t e r ~ 3 d a y s a n d n o n e w p h a s e w a s o b s e r v e d a f t e r c o n t i n u e d h e a t i n g . Y i e l d : 0 . 0 6 9 g , 3 8 % ( b a s e d o n S n ) . T h e r e d c r y s t a l s a r e i n s o l u b l e i n w a t e r a n d D M F b u t d e g r a d e s l o w l y i n a i r . S E M / E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d S n 1 , 0 S e 2 , 4 . T h e m i d - I R s p e c t r u m a l s o i n d i c a t e d t h e p r e s e n c e o f t e t r a m e t h y l a m m o n i u m c a t i o n s . I o n E x c h a n g e o f ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 ( I I ) A n a m o u n t o f 0 . 1 1 8 g o f ( I I ) w a s g r o u n d i n t o p o w d e r ( < 0 5 m m ) w h i c h w a s m i x e d w i t h 5 . 9 2 3 g o f C s ( C H 3 C O z ) a n d 2 5 m l o f M e O H i n a fl a s k u n d e r i n e r t n i t r o g e n a t m o s p h e r e . T h e C s ( C H 3 C 0 2 ) / M e O H s o l u t i o n w a s d e c a n t e d e v e r y t w o d a y s a n d r e p l a c e d w i t h t h e s a m e a m o u n t o f f r e s h s o l u t i o n . T h e s a m e p r o c e d u r e w a s r e p e a t e d f o r t w o w e e k s . T h e fi n a l p r o d u c t w a s w a s h e d w i t h w a t e r q u i c k l y t o r e m o v e t h e e x c e s s C s ( C H 3 C O z ) a n d t h e n w a s h e d w i t h M e O H a n d d i e t h y l e t h e r a n d d r i e d . A n a m o u n t o f 0 . 0 8 6 g o f o r a n g e c r y s t a l l i n e m a t e r i a l w a s o b t a i n e d . T h e w e i g h t l o s s w a s d u e t o t h e p r o c e s s o f d e c a n t i n g . 1 7 2 2 . 4 . X - R a y C r y s t a l l o g r a p h y X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e u s e d f o r t h e p u r p o s e o f p h a s e c h a r a c t e r i z a t i o n a n d i d e n t i fi c a t i o n . T h e X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e r e c o r d e d w i t h a P h i l l i p s X R D - 3 0 0 0 c o n t r o l l e d b y P D P 1 1 c o m p u t e r a n d o p e r a t i n g a t 4 0 k V / 3 5 m A . G r a p h i t e m o n o c h r o m a t e d C u r a d i a t i o n w a s u s e d . I n o r d e r t o e n s u r e h o m o g e n e i t y , d - s p a c i n g s o b t a i n e d f r o m X - r a y p o w d e r d i f f r a c t i o n ( X R D ) m e a s u r e m e n t s o f t h e p r o d u c t s w e r e c o m p a r e d w i t h , a n d f o u n d t o b e i d e n t i c a l , w i t h t h o s e c a l c u l a t e d f r o m u s i n g t h e a t o m c o o r d i n a t e s d e t e r m i n e d f r o m t h e s i n g l e c r y s t a l d a t a . T h e c a l c u l a t i o n o f d - s p a c i n g s w a s p e r f o r m e d b y u s i n g t h e P O W D 1 0 9 p r o g r a m . T h e c o m p a r i s o n t a b l e s b e t w e e n t h e c a l c u l a t e d a n d o b s e r v e d d - s p a c i n g s f o r t h e s e c o m p o u n d s a r e s h o w n i n T a b l e s 3 - 1 a n d 3 — 2 . T h e s i n g l e c r y s t a l X - r a y d i f f r a c t i o n d a t a f o r ( I ) w e r e c o l l e c t e d o n P 3 N i c o l e t ( S i e m e n s ) f o u r c i r c l e d i f f r a c t o m e t e r w i t h 0 / 2 0 s c a n m o d e a t - 7 5 0 C . T h e d a t a f o r ( I I ) w e r e c o l l e c t e d o n a R i g a k u A F C 6 S f o u r - c i r c l e d i f f r a c t o m e t e r w i t h 0 3 - 2 0 s c a n m o d e a t - 8 0 0 C . G r a p h i t e m o n o c h r o m a t e d M o K 0 1 r a d i a t i o n w a s u s e d . T h e c r y s t a l s w e r e m o u n t e d a t t h e e n d o f g l a s s fi b e r s . T h e s t a b i l i t y o f t h e e x p e r i m e n t a l s e t u p a n d c r y s t a l i n t e n s i t y w e r e m o n i t o r e d b y m e a s u r i n g t h r e e s t a n d a r d r e fl e c t i o n s p e r i o d i c a l l y f o r e v e r y 1 5 0 r e fl e c t i o n s . N o s i g n i f i c a n t d e c a y w a s o b s e r v e d d u r i n g t h e d a t a c o l l e c t i o n s . T h e s t r u c t u r e s w e r e s o l v e d w i t h t h e P a t t e r s o n m e t h o d a n d w e r e r e fi n e d b y f u l l - m a t r i x l e a s t - s q u a r e m e t h o d s . T h e s t r u c t u r e r e fi n e m e n t w a s p e r f o r m e d w i t h t h e T E X S A N 1 0 p a c k a g e o f c r y s t a l l o g r a p h i c p r o g r a m s r u n n i n g o n a V A X s t a t i o n 3 1 0 0 / 7 6 c o m p u t e r . A n e m p i r i c a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d t o a l l t h e d a t a ( b a s e d o n 1 1 ) s c a n s ) , a n d e q u i v a l e n t 1 7 3 T a b l e 3 - 1 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r ( M e 4 N ) 4 S n 4 S e 1 0 [ — 1 1 . 8 7 3 9 h k 1 d c a l c . ( A ) d o b s . ( A ) s M o b s . 2 0 0 1 0 . 2 6 4 0 1 0 . 4 4 6 4 2 4 . 1 2 2 l 0 9 . 1 8 0 4 9 . 3 2 4 3 8 4 . 1 2 2 l 1 8 . 3 8 0 5 8 . 5 0 3 2 6 1 . 9 3 2 2 2 5 . 9 2 5 9 5 . 9 9 5 9 5 6 . 4 7 3 2 0 5 . 6 9 3 4 5 . 7 6 0 3 2 6 . 5 0 4 0 0 5 . 1 3 2 0 5 . 1 8 4 2 4 0 . 8 4 4 2 1 4 . 4 7 9 6 4 . 5 2 3 3 1 6 . 1 9 3 3 2 4 . 3 7 6 6 4 . 4 2 0 1 3 8 . 6 0 4 2 2 4 . 1 9 0 3 4 . 2 3 0 9 1 4 . 7 9 4 3 1 4 . 0 2 5 9 4 . 0 6 3 9 2 4 . 1 2 4 . 0 1 4 5 1 7 . 6 5 4 3 2 3 . 8 1 2 0 3 . 8 4 6 8 1 0 0 . 0 0 4 4 0 3 . 6 2 8 9 3 . 6 6 2 1 1 7 . 6 5 4 3 3 3 . 5 2 0 5 3 . 5 5 2 0 4 9 . 5 8 4 4 2 3 . 4 2 1 3 3 . 4 4 8 5 2 8 . 9 9 5 3 2 3 . 3 3 0 1 3 . 3 5 5 5 2 3 . 5 4 5 4 1 3 . 1 6 7 5 3 . 1 2 2 4 2 1 . 8 5 6 2 2 3 . 0 9 4 7 5 4 2 3 . 0 6 0 1 3 . 0 8 6 7 5 2 . 1 1 4 4 4 2 . 9 6 3 0 2 . 9 8 6 9 6 1 . 9 3 5 4 3 2 . 9 0 3 1 2 . 9 2 8 5 2 2 . 4 1 6 4 1 2 . 8 1 9 7 2 . 8 4 2 0 1 4 . 3 4 6 4 2 2 . 7 4 3 2 2 . 7 6 6 8 1 0 . 9 8 6 4 3 2 . 6 2 8 3 2 . 6 2 9 2 3 7 . 1 5 6 5 0 2 . 6 2 8 3 6 5 1 2 . 6 0 7 1 5 5 4 2 . 5 2 6 8 2 . 5 4 2 5 5 . 8 9 6 6 2 2 . 3 5 4 7 2 . 3 7 1 7 3 1 . 6 0 8 3 2 2 . 3 3 9 4 2 . 3 3 9 1 1 6 . 1 9 7 5 2 2 . 3 2 4 3 7 6 0 2 . 2 2 6 6 2 . 2 4 3 6 4 4 . 7 1 7 6 1 2 . 2 1 3 6 2 . 2 2 9 9 6 4 . 7 6 8 5 2 2 . 1 2 8 7 2 . 1 4 1 2 1 3 . 9 0 9 3 2 2 . 1 1 7 3 8 5 3 2 . 0 7 3 6 2 . 0 8 7 0 1 7 . 1 6 9 4 1 2 . 0 7 3 6 2 . 0 6 8 5 3 9 . 3 4 8 6 0 2 . 0 5 2 8 2 . 0 5 8 1 6 4 . 7 6 9 4 2 2 . 0 4 2 6 8 6 1 2 . 0 4 2 6 7 7 2 2 . 0 3 2 6 8 7 2 1 . 8 9 7 8 1 . 9 0 9 6 2 2 . 4 1 9 6 0 1 . 8 9 7 8 1 . 8 8 6 5 1 6 . 6 7 1 0 3 3 1 . 8 8 9 8 9 6 1 1 . 8 8 9 8 0 4 2 T a b l e 3 - 2 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r 1 7 4 ( M e 4 N ) 2 8 n 3 S e 7 o 2 H 2 0 h k 1 d c a l c . ( A ) d o b s . ( A ) % I o b s . 0 1 1 1 1 . 4 4 1 9 1 1 . 5 0 2 3 9 6 . 9 3 0 0 2 1 0 . 5 7 2 3 1 0 . 6 2 4 5 4 4 . 2 3 1 0 ' 1 8 . 9 5 2 9 9 . 0 0 1 5 2 0 . 6 5 1 0 1 8 . 6 2 1 8 8 . 6 3 5 2 1 0 0 . 0 0 0 1 2 8 . 3 4 8 3 8 . 3 4 6 8 1 3 . 2 2 1 1 0 7 . 8 7 4 0 7 . 8 8 3 2 3 4 . 8 1 1 1 2 6 . 1 9 5 5 6 . 2 0 1 5 1 0 . 2 9 1 0 3 5 . 5 6 2 2 5 . 5 7 0 2 6 . 8 7 2 1 ’ 4 3 . 5 3 1 3 3 . 5 4 2 1 3 . 6 7 0 3 4 3 . 4 4 2 1 3 . 4 4 9 8 1 7 . 5 4 1 4 2 3 . 0 5 6 0 3 . 0 4 9 5 1 2 . 9 7 1 3 5 2 . 9 1 4 8 2 . 9 2 4 5 1 7 . 7 5 3 1 ' 4 2 . 7 5 3 7 2 . 7 5 4 0 1 9 . 8 2 1 2 7 2 . 6 2 3 0 2 . 6 2 8 4 1 0 . 2 8 2 4 3 2 . 5 6 1 6 2 . 5 6 4 8 1 0 . 9 6 2 4 5 2 . 2 9 3 3 2 . 2 8 6 9 8 . 9 2 4 1 ' 3 2 . 2 8 6 3 9 . 2 8 9 5 4 1 . 8 5 8 5 1 . 8 4 9 4 3 4 . 3 2 1 0 4 3 1 . 8 3 6 1 8 8 0 1 . 8 1 4 4 1 . 8 2 6 7 5 4 . 7 1 1 0 4 4 1 . 7 8 6 7 1 . 7 8 3 1 1 3 . 9 0 1 1 3 2 1 . 7 7 3 3 9 7 2 1 . 7 7 3 3 1 0 5 3 1 . 7 7 3 3 1 0 6 2 1 . 7 3 4 9 1 . 7 4 0 7 2 8 . 9 9 1 0 5 4 1 . 7 2 8 8 1 1 4 2 1 . 7 2 8 8 1 1 4 3 1 . 6 9 8 9 1 . 6 8 9 4 4 . 7 9 9 8 2 1 . 6 8 1 7 1 2 2 2 1 . 6 6 5 0 1 2 3 1 1 . 6 5 4 2 1 . 6 4 4 4 9 . 4 7 1 2 3 2 1 . 6 3 8 3 1 1 5 4 1 . 6 1 2 8 1 . 6 2 1 3 8 . 7 5 1 0 8 2 1 . 5 8 3 8 1 . 5 7 0 9 1 3 . 0 3 1 3 2 0 1 . 5 6 0 7 1 0 8 3 1 . 5 6 0 7 1 7 5 T a b l e 3 - 3 . C r y s t a l D a t a f o r ( M e 4 N ) 4 S n 4 S e 1 0 a n d ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 ( I ) ( H ) f o r m u l a S n 4 S e l o N 4 C 1 6 H 4 8 S n 3 S e 7 N 2 C 8 H 2 4 0 2 f w 1 5 6 0 . 9 4 1 0 8 9 . 0 8 a , A 2 0 . 5 2 9 ( 3 ) 9 . 6 6 7 ( 3 ) b , A 2 0 . 5 2 9 ( 3 ) 1 3 . 6 0 6 ( 4 ) c , A 2 0 . 5 2 9 ( 3 ) 2 1 . 1 7 1 ( 6 ) 5 . d e g 9 0 . 0 9 6 8 6 ( 2 ) v , A 3 8 6 5 1 ( 4 ) 2 7 8 1 ( 3 ) Z v a l u e 8 4 s p a c e g r o u p P - 4 3 n P 2 1 / n d c a l c a g / c m 3 2 . 3 9 7 2 . 6 0 1 c r y s t a l s i z e , m m 0 . 3 0 x 0 . 3 2 x 0 . 3 6 0 . 8 0 x 0 . 6 5 x 0 . 5 0 r a d i a t i o n M o K a ( A = O . 7 1 0 6 9 A ) M o K a ( A = O . 7 1 0 6 9 A ) u ( M o K o o , c m ‘ 1 1 0 6 . 4 1 1 1 7 . 6 3 2 e m a x , d e g 5 0 5 0 t e m p e r a t u r e , 0 C - 7 5 — 8 0 s c a n t y p e 6 / 2 0 w - 2 0 s c a n s p e e d , 0 / m i n 2 2 n o . o f d a t a c o l l e c t e d 2 0 2 2 5 4 4 7 n o . o f u n i q u e d a t a 2 0 2 2 5 1 0 6 n o . o f o b s e r v e d d a t a 5 0 7 2 8 4 6 ( I > 3 . 0 o ( 1 ) ) n o . o f v a r i a b l e s 6 8 1 4 3 fi n a l R / R w , % 6 . 0 / 4 . 4 6 . 2 / 8 . 4 * R = £ | | F o l - | F c l l / Z | F o l R w = { £ w ( I F o l - I F 6 I ) 2 / 2 w I F 6 1 2 } “ 2 1 7 6 T a b l e 3 - 4 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r ( M e 4 N ) 4 S n 4 8 e 1 0 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) S n ( 1 ) 0 . 3 2 1 0 ( 2 ) 0 . 4 2 5 3 ( 2 ) 0 . 0 6 6 1 ( 2 ) 1 . 1 ( 2 ) S n ( 2 ) 0 . 0 6 9 8 ( 2 ) 0 . 0 6 9 8 0 . 0 6 9 8 2 . 3 9 9 ( 2 ) S e ( 1 ) 0 . 3 9 5 9 ( 5 ) 1 / 2 0 2 . 4 ( 5 ) S e ( 2 ) 0 . 2 4 7 7 ( 5 ) 0 . 3 5 6 6 ( 3 ) - 0 . 0 0 8 0 ( 4 ) 2 . 8 ( 4 ) S e ( 3 ) 0 . 3 8 4 9 ( 3 ) 0 . 3 5 1 4 ( 4 ) 0 . 1 3 4 4 ( 4 ) 3 . 2 ( 4 ) S e ( 4 ) 0 0 . 1 4 2 9 0 1 . 7 ( 5 ) S e ( 5 ) 0 . 1 3 6 7 ( 5 ) 0 . 1 3 6 7 0 . 1 3 6 7 3 . 0 6 8 ( 4 ) N ( 1 ) 0 . 4 1 1 ( 3 ) 0 . 6 5 7 ( 3 ) 0 . 1 6 0 ( 3 ) 3 ( 1 ) N ( 2 ) 0 . 3 3 6 ( 3 ) 0 . 3 3 6 1 0 . 3 3 6 1 5 ( 1 ) C ( 1 ) 0 . 4 5 4 ( 2 ) 0 . 7 1 1 ( 3 ) 0 . 2 0 3 ( 3 ) 1 . 4 ( 8 ) C ( 2 ) 0 . 4 3 9 ( 2 ) 0 . 6 6 2 ( 2 ) 0 . 0 9 0 ( 2 ) 1 ( 1 ) C ( 3 ) 0 . 4 3 6 ( 3 ) 0 . 5 9 1 ( 3 ) 0 . 1 7 7 ( 3 ) 3 ( 1 ) C ( 4 ) 0 . 3 4 2 ( 2 ) 0 . 6 6 1 ( 3 ) 0 . 1 7 4 ( 2 ) 1 ( 1 ) C ( 5 ) 0 . 3 1 2 6 0 . 4 0 8 5 0 . 3 1 1 6 2 . 0 C ( 6 ) 0 . 2 9 5 ( 4 ) 0 . 2 9 4 9 0 . 2 9 4 9 4 ( 1 ) H ( 1 ) 0 . 4 9 8 5 0 . 7 0 2 9 0 . 1 9 8 1 0 . 9 H ( 2 ) 0 . 4 4 3 1 0 . 7 5 2 5 0 . 1 8 4 6 0 . 9 H ( 3 ) 0 . 4 4 0 5 0 . 7 0 8 8 0 . 2 4 6 3 0 . 9 H ( 4 ) 0 . 4 8 4 0 0 . 6 6 1 0 0 . 0 8 9 1 0 . 3 H ( S ) 0 . 4 2 0 4 0 . 6 2 9 5 0 . 0 6 3 1 0 . 3 H ( 6 ) 0 . 4 2 4 1 0 . 7 0 4 3 0 . 0 7 3 3 0 . 3 H ( 7 ) 0 . 4 2 3 4 0 . 5 8 0 3 0 . 2 2 4 9 1 . 3 H ( 8 ) 0 . 4 1 9 6 0 . 5 5 6 2 0 . 1 5 3 4 1 . 3 H ( 9 ) 0 . 4 8 3 2 0 . 5 8 7 6 0 . 1 7 9 3 1 . 3 H ( l O ) 0 . 3 2 4 6 0 . 7 0 3 0 0 . 1 6 2 0 1 . 8 H ( 1 1 ) 0 . 3 1 6 2 0 . 6 2 8 6 0 . 1 5 1 7 1 . 8 T a b l e 3 - 4 . ( c o n t ' d ) 1 7 7 a t o m x y z B ( e q ) H ( 1 2 ) 0 . 3 3 2 2 0 . 6 5 5 6 0 . 2 2 0 5 1 . 8 H ( 1 3 ) 0 . 3 4 7 4 0 . 4 3 7 3 0 . 3 4 3 8 1 0 . 1 H ( 1 4 ) 0 . 3 3 0 8 0 . 4 1 5 5 0 . 2 7 3 4 1 0 . 1 H ( 1 5 ) 0 . 2 7 6 7 0 . 4 1 7 6 0 . 3 2 6 1 1 0 . 1 H ( 1 6 ) 0 . 2 5 2 3 0 . 3 0 6 7 0 . 3 0 4 6 . 2 H ( 1 7 ) 0 . 3 0 6 7 0 . 3 0 4 6 0 . 2 5 2 3 . 2 H ( 1 8 ) 0 . 3 0 4 6 0 . 2 5 2 3 0 . 3 0 6 7 . 2 3 ‘ B ( e q ) = 4 / 3 l a 2 f 3 1 1 + 1 9 6 2 2 + c 2 6 3 3 + a b ( c o s v ) 6 1 2 + a c ( c o s fi ) fi l 3 + b c ( c o s a ) ( 3 2 3 l . 1 7 8 T a b l e 3 - 5 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( 4 2 F f o r ( M e 4 N ) 2 8 n 3 S e 7 - 2 H 2 0 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) S n ( 1 ) 0 . 3 0 6 4 ( 2 ) 0 . 2 0 5 7 ( 1 ) 0 . 1 9 5 9 2 ( 8 ) 0 . 2 9 ( 7 ) S n ( 2 ) 0 . 4 3 2 9 ( 2 ) 0 . 0 2 8 7 ( 1 ) 0 . 0 7 7 7 1 ( 8 ) 0 . 5 7 ( 8 ) S n ( 3 ) 0 . 2 8 6 8 ( 2 ) - 0 . 0 6 4 2 ( 1 ) 0 . 2 2 7 6 4 ( 8 ) 0 . 2 6 ( 7 ) S e ( 1 ) 0 . 3 4 0 3 ( 3 ) 0 . 0 9 0 5 ( 2 ) 0 . 2 9 1 8 ( 1 ) 0 . 5 ( 1 ) S e ( 2 ) 0 . 1 8 1 2 ( 3 ) 0 . 0 5 5 4 ( 2 ) 0 . 1 3 1 0 ( 1 ) 0 . 3 ( 1 ) S e ( 3 ) 0 . 6 8 2 4 ( 3 ) - 0 . 0 0 5 9 ( 2 ) 0 . 0 3 0 7 ( 1 ) 1 . 1 ( 1 ) S e ( 4 ) 0 . 5 0 2 2 ( 3 ) 0 . 2 0 0 6 ( 2 ) 0 . 1 1 8 6 ( 1 ) 1 . 1 ( 1 ) S e ( 5 ) 0 . 4 3 8 9 ( 3 ) 0 . 3 4 5 2 ( 2 ) 0 . 2 6 7 0 ( 1 ) 0 . 9 ( 1 ) S e ( 6 ) 0 . 1 0 0 2 ( 3 ) 0 . 3 1 8 5 ( 2 ) 0 . 1 8 0 8 ( 1 ) 0 . 9 ( 1 ) S e ( 7 ) 0 . 4 8 1 8 ( 3 ) - 0 . 1 1 1 1 ( 2 ) 0 . 1 5 6 3 ( 1 ) 0 . 8 ( 1 ) 0 ( 1 ) 0 . 0 4 6 ( 3 ) 0 . 0 5 1 ( 2 ) 0 . 5 3 9 ( 1 ) 3 . 7 ( 6 ) 0 ( 2 ) 0 . 8 5 2 ( 5 ) 0 . 2 1 6 ( 4 ) 0 . 4 6 3 ( 3 ) 5 ( 1 ) 0 ( 3 ) — o . 0 6 7 ( 4 ) 0 . 0 8 4 ( 3 ) 0 . 5 2 8 ( 2 ) 0 . 9 ( 7 ) N ( l ) 0 . 4 1 1 ( 3 ) 0 . 2 4 5 ( 2 ) 0 . 4 8 1 ( 1 ) 2 . 4 ( 6 ) N ( 2 ) 0 . 8 1 2 ( 3 ) 0 . 0 9 4 ( 2 ) 0 . 2 7 8 ( 1 ) 2 . 8 ( 6 ) C ( 1 ) 0 . 4 8 3 ( 5 ) 0 . 1 4 9 ( 4 ) 0 . 4 7 2 ( 2 ) 7 ( 1 ) C ( 2 ) 0 . 2 9 9 ( 5 ) 0 . 2 6 1 ( 4 ) 0 . 4 3 6 ( 2 ) 6 ( 1 ) C ( 3 ) 0 . 4 9 8 ( 6 ) 0 . 3 3 4 ( 4 ) 0 . 4 7 8 ( 2 ) 7 ( 1 ) C ( 4 ) 0 . 3 5 6 ( 6 ) 0 . 2 5 4 ( 4 ) 0 . 5 5 1 ( 3 ) 8 ( 1 ) C ( S ) 0 . 7 4 1 ( 4 ) 0 . 1 8 5 ( 3 ) 0 . 2 8 1 ( 2 ) 4 . 1 ( 9 ) C ( 6 ) 0 . 9 6 2 ( 4 ) 0 . 1 0 5 ( 3 ) 0 . 3 0 3 ( 2 ) 3 . 9 ( 9 ) C ( 7 ) 0 . 7 4 1 ( 4 ) 0 . 0 1 3 ( 3 ) 0 . 3 0 4 ( 2 ) 4 . 1 ( 9 ) C ( 8 ) 0 . 8 3 4 ( 4 ) 0 . 0 7 9 ( 3 ) 0 . 2 0 0 ( 2 ) 4 ( 1 ) H ( 1 ) 0 . 4 1 9 5 0 . 0 9 5 3 0 . 4 8 0 1 6 . 0 H ( 2 ) 0 . 5 0 9 7 0 . 1 4 1 0 0 . 4 2 9 1 6 . 0 H ( 3 ) 0 . 5 6 1 3 0 . 1 4 2 5 0 . 4 9 9 7 6 . 0 H ( 4 ) 0 . 2 3 7 3 0 . 3 1 1 3 0 . 4 4 9 4 7 . 4 H ( s ) 0 . 3 1 6 2 0 . 2 6 4 6 0 . 3 9 4 9 7 . 4 H ( 6 ) 0 . 2 3 2 5 0 . 1 9 8 5 0 . 4 3 8 9 7 . 4 1 7 9 T a b l e 3 - 5 . ( c o n t ' d ) a t o m x y z B ( e q ) H ( 7 ) 0 . 5 7 8 6 0 . 3 2 8 1 0 . 5 0 3 5 7 . 2 H ( 8 ) 0 . 5 2 6 0 0 . 3 4 2 6 0 . 4 3 3 7 7 . 2 H ( 9 ) 0 . 4 4 6 4 0 . 3 8 9 8 0 . 4 8 7 8 7 . 2 H ( 1 0 ) 0 . 3 0 6 6 0 . 3 0 2 9 0 . 5 5 8 3 1 0 . 5 H ( 1 1 ) 0 . 3 0 2 7 0 . 1 8 8 9 0 . 5 5 8 2 1 0 . 5 H ( 1 2 ) 0 . 4 3 6 7 0 . 2 4 3 6 0 . 5 8 1 2 1 0 . 5 H ( 1 3 ) 0 . 7 4 6 9 0 . 2 0 8 5 0 . 3 2 3 8 4 . 1 H ( 1 4 ) 0 . 7 9 1 7 0 . 2 3 1 9 0 . 2 5 6 1 4 . 1 H ( 1 5 ) 0 . 6 5 1 3 0 . 1 8 0 1 0 . 2 6 5 6 4 . 1 H ( 1 6 ) 1 . 0 1 1 2 0 . 0 4 5 9 0 . 3 0 4 3 5 . 1 H ( 1 7 ) 1 . 0 1 0 6 0 . 1 5 3 7 0 . 2 8 0 5 5 . 1 H ( 1 8 ) 0 . 9 6 4 7 0 . 1 3 0 0 0 . 3 4 8 0 5 . 1 H ( 1 9 ) 0 . 7 2 6 1 0 . 0 2 5 5 0 . 3 4 9 7 4 . 3 H ( 2 0 ) 0 . 6 4 9 4 0 . 0 0 5 2 0 . 2 8 4 9 4 . 3 H ( 2 1 ) 0 . 7 8 9 9 - 0 . 0 4 5 7 0 . 3 0 1 9 4 . 3 H ( 2 2 ) 0 . 8 8 0 0 0 . 0 1 5 0 0 . 1 8 9 1 5 . 0 H ( 2 3 ) 0 . 7 4 8 0 0 . 0 7 6 4 0 . 1 7 2 4 5 . 0 H ( 2 4 ) 0 . 8 9 1 0 0 . 1 2 7 8 0 . 1 8 0 0 5 . 0 a B ( e q ) = 4 / 3 1 3 2 6 1 1 + b 2 1 3 2 2 + 9 2 1 3 3 3 + a b ( c o s v ) 6 1 2 + a c ( c o s f 5 ) f 5 1 3 + b C ( c o s a ) 6 2 3 ] . 1 8 0 r e fl e c t i o n s w e r e a v e r a g e d . A n a d d i t i o n a l a b s o r p t i o n c o r r e c t i o n b a s e d o n t h e D I F A B S 1 1 p r o c e d u r e w a s a p p l i e d t o t h e i s o t r o p i c a l l y r e f i n e d d a t a . C r y s t a l l o g r a p h i c d a t a a n d d e t a i l s o f d a t a c o l l e c t i o n a r e l i s t e d i n T a b l e 3 - 3 . A t o m i c c o o r d i n a t e s a n d e q u i v a l e n t i s o t r o p i c t h e r m a l p a r a m e t e r s f o r ( I ) a n d ( I I ) a r e g i v e n i n T a b l e s 3 - 4 a n d 3 - 5 . 3 . R e s u l t s a n d D i s c u s s i o n 3 . 1 . S y n t h e s i s ( M e 4 N ) 4 S n 4 8 e 1 0 ( I ) a n d ( M e 4 N ) 2 S n 3 S e 7 ' 2 H z O ( I I ) w e r e s y n t h e s i z e d b y r e a c t i n g S n S e 2 a n d t w o e q u i v a l e n t s K 2 8 e 2 i n t h e p r e s e n c e o f e x c e s s ( f o u r e q u i v a l e n t s ) M e 4 N C l u n d e r h y d r o t h e r m a l c o n d i t i o n s a t 1 3 5 0 C . O r a n g e c r y s t a l s o f ( I ) g r e w a f t e r t h e r e a c t i o n p r o c e e d e d f o r 1 d a y . U p o n p r o l o n g e d h e a t i n g ( > 3 d a y s ) a t t h e s a m e t e m p e r a t u r e , ( I ) d i s a p p e a r e d a n d r e d c r y s t a l s o f ( 1 1 ) f o r m e d . N o o t h e r p h a s e s w e r e f o u n d a f t e r f u r t h e r h e a t i n g o f ( I I ) . T h e a m o u n t o f M e 4 N C l u s e d i n t h i s r e a c t i o n a p p e a r e d t o b e c r u c i a l f o r t h e c r y s t a l l i z a t i o n o f p r o d u c t s . N o c r y s t a l s f o r m e d w h e n o n l y t w o e q u i v a l e n t s o f M e 4 N C l w e r e u s e d s u g g e s t i n g t h a t C l ' m a y b e a n i m p o r t a n t " m i n e r a l i z e r " i n t h i s r e a c t i o n . T h e c h o i c e o f p o l y s e l e n i d e s t a r t i n g m a t e r i a l i s a l s o i m p o r t a n t i n t h e s e r e a c t i o n s . T h e r e a c t i o n s o f S n S e z a n d K 2 S e 4 g a v e o n l y c r y s t a l s o f e l e m e n t a l S e w h i c h p r o b a b l y c a m e f r o m t h e s e l f - r e d o x p r o c e s s o f S e 4 2 ' . S e 4 2 ' + S e 4 2 ' - - - - - - - - > S e 0 + 8 0 3 ' + S e y z ‘ w h e r e x , y < 4 C o m p o u n d ( I ) i s p r o b a b l y k i n e t i c a l l y f a v o r e d a n d f o r m e d a t a n e a r l i e r s t a g e o f t h e r e a c t i o n . I t i s p o s s i b l e t h a t ( I ) i s a t t a c k e d b y e x c e s s S e x z - i n 1 8 1 s o l u t i o n f o r m i n g s o l u b l e p r e c u r s o r s w h i c h t h e n r e o r g a n i z e t o f o r m t h e m o r e t h e r m o d y n a m i c a l l y s t a b l e s t r u c t u r e o f ( I I ) . 3 . 2 . D e s c r i p t i o n o f T h e S t r u c t u r e s 3 . 2 . 1 . S t r u c t u r e o f ( M e 4 N ) 4 S n 4 S e 1 0 ( 1 ) c o n t a i n s t w o c r y s t a l l o g r a p h i c a l l y d i s t i n c t a d a m a n t i n e P 4 0 1 0 - l i k e c l u s t e r s w h i c h h a v e f o u r c o r n e r - s h a r i n g t e t r a h e d r a l S n S e 4 f o r m i n g f u s e d c h a i r - f o r m e d s i x - m e m b e r e d r i n g s . S e e F i g u r e 3 - 1 . I t s a l k a l i m e t a l s a l t , w h i c h b e l o n g s t o t h e f a m i l y o f [ M 4 Q 1 0 ] 4 ' , ( w h e r e M = G e , S n ; Q = S , S e ) w a s r e p o r t e d b y K r e b s e t a l . 1 2 T h e s i t e s y m m e t r y o f [ S n 4 8 e 1 0 1 4 ' c l u s t e r s i s t e t r a h e d r a l w i t h f o u r t e r m i n a l S n - S e b o n d s p o i n t e d t o w a r d t h e c o r n e r s o f a t e t r a h e d r o n . E a c h o f t h e r e m a i n i n g s i x S e a t o m s b i n d s t o t w o S n a t o m s a l o n g t h e e d g e o f t h e t e t r a h e d r o n . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e n i n T a b l e 3 - 6 . T h e a v e r a g e S n — S n d i s t a n c e i s 4 . 0 8 ( 3 ) A . T h e a v e r a g e t e r m i n a l S n — S e d i s t a n c e ( 2 . 4 1 ( 5 ) 1 7 \ ) i s s h o r t e r t h a n t h a t o f b r i d g i n g S n - S e d i s t a n c e s ( 2 . 5 4 ( 2 ) A ) . T h e S e — S n — S e a n g l e s a r e c l o s e t o t h o s e i n a p e r f e c t t e t r a h e d r o n . T h e a v e r a g e ( t e r m i n a l S e ) - S n - ( b r i d g i n g S e ) a n g l e ( 1 0 8 ( 1 ) A ) i s s l i g h t l y s m a l l e r t h a n t h e a v e r a g e ( b r i d g i n g S e ) - S n - ( b r i d g i n g S e ) a n g l e ( 1 1 0 . 6 ( 5 ) A ) . s 2 1 " ) e ( ) " S C @ “ ) 1 0 8 % 6 S “ ( ) \ n ® S e ( 2 ) S e ( 2 S ) ’ 8 6 ( e ( 5 ) S n ( 2 ) 1 8 2 F i g u r e 3 - 1 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e f o r t w o c r y s t a l l o g r a p h i c a l l y i n d e p e n d e n t l S m S e l o l ‘ L c l u s t e r s . T a b l e 3 - 6 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r ( M e 4 N ) 4 S n 4 S e 1 0 w i t h 1 8 3 E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . S e l e c t e d B o n d D i s t a n c e g A ) S n ( 1 ) - S e ( 1 ) 2 . 5 6 2 ( 7 ) C ( 1 ) — H ( 1 ) 0 . 9 3 2 S n ( 1 ) - S e ( 2 ) 2 . 5 6 2 ( 9 ) C ( 1 ) - H ( 2 ) 0 . 9 6 6 S n ( 1 ) — S e ( 2 ) 2 . 5 2 5 ( 9 ) C ( 1 ) - H ( 3 ) 0 . 9 2 7 S n ( 1 ) - S e ( 3 ) 2 . 4 4 7 ( 9 ) C ( 2 ) - H ( 4 ) 0 . 9 2 6 S n ( 2 ) - S e ( 5 ) 2 . 3 7 9 ( 7 ) C ( 2 ) - 1 1 ( 5 ) 0 . 9 4 4 S n ( 2 ) - S e ( 4 ) 2 . 5 2 1 ( 3 ) x 3 C ( 2 ) - H ( 6 ) 0 . 9 7 8 m e a n ( S n - S e ) 2 5 0 ( 6 ) C ( 3 ) - H ( 7 ) 1 . 0 4 0 S n ( l ) - S n ( 1 ) 4 . 0 9 8 ( 9 ) x 2 C ( 3 ) - H ( 8 ) 0 . 9 3 0 S n ( l ) - S n ( 1 ) 4 . 1 1 0 ( 8 ) x 2 C ( 3 ) — H ( 9 ) 0 . 9 7 5 S n ( 2 ) - S n ( 2 ) 4 . 0 5 1 ( 7 ) x 4 C ( 4 ) - H ( 1 0 ) 0 . 9 7 0 m e a n ( S n - S n ) 4 . 0 8 ( 3 ) C ( 4 ) - H ( 1 1 ) 0 . 9 7 3 N ( l ) - C ( 1 ) 1 6 8 ( 8 ) C ( 4 ) - H ( 1 2 ) 0 . 9 7 6 N ( 1 ) - C ( 2 ) 1 . 5 5 ( 7 ) C ( 5 ) - H ( 1 3 ) 1 . 1 3 9 N ( l ) - C ( 3 ) 1 . 4 9 ( 8 ) C ( 5 ) - H ( 1 4 ) 0 . 8 8 1 N ( 1 ) — C ( 4 ) 1 . 4 4 ( 8 ) C ( 5 ) - H ( 1 5 ) 0 . 8 1 7 N ( 2 ) - C ( 5 ) l . 6 4 ( 2 ) x 3 C ( 6 ) - H ( 1 6 ) 0 . 9 3 0 N ( 2 ) - C ( 6 ) 1 . 4 7 ( 6 ) C ( 6 ) - H ( 1 7 ) 0 . 9 3 0 C ( 6 ) - H ( 1 8 ) 0 . 9 3 0 S e l e c t e d B o n d A n g l e s ( d e g ) S e ( 1 ) - S n ( 1 ) - S e ( 2 ) 1 1 1 . 5 ( 3 ) H ( 1 ) - C ( 1 ) - H ( 2 ) 1 0 9 . 6 4 S e ( 1 ) - S n ( 1 ) - S e ( 2 ) 1 1 0 . 0 ( 3 ) H ( 1 ) - C ( 1 ) - H ( 3 ) 1 1 3 . 1 5 S e ( 1 ) - S n ( 1 ) - S e ( 3 ) 1 1 0 . 7 ( 3 ) H ( 2 ) — C ( 1 ) - H ( 3 ) 1 1 0 . 1 2 S e ( 2 ) - S n ( 1 ) - S e ( 2 ) 1 1 0 . 1 ( 2 ) H ( 4 ) — C ( 2 ) - H ( 5 ) 1 1 2 . 1 8 S e ( 2 ) - S n ( 1 ) - S e ( 3 ) 1 0 8 . 3 ( 3 ) H ( 4 ) - C ( 2 ) - H ( 6 ) 1 0 9 . 1 2 S e ( 2 ) - S n ( 1 ) - S e ( 3 ) 1 0 6 . 0 ( 3 ) H ( 5 ) - C ( 2 ) - H ( 6 ) 1 0 7 . 6 5 S e ( 4 ) - S n ( 2 ) - S e ( 5 ) 1 0 8 . 2 ( 1 ) x 3 H ( 7 ) - C ( 3 ) - H ( 8 ) 1 0 3 . 7 8 S e ( 4 ) - S n ( 2 ) - S e ( 4 ) 1 1 0 . 7 ( 2 ) x 3 H ( 7 ) - C ( 3 ) - H ( 9 ) 1 0 0 . 6 6 S n ( 1 ) - S e ( 1 ) - S n ( 1 ) 1 0 6 . 2 ( 4 ) H ( 8 ) - C ( 3 ) - H ( 9 ) 1 0 9 . 1 1 S n ( l ) - S e ( 2 ) - S n ( 1 ) 1 0 7 . 8 ( 3 ) H ( 1 0 ) - C ( 4 ) - H ( 1 1 ) 1 0 5 . 9 9 S n ( 2 ) - S e ( 4 ) — S n ( 2 ) 1 0 6 . 9 1 ( 9 ) H ( 1 0 L C ( 4 ) — H ( 1 2 ) 1 0 5 . 7 1 1 8 4 T a b l e 3 - 6 . ( c o n t ' d ) C ( 1 ) - N ( 1 ) - C ( 2 ) 1 0 4 ( 4 ) H ( 1 1 ) - C ( 4 ) - H ( 1 2 ) 1 0 5 . 5 3 C ( 1 ) - N ( 1 ) - C ( 3 ) 1 0 7 ( 4 ) H ( 1 3 ) - C ( 5 ) - H ( 1 4 ) 9 9 . 5 3 C ( 1 ) - N ( 1 ) - C ( 4 ) 1 1 2 ( 4 ) H ( 1 3 ) - C ( 5 ) - H ( 1 5 ) 1 0 3 . 7 3 C ( 2 ) - N ( 1 ) — C ( 3 ) 9 9 ( 4 ) H ( 1 4 ) - C ( 5 ) - H ( 1 5 ) 1 3 1 . 9 5 C ( 2 ) - N ( 1 ) - C ( 4 ) 1 2 4 ( 4 ) H ( 1 6 ) - C ( 6 ) — H ( 1 7 ) 1 1 3 . 1 0 C ( 3 ) - N ( 1 ) - C ( 4 ) 1 1 0 ( 5 ) H ( 1 6 ) - C ( 6 ) - H ( 1 8 ) 1 1 3 . 1 0 C ( 5 ) — N ( 2 ) - C ( 5 ) 1 1 7 ( 2 ) x 3 H ( 1 7 ) — C ( 6 ) - H ( 1 8 ) 1 1 3 . 1 0 C ( 5 ) - N ( 2 ) - C ( 6 ) 1 0 0 ( 3 ) x 3 1 8 5 3 . 2 . 2 . S t r u c t u r e o f ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 h a s a t w o - d i m e n s i o n a l a n i o n i c f r a m e w o r k w h i c h i s b u i l t u p w i t h t r i g o n a l b i p y r a m i d a l S n S e 5 u n i t s . E v e r y t h r e e S n S e 5 t r i g o n a l b i p y r a m i d s a r e f u s e d t o g e t h e r b y s h a r i n g t h e i r S e e q - S n - S e a x e d g e s t o f o r m a t r i m e r i c S n 3 S e 1 o c l u s t e r a s s h o w n i n F i g u r e 3 - 2 . T h e t r i p l y b r i d g i n g S e a t o m i s t h e c o m m o n a x i a l S e o f t h e t h r e e S n S e 5 t r i g o n a l b i p y r a m i d s . T h e [ S n 3 S e 4 ] 4 + c o r e s o f t h e s e t r i a n g u l a r c l u s t e r s c a n b e v i e w e d a s d e f e c t c u b a n e s ( o n e S n c e n t e r m i s s i n g ) w h i c h a r e f u r t h e r c o n n e c t e d b y s h a r i n g t h e i r s i x t e r m i n a l s e l e n i d e s . T h i s r e s u l t s i n a t w o - d i m e n s i o n a l n e t - l i k e a n i o n i c f r a m e w o r k p e r f o r a t e d w i t h l a r g e h o l e s a s s h o w n i n F i g u r e 3 - 3 . T h e c h a r g e o f t h e [ S n 3 S e 7 ] n 2 n ‘ l a y e r s i s b a l a n c e d b y t w o e q u i v a l e n t s o f t e t r a m e t h y l a m m o n i u m c a t i o n s l o c a t e d b e t w e e n t h e l a y e r s , a s s h o w n i n F i g u r e 3 — 4 . T h e a n i o n i c f r a m e w o r k d i f f e r s c o n f o r m a t i o n a l l y f r o m t h a t o f i t s c e s i u m s a l t w h i c h c r y s t a l l i z e s i n a d i f f e r e n t s p a c e g r o u p . B e c a u s e o f t h e l a r g e r s i z e o f t e t r a m e t h y l a m m o n i u m c o m p a r e d t o t h a t o f C s “ , t h e t o t a l v o l u m e o f ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 i s ~ 2 9 % l a r g e r t h a n i t s C s + s a l t . T h e c h a n g e o f t h e v o l u m e i s m a i n l y a c h i e v e d b y e x p a n s i o n o f t h e i n t e r l a y e r s p a c i n g f r o m 6 . 6 4 A i n t h e C s ” s a l t t o 8 . 6 2 A . A d d i t i o n a l v o i d s p a c e i s fi l l e d b y t h e i n c l u s i o n o f H 2 0 m o l e c u l e s . C o m p a r i s o n o f t h e b o n d d i s t a n c e s a n d b o n d a n g l e s b e t w e e n ( M e 4 N ) 2 8 n 3 S e 7 - 2 H 2 0 a n d C s z S n 3 S e 7 a r e g i v e n i n T a b l e 3 - 7 . T h e c o r r e s p o n d i n g b o n d d i s t a n c e s a n d a n g l e s a r e c o m p a r a b l e t o e a c h o t h e r i n t h e i r a n i o n i c f r a m e w o r k s . 1 8 6 S e ( 7 ) . \ j “ j O S e ( 6 ) S e ( 3 ) S n ( 2 ) 3 " “ ) _ _ , . ; 8 6 ( 3 ) \ ‘ \ J 8 6 ( 4 ) S e ( 5 ) F i g u r e 3 - 2 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f a b u i l d i n g u n i t i n ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 . : 3 - 3 e r u g i F O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f a s i n g l e l a y e r o f ( M e 4 N ) 2 8 n 3 S e 7 o 2 H z O . V i e w d o w n t h e a - a x i s . I 8 7 ‘ 1 ) n d ' 0 , 6 7 1 0 “ ’ 1 3 ) . i . \ i f n o . 0 : 6 % 6 ’ 7 ’ . C m @ 9 4 1 7 F i g u r e 3 - 4 : T h e s t r u c t u r e o f ( M e 4 N ) 2 5 n 3 S e 7 - 2 H 2 0 v i e w e d p a r a l l e l t o t h e l a y e r s . D o u b l e l a y e r s o f M e 4 N + c a t i o n s a r e l o c a t e d b e t w e e n t h e [ S n 3 S e 7 I 2 ' l a y e r s . W a t e r m o l e c u l e s , s h o w n b y c r o s s e d c i r c l e s . a r e l o c a t e d i n s i d e t h e h o l e s o f t h e [ S n 3 S e 7 I 2 ' l a y e r s . 1 8 9 T a b l e 3 - 7 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) S n ( 1 ) — S e ( 1 ) 2 . 5 7 3 ( 3 ) S n ( 1 ) - S n ( 2 ) 3 . 7 2 3 ( 3 ) S n ( 1 ) - S e ( 2 ) 2 . 7 1 4 ( 3 ) S n ( l ) - S n ( 3 ) 3 . 6 5 8 ( 3 ) S n ( 1 ) — S e ( 4 ) 2 . 5 6 5 ( 3 ) S n ( 1 ) — S n ( 3 ) 3 . 7 3 9 ( 3 ) S n ( 1 ) - S e ( 5 ) 2 . 7 0 6 ( 3 ) S n ( 2 ) - S n ( 2 ) 3 . 6 8 0 ( 4 ) S n ( 1 ) - S e ( 6 ) 2 . 5 2 3 ( 3 ) S n ( 2 ) - S n ( 3 ) 3 . 7 5 7 ( 3 ) S n ( 2 ) - S e ( 2 ) 2 . 7 5 7 ( 3 ) m e a n ( S n - S n ) 3 . 7 1 ( 4 ) S n ( 2 ) - S e ( 3 ) 2 . 6 9 6 ( 4 ) S n ( 2 ) - S e ( 3 ) 2 . 5 2 0 ( 3 ) N ( 1 ) - C ( 1 ) 1 5 0 ( 6 ) S n ( 2 ) - S e ( 4 ) 2 . 5 7 1 ( 4 ) N ( 1 ) - C ( 2 ) 1 . 4 2 ( 5 ) S n ( 2 ) - S e ( 7 ) 2 . 5 5 6 ( 3 ) N ( 1 ) - C ( 3 ) 1 . 4 7 ( 6 ) S n ( 3 ) - S e ( l ) 2 . 5 4 4 ( 3 ) N ( 1 ) - C ( 4 ) 1 . 6 1 ( 6 ) S n ( 3 ) - S e ( 2 ) 2 . 7 6 8 ( 3 ) N ( 2 ) - C ( 5 ) 1 . 4 2 ( 5 ) S n ( 3 ) - S e ( 5 ) 2 . 5 1 4 ( 3 ) N ( 2 ) - C ( 6 ) 1 . 5 2 ( 4 ) S n ( 3 ) - S e ( 6 ) 2 . 7 0 0 ( 3 ) N ( 2 ) - C ( 7 ) 1 . 4 3 ( 5 ) S n ( 3 ) - S e ( 7 ) 2 . 5 5 4 ( 3 ) N ( 2 ) - C ( 8 ) 1 6 9 ( 5 ) S e l e c t e d B o n d A n g l e s ( d e g ) S e ( 1 ) — S n ( 1 ) - S e ( 2 ) 8 8 . 7 ( 1 ) S e ( 2 ) - S n ( 3 ) - S e ( 7 ) 8 8 . 0 ( 1 ) S e ( 1 ) - S n ( 1 ) - S e ( 4 ) 1 1 4 . 7 ( 1 ) S e ( 5 ) - S n ( 3 ) - S e ( 6 ) 8 9 . 9 ( 1 ) S e ( 1 ) - S n ( 1 ) - S e ( 5 ) 8 7 . 1 ( 1 ) S e ( 5 ) - S n ( 3 ) - S e ( 7 ) 1 2 4 . 9 ( 1 ) S e ( 1 ) - S n ( 1 ) - S e ( 6 ) 1 2 2 . 6 ( 1 ) S e ( 6 ) - S n ( 3 ) - S e ( 7 ) 8 9 . 6 ( 1 ) S e ( 2 ) - S n ( 1 ) - S e ( 4 ) 8 8 . 9 ( 1 ) S n ( 1 ) - S e ( 1 ) - S n ( 3 ) 9 3 . 9 ( 1 ) S e ( 2 ) - S n ( 1 ) - S e ( 5 ) 1 7 5 . 6 ( 1 ) S n ( 1 ) - S e ( 2 ) - S n ( 2 ) 8 5 . 7 6 ( 9 ) S e ( 2 ) - S n ( 1 ) - S e ( 6 ) 9 3 . 7 ( 1 ) S n ( 1 ) — S e ( 2 ) — S n ( 3 ) 8 6 . 0 0 ( 9 ) S e ( 4 ) - S n ( 1 ) - S e ( 5 ) 9 1 . 7 ( 1 ) S n ( 2 ) — S e ( 2 ) - S n ( 3 ) 8 5 . 6 8 ( 9 ) S e ( 4 ) — S n ( 1 ) - S e ( 6 ) 1 2 2 . 6 ( 1 ) S n ( 2 ) - S e ( 3 ) - S n ( 2 ) 8 9 . 7 ( 1 ) S e ( 5 ) - S n ( 1 ) - S e ( 6 ) 8 9 . 6 ( 1 ) S n ( 1 ) - S e ( 4 ) - S n ( 2 ) 9 2 . 9 ( 1 ) S e ( 2 ) - S n ( 2 ) - S e ( 3 ) 1 7 6 . 6 ( 1 ) S n ( 1 ) - S e ( 5 ) — S n ( 3 ) 8 8 . 9 ( 1 ) S e ( 2 ) - S n ( 2 ) - S e ( 3 ) 9 1 . 7 ( 1 ) S n ( 1 ) - S e ( 6 ) - S n ( 3 ) 8 8 . 8 ( 1 ) S e ( 2 ) - S n ( 2 ) — S e ( 4 ) 8 7 . 9 ( 1 ) S n ( 2 ) - S e ( 7 ) — S n ( 3 ) 9 4 . 7 ( 1 ) T a b l e 3 - 7 . ( c o n t ' d ) 1 9 0 S e ( 2 ) - S n ( 2 ) - S e ( 7 ) S e ( 3 ) - S n ( 2 ) - S e ( 3 ) S e ( 3 ) - S n ( 2 ) - S e ( 4 ) S e ( 3 ) - S n ( 2 ) - S e ( 7 ) S e ( 3 ) - S n ( 2 ) - S e ( 4 ) S e ( 3 ) - S n ( 2 ) - S e ( 7 ) S e ( 4 ) - S n ( 2 ) - S e ( fl S e ( 1 ) - S n ( 3 ) - S e ( 2 ) S e ( 1 ) - S n ( 3 ) - S e ( 5 ) S e ( 1 ) - S n ( 3 ) - S e ( 6 ) S e ( 1 ) - S n ( 3 ) - S e ( 7 ) S e ( 2 ) - S n ( 3 ) - S e ( 5 ) S e ( 2 ) - S n ( 3 ) - S e ( 6 ) 8 8 . 2 ( 1 ) 9 0 . 3 ( 1 ) 9 3 . 5 ( 1 ) 8 8 . 3 ( 1 ) 1 2 1 . 0 ( 1 ) 1 2 4 . 1 ( 1 ) 1 1 4 . 9 ( 1 ) 8 8 . 1 ( 1 ) 1 2 2 . 4 ( 1 ) 9 2 . 4 ( 1 ) 1 1 2 . 7 ( 1 ) 9 1 . 8 ( 1 ) 1 7 7 . 6 ( 1 ) C ( 1 ) - N ( 1 ) - C ( 2 ) C ( 1 ) - N ( 1 ) - C ( 3 ) C ( 1 ) - N ( 1 ) - C ( 4 ) C ( 2 ) - N ( 1 ) - C ( 3 ) C ( 2 ) - N ( 1 ) - C ( 4 ) C ( 3 ) - N ( 1 ) - C ( 4 ) C ( 5 ) - N ( 2 ) - C ( 6 ) C ( 5 ) - N ( 2 ) - C ( 7 ) C ( 5 ) - N ( 2 ) - C ( 8 ) C ( 6 ) - N ( 2 ) - C ( 7 ) C ( 6 ) - N ( 2 ) - C ( 8 ) C ( 7 ) - N ( 2 ) - C ( 8 ) 1 1 3 ( 3 ) 1 1 7 ( 3 ) 1 1 1 ( 4 ) 1 0 5 ( 3 ) 1 0 9 ( 3 ) 1 0 1 ( 3 ) 1 1 0 ( 3 ) 1 1 4 ( 3 ) 1 0 3 ( 3 ) 1 1 4 ( 3 ) 1 0 1 ( 3 ) 1 1 2 ( 3 ) 1 9 1 T h e a v e r a g e S n - S n d i s t a n c e i n ( I I ) , 3 . 7 1 ( 4 ) A , i s s h o r t e r t h a n t h a t i n ( I ) . I n t h e t h r e e S n S e 5 t r i g o n a l b i p y r a m i d s , t h e a x i a l S n - S e d i s t a n c e s ( a v e r a g e = 2 . 7 2 ( 3 ) A ) a r e l o n g e r t h a n t h e e q u a t o r i a l S n - S e d i s t a n c e s ( a v e r a g e = 2 . 5 5 ( 2 ) A ) . T h e S e a x - S n - S e a x a n g l e s r a n g e f r o m 1 7 5 . 6 ( 1 ) 0 t o 1 7 7 . 6 ( 1 ) 0 , t h e S e a x - S n - S e e q a n g l e s r a n g e f r o m 8 5 . 7 ( 1 ) O t o 9 4 . 7 ( 1 ) 0 a n d t h e S e e q - S n - S e e q a n g l e s r a n g e f r o m 1 1 2 . 8 ( 1 ) 0 t o 1 2 4 . 8 ( 1 ) 0 . T h e s e a n g l e s d o n o t s h o w m u c h d e v i a t i o n f r o m t h e i d e a l b o n d a n g l e s i n t r i g o n a l b i p y r a m i d s . 3 . 3 . I o n E x c h a n g e E x p e r i m e n t s w i t h ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 S i n c e t h e C s + s a l t o f ( I I ) i s k n o w n , i t i s i n t e r e s t i n g t o s e e w h e t h e r t h e c a t i o n s o f t h e l a y e r e d ( M e 4 N ) 2 S n 3 S e 7 s t r u c t u r e a r e e x c h a n g e a b l e . T h e i o n e x c h a n g e e x p e r i m e n t w a s p e r f o r m e d a c c o r d i n g t o t h e f o l l o w i n g e q u a t i o n : ( M e 4 N ) 2 8 n 3 S e 7 + 2 C s + — ‘ : _ ' — C s Z S n 3 S e 7 + 2 M e 4 N + . T h e f i n a l p r o d u c t w a s e x a m i n e d u n d e r a n o p t i c a l m i c r o s c o p e w h e r e t h e s m a l l o r a n g e c r y s t a l l i n e p i e c e s w e r e f o u n d t o m a i n t a i n t h e i r o r i g i n a l s i z e s a n d s h a p e s b u t w i t h c r a c k s o n t h e i r s u r f a c e s . I t s v i b r a t i o n s p e c t r u m s h o w s n o o r g a n i c p e a k s , i n d i c a t i n g a l l t h e M e 4 N + c o u n t e r i o n s a r e r e p l a c e d . S e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s p e r f o r m e d o n S E M / E D S w a s d o n e o n b o t h t h e s u r f a c e o f l a r g e r p i e c e s ( ~ 0 . 5 m m ) a n d t h e s m a l l p a r t i c l e s ( ~ 1 - 1 0 m m ) f r o m f u r t h e r g r i n d i n g , w h i c h i n d i c a t e d C s z , o S n 3 , o S e 7 , 5 c o n s i s t e n t l y . T h i s c o n fi r m s t h a t M e 4 N ’ r c a t i o n s a r e r e p l a c e d b y C s ” . T h e p o w d e r X - r a y d i f f r a c t i o n , h o w e v e r , s h o w s p o o r p r o d u c t c r y s t a l l i n i t y w i t h a s t r o n g p e a k a t 6 . 9 2 A , w h i c h c o r r e s p o n d s t o t h e i n t e r l a y e r s p a c i n g o f C s z S n 3 S e 7 . 1 9 2 3 . 4 . T h e r m o g r a v i m e t r i c A n a l y s i s o f ( M e 4 N ) 2 8 n 3 S e 7 - 2 H 2 0 ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 d e c o m p o s e s a t ~ 2 7 0 ° C , a s s h o w n i n F i g u r e 3 - 5 , f o r m i n g S n S e z a s a b l a c k p o w d e r a c c o r d i n g t o i t s X - r a y d i f f r a c t i o n p o w d e r p a t t e r n . T h e d e c o m p o s i t i o n p r o c e s s i s r a t i o n a l i z e d b y t h e f o r m a t i o n o f v o l a t i l e t r i a l k y l a m i n e , d i a l k y l s e l e n i d e a n d w a t e r m o l e c u l e s , a s s h o w n i n t h e f o l l o w i n g e q u a t i o n : ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 - - - - - > 3 S n S e 2 + 2 M e 3 N + M e z S e + 2 H z O T h e c a l c u l a t e d w e i g h t l o s s , 2 3 . 8 % , i s s l i g h t l y s m a l l e r t h a n t h e o b s e r v e d 2 7 % . T h i s c o u l d b e a t t r i b u t e d t o e x p e r i m e n t a l e r r o r s o r i n d i c a t e t w o m o r e e q u i v a l e n t s o f w a t e r m o l e c u l e s m a y b e t r a p p e d i n s i d e t h e f r a m e w o r k o r o n t h e s u r f a c e o f t h e c r y s t a l s . 1 9 3 1 9 3 1 1 o 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 1 L 1 1 1 3 2 7 0 ° C E 1 0 0 j — — _ _ - ( M e 4 N ) 2 S n 3 S e 7 . 2 H 2 0 - . 1 1 . 9 ° : - 2 7 % _ — % w t 2 t 8 0 - _ 1 7 0 - : 3 0 3 6 2 C ’ 6 o d 1 I I I l I I I I l I I I I l I I I I f I I I I 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 T e m p e r a t u r e ( 0 C ) F i g u r e 3 - 5 : T h e r m o g r a v i m e t r i c a n a l y s i s ( T G A ) d a t a o f ( M e 4 N ) 2 S n 3 S e 7 ' 2 H 2 0 . T h e h e a t i n g r a t e w a s 5 O C / m i n . 1 9 4 3 . 5 . S p e c t r o s c o p y O p t i c a l S p e c t r o s c o p y T h e o p t i c a l a b s o r p t i o n s p e c t r u m o f ( M e 4 N ) 2 S n 3 S e 7 - 2 H 2 0 i s g i v e n i n F i g u r e 3 - 6 . I t i n d i c a t e s t h e s e m i c o n d u c t o r n a t u r e o f t h e c o m p o u n d w i t h a s t e e p a b s o r p t i o n e d g e a n d a n o p t i c a l b a n d g a p a t 2 . 0 e V w h i c h i s c o n s i s t e n t w i t h t h e r e d c o l o r o f t h e c r y s t a l s . T h e c o m p o u n d a l s o s h o w s f o u r a b s o r p t i o n p e a k s i n t h e n e a r I R r e g i o n a t 0 . 5 0 7 , 0 . 5 1 8 , 0 . 5 3 2 a n d 0 . 5 4 8 e V r e s p e c t i v e l y w h i c h a r e d u e t o t h e p r e s e n c e o f M e 4 N + . T h e ( M e 4 N ) 4 S n 4 S e 1 0 c o n t a i n s d i s c r e t e m o l e c u l a r [ S n 4 S e 1 o ] 4 ' . I n s t e a d , i t s h o w s t h r e e a b s o r p t i o n b a n d s a t 2 1 8 n m ( 5 . 6 9 e V ) , 2 6 6 n m ( 4 . 6 6 e V ) , 4 1 7 n m ( 2 . 9 7 e V ) a n d a s h o u l d e r b e t w e e n 5 5 0 n m a n d 8 5 0 n m ( 1 . 4 9 ~ 2 . 2 5 e V ) , a s s h o w n i n F i g u r e 3 - 7 . 1 2 U 1 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 a / S 0 0 0 O . . - 8 6 4 “ _ 7 . 2 _ , ( 1 0 I 7 7 7 ? 0 1 0 2 . I I T I 2 5 . I 0 0 E . 0 . e I 5 1 5 0 0 1 . 0 n 4 " 4 . V I 3 e . H 4 8 I r 1 I 1 1 1 1 ( 0 , . 0 W T 0 . . . 5 I I 1 M 5 5 . I 4 . e 8 . 2 v I T . z ) g y ( 1 1 1 L 1 1 1 1 1 1 1 1 1 _ ) - — 6 0 . - 7 — ' , _ I I I I I I 6 7 f I e 1 n 5 3 3 / l . . g ) 5 . e 0 r I . 4 ( I l . . , 5 . 6 0 . . . v ) I I I 5 . . . 5 8 I 0 I 1 9 5 F i g u r e 3 - 6 : S o l i d s t a t e o p t i c a l s p e c t r u m o f ( M e 4 N ) 2 S n 3 S e 7 ~ 2 H z O . T h e a b s o r p t i o n s i n t h e 0 . 5 ~ 0 . 6 e V r e g i o n a r e d u e t o v i b r a t i o n a l e x c i t a t i o n s w i t h i n t h e M e 4 N + m o l e c u l e . 1 P ) ) p b — — — — _ 1 ) - N C 0 1 1 1 1 l 1 1 1 1 l 1 1 1 1 1 1 1 1 1 J 1 1 1 1 I I I I I I I I I I I I I I I I I I I I I I I I 1 9 6 1 1 l 1 1 1 l 1 1 ( M e 4 N ) 4 S n 4 S e 1 0 N _ L 0 1 0 U S — - l O 0 1 O I I I I 2 0 0 4 0 0 I I I I I I I I 8 0 0 1 0 0 0 1 2 0 0 F i g u r e 3 - 7 : S o l i d s t a t e o p t i c a l s p e c t r u m o f ( M e 4 N ) 4 S n 4 3 6 1 0 . 1 9 7 V i b r a t i o n a l S p e c t r o s c o p y T h e F a r - I R s p e c t r a o f ( I ) a n d ( I I ) a r e s h o w n i n F i g u r e 3 - 8 . ( I ) e x h i b i t s v i b r a t i o n s a t 4 5 2 c m - 1 , 2 7 4 c m - 1 , 2 3 8 c m ' 1 a n d 1 9 2 c m - 1 , w h i l e ( I I ) e x h i b i t s v i b r a t i o n s a t 2 6 2 c m - 1 , 2 3 1 c m ‘ l , 2 1 1 c m - 1 2 0 2 c m ' l , 1 9 4 c m - 1 a n d 1 8 6 c m ' l . T h e s e p e a k s r e p r e s e n t S n - S e v i b r a t i o n s . T h e v i b r a t i o n a l s p e c t r a o f t h e a l k a l i m e t a l s s a l t s o f [ S n 4 8 e 1 0 ] 2 ' a n d [ S n 3 S e 7 ] 2 ' w e r e n o t r e p o r t e d . F o r c o m p a r i s o n , t h e S n - S e v i b r a t i o n s o f N a 4 8 n S e 4 - 1 6 H 2 0 1 3 w e r e r e p o r t e d a t 2 5 2 c m " 1 a n d 1 9 5 c m ’ l . E C N fl T T I " S M R ! E ‘ 5 T 2 5 3 7 . 5 7 6 E . C 0 N 7 H T T I 5 . M S N H H T 6 5 9 m 2 8 4 1 8 3 5 6 2 9 4 2 5 2 1 7 0 1 2 5 8 2 5 N 5 H V E N U 2 M 1 B 2 E B 1 0 9 1 5 5 1 9 8 9 2 7 3 l ( A ) ( B ) 7 . 6 0 . F i g u r e 3 - 8 : I n f r a r e d s p e c t r a o f ( A ) ( M e 4 N ) 4 S n 4 8 e 1 0 a n d ( B ) ( M e 4 N ) 2 S n 3 S e 7 ‘ 2 H 2 0 . 1 ) 2 ) 3 ) 4 ) 5 ) 6 ) 1 9 9 L i s t o f R e f e r e n c e s ( a ) S h e l d r i c k . W . S . Z . A n o r g . A l l g . C h e m . 1 9 8 8 , $ 2 , 2 3 - 3 0 ( b ) S h e l d r i c k , W . S . ; H a u s e r , H . — . l . Z . A n o r g . A l l g . C h e m . 1 9 8 8 , 5 _ 5 1 , 9 8 - 1 0 4 ( 0 ) S h e l d r i c k , W . S . ; H a u s e r , H . - J . Z A n o r g . A l l g . C h e m . 1 9 8 8 , 5 _ 5 1 , 1 0 5 - 1 1 1 . ( ( 1 ) S h e l d r i c k , W . S . ; K a u b , J . Z A n o r g . A l l g . C h e m . 1 9 8 6 , fl , 1 7 9 - 1 8 5 . ( e ) S h e l d r i c k , W . S . ; B r a u n b e c k , H . G . Z . N a t u r f o r s c h 1 9 8 9 , m , 8 5 1 - 8 5 2 . ( f ) S h e l d r i c h , W . S . Z . N a t u r f o r s c h 1 9 8 8 , 4 _ 3 _ b , 2 4 9 - 2 5 2 ( a ) L i a o , J . - H . ; K a n a t z i d i s , M . G . J . A m . C h e m . S o c . 1 9 9 0 , 1 _ 1 2 , 7 4 0 0 - 7 4 0 2 . ( b ) L i a o , J . - H . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 2 , 3 1 , 4 3 1 - 4 3 9 . ( c ) L i a o , J . - H . ; K a n a t z i d i s , M . G . m a n u s c r i p t i n p r e p a r a t i o n . H u a n g , S . - P . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 1 , 3 0 , 1 4 5 5 - 1 4 6 6 . B e d a r d , R . L . ; W i l s o n , S . T . ; V a i l , L . D . ; B e n n e t t , E . M . ; F l a n i g e n , E . M . Z e o l i t e s ; F a c t s , F i g u r e s , F u t u r e ( J a c o b s , P . A . ; v a n S a n t e n , R . A . e d . ) 1 9 8 9 , 3 7 5 - 3 8 7 P o h l , S . D i s s e r t a t i o n , U n i v e r s i t fi t K i e l 1 9 7 4 . S h e l d r i c k , W . S . ; B r a u n b e c k , H . - G . Z N a t u r f o r s c h 1 9 9 0 , 4 5 0 , 1 6 4 3 - 1 6 4 6 . 7 ) 8 ) 9 ) 1 0 ) 1 1 ) 1 2 ) 1 3 ) 2 0 0 ( a ) K u b e l k a , P . ; M u n k , F . Z . T e c h . P h y s . 1 9 3 1 , 1 2 , 5 3 9 . ( b ) K u b e l k a , P . J . O p t . S o c . A m . 1 9 4 8 , 3 8 , 4 4 8 . ( c ) W e n d l a n d t , W . W . ; H e c h t , H . G . " R e fl e c t a n c e S p e c t r o s c o p y " , I n t e r s c i e n c e P u b l i s h e r s , 1 9 6 6 . ( d ) K o t i i m , G . " R e f l e c t a n c e S p e c t r o s c o p y " , S p r i n g e r V e r l a g , N e w Y o r k , 1 9 6 9 . ( e ) T a n d o n , S . P . ; G u p t a , J . P . P h y s . S t a t . S o l i d i 1 9 7 0 , 3 _ 8 _ , 3 6 3 - 3 6 7 . H a z e l w o o d , R . B r i t i s h J . A p p l . P h y s . 1 9 6 9 , 2 , 1 5 0 7 . S m i t h , D . K . ; N i c h o l s , M . C . ; Z o l e n s k y , M . E . " P O W D 1 0 : A F O R T R A N P r o g r a m f o r C a l c u l a t i n g X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s " V e r s i o n 1 0 . P e n n s y l v a n i a S t a t e U n i v e r s i t y , 1 9 8 3 . T E X S A N - T E X R A Y S t r u c t u r e A n a l y s i s P a c k a g e , M o l e c u l a r S t r u c t u r e C o r p o r a t i o n ( 1 9 8 5 ) . D I F A B S : W a l k e r , N . ; S t u a r t , D . D I F A B S : A n E m p i r i c a l M e t h o d f o r C o r r e c t i n g D i f f r a c t i o n D a t a f o r A b s o r p t i o n E f f e c t s . A c t a . C r y s t a l l o g r . 1 9 8 3 , A 3 2 , 1 5 8 - 1 6 6 . a ) P o h l , 8 . ; K r e b s , B . Z A n o r g . A l l g . C h e m . 1 9 7 6 , 4 2 4 , 2 6 5 - 2 7 2 . b ) K r e b s , B . ; P o h l , S . Z N a t u r f o r s c h . 1 9 7 1 , 2 _ 6 _ b , 8 5 3 - 8 5 4 . c ) P h i l i p p o t , E . ; R i b e s , M . ; L i n d q v i s t , 0 . R e v . C h i m . M i n e r . 1 9 7 1 , 8 , 4 7 7 - 4 8 9 . K r e b s , B . ; H i i r t e r , H . - U . Z A n o r g . A l l g . C h e m . 1 9 8 0 , 4 _ 6 2 , 1 4 3 - 1 5 1 . C H A P T E R 4 M e t h a n o t h e r m a l S y n t h e s i s a n d C h a r a c t e r i z a t i o n o f V a n a d i u m , N i o b i u m a n d T u n g s t e n ( P o l y ) s e l e n i d e s S y s t e m s 1 . I n t r o d u c t i o n U n l i k e h y d r o t h e r m a l t e c h n i q u e s w h i c h u s e h a r d b a s e s a s m i n e r a l i z e r s a n d y i e l d m o n o c h a l c o g e n i d e c o m p o u n d s l , o u r a p p r o a c h u s e s t h e p o l y c h a l c o g e n i d e s t h e m s e l v e s a s m i n e r a l i z e r s o f t e n g i v i n g r i s e t o p o l y c h a l c o g e n i d e c o m p o u n d s . I n C h a p t e r 2 , w e h a v e s h o w n t h a t t h e M o / S e s y s t e m h a s p r o d u c e d c l u s t e r c o m p o u n d s i n w h i c h t h e t r i m e r i c [ M o 3 S e 7 ] 4 + c o r e e x i s t s a s a b u i l d i n g b l o c k , a n d t h e M 0 i s i n t h e 4 + o x i d a t i o n s t a t e . 2 G i v e n t h e k n o w n c h e m i c a l s i m i l a r i t y b e t w e e n M o a n d V , N b a n d W , w e e x t e n d e d t h i s t e c h n i q u e t o t h e s e m e t a l s t o s e e i f t h e a n a l o g o u s , h i t h e r t o u n k n o w n , [ M 3 S e 7 ] + ( M = V ( 3 + ) , N b ( 3 + ) o r W ( 4 + ) ) c l u s t e r s c o u l d b e p r o d u c e d . A l t h o u g h t h i s c l u s t e r c o r e w a s n o t f o u n d , w e w e r e a b l e t o s y n t h e s i z e a n d c r y s t a l l i z e t w o n e w v a n a d i u m p o l y s e l e n i d e c o m p o u n d s , K 4 V 2 0 2 8 e 1 0 - 2 M e O H ( I ) , K 4 V 2 0 2 8 e 3 - 0 . 6 5 M e O H ( I I ) . F o r N b a n d W s y s t e m s , m i x e d o x o / s e l e n o [ S O 4 ] 2 - t y p e t e t r a h e d r a l a n i o n s w e r e o b t a i n e d : [ N b O S e 3 ] 3 ‘ ( I I I ) a n d [ ( W O z S e 2 ) o , 5 ( W O S e 3 ) o _ 5 ] 2 - ( I V ) . I n c o n t r a s t t o t h e 2 0 1 2 0 2 M o s y s t e m s , w e f o u n d t h a t , d u e t o t h e s t r o n g e r a f fi n i t y o f V , N b a n d W i o n s f o r o x y g e n , w a t e r i s n o t a s u i t a b l e s o l v e n t f o r t h e s e s y s t e m s , c a u s i n g p r o d u c t h y d r o l y s i s . A w e a k e r L e w i s b a s e , m e t h a n o l , w a s u s e d t o m i n i m i z e t h e f o r m a t i o n o f o x o m e t a l a t e s . 2 . E x p e r i m e n t a l S e c t i o n 2 . 1 . R e a g e n t s C h e m i c a l s i n t h i s w o r k w e r e u s e d a s o b t a i n e d f r o m c o m m e r c i a l s o u r c e s . A l l m a n i p u l a t i o n s w e r e c a r r i e d o u t i n a g l o v e - b o x u n d e r a n i t r o g e n a t m o s p h e r e . K 2 S e 4 w a s p r e p a r e d b y d i s s o l v i n g t h e s t o i c h i o m e t r i c a m o u n t o f t h e e l e m e n t s i n l i q u i d a m m o n i a . 2 . 2 . P h y s i c a l M e a s u r e m e n t s T h e i n s t r u m e n t s a n d e x p e r i m e n t a l s e t u p s f o r I n f r a r e d s p e c t r o s c o p y a n d S E M / E D S q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s a r e t h e s a m e a s t h o s e i n p r e v i o u s c h a p t e r s . U V / V i s s p e c t r a w e r e m e a s u r e d o n a H i t a c h i U - 2 0 0 0 S p C C t l ’ O m e t e r . 2 . 3 . S y n t h e s i s K 4 V 2 0 2 8 e 1 0 - 2 M e O H ( I ) A n a m o u n t o f 0 . 0 2 5 g ( 0 . 5 m m o l ) V m e t a l , 0 . 1 9 7 g ( 0 . 5 m m o l ) K 2 8 e 4 a n d 0 . 3 m l ( 7 . 3 7 m m o l ) o f M e O H w e r e m i x e d i n a h e a v y - w a l l ( 2 m m t h i c k n e s s ) P y r e x t u b e o f ~ 5 m l t o t a l c a p a c i t y . T h e t u b e w a s p l a c e d i n a n o v e n a t 1 3 5 0 C f o r 4 d a y s a t t h e e n d o f w h i c h i t 2 0 3 a f f o r d e d b l a c k n e e d l e - l i k e c r y s t a l s o f K 4 V 2 0 2 S e 1 0 - 2 M e O H i n ~ 2 0 % y i e l d ( b a s e d o n V ) . I s o l a t i o n o f t h e p r o d u c t w a s p e r f o r m e d i n a n i t r o g e n - fi l l e d g l o v e b o x . T h e c r y s t a l s w e r e i s o l a t e d b y fi l t r a t i o n a n d w a s h e d w i t h d e g a s s e d M e O H t o r e m o v e e x c e s s K 2 S e x a n d t h e n d r i e d w i t h e t h e r . T h e s e c r y s t a l s a r e s o l u b l e i n w a t e r , D M F , D M S O a n d s l i g h t l y s o l u b l e i n a c e t o n i t r i l e . T h e y d e g r a d e s l o w l y i n a i r . Q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s o n t h e s i n g l e c r y s t a l s g a v e a c o m p o s i t i o n o f K 1 , 7 V 1 _ 0 S e 4 , 9 . K 4 V 2 0 2 8 e 3 - 0 . 6 5 M e O H ( I I ) A n a m o u n t o f 0 . 1 2 5 g ( 2 . 5 m m o l ) V m e t a l , 0 . 9 8 5 g ( 2 . 5 m m o l ) K 2 8 e 4 a n d 1 . 5 m l ( 3 6 . 9 m m o l ) M e O H w e r e m i x e d i n a P a r r b o m b o f 2 1 m l t o t a l c a p a c i t y a t 1 3 5 0 C f o r 2 4 d a y s , g i v i n g b l a c k p l a t e - l i k e c r y s t a l s o f K 4 V 2 0 2 S e 3 - 0 . 6 5 M e O H i n ~ 2 9 % y i e l d ( b a s e d o n V ) . T h e p r o d u c t w a s i s o l a t e d w i t h M e O H a n d d r i e d w i t h e t h e r . T h e s o l u b i l i t y a n d a i r - s e n s i b i l i t y o f t h i s m a t e r i a l a r e s i m i l a r t o t h a t o f ( I ) . S E M / E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d K 1 , 5 V 1 , ( ) S e 3 , ( ) . K 3 N b O S e 3 ( I I I ) T h e r e a c t i o n o f 0 . 0 4 6 g ( 0 . 5 0 m m o l ) N b , 0 . 2 3 6 g K 2 S e 2 ( 1 . 0 m m o l ) a n d 0 . 3 - m l ( 7 . 9 2 m m o l ) M e O H a t 1 3 5 ° C f o r 7 d a y s a f f o r d e d y e l l o w n e e d l e - l i k e c r y s t a l s o f K 3 N b O S e 3 i n l e s s t h a n 1 0 % y i e l d ( b a s e d o n N b ) . T h e y e l l o w c r y s t a l s a r e a i r s e n s i t i v e a n d s o l u b l e i n w a t e r a n d c o m m o n p o l a r s o l v e n t s s u c h a s D M F , D M S O a n d M e O H . T h e p r o d u c t w a s i s o l a t e d a n d d r i e d w i t h r i n s e s o f e t h e r . S E M / E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d K 3 , 3 N b 1 , o S e 3 _ 6 . K 2 [ W O z S e 2 ) o , 5 ( W O S e 3 ) 0 , 5 ] ( I V ) T h e r e a c t i o n o f 0 . 0 9 3 g ( 0 . 4 m m o l ) W O 3 , 0 . 1 8 9 g ( 0 . 8 m m o l ) K 2 8 e 2 a n d 0 . 3 - m l ( 7 . 9 2 m m o l ) M e O H a t 1 3 5 0 C f o r 9 d a y s a f f o r d e d r e d p l a t e - l i k e c r y s t a l s o f 2 0 4 K 2 [ W O z S e z ) o , 5 ( W O S e 3 ) o , 5 ] i n ~ 1 5 % y i e l d . T h e r e d c r y s t a l s d i s s o l v e i n M e O H s l o w l y a n d t h e r e f o r e w e r e i s o l a t e d w i t h q u i c k r i n s e s o f M e O H a n d t h e n d r i e d w i t h e t h e r . T h e y d e c o m p o s e s l o w l y i n a i r a n d a r e s o l u b l e i n w a t e r . S E M / E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d K 0 . 7 W 1 . O S e 2 . 4 . 2 . 4 . X - R a y C r y s t a l l o g r a p h y X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e u s e d f o r t h e p u r p o s e o f p h a s e c h a r a c t e r i z a t i o n a n d i d e n t i fi c a t i o n . T h e X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e r e c o r d e d w i t h a P h i l l i p s X R D - 3 0 0 0 c o n t r o l l e d b y P D P 1 1 c o m p u t e r a n d o p e r a t i n g a t 4 0 k V / 3 5 m A . G r a p h i t e m o n o c h r o m a t e d C u r a d i a t i o n w a s u s e d . I n o r d e r t o e n s u r e t h e h o m o g e n e i t y , d - s p a c i n g s o b t a i n e d f r o m X - r a y p o w d e r d i f f r a c t i o n ( X R D ) m e a s u r e m e n t s o f t h e p r o d u c t s w e r e c o m p a r e d w i t h , a n d f o u n d t o b e i d e n t i c a l , w i t h t h o s e c a l c u l a t e d f r o m u s i n g t h e a t o m c o o r d i n a t e s d e t e r m i n e d f r o m t h e s i n g l e c r y s t a l d a t a . T h e c a l c u l a t i o n o f d - s p a c i n g s w a s p e r f o r m e d u s i n g t h e P O W D 1 0 . 3 p r o g r a m . T h e c o m p a r i s o n t a b l e s b e t w e e n t h e c a l c u l a t e d a n d o b s e r v e d d - s p a c i n g s f o r t h e s e c o m p o u n d s a r e s h o w n i n T a b l e s 4 — 1 ~ 4 - 4 . S i n g l e c r y s t a l X - r a y d i f f r a c t i o n d a t a f o r ( I ) , ( I I ) a n d ( I V ) w e r e c o l l e c t e d o n a R i g a k u A F C 6 S d i f f r a c t o m e t e r e q u i p p e d w i t h g r a p h i t e — m o n o c h r o m a t e d M o K 0 1 r a d i a t i o n . T h e d a t a f o r ( I I I ) w e r e c o l l e c t e d o n a f o u r - c i r c l e N i c o l e t ( S i e m e n s ) a u t o d i f f r a c t o m e t e r e q u i p p e d w i t h g r a p h i t e - m o n o c h r o m a t e d M o K 0 1 r a d i a t i o n . C r y s t a l s o f ( I ) , ( I I ) a n d ( I V ) w e r e m o u n t e d o n t h e t o p s o f g l a s s fi b e r s a n d c o a t e d w i t h a t h i n l a y e r o f e p o x y t o 2 0 5 p r e v e n t d i r e c t e x p o s u r e t o a i r . T h e c r y s t a l o f ( I I I ) w a s s e a l e d i n s i d e a t h i n - w a l l e d g l a s s c a p i l l a r y u n d e r N 2 . A c c u r a t e u n i t c e l l p a r a m e t e r s f o r a l l c o m p o u n d s w e r e o b t a i n e d f r o m t h e l e a s t - s q u a r e s r e fi n e m e n t o f t h e 2 0 , 0 0 , x , ( I ) v a l u e s o f 2 0 - 2 5 m a c h i n e - c e n t e r e d r e f l e c t i o n s . T h r e e s t a n d a r d r e fl e c t i o n s w e r e m o n i t o r e d f o r e v e r y 2 0 0 r e fl e c t i o n s f o r b o t h ( I ) , ( I I ) a n d ( I V ) w h i l e s i x s t a n d a r d r e fl e c t i o n s w e r e u s e d f o r ( I I I ) a t t h e f r e q u e n c y o f e v e r y 3 0 0 r e fl e c t i o n s . N o s i g n i fi c a n t d e c a y w a s o b s e r v e d d u r i n g t h e d a t a c o l l e c t i o n p e r i o d . A n e m p i r i c a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d t o a l l d a t a b a s e d o n 1 0 s c a n s b y u s i n g t h r e e r e fl e c t i o n s f o r ( I ) , ( I I ) a n d ( I V ) a n d s i x r e fl e c t i o n s f o r ( [ 1 1 ) . A n a d d i t i o n a l a b s o r p t i o n c o r r e c t i o n b y u s i n g t h e D I F A B S 4 p r o c e d u r e w a s a p p l i e d t o t h e i s o t r o p i c a l l y r e fi n e d d a t a . A l l t h e s t r u c t u r e s e x c e p t f o r ( I V ) w e r e s o l v e d w i t h d i r e c t m e t h o d s b y u s i n g S H E L X S - 8 6 5 . T h e s t r u c t u r e o f ( I V ) w a s s o l v e d b y t h e P a t t e r s o n h e a v y a t o m m e t h o d . A l l s t r u c t u r e s w e r e r e fi n e d w i t h f u l l m a t r i x l e a s t - s q u a r e s t e c h n i q u e s b y u s i n g t h e T E X S A N 6 p a c k a g e o f c r y s t a l l o g r a p h i c p r o g r a m s r u n n i n g o n a V A X s t a t i o n 3 1 0 0 / 7 6 c o m p u t e r . S i n c e ( I ) a n d ( I I I ) c r y s t a l l i z e i n n o n c e n t r o s y m m e t r i c s p a c e g r o u p s ( P n c Z a n d C m 0 2 1 r e s p e c t i v e l y ) , t h e i r e n a n t i o m o r p h i c m o d e l s w e r e a l s o r e fi n e d , b u t n o s i g n i fi c a n t c h a n g e s i n R v a l u e o r s t a n d a r d d e v i a t i o n s o f b o n d d i s t a n c e s a n d a n g l e s w e r e o b s e r v e d . I n ( I I ) , t h e c o c r y s t a l l i z e d s o l v e n t , M e O H , w a s f o u n d t o b e d i s o r d e r e d , w i t h t h e o c c u p a n c y o f O a t o m s b e i n g r e fi n e d t o b e ~ 0 . 6 5 . T h e p o s i t i o n o f C a n d H a t o m s c o u l d n o t b e l o c a t e d . T h e d a t a c o l l e c t i o n p a r a m e t e r s a n d d e t a i l s o f t h e s t r u c t u r e s o l u t i o n a n d r e fi n e m e n t a r e g i v e n i n T a b l e 4 - 5 . T h e fi n a l a t o m i c c o o r d i n a t e s , t e m p e r a t u r e f a c t o r s a n d t h e i r e s t i m a t e d s t a n d a r d d e v i a t i o n s f o r ( I ) ~ ( I V ) a r e g i v e n i n T a b l e s 4 - 6 ~ 4 - 9 . 2 0 6 T a b l e 4 - 1 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 4 V 2 0 z S e 1 0 - 2 M e O H h k 1 d c a l c . ( A ) d e b s . ( A ) % I o b s . 1 1 0 1 2 . 2 5 7 5 1 2 . 6 4 4 9 1 0 0 . 0 0 2 0 0 7 . 1 1 4 5 7 . 2 7 4 2 2 7 . 7 7 1 1 1 6 . 0 1 7 4 6 . 1 2 5 9 9 0 . 9 1 3 3 0 4 . 0 8 5 8 4 . 0 6 8 5 4 5 . 4 8 3 1 1 3 . 8 5 9 6 3 . 9 1 1 1 1 8 . 8 5 0 o 2 3 . 4 5 3 5 3 . 4 9 6 7 5 4 . 2 3 2 6 1 3 . 1 2 3 2 3 . 1 3 5 9 3 9 . 4 1 2 o 2 3 . 1 0 6 8 3 . 0 9 9 8 8 9 . 4 4 4 2 1 3 . 0 5 9 2 3 . 0 4 4 9 4 9 . 9 8 3 1 2 2 . 7 7 3 3 2 . 8 0 1 9 3 5 . 6 3 1 9 0 2 . 6 3 5 4 3 . 6 5 9 3 8 6 . 5 3 3 7 1 2 . 5 8 6 1 2 . 5 9 9 4 5 7 . 6 5 2 8 1 2 . 5 7 7 0 5 3 1 2 . 5 0 0 9 2 . 5 2 2 6 2 3 . 1 0 4 6 1 2 . 4 8 6 2 2 . 4 7 6 5 2 3 . 8 6 4 4 2 2 . 2 9 2 1 2 . 3 0 4 9 3 8 . 4 5 2 1 o 0 2 . 2 8 5 7 2 2 3 2 . 1 5 5 3 2 . 1 5 8 4 2 0 . 9 3 6 4 1 2 . 1 0 2 4 2 . 1 1 5 6 1 8 . 8 5 1 9 2 2 . 0 9 5 1 2 . 0 8 1 0 1 3 . 2 7 6 6 1 1 . 9 5 9 0 1 . 9 7 2 6 1 5 . 0 2 1 . 9 4 6 7 1 2 . 1 8 3 1 1 1 1 . 9 1 3 5 1 . 9 2 2 7 2 1 . 6 2 4 2 3 1 . 9 0 8 5 1 . 8 9 0 0 2 0 . 2 1 2 1 o 2 1 . 9 0 6 0 1 7 3 1 . 8 9 7 6 T a b l e 4 - 2 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r 2 0 7 K 4 V 2 0 2 8 e 3 - O . 6 5 M e O H h k l d c a l c . ( A ) C l o b s . ( A ) % I o b s . 0 1 2 6 . 2 2 0 8 6 . 2 3 4 3 4 2 . 2 5 1 0 1 5 . 7 6 8 1 5 . 8 0 4 4 1 0 0 . 0 0 1 2 0 5 . 6 2 4 6 5 . 6 5 0 6 7 5 . 6 9 1 1 1 5 . 4 8 3 4 5 . 4 9 4 7 4 7 . 6 1 2 1 ' 1 3 . 7 0 4 3 3 . 6 8 4 1 2 8 . 0 9 0 4 2 3 . 6 7 9 3 1 4 1 3 . 5 0 7 4 3 . 5 1 4 0 3 3 . 6 4 1 3 2 3 . 5 0 3 9 1 3 ' 3 3 . 4 9 7 0 2 2 0 3 . 3 7 0 7 3 . 3 8 1 8 3 6 . 0 0 2 1 1 3 . 2 4 0 0 3 . 2 5 2 1 6 0 . 8 4 2 1 ' 3 3 . 2 3 1 3 1 2 3 3 . 1 7 2 9 3 . 1 7 5 2 4 4 . 8 9 1 2 ‘ 4 3 . 1 6 5 7 0 2 4 3 . 1 1 0 4 3 . 0 9 9 8 8 8 . 3 6 1 4 2 3 . 1 0 2 9 2 2 1 3 . 0 8 8 1 1 5 1 3 . 0 1 3 6 3 . 0 1 9 5 1 9 . 3 6 2 3 1 2 . 8 7 6 3 2 . 8 7 9 7 4 3 . 5 6 2 3 ' 3 2 . 8 7 0 2 1 5 2 2 . 7 4 5 3 2 . 7 4 9 0 6 4 . 0 0 1 5 ' 3 2 . 7 4 2 0 0 6 2 2 . 6 9 2 8 2 . 6 9 6 7 6 7 . 2 4 1 6 1 2 . 6 2 3 1 2 . 6 3 0 9 8 2 . 8 1 1 6 ‘ 2 2 . 6 2 1 4 2 5 ’ 1 2 . 5 8 4 4 2 . 5 8 9 4 6 0 . 8 4 2 3 ‘ 4 2 . 5 8 3 6 1 3 ' 5 2 . 4 9 1 2 2 . 4 9 7 3 2 6 . 0 1 1 5 ‘ 4 2 . 4 4 6 9 2 . 4 5 3 1 2 5 . 0 0 0 3 5 2 . 4 2 3 1 2 . 4 2 3 4 5 6 . 2 5 1 7 ' 2 2 . 3 1 1 6 2 . 3 1 4 6 4 3 . 5 6 2 3 ‘ 5 2 . 2 9 6 8 1 1 5 2 . 2 8 5 3 2 . 2 8 9 7 3 7 . 2 1 3 4 ‘ 2 2 . 1 8 4 7 2 . 1 8 5 5 3 9 . 6 9 2 2 ‘ 6 2 . 1 1 0 0 2 . 1 0 1 5 4 7 . 6 1 0 8 2 2 . 0 9 6 2 3 1 2 2 . 0 9 1 4 1 7 3 2 . 0 2 6 8 2 . 0 3 7 2 2 3 . 0 4 1 9 0 1 . 8 9 6 0 1 . 8 9 4 0 4 2 . 2 5 1 9 ’ 1 1 . 8 9 5 8 1 8 3 1 . 8 5 2 3 1 . 8 5 4 7 3 4 . 8 1 3 3 3 1 . 8 2 7 8 1 6 ‘ 6 1 . 8 1 2 9 1 . 8 1 4 4 3 0 . 2 5 1 5 ' 7 1 . 7 2 2 6 1 . 7 2 8 1 2 9 . 1 6 2 0 ' 8 1 . 6 9 5 4 1 . 6 9 7 2 2 4 . 0 1 3 7 1 1 . 6 9 3 8 1 2 ' 8 1 . 6 9 2 6 2 0 8 T a b l e 4 - 3 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 3 N b O S e 3 h k 1 d c a l c . ( A ) d o b s . < i ) % I o b s . 0 2 0 6 . 7 7 2 0 6 . 8 8 2 3 2 7 . 9 9 2 o 0 5 . 5 0 7 0 5 . 5 8 8 6 1 7 . 5 9 1 1 1 5 . 3 2 6 1 5 . 3 9 0 1 5 5 . 0 5 2 2 0 4 . 2 7 2 6 4 . 3 1 6 9 1 6 . 0 0 2 2 1 3 . 6 1 9 4 3 . 5 7 5 1 6 5 . 0 4 1 3 1 3 . 5 6 0 9 0 0 2 3 . 4 0 5 5 3 . 4 2 1 7 1 0 0 . 0 0 0 4 0 3 . 3 8 6 0 3 1 1 3 . 1 4 3 5 3 . 0 5 4 6 1 1 . 2 5 0 2 2 3 . 0 4 2 5 0 4 1 3 . 0 3 2 0 2 o 2 2 . 8 9 6 4 2 . 8 8 9 5 3 5 . 2 3 2 4 0 2 . 8 8 4 4 3 3 0 2 . 8 4 8 4 4 0 0 2 . 7 5 3 5 2 . 7 7 4 4 2 9 . 3 7 2 . 7 4 2 9 1 4 . 9 8 2 2 2 2 . 6 6 3 1 2 . 6 4 8 3 1 7 . 5 9 2 4 1 2 . 6 5 6 0 1 5 0 2 . 6 3 0 4 3 3 1 2 . 6 2 7 9 4 2 0 2 . 5 5 0 7 2 . 5 7 7 0 9 . 5 9 3 1 2 2 . 4 5 5 4 2 . 4 6 7 2 2 0 . 4 0 1 5 1 2 . 4 5 3 8 0 4 2 2 . 4 0 1 1 2 . 4 1 5 0 1 9 . 2 5 3 3 2 2 . 1 8 4 9 2 . 1 9 2 5 4 4 . 1 6 3 5 0 2 . 1 7 9 7 5 1 1 2 . 0 7 1 3 2 . 0 7 9 0 1 1 . 2 5 2 2 3 2 . 0 0 4 9 2 0 0 7 0 1 2 . 5 9 2 6 1 1 . 9 9 6 9 3 5 2 1 . 8 3 5 9 1 . 8 4 3 6 2 9 . 3 7 6 0 0 1 . 8 3 5 7 3 7 0 1 . 7 1 1 7 1 . 7 2 3 6 1 1 . 2 5 0 0 4 1 . 7 0 2 7 1 . 7 0 1 8 1 2 . 5 9 T a b l e 4 — 4 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 2 I ( W 0 2 3 6 2 ) 0 . 5 ( W 0 3 6 3 ) 0 . 5 1 2 0 9 h k l d c a l c . ( A ) d o b s . ( A ) % I o b s . 1 1 1 6 . 5 9 1 9 6 . 6 1 2 8 1 2 . 0 3 0 0 2 6 . 0 3 2 0 6 . 0 5 8 4 1 8 . 6 5 1 0 2 5 . 3 7 2 9 5 . 4 0 3 5 5 6 . 2 4 0 2 0 5 . 2 7 4 5 5 . 2 8 1 5 5 1 . 4 4 2 1 0 5 . 1 5 6 3 5 . 1 6 5 7 7 2 . 5 4 1 1 2 4 . 7 8 7 7 4 . 8 0 1 8 1 0 0 . 0 0 2 1 1 4 . 7 4 1 4 4 . 7 5 2 4 8 0 . 2 1 0 2 2 3 . 9 7 0 6 3 . 9 8 3 2 3 5 . 1 4 2 1 2 3 . 9 1 9 4 3 . 9 2 0 5 1 2 . 0 9 1 2 2 3 . 7 6 3 9 2 . 7 6 9 8 2 0 . 1 4 3 0 2 3 . 2 9 8 9 3 . 3 0 2 4 6 9 . 2 5 3 1 2 3 . 1 4 8 5 3 . 1 5 0 2 1 5 . 4 8 1 2 3 3 . 0 8 7 0 3 . 0 9 0 8 1 4 . 6 4 3 2 1 3 . 0 5 3 9 3 . 0 5 8 2 3 8 . 2 1 0 0 4 3 . 0 1 6 0 3 . 0 1 5 6 3 5 . 5 8 2 3 1 2 . 9 3 1 4 2 . 9 3 5 4 6 4 . 5 2 1 1 4 2 . 8 1 6 3 2 . 8 1 4 5 2 2 . 3 5 3 0 3 2 . 8 1 4 4 2 2 3 2 . 8 1 2 6 2 3 2 2 . 7 0 1 9 2 . 7 0 2 9 1 2 . 5 7 0 3 3 2 . 6 4 7 1 2 . 6 4 8 2 2 6 . 5 4 0 4 0 2 . 6 3 7 2 2 1 4 2 . 6 0 3 4 2 . 6 1 0 5 1 5 . 8 2 4 2 1 2 . 5 2 1 2 2 . 5 2 6 7 3 6 . 2 5 3 2 3 2 . 4 8 3 1 2 . 4 9 3 5 3 4 . 2 5 1 3 4 2 . 2 4 7 5 2 . 2 4 1 6 2 4 . 2 1 3 4 1 2 . 1 5 6 4 2 . 1 5 6 4 9 . 2 9 5 1 3 2 . 0 0 1 1 2 . 0 1 1 2 2 4 . 6 7 2 5 0 1 . 9 8 7 0 1 5 2 1 . 9 6 3 8 1 . 9 7 2 1 2 4 . 6 5 4 4 1 1 . 9 4 2 0 1 . 9 3 9 5 1 1 . 4 7 5 3 1 1 . 9 3 6 5 3 4 3 1 . 9 2 4 4 2 3 5 1 . 8 8 5 5 1 . 8 8 3 8 8 . 6 9 5 3 2 1 . 8 6 5 8 6 2 1 1 . 8 2 4 4 1 . 8 2 0 5 1 7 . 6 4 4 3 4 1 . 8 0 9 8 5 3 3 1 . 7 6 3 3 1 . 7 6 5 8 3 5 . 9 1 4 2 5 1 . 7 6 1 7 0 6 0 1 . 7 5 8 2 1 3 6 1 . 7 2 6 7 1 . 7 3 0 1 1 2 . 9 9 3 2 6 1 . 6 9 5 9 1 . 7 0 0 3 4 . 6 5 3 6 2 1 . 5 5 1 6 1 . 5 5 4 6 1 4 . 2 7 2 1 0 T a b l e 4 - 5 . S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r K 4 V 2 0 2 S e 1 0 - 2 M e O H , K 4 V 2 O Q S e g - 0 . 6 5 M e O H , K 3 N b O S e 3 a n d K 2 [ ( W 0 2 S e z ) o , 5 ( W O S e 3 ) o , 5 ] ( I ) ( I I ) f o r m u l a K 4 V 2 S e 1 0 0 4 C 2 H 8 K 4 V 2 8 9 8 0 0 6 5 f w 1 1 4 3 . 9 6 9 3 2 . 3 5 a , A l 4 . 2 2 9 ( 3 ) 7 . 5 7 7 ( 3 ) b , A 2 4 . 1 3 6 ( 9 ) 1 7 . 6 7 2 ( 6 ) c , A 6 . 9 0 7 ( 4 ) 1 3 . 8 1 0 ( 5 ) ( 3 9 0 . 0 1 0 5 . 7 4 ( 3 ) 2 , v , A 3 4 , 2 3 7 2 ( 2 ) 4 , 1 7 8 0 ( 2 ) s p a c e g r o u p P n c 2 ( # 3 0 ) P 2 1 / n ( # 1 4 ) d c a l c , g / c m 3 3 . 2 0 3 3 . 4 7 9 c r y s t a l s i z e , m m O . 6 x 0 . 6 x 1 . 0 0 . 4 2 x 0 . 3 x 0 . 1 t e m p e r a t u r e , 0 C - 9 0 . 0 2 3 s c a n t y p e t o 0 0 s c a n r a t e , d e g / m i n 4 . 0 4 . 0 r a d i a t i o n M o K a ( 1 = 0 . 7 1 0 6 9 A ) M o K 0 1 ( 1 = 0 . 7 1 0 6 9 A ) “ ( M O K 0 1 ) , c m - l 1 6 6 . 7 0 1 8 1 . 4 6 2 0 m “ , d e g 5 0 . 0 5 0 . 0 n o . o f d a t a c o l l e c t e d 2 4 3 3 3 5 1 1 n o . o f u n i q u e d a t a 2 4 3 3 3 5 1 1 n o . o f o b s . d a t a ( I > 3 o ( I ) ) 1 2 3 1 1 1 8 5 n o . o f v a r i a b l e s 1 6 8 1 5 0 fi n a l R / R w , % 5 . 4 / 6 . 2 4 9 1 5 . 2 R = £ | | F o l - I F c l l / Z | F o | R w = { £ w ( I F o l - I F C I ) 2 / 2 w I F 6 1 2 } 1 ’ 2 T a b l e 4 - 5 . ( c o n t ' d ) 2 1 1 ( 1 1 1 ) ( I V ) f o r m u l a K 3 N b O S e 3 K 4 W Z S e 5 O 3 f w 2 3 1 5 4 9 6 6 . 8 9 a , A 1 1 . 0 1 4 ( 3 ) 1 1 . 8 2 1 ( 5 ) b , A 1 3 . 5 4 4 “ ) 1 0 . 5 4 9 ( 4 ) c , A 6 . 8 1 1 ( 2 ) 1 2 . 0 6 4 ( 5 ) Z , V , A 3 8 , 1 0 1 6 . 0 ( 9 ) 4 , 1 5 0 4 ( 2 ) s p a c e g r o u p C c h l ( # 3 6 ) a n a ( # 6 2 ) d c a l o g / c m 3 3 0 2 7 4 . 2 6 9 c r y s t a l s i z e , m m 0 . 0 5 x 0 . 0 7 x 0 . 5 2 O . 9 2 x 0 . 8 6 x 0 . 8 8 t e m p e r a t u r e , 0 C 2 0 2 3 s c a n t y p e ( 0 0 1 — 2 0 s c a n r a t e , d e g / m i n 3 . 0 0 - 3 5 9 o 4 0 / m i n 4 . 0 3 5 . 9 0 - 4 5 . 8 0 2 0 / m i n 4 5 8 0 - 5 6 8 o 1 0 / m i n r a d i a t i o n M o K 0 1 ( A 2 0 7 1 0 6 9 A ) M o K 0 1 ( 1 = 0 . 7 1 0 6 9 A ) u ( M o K 0 1 ) , c m - 1 1 2 9 . 4 2 8 6 . 8 2 0 m ” , d e g 5 7 5 0 n o . o f d a t a c o l l e c t e d 7 5 6 2 9 3 0 n o . o f u n i q u e d a t a 7 2 7 1 5 6 8 n o . o f o b s . d a t a ( I > 3 0 ( 1 ) ) 5 6 9 6 7 0 n o . o f v a r i a b l e s 4 3 6 7 fi n a l R / R w , % 3 . 7 / 2 - 5 6 . 9 / 7 . 3 R = X l l F o | - | F c l l / Z | F o l R w = ( E q u o I - I F C D Z I X w I F o I Z } “ 7 - T a b l e 4 - 6 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r 2 1 2 K 4 V 2 0 2 8 6 1 0 - 2 M e O H w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) S e ( 1 ) - 0 . 1 1 7 6 ( 3 ) 0 . 0 3 5 4 ( 2 ) 0 . 8 7 4 5 1 . 5 ( 2 ) S e ( 2 ) 0 . 1 9 0 9 ( 2 ) 0 . 0 7 6 6 ( 2 ) 0 . 7 9 8 ( 1 ) 1 . 6 ( 2 ) S e ( 3 ) 0 . 2 2 4 0 ( 3 ) 0 . 1 7 6 0 ( 2 ) 0 . 7 8 1 ( 1 ) 2 . 2 ( 2 ) S e ( 4 ) 0 . 1 0 7 9 ( 3 ) 0 . 2 0 9 1 ( 2 ) 0 . 9 9 2 ( 1 ) 2 . 0 ( 2 ) S e ( 5 ) - 0 . 0 1 7 3 ( 2 ) 0 . 1 5 0 4 ( 2 ) 0 . 8 8 8 ( 1 ) 1 . 7 ( 2 ) S e ( 6 ) 0 . 6 2 4 0 ( 3 ) 0 . 0 2 4 0 ( 2 ) 0 . 3 6 1 ( 1 ) 1 . 7 ( 2 ) S e ( 7 ) 0 . 3 2 6 2 ( 2 ) 0 . 0 9 4 4 ( 2 ) 0 . 3 0 2 ( 1 ) 1 . 8 ( 2 ) S e ( 8 ) 0 . 3 2 3 4 ( 3 ) 0 . 1 9 4 7 ( 2 ) 0 . 2 8 9 ( 1 ) 2 . 0 ( 2 ) S e ( 9 ) 0 . 4 4 8 6 ( 3 ) 0 . 2 1 4 3 ( 2 ) 0 . 4 9 8 ( 1 ) 2 . 2 ( 2 ) S e ( 1 0 ) 0 . 5 5 6 6 ( 2 ) 0 . 1 4 7 5 ( 2 ) 0 . 3 7 9 ( 1 ) 1 . 6 ( 2 ) V ( 1 ) 0 . 0 4 3 1 ( 4 ) 0 . 0 5 4 5 ( 3 ) 0 . 9 6 7 ( 1 ) 1 . 2 ( 3 ) V ( 2 ) 0 . 4 7 0 4 ( 4 ) 0 . 0 5 8 8 ( 3 ) 0 . 4 5 9 ( 1 ) 1 . 1 ( 3 ) K ( 1 ) 0 . 0 8 9 1 ( 6 ) 0 . 1 4 5 5 ( 4 ) 0 . 4 1 8 ( 2 ) 2 . 6 ( 5 ) K ( 2 ) 0 . 1 3 8 4 ( 5 ) - 0 . 0 3 0 3 ( 4 ) 0 . 3 7 8 ( 2 ) 2 . 1 ( 4 ) K ( 3 ) 0 . 4 4 9 2 ( 6 ) 0 . 1 4 7 2 ( 4 ) - 0 . 0 7 1 ( 2 ) 2 . 0 ( 4 ) K ( 4 ) 0 . 6 4 1 4 ( 5 ) 0 . 0 2 0 0 ( 3 ) 0 . 8 6 7 ( 2 ) 1 . 7 ( 4 ) 0 ( 1 ) 0 . 0 5 3 ( 2 ) 0 . 0 5 6 ( 1 ) 1 . 2 0 4 ( 4 ) 1 . 5 ( 5 ) 0 ( 2 ) 0 . 4 6 5 ( 1 ) 0 . 0 6 1 ( 1 ) 0 . 6 8 8 ( 4 ) 1 . 2 ( 5 ) 0 ( 3 ) 0 . 6 4 1 ( 1 ) 0 . 1 3 3 ( 1 ) 0 . 8 3 1 ( 4 ) 1 . 3 ( 5 ) 0 ( 4 ) - 0 . 1 0 7 ( 2 ) 0 . 1 3 9 ( 1 ) 0 . 3 3 0 ( 5 ) 3 . 1 ( 6 ) C ( 1 ) 0 . 6 9 8 ( 3 ) 0 . 1 8 1 ( 2 ) 0 . 8 7 ( 1 ) 5 ( 1 ) C ( 2 ) - O . 1 5 3 ( 3 ) 0 . 1 8 9 ( 2 ) 0 . 3 9 3 ( 9 ) 4 ( 1 ) a B ( e q ) = 4 / 3 I a 2 6 1 1 + b 2 5 2 2 + 9 2 6 3 3 + a b ( c o s v ) 6 1 2 + 4 1 9 0 0 8 0 5 1 3 + b C ( c o s a ) l 3 2 3 ] . 2 1 3 T a b l e 4 - 7 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) 2 1 f o r K 4 V 2 0 2 8 e 8 - 0 . 6 5 M e O H w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) S e ( 1 ) - 0 . 0 7 4 2 ( 4 ) 0 . 6 6 5 5 ( 2 ) 0 . 2 8 9 3 ( 2 ) 2 . 0 ( 1 ) S e ( 2 ) - 0 . 0 8 4 9 ( 4 ) 0 . 5 6 5 8 ( 2 ) 0 . 4 0 3 9 ( 2 ) 2 . 8 ( 1 ) S e ( 3 ) - 0 . 2 3 2 7 ( 5 ) 0 . 6 2 7 6 ( 2 ) 0 . 5 0 9 6 ( 2 ) 3 . 3 ( 2 ) S e ( 4 ) - 0 . 0 8 5 6 ( 4 ) 0 . 7 5 3 3 ( 2 ) 0 . 5 1 8 9 ( 2 ) 2 . 4 ( 1 ) S e ( 5 ) 0 . 0 9 0 0 ( 4 ) 0 . 8 9 4 3 ( 2 ) 0 . 4 7 3 5 ( 2 ) 1 . 8 ( 1 ) S e ( 6 ) 0 . 1 0 1 6 ( 4 ) 0 . 8 0 8 1 ( 2 ) 0 . 2 2 6 3 ( 2 ) 2 . 0 ( 1 ) S e ( 7 ) 0 . 2 1 5 2 ( 4 ) 0 . 9 9 7 1 ( 2 ) 0 . 1 8 5 3 ( 2 ) 2 . 3 ( 1 ) S e ( 8 ) 0 . 1 2 6 8 ( 4 ) 1 . 0 4 8 7 ( 2 ) 0 . 3 2 2 5 ( 2 ) 2 . 6 ( 1 ) V ( 1 ) 0 . 1 0 2 0 ( 6 ) 0 . 7 6 6 8 ( 3 ) 0 . 3 9 8 3 ( 3 ) 1 . 3 ( 2 ) v ( 2 ) 0 . 2 2 2 6 ( 6 ) 0 . 9 1 3 2 ( 3 ) 0 . 3 3 4 3 ( 3 ) 1 . 6 ( 2 ) K ( 1 ) 0 . 2 9 7 ( 1 ) 1 . 0 1 7 5 ( 4 ) 0 . 6 6 3 9 ( 4 ) 2 . 9 ( 3 ) K ( 2 ) 0 . 5 3 5 2 ( 8 ) 0 . 8 3 6 6 ( 4 ) 0 . 5 6 5 2 ( 4 ) 2 . 4 ( 3 ) K ( 3 ) 0 . 1 6 0 5 ( 9 ) 0 . 0 9 3 3 ( 4 ) 0 . 9 6 2 8 ( 4 ) 2 . 8 ( 3 ) K ( 4 ) 0 . 9 8 9 ( 1 ) 0 . 2 2 9 6 ( 5 ) 0 . 1 9 5 8 ( 5 ) 4 . 4 ( 4 ) 0 ( 1 ) 0 . 3 0 7 ( 2 ) 0 . 7 3 1 ( 1 ) 0 . 4 4 9 ( 1 ) 1 . 9 ( 8 ) 0 ( 2 ) 0 . 4 4 2 ( 2 ) 0 . 9 0 1 ( 1 ) 0 . 3 8 2 ( 1 ) 2 . 8 ( 9 ) 0 ( 3 ) - 0 . 1 7 4 ( 4 ) 0 . 3 6 0 ( 2 ) 0 . 2 9 1 ( 2 ) 2 . 7 ( 6 ) a B ( e q ) = 4 / 3 1 4 2 6 1 1 + b 2 6 2 2 + c 2 6 3 3 + a b ( c o s v ) fi l 2 + a c ( c o s B ) B l 3 + b c ( c o s a ) fi 2 3 l . - 2 1 4 T a b l e 4 - 8 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) 3 f o r K 3 N b O S e 3 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) N b 0 0 . 2 0 7 1 ( 1 ) 0 1 . 2 6 ( 6 ) S e ( 1 ) - 0 . 1 8 7 0 ( 1 ) 0 . 1 3 0 2 ( 1 ) - 0 . 1 1 4 5 ( 3 ) 2 . 1 7 ( 6 ) S e ( 2 ) 0 0 . 3 8 1 4 ( 1 ) - 0 . 0 8 9 5 ( 4 ) 1 . 8 4 ( 9 ) K ( 1 ) 0 . 2 0 1 2 ( 3 ) 0 . 1 1 8 7 ( 2 ) 0 . 4 0 4 3 ( 7 ) 2 . 2 ( 1 ) K ( 2 ) 0 0 . 3 7 9 8 ( 3 ) - 0 . 5 7 2 6 ( 8 ) 2 . 3 ( 2 ) o 0 0 . 2 0 0 ( 1 ) 0 . 2 5 7 ( 2 ) 1 . 3 ( 5 ) a B ( e q ) = 4 / 3 I a 2 6 1 1 + b 2 1 3 2 2 + 9 2 6 3 3 + a b ( c o s v ) 6 1 2 + a c ( C O S B ) B l 3 + b C ( c o s a ) l 3 2 3 I . T a b l e 4 - 9 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r K 2 [ ( W 0 2 S e 2 ) 0 , 5 ( W O S e 3 ) 0 , 5 ] w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) W ( l ) 0 . 1 7 3 0 ( 2 ) 3 / 4 0 . 8 5 9 6 ( 1 ) 1 . 0 0 ( 8 ) W ( 2 ) - 0 . 0 5 0 0 ( 1 ) 1 / 4 0 . 6 9 2 8 ( 2 ) 1 . 1 0 ( 8 ) S e ( 1 ) 0 . 2 6 5 6 ( 4 ) 3 / 4 0 . 6 8 8 8 ( 4 ) 1 . 5 ( 2 ) S e ( 2 ) 0 . 0 6 1 2 ( 3 ) 0 . 5 7 0 9 ( 4 ) 0 . 8 7 2 4 ( 3 ) 2 . 3 ( 2 ) S e ( 3 ) - 0 . 1 1 4 4 ( 3 ) 0 . 0 7 0 7 ( 5 ) 0 . 6 0 0 6 ( 3 ) 2 . 9 ( 2 ) K ( 1 ) 0 . 2 3 8 7 ( 7 ) 0 . 4 3 8 0 ( 8 ) 0 . 6 3 2 2 ( 6 ) 2 . 5 ( 3 ) K ( 2 ) - 0 . 0 1 5 6 ( 8 ) 3 / 4 0 . 6 2 0 ( 1 ) 2 . 2 ( 5 ) K ( 3 ) 0 . 1 1 0 4 ( 9 ) 1 / 4 0 . 9 4 0 ( 1 ) 2 . 7 ( 6 ) 0 ( 1 ) 0 . 2 7 3 ( 2 ) 3 / 4 0 . 9 6 7 ( 2 ) 1 . 9 ( 6 ) 0 ( 2 ) 0 . 0 9 9 ( 2 ) 1 / 4 0 . 7 0 7 ( 2 ) 1 . 6 ( 6 ) 0 ( 3 ) - 0 . 1 0 6 ( 2 ) 1 / 4 0 . 8 3 1 ( 2 ) 1 . 2 ( 6 ) a B ( e q ) = 4 / 3 l a 2 l 3 1 1 + b 2 1 5 2 2 + 9 2 6 3 3 + a b ( c o s v ) 6 1 2 + « ( 0 0 8 0 6 1 3 + 1 9 9 0 0 8 0 0 6 2 3 ] . 2 1 5 3 . R e s u l t s a n d D i s c u s s i o n 3 . 1 . S y n t h e s i s I n c o n t r a s t t o t h e M o / S e c o m p o u n d s d e s c r i b e d i n C h a p t e r 2 , a l l t h e c o m p o u n d s c o n t a i n o x y g e n a t o m s b o n d e d t o t h e m e t a l c e n t e r s . W a t e r i s t h e r e f o r e n o t s u i t a b l e f o r t h e s e s y s t e m s b e c a u s e o x i d e w i l l c o m p e t e w i t h s e l e n i d e t o f o r m o x o m e t a l a t e s . F o r t h e v a n a d i u m s y s t e m , ( I ) a n d ( I I ) w e r e p r o d u c e d i n t h e s a m e V / K 2 8 e 4 r a t i o . ( I I ) i s n o t r e a d i l y r e p r o d u c i b l e s i n c e m o s t o f t h e t i m e ( I ) w a s o b t a i n e d . ( 1 ) a n d ( I I ) d i f f e r s o n l y i n t h e l e n g t h o f t h e c h e l a t i n g p o l y s e l e n i d e s t o t h e [ V z O z s e z ] c o r e . I t i s l i k e l y t h a t t h e c h e l a t i n g p o l y s e l e n i d e s a r e l a b i l e a n d t h a t ( I ) a n d ( I I ) o r o t h e r s p e c i e s w i t h t h e g e n e r a l f o r m u l a , [ ( S e x ) ( V 2 0 2 S e 2 ) ( S e y ) ] 4 ‘ , c o e x i s t i n t h e p o l y s e l e n i d e s o l u t i o n . T h e m o r e s y m m e t r i c c o m p l e x o f ( I ) p r o b a b l y f o r m e d a m o r e s t a b l e o r m o r e i n s o l u b l e c r y s t a l l a t t i c e w i t h K + c a t i o n s t h a n d i d ( I I ) . M e O H o r H 2 0 i m p u r i t i e s a r e t h e p r o b a b l e o x y g e n s o u r c e s o f t h e t e r m i n a l o x i d e i n ( I ) a n d ( I I ) . ( I I I ) a n d ( I V ) b e l o n g t o t h e g r o u p o f [ M O x Q 4 - x ] n ‘ ( x = 0 ~ 4 ; M = V , N b , T a , M o , W a n d R e ; Q = S , S e ) w h i c h c a n b e m a d e e i t h e r b y r e a c t i o n i n t h e s o l i d s t a t e ( x = 0 ) b y u s i n g s t o i c h i o m e t r i c a m o u n t o f c o n s t i t u e n t s o r b y p a s s i n g H 2 O g a s t h r o u g h a b a s i c a q u e o u s s o l u t i o n o f t h e c o r r e s p o n d i n g o x o m e t a l a t e s . T h e l a t t e r m e t h o d i n v o l v e s a n e q u i l i b r i u m b e t w e e n d i f f e r e n t [ M O x Q 4 - x ] n ' s p e c i e s a s s h o w n b e l o w . + - Q Z + Q 2 “ Q 2 [ M o d n “ " 7 ‘ — - n - — “ I M O 3 Q I [ M 0 2 Q 2 ] n . . _ — " [ M O Q 3 I n — ‘ T i n - [ M Q 4 I + 0 2 + 0 2 + 0 2 + 0 2 e q . 1 . 2 1 6 [ N b S e 4 ] 3 - h a s b e e n m a d e b y t h e s o l i d s t a t e m e t h o d . 7 N o [ N b O x S e 4 _ x ] 3 ' ( x > l ) h a v e b e e n m a d e i n a q u e o u s s o l u t i o n b e c a u s e t h e o x y g e n a f fi n i t y o f N b w i l l s h i f t t h e e q u i l i b r i u m o f e q . 1 t o t h e l e f t . U s i n g N b m e t a l a n d a l e s s e f f i c i e n t o x y g e n d o n o r , M e O H , a s s o l v e n t , w e a r e a b l e t o c r y s t a l l i z e K 3 N b O S e 3 u n d e r m e t h a n o t h e r m a l c o n d i t i o n s . I n t h i s r e a c t i o n N b m e t a l i s o x i d i z e d t o t h e + 5 o x i d a t i o n s t a t e b y S e 2 2 * w h i c h i t s e l f i s r e d u c e d t o S e 2 : A p p a r e n t l y , t h e b a s i c i t y o r t h e c o n c e n t r a t i o n o f S e Z - i o n s i s n o t e n o u g h t o p u s h t h e e q u i l i b r i u m t o [ N b S e 4 ] 3 - . K 2 [ ( W O z S e z ) o _ 5 ( W O S e 3 ) o , 5 ] f o r m s v i a t h e s u b s t i t u t i o n o f o x i d e s i n [ W O 4 ] 2 ' a n i o n s b y S e 2 ' a s d e s c r i b e d i n e q u a t i o n 1 . T h e r e a r e n o r e d o x r e a c t i o n s i n v o l v e d b e t w e e n W 0 3 a n d S e 2 2 ' . B o t h [ W O z S e 2 ] 2 ‘ a n d [ W O S e 3 ] 2 - , 9 h a v e b e e n s y n t h e s i z e d b y p a s s i n g s t e i n a q u e o u s [ W O 4 ] 2 ‘ s o l u t i o n s . ( I V ) i s t h e c o c r y s t a l l i z a t i o n o f b o t h a n i o n s a s a p o t a s s i u m s a l t . 3 . 2 . D e s c r i p t i o n o f S t r u c t u r e s S t r u c t u r e s o f K 4 V 2 O z S e 1 0 - 2 M e O H a n d K 4 V 2 O z S e 3 - 0 . 6 5 M e O H . C o m p o u n d ( 1 ) c o n t a i n s t w o c r y s t a l l o g r a p h i c a l l y i n d e p e n d e n t b u t s t r u c t u r a l l y s i m i l a r a n i o n i c m o l e c u l e s , [ V z O z S e 1 o ] 4 ' ( I - a , a n d I - b ) , w h i l e ( I I ) c o n t a i n s a s i n g l e [ V 2 0 2 8 e 3 ] 4 - m o l e c u l e . B o t h c o m p l e x e s c o n t a i n t h e s a m e c e n t r a l [ V 2 0 2 S e 2 ] c o r e . T h i s c o r e c o n s i s t s o f a b e n t V 2 8 e 2 r h o m b u s a n d t w o c i s — t e r m i n a l o x y g e n a t o m s . T h e l a t t e r a r e p r e s u m e d t o c o m e f r o m m e t h a n o l . T h e V a t o m s i n t h e s e [ V z O z S e z ] c o r e s a r e c h e l a t e d b y t w o S e 2 2 ' l i g a n d s i n ( I ) a n d o n e S e 4 2 - l i g a n d a n d o n e S e 2 2 ' l i g a n d i n ( I I ) . T h e s t r u c t u r e s o f [ V z O z S e 1 o ] 4 ' a n d [ V 2 0 2 8 e 2 ] 4 ' a r e s h o w n i n F i g u r e 4 - 1 a n d 4 — 2 . T h e r e i s a C 2 r o t a t i o n a x i s p a s s i n g t h r o u g h t h e c e n t e r s o f [ V 2 0 2 8 e 1 0 ] 4 ' . 2 1 7 A l l t h e V - O b o n d s i n t h e a c e n t r i c s p a c e g r o u p o f ( I ) a r e p o i n t e d i n t h e s a m e d i r e c t i o n a s s h o w n i n F i g u r e 4 - 3 . I n t h e c o n t r a r y , ( I I ) p a c k s c e n t r o s y m m e t r i c a l l y a n d i t s p a c k i n g d i a g r a m i s s h o w n i n F i g u r e 4 - 4 . [ V 2 0 2 S e 1 o ] 4 ' i s i s o s t r u c t u r a l t o [ M o n s z P ‘ a n d [ W 2 0 2 8 1 0 ] 2 - , w h i l e [ V 2 0 2 S e 8 ] 4 ' i s i s o s t r u c t u r a l t o [ M 0 2 0 2 8 3 ] 2 ‘ a l l o f w h i c h b e l o n g t o t h e f a m i l y o f [ M 2 X 2 Q 2 ( Q x ) ( Q y ) ] 2 ' , 1 0 ' 1 8 c o m p l e x e s , w h e r e M = M o , W ; X = O , S ; Q = S , S e . T h e V a t o m s i n ( I ) a n d ( I I ) h a v e t h e f o r m a l o x i d a t i o n s t a t e o f + 4 a n d t h u s t h e s a m e ( 1 1 e l e c t r o n i c c o n fi g u r a t i o n a s t h e i r M o 5 + a n d W 5 + a n a l o g s . A l t h o u g h t h e [ M 2 0 2 Q 2 ] 2 + ( M = M o , W ; Q = S , S e ) c o r e h a s h i g h f o r m a t i o n t e n d e n c y , i t s i s o e l e c t r o n i c a n a l o g [ V 2 0 2 8 e 2 ] i s r e p o r t e d h e r e f o r t h e fi r s t t i m e . T h e o n l y o t h e r k n o w n v a n a d i u m p o l y s e l e n i d e a n i o n i s [ V 2 8 e 1 3 ] 2 ' , 1 9 w h i c h w a s s y n t h e s i z e d b y r e d u c i n g V O 3 ' w i t h b i s - ( d i m e t h y l o c t y l s i l y l ) s e l e n i d e i n t o l u e n e / a c e t o n i t r i l e s o l u t i o n a t r o o m t e m p e r a t u r e . T h e s t r u c t u r e o f [ V 2 S e 1 3 ] 2 ‘ i s u n i q u e , c o m p a r e d t o t h e M o / W p o l y c h a l c o g e n i d e a n i o n s . T h e l a c k o f p r e v i o u s e x a m p l e s o f v a n a d i u m a n a l o g s [ M 2 X 2 Q 2 ( Q x ) ( Q y ) ] 2 ' m a y b e a t t r i b u t e d t o t h e d i f fi c u l t y i n c r y s t a l l i z i n g t h e t e t r a - v a l e n t a n i o n s b y u s i n g t h e t y p i c a l l a r g e o r g a n i c c a t i o n s s i n c e n o w f o u r c a t i o n s i n s t e a d o f t w o a r e n e e d e d t o b a l a n c e t h e c h a r g e i n t h e c r y s t a l l a t t i c e . T h e c r y s t a l l i z a t i o n p r o b l e m c o u l d b e o v e r c o m e i f s m a l l e r c a t i o n s w e r e u s e d ( e . g . a l k a l i i o n s ) , b u t s u c h c r y s t a l l i z a t i o n f r o m D M F o r C H 3 C N , t h e t y p i c a l s o l v e n t s f o r c l a s s i c a l s y n t h e s i s , s e l d o m s u c c e e d . H o w e v e r , t h e d i f fi c u l t y c a n b e o v e r c o m e b y t h e s o l v o t h e r m a l m e t h o d w h i c h h a s b e e n p r o v e n u s e f u l i n p r o m o t i n g c r y s t a l l i z a t i o n o f a l k a l i m e t a l - p o l y s e l e n i d e s a l t s . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s f o r ( I ) a n d ( I I ) a r e g i v e n i n T a b l e 4 — 1 0 a n d 4 - 1 1 r e s p e c t i v e l y . T h e a v e r a g e V - S e d i s t a n c e i n [ V 2 0 2 3 6 1 0 ] 4 ‘ a n d [ V z O z S e g ] 4 - a r e 2 . 4 8 ( 4 ) A a n d 2 . 4 7 ( 4 ) A r e s p e c t i v e l y . 2 1 8 0 ( 1 ) - 7 ‘ V ( 1 ) fl 5 I I ; . . 7 " S e ( 2 ) S e ( 3 ) 0 ( 2 ) 4 . x ‘ s V ( Z ) I A S e ( 1 0 ) S e ( 9 ) ‘ a . 0 ’ ' 9 " ’ 1 ’ , 1 ‘ 4 S e ( 6 ) @ — 1 % 8 6 ( 7 ) S e ( 8 ) F i g u r e 4 — l : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e f o r t w o c r y s t a l l o r g r a p h i c a l l y i n d e p e n d e n t a n i o n s o f l e O z s e i o l 4 ’ . ) 2 ( \ e » S ) 3 ( 6 5 ) 1 ( e S ) ) 4 ( 4 e { S ) . t l a e s z o a V ( r o f e m e h c s g n i l e b a l d n a n o i t a t n e s e r p e r P E T R O : 2 ) 7 2 8 - ( e S ( e S ( 4 e r u g i F ) 1 ( 0 ) 2 ( 0 f e ) 4 ‘ 2 1 9 2 2 0 F i g u r e 4 - 3 : P a c k i n g d i a g r a m f o r a n u n i t c e l l o f K 4 l e O z S e l o ] ' 2 M e O H . F i g u r e 4 - 4 : 2 2 1 P a c k i n g d i a g r a m f o r a n u n i t c e l l o f K 4 [ V 2 0 2 8 6 8 I ° 0 . 6 5 M e O H . T h e M e O H m o l e c u l e s a r e o m i t t e d . 2 2 2 T a b l e 4 4 0 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 4 V 2 0 2 S e 1 0 - 2 M e O H w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) V ( 1 ) - 0 ( 1 ) l . 6 4 ( 3 ) V ( 2 ) — O ( 2 ) 1 5 9 ( 3 ) V ( 1 ) - S e ( 1 ) 2 . 4 1 8 ( 7 ) V ( 2 ) - S e ( 6 ) 2 . 4 3 9 ( 7 ) V ( 1 ) - S e ( 1 ) 2 . 4 9 7 ( 7 ) V ( 2 ) - S e ( 6 ) 2 . 5 0 2 ( 8 ) V ( 1 ) - S e ( 2 ) 2 . 4 6 5 ( 7 ) V ( 2 ) - S e ( 7 ) 2 . 4 7 4 ( 7 ) V ( 1 ) - S e ( 5 ) 2 . 5 2 9 ( 8 ) V ( 2 ) - S e ( 1 0 ) 2 . 5 2 8 ( 8 ) V ( 1 ) - V ( 1 ) 2 . 9 0 ( 1 ) V ( 2 ) - V ( 2 ) 2 . 9 6 ( 1 ) S e ( 2 ) - S e ( 3 ) 2 . 4 4 7 ( 6 ) S e ( 7 ) - S e ( 8 ) 2 . 4 2 4 ( 6 ) S e ( 3 ) - S e ( 4 ) 2 . 3 4 2 ( 7 ) S e ( 8 ) - S e ( 9 ) 2 . 3 4 2 ( 6 ) S e ( 4 ) — S e ( 5 ) 2 . 3 8 5 ( 6 ) S e ( 9 ) - S e ( 1 0 ) 2 . 3 7 6 ( 6 ) 0 ( 3 ) - C ( 1 ) l . 4 6 ( 5 ) K ( 2 ) - 0 ( 4 ) 2 6 7 ( 3 ) 0 ( 4 ) - C ( 2 ) 1 . 4 4 ( 5 ) K ( 3 ) - S e ( 3 ) 3 . 4 3 4 ( 9 ) K ( 1 ) - S e ( 2 ) 3 . 4 3 ( 1 ) K ( 3 ) - S e ( 7 ) 3 . 3 7 ( 1 ) K ( 1 ) - S e ( 3 ) 3 . 2 4 ( 1 ) K ( 3 ) - S e ( 8 ) 3 . 2 7 ( 1 ) K ( 1 ) - S e ( 4 ) 3 . 5 6 ( 1 ) K ( 3 ) - S e ( 9 ) 3 . 3 8 ( 1 ) K ( 1 ) - S e ( 4 ) 3 . 3 3 ( 1 ) K ( 3 ) — S e ( 9 ) 3 . 3 8 ( 1 ) K ( 1 ) - S e ( 5 ) 3 . 5 9 ( 1 ) K ( 3 ) - S e ( 1 0 ) 3 . 4 7 ( 1 ) K ( 1 ) - S e ( 7 ) 3 . 6 8 ( 1 ) K ( 3 ) - 0 ( 2 ) 2 . 6 8 ( 3 ) K ( 1 ) - S e ( 8 ) 3 . 6 5 ( 1 ) K ( 3 ) - 0 ( 3 ) 2 . 8 3 ( 2 ) K ( 1 ) - 0 ( 1 ) 2 . 6 7 ( 3 ) K ( 4 ) - S e ( 1 ) 3 . 4 4 ( 9 ) K ( 1 ) - 0 ( 4 ) 2 . 8 6 ( 3 ) K ( 4 ) - S e ( 2 ) 3 3 6 ( 9 ) K ( 2 ) - S e ( 1 ) 3 . 4 4 ( 1 ) K ( 4 ) - S e ( 6 ) 3 . 5 1 ( 1 ) K ( 2 ) - S e ( 1 ) 3 . 4 9 ( 1 ) K ( 4 ) - S e ( 6 ) 3 . 4 2 ( 1 ) K ( 2 ) - S e ( 6 ) 3 . 3 8 6 ( 9 ) K ( 4 ) — 0 ( 2 ) 2 9 7 ( 2 ) K ( 2 ) - 0 ( 1 ) 2 . 7 0 ( 3 ) K ( 4 ) - 0 ( 2 ) 2 . 7 6 ( 3 ) K ( 2 ) - 0 ( 1 ) 3 . 0 4 ( 3 ) K ( 4 ) - 0 ( 3 ) 2 . 7 3 ( 2 ) S e l e c t e d B o n d A n g l e s ( d e g ) S e ( 1 ) - V ( 1 ) - S e ( 1 ) 9 9 . 7 ( 3 ) S e ( 6 ) - V ( 2 ) - S e ( 6 ) 9 7 . 5 ( 3 ) S e ( 1 ) - V ( 1 ) - S e ( 2 ) 1 3 6 . 4 ( 4 ) S e ( 6 ) - V ( 2 ) - S e ( 7 ) 1 3 7 . 8 ( 3 ) S e ( 1 ) - V ( 1 ) - S e ( 2 ) 7 2 . 8 ( 2 ) S e ( 6 ) - V ( 2 ) - S e ( 7 ) 7 3 . 3 ( 2 ) T a b l e 4 - 1 0 . ( c o n t ' d ) S e ( 1 ) - V ( 1 ) - S e ( 5 ) S e ( 1 ) - V ( 1 ) - S e ( 5 ) S e ( 1 ) - V ( 1 ) - O ( 1 ) S e ( 5 ) - V ( 1 ) - 0 ( 1 ) S e ( 2 ) - V ( 1 ) - S e ( 5 ) 5 6 ( 2 ) - V ( 1 ) - 0 ( 1 ) S e ( 5 ) - V ( 1 ) - 0 ( 1 ) V ( 1 ) - S e ( 2 ) - S e ( 3 ) S e ( 2 ) - S e ( 3 ) - S e ( 4 ) S e ( 3 ) - S e ( 4 ) - S e ( 5 ) S e ( 4 ) - S e ( 5 ) - V ( 1 ) 7 8 . 3 ( 2 ) 1 5 2 . 3 ( 4 ) 1 1 0 . 3 ( 9 ) 6 6 . 4 ( 4 ) 8 9 . 4 ( 3 ) 1 1 3 . 3 ( 9 ) 1 0 3 ( 1 ) 1 1 3 . 5 ( 2 ) 9 9 . 7 ( 2 ) 9 8 . 0 ( 2 ) 1 0 3 . 0 ( 2 ) S e ( 6 ) - V ( 2 ) - S e ( 1 0 ) S e ( 6 ) - V ( 2 ) - S e ( 1 0 ) 3 6 ( 6 ) - V ( 2 ) - 0 ( 2 ) S e ( 1 0 ) - V ( 2 ) - O ( 2 ) S e ( 7 ) - V ( 2 ) - S e ( 1 0 ) S e ( 7 ) - V ( 2 ) - O ( 2 ) S e ( 1 0 ) - V ( 2 ) - O ( 2 ) V ( 2 ) - S e ( 7 ) - S e ( 8 ) S e ( 7 ) - S e ( 8 ) — S e ( 9 ) S e ( 8 ) - S e ( 9 ) - S e ( 1 0 ) S e ( 9 ) - S e ( 1 0 ) - V ( 2 ) 7 8 . 2 ( 2 ) 1 5 1 . 3 ( 3 ) 1 0 9 . 4 ( 9 ) 6 6 . 2 ( 4 ) 9 0 . 7 ( 3 ) 1 1 2 . 8 ( 9 ) 1 0 3 ( 1 ) 1 1 2 . 2 ( 2 ) 9 9 . 5 ( 2 ) 9 8 . 1 ( 2 ) 1 0 0 . 6 ( 2 ) 2 2 4 T a b l e 4 - 1 1 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 4 V 2 0 2 S e g - 0 . 6 5 M e O H w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) V ( 1 ) - 0 ( 1 ) 1 . 6 5 ( 2 ) V ( 2 ) - S e ( 6 ) 2 . 4 0 2 ( 5 ) V ( 1 ) - S e ( 1 ) 2 . 4 8 2 ( 5 ) V ( 2 ) - S e ( 7 ) 2 . 5 2 5 ( 5 ) V ( 1 ) - S e ( 4 ) 2 . 4 7 7 ( 5 ) V ( 2 ) - S e ( 8 ) 2 . 4 9 6 ( 6 ) V ( 1 ) - S e ( 5 ) 2 . 4 9 4 ( 5 ) S e ( 1 ) - S e ( 2 ) 2 . 3 8 5 ( 4 ) V ( 1 ) - S e ( 6 ) 2 . 4 8 5 ( 5 ) S e ( 2 ) - S e ( 3 ) 2 . 3 3 8 ( 5 ) V ( 2 ) - O ( 2 ) 1 . 6 3 ( 2 ) S e ( 3 ) - S e ( 4 ) 2 . 4 7 3 ( 5 ) V ( 2 ) — S e ( 5 ) 2 . 4 2 1 ( 5 ) S e ( 7 ) - S e ( 8 ) 2 . 3 5 8 ( 4 ) V ( 1 ) - V ( 2 ) 2 . 9 5 8 ( 7 ) S e l e c t e d B o n d A n g l e s ( d e g ) O ( 1 ) — V ( 1 ) - S e ( 1 ) 1 0 8 . 7 ( 6 ) V ( 1 ) - S e ( 5 ) - V ( 2 ) 7 4 . 0 ( 2 ) O ( 1 ) - V ( l ) - S e ( 4 ) 1 0 5 . 7 ( 6 ) V ( 1 ) - S e ( 6 ) - V ( 2 ) 7 4 . 5 ( 2 ) O ( 1 ) - V ( 1 ) - S e ( 5 ) 1 0 7 . 8 ( 6 ) O ( 2 ) — V ( 2 ) — S e ( 5 ) 1 0 4 . 9 ( 6 ) O ( l ) - V ( 1 ) - S e ( 6 ) 1 0 6 . 2 ( 6 ) O ( 2 ) - V ( 2 ) - S e ( 6 ) 1 0 9 . 0 ( 7 ) S e ( 1 ) - V ( 1 ) - S e ( 4 ) 9 1 . 5 ( 2 ) O ( 2 ) - V ( 2 ) - S e ( 7 ) 1 0 1 . 8 ( 7 ) S e ( 1 ) — V ( 1 ) - S e ( 6 ) 7 6 . 8 ( 1 ) O ( 2 ) - V ( 2 ) - S e ( 8 ) I 1 3 . 6 ( 8 ) S e ( 4 ) - V ( 1 ) - S e ( 5 ) 7 3 . 4 ( 2 ) S e ( 5 ) - V ( 2 ) - S e ( 6 ) 1 0 2 . 5 ( 2 ) S e ( 5 ) - V ( 1 ) - S e ( 6 ) 9 8 . 1 ( 2 ) S e ( 5 ) - V ( 2 ) - S e ( 8 ) 9 0 . 4 ( 2 ) V ( 1 ) - S e ( 1 ) - S e ( 2 ) 1 0 3 . 9 ( 1 ) S e ( 6 ) - V ( 2 ) - S e ( 7 ) 9 1 . 6 ( 2 ) V ( 1 ) — S e ( 4 ) - S e ( 3 ) 1 1 2 . 6 ( 2 ) S e ( 7 ) - V ( 2 ) - S e ( 8 ) 5 6 . 0 ( 1 ) S e ( 1 ) - S e ( 2 ) - S e ( 3 ) 1 0 0 . 2 ( 2 ) V ( 2 ) - S e ( 7 ) - S e ( 8 ) 6 1 . 4 ( 1 ) S e ( 2 ) - S e ( 3 ) - S e ( 4 ) 8 9 . 3 ( 2 ) V ( 2 ) - S e ( 8 ) - S e ( 7 ) 6 2 . 6 ( 1 ) 2 2 5 T h e S e — V - S e a n g l e f o r m e d b y t h e d i s e l e n i d e l i g a n d i s m u c h s m a l l e r t h a n t h a t f o r m e d b y t e t r a s e l e n i d e l i g a n d , 5 6 . 0 ( 1 ) O a n d 9 1 . 5 ( 2 ) 0 r e s p e c t i v e l y . T h e v - v d i s t a n c e s o f 2 . 9 0 ( 1 ) A i n ( I - a ) , 2 . 9 6 ( 1 ) A i n ( I - b ) a n d 2 . 9 5 8 ( 7 ) A i n ( I I ) i n t h e [ V 2 0 2 S e 2 ] u n i t a r e l o n g e r t h a n t h e V - V b o n d s i n t h e [ V 2 ( S e 2 ) 2 ] 4 + u n i t s o f [ V z S e 1 3 ] 2 ' ( 2 . 7 7 9 ( 5 ) A ) a n d V 2 S e 9 2 0 ( 2 . 8 4 2 ( 2 ) A ) a s w e l l a s i n t h e [ v 2 ( 8 e 2 ) 2 ( S e ) ] 2 + u n i t o f V 2 ( C 2 H 7 ) 2 S e 5 2 2 ( 2 . 7 7 9 ( 4 ) A ) . T h e a v e r a g e V = O t d i s t a n c e s i n [ V 2 0 2 S e 1 0 ] 4 “ i s 1 . 6 2 ( 4 ) A , w h i l e i n [ V 2 0 2 S e 3 ] 4 ' i s 1 . 6 4 ( 2 ) A . T h e S e - S e d i s t a n c e i n t h e S e 4 2 ‘ l i g a n d s l i e w i t h i n t h e n o r m a l r a n g e b u t b o t h c o m p l e x e s e x h i b i t S e - S e b o n d a l t e r n a t i o n . I n b o t h ( I ) a n d ( I I ) t h e a v e r a g e c e n t r a l S e — S e d i s t a n c e i s s h o r t e r , 2 . 3 4 1 ( 2 ) . T h e a v e r a g e t e r m i n a l S e - S e d i s t a n c e i n t h e S e 4 2 ‘ l i g a n d s i s 2 . 4 2 ( 4 ) A . T h i s i s o p p o s i t e t o t h e b o n d a l t e r n a t i o n o b s e r v e d i n t h e s t r u c t u r e o f f r e e S e 4 2 ‘ a n d c o n s i s t e n t w i t h t h e c o r r e s p o n d i n g l e n g t h s o b s e r v e d i n t h e S e 4 2 ' l i g a n d o f [ W 2 8 e 1 o ] 2 ' 1 8 , 2 2 . T h i s p h e n o m e n o n i s p r o b a b l y d u e t o t h e M ( d 7 I ) — S e ( d 7 r ) i n t e r a c t i o n w h i c h h a s b e e n p r o p o s e d i n M o / S s y s t e m . 1 6 T h e S e - S e d i s t a n c e i n t h e 5 6 2 2 ' l i g a n d i s 2 . 3 5 8 ( 4 ) A . I n r e t r o s p e c t t h e f o r m a t i o n o f a [ V 3 S e 7 ] + c l u s t e r , i s o e l e c t r o n i c a n d i s o s t r u c t u r a l t o [ M o 3 S e 7 ] 4 + , w o u l d b e u n l i k e l y u n d e r t h e r e l a t i v e l y o x i d i z i n g c o n d i t i o n s e m p l o y e d i n v i e w o f t h e d i f fi c u l t y i n r e d u c i n g V 4 + t o V 3 + . S t r u c t u r e s o f K 3 N b O S e 3 a n d K 2 [ ( W O z S e 2 ) o , 5 ( W O S e 3 ) o , 5 ] B o t h ( I I I ) a n d ( I V ) c o n t a i n t e t r a h e d r a l a n i o n s c r y s t a l l i z e d a s p o t a s s i u m s a l t s a s s h o w n i n F i g u r e 4 - 5 . T h e m i x e d o x o - c h a l c o g e n o - m e t a l a t e s , [ M O x Q 4 - x ] n ' , a r e w e l l k n o w f o r M = V , M o , W a n d R e . 2 2 6 O ( 3 ) F i g u r e 4 — 5 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e f o r ( A ) l e O S e 3 1 3 ' a n d ( B ) 1 ( W 0 2 S e z ) ( W O S e 3 ) l 4 ‘ - 2 2 7 T h e c r y s t a l s t r u c t u r e s o f [ M S 4 ] 3 - a n d [ M S e 4 ] 3 ' a r e a l s o k n o w n f o r M = N b a n d T a . 7 S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e n i n T a b l e 4 - 1 2 a n d 4 - 1 3 a r e n o r m a l c o m p a r i n g t o t h o s e o f t h e k n o w n [ M O X Q 4 - x ] n - a n i o n s . T a b l e 4 4 2 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 3 N b O S e 3 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s s e l e c t e d B o n d D i s t a n c e s ( A ) N b - S e ( 1 ) 2 . 4 3 7 ( 2 ) x 2 S e ( 1 ) - K ( 2 ) 3 . 4 6 1 ( 2 ) N b - S e ( 2 ) 2 . 4 3 8 ( 3 ) S e ( 2 ) - K ( 2 ) 3 . 2 9 0 ( 6 ) S e ( 2 ) - K ( 2 ) 3 . 5 2 1 ( 6 ) N b — O 1 . 7 5 ( 1 ) S e ( 2 ) — K ( 2 ) 3 . 2 3 7 ( 5 ) S e ( 1 ) - K ( 1 ) 3 . 5 4 0 ( 5 ) S e ( 1 ) - K ( 1 ) 3 . 6 1 9 ( 3 ) K ( 1 ) - O 2 . 6 7 2 ( 9 ) S e ( 1 ) - K ( 1 ) 3 . 2 8 5 ( 5 ) K ( 2 ) - O 2 . 7 0 ( 1 ) S e ( 1 ) - K ( 1 ) 3 . 3 7 7 ( 3 ) S e ( 2 ) — K ( 1 ) 3 . 2 9 1 ( 3 ) x 2 S e l e c t e d B o n d A n g l e s ( d e g ) S e ( 1 ) - N b - S e ( l ) 1 1 5 . 4 ( 1 ) S e ( 1 ) - N b - O 1 0 7 . 2 ( 2 ) x 2 S e ( 1 ) - N b - S e ( 2 ) 1 0 9 . 5 1 ( 6 ) x 2 S e ( 2 ) — N b - O 1 0 7 . 6 ( 5 ) 2 2 8 T a b l e 4 - 1 3 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 2 [ ( W O 2 S e 2 ) 0 , 5 ( W O S e 3 ) 0 _ 5 ] w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) W ( l ) - S e ( 1 ) 2 . 3 3 3 ( 5 ) S e ( 2 ) - K ( 3 ) 3 5 8 ( 1 ) W ( 1 ) - S e ( 2 ) 2 . 3 1 2 ( 4 ) x 2 S e ( 3 ) - K ( 1 ) 3 . 4 6 5 ( 8 ) W ( 2 ) - S e ( 3 ) 2 . 3 2 3 ( 5 ) x 2 S e ( 3 ) - K ( 2 ) 3 . 5 8 7 ( 6 ) S e ( 3 ) — K ( 2 ) 3 . 6 1 ( l ) W ( 1 ) - O ( 1 ) 1 . 7 5 ( 3 ) S e ( 3 ) - K ( 3 ) 3 . 7 9 ( 1 ) W ( 2 ) - O ( 2 ) 1 . 7 7 ( 3 ) S e ( 3 ) - K ( 1 ) 3 . 6 6 3 ( 8 ) W ( 2 ) - O ( 3 ) 1 . 8 0 ( 3 ) K ( 1 ) - 0 ( 1 ) 2 . 8 1 ( 2 ) S e ( 1 ) - K ( 1 ) 3 . 3 7 6 ( 9 ) x 2 K ( 1 ) - 0 ( 2 ) 2 . 7 3 ( 2 ) S e ( 1 ) - K ( 2 ) 3 . 4 3 ( 1 ) K ( 1 ) - 0 ( 3 ) 2 . 7 4 ( 2 ) S e ( 1 ) - K ( 2 ) 3 . 4 7 ( 1 ) K ( 2 ) - 0 ( 1 ) 2 . 7 1 ( 3 ) S e ( 1 ) - K ( 3 ) 3 . 3 4 ( 1 ) K ( 3 ) - 0 ( 2 ) 2 8 2 ( 3 ) S e ( 2 ) - K ( 2 ) 3 . 7 0 ( 1 ) K ( 3 ) - 0 ( 3 ) 2 . 8 8 ( 3 ) S e ( 2 ) - K ( 3 ) 3 . 5 3 1 ( 5 ) S e l e c t e d B o n d A n g l e s ( d e g ) S e ( 1 ) - W ( 1 ) - S e ( 2 ) 1 0 9 . 1 ( 1 ) S e ( 3 ) - W ( 2 ) - S e ( 3 ) 1 0 9 . 0 ( 2 ) S e ( 1 ) - W ( 1 ) - S e ( 2 ) 1 0 9 . 1 ( 1 ) S e ( 3 ) - W ( 2 ) - O ( 2 ) 1 1 1 . 8 ( 5 ) S e ( 1 ) - W ( l ) - O ( 1 ) 1 1 0 ( 1 ) S e ( 3 ) — W ( 2 ) — O ( 3 ) 1 0 8 . 9 ( 5 ) S e ( 2 ) — W ( 1 ) - S e ( 2 ) 1 0 9 . 7 ( 2 ) S e ( 3 ) - W ( 2 ) - O ( 2 ) 1 1 1 . 8 ( 5 ) S e ( 2 ) - W ( 1 ) - O ( 1 ) 1 0 9 . 6 ( 5 ) S e ( 3 ) - W ( 2 ) - O ( 3 ) 1 0 8 . 9 ( 5 ) S e ( 2 ) - W ( 1 ) - O ( 1 ) 1 0 9 g » 2 2 9 3 . 4 . S p e c t r o s c o p y I n f r a r e d s p e c t r a o f ( I ) a n d ( I I ) a r e s h o w n i n F i g u r e 4 - 6 . B o t h c o m p o u n d s g a v e n o d i s t i n g u i s h a b l e p e a k u n t i l t h e s a m p l e s w e r e v e r y c o n c e n t r a t e d i n C 8 1 p e l l e t s . T h e s p e c t r u m o f ( I ) e x h i b i t s p e a k s a t 3 6 5 c m - 1 ( m ) , 3 4 1 c m ' 1 ( s h ) , 3 2 6 c m ' 1 ( s h ) , 3 0 0 c m ' 1 ( s h ) 2 6 5 c m - 1 ( s h ) a n d 2 0 1 c m - 1 ( w ) . T h e s p e c t r u m o f ( I I ) e x h i b i t s p e a k s a t 3 6 3 c m - 1 ( m ) , 3 5 1 c m - 1 ( m ) a n d 1 8 3 c m " 1 ( m ) . T h e s e p e a k s a r e i n t h e r a n g e o f M - S e a n d S e - S e v i b r a t i o n s . T h e v i b r a t i o n a l s p e c t r a o f [ V 2 8 e 1 3 1 2 ’ , V 2 S e 9 , V 2 ( C 6 H 7 ) 2 S e 5 a n d ( C 5 H 5 ) 2 V 8 6 5 2 3 w e r e n o t r e p o r t e d . T h e o n l y r e p o r t e d v i b r a t i o n a l s p e c t r u m o f a V / S e s y s t e m i s t h a t o f [ V S e 4 ] 3 ' , 2 4 w h i c h g i v e s p e a k s a t 2 3 2 c m “ 1 a n d 1 2 1 c m ‘ 1 i n t h e R a m a n , 3 6 5 c m ' 1 a n d 1 2 1 c m ' 1 i n t h e I R s p e c t r u m . T h e s e p e a k s a r e a t t r i b u t e d t o t h e v i b r a t i o n m o d e s ( v 1 ( A 1 ) , V 2 ( E ) , V 3 ( F 2 ) a n d V 4 ( F 2 ) ) o f T d s y m m e t r y T h e U V - V i s s p e c t r a f o r ( I ) a n d ( I I ) i n D M F s o l u t i o n s a r e g i v e n i n F i g u r e 4 - 7 . T h e b a n d s a t ~ 4 3 0 n m a n d ~ 6 5 0 n m i n d i c a t e t h e p r e s e n c e o f S e x ' - r a d i c a l a n i o n s 2 5 w h i c h c o m e f r o m t h e d i s s o c i a t i o n o f ( I ) a n d ( I I ) i n D M F s o l u t i o n s a c c o r d i n g t h e f o l l o w i n g p o s s i b l e m e c h a n i s m : [ ( S e a n v a O Z S e a K S e o r ' + n D M F : W 2 0 2 3 € 2 ] ( I I D M F ) + z s e f ‘ [ ( 8 6 4 ) 1 V 2 0 2 3 9 2 1 ( S e a ) ] 4 ‘ + n D M F : [ V 2 0 2 5 € 2 I ( H D M F ) + 8 9 2 2 ‘ + S e 4 2 ' T h e p o l y s e l e n i d e s t h u s f o r m e d f u r t h e r d i s p r o p o r t i o n a t e i n t o S e x ' - r a d i c a l s w h i c h a r e r e s p o n s i b l e f o r t h e o b s e r v e d b a n d s i n t h e U V - V i s s p e c t r a . E C N H T T I M S N H H T Z 2 3 0 C A 0 0 3 ) 4 1 5 a é s z é u 2 6 3 1 5 2 N H V E N U M B E B F i g u r e 4 — 6 : I n f r a r e d s p e c t r a f o r ( A ) K 4 [ V 2 0 2 8 e 1 0 ] ' 2 M e O H a n d ( B ) K 4 [ V 2 0 2 8 e 8 ] ° 0 . 6 5 M e O H . 2 0 0 4 0 0 6 0 0 8 0 0 2 . 0 A B 0 . S 0 , 0 0 2 I 0 0 4 l 0 0 6 I 0 0 8 1 0 0 0 ( 0 0 1 n m 0 B ) n m 2 3 1 3 . 0 ( A ) 0 . 0 ' I I ‘ I ’ _ _ _ _ 7 = L F i g u r e 4 - 7 : U V — V i s s p e c t r a f o r ( A ) K 4 [ V 2 0 2 8 e ] o | ‘ 2 M e O H i n D M F a n d ( B ) K 4 | V 2 0 2 5 e 8 | ° 0 . 6 5 M e O H i n D M F . 1 ) 2 ) 3 ) 4 ) 5 ) 6 ) 2 3 2 L i s t o f R e f e r e n c e s ( a ) S h e l d r i c k , W . S . Z A n o r g . A l l g . C h e m . 1 9 8 8 , _ 5 _ 6 2 , 2 3 - 3 0 . ( b ) S h e l d r i c k , W . S . ; H a u s e r , H . - J . Z A n o r g . A l l g . C h e m . 1 9 8 8 , m , 9 8 - 1 0 4 . ( c ) S h e l d r i c k , W . S . ; H a u s e r , H . - J . Z A n o r g . A l l g . C h e m . 1 9 8 8 , 5 _ 5 1 , 1 0 5 - 1 1 0 . ( ( 1 ) P a r i s e , J . B . S c i e n c e 1 9 9 1 , 2 5 _ 1 , 2 9 3 - 2 9 4 . ( e ) P a r i s e , J . B . J . C h e m . S o c . , C h e m c o m m u n . 1 9 9 0 , M , 1 5 5 3 - 1 5 5 4 . ( a ) L i a o , J . - H . ; K a n a t z i d i s , M . G . J . A m . C h e m . S o c . 1 9 9 0 , fl , 7 4 0 0 - 7 4 0 2 . ( b ) L i a o , J . - H . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 2 , 3 _ 1 , 4 3 1 - 4 3 9 . D . K . S m i t h , M . C . N i c h o l s , M . E . Z o l e n s k y " P O W D 1 0 : A F O R T R A N P r o g r a m f o r C a l c u l a t i n g X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s " V e r s i o n 1 0 . P e n n s y l v a n i a S t a t e U n i v e r s i t y , 1 9 8 3 . D I F A B S : W a l k e r , N . ; S t u a r t , D . D I F A B S : A n E m p i r i c a l M e t h o d f o r C o r r e c t i n g D i f f r a c t i o n D a t a f o r A b s o r p t i o n E f f e c t s . A c t a . C r y s t a l l o g r . 1 9 8 3 , A 3 9 , 1 5 8 - 1 6 6 . S h e l d r i c k , G . M . I n C r y s t a l l o g r a p h i c C o m p u t i n g 3 ; S h e l d r i c k , G . M . K r u g e r , C . ; G o d d a r d , R . , E d s . ; O x f o r d U n i v e r s i t y P r e s s : O x f o r d , U . K . , 1 9 8 5 ; p p 1 7 5 - 1 8 9 . T E X S A N - T E X R A Y S t r u c t u r e A n a l y s i s P a c k a g e , M o l e c u l a r S t r u c t u r e C o r p o r a t i o n ( 1 9 8 5 ) . 7 ) 8 ) 9 ) 1 0 ) 1 1 ) 1 2 ) 1 3 ) 1 4 ) 1 5 ) 1 6 ) 2 3 3 C r e v e c o e u r , C . A c t a C r y s t a l l o g r . 1 9 6 4 , 1 _ 7 _ , 7 5 7 . H u a n g , S . - P . ; K a n a t z i d i s , M . G . m a n u s c r i p t i n p r e p a r a t i o n . L e n h e r , V . ; F r u e h a n , A . G . J . A m . C h e m . S o c . 1 9 2 7 , Q , 3 0 7 7 . X i n , X . Q . ; M o r r i s , N . L . ; J a m e s o n , G . B . P o p e , M . T . I n o r g . C h e m . 1 9 8 5 , 2 _ 4 , 3 4 8 2 - 3 4 8 5 . C o u c o u v a n i s , D . ; K o o , S . M . I n o r g . C h e m . 1 9 8 9 , _ 2 _ 8 , 2 - 5 . M fi l l e r , A . ; R é m e r , M . ; R o m e r , C . ; R e i n s c h - V o g e l l , U . ; B o g g e , H . ; S c h i m a n s k i , U . M o n a t s c h . C h e m . 1 9 8 5 , L l _ 6 _ , 7 1 1 - 7 1 7 . R i t t n e r , W . ; M i i l l e r , A . ; N o u m a n n , A . ; B a t h e r , W . ; S h a r m a , R . C . A n g e w . C h e m . I n t . E d . E n g l . 1 9 7 9 , 1 8 , 5 3 0 - 5 3 1 . P a n , W . H . ; H a r m e r , M . A . ; H o l b e r t , T . R . ; S t i e f e l , E . I . J . A m . C h e m . S o c . 1 9 8 4 , M , 4 5 9 - 4 6 0 . C l e g g , W . ; C h r i s t o u , G . ; G a r n e r , C . D . ; S h e l d r i c k , G . M . I n o r g . C h e m . 1 9 8 1 , E , 1 5 6 2 - 1 5 6 6 . D r a g a n j a c , M . ; S i m h o n , E . ; C h a n , L . T . ; K a n a t z i d i s , M . G . ; B a e n z i g e r , N . C . ; C o u c o u v a n i s , D . I n o r g . C h e m . 1 9 8 2 , 2 _ 1 , 3 3 2 1 - 3 3 3 2 . 1 7 ) 1 8 ) 1 9 ) 2 0 ) 2 1 ) 2 2 ) 2 3 ) 2 4 ) 2 5 ) 2 3 4 W a r d l e , R . W . M . ; C h a u , C . - N . ; I b e r s , J . A . J . A m . C h e m . S o c . 1 9 8 7 , 1 _ O _ 9 , 1 8 5 9 - 1 8 6 0 . W a r d l e , R . W . M . ; B h a d u r i , S . ; C h a u , C . - N . ; I b e r s , J . A . I n o r g . C h e m . 1 9 8 8 , 2 1 , 1 7 4 7 - 1 7 5 5 . C h a u , C . - N . ; W a r d l e , R . W . M . ; I b e r s , J . A . I n o r g . C h e m . 1 9 8 7 , 2 _ 6 , 2 7 4 0 - 2 7 4 1 . F u r u s e t h , 8 . ; K l e w e , B . A c t a C h e m . S c a n d . 1 9 8 4 , _ 3 _ 8 , 4 6 7 - 4 7 1 . R h e i n g o l d , A . L . ; B o l i n g e r , C . M . ; R a u c h f u s s , T . B . A c t a C r y s t a l l o g r . , S e c t . C : C r y s t . S t r u c t . C o m m u n . 1 9 8 6 , Q 4 2 , 1 8 7 8 - 1 8 8 0 . B r e s e , N . E . ; R a n d a l l , C . R . ; I b e r s , J . A . I n o r g . C h e m . 1 9 8 8 , 2 7 , 9 4 0 - 9 4 3 . K i m , H . ; W i r l , A . ; K a h l , W . A n g e w . C h e m . 1 9 7 1 , 8 3 , 1 3 7 - 1 3 8 . M i i l l e r , A . ; S c h m i d t , K . H . ; T y t k o , K . H . ; B o u w m a , J . ; J e l l i n e k , F . S p e c t r o c h i m . A c t a . 1 9 7 2 , A g , 3 8 1 . K a n a t z i d i s , M . G . C e m e n t s I n o r g . C h e m . 1 9 9 0 , m , 1 6 1 - 1 9 5 . " l l l l l l l l l l l l l l l l l l f : » i 1 . 2 } 3 . 4 1 . . I p 2 u . 3 I u . . 3 . . 1 . : : 2 9 ‘ 1 K 2 ! 1 3 . 3 : 1 1 . . 1 9 3 1 2 - . . . . 3 . 1 3 I 1 . : 3 2 : t i . . 3 . . k ( . . . u 5 . 1 . : k . 5 . 2 1 . : 2 1 . . 3 - 0 . . n 1 a L A * 5 . . . 3 4 m . 5 ; 0 . . I « 4 . ‘ 3 n . u m . L ? . 3 6 . 3 . 3 9 . 3 . 4 L . x 1 . 1 E ( v . . u . 0 K 2 . . . u . . . . 4 . u K 3 n . a a I . ' 3 ‘ . 3 : . } ! u A 1 1 R 3 ( . 2 1 ! . : 3 . t . . } r 5 . . . . 4 . 1 5 - , : i 3 l . ‘ . 1 n . . 3 ~ n 1 . . I i ¢ a » . h . l . ? . . i h . . a : . I . . . . . . F » . . . : u . - 3 i . 1 u d - 9 i m . r £ . u t . c a 3 : . . 1 . . . N r t " J , . a . . . . u n : H . } fi 9 . fi . fi . . b 3 £ . u ‘ V . :. L ! . . . » . . I ‘ “ ‘ . 3 b 0 . 5 . 4 : t 1 \ 3 ” m . . . : 7 A . 1 ? - 3 . 5 i r h . . . 3 . 5 IIIIIIIIIIIIIIIIIIII I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I fl 3 1 2 9 3 0 1 4 0 2 L I B R A R Y M i c h i g a n S t a t e U n i v e r s i t y P T L O A A D C V A E O l I T l D E R F E I ' T N D U E R S U N M E B u O m X o e u c o k . n o n n t D o O r f A o b m a T t a E c e i a t h d D s t U h d E o u t f l o m y o u r r e c o r d . D A T E D U E M S U I n A n N fl r m d i v o A c t i o n / E q u a l O p p o n u n h y I n t u i t i o n W M ! H Y D R O T H E R M A L ( S O L V O T H E R M A L ) A N D M O L T E N P O L Y C H A L C O G E N I D E S A L T S Y N T H E S I S O F T E R N A R Y A N D Q U A T E R N A R Y C H A L C O G E N I D E S V o l u m e I I B y J u - H s i o u L i a o A D I S S E R T A T I O N S u b m i t t e d t o M i c h i g a n S t a t e U n i v e r s i t y i n p a r t i a l f u l f i l l m e n t o f t h e r e q u i r e m e n t s f o r t h e d e g r e e o f D O C T O R O F P H I L O S O P H Y D e p a r t m e n t o f C h e m i s t r y 1 9 9 3 C H A P T E R 5 M o l t e n S a l t S y n t h e s i s a n d C h a r a c t e r i z a t i o n o f T e r n a r y A l k a l i M e t a l T i n ( P o l y ) c h a l c o g e n i d e S y s t e m 1 . I n t r o d u c t i o n S y n t h e s i s o f n e w c h a l c o g e n i d e s o l i d s c a n b e a c h i e v e d a t i n t e r m e d i a t e t e m p e r a t u r e s ( Z O O - 4 5 0 ° C ) b y u s i n g t h e m o l t e n s a l t ( fl u x ) m e t h o d . T h e l a t t e r h a s b e e n p r o v e n t o b e a s u c c e s s f u l t e c h n i q u e i n s t a b i l i z i n g a n d c r y s t a l l i z i n g i n t e r e s t i n g n e w c h a l c o g e n i d e s w i t h n o v e l s t r u c t u r e t y p e s . I n r e c e n t y e a r s , a s e r i e s o f p o l y c h a l c o g e n i d e c o m p o u n d s s y n t h e s i z e d b y m o l t e n s a l t t e c h n i q u e b y u s i n g i n t e r m e d i a t e t e m p e r a t u r e s h a v e b e e n r e p o r t e d i n c l u d i n g K 4 T i 3 8 1 4 1 , 2 , a - K C u S 4 , B - K C u S 4 3 , 4 , N a 3 A u S e 8 , N a A u S e z , K A u S e 2 5 , K A u S e s , K 3 A u S e 1 3 3 ’ 6 , K 2 H g 3 Q 4 ( Q = S , S e ) , K 2 H g 6 S 7 3 , 7 a n d K 2 C u 5 T e 5 8 . T h e v e r s a t i l i t y o f p o l y c h a l c o g e n i d e l i g a n d s t o a d o p t v a r i o u s b i n d i n g m o d e s i n m o l e c u l a r a n d p o l y m e r i c c o m p l e x e s a n d t h e a b i l i t y o f t h e f l u x m e t h o d t o p r o d u c e m a n y n o v e l s t r u c t u r e s h a s b e e n e x p l o i t e d t o f o r m n e w s o l i d s t a t e p o l y c h a l c o g e n i d e s . T h u s f a r , t r a n s i t i o n m e t a l s h a v e r e c e i v e d t h e m o s t a t t e n t i o n b y t h i s t e c h n i q u e w i t h m a i n g r o u p m e t a l s n o t e x t e n s i v e l y i n v e s t i g a t e d . T h e e x i s t e n c e o f t h e o n e d i m e n s i o n a l K 4 T i 3 S 1 4 a n d t h e c h e m i c a l T i 4 “ / S n 4 + s i m i l a r i t y p r o m t e d u s t o s t a r t w i t h S n a s a m a i n g r o u p 2 3 5 2 3 6 m e t a l f o r s y n t h e t i c i n v e s t i g a t i o n . A l t h o u g h s e v e r a l m e t a l t i n ( p o l y ) s u l fi d e s a r e k n o w n , s u c h a s t h e m o l e c u l a r ( E t 4 N ) 2 [ S n ( S 4 ) 3 ] o , 4 [ S n ( S 4 ) 2 ( 8 6 ) ] 0 , 6 9 , N a 4 S n S 4 - 1 4 H 2 0 1 0 , N a 4 S n 2 8 6 - 1 4 H 2 0 1 1 , N a 6 8 n 2 8 7 1 2 , a n d t h e p o l y m e r i c K 2 8 n S 3 - 2 H 2 0 1 3 , N a 4 S n 3 S g l 4 , N a z S n S 3 1 5 a n d C S 4 S n 5 8 1 2 1 6 , o n l y ( E t 4 N ) 2 [ S n ( S 4 ) 3 ] 0 , 4 [ S n ( S 4 ) 2 ( S 6 ) ] 0 , 6 c o n t a i n s p o l y s u l fi d e l i g a n d s . A m o n g t h e s e c o m p o u n d s , N a 6 8 n 2 5 7 a n d N a 4 S n 3 8 3 w e r e m a d e b y h e a t i n g s t o i c h i o m e t r i c m i x t u r e s o f S n / N a z S / S a n d S n S z / N a z S a t 4 5 0 0 C a n d 6 8 0 ° C r e s p e c t i v e l y . C S 4 S n 5 8 1 2 , w a s m a d e h y d r o t h e r m a l l y w i t h S n S z a n d C s 2 C O 3 a t 1 3 0 ° C . ( E t 4 N ) 2 [ S n ( S 4 ) 3 ] 0 , 4 [ S n ( S 4 ) 2 ( S 6 ) ] 0 _ 6 w a s s y n t h e s i z e d f r o m S n C 1 2 . 2 H 2 0 a n d a m m o n i u m p o l y s u l fi d e i n a c e t o n e / m e t h a n o l s o l u t i o n a t 5 0 ° C . T h e r e s t w e r e s y n t h e s i z e d b y u s i n g S n 8 2 o r S n C l 4 i n r e a c t i o n s w i t h m o n o s u l fi d e s i n a q u e o u s s o l u t i o n s a t a m b i e n t t e m p e r a t u r e . H e r e w e r e p o r t t h e fi r s t fi v e a l k a l i m e t a l t i n p o l y s u l fi d e s , K z s n z S g ( I ) , a - R b 2 8 n 2 8 3 ( I I ) , B - R b 2 8 n 2 8 3 ( I I I ) , C s z S n z S 6 ( V ) a n d C s z S n S 1 4 ( V I ) , o n e p o t a s s i u m t i n s u l fi d e , K 2 5 n 2 8 5 ( I V ) a n d o n e p o t a s s i u m t i n t e l l u r i d e , K 2 8 n T e 5 ( V I I ) , t o b e s y n t h e s i z e d b y u s i n g a l k a l i m e t a l p o l y c h a l c o g e n i d e s a s r e a c t i v e fl u x e s . 2 . E x p e r i m e n t a l S e c t i o n 2 . 1 R e a g e n t s S n m e t a l w a s p u r c h a s e d f r o m C E R A C I n c . ~ 3 2 5 m e s h , 9 9 . 8 % . S u b l i m e d S u l f u r w a s p u r c h a s e d f r o m J . T . B a k e r C h e m i c a l C o . 9 9 . 5 ~ 1 0 0 . 5 % . T e l l u r i u m p o w d e r , — 1 0 0 m e s h , 9 9 . 9 5 % p u r i t y , A l d r i c h C h e m i c a l C o . , M i l w a u k e e , W I . P o t a s s i u m m e t a l , a n a l y t i c a l r e a g e n t , M a l l i n c k r o d t I n c . , P a r i s , K Y . C e s i u m m e t a l , 9 9 . 9 8 % p u r i t y , A E S A R , 2 3 7 J o h n s o n M a t t h e y , S e a b r o o k , N H . [ ( 2 8 , R b 2 8 , C s z S a n d K 2 T e s t a r t i n g m a t e r i a l s w e r e p r e p a r e d b y a m o d i f i e d l i t e r a t u r e p r o c e d u r e ” . A l l t h e r e a g e n t s a r e s t o r e d u n d e r N 2 i n a g l o v e b o x . 2 . 2 P h y s i c a l M e a s u r e m e n t s T h e i n s t r u m e n t s a n d e x p e r i m e n t a l s e t u p s f o r I n f r a r e d s p e c t r o s c o p y , S E M / E D S q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s a n d U V / v i s / n e a r - I R o p t i c a l d i f f u s e s p e c t r o s c o p y a r e t h e s a m e a s t h o s e i n p r e v i o u s c h a p t e r s . R a m a n s p e c t r a w e r e m e a s u r e d b y D r . C . V a r o t s i s i n t h e d e p a r t m e n t o f c h e m i s t r y , M i c h i g a n S t a t e U n i v e r i s t y . R a m a n s p e c t r a w e r e o b t a i n e d i n b a c k s e a t t e r i n g g e o m e t r y f r o m s o l i d s a m p l e s i n s p i n n i n g E P R t u b e s a t r o o m t e m p e r a t u r e . T h e R a m a n e q u i p m e n t i n c l u d e d a S P E X 1 4 5 9 I l l u m i n a t o r , a S P E X 1 8 7 7 t r i p l e m a t e w i t h a n E G & G m o d e l 1 4 2 1 d i o d e a r r a y d e t e c t o r a n d a n O M A I H c o m p u t e r . A n I n n o v a 2 0 0 A r g o n - i o n l a s e r s y s t e m w a s u s e d t o p r o v i d e a n e x c i t a t i o n w a v e l e n g t h o f 5 1 4 . 5 n m a n d t h e p o w e r i n c i d e n t o n t h e s a m p l e w a s 5 0 m W . T h e R a m a n s p e c t r a l r e s o l u t i o n w a s a p p r o x i m a t e l y 8 c m ' l . 2 . 3 . S y n t h e s i s C h e m i c a l s w e r e w e i g h e d a n d l o a d e d i n t o P y r e x t u b e s u n d e r a d r y n i t r o g e n a t m o s p h e r e i n a V a c u u m A t m o s p h e r e D r i - L a b g l o v e b o x . I s o l a t i o n s w e r e p e r f o r m e d b y u s i n g a s t a n d a r d S c h l e n k l i n e t e c h n i q u e u n d e r a d r y n i t r o g e n a t m o s p h e r e . K z s n z s s ( I ) A m i x t u r e o f S n m e t a l ( 0 . 1 1 9 g , 1 m m o l ) , K 2 8 ( 0 . 2 2 0 g , 2 m m o l ) a n d S ( 0 . 2 5 6 g , 8 m m o l ) i n 1 : 2 : 8 r a t i o w a s l o a d e d i n t o 2 3 8 a n ~ 5 - m l P y r e x t u b e i n a N 2 g l o v e b o x . T h e t u b e w a s e v a c u a t e d a n d fl a m e s e a l e d a t t h e p r e s s u r e o f ~ 1 0 “ 3 t o r r . T h e m i x t u r e w a s h e a t e d a t 2 5 0 o r 2 7 5 0 C f o r 4 - 6 d a y s . U p o n c o o l i n g t o r o o m t e m p e r a t u r e a t t h e r a t e o f 2 0 C / h r , s m a l l o r a n g e c h u n k y c r y s t a l s w e r e f o r m e d . T h e c r y s t a l s o b t a i n e d a t 2 7 5 0 C a r e l a r g e r i n s i z e . T h e p r o d u c t w a s w a s h e d w i t h w a t e r t o r e m o v e e x c e s s K z s x fl u x , a n d t h e n w a s h e d w i t h c a r b o n d i s u l fi d e t o r e m o v e u n r e a c t e d s u l f u r . T h e p r o d u c t i s o b t a i n e d i n 8 6 % y i e l d ( b a s e d o n S n m e t a l ) . T h e o r a n g e c r y s t a l s a r e s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . S e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s e s w e r e r u n o n a s c a n n i n g e l e c t r o n m i c r o s c o p e ( S E M ) u s i n g a n e n e r g y d i s p e r s i v e ( E D S ) m i c r o s c o p e t e c h n i q u e . E D S i n d i c a t e d K 2 , o S n 2 , o S 7 , 9 . a - s z S n z S g ( I I ) T h e p r e p a r a t i o n a n d i s o l a t i o n o f ( I I ) a r e s i m i l a r t o t h a t o f ( I ) . H o w e v e r , t h e m i x t u r e o f S n m e t a l ( 0 . 1 1 9 g , 1 m m o l ) , s z s ( 0 . 4 0 6 g , 2 m m o l ) a n d S ( 0 . 2 5 6 g , 8 m m o l ) i n 1 : 2 : 8 r a t i o a t 2 7 0 0 C f o r 4 d a y s g a v e o n l y ~ 3 8 % y i e l d ( b a s e d o n S n ) , a c c o m p a n i e d w i t h w h i t e c r y s t a l s o f R b 4 S n 2 8 6 a s a n i m p u r i t y ” . P u r e ( I I ) w a s m a d e a n d t h e y i e l d w a s i m p r o v e d t o 8 9 % , w h e n t h e r e a c t i o n t e m p e r a t u r e w a s i n c r e a s e d t o 3 3 0 0 C a n d t h e S n / s z S / S r a t i o w a s 1 : 2 : 1 2 . U p o n c o o l i n g a t 2 0 C / h o u r , l a r g e r , w e l l - f o r m e d o r a n g e n e e d l e - l i k e c r y s t a l s w e r e o b t a i n e d . T h e o r a n g e c r y s t a l s a r e s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . S e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s o n S E M / E D S i n d i c a t e d R b 1 , 4 S n 2 8 9 . T h e R b c o n t e n t i s u n d e r e s t i m a t e d d u e t o a n a r t i f a c t o f t h e s t a n d a r d l e s s p r o g r a m u s e d . W e f o u n d t h a t a c o r r e c t i o n f a c t o r o f 1 . 5 h a s t o b e a p p l i e d . fi - s z S n s t ( I I I ) T h e p r e p a r a t i o n a n d i s o l a t i o n o f ( I I I ) a r e a l s o s i m i l a r t o t h o s e o u t l i n e d a b o v e . T h e m i x t u r e o f S n / s z S / S i n 1 : 1 : 8 r a t i o 2 3 9 w a s h e a t e d t o 4 5 0 ° C f o r 4 d a y s . U p o n c o o l i n g a t 3 ° C / h o u r , o r a n g e t h i n p l a t e - l i k e c r y s t a l s o f B - s z S n z S g w e r e o b t a i n e d i n t h e y i e l d o f 5 9 % ( b a s e d o n S n ) . T h e o r a n g e c r y s t a l s a r e a l s o s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . S e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s o n S E M / E D S i n d i c a t e d R b 1 , 4 S n 2 8 9 . K z s n z s s ( I V ) T h e p r e p a r a t i o n a n d i s o l a t i o n o f ( I V ) i s t h e s a m e a s f o r ( I ) e x c e p t t h a t t h e r e a c t i o n t e m p e r a t u r e w a s i n c r e a s e d t o 3 2 0 ° C . H o w e v e r a c o o l i n g r a t e o f 2 ° C / h r , g a v e o n l y m i c r o c r y s t a l s a t ~ 8 1 % y i e l d . I n o r d e r t o g r o w l a r g e r c r y s t a l s f o r s i n g l e c r y s t a l X - r a y a n a l y s i s , w e i n c r e a s e d t h e r e a c t i o n t e m p e r a t u r e t o 4 0 0 ° C . A t t h i s t e m p e r a t u r e , t h e y i e l d o f ( I V ) w a s v e r y l o w ( l e s s t h a n 1 0 % ) a n d t h e m a j o r p r o d u c t w a s w a t e r - s o l u b l e w h i t e c r y s t a l s o f K 4 S n 2 8 6 1 9 . T h e y e l l o w c r y s t a l s a r e a l s o s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . S e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s e s w e r e d o n e b y S E M / E D S w h i c h i n d i c a t e d K 2 , 0 8 n 2 , 0 8 5 _ 7 . C s z S n z S 6 ( V ) P u r e y e l l o w t h i n p l a t e - l i k e c r y s t a l s o f ( V ) c a n b e o b t a i n e d u n d e r t h e s a m e r e a c t i o n c o n d i t i o n s u s e d f o r ( V I ) b u t b y u s i n g l e s s s u l f u r ( S n : C s z S : S = 1 : 3 : 8 ) . H o w e v e r , c r y s t a l s o b t a i n e d a t 2 7 5 ° C h a d p o o r c r y s t a l l i n i t y . C r y s t a l s s u i t a b l e f o r s i n g l e c r y s t a l X - r a y d i f f r a c t i o n a n a l y s i s w e r e o b t a i n e d b y h e a t i n g a m i x t u r e o f S n ( 0 . 0 5 9 g , 0 . 5 m m o l ) , C 8 2 8 ( 0 . 1 4 9 g , 0 . 5 m m o l ) a n d 8 ( 0 . 1 2 8 g , 4 m m o l ) i n a n e v a c u a t e d P y r e x t u b e i n 1 : 1 : 8 r a t i o a t 4 0 0 ° C f o r 4 d a y s b y u s i n g a c o o l i n g r a t e o f 4 ° C / h r . T h e p r o d u c t w a s i s o l a t e d b y w a s h i n g w i t h D M F t o r e m o v e e x c e s s C s s z f l u x f o l l o w e d b y w a s h i n g w i t h e t h e r . T h e p r o d u c t i s i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . T h e r e a c t i o n g a v e t h e p r o d u c t a t ~ 8 6 % y i e l d ( b a s e d o n 2 4 0 S n ) . S E M / E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d C s z . o S n 2 . 0 8 7 . 4 . C s z S n S u ( V I ) T h e p r o c e d u r e f o r t h e p r e p a r a t i o n o f ( V 1 ) i s t h e s a m e a s t h a t o f ( 1 ) . S a m p l e s o f S n ( 0 . 0 5 9 g , 0 . 5 m m o l ) , C s z S ( 0 . 2 9 8 g , 1 . 0 m m o l ) w e r e m i x e d w i t h S i n t h e r a n g e o f 0 0 9 6 — 0 1 6 0 g ( 3 . 0 - 5 . 0 m m o l ) . T h e p r o d u c t w a s w a s h e d b y m e t h a n o l u n d e r N 2 t o r e m o v e e x c e s s C s s z fl u x . A l l t h e t h r e e s u l f u r r a t i o s g a v e m i x t u r e s o f r e d c r y s t a l s o f ( V I ) a n d t h e y e l l o w c r y s t a l l i n e m a t e r i a l o f ( V ) . T h e r e d c r y s t a l s o f ( V I ) d i s s o l v e d s l o w l y i n w a t e r b u t a r e s t a b l e i n a i r . S u i t a b l e c r y s t a l s f o r X - r a y d i f f r a c t i o n s t u d i e s w e r e p i c k e d m a n u a l l y . S e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s w a s d o n e a l s o o n S E M / E D S w h i c h i n d i c a t e d C s z , o S n 1 , o S l s . K z s n T e s ( V I I ) A m i x t u r e o f S n m e t a l ( 0 . 2 3 8 g , 2 . 0 m m o l ) , K z T e ( 0 . 4 1 2 g , 0 . 2 0 m m o l ) a n d T e ( 1 . 0 2 1 g , 8 . 0 m m o l ) i n 1 : 1 : 4 r a t i o w a s l o a d e d i n t o a n ~ 5 - m l P y r e x t u b e i n a N 2 g l o v e b o x . T h e t u b e w a s e v a c u a t e d a n d fl a m e s e a l e d a t t h e p r e s s u r e o f ~ 1 0 " 3 t o r r . T h e m i x t u r e w a s h e a t e d a t 4 0 0 ° C f o r 4 d a y s a n d t h e n c o o l e d t o r o o m t e m p e r a t u r e a t 4 ° C / h r . T h e p r o d u c t w a s w a s h e d w i t h D M F t o r e m o v e e x c e s s K z T e x fl u x . B l a c k p l a t e - l i k e c r y s t a l s o f ( V I I ) a n d t e l l u r i u m p o w d e r i n ~ 1 : 1 r a t i o w e r e o b t a i n e d . T h e b l a c k p l a t e - l i k e c r y s t a l s a r e s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . T h e c r y s t a l s o f ( V I I ) w e r e p i c k e d m a n u a l l y f o r c h a r a c t e r i z a t i o n . S E M / E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d K 2 . 2 S n 1 . 0 T e s . 1 . 2 . 4 . X - R a y C r y s t a l l o g r a p h y 2 4 1 X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e u s e d f o r t h e p u r p o s e o f p h a s e c h a r a c t e r i z a t i o n a n d i d e n t i fi c a t i o n . T h e X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e r e c o r d e d w i t h a P h i l l i p s X R D - 3 0 0 0 c o n t r o l l e d b y P D P 1 1 c o m p u t e r a n d o p e r a t i n g a t 4 0 k V / 3 5 m A . G r a p h i t e m o n o c h r o m a t e d C u r a d i a t i o n w a s u s e d . I n o r d e r t o e n s u r e t h e h o m o g e n e i t y , d - s p a c i n g o b t a i n e d f r o m X - r a y p o w d e r d i f f r a c t i o n ( X R D ) m e a s u r e m e n t s o f t h e p r o d u c t s w e r e c o m p a r e d w i t h , a n d f o u n d t o b e i d e n t i c a l ( t h e c r y s t a l s o f ( V I ) a n d ( V I I ) w e r e p i c k e d b y h a n d a m o n g m i x t u r e s ) , w i t h t h o s e c a l c u l a t e d f r o m u s i n g t h e a t o m i c c o o r d i n a t e s d e t e r m i n e d f r o m t h e s i n g l e c r y s t a l d a t a . T h e c a l c u l a t i o n o f d - s p a c i n g s w a s p e r f o r m e d b y u s i n g t h e P O W D 1 0 2 0 p r o g r a m . T h e c o m p a r i s o n t a b l e s b e t w e e n t h e c a l c u l a t e d a n d o b s e r v e d d - s p a c i n g s f o r t h e s e c o m p o u n d s a r e s h o w n i n T a b l e s 5 - 1 ~ 5 - 7 . 2 4 2 T a b l e 5 - 1 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 2 S n 2 8 8 h k l d c a l c . ( A ) C l o b s . ( A ) % I o b s . ' 1 0 1 8 . 9 2 3 2 8 . 9 9 2 9 7 3 . 8 0 1 1 8 . 0 2 7 7 7 . 8 6 4 1 4 9 . 5 0 0 2 6 . 7 3 6 5 6 . 7 5 0 3 1 0 0 . 0 1 O 1 6 . 6 6 1 4 6 . 5 8 1 6 7 2 . 6 ' 1 1 2 5 . 4 1 2 2 5 . 4 4 8 6 6 4 . 0 2 0 0 4 . 5 6 0 2 4 . 5 7 0 1 2 8 . 4 ‘ 2 1 1 4 . 3 1 8 2 4 . 3 3 6 2 1 6 . 6 2 1 0 4 . 1 4 9 4 4 . 1 9 2 4 1 8 . 5 1 0 3 3 . 6 1 0 4 3 . 6 2 1 7 2 1 . 8 ' 2 1 3 3 . 5 8 3 4 2 0 2 3 . 3 3 0 7 3 . 3 3 3 9 2 6 . 8 9 ‘ 2 2 2 3 . 3 2 9 6 ‘ 1 1 4 3 . 3 2 4 7 0 3 1 3 . 2 3 6 7 0 1 4 3 . 1 8 7 9 3 . 1 6 5 3 5 9 . 4 1 0 3 3 . 1 3 1 8 ‘ 3 1 1 3 . 0 3 2 4 3 . 0 1 6 3 4 3 . 4 ‘ 3 1 2 3 . 0 1 0 2 1 3 1 2 . 9 8 1 9 2 . 9 5 7 4 3 2 . 5 0 2 4 2 . 7 9 1 0 2 . 7 9 4 2 3 0 . 1 ' 2 3 1 2 . 7 3 6 2 2 . 7 3 3 1 3 0 . 1 1 3 2 2 . 7 3 1 5 3 1 1 2 . 6 8 5 3 2 . 6 9 3 7 3 1 . 7 ' 3 2 1 2 . 6 8 4 8 ' 3 2 2 2 . 6 6 9 4 2 . 6 2 1 0 5 4 . 9 ' 2 1 5 2 . 6 1 4 2 ‘ 3 l 4 2 . 6 1 0 6 0 1 5 2 . 5 9 8 3 ‘ 3 2 3 2 . 5 5 6 6 2 . 5 6 0 2 1 4 . 8 2 3 1 2 . 5 5 2 2 ' 3 0 5 2 . 4 1 4 7 2 . 4 2 0 8 6 4 . 0 ' 4 1 1 2 . 3 0 6 9 2 . 3 0 7 8 3 8 . 4 ' 1 4 3 2 . 1 9 9 8 2 . 1 8 6 3 4 7 . 5 ‘ 2 4 2 2 . 1 8 1 6 ' 4 2 2 2 . 1 5 9 1 2 . 1 6 0 3 2 8 . 4 4 1 2 5 2 . 1 5 6 3 4 2 0 2 . 0 7 4 7 2 . 0 8 9 5 3 7 . 8 0 2 6 2 . 0 4 6 0 2 . 0 4 4 5 3 0 . 9 3 3 2 1 . 9 9 9 4 1 . 9 7 7 7 2 2 . 0 1 1 6 1 . 9 9 6 6 ' 2 4 4 1 . 9 7 4 6 ‘ 4 0 6 1 . 9 1 9 0 1 . 9 1 7 9 5 0 . 6 ‘ 5 1 2 1 . 8 8 0 6 1 . 8 7 9 1 1 1 . 1 ' 2 5 3 1 . 7 7 4 2 1 . 7 7 1 9 2 3 . 2 ' 2 5 5 1 . 6 0 9 3 1 . 6 1 0 1 2 1 . 8 ‘ 4 0 8 1 . 6 0 8 8 ' 3 5 4 1 . 6 0 8 4 ‘ 6 1 4 1 . 5 5 8 9 1 . 5 6 0 6 1 6 . 0 T a b l e 5 - 2 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r o r - R b 2 8 n 2 8 8 2 4 3 h k d c a l c . ( A ) d o b s . ( A ) % I o b s . l 0 ' 1 9 . 0 4 9 2 8 . 8 4 0 4 2 5 . 4 5 0 1 1 8 . 0 7 7 2 7 . 9 1 6 7 8 . 3 1 1 0 1 6 . 8 8 4 2 6 . 7 3 8 8 1 0 0 . 0 0 0 0 2 6 . 8 7 8 6 1 l 0 6 . 8 3 3 2 1 l ' 2 5 . 4 5 0 4 5 . 3 9 4 2 1 9 . 4 9 0 2 1 4 . 6 9 0 1 4 . 6 6 1 1 7 0 . 2 0 2 0 0 4 . 6 8 8 6 1 0 ' 3 4 . 6 8 3 3 2 0 ' 2 4 . 5 2 4 6 4 . 5 1 2 3 2 3 . 6 7 2 1 ' 1 4 . 3 8 8 3 4 . 3 6 4 7 4 3 . 2 5 1 2 1 4 . 0 3 9 7 4 . 0 1 4 9 1 9 . 4 9 1 0 3 3 . 7 2 0 1 3 . 6 9 8 1 3 7 . 5 3 1 1 3 3 . 4 8 5 7 3 . 4 7 6 6 6 8 . 7 0 2 0 2 3 . 4 4 2 1 3 . 4 2 2 4 7 4 . 8 0 1 2 ' 3 3 . 4 1 4 6 1 1 ' 4 3 . 3 6 7 6 3 . 3 5 1 8 9 1 . 1 9 2 2 ' 2 3 . 3 5 1 6 0 1 4 3 . 2 5 1 6 3 . 2 2 9 3 7 3 . 2 5 0 3 1 3 . 2 3 2 9 1 3 0 3 . 1 3 4 7 3 . 1 2 1 0 5 7 . 2 7 3 1 ' 1 3 . 0 9 5 7 3 . 0 7 8 3 6 7 . 2 1 3 l ' 2 3 . 0 5 9 0 3 . 0 4 1 1 6 1 . 4 3 1 3 1 2 . 9 9 4 8 2 . 9 8 6 9 6 8 . 7 0 0 2 4 2 . 8 3 1 7 2 . 8 1 8 4 2 6 . 3 7 3 1 1 2 . 7 6 2 8 2 . 7 4 3 7 6 7 . 2 1 1 3 2 2 . 7 5 4 6 2 3 ' 1 2 . 7 4 9 5 3 2 ' 1 2 . 7 2 6 9 3 2 ' 2 2 . 7 0 1 7 0 3 3 2 . 6 9 2 4 2 . 6 8 2 2 2 7 . 3 0 0 1 5 2 . 6 5 2 5 2 l ' 5 2 . 6 4 2 8 2 . 6 2 7 9 3 8 . 6 4 3 1 ' 4 2 . 6 3 8 9 2 3 1 2 . 5 8 1 5 2 . 5 6 6 4 5 0 . 6 5 3 2 ' 3 2 . 5 8 1 3 1 2 ' 5 2 . 4 8 9 0 2 . 4 7 7 3 3 6 . 4 3 1 3 3 2 . 4 7 9 5 3 0 ' 5 2 . 4 4 1 4 2 . 4 3 2 3 5 7 . 2 7 1 3 ' 4 2 . 4 3 5 9 4 1 ' 1 2 . 3 6 0 2 2 . 3 5 3 1 2 5 . 4 5 0 4 2 2 . 3 4 5 1 0 1 6 2 . 2 3 4 6 2 . 2 7 3 3 1 5 . 7 1 2 . 2 2 6 6 2 3 . 6 7 2 4 4 T a b l e 5 — 2 . ( c o n t ' d ) h k l d c a l c . ( A ) d o b s . ( A ) H o b s . 1 2 5 2 . 2 0 4 0 2 . 1 9 3 7 8 6 . 1 1 1 4 ' 3 2 . 2 0 1 7 4 2 ' 2 2 . 1 9 4 1 3 2 ' 5 2 . 1 9 2 9 2 4 ' 2 2 . 1 8 4 5 2 3 3 2 . 1 8 1 6 4 2 ' 3 2 . 1 4 9 9 . 1 4 4 6 3 4 . 2 9 4 2 0 2 . 1 2 1 7 . 1 1 4 9 2 7 . 3 0 3 2 3 2 . 0 8 4 8 . 0 7 6 3 3 3 . 2 4 0 2 6 2 . 0 8 3 4 1 1 6 2 . 0 4 8 5 . 0 3 9 8 5 8 . 6 4 4 0 2 2 . 0 4 7 0 1 0 ' 7 2 . 0 4 4 8 3 3 2 2 . 0 3 8 9 4 2 1 2 . 0 1 9 5 . 0 1 4 3 2 7 . 3 0 0 4 4 2 . 0 1 9 3 3 4 ' 1 1 . 9 8 0 3 . 9 7 6 6 4 5 . 6 5 2 4 ' 4 1 . 9 7 9 6 4 0 ' 6 1 . 9 4 0 7 . 9 4 0 0 3 0 . 2 0 5 1 0 1 . 8 4 3 2 . 8 4 1 1 1 5 . 0 1 4 3 1 1 . 8 3 9 8 2 4 5 T a b l e 5 - 3 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r fi - s z S n z S g h k l d c a l c . ( A ) d o b s . ( A ) $ 2 5 l o b s . 0 2 0 9 . 8 1 7 5 9 . 8 9 7 4 2 7 . 8 1 1 0 8 . 9 0 1 0 9 . 0 8 7 5 8 . 1 6 0 2 1 7 . 9 8 9 3 8 . 0 6 6 1 1 1 . 6 0 0 2 6 . 8 7 3 5 6 . 9 0 2 4 1 0 0 . 0 1 3 0 5 . 4 7 4 0 5 . 4 8 1 2 1 8 . 8 0 4 1 4 . 6 2 2 9 4 . 7 0 5 2 2 2 . 9 1 3 2 4 . 2 8 2 0 4 . 3 0 1 4 2 2 . 3 1 4 1 4 . 1 9 5 1 4 . 1 6 6 2 2 6 . 1 0 2 3 4 . 1 5 2 3 1 2 3 3 . 8 3 4 1 3 . 8 7 2 0 8 . 2 1 5 1 3 . 5 3 1 9 3 . 4 9 4 0 2 1 . 3 0 0 4 3 . 4 3 6 7 3 . 4 4 5 8 5 1 . 8 2 4 1 3 . 3 9 2 2 1 5 2 3 . 2 2 6 8 3 . 2 5 2 4 2 5 . 6 3 1 1 3 . 1 9 2 1 3 1 9 1 9 3 7 . 9 1 4 3 3 . 1 7 5 8 1 2 4 3 . 0 8 5 1 3 . 0 9 6 1 1 6 . 1 3 0 2 2 . 9 9 5 9 3 . 0 0 4 4 2 5 . 6 3 3 2 2 . 7 2 4 0 2 . 7 2 9 7 1 2 . 0 3 1 3 2 . 6 6 8 1 2 . 6 7 8 9 1 5 . 2 1 7 1 2 . 6 4 9 8 2 . 6 5 3 4 2 2 . 3 2 6 2 2 . 5 4 2 8 2 . 5 4 9 9 1 6 . 1 0 8 0 2 . 4 5 4 4 2 . 4 5 9 9 9 8 . 9 0 8 1 2 . 4 1 6 2 2 . 4 1 9 3 1 3 . 6 2 8 0 2 . 2 0 2 6 2 . 2 0 2 1 3 1 . 4 1 5 5 2 . 1 9 7 1 4 4 1 2 . 1 9 6 7 2 4 5 2 . 1 6 2 2 2 1 6 4 1 2 7 . 3 2 7 3 2 . 1 5 7 5 2 6 4 2 . 1 4 1 0 2 1 1 8 1 1 5 . 2 3 1 5 2 . 1 0 7 6 4 4 3 2 . 0 0 1 7 1 9 8 8 5 2 1 . 8 0 8 4 1 . 9 9 7 3 4 6 0 1 . 9 8 4 9 2 3 6 1 . 9 8 4 4 0 1 0 1 1 . 9 4 3 8 1 . 9 4 7 1 7 3 . 5 1 5 6 1 . 9 4 1 2 0 2 7 1 . 9 2 5 7 1 . 9 2 9 3 2 2 . 3 2 4 6 T a b l e 5 - 4 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r K 2 $ n 2 8 5 h k 1 d c a l c . ( A ) d o b s . ( A ) H o b s . 1 1 0 6 . 2 6 9 9 6 . 3 7 0 5 4 9 . 4 ' 1 1 1 5 . 9 4 3 2 6 . 0 3 9 6 5 5 . 3 0 0 2 5 . 4 7 5 7 5 . 5 5 4 7 2 8 . 4 2 0 0 5 . 2 6 0 2 5 . 3 2 9 7 6 . 2 1 1 1 5 . 0 4 8 1 5 . 1 1 2 2 9 . 4 ' 2 0 2 4 . 5 8 1 9 4 . 6 2 1 4 1 0 . 1 0 2 0 3 . 9 0 4 0 3 . 9 4 5 4 1 5 . 4 . 1 1 2 3 . 7 8 7 2 3 . 8 2 5 2 2 5 . 0 0 2 1 3 . 6 7 7 3 3 . 7 1 3 3 1 5 . 1 ' 1 1 3 3 . 4 4 8 6 3 . 4 7 8 9 4 7 . 1 ' 3 1 1 3 . 3 3 9 6 3 . 3 6 8 6 6 5 . 6 2 0 2 3 . 3 0 8 5 3 . 3 3 4 6 2 0 . 7 3 1 0 3 . 1 9 9 0 3 . 2 0 0 3 1 2 . 1 ' 2 2 1 3 . 1 7 5 6 3 . 1 6 3 1 7 . 7 2 2 1 2 . 8 7 4 6 2 . 8 9 6 3 1 0 0 . 0 3 1 1 2 . 8 5 7 7 2 . 8 3 6 4 1 5 . 7 ' 4 0 2 2 . 7 2 9 8 2 . 7 4 7 2 2 3 . 4 ' 1 1 4 2 . 7 0 1 8 2 . 7 1 8 4 3 0 . 7 0 2 3 2 . 6 6 6 3 2 . 6 8 3 1 2 6 . 7 1 3 0 2 . 5 2 6 5 2 . 5 4 1 3 6 2 . 2 9 2 2 2 2 . 5 2 4 1 3 1 2 2 . 4 7 0 4 2 . 4 8 3 1 8 . 4 ' 3 1 4 2 . 4 5 7 8 2 . 4 3 6 1 1 2 . 3 1 3 1 2 . 4 2 0 5 2 . 3 7 7 6 2 6 . 3 ' 1 3 2 2 . 3 6 3 1 1 1 4 2 . 3 5 2 4 ' 4 0 4 2 . 2 9 1 0 2 . 3 0 3 6 2 2 . 2 ' 4 2 1 2 . 2 5 5 0 2 . 2 6 6 9 6 . 6 1 3 2 2 . 2 3 0 8 2 . 2 4 2 9 3 1 . 1 ' 5 1 2 2 . 1 2 7 7 2 . 1 3 3 2 1 1 . 2 4 0 2 2 . 1 2 4 1 3 1 3 2 . 1 2 2 6 ' 5 1 1 2 . 1 1 6 2 ' 3 3 2 2 . 0 8 7 3 2 . 0 9 8 9 2 6 . 3 ' 5 1 3 2 . 0 6 1 3 2 . 0 7 1 5 1 3 . 8 4 2 1 2 . 0 3 9 7 2 . 0 5 0 3 2 7 . 1 5 1 0 2 . 0 3 1 6 2 . 0 4 2 1 2 2 . 2 1 1 5 1 . 9 5 6 6 1 . 9 6 6 4 2 5 . 4 0 4 0 1 . 9 5 2 0 1 . 9 6 0 7 3 1 . 6 ' 5 1 4 1 . 9 3 7 4 1 . 9 4 0 7 2 0 . 3 ' 1 3 4 1 . 9 3 0 9 1 . 9 3 1 0 1 9 . 9 ' 2 0 6 1 . 9 2 1 9 1 . 9 1 7 0 1 1 . 2 0 2 5 1 . 9 1 0 2 1 . 9 0 3 1 1 0 . 4 5 1 1 1 . 8 9 6 8 2 2 4 1 . 8 9 3 6 4 2 2 1 . 8 6 5 8 1 . 8 7 3 0 3 . 0 T a b l e 5 - 4 . ( c o n t ' d ) 2 4 7 h k l C l c a l c ; . ( A ) C 1 o b s . ( A ) H o b s . ' 3 3 4 1 . 8 3 5 7 1 . 8 4 4 5 3 4 . 4 ' 4 2 5 1 . 7 9 8 0 1 . 8 0 6 1 1 7 . 4 1 3 4 1 . 7 9 0 5 1 . 7 9 2 0 1 1 . 8 ' 5 1 5 1 . 7 8 4 3 1 . 7 8 1 6 2 5 . 0 2 4 1 1 . 7 7 3 7 ' 2 2 6 1 . 7 2 4 3 1 . 7 3 0 1 6 . 8 ' 2 4 3 1 . 7 1 2 9 1 . 7 1 9 7 9 . 9 4 2 3 1 . 6 8 8 3 1 . 6 9 5 6 1 9 . 2 2 4 2 1 . 6 8 1 2 1 . 6 8 7 3 1 0 . 9 ' 6 2 1 1 . 6 5 2 0 1 . 6 5 6 8 2 5 . 4 ' 6 2 3 1 . 6 4 9 1 5 3 0 1 . 6 3 6 2 1 . 6 4 3 1 1 2 . 3 ' 2 4 4 1 . 6 0 4 8 1 . 6 1 1 6 8 . 1 ' 4 4 2 1 . 5 8 9 4 1 . 5 8 9 1 7 . 4 4 ' 5 3 4 1 . 5 8 5 9 5 1 3 1 . 5 8 2 5 1 . 5 8 8 0 1 7 . 8 ' 7 1 3 1 . 5 4 4 1 1 . 5 4 9 7 1 0 . 3 2 4 8 T a b l e 5 - 5 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r C 5 2 S n 2 8 6 h k l d c a l c . ( A ) d o b s . ( A ) % I o b s . 1 0 0 6 . 5 7 4 8 6 . 6 1 9 6 9 4 . 7 0 1 0 6 . 5 6 2 0 0 0 1 5 . 6 1 3 3 5 . 6 4 0 8 1 9 . 9 ' 1 1 0 5 . 5 8 1 8 1 ' 1 1 4 . 0 9 3 9 4 . 0 8 7 5 6 2 . 5 ' 1 1 1 3 . 8 3 4 9 3 . 8 5 8 3 2 8 . 5 0 ' 2 1 3 . 7 4 4 1 3 . 7 7 0 0 5 2 . 3 ' 2 0 1 3 . 5 5 1 0 3 . 5 7 3 0 5 6 . 3 ' 1 2 0 3 . 3 8 0 5 3 . 4 0 0 2 1 0 0 . 0 1 ' 2 1 3 . 3 6 2 8 3 . 3 5 9 3 4 2 . 1 2 0 0 3 . 2 8 7 4 3 . 3 0 6 3 2 3 . 7 ' 2 1 1 3 . 1 5 2 0 3 . 1 6 8 6 2 9 . 2 ' 2 ' 1 1 3 . 0 9 4 9 3 . 1 1 2 2 3 9 . 5 ' 1 ' 2 2 2 . 8 8 7 4 2 . 9 8 9 7 0 7 . 3 0 0 2 2 . 8 0 6 7 2 . 8 2 0 4 7 7 . 2 ' 2 2 0 2 . 7 9 5 1 1 2 0 2 . 6 3 0 2 2 . 6 3 8 8 1 0 . 5 1 ' 1 2 2 . 5 7 5 9 2 . 5 6 6 1 2 5 . 7 2 ' 2 1 2 . 5 6 6 7 1 ' 2 2 2 . 5 5 8 0 2 0 1 2 . 4 3 0 9 2 . 4 3 6 9 2 3 . 7 ' 3 0 1 2 . 4 0 7 7 2 . 4 1 0 0 3 2 . 2 ' 2 ' 2 2 2 . 4 0 4 9 0 ' 3 2 2 . 3 8 3 1 2 . 3 7 4 7 3 8 . 6 ' 1 ' 3 1 2 . 2 1 2 7 2 . 1 9 7 2 4 7 . 5 3 0 0 2 . 1 9 1 6 0 3 0 2 . 1 8 7 3 0 ' 2 3 2 . 1 3 8 6 2 . 1 4 4 6 1 0 . 1 ' 3 2 1 2 . 0 7 1 1 2 . 0 7 9 7 1 8 . 7 ' 1 0 3 2 . 0 3 5 7 2 . 0 3 7 1 1 0 . 3 ' 2 0 3 2 . 0 2 7 5 2 . 0 1 7 0 2 2 . 4 2 1 1 2 . 0 0 9 6 3 ' 2 1 1 . 9 5 5 9 1 . 9 6 1 1 1 3 . 8 1 ' 4 1 1 . 8 7 2 2 1 . 8 7 8 4 3 3 . 8 0 ' 4 1 1 . 8 7 2 0 0 0 3 1 . 8 7 1 1 0 ' 4 1 1 . 8 3 5 8 1 . 8 3 7 7 1 0 . 1 ' 3 ' 2 1 1 . 8 3 2 9 ' 2 1 3 1 . 7 7 3 6 1 . 7 7 6 2 7 . 3 ' 4 2 1 1 . 7 0 4 9 1 . 7 0 6 2 1 4 . 3 ' 4 ' 1 2 1 . 7 0 4 5 ' 4 2 0 1 . 6 9 2 8 ' 2 ' 2 4 1 . 6 7 3 1 1 . 6 7 6 2 1 1 . 4 1 ' 4 3 1 . 6 4 1 8 1 . 6 4 1 3 2 1 . 7 ' 4 0 3 1 . 6 0 9 6 1 . 6 1 1 0 7 . 3 ' 4 ' 1 3 1 . 6 0 8 9 3 2 0 1 . 6 0 8 2 1 3 1 1 . 5 6 3 5 1 . 5 6 7 2 1 7 . 5 T a b l e 5 - 6 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r C s Q S n S 1 4 , C r y s t a l s w e r e m a n u a l l y p i c k e d f r o m a m i x t u r e o f C 3 2 8 n 2 $ 6 a n d C s z s n S 1 4 . h k l d c a l c . ( A ) d o b s . ( A ) % I o b s . 1 1 1 5 . 5 9 1 2 5 . 6 6 4 1 3 0 . 6 1 2 1 4 . 9 6 2 6 5 . 0 1 9 5 8 . 9 0 3 2 4 . 7 3 4 2 4 . 7 9 2 1 1 3 . 6 1 3 0 4 . 6 1 1 1 4 . 6 5 8 6 3 0 . 6 0 4 1 4 . 4 4 3 3 4 . 4 9 1 0 1 5 . 2 ' 1 2 3 3 . 9 1 7 7 3 . 9 5 0 2 5 6 . 5 1 0 3 3 . 6 9 7 8 3 . 7 3 9 5 2 1 . 9 0 1 4 3 . 5 8 2 2 3 . 5 6 9 5 1 6 . 9 1 2 3 3 . 4 3 7 6 3 . 4 6 9 9 2 6 . 1 ' 2 1 1 2 . 4 1 4 1 2 . 4 2 6 6 2 6 . 1 0 5 2 3 . 3 2 2 7 3 . 3 1 2 0 1 0 0 . 0 1 4 2 3 . 2 8 9 9 1 5 0 3 . 2 7 9 2 ' 2 1 2 3 . 2 7 2 5 ' 2 2 2 3 . 1 3 1 2 3 . 1 5 7 0 4 2 . 0 2 2 1 3 . 0 5 1 5 3 . 0 7 6 5 2 4 . 7 1 1 4 2 . 9 8 6 9 2 . 9 7 6 5 1 8 . 7 0 5 3 2 . 9 6 1 3 2 1 2 2 . 8 9 4 8 2 . 8 9 4 7 3 3 . 8 1 2 4 2 . 8 8 5 0 ' 1 0 5 2 . 8 6 0 3 2 . 8 4 6 2 3 7 . 2 1 6 0 2 . 8 3 3 1 ' 2 3 3 2 . 7 3 8 7 2 . 7 5 2 5 3 5 . 5 ' 2 4 3 2 . 5 5 3 0 2 . 5 5 6 2 2 6 . 1 1 0 5 2 . 5 4 2 6 1 4 4 2 . 5 3 8 6 ' 1 7 1 2 . 4 7 4 0 2 . 4 8 5 7 1 5 . 2 0 0 6 2 . 4 3 3 4 2 . 4 4 8 3 2 3 . 3 1 7 1 2 . 4 2 6 3 0 8 1 2 . 3 3 2 6 2 . 3 1 6 8 2 7 . 5 ' 3 0 1 2 . 3 2 1 4 2 0 4 2 . 3 2 0 3 ' 2 6 1 2 . 3 1 6 6 ' 1 6 4 2 . 3 1 4 5 1 7 2 2 . 3 1 1 3 ' 2 0 6 2 . 1 5 8 4 2 . 1 5 5 2 7 . 7 0 7 4 2 . 1 5 2 6 3 3 0 2 . 1 4 9 3 T a b l e 5 - 6 . ( c o n t ' d ) 2 5 0 h k 1 C 1 c a 1 c . ( A ) d o b s . ( A ) % I o b s . ' 3 1 4 2 . 0 8 6 9 2 . 0 8 8 0 2 5 . 4 1 8 2 2 . 0 8 3 9 3 3 1 2 . 0 8 1 1 ' 1 1 7 2 . 0 7 9 8 ' 2 7 2 2 . 0 7 9 5 1 3 6 2 . 0 6 1 2 2 . 0 6 0 4 2 1 . 9 ' 3 4 2 2 . 0 5 9 0 ' 3 0 5 1 . 9 6 4 1 1 . 9 6 0 2 1 3 . 1 2 3 5 1 . 9 6 0 1 ' 2 1 7 1 . 9 1 7 4 1 . 9 0 8 9 2 8 . 3 ' 2 6 5 1 . 9 1 4 1 3 2 3 1 . 9 1 2 0 0 9 3 1 . 9 0 7 3 ' 3 5 3 1 . 9 0 5 4 0 4 7 1 . 9 0 4 0 1 1 7 1 . 9 0 1 3 3 5 1 1 . 9 0 0 5 3 6 0 1 . 8 4 4 1 1 . 8 4 8 6 1 1 . 1 1 9 3 1 . 8 0 8 3 1 . 8 1 1 2 1 0 . 2 0 1 0 2 1 . 8 0 7 6 ' 1 8 5 1 . 8 0 7 5 ' 3 7 1 1 . 7 5 0 5 1 . 7 4 8 1 1 2 . 6 2 7 4 1 . 7 5 0 1 2 8 3 1 . 7 4 0 1 ' 3 5 5 1 . 7 3 8 1 3 4 4 1 . 6 8 8 9 1 . 6 8 5 6 1 0 . 6 0 8 6 1 . 6 8 3 8 4 2 1 1 . 6 4 8 4 1 . 6 4 4 9 1 4 . 1 1 1 1 0 1 . 6 4 6 8 ' 1 7 7 1 . 6 4 6 0 2 5 1 T a b l e 5 - 7 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r K 2 8 n T e 5 . h k l d c a l c . ( A ) d o b s . ( A ) s M o b s . 1 1 0 5 . 9 8 6 4 5 . 9 9 8 9 3 0 . 3 2 2 1 1 3 . 6 7 6 0 3 . 6 7 8 1 5 3 . 1 1 1 1 4 3 . 2 3 1 0 3 . 2 3 2 5 5 . 1 4 2 1 3 3 . 0 4 3 6 3 . 0 4 7 0 5 3 . 7 0 2 2 0 2 . 9 9 3 2 2 . 9 9 3 8 5 6 . 1 0 2 0 4 2 . 8 4 3 3 2 . 8 4 4 0 1 0 0 . 0 0 0 0 6 2 . 5 5 8 7 2 . 5 5 9 5 4 . 7 8 2 1 5 2 . 3 8 4 8 2 . 3 8 4 5 6 . 1 0 2 2 4 2 . 3 6 0 3 2 . 3 6 1 2 5 . 1 4 3 2 1 2 . 3 2 1 1 2 . 3 1 7 5 3 . 3 2 3 1 4 2 . 1 9 5 8 2 . 1 9 5 8 3 8 . 3 7 4 0 0 2 . 1 1 6 5 2 . 1 1 7 8 4 . 4 3 4 1 1 2 . 0 3 5 2 2 . 0 3 7 7 2 4 . 0 0 2 . 0 3 5 4 1 7 . 3 9 3 3 0 1 . 9 9 5 5 1 . 9 9 7 3 3 0 . 3 2 0 0 8 1 . 9 1 9 0 1 . 9 2 1 3 1 8 . 7 7 4 1 3 1 . 9 0 5 6 1 . 9 0 7 7 3 1 . 2 2 2 1 7 1 . 8 9 7 7 1 . 8 9 4 0 3 3 . 5 2 4 2 0 1 . 8 9 3 1 4 0 4 1 . 8 5 3 4 1 . 8 5 4 7 1 7 . 7 3 1 1 8 1 . 8 2 7 4 1 . 8 2 7 6 5 . 3 3 3 3 4 1 . 7 7 0 5 1 . 7 7 0 1 7 . 1 4 4 1 5 1 . 7 0 6 8 1 . 6 9 7 5 1 1 . 0 2 4 2 4 1 . 6 9 7 8 5 1 0 1 . 6 6 0 3 1 . 6 6 0 9 1 2 . 1 2 2 2 8 1 . 6 1 5 5 1 . 6 1 6 0 1 5 . 1 1 2 5 2 B e c a u s e t h e o r a n g e c r y s t a l s o f K z s n z s g ( I ) w e r e s m a l l , t h e X - r a y d i f f r a c t i o n d a t a w e r e c o l l e c t e d b y M o l e c u l a r S t r u c t u r e C o r p o r a t i o n ( M S C ) , T X , b y u s i n g a r o t a t i n g a n o d e X - r a y g e n e r a t o r i n o r d e r t o o b t a i n s u f fi c i e n t r e fl e c t i o n s w i t h r e a s o n a b l e i n t e n s i t y . A n o r a n g e p r i s m a t i c c r y s t a l w a s m o u n t e d o n a g l a s s fi b e r . A l l m e a s u r e m e n t s w e r e m a d e o n a R i g a k u A F C 6 R d i f f r a c t o m e t e r w i t h g r a p h i t e m o n o c h r o m a t e d M o K o r r a d i a t i o n a n d a 1 2 K W r o t a t i n g a n o d e g e n e r a t o r . I n t e n s i t y d a t a f o r ( I ) w e r e m e a s u r e d a t 2 3 ° C b y u s i n g t h e 0 3 - 2 0 s c a n m o d e . T h e s t a b i l i t y o f t h e e x p e r i m e n t a l s e t u p a n d c r y s t a l i n t e n s i t y w e r e m o n i t o r e d b y m e a s u r i n g t h r e e s t a n d a r d r e fl e c t i o n s p e r i o d i c a l l y f o r e v e r y 1 5 0 r e fl e c t i o n s . A d e c l i n e o f ~ 4 . 5 % w a s o b s e r v e d , a n d a l i n e a r c o r r e c t i o n f a c t o r w a s a p p l i e d t o t h e d a t a . A n e m p i r i c a l a b s o r p t i o n c o r r e c t i o n ( b a s e d o n t p s c a n s ) w a s a p p l i e d . T h e e q u i v a l e n t r e fl e c t i o n s w e r e a v e r a g e d . T h e s t r u c t u r e o f ( I ) w a s s o l v e d a t M S C b y d i r e c t m e t h o d s ( M I T H R I L 2 1 a n d D I R D I F Z Z ) a n d r e fi n e d b y f u l l - m a t r i x l e a s t - s q u a r e t e c h n i q u e s . T h e X - r a y d i f f r a c t i o n d a t a o f C s z S n S 1 4 ( V ) w e r e c o l l e c t e d o n a P 3 N i c o l e t f o u r - c i r c l e d i f f r a c t o m e t e r b y u s i n g 0 / 2 0 s c a n m o d e a n d g r a p h i t e m o n o c h r o m a t e d M o K a r a d i a t i o n . A r e d c r y s t a l o f ( V ) w a s m o u n t e d o n t h e e n d o f a g l a s s fi b e r . T h e d a t a w e r e c o l l e c t e d a t 2 3 ° C a n d t h r e e c h e c k r e fl e c t i o n s w e r e m o n i t o r e d e v e r y 1 0 0 r e fl e c t i o n s w i t h o u t e v i d e n c e o f a n y s i g n i fi c a n t d e c a y d u r i n g t h e d a t a c o l l e c t i o n p e r i o d . A n e m p i r i c a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d t o a l l t h e d a t a ( b a s e d o n 1 p s c a n s ) . A n a d d i t i o n a l a b s o r p t i o n c o r r e c t i o n b y u s i n g t h e D I F A B S 2 3 p r o c e d u r e w a s a p p l i e d t o i s o t r o p i c a l l y r e fi n e d d a t a . T h e e q u i v a l e n t r e fl e c t i o n s w e r e a v e r a g e d . T h e s t r u c t u r e r e fi n e m e n t w a s d o n e w i t h t h e S D P 2 4 p a c k a g e o f c r y s t a l l o g r a p h i c p r o g r a m r u n n i n g o n a V A X s t a t i o n 2 0 0 0 c o m p u t e r . T h e s t r u c t u r e o f ( V ) 2 5 3 a n d ( V I I ) w a s s o l v e d w i t h d i r e c t m e t h o d s ( S H E L X S - 8 6 ) 2 5 , a n d t h e y w e r e r e fi n e d b y f u l l - m a t r i x l e a s t - s q u a r e t e c h n i q u e s . T h e X - r a y d i f f r a c t i o n d a t a o f a - s z S n z S g ( I I ) , B - s z S n z S g ( I I I ) , K 2 8 n 2 8 5 ( I V ) , C s z S n z S 6 ( V I ) a n d K 2 8 n T e 5 ( V I I ) w e r e c o l l e c t e d o n a R i g a k u A F C 6 S d i f f r a c t o m e t e r b y u s i n g 0 0 - 2 0 s c a n m o d e a n d g r a p h i t e m o n o c h r o m a t e d M o K a t r a d i a t i o n a t 2 3 ° C . T h o s e c r y s t a l s w e r e m o u n t e d o n t h e e n d o f g l a s s fi b e r s . T h e s t a b i l i t y o f t h e e x p e r i m e n t a l s e t u p a n d c r y s t a l i n t e n s i t y w e r e m o n i t o r e d b y m e a s u r i n g t h r e e s t a n d a r d r e fl e c t i o n s p e r i o d i c a l l y f o r e v e r y 1 5 0 r e fl e c t i o n s . N o s i g n i fi c a n t d e c a y w a s o b s e r v e d d u r i n g t h e d a t a c o l l e c t i o n s . A n e m p i r i c a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d t o a l l t h e d a t a ( b a s e d o n 1 p s c a n s ) . A n a d d i t i o n a l a b s o r p t i o n c o r r e c t i o n b y u s i n g t h e D I F A B S p r o c e d u r e w a s a p p l i e d t o i s o t r o p i c a l l y r e fi n e d d a t a . T h e e q u i v a l e n t r e fl e c t i o n s w e r e a v e r a g e d . T h e s t r u c t u r e r e fi n e m e n t w a s d o n e w i t h t h e T E X S A N 2 6 p a c k a g e o f c r y s t a l l o g r a p h i c p r o g r a m s r u n n i n g o n a V A X s t a t i o n 3 1 0 0 / 7 6 c o m p u t e r . T h e s t r u c t u r e s o f ( I I ) , ( I I I ) , ( I V ) ( V I ) a n d ( V I I ) w e r e s o l v e d w i t h d i r e c t m e t h o d s ( S H E L X S - 8 6 ) , a n d t h e y w e r e r e fi n e d b y t h e f u l l - m a t r i x l e a s t - s q u a r e t e c h n i q u e a v a i l a b l e i n T E X S A N . T h e c r y s t a l l o g r a p h i c d a t a a n d d e t a i l e d i n f o r m a t i o n o f s t r u c t u r e s o l u t i o n a n d r e fi n e m e n t f o r ( I ) ~ ( V I I ) a r e l i s t e d i n T a b l e 5 - 8 . A t o m i c c o o r d i n a t e s a n d e q u i v a l e n t i s o t r o p i c t h e r m a l p a r a m e t e r s f o r ( I ) ~ ( V I I ) a r e g i v e n i n T a b l e s 5 - 9 ~ 5 - 1 5 r e s p e c t i v e l y . 2 5 4 T a b l e 5 - 8 . S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r K 2 $ n 2 8 8 ( 1 ) , a - s z S n z S g U I ) , [ 3 - R b 2 8 n 2 8 8 ( I I I ) , K 2 8 n 2 8 5 ( I V ) , C 8 2 8 n 2 8 6 ( V ) , C 8 2 8 n 8 1 4 ( V I ) a n d K 2 8 n T e 5 ( V I I ) ( I ) ( I I ) ( I I I ) f o r m u l a K 2 S n 2 8 3 a - s z S n z s g B - s z S n 2 S 3 f w 5 7 2 . 0 6 6 6 4 . 8 0 6 6 4 . 8 0 a , A 9 . 8 5 0 ( 8 ) 9 . 7 8 8 ( 3 ) 9 . 9 8 6 ( 4 ) b , A 1 0 . 0 0 4 ( 5 ) 9 . 9 7 8 ( 3 ) 1 9 . 6 3 5 ( 3 ) c , A 1 4 . 1 3 1 ( 7 ) 1 4 . 3 6 0 ( 2 ) 1 3 . 7 4 7 ( 3 ) o r , d e g 9 0 . 0 9 0 . 0 9 0 . 0 6 , d e g 1 0 7 . 8 2 ( 6 ) 1 0 6 . 7 0 ( 2 ) 9 0 . 0 v , d e g 9 0 . 0 9 0 . 0 9 0 . 0 2 , v , A 3 4 , 1 2 8 9 ( 3 ) 4 , 1 3 4 3 ( 1 ) 8 , 2 6 9 6 ( 2 ) s p a c e g r o u p P 2 1 / n P 2 1 / n P b c n d c a l c , g / c m 3 2 . 9 4 7 3 . 2 8 6 3 . 2 7 6 c r y s t a l s i z e , m m 0 . 2 x 0 . 1 x 0 . 1 0 . 2 x 0 . 2 x 0 . 4 0 . 0 7 x 0 . 0 9 x 0 4 2 r a d i a t i o n M 0 K a M O K 0 1 M O K 0 1 1 : 0 . 7 1 6 0 9 A 7 1 : 0 . 7 1 6 0 9 A A = 0 . 7 1 6 0 9 A p ( M o K o r ) , c m ' 1 5 7 . 3 7 1 1 8 . 9 3 1 1 8 . 5 4 2 6 m m . d e g 5 0 5 0 5 0 n o . o f d a t a c o l l e c t e d 2 5 6 5 2 6 8 6 2 7 2 1 n o . o f u n i q u e d a t a 2 4 4 5 2 5 3 0 2 7 2 1 n o . o f o b s . d a t a 1 3 2 5 1 6 9 3 1 3 0 1 ( I > 3 0 ( I ) ) n o . o f v a r i a b l e s 1 0 9 1 1 0 l 1 0 fi n a l R / R w . % 4 . 9 / 5 . 1 3 . 0 / 3 . 6 3 . 2 / 3 . 5 * A t 2 3 ° C R = 2 1 1 F a l - 1 F e n / 2 1 F e l R w = { 2 w ( 1 F o l - 1 F e 1 ) 2 / 2 w I F a I Z } “ 2 T a b l e 5 - 8 . ( c o n t ' d ) 2 5 5 ( I V ) ( ‘ 0 f o r m u l a K 2 S n 2 S 5 C 8 2 S n 2 S 6 f w 4 7 5 . 8 8 6 9 5 . 5 6 a , A 1 1 . 8 0 4 ( 3 ) 7 . 2 8 9 ( 4 ) b , A 7 . 8 0 8 ( 1 ) 7 . 5 9 7 ( 3 ) c , A 1 1 . 5 3 8 ( 1 ) 6 . 7 9 6 ( 3 ) 0 1 , d e g 9 0 . 0 1 1 4 . 8 0 ( 3 ) 5 , d e g 1 0 8 . 3 5 ( 1 ) 1 0 8 . 5 6 ( 4 ) y , d e g 9 0 . 0 9 7 5 4 ( 4 ) z , v , A 3 4 , 9 4 7 . 8 ( 5 ) 1 , 3 0 8 . 1 ( 7 ) s p a c e g r o u p C 2 / c P - l d e a l e , g l c m 3 3 . 3 3 5 3 . 7 8 4 c r y s t a l s i z e , m m 0 . 4 x 0 . 5 x 0 . 8 5 0 . 8 x 0 . 9 x 1 . 0 r a d i a t i o n M o K a M o K a A = O . 7 1 6 0 9 A A = 0 . 7 1 6 0 9 A 1 1 ( M o K a ) , c m - l 7 1 . 5 5 1 0 7 . 7 8 2 6 m a x , d e g 5 0 5 0 n o . o f d a t a c o l l e c t e d 9 4 2 1 1 7 2 n o . o f u n i q u e d a t a 8 9 8 1 0 7 8 n o . o f o b s . d a t a ( I > 3 o ( I ) ) 6 8 7 9 6 1 n o . o f v a r i a b l e s 4 2 4 6 fi n a l R l R w , % 4 . 7 / 6 . 0 3 . 1 / 3 . 9 * A t 2 3 ° C R = X I I F o l - | F c I I / Z I F 0 I R w = { 2 w ( 1 F a l - 1 F e 1 ) 2 / 2 w I F 0 1 2 1 “ 2 T a b l e 5 — 8 . ( c o n t ' d ) 2 5 6 ( V I ) ( V I I ) f o r m u l a C s z s n S 1 4 K 2 8 n T e 5 f w 8 3 3 . 3 4 8 3 4 . 8 9 a , A 6 . 9 6 4 ( 6 ) 8 . 4 6 6 ( 2 ) b , A 1 8 . 6 6 ( 1 ) 8 . 4 6 6 ( 2 ) c , A 1 4 8 0 ( 1 ) 1 5 . 3 5 2 ( 2 ) 0 : , d e g 9 0 . 0 9 0 . 0 5 , d e g 9 9 3 9 ( 1 ) 9 0 . 0 1 . d e g 9 0 . 0 9 0 . 0 2 , v , A 3 4 , 1 8 9 7 ( 5 ) 4 ; 1 1 0 0 . 3 ( 4 ) s p a c e g r o u p P 2 1 / n l 4 / m c m d e a n , g / c m 3 2 . 9 2 5 . 0 4 c r y s t a l s i z e , m m 0 . 1 2 x 0 . 9 x 0 . 4 0 . 3 x 0 . 6 x 0 . 7 r a d i a t i o n M o K a M o K 0 1 7 1 : 0 . 7 1 6 0 9 A = 0 . 7 1 6 0 9 A 1 1 ( M o K o r ) , c m ' 1 6 5 . 7 1 6 0 . 6 2 2 0 " , ” , d e g 4 5 5 0 n o . o f d a t a c o l l e c t e d 2 9 1 8 3 2 0 n o . o f u n i q u e d a t a 2 3 4 5 3 2 0 n o . o f o b s . d a t a ( I > 3 0 ( I ) ) 1 7 0 1 2 2 6 n o . o f v a r i a b l e s 1 5 4 1 5 fi n a l R I R w , % 4 . 4 6 / 4 . 9 5 2 . 7 / 4 . 4 . A t 2 3 ° C R = Z I I F o l - I F c | I / X I F 0 | R w = { 2 w < I F a l - 1 F e l ) 2 / z w I F 0 1 2 } 1 ’ 2 T a b l e 5 - 9 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A Z ) a f o r 2 5 7 K 2 S n 2 S 8 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) S n ( l ) 0 . 0 3 2 5 ( 1 ) 0 . 1 7 1 0 ( 1 ) 0 . 0 1 7 8 ( 1 ) 1 . 4 0 ( 5 ) S n ( 2 ) 0 . 5 9 4 0 ( 1 ) 0 . 0 0 0 1 ( 1 ) 0 . 4 0 5 0 ( 1 ) 1 . 1 5 ( 4 ) K ( l ) 0 . 3 5 0 6 ( 5 ) 0 . 3 6 3 1 ( 5 ) 0 . 2 0 3 8 ( 4 ) 3 . 0 ( 2 ) K ( 2 ) 0 . 0 3 1 0 ( 6 ) 0 . 2 7 3 3 ( 6 ) 0 . 4 0 7 2 ( 4 ) 3 . 8 ( 2 ) 8 ( 1 ) 0 . 2 1 9 6 ( 5 ) 0 . 2 7 4 2 ( 5 ) - 0 . 0 3 6 9 ( 4 ) 1 . 6 ( 2 ) 8 ( 2 ) — 0 . 1 6 7 0 ( 5 ) 0 . 0 4 2 8 ( 5 ) - 0 . 0 8 5 6 ( 4 ) 1 . 9 ( 2 ) S ( 3 ) 0 . 6 4 3 3 ( 5 ) — 0 . 0 9 8 3 ( 5 ) 0 . 5 7 8 3 ( 3 ) 1 . 5 ( 2 ) 8 ( 4 ) 0 . 5 0 8 9 ( 5 ) 0 . 0 6 6 8 ( 5 ) 0 . 2 1 9 4 ( 3 ) 1 . 6 ( 2 ) 8 ( 5 ) 0 . 0 1 2 1 ( 5 ) 0 . 2 7 0 8 ( 5 ) 0 . 1 6 6 2 ( 3 ) 1 . 5 ( 2 ) 8 ( 6 ) 0 . 6 9 2 4 ( 6 ) 0 . 1 4 2 5 ( 5 ) 0 . 1 9 4 7 ( 4 ) 2 . 3 ( 2 ) 8 ( 7 ) 0 . 6 9 1 2 ( 5 ) 0 . 3 4 3 8 ( 5 ) 0 . 2 3 0 0 ( 4 ) 1 . 8 ( 2 ) 8 ( 8 ) 0 . 6 4 4 0 ( 5 ) 0 . 4 4 1 3 ( 5 ) 0 . 0 9 6 5 ( 3 ) 1 . 7 ( 2 ) a B ( e q ) = 4 / 3 l a 2 6 1 1 + b 2 1 5 2 2 + 0 2 1 3 3 3 + a b ( c o s v ) f 5 1 2 + a C ( C O S B ) 1 3 1 3 + b C ( c o s a ) i 3 2 3 l - T a b l e 5 - 1 0 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) 2 1 f o r 2 5 8 a - s z S n 2 8 8 . w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m 3 1 : y z B ( e q ) S n ( l ) 0 . 0 2 6 8 7 ( 7 ) 0 . 1 7 2 9 8 ( 6 ) 0 . 0 1 5 1 9 ( 4 ) 1 . 4 2 ( 2 ) S n ( 2 ) 0 . 5 9 3 1 3 ( 6 ) - 0 . 0 0 0 2 1 ( 6 ) 0 . 4 0 4 8 6 ( 4 ) 1 . 2 3 ( 2 ) R b ( 1 ) 0 . 3 5 1 1 ( 1 ) 0 . 3 6 6 4 ( 1 ) 0 . 2 0 4 6 6 ( 8 ) 2 . 9 6 ( 4 ) R b ( 2 ) 0 . 0 2 9 2 ( 1 ) 0 . 2 7 5 1 ( 1 ) 0 . 4 0 8 9 4 ( 8 ) 3 . 2 1 ( 5 ) 8 ( 1 ) 0 . 2 1 0 5 ( 2 ) 0 . 2 7 4 3 ( 2 ) - 0 . 0 4 0 5 ( 2 ) 1 . 6 2 ( 9 ) 8 ( 2 ) - 0 . 1 6 5 5 ( 2 ) 0 . 0 3 7 9 ( 2 ) - 0 . 0 8 0 2 ( 2 ) 1 . 8 9 ( 9 ) 8 ( 3 ) 0 . 6 3 7 9 ( 2 ) — 0 . 0 9 9 9 ( 2 ) 0 . 5 7 4 7 ( 2 ) 1 . 4 0 ( 8 ) 8 ( 4 ) 0 . 5 1 0 9 ( 2 ) 0 . 0 6 6 6 ( 2 ) 0 . 2 2 3 6 ( 2 ) 1 . 7 1 ( 8 ) 8 ( 5 ) 0 . 0 0 7 8 ( 2 ) 0 . 2 7 0 2 ( 2 ) 0 . 1 6 2 8 ( 2 ) 1 . 6 3 ( 9 ) 8 ( 6 ) 0 . 6 8 9 4 ( 3 ) 0 . 1 4 0 8 ( 2 ) 0 . 1 9 4 8 ( 2 ) 2 . 1 ( 1 ) 8 ( 7 ) 0 . 6 9 4 4 ( 2 ) 0 . 3 4 2 6 ( 2 ) 0 . 2 2 9 0 ( 2 ) 1 . 7 0 ( 8 ) 8 ( 8 ) 0 . 6 5 1 4 ( 2 ) 0 . 4 4 1 8 ( 2 ) 0 . 0 9 8 7 ( 2 ) 1 . 6 5 ( 8 ) a B ( e q ) = 4 3 1 2 1 2 6 1 1 + b 2 6 2 2 + c 2 6 3 3 + a b ( c o s v ) f 3 1 2 + a c ( 0 0 8 6 ) 6 1 3 + b C ( c o s a ) f 3 2 3 ] . T a b l e 5 - 1 1 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r 2 5 9 B — R b 2 8 n 2 8 8 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m y z B ( e q ) 8 n ( 1 ) 0 . 1 7 2 8 9 ( 7 ) 0 . 3 2 6 1 1 ( 4 ) 0 . 2 7 0 3 8 ( 6 ) 1 . 3 8 ( 3 ) S n ( 2 ) 1 / 2 0 . 4 1 6 9 3 ( 6 ) 1 / 4 1 . 1 7 ( 5 ) 8 n ( 3 ) 1 / 2 0 . 2 2 8 7 9 ( 6 ) 1 / 4 1 . 2 3 ( 5 ) R b ( 1 ) 0 . 2 2 7 3 ( 1 ) 0 . 4 2 9 9 7 ( 8 ) - 0 . 0 3 5 9 ( 1 ) 3 . 1 1 ( 7 ) R b ( 2 ) 0 . 1 3 9 3 ( 1 ) 0 . 1 8 8 1 3 ( 8 ) 0 . 0 2 8 4 ( 1 ) 3 . 0 1 ( 7 ) 8 ( 1 ) 0 . 2 7 7 8 ( 3 ) 0 . 4 2 4 0 ( 2 ) 0 . 3 3 8 5 ( 2 ) 1 . 6 ( 1 ) 8 ( 2 ) 0 . 0 3 7 9 ( 3 ) 0 . 3 3 1 8 ( 2 ) 0 . 1 2 6 4 ( 2 ) 1 . 9 ( 1 ) S ( 3 ) 0 . 4 0 0 8 ( 3 ) 0 . 3 2 3 2 ( 2 ) 0 . 1 4 2 7 ( 2 ) 1 . 3 ( 1 ) 8 ( 4 ) 0 . 5 6 3 7 ( 3 ) 0 . 5 0 8 4 ( 2 ) 0 . 3 7 7 5 ( 2 ) 1 . 5 ( 1 ) 8 ( 5 ) 0 . 2 6 6 1 ( 3 ) 0 . 2 2 1 9 ( 2 ) 0 . 3 3 0 7 ( 2 ) 1 . 5 ( 1 ) S ( 6 ) 0 . 6 5 5 7 ( 3 ) 0 . 5 7 9 6 ( 2 ) 0 . 2 9 0 9 ( 2 ) 1 . 7 ( 1 ) 8 ( 7 ) 0 . 8 5 8 9 ( 3 ) 0 . 5 6 0 4 ( 2 ) 0 . 3 0 1 8 ( 3 ) 2 . 0 ( 2 ) 8 ( 8 ) 0 . 4 3 7 7 ( 3 ) 0 . 1 3 9 9 ( 2 ) 0 . 1 2 0 7 ( 2 ) 1 . 8 ( 1 ) a B ( e q ) = 4 / 3 [ a 2 6 1 1 + b 2 1 5 2 2 + 0 2 1 3 3 3 + a b ( c o s v ) 6 1 2 + a c ( C O S B ) B l 3 + b C ( c o s a ) 1 3 2 3 l - T a b l e 5 - 1 2 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A Z ) a f o r 2 6 0 C 8 2 S n 2 8 6 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m y z B ( e q ) C S ( l ) 0 . 1 8 4 5 ( 1 ) 0 . 8 6 2 7 ( 1 ) 0 . 2 3 2 5 ( 1 ) 1 . 8 7 ( 2 ) S n 0 . 5 1 3 5 ( 1 ) 0 . 4 2 5 7 ( 1 ) 0 . 2 2 2 4 ( 1 ) 0 . 6 7 ( 2 ) S ( 1 ) 0 . 6 0 7 5 ( 4 ) 0 . 1 1 2 9 ( 4 ) 0 . 1 7 0 1 ( 5 ) 1 . 2 8 ( 7 ) S ( 2 ) 0 . 2 3 4 5 ( 4 ) 0 . 4 3 4 8 ( 4 ) 0 . 3 3 8 3 ( 5 ) l . 1 9 ( 7 ) 5 ( 3 ) 0 . 6 9 9 7 ( 4 ) 0 . 7 1 0 4 ( 4 ) 0 . 2 1 9 3 ( 5 ) 1 . 3 5 ( 7 ) a B ( e q ) = 4 / 3 1 a 2 6 1 1 + b 2 1 3 2 2 + 0 2 6 3 3 + a b ( c o s v ) 6 1 2 + a c ( c o s fi ) 1 3 1 3 + b e ( c o s a ) 6 2 3 l . 2 6 1 T a b l e 5 - 1 3 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r K 2 8 n 2 S 5 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) 8 n 0 . 0 9 4 2 4 ( 8 ) 0 . 1 5 3 9 ( 1 ) 0 . 4 4 1 6 4 ( 7 ) 0 . 7 2 ( 4 ) K - 0 . 2 8 0 1 ( 3 ) 0 . 1 6 8 0 ( 4 ) 0 . 3 1 7 3 ( 3 ) 2 . 1 ( 1 ) S ( 1 ) 0 . 0 1 7 0 ( 3 ) 0 . 1 3 4 0 ( 5 ) 0 . 6 1 6 3 ( 3 ) 1 . 5 ( 1 ) 8 ( 2 ) 0 0 . 3 1 4 1 ( 6 ) 1 / 4 1 . 2 ( 2 ) 8 ( 3 ) 0 . 3 0 3 9 ( 3 ) 0 . 0 5 1 6 ( 4 ) 0 . 4 6 1 9 ( 3 ) 1 . 0 ( 1 ) a B ( e q ) = 4 / 3 [ a 2 0 1 1 + b 2 1 3 2 2 + 0 2 1 3 3 3 + a b ( c o s v ) [ 3 1 2 + a C ( C O S B ) B l 3 + b C ( c o s a ) 6 2 3 l . T a b l e 5 - 1 4 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) 3 f o r 2 6 2 C 8 2 8 n S 1 4 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) C s ( 1 ) - 0 . 0 8 5 8 ( 2 ) 0 . 8 0 1 6 0 ( 6 ) 0 . 4 7 6 6 6 ( 8 ) 4 . 3 7 ( 6 ) C s ( 2 ) 0 . 6 2 5 2 ( 2 ) 0 . 9 5 1 6 4 ( 6 ) - 0 . 1 6 3 1 9 ( 8 ) 4 . 3 8 ( 6 ) S n 0 . 0 3 5 5 ( 2 ) 0 . 8 2 4 4 4 ( 6 ) 0 . 1 6 9 2 5 ( 7 ) 2 . 7 7 ( 5 ) 8 ( 1 ) 0 . 2 5 9 5 ( 7 ) 0 . 8 1 6 5 ( 2 ) 0 . 3 2 4 7 ( 3 ) 3 . 7 ( 2 ) 8 ( 2 ) 0 . 4 1 1 9 ( 8 ) 0 . 9 0 9 0 ( 3 ) 0 . 3 5 6 2 ( 3 ) 4 . 9 ( 3 ) 8 ( 3 ) 0 . 2 6 7 ( 1 ) 0 . 9 6 7 2 ( 3 ) 0 . 4 4 3 8 ( 3 ) 5 . 6 ( 3 ) 8 ( 4 ) 0 . 0 8 1 5 ( 9 ) 1 . 0 3 4 8 ( 3 ) 0 . 3 6 3 1 ( 3 ) 4 . 7 ( 3 ) 8 ( 5 ) - 0 . 1 5 0 2 ( 8 ) 0 . 9 7 3 0 ( 2 ) 0 . 3 0 8 3 ( 3 ) 4 . 0 ( 2 ) S ( 6 ) - 0 . 1 1 2 8 ( 8 ) 0 . 9 5 0 4 ( 2 ) 0 . 1 7 7 0 ( 3 ) 3 . 9 ( 2 ) S ( 7 ) 0 . 3 3 2 8 ( 7 ) 0 . 8 6 4 3 ( 2 ) 0 . 0 9 8 3 ( 3 ) 3 . 4 ( 2 ) S ( 8 ) 0 . 2 0 0 4 ( 7 ) 0 . 9 1 1 4 ( 3 ) - 0 . 0 2 2 6 ( 3 ) 3 . 8 ( 2 ) 8 ( 9 ) 0 . 0 1 5 2 ( 8 ) 0 . 8 3 1 1 ( 3 ) — 0 . 0 7 9 4 ( 3 ) 4 . 0 ( 2 ) 8 ( 1 0 ) - 0 . 1 8 1 0 ( 7 ) 0 . 8 2 6 0 ( 3 ) 0 . 0 1 0 4 ( 3 ) 3 . 8 ( 2 ) S ( 1 1 ) 0 . 1 4 4 3 ( 8 ) 0 . 6 9 3 4 ( 2 ) 0 . 1 6 2 7 ( 3 ) 4 . 3 ( 2 ) S ( 1 2 ) - O . 1 1 7 8 ( 9 ) 0 . 6 4 3 0 ( 3 ) 0 . 1 3 2 8 ( 3 ) 4 . 6 ( 3 ) S ( 1 3 ) - 0 . 2 5 1 4 ( 8 ) 0 . 6 7 3 4 ( 3 ) 0 . 2 4 1 5 ( 3 ) 4 . 6 ( 2 ) 8 ( 1 4 ) - 0 . 2 7 8 2 ( 7 ) 0 . 7 8 2 3 ( 2 ) 0 . 2 2 6 6 ( 3 ) 3 . 6 ( 2 ) a B ( e q ) = 4 / 3 l a 2 6 1 1 + b 2 1 3 2 2 + c 2 6 3 3 + a b ( c o s v ) 6 1 2 + a c ( c o s fi ) fi l 3 + b c ( c o s a ) 1 3 2 3 l . 2 6 3 T a b l e 5 - 1 5 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A Z ) a f o r K 2 8 n T e 5 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m y z B ( e q ) S n 1 / 2 0 1 / 4 1 . 1 2 ( 5 ) T e ( 1 ) 1 / 2 0 0 1 . 4 3 ( 5 ) T e ( 2 ) 0 . 3 1 8 4 0 ( 9 ) 0 . 1 8 1 6 0 . 1 3 7 3 0 ( 7 ) 1 . 1 9 ( 3 ) K ( l ) 0 0 1 / 4 1 . 7 ( 2 ) K ( 2 ) 0 0 0 2 . 9 ( 3 ) a B ( e q ) = 4 / 3 [ a 2 1 3 1 1 + b 2 1 3 2 2 + c 2 6 3 3 + a b ( c o s v ) fi 1 2 + a c ( c o s 1 3 ) 6 1 3 + b c ( c o s a ) ( 3 2 3 ] . 2 6 4 3 . R e s u l t s a n d D i s c u s s i o n 3 . 1 . S y n t h e s i s A l l c o m p o u n d s e x c e p t ( V I I ) w e r e s y n t h e s i z e d i n A 2 S x fl u x e s ( A = a l k a l i m e t a l ) . T h e m o l t e n a l k a l i m e t a l p o l y s u l fi d e s f o r m e d b y t h e i n s i t u r e a c t i o n o f a l k a l i m e t a l m o n o s u l fi d e a n d e l e m e n t a l s u l f u r , s h o w n i n e q u a t i o n 1 , s e r v e a s r e a c t i o n m e d i a w h i c h e n h a n c e t h e m o b i l i t y o f t h e r e a c t i n g s p e c i e s b y d i s s o l v i n g t h e m a n d t h u s h e l p t h e c r y s t a l l i z a t i o n o f t h e A 2 8 + ( x - 1 ) S - - - > A 2 S x E q . 1 fi n a l p r o d u c t s . I n a d d i t i o n , t h e p o l y s u l fi d e m e l t s a r e o x i d i z i n g a g e n t s w h i c h o x i d i z e t h e S n m e t a l t o t h e 4 + o x i d a t i o n s t a t e a s s h o w n i n e q u a t i o n 2 . 8 n + 8 8 ' - - - > S n 4 + + 8 1 3 2 ' + q u ' + 8 9 ' w h e r e p + q + t = x E q . 2 T h e c h e l a t i n g a b i l i t y o f 8 x 2 ' a n d t h e i r d i v e r s i t y o f b o n d i n g m o d e s a r e r e s p o n s i b l e f o r t h e g r e a t v a r i e t y o f n e w s t r u c t u r e s t h a t c a n b e a c c e s s e d . I n t h e p o l y c h a l c o g e n i d e fl u x e s , t h e r e a r e e q u i l i b r i a p r e s e n t b e t w e e n t h e v a r i o u s p o l y c h a l c o g e n i d e s . T h e d i r e c t i o n o f e q u i l i b r i a c a n b e c o n t r o l l e d b y t h e r e a c t i o n t e m p e r a t u r e , t h e n a t u r e o f t h e m e t a l a n d t h e v a l u e o f x i n 8 , 3 : I n g e n e r a l , h i g h e r t e m p e r a t u r e s p r o m o t e t h e c r y s t a l l i z a t i o n o f l a r g e r a n d b e t t e r c r y s t a l s , b u t a r e g e n e r a l l y u n f a v o r a b l e f o r t h e s t a b i l i z a t i o n o f l o n g e r p o l y c h a l c o g e n i d e c h a i n s , w h i c h t e n d t o b r e a k d o w n t o s h o r t e r c h a i n s . I n 2 6 5 s o m e c a s e s , m o r e e l e m e n t a l c h a l c o g e n s c a n b e a d d e d t o s h i f t t h e e q u i l i b r i u m . I n t h e r e a c t i o n o f S n w i t h a l k a l i m e t a l p o l y s u l fi d e s , w e f o u n d t h a t b a s i c fl u x e s ( A 2 S / S > 3 / 8 , A = K , R b , C 8 ) , f a v o r e d f o r m a t i o n o f m o l e c u l a r c o m p o u n d s o f A 4 S n 2 8 6 1 8 . T h e s t r u c t u r e o f [ S n 2 S 6 ] 4 ' a n i o n s i s t h a t o f a n e d g e - s h a r i n g b i - t e t r a h e d r o n . O n e x a m i n i n g t h e e x t e n d e d s t r u c t u r e s o f ( I ) ~ ( V ) , w h i c h w e r e f o r m e d w i t h A 2 S / S < 3 / 8 , i t a p p e a r s t h a t t h e y a r e c o m p o s e d f u s e d [ S n 2 8 6 ] 4 ' u n i t s a s b u i l d i n g b l o c k s l i n k e d b y p o l y s u l fi d e c h a i n s ( v i d e i n f r a ) . I n t e r e s t i n g l y , t h e l e a s t b a s i c fl u x o f t h e C s / S n / S s y s t e m a f f o r d e d C 8 2 S n 8 1 4 w h i c h c o n t a i n s t h e d i s c r e t e a n i o n [ S n S 1 4 ] 2 ' . R b 2 8 n 2 8 3 w a s f o u n d i n t w o s l i g h t l y d i f f e r e n t p h a s e s ; t h e a - f o r m m a d e a t l o w e r t e m p e r a t u r e o f 3 3 0 ° C f r o m s z ' , a n d t h e B - f o r m f o r m e d a t 4 5 0 ° C i n a s u l f u r r i c h fl u x . T h e h i g h t e m p e r a t u r e p r o m o t e s t h e t r a n s i t i o n f r o m t h e k i n e t i c a l l y s t a b l e a - R b 2 S n 2 8 8 t o t h e p o s s i b l y t h e r m o d y n a m i c a l l y m o r e s t a b l e b - R b 2 S n 2 S g . T h e fi - f o r m o f K 2 S n 2 8 3 h a s n o t b e e n o b s e r v e d . O u r i n v e s t i g a t i o n s o f t h e r e a c t i o n s b e t w e e n S n a n d p o t a s s i u m p o l y s e l e n i d e fl u x e s a t t h e i n t e r m e d i a t e r a n g e d i d n o t c o m e a c r o s s a n y n e w K / S n / S e s t r u c t u r e s . K 4 S n 3 S e s , w h i c h w a s s y n t h e s i z e d e a r l i e r u n d e r m e t h a n o t h e r m a l c o n d i t i o n s ” , f o r m e d b y h e a t i n g o n e e q u i v a l e n t o f S n , 1 ~ 4 e q u i v a l e n t s o f K 2 8 0 a n d 8 e q u i v a l e n t s o f S e b e t w e e n 2 8 0 ° C ~ 5 5 0 ° C . I t i s a p p a r e n t l y a v e r y t h e r m o d y n a m i c a l l y s t a b l e p h a s e i n t h i s t e m p e r a t u r e r e g i m e . H i g h e r r e a c t i o n t e m p e r a t u r e s y n t h e s i s ( ~ 8 0 0 ° C ) o f t h i s s y s t e m g a v e r i s e t o K 2 S n 4 S e g 2 8 a n d K 2 S n 2 8 e 5 2 9 ; t h e f o r m e r i s a n i n t e r e s t i n g m i x e d S n 2 + l 8 n 4 + c o m p o u n d w h i l e t h e l a t t e r i s i s o s t r u c t u r a l t o K 2 S n 2 8 5 . T h e r e a c t i o n o f ( V I I ) w a s p e r f o r m e d i n a K 2 T e x fl u x w h i c h f o r m s b y t h e i n s i t u r e a c t i o n o f K 2 T e a n d T e . I n t h i s r e a c t i o n , S n m e t a l i s o x i d i z e d t o 4 + o x i d a t i o n s t a t e b y p o l y t e l l u r i d e s . T h e c e n t r a l T e a t o m o f t h e s q u a r e - 2 6 6 p l a n a r [ T e 5 ] 6 ' f r a g m e n t i s a l s o o x i d i z e d b y p o l y t e l l u r i d e t o t h e + 2 o x i d a t i o n s t a t e , w h i l e t h e f o u r t e r m i n a l T e a t o m s h a v e t h e o x i d a t i o n s t a t e o f 2 - . ( V I I ) i s a s t a b l e p h a s e w h i c h i s o b s e r v e d i n a w i d e r a n g e o f K 2 T e / T e r a t i o . H o w e v e r , t h e s e r e a c t i o n s g a v e e l e m e n t a l t e l l u r i u m a s b y - p r o d u c t . 3 . 2 . D e s c r i p t i o n o f S t r u c t u r e s S t r u c t u r e s o f K 2 8 n 2 8 3 , 0 t - R b 2 8 n 2 8 3 , fi - s z S n s t T h e s e c o m p o u n d s h a v e u n i q u e l a y e r e d s t r u c t u r e s a n d a r e t h e fi r s t k n o w n t i n - p o l y s u l fi d e f r a m e w o r k s o l i d s . T h e a n i o n i c s t r u c t u r e s o f ( I ) a n d ( I I ) a r e i d e n t i c a l w h i l e t h a t o f ( I I I ) i s a c o n f o r m a t i o n a l i s o m e r . T h e y a l l c o n t a i n t w o d i s t i n c t S n s i t e s , o n e t e t r a h e d r a l a n d o n e o c t a h e d r a l . T h e s e S n c e n t e r s a r e l i n k e d v i a 8 2 ' a n d S 4 2 " 8 0 t h e l a y e r e d a n i o n i c f r a m e w o r k c a n b e e x p r e s s e d b y a m o r e d e s c r i p t i v e f o r m u l a t i o n , [ S n 2 8 4 ( S 4 ) ] 2 ' . B y a s s i g n i n g t h e f o r m a l o x i d a t i o n s t a t e s o f A + ( A = K , R b ) , 8 2 ' a n d 8 4 2 ' , t h e f o r m a l o x i d a t i o n s t a t e o f S n a t o m s a t b o t h s i t e s i n ( I ) ~ ( I I I ) i 8 + 4 . A f t e r A C u S 4 , t h e s e s t r u c t u r e s a r e t h e o n l y o t h e r e x a m p l e s o f c o m p o u n d s i n c o r p o r a t i n g t e t r a s u l fi d e s i n a n e x t e n d e d s o l i d s t a t e f r a m e w o r k . B a s e d o n t h e c h e m i c a l s i m i l a r i t y o f S n 4 + a n d T i “ , t h e c l o s e s t a n a l o g s o f t h e s e c o m p o u n d s m a y b e t h e T i 4 + c o m p o u n d s , K 4 T i 3 8 1 4 a n d N a 2 T i 2 S e 3 3 0 . T h e s e c o m p o u n d s a l s o h a v e b e e n m a d e f r o m p o l y c h a l c o g e n i d e m e l t s i n t h e t e m p e r a t u r e r a n g e o f 3 4 5 ~ 4 7 0 ° C . O b v i o u s l y , S n d o e s n o t u n d e r g o s i m i l a r c h e m i s t r y s i n c e ( I ) ~ ( I I I ) a r e n o t i s o s t r u c t u r a l t o N a 2 T i 2 S e 8 . T h e t w o - d i m e n s i o n a l s t r u c t u r e s o f ( I ) a n d ( I I ) a r e s h o w n i n F i g u r e 5 — 1 . ( I ) a n d ( I I ) c r y s t a l l i z e i n t h e s a m e m o n o c l i n i c s p a c e g r o u p , t h e o n l y s i g n i fi c a n t d i f f e r e n c e b e i n g t h e l a r g e r i n t e r l a y e r s p a c i n g i n ( 1 1 ) d u e t o t h e 2 6 7 l a r g e r s i z e o f R b + c o m p a r e d t o K “ . T h e h i g h e r t e m p e r a t u r e p r o d u c t , ( I I I ) , h a s i t s l a y e r s s h i f t e d s l i g h t l y a l o n g t h e [ 1 0 2 ] c r y s t a l l o g r a p h i c a x i s r e l a t i v e t o ( I I ) t o f o r m a m o r e s y m m e t r i c o r t h o r h o m b i c l a t t i c e a s s h o w n i n F i g u r e 5 - 2 . T h e c o m p a r i s o n o f s e l e c t e d b o n d d i s t a n c e s a n d a n g l e s o f ( I ) , ( I I ) a n d ( I I I ) a r e g i v e n i n T a b l e 5 - 1 6 . T h e a n i o n i c l a y e r s o f ( I ) ~ ( I I I ) a r e f o r m e d b y a s p e c i a l a r r a n g e m e n t o f S n S 4 t e t r a h e d r a , S n S 6 o c t a h e d r a a n d S 4 2 - l i g a n d s . T h e S n 4 + c e n t e r s a r e d i v i d e d i n t o t w o s e t s o f r e c o g n i z a b l e d i m e r i c u n i t s , o n e o f w h i c h i n v o l v e s t h e t e t r a h e d r a l c e n t e r s a n d t h e o t h e r t h e o c t a h e d r a l c e n t e r s , a s s h o w n i n s c h e m e ( A ) . I n t h e fi r s t k i n d , t w o d i s t o r t e d S n S 4 t e t r a h e d r a s h a r e a n e d g e t o f o r m a S n 2 S 6 u n i t w i t h a c e n t e r o f i n v e r s i o n i n t h e m i d d l e o f t h e s h a r e d e d g e . I n t h e s e c o n d k i n d o f d i m e r , t w o s l i g h t l y d i s t o r t e d S n 8 6 o c t a h e d r a a l s o s h a r e a n e d g e t h r o u g h t w o e q u a t o r i a l S a t o m s t o f o r m a S n 2 S 1 o u n i t t h a t p o s s e s s e s a c e n t e r o f i n v e r s i o n a t t h e m i d d l e o f t h e e d g e . T h e S n - S n v e c t o r s i n t h e S n 2 8 1 0 u n i t s a r e o r i e n t e d p e r p e n d i c u l a r t o t h e ' t ' b - 0 S ( ) 5 ( 4 ) 2 6 8 ‘ 1 . 4 \ 4 ' ° 8 ( 1 ) . r . 0 ’ 0 8 ( 2 ) 0 . O l I 1 ' } , . . 5 0 1 2 ” " \ S ( S ) 5 ( 8 ) 8 ( 6 ) 0 ' 0 . F i g u r e 5 - 1 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f [ S n z s g l n z n ' i n ( I ) . T h e d a s h e d l i n e s i n d i c a t e t h e s h o r t e s t n o n b o n d i n g S n - - - 8 c o n t a c t s ( 2 . 9 3 4 ( 5 ) A ) . 2 6 9 ‘ L O O ’ o . “ 4 - - - O O O o . 9 . a . 0 ' x S l ) ' 8 n ( 2 . . ( _ - 8 ( 2 ) S n ( l ) . . O " 8 5 6 ) O 0 8 ( 8 ) 8 ( 6 ) . ° 8 ( 7 ) . ' c E a 8 ( 4 ) F i g u r e 5 - 2 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f [ S n 2 8 3 ] n 2 n ' i n ( I I I ) . T h e d a s h e d l i n e s i n d i c a t e t h e s h o r t e s t n o n b o n d i n g 8 n - - - 8 c o n t a c t s ( 2 . 8 7 5 ( 3 ) A ) . ) I I I ( g S g n g n R - B ) I I ( 3 5 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 2 2 5 3 3 4 5 3 3 4 5 4 8 4 2 5 5 l ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( S S S S S S S S S S S S S S S S S S - - - - - - - - - - - - - - - - - - ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) l l l 2 2 3 2 2 3 2 3 2 3 l l l 2 2 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( n n n n n n n n n n n n n n n n n n S S S S S S S S 8 S S S S S S 8 S S - - - - — - - - - - - - - - — - - - ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 1 1 1 2 2 1 2 1 1 5 3 3 3 3 3 3 l l ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( _ ( S S S S S S S S S S 8 S 8 S S S 8 8 2 ) ) ) ) ) ) 7 n 8 ) ) 7 ) ) ) ) ) ) ) 9 9 8 ( ( 7 ( 7 ( 7 3 ( ( ) 8 8 8 8 1 7 7 2 b R 4 0 ( ( ( 1 ( ( ( 5 9 7 ( 5 6 1 4 2 2 ( 8 2 ( 0 ( . . 6 0 . 3 8 4 4 4 . 4 5 4 6 7 6 0 4 6 3 9 7 1 2 9 . . . . - 5 9 6 7 3 1 7 7 1 9 2 0 7 6 1 1 a 9 8 9 8 9 8 8 8 9 8 1 l l 1 1 1 ) ) ) ) ) 2 2 2 2 2 ) ) ) ) ) ) ) ( ( ( ( ( 2 2 2 2 1 1 1 8 0 8 0 3 ( ( ( ( ( ( ( . . . . . 2 9 8 5 9 9 1 4 9 1 3 2 . . . . . . . 2 1 0 1 7 8 9 5 8 3 0 8 1 1 1 1 1 9 8 9 8 9 8 8 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 2 5 3 2 2 5 5 3 4 5 8 3 4 5 8 4 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( S S S S S S S S S S S S S S S S - - - - - - - - - - - - - - - - ) ) ) ) ) ) l 1 l 1 1 l ) 2 ( ) ) ) ) ) ) ) ) ) 2 2 2 2 2 2 2 2 2 ( ( ( M M ( ( ( ( ( ( ( ( ( ( n n n n n n n n n n n n n n S S S S S S S S S S S S S S S S - - - - - - - - - - - - - - - - ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 1 1 2 1 1 1 1 3 3 3 3 3 l l 2 2 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( S S S S S S S 8 S S S 8 S S S S T a b l e 5 - 1 6 . ( c o n t ' d ) K 2 3 0 2 $ 3 ( I ) 1 6 9 . 8 ( 1 ) 8 8 . 1 ( 1 ) 9 1 . 5 ( 2 ) 8 8 . 9 ( 2 ) 1 2 2 . 3 ( 1 ) 9 6 . 3 ( 1 ) 1 1 2 . 5 ( 1 ) 8 9 . 6 ( 1 ) 1 2 2 . 9 ( 1 ) 9 9 . 6 ( 1 ) 9 5 . 8 ( 1 ) 8 8 . 7 ( 1 ) 9 4 . 1 ( 1 ) 1 7 3 . 7 ( 2 ) 1 7 4 . 0 ( 2 ) 8 1 . 5 ( 1 ) 8 8 . 0 ( 1 ) 8 7 . 6 ( 1 ) l 6 9 . 9 5 ( 9 ) 8 6 . 3 ( 1 ) 9 0 . 8 ( 1 ) 9 0 . 0 ( 1 ) 2 7 2 ) ) ) ) l ) ) ) ) ) ) ) ) 2 3 3 5 8 8 4 8 8 ( 7 6 ( ( ( ) ) ( ( ( ( ( ( ( ( 7 8 n n n n S 8 S S S S S S ( ( S S 8 S - ~ - - - - — - S S - - - - ) ) ) ) ) ) ) ) ) ) - - ) ) 3 3 3 2 3 3 1 3 8 4 ) ) 2 5 ( ( ( ( ( ( ( ( ( ( ( ( 6 7 S 8 n n n n n n S S 8 8 ( ( - - S S S S S S - - - - 8 5 ) ) - - - - — - ) ) ) ) - - 1 ) ) ) ) ) ) 1 ] 2 3 ) ) 2 3 3 5 4 8 5 ( ( ( ( ( 4 6 ( ( ( ( ( ( ( n n n n n ( ( n S S S S S S 8 S S 8 S 8 8 S ) ) ) ) ) ) ) ) ) 8 8 8 7 8 1 1 1 1 ( ( ( ( ( 1 5 6 4 ( ( ( ( 4 8 0 3 8 . . . . 5 2 4 4 5 3 5 5 0 3 9 0 2 8 0 0 0 0 9 9 9 9 9 1 1 1 1 ) 1 ) ) ) ) ) ) ) ) ) ) ) ) 2 3 3 2 2 1 2 2 1 2 ( 2 2 ( ( ( ( ( ( ( ( ( ( ( 4 ( 4 5 0 0 0 5 6 2 9 2 0 . l . . . . . . . . . . . . 9 4 5 0 4 7 2 3 3 9 1 0 9 6 0 0 0 0 9 8 9 9 9 9 9 9 1 1 1 1 1 ) 2 ) ) ) 8 6 ( ) ) 7 ( ( n 7 8 ( S S - - S - ) ( ( S S S - ) 2 ( ) ) — - 4 8 ) ) 5 ( ( 6 7 ( n 8 S - - ) S - ) I ( ( 8 S S - - - ) ) 2 ) ) 2 5 ( ( 4 6 ( ( n n ( ( n S S S S S S T a b l e 5 - 1 6 . ( c o n t ' d ) S ( 3 ) — S n ( 2 ) - S ( 5 ) S ( 3 ) - S n ( 2 ) - S ( 8 ) 3 ( 4 ) - S n ( 2 ) - S ( 5 ) 8 ( 4 ) - S n ( 2 ) - 8 ( 8 ) S n ( 1 ) - S ( l ) - S n ( 2 ) 8 n ( 1 ) - S ( 2 ) - S n ( l ) S n ( 2 ) - 8 ( 3 ) - S n ( 2 ) 9 7 . 7 3 ( 8 ) 1 6 8 . 6 ( 6 ) 8 2 7 8 ( 7 ) 9 3 4 9 ( 8 ) 9 8 . 0 ( 1 ) 1 6 9 . 1 ( 1 ) 8 3 . 5 ( 1 ) 9 2 1 ( 2 ) 9 4 . 3 ( 2 ) 9 2 . 4 ( 1 ) 9 8 . 7 ( 1 ) 9 0 . 2 ( 1 ) 9 2 2 2 ( 9 ) 1 0 4 . 5 ( 2 ) 9 9 . 1 ( 1 ) 1 0 5 . 8 ( 2 ) 1 0 6 . 0 ( 2 ) 1 0 0 . 9 ( 2 ) 2 7 3 2 7 4 \ S , S / — s s _ s ’ n — s \ ‘ 4 ‘ . , 4 / 4 . 4 \ S r l ‘ S n / 3 , } > 5 — S ‘ 3 \ S _ \ S \ n — S s “ : \ S / \ s n 2 3 6 U I I I I S s t l o U I I I I S c h e m e ( A ) c o r r e s p o n d i n g S n - S n v e c t o r s i n t h e S n 2 S 6 u n i t s . T h e t w o t y p e s o f d i m e r i c u n i t s a r e l i n k e d t o g e t h e r i n a n a l t e r n a t i n g f a s h i o n b y s h a r i n g o f t h e t e t r a h e d r a l e d g e s a n d t h e o c t a h e d r a l c o r n e r s , a s s h o w n i n s c h e m e ( B ) . T h i s r e s u l t s i n a s e t o f p a r a l l e l l i n e a r [ S n 4 8 1 2 ] n c h a i n s S 3 8 S 8 . 8 S — S n ’ S S 7 3 1 ; S ’ . , S \ “ ‘ 0 ‘ S " W u , " I S 8 ‘ / s n \ / ' S n 3 ‘ s 8 1 ‘ } 8 S 8 8 n 8 ' 8 U ! U ) S c h e m e ( B ) 2 7 5 r u n n i n g i n t h e d i r e c t i o n o f t h e b - a x i s i n ( I ) a n d ( I I ) , a n d t h e a - a x i s i n ( I I I ) . T h e r e m a i n i n g f o u r e q u a t o r i a l S a t o m s i n t h e S n 2 S 1 0 u n i t a r e a c t u a l l y t h e t e r m i n a l a t o m s o f S 4 2 - l i g a n d s w h i c h l i n k t h e s e [ S n 4 8 1 2 ] n c h a i n s t o f o r m l a y e r s w h i c h a r e p a r a l l e l t o [ 1 0 1 ] c r y s t a l l o g r a p h i c p l a n e s i n ( I ) a n d ( I I ) , a n d p a r a l l e l t o [ 0 0 1 ] i n ( I I I ) . T h e S n 2 8 6 u n i t i s f o u n d i n i s o l a t e d f o r m i n N a 4 8 n 2 S 6 - 1 4 H 2 0 1 1 . H o w e v e r , i n ( I ) ~ ( I I I ) t h e t w o a v e r a g e d 8 n ( 1 ) - S ( 2 ) d i s t a n c e s a r e s i g n i f i c a n t l y d i f f e r e n t , 2 . 3 9 6 ( 4 ) A a n d 2 . 5 3 4 ( 6 ) A , w h i l e i n N a 4 8 n 2 S 6 - 1 4 H 2 0 , t h e c o r r e s p o n d i n g S n — S d i s t a n c e s a r e m o r e e q u a l a t 2 . 4 5 2 A a n d 2 . 4 4 8 A r e s p e c t i v e l y . A s h o r t c o n t a c t b e t w e e n t h e d i s t o r t e d t e t r a h e d r a l S n a t o m a n d t h e b r i d g i n g 8 ( 3 ) a t o m o f t h e S n 2 8 2 c o r e i n t h e S n 2 8 1 o u n i t , a s s h o w n b y t h e d a s h e d l i n e s i n F i g u r e s 5 - 1 a n d 5 - 2 , i s r e s p o n s i b l e f o r t h e a s y m m e t r y o f t h e S n 2 8 2 c o r e i n t h e S n 2 8 6 u n i t . T h i s p a r t i a l S n - - - S b o n d f o r m a t i o n , 2 . 9 3 4 ( 5 ) A , 2 . 8 6 5 ( 2 ) A a n d 2 . 8 7 5 ( 3 ) A i n ( I ) ~ ( I I I ) r e s p e c t i v e l y , c a u s e s t h e l e n g t h e n i n g o f S n - S b o n d o p p o s i t e t o t h e S n - - - S s h o r t c o n t a c t . T h e a v e r a g e d 8 n ( 1 ) - S ( 1 ) a n d 8 n ( 1 ) - 8 ( 5 ) d i s t a n c e s a r e 2 . 3 9 6 ( 4 ) A a n d 2 . 3 9 0 ( 6 ) A w h i c h a r e e x p e c t e d l y s l i g h t l y l o n g e r t h a n t h e S n t o t e r m i n a l s u l fi d e d i s t a n c e s i n N a 4 S n 2 S 6 - 1 4 H 2 O , 2 . 3 2 5 A a n d 2 . 3 3 8 A . T h i s i s d u e t o t h e b r i d g i n g n a t u r e o f 8 ( 1 ) a n d 8 ( 5 ) l i n k i n g 8 n ( 1 ) a n d S n ( 2 ) . B o n d a n g l e s i n t h e S n 2 8 6 u n i t a r e s i m i l a r t o t h o s e i n N a 4 8 n 2 8 6 - 1 4 H 2 O . T h e S ( 2 ) - 8 n ( 1 ) - S ( 2 ) a n g l e s a r e c l o s e t o 9 0 d e g r e e s . I f t h e S n - - - S s h o r t c o n t a c t i s c o n s i d e r e d t o b e a b o n d , t h e c o o r d i n a t i o n e n v i r o n m e n t a r o u n d S n ( l ) c a n b e v i e w e d a s a d i s t o r t e d t r i g o n a l b i p y r a m i d w i t h a n e l o n g a t e d a x i a l S n — S b o n d . O n e o f t h e b r i d g i n g s u l f u r s o p p o s i t e t o t h e S n - - - S s h o r t c o n t a c t i n t h e S n 2 8 2 c o r e f o r m s t h e o t h e r a x i a l S n - S b o n d i n t h e t r i g o n a l b i p y r a m i d . T h e S ( a x i a l ) - S n ( 1 ) — S ( a x i a l ) a n g l e s i n ( I ) ~ ( I I I ) a r e 1 7 3 . 9 ( 1 ) ° , 1 7 4 . 9 ( 1 ) ° a n d 2 7 6 1 7 6 . 1 ( 1 ) ° r e s p e c t i v e l y , w h i l e t h e S ( e q u a t o r i a l ) — S n ( l ) — S ( e q u a t o r i a l ) a n g l e s r a n g e f r o m 1 1 2 . 0 ( 2 ) ° t o 1 2 6 . 0 4 ( 9 ) ° . T h e a v e r a g e S n - S d i s t a n c e , 2 5 7 ( 2 ) A i n t h e S n 2 8 1 0 u n i t i s v e r y c l o s e t o 2 . 5 7 1 A f o u n d i n K 2 S n S 3 - 2 H 2 O l 3 , w h i c h i s i n t h e r a n g e o f t y p i c a l S n — S d i s t a n c e s i n S n 8 6 o c t a h e d r a . T h e S - S n - S a n g l e s a r e c l o s e t o t h o s e o f a n i d e a l o c t a h e d r o n . S e e T a b l e 5 - 1 6 . T h e t e t r a s u l fi d e s l i n k i n g t h e S n 2 8 1 o u n i t s p o s s e s s h e l i c a l c o n f o r m a t i o n . T h e d i h e d r a l a n g l e s b e t w e e n t h e t w o o u t e r S - S b o n d s a r e s i m i l a r a t 1 0 9 . 4 ( 3 ) ° , 1 1 0 . 4 ( 1 ) ° a n d 1 0 9 . 8 ( 2 ) ° f o r ( l ) ~ ( I I I ) r e s p e c t i v e l y . T h e 8 - 8 d i s t a n c e s i n t h e t e t r a s u l fi d e l i g a n d s a r e i n t h e r a n g e o f t y p i c a l S - S d i s t a n c e s . S e e T a b l e 5 - 1 6 . T h e a v e r a g e d c e n t r a l S - S b o n d d i s t a n c e , 2 . 0 7 0 ( 1 ) A , i s s l i g h t l y l o n g e r t h a n t h e a v e r a g e d t e r m i n a l S - S b o n d d i s t a n c e , 2 . 0 4 8 ( 5 ) A , w h i l e i n t h e f r e e t e t r a s u l fi d e a n i o n o f B 8 8 4 3 1 , n o s i g n i fi c a n t v a r i a t i o n a m o n g t h e S - S d i s t a n c e s i s o b s e r v e d . T h e a v e r a g e S - S b o n d d i s t a n c e i n B a 8 4 i s 2 . 0 6 9 ( 2 ) A . T h e c h a r g e c o m p e n s a t i n g c a t i o n s a r e i n t e r c a l a t e d b e t w e e n l a y e r s , a s s h o w n i n F i g u r e 5 - 3 A a n d 5 - 3 B . T h e r e a r e t w o d i s t i n c t K “ o r R b ’ r c a t i o n s i n ( l ) ~ ( I l I ) . I n ( I ) a n d ( I I ) , b o t h K + a n d R b + h a v e s i m i l a r c o o r d i n a t i o n e n v i r o n m e n t s . T h e r e a r e t w o d i s t i n c t K ” o r R b ” c a t i o n s w h i c h a r e s u r r o u n d e d b y 7 a n d 8 S a t o m s r e s p e c t i v e l y . T h e c o o r d i n a t i o n e n v i r o n m e n t s o f t h e t w o d i s t i n c t R b + c a t i o n s i n ( I I I ) i s d i f f e r e n t f r o m t h o s e i n ( I ) a n d ( 1 1 ) . T h e s e R b “ r c a t i o n s a r e s u r r o u n d e d b y 9 a n d 6 S a t o m s r e s p e c t i v e l y . T h e a v e r a g e K - S d i s t a n c e f o r ( I ) i s 3 . 3 4 ( 1 1 ) A , w h i l e t h e a v e r a g e R b - S d i s t a n c e s a r e 3 . 4 8 ( 1 5 ) A f o r ( I I ) a n d 3 . 4 8 ( 1 7 ) A f o r ( 1 1 1 ) . 2 7 7 F i g u r e 5 - 3 : U n i t c e l l s o f ( A ) K 2 S n 2 8 3 o r o r - R b 2 8 n 2 8 3 ( B ) B - R b 2 8 n 2 8 8 . C a t i o n s l o c a t e d b e t w e e n l a y e r s . V i e w d o w n t h e b - a x i s . m o m 2 7 9 T h e S t r u c t u r e o f K 2 8 n 2 8 5 ( I V ) h a s a t h r e e - d i m e n s i o n a l s t r u c t u r e w h i c h i s s h o w n i n F i g u r e 5 - 4 . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e n i n T a b l e 5 - 1 7 . T h i s c o m p o u n d i s i s o s t r u c t u r a l t o t h e T l + s a l t , T l 2 S n 2 8 5 3 2 , w h i c h h a s b e e n s y n t h e s i z e d b y h e a t i n g a s t o i c h i o m e t r i c m i x t u r e o f T 1 , S n a n d 8 e l e m e n t s a t 3 0 0 ° C . T h e a n i o n i c s t r u c t u r e o f ( I V ) a n d T 1 2 S n 2 8 5 a n d t h e r e l a t i v e p o s i t i o n s o f T l + a n d K + t o S a t o m s i n t h e a n i o n f r a m e w o r k a r e a p p r o x i m a t e l y t h e s a m e b e c a u s e o f t h e s i m i l a r i t y o f t h e i o n i c r a d i i o f T l + a n d K + . T h e b o n d d i s t a n c e s a n d a n g l e s a r e a l m o s t t h e s a m e a s t h o s e i n T l 2 8 n 2 8 5 . W h i l e t h i s m a n u s c r i p t w a s i n p r e p a r a t i o n , w e l e a r n e d t h a t ( I V ) w a s s y n t h e s i z e d b y h e a t i n g t h e s t o i c h i o m e t r i c m i x t u r e o f K 2 8 / S n / S a t 1 0 7 0 K 2 9 . ( I V ) ' 8 s e l e n i u m a n a l o g , K 2 S n 2 8 e 5 2 9 , R b 2 S n 2 8 e 5 3 3 a r e a l s o k n o w n a n d h a v e b e e n p r e p a r e d b y h i g h t e m p e r a t u r e s o l i d s t a t e r e a c t i o n a n d m e t h a n o t h e r m a l r e a c t i o n r e s p e c t i v e l y . T h i s s u g g e s t s t h a t t h i s s t r u c t u r e t y p e h a s c o n s i d e r a b l e t h e r m o d y n a m i c s t a b i l i t y . U n l i k e ( I ) ~ ( I I I ) , w h i c h f e a t u r e b o t h f o u r - c o o r d i n a t e a n d s i x - c o o r d i n a t e S n a t o m s , ( I V ) f e a t u r e s o n l y fi v e c o o r d i n a t e S n c e n t e r s . T h e a n i o n i c f r a m e w o r k i n ( I V ) h a s S n 8 5 d i s t o r t e d t r i g o n a l b i p y r a m i d s a s b u i l d i n g b l o c k s w h i c h s h a r e t w o o f t h e i r c o m m o n e d g e s ( f o r m e d b y a n a x i a l 8 a t o m a n d a n e q u a t o r i a l 8 a t o m ) w i t h o n e a n o t h e r t o f o r m [ S n 8 3 ] n 2 “ ' c h a i n s ( s e e s c h e m e ( C ) ) 2 8 0 S 0 , ” , S n / S S " ' q " 8 1 1 / S " " I I I / S \ S S I I \ S 8 S c h e m e ( C ) r u n n i n g i n t h e d i r e c t i o n o f [ 1 1 0 ] a n d [ 1 - 1 0 ] a l t e r n a t e l y . T h e [ S n S 3 ] n 2 n ' c h a i n s a r e c r o s s - l i n k e d b y s h a r i n g t h e r e m a i n i n g e q u a t o r i a l S a t o m s o f t h e t r i g o n a l b i p y r a m i d s t o f o r m a n e x t e n d e d t h r e e - d i m e n s i o n a l f r a m e w o r k . T h e S ( a x i a l ) - S n - S ( a x i a 1 ) a n g l e i s 1 6 9 . 4 ( 1 ) ° ; t h e S ( a x i a l ) - S n - S ( e q u a t o r i a l ) a n g l e s r a n g e f r o m 8 3 . 9 ( 1 ) ° t o 1 0 0 . 3 ( 1 ) ° a n d t h e S ( e q u a t o r i a l ) - S n - S ( e q u a t o r i a l ) a n g l e s a r e 1 1 2 . 3 3 ( 8 ) ° 1 1 8 . 8 ( 1 ) ° a n d 1 2 8 . 0 ( l ) ° . T h e a v e r a g e S n - S d i s t a n c e i s 2 4 9 ( 9 ) A . T h e ( S n 2 8 5 ) 2 ' f r a m e w o r k f e a t u r e s o n e - d i m e n s i o n a l t u n n e l s r u n n i n g p a r a l l e l t o t h e b - a x i s . T h e s e t u n n e l s c o n t a i n t h e K + a t o m s . T h e K - 8 d i s t a n c e s r a n g e f r o m 3 . 0 9 0 ( 5 ) A t o 3 . 6 4 0 ( 5 ) A w i t h t h e a v e r a g e o f 3 . 4 ( 2 ) A a n d c o o r d i n a t i o n n u m b e r o f 8 . 2 8 1 8 ( 3 ) F i g u r e 5 - 4 : S t r u c t u r e a n d l a b e l i n g s c h e m e o f K 2 S n 2 8 5 : ( A ) V i e w d o w n t h e a — a x i s . ( B ) V i e w d o w n t h e b - a x i s . 2 8 2 ( B ) 5 $ 2 n ) ) 1 1 ) ) ) ) ( ( 1 1 1 1 5 6 ( ( ( ( S . . 3 3 7 9 2 2 7 . . . . l 6 1 8 5 1 1 T 8 9 8 9 1 1 ) ) V V I I . 5 8 2 n 8 2 1 T d n a ) ( ( ) 8 V ) 5 5 I $ ( 2 5 n 8 8 2 2 5 ) ) ) ) ( 2 3 n 3 ( 1 1 1 1 3 1 ( ( ( ( . . 6 6 1 4 8 2 9 . . . . 2 1 1 6 8 6 1 n 8 2 K r o f ) g e d ( s e l g n A d n a ) A ( s e c n a t s i D d n o B d e t c e K 8 8 9 9 K 1 1 ) ) ) 3 3 3 ( ( ( n n n S S S S S S - - - - - - n n n ) ) ) S S 8 l 2 3 - - - ( ( ( ) ) ) S S 8 2 2 3 - - - ( ( ( n n n S S S S S S ) ) V V l I I e S ( ( 5 5 ) ) ) ) ) ) ) ) ) ) ) f 3 3 ) ) ) 3 4 2 3 3 5 5 1 1 1 1 o 1 1 1 ( ( ( ( ( ( ( ( ( ( ( 2 2 0 0 8 8 8 7 ( ( ( 0 4 0 3 8 n 3 5 6 9 4 3 9 1 5 n n 9 . . . . o 3 4 5 4 3 6 . . . 8 5 8 0 9 8 0 2 2 . 6 2 0 . . . . . . 3 6 5 1 s i r a p m o C . 7 1 - K 2 2 2 2 2 K 3 3 8 8 9 1 1 1 1 ) ) l 2 3 3 2 3 3 ) ) ) ) ) ) ) l l ( ( S S - - ( ( ( ( ( ( ( S S S S S S S — - - - - - - 5 l l ) ) ) ) ) n n n n n n n 1 l 2 3 3 T T S S S S S S S e ( ( ( ( ( - - - - — - - l S S S 8 S r r ) ) ) ) ) ) ) b - - - - - o o 1 1 1 1 1 1 1 a ( ( ( ( ( ( ( n n n n n T S S S S S K K S S S S S S S n 2 8 n 2 8 5 2 . 4 4 6 ( 4 ) 2 . 5 4 3 ( 4 ) 2 . 4 6 3 ( 3 ) 2 . 4 0 9 ( 4 ) 2 . 6 2 3 ( 4 ) 3 . 0 7 3 ( 4 ) 3 . 2 6 9 ( 4 ) m e a n ( S n e S ) = 2 . 5 0 ( 1 0 ) A , m e a n ( K — S ) = 3 . 3 9 ( 2 1 ) A K o r T l - S ( 1 ) K o r T I - S ( 2 ) K o r T I - S ( 2 ) K o r " f l - 8 ( 3 ) K o r T l - S ( 3 ) K o r T l - S ( 3 ) 3 . 6 4 0 ( 5 ) 3 . 6 1 4 ( 4 ) 3 . 6 0 4 ( 5 ) 3 . 2 7 7 ( 5 ) 3 . 4 1 2 ( 5 ) 3 . 1 5 0 ( 5 ) T l g S n g S 5 3 . 7 1 1 ( 4 ) 3 . 6 1 5 ( 2 ) 3 . 5 8 6 ( 4 ) 3 . 2 6 9 ( 4 ) 3 . 3 3 9 ( 4 ) 3 . 1 6 0 ( 4 ) T I Q S n 2 5 5 8 4 . 1 ( 1 ) 1 2 6 . 2 ( 1 ) 1 2 0 . 2 ( 1 ) 8 5 . 1 ( 1 ) 1 0 2 . 0 ( 1 ) 9 5 . 1 ( 1 ) 1 6 9 . 0 ( 1 ) 2 8 3 2 8 4 T h e S t r u c t u r e o f C 8 2 8 n 2 8 6 a n d I t s R e l a t i o n s h i p t o K 2 8 n 2 8 5 I n v i e w o f t h e s n u g - fi t o f t h e K ’ r a n d T l + i o n s i n t h e [ S n 2 8 5 ] 2 ' f r a m e w o r k w e r e a s o n e d t h a t C s + w i l l b e t o o l a r g e f o r i t s t u n n e l s a n d m a y d i r e c t t h e s y s t e m t o a d i f f e r e n t s t r u c t u r e t y p e . I n d e e d t h e s t r u c t u r e o f ( V ) i s d i f f e r e n t f r o m b u t c l o s e l y r e l a t e d t o ( I V ) . I t s c h e m i c a l f o r m u l a c a n b e e x p r e s s e d a s C 8 2 S n 2 8 4 ( 8 2 ) . T h e t w o - d i m e n s i o n a l s t r u c t u r e o f ( V ) i s s h o w n i n F i g u r e 5 5 . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e n i n T a b l e 5 - 1 8 . T h e [ S n 2 8 4 ( S 2 ) ] 2 ' f r a m e w o r k c o n t a i n s d i s t o r t e d S n 8 5 t r i g o n a l b i p y r a m i d s a s b u i l d i n g b l o c k s . S i m i l a r [ S n S 3 ] n 2 " ' c h a i n s a s f o u n d i n ( I V ) f o r m e d b y t r i g o n a l b i p y r a m i d s s h a r i n g t w o c o m m o n e d g e s ( b o t h c o n t a i n a n a x i a l 8 a t o m a n e q u a t o r i a l 8 a t o m ) . T h e [ S n S 3 ] n 2 n ' c h a i n s i n ( V ) a r e p a r a l l e l t o t h e c r y s t a l l o g r a p h i c a - a x i s a n d a r e c r o s s - l i n k e d v i a S - S b o n d s f o r m e d b y c o n n e c t i n g t h e r e m a i n i n g e q u a t o r i a l S a t o m s o f t h e S n 8 5 t r i g o n a l b i p y r a m i d s . T h i s g i v e s r i s e t o a t w o - d i m e n s i o n a l s t r u c t u r e w h o s e s l a b s a r e p e r f o r a t e d b y l a r g e h o l e s . T h e h o l e s d e fi n e l 4 - m e m b e r S n - S r i n g s . I n ( V ) , t h e S ( a x i a l ) - S n - S ( a x i a l ) a n g l e i s 1 7 3 . 7 ( 2 ) ° ; t h e S ( a x i a l ) - S n - S ( e q u a t o r i a l ) a n g l e s r a n g e f r o m 8 2 . 4 ( 2 ) ° t o 9 6 . 1 ( 2 ) ° a n d t h e t h r e e S ( e q u a t o r i a l ) - S n - S ( e q u a t o r i a l ) a n g l e s a r e 1 1 0 . 6 ( 2 ) ° , 1 2 2 . 8 ( 2 ) ° a n d 1 2 6 . 0 ( 2 ) ° r e s p e c t i v e l y . T h e a v e r a g e S n - S d i s t a n c e i n t h e S n 8 5 t r i g o n a l b i p y r a m i d o f ( V ) i s s i m i l a r t o t h o s e i n ( I V ) , 2 . 4 9 ( 5 ) A . T h e C s + c a t i o n s a r e l o c a t e d b e t w e e n t h e l a y e r s . T h e C s - - - S d i s t a n c e s r a n g e f r o m 3 . 5 0 0 ( 5 ) A t o 4 . 0 4 2 ( 5 ) A w i t h a n a v e r a g e d i s t a n c e o f 3 . 6 6 ( 1 7 ) A . T h e c o o r d i n a t i o n n u m b e r a r o u n d C s + i s 8 . T h e r a d i u s o f C s ’ r i s t h u s ~ 0 . 4 A l a r g e r t h a n t h a t o f K “ , w h i c h a c c o u n t s f o r t h e f a c t t h a t t h e [ S n 2 8 5 ] 2 ' fi a m e w o r k i s u n s u i t a b l y s m a l l t o fi t t h e s a m e n u m b e r o f C s ” c a t i o n s . I n o r d e r t o a c c o m m o d a t e C s ” , t h e a n i o n i c f r a m e w o r k r e s p o n d s b y s u b s t i t u t i n g t h e b r i d g i n g 8 2 ' l i g a n d s w i t h 8 2 2 ' l i g a n d s , t h u s 2 8 5 i n c r e a s i n g t h e s i z e o f t h e c a v i t i e s . A t t h e s a m e t i m e , t h e t w o s e t s o f p a r a l l e l [ S n S 2 ] n c h a i n s w h i c h i n ( I V ) o r i e n t e d a l o n g t h e [ 1 1 0 ] a n d [ 1 - 1 0 ] d i r e c t i o n s f o r m i n g a c r i s s - c r o s s p a t t e r n , n o w l i n e u p i n t h e s a m e d i r e c t i o n , [ 1 0 0 ] i n ( V ) . T h i s i s s h o w n i n F i g u r e 5 - 6 . I n t h i s w a y , t h e t h r e e - d i m e n s i o n a l f r a m e w o r k o f ( I V ) b r e a k s u p t o f o r m a t w o - d i m e n s i o n a l s t r u c t u r e w h i c h i s m o r e fl e x i b l e e s p e c i a l l y i n t h e d i r e c t i o n p e r p e n d i c u l a r t o t h e l a y e r s . W e n o t e t h a t t h e s t r u c t u r e o f N a 4 S n 3 8 3 1 4 , w h o s e c h e m i c a l f o r m u l a c a n b e e x p r e s s e d a s N a 2 8 n 2 S 4 ( N a 2 S n S 4 ) , i s s o m e w h a t r e l a t e d t o t h a t o f ( I V ) . T h i s i s d o n e b y r e p l a c i n g t h e b r i d g i n g 8 2 ' l i g a n d s i n ( I V ) b y t e t r a h e d r a l [ S n S 4 ] 4 ' l i g a n d s . H o w e v e r u s i n g [ S n 8 4 ] 4 ' a s b r i d g i n g l i g a n d s i n c r e a s e s t h e s i z e o f t h o s e t u n n e l s e v e n m o r e , w h i c h a c c o m m o d a t e s t w o m o r e c a t i o n s a n d t h e t e r m i n a l s u l fi d e s o f [ S n 8 4 ] 4 ' . ) A ( O I O 6 - 8 b 2 n e h 8 t 2 8 n C w f o o d S C ) e 0 m ” e h ) 1 5 c ( s 3 - w e i V ) ) 4 3 ( . 3 \ V P i \ / E ) k c T a R p C ( . ; O s O O _ ) a a \ ( A d n i x f ~ ' . / : 5 - 5 . e ' o _ \ ” r u g i F \ l o a 1 : 6 3 0 — O \ / d n S i 2 x 8 a a - C c n o i t f e o h t / . a m O j ‘ . _ / \ 3 g B n ( i l : e b 6 8 2 n . s t a n n e s r w g o e d a r i p d w e r g n e i O O O C ) 2 8 6 2 8 7 ? 0 0 Z fl g « . 8 6 . ? . 2 i f ”2 Z 0 2 2 2 s ) B ( . / ’ ‘ . 6 / 1 2 8 7 A 8 0 A d u H O O b l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l I l I l l l l I I l l l l l I l I l l l l l I I l F i g u r e 5 — 6 : 2 8 9 ( B ) S c h e m a t i c c o m p a r i s o n o f t h e o r i e n t a t i o n s o f t h e ( S n 8 2 ) n c h a i n s i n K 2 8 n 2 8 5 a n d C 8 2 S n 2 8 6 . B l a c k s o l i d l i n e s r e p r e s e n t t h e ( S n S z ) n c h a i n s l y i n g a b o v e . w h i l e t h e b r o k e n l i n e s r e p r e s e n t ( S n S 2 ) n c h a i n s l y i n g b e l o w t h e p l a n e o f t h e p a p e r . ( A ) s h o w s t w o p a r a l l e l s e t s o f ( S n 8 2 ) n c h a i n s i n K 2 8 n 2 8 5 o r i e n t e d a l o n g t h e l l l O I a n d [ l - l O l d i r e c t i o n s , r e s p e c t i v e l y , a n d l i n k e d b y 8 2 ‘ . ( B ) s h o w s p a r a l l e l s e t s o f ( S n S 2 ) n c h a i n s i n C 8 2 8 n 2 8 6 o r i e n t e d a l o n g t h e [ 1 0 0 ] d i r e c t i o n a n d l i n k e d b y 8 2 2 ' . 2 9 0 T a b l e 5 - 1 8 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r C 8 2 8 n 2 8 6 ( V ) w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S n - S ( 1 ) 2 . 4 7 4 ( 5 ) C 8 - S ( 1 ) 3 . 7 6 7 ( 5 ) S n - S ( 2 ) 2 . 4 0 7 ( 5 ) C s - S ( 1 ) 3 . 6 4 5 ( 6 ) S n - S ( 2 ) 2 . 6 0 1 ( 5 ) C 8 - S ( 2 ) 3 . 6 4 9 ( 5 ) S n - S ( 3 ) 2 . 4 1 2 ( 5 ) C s - S ( 2 ) 3 . 5 7 1 ( 6 ) S n - S ( 3 ) 2 . 5 5 1 ( 5 ) C s - S ( 2 ) 4 . 0 4 2 ( 5 ) m e a n ( S n - S ) 2 . 4 9 ( 9 ) C s - S ( 3 ) 3 . 5 2 7 ( 5 ) S ( 1 ) - S ( 1 ) 2 . 1 0 ( 1 ) C s - S ( 3 ) ' 3 . 5 0 0 ( 5 ) C 8 - S ( 1 ) 3 . 5 7 9 ( 5 ) m e a n ( C 8 - S ) 3 . 6 6 ( 1 8 ) S ( 1 ) - S n - S ( 2 ) 1 1 0 . 6 ( 2 ) S ( 2 ) - S n - S ( 3 ) 8 9 . 6 ( 2 ) S ( 1 ) - S n - S ( 2 ) 8 2 . 4 ( 2 ) S ( 2 ) — S n - S ( 3 ) 1 7 3 . 7 ( 2 ) S ( 1 ) - S n - S ( 3 ) 1 2 6 . 0 ( 2 ) S ( 3 ) — S n - S ( 3 ) 8 6 . 9 ( 2 ) S ( 1 ) - 8 n - S ( 3 ) 9 5 . 5 ( 2 ) S n - S ( 1 ) - S ( 1 ) 1 0 3 . 9 ( 3 ) S ( 2 ) - S n — S ( 2 ) 9 0 . 2 ( 2 ) S n - S ( 2 ) - S n 8 9 . 8 ( 2 ) S ( 2 ) — S n - S ( 3 ) 1 2 2 . 8 ( 2 ) S n - S ( 3 ) - S n 9 3 . 1 ( 2 ) S ( 2 ) - S n - S ( 3 ) 9 6 . 1 ( 2 ) 2 9 1 T h e S t r u c t u r e o f C 8 2 S n 8 1 4 ( V 1 ) i s c o m p o s e d o f d i s c r e t e [ 8 n S 1 4 ] 2 ' a n i o n s a n d t w o C s + c a t i o n s . T h e s t r u c t u r e o f a s i n g l e [ S n S 1 4 ] 2 ‘ a n i o n a n d t h e p a c k i n g d i a g r a m o f t h e u n i t c e l l a r e s h o w n i n F i g u r e 5 - 7 a n d F i g u r e 5 - 8 r e s p e c t i v e l y . T h e a n i o n f e a t u r e s a S n 4 + c e n t e r o c t a h e d r a l l y c o o r d i n a t e d b y t w o 8 4 2 ' a n d o n e 8 6 2 ' l i g a n d s . T h e t e t r a e t h y l a m m o n i u m s a l t o f t h e a n i o n h a s b e e n r e p o r t e d t o o c c u r c o c r y s t a l l i z e d w i t h [ S n ( S 4 ) 3 ] 2 ' i n a 3 : 2 r a t i o 9 . T h u s t h e S n S 6 r i n g w a s n o t w e l l r e f i n e d . C r y s t a l s o f ( V I ) s h o w n o s u c h d i s o r d e r . I n t e r e s t i n g l y , a n a l o g o u s m o l e c u l a r c o m p o u n d s w e r e n o t i s o l a t e d f r o m t h e S a n 2 S x a n d S n / R b 2 8 x s y s t e m s p e r h a p s d u e t o h i g h s o l u b i l i t y i n t h e s o l v e n t s u s e d d u r i n g i s o l a t i o n . A r e l a t e d s e l e n i u m a n a l o g , ( P h 4 P ) 2 S n ( S e 4 ) 3 3 4 a 3 5 , i s k n o w n . S o f a r n o s e l e n i u m c o m p o u n d o f ( V I ) h a s b e e n p r e p a r e d . A n o t h e r t e t r a v a l e n t m e t a l c e n t e r c h e l a t e d w i t h p o l y s u l fi d e s o c t a h e d r a l l y i 8 ( N H 4 ) 2 P t ( 8 5 ) 3 - 2 H 2 O 3 6 ’ 3 7 . T h e t i n a n a l o g o f t h i s c o m p o u n d h a s n o t b e e n r e p o r t e d t o d a t e e i t h e r . T a b l e 5 - 1 9 l i s t s t h e s e l e c t e d b o n d d i s t a n c e s a n d a n g l e s o f ( V I ) . T h e a v e r a g e S n — S d i s t a n c e i n ( v 1 ) i s 2 . 5 7 5 ( 1 3 ) A , w h i c h i s t y p i c a l f o r o c t a h e d r a l l y c o o r d i n a t e d S n 4 + c e n t e r s ” . T h e 8 - 8 b o n d d i s t a n c e s a r e i n t h e n o r m a l r a n g e f r o m 2 . 0 3 8 ( 8 ) A t o 2 . 0 7 4 ( 9 ) A , c o m p a r e d t o t h e u n r e a s o n a b l y l . 8 4 ( 1 ) A o b t a i n e d b e f o r e f r o m t h e d i s o r d e r d a t a . T h e S - S n - S a n g l e s a r e i n t h e r a n g e b e t w e e n 8 0 . 7 ( 2 ) ° t o 1 0 1 . 6 ( 2 ) ° w h i c h s i g n i fi c a n t l y d e v i a t e f r o m 9 0 ° , t h e i d e a l o c t a h e d r a l g e o m e t r y . T h i s i s p r o b a b l y d u e t o t h e d i f f e r e n c e o f t h e S n - p o l y s u l fi d e r i n g s i z e . T h e t w o fi v e - m e m b e r e d 8 n 8 4 r i n g s a d o p t a n e n v e l o p e s h a p e w i t h 8 ( 8 ) a n d S ( 1 2 ) s i t t i n g o u t s i d e t h e 8 n S 3 p l a n e s r e s p e c t i v e l y . I n t h e s e v e n - m e m b e r e d S n 8 6 r i n g , S n , 8 ( 1 ) , 8 ( 3 ) , 8 ( 4 ) 2 9 2 a n d 8 ( 6 ) a r e l y i n g i n t h e s a m e p l a n e w i t h 8 ( 2 ) a n d 8 ( 5 ) s i t t i n g a b o v e o r b e l o w t h e p l a n e . A s i m i l a r c o n f o r m a t i o n i s a l s o o b s e r v e d i n a s e v e n - m e m b e r e d H g 8 6 r i n g o f [ H g ( S 6 ) 2 ] 2 ' , 3 3 . T h e t w o C 8 + c a t i o n s a r e s u r r o u n d e d b y S a t o m s w i t h c o o r d i n a t i o n n u m b e r o f 6 f o r C s ( 1 ) a n d 7 f o r C s ( 2 ) . T h e a v e r a g e C s m S d i s t a n c e i s 3 . 6 5 A w h i c h i s a b o u t 0 . 3 1 A l o n g e r t h a n t h e a v e r a g e K - - - 8 d i s t a n c e i n ( 1 ) . I n t e r e s t i n g l y , ( V I ) a n d ( I ) a r e a c t u a l l y s y n t h e s i z e d u n d e r s i m i l a r c o n d i t i o n s . T h e s i z e o f c a t i o n s s e e m s t o h a v e a d r a m a t i c e f f e c t o n t h e f o r m a t i o n o f a n i o n s . T h e l a y e r e d s t r u c t u r e o f t h e [ S n 2 8 4 ( 8 4 ) ] 2 ' f r a m e w o r k i n ( I ) c a n n o t a c c o m m o d a t e l a r g e C s ’ r c a t i o n s . B y b r e a k i n g a p a r t i n t o d i s c r e t e m o l e c u l a r a n i o n s l i k e ( V I ) , e n o u g h r o o m i s c r e a t e d f o r C 8 + . ) 3 1 1 $ ) l l ( S ) 2 1 ( S ) 2 ( 5 . n o i n a ' 2 | ) ) ' 7 ( 5 6 S ( 2 ) 4 S ) ) 1 ( 3 8 3 ( n . 8 S l O l ( S ) 9 ( 8 [ e h t f o e m e h c s g n i l e b a l d n a s w e i v o w T : 7 - 5 e r u g i F A x 2 9 4 F i g u r e 5 - 8 : T h e u n i t c e l l o f C 8 2 S n 8 1 4 . 2 9 5 T a b l e 5 - 1 9 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r C 8 2 8 n 8 1 4 ( V 1 ) w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S n - S ( 1 ) 2 . 5 5 5 ( 4 ) S ( 1 2 ) - 8 ( 1 3 ) 2 . 0 6 7 ( 8 ) S n — S ( 6 ) 2 . 5 8 0 ( 5 ) S ( 1 3 ) - S ( 1 4 ) 2 . 0 5 6 ( 7 ) S n — S ( 7 ) 2 . 5 7 6 ( 5 ) m e a n ( S - S ) 2 . 0 5 4 ( 1 2 ) S n - S ( 1 0 ) 2 . 5 7 8 ( 4 ) C s ( 1 ) - S ( 1 ) 3 . 5 6 0 ( 5 ) S n - S ( l 1 ) 2 . 5 6 7 ( 5 ) C s ( 1 ) - 8 ( 7 ) 3 . 6 7 2 ( 5 ) S n - S ( 1 4 ) 2 . 5 9 4 ( 5 ) C s ( 1 ) - 8 ( 9 ) 3 . 7 1 5 ( 6 ) m e a n ( S n - S ) 2 . 5 7 5 ( 1 3 ) C s ( 1 ) - S ( 1 0 ) 3 . 6 6 4 ( 5 ) 8 ( 1 ) - S ( 2 ) 2 . 0 4 3 ( 8 ) C s ( 1 ) - S ( 1 1 ) 3 . 5 7 7 ( 6 ) S ( 2 ) - 8 ( 3 ) 2 . 0 7 4 ( 9 ) C s ( 1 ) - 8 ( 1 4 ) 3 . 7 3 9 ( 5 ) 8 ( 3 ) - 8 ( 4 ) 2 . 0 3 8 ( 8 ) C 8 ( 2 ) — S ( 7 ) 3 . 5 6 8 ( 5 ) 8 ( 4 ) - 8 ( 5 ) 2 . 0 4 1 ( 7 ) C s ( 2 ) — S ( 9 ) 3 . 5 8 7 ( 5 ) 8 ( 5 ) - 8 ( 6 ) 2 . 0 5 0 ( 7 ) C s ( 2 ) — S ( 1 0 ) 3 . 5 7 4 ( 5 ) 8 ( 7 ) - 8 ( 8 ) 2 . 0 6 0 ( 6 ) C s ( 2 ) - S ( 1 1 ) 3 . 7 5 2 ( 5 ) 8 ( 8 ) - 8 ( 9 ) 2 . 0 6 7 ( 7 ) C s ( 2 ) - S ( 1 2 ) 3 . 6 6 5 ( 5 ) S ( 9 ) - S ( 1 0 ) 2 . 0 5 8 ( 7 ) C s ( 2 ) — S ( 1 3 ) 3 . 6 1 8 ( 5 ) S ( 1 1 ) - S ( 1 2 ) 2 . 0 4 1 ( 8 ) m e a n ( C 8 - S ) 3 6 4 ( 7 ) S ( 1 ) - S n - S ( 6 ) 1 0 1 . 6 ( 2 ) S n - S ( 1 ) - S ( 2 ) 1 1 2 . 2 ( 2 ) S ( 1 ) - S n - S ( 7 ) 8 8 . 5 ( 2 ) S n - S ( 6 ) - S ( 5 ) 1 1 0 . 1 ( 2 ) S ( 1 ) - S n - S ( 1 0 ) 1 7 7 . 0 ( 2 ) S n — S ( 7 ) - S ( 8 ) 1 0 1 . 7 ( 2 ) S ( 1 ) — S n - S ( l 1 ) 8 0 . 7 ( 2 ) S n - S ( 1 0 ) - S ( 9 ) 1 0 3 . 9 ( 2 ) S ( 1 ) - S n - S ( 1 4 ) 9 6 . 3 ( 2 ) S n - S ( 1 1 ) - S ( 1 2 ) 1 0 0 . 7 ( 3 ) S ( 6 ) - S n - S ( 7 ) 9 6 . 3 ( 2 ) S n - S ( l 4 ) - S ( 1 3 ) 1 0 5 . 5 ( 3 ) S ( 6 ) - S n — S ( 1 0 ) 8 1 . 4 ( 2 ) S ( 1 ) — S ( 2 ) - S ( 3 ) 1 0 7 . 7 ( 3 ) S ( 6 ) - S n - S ( 1 1 ) 1 7 3 . 5 ( 2 ) S ( 2 ) — S ( 3 ) - S ( 4 ) 1 0 6 . 5 ( 3 ) S ( 6 ) - S n — S ( 1 4 ) 8 3 . 9 ( 2 ) S ( 3 ) - S ( 4 ) - S ( 5 ) 1 0 5 . 1 ( 3 ) S ( 7 ) - S n - S ( 1 0 ) 9 0 . 7 ( 2 ) S ( 4 ) - S ( 5 ) - S ( 6 ) 1 0 6 . 0 ( 3 ) S ( 7 ) - S n - S ( 1 1 ) 8 9 . 9 ( 2 ) S ( 7 ) - S ( 8 ) - S ( 9 ) 1 0 2 . 0 ( 3 ) S ( 7 ) - S n - S ( 1 4 ) 1 7 5 . 1 ( 1 ) S ( 8 ) - S ( 9 ) - S ( 1 0 ) 1 0 1 . 7 ( 3 ) S ( 1 0 ) - S n - S ( 1 1 ) 9 6 . 4 ( 2 ) S ( 1 1 ) - S ( 1 2 ) - S ( 1 3 ) 1 0 1 . 9 ( 3 ) S ( 1 0 ) - S n - S ( 1 4 ) 8 4 . 5 ( 2 ) S ( 1 2 ) - S ( 1 3 ) - S ( 1 4 ) 1 0 3 . 5 ( 3 ) £ 1 1 ) - S n - S ( 1 4 ) 8 9 . 8 ( 2 ) 2 9 6 T h e S t r u c t u r e o f K 2 8 n T e 5 C o m p o u n d ( V I I ) i s a o n e - d i m e n s i o n a l s t r u c t u r e c o n t a i n i n g s q u a r e p l a n a r [ T e s ] 6 ' u n i t s l i n k e d b y t e t r a h e d r a l l y c o o r d i n a t e d S n 4 + i o n s , a s s h o w n i n F i g u r e 5 - 9 . T h e r e a r e t w o d i s t i n c t T e a t o m s i n t h e [ T e 5 ] 6 - u n i t . T h e c e n t r a l T e a t o m h a s t h e f o r m a l o x i d a t i o n s t a t e o f 2 + w h i l e t h e o x i d a t i o n s t a t e o f t h e t e r m i n a l T e a t o m s i s 2 - . T h e c r y s t a l s t r u c t u r e s o f ( V I I ) a n d R b 2 S n T e 5 w e r e d e t e r m i n e d b y S c h é i f e r e t a l . e a r l i e r w i t h a n o n c e n t r o s y m m e t r i c s p a c e g r o u p ( I 4 c m ) 3 9 r 4 O U p o n r e e x a m i n i n g t h e s t r u c t u r e s , w e o b s e r v e d a c e n t e r o f i n v e r s i o n a t t h e c e n t r a l T e a t o m o f t h e [ T e 5 ] ° ' u n i t . T h i s i n v e r s i o n c e n t e r w a s n o t i d e n t i fi e d b y t h e s e a u t h o r s w h o u s e d t h e s p a c e g r o u p M o m t o r e fi n e t h e s t r u c t u r e . W e r e c o l l e c t e d X - r a y d i f f r a c t i o n d a t a a n d r e fi n e d t h e s t r u c t u r e ( V I I ) w i t h t h e c o r r e s p o n d i n g c e n t r o s y m m e t r i c s p a c e g r o u p ( I 4 / m c m ) . T h e s t r u c t u r e b a s e d o n t h e c e n t r o s y m m e t r i c s p a c e g r o u p w a s w e l l r e f i n e d w i t h m u c h i m p r o v e d s t a n d a r d d e v i a t i o n s . T h e r e c e n t l y r e p o r t e d T l 2 S n T e 5 4 1 a n d T l 2 G e T e 5 4 2 w e r e f o u n d t o b e i s o m o r p h o u s t o ( V I I ) . C o m p a r i s o n o f s e l e c t e d b o n d d i s t a n c e s a n d a n g l e s b e t w e e n ( V I I ) a n d T l 2 S n T e 5 a r e g i v e n i n T a b l e 5 - 2 0 . T h e r e i s n o s i g n i fi c a n t d i f f e r e n c e b e t w e e n t h e s e t w o s t r u c t u r e s . 2 9 7 ( A ) F i g u r e 5 - 9 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K 2 8 n T e 5 : ( A ) V i e w d o w n t h e a - a x i s . ( B ) V i e w d o w n t h e b - a x i s . ( B ) ( “ 8 5 9 / ( i ) = I . . . . V ’ / T e ( 2 ) U . fi x . g Q Q / V T 0 ) r i f f ? ( 2 , e / . 3 9 x 1 ( ( 2 ) , / / " 1 ( ( 1 ) Q / { C . 8 / 8 ) ) ) ) 2 2 5 5 ( ( 1 3 9 6 ( ( 6 4 4 6 4 5 . . 6 3 3 3 8 9 2 2 x x 2 2 ) ) x x 7 8 ) ) ( ( 4 7 4 ( 2 1 3 5 2 5 5 7 . 4 ( 7 7 . . . 8 1 3 3 8 9 ) ) l 2 ( ( l l T T r r o o ) ) 2 2 ( ( e e T T - - ) ) ) ) l 1 l 2 ( ( K K - - ( ( e e T T - - ) ) ) ) 2 2 2 2 ( ( ( ( e e e e T T T T ) ) ) ) 3 2 2 ( ( 6 ( 2 4 0 6 2 5 ( 7 2 . 9 3 0 7 . 2 3 1 0 l 1 4 2 4 4 x x x x ) ) ) ) 2 4 l l ( ( ( ( l 9 8 8 8 9 7 2 7 0 . . 2 3 . . 2 2 1 0 l 1 ) ) 2 2 ( ( e e T T - - ) 2 ( ) 2 ( e T - n e n n T S S - — - ) ) ) l 2 2 ( ( ( e e e S T T T T a b l e 5 - 2 0 . C o m p a r i s o n o f S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e ( d e g ) f o r K Z S D T C 5 a n d T l 2 8 n T e 5 . 2 9 9 3 0 0 3 . 3 . S p e c t r o s c o p y V i b r a t i o n a l S p e c t r o s c o p y T h e I n f r a r e d a n d / o r R a m a n f r e q u e n c i e s o f K 2 8 n 2 8 8 ( I ) , K 2 8 n 2 8 5 ( I V ) , C 8 2 S n 2 8 6 ( V ) a n d C 8 2 S n 8 1 4 ( V I ) a r e l i s t e d i n T a b l e 5 - 2 1 . T h e I R s p e c t r a o f a - R b 2 S n 2 8 3 a n d fi - R b 2 8 n 2 8 3 a r e t h e s a m e a s t h a t o f K 2 8 n 2 8 3 ( 1 ) . T h e r e f o r e , w e d i d n o t m e a s u r e t h e R a m a n s p e c t r a o f a - R b 2 S n 2 S g ( I I ) a n d fi - R b 2 8 n 2 8 3 ( I I I ) b e c a u s e t h e y a r e e x p e c t e d t o b e s i m i l a r t o t h a t o f K 2 8 n 2 8 3 ( I ) . S i n c e C 8 2 S n 8 1 4 ( V I ) c a n n o t b e i s o l a t e d i n p u r e f o r m , n o R a m a n s p e c t r u m o f t h i s c o m p o u n d w a s m e a s u r e d . T h e s a m p l e u s e d f o r t h e I R s p e c t r u m w a s p i c k e d b y h a n d a m o n g t h e m i x t u r e . R e p r e s e n t a t i v e R a m a n s p e c t r a o f K 2 8 n 2 8 3 ( I ) a n d C 8 2 S n 2 8 6 ( V ) o b t a i n e d w i t h 5 1 4 . 5 n m e x c i t a t i o n a r e s h o w n i n F i g u r e 5 - 1 0 . R a m a n s p e c t r a w e r e a l s o o b t a i n e d w i t h 4 4 1 a n d 4 8 8 n m e x c i t a t i o n s ( n o t s h o w n ) b u t g a v e s i m i l a r s p e c t r a . I n F i g u r e 5 - 1 0 A , t h e m o d e a t 3 7 9 c m ' 1 o f K 2 8 n 2 8 3 c a n b e a s s i g n e d t o a S n - S s t r e t c h i n g v i b r a t i o n b y a n a l o g y t o o t h e r t i n s u l fi d e c o m p l e x e s l o r l l a 1 2 T h e v i b r a t i o n s a t 4 8 3 c m ' 1 a n d 4 7 1 c m ' 1 a r e a s s i g n a b l e t o v ( S - S ) s y m a n d v ( S - S ) a s y m , r e s p e c t i v e l y . F i g u r e 5 - I O B s h o w s t h e R a m a n s p e c t r u m o f C 8 2 S n 2 8 6 w i t h i s o l a t e d g r o u p s o f b a n d s a s s i g n a b l e t o S n - S s t r e t c h i n g s ( 3 8 2 a n d 3 8 6 c m ' l ) , S - S s t r e t c h i n g ( 4 6 9 c m ' l ) a n d a s y m m e t r i c s t r e t c h i n g ( 4 9 0 c m ' l ) v i b r a t i o n s . 3 0 1 T h e 8 - 8 v i b r a t i o n s a r e n o t o b s e r v e d i n t h e I R s p e c t r u m o f C 8 2 8 n 2 8 6 b e c a u s e t h e 8 - 8 b o n d i s s i t t i n g a t a c e n t e r o f i n v e r s i o n . F o r a n u n b r a n c h e d p o l y s u l fi d e s p e c i e s o f 1 1 a t o m s , o n e m a y e x p e c t ( 3 n - 3 ) v i b r a t i o n a l f u n d a m e n t a l s , w i t h ( n — l ) s k e l e t a l s t r e t c h i n g m o d e s , ( n - 3 ) s k e l e t a l t o r s i o n a l m o d e s , a n d ( n — 2 ) s k e l e t a l b e n d i n g m o d e s . T a b l e 5 - 2 1 . I n f r a r e d a n d R a m a n F r e q u e n c i e s ( c m ' l ) o f K 2 8 n 2 8 8 , K 2 8 0 2 8 5 , C 8 2 8 n 2 8 6 a n d C 8 2 8 n S 1 4 . K z s n z s g a ) K 2 5 0 2 5 5 ( I V ) C S z S fl z S d V ) C 8 2 8 n 8 1 4 ( V I ) I R R a m a n I R R a m a n I R R a m a n I R M o d e 4 8 5 4 8 3 4 9 0 4 9 0 ” ( S - S ) 4 7 1 4 6 9 4 4 1 3 6 3 3 5 3 3 6 7 3 6 0 3 8 6 ” ( S H ' S ) S y m 3 7 9 3 4 3 3 4 6 3 8 2 3 6 2 3 3 8 3 3 4 3 3 4 3 3 2 3 2 7 ” ( S n - S ) a s y m 3 2 0 2 9 8 2 7 4 3 0 6 2 9 8 2 8 8 d e f o r m a t i o n 2 7 7 2 7 0 2 6 4 2 7 7 a n d 2 6 2 t o r s i o n a l 2 3 6 2 2 4 2 1 8 2 3 9 2 2 6 m o d e s 2 0 1 1 9 5 1 8 6 2 0 2 1 6 0 1 5 6 1 5 8 1 7 6 1 4 9 1 5 0 3 0 2 5 1 4 . 5 n m E X C I T A T I O N C s . , S n , S 6 g s ) - I : ( D 2 I . I . I . — E z Z Q 3 < K 2 S n , S 8 a : A I I 1 f T I I I 3 6 0 3 8 0 4 0 0 4 2 0 4 6 0 4 6 0 4 8 0 5 0 0 5 2 0 W A V E N U M B E R S F i g u r e 5 - 1 0 : ( A ) R a m a n s p e c t r u m o f K 2 8 n 2 8 3 ( B ) R a m a n s p e c t r u m o f C 8 2 8 n 2 8 6 0 0 4 0 5 S 3 R E . 5 8 2 n 8 2 B K M f 0 0 U 3 N E o m u r t V c 0 p A e 5 s 2 W ) t h g i r ( n a m a R d n a ) t f e l ( d 0 0 2 0 5 1 0 S 0 2 R E e B a r 0 5 2 M f r U I n N E 0 0 V 3 : 1 1 A - W 5 e 0 r 5 u 3 g i F B O N V 1 1 I I N S N V H J . % L 9 6 - A 1 I S N 3 1 N I V Z Z - — N V W V H 9 5 1 0 2 8 — — l O Z - — i 7 1 3 — 9 8 1 — # 8 8 — £ 9 8 8 5 8 — — 4 0 0 3 0 3 3 0 4 T h e f r e q u e n c i e s f o r t h e f u n d a m e n t a l s f a l l i n t h e 4 0 0 - 5 0 0 c m - 1 r a n g e ” . T h e t o r s i o n a l m o d e s a r e e x p e c t e d a t f r e q u e n c i e s b e l o w 1 0 0 c m ' 1 a n d a r e d i f fi c u l t t o s e p a r a t e f r o m l a t t i c e v i b r a t i o n s . T h e r e f o r e , m o r e e x a c t a s s i g n m e n t o f 8 - 8 v i b r a t i o n s w o u l d r e q u i r e c o m p l e t e p o l a r i z a t i o n d a t a f r o m s i n g l e - c r y s t a l s t u d i e s . F i g u r e 5 - 1 1 s h o w s t h e I R a n d R a m a n s p e c t r a o f K 2 8 n 2 8 5 ( I V ) . T h e v i b r a t i o n s a t 3 5 3 a n d 3 4 3 c m ' 1 i n t h e I R , a n d a t 3 6 7 a n d 3 4 6 c m - 1 i n t h e R a m a n s p e c t r a a r e d u e t o v ( S n - S ) s y m . T h e 3 3 4 a n d 3 2 0 c m ' 1 m o d e s ( I R ) a n d 3 3 5 c m “ 1 ( R a m a n ) a r e a s s i g n a b l e t o v ( S n - S ) a s y m . U V I V i s I N e a r - I R R e fl e c t a n c e S p e c t r o s c o p y T h e o p t i c a l p r o p e r t i e s o f K 2 8 n 2 8 8 , 0 r - R b 2 8 n 2 8 3 , B - R b 2 8 n 2 8 3 , K 2 8 n 2 8 5 a n d C 8 2 8 n 2 S 6 w e r e a s s e s s e d b y s t u d y i n g t h e U V / v i s i b l e / n e a r — I R r e fl e c t a n c e s p e c t r a o f t h e m a t e r i a l s . T h e s p e c t r a c o n fi r m t h e s e m i c o n d u c t o r n a t u r e b y r e v e a l i n g t h e p r e s e n c e o f o p t i c a l g a p s a s s h o w n i n F i g u r e s 5 — 1 2 a n d 5 - 1 3 . T h e s p e c t r a o f a l l c o m p o u n d s c l e a r l y e x h i b i t s t e e p a b s o r p t i o n e d g e s f r o m w h i c h t h e b a n d - g a p c a n b e a s s e s s e d a t a n a v e r a g e o f 2 . 1 5 e V f o r ( I ) ~ ( I I I ) a n d 2 . 3 6 e V f o r ( I V ) , a n d 2 . 4 4 e V f o r ( V ) . T h e s e t r a n s i t i o n s a r e p r o b a b l y c h a r g e t r a n s f e r i n c h a r a c t e r f r o m t h e p r i m a r i l y S - b a s e d v a l e n c e b a n d t o t h e p r i m a r i l y S n - b a s e d c o n d u c t i o n b a n d . O t h e r t r a n s i t i o n s o c c u r a t h i g h e r e n e r g i e s , a n d t h e y a r e i n d i c a t e d i n t h e s p e c t r a i n F i g u r e 5 - 1 2 a n d 1 3 . T h e s m a l l e r b a n d g a p s o f K 2 8 n 2 8 3 , 0 t - R b 2 8 n 2 8 3 , fi - R b 2 8 n 2 8 3 c o m p a r e d t o t h o s e o f K 2 8 n 2 8 5 a n d C 8 2 S n 2 8 6 a r e c o n s i s t e n t w i t h t h e r e s p e c t i v e o r a n g e a n d y e l l o w c o l o r s o f t h e t w o g r o u p s . B y c o m p a r i s o n , t h e c o r r e s p o n d i n g b a n d g a p o f S n 8 2 i s 2 . 1 6 e V . 3 0 5 1 K 2 $ n 2 $ 3 2 . 4 4 a / s 1 i 1 . 2 I I I 2 . 0 0 e v O - O 2 4 6 E n e r g y ( e v ) 3 4 1 1 4 1 1 3 2 5 1 1 2 5 8 [ I , I a / s ' 1 . 5 4 | . ‘ I 2 . 2 2 e v I 0 0 2 4 6 E n e r g y ( e v ) 6 1 B - s z S n z S ; 4 . I a / s ’ 3 I 0 - 1 J 1 2 . 1 4 ‘ e v f 4 ‘ O 2 4 6 E n e r g y ( e v ) F i g u r e 5 - 1 2 : O p t i c a l a b s o r p t i o n s p e c t r a o f K 2 8 n 2 8 8 , a — R b 2 8 n 2 8 8 a n d B - R b 2 8 n 2 8 3 . K 2 3 n 2 5 C S z S n 2 . ‘ 4 5 ’ - 2 8 2 6 6 0 1 / 8 3 0 9 6 s 3 0 a / I - . 1 4 0 1 . 0 2 . 3 6 e v E n e r g y . 4 e ( v ) . ( v B ) 4 I / n g 4 e . ) - I I . I . 1 . 6 . 6 3 0 6 E n e r g y ( e v ) F i g u r e 5 - 1 3 : O p t i c a l a b s o r p t i o n s p e c t r a o f K 2 8 n 2 8 5 a n d C 8 2 S n 2 8 6 . 1 ) 2 ) 3 ) 4 ) 5 ) 6 ) 7 ) 8 ) 9 ) 3 0 7 L i s t o f R e f e r e n c e s S u n s h i n e , 8 . A . ; K a n g , D . ; I b e r s , J . A . J . A m . C h e m . S o c . 1 9 8 7 , 1 0 2 , 6 2 0 2 - 6 2 0 4 . S u n s h i n e , S . A . ; K a n g , D . ; I b e r s , J . A . M a t . R e s . S o c . S y m p . P r o c . 1 9 8 7 , 9 _ 7 , 3 9 1 - 3 9 6 . K a n a t z i d i s , M . G . C h e m . M a t e r . 1 9 9 0 , 2 , 3 5 3 - 3 6 3 . K a n a t z i d i s , M . G . ; P a r k , Y . J . A m . C h e m . S o c . 1 9 8 9 , 1 1 _ 1 , 3 7 6 7 - 3 7 6 9 . P a r k , Y . ; K a n a t z i d i s , M . G . m a n u s c r i p t i n p r e p a r a t i o n . K a n a t z i d i s , M . G . ; P a r k , Y . A n g e w C h e m . I n t . E d . E n g l . 1 9 9 0 , 2 9 , 9 1 4 - 9 1 5 . K a n a t z i d i s , M . G . ; P a r k , Y . C h e m . M a t e r . 1 9 9 0 , 2 , 9 9 - 1 0 1 . P a r k , Y . ; D e G r o o t , D . C . ; S c h i n d l e r , J . ; K a n n e w u r f , C . R . ; K a n a t z i d i s , M . G . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 1 , 3 0 , 1 3 2 5 - 1 3 2 8 . M i i l l e r , A . C h i m i a 1 9 8 5 , 3 2 , 2 5 - 2 7 . 1 0 ) 1 1 ) 1 2 ) 1 3 ) 1 4 ) 1 5 ) 1 6 ) 1 7 ) 1 8 ) 3 0 8 S c h i w y , W . ; P o h l , S . ; K r e b s , B . Z A n o r g . A l l g . C h e m . 1 9 7 3 , 1 0 ; , 7 7 - 8 6 . K r e b s , B . ; P o h l , S . S c h i w y , W . Z A n o r g . A l l g . C h e m . 1 9 7 2 , 3 2 3 , 2 4 1 - 2 5 2 . K r e b s , B . ; S c h i w y , W . Z A n o r g . A l l g . C h e m . 1 9 7 3 , 3 2 3 , 6 3 - 7 1 . S c h i w y , W . ; B l u t a u , C h r . ; G i i t h j e , D . ; K r e b s , B . Z A n o r g . A l l g . C h e m , 1 9 7 5 , 4 _ 1 _ 2 _ , 1 - 1 0 . J u m a s , J . - C . ; P h i l i p p o t , B . ; M a u r i n , M . J . S o l i d S t a t e C h e m . 1 9 7 5 , 1 4 1 , 1 5 2 - 1 5 9 . M a r k , W . ; L i n d q v i s t , 0 . ; J u m a s , J . - C . P h i l i p p o t , E . A c t a . C r y s t a l l o g r . 1 9 7 4 , B _ 3 0 , 2 6 2 0 - 2 6 2 8 . S h e l d r i c k , W . S . Z A n o r g , A l l g . C h e m . 1 9 8 8 , 5 _ 6 _ 2 _ , 2 3 - 3 0 . K l e m m , W ; S o d o m a n n , H . ; L a n g m e s s e r , P . Z A n o r g . A l l g . C h e m . 1 9 3 9 , A , 2 8 1 - 3 0 4 . ( a ) K u b e l k a , P . ; M u n k , F . Z T e c h . P h y s . 1 9 3 1 , Q , 5 3 9 . ( b ) K u b e l k a , P . J . O p t . S o c . A m . 1 9 4 8 , _ 3 _ 8 , 4 4 8 . ( c ) W e n d l a n d t , W . W . ; H e c h t , H . G . " R e fl e c t a n c e S p e c t r o s c o p y " , I n t e r s c i e n c e P u b l i s h e r s , 1 9 6 6 . ( d ) K o t i i m , G . " R e fl e c t a n c e S p e c t r o s c o p y " , S p r i n g e r V e r l a g , 1 9 ) 2 0 ) 2 1 ) 2 2 ) 2 3 ) 3 0 9 N e w Y o r k , 1 9 6 9 . ( e ) T a n d o n , S . P . ; G u p t a , J . P . P h y s . S t a t . S o l i d i 1 9 7 0 , Q , 3 6 3 - 3 6 7 . S E M / E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s e s o n t h e w h i t e c r y s t a l s o b t a i n e d f r o m t h e r e a c t i o n o f S n / A z S / S i n d i c a t e d t h e p r e s e n c e o f A , S n , S a p p r o x i m a t e l y i n t h e s t o i c h i o m e t r y A 4 S n 2 8 6 1 1 ( A = K , R b a n d C s ) S m i t h , D . K . ; N i c h o l s , M . C . ; Z o l e n s k y , M . J E . P O W D I O : " A F O R T R A N I V P r o g r a m f o r C a l c u l a t i n g X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s " v e r s i o n 1 0 . P e n n s y l v a n i a S t a t e U n i v e r s i t y . M I T H R I L : a n I n t e g r a t e d D i r e c t M e t h o d s C o m p u t e r P o r g r a m . G i l m o r e , C . J . J . A p p l . C r y s t a l l o g r . 1 9 8 4 , fl , 4 2 4 6 . D I R D I F : B e u r s k e n s , P . T . ; D I R D I F : D i r e c t M e t h o d f o r D i f f e r e n c e S t r u c t u r e s : a n A u t o m a t i c P r o c e d u r e f o r P h a s e E x t e n s i o n a n d R e fi n e m e n t o f D i f f e r e n c e S t r u c t u r e F a c t o r s . T e c h n i c a l R e p o r t 1 9 8 4 / 1 C r y s t a l l o g r a p h y L a b o r a r y , T o e r n o o i v e l d , 6 5 2 5 E d , N i j m e g e n , N e t h e r l a n d s . D I F A B S : W a l k e r , N . ; S t u a r t , D . D I F A B S : A n E m p i r i c a l M e t h o d f o r C o r r e c t i n g D i f f r a c t i o n D a t a f o r A b s o r p t i o n E f f e c t s . A c t a . C r y s t a l l o g r . 1 9 8 3 , A 3 9 , 1 5 8 - 1 6 6 . 2 4 ) 2 5 ) 2 6 ) 2 7 ) 2 8 ) 2 9 ) 3 0 ) 3 1 ) 3 2 ) 3 3 ) 3 1 0 F e n z , B . A . T h e E n r a f - N o n i u s C A D 4 S D P S y s t e m . C o m p u t i n g i n C r y s t a l l o g r a p h y : D e l f t U n i v e r s i t y P r e s s : D e l f t , H o l l a n d , 1 9 7 8 , p p 6 4 - 7 1 . S h e l d r i c k , G . M . I n C r y s t a l l o g r a p h i c C o m p u t i n g 3 ; S h e l d r i c k , G . M . K r u g e r , C . ; G o d d a r d , R . , E d s . ; O x f o r d U n i v e r s i t y P r e s s : O x f o r d , U . K . , 1 9 8 5 ; p p 1 7 5 - 1 8 9 . T E X S A N : T E X R A Y S t r u c t u r e A n a l y s i s P a c k a g e , M o l e c u l a r S t r u c t u r e C o r p o r a t i o n , T h e W o o d l a n d s , T X . ( 1 9 8 5 ) . S h e l d r i c k , W . S . Z N a t u r f o r s c h . 1 9 8 8 , m , 2 4 9 - 2 5 2 . K l e p p , K . O . ; F a b i a n , F . Z N a t u r f o r s c h . 1 9 9 2 , 4 2 b , 4 0 6 — 4 1 0 . K l e p p , K . 0 . Z N a t u r f o r s c h . 1 9 9 2 , 4 2 1 2 , 1 9 7 - 2 0 0 . K a n g , D . ; I b e r s , J . A . I n o r g . C h e m . 1 9 8 8 , 2 1 , 5 4 9 - 5 5 1 . A b r a h a m s , S . C . ; B e r n s t e i n , J . L . A c t a C r y s t a l l o g r . 1 9 6 9 , 2 5 1 1 , 2 3 6 5 - 2 3 7 0 . E u l e n b e r g e r , G . Z N a t u r f o r s c h . 1 9 8 1 , 3 _ 6 § , 6 8 7 - 6 9 0 . S h e l d r i c k , W . S . ; B r a u n b e c k , H . - G . Z N a t u r f o r s c h . 1 9 9 2 , fi g , 1 5 1 - 1 5 3 . 3 4 ) 3 5 ) 3 6 ) 3 7 ) 3 8 ) 3 9 ) 4 0 ) 4 1 ) 3 1 1 B a n d a , R . M . ; C u s i c k , J . ; S c u d d e r , M . L . ; C r a i g , D . C . ; D a n c e , 1 . G . P o l y h e d r o n 1 9 8 9 , _ 8 _ , 1 9 9 9 - 2 0 0 1 . D h i n g r a , S . ; H u a n g , S . - P . ; K a n a t z i d i s , M . G . P o l y h e d r o n 1 9 9 0 , _ 1 _ l , 1 3 8 9 - 1 3 9 5 . W i c k e n d e n , A . E . ; K r a u s e , R . A . I n o r g . C h e m . 1 9 6 9 , _ 8 _ , N o . 4 , 7 7 9 - 7 8 3 . S p a n g e n b e r g , M . ; B r o n g e r , W . Z N a t u r f o r s c h . 1 9 7 8 , 3 2 1 1 , 4 8 2 - 4 8 4 . M i i l l e r , A . ; S c h i m a n s k i , J . ; S c h i m a n s k i , U . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 4 , 2 3 , 1 5 9 - 1 6 0 . E i s e n m a n n , H . ; S c h w e r e r , H . ; S c h é i f e r , H . M a t . R e s . B u l l . 1 9 8 3 , 1 8 , 3 8 3 - 3 8 7 . B r i n k m a n n , C . ; E i s e n m a n n , H . ; S c h a f e r , H . M a t . R e s . B u l l . 1 9 8 5 , E , 2 9 9 - 3 0 7 . A g a f o n o v , V . ; L e g e n d r e , B . ; R o d i e r , N . ; C e n s e , J . M . D i c h i , B . ; K r a , G . A c t a C r y s t a l l o g r . 1 9 9 1 , Q fl , 8 5 0 - 8 5 2 . 3 1 2 4 2 ) ( a ) M a r s h , R . E . J . S o l i d S t a t e . C h e m . 1 9 9 0 , 8 _ 7 , 4 6 7 - 4 6 9 . ( b ) T o u r é , A . A . ; K r a , G . ; E h o l i é , R . O l i v i e r - F o u r c a d e , J . ; J u m a s , J . - C . ; M a u r i n , M . J . S o l i d S t a t e C h e m . 1 9 9 0 , _ 8 _ 4 , 2 4 5 - 2 5 2 . C H A P T E R 6 T h e Q u a t e r n a r y s z C q u n S 4 , A 2 C u 2 S n 2 8 6 ( A = N a , K , R b , C s ) , A 2 C u 2 8 n 2 8 e 6 ( A = K , R b ) , K 2 A u 2 S n S 4 a n d K 2 A u 2 8 n 2 5 6 . S y n t h e s e s , S t r u c t u r e s a n d P r o p e r t i e s o f N e w S o l i d S t a t e C h a l c o g e n i d e s B a s e d o n T e t r a h e d r a l [ S n S 4 ] 4 ' U n i t s . 1 . I n t r o d u c t i o n C h a l c o g e n i d e s o f t h e t r a n s i t i o n a n d m a i n g r o u p m e t a l s e x h i b i t u s e f u l p h y s i c a l a n d c h e m i c a l p r o p e r t i e s w h i c h a r e p r o m i s i n g f o r a p p l i c a t i o n s i n n o n l i n e a r o p t i c s l , r e c h a r g e a b l e b a t t e r y c a t h o d e s Z , o p t i c a l s t o r a g e 3 , r a d i a t i o n d e t e c t i o n 4 , s o l a r e n e r g y c o n v e r s i o n 5 a n d c a t a l y s i s 6 . B i n a r y a n d t e r n a r y c h a l c o g e n i d e s h a v e b e e n e x t e n s i v e l y i n v e s t i g a t e d , b u t r e l a t i v e l y l i t t l e i s k n o w n a b o u t q u a t e r n a r y c h a l c o g e n i d e s w h i c h m a y a l s o e x h i b i t i n t e r e s t i n g p r o p e r t i e s . T e t r a t h i o m e t a l a t e s , e s p e c i a l l y [ M o S 4 ] 2 ' a n d [ W S 4 ] 2 ' , h a v e b e e n e x t e n s i v e l y u s e d a s b u i l d i n g b l o c k s t o s y n t h e s i z e h e t e r o m e t a l l i c d i s c r e t e m o l e c u l a r s u l fi d o - c o m p l e x e s b y s e l f - a s s e m b l y r e a c t i o n s i n s o l u t i o n . 7 A f e w s o l i d s t a t e e x a m p l e s h a v e b e e n r e p o r t e d . O n e i n t e r e s t i n g e x a m p l e i s t h e f o r m a t i o n o f ( N H 4 ) C u M o S 4 8 w h i c h c o n t a i n s l i n e a r c h a i n s c o m p o s e d o f [ M 0 8 4 ] 2 - t e t r a h e d r a c h e l a t e d t o C u + i o n s . R e c e n t l y , a t w o - d i m e n s i o n a l h e t e r o m e t a l l i c s u l fi d e , C q u S 4 , w a s r e p o r t e d t o f o r m i n 3 1 3 3 1 4 p o w d e r f o r m b y m i x i n g [ W S 4 ] 2 - a n d C u ” r i n D M F s o l u t i o n . 9 A l t h o u g h t h e s e t e t r a h e d r a l a n i o n s w o r k w e l l a s l i g a n d s i n s o l u t i o n t h e y a r e t h e r m a l l y u n s t a b l e a n d c a n n o t b e u s e d a t h i g h e r t e m p e r a t u r e . O t h e r t e t r a t h i o m e t a l l a t e s , h o w e v e r , a r e c o n s i d e r a b l y m o r e s t a b l e ( e . g . [ S n S 4 ] 4 ' , [ G e S 4 ] 4 ‘ , [ P S 4 ] 3 - ) a n d t h e i r c o o r d i n a t i o n p r o p e r t i e s t o w a r d o t h e r m e t a l i o n s t o f o r m s o l i d s t a t e l a t t i c e s a r e w o r t h y o f i n v e s t i g a t i o n . D u r i n g o u r s t u d i e s o f t e r n a r y a l k a l i m e t a l c o n t a i n i n g t i n ( p o l y ) s u l fi d e s b y u s i n g r e a c t i v e m o l t e n s a l t s a s s o l v e n t s , w e n o t i c e d t h a t [ S n S 4 ] 4 - a n d [ S n 2 S 6 ] 4 ' i o n s a r e t h e b a s i c u n i t s c o m p r i s i n g v a r i o u s a n i o n i c f r a m e w o r k s a n d c a n a c t u a l l y b e i s o l a t e d , a s t h e i r a l k a l i m e t a l s a l t s b y e i t h e r i n c r e a s i n g t h e r e a c t i o n t e m p e r a t u r e s o r a d d i n g m o r e A 2 8 ( A = a l k a l i m e t a l ) i n t h e p o l y s u l fi d e fl u x e s “ ) ? l T h e s e a n i o n s h a v e b e e n w e l l k n o w n s i n c e 1 9 7 1 1 0 3 " j . I f t h e n [ S n S 4 ] 4 ' a n d / o r [ S n 2 S 6 ] 4 " e x i s t o r a r e g e n e r a t e d i n S n - c o n t a i n i n g p o l y s u l fi d e m e l t s , t h e y c o u l d b e u s e d i n r e a c t i o n s w i t h o t h e r m e t a l i o n s t o f o r m n e w h e t e r o m e t a l l i c s u l fi d e s . S o m e e x a m p l e s s h o w i n g t h e p r e s e n c e o f t e t r a h e d r a l [ S n S 4 ] 4 - f r a g m e n t s i n s o l i d s t a t e q u a t e r n a r y c h a l c o g e n i d e s s y n t h e s i z e d a t h i g h t e m p e r a t u r e s h a v e b e e n r e p o r t e d - 1 1 , 1 2 T h e y i n c l u d e B a A n g n S 4 , B a A u 2 8 n S 4 , B a C u 2 S n S 4 , S r C q u n S 4 , B a H g S n S 4 , B a C d S n S 4 , K G a S n S 4 a n d C u z B I I S n S 4 ( B H = M n , F e , C o , N i , Z n , C d o r H g ) . H e r e w e a t t e m p t e d t o e x p l o i t t h r e e p r o p e r t i e s a s s o c i a t e d w i t h S n - c o n t a i n i n g p o l y s u l fi d e f l u x e s : a ) t h e r e l a t i v e l y l o w t e m p e r a t u r e a c c e s s i b l e f o r s y n t h e s i s , T < 5 0 0 ° C , a n d b ) t h e a p p a r e n t a b i l i t y o f t h e s e fl u x e s t o s u p p l y t h e [ S n S 4 ] 4 ' a n i o n f o r r e a c t i o n c h e m i s t r y a n d c ) t h e a n t i c i p a t e d e x c e l l e n t c o o r d i n a t i n g a b i l i t y o f t h e [ S n S 4 ] 4 ' a n i o n t o w a r d s t r a n s i t i o n m e t a l s i n a s i m i l a r f a s h i o n o b s e r v e d f o r t h e [ M o S 4 ] 2 ' u n i t . 7 I f t h e m e t a l s , t o c o o r d i n a t e t o [ S n S 4 ] 4 ‘ , a r e c h o s e n t o p r e f e r t e t r a h e d r a l c o o r d i n a t i o n , t h e p r o d u c t s a r e e x p e c t e d t o b e b a s e d o n t e t r a h e d r a l s u b s t r u c t u r e s . E x a m p l e s o f s u c h m e t a l s 3 1 5 w o u l d b e C u “ , Z n 2 + a n d C d 2 + e t c . I n d e e d , q u a t e r n a r y c h a l c o g e n i d e s o f t h e C u z B H S n S 4 t y p e ( B H = M n , F e , C o , N i , Z n , C d o r H g ) 1 2 b a d o p t s t r u c t u r e s d e r i v e d f r o m s i m p l e s p h a l e r i t e s o r w u r t z i t e s . I f , o n t h e o t h e r h a n d , m e t a l s w i t h o t h e r c o o r d i n a t i o n p r e f e r e n c e s a r e c h o s e n , s u c h a s A u ” r ( l i n e a r ) o r P t 2 + ( s q u a r e - p l a n a r ) , a d e p a r t u r e f r o m t h e o v e r a l l t e t r a h e d r a l m o t i f i s e x p e c t e d . B y u s i n g C u ‘ “ a n d A u + w e e x p l o r e d t h e p a r t i a l c h a r g e " n e u t r a l i z a t i o n " o f t h e [ S n S 4 ] 4 ' a n i o n i n A z s x ( A = a l k a l i m e t a l ) f l u x a s t h e r e a c t i o n m e d i u m . T o a v o i d a n t i c i p a t e d c r y s t a l l o g r a p h i c d i f fi c u l t i e s i n d i s t i n g u i s h i n g S n f r o m A g t h e l a t t e r e l e m e n t w a s n o t c h o s e n f o r t h i s i n v e s t i g a t i o n . H e r e w e r e p o r t o n s e v e r a l n e w q u a t e r n a r y c o m p o u n d s : s z C q u n S 4 , A 2 C u 2 8 n 2 8 6 ( A = N a , K , R b , C s ) , A 2 C u 2 8 n 2 8 e 6 , ( A = K , R b ) , K 2 A u 2 8 n S 4 a n d K 2 A u 2 8 n 2 8 6 o b t a i n e d f r o m t h e a b o v e m e t h o d o l o g y . 2 . E x p e r i m e n t a l S e c t i o n 2 . 1 R e a g e n t s S n m e t a l , ~ 3 2 5 m e s h , 9 9 . 8 % . p u r i t y , C E R A C I n c . , M i l w a u k e e , W I . C u m e t a l , e l e c t r o n i c d u s t , p u r i fi e d , F i s h e r , S c i e n t i fi c C o . , F a i r L a w n , N J . A u m e t a l , ~ 3 2 5 m e s h , 9 9 . 9 5 % p u r i t y , C E R A C I n c . , M i l w a u k e e , W I . S u b l i m e d s u l f u r w a s p u r c h a s e d f r o m J . T . B a k e r C h e m i c a l C o . 9 9 . 5 ~ 1 0 0 . 5 % . K 2 S a n d R b 2 S s t a r t i n g m a t e r i a l s w e r e p r e p a r e d a s d e s c r i b e d e l s e w h e r e ” . A l l r e a g e n t s w e r e s t o r e d u n d e r N 2 i n a g l o v e b o x . 2 . 2 . P h y s i c a l M e a s u r e m e n t s : T h e i n s t r u m e n t s a n d e x p e r i m e n t a l s e t u p s f o r I n f r a r e d s p e c t r o s c o p y , 3 1 6 S E M / E D S q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s a n d U V / v i s / n e a r — I R o p t i c a l d i f f u s e s p e c t r o s c o p y a r e t h e s a m e a s t h o s e i n p r e v i o u s c h a p t e r s . 2 . 3 . S y n t h e s i s C h e m i c a l s w e r e w e i g h e d a n d l o a d e d i n P y r e x t u b e s u n d e r a d r y n i t r o g e n a t m o s p h e r e i n a V a c u u m A t m o s p h e r e D r i - L a b g l o v e b o x . R b 2 C u 2 S n S 4 ( I ) A m i x t u r e o f S n p o w d e r ( 0 . 0 3 9 g , 0 . 3 3 m m o l ) , C u p o w d e r ( 0 . 0 8 4 g , 1 . 3 2 m m o l ) , R b 2 S ( 0 . 2 6 7 g , 1 . 3 2 m m o l ) a n d S ( 0 . 1 7 1 g , 5 . 2 8 m m o l ) i n t h e r a t i o o f 1 : 4 : 4 : 1 6 w a s l o a d e d i n t o a n ~ 5 m l P y r e x t u b e i n a N 2 g l o v e b o x . T h e t u b e w a s e v a c u a t e d a n d s e a l e d a t a p r e s s u r e o f ~ 1 0 “ 3 t o r r . T h e m i x t u r e w a s h e a t e d s l o w l y f r o m r o o m t e m p e r a t u r e t o 4 0 0 ° C i n 1 2 h o u r s i n a f u r n a c e p r o g r a m m e d b y a p e r s o n a l c o m p u t e r . T h e t e m p e r a t u r e w a s k e p t a t 4 0 0 0 C f o r 4 d a y s , a n d t h e n w a s c o o l e d s l o w l y t o r o o m t e m p e r a t u r e a t 4 0 C / h o u r . O r a n g e p l a t e - l i k e c r y s t a l s w e r e f o r m e d i n ~ 7 1 % y i e l d ( b a s e d o n S n ) . T h e p r o d u c t w a s w a s h e d w i t h d e g a s s e d D M F t o r e m o v e e x c e s s R b 2 S x fl u x b y u s i n g a s t a n d a r d S c h l e n k t e c h n i q u e , a n d w a s d r i e d w i t h a c e t o n e a n d e t h e r . T h e o r a n g e c r y s t a l s a r e i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s , b u t d e c o m p o s e s l o w l y i n a i r . S e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s e s p e r f o r m e d o n a s c a n n i n g e l e c t r o n m i c r o s c o p e ( S E M ) b y u s i n g a n e n e r g y d i s p e r s i v e ( E D S ) m i c r o s c o p i c t e c h n i q u e i n d i c a t e d R b 2 , 2 C u 3 , 4 S n 1 , ( ) S 4 , 2 . R b 2 C u 2 8 n 2 S 6 ( I I ) T h e p r o c e d u r e f o r p r e p a r a t i o n a n d i s o l a t i o n o f ( I I ) i s t h e s a m e a s d e s c r i b e d a b o v e e x c e p t t h a t m o l a r r a t i o s o f 1 : 1 ~ 2 : 4 : 1 6 ( S n : C u : R b 2 S : S ) w e r e u s e d . B l a c k c r y s t a l s o f ( I I ) w e r e o b t a i n e d 3 1 7 i n 6 2 % y i e l d ( b a s e d o n S n ) . T h e s e c r y s t a l s e x h i b i t m i c a - l i k e t h i n l a y e r e d m o r p h o l o g y a n d a r e e a s i l y s e p a r a t e d i n t o v e r y t h i n s h e e t s . T h e y a r e s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . S e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s p e r f o r m e d o n S E M I E D S i n d i c a t e d R b 1 . 0 C u 1 . 5 S n 1 . O S 3 . 1 . O t h e r X - r a y i s o m o r p h o u s A 2 C u 2 S n 2 Q 6 ( A = N a , K , R b , C s ; Q = S , S e ) p h a s e s p r e p a r e d b y a s i m i l a r p r o c e d u r e a r e : ( a ) K 2 C u 2 S n 2 S 6 ( b ) K 2 C u 2 S n 2 S e 6 ( c ) R b 2 C u 2 S n 2 S e 6 ( d ) N a 2 C u 2 S n 2 S 6 ( e ) C s 2 C u 2 S n 2 S 6 . A l l o f t h e m a r e b l a c k a n d e x h i b i t t h i n - l a y e r m o r p h o l o g y . T h e r e a c t i o n s f o r ( a ) ~ ( c ) g a v e g o o d y i e l d s ( > 7 0 % ) . K + a n d R b + s e e m t o b e p r e f e r r e d f o r t h e f o r m a t i o n o f A 2 C u 2 S n 2 0 6 p h a s e s . ( ( 1 ) a n d ( e ) g a v e l o w y i e l d s a n d w e r e p r e s e n t w i t h o t h e r b i n a r y a n d t e r n a r y p r o d u c t s . K 2 A u 2 8 n S 4 ( I I I ) A m i x t u r e o f S n ( 0 . 0 1 5 g , 0 . 1 3 m m o l ) , A u ( 0 . 0 5 0 g , 0 . 2 5 m m o l ) , K 2 S ( 0 . 0 5 5 g , 0 . 5 0 m m o l ) a n d S ( 0 . 0 6 4 g , 2 . 0 m m o l ) i n a r a t i o o f 1 : 2 : 4 z l 6 w a s l o a d e d i n t o a n ~ 5 m l P y r e x t u b e i n a d r y N 2 g l o v e b o x . T h e t u b e w a s e v a c u a t e d a n d fl a m e s e a l e d a t a p r e s s u r e o f ~ 1 0 ‘ 3 t o r r . T h e m i x t u r e w a s h e a t e d s l o w l y f r o m r o o m t e m p e r a t u r e t o 3 5 0 ° C i n 1 2 h o u r s i n a f u r n a c e p r o g r a m m e d b y a p e r s o n a l c o m p u t e r . T h e t e m p e r a t u r e w a s k e p t a t 3 5 0 ° C f o r 4 d a y s , a n d t h e n w a s c o o l e d s l o w l y t o r o o m t e m p e r a t u r e a t 4 ° C / h o u r . Y e l l o w l o n g p a r a l l e l e p i p e d c r y s t a l s o f ( I I ) w e r e o b t a i n e d b y r e m o v i n g t h e e x c e s s K 2 S x fl u x w i t h d e g a s s e d D M F u n d e r N 2 a t m o s p h e r e . T h e fi n a l p r o d u c t w a s w a s h e d a n d d r i e d w i t h a c e t o n e a n d e t h e r . Y i e l d : 6 6 % ( b a s e d o n S n ) . T h e y e l l o w c r y s t a l s a r e s t a b l e i n a i r b u t b r e a k a p a r t i n t o fi b e r s i n w a t e r a n d d i s s o l v e s l o w l y t o f o r m a l i g h t y e l l o w s o l u t i o n . T h e c r y s t a l s s h o w a fi b r o u s f e a t u r e w h e n c r u s h e d a n d a r e h a r d t o g r i n d . S E M I E D S i n d i c a t e d K 1 , 1 A u 1 , 5 S n 1 . o S 3 , 4 . 3 1 8 K 2 A u 2 8 n 2 5 6 ( I V ) T h e p r o c e d u r e f o r p r e p a r a t i o n a n d i s o l a t i o n w a s t h e s a m e a s t h a t o f ( I I I ) e x c e p t t h a t a m o l a r r a t i o o f 1 : 1 . 5 : 2 : 1 6 ( S n : A u : K 2 S : S ) w a s u s e d . O r a n g e c h u n k y c r y s t a l s w e r e o b t a i n e d i n 5 3 % y i e l d ( b a s e d o n S n ) . T h e c r y s t a l s a r e s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . T h e y a l s o s p l i t i n t o fi b e r s w h e n c r u s h e d a n d a r e v e r y h a r d t o g r i n d i n t o f i n e p o w d e r . S e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s p e r f o r m e d o n S E M I E D S i n d i c a t e d K 0 , 9 A u 1 , 2 S n 1 , 0 S 4 , 0 . 2 . 4 . X - R a y C r y s t a l l o g r a p h y X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e u s e d f o r t h e p u r p o s e o f p h a s e c h a r a c t e r i z a t i o n a n d i d e n t i fi c a t i o n . T h e X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e r e c o r d e d w i t h a P h i l l i p s X R D - 3 0 0 0 c o n t r o l l e d b y P D P 1 1 c o m p u t e r a n d o p e r a t i n g a t 4 0 k V / 3 5 m A . G r a p h i t e m o n o c h r o m a t e d C u r a d i a t i o n w a s u s e d . I n o r d e r t o e n s u r e t h e h o m o g e n e i t y , d - s p a c i n g s o b t a i n e d f r o m X - r a y p o w d e r d i f f r a c t i o n ( X R D ) m e a s u r e m e n t s o f t h e p r o d u c t s w e r e c o m p a r e d w i t h , a n d f o u n d t o b e i d e n t i c a l , w i t h t h o s e c a l c u l a t e d f r o m t h e a t o m i c c o o r d i n a t e s d e t e r m i n e d f r o m t h e s i n g l e c r y s t a l d a t a . T h e c a l c u l a t i o n o f d - s p a c i n g s w a s p e r f o r m e d b y u s i n g t h e P O W D 1 0 1 4 p r o g r a m . T h e c o m p a r i s o n t a b l e s b e t w e e n t h e c a l c u l a t e d a n d o b s e r v e d d - s p a c i n g s f o r t h e s e c o m p o u n d s a r e s h o w n i n T a b l e s 6 - 1 ~ 6 — 4 . T h e s i n g l e c r y s t a l X - r a y d i f f r a c t i o n d a t a o f ( I ) ~ ( I V ) w e r e c o l l e c t e d o n a R i g a k u A F C 6 S f o u r - c i r c l e d i f f r a c t o m e t e r b y u s i n g 0 3 - 2 0 s c a n m o d e . G r a p h i t e m o n o c h r o m a t e d M o K a t r a d i a t i o n w a s u s e d a n d a l l d a t a s e t s w e r e c o l l e c t e d a t r o o m t e m p e r a t u r e . T h e c r y s t a l s w e r e m o u n t e d a t t h e e n d o f g l a s s fi b e r s . T h e s t a b i l i t y o f t h e e x p e r i m e n t a l s e t u p a n d c r y s t a l i n t e g r i t y 3 1 9 w e r e m o n i t o r e d b y m e a s u r i n g t h r e e s t a n d a r d r e fl e c t i o n s p e r i o d i c a l l y e v e r y 1 5 0 r e fl e c t i o n s . N o s i g n i f i c a n t d e c a y w a s o b s e r v e d d u r i n g t h e d a t a c o l l e c t i o n s . ( 1 1 ) t e n d s t o g r o w t w i n n e d c r y s t a l s . A l a r g e n u m b e r o f c r y s t a l s h a d t o b e s c r e e n e d b e f o r e a s a t i s f a c t o r y s i n g l e c r y s t a l w a s f o u n d . I n o r d e r t o o b t a i n b e t t e r r e fi n e m e n t , F r i e d e l p a i r s o f ( I I ) w e r e c o l l e c t e d a n d t h e d a t a w e r e a v e r a g e d . T h e s t r u c t u r e s w e r e s o l v e d w i t h d i r e c t m e t h o d s ( S H E L X S - 8 6 ) 1 5 , a n d w e r e r e fi n e d b y a f u l l - m a t r i x l e a s t - s q u a r e t e c h n i q u e a v a i l a b l e i n t h e T E X S A N 1 6 p r o g r a m s r u n n i n g o n a V A X s t a t i o n 3 1 0 0 / 7 6 c o m p u t e r . A n e m p i r i c a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d t o a l l t h e d a t a ( b a s e d o n 1 p s c a n s ) . A n a d d i t i o n a l a b s o r p t i o n c o r r e c t i o n b y f o l l o w i n g t h e D I F A B S 1 7 p r o c e d u r e w a s a p p l i e d t o i s o t r o p i c a l l y r e fi n e d d a t a . T h e c r y s t a l l o g r a p h i c d a t a a n d d e t a i l e d i n f o r m a t i o n o f s t r u c t u r e s o l u t i o n a n d r e fi n e m e n t a r e l i s t e d i n T a b l e 6 - 5 . A t o m i c c o o r d i n a t e s a n d e q u i v a l e n t i s o t r o p i c t h e r m a l p a r a m e t e r s a r e g i v e n i n T a b l e s 6 - 6 ~ 6 - 9 r e s p e c t i v e l y . 3 2 0 T a b l e 6 — 1 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r R b 2 C u 2 S n S 4 . h k 1 d c a l c . ( A ) d o b s . ( A ) S M o b s . 0 0 2 6 . 8 5 0 0 6 . 8 8 7 7 5 9 . 7 1 0 0 4 3 . 4 2 5 0 3 . 4 6 5 6 1 0 0 . 0 0 1 3 0 3 . 1 3 4 8 3 . 1 5 8 7 1 6 . 1 2 1 2 3 2 . 9 9 6 7 3 . 0 2 1 3 7 4 . 5 9 0 4 2 2 . 6 3 4 9 2 . 6 5 5 1 2 0 . 6 6 2 0 2 2 . 5 6 3 2 2 . 5 8 0 1 3 1 . 4 3 1 3 4 2 . 3 1 2 5 2 . 2 7 0 7 2 3 . 5 1 1 2 5 2 . 2 5 5 3 2 4 0 1 . 9 8 5 7 2 . 0 0 1 2 1 9 . 9 8 0 4 6 1 . 7 8 3 1 1 . 7 9 4 0 2 0 . 6 6 2 0 6 1 . 7 6 0 4 1 . 7 6 8 7 1 9 . 9 8 2 4 4 1 . 7 1 7 8 1 . 7 2 2 3 2 6 . 5 4 0 0 8 1 . 7 1 2 5 3 2 1 T a b l e 6 — 2 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r s z C q u n 2 8 6 . h k 1 d c a l c . d o b s . H o b s . 0 0 2 1 0 . 0 5 5 8 1 0 . 1 0 9 3 1 7 . 7 9 0 0 4 5 . 0 2 7 9 5 . 0 4 5 8 5 3 . 2 7 2 2 0 3 . 8 7 8 9 3 . 9 0 0 5 1 1 . 0 1 2 2 ' 1 3 . 8 7 8 8 2 2 1 3 . 7 4 2 4 3 7 6 2 1 8 . 9 1 2 2 ' 2 3 . 7 4 2 0 2 2 2 3 . 5 0 7 4 3 . 5 2 6 3 1 7 . 1 9 2 2 ' 3 3 . 5 0 6 9 0 0 6 3 . 3 5 1 9 3 . 3 6 6 4 2 7 . 1 8 2 2 4 2 . 9 3 7 5 2 . 9 3 9 8 1 0 0 . 0 0 2 2 ' 5 2 . 9 3 7 0 0 4 7 1 . 9 8 8 4 1 . 9 9 0 8 1 7 . 0 0 4 4 ' 1 1 . 9 4 8 5 1 . 9 5 2 8 2 4 . 7 6 4 0 8 1 . 7 3 6 1 1 . 7 4 0 4 3 1 . 8 1 4 0 ' 1 0 1 . 7 3 5 7 0 4 9 1 . 7 3 5 4 6 2 3 1 . 6 2 4 2 1 . 6 2 5 0 1 4 . 0 2 6 2 ' 6 1 . 6 2 3 9 2 6 4 1 . 6 2 3 4 2 6 5 1 . 6 2 3 3 3 2 2 T a b l e 6 - 3 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r K 2 A u 2 S n S 4 . h k 1 d c a l c : . ( A ) d e b s . ( A ) S Z S I o b s . 0 0 1 6 . 7 9 1 6 6 . 8 9 1 7 5 5 . 4 9 1 0 ‘ 1 6 . 1 6 2 6 6 . 2 4 6 3 4 9 . 5 7 1 1 1 4 . 0 9 4 7 4 . 1 3 3 6 2 5 . 0 0 1 2 ' 1 4 . 0 7 4 0 2 1 ‘ 1 3 . 9 8 2 2 2 0 0 3 . 6 6 0 7 3 . 6 9 5 5 6 4 . 9 8 0 2 1 3 . 6 1 1 5 3 . 6 4 2 2 4 6 . 7 4 0 1 ' 2 3 . 1 8 8 3 3 . 2 0 5 7 1 0 0 . 0 0 2 1 ‘ 2 3 . 1 7 4 1 1 2 ' 2 3 . 0 2 0 5 3 . 0 4 3 7 2 7 . 0 8 2 2 ' 2 2 . 8 8 8 6 2 . 9 0 9 2 4 1 . 3 3 0 3 0 2 . 8 8 7 2 2 0 1 2 . 8 3 6 2 2 . 8 5 7 9 3 0 . 3 6 2 3 ‘ 1 2 . 7 4 6 5 2 . 7 6 4 8 2 3 . 9 9 0 3 ' 1 2 . 6 8 0 9 2 . 7 0 1 8 6 3 . 3 5 2 3 0 2 . 6 5 9 3 2 . 6 5 4 0 4 2 . 6 5 0 2 2 2 . 6 4 0 9 2 2 1 2 . 6 3 6 6 3 0 ' 1 2 . 6 0 3 2 2 . 5 9 1 6 2 5 . 0 0 1 ' 2 ' 2 2 . 5 6 7 0 3 1 ' 2 2 . 5 3 4 6 2 . 5 2 3 6 5 5 . 4 9 2 ' 2 ' 1 2 . 5 0 9 9 2 ‘ 2 0 2 . 4 7 3 9 2 . 4 8 1 9 2 8 . 1 5 1 ‘ 3 0 2 . 4 6 0 2 1 2 2 2 . 4 0 9 0 2 . 4 1 4 9 3 2 . 6 5 1 1 ‘ 3 2 . 3 9 9 3 3 3 ‘ 1 2 . 3 2 3 4 2 . 3 3 7 7 2 5 . 0 0 0 3 ‘ 2 2 . 2 2 6 8 2 . 2 1 6 0 2 3 . 0 0 3 1 ' 3 2 . 1 2 6 2 2 . 1 3 7 8 2 9 . 2 5 2 2 2 2 . 0 4 7 3 2 . 0 6 0 0 4 3 . 9 9 2 ‘ 1 2 2 . 0 1 3 1 2 . 0 1 9 9 2 9 . 2 5 3 ' 2 ‘ 1 1 . 9 7 7 4 1 . 9 8 8 4 2 6 . 0 3 3 ‘ 2 ‘ 2 1 . 8 8 8 3 1 . 8 9 8 9 4 0 . 0 2 2 ' 3 1 1 . 8 4 1 3 1 . 8 4 6 3 2 5 . 0 0 1 2 3 1 . 8 3 6 8 4 3 0 1 . 7 9 0 0 1 . 8 0 3 4 1 9 . 2 5 4 1 1 1 . 6 7 8 6 1 . 6 8 0 8 1 2 . 0 4 5 1 ' 2 1 . 6 2 1 3 1 . 6 1 8 6 1 0 . 6 6 2 ' 1 3 1 . 6 1 7 3 3 2 3 T a b l e 6 — 4 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r K 2 A u 2 8 n 2 S 6 . h k 1 d c a l c . ( A ) d o b s . ( A ) H o b s . l 0 0 7 . 9 6 8 0 8 . 1 9 4 7 1 5 . 4 3 1 1 0 5 . 6 3 4 2 5 . 7 6 6 8 1 0 0 . 0 0 2 0 0 3 . 9 8 4 0 4 . 0 6 3 0 4 0 . 4 1 2 1 0 3 . 5 6 3 4 3 . 6 3 3 0 3 1 . 8 4 2 1 2 3 . 3 4 0 7 3 . 3 9 5 1 3 3 . 4 7 2 1 4 2 . 8 6 1 2 2 . 8 9 5 2 1 1 . 2 7 2 2 2 2 . 7 0 3 1 2 . 7 3 6 8 4 0 . 4 1 3 0 0 2 . 6 5 6 0 2 . 6 8 9 0 3 0 . 2 5 3 0 2 2 . 5 5 9 8 2 . 5 8 9 4 2 7 . 9 4 2 0 6 2 . 4 9 4 9 2 . 5 1 5 7 2 4 . 2 9 3 1 2 2 . 4 3 7 2 2 . 4 6 0 5 2 9 . 4 7 2 2 4 2 . 4 2 9 6 2 1 6 2 . 3 8 0 9 2 . 3 5 1 0 8 . 1 6 3 0 4 2 . 3 2 4 0 3 1 4 2 . 2 3 1 0 2 . 2 5 5 0 7 . 3 7 3 0 6 2 . 0 4 3 7 2 . 0 1 1 8 2 5 . 7 2 3 3 2 1 . 8 4 3 1 1 . 8 5 9 7 2 2 . 2 2 3 0 8 1 . 7 8 0 7 1 . 7 9 9 2 1 1 . 2 7 4 2 2 1 . 7 5 1 8 1 . 7 6 5 8 2 5 . 0 0 3 3 4 1 . 7 4 9 0 4 0 6 1 . 6 9 1 1 1 . 7 0 8 2 1 0 . 8 0 2 1 1 0 1 . 6 9 0 3 2 2 1 0 1 . 5 8 6 6 1 . 5 7 5 8 2 5 . 7 2 5 1 0 1 . 5 6 2 7 3 2 4 T a b l e 6 - 5 . S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r R b 2 S n C u 2 S 4 , R b 2 S n 2 C u 2 S 6 , K 2 A u Z S n S 4 a n d K 2 A u 2 S n 2 S 6 . ( 1 ) ( H ) f o r m u m R b 2 S n C u 2 S 4 R b 2 S n 2 C u 2 S 6 f w 5 4 4 . 9 6 7 2 7 . 7 7 a , A 5 . 5 2 8 ( 4 ) 1 1 . 0 2 6 ( 2 ) b , A 1 1 . 4 1 8 ( 6 ) 1 1 . 0 1 9 ( 3 ) c , A 1 3 . 7 0 0 ( 6 ) 2 0 . 2 9 9 ( 4 ) 0 1 9 0 . 0 9 0 . 0 5 9 0 . 0 9 7 . 7 9 ( 2 ) Y 9 0 . 0 9 0 . 0 2 , v , A 3 4 , 8 6 5 ( 2 ) 8 , 2 4 4 1 ( 1 ) s p a c e g r o u p I b a m C 2 / c d c a l c , g / c m 3 4 . 1 8 5 3 . 9 5 6 c r y s t a l s i z e , m m 0 . 3 0 x 0 . 4 0 x 0 . 0 4 0 . 8 2 x 0 . 7 3 x 0 . 3 1 r a d i a t i o n M o K 0 1 M o K 0 1 1 1 ( M o 1 ( a ) , c m - l 1 9 5 . 0 2 1 6 1 . 5 1 2 9 m a x , d e g 5 0 . 0 6 0 n o . o f d a t a c o l l e c t e d 4 6 8 1 1 6 9 1 n o . o f u n i q u e d a t a 4 6 8 3 7 3 6 n o . o f o b s e r v e d d a t a 2 2 1 1 7 5 6 ( I > 3 . 0 0 ( I ) ) n o . o f v a r i a b l e s 2 3 2 3 fi n a l R / R w , % 6 . 9 / 8 . l 6 . 3 / 6 . 4 * R = £ 1 1 F O I ‘ I F C ” / £ 1 F O I R w = { Z W ( I F o l - I F c l ) 2 / X W I F 0 | 2 } U 2 T a b l e 6 - 5 . ( c o n t ' d ) 3 2 5 ( 1 " ) ( 1 V ) f o r m u l a K 2 A u 2 S n S 4 K 2 A u 2 S n 2 S 6 f w 7 1 9 . 0 6 9 0 1 . 8 7 a , A 8 . 2 1 2 ( 4 ) 7 . 9 6 8 ( 2 ) b , A 9 . 1 1 0 ( 4 ) 7 . 9 6 8 ( 2 ) c , A 7 . 3 1 4 ( 2 ) 1 9 . 2 0 0 ( 6 ) 0 1 9 7 8 2 ( 3 ) 9 0 . 0 0 1 1 1 . 7 2 ( 2 ) 9 0 . 0 Y 7 2 0 0 ( 3 ) 9 0 . 0 2 , v , A 3 2 , 4 8 3 . 2 ( 7 ) 4 , 1 2 1 9 ( 1 ) s p a c e g r o u p P - l P 4 / m c c d c a i c , g l c m 3 4 . 9 4 1 4 . 9 1 4 c r y s t a l s i z e , m m 0 . 4 0 x 0 . 5 4 x 0 . 5 3 O . 2 0 x 0 . 2 0 x 0 . 3 3 r a d i a t i o n M o K 0 1 M o K 0 1 1 1 ( M o K 0 1 ) , 6 1 1 1 - 1 3 4 3 . 9 2 2 9 6 . 2 0 Z e m a x . d e g 5 0 . 0 5 5 . 0 n o . o f d a t a c o l l e c t e d 1 8 3 2 9 1 1 n o . o f u n i q u e d a t a 1 7 0 0 9 1 1 n o . o f o b s e r v e d d a t a 1 4 4 7 4 5 9 ( I > 3 . 0 0 ( I ) ) n o . o f v a r i a b l e s 8 3 3 4 fi n a l R / R w , % 4 . 8 / 6 . 0 4 . 1 / 3 . 9 * R = £ 1 1 F 0 1 ‘ I F C ” / 2 1 F O I R w = { X W ( I F o l - c h l ) 2 / Z W I F 0 | 2 } “ 2 3 2 6 T a b l e 6 — 6 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A Z ) a f o r R b 2 C u 2 S n S 4 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . a t o m x y z B ( e q ) S n 0 0 0 . 2 5 1 . 5 ( 2 ) R b 0 . 2 7 2 5 ( 7 ) 0 . 1 2 5 2 ( 4 ) 0 . 5 2 . 2 ( 2 ) C u 0 0 . 2 8 1 1 ( 5 ) 0 . 2 5 3 . 1 ( 4 ) S 0 . 2 2 7 ( 1 ) 0 . 1 2 7 5 ( 7 ) 0 . 1 4 6 2 ( 5 ) 1 . 6 ( 3 ) a B ( e q ) = 4 / 3 l a 2 1 3 1 1 + b 2 1 3 2 2 + c 2 9 3 3 + a b < c o s v > 9 1 2 + a c < c o s 0 > 0 1 3 + b c < c o s o o 0 2 3 1 . T a b l e 6 — 7 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A Z ) a f o r 3 2 7 R b 2 C u 2 S n 2 S 6 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . a t o m x y z B ( e q ) S n ( l ) 0 . 9 6 9 5 9 ( 7 ) 0 . 1 8 7 4 5 ( 7 ) 0 . 6 2 8 6 3 ( 5 ) 0 . 6 8 ( 3 ) S n ( 2 ) 0 . 7 1 9 7 8 ( 7 ) - 0 . 0 6 2 4 4 ( 7 ) 0 . 6 2 9 6 1 ( 5 ) 0 . 6 8 ( 3 ) R b ( l ) 1 . 3 3 4 7 ( 1 ) 0 . 0 6 3 0 ( 1 ) 0 . 5 8 7 6 7 ( 9 ) 1 . 5 6 ( 5 ) R b ( 2 ) 0 . 9 1 6 0 ( 1 ) 0 . 1 8 8 1 ( 1 ) 0 . 4 1 2 4 3 ( 8 ) 1 . 4 5 1 5 ) C u ( 1 ) 1 . 0 0 0 0 0 . 4 3 2 2 ( 2 ) 3 / 4 0 . 6 6 ( 8 ) C u ( 2 ) 1 . 2 4 7 8 ( 1 ) 0 . 1 9 3 3 ( 3 ) 0 . 7 4 9 9 ( 1 ) 2 . 0 ( 1 ) C u ( 3 ) 1 . 0 0 0 0 — 0 . 0 6 4 3 ( 2 ) 3 / 4 0 . 6 5 ( 8 ) S ( 1 ) 0 . 8 6 6 0 ( 3 ) — 0 . 1 9 5 8 ( 3 ) 0 . 6 8 5 3 ( 2 ) 0 . 8 ( 1 ) S ( 2 ) 0 . 6 0 2 2 ( 3 ) 0 . 0 6 9 4 ( 3 ) 0 . 6 8 6 9 ( 2 ) 0 . 9 ( 1 ) S ( 3 ) 1 . 1 1 5 8 ( 3 ) 0 . 0 5 5 3 ( 3 ) 0 . 6 8 5 5 ( 2 ) 1 . 0 ( 1 ) 3 ( 4 ) 0 . 8 5 1 1 ( 3 ) 0 . 3 1 8 4 ( 3 ) 0 . 6 8 3 9 ( 2 ) 1 . 0 ( 1 ) S ( S ) 1 . 0 7 6 2 ( 3 ) 0 . 3 1 3 0 ( 3 ) 0 . 5 5 1 6 ( 2 ) 1 . 6 ( 1 ) S ( 6 ) 0 . 8 2 4 7 ( 3 ) 0 . 0 6 2 1 ( 3 ) 0 . 5 5 2 2 ( 2 ) 1 . 2 ( 1 ) a B ( e q ) = 4 / 3 1 a 2 0 1 1 + b 2 1 3 2 2 + c 2 0 3 3 + a b < c o s v > 0 1 2 + a c < c o s 0 > 0 1 3 + b e < c o s a > 0 2 3 1 3 2 8 T a b l e 6 - 8 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A Z ) a f o r K 2 A u 2 S n S 4 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . a t o m x y z B ( e q ) A u ( 1 ) 0 . 3 3 0 6 ( 1 ) 0 . 4 2 1 8 9 ( 9 ) 0 . 2 6 7 8 ( 1 ) 1 . 2 5 ( 4 ) A u ( 2 ) 0 . 7 1 2 3 ( 1 ) 0 . 8 2 9 7 ( 1 ) 0 . 4 6 8 3 ( 1 ) 1 . 2 5 ( 4 ) S n 0 . 7 2 4 5 ( 2 ) 0 . 1 9 4 1 ( 2 ) 0 . 6 2 5 4 ( 2 ) 0 . 9 6 ( 6 ) K ( 1 ) 0 . 2 5 4 9 ( 6 ) 0 . 0 7 9 2 ( 6 ) 0 . 9 7 0 7 ( 7 ) 1 . 8 ( 2 ) K ( 2 ) 0 . 1 8 6 0 ( 7 ) 0 . 5 7 9 6 ( 6 ) 0 . 7 8 3 ( 1 ) 2 . 8 ( 3 ) S ( 1 ) 0 . 5 8 2 9 ( 7 ) 0 . 2 1 8 9 ( 6 ) 0 . 2 7 7 4 ( 7 ) 1 . 3 ( 2 ) S ( 2 ) 0 . 0 8 5 2 ( 7 ) 0 . 6 3 4 3 ( 6 ) 0 . 2 4 0 ( 1 ) 2 . 2 ( 3 ) S ( 3 ) ' 0 . 9 1 9 4 ( 7 ) 0 . 9 3 7 5 ( 6 ) 0 . 7 0 8 4 ( 8 ) 1 . 4 1 2 ) S ( 4 ) 0 . 4 9 6 4 ( 7 ) 0 . 7 4 4 3 ( 6 ) 0 . 2 1 3 3 ( 8 ) 1 . 5 ( 2 ) ‘ 1 B ( e q ) = 4 8 1 2 1 2 6 1 1 + b 2 1 3 2 2 + c 2 6 3 3 + a b ( c o s v ) l 3 1 2 + a C ( c o s B ) 6 1 3 + b C ( c o s a ) 1 3 2 3 l - 3 2 9 T a b l e 6 - 9 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r K 2 A u 2 S n 2 S 6 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s . a t o m 3 1 y z B ( e q ) A u 0 . 6 8 8 9 ( 1 ) 0 0 . 2 5 0 . 9 8 ( 4 ) S n 0 . 5 0 0 . 4 1 1 5 7 ( 8 ) 0 . 6 6 ( 6 ) K ( 1 ) 0 0 0 . 0 9 6 6 ( 6 ) 1 . 9 ( 2 ) K ( 2 ) 0 . 5 0 . 5 0 . 2 5 4 . 3 ( 6 ) K ( 3 ) 0 . 5 0 . 5 0 . 0 4 9 9 2 . 9 ( 5 ) S ( 1 ) 0 . 6 6 2 ( 1 ) 0 . 1 4 9 ( 1 ) 0 . 5 0 . 8 ( 3 ) S ( 2 ) 0 . 3 2 2 7 ( 7 ) 0 . 1 7 7 2 ( 8 ) 0 . 3 4 5 3 ( 2 ) 0 . 9 ( 2 ) a B ( e q ) = 4 / 3 l a 2 6 1 1 + b 2 1 3 2 2 + 0 2 1 3 3 3 + a b ( c o s v ) f 3 1 2 + a c ( 0 0 8 1 3 ) 6 1 3 + 1 2 9 6 0 5 0 0 1 3 2 3 ] . 3 3 0 3 . R e s u l t s a n d D i s c u s s i o n 3 . 1 . S y n t h e s i s T h e s y n t h e s e s a n d c r y s t a l l i z a t i o n o f ( I ) ~ ( I V ) w e r e a c c o m p l i s h e d i n A 2 S x ( A = K o r R b ) fl u x e s w h i c h w e r e f o r m e d b y t h e i n s i t u r e a c t i o n o f A 2 8 a n d S i n v a r i o u s r a t i o s . T h e p o l y s u l fi d e m e l t s s e r v e a s o x i d a t i o n a g e n t s a s w e l l a s r e a c t i o n m e d i a , e n h a n c e t h e m o b i l i t y o f t h e r e a c t a n t s , a n d h e l p c r y s t a l l i z a t i o n o f t h e p r o d u c t s . T h e m e r e r e s u l t o f q u a t e r n a r y p h a s e f o r m a t i o n i n A 2 S x fl u x e s s u g g e s t s t h a t t h e r e a c t i o n s o c c u r i n a h o m o g e n i z e d m e d i u m i n w h i c h g o o d m i x i n g o f C u a n d S n , a n d A u a n d S n i s a c h i e v e d , p r o b a b l y t h r o u g h s o l u b l e s u l fi d e p r e c u r s o r c o m p l e x e s . S u c h m i x i n g i s c r i t i c a l s i n c e C u , A u a n d S n a l o n e c a n f o r m s t a b l e t e r n a r y A I M / S c o m p o u n d s . 1 8 R b 2 C u 2 8 n 8 4 ( I ) w a s s y n t h e s i z e d b y h e a t i n g S n a n d C u p o w d e r i n a R b 2 8 5 fl u x a t 4 0 0 ° C . A C u r i c h r a t i o ( S n : C u = l : 4 ) w a s u s e d t o o b t a i n ( I ) i n p u r e f o r m . T h e r a t i o o f S n : C u = 1 : 2 g a v e R b 2 C u 2 8 n 2 8 6 ( 1 1 ) w h i l e t h e r a t i o o f 1 : 3 g a v e a m i x t u r e o f ( I ) a n d ( I I ) . T h e R b 2 C u 2 8 n 2 S 6 p h a s e d o m i n a t e s w h e n C u : 8 n = 1 : 1 . T h e 8 e a n a l o g w a s p r e p a r e d i n a n a n a l o g o u s m a n n e r . A l l a l k a l i s a l t s f r o m N a + t o C s + f o r m i s o m o r p h o u s s u l fi d e p h a s e s . H o w e v e r , o n l y K + a n d R b + s t a b i l i z e d t h e s e l e n i d e v e r s i o n . K 2 A u 2 8 n 8 4 ( I I I ) w a s s y n t h e s i z e d b y h e a t i n g A u a n d S n p o w d e r i n a r a t i o o f 2 : 1 i n a K 2 8 5 fl u x a t 3 5 0 ° C , w h i l e K 2 A u 2 S n 2 S 6 ( I V ) w a s p r e p a r e d b y h e a t i n g A u a n d S n p o w d e r i n a r a t i o o f 1 . 5 : 1 i n a K 2 8 9 fl u x a t 3 5 0 ° C . ( I V ) w h i c h c o n t a i n s [ S n 2 8 2 ] 4 - f r a g m e n t s w a s s y n t h e s i z e d u n d e r a s u l f u r - r i c h fl u x . T h i s s u g g e s t s t h a t [ S n 2 8 6 ] 4 ' , r a t h e r t h a n [ 8 n 8 4 ] 4 - , i o n s a r e f a v o r e d i n a m o r e o x i d i z i n g s u l f u r - r i c h p o l y s u l fi d e fl u x . W h i l e t h i s m a y 3 3 1 s e e m c o u n t e r i n t u i t i v e , w e p o i n t o u t t h a t a s u l f u r - r i c h fl u x i s l e s s b a s i c t h a n a s u l fi d e - r i c h ( s u l f u r - p o o r ) fl u x w h i c h b r e a k s t h e [ S n 2 8 6 ] 4 - d i m e r s f u r t h e r i n t o s i n g l e [ 8 n S 4 ] 4 ‘ t e t r a h e d r a . I t s h o u l d b e n o t e d t h e 8 n : A u r a t i o ( 1 : 1 . 5 ) u s e d i n t h e r e a c t i o n i s n o t c o n s i s t e n t w i t h t h e c h e m i c a l f o r m u l a o f K 2 A u 2 8 n 2 8 6 . U s i n g t h e e x a c t 8 n : A u r a t i o ( 1 : 1 ) u n d e r t h e s a m e r e a c t i o n c o n d i t i o n s g a v e a m i x t u r e o f K 2 A u 2 8 n 2 8 6 a n d r e d d i s h o r a n g e c r y s t a l s o f K 2 8 n 2 8 3 1 0 3 . O n l y b y i n c r e a s i n g t h e A u c o n t e n t w e r e w e a b l e t o a v o i d t h e c o m p e t i t i v e s i d e p r o d u c t . H o w e v e r , n o t e r n a r y K / A u / S p h a s e w a s o b s e r v e d , i n d i c a t i n g t h a t t h e e x c e s s A u f o r m s s o l u b l e c o m p l e x e s w h i c h a r e r e m o v e d d u r i n g t h e i s o l a t i o n p r o c e s s . 3 . 2 . D e s c r i p t i o n o f S t r u c t u r e s S t r u c t u r e o f R b 2 C u 2 8 n S 4 ( I ) T h e R b 2 C u 2 S n S 2 i s a l a y e r e d c o m p o u n d . 8 n 8 4 a n d C u S 4 t e t r a h e d r a i n t h e r a t i o o f 1 : 2 a r e t h e b u i l d i n g b l o c k s o f t h e t w o - d i m e n s i o n a l [ C u 2 S n S 4 ] n 2 “ ‘ f r a m e w o r k , s h o w n i n F i g u r e 6 - 1 . T h e s t r u c t u r e t y p e o f t h e t w o - d i m e n s i o n a l a n i o n i c f r a m e w o r k c a n b e v i e w e d a s a n o r d e r e d d e f e c t a n t i - P b O l 9 s t r u c t u r e i n w h i c h s u l f u r a t o m s o c c u p y t h e l e a d s i t e s , t i n a n d c o p p e r a t o m s o c c u p y t h e o x y g e n s i t e s , b u t w i t h o n e h a l f o f t h e t i n a t o m s m i s s i n g . W e n o t e t h a t s o m e t e r n a r y m e t a l c h a l c o g e n i d e s s u c h a s R b 2 M n 3 8 4 , C s 2 M n 3 8 4 , R b 2 C o 3 S 4 , C s 2 C o 3 8 4 , C s 2 Z n 3 S 4 a n d R b 2 Z n 3 8 4 2 0 a r e s t r u c t u r a l l y r e l a t e d . I n a l l t h e s e c o m p o u n d s t h e t e t r a h e d r a l m e t a l c e n t e r s o c c u p y 3 / 4 o f t h e O - s i t e s i n t h e P b O l a t t i c e . I n t h e [ C u 2 8 n 8 2 ] n 2 “ ' f r a m e w o r k , t h e C u 8 4 t e t r a h e d r a s h a r e t w o o p p o s i t e e d g e s t o f o r m p a r a l l e l i n fi n i t e l i n e a r [ C u 8 2 ] n 3 n ' c h a i n s w h i c h a r e r e l a t e d t o t h e [ F e 8 2 ] - c h a i n s i n 3 3 2 K F e S 2 2 1 . T h e s e c h a i n s a r e c r o s s - l i n k e d b y t e t r a h e d r a l S n 4 + v i a s u l fi d e i o n s i n t h e [ C u 8 2 ] n 3 n ' c h a i n s . T h i s a r r a n g e m e n t l e a v e s t e t r a h e d r a l h o l e s i n t h e l a y e r s . S e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s a r e g i v e n i n T a b l e 6 - 1 0 . T h e r e a r e t h r e e m u t u a l l y p e r p e n d i c u l a r c r y s t a l l o g r a p h i c 2 — f o l d r o t a t i o n a l a x e s p a s s i n g t h r o u g h t h e S n a t o m s . T h e r e f o r e , a l l S n - S d i s t a n c e s a r e e q u a l a t 2 . 3 9 0 ( 8 ) A . T h r e e p a i r s o f S - S n - S a n g l e s d e v i a t e f r o m t h o s e i n a p e r f e c t t e t r a h e d r o n w i t h 1 0 7 . 0 ( 3 ) ° , 1 0 4 . 9 ( 4 ) ° a n d 1 1 6 . 7 ( 3 ) O r e s p e c t i v e l y . T h e r e i s a 2 - f o l d a x i s p a s s i n g t h r o u g h t h e C u 8 4 t e t r a h e d r a w h i c h e x h i b i t s i g n i fi c a n t d i s t o r t i o n f r o m t h e i d e a l t e t r a h e d r o n . T h e C u - - - C u d i s t a n c e i s 2 . 8 5 4 ( 4 ) A . T w o p a i r s o f C u - S d i s t a n c e s a r e 2 . 5 8 2 ( 8 ) A a n d 2 . 3 2 2 ( 7 ) A . T h e s i g n i fi c a n t d i f f e r e n c e o f C u - S b o n d d i s t a n c e s i s d u e t o t h e d i f f e r e n c e i n S - C u - S b o n d a n g l e s . T h e 8 - C u - S a n g l e b e t w e e n t h e t w o s h o r t e r C u - S b o n d s i s a w i d e 1 2 6 . 6 ( 5 ) ° ; t h e S - C u - S a n g l e b e t w e e n t w o l o n g e r C u - S b o n d s i s v e r y n a r r o w a t 9 4 . 5 ( 4 ) ° . T h e o t h e r t w o p a i r s o f S - C u — S a n g l e s a r e 1 0 6 . 3 ( 2 ) ° a n d 1 0 9 . 1 ( 2 ) ° . T h e r u b i d i u m c a t i o n s a r e l o c a t e d b e t w e e n t h e a n i o n i c l a y e r s t o b a l a n c e t h e c h a r g e , a s s h o w n i n F i g u r e 6 - 2 . T h e R b + c a t i o n s a r e s i t t i n g o n a c r y s t a l l o g r a p h i c m i r r o r p l a n e a n d a r e c o o r d i n a t e d b y 8 s u l f u r a t o m s w i t h a n a v e r a g e R b - - - S d i s t a n c e o f 3 . 4 5 ( 5 ) A . 8 r C 2 S n S 4 1 1 d , B a C u 2 S n S 4 l l e a n d B a A g 2 S n 8 4 1 1 b a r e r e l a t e d t o ( I ) i n t h e i r a n i o n i c s t o i c h i o m e t r i e s b u t d i f f e r i n s t r u c t u r e . A l l o f t h e m a r e t h r e e - d i m e n s i o n a l m o d i fi e d Z n S - t y p e c o m p o u n d s f o r m e d b y v e r t e x - s h a r i n g C u S 4 a n d M 8 4 ( M = C u o r A g ) t e t r a h e d r a . 3 3 4 O O 3 C ) 0 ) F i g u r e 6 - 2 : T h e s t r u c t u r e o f R b 2 C q u n S 4 v i e w e d p a r a l l e l t o t h e l a y e r s . A m o n o l a y e r o f r u b i d i u m c a t i o n s i s l o c a t e d b e t w e e n l a y e r s . D a s h l i n e s s h o w t h e c o o r d i n a t i o n e n v i r o n m e n t o f t h e R b + c a t i o n s . 3 3 5 T h e t w o - d i m e n s i o n a l a n i o n i c f r a m e w o r k o f ( I ) c a n b e c o m p a r e d t o t h a t o f K C u 2 N b 8 4 2 2 w h i c h c o n s i s t s o f e d g e s h a r i n g N b 8 4 a n d C u S 4 t e t r a h e d r a . D e s p i t e t h e s i m i l a r i t y o f t h e i r a n i o n i c f o r m u l a e , t h e t w o f r a m e w o r k s d i f f e r i n t h e i r a r r a n g e m e n t o f t h e M 8 4 t e t r a t h i o m e t a l a t e u n i t s . W h i l e t h e [ C u 2 S n S 4 ] 2 ' s h e e t s a r e fl a t , t h o s e i n K C u 2 N b S 4 a r e h i g h l y c o r r u g a t e d . T h e c o n f o r m a t i o n a l c h a n g e f r o m c o r r u g a t e d t o fl a t i s n e c e s s a r y t o m i n i m i z e t h e l a t t i c e e n e r g y b e c a u s e t h e n u m b e r o f c a t i o n s i s d o u b l e d i n R b 2 C u 2 S n S 4 . T h e d e f e c t a n t i - P b O s t r u c t u r e o f R b 2 C u 2 S n S 4 s u g g e s t s t h a t C u “ i o n t r a n s p o r t t h r o u g h t h e m a t e r i a l m i g h t b e p o s s i b l e v i a a h o p p i n g m e c h a n i s m f r o m t h e fi l l e d t o t h e v a c a n t s i t e s . T a b l e 6 - 1 0 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f R b 2 C u 2 8 n S 4 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) S n - S 2 . 3 9 0 ( 8 ) R b - S 3 . 4 1 1 ( 8 ) C u - S 2 . 5 8 3 ( 8 ) R b - S 3 . 5 2 2 ( 8 ) C u - S ' 2 . 3 2 2 ( 7 ) R b - S 3 . 4 6 2 ( 8 ) C u - C u 2 . 8 5 4 ( 4 ) R b - S 3 . 4 1 7 ( 8 ) S e l e c t e d B o n d A n g l e s ( d e g ) S - S n - S 1 0 7 . 0 ( 3 ) S - C u - S ' 1 0 6 . 5 ( 3 ) S - S n - S 1 0 4 . 9 ( 4 ) S ' - C u - S ' 1 2 6 . 6 ( 5 ) S - S n - S 1 1 6 . 7 ( 3 ) S n - S - C u 8 0 . 3 ( 2 ) S - C u - S 9 4 . 5 ( 4 ) 8 n - 8 ' - C u 1 0 4 . 5 ( 3 ) S - C u - S ' 1 0 9 . 1 ( 2 ) C u - S - C u 7 0 . 9 ( 2 ) 3 3 6 T h e S t r u c t u r e o f R b 2 C u 2 8 n 6 ( I I ) R b 2 C u 2 S n 2 S 6 ( I I ) h a s a t w o - d i m e n s i o n a l s t r u c t u r e c o n t a i n i n g c o m e r - s h a r i n g t e t r a h e d r a l C u S 4 a n d S n S 4 u n i t s , a s s h o w n i n F i g u r e 6 — 3 . T h i s i s a d e r i v a t i v e o f t h e t h r e e - d i m e n s i o n a l z i n c b l e n d e a d a m a n t i n e t y p e s t r u c t u r e o f t h e t e r n a r y p a r e n t c o m p o u n d C u 2 S n 8 3 2 3 T h e r e p l a c e m e n t o f a n a l k a l i m e t a l i o n f o r a C u a t o m r e d u c e s t h e d i m e n s i o n a l i t y o f t h e C u 2 S n S 3 f r a m e w o r k d u e t o t h e i n t e r r u p t i o n o f c o v a l e n t b o n d i n g t h r o u g h o u t t h e s t r u c t u r e . E a c h a n i o n i c s l a b , t h u s f o r m e d , c o n t a i n s t h r e e m e t a l l a y e r s w i t h a C u l a y e r s a n d w i c h e d b y t w o 8 n l a y e r s i n w h i c h o n e h a l f o f t h e S n s i t e s a r e m i s s i n g f o r m i n g p a r a l l e l g r o o v e s w h i c h r u n p e r p e n d i c u l a r l y a b o v e a n d b e l o w t h e s l a b s . T h e R b + c a t i o n s a r e l o c a t e d i n s i d e t h e g r o o v e s a s s h o w n i n F i g u r e 6 - 4 a n d t h e r e f o r e a r e a n i n t e g r a l p a r t o f t h e s l a b s . T h u s , a t r u e v a n d e r W a a l s g a p e x i s t s b e t w e e n t h e R b 2 C u 2 8 n 2 8 6 l a y e r s w h i c h m u s t b e s t a b i l i z e d p a r t i a l l y b y i n t e r l a y e r S - - - S i n t e r a c t i o n s . N e v e r t h e l e s s , R b - - - S i n t e r a c t i o n s w i t h a d j a c e n t l a y e r s a l s o e x i s t . T h i s e x p l a i n s t h e m a t e r i a l ' s t h i n - l a y e r c r y s t a l m o r p h o l o g y a n d t e n d e n c y t o c l e a v e e a s i l y i n t o v e r y t h i n m i c a - l i k e s h e e t s . T w o , c r y s t a l l o g r a p h i c a l l y d i s t i n c t , R b + c a t i o n s a r e s i t u a t e d w i t h i n t h e a n i o n i c l a y e r s . B o t h a r e s u r r o u n d e d b y s i x 8 a t o m s w i t h a n a v e r a g e R b - - - S d i s t a n c e o f 3 . 3 5 ( 5 ) A . T h e i r c o o r d i n a t i o n e n v i r o n m e n t s a r e s i m i l a r , f o r m i n g p s e u d o - C 2 v s y m m e t r y a s s h o w n i n F i g u r e 6 - 5 . T h e p o l y h e d r o n o f R b + , h o w e v e r , i s b e s t d e s c r i b e d a s t r i g o n a l p r i s m a t i c . E a c h R b + c a t i o n i s c o o r d i n a t e d b y f o u r 8 a t o m s ( 8 ( 1 ) ~ S ( 4 ) ) f r o m t h e [ C u 2 8 n 2 8 6 ] 2 - s l a b w h e r e i t i s s i t u a t e d a n d b y t w o m o r e 8 a t o m s ( 8 ( 5 ) , 8 ( 6 ) ) f r o m t h e a d j a c e n t l a y e r . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s o f ( I I ) a r e g i v e n i n T a b l e 6 - 1 1 . T h e a v e r a g e S n - S d i s t a n c e ( 2 4 2 ( 8 ) A ) a n d t h e a v e r a g e C u - S d i s t a n c e 3 3 7 ( 2 3 5 ( 2 ) A ) a r e n o r m a l . T h e r e a r e t w o t y p e s o f s u l f u r a t o m s : S ( 1 ) ~ S ( 4 ) a r e t r i p l y b r i d g i n g t o t w o C u a t o m s a n d o n e S n a t o m w h i l e S ( 5 ) ~ S ( 6 ) a r e d o u b l y b r i d g i n g b e t w e e n t w o S n a t o m s . T h e a v e r a g e S n t o S ( 1 ) ~ ( 4 ) d i s t a n c e ( 2 . 4 9 2 ( 5 ) A ) i s s i g n i fi c a n t l y l o n g e r t h a n t h a t o f S n t o S ( 5 ) ~ S ( 6 ) d i s t a n c e ( 2 . 3 5 0 ( 1 1 ) A ) . D u e t o t h e s t r o n g e r e l e c t r o n i c r e p u l s i o n b e t w e e n t h e s h o r t e r S n - S b o n d s , t h e c o r r e s p o n d i n g S - S n - S b o n d a n g l e s a r e w i d e r a t 1 2 2 . 5 ( 1 ) o a n d 1 2 2 3 0 ) ) , w h e r e a s t h e S - S n - S a n g l e b e t w e e n t h e t w o l o n g e r S n — S b o n d s i s s m a l l e r a t 1 0 3 5 0 ) ) . T h e r e m a i n i n g S — S n — S a n g l e s a n d S - C u - 8 a n g l e s d o n o t s h o w m u c h d e v i a t i o n f r o m t h a t o f a n i d e a l t e t r a h e d r o n . 3 3 8 S 5 ) ( 4 ) . O . . 0 g g C . . O 3 5 . 4 . 3 i t ‘ : . " : 3 ‘ : . n 1 1 1 ( 2 ) R b ( l / \ O o t o 0 ' 0 0 0 [ C E ‘ 0 8 ( 3 ) 9 0 8 ( 6 ) ‘ = n ( 2 ) C u ( 3 ) F i g u r e 6 - 3 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f R b 2 C q u n 2 S 6 . V i e w d o w n t h e c - a x i s . l a y e r s . F i g u r e 6 - 4 : T h e s t r u c t u r e o f R b 2 C u 2 S n 2 8 6 v i e w e d p a r a l l e l t o t h e 3 3 9 ) 4 ( 8 ' b a l s ' Z I 6 8 2 n S 2 u C l e h t o t g n o l e b ) 4 ( 8 d n a ) 3 ( 8 , ) 2 ( 8 , ) 1 ( ) 8 5 ( 8 . J A ” : 5 - ( 6 e r u g i F T h e c o o r d i n a t i o n e n v i r o n m e n t f o r R b ( l ) a n d R b ( 2 ) . W h i l e w h i c h h o s t s t h e R b “ c a t i o n s , 8 ( 5 ) a n d 8 ( 6 ) b e l o n g t o a n o t h e r l C u 2 S n 2 8 6 | 2 ' s l a b . 3 4 0 3 4 1 T a b l e 6 — 1 1 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r R b 2 C u 2 8 n 2 8 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) 8 n ( 1 ) - 8 ( 3 ) 2 . 3 5 5 ( 4 ) C u ( 3 ) — 8 ( 3 ) 2 . 3 5 3 ( 4 ) x 2 8 n ( 1 ) - 8 ( 4 ) 2 . 3 3 4 ( 4 ) m e a n ( C u - S ) 2 . 3 5 ( 2 ) 8 n ( 1 ) - 8 ( 5 ) 2 . 4 9 8 ( 4 ) R b ( 1 ) - 8 ( 1 ) 3 . 3 0 5 ( 4 ) 8 n ( 1 ) - 8 ( 6 ) 2 . 4 9 0 ( 4 ) R b ( 1 ) - S ( 2 ) 3 . 3 3 9 ( 4 ) S n ( 2 ) - 8 ( 1 ) 2 . 3 5 4 ( 4 ) R b ( 1 ) - 8 ( 3 ) 3 . 3 2 8 ( 4 ) S n ( 2 ) - S ( 2 ) 2 . 3 5 6 ( 4 ) R b ( l ) - S ( 4 ) 3 . 3 1 9 ( 4 ) S n ( 2 ) - 8 ( 5 ) 2 . 4 9 4 ( 4 ) R b ( 1 ) - S ( 5 ) 3 . 4 0 3 ( 5 ) S n ( 2 ) - 8 ( 6 ) 2 . 4 8 7 ( 4 ) R b ( l ) - S ( 6 ) 3 . 4 1 9 ( 4 ) m e a n ( S n - S ) 2 4 2 ( 8 ) R b ( 2 ) - S ( 1 ) 3 . 3 1 8 ( 4 ) C u ( 1 ) - S ( 2 ) 2 . 3 6 5 ( 4 ) x 2 R b ( 2 ) - S ( 2 ) 3 . 3 3 7 ( 4 ) C u ( 1 ) - 8 ( 4 ) 2 . 3 3 9 ( 4 ) x 2 R b ( 2 ) — 8 ( 3 ) 3 . 3 2 9 ( 4 ) C u ( 2 ) - S ( 1 ) 2 . 3 1 8 ( 4 ) R b ( 2 ) - 8 ( 4 ) 3 . 3 0 8 ( 4 ) C u ( 2 ) - S ( 2 ) 2 . 3 8 2 ( 4 ) R b ( 2 ) - 8 ( 5 ) 3 . 4 1 2 ( 4 ) C u ( 2 ) - 8 ( 3 ) 2 . 3 7 2 ( 4 ) R b ( 2 ) - 8 ( 6 ) 3 . 4 3 0 ( 4 ) C u ( 2 ) - 8 ( 4 ) 2 . 3 0 0 ( 5 ) m e a n ( R b - S ) 3 . 3 5 ( 5 ) C u ( 3 ) - S ( 1 ) 2 . 3 4 2 ( 4 ) x 2 S e l e c t e d B o n d A n g l e s ( d e g ) S ( 3 ) - S n ( 1 ) — 8 ( 4 ) 1 2 2 . 5 ( 1 ) S ( 2 ) - C u ( 2 ) - S ( 4 ) 1 1 2 . 2 ( 1 ) S ( 3 ) - S n ( 1 ) - S ( 5 ) 1 0 7 . 5 ( 1 ) S ( 3 ) - C u ( 2 ) - S ( 4 ) 1 1 3 . 7 ( 1 ) 8 ( 3 ) - S n ( l ) - S ( 6 ) 1 0 7 . 5 ( 1 ) S ( 1 ) - C u ( 3 ) - S ( 1 ) 1 0 3 . 5 ( 2 ) S ( 4 ) - 8 n ( 1 ) - S ( 5 ) 1 0 7 . 5 ( 1 ) 8 ( 1 ) - C u ( 3 ) - S ( 3 ) 1 1 2 . 5 ( 1 ) x 2 S ( 4 ) - S n ( 1 ) - S ( 6 ) 1 0 6 . 8 ( 1 ) S ( 1 ) - C u ( 3 ) - S ( 3 ) 1 0 8 . 1 ( 1 ) x 2 S ( 5 ) - S n ( 1 ) - 8 ( 6 ) 1 0 3 . 5 ( 1 ) S ( 3 ) - C u ( 3 ) - 8 ( 3 ) 1 1 1 . 9 ( 2 ) S ( 1 ) - S n ( 2 ) - S ( 2 ) 1 2 2 . 3 ( 1 ) S n ( 2 ) - S ( 1 ) - C u ( 2 ) 1 0 1 . 5 ( 1 ) S ( 1 ) - S n ( 2 ) - S ( 5 ) 1 0 7 . 2 ( 1 ) S n ( 2 ) - S ( l ) - C u ( 3 ) 1 0 2 . 8 ( 1 ) S ( 1 ) - S n ( 2 ) - S ( 6 ) 1 0 7 . 5 ( 1 ) C u ( 2 ) - S ( 1 ) - C u ( 3 ) 1 1 1 . 7 ( 2 ) S ( 2 ) - S n ( 2 ) - S ( 5 ) 1 0 8 . 0 ( 1 ) S n ( 2 ) - S ( 2 ) - C u ( 1 ) 1 0 2 . 0 ( 1 ) S ( 2 ) - S n ( 2 ) - S ( 6 ) 1 0 7 . 8 ( 1 ) S n ( 2 ) - S ( 2 ) - C u ( 2 ) 1 0 3 . 4 ( 1 ) 3 4 2 T a b l e 6 — 1 1 . ( c o n t ' d ) S ( 5 ) - S n ( 2 ) - S ( 6 ) 1 0 2 . 2 ( 1 ) C u ( 1 ) - 8 ( 2 ) - C u ( 2 ) 1 1 4 . 9 ( 2 ) S ( 2 ) - C u ( 1 ) - S ( 2 ) 1 0 0 . 5 ( 2 ) S n ( l ) - S ( 3 ) - C u ( 2 ) 1 0 1 . 6 ( 1 ) S ( 2 ) - C u ( l ) - S ( 4 ) 1 1 2 . 4 ( 1 ) x 2 S n ( l ) — S ( 3 ) — C u ( 3 ) 1 0 3 . 4 ( 1 ) S ( 2 ) - C u ( 1 ) - S ( 4 ) 1 0 7 . 7 ( 1 ) x 2 C u ( 2 ) - S ( 3 ) - C u ( 3 ) 1 1 3 . 0 ( 2 ) S ( 4 ) - C u ( 1 ) - S ( 4 ) 1 1 5 . 2 ( 2 ) S n ( l ) — S ( 4 ) — C u ( 1 ) 1 0 2 . 2 ( 1 ) S ( 1 ) - C u ( 2 ) - S ( 2 ) 1 0 1 . 8 ( 1 ) S n ( l ) - S ( 4 ) - C u ( 2 ) 1 0 4 . 5 ( 2 ) S ( 1 ) - C u ( 2 ) - S ( 3 ) 1 1 2 . 1 ( 1 ) C u ( 1 ) - S ( 4 ) - C u ( 2 ) 1 0 9 . 7 ( 2 ) S ( 1 ) - C u ( 2 ) - S ( 4 ) 1 1 1 . 2 ( 2 ) 8 n ( 1 ) - S ( 5 ) - 8 n ( 2 ) 1 0 2 . 7 ( 2 ) 8 ( 2 ) - C u ( 2 ) - 8 ( 3 ) 1 0 5 . 0 ( 2 ) 8 n ( 1 ) - S ( 6 j - 8 1 3 2 ) 1 0 3 . 1 ( 1 ) 3 4 3 S t r u c t u r e s K 2 A u 2 8 n 8 4 ( I I I ) a n d K 2 A u 2 8 n 2 8 6 ( I V ) T h e o n e - d i m e n s i o n a l a n i o n i c s t r u c t u r e o f ( I I I ) i s c o n s t r u c t e d f r o m 8 n S 4 t e t r a h e d r a a n d l i n e a r A u 8 2 d u m b b e l l u n i t s i n t h e r a t i o o f 1 : 2 . E v e n t h o u g h t h e s t o i c h i o m e t r y o f ( I I I ) i s t h e s a m e a s t h a t o f ( I ) , t h e p r e f e r r e d l i n e a r c o o r d i n a t i o n o f A u ’ r f o r c e s a d r a m a t i c s t r u c t u r a l c h a n g e f r o m t h a t o f ( I ) . T h e e d g e s o f t w o S n S 4 t e t r a h e d r a a r e c o n n e c t e d b y t w o A u + i o n s t o f o r m S n ( S A u 8 ) 2 S n e i g h t - m e m b e r e d r i n g s w h i c h e x t e n d i n o n e - d i m e n s i o n b y s h a r i n g t h e S n a t o m s a t t h e i r t w o e n d s , a s s h o w n i n F i g u r e 6 - 6 . T h e s e c h a i n s r u n a l o n g t h e c r y s t a l l o g r a p h i c b - a x i s a n d a r e p a r a l l e l t o o n e a n o t h e r , s e p a r a t e d b y c h a r g e b a l a n c i n g K + c a t i o n s . S e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s a r e g i v e n i n T a b l e 6 - 1 2 . T h e a v e r a g e S n - S d i s t a n c e i s 2 . 3 9 6 ( 1 2 ) A a n d t h e S n 8 4 t e t r a h e d r a a r e s l i g h t l y d i s t o r t e d w i t h S - S n - S a n g l e s r a n g i n g f r o m 1 0 6 . 7 ( 2 ) ° t o 1 1 1 . 9 ( 2 ) ° ( a v e r a g e v a l u e = 1 0 9 . 4 ( 2 1 ) ° ) w h i c h a r e c o m p a r a b l e t o t h o s e i n t h e d i s c r e t e [ S n S 4 ] 4 ‘ i o n t h " j . T h e a v e r a g e A u - S d i s t a n c e , 2 . 2 9 5 ( 4 ) A , i s n o r m a l f o r l i n e a r A u S 2 f r a g m e n t 8 2 4 . T h e a v e r a g e S - A u - S a n g l e , 1 7 4 . 9 ( 6 ) ° , i s c l o s e t o 1 8 0 ° . T h e l i n e a r A u S 2 f r a g m e n t s i n t h e S n ( S A u 8 ) 2 S n e i g h t - m e m b e r e d r i n g s a r e n e a r l y p a r a l l e l b u t t h e A u - - ~ A u d i s t a n c e s a r e l o n g a t 3 . 9 2 9 ( 2 ) A a n d 4 . 0 1 4 ( 3 ) A . A n i n t e r e s t i n g f e a t u r e o f t h e c o m p o u n d s i s t h e p r e s e n c e o f w e e k i n t r a c h a i n A u m A u s h o r t c o n t a c t s o f 3 . 3 6 3 ( 2 ) A b e t w e e n t w o A u + i o n s i n t w o a d j a c e n t 8 n ( S A u S ) 2 8 n e i g h t - m e m b e r e d r i n g s a s s h o w n b y t h e d a s h e d l i n e s i n F i g u r e 6 - 6 . I n t e r c h a i n A u - - - A u s h o r t c o n t a c t s w e r e r e p o r t e d e a r l i e r , K A u 8 5 2 4 t 2 5 , w h i c h c o n t a i n s c h a i n s w i t h t w o - c o o r d i n a t e d A u + i o n s b r i d g e d w i t h p e n t a s u l fi d e s . N o s u c h c o n t a c t s a r e o b s e r v e d i n ( I I I ) . T w o d i s t i n c t K ’ r c a t i o n s a r e s u r r o u n d e d b y 7 a n d 4 8 a t o m s r e s p e c t i v e l y . T h e 3 4 4 a v e r a g e K m S d i s t a n c e i s 3 . 3 1 ( 1 3 ) A . R e g a r d l e s s o f t h e l a r g e r s i z e o f A u , t h e A u - t - K d i s t a n c e s ( 3 . 5 4 6 ( 5 ) A , 3 . 6 3 4 ( 5 ) A a n d 3 . 6 4 4 ( 6 ) A ) a r e s h o r t e r t h a n t h e S n - - - K d i s t a n c e s ( l a r g e r t h a n 4 A ) a n d K - - - K d i s t a n c e s ( l a r g e r t h a n 3 . 7 A ) . A l k a l i m e t a l - A u i n t e r a c t i o n s w e r e o b s e r v e d b e f o r c 2 6 . T h e s h o r t K + - - - A u d i s t a n c e s u g g e s t s a n a t t r a c t i v e i n t e r a c t i o n o f t h e d 1 0 e l e c t r o n p a i r s o n A u + i o n s a n d t h e p o s i t i v e c h a r g e s o n a l k a l i m e t a l c a t i o n s . T h e s h o r t c o n t a c t m a y b e a c c o u n t e d f o r b y t h e r e l a t i v e l y l a r g e e l e c t r o n e g a t i v i t y o f A u , 2 . 4 , w h i c h i s r e m a r k a b l y c l o s e t o t h o s e o f S e ( 2 . 4 ) a n d T e ( 2 . 1 ) . 2 7 A n e x t r e m e c a s e o f a l k a l i m e t a l - - - A u i n t e r a c t i o n i s f o u n d i n K A u 5 2 8 i n w h i c h K - « A u d i s t a n c e s r a n g e f r o m 3 . 2 7 A t o 3 . 6 1 A . W e n o t e t h a t i n B a A u 2 S n 8 4 ( V ) 1 1 2 1 t h e [ A u 2 8 n S 4 ] 2 ' c h a i n s c o n t a i n t h e s a m e b u i l d i n g b l o c k s a s i n ( I I I ) b u t a d o p t a d i f f e r e n t c o n f o r m a t i o n , a s s h o w n i n F i g u r e 6 - 7 . I n B a A u 2 S n S 4 , a l l S n a t o m s l i e i n a s t r a i g h t l i n e , w h i l e i n ( I I I ) t h e S n - S n v e c t o r s i n t h e S n ( S A u S ) 2 S n e i g h t - m e m b e r e d r i n g s p r o c e e d i n a z i g z a g f a s h i o n w i t h t h e a n g l e b e t w e e n t w o S n - S n v e c t o r s a t 1 0 7 . 4 6 ( 6 ) ° . T h e c o n f o r m a t i o n a l c h a n g e i s c l e a r l y d u e t o p a c k i n g e f f e c t s a n d c a n b e e x p l a i n e d b y t h e d i f f e r e n c e i n s i z e a n d n u m b e r o f t h e c o u n t e r i o n s b e t w e e n ( I I I ) a n d ( V ) . Z i g z a g c h a i n s a r e b e t t e r a b l e t o a c c o m m o d a t e a d o u b l e r o w o f K + c a t i o n s . T h e s t r a i g h t c h a i n s o f t h e B a 2 + s a l t p r o v i d e e n o u g h s p a c e f o r a s i n g l e r o w o f B a 2 + c a t i o n s . T h i s i s i l l u s t r a t e d b y c o m p a r i n g F i g u r e s 6 - 8 A a n d 6 - 8 8 . T h e s t r u c t u r e s o f K 2 A u 2 S n S 4 a n d B a A u 2 S n S 4 a r e a l s o c l o s e l y r e l a t e d t o t h o s e o f K 2 H g 3 8 4 , K 2 H g 3 8 e 4 a n d C s 2 H g 3 S e 4 2 9 ( w h i c h c a n b e w r i t t e n a s A 2 H g 2 H g ' Q 4 ( A = a l k a l i m e t a l ; Q = S , 8 e ) f o r a m o r e o b v i o u s c o m p a r i s o n ) . T h e s e c o m p o u n d s f e a t u r e s t r a i g h t [ H g 3 Q 4 ] 2 ' c h a i n s i n w h i c h [ H g 8 4 ] 6 ' t e t r a h e d r a a r e c o n n e c t e d v i a l i n e a r n g “ c e n t e r s . T h e [ A u 2 8 n 2 8 6 ] 2 ' f r a g m e n t i n ( I V ) i s a l s o o n e - d i m e n s i o n a l , f e a t u r i n g 3 4 5 e d g e - s h a r i n g b i t e t r a h e d r a l [ S n 2 8 6 ] u n i t s c o n n e c t e d b y l i n e a r A u + a t o m s t o f o r m i n fi n i t e c h a i n s . T h e c h a i n s a r e f u l l y e x t e n d e d b y c o m p a r i s o n t o t h e z i g z a g m o t i f e x h i b i t e d i n ( I I I ) . T h e u n i t c e l l o f K 2 A u 2 8 n 2 8 6 i s S h o w n i n F i g u r e 6 - 9 . T h e s t r u c t u r e o f ( I V ) i s a l s o r e l a t e d t o t h a t o f f u l l y e x t e n d e d B a A u 2 8 n S 4 . ( I V ) c o n t a i n s l o n g e r [ 8 n 2 8 5 ] 4 ' u n i t s s o t h a t t h e c h a i n s c a n a c c o m m o d a t e o n e m o r e e q u i v a l e n t o f K + c a t i o n s . T h e [ A u 2 8 n 2 8 6 ] 2 - c h a i n s l i e p a r a l l e l t o t h e c r y s t a l l o g r a p h i c c - a x i s a n d a r e s e p a r a t e d b y p o t a s s i u m c a t i o n s . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s f o r ( I V ) a r e g i v e n i n T a b l e 6 - 1 3 . T h e a v e r a g e S n - S d i s t a n c e s i s 2 . 4 1 ( 4 ) A a n d t h e S - S n - S a n g l e s r a n g e f r o m 9 1 . 9 ( 3 ) ° t o 1 1 5 . 0 ( 2 ) ° , w h i c h a r e c o m p a r a b l e t o t h o s e i n d i s c r e t e [ S n 2 8 6 ] 4 ‘ i o n s l l g . T h e A u - S d i s t a n c e s a n d S - A u — S a n g l e s a r e c o m p a r a b l e t o t h o s e i n ( I I I ) a t 2 . 3 1 3 ( 5 ) A a n d 1 7 5 . 4 ( 3 ) 0 . T h e r e i s a l s o a A u - - - A u s h o r t c o n t a c t a t 3 . 0 1 0 ( 2 ) A . T h e A u - - ~ A u s h o r t c o n t a c t o c c u r s i n s i d e t h e S n ( S A u S ) 2 8 n e i g h t - m e m b e r e d r i n g i n c o n t r a s t w i t h ( I I I ) i n w h i c h i n t e r - r i n g A u - - - A u a r e f o u n d . T h e A u - - - A u s h o r t c o n t a c t s a r e c l a s s i c a l d I O - d 1 0 i n t e r a c t i o n s 3 0 w h i c h w e r e a l s o o b s e r v e d i n B a A u 2 8 n 8 4 a n d K A u 8 5 . T h e t w o l i n e a r A u 8 2 f r a g m e n t s i n t h e 8 n ( S A u 8 ) 2 8 n e i g h t - m e m b e r e d r i n g s a r e n o t p a r a l l e l b u t f o r m a S - A u ~ ~ - A u - S d i h e d r a l a n g l e o f 7 5 . 3 0 . T h e r e a r e t h r e e d i s t i n c t p o t a s s i u m c a t i o n s . K ( 1 ) a n d K ( 2 ) a r e c o o r d i n a t e d b y 8 a n d 1 0 8 a t o m s r e s p e c t i v e l y , w h i l e K ( 3 ) i s f o u n d t o b e d i s o r d e r e d e v e n l y b e t w e e n ( 0 . 5 , 0 . 5 , 0 . 0 4 9 ) a n d ( 0 . 5 , 0 . 5 - 0 . 0 4 9 ) . A t e i t h e r s i t e , K ( 3 ) i s c o o r d i n a t e d b y 8 S a t o m s . T h e a v e r a g e K - - - 8 d i s t a n c e i s 3 . 3 9 ( 1 6 ) A . T h e K - - - A u d i s t a n c e s a t 3 . 8 5 0 ( 8 ) A a r e l o n g e r t h a n t h o s e i n ( I I I ) . W e n o t e t h a t t h e K “ c a t i o n s a r e s u r r o u n d e d b y m o r e 8 a t o m s i n ( I V ) , a n d , a s a r e s u l t , a f e w e r n u m b e r o f K - - - A u i n t e r a c t i o n s a r e o b s e r v e d . A l t h o u g h g o l d a n d c o p p e r b e l o n g t o t h e s a m e g r o u p i n t h e p e r i o d i c 3 4 6 t a b l e , t h e y b e h a v e q u i t e d i f f e r e n t l y i n t h e i r c o o r d i n a t i o n m o d e s . T e t r a h e d r a l c o o r d i n a t i o n i s t h e m o s t c o m m o n f o r C u ” c h a l c o g e n i d e s a l t h o u g h t h r e e a n d t w o c o o r d i n a t e d C u + a r e k n o w n . A u + p r e f e r s l i n e a r c o o r d i n a t i o n b e c a u s e o f t h e v e r y l a r g e ( 4 . 6 3 e V ) 6 s - 6 p e n e r g y s e p a r a t i o n w h i c h m a k e s m i x i n g a n d h y b r i d i z a t i o n o f t h e s e o r b i t a l s m o r e d i f fi c u l t . 3 1 T h e l e s s c o m m o n A u 3 + s q u a r e - p l a n a r c e n t e r s w e r e f o r m e d i n t h e t e r n a r y A A u 8 e 2 ( A = N a , K ) , N a 3 A u S e 3 a n d K 3 A u 8 e 1 3 2 4 ’ 2 9 0 4 1 9 s y s t e m s , a n d a p p e a r t o b e m o r e s t a b l e i n a s e l e n i d e r a t h e r t h a n s u l fi d e e n v i r o n m e n t . E x t e n s i o n o f t h e s t u d i e s r e p o r t e d h e r e i n t o t h e S e x z ‘ fl u x e s m a y a l s o s t a b i l i z e A u 3 + c e n t e r s w h i c h , i n c o n j u n c t i o n w i t h S n a n d a l k a l i m e t a l s , s h o u l d f o r m d i f f e r e n t s t r u c t u r e s f r o m t h o s e d e s c r i b e d h e r e . F i g u r e 6 — 6 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f ( A ) a s i n g l e c h a i n o f K 2 A u 2 S n S 4 . A u - - A u s h o r t c o n t a c t s a r e s h o w n b y d a s h e d l i n e s ( B ) v i e w d o w n t h e b - a x i s . 3 4 7 a m : 8 f o e r u t c u r t s c i n . o ) a i l n I a e h t f e c n e r e f e o r n o i m o r t f a t n e s e d e t p a d r a p ( e r 4 S n P 8 E 2 T U A R a O B F i g u r e 6 - 7 : 0 A u S \ C U ) ‘ 6 3 4 9 4 n S w n o u d q d A e 2 w e i v K ) A 4 ( S n f u o q s A l l a e B c ) t B i ( n u . s i e x h a t > n 1 e 0 e 1 w < t e e h b t . s i n o n x w a s > o i 0 d r 1 d a 0 e p < w m e o i e h C v t : 8 - 6 e r u g i F 3 5 0 3 5 1 F i g u r e 6 - 9 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K 2 A u 2 8 n 2 8 6 . A u - - - A u s h o r t c o n t a c t s a r e s h o w n b y d a s h e d l i n e s . ( A ) v i e w d o w n t h e b - a x i s . ( B ) v i e w d o w n t h e c - a x i s . 1 r ) 3 5 2 3 5 3 T a b l e 6 - 1 2 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( d e g ) o f K 2 A u 2 8 n 8 4 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) A u ( 1 ) - S ( 1 ) 2 . 2 9 7 ( 5 ) S n - S ( 1 ) 2 . 3 8 4 ( 5 ) A u ( 1 ) - S ( 2 ) 2 . 2 9 0 ( 6 ) S n - S ( 2 ) 2 . 4 1 0 ( 5 ) A u ( 2 ) - S ( 3 ) 2 . 3 0 0 ( 5 ) S n — S ( 3 ) 2 . 3 9 8 ( 5 ) A u ( 2 ) - 8 ( 4 ) 2 . 2 9 3 ( 5 ) S n - S ( 4 ) 2 . 4 0 1 ( 6 ) m e a n ( A u - S ) 2 . 2 9 5 ( 4 ) m e a n ( S n - S ) 2 . 3 9 8 ( 1 1 ) A u ( 1 ) - A u ( 2 ) 3 . 3 6 3 ( 2 ) K ( 1 ) - S ( 1 ) 3 . 2 6 4 ( 7 ) A u ( 2 ) - A u ( 2 ) 4 . 0 1 5 ( 3 ) K ( 1 ) - S ( 2 ) 3 . 2 2 4 ( 8 ) A u ( 1 ) - A u ( 1 ) 3 . 9 2 9 ( 2 ) K ( 1 ) - 8 ( 3 ) 3 . 2 4 8 ( 7 ) A u ( 1 ) - K ( 1 ) 3 . 6 3 4 ( 5 ) K ( 1 ) - 8 ( 3 ) 3 . 2 0 9 ( 8 ) A u ( 1 ) - K ( 2 ) 3 . 6 4 4 ( 6 ) K ( 1 ) - 8 ( 4 ) 3 . 4 0 1 ( 8 ) A u ( 2 ) - K ( 2 ) 3 . 8 6 5 ( 6 ) K ( 1 ) - 8 ( 4 ) 3 . 6 4 2 ( 7 ) A u ( 2 ) - K ( 2 ) 3 . 9 1 4 ( 6 ) K ( 2 ) - S ( 1 ) 3 . 1 8 6 ( 8 ) A u ( 2 ) - K ( 1 ) 3 . 5 4 6 ( 5 ) K ( 2 ) - S ( 2 ) 3 . 3 3 2 ( 8 ) A u ( 2 ) - K ( 1 ) 3 . 9 9 9 ( 5 ) K ( 2 ) - 8 ( 3 ) 3 . 3 0 3 ( 7 ) m e a n ( A u - S ) 3 . 7 7 ( 1 8 ) K ( 2 ) - 8 ( 4 ) 3 . 2 6 9 ( 8 ) K ( 1 ) - S ( 1 ) 3 . 2 8 3 ( 7 ) m e a n ( K - 8 ) 3 . 3 1 ( 1 2 ) S e l e c t e d B o n d A n g l e s @ e g ) S ( 1 ) - S n - 8 ( 2 ) 1 1 0 5 ( 2 ) 8 ( 1 ) — A u ( 1 ) - S ( 2 ) 1 7 5 . 1 ( 2 ) S ( l l ' s n ' s m 1 1 0 9 ( 2 ) S ( 3 ) - A u ( 2 ) - S ( 4 ) 1 7 4 . 6 ( 2 ) S ( 1 ) - S n - S ( 4 ) 1 1 1 . 9 ( 2 ) A u ( 2 ) _ s ( 3 ) _ 5 n 9 2 0 ( 2 ) S ( 2 ) - S n - S ( 3 ) 1 0 6 . 7 ( 2 ) A u ( 1 ) _ S ( 1 ) _ S n 9 9 0 ( 2 ) S ( 2 ) - 8 n - S ( 4 ) 1 0 7 . 4 ( 2 ) A u ( 2 ) - s ( 4 ) _ 8 n 9 5 . 1 0 ) 5 9 1 5 ” “ ) 1 0 9 - 2 ( 2 ) A u ( l ) - S ( 2 ) - S n 9 2 . 8 ( 2 ) 3 5 4 T a b l e 6 - 1 3 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 2 A u 2 8 n 2 8 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) A u — A u 3 . 0 1 0 ( 2 ) K ( 1 ) - S ( 1 ) 3 . 4 7 7 ( 9 ) A u — S ( 2 ) 2 . 3 1 3 ( 5 ) K ( 1 ) - S ( 2 ) 3 . 1 3 8 ( 7 ) S n - S ( 1 ) 2 . 4 4 3 ( 7 ) K ( 2 ) — S ( 2 ) 3 . 4 5 9 ( 6 ) S n - S ( 2 ) 2 . 3 6 8 ( 6 ) K ( 3 ) — 8 ( 1 ) 3 . 2 2 6 ( 9 ) m e a n ( S n - 8 ) 2 . 4 1 ( 5 ) K ( 3 ) — S ( 2 ) 3 . 5 5 9 ( 6 ) A u — K ( l ) 3 . 8 5 0 ( 8 ) m e a n ( K - S ) 3 . 3 9 ( 1 6 ) S e l e c t e d B o n d A n g l e s ( d e g ) A u - A u - S ( 2 ) 8 7 . 7 ( 1 ) 8 ( 2 ) - A u - S ( 2 ) 1 7 5 . 4 ( 3 ) A u - A u - S ( 2 ) 8 7 . 7 ( 1 ) S ( 1 ) - S n - 8 ( 2 ) 1 1 0 . 3 ( 2 ) S ( 1 ) - S n — S ( 1 ) 9 1 . 9 ( 3 ) S ( 1 ) - S n - S ( 2 ) 1 1 3 . 5 ( 2 ) 8 ( 1 ) - S n - S ( 2 ) 1 1 3 . 5 ( 2 ) S ( 2 ) - 8 n - S ( 2 ) 1 1 5 . 0 ( 2 ) S ( 1 ) - S n — S ( 2 ) 1 1 0 . 3 ( 2 ) S n - S ( 1 ) - S n 8 8 . 1 ( 3 ) 3 5 5 3 . 3 . S p e c t r o s c o p y O p t i c a l S p e c t r o s c o p y T h e U V - V i s - n e a r I R s p e c t r a o f a l l c o m p o u n d s r e p o r t e d h e r e e x h i b i t s t e e p a b s o r p t i o n e d g e s f r o m w h i c h o p t i c a l b a n d g a p s c a n b e u n e q u i v o c a l l y d e r i v e d . ( 0 1 h v ) 2 v s . E p l o t s a p p e a r q u i t e l i n e a r s u g g e s t i n g t h e b a n d g a p s a r e d i r e c t i n c h a r a c t e r . T a b l e 6 — 1 4 s u m m a r i z e s t h e r e s u l t s . T y p i c a l a b s o r p t i o n s p e c t r a a r e s h o w n i n F i g u r e s 6 - 1 0 a n d 6 - 1 1 . T h e b a n d g a p v a l u e s a r e c o n s i s t e n t w i t h t h e c o l o r s o f t h e s a m p l e s . T h e s e r e s u l t s s u g g e s t t h a t a l l c o m p o u n d s a r e s e m i c o n d u c t o r s , a s p r e d i c t e d b y t h e e l e c t r o n p r e c i s e n a t u r e o f t h e i r c h e m i c a l f o r m u l a s . T h e s p e c t r u m o f R b 2 C u 2 S n S 4 a l s o r e v e a l s o t h e r e l e c t r o n i c t r a n s i t i o n s a t h i g h e r e n e r g y ( 2 . 5 8 e V , 2 . 7 8 e V a n d 3 . 5 6 e V ) a b o v e t h e a b s o r p t i o n e d g e . T h e s e l e n i d e a n a l o g s K 2 C u 2 8 n 2 8 e 6 a n d R b 2 C u 2 S n 2 S e 6 s h o w a b s o r p t i o n e d g e s a t l o w e r e n e r g y , a s e x p e c t e d , g i v i n g b a n d g a p s i n t h e n e i g h b o r h o o d o f 1 . 0 4 e V , s e e F i g u r e 6 - 1 0 C . T h e b a n d g a p s o f A 2 C u 2 8 n 2 8 6 a n d A 2 C u 2 S n 2 8 e 6 a r e r e l a t i v e l y l o w a n d c o m p a r a b l e t o t h o s e o f t h e s t r u c t u r a l l y r e l a t e d c h a l c o p y r i t e s , C u I n S 2 ( 1 . 5 5 e V ) a n d C u I n S e 2 ( 1 . 0 e V ) . T h e s e v a l u e s s u g g e s t t h a t t h e s e c o m p o u n d s a r e s u i t a b l e f o r e f fi c i e n t a b s o r p t i o n o f m o s t o f t h e s o l a r r a d i a t i o n , m a k i n g t h e m p o t e n t i a l c a n d i d a t e s f o r s o l a r c e l l a p p l i c a t i o n s . I n C u I n Q 2 , t h e o p t i c a l b a n d - g a p t r a n s i t i o n o r i g i n a t e s f r o m a v a l e n c e b a n d , c o m p o s e d o f h y b r i d i z e d o r b i t a l s C u ( 3 d ) / Q ( 3 o r 4 p ) t o a C u ( 4 s ) c o n d u c t i o n b a n d . 3 2 A s i m i l a r a s s i g n m e n t i s p r o p o s e d f o r A 2 C u 2 S n 2 Q 6 . T h e s m a l l b a n d - g a p s e x h i b i t e d b y A 2 C u 2 S n 2 Q 6 o 0 — 4 - | 4 4 4 1 4 1 4 4 1 4 4 fi t 0 r * o t r t a " N 1 B ' 7 1 A v 1 1 . . . 1 1 1 1 0 . 2 5 - 4 4 . - . “ r f h t 4 ( 0 . 2 - - b 1 b 4 b 4 0 . 1 5 - - p 4 0 / 3 . , p 4 D 1 0 . 1 - - b 4 r 1 9 1 p 4 0 . 0 5 : - j b 4 t [ 5 3 : 2 0 c h 1 o 1 - - 1 1 1 1 1 1 1 - - - - 1 r - - 1 1 . . - . l r r - - 1 1 - - - 1 . 5 . 1 1 l ' - 1 « I i 3 0 . 5 : - . 1 * ( E g = l . 4 4 ¢ V l o 1 A . - - A 1 - 1 1 1 1 1 1 1 1 1 4 4 1 1 1 1 1 4 1 O 1 2 3 4 5 6 7 E n e r g y ( c V ) a i l . . . . . . . . . 1 l 1 1 1 1 1 1 1 4 1 1 1 1 2 2 7 - ] ( C ) : - 4 . t - 1 1 " t 6 1 f I : W S 3 C S i 1 E 4 — 3 E - 4 4 3 - ] , 1 . E 1 I § E g = 1 0 4 c v E Z L Y ' V Y V V F V Y Y ' ' Y T v v r v y v r v a V V V Y T — T — Y v a 0 1 2 3 4 5 6 7 W W ) F i g u r e 6 - 1 0 : O p t i c a l a b s o r p t i o n s p e c t r a o f ( A ) R b 2 C U 2 S n S 4 ( B ) R b 2 C u 2 8 0 2 3 6 ( C ) K 2 C U 2 S n 2 S e 6 3 5 7 2 L ‘ I 1 ' f l 1 l l T V J 1 . 6 - 7 1 . 2 — 9 G u s ’ I 0 . 8 - ' j . J 0 . 4 - : 1 1 1 O h . 1 . 1 ~ 1 0 1 2 3 4 5 6 7 E n e r g y ( e V ) 1 . 2 _ - . . . 1 . 1 - _ ‘ 0 . 8 _ - — a 2 ” 0 . 6 - - , 0 . 4 . 7 _ 1 1 0 . 2 _ - . _ E g = 2 . 3 0 e V O . 1 . i 1 i . 1 . i 1 . 1 . 1 . . 1 . . . . 1 . 1 i O 1 2 3 4 5 6 7 E w s fl e v ) F i g u r e 6 - 1 1 : O p t i c a l a b s o r p t i o n s p e c t r a o f ( A ) K 2 A u 2 8 n 8 4 K 2 A U 2 S n 2 S 6 . ( B ) 3 5 8 T a b l e 6 — 1 4 . S u m m a r y o f t h e O p t i c a l B a n d G a p s ( e V ) f o r R b 2 C u 2 8 n S 4 , A 2 C u 2 8 n 2 8 6 ( A : K , R b ) A 2 C u 2 S n 2 S e 6 ( A = K , R b ) , K 2 A u 2 S n S 4 a n d K 2 A u 2 S n 2 S 6 . C o m p o u n d E g ( e V ) C o m p o u n d E g ( e V ) R b 2 C q u n S 4 2 . 0 8 K 2 C u 2 8 n 2 8 e 6 1 , 0 4 K 2 0 1 2 3 1 0 5 6 1 . 4 7 R 2 C u 2 8 n 2 8 6 6 1 , 0 4 R b 2 C u 2 8 n 2 8 6 1 . 4 4 K 2 A l 1 2 5 1 1 5 4 2 . 7 5 K 2 A u 2 S n 2 S 6 2 . 3 0 T a b l e 6 — 1 5 . F r e q u e n c i e s ( c m ‘ l ) o f S p e c t r a l A b s o r p t i o n s f o r ( I ) ~ ( I V ) R b 2 C u 2 S n S 4 ( I ) R b 2 C u 2 S n 2 S 6 ( I I ) K 2 A u 2 S n S 4 ( I I I ) K 2 A u 2 S n 2 S 6 ( I V ) 3 5 3 ( s ) 3 9 2 ( s ) 3 6 8 ( m ) 3 5 9 ( m ) 3 2 9 ( s h ) 3 6 9 ( m ) 3 4 9 ( s h ) 3 3 7 ( m ) 2 2 3 ( w ) 3 4 9 ( m ) 3 3 9 ( s ) 3 2 0 ( m ) 1 5 2 ( w ) 3 0 5 ( m ) 3 2 8 ( s h ) 3 1 1 ( w ) 2 6 4 ( s ) 3 0 2 ( s h ) 2 9 8 ( s ) 2 3 2 ( s ) 1 5 3 ( m ) 1 8 9 ( m ) 1 9 8 ( m ) 1 7 8 ( s h ) 1 7 1 ( w ) 1 5 8 ( m ) 1 5 1 ( m ) 1 4 0 ( w ) 2 1 ( 3 ) s t r o n g ; ( 1 1 1 ) m e d i u m ; ( w ) w e a k ; ( s h ) s h o u l d e r 1 3 1 ( w ) 3 5 9 a r e a l s o c o m p a r a b l e t o t h o s e o f C d T e ( 1 . 5 e V ) , G a A s ( 1 . 4 e V ) a n d S i ( 1 . 1 e V ) w h i c h , t o g e t h e r w i t h C u I n Q 2 , a r e h i g h l y e f f i c i e n t p h o t o v o l t a i c m a t e r i a l s . 3 3 V i b r a t i o n a l S p e c t r o s c o p y ( I ) ~ ( I V ) e x h i b i t S p e c t r a l a b s o r p t i o n s d u e t o C u - S a n d / o r S n - S a n d / o r A u - S v i b r a t i o n s a s s h o w n i n F i g u r e 6 - 1 2 . T h e o b s e r v e d a b s o r p t i o n f r e q u e n c i e s a r e g i v e n i n T a b l e 6 - 1 5 . I n g e n e r a l , t h e l i g h t e r m e t a l a t o m s a n d s t r o n g e r M - S b o n d s e x h i b i t h i g h e r v i b r a t i o n a l f r e q u e n c i e s . H o w e v e r , p e a k s i n t h e r a n g e b e t w e e n 4 0 0 c m ' 1 t o 1 5 0 c m : 1 c o u l d b e a t t r i b u t e d t o e i t h e r o f t h e C u - S , S n — S a n d A u - S v i b r a t i o n s . T h i s m a k e s t h e a s s i g n m e n t o f t h e p e a k s n e a r l y i m p o s s i b l e . ( I ) h a s a m o r e s y m m e t r i c s t r u c t u r e w h i c h c o u l d a c c o u n t f o r i t s s m a l l n u m b e r o f a b s o r p t i o n b a n d s . T h e r e i s o n l y o n e i n t e n s e p e a k a t 3 5 3 c m ' 1 w i t h a s h o u l d e r a t 3 2 9 c m ' l ; t h e f o r m e r c o u l d b e a s s i g n e d a s C u — S s t r e t c h i n g a n d t h e l a t t e r c o u l d b e a s s i g n e d a s S n — S s t r e t c h i n g w h i c h i s l e s s i n t e n s e b e c a u s e 8 n a t o m s a r e s i t t i n g a t m o r e s y m m e t r i c s i t e s t h a n C u a t o m s . ( I I ) h a s m o r e p e a k s a n d c o u l d b e d i v i d e d i n t o t w o s e t o f a b s o r p t i o n s d u e t o C u - S a n d S n - S v i b r a t i o n s r e s p e c t i v e l y b e c a u s e t h e b o n d i n g e n v i r o n m e n t o f S n a n d C u i s s i m i l a r . H o w e v e r , e x c e p t t h a t t h e m o s t l e f t p e a k c o u l d b e a s s i g n e d a s C u - S s t r e t c h i n g , i t i s d i f fi c u l t t o a s s i g n t h e r e s t o f p e a k s . ( I I I ) a n d ( I V ) e x h i b i t e v e n m o r e c o m p l i c a t e d o v e r l a p s w h i c h m a k e t h e a s s i g n m e n t i m p o s s i b l e . 3 6 8 3 3 0 2 7 6 2 2 2 1 6 8 { 1 8 ( B ) 7 6 1 ‘ E 1 ' C 5 N fl T T I M 1 1 S ‘ B T . / ' N H 2 8 5 3 6 3 3 4 8 3 e 6 n 5 u u n v n a e n 2 6 6 2 2 7 1 6 8 3 6 0 ( A ) 1 F i g u r e 6 - 1 2 : I n f r a r e d s p e c t r a o f ( A ) R b 2 C u 2 8 n S 4 ( B ) R b 2 C u 2 S n 2 8 5 ( C ) K 2 A q u n S 4 ( D ) K 2 A q u n 2 S 6 . 3 8 T 3 5 N U l l I N h I S h N U H l 6 X 2 5 2 0 3 4 7 5 2 1 0 1 1 1 5 ' r DV A 1 ' 3 5 I 3 8 N U l 8 L I O : 0 > N ‘ — 8 S N U H i Z S I j 1 2 L ' Z I - m m : m O 1 " N — ( f \ 0 - N N N - ( ( 0 D _ _ . . . r " " " " ’ 3 6 1 ( C ) I 1 6 h i 1 1 1 1 3 6 2 C o n c l u s i o n T h e r e s u l t s r e p o r t e d h e r e s h o w t h a t t h e [ S n 8 4 ] 4 ' a n d [ S n 2 8 6 ] 4 ‘ a n i o n s a r e e x c e l l e n t b u i l d i n g b l o c k s w h i c h c a n b e l i n k e d t o o t h e r m e t a l i o n s t o f o r m v a r i o u s e x t e n d e d q u a t e r n a r y s t r u c t u r e s . T h e a b i l i t y o f t h e [ S n 8 4 ] 4 ' a n d [ S n 2 S 6 ] 4 ' l i g a n d s t o c o o r d i n a t e t o M n + i o n s i n s o l i d s t a t e s t r u c t u r e s m a y p a r a l l e l o r e x c e e d t h a t o f t h e v e r s a t i l e [ M 0 8 4 ] 2 ' e x h i b i t e d i n d i s c r e t e c o m p l e x e s , a n d t h u s i t p o i n t s t o a p r o m i s i n g n e w s y n t h e t i c a v e n u e i n w h i c h t e t r a t h i o m e t a l a t e s p l a y a c e n t r a l r o l e . A l k a l i p o l y s u l fi d e fl u x e s a r e c o n v e n i e n t i n - s i t u s o u r c e s f o r t h e s e a n i o n s . 1 ) 2 ) 3 ) 3 6 3 L i s t o f R e f e r e n c e s ( a ) F i n l a y s o n , N . ; B a n y a i , W . C . ; S e a t o n , C . T . ; S t e g e m a n , G . I . ; O ' N e i l , M . ; C u l l e n , T . J . ; I r o n s i d e , G . N . J . O p t . S o c . A m . 1 9 8 9 , 6 6 , 6 7 5 - 6 8 4 . ( b ) W a n g , Y . ; H e r r o n , N . ; M a h l e r , W . ; S u n a , A . J . O p t . S o c . A m . 1 9 8 9 , 6 6 , 8 0 8 - 8 1 3 . ( c ) B a l l m a n , A . A . ; B y e r , R . L . ; E i m e r l , D . ; F e i g e l s o n , R . 8 . ; F e l d m a n , B . J . ; G o l d b e r g , L . S . ; M e n y u k , N . ; T a n g , C . L . A p p l i e d O p t i c s 1 9 8 7 , E , 2 2 4 - 2 2 7 . ( a ) W h i t t i n g h a m , M . 8 . P r o g . S o l i d S t a t e C h e m . 1 9 7 8 , 1 _ 2 _ , 4 1 - 9 9 . ( h ) W h i t t i n g h a m , M . 8 . i n S o l i d S t a t e I o n i c D e v i c e s , J u l y 1 8 - 2 3 , 1 9 8 8 , S i n g a r p o r e ; C h o w d a r i , B . V . R . , R a d h a k r i s h n a , 8 . , E d s . ; W o r l d S c i e n t i fi c : S i n g a p o r e , 1 9 8 8 ; p p 5 5 - 7 4 . ( c ) B o w d e n , W . L . ; B a m e t t e , L . H . ; D e M u t h , D . L . J . E l e c t r o c h e m . S o c . 1 9 8 9 , Q 6 , 1 6 1 4 - 1 6 1 8 . ( ( 1 ) M u r p h y , D . W . ; T r u m b o r e , F . A . J . E l e c t r o c h e m . S o c . 1 9 8 7 , _ I fi , 2 5 0 6 - 2 5 0 7 . ( e ) W h i t t i n g h a m , M . S . S c i e n c e 1 9 7 6 , 1 % , 1 1 2 5 . ( f ) W h i t t i n g h a m , M . 8 . J . S o l i d S t a t e C h e m . 1 9 7 9 , 2 9 , 3 0 3 - 3 1 0 . ( a ) E c k e r t , H . A n g e w C h e m . I n t . E d . E n g l . A d v . M a t e r . 1 9 8 9 , 2 8 , 1 7 2 3 - 1 7 3 2 . ( b ) Z a l l e n , R . i n P h y s i c s o f A m o r p h o u s S o l i d s , W i l e y , N e w Y o r k , 1 9 8 3 . ( c ) S t r a n d , D . ; A d l e r , D . P r o c . S P I E I n t . S o c . O p t . E n g . 1 9 8 3 , Q , 2 0 0 . ( d ) Y a m a d a , N . ; O h n o , N . ; A k a h i r a , N . ; N i s h i u c h i , K . ; N a g a t a , K . ; T a k a o , M . P r o c . I n t . S y m p . O p t i c a l M e m o r y , 1 9 8 7 , J p n . J . A p p l . P h y s . 1 9 8 7 , 2 6 , S u p p l . 2 6 - 4 , p 6 1 . ( e ) A r n a u t o v a , E . ; S v i r i d o v , E . ; R o g a c h , B . ; S a v c h e n k o , E . ; G r e k o v , A . I n t e r g r a t e d F e r r o e l e c t r i c s 1 9 9 2 , 1 , 1 4 7 - 1 5 0 . 4 ) 5 ) 6 ) 7 ) 8 ) 9 ) 3 6 4 ( a ) S m i t h , R . A . i n S e m i c o n d u c t o r s p p . 4 3 8 , C a m b r i d g e U n i v e r s i t y P r e s s , 1 9 7 8 . ( b ) B a r t l e t t , B . E . e t a l . I n f r a r e d P h y s . 1 9 6 9 , 2 , 3 5 . ( a ) M i c k e l s e n , R . A . ; C h e n , W . S . i n T e r n a r y a n d M u l t i n a r y C o m p o u n d s P r o c e e d i n g s o f t h e 7 t h C o n f e r e n c e , D e b , S . K . a n d Z u n g e r , A . E d s . , M a t e r i a l s R e s e a r c h S o c i e t y , 1 9 8 7 , p p . 3 9 - 4 7 . ( b ) S t e w a r d , J . M . ; C h e n , W . S . ; D e v a n e y , W . E . ; M i c k e l s e n , R . A . D e b , 8 . K . a n d Z u n g e r , A . E d s . , M a t e r i a l s R e s e a r c h S o c i e t y , 1 9 8 7 , p p . 5 9 - 6 4 . ( a ) C h i a n e l l i , R . R . ; P e c o r a r o , T . A . ; H a l b e r , T . R . ; P a n , W . - H . ; S t i e f e l , E . I . J . C a t a l . 1 9 8 4 , 8 _ 6 , 2 2 6 - 2 3 0 . ( b ) P e c o r a r o , T . A . ; C h i a n e l l i , R . R . J . C a t a l . 1 9 8 1 , 6 1 , 4 3 0 - 4 4 5 . ( c ) H a r r i s , 8 . ; C h i a n e l l i , R . R . J . C a t a l . 1 9 8 4 , 8 6 , 4 0 0 - 4 1 2 . ( a ) C o u c o u v a n i s , D . A c c . C h e m . R e s . 1 9 8 1 , 1 _ 4 . 2 0 1 - 2 0 9 . ( b ) H o l m , R . H . C h e m . S o c . R e v . 1 9 8 1 , 1 6 , 4 5 5 - 4 9 1 . ( c ) M i i l l e r , A . ; D i e m a n n , B . ; J o s t e s , R . ; B 6 g g e , H . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 1 , E , 9 3 4 - 9 5 5 . B i n n i e , W . P . ; R e d m a n , M . J . ; M a l l i o , W . I n o r g . C h e m . 1 9 7 0 , _ 9 _ , 1 4 4 9 - 1 4 5 2 . P r u s s , E . A . ; S n y d e r , B . 8 . ; S t a c y , A . M . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 3 , 3 2 , 2 5 6 - 2 5 7 . 1 0 ) 1 1 ) 1 2 ) 1 3 ) 3 6 5 ( a ) L i a o , J . - H . ; V a r o t s i s , C . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 3 , 2 2 , 2 4 5 3 - 2 4 6 2 . ( b ) K r e b s , B . ; S c h i w y , W . Z A n o r g . C h e m . 1 9 7 3 , fl , 6 3 - 7 1 . ( c ) S c h i w y , W . ; B l u t a u , C h r . ; G a t h j e , D . ; K r e b s , B . Z A n o r g . A l l g . C h e m . 1 9 7 5 , 4 1 2 , 1 - 1 0 . ( d ) J u m a s , J . - C . ; P h i l i p p o t , B . ; M a u r i n , M . J . S o l i d S t a t e C h e m . 1 9 7 5 , E , 1 5 2 - 1 5 9 . ( e ) M a r k , W . ; L i n d q v i s t , O . ; J u m a s , J . - C . P h i l i p p o t , E . A c t a . C r y s t . 1 9 7 4 , 2 3 6 , 2 6 2 0 - 2 6 2 8 . ( f ) S h e l d r i c k , W . 8 . Z A n o r g , A l l g . C h e m i e . 1 9 8 8 , fl , 2 3 - 3 0 . ( g ) K r e b s , B . ; P o h l , S . S c h i w y , W . Z A n o r g . C h e m . 1 9 7 2 , 3 9 3 , 2 4 1 - 2 5 2 . ( h ) J u m a s , J . - C . ; P h i l i p p o t , E . ; V e r m o t - G a u d — D a n i e l , F . ; R i b e s , M . ; M a u r i n , M . J . S o l i d S t a t e C h e m . 1 9 7 5 , 1 5 , 3 1 9 - 3 2 7 . ( i ) S c h i w y , W . ; P o h l , 8 . ; K r e b s , B . Z A n o r g . A l l g . C h e m . 1 9 7 3 , M , 7 7 - 8 6 . ( i ) S u s a , K . ; S t e i n fi n k , H . J . S o l i d S t a t e C h e m . 1 9 7 1 , 2 , 7 5 - 8 2 . ( a ) T e s k e , C h r . L . Z A n o r g . A l l g . C h e m . 1 9 7 8 , fl 4 _ 5 , 1 9 3 - 2 0 1 . ( b ) T e s k e , C h r . L . ; V e t t e r , 0 . Z A n o r g . A l l g . C h e m . 1 9 7 6 , _ 4 2 1 , 2 0 0 - 2 0 4 . ( c ) T e s k e , C h r . L . Z N a t u r f o r s c h 1 9 8 0 , m , 7 - 1 1 . ( d ) T e s k e , C h r . L . Z A n o r g . A l l g . C h e m . 1 9 7 6 , £ 2 , 6 7 - 7 6 . ( 6 ) T e s k e , C h r . L . ; V e t t e r , 0 . Z . A n o r g . A l l g . C h e m . 1 9 7 6 , Q 6 , 2 8 1 - 2 8 7 . ( 1 ) T e s k e , C h r . L . Z A n o r g . A l l g . C h e m . 1 9 8 0 , @ , 1 6 3 - 1 6 8 . ( a ) W u , P . ; L u , Y . - J . ; I b e r s , J . A . J . S o l i d S t a t e C h e m . 1 9 9 2 , 9 _ 7 , 3 8 3 - 3 9 0 . ( b ) G u e n , L . ; G l a u n s i n g e r , W . S . J . S o l i d S t a t e C h e m . 1 9 8 0 , 3 _ 5 , 1 0 - 2 1 . K l e m m , W ; S o d o m a n n , H . ; L a n g m e s s e r , P . Z A n o r g . A l l g . C h e m . 1 9 3 9 , 2 4 1 , 2 8 1 - 3 0 4 . 3 6 6 1 4 ) S m i t h , D . K . ; N i c h o l s , M . C . ; Z o l e n s k y , M . J E . P O W D 1 0 : " A F O R T R A N I V P r o g r a m f o r C a l c u l a t i n g X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s " v e r s i o n 1 0 . P e n n s y l v a n i a S t a t e U n i v e r s i t y . 1 5 ) S h e l d r i c k , G . M . I n C r y s t a l l o g r a p h i c C o m p u t i n g 3 ; S h e l d r i c k , G . M . K r u g e r , C . ; G o d d a r d , R . , E d s . ; O x f o r d U n i v e r s i t y P r e s s : O x f o r d , U . K . , 1 9 8 5 ; p p 1 7 5 - 1 8 9 . 1 6 ) T E X S A N - T E X R A Y S t r u c t u r e A n a l y s i s P a c k a g e , M o l e c u l a r S t r u c t u r e C o r p o r a t i o n ( 1 9 8 5 ) . 1 7 ) D I F A B S : W a l k e r , N . ; S t u a r t , D . D I F A B S : A n E m p i r i c a l M e t h o d f o r C o r r e c t i n g D i f f r a c t i o n D a t a f o r A b s o r p t i o n E f f e c t s . A c t a . C r y s t a l l o g r . 1 9 8 3 , A 3 9 , 1 5 8 - 1 6 6 . 1 8 ) K a n a t z i d i s , M . G . C h e m . M a t e r . 1 9 9 0 , 2 , 3 5 3 - 3 6 3 . 1 9 ) B o h e r , P . ; G a r n i e r , P . ; G a v a r r i , J . R . ; H e w a t , A . W . J S o l i d S t a t e C h e m . 1 9 8 5 , _ 5 _ 1 , 3 4 3 - 3 5 0 . 2 0 ) ( a ) B r o n g e r , W . ; B 6 t t c h e r , P . Z A n o r g . A l l g . C h e m . 1 9 7 2 , _ 3 _ 9 _ _ ( _ ) , 1 - 1 2 . ( b ) B r o n g e r , W . ; H e n d r i k s , U . R e v . D e C h i m i e M i n e r . 1 9 8 0 , 1 1 , 5 5 5 - 5 6 0 . ( c ) B r o n g e r , W . ; M l ' i l l e r , P . J . L e s s - C o m m o n M e t . 1 9 8 4 , _ 1 _ Q ( _ ) , 2 4 1 - 2 4 7 . 2 1 ) B o o n , J . W . ; M a c G i l l a v r y , C . H . R e c l . T r a v . C h i m . P a y s - B a s 1 9 4 2 , 2 2 ) 2 3 ) 2 4 ) 2 5 ) 2 6 ) 2 7 ) 2 8 ) 3 6 7 _ 6 _ l , 9 1 0 - 9 1 7 . K e a n e , P . M . ; L u , Y . - J . ; I b e r s , J . A . A c e . o f C h e m . R e s . 1 9 9 1 , 2 4 , 2 2 3 - 2 2 9 . A v e r k i e v a , G . K . ; V a i p o l i n , A . A . ; G o r y u n o v a , N . A . i n " S o m e T e r n a r y C o m p o u n d s o f t h e A 2 ( I ) B ( I V ) C 3 ( V I ) T y p e a n d S o l i d S o l u t i o n s B a s e d o n T h e m " S o v i e t R e s e a r c h i n N e w S e m i c o n d u c t o r M a t e r i a l s , E d . D . N . N a s l e d o v , C o n s u l t a n t s B u r e a u , N e w Y o r k . 1 9 6 5 , p p 2 6 — 3 4 . P a r k , Y . ; K a n a t z i d i s , M . G . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 0 , 2 2 , 9 1 4 - 9 1 5 . W h a n g b o , M . - H . i n C r y s t a l C h e m i s t r y a n d P r o p e r t i e s o f M a t e r i a l s w i t h Q u a s i - O n e - D i m e n s i o n a l S t r u c t u r e s ; R o u x e l , J . E d . ; D . R e i d e l : 1 9 8 6 , p p 2 7 - 8 5 . ( a ) H a u s h a l t e r , R . C . A n g e w . C h e m , I n t . E d . E n g l . 1 9 8 5 , 2 _ 4 , 4 3 2 - 4 3 3 . ( b ) H u a n g , S . - P . ; K a n a t z i d i s , M . G . A n g e w . C h e m . , I n t . E d . E n g l . 1 9 9 2 , _ 3 _ 1 _ , 7 8 7 - 7 8 9 . G r e e n w o o d , N . N . ; E a m s h a w , A . C h e m i s t r y O f T h e E l e m e n t s 1 9 8 6 , P e r g a m o n P r e s s L t d . R a u b , C . ; C o m p t o n , V . Z A n o r g . A l l g . C h e m . 1 9 6 4 , 2 2 2 , 5 - 1 1 . 2 9 ) 3 0 ) 3 1 ) 3 2 ) 3 3 ) 3 6 8 ( a ) K a n a t z i d i s , M . G . ; P a r k , Y . C h e m . M a t e r . 1 9 9 0 , 2 , 9 9 — 1 0 1 . ( b ) K a n a t z i d i s , M . G . ; P a r k , Y . C h e m . M a t e r . 1 9 9 0 , 2 , 3 5 3 - 3 6 3 . ( 0 ) P a r k , Y . D i s s e r t a t i o n , 1 9 9 2 , M i c h i g a n S t a t e U n i v e r s i t y . ( a ) J a s o n , M . A n g e w . C h e m , I n t . E d . E n g l . 1 9 8 7 , 2 6 , 1 0 9 8 - 1 1 1 1 . ( b ) S c h e r b a u m , R ; H u b e r , B . ; M i i l l e r , G . ; S c h m i d b a u r , H . A n g e w . C h e m , I n t . E d . E n g l . 1 9 8 8 , 2 1 , 1 5 4 2 - 1 5 4 4 . ( c ) K a h n , M . N . 1 . ; K i n g , C . ; H e i n r i c h , D . D . ; F a c k l e r , J . P . , J r . ; P o r t e r , L . C . I n o r g . C h e m . 1 9 8 8 , 2 _ 8 , 2 1 5 0 - 2 1 5 4 . ( ( 1 ) F a c k l e r , J . P . , J r . ; P o r t e r , L . C . J . A m . C h e m . S o c . 1 9 8 6 , 1 0 8 , 2 7 5 0 — 2 7 5 1 . ( e ) M e r z , K . M . , J r . H o f f m a n n , R . I n o r g . C h e m . 1 9 8 8 , 2 1 , 2 1 2 0 - 2 1 2 7 . ( 1 ) J a n s e n , M . A n g e w . C h e m , I n t . E d . E n g l . 1 9 8 4 , 2 2 , 1 0 9 8 - 1 1 0 9 . ( g ) M e h r o t r a , R . ; H o f f m a n n , R . I n o r g . C h e m . 1 9 7 8 , fl , 2 1 8 7 - 2 1 8 9 . ( h ) P a t h a n e n i , S . 8 . ; D e s i r a j u , G . R . J . C h e m . S o c . D a l t o n T r a n s . 1 9 9 3 , 3 1 9 - 3 2 2 . F e r g u s s o n , J . E . i n S t e r e o c h e m i s t r y a n d B o n d i n g i n I n o r g a n i c C h e m i s t r y 1 9 7 4 , 1 9 4 — 1 9 6 , P r e n t i c e - H a l l , I n c . . ( a ) S h a y , J . L . ; T e l l , B . ; K a s p e r , H . M . P h y s . R e w . L e t t . 1 9 7 2 , 2 2 , 1 1 6 2 - 1 1 6 4 . ( b ) S h a y , J . L . ; K a s p e r , H . M . ; S c h i a v o n e , L . M . P h y s . R e v . 1 9 7 2 , 1 3 6 , 5 0 0 3 - 5 0 0 5 . ( c ) T e l l , B . ; K a s p e r , H . M . P h y s . R e v . 1 9 7 1 , M , 2 4 6 3 - 2 4 7 1 . ( a ) Z w e i b e l , K . ; M i t c h e l l , R . I n C u I n S e 2 a n d C d T e : S c a l e - U p f o r M a n u f a c t u r i n g , 1 9 8 9 ; S E R I P u b l i c a t i o n , p r e p a r e d f o r U S D O E u n d e r C o n t r a c t N o . D E - A C 0 2 - 8 3 C H 1 0 0 9 3 . ( b ) C h a m p n e s s , C . H . P h o s p h o r u s a n d S u l fi t r 1 9 8 8 , 2 6 , 3 8 5 - 3 9 7 . 3 6 9 C H A P T E R 7 M o l t e n S a l t S y n t h e s i s a n d C h a r a c t e r i z a t i o n o f Q u a t e r n a r y C h a l c o g e n i d e s C o n t a i n i n g M a i n G r o u p a n d T r a n s i t i o n M e t a l s 1 . . I n t r o d u c t i o n F r o m t h e s t r u c t u r a l p o i n t o f v i e w , q u a t e r n a r y c h a l c o g e n i d e s a r e i n t e r e s t i n g d u e t o t h e i r s t r u c t u r a l v a r i e t i e s r e s u l t i n g f r o m t h e c o m b i n a t i o n o f t w o k i n d s o f m e t a l c e n t e r s w i t h d i f f e r e n t r a t i o , s i z e , c o o r d i n a t i o n p r e f e r e n c e a n d a r r a n g e m e n t . A l k a l i n e e a r t h m e t a l c o n t a i n i n g q u a t e r n a r y c h a l c o g e n i d e s h a v e b e e n e x t e n s i v e l y i n v e s t i g a t e d b y h i g h t e m p e r a t u r e s o l i d s t a t e s y n t h e s i s . 1 R e c e n t l y m o l t e n a l k a l i m e t a l s a l t s h a v e p r o v e d t o b e c o n v e n i e n t r e a c t i o n m e d i a f o r c h a l c o g e n i d e s y n t h e s i s a t a l o w e r t e m p e r a t u r e r e g i m e ( < 5 0 0 ° C ) . S o f a r , m o s t o f t h e r e s e a r c h h a s f o c u s e d o n t e r n a r y s y s t e m s . 2 R e l a t i v e l y l e s s e f f o r t s 3 h a v e b e e n p u t o n q u a t e r n a r y c h a l c o g e n i d e s w h e r e t h e c h e m i s t r y c o u l d b e e v e n r i c h e r . I n C h a p t e r 6 , w e r e p o r t e d a s e r i e s o f a l k a l i m e t a l m i x e d S n l C u o r A u q u a t e r n a r y c h a l c o g e n i d e s . 4 W e h a v e s h o w n t h a t m o l t e n s a l t t e c h n i q u e s a r e p r o m i s i n g f o r s y n t h e s i z i n g q u a t e r n a r y c h a l c o g e n i d e s . [ S n 8 4 ] 4 - a n d / o r [ S n 2 8 6 ] 4 ' , w h o s e a l k a l i m e t a l s a l t s h a v e b e e n c h a r a c t e r i z e d 5 a n d w e r e f o u n d 3 6 9 3 7 0 a v a i l a b l e i n S n c o n t a i n i n g p o l y s u l fi d e fl u x e s a s m e n t i o n e d i n C h a p t e r 3 , a p p e a r t o b e e x c e l l e n t b u i l d i n g b l o c k s t o c o m b i n e w i t h o t h e r m e t a l i o n s . T h e i r g e r m a n i u n a n a l o g s a r e a l s o w e l l k n o w n 6 a n d h a v e b e e n f o u n d a s b u i l d i n g b l o c k s i n t h e s t r u c t u r e s o f K I n G e S 4 , K G a G e S 4 3 d a n d B a A g 2 G e S 4 . 1 i T o f u r t h e r i n v e s t i g a t e t h e s y n t h e s i s o f q u a t e r n a r y c o m p o u n d s b y u s i n g m o l t e n s a l t t e c h n i q u e s , w e e x p a n d e d t o m i x e d m e t a l s y s t e m s o f d i v a l e n t m e t a l s ( Z n , C d , H g , M n ) a n d m a i n g r o u p m e t a l s ( I n , G e , S n ) . S o m e c h a r a c t e r i s t i c s o f t h e d i v a l e n t m e t a l s w e e m p l o y e d a r e : M n i s m a g n e t i c ; M n , Z n , a n d C d p r e f e r t e t r a h e d r a l c o o r d i n a t i o n b u t h a v e d i f f e r e n t i o n i c s i z e ; H g p r e f e r s b o t h t e t r a h e d r a l a n d l i n e a r c o o r d i n a t i o n . W e h a v e s y n t h e s i z e d a n d c h a r a c t e r i z e d e l e v e n n e w q u a t e r n a r y c h a l c o g e n i d e s , K 2 H g 8 n 2 8 6 , K 2 G e I n 2 8 6 , K 2 H g 3 8 n 2 8 3 , K 2 H g 3 G e 2 8 3 , K 6 Z n 4 8 n 5 8 1 7 , R b 2 Z n S n 2 S 6 , C s 2 M n S n 2 S 6 , K 2 M n 8 n 8 4 , C s 2 I n 2 G e 2 8 3 , C s 2 M n S n 3 S e 3 a n d R b 2 C d G e 2 S 6 . A l l t h e m e t a l c e n t e r s r e t a i n t h e s t r u c t u r a l f e a t u r e s f o u n d i n t h e i r b i n a r y a n d t e r n a r y f o r m s b u t c o m b i n e w i t h a n o t h e r m e t a l c e n t e r w i t h d i f f e r e n t g e o m e t r y p r e f e r e n c e a n d s i z e t o f o r m e i t h e r n o v e l o r k n o w n s t r u c t u r e t y p e s . 2 . E x p e r i m e n t a l S e c t i o n 2 . 1 . R e a g e n t s S n m e t a l : ~ 3 2 5 m e s h , 9 9 . 8 % p u r i t y ; C d m e t a l : - 3 2 5 m e s h , 9 9 . 5 % p u r i t y ; I n m e t a l : - 3 2 5 m e s h , 9 9 . 9 9 9 % p u r i t y ; C E R A C I n c . , M i l w a u k e e , W I . G e m e t a l : - 1 0 0 m e s h , 9 9 . 9 9 % p u r i t y ; M n m e t a l : 9 9 . 9 % p u r i t y , - 5 0 m e s h , A l d r i c h C h e m i c a l C o m p a n y , I n c . , M i l w a u k e e , W I . S u b l i m e d s u l f u r : 3 7 1 9 9 . 5 ~ 1 0 0 . 5 % ; Z n p o w d e r : p u r i f i e d ; H g S p o w d e r ; J . T . B a k e r I n c . , P h i l l i p s b u r g , N J . A 2 Q ( A = K , R b , C s ; Q = S , S e ) s t a r t i n g m a t e r i a l s w e r e p r e p a r e d a s d e s c r i b e d e l s e w h e r e . 7 2 . 2 . P h y s i c a l M e a s u r e m e n t s T h e i n s t r u m e n t s a n d e x p e r i m e n t a l s e t u p s f o r I n f r a r e d s p e c t r o s c o p y , S E M / E D S q u a n t i t a t i v e m i c r o p r o b e a n a l y s i s a n d U V / v i s / n e a r - I R o p t i c a l d i f f u s e s p e c t r o s c o p y a r e t h e s a m e a s t h o s e d e s c r i b e d i n p r e v i o u s c h a p t e r s . M a g n e t i c s u s c e p t i b i l i t y d a t a w e r e c o l l e c t e d o n a Q u a n t u m D e s i g n S Q U I D s y s t e m . 3 4 . 9 8 m g ( 0 . 0 4 6 6 m m o l ) o f C s 2 M n S n 2 8 6 a n d 4 3 . 9 3 m g ( 0 . 1 1 m m o l ) o f K 2 M n S n S 4 w e r e l o a d e d i n p l a s t i c b a g s r e s p e c t i v e l y a n d p u r g e d w i t h H e g a s b e f o r e m e a s u r e m e n t s . T h e s a m p l e s o f t h e s e t w o c o m p o u n d s i n c l u d e s m a l l a m o u n t M n S i m p u r i t y ( < l % ) w h i c h d o e s n o t s i g n i fi c a n t l y i n fl u e n c e t h e r e s u l t s . T h e d i a m a g n e t i c c o n t r i b u t i o n o f t h e p l a s t i c b a g s w a s r e l a t i v e l y s m a l l a n d w a s i g n o r e d d u r i n g d a t a p r o c e s s i n g . M e a s u r e m e n t s o f m a g n e t i z a t i o n v e r s u s a p p l i e d m a g n e t i c f i e l d w e r e p e r f o r m e d f r o m 5 0 G u a s s t o 5 0 0 0 G a u s s a t b o t h 5 K a n d 3 0 0 K f o r C s 2 M n S n 2 8 6 a n d f r o m 5 0 G a u s s t o 6 0 0 0 G a u s s a t 3 0 0 K , 5 0 G a u s s - > 6 0 0 0 G a u s s - > - 6 0 0 0 G a u s s - > 6 0 0 0 G a u s s a t 5 K f o r K 2 M n S n S 4 . V a r i a b l e t e m p e r a t u r e m a g n e t i c s u s c e p t i b i l i t y d a t a w e r e c o l l e c t e d a t a m a g n e t i c fi e l d o f 5 0 0 0 G a u s s w i t h a n a s c e n d i n g t e m p e r a t u r e r a m p f r o m 5 K t o 3 0 0 K f o r b o t h c o m p o u n d s a n d a n a d d i t i o n a l m e a s u r e m e n t a t 1 0 0 0 G a u s s w a s p e r f o r m e d f o r K 2 M n 8 n 8 4 w i t h i n t h e s a m e t e m p e r a t u r e r a n g e . 2 . 3 . S y n t h e s i s 3 7 2 K 2 H g S n 2 8 6 ( I ) A m i x t u r e o f S n ( 0 . 0 3 0 g , 0 . 2 5 m m o l ) , H g S ( 0 . 0 5 8 g , 0 . 2 5 m m o l ) , K 2 8 ( 0 . 0 5 5 g , 0 . 5 0 m m o l ) a n d 8 ( 0 . 1 2 8 g , 4 . 0 m m o l ) w a s l o a d i n t o a n ~ 5 - m l P y r e x t u b e i n a N 2 g l o v e b o x . T h e t u b e w a s e v a c u a t e d a n d fl a m e s e a l e d a t t h e p r e s s u r e o f ~ 1 0 3 t o r r . T h e m i x t u r e w a s h e a t e d s l o w l y t o 3 5 0 ° C i n 1 2 h o u r s i n s i d e a f u r n a c e p r o g r a m m e d b y a p e r s o n a l c o m p u t e r . T h e r e a c t i o n t e m p e r a t u r e w a s k e p t a t 3 5 0 ° C f o r 4 d a y s a n d w a s t h e n c o o l e d s l o w l y t o r o o m t e m p e r a t u r e a t 4 0 / h o u r . T h e p r o d u c t w a s w a s h e d w i t h d e g a s s e d D M F t o r e m o v e e x c e s s K 2 S x fl u x b y u s i n g a s t a n d a r d S c h l e n k t e c h n i q u e a n d w a s d r i e d w i t h a c e t o n e a n d e t h e r . A m i x t u r e o f o r a n g e b r o w n s q u a r e p l a n a r c r y s t a l s a n d s m a l l a m o u n t o f y e l l o w n e e d l e l i k e c r y s t a l s o f ( I ) w a s o b t a i n e d . T h e o r a n g e b r o w n c r y s t a l s a r e i s o s t r u c t u r a l t o K 2 M n 8 n 8 4 ( V I I I ) , K I n S e 2 8 a n d T l G a S e 2 9 b a s e d o n p o w d e r X - r a y d i f f r a c t i o n . B o t h t h e y e l l o w a n d o r a n g e b r o w n c r y s t a l s a r e s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s s u c h a s D M F , D M S O , M e O H a n d a c e t o n i t r i l e . T h e y e l l o w c r y s t a l s w e r e p i c k e d b y h a n d a m o n g t h e m i x t u r e f o r s t r u c t u r a l c h a r a c t e r i z a t i o n . S E M / E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s o n y e l l o w c r y s t a l s i n d i c a t e d K 1 . 6 H g l . 0 8 n 1 . 6 S 6 . 0 . K 2 G e l n 2 8 6 ( I I ) A m i x t u r e o f G e ( 0 . 0 2 2 g , 0 . 3 m m o l ) , I n ( 0 . 0 3 4 g , 0 . 3 m m o l ) , K 2 8 ( 0 . 0 6 6 g , 0 . 6 m m o l ) a n d 8 ( 0 . 1 5 4 g , 4 . 8 m m o l ) w a s h e a t e d a t 4 0 0 ° C f o r 4 d a y s a n d w a s t h e n c o o l e d t o r o o m t e m p e r a t u r e a t 4 ° C / h o u r . T h e p r o d u c t w a s w a s h e d w i t h d e g a s s e d D M F a n d w a s d r i e d w i t h a c e t o n e a n d e t h e r . T h e a i r s t a b l e w h i t e c r y s t a l s o f ( I I ) w e r e o b t a i n e d w i t h a i r - s e n s i t i v e w h i t e c r y s t a l s ( S E M I E D S i n d i c a t e d t h e a i r s e n s i t i v e c r y s t a l s a r e K 4 G e S 4 ) w h i c h c a n b e r e m o v e d b y w a s h i n g w i t h w a t e r . T h e y i e l d o f 3 7 3 ( I I ) i s v e r y l o w ( l e s s t h a n 5 % ) a n d m o s t o f t h e p r o d u c t i s K 4 G e S 4 . S E M I E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s e s p e r f o r m e d o n t h e c r y s t a l s o f ( I I ) i n d i c a t e d K 1 , 0 8 n 1 , 0 H g 1 , 9 8 6 , 7 . K 2 H g 3 S n 2 S s ( I I I ) A m i x t u r e o f S n p o w d e r ( 0 . 0 3 0 g , 0 . 2 5 m m o l ) , H g S p o w d e r ( 0 . 1 1 6 g , 0 . 4 9 9 m m o l ) , K 2 8 ( 0 . 0 5 5 g , 0 . 5 0 m m o l ) a n d 8 ( 0 . 1 2 8 g , 4 . 0 0 m m o l ) w a s h e a t e d a t 4 0 0 ° C f o r 4 d a y s a n d w a s t h e n c o o l e d t o r o o m t e m p e r a t u r e a t 4 ° C / h o u r . T h e p r o d u c t w a s w a s h e d w i t h d e g a s s e d D M F , t h e n d r i e d w i t h a c e t o n e a n d e t h e r . Y e l l o w c r y s t a l s o f ( I I I ) a n d s m a l l a m o u n t o f o r a n g e b r o w n s q u a r e p l a n a r c r y s t a l s a n d r e d H g S c r y s t a l s ( l e s s t h a n 5 % ) w e r e o b t a i n e d . T h e y i e l d o f y e l l o w c r y s t a l s w a s 0 . 1 0 1 g ( 6 9 % , b a s e d o n 8 n ) . T h e y e l l o w c r y s t a l s a r e i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . S E M I E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s e s i n d i c a t e d K 1 _ ( ) S n 1 , n g l . 9 S 6 , 7 . K 2 H g 3 G e 2 8 3 ( I V ) T h e r e a c t i o n o f G e ( 0 . 0 1 8 g , 0 . 2 5 m m o l ) , H g S ( 0 . 0 8 7 g , 0 . 3 8 m m o l ) , K 2 8 ( 0 . 0 5 5 g , 0 . 5 0 m m o l ) a n d 8 ( 0 . 1 2 8 g , 4 . 0 0 m m o l ) a t 4 0 0 ° C f o r 4 d a y s u p o n c o o l i n g a t a r a t e o f 4 ° C / h o u r a f f o r d e d y e l l o w c r y s t a l s o f ( I V ) a n d v e r y s m a l l a m o u n t o f H g S c r y s t a l s . T h e y i e l d o f ( I V ) w a s 0 . 0 8 3 g ( 6 4 % , b a s e d o n G e ) . T h e p r o d u c t i s s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . S E M I E D S i n d i c a t e d K 0 . 7 6 H g l . o G e o . 2 9 S 4 . 9 7 . K 6 2 n 4 8 n 5 8 1 7 ( V ) T h e r e a c t i o n o f S n ( 0 . 0 5 9 g , 0 . 5 m m o l ) , Z n ( 0 . 0 3 3 g , 0 . 5 m m o l ) , K 2 8 ( 0 . 1 1 0 g , 1 . 0 m m o l ) a n d 8 ( 0 . 2 5 6 g , 8 . 0 m o l ) a t 4 0 0 ° C f o r 4 d a y s u p o n c o o l i n g a t a r a t e o f 4 ° C / h o u r a f f o r d e d 0 . 0 6 8 g y e l l o w i s h w h i t e c r y s t a l s i n ~ 3 3 % y i e l d ( b a s e d o n S n ) . T h e p r o d u c t w a s 3 7 4 w a s h e d w i t h d e g a s s e d D M F a n d w a s d r i e d w i t h a c e t o n e a n d e t h e r . T h e y i e l d c a n b e i n c r e a s e d b y a d d i n g m o r e S n m e t a l i n t h e r e a c t i o n s . T h e r a t i o o f 6 / 5 : 4 / 5 : 2 : 1 6 ( S n : Z n : K 2 S : S ) u n d e r t h e s a m e r e a c t i o n c o n d i t i o n g a v e a y i e l d o f ~ 8 0 % . H o w e v e r t h i s r e a c t i o n a l s o g a v e a s m a l l a m o u n t o f y e l l o w i s h o r a n g e c r y s t a l s o f K 2 8 n 2 8 5 a n d r e d d i s h o r a n g e c r y s t a l s o f K 2 8 n 2 8 3 a s b y - p r o d u c t s . T h e y e l l o w i s h w h i t e c r y s t a l s o f ( V ) a r e s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . S E M I E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d K 2 , 3 Z n 1 _ o S n 1 , 7 5 8 7 , 3 8 . R b 2 Z n S n 2 8 6 ( V I ) T h e r e a c t i o n o f S n ( 0 . 1 1 9 g , 1 . 0 0 m m o l ) , Z n ( 0 . 0 3 3 g , 0 . 5 0 m m o l ) , R b 2 S ( 0 . 4 0 6 g , 1 . 0 0 m m o l ) a n d 8 ( 0 . 5 1 2 g , 8 . 0 0 m m o l ) a t 4 0 0 ° C f o r 4 d a y s u p o n c o o l i n g a t a r a t e o f 4 ° C / h o u r a f f o r d e d 0 . 1 3 1 - g b r o w n i s h o r a n g e c r y s t a l s o f ( V I ) i n ~ 4 0 % y i e l d ( b a s e d o n S n ) . T h e p r o d u c t w a s w a s h e d w i t h d e g a s s e d D M F w a s d r i e d w i t h a c e t o n e a n d e t h e r . T h e b r o w n i s h w h i t e c r y s t a l s a r e i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . S E M I E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d R b 1 . 1 Z n 1 . 0 S n 1 . 9 S 6 . 0 . C S 2 M n S n 2 8 6 ( V I I ) T h e r e a c t i o n o f S n p o w d e r ( 0 . 0 7 2 g , 0 . 6 1 m o l ) , M n p o w d e r ( 0 . 0 1 6 g , 0 . 2 9 m m o l ) , C s 2 8 ( 0 . 3 5 8 g , 1 . 2 0 m m o l ) a n d 8 ( 0 . 1 5 4 g , 4 . 8 1 m m o l ) a t 4 0 0 ° C f o r 4 d a y s u p o n c o o l i n g a t a r a t e o f 4 ° C / h o u r g a v e 0 . 0 8 3 - g b r o w n i s h w h i t e c r y s t a l s o f ( V I I ) a n d v e r y s m a l l a m o u n t o f M n S p o w d e r . T h e y i e l d o f ( V I I ) w a s ~ 3 8 % y i e l d ( b a s e d o n S n ) . T h e p r o d u c t w a s w a s h e d w i t h d e g a s s e d D M F a n d w a s d r i e d w i t h a c e t o n e a n d e t h e r . T h e b r o w n i s h w h i t e c r y s t a l s a r e i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . S E M I E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d C 8 2 . 6 M n 1 . 0 8 n 2 . 8 8 1 0 . 2 . 3 7 5 K 2 M n S n S 4 ( V I I I ) T h e r e a c t i o n o f S n p o w d e r ( 0 . 0 5 9 g , 0 . 5 0 m m o l ) , M n p o w d e r ( 0 . 0 2 7 g , 0 . 5 0 m m o l ) , K 2 8 ( 0 . 2 2 0 g , 2 . 0 0 m m o l ) a n d 8 ( 0 . 2 5 6 g , 8 . 0 m m o l ) a t 4 0 0 ° C f o r 4 d a y s u p o n c o o l i n g a t a r a t e o f 4 ° C / h o u r a f f o r d e d 0 . 1 2 9 - g o r a n g e c r y s t a l s o f ( V I I I ) i n ~ 7 0 % y i e l d ( b a s e d o n S n ) . T h e p r o d u c t w a s w a s h e d w i t h d e g a s s e d D M F a n d w a s d r i e d w i t h a c e t o n e a n d e t h e r . T h e o r a n g e c r y s t a l s a r e i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . S E M I E D S s e m i q u a n t i t a t i v e e l e m e n t a l a n a l y s i s i n d i c a t e d K 2 . 0 M I l 1 . O S I l l . 3 S 4 . 8 - C s 2 G e 2 1 n 2 8 3 ( I X ) T h e r e a c t i o n o f G e ( 0 . 0 2 2 g , 0 . 3 0 m m o l ) , I n ( 0 . 0 3 4 g , 0 . 3 0 m m o l ) , C S 2 S ( 0 . 1 9 7 g , 0 . 6 0 m m o l ) a n d 8 ( 0 . 1 5 4 g , 4 . 8 m m o l ) a t 5 0 0 ° C f o r 5 d a y s u p o n c o o l i n g a t a r a t e o f S O C / h r a f f o r d e d l i g h t b r o w n i s h w h i t e c r y s t a l s o f ( I X ) i n 4 9 . 7 % y i e l d ( 0 . 0 6 6 9 g ) . T h e p r o d u c t w a s w a s h e d w i t h d e g a s s e d D M F a n d w a s d r i e d w i t h a c e t o n e a n d e t h e r . T h e b r o w n i s h w h i t e c r y s t a l s a r e s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . S E M I E D S i n d i c a t e d C s 1 _ 4 G e 1 , o I n 1 , 3 S 6 , 4 . C s 2 M n S n 3 S e 3 ( X ) T h e r e a c t i o n o f S n ( 0 . 0 3 6 g , 0 . 3 0 m m o l ) , M n ( 0 . 0 1 6 g , 0 . 3 0 m m o l ) , C s 2 S e ( 0 . 2 0 7 g , 0 . 6 0 m m o l ) a n d S e ( 0 . 3 7 9 g , 4 . 8 m o l ) a t 4 0 0 ° C f o r 4 d a y s u p o n c o o l i n g a t a r a t e o f 4 ° C / h r a f f o r d e d a m i x t u r e o f s m a l l a m o u n t o f d a r k r e d c r y s t a l ( X ) a n d b l a c k S e p o w d e r . T h e p r o d u c t w a s w a s h e d w i t h d e g a s s e d D M F a n d w a s d r i e d w i t h a c e t o n e a n d e t h e r . T h e d a r k r e d c r y s t a l s a r e s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . T h e y i e l d o f ( X ) i s v e r y l o w ( l e s s t h a n 1 0 % ) . C r y s t a l s w e r e p i c k e d b y h a n d f o r f u r t h e r c h a r a c t e r i z a t i o n . S E M I E D S i n d i c a t e d C s 1 _ 3 M n 1 _ o S n 2 , 3 S e 5 , 3 . 3 7 6 R b 2 C d G e 2 8 6 ( X I ) T h e r e a c t i o n o f G e ( 0 . 0 3 6 g , 0 . 5 0 m m o l ) , C d ( 0 . 0 5 6 g , 0 . 5 0 m m o l ) , R b 2 S ( 0 . 2 0 3 g , 1 . 0 m m o l ) a n d 8 ( 0 . 2 5 6 g , 8 . 0 m m o l ) a t 4 6 0 ° C f o r 4 d a y s u p o n c o o l i n g a t a r a t e o f 4 ° C / h r a f f o r d e d b r o w n i s h w h i t e c h u n k y c r y s t a l s o f ( X I ) a n d a i r - s e n s i t i v e w h i t e c r y s t a l s ( S E M I E D S i n d i c a t e d t h e a i r - s e n s i t i v e w h i t e c r y s t a l s a r e R b 4 G e S 4 ) . T h e p r o d u c t w a s w a s h e d w i t h M e O H a n d w a s d r i e d e t h e r . R b 4 G e 8 4 c a n b e r e m o v e d b y f u r t h e r w a s h i n g w i t h w a t e r . A r o u n d 0 . 0 3 6 — g c r y s t a l s o f ( X I ) w e r e o b t a i n e d i n 2 3 % y i e l d ( b a s e d o n C d ) . T h e b r o w n i s h w h i t e c r y s t a l s a r e s t a b l e i n a i r a n d i n s o l u b l e i n w a t e r a n d c o m m o n o r g a n i c s o l v e n t s . S E M I E D S i n d i c a t e d R b 1 , 3 C d 1 , o G e 1 , 3 S g , 4 . 2 . 4 . X - R a y C r y s t a l l o g r a p h y X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e u s e d f o r t h e p u r p o s e o f p h a s e c h a r a c t e r i z a t i o n a n d i d e n t i fi c a t i o n . T h e X - r a y p o w d e r d i f f r a c t i o n p a t t e r n s w e r e r e c o r d e d w i t h a P h i l l i p s X R D - 3 0 0 0 c o n t r o l l e d b y P D P 1 1 c o m p u t e r a n d o p e r a t i n g a t 4 0 k V / 3 5 m A . G r a p h i t e m o n o c h r o m a t e d C u r a d i a t i o n w a s u s e d . I n o r d e r t o e n s u r e t h e h o m o g e n e i t y , d - s p a c i n g s o b t a i n e d f r o m X - r a y p o w d e r d i f f r a c t i o n ( X R D ) m e a s u r e m e n t s o f t h e p r o d u c t s w e r e c o m p a r e d w i t h , a n d f o u n d t o b e i d e n t i c a l t o t h o s e c a l c u l a t e d f r o m t h e a t o m i c c o o r d i n a t e s d e t e r m i n e d f r o m t h e s i n g l e c r y s t a l d a t a . T h e c a l c u l a t i o n o f d - s p a c i n g s w a s p e r f o r m e d b y u s i n g t h e P O W D 1 0 1 0 p r o g r a m . T h e c o m p a r i s o n t a b l e s b e t w e e n t h e c a l c u l a t e d a n d o b s e r v e d d - s p a c i n g s f o r t h e s e c o m p o u n d s a r e s h o w n i n T a b l e s 7 - 1 ~ 7 - 8 . 3 7 7 T h e s i n g l e c r y s t a l X - r a y d i f f r a c t i o n d a t a o f ( I ) , ( I I ) , ( I V ) , ( V ) , ( V I ) , ( X ) a n d ( X I ) w e r e c o l l e c t e d o n a R i g a k u A F C 6 S f o u r - c i r c l e d i f f r a c t o m e t e r w h i l e t h e d a t a f o r ( I I I ) , ( V I I ) , ( V I I I ) a n d ( I X ) w e r e c o l l e c t e d o n a N i c l o l e t P 3 d i f f r a c t o m e t e r . G r a p h i t e m o n o c h r o m a t e d M o K 0 1 r a d i a t i o n w a s u s e d . A l l t h e c r y s t a l s w e r e m o u n t e d a t t h e e n d o f g l a s s fi b e r s . T h e s t a b i l i t y o f t h e e x p e r i m e n t a l s e t u p a n d c r y s t a l i n t e g r i t y w e r e m o n i t o r e d b y m e a s u r i n g t h r e e s t a n d a r d r e fl e c t i o n s p e r i o d i c a l l y e v e r y 1 5 0 r e fl e c t i o n s f o r a l l t h e d a t a s e t s e x c e p t f o r ( I I I ) w h i c h w a s m o n i t o r e d e v e r y 3 0 0 r e fl e c t i o n s . N o s i g n i fi c a n t d e c a y w a s o b s e r v e d d u r i n g t h e d a t a c o l l e c t i o n s . T h e s t r u c t u r e s w e r e s o l v e d w i t h d i r e c t m e t h o d s ( S H E L X S - 8 6 ) 1 1 , a n d w e r e r e fi n e d b y a f u l l - m a t r i x l e a s t - s q u a r e t e c h n i q u e a v a i l a b l e i n t h e T E X S A N 1 2 p r o g r a m s r u n n i n g o n a V A X s t a t i o n 3 1 0 0 / 7 6 c o m p u t e r . A n e m p i r i c a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d t o a l l t h e d a t a ( b a s e d o n 1 p s c a n s ) . A n a d d i t i o n a l a b s o r p t i o n c o r r e c t i o n f o l l o w i n g t h e D I F A B S 1 3 p r o c e d u r e w a s a p p l i e d t o i s o t r o p i c a l l y r e fi n e d d a t a . S i n c e ( I I ) , ( I I I ) , ( I V ) , ( V ) , ( V I ) , ( V I I ) a n d ( X ) c r y s t a l l i z e i n a c e n t r i c s p a c e g r o u p s , t h e i r e n a n t i o m o r p h s w e r e c h e c k e d . T h e r e fi n e m e n t o f t h e e n a n t i o m o r p h o u s m o d e l s o f ( I I ) , ( V I I ) a n d ( X ) d i d n o t s h o w s i g n i fi c a n t i m p r o v e m e n t w h i l e t h e R / R w v a l u e s f o r ( I I I ) , ( I V ) , ( V ) a n d ( V I ) d r o p p e d f r o m 5 . 1 / 5 . 1 t o 3 . 9 / 4 . 2 , f r o m 4 . 9 / 6 . 6 t o 4 . 3 / 5 . 9 , f r o m 4 . 3 / 5 . 4 t o 3 . 6 / 4 . 6 a n d f r o m 3 . 6 / 4 . 7 t o 2 . 7 / 3 . 4 r e s p e c t i v e l y . T h e m o d e l s w i t h l o w e r R / R w v a l u e s a n d s m a l l e r s t a n d a r d d e v i a t i o n o f b o n d d i s t a n c e s a n d a n g l e s a r e r e p o r t e d . T h e c r y s t a l l o g r a p h i c d a t a a n d d e t a i l e d i n f o r m a t i o n o f s t r u c t u r e s o l u t i o n a n d r e fi n e m e n t a r e l i s t e d i n T a b l e 7 - 9 . A t o m i c c o o r d i n a t e s a n d e q u i v a l e n t i s o t r o p i c t h e r m a l p a r a m e t e r s a r e g i v e n i n T a b l e s 7 - 1 0 ~ 7 - 2 0 r e s p e c t i v e l y . 3 7 8 T a b l e 7 - 1 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r K 2 H g 3 8 n 2 8 8 . h k 1 d c a l c . ( A ) d o b s . ( 4 ) n o n e . 2 0 0 9 . 7 6 1 0 9 . 8 6 7 1 8 . 6 0 l 1 1 6 . 0 8 2 4 6 . 1 3 2 2 4 6 . 8 1 2 1 1 5 . 3 5 2 7 5 . 3 9 5 0 3 4 . 3 9 3 1 1 4 . 5 6 3 3 4 . 5 9 5 3 2 2 . 4 4 2 0 2 3 . 8 7 0 0 3 . 8 9 5 9 5 1 . 0 2 4 2 0 3 . 4 6 4 0 3 . 4 8 6 3 4 5 . 7 9 0 2 2 3 . 2 0 0 5 3 . 2 1 7 6 1 0 0 . 0 0 4 0 2 3 . 1 9 0 2 3 . 1 7 6 6 2 9 . 3 1 1 2 2 3 . 1 5 8 3 2 2 2 3 . 0 4 1 2 3 . 0 6 0 3 5 9 . 9 8 2 3 1 2 . 9 1 5 9 2 . 9 1 0 2 5 . 7 9 6 1 1 2 . 9 0 0 5 3 3 1 2 . 7 6 5 8 2 . 7 7 8 1 1 3 . 5 7 6 0 2 2 . 5 7 5 7 2 . 5 8 8 7 1 8 . 3 7 7 1 1 2 . 5 5 6 7 0 4 0 2 . 4 5 8 8 2 . 4 5 2 6 5 6 . 5 3 8 0 0 2 . 4 4 0 2 1 4 0 2 . 4 3 9 5 6 2 2 2 . 2 8 1 7 2 . 2 9 3 4 1 9 . 0 2 1 3 3 2 . 1 2 1 0 2 . 1 3 3 7 1 4 . 7 0 2 4 2 2 . 0 7 5 3 2 . 0 8 7 6 1 9 . 0 2 2 0 4 2 . 0 6 0 3 3 4 2 2 . 0 1 9 1 2 . 0 2 9 9 2 4 . 6 3 4 4 2 1 . 9 4 7 5 1 . 9 4 9 0 3 9 . 8 9 8 2 2 1 . 9 4 0 5 0 2 4 1 . 9 3 7 3 4 0 4 1 . 9 3 5 0 1 5 1 1 . 9 0 6 4 1 . 9 1 2 0 1 9 . 0 2 2 2 4 1 . 9 0 0 2 5 4 2 1 . 8 6 5 7 1 . 8 7 3 8 1 5 . 8 8 6 4 2 1 . 7 7 8 5 1 . 7 7 7 9 1 2 . 4 9 1 0 O 2 1 . 7 7 1 5 6 0 4 1 . 7 6 9 0 8 4 0 1 . 7 3 2 0 1 . 7 4 2 8 8 . 1 6 1 0 2 2 1 . 6 6 6 6 1 . 6 7 4 8 2 1 . 7 3 6 2 4 1 . 6 6 4 6 3 6 0 1 . 5 8 9 5 1 . 5 8 7 3 1 5 . 2 9 3 7 9 T a b l e 7 - 2 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r K 2 H g 3 G e 2 S 8 . h k 1 d c a l c . ( A ) d o b s . ( A ) 9 5 1 0 1 3 3 . 2 0 0 9 . 5 9 4 0 9 . 8 2 6 0 1 5 . 1 7 1 1 1 5 . 9 8 2 1 6 . 0 7 9 9 2 3 . 8 5 2 1 1 5 . 2 6 3 7 5 . 4 7 8 7 1 6 . 5 6 0 2 0 4 . 8 0 9 0 4 . 8 6 2 5 2 7 . 3 8 4 0 0 4 . 7 9 7 0 3 . 7 6 4 5 5 . 9 6 3 1 1 4 . 4 8 6 8 4 . 5 3 7 6 7 . 1 5 3 2 0 3 . 8 4 3 7 3 . 8 6 6 2 5 4 . 5 2 4 2 0 3 . 3 9 6 2 3 . 3 8 6 2 2 0 . 5 7 5 1 1 3 . 2 7 6 8 3 . 2 9 9 7 8 . 1 2 6 0 0 3 . 1 9 8 0 3 . 1 7 6 0 1 0 0 . 0 0 0 2 2 3 . 1 4 7 9 3 . 1 3 3 1 2 3 . 8 5 4 0 2 3 . 1 4 4 5 1 2 2 3 . 1 0 6 4 3 . 0 6 6 7 2 6 . 1 8 5 2 0 2 . 9 9 9 6 3 . 0 1 6 3 4 2 . 4 0 2 2 2 2 . 9 9 1 0 1 3 1 2 . 9 5 6 2 2 . 9 7 0 6 1 6 . 5 6 2 3 1 2 . 8 5 6 3 2 . 8 8 6 8 2 9 . 8 7 6 1 1 2 . 8 5 1 2 6 0 2 2 . 5 3 6 3 2 . 5 5 7 6 1 2 . 1 7 0 4 0 2 . 4 0 4 5 2 . 4 1 5 2 4 4 . 7 0 8 0 0 2 . 3 9 8 5 1 4 0 2 . 3 8 5 8 3 4 0 2 . 2 5 0 7 2 . 2 5 7 1 1 8 . 0 1 6 2 2 2 . 2 4 3 4 5 1 3 2 . 1 9 0 1 2 . 2 0 3 3 9 . 8 6 1 3 3 2 . 0 8 6 2 2 . 0 8 9 2 1 7 . 0 4 2 4 2 2 . 0 3 4 9 2 . 0 4 7 3 1 8 . 5 1 2 0 4 2 . 0 3 4 6 3 4 2 1 . 9 8 0 0 1 . 9 9 1 5 1 9 . 5 2 0 2 4 1 . 9 1 0 6 1 . 9 2 0 7 2 7 . 9 9 4 4 2 1 . 9 1 0 1 8 2 2 1 . 9 0 7 8 2 2 4 1 . 8 7 3 8 1 . 8 7 6 0 1 0 . 9 8 5 4 2 1 . 8 3 0 2 1 . 8 3 8 7 8 . 7 9 7 4 0 1 . 8 0 7 6 1 . 8 1 1 4 9 . 1 4 4 2 4 1 . 7 7 5 0 1 . 7 7 6 6 1 0 . 2 3 9 2 2 1 . 7 6 5 2 6 3 3 1 . 7 5 4 6 1 . 7 5 1 9 1 0 . 9 8 6 0 4 1 . 7 4 4 8 1 0 0 2 1 . 7 4 2 7 8 4 0 1 . 6 9 8 1 1 . 6 8 8 6 1 1 . 3 7 5 5 1 1 . 6 8 4 1 6 2 4 1 . 6 4 0 2 1 . 6 4 6 9 1 0 . 2 3 1 0 2 2 1 . 6 3 8 4 8 0 4 1 . 5 7 2 3 1 . 5 7 7 6 8 . 7 9 l 4 4 1 . 5 6 8 7 3 6 0 1 . 5 5 4 9 1 . 5 6 0 2 9 . 8 6 2 4 4 1 . 5 5 3 2 3 8 0 T a b l e 7 - 3 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r K 6 Z n 4 S n 5 8 1 7 . 1 ' 1 k 1 d c a l c . ( A ) d o b s . ( A ) H o b s . 1 1 0 9 . 7 5 5 2 9 . 9 6 7 1 2 9 . 2 2 1 0 1 7 . 8 6 8 9 8 . 0 3 6 9 8 1 . 1 6 2 0 0 6 . 8 9 8 0 7 . 0 3 7 8 9 . 9 4 2 2 0 4 . 8 7 7 6 4 . 9 2 8 9 9 1 . 1 9 0 0 2 4 . 7 9 0 0 3 1 0 4 . 3 6 2 7 4 . 4 0 9 3 1 7 . 9 3 3 0 1 4 . 1 4 5 8 4 . 1 9 6 8 3 5 . 3 5 2 0 2 3 . 9 3 4 4 4 . 0 2 1 2 2 3 . 6 7 3 2 1 3 . 5 5 3 4 3 . 5 8 9 7 2 8 . 2 5 4 0 0 3 . 4 4 9 0 3 . 4 7 7 9 8 1 . 1 6 2 2 2 3 . 4 1 7 6 3 3 0 3 . 2 5 1 7 3 . 2 7 6 5 7 9 . 5 5 3 1 2 3 . 2 2 5 4 3 . 1 8 6 9 1 0 0 . 0 0 4 1 1 3 . 1 5 8 9 2 1 3 2 . 8 3 6 0 2 . 8 3 3 4 4 3 . 2 5 4 0 2 2 . 7 9 8 9 3 3 2 2 . 6 9 0 4 2 . 6 7 0 9 9 4 . 6 7 4 3 1 2 . 6 5 1 4 5 2 1 2 . 4 7 4 9 2 . 4 5 1 6 6 7 . 2 1 3 2 3 2 . 4 5 1 7 4 4 0 2 . 4 3 8 8 2 . 4 1 0 5 2 3 . 6 7 0 0 4 2 . 3 9 5 0 1 1 4 2 . 3 2 5 9 2 . 3 3 9 9 1 0 . 5 2 4 1 3 2 . 3 1 0 1 2 . 3 1 1 0 2 3 . 6 7 6 0 0 2 . 2 9 9 3 3 1 4 2 . 0 9 9 4 2 . 1 1 5 0 5 3 . 2 5 4 3 3 2 . 0 8 7 8 5 0 3 2 . 0 8 7 8 5 2 3 1 . 9 9 8 3 1 . 9 9 7 1 3 8 . 6 4 6 2 2 1 . 9 8 5 2 4 0 4 1 . 9 6 7 2 7 0 1 1 . 9 3 0 4 1 . 9 3 9 4 2 4 . 5 5 4 2 4 1 . 8 9 1 8 1 . 9 0 3 9 1 7 . 9 3 7 2 1 1 . 8 5 9 0 1 . 8 6 6 1 1 9 . 4 9 2 1 5 1 . 8 2 9 8 1 . 8 1 8 0 1 8 . 7 0 7 3 0 1 . 8 1 1 5 7 1 2 1 . 8 0 6 9 1 . 8 0 3 1 3 2 . 2 1 6 5 1 1 . 7 3 7 1 1 . 7 3 1 6 5 4 . 5 7 8 0 0 1 . 7 2 4 5 4 4 4 1 . 7 0 8 8 1 . 7 0 3 3 3 5 . 3 5 7 3 2 1 . 6 9 4 4 1 . 6 9 2 9 5 1 . 9 3 7 4 1 1 . 6 8 4 5 5 0 5 1 . 5 7 3 8 1 . 5 8 2 9 1 8 . 7 0 4 3 5 1 . 5 7 3 8 3 8 1 T a b l e 7 — 4 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r R b 2 2 n S n 2 8 6 . h k 1 d c a l c . ( A ) d o b s . ( A ) S B l o b s . 0 2 0 6 . 7 2 8 5 6 . 8 0 5 9 2 2 . 8 0 0 0 1 6 . 7 0 0 3 1 0 0 6 . 3 2 1 3 6 . 4 2 4 6 2 3 . 2 8 0 1 1 5 . 9 9 7 9 6 . 0 8 8 2 1 8 . 4 9 1 0 ‘ 1 5 . 8 9 6 2 5 . 9 7 9 8 2 6 . 7 8 1 1 0 5 . 7 2 1 5 5 . 8 1 3 8 3 6 . 3 0 0 2 1 4 . 7 4 7 7 4 . 8 0 2 7 8 . 8 5 1 0 1 3 . 8 9 7 3 3 . 9 4 4 1 1 0 . 2 4 1 1 1 3 . 7 4 3 5 3 . 7 8 6 6 6 2 . 8 1 0 3 1 3 . 7 2 7 5 3 . 6 9 7 0 4 8 . 3 0 1 3 0 3 . 6 5 8 2 1 0 ' 2 3 . 6 0 2 5 3 . 6 3 7 8 6 2 . 8 1 1 3 ' 1 3 . 5 7 0 0 3 . 5 1 3 0 4 7 . 6 0 1 1 ‘ 2 3 . 4 8 0 0 3 . 4 6 1 9 1 0 0 . 0 0 2 0 ' 1 3 . 4 2 3 8 1 2 1 3 . 3 7 2 4 3 . 3 8 2 4 4 7 . 9 6 0 4 0 3 . 3 6 4 3 0 0 2 3 . 3 5 0 1 3 . 3 5 1 5 4 0 . 9 6 2 1 ' 1 3 . 3 1 8 1 3 . 2 8 0 3 2 5 . 7 6 0 1 2 3 . 2 5 0 9 1 2 ' 2 3 . 1 7 5 9 3 . 1 9 6 7 1 7 . 6 4 2 1 0 3 . 0 7 6 9 3 . 1 0 9 6 3 7 . 8 2 0 4 1 3 . 0 0 6 5 3 . 0 2 7 5 4 0 . 0 1 0 2 2 2 . 9 9 9 0 2 . 9 9 5 5 1 7 . 8 5 1 4 0 2 . 9 6 9 8 2 . 9 7 3 3 2 1 . 8 6 1 3 1 2 . 9 4 2 0 2 . 9 4 6 2 1 9 . 1 4 1 4 ‘ 1 2 . 9 2 2 1 . 2 2 0 2 . 8 6 0 8 2 . 8 8 8 6 4 5 . 9 0 1 3 ' 2 2 . 8 0 8 8 2 . 8 3 1 9 6 . 1 3 2 3 ’ 1 2 . 7 2 1 6 2 . 7 2 3 6 6 . 6 3 2 2 ‘ 2 2 . 7 0 0 3 2 . 7 0 5 0 7 . 9 8 0 3 2 2 . 6 8 4 2 2 3 0 2 . 5 8 3 7 2 . 6 0 7 9 6 . 7 6 1 4 1 2 . 5 4 6 7 2 . 5 4 7 9 2 6 . 7 8 1 1 2 2 . 5 2 6 0 2 . 5 2 8 4 3 1 . 6 4 1 5 0 2 . 4 7 6 3 2 . 4 8 4 6 1 8 . 0 6 2 3 ‘ 2 2 . 4 6 3 7 1 2 2 2 . 4 0 2 2 2 . 4 0 5 4 9 . 1 5 0 4 2 2 . 3 7 3 9 2 . 3 6 8 3 1 7 . 4 3 2 2 1 2 . 3 4 7 0 0 0 3 2 . 2 3 3 4 2 . 2 4 9 6 6 2 . 4 1 1 5 ‘ 2 2 . 1 5 6 1 2 . 1 7 6 6 8 . 7 0 1 3 ’ 3 2 . 1 3 4 0 2 . 1 4 8 9 8 . 4 1 0 6 1 2 . 1 2 6 8 2 . 1 2 5 3 3 8 . 4 4 3 2 ‘ 2 2 . 1 0 7 2 2 . 1 0 0 3 3 0 . 2 5 2 3 ‘ 3 2 . 0 4 5 3 2 . 0 5 1 9 2 0 . 2 5 3 3 ‘ 1 2 . 0 3 4 5 2 . 0 2 6 1 1 0 . 8 9 J ‘ L O ‘ O H W ‘ O P Q N P F Q I ’ U N O N ‘ - I J U D ‘ - l N N l \ l U ‘ - P m P e m N e m m m w P T a b l e 7 - 4 . ( c o n t ' d ) 3 8 2 l — ‘ I b w w i - ‘ O N P W O N N P # W H P W N W N W F N N O W O N N U H W N F W W ' 2 ' 3 1 . 9 8 8 8 1 . 9 6 5 4 1 . 9 4 3 9 1 . 9 2 8 5 1 . 9 0 7 2 1 . 9 0 4 0 1 . 8 8 9 0 1 . 8 7 6 1 1 . 8 7 1 7 1 . 8 6 0 7 1 . 8 5 2 3 1 . 8 4 7 9 1 . 8 3 3 4 1 . 8 2 9 1 1 . 8 1 6 1 1 . 8 0 0 0 1 . 7 8 7 3 1 . 7 8 5 8 1 . 7 8 5 3 1 . 7 5 3 6 1 . 7 4 2 4 1 . 7 2 4 1 1 . 7 1 2 1 1 . 6 9 8 2 1 . 6 9 0 3 1 . 6 8 6 2 1 . 6 7 1 5 1 . 6 6 7 4 1 . 6 5 9 1 1 . 6 5 9 1 1 . 6 4 2 5 1 . 6 3 1 5 1 . 6 2 5 6 1 . 6 0 5 1 1 . 5 9 9 9 1 . 5 9 9 4 1 . 5 8 9 8 2 . 0 0 3 5 1 . 9 7 9 7 1 . 9 4 3 8 1 . 9 2 2 4 1 . 9 0 3 2 1 . 8 8 6 5 1 . 8 8 5 6 1 . 8 5 9 4 1 . 8 4 6 8 1 . 8 2 7 9 1 . 8 1 4 7 1 . 7 9 6 3 1 . 7 6 6 9 1 . 7 5 0 8 1 . 7 2 3 6 1 . 7 1 1 0 1 . 7 0 5 9 1 . 6 9 3 4 1 . 6 7 1 2 1 . 6 7 0 1 1 . 6 5 1 4 1 . 6 3 1 9 1 . 6 0 9 7 1 . 5 9 7 6 1 5 . 4 1 2 8 . 0 9 9 . 1 5 1 3 . 5 1 1 6 . 2 0 4 1 . 6 0 3 0 . 8 0 1 2 . 4 3 1 1 . 9 0 1 1 . 5 6 3 5 . 7 0 5 0 . 4 1 1 5 . 2 1 1 7 . 8 5 9 . 0 0 2 7 . 5 6 2 2 . 3 3 3 4 . 5 2 2 4 . 0 1 1 2 . 0 8 5 . 4 1 4 . 3 1 1 0 . 2 4 3 8 3 T a b l e 7 — 5 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r C s z M n S n 2 8 6 . h k 1 d c a l c . ( A ) d o b s . ( A ) S M o b s . 1 1 0 5 . 9 1 4 0 5 . 9 7 7 8 3 9 . 9 7 1 1 1 3 . 8 6 6 5 3 . 9 0 4 8 9 1 . 0 2 0 3 1 3 . 8 0 7 4 3 . 7 8 2 6 3 9 . 9 7 1 3 0 3 . 7 5 1 8 1 0 ' 2 3 . 6 7 4 6 3 . 7 0 4 2 9 1 . 0 2 1 3 ' 1 3 . 6 4 6 6 1 1 ' 2 3 . 5 4 9 7 3 . 5 7 0 9 9 5 . 4 6 2 0 ' 1 3 . 5 3 0 4 0 4 0 3 . 4 3 2 0 3 . 4 5 3 0 1 0 0 . 0 0 2 1 ' 1 3 . 4 1 9 2 0 1 2 3 . 3 2 9 3 3 . 3 5 1 8 2 9 . 1 8 1 2 ' 2 3 . 2 3 9 6 3 . 2 1 4 8 2 6 . 7 5 2 1 0 3 . 1 8 7 1 0 4 1 3 . 0 6 9 6 3 . 0 9 1 7 6 4 . 7 4 0 2 2 3 . 0 6 9 5 1 4 0 3 . 0 4 0 3 1 4 ' 1 2 . 9 8 3 5 2 . 9 7 9 6 8 4 . 5 6 2 2 0 2 . 9 5 7 0 1 4 1 2 . 6 1 2 8 2 . 6 1 1 6 2 9 . 1 8 1 1 2 2 . 6 0 2 5 2 3 ' 2 2 . 5 1 9 5 2 . 4 9 2 7 3 4 . 3 6 1 2 2 2 . 4 7 2 6 2 2 1 2 . 4 2 7 3 2 . 4 4 4 7 2 5 . 5 8 0 4 2 2 . 4 2 6 7 0 0 3 2 . 2 8 7 8 2 . 3 0 1 7 8 8 . 8 4 1 5 1 2 . 2 6 9 0 1 5 ' 2 2 . 1 9 9 5 2 . 2 0 1 1 3 5 . 7 2 2 5 ' 1 2 . 1 6 7 3 2 . 1 7 5 8 5 5 . 8 2 3 2 ' 2 2 . 1 6 5 3 3 3 ' 2 2 . 0 4 2 0 2 . 0 2 2 8 4 4 . 4 4 3 0 ' 3 2 . 0 1 2 1 3 3 0 1 . 9 7 1 3 1 . 9 8 5 8 3 4 . 3 6 3 4 ' 1 1 . 9 4 4 4 1 . 9 5 1 4 2 2 . 2 1 1 6 ' 2 1 . 9 4 2 3 2 5 1 1 . 8 8 5 9 1 . 8 7 7 3 2 7 . 9 6 0 7 1 1 . 8 8 5 7 2 3 2 1 . 8 4 4 0 1 . 8 5 2 3 3 9 . 9 7 2 1 ' 4 1 . 8 2 1 1 1 . 8 2 9 4 5 4 . 1 2 1 6 2 1 . 7 3 2 0 1 . 7 1 9 4 3 5 . 7 2 4 2 ' 2 1 . 7 0 9 6 1 8 ' 1 1 . 6 5 0 6 1 . 6 4 8 4 1 3 . 5 3 1 4 ' 4 1 . 6 2 3 2 2 2 3 1 . 5 6 5 9 1 . 5 7 4 8 1 3 . 5 3 3 8 4 T a b l e 7 - 6 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r K 2 M n S n S 4 . h k 1 d c a l c . ( A ) d o b s . ( K ) % I o b s . 1 1 0 7 . 5 9 1 5 7 . 5 7 3 7 1 4 . 2 7 0 0 2 7 . 3 8 1 5 1 1 1 6 . 4 2 4 3 6 . 5 9 7 4 2 . 7 8 1 1 ' 2 5 . 6 6 8 1 5 . 7 9 4 9 3 . 6 7 0 2 0 5 . 4 1 2 0 0 2 1 5 . 0 8 1 3 5 . 0 7 7 3 2 . 7 3 2 2 0 3 . 7 9 5 8 3 . 8 4 7 2 1 7 . 9 4 2 2 ' 1 3 . 7 9 5 5 0 0 4 3 . 6 9 0 7 3 . 7 4 3 4 3 3 . 7 0 2 2 1 3 . 5 6 7 5 3 . 6 1 4 1 5 1 . 7 6 2 2 ' 2 3 . 5 6 6 8 3 1 ' 1 3 . 4 1 7 9 3 . 4 6 0 6 1 3 . 2 4 1 3 0 3 . 4 1 7 2 3 . 4 1 5 6 6 . 2 5 1 3 2 3 . 0 3 4 9 3 . 0 7 3 7 3 . 2 1 3 1 ' 3 3 . 0 3 4 9 3 1 2 2 . 8 8 7 1 2 . 9 1 9 9 7 . 7 2 1 3 ' 3 2 . 8 8 6 0 1 1 ' 5 2 . 8 7 9 4 2 . 8 6 7 8 1 0 0 . 0 0 2 2 3 2 . 8 3 4 8 2 2 ' 4 2 . 8 3 4 1 1 3 3 2 . 7 3 3 8 2 . 7 6 3 1 6 . 2 5 3 1 ' 4 2 . 7 3 3 6 1 1 5 2 . 6 3 9 7 2 . 6 3 5 8 6 . 4 6 0 2 5 2 . 5 9 1 9 2 . 6 1 1 4 4 . 0 0 3 1 3 2 . 5 8 3 9 1 3 ' 4 2 . 5 8 2 9 3 3 ' 2 2 . 4 9 3 9 2 . 4 6 4 0 1 . 8 2 3 3 1 2 . 4 4 2 5 1 3 4 2 . 4 3 8 3 3 1 ' 5 2 . 4 3 8 0 4 2 ' 2 2 . 3 8 8 8 3 3 ' 3 2 . 3 7 7 9 2 . 3 9 9 2 1 . 3 9 5 1 ' 1 2 . 1 2 2 0 2 . 1 3 8 9 7 . 6 4 1 5 0 2 . 1 2 1 4 1 1 ' 7 2 . 1 0 2 8 2 4 3 2 . 0 9 9 5 2 . 0 7 3 0 3 . 5 7 3 1 5 2 . 0 5 4 4 1 3 ' 6 2 . 0 5 3 8 5 1 1 2 . 0 2 0 4 1 5 2 2 . 0 1 9 8 2 . 0 1 1 4 4 4 . 8 2 4 0 4 1 . 9 9 5 6 0 4 5 1 . 9 9 4 9 4 0 ' 6 1 . 9 9 4 8 5 1 ' 4 1 . 9 7 4 2 1 . 9 7 0 9 8 . 9 2 1 5 ' 3 1 . 9 7 4 0 3 3 4 1 . 9 7 2 4 1 1 7 1 . 9 6 8 0 2 2 6 1 . 9 5 3 4 5 1 2 1 . 9 2 3 8 1 . 9 2 7 7 4 3 . 1 6 3 8 5 T a b l e 7 - 7 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n f o r C s z l n z G e 2 S 8 . h k 1 d c a l c . ( A ) d o b s . ( A ) % 1 0 b s . 0 0 2 6 . 2 0 9 5 6 . 2 4 2 0 1 0 0 . 0 0 0 1 1 6 . 1 2 9 0 2 1 2 4 . 1 1 4 0 4 . 1 9 6 3 1 3 . 0 5 2 0 3 3 . 7 4 3 3 3 . 7 6 5 6 4 4 . 2 5 3 1 2 3 . 6 4 3 0 3 . 7 0 4 2 2 6 . 1 1 0 1 3 3 . 5 6 9 4 3 . 6 3 1 5 3 1 . 3 0 3 0 3 3 . 3 7 8 1 3 . 3 9 9 3 2 0 . 1 9 2 2 0 3 . 2 6 9 3 3 . 2 9 9 7 4 5 . 4 3 2 2 1 3 . 1 6 1 6 3 . 1 3 2 0 2 2 . 2 2 0 2 2 3 . 0 6 4 5 3 . 0 7 1 3 4 3 . 0 8 1 0 4 3 . 0 5 7 2 5 0 2 3 . 0 5 3 4 5 1 1 3 . 0 4 3 7 3 2 1 2 . 9 3 2 2 2 . 9 3 9 1 1 2 . 4 2 2 0 4 2 . 9 2 6 6 6 0 0 2 . 9 2 2 2 6 0 1 2 . 8 4 4 5 2 . 8 5 0 4 5 . 8 7 1 2 3 2 . 6 5 2 3 2 . 6 5 6 1 5 . 2 5 6 0 2 2 . 6 4 4 0 6 1 1 2 . 6 3 7 7 0 2 4 2 . 3 2 9 4 2 . 3 4 5 1 7 . 7 4 2 3 2 . 2 8 8 4 2 . 2 9 9 1 1 3 . 6 9 3 0 5 2 . 2 8 5 9 6 0 4 2 . 1 2 7 9 2 . 1 3 2 1 9 . 2 4 4 2 4 2 . 0 5 7 0 2 . 0 8 6 9 1 0 . 6 3 3 3 2 2 . 0 5 6 5 5 2 4 1 . 9 4 0 3 1 . 9 5 5 5 9 . 7 8 4 2 5 1 . 8 4 2 1 1 . 8 5 3 8 1 6 . 4 3 8 2 1 1 . 8 4 0 4 3 8 6 T a b l e 7 - 8 . C a l c u l a t e d a n d O b s e r v e d X - R a y P o w d e r D i f f r a c t i o n P a t t e r n s f o r R b 2 C d G e 2 8 6 . h k 1 d c a l c . ( A ) d o b s . ( A ) 5 2 5 1 0 b s . 0 0 2 6 . 5 9 3 2 6 . 7 3 3 7 9 . 7 5 1 1 0 6 . 3 1 9 3 6 . 5 5 4 9 9 . 2 0 1 1 ' 2 5 . 1 2 7 2 5 . 3 4 3 3 9 . 7 5 1 1 2 4 . 1 5 0 4 4 . 1 9 7 3 1 9 . 7 5 1 1 ' 3 4 . 0 2 2 9 4 . 0 6 9 0 2 3 . 6 7 0 2 3 3 . 5 5 9 7 3 . 5 6 5 3 1 6 . 4 4 1 3 ' 1 3 . 5 3 3 2 1 1 3 3 . 3 0 0 3 3 . 3 2 5 7 3 7 . 5 3 1 1 ' 4 3 . 2 1 0 1 3 . 2 3 4 8 1 0 0 . 0 0 2 2 ' 2 3 . 1 1 3 5 3 . 1 3 6 1 1 4 . 7 8 0 4 1 2 . 9 5 6 7 3 . 9 6 3 2 2 5 . 7 6 2 2 1 2 . 9 3 7 1 2 . 9 2 1 3 1 4 . 5 5 0 2 4 2 . 8 9 6 7 0 4 2 2 . 7 5 6 2 2 . 7 8 1 9 3 . 9 3 1 1 4 2 . 7 0 1 0 2 . 7 1 9 6 1 2 . 3 4 2 2 2 2 . 6 4 2 8 2 . 6 5 8 6 7 . 9 7 0 4 3 2 . 4 9 6 9 2 . 5 1 2 7 1 2 . 7 7 3 1 0 2 . 4 1 7 9 2 . 4 2 9 5 1 1 . 5 2 3 1 ' 3 2 . 3 7 1 6 2 . 3 8 7 7 1 7 . 1 7 1 1 5 2 . 2 7 1 4 2 . 2 8 4 3 7 1 . 2 1 2 2 ' 5 2 . 2 7 0 9 3 3 ' 1 2 . 1 5 1 1 2 . 1 4 0 6 2 1 . 9 5 2 0 ' 6 2 . 1 3 2 0 2 2 4 2 . 0 7 5 2 2 . 0 8 7 2 3 9 . 0 2 0 2 6 2 . 0 6 6 4 2 . 0 7 2 5 6 0 . 4 9 1 5 3 1 . 9 8 1 2 1 . 9 8 9 4 4 . 5 5 1 1 6 1 . 9 5 3 3 1 . 9 6 1 6 2 7 . 9 3 1 1 ' 7 1 . 9 1 8 0 1 . 9 1 6 4 8 . 8 4 3 1 ' 6 1 . 8 6 3 3 1 . 8 6 9 1 5 . 9 2 4 2 ' 2 1 . 8 1 9 2 1 . 8 0 6 8 1 8 . 4 4 0 2 7 1 . 7 9 9 1 2 6 0 1 . 7 7 4 9 3 5 ' 1 1 . 7 5 4 8 1 . 7 5 8 7 1 7 . 4 2 1 3 ' 7 1 . 7 5 1 1 2 4 ' 6 1 . 7 4 4 4 4 2 ' 4 1 . 7 3 7 7 3 5 ' 3 1 . 7 1 3 1 1 . 7 1 7 7 1 9 . 4 9 1 7 ' 1 1 . 6 8 6 2 1 . 6 8 5 5 1 7 . 1 7 4 0 2 1 . 6 7 8 2 1 . 6 7 0 7 3 8 . 6 4 1 5 5 1 . 6 7 4 2 2 0 ' 8 1 . 6 6 4 3 1 5 ' 6 1 . 6 5 5 2 1 . 6 5 5 1 2 6 . 3 7 4 4 ' 1 1 . 6 0 8 7 1 . 6 0 6 8 1 0 . 5 2 1 7 ' 3 1 . 6 0 6 0 1 3 7 1 . 5 8 8 7 1 . 5 9 3 8 1 2 . 5 6 3 8 7 T a b l e 7 - 9 . S u m m a r y o f C r y s t a l l o g r a p h i c D a t a f o r K 2 H g S n 2 8 6 ( l ) , K z G e I n 2 8 6 ( I I ) , K 2 H g 3 S n 2 S 3 ( I I I ) , K 2 H g 3 G e 2 8 3 ( I V ) , K 6 Z n 4 S n 5 S 1 7 ( V ) , s z a n n 2 8 6 ( V l ) , C s z M n S n 2 8 6 ( V I I ) , K 2 M n S n S 4 ( V I l I ) , C s z G e 2 1 n 2 S 8 ( I X ) , C s z M n S n 3 S e 8 ( X ) a n d R b 2 C d G e 2 8 6 ( X I ) . ( D ( I I ) f o r m u l a K 2 H g S n 2 S 6 K 2 G e I n 2 8 6 f w 7 0 8 . 5 3 5 7 2 . 7 9 a , A 7 . 5 1 9 ( 2 ) 1 6 . 2 5 1 ( 4 ) b , A 1 6 . 0 0 9 ( 4 ) 9 . 9 8 6 ( 2 ) c , A 1 0 . 2 2 2 ( 2 ) 7 . 4 0 8 ( 3 ) 0 1 9 0 . 0 9 0 . 0 f 5 9 1 9 2 ( 2 ) 9 0 . 0 Y 9 0 . 0 9 0 . 0 2 , v , A 3 4 , 1 2 2 9 . 8 ( 9 ) 4 , 1 2 0 2 ( 1 ) s p a c e g r o u p P 2 1 / n ( # 1 4 ) P 2 1 2 1 2 1 ( # 1 8 ) d e a l c , g / c m 3 3 . 8 2 6 3 . 1 6 4 c r y s t a l s i z e , m m 0 . 6 4 x 0 . 7 2 x 0 . 8 4 0 . 9 x 0 . 8 x 0 . 7 t e m p e r a t u r e ( ° C ) 2 3 2 3 r a d i a t i o n M o K 0 1 M o K 0 1 1 1 ( M o K 0 1 ) , c m - 1 1 8 1 . 0 6 7 8 . 4 3 2 0 m a x , d e g 5 0 5 0 s c a n m o d e ( 0 ‘ 2 8 o o — 2 6 s c a n s p e e d , o l m i n 4 8 n o . o f d a t a c o l l e c t e d 2 4 2 6 1 2 6 4 n o . o f u n i q u e d a t a 2 2 4 9 1 2 6 4 n o . o f o b s e r v e d d a t a 1 7 7 6 9 4 3 ( I > 3 . 0 o ( l ) ) n o . o f v a r i a b l e s 1 0 1 1 0 2 fi n a l R / R w , % 3 . 9 / 5 . 7 3 . 8 / 5 9 3 8 8 T a b l e 7 - 9 . ( c o n t ' d ) ( I I I ) ( I V ) ( V ) f o r m u l a K 2 H g 3 S n 2 8 3 K 2 H g 3 G e 2 8 3 K 6 Z n 4 S n 5 8 1 7 f w 1 1 7 3 . 8 3 1 0 8 1 . 6 3 1 6 3 4 . 5 8 a , A 1 9 . 5 2 2 ( 5 ) 1 9 . 1 8 8 ( 3 ) 1 3 . 7 9 6 ( 2 ) b , A 9 . 8 3 5 ( 3 ) 9 . 6 1 8 ( 2 ) 1 3 . 7 9 6 ( 2 ) c , A 8 . 4 3 1 ( 2 ) 8 . 3 2 8 ( 5 ) 9 . 5 8 0 ( 2 ) 0 1 9 0 . 0 9 0 . 0 9 0 . 0 B 9 0 . 0 9 0 . 0 9 0 . 0 v 9 0 . 0 9 0 . 0 9 0 . 0 2 , v , A 3 4 , 1 6 1 8 . 7 ( 9 ) 4 , 1 5 3 7 ( 1 ) 2 , 1 8 2 3 . 3 ( 6 ) s p a c e g r o u p A b a 2 ( # 4 1 ) A b a 2 ( # 4 1 ) I Z m 2 ( # 1 1 9 ) d c a j c , g / c m 3 4 . 8 1 6 4 . 6 7 4 2 . 9 7 7 c r y s t a l s i z e , m m 0 . 2 3 x 0 . 3 0 x 0 . 3 1 0 . 1 6 x 0 . 3 0 x 0 . 5 0 0 . 2 6 x 0 . 4 4 x 0 . 5 2 t e m p e r a t u r e ( ° C ) 2 0 2 3 2 3 r a d i a t i o n M o K 0 1 M o K 0 1 M o K 0 1 1 1 ( M o K 0 1 ) , c m - l 3 2 8 . 8 9 3 5 2 . 3 4 7 6 . 5 9 s c a n m o d e 0 0 ( 0 ' 2 6 o o - Z G s c a n s p e e d , o l m i n 2 e = 3 ~ 4 3 ° 4 O / m i n 2 4 2 0 = 4 3 ~ 5 5 ° 2 0 / m i n 2 0 " , ” , d e g 5 5 5 0 5 0 . 0 n o . o f d a t a c o l l e c t e d 1 0 8 7 8 0 1 4 9 7 n o . o f u n i q u e d a t a 9 9 9 7 9 5 4 9 7 n o . o f o b s e r v e d d a t a 8 8 2 6 3 2 4 5 6 ( I > 3 . 0 0 ’ ( I ) ) n o . o f v a r i a b l e s 6 9 6 9 4 6 fi n a l R / R w , % 3 . 9 / 4 . 2 4 . 3 / 5 9 3 . 6 / 4 . 6 T a b l e 7 - 9 . ( c o n t ' d ) 3 8 9 ( V I ) ( V I I ) ( V I I I ) f o r m u l a R b 2 Z n S n 2 S 6 C s z M n S n 2 S 6 K 2 M n S n S 4 f w 6 6 6 . 0 6 7 5 0 . 4 9 3 8 0 . 0 6 a , A 6 . 8 7 3 ( 2 ) 7 . 0 9 8 ( 1 ) 1 0 . 8 2 7 ( 3 ) b , A 1 3 . 4 5 6 ( 4 ) 1 3 . 7 2 9 ( 3 ) 1 0 . 8 2 4 ( 4 ) c , A 7 . 2 8 5 ( 2 ) 7 . 4 3 4 ( 1 ) 1 5 . 0 0 8 ( 5 ) 0 1 9 0 . 0 9 0 . 0 9 0 . 0 B 1 1 3 . 1 2 ( 2 ) 1 1 2 . 5 7 ( 1 ) 1 0 0 . 3 7 ( 2 ) v 9 0 . 0 9 0 . 0 9 0 . 0 2 , v , A 3 2 , 6 1 9 . 7 ( 3 ) 2 , 6 6 8 . 9 ( 4 ) 4 , 1 7 3 0 . 1 ( 9 ) s p a c e g r o u p P 2 ] ( # 4 ) P 2 1 ( # 4 ) C 2 / C ( # 1 5 ) d c a l c , g / c m 3 3 . 5 6 9 3 . 7 2 6 2 . 9 1 8 c r y s t a l s i z e , m m O . 4 2 x 0 . 4 0 x 0 . 1 4 O . 4 3 x 0 . 4 2 x 0 . 1 5 O . 1 2 x 0 . 3 3 x 0 . 3 6 t e m p e r a t u r e ( ° C ) - 9 0 - 9 5 - 9 0 r a d i a t i o n M o K 0 1 M o [ ( 0 1 M o K a 1 1 ( M o K a t ) , c m - l 1 4 5 . 0 4 1 0 7 . 9 9 6 1 . 0 5 4 s c a n m o d e 0 3 - 2 0 ( J D - 2 6 w - 2 0 s c a n s p e e d , 0 / m i n 8 4 4 2 6 m a x , d e g 5 0 . 0 5 5 . 0 5 0 n o . o f d a t a c o l l e c t e d 1 2 4 7 1 7 3 7 1 7 0 9 n o . o f u n i q u e d a t a 1 1 5 4 1 6 1 9 1 6 1 5 n o . o f o b s e r v e d d a t a 1 0 4 4 1 5 6 0 7 1 5 ( I > 3 . o c ( l ) ) n o . o f v a r i a b l e s 1 0 0 1 0 0 7 4 fi n a l R I R W , % 2 . 7 / 3 4 6 2 9 / 8 3 6 8 0 8 / 8 6 6 T a b l e 7 — 9 . ( c o n t ' d ) 3 9 0 ( I X ) ( X ) ( X D f o r m u l a C s z G e z l n z s g C s 2 M n S n 3 S e 8 R b 2 C d G e 2 8 6 f w 8 9 7 . 1 1 1 3 0 8 . 5 0 6 2 0 . 8 9 a , A 1 7 . 5 3 3 ( 4 ) 1 2 . 7 3 2 ( 3 ) 7 . 6 3 3 ( 3 ) b , A 7 . 4 0 9 ( 2 ) 1 8 . 5 0 3 ( 4 ) 1 2 . 1 3 6 ( 2 ) c , A 1 2 . 4 1 9 ( 4 ) 7 . 8 9 8 ( 3 ) 1 3 . 5 9 8 ( 2 ) 0 1 9 0 . 0 9 0 . 0 9 0 . 0 B 9 0 . 0 9 0 . 0 9 0 . 0 Y 9 0 . 0 9 0 . 0 9 0 . 0 2 , v , A 3 4 , 1 6 1 3 ( 2 ) 4 , 1 8 6 1 ( 2 ) 4 , 1 2 2 1 . 4 ( 5 ) s p a c e g r o u p a n a ( # 6 2 ) P 2 1 2 1 2 1 ( # 1 9 ) C 2 / c d e a l e g / c m 3 3 . 6 9 3 4 . 6 7 1 3 . 3 7 6 c r y s t a l s i z e , m m 0 . 1 8 x 0 . 2 5 x 0 . 4 4 0 . 2 x 0 . 3 8 x 0 . 2 1 0 . 8 x 0 . 4 8 x 0 . 2 9 t e m p e r a t u r e ( 0 C ) - 9 5 2 3 2 3 r a d i a t i o n M 0 [ ( 0 1 M O K 0 1 M 0 K 0 1 1 1 ( M o K 0 1 ) , c m - l 1 1 8 . 0 9 2 3 9 . 4 3 1 5 1 . 9 0 s c a n m o d e 0 0 - 2 0 0 3 - 2 0 0 3 - 2 0 s c a n s p e e d 4 2 4 2 9 m a x , d e g 5 0 5 0 5 0 n o . o f d a t a c o l l e c t e d 1 6 7 5 1 9 1 9 1 2 3 5 n o . o f u n i q u e d a t a 1 6 7 5 1 9 1 9 1 1 4 1 n o . o f o b s e r v e d d a t a 1 0 6 3 1 1 2 2 8 5 8 ( I > 3 . 0 o ( I ) ) n o . o f v a r i a b l e s 7 7 1 2 8 5 2 fi n a l R / R w , % 6 . 6 / 7 . 0 4 . 5 / 6 . 0 2 . 5 / 3 4 3 9 1 T a b l e 7 - 1 0 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 7 0 3 f o r K 2 H g S n 2 8 6 w i t h B t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) H g 1 . 0 8 1 7 6 ( 8 ) 0 . 8 8 0 4 1 ( 4 ) 0 . 2 6 7 3 1 ( 6 ) 1 . 5 6 ( 3 ) S n ( l ) 0 . 5 8 0 9 ( 1 ) 0 . 8 8 5 3 7 ( 6 ) 0 . 1 9 0 4 ( 1 ) 0 . 8 2 ( 4 ) S n ( 2 ) 0 . 7 8 3 1 ( 1 ) 0 . 7 6 5 8 1 ( 7 ) 0 . 4 9 1 2 ( 1 ) 0 . 8 9 ( 4 ) K ( 1 ) 0 . 1 6 1 4 ( 5 ) 1 . 1 0 7 9 ( 3 ) 0 . 1 5 6 4 ( 4 ) 2 . 4 ( 2 ) K ( 2 ) 0 . 3 1 1 8 ( 5 ) 0 . 9 1 0 3 ( 3 ) 0 . 6 1 9 7 ( 4 ) 2 . 1 ( 2 ) 5 ( 1 ) 0 . 8 3 6 1 ( 5 ) 0 . 9 6 4 2 ( 3 ) 0 . 1 4 2 3 ( 4 ) 1 . 4 ( 2 ) S ( 2 ) 0 . 3 6 9 9 ( 5 ) 0 . 9 5 9 2 ( 3 ) 0 . 3 1 2 8 ( 4 ) 1 . 4 ( 2 ) 8 ( 3 ) 0 . 6 2 5 6 ( 5 ) 0 . 7 4 7 3 ( 3 ) 0 . 2 8 0 9 ( 4 ) 1 . 3 ( 2 ) 8 ( 4 ) 0 . 4 6 0 6 ( 5 ) 0 . 8 5 8 2 ( 3 ) - o . 0 2 6 4 ( 4 ) 1 . 6 ( 2 ) 8 ( 5 ) 1 . 0 8 9 5 ( 6 ) 0 . 7 3 8 4 ( 3 ) 0 . 1 6 6 9 ( 4 ) 2 . 0 ( 2 ) 3 ( 6 ) 0 . 9 2 7 0 ( 5 ) 0 . 8 9 5 2 ( 3 ) 0 . 4 9 1 3 ( 4 ) 1 . 4 ( 2 ) a B ( e q ) = 4 / 3 l a 2 1 3 1 1 + b 2 1 5 2 2 + c 2 9 3 3 + a b ( c o s v ) 1 3 1 2 + a c ( c o s fi ) fi l 3 + b c ( c o s a ) 6 2 3 l . 3 9 2 T a b l e 7 - 1 1 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r K z G e I n 2 8 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) I n ( 1 ) 0 . 3 6 8 7 ( 1 ) 0 . 7 1 7 9 ( 2 ) 0 . 3 3 2 4 ( 2 ) 0 . 9 7 ( 8 ) I n ( 2 ) 0 . 3 6 9 7 ( 1 ) 0 . 7 8 5 7 ( 2 ) 0 . 8 2 7 0 ( 3 ) 1 . 2 0 ( 8 ) G e ( 1 ) 0 . 5 0 . 5 0 . 0 4 8 7 ( 5 ) 1 . 2 ( 2 ) G e ( 2 ) 0 . 5 1 . 0 0 0 0 0 . 5 4 2 0 ( 5 ) 0 . 8 ( 2 ) K ( 1 ) 0 . 1 4 2 5 ( 4 ) 0 . 6 4 1 0 ( 6 ) 0 . 9 0 2 0 ( 8 ) 1 . 8 ( 3 ) K ( 2 ) 0 . 3 4 7 7 ( 4 ) 0 . 3 5 2 8 ( 5 ) 0 . 5 8 3 ( 1 ) 2 . 2 ( 3 ) S ( 1 ) 0 . 3 8 9 6 ( 5 ) 0 . 4 8 2 9 ( 6 ) 0 . 2 0 9 7 ( 8 ) 1 . 6 ( 3 ) S ( 2 ) 0 . 2 9 0 3 ( 5 ) 0 . 6 6 1 9 ( 7 ) 0 . 6 0 9 ( 1 ) 1 . 9 ( 3 ) S ( 3 ) 0 . 5 0 6 1 ( 7 ) 0 . 8 1 7 6 ( 7 ) 0 . 3 7 2 5 ( 9 ) 1 . 7 ( 3 ) 3 ( 4 ) 0 . 2 8 8 4 ( 4 ) 0 . 8 3 1 9 ( 6 ) 0 . 0 9 5 2 ( 9 ) 0 . 9 ( 3 ) 5 ( 5 ) 0 . 3 8 1 1 ( 5 ) 1 . 0 0 5 4 ( 6 ) 0 . 6 9 2 4 ( 8 ) 1 . 3 ( 3 ) S ( 6 ) 0 . 5 0 6 1 ( 7 ) 0 . 6 8 7 7 ( 7 ) 0 . 8 8 5 9 ( 9 ) 1 . 8 ( 3 ) a B ( e q ) = 4 3 1 2 1 2 6 1 1 + b 2 1 3 2 2 + 9 2 1 3 3 3 + a b ( c o s v ) 6 1 2 + a c ( c o s f 5 ) fi l 3 + b c ( c o s a ) 6 2 3 l - T a b l e 7 - 1 2 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r 3 9 3 K 2 H g 3 S n z S g w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) H 8 0 ) 0 . 5 1 . 0 0 0 0 0 . 4 8 9 4 ( 2 ) 1 . 0 6 ( 4 ) H g ( 2 ) 0 . 2 5 4 7 3 ( 5 ) 0 . 5 3 9 6 ( 1 ) 0 . 6 4 9 1 1 . 4 7 ( 3 ) S n 0 . 3 6 6 7 5 ( 7 ) 0 . 7 8 5 6 ( 2 ) 0 . 3 3 6 6 ( 2 ) 0 . 3 9 ( 5 ) K 0 . 3 8 3 5 ( 3 ) 0 . 7 9 6 0 ( 7 ) 0 . 8 4 2 4 ( 9 ) 1 . 7 ( 2 ) S ( 1 ) 0 . 2 6 7 4 ( 2 ) 0 . 7 8 9 1 ( 6 ) 0 . 4 9 5 2 ( 9 ) 1 . 1 ( 2 ) S ( 2 ) 0 . 4 6 9 7 ( 3 ) 0 . 7 7 0 9 ( 6 ) 0 . 4 9 6 7 ( 9 ) 0 . 9 ( 2 ) 8 ( 3 ) 0 . 3 7 5 1 ( 3 ) 0 . 4 8 9 4 ( 6 ) 0 . 6 8 3 5 ( 8 ) 0 . 9 ( 2 ) 8 ( 4 ) 0 . 1 3 3 0 ( 2 ) 0 . 5 8 4 3 ( 6 ) 0 . 6 8 0 6 ( 7 ) 0 . 6 ( 2 ) a B ( e q ) = 4 / 3 l a 2 1 3 1 1 + b 2 1 3 2 2 + 9 2 1 3 3 3 + a b ( c o s v ) ( 5 1 2 + a C ( C O S B ) B l 3 + b c ( c o s a ) 6 2 3 l . T a b l e 7 - 1 3 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r K 2 H g 3 G e 2 S 8 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) I 1 8 ( 1 ) 0 . 5 0 0 . 5 2 5 1 ( 5 ) 1 . 5 1 ( 8 ) H 8 0 ) 0 . 7 4 4 9 4 ( 8 ) 0 . 4 5 5 2 ( 1 ) 0 . 3 5 8 7 1 . 9 5 ( 6 ) G e 0 . 6 3 5 1 ( 2 ) 0 . 2 1 1 0 ( 4 ) 0 . 6 7 1 9 ( 5 ) 0 . 9 ( 2 ) K 0 . 6 1 2 5 ( 5 ) 0 . 1 9 8 ( 1 ) 0 . 1 6 1 ( 1 ) 2 . 2 ( 4 ) 3 ( 1 ) 0 . 7 2 9 8 ( 5 ) 0 . 2 0 7 9 ( 8 ) 0 . 5 2 7 ( 2 ) 1 . 6 ( 4 ) S ( 2 ) 0 . 5 3 8 8 ( 5 ) 0 . 2 3 3 0 ( 8 ) 0 . 5 2 0 ( 2 ) 1 . 6 ( 4 ) 5 ( 3 ) 0 . 6 2 3 4 ( 5 ) 0 . 5 1 8 ( 1 ) 0 . 3 1 4 ( 1 ) 1 . 2 ( 4 ) S ( 4 ) 0 . 8 6 8 1 ( 4 ) 0 . 4 0 2 6 ( 9 ) 0 . 3 2 2 ( 1 ) 1 . 0 ( 3 ) a B ( e q ) = 4 0 1 2 1 2 1 3 1 1 + b 2 1 3 2 2 + c 2 0 3 3 + a b ( C O S Y ) 1 3 1 2 + a c ( c o s 0 ) 0 1 3 + b c ( c o s a ) 0 2 3 1 . 3 9 4 T a b l e 7 - 1 4 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r O p i c D i s p l a c e m e n t V a l u e s ( A 2 ) 2 l f o r K 6 Z n 4 S n 5 8 1 7 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) S n ( l ) 1 / 2 1 / 2 0 1 . 5 0 ( 7 ) S n ( 2 ) 0 . 7 7 5 6 ( 1 ) 1 / 2 - 0 . 0 2 6 0 ( l ) 1 . 5 3 ( 6 ) Z n 1 . 0 0 0 0 0 . 3 6 1 1 ( 2 ) - 0 . 1 0 9 5 ( 2 ) 1 . 4 ( 1 ) K ( 1 ) 1 . 0 0 0 0 1 / 2 1 / 4 2 . 9 ( 3 ) K ( 2 ) 0 . 7 5 8 5 ( 4 ) 1 . 2 5 8 5 — 1 / 4 3 . 8 ( 2 ) K ( 3 ) 1 / 2 1 / 2 1 / 2 2 9 ( 3 ) S ( 1 ) 1 . 0 0 0 0 1 / 2 - 1 / 4 1 . 1 ( 2 ) S ( 2 ) 0 . 7 1 7 4 ( 4 ) 1 / 2 - 0 . 2 5 8 9 ( 6 ) 2 . 3 ( 2 ) S ( 3 ) 0 . 8 6 2 8 ( 2 ) 0 . 3 5 7 8 ( 3 ) 0 . 0 3 2 6 ( 4 ) 1 . 9 ( 1 ) 3 ( 4 ) 0 . 6 4 2 8 ( 4 ) 1 / 2 0 . 1 4 3 4 ( 6 ) 2 . 9 ( 3 ) a B ( B Q ) - ' - 4 / 3 1 8 2 6 1 1 + b 2 1 3 2 2 + 9 2 5 3 3 + a b ( C O S Y ) 1 3 1 2 + 2 1 9 0 3 0 8 1 8 1 3 1 3 + 1 1 9 0 0 8 0 0 1 3 2 3 ] - T a b l e 7 - 1 5 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( 4 2 ? f o r 3 9 5 R b 2 Z n S n 2 8 6 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) S n ( 1 ) 0 . 3 9 2 5 ( 1 ) 0 . 2 6 6 3 0 . 3 6 6 2 ( 1 ) 0 . 5 9 ( 3 ) S n ( 2 ) 0 . 2 8 0 6 ( 1 ) 0 . 0 1 2 3 ( 1 ) 0 . 3 0 2 0 ( 1 ) 0 . 6 2 ( 3 ) R b ( l ) 0 . 0 5 8 0 ( 2 ) 0 . 2 4 0 2 ( 1 ) 0 . 7 3 4 1 ( 2 ) 1 . 8 9 ( 6 ) R b ( 2 ) 0 . 6 5 9 6 ( 2 ) 0 . 0 8 2 4 ( 1 ) 0 . 0 0 8 1 ( 2 ) 1 . 6 0 ( 6 ) Z n 0 . 8 4 1 3 ( 2 ) 0 . 3 9 6 6 ( 2 ) 0 . 2 4 7 0 ( 2 ) 0 . 7 9 ( 6 ) S ( 1 ) 0 . 4 8 7 2 ( 5 ) 0 . 3 4 1 4 ( 3 ) 0 . 1 2 2 6 ( 5 ) 1 . 1 ( 1 ) S ( 2 ) 0 . 5 5 2 3 ( 6 ) 0 . 3 3 0 7 ( 3 ) 0 . 7 0 1 7 ( 5 ) 1 . 2 ( 1 ) S ( 3 ) 0 . 1 3 0 5 ( 5 ) 0 . 0 2 7 1 ( 3 ) - 0 . 0 4 3 1 ( 5 ) 0 . 9 ( 1 ) S ( 4 ) 0 . 0 2 3 3 ( 5 ) 0 . 2 4 8 1 ( 3 ) 0 . 2 5 0 7 ( 6 ) 1 . 1 ( 1 ) 5 ( 5 ) 0 . 9 7 5 8 ( 5 ) 0 . 4 7 5 6 ( 3 ) 0 . 5 6 0 6 ( 5 ) 1 . 3 ( 1 ) S ( 6 ) 0 . 5 6 1 1 ( 6 ) 0 . 1 0 3 8 ( 3 ) 0 . 4 6 9 3 ( 6 ) 1 . 2 ( 1 ) T a b l e 7 - 1 6 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r C s 2 M n S n 2 8 6 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) S n ( 1 ) 0 . 3 9 6 6 ( 3 ) 0 . 2 6 6 3 0 . 3 6 2 6 ( 3 ) 0 . 5 3 ( 6 ) S n ( 2 ) 0 . 2 8 6 2 ( 3 ) 0 . 0 0 8 2 ( 2 ) 0 . 3 2 2 2 ( 3 ) 0 . 5 0 ( 6 ) C s ( 1 ) 0 . 0 5 4 4 ( 3 ) 0 . 2 3 5 8 ( 2 ) 0 . 7 3 1 1 ( 3 ) 1 . 4 5 ( 7 ) C s ( 2 ) 0 . 6 6 0 6 ( 3 ) 0 . 0 7 7 8 ( 2 ) 0 . 0 2 0 9 ( 3 ) 1 . 3 2 ( 7 ) M n 0 . 8 4 1 2 ( 7 ) 0 . 3 9 3 3 ( 4 ) 0 . 2 2 8 6 ( 7 ) 0 . 7 ( 1 ) S ( 1 ) 0 . 4 9 5 ( 1 ) 0 . 3 3 0 0 ( 7 ) 0 . 1 1 8 ( 1 ) 1 . 2 ( 3 ) S ( 2 ) 0 . 5 4 2 ( 1 ) 0 . 3 4 1 9 ( 6 ) 0 . 6 8 1 ( 1 ) 1 . 2 ( 3 ) S ( 3 ) 0 . 1 3 8 ( 1 ) 0 . 0 2 5 7 ( 6 ) - 0 . 0 1 5 ( 1 ) 1 . 0 ( 2 ) S ( 4 ) 0 . 0 4 1 ( 1 ) 0 . 2 4 9 8 ( 6 ) 0 . 2 4 9 ( 1 ) 1 . 0 ( 3 ) 5 ( 5 ) 0 . 9 5 8 ( 1 ) 0 . 4 8 4 1 ( 7 ) 0 . 5 3 7 ( 1 ) 1 . 2 ( 3 ) S ( 6 ) 0 . 5 5 4 ( 1 ) 0 . 1 0 8 8 ( 6 ) 0 . 4 8 1 ( 1 ) 1 . 0 ( 2 ) a B ( e q ) = 4 / 3 l a 2 6 1 1 + b 2 1 5 2 2 + c 2 6 3 3 + a b ( c o s v ) 6 1 2 + a c ( c o s fi ) ( 3 1 3 + b c ( c o s a ) f ) 2 3 l . T a b l e 7 - 1 7 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( 1 5 1 2 ) 2 1 f o r 3 9 6 K 2 M n S n S 4 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) S n ( 1 ) 0 . 1 0 0 4 ( 2 ) 0 . 1 8 8 6 ( 3 ) 0 . 6 5 5 0 ( 2 ) 0 . 3 8 ( 7 ) S n ( 2 ) 0 . 3 5 2 3 ( 2 ) - 0 . 0 6 3 1 ( 3 ) 0 . 6 5 5 4 ( 2 ) 1 . 4 9 ( 8 ) m n ( 1 ) 0 . 1 0 0 4 0 . 1 8 8 6 0 . 6 5 5 0 0 . 5 M n ( 2 ) 0 . 3 5 2 3 - 0 . 0 6 3 1 0 . 6 5 5 4 1 . 9 K ( 1 ) 0 . 5 3 2 9 ( 7 ) 0 . 3 1 3 1 ( 7 ) 0 . 8 8 2 5 ( 5 ) 2 . 4 ( 3 ) K ( 2 ) 0 . 2 8 4 3 ( 6 ) 0 . 0 6 2 8 ( 7 ) 0 . 8 8 8 7 ( 5 ) 2 . 4 ( 3 ) S ( 1 ) 0 . 2 0 3 8 ( 8 ) 0 . 0 6 3 8 ( 8 ) 0 . 5 6 5 6 ( 7 ) 2 . 6 ( 3 ) S ( 2 ) 0 . 2 5 5 4 ( 5 ) 0 . 3 2 0 ( 1 ) 0 . 7 4 9 1 ( 4 ) 0 . 9 ( 3 ) 5 ( 3 ) - 0 . 0 4 9 0 ( 8 ) 0 . 3 1 1 ( 1 ) 0 . 5 5 2 5 ( 5 ) 2 . 5 ( 3 ) S ( 4 ) 0 0 . 0 4 9 ( 1 ) 3 / 4 0 . 9 ( 4 ) S ( 5 ) 1 / 2 0 . 0 6 1 ( 1 ) 3 / 4 1 . 4 ( 4 ) 3 ‘ B ( e q ) = 4 / 3 l a 2 6 1 1 + b 2 1 3 2 2 + 9 2 6 3 3 + a b ( c o s v ) ( 3 1 2 + a c ( c o s B ) B l 3 + b C ( c o s a ) 1 3 2 3 l . T a b l e 7 - 1 8 P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r 3 9 7 C s 2 1 n 2 G e 2 8 8 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) C s ( 1 ) 0 . 3 4 9 9 ( 2 ) 1 / 4 - 0 . 0 6 5 1 ( 2 ) 2 . 3 ( 1 ) C s ( 2 ) 0 . 4 4 3 5 ( 1 ) 1 / 4 - 0 . 3 8 5 3 ( 2 ) 1 . 9 ( 1 ) I n ( 1 ) 0 . 1 7 9 2 ( 2 ) 1 / 4 0 . 1 9 9 1 ( 3 ) 1 . 2 ( 1 ) I n ( 2 ) 0 . 5 1 7 7 ( 2 ) 1 / 4 0 . 1 9 2 7 ( 3 ) 1 . 3 ( 1 ) I n ( 3 ) 0 . 3 4 7 4 ( 1 ) - 0 . 0 0 2 5 ( 3 ) 0 . 2 5 6 7 ( 2 ) 1 . 6 0 ( 8 ) G e ( 1 ) 0 . 1 7 9 2 1 / 4 0 . 1 9 9 1 1 . 5 G e ( 2 ) 0 . 5 1 7 7 1 / 4 0 . 1 9 2 7 1 . 7 G e ( 3 ) 0 . 3 4 7 4 - 0 . 0 0 2 5 0 . 2 5 6 7 1 . 9 S ( 1 ) 0 . 4 5 7 1 ( 4 ) — 0 . 0 0 6 ( 1 ) 0 . 1 4 3 6 ( 6 ) 2 . 5 ( 4 ) S ( 2 ) 0 . 2 3 9 4 ( 5 ) - 0 . 0 1 1 ( 1 ) 0 . 1 4 2 5 ( 7 ) 2 . 8 ( 4 ) S ( 3 ) 0 . 3 5 1 5 ( 7 ) - 1 / 4 0 . 3 7 7 ( 1 ) 2 . 8 ( 5 ) S ( 4 ) 0 . 3 4 2 0 ( 7 ) 1 / 4 0 . 3 7 0 ( 1 ) 2 . 9 ( 6 ) S ( 5 ) 0 . 1 3 6 0 ( 7 ) 1 / 4 0 . 3 8 0 ( 1 ) 2 . 5 ( 5 ) S ( 6 ) 0 . 0 5 2 8 ( 6 ) 1 / 4 0 . 1 2 9 3 ( 8 ) 1 . 8 ( 5 ) a B ( e q ) = 4 / 3 l a 2 1 3 1 1 + b 2 1 3 2 2 + c 2 6 3 3 + a b ( c o s v ) f ) 1 2 + a c ( C O S B ) 6 1 3 + b C ( c o s a ) 1 3 2 3 l . T a b l e 7 - 1 9 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( I V - ) 3 f o r 3 9 8 C s z M n S n 3 S e 8 w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) C s ( 1 ) 0 . 1 2 9 5 ( 2 ) 0 . 5 5 3 0 ( 1 ) - 0 . 2 4 8 2 ( 7 ) 3 . 0 ( 1 ) C s ( 2 ) 0 . 3 1 7 2 ( 2 ) 0 . 8 4 4 4 ( 2 ) 0 . 2 4 2 4 ( 7 ) 3 . 4 ( 1 ) S n ( 1 ) 0 . 0 5 1 7 ( 2 ) 0 . 6 8 0 3 ( 1 ) 0 . 2 4 1 1 ( 7 ) 2 . 0 ( 1 ) S n ( 2 ) - 0 . 0 7 0 7 ( 2 ) 0 . 5 1 5 1 ( 1 ) 0 . 2 6 4 7 ( 6 ) 1 . 8 ( 1 ) S n ( 3 ) 0 . 0 1 5 8 ( 3 ) 0 . 3 4 9 5 ( 2 ) 0 . 0 0 3 1 ( 5 ) 2 . 1 ( 2 ) S e ( l ) 0 . 1 1 4 0 ( 7 ) 0 . 7 3 4 0 ( 4 ) - 0 . 0 2 7 ( 1 ) 3 . 2 ( 3 ) S e ( 2 ) 0 . 1 1 0 4 ( 5 ) 0 . 7 3 8 1 ( 3 ) 0 . 5 1 5 ( 1 ) 2 . 0 ( 3 ) S e ( 3 ) - 0 . 1 4 2 8 ( 3 ) 0 . 6 4 4 2 ( 2 ) 0 . 2 4 9 ( 1 ) 2 . 5 ( 2 ) S e ( 4 ) 0 . 1 2 3 2 ( 3 ) 0 . 5 5 0 3 ( 2 ) 0 . 2 5 7 ( 1 ) 2 . 2 ( 2 ) S e ( S ) - 0 . 1 1 6 2 ( 5 ) 0 . 4 5 0 6 ( 3 ) ' 0 . 0 1 1 ( 1 ) 2 . 4 ( 3 ) S e ( 6 ) - 0 . 1 2 5 1 ( 5 ) 0 . 4 5 8 7 ( 3 ) 0 . 5 3 3 5 ( 9 ) 2 . 2 ( 3 ) S e ( 7 ) 0 . 3 7 7 3 ( 3 ) 0 . 6 5 7 2 ( 2 ) - 0 . 2 3 4 5 ( 8 ) 2 . 2 ( 2 ) S e ( 8 ) 0 . 1 3 4 7 ( 3 ) 0 . 3 5 1 5 ( 2 ) ' 0 . 2 4 6 7 ( 8 ) 2 . 0 ( 2 ) M n ( l ) - 0 . 0 0 1 7 ( 5 ) 0 . 8 4 4 8 ( 4 ) - 0 . 0 1 4 ( 1 ) 1 . 4 ( 3 ) T a b l e 7 - 2 0 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c D i s p l a c e m e n t V a l u e s ( A 2 ) a f o r s z C d G e z S fi w i t h E s t i m a t e d S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s a t o m x y z B ( e q ) C d 0 . 0 0 . 4 5 9 4 5 ( 6 ) 0 . 2 5 1 . 5 7 ( 3 ) R b - 0 . 2 9 8 5 ( 1 ) 0 . 5 7 6 1 8 ( 7 ) 0 . 4 3 4 3 6 ( 6 ) 2 . 5 7 ( 3 ) G e 0 . 1 9 1 7 ( 1 ) 0 . 7 4 5 7 2 ( 6 ) 0 . 3 1 3 5 1 ( 6 ) 1 . 2 0 ( 3 ) S ( 1 ) 0 . 0 7 4 2 ( 2 ) 0 . 7 8 3 9 ( 2 ) 0 . 1 4 6 7 ( 1 ) 1 . 7 4 ( 7 ) S ( 2 ) 0 . 0 8 0 4 ( 2 ) 0 . 3 4 5 8 ( 2 ) 0 . 1 1 0 1 ( 1 ) 2 . 0 6 ( 7 ) S ( 3 ) - 0 . 2 6 9 9 ( 2 ) 0 . 5 7 2 8 ( 1 ) 0 . 1 6 4 9 ( 2 ) 2 . 0 0 ( 7 ) a B ( e q ) = 4 / 3 [ a 2 6 1 1 + b 2 1 3 2 2 + 9 2 6 3 3 + a b ( c o s v ) l 3 1 2 + a C ( C O S B ) fi l 3 + b C ( c o s a ) B 2 3 l . 3 9 9 3 . R e s u l t s a n d D i s c u s s i o n 3 . 1 . S y n t h e s i s T h e m o l t e n s a l t s y n t h e t i c t e c h n i q u e s h a v e b e e n d e s c r i b e d e x t e n s i v e l y i n C h a p t e r 1 , 5 a n d 6 . F o l l o w i n g C h a p t e r 6 , h e r e w e a d d m o r e e x a m p l e s t o p r o v e t h e f e a s i b i l i t y o f b y u s i n g m o l t e n s a l t s a s s y n t h e t i c t o o l s f o r n e w q u a t e r n a r y c o m p o u n d s . T h i s s u g g e s t s m o l t e n s a l t s p r o v i d e g o o d h o m o g e n e o u s r e a c t i o n m e d i a f o r m i x e d m e t a l s y s t e m s . I n C h a p t e r 6 , w e d i s c u s s e d t h a t [ S n 2 8 6 ] 4 ' a n d [ S n S 4 ] 4 ' , w h i c h c a n b e i s o l a t e d a s s e p a r a t e a n i o n s f r o m t h e A 2 8 x fl u x e s , a r e p o t e n t i a l l y g o o d b u i l d i n g b l o c k s t o c o n s t r u c t q u a t e r n a r y s t r u c t u r e s . I t i s i n t e r e s t i n g t o n o t e t h a t i n t h i s c h a p t e r , a l l t h e c o m p o u n d s a l s o c o n t a i n [ M S 4 ] 4 - ( M = S n o r G e ) o r [ S n 2 8 e 6 ] 4 - l i n k e d b y l i n e a r H g S z o r t e t r a h e d r a l M Q 4 u n i t s ( M = H g , Z n , M n , C d , I n ; Q = S , S e ) . T h e f o r m a t i o n o f K 2 H g 3 S n z S g ( I l l ) a n d K z H g 3 G e 2 8 3 ( I V ) i s a n e x a m p l e o f t h e f a c t t h a t S n a n d G e o f t e n u n d e r g o s i m i l a r c h e m i s t r y s i n c e t h e y b e l o n g t o t h e s a m e g r o u p i n t h e p e r i o d i c t a b l e . O t h e r e x a m p l e s a r e t h e f o r m a t i o n o f d i s c r e t e a n i o n s s u c h a s [ M Q 4 ] 4 ' , [ M 2 Q 6 ] 4 ' , a n d [ M 4 Q 1 0 ] 4 ' , 5 ’ 6 w h e r e M = G e , S n ; Q = S , S e . T h e s i z e o f S n 4 + i s a b o u t 0 . 2 A l a r g e r t h a n t h a t o f G e “ . T h e t h r e e - d i m e n s i o n a l s t r u c t u r e s o f ( I I I ) a n d ( I V ) m u s t b e f l e x i b l e e n o u g h t o t o l e r a t e t h e l a r g e s i z e d i f f e r e n c e b e t w e e n G e a n d S n . I n c o n t r a s t t o ( I I I ) a n d ( I V ) , t h e G e a n a l o g o f K 2 H g S n 2 8 6 ( I ) w a s n o t o b s e r v e d . T h u s f a r , ( I ) c o u l d n o t b e s y n t h e s i z e d i n p u r e f o r m . ( I ) w a s m a d e b y r e a c t i n g S n a n d H g i n 1 : 1 r a t i o i n a K 2 8 9 f l u x . I n t h i s r e a c t i o n , t h e d o m i n a n t p r o d u c t i s K 2 H g S n S 4 , a K I n S e 2 t y p e s t r u c t u r e . S n : H g = 2 : 1 i n a K 2 8 9 fl u x p r o d u c e s n o ( I ) b u t a m i x t u r e o f K z H g S n S 4 ( ~ 2 / 3 ) a n d K 2 S n 2 8 5 4 0 0 ( ~ 1 / 3 ) , w h i l e , i n t h e o t h e r d i r e c t i o n , S n z H g = l z 2 i n t h e s a m e K 2 8 9 fl u x ( I I I ) w a s o b t a i n e d . K 2 G e l n 2 8 6 ( I I ) w a s a l s o m a d e i n v e r y l o w y i e l d . T h e d o m i n a n t p r o d u c t s a r e m o i s t u r e - s e n s i t i v e K 4 G e S 4 a n d / o r K 4 G e 2 S 6 w h i c h , c o m p a r e d t o t h e i r S n a n a l o g s , h a v e l a r g e r t e n d e n c y t o f o r m e v e n i n l o w b a s i c i t y K z s x fl u x e s s u c h a s K 2 8 9 . I n f a c t , a l l t h e q u a t e r n a r y c o m p o u n d s i n t h i s C h a p t e r w e r e s y n t h e s i z e d i n fl u x e s o f r e l a t i v e l y l o w b a s i c i t y , i . e . K z Q x ( x 2 5 ) , t o a v o i d t h e c o m p e t i t i o n o f A 4 M Q 4 a n d / o r A 4 M 2 Q 6 ( A = K , R b , C s ; M = G e , S n ; Q = S , S e ) . A s i n C h a p t e r s 5 a n d 6 , h e r e w e a l s o s e e t h e s i z e o f t h e c o u n t e r i o n s e x c l u s i v e l y d i r e c t i n g t h e f o r m a t i o n o f K z G e l n 2 8 6 a n d C s 2 1 n 2 G e 2 8 3 , K 6 Z n 4 8 n 5 8 1 7 a n d s z a n n z S 6 , K 2 M n S n S 4 a n d C s 2 M n S n 2 8 6 . I n a d d i t i o n , t h e r e l a t i v e s i z e d i f f e r e n c e o f m e t a l i o n s p l a y s a n i m p o r t a n t r o l e i n d e t e r m i n i n g h o w t h e M Q 4 t e t r a h e d r a a r e a r r a n g e d i n t h e q u a t e r n a r y s t r u c t u r e s . T h i s p e r h a p s e x p l a i n s w h y K 2 H g S n 2 8 6 , K 2 G e l n 2 8 6 , R b 2 Z n S n 2 8 6 , C s z M n S n z S 6 a n d R b 2 C d G e 2 8 6 a l l h a v e t h e s a m e s t o i c h i o m e t r y b u t a d o p t d i f f e r e n t s t r u c t u r e s . 3 . 2 . D e s c r i p t i o n o f S t r u c t u r e s S t r u c t u r e o f K 2 H g S n 2 S 6 ( 1 ) C o m p o u n d ( I ) h a s a t w o - d i m e n s i o n a l s t r u c t u r e w h i c h i s c o m p o s e d o f c o m e r - s h a r i n g [ S n S 4 ] 4 ' a n d [ H g S 4 ] 6 ' t e t r a h e d r a i n 2 : 1 r a t i o . A s s h o w n i n F i g u r e 7 - 1 , t h e a n i o n i c l a y e r o f ( I ) i s c o n s t r u c t e d b y p a r a l l e l [ S n S 3 ] n 2 " ' c h a i n s c r o s s - l i n k e d b y H g S 4 t e t r a h e d r a u n s y m m e t r i c a l l y a t e v e r y t w o S n s i t e s . T h e [ S n S 3 ] n 2 " ‘ c h a i n s , r u n n i n g a l o n g t h e c r y s t a l l o g r a p h i c a - a x i s , a r e m a d e u p b y l i n k i n g S n S 4 t e t r a h e d r a i n a c o m e r - s h a r i n g f a s h i o n . T h i s t w o - 4 0 1 d i m e n s i o n a l n e t w o r k f e a t u r e s 1 2 - m e m b e r e d r i n g s s e p a r a t e d b y [ H g S n z S 3 ] s i x - m e m b e r e d r i n g s . T h e c h a r g e b a l a n c i n g K ” c a t i o n s a r e s i t u a t e d b e t w e e n t h e c o r r u g a t e d l a y e r s a s s h o w n i n F i g u r e 7 - 2 . S e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s o f ( l ) a r e g i v e n i n T a b l e 7 - 2 1 . T h e a v e r a g e H g - S d i s t a n c e i s n o r m a l a t 2 . 5 6 ( 5 ) A , s l i g h t l y l o n g e r t h a n 2 5 1 ( 2 ) } . o f a t y p i c a l t e t r a h e d r a l [ H g S 4 J 6 ' i o n i n K 6 H g S 4 . 1 4 T h e a v e r a g e S n - S d i s t a n c e s i s 2 3 9 ( 4 ) ) 3 . w h i c h i s c o m p a r a b l e t o 2 . 3 9 ( 6 ) A o f t h e s e p a r a t e [ S n S 3 ] n 2 n - c h a i n s i n K 2 8 n S 3 - 2 H 2 0 . 1 5 B o t h S - H g - S a n d S - S n - S a n g l e s d e v i a t e f r o m t h o s e o f a p e r f e c t t e t r a h e d r o n , r a n g i n g f r o m 9 3 . 1 ( 1 ) 0 t o 1 1 9 . 8 ( 1 ) 0 a n d f r o m 9 5 . 1 ( 1 ) 0 t o 1 1 8 . 3 ( 2 ) 0 r e s p e c t i v e l y . T h e r e a r e t w o c r y s t a l l o g r a p h i c a l l y d i s t i n c t K + c a t i o n s . B o t h a r e s u r r o u n d e d b y s i x S a t o m s w i t h a n a v e r a g e K + - - - S d i s t a n c e o f 3 2 6 ( 7 ) ) 3 1 . 4 0 2 F i g u r e 7 - 1 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f K z l - I g S n 2 8 6 . V i e w d o w n t h e b - a x i s . T h e d a s h e d l i n e s r e p r e s e n t t h e w a y [ H g S n z S G P ‘ l a y e r s a r e f o l d e d . 4 0 3 ‘ i / { J \ . 2 K ( 2 ) C K . S ( f ) b 1 S ( 2 ) O O O O K ( 1 ) ( ' ( ( J O ( J O — ‘ F i g u r e 7 - 2 : T h e s t r u c t u r e o f K 2 H g S n 2 $ 6 v i e w e d p a r a l l e l t o t h e l a y e r s . A m o n o l a y e r o f p o t a s s i u m c a t i o n s i s l o c a t e d b e t w e e n l a y e r s . T a b l e 7 - 2 1 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 2 H g S n 2 S 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s 4 0 4 S e l e c t e d B o n d D i s t a n c e s ( A ) H g - S ( 1 ) 2 . 5 8 6 ( 4 ) K ( 1 ) - S ( 1 ) 3 . 3 5 8 ( 6 ) H g - S ( 2 ) 2 . 5 3 6 ( 4 ) K ( 1 ) - S ( 1 ) 3 . 2 6 4 ( 6 ) H g - S ( 5 ) 2 . 4 9 6 ( 4 ) K ( 1 ) - S ( 2 ) 3 . 2 4 3 ( 6 ) H g - S ( 6 ) 2 . 6 1 4 ( 4 ) K ( 1 ) - S ( 3 ) 3 . 1 8 4 ( 6 ) m e a n ( H g — S ) 2 5 6 ( 5 ) K ( 1 ) - S ( 4 ) 3 . 2 2 3 ( 6 ) S n ( 1 ) - S ( 1 ) 2 . 3 6 2 ( 4 ) K ( 1 ) - S ( 5 ) 3 . 3 0 3 ( 7 ) S n ( 1 ) - S ( 2 ) 2 . 3 6 8 ( 4 ) K ( 2 ) - S ( 1 ) 3 . 3 7 3 ( 6 ) S n ( 1 ) - S ( 3 ) 2 . 4 1 6 ( 4 ) K ( 2 ) - S ( 2 ) 3 . 2 7 7 ( 6 ) S n ( 1 ) - S ( 4 ) 2 . 4 0 5 ( 4 ) K ( 2 ) - S ( 2 ) 3 . 2 3 4 ( 5 ) S n ( 2 ) - S ( 3 ) 2 . 4 3 8 ( 4 ) K ( 2 ) - S ( 3 ) 3 . 3 4 6 ( 6 ) S n ( 2 ) - S ( 4 ) 2 . 4 0 3 ( 4 ) K ( 2 ) - 8 ( 5 ) 3 . 1 9 3 ( 6 ) S n ( 2 ) - S ( 5 ) 2 . 3 5 1 ( 4 ) K ( 2 ) - S ( 6 ) 3 . 1 4 6 ( 6 ) S n ( 2 ) - S ( 6 ) 2 . 3 3 7 ( 4 ) m e a n ( K - S ) 3 . 2 6 ( 7 ) m e a n ( S n — S ) 2 3 9 ( 4 ) S e l e c t e d B o n d A n g l e s ( d e g ) S ( 1 ) - H g - S ( 2 ) 1 1 5 . 1 ( 1 ) S ( 3 ) - S n ( 2 ) - S ( 4 ) 9 5 . 1 ( 1 ) S ( 1 ) - H g - S ( 5 ) 1 0 7 . 2 ( 1 ) S ( 3 ) — S n ( 2 ) - S ( 5 ) 1 1 2 . 0 ( 2 ) S ( 1 ) - H g - S ( 6 ) 9 3 . 1 ( 1 ) S ( 3 ) — S n ( 2 ) — S ( 6 ) 1 0 8 . 6 ( 1 ) S ( 2 ) - H g - S ( 5 ) 1 1 9 . 8 ( 1 ) S ( 4 ) - S n ( 2 ) — S ( 5 ) 1 1 3 . 1 ( 2 ) S ( 2 ) - H g - S ( 6 ) 1 0 1 . 4 ( 1 ) S ( 4 ) - S n ( 2 ) - S ( 6 ) 1 1 8 . 3 ( 2 ) S ( 5 ) - H g - S ( 6 ) 1 1 7 . 4 ( 1 ) S ( 5 ) - S n ( 2 ) - S ( 6 ) 1 0 8 . 9 ( 2 ) S ( 1 ) - S n ( 1 ) - S ( 2 ) 1 1 4 . 0 ( 1 ) H g - S ( 1 ) - S n ( 1 ) 1 0 1 . 1 ( 1 ) S ( 1 ) - S n ( 1 ) - S ( 3 ) 1 1 7 . 7 ( 1 ) H g - S ( 2 ) - S n ( 1 ) 1 0 3 . 8 ( 1 ) S ( 1 ) - S n ( 1 ) - S ( 4 ) 1 0 0 . 8 ( 1 ) S n ( 1 ) - S ( 3 ) - S n ( 2 ) 1 0 6 . 5 ( 2 ) S ( 2 ) - S n ( 1 ) - S ( 3 ) 1 1 0 . 0 ( 1 ) S n ( 1 ) - S ( 4 ) - S n ( 2 ) 1 0 5 . 8 ( 1 ) S ( 2 ) - S n ( 1 ) - S ( 4 ) 1 0 9 . 8 ( 1 ) H g — S ( 5 ) - S n ( 2 ) 1 1 1 . 3 ( 2 ) S ( 3 ) — S n ( 1 ) — S ( 4 ) 1 0 3 . 3 ( 1 ) H g — S ( 6 ) — S n ( 2 ) 9 8 . 0 ( 1 ) 4 0 5 S t r u c t u r e o f K z G e I n 2 S 6 ( I I ) a n d C o m p a r i s o n w i t h K 2 H g 8 n 2 8 6 ( 1 ) C o m p o u n d ( I I ) i s a l s o a t w o - d i m e n s i o n a l s t r u c t u r e w h i c h i s s i m i l a r t o , b u t d i f f e r e n t f r o m t h a t o f ( I ) . B y c o m p a r i n g t h e c h e m i c a l f o r m u l a b e t w e e n 2 n - ( I I ) a n d ( 1 ) , p a r a l l e l [ I n S 3 ] n 3 “ ‘ c h a i n s , c o r r e s p o n d i n g t o [ S n S 3 ] n c h a i n s 3 ’ “ c h a i n s a r e i n ( I ) , c a n b e r e a d i l y r e c o g n i z e d i n F i g u r e 7 - 3 . T h e s e [ I n S 3 ] n t h e n c r o s s - l i n k e d b y [ G e S 4 ] 4 ‘ t e t r a h e d r a i n t h e s a m e m a n n e r a s a r e [ H g S 4 ] ( * t e t r a h e d r a i n ( 1 ) . H o w e v e r , ( I I ) i s n o t i s o m o r p h o u s t o ( I ) a s o n e m i g h t e x p e c t . S u r p r i s i n g l y , ( I I ) c r y s t a l l i z e s i n a n o n c e n t r o s y m m e t r i c s p a c e g r o u p ( P 2 1 2 1 2 1 , # 1 8 ) , w h i l e ( I ) c r y s t a l l i z e s i n a c e n t r o s y m m e t r i c s p a c e g r o u p ( P 2 1 / n , # 1 4 ) . T h e c e n t r o - a n d n o n c e n t r o - s y m m e t r y o f ( I ) a n d ( I I ) c a n b e i l l u s t r a t e d i n F i g u r e 7 - 2 a n d 7 - 4 r e s p e c t i v e l y . C e n t e r s o f i n v e r s i o n c a n o n l y b e f o u n d b e t w e e n t h e l a y e r s i n t h e p a c k i n g d i a g r a m o f ( I ) . T h e d i f f e r e n c e c o m e s f r o m t h e w a y s t h e l a y e r s a r e f o l d e d i n t o c o r r u g a t e d f o r m s , a s s h o w n b y t h e d a s h e d l i n e s i n F i g u r e 7 - 1 a n d 7 - 3 . A c c o r d i n g t o t h e f o l d i n g o f t h e l a y e r s , i t w o u l d b e h e l p f u l t o r e w r i t e t h e f o r m u l a o f ( I ) a s K 2 8 n ( S a n ) S 6 s o t h a t ( I ) c a n b e v i e w e d a s [ ( S a n ) S 6 ] n 6 “ ‘ c h a i n s c r o s s - l i n k e d b y [ S n S 4 ] 4 ' t e t r a h e d r a . T h e s p a t i a l r e a r r a n g e m e n t o f a t o m s c a u s e s t h e c h a n g e o f s y m m e t r y b e t w e e n ( I ) a n d ( 1 1 ) . I n t e r e s t i n g l y , t h e f o l d i n g o f a n i o n i c l a y e r s i n b o t h ( I ) a n d ( I I ) o c c u r s a l o n g t h e r o w s o f s m a l l e r m e t a l c e n t e r s ( S n i n ( I ) ; G e i n ( 1 1 ) ) S e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s o f ( I I ) a r e g i v e n i n T a b l e 7 - 2 2 . B o t h I n a n d G e a r e i n a g o o d t e t r a h e d r a l e n v i r o n m e n t w i t h o u t m u c h d e v i a t i o n . T h e a v e r a g e I n - S d i s t a n c e ( 2 . 4 6 A ) a n d G e - S d i s t a n c e ( 2 . 2 1 ( 3 ) A ) a r e n o r m a l c o m p a r e d t o 2 . 4 6 A i n 0 - I n 2 8 3 1 6 a n d 2 . 2 0 A i n s z G e S 4 6 a . T w o , c r y s t a l l o g r a p h i c a l l y d i s t i n c t , p o t a s s i u m c a t i o n s a r e b o t h s u r r o u n d e d b y s e v e n s u l f u r a t o m s w i t h a n a v e r a g e K + - - - S d i s t a n c e o f 3 . 2 9 ( 1 5 ) A . F i g u r e 7 - 3 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f K z G e I n 2 S 6 . V i e w d o w n t h e a — a x i s . T h e d a s h e d l i n e s r e p r e s e n t t h e w a y [ G e l n 2 S 6 1 2 - l a y e r s a r e f o l d e d . O ” ) ( A # 1 . \ 1 - i " _ 0 K O K ( 0 1 ) 0 0 1 u l ? 7 ; O m l , — ) 1 ( 6 < / ‘ ( \ Z O ? S ( o \ 1 1 ( L L I L 1 . G ’ ) . l 3 - ) o 8 ( 5 ) _ 7 z 0 ) M ( X A / ( f [ I . ) l — g l - n U 2 ( G ) “ 2 ) ( e l 0 0 0 : 0 0 o 1 \ — . o i 1 C N 7 t 9 0 L U O - L T o I O O ' 0 Q o z \ O O — Q p d O k k 0 S 4 S ( 2 ) ( ) \ ( F T h e s t r u c t u r e o f K z G e l n 2 8 5 v i e w e d p a r a l l e l t o t h e l a y e r s . F i g u r e 7 - 4 : A m o n o l a y e r o f p o t a s s i u m c a t i o n s i s l o c a t e d b e t w e e n l a y e r s . T a b l e 7 2 2 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K z G e I n 2 8 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s 4 0 8 S e l e c t e d B o n d D i s t a n c e s ( A ) I n ( 1 ) - S ( 1 ) 2 . 5 3 9 ( 6 ) K ( 1 ) — S ( 1 ) 3 . 5 5 2 ( 8 ) I n ( 1 ) — S ( 2 ) 2 . 4 7 4 ( 8 ) K ( 1 ) - S ( 2 ) 3 . 2 5 ( 1 ) I n ( 1 ) - S ( 3 ) 2 . 4 6 ( 1 ) K ( 1 ) — S ( 3 ) 3 . 0 4 ( 1 ) I n ( 1 ) — S ( 4 ) 2 . 4 6 7 ( 7 ) K ( 1 ) - S ( 4 ) 3 . 2 8 4 ( 8 ) I n ( 2 ) - S ( 2 ) 2 . 4 1 0 ( 8 ) K ( 1 ) - S ( 4 ) 3 . 3 6 3 ( 9 ) I n ( 2 ) - S ( 4 ) 2 . 4 3 1 ( 7 ) K ( 1 ) - 8 ( 5 ) 3 . 3 1 7 ( 8 ) I n ( 2 ) — S ( 5 ) 2 . 4 1 7 ( 6 ) K ( 1 ) - 8 ( 6 ) 3 . 2 1 ( 1 ) I n ( 2 ) - S ( 6 ) 2 . 4 6 ( 1 ) K ( 2 ) - S ( 1 ) 3 . 1 3 0 ( 9 ) m e a n ( I n - S ) 2 . 4 6 ( 4 ) K ( 2 ) - S ( 2 ) 3 . 2 3 1 ( 9 ) G e ( 1 ) - S ( 1 ) 2 . 1 6 2 ( 7 ) x 2 K ( 2 ) - S ( 2 ) 3 . 2 7 ( 1 ) G e ( 1 ) - S ( 6 ) 2 . 2 3 1 ( 7 ) x 2 K ( 2 ) - S ( 3 ) 3 . 3 1 ( 1 ) G e ( 2 ) - S ( 3 ) 2 . 2 1 5 ( 7 ) x 2 K ( 2 ) - S ( 4 ) 3 2 6 ( 1 ) G e ( 2 ) - S ( 5 ) 2 . 2 3 2 ( 7 ) x 2 K ( 2 ) - S ( 5 ) 3 . 6 0 4 ( 8 ) m e a n ( G e — S ) 2 . 2 1 ( 3 ) K ( 2 ) - 8 ( 6 ) 3 . 2 9 ( 1 ) m e a n ( K - S ) 3 . 2 9 ( 1 5 ) S e l e c t e d B o n d A n g l e s ( d e g ) S ( 1 ) - I n ( 1 ) - S ( 2 ) 9 9 . 0 ( 2 ) S ( 1 ) - G e ( 1 ) - S ( 6 ) 1 1 3 . 7 ( 3 ) x 2 S ( 1 ) - I n ( 1 ) - S ( 3 ) 1 0 7 . 2 ( 3 ) S ( 1 ) - G e ( 1 ) - S ( 6 ) 1 0 1 . 2 ( 3 ) x 2 S ( 1 ) - I n ( 1 ) - S ( 4 ) 1 0 4 . 0 ( 2 ) S ( 6 ) — G e ( 1 ) - S ( 6 ) 1 1 4 . 6 ( 4 ) S ( 2 ) — I n ( 1 ) - S ( 3 ) 1 1 7 . 3 ( 3 ) S ( 3 ) - G e ( 2 ) - S ( 3 ) 1 1 0 . 9 ( 4 ) S ( 2 ) - I n ( 1 ) - S ( 4 ) 1 1 4 . 9 ( 2 ) S ( 3 ) - G e ( 2 ) - S ( 5 ) 1 1 0 . 0 ( 3 ) x 2 S ( 3 ) - I n ( 1 ) - S ( 4 ) 1 1 2 . 2 ( 3 ) S ( 3 ) - G e ( 2 ) - S ( 5 ) 1 0 3 . 0 ( 3 ) x 2 S ( 2 ) - I n ( 2 ) - S ( 4 ) 1 1 0 . 8 ( 2 ) S ( 5 ) — G e ( 2 ) — S ( 5 ) 1 2 0 . 1 ( 4 ) S ( 2 ) - I n ( 2 ) - S ( 5 ) 1 0 3 . 3 ( 2 ) I n ( 1 ) - S ( 1 ) - G e ( 1 ) 1 0 3 . 6 ( 2 ) S ( 2 ) - I n ( 2 ) — S ( 6 ) 1 1 3 . 4 ( 3 ) I n ( 1 ) — S ( 2 ) - I n ( 2 ) 9 9 . 4 ( 3 ) S ( 4 ) - I n ( 2 ) - S ( 5 ) 1 0 1 . 9 ( 2 ) I n ( 1 ) - S ( 3 ) - G e ( 2 ) 1 1 1 . 1 ( 4 ) S ( 4 ) - I n ( 2 ) - S ( 6 ) 1 1 4 . 8 ( 2 ) I n ( 1 ) - S ( 4 ) - I n ( 2 ) 1 0 2 . 0 ( 2 ) S ( 5 ) - I n ( 2 ) - S ( 6 ) 1 1 1 . 4 ( 3 ) I n ( 2 ) - S ( 5 ) - G e ( 2 ) 1 0 4 . 5 ( 3 ) S ( 1 ) - G e ( l ) - S ( D l 1 3 . 0 ( 4 ) I n ( 2 ) - S ( 6 ) - G e ( l ) 1 1 2 9 ( 4 ) 4 0 9 S t r u c t u r e s o f K 2 H g 3 S n 2 8 3 ( I l l ) a n d K 2 H g 3 G e 2 S 3 ( I V ) C o m p o u n d s ( I I I ) a n d ( I V ) a r e i s o s t r u c t u r a l w i t h S n a n d G e o c c u p y i n g t h e s a m e m e t a l s i t e s . T h e y h a v e c o m p l i c a t e d t h r e e - d i m e n s i o n a l s t r u c t u r e s m a d e u p w i t h t e t r a h e d r a l M S 4 ( M = S n i n ( I ) a n d G e i n ( 1 1 ) ) , l i n e a r H g S z a n d " s a d d l e - l i k e " H g S 4 w h i c h c o n t a i n s t w o s h o r t a n d t w o l o n g H g - S b o n d s . T h e s t r u c t u r e o f ( I I I ) o r ( I V ) i s s h o w n i n F i g u r e 7 - 5 . T h e s t r u c t u r e s o f ( I I I ) a n d ( I V ) a r e n o n c e n t r o s y m m e t r i c . T h i s c a n b e r e a d i l y s e e n b y t h e f a c t t h a t a l l S ( 1 ) - H g ( 2 ) - S ( 1 ) a n d S ( 3 ) - M - S ( 4 ) ( M = S n o r G e ) a n g l e s a r e p o i n t e d t o t h e s a m e d i r e c t i o n , < 0 0 1 > , s e e F i g u r e 7 - 5 . I f t h e t w o l o n g H g ( 2 ) - S ( l ) b o n d s o f t h e s a d d l e - l i k e H g S 4 u n i t s a r e n o t c o n s i d e r e d a s b o n d s , t h e c o m p l i c a t e d t h r e e - d i m e n s i o n a l f r a m e w o r k c a n b e s i m p l i fi e d t o a t w o - d i m e n s i o n a l s h e e t , a s s h o w n i n S c h e m e I . S ( 2 ) — H g ( 1 ) — s ( 2 ) S ( 2 ) — H Q ( 1 ) - S ( 2 ) n I \ \ “ \ M I " I I . I " \ \ \ M ” " N . 4 1 0 . \ \ \ \ \ M I I 1 , , . . . l \ \ \ \ M / ” ’ I o . 8 ( 3 ) 3 ( 4 ) 3 ( 3 ) 3 ( 4 ) 3 ( 3 ) H 9 ( 2 ) S ( 1 ) H 9 ( 2 ) 8 ( 1 ) 1 1 9 ( 2 ) 8 ( 1 ) H 9 ( 2 ) S ( 1 ) H 9 ( 2 ) S ( 4 ) " ' I I I I M \ \ “ " S ( 3 ) S ( 4 ) " ” I I I M \ \ \ \ " ' S ( 3 ) S ( 4 ) l l S ( 2 ) - H 9 1 0 I — S Q ) S ( 2 ) — “ 9 ( 1 ) — S ( 2 ) S ( 4 ) 8 ( 3 ) 8 ( 4 ) 3 ( 3 ) S ( 4 ) H 9 ( 2 ) S ( 1 ) H 9 ( 2 ) S ( 1 ) H 9 | ( 2 ) S ( 1 ) H 9 ( 2 ) S ( 1 ) H 9 ( 2 ) S ( 4 ) S ( 3 ) , S ( 4 ) S ( 3 ) " a ” ! M N W l l S ( 2 ) — H g ( 1 1 — 3 1 2 ’ S ( z p — H g ( i ) ‘ s ( 2 ) S ( 3 ) o l l ’ l l l M \ \ “ \ o S c h e m e I T h e t w o - d i m e n s i o n a l s h e e t i s c o n s t r u c t e d b y r o w s o f p a r a l l e l S ( 3 ) - H g ( 2 ) - S ( 4 ) f r a g m e n t s l i n k e d a l t e r n a t e l y b y M S 4 ( M = S n o r G e ) t e t r a h e d r a i n a c o m e r - s h a r i n g f a s h i o n t o f o r m w a v e - l i k e c h a i n s r u n n i n g i n a s e q u e n c e o f S ( 3 ) - H g ( 2 ) - S ( 4 ) - M - S ( 3 ) - H g ( 2 ) . T h e s e p a r a l l e l w a v e - l i k e c h a i n s a r e t h e n e x t e n d e d t o [ H g 3 M z S g ] 2 ' s h e e t s b y c o n n e c t i n g t h e S ( 2 ) a t o m s o f M S 4 t e t r a h e d r a t h r o u g h l i n e a r S ( 2 ) - H g ( 1 ) - S ( 2 ) u n i t s . T h e s e t w o - d i m e n s i o n a l s h e e t s a r e f u r t h e r e x p a n d e d t o t h r e e - d i m e n s i o n a l n e t w o r k s v i a w e a k H g ( 2 ) - S ( 1 ) b o n d i n g s b e t w e e n t w o a d j a c e n t [ H g 3 M 2 8 3 ] 2 ' s h e e t s . T h i s f o r m s p a r a l l e l t u n n e l s , e n c l o s e d b y e d g e - s h a r i n g 2 0 - m e m b e r e d r i n g s w h i c h c o n t a i n s e d g e s o f f o u r M S 4 t e t r a h e d r a , t w o l i n e a r H g 8 2 a n d f o u r s a d d l e - 4 1 1 l i k e H g S 4 u n i t s , r u n n i n g a l o n g t h e < 0 1 1 > c r y s t a l l o g r a p h i c d i r e c t i o n . K + c a t i o n s a r e l o c a t e d i n t h e t u n n e l s , a s s h o w n i n F i g u r e 7 - 6 . A c o m p a r i s o n o f t h e s e l e c t e d b o n d d i s t a n c e s a n d b o n d a n g l e s b e t w e e n ( I I I ) a n d ( I V ) a r e g i v e n i n T a b l e 7 - 2 3 . T h e a v e r a g e S n — S d i s t a n c e i s 2 . 3 9 ( 3 ) A w h i l e t h e a v e r a g e G e - S d i s t a n c e i s s h o r t e r a t 2 . 2 2 ( 3 ) A . T h e S - M - S a n g l e s a r e c l o s e t o t h o s e o f a p e r f e c t t e t r a h e d r o n . T h e r e a r e t w o d i s t i n c t H g a t o m s . H g ( l ) a d o p t s l i n e a r c o o r d i n a t i o n w i t h t h e H g ( 1 ) - S ( 2 ) d i s t a n c e s a t 2 . 3 3 1 ( 6 ) A a n d 2 . 3 6 1 ( 8 ) A , t h e S ( 2 ) - H g ( 1 ) - S ( 2 ) a n g l e s a t 1 7 7 . 0 ( 4 ) o a n d 1 7 7 . 8 ( 7 ) 0 f o r ( 1 1 1 ) a n d ( I V ) r e s p e c t i v e l y . T h e l i n e a r g e o m e t r y o f H g S z i s c o m m o n f o r t h i o m e r c u r a t e s a n d h a s b e e n f o u n d i n H g S ( c i n n a b a r ) 1 7 , B a H g S 2 1 3 A 2 H g 3 S 4 ( A = N a , K ) a n d K z H g 6 S 7 , 2 8 T h e H g - S d i s t a n c e s a n d S - H g - S a n g l e s f o u n d i n ( I I I ) a n d ( I V ) a r e c o m p a r a b l e t o t h o s e f o u n d i n t h e s e c o m p o u n d s . H g ( 2 ) i s f o u r c o o r d i n a t e d a n d a d o p t s a s a d d l e - l i k e g e o m e t r y w h i c h h a s t w o s h o r t a n d t w o l o n g H g - S b o n d s , t h e f o r m e r a v e r a g i n g 2 . 4 2 6 ( 9 ) A a n d 2 . 4 3 6 ( 9 ) A , t h e l a t t e r a v e r a g i n g 2 . 8 0 ( 2 ) A a n d 2 . 8 1 ( 5 ) A f o r ( I ) a n d ( I I ) r e s p e c t i v e l y . T h i s c o o r d i n a t i o n t y p e o f H g S 4 i s n o v e l a n d h a s n o t b e e n o b s e r v e d i n o t h e r t h i o m e r c u r a t e s . T h e a n g l e s b e t w e e n t h e t w o s h o r t H g - S b o n d s i n ( I I I ) a n d ( I V ) a r e 1 6 6 . 8 ( 2 ) 0 a n d 1 6 3 . 8 ( 3 ) 0 r e s p e c t i v e l y , s t i l l s h o w i n g s o m e c h a r a c t e r o f l i n e a r i t y . T h e d e v i a t i o n s f r o m p e r f e c t l i n e a r i t y a r e c a u s e d b y t h e f o r m a t i o n o f t w o l o n g H g - S b o n d s b e t w e e n H g ( 2 ) a n d S ( 1 ) a t o m s w h i c h a r e a c t u a l l y s h a r e d w i t h t e t r a h e d r a l M S 4 ( M = S n o r G e ) . T h e t w o s h o r t H g - S b o n d d i s t a n c e s f a l l b e t w e e n t h o s e i n n o r m a l l i n e a r H g S z ( c a . 2 . 3 5 A ) a n d t e t r a h e d r a l H g S 4 ( c a . 2 . 5 5 A ) . T h e r e f o r e , t h e c o o r d i n a t i o n g e o m e t r y o f H g ( 2 ) m a y b e c o n s i d e r e d a s i n t e r m e d i a t e b e t w e e n t e t r a h e d r a l H g S 4 a n d l i n e a r H g S 2 h a v i n g s h o r t c o n t a c t s w i t h t w o S a t o m s . O m 0 . 4 8 O . " 0 . ; . . 4 ( , C \ . 0 { - \ . m » 3 . \ e m e \ m m e m 4 / : ? . , / . , . . , ” ( 4 . \ 8 % 2 m > 1 a / ) o \ . e W m t e c \ . 9 4 1 2 \ 0 C e 0 5 m O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K 2 H g 3 8 n 2 8 3 o r K 2 H g 3 G e 2 8 8 . V i e w d o w n t h e b - a x i s . F i g u r e 7 - 5 : 4 1 3 8 ( 1 ) Q 3 S ( 4 ) 0 5 ( 2 ) H g ( 2 ) K , S “ ( G e ) S 3 0 ( > 3 6 ‘ 6 S ( l r . 5 = 6 0 C 0 C 0 ) = % o F i g u r e 7 - 6 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K z l - l g a S n s t o r K 2 H g 3 G e 2 8 3 . V i e w d o w n t h e < l 1 0 > d i r e c t i o n . T a b l e 7 - 2 3 . C o m p a r i s o n o f S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) o f K 2 H g 3 S n z S g ( I ) a n d K 2 H g 3 G e 2 8 8 ( I I ) w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) ( I ) ( 1 1 ) ( I ) ( 1 1 ) H g ( 1 ) - S ( 2 ) 2 . 3 3 1 ( 6 ) 2 . 3 6 1 ( 8 ) m e a n ( M - S ) 2 . 3 9 ( 3 ) 2 . 2 2 ( 3 ) H g ( 2 ) - S ( 1 ) 2 . 7 8 7 ( 7 ) 2 . 7 7 8 ( 9 ) K - S ( 1 ) 3 . 2 1 7 ( 8 ) 3 2 3 ( 1 ) H g ( 2 ) - S ( 1 ) 2 . 8 1 8 ( 6 ) 2 8 5 ( 1 ) K — S ( 2 ) 3 3 7 ( 1 ) 3 3 2 ( 2 ) H g ( 2 ) - S ( 3 ) 2 . 4 1 9 ( 5 ) 2 . 4 3 6 ( 9 ) K - S ( 2 ) 3 . 2 1 5 ( 8 ) 3 . 2 0 ( 1 ) H g ( 2 ) - S ( 4 ) 2 . 4 3 2 ( 5 ) 2 . 4 3 6 ( 9 ) K - S ( 3 ) 3 . 3 0 4 ( 9 ) 3 3 4 ( 1 ) M - S ( 1 ) 2 . 3 5 6 ( 6 ) 2 . l 8 ( 1 ) K - S ( 3 ) 3 . 4 5 2 ( 9 ) 3 . 3 8 ( l ) M — S ( 2 ) 2 . 4 2 6 ( 6 ) 2 2 5 ( 1 ) K - S ( 4 ) 3 . 1 6 3 ( 9 ) 3 . 1 6 ( 1 ) M - S ( 3 ) 2 . 3 9 0 ( 7 ) 2 . 2 2 ( 1 ) K - S ( 4 ) 3 . 5 4 5 ( 9 ) 3 . 4 6 ( 1 ) M - S ( 4 ) 2 . 3 7 7 ( 6 ) 2 2 3 ( 1 ) m e a n ( K - S ) 3 . 3 2 m ) 3 . 3 0 ( 1 1 ) S e l e c t e d B o n d A n g l e s ( d e g ) ( I ) ( I I ) ( I ) ( 1 1 ) S ( 3 ) - M - S ( 4 ) 1 1 3 . 6 ( 2 ) 1 1 3 . 0 ( 4 ) S ( 1 ) - M - S ( 4 ) 1 0 9 . 2 ( 2 ) 1 1 0 . 1 ( 4 ) S ( 2 ) - H g ( 1 ) - S ( 2 ) 1 7 7 . 0 ( 4 ) 1 7 7 . 8 ( 7 ) S ( 2 ) - M - S ( 3 ) 1 0 7 . 1 ( 2 ) 1 0 7 . 3 ( 4 ) S ( 1 ) - H g ( 2 ) - S ( 1 ) 1 2 4 . 7 ( 3 ) l 1 9 . 9 ( 5 ) S ( 2 ) — M - S ( 4 ) 1 0 4 . 9 ( 2 ) 1 0 2 . 4 ( 4 ) S ( 1 ) - H g ( 2 ) - S ( 3 ) 9 8 . 6 ( 2 ) 1 0 0 . 8 ( 3 ) H g ( l ) — S ( 2 ) - M 9 7 . 9 ( 2 ) 9 9 . 1 ( 4 ) S ( 1 ) - H g ( 2 ) - S ( 4 ) 8 8 . 8 ( 2 ) 8 9 . 3 ( 3 ) H g ( 2 ) - S ( 3 ) - M 9 9 . 8 ( 2 ) 1 0 1 . 0 ( 4 ) S ( 1 ) - H g ( 2 ) — S ( 3 ) 9 1 . 5 ( 2 ) 9 1 . 5 ( 3 ) H g ( 2 ) - S ( 4 ) - M 1 0 2 . 0 ( 2 ) 1 0 2 . 5 ( 3 ) S ( 1 ) - H g ( 2 ) - S ( 4 ) 9 3 . 3 ( 2 ) 9 4 . 3 ( 3 ) H g ( 2 ) - S ( 1 ) - H g ( 2 ) 1 2 2 . 8 ( 3 ) 1 1 7 . 6 ( 5 ) S ( 3 ) - H g ( 2 ) - S ( 4 ) 1 6 6 . 8 ( 2 ) 1 6 3 . 8 ( 3 ) H g ( 2 ) — S ( 1 ) - M 1 0 8 . 9 ( 2 ) 1 1 0 . 8 ( 4 ) S ( 1 ) - M - S ( 2 ) 1 1 1 . 5 ( 2 ) 1 1 2 . 0 ( 4 ) H g ( 2 ) - S ( 1 ) - M 1 1 3 . 6 ( 2 ) 1 1 5 . 2 ( 3 ) S ( 1 ) - M - S ( 3 ) 1 1 0 . 5 ( 2 ) 1 1 1 . 7 ( 4 ) * M = S n ( 1 ) o r G e ( 1 1 ) 4 1 5 T h e K + c a t i o n s o f ( I I I ) a n d ( I V ) a r e b o t h s u r r o u n d e d b y s e v e n s u l f u r a t o m s w i t h t h e a v e r a g e K + ' " S d i s t a n c e s a t 3 . 3 2 ( 1 4 ) A a n d 3 . 3 0 ( 1 1 ) A r e s p e c t i v e l y . S t r u c t u r e o f K 6 Z n 4 S n 5 8 1 7 ( V ) C o m p o u n d ( V ) h a s a c o m p l i c a t e d t h r e e - d i m e n s i o n a l s t r u c t u r e w h i c h i s m a d e u p b y l i n k i n g t e t r a h e d r a l l y c o o r d i n a t e d S n 4 + i o n s a n d [ Z n 4 8 n 4 8 1 7 ] 1 0 ‘ c l u s t e r s v i a s u l f u r a t o m s i n a v e r t e x - s h a r i n g f a s h i o n , a s s h o w n i n F i g u r e 7 - 7 . T h e [ Z n 4 S n 4 8 1 7 ] 1 0 ‘ c l u s t e r , s h o w n i n F i g u r e 7 - 8 , i s a c t u a l l y a f r a g m e n t o f t h e Z n S w u r t z i t e t y p e s t r u c t u r e w h i c h f e a t u r e s b o a t - f o r m s i x - m e m b e r e d r i n g s . I t c o n t a i n s a s u l f u r a t o m a t i t s c e n t e r t e t r a h e d r a l l y b o n d e d t o f o u r Z n a t o m s . T h e f o u r t r i a n g u l a r f a c e s o f t h e [ S Z n 4 ] 6 + t e t r a h e d r o n a r e t h e n c a p p e d w i t h f o u r [ S n S 4 ] 4 ' t e t r a h e d r a i n a f a c e - s h a r i n g f a s h i o n . T h e r e s u l t i n g [ Z n 4 8 n 4 S 1 7 ] 1 0 ‘ c l u s t e r s p o s s e s s p s e u d o - t e t r a h e d r a l s i t e s y m m e t r y a n d a r e p r a c t i c a l l y f u n c t i o n i n g a s h u g e t e t r a h e d r a l [ M S 4 ] 1 0 — ( M = [ Z n 4 8 n 4 8 1 3 ] ) b u i l d i n g b l o c k s . T h e l i n k a g e o f S n 4 + a n d [ Z n 4 8 n 4 S 1 7 ] 1 0 “ g e n e r a t e s t h r e e d i f f e r e n t t y p e s o f t u n n e l s i n w h i c h c h a r g e b a l a n c i n g p o t a s s i u m c a t i o n s a r e l o c a t e d : t y p e ( a ) i s f o r m e d b y c o n n e c t i n g S n “ a n d [ M S 4 ] 1 0 ‘ t e t r a h e d r a i n a h e l i x w a y a l o n g a 2 1 s c r e w a x i s i n t h e < 0 0 1 > c r y s t a l l o g r a p h i c d i r e c t i o n ( s e e F i g u r e 7 - 7 ) ; t y p e ( b ) i s w i d e a n d fl a t a n d i s e n c l o s e d b y f o u r [ M / S n S 4 ] c h a i n s r u n n i n g a l o n g t h e < 0 1 0 > o r < 1 0 0 > d i r e c t i o n ( s e e F i g u r e 7 - 9 ) ; t y p e ( c ) i s f o r m e d b y c o n n e c t i n g S n “ a n d [ M S 4 ] 1 0 - t e t r a h e d r a i n a h e l i x w a y a l o n g a p s e u d o - 3 1 s c r e w a x i s i n t h e < 1 1 0 > o r < 1 1 0 > d i r e c t i o n ( s e e F i g u r e 7 - 1 0 ) . ( V ) c r y s t a l l i z e s i n a n o n c e n t r o s y m m e t r i c t e t r a g o n a l s p a c e g r o u p . F o u r f o l d i m p r o p e r r o t a t i o n a x e s p a s s t h r o u g h t h e S n ( 1 ) a t o m o f t h e [ S n S 4 ] 4 - u n i t s 4 1 6 a n d S ( 1 ) a t o m s a t t h e c e n t e r o f [ Z n 4 8 n 4 8 1 7 ] 1 0 ' c l u s t e r s . T h e a b s e n c e o f a c e n t e r o f s y m m e t r y i s c l e a r l y v i s i b l e i n F i g u r e 7 - 9 . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e n i n T a b l e 7 - 2 4 . T h e a v e r a g e S n — S a n d Z n - S d i s t a n c e s a r e 2 . 4 0 ( 3 ) A a n d 2 . 3 3 9 ( 9 ) A r e s p e c t i v e l y . T h e S - M - S a n g l e s d o n o t d e v i a t e v e r y m u c h f r o m t h o s e o f a p e r f e c t t e t r a h e d r o n . O n l y s l i g h t d e v i a t i o n s o c c u r a t S n ( 1 ) a n d S ( 1 ) a n d r e d u c e t h e s i t e s y m m e t r y f r o m T d t o S 4 . T h e r e a r e t h r e e c r y s t a l l o g r a p h i c a l l y d i s t i n c t p o t a s s i u m c a t i o n s . K ( 1 ) i s s a n d w i c h e d b y t w o [ Z n 4 8 n 4 8 1 7 1 1 0 ' c l u s t e r s , e a c h p r o v i d i n g f o u r S ( 3 ) a t o m s f o r c o o r d i n a t i o n . K ( 2 ) i s l o c a t e d a t t h e i n t e r s e c t i o n o f t w o s e t s o f t u n n e l s r u n n i n g a l o n g t h e c r y s t a l l o g r a p h i c < 0 0 1 > a x i s a n d < 1 1 0 > ( o r < 1 1 0 > ) a x i s . K ( 3 ) i s l o c a t e d b e t w e e n t w o K ( 2 ) ' s i n t h e s a m e t u n n e l s r u n n i n g a l o n g t h e < 1 1 0 > o r < 1 1 0 > a x i s , a s s h o w n i n F i g u r e 7 - 1 0 . A l l p o t a s s i u m c a t i o n s a r e e i g h t - c o o r d i n a t e d . T h e a v e r a g e K - S d i s t a n c e f o r K ( 1 ) a n d K ( 2 ) i s n o r m a l a t 3 . 3 7 ( 1 2 ) A . K ( 3 ) i s l o c a t e d i n a w i d e r c a v i t y i n s i d e t h e t u n n e l s , s u r r o u n d e d b y f o u r S ( 2 ) a t o m s f r o m f o u r [ Z n 4 S n 4 S 1 7 ] 1 0 ‘ c l u s t e r s a n d f o u r S ( 4 ) a t o m s f r o m t w o [ S n S 4 ] 4 ‘ t e t r a h e d r a . T h e s i z e o f t h e c a v i t y i s h o w e v e r t o o l a r g e f o r a K + c a t i o n ( t h e c e n t e r i s 3 . 7 8 4 A t o S ( 2 ) a n d 3 . 9 4 4 A t o S ( 4 ) ) . T h e c r y s t a l l o g r a p h i c d a t a s u g g e s t t h a t K ( 3 ) i s n o t l o c a l i z e d a t a c e r t a i n p o s i t i o n b u t i s " r a t t l i n g " a r o u n d t h e c e n t e r o f t h e c a v i t y . 4 1 7 F i g u r e 7 - 7 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K 6 2 n 4 S n 5 8 1 7 . V i e w d o w n t h e c - a x i s . 4 1 8 F i g u r e 7 - 8 : [ Z n 4 S n 4 S 1 7 l 1 0 ' c l u s t e r , t h e b u i l d i n g b l o c k o f K 6 Z n 4 $ n 5 8 1 7 , i s a f r a g m e n t o f W u r t z i t e t y p e s t r u c t u r e . a x i s . i n s i d e t h e w i d e a n d n a r r o w t u n n e l s p a r a l l e l t o t h e a - o r b - t h e p o l a r c h a r a c t e r o f t h e s t r u c t u r e . K ( 1 ) c a t i o n s a r e l o c a t e d K 6 Z n 4 8 n 5 8 1 7 . V i e w d o w n t h e a - o r b - a x i s . T h i s v i e w s h o w s F i g u r e 7 - 9 : O R T E P r e p r e s e n t a t i o n a n d l a b e h n g s c h e m e o f 4 1 9 4 2 0 F i g u r e 7 — 1 0 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K 6 2 n 4 8 n 5 8 1 7 . V i e w d o w n t h e a o r < 1 1 0 > o r < 1 1 0 > d i r e c t i o n . K ( 2 ) a n d K ( 3 ) a r e l o c a t e d i n s i d e t h e t u n n e l s . 4 2 1 T a b l e 7 - 2 4 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 6 Z n 4 S n 5 S 1 7 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) S n ( 1 ) — S ( 4 ) 2 . 4 0 2 ( 6 ) x 4 K ( 1 ) - S ( 3 ) 3 . 4 3 1 ( 4 ) x 8 S n ( 2 ) - S ( 2 ) 2 . 3 7 2 ( 6 ) K ( 2 ) - S ( 2 ) 3 . 3 8 1 ( 1 ) x 2 S n ( 2 ) - S ( 3 ) 2 . 3 6 9 ( 4 ) x 2 K ( 2 ) - S ( 3 ) 3 . 3 5 8 ( 4 ) x 2 S n ( 2 ) - S ( 4 ) 2 . 4 4 8 ( 6 ) K ( 2 ) — S ( 3 ) 3 . 1 1 6 ( 5 ) x 2 m e a n ( S n - S ) 2 . 4 0 ( 3 ) m e a n ( K ( 1 , 2 ) — S ) 3 . 3 7 ( 1 2 ) Z n - S ( 1 ) 2 . 3 4 2 ( 2 ) K ( 3 ) - S ( 2 ) 3 . 7 8 4 ( 6 ) x 4 Z n - S ( 2 ) 2 . 3 5 0 ( 6 ) K ( 3 ) - S ( 4 ) 3 . 9 4 4 ( 5 ) x 4 Z n — S ( 3 ) 2 . 3 3 2 ( 4 ) x 2 m e a n ( K ( 3 ) - S ) 3 . 8 6 ( l l ) m e a n ( Z n - S ) 2 . 3 3 9 ( 9 ) S e l e c t e d B o n d A n g l e s ( d e g ) S ( 4 ) - S n ( 1 ) - S ( 4 ) 1 0 9 . 1 ( 1 ) x 4 S ( 1 ) - Z n - S ( 3 ) 1 1 0 . 6 ( 1 ) x 2 S ( 4 ) - S n ( 1 ) - S ( 4 ) 1 1 0 . 2 ( 3 ) x 2 S ( 2 ) - Z n — S ( 3 ) 1 0 7 . 2 ( 1 ) x 2 S ( 2 ) - S n ( 2 ) - S ( 3 ) 1 1 3 . 3 ( 1 ) x 2 S ( 3 ) - Z n - S ( 3 ) 1 0 8 . 5 ( 2 ) S ( 2 ) - S n ( 2 ) - S ( 4 ) 1 1 1 . 7 ( 2 ) Z n - S ( 1 ) - Z n 1 0 9 . 3 0 ( 5 ) x 4 S ( 3 ) - S n ( 2 ) - S ( 3 ) 1 1 1 . 8 ( 2 ) Z n - S ( 1 ) - Z n 1 0 9 . 8 ( 1 ) x 2 S ( 3 ) - S n ( 2 ) - S ( 4 ) 1 0 2 . 9 ( 1 ) x 2 S n ( 2 ) - S ( 2 ) - Z n 1 0 2 . 6 ( 2 ) S ( 3 ) - S n ( 2 ) - S ( 4 ) 1 0 2 . 9 ( 1 ) S n ( 2 ) — S ( 3 ) - Z n 1 0 4 . 9 ( 1 ) S ( 1 ) - Z n - S ( 2 ) 1 1 2 . 5 ( 2 ) S n ( 1 ) - S ( 4 ) — S n ( 2 ) 1 0 3 . 6 ( 2 ) 4 2 2 R b 2 Z n S n 2 8 6 ( V I ) a n d C s z M n S n 2 S 6 ( V I I ) C o m p o u n d s ( V I ) a n d ( V I I ) a r e i s o s t r u c t u r a l , f o r m i n g a n e w t h r e e - d i m e n s i o n a l s t r u c t u r e t y p e w i t h c o r n e r - s h a r i n g t e t r a t h i o m e t a l a t e s a s b u i l d i n g b l o c k s , a s s h o w n i n F i g u r e 7 - 1 1 . I n o r d e r t o h a v e a b e t t e r v i e w o f t h e s t r u c t u r e , i t c a n b e d i v i d e d i n t o l a y e r s p e r p e n d i c u l a r t o t h e b — a x i s , a s s h o w n i n F i g u r e 7 - 1 2 . E a c h l a y e r i s r e l a t e d t o i t s a d j a c e n t l a y e r b y a t w o - f o l d i m p r o p e r r o t a t i o n s y m m e t r y p a r a l l e l t o t h e b - a x i s , t h u s r e s u l t i n g i n a n o n c e n t r o s y m m e t r i c s p a c e g r o u p ( P 2 1 , # 4 ) . O n e s u c h d i s c r e t e l a y e r c o n s i s t s o f s l i g h t l y t w i s t e d b o a t - s h a p e d [ ( M S n 2 S 3 ) S 6 ] 4 ' ( M = M n o r Z n ) s i x - m e m b e r e d r i n g s c o n n e c t e d b y s h a r i n g f o u r o f t h e i r s i x t e r m i n a l s u l f u r a t o m s . T h e r e m a i n i n g t w o a x i a l s u l f u r a t o m s , 8 ( 6 ) , l i n k t h e a d j a c e n t l a y e r s a b o v e a n d b e l o w , e x t e n d i n g t o t h r e e - d i m e n s i o n a l f r a m e w o r k s a n d f o r m i n g p a r a l l e l t u n n e l s r u n n i n g a l o n g < 1 0 0 > a n d < 0 0 1 > a x e s . T h e s e t u n n e l s a r e n a r r o w ( ~ 3 . 2 A ) , s o f r e e m o v e m e n t o f C s + o r R b + c a t i o n s a l o n g t h e t u n n e l s i s n o t e x p e c t e d . T h e c h a r g e b a l a n c i n g c a t i o n s a r e l o c a t e d a t t h e c a v i t i e s n e a r t h e b o u n d a r y o f t h e t u n n e l s . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s f o r ( V ) a n d ( V I ) a r e g i v e n i n T a b l e 7 - 2 5 a n d 7 - 2 6 r e s p e c t i v e l y . T h e a v e r a g e S n - S d i s t a n c e s f o r ( V ) a n d ( V I ) a r e s i m i l a r a t 2 . 3 8 ( 4 ) A a n d 2 . 3 9 ( 4 ) A r e s p e c t i v e l y a n d a r e c o m p a r a b l e t o t h o s e o f o t h e r [ S n S 4 ] 4 ‘ c o n t a i n i n g c o m p o u n d s . T h e a v e r a g e M n - S d i s t a n c e ( 2 . 4 4 ( 3 ) A ) i s s i g n i fi c a n t l y l a r g e r t h a n t h a t o f Z n - S ( 2 . 3 5 6 ( 3 ) A ) . T h i s e x p l a i n s w h y t h e l a t t i c e o f ( V ) i s s t a b i l i z e d b y l a r g e r C s + c a t i o n s w h i l e ( V ) i s s t a b i l i z e d b y R b ” c a t i o n s . T h e c o o r d i n a t i o n e n v i r o n m e n t s f o r C s + a n d R b “ i o n s i n ( V ) a n d ( V I ) r e s p e c t i v e l y a r e s i m i l a r w i t h a n a v e r a g e C s ‘ i - r - S d i s t a n c e o f 3 . 7 0 ( 1 6 ) A a n d a n a v e r a g e R b + t - - S d i s t a n c e o f 3 . 6 1 ( 2 2 ) A . T h e c o r r e s p o n d i n g S - S n — S a n d S - M - S ( M = M n o r Z n ) a n g l e s i n 4 2 3 ( V ) a n d ( V I ) a r e c o m p a r a b l e a n d d e v i a t e f r o m t h o s e o f a p e r f e c t t e t r a h e d r a . E v e n t h o u g h i t i s p o s s i b l e t h a t S n a n d M n o r Z n a r e d i s o r d e r e d a t m e t a l s i t e s d u e t o t h e i r s i m i l a r i t y o f i o n i c r a d i i , t h e i r r e a s o n a b l e t e m p e r a t u r e f a c t o r s b a s e d o n t h e s t r u c t u r e r e fi n e m e n t s o f c r y s t a l l o g r a p h i c d a t a i n d i c a t e a n o r d e r e d m o d e l . T h e p e r f e c t p a r a m a g n e t i c b e h a v i o r o f ( V ) a l s o s u g g e s t s t h e c u r r e n t o r d e r e d m o d e l i n w h i c h M n a t o m s a r e s e p a r a t e d b y a S n a n d t w o S a t o m s , r e s u l t i n g i n n e g l i g i b l e m a g n e t i c d i p o l e - d i p o l e c o u p l i n g d u e t o l o n g M a n n d i s t a n c e s ( 7 . 0 9 8 ( 1 ) A , 7 . 4 3 4 ( 1 ) A a n d 7 . 8 4 2 ( 1 ) A ) . ( V 1 ) i s d i a m a g n e t i c b e c a u s e b o t h S n 4 + a n d Z n 2 + d o n o t c o n t a i n u n p a i r e d e l e c t r o n s . 4 2 4 « z / / F i g u r e 7 - 1 1 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f ( A ) s z l n S n 2 8 6 a n d ( B ) C s z M n S n z s s . 4 2 5 4 2 6 F i g u r e 7 - 1 2 : A s i n g l e l a y e r o f t h e [ M S n 2 S 6 I Z ' ( M = Z n o r M n ) f r a m e w o r k . I t s a d j a c e n t l a y e r s a b o v e a n d b e l o w a r e r e l a t e d a c c o r d i n g t o P 2 1 s y m m e t r y . V i e w d o w n ( A ) b - a x i s a n d ( B ) a - a x i s . T a b l e 7 - 2 5 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r R b 2 2 n S n 2 8 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s 4 2 7 S e l e c t e d B o n d D i s t a n c e s ( A ) S n ( 1 ) - S ( 1 ) 2 . 3 4 6 ( 4 ) R b ( 1 ) - S ( 2 ) 3 . 7 0 4 ( 4 ) S n ( 1 ) - S ( 2 ) 2 . 4 1 3 ( 4 ) R b ( 1 ) - S ( 2 ) 3 . 6 0 2 ( 4 ) S n ( 1 ) - S ( 4 ) 2 . 3 5 2 ( 4 ) R b ( 1 ) - S ( 3 ) 3 . 2 3 5 ( 4 ) S n ( 1 ) - S ( 6 ) 2 . 4 5 1 ( 4 ) R b ( 1 ) - S ( 4 ) 3 . 4 3 7 ( 4 ) S n ( 2 ) - S ( 2 ) 2 . 4 0 9 ( 4 ) R b ( 1 ) — S ( 5 ) 3 . 3 7 6 ( 5 ) S n ( 2 ) - S ( 3 ) 2 . 3 7 3 ( 4 ) R b ( 1 ) - S ( 6 ) 3 . 6 8 6 ( 4 ) S n ( 2 ) - 8 ( 5 ) 2 . 3 4 9 ( 4 ) R b ( 2 ) - S ( 1 ) 3 . 4 1 9 ( 4 ) S n ( 2 ) - 8 ( 6 ) 2 . 4 0 8 ( 4 ) R b ( 2 ) — S ( 3 ) 3 . 5 8 5 ( 4 ) m e a n ( S n - S ) 2 . 3 9 ( 4 ) R b ( 2 ) - S ( 3 ) 3 . 4 8 1 ( 4 ) Z n - S ( 1 ) 2 . 3 5 9 ( 4 ) R b ( 2 ) - S ( 4 ) 3 . 2 9 8 ( 4 ) Z n - S ( 3 ) 2 . 3 5 7 ( 4 ) R b ( 2 ) - S ( 5 ) 3 . 4 6 9 ( 4 ) Z n - S ( 4 ) 2 . 3 5 2 ( 4 ) R b ( 2 ) - S ( 6 ) 3 . 6 9 0 ( 5 ) Z n - S ( 5 ) 2 . 3 5 5 ( 4 ) R b ( 2 ) - 8 ( 6 ) 3 . 7 2 4 ( 5 ) m e a n ( Z n - S ) 2 . 3 5 6 ( 3 ) m e a n ( R b — S ) 3 . 5 1 ( 1 6 ) R b ( 1 ) - S ( 1 ) 3 . 4 6 6 ( 4 ) S e l e c t e d B o n d A n g l e s ( d e g ) S ( 1 ) - S n ( 1 ) - S ( 2 ) 1 1 7 . 4 ( 1 ) S ( 1 ) - Z n — S ( 3 ) 1 0 8 . 7 ( 1 ) S ( 1 ) - S n ( 1 ) - S ( 4 ) 1 1 0 . 8 ( 1 ) S ( 1 ) - Z n - S ( 4 ) 1 0 1 . 6 ( 1 ) S ( 1 ) - S n ( 1 ) - S ( 6 ) 1 1 2 . 2 ( 1 ) S ( 1 ) - Z n - S ( 5 ) 1 1 7 . 9 ( 1 ) S ( 2 ) - S n ( 1 ) - S ( 4 ) 1 1 3 . 5 ( 1 ) S ( 3 ) - Z n - S ( 4 ) 1 1 7 . 7 ( 1 ) S ( 2 ) - S n ( 1 ) - S ( 6 ) 9 2 . 2 ( 1 ) S ( 3 ) - Z n - S ( 5 ) 1 0 0 . 2 ( 2 ) S ( 4 ) - S n ( 1 ) - S ( 6 ) 1 0 9 . 3 ( 1 ) S ( 4 ) - Z n - S ( 5 ) l 1 1 . 6 ( 1 ) S ( 2 ) - S n ( 2 ) - S ( 3 ) 1 0 1 . 3 ( 1 ) S n ( 1 ) - S ( 1 ) - Z n 1 1 3 . 3 ( 1 ) S ( 2 ) - S n ( 2 ) - S ( 5 ) l 1 2 . 6 ( 1 ) S n ( 1 ) - S ( 2 ) — S n ( 2 ) 1 0 9 . 5 ( 1 ) S ( 2 ) — S n ( 2 ) - S ( 6 ) 1 0 6 . 5 ( 1 ) S n ( 2 ) - S ( 3 ) - Z n 1 1 3 . 1 ( 2 ) S ( 3 ) - S n ( 2 ) - S ( 5 ) 1 1 2 . 3 ( 1 ) S n ( 1 ) - S ( 4 ) - Z n 1 1 4 . 2 ( 2 ) S ( 3 ) - S n ( 2 ) - S ( 6 ) 1 0 8 . 6 ( 1 ) S n ( 2 ) - S ( 5 ) - Z n 1 1 1 . 7 ( 1 ) S ( 5 ) - S n ( 2 ) - S ( § ) 1 1 4 . 5 ( 1 ) S n ( 1 ) - S ( 6 ) - S n ( 2 ) 1 0 3 . 6 ( 1 ) T a b l e 7 — 2 6 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e q ) o f C s z M n S n 2 5 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s 4 2 8 S e l e c t e d B o n d D i s t a n c e s ( A ) S n ( 1 ) - S ( 1 ) 2 . 3 4 9 ( 9 ) C s ( 1 ) - S ( 2 ) 3 . 8 0 ( 1 ) S n ( 1 ) - S ( 2 ) 2 . 4 2 4 ( 8 ) C s ( 1 ) - S ( 3 ) 3 . 3 7 3 ( 8 ) S n ( 1 ) - S ( 4 ) 2 . 3 4 2 ( 8 ) C s ( 1 ) - S ( 4 ) 3 . 5 5 8 ( 9 ) S n ( 1 ) - S ( 6 ) 2 . 4 3 9 ( 8 ) C s ( 1 ) - S ( 4 ) 3 . 8 8 8 ( 9 ) S n ( 2 ) - S ( 2 ) 2 . 3 9 6 ( 8 ) C s ( 1 ) - S ( 5 ) 3 . 6 6 ( 1 ) S n ( 2 ) - S ( 3 ) 2 . 3 6 1 ( 8 ) C s ( 1 ) - 8 ( 5 ) 3 . 9 7 ( 1 ) S n ( 2 ) - S ( 5 ) 2 . 3 4 3 ( 8 ) C s ( 1 ) - 8 ( 6 ) 3 . 7 4 6 ( 8 ) S n ( 2 ) - S ( 6 ) 2 . 4 2 3 ( 8 ) C s ( 2 ) - S ( 1 ) 3 . 8 1 5 ( 9 ) m e a n ( S n - S ) 2 . 3 8 ( 4 ) C s ( 2 ) - S ( 1 ) 3 . 6 0 4 ( 9 ) M n - S ( 1 ) 2 4 3 ( 1 ) C s ( 2 ) - S ( 3 ) 3 . 6 8 6 ( 9 ) M n - S ( 3 ) 2 . 4 5 7 ( 9 ) C s ( 2 ) - S ( 3 ) 3 . 5 7 0 ( 9 ) M n - S ( 4 ) 2 . 4 0 1 ( 9 ) C s ( 2 ) - S ( 4 ) 3 . 4 9 8 ( 8 ) M n - S ( 5 ) 2 . 4 5 9 ( 9 ) C s ( 2 ) - 8 ( 5 ) 3 . 5 9 8 ( 8 ) m e a n ( M n - S ) 2 . 4 4 ( 3 ) C s ( 2 ) - 8 ( 6 ) 3 . 7 9 5 ( 9 ) C s ( 1 ) - S ( 1 ) 3 . 5 8 1 ( 9 ) C s ( 2 ) - 8 ( 6 ) 3 . 8 1 6 ( 9 ) C s ( 1 ) - S ( 2 ) 3 . 9 0 4 ( 9 ) m e a n ( C s — S ) 3 . 7 0 ( 1 6 ) S e l e c t e d B o n d A n g l e s ( d e g ) S ( 1 ) - S n ( l ) - S ( 2 ) l 1 7 . 0 ( 3 ) S ( 1 ) - M n - S ( 3 ) 1 1 0 . 5 ( 3 ) S ( 1 ) - S n ( 1 ) - S ( 4 ) 1 1 0 . 7 ( 3 ) S ( 1 ) — M n - S ( 4 ) 1 0 3 . 0 ( 3 ) S ( 1 ) - S n ( l ) - S ( 6 ) 1 1 2 . 1 ( 3 ) S ( 1 ) - M n — S ( 5 ) 1 1 5 . 5 ( 3 ) S ( 2 ) - S n ( 1 ) - S ( 4 ) 1 1 3 . 1 ( 3 ) S ( 3 ) - M n - S ( 4 ) 1 1 7 . 8 ( 3 ) S ( 2 ) - S n ( 1 ) — S ( 6 ) 9 3 . 6 ( 3 ) S ( 3 ) - M n - S ( 5 ) 9 8 . 4 ( 3 ) S ( 4 ) - S n ( 1 ) - S ( 6 ) 1 0 9 . 0 ( 3 ) S ( 4 ) - M n - S ( 5 ) 1 1 2 . 3 ( 3 ) S ( 2 ) - S n ( 2 ) - S ( 3 ) 1 0 0 . 3 ( 3 ) S n ( 1 ) - S ( l ) - M n 1 1 5 . 7 ( 3 ) S ( 2 ) - S n ( 2 ) - S ( 5 ) 1 1 5 . 6 ( 3 ) S n ( 1 ) - S ( 2 ) - S n ( 2 ) l 1 2 . 7 ( 3 ) S ( 2 ) — S n ( 2 ) - S ( 6 ) 1 0 5 . 5 ( 3 ) S n ( 2 ) - S ( 3 ) - M n 1 1 5 . 3 ( 3 ) S ( 3 ) - S n ( 2 ) - S ( 5 ) 1 1 2 . 2 ( 3 ) S n ( 1 ) - S ( 4 ) - M n 1 1 8 . 2 ( 3 ) S ( 3 ) - S n ( 2 ) - S ( 6 ) 1 0 9 . 4 ( 3 ) S n ( 2 ) - S ( 5 ) - M n 1 1 3 . 4 ( 3 ) S ( 5 ) ~ S n ( 2 ) - S ( 6 ) 1 1 3 . 0 ( 3 ) S n ( 1 ) - S ( 6 ) - S n ( 2 ) 1 0 4 . 3 ( 3 ) 4 2 9 S t r u c t u r e o f K 2 M n S n S 4 ( V I I I ) C o m p o u n d ( V I I I ) h a s a t w o - d i m e n s i o n a l s t r u c t u r e w h i c h i s c r y s t a l l o g r a p h i c a l l y i s o m o r p h o u s t o t h e K l n S z s t r u c t u r e w i t h S n a n d M n d i s o r d e r e d a t I n s i t e s . ( V I I I ) c o n s i s t s o f c o r n e r - s h a r i n g M S 4 t e t r a h e d r a ( M = M n o r S n ) w h i c h f o r m s [ M 4 S 1 o ] S ' t e t r a m e r i c c l u s t e r s . T h e [ M 4 8 1 0 ] 8 ‘ t e t r a m e r s , h a v i n g t h e s a m e g e o m e t r y o f d i s c r e t e P 4 0 1 0 m o l e c u l e s , a r e c o n s t r u c t e d w i t h f u s e d c h a i r - f o r m e d s i x - m e m b e r e d r i n g s . T h e y a r e t h e n l i n k e d b y s h a r i n g t h e i r t e r m i n a l s u l f u r a t o m s t o f o r m a t w o - d i m e n s i o n a l f r a m e w o r k a s s h o w n i n F i g u r e 7 - 1 3 . T h e l a y e r e d s t r u c t u r e o f ( V I I I ) i s r e l a t e d t o t h a t o f R b 2 C q u n 2 8 6 a n d c a n a l s o b e v i e w e d a s a d e r i v a t i v e o f t h e Z n S z i n c b l e n d e a d a m a n t i n e s t r u c t u r e t y p e ( s e e C h a p t e r 6 . ) . K 2 M n S n S 4 h a s a s i n g l e l a y e r o f a d a m a n t i n e f r a m e w o r k , w h i l e R b 2 C u 2 8 n 2 8 6 c o n t a i n s t w o f u s e d l a y e r s . P o t a s s i u m c a t i o n s a r e l o c a t e d b e t w e e n t h e l a y e r s t o b a l a n c e t h e c h a r g e , a s s h o w n i n F i g u r e 7 - 1 4 . E a c h o f t h e t w o c r y s t a l l o g r a p h i c a l l y d i s t i n c t K + c a t i o n s i s s u r r o u n d e d b y s i x s u l f u r a t o m s . T h e c o o r d i n a t i o n e n v i r o n m e n t o f t h e K + c a t i o n s i s s i m i l a r t o t h a t o f R b + c a t i o n s i n R b 2 C u 2 8 n 2 8 6 . T h e a v e r a g e K + - - - S d i s t a n c e i s 3 . 2 9 ( 1 1 ) A , a s s h o w n i n T a b l e 7 - 2 7 . S i n c e t h e [ M 4 S 1 o ] 3 ' a n i o n h a s p s e u d o - t e t r a h e d r a l s i t e s y m m e t r y , t h e c h e m i c a l e n v i r o n m e n t a t t h e m e t a l s i t e s i s s i m i l a r . D u r i n g t h e s t r u c t u r e r e fi n e m e n t o f X - r a y d i f f r a c t i o n d a t a , M n a n d S n c o u l d n o t b e d i s t i n g u i s h e d a n d a r e f o u n d t o b e s t a t i s t i c a l l y d i s o r d e r e d a t t h e m e t a l s i t e s i n a 1 : 1 r a t i o . : 3 . / k / a fi \ f . \ \ / o ‘ ( ' c Q / \ " { 0 / t \ \ { \ R — \ < 7 / . 5 ~ V _ \ : : o \ f " 4 > 1 4 / e ) ( 3 - 9 ‘ \ ‘ 1 4 / o 4 3 0 0 3 ( 1 ) 8 ( 4 ) F i g u r e 7 - l 3 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K 2 M n S n S 4 . V i e w d o w n t h e c - a x i s . M n 2 + a n d S n 4 + i o n s a r e s t a t i s t i c a l l y d i s o r d e r e d a m o n g t h e M s i t e s . 4 3 1 F i g u r e 7 - 1 4 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f K 2 M n S n S 4 . V i e w p a r a l l e l t o t h e l a y e r s . D o u b l e l a y e r s o f p o t a s s i u m c a t i o n s a r e l o c a t e d b e t w e e n t h e [ M n S n S 4 I Z ' s l a b s . 4 3 2 T a b l e 7 - 2 7 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r K 2 M n S n S 4 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) M ( l ) - S ( l ) 2 . 3 3 ( 1 ) K ( 1 ) - S ( 1 ) 3 . 3 0 ( 1 ) M ( 1 ) - S ( 2 ) 2 . 4 4 6 ( 8 ) K ( 1 ) - S ( 2 ) 3 . 2 9 8 ( 9 ) M ( 1 ) - S ( 3 ) 2 . 4 1 7 ( 8 ) K ( 1 ) - S ( 2 ) 3 2 8 ( 1 ) M ( 1 ) - S ( 4 ) 2 . 4 6 0 ( 6 ) K ( 1 ) - S ( 3 ) 3 . 1 5 ( 1 ) M ( 2 ) - S ( 1 ) 2 . 3 4 7 ( 9 ) K ( 1 ) - S ( 4 ) 3 . 2 2 ( 1 ) M ( 2 ) - S ( 2 ) 2 . 3 7 1 ( 8 ) K ( 1 ) - S ( 5 ) 3 3 6 ( 1 ) M ( 2 ) — S ( 3 ) 2 . 4 4 6 ( 9 ) K ( 2 ) - S ( 1 ) 3 . 2 4 ( 1 ) M ( 2 ) - S S 2 . 3 5 8 ( 7 ) K ( 2 ) - S ( 2 ) 3 . 4 6 ( l ) m e a n ( M - S ) 2 . 4 0 ( 5 ) K ( 2 ) - S ( 2 ) 3 . 3 3 ( 1 ) M ( l ) - M ( l ) 3 . 8 8 5 ( 3 ) K ( 2 ) - S ( 3 ) 3 . 0 9 ( 1 ) M ( 2 ) - M ( 2 ) 3 . 8 7 5 ( 3 ) K ( 2 ) - S ( 4 ) 3 . 3 9 5 ( 7 ) M ( 1 ) - M ( 2 ) 3 . 8 0 1 ( 3 ) K ( 2 ) - 8 ( 5 ) 3 . 3 9 7 ( 8 ) M ( 1 ) - M ( 2 ) 3 . 8 5 4 ( 3 ) m e a n ( K - S ) 3 . 2 9 ( 1 l ) M ( 1 ) — M ( 2 ) 3 . 8 8 1 ( 3 ) m e a n ( M - M ) 3 . 8 6 ( 3 ) S e l e c t e d B o n d A n g l e s ( d e g ) S ( 1 ) - M ( 1 ) - S ( 2 ) 1 0 8 . 6 ( 3 ) S ( 1 ) - M ( 2 ) - S ( 5 ) 1 0 9 . 4 ( 3 ) S ( 1 ) - M ( 1 ) - S ( 3 ) 1 0 6 . 7 ( 3 ) S ( 2 ) - M ( 2 ) - S ( 3 ) 1 1 3 . 7 ( 3 ) S ( 1 ) - M ( l ) - S ( 4 ) 1 0 6 . 7 ( 3 ) S ( 2 ) — M ( 2 ) - S ( 5 ) 1 0 7 . 1 ( 2 ) S ( 2 ) - M ( 1 ) - S ( 3 ) 1 1 1 . 1 ( 3 ) S ( 3 ) - M ( 2 ) - S ( 5 ) 1 1 1 . 9 ( 2 ) S ( 2 ) - M ( 1 ) - S ( 4 ) 1 1 0 . 5 ( 2 ) M ( l ) - S ( 1 ) - M ( 2 ) 1 1 1 . 1 ( 4 ) S ( 3 ) - M ( 1 ) - S ( 4 ) 1 1 3 . 0 ( 2 ) M ( 1 ) - S ( 2 ) - M ( 2 ) 1 0 7 . 4 ( 2 ) S ( 1 ) - M ( 2 ) - S ( 2 ) 1 0 7 . 4 ( 3 ) M ( 2 ) - S ( 5 ) - M ( 2 ) 1 1 0 . 6 ( 5 ) S ( 1 ) - M ( 2 ) — S ( 3 ) 1 0 7 . 2 ( 3 ) 4 3 3 I t s h o u l d b e n o t e d t h a t i n C s z M n S n s t ( V I I ) , t h e M n a n d S n a r e r e a d i l y d i s t i n g u i s h e d d u r i n g t h e s t r u c t u r e r e fi n e m e n t . I n ( V I I ) , t h e a v e r a g e M n - S b o n d d i s t a n c e i s s l i g h t l y l o n g e r t h a n t h a t o f S n - S ( 2 . 4 4 ( 3 ) A a n d 2 . 3 8 ( 4 ) A r e s p e c t i v e l y ) , w h i l e i n ( V l l l ) t h e a v e r a g e M - S d i s t a n c e i s 2 . 4 0 ( 5 ) A ( s e e T a b l e 7 - 2 7 ) w h i c h f a l l s i n t h e r a n g e o f c o m m o n S n — S a n d M n - S d i s t a n c e s . T h e m a g n e t i c s u s c e p t i b i l i t y m e a s u r e m e n t ( s e e S e c t i o n 3 . 4 ) a s a f u n c t i o n o f t e m p e r a t u r e a l s o r e v e a l s t h e d i s o r d e r e d m o d e l w i t h a s m o o t h t r a n s i t i o n f r o m a p a r a m a g n e t i c t o a n t i f e r r o m a g n e t i c s t a t e , s u g g e s t i n g d i f f e r e n t w a y s o f M n - M n m a g n e t i c d i p o l e c o u p l i n g d u e t o t h e s h o r t e r M n - M n d i s t a n c e s b a s e d o n a d i s o r d e r e d m o d e l . C s z l n z G e s t ( I X ) C s z l n z G e z S g h a s a t w o - d i m e n s i o n a l s t r u c t u r e a n d i s i s o s t r u c t u r a l t o l e l n z S i 2 8 3 . 1 9 I n ( I X ) , I n a n d G e a t o m s a r e d i s o r d e r e d a m o n g t h e t h r e e c r y s t a l l o g r a p h i c a l l y d i s t i n c t m e t a l s i t e s . S i m i l a r d i s o r d e r a m o n g I n a n d S i s i t e s i s a l s o o b s e r v e d i n l e l n z S i z S g . T h e s t r u c t u r e o f ( I X ) i s s h o w n i n F i g u r e 7 - 1 5 . I t c o n s i s t s o f s i m i l a r p a r a l l e l [ M S 3 ] n c h a i n s a s f o u n d i n ( I ) a n d ( I I ) , c r o s s - l i n k e d b y M ' 2 S 6 e d g e - s h a r i n g b i t e t r a h e d r a s y m m e t r i c a l l y a t b o t h s i d e s o f e v e r y t w o M a t o m s i n a v e r t e x - s h a r i n g f a s h i o n . T h e s a m e c o n n e c t i v i t y i s a l s o f o u n d i n K 2 G a 2 S n 2 S 3 3 d w h i c h c r y s t a l l i z e s i n a t r i c l i n i c s p a c e g r o u p ( P 1 , # 2 ) , w h i l e ( I X ) c r y s t a l l i z e s i n a n o r t h o r h o m b i c s p a c e g r o u p ( a n a , # 6 2 ) ) . K z l n z G e z S g a n d K 2 G a z G e 2 S 4 3 d a r e s t r u c t u r a l l y s i m i l a r b u t d i f f e r i n t h e a r r a n g e m e n t s o f t h e M ' 2 S 6 b i t e t r a h e d r a . T h e y a d o p t a n u n s y m m e t r i c a l z i g z a g c o n n e c t i v i t y p a t t e r n a l o n g t h e [ M S 3 ] n c h a i n s i n t h e s a m e f a s h i o n a s f o u n d i n ( I ) a n d ( I I ) , i n w h i c h M ' S 4 t e t r a h e d r a i n s t e a d o f M ' 2 S 6 b i t e t r a h e d r a a r e u s e d t o l i n k t h e [ M S 3 ] n c h a i n s . M e t a l 4 3 4 a t o m s a r e a l s o f o u n d t o b e d i s o r d e r e d i n t h e a b o v e t h r e e s t r u c t u r a l l y r e l a t e d c o m p o u n d s . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e n i n T a b l e 7 - 2 8 . I n t h e e d g e - s h a r i n g b i t e t r a h e d r o n , t h e a v e r a g e M ( 1 ) — S d i s t a n c e ( 2 . 3 5 ( 2 ) A ) i s l o n g e r t h a n t h e M ( 2 ) - S d i s t a n c e ( 2 . 2 7 ( 2 ) A ) . T h e d i f f e r e n c e i s c o n s i s t e n t w i t h t h e h i g h e r I n p o p u l a t i o n a t M ( l ) s i t e s t h a n a t M ( 2 ) s i t e s . M ( l ) s i t e s a r e o c c u p i e d b y 5 0 % I n , w h i l e M ( 2 ) s i t e s a r e o c c u p i e d b y 3 0 % I n . T h e a v e r a g e M - S d i s t a n c e o f M ( 3 ) s i t e s i s s l i g h t l y l o n g e r a t 2 . 3 6 ( 2 ) A w h i c h a l s o r e fl e c t s t h e s l i g h t l y h i g h e r I n p o p u l a t i o n o f 6 0 % a t t h e s e s i t e s . T h e s e M - S d i s t a n c e s a r e b e t w e e n t y p i c a l G e - S a n d I n - S d i s t a n c e s a s g i v e n i n p r e v i o u s s e c t i o n s . T h e d e p e n d e n c e o f M - S d i s t a n c e s o n o c c u p a n c y a t m e t a l s i t e s i s a l s o o b s e r v e d i n l e S i z l n z S g , i n w h i c h t h e c o r r e s p o n d i n g M ( 1 ) ~ M ( 3 ) s i t e s a r e o c c u p i e d b y 4 2 % , 9 % a n d 6 7 % o f I n r e s p e c t i v e l y . T h e d e g r e e o f d i s o r d e r a t m e t a l s i t e s i n l e S i z I n z S g i s l e s s t h a n t h a t o f ( I X ) b e c a u s e t h e a t o m i c s i z e d i f f e r e n c e b e t w e e n S i a n d I n i s l a r g e r . T w o , c r y s t a l l o g r a p h i c a l l y d i s t i n c t , C s + c a t i o n s l o c a t e d b e t w e e n t h e l a y e r s , a s s h o w n i n F i g u r e 7 - 1 6 , a r e b o t h s u r r o u n d e d b y 9 s u l f u r a t o m s r e s p e c t i v e l y . T h e a v e r g e C s + " ' S d i s t a n c e i s 3 . 7 4 ( 1 3 ) A . . 4 3 5 F i g u r e 7 - l 5 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f C s z l n z G e 2 S 3 . V i e w d o w n t h e c - a x i s . I n a n d G e a r e d i s o r d e r e d a m o n g t h e M s i t e s . d e r e y a l e h t f o e m e h c s g n i l e b a l d n a n o i t a t n e s e r p e r P E T R O : 6 l - 7 e r u g i F 4 5 0 s t r u c t u r e o f C s z l n z G e z S g . V i e w p a r a l l e l t o t h e l a y e r s . T a b l e 7 - 2 8 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) o f C s z l n z G e 2 5 8 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s 4 3 7 S e l e c t e d B o n d D i s t a n c e s ( A ) M ( 1 ) - M ( 2 ) 3 . 1 3 5 ( 5 ) m e a n ( M ( 3 ) — S ) 2 . 3 6 ( 2 ) M ( 1 ) - S ( 2 ) 2 . 3 1 3 ( 9 ) x 2 C s ( 1 ) - S ( 1 ) 3 . 7 2 0 ( 8 ) x 2 M ( l ) - S ( 5 ) 2 . 3 8 ( 1 ) C s ( 1 ) - S ( 1 ) 3 . 9 6 0 ( 8 ) x 2 M ( l ) - S ( 6 ) 2 . 3 8 ( 1 ) C s ( 1 ) - S ( 2 ) 3 . 7 6 1 ( 9 ) x 2 m e a n ( M ( 1 ) - S ) 2 3 5 ( 4 ) C s ( 1 ) - S ( 3 ) 3 . 6 0 ( 1 ) M ( 2 ) - S ( 1 ) 2 . 2 5 5 ( 8 ) x 2 C s ( 1 ) — S ( 5 ) 3 . 7 7 4 ( 3 ) x 2 M ( 2 ) - 5 ( 5 ) 2 . 2 6 ( 1 ) C s ( 2 ) - S ( 1 ) 3 . 9 1 4 ( 8 ) x 2 M ( 2 ) - S ( 6 ) 2 . 2 9 ( 1 ) C s ( 2 ) - S ( 2 ) 3 . 6 7 9 ( 9 ) x 2 m e a n ( M ( 2 ) - S ) 2 2 7 ( 2 ) C s ( 2 ) — S ( 3 ) 3 . 6 0 ( 1 ) M ( 3 ) - S ( 1 ) 2 . 3 8 2 ( 8 ) C s ( 2 ) - S ( 4 ) 3 . 5 3 ( l ) M ( 3 ) - S ( 2 ) 2 . 3 6 8 ( 9 ) C s ( 2 ) - S ( 6 ) 3 5 9 ( 1 ) M ( 3 ) - S ( 3 ) 2 . 3 6 7 ( 8 ) C s ( 2 ) - 8 ( 6 ) 3 . 7 1 0 ( 1 ) x 2 M ( 3 ) - S ( 4 ) 2 . 3 4 0 ( 9 ) m e a n ( C s - S ) 3 . 7 4 ( 1 3 ) S e l e c t e d B o n d A n g l e s @ e g ) S ( 2 ) - M ( l ) - S ( 2 ) 1 1 3 . 6 ( 4 ) S ( 1 ) - M ( 3 ) - S ( 2 ) 1 0 7 . 0 ( 3 ) S ( 2 ) - M ( l ) - S ( 5 ) 1 1 5 . 7 ( 3 ) x 2 S ( 1 ) - M ( 3 ) - S ( 3 ) 1 0 9 . 9 ( 4 ) S ( 2 ) - M ( 1 ) - S ( 6 ) 1 0 8 . 3 ( 3 ) S ( 1 ) - M ( 3 ) - S ( 4 ) 1 1 3 . 2 ( 4 ) S ( 2 ) - M ( 1 ) - S ( 5 ) 1 1 5 . 7 ( 3 ) S ( 2 ) - M ( 3 ) - S ( 3 ) 1 1 2 . 4 ( 4 ) S ( 5 ) - M ( 1 ) - S ( 6 ) 9 2 . 7 ( 4 ) S ( 2 ) - M ( 3 ) - S ( 4 ) 1 1 0 . 4 ( 4 ) M ( 1 ) - M ( 2 ) - S ( 1 ) 1 2 2 . 8 ( 2 ) x 2 S ( 3 ) - M ( 3 ) - S ( 4 ) 1 0 4 . 0 ( 4 ) M ( 1 ) - M ( 2 ) - S ( 5 ) 4 9 . 0 ( 3 ) M ( 2 ) - S ( 1 ) - M ( 3 ) 1 0 2 . 3 ( 3 ) M ( 1 ) - M ( 2 ) - S ( 6 ) 4 9 . 1 ( 3 ) M ( 1 ) - S ( 2 ) - M ( 3 ) 9 9 . 2 ( 3 ) S ( 1 ) - M ( 2 ) - S ( 1 ) 1 1 4 . 2 ( 4 ) M ( 3 ) — S ( 3 ) - M ( 3 ) 1 0 1 . 6 ( 5 ) S ( 1 ) - M ( 2 ) - S ( 5 ) 1 0 8 . 8 ( 3 ) x 2 M ( 3 ) - S ( 4 ) - M ( 3 ) 1 0 6 . 2 ( 5 ) S ( 1 ) - M ( 2 ) — S ( 6 ) 1 1 2 . 8 ( 3 ) x 2 M ( 1 ) - S ( 5 ) - M ( 2 ) 8 5 . 0 ( 4 ) S ( 5 ) - M ( 2 ) - S ( 6 ) 9 8 . 1 ( 4 ) M ( 1 ) - S ( 6 ) - M ( 2 ) 8 4 . 2 ( 4 ) * M = l n o r G e 4 3 8 C s 2 M n S n 3 S e 3 ( X ) a n d i t s C o m p a r i s o n t o C s z l n z G e z s s A s s h o w n i n F i g u r e 7 - 1 7 , t h e s t r u c t u r e o f ( X ) i s a l m o s t i d e n t i c a l t o t h a t o f C s z l n z G e z S g ( s e e F i g u r e 7 - 1 5 ) e x c e p t t h a t i t c r y s t a l l i z e s i n a d i f f e r e n t s p a c e g r o u p ( P 2 1 2 1 2 1 , # 1 9 ) a n d a l l t h e m e t a l s i t e s i n ( X ) a r e o r d e r e d a n d d i s t i n g u i s h a b l e b y X - r a y d i f f r a c t i o n t e c h n i q u e s . T h e s t r u c t u r e o f ( X ) i s m a d e u p b y [ M n S n S e 6 ] n 6 n ‘ c h a i n s , c o r r e s p o n d i n g t o [ M S 3 ] n c h a i n s i n ( I X ) , c r o s s - l i n k e d b y [ S n 2 8 e 6 l 4 ' b i t e t r a h e d r a i n t h e s a m e f a s h i o n a s d e s c r i b e d i n t h e p r e v i o u s s e c t i o n . A m i r r o r p l a n e p a s s i n g t h r o u g h M ( l ) , M ( 2 ) , S ( 4 ) , 8 ( 5 ) a n d 8 ( 6 ) i n ( I X ) ( s e e F i g u r e 7 - 1 5 ) i s d e s t r o y e d b y s u b s t i t u t i n g M ( 3 ) s i t e s i n ( I X ) w i t h S n ( 3 ) a n d M n a t o m s a l t e r n a t e l y a l o n g t h e c h a i n . T h i s a l s o r e m o v e s t h e c e n t e r s o f i n v e r s i o n w h i c h a r e l o c a t e d b e t w e e n t w o l a y e r s s i n c e t h r e e p e r p e n d i c u l a r m i r r o r s a r e r e q u i r e d f o r a n o r t h o r h o m b i c s t r u c t u r e t o b e c e n t r o s y m m e t r i c . F i g u r e 7 - 1 8 s h o w s a v i e w p a r a l l e l t o t h e a n i o n i c l a y e r s . T h e t w o d i s t i n c t C s + c a t i o n s a r e l o c a t e d a t t h e s i m i l a r p o s i t i o n s r e l a t i v e t o t h e a n i o n i c l a y e r s a s i n ( I X ) . T h e a v e r a g e C s + - - - S e d i s t a n c e i s 3 . 9 2 ( 1 7 ) A . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e g i v e n i n T a b l e 7 - 2 9 . T h e a v e r a g e M n — S e d i s t a n c e i s a l m o s t t h e s a m e a s t h a t o f S n — S e d i s t a n c e s . I t i s s u r p r i s i n g t h a t n o d i s o r d e r a m o n g t h e m e t a l s i t e s i s o b s e r v e d i n ( X ) d e s p i t e t h e s i m i l a r s i z e o f t h e m e t a l s . T h e [ S n 2 8 e 6 l 4 ' b i t e t r a h e d r a l f r a g m e n t i n ( X ) i s c o m p a r a b l e t o C S 4 S n 2 S e 6 2 0 a n d N a 4 8 n 2 S e 6 - 1 3 H 2 0 . 2 1 I n t h e t w o d i s c r e t e [ S n 2 S e 6 ] 4 " a n i o n s , t h e a v e r a g e S n — S e ( t e r m i n a l ) d i s t a n c e ( 2 . 4 6 0 A ) i s s h o r t e r t h a n t h e a v e r a g e S n - S e ( b r i d g i n g ) d i s t a n c e ( 2 . 5 8 7 A ) . I n ( X ) t h e s a m e d i s t a n c e s a r e 2 . 5 0 ( 3 ) A a n d 2 . 5 6 9 ( 9 ) A r e s p e c t i v e l y . d t e a r e y a l h t e t o e N h t . s f i o x a - e a m e e h 2 h t ( c s n . n w S g n o i d l d n e w a b e a n l i V M d ® g . n a n 3 e o n S 9 m o 3 6 i a n t a t S r n e n M e z d r o s e r s s C i p f d e r o o n e r P s u i E t c e T u r R r e t h O s t : 7 l - 7 e r u g i F 4 3 9 L 2 , 3 : g ‘ 4 e m ( c S \ w é s ) 5 ~ D ) . Q t S e a C s ( O 1 ) s ) 1 . W S d 6 ‘ ) s O \ ' ' 1 @ 5 6 ( 4 ) ) C s ( 2 ( I ’ 8 6 ( 3 ) K . ; 8 1 1 ( 1 ) 3 6 0 1 ' “ S e ( 2 ) \ 5 . a / C C \ / . / o f c . 4 4 - , . @ Q C C 0 3 : 1 F i g u r e 7 - 1 8 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f C s z M n S n 3 S e 3 . V i e w p a r a l l e l t o t h e l a y e r s . 4 4 1 T a b l e 7 - 2 9 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r C s z M n S n 3 S e 8 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) S n ( 1 ) - S e ( 1 ) 2 . 4 7 2 ( 9 ) C s ( 1 ) — S e ( 1 ) 3 . 7 8 1 ( 8 ) S n ( 1 ) - S e ( 2 ) 2 . 5 2 5 ( 9 ) C s ( 1 ) - S e ( 2 ) 3 . 9 1 0 ( 7 ) S n ( 1 ) - S e ( 3 ) 2 . 5 6 5 ( 5 ) C s ( 1 ) - S e ( 4 ) 3 . 9 9 ( l ) S n ( 1 ) - S e ( 4 ) 2 . 5 7 5 ( 4 ) C s ( 1 ) - S e ( 4 ) 3 . 9 1 ( 1 ) S n ( 2 ) — S e ( 3 ) 2 . 5 6 2 ( 4 ) C s ( 1 ) - S e ( 4 ) 3 . 6 8 5 ( 4 ) S n ( 2 ) - S e ( 4 ) 2 . 5 5 3 ( 5 ) C s ( 1 ) - S e ( 5 ) 4 . 1 0 9 ( 8 ) S n ( 2 ) - S e ( 5 ) 2 . 5 5 0 ( 8 ) C s ( 1 ) - S e ( 6 ) 4 . 0 6 5 ( 8 ) S n ( 2 ) - S e ( 6 ) 2 . 4 6 5 ( 8 ) C s ( 1 ) - S e ( 7 ) 3 . 6 9 9 ( 5 ) S n ( 3 ) - S e ( 2 ) 2 . 6 1 8 ( 7 ) C s ( 1 ) - S e ( 8 ) 3 . 7 3 1 ( 5 ) S n ( 3 ) - S e ( 5 ) 2 . 5 1 7 ( 7 ) C s ( 2 ) - S e ( 1 ) 3 . 9 2 5 ( 9 ) S n ( 3 ) - S e ( 7 ) 2 . 4 8 3 ( 7 ) C s ( 2 ) - S e ( 2 ) 3 . 9 2 9 ( 8 ) S n ( 3 ) - S e ( 8 ) 2 . 4 8 7 ( 7 ) C s ( 2 ) - S e ( 3 ) 3 . 9 2 ( 1 ) m e a n ( S n - S e ) 2 . 5 3 ( 5 ) C s ( 2 ) - S e ( 3 ) 4 . 0 5 ( 1 ) M n — S e ( l ) 2 . 5 3 ( 1 ) C s ( 2 ) - S e ( 5 ) 3 . 8 6 1 ( 8 ) M n - S e ( 6 ) 2 . 6 6 ( 1 ) C s ( 2 ) - S e ( 5 ) 4 . 2 9 4 ( 7 ) M n - S e ( 7 ) 2 . 4 9 ( 1 ) C s ( 2 ) - S e ( 6 ) 3 . 8 9 9 ( 8 ) M n - S e ( 8 ) 2 . 5 4 2 ( 9 ) C s ( 2 ) - S e ( 6 ) 4 . 1 1 6 ( 8 ) m e a n ( M n - S e ) 2 5 6 ( 7 ) C s ( 2 ) - S e ( 8 ) 3 . 6 7 7 ( 5 ) m e a n ( C s — S e ) 3 . 9 2 ( 1 7 ) S e l e c t e d B o n d A n g l e s ( d e g ) S e ( l ) - S n ( 1 ) — S e ( 2 ) 1 1 7 . 9 ( 2 ) S e ( 5 ) - S n ( 3 ) - S e ( 8 ) l 1 1 . 1 ( 3 ) S e ( 1 ) - S n ( 1 ) - S e ( 3 ) 1 1 5 . 8 ( 3 ) S e ( 7 ) — S n ( 3 ) — S e ( 8 ) 1 0 9 . 2 ( 2 ) S e ( l ) - S n ( l ) - S e ( 4 ) 1 0 7 . 8 ( 3 ) S n ( 1 ) — S e ( 1 ) - M n 9 5 . 9 ( 3 ) S e ( 2 ) - S n ( 1 ) - S e ( 3 ) 1 1 2 . 0 ( 3 ) S n ( 1 ) - S e ( 2 ) - S n ( 3 ) 9 6 . 1 ( 3 ) S e ( 2 ) - S n ( l ) - S e ( 4 ) 1 0 4 . 4 ( 3 ) S n ( 1 ) — S e ( 3 ) - S n ( 2 ) 8 4 . 1 ( 1 ) S e ( 3 ) - S n ( 1 ) - S e ( 4 ) 9 5 . 6 ( 1 ) S n ( 1 ) - S e ( 4 ) - S n ( 2 ) 8 4 . 1 ( 1 ) S e ( 3 ) - S n ( 2 ) - S e ( 4 ) 9 6 . 2 ( 1 ) S n ( 2 ) - S e ( 5 ) - S n ( 3 ) 9 9 . 1 ( 3 ) S e ( 3 ) - S n ( 2 ) - S e ( 5 ) 1 0 8 . 3 ( 3 ) S n ( 2 ) — S e ( 6 ) — M n 9 6 5 ( 3 ) S e ( 3 ) - S n ( 2 ) - S e ( @ 1 0 9 . 6 ( 3 ) S n ( 3 ) - S e ( 7 ) - M n 1 0 8 . 5 ( 2 ) 4 4 2 T a b l e 7 - 2 9 . ( c o n t ' d ) S e ( 4 ) - S n ( 2 ) - S e ( 5 ) 1 0 8 . 6 ( 3 ) S n ( 3 ) - S e ( 8 ) - M n 1 0 0 . 6 ( 2 ) S e ( 4 ) - S n ( 2 ) - S e ( 6 ) 1 1 3 5 ( 3 ) S e ( l ) — M n - S e ( 6 ) 1 0 6 . 6 ( 3 ) S e ( 5 ) - S n ( 2 ) - S e ( 6 ) 1 1 8 . 3 ( 2 ) S e ( 1 ) - M n — S e ( 7 ) 1 1 2 . 4 ( 4 ) S e ( 2 ) - S n ( 3 ) - S e ( 5 ) 1 0 0 . 0 ( 2 ) S e ( 1 ) — M n - S e ( 8 ) 1 1 3 . 3 ( 4 ) S e ( 2 ) — S n ( 3 ) - S e ( 7 ) l 1 0 . 0 ( 2 ) S e ( 6 ) - M n - S e ( 7 ) 1 1 5 . 7 ( 3 ) S e ( 2 ) - S n ( 3 ) - S e ( 8 ) l 1 0 . 0 ( 2 ) S e ( 6 ) - M n - S e ( 8 ) 1 0 8 . 8 ( 3 ) S e ( 5 ) - S n ( 3 ) - S e ( 7 ) 1 1 6 . l ( 3 ) S e ( 7 ) - M n - S e ( 8 ) 1 0 0 . 0 ( 3 ) 4 4 3 I n t h e [ S n 2 8 e 6 ] 4 - f r a g m e n t , t h e a v e r a g e S e - S n — S e a n g l e ( 9 5 . 9 ( 4 ) 0 ) i n t h e S n 2 8 e 2 r h o m b u s i s s l i g h t l y l a r g e r t h a n 9 0 0 w h i l e t h e a v e r a g e S n - S e - S n a n g l e ( 8 4 . 1 ( l ) 0 ) i s s m a l l e r . T h e S e — S n - S e a n g l e s o p p o s i t e t o t h o s e i n t h e S n z S e z r h o m b u s a r e w i d e r a n d c l o s e t o 1 2 0 0 , a v e r a g i n g 1 1 8 . 1 ( 3 ) 0 . T h e s e a n g l e s a r e c l o s e t o t h o s e o b s e r v e d i n t h e i s o l a t e d [ S n 2 S e 6 ] 4 ' a n i o n s . T h e [ S n S e 4 ] 4 ' f r a g m e n t i n ( X ) i s a l s o c o m p a r a b l e t o t h e i s o l a t e d a n i o n s o f N a 4 8 n S e 4 - 1 6 H 2 0 2 2 i n w h i c h t h e a v e r a g e S n - S e d i s t a n c e i s 2 . 5 2 ( 1 ) A v s . 2 . 5 3 ( 6 ) A i n ( X ) . T h e a v e r a g e M n - S e d i s t a n c e i n ( X ) i s 2 . 5 6 ( 7 ) A , w h i c h i s c l o s e t o 2 5 7 ( 4 ) A f o u n d i n B a z M n S e 3 . 2 3 R b 2 C d G e 2 S 6 ( X I ) C o m p o u n d ( X I ) h a s a t w o - d i m e n s i o n a l s t r u c t u r e w h i c h c o n t a i n s C d S 4 a n d G e S 4 t e t r a h e d r a a s b u i l d i n g b l o c k s a s s h o w n i n F i g u r e 7 - 1 9 . T h e r e p e a t i n g u n i t , s h o w n i n S c h e m e I I , c a n b e r e a d i l y r e c o g n i z e d i n t h e S t l ' l l C t l l I ' C a s S c h e m e 1 1 t w o f u s e d s i x - m e m b e r e d r i n g s a n d i s c o n s t r u c t e d b y t w o e d g e - s h a r i n g G e S 4 t e t r a h e d r a a n d o n e C d S 4 t e t r a h e d r o n . T h i s r e p e a t i n g u n i t a d o p t s a C 2 s y m m e t r y w i t h a t w o f o l d r o t a t i o n a x i s p a s s i n g t h r o u g h t h e C d a t o m a n d t h e c e n t e r o f t h e G e 2 S 2 f o u r - m e m b e r e d r i n g . T h e a n i o n i c l a y e r i s f o r m e d 4 4 4 b y l i n k i n g t h e f o u r t e r m i n a l s u l f u r a t o m s . A s i n g l e a n i o n i c l a y e r o f ( X 1 ) i s n o n c e n t r o s y m m e t r i c . N e v e r t h e l e s s , i t f o r m s c e n t r o s y m m e t r i c l a t t i c e w i t h c e n t e r s o f i n v e r s i o n l o c a t e d b e t w e e n t h e l a y e r s a s i l l u s t r a t e d b y F i g u r e 7 - 2 0 . C h a r g e b a l a n c i n g R b + c a t i o n s a r e l o c a t e d b e t w e e n t w o l a y e r s a n d s u r r o u n d e d b y s e v e n s u l f u r a t o m s w i t h t h e a v e r a g e R b + ' " S d i s t a n c e o f 3 . 6 4 ( 1 8 ) A . T h e t o r s i o n a n g l e o f G e - S ( 1 ) - S ( l ) — G e i s 1 4 5 . 8 0 i n t h e b u t t e r fl y - l i k e G e 2 8 2 f o u r - m e m b e r e d r i n g . A s s h o w n i n T a b l e 7 - 3 0 , t h e S ( 1 ) - G e - S ( 1 ) a n g l e i n t h e G e z S z f o u r - m e m b e r e d r i n g i s m u c h l e s s t h a t o f a n i d e a l t e t r a h e d r o n a n d a r e c l o s e t o 9 0 d e g r e e s . T h i s r e s u l t s i n s l i g h t l y l o n g e r G e - S ( 1 ) d i s t a n c e s d u e t o s t r o n g e r e l e c t r o n i c r e p u l s i o n b e t w e e n t h e G e - S ( 1 ) b o n d s . T h e a v e r a g e G e - S d i s t a n c e i s n o r m a l a t 2 . 2 2 ( 6 ) A . I n t h e a b s e n c e o f s i m i l a r s t r a i n a r o u n d C d a t o m s , t h e S - C d - S a n g l e s a n d C d - S d i s t a n c e s d o n o t e x h i b i t s u c h v a r i a t i o n s . T h e a v e r a g e C d - S d i s t a n c e a t 2 . 5 3 ( 2 ) A i s n o r m a l f o r C d - S b o n d s a n d c o n s i d e r a b l y l o n g e r t h a n t h a t o f G e - S d i s t a n c e s . F o r c o m p a r i s o n , i n a n o t h e r m i x e d C d / G e s u l fi d e , C u s z G e S 4 , 2 4 t h e a v e r a g e C d - S a n d G e - S d i s t a n c e s a r e 2 . 5 5 A a n d 2 . 2 2 A r e s p e c t i v e l y . A s a m a t t e r o f f a c t , F i g u r e 7 - 1 9 a n d 7 - 2 0 i l l u s t r a t e t h a t t h e s i z e o f t h e C d S 4 t e t r a h e d r o n i s c o m p a r a b l e t o t h a t o f t h e e d g e - s h a r i n g G e 2 S 6 d i m e r . I t i s i n t e r e s t i n g t o n o t e t h a t K 2 H g S n 2 8 6 ( I ) , K 2 G e l n 2 $ 6 ( I I ) , s z l n S n 2 8 6 ( V I ) a n d C s z M n S n 2 S 6 ( V I I ) h a v e t h e s a m e s t o i c h i o m e t r y a s ( X I ) . H o w e v e r , t h e y f o r m d i f f e r e n t s t r u c t u r e t y p e s d u e t o d i f f e r e n t a r r a n g e m e n t s o f t e t r a h e d r a l b u i l d i n g b l o c k s . T h e r e l a t i v e s i z e s o f t h e m e t a l c e n t e r s i n t h e s e q u a t e r n a r y c o m p o u n d s s e e m t o b e i m p o r t a n t t o d e t e r m i n e t h e s t r u c t u r e s . 4 4 5 o o . . \ . ~ ' O 7 o ‘ ‘ , ’ i O O . . ' ’ o 0 O O Q Y O 9 . 7 " O a \ , 1 O . 0 . ( o l \ ( O 1 ‘ , 0 ’ R b . . O f . C a i ‘ ’ Q ‘ Q ‘ . O ‘ . ‘ 1 ‘ 0 ' 0 ' F i g u r e 7 - l 9 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f s z C d G e z S g . V i e w d o w n t h e c - a x i s . I 3 3 / $ / 0 3 ' 9 W 0 S ( 1 ) Q S ( 2 ) , j o f / " 6 X C / O fi / ‘ 8 r ) L ) / ( \ 0 ? / , W , 1 “ 1 X . ) 3 4 C ( A ) \ 7 3 1 “ U d ’ ' 8 2 . - , S g A 1 ' " ' 9 . 4 ) ) 6 ) : ! ' v “ 1 " . . - ’ 1 . 3 . 3 - 0 R b S ( 2 ) F i g u r e 7 - 2 0 : O R T E P r e p r e s e n t a t i o n a n d l a b e l i n g s c h e m e o f t h e l a y e r e d s t r u c t u r e o f s z C d G e z s s . V i e w d o w n t h e ( A ) a - a x i s a n d ( B ) < 1 1 0 > d i r e c t i o n . 4 4 7 T a b l e 7 - 3 0 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r R b 2 C d G e 2 8 6 w i t h S t a n d a r d D e v i a t i o n s i n P a r e n t h e s e s S e l e c t e d B o n d D i s t a n c e s ( A ) C d - S ( 2 ) 2 . 5 4 4 ( 2 ) x 2 R b - S ( 1 ) 3 . 3 8 0 ( 2 ) C d - S ( 3 ) 2 . 5 1 2 ( 2 ) x 2 R b - S ( 1 ) 3 . 6 7 9 ( 2 ) m e a n ( C d - S ) 2 . 5 3 ( 2 ) R b — S ( 2 ) 3 . 3 8 4 ( 2 ) G e - S ( 1 ) 2 . 2 7 4 ( 2 ) R b - S ( 2 ) 3 . 4 0 6 ( 2 ) G e - S ( 1 ) 2 . 2 7 2 ( 2 ) R b - S ( 3 ) 3 . 7 2 5 ( 2 ) G e — S ( 2 ) 2 . 1 6 7 ( 2 ) R b — S ( 3 ) 3 . 2 4 1 ( 2 ) G e — S ( 3 ) 2 . 1 8 2 ( 2 ) R b — S ( 3 ) 3 . 5 7 8 ( 2 ) m e a n ( G e - S ) 2 . 2 2 ( 6 ) m e a n ( R b - S ) 3 . 6 4 ( 1 8 ) S e l e c t e d B o n d A n g l e s ( d e g ) S ( 2 ) - C d - S ( 2 ) 1 1 4 . 3 ( 1 ) S ( 1 ) - G e - S ( 1 ) 9 2 . 1 9 ( 8 ) S ( 2 ) - C d - S ( 3 ) 1 0 5 . 8 3 ( 6 ) x 2 S ( 1 ) - G e — S ( 3 ) 1 1 1 . 0 3 ( 8 ) S ( 2 ) - C d - S ( 3 ) 1 0 8 . 7 5 ( 7 ) x 2 S ( 1 ) - G e - S ( 3 ) 1 1 3 . 2 5 ( 8 ) S ( 3 ) - C d - S ( 3 ) 1 1 3 6 0 ( 9 ) G e — S ( 1 ) - G e 8 3 . 0 3 ( 7 ) S ( 2 ) - G e — S ( 3 ) 1 0 8 . 2 5 ( 8 ) C d - S ( 2 ) — G e 1 0 4 . 9 2 ( 8 ) S ( 1 ) - G e - S ( 2 ) 1 1 6 . 0 4 ( 8 ) C d - S ( 3 ) - G e 1 0 7 . 3 4 ( 7 ) S ( 1 ) - G e — S ( 2 ) 1 1 5 . 5 1 ( 8 ) 4 4 8 3 . 3 . S p e c t r o s c o p y 3 . 4 . M a g n e t i c S u s c e p t i b i l i t y M e a s u r e m e n t s C s 2 M n S n 2 8 6 M e a s u r e m e n t s o f m a g n e t i z a t i o n v e r s u s a p p l i e d m a g n e t i c fi e l d w e r e p e r f o r m e d a t 5 K a n d 3 0 0 K . A t b o t h t e m p e r a t u r e s , t h e m a g n e t i c s u s c e p t i b i l i t i e s o f t h e s a m p l e w e r e m a g n e t i c fi e l d i n d e p e n d e n t u p t o 5 0 0 0 G a u s s , a s s h o w n i n F i g u r e 7 - 2 1 . V a r i a b l e t e m p e r a t u r e m a g n e t i c s u s c e p t i b i l i t y d a t a w e r e c o l l e c t e d a t a m a g n e t i c fi e l d o f 5 0 0 0 G a u s s w i t h a n a s c e n d i n g t e m p e r a t u r e r a m p f r o m 5 K t o 3 0 0 K . F i g u r e 7 - 2 2 s h o w s t h e r e l a t i o n s h i p b e t w e e n t h e r e c i p r o c a l o f m o l a r m a g n e t i c s u s c e p t i b i l i t i e s a n d t e m p e r a t u r e s . I t e x h i b i t s C u r i e - W e i s s b e h a v i o r ( x = C / ( T + 0 ) , w h e r e x i s m a g n e t i c s u s c e p t i b i l i t y , C i s C u r i e c o n s t a n t , T i s t h e e x p e r i m e n t a l t e m p e r a t u r e a n d 0 i s W e i s s t e m p e r a t u r e ) a b o v e t h e N e ’ e l t e m p e r a t u r e o f 9 K a t w h i c h a n t i f e r r o m a g n e t i c t r a n s i t i o n o c c u r s . T h e s l o p e o f t h e s t r a i g h t l i n e i n t h e C u r i e - W e i s s r e g i o n g i v e s t h e v a l u e o f C a t 4 . 2 1 ( K - e m u - m o l ' l ) . T h e i n t e r c e p t i o n a t t h e t e m p e r a t u r e a x i s f r o m t h e e x t r a p o l a t e d s t r a i g h t l i n e g i v e a 0 v a l u e o f - 2 2 . 7 K . T h e e f f e c t i v e m a g n e t i c m o m e n t , u e f f , r e l a t e d t o t h e n u m b e r o f u n p a i r e d e l e c t r o n s , i s 5 . 7 8 B M , w h i c h i s c a l c u l a t e d b y u s i n g t h e e q u a t i o n : x = ( N B Z u 2 ) / ( 3 k ( T + 0 ) ) o r u = 2 . 8 2 8 ( ) ( ( T + 0 ) ) 1 / 2 w h e n N , B a n d k a r e s u b s t i t u t e d . ( N : A v o g r a d o ' s n u m b e r ; 6 : B o h r m a g n e t o n ; k = B o l t z m a n n ' s c o n s t a n t ) . T h e t h e o r e t i c a l m a g n e t i c m o m e n t , u s , b a s e d o n e l e c t r o n s p i n o n l y , i s g i v e n b y u s = g [ S + ( S + 1 ) ] 1 / 2 , w h e r e g = g y r o m a g n e t i c r a t i o , ~ 2 . 0 0 , S = t h e s u m o f t h e s p i n q u a n t u m n u m b e r s f o r u n p a i r e d 4 4 9 e l e c t r o n s . T h e c a l c u l a t e d u s v a l u e , 5 . 9 2 B M , b a s e d o n h i g h s p i n M n 2 + i o n s w i t h S = 5 / 2 , i s c o n s i s t e n t t o t h e o b s e r v e d r e s u l t . K 2 M n S n S 4 F i g u r e 7 - 2 3 s h o w s t h a t f o r K 2 M n S n S 4 t h e m a g n e t i z a t i o n i s m a g n e t i c fi e l d i n d e p e n d e n c e a t b o t h 5 K a n d 3 0 0 K . A t 5 K , a s m a l l h y s t e r e s i s l o o p o c c u r s a r o u n d z e r o fi e l d . V a r i a b l e t e m p e r a t u r e m a g n e t i c s u s c e p t i b i l i t y m e a s u r e m e n t s u n d e r t h e a p p l i e d fi e l d o f 1 0 0 0 G a u s s a n d 5 0 0 0 G a u s s w e r e s h o w n i n F i g u r e 7 - 2 4 . A t b o t h fi e l d s , K 2 M n S n S 4 e x h i b i t s a s m o o t h a n t i f e r r o m a g n e t i c t r a n s i t i o n r e s u l t i n g f r o m t h e c o u p l i n g o f d i s o r d e r e d M n 2 + ( S = 5 / 2 ) s p i n s . T h e p o s s i b l e d i s t r i b u t i o n s o f M n 2 + c e n t e r s a r e s h o w n i n S c h e m e I I I . T h e i n c r e a s e o f m a g n e t i c s u s c e p t i b i l i t y b e l o w 1 0 K i s d u e t o t h e p a r a m a g n e t i c c o n t r i b u t i o n o f a s m a l l a m o u n t o f M n S i m p u r i t y , w h i c h d o m i n a t e s a t l o w t e m p e r a t u r e s . 4 5 0 S c h e m e [ 1 1 T h e m e t a l - m e t a l d i s t a n c e s i n t h e [ M 4 8 1 0 ] c l u s t e r o f K 2 M n S n S 4 a r e s h o r t e r ( 3 . 8 8 5 ( 3 ) / 1 , 3 . 8 7 5 ( 3 ) A , 3 . 8 0 1 ( 3 ) A , 3 . 8 5 4 ( 3 ) A a n d 3 . 8 8 1 ( 3 ) A ) t h a n t h o s e i n C s 2 M n S n 2 8 6 ( 7 . 0 9 8 ( 1 ) A , 7 . 4 3 4 ( 1 ) A a n d 7 . 8 4 2 ( 1 ) A ) . T h e i n t e r a c t i o n s b e t w e e n t h e m a g n e t i c d i p o l e s o f M n 2 + i s s t r o n g e r s o t h a t i t s m a g n e t i c b e h a v i o r d e v i a t e s f r o m p a r a m a g n e t i s m i n t h e t e m p e r a t u r e r a n g e b e t w e e n 5 K a n d 3 0 0 K . 4 5 1 ( x 1 0 4 ) 2 . 4 ~ M ( e m u ) “ 1 . 2 — o I I I I I I I I I r I I I I r fi T f 0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 H 0 ( G a u s s ) ( K I D - 3 ) 1 l 1 1 1 l L 1 1 l 1 l 1 l 4 1 1 l 1 P T = 3 0 0 K _ 2 . 4 — — M ( e m u ) _ . _ 1 . 2 a — fl . — 0 ‘ j I I I I I f I I I I I I I I I I I T 0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 H 0 ( G a u s s ) F i g u r e 7 - 2 1 : T h e r e l a t i o n s h i p s o f m a g n e t i z a t i o n v s . a p p l i e d m a g n e t i c fi e l d f o r C s z M n S n 2 $ 6 a t 5 K a n d 3 0 0 K . r . — 0 1 4 . - - y ) ' A A A A O 5 3 l r t f o m s i e n 1 l l 1 A O l g A 0 A 0 a 1 A 1 L l 9 O 1 1 1 1 1 1 1 l J A ‘ I A A L l A A A A 1 ‘ 1 ‘ 1 “ ‘ " 5 3 2 1 1 1 1 I 3 l T l 0 l m a r a p s 5 I w 2 l o h l s l l 0 r 0 T . s v . 2 T ) K l K l ( m 9 l 0 T W = N 1 T 1 I 5 f l 1 o e 1 l 6 p i v o b 1 h l 1 1 1 1 S 2 n S n 1 M 1 z 1 s 1 C 1 1 1 1 — 0 0 8 7 l 0 n s a I 0 l 1 l o 6 i 8 t 2 a l n e S l r n l 0 l M e z h s 5 T C r l T [ o 0 : 2 2 - 7 e r u g i F O ( n u x o / I o m ) u l x / 1 4 5 2 4 5 3 ( x 1 0 ‘ 3 ) 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T = 5 K b 4 0 0 0 - 1 0 0 0 ~ | 0 0 0 ' 0 0 I 0 0 0 ' 3 0 . - 3 I I I I I I I I I I I I I j T I I T I T I I I I I I I I I I I - 8 - 6 - 4 - 2 0 2 4 6 8 ( x 1 0 3 ) ( x 1 0 _ 3 ) H g ( G a u s s ) 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 T = 3 0 0 K 0 ‘ I F T T r I I I I I I I I I I I I I I I I I I I I I I j T I I I I I 0 1 2 3 4 5 6 7 3 H 0 ( G a u s s ) ( x 1 0 ) F i g u r e 7 - 2 3 : T h e r e l a t i o n s h i p o f s a m p l e m a g n e t i z a t i o n v s . a p p l i e d m a g n e t i c fi e l d f o r K 2 M n S n S 4 a t 5 K a n d 3 0 0 K . ( X 1 0 3 ) 9 l l I l l l l I I G o I o 0 g I I _ 1 0 ° ‘ 9 ° 0 a . 8 a o . 2 - 0 0 0 o I o _ 4 7 o F l o — 1 0 0 0 G a u s s _ 3 _ 0 1 X m 6 . 1 - ( e m u / m o l ) ° 2 5 : 1 . . o : 1 4 { — 3 1 l l l l l 1 ' 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 T ( K ) @ G M 0 0 : = . 1 O a . 0 c 1 . 1 - . 1 H O = 5 0 0 0 G a u s s : T l l l l q I I I I 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 T ( K ) F i g u r e 7 - 2 4 : T h e X m v s . T p l o t s f o r K 2 M n S n S 4 a t b o t h 1 0 0 0 a n d 5 0 0 0 G a u s s e x h i b i t a s m o o t h v e r y b r o a d a n t i f e r r o m a g n e t i c t r a n s i t i o n . 4 5 5 S o l i d S t a t e O p t i c a l S p e c t r o s c o p y T h e U V — V i s - N e a r 1 R s o l i d s t a t e s p e c t r a o f ( I I I ) ~ ( I X ) a n d ( X I ) e x h i b i t s t e e p a b s o r p t i o n e d g e s f r o m w h i c h o p t i c a l b a n d g a p s c a n b e d e r i v e d . T h e o p t i c a l s p e c t r a o f c o m p o u n d s ( I ) , ( I I ) a n d ( X ) w e r e n o t t a k e n b e c a u s e n o t e n o u g h p u r e m a t e r i a l s c o u l d b e o b t a i n e d . T h e s p e c t r a a r e s h o w n i n F i g u r e 7 - 2 5 . T h e s u m m a r y o f t h e i r o p t i c a l b a n d g a p s a r e g i v e n i n T a b l e 7 - 3 1 . T h e b a n d g a p s a r e a l l c o n s i s t e n t w i t h t h e c o l o r s . T h e s e r e s u l t s s u g g e s t a l l t h e s e c o m p o u n d s a r e s e m i c o n d u c t o r s i n n a t u r e . V i b r a t i o n a l S p e c t r o s c o p y T h e v i b r a t i o n a l s p e c t r a a n d a b s o r p t i o n f r e q u e n c i e s f o r ( I I I ) ~ ( X I ) a r e g i v e n i n F i g u r e 7 - 2 6 a n d T a b l e 7 - 3 2 r e s p e c t i v e l y . T h e s e q u a t e r n a r y c o m p o u n d s e x h i b i t s m o r e c o m p l i c a t e d s p e c t r a d u e t o m o r e p o s s i b l e v i b r a t i o n a l m o d e s . A l l t h e a b s o r p t i o n f r e q u e n c i e s f a l l i n t h e r a n g e b e t w e e n 1 3 0 c m - 1 a n d 4 5 0 c m ‘ l . T h i s m a k e i t d i f fi c u l t f o r a s s i g n m e n t . K 2 H g 3 S n 2 8 3 a n d K 2 H g 3 G e 2 8 3 a r e i s o s t r u c t u r a l a n d t h e r e f o r e t h e i r v i b r a t i o n a l s p e c t r a h a v e s i m i l a r p a t t e r n s e x c e p t t h a t a l l t h e a b s o r p t i o n b a n d s s h i f t , u n d e r s t a n d a b l y , t o h i g h e r f r e q u e n c i e s i n t h e s p e c t r u m o f K 2 H g 3 G e 2 8 8 . A n o t h e r p a i r o f i s o s t r u c t u r a l c o m p o u n d s , R b 2 Z n S n 2 8 6 a n d C s z M n S n z S 6 , a l s o e x h i b i t s i m i l a r v i b r a t i o n a l s p e c t r a w i t h l i t t l e s h i f t o f a b s o r p t i o n f r e q u e n c i e s . 4 5 6 T a b l e 7 - 3 1 . S u m m a r y o f t h e O p t i c a l B a n d G a p s ( e V ) f o r K 2 H g 3 S n 2 8 8 ( I I I ) K 2 H g 3 G e 2 $ 3 ( I V ) K 6 Z n 4 S n 5 8 1 7 ( V ) R b 2 2 n S n 2 8 6 ( V I ) C s z M n S n z S 6 ( V I I ) K 2 M n S n S 4 ( V I I I ) C s z l n z G e z s g ( I X ) R b 2 C d G e 2 8 6 ( X I ) . c o m p o u n d E g ( e V ) c o l o r c o m p o u n d E g ( e V ) c o l o r K 2 H g 3 S n 2 3 8 2 . 3 9 b r i g h t y e l l o w C s Q M n S n Z S 2 . 5 8 l i g h t b r o w n K 2 H g 3 G e Z S 8 2 . 6 4 l i g h t y e l l o w 6 2 . 0 8 , 2 . 3 9 o r a n g e K 6 Z n 4 8 n 5 8 1 2 . 9 4 w h i t e K 2 M n S n S 4 3 . 0 6 w h i t e 7 3 . 0 0 w h i t e ( 3 8 2 1 1 1 2 0 6 2 3 3 . 3 1 w h i t e R b 2 2 n S n 2 8 6 8 R b 2 C d G e 2 8 6 T a b l e 7 - 3 2 . S u m m a r y o f A b s o r p t i o n F r e q u e n c i e s ( c m ‘ l ) o f V i b r a t i o n a l S p e c t r a f o r ( 1 1 1 ) ~ ( x 1 ) a c o m p o u n d f r e q u e n c y ( c m ' 1 ) K 2 H g 3 S n 2 8 8 3 8 3 ( 3 ) , 3 5 6 ( s h ) , 3 4 5 ( 3 ) , 3 1 6 ( w ) , 2 9 6 ( m ) , 1 6 9 ( m ) K 2 n g G e 2 8 3 4 2 1 ( 3 ) , 3 9 3 ( m ) , 3 7 7 ( 3 ) , 3 7 1 ( s h ) , 3 5 3 ( m ) , 3 1 2 ( m ) , 2 9 7 ( s h ) , 2 1 1 ( s h ) , 1 9 8 ( 3 ) , 1 4 8 ( w ) , 1 3 4 ( w ) K 6 2 n 4 S n 5 8 1 7 3 8 7 ( 3 ) , 3 6 1 ( m ) , 3 4 2 ( 3 ) , 3 0 7 ( w ) , 2 7 8 ( 3 ) , 2 6 2 ( s h ) , 1 5 3 ( m ) R b 2 Z n S n 2 8 6 3 9 0 ( m ) , 3 8 0 ( m ) , 3 6 9 ( 3 ) , 3 5 1 ( m ) , 3 3 2 ( 3 ) , 3 2 1 ( w ) , 3 0 4 ( 3 ) , 2 7 5 ( m ) , 2 5 6 ( 3 ) , 1 4 2 ( 3 ) C S Z M U S U 2 S 6 3 8 1 ( 3 ) , 3 7 1 ( s h ) , 3 6 6 ( m ) , 3 2 8 ( 3 ) , 3 1 8 ( w ) , 2 9 9 ( 3 ) , 2 7 8 ( m ) , 2 5 7 ( 3 ) , 1 3 9 m ) K 2 M n S n S 4 3 7 6 ( s h ) , 3 6 9 ( 3 ) , 3 6 0 ( 3 ) , 3 2 7 ( 5 ) , 3 1 1 ( m ) , 3 0 3 ( s h ) , 2 6 5 ( 3 ) , 2 4 6 ( 3 h ) , 1 8 0 ( w ) , 1 6 4 ( w ) , 1 4 8 ( w ) C s z l n z G e z s s 4 1 6 ( 3 h ) , 3 9 9 ( s h ) , 3 7 5 ( s h ) , 3 6 4 ( s h ) , 3 2 8 ( 3 ) , 3 1 5 ( s h ) , 2 9 4 ( s h ) , 2 8 0 ( s h ) , 1 8 1 ( 3 ) , 1 5 2 ( m ) C 3 2 M n S n 3 S e 8 2 7 5 ( s h ) , 2 6 6 ( m ) , 2 5 6 ( m ) , 2 3 8 ( w ) , 2 2 7 ( m ) , 2 0 7 ( 3 ) , 1 9 9 ( 3 h ) , 1 8 1 ( m ) , 1 6 8 ( w ) R b 2 C d G e 2 S 6 4 1 3 ( 3 ) , 4 0 3 ( 3 h ) , 3 8 9 ( 3 ) , 3 3 1 ( 3 ) , 2 9 4 ( w ) , 2 8 2 ( m ) , 2 4 4 ( 3 ) , 2 2 6 ( w ) , 2 0 9 ( m ) , 2 0 2 ( s h ) , 1 9 0 ( w ) , 1 6 9 ( m ) , 1 5 6 ( w ) , 1 4 6 ( m ) a ( 3 ) : s t r o n g ; ( m ) : m e d i u m ; ( w ) : w e a k ; ( s h ) : s h o u l d e r 4 5 7 F i g u r e 7 - 2 5 : O p t i c a l a b s o r p t i o n s p e c t r a o f ( A ) K 2 H g 3 S n 2 8 8 , ( B ) K 2 H g 3 G e z S g , ( C ) K 6 Z n 4 S n 5 8 1 7 , ( D ) s z l n S n z S 6 , ( E ) C s z M n S n z S 6 , ( F ) K 2 M n 8 n 8 4 , ( G ) C s z l n z G e z S g a n d ( H ) R b 2 C d G e 2 S 6 . 4 5 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L 4 1 1 1 4 _ 1 1 1 1 L 1 1 1 1 1 1 K 2 H g 3 S 1 1 2 8 3 ( A ) 0 . 8 “ “ 0 . 6 - 0 l / S 0 . 4 - 0 . 2 - E g = 2 . 3 9 e V L A 0 I I I I I I I I T I I I I I I I I r I I I I I I I I I T I I r I I I 0 1 2 3 4 5 6 7 E n e r g y ( e V ) 3 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 L 1 1 l 1 1 1 1 l 1 1 1 1 1 1 1 1 1 K 2 H g g G 9 2 8 3 E g = 2 . 6 4 e V L A 0 f I I I T I I I I I I I T I I I I j I r I I I I I T T Y I I I I I I 0 1 2 3 4 5 6 7 E n e r g y ( e V ) w 1 1 1 O : 1 I a 1 1 4 1 1 N 1 1 1 1 1 ) 8 U * 1 - 0 1 1 1 1 I I I I I I I I I T I I I I I I I I 1 I ‘ - 1 1 1 1 1 ' 0 0 1 1 1 1 4 I I I I I 1 I I I I I I ; I A 1 I I I I I 2 I I I I I E I 3 n I I e r g I y I ( I T I I I I 4 I I I I I 5 I I I I I 6 e V ) 4 5 9 p 1 I 1 1 l 1 1 1 1 1 l 1 1 I 1 1 1 1 l - _ , 5 . . - _ - o y s — _ 3 — . _ . _ . o K 6 2 1 1 4 8 1 1 5 8 1 7 E g = 2 . 9 4 e V O r I I I I I I . 1 . r , 4 E n e r g y ( e V ) r I I I I I r I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R b Z Z n S n z 8 6 0 7 1 1 1 1 1 1 1 1 1 5 _ m 1 1 1 1 1 1 1 1 1 1 1 4 I I I I I I I I I I I I I I I T I I I I I 1 I 1 I 4 I 1 1 L 1 1 1 1 1 1 1 1 1 1 1 1 1 L 1 1 l 1 1 1 1 l 1 1 1 1 1 L 1 1 1 4 6 0 2 . 5 I 0 0 V s — L C 8 2 M n S n z S G E g = 2 . 5 8 e V ( E ) O I I A I I T I I I I T I I I I I I I I I I I I I I I I I I I I I I I I 1 2 3 4 5 E n e r g y ( e V ) 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \ I O i / S K 2 M I I S I I S 4 E g = 2 . 0 8 , 2 . 3 9 e V ( F ) I I I T r I — I I I r I I f I I I I I I I I I I I I I I I T I I I I I 1 2 3 4 5 E n e r g y ( e V ) 6 7 0 5 . 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 m \ L — I I T I I 1 I I I I I 2 I I I I I 3 n E I I e r g I y I ( 0 r r I I I I r 1 1 1 R 1 1 1 1 b ; C I 1 I 1 I 1 I d W I I I I I I I 1 1 G 1 e 1 z 1 1 1 1 8 5 1 1 I I I I I T I T I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I 4 I I I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ( H ) I I I I I I I I I T I I I I 5 6 7 e V ) 4 6 1 C s z l n z G e z S g ( G ) O ( A ) O N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 U S 0 _ L O 1 2 3 4 5 6 E n e r g y ( e V ) \ I 0 1 h 0 ) N E g = 3 . 3 l e V O 4 6 2 F i g u r e 7 - 2 6 : I n f r a r e d s p e c t r a o f ( A ) K 2 H g 3 S n z S g , ( B ) K 2 H g 3 G e 2 5 3 , ( C ) K 6 Z n 4 S n 5 8 1 7 , ( D ) R b 2 Z n S n z S 6 , ( E ) C s z M n S n z S 6 , ( F ) K 2 M n 8 n 8 4 , ( G ) C 3 2 1 n 2 G e 2 S 3 ( H ) C s z M n S n 3 S e 3 a n d ( I ) R b 2 C d G e 2 8 6 . E C N A T ‘ I ' I : a 1 M S N A R ‘ I ' c " ( : : 1 1 . f 1 I I 1 ' 6 I ‘ . . ‘ . 1 H C N A I I ' I M S N A R ' I ' r ' x ‘ d U I : 1 l fi I [ 1 4 J ( B ) W A V E N U M B E R 5 2 - 4 5 - I 2 7 6 ( A ) 1 1 4 4 6 3 ‘ k ' I ' R A h S M I I L A N C E ( C ) 6 2 - 1 . 1 3 . 1 3 4 _ 3 0 I r I I I I 4 3 8 3 8 4 3 3 0 2 7 3 2 2 2 1 6 8 W A V I ‘ Z N U M B E R 1 1 4 E C N A T ' I ' I 6 . a M S N A R ' I ' : ' 9 o N ; ' 1 ' 1 N A ' I " I ' I M S N A R ' I ' c ’ x ‘ 3 1 8 1 ‘ " W A V E N U M B E R Q r - 8 3 ! 4 7 0 ( E ) W A V E N U M B E R 1 4 2 % 3 1 - 1 9 — 1 4 1 0 I 2 7 5 ( D ) 8 ‘ 4 6 5 : ' 1 ' I N A T ' I ' I M S N A R ' I ' 2 9 1 W A V I ‘ Z N U M B E R 1 5 5 1 6 I 4 4 9 I 3 8 2 l 3 1 5 , - I 1 8 1 1 1 4 3 2 - 1 b \ O l ( , 6 - ( G ) 4 1 4 W A V E N U M B E R 3 1 - 1 ‘ 5 : T R A N S M I ' I ' T A N C E ‘ 1 1 N 1 5 3 " ( F ) 6 4 H E C N A T T l M S N A R ‘ l ' c / ‘ 4 6 7 ( H ) 6 2 d 4 6 — 3 0 — 1 ” I I I I I I m 4 1 6 3 5 5 2 9 4 2 3 3 1 7 2 1 1 1 W A V E N U M B E R 8 0 — ( 1 ) 3 d a 7 5 - 4 Z , < 5 C D 5 . 1 a 7 0 E - “ \ 0 ‘ 5 I I I I 3 0 5 2 2 2 7 1 8 8 1 4 9 W A V E N U M B E R 1 ) 2 ) 3 ) 4 6 8 L i s t o f R e f e r e n c e s ( a ) T e s k e , C h r . L . Z A n o r g . A l l g . C h e m . 1 9 7 8 , 4 4 5 , 1 9 3 - 2 0 1 . ( b ) T e s k e , C h r . L . ; V e t t e r , 0 . Z A n o r g . A l l g . C h e m . 1 9 7 6 , 4 2 7 , 2 0 0 - 2 0 4 . ( c ) T e s k e , C h r . L . Z N a t u r f o r s c h 1 9 8 0 , 3 5 1 2 , 7 - 1 1 . ( ( 1 ) T e s k e , C h r . L . Z A n o r g . A l l g . C h e m . 1 9 7 6 , £ 9 , 6 7 - 7 6 . ( e ) T e s k e , C h r . L . ; V e t t e r , 0 . Z . A n o r g . A l l g . C h e m . 1 9 7 6 , 4 _ 2 6 , 2 8 1 — 2 8 7 . ( 1 ) T e s k e , C h r . L . Z A n o r g . A l l g . C h e m . 1 9 8 0 , £ 0 , 1 6 3 - 1 6 8 . ( g ) T e s k e , C h r . L . Z A n o r g . A l l g . C h e m . 1 9 8 5 , 5 2 2 , 1 2 2 - 1 3 0 . ( h ) T e s k e , C h r . L . Z N a t u r f a r s c h 1 9 8 0 , 3 5 3 , 5 0 9 - 5 1 0 . ( i ) T e s k e , C h r . L . Z N a t u r f o r s c h 1 9 7 9 , 3 4 b , 5 4 4 — 5 4 7 . ( a ) K a n a t z i d i s , M . G . C h e m . M a t e r . 1 9 9 0 , _ 2 _ , 3 5 3 - 3 6 3 . ( b ) S u n s h i n e , S . A . ; K a n g , D . ; I b e r s , J . A . J . A m . C h e m . S o c . 1 9 8 7 , 1 _ 0 _ _ 9 _ , 6 2 0 2 - 6 2 0 4 . ( c ) K a n a t z i d i s , M . G . ; P a r k , Y . J . A m . C h e m . S o c . 1 9 8 9 , _ 1 _ 1 _ 1 , 3 7 6 7 - 3 7 6 9 . ( d ) L i a o , J . - H . ; V a r o t s i s , C . ; K a n a t z i d i s , M . G . I n o r g . C h e m . 1 9 9 3 , _ 3 _ 2 _ , 2 4 5 3 - 2 4 6 2 . ( e ) P a r k , Y . ; K a n a t z i d i s , M . G . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 0 , 3 , 9 1 4 - 9 1 5 . ( 0 P a r k , Y . ; D e G r o o t , D . C . ; S c h i n d l e r , J . ; K a n n e w u r f , C . R . ; K a n a t z i d i s , M . G . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 1 , 3 0 , 1 3 2 5 - 1 3 2 8 . ( g ) K a n a t z i d i s , M . G . ; P a r k , Y . C h e m . M a t e r . 1 9 9 0 , 2 _ , 9 9 - 1 0 1 . ( h ) K a n a t z i d i s , M . G . ; P a r k , Y . C h e m . M a t e r . 1 9 9 0 , 2 , 3 5 3 - 3 6 3 . ( 1 ) P a r k , Y . D i s s e r t a t i o n , 1 9 9 2 , M i c h i g a n S t a t e U n i v e r s i t y . ( a ) K e a n e , P . M . ; L u , Y . - J . ; I b e r s , J . A . A c e . o f C h e m . R e s . 1 9 9 1 , 2 4 , 2 2 3 - 2 2 9 . ( b ) L u , Y . - J . ; I b e r s , J . A . I n o r g . C h e m . 1 9 9 1 , 3 _ 0 _ , 3 3 1 7 - 3 3 2 0 . ( 0 ) L u , Y . - J . ; I b e r s , J . A . J . S o l i d S t a t e C h e m . 1 9 9 2 , 9 8 , 4 ) 5 ) 6 ) 7 ) 8 ) 4 6 9 3 1 2 - 3 1 7 . ( ( 1 ) W u , P . ; L u , Y . - J . ; I b e r s , J . J . S o l i d S t a t e C h e m . 1 9 9 2 , 9 _ 7 , 3 8 3 - 3 9 0 . L i a o , J . - H . ; K a n a t z i d i s , M . G . s u b m i t t e d t o C h e m M a t e r . f o r p u b l i c a t i o n . ( a ) S u s a , K . ; S t e i n fi n k , H . J . S o l i d S t a t e C h e m . 1 9 7 1 , _ 3 _ , 7 5 - 8 2 . ( b ) J u m a s , J . C . ; V e r m o n t - G a u d - D a n i e l , F . ; P h i l i p p o t , E . C r y s t . S t r u c t . C o m m . 1 9 7 3 , 2 , 1 5 7 . ( c ) S c h i w y , W . ; P o h l , S . ; K r e b s , B . Z A n o r g . A l l g . C h e m . 1 9 7 3 , 9 % , 7 7 - 8 6 . ( ( 1 ) K r e b s , B . ; P o h l , S . S c h i w y , W . Z A n o r g . A l l g . C h e m . 1 9 7 2 , w , 2 4 1 - 2 5 2 . ( a ) O l i v i e r - F o u r c a d e , J . ; P h i l i p p o t , B . ; R i b e s , M . ; M a u r i n , M . R e v . C h i m . M i n e r . 1 9 7 2 , 2 , 7 5 7 - 7 7 0 . ( b ) E i s e n m a n n , B . ; K i e s e l b e r t , B . ; S c h a f e r , H . ; S c h r o d , H . Z A n o r g . A l l g . C h e m . 1 9 8 4 , m , 4 9 — 5 4 . ( c ) P o h l , S . ; S c h i w y , W . ; W e i n s t o c k , N . ; K r e b s , B . Z N a t u r f o r s e h , 1 9 7 3 , 2 8 6 , 5 6 5 . ( d ) K r e b , B . ; P o h l , S . ; S c h i w y , W . A n g e w . C h e m , I n t . E d . E n g l . 1 9 7 0 , _ 9 _ , 8 9 7 . ( e ) K r e b , B . ; P o h l , S . Z N a t u r f o r s c h , 1 9 7 1 , 2 Q , 8 5 3 - 8 5 4 . ( 1 ) P o h l , S . ; K r e b , B . Z A n o r g . A l l g . C h e m . 1 9 7 6 , £ 4 , 2 6 5 - 2 7 2 . ( g ) P h i l i p p o t , B . ; R i b e s , M . ; L i n d q v i s t , O . R e v . C h i m . M i n e r . 1 9 7 1 , _ 8 _ , 4 7 7 - 4 8 9 . K l e m m , W ; S o d o m a n n , H . ; L a n g m e s s e r , P . Z A n o r g . A l l g . C h e m . 1 9 3 9 , £ 1 1 , 2 8 1 - 3 0 4 . K r e b s , B . A n g e w . C h e m , I n t . E d . E n g l . 1 9 8 3 , 2 2 , 1 1 3 - 1 3 4 . 9 ) 1 0 ) 1 1 ) 1 2 ) 1 3 ) 1 4 ) 1 5 ) 1 6 ) 1 7 ) 4 7 0 M i i l l e r , D . ; H a h n , H . Z A n o r g . A l l g . C h e m . 1 9 7 8 , £ 8 , 2 5 8 . S m i t h , D . K . ; N i c h o l s , M . C . ; Z o l e n s k y , M . J E . P O W D 1 0 : " A F O R T R A N I V P r o g r a m f o r C a l c u l a t i n g X - r a y P o w d e r D i f f r a c t i o n P a t t e r n s " v e r s i o n 1 0 . P e n n s y l v a n i a S t a t e U n i v e r s i t y . S h e l d r i c k , G . M . I n C r y s t a l l o g r a p h i c C o m p u t i n g 3 ; S h e l d r i c k , G . M . K r u g e r , C . ; G o d d a r d , R . , E d s . ; O x f o r d U n i v e r s i t y P r e s s : O x f o r d , U . K . , 1 9 8 5 ; p p 1 7 5 - 1 8 9 . T E X S A N - T E X R A Y S t r u c t u r e A n a l y s i s P a c k a g e , M o l e c u l a r S t r u c t u r e C o r p o r a t i o n ( 1 9 8 5 ) . D I F A B S : W a l k e r , N . ; S t u a r t , D . D I F A B S : A n E m p e r i c a l M e t h o d f o r C o r r e c t i n g D i f f r a c t i o n D a t a f o r A b s o r p t i o n E f f e c t s . A c t a . C r y s t a l l o g r . 1 9 8 3 , A 3 9 , 1 5 8 - 1 6 6 . S o m m e r , H . ; H o p p e , R . Z A n o r g . A l l g . C h e m . 1 9 7 8 , 4 _ 4 _ 3 _ , 2 0 1 - 2 1 1 . S c h i w y , W . ; B l u t a u , C h r . ; G a t h j e , D . ; K r e b s , B . Z A n o r g . A l l g . C h e m , 1 9 7 5 , Q 2 , 1 - 1 0 . J e f f e r y , J . W . ; W h i t a k e r , A . A c t a . C r y s t a l l o g r . 1 9 6 5 , 1 9 , 9 6 7 - 9 7 1 . C o m p r e h e n s i v e I n o r g a n i c C h e m i s t r y , B a i l a r , J . C . ; E m e l é u s , H . J . ; N y h o l u r , R . ; T r o t m a n - D i c k e n s o n , A . F . , E d s . ; P e r g a m o n P r e s s , 1 9 7 3 , V o l . 3 , p p 3 1 1 . 1 8 ) 1 9 ) 2 0 ) 2 1 ) 2 2 ) 2 3 ) 2 4 ) 4 7 1 R a d , H . D . ; H o p p e , R . Z A n o r g . A l l g . C h e m . 1 9 8 1 , 4 8 3 , 1 8 - 2 5 . ( a ) N a k a m u r a , Y . ; N a k a i , 1 . ; N a g a s h i m a , K . M a t e r . R e s . B u l l . 1 9 8 4 , Q , 5 6 3 - 5 7 0 . ( b ) N a k a m u r a , Y . ; A r u g a , A . ; N a k a i , I . ; N a g a s h i m a , K . B u l l . C h e m . S o c . J p n . 1 9 8 4 , 5 1 , 1 7 1 8 - 1 7 2 2 . S h e l d r i c k , W . S . ; B r a u n b e c k , H . G . Z N a t u r f o r s c h 1 9 8 9 , 4 _ 4 3 , 8 5 1 - 8 5 2 . K r e b s , B . ; U h l e n , H . Z . Z A n o r g . A l l g . C h e m . 1 9 8 7 , 3 2 , 3 5 - 4 5 . K r e b s , B . ; H i i r t e r , H . - U . Z A n o r g . A l l g . C h e m . 1 9 8 0 , 4 _ 6 _ 2 _ , 1 4 3 - 1 4 5 . G r e y , 1 . E . ; S t e i n fi n k , H . I n o r g . C h e m . 1 9 7 1 , 1 0 , 6 9 1 - 6 9 6 . P a r t h é , B . ; Y v o n , K . ; D e i t c h , R . H . A c t a . C r y s t a l l g r . 1 9 6 9 , B 2 5 , 1 1 6 4 - 1 1 7 4 .