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ABSTRACT

DESIGNING COMPOSITE MATERIAL
SYSTEMS USING GENERIC TASKS
AND CASE-BASED REASONING

By

Timothy Joel Lenz

The evolution and application of engineering design techniques for polymer com-
posite material systems provide the focus of this dissertation. Paradigms that extend and
expand the intellectual capabilities of composite designers are developed. In the quest for
these paradigms, the design of polymer composites is considered at varying levels of com-
plexity. This consideration addresses the accumulation and organization of design know-
ledge, and the philosophical nature of the design process. The enabling emphases are
knowledge-based systems and the meticulous engineering of design information interac-
tions.

A cohesive approach is developed for efficaciously designing composite material
systems. This includes both design guidelines and software implementations of these
guidelines with which to design composite material systems. The computational tools

presented in this dissertation can assist in the design of composite material systems



through both strategically organized heuristics (knowledge-based systems) and previously
detailed designs (case-based reasoning).

Not only do these computational tools embody a new understanding of a compli-
cated and multifaceted design process, but they are also exemplars of structured know-
ledge reuse. The use of knowledge- and case-based systems in polymer composites
design simplifies the use and reuse of engineering design knowledge, thus enabling the
transfer of expertise. By streamlining the tedious design processes, these systems can also

free design engineers for more creative design activities.
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Part I

Prelude



CHAPTER 1

Introduction

When a chemical engineer approaches the design of a petrochemical process, say, the
hydrodealkylation of toluene to produce benzene, he or she does not begin with a detailed
economic analysis of the energy-integrated flowsheet of the process, attempting to achieve
the maximum possible energy recovery. Starting off at that level of complexity is a ludi-
crous proposition. To apply an energy integration analysis, all the heat loads and all the
stream temperatures throughout the process must be known. But these cannot be figured
out unless the flow rates and compositions of every process stream are also known. Obvi-

ously, this is the wrong level of detail at which to begin.
Such an attempt brings to mind the following quote:

“I have yet to see any problem, however complicated, which, when you looked at it in
the right way, did not become still more complicated.” Poul Anderson

What is the appropriate level of detail to consider for the design of the
hydrodealkylation process? There are most assuredly less complex ways of addressing the

design of this process than above (although probably not many more complicated).
18



19

W’ purge Hz, CH

Hz, CHs —— | Toluene + H2 = Benzene + CH4 | Benzene

Tol 2 2 Benzene <> Diphenyl + H2 |—» Diphenyl

Figure 1. Hydrodealkylation reaction and input-output behavior.

There are several less-detailed levels at which the design can be considered with
some utility. A general hierarchy of the levels of decisions for designing just such a chem-
ical process has been established [Douglas, 1988]. The simplest is whether the chemical
process under consideration is to be a batch or continuous process. Slightly more detailed
than that is an input-output flowsheet of the process. Figure 1 shows the input-output
behavior of the hydrodealkylation process, along with the reactions in question [Douglas,
1988]. Additional levels of detail include the consideration of the recycle flowsheet, the
general structure of the separation system, and finally, the heat-exchanger network.

In order for the designer to be able to do the detailed economic analysis on the
energy-integrated (i.e., up to and including the heat-exchanger network) process flow-
sheet, the entire process must be designed. Many decisions must be made throughout this
design process, but as the design of chemical processes is well understood, specific plans
for making these decisions exist and can be used linearly (i.e., one after the other).

These plans are ways of approaching applied engineering design. However, there
is more to engineering design than just the linear execution of specific plans. The follow-

ing section presents some of these additional issues.



1.1 Engineering Design Issues

Say a chemist has discovered a reaction to make a new catalyst for an existing, commer-
cial reaction. A chemical engineer is called in to transfer this discovery to a new process.
The engineer starts with only knowledge of the reaction conditions and perhaps some
information about available raw materials and products. The engineer must supply all the
other information needed to define the design problem. Then, once the design problem

has been completely defined, it must be solved.

This typical example depicts the two main difficulties with engineering design.
The first is the fact that most engineering design problems are ill-structured. The open-

ended and underdefined nature of engineering design problems is the other difficulty.

Design problems are open-ended because many acceptable solutions exist, even
for those designs which are relatively well defined. For the new chemical process above,
decisions must be made about what unit operations to use, how to connect them, and the
conditions at which they will operate. The challenge is to effectively limit the design

alternatives, as there are often a very large number of possible solutions.

Design problems are considered to be ill-structured because their solutions can not
normally be found through the simple use of mathematical formulas [Dym, 1994]. Most
engineering design problems are inherently nonlinear, and require much more sophisti-

cated approaches to problem solving than can be represented mathematically.

The fundamental approaches to engineering design can be summarized as [Glegg,
1969]): domain-specific techniques, general rules, and universal principles. General rules

and universal principles are more often than not implicitly embedded within the details of



21

domain-specific techniques. The two most important universal approaches to engineering

design are assumption and reuse.

The most commonly used type of engineering design approach is that of estima-
tion and assumption. The first thing any engineer does when approaching a new problem
is to make a rough estimate, or a “back-of-the-envelope” calculation of the design. This
rough estimate generally focuses on only a portion of the final design, leaving out those
portions of the design with which the designer is unconcerned. The wing box sketch in
Figure 2 on page 24 is an example of just such a rough design. The utility of back-of-the-
envelope calculations is the quick determination of the approximate worth of a design. If
a back-of-the-envelope design appears feasible, then the engineer proceeds to a more rig-

orous design; if it is not feasible, that design alternative is rejected.

An example of the utility of the back-of-the-envelope calculation can be seen in
the following anecdote related by the head of an architectural consulting firm [Petroski,

1992].

“When my engineers come to me with millions of numbers on a high rise, I know there
is one number that tells me a lot of things - how much the top of the building will sway
in the wind. If the computer says seven inches, and my formula, which takes thirty sec-
onds to do on the back of an envelope, says six or eight, I say fine. If my formula says
two, I know the computer results are wrong.”

The practice of reuse in engineering design is expressed by [Glegg, 1969]): “Now
one of the [best] ways of designing something is not to design it at all. Use [a part] that is
designed already by someone else.” The design practice of modifying past designs is uti-

lized within nearly all engineering fields.

1. Of course, domain-specific techniques are of prime importance in determining the specific meth-
ods actually used to perform the modification of previous designs.
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Many definitions of engineering design exist, and each definition is more or less
influenced by the specific domain in which it is applied. A recent definition attempts to
avoid this pitfall by defining engineering design outside of any particular domain context
[Dym & Levitt, 1991; Dym, 1994]:
Engineering design is the systematic, intelligent generation and evaluation of specifi-
cations for artifacts whose form and function achieve stated objectives and satisfy
specified constraints.
This definition is almost general enough to be completely useless without exten-
sive interpretation. Not surprisingly, there are many implicit assumptions behind this def-

inition [Dym, 1994]:

* design is not a mindless process, but is replete with significance and is, at least to some
extent, comprehensible;

* both form and function can be represented, although not necessarily individually or
facilely; nonetheless a correlation between the two can be expressed;

¢ the representation must be able to interpret not only the original design problem speci-
fication, but also its stated design objectives and constraints;

* problem-solving techniques must exist that can utilize this representation to develop
solutions for the design;

» the generated design solutions must be translatable, irregardless of the representation
utilized, into appropriate fabrication specifications.

The key issue within these assumptions is that without the appropriate knowledge
representation, there can be no design [Dym, 1994]. There must exist a way of describing
a designed artifact at all stages of design, from the original problem specification through
to the evaluation and fabrication of the solution. The problem solving and evaluation
methods utilized in the design process are enmeshed within and dictated by the representa-
tion utilized, and must be expressed and implemented at the appropriate level of abstrac-

tion.
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1.2 The Composites Design Problem

The design of chemical processes presented earlier is an example of established and linear
engineering design. The specific design tasks have been identified and many heuristics
have been developed. A result of this rich design understanding is the linear nature of
chemical process design: a definite order for determining portions of the design exists.
Conversely, composites design is not currently understood completely enough to be con-
sidered linear.

Similarities do exist between the problem posed for the hydrodealkylation process
and composites design. When a composites designer is charged with designing, say, a
wing box for an aircraft, he or she does not jump right into a detailed economic cost anal-
ysis of the design. To do that, the designer must know the details of the materials of con-
struction, the processing and the specific architecture of the wing box. Those details are
unknown when the design problem is specified, and must be decided. Figure 2 gives a

comparison of the initial wing box concept with the detailed wing box design.

Obviously, the composites designer must consider the design at some higher level
of abstraction. A simple input-output level of description gives the design specifications
as input, but does not give much for an output other than the rough wing box shown in
Figure 2. The designer (or more often, a design team) must consider the part configura-

tions, material specifications, and manufacturing process simultaneously.
The overall design process for composites is typically split into three phases
[Principe et al., 1987]. At each of these phases, part configurations, material specifica-

tions, and manufacturing processes are considered simultaneously.



Detailed wingbox with
materials, processing &
architecture all determined

Simple wingbox with
materials, processing &
architecture as yet
undetermined

Figure 2. Rough and detailed composite wing boxes.

1. During the initial phase, requirements such as cost, size, weight, performance, loading
specifications, and environment are defined, and preliminary designs are developed for
the material, process and part.

2. The second phase involves evaluating and verifying the new materials, joint design,
and manufacturing techniques specified in the first phase. Detailed finite element anal-
yses of critical areas may also be conducted.

3. In the third phase, a full-scale prototype is fabricated and evaluated for cost, perfor-
mance capabilities, and effects from the environment.

If all specifications have been met after the third phase, production of the part may
commence. However, if the part fails to meet the specifications, it must be redesigned.

Often, design processes for composites involve significant amounts of costly redesign.

As for the design of the chemical process, many decisions must be made through-

out the composites design process. Unlike the design process for chemical processes, the
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design process for composites is not linecar. Many iterative design cycles are required
before the final design is specified. Trial-and-error also requires iteration. Specific linear
design plans for making these decisions for composites do not exist. The onus for the
redesign common to composites can be clearly placed on the immaturity of composites
technology and the less than reliable standards for materials, design, manufacturing, and
inspection. The composites design process is not straightforward, and in fact, is rife with

pitfalls for the inexperienced or incautious designer.

1.3 Goals and Strategies of this Research

The problems inherent in engineering design were exemplified by the preceding examples
of two very different design processes. The strategies for addressing these problems can

be summed up by the following quote from Henry Petroski [Petroski, 1994]:

“If persuasive paradigms and instructive case histories can be multiplied and dissem-
inated in an effective way, there is reason to believe that they can become as important
a part of the designer’s intellectual tool kit as are laws of mechanics, rules of thumb,
and computer models.”

Numerous heuristics, design equations, and case histories exist for the design of
chemical processes. Chemical engineers use this guiding material whenever they begin
the design of a new process, and the use of this material greatly facilitates the design pro-

cess. Such understanding and guiding material is not ubiquitous for composites design.

The research presented in this dissertation focuses on the application and develop-
ment of engineering design techniques for designing polymer composite material systems.
Principles of engineering design in general, and chemical engineering design in particular,

are prevelant throughout this domain. In the spirit of the quote from Petroski, the goal is
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to develop ‘persuasive paradigms’ for the design of composite material systems. These
paradigms are intended to extend and expand the intellectual capabilities of composite
designers by giving them additional ‘tools’ (both abstract design guidelines and actual
software implementations of these guidelines) with which to perform the design of com-
posite materials.

Specific strategies for achieving the increased understanding of engineering design
for composites are given in the remainder of this discussion. Key issues of polymer com-
posite material design, including particular design considerations and nomenclature, set
the scope of the composite material design problem. The applied computational tech-
niques to be used for enabling the use of the expanded comprehension of this design are

also presented.

1.3.1 Polymer Composite Material Design

Polymer composite materials are typically very complex and nonintuitive con-
structs. Careful consideration must be given to the multiple interactions between materi-
als, processing conditions, and structural features; these interactions are often difficult to

assess a priori.

The study of polymer composites focuses on the properties and fabrication of
materials and is based largely on polymer science and chemical engineering. This area is
inherently multidisciplinary. A key to realizing the potential of polymer composite mate-
rials is to enable a rapid transition from setting material specifications to the successful
commercial manufacturing of a material meeting those specifications. Addressing this

challenge becomes increasingly important as polymer composite materials penetrate the
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durable goods markets. This importance is magnified in performance driven markets, such

as aerospace, as these markets become more cost conscious.

There are two main points about polymer composites important enough to draw
mention separately. The first reiterates the urgent need for and potential impact of design
processes specifically addressing composite materials. The second is the distinction

' between polymer composite materials and polymer composite material systems.

Conceptual Design Considerations. The standard procedures utilized in the generation
of a design for a new composite artifact are often heuristic in nature or even worse!, the
result of tedious and expensive trial-and-error testing. Although the composites designer
has an overwhelming amount of information available, this information typically consists
of experimental data and collections of unorganized heuristics, neither of which is imme-
diately conducive for use in design. Consequently, the design of polymer composites can
be viewed essentially as an artform guided by experience and scientific principles.

It has been well documented that the early conceptual design phase for polymer
composites determines many of the critical cost drivers for the detailed design of the final
composite. Providing support for the conceptual design of polymer composites therefore
has great potential for providing substantial downstream cost control. A comprehensive
approach to the design of polymer composite materials can provide a way to reduce design
and manufacturing time with the goal of getting the design right the first time. This can

eliminate or at least reduce the costly redesign process.

1. This does not necessarily imply that heuristics are bad, however. The main problem with using
beuristics for design is that designers occasionally use them without regard for their limitations.
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Composite Material Systems. Material design for polymer composites involves the map-

ping from environmental and performance requirements (mechanical, thermal and chemi-
cal) to choices for fibers and matrices. Depending on the type of matrix, a detailed recipe
of reactive diluents, inhibitors, fillers, initiators, and other additives may be specified as
well.

The distinction to be made for the research in this dissertation is between polymer
composite materials and polymer composite material systems. This distinction is espe-
cially important when considering the implications of the design of either. Design of poly-
mer composite materials implies a creative aspect to the design, with new classes of
materials potentially being invented. As that is not the intent in this dissertation, another
term must be used to explicitly avoid this misinterpretation. Hence, polymer composite
material systems.

As used within this dissertation (particularly in Parts IV & V), polymer composite
material systems specify combinations of polymer matrix materials, chemical agents (cur-
ing, cocuring, reactive diluents), fiber materials and fiber lengths. The design of polymer
composite material systems specifies nothing other than determining valid combinations

of material system constituents.

1.3.2 Applied Computational Techniques

There are two main computational techniques utilized for the design of composite
material systems in this dissertation. The representation and reuse of knowledge serve as
the foundations for both knowledge-based systems and case-based reasoning. These
applied computational techniques are eminently suited for implementing systems that

perform engineering design. The stated constraints of a design-centric knowledge
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representation and an implementation at the proper level of abstraction are in fact
strengths of these techniques. Knowledge-based systems are particularly useful for
performing estimation and assumption. The entire premise of case-based reasoning is the

reuse of previous design solutions.

Knowledge-based Systems. Knowledge-based systems function as aids to the determina-
tion of complex (engineering) problems through the use of precompiled domain know-
ledge and specific inferencing techniques. These systems include representation and
inferencing techniques specific to the type of knowledge considered.

The inferencing techniques and knowledge representation upon which the work in
this dissertation is based are Task Specific Architectures and Generic Tasks. These
techniques entail an engineering science style methodology for designing and developing
intelligent decision support systems. This facilitates the knowledge acquisition process by
focusing on the high level descriptions of problem solving and not on specific
implementation languages. The advantage of a representation framework that can capture
the concepts supporting design processes is that it separates the domain knowledge from
the computational processes [Brown & Chandrasekaran, 1989], easily permitting
knowledge adaptation without a complete reconstruction of the underlying inference

procedures.

Case-based Reasoning. A case-based reasoning (CBR) approach is capable of utilizing
the specific knowledge of previous concrete design problems. This is an experience-based
method which attempts to deal with current problems through a comparison to past solu-
tions. A new problem is solved by finding a similar past case and reusing it as determined

by the new situation. As new problems are solved, the solutions are stored as cases. This
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allows incremental learning, which in turn allows the reasoner to become more efficient.
This incremental learning occurs as a case-based reasoning system accumulates both spe-
cific and general knowledge. The mixture of knowledge abstractions facilitates the solu-
tion of problems requiring the simultaneous handling of multiple interacting

considerations.

1.4 Anticipated Outcomes of this Work

An overall vision for the conceptual design of composites has been generated by research-
ers in the Intelligent Systems Laboratory [McDowell et al., 1993). This conceptual design
vision encompasses every facet of composites design, including material design. While
inspired by and fitting under the auspices of this vision, the research in this dissertation
departs from _the conceptual design vision. Of specific interest in this dissertation is the
engineering design of composite material systems, but not necessarily at a predetermined
conceptual level of detail.

The primary focus of this dissertation is to examine the ideas behind the design of
polymer composite material systems at varying levels of complexity and to develop a
cohesive approach for efficaciously performing design. This is to be done with an empha-
sis on knowledge-based systems, carefully engineering the possible interactions of infor-
mation and structuring the problem of material design in such a way as to provide not only

substantive research results, but genuinely usable answers as well.
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1.4.1 Composite Material System Design Knowledge

“Science is built up with facts, as a house is with stones. But a collection of facts is no
more a science than a heap of stones is a house.” Jules Henri Poincare

The contributions of this dissertation to design knowledge for composite material
systems focus on two main issues: the accumulation and organization of design know-
ledge, and the philosophical nature of the design process.

Not only is design knowledge about composite material systems accumulated, but
it is organized in such a manner as to be useful for design. This accumulation and organi-
zation addresses both the ill-structured and open-ended nature of the composite material
system design process. The open-ended nature of the design process mandates the deter-
mination of abstracted heuristic knowledge. Such knowledge is useful for limiting the
scope of the design space. Any problems due to ill-structure are eliminated (or at least sig-
nificantly reduced) by the establishment of a detailed structure of the polymer composite
material system design problem.

The applicability of the rigid phase level design process for composites as a way of
thinking about the design and as a guideline to implementation of the design process is
addressed. An examination of the design tasks comprising the problem to be solved
guides this deliberation. A decision is made whether or not the conceptual phase of the

design should be exclusively compartmentalized when implemented.

1.4.2 Engineering Design Tool Implementation

“Each problem I solved became a pattern, that I used later to solve other problems.”
Rene Descartes.

The computational tools presented in this dissertation will be capable of designing

composite material systems through the use of both compiled heuristics (knowledge-based
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systems) and previously detailed designs (case-based reasoning). The archival nature of
the CBR system will allow users of the system to access previous cases, speeding up the
entire design process. Ideally, the composite material system designer will be used in con-
junction with other computational tools which address the design of the processing and
structural aspects of the composite material.

The use of knowledge- and case-based systems in the context of polymer compos-
ites design facilitates the use and reuse of engineering design knowledge, thus enabling
the transfer of expertise. By streamlining the mundane design processes, these systems

can also free design engineers for more creative design activities.

1.5 Walkthrough

The main issues involved in and the targeted areas for additional research have been pre-
sented in this first chapter, which serves as a Prelude to this dissertation. The two major
sections that follow contain the foundations of the research discussed in this dissertation.
These foundations are the enabling computational techniques utilized in this research (Part
II) and the methodologies & ideologies of various related computational efforts for
designing composites (Part ITI). The heart of the research in this dissertation is presented
immediately following, in Part IV. Discussions which extrapolate on these research
results and an overall summary of the issues raised by and the accomplishments of this

research are presented in Part V.

Part II leads off with an introduction to the basic ideas of artificial intelligence in
Chapter Two. The concepts of performing reasoning at both the knowledge level and the

task level are also presented in this chapter. A presentation and discussion of the types and
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specific implementations of task- and knowledge-level approaches used in this dissertation
concludes Chapter Two. An in-depth presentation of the theoretical and practical issues of
case-based reasoning comprises Chapter Three.

The summary of previous approaches to designing composites that is presented in
Part III is twofold. The first part is a wide spectrum of computational approaches to vari-
ous areas of composites design and a discussion of trends evident in these approaches.
This is given in Chapter Four. The immediate legacy of the research in this dissertation,
namely, the evolution of the knowledge-based system approach to composites design in
the Intelligent Systems Laboratory (ISL) at Michigan State University, makes up Chapter

Five.

Part IV discusses how the composites design legacy in the ISL has been
specifically augmented. A reevaluation of the previously utilized approach to composites
design and the consequent refocusing of the overall design vision is presented in Chapter
Six. Also presented in Chapter Six is the specific plan for the research in this dissertation.
Chapter Seven sets the groundwork for the development of the next generation composite
material designer by closely scrutinizing the previous system, CMatDesign. The lessons
learned from this analysis, in addition to the directives presented in the specific research
plan, provide the guidance for the implementation of a fourth-generation composite
material designer, COMADE. The details of COMADE’s implementation and examples
of its use are given in Chapter Eight (and in Appendices A through D). Chapter Nine
details a new approach to performing case-based reasoning within a generic task

environment, and presents two computational tools developed for this approach:
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CaseFinder and DesignMod. A specific application of these tools used in conjunction with

COMADE is shown in Chapter Ten (and in Appendix E).

A summary of various uses of COMADE, ranging from simple demonstrations to
serving as a foundation for the development of a dedicated commercial decision support
system, leads off Part V in Chapter Eleven. The lessons leamned throughout the develop-
ment of COMADE, including emphasizing the proper levels of abstraction for design and
utilizing the appropriate computational techniques for the design task at hand, are pre-
sented in Chapter Twelve. The current design vision, a detailed summary of the specific
contributions presented in this dissertation, and suggestions for additional work are listed

in the concluding Chapter Thirteen.
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CHAPTER 2

Applied Artificial Intelligence Techniques

Throughout the history of Al, researchers have been attempting to test their hypotheses of
new computational approaches by building test systems. Some of the earliest of these
were called expert systems. These systems were a combination of a substantial amount of
domain knowledge and one or more reasoning mechanisms for applying this knowledge to

problems.

Many of these first systems were in the medical domain, where a great deal of pre-
compiled knowledge was available in forms conducive to inclusion in such systems.
MYCIN, one the most influential of the early medical expert systems, used production

rules for the representation of knowledge [Davis et al., 1977].

Other expert systems such as R1 (also called XCON) [McDermott, 1982; McDer-
mott, 1984] and PROSPECTOR [Hart et al., 1978; Duda et al., 1979] also used the pro-
duction rule approach to solve nonmedical domain problems. These two systems
addressed the domains of configuration of DEC VAX systems and mineral exploration

advice generation, respectively. DENDRAL was another early expert system that, while

36
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not strictly a rule-based system, inferred the structure of organic compounds from empiri-
cal data using production rules with constraint satisfaction [Buchanan and Lederberg,

1971]. Figure 3 shows examples of typical production rules used in these systems.

Many knowledge representation schemes and reasoning mechanisms have been
developed besides production rules (e.g., frames, semantic nets, predicate logic, statistical
reasoning), but they all can be characterized along a syntactic-semantic representation
spectrum. At one extreme are the syntactic systems, which do not bother with the mean-
ing of the represented knowledge. These systems have simple procedures for manipulat-
ing the representation. As a result, a shortcoming of the purely syntactic systems was the
lack of control for the order of execution of, say, production rules. At the other end of the
spectrum are the semantic systems, in which every aspect of the representation corre-
sponds to a different piece of information; the inferencing procedures are correspondingly

complicated.

Other approaches besides expert systems have arisen over the years, including
blackboard systems (which have a general workspace with competing systems all modify-
ing the problem solution), model-based systems, knowledge-based systems and decision
support systems. These approaches have combined mixtures of syntactic and semantic
representations, something that the early expert systems generally did not do. Many early
expert systems were purely syntactic in nature, and were thus brittle and difficult to mod-
ify or validate. That later approaches have moved away from the extremes of this spec-
trum has helped to decrease brittleness and has also simplified the modification and

validation of these systems.
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A typical MYCIN rule:

If: (1) the stain of the organism is gram-positive, and

(2) the morphology of the organism is coccus, and

(3) the growth conformation of the organism is clumps,
then there is suggestive evidence (0.7) that the identity of the

organism is staphylococcus.
\ each MYCIN rule

A typical RI/XCON rule:

If: the most current active context is distributing massbus
devices, and
there is a single-port disk drive that has not been assigned
to a massbus, and
there are no unassigned dual-port disk drives and the number
of devices that each massbus should support is known, and
there is a massbus that has been assigned at least one disk
drive and that should support additional disk drives,
and the type of cable needed to connect the disk drive to the
previous device on the massbus is known
then: assign the disk drive to the massbus.

A typical PROSPECTOR rule:

If: magnetite or pyrite in disseminated or veinlet form is
present

then: (2,-4) there is favorable mineralization and texture for
the propylitic stage.

there were two confidence values for PROSPECTOR:
the 1* suggested the evidence's validity,
the 2™ indicated the necessity of the evidence.

Figure 3. Examples of typical production rules used in early expert systems.
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In this dissertation, knowledge-based or decision support systems are of particular
interest. These systems are aids to the solution of a complex (engineering) problem that
use precompiled domain knowledge and specific inferencing techniques. These systems
include representation and inferencing techniques that are specific to the type of know-
ledge considered.

The inferencing techniques upon which the work in this dissertation is based can
be understood at two levels of abstraction: knowledge level, and task level. This chapter
continues with a discussion of each of these levels, and concludes with a presentation of

the tools implemented in the ISL to perform these inferencing techniques.

2.1 Knowledge Level Reasoning

At the root of all artificial intelligence research efforts lies a communal need to understand
knowledge intensive problem solving behavior. There is an implicit need to do so inde-
pendently of any implementational specifics. Whether the problem solving has been
encoded with Lisp or Cobol or C++, a common mode of understanding the problem solv-
ing is needed. The Knowledge Level as proposed by Newell [Newell, 1982] provides

such a means for obtaining this understanding of intelligent problem solving:

Knowledge Level Hypothesis: There exists a distinct computer system level lying
immediately above the symbol level, which is characterized by knowledge as the
medium and the principle of rationality as the law of behavior.

The key insight that this hypothesis embodies is that knowledge can be used to
effectively abstract away from the specifics of problem solving behavior, and still be used
to define the problem solving process. Endowing knowledge with a problem solving

capability facilitates the understanding and explanation of problem solving behavior.
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When considered at the Knowledge Level, problem solving becomes a knowledge process

[Smithers, 1996].

Newell’s Knowledge Level provides a way of understanding a problem solving
agent apart from the implementation details. Although this allows a deeper understanding
of problem solving than that possible through a symbolic level evaluation, it does not
always permit the prediction of the behavior of an agent. This deficiency is due to the
absence of problem solving control.

An organizational approach intended to facilitate interaction between different
problem solving tasks has been proposed by Sticklen in the Knowledge Level Architecture
(KLA) [Sticklen, 1989]. The underlying hypothesis here builds on Newell’s proposal by
allowing the discussion of the control issue in terms of knowledge organization and con-
trol at the Knowledge Level. This organization and control are ensconced in the KLA and
the explicit hypothesis of it [Sticklen, 1989]:

Knowledge Level Architecture Hypothesis: If a problem solving agent may be decom-
posed into the cooperative efforts of a number of subagents, the larger agent can be

understood at the Knowledge Level by giving a Knowledge Level description of the
subagents and specifying the architecture the composition follows.

This hypothesis enables the specification of the behavior of a multi-task system by
explicitly representing the interactions between its agents. To facilitate this interaction,
distinct message protocols and fixed communication channels between the agents are
used. These provide both a vocabulary for agents to request work (and to respond to such
requests for work) and a way of organizing the knowledge of the agents, respectively.
Since control is only passed to an agent when another agent sends a request, the Know-
ledge Level Architecture also provides a means of understanding the problem solving

activity occurring among the agents of a multi-task system.
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Other researchers have presented alternatives for the integration of multiple prob-
lem solving types with the Knowledge Level as a motivating factor. Goel has developed a
technique for the combination of case-based reasoning and model-based reasoning in
KRITIK [Goel, 1989]. Principles of Punch’s TIPS architecture [Punch, 1989] allowed for
the flexible integration of different problem solving types. The SOAR system [Laird et
al., 1987; Steier et al., 1993] also used a flexible integration architecture for its problem

solving operators.

2.2 Task Level Reasoning

Although the Knowledge Level allows an understanding of problem solving at a deeper
level than is possible with a symbolic evaluation, it does not always permit the prediction
of the behavior of an agent. The lack of control knowledge during problem solving con-
tributes to this deficiency. By considering problem solving at a task level, this control
knowledge can be delineated, and the behavior of an agent can be predicted. Task Specific

Architectures have been developed for this task level reasoning.

Task Specific Architectures were founded on the idea that modeling of problem

solving behavior at the Knowledge Level is not accidental. There are commonalities that

—_—

can be employed when describing a system’s problem solving. Such commonalities are

typically general enough to be widely applicable, yet specific enough to allow focussed

analysis [Allemang, 1994].

Generic Tasks accomplish these two criteria by delineating task descriptions. A

task corresponds to a problem solving goal. Tasks are either decomposable into subordi-

nate tasks or contain applicable problem solving knowledge. Generic tasks are based on
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the hypothesis that the two antithetical criteria of simultaneous generality and specificity

can be embodied within a single task structure.

Task specific architectures and generic tasks both support a long range goal of an
engineering science style methodology for designing and developing intelligent decision
support systems. These foundations facilitate the knowledge acquisition process by focus-
ing on the high level descriptions of problem solving and not on the specific low level

implementation languages.

Generic tasks support the development of specialized role limited languages for
the coding of intelligent decision support software systems. The main advantage for using
a representation framework that can capture the ideas supporting design processes is that it
separates the knowledge from the computational processes that operate on it [Brown &
Chandrasekaran, 1989], easily permitting adaptation of the knowledge without a complete

reconstruction of the underlying inference procedures.

The approach to design employed in this dissertation follows the generic task
methodology, which restricts itself to the high level problem solving goals, knowledge
structuring and inference strategies of a problem solver and does not concern itself with
the implementation details. A complete description of a generic task should give a listing
(and explanation) of: information processing, representation of knowledge, and inference

strategy [Bylander & Chandrasekaran, 1987].

Solutions to real world problems require some sort of problem solving technique.
Generic tasks are techniques that have utility in solving these problems. Which technique
can solve the problem can be determined by looking at the types of input and output and

the specific intended function. This input/output consideration of a problem is the
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information processing task. The representation of knowledge deals with the
organization and structure of knowledge necessary to accomplish the GT’s function.
Directly associated with the representation of knowledge are the ontological commitments
made by the GT and how knowledge is organized in terms of the utilized ontology. The
inference strategy, or the problem solving technique used by the GT, can be defined by
how it operates on the knowledge.

It has been acknowledged by researchers working with GTs that the term “generic
task” is misleading [Brown & Chandrasekaran, 1989]. The important idea to keep in mind
is that what is labelled to be a “generic task” is really a fundamental generic combination
of information processing, representation, and inference strategy. It should come as no
surprise that this confusion over what is or is not a generic task has led to debate over the

number of actual generic tasks that exist.

2.3 Employed ISL Generic Task Tools

There are three commonly accepted GTs that are of interest in this dissertation: Structured
Pattern Matching [Bylander et al., 1991], Routine Design [Brown, 1987; Brown & Chan-
drasckaran, 1989] and Hierarchical Classification [Bylander & Mittal, 1986]. Each of
these generic tasks exists within the ISL’s GT toolset and is encoded using ParcPlace-Dig-
italk’s VisualWorks version of Smalltalk. Beyond these three generic tasks, the toolset
includes another item that is of interest to this dissertation. This final item is a preliminary

integration architecture for combining different generic task problem solvers.



2.3.1 Structured Pattern Matching

This inferencing technique was derived from the techniques used in an early game-
playing program, Samuel’s checkers program [Samuel, 1963]. This program eventually
played checkers well enough to beat its creator. Its “skill” was due in part to two capabili-
ties that inspired structured pattern matching: organized storage of information, and gen-

eralization. These two capabilities imply a type of data caching called rote learning.

Structured pattern matching is a simple inferencing mechanism for performing
inferences of the form: “If conditions A, B, C,.... hold, then result X is valid.” Rules of this
form are combined and organized into patterns corresponding to a particular portion of the
problem domain (e.g., malfunction diagnosis for a particular subsystem of a chemical
reactor). It is this domain-driven organization and structure that distinguishes these rules

from the production rules discussed earlier.

Figure 4 shows an example of a typical structured pattern matcher. In this figure
three rules related to a condensate withdrawal system in a chemical reactor are combined
into a structured pattern matcher. This matcher considers the variables CondensateFlow-
Rate and IncotrectSolventRatio to assess if there is a potential problem with the condensate

withdrawal portion of a chemical reactor.

Each of the three rows represents a rule related to this portion of the reactor. The
first row translates as: “If the condensate flow rate is not normal, then there is a strong
indication of a problem with the condensate withdrawal system.” In the second row, the
matching pattern reads, “If the solvent ratio is incorrect, irregardless of the condensate
flow rate, then there is a strong indication of a problem with the condensate withdrawal

system.” Finally, the third matching pattern reads, “If the condensate flow rate is normal
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Table Matcher Interface
rows %) columns Yv)
CondensateWithdraw
~ CondensateFlowRate IncomectSolventRatio resut
1 [~=Nomal ? stronglymatch :’
2(? =Yes stronglymatch
3 |= Nomal =No strongly against
w
|
—
J
C)H 1]
e e

Figure 4. SPM for malfunction diagnosis of a condensate withdrawal system.

and the solvent ratio is correct, then there is a strong indication that there is no problem
with the condensate withdrawal system.” The question marks in rows one and two show

that the value of that variable is unimportant for the pattern of interest.

The structured matching task involves hierarchical symbolic abstraction. An
abstraction of the data is computed as a degree of fit. Structured pattern matching is sym-
bolic because the abstraction is presented as a discrete qualitative measure of fit (e.g.,
strongly match, weakly match, against, etc.). It is hierarchical because the final abstrac-
tion is evaluated from intermediate abstractions, which in turn can be the culmination of

nested sub-abstractions.

There are seven arbitrary qualitative levels to describe the fit, but not all are neces-

sary for each matcher. Tables that incorporate structured patterns are typically sparse and
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computationally very manageable, as only a few of these levels ever need be considered;
this is due to the abstracted nature of the patterns. Notice that in the example for the con-
densate withdrawal presented above, only strongly match and strongly against were used.
This task of matching hypotheses against data is a general subtype of reasoning useful in

many contexts, and is used with the other generic tasks.

2.3.2 Routine Design
The Routine Design architecture was proposed by Brown for performing design
and planning tasks in areas for which substantial experience is available. Brown defined a

method for Routine Design, and an accompanying representation language, DSPL

(Design Structures and Plans Language) [Brown, 1987; Brown & Chandrasekaran, 1989].

As an engineer designs similar artifacts time and again, the design process
becomes routine. With this repetition, the engineer discovers effective ways of decompos-
ing the artifact design into smaller design problems and detailed designs for each of these
subproblems. Through this accumulation of experience the engineer now knows at each
stage of the design what the options are and in what order to choose them. However, this
does not necessarily mean that the designer knows the exact sequence of steps for the

overall artifact design in advance.

Finding an overall plan for the artifact design is non-trivial problem that can be
quite tedious; knowledge-based problem solving is especially suited for handling this.
Note that Routine Design does not organize knowledge for novel or exploratory designs.
It depends instead on available expertise and offers templates for capturing and facilitating

the use of this design expertise.
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Design problem solving in Routine Design is based on a hierarchical structure of
design specialists, each of which offers a collection of expertise or knowledge on how to
complete part of the design problem. This hierarchical organization implies that the
design problem is decomposable or nearly decomposable into appropriate subproblems.
The specific arrangement of the specialists depends on the regularities that exist in a par-
ticular domain. The organization of design subproblems in routine design requires a linear
design process. A particular portion of the design problem may affect later portions, but it
must also be completely independent of any later portions. In typical control terminology,
feedforward is possible (but not necessary) while feedback is not allowed. Besides spe-
cialists, Routine Design includes several other knowledge constructs (selectors, sponsors,

plans, constraints, tasks and steps).

In Routine Design each specialist follows one of several predetermined plans.
These plans dictate the problem solving actions to be followed and are defined when the
system is built. Each plan has an associated sponsor that contains knowledge indicating
when the plan is appropriate for use. For a given specialist, the selector associated with it
examines the results of the sponsors from the subordinate plans and chooses the best plan
for execution. A plan may contain other specialists, specific design tasks, checks of design
constraints, or any combination of these. Tasks serve to group related primitive portions
of the design process. These primitive portions of the design process are called steps. A
step is responsible for determining the value of a design attribute. This value may be the

result of a computation or it may be selected using a pattern matcher.

Figure 5 shows part of a design decomposition. This figure illustrates several

~ knowledge constructs mentioned above. Thermoplastic Specialist is (obviously) a specialist
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with three subordinate plans among which its selector may choose. Each of the three

plans (Semicrystalline TP, Amorphous TP, and Blend TP) has a sponsor to determine when
each is appropriate for further consideration. If, say, Blend TP Plan was selected, its subor-
dinate task and steps would be executed and a specific thermoplastic blend and chemical
agent would be determined.

An extension to the standard routine design approach available within the ISL
toolset is that of Multiple Design [Kamel, 1994; Kamel et al., 1994]. Whereas standard
single routine design specifies only one answer to a design problem, Multiple Design (as
its name suggests) can provide more than one answer. The main difference between the

two is the inferencing procedure used. Multiple design considers all applicable plans, and

—
Thermoplastic Specialist

/ Semi-X Step
Semicrystalline TP Plan SXTP Task
\ S-X Chem Agent Step
/ Amorphous Step
Amorphous TP Plan ATP Task \
Am Chem Agent Step
Blend
L A
Blend TP Plan BTP Task

\ Blend Chem Agent Step

Figure 5. A portion of a design hierarchy for the design of thermoplastics.
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not just the best plan as does single design. Therefore, in the thermoplastic example where
just the Blend TP plan was selected previously, now the Semicrystalline TP plan may be
selected as well. In this way, more than one design for the thermoplastic may be gener-

ated.

Figure 6 shows a direct comparison between the results generated from single ver-
sus multiple design. The top output window shows the single design output; that material
system design is highlighted in the multiple design output below. Notice that the multiple
design approach generated an additional 18 designs from the same input and same know-

ledge. Each of these additional designs met the use requirements as specified by the user.

2.3.3 Hierarchical Classification

This is intuitively a knowledge organization and control technique for selecting
among many hierarchically organized options. The abstract engine used for hierarchical
classification (and structured matching), known as CSRL, was the first TSA shell and is

described in [Bylander & Mittal, 1986].

A classification problem-solving process is based on the decomposition of know-
ledge into a classification hierarchy of cooperating specialists. The specialists at the top of
the hierarchy represent the most general classification knowledge, with more specific sub-
classifications distributed in layers beneath. The control regime is a top-down establish-
refine mechanism in which each specialist, when invoked, decides if the evidence of the
current input supports the classification knowledge the specialist represents. Pruning the
hierarchy at high levels of generality eliminates some computational complexity inherent

in the classification problem. In this manner, the specialists in a classification hierarchy
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interact with other specialists as components, sending and receiving messages in a fixed
vocabulary along preestablished pathways.

See Figure 7 for an example of a hierarchical classification system. This shows
part of a classification hierarchy for the malfunction diagnosis of a chemical reactor.
PressureControl will first establish and then refine itself. To establish itself, PressureControl
uses locally available domain knowledge to decide if there is any kind of problem with the
pressure control in the chemical reactor. If a malfunction is suggested, then
PressureControl will refine itself by sending its subordinate specialists (PCtriReliefValve,
NitrogenFeedValves, PCtriManualValve, and PressureCtriValve) a message to establish and
refine. Consider a malfunction where the pressure control valve setpoint has been
incorrectly specified and enough corroborating evidence has been provided. In this

instance, only PressureCtriValve would establish. It would then send a message to its

_PClriReliefValve|
ReactorNitrogenValve|
NRrogenFeedValvesl<
CondenserNirogenYaive|
PressureConlrolf- PCtriManualValve|
PCtriValveElectrical|

PressureClrivalvek- PCirivalveSetpoint

PClrivalveMechanical

Figure 7. An HC for pressure control diagnosis of a chemical reactor.
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subordinate specialists (PCtriValveElectrical, PCtriValveSetpoint, and PCtriVaiveMechanical) to

establish and refine. Only PCtriValveSetpoint would establish, and as it is a tip node and
therefore shows the malfunction, no further refinement would be necessary.

In retrospect, the behavior of portions of both MYCIN and PROSPECTOR can be
considered hierarchical classification. The diagnostic portion of MYCIN can be consid-
ered to classify a patient description into a hierarchy of infectious agents [Davis et al.,
1977], while the behavior of PROSPECTOR can be interpreted as classifying a geological

description into a type of mineral formation [Hart et al., 1978; Duda et al., 1979].

2.3.4 Generic Task Integration Framework

Recent exploratory research in the ISL has resulted in a preliminary methodology
for integrating two problem solvers [Schroeder, 1995]). This follows in the spirit of
Sticklen’s Knowledge Level Architecture and is based on establishing a communication
channel between a problem solver requesting work and other cooperating problem solving
agents.

Possible points for the existence of communication channels between problem
solvers are defined explicitly by the developer as the integrated generic task problem
solver is built. Explicit mappings between the variables in the requesting and cooperating
problem solving agents’ databases must also be specified.

The current capabilities of the GT integration framework restrict the requesting
problem solver to a routine design problem solver. The cooperating problem solving
agents can be hierarchical classification problem solvers, other routine design problem
solvers, or algorithmic problem solvers (another component in the ISL GT toolbox). In

routine design, instead of setting a parameter at the step level with a structured pattern
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matcher, a cooperating HC can replace that step. A cooperating algorithmic problem
solver can interact with the requesting RD in the same way as a cooperating HC. Cooper-
ating RDs can replace specialists within the requesting RD.

This integration framework has enabled the construction of a case-based reasoning
system within a generic task environment, the details of which are presented in Chapters
Nine and Ten of this dissertation. However, before the details of such an approach can be
presented the requirements of a CBR system must be elucidated. The next chapter does so

with a detailed discussion of case-based reasoning.



CHAPTER 3

Case-Based Reasoning

Case-based reasoning (CBR) is a problem solving paradigm that is arguably different in
essence from other major Al approaches. Instead of relying entirely on general knowledge
of a problem domain, or establishing abstracted relationships between problems and solu-
tions, CBR can use the specific knowledge of previous concrete problems. This is an
experience-based method that attempts to deal with current problems through a compari-
son to past solutions. A new problem is solved by finding a similar past case and reusing it

as indicated by the new situation.

The development of CBR was motivated in part by a realization that humans often
rely on previous experiences to solve new problems [Schank, 1982]). Other researchers
have also contributed to the development of this technique. Work on memory organization
gave a framework for a dynamic memory [Kolodner, 1984]. Work on transformational
and derivational analogies examined the mapping, adaptation, and replay processes [Car-
bonell, 1983; Carbonell, 1986]. Other work on analogy has highlighted the importance of

the mapping process [Gentner, 1983].
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CBR has been demonstrated to be conducive to many types of problem solving
applications: planning (e.g. MEDIC [Tumner, 1988; Tumer, 1989], ROENTGEN [Berger,
1989; Berger, 1994]), design (e.g. PANDA [Roderman & Tsatsoulis, 1993], DEJAVU
[Bardasz & Zeid, 1993]), and explanation & diagnosis (e.g. PROTOS [Dvorak, 1988;
Bareiss, 1989], CASEY [Koton, 1989]), among others. Those applications that focus on
design problem solving are emphasized in the discussion and presented examples through-

out this chapter.

For each problem solving application, experiences cached as cases allow incre-
mental learning, which in turn allows the reasoner to become more efficient. This incre-
mental learning occurs as a case-based reasoning system accumulates both specific and
general knowledge. The mixture of knowledge level abstractions enables the solution of

problems requiring the simultaneous handling of multiple interacting considerations.

At the highest level of generality, the CBR cycle may be descﬁbgd by the follow-
ing four processes [Aamodt & Plaza, 1994]: retrieve, reuse, revise, and retain. A new
problem is solved by retrieving one or more previously experienced cases that are similar
along some important dimensions. The case is reused in one way or another and the solu-
tion given in the retrieved previous case is revised. Finally, the new solution and the prob-
lem it solves is retained by incorporating it into the existing case-base & updating any
indexing. These four processes each involve several more specific steps, the details of
which are hotly debated within the CBR community. See Figure 8 for a framework of
these processes and the interactions among them (after Figure 1, [Aamodt & Plaza,

1994]).



Revised
Solution

4

Output

Figure 8. A framework of the CBR process.
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To emphasize the utility of case-based reasoning, several CBR characteristics are
contrasted with those of other computational approaches in the following section. The
remainder of this chapter looks at two broad categories within which the major issues of
CBR can be summarized. The first of these is that of knowledge representation and the
organization of both cases and libraries of cases. The second category addresses the prob-
lem solving tasks comprising each of the four main processes in the CBR cycle (Figure 8),
and gives specific examples of how the CBR community has implemented methods for

performing these tasks.

3.1 Contrasting CBR with Other Computational Approaches

To understand what makes CBR a useful reasoning technique, and also to point out
its unique features, CBR must be compared to other reasoning techniques. Other compu-
tational approaches to which CBR can be compared include: rule-based systems, data-
bases, generalization approaches, model-based reasoning systems, and task-specific
architectures. The discussion that follows succinctly addresses the differences between
CBR and each of these approaches, and is drawn in part from the discussion in [Leake,

1995].

3.1.1 Rule-based Systems

There is sharp disagreement within the CBR community over how comparable
rule-based systems are to CBR systems. One school of thought insists that CBR can be
thought of as a type of rule-based reasoning in which the rules are very large [Kolodner,
1993], while another explicitly refutes this viewpoint by pointing to the noticeable differ-

ences in knowledge use [Leake, 1995].
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There are three areas in which CBR can be contrasted with a rule-based approach

[Leake, 1995]: the type of knowledge used; how the knowledge is used; and the funda-

mental role of learning.

The type of knowledge used. Rule-based approaches use if-then rule representations of
knowledge that are usually identified by a domain expert. A CBR approach reasons from
examples (cases) rather than rules. This presentation of knowledge as cases keeps infor-
mation fluid and dynamic, whereas when represented as rules, the same knowledge
becomes rigid and unchangeable. Due to a mixture of different knowledge abstractions,
cases can integrate information; rules by their very nature striate information at different
levels of abstraction. However, the main advantage of CBR over a rule-based approach is
the relatively easy knowledge acquisition through case addition (as opposed to the genera-

tion and inclusion of new domain rules).

How the knowledge is used. A CBR approach replaces a rule-based technique of gener-
ate and test with retrieve and adapt. Whereas the generate and test requires the exhaus-
tive generation of a complete solution before it can be checked for accuracy, retrieve and
adapt allows a much more ad hoc approach to finding an accurate solution. The major
advantages of this different technique are increased efficiency and flexibility. Adaptation
in case-based reasoning intrinsically implies partial matching. Therefore, knowledge
within a case library can be used even when it is not directly applicable to the current situ-
ation. This is not an option in a rule-based approach, the rigid structure of which prevents

indirectly applicable knowledge from being utilized.

The fundamental role of learning. CBR systems learn by adding cases after a previous

case has been successfully retrieved, modified, and identified as significant. CBR systems
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can also learn from failures. Typical lessons learned from failures include: cases,

problems to anticipate, and failure recovery strategies. A major advantage for case-based
reasoning is that the CBR system automatically refines its knowledge as it is run. A rule-
based system, however, can only learn or refine its knowledge through explicit

modification of its rules by an expert.

3.1.2 Databases

CBR is perhaps most closely related to databases; so closely related are the two
that a case library can be thought of as a special kind of database [Kolodner, 1993]. Like a
database, a case library stores many records. The retrieval algorithms for both must effi-
ciently find appropriate records when requested. The comparison fades, however, when

the organization of records and the specific retrieval methods used are considered closely.

Organizational Structures. Design descriptions as expressed within a database are
driven strictly by the syntax of the design. The representation of the knowledge in the
database’s organization is often decided by ease of access and is not necessarily intended
to directly contribute to a problem solution. Case libraries, on the other hand, are influ-
enced by the semantics and the syntax of the design descriptions comprising them. In this
way, case libraries are structured to facilitate the determination of a problem solution.
This organization has a direct impact on the retrieval algorithms that can efficiently obtain

records.

Retrieval Algorithms. The main distinction between retrieval methods used for data-
bases and CBR systems is the capability to do partial matching. Databases cannot retrieve

according to semantics because of their syntactical organization, and therefore cannot
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retrieve a close partial match. On this point hinges the utility of CBR. By enabling partial

matching (and subsequent adaptation of these partial matches to fit the problem), CBR
permits increased robustness and flexibility.

An important point to be made is that the organizational structure of the library
dictates the type of retrieval algorithm to be used. Different database retrieval algorithms
can search structures such as B-trees or heaps, while different CBR retrieval algorithms

exist for searching very broad (breadth-first) or very deep (depth-first) case libraries.

3.1.3 Generalization Approaches

If a system can apply old solutions to new situations, it often uses some sort of
generalization. As CBR does indeed apply old solutions to new situations, it can be con-
sidered to use generalization techniques. A CBR system with a wide-ranging domain cov-
erage must be capable of doing generalization. As the diversity of the domain increases,
so must the capability for generalization. For example, a CBR system that includes repre-
sentations of both planetary orbits and the migratory patterns of birds must be able to find
the similarities that exist between these seemingly disparate types of cases. Two generali-
zation approaches are considered here [Leake, 1995]: inductive generalization, and expla-

nation-based generalization.

Inductive Generalization. CBR leams incrementally, generalizing cases over time as a
by-product of the retrieval and adaptation process. A typical inductive generalization
approach groups together concepts and then generates a class definition representative of
those concepts. Figure 9 shows a simple example of this. Several different flies and bees
are shown and a generalization of flying insects is given. Aggressive generalization facili-

tates rapid solutions to new problems, but can be inefficient and even incorrect in domains
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Flying Insects
A

Figure 9. A simple le of inductive generali
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where proper generalizations are unknown [Rich & Knight, 1991]. Besides incremental

generalization, CBR exhibits single-example learning, a natural integration of inductive
and analytic learning (through case adaptation), and an emphasis on content (rather than

interpretation).

Explanation-based Generalization. A CBR approach does not require a complete
domain theory, a prerequisite for explanation-based generalization. The domain theory is
used to trim away the unimportant portions of an example with respect to a stated goal.
What remains is an explanation of why the example is an instance of the goal. The expla-
nation is then abstracted as far as possible while still describing the goal idea [Mitchell et
al., 1986]. As complete and consistent domain theories are seldom realized, getting expla-
nation-based generalization to work efficiently is difficult. CBR is much more flexible,
adapting a solution only when needed and allowing lazy generalization & operational

cases without a complete domain theory.

3.1.4 Model-based Reasoning

There are several intriguing parallels between CBR and model-based reasoning.
Neither performs de novo reasoning. The knowledge within each approach is compiled,
and the reasoning process within each uses aggregated knowledge. The differences
between the two, however, are what are of interest [Kolodner, 1993]: knowledge content,

domain utility, and problem-solving relevance.

Knowledge Content. Model-based reasoning fashions solutions by interpolating from
the first principles describing a problem domain. For example, the operation of a

terephthalic acid reactor may be modeled by comparing the flow rates of the input
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paraxylene stream, the reactor temperature, and the pressure of the gas exhaust stream.
Particular combinations of these three features can indicate a system malfunction. The
main distinction to be made here is that CBR eliminates the extensive precompilation
required by model-based reasoning. A primary advantage to CBR is that the knowledge
upon which its solutions are based is gathered incrementally as the system is used. In this
way, a CBR approach can be considered to learn the domain knowledge without a need for

knowledge precompilation by an expert.

Domain Utility. When a domain is understood well enough for there to be a suitably
robust causal model, model-based reasoning is applicable. CBR is also applicable for
such domains. Where CBR distinguishes itself from model-based reasoning is in domains
for which there is incomplete knowledge. In such instances, the case library serves as an

abstract model of the domain.

Problem-solving Relevance. Solutions can be verified using model-based reasoning, but
the initial generation of those solutions is not engineered at all. Conversely, case-based
reasoning facilitates efficient generation of solutions. Evaluation of these solutions is

based on a relative comparison with the best available cases.

3.1.5 Task Specific Architectures

The representation and reuse of knowledge serve as the foundations for both task
specific architectures and case-based reasoning. Task specific architectures are particu-
larly useful for performing estimation and assumption and do so with precompiled domain
knowledge and specific inferencing techniques. The entire premise of case-based reason-

ing is the reuse of previous design solutions. Specific points of comparison between
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TSA's and CBR include problem solving approaches, knowledge content, and structures

for organizing knowledge.

Problem Solving Approach. A CBR approach uses specific knowledge of previous con-
crete design problems. This experience-based method solves current problems through a
comparison to past solutions. A new problem is solved by finding a similar past case and
reusing it as determined by the new situation. TSA also uses specific knowledge of, say,
design problems. The specific knowledge in a TSA is represented in an abstracted form,

rather than monolithically, as for CBR.

Knowledge Content. A case library consists of both specific and general knowledge in
forms of cases and indices, respectively. This mixture of knowledge abstractions makes
solving complex problems easier. Heuristics that capture the essence of various facets of a
particular problem solving episode are used to find solutions to new problems. These heu-
ristics can be simple or complex (or both), depending upon the problem solving task and

the domain in which the TSA is used.

Organizational Structures. Both CBR and TSA's organize the knowledge within them
in a way that separates the specific knowledge from the computational approaches used.
In a CBR system, case structures are not dependent upon the navigation of the case library
or the indices used to organize that library. TSA's also separate the knowledge from the
computational processes that operate on it, allowing adaptation of the knowledge without

a complete reconstruction of the underlying inference procedures.
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3.1.6 Potential Capitalization on Differences

In spite of the preceding emphasis on the contrasts between CBR and other com-
putational approaches, CBR can benefit from interacting with rules, databases, generaliza-
tions, models and task specific architectures [Leake, 1995]. Rule-based systems can
generate solutions when cases are not available. Databases can manage case libraries.
Inductive or explanation-based generalization can be used for indexing and retrieval of
cases in a library. Model-based systems can be used to validate retrieved solutions. TSA’s
provide standard organizational structures and problem solving approaches for use in

organizing and retrieving cases.

Each of the computational approaches discussed can also benefit from CBR. Rule-
based systems, when used together with CBR, can exhibit increased efficiency. For
instance, rules can guide the adaptation of cases to fit a problem different from that to
which they are a solution. Rules can also assist in the adaptation of a closely matching
case. CLAVIER used rules to limit configurations of parts in the autoclave when it pre-
sented the user with possible modifications to the current autoclave part layout [Hennessy
& Hinckel, 1992]). The organizational and retrieval techniques of CBR can make data-
bases more flexible. CBR can also supplement generalizations (e.g. with exceptions) or

replace them entirely.

There are many instances of integrated systems that combine CBR and other com-
putational approaches. CASEY integrated model-based and case-based reasoning for
diagnosis [Koton, 1989], while KRITIK combined the two reasoning techniques for
design [Goel, 1989]. JULIA combined CBR with constraint posting and a TMS (truth

maintenance system) to keep track of recipe interactions [Hinrichs, 1992]. Anapron uses
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cases to identify exceptions to pronunciation rules, and the combination of the two per-
forms better than either does alone [Golding & Rosenbloom, 1994]. This list of fielded

systems implies that CBR is most effective when part of a problem-solving repertoire.

3.2 Knowledge Representation & Organization

As mentioned in “Databases” on page 59, the organization of a case library can dictate the
method(s) which must be used for retrieving cases. This holds for not only the organiza-
tion of the cases within the library, but also for the representation of the cases and the indi-

ces used to summarize the cases.

3.2.1 Case Representation

The domain in which CBR is being used indicates the problem solving task(s) and
allows the definition of case composition to be established. A typical task for which CBR
can be used is generic problem-solving (e.g., reusing solutions to generate designs (meals:
JULIA,; devices: KRITIK; buildings: CADRE) or plans (recipes: CHEF; robot control:
SIMMS)). Other domains that define the task and case composition include classification/
interpretation and teaching/aiding [Leake, 1995]. Depending upon the domain and task
for which the CBR approach is used, the exact definition of a case may change, varying in
shape and size, temporal coverage, and associational structure (e.g., solutions with prob-
lems, outcomes with situations).

Although case definitions are domain- and task-dependent, insight can be gained
by abstractly discussing the representation of a case. A distinction can be made between
input and stored cases [Leake, 1995). Input cases can be considered descriptions of

specific problem situations. Previous specific problem situations with corresponding
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solutions and outcomes comprise the cases stored in a case library. Alternatively, stored
cases can be said to contain a lesson and a specific context in which the lesson was

applicable. The context is used to decide when the lesson may apply again.

Case representations used in fielded CBR systems show possible alternatives for
case representation. Simple flat feature-attribute pairs, domain-specific structured descrip-
tions and graphical models are the case representations most commonly found. The case
representations of three systems are presented here: DEJAVU, a mechanical artifact
design system; CLAVIER, an autoclave layout determination system; and CADRE, a

building design system.

The cases within DEJAVU use a design plan representing a mechanical artifact’s
structure, properties, part & property relationships and abstracted design rationale [Bar-
dasz & Zeid, 1993]; this design plan is an example of a domain-specific structured repre-
sentation. Design plans within DEJAVU are explicitly encoded as define-part constructs.
These describe an object by specifying its general properties and constituent parts. For
example, a chair can be defined as having certain dimensions (width, depth, height) and

materials. It can also be described as having a seat, back and legs.

The cases within CLAVIER contain knowledge about the layout of polymer com-
posites in an autoclave [Hennessy & Hinckel, 1992]. This knowledge includes not only

specific details, but abstracted classifications and supporting information as well:
* the parts and their relative positions on a table;
¢ the tables and their relative positions in the autoclave;

* the classification of the layout (e.g., large-part loads, fiberglass loads, steel-mold
loads); and
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e production statistics (e.g., start & finish time of the run, AT between temperature
extremes during the run).

Also implicitly stored within CLAVIER’s cases are each part’s heat-up characteris-
tics and thermal interactions between part positions. This implicit information also
includes the effect of the part’s location in the autoclave and its relative position to the

other parts in the layout.

CADRE incorporates only shallow cases in its case library. Shallow cases are
those cases that contain only a design solution, and no associated design history (as would
be present in a deep case). These shallow cases include [Hua & Faltings, 1993]:

* the actual structure needed to satisfy a set of design requirements;
* the trade-offs made between functional requirements; and
* tacit considerations, such as the style of the building.

The actual representation of the cases is an annotated graphic. The structures
within CADRE are represented as CAD models. Each structure’s functional features are
modeled symbolically as mapped constraints on the CAD model. The tacit considerations

are not encoded explicitly, but exist within the mapped functional feature constraints.

3.2.2 Indexing Vocabulary

Finding appropriate indices is an ongoing research issue within the CBR commu-
nity. Itis very important to have indices that accurately represent the information embed-
ded within the case library. Without proper indices, the information in the cases is
inaccessible and is almost completely useless. The major goal of indexing work is a gen-
erally applicable indexing vocabulary, or a cross-domain theory of the representational

content of indices [Kolodner, 1993].
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Closely tied to case representation is the vocabulary used to index the cases. This
iﬁdex vocabulary is in turn closely related to the overall organizational structure of the
case library. This confluence makes it difficult to separate issues as strictly vocabulary- or
structure-related. These issues are more easily addressed when considered to be related to
the organizational structure. Without going into a great deal of detail, some general princi-
ples for “good” indices are presented here. The details are left to an organizational struc-
ture discussion relegated to the next section.

Indices should be predictive of important case features and should be easy to rec-
ognize [Leake, 1995]. For example, the goal to be achieved by a plan is a good index for
retrieving useful plans. This example follows a basic principle of CBR: “Generalize the
indices, not the cases!” [Hammond, 1989). Besides predictive features and a certain
degree of abstractness (making an index easy to recognize), indices should incorporate a

degree of concreteness and usefulness [Kolodner, 1993].

3.2.3 Organizational Structure

Retrieval methods are related to the methods used for building organizational
structures just as those structures are closely related to retrieval methods. Therefore, each
organizational structure mentioned here has associated retrieval and building methods.
The particular organizational structure that is appropriate for an application is largely
dependent upon four issues. These issues include: the number of cases in the case library,
the complexity of the indices, the number of different ways the case library may be used,

and the variability of the indices with respect to those various uses [Kolodner, 1993].

Organizational structures can be divided into two main categories: flat, and

hierarchical. In a flat memory, cases are simply stored in a sequential list, with optional
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augmentation by shallow indexing or partitioning of those cases. Essentially, there is no
“organizational structure” of which to speak for flat memories. Hierarchical
organizational structures allow much more variability, including variations such as shared

feature networks, category-exemplar networks, and redundant discrimination networks.

The three variations of hierarchical structures are examined by considering charac-
teristics of each structure. Included in this examination are: a basic description, retrieval
and structure-building methods, pros and cons of the structure, and an implementation in a

fielded CBR system.

Shared Feature Networks. This organizational structure provides a means of clustering
cases so that similar cases (i.e., those sharing many features) are grouped together. Each
internal node within a shared feature network contains features shared by the cases below
it. This clustering of similar nodes and cases continues down to the leaf nodes of the hier-

archy, which contain the cases themselves.

Retrieval of a case from a shared feature network involves a type of breadth-first
search [Kolodner, 1993]). The input is matched against each node at the highest level of
the network. The node with the best match is chosen. This continues until the node cho-
sen is a case. A shared feature network can be built similarly, substituting a clustering
method for the node-level matching and the entire library of cases for the input. A shared

feature network is then built from the top level down to the individual cases.

The main advantage of this organizational structure is that it partitions cases better
than a sequential list, making retrieval more efficient than a serial search. A disadvantage
is that adding cases to an existing shared feature network is a complex operation. It is dif-

ficult to add new cases while preserving the optimality of the network. When more than
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one reasoning goal is to be accommodated within the case library, several differently pri-

oritized networks may be needed.

CADSYN’s case memory [Maher & Zhang, 1993] is an example of a nested
shared feature network. This organizational structure contains two components: case
hierarchies and case indexing representations. A design case consists of a “‘supercase” and
multiple levels of subcases. The supercase of a case provides an general design episode
context and general description. Each subcase describes the local context and the solution
of a design subsystem. Figure 10 shows an abstract shared feature network for a
CADSYN design case. Every design case is stored declaratively in a case indexing hierar-
chy. The subcases can be used independently of the entire case, and are individually

indexed along with the links used to retrieve the whole case. The case memory of

Attribute-1 : Value-1
Attribute-2 : Value-2

_

Figure 10. A CADSYN design case as a shared feature network.
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CADSYN can be thought of as a shared feature network of n nested shared feature net-

works, where 7 is the number of design cases in the library.

Category-Exemplar Networks. The case memory is represented as a networked struc-
ture of categories, cases (or exemplars), and index pointers. Each case is associated with a
category. An index may point to either a case or a category. There are three kinds of links:
descriptive links, called remindings, which point from features to cases or categories; case
links, or exemplar links, which point from categories to related cases; and difference links
between cases whose features only vary slightly. A feature is generally described by a
name and a value. Exemplars within a category are ranked according to how representa-
tive the exemplars are of that category. The linking of features and exemplars to and from

categories within this memory structure can be seen in Figure 11. The arrows between the

feature-c

feature-e

feature-a

feature-b feature-d
\k feature-f

Category A

weakly

prototypical
exemplar

strongly
prototypical
exemplar

[feature-b feature-d feature-f]

Exemplar-A “ \ Exemplar-B

\/

[feature-a]

Figure 11. A Category-Exemplar case memory structure.
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features and the category within Figure 11 are remindings. A semantic network that con-
tains features and intermediate states (e.g. subclasses of goal concepts) links categories
within the case memory. This network represents general domain knowledge and enables

explanatory support for some CBR tasks.

Based on the surface features of an input case and in conjunction with the remind-
ings, relevant categories are identified and the most likely is selected. The most prototypi-
cal case from the identified category is selected using exemplar links and its semantic
similarity to the input is assessed using the general domain knowledge. If the two are sim-
ilar enough, the category is valid. It the match is not close enough (by whatever measure
used), difference links are used to choose another similar case (exemplar). This process
continues until a close match is found. A new case is stored by establishing the appropri-
ate feature indices and by searching for an appropriate category and a matching case. If a
case is found with only minor differences, the new case may not be retained. The two
cases may also be merged by following taxonomic links in the semantic network. Other-

wise, the new case is placed within the category.

A category-exemplar organizational structure works well due to its combination of
knowledge-based matching, rich semantic matching between exemplars, and a failure-
driven knowledge acquisition process. The existence of a failure-driven knowledge acqui-
sition process points out a potential flaw with this organizational structure, however. In
order to find good matches for new cases, difference links must exist between cases.
These links are added to the case memory by an expert only when the existing structure
fails. A learning curve does indeed exist for any system constructed using this organiza-

tional structure.
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The PROTOS system for diagnosing hearing disorders [Dvorak, 1988; Bareiss,

1989] used category-exemplar networks to organize cases in its case memory. The aim of
PROTOS was to use the category-exemplar structure to find the best category, or disorder,
for a set of input. When given a set of patient complaints and descriptions (e.g.,
speech:normal, age:greater-than-65, o-ac-reflex-u:elevated, and so on), PROTOS found the
categories with which these features were associated and chose the best match. In this
example, PROTOS was reminded of cochlear-noise, cochlear-age-and-noise, otitis-media, etc.
Among these remindings, cochlear-noise was the strongest. The most prototypical exem-
plar of cochlear-noise was compared with the input set and found to not match well. By
following a difference link labeled age:greater-than-65, PROTOS found another case under
the cochlear-age-and-noise category. The match to this case was found to very close, and

the patient was diagnosed as having cochlear-age-and-noise.

Redundant Discrimination Networks. The organizational structure in a redundant dis-
crimination network is comprised of ‘episodic memory organization packets’ (E-MOPs
[Kolodner, 1983a; Kolodner, 1983b]), or generalized episodes [Koton, 1989]. This model
was developed from Schank's more general MOP theory and dynamic memory model
[Schank, 1982]). The basic idea is to organize similar cases under a more general structure
(a generalized episode). A generalized episode (GE) contains three different types of
objects: norms, cases and indices. Norms are features common to all cases indexed under
a GE. Indices are features which discriminate between a GE's cases. An index, which is

comprised of a name and a value, may point to a more specific GE, or directly to a case.

Figure 12 shows a complex GE with its underlying cases and a subordinate GE

[Aamodt & Plaza, 1994]). The entire case memory is embodied in a discrimination
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Figure 12. Generalized Episodes within a case memory structure.

network in which nodes are GEs (containing the norms), indices (names or values), or
cases. Indices point from a GE to another GE or to a case. The indexing scheme is
redundant, as there are multiple possible paths to a particular case or GE. This is shown in
Figure 12 by the indexing of case d, which appears in both GEs.

As implied by its name, there is more than one network within a redundant dis-
crimination case memory. Each network organizes items with a different ordering of
questions. To retrieve a case, the networks are all searched in parallel. A ca.lse is retrieved
by finding the GE with the most similar problem description norms. Indices under that
GE are then traversed in order to find the case which contains most of the additional prob-

lem features. If the answer to a question within one network is missing, further search in
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that network is discontinued. Storing a new case is performed in the same way, with the
additional process of creating generalized episodes. This memory structure is dynamic in
the sense that similar parts of two case descriptions can be generalized into a GE, under

which the cases are then indexed.

The main advantage for representing case libraries in redundant discrimination
networks is the many different paths to each item in the network. Multiple paths allow
retrieval even when features are missing in an input set [Kolodner, 1993]. That generaliza-
tions are formed as cases are incorporated is an added bonus. Since the index structure is
a discrimination network, cases are stored under each index to differentiate them from
other cases. This can lead to an explosive growth of indices as the number of cases (not to
mention case complexity) increases. Most systems using a redundant discrimination net-
work therefore enforce limits on the choice of indices for the cases by, say, permitting only
a small vocabulary of indices [Aamodt & Plaza, 1994]. An additional disadvantage to this
organizational structure is that the indexing within the networks may not discriminate well

enough, resulting in the retrieval of barely-matching cases.

CASEY was a system for diagnosing heart failure [Koton, 1989]. It combined
CBR with an accurate model-based reasoning system. As with most medical systems,
CASEY stored a large amount of information in its cases. In addition to all observed fea-
tures (i.e. description of and symptoms in the patient), it retained the causal explanation
for the diagnosis found and the list of indicated states in the heart failure model. These
states, referred to as generalized causal states, were also the primary indices to the cases.
CASEY used redundant discrimination networks to organize its case memory around

these generalized causal states. It also included prioritization of the discrimination
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scheme in order to eliminate the retrieval of barely-matching cases. This was an important

addition, as the same heart disorder could manifest itself in many different ways, and dif-

ferent disorders could be symptomatically very similar.

3.3 Problem Solving Tasks

As mentioned in the introduction to this chapter, a general description of case-based rea-
soning decomposes it into four main processes: retrieve, reuse, revise, and retain. Each of
these processes can involve a number of more specific steps. A summary of the important
issues within each of these four processes follows. This discussion draws on the frame-

work presented in [Aamodt & Plaza, 1994)].

The four-process view in Figure 8 on page 56 emphasizes CBR as a cycle of
sequential steps. A task-oriented perspective can describe the details of the four processes.
In such a description, each step or subprocess is viewed as a small-grain problem solving
task the CBR reasoner can perform. The idea of a task here is analogous to the discussion
of Generic Tasks and Knowledge Level reasoning in the previous chapter.

A knowledge level view of a system is that of an agent which has goals and means

to achieve them!

. Three facets of a system can describe it: tasks, methods, and domain
knowledge models. Tasks are defined by the goals of the system, and a task is performed
using one or more methods. To accomplish its task, a method needs knowledge about the

overall domain, the current problem, and the context of the current problem. A method

1. This perspective differs slightly from the KL A of Sticklen that was presented in the previous
chapter [Sticklen, 1989). The main distinction is that the KILA considers things more abstractly
than does the interpretation used here.
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specifies the algorithm that identifies and controls the execution of subtasks, and accesses

and utilizes the knowledge and information needed to do this [Aamodt & Plaza, 1994].

It is important to keep in mind that not every CBR system incorporates every step,
not to mention the four main processes, covered in the following discussion. Generally,
the detailed steps involved in a CBR implementation are determined by the overall prob-
lem solving task and domain for which the system is intended, and not by any precompiled
recipe for CBR. A system developed to use CBR for supervised learning has a different
emphasis than a system for planning or design, or for that matter, a system for explanatory
diagnosis or argument construction. This has resulted in wide variations in the definition
of what is or is not CBR. The four step process description of CBR is universally accepted

within the CBR community; it is the details which are hotly debated.

The task-method structure referred to in the following discussion is shown in
Figure 13 (after [Aamodt & Plaza, 1994]). Tasks are indicated by solid letters and bor-
ders, while methods are indicated by italics and dashed borders. Task decompositions are
shown by solid lines and proceed outward, with the superior tasks more heavily empha-
sized. The four major CBR tasks shown correspond to the four processes of Figure 8.
This figure flows from the center outward and clockwise (at every level: task, subtask &
method) starting from the RETRIEVE task. For example, RETRIEVE is partitioned into
identify features, search, and initially match, in that order of execution. Similarly, iden-
tify features is partitioned (in order of execution) into collect descriptors, interpret

problem, and infer descriptions.

Every task partition in the figure is intended to be complete, i.e. the set of subtasks

of a task is sufficient to accomplish the task. The figure does not show any control
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structure over the subtasks, although a rough sequencing of them is indicated by the layout
flow as mentioned above. Multiple methods for a task identify alternatives for solving that
task. Any one of the methods indicated may be sufficient to solve the task, several

methods may be combined, or other suitable methods may exist.

3.3.1 Remembering the Appropriate Case(s)

The process of case retrieval, or remembering, is a complicated one which involves
searching a potentially massive memory. As a new case (used as the retrieval probe) is
unlikely to match exactly with a stored case, some sort of partial matching must be per-
formed [Rissland et al, 1989]. The retrieval of relevant cases becomes quite important in
order to operate efficiently. Determination of the relevancy of cases can be done by a
comparison of indexes, or abstracted comparators. Retrieval can also be thought of as
looking for syntactic similarity.

Supervised learning systems use Euclidean distance and other syntactic similarity
functions to retrieve cases!. Planning & design systems retrieve those cases which have
the most shared goals with the input case. Diagnosis systems follow prototypicality links
(e.g. PROTOS) and use causal feature indices. Argument construction systems retrieve
cases that best support pro & con arguments as well as cases supporting counter-argu-

ments.

The retrieve task starts with a problem description and ends when the best match-
ing previous cases have been found. Its subtasks are identify features, search, and ini-

tially match. The identification task comes up with a set of relevant problem descriptors.

1. Syntactic similarity approaches such as Euclidean distance work well only when quantitative
information is available within the case. Cases which are comprised mostly of qualitative infor-
mation cannot be easily retrieved (if at all) by an assessment of their syntactic similarities.
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The search task uses these descriptors to look through the indices of the case memory.

The matching task returns a (small) set of cases that are sufficiently similar to the new

case.

Identify Features. To identify a problem may involve simply noticing its input descrip-
tors, but a more elaborate approach can be taken in which an attempt is made to under-
stand the problem within its context. Unknown descriptors may be ignored or the system
may request an explanation from the user. When an input feature was unknown to PRO-
TOS, for example, it asked the user to supply an explanation linking the feature into the
existing semantic network (category structure) [Koton, 1989]. Understanding a problem
may involve eliminating extraneous problem descriptors, inferring other relevant problem
features, checking whether the feature values make sense given the current context, or
generating expectations of other features. Descriptors other than those given as input may
be inferred by using a general knowledge model. Another way to infer descriptors is to
retrieve a similar problem description from the case base and use the features of that case

as expected features.

Search. The search, or retrieval, method is dictated to a great degree by the organiza-
tional structure of the case library. Flat case memories can be searched using a simple
serial search in which every feature in every case is evaluated sequentially. Shared feature
and redundant discrimination networks imply breadth-first searches, while prioritized dis-
crimination networks imply depth-first searches. Parallel search methods can be used for

nearly any organizational structure.

Irregardless of what type of search is used, there are three ways of retrieving a case

or a set of cases: by following direct index pointers from problem features, by searching
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an index structure, or by searching a model of general domain knowledge. PROTOS com-
bined the first and third of these, as it used direct pointers to hypothesize a candidate set

and then justified that set as a plausible match using general knowledge.

Initially Match. An initial matching process retrieves a set of plausible candidates for
the input case. Input features may directly guide the retrieval of cases or cases may be
retrieved using features inferred from the input. Cases matching every input feature are
occasionally found, but more often cases matching only a fraction of the problem features
are retrieved. The relevance of a retrieved case is evaluated, particularly if it was retrieved
based on a subset of features. A simple relevance test may check if a retrieved solution
conforms with the expected solution type of the new problem. The degree of similarity
must be assessed, generally by using methods which compare the surface similarities of

both problem and case features.

3.3.2 Using the Retrieved Case to Determine a New Solution

The retrieved case is combined with the new case (the user input) in this step to form a
solved case, i.e. a proposed solution to the initial problem. This gives a rough first pass
answer about how to solve the new problem based on the solution method existing within
the retrieved case. Often times, this will involve the identification of specific features
which must be considered explicitly in order to solve the problem. For instance, a new
case would not necessarily have a complete representation of the problem, let alone the
solution. The retrieved case contains similarities to the specified portion of the new case,
as well as detailed plans and procedures which describe a possible solution to the problem.

Reuse can also be thought of as looking for semantic similarity.
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The reuse process in supervised learning systems is trivial. Planning & design sys-

tems either use only the relevant portions of solutions or merge previous solutions to form
a new solution. Diagnosis systems do not perform reuse per se. In argument construction
systems, an improved match strengthens an argument, while other cases are used to

explain unmatched facts.

The reuse of a retrieved case solution(s) for the input case addresses two issues:
the differences between the past and the current case, and what part of a retrieved case is

relevant to the new case.

Select. Choosing the best case is generally necessary after the set of partially matched
cases has been determined. As it is often the retrieved cases that determine which of the
new features of the new case are the most important for matching, contextual derivation of
the importance of features must be utilized instead of a generic count or weighted count of
matching features. The cases are ranked according to a metric or ranking criteria. Know-
ledge-intensive selection methods can generate explanations to support this ranking, and
the case that has the strongest similarity explanation is chosen. Other properties of a case
that are considered in some CBR systems include: relative importance and discriminatory
strengths of features (e.g. CLAVIER [Hennessy & Hinckel, 1992]), prototypicality of a
case within its assigned class (e.g. CASEY), and difference links to related cases (e.g.

PROTOS).

Though the methods used may vary, a commonality is that the set of items
retrieved each contributes general knowledge about what is important in solving them.

Using this knowledge, the case selector can decide what to take into account when
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determining the best cases. The best cases are those which address the reasoner’s current

problem in the best way (the definition of which is dependent upon the method used).

Copy. In simple classification tasks the differences between the input case and the best
retrieved case are considered non-relevant and are abstracted away. The solution structure
of the retrieved case is then transferred to the new case as its solution structure. This is a
very simple type of reuse. Other systems take into account differences between the past
and the current case, preventing the direct transferal of the relevant part of the retrieved

case. In such systems an adaptation process takes those differences into account.

3.3.3 Adapting and Evaluating the New Solution

As new situations rarely match the old ones exactly, the appropriate old solutions
must be adjusted to fit the current situation. The main issue here is that of adaptation.
After the old case has been modified to match the new situation more closely, an evalua-
tion of this new solution must be performed. If any inconsistencies or errors in the new
solution are found, that solution must undergo additional adaptation, or repair.

It is commonly thought that there are no universal adaptation methods, as the idio-
syncrasies of every domain (and therefore, case structure) demand varying approaches for
modification. Supervised learning systems do not include any revision. Planning &
design systems either make repairs to reused cases or indicate which repairs need to be
made. Diagnosis systems reevaluate cases by justifying and potentially modifying the
indicated diagnosis. Argument construction systems examine and look for ways to

increase the strength of matching arguments.



85
Adapt. Initial adaptation is comprised of two main steps: figuring out what needs to be
done and actually doing the adaptation [Kolodner, 1993]). One particular approach to
adaptation is fairly ubiquitous: deleting extraneous information. If a secondary
component in a case performs no necessary function for the new situation, then removing

it harmlessly streamlines the solution.

The past case solution can also be modified through transformation or by deriva-
tion [Riesbeck & Schank, 1989]. In transformational adaptation, the past case solution
does not directly provide a solution for the new case. It can, however, be modified into a
'solution if the system contains knowledge appropriate for doing so. System knowledge
for performing this transformation can be indexed around the differences detected among
the retrieved and current cases. In CASEY, a new causal explanation was built from the
old causal explanations using rules together with a domain model. Transformational reuse
requires a robust domain model plus a control mechanism to guide the application of this

model.

Derivational reuse examines the problem solution in the retrieved case. This con-
tains information about the solution method used for the retrieved problem. The retrieved
method is then applied to the new case in the new context. During the process, previously
successful alternatives will be considered first; new subgoals are pursued based on the old

ones and old subplans can be retrieved as needed.

An exhaustive review of current adaptation practices can be found in [Hanney,
1996]. This review goes beyond the general summary given here, explicitly identifying
existing adaptation taxonomies and presenting a novel role-based taxonomy for adaptation

knowledge.
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Evaluate solution. The evaluation task looks at how well the modified solution works as

determined by an expert, use in the real world, or use in a model. This generally takes
place outside the CBR system as it involves the application of a suggested solution to a
real problem. Depending on the type of application, the results from this may take some
time to become apparent. The case can still be retained and made available in the case

library in the interim, but its questionable validity must be indicated.

Repair fault. Case repair is essentially an additional adaptation process which retrieves
or generates explanations for detected errors in the solution. Causal knowledge can be
used to generate an explanation of why certain goals of the solution were not achieved.
This explanation is stored in a failure memory and can be used to predict possible short-
comings of initially retrieved solutions. Solution repair uses the failure explanations,
modifying the solution to prevent failures. The revised solution can then be retained

directly (assuming it is correct) or it can be evaluated and repaired again.

3.3.4 Saving the New Solution for Subsequent Use

The newly solved or interpreted case must now be stored in the case library. This
process incorporates useful information from the new problem solving episode into the
existing knowledge. The outcome of the evaluation (and possible repair) task dictates
whether successful or failed case information is stored. Retaining case knowledge
involves selecting the appropriate information from the case and determining the form in
which it is to be retained. Actual storage of this information in the case memory is done
by appropriately adjusting indices and other organizational mechanisms.

As for the other main processes of CBR, many different approaches for handling

the storage of cases exist. Supervised learning systems store specific instances of cases
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and update the feature weighting in the case memory. Planning & design systems save
partially ordered and annotated plans, failure information, and update utility estimates for
existing cases. Diagnosis systems update the domain model and store concluded
explanations (diagnoses) with cases. Argument construction systems keep the best
arguments for and against a position, an explanation justifying the decision, and relate

how comparable the input case is to other cases in the library.

Extract. The source of any learned information must be determined first. Case descrip-
tors and solution methods are obvious candidates. Explanation(s) justifying a solution’s
applicability to the problem may also be included. In CASEY, explanations were included
in retained cases and subsequently used for modifying an initially retrieved solution. Fail-
ures indicated in the Revise task may also be extracted and retained, either as separate fail-
ure cases or within individual cases. When the system encounters a failure it can be
reminded of a similar situation and use the previous failure to facilitate a solution for the

present situation.

Index. Indexing amounts to deciding what types of indices to use for future retrieval and
how to structure the search space of indexes; as such, it is really more a knowledge acqui-
sition problem and should be considered as part of the initial domain knowledge analysis
and modeling. Syntax-based methods use a trivial solution to indexing by incorporating
all input features as indices.

CASEY used a two-step indexing method. General causal states in the heart fail-
ure model were used as primary indices. Features were propagated in the heart failure
model, and the states that explained the features were used as additional indices in the case

memory. The observed features themselves are used as secondary indices only.
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Integrate. This is the final step of incorporating new case knowledge in the case mem-
ory. If extraction and indexing have failed to contribute any guidelines for including this
knowledge, integration becomes the main step of the Retain task. Modifying the indexing
of existing cases is one way to improve the CBR system’s similarity-assessment capabili-
ties. Indices for a particular case or solution are adjusted as dictated by the applied case’s
success or failure. Successful case retrieval features have their association with the case

strengthened; for features of unsuccessful cases, this association is weakened.

Integration of new information can also occur within the general knowledge model
by using machine learning methods or through direct interaction with the user. Therefore,
a system may incrementally extend and refine its general knowledge model, as well as its
memory of past cases. All general knowledge in PROTOS was acquired in such a bottom-

up interaction with a competent user.

3.4 CBR & Engineering Design Problem Solving

“Now one of the [best] ways of designing something is not to design it at all. Use [a
part] that is designed already by someone else.” [Glegg, 1969]

A common way of doing engineering design is to reuse an existing design. The design
practice of modifying past designs is used within nearly every engineering field. Domain-
and task-specific techniques determine how the modification of previous designs is done.
It is in performing such modifications, not to mention finding previous designs, where

CBR has relevance to engineering design problem solving.

CBR uses the specific knowledge of previous concrete design problems. A new

problem is solved by finding a similar past case and reusing it as determined by the new
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situation. As new problems are solved, the solutions are stored as cases. The archival
nature of such a CBR system allows users of the system to find previous cases, speeding
up the entire design process.

“Each problem I solved became a pattern, that I used later to solve other problems.”
Rene Descartes.

Engineering design problems are difficult because many acceptable solutions exist,
even for those designs that are well defined. The challenge is to effectively limit the
design alternatives, as there are often many possible solutions. Designers also have to
wade through an overwhelming amount of information. This information typically con-
sists of experimental data and collections of unorganized heuristics, neither of which is
immediately conducive for use in design. By using CBR, this information can be orga-
nized into a design archive that is immediately useful for solving new problems.

Just how well CBR works for solving engineering design problems is of course
dependent on many things, few of which are the approach itself. An adequate source of
design cases must first exist before CBR can be used. These cases must also be organized
and indexed so that the appropriate cases can be retrieved as needed. A means of modify-
ing retrieved cases must also exist. Several approaches to engineering design problems
that use CBR, among other techniques, are shown in the following chapter. Some systems
discussed use CBR successfully; others do not. It will be seen that the successful uses of
CBR carefully consider the case representation, organization of the case library, and mod-
ification techniques. One or more of these considerations will be seen to be lacking (or

poorly done) in those systems that do not work well.
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CHAPTER 4

Germane Approaches to Composites
Design

The interest in producing composites designs without the extensive use of reference mate-
rials and tedious trial-and-error tests has led to the development of several computer sys-
tems for aiding the design process. Many different approaches exist, varying from expert
systems that attempt to do everything from the initial selection of materials to the final fin-
ishing of the completed part, to systems that deal with only specific portions of the design

and production processes.

The myriad systems that have been developed for composites design also cover a
wide range of domains, be it polymers or ceramics, and methodologies, from purely data-

base retrieval to sophisticated artificial intelligence techniques.

Often, the scope of a design support system is determined by the domain or the
personnel for which it is intended; less complicated domains lend themselves to a com-
prehensive approach, as do systems intended for novice users. At least that is generally

the case with successful systems (e.g., the Composites Design Assistant - see page 93ff).
91
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There are instances of systems which have failed because of an overzealous
attempt at handling everything from initial specification to final manufacturing in a com-
plex domain. However, whether these systems have failed, succeeded or are still under
active development, there are lessons to learn from both the computational techniques uti-

lized and the philosophies that drive composites design.

The following discussion examines specific systems covering only a small sam-
pling of fielded approaches, focussing mainly on those that emphasize computational tech-
niques with an Al emphasis, as those are the most pertinent to this dissertation. Other
computational techniques that have been used for designing composites include pure data-
base retrieval, detailed finite element analysis, and others. Most of the systems considered

here also emphasize the design of the composite material.

A total of five computational approaches to the design of composites is discussed
here. These systems are presented in roughly chronological order, spanning a period from
the early-to-mid 80’s up to today. In order of presentation, the systems considered are:
the Composites Design Assistant (CDA) from Lockheed Missiles & Space, Composites
Part Design (CPD) from Germany, the Decision Support System for Preforming (DSSPre-
form) from the University of Delaware, the Composites Designer (COMDES) from
England, and Expert Assisted Design of Composite Structures (EADOCS) from the Neth-

erlands.

To facilitate the comparison of these systems, a checklist of items will be
examined for each. The discussion in each section will begin with a look at the historical
context within which the system was developed, then look at the specific design problem

addressed and the stated goals for the system. An overview of the underlying design
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philosophy behind the system follows.! After that, the discussion will tumn toward the
details of the implementation, specifically looking at the problem-solving techniques
utilized, the ease with which the system could be modified (if at all), and its capability for
explanation. To get a feel for how the system operated, a quick summary of its run-time
behavior will be given. Finally, the discussion for each system will conclude with a brief
synopsis of the pros and cons of what the system did and how it measured up to its

intended function.

4.1 Composites Design Assistant

This system was one of the preliminary attempts at automating the design process
for composite materials. The Composites Design Assistant (CDA) was developed in the
early 80’s by Zumsteg & Pecora at the Lockheed Missiles and Space Center as a part of
the Expert Systems in Materials Selection and Design project. Examination of its struc-
ture and approach to composites design serves as a baseline for compari<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>