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ABSTRACT

SPATIAL AND TEMPORAL COMPARISON OF SELECTED CANCERS IN
DOGS AND HUMANS, MICHIGAN, 1964-1994

By

Daniel John O'Brien, DVM

Research into the aggregation or “clustering” of cases of diseases,
particularly cancers, remains a common priority for epidemiological research in
both veterinary and human medicine. The utility of such research for describing
the spatial patterns of cancer cases, for the purpose of generating hypotheses
regarding the underlying processes which determine them, has not been fully
investigated. Few studies investigating the geograbhic distribution of cancer in
coinpanion animals exist, due to the limitations of methods incorporating rate
calculations, and the inability to enumerate the populations-at-risk they require.
Even fewer studies have simultaneously studied the geographic and time
distributions of biologically similar cancers in humans and companion animals.
Thus, the objectives of this study were to demonstrate the utility of rate-
independent methods 1) for the quantitative description of cancer patterns in
time and space, 2) for generation of hypotheses concerning processes affecting
cancer aggregation, and 3) for simultaneous comparison of those patterns in
companion animals and humans. Data records for cases of selected cancers in
dogs diagnosed at the Michigan State University Veterinary Medical Center

between 1964 and 1994 were obtained from the Veterinary Medical Data Base,



and some characteristics described by frequency table analyses. Results were
largely consistent with the literature, though notable differences, particularly with
respect to breed, were described. Residence addresses of cases of four of
those cancers in three Michigan counties were obtained from patient medical
records, geocoded, mapped, and subjected to K function spatial analysis and
one-dimensional nearest-neighbor temporal analysis. Records for human cases
of the same cancers diagnosed in the same areas and time period obtained from
the Surveillance, Epidemiology and End Results Program and the Michigan
Cancer Registry were analyzed by identical methods. Analysis of demographic
factors potentially affecting canine cancer distributions was also conducted
using Poisson regression. Among the canine cases, significant spatial
clustering was found that varied by county and cancer. Temporal patterns
concurred minimally with spatial ones, and varied from clustering to dispersion
depending on the cancer under study. Demographic factors studied had little
influence. Comparative analyses suggested that processes determining spatial
aggregation of cases in dogs and humans were not independent, did not act
uniformly over different geographic areas, that those processes operated at
spatial scales of < 2000 meters, and that they tended to act upon dogs more
strongly at shorter distances than upon humans. There was little evidence of
interspecies correspondence of case clustering in time, though broad tendencies
of particular neoplasms to be clustered or dispersed were similar. Though
exploratory, the study demonstrates the value of rate-independent methods for

the simultaneous study of disease in humans and their companion animals.
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This work is dedicated to the memory of my good friend and colleague Scott
Richard Allen, who was murdered in the spring of 1986. Until | see you again,

my friend, may you rest in peace.
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INTRODUCTION

The study of the aggregation of cases of disease in space and in time has
a long and storied history. Such celebrated investigations as those carried out
by Dr. John Snow in London in the nineteenth century' are now viewed not only
with deserved awe for their insightfulness and innovation, but also with the
reverence afforded the central icons upon which scientific disciplines are
founded and from which they derive their lasting sense of purpose and identity.
In spite of this, studies of case aggregations, or “cluster investigations” as they
are commonly called, are an enigma in epidemiology. Nearly 140 years after Dr.
Snow’s death, cluster investigations continue to generate controversy*® and
active research.*’ Regardless of whether human or-animal diseases are the
subject of scrutiny, formidable challenges continue to accompany this most

legendary of epidemiologic tools.

Problem Statement

Investigations into the clustering of cases of disease, and particularly of
neoplastic disease, have been numerous in human medicine. The appearance
of cancer cases occurring in close proximity to one another has invariably
caused considerable public concern.®? The public often attaches extreme
significance to any perception of clusters of cancer in an area, and this
perceived significance is often supported by the mass media, which often

publicizes these occurrences and speculates on causes despite limited



understanding of the pathogenesis and dynamics of the disease. Media
speculation can magnify this perceived significance until public reaction
approaches hysteria. Concern, anger, and fear are common. The Centers for
Disease Control and Prevention (CDC)' and others have pointed out that “the
public perceives the need to investigate clusters and environmental exposures
to their satisfaction®, and commonly exert extreme pressure on public health
authorities to investigate perceived clusters. The public demands an
explanation that suits its perceptions, even though such explanations are often
quite costly and difficult to come by.

But when a cluster is found, what is its significance, if any? The public
often believes that any cluster of cancers must have a biological cause, but the
historic experience strongly suggests that they are often impossible to
distinguish from random events.'"'* Moreover, the traditional approaches using
incidence rates in small geographic areas are beset with problems which have
proven formidable,'4'* and perhaps intractable, despite the best efforts of
researchers and public health authorities alike. Traditional cluster investigations
which have concentrated, largely in vain, on finding well-defined causes, have
often neglected the opportunity to generate useful descriptions of disease
patterns'® and hypotheses which can be tested using other methods.'®

From the standpoint of veterinary medicine, the difficulties in investigating
cancer clusters are less emotionally charged than in human medicine, but in
some respects even more formidable, as they are more fundamental.'’ Chief

among these is a lack of good data on the occurrence of cancers in animal



populations. Though great strides have been made in diagnosis and therapy in
recent years, cancers in domestic animals are very often terminal illnesses, not
necessarily due to the severity of the diseases themselves or the inability to treat
them, but due to euthanasia. Owners are often unable or unwilling to pursue
diagnosis and treatment because cost is perceived as, or really is, prohibitive,
despite the fact that sensitive diagnostics and curative (or at least palliative)
therapies are available. As a result, with some notable historical exceptions
which will be discussed later, there is very little comprehensive data on animal
cancers in the general population. This paucity of data has drastically limited
the number and statistical power of cluster investigations of cancer in domestic
animals. What data does exist has generally been gathered from cancer cases
examined at referral hospitals. The extent to which those cases are
representative of the general animal population is subject to considerable
uncertainty, as are the epidemiologic conclusions drawn by studying them.
Another huge barrier to cluster investigations in veterinary medicine
exists. Many of the traditional approaches used to investigate disease
aggregation in human medicine that rely on the comparison of incidence rates or
standardized mortality or morbidity ratios (SMRs) amongst geographic areas are
practically impossible to employ in most animal populations. To calculate
prevalence or incidence, one needs to be able to enumerate a reference
population or a population-at-risk; to calculate SMRs, one needs to be able to
determine the number of expected cases of disease. While some animal

populations subject to confinement or intensive management (e.g., food animals)



have been enumerated adequately, companion animals such as dogs, by and
large, have not. Reasonably accurate enumeration has been accomplished in a
some localized areas.'®?* However, more generalized methods based on
sample surveys of pet ownership,?’ designed to capture populations across
wider geographic areas, while a useful approximation, may overestimate the
prevalence of pet ownership,? and thus the companion animal population.
Moreover, there are substantial numbers of dogs and cats that have no owners
and thus would not be enumerated in surveys of pet ownership; one study
estimated that 14% of their study population was composed of such dogs.?* Yet
these animals, despite not being counted, are still at risk for the development of
disease. Such uncertainties may render estimates of populations-at-risk, and
the rates calculated from them, inaccurate.- Also, to the extent that risk factors
which vary from region to region and over time are important determinants of the
occurrence of a disease, incidence rates for that disease can only be considered
accurate in the area and time where the population-at-risk was enumerated. As
a result, cluster investigations which attempt to extrapolate population estimates
or incidence rates from other regions or time periods may well suffer serious
problems with internal validity. These factors have combined to drastically limit
the number and quality of cluster investigations in the veterinary medical

literature.



Rationale

Thus, with respect to investigations of clusters of cancer and other
diseases, neither veterinary nor human medicine has, as yet, developed
definitive methods with which to address the public's concerns and the medical
community’s need for information on which to base intervention and control,
therapy, and allocation of health care resources. Additionally, in veterinary
medicine, so little work has been done in this area (or indeed, in spatial analysis
in general®) that cancer cluster research in dogs and other companion animals
is effectively still in its infancy. While the number and scientific sophistication of
existing studies, and the specific methodological problems, differ between
veterinary and human medicine, the need for continuing research remains a
common priority.

Intuitively, it seems few would argue with the notion that the health of
humans and animals are linked. With respect to zoonotic diseases this link is
well established.?3' Much has been made in the fields of environmental health
and risk assessment of the relevance of findings in animal studies to human
health. The existence of a connection between the health of animals and
humans sharing a common environment has been implied, even assumed, yet
studies in which patterns of disease have been studied in humans and animals
simultaneously in the same location and time period are uncommon.*

Consequently, opportunities exist for studies capable of addressing some
of the historical deficiencies of disease aggregation investigations in veterinary

medicine, studies that:



. Address the inadequacies of incidence rate-based methods, or
alternatively, that attempt to apply methods which do not rely on rates,
and so avoid their currently intractable difficulties;

. Allow the distribution of clustered cases of disease to be spatially and
temporally described for the generation of hypotheses which may be
further investigated elsewhere;

. Apply such techniques to large, animal medical data bases to conduct
investigations with sufficient statistical power;

. Compare the spatial and temporal occurrence of neoplastic disease in
humans and the companion animals that live closely with them and which
may share their exposures, for the purpose of exploring similarities,
differences, and the existence of linkages between human and animal
health.

The desire to conceive a study capable of addressing these issues is the

underlying motivation for the current work.

Objectives
The objectives of this research are four-fold:

1) To describe the frequencies, and some general characteristics (age, gender,
weight, vital status at discharge, and breed), of cases of some selected
cancers in dogs in the state of Michigan during the thirty year period

between 1964 and 1994



2) To describe and compare the spatial and temporal distributions of some
selected canine and human cancers in three Michigan counties during
that same period;

3) To determine, using methods novel to veterinary epidemiology, if these spatial
distributions are independent between the two species; and

4) To generate some plausible hypotheses for these distributions that may
ultimately, through further research, suggest risk factors or etiologies that

both dogs and humans hold in common.

Overview

With respect to format, each chapter of this dissertation is written in a
format suitable for publication as an individual manuscript. Consequently, with
the exception of Chapter 1 (which is essentially a review of the literature), each
chapter contains an abstract, introduction, methods, results, and discussion.
Chapter 1 reviews the literature of relevance to the current study. This includes
the epidemiological and statistical literature regarding various methods for
investigating aggregation of disease, previous approaches taken to the study of
cancer aggregation in companion animals, and the literature of simultaneous
studies of companion animal and human cancer. The chapter also recounts the
reasoning behind the methodological approaches chosen for the current study.
Chapter 2 describes the case frequencies and some characteristics of some
selected canine cancers diagnosed at the Michigan State University Veterinary

Medical Center and judged to be biologically similar to comparable cancers in



humans. Chapter 3 recounts the analysis of the spatial and temporal clustering
of a subset of these canine neoplasms, while Chapter 4 uses the same
analytical methods to compare the spatial and temporal distributions of human
cases of these cancers with those seen in the dogs. The final section attempts
to synthesize the various chapters into a whole by summarizing findings,

drawing conclusions, and speculating on potential directions for future research.



REFERENCES



10.

11.

12.

REFERENCES

Snow J. Report on the cholera outbreak in the Parish of St. James,
Westminster during the autumn of 1854. Presented to the vestry by the
Cholera Inquiry Committee, July 1855. London: Churchill, 1855:175p.

Rothman KJ. A sobering start to the cluster busters' conference. Am J
Epidemiol 1990;132 Suppl! 1:S6-S13.

Wartenberg D, Greenberg M. Methodological problems in investigating
disease clusters. Sci Tot Environ 1992;127(1,2):173-85.

Proceedings of the National Conference on Clustering of Health Events.
Am J Epidemiol 1990;132 Supp! 1:S1-S202.

Jacquez, GM, editor. Proceedings of the workshop on statistics and
computing in disease clustering, Port Washington, New York, 1992. Stat
Med 1993;12:1751-968.

Lawson A, Waller L, Biggeri A, editors. Spatial disease patterns. Stat Med
1995;14:2289-501.

Jacquez GM, editor.. Conference on Statistics and Computing in Disease
Clustering, British Columbia, Canada, July 21-22, 1994. Stat Med
1996;15:681-952.

Bithell JF, Stone RA. On statistical methods for analyzing the
geographical distribution of cancer cases near nuclear installations. J
Epidemiol Comm Health 1989;43:79-85.

Osborne JS lil, Shy CM, Kaplan BH. Epidemiologic analysis of a reported
cancer cluster in a small rural population. Am J Epidemiol 1990;132 Suppl
1:587-S95.

Caldwell GC. Twenty-two years of cancer custer investigations at the
Centers for Disease Control. Am J Epidemiol 1990;132 Suppl 1:543-S47.

Neutra R, Swan S, Mack T. Clusters galore: insights about environmental
clusters from probability theory. Sci Tot Environ 1992;127:187-200.

Hole DJ, Lamont DW. Problems in the interpretation of small area
analysis of epidemiological data: the case of cancer incidence in the West

10



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

of Scotland. J Epidemiol Comm Health 1992;46:305-10.

Olsen SF, Martuzzi M, Elliott P. Cluster analysis and disease
mapping—why, when, and how’? A step by step gulde BMJ
1996;313:863-6.

Elliott P. Investigation of disease risks in small areas. Occup Environ Med
1995;52:785-9.

Elliott P, Martuzzi M, Shaddick G. Spatial statistical methods in
environmental epidemiology: a critique. Stat Methods Med Res
1995;4:137-59.

Beral V. Childhood leukemia near nuclear plants in the United Kingdom:
the evolution of a systematic approach to studying rare disease in small
geographic areas. Am J Epidemiol 1990;132 Suppl 1:563-S68.

Tjalma RA. Implications of animal cancers to human neoplasia:
epidemiologic considerations. Int J Cancer 1968;3:1-6.

Leslie BE, Meek AH, Kawash GF, McKeown DB. An epidemiological
investigation of pet ownership in Ontario. Can Vet J 1994;35(4).218-22.

Wise JK, Yang JJ. Veterinary service market for companion animals,
1992. Part I: Companion animal ownership and demographics. J Am Vet
Med Assoc 1992;201(7):990-2.

Franti CE, Kraus JF, Borhani NO, Johnson SL, Tucker SD. Pet ownership
in rural Northern California (El Dorado County). J Am Vet Med Assoc
1980;176(2):143-9.

Griffiths AO, Brenner A. Survey of cat and dog ownership in Champaign
County, lllinois, 1976. J Am Vet Med Assoc 1977;170(11):1333-40.

Franti CE, Kraus JF, Borhani NO. Pet ownership in a suburban-rural area
of California, 1970. Public Health Rep 1974;89(5):473-84.

Patronek GJ, Beck AM, Glickman LT. Dynamics of dog and cat
populations in a community. J Am Vet Med Assoc 1997;210(5):637-42.

Heussner JC, Flowers Al, Williams JD, Silvy NJ. Estimating dog and cat
populations in an urban area. Anim Regulation Studies 1978;1:203-12.

Schneider R, Vaida ML. Survey of canine and feline populations:

11



26.

27.

28.

29.

30.

31.

32.

Alameda and Contra Costa Counties, California, 1970. J Am Vet Med
Assoc 1975;166(5):481-6.

Lengerich EJ, Teclaw RF, Mendlein JM, Mariolis P, Garbe PL. Pet
populations in the catchment area of the Purdue Comparative Oncology
Program. J Am Vet Med Assoc 1992;200(1):51-6.

Wise JK. U.S pet ownership & demographics sourcebook. Schaumburg,
lllinois: Center for Information Management, American Veterinary Medical
Association, 1997.

Hungerford LL. Use of spatial statistics to identify and test significance in
geographic disease patterns. Prev Vet Med 1991;11:237-42.

Acha PN, Szyfres B. Zoonoses and communicable diseases common to
man and animals, 2nd ed. Washington (DC) : Pan American Health
Organization, Pan American Sanitary Bureau, Regional Office of the
World Health Organization, 1987; Pan American Health Organization
scientific publication; no. 503:963 p.

Bell JC, Palmer SR, Payne JM. The zoonoses : infections transmitted
from animal to man. Baltimore: Edward Armold; 1988:241p.

Hubbert WT, McCulloch WF, Schnurrenburger PR, editors. Diseases
transmitted from animals to man. 6th ed. Springfield (IL): C. C. Thomas,
1975:1206 p.

O'Brien DJ, Kaneene JB and Poppenga RH. The use of mammals as

sentinels for human exposure to toxic contaminants in the environment.
Environ Health Perspect 1993;99:351-68.

12



Chapter 1

RATE-INDEPENDENT METHODS FOR THE STUDY OF DISEASE
AGGREGATION IN EPIDEMIOLOGY

Context For Thé Current Study

In order to develop a methodological approach that has the greatest
opportunity for succeés»within the constraints and objectives of the current effort,
it is prudent to examine the strategies taken by others in the investigation of
clusters of disease. Cases of disease, in a very broad sense, can be thought of
as events characterized by both a place (a geographic refe}ence) and a time (a
temporal reference). In this respect, they can be approached analytically in
manners similar to other events which Have space and time references, through
modeling as spatial processes. The literature on spatial statistics is well
developed, due in large parf to thé effdrts of reseérchers in geogréphy and
ecology, and a number of excellent general referénceé exist which can provide
valuable background to the epidemiologist.'® More specialized references
dealing with applications in environmental science,” and population biology® may
also be of utility. In addition, Cliff and Haggett® have puﬁlished a useful atlas
which extensively addresses geographic approaéhés to the énalysis of disease
distribution. This impressive and profusely illustrated work provides introductory
material on‘ cartographic methods, as well as spatiél and'time series
methodology as they apply to epidemiology. In general,‘ contagious diseases
are emphasized; examples for animal diseases include fowl pest in England and

rabies in continental Europe.
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As one narrows this broad focus specifically to the analysis of disease
aggregation, one finds that a trio of recent monographs'®'2 and a number of
reviews of cluster evaluation methods already exist.'>'® These articles have
focused primarily on statistical issues. In addition, a fine review which places its
emphasis on the epidemiological issues of cluster investigation and geographic
epidemiology has been published by Paul Elliott and his coworkers at the
London School of Hygiene.'” More recently, Waller and Jacquez'® have
reviewed the issues surrounding statistical tests of hypotheses as they relate to
disease aggregation. Their work is notable in that it explores the way that
various cluster analysis methods imply the existence of particular underlying
models of disease. Consequently, the designation of a statistically significant
cluster of disease by one test may not easily be compared with one designated
by a different test. From a practical standpoint, these differences can be used to
help guide the choice of a test, depending on the underlying disease model one
expects in a particular situation.

In examining these works then, it becomes clear that the theoretical
aspects of the analysis of disease clustering have been, and continue to be,
well described and scrutinized by the scientific community. Since that task has
already been accomplished, it is not the intention here to provide a
comprehensive and critical review of cluster assessment methods, nor to mount
an in-depth mathematical or statistical evaluation. Rather, the discussion that
follows is intended to provide an overview of some general methodological

approaches that have been developed to investigate disease aggregation, with
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perspective offered on how some of these approaches might find application in

the investigation of animal diseases, particularly, chronic ones such as cancer.

More broadly, the discussion will examine how they may enable an approach to
the simultaneous assessment of disease aggregation in both animals and the

humans with whom they share their environment.

Some Methodological Approaches to the Study of Disease Aggregation

Methods which are designed to analyze clustering of disease events have
been categorized in a number of different ways. First, particular techniques are
designed to assess clustering in space, clustering in time, or the interaction
between the two. Second, techniques can also be subdivided based on whether
they are general tests or focused tests ' These terms were originally
developed by Besag and Newell.?°- General tests determine whether a pattern of
disease cases in an area exhibits clustering anywhere within that area, and
assesses its statistical significance, whereas focused tests determine whether or
not cases of disease are significantly clustered around a particular
predetermined point, often some putative source of increased disease risk.
Third, clustering methods may be considered proactive or reactive.?' Proactive
methods are essentially a form of surveillance, monitoring over time for evidence
of increases in the occurrence of a disease in a specified area. These may be
contrasted with reactive methods, which search for evidence of clustering in an
area where an increasad occurrence of disease has already been reported.

These latter methods have been the subject of considerable controversy with

15



respect to the validity of testing their statistical significance. In greatly simplified
terms, the problem lies in the fact that the conventional tool used for judging
statistical significance, the probability of a Type | error (or p-value) can only be
interpreted in relation to the testing of a hypothesis posed a priori, i.e., one
formulated ahead of time without knowledge of the outcome. Testing whether
the number of cases of disease is statistically significantly greater than what
would be expected due to random variation in an area that was specifically
chosen for testing because many cases were known to occur there is not valid.
It may be thought of as a form of preselection bias,?? since the same group of
cases that were used to specify the hypothesis are used to test its significance
as well. A rather nice discussion of the issues surrounding hypothesis testing in
reactive studies for a general medical audience has been published by Olsen et
al.,” while more in depth treatments intended for epidemiologists and
statisticians are also available.?2+2¢

For organizational purposes here, the methods will be grouped rather
loosely according to whether they have been used primarily to study clustering in
space, in time, or space/time interaction. However, it should also be noted
conspicuously that this categorization is somewhat arbitrary. Many of the
techniques can be used with equal utility for a geographic metric, a temporal

one, or both.
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Space/Time Methods

It is fitting to begin with a discussion of these methods because, from a
historical standpoint, the development of tests of disease clustering (with the
notable exception of Karl Pearson’s purely spatial technique?’) began with this
group. This set of tests, nicely reviewed by Williams,? is intended to determine
whether cases which are relatively close in time are also relatively close in
space. The foundation method is that of Knox,?® a method he used initially to
assess the aggregation of cases of childhood leukemia in Northern England.®
Knox's test requires a defined study area and time period be defined a prion,
and requires as data the geographic coordinates (latitude/longitude or some
other vertical/horizontal coordinates) and time coordinates of each case. All n(n-
1)/2 possible pairs of cases are evaluated with respect to each other in terms of
their distances apart in both space and time. The number of pairs that are
“close” in space, in time, in both space and time, or in neither are determined
and entered into the celis of a 2 x 2 contingency table. Statistical significance is
determined by testing the observed frequency of case pairs that are considered
close in both time and space against the expected frequency, which is
considered to be a Poisson random variable. Note that the criteria for what
constitutes “closeness” (“termed critical distances”) are determined by the
investigator, and should be based on known characteristics of the disease being
studied and the at-risk population. In other words, one has to specify, say, that

cases occurring within 500 meters and 1 week of each other are considered
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“close”. This arbitrariness is the principal drawback of Knox's test. If the critical
distances are not known with reasonable certainty and so are chosen
incorrectly, even strong clustering can be overlooked. Alternatively, if the critical
distances are chosen after the data have been inspected, picking those critical
distances which yield a significant test statistic, then comparison with the
expected Poisson distribution is no longer valid, and so the test is essentially
inoperative. It can be argued that performing the test iteratively with a range of
critical distances for time and space may yield some additional clues to the
etiology of clustering, but such an approach risks becoming a “fishing”
expedition, with resulting concern for the effect that the muitiple comparisons
may have on the test of significance. In such circumstances, it seems prudent
that the test results be stated as exploratory. Critical distances are also
dependent on the metrics used for distance and time unless they are chosen as
percentiles. An additional weakness of Knox's approach is that it is not sensitive
to detection of disease processes that result only in spatial clustering, or only in
temporal clustering. In spite of these limitations, Knox's approach has been one
of the most widely used clustering techniques, and has the important
advantages of not requiring knowledge of the size or demographic
characteristics of the population-at-risk, or of the background frequency of the
disease under study.

Using Knox’s method as a point of departure, other authors developed
alternative tests of space-time clustering. One such test which, like Knox, made

use of critical distances, was developed by Pinkel and coworkers.?' They
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defined a critical spatial distance and assumed that cases further than that apart
from one another were unrelated. The time distances between cases in that
group were then used as a comparison distribution against which the time
distances between the spatially close cases (i.e., cases less than the critical
distance apart) were compared. The distribution of time between cases was
partitioned into percentiles for both the spatially close and not close groups, and
expressed as “relative to an identified distribution® or “ridits”. While no formal
test of statistical significance was provided by the authors, confidence intervals
for the ridits were calculated and compared between the two groups to get a
idea of whether they overlapped, suggesting a lack of space-time clustering.
The test could be extended to a two sample case to compare the distributions of
more than one disease as well.

Barton and David* generally confirmed Knox’s assumption that his test
statistic had a Poisson distribution, deriving its exact mean and variance for
large samples. They also originated a method to detect changes in the spatial
distribution of cases over time, 33 somewhat analogous to an analysis of
variance. They assessed temporal clustering by comparing the time between
successive pairs of cases with the average time interval between all the cases
within one year time cells. When the observed interval was less than average,
clustering in time was said to occur. Spatial coordinates were obtained for the
cases. Centroids for the point cloud of cases occurring in each of the time cells,
and the overall centroid of all the cases during the entire study period, were

determined. The mean squared distance between the two should theoretically
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be similar to the mean squared distance between all of the cases and the overall
centroid if spatial patterns tend not to vary over time, that is, if there is no space-
time interaction. The test statistic will approximate 1 in that case, with values
less than 1 indicating that cases close in time are also close spatially. The
authors evaluated it against an F distribution or a normal distribution (depending
on the number of temporal clusters) to determine statistical significance. Barton
and David's technique, like Knox’s has the advantages of not requiring
knowledge of the size or make up of the population-at-risk, or of baseline
disease rates. What is more, it does not require the subjective choice of critical
distances as Knox did. However, the power of the test is limited for detecting
clusters of a few cases within short spatial/temporal proximity but otherwise
surrounded by widely dispersed cases.

Pike and Smith* noted that Knox’s approach would be unlikely to detect
space-time clustering for diseases for which the latency period was long, and so
developed an extension. It is a graphical approach, rooted in the work of David
and Barton.*® Broadly speaking, the test defines two time periods for each
case, one of susceptibility to infection, and one of infectivity to others. Similarly,
the geographic area occupied by each case is also divided into areas of
susceptibility and infectivity. A test statistic X is generated which represents the
intersections of the areas and periods of various cases’ infectivities with other
cases’ susceptibilities, such that X is the number of pairs of cases where one
was in the right place at the right time to be infected by the other. The greater

the magnitude of the test statistic, the greater the evidence for space-time
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interaction attributable to infectivity. The statistical significance of X can be
assessed roughly by use of another statistic ¢t derived by Pike and Smith, or by a
Poisson approximation, but others?® recommend testing by Monte Carlo methods
as being more defensible. Pike and Smith® also later developed a separate
method incorporating controls matched to the cases, which tried to determine
whether cases as a group had more pertinent contacts with each other than did
their matched controls.

Another approach generalizes Knox's binary (close versus not-close)
measures of space and time proximity by making them continuous.> Mantel
defined the statistic Z as equal to the product of the spatial measure between
two cases and the temporal measure between two cases, summed over all pairs
of cases. In order to improve the power of the test to detect the short space and
time distances characteristic of disease clusters, and minimize the effect of large
measures on the statistic, reciprocal transformations were applied to the space
and time measures. Constants were added to each to prevent the problem of
division by zero in situations where the two cases being measured occupy the
same spot in space or time. The statistical significance of Z can be determined
by randomization, or using formulas the author derived for its expectation and
variance. In addition, for large sample sizes, the distribution is approximately
normal, although “large” in this case must be more than a few hundred.?®
Although Mantel's procedure avoids the problem of arbitrarily defining critical
distances, subjectivity still enters in when defining the constants which are

added to the space and time distance measures. Testing many such constants
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also has the potential to degrade into a “fishing expedition” as discussed earlier,
invalidating the test of significance, although a later paper by the same author
suggested that a wide range of arbitrary constants did not affect the statistic
greatly.*® Mantel’'s method also assumes that the population-at-risk is fairly
uniform across the study area, which may or may not hold in specific instances.
Two extensions of Mantel's method, itself an extension of Knox's test,
which may be particularly relevant to the discussion here are those of Klauber.
He was interested in the situation where one suspects that cases of a similar
disease in two* or more® species have a common etiology. Indeed, the
examples the authors used to demonstrate the methods were of the potential
interspecies spread of leukemias in cats, dogs and humans. The tests operate
on at least two separate sets of points, each cases of disease in separate
species, for which the geographic and time coordinates of occurrence are
known. The test statistic, like Mantel's, is the product of the measure of spatial
distance and the measure of time distance between pairs of cases, summed
over all possible pairs of cases. Here, however, one case of each pair is taken
from each species. The test provides some flexibility with respect to the
distance measures one uses. Binary measures of “closeness” specified by
critical distances (as in Knox), or reciprocal distances (as in Mantel) can both be
used, each with its attendant problems. Statistical significance is determined by
randomization, or, subject to some assumptions, approximate comparisons can
be made with a normal distribution. Williams?® has noted that the test has a high

degree of sensitivity; even when clustering involves only a few cases, high levels
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of significance can be attained. It should be borne in mind that these tests were
designed to detect a tendency for case pairs (one from each species) that are
close in space to be close in time as well, and, consequently, are insensitive to
clustering only in space or only in time.
Other Space-Time Methods

A space-time clustering method published the same year as Knox’s
method by Ederer, Myers and Mantel*' has also been responsible for
considerable debate and application in epidemiology. Unlike Knox’s method
however, it does not rely on analysis of distances between all possible pairs of
points in space and time, but rather on the pattern of distribution of cases over
groups of time periods within some geographic unit. Their method was based
around the analysis of childhood leukemia cases in Connecticut. To fulfill the
need to set analysis units a prion, the authors used an arbitrary spatial unit of a
town (corresponding to a population of 3000 or less), and a temporal unit of 1
year, but grouped the data into five year blocks to minimize the effect of
increasing population trend. They go on to examine the theoretical distribution of
cases into “five-year-town units”, based on Feller's 4> P33 probability theory of
allocating r objects (“balls”) into n cells. They considered only those five-year-
town units with two or more cases. Using this approach, the authors determined
the expected probability of having, say, all the cases end up in one year of the
five year time block, or only some fraction of them. For example, if there were
three cases in a five-year-town unit, there is a certain probability that all three

would occur in the same year, a certain prabability that two would occur in the
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same year and one in another, and a certain probability that each of the three
would occur in a different year. Ederer et al., simply compared the observed
distribution of cases in five-year-town units with these expectations via
contingency tables and determined significance using a continuity corrected x*
statistic. The analysis was somewhat limited to small numbers of cases and time
units by the arduous nature of the probability calculations, but two of the authors
later published tabulations of the expectation and variance of the test statistic for
larger numbers of cases and/or time periods.*® This test was unique at the time

in that it could detect either space-time clustering, or clustering in time alone.

Temporal Methods

In contrast to both space-time and purely spatial methods, there are
comparatively few tests developed for the primary purpose of detecting temporal
clustering alone. Three temporal clustering tests are described here, one of
which was developed first as a spatial method, yet was versatile enough to
permit extension by the authors for use with a time metric.

The first of the three is known as the Scan method, and was first
proposed by Naus.“ For a fixed area of study, a time line is created by plotting
out in sequence the times of occurrence of all cases of the disease under study.
One defines a critical time period or “window” based on the expected duration of
the disease outbreak. The window must be a fixed time period, and set before

‘the cases have been examined for evidence of clustering, in order for the test of

statistical significance to be valid. The window is moved along the time line to
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find the maximum number of cases n that fell within that fixed length of time.
That maximum, along with the maximum number of windows that can fit within
the period specified by the time line, and the total number of disease cases are
the basis for the test statistic. It takes the form of a probability, P(n,N,t/T), that of
observing n or more cases in a time window of length t, where N is the total
number of cases and T is the length of the time line. Given the arduous nature
the probability calculations necessary for large disease outbreaks, both Naus*
and other authors*®4” have published extended tables and approximation
formulae to aid in application of the method. Some points of guidance for
application of the test warrant comment. First, the Scan statistic makes the
assumption that the population-at-risk stays relatively stable over the time of the
study. Second, the technique was not intended to detect spatial clustering, and
so it is insensitive to purely spatial aggregation of cases. Third, like the critical
distances in Knox's test, the time window in the Scan test should be set a priori
based on known characteristics of the disease. When the pathogenesis of the
disease is insufficiently characterized to facilitate a meaningful choice, setting of
the time window becomes arbitrary. In order to better describe the disease
under study, it may be useful to calculate the statistic using a variety of time
lengths for the window. In that case, however, since the statistical significance
of the test is directly affected by the window length, the p value thus generated
has no meaningful interpretation. Issues of muitiple comparisons also become
relevant. Finally, the statistic may have limited power to detect clustering for

extremely rare outcomes.*® Yet despite these limitations, the technique has
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enjoyed wide application in the study of disease outbreaks, including those in
animals.*

Tango™ formulated a method in which case frequencies are recorded in a
series of successive time intervals. The time distances between these intervals
are measured by an arbitrary metric of closeness or association, whose values
a; are inversely related to the difference between any two intervals i and j in
time. Matrix multiplication is used to combine the vector of case frequencies
with the matrix of associations to generate an index of association C, whose
value reaches a maximum value of 1 only in the case where all the cases fall in
a single time interval. The test is applicable to grouped data with the
assumption that the population-at-risk remains fairly uniform over the study
period. The author later developed a method to standardize the index so that
statistical significance could be more easily assessed,* and extended his
temporal method for use in detecting spatial clustering.3? The extension,
according to Tango is “essentially identical in form” to Whittemore's spatial
method™ (to be discussed below), with the exception that Tango considers
Whittemore’s test “to be less adequate” than the method he proposes.

The third temporal clustering technique, that of Selkirk and Neave, is an
extension of a method originally formulated to detect clustering of points on a
line, i.e., in one dimension.> It is one of a class of methods, originally
introduced by Clark and Evans®®® for use in ecology, based on the distance of a
point to its nearest neighboring point, known, not surprisingly, as “nearest-

neighbor” methods. Those authors later noted that the technique could be
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generalized to any number of dimensions.?” Selkirk and Neave distinguish three
separate cases: where points are distributed along a closed curve; along a line
that extends beyond the section containing the points in both directions; and
where the ends of the line are marked by points under study. They note that the
two latter cases can be used to test whether events can be assumed to be
randomly distributed in time, with time assumed to be linear and measured in
some continuous metric (days, years, efc.) The test statistic is simply the sum of
the distances from each point on the line (for our purposes, a case of disease in
time) to the point (case) nearest to it. In a separate publication, the authors
used a binomial model, reportedly more accurate than methods used previously,
to derive formulas for the exact expectation and variances of the test statistic
under each of the three cases. The formulas themselves are presented by
Selkirk and Neave,> as well as tabulations of percentage points of the test
statistic for use in assessing significance for small samples (n < 20). The
method for testing significance is also lucidly presented by Boots and Getis.':*
449 This general method for assessing temporal clustering has the advantages
of not requiring distributional assumptions other than those inherent to the null
hypothesis, and being straightforward to calculate even without the aid of a

computer.
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Spatial Methods

Statistical assessment of clustering of disease cases in space appears to
have been initiated by Pearson.?’” He developed a method to investigate
whether or not multiple cancer cases were significantly clustered within the same
household by comparing the number of cases in occupied households in a
particular community with an expected random distribution over those
households. The test of significance then simply became a test of ¥* goodness-
of-fit. Mention is made of Pearson’s method here in deference to its
precedence and historical importance. However, household aggregations of
disease constitute a specialized type of spatial clustering, one in which genetic
factors, as well as environmental ones, play a significant role. Since issues
associated with familial genetic disease risk factors are beyond the focus of the
current study, tests of household disease aggregation will not be treated further
here. Tests of household clustering other than Pearson’'s groundbreaking work
have been published by Mathen and Chakraborty,® and Walter,* both of which
have been expanded upon by Smith and Pike.®'

For the present purposes, the remaining spatial clustering methods will be
divided into subgroups based on their principal analytic approach. Note at the
outset that these divisions are somewhat arbitrary, and because of the diversity
of methods, particular tests could reasonably be placed in more than one
category. In general, only rate-independent methods will be described, although
some of the methods operating on disease rates will be itemized as well in the

interest of completeness. Counted among the latter will be those methods which
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require knowledge of an expected number of cases in a population-at-risk, since
having these data available implies the ability to calculate the expected disease
rate. Clearly, in the study of companion animal diseases, neither the expected
number of cases nor the size of the population-at-risk are generally known, and
knowledge of the former without knowledge of latter would be of limited use for
describing the force of the disease in the population.

One way to assess spatial clustering of processes that can be
characterized by continuous variables is through measures of spatial
autocorrelation. Autocorrelation, put simply, is the tendency for regions which
are close to each other spatially to have similar attributes, or, as Kitron and
Kazmierczak® have described it, the degree of interdependence between values
of a variable at different geographic locations. Various authors have developed
statistical techniques to quantify and account for this tendency in the analysis of
‘spatial data. The first appears to have been Moran.®*®* His statistic, /, is
essentially a measure of covariation of a variable across adjacent regions. It is
similar in form to the Pearson correlation coefficient. One can use weights (say,
the inverse of distance between the centroids of regions) to give the greatest
influence to areas adjacent to another. / can range from - 1 to 1, with zero
denoting a random distribution and 1 a strong tendency for clustering. It tends
to be sensitive to extreme values. Another, the ¢ statistic, was proposed by
Geary.® It is calculated as a weighted comparison of values for pairs of regions,

summed over all possible pairs. Positive autocorrelation drives ¢ toward an
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extreme limit of zero; a value of 1 denotes a random spatial distribution. This
statistic is particularly sensitive to the influence of disparate values in adjacent
regions. Both of these methods have been used widely and are described in
detail elsewhere.®*® A third measure of autocorrelation is the rank adjacency
statistic, D,%” which quantifies the absolute difference in ranks for the data in
adjacent regions, averaged over all regions. It has been used less than ¢ and /,
primarily in atlases of cancer, and is non-parametric. D approaches zero as
autocorrelation becomes stronger. Statistical significance for ¢ and / can be
assessed by comparisons with a normal distribution, while Monte Carlo
simulations are necessary to determine the significance of D statistics.
Simulation work has also been used to refine the random distribution of D.% A
fourth and more recent measure of autocorrelation has been proposed by Getis
and Ord.%® They introduce a family of statistics G, which measure the degree of
association between all weighted points within a radius of distance d from some
weighted reference point. The weighted points can also be used to represent
areas, e.g., where the points are centroids of areas such as counties. The G
statistics are different from other measures of autocorrelation in that they
measure autocorrelation at a more local scale, whereas others measure it over
the entire area under study. Given this unique property, the authors suggest
that G statistics can be used in conjunction with more global measures such as
Moran’s / to more completely characterize autocorrelation at different spatial
scales. How one determines the statistical significance of G can depend on how

the statistic distributes for a particular data set, although the authors propose a
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normal approximation. In a subsequent paper,’™ the authors reconfigure the
statistics to follow a normal distribution with zero mean and unit variance to
remove the influence of individual data sets and ease determinations of
significance.

With respect to application of these measures to actual disease data,
Kitron and Kazmierczak® used Moran's / to relate numbers of cases of Lyme
Disease in humans in Wisconsin to environmental characteristics such as
vegetation and surveys of the tick vector of the disease. All three were
correlated. This allowed them to produce a map delineating high risk counties.
Though he used the autocorrelation on disease rates, Walter's’ " pair of papers
investigating the spatial patterns of cancer incidence in Ontario are noted here
because of the fine job they do pointing out the importance of taking patterns of
regional population structure into account when using measures of
autocorrelation. The papers also test the power of ¢, D and / to detect different
regional patterns of disease distribution. Moran’s / had the highest power most
often, and D the least. Walter has also presented more general commentary on
the role of spatial autocorrelation in assessing spatial clustering of data
appearing on maps.”™
Quadrat Methods

A second approach to analysis of spatial aggregation of disease involves
analysis of quadrats. Quadrats, originally introduced by plant ecologists,’ are
simply sampling areas within a larger study area that are of any consistent

shape and size. Quadrats can also be defined on a temporal scale, as time
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periods of predetermined length, if one wishes to test for temporal clustering. A
straightforward and detailed discussion of methods and issues involved in
quadrat analysis is presented by Boots and Getis,'-*> "> while a brief
presentation oriented toward epidemiology has been published by Skelton.”
Briefly, the technique in its simplest form involves recording the numbers of
cases that occur in quadrats spread over the study area, tabulating the number
of quadrats containing various case frequencies, and comparing those
frequencies to the numbers of cases expected under an expected null
hypothesis of a random distribution, which is assumed to be Poisson. The
observed and expected case frequencies are tested for a statistically significant
difference by x*. A test statistic following a Student'’s t distribution can be
calculated using the mean and variance of the distribution of the observed case
frequencies to judge whether the observed pattern is significantly clustered or
dispersed. When variance exceeds the mean, clustering is suggested; when it
is less than the mean, a regular pattern is indicated. When the two quantities
are equal, as is the case under a Poisson distribution, randomness obtains.

A number of the more sophisticated and recent tests of spatial clustering
are linked to simpler quadrat methods in that they operate on counts of cases in
geographic cells which are generated to cover the study area. They are
grouped with quadrat methods here for that reason (although they vary with
respect to the uniformity of the size and shape of the geographic cells they
employ, and so, strictly speaking, one could also argue that some are not in fact

quadrat methods). The general clustering tests of Openshaw et al.,’®”” Tumbull
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et al. ™ and Kuldorff,227%' as well as the focused tests of Stone®* and
Lawson/Waller et al.,22%# and Besag and Newell’s test (which can be used as
either a general or a focused test®) all fall into this category. Many of these
methods have received detailed and extensive scrutiny elsewhere.'2'858 A|| of
them require knowledge of either the expected number of cases of disease or
the baseline disease rate in each geographic cell, and so will not be treated
further here. That being said, these methods appear to be at the cutting edge of
cluster assessment in human medicine, and to the extent that problems with
accurately enumerating populations-at-risk may at some point be overcome, they
have the potential to be of great use in future studies of disease aggregation in
companion animals.
Distance Methods

Another group of methods, one used perhaps more than any other to
investigate spatial clustering, are those operating on distances measured
between pairs of cases. For these methods to be applicable, one must generally
have knowledge of the precise geographic location of each case. The advent of
Geographic Information Systems (GIS) have greatly increased the ease with
which these methods can be applied. For purposes of this discussion, some
studies will be described that have investigated disease clustering using four
different approaches: spatial intensity, nearest-neighbor techniques,
Whittemore’'s approach, and second-order analysis.

The spatial intensity approach is a type of focused clustering test

incorporating the theory of spatial point processes,? developed by Diggle and his
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associates.®”®® Spatial intensity refers to the frequency of health events per unit
area over a variety of locations. Risk of disease is assumed to vary as some
prespecified function of distance from a putative focus of increased risk. For the
risk model, one must also specify the background risk A,, which reflects the
underlying population structure of the study area. A, can be estimated by
selecting controls and conditioning on the case and control locations.
Alternatively, one can use the spatial distribution of some common disease, the
risk of which is assumed to be unaffected by the focus, and use it as an estimate
of the background spatial variation in risk, via kernel estimation.%®®' If there is
no increased risk of becoming a case associated with distance from the focus,
then the spatial intensities of the cases should be the same as those of the
control disease. Statistical significance is assessed by goodness-of-fit tests. A
very attractive property of using a case-control approach is that it allows for
control of covariates using data gathered for individuals, and so avoids the many
problems associated with assigning values for covariates based on grouped
data (say, county averages). An example of the use of spatial intensity methods
is provided by Biggeri et al.,*> who used them in a case-control design to explore
the relationship between some sources of air pollution and the risk of lung
cancer in Italian men.

Mention has already been made of the nearest-neighbor approach in the
context of the assessment of temporal clustering. It is one of the older distance-
based methods, the basic principles of which have been well-documented in

standard texts,!-?3%45 and applied to epidemiological data sets.** However, it
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has also been significantly modified in the past eight years by investigators
seeking to adapt it to particular disease investigations. Ross and Davis* used
two dimensional nearest-neighbor analysis to investigate childhood residences
of Hodgkin's Disease patients in northwestern Washington. Their application
was unique in that they used a permutational approach to derive a study-specific
distribution of expected nearest-neighbor distances. This was a response to
their observation that the population was not homogeneous across the study
area, and consequently, the homogeneity assumption of a null Poisson
distribution did not hold. Cuzick and Edwards® proposed a method where
controls are chosen for each case, so as to resemble the cases with respect to
disease risk factors. One then identifies ¢ nearest neighbors for each case of
disease. The test statistic T is then simply the sum over all the cases of the
number of ¢ nearest neighbors for each case that are also cases. In more
general terms, under the null hypothesis of random distribution of cases and
controls, one would expect the ¢ nearest neighbors of a case to be about equally
split between cases and controls; if the cases’ nearest neighbors are composed
predominantly of other cases, spatial clustering is suggested. The significance
of the test statistic can be determined either by randomization, or by using the
expectation and variance provide by the authors. This test, due to the
incorporation of controls, also has the advantage of being able to adjust for
confounders and other covariates at the individual, rather than the group, level.
In an interesting extension of Cuzick and Edwards’ test, Jacquez® has published

a generalized method to apply in situations where the exact locations of the
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cases and controls are not known with certainty (Cuzick and Edwards’ original
test requires exact locations). He later developed the concept of using uncertain
space or time locations into a generalized matrix method®’ that could be used in
conjunction with other nearest-neighbor tests, as well as space/time clustering
methods like Knox's?® and Mantel's.>” Finally, Jacquez® has also proposed a
nearest-neighbor method for detection of space/time clustering, based around a
statistic measuring the number of pairs of cases that are nearest neighbors in
time as well as in space. The author includes treatment of how the test can be
extended to case-control data and to uncertain space and time locations, and
found it to be more powerful than other commonly used tests of space/time
clustering.®*

A third distance-based approach to spatial clustering involves a group of
methods having their origin in the work of Mantel and Bailar,” Whittemore and
coworkers™ and the time clustering test of Tango.*® Whittemore’s test is notable
because it is essentially a hybrid test, using not only case counts in geographic
cells, but also paired distance measurements. As background for her approach,
Whittemore points out that space/time clustering techniques like those of Knox®®
are generally not suitable for study of chronic diseases, since cases caused by a
common etiology might be spatially close, but were unlikely to be close in time
due to the length and variability of latent periods. In order to overcome the
artifactual appearance of clustering that could occur as a result of
heterogeneous population distribution over the study area, Whittemore stratifies

the cases into census tracts and into age groups, and assumes that the number
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of cases in each stratum are independent Poisson processes with means
proportional to the number of individuals in the stratum. The test statistic U is
simply the mean distance J between all pairs of cases, with the centroid of the
census tract acting as the spatial reference for all the cases withinit. The
expectation and variance of U are derived and are approximately normal for
large samples. The authors note that the technique could be adapted to detect
either spatial or temporal clustering, depending on the metric chosen.
Unfortunately, the technique’s requirement of knowledge of population numbers
in census tracts and age strata limit its usefulness for investigating companion
animal diseases. As mentioned previously, Tango® has published a similar
method which he found to be more powerful. An example of Whittemore's test
applied to Hodgkin's Disease data in the San Francisco area was provided by
Glaser.'® In a recent paper, Ranta et al.' extended Whittemore’s approach to
incorporate temporal data, making her two dimensional census tracts into three
dimensional space/time “cubes”, with time as the third dimension. They also
introduced the unique feature of weights on the space and time distance
measures, such that by varying the weights, a purely spatial test, a purely
temporal one, or a space/time interaction test resulted.

Second-order analysis (also called K function analysis) is yet another
type of distance technique, one in which the theoretical focus is on the variance
(or second moment, hence the name) of the distances between all possible
pairwise combinations of cases, rather than the mean pairwise distance used for

many other tests. It tests hypotheses of randomness by testing the proportion of
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the total possible pairs of cases for which both members of the pair are within a
specified distance d of one another.'” The technique defines a function k
which, for a prespecified distance d, consists of the reciprocal of the intensity
(the mean number of cases per unit area) multiplied by the expected number of
additional cases within distance d of a case chosen at random.>? 4’ The k
function can be incorporated into the calculation of a test statistic L(d) which is
equal to d when the case pattern is random, but which is greater than d when
cases are clustered or less than d when they form a more regular pattern than
one would expect at random. Statistical significance can be determined either by
randomization tests, or by approximations published by Ripley.'®% By
calculating the test statistic for a series of distances d defined in regular steps of
increasing size (say, 100 meters, 200 meters, 300 meters, efc.), one can get not
only a qualitative idea of whether the cases being studied are significantly
clustered, but the quantitative distance scale at which their tendency to cluster is
the strongest. That, in turn, can provide insight into the scale at which the
disease process that is causing the cases to be clustered is operating. Boots
and Getis'-" % have pointed out a number of advantages of the approach over
more traditional ones, among them the fact that it potentially provides more
information about spatial pattern than any other existing technique. An
additional advantage lies in that fact that it can be used to assess the
dependence of patterns of cases from two separate distributions on each other.>
Chee-7 For example, one could use second-order analysis to assess whether the

geographic pattern of cases of a disease in one species is independent of the
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pattern of a similar disease in a second species. Failure to find independence
would suggest that the processes which caused the case pattern in each
species were dependent on each other. The theory of second-order analysis is
described by Diggle®? * and Ripley,'®'® with a somewhat more accessible
treatment available as well.:?% Although second-order analysis as described
here would generally be categorized as a general test of clustering, methods for
focused testing have also been published.'® There is a conspicuous lack of
epidemiological studies of disease aggregation employing second-order
analysis, such that examples of application of the technique are to be found
largely in the geography and ecology literature. The work of Diggle and
Chetwynd'” appears to be the single notable exception. They develop a
“random labelling” method for application to inhomogeneous Poisson processes
that more accurately describe spatial variations in density of the population-at-
risk, applying the method to Cuzick and Edwards’ data® on childhood
hematopoietic malignancies in North Humberside, England.
Cartograms

A final method of analyzing spatial clustering of disease which will be
mentioned here is the use of cartograms (maps which distort location and
geographic area so as to equalize the density of some other variable, such as
population-at-risk).'® The transformation of map features removes the variability
of population from place to place, allowing for the analysis of other factors that
influence disease aggregation without population’'s confounding influence.

However, it retains complete geographic detail without the necessity of
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combining geographic subdivisions in order to equalize population, as well as
preserving adjacency of the subdivisions and the cases that occur there. The
technique is computationally intensive, and a visual examination of the map
transformations is really necessary in order to appreciate the method.
Obviously, such a presentation is beyond the capabilities of the present
discussion, so the reader is referred to Selvin et al.'® for a lucid example.
Treatment of the theory of the technique has been published elsewhere.'®'"
Selvin and coworkers also illustrate the use of a statistical test of the
randomness of the spatial pattern of cases plotted on the density-equalized
cartogram. The statistic is based on the mean squared distance among all the
cases;"'!""'2 the authors derive the expectation and variance of their proposed
statistic under the null hypothesis of random case distribution. Statistical
significance is determined by comparison with a normal distribution. The
authors illustrate their technique by analyzing the aggregation of cases of 26
kinds of human cancer in white residents of San Francisco from 1978-1981.
Other examples of the use of cartograms for epidemiological data are also
available.'3'14
Methods Incorporating Rates

At the outset of the discussion of spatial methods, it was noted that
methods operating on disease rates or requiring knowledge of expected
numbers of cases would be mentioned in this discussion only cursorily. Some of
the prominent methods are noted here purely in the interest of completeness.

Methods designed to detect purely spatial clustering have been described by
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Grimson''>1"® and Ohno.'"” A temporal method has been proposed by Chen et
al.,"'® adapted from a previously developed spatial surveillance method.'® A
technique developed by Aldrich'®'?' known as REMSA can be used to assess
clustering according to any characteristic of the cases that can be expressed as
a nominal variable (gender, age, place or time of diagnosis, efc.). Methods
intended specifically for public health surveillance,'? including the surveillance
of congenital anomalies,''®'212 gre also documented in the biomedical

literature.

Previous Approaches Taken in the Epidemiological Study of Cancer Aggregation
in Companion Animals, and the Simultaneous Study of Companion Animal and
Human Cancers

With the exception of a single recent study*® using time or space-time
clustering methods that do not require rate calculations, all previous study of the
geographic distribution of cancer cases in companion animals has thus far
roughly fallen into two categories: animal cancer registries and pet censuses.
Both have been aimed at sufficiently characterizing an animal population-at-risk
or reference population so that disease rates could be calculated. From these
have also sprung the majority of the few studies which have attempted to
simultaneously investigate cancer occurrence in humans and animals occupying

the same geographic area during the same time period.
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Rate-Based Methods: Cancer Registries

At the outset of this chapter, it was noted that the assessment of disease
aggregation in veterinary medicine has been extremely limited because of
limitations in data availability and methodology. Nonetheless, a number of
authors have managed to execute studies which have circumvented these
difficulties to greater or lesser extents, and it is worthwhile to examine their
efforts for the context they provide for the current study. Scrutiny is turned first
to animal cancer registries. An overview of existing registries current to 1991,
along with some discussion of their limitations and potential, has been published
previously.'?®

A seminal work is Priester and McKay’s monograph The Occurrence of
that the project arose from “the expectation that research into neoplasia among
domestic animals would provide new insight into the origins of human cancer”.
The monograph is a greatly expanded effort based methodologically on
Priester’s earlier work with Nathan Mantel.'*' It reports on data collected for
over 41,500 cases of neoplasia in eight species at 14 veterinary teaching
hospitals in the U.S. and Canada between 1964 and 1977. These data were
derived from the Veterinary Medical Data Program (VMDP), initiated at Michigan
State University in 1964. The establishment of the VMDP and the coding system
which made it possible, the Standard Nomenclature of Veterinary Diseases and
Operations (SNVDO)'* are explained at length by the authors. Noting the

impracticality of enumerating census-type reference populations for their cases,
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a functional reference population was created by including all records in the
VMDP, essentially all animals seen for all reasons during the study period.
While admitting that confounding was likely, they noted that such a reference
population was a reasonable means of “estimating characteristics of animal
populations when no other way of doing so is available.” Similarly, a reference
statistic called animal-years-at-risk was calculated to provide “a reasonable
reflection of qualitative composition of the actual population of each of the
species categories”. Each animal that visited one of the reporting institutions in
a given year contributed a year at-risk to the statistic. The majority of the work
consists of tabulations reporting cancer incidence broken down by species,
breed, sex, age, tumor behavior (malignancy), geographic region and institution.
For all neoplasms that made up more than 5% of the total in a species,
additional tabulations of relative risk (R) for various histologic types and sites by
breed and age are presented, with risk calculations based on the method of

Mantel and Haenszel:'>
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where a and ¢ are the numbers of cases with and without the breed/age factor
being tested, b and d represent the numbers of control animals with and without
the factor, and N is the total number of cases and controls. Animals of all breeds

or all ages combined were considered control animals for the purposes of risk
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calculation. The monograph also provides plots of relative risk by age for each of
these more common histologic types, with relative risk of benign neoplasia in
that species plotted on the same axes for comparison.

Another approach that has been carried out with success is the
establishment of regional animal cancer registries in defined geographic areas.
The groundbreaking work in this area was that of Dorn and coworkers, 31%
establishing the Animal Neoplasm Registry in Alameda and Contra Costa
Counties, California. Those study areas were chosen because of large human
and animal populations and the existence of complementary data from other
studies. Using data obtained from a preliminary study of characteristics of
veterinary practices in the area,'* the authors enrolled all 65 veterinary
practices in the two counties and 11 practices in adjacent counties; formal
reporting of cases to the registry began in July of 1963. Practitioners filled out
case reports they had been provided by the project, and mailed biopsy or
necropsy samples to the registry for histopathological examination. In return for
their cooperation in reporting, the participating practitioners received
histopathology reports, valuable diagnostic confirmation which very few
veterinary practices received at that time. Tissue submissions were classified
both according to the SNVDO'? and the seventh revision of the International
Classification of Diseases (ICD);'*” only malignant tumors were included in the
study. The authors note that animals in households which did not use veterinary
services were not captured by their methods and so were not considered

included in the population-at-risk. These animals constituted 13% of the dogs
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and 25% of the cats in the baseline animal population recorded in a probability
sample survey of households.'*® Estimates of the population-at-risk within
various breed-, age- and gender-specific categories were obtained by
multiplying by a population sampling factor, and relative risks calculated based
on the Mantel-Haenszel method,'* as described above. Here, controls were
chosen from all animals not reported in the Animal Tumor Registry that were
identified in Alameda County households using veterinary services.'*
Significance of R was determined by x* tests; a 97.5% level was considered
significant to adjust for multiple comparisons. Over the three year course of the
study, 5647 incident cases were reported, of which 4842 occurred in dogs. The
authors estimated annual incidence rates for cancer of all sites to be
381.2/100,000 in dogs and 20!4/100,000 in cats, and noted that these rates were
elevated compared to the corresponding all sites rate in humans in the same
county.

It is notable that despite the comprehensive scope and impressive effort
made by the study, it was still not able to enumerate a true population-at-risk,
only to estimate one, and animals not seen at veterinary clinics were not
captured in the risk estimates. Nevertheless, this study and its estimates remain
unsurpassed in the veterinary epidemiological literature despite thirty years
having past and the substantially greater technological resources now available.
This fact speaks to the intractable nature of the problem of calculating aocurate
incidence rates for cancers in companion animals. More extensive background

on the organizational aspects of the survey has also been published.'®'% A
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related study that is also of potential interest is a survey of dogs admitted to the
animal control facility in Alameda County,'"' in which a prevalence rate of 70
neoplasms per 1000 dogs was recorded. Some 1096 dogs were examined in
that study.

A second tumor registry, the Tulsa Registry of Canine and Feline
Neoplasms, was established in 1972.'? The registry received submissions
obtained at necropsy or surgical biopsy from all veterinary practices in Tulsa
County and three practices from an adjacent county. While similar in many
respects to the structure of the California registry, there were some differences
that bear mention. Less than half as many veterinary practices (35) reported
cases to the registry during the first year. Classification of submissions was
based on SNVDO'® also, with the exception of mammary tumors, for which a
new classification scheme, intended to be more clinically useful, was
developed.'®® Rates for benign as well as malignant tumors were calculated.
For the purposes of calculating incidence rates, the study considered the sum of
all animals visiting a participating hospital during a year to be the population-at-
risk. Of particular interest was the fact the status of each case, once diagnosed
initially, was also followed up with re-checks at 2 and 6 months post-diagnosis
and every 6 months thereafter. The authors note that their registry had the
advantage of a more stable dog and cat population that was relatively
geographically concentrated and more isolated than most cities of the same
size. This was considered important so that the effects of migration could be

minimized, and the occurrence of tumors could be attributed to a specific
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geographic region, a point the authors considered a relative strength compared
to Dom et al.’s studies. Rates of incidence for all site cancers were 1126 cases
per 100,000 dogs, with a rate of 507 cases per 100,000 for malignant tumors
only. A total of 63,504 dogs were seen during the first year of the registry. The
authors point out that because the census did not include owner's names and
addresses or other means of uniquely identifying the animals, the number of
individuals counted more than once because of crossover from one hospital to
another could not be estimated. However, they concluded that the effect of
these potential double countings on the denominators of their incidence rates
was “probably negligible”. Notably, MacVean et al. caution against comparing
incidence rates of different animal tumor registries, because of the different
methods used to derive reference populations. They also discuss the
advantages and disadvantages of their denominators at some length, and
conclude that ascertainment of a true reference population was essentially
impossible, and that the use of a population-at-risk composed of all animals
seen at all the participating hospitals (what they term the “veterinarian-using”
‘population) is a reasonable and efficient alternative. Indeed, this seems a
sensible, if unfulfilling, resolution of the problem. It must be mentioned,
however, that the degree to which the population of dogs visiting veterinary
hospitals is representative of the general population of dogs remains unknown,
and there is evidence to suggest that spurious inferences regarding the relative
risk of cancer in the general population of dogs can result from using hospital

populations as populations-at-risk. 44
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Rate-Based Methods: Pet Censuses

Another approach that has been taken to characterize companion animal
populations for subsequent use in population-based studies is the establishment
of pet censuses. While much of the content of these studies focuses on
demographic correlates of pet ownership, those issues are not strictly relevant to
the present discussion and will not be covered here. One such census has
already been described in conjunction with Dorn'’s work. '3

The foundation work among these censuses is, arguably, that of Franti
and colleagues.'¥ It is notable in that it was part of a larger health survey of the
human population in Yolo County, California (one county removed from Contra
Costa and Alameda Counties), and, consequently, can be viewed as an
approach to the simultaneous study of human and animal health in the same
geographic area and time period. The study consisted of a two-stage stratified
random sample of private households in the county, and gathered demographic
and socioeconomic data on the households, as well as health information on
individuals within the households. Information concerning health complaints,
use of and expenditures for medical services and broader issues such as
nutrition, perceptions of environmental quality and family planning was aiso
gathered. Data were collected from 3638 people in 1091 households, of which
67 percent reported owning one or more pets. With respect to the human health
issues investigated, pet owners tended to have better nutrition, a greater
sensitivity to air pollution, greater access to private physicians and clinics, and a

more favorable opinion of family planning. Interestingly, pet owners and non-
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owners reported about equal incidents of annoyance or illness associated with
uncontrolled dogs and cats. These included such things as allergies, bites,
annoyance with barking or feces deposition, fear of attack, etc. More detailed
characterization of pets from this study has been presented in a separate
report.'® In a later study, this same group of authors also report some
community health findings in humans from El Dorado County, also in northern
California.'*® The rationale for investigating this county was that it was largely
rural and removed from the influence of an urban area, a characteristic unique
among the counties in which pet ownership demographics had been studied thus
far. The study was similar to the one carried out in Yolo County, and used the
same design and instruments, to which were added some questions intended to
gather additional health information. No statistically meaningful association was
found between pet ownership and the number of persons reporting having
cancer, hypertension, “a heart condition”, being mentally or emotionally ill, or
having asthma or hay fever. There was a significant positive association
between pet ownership and frequent headaches in adults and frequent sore
throats in school-aged children, and a significant negative association between
pet ownership and frequent diarrhea in preschool children. Franti et al.
interpreted these findings to mean that pet owners were more aware of chronic
health conditions such as hypertension, and that there was little support for an
relationship between pet ownership and owner's health. They also concluded
that apparent associations between pet ownership and frequent diarrhea and

sore throats were more likely due to economic and lifestyle factors than animals
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per se. No explanation for the relationship with frequent headaches was
hypothesized. As in Yolo, pet owners in El Dorado County were slightly more
concerned about air pollution than non-owners.

Other reports derived from regional pet censuses have not directly
addressed human health issues as did the California research, but may be of
interest for those interested in companion animal population dynamics, %15
estimation/management of urban populations,**'5” or simply to examine the
consistency of findings across diverse geographic areas.'*'®
Rate-Based Methods: Hybrids

A hybrid of the cancer registry and pet census approaches worthy of
specific attention here has been carried out by investigators at the Purdue
Comparative Oncology Program (PCOP).'¢"'®2 While previous pet censuses
executed sample surveys in which households were identified based on
demographic characteristics/regions, and a percentage contacted for their
responses, the PCOP group used a single stage random-digit dialing telephone
survey to estimate populations of pet dogs and cats, as well as cancer case
ascertainment. The PCOP itself is a animal tumor registry for two central
Indiana counties, Marion and Tippecanoe, which registers cancer cases based
on submissions from more than 100 participating private veterinary hospitals.
The registry provides histopathologic diagnosis free of charge, and in tum
requests submissions from all the suspected cancer patients the participating
practitioners examine. Registrations began in 1979, and as with MacVean et

al.'s study, once diagnosed, cases are followed up biannually until the patient’s
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death. Between initiation of the study and the time of publication, > 19,000
primary and metastatic tumors were registered in more than 13,000 animals.
Random digit dialing within three digit telephone prefixes serving all or
part of the study counties was used to select households for interview. An adult
was administered a ten minute interview covering the number and characteristics
of human and animal residents, number of unique phone lines, use of veterinary
services and household demographics. In addition, interviewees were also
asked if they would take their dog or cat to a veterinarian for evaluation if it had
“a lump you thought might be cancer”, as well as how much they would be willing
to pay for cancer treatment. Canine and feline populations were estimated by
multiplying the number of dogs and cats reported in interviews by the inverse of
the sampling fraction, which, in turn, was calculated as the sum of the weighted
number of people residing in the interview households divided by the estimated
human population of the county. The weight was the inverse of the number of
unique phone lines in each household. Seven hundred thirty-one eligible
residences were identified from 2540 telephone numbers, of which > 77%
responded. Dog populations estimated in Tippecanoe and Marion Counties
(95% confidence limits) were 18,000 (14,445, 21,555) and 144,039 (121,555,
166,523) respectively, while cat populations were 17,165 (12,569, 21,761) and
94,998 (74,348, 115,648), respectively. The proportion of animals that owners
reported would be evaluated for cancer (i.e., case ascertainment for the PCOP
registry) ranged from 76.1% to 89.7% for cats and from 92.0% to 93.3% for

dogs; this variation was not significantly different between either counties or
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species. The percentage of owners willing to pay at least $200 for cancer
workup differed significantly by county, ranging from 21.7% to 42.7% for cats
and 38.9% to 56.7% for dogs. For both species, pet owners in the more urban
Marion County were more willing to pay for cancer treatment, although there was
no significant difference by county or species in the willingness to owners to
have a suspect mass evaluated by a veterinarian.

While the authors were pleased with the general concordance of their
demographic findings with those of the 1980 U.S. Census, they did note that
their survey had unintentionally oversampled older persons, and that because
pet ownership rates tend to be higher in younger persons, their pet population
estimates may have been underestimates. They also carefully point out that
“estimates from this study may not be generalizable to other periods, geographic
areas, cancer registries, or disease registries”. Also, to the extent that the
interviews overestimated the owners’ willingness to seek oncological evaluation
for their animals, or the participating veterinarians did not report all suspected
tumors to the registry, Lengerich et al. point out that their estimates of case
ascertainment by the PCOP may be too high. Nonetheless, the study is valuable
for its use of random digit dialing, and particularly for its estimates of case
ascertainment for a cancer registry. It is arguably the best effort recorded in the
literature since Dorn et al.

Some points already touched upon are sufficiently important to this
discussion to revisit and summarize. First, despite the impressive and labor

intensive efforts of all these studies, none was able to enumerate a true
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population-at-risk for companion animals, only to estimate one. The PCOP
study probably comes closest to accomplishing this goal, as it was the only study
which captured estimates of pet animals not seen at veterinary clinics. No study
has been able to include ownerless animals in the estimates of population-at-
risk, and so any incidence rates calculated will be unavoidably inaccurate. It
could be argued that the degree of inaccuracy is likely to be small, but such a
conclusion is subject to a great deal of uncertainty. Thus, even under the best of
circumstances, the approach of calculating accurate incidence rates for
companion animal diseases faces serious problems. Second, even when
incidence rates can be calculated and are assumed accurate, their validity is
limited to the population from which they were calculated, because of differences
in methods used to derive reference populations, not to mention differences in
disease risk which vary geographically and over time. This effectively limits the
incidence rates derived from studies such as those of MacVean et al.'*? and
Dorn et al.'**'* to the areas where the studies took place. Moreover,
comparison of disease rates between species (say, dogs and humans) even
within a common geographic area and time period is of questionable validity
unless it can be demonstrated that the methods used to derive the numerators
and denominators of the rates are comparable. Third, inferences concering
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