fi r s t 3 A h . . . l a l n . . . 5 . 0 . 1 . . v . ! . 4 . I ! T t ( N “ L . I M . c T J k i n . ! V . H ‘ i R a J . . . t c . I b I k . z . s “ . . - r « l l b i l ’ . . 2 . 1 . L , . 1 l ” ‘ . r . 3 . . 1 . . . I a - n ' w a s . “ 4 A 1 % . . . . . . a v . v . . 3 1 5 1 . . . . . ; : r a . i . . . 5 3 : ( 3 : 1 3 . 1 9 9 3 1 2 9 3 0 1 7 7 0 M N B A O u G x S L N N B E H w T e T L E E R e S w n o A b w N D \ e M T n W O x n a O fl ; X s E u o O E x N : N D H T M L M E L F E R m E P B D O : M fl a S t A M t D M a S O m M M M L a m a K a s s ” C V / D m Y L a A o e A m N s a / M S U i s a n A f fi r m a t i v e A c t i o n / E q u a l O p p o r t u n i t y I n s t i t u t i o n 0 - 1 2 7 7 1 M i c U h n i i g v a e n s r S i t t a y t e I T H E 8 1 8 5 : l l l l l l l l l l l l l l l l l l l l l l \ l l 1 W 1 l l l l l l l l l l l l l l l l l l T h i s i s t o c e r t i f y t h a t t h e d i s s e r t a t i o n e n t i t l e d p r e s e n t e d b y h a s b e e n a c c e p t e d t o w a r d s f u l fi l l m e n t o f t h e r e q u i r e m e n t s f o r p k - D - d e g r e e i n C H E M ‘ L ‘ T e ' y D a t e \ 8 i w m m m a L I B R A R Y P L A C E I N R E T U R N B o x t o r e m o v e t h i s c h e c k o u t f r o m y o u r r e c o r d . T O A V O I D F I N E r e t u r n o n o r b e f o r e d a t e d u e . M A Y B E R E C A L L E D w i t h e a r l i e r d u e d a t e i f r e q u e s t e d . D A T E D U E D A T E D U E D A T E D U E 1 / 9 8 W W I - 4 3 6 5 1 3 . 1 4 M A G N E T I C P R O P E R T I E S O F L A Y E R E D V A N A D Y L P H O S P H A T E S A N D P H O S P H O N A T E S : F R O M M O L E C U L A R B U I L D I N G B L O C K S T O E X T E N D E D S T R U C T U R E S B y D i m i t r i s P a p o u t s a k i s A D I S S E R T A T I O N S u b m i t t e d t o M i c h i g a n S t a t e U n i v e r s i t y i n p a r t i a l f u l f i l l m e n t o f t h e r e q u i r e m e n t s f o r t h e d e g r e e o f D O C T O R O F P H I L O S O P H Y D e p a r t m e n t o f C h e m i s t r y 1 9 9 8 A B S T R A C T M A G N E T I C P R O P E R T I E S O F L A Y E R E D V A N A D Y L P H O S P H A T E S A N D P H O S P H O N A T E S : F R O M M O L E C U L A R B U I L D I N G B L O C K S T o E X T E N D E D S T R U C T U R E S B y D i m i t r i s P a p o u t s a k i s W i t h o u t w e l l — d e fi n e d s t r u c t u r e , a n y s e n s i b l e i n t e r p r e t a t i o n o f m a g n e t i c b e h a v i o r a t t h e m o l e c u l a r l e v e l i s n e c e s s a r i l y S p e c u l a t i v e . N o w h e r e i s t h i s d i f fi c u l t y m o r e s t r i k i n g t h a n i n t h e f i e l d o f t h e h o s t - g u e s t c h e m i s t r y o f l a y e r e d m e t a l p h o s p h a t e s a n d t h e i r o r g a n i c / i n o r g a n i c h y b r i d a n a l o g s ( L V P S ) . I n t h e l a s t f e w y e a r s , h o w e v e r , h y d r o t h e r m a l s y n t h e s i s t e c h n i q u e s a f f o r d e d s u c h m a t e r i a l s i n c r y s t a l l i n e f o r m , a l l o w i n g f o r t h e i r s t r u c t u r a l C h a r a c t e r i z a t i o n . T h e L V P s s t r u c t u r a l e n v i r o n m e n t c a n a c t a s a h o s t b y e n c a p s u l a t i n g g u e s t S p e c i e s l i k e s m a l l m o l e c u l e s a n d i o n s . S u c h s y s t e m s a r e l i k e l y t o h a v e r i c h m a g n e t o c h e m i s t r y , S i n c e S p i n c o m m u n i c a t i o n i n p r i n c i p l e c o u l d b e a c h i e v e d w i t h i n t h e h o s t l a y e r s ( i n t r a l a y e r c o u p l i n g ) , b e t w e e n a d j a c e n t h o s t l a y e r s ( i n t e d a y e r c o u p l i n g ) , a m o n g n e i g h b o r i n g g u e s t S p e c i e s ( g u e s t — g u e s t c o u p l i n g ) a n d b e t w e e n g u e s t a n d l a y e r e d h o s t S p e c i e s ( g u e s t - h o s t c o u p l i n g ) . A s y s t e m a t i c i n v e s t i g a t i o n o f l o w d i m e n s i o n a l m a g n e t i c i n t e r a c t i o n s i n v o l v i n g v a n a d y l i o n s w a s u n d e r t a k e n , i n d i c a t i n g c o r r e l a t i o n o f t h e m a g n e t i c p r o p e r t i e s t o s t r u c t u r a l c h a n g e s i n d u c e d t o t h e L V P S ‘ s t r u c t u r a l b u i l d i n g b l o c k s . W e h a v e p r o b e d t h e i n t r a l a y e r s p i n — s p i n i n t e r a c t i o n s b y e m p l o y i n g t h e l a y e r e d f r a m e w o r k o f V O P O 4 - 2 H Z O , w h i c h u p o n r e d o x i n t e r c a l a t i o n o f m o n o v a l e n t o r d i v a l e n t c a t i o n s t h i s S i m p l e d i a m a g n e t i c h o s t b e c o m e s m a g n e t i c b y i n j e c t i o n o f h a l f o r o n e e l e c t r o n p e r v a n a d i u m c e n t e r r e s p e c t i v e l y . T h e m a g n e t i c p r o p e r t i e s o f a s e r i e s o f A X V O P O 4 - n H Z O , w i t h A a n a l k a l i o r a l k a l i n e — e a r t h , w e r e d e t e r m i n e d a n d c o r r e l a t e d t o t h e s t r u c t u r a l f e a t u r e s o f t h e h o s t l a y e r s . A d d i t i o n a l i n s i g h t s i n t o t h e S p i n e x c h a n g e p a t h w a y w e r e g a i n e d b y c o n s i d e r i n g t h e m a g n e t i c b e h a v i o r o f a f a m i l y o f l a y e r e d v a n a d y l p h o s p h o n a t e s ( L V P h ' s ) V O ( O 3 P C G H 4 — X ) - H Z O w i t h X = p — N O z , m — F , p — F , H . I n t h i s s e r i e s o f c o m p o u n d s t h e m a g n i t u d e o f t h e m a g n e t i c c o u p l i n g w a s c o r r e l a t e d t o t h e e l e c t r o n i c p r o p e r t i e s o f t h e b r i d g i n g p h o s p h o n a t e l i g a n d s . F i n a l l y t h e m a g n i t u d e o f i n t e r l a y e r c o u p l i n g i s a s s e s s e d b y u t i l i z i n g a s e c o n d s e r i e s o f l a y e r e d v a n a d y l p h o s p h o n a t e s , V O ( 0 3 P N p ) ( H 2 0 ) - n R O H , w h e r e t h e p h o s p h o n a t e p e n d a n t i s a n a p h t h a l e n e g r o u p a n d v a r i o u s a l c o h o l s a r e i n t e r c a l a t e d w i t h i n t h e i n t e r l a y e r s p a c e ( L V N p P h ' S ) . T h e s e c o m p o u n d s d i s p l a y e d r e m a r k a b l e c o n t r o l o v e r t h e d — s p a c i n g , S i n c e b y u s i n g v a r i o u s a l k y l a l c o h o l s a d j a c e n t l a y e r s a r e m e c h a n i c a l l y j a c k e d b y 1 . 0 6 A p e r m e t h y l e n e u n i t . H e n c e , t h e m a g n e t i c p r o p e r t i e s o f l a y e r s i d e n t i c a l t o e a c h o t h e r , b u t s e p a r a t e d a t d i s t a n c e s f r o m 1 2 . 1 0 A t o 2 0 . 8 3 A , w e r e s t u d i e d e n a b l i n g t h e e v a l u a t i o n o f t h e m a g n i t u d e o f t h e i n t e r l a y e r c o u p l i n g . W e h a v e a l s o i d e n t i fi e d t h e p o t e n t i a l e x c h a n g e p a t h w a y s o f t h e l a y e r s r e s p o n s i b l e f o r t h e m a g n e t i c c o u p l i n g . I n m o s t c a s e s t h e s e w e r e o f d i m e r i c n a t u r e w i t h t w o v a n a d y l c e n t e r s b e i n g b r i d g e d b y t w o p h o s p h a t e / p h o s p h o n a t e l i g a n d s . M o l e c u l a r a n a l o g u e s o f t h e s e e x c h a n g e p a t h w a y s w e r e s y n t h e s i z e d a n d t h e i r m e t r i c p a r a m e t e r s w e r e t u n e d b y v a r y i n g t h e s u b s t i t u e n t s i n t h e b r i d g i n g p h o s p h o n a t e s . T h e s m a l l s t r u c t u r a l c h a n g e s w e r e c o r r e l a t e d t o d i f f e r e n c e s i n m a g n e t i c b e h a v i o r . F i n a l l y , a s s e m b l y o f o r g a n i c m o l e c u l e s b y t h e u s e o f a n a m i d i n i u m - c a r b o x y l a t e s a l t b r i d g e O f f e r e d a n a l t e r n a t i v e w a y f o r t h e c o n s t r u c t i o n o f l a y e r e d m a t e r i a l s . I n c o r p o r a t i o n o f a n i t r o x y l r a d i c a l w i t h i n t h e m o l e c u l a r c o n s t i t u e n t s a f f o r d e d m a g n e t i c s o l i d s w h e r e m a g n e t i c i n t e r a c t i o n s a r e t u r n o n a n d o f f d e p e n d i n g o n t h e n a t u r e o f t h e p o t e n t i a l e x c h a n g e p a t h w a y s . T o m y w i f e a n d s o n . A C K N O L E D G M E N T S M y d a y s a t M i c h i g a n S t a t e w e r e i n t e r e s t i n g f r o m m a n y p e r s p e c t i v e s a n d c e r t a i n l y n o t o n l y f r o m a s c i e n t i f i c p o i n t o f v i e w . I w a s f o r t u n a t e e n o u g h t o w o r k f o r D a n N o c e r a a n d N e d J a c k s o n , t w o i n d i v i d u a l s t h a t I h i g h l y r e s p e c t a n d I a m g r a t e f u l f o r t h e i r g u i d a n c e d u r i n g t h e c o u r s e o f m y g r a d u a t e s t u d i e s . T h r o u g h t h e m I w a s e x p o s e d t o t h e a c a d e m i c e n v i r o n m e n t a n d d e v e l o p e d a b e t t e r u n d e r s t a n d i n g o f t h e s c i e n t i f i c c o m m u n i t y . I h a v e i n t e r a c t e d w i t h a n u m b e r o f c o w o r k e r s i n b o t h g r o u p s , w h o I w o u l d l i k e t o t h a n k f o r p r o v i d i n g a f r i e n d l y a n d c o l l a b o r a t i v e e n v i r o n m e n t . M a n y t h a n k s t o t h e M S U D e p a r t m e n t o f P u b l i c S a f e t y a n d o f fi c e r C o l l i n s f o r t h e i r h o s p i t a l i t y a n d k i n d n e s s d u r i n g t h e h o u r s t h a t m e a n d m y w i f e s p e n t w i t h t h e m . W e e s p e c i a l l y e n j o y e d t h e p i c t u r e s e s s i o n a n d c e r t a i n l y w e a r e g o i n g t o k e e p t h e m i n o u r m e m o r i e s f o r m a n y y e a r s t o c o m e . I n a d d i t i o n , t h e s i n c e r e i n t e r e s t o f t h e D e p a r t m e n t o f C h e m i s t r y a n d t h e C o l l e g e o f N a t u r e S c i e n c e w a s t o u c h i n g . | w i s h t o t h a n k P r o f . G e r a s i m o s K a r a b a t s o s a n d P r o f . D a n i e l N o c e r a f o r t h e i r h e l p a n d g u i d a n c e d u r i n g o u r d a r k e s t m o m e n t s . T h e m o s t v i v i d m e m o r i e s w e r e c e r t a i n l y c o m i n g f r o m t h e e x h a u s t i v e s e s s i o n s o f m e d i t a t i o n w i t h N i k o s L y d a k i s , S p i r o s K a m b o u r a k i s , C h a r a l a m b o s S o u l i s , M a r k o s K a t s o u l a k i s , Z o e S o u l i s , L y k o u r g o s l o r d a n i d i S , J e n A i t k e n , F i l i p p o s V e r v e r i d i s , F a b i a n a F u r t a t o , m y c o m p a n i o n L e n a a n d o c c a s i o n a l l y w i t h o t h e r s , a l w a y s a c c o m p a n i e d b y g o o d f o o d a n d w i n e . T h e i r f r i e n d s h i p w a s v a l u a b l e a n d m a d e m y d a y s a n d m y m e m o r i e s e n j o y a b l e . T A B L E O F C O N T E N T S T A B L E O F C O N T E N T S L I S T O F F I G U R E S L I S T O F T A B L E S C H A P T E R 1 I n t r o d u c t i o n A . M o l e c u l a r M a g n e t i s m 1 . T y p e s o f M a g n e t i c B e h a v i o r 2 . T h e E f f e c t o f G e o m e t r i c a l P e r t u r b a t i o n s : T h e C a s e o f [ L 2 0 U ( 0 H ) ] 2 ( X ) 2 3 . T h e E f f e c t o f E l e c t r o n i c P e r t u r b a t i o n s : T h e C a s e o f V O ( O 3 P C 5 H 4 — X ) ° H 2 0 4 . S t r i c t O r t h o g o n a l i t y : T h e C a s e o f C u V O ( f s a ) 2 e n - C H 3 0 H 5 . I n t e r a c t i o n b e t w e e n P a i r s o f M a g n e t i c O r b i t a l s 6 . T o w a r d s B u l k M o l e c u l a r M a g n e t i s m : T h e C a s e o f t h e P r u s s i a n B l u e F a m i l y o f C o m p o u n d s 7 . D o u b l e E x c h a n g e : A n A l t e r n a t i v e M e c h a n i s m f o r F e r r o m a g n e t i c C o u p l i n g B . M e t a l P h o s p h a t e / P h o s p h o n a t e E x t e n d e d M a t e r i a l s 1 . Z i r c o n i u m P h o s p h a t e s a n d P h o s p h o n a t e s 2 . V a n a d y l P h o s p h a t e s a n d P h o s p h o n a t e s 3 . M a g n e t o s t r u c t u r a l C o r r e l a t i o n s i n V a n a d y l P h o s p h a t e s a n d P h o s p h o n a t e s C . O r g a n i z a t i o n o f t h i s T h e s i s L I S T O F R E F E R E N C E S v i v i x v i i 1 2 1 4 1 6 2 0 2 3 2 5 2 6 2 9 3 2 3 4 3 6 ” . ' 9 C H A P T E R 2 E x p e r i m e n t a l M e t h o d s A . I n s t r u m e n t S e t u p s 1 . P o w d e r X — r a y D i f f r a c t i o n 2 . S i n g l e C r y s t a l X — r a y S t r u c t u r e D e t e r m i n a t i o n 3 . A b s o r p t i o n S p e c t r o s c o p y 4 . T h e r m o g r a v i m e t r i c A n a l y s i s ( T G A ) 5 . I n f r a r e d S p e c t r o s c o p y 6 . M a g n e t i c S u s c e p t i b i l i t y 7 . E l e c t r o n S p i n R e s o n a n c e S t u d i e s 8 . S o l i d S t a t e N u c l e a r M a g n e t i c R e s o n a n c e B . M a t e r i a l s a n d S y n t h e s i s 1 . L a y e r e d M e t a l - I n t e r c a l a t e d V a n a d y l P h o s p h a t e s H y d r a t e s , A X V O P O 4 - n H 2 0 2 . L a y e r e d V a n a d y l N a p t h y l p h o s p o n a t e H y d r a t e A l c o h o l a t e s , V O ( 0 3 P N p ) - H 2 0 - n R O H 3 . S y n t h e s i s o f b i S ( p — S u b s t i t u t e d P h e n y l ) P h o s p h i n i c A c i d s 4 . S y n t h e s i s o f P o t a s s i u m H y d r o t r i S ( 1 — p y r a z o l y l ) B o r a t e , K I H B ( p Z ) a ] 5 . S y n t h e s i s o f V a n a d y l c o m p l e x e s 6 S y n t h e s i s o f A m i d i n i u m — C a r b o x y l a t e S a l t s L I S T O F R E F E R E N C E S C H A P T E R 3 M a g n e t i c S t u d i e s o n L a y e r e d V a n a d y l P h o s p h a t e s a n d P h o s p h o n a t e s A . I n t r o d u c t i o n B . R e s u l t s 1 . P ' S ” M e t a l I n t e r c a l a t e d V a n a d y l P h o s p h a t e s ( L V P ' S ) A x V O P O 4 - n H 2 0 S y n t h e s i s a n d C h a r a c t e r i z a t i o n M a g n e t i c P r o p e r t i e s L a y e r e d V a n a d y l p — o r m — S u b s t i t u t e d P h e n y l P h o s p h o n a t e s ( L V P h ‘ s ) V O ( O 3 P C 6 H 4 — X ) - H 2 0 S y n t h e s i s a n d C h a r a c t e r i z a t i o n M a g n e t i c P r o p e r t i e s A l c o h o l I n t e r c a l a t e d L a y e r e d V a n a d y l 2 — v i i 4 2 4 2 4 2 4 2 4 3 6 2 6 2 6 3 6 3 6 4 6 4 6 5 6 5 6 7 6 7 6 9 7 0 7 2 7 5 7 6 7 6 7 6 8 0 8 0 8 0 9 4 1 0 8 1 0 8 1 1 4 a . b . C . N a p t h y l p h o s p h o n a t e s , V O ( 0 3 P N p ) ( H z O ) - n R O H S y n t h e s i s a n d C h a r a c t e r i z a t i o n M a g n e t i c P r o p e r t i e s D i s c u s s i o n L I S T O F R E F E R E N C E S C H A P T E R 4 M a g n e t o s t r u c t u r a l C o r r e l a t i o n s i n D i n u c l e a r V a n a d y l P h o s p h i n a t e C o m p l e x e s A . B . 1 . C . D . I n t r o d u c t i o n R e s u l t s S y n t h e s i s a n d C h a r a c t e r i z a t i o n o f { L V O U J — ( X — C s H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C I O 4 } D i m e r s , ( L = s u b s t i t u t e d 2 , 2 ' — b i p y r i d y | , a n d X = H — , C H 3 0 — , C l — , F — ) S y n t h e s i s a n d C h a r a c t e r i z a t i o n M a g n e t i c S u s c e p t i b i l i t i e s S t u d i e s S y n t h e s i s a n d C h a r a c t e r i z a t i o n o f { L V O L u — ( p - X — C G H = 4 ) 2 P 0 2 ] } 2 D i m e r s , ( I . = h y d r o t r i s ( 1 — p y r a z o l y | ) b o r a t e , a n d X H - , C H 3 0 — , C H 3 — , F — ) , a n d o f { L V O L u — ( p - - N 0 2 - C e H 4 ) 2 O P 0 2 ] } 2 ° S , ( L = h y d r o t r i s ( 1 - p y r a z o l y | ) b o r a t e , a n d S = C H z c l z , C H 3 C O C H 3 , C 4 H 5 N , C 4 H 4 S , a n d C Z H B S Z ) S y n t h e s i s a n d C h a r a c t e r i z a t i o n E l e c t r o n P a r a m a g n e t i c R e s o n a n c e a n d M a g n e t i c S u s c e p t i b i l i t y S t u d i e s D i s c u s s i o n C o n c l u s i o n s L I S T O F R E F E R E N C E S C H A P T E R 5 A m i d i n i u m — C a r b o x y l a t e S a l t B r i d g e : A S y n t h o n f o r S t r u c t u r a l D e s i g n a n d T r a n s m i s s i o n o f M a g n e t i c P r o p e r t i e s A . B . 1 . I n t r o d u c t i o n R e s u l t s S y n t h e s i s a n d S t r u c t u r e o f 3 — A m i d i n i u m B e n z o a t e ( 1 ) v i i i 1 1 7 1 1 7 1 2 4 1 2 6 1 4 6 1 5 0 1 5 0 1 5 0 1 5 2 1 5 2 1 5 2 1 6 7 1 7 2 1 7 2 1 9 6 2 0 5 2 2 5 2 2 8 2 3 1 2 3 1 2 3 1 2 4 2 2 4 2 2 S y n t h e s i s a n d S t r u c t u r e o f 2 , 2 , 5 , 5 — t e t r a m e t h y I - 3 — c a r b o x y p y r r o l i n e — 1 — o x y l ( 2 ) 2 4 8 3 S y n t h e s i s a n d S t r u c t u r e o f b e n z a m i d i n i u m — 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 — O x y l h y d r a t e ( 3 ) 2 5 2 4 S y n t h e s i s a n d S t r u c t u r e o f m — c y a n o b e n z a m i d i n i u m — 2 , 2 , 5 , 5 - t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 — o x y I ( 4 ) 2 5 7 5 . M a g n e t i c P r o p e r t i e s o f C o m p o u n d s 2 , 3 , a n d 4 2 5 9 C D i s c u s s i o n 2 6 5 D C o n c l u s i o n s 2 7 0 L I S T O F R E F E R E N C E S 2 7 2 A P P E N D I X 2 7 6 L I S T O F F I G U R E S C H A P T E R 1 F i g u r e 1 . R e l a t i v e s p i n o r i e n t a t i o n i n d i f f e r e n t t y p e s o f m a g n e t i c b e h a v i o r . T h e p l o t s d i s p l a y t h e t y p i c a l b e h a v i o r o f m a g n e t i c q u a n t i t i e s , s u c h a s i n v e r s e s u s c e p t i b i l i t y ( X ) , t e m p e r a t u r e p r o d u c t o f s u s c e p t i b i l i t y O J ) , a n d m a g n e t i c m o m e n t ( M ) , w h e n p l o t t e d v e r s u s t h e t e m p e r a t u r e o r t h e m a g n e t i c fi e l d . F i g u r e 2 . T h e s y m m e t r i c ( 1 5 3 a n d a n t i s y m m e t r i c ¢ A o r t h o g o n a l i z e d m a g n e t i c o r b i t a l s ( A ) , a n d t h e r e s p e c t i v e n a t u r a l m a g n e t i c o r b i t a l s ( B ) , f o r a h y d r o x o — b r i d g e d C u ( | l ) b i n u c l e a r c o m p l e x . F i g u r e 3 . C o m p a r i s o n o f t h e n a t u r a l ( l e f t ) a n d o r t h o g o n a l i z e d ( r i g h t ) o r b i t a l a p p r o a c h e s i n t h e a c t i v e — e l e c t r o n a p p r o x i m a t i o n ( G C , g r o u n d c o n f i g u r a t i o n s ; C T C , c h a r g e t r a n s f e r c o n f i g u r a t i o n s ; U e n e r g y s e p a r a t i o n b e t w e e n G C a n d C T C ) . F i g u r e 4 . M a g n e t i c o r b i t a l s o f a m e t a l f r a g m e n t i n t h e s z p o i n t g r o u p . a r e 5 . E a s y ( t o p ) a n d S p i n F l o p ( b o t t o m ) e l e c t r o n t r a n s f e r i n a F e + 3 + I F e m i x e d v a l e n c e b i m e t a l l i c c o m p l e x . F i g u r e 6 . L a y e r s e g m e n t o f a — Z r ( H P O 4 ) 2 - H 2 0 d i s p l a y i n g t h e f r a m e w o r k o f t h e e i g h t — m e m b e r " c h a i r " l i k e r i n g s ( A ) . T h e l a y e r e d s h e e t s a r e s t a g g e r e d f o r m i n g h y d r o p h i l i c p o c k e t s o c c u p i e d b y w a t e r m o l e c u l e s ( B ) . F i g u r e 7 . T h e t w o — d i m e n s i o n a l n e t w o r k o f V O P O 4 - 2 H 2 0 c o n s t r u c t e d b y e d g e — s h a r i n g " C h a i r " l i k e u n i t s ( A ) . t h e s e S h e e t s a r e f u r t h e r a s s e m b l e d t o a l a y e r e d m a t e r i a l ( B ) . F i g u r e 8 . C o m m o n s t r u c t u r a l b u i l d i n g b l o c k s f o u n d i n v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s . T h e y c o n s i s t o f d i m e r i c e n t i t i e s b r i d g e d e i t h e r t h r o u g h t h e v a n a d y l g r o u p ( O — t y p e ) , o r v i a S i n g l e ( M — t y p e ) o r d o u b l e ( D — t y p e ) p h o s p h a t e / p h o s p h o n a t e b r i d g e s . 1 1 1 8 2 4 2 8 3 0 3 3 C H A P T E R 3 F i g u r e 1 . S c h e m a t i c o u t l i n e i n d i c a t i n g t h e m e a n s t h a t m a g n e t i c p r o p e r t i e s c a n b e t u n e d i n v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s : b y s m a l l i o n i n t e r c a l a t i o n ( t o p ) , b y m o l e c u l a r l y j a c k i n g t h e l a y e r ( m i d d l e ) , a n d b y c o n t r o l l i n g t h e s p i n fl o w a m o n g a d j a c e n t c e n t e r s ( b o t t o m ) . F i g u r e 2 . I n t r a l a y e r f r a m e w o r k o f R b o _ 5 V O P O 4 - 1 . 5 H Z O ( A ) . T h e l a y e r i s b u i l t u p b y f u s i o n o f C h a i r — l i k e e i g h t — m e m b e r e d r i n g s d i s p l a y e d i n ( B ) . F i g u r e 3 . T h e t h r e e — d i m e n s i o n a l s t r u c t u r e o f l a y e r e d R b o _ 5 V O P O 4 ' 1 . 5 H 2 0 . F i g u r e 4 . T h e D 4 . 1 c o o r d i n a t i o n o c t a h e d r o n o f t h e C o 2 + i o n i n C O o _ 5 V O P O 4 ° 2 H 2 0 . F i g u r e 5 . P o w d e r X — r a y s p e c t r a o f t h e N a “ ( A ) , R b + ( B ) , a n d S I 2 + ( C ) d e r i v a t i v e s o f t h e v a n a d y l p h o s p h a t e l a y e r e d m a t e r i a l . O n t h e t o p o f t h e m a i n d i f f r a c t i o n l i n e s a r e i n d i c a t e d t h e c o r r e s p o n d i n g t h i n d i c e s . F i g u r e 6 . P o w d e r X - r a y s p e c t r a o f t h e K + d e r i v a t i v e . T h e t o p S p e c t r u m b e l o n g s t o a m u l t i — p h a s e s a m p l e , w i t h t h e a r r o w s i n d i c a t i n g t h e p e a k s t h a t d o n o t c o r r e s p o n d t o t h e c a l c u l a t e d d i f f r a c t i o n l i n e s ( A ) . T h e s p e c t r u m o f a s i n g l e — p h a s e m a t e r i a l i s s h o w n b e l o w w i t h t h e m a i n d i f f r a c t i o n l i n e s i n d e x e d ( B ) . F i g u r e 7 . P o w d e r X — r a y s p e c t r a o f t h e C o 2 + d e r i v a t i v e . T h e t o p S p e c t r u m b e l o n g s t o a m u l t i — p h a s e s a m p l e , w i t h t h e a r r o w s i n d i c a t i n g t h e p e a k s t h a t d o n o t c o r r e s p o n d t o t h e c a l c u l a t e d d i f f r a c t i o n l i n e s ( A ) . T h e s p e c t r u m o f a s i n g l e — p h a s e m a t e r i a l i s s h o w n b e l o w w i t h t h e m a i n d i f f r a c t i o n l i n e s i n d e x e d ( 8 ) . F i g u r e 8 . T G A p l o t s o f t h e N a ‘ “ ( A ) , m u l t i - p h a s e C o 2 + ( B ) , a n d s i n g l e — p h a s e C o 2 + ( C ) i n t e r c a l a t e d d e r i v a t i v e s o f l a y e r e d v a n a d y l p h o s p h a t e . T h e w a t e r l o s s s t e p s a r e c e n t e r e d a r o u n d t h e t e m p e r a t u r e s i n d i c a t e d b y t h e a r r o w s . F i g u r e 9 . C o r r e l a t i o n o f t h e w a t e r l o s s t e m p e r a t u r e w i t h t h e c a t i o n t o w a t e r b o n d d i s t a n c e ( f o r t h e N a “ , K ‘ , a n d R b + d e r i v a t i v e s ) , f o r e a c h c r y s t a l l o g r a p h i c a l l y u n i q u e w a t e r m o l e c u l e ( ( A ) a n d ( 8 ) ) . F i g u r e 1 0 . D e t a i l o f t h e i n f r a r e d s p e c t r a o f S r o , 5 V O P O 4 - 2 H 2 0 ( A ) , s i n g l e - p h a s e C o o _ 5 V O P O 4 - 2 H 2 0 ( B ) , a n d m u l t i — p h a s e C o o , 5 V O P O 4 - 2 H 2 0 ( C ) . F i g u r e 1 1 . R o o m t e m p e r a t u r e 3 1 P — N M R S p e c t r a o f V O P O 4 - 2 H 2 0 ( A ) a n d o f i t s 0 0 2 * ( B ) a n d N a “ ( C ) m e t a l i n t e r c a l a t e d d e r i v a t i v e s . x i 7 8 8 3 8 5 8 7 8 8 9 O 9 1 9 2 9 3 9 6 9 9 F i g u r e 1 2 . T e m p e r a t u r e d e p e n d e n c e o f t h e i n v e r s e p a r a m a g n e t i c s h i f t o f N a + ( A ) , K ” ( B ) , R b + ( C ) , a n d C D 2 + ( D ) d e r i v a t i v e s . F i g u r e 1 3 . 3 1 P - N M R s p e c t r a o f N a o , 5 V O P O 4 - 2 H 2 0 r e c o r d e d a t v a r i o u s t e m p e r a t u r e s ( i n C ° ) . F i g u r e 1 4 . x T p l o t v s t e m p e r a t u r e o f N a + ( x ) , K + ( + ) , R b + ( 0 ) , a n d S + ( o ) d e r i v a t i v e s o f l a y e r e d v a n a d y l p h o s p h a t e ( A ) . T h e s p e c t r u m b e l o w d i s p l a y s t h e b e h a v i o r o f t h e x T p r o d u c t f o r a t w o — p h a s e ( o ) a n d a s i n g l e — p h a s e ( O ) C o 2 + d e r i v a t i v e ( B ) . F i g u r e 1 5 . I n — p l a n e s e g m e n t o f t h e V O ( 0 3 P C 6 H 4 — X ) - H 2 0 ( X = p - N 0 2 , m - F , p - F a n d H ) s t r u c t u r e t y p e . F i g u r e 1 6 . l n - p l a n e s e g m e n t o f v a n a d y l h y d r o g e n p h o s p h a t e h e m i h y d r a t e , V O ( H P O 4 ) - 0 . 5 H 2 0 , w h i c h i s i s o s t r u c t u r a l w i t h t h e V O ( 0 3 P C 5 H 4 - X ) - 1 . 5 H 2 0 ( X = C l , C H 3 ) a s d e s c r i b e d i n t h e t e x t . F i g u r e 1 7 . P l o t o f 2 ’ v s . T f o r V O ( O 3 P C 6 H 4 - X ) - H 2 0 ( X = p - N O Z ( s q u a r e ) , m - F ( t r i a n g l e ) , p - F , ( d i a m o n d ) , a n d H ( C i r c l e ) ) s h o w i n g t h e b r o a d p a r a m a g n e t i c m a x i m a f o r t h e l a t t e r t h r e e . F i g u r e 1 8 . E P R S p e c t r u m o f V O ( O 3 P C 6 H 4 — p - N 0 2 ) ~ H 2 0 ( t h e m i c r o w a v e f r e q u e n c y w a s 9 . 4 5 0 G H z a n d g = 1 . 9 8 ) . F i g u r e 1 9 . I n t e r l a y e r S p a c i n g o f ( V O ) ( 0 3 P N p ) ( H 2 0 ) - n R O H p l o t t e d a s a f u n c t i o n o f t h e c a r b o n a t o m s i n t h e a l k y l g r o u p R . F i g u r e 2 0 . I n t r a l a y e r s t r u c t u r e o f V O ( O 3 P N p ) ( H 2 0 ) - n R O H . F i g u r e 2 1 . T h e r m o g r a v i m e t r i c a n a l y s i s p l o t s o f t h e ( V O ) ( 0 3 P N p ) ( H 2 0 ) - n R O H h o m o l o g o u s s e r i e s , f o r e t h a n o l ( A ) , b u t a n o l ( B ) , h e x a n o l ( C ) , a n d o c t a n o l ( D ) . T h e a r r o w i n d i c a t e s t h e t e m p e r a t u r e w h e r e r e m o v a l o f t h e e q u a t o r i a l m o l e c u l e s i s s t a r t i n g t o t a k e p l a c e . F i g u r e 2 2 . T h e r m a l v a r i a t i o n o f t h e m o l a r s u s c e p t i b i l i t y o f V O ( 0 3 P N p ) ( H 2 0 ) - 0 . 7 H e x O H . T h e i n s e t d i s p l a y s t h e m a x i m u m o b s e r v e d i n t h e s u s c e p t i b i l i t y , t y p i c a l o f l o w — d i m e n s i o n a l a n t i f e r r o m a g n e t i c b e h a v i o r . F i g u r e 2 3 . P l o t o f t h e i s o t r o p i c 3 1 P — N M R C h e m i c a l S h i f t o f s e l e c t e d v a n a d y l p h o s p h a t e s / p h o s p h o n a t e s v e r s u s t h e p h o s p h o r o u s d i s p l a c e m e n t D f r o m t h e b a s a l v a n a d y l p l a n e . F i g u r e 2 4 . P l o t o f J / k v s . 0 ' f o r t h e f o u r L V P s V O ( O 3 P C 6 H 4 — X ) - H 2 0 ( X = p - N O Z , m - F , p - F , a n d H ) . F i g u r e 2 5 . 0 I I I s t r u c t u r a l b u i l d i n g b l o c k ( t o p ) a n d t h e c o r r e s p o n d i n g D V o n e s f o r t h e p h o s p a t e ( l e f t ) a n d t h e p h o s p h o n a t e ( r i g h t ) . x i i 1 0 1 1 0 4 1 0 5 1 1 0 1 1 3 1 1 5 1 1 6 1 1 9 1 2 0 1 2 2 1 2 5 1 3 0 1 3 3 1 3 6 F i g u r e 2 6 . S y m m e t r i c ( t b s ) a n d a n t i s y m m e t r i c ( ( D A ) c o m b i n a t i o n o f v a n a d i u m d x y a n d p h o s p h a t e / p h o s p h o n a t e m o l e c u l a r o r b i t a l s a n d t h e i r e n e r g y d e p e n d e n c e U p o n d e v i a t i o n f r o m c o p l a n a r i t y o f t h e l o c a l m e t a l e n v i r o n m e n t s . F i g u r e 2 7 . V a r i o u s e l e c t r o n i c c o n fi g u r a t i o n s o f t h e m i x e d v a l e n c e a l k a l i m e t a l i n t e r c a l a t e d v a n a d y l p h o s p h a t e s h y d r a t e s . C H A P T E R 4 F i g u r e 1 . G e n e r a l s y n t h e t i c s c h e m e f o r v a n a d y l p h o s p h i n a t e d i m e r s w i t h b i p y r i d y I - t y p e t e r m i n a l l i g a n d s . F i g u r e 2 . O R T E P r e p r e s e n t a t i o n o f { d m b p y V O [ p — ( C e H 5 ) 2 P 0 2 ] 1 , 5 } 2 { C I O 4 } - 4 C H 3 0 H ( A ) , a n d v i e w o f i t s t w i s t d i m e r c o r e ( B ) . T h e P ( 3 ) p h o s p h i n a t e g r o u p b r i d g e s t h e e q u a t o r i a l S i t e s o f t h e t w o v a n a d y l o c t a h e d r a . F i g u r e 3 . O R T E P r e p r e s e n t a t i o n o f { b p y V O [ p - ( p - C H 3 0 — C 6 H 4 ) 2 P 0 2 ] 1 , 5 } 2 { C I O 4 } ( A ) , a n d v i e w o f i t s s y n d i m e r c o r e ( B ) . T h e P ( 1 ) p h o s p h i n a t e g r o u p b r i d g e s t h e a x i a l S i t e s o f t h e t w o v a n a d y l o c t a h e d r a . F i g u r e 4 . A b s o r p t i o n s p e c t r u m o f { b p y V O [ p - ( p - M e O — C s H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C I O 4 } i n a c e t o n e s o l u t i o n . T h e t h r e e m a x i m a a r e a t t r i b u t e d t o d — d t r a n s i t i o n s . F i g u r e 5 . M o l a r s u s c e p t i b i l i t y v e r s u s t e m p e r a t u r e p l o t s o f c o m p m p o u n d s 1 ( A ) , 2 ( B ) , a n d 3 ( C ) . T h e s o l i d l i n e r e p r e s e n t s t h e b e s t fi t o b t a i n e d b y u s i n g a B l e a n e y — B o w e r s d i m e r m o d e l . F i g u r e 6 . M o l e c u l a r s u s c e p t i b i l i t y v e r s u s t e m p e r a t u r e p l o t s o f c o m p o u n d s 4 ( A ) , 6 a n d 6 A ( B ) , a n d 5 a n d 5 A ( C ) . T h e s o l i d l i n e r e p r e s e n t s t h e b e s t fi t o b t a i n e d b y u s i n g a B I e a n e y — B o w e r s d i m e r m o d e l . F i g u r e 7 . G e n e r a l s y n t h e t i c s c h e m e f o r p h o s p h i n a t e a n d p h o s p h o n a t e d i m e r s w i t h t r i s ( 1 — p y r a z o l y l ) b o r a t e a s t h e t e r m i n a l H g a n d . F i g u r e 8 . O R T E P v i e w o f { H B ( p z ) 3 V O [ p — ( p - C H 3 - P h ) 2 P 0 2 ] } 2 - Z C H 2 C | 2 ( 1 1 ) , w h e r e h a l f o f t h e a t o m s a r e c r y s t a l l o g r a p h i c a l l y u n i q u e ( A ) , a n d v i e w o f i t s a n t i d i m e r c o r e ( B ) . F i g u r e 9 . C h a i r ( l e f t ) a n d fl a t ( r i g h t ) c o n f o r m a t i o n s o f t h e e i g h t - m e m b e r e d d i m e r c o r e o f t h e { H B ( p z ) 3 V O [ p — ( p - X — P h ) 2 P 0 2 ] } 2 c o m p l e x e s . x i i i 1 3 9 1 4 2 1 5 3 1 5 9 1 6 4 1 6 5 1 7 0 1 7 1 1 7 4 1 7 9 1 8 2 F i g u r e 1 0 . B a s a l p l a n e V d i s p l a c e m e n t o f t h e v a n a d y l o c t a h e d r a p l o t t e d a g a I n s t t h e < N 2 0 2 V I O 4 P > d i h e d r a l a n g l e . F i g u r e 1 1 . O R T E P v i e w o f { H B ( p z ) 3 V O [ p — ( p - N 0 2 — P h O ) 2 P O z ] } 2 - Z C H 2 C l 2 ( 1 2 ) , w h e r e h a l f o f t h e a t o m s a r e c r y s t a l l o g r a p h i c a l l y u n i q u e ( A ) , a n d v i e w o f i t s a n t i d i m e r c o r e ( B ) . F i g u r e 1 2 . I t — I r I n t e r a c t i o n s b e t w e e n t h e s o l v e n t a n d t h e l i g a n d s i n t h e t h i o p h e n e ( A ) a n d p y r r o l e ( B ) s o l v a t e s o f { H B ( p z ) 3 V O [ p — ( p - N O z — P h O ) 2 P 0 2 ] } 2 . F i g u r e 1 3 . A b s o r p t i o n s p e c t r u m o f { H B ( p z ) 3 V O [ , u — ( p - C H 3 0 - P h ) 2 P 0 2 ] } 2 8 , i n d i c h l o r o m e t h a n e s o l u t i o n . T h e t w o m a x i m a a r e a t t r i b u t e d t o d — ( 1 t r a n s i t i o n s . F i g u r e 1 4 . R o o m t e m p e r a t u r e E P R S p e c t r a o f c o m p o u n d s 7 ( A ) , 9 ( B ) , a n d 1 2 ( C ) . F i g u r e 1 5 . R o o m t e m p e r a t u r e E P R S p e c t r a o f c o m p o u n d s 1 1 ( A ) a n d 8 ( B ) . F i g u r e 1 6 . F r o z e n g l a s s E P R S p e c t r a o f c o m p o u n d s 7 ( A ) , a n d 8 ( B ) a t 4 . 1 K . F i g u r e 1 7 . S u s c e p t i b i l i t y v e s r u s t e m p e r a t u r e p l o t s o f c o m p o u n d s 7 ( A ) , 1 1 ( B ) , 9 ( C ) , a n d 8 ( D ) . T h e s o l i d l i n e s r e p r e s e n t t h e b e s t f i t o b t a i n e d b y u s i n g a B I e a n e y — B o w e r s d i m e r m o d e l . F i g u r e 1 8 . S u s c e p t i b i l i t y v e r s u s t e m p e r a t u r e p l o t s o f t h e d i c h l o r o m e t h a n e ( A ) a n d p y r r o l e ( B ) s o l v a t e s o f { H B ( p z ) 3 V O [ p — ( p - N O z - P h O ) 2 P 0 2 ] } 2 . T h e s o l i d l i n e s r e p r e s e n t t h e b e s t f i t o b t a i n e d b y u s i n g a B I e a n e y — B o w e r s d i m e r m o d e l . F i g u r e 1 9 . S u p e r e x c h a n g e p a t h w a y s o f s y n ( A ) a n d t w i s t ( B ) t y p e d i m e r c o r e s . T h e l a t t e r i s d i s p l a y e d i n t w o v i e w s , w h i c h s h o w t h e r e l a t i v e o r i e n t a t i o n o f t h e v a n a d i u m b a s a l p l a n e s . F i g u r e 2 0 . S y m m e t r i c ( ( D 3 ) a n d a n t i s y m m e t r i c ( ( D A ) o r t h o g o n a l i z e d m a g n e t i c o r b i t a l s ( A ) . T h e i r e n e r g y s e p a r a t i o n i s i n fl u e n c e d b y t h e r e l a t i v e o r i e n t a t i o n o f t h e v a n a d i u m b a s a l p l a n e s ( N 2 0 2 V ' ) ( B ) a n d b y t h e r e l a t i v e t i l t o f t h e v a n a d y l g r o u p s ( C ) . F i g u r e 2 1 . S y m m e t r i c ( ( D 3 ) a n d a n t i s y m m e t r i c ( ( D A ) c o m b i n a t i o n o f v a n a d i u m d x y a n d p h o s p h a t e / p h o s p h o n a t e m o l e c u l a r o r b i t a l s a n d t h e i r e n e r g y d e p e n d e n c e u p o n t r a n s f o r m a t i o n o f t h e fl a t r i n g c o n f o r m a t i o n t o t h e r e s p e c t i v e C h a i r . x i v 1 8 3 1 8 8 1 9 4 1 9 8 2 0 0 2 0 1 2 0 3 2 0 4 2 0 7 2 1 3 2 1 5 2 2 0 C H A P T E R 5 F i g u r e 1 . F r o m m o l e c u l a r t o s u p r a m o l e c u l a r C h e m i s t r y : m o l e c u l e s , s u p r a m o l e c u l e s , m o l e c u l a r a n d s u p r a m o l e c u l a r d e v i c e s . F i g u r e 2 . C o n d e n s a t i o n r e a c t i o n o f 3 - a m i n o b e n z i d i n e s w i t h 2 — f o r m y l p h e n o x y a c e t i c a c i d s v i a t h e a s s e m b l y o f a t e r n a r y c o m p l e x , a m i a b l e b y a n a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e . F i g u r e 3 . S u p r a m o l e c u l a r c o m p l e x e s ( A ) a n d ( B ) a s s e m b l e d i n s o l u t i o n , f o r e l e c t r o n t r a n s f e r s t u d i e s , w i t h a n a m i d i n i u m - c a r b o x y l a t e s a l t b r i d g e a s t h e c o n n e c t i n g s t r u c t u r a l e l e m e n t . F i g u r e 3 . R e p r e s e n t a t i v e s u p r a m o l e c u l a r s y n t h o n s . F i g u r e 5 . T h e p a c k i n g o f t h e z i g — z a g t a p e s i n t h e b e p l a n e o f t h e c r y s t a l s t r u c t u r e o f 1 . T h e a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e i s r o t a t e d 2 6 . 1 ( p l a n e d e fi n e d b y t h e o x y g e n a n d n i t r o g e n a t o m s o f t h e s a l t b r i d g e ) o u t o f t h e p l a n e o f t h e a r o m a t i c r i n g . F i g u r e 6 . R o t a t i o n o f t h e c r y s t a l s t r u c t u r e o f 1 s u c h t h a t t h e l a d d e r i s v i e w e d i n t h e p l a n e o f t h e p a p e r . T h e l a d d e r s t r u c t u r e i s f o r m e d f r o m t h e h y d r o g e n b o n d i n g b e t w e e n p r o t o n s e x t e r n a l t o t h e s a l t b r i d g e o f a g i v e n t a p e a n d t h e c a r b o x y l a t e o x y g e n s o f s a l t b r i d g e s i n n e i g h b o r i n g i n t e r l a y e r s . F i g u r e 7 . T h e a c p l a n e o f 1 S h o w i n g t h e l a y e r e d s h e e t s t r u c t u r e s u p p o r t e d b y a l a d d e r s c a f f o l d . T h e l a d d e r s t i l t a l t e r n a t e l y i n t o a n d o u t o f t h e p l a n e o f t h e p a p e r b y 3 0 . 0 0 a n d 2 3 3 ° r e s p e c t i v e l y . F i g u r e 8 . T h e l a y e r e d s t r u c t u r e o f c o m p o u n d 2 . O n l y a t o m s i n v o l v e d i n t h e h y d r o g e n b o n d i n g p a t t e r n a r e n u m b e r e d a l o n g o n e o f t h e c h a i n s . F i g u r e 9 . T h e m o l e c u l a r c l u s t e r o f t w o c a t i o n s a n d t w o a n i o n s ( A ) a n d t h e r e s u l t i n g i n fi n i t e l a d d e r s a l o n g t h e b — a x i s o f t h e u n i t c e l l t h a t r e s u l t u p o n b r i d g i n g t h e C l u s t e r s w i t h t h e w a t e r m o l e c u l e s ( B ) . F i g u r e 1 0 . V i e w ( A ) o f t h e o n e - d i m e n s i o n a l c h a i n s f o r m e d b y t h e w a t e r h y d r o g e n b o n d i n g t o t h e c a r b o x y l a t e a n d t h e n i t r o x o g r o u p o f t h e a n i o n ( t h e b e n z a m i d i n i u m c a t i o n s h a v e b e e n r e m o v e d f o r c l a r i t y ) . T w o n e i g b o r i n g c h a i n s a r e c o n n e c t e d v i a t h e h y d r o g e n b o n d i n g i n t e r a c t i o n o f t h e s a l t b r i d g e f o r m i n g d o u b l e h e l i c e s t h a t r u n a l o n g t h e a a x i s o f t h e u n i t c e l l ( B ) . F i g u r e 1 1 . S t r u c t u r a l b u i l d i n g b l o c k o f c o m p o u n d 4 b u i l t u p b y a m o l e c u l a r c l u s t e r o f t w o a n i o n s a n d t w o c a t i o n s h e l d b y t h e s a l t b r i d g e i n t e r a c t i o n . T h e e x t e r n a l a m i d i n i u m p r o t o n s o f t h e C l u s t e r , h y d r o g e n b o n d t o t h e n i t r o x o o x y g e n a t o m s o f a n i o n s b e l o n g i n g t o d i f f e r e n t c l u s t e r s . X V 2 3 3 2 3 4 2 3 6 2 3 8 2 4 5 2 4 6 2 4 7 2 5 1 2 5 4 2 5 6 2 5 8 F i g u r e 1 2 . T w o — d i m e n s i o n a l S h e e t s o f c o m p o u n d 4 a s s e m b l e d b y n i t r o x y l r a d i c a l s i n t e r c o n n e c t i n g a d j a c e n t c l u s t e r s u b u n i t s . T h e n i t r o x y l s p i n c a r r i e r s c o m p o s e a l i n e r a c h a i n , d i a g o n a l l y S i t u a t e d w i t h i n t h e l a y e r . F i g u r e 1 3 . R o o m t e m p e r a t u r e E P R s p e c t r a o f c o m p o u n d 4 ( A ) i n d e u t e r a t e d m e t h a n o l ( B ) i t s m N = 0 l i n e S h o w i n g s h f s t r u c t u r e a n d ( C ) f o r a s o l i d s a m p l e . F i g u r e 1 4 . M a g n e t i c s u s c e p t i b i l i t y d a t a f o r c o m p o u n d s 2 ( x ) , 3 ( o ) , a n d 4 ( 0 ) , e x p r e s s e d i n t h e f o r m o f X T v e r s u s T p l o t . x v i 2 6 0 2 6 1 2 6 3 L I S T O F T A B L E S C H A P T E R 1 T a b l e 1 . P r e d i c t i o n o f t h e N a t u r e a n d t h e O r d e r o f M a g n i t u d e f o r C o n t r i b u t i o n s J “ , I n v o l v i n g P a i r s o f M a g n e t i c O r b i t a l s f o r B i n u c l e a r M e t a l C o m p l e x e s i n t h e s z P o i n t G r o u p C H A P T E R 3 T a b l e 1 . C r y s t a l l o g r a p h i c D a t a f o r R b o . 5 V O P O 4 - 1 . 5 H 2 0 T a b l e 2 . S e l e c t e d B o n d ( A ) f o r A x V O P O 4 - n H Z O T a b l e 3 . I n f r a r e d P e a k s a n d A s s i g n m e n t f o r A " + o , 5 V O P O 4 - n H Z O T a b l e 4 . F o r m u l a , s t r u c t u r e a n d m a g n e t i c d a t a f o r A o _ 5 V O P O 4 - n H 2 0 T a b l e 5 . S e l e c t e d s t r u c t u r a l , v i b r a t i o n a l a n d m a g n e t i c d a t a f o r V O ( 0 3 P C 6 H 4 — X ) - H 2 0 L V P S a n d H a m m e t t a v a l u e s f o r C 6 H 4 — X T a b l e 6 . F o r m u l a , s t r u c t u r e , m a g n e t i s m a n d e m i s s i o n d a t a f o r V O ( 0 3 P N p ) ( H Z O ) - n R O H T a b l e 7 . S t r u c t u r a l T y p e s o f L a y e r e d V a n a d y l P h o s p h a t e s a n d P h o s p h o n a t e s T a b l e 8 . M e t r i c P a r a m e t e r s f o r t h e D V E x c h a n g e P a t h w a y T a b l e 9 . M e t r i c P a r a m e t e r s f o r t h e D V I I E x c h a n g e P a t h w a y C h a p t e r 4 T a b l e 1 . C r y s t a l l o g r a p h i c D a t a f o r C o m p o u n d s 1 , a n d 2 T a b l e 2 . C r y s t a l l o g r a p h i c D a t a f o r C o m p o u n d s 3 , a n d 6 A T a b l e 3 . B o n d D i s t a n c e s a n d D i m e r M e t r i c P a r a m e t e r s f o r { L 2 V O [ , u — ( X — C 6 H 4 ) 2 P 0 2 ] 1 _ 5 } 2 { C I O 4 } , 1 , 2 , 3 , a n d 6 A x v i i 1 9 8 1 8 2 9 5 1 0 2 1 1 1 1 2 3 1 2 7 1 3 8 1 3 8 1 5 5 1 5 6 1 5 7 T a b l e 4 . C r y s t a l l o g r a p h i c D a t a f o r C o m p o u n d s 4 , 5 , a n d 6 T a b l e 5 . B o n d D i s t a n c e s a n d D i m e r M e t r i c P a r a m e t e r s f o r { L 2 V O [ , u — ( X — C 5 H 4 ) 2 P 0 2 ] 1 _ 5 } 2 { C I O 4 } , 4 , 5 , a n d 6 T a b l e 6 . E l e c t r o n i c A b s o r p t i o n S p e c t r a o f { b p y V O [ ( p - X — C a H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C l O 4 } , 1 , 4 , 5 , 6 , a n d { t m b p y V O [ ( p - C H 3 0 — C e H 4 O ) 2 P 0 2 ] } 2 { C I O 4 } , 6 A , i n a c e t o n e T a b l e 7 . S u s c e p t i b i l i t y D a t a a n d D i m e r M e t r i c P a r a m e t e r s f o r { ( L Z V O U l — ( P h l z p 0 2 l } 2 { C I O 4 } T a b l e 8 . S u s c e p t i b i l i t y D a t a a n d D i m e r M e t r i c P a r a m e t e r s f o r { I L Z V O L U - ( P ' X - P h ) 2 P 0 2 ] } 2 { C | O 4 } T a b l e 9 . C r y s t a l l o g r a p h i c D a t a f o r C o m p o u n d s 7 , 8 , a n d 9 T a b l e 1 0 . C r y s t a l l o g r a p h i c D a t a f o r C o m p o u n d s 1 1 , a n d 1 2 T a b l e 1 1 . B o n d D i s t a n c e s a n d D i m e r M e t r i c P a r a m e t e r s f o r { H B ( p z ) 3 V O [ p — ( p - X — C 5 H 4 ) 2 P 0 2 ] } 2 7 , 8 , 9 , 1 0 , a n d 1 1 T a b l e 1 2 . C r y s t a l l o g r a p h i c D a t a f o r { H B ( p z ) 3 V O [ , u — ( p - N 0 2 — P h O ) 2 P 0 2 ] } 2 - S , w i t h S = C H z C l z ( 1 2 ) , C H 3 C O C H 3 ( 1 3 ) a n d C 4 H 5 N ( 1 4 ) T a b l e 1 3 . B o n d D i s t a n c e s a n d D i m e r M e t r i c P a r a m e t e r s f o r { H B ( p z ) 3 V O [ p - ( p - N 0 2 — C 6 H 4 O ) 2 P 0 2 ] } 2 - S 1 2 , 1 3 , a n d 1 4 T a b l e 1 4 . C r y s t a l l o g r a p h i c D a t a o f { H B ( p z ) 3 V O [ , u - ( p - N 0 2 — P h O ) 2 P 0 2 ] } 2 - C 4 H 4 S , a t R o o m T e m p e r a t u r e ( 1 5 A ) a n d a t 1 7 3 K ( 1 5 8 ) T a b l e 1 5 . C r y s t a l l o g r a p h i c D a t a o f { H B ( p z ) 3 V O [ p — ( p - N 0 2 — P h O ) 2 P 0 2 ] } 2 ' C 2 H 5 8 2 , a t R o o m T e m p e r a t u r e ( 1 6 A ) a n d a t 1 7 3 K ( 1 6 8 ) T a b l e 1 6 . B o n d D i s t a n c e s a n d D i m e r M e t r i c P a r a m e t e r s f o r { H B ( p z ) 3 V O [ p — ( p - N O z — C 5 H 4 O ) 2 P 0 2 ] } 2 - S 1 5 A , 1 5 8 , 1 6 A , a n d 1 6 8 T a b l e 1 7 . I n f r a r e d D a t a o f { H B ( p z ) 3 V O [ ( X ) 2 P O Z ] } 2 - n C H 2 C l 2 C o m p l e x e s T a b l e 1 8 . I n f r a r e d D a t a o f { H B ( p z ) 3 V O [ ( p - N O z — C 5 H 4 O ) 2 P O z ] } 2 - S T a b l e 1 9 . E l e c t r o n i c A b s o r p t i o n S p e c t r a o f { H B ( p z ) 3 V O [ ( p — X — C e H 4 ) 2 P 0 2 ] } 2 3 0 d { H B I P Z ) 3 V O [ ( P - N o z - C S H 4 O ) 2 P 0 2 I } 2 i n D i c h l o r o m e t h a n e T a b l e 2 0 . S u s c e p t i b i l i t y D a t a a n d D i m e r M e t r i c P a r a m e t e r s f o r { H B ( D Z ) 3 V O L u - ( p - X - P h ) 2 P 0 2 ] } 2 - S x v i i i 1 6 0 1 6 3 1 6 6 1 6 8 1 6 9 1 7 5 1 7 7 1 8 0 1 8 6 1 9 0 1 9 1 1 9 2 1 9 3 1 9 5 1 9 7 1 9 9 2 0 6 T a b l e 2 1 . S u s c e p t i b i l i t y D a t a a n d D i m e r M e t r i c P a r a m e t e r s f o r H B ( P Z ) 3 V 0 l # - ( P - N 0 2 - P h 0 ) 2 P 0 2 ] } 2 - S C H A P T E R 5 T a b l e 1 . C r y s t a l l o g r a p h i c D a t a f o r C o m p o u n d s 1 , a n d 2 T a b l e 2 . C r y s t a l l o g r a p h i c D a t a f o r C o m p o u n d s 3 , a n d 4 A P E N D I X T a b l e 1 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o e r o , 5 V O P O 4 - 1 . 5 H 2 0 ( T = 2 9 3 K ) , ( 3 . 1 A ) . T a b l e 2 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r R b o , 5 V O P O 4 ' 1 . 5 H 2 0 ( T = 2 9 3 K ) , ( 3 . 1 A ) . T a b l e 3 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r R b o _ 5 V O P O 4 - 1 . 5 H Z O ( T = 1 7 3 K ) , ( 3 . 1 3 ) . T a b l e 4 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r R b o , 5 V O P O 4 - 1 . 5 H ; _ O ( T = 1 7 3 K ) , ( 3 . 1 3 ) . T a b l e 5 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { b p y V O M — ( C 5 H 5 ) 2 P 0 2 ] I . 5 } 2 { C l O a } , ( 4 . 1 ) . T a b l e 6 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { b p y V O L u — ( C 6 H 5 ) 2 P 0 2 1 1 , 5 } 2 { C I O 4 } , ( 4 . 1 ) . T a b l e 7 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { d m b p y V O U I — ( C G H 5 ) 2 P 0 2 ] 1 . 5 } 2 { C I O 4 } - 4 C H 3 0 H , ( 4 . 2 ) . T a b l e 8 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { d m b p y V O h r — ( C s H s h P O z h , 5 } 2 { C I O 4 } - 4 C H 3 0 H , ( 4 . 2 ) . T a b l e 9 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { t m b p y V O L u — ( C 5 H 5 ) 2 P O z ] 1 . 5 } 2 { C I O 4 } - 3 . S C H 3 0 H , ( 4 . 3 ) . T a b l e 1 0 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { t m b p y V O [ , u - ( C s H 5 ) 2 P 0 2 ] 1 _ 5 } 2 { C I O 4 } - 3 . S C H 3 O H , ( 4 . 3 ) . x i x 2 0 8 2 4 3 2 5 3 2 7 6 2 7 7 2 7 8 2 7 9 2 8 0 2 8 3 2 8 6 2 8 9 2 9 2 2 9 8 T a b l e 1 1 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { b p y V O L t r — ( p - F C 6 H 4 ) 2 P O Z ] 1 _ 5 } 2 { C l O 4 } - 1 . 5 0 H 3 0 H , ( 4 . 4 ) . T a b l e 1 2 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { b p y V O U r — ( p — F C S H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C I O 4 } - 1 . 5 C H 3 0 H , ( 4 . 4 ) . T a b l e 1 3 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { b p y V O [ , u — ( p - C I C 5 H 4 ) 2 P 0 2 ] 1 . 5 } ; { C I O 4 } , ( 4 . 5 ) . T a b l e 1 4 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { P P Y V O I fl ‘ I P ' C I C S H 4 ) 2 P O Z I 1 . 5 } 2 { C | O 4 } I ( 4 - 5 ) - T a b l e 1 5 . A t o m i c C o o r d i n a t e s x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 ) f o r { b p y V O L u — ( p - C H 3 0 C 5 H 4 ) 2 P 0 2 ] 1 _ 5 } 2 { C I O 4 } , ( 4 . 6 ) . T a b l e 1 6 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { b P Y V O I fl - ( P ' C H 3 0 0 6 H 4 ) 2 P 0 2 I 1 . 5 } 2 { C I O 4 } I ( 4 5 ) - T a b l e 1 7 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { t m b p y V O [ p — ( p - C H 3 0 C 5 H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C | O 4 } ' 2 C H 3 C O C H 3 . ( 4 . 6 A ) . T a b l e 1 8 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { t m b p y V O U I — ( p - C H 3 0 C 6 H 4 ) 2 P O Z ] 1 , 5 } 2 { C I O 4 } - 2 C H 3 C O C H 3 , ( 4 . 6 A ) . T a b l e 1 9 . A t o m i c C o o r d i n a t e s ( x 1 0 ‘ ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ p — ( C 5 H 5 ) 2 P 0 2 ] } 2 ' C H z C I z ( 4 . 7 ) . T a b l e 2 0 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ , u — ( C S H 5 ) 2 P 0 2 ] } 2 - C H z C l z , ( 4 . 7 ) . T a b l e 2 1 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A ’ - x 1 0 2 ) f o r { H B ( p z ) 3 V O [ , u — ( p - C H 3 0 0 5 H 4 ) 2 P O z ] } 2 - C H 3 0 N , ( 4 . 8 ) . T a b l e 2 2 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ , u — ( p - C H 3 0 C 5 H 4 ) 2 P 0 2 ] } 2 - C H 3 C N , ( 4 . 8 ) . T a b l e 2 3 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 ) f o r { H B ( p z ) 3 V O [ , u — ( p - F — C G H 4 ) 2 P 0 2 ] } 2 - 2 C H 3 C N , ( 4 . 9 ) . T a b l e 2 4 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p Z ) 3 V O [ , u — ( p - F — C 5 H 4 ) 2 P 0 2 ] } 2 - 2 C H a C N , ( 4 3 ) - X X 3 0 4 3 0 7 3 1 0 3 1 3 3 1 6 3 1 9 3 2 2 3 2 5 3 2 8 3 3 0 3 3 2 3 3 4 3 3 6 3 3 9 T a b l e 3 9 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ , u — ( p - N 0 2 C 5 H 4 O ) 2 P O z D z ' Z C z I ‘ h S z , ( 4 . 1 6 A ) . T a b l e 4 0 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ p — ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 - 2 C 2 H 4 8 2 , ( 4 . 1 6 A ) . T a b l e 4 1 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O L u — ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 ' 2 0 2 H 4 8 2 , ( 4 . 1 6 3 ) . T a b l e 4 2 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ , u — ( p - N O z C s H 4 O ) 2 P 0 2 ] } 2 - 2 0 2 H 4 S Z , ( 4 . 1 6 3 ) . T a b l e 4 3 . A t o m i c C o o r d i n a t e s ( x 1 0 " ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r 3 — a m i d i n i u m b e n z o a t e , ( 5 . 1 ) . T a b l e 4 4 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r 3 — a m i d i n i u m b e n z o a t e , ( 5 . 1 ) . T a b l e 4 5 . A t o m i c C o o r d i n a t e s ( x 1 0 ‘ ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 - o x y l , ( 5 . 2 ) . T a b l e 4 6 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 — o x y l , ( 5 . 2 ) . T a b l e 4 7 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r b e n z a m i d i n i u m - 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 — o x y l h y d r a t e , ( 5 . 3 ) . T a b l e 4 8 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r b e n z a m i d i n i u m — 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 - c a r b o x y p y r r o l i n e — 1 — o x y l h y d r a t e , ( 5 . 3 ) . T a b l e 4 9 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r m — c y a n o b e n z a m i d i n i u m — 2 , 2 , 5 , 5 - t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 — o x y l , ( 5 . 4 ) . T a b l e 5 0 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r m — c y a n o b e n z a m i d i n i u m - 2 , 2 , 5 , 5 — t e t r a m e t h y l - 3 — c a r b o x y p y r r o l i n e — 1 — o x y l , ( 5 . 4 ) . x x i i 3 7 0 3 7 2 3 7 4 3 7 6 3 7 8 3 7 9 3 8 0 3 8 1 3 8 2 3 8 3 3 8 4 3 8 5 T a b l e 3 9 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ p — ( p - - N 0 2 C s I ‘ I 4 O ) 2 P 0 2 ] } 2 ' 2 0 2 H 4 8 2 , ( 4 . 1 6 A ) . T a b l e 4 0 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ , u — ( p - N O z C s H 4 O ) 2 P 0 2 ] } 2 - 2 C 2 H 4 S Z , ( 4 . 1 6 A ) . T a b l e 4 1 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ , u - ( p - - N 0 2 0 5 H 4 O ) 2 P 0 2 ] } 2 ' 2 0 2 H 4 3 2 . ( 4 - 1 5 3 ) T a b l e 4 2 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ , u — ( p - N 0 2 C 6 H 4 O ) 2 P 0 2 ] } 2 - 2 0 2 H 4 8 2 , ( 4 . 1 6 3 ) . T a b l e 4 3 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r 3 — a m i d i n i u m b e n z o a t e , ( 5 . 1 ) . T a b l e 4 4 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r 3 - a m i d i n i u m b e n z o a t e , ( 5 . 1 ) . T a b l e 4 5 . A t o m i c C o o r d i n a t e s ( x 2 1 0 “ ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r 2 , , , 2 5 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 — o x y l , ( 5 . 2 ) . T a b l e 4 6 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 - c a r b o x y p y r r o l i n e — 1 — o x y l , ( 5 . 2 ) . T a b l e 4 7 . A t o m i c C o o r d i n a t e s ( x 2 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r b e n z a m i d i n i u m — 2 , , , 2 5 5 - t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 — o x y l h y d r a t e , ( 5 . 3 ) . T a b l e 4 8 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r b e n z a m i d i n i u m — 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — I - o x y l h y d r a t e , ( 5 . 3 ) . T a b l e 4 9 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r m — c y a n o b e n z a m i d i n i u m - 2 , 2 , 5 5 — , t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e - 1 — o x y l , ( 5 . 4 ) . T a b l e 5 0 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r m — c y a n o b e n z a m i d i n i u m — 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 — o x y l , ( 5 . 4 ) . x x i i 3 7 0 3 7 2 3 7 4 3 7 6 3 7 8 3 7 9 3 8 0 3 8 1 3 8 2 3 8 3 3 8 4 3 8 5 C H A P T E R 1 I n t r o d u c t i o n A . M o l e c u l a r M a g n e t i s m M a g n e t i c e f f e c t s , f o r m a n y y e a r s h a v e b e e n m a i n l y o f c o n c e r n i n t h e w o r l d o f p h y s i c s a n d m a t e r i a l s s c i e n c e . " R e a l " m a g n e t s u t i l i z e d f o r i n d u s t r i a l p u r p o s e s a r e m e t a l l i c m a t e r i a l s , " o b j e c t s t h a t a r e o p a q u e , s h i n y , a n d g o C l a n g w h e n t h e y h i t t h e fl o o r " , a s P e t e r D a y d e f i n e d t h e m r e c e n t l y ‘ . T h e i r g e n e r i c a t t r i b u t e s i n c l u d e ( a ) a t o m i c — b a s e d c h a r a c t e r ( b ) u n p a i r e d e l e c t r o n s r e s i d i n g o n d o r f o r b i t a l s o f t r a n s i t i o n o r I a n t h a n i d e m e t a l — b a s e d s i t e s ( C ) e x t e n d e d b o n d i n g n e t w o r k s a t l e a s t i n t w o d i m e n s i o n s a n d ( d ) s y n t h e s i s b y h i g h t e m p e r a t u r e m e t a l l u r g i c a l m e t h o d o l o g i e s z . T h e s y s t e m a t i c s t u d y o f m a g n e t i c p h e n o m e n a i n t h e s e m a t e r i a l s r e v e a l s t h e v a r i e t y o f e l e c t r o n i c a n d s t r u c t u r a l f a c t o r s t h a t i n fl u e n c e S p i n c o m m u n i c a t i o n a m o n g t h e " a c t i v e " s i t e s o f a m a g n e t , w h i c h o f t e n i m p l i c a t e t h e m o l e c u l a r a n d a t o m i c c o n s t i t u e n t s o f t h e e x t e n d e d s t r u c t u r e , p r o v i d i n g t h e l i n k b e t w e e n C h e m i c a l s c i e n c e a n d m a g n e t i c p h e n o m e n a . T h e c o n s t r u c t i o n o r d e m o l i t i o n O f c o v a l e n t b o n d s , w h i c h a f f o r d s i n t e r c o n v e r s i o n a m o n g f u n c t i o n a l g r o u p s , i s t r a d i t i o n a l l y u t i l i z e d i n c h e m i s t r y f o r t h e m a n i p u l a t i o n o f v a r i o u s p h y s i c a l p r o p e r t i e s . T h e s e s y n t h e t i c t o o l s , a l o n g w i t h r e c e n t a d v a n c e m e n t s c o n c e r n i n g t h e r o l e o f n o n c o v a l e n t b o n d i n g i n t h e o r g a n i z a t i o n o f m o l e c u l a r m a t e r i a l s t o e x t e n d e d s o l i d s a n d i n t h e e l e c t r o n i c c o m m u n i c a t i o n o f t h e c o n s t i t u e n t m o l e c u l a r b u i l d i n g b l o c k s a , p r o v i d e t h e s c a f f o l d i n g t h a t C h e m i c a l s c i e n c e a d m i n i s t e r s f o r t h e s t u d y o f m a g n e t i c p h e n o m e n a . T h r o u g h t h i s i n t e r a c t i o n t h e fi e l d o f m o l e c u l a r m a g n e t i s m h a s e m e r g e d . T h i s m u l t i d i s c i p l i n a r y f i e l d p r o g r e s s e s u p o n a d v a n c e m e n t s i n c h e m i c a l s y n t h e s i s o f o r g a n i c a n d i n o r g a n i c c o m p o u n d s , t h e o r e t i c a l a n d c o m p u t a t i o n a l C h e m i s t r y , s o l i d s t a t e c h e m i s t r y a n d f i n a l l y b i o c h e m i s t r y s i n c e m a g n e t i c c e n t e r s a r e b u t t r e s s e d w i t h i n n a t u r a l s y s t e m s . M o l e c u l a r — b a s e d m a g n e t i c m a t e r i a l s a r e e x p e c t e d t o ( a ) p e r m i t t h e s p e c i f i c v a r i a t i o n o f m a g n e t i c p r o p e r t i e s b y e s t a b l i s h e d s y n t h e t i c m e t h o d o l o g i e s ( b ) c o m b i n e m a g n e t i c p r o p e r t i e s w i t h o t h e r m e c h a n i c a l , e l e c t r i c a l , a n d / o r o p t i c a l p r o p e I t i e s a n d ( 0 ) o f f e r S i m p l e s y n t h e t i c m e t h o d o l o g i e s a m e n a b l e t o l a b o r a t o r y c o n d i t i o n s z . A l t h o u g h t h e q u e s t f o r c o m p o u n d s t h a t m i m i c o r e x c e e d t h e p r o p e r t i e s o f i n d u s t r i a l m a g n e t s r e m a i n s u n f u l f i l l e d , s u b s t a n t i a l p r o g r e s s t o w a r d s t h i s g o a l h a s b e e n a c h i e v e d d u r i n g t h e l a s t t h i r t y — f i v e y e a r s . T h e e a r l y h i s t o r y o f t h e fi e l d i s d o m i n a t e d b y t h e o r e t i c a l a p p r o a c h e s t o t h e p r o b l e m , w h i c h e s t a b l i s h e d i t s f o u n d a t i o n s “ . H o w e v e r i t w a s n o t t i l l t h e l a t e 1 9 8 0 3 t h a t t h e f i r s t m o l e c u l a r — b a s e d c o m p o u n d e x h i b i t i n g h y s t e r e s i s w a s r e p o r t e d b y M i l l e r e t a l 5 . T o d a y , n e w e x c i t i n g m a t e r i a l s a r e s y n t h e s i z e d b y c r e a t i v e d e s i g n o f l i g a n d s a n d m o l e c u l a r b u i l d i n g b l o c k s a b l e t o s e l f — a s s e m b l e i n e x t e n d e d s t r u c t u r a l f r a m e w o r k s . A p l e t h o r a o f i n t e r e s t i n g m a g n e t i c p h e n o m e n a h a v e b e e n r e c o r d e d a n d a n a l y z e d o n t h e b a s i s o f k n o w n t h e o r e t i c a l m o d e l s . R e c o g n i t i o n o f t h e f a c t o r s t h a t a f f e c t s p i n c o m m u n i c a t i o n , a n d t h e i r c o r r e l a t i o n t o t h e t y p e a n d t h e s t r e n g t h o f t h e m a g n e t i c i n t e r a c t i o n , a r e c r i t i c a l r e q u i r e m e n t s f o r d e v e l o p m e n t o f a b e t t e r u n d e r s t a n d i n g o f t h e f i e l d . A n o v e r v i e w o f t h e d i f f e r e n t w a y s t h a t u n p a i r e d e l e c t r o n s c a n i n t e r a c t i s p r e s e n t e d b e l o w , a l o n g w i t h t h e q u a l i t a t i v e t h e o r e t i c a l b a c k g r o u n d u t i l i z e d i n t h i s t h e s i s . 1 . T y p e s o f M a g n e t i c B e h a v i o r M a g n e t i c e f f e c t s a r e C l a s s i fi e d b y t h e r e p u l s i o n o r a t t r a c t i o n o f a b o d y w h e n p l a c e d i n a m a g n e t i c f i e l d . T h e r e p u l s i o n i s c a l l e d d i a m a g n e t i s m , w h i c h i s a n u n d e r l y i n g p r o p e r t y o f m a t t e r a n d i s c a u s e d b y t h e i n t e r a c t i o n o f t h e m a g n e t i c fi e l d w i t h t h e m o t i o n s o f t h e e l e c t r o n s . W h e n u n p a i r e d e l e c t r o n s a r e p r e s e n t w i t h i n t h e b o d y , t h e d i a m a g n e t i c b e h a v i o r i s m a s k e d b y t h e m u c h s t r o n g e r i n t e r a c t i o n o f t h e m a g n e t i c f i e l d w i t h t h e e l e t r o n s ' m a g n e t i c m o m e n t s , a l s o k n o w n a s t h e i r s p i n s . T h e t h e o r e t i c a l f o r m a l i s m d e s c r i b i n g t h e u n p a i r e d s p i n b e h a v i o r i n t h e p r e s e n c e o f m a g n e t i c f i e l d , w a s d e v e l o p e d b y V a n V l e c k i n 1 9 3 2 6 , w h o d e r i v e d a n e q u a t i o n d e s c r i b i n g t h e m o l a r m a g n e t i c s u s c e p t i b i l i t y o f a s u b s t a n c e a s : 2 N ; ( E f f ) / k T — 2 E f f ) ) e x p ( — E f f ” / k T ) z e x p ( — 5 3 ° ) / k T ) ( 1 ' 1 ) x : w h e r e N i s t h e A v o g a d r o n u m b e r , k i s t h e B o l t z m a n n c o n s t a n t , T i s t h e t e m p e r a t u r e i n K e l v i n , E , ( , ° ) i s t h e e n e r g y o f t h e l e v e l i n t h e a b s e n c e o f t h e fi e l d a n d E 3 ” , E f f ’ a r e t h e f i r s t - a n d t h e s e c o n d — o r d e r Z e e m a n c o e f f i c i e n t s r e s p e c t i v e l y . U s i n g p e r t u r b a t i o n t h e o r y , t h e s e c o e f f i c i e n t s c a n b e c a l c u l a t e d a s 5 ; ” = ( n ' I - I l n ) ( 1 . 2 ) “ 2 2 ) _ ( ” I H I m i E A _ § ( E f , ° ) - E f : ) ) ( 1 . 3 ) w i t h t h e s u m m a t i o n r u n n i n g o v e r t h e l e v e l s m w i t h m ¢ n . D i f f e r e n t t e r m s c a n b e i n c o r p o r a t e d i n t o t h e h a m i l t o n i a n F l t o a c c o u n t f o r t h e f a c t o r s c o n t r i b u t i n g t o t h e m a g n e t i c b e h a v i o r o f a g i v e n c o m p o u n d . I f t h e a c t i v e s p i n s i t e s a r e f a r e n o u g h a p a r t a n d t h e i r s p i n — s p i n c o u p l i n g e n e r g y J i s s m a l l c o m p a r e d t o t h e t h e r m a l e n e r g y , t h e S p i n s b e h a v e i n d e p e n d e n t l y , a d o p t i n g r a n d o m o r i e n t a t i o n s w i t h r e s p e c t t o e a c h o t h e r . S u c h b e h a v i o r i s r e f e r r e d t o a s p a r a m a g n e t i c a n d i s i l l u s t r a t e d i n F i g u r e 1 ( A ) . S o l u t i o n o f e q u a t i o n ( 1 . 1 ) f o r a p a r a m a g n e t i c s u b s t a n c e l e a d s t o t h e w e l l — k n o w n C u r i e e x p r e s s i o n : N 2 x = § £ % [ L ( L + 1 ) + 4 S ( S + 1 ) ] ( 1 , 4 ) w i t h L a n d S t h e o r b i t a l a n d S p i n q u a n t u m n u m b e r s r e s p e c t i v e l y a n d u p t h e B o h r m a g n e t o n . I n m a n y c a s e s t h e s p i n — s p i n c o u p l i n g i n t e r a c t i o n i s s t r o n g e n o u g h t o i n d u c e n e i g h b o r i n g s i t e s t o t a k e o n e i t h e r a p a r a l l e l o r a n t i p a r a l l e l a r r a n g e m e n t w i t h r e s p e c t t o e a c h o t h e r . T h e f o r m e r t y p e o f b e h a v i o r i s k n o w n a s f e r r o m a g n e t i c ( F i g u r e 1 ( 8 ) ) a n d t h e l a t t e r a s a n t i f e r r o m a g n e t i c ( F i g u r e 1 ( 0 ) ) . W h e n s t r o n g a n t i f e r r o m a g n e t i c c o u p l i n g o c c u r s a m o n g d i s s i m i l a r s p i n S i t e s , t h e i n c o m p l e t e c a n c e l l a t i o n o f t h e m a g n e t i c m o m e n t e n s u e s t o a n e t f e r r o m a g n e t i c i n t e r a c t i o n i n p o l y n u c l e a r o r e x t e n d e d s p i n a r r a y s . T h i s e f f e c t , k n o w n a s f e r r i m a g n e t i s m ( F i g u r e 1 ( 0 ) ) , c o n s t i t u t e s o n e o f t h e m a i n s t r a t e g i e s f o r t h e s y n t h e s i s o f m o l e c u l a r — b a s e d m a g n e t s . E a r l y t h e o r e t i c a l w o r k o n e x c h a n g e c o u p l e d s y s t e m s , c o n c e r n e d c h e m i c a l e n t i t i e s w h e r e t w o s p i n c e n t e r s a r e j u x t a p o s e d o n t h e s a m e s t r u c t u r a l I I I I I I x “ x T L M l i / \ I x " — > / ‘ \ / 7 ” P a r a m a g n e t I I I I I I F e r r o m a g n e t x T M F e r r i m a g n e t F i g u r e 1 . R e l a t i v e s p i n o r i e n t a t i o n i n d i f f e r e n t t y p e s o f m a g n e t i c b e h a v i o r . T h e p l o t s d i s p l a y t h e t y p i c a l b e h a v i o r o f m a g n e t i c q u a n t i t i e s , s u c h a s i n v e r s e s u s c e p t i b i l i t y ( X ) , t e m p e r a t u r e p r o d u c t o f s u s c e p t i b i l i t y ( x T ) , a n d m a g n e t i c m o m e n t ( M ) , w h e n p l o t t e d v e r s u s t h e t e m p e r a t u r e o r t h e m a g n e t I C I fi e l d . f r a m e w o r k . F e w p a r a m e t e r s n e e d e d t o b e c o n s i d e r e d f o r a s u c c e s s f u l a p p r o x i m a t i o n o f t h e s y s t e m , a n d t h e d i s c o v e r y O f s t r o n g a n t i f e r r o m a g n e t i c c o u p l i n g o n C u 2 ( C H 3 C O O ) 4 - 2 H Z O 7 p r o v i d e d a w e l l — d e f i n e d c a s e . T h e s t u d y o f m a g n e t i c e f f e c t s o n t h i s d i m e r i c e n t i t y o p e n e d w i d e l y t h e fi e l d o f m a g n e t i s m t o c h e m i s t s , w i t h t h e r e a l i z a t i o n t h a t s m a l l v a r i a t i o n s o f t h e s t r u c t u r a l a n d e l e c t r o n i c p r o p e r t i e s o f a m o l e c u l e , c o n t r o l l e d v i a b y C h e m i c a l m e t h o d o l o g y , c a n b e m a n i f e s t e d a s C h a n g e s i n t h e m a g n e t i c b e h a v i o r . D i m e r i c c o m p l e x e s c o n t a i n i n g t r a n s i t i o n m e t a l a t o m s w i t h u n p a i r e d e l e c t r o n s c a n b e g e n e r a l l y c a t e g o r i z e d a c c o r d i n g t o t h e i r m a g n e t i c b e h a v i o r i n t o t h r e e m a i n g r o u p s , d e p e n d i n g o n t h e s t r e n g t h o f t h e m e t a l — m e t a l i n t e r a c t i o n . I n t h e f i r s t t y p e , n a m e l y t h e n o n i n t e r a c t i n g g r o u p , t h e m a g n e t i c p r o p e r t i e s a r e e s s e n t i a l l y u n c h a n g e d f r o m t h o s e o f t h e p a r a m a g n e t i c m o n o m e r . I n t h e s t r o n g l y i n t e r a c t i n g g r o u p , d i r e c t o v e r l a p b e t w e e n t h e m e t a l o r b i t a l s t h a t b e a r t h e u n p a i r e d s p i n d e n s i t y l e a d t o f o r m a t i o n o f r e l a t i v e l y s t r o n g m e t a l - m e t a l b o n d s , a n d t h e m o l e c u l e d i s p l a y s S i m p l e d i a m a g n e t i c b e h a v i o r . O n e f a m i l y o f s u c h c o m p o u n d s c o n s i s t s o f t h e d 4 — ( 1 4 c o m p l e x e s t h a t e x h i b i t a q u a d r u p l e b o n d e d m e t a l c o r e . T h e s e s y s t e m s h a v e a g r o u n d s t a t e e l e c t r o n i c c o n f i g u r a t i o n o f 0 2 1 3 6 2 , w i t h t h e 8 b o n d b e i n g f o r m e d b y t h e w e a k o v e r l a p o f t h e m e t a l ' s d x y o r b i t a l s . T h e l o w e s t l y i n g e l e c t r o n i c e x c i t e d s t a t e o f t h e c o m p l e x e s i s t h e s p i n t r i p l e t c o n f i g u r a t i o n 0 2 1 5 5 1 5 ” , w i t h t h e o r e t i c a l c o n s i d e r a t i o n s a n d i n d i r e c t e x p e r i m e n t a l e v i d e n c e 8 p l a c i n g i t a p p r o x i m a t e l y 3 2 0 0 c m " 1 a b o v e t h e g r o u n d s t a t e g . T h i s w e a k b o n d i n g i n t e r a c t i o n a t t a i n s i t s m a x i m u m s t r e n g t h b y p o s i t i o n i n g t h e t w o m o n o m e r i c M L . u n i t s o f t h e d i m e r c o r e i n a n e c l i p s e d a r r a n g e m e n t . B y p r o p e r s e l e c t i o n o f t h e b r i d g i n g l i g a n d 1 o a t w i s t t o w a r d s a s t a g g e r e d c o n f i g u r a t i o n c a n b e t r i g g e r e d , r e d u c i n g t h e 6 — b o n d o v e r l a p a n d t h e e n e r g y d i f f e r e n c e b e t w e e n t h e g r o u n d s i n g l e t a n d t h e e x c i t e d t r i p l e t s t a t e s . W h e n a l a r g e t w i s t i s i n d u c e d i n t h e d i m e r c o r e , t h e r m a l e n e r g y i s s u f f i c i e n t t o p r o m o t e p o p u l a t i o n o f t h e e x c i t e d t r i p l e t — s t a t e , r e s u l t i n g i n a m a g n e t i c r e s p o n s e 1 1 s i m i l a r t o t h o s e o f s t r o n g l y c o u p l e d a n t i f e r r o m a g n e t i c s y s t e m s . T h e i n t e r m e d i a t e c o u p l i n g r e g i m e c o n s i s t s o f c o m p l e x e s w h e r e t h e m e t a l c e n t e r s a r e w e a k l y i n t e r a c t i n g , m a i n l y i n d i r e c t l y b y w a y o f t h e l i g a n d s i n t e r c o n n e c t i n g t h e m . S u c h i n t e r a c t i o n s l e a d t o t h e f o r m a t i o n o f t w o l o w — l y i n g s t a t e s o f d i f f e r e n t s p i n w h i c h c a n b e p o p u l a t e d a t t h e r m a l e n e r g i e s ( s 1 0 0 0 c m " 1 ) . T h e r e s u l t i n g m a g n e t i c b e h a v i o r m a y b e f e r r o m a g n e t i c o r a n t i f e r r o m a g n e t i c d e p e n d i n g o n w h e t h e r t h e h i g h s p i n ( S p i n s p a r a l l e l ) o r t h e l o w s p i n ( S p i n s a n t i p a r a l l e l ) , i s t h e g r o u n d s t a t e r e s p e c t i v e l y . T h e s e i n t e r a c t i o n s a r e m e d i a t e d b y t h e l i g a n d s S i n c e t h e m e t a l — m e t a l d i s t a n c e i S l a r g e ( 3 - 6 A ) , a n d a r e t e r m e d s u p e r e x c h a n g e i n t e r a c t i o n s . A v a l u a b l e q u a l i t a t i v e t r e a t m e n t o f t h e e f f e c t i s a c h i e v e d t h r o u g h t h e a c t i v e — e l e c t r o n a p p r o x i m a t i o n ” . T h e o r e t i c a l m o d e l s ” ‘ 1 4 h a v e e s t a b l i s h e d t h e g e o m e t r i c a l a n d e l e c t r o n i c f a c t o r s t h a t g o v e r n t h e n a t u r e o f t h e g r o u n d s t a t e . T h e m a g n e t i c i n t e r a c t i o n b e t w e e n t w o s p i n c e n t e r s 8 , . a n d S e i s w r i t t e n a c c o r d i n g t o t h e H e i s e n b e r g , D i r a c a n d V a n V l e c k fi ' 1 5 h a m i l t o n i a n H = _ J S A . S B ( 1 . 5 ) w h e r e t h e e x c h a n g e c o u p l i n g c o n s t a n t J ( w h i c h m e a s u r e s t h e s i n g l e t — t r i p l e t e n e r g y s p l i t t i n g ) i s p o s i t i v e i f t h e s p i n S i t e s a l i g n p a r a l l e l w i t h r e s p e c t t o e a c h o t h e r i n d i c a t i n g f e r r o m a g n e t i c i n t e r a c t i o n , a n d n e g a t i v e f o r p a i r e d a l i g n m e n t i m p o s e d b y a n t i f e r r o m a g n e t i c c o u p l i n g . T w o a p p r o a c h e s h a v e b e e n d e v e l o p e d u n d e r t h e a c t i v e — e l e c t r o n a p p r o x i m a t i o n a c c o r d i n g t o t h e t y p e s o f m a g n e t i c o r b i t a l s u t i l i z e d a s t h e b a s i s s e t . T h e f i r s t a p p r o a c h c o n s i d e r s o r t h o g o n a l i z e d m a g n e t i c o r b i t a l s , d r a w n i n F i g u r e 2 ( A ) f o r a d 9 — d 9 d i b r i d g e d c o p p e r c o m p o u n d , w h e r e e a c h o r b i t a l i s m a i n l y l o c a l i z e d i n o n e m e t a l c e n t e r b u t h a s a n o n v a n i s h i n g c o n t r i b u t i o n f r o m t h e o t h e r m e t a l S i t e . T h i s t a i l b e c o m e s m o r e i m p o r t a n t a s t h e e n e r g y s e p a r a t i o n o f t h e o r t h o g o n a l i z e d m o l e c u l a r o r b i t a l s a o r c b s b o r q ’ A F i g u r e 2 . T h e s y m m e t r i c ¢ s a n d a n t i s y m m e t r i c ¢ A o r t h o g o n a l i z e d m a g n e t i c o r b i t a l s ( A ) , a n d t h e r e s p e c t i v e n a t u r a l m a g n e t i c o r b i t a l s ( B ) , f o r a h y d r o x o — b r i d g e d C u ( l l ) b i n u c l e a r c o m p l e x . b e c o m e s l a r g e r . T h e c o m b i n e e f f e c t i s a s y m m e t r i c a ( o r ¢ A ) a n d a n a n t i s y m m e t r i c b ( o r ( i s ) l i n e a r c o m b i n a t i o n o f m e t a l o r b i t a l s t h a t i n t e r a c t w i t h m o l e c u l a r o r b i t a l s o f p r o p e r s y m m e t r y f r o m t h e b r i d g i n g l i g a n d . T h e n a t u r a l m a g n e t i c o r b i t a l b a s i s s e t o n t h e o t h e r h a n d , c o n s i d e r s t h e d i m e r i c e n t i t y a s a c o m b i n a t i o n o f t w o f r a g m e n t s , e a c h o n e c o m p o s e d o f o n e m e t a l c e n t e r a n d t h e b r i d g i n g l i g a n d . T h e o r b i t a l s a r e l o c a l i z e d a r o u n d e a c h m e t a l a n d h a v e c o n t r i b u t i o n s o n l y f r o m t h e b r i d g i n g l i g a n d ( s ) ( F i g u r e 2 ( 8 ) ) . I n o r d e r t o c a l c u l a t e t h e S i n g l e t — t r i p l e t e n e r g y s p l i t t i n g f o r t w o o r t h o g o n a l i z e d o r b i t a l s a a n d b b e a r i n g o n e u n p a i r e d e l e c t r o n e a c h , a n e f f e c t i v e e l e c t r o s t a t i c h a m i l t o n i a n i s c o n s i d e r e d H = h ( 1 ) + h ( 2 ) + 1 / r 1 2 ( 1 . 6 ) w i t h h ( I ) b e i n g t h e o n e e l e c t r o n h a m i l t o n i a n f o r e l e c t r o n i w h i c h t a k e s i n t o a c c o u n t i t s k i n e t i c e n e r g y . a n d i t s i n t e r a c t i o n s w i t h t h e n u c l e i a n d t h e c o r e e l e c t r o n s . T h e f o l l o w i n g t w o o n e — e l e c t r o n a n d f o u r t w o — e l e c t r o n i n t e g r a l s g i v e n b e l o w c o n t r i b u t e t o t h e e n e r g y o f t h e s t a t e s a = ( a ( 1 ) | h ( 1 ) | a ( 1 ) ) B 1 ° = < a I 1 ) a ( 2 ) | r , ; ‘ l a ( 1 ) a ( 2 ) > I k = ( a ( 1 ) b ( 2 ) | r 1 ‘ 2 ‘ | a ( 2 ) b ( 1 ) ) I ( a ( 1 ) I N 1 ) | b ( 1 ) ) ( a ( 1 ) b ( 2 ) | r 1 ; ‘ | a ( 1 ) b ( 2 ) ) ( a ( 1 ) b ( 2 ) | r 1 ‘ 2 1 | b ( 1 ) b ( 2 ) ) T h e i n t e r a c t i o n o f t h e t w o e l e c t r o n s g e n e r a t e s t w o g r o u n d s t a t e s a r i s i n g f r o m t h e a b e l e c t r o n i c c o n f i g u r a t i o n ( ‘ 1 ‘ 9 a n d 3 1 “ , . ) a n d t w o e x c i t e d s t a t e s f r o m t h e C h a r g e t r a n s f e r z w i t t e r i o n i c s t a t e s 8 2 o r b 2 ( ‘ 1 ‘ 9 a n d 1 1 2 , ) . T h e s i n g l e t — t r i p l e t s p l i t t i n g i s e x p r e s s e d a s t h e s u m o f a f e r r o m a g n e t i c a n d a n a n t i f e r r o m a g n e t i c c o n t r i b u t i o n 4 + I 2 E T T E s z J F T J A F ' T Z k T — ( L U — J — ( 1 - 7 ) w i t h t h e e n e r g y d i a g r a m d r a w n i n F i g u r e 3 . T h e f i r s t f e r r o m a g n e t i c t e r m r e f l e c t s t h e s t a b i l i z a t i o n o f t h e t r i p l e t g r o u n d s t a t e w i t h r e s p e c t t o t h e S i n g l e t g r o u n d s t a t e a s a r e s u l t o f t h e e x c h a n g e i n t e r a c t i o n o f t h e e l e c t r o n s . C o n s i d e r i n g s e c o n d — o r d e r e f f e c t s , t h e 1 1 1 , c h a r g e t r a n s f e r s t a t e s t a b i l i z e s t h e 1 l “ g g r o u n d s t a t e w i t h r e s p e c t t o t h e t r i p l e t . I t i s t h i s i n t e r a c t i o n , t e r m e d k i n e t i c e x c h a n g e , t h a t t o a fi r s t a p p r o x i m a t i o n 1 4 p r o v i d e s t h e m a i n a n t i f e r r o m a g n e t i c c o n t r i b u t i o n . T h e S i g n i fi c a n c e o f k i n e t i c e x c h a n g e b e c o m e s C l e a r e r w h e n i t i s f o r m u l a t e d a s 1 3 _ ( 8 1 — 3 2 ) 2 J . . I ° — I A F : ( 1 . 8 ) w i t h £ 1 a n d 6 ‘ 2 b e i n g t h e e n e r g i e s o f t h e m a g n e t i c o r b i t a l s a a n d b d e p i c t e d i n F i g u r e 2 ( A ) , S i n c e m a g n e t o s t r u c t u r a l c o r r e l a t i o n s c a n b e d e r i v e d b a s e d o n t h e e f f e c t s o f g e o m e t r i c a l d i s t o r t i o n s u p o n t h e s e e n e r g i e s . I f n a t u r a l m a g n e t i c o r b i t a l s a r e e m p l o y e d a s t h e b a s i s s e t , a n a d d i t i o n a l o n e — e l e c t r o n i n t e g r a l i s c o n s i d e r e d , n a m e l y t h e o v e r l a p i n t e g r a l 8 b e t w e e n o r b i t a l s a a n d b ( d r a w n i n F i g u r e 2 ( 8 ) ) . A c c o r d i n g t o t h i s a p p r o a c h 1 3 t h e S i n g l e t — t r i p l e t e n e r g y s p l i t t i n g i s e x p r e s s e d a s 4 [ ( 3 + l — ( a + j + k ) S ] 2 u E T — E S = 2 k + 4 B S — 2 8 2 ( 2 a + j ) — ( 1 . 9 ) w i t h t h e t e r m s p r o p o r t i o n a l t o 8 2 b e i n g r e l a t i v e l y s m a l l c o m p a r e d t o t h e r e s t a n d t h e r e f o r e n e g l i g i b l e w i t h i n a q u a l i t a t i v e f r a m e w o r k . T h e m a i n a n t i f e r r o m a g n e t i c t e r m w a s e x p r e s s e d b y K a h n a n d c o w o r k e r s 1 6 a s J A F = " 2 A 8 ( 1 . 1 0 ) w i t h A b e i n g t h e e n e r g y g a p b e t w e e n t h e t w o m o l e c u l a r o r b i t a l s i n t h e b i n u c l e a r c o m p l e x b u i l t f r o m t h e t w o m a g n e t i c o r b i t a l s a a n d b . T h i s f o r m u l a t i o n b a s e s m a g n e t o s t r u c t u r a l c o r r e l a t i o n s s o l e l y u p o n t h e v a l u e o f t h e o v e r l a p i n t e g r a l S , 1 0 . ‘ z n + g n z P - z z V v _ - z " L _ T W A 9 3 : : q 9 e q e v 0 u * _ ‘ p B e 9 Q — I \ N n I a I ’ B , X l I + t ” + e I e V I q S q T t O S z + s + X — i - a S S Z + N B — l > o l l - — — ‘ ‘ ‘ Z ° i + Z I I + t S S Z + I ‘ + I ) _ - — e q - I > - l — I l I l O O H B ’ ' I i — V I ' S T — T — — n z T I I - C J J J 5 r , , , A , z n I H ” e T q _ — — v l q ” + ' — - n l - — O H I H O O O N z , l I V ’ , — I ' 3 z 0 P 1 — + — z Z w — D + l B I 1 + I Q o + O - — I 1 > > ’ ’ , ‘ - - + I I ) > — ‘ ~ I ' I Z S I C W V D N S i I O ‘ O e H e e q e u p e q 9 0 e ’ u p q q — 0 . 1 . 0 T V B I L V T S C T C ) . C T C , c h a r g e t r a n s f e r c o n fi g u r a t i o n s ; U e n e r g y s e p a r a t i o n b e t w e e n G C a n d 1 1 F i g u r e 3 . C o m p a r i s o n o f t h e n a t u r a l ( l e f t ) a n d o r t h o g o n a l i z e d ( r i g h t ) o r b i t a l a p p r o a c h e s i n t h e a c t i v e — e l e c t r o n a p p r o x i m a t i o n ( G C , g r o u n d c o n f i g u r a t i o n s ; > I + , I + S t l z + v z — I ! I , , q q p u e B B 3 1 3 l I I I I I w h i c h b e c o m e s l a r g e r a s A i n c r e a s e s f a v o r i n g a S i n g l e t g r o u n d s t a t e . 2 . T h e E f f e c t o f G e o m e t r i c a l P e r t u r b a t i o n s : T h e C a s e o f [ L 2 C U ( O H ) ] 2 ( X ) 2 M u c h a t t e n t i o n i s s t i l l d e v o t e d t o a c o m p l e t e u n d e r s t a n d i n g o f m a g n e t i c p r o p e r t i e s w i t h r e s p e c t t o g e o m e t r i c a l a n d e l e c t r o n i c d i s t o r t i o n s . T h e t i t l e s e r i e s o f c o m p l e x e s c o n s t i t u t e s a s t r u c t u r a l l y a n d m a g n e t i c a l l y w e l l — c h a r a c t e r i z e d g r o u p O f h o m o l o g o u s c o m p o u n d s " , a n d h a s b e e n t h e t a r g e t o f m a n y c o m p u t a t i o n a l s t u d i e s . A r e c e n t o n e ” , b a s e d o n D e n s i t y F u n c t i o n a l T h e o r y ( D F T ) , r e s u l t e d i n e x c e l l e n t a g r e e m e n t b e t w e e n c a l c u l a t e d a n d e x p e r i m e n t a l l y d e t e r m i n e d S i n g l e t — t r i p l e t s e p a r a t i o n s . T h e a u t h o r s c o n s i d e r e d o r t h o g o n a l i z e d m a g n e t i c o r b i t a l s f o r t h e i r a p p r o a c h , w i t h t h e a n t i f e r r o m a g n e t i c c o n t r i b u t i o n g o v e r n e d o n l y b y t h e k i n e t i c e x c h a n g e t e r m o f e q u a t i o n ( 1 . 8 ) . T h e r e f o r e o n e c a n f o c u s o n t h e d i f f e r e n c e o f o r b i t a l e n e r g i e s , 8 1 - 8 2 , a s a p r o b e o f t h e s i n g l e t — t r i p l e t e n e r g y s p l i t t i n g . T h e e n e r g y g a p c a n b e t u n e d w i t h t h e a i d o f s y n t h e t i c m e t h o d o l o g i e s , c a p a b l e o f m o d i f y i n g b o t h t h e g e o m e t r i c a l a n d e l e c t r o n i c e n v i r o n m e n t o f t h e m a g n e t i c c e n t e r s . T h i s h a s b e e n a c c o m p l i s h e d i n t h e h o m o l o g o u s s e r i e s c o n s i d e r e d h e r e , b y C h a n g i n g t h e t e r m i n a l l i g a n d s a n d t h e c o u n t e r i o n s o f t h e d i m e r i c c o m p l e x e s . T h e e x c h a n g e c o u p l i n g c o n s t a n t o b e y s t h e f o l l o w i n g e m p i r i c a l l i n e a r r e l a t i o n s h i p 1 7 J ( c m ‘ 1 ) = — 7 4 o t ( d e g ) + 7 2 7 0 ( 1 , 1 1 ) w i t h a b e i n g t h e C u — O — C U b r i d g i n g a n g l e . E q u a t i o n ( 1 . 1 1 ) p r e d i c t s t h a t J e q u a l s z e r o f o r a = 9 7 . 5 ° , w h i l e f o r v a l u e s a b o v e a n d b e l o w t h a t a n g l e t h e g r o u n d s t a t e i s s i n g l e t a n d t r i p l e t r e s p e c t i v e l y . T h e h i g h e s t o c c u p i e d o r b i t a l s o f t h e c o p p e r d i m e r a r e t h e s y m m e t r i c a n d a n t i s y m m e t r i c c o m b i n a t i o n s o f t h e m o n o m e r d x 2 _ y 2 o r b i t a l s . T h e s e f u r t h e r i n t e r a c t 1 2 w i t h t h e l o w e r l y i n g fi l l e d o r b i t a l s , c e n t e r e d o n t h e o x y g e n a t o m s o f t h e b r i d g e , t h a t d e r i v e f r o m l i n e a r c o m b i n a t i o n s o f p y a n d p ) ( a t o m i c o r b i t a l s . T h e o u t c o m e o f s u c h i n t e r p l a y i s t h e c o n s t i t u t i o n o f t h e t w o o r t h o g o n a l i z e d m a g n e t i c o r b i t a l s ¢ s a n d 8 5 . 4 r e s p e c t i v e l y , s h o w n i n F i g u r e 2 ( A ) . W h e n t h e b r i d g e a n g l e a p p r o a c h e s 9 0 ° ( i s a n d ¢ A b e c o m e d e g e n e r a t e l e a d i n g t o a f e r r o m a g n e t i c i n t e r a c t i o n . B y i n c r e a s i n g t h e b r i d g i n g a n g l e a , t h e o v e r l a p ( a n d h e n c e t h e a n t i b o n d i n g C h a r a c t e r o f t h e p r e d o m i n a n t l y m e t a l — b a s e d o r b i t a l s ) i n c r e a s e s f o r 4 ) . , a n d d e c r e a s e s f o r ( > 3 . A S a c o n s e q u e n c e , t h e f a c t o r ( 8 1 - 8 2 ) o f e q u a t i o n ( 1 . 8 ) i s e n l a r g e d , a f f o r d i n g a d o m i n a n t a n t i f e r r o m a g n e t i c c o n t r i b u t i o n t h a t f a v o r s t h e s i n g l e t s t a t e a s t h e g r o u n d s t a t e o f t h e d i m e r s y s t e m . T h e s y m m e t r i c o r b i t a l ( I i s a l s o i n t e r a c t s w i t h t h e 2 8 a t o m i c o r b i t a l s o f t h e b r i d g e , e n f o r c i n g i t s a n t i b o n d i n g c h a r a c t e r . A s h i f t t o w a r d s h i g h e r e n e r g i e s i S o b s e r v e d , m o v i n g t h e c r o s s i n g p o i n t f o r t h e c o n d i t i o n J = 0 t o a = 9 6 ° . T h e l a t t e r v a l u e i s i n g o o d a g r e e m e n t w i t h t h e v a l u e p r e d i c t e d b y t h e e x p e r i m e n t a l l y d e r i v e d e q u a t i o n ( 1 . 1 1 ) , i n d i c a t i n g a n e x c e l l e n t c o r r e l a t i o n o f t h e o r y a n d e x p e r i m e n t . K a h n a n d c o w o r k e r s 1 9 a r r i v e d a t a S i m i l a r c o n c l u s i o n b y c o n s i d e r i n g n a t u r a l m a g n e t i c o r b i t a l s a n d i n s p e c t i n g t h e v a r i a t i o n o f t h e o v e r l a p i n t e g r a l S a s a f u n c t i o n o f g e o m e t r i c a l d i s t o r t i o n s . F o r v a l u e s o f t h e b r i d g i n g a n g l e a c l o s e t o 9 0 ° t h e o v e r l a p i n t e g r a l 8 i s a p p r o x i m a t e l y z e r o , a n n i h i l a t i n g t h e a n t i f e r r o m a g n e t i c c o n t r i b u t i o n o f t h e e x c h a n g e c o n s t a n t J . S u c h a c o n d i t i o n i s a c h i e v e d b y t h e " a c c i d e n t a l " o r t h o g o n a l i t y o f t h e o r b i t a l s , t h e t e r m m e a n i n g t h a t t h e l a t t e r c o n d i t i o n i s n o t a n e f f e c t i m p o s e d b y t h e s y m m e t r y p r o p e r t i e s o f t h e o r b i t a l s , b u t r a t h e r b y t h e s p e c i f i c g e o m e t r i c a l a r r a n g e m e n t o f t h e s t r u c t u r a l f r a m e w o r k . 1 3 a S — 8 A I — S S E ' A _ — g _ g d I S - — 8 d I A = ~ ~ I d H - fi I S Z I S S - I d H — Q I S Z I A e 8 3 _ 8 A _ ' A 1 . 1 2 ) 1 . 1 3 ) ( ( 3 . T h e E f f e c t o f E l e c t r o n i c P e r t u r b a t i o n s : T h e C a s e o f V O ( 0 3 P C 5 H 4 - X ) - H 2 0 T h e e f f e c t o f e l e c t r o n i c p e r t u r b a t i o n s o n t h e m a g n i t u d e o f t h e e x c h a n g e i n t e r a c t i o n h a s a l s o b e e n t r e a t e d b y t h e o r y i n t h e f r a m e w o r k o f t h e a c t i v e — e l e c t r o n a p p r o x i m a t i o n b y H o f f m a n n a n d c o w o r k e r s ” . U s i n g s e c o n d — o r d e r p e r t u r b a t i o n t h e o r y a n d s u b s t i t u t i n g t h e e n e r g i e s o f t h e s y m m e t r i c a n d t h e a n t i s y m m e t r i c c o m b i n a t i o n s o f m a g n e t i c o r b i t a l s , t h e q u a n t i t y o f i n t e r e s t 8 1 — 8 2 ( S S - 8 A ) c a n b e f o r m u l a t e d a s T h e l a b e l s | a n d d s t a n d f o r t h e b r i d g i n g l i g a n d a n d t h e m e t a l o r b i t a l s r e s p e c t i v e l y , a s s u m i n g t h a t o n l y o n e l i g a n d o r b i t a l w i t h t h e c o r r e c t s y m m e t r y i s i n t e r a c t i n g . R e m o v a l o f e l e c t r o n d e n s i t y f r o m a b r i d g i n g a t o m t h a t c o n t r i b u t e s t o t h e m a g n e t i c o r b i t a l s r e d u c e s t h e e l e c t r o n — e l e c t r o n r e p u l s i o n a n d l o w e r s i t s a t o m i c o r b i t a l l e v e l s , a l o n g w i t h t h e e n e r g i e s o f t h e m o l e c u l a r o r b i t a l s o f t h e a t o m i n v o l v e d . I f t h e e n e r g y o f t h e a t o m i c o r b i t a l s i s l o w e r e d b y a n a m o u n t A ' , w i t h A ' > 0 , t h e n e w m a g n e t i c o r b i t a l s n o w d i f f e r i n e n e r g y b y 2 I n fi l l 2 _ I H I ‘ I I Z 2 2 ( 8 d " 8 I s ) ( 8 d " 8 I A ) I H ‘ T ‘ I I Z _ l t t t l + A e S i n c e t h e q u a n t i t y i n t h e b r a c k e t s i s p o s i t i v e , t h e e n e r g y d i f f e r e n c e b e t w e e n t h e m a g n e t i c o r b i t a l s b e c o m e s s m a l l e r , l e a d i n g t o a d e c r e a s e i n a n t i f e r r o m a g n e t i c i n t e r a c t i o n s u p o n r e m o v a l o f e l e c t r o n d e n s i t y f r o m t h e b r i d g e . C o n v e r s e l y , e l e c t r o n d o n a t i o n w o u l d e n h a n c e a n t i f e r r o m a g n e t i c c o u p l i n g . E x p e r i m e n t a l l y t h e a b o v e o b s e r v a t i o n s w e r e n o t v e r y w e l l s u b s t a n t i a t e d , 1 4 s i n c e r e s u l t s f r o m c o p p e r a c e t a t e 2 0 a n d f o r m a t e 2 1 w e r e p u z z l i n g a n d p a I t i a l l y i n c o n s i s t e n t w i t h t h i s q u a l i t a t i v e t h e o r e t i c a l f r a m e w o r k . F i r m e v i d e n c e r e g a r d i n g t h e s i g n i fi c a n c e o f s u b s t i t u e n t e f f e c t s o n t h e m a g n i t u d e o f t h e e x c h a n g e i n t e r a c t i o n , w a s p r o v i d e d b y t h e w o r k o f L e B i d e a u a n d c o w o r k e r s 2 2 w h o s t u d i e d t h e e l e c t r o n i c t u n i n g o f t h e S i n g l e t — t r i p l e t e n e r g y g a p o n v a n a d y l p h o s p h o n a t e d i m e r c o r e s i n c o r p o r a t e d w i t h i n l a y e r e d f r a m e w o r k s . T h e i s o s t r u c t u r a l s e r i e s o f l a y e r e d v a n a d y l p h o s p h o n a t e s ( L V P h ' S ) V O ( 0 3 P C G H 4 — X ) - H 2 0 w i t h X = p — N O z , m — F , p — F , H , w a s s y n t h e s i z e d a n d i t w a s f o u n d t h a t t h e m a g n e t i c p r o p e r t i e s a r e t h o s e o f i s o l a t e d d i m e r u n i t s t h a t e x h i b i t a c h a i r — l i k e c o n f o r m a t i o n . S u b s t i t u e n t v a r i a t i o n S h o w e d t h a t t h e m a g n i t u d e o f t h e a n t i f e r r o m a g n e t i c e x c h a n g e i n t e r a c t i o n i s w e a k e n e d a s e l e c t r o n s a r e w i t h d r a w n f r o m t h e b r i d g i n g l i g a n d s . T h e e x c h a n g e i n t e r a c t i o n c o n s t a n t J w a s f o u n d t o o b e y a l i n e a r f r e e e n e r g y r e l a t i o n s h i p w i t h t h e H a m m e t t a p a r a m e t e r o f t h e s u b s t i t u e n t s , w h i c h r e fl e c t s t h e c h a n g e s u p o n t h e e l e c t r o n i c e n v i r o n m e n t o f p h o s p h o r u s . D e t a i l e d d i s c u s s i o n a n d i n t e r p r e t a t i o n o f t h e s e e f f e c t s w i l l f o l l o w i n C h a p t e r 3 o f t h i s t h e s i s a s t h e w o r k m e n t i o n e d t h e r e , i s d i r e c t l y c o n n e c t e d t o t h e s t u d i e s o f D r . L e B i d e a u . 4 . S t r i c t O r t h o g o n a l i t y : T h e C a s e o f C u V O ( f s a ) 2 e n - C H 3 0 H T h e c o m m o n p r e f e r e n c e o f u n p a i r e d e l e c t r o n s f o r a n a n t i p a r a l l e l a r r a n g e m e n t ( P a u l i P r i n c i p l e ) i s s o m e t i m e s p r e v e n t e d b y t h e o r t h o g o n a l i t y c o n d i t i o n a m o n g a t o m i c o r n a t u r a l m o l e c u l a r o r b i t a l s . I n c a s e s o f h o m o m e t a l l i c s p e c i e s , a s i n s o m e o f t h e m e m b e r s o f t h e [ L 2 0 U ( O H ) ] 2 ( X ) 2 s e r i e s , t h e o r t h o g o n a l i t y o f t h e o r b i t a l s i s a c c i d e n t a l , i m p o s e d b y t h e s t r u c t u r a l f r a m e w o r k . I n h e t e r o m e t a l l i c c o m p l e x e s h o w e v e r , i t i s p o s s i b l e b y p r o p e r s e l e c t i o n o f t h e s p i n c a r r i e r s t o a r r a n g e f o r m a g n e t i c o r b i t a l s t h a t a r e o r t h o g o n a l b y s y m m e t r y . S u c h a c o n d i t i o n l e a d s t o H u n d ' s r u l e - t y p e s t a b i l i z a t i o n o f t h e t r i p l e t s t a t e b y a n n i h i l a t i n g 1 5 t h e k i n e t i c e x c h a n g e a n t i f e r r o m a g n e t i c t e r m , w h i c h i s p r o p o r t i o n a l t o t h e o v e r l a p i n t e g r a l 8 ( e q u a t i o n ( 1 . 1 0 ) ) . T h e a b o v e h y p o t h e s i s w a s f i r s t t e s t e d b y K a h n a n d c o w o r k e r s ” , w h o s y n t h e s i z e d t h e h e t e r o m e t a l l i c c o m p l e x C u V O ( f s a ) 2 e n - C H 3 O H — w i t h H 4 ( f s a ) 2 e n b e i n g t h e N , N — ( 2 — h y d r o x y — 3 — c a r b o x y b e n z i l i d e n e ) e t h y l e n e d i a m i n e l i g a n d — a n d t h e r e s p e c t i v e d i c o p p e r o n e . S t r o n g s t a b i l i z a t i o n o f t h e S i n g l e t s t a t e i s o b s e r v e d f o r t h e h o m o m e t a l l i c c o m p l e x a s j u d g e d b y t h e l a r g e e x c h a n g e c o n s t a n t o f — 6 5 0 c m ” . T h e s t r o n g i n t e r a c t i o n i s i n a c c o r d a n c e w i t h t h e q u a l i t a t i v e p i c t u r e p r e s e n t e d s o f a r , s i n c e a l a r g e C u — O — C u ( l a r g e r t h a n 9 0 ° ) b r i d g i n g a n g l e i s i m p o s e d b y t h e n a t u r e o f t h e H 4 ( f s a ) 2 e n l i g a n d . H o w e v e r i n t h e h e t e r o m e t a l l i c c o m p l e x , t h e k i n e t i c e x c h a n g e t e r m i s z e r o s i n c e t h e t w o m a g n e t i c o r b i t a l s a r e o r t h o g o n a l b y s y m m e t r y a n d t h u s h a v e z e r o o v e r l a p . T h i s c o n d i t i o n i s t e r m e d s t r i c t o r t h o g o n a l i t y l e a d i n g t o a l a r g e , f o r a m o l e c u l a r c o m p o u n d , f e r r o m a g n e t i c c o u p l i n g w i t h a n e x c h a n g e c o n s t a n t o f + 1 1 8 c m " . A l t h o u g h s t r i c t o r t h o g o n a l i t y b e y o n d t w o c e n t e r s i s h a r d t o a c h i e v e f r o m a s y n t h e t i c p e r s p e c t i v e , t h i s w o r k r e p r e s e n t e d a m a j o r a d v a n c e m e n t t o w a r d s t h e m a n u f a c t u r e o f m o l e c u l a r f e r r o m a g n e t i c m a t e r i a l s . 5 . I n t e r a c t i o n b e t w e e n P a i r s o f M a g n e t i c O r b i t a l s A f r e q u e n t l y e n c o u n t e r e d c i r c u m s t a n c e i s c o u p l i n g b e t w e e n t w o m e t a l s i t e s j u x t a p o s e d i n t h e s a m e s t r u c t u r a l e n t i t y , w i t h e a c h o f t h e m a c c o m m o d a t i n g m o r e t h a n o n e u n p a i r e d e l e c t r o n . S u c h s y s t e m s a r e u s u a l l y t r e a t e d u n d e r t h e f r a m e w o r k o f t h e a c t i v e - e l e c t r o n a p p r o x i m a t i o n b y u t i l i z i n g n a t u r a l m a g n e t i c o r b i t a l s . F r o m e a c h p a i r o f o r b i t a l s 8 , , a n d b v l o c a l i z e d o n t h e A a n d 8 f r a g m e n t o f t h e d i m e r i c c o m p l e x , t w o m o l e c u l a r o r b i t a l s d e l o c a l i z e d o n t h e A B m o l e c u l e c a n b e c o n s t r u c t e d . I f 2 1 , , a n d 0 , , d e n o t e t h e e n e r g y g a p o f t h e m o l e c u l a r a n d t h e 1 6 m a g n e t i c o r b i t a l s r e s p e c t i v e l y , t h e e x c h a n g e c o n s t a n t J , , , . f o r e a c h p a i r c a n b e a g a i n d e s c r i b e d a s a s u m o f a f e r r o m a g n e t i c a n d a n a n t i f e r r o m a g n e t i c t e r m “ : J = 2 k a — 2 ( A i — D : ) 1 / Z S 8 ( ( 1 4 ) I I I » M i l I W w i t h k , , v t h e t w o e l e c t r o n i n t e g r a l a n d S w a p . t h e o v e r l a p i n t e g r a l f o r e a c h p a i r o f o r b i t a l s a ) , a n d b y . T h i s r e l a t i o n s h i p p r o v i d e s t h e f o r m a l i s m f o r q u a l i t a t i v e r u l e s , fi r s t p r o p o s e d b y G o o d e n o u g h a n d K a n a m o r i z s , w h i c h a l l o w t h e p r e d i c t i o n a n d e s t i m a t i o n o f t h e n a t u r e a n d t h e s t r e n g t h o f t h e m a g n e t i c i n t e r a c t i o n b e t w e e n d i s s i m i l a r m e t a l l i c s i t e s . F i g u r e 4 i l l u s t r a t e s n a t u r a l m a g n e t i c o r b i t a l s o f m e t a l l i c c e n t e r s i n l o c a l s z s y m m e t r y , t h a t e m b o d y m e t a l d — a n d l i g a n d p — o r b i t a l s . S u c h a l o c a l e n v i r o n m e n t i s f r e q u e n t l y e n c o u n t e r e d i n p l a n a r d o u b l e - b r i d g e d d i m e r s w i t h o v e r a l l s y m m e t r y o f C W o r D 2 . . . C o n s i d e r i n g a l l t h e p a i r w i s e o r b i t a l i n t e r a c t i o n s a 5 x 5 m a t r i x c a n b e c o n s t r u c t e d , b y i d e n t i f y i n g t h e n a t u r e ( f e r r o m a g n e t i c ( F ) o r a n t i f e r r o m a g n e t i c ( A F ) ) a n d t h e s t r e n g t h ( w e a k ( w ) o r m e d i u m ( m ) o r s t r o n g ( 3 ) ) o f t h e i n t e r a c t i o n . T h e o u t c o m e s o f t h i s a p p r o a c h a r e g a t h e r e d i n T a b l e 1 1 2 . T h e s t r e n g t h a n d t h e n a t u r e o f t h e J , , , v t e r m s , d e p e n d s u p o n t h e a b i l i t y o f t h e t w o m e t a l o r b i t a l s t o o v e r l a p t h r o u g h t h e b r i d g i n g l i g a n d o r b i t a l s ( F i g u r e 4 ) . W h e n t h e m a g n e t i c o r b i t a l s a r e o r t h o g o n a l b y s y m m e t r y , a c o n d i t i o n m e t b y a l m o s t a l l t h e o f f — d i a g o n a l e l e m e n t s o f T a b l e 1 , t h e n a t u r e o f t h e i n t e r a c t i o n i s f e r r o m a g n e t i c . O n l y t h e d x 2 _ y 2 a n d d z z o r b i t a l s a r e o f t h e s a m e s y m m e t r y , a n d t h e i r e x c h a n g e i n t e r a c t i o n c o n s i s t s o f b o t h f e r r o m a g n e t i c a n d a n t i f e r r o m a g n e t i c t e r m s . F o r b r i d g i n g a n g l e s a l a r g e r t h a n 9 0 ° , t h e k i n e t i c e x c h a n g e t e r m p r e v a i l s r e s u l t i n g i n t h e s t a b i l i z a t i o n o f t h e S i n g l e t s t a t e ( F i g u r e 2 ) . T h e i n t e r a c t i o n i s w e a k d u e t o t h e s m a l l d e g r e e o f d e l o c a l i z a t i o n o f d z z t o w a r d s t h e b r i d g i n g l i g a n d . W h e n t h e b r i d g e a n g l e a i s c l o s e t o 9 0 ° , a c c i d e n t a l o r t h o g o n a l i t y o f t h e o r b i t a l s i s a c h i e v e d a n d t h e t r i p l e t s t a t e b e c o m e s t h e g r o u n d s t a t e , S i n c e t h e n e t v a l u e o f 1 7 F i g u r e 4 . M a g n e t i c o r b i t a l s o f a m e t a l f r a g m e n t i n t h e C 2 V p o i n t g r o u p . 1 8 T a b l e 1 . P r e d i c t i o n o f t h e N a t u r e a n d t h e O r d e r o f M a g n i t u d e f o r C o n t r i b u t i o n s J “ . I n v o l v i n g P a i r s o f M a g n e t i c O r b i t a l s a f o r B i n u c l e a r M e t a l C o m p l e x e s i n t h e 0 2 V P o i n t G r o u p J , ” a 1 ( C 1 2 2 ) b 2 ( d y z ) a 1 ( d , , 2 _ y 2 ) b 1 ( d x z ) a 2 ( d x y ) A F m F W F 5 F w a 1 ( d 2 2 ) F W t o A F W F w F W F W b 2 ( d y z ) A F w F W F , , , a t ( d e - ( . 2 ) F 5 t o A F s F W b 1 ( d x z ) A F W a F , f e r r o m a g n e t i c ; A F , a n t i f e r r o m a g n e t i c . T h e s u b s c r i p t s a r e w , w e a k ; m , m e d i u m ; 5 , s t r o n g . 1 9 t h e o v e r l a p i n t e g r a l S i s z e r o . F o r t h e d i a g o n a l t e r m s o f T a b l e 1 , a g a i n b o t h c o n t r i b u t i o n s a r e o p e r a t i v e . F e r r o m a g n e t i s m p r e v a i l s o n l y i n c a s e s w h e r e a c c i d e n t a l o r t h o g o n a l i t y i s a c h i e v e d , w h i l e i n a l l t h e o t h e r c a s e s t h e k i n e t i c e x c h a n g e t e r m l e a d s t o a s i n g l e t g r o u n d s t a t e . 6 . T o w a r d s B u l k M o l e c u l a r M a g n e t i s m : T h e C a s e o f t h e P r u s s i a n B l u e F a m i l y o f C o m p o u n d s T h e a n a l y s i s o f p a i r i n t e r a c t i o n s a m o n g o r b i t a l s l o c a t e d o n a d j a c e n t m e t a l s i t e s i s a p o w e r f u l q u a l i t a t i v e m e t h o d u t i l i z e d f o r t h e d e s i g n o f m o l e c u l a r - b a s e d m a g n e t s . T h e S i g n i f i c a n c e o f t h i s a p p r o a c h h a s b e e n d e m o n s t r a t e d b y t h e s y n t h e s i s o f a l a r g e f a m i l y o f c o m p o u n d s b a s e d o n t h e t h r e e - d i m e n s i o n a l n e t w o r k o f P r u s s i a n B l u e ” . T h i s s t r u c t u r a l f r a m e w o r k p r e s e n t s S i g n i fi c a n t a d v a n t a g e s ” i n c l u d i n g ( a ) e a s e o f s y n t h e s i s v i a r o o m t e m p e r a t u r e r e a c t i o n o f h e x a c y a n o m e t a l l a t e s ( o c t a h e d r a l [ 8 ( C N ) 5 ] " ‘ ) — f u n c t i o n i n g a s L e w i s b a s e s — w i t h m e t a l l i c c a t i o n s A ” , ( 2 ) t h e v a r i e t y o f o x i d a t i o n s t a t e s a c c e s s e d b y t h e t w o m e t a l s i t e s A a n d B , ( 3 ) t h e s y m m e t r i c a l n a t u r e o f t h e s t r u c t u r a l f r a m e w o r k , w h e r e t h e m e t a l s i t e s A j u x t a p o s e d w i t h i n o c t a h e d r a l h o l e s a r e j o i n e d v i a c y a n i d e l i g a n d s w i t h t h e L e w i s b a s i c s i t e s , ( 4 ) t h e m a n i p u l a t i o n o f t h e s t o i c h i o m e t r i c f o r m u l a A k [ B ( C N ) 6 ] . - n H 2 0 b y i n c o r p o r a t i n g c a t i o n i c S p e c i e s w i t h i n t h e t e t r a h e d r a l h o l e s o f t h e s t r u c t u r e , a n d ( 5 ) t h e n a t u r e a n d t h e s t r e n g t h o f t h e c o u p l i n g c o n s t a n t J c a n b e a n a l y z e d w i t h i n t h e b i n u c l e a r f r a g m e n t ( N C ) 5 8 — C N — A ( N C ) 5 , w h e r e 8 , C , N a n d A a r e c o l l i n e a r . I t i s t h e l a t t e r f a c t o r t h a t d e m o n s t r a t e s t h e s i g n i fi c a n c e o f t h e p a i r o r b i t a l a n a l y s e s . W i t h i n t h e s t r u c t u r a l f r a m e w o r k o f t h e P r u s s i a n B l u e f a m i l y , t h e l o c a l c o o r d i n a t i o n e n v i r o n m e n t a t e a c h m e t a l S i t e i s o c t a h e d r a l . T h u s t h e e l e c t r o n s a r e d i s t r i b u t e d i n t w o t y p e s o f o r b i t a l s , n a m e l y t h e t r i p l y d e g e n e r a t e t g g s e t a n d t h e 2 0 d o u b l y d e g e n e r a t e e g s e t . W h e n t h e m a g n e t i c o r b i t a l s i n t e r a c t i n g a r e o f t h e s a m e t y p e ( t 2 g — t z g o r e g — e 9 ) , t h e a n t i f e r r o m a g n e t i c c o n t r i b u t i o n i s e x p e c t e d t o b e d o m i n a n t . S i n c e n o a c c i d e n t a l o r t h o g o n a l i t y i s p o s s i b l e a s d i c t a t e d b y t h e l i n e a r i t y o f t h e e x c h a n g e p a t h w a y , t h e s t r e n g t h o f t h e k i n e t i c e x c h a n g e t e r m i s d e t e r m i n e d b y t h e s t r e n g t h o f t h e o v e r l a p a m o n g t h e m a g n e t i c o r b i t a l s . O n t h e o t h e r h a n d w h e n t h e m a g n e t i c o r b i t a l s a r e o f d i f f e r e n t t y p e s ( t 2 g — e 9 ) t h i s o v e r l a p i s z e r o a n d a p a r a l l e l a l i g n m e n t o f t h e s p i n s I s e n f o r c e d . T h e s i m p l i c i t y o f t h e o c t a h e d r a l l o c a l s y m m e t r y o f t h e m e t a l s i t e s l e a d s t o t w o p o s s i b l e s t r a t e g i e s f o r t h e d e s i g n o f m o l e c u l a r m a g n e t s b a s e d o n t h i s f a m i l y o f c o m p o u n d s . T h e fi r s t o n e d e p e n d s o n t h e s p e c i f i c e l e c t r o n i c c o n f i g u r a t i o n s o f m e t a l s i t e s A a n d B , w i t h u n p a i r e d e l e c t r o n s i n t z g o r b i t a l s i n o n e s i t e a n d i n e g o r b i t a l s i n t h e o t h e r s i t e . S u c h i s t h e c a s e i n C S ' N I " [ C r ' " ( C N ) 5 ] ~ 2 H 2 0 w h e r e a s h o r t r a n g e f e r r o m a g n e t i c c o u p l i n g i s e s t a b l i s h e d a m o n g n e i g h b o r i n g s p i n c e n t e r s , w h i c h f u r t h e r l e a d s t o b u l k f e r r o m a g n e t i s m b e l o w t h e C u r i e t e m p e r a t u r e T o = 9 0 K 2 8 . D i f f i c u l t i e s c o n c e r n i n g t h i s a p p r o a c h a r i s e f r o m t h e s m a l l n u m b e r s o f m e t a l s t h a t m e e t t h e c o n f i g u r a t i o n c r i t e r i a a n d t h e l i m i t e d k n o w l e d g e r e g a r d i n g t h e n a t u r e o f t h e f e r r o m a g n e t i c c o n t r i b u t i o n . O n t h e o t h e r h a n d , c o n t r o l o v e r t h e a n t i f e r r o m a g n e t i c f a c t o r i s b e t t e r e s t a b l i s h e d a n d i t s m a g n i t u d e c a n b e m a n i p u l a t e d b y u t i l i z i n g w e l l — e s t a b l i s h e d q u a l i t a t i v e m e t h o d o l o g i e s a s g u i d e s . S t r o n g a n t i f e r r o m a g n e t i c i n t e r a c t i o n s a m o n g d i s s i m i l a r s p i n s i t e s g i v e r i s e t o i n c o m p l e t e c a n c e l l a t i o n o f t h e s p i n s a n d f e r r o m a g n e t i c o r d e r i n g o f t h e r e s i d u a l m a g n e t i c m o m e n t s . T h e s o — c a l l e d f e r r i m a g n e t i c a p p r o a c h w a s fi r s t d e m o n s t r a t e d i n t h e P r u s s i a n B l u e f a m i l y b y t h e s y n t h e s i s o f C s ' M n " [ C r " ' ( C N ) 6 ] 2 9 . T h e e l e c t r o n i c c o n f i g u r a t i o n s o f C r ' l l a n d M n " a r e ( t z g ) 3 a n d ( t 2 9 ) ‘ ° ’ ( e 2 9 ) 2 r e s p e c t i v e l y l e a d i n g t o s p i n m o m e n t s o f 3 / 2 a n d 5 / 2 . T h e p a i r o r b i t a l a n a l y s i s p r e d i c t s s t r o n g a n t i f e r r o m a g n e t i c a n d w e a k t o m e d i u m f e r r o m a g n e t i c c o n t r i b u t i o n s f r o m t h e t z g - t z g a n d t z g — e g p a i r s r e s p e c t i v e l y . T h e o v e r a l l e f f e c t i s 2 1 s t r o n g s h o r t — r a n g e a n t i f e r r o m a g n e t i c c o u p l i n g a c c o m p a n i e d b y 3 D f e r r i m a g n e t i c o r d e r i n g a t T c = 9 0 K . I n a n e f f o r t t o p r o d u c e m a t e r i a l s w i t h e n h a n c e d c u r i e t r a n s i t i o n t e m p e r a t u r e s V e r d a g u e r a n d c o w o r k e r s 2 7 r e p l a c e d M n " b y C r " s y n t h e s i z i n g [ C r 5 ( C N ) 1 2 ] - 1 0 H 2 0 a n d C s ' o , 7 5 [ C r 2 , 1 2 5 ( C N ) 6 ] - 5 H 2 0 , w h i c h o r d e r f e r r i m a g n e t i c a l l y a t 2 4 0 a n d 1 9 0 K r e s p e c t i v e l y . S u b s t i t u t i o n o f t h e L e w i s a c i d i c s i t e s b y C r l l i o n s d i m i n i s h e s t h e f e r r o m a g n e t i c c o n t r i b u t i o n o n t h e C r l l — C r ' " p a i r s , S i n c e o n l y o n e e l e c t r o n r e s i d e s i n e g o r b i t a l s . A t t h e s a m e t i m e , i t e n h a n c e s t h e k i n e t i c e x c h a n g e t e r m o f t h e e x c h a n g e c o n s t a n t b y i n c r e a s i n g t h e o v e r l a p a m o n g t h e m a g n e t i c o r b i t a l s , S i n c e a s m a l l e r e n e r g y m i s m a t c h c o r r e s p o n d s t o t h e C r " — C r ' " p a i r s t h a n t h e M n l l — C r ' " o n e s . F u r t h e r d e v e l o p m e n t s a l o n g t h e s e l i n e s , a f f o r d e d a r o o m t e m p e r a t u r e o r d e r e d f e r r i m a g n e t 3 0 w i t h f o r m u l a V " o , 4 2 V " ' o , 5 8 [ C r ' " ( C N ) 6 ] o , 3 5 - 5 H 2 0 , b y t o t a l r e m o v a l o f e l e c t r o n s f r o m t h e 9 g o r b i t a l s . T h e c o m p e l l i n g r e s u l t s r a d i a t i n g f r o m t h i s f a m i l y o f c o m p o u n d s h a v e s h i f t e d t h e t a r g e t o f t h e f i e l d t o w a r d s m a t e r i a l s t h a t n o t o n l y a t t a i n b u l k m a g n e t i c b e h a v i o r , b u t a l s o c a n e m b o d y o t h e r p h y s i c a l p r o p e r t i e s o f i n t e r e s t . F o r e x a m p l e t h e t u n i n g o f m a g n e t i c b e h a v i o r b y o p t i c a l s o u r c e s i s a h i g h l y d e s i r a b l e c o m b i n a t i o n o f a t t r i b u t e s , w i t h n u m e r o u s a p p l i c a t i o n s . A n e x a m p l e i s t h e c o m p o u n d K o , 2 C o t , 4 [ F e ( C N ) 5 ] 2 - 6 . 9 H 2 0 w h e r e C h a n g e s i n t h e m a g n e t i z a t i o n a r e i n d u c e d b y r e d l i g h t i l l u m i n a t i o n “ . T w o t y p e s o f m e t a l l i n k s a r e e m b o d i e d w i t h i n t h e t h r e e — d i m e n s i o n a l n e t w o r k : F e I l l — C N — C o I I a n d F e " — C N — C o ' " . T h e f o r m e r c o n t r i b u t e s t o t h e m a g n e t i c p r o p e r t i e s w h i l e t h e l a t t e r c o m p r i s e s a d i a m a g n e t i c p a t h w a y . I l l u m i n a t i o n o f t h e s o l i d b y r e d l i g h t r e s u l t s i n t h e i n t e r c o n v e r s i o n o f t h e d i a m a g n e t i c t o t h e m a g n e t i c p a t h w a y s , i n c r e a s i n g t h e n u m b e r o f a c t i v e s p i n S i t e s a n d t h e r e f o r e t h e m a g n e t i z a t i o n p r o p e r t i e s . 2 2 7 . D o u b l e E x c h a n g e : A n A l t e r n a t i v e M e c h a n i s m f o r F e r r o m a g n e t i c C o u p l i n g M a g n e t i c c o u p l i n g u s u a l l y p r o p a g a t e s t h r o u g h w e l l — e s t a b l i s h e d e x c h a n g e p a t h w a y s t h a t i n v o l v e f i l l e d l i g a n d o r b i t a l s w i t h s p e c i f i c g e o m e t r i c a l a n d e l e c t r o n i c a t t r i b u t e s , w h i c h i n fl u e n c e d r a m a t i c a l l y t h e s t r e n g t h a n d t h e n a t u r e o f t h e m a g n e t i c i n t e r a c t i o n . A l t e r n a t i v e s t r a t e g i e s f o r t h e d e s i g n o f m a g n e t i c m a t e r i a l s a l o n g w i t h t h e n e c e s s a r y t h e o r e t i c a l b a c k g r o u n d 4 h a v e b e e n d e v e l o p e d , b a s e d o n t h r o u g h s p a c e z ' 5 o r n o n c o v a l e n t b o n d i n g e x c h a n g e p a t h w a y s ” . H o w e v e r , m o s t C h e m i c a l k n o w l e d g e a c q u i r e d t h r o u g h t h e l a s t c e n t u r y c o n c e r n s s y n t h e t i c c o n t r o l a n d a t t r i b u t e s o f c o v a l e n t b o n d s . I d e a l l y , c o n s t r u c t i o n o f m a g n e t i c s o l i d s S h o u l d t h e r e f o r e u t i l i z e c o v a l e n t b o n d i n g a s t h e m a i n l i n k b e t w e e n p a r a m a g n e t i c u n i t s . T h e d o u b l e — e x c h a n g e m e c h a n i s m 3 3 i s s u c h a c a s e , s i n c e s p i n c o m m u n i c a t i o n i s s a t i s f i e d i n a p r e d i c t a b l e m a n n e r a n d a t t h e s a m e t i m e c o n t r o l l e d s t r u c t u r a l d e s i g n i s a c c o m p l i s h e d b y c o v a l e n t l y l i n k i n g t h e d e s i r e d u n i t s . T h i s p h e n o m e n o n i s o b s e r v e d i n s p i n d e l o c a l i z e d m i x e d — v a l e n t s y s t e m s a n d i s b a s e d o n t h e i n t e r p l a y b e t w e e n e l e c t r o n e x c h a n g e a n d e l e c t r o n t r a n s f e r e v e n t s . T h e a r c h e t y p e m o l e c u l a r s y s t e m i s [ F e 2 ( , u — O H ) 3 ( t m t a c n ) 2 ] + 2 w h e r e t m t a c n r e p r e s e n t s 1 , 4 , 7 — t r i m e t h y l — 1 , 4 , 7 — t r i a z a c y c l o n o n a n e . I I I l t i s s b a u e r a ’ 4 a n d E X A F S 3 5 s p e c t r o s c o p y h a v e e s t a b l i s h e d a d e l o c a l i z e d d i m e t a l l i c c o r e w i t h a n S = 9 / 2 g r o u n d s t a t e . T h e s p i n a l i g n m e n t i s u n d e r s t o o d w i t h i n t h e f r a m e w o r k o f t h e d o u b l e — e x c h a n g e m e c h a n i s m , b y c o n s i d e r i n g t w o e n e r g e t i c a l l y e q u i v a l e n t r e s o n a n c e s t r u c t u r e s o f t h e m i x e d — v a l e n t p a i r , w h i c h i n t e r c o n v e r t v i a a o n e — e l e c t r o n t r a n s f e r p r o c e s s ( F i g u r e 5 ) . I f t h e c o r e s p i n s o f t h e t w o i r o n c e n t e r s a r e a l i g n e d i n a p a r a l l e l f a s h i o n t h e t r a n s f e r o f t h e e x t r a e l e c t r o n t a k e s p l a c e w i t h o u t a s p i n fl o p ( F i g u r e 5 , t o p ) . I f a n a n t i p a r a l l e l a l i g n m e n t i s i m p o s e d , a n e n e r g e t i c a l l y c o s t l y S p i n fl o p i s r e q u i r e d i n 2 3 E a s y E l e c t r o n T r a n s f e r F i g u r e 5 . E a s y ( t o p ) a n d S p i n F l o p ( b o t t o m ) e l e c t r o n t r a n s f e r i n a F e y / F e 3 + m i x e d v a l e n c e b i m e t a l l i c c o m p l e x . 2 4 o r d e r f o r t h e e l e c t r o n t r a n s f e r t o b e a c c o m p l i s h e d w i t h o u t v i o l a t i o n o f t h e P a u l i p r i n c i p l e ( F i g u r e 5 , b o t t o m ) . T h e r e f o r e , t h e t r a n s f e r o f t h e e x c e s s e l e c t r o n e f f e c t i v e l y d i c t a t e s t h e f e r r o m a g n e t i c c o u p l i n g o f t h e t w o m e t a l c e n t e r s . A n o t h e r f a m i l y o f m o l e c u l a r s y s t e m s w h e r e f e r r o m a g n e t i s m i s t h e s y n e r g i s t i c r e s u l t o f e l e c t r o n e x c h a n g e a n d e l e c t r o n t r a n s f e r w e r e i n t r o d u c e d b y t h e w o r k o f W i e g h a r d t a n d c o w o r k e r s 3 6 w h o a p p l i e d t h e a b o v e p r i n c i p l e s i n t r i m e r i c c l u s t e r s c o n t a i n i n g N i c k e l a n d / o r C o b a l t c e n t e r s i n v a r i o u s o x i d a t i o n s t a t e s . T h e s u p e r e x c h a n g e m e c h a n i s m , w h i c h c o n s i d e r s l o c a l i z e d o x i d a t i o n s t a t e s o n t h e m e t a l c e n t e r s , d o e s n o t s a t i s f a c t o r y e x p l a i n t h e m a g n e t i c p r o p e r t i e s o f m o s t o f t h e s e c o m p o u n d s . T h e d o u b l e — e x c h a n g e c o n c e p t p r o v i d e s a t h e o r e t i c a l f r a m e w o r k t h a t e x p l a i n s t h e g r o u n d s t a t e s o f t h e s e c o m p o u n d s i n w h i c h s p i n c e n t e r s a r e j u x t a p o s e d w i t h i n a c o v a l e n t n e t w o r k . A l t h o u g h l i m i t e d t o t h e s e m o l e c u l a r e x a m p l e s , t h i s t h e o r e t i c a l p i c t u r e p r o v i d e s n e w g r o u n d f o r c r e a t i v e t h i n k i n g a n d d e s i g n o f m o l e c u l a r m a g n e t s . 8 . M e t a l P h o s p h a t e / P h o s p h o n a t e E x t e n d e d M a t e r i a l s T h e t u n i n g o f p h y s i c a l p r o p e r t i e s b y w e l l - e s t a b l i s h e d o r g a n i c m e t h o d o l o g i e s , h a s g e n e r a t e d v a s t i n t e r e s t i n t h e f i e l d o f m o l e c u l a r b a s e d m a t e r i a l s . E x t e n d e d i n o r g a n i c c o m p o u n d s , o n t h e o t h e r h a n d , a r e d i f f i c u l t t o m a n i p u l a t e v i a s y s t e m a t i c , w e l l — c o n t r o l l e d m e a n s , w h i c h w o u l d p r e d i c t a b l y p e r t u r b t h e i r p h y s i c a l p r o p e r t i e s . T h i s d i f f i c u l t y m a i n l y a r i s e s f r o m t h e e x t r e m e c o n d i t i o n s n e e d e d f o r t h e s y n t h e s i s o f s o l i d s t a t e i n o r g a n i c m a t e r i a l s , w h i c h r e q u i r e s h i g h t e m p e r a t u r e s f o r i n t e r d i f f u s i o n a n d / o r d i s s o l u t i o n o f t h e r e a c t a n t s , l e a d i n g t o p r o d u c t s w i t h b o n d c o n n e c t i v i t i e s t h a t b e a r l i t t l e r e s e m b l a n c e t o t h e s t a r t i n g m a t e r i a l s 3 7 . O r g a n i c / i n o r g a n i c h y b r i d m a t e r i a l s o n t h e o t h e r h a n d , a r e 2 5 f o u n d i n t h e i n t e r m e d i a t e r e g i m e b e t w e e n m o l e c u l a r a n d e x t e n d e d m a t e r i a l s . T h e a i m o f t h e fi e l d i s t o c o m b i n e w e l l - d e fi n e d i n o r g a n i c n e t w o r k s w i t h o r g a n i c p e n d a n t s , g e n e r a t i n g m a t e r i a l s w i t h a l t e r n a t i n g i n o r g a n i c a n d o r g a n i c a r r a y s . I n a d d i t i o n t o p h y s i c a l p r o p e r t i e s a s s o c i a t e d w i t h t h e C h e m i c a l f o r m u l a t i o n o f t h e o r g a n i c a n d t h e i n o r g a n i c n e t w o r k , t h e s e n e w m a t e r i a l s a r e e x p e c t e d t o p o s s e s s u n i q u e p r o p e r t i e s m a n i f e s t e d b y t h e s y n e r g i s t i c i n t e r a c t i o n o f t h e o r g a n i c w i t h t h e i n o r g a n i c c o m p o n e n t s . D e v e l o p m e n t o f s u c h m a t e r i a l s h o w e v e r , h a s t o o v e r c o m e t h e s y n t h e t i c o b s t a c l e o f s e l e c t i n g i n o r g a n i c f r a m e w o r k s t h a t c a n b e g e n e r a t e d u n d e r c o n d i t i o n s t o l e r a b l e t o t h e o r g a n i c p e n d a n t s . A m a j o r a d v a n c e i n t h i s d i r e c t i o n i s t h e d e v e l o p m e n t o f m e t a l p h o s p h a t e / p h o s p h o n a t e C h e m i s t r y . T h e s e i n o r g a n i c m a t r i x e s a r e s y n t h e s i z e d a t l o w t e m p e r a t u r e s a n d o f t e n f r o m a q u e o u s s o l u t i o n s , c o n d i t i o n s t h a t p e r m i t t h e c o n s t r u c t i o n o f t h e i n o r g a n i c f r a m e w o r k w i t h o u t d e s t r u c t i o n o f t h e o r g a n i c p a r t o f t h e l i g a n d . A l a r g e n u m b e r o f d i v a l e n t , t r i v a l e n t a n d t e t r a v a l e n t m e t a l s h a v e b e e n u s e d f o r t h e s y n t h e s i s o f s u c h m a t e r i a l s ” , y i e l d i n g r e m a r k a b l e s t r u c t u r a l d i v e r s i t y i n t h e i n t e r p l a y o f t h e m e t a l i o n s w i t h O — - P — O l i n k a g e s . T h e s e b r i d g e s m a y b e p a r t o f t h e p h o s p h a t e ( P O 4 ' 3 ) , h y d r o g e n p h o s p h a t e ( H P O 4 ' 2 ) , d i h y d r o g e n p h o s p h a t e ( H 2 P 0 4 ' 1 ) , p h o s p h i t e ( P O ; 3 ) , h y d r o g e n p h o s p h i t e ( H P O g ‘ Z ) , o r p h o s p h o n a t e ( R P O 3 - 2 ) g r o u p s . O x y g e n a t o m s b e l o n g i n g t o t h e s e g r o u p s c a n b e s h a r e d i n d i f f e r e n t w a y s a n d n u m b e r s b y m e t a l c e n t e r s j u x t a p o s e d i n a v a r i e t y o f c o n fi g u r a t i o n s ” . 1 . Z i r c o n i u m P h o s p h a t e s a n d P h o s p h o n a t e s T h e s y n t h e s i s a n d c h a r a c t e r i z a t i o n o f t h e s e i n o r g a n i c f r a m e w o r k s , h a s f o c u s e d p r i m a r i l y o n m a t e r i a l s w h e r e t h e m e t a l s i t e i s a t e t r a v a l e n t c a t i o n . A m o r p h o u s m e t a l M " I p h o s p h a t e s h a v e b e e n k n o w n f o r a l o n g t i m e a n d w e r e 2 6 i n t e n s i v e l y i n v e s t i g a t e d i n t h e y e a r s 1 9 5 5 - 1 9 6 5 , e s p e c i a l l y f o r t h e i r p o t e n t i a l u s e s a s i n o r g a n i c i o n — e x c h a n g e r s i n p r o c e s s e s o c c u r r i n g a t h i g h t e m p e r a t u r e s o r u n d e r m a s s i v e d o s e s o f i o n i z i n g r a d i a t i o n “ . T h e f i r s t c r y s t a l l i n e d e r i v a t i v e o f t h i s f a m i l y w a s a — Z r ( H P O 4 ) 2 - H 2 0 s y n t h e s i z e d b y C l e a r fi e l d a n d S t y n e s 4 1 i n 1 9 6 4 . I n t h e o r i g i n a l s y n t h e s i s , z i r c o n i u m h y d r o g e n p h o s p h a t e g e l s w e r e r e fl u x e d i n 1 0 - 1 2 M p h o s p h o r i c a c i d , y i e l d i n g a w h i t e m i c r o c r y s t a l l i n e p o w d e r . S i n g l e c r y s t a l s o f t h i s m o n o c l i n i c p h a s e w e r e g r o w n u n d e r h y d r o t h e r m a l c o n d i t i o n s “ . T h e e x t e n d e d s t r u c t u r e c o n s i s t s o f t w o — d i m e n s i o n a l s h e e t s o f z i r c o n i u m h y d r o g e n p h o s p h a t e , S h o w n i n F i g u r e 6 . T h e m e t a l a t o m s a r e p o s i t i o n e d s l i g h t l y a b o v e a n d b e l o w t h e m e a n p l a n e o f t h e l a y e r s . T h e l o c a l c o o r d i n a t i o n S p h e r e o f z i r c o n i u m i s s u p p l e m e n t e d b y S i x o x y g e n a t o m s b e l o n g i n g t o d i f f e r e n t h y d r o g e n p h o s p h a t e g r o u p s , i n a n o c t a h e d r a l a r r a n g e m e n t . M e d i u m S i z e d e i g h t - m e m b e r " C h a i r - l i k e " r i n g s a r e f o r m e d b y i n t e r c o n n e c t i o n o f t w o z i r c o n i u m c e n t e r s w i t h t w o h y d r o g e n p h o s p a t e s , a n d a r e f u r t h e r f u s e d t o t w o t y p e s o f l i n e a r C h a i n s . T h e fi r s t o n e c o n s i s t s o f c o r n e r s h a r i n g d i m e r s w i t h n e a r e s t n e i g h b o r s d i v i d i n g u p t h e m e t a l s i t e , a n d t h e s e c o n d o n e o f e d g e s h a r i n g d i m e r s t h a t f o r m l a d d e r s b y h a v i n g j o i n t u s e o f a Z r - - O — — P f r a g m e n t . T h e c h a i n s a r e d i s p o s e d v e r t i c a l l y w i t h r e s p e c t t o e a c h o t h e r s h a r i n g c o m m o n e d g e s , a n a r r a n g e m e n t t h a t d e v e l o p s t o t h e t w o - d i m e n s i o n a l n e t w o r k , s h o w n I n F i g u r e 6 ( A ) . E a c h h y d r o g e n p h o s p h a t e g r o u p u s e s t h r e e o x y g e n a t o m s f o r m e t a l c o o r d i n a t i o n a n d t h e f o u r t h o n e , a h y d r o x y l g r o u p , p o i n t s i n t o t h e i n t e r l a y e r s p a c e , w h e r e w a t e r m o l e c u l e s r e s i d e i n h y d r o p h i l i c p o c k e t s . T h e l a y e r s , s i m p l y h e l d b y v a n d e r W a a l s f o r c e s , a r e s t a g g e r e d s u c h t h a t a p h o s p h o r u s a t o m o n o n e l a y e r l i n e s u p w i t h a z i r c o n i u m a t o m i n t h e a d j a c e n t l a y e r ( F i g u r e 6 ( 8 ) ) . R e p l a c e m e n t o f t h e h y d r o g e n p h o s p h a t e g r o u p b y a l k y l — a n d a r y l p h o s p h o n a t e s g e n e r a t e s a n e x t e n d e d f a m i l y o f o r g a n i c / i n o r g a n i c h y b r i d s w i t h v a r i o u s s t r u c t u r a l f r a m e w o r k s a n d p h y s i c a l p r o p e r t i e s ” . I n a d d i t i o n t o t h e 2 7 ( A ) ( B ) F i g u r e 6 . L a y e r s e g m e n t o f a — Z r ( H P O 4 ) 2 - H 2 0 d i s p l a y i n g t h e f r a m e w o r k o f t h e e i g h t — m e m b e r " c h a i r " l i k e r i n g s ( A ) . T h e l a y e r e d s h e e t s a r e s t a g g e r e d f o r m i n g h y d r o p h i l i c p o c k e t s o c c u p i e d b y w a t e r m o l e c u l e s ( 8 ) . 2 8 p r o t o t y p e z i r c o n i u m p h e n y l p h o s p h o n a t e “ , t h e m i l d s y n t h e s i s c o n d i t i o n s g i v e a c c e s s t o f u n c t i o n a l g r o u p s a t t a c h e d t o t h e o r g a n i c p a r t o f t h e p h o s p h o n a t e “ . M o r e r e c e n t a d v a n c e s ” , i n c l u d e m i x e d — c o m p o n e n t p h a s e s 4 6 w h e r e t w o o r m o r e o r g a n i c p e n d a n t g r o u p s a r e i n c o r p o r a t e d i n t h e l a y e r s , p o r o u s p i l l a r e d b i p h o s p h o n a t e s w h e r e a d j a c e n t l a y e r s a r e c o v a l e n t l y b o u n d g e n e r a t i n g m e d i u m — S i z e d c a v i t i e s " , a n d s u l f o p h o s p h o n a t e s t h a t c a n a c t a s p r o t o n c o n d u c t o r s 4 8 a n d i o n e x c h a n g e r s “ . 2 . V a n a d y l P h o s p h a t e s a n d P h o s p h o n a t e s A p a r t f r o m z i r c o n i u m , v a n a d i u m a l s o e x h i b i t s r i c h C h e m i s t r y w i t h t h e p h o s p h a t e / p h o s p h o n a t e m o i e t i e s . I t d i s p l a y s t h r e e s t a b l e o x i d a t i o n s t a t e s , n a m e l y I I I , I V , a n d V , r e s u l t i n g i n a l a r g e n u m b e r o f e x t e n d e d m a t e r i a l s w i t h h o m o — o r h e t e r o — v a l e n t m e t a l c e n t e r s s o . H o w e v e r m a n y o f t h e r e s e a r c h e f f o r t s t o d a t e h a v e t a r g e t e d s p e c i e s c o n t a i n i n g t h e o x a v a n a d i u m g r o u p . T h i s i n t e r e s t i s s t i m u l a t e d b y t h e u s e o f v a n a d y l — p h o s p h a t e b a s e d c a t a l y s t s i n i n d u s t r y f o r t h e s y n t h e s i s o f m a l e i c a n h y d r i d e f r o m l i g h t ( C 4 ) h y d r o c a r b o n s “ . I n a d d i t i o n , t h e s t r u c t u r a l d i v e r s i t y o f f e r e d b y v a n a d y l ( | V ) p h o s p h a t e s / p h o s p h o n a t e s ( V O P ) g e n e r a t e s a l a r g e n u m b e r o f m a t e r i a l s t h a t y i e l d l o w d i m e n s i o n a l m a g n e t i c i n t e r a c t i o n s ” . H e n c e , t h e t h e o r e t i c a l a n d e x p e r i m e n t a l s t u d y o f m a g n e t o s t r u c t u r a l c o r r e l a t i o n s b e c o m e s a C h a l l e n g i n g t a s k i n t h e s e s y s t e m s . O x o v a n a d i u m ( V ) p h o s p h a t e d i h y d r a t e , V O P O 4 - 2 H 2 0 , i s c o n s i d e r e d a s t h e C h e m i c a l p r e c u r s o r o f a w i d e f a m i l y o f o x o v a n a d i u m ( l V o r V ) d e r i v a t i v e s . I t w a s fi r s t s y n t h e s i z e d b y L a d w i g 5 3 u p o n r e fl u x i n g V 2 0 5 i n 8 5 % p h o s p h o r i c a c i d . I t s s t r u c t u r a l d e t e r m i n a t i o n w a s p e r f o r m e d b y X — r a y 5 4 a n d n e u t r o n d i f f r a c t i o n 5 5 t e c h n i q u e s , r e v e a l i n g t h e l a y e r m a t e r i a l d e p i c t e d i n F i g u r e 7 . T h e t w o — d i m e n s i o n a l f r a m e w o r k c o n s i s t s o f V 0 6 d i s t o r t e d o c t a h e d r a c o n n e c t e d t o f o u r 2 9 ( A ) ( B ) F i g u r e 7 . T h e t w o — d i m e n s i o n a l n e t w o r k o f V O P O 4 - 2 H 2 0 c o n s t r u c t e d b y e d g e — S h a r i n g " c h a i r " l i k e u n i t s ( A ) . t h e s e s h e e t s a r e f u r t h e r a s s e m b l e d t o a l a y e r e d m a t e r i a l ( 8 ) . 3 0 d i f f e r e n t P 0 4 t e t r a h e d r a , a s s h o w n i n F i g u r e 7 ( A ) . T h e S h o r t v a n a d y l b o n d ( 1 . 5 7 ( 1 ) A ) i s c o m p l e m e n t e d i n t h e a x i a l d i r e c t i o n b y a w e a k l y b o u n d w a t e r m o l e c u l e , w i t h b o t h g r o u p s p o i n t i n g o u t i n t h e i n t e r l a y e r s p a c e w h e r e u n b o u n d w a t e r m o l e c u l e s a r e a l s o l o c a t e d . M e d i u m - S i z e d e i g h t — m e m b e r e d C h a i r — l i k e r i n g s , s i m i l a r t o t h o s e f o u n d i n a — Z r ( H P O 4 ) 2 - H Z O , a r e f o r m e d b y i n t e r c o n n e c t i o n o f t w o v a n a d y l c e n t e r s w i t h t w o p h o s p h a t e g r o u p s . T h e s e d i m e r s a r e f u r t h e r a s s e m b l e d t o t w o - d i m e n s i o n a l s h e e t s b y e d g e s h a r i n g t h e V — O — — P f a c e s . T h e i n t e r l a y e r s p a c e c a n r e a d i l y a c c o m m o d a t e a v a r i e t y o f n e u t r a l m o l e c u l e s 5 6 b y s u b s t i t u t i o n o f t h e u n b o u n d w a t e r m o l e c u l e s , a n d s m a l l i o n s 5 7 b y r e v e r s i b l e r e d o x i n t e r c a l a t i o n r e a c t i o n s . S u b s t i t u t i o n o f t h e p h o s p h a t e g r o u p b y o t h e r O — P — O l i n k a g e s a n d / o r i n c o r p o r a t i o n o f c a t i o n i c S p e c i e s , d r a m a t i c a l l y e x p a n d s t h e n u m b e r o f c o m p o u n d s t h a t b e l o n g t o t h e V O P f a m i l y “ . W h e n a n o r g a n i c p e n d a n t i s i n c o r p o r a t e d i n t o t h e l i n k a g e , a l a r g e s e r i e s o f o r g a n i c / i n o r g a n i c h y b r i d e s c a n b e s y n t h e s i z e d . T h e y c a n b e p r e p a r e d e i t h e r b y h y d r o t h e r m a l t e c h n i q u e s ” , o r i n a l c o h o l i c s o l u t i o n s b y d i r e c t i n t e r a c t i o n o f V 2 0 5 a n d t h e c o r r e s p o n d i n g p h o s p h o n i c a c i d i n t h e p r e s e n c e o f c a t a l y t i c a m o u n t s o f h y d r o c h l o r i c a c i d “ . T h e l a t t e r i s a r e d u c t i v e p r o c e s s t h a t r e s u l t s i n m a t e r i a l s w i t h a l l v a n a d i u m s i t e s b e a r i n g o n e u n p a i r e d e l e c t r o n . I n a d d i t i o n , s o l v e n t a l c o h o l m o l e c u l e s a r e i n c o r p o r a t e d i n t h e s e m a t e r i a l s , o c c u p y i n g t h e a x i a l s i t e s o f t h e v a n a d y l i o n . T h e s e c a n b e e x c h a n g e d b y o t h e r a l c o h o l s o r L e w i s b a s i c m o l e c u l e s i n a r 6 0 5 1 . F o r e x a m p l e , T o r g e r s o n a n d N o c e r a e z c o n t r o l l e d a n d p r e d i c t a b l e m a n n e i n t e r c a l a t e d d i f f e r e n t C H 3 ( C H 2 ) , . O H a l c o h o l s i n V ( O ) 0 3 P N p ( N p s t a n d s f o r t h e n a p h t h y l g r o u p ) , a n d b y t h e s e m e a n s m e c h a n i c a l l y j a c k t h e l a y e r s a p a r t , b y 1 . 0 6 A p e r m e t h y l e n e u n i t . W h e n t h e n e i g h b o r i n g n a p h t h a l e n e r i n g s w e r e i n r e g i s t r y , e x c i m e r f o r m a t i o n ( m o n i t o r e d b y e x c i m e r e m i s i o n ) w a s a c h i e v e d . 3 1 3 . M a g n e t o s t r u c t u r a l C o r r e l a t i o n s i n V a n a d y l P h o s p h a t e s a n d P h o s p h o n a t e s A l a r g e n u m b e r o f m a g n e t i c s t u d i e s i s a v a i l a b l e f o r v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s . H o w e v e r t h e g e o m e t r i c a l fl e x i b i l i t y o f t h e O — P — O l i n k a g e c r e a t e s d i v e r s e e n v i r o n m e n t s a r o u n d t h e v a n a d y l m a g n e t i c c e n t e r s . A S a r e s u l t m a g n e t o s t r u c t u r a l c o r r e l a t i o n s i n t h e s e s y s t e m s a r e d i f fi c u l t , a n d n e e d t o b e ” ' 6 3 a n d c o w o r k e r s s t u d i e d i n a s y s t e m a t i c w a y . T o w a r d s t h i s d i r e c t i o n V i l l e n e u v e h a v e i d e n t i fi e d t h e m o s t c o m m o n s t r u c t u r a l b u i l d i n g b l o c k s e m b o d i e d i n t h e V O P ' S f r a m e w o r k s . T h e y a r e d i s p l a y e d i n F i g u r e 8 a l o n g w i t h t h e n o t a t i o n t h a t t h e s e a u t h o r s h a v e u s e d . I n a l l t h e b u i l d i n g b l o c k s t h e c o o r d i n a t i o n e n v i r o n m e n t o f v a n a d i u m i s t h a t o f a h i g h l y d i s t o r t e d a x i a l o c t a h e d r o n . V a n a d i u m f o r m s a S h o r t b o n d t o a n o x y g e n a t o m a l o n g t h e m o l e c u l a r z — a x i s , d e f i n i n g t h e v a n a d y l g r o u p . T h e t r a n s - p o s i t i o n i s o c c u p i e d e i t h e r b y a w e a k l y b o u n d w a t e r m o l e c u l e o r b y t h e v a n a d y l o x y g e n o f a d i f f e r e n t u n i t . T h e l a t t e r a r r a n g e m e n t i s d e n o t e d a s O — t y p e i n F i g u r e 8 . T h e p h o s p h a t e o r p h o s p h o n a t e g r o u p s c a n d i s p l a y s i n g l e ( M — t y p e ) o r d o u b l e ( D — t y p e ) b r i d g i n g m o d e s . A r e m a r k a b l e f e a t u r e i s t h a t i n n o c a s e d o e s t h e l i g a n d t r a n s - t o t h e v a n a d y l o x y g e n a t o m c o m e f r o m a p h o s p h a t e o r a p h o s p h o n a t e ” . I n t h e V O P ' S t h e u n p a i r e d e l e c t r o n r e s i d e s i n a d x y o r b i t a l “ , s i n c e t h e l o c a l s y m m e t r y c a n b e a p p r o x i m a t e d a s C 4 v . T h e s e a r e S l i g h t l y d e s t a b i l i z e d b y t h e 7 r — m i x i n g i n t e r a c t i o n w i t h i n - p l a n e o x y g e n p — a t o m i c o r b i t a l s , r e s u l t i n g i n m a g n e t i c o r b i t a l s d e l o c a l i z e d t o w a r d s t h e x y p l a n e o f t h e b u i l d i n g b l o c k . C o n s e q u e n t l y , s i g n i fi c a n t c o u p l i n g t h r o u g h , u — o x o b r i d g e s ( O — t y p e ) i s o r i e n t a t i o n a l l y p r e c l u d e d . M o s t l i k e l y t h e m a j o r e x c h a n g e p a t h w a y s w o u l d i n v o l v e t h e p h o s p h a t e / p h o s p h o n a t e b r i d g e s . T h e s t r u c t u r a l d i v e r s i t y a n d t h e m a n y g e o m e t r i c a l p a r a m e t e r s i n v o l v e d i n b u i l d i n g b l o c k s b r i d g e d b y t h e s e 0 — P — O 3 2 O O I I H I m l O H I O I I I I D O O 0 , , 0 % g o \ O a “ . ” " 0 O i l / I O Q ” 0 | P H I I I I I I O O ’ 8 0 / \ 0 ’ 0 0 O O 0 1 0 I I 0 0 I I I 3 9 5 C ‘ s o 0 % O O \ \ \ 0 0 ' 0 I I ' " , ( I \ \ \ D ( ) F 5 \ / \ \ \ 0 O K I D ’ O O o O s 0 0 M I C o l / , 0 0 0 ; “ \ \ \ O D I I I A 0 H “ \ O I I I I I . O 0 % j t ‘ o O O D V I D I I 0 O \ “ ‘ I I I I O O O O D I V D V O ( 3 / 7 > ( q u O O — P / O P / / O “ O O D V I I F i g u r e 8 . C o m m o n s t r u c t u r a l b u i l d i n g b l o c k s f o u n d i n v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s . T h e y c o n s i s t o f d i m e r i c e n t i t i e s b r i d g e d e i t h e r t h r o u g h t h e v a n a d y l g r o u p ( O — t y p e ) , o r v i a p h o s p h a t e / p h o s p h o n a t e b r i d g e s . 3 3 S i n g l e ( M — t y p e ) o r d o u b l e ( D — t y p e ) l i n k a g e s f u r t h e r i m p e d e t h e p r e d i c t i o n o f m a g n e t i c p r o p e r t i e s . N e v e r t h e l e s s t h e a u t h o r s p r o v i d e q u a l i t a t i v e a r g u m e n t s r e g a r d i n g t h e o p t i m u m m a t c h i n g o f m a g n e t i c o r b i t a l s . C o p l a n a r i t y a n d t h e r e l a t i v e o r i e n t a t i o n o f t h e l o c a l c o o r d i n a t e s y s t e m s o f a d j a c e n t V 0 5 o c t a h e d r a a r e c r i t i c a l v a r i a b l e s f o r e f f i c i e n t c o u p l i n g . D o u b l e b r i d g i n g m o d e s ( D — t y p e ) l e a d t o s t r o n g e r i n t e r a c t i o n s t h a n d o s i n g l e o n e s ( M — t y p e ) . L i k e w i s e d i - p — p h o s p h a t o — ( O ) b r i d g e s ( D I a n d D I I i n F i g u r e 8 ) m i n i m i z i n g v a n a d i u m — v a n a d i u m d i s t a n c e s s h o u l d e n h a n c e i n s p i n c o m m u n i c a t i o n c o m p a r e d t o t h e d i — p — p h o s p h a t o - ( O , O ' ) o n e s ( D I I ] t o D V I I i n F i g u r e 8 ) . T h e a b o v e c o n s i d e r a t i o n s a r e s u m m a r i z e d a s s e r i e s w h e r e s t r o n g e r i n t e r a c t i o n s a r e e x p e c t e d t o o c c u r f r o m r i g h t t o l e f t : T h e s e r e l a t i o n s h i p s h a v e b e e n u s e d q u a l i t a t i v e l y t o e x p l a i n t h e m a g n e t i c p r o p e r t i e s o f s o m e m e m b e r s o f t h e V O P f a m i l y . T h e s t r a t e g y i s b a s e d o n t h e i d e n t i fi c a t i o n o f p o t e n t i a l e x c h a n g e p a t h w a y s i n a g i v e n e x t e n d e d m a t e r i a l , a n d e s t i m a t i o n o f t h e i r r e l a t i v e w e i g h t o n t h e o v e r a l l m a g n e t i c p r o p e r t i e s . C . O r g a n i z a t i o n o f t h i s T h e s i s T h e s c o p e o f t h i s t h e s i s i s t h e s t u d y o f t h e m a g n e t i c p r o p e r t i e s i n l a y e r e d v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s . M a g n e t o s t r u c t u r a l c o r r e l a t i o n s i n t h e s e s y s t e m s a r e f u r t h e r e x p l o r e d v i a t h e s y n t h e s i s a n d s t u d y o f t h e m a g n e t i c p r o p e r t i e s o f m o l e c u l a r c o m p l e x e s w h i c h r e s e m b l e t h e c o m m o n s t r u c t u r a l b u i l d i n g b l o c k s o f t h e e x t e n d e d m a t e r i a l s . C h a p t e r 2 e l a b o r a t e s t h e e x p e r i m e n t a l p r o c e d u r e s u s e d f o r t h e s y n t h e s i s a n d p h y s i c a l c h a r a c t e r i z a t i o n o f b o t h t h e e x t e n d e d a n d m o l e c u l a r c o m p o u n d s . C h a p t e r 3 r e f e r s t o t h e e x t e n d e d l a y e r e d m a t e r i a l s . T h e f i r s t p a r t c o n c e r n s 3 4 t h e s y n t h e s i s , s t r u c t u r a l c h a r a c t e r i z a t i o n a n d m a g n e t i c p r o p e r t i e s o f m e t a l - i n t e r c a l a t e d l a y e r e d v a n a d y l p h o s p h a t e s . I n t h e s e c o n d p a r t , t h e m a g n e t i c p r o p e r t i e s o f t h e o r g a n i c / i n o r g a n i c h y b r i d s e r i e s o f l a y e r e d v a n a d y l n a p h t h h y l p h o s p h o n a t e s i s p r e s e n t e d , a l o n g w i t h t h e r e l a t e d s t u d i e s o f D r . J e a n L e B i d e a u o n l a y e r e d v a n a d y l p — s u b s t i t u t e d p h e n y l p h o s p h o n a t e s . T h e s t r u c t u r a l b u i l d i n g b l o c k s r e s p o n s i b l e f o r t h e t r a n s m i s s i o n o f m a g n e t i c p r o p e r t i e s a r e i d e n t i f i e d , a n d p r e l i m i n a r y c o n c l u s i o n s f o r m a g n e t o s t r u c t u r a l c o r r e l a t i o n s a r e d e fl v e d . C h a p t e r 4 p r e s e n t s t h e s y n t h e s i s , s t r u c t u r a l c h a r a c t e r i z a t i o n a n d m a g n e t i c p r o p e r t i e s o f t w o s e r i e s o f d i m e r i c v a n a d y l p h o s p h i n a t e s , w h i c h m o d e l s t r u c t u r a l b u i l d i n g b l o c k s o f l a y e r e d v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s . T h e i r m a g n e t i c p r o p e r t i e s a r e s t u d i e d i n d e t a i l e d a n d m a g n e t o s t r u c t u r a l c o r r e l a t i o n s a r e d r a w n b a s e d o n t h e e x p e r i m e n t a l r e s u l t s . C h a p t e r 5 p r e s e n t s a s t u d y o f t h e a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e a s a s t r u c t u r a l e l e m e n t i n c r y s t a l e n g i n e e r i n g . I n a d d i t i o n m o l e c u l e — b a s e d m a g n e t i c m a t e r i a l s a r e a s s e m b l e d v i a t h i s s a l t b r i d g e , a n d t h e t r a n s m i s s i o n o f m a g n e t i c p r o p e r t i e s t h r o u g h h y d r o g e n b o n d e d r a d i c a l c e n t e r s i s d e m o n s t r a t e d . 3 5 L I S T O F R E F E R E N C E S ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 1 0 ) D a y , P . S c i e n c e 1 9 9 3 , 2 6 1 , 4 3 1 . M i l l e r , J . 8 . ; E p s t e i n , A . J . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 4 , 3 3 , 3 8 5 . ( a ) V o g t l e , F . S u p r a m o l e c u l a r C h e m i s t r y , W i l e y : C h i c h e s y e r 1 9 9 1 . ( b ) L e h n , J . — M . M a c r o c y c l i c C h e m i s t r y , V C H : N e w Y o r k 1 9 9 3 . ( c ) L e h n , J . - M . S u p r a m o l e c u l a r C h e m i s t r y , V C H : W e i n h e i m 1 9 9 5 . ( d ) B a l z a n i , V . ; S c a n d o l a , F . S u p r a m o l e c u l a r P h o t o c h e m i s t r y , E l l i s H o r w o o d : W e s t S u s s e x 1 9 9 1 . ( e ) C r a m , D . J . C o n t a i n e r M o l e c u l e s a n d t h e i r G u e s t s ; R o y a l S o c i e t y o f C h e m i s t r y : C a m b r i d g e 1 9 9 4 . ( a ) M c C o n n e l l , H . M . J . C h e m . P h y s . 1 9 6 3 , 3 9 , 1 9 1 0 . ( b ) M c C o n n e l l , H . M . P r o c . R . A . W e l c h F o u n d . C h e m . R e s . 1 9 6 7 , 1 1 , 4 4 . ( a ) M i l l e r , J . 8 . ; C a l a b r e s e , J . C . ; E p s t e i n , A . J . ; B i g e l o w , R . W . ; Z h a n g , J . H . ; R e i f f , W . M . J . C h e m . S o c . C h e m . C o m m u n . 1 9 8 6 , 1 0 2 6 . ( b ) M i l l e r , J . 8 . ; C a l a b r e s e , J . C . ; D i x o n , D . A . ; E p s t e i n , A . J . ; B i g e l o w , R . W . ; Z h a n g , J . H . ; R e i f f , W . M . J . A m . C h e m . S o c . 1 9 8 7 , 1 0 9 , 7 6 9 . ( c ) C h i t t i p e d d i , 8 . ; C r o m a c k , K . R . ; M i l l e r , J . 8 . ; E p s t e i n , A . J . P h y s . R e v . L e t t . 1 9 8 7 , 2 2 , 2 6 9 5 . ( d ) M i l l e r , J . 8 . ; E p s t e i n , A . J . A c c . C h e m . R e s . 1 9 8 8 , 2 3 , 1 1 4 . ( e ) M i l l e r , J . 8 . ; E p s t e i n , A . J . S c i e n c e , 1 9 8 8 , 2 4 0 , 4 0 . V a n V l e c k , J . H . T h e T h e o r y o f E l e c t r i c a n d M a g n e t i c S u s c e p t i b i l i t i e s ; O x f o r d U n i v e r s i t y P r e s s : O x f o r d 1 9 3 2 . ( a ) B l e a n e y , B . ; B o w e r s , K . D . P r o c . R . S o c . L o n d o n 1 9 5 2 , S e r . A 2 1 4 , 4 5 1 . ( b ) v a n N i e k e r k , J . N . ; S c h o e n i n g , F . K . L . A c t a C r y s t . 1 9 5 3 , 6 , 2 2 7 . ( a ) H a n s e n , A . E . ; B a l l h a u s e n , C . J . T r a n s . F a r a d a y S o c . 1 9 6 5 , 6 1 , 6 3 1 . ( b ) M i s k o w s k i , V . M . ; G o l d b e c k , R . A . ; K l i g e r , D . 8 . ; G r a y , H . B . I n o r g . C h e m . 1 9 7 9 , 1 8 , 8 6 . H a y , P . J . J . A m . C h e m . S o c . 1 9 8 2 , 1 0 4 , 7 0 0 7 . ( a ) B e s t , 8 . A . ; S m i t h , T . J . ; W a l t o n , R . A . I n o r g . C h e m . 1 9 7 8 , 1 7 , 9 9 . ( b ) A b b o t t , E . H . ; B o s e , K . 8 . ; C o t t o n , F . A . ; H a l l , W . T . ; S e k u t o w s k i , J . C . I n o r g . C h e m . 1 9 7 8 , 1 7 , 3 2 4 0 . ( c ) C o t t o n , F . A . ; F a n w i c k , P . E . ; F i t c h , J . W . ; G l i c k s m a n , H . D . ; W a l t o n , R . A . J . A m . C h e m . S o c . 1 9 7 9 , 1 0 1 , 1 7 5 2 . ( d ) S c h r o c k , R . R . ; S t u r g o f f , L . 6 . ; S h a r p , P . R . I n o r g . C h e m . 1 9 8 3 , 2 2 , 2 8 0 1 . ( e ) C o t t o n , F . A . ; P o w e l l , G . L . I n o r g . C h e m . 1 9 8 3 , 2 2 , 1 5 0 7 . ( f ) A g a s k a r , P . A . ; C o t t o n , F . A . ; F r a s e r , I . F . ; P e a c o c k , R . D . J . A m . C h e m . S o c . 1 9 8 4 , 1 0 6 , 1 8 5 1 . 3 6 ( 1 1 ) ( 1 2 ) ( 1 3 ) ( 1 4 ) ( 1 5 ) ( 1 6 ) ( 1 7 ) ( 1 8 ) ( 1 9 ) ( 2 0 ) ( 2 1 ) ( 2 2 ) ( 2 3 ) ( 2 4 ) ( 2 5 ) H o p k i n s , M . D . ; Z i e t l o w , T . C . ; M i s k o w s k i , V . M . ; G r a y , H . B . J . A m . C h e m . S o c . 1 9 8 5 , 1 0 7 , 5 1 0 . K a h n , 0 . M o l e c u l a r M a g n e t i s m ; V C H P u b l i s h e r s : N e w Y o r k 1 9 9 3 . H a y , P . J . ; T h i b e a u l t , J . C . ; H o f f m a n n , R . J . A m . C h e m . S o c . 1 9 7 5 , 9 7 , 4 8 8 4 . d e L o t h , P . ; C a s s o u x , P . ; D a u d e y , J . P . ; M a l r i e u , J . P . J . A m . C h e m . S o c . 1 9 8 1 , 1 0 3 , 4 0 0 7 . ( a ) D i r a c , P . A . M . P r o c . R . S o c . L o n d o n 1 9 2 6 , S e r . A 1 1 2 , 6 6 1 . ( b ) H e i s e n b e r g , W . Z . P h y s . 1 9 2 6 , 3 8 , 4 1 1 . ( c ) H e i s e n b e r g , W . Z . P h y s . 1 9 2 8 , 4 9 , 6 1 9 . K a h n , O ; C h a r l o t , M . F . i n Q u a n t u m T h e o r y o f C h e m i c a l R e a c t i o n s , V o l u m e I I ; D . R i e d e l P u b l i s h i n g C o m p a n y : 1 9 8 0 . ( a ) L e w i s , D . L . ; H a t f i e l d , W . E . ; H o d g s o n , D . J . I n o r g . C h e m . 1 9 7 2 , 1 1 , 2 2 1 6 . ( b ) M c G r e g o r , K . T . ; W a t k i n s , N . T . ; L e w i s , D . L . ; D r a k e , R . F . ; H o d g s o n , D . J . ; H a t f i e l d , W . E . I n o r g . N u c l . C h e m . L e t t . 1 9 7 3 , 9 , 4 2 3 . ( 0 ) L e w i s , D . L . ; M c G r e g o r , K . T . ; H a t fi e l d , W . E . ; H o d g s o n , D . J . I n o r g . C h e m . 1 9 7 4 , 1 3 , 1 0 1 3 . ( d ) E s t e s , E . D . ; H a t fi e l d , W . E . ; H o d g s o n , D . J . I n o r g . C h e m . 1 9 7 4 , 1 3 , 1 6 5 4 . ( e ) C r a w f o r d , W . H . ; R i c h a r d s o n , H . W . ; W a s s o n , J . R . ; H o d g s o n , D . J . ; H a t f i e l d , W . E . I n o r g . C h e m . 1 9 7 6 , 1 5 , 2 1 0 7 . R u i z , E . ; A l e m a n y , P . ; A l v a r e z , 8 . ; C a n o , J . J . A m . C h e m . S o c . 1 9 9 7 , 1 1 9 , 1 2 9 7 . C h a r l o t , M . F . ; K a h n , O . N o u v . J . C h i m . 1 9 8 0 , 4 , 5 6 7 . ( a ) K a t o , M . ; J o n a s s e n , H . B . ; F a n n i n g , J . C . C h e m . R e v . 1 9 6 4 , 6 4 , 9 9 . ( b ) J o t h a m , R . W . ; K e t t l e , S . F . A . ; M a r k s , J . A . J . C h e m . S o c . D a l t o n T r a n s . 1 9 7 2 , 4 2 8 . G o o d g a m e , D . M . L . ; H i l l , N . J . ; M a r s h a m , D . F . ; S k a p s k i , A . 0 . ; S m a r t , M . L . ; T r o u g h t o n , P . G . H . C h e m . C o m m u n . 1 9 6 9 , 6 2 9 . L e B i d e a u , J . ; P a p o u t s a k i s , D . ; J a c k s o n , J . E . ; N o c e r a , D . G . ; J . A m . C h e m . S o c . 1 9 9 7 , 1 1 9 , 1 3 1 3 . K a h n , O . ; G a l y , J . ; J o u r n a u x , Y . ; M o r g e n s t e r n — B a d a r a u , I . J . A m . C h e m . S o c . 1 9 8 2 , 1 0 4 , 2 1 6 5 . K a h n , O . S t r u c t . B o n d i n g ( B e r l i n ) 1 9 8 7 , 6 8 , 8 9 . ( a ) G o o d e n o u g h , J . B . P h y s . R e v . 1 9 5 5 , 1 0 0 , 5 6 4 . ( b ) K a n a m o r i , J . J . P h y s . C h e m . S o l i d s 1 9 5 9 , 1 0 , 8 7 . ( c ) G o o d e n o u g h , J . B . M a g n e t i s m a n d t h e C h e m i c a l B o n d ; l n t e r s c i e n c e : N e w Y o r k 1 9 6 3 . ( d ) G i n s b e r g , A . P . 3 7 ( 2 5 ) ( 2 7 ) ( 2 8 ) ( 2 9 ) ( 3 0 ) ( 3 1 ) ( 3 2 ) ( 3 3 ) ( 3 4 ) ( 3 5 ) I n o r g . C h i m . A c t a R e v . 1 9 7 1 , 5 , 4 5 . D u n b a r , K . R . ; H e i n t z , R . A . P r o g r e s s i n I n o r g a n i c C h e m i s t r y 1 9 9 7 , 4 5 , 2 8 3 . M a l l a h , T . ; T h i é b a u t , 8 . ; V e r d a g u e r , M . ; V e i l l e t , P . S c i e n c e 1 9 9 3 , 2 6 2 , 1 5 5 4 . G a d e t , V . ; M a l l a h , T . ; C a s t r o , | . ; V e i l l e t , P . ; V e r d a g u e r , M . J . A m . C h e m . S o c . 1 9 9 2 , 1 1 4 , 9 2 1 3 . G r i e b l e r , W . D . ; B a b e l , D . Z . N a t u r f o r s c h . T e l / B 1 9 8 2 , 8 7 , 8 3 2 . F e r l a y , 8 . ; M a l l a h , T . ; O u a h e s , R . ; V e i l l e t , P . ; V e r d a g u e r , M . N a t u r e 1 9 9 5 , 3 7 8 , 7 0 1 . S a t o , 0 . ; l y o d a , T . ; F u j i s h i m a , A . ; H a s h i m o t o , K . S c i e n c e 1 9 9 6 , 2 7 2 , 7 0 4 . ( a ) T a m u r a , M . ; N a k a z a w a , Y . ; S h i o m i , D . ; N o z a w a , K . ; H o s o k o s h i , Y . ; I s h i k a w a , M . ; T a k a h a s h i , M . ; K i n o s h i t a , M . C h e m . P h y s . L e t t . 1 9 9 1 , 1 8 6 , 4 0 1 . ( b ) N a k a z a w a , Y . ; T a m u r a , M . ; S h i r a k a w a , N . ; S h i o m i , D . ; T a k a h a s h i , M . ; K i n o s h i t a , M . ; I s h i k a w a , M . ; P h y s . R e v . 1 9 9 2 , B 4 6 , 8 9 0 6 . ( c ) H e r n a n d e z , E . ; M a s , M . ; M o l i n s , E . ; R o v i r a , C . ; V e c i a n a , J . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 3 , 3 2 , 8 8 2 . ( d ) S u g a w a r a , T . ; M a t s u s h i t a , M . M . ; l z u o k a , A . ; W a d a , N . ; T a k e d a , N . ; I s h i k a w a , M . J . C h e m . S o c . C h e m . C o m m u n . 1 9 9 4 , 1 7 2 3 . ( e ) V e c i a n a , J . ; C i r u j e d a , J . ; R o v i r a , C . ; V i d a l — G a n c e d o , J . ; A d v . M a t e r . 1 9 9 5 , 7 , 2 2 1 . ( f ) L a n g , A . ; P e i , Y . ; Q u a h a b , L . ; K a h n , 0 . A d v . M a t e r . 1 9 9 6 , 8 , 6 0 . ( g ) M a t s u s h i t a , M . M . ; l z u o k a , A . ; S u g a w a r a , T . ; K o b a y a s h i , T . ; W a d a , N . ; T a k e d a , N . ; I s h i k a w a , M . J . A m . C h e m . S o c . 1 9 9 7 , 1 1 9 , 4 3 6 9 . ( h ) D e u m a l , M . ; C i r u j e d a , J . ; V e c i a n a , J . ; K i n o s h i t a , M . ; H o s o k o s h i , Y . ; N o v o a , J . J . C h e m . P h y s . L e t t . 1 9 9 7 , 2 6 5 , 1 9 0 . ( a ) Z e n e r , C . P h y s . R e v . 1 9 5 1 , 8 1 , 4 4 0 . ( b ) A n d e r s o n , P . W . ; H a s e g a w a , H . P h y s . R e v . 1 9 5 5 , 1 0 0 , 6 7 5 . ( c ) B l o n d i n , G . ; G i r e r d , J . — J . C h e m . R e v . 1 9 9 0 , 9 0 , 1 3 5 9 . ( d ) B l o n d i n , G . ; B o r s h c h , 8 . ; G i r e r d , J . — J . C o m m . I n o r g . C h e m . 1 9 9 2 , 1 2 , 3 1 5 . ( a ) D r fl e k e , 8 . ; C h a u d h u r i , P . ; P o h l , K . ; W i e g h a r d t , K . ; D i n g , X . — Q . ; B i l l , E . ; S a w a r y n , A . ; T r a u t w e i n , A . X . ; W i n k l e r , H . ; G u r m a n , S . J . J . C h e m . S o c . C h e m . C o m m u n . 1 9 8 9 , 5 9 . ( b ) D i n g , X . — Q . ; B o m i n a a r , E . L . ; B i l l , E . ; W i n k l e r , H . ; T r a u t w e i n , A . X . ; D r fl e k e , 8 . ; C h a u d h u r i , P . ; W i e g h a r d t , K . J . C h e m . P h y s . 1 9 9 0 , 9 2 , 1 7 8 . ( c ) G a m e l i n , D . R . ; B o m i n a a r , E . L . ; K i r k , M . L . ; W i e g h a r d t , K . ; S o l o m o n , E . I . J . A m . C h e m . S o c . 1 9 9 6 , 1 1 8 , 8 0 8 5 . ( d ) G a m e l i n , D . R . ; B o m i n a a r , E . L . ; M a t h o n i e r e , 0 . ; K i r k , M . L . ; W i e g h a r d t , K . ; G i r e r d , J . — J . ; S o l o m o n , E . l . I n o r g . C h e m . 1 9 9 6 , 3 5 , 4 3 2 3 . P e n g , G . ; v a n E l p , J . ; J a n g , H . ; Q u e , L . , J r . ; A r m s t r o n g , W . H . ; C r a m e r , S . P . J . A m . C h e m . S o c . 1 9 9 5 , 1 1 7 , 2 5 1 5 . 3 8 ( 3 5 ) ( 3 7 ) ( 3 8 ) ( 3 9 ) ( 4 0 ) ( 4 1 ) ( 4 2 ) ( 4 3 ) ( 4 4 ) ( 4 5 ) ( 4 6 ) ( 4 7 ) ( 4 8 ) B e i s s e l , T . ; B i r k e l b a c h , F . ; B i l l , E . ; G l a s e r , T . ; K e s t i n g , F . ; K r e b s , C . ; W e y h e r m fl l l e r , T . ; W i e g h a r d t , K . ; B u t z l a f f , C . ; T r a u t w e i n , A . X . J . A m . C h e m . S o c . 1 9 9 6 , 1 1 8 , 1 2 3 7 6 . C a o , G . ; H o n g , H . — J . ; M a l l o u k , T . E . A c c . C h e m . R e s . 1 9 9 2 , 2 5 , 4 2 0 . C l e a r fi e l d , A . P r o g r e s s i n I n o r g a n i c C h e m i s t r y 1 9 9 8 , 4 7 , 3 7 1 . A l b e r t i , G . ; C a s c i o l a , M . ; C o s t a n t i n o , U . ; V i v a n i , R . A d v . M a t e r . 1 9 9 6 , 8 , 2 9 1 . A m p h l e t t , C . B . I n o r g a n i c I o n E x c h a n g e r s , E l s e v i e r : A m s t e r d a m 1 9 6 4 . C l e a r fi e l d , A . ; S t y n e s , J . A . J . I n o r g . N u c l . C h e m . 1 9 6 4 , 2 6 , 1 1 7 . ( a ) C l e a r f i e l d , A . ; S m i t h , G . D . I n o r g . C h e m . 1 9 6 9 , 8 , 4 3 1 . ( b ) T r o u p , J . M . ; C l e a r fi e l d , A . I n o r g . C h e m . 1 9 7 7 , 1 6 , 3 3 1 1 . ( a ) A l b e r t i , G . ; C o s t a n t i n o , U . ; A l l u l l i , 8 . ; T o m a s s i n i , N . J . I n o r g . N u c l . C h e m . 1 9 7 8 , 4 0 , 1 1 1 3 . ( b ) P o o j a r y , D . M . ; H u , H . — L . ; C a m p b e l l , F . L . , I l l ; C l e a r fi e l d , A . A c t a C r y s t . 1 9 9 3 , B 4 9 , 9 9 6 . ( a ) A l b e r t i , G . ; C o s t a n t i n o , U . ; L u c i a n i G i o v a g n o t t i , M . L . J . C h r o m a t o g . 1 9 7 9 , 1 8 0 , 4 5 . ( b ) M a y a , L . I n o r g . N u c l . C h e m . L e t t . 1 9 7 9 , 1 5 , 2 0 7 . ( c ) Y a m a n a k a , 8 . ; T s u j i m o t o , M . ; T a n a k a , M . J . I n o r g . N u c l . C h e m . 1 9 7 9 , 4 1 , 6 1 5 . ( d ) Y a m a n a k a , 8 . ; H a t t o r i , M . C h e m . L e t t . 1 9 7 9 , 1 0 7 3 . ( e ) D i n e s , M . B . ; D i G i a c o m o , P . M . I n o r g . C h e m . 1 9 8 1 , 2 0 , 9 2 . ( f ) A l b e r t i , G . ; C o s t a n t i n o , U . i n l n t e r c a l a t i o n C h e m i s t r y , W h i t t i n g h a m , M . 8 . ; J a c o b s o n , A . J . , E d s . , A c a d e m i c : N e w Y o r k 1 9 8 2 . V e r m e u l e n , L . A . P r o g r e s s i n I n o r g a n i c C h e m i s t r y 1 9 9 7 , 4 4 , 1 4 3 . ( a ) A l b e r t i , G . ; C o s t a n t i n o , U . ; K o r n y e i , J . ; L u c i a n i G i o v a g n o t t i , M . L . R e a c t . P o l y m . 1 9 8 5 , 4 , 1 . ( b ) A l b e r t i , G . ; C o s t a n t i n o , U . ; P e r e g o , J . J . S o l i d S t a t e C h e m . 1 9 8 6 , 6 3 , 4 5 5 . ( c ) W a n g , J . D . ; C l e a r fi e l d , A . ; P e n g , G . — J . M a t e r . C h e m . P h y s . 1 9 9 3 , 3 5 , 2 0 8 . ( d ) C l e a r fi e l d , A . ; W a n g , J . D . ; T i a n , Y . ; S t e i n , E . ; B h a r d w a j , C . J . S o l i d S t a t e C h e m . 1 9 9 5 , 1 1 7 , 2 7 5 . ( a ) D i n e s , M . 0 . ; D i G i a c o m o , P . M . ; C a l l a h a n , K . P . ; G r i f fi t h , P . 0 . ; L a n e , R . H . ; C o o k s e y , R . E . i n C h e m i c a l l y M o d i fi e d S u r f a c e s i n C a t a l y s i s a n d E l e c t r o a n a l y s i s , M i l l e r , J . 8 . , E d s . , A m e r i c a n C h e m i c a l S o c i e t y S y m p o s i u m S e r i e s : W a s h i n g t o n 1 9 8 2 . ( b ) C l e a r fi e l d , A . i n D e s i g n o f N e w M a t e r i a l s , C o c k e , D . L . ; C l e a r f i e l d , A . , E d s . , P l e n u m : N e w Y o r k 1 9 8 7 . ( c ) A l b e r t i , G . ; C o s t a n t i n o , U . ; M a r m o t t i n i , F . ; V i v a n i , R . ; Z a p p e l l i , P . A n g e w . C h e m . I n t . E n g l . E d . 1 9 9 3 , 3 2 , 1 3 5 7 . ( d ) D e r o u a n e , E . G . ; J u l l i e n - L a r d o t , V . S t u d . S u r f . S c i . C a t a l . 1 9 9 4 , 8 3 , 1 1 . ( a ) A l b e r t i , G . ; C a s c i o l a , M . ; C o s t a n t i n o , U . ; P e r a i o , A . ; M o n t o n e r i , E . S o l i d S t a t e I o n i c s 1 9 9 2 , 5 0 , 3 1 5 . ( b ) A l b e r t i , G . ; C a s c i o l a , M . ; P a l o m b a r i , R . ; 3 9 ( 4 9 ) ( 5 0 ) ( 5 1 ) ( 5 2 ) ( 5 3 ) ( 5 4 ) ( 5 5 ) ( 5 5 ) ( 5 7 ) ( 5 8 ) ( 5 9 ) ( 5 0 ) ( 5 1 ) P e r a i o , A . S o l i d S t a t e I o n i c s 1 9 9 2 , 5 8 , 3 3 9 . ( c ) S t e i n , E . W . ; C l e a r f i e l d , A . ; S u b r a m a n i a n , M . A . S o l i d S t a t e I o n i c s 1 9 9 6 , 8 3 , 1 1 3 . ( a ) K u l l b e r g , L . H . ; C l e a r f i e l d , A . S o l v . E x t r . I o n E x c h . 1 9 8 9 , 7 , 5 2 7 . ( b ) K u l l b e r g , L . H . ; C l e a r fi e l d , A . S o l v . E x t r . I o n E x c h . 1 9 9 0 , 8 , 1 8 7 . K h a n , M . | . ; Z u b i e t a , J . P r o g r e s s i n I n o r g a n i c C h e m i s t r y 1 9 9 5 , 4 3 , ? . ( a ) B o r d e s , E . ; C o u r t i n e , P . J . C a t a l . 1 9 7 9 , 5 7 , 2 3 6 . ( b ) H o d n e t t , B . L . C a t a l . R e v . — S c i . E n g . 1 9 8 5 , 2 7 , 3 7 3 . ( c ) C e n t i , G . ; T r i f i r o , F . ; E b n e r , J . R . ; F r a n c h e t t i , V . M . C h e m . R e v . 1 9 8 8 , 8 8 , 5 5 . ( d ) C o u l s t o n , G . W . ; B a r e , S . R . ; K u n g , H . ; B i r k e l a n d , K . ; B e t h k e , G . K . ; H a r l o w , R . ; H e r r o n , N . ; L e e , P . L . S c i e n c e , 1 9 9 7 , 2 7 5 , 1 9 1 . V i l l e n e u v e , G . ; A m o r o s , P . ; B e l t r a n , D . ; D r i l l o n , M . i n O r g a n i c a n d I n o r g a n i c L o w D i m e n s i o n a l C r y s t a l l i n e M a t e r i a l s ; N A T O A S I S e r i e s 8 , 1 6 8 ; D e l h a e s , P . ; D r i l l o n , M . , E d s . , P l e n u m : N e w Y o r k 1 9 8 7 . L a d w i g , G . Z . A n o r g . A l l g . C h e m . 1 9 6 5 , 3 3 8 , 2 6 6 . T i e t z e , H . R . A u s t . J . C h e m . 1 9 8 1 , 3 4 , 2 0 3 5 . T a c h e z , M . ; T h e o b a l d , F . ; B e r n a r d , J . R e v . C h i m . M i n . 1 9 8 2 , 1 9 , 2 9 1 . ( a ) J o h n s o n , J . W . ; J a c o b s o n , A . J . ; B r o d y , J . F . ; R i c h , 8 . M . I n o r g . C h e m . 1 9 8 2 , 2 1 , 3 8 2 0 . ( b ) B e n e s , L . ; V o t i n s k y , J . ; K a l o u s o v a , J . ; K l i k o r k a , J . I n o r g . C h i m . A c t a 1 9 8 6 , 1 1 4 , 4 7 . ( c ) B e n e s , L . ; H y k l o v a , R . ; K a l o u s o v é , J . ; V o t i n s k y , J . I n o r g . C h i m . A c t a 1 9 9 0 , 1 7 7 , 7 1 . ( a ) J o h n s o n , J . W . ; J a c o b s o n , A . J . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 3 , 2 2 , 4 1 2 . ( b ) J o h n s o n , J . W . ; J a c o b s o n , A . J . ; B r o d y , J . F . ; S c a n l o n , J . C . ; L e w a n d o w s k i , J . T . I n o r g . C h e m . 1 9 8 5 , 2 4 , 1 7 8 2 . ( c ) S i s k o v a , R . ; B e n e s , L . ; Z i m a , V . ; V l c e k , M . ; V o t i n s k y , J . ; K a l o u s o v a , J . P o l y h e d r o n 1 9 9 3 , 1 2 , 1 8 1 . B e l t r a n - P o r t e r , D . ; B e l t r a n — P o r t e r , A . ; A m o r o s , P . ; l b a fi e z , R . ; M a r t i n e z , E . ; L e B a i l , A . ; F e r e y , G . ; V i l l e n e u v e , G . E u r . J . S o l i d S t a t e I n o r g . C h e m . 1 9 9 1 , 2 8 , 1 3 1 . ( a ) H u a n , G . ; J a c o b s o n , A . J . ; J o h n s o n , J . W . ; C o c o r a n , E . W . , J r . C h e m . M a t e r . 1 9 9 0 , 2 , 9 1 . ( b ) H u a n , G . ; J o h n s o n , J . W . ; B r o d y , J . F . ; G o s h o r n , D . P . ; J a c o b s o n , A . J . ; M a t e r . C h e m . P h y s . 1 9 9 3 , 3 5 , 1 9 9 . ( a ) J o h n s o n , J . W . ; J a c o b s o n , A . J . ; B r o d y , J . F . ; L e w a n d o w s k i , J . T . I n o r g . C h e m . 1 9 8 4 , 2 3 , 3 8 4 4 . ( b ) J o h n s o n , J . W . ; J a c o b s o n , A . J . ; B u t l e r , W . M . ; R o s e n t h a l , 8 . E . ; B r o d y , J . F . ; L e w a n d o w s k i , J . T . J . A m . C h e m . S o c . 1 9 8 9 , 1 1 1 , 3 8 1 . J o h n s o n , J . W . ; B r o d y , J . F . ; A l e x a n d e r , R . M . ; P i l a r s k i , B . ; K a t r i z k y , A . R . 4 0 C h e m . M a t . 1 9 9 0 , 2 , 1 9 8 . ( 6 2 ) T o r g e r s o n , M . R . ; N o c e r a , D . G . J . A m . C h e m . S o c . 1 9 9 6 , 1 1 8 , 8 7 3 9 . ( 6 3 ) B e l t r a n — P o r t e r , D . ; A m o r o s , P . ; l b a fi e z , R . ; M a r t i n e z , E . ; B e l t r a n — P o r t e r , A . ; L e B a i l , A . ; F e r e y , G . ; V i l l e n e u v e , G . S o l i d S t a t e I o n i c s 1 9 8 9 , 3 2 / 3 3 , 5 7 . ( 6 4 ) B a l l h a u s e n , C . J . ; G r a y , H . B . I n o r g . C h e m . 1 9 6 2 , 1 , 1 1 1 . 4 1 C H A P T E R 2 E x p e r i m e n t a l M e t h o d s A . I n s t r u m e n t S e t u p s 1 . P o w d e r X — r a y D i f f r a c t i o n T h e p o w d e r X - r a y d i f f r a c t i o n d a t a w e r e r e c o r d e d o n a R o t a fl e x s y s t e m f r o m R i g a k u w i t h a B r a g g — B r e n t a n o g e o m e t r y . T h e C u - K a l i n e w a s o b t a i n e d f r o m a r o t a t i n g C o p p e r a n o d e ( 4 5 W , 1 0 0 m A ) a n d d i r e c t e d t o w a r d t h e s a m p l e c h a m b e r u s i n g a 1 / 6 ° d i v e r g e n c e s l i t a n d a 1 / 6 ° r e c e i v i n g s l i t . T h e d i f f r a c t e d X — r a y b e a m w a s f u r t h e r r e f i n e d b y a c u r v e d g r a p h i t e s i n g l e c r y s t a l m o n o c h r o m a t o r ( 1 . 0 5 ° s c a t t e r s l i t a n d 1 / 6 ° m o n o c h r o m a t o r r e c e i v i n g s l i t ) , w h i c h w a s s e t f o r d e t e c t i o n o f t h e s e c o n d a r y X — r a y d i f f r a c t i o n l i n e . T h e c o m p o u n d s w e r e m o u n t e d 4 2 i n g l a s s s a m p l e h o l d e r s a v a i l a b l e f r o m R i g a k u . T h e g l a s s s a m p l e h o l d e r c o n s i s t e d o f a 1 . 5 c m x 3 c m p l a t e o f g l a s s , 3 m m t h i c k w i t h a r e c e s s g r o u n d i n t o t h e s u r f a c e o f t h e s l i d e t o p a c k t h e s a m p l e . T h e r e c e s s i n t h e s l i d e s u s e d w a s 1 c m x 1 c m i n a r e a a n d g r o u n d t o a d e p t h o f 0 . 2 m m . T h e p o w d e r e d s p e c i m e n s w e r e p l a c e d i n t h e r e c e s s o f t h e s a m p l e h o l d e r a n d p a c k e d t i g h t l y i n t o p l a c e b y p r e s s i n g a n d s l i d i n g t h e m w i t h a c l e a n g l a s s m i c r o s c o p e s l i d e . U n d e r t h e s e c o n d i t i o n s l a y e r e d m a t e r i a l s p a c k p r e f e r e n t i a l l y o r i e n t e d a l o n g t h e 0 0 l d i r e c t i o n . A s a c o n s e q u e n c e , r e fl e c t i o n s d i f f r a c t e d b y t h e i n t r a l a y e r a r r a n g e m e n t a r e n o t o b s e r v e d . T h e p r o b l e m i s p a r t i a l l y o v e r c o m e b y r a n d o m l y o r i e n t i n g t h e p o w d e r w i t h t h e a i d o f a v o l a t i l e s o l v e n t , l i k e d i e t h y l e t h e r o r a c e t o n e . T h e r e s u l t i n g d a t a w e r e r e c o r d e d a n d p r o c e s s e d u s i n g t h e m a n u f a c t u r e r p r o v i d e d D M A X B s o f t w a r e o n a n I B M p e r s o n a l c o m p u t e r u n d e r t h e M S — D O S o p e r a t i n g s y s t e m . 2 . S i n g l e C r y s t a l X — r a y S t r u c t u r e D e t e r m i n a t i o n R b o , 5 V O P O 4 - 1 . 5 H 2 0 , ( 3 . 1 A a n d 3 . 1 8 ) . A R i g a k u d i f f r a c t o m e t e r w i t h M o K a r a d i a t i o n ( 7 . = 0 . 7 1 0 7 3 A ) w a s u s e d t o c o l l e c t d a t a t o a m a x i m u m o f 2 0 = 6 0 ° f r o m c r y s t a l s o f 0 . 4 2 x 0 . 2 4 x 0 . 0 2 m m d i m e n s i o n s a t 2 9 6 K ( 3 . 1 A ) a n d a t 1 7 3 K ( 3 . 1 8 ) . A t o t a l o f 1 6 2 3 ( 1 7 0 3 a t 1 7 3 K ) i n d e p e n d e n t r e fl e c t i o n s w e r e c o l l e c t e d , o f w h i c h 1 4 9 8 ( 1 3 4 9 ) r e fl e c t i o n s w e r e c o n s i d e r e d o b s e r v e d ( I > 2 0 ( l ) ) a f t e r L o r e n t z p o l a r i z a t i o n ( L p ) a n d a b s o r p t i o n c o r r e c t i o n ( c o r r e c t i o n w a s b a s e d o n \ V s c a n s o f a f e w s u i t a b l e r e fl e c t i o n s w i t h X v a l u e s c l o s e t o 9 0 ° ) . T h e s t r u c t u r e w a s s o l v e d b y u s i n g d i r e c t m e t h o d s ( S I R - 8 8 ) a n d r e fi n e d b y u s i n g f u l l - m a t r i x l e a s t - s q u a r e s p r o c e d u r e s b a s e d o n F 2 ( S H E L X L — 9 3 ) w i t h R 1 = 0 . 0 5 1 7 ( 0 . 0 5 5 6 ) , w R 2 = 0 . 1 4 7 4 ( 0 . 1 5 0 8 ) . T h e s t r u c t u r e c r y s t a l l i z e d w i t h 1 . 5 m o l e c u l e s o f w a t e r p e r f o r m u l a u n i t . T h e r u b i d i u m a t o m a n d t h e 0 . 5 w a t e r m o l e c u l e s , w h i c h w e r e p l a c e d a t s p e c i a l p o s i t i o n s , w e r e d i s o r d e r e d a n d r e f i n e d o v e r t w o s i t e s w i t h a t o t a l o c c u p a n c y o f 4 3 0 . 5 . S t r u c t u r e r e f i n e m e n t g a v e a v a l u e o f R b o , 4 6 , b u t f o r c i n g a t o t a l v a l u e o f R b o , 5 ( t w o s i t e s ) o n l y i n c r e a s e d t h e w R 2 f a c t o r b y 0 . 0 0 0 7 . { b p y V O I p - ( C B H 5 ) 2 P 0 2 ] 1 , 5 } 2 { C I O 4 } , ( 4 . 1 ) . D a t a c o l l e c t i o n a n d s t r u c t u r e s o l u t i o n w e r e c o n d u c t e d a t t h e X — r a y C r y s t a l l o g r a p h i c L a b o r a t o r y , 1 6 0 K o l t h o f f H a l l , C h e m i s t r y D e p a r t m e n t , T h e U n i v e r s i t y o f M i n n e s o t a b y D r . V i c t o r G . Y o u n g , J r . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s f i b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 7 3 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m t h r e e s e t s o f 2 0 f r a m e s . T h e s e w e r e o r i e n t e d s u c h t h a t o r t h o g o n a l w e d g e s o f r e c i p r o c a l s p a c e w e r e s u r v e y e d . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 2 0 7 r e fl e c t i o n s . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e f l e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . T h e d a t a c o l l e c t i o n t e c h n i q u e u s e d f o r t h i s s p e c i m e n i s g e n e r a l l y k n o w n a s a h e m i s p h e r e c o l l e c t i o n . H e r e a r a n d o m l y o r i e n t e d r e g i o n o f t h e r e c i p r o c a l s p a c e i s s u r v e y e d t o t h e e x t e n t o f 1 . 3 h e m i s p h e r e s t o a r e s o l u t i o n o f 0 . 8 4 A . T h r e e m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n 0 ) . S i n c e t h e l a t t i c e w a s t r i c l i n i c s o m e a d d i t i o n a l s e t s o f f r a m e s w e r e c o l l e c t e d t o b e t t e r m o d e l t h e a b s o r p t i o n c o r r e c t i o n . T h e s p a c e g r o u p P 7 w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d i n t e n s i t y s t a t i s t i c s ‘ . A s u c c e s s f u l d i r e c t — m e t h o d s s o l u t i o n w a s c a l c u l a t e d w h i c h p r o v i d e d m o s t n o n h y d r o g e n a t o m s f r o m t h e E — m a p . S e v e r a l f u l l — m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e f i n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . D u r i n g t h e r e fi n e m e n t s e v e r a l r e g i o n s o f d i f f e r e n c e F o u r i e r p e a k s ( 2 — 3 e l e c t r o n s ) w e r e i d e n t i f i e d , a n d a t t e m p t s w e r e m a d e t o m o d e l t h e s e f e a t u r e s a s 4 4 f u l l y a n d / o r p a r t i a l l y o c c u p i e d m e t h a n o l s o l v a t e s , b u t t h e s e a t t e m p t s w e r e b y a n d l a r g e u n s u c c e s s f u l . T h e P L A T O N 2 f a c i l i t y S Q U E E Z E w a s u s e d t o d e a l w i t h t h e d i s o r d e r e d s o l v e n t . P L A T O N i d e n t i fi e d a p o t e n t i a l s o l v e n t v o l u m e o f 3 8 1 . 4 A 3 , o r 1 2 . 9 % o f t h e u n i t c e l l v o l u m e , a n d c o r r e c t e d t h e s t r u c t u r e f a c t o r s f o r 1 0 6 . 4 e / c e l l . T h e s e v a l u e s i n d i c a t e t h a t b e t w e e n 6 a n d 1 0 d i s o r d e r e d m e t h a n o l m o l e c u l e s c o u l d b e p r e s e n t i n t h e c e l l b a s e d o n t h e p o s i t i v e e l e c t r o n c o u n t a n d v o i d v o l u m e , r e s p e c t i v e l y . T h e r e fi n e m e n t c o n t i n u e d a n d w a s c o n v e r g e d w i t h t h e S Q U E E Z E c o r r e c t e d d a t a . T h e r e f o r e s e v e r a l c r y s t a l l o g r a p h i c q u a n t i t i e s ( e m p i r i c a l f o r m u l a , f o r m u l a w e i g h t , a b s o r p t i o n c o e f fi c i e n t , F ( 0 0 0 ) , d c a l c , e t c . ) d o n o t r e fl e c t t h e p r e s e n c e o f t h e d i s o r d e r e d s o l v e n t a n d a r e t h e r e f o r e k n o w n t o b e i n c o r r e c t . { d m b p y V O U r - ( C 5 H 5 ) 2 P 0 2 ] 1 , 5 } 2 { C I O 4 } - 4 C H 3 0 H , ( 4 . 2 ) . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s f i b e r a n d m o u n t e d o n a S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 7 3 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m t h r e e s e t s o f 1 5 f r a m e s . T h e s e w e r e o r i e n t e d s u c h t h a t o r t h o g o n a l w e d g e s o f r e c i p r o c a l s p a c e w e r e s u r v e y e d . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 1 3 7 r e fl e c t i o n s . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a l a r g e n u m b e r o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . S i n c e t h e l a t t i c e w a s t r i c l i n i c f o u r m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n a ) . T h e s p a c e g r o u p P 7 w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d i n t e n s i t y s t a t i s t i c s 1 . A s u c c e s s f u l d i r e c t — m e t h o d s s o l u t i o n w a s c a l c u l a t e d w h i c h p r o v i d e d m o s t n o n h y d r o g e n a t o m s f r o m t h e E — m a p . S e v e r a l f u l l - m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c 4 5 d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T h e d i m e r m o l e c u l e a n d t h e p e r c h l o r a t e a n i o n w e r e f o u n d t o b e c r y s t a l l o g r a p h i c a l l y u n i q u e . I n a d d i t i o n , f o u r m e t h a n o l m o l e c u l e s p e r f o r m u l a u n i t w e r e l o c a t e d o n F o u r i e r d i f f e r e n c e s m a p s a n d w e r e s u c c e s s f u l l y r e fi n e d w i t h a n i s o t r o p i c t e m p e r a t u r e f a c t o r s . { t m b p y V O [ p — ( C 5 H 5 ) 2 P 0 2 ] 1 , 5 } 2 { C I O 4 } - 3 . 5 C H 3 O H , ( 4 . 3 ) . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s fi b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 7 3 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m t h r e e s e t s o f 1 5 f r a m e s . T h e s e w e r e o r i e n t e d s u c h t h a t o r t h o g o n a l w e d g e s o f r e c i p r o c a l s p a c e w e r e s u r v e y e d . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 4 1 r e fl e c t i o n s . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . T h r e e m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n c o . T h e s p a c e g r o u p P 7 w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d i n t e n s i t y s t a t i s t i c s 1 . A s u c c e s s f u l d i r e c t — m e t h o d s s o l u t i o n w a s c a l c u l a t e d w h i c h p r o v i d e d m o s t n o n h y d r o g e n a t o m s f r o m t h e E - m a p . S e v e r a l f u l l — m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T w o c r y s t a l l o g r a p h i c a l l y i n d e p e n d e n t d i m e r m o l e c u l e s c r y s t a l l i z e d i n t h e u n i t c e l l a l o n g w i t h o n e p e r c h l o r a t e i o n a n d 3 . 5 m e t h a n o l m o l e c u l e s p e r d i m e r . L a r g e a n i s o t r o p i c t e m p e r a t u r e f a c t o r s w e r e f o u n d f o r t h e s o l v e n t m o l e c u l e s , c o n t r i b u t i n g i n t o t h e o b s e r v e d h i g h W R 2 v a l u e s . 4 6 { b p y V O [ p — ( p - F 0 5 H 4 ) 2 P 0 2 ] 1 , 5 } 2 { C I 0 4 } 0 1 . 5 C H 3 0 H , ( 4 . 4 ) . D a t a c o l l e c t i o n a n d s t r u c t u r e s o l u t i o n w e r e c o n d u c t e d a t t h e X — r a y C r y s t a l l o g r a p h i c L a b o r a t o r y , 1 6 0 K o l t h o f f H a l l , C h e m i s t r y D e p a r t m e n t , T h e U n i v e r s i t y o f M i n n e s o t a b y D r . V i c t o r G . Y o u n g , J r . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s fi b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 7 3 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m t h r e e s e t s o f 2 0 f r a m e s . T h e s e w e r e o r i e n t e d s u c h t h a t o r t h o g o n a l w e d g e s o f r e c i p r o c a l s p a c e w e r e s u r v e y e d . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 8 1 r e fl e c t i o n s . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . T h r e e m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n m . T h e s p a c e g r o u p P 2 , 2 , 2 , w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d i n t e n s i t y s t a t i s t i c s 1 . A s u c c e s s f u l d i r e c t - m e t h o d s s o l u t i o n w a s c a l c u l a t e d w h i c h p r o v i d e d m o s t n o n h y d r o g e n a t o m s f r o m t h e E — m a p . S e v e r a l f u l l — m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e f i n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T h e d i m e r c o m p o u n d c r y s t a l l i z e d w i t h 1 . 5 m o l e c u l e s o f m e t h a n o l p e r a s y m m e t r i c u n i t . T h e s p e c i m e n d i d n o t d i f f r a c t w e l l s o d a t a c o l l e c t i o n p r o c e e d e d w i t h 4 5 s e c o n d f r a m e s . T h e v a n a d i u m c o m p l e x a p p e a r s w e l l o r d e r e d , b u t t h e m e t h a n o l s o l v e n t s e x h i b i t d i s o r d e r a n d p a r t i a l o c c u p a n c y . T h e fi r s t o n e , 0 ( 1 3 ) C ( 5 7 ) , r e f i n e s t o a n o c c u p a n c y o f ~ 0 . 5 0 s o t h i s w a s f i x e d a t h a l f o c c u p a n c y . T h e o t h e r m e t h a n o l , 0 ( 1 4 ) C ( 5 8 ) , r e f i n e s t o a n o c c u p a n c y o f 0 . 9 a n d t h i s w a s fi x e d a t f u l l o c c u p a n c y . B o t h m e t h a n o l m o l e c u l e s h a v e l a r g e a n i s o t r o p i c d i s p l a c e m e n t 4 7 p a r a m e t e r s a n d s h o r t e n e d O — C b o n d l e n g t h s . T h e m e t h a n o l s w e r e p l a c e d i n t h e b e s t p o s i t i o n s t o m a x i m i z e h y d r o g e n b o n d i n g . { b p y V O M — ( p - C I C 5 H 4 ) 2 P O Z ] 1 , 5 } 2 { C I O 4 } , ( 4 . 5 ) . D a t a c o l l e c t i o n a n d s t r u c t u r e s o l u t i o n w e r e c o n d u c t e d a t t h e X — r a y C r y s t a l l o g r a p h i c L a b o r a t o r y , 1 6 0 K o l t h o f f H a l l , C h e m i s t r y D e p a r t m e n t , T h e U n i v e r s i t y o f M i n n e s o t a b y D r . V i c t o r G . Y o u n g , J r . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s fi b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 7 3 ( 2 ) K . T h e s p e c i m e n d i d n o t i n d e x i n i t i a l l y . 5 0 r e fl e c t i o n s w e r e h a r v e s t e d f r o m t h r e e s e t s o f 2 0 f r a m e s f o r i n p u t i n t o D I R A X 3 . T w o t w i n f r a g m e n t s w e r e i d e n t i fi e d t h a t w e r e r o t a t e d a p p r o x i m a t e l y 1 0 ° a b o u t b * s o b o t h t h e a * a n d c * a x e s w e r e f o u n d i n t h e s a m e r e s p e c t i v e d i r e c t i o n s . R e fl e c t i o n o v e r l a p o c c u r s f o r t h i s s p e c i m e n a t a l l l o w i n d i c e s a n d a l o n g 0 k 0 . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . T h r e e m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n a ) . T h e s p a c e g r o u p P 2 , / c w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d i n t e n s i t y s t a t i s t i c s 1 . A s u c c e s s f u l d i r e c t — m e t h o d s s o l u t i o n w a s c a l c u l a t e d w h i c h p r o v i d e d m o s t n o n h y d r o g e n a t o m s f r o m t h e E — m a p . S e v e r a l f u l l — m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T h e s p e c i m e n d i d n o t d i f f r a c t w e l l s o d a t a c o l l e c t i o n p r o c e e d e d w i t h 4 5 s e c o n d f r a m e s . B o t h t w i n s w e r e i n t e g r a t e d . T h e p r e d o m i n a n t t w i n w a s u s e d f o r r e fi n e m e n t . T h e p r e s e n c e o f t h e m i n o r t w i n d i d n o t a f f e c t t h e d a t a s i g n i fi c a n t l y . 4 8 1 5 n o t i c e a b l y r e fl e c t i o n s t w i n n e d o r b l o c k e d b y t h e b e a m s t o p w e r e e l i m i n a t e d f r o m t h e r e fi n e m e n t . T h e h i g h e s t r e s o l u t i o n s h e l l o f d a t a ( b e t w e e n 0 . 8 4 a n d 0 . 8 7 A ) w a s t r u n c a t e d f r o m t h e r e fi n e m e n t d u e t o i t s p o o r q u a l i t y , a n a c t i o n t h a t e l i m i n a t e d f r o m t h e r e fi n e m e n t 1 0 7 7 r e fl e c t i o n s . I t w a s n o t i c e d d u r i n g t h e c o n s t r u c t i o n o f u n i t c e l l p l o t s , t h a t t h e r e c o u l d b e a n i n c l u s i v e v o i d n e a r t h e c e n t e r o f t h e u n i t c e l l . T h e S Q U E E Z E u t i l i t y i n P L A T O N 2 w a s u s e d t o c h e c k f o r t h e v o i d a n d i t w a s d e t e r m i n e d t h a t 1 0 . 0 % o f t h e v o l u m e o f t h e u n i t c e l l , o r 6 3 0 . 2 A , w a s v o i d s p a c e . N o d i f f e r e n c e F o u r i e r p e a k s g r e a t e r t h a n 1 . 5 e I A 3 w e r e f o u n d a t t h i s p o i n t . T h e r e fi n e m e n t w a s c o n t i n u e d w i t h t h e d a t a t r e a t e d b y P L A T O N . T h i s p o c k e t c o u l d p o t e n t i a l l y h o s t 1 6 m e t h a n o l s o l v e n t m o l e c u l e s , b u t t h a t w o u l d r e q u i r e s o m e o r d e r . P L A T O N d e t e r m i n e d t h e p r e s e n c e o f d i s o r d e r e d s o l v e n t t o t h e e x t e n t o f 9 1 e l e c t r o n s i n t h e u n i t c e l l . T h i s w o u l d r e d u c e t h e a m o u n t o f m e t h a n o l l o c k e d i n t h i s c a v i t y t o a b o u t 5 p e r u n i t c e l l . T h e o v e r a l l i m p r o v e m e n t i n t h e r e fi n e m e n t a f t e r t h e a p p l i c a t i o n o f P L A T O N / S Q U E E Z E w a s a b o u t 0 . 5 % . S e v e r a l c r y s t a l l o g r a p h i c q u a n t i t i e s ( e m p i r i c a l f o r m u l a , f o r m u l a w e i g h t , a b s o r p t i o n c o e f fi c i e n t , F ( 0 0 0 ) , d e a n , e t c . ) d o n o t r e fl e c t t h e p r e s e n c e o f t h e d i s o r d e r e d s o l v e n t a n d a r e t h e r e f o r e k n o w n t o b e i n c o r r e c t . { b p y V O [ p — ( p - C H 3 0 C 6 H 4 ) 2 P O Z ] 1 , 5 } 2 { C I O 4 } , ( 4 . 6 ) . D a t a c o l l e c t i o n a n d s t r u c t u r e s o l u t i o n w e r e c o n d u c t e d a t t h e X — r a y C r y s t a l l o g r a p h i c L a b o r a t o r y , 1 6 0 K o l t h o f f H a l l , C h e m i s t r y D e p a r t m e n t , T h e U n i v e r s i t y o f M i n n e s o t a b y D r . V i c t o r G . Y o u n g , J r . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s fi b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 7 3 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m t h r e e s e t s o f 2 0 f r a m e s . T h e s e w e r e o r i e n t e d s u c h t h a t o r t h o g o n a l w e d g e s o f r e c i p r o c a l s p a c e w e r e s u r v e y e d . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 1 1 6 r e fl e c t i o n s . 4 9 F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . T h r e e m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n 0 ) . S i n c e t h e l a t t i c e w a s t r i c l i n i c s o m e a d d i t i o n a l s e t s o f f r a m e s w e r e c o l l e c t e d t o b e t t e r m o d e l t h e a b s o r p t i o n c o r r e c t i o n . T h e s p a c e g r o u p P 7 w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d i n t e n s i t y s t a t i s t i c s 1 . A s u c c e s s f u l d i r e c t — m e t h o d s s o l u t i o n w a s c a l c u l a t e d w h i c h p r o v i d e d m o s t n o n h y d r o g e n a t o m s f r o m t h e E — m a p . S e v e r a l f u l l — m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T h e p e r c h l o r a t e a n i o n w a s d i s o r d e r e d o v e r t w o c l o s e l y s p a c e d s i t e s i n a 0 . 7 3 : 0 . 2 7 r a t i o . 4 0 r e s t r a i n t s a n d c o n s t r a i n t s w e r e i m p o s e d o n i t t o 1 ) m a i n t a i n i d e a l i z e d t e t r a h e d r a l s y m m e t r y o n b o t h p a r t i a l l y o c c u p i e d g r o u p s a n d 2 ) m o d e l r i g i d — b o d y r e s t r a i n t s o n t h e a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . O n e m e t h o x y g r o u p , C ( 4 1 ) , i s d i s o r d e r e d o v e r t w o s i t e s i n a 0 . 5 1 : 0 . 4 9 r a t i o . T h e d i s o r d e r i n t h e p e r c h l o r a t e i s l i k e l y r e s p o n s i b l e f o r t h e h i g h e r t h a n e x p e c t e d r e s i d u a l s . { t m b p y V O L u — ( p - C H 3 0 C 5 H 4 ) 2 P O z ] 1 , 5 } 2 { C I O 4 } - 2 C H 3 C O C H 3 , ( 4 . 6 A ) . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s f i b e r a n d m o u n t e d o n a S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 7 3 ( 2 ) K . A d a t a s e t o f p o o r q u a l i t y w a s c o l l e c t e d m a i n l y d u e t o t h e o p e r a t i o n o f t h e i n s t r u m e n t a t 3 4 K V , 3 0 m A i n s t e a d o f t h e s t a n d a r d 5 0 K V , 4 0 m A c o n d i t i o n s . A l l r e fl e c t i o n s w e r e o f l o w i n t e n s i t y w i t h m o s t o f t h e m b e i n g b e l o w t h e 2 0 ( l ) . N e v e r t h e l e s s , a n a t t e m p t t o s o l v e t h e s t r u c t u r e i n t h e m o n o c l i n i c s y s t e m , P 2 1 / n s p a c e g r o u p , a f f o r d e d r e a s o n a b l e r e s u l t s w i t h fi n a l R 1 = 0 . 1 0 4 9 f o r r e fl e c t i o n s w i t h l > 2 0 ( l ) . T h e s t r u c t u r e w a s s o l v e d b y d i r e c t m e t h o d s a n d t h e n o n h y d r o g e n a t o m s w e r e l o c a t e d f r o m t h e E — m a p a n d f r o m 5 0 s e v e r a l f u l l — m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T h e f o r m u l a u n i t i n c l u d e s , i n a d d i t i o n t o t h e d i m e r c o m p l e x , a p e r c h l o r a t e a n i o n a n d t w o a c e t o n e m o l e c u l e s , w h i c h d i s p l a y e d l a r g e t e m p e r a t u r e f a c t o r s . { H B ( p z ) 3 V O [ p - ( C 5 H 5 ) 2 P 0 2 ] } 2 - C H 2 C l 2 , ( 4 . 7 ) . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s f i b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 4 3 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m t h r e e s e t s o f 1 5 f r a m e s . T h e s e w e r e o r i e n t e d s u c h t h a t o r t h o g o n a l w e d g e s o f r e c i p r o c a l s p a c e w e r e s u r v e y e d . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 9 0 r e fl e c t i o n s . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . S i n c e t h e l a t t i c e w a s t r i c l i n i c f o u r m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n m . T h e s p a c e g r o u p P 1 w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d i n t e n s i t y s t a t i s t i c s 1 . A s u c c e s s f u l d i r e c t - m e t h o d s s o l u t i o n w a s c a l c u l a t e d w h i c h p r o v i d e d m o s t n o n h y d r o g e n a t o m s f r o m t h e E — m a p . S e v e r a l f u l l — m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T w o c r y s t a l l o g r a p h i c a l l y i n d e p e n d e n t d i m e r s c r y s t a l l i z e w i t h i n t h e u n i t c e l l a l o n g w i t h o n e m o l e c u l e o f d i c h l o r o m e t h a n e p e r a s y m m e t r i c u n i t . O n l y h a l f o f e a c h d i m e r i s u n i q u e . T h e v a n a d i u m c o m p l e x a p p e a r s w e l l o r d e r e d , b u t t h e 5 1 d i c h l o r o m e t h a n e s o l v e n t e x h i b i t s d i s o r d e r . I t w a s m o d e l e d a s t w o m o l e c u l e s e a c h o n e f i x e d t o a n o c c u p a n c y o f 0 . 5 { H B ( p z ) 3 V O [ p - ( p - C H 3 0 C 5 H 4 ) 2 P O Z ] } 2 - C H 3 C N , ( 4 . 8 ) . D a t a c o l l e c t i o n a n d s t r u c t u r e s o l u t i o n w e r e c o n d u c t e d a t t h e X — r a y C r y s t a l l o g r a p h i c L a b o r a t o r y , 1 6 0 K o l t h o f f H a l l , C h e m i s t r y D e p a r t m e n t , T h e U n i v e r s i t y o f M i n n e s o t a b y D r . V i c t o r G . Y o u n g , J r . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s fi b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 7 3 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m t h r e e s e t s o f 2 0 f r a m e s . T h e s e w e r e o r i e n t e d s u c h t h a t o r t h o g o n a l w e d g e s o f r e c i p r o c a l s p a c e w e r e s u r v e y e d . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 9 3 r e fl e c t i o n s . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . T h r e e m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n ( 0 . T h e s p a c e g r o u p C Z / c w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d i n t e n s i t y s t a t i s t i c s 1 . A s u c c e s s f u l d i r e c t — m e t h o d s s o l u t i o n w a s c a l c u l a t e d w h i c h p r o v i d e d m o s t n o n h y d r o g e n a t o m s f r o m t h e E — m a p . S e v e r a l f u l l — m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e f i n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T h e d i m e r c o m p l e x c r y s t a l l i z e d w i t h o n e m o l e c u l e o f a c e t o n i t r i l e , w h i c h r e s i d e d o n t h e c r y s t a l l o g r a p h i c t w o — f o l d a x i s . T h e r e f o r e t h e r e i s o n e m o l e c u l e o f s o l v e n t f o r e v e r y d i m e r c o m p l e x . 5 2 { H B ( p z ) 3 V O [ p — ( p - F - C 5 H 4 ) 2 P 0 2 ] } 2 - 2 0 H 3 0 N , ( 4 . 9 ) . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s f i b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 3 1 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m t h r e e s e t s o f 1 5 f r a m e s . T h e s e w e r e o r i e n t e d s u c h t h a t o r t h o g o n a l w e d g e s o f r e c i p r o c a l s p a c e w e r e s u r v e y e d . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 5 5 r e fl e c t i o n s . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . F o u r m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n a ) . T h e s p a c e g r o u p P 1 — w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d i n t e n s i t y s t a t i s t i c s 1 . A s u c c e s s f u l d i r e c t - m e t h o d s s o l u t i o n w a s c a l c u l a t e d w h i c h p r o v i d e d m o s t n o n h y d r o g e n a t o m s f r o m t h e E — m a p . S e v e r a l f u l l — m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T w o c r y s t a l l o g r a p h i c a l l y i n d e p e n d e n t d i m e r s c r y s t a l l i z e d w i t h i n t h e u n i t c e l l a l o n g w i t h t w o m o l e c u l e s o f a c e t o n i t r i l e p e r a s y m m e t r i c u n i t . O n l y h a l f o f e a c h d i m e r i s u n i q u e . { H B ( p z ) 3 V O [ p — ( p - C H 3 0 5 H 4 ) 2 P 0 2 ] } 2 - 2 C H 3 C N , ( 4 . 1 0 ) . D a t a c o l l e c t i o n a n d s t r u c t u r e s o l u t i o n w e r e c o n d u c t e d a t t h e X — r a y C r y s t a l l o g r a p h i c L a b o r a t o r y , 1 6 0 K o l t h o f f H a l l , C h e m i s t r y D e p a r t m e n t , T h e U n i v e r s i t y o f M i n n e s o t a b y D r . V i c t o r G . Y o u n g , J r . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s f i b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 7 3 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m t h r e e s e t s o f 2 0 f r a m e s . T h e s e w e r e o r i e n t e d s u c h t h a t o r t h o g o n a l w e d g e s o f r e c i p r o c a l s p a c e w e r e 5 3 s u r v e y e d . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 6 5 r e fl e c t i o n s . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . T h r e e m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n m . T h e s p a c e g r o u p P 2 , / c w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d i n t e n s i t y s t a t i s t i c s 1 . A s u c c e s s f u l d i r e c t — m e t h o d s s o l u t i o n w a s c a l c u l a t e d w h i c h p r o v i d e d m o s t n o n h y d r o g e n a t o m s f r o m t h e E — m a p . S e v e r a l f u l l — m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T h e d i m e r c r y s t a l l i z e d w i t h t h e a d d i t i o n o f t w o a c e t o n i t r i l e s o l v e n t m o l e c u l e s p e r w h o l e c o m p l e x . T h e a s y m m e t r i c u n i t c o n t a i n s h a l f o f t h e s e c o n t e n t s . { H B ( p z ) 3 V O [ p — ( p - C H 3 C 5 H 4 ) 2 P 0 2 ] } 2 - 2 C H Z C I Z , ( 4 . 1 1 ) . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s fi b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 3 3 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m d a t a c o l l e c t i o n f r a m e s . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 1 8 3 r e fl e c t i o n s . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . F o u r m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n a ) . T h e s p a c e g r o u p P 2 , / c w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d i n t e n s i t y s t a t i s t i c s 1 . A s u c c e s s f u l d i r e c t — m e t h o d s s o l u t i o n w a s c a l c u l a t e d w h i c h p r o v i d e d m o s t n o n h y d r o g e n a t o m s f r o m t h e E — m a p . S e v e r a l f u l l — m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e 5 4 r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e f i n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T h e d i m e r c r y s t a l l i z e d w i t h t h e a d d i t i o n o f t w o d i c h l o r o m e t h a n e s o l v e n t m o l e c u l e s p e r w h o l e c o m p l e x . T h e a s y m m e t r i c u n i t c o n t a i n s h a l f o f t h e s e c o n t e n t s . T h e s o l v e n t m o l e c u l e w a s d i s o r d e r e d a n d m o d e l e d b y p l a c i n g e a c h c h l o r i n e a t o m a t t w o d i f f e r e n t s i t e s w i t h a t o t a l o c c u p a n c y o f o n e . { H B ( p z ) 3 V O [ , u — ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 ° 2 C H 2 0 l 2 , ( 4 . 1 2 ) . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s f i b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 4 3 ( 2 ) K . F o u r m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n ( b . A f t e r t h e c o l l e c t i o n o f t h e fi r s t t h r e e s e t s t h e c r y s t a l w a s r e c e n t e r e d b e f o r e t h e c o l l e c t i o n o f t h e fi n a l s w a t h . T h e d a t a w e r e i n t e g r a t e d s e p a r a t e l y a n d t h e n c o m b i n e d t o a u n i q u e d a t a s e t . T h e s p a c e g r o u p P 7 w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d 1 . A s u c c e s s f u l P a t t e r s o n — m e t h o d s s o l u t i o n w a s c a l c u l a t e d i n t e n s i t y s t a t i s t i c s w h i c h p r o v i d e d t h e h e a v y a t o m s f r o m t h e E — m a p . S e v e r a l f u l l - m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e f i n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T h e d i m e r c r y s t a l l i z e d w i t h t h e a d d i t i o n o f t w o d i c h l o r o m e t h a n e s o l v e n t m o l e c u l e s p e r w h o l e c o m p l e x . T h e a s y m m e t r i c u n i t c o n t a i n s h a l f o f t h e s e c o n t e n t s . { H B ( p z ) 3 V O [ p — ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 ' 2 C H 3 C O C H 3 , ( 4 . 1 3 ) . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s fi b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t 5 5 s y s t e m f o r d a t a c o l l e c t i o n a t 1 7 3 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m d a t a c o l l e c t i o n f r a m e s . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 2 8 3 r e fl e c t i o n s . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . F o u r m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n c o . T h e s p a c e g r o u p P 7 w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d 1 . A s u c c e s s f u l P a t t e r s o n — m e t h o d s s o l u t i o n w a s c a l c u l a t e d i n t e n s i t y s t a t i s t i c s w h i c h p r o v i d e d t h e h e a v y a t o m s f r o m t h e E — m a p . S e v e r a l f u l l - m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T h e d i m e r c r y s t a l l i z e d w i t h t h e a d d i t i o n o f t w o a c e t o n e s o l v e n t m o l e c u l e s p e r w h o l e c o m p l e x . T h e a s y m m e t r i c u n i t c o n t a i n s h a l f o f t h e s e c o n t e n t s . { H B ( p z ) 3 V O [ p — ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 - 2 C 4 H 5 N , ( 4 . 1 4 ) . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s fi b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 7 3 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m t h r e e s e t s o f 1 5 f r a m e s . T h e s e w e r e o r i e n t e d s u c h t h a t o r t h o g o n a l w e d g e s o f r e c i p r o c a l s p a c e w e r e s u r v e y e d . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 6 7 r e fl e c t i o n s . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . F o u r m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n m . T h e s p a c e g r o u p P 7 w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d 1 . A s u c c e s s f u l P a t t e r s o n — m e t h o d s s o l u t i o n w a s c a l c u l a t e d i n t e n s i t y s t a t i s t i c s w h i c h p r o v i d e d t h e h e a v y a t o m s f r o m t h e E — m a p . S e v e r a l f u l l - m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r 5 6 o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T h e d i m e r c r y s t a l l i z e d w i t h t h e a d d i t i o n o f t w o p y r r o l e s o l v e n t m o l e c u l e s p e r w h o l e c o m p l e x . T h e a s y m m e t r i c u n i t c o n t a i n s h a l f o f t h e s e c o n t e n t s . { H B ( p z ) 3 V O [ p — ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 - 2 C 4 H 4 S , ( 4 . 1 5 A ) . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s fi b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 2 9 6 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m t h r e e s e t s o f 1 5 f r a m e s . T h e s e w e r e o r i e n t e d s u c h t h a t o r t h o g o n a l w e d g e s o f r e c i p r o c a l s p a c e w e r e s u r v e y e d . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 5 6 r e fl e c t i o n s . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e f l e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . F o u r m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n a ) . T h e s p a c e g r o u p P 7 w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d 1 . A s u c c e s s f u l P a t t e r s o n — m e t h o d s s o l u t i o n w a s c a l c u l a t e d i n t e n s i t y s t a t i s t i c s w h i c h p r o v i d e d t h e h e a v y a t o m s f r o m t h e E — m a p . S e v e r a l f u l l - m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T h e d i m e r c r y s t a l l i z e d w i t h t h e a d d i t i o n o f t w o t h i o p h e n e s o l v e n t m o l e c u l e s p e r w h o l e c o m p l e x . T h e a s y m m e t r i c u n i t c o n t a i n s h a l f o f t h e s e c o n t e n t s . T h e s o l v e n t w a s d i s o r d e r e d a s j u d g e d b y t h e l a r g e t h e r m a l p a r a m e t e r s o f t h e c o n s t i t u e n t a t o m s . { H B ( p z ) 3 V O [ p — ( p - N 0 2 0 5 H 4 O ) 2 P 0 2 ] } 2 - 2 0 4 H 4 8 , ( 4 . 1 5 3 ) . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s f i b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t 5 7 s y s t e m f o r d a t a c o l l e c t i o n a t 1 7 3 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m t h r e e s e t s o f 1 5 f r a m e s . T h e s e w e r e o r i e n t e d s u c h t h a t o r t h o g o n a l w e d g e s o f r e c i p r o c a l s p a c e w e r e s u r v e y e d . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 5 0 r e fl e c t i o n s . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . F o u r m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n ( 0 . T h e s p a c e g r o u p P 7 w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d 1 . A s u c c e s s f u l P a t t e r s o n — m e t h o d s s o l u t i o n w a s c a l c u l a t e d i n t e n s i t y s t a t i s t i c s w h i c h p r o v i d e d t h e h e a v y a t o m s f r o m t h e E — m a p . S e v e r a l f u l l - m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e f i n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T h e d i m e r c r y s t a l l i z e d w i t h t h e a d d i t i o n o f t w o t h i o p h e n e s o l v e n t m o l e c u l e s p e r w h o l e c o m p l e x . T h e a s y m m e t r i c u n i t c o n t a i n s h a l f o f t h e s e c o n t e n t s . { H B ( p z ) 3 V O [ p — ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 - 2 6 2 H 4 8 2 , ( 4 . 1 6 A ) . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s f i b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 2 9 6 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m d a t a c o l l e c t i o n f r a m e s . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 9 8 r e fl e c t i o n s . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . T h r e e m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n a ) , a t w h i c h p o i n t d a t a c o l l e c t i o n w a s t e r m i n a t e d d u e t o a s h u t t e r e r r o r . T h e s p a c e g r o u p P 7 w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d 1 i n t e n s i t y s t a t i s t i c s . A s u c c e s s f u l P a t t e r s o n — m e t h o d s s o l u t i o n w a s c a l c u l a t e d 5 8 w h i c h p r o v i d e d t h e h e a v y a t o m s f r o m t h e E — m a p . S e v e r a l f u l l — m a t r i x l e a s t s q u a r e s / d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e f i n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . T h e s p e c i m e n d i d n o t d i f f r a c t w e l l s o d a t a c o l l e c t i o n p r o c e e d e d w i t h 4 0 s e c o n d f r a m e s . T h e d i m e r c r y s t a l l i z e d w i t h t h e a d d i t i o n o f t w o 1 , 2 — e t h a n e d i t h i o l s o l v e n t m o l e c u l e s p e r w h o l e c o m p l e x , w i t h t h e a s y m m e t r i c u n i t c o n t a i n i n g h a l f o f t h e s e c o n t e n t s . T h e s o l v e n t w a s d i s o r d e r e d a n d w a s b e s t m o d e l e d b y c o n s i d e r i n g t w o f r a g m e n t s r e f i n e d a t o c c u p a n c i e s 0 . 7 0 : 0 . 3 0 . I n a d d i t i o n 0 ( 7 ) , 0 ( 8 ) , a n d 0 ( 9 ) w e r e d i s o r d e r e d a n d r e f i n e d a t p a r t i a l o c c u p a n c i e s o v e r t w o s i t e s . T h e s e a t o m s w e r e r e f i n e d a n i s o t r o p i c a l l y w i t h t h e a i d o f D E L U a n d S l M U r e s t r a i n t s . { H B ( p z ) 3 V O [ , u - ( p - N 0 2 C 5 H 4 O ) 2 P o z ] } 2 - 2 C 2 H 4 8 2 , ( 4 . 1 6 8 ) . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s f i b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 7 3 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m t h r e e s e t s o f 1 5 f r a m e s . T h e s e w e r e o r i e n t e d s u c h t h a t o r t h o g o n a l w e d g e s o f r e c i p r o c a l s p a c e w e r e s u r v e y e d . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 3 5 r e fl e c t i o n s . F i n a l c e l l c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . F o u r m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n t o . T h e s p a c e g r o u p P 7 w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d 1 . A s u c c e s s f u l P a t t e r s o n — m e t h o d s s o l u t i o n w a s c a l c u l a t e d i n t e n s i t y s t a t i s t i c s w h i c h p r o v i d e d t h e h e a v y a t o m s f r o m t h e E — m a p . S e v e r a l f u l l - m a t r i x l e a s t s q u a r e s I d i f f e r e n c e F o u r i e r c y c l e s w e r e p e r f o r m e d w h i c h l o c a t e d t h e r e m a i n d e r o f t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e f i n e d w i t h a n i s o t r o p i c 5 9 d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . D a t a c o l l e c t i o n p r o c e e d e d w i t h 3 5 s e c o n d f r a m e s . T h e d i m e r c r y s t a l l i z e d w i t h t h e a d d i t i o n o f t w o d i t h i o e t h a n e s o l v e n t m o l e c u l e s p e r w h o l e c o m p l e x , w i t h t h e a s y m m e t r i c u n i t c o n t a i n i n g h a l f o f t h e s e c o n t e n t s . O n l y 8 ( 2 ) w a s f o u n d d i s o r d e r e d a n d r e fi n e d a t p a r t i a l o c c u p a n c i e s o v e r t w o s i t e s . 3 — a m i d i n i u m b e n z o a t e , ( 5 . 1 ) . A R i g a k u d i f f r a c t o m e t e r w i t h M o K a r a d i a t i o n ( I . = 0 . 7 1 0 7 3 A ) w a s u s e d t o c o l l e c t d a t a t o a m a x i m u m o f 2 0 = 5 0 ° f r o m c r y s t a l s o f 0 . 6 5 x 0 . 4 0 x 0 . 2 0 m m d i m e n s i o n s a t 2 9 6 K . C e l l p a r a m e t e r s w e r e c a l c u l a t e d f r o m 2 4 r e fl e c t i o n s . A t o t a l o f 1 3 9 7 i n d e p e n d e n t r e fl e c t i o n s w e r e c o l l e c t e d , o f w h i c h 1 2 8 8 r e fl e c t i o n s w e r e c o n s i d e r e d o b s e r v e d ( I > 2 0 ( l ) ) a f t e r L o r e n t z , p o l a r i z a t i o n ( L p ) , a n d a b s o r p t i o n c o r r e c t i o n s ( a b s o r p t i o n c o r r e c t i o n w a s b a s e d o n W s c a n s o f a f e w s u i t a b l e r e fl e c t i o n s w i t h X v a l u e s c l o s e t o 9 0 ° ) . T h e s p a c e g r o u p P 7 w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d i n t e n s i t y s t a t i s t i c s 1 . A s u c c e s s f u l d i r e c t - m e t h o d s s o l u t i o n w a s c a l c u l a t e d w h i c h p r o v i d e d t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s , e x c e p t t h e a m i d i n i u m p r o t o n s w h i c h w e r e l o c a t e d f r o m F o u r i e r d i f f e r e n c e m a p s a n d a l l o w e d t o r e fi n e w i t h i s o t r o p i c t e m p e r a t u r e f a c t o r s . 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 - c a r b o x y p y r r o l i n e — 1 — o x y l , ( 5 . 2 ) . A c r y s t a l o f t h e c o m p o u n d w a s a t t a c h e d t o a g l a s s fi b e r a n d m o u n t e d o n t h e S i e m e n s S m a r t s y s t e m f o r d a t a c o l l e c t i o n a t 1 7 3 ( 2 ) K . A n i n i t i a l s e t o f c e l l c o n s t a n t s w a s c a l c u l a t e d f r o m r e fl e c t i o n s h a r v e s t e d f r o m t h r e e s e t s o f 1 5 f r a m e s . T h e s e w e r e o r i e n t e d s u c h t h a t o r t h o g o n a l w e d g e s o f r e c i p r o c a l s p a c e w e r e s u r v e y e d . T h i s p r o d u c e d o r i e n t a t i o n m a t r i c e s d e t e r m i n e d f r o m 7 6 r e fl e c t i o n s . F i n a l c e l l 6 0 c o n s t a n t s w e r e c a l c u l a t e d f r o m a s e t o f s t r o n g r e fl e c t i o n s f r o m t h e a c t u a l d a t a c o l l e c t i o n . F o u r m a j o r s w a t h s o f f r a m e s w e r e c o l l e c t e d w i t h 0 . 3 0 ° s t e p s i n ( 1 ) . T h e s p a c e g r o u p P 2 1 / n w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d i n t e n s i t y s t a t i s t i c s 1 . A s u c c e s s f u l d i r e c t — m e t h o d s s o l u t i o n w a s c a l c u l a t e d w h i c h p r o v i d e d t h e n o n h y d r o g e n a t o m s f r o m t h e E — m a p . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s u n l e s s s t a t e d o t h e r w i s e . A l l h y d r o g e n a t o m s w e r e l o c a t e d b y s u c c e s s i v e F o u r i e r d i f f e r e n c e m a p s a n d a l l o w e d t o r e fi n e i s o t r o p i c a l l y . b e n z a m i d i n i u m — 2 , 2 , 5 , 5 — t e t r a m e t h y l - 3 — c a r b o x y p y r r o l i n e — 1 — o x y l h y d r a t e , ( 5 . 3 ) . A R i g a k u d i f f r a c t o m e t e r w i t h M o K a r a d i a t i o n ( A = 0 . 7 1 0 7 3 A ) w a s u s e d t o c o l l e c t d a t a t o a m a x i m u m o f 2 0 = 5 0 ° a t 2 9 6 K . C e l l p a r a m e t e r s w e r e c a l c u l a t e d f r o m 2 4 r e fl e c t i o n s . D a t a w e r e c o r r e c t e d f o r L o r e n t z a n d p o l a r i z a t i o n e f f e c t s . A b s o r p t i o n c o r r e c t i o n w a s b a s e d o n W s c a n s o f a f e w s u i t a b l e r e fl e c t i o n s w i t h X v a l u e s c l o s e t o 9 0 ° . T h e s p a c e g r o u p P 2 1 / n w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d i n t e n s i t y s t a t i s t i c s 1 . A s u c c e s s f u l D i r e c t - m e t h o d s s o l u t i o n w a s c a l c u l a t e d w h i c h p r o v i d e d t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s u n l e s s s t a t e d o t h e r w i s e . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e fi n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s , e x c e p t t h e a m i d i n i u m p r o t o n s w h i c h w e r e l o c a t e d f r o m F o u r i e r d i f f e r e n c e s m a p s a n d a l l o w e d t o r e fi n e w i t h i s o t r o p i c t e m p e r a t u r e f a c t o r s . m — c y a n o b e n z a m i d i n i u m — 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 - o x y l , ( 5 . 4 ) . A R i g a k u d i f f r a c t o m e t e r w i t h M o K a r a d i a t i o n ( 1 . = 0 . 7 1 0 7 3 A ) w a s u s e d t o c o l l e c t d a t a t o a m a x i m u m o f 2 0 = 5 0 ° a t 2 9 6 K . C e l l p a r a m e t e r s w e r e c a l c u l a t e d f r o m 2 2 r e fl e c t i o n s . D a t a w e r e c o r r e c t e d f o r L o r e n t z a n d p o l a r i z a t i o n e f f e c t s . 6 1 A b s o r p t i o n c o r r e c t i o n w a s b a s e d o n \ y s c a n s o f a f e w s u i t a b l e r e fl e c t i o n s w i t h x v a l u e s c l o s e t o 9 0 ° . T h e s p a c e g r o u p P 2 1 / c w a s d e t e r m i n e d b a s e d o n s y s t e m a t i c a b s e n c e s a n d i n t e n s i t y s t a t i s t i c s 1 . A s u c c e s s f u l D i r e c t — m e t h o d s s o l u t i o n w a s c a l c u l a t e d w h i c h p r o v i d e d t h e n o n h y d r o g e n a t o m s . A l l n o n h y d r o g e n a t o m s w e r e r e f i n e d w i t h a n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s u n l e s s s t a t e d o t h e n r v i s e . A l l h y d r o g e n a t o m s w e r e p l a c e d i n i d e a l p o s i t i o n s a n d r e f i n e d a s r i d i n g a t o m s w i t h g r o u p i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s , e x c e p t t h e a m i d i n i u m p r o t o n s w h i c h w e r e l o c a t e d f r o m F o u r i e r d i f f e r e n c e s m a p s a n d a l l o w e d t o r e fi n e w i t h i s o t r o p i c t e m p e r a t u r e f a c t o r s . 3 . A b s o r p t i o n S p e c t r o s c o p y T h e e l e c t r o n i c a b s o r p t i o n s p e c t r a o f s o l u t i o n s a m p l e s w e r e r e c o r d e d o n a C a r y 1 7 s p e c t r o m e t e r m o d i fi e d w i t h a c o m p u t e r c o n t r o l l e d d a t a a c q u i s i t i o n s y s t e m b y 0 n — L i n e I n s t r u m e n t s ( O L I N ) C o r p o r a t i o n . A l l a b s o r p t i o n m e a s u r e m e n t s w e r e c o l l e c t e d b y u s i n g q u a r t z s a m p l e c e l l s w i t h a 1 c m p a t h . T h e m o l a r e x t i n c t i o n c o e f f i c i e n t s w e r e o b t a i n e d b y r e c o r d i n g t h e s p e c t r a o f e a c h c o m p o u n d i n a t l e a s t f o u r d i f f e r e n t c o n c e n t r a t i o n s . T h e i r v a l u e w a s s u b s e q u e n t l y d e r i v e d f r o m B e e r - L a m b e r t p l o t s “ . 4 . T h e r m o g r a v i m e t r i c A n a l y s i s ( T G A ) A t h e r m o g r a v i m e t r i c a n a l y z e r T G A — 5 0 f r o m S h i m a d z u w a s u s e d t o r e c o r d T G A p l o t s o f l a y e r e d v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s . P o w d e r s p e c i m e n s w e r e p l a c e d i n q u a r t z s a m p l e h o l d e r s a n d w e r e h e a t e d u p t o 6 0 0 ° C u n d e r a n i t r o g e n fl o w o f a p p r o x i m a t e l y 8 8 m l / m i n . T y p i c a l h e a t i n g r a t e s w e r e 2 . 5 ° C l m i n , 6 2 w h i l e t h e s a m p l e t e m p e r a t u r e w a s m a i n t a i n e d a t 6 0 0 ° C f o r 3 0 m i n b e f o r e c o o l i n g t o r o o m t e m p e r a t u r e . 5 . I n f r a r e d S p e c t r o s c o p y S o l i d s t a t e i n f r a r e d s p e c t r a w e r e r e c o r d e d e i t h e r o n a P e r k i n E l m e r S p e c t r u m 2 0 0 0 s p e c t r o m e t e r o r o n t h e d e p a r t m e n t a l N i c o l e t F T - I R i n s t r u m e n t . P o w d e r s a m p l e s w e r e p r e p a r e d a s K B r p e l l e t s a n d p l a c e d i n t o t h e F T - I R s a m p l e c h a m b e r . C o l l e c t i o n o f t h e d a t a w a s a c c o m p l i s h e d b y a c q u i r i n g 8 s c a n s a t 4 c m “ 1 o r 1 c m ' 1 r e s o l u t i o n i n t h e P e r k i n E l m e r S p e c t r u m 2 0 0 0 s p e c t r o m e t e r , o r b y 3 2 s c a n s a n d 4 c m ' 1 r e s o l u t i o n i n t h e N i c o l e t F T — I R i n s t r u m e n t . 6 . M a g n e t i c S u s c e p t i b i l i t y M a g n e t i c s u s c e p t i b i l i t i e s w e r e m e a s u r e d o n a S H E 8 0 0 s e r i e s v a r i a b l e — t e m p e r a t u r e S Q U I D m a g n e t o m e t e r c o n t r o l l e d b y a n I B M - P C c o m p u t e r . T h e m a g n e t i c s a m p l e s w e r e g r o u n d t o fi n e p o w d e r s a n d p l a c e d e i t h e r i n a p l a s t i c c a p s u l e o r i n a s m a l l p o u c h c o n s t r u c t e d b y h e a t s e a l i n g p o l y e t h y l e n e fi l m . T h e c a p s u l e o r t h e p o u c h w e r e t h e n p l a c e d w i t h i n a p l a s t i c s t r a w a n d a t t a c h e d t o t h e s a m p l e h o l d e r . D a t a c o l l e c t i o n w a s p e r f o r m e d i n t h e t e m p e r a t u r e r e g i m e 1 . 8 K t o 3 0 0 K , w i t h e a c h m e a s u r e m e n t p e r f o r m e d t h r e e t i m e s a t e a c h t e m p e r a t u r e b e f o r e r e c o r d i n g a d a t a p o i n t . T h e d a t a w e r e c o r r e c t e d f r o m d i a m a g n e t i c c o r r e c t i o n b y e i t h e r u s i n g P a s c a l ' s c o n s t a n t s o r b y f i t t i n g a m o d i fi e d C u r i e - W e i s s l a w t h a t a c c o u n t s f o r b o t h d i a m a g n e t i c a n d t e m p e r a t u r e i n d e p e n d e n t p a r a m a g n e t i s m ( T I P ) c o n t r i b u t i o n s . 6 3 7 . E l e c t r o n S p i n R e s o n a n c e S t u d i e s E P R s p e c t r a w e r e o b t a i n e d a t X — b a n d o n a B r u k e r E S P 3 0 0 E s p e c t r o m e t e r b y u s i n g a B r u k e r S T 4 1 0 2 E P R c a v i t y . T h e m i c r o w a v e f r e q u e n c y w a s m e a s u r e d w i t h a n E l P M i c r o w a v e M o d e l 2 5 B f r e q u e n c y c o u n t e r . T h e s a m p l e s w e r e c o o l e d t o l o w t e m p e r a t u r e s w i t h t h e a i d o f a c r y o s t a t ( O x f o r d I n s t r u m e n t s ) v i a a s t r e a m o f H e l i u m g a s u t i l i z i n g a n O x f o r d I n s t r u m e n t s G F S — 6 0 0 t r a n s f e r l i n e . T h e t e m p e r a t u r e w a s c o n t r o l l e d b y a n O x f o r d I n s t r u m e n t s l T C — 0 5 0 2 t e m p e r a t u r e c o n t r o l l e r . S o l u t i o n s a m p l e s w e r e p r e p a r e d b y d i s s o l v i n g t h e s o l i d m a t e r i a l s i n t h e d e s i r e d s o l v e n t a t c o n c e n t r a t i o n r a n g e s o f 1 0 ’ 3 t o 1 0 " 4 M , f o l l o w e d b y t h o r o u g h d e o x y g e n a t i o n v i a s e v e r a l f r e e z e - t h a w c y c l e s u n d e r v a c u u m . S p e c t r a s i m u l a t i o n s w e r e p e r f o r m e d b y u s i n g B r u k e r ' s s i m u l a t i o n p r o g r a m S i m F o n i a . 8 . S o l i d S t a t e N u c l e a r M a g n e t i c R e s o n a n c e S o l i d — s t a t e 3 1 P — N M R s p e c t r a w e r e r e c o r d e d i n a V A R I A N V X R — 4 0 0 8 s p e c t r o m e t e r . T h e p o w d e r s a m p l e s w e r e p l a c e d i n a V A R I A N C P M A S p r o b e ( 7 m m d i a m e t e r ) e x t e r n a l l y c o o l e d v i a a n O x f o r d I n s t r u m e n t s t r a n s f e r l i n e b y a s t r e a m o f l i q u i d n i t r o g e n . V a r i a b l e t e m p e r a t u r e s p e c t r a w e r e c o l l e c t e d w i t h t h e a i d o f a n O x f o r d I n s t r u m e n t s t e m p e r a t u r e c o n t r o l l e r . T h e s h i f t s o f t h e l i n e s w e r e r e f e r e n c e d t o 8 5 % H 3 P 0 4 ( a q ) m e a s u r e d i n t h e s a m e p r o b e . 6 4 B . M a t e r i a l s a n d S y n t h e s i s 1 . L a y e r e d M e t a l — I n t e r c a l a t e d V a n a d y l P h o s p h a t e s H y d r a t e s , A x V 0 P 0 4 - n H 2 0 M a t e r i a l s . V a n a d i u m p e n t o x i d e V 2 0 5 ( 9 8 % ) , v a n a d i u m o x i d e V 2 0 4 ( 9 9 . 9 % ) , v a n a d i u m t r i o x i d e V 2 0 3 ( 9 9 % ) , r u b i d i u m h y d r o x i d e R b O H ( 9 9 . 9 % , 5 0 % w t s o l u t i o n i n w a t e r ) , c o b a l t o x i d e 0 0 0 ( 9 9 % ) , s t r o n t i u m h y d r o x i d e S r ( 0 H ) 2 - 8 H 2 0 ( 9 6 % ) , s o d i u m h y d r o x i d e N a O H ( 9 7 % ) , p o t a s s i u m h y d r o x i d e K O H ( 8 5 % ) , a n d p h o s p h o r i c a c i d H 3 P 0 4 ( 8 5 % i n w a t e r ) w e r e p u r c h a s e d f r o m A l d r i c h . G e n e r a l C o n s i d e r a t i o n s . A l l m a t e r i a l s w e r e s y n t h e s i z e d b y u t i l i z i n g h y d r o t h e r m a l p r o c e d u r e s a c c o r d i n g t o t h e g e n e r a l m e t h o d o l o g y e m p l o y e d b y L i i a n d c o w o r k e r s s . T h e r e a g e n t s w e r e p l a c e d i n 2 3 — m l T e fl o n — l i n e d a u t o c l a v e s ( P a r r I n s t r u m e n t s ) , a n d w e r e s u b s e q u e n t l y h e a t e d w i t h i n a F i s c h e r S c i e n t i fi c I s o t e m p P r o g r a m m a b l e 0 v e n ( m o d e l 8 3 8 F ) , e q u i p p e d w i t h a t e m p e r a t u r e c o n t r o l l e r . T h e t e m p e r a t u r e w a s i n c r e a s e d t o 2 2 0 ° C a t a r a t e o f 4 ° C l m i n a n d w a s m a i n t a i n e d t h e r e f o r a p e r i o d o f t w o t o s i x d a y s , b e f o r e s l o w c o o l i n g t o r o o m t e m p e r a t u r e a t a r a t e o f 0 . 1 ° C l m i n . I n e a c h c a s e t h e p r o d u c t s w e r e fi l t e r e d o f f , w a s h e d s e v e r a l t i m e s w i t h w a t e r a n d e t h a n o l a n d d r i e d o v e r n i g h t a t r o o m t e m p e r a t u r e . S y n t h e s i s o f N a o _ 5 V O P O 4 - 2 H 2 0 . T h e t i t l e c o m p o u n d w a s p r e p a r e d f r o m a 1 0 m l a q u e o u s s o l u t i o n o f 0 . 4 0 2 g ( 2 . 4 2 m m o l ) o f V 2 0 4 , 0 . 2 0 5 g ( 1 . 1 2 m m o l ) o f V 2 0 5 , 0 . 2 0 3 g ( 5 m m o l ) o f N a O H , a n d 1 . 5 m l o f H 3 P 0 4 c o n t a i n e d i n a 2 3 — m l T e fl o n - l i n e d a u t o c l a v e . T h e r e a c t i o n v e s s e l w a s m a i n t a i n e d a t 2 2 0 ° C f o r fi v e d a y s a n d t h e n c o o l e d t o r o o m t e m p e r a t u r e a t 0 . 1 ° C / m i n . T h e p r o d u c t s w e r e b l a c k — g r e e n r e c t a n g u l a r p l a t e l e t s , w h i c h w e r e i s o l a t e d a s d e s c r i b e d i n t h e g e n e r a l 6 5 c o n s i d e r a t i o n s s e c t i o n . C h e m i c a l A n a l y s i s , C a l c d . ( F o u n d ) : N a , 5 . 4 8 ( 5 . 2 1 ) % ; V , 2 4 . 3 2 ( 2 4 . 0 2 ) % ; P , 1 4 . 7 9 ( 1 5 . 0 1 ) % . S y n t h e s i s o f K o , 5 V O P O 4 - 1 . 5 H 2 0 . T h e t i t l e c o m p o u n d w a s p r e p a r e d a s a s i n g l e — p h a s e m a t e r i a l u n d e r v a r i o u s c o n d i t i o n s f o u r t i m e s . O n e o f t h o s e p r o c e d u r e s w a s f r o m a 1 0 m l a q u e o u s s o l u t i o n o f 0 . 4 0 2 g ( 2 . 4 2 m m o l ) o f V 2 0 4 , 0 . 2 0 5 g ( 1 . 1 2 m m o l ) o f V 2 0 5 , 0 . 2 8 0 g ( 5 m m o l ) o f K O H , a n d 1 . 6 m l o f H 3 P 0 4 c o n t a i n e d i n a 2 3 — m l T e fl o n — l i n e d a u t o c l a v e . T h e r e a c t i o n v e s s e l w a s m a i n t a i n e d a t 2 2 0 ° C f o r t w o d a y s a n d t h e n c o o l e d t o r o o m t e m p e r a t u r e a t 0 . 1 ° C l m i n . T h e p r o d u c t s w e r e b l a c k — g r e e n r e c t a n g u l a r p l a t e l e t s . C h e m i c a l A n a l y s i s , C a l c d . ( F o u n d ) : K , 9 . 3 8 ( 9 . 1 5 ) % ; V , 2 4 . 4 3 ( 2 3 . 9 3 ) % ; P , 1 4 . 8 5 ( 1 4 . 9 9 ) % . S y n t h e s i s o f R b o , 5 V O P O 4 - 1 . 5 H 2 0 . T h e t i t l e c o m p o u n d w a s p r e p a r e d f r o m a 1 0 m l a q u e o u s s o l u t i o n o f 0 . 4 0 2 g ( 2 . 4 2 m m o l ) o f V 2 0 4 , 0 . 2 0 5 g ( 1 . 1 2 m m o l ) o f V 2 0 5 , 0 . 6 m l ( 5 m m o l ) o f R b O H ( 9 9 . 9 % , 5 0 % w t s o l u t i o n i n w a t e r ) , a n d 1 . 6 m l o f H 3 P 0 4 c o n t a i n e d i n a 2 3 — m l T e fl o n — l i n e d a u t o c l a v e . T h e r e a c t i o n v e s s e l w a s m a i n t a i n e d a t 2 2 0 ° C f o r s i x d a y s a n d t h e n c o o l e d t o r o o m t e m p e r a t u r e a t 0 . 1 ° C l m i n . T h e p r o d u c t s w e r e b l a c k — g r e e n r e c t a n g u l a r p l a t e l e t s . C h e m i c a l A n a l y s i s , C a l c d . ( F o u n d ) : R b , 1 8 . 4 5 ( 1 6 . 6 4 ) % ; V , 2 2 . 4 0 ( 2 2 . 7 7 ) % ; P , 1 3 . 6 2 ( 1 3 . 7 0 ) % . S y n t h e s i s o f S r o _ 5 V O P 0 4 - 2 H 2 0 . T h e t i t l e c o m p o u n d w a s p r e p a r e d f r o m a 1 0 . 5 m l a q u e o u s s o l u t i o n o f 0 . 4 4 5 g ( 2 . 6 8 m m o l ) o f V 2 0 4 , 0 . 7 0 9 g ( 2 . 6 7 m m o l ) o f S r ( 0 H ) 2 - 8 H 2 0 , a n d 1 . 2 m l o f H 3 P 0 4 c o n t a i n e d i n a 2 3 — m l T e fl o n — l i n e d a u t o c l a v e . T h e r e a c t i o n v e s s e l w a s m a i n t a i n e d a t 2 2 0 ° C f o r fi v e d a y s a n d t h e n c o o l e d t o r o o m t e m p e r a t u r e a t 0 . 1 ° C l m i n . T h e p r o d u c t w a s a b l u i s h p o w d e r . C h e m i c a l A n a l y s i s , C a l c d . ( F o u n d ) : S r , 1 8 . 1 2 ( 1 7 . 9 6 ) % ; V , 2 1 . 0 7 ( 2 0 . 9 6 ) % ; P , 1 2 . 8 1 ( 1 2 . 7 8 ) % . 6 6 S y n t h e s i s o f C o o _ 5 V O P O 4 - 2 H 2 0 . T h e t i t l e c o m p o u n d w a s p r e p a r e d a s a s i n g l e — p h a s e m a t e r i a l u n d e r v a r i o u s c o n d i t i o n s t h r e e t i m e s . O n e o f t h o s e p r o c e d u r e s w a s f r o m a 1 5 m l a q u e o u s s o l u t i o n o f 0 . 2 0 0 g ( 1 . 3 3 m m o l ) o f V 2 0 3 , o f 0 . 2 4 3 g ( 1 . 3 3 m m o l ) o f V 2 0 5 , 0 . 2 0 0 g ( 2 . 6 7 m m o l ) o f C 0 0 , a n d 1 . 6 m l o f H 3 P 0 4 c o n t a i n e d i n a 2 3 — m l T e fl o n — l i n e d a u t o c l a v e . T h e r e a c t i o n v e s s e l w a s m a i n t a i n e d a t 2 2 0 ° C f o r fi v e d a y s a n d t h e n c o o l e d t o r o o m t e m p e r a t u r e a t 0 . 1 ° C / m i n . T h e p r o d u c t w a s a g r e e n - b l u i s h p o w d e r . 2 . L a y e r e d V a n a d y l N a p t h y l p h o s p o n a t e H y d r a t e A l c o h o l a t e s , V 0 ( 0 3 P N p ) - H 2 0 - n R 0 H T h i s s e r i e s o f m a t e r i a l s w a s s y n t h e s i z e d b y D r . M . R . T o r g e r s o n s , w h i l e t h e r m o g r a v i m e t r i c a n a l y s i s ( T G A ) , e l e c t r o n m a g n e t i c r e s o n a n c e ( E P R ) a n d p o w d e r s u s c e p t i b i l i t y m e a s u r e m e n t s w e r e p a r t o f t h i s t h e s i s . 3 . S y n t h e s i s o f b i s ( p — S u b s t i t u t e d P h e n y l ) P h o s p h i n i c A c i d s M a t e r i a l s . p — B r o m o c h l o r o b e n z e n e ( 9 9 % ) , p — b r o m o fl u o r o b e n z e n e ( 9 9 % ) , p — b r o m o t o l u e n e ( 9 8 % ) , p h o s p h o r o u s o x y c h l o r i d e P 0 C I 3 ( 9 9 % ) , d i e t h y l p h o s p h i t e ( E t 0 ) 2 P ( 0 ) H ( 9 4 % ) a n d m a g n e s i u m g r a n u l e s ( ~ 2 0 m e s h , 9 8 % ) w e r e p u r c h a s e d f r o m A l d r i c h . D i p h e n y l p h o s p h i n i c a c i d ( 9 9 % ) a n d b i s ( 4 — n i t r o p h e n y l ) p h o s p h a t e h y d r a t e ( 9 9 % ) w e r e a l s o p u r c h a s e d f r o m A l d r i c h . S y n t h e s i s o f b i s ( p - c h l o r o p h e n y l ) P h o s p h i n i c A c i d . T h i s c o m p o u n d w a s s y n t h e s i z e d a c c o r d i n g t o a l i t e r a t u r e p r o c e d u r e 7 . I n a d e g a s s e d 5 0 0 m l t h r e e — n e c k fl a s k c o n t a i n i n g 2 . 4 3 g ( 0 . 1 m o l ) o f M g t u r n i n g s , a c a t a l y t i c a m o u n t o f i o d i n e , a n d 5 0 m l o f d r y d i e t h y l e t h e r , 1 . 9 g ( 0 . 0 1 m o l ) o f p — b r o m o c h l o r o b e n z e n e d i s s o l v e d i n 1 0 m l o f d r y d i e t h y l e t h e r w e r e s l o w l y a d d e d u n d e r N 2 a t m o s p h e r e . W h e n t h e r e a c t i o n t u r n e d c l o u d y i n d i c a t i n g i n i t i a t i o n o f t h e G r i g n a r d r e a c t i o n , 6 7 1 7 . 2 g ( 0 . 0 9 m o l ) o f p — b r o m o c h l o r o b e n z e n e d i s s o l v e d i n 1 0 0 m l o f d r y d i e t h y l e t h e r w e r e a d d e d d r o p w i s e m a i n t a i n i n g g e n t l e r e fl u x . A t t h e e n d o f t h e a d d i t i o n t h e r e a c t i o n w a s r e fl u x e d f o r t h r e e m o r e h o u r s . T h e G r i g n a r d r e a g e n t w a s a d d e d d r o p w i s e v i a a c a n n u l a o v e r a p e r i o d o f o n e a n d a h a l f h o u r t o a d e g a s s e d 1 0 0 0 m l t h r e e — n e c k fl a s k c o n t a i n i n g 1 5 . 3 g ( 0 . 1 m o l ) o f P O C I 3 i n 2 5 0 m l o f d r y d i e t h y l e t h e r m a i n t a i n e d i n a g e n t l e r e fl u x . A w h i t e — y e l l o w i s h s o l i d p r e c i p i t a t e a n d r e fl u x i n g c o n t i n u e d f o r a n a d d i t i o n a l h o u r . T h e s o l u t i o n w a s a l l o w e d t o s t a n d u n d i s t u r b e d o v e r n i g h t a n d t h e o r g a n i c l a y e r w a s d e c a n t e d f r o m t h e s o l i d p r e c i p i t a t e . T h e l a t t e r w a s t r e a t e d w i t h 3 0 0 g r o f i c e — w a t e r . I t w a s t r i t u r a t e d w i t h 1 l o f w a r m d i l u t e s o d i u m h y d r o x i d e s o l u t i o n , f i l t e r e d a n d t h e f i l t r a t e a c i d i f i e d w i t h d i l u t e h y d r o c h l o r i c a c i d . T h e p r e c i p i t a t e d p r o d u c t w a s fi l t e r e d , d r i e d a n d r e c r y s t a l l i z e d f r o m d i l u t e e t h a n o l . m p 1 3 1 - 1 3 3 ° C ( l i t e r a t u r e : 1 3 3 ° C ) . 1 H N M R ( D M S O — d e ) ; 6 p p m : 7 . 7 1 ( d d , J H _ H = 4 . 9 H z , J P - ” = 8 . 5 H z , 2 H ) , 7 . 5 4 ( d d , J H z H = 4 . 9 H z , J p _ H = 1 . 3 H z , 2 H ) . 3 1 P N M R ( D M S O — d s ) ; 6 p p m : 2 3 . 7 ( s , 1 P ) . S y n t h e s i s o f b i s ( p - fl u o r o p h e n y l ) P h o s p h i n i c A c i d . T h i s c o m p o u n d w a s s y n t h e s i z e d a c c o r d i n g t o a l i t e r a t u r e p r o c e d u r e s . I n a d e g a s s e d 5 0 0 m l t h r e e — n e c k fl a s k c o n t a i n i n g 4 . 8 6 g ( 0 . 2 m o l ) o f M g t u r n i n g s , a c a t a l y t i c a m o u n t o f i o d i n e , a n d 1 0 0 m l o f d r y d i e t h y l e t h e r , 1 . 7 5 g ( 0 . 0 1 m o l ) o f p — b r o m o fl u o r o b e n z e n e d i s s o l v e d i n 1 0 m l o f d r y d i e t h y l e t h e r w e r e s l o w l y a d d e d u n d e r N 2 a t m o s p h e r e . W h e n t h e r e a c t i o n t u r n e d c l o u d y i n d i c a t i n g i n i t i a t i o n o f t h e G r i g n a r d r e a c t i o n , 3 3 . 2 5 g ( 0 . 1 9 m o l ) o f p — b r o m o fl u o r o b e n z e n e d i s s o l v e d i n 2 0 0 m l o f d r y d i e t h y l e t h e r w e r e a d d e d d r o p w i s e m a i n t a i n i n g g e n t l e r e fl u x . A t t h e e n d o f t h e a d d i t i o n t h e r e a c t i o n w a s r e fl u x e d f o r t h r e e m o r e h o u r s . T h e G r i g n a r d r e a g e n t w a s f i l t e r e d v i a a f i l t e r e d — c a n u l a t o a d e g a s s e d 1 0 0 0 m l t h r e e — n e c k fl a s k . A s o l u t i o n o f 8 m l ( 0 . 0 6 m o l ) o f ( E t 0 ) 2 P ( 0 ) H i n 2 0 m l o f d r y d i e t h y l e t h e r w a s s l o w l y a d d e d . T h e t w o - l a y e r m i x t u r e w a s r e fl u x e d o v e r n i g h t , a n d t h e n 6 8 a l l o w e d t o c o o l a t r o o m t e m p e r a t u r e . T o c o l d s o l u t i o n p l a c e d i n a 1 0 0 0 m l fl a s k c o n t a i n i n g 5 0 g o f i c e a n d 3 0 m l o f H C I ( 3 6 % ) w e r e a d d e d . M o s t o f t h e d i e t h y l e t h e r e v a p o r a t e d d u r i n g t h e a d d i t i o n w h i l e t h e o i l y r e s i d u e w a s d i s s o l v e d . T h e s o l u t i o n w a s s u b s e q u e n t l y c o n d e n s e d t o o n e t h i r d o f i t s i n i t i a l v o l u m e . B r o m i n e w a s a d d e d d r o p w i s e w i t h s t i r r i n g u n t i l a f a i n t p e r m a n e n t c o l o r r e m a i n e d . T h e p r e c i p i t a t e d a c i d w a s c o l l e c t e d , d i s s o l v e d i n p o t a s s i u m h y d r o x i d e a n d r e p r e c i p i t a t e d b y a c i d i fi c a t i o n . R e p e a t e d r e c r y s t a l l i z a t i o n s f r o m d i l u t e a l c o h o l a f f o r d e d t h e p u r e c o m p o u n d . 1 H N M R ( D M S O — d e ) ; 5 p p m : 7 . 7 6 ( d d d , J H . . . = 7 . 8 H z , J o . “ = 1 1 . 5 H z , J F _ H = 5 . 9 H z , 2 H ) , 7 . 3 0 ( t d , J H _ H = 7 . 8 H z , J o . “ = 2 . 2 H z , J F _ H = 1 0 . 2 H z , 2 H ) , 2 . 3 1 ( s , 3 H ) ; 3 1 P N M R ( D M S O — d e ) ; 8 p p m : 2 6 . 9 ( s , 1 P ) . S y n t h e s i s o f b i s ( p - m e t h y l p h e n y l ) P h o s p h i n i c A c i d . T h e t i t l e c o m p o u n d w a s s y n t h e s i z e d b y t h e g e n e r a l s y n t h e t i c m e t h o d 8 d e s c r i b e d a b o v e . 1 H N M R ( D M S O — d e ) ; 8 p p m : 7 . 5 7 ( d d , J H . H = 8 . 1 H z , J p _ H = 1 1 . 7 H z , 2 H ) , 7 . 2 5 ( d d , J H _ H = 8 . 1 H z , J p _ ) - ( = 2 . 8 H z , 2 H ) , 2 . 3 1 ( s , 3 H ) ; 3 " P N M R ( D M S O — d s ) ; 8 p p m : 2 9 . 5 ( s , 1 P ) . 4 . S y n t h e s i s o f P o t a s s i u m H y d r o t r i s ( 1 - p y r a z o l y l ) B o r a t e , K [ H B ( p z ) 3 ] T h e t i t l e c o m p o u n d w a s s y n t h e s i z e d a c c o r d i n g t o a l i t e r a t u r e p r o c e d u r e g . I n a fl a m e d r i e d t h r e e — n e c k fl a s k w e r e p l a c e d 2 7 . 2 g ( 0 . 4 m o l ) o f p y r a z o l e a n d 5 . 4 g ( 0 . 1 m o l ) o f p o t a s s i u m b o r o h y d r i d e . T h e m i x t u r e w a s h e a t e d i n a s a n d b a t h u n d e r a n a r g o n a t m o s p h e r e a t 1 9 0 ° C f o r t h r e e h o u r s . T h e h y d r o g e n o b s e r v e d a t t h e i n i t i a l s t a g e o f t h e r e a c t i o n h a d c e a s e d b y t h e e n d o f t h e t h r e e h o u r p e r i o d t i m e . T h e m i x t u r e w a s p o u r e d h o t i n t o 1 0 0 m l o f t o l u e n e r e s u l t i n g i n i m m e d i a t e p r e c i p i t a t i o n o f a w h i t e s o l i d . T h e p o w d e r w a s fi l t e r e d , w a s h e d s e v e r a l t i m e s w i t h h o t t o l u e n e a n d a i r d r i e d f o r a f e w h o u r s a t r o o m t e m p e r a t u r e . 1 9 . 9 9 ( y i e l d 7 9 % ) o f p u r e m a t e r i a l w a s o b t a i n e d b y r e c r y s t a l l i z a t i o n f r o m a n i s o l e . m p 1 8 7 — 1 8 9 ° C 6 9 ( l i t e r a t u r e : 1 8 9 ° C ) . 1 H N M R ( D M S O — d s ) ; 8 p p m : 7 . 3 1 ( d , J H - H = 1 . 2 H z ) , 7 . 2 9 ( d , J ) . . . ” = 1 . 5 H z ) , 5 . 9 9 ( t , J H _ H = 1 . 5 H z ) . I R ; 3 6 0 9 , 3 3 0 4 , 3 1 1 9 , 2 4 2 5 , 1 7 3 7 , 1 6 4 1 , 1 4 9 9 , 1 4 1 6 , 1 3 8 6 , 1 2 8 9 , 1 2 5 6 , 1 2 1 5 , 1 2 0 1 , 1 1 8 5 , 1 1 2 5 , 1 1 1 2 , 1 0 8 3 , 1 0 7 2 , 1 0 4 8 , 1 0 4 0 , 9 6 5 , 9 2 0 , 8 8 2 , 8 5 0 , 7 9 2 , 7 7 6 , 7 5 6 , 7 3 7 , 7 2 3 . H e a t i n g o v e r n i g h t a t 1 9 0 ° C f o l l o w e d b y a n i s o l a t i o n p r o c e d u r e l i k e t h a t a b o v e a f f o r d e d p o t a s s i u m t e t r a ( 1 — p y r a z o l y l ) b o r a t e . m p 2 5 2 ° C ( l i t e r a t u r e : 2 5 2 ° C ) . 1 H N M R ( D M S O — d a ) ; 8 p p m : 7 . 3 8 ( s ) , 7 . 1 9 ( s ) , 6 . 0 2 ( 3 ) . H e a t i n g f o r t h r e e h o u r s a t 1 0 0 ° C a n d s i m i l a r a s a b o v e i s o l a t i o n a f f o r d e d p o t a s s i u m d i h y d r o b i s ( 1 — p y r a z o l y l ) b o r a t e . 5 . S y n t h e s i s o f V a n a d y l c o m p l e x e s M a t e r i a l s . V a n a d i u m ( l V ) c h l o r i d e V C I 4 , 2 , 2 ' — b i p y r i d y l ( 9 9 % ) , 4 , 4 ' — d i m e t h y l — 2 , 2 ' — b i p y r i d y l ( 9 9 % ) , v a n a d y l a c e t y l a c e t o n a t e ( 9 5 % ) w e r e p u r c h a s e d f r o m A l d r i c h . S y n t h e s i s o f V O C I 2 ( C H 3 0 H ) 3 . T h e t i t l e c o m p o u n d w a s s y n t h e s i z e d a c c o r d i n g t o a l i t e r a t u r e p r o c e d u r e " ) . 5 m l o f V C l 4 w e r e d i s s o l v e d i n 1 5 m l o f a n h y d r o u s c a r b o n t e t r a c h l o r i d e a n d 1 2 . 5 m l o f m e t h a n o l ( d i s s o l v e d i n 1 0 m l o f c a r b o n t e t r a c h l o r i d e ) w e r e s l o w l y a d d e d t o t h e s o l u t i o n . A b r o w n p r e c i p i t a t e i s f o r m e d a t t h e e a r l y s t a g e s o f t h e a d d i t i o n a c c o m p a n i e d b y v i g o r o u s g a s e v o l u t i o n . T h e r e a c t i o n i s d r i v e n t o c o m p l e t i o n b y h e a t i n g a t 5 0 ° C f o r 1 5 m i n u t e s . A m i x t u r e c o n s i s t i n g o f a l i g h t g r e e n c a r b o n t e t r a c h l o r i d e l a y e r a n d a l a y e r o f a d a r k g r e e n o i l w e r e f o r m e d u p o n c o o l i n g t o r o o m t e m p e r a t u r e . T h e t w o l a y e r s w e r e s e p a r a t e d a n d t h e s o l v e n t w a s r e m o v e d f r o m t h e l a t t e r p r o d u c i n g a d e n s e g r e e n l i q u i d , w h i c h w a s f u r t h e r r e a c t e d w i t h o u t a n y p u r i fi c a t i o n . T h e c o m p o u n d w a s s t r u c t u r a l l y c h a r a c t e r i z e d b y s i n g l e c r y s t a l X — r a y d i f f r a c t i o n m e t h o d s f r o m c r y s t a l s g r o w n u p o n s t a n d i n g a t r o o m t e m p e r a t u r e f o r s e v e r a l d a y s . 7 0 S y n t h e s i s o f L 2 V O C I 2 ( L 2 = s u b s t i t u t e d 2 , 2 ' — b i p y r i d y l l i g a n d ) . C o m p l e x e s o f t h e L 2 V 0 C l 2 t y p e w e r e s y n t h e s i z e d f o r 2 , 2 ' — b i p y r i d y l , 4 , 4 ' — d i m e t h y l - 2 , 2 ' — b i p y r i d y l , a n d 3 , 3 ' , 4 , 4 ' — t e t r a m e t h y l — 2 , 2 ' — b i p y r i d y l f o l l o w i n g t h e s y n t h e t i c p r o c e d u r e r e p o r t e d f o r t h e 2 , 2 ' — b i p y r i d y l l i g a n d “ . A s o l u t i o n o f t h e c o r r e s p o n d i n g l i g a n d i n d r y d i e t h y l e t h e r w a s a d d e d t o a n e q u i m o l a r s o l u t i o n o f V O C I 2 ( C H 3 0 H ) 3 i n t h e s a m e s o l v e n t . I m m e d i a t e p r e c i p i t a t i o n o f a l i g h t g r e e n s o l i d w a s o b s e r v e d a n d s t i r r i n g c o n t i n u e d a t a m b i e n t t e m p e r a t u r e f o r o n e h o u r . T h e s o l i d s w e r e fi l t r a t e d a n d r e p e a t e d l y w a s h e d w i t h d i e t h y l e t h e r . T h e y w e r e a l l o w e d t o a i r — d r y o v e r n i g h t . I R d a t a : C 8 H 8 N 2 V O C I 2 : 1 6 0 1 , 1 4 9 7 , 1 4 7 4 , 1 4 4 4 , 1 3 1 7 , 1 1 7 2 , 1 1 5 8 , 1 0 2 9 , 9 7 4 , 8 9 5 , 7 6 5 , 7 3 3 ; C 1 0 H 1 2 N 2 V 0 C l 2 : 1 6 1 8 , 1 5 5 9 , 1 4 8 8 , 1 4 4 7 , 1 3 7 9 , 1 3 0 4 , 1 2 8 6 , 1 2 4 4 , 1 0 3 1 , 9 7 8 , 9 2 5 , 9 0 2 , 8 3 5 ; C 1 2 H 1 6 N 2 V O C I 2 : 1 6 1 2 , 1 5 0 9 , 1 4 8 7 , 1 4 4 8 , 1 3 8 5 , 1 2 9 2 . 1 2 5 1 , 1 2 3 7 , 1 1 5 5 , 1 0 1 5 , 9 9 4 , 9 7 5 , 9 6 1 , 8 9 7 . S y n t h e s i s o f { L 2 V 0 [ p — ( p - X - C s H 4 ) 2 P O 2 ] 1 _ 5 } 2 { C I O 4 } D i m e r s , ( L 2 = s u b s t i t u t e d 2 . 2 - b i p y r i d y l , a n d X = H - , C H 3 — , C l — , F — ) . I n 1 0 m l o f d r y d e o x y g e n a t e d m e t h a n o l w a s d i s s o l v e d 1 m m o l o f t h e c o r r e s p o n d i n g L 2 V 0 C l 2 s t a r t i n g m a t e r i a l u n d e r a n a r g o n a t m o s p h e r e . T o t h e c l e a r g r e e n s o l u t i o n w a s s l o w l y a d d e d , v i a a c a n n u l a , a m e t h a n o l i c s o l u t i o n c o n t a i n i n g 2 m m o l o f t h e c o r r e s p o n d i n g p h o s p h i n i c a c i d . T h e r e s u l t i n g m i x t u r e w a s s t i r r e d a t a m b i e n t t e m p e r a t u r e f o r t w o h o u r s p r i o r t h e a d d i t i o n o f 1 . 5 m m o l o f N a C l 0 4 . I m m e d i a t e p r e c i p i t a t i o n o f a g r e e n s o l i d w a s o b s e r v e d a n d s t i r r i n g c o n t i n u e d f o r a n a d d i t i o n a l h o u r . T h e s o l i d w a s fi l t r a t e d a n d w a s h e d w i t h e t h e r . I t c a n b e r e c r y s t a l l i z e d e i t h e r b y a c e t o n e o r m e t h a n o l . S i n g l e c r y s t a l s f o r X — r a y s t r u c t u r e d e t e r m i n a t i o n w e r e o b t a i n e d b y a l l o w i n g a m e t h a n o l i c s o l u t i o n t o s l o w l y e v a p o r a t e o v e r a p e r i o d o f s e v e r a l d a y s . S y n t h e s i s o f [ H B ( p z ) 3 ] V O ( a c a c ) , ( a c a c = 2 , 5 — p e n t a d i o n e ) . T h e t i t l e c o m p o u n d w a s s y n t h e s i z e d a c c o r d i n g t o a l i t e r a t u r e p r o c e d u r e ” . I n a r o u n d b o t t o m fl a s k 7 1 c o n t a i n i n g 5 . 3 g ( 0 . 0 2 m o l ) o f v a n a d y l a c e t y l a c e t o n a t e u n d e r a n a r g o n a t m o s p h e r e , w e r e a d d e d 5 0 m l o f d r y m e t h a n o l . T o t h e v i o l e t s o l u t i o n w a s a d d e d d r o p w i s e 5 . 0 4 g ( 0 . 0 2 m o l ) o f p o t a s s i u m h y d r o t r i s ( 1 — p y r a z o l y l ) b o r a t e d i s s o l v e d i n 2 0 m l o f m e t h a n o l . T h e s o l u t i o n w a s r e fl u x e d f o r f o u r h o u r s r e s u l t i n g i n t h e p r e c i p i t a t i o n o f a v i o l e t s o l i d . I t w a s f i l t r a t e d , w a s h e d t w i c e w i t h m e t h a n o l a n d o n c e w i t h e t h e r a n d a i r d r i e d o v e r n i g h t . U p o n r e c r y s t a l l i z a t i o n w i t h a c e t o n i t r i l e w e r e i s o l a t e d 4 . 2 5 9 ( y i e l d : 5 6 % ) o f p u r e p r o d u c t . I R ; 3 4 3 6 , 3 1 0 3 , 2 4 7 8 , 1 5 8 9 , 1 5 7 3 , 1 5 3 5 , 1 5 2 1 , 1 5 0 4 , 1 4 3 1 , 1 4 0 6 , 1 3 9 3 , 1 3 6 9 , 1 3 0 9 , 1 2 7 9 , 1 2 1 4 , 1 1 1 8 , 1 1 1 1 , 1 0 9 7 , 1 0 7 6 , 1 0 5 1 , 1 0 3 1 , 9 8 7 , 9 7 6 , 9 6 7 , 9 3 8 , 8 8 8 . S y n t h e s i s o f { H B ( p z ) 3 V O [ m — ( X - P h ) 2 P O 2 ] } 2 D i m e r s , ( X = H — , C H 3 — , C H 3 0 - , F - ) . A s e r i e s o f f o u r d i m e r s w e r e s y n t h e s i z e d b y f o l l o w i n g a l i t e r a t u r e p r o c e d u r e ” . [ H B ( p z ) 3 ] V 0 ( a c a c ) ( 0 . 7 6 g , 0 . 0 0 2 m o l ) w a s d i s s o l v e d i n 4 0 m l o f a c e t o n i t r i l e a n d a n e q u i m o l a r a m o u n t o f t h e c o r r e s p o n d i n g p h o s p h i n i c a c i d w a s a d d e d a l o n g w i t h 1 — 2 m l o f w a t e r . T h e s o l u t i o n w a s r e fl u x e d p r o d u c i n g a g r a d u a l c h a n g e o f c o l o r f r o m v i o l e t t o b l u e a n d a f f o r d i n g t h e p r e c i p i t a t i o n o f a b l u e s o l i d . A f t e r t w o h o u r s o f r e fl u x i n g , t h e s o l u t i o n w a s c o o l e d d o w n t o r o o m t e m p e r a t u r e a n d t h e b l u e s o l i d w a s fi l t r a t e d a n d w a s h e d r e p e a t e d l y w i t h f r e s h a c e t o n i t r i l e . I t w a s r e c r y s t a l l i z e d b y d i c h l o r o m e t h a n e . S u i t a b l e c r y s t a l s f o r X — r a y s t r u c t u r e d e t e r m i n a t i o n w e r e g r o w n b y s l o w e v a p o r a t i o n o f a n a c e t o n i t r i l e o r d i c h l o r o m e t h a n e s o l u t i o n . 6 . S y n t h e s i s o f A m i d i n i u m — C a r b o x y l a t e S a l t s M a t e r i a l s . B e n z a m i d i n e h y d r o c h l o r i d e h y d r a t e ( 9 7 % ) , 1 , 3 — d i c y a n o b e n z e n e ( 9 8 % ) , 2 , 2 , 5 , 5 — t e t r a m e t h y l - 3 - c a r b o m i d o p y r r o l i n e ( 9 9 % ) a n d 1 , 8 - d i a z a b i c y c l o [ 5 . 4 . 0 ] u n d e c — 7 — e n e ( D B U 9 8 % ) w e r e p u r c h a s e d f r o m A l d r i c h a n d u s e d w i t h o u t f u r t h e r p u r i fi c a t i o n . 7 2 G e n e r a l S y n t h e s i s . T h e s a l t s w e r e p r e p a r e d b y s l o w e v a p o r a t i o n o f a q u e o u s s o l u t i o n s c o n t a i n i n g e q u i m o l a r a m o u n t s o f t h e a m i d i n i u m c h l o r i d e a n d t h e 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 - c a r b o x y p y r r o l i n e — 1 - o x y l n e u t r a l i z e d b y 1 , 8 - d i a z a b i c y c l o [ 5 . 4 . 0 ] u n d e c — 7 — e n e ( D B U ) . C r y s t a l s w e r e r e m o v e d f r o m t h e s o l u t i o n p r i o r t o c o m p l e t e e v a p o r a t i o n o f t h e w a t e r . S y n t h e s i s o f m — C y a n o b e n z a m i d i n i u m C h l o r i d e . 1 , 3 — D i c y a n o b e n z e n e ( 5 . 1 2 5 g r , 4 0 m m o l ) w a s p l a c e d i n a fl a m e d r i e d S c h l e n k fl a s k , e q u i p p e d w i t h a m a g n e t i c s t i r r e r , u n d e r a n a r g o n a t m o s p h e r e . A f r e s h l y g e n e r a t e d s o l u t i o n o f s o d i u m m e t h o x i d e i n m e t h a n o l ( 0 . 4 6 g r , 2 0 m m o l , o f N a i n 1 0 0 m l o f m e t h a n o l ) w a s a d d e d d r o p w i s e a t a m b i e n t t e m p e r a t u r e . T h e s o l i d w a s d i s s o l v e d w i t h i n 3 0 m i n , a n d t h e c l e a r s o l u t i o n w a s s t i r r e d a t r o o m t e m p e r a t u r e f o r a n a d d i t i o n a l t w o h o u r s . A m m o n i u m c h l o r i d e ( 5 . 3 5 g r , 1 0 0 m m o l ) w a s a d d e d a n d s t i r r i n g c o n t i n u e d o v e r n i g h t . T h e s o l v e n t w a s r e m o v e d u n d e r v a c u u m a n d t h e w h i t e s o l i d w a s h e a t e d a t 8 0 ° C u n d e r v a c u u m f o r a n a d d i t i o n a l t h r e e h o u r s . I t w a s w a s h e d w i t h e t h e r a n d m e t h a n o l a n d r e c r y s t a l l i z e d f r o m w a t e r p r o d u c i n g f i n e w h i t e n e e d l e s , w h i c h w e r e a i r d r i e d f o r 2 4 h o u r s . 1 H N M R ( D M S O — d s ) , 8 9 . 5 7 ( s , 4 H ) , 8 . 3 4 ( s , 1 H ) , 8 . 1 6 ( t , 2 H , J = 9 H z ) , 7 . 8 0 ( t , 1 H , J = 9 H z ) ; I R , 3 4 3 5 , 3 0 7 9 , 3 0 4 7 , 2 2 3 5 , 1 6 5 9 , 1 6 3 8 , 1 5 9 9 , 1 5 7 8 , 1 4 8 1 , 1 4 2 4 , 1 1 4 8 , 9 0 6 , 8 0 7 , 6 8 0 . B e n z a m i d i n i u m 2 , 2 , 5 , 5 — t e t r a m e t h y l - 3 — c a r b o x y p y r r o l i n e — 1 — o x y l h y d r a t e . Y e l l o w s q u a r e c r y s t a l s w e r e i s o l a t e d . I R ; 3 4 0 6 , 3 2 5 2 , 2 9 7 9 , 2 9 3 1 , 2 8 6 8 , 1 6 7 3 , 1 6 3 9 , 1 6 1 3 , 1 5 7 2 , 1 5 3 2 , 1 4 7 8 , 1 4 6 6 , 1 4 5 3 , 1 4 2 7 , 1 3 9 2 , 1 3 6 7 , 1 3 5 5 , 1 3 1 6 , 1 2 1 0 , 1 1 6 3 , 1 1 4 8 , 1 0 7 9 , 1 0 6 1 , 1 0 0 0 , 9 5 2 , 8 0 1 , 7 8 7 , 7 0 6 . m — C y a n o b e n z a m i d i n i u m — 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 - c a r b o x y p y r r o l i n e — 1 — o x y l . Y e l l o w s q u a r e c r y s t a l s w e r e i s o l a t e d . I R ; 3 1 7 0 , 2 9 7 6 , 2 9 2 9 , 2 8 6 6 , 2 2 3 9 , 1 6 5 6 , 1 6 4 2 , 1 6 0 9 , 1 5 7 4 , 1 5 4 4 , 1 5 1 2 , 1 4 7 8 , 1 4 6 5 , 1 4 5 0 , 1 4 2 7 , 1 3 8 8 , 1 3 7 5 , 1 3 6 6 , 1 3 1 6 , 7 3 1 2 7 2 , 1 2 2 8 , 1 2 0 8 , 1 1 7 3 , 1 1 6 1 , 1 1 5 0 , 1 1 1 3 , 1 0 6 3 , 1 0 0 1 , 9 4 9 , 8 7 8 , 8 1 7 , 8 0 1 , 7 8 1 , 7 3 0 , 7 1 2 , 6 7 8 . 7 4 L I S T O F R E F E R E N C E S ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 7 ) ( 8 ) ( 9 ) ( 1 0 ) ( 1 1 ) ( 1 2 ) ( 1 3 ) S H E L X T L - P L U S V 5 . 0 , S i e m e n s I n d u s t r i a l A u t o m a t i o n , I n c . , M a d i s o n , W I . S p e k , A . L . A c t a C r y s t . 1 9 9 0 , A 4 6 , 0 3 4 . D u i s e n b e r g , A . J . M . J . A p p l . C r y s t . 1 9 9 2 , 2 5 , 9 2 . S t r u v e , W . S . i n F u n d a m e n t a l s o f M o l e c u l a r S p e c t r o s c o p y , J o h n W i l e y : N e w Y o r k 1 9 8 9 . ( a ) W a n g , S . L . ; K a n g , H . Y . ; C h e n g , C . Y . ; L i i , K . H . I n o r g . C h e m . 1 9 9 1 , 3 0 , 3 4 9 6 . ( b ) K a n g , H . Y . ; L e e , W . C . ; W a n g , S . L . ; L i i , K . H . I n o r g . C h e m . 1 9 9 2 , 3 1 , 4 7 4 3 . ( c ) L i i , K . H . J . C h i n . C h e m . S o c . 1 9 9 2 , 3 9 , 5 6 9 . T o r g e r s o n , M . R . P h . D . D i s s e r t a t i o n M . S . U . 1 9 9 6 . K o s o l a p o f f , G . M . J . A m . C h e m . S o c . 1 9 4 2 , 6 4 , 2 9 8 2 . ( a ) K o s o l a p o f f , G . M . ; S t r u c k , R . F . J . C h e m . S o c . 1 9 5 9 , 3 9 5 0 . ( b ) P e t r o v , K . A . ; P a r s h i n a , V . A . ; D a r u z e , G . L . J . G e n . C h e m . U S S R 1 9 6 0 , 3 0 , 2 9 7 2 . T r o f i m e n k o , S . J . A m . C h e m . S o c . 1 9 6 7 , 8 9 , 3 1 7 0 . v o n F u n k , H . ; M o h a u p t , G . ; P a u l , A . Z . A n o r g . A l l g . C h e m . 1 9 5 9 , 3 0 2 , 1 9 9 . F o w l e s , G . W . A . ; R i c e , D . A . ; W i l k i n s , J . D . I n o r g . C h i m . A c t a 1 9 7 3 , 7 , 6 4 2 . M o h a n , M . ; H o l m e s , 8 . M . ; B u t c h e r , R . J . ; J a s i n s k i , J . P . ; C a r r a n o , C . J . I n o r g . C h e m . 1 9 9 2 , 3 1 , 2 0 2 9 . D e a n , N . 8 . ; B o n d , M . R . ; 0 ' C o n n o r , C . J . ; C a r r a n o , C . J . I n o r g . C h e m . 1 9 9 6 , 3 5 , 7 6 4 3 . 7 5 C H A P T E R 3 M a g n e t i c S t u d i e s o n L a y e r e d V a n a d y l P h o s p h a t e s a n d P h o s p h o n a t e s A . I n t r o d u c t i o n W i t h o u t w e l l — d e f i n e d s t r u c t u r e , a n y s e n s i b l e i n t e r p r e t a t i o n o f m a g n e t i c b e h a v i o r a t t h e m o l e c u l a r l e v e l i s n e c e s s a r i l y s p e c u l a t i v e . N o w h e r e i s t h i s d i f fi c u l t y m o r e s t r i k i n g t h a n i n t h e fi e l d o f t h e h o s t — g u e s t c h e m i s t r y o f l a y e r e d m e t a l p h o s p h a t e s a n d t h e i r o r g a n i c / i n o r g a n i c h y b r i d a n a l o g s ( L V P ' s ) . I n t h e l a s t f e w y e a r s , h o w e v e r h y d r o t h e r m a l s y n t h e s i s t e c h n i q u e s 1 a f f o r d e d s u c h m a t e r i a l s i n c r y s t a l l i n e f o r m , a l l o w i n g f o r t h e i r s t r u c t u r a l c h a r a c t e r i z a t i o n . A s y s t e m a t i c i n v e s t i g a t i o n o f l o w d i m e n s i o n a l m a g n e t i c i n t e r a c t i o n s i n v o l v i n g v a n a d y l i o n s w a s t h e n u n d e r t a k e n , i n i t i a l l y i n t h e f a m i l y o f v a n a d y l m o n o h y d r o g e n p h o s p h a t e s . T h e m a g n e t i c p r o p e r t i e s o f t h e V 0 ( H P 0 4 ) - n H 2 0 c o m p o u n d s w i t h n e q u a l t o 0 . 5 2 ' 3 ' 4 , 7 6 1 . 5 2 , 2 5 , o r 4 2 " " 6 w e r e t h o r o u g h l y i n v e s t i g a t e d b y s u s c e p t i b i l i t y m e t h o d s . V i l l e n e u v e a n d c o w o r k e r s 3 ' 7 e s t a b l i s h e d t h e r o l e o f t h e 0 — P — 0 l i n k a g e s a s a c t i v e e x c h a n g e p a t h w a y s , a n d i d e n t i f i e d t h e c o m m o n b u i l d i n g b l o c k s r e s p o n s i b l e f o r s p i n c o m m u n i c a t i o n . T h e g e o m e t r i c a l a n d e l e c t r o n i c f a c t o r s r e s p o n s i b l e f o r t h e s t r e n g t h a n d t h e s i g n o f t h e m a g n e t i c i n t e r a c t i o n a r e h a r d e r t o e v a l u a t e . T h e c o m p l e x i t y o f t h e p r o b l e m b e c o m e s a p p a r e n t b y a s i m p l e i n s p e c t i o n o f t h e c o m m o n s t r u c t u r a l u n i t s o f t h e s e l o w d i m e n s i o n a l m a t e r i a l s , d e p i c t e d i n F i g u r e 8 i n C h a p t e r 1 . M a n y f a c t o r s h a v e t o b e t a k e n i n t o c o n s i d e r a t i o n i n o r d e r t o v a l i d a t e a n y c o n c l u s i o n s r e g a r d i n g t h e c o r r e l a t i o n o f s t r u c t u r e t o p h y s i c a l p r o p e r t i e s . T h e a p p r o a c h w e h a v e f o l l o w e d t o w a r d s t h i s p r o b l e m i s s c h e m a t i c a l l y r e p r e s e n t e d i n F i g u r e 1 . T h e L V P ' s s t r u c t u r a l e n v i r o n m e n t c a n a c t a s a h o s t b y e n c a p s u l a t i n g g u e s t s p e c i e s , l i k e s m a l l m o l e c u l e s a n d i o n s . S u c h s y s t e m s a r e l i k e l y t o h a v e r i c h m a g n e t o c h e m i s t r y , s i n c e s p i n c o m m u n i c a t i o n i n p r i n c i p l e c o u l d b e a c h i e v e d w i t h i n t h e h o s t l a y e r s ( i n t r a l a y e r c o u p l i n g ) , b e t w e e n a d j a c e n t h o s t l a y e r s ( i n t e r l a y e r c o u p l i n g ) , a m o n g n e i g h b o r i n g g u e s t s p e c i e s ( g u e s t — g u e s t c o u p l i n g ) a n d b e t w e e n g u e s t a n d l a y e r e d h o s t s p e c i e s ( g u e s t — h o s t c o u p l i n g ) . T h e i n t r a l a y e r s p i n - s p i n i n t e r a c t i o n s w e r e i n v e s t i g a t e d b y e m p l o y i n g t h e l a y e r e d f r a m e w o r k o f V 0 P 0 4 - 2 H 2 0 , w h o s e s t r u c t u r e i s d e p i c t e d i n F i g u r e 6 C h a p t e r 1 . U p o n r e d o x i n t e r c a l a t i o n o f m o n o v a l e n t o r d i v a l e n t c a t i o n s 8 t h i s s i m p l e d i a m a g n e t i c h o s t b e c o m e s m a g n e t i c b y i n j e c t i o n o f h a l f o r o n e e l e c t r o n p e r v a n a d i u m c e n t e r r e s p e c t i v e l y . I n t h e o r i g i n a l s o l u t i o n s y n t h e s i s , d e s c r i b e d b y J a c o b s o n a n d c o w o r k e r s 8 a n d l a t e r b y V o t i n s k y a n d c o w o r k e r s g , m e t a l i n t e r c a l a t i o n w a s n o n s t o i c h i o m e t r i c r e s u l t i n g i n a l a r g e n u m b e r o f p h a s e s , w h i c h c o n t a i n e d v a r i a b l e a m o u n t s o f g u e s t s p e c i e s . L i i a n d c o w o r k e r s 1 0 h o w e v e r , b y e m p l o y i n g h y d r o t h e r m a l t e c h n i q u e s , w e r e a b l e t o s y n t h e s i z e a n d s t r u c t u r a l l y c h a r a c t e r i z e s t o i c h i o m e t r i c m e t a l i n t e r c a l a t e d v a n a d y l p h o s p h a t e s , 7 7 F i g u r e 1 . S c h e m a t i c o u t l i n e i n d i c a t i n g t h e m e a n s t h a t m a g n e t i c p r o p e r t i e s c a n b e t u n e d i n v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s : b y s m a l l i o n i n t e r c a l a t i o n ( t o p ) , b y m o l e c u l a r l y j a c k i n g t h e l a y e r ( m i d d l e ) , a n d b y c o n t r o l l i n g t h e s p i n fl o w a m o n g a d j a c e n t c e n t e r s ( b o t t o m ) . 7 8 A x V 0 P 0 4 - n H 2 0 , w i t h A a n a l k a l i , a l k a l i n e — e a r t h o r a t r a n s i t i o n m e t a l . W e h a v e a l s o u t i l i z e d t h e l a t t e r s y n t h e t i c s t r a t e g y f o r t h e p r e p a r a t i o n o f a s e r i e s o f t h e s e m a t e r i a l s . I n t h e fi r s t p a r t o f t h i s c h a p t e r i m p r o v e d s y n t h e s i s o f c o m p o u n d s p r e v i o u s l y o b t a i n e d a s a m i x t u r e o f p h a s e s a r e d e s c r i b e d , a l o n g w i t h t h e s y n t h e s i s a n d s t r u c t u r a l c h a r a c t e r i z a t i o n o f a n e w m e m b e r o f t h e f a m i l y . T h e m a g n e t i c p r o p e r t i e s o f m e t a l i n t e r c a l a t e d L V P ' s , d e t e r m i n e d b y m a g n e t i c s u s c e p t i b i l i t y , s o l i d s t a t e N M R , a n d s o l i d s t a t e E S R t e c h n i q u e s a r e r e p o r t e d a n d i n i t i a l c o n c l u s i o n s t h a t r e l a t e s t r u c t u r e a n d m a g n e t i c p r o p e r t i e s a r e d r a w n . A d d i t i o n a l i n s i g h t s i n t o t h e s p i n e x c h a n g e p a t h w a y i n l a y e r e d v a n a d y l p h o s p h a t e s a r e g a i n e d b y c o n s i d e r i n g t h e m a g n e t i c b e h a v i o r o f a f a m i l y o f l a y e r e d v a n a d y l p h o s p h o n a t e s ( L V P h ' s ) V 0 ( 0 3 P C 6 H 4 — X ) - H 2 0 w i t h X = p — N 0 2 , m — F , p — F , H , s y n t h e s i z e d a n d c h a r a c t e r i z e d b y D r . J . L e B i d e a u " . H i s r e s u l t s a r e b r i e fl y p r e s e n t e d i n t h e s e c o n d p a r t o f t h i s c h a p t e r a n d a d e t a i l e d d i s c u s s i o n c o n c e r n i n g b o t h f a m i l i e s o f c o m p o u n d s w i l l f o l l o w . F i n a l l y t h e m a g n i t u d e o f i n t e r l a y e r c o u p l i n g i s a s s e s s e d b y u t i l i z i n g a s e c o n d s e r i e s o f l a y e r e d v a n a d y l p h o s p h o n a t e s , V 0 ( 0 3 P N p ) ( H 2 0 ) - n R 0 H , w h e r e t h e p h o s p h o n a t e p e n d a n t i s a n a p h t h a l e n e g r o u p a n d v a r i o u s a l c o h o l s a r e i n t e r c a l a t e d w i t h i n t h e i n t e r l a y e r s p a c e ( L V N p P h ' s ) . T h e s e c o m p o u n d s ( s y n t h e s i z e d b y D r . M . R . T o r g e r s o n ” ) d i s p l a y r e m a r k a b l e c o n t r o l o v e r t h e d - s p a c i n g , s i n c e b y u s i n g v a r i o u s a l k y l a l c o h o l s a d j a c e n t l a y e r s a r e m e c h a n i c a l l y j a c k e d b y 1 . 0 6 A p e r m e t h y l e n e u n i t . H e n c e , t h e m a g n e t i c p r o p e r t i e s o f l a y e r s i d e n t i c a l t o e a c h o t h e r , b u t s e p a r a t e d a t d i s t a n c e s f r o m 1 2 . 1 0 A t o 2 0 . 8 3 A , w e r e s t u d i e d e n a b l i n g t h e e v a l u a t i o n o f t h e m a g n i t u d e o f t h e i n t e r i a y e r c o u p l i n g . 7 9 B . R e s u l t s 1 . M e t a l I n t e r c a l a t e d V a n a d y l P h o s p h a t e s ( L V P ' s ) A x V O P 0 4 - n H 2 0 a . S y n t h e s i s a n d C h a r a c t e r i z a t i o n I n a s e r i e s o f b e n c h m a r k p a p e r s L i i a n d c o w o r k e r s r e p o r t e d t h e s y n t h e s i s a n d c r y s t a l s t r u c t u r e d e t e r m i n a t i o n s f o r s e v e r a l A x V 0 P 0 4 - n H 2 0 s y s t e m s ” . 0 f s p e c i fi c i n t e r e s t t o t h i s t h e s i s w e r e t h e a l k a l i m e t a l c o m p o u n d s N a o , 5 V 0 P 0 4 - 2 H 2 0 a n d K o _ 5 V 0 P 0 4 - 1 . 5 H 2 0 1 3 , a s w e l l a s t h e a l k a l i n e e a r t h a n d t r a n s i t i o n m e t a l i n t e r c a l a t e s S r o , 5 V 0 P 0 4 - 2 H 2 0 a n d C o o , 5 V 0 P 0 4 - 2 H 2 0 “ r e s p e c t i v e l y . T h e s e m a t e r i a l s w e r e o r i g i n a l l y s y n t h e s i z e d b y h y d r o t h e r m a l p r o c e d u r e s , a n d w e r e o b t a i n e d a s m i n o r o r m a j o r p h a s e s o f p o l y c r y s t a l l i n e m i x t u r e s . S i n c e t h e a i m o f t h i s w o r k i s t h e s t u d y o f t h e i r m a g n e t i c p r o p e r t i e s , t h e d e s i r e d s i n g l e — p h a s e s w e r e o b t a i n e d b y m o d i f y i n g t h e o r i g i n a l s y n t h e t i c c o n d i t i o n s . P u r e c o m p o u n d s b e c a m e a v a i l a b l e b y c h a n g i n g t h e r e l a t i v e r a t i o s o f t h e s t a r t i n g m a t e r i a l s a n d i n s o m e i n s t a n c e s b y v a r y i n g t h e r e a c t i o n t i m e . D e t a i l s o n t h e s y n t h e s e s a r e r e p o r t e d i n C h a p t e r 2 . I n a d d i t i o n t o t h e a l r e a d y k n o w n m a t e r i a l s a n e w m e m b e r o f t h i s s e r i e s , n a m e l y R b o , 5 V 0 P 0 4 - 1 . 5 H 2 0 , w a s s y n t h e s i z e d a n d s t r u c t u r a l l y c h a r a c t e r i z e d ” . T h e c r y s t a l l o g r a p h i c d a t a a r e s u m m a r i z e d i n T a b l e 1 f o r b o t h t e m p e r a t u r e s w h e r e s i n g l e c r y s t a l X - r a y d a t a w e r e c o l l e c t e d , w h i l e a d d i t i o n a l d e t a i l s c a n b e f o u n d i n C h a p t e r H . T h e s t r u c t u r e o f R b o , 5 V 0 P 0 4 - 1 . 5 H 2 0 i s d i s c u s s e d a l o n g w i t h i t s d i f f e r e n c e s a n d s i m i l a r i t i e s t o t h e r e s t o f t h e m e t a l v a n a d y l p h o s p h a t e d e fi v a fi v e s . R b o , 5 V 0 P 0 4 - 1 . 5 H 2 0 c r y s t a l l i z e s i n t h e t r i c l i n i c s y s t e m , s p a c e g r o u p P 7 . F i g u r e 2 ( A ) s h o w s t h e v i e w d o w n o n a s e g m e n t o f i t s l a y e r . A s w i t h t h e o t h e r a l k a l i m e t a l s y s t e m s 1 3 a n d t h e a l k a l i n e e a r t h a n a l o g “ , t h e l a y e r i s 8 0 T a b l e 1 . C r y s t a l l o g r a p h i c D a t a f o r R b o _ 5 V 0 P 0 4 - 1 . 5 H 2 0 f o r m u l a F W c r y s t a l s i z e ( m m 3 ) c r y s t a l s y s t e m s p a c e g r o u p a ( A ) b ( A ) c ( A ) 9 ( d e g ) ( 3 ( d e g ) 7 ( d e g ) v ( A 3 ) 2 d c a l c ( g / c m 3 ) F ( 0 0 0 ) , u ( M o K 0 1 ) , c m - 1 2 9 m a x ( d e g ) i n d e x r a n g e s s c a n s p e e d ( d e g / m i n i n t o ) t e m p e r a t u r e r e fl e c t i o n s c o l l e c t e d u n i q u e r e fl e c t i o n s R ( m e r 9 ) ( % ) R e fi n e m e n t m e t h o d R i n d i c e s ( l > 2 6 ( l ) ) R i n d i c e s a l l d a t a A ( p ) ( e ' / A 3 ) E x t i n c t i o n c o e f fi c i e n t G O F ( A ) C r y s t a l P a r a m e t e r s H 3 R b 0 5 0 6 5 P V 2 2 7 . 4 0 0 . 4 2 X 0 . 2 4 X 0 . 0 2 t r i c l i n i c P 7 ( # 2 ) 6 . 2 8 5 ( 1 ) 6 . 2 9 1 ( 1 ) 6 . 8 4 9 ( 2 ) 8 9 7 3 ( 2 ) 1 0 7 . 7 9 ( 2 ) 9 0 1 5 ( 1 ) 2 5 7 . 8 ( 1 ) 2 2 . 9 2 9 2 1 9 6 4 . 1 3 ( B ) D a t a C o l l e c t i o n 5 0 0 S h . < _ 8 — 8 S k S 8 — 9 S l S 9 2 2 9 3 ( 2 ) K 1 6 2 3 1 4 9 8 2 . 0 9 ( C ) R e fi n e m e n t F u l l - m a t r i x l e a s t - s q u a r e s o n F 2 R 1 = 0 . 0 5 1 7 W R 2 = 0 . 1 4 7 4 R 1 = 0 . 0 9 2 1 W R 2 = 0 . 1 7 1 1 1 . 1 9 7 a n d — 0 . 9 0 6 0 . 0 2 3 ( 8 ) 1 . 1 4 9 H 3 R b 0 . 5 0 6 . 5 P V 2 2 7 . 4 0 0 . 4 2 X 0 . 2 4 X 0 . 0 2 t r i c l i n i c P 7 ( # 2 ) 6 . 2 7 2 ( 6 ) 6 . 2 7 8 ( 4 ) 6 . 7 9 7 ( 5 ) 8 9 7 0 ( 6 ) 1 0 7 . 7 7 ( 8 ) 9 0 . 1 0 ( 8 0 2 5 4 . 9 ( 3 ) 2 3 . 0 1 9 2 2 3 6 9 . 6 3 6 0 O s h s 8 — 8 s k s 8 — 9 s l s 9 2 1 7 u m k 1 m m « M 9 1 0 7 7 F u l l — m a t r i x l e a s t - s q u a r e s o n F 2 R 1 = 0 . 0 5 5 6 W R 2 = 0 . 1 5 0 8 R 1 = 0 . 0 9 2 4 W R 2 = 0 . 1 7 0 3 1 . 5 9 0 a n d - 1 . 6 1 4 0 . 1 1 8 ( 1 9 ) 1 . 0 6 4 8 1 T a b l e 2 . S e l e c t e d B o n d ( A ) f o r A x V 0 P 0 4 - n H 2 0 B o n d N a ; 1 ° K ” R h + d R b ” s ? “ C o “ v — o a x f 1 . 5 8 1 1 . 5 8 7 1 . 5 9 8 1 . 6 0 1 1 . 5 8 9 1 . 6 0 v — o w m 9 2 . 3 5 1 2 . 3 1 8 2 . 3 4 8 2 . 3 3 2 2 . 4 1 1 — — v — o e q m h 1 . 9 4 8 1 . 9 4 6 1 . 9 4 3 1 . 9 4 5 1 . 9 9 6 1 . 9 7 1 v — O W , h 1 . 9 6 0 1 . 9 5 4 1 . 9 5 2 1 . 9 4 8 2 . 0 0 4 1 . 9 7 1 v — o e q m , h 1 . 9 6 1 1 . 9 5 9 1 . 9 5 3 1 . 9 6 1 2 . 0 1 3 1 . 9 7 1 V — O e q ( 4 ) . h 1 . 9 6 5 1 . 9 6 5 1 . 9 7 1 1 . 9 7 7 2 . 0 1 6 1 . 9 7 1 A — o , . , , , 9 2 . 4 5 5 2 . 9 2 3 3 . 0 4 5 3 . 0 0 9 2 . 6 8 — A " " — o , , ( 2 , i 2 . 4 0 4 3 . 1 4 2 3 . 1 5 3 . 1 3 9 2 . 5 7 6 2 . 1 1 A " “ — o , . , , f — 2 . 7 9 3 2 . 8 4 2 2 . 8 3 0 2 . 8 0 2 . 1 4 ' T a k e n f r o m r e f e r e n c e 1 3 . b T a k e n f r o m r e f e r e n c e 1 4 . ° M e a n b o n d d i s t a n c e s . d X - r a y s t r u c t u r e d e t e r m i n a t i o n w a s c o n d u c t e d a t 2 9 3 K . ° X - r a y s t r u c t u r e d e t e r m i n a t i o n w a s c o n d u c t e d a t 1 7 3 K . ' R e f e r s t o t h e v a n a d y l o x y g e n a t o m . ° R e f e r s t o t h e w a t e r m o l e c u l e c o o r d i n a t e d a x i a l l y t o t h e v a n a d i u m c e n t e r . " R e f e r s t o t h e p h o s p h a t e o x y g e n a t o m s . ' R e f e r s t o t h e i n t e r l a y e r w a t e r m o l e c u l e , w h i c h i s n o t c o o r d i n a t e d t o t h e v a n a d i u m a t o m . 8 2 ( A ) A a ‘ 1 ? ) ( e 3 ' 1 ‘ ‘ 5 ' 3 3 i 3 b ( B ) F i g u r e 2 . I n t r a l a y e r f r a m e w o r k o f R b o _ 5 V 0 P 0 4 - 1 . 5 H 2 0 ( A ) . T h e l a y e r i s b u i l t u p b y f u s r o n o f c h a i r - l i k e e i g h t — m e m b e r e d r i n g s d i s p l a y e d i n ( B ) . 8 3 c o m p o s e d o f d i s t o r t e d v a n a d i u m o c t a h e d r a a n d p h o s p h a t e t e t r a h e d r a . E a c h v a n a d i u m o c t a h e d r o n s h a r e s i t s f o u r e q u a t o r i a l o x y g e n a t o m s w i t h f o u r d i f f e r e n t p h o s p h a t e s . T h e m e a n V — O e q , b o n d d i s t a n c e i s a p p r o x i m a t e l y 1 . 9 6 A f o r t h e a l k a l i m e t a l d e r i v a t i v e s , a n d s l i g h t l y h i g h e r a t 2 . 0 1 A f o r t h e a l k a l i n e e a r t h ( T a b l e 2 ) . T h e a x i a l p o s i t i o n s a r e o c c u p i e d b y a v a n a d y l o x y g e n ( m e a n d i s t a n c e 1 . 5 9 A ) a n d a w e a k l y c o o r d i n a t e d w a t e r m o l e c u l e t h a t f o r m s a l o n g 0 — V b o n d r a n g i n g f r o m 2 . 3 2 t o 2 . 4 1 A . S u c h a n a r r a n g e m e n t l e a d s t o t h e f o r m a t i o n o f e i g h t - m e m b e r r i n g s , w h i c h a d o p t a c h a i r — l i k e c o n f o r m a t i o n d e s i g n a t e d a s D V H ( F i g u r e 2 ( 8 ) ) b y V i l l e n e u v e a n d c o w o r k e r s ” . T h e i n t e r c a l a t e d i o n s a r e l o c a t e d w i t h i n p o l a r p o c k e t s c r e a t e d b y t h e p h o s p h a t e o x y g e n a t o m s . T h e i r c o o r d i n a t i o n s p h e r e i n c l u d e s t h e w a t e r m o l e c u l e s b o u n d t o t h e v a n a d y l a x i a l p o s i t i o n s i n r e l a t i v e l y c l o s e p r o x i m i t y f o r t h e N a + a n d S r 2 + i o n s , b u t a t m u c h l o n g e r d i s t a n c e s f o r t h e K + a n d R b + o n e s ( T a b l e 2 ) . A n a d d i t i o n a l i n t e r l a y e r w a t e r m o l e c u l e i s l o c a t e d s o t h a t i t c a n h y d r o g e n b o n d t o p h o s p h a t e s o f d i f f e r e n t l a y e r s ( F i g u r e 3 ) , c o m p l e m e n t i n g t h e c o o r d i n a t i o n s p h e r e o f t h e m e t a l i o n s . T h e s i n g l e c r y s t a l X — r a y s t r u c t u r e d e t e r m i n a t i o n o f t h e R b ” d e r i v a t i v e a t t w o d i f f e r e n t t e m p e r a t u r e s ( 2 9 3 a n d 1 7 3 K ) , r e v e a l e d n o m a j o r s t r u c t u r a l d i f f e r e n c e s . I n b o t h i n s t a n c e s o n l y o n e u n i q u e v a n a d i u m a t o m i s f o u n d i n t h e u n i t c e l l i n d i c a t i n g t h a t t h e m e a n o x i d a t i o n s t a t e o f e a c h m e t a l c e n t e r i s + 4 . 5 . E f f o r t s t o s o l v e t h e s t r u c t u r e i n t h e n o n - c e n t r o s y m m e t r i c s p a c e g r o u p P 1 w e r e u n s u c c e s s f u l s i n c e a n R 1 f a c t o r o f 1 4 % w a s o b t a i n e d . T h e s e f o u r d e r i v a t i v e s a r e i s o s t r u c t u r a l w i t h o n l y s u b t l e d i f f e r e n c e s i n t h e i n t r a l a y e r f r a m e w o r k a r i s i n g f r o m i o n s i z e a n d d i s s i m i l a r n u m b e r s o f w a t e r m o l e c u l e s c o o r d i n a t e d t o t h e m e t a l c a t i o n s . H o w e v e r , t h e r e l a t i v e p o s i t i o n s o f a d j a c e n t l a y e r s v a r y , r e s u l t i n g i n c r y s t a l l i z a t i o n o f t h e s e m a t e r i a l s i n d i f f e r e n t s p a c e g r o u p s ” . U p o n m e t a l i n t e r c a l a t i o n , o n e e l e c t r o n r e d u c t i o n o f h a l f a n d a l l v a n a d i u m s i t e s o c c u r s f o r t h e a l k a l i a n d a l k a l i n e e a r t h c a t i o n s r e s p e c t i v e l y . T h e 8 4 F i g u r e 3 . T h e t h r e e — d i m e n s i o n a l s t r u c t u r e o f l a y e r e d R b o . 5 V 0 P 0 4 - 1 . 5 H 2 0 . 8 5 n e g a t i v e l y c h a r g e d l a y e r s a r e b r o u g h t c l o s e r t o g e t h e r b y e l e c t r o s t a t i c i n t e r a c t i o n w i t h t h e m e t a l i o n s . I n t e r l a y e r d — s p a c i n g s o f 6 . 5 7 , 6 . 4 0 , 6 . 5 1 , 6 . 3 3 A a r e o b s e r v e d f o r i n t e r c a l a t e s o f t h e h y d r a t e d m e t a l c a t i o n s , N a + - 2 H 2 0 , K + - 1 . 5 H 2 0 , R b + - 1 . 5 H 2 0 , a n d S r 2 + - 2 H 2 0 r e s p e c t i v e l y . T h e v a r i a t i o n s a m o n g t h e s e n u m b e r s a r e s m a l l i n l i g h t o f t h e ~ 1 A e l e c t r o s t a t i c c o m p r e s s i o n , r e l a t i v e t o t h e d - s p a c i n g o f 7 . 4 3 A 1 6 f o r t h e n e u t r a l p a r e n t V 0 P 0 4 - 2 H 2 0 l a y e r e d c o m p o u n d . T h e C o o , 5 V 0 P 0 4 - 2 H 2 0 d e r i v a t i v e 1 4 d i s p l a y s a s l i g h t l y d i f f e r e n t b o n d i n g s c h e m e , w i t h v a n a d i u m c e n t e r s b e i n g f i v e - c o o r d i n a t e d a d o p t i n g a s q u a r e p y r a m i d a l s t e r e o c h e m i s t r y . T h e s i x t h p o s i t i o n , a x i a l t o t h e v a n a d y l , i s e m p t y d u e t o t h e c o o r d i n a t i o n r e q u i r e m e n t s o f t h e p a r a m a g n e t i c C o 2 + i o n . F o u r w a t e r m o l e c u l e s l o c a t e d i n t h e i n t e r l a y e r s p a c e h y d r a t e t h i s i o n i n t h e e q u a t o r i a l p l a n e ( F i g u r e 4 ) w i t h C o — 0 W d i s t a n c e o f 2 . 1 1 A , w h i l e t h e a x i a l p o s i t i o n s a r e o c c u p i e d b y w e a k l y b o u n d v a n a d y l o x y g e n a t o m s o f a d j a c e n t l a y e r s ( C o — 0 3 2 , 2 . 1 4 A ) f o r m i n g l i n e a r V — 0 , , x — C o — O a x , — V c h a i n s . T h e l o c a l s y m m e t r y a r o u n d t h e C o 2 + i o n i s D 4 ) , w i t h t h e 4 — f o l d r o t a t i o n a x i s p a s s i n g t h r o u g h t h e l i n e a r c h a i n . D u e t o t h i s i n t e r l a y e r a r r a n g e m e n t a n e x p a n d e d d — s p a c i n g o f 6 . 7 1 A i s o b s e r v e d . T h e p u r i t y o f t h e f i v e c o m p o u n d s s y n t h e s i z e d w a s m a i n l y v e r i fi e d b y p o w d e r X - r a y m e t h o d s ( P X R D ) . F r o m t h e k n o w n p o s i t i o n a l p a r a m e t e r s a n d c r y s t a l l o g r a p h i c d a t a , t h e o r e t i c a l P X R D p a t t e r n s w e r e c a l c u l a t e d a n d c o m p a r e d t o a c t u a l e x p e r i m e n t a l d a t a . T h e s e l a y e r e d m a t e r i a l s a r e s u s c e p t i b l e t o p r e f e r r e d o r i e n t a t i o n e f f e c t s u p o n p a c k i n g o f t h e p o w d e r s o n t h e s a m p l e h o l d e r b y a g l a s s s l i d e ( e x p e r i m e n t a l d e t a i l s c a n b e f o u n d i n C h a p t e r 2 ) . A l e s s b i a s e d p a t t e r n i s o b t a i n e d w h e n t h e p o w d e r s a m p l e s a r e d i s p e r s e d w i t h t h e a i d o f a l o w b o i l i n g s o l v e n t , l i k e e t h e r . B o t h a p p r o a c h e s w e r e f o l l o w e d f o r t h e s a m p l e p r e p a r a t i o n . F i g u r e 5 d i s p l a y s t h e P X R D p l o t s o f t h e N a ” , R b ” , a n d S r 2 + d e r i v a t i v e s w i t h t h e m a i n d i f f r a c t i o n l i n e s i n d e x e d . I n a d d i t i o n t o t h e u s u a l 0 0 l l i n e s e x p e c t e d f o r 8 6 F i g u r e 4 . T h e D 4 ) 1 c o o r d i n a t i o n o c t a h e d r o n o f t h e C o 2 + i o n i n C o o , 5 V 0 P 0 4 - 2 H 2 0 . 8 7 d n o c e S r e p s t n u o C d n o c e S r e p s t n u o C d n o c e S r e p s I R I T T I W I T F T T I I I I I t I n u I I I o I C I T I I I T j T T I 1 4 0 0 0 0 0 2 1 2 0 0 0 1 0 0 0 0 8 0 0 0 6 0 0 0 ( A ) 4 0 0 0 0 0 4 0 0 6 2 0 0 0 1 0 1 2 0 2 5 0 0 0 0 1 0 0 2 2 0 0 0 2 2 0 1 5 0 0 ( B ) 1 0 0 0 5 0 0 2 0 1 2 0 , 0 1 3 \ L L J t t i t i t l g t L g l L t I L J g t I t l 1 1 1 1 1 1 1 ) 0 1 0 2 0 3 0 4 0 5 0 6 0 2 0 0 6 0 0 0 2 2 0 5 0 0 0 0 0 2 4 0 0 0 ( C ) 3 0 0 0 2 2 1 1 1 3 1 1 3 E I W T J J J P ‘ A ’ I ‘ L I _ I 1 l l 1 2 0 0 0 1 0 0 0 U ! . 5 O _ L 0 1 N O N U ! ( A ) O 3 5 4 0 F i g u r e 5 . P o w d e r X — r a y s p e c t r a o f t h e N a + ( A ) , R b “ ( B ) , a n d S r 2 + ( C ) d e r i v a t i v e s o f t h e v a n a d y l p h o s p h a t e l a y e r e d m a t e r i a l . 0 n t h e t o p o f t h e m a i n d i f f r a c t i o n l i n e s a r e i n d i c a t e d t h e c o r r e s p o n d i n g h k l i n d i c e s . 8 8 l a y e r e d m a t e r i a l s , a l a r g e n u m b e r o f d i f f r a c t i o n p e a k s o r i g i n a t i n g f r o m i n t r a l a y e r o r d e r a r e o b s e r v e d . A d e t a i l e d c o m p a r i s o n o f t h e o r e t i c a l a n d e x p e r i m e n t a l d i f f r a c t i o n p a t t e r n s i n d i c a t e s t h e m a t e r i a l s ' p u r i t y . 0 n t h e o t h e r h a n d , t h e c a s e s o f t h e K + a n d C o ” d e r i v a t i v e s w e r e n o t t r i v i a l . R e p e a t e d s y n t h e t i c a t t e m p t s f o r m e d m u l t i — p h a s e p r o d u c t s , a s j u d g e d b y d i f f r a c t i o n l i n e s n o t c o r r e s p o n d i n g t o t h e t h e o r e t i c a l P X R D p a t t e r n ( s h o w n i n F i g u r e 6 ( A ) a n d F i g u r e 7 ( A ) r e s p e c t i v e l y ) . S m a l l a d j u s t m e n t s i n t h e r a t i o o f s t a r t i n g m a t e r i a l s a n d i n c r e a s e d r e a c t i o n t i m e s ' l e d t o t h e i s o l a t i o n o f s i n g l e — p h a s e s , w h o s e s p e c t r a a r e d e p i c t e d i n F i g u r e 6 ( 8 ) a n d F i g u r e 7 ( B ) r e s p e c t i v e l y . T h e t h e r m o g r a v i m e t r i c a n a l y s i s p l o t s ( T G A ) o f t h e i n t e r c a l a t e d d e r i v a t i v e s d i s p l a y e d a t w o - s t e p w a t e r l o s s ( F i g u r e 8 ( A ) ) . T h e fi r s t s t e p , c o r r e s p o n d i n g t o t h e l o s s o f t h e w e a k l y c o o r d i n a t e d i n t r a l a y e r w a t e r , o c c u r r e d a t ~ 1 0 0 C ° f o r t h e N a ” , ~ 8 0 C ° f o r t h e K “ , a n d ~ 7 5 C ° f o r t h e R b + i o n s . T h e s e c o n d s t e p , c o r r e s p o n d i n g t o t h e w a t e r m o l e c u l e c o o r d i n a t e d t o t h e v a n a d i u m a t o m , o c c u r r e d a t h i g h e r t e m p e r a t u r e s ( ~ 2 3 0 C ° f o r N a “ , ~ 1 8 5 C ° f o r K ‘ , a n d ~ 1 7 5 C ° f o r R b " ) . T h e w a t e r l o s s t e m p e r a t u r e c o r r e l a t e s w i t h t h e c a t i o n t o w a t e r b o n d d i s t a n c e a s d e p i c t e d i n F i g u r e 9 . F o r t h e C o 2 + i n t e r c a l a t e d d e r i v a t i v e m u c h h i g h e r t e m p e r a t u r e w e r e r e q u i r e d t o r e m o v e t h e i n t r a l a y e r w a t e r , w h i c h i s i n c l o s e p r o x i m i t y ( 2 . 1 1 A ) w i t h t h e p a r a m a g n e t i c i o n ( F i g u r e 8 ( C ) ) . M u l t i — p h a s e m a t e r i a l s o n t h e o t h e r h a n d d i s p l a y e d T G A p l o t s s i m i l a r t o t h o s e o b t a i n e d b y t h e a l k a l i m e t a l d e r i v a t i v e s ( F i g u r e 8 ( B ) ) . I n a d d i t i o n , t h e w a t e r c o n t e n t c a l c u l a t e d f o r a s i n g l e — p h a s e w a s 1 . 9 p e r f o r m u l a u n i t , w h i l e t h e c o r r e s p o n d i n g a m o u n t f o r v a r i o u s m u l t i — p h a s e s a m p l e s v a r i e d f r o m 2 . 2 t o 2 . 6 p e r f o r m u l a u n i t . G e n t l e h e a t i n g a t l o w t e m p e r a t u r e s ( ~ 4 5 t o 5 0 C ° ) r e s u l t e d i n r e m o v a l o f m o s t o f t h e a d d i t i o n a l w a t e r , b u t c o m p l e t e t r a n s f o r m a t i o n o f t h e m u l t i - p h a s e m a t e r i a l s t o a s i n g l e - p h a s e w a s n e v e r a c h i e v e d . 8 9 0 l I I I I I T I I D I I j ‘ l l fi l l l I l l l d n o c e S r e p s t n l u o C I I fi I l I I l 1 0 0 0 0 8 0 0 0 I I I I I I I 6 0 0 0 0 1 4 0 0 0 C o u n t s p e r S e c o n d 2 0 0 0 1 0 0 0 0 0 0 0 1 8 0 0 0 0 6 0 0 0 0 I 4 0 0 0 0 2 0 0 0 0 0 0 2 0 0 3 0 1 1 1 1 1 1 1 e r 1 A I L I l I I J I I I I I l l T ‘ r r I r l l I L I r i l I t t t t t ' I r L i l t l j 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 2 0 F i g u r e 6 . P o w d e r X — r a y s p e c t r a o f t h e K + d e r i v a t i v e . T h e t o p s p e c t r u m b e l o n g s t o a m u l t i — p h a s e s a m p l e , w i t h t h e a r r o w s i n d i c a t i n g t h e p e a k s t h a t d o n o t c o r r e s p o n d t o t h e c a l c u l a t e d d i f f r a c t i o n l i n e s ( A ) . T h e s p e c t r u m o f a s i n g l e — p h a s e m a t e r i a l i s s h o w n b e l o w w i t h t h e m a i n d i f f r a c t i o n l i n e s i n d e x e d ( B ) . 9 0 2 5 0 0 0 f 0 0 2 E 2 0 0 0 0 } O . . . m . — ‘ 4 : _ 3 1 5 0 0 0 _ 9 : { 3 1 0 0 0 0 1 \ ' . : l e K J o > ~ U I 5 0 0 0 ~ I L \ ' 0 0 4 0 : 1 1 I 1 1 4 7 1 ) 1 ‘ 1 1 4 1 I l l H l e l J T Y R I f A ’ I — fl l 1 0 1 5 2 0 2 5 3 0 2 ( ) 6 0 0 0 : — 0 0 2 E . 2 5 0 0 0 : — O _ 8 t ( I ) 4 0 0 0 f h l — 8 ; ' 3 3 0 0 0 j 0 9 4 C I 8 ; o 2 0 0 0 : 1 0 0 0 : — . l E j ) 1 0 1 1 0 ( 3 ) 2 0 0 2 2 : 2 0 4 0 0 6 0 ‘ 3 1 l t l l ' l t h T l t l t l H t I d l ' t fl ' t l f ‘ t l t m 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 2 ( 3 F i g u r e 7 . P o w d e r X — r a y s p e c t r a o f t h e C o 2 + d e r i v a t i v e . T h e t o p s p e c t r u m b e l o n g s t o a m u l t i — p h a s e s a m p l e , w i t h t h e a r r o w s i n d i c a t i n g t h e p e a k s t h a t d o n o t c o r r e s p o n d t o t h e c a l c u l a t e d d i f f r a c t i o n l i n e s ( A ) . T h e s p e c t r u m o f a s i n g l e — p h a s e m a t e r i a l i s s h o w n b e l o w w i t h t h e m a i n d i f f r a c t i o n l i n e s i n d e x e d ( B ) . 9 1 1 0 0 C ° 1 0 0 ; ~ / " I i 3 9 5 7 2 3 0 0 0 5 5 / ' a ; 9 0 5 3 : e \ ° 8 5 , L t 8 0 5 t t h i t 1 4 . t 4 . l t l . 3 . . l . 2 1 4 1 . . . . 4 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 T I C ° 1 0 0 : 7 5 0 ° m I / 8 9 5 — - ' : E 9 0 ; 1 7 0 C ° s / ° \ . 8 5 % 8 0 5 . . . . l . t . . l . t . 4 4 . . . . u t . . . t . . . . l 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 T I C ° 1 0 0 : , 2 2 0 0 ° m i 8 9 5 r ‘ / - 3 t E , 9 0 : 4 0 0 0 ° ' 5 j / 3 t . \ ° 8 5 } 8 0 L t L l 1 t t . l 1 , , , J 1 L , , , 1 l A 1 1 J 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 T I C ° F i g u r e 8 . T G A p l o t s o f t h e N a + ( A ) , m u l t i - p h a s e C o 2 + ( B ) , a n d s i n g l e — p h a s e C o 2 + ( C ) i n t e r c a l a t e d d e r i v a t i v e s o f l a y e r e d v a n a d y l p h o s p h a t e . T h e w a t e r l o s s s t e p s a r e c e n t e r e d a r o u n d t h e t e m p e r a t u r e s i n d i c a t e d b y t h e a r r o w s . 9 2 I I I I I j I I I I F — I T T I fl I T I I T — l l T — j i f h t l T l r e t a w N o o 1 0 5 1 0 0 I I I I I I I I I I ’ l 9 5 ( A ) 9 0 T w a t e r l o s s I c a 8 5 8 0 7 5 7 o 1 I t l l _ l _ 1 _ t t I 1 1 J I L t l I 2 . 4 2 . 6 2 . 8 3 . 0 3 . 2 I I I W I T — T I I I I I . s ( D O 1 7 o d i t t l t x t l l l j l t I t l t t I I t l t I t l t l I t I l t l 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3 . 0 3 . 1 d M + x _ 0 M 1 ) F i g u r e 9 . C o r r e l a t i o n o f t h e w a t e r l o s s t e m p e r a t u r e w i t h t h e c a t i o n t o w a t e r b o n d d i s t a n c e ( f o r t h e N a “ , K , a n d R b “ d e r i v a t i v e s ) , f o r e a c h c r y s t a l l o g r a p h i c a l l y u n i q u e w a t e r m o l e c u l e ( ( A ) a n d ( B ) ) . 9 3 I n f r a r e d s p e c t r a r e c o r d e d f o r p o w d e r s a m p l e s d i s p l a y c h a r a c t e r i s t i c p e a k s l i s t e d a n d a s s i g n e d i n T a b l e 3 . T h e a l k a l i a n d t h e a l k a l i n e e a r t h d e r i v a t i v e s d i s p l a y a r e l a t i v e l y s i m i l a r i n f r a r e d p a t t e r n i n d i c a t i n g t h e i s o s t r u c t u r a l n a t u r e o f t h e i n t r a l a y e r f r a m e w o r k . I t i s i n t e r e s t i n g t o n o t e t h e c o m p l e x i t y o f t h e s p e c t r u m i n t h e r e g i o n c o r r e s p o n d i n g t o P — 0 , V = 0 , a n d V — 0 s t r e t c h e s f o r t h e s e d e r i v a t i v e s ; t h e s e r e g i o n s s h o w o n l y t w o l i n e s i n t h e m o r e s y m m e t r i c i n t e r l a y e r f r a m e w o r k o f t h e C o 2 + o n e . O n t h e o t h e r h a n d , a m u l t i — p h a s e s a m p l e o f t h e l a t t e r c o m p o u n d , w h i c h c o n t a i n s a h i g h e r a m o u n t o f i n t e r l a y e r w a t e r , d i s p l a y s a p a t t e r n s i m i l a r t o t h a t o f t h e f o r m e r d e r i v a t i v e s ( F i g u r e 1 0 ) . b . M a g n e t i c P r o p e r t i e s S t a t i c S o l i d S t a t e 3 1 P N M R . O x o v a n a d i u m ( I V ) p h o s p h a t e s o f f e r a l a r g e v a r i e t y o f c r y s t a l s t r u c t u r e s y i e l d i n g d i f f e r e n t t y p e s o f l o w — d i m e n s i o n a l m a g n e t i c i n t e r a c t i o n s z . T h e i r m a g n e t i c b e h a v i o r o r i g i n a t e s e i t h e r f r o m i s o l a t e d v a n a d y l d i m e r s , o r f r o m r e g u l a r a n d d o u b l e v a n a d y l c h a i n s , o r f r o m t w o - d i m e n s i o n a l l a t t i c e s 7 . A l t h o u g h a l l o f t h e s t r u c t u r a l f r a m e w o r k s a r e b a s e d o n l i n k i n g o f V 0 5 o c t a h e d r a t o P 0 4 t e t r a h e d r a , t h e m a g n e t i c p r o p e r t i e s d i f f e r n o t o n l y o n t h e t y p e o f i n t e r a c t i o n b u t a l s o o n t h e i r s t r e n g t h . T h e c l a s s i fi c a t i o n o f e x c h a n g e p a t h w a y s b y V i l l e n e u v e a n d c o w o r k e r s ” , p o s t u l a t e d t h e i n v o l v e m e n t t o s o m e e x t e n t o f t h e p h o s p h a t e t e t r a h e d r a ( F i g u r e 8 , C h a p t e r 1 ) . F i r m e v i d e n c e f o r t h e a b o v e h y p o t h e s i s w a s p r o v i d e d f r o m 3 1 P — N M R s p e c t r o s c o p y 5 ' 1 7 , w h i c h r e v e a l e d n o n z e r o s p i n d e n s i t y o n p h o s p h o r u s . W e h a v e a p p l i e d t h e s a m e a p p r o a c h t o t h e l a y e r e d A x V 0 P 0 4 - n H 2 0 f a m i l y , i n o r d e r t o e l u c i d a t e t h e n a t u r e o f t h e s u p e r e x c h a n g e p a t h w a y . I n a t r a n s i t i o n m e t a l o r I a n t h a n i d e c o m p l e x , w h e r e u n p a i r e d e l e c t r o n s r e s i d e o n t h e m e t a l n u c l e i , s o m e o f t h e s p i n d e n s i t y m i g h t b e t r a n s f e r r e d t o t h e 9 4 T a b l e 3 . I n f r a r e d P e a k s a n d A s s i g n m e n t f o r A " + o , 5 V 0 P 0 4 - n H 2 0 N a 3 5 5 0 ( m ) 3 5 2 8 ( m ) 3 4 6 0 t o 3 3 3 5 1 6 5 3 t o 1 6 0 3 1 1 7 1 ( m ) 1 0 8 8 ( s ) 1 0 0 9 ( s ) 9 6 7 ( s ) 9 0 4 ( s ) K 3 5 2 8 ( m ) 3 4 1 5 ( m ) 3 1 6 9 1 6 5 0 t o 1 6 4 0 1 6 1 5 ( m ) 1 1 7 1 ( m ) 1 0 8 8 ( s ) 1 0 3 4 ( s ) 9 6 7 ( s ) 9 0 6 ( s ) R b S f C O s _ p h _ 3 5 4 7 ( m ) 3 5 6 1 ( m ) 3 5 0 4 ( m ) 3 4 1 5 ( m ) 3 4 2 1 ( m ) 3 3 4 5 ( m ) 3 1 6 9 ( m ) 3 0 8 0 ( m ) 3 2 8 6 ( s ) 1 6 5 3 1 6 5 5 ( m ) t o 1 6 0 3 1 6 4 6 t o 1 6 3 2 ( m ) 1 6 3 4 1 6 1 7 ( m ) 1 6 0 7 ( m ) 1 1 7 1 ( m ) 1 0 9 7 1 1 2 2 ( m ) 1 1 2 1 ( m ) t o 1 0 8 2 1 0 3 4 ( 5 ) 1 0 5 0 ( s ) 1 0 1 3 ( s ) 1 0 1 0 ( 5 ) 1 0 1 3 ( 3 ) 9 6 4 ( s ) 9 8 6 ( s ) 9 0 4 ( s ) 8 9 8 ( m ) O o m p h . 3 4 3 5 V ( 0 H ) 3 2 8 4 1 6 5 3 t o 1 6 0 3 5 ( H 0 H ) 1 0 8 1 ( m ) V a s ( P 0 ) 1 0 3 5 ( S ) 9 9 9 ( s ) W . , ) , 9 5 9 ( s ) W . , ) , V ( P 0 ) 9 5 ( A ) ( B ) ( C ) l l l l l l l l l l l l l l l l l l l l l l L l l l l l l l J 1 2 0 0 1 1 5 0 1 1 0 0 1 0 5 0 1 0 0 0 9 5 0 9 0 0 F i g u r e 1 0 . D e t a i l o f t h e i n f r a r e d s p e c t r a o f 8 r o , 5 V 0 P 0 4 - 2 H 2 0 ( A ) , s i n g l e — p h a s e C o o _ 5 V 0 P 0 4 - 2 H 2 0 ( B ) , a n d m u l t i — p h a s e C o o _ 5 V 0 P 0 4 - 2 H 2 0 ( C ) . d i a m a g n e t i c l i g a n d s . F o r l i g a n d s p o s s e s s i n g m a g n e t i c n u c l e i ( I # 0 ) , t h e s p i n a n d n u c l e a r m o m e n t s m a y i n t e r a c t v i a t h e F e r m i c o n t a c t 1 8 o r d i p o l e — d i p o l e 1 9 c o u p l i n g . T h e f o r m e r t e r m i n v o l v e s t h e i n t e r a c t i o n o f t h e n u c l e a r m o m e n t w i t h t h e e l e c t r i c c u r r e n t s a r i s i n g f r o m e l e c t r o n d e n s i t y a t t h e n u c l e u s a n d t a k e s t h e f o r m H , = A s S - I ( 3 . 1 ) g i v i n g r i s e t o o b s e r v a b l e c o n t a c t s h i f t s i n t h e N M R s p e c t r u m 2 0 o r n u c l e a r m u l t i p l e t s t r u c t u r e i n t h e E P R s p e c t r u m 2 1 w i t h A s = ( 8 1 t / 3 ) y ~ t h | ‘ I ’ ( 0 ) | 2 ( 3 . 2 ) w h e r e | ‘ I ’ ( 0 ) | 2 i s t h e p r o b a b i l i t y o f fi n d i n g t h e e l e c t r o n o n t h e n u c l e u s . T h u s i s o t r o p i c F e r m i c o u p l i n g c o n s t a n t s a r i s e o n l y f r o m s p i n i n s o r b i t a l s , a n d A s i s a l i n e a r f u n c t i o n o f t h i s s p i n d e n s i t y . D i p o l a r s h i f t s o n t h e o t h e r h a n d a r i s e f r o m a t h r o u g h — s p a c e d i p o l a r i n t e r a c t i o n b e t w e e n t h e e l e c t r o n i c m a g n e t i c m o m e n t , u a n d t h e m a g n e t i c m o m e n t h y N I o f t h e r e s o n a t i n g n u c l e u s w h i c h d o e s n o t v a n i s h f o r m a g n e t i c a l l y a n i s o t r o p i c s y s t e m s . T h e c o r r e s p o n d i n g h a m i l t o n i a n t a k e s t h e f o r m 3 O S O I S C I ( ' r 3 5 “ ) _ } ( 3 . 3 ) 3 H 2 = h Y N g B { r w i t h r b e i n g t h e v e c t o r l o c a t i n g t h e e l e c t r o n r e l a t i v e t o n u c l e u s . T h i s t e r m a v e r a g e s o v e r t h e p r o b a b i l i t y d i s t r i b u t i o n | ‘ I ’ ( r ) | 2 f o r t h e e l e c t r o n , w h i c h i s z e r o f o r a s p h e r i c a l d i s t r i b u t i o n a s i t i s f o r 8 t y p e o r b i t a l s . T h e a b o v e e f f e c t s i n fl u e n c e t h e N M R s h i f t s o f n u c l e i l o c a t e d i n r e l a t i v e l y c l o s e p r o x i m i t y t o p a r a m a g n e t i c c e n t e r s . A l a r g e p a r a m a g n e t i c s h i f t i s o b s e r v e d w i t h r e s p e c t t o s h i f t s o f t h e c o r r e s p o n d i n g n u c l e i i n s i m i l a r d i a m a g n e t i c e n v i r o n m e n t s . I n t h e A X V 0 P 0 4 - n H 2 0 f a m i l y , i n t e r c a l a t i o n o f t h e m e t a l i o n p l a c e s u n p a i r e d e l e c t r o n s o n t h e v a n a d y l c e n t e r s a n d t h e r e f o r e t h e i r 3 1 P — N M R s p e c t r a 9 7 a r e e x p e c t e d t o d i f f e r s i g n i fi c a n t l y f r o m t h a t o f t h e i r d i a m a g n e t i c p a r e n t V 0 P 0 4 - 2 H 2 0 . F i g u r e 1 1 ( A ) d i s p l a y s t h e n o n s p i n n i n g s o l i d — s t a t e 3 1 P — N M R o f t h e l a t t e r c o m p o u n d a t 2 9 3 K . A s i n g l e n a r r o w p e a k i s o b s e r v e d c e n t e r e d a t 6 . 9 8 p p m w i t h r e f e r e n c e t o 8 5 % H 3 P 0 4 , c o m p a r i n g w e l l t o l i t e r a t u r e d a t a c o n c e r n i n g d i a m a g n e t i c p h o s p h a t e s ” . S i m i l a r c h e m i c a l s h i f t s h a v e a l s o b e e n o b s e r v e d i n v a n a d i u m p h o s p h a t e c o m p o u n d s ( V P O ) u t i l i z e d i n i n d u s t r y f o r t h e c a t a l y t i c t r a n s f o r m a t i o n o f n — b u t a n e t o m a l e i c a n h y d r i d e , f o r t h e p h o s p h a t e g r o u p s l o c a t e d i n t h e v i c i n i t y o f d i a m a g n e t i c V 5 + c e n t e r s ” . A d d i t i o n a l s p e c t r a r e c o r d e d a t t e m p e r a t u r e s r a n g i n g f r o m 1 7 3 t o 2 9 3 K i n d i c a t e d t h a t t h i s r e s o n a n c e i s t e m p e r a t u r e i n d e p e n d e n t . D o p i n g o f t h e V 0 P 0 4 - 2 H 2 0 l a t t i c e w i t h C o 2 + i o n s p l a c e s o n e e l e c t r o n p e r v a n a d y l c e n t e r o n t h e m e t a l ' s d x y o r b i t a l . F i g u r e 1 1 ( B ) d i s p l a y s t h e 3 1 P - — N M R s p e c t r u m o f t h e i n t e r c a l a t e d p h a s e a t r o o m t e m p e r a t u r e , w h e r e a s i n g l e r e s o n a n c e i s o b s e r v e d c e n t e r e d a t 4 5 3 p p m . S u c h a l a r g e p a r a m a g n e t i c s h i f t m a y b e c a u s e d b y s t r o n g s p i n - o r b i t c o u p l i n g 2 4 a n d / o r m a g n e t i c e x c h a n g e ” . F o r V 4 + i o n s o n l y t h e l a t t e r i s o p e r a t i n g s . T h e e x c h a n g e m e c h a n i s m s h o u l d i n v o l v e s p i n t r a n s f e r t h r o u g h 8 a n d p p h o s p h o r u s o r b i t a l s . T h e s p i n d e n s i t y i n s o r b i t a l s i s t h e o r i g i n o f t h e i s o t r o p i c s h i f t o r i g i n a t i n g f r o m t h e F e r m i c o n t a c t t e r m ( e q . 3 . 1 ) , w h i l e t h e c o n t r i b u t i o n o f t h e p o r b i t a l s m a n i f e s t s i t s e l f i n t h e a n i s o t r o p y o f t h e l i n e , i n c l u d i n g t h e d i p o l e — d i p o l e t e r m ( e q . 3 ) . G i v e n t h e l o w l o c a l s y m m e t r y o f t h e v a n a d y l c e n t e r s ( C w ) i n t h e i n t r a l a y e r f r a m e w o r k , t h e g r o u n d s t a t e t e r m c o r r e s p o n d s t o a B 2 s t a t e w i t h l o w — l y i n g e x c i t e d s t a t e s n o t t h e r m a l l y a c c e s s i b l e ” . H e n c e , m i x i n g o f e x c i t e d s t a t e s i n t o t h e g r o u n d s t a t e i s p o s s i b l e o n l y v i a s p i n — o r b i t c o u p l i n g , w h i c h i s r e l a t i v e l y s m a l l f o r t h e V 4 + i o n , r e s u l t i n g i n a s m a l l 9 f a c t o r a n i s o t r o p y . T o a fi r s t a p p r o x i m a t i o n , c o n s i d e r i n g a l s o t h e l a r g e d i s p l a c e m e n t b e t w e e n t h e e l e c t r o n l o c a t e d o n t h e V 4 + i o n a n d t h e 3 1 P m a g n e t i c n u c l e u s , t h e d i p o l e — d i p o l e t e r m c a n b e i g n o r e d ” . T h u s , t a k i n g o n l y i n t o 9 8 1 4 0 0 1 3 0 0 1 0 0 0 I I O O 6 0 0 4 0 0 2 0 0 o - 2 0 0 4 0 0 4 0 0 - 0 0 0 - 1 0 0 0 4 2 0 0 9 9 - I T l l P P — r T l I ' 3 r l ' 2 5 0 0 2 0 0 0 1 5 0 0 1 0 0 0 5 0 0 0 - 5 0 0 - 1 0 0 0 - 1 5 0 0 p t ; - 1 ‘ 0 0 1 2 0 0 1 0 0 0 I 0 0 ‘ 0 0 ‘ 0 0 2 0 0 0 - 2 0 0 - ‘ 0 0 - 6 0 0 - 8 0 0 - 1 0 0 0 - 1 2 0 0 m F i g u r e 1 1 . R o o m t e m p e r a t u r e 3 1 P — N M R s p e c t r a o f V 0 P 0 4 - 2 H 2 0 ( A ) a n d o f i t s C o 2 + ( B ) a n d N a ” ( C ) m e t a l i n t e r c a l a t e d d e r i v a t i v e s . 9 9 a c c o u n t t h e e l e c t r o n a n d t h e n u c l e a r Z e e m a n t e r m s a n d t h e F e r m i c o n t a c t c o u p l i n g , t h e f o l l o w i n g e x p r e s s i o n d e s c r i b e s t h e i s o t r o p i c s h i f t A 6 = 3 1 3 3 ; : 1 “ ; A s ( 3 . 4 ) w h e r e 0 i s t h e W e i s s c o n s t a n t . E q u a t i o n 3 . 4 g i v e s a n e s t i m a t i o n o f t h e s p i n d e n s i t y t r a n s f e r i n t o t h e a t o m ' s 3 a t o m i c o r b i t a l s . I t a l s o i m p l i e s t h a t t h e i s o t r o p i c s h i f t s h o u l d b e t e m p e r a t u r e d e p e n d e n t i n a l i n e a r f a s h i o n . I n d e e d , t h e 3 ” P — N M R s h i f t o f t h e C o 2 + i n t e r c a l a t e d i s p l a y s s u c h a l i n e a r v a r i a t i o n w i t h t e m p e r a t u r e ( F i g u r e 1 2 ( D ) ) . E q u a t i o n 3 . 4 w a s fi t t e d t o t h e d a t a , w h e r e e a c h p o i n t i n t h e y — a x i s i s t h e i n v e r s e o f t h e d i f f e r e n c e b e t w e e n t h e o b s e r v e d c h e m i c a l s h i f t a n d t h e 3 1 P s h i f t c o r r e s p o n d i n g t o t h e d i a m a g n e t i c p a r e n t c o m p o u n d V 0 P 0 4 - 2 H 2 0 . A n A s v a l u e o f 6 . 5 M H z w a s o b t a i n e d ( T a b l e 4 ) c o r r e s p o n d i n g t o a s p i n d e n s i t y o f 6 . 4 x 1 0 ' 4 u n p a i r e d e l e c t r o n p e r p h o s p h o r u s 3 s o r b i t a l ( f o r a u n i t s p i n d e n s i t y i n t h e p h o s p h o r u s 3 s o r b i t a l t h e h y p e r fi n e c o u p l i n g c o n s t a n t i s 1 0 1 7 8 M H Z Z B ) . H o w e v e r , t h e e l e c t r o n i c s t a t e s o f p h o s p h o r u s i n p h o s p h a t e s a r e b e t t e r d e s c r i b e d b y s p 3 h y b r i d i z a t i o n . T h u s , t h e p r e s e n c e o f o n e e l e c t r o n i n a n s p 3 o r b i t a l w o u l d c o r r e s p o n d t o a h y p e r f i n e c o u p l i n g c o n s t a n t e q u a l t o o n e — f o u r t h t h a t f o r t h e f r e e a t o m , r e s u l t i n g i n a n e s t i m a t e d t r a n s f e r r e d s p i n d e n s i t y o f 2 . 5 x 1 0 ‘ 3 u n p a i r e d e l e c t r o n , a s s u m i n g t h e s p i n d e n s i t y r e s i d e s i n a n s p 3 h y b r i d . W h e n t h e m o n o v a l e n t N a + , K “ , a n d R b ” i o n s a r e i n t e r c a l a t e d w i t h i n t h e v a n a d y l p h o s p h a t e l a y e r e d f r a m e w o r k , h a l f o f t h e v a n a d y l c e n t e r s a r e r e d u c e d r e s u l t i n g i n m i x e d — v a l e n c e c o m p o u n d s . T h e i r 3 1 P — N M R s p e c t r a a l s o d i s p l a y p a r a m a g n e t i c s h i f t s t o w a r d s l o w fi e l d s , b u t t o a l e s s e r e x t e n t t h a n i n t h e C o ” i n t e r c a l a t e . F i g u r e 1 1 ( C ) s h o w s t h e r o o m t e m p e r a t u r e s p e c t r a o f t h e N a + i n t e r c a l a t e , w h i c h c o n s i s t s o f o n e r e s o n a n c e c e n t e r e d a t 2 0 7 p p m . S i m i l a r p e a k s 1 0 0 O O O ) " O m o O m 5 1 O 1 O O 0 ) “ m p p 0 ( 6 ’ 1 . 0 0 6 5 . 0 0 6 0 . 0 0 5 5 . 0 0 5 0 . 0 0 4 5 . 0 0 4 0 . 0 0 3 5 . 0 0 3 0 0 0 2 5 7 j 1 1 1 1 1 3 + l l | l l n l n n n n l l n n n ] 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 ( A ) T I K 0 . 0 0 4 8 0 . 0 0 4 6 0 . 0 0 4 4 0 . 0 0 4 2 1 ’ 5 ( P P m ' 1 ) 0 . 0 0 4 0 0 . 0 0 3 8 l l l l l l l l l l l l l l l ‘ 1 7 0 1 8 0 1 9 0 2 0 0 2 1 0 2 2 0 T I K 0 . 0 0 6 0 0 . 0 0 5 5 0 . 0 0 5 0 0 ( C ) 0 . 0 0 4 5 " 6 m o m “ ) 0 . 0 0 4 0 0 0 0 3 r l l l l l l l l l L J l l l l l l A l l J A J l l l l l 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0 2 6 0 2 8 0 3 0 0 T I K 0 . 0 0 2 4 0 . 0 0 2 2 0 . 0 0 2 0 ( D ) . 0 0 1 8 0 . 0 0 1 6 A I A l ‘ 4 J l l I A ‘ I l I l l I 1 l A J I I 1 8 0 2 0 0 2 2 0 2 4 0 2 6 0 2 8 0 3 0 0 T I K 0 . 0 0 1 4 F i g u r e 1 2 . T e m p e r a t u r e d e p e n d e n c e o f t h e i n v e r s e p a r a m a g n e t i c s h i f t o f N a “ ( A ) , K + ( B ) , R b “ ( C ) , a n d C o 2 + ( o ) d e r i v a t i v e s . 1 0 1 T a b l e 4 . F o r m u l a , s t r u c t u r e a n d m a g n e t i c d a t a f o r A 0 , 5 V 0 P 0 4 - n H 2 0 F o r m u l a 8 1 S t r u c t u r e A ” N a + R b + S r 2 + C o 2 l 1 2 . 0 1 . 5 1 . 5 2 . 0 2 . 0 M a g n e t i c D a t a d — S p a c e / A T m a x / K g e x p 6 . 5 7 6 . 4 0 6 . 5 1 6 . 3 3 6 . 7 1 6 . 0 5 . 5 1 . 9 6 1 . 9 6 1 . 9 6 1 . 9 6 J / k / K A 1 3 0 / M H z + 0 . 6 + 0 . 6 + 0 . 6 — 2 . 5 N M R D a t a 2 . 9 2 . 5 2 . 9 6 . 5 A 8 “ / p p m 2 0 7 1 6 5 2 3 2 4 4 6 ‘ V a l u e s o b t a i n e d a t 2 9 3 K . 1 0 2 a r e d i s p l a y e d b y t h e K “ , a n d R b + d e r i v a t i v e s ( T a b l e 4 ) , w h i c h a l s o s h o w a l i n e a r t e m p e r a t u r e d e p e n d e n c e e n a b l i n g e s t i m a t i o n o f A s ( F i g u r e 1 2 ) . T h e v a l u e s f o r t h e t h r e e c o m p o u n d s a r e 2 . 9 , 2 . 5 , a n d 2 . 9 M H z ( T a b l e 4 ) c o r r e s p o n d i n g t o s p i n d e n s i t y t r a n s f e r r e d o f 2 . 8 x 1 0 " u n p a i r e d e l e c t r o n p e r p h o s p h o r u s 3 s o r b i t a l f o r t h e N a “ a n d R b + i n t e r c a l a n t s . D u e t o t h e m i x e d v a l e n c e n a t u r e o f t h e m a t e r i a l , e v e r y e l e c t r o n o n a v a n a d y l c e n t e r i s e x c h a n g e c o u p l e d b y t w o p h o s p h o r u s s p 3 o r b i t a l s , r e s u l t i n g i n 5 . 7 x 1 0 ' 4 u n p a i r e d e l e c t r o n p e r p h o s p h o r u s s p 3 o r b i t a l . A u n i q u e f e a t u r e i n t h e 3 1 P — N M R s p e c t r a o f t h e m o n o v a l e n t i n t e r c a l a t e s i s t h e s p l i t t i n g o f t h e s i n g l e r e s o n a n c e i n t o t h r e e p e a k s a t l o w t e m p e r a t u r e . F i g u r e 1 3 d i s p l a y s t h e s p e c t r a o f t h e N a " d e r i v a t i v e i n t h e t e m p e r a t u r e r a n g e 1 7 3 K t o 2 3 3 K . T h r e e l o w fi e l d p e a k s a r e o b s e r v e d a n d a s t h e t e m p e r a t u r e i s r a i s e d , t h e y c o l l a p s e t o t h e c e n t r a l p e a k . A l l t h r e e l i n e s d i s p l a y l i n e a r t e m p e r a t u r e d e p e n d e n c i e s i n d i c a t i n g t h e p a r a m a g n e t i c o r i g i n o f t h e s h i f t . H o w e v e r d u e t o t h e b r o a d s h a p e o f t h e l i n e s a c c u r a t e d e t e r m i n a t i o n o f e a c h r e s o n a n c e i s a d i f fi c u l t t a s k . H e n c e A s v a l u e s w e r e d e t e r m i n e d o n l y f o r t h e c e n t r a l p e a k o f e a c h c o m p o u n d ( t h e p r o b l e m w a s p r o n o u n c e d i n t h e K + a n a l o g u e a n d t h u s o n l y fi v e p o i n t s w e r e u s e d t o e s t i m a t e t h e A s v a l u e o f 2 . 5 M H z ) . T h e s m a l l h i g h fi e l d p e a k c e n t e r e d a p p r o x i m a t e l y a t — 1 5 0 p p m i s p r o b a b l y d u e t o a d i a m a g n e t i c i m p u r i t y ” . P o w d e r S u s c e p t i b i l i t y a n d E P R S t u d i e s . T h e t h e r m a l v a r i a t i o n o f t h e p r o d u c t s o f t h e m o l a r s u s c e p t i b i l i t y w i t h t e m p e r a t u r e ( x T ) , a r e g i v e n i n F i g u r e 1 4 ( A ) f o r t h e a l k a l i a n d a l k a l i n e e a r t h d e r i v a t i v e s . A l l f o u r c o m p o u n d s f o l l o w t h e C u r i e — W e i s s l a w a t h i g h e r t e m p e r a t u r e s . T h e C u r i e c o n s t a n t s o f 0 . 3 5 8 , 0 . 3 6 5 , 0 . 3 5 1 , a n d 0 . 3 5 5 f o r N a “ , K * , R b “ , a n d S r 2 + r e s p e c t i v e l y , a r e a l l c l o s e t o t h e s p i n — o n l y v a l u e o f ~ 0 . 3 6 9 ( g = 1 . 9 6 6 , d e t e r m i n e d f r o m s o l i d s t a t e E P R m e a s u r e m e n t s ) , i n d i c a t i n g g o o d a g r e e m e n t b e t w e e n c h e m i c a l a n a l y s e s ( g i v e n i n C h a p t e r 2 ) a n d m a g n e t i c m e a s u r e m e n t s . T h e u p t u r n s s e e n i n t h e d a t a o f t h e a l k a l i i n t e r c a l a t e s 1 0 3 b r r — 1 0 0 O — 4 0 F i g u r e 1 3 . 3 1 P — N M R s p e c t r a o f N a o , 5 V 0 P 0 4 - 2 H 2 0 r e c o r d e d a t v a r i o u s t e m p e r a t u r e s ( i n C ° ) . 1 0 4 n » u u ” “ ” ° O O O O O O O O O O O O O O O O O ( B ) X M ' T I e m u - m o r ‘ o K X M ’ T I e m u - m o l ' 1 0 K ~ 8 9 8 8 8 8 8 8 8 8 8 8 8 8 O ( H m m . ' . . r m ) r fl l I l l ' . , = ; j . - ‘ r ; ; " ~ . t : ' 5 ' ~ . - ? ’ : I I " - t . ' . \ t ' . ” J 2 : i n ? ” ‘ 3 ‘ L - ~ . - - I . A O L I I I I I I I I I I L J I I I I I I I I I I I I I I I I I I I I I J 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 T I K w a r n t l m l l ' fl l ' l l l ' l ' u l l l t l l I . O O O O O O O O O O O O O C ) O O , . { $ 1 . 5 0 A I I I L I I I I I J A L I J I I I I I I I I I I I l l l I I I I I J 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 T I K F i g u r e 1 4 . X T p l o t v s t e m p e r a t u r e o f N a ” ( x ) , K + ( + ) , R b ( O ) , a n d S r 2 + ( o ) d e r i v a t i v e s o f l a y e r e d v a n a d y l p h o s p h a t e ( A ) . T h e s p e c t r u m b e l o w d i s p l a y s t h z e b e h a v i o r o f t h e x T p r o d u c t f o r a t w o — p h a s e ( o ) a n d a s i n g l e — p h a s e ( < > ) C o 2 + d e r i v a t i v e ( B ) . 1 0 5 r e v e a l f e r r o m a g n e t i c c o u p l i n g s i n t h e l a y e r s , w h i l e t h e d o w n t u r n i n t h e a l k a l i n e e a r t h d a t a i n d i c a t e s s h o r t — r a n g e a n t i f e r r o m a g n e t i c c o u p l i n g . T h i s fi n d i n g i s i n c o n t r a d i s t i n c t i o n t o e a r l i e r m a g n e t i c m e a s u r e m e n t s f o r t h e N a ‘ “ d e r i v a t i v e , w h i c h w a s s y n t h e s i z e d b y t h e r e a c t i o n o f N a l w i t h V O P O 4 - 2 H 2 0 i n a c e t o n e a n d c h a r a c t e r i z e d b y i n d e x i n g t h e l a t t i c e p a r a m e t e r s f r o m p o w d e r X — r a y d i f f r a c t i o n d a t a ” . H e r e t h e m a g n e t i c s u s c e p t i b i l i t y w a s d e t e r m i n e d o v e r a r a n g e o f r e l a t i v e l y h i g h t e m p e r a t u r e s ( T = 9 0 - 3 0 0 K ) , a n d w e a k a n t i f e r r o m a g n e t i c i n t e r a c t i o n s w e r e a s s i g n e d o n t h e b a s i s o f a s m a l l n e g a t i v e W e i s s c o n s t a n t . S u s c e p t i b i l i t y m e a s u r e m e n t s i n K + p h a s e s c o n t a i n i n g i m p u r i t i e s i n t h e f o r m o f e x t r a i n t e r c r y s t a l l i n e w a t e r m o l e c u l e s a l s o d i s p l a y e d w e a k a n t i f e r r o m a g n e t i c b e h a v i o r , b u t r e p e a t e d m e a s u r e m e n t o n d i f f e r e n t s i n g l e — p h a s e a l k a l i i n t e r c a l a t e s a m p l e s c l e a r l y d i s p l a y e d t h e c h a r a c t e r i s t i c u p t u r n i n t h e x T d a t a , i n d i c a t i v e o f s h o r t — r a n g e f e r r o m a g n e t i c i n t e r a c t i o n s . T h e t w o — d i m e n s i o n a l s t r u c t u r e o f t h e A x V O P O 4 - n H 2 0 m a t e r i a l s i s b u i l t u p b y i n t e r c o n n e c t i o n o f e i g h t m e m b e r r i n g s c o n t a i n i n g t w o v a n a d i u m o c t a h e d r a a n d t w o p h o s p h a t e t e t r a h e d r a , w h i c h a d o p t a c h a i r — l i k e c o n f o r m a t i o n d e s i g n a t e d a s D V I I ( F i g u r e 2 ( 3 ) ) . S u c h a n a r r a n g e m e n t r e s u l t s i n a t w o — d i m e n s i o n a l m a g n e t i c l a t t i c e w i t h e a c h m e t a l c e n t e r p a r t i c i p a t i n g i n f o u r D V I I r i n g s , a n d t h e r e f o r e t h e s u s c e p t i b i l i t y d a t a w e r e fi t t e d t o a t w o — d i m e n s i o n a l H e i s e n b e r g m o d e l f o r a s q u a r e l a t t i c e . T h e e x p r e s s i o n f o r t h e m o l a r m a g n e t i c s u s c e p t i b i l i t y c a n b e d e t e r m i n e d f r o m a h i g h t e m p e r a t u r e s e r i e s f o r t h e q u a d r a t i c l a y e r e d t 3 1 H e i s e n b e r g f e r r o m a g n e b y u s i n g a n i s o t r o p i c e x c h a n g e H a m i l t o n i a n . T h e f o l l o w i n g s u s c e p t i b i l i t y e x p r e s s i o n w a s d e r i v e d N 9 2 u § x ( 2 2 1 . 3 3 3 0 . 2 5 _ 0 . 4 8 3 3 0 . 0 0 3 7 9 7 - 1 = 1 - — + — - + + 3 . 5 X M 4 k B T X x 2 x 3 x 4 x 5 x 6 j ( ) 1 0 6 w h e r e x = k B T / J g . . T h e a l k a l i d e r i v a t i v e s g a v e v a l u e s o f J / k B = + 0 . 6 K , w h i l e t h e b e s t fi t f o r t h e a l k a l i n e e a r t h m a t e r i a l t o a h i g h t e m p e r a t u r e s e r i e s f o r t h e q u a d r a t i c l a y e r H e i s e n b e r g a n t i f e r r o m a g n e t g a v e J / k B = — 2 . 5 K ( T a b l e 4 ) . l n t e r c a l a t i o n o f t h e C o + 2 p a r a m a g n e t i c i o n i n j e c t s o n e e l e c t r o n p e r v a n a d y l c e n t e r i n t h e l a y e r . D i f f e r e n t s y n t h e t i c a t t e m p t s p r o d u c e d m u l t i — a n d s i n g l e - p h a s e m a t e r i a l s , w h o s e s u s c e p t i b i l i t y p r o p e r t i e s i n t h e f o r m o f x T p l o t s a r e d i s p l a y e d i n F i g u r e 1 4 ( 8 ) . B o t h c o m p o u n d s s h o w t h e c h a r a c t e r i s t i c d o w n t u r n i n t h e x T p r o d u c t , i n d i c a t i v e o f w e a k a n t i f e r r o m a g n e t i c i n t e r a c t i o n s . S u r p r i s i n g l y , t h e e l e c t r o n i c c o n fi g u r a t i o n o f t h e C o 2 + i o n i s d i f f e r e n t i n t h e s i n g l e — a n d t h e m u l t i — p h a s e m a t e r i a l s . I n t h e f o r m e r t h e i n t e r c a l a t e d c a t i o n s a r e h i g h s p i n , s i n c e a p e n : o f 5 . 3 3 w a s o b t a i n e d f r o m t h e d a t a w h i c h c o m p a r e s w e l l t o t h e v a l u e e x p e c t e d f o r fi v e u n p a i r e d e l e c t r o n s ( 5 . 7 3 ) . I n t h e l a t t e r d e r i v a t i v e o n t h e o t h e r h a n d a p e n : o f 4 . 1 w a s o b t a i n e d w h i c h i s c l o s e t o t h e t h e o r e t i c a l l y e x p e c t e d v a l u e f o r t h r e e u n p a i r e d e l e c t r o n s ( 3 . 8 7 ) . N o a t t e m p t w a s m a d e t o fi t t h e s u s c e p t i b i l i t y d a t a i n a t h e o r e t i c a l m o d e l . A p a r t f r o m t h e i n t r a l a y e r e x c h a n g e i n t e r a c t i o n s e n c o u n t e r e d i n t h e o t h e r d e r i v a t i v e s , t h e p a r a m a g n e t i c n a t u r e o f t h e g u e s t a l s o r a i s e s t h e p o s s i b i l i t y o f h o s t — g u e s t a n d g u e s t — g u e s t i n t e r a c t i o n s . I n a d d i t i o n , t h e h i g h l y s y m m e t r i c c o o r d i n a t i o n e n v i r o n m e n t o f t h e i n t e r c a l a n t i n d i c a t e s t h a t t h e o r b i t a l a n g u l a r m o m e n t u m i s n o t t o t a l l y q u e n c h e d , f u r t h e r c o m p l i c a t i n g t h e d e r i v a t i o n o f a n a n a l y t i c a l s u s c e p t i b i l i t y e x p r e s s i o n s i n c e d i f f e r e n t L é n d e f a c t o r s s h o u l d b e a s s i g n e d f o r t h e V 4 + a n d C o 2 + i o n s . 1 0 7 2 . L a y e r e d V a n a d y l p — o r m - S u b s t i t u t e d P h e n y l P h o s p h o n a t e s ( L V P h ' s ) V O ( O 3 P C 5 H 4 — X ) ' H z o a . S y n t h e s i s a n d C h a r a c t e r i z a t i o n S i g n i f i c a n t s t e p s t o w a r d s t r u c t u r a l u n d e r s t a n d i n g a r e s e e n i n t h e c o r r e l a t i o n o f m a g n e t i c c o u p l i n g w i t h t h e g e o m e t r i c a l p a r a m e t e r s i n m o l e c u l a r b u i l d i n g b l o c k s . N o w h e r e i s t h i s a p p r o a c h b e t t e r i l l u s t r a t e d t h a n i n t h e w e l l — s t u d i e d 0 9 — 0 9 C u V F — O H h C u d i m e r s , i n w h i c h t h e r e l a t i o n s h i p b e t w e e n J c o u p l i n g a n d t h e C u — O — C u a n g l e h a s b e e n m a p p e d o u t i n e l e g a n t d e t a i l ” . T h e s e i d e a s h a v e b e e n e x t e n d e d t o V O ( , u Z - O R ) 2 V O d i m e r s , a s e r i e s w i t h d 1 — d 1 e l e c t r o n c o u n t s ” , a n d t o o t h e r o x o - b r i d g e d b i m e t a l l i c c o m p l e x e s 3 4 ' 3 5 ' 3 6 . D i m e r s o f t h e M M - O R h M c l a s s h a v e a l s o s e r v e d t o i l l u m i n a t e b a s i c e l e c t r o n i c q u e s t i o n s . T h e i s o s t r u c t u r a l d 9 — d n C u Q F - O R ) 2 M ( M = V 0 , F e , N i , C u ) m o l e c u l a r c o m p l e x e s , w h e r e a d i n u c l e a t i n g l i g a n d t e m p l a t e ( d e r i v e d f r o m N , N ' — ( 2 — h y d r o x y - 3 — c a r b o x y b e n z i l i d e n e ) e t h y l e n e d i a m i n e ) e n f o r c e s t h e p a i n N i s e r e l a t i o n s h i p , 3 7 h a v e p e r m i t t e d e x a m i n a t i o n w i t h i n a u n i fi e d f r a m e w o r k o f t h e r e l a t i o n s h i p b e t w e e n o r b i t a l p a r e n t a g e s a n d m a g n e t i c c o u p l i n g s . Y e t a s y s t e m a t i c u n d e r s t a n d i n g o f t h e c o u p l i n g b e t w e e n t h e s a m e m a g n e t i c o r b i t a l s i n a n i s o s t r u c t u r a l f r a m e w o r k r e m a i n s e l u s i v e . S u c h i n s i g h t w o u l d a l l o w t h e m a g n e t i c p r o p e r t i e s o f m a t e r i a l s t o b e a n a l y z e d i n t e r m s o f f u n d a m e n t a l c h e m i c a l c o n c e p t s f a m i l i a r t o m o l e c u l a r c h e m i s t r y , a n d s e p a r a t e f r o m s i m p l e g e o m e t r i c a l i s s u e s . O u r s t r a t e g y t o d e f i n e m a g n e t i c c o r r e l a t i o n s i n a n i s o m o r p h i c a n d i s o e l e c t r o n i c f a m i l y o f c o m p o u n d s i s t o e x p l o i t t h e s t r u c t u r a l c o n t r o l a v a i l a b l e i n s e l f — a s s e m b l e d e x t e n d e d a r r a y s 3 8 ' 3 ' 9 ' 4 0 ' 4 1 . I n p a r t i c u l a r , t h e l a y e r e d v a n a d y l p h o s p h o n a t e s ( L V P h s ) V O ( 0 3 P C S H 4 - X ) ' n H 2 0 , d e s c r i b e d i n t h i s s e c t i o n , a l l o w s t r u c t u r a l o r t h o g o n a l i z a t i o n o f s u b s t i t u e n t v a r i a t i o n s f r o m t h e m a g n e t i c n e t w o r k . 1 0 8 T h e L V P h s r e t a i n t h e k e y V ( O P O ) 2 V c h a i r s o f t h e m e t a l i n t e r c a l a t e d v a n a d y l p h o p s p h a t e d e r i v a t i v e s , b u t p e r m i t m o d i fi c a t i o n o f t h e P a t o m ' s e l e c t r o n i c e n v i r o n m e n t v i a v a r i a t i o n s i n t h e p e n d a n t a r y l g r o u p . B e c a u s e t h e o r g a n i c p e n d a n t s p r o j e c t i n t o t h e i n t e r l a y e r r e g i o n , s u b s t i t u e n t v a r i a t i o n s ( o u t — o f — p l a n e ) a r e o r t h o g o n a l , a n d h e n c e s t r u c t u r a l l y i s o l a t e d , f r o m t h e ( i n — p l a n e ) m a g n e t i c a l l y a c t i v e V , O , P l a y e r s . S u b s t i t u e n t e f f e c t s o n m a g n e t i s m s h o u l d t h e n b e p u r e l y d u e t o e l e c t r o n i c p e r t u r b a t i o n s . T o e x p l o i t t h e s e c h a r a c t e r i s t i c s a s e r i e s o f fi v e n e w s u b s t i t u t e d V O ( 0 3 P C G H 4 — X ) - n H Z O L V P s ( X = p - N O z , m - F , p - F f o r n = 1 ; p - C l , p - C H 3 f o r n = 1 . 5 ) w e r e s y n t h e s i z e d h y d r o t h e r m a l l y b y D r . J . L e B i d e a u " . T h e s e s t u d i e s a r e c o m p l e m e n t a r y t o t h e o n e s r e p o r t e d i n t h e p r e v i o u s s e c t i o n a n d h e n c e t h e y a r e b r i e fl y p r e s e n t e d i n t h i s t h e s i s . T h e X — r a y s t r u c t u r e o f t h e p r o t o t y p e L V P , V O ( 0 3 P C B H 5 ) - H 2 0 ( i . e . X = H a b o v e ) , h a s b e e n r e p o r t e d b y J a c o b s o n a n d J o h n s o n a n d c o w o r k e r s “ . A l t e r n a t i n g i n o r g a n i c a n d o r g a n i c s t r a t a c o m p r i s e , r e s p e c t i v e l y , d i s t o r t e d o c t a h e d r a l v a n a d i u m a n d t e t r a h e d r a l p h o s p h o r u s o x i d e s u b u n i t s , a n d p h o s p h o n a t e p h e n y l g r o u p s t h a t c o n v e r g e i n a b i l a y e r a r r a n g e m e n t f r o m a d j a c e n t o x i d e l a y e r s . A v i e w p e r p e n d i c u l a r t o t h e l a y e r p l a n e i s s h o w n i n F i g u r e 1 5 . W i t h i n t h e o x i d e l a y e r , p a i r s o f p a r a m a g n e t i c v a n a d y l c e n t e r s a r e j o i n e d v i a c h a i r - l i k e V ( O P O ) 2 V l i n k s o f t h e D V t y p e ( s e e F i g u r e 8 , C h a p t e r 1 ) , a n a l o g o u s b u t n o t s i m i l a r t o t h o s e d i s c u s s e d i n t h e m e t a l i n t e r c a l a t e d V O P O 4 s y s t e m s ” ; t h e s e s u b u n i t s a r e t h e n s t a c k e d t o g e t h e r , f o r m i n g V = O - - - V = O c h a i n s . A d j a c e n t v a n a d i u m o c t a h e d r a a l o n g t h e c h a i n s a r e f u r t h e r c o n n e c t e d v i a s i n g l e 0 — P — O b r i d g e s , f o r m i n g a l m o s t fl a t s i x — m e m b e r e d r i n g s a l o n g t h e b — a x i s d e s i g n a t e d a s 0 1 1 1 ( s e e F i g u r e 8 , C h a p t e r 1 ) . B a s e d o n p o w d e r X — r a y d i f f r a c t i o n , I R s p e c t r a ( T a b l e 5 ) , a n d T G A , t h e fl u o r o a n d n i t r o c o m p o u n d s ( X = p - F , m - F a n d p - N O Z ) a r e f o u n d t o b e i s o s t r u c t u r a l w i t h t h e p a r e n t ( X = H ) . T h e b a n d c c e l l p a r a m e t e r s , w h i c h d e s c r i b e 1 0 9 F i g u r e 1 5 . l n — p l a n e s e g m e n t o f t h e V O ( 0 3 P C G H 4 — X ) - H 2 0 ( X = p - N O z , m - F , p - F a n d H ) s t r u c t u r e t y p e . 1 1 0 t 6 a H f 4 o — r X V a O ( 0 S e l e ( A ) o 1 ) ) j - K 1 m ' - c X 1 . g m 5 . a m n c ( K ) T a b l e X p , . A A ) A m , _ ( ( ° ( 1 k s , ( ( ) ) » ) a ( p K e o ( — a b c W W e fl d C 0 # J T ( - 6 ( / 9 a c i ( u B ) ) ( ) c b ) , a , ) m x K t ) e - d H s 2 C ) a t r 0 2 7 6 9 9 1 1 8 0 1 — 7 — 0 u H 0 . . 7 8 4 8 2 . . 5 . c L t u V , r P a l s i v n b d a r a H 0 4 0 5 1 8 2 6 6 1 5 3 0 1 4 . . 5 3 4 . 3 . 7 . 0 d a F ) p ( a 1 t 1 1 - 3 n ) ) ) t i a C o m n m e 2 7 1 1 9 9 1 8 0 — 5 - 0 H . 4 8 8 4 0 7 . . 1 4 . . t ( ( 7 9 — 9 ( 4 e a . 1 . 3 6 4 5 5 5 4 . 5 . 1 l 6 6 9 5 1 1 5 5 m a a g n l u e e t s v C 5 2 7 9 9 1 1 8 0 - 1 - 4 0 a ( 1 1 1 f . 8 0 4 4 8 7 . . i 3 . 3 . c o r H 4 C d — ( 0 3 ( ( d 8 8 5 4 4 2 . 1 . 3 7 , . 3 0 5 5 1 6 2 5 3 4 m - F C ) 1 ) ) ) 6 3 6 1 9 9 1 8 0 1 — 0 O 0 4 0 — 2 H N ) C 2 ( 1 p 1 - ) G ) 5 ) 4 5 5 3 9 . 3 5 . 5 P - 0 ( 1 8 7 1 1 ( ( 3 4 . 7 1 3 H 0 5 . 5 9 0 7 . . 0 . 8 1 b a D e t e r m i n e d o v e r t h e r a n g e T = 5 0 - 1 0 0 K . F r o m B l e a n e y - B o w e r s fi t ( e q ( 2 ) ) t o d a t a o v e r t h e r a n g e T = 2 - 1 0 0 K . c S u b s t i t u e n t c o n s t a n t : f r o m M a r c h , J . “ A d v a n c e d O r g a n i c C h e m i s t r y , ” 4 t h E d . , J o h n W i l e y & S o n s , N e w Y o r k , 1 9 9 2 . T h i s l o w v a l u e i s i n a c c u r a t e d u e t o c u r v a t u r e i n t h e H ; v s . T p l o t i n t h e 5 0 - 1 0 0 K t e m p e r a t u r e r e g i o n o f i n t e r e s t . 1 1 1 t h e i n o r g a n i c l a y e r , a r e s i m i l a r a s e x p e c t e d f o r a n i s o s t r u c t u r a l L V P s e r i e s . I t i s t h e a d i m e n s i o n a n d h e n c e t h e i n t e r l a y e r ( o r d ) s p a c i n g t h a t v a r i e s d u e t o X s u b s t i t u t i o n o n t h e p h e n y l r i n g ; d s p a c i n g s d e r i v e d f r o m t h e a c e l l p a r a m e t e r s o f T a b l e 5 a r e 1 4 . 1 4 , 1 4 . 1 7 , 1 4 . 1 8 , a n d 1 5 . 1 3 A f o r X = H , p - F , m - F , a n d p - N 0 2 , r e s p e c t i v e l y . I n f r a r e d s p e c t r a f o r t h e f o u r a r e q u a l i t a t i v e l y s i m i l a r , w i t h s h a r p V = 0 a n d P — 0 b a n d s t h a t s h o w s m a l l v a r i a t i o n s i n s t r e t c h i n g f r e q u e n c i e s . T h e r e a r e t h r e e d i f f e r e n t s t r u c t u r a l t y p e s o f t h e v a n a d y l p h o s p h o n a t e m a t e r i a l s , e a c h w i t h a d i f f e r e n t w a t e r c o n t e n t ( n = 1 . 0 , 1 . 5 , 2 . 0 ) 4 2 ' 4 3 . T h u s , b e s i d e s t h e s t r u c t u r a l l y c h a r a c t e r i s t i c I R s p e c t r a , a n d X — r a y p o w d e r d i f f r a c t i o n d a t a , t h e w a t e r c o n t e n t p r o v i d e s a d d i t i o n a l d e f i n i t i v e s u p p o r t f o r s t r u c t u r a l a s s i g n m e n t s . T h e T G A r e s u l t s o f 1 H 2 0 p e r f o r m u l a u n i t f u r t h e r s o l i d i f y t h e a s s i g n m e n t o f t h e p - F , m - F , a n d p - N 0 2 p h e n y l p h o s p h o n a t e s t o t h e s a m e s t r u c t u r a l c l a s s a s t h e p a r e n t V 0 ( 0 3 P 0 5 H 5 ) - H 2 0 . T h e r m o g r a v i m e t r i c a n a l y s i s o n t h e r e m a i n i n g t w o L V P d e r i v a t i v e s ( w h e r e X i s C l a n d C H 3 ) i n d i c a t e s t h e p r e s e n c e o f 1 . 5 H 2 0 p e r f o r m u l a u n i t . T a k i n g a l s o i n t o c o n s i d e r a t i o n I R d a t a , i t a p p e a r s t h a t t h e s e c o m p o u n d s a r e i s o s t r u c t u r a l w i t h t h e a l k y l p h o s p h o n a t e s V 0 ( 0 3 P R ) - 1 . 5 H 2 0 ( R = C H 3 , C 2 H 5 , n - 0 3 H 7 ) s e r i e s . F r o m a p a r t i a l s t r u c t u r e s o l u t i o n o f V 0 ( 0 3 P C H 3 ) - 1 . 5 H 2 0 ‘ 3 , i t w a s c o n c l u d e d t h a t t h e s e c o m p o u n d s h a v e t h e s a m e l a y e r e d f r a m e w o r k a s V 0 ( H 0 P 0 3 ) - 0 . 5 H 2 0 “ a ’ , w h o s e i n t r a l a y e r s t r u c t u r e i s d e p i c t e d i n F i g u r e 1 6 . T h i s c o m p l e x s t r u c t u r a l f r a m e w o r k c o n s i s t s o f c h a i n s a l o n g t h e a d i r e c t i o n w h e r e V ( , u Z - 0 ) 2 V d i m e r s o f t h e D I I t y p e a r e a l t e r n a t i n g w i t h b o a t - l i k e e i g h t - m e m b e r e d r i n g s o f t h e D 1 1 1 t y p e ( s e e F i g u r e 7 , C h a p t e r 1 ) . F u s i o n o f t h e c h a i n s t o a t w o — d i m e n s i o n a l n e t w o r k i s a c c o m p l i s h e d b y g e n e r a t i o n o f t a p e s o f e i g h t — m e m b e r e d r i n g s o f t h e D V t y p e . T h e a r o m a t i c p e n d a n t s a r e i n c o r p o r a t e d w i t h i n t h e i n t e r l a y e r s p a c e . 1 1 2 L . 7 F i g u r e 1 6 . l n - p l a n e s e g m e n t o f v a n a d y l h y d r o g e n p h o s p h a t e h e m i h y d r a t e , V 0 ( H P 0 4 ) - 0 . 5 H 2 0 , w h i c h i s i s o s t r u c t u r a l w i t h t h e V 0 ( 0 3 P 0 6 H 4 — X ) - 1 . 5 H 2 0 ( X = C l , C H 3 ) a s d e s c r i b e d i n t h e t e x t . 1 1 3 b . M a g n e t i c P r o p e r t i e s P o w d e r S u s c e p t i b i l i t y S t u d i e s . F i g u r e 1 7 s h o w s t h e t e m p e r a t u r e d e p e n d e n t m a g n e t i c s u s c e p t i b i l i t i e s f o r t h e f o u r L V P s w i t h X = p - N 0 2 , m - F , p - F , a n d H . T h e L V P ( X = p - N 0 2 ) i s a s i m p l e p a r a m a g n e t , e x h i b i t i n g C u r i e b e h a v i o r w i t h a n e g l i g i b l e W e i s s c o n s t a n t o f — 0 . 1 K . C o n v e r s e l y , t h e d o w n t u r n s s e e n i n t h e d a t a f o r X = H , m - F , a n d p - F i n d i c a t e i n t r a l a y e r a n t i f e r r o m a g n e t i c c o u p l i n g s b e t w e e n t h e V 4 + c e n t e r s . A l t h o u g h n o i n d i c a t i o n o f l o n g r a n g e m a g n e t i c o r d e r i n g c a n b e t r a c e d d o w n t o 2 K , t h e b r o a d p a r a m a g n e t i c m a x i m u m o b s e r v e d i n F i g u r e 1 7 f o r t h e s e c o m p o u n d s i s c h a r a c t e r i s t i c o f l o w d i m e n s i o n a l a n t i f e r r o m a g n e t i c i n t e r a c t i o n s . T h e m a g n e t i c d a t a f o r t h e f o u r c o m p o u n d s a r e s u m m a r i z e d i n T a b l e 5 . T h e v a l u e s o f t h e C u r i e c o n s t a n t s C a t h i g h t e m p e r a t u r e s a r e a l l c l o s e t o t h e s p i n - o n l y v a l u e o f 0 . 3 6 7 ( 4 ) i n d i c a t i n g g o o d a g r e e m e n t b e t w e e n c h e m i c a l a n a l y s e s 1 1 a n d m a g n e t i c m e a s u r e m e n t s . T h e s e q u a n t i t i e s w e r e o b t a i n e d f r o m t h e C u r i e e x p r e s s i o n ( e q 3 . 6 ) , w h e r e N i s A v o g a d r o ’ s n u m b e r , ’ 4 3 i s t h e B o h r m a g n e t o n , a n d k i s t h e B o l t z m a n n c o n s t a n t ) , e v a l u a t e d a t t h e h i g h 2 2 C = E g g — : L s ( s + 1 ) = X T ( 3 . 6 ) t e m p e r a t u r e l i m i t , u s i n g t h e v a l u e o f g = 1 . 9 8 ( 1 ) d e t e r m i n e d f r o m t h e s o l i d s t a t e E P R m e a s u r e m e n t s f o r t h e f o u r L V P s . T h e f o u r E P R s p e c t r a w e r e e s s e n t i a l l y i d e n t i c a l ; a r e p r e s e n t a t i v e e x a m p l e , s h o w n i n F i g u r e 1 8 , i s b r o a d e n e d a n d s y m m e t r i c a l l i k e t h o s e s e e n i n t h e d 1 d i m e r — c o n t a i n i n g V 0 H P 0 4 l a y e r s 7 a n d r e l a t e d s y s t e m s “ ' 4 5 . O w i n g t o t h e h i g h l y c o u p l e d n e t w o r k w i t h i n t h e l a y e r s ( F i g u r e 1 5 ) , a c o m p l e t e m o d e l f o r t h e m a g n e t i s m i n t h e s e s y s t e m s i s d i f fi c u l t t o d e r i v e . N e v e r t h e l e s s , t h e d o m i n a n t m a g n e t i c s u b u n i t s i n t h e s e s y s t e m s a r e o r i g i n a l l y t h o u g h t t o b e t h e c h a i r — l i k e V ( 0 P 0 ) 2 V e x c h a n g e p a t h w a y s o f t h e D V t y p e 1 1 4 F ( m g i t r a i x u a r n i e g m l e a 1 ) 7 , f . o P - t l o t F h , e p r o ( a l f t d 1 e i t a r v t m s h o . n r d e T ) e , . 0 f o r a n V d ( H 0 3 P ( C 0 i 6 c r H l e 4 ) — ) X s ) h - o H w 2 i 0 n g ( X t h = e P b - r N o o a z d ( p q s a u r a a r m e a ) g , n m ' t e . i F c 0 . 0 5 : 1 : 1 5 l ] 0 . 0 4 — A 1 . A A A C 1 5 A l 0 0 6 1 : 1 L 0 Q ~ — £ 2 . _ _ 0 . 0 3 ~ O Q c E > ’ 0 0 0 8 U 3 ' < > 0 0 0 8 D D E 0 g a ) O 8 [ j \ O O 8 C ] x r O E ] 0 . 0 2 — 0 8 8 . o 8 8 : 7 O 0 . 0 1 ~ — 0 _ 1 1 1 ' 1 5 1 1 1 1 1 1 1 1 1 1 1 1 0 5 1 0 1 5 2 0 T / K 1 1 5 1 L 3 0 0 0 3 5 0 0 4 0 0 0 F i g u r e 1 8 . E P R s p e c t r u m o f V 0 ( 0 3 P 0 6 H 4 — p - N 0 2 ) - H 2 0 ( t h e m i c r o w a v e f r e q u e n c y w a s 9 . 4 5 0 G H z a n d g = 1 . 9 8 ) . 1 1 6 d e s c r i b e d a b o v e " . T h u s , t o a f i r s t a p p r o x i m a t i o n u s i n g a H e i s e n b e r g H a m i l t o n i a n H = — 2 J S i S j , t h e m a g n e t i c i n t e r a c t i o n w a s e s t i m a t e d w i t h a B l e a n e y - B o w e r s m o d e l f o r d i m e r s , 4 6 2 2 x = ( 1 - f ) n g B - 1 H Q ( 3 . 7 ) k T 3 + e x p ( — 2 J / k T ) T w h e r e f i s t h e a m o u n t o f p a r a m a g n e t i c i m p u r i t i e s t a k e n a s i s o l a t e d V 4 + i o n s , a n d g = 1 . 9 8 . T h e J / k v a l u e s o f T a b l e 5 w e r e o b t a i n e d f r o m fi t s o f e q 3 . 7 w i t h f = 0 . 0 5 , 0 . 1 , a n d 0 . 0 f o r X = H , p - F , a n d m - F , r e s p e c t i v e l y . T h e X = C l a n d C H 3 d e r i v a t i v e s h a v e m a g n e t i c p r o p e r t i e s s u b s t a n t i a l l y d i f f e r e n t t h a n t h o s e o f t h e f o u r L V P ' s m e n t i o n e d a b o v e . V a r i a b l e t e m p e r a t u r e s u s c e p t i b i l i t y d a t a f o r t h e s e c o m p o u n d s s h o w a n t i f e r r o m a g n e t i c d o w n t u r n s , w i t h T ( Z m a x ) v a l u e s a t 5 4 ( X = p - C I ) a n d 5 8 K ( X = p - C H 3 ) , s i g n i fi c a l l y h i g h e r t h a n t h o s e s e e n i n F i g u r e 1 7 , a n d c o n s i s t e n t w i t h t h e k n o w n s t r o n g e r c o u p l i n g a b i l i t y o f t h e V ( u z - 0 ) 2 V d i m e r m a g n e t i c p a t h w a y 3 . T h e B l e a n e y — B o w e r s — d e r i v e d J / k v a l u e s ( — 4 2 a n d — 4 8 K , r e s p e c t i v e l y ) f o r t h e s e n e w a r y l p h o s p h o n a t e s y s t e m s a r e i n t h e s a m e r a n g e a s t h o s e f o u n d i n t h e a l k y l p h o s p h o n a t e c a s e s ( - 4 3 t o — 5 2 K f o r s i m p l e a l k y l g r o u p s ) 4 3 a n d i n t h e v a n a d y l h y d r o g e n p h o s p h a t e h e m i h y d r a t e ( — 4 3 K ) 7 . 3 . A l c o h o l I n t e r c a l a t e d l a y e r e d V a n a d y l 2 — N a p t h y l p h o s p h o n a t e s , V 0 ( 0 3 P N p ) ( H 2 0 ) - n R 0 H a . S y n t h e s i s a n d C h a r a c t e r i z a t i o n T h i s h o m o l o g o u s s e r i e s o f l a y e r e d m a t e r i a l s , w h i c h a r e m e m b e r s o f t h e g e n e r a l f a m i l y o f t h e V 0 ( 0 3 P R ) ( H 2 0 ) 2 s t r u c t u r a l t y p e " , w a s p r e p a r e d b y f o l l o w i n g t h e m e t h o d o l o g y d e v e l o p e d b y J a c o b s o n a n d J o h n s o n “ . F i n e l y g r o u n d 1 1 7 V 2 0 5 i s a d d e d t o t h e c o r r e s p o n d i n g a l c o h o l s o l u t i o n o f 2 — n a p t h y l p h o s p h o n i c a c i d , a l o n g w i t h a c a t a l y t i c a m o u n t o f 1 M H C I “ . T h e t w o — p h a s e m i x t u r e i s h e a t e d w i t h s t i r r i n g f o r o n e t o t h r e e d a y s . D u r i n g t h i s p e r i o d , t h e y e l l o w — b r o w n V 2 0 5 i s c o n s u m e d i n t h e r e a c t i o n l e a v i n g i t s p l a c e t o t h e b l u e v a n a d y l p h o s p h o n a t e s o l i d , w h i c h i s r e c o v e r e d b y fi l t r a t i o n ” . F o u r d i f f e r e n t a l c o h o l s , n a m e l y e t h a n o l , b u t a n o l , h e x a n o l , a n d o c t a n o l , w e r e i n t e r c a l a t e d w i t h i n t h e v a n a d y l n a p h t h y l p h o s p h o n a t e h o s t . I n a d d i t i o n , a n a l c o h o l f r e e d e r i v a t i v e w a s s y n t h e s i z e d b y h e a t i n g t h e e t h a n o l o r b u t a n o l i n t e r c a l a t e d a n a l o g . T h e p u r i t y o f t h e s e m a t e r i a l s w a s d e t e r m i n e d b y P X R D m e t h o d s , w h e r e s i n g l e n a r r o w p e a k s , m a i n l y a t t r i b u t e d t o t h e O O I d i f f r a c t i o n l i n e s , w e r e o b s e r v e d . U p o n t h e a l c o h o l i n t e r c a l a t i o n , a d j a c e n t l a y e r s a r e m e c h a n i c a l l y j a c k e d w i t h a d — s p a c i n g e x p a n s i o n r a n g i n g f r o m 1 2 . 1 0 A i n t h e a l c o h o l f r e e m a t e r i a l t o 2 0 . 8 3 A i n t h e o c t a n o l i n t e r c a l a t e d d e r i v a t i v e . T h e i n t e r l a y e r s p a c i n g i s d e t e r m i n e d b y t h e fi r s t d i f f r a c t i o n l i n e , w h i c h a s s h o w n i n F i g u r e 1 9 v a r i e s l i n e a r l y w i t h t h e n u m b e r o f a l c o h o l ' s c a r b o n a t o m s . A s l o p e o f 1 . 0 6 A p e r m e t h y l e n e u n i t i s o b t a i n e d i n d i c a t i n g t h a t t h e n a p h t h a l e n e p e n d a n t s a d o p t a n i n t e r d i g i t a t e d a r r a n g e m e n t 4 8 ' 5 0 . l n t e r d i g i t a t i o n o f t h e o r g a n i c p e n d a n t i s p o s s i b l e o n l y w i t h a r e l a t i v e l y " o p e n " i n t r a l a y e r t o p o l o g y , w h e r e a d j a c e n t p h o s p h o r u s s i d e s a r e r e l a t i v e l y d i s t a n t f r o m e a c h o t h e r . A l t h o u g h t h e a c t u a l s t r u c t u r e o f t h e V 0 ( 0 3 P R ) ( H 2 0 ) 2 t y p e i s n o t k n o w n , i n d i r e c t e v i d e n c e f r o m m a g n e t i c a n d t h e r m o g r a v i m e t r i c d a t a a l o n g w i t h t h e u n i t c e l l d e t e r m i n a t i o n f r o m p o w d e r X - r a y d a t a “ , s u g g e s t a s t r u c t u r e s i m i l a r t o t h a t o f n e w b e r y i t e s z , M g H P 0 4 - 3 H 2 0 . F i g u r e 2 0 d i s p l a y s t h e i n t r a l a y e r s t r u c t u r e o f V 0 ( 0 3 P R ) ( H 2 0 ) 2 g e n e r a t e d b y u s i n g t h e l a t t i c e p a r a m e t e r s f r o m r e f . 5 1 a n d t h e f r a c t i o n a l a t o m i c c o o r d i n a t e s o f n e w b e r y i t e 5 2 . T h e i n o r g a n i c f r a m e w o r k c o n s i s t s o f o c t a h e d r a l l y c o o r d i n a t e d v a n a d i u m a t o m s w h e r e t h e a x i a l p o s i t i o n s a r e o c c u p i e d b y a v a n a d y l o x y g e n a n d a w a t e r m o l e c u l e , w h i l e 1 1 8 d — S p a c e , 2 1 1 1 1 0 2 4 6 8 C a r b o n A t o m s i n R O H F i g u r e 1 9 . I n t e r l a y e r s p a c i n g o f ( V 0 ) ( 0 3 P N p ) ( H 2 0 ) - n R 0 H p l o t t e d a s a f u n c t i o n o f t h e c a r b o n a t o m s i n t h e a l k y l g r o u p R . 1 1 9 F i g u r e 2 0 . I n t r a l a y e r s t r u c t u r e o f V 0 ( 0 3 P N p ) ( H 2 0 ) - n R 0 H . 1 2 0 c o o r d i n a t i o n i n t h e e q u a t o r i a l p l a n e i s f u r n i s h e d b y t h r e e o x y g e n a t o m s b e l o n g i n g t o d i f f e r e n t p h o s p h o n a t e g r o u p s a n d a w a t e r m o l e c u l e . A s a c o n s e q u e n c e o f t h i s a r r a n g e m e n t , t h r e e v a n a d i u m o c t a h e d r a a n d t h r e e p h o s p h o r u s t e t r a h e d r a f o r m m e d i u m — s i z e d c l o s e d — l o o p s w h e r e t h e e q u a t o r i a l w a t e r m o l e c u l e s a r e p o i n t i n g i n . T h e a x i a l w a t e r m o l e c u l e s o n t h e o t h e r h a n d , a r e p l a c e d w i t h i n t h e i n t e r l a y e r s p a c e a n d u p o n a l c o h o l i n t e r c a l a t i o n a r e r e a d i l y s u b s t i t u t e d . T h i s p r o c e s s i s r e v e r s i b l e a n d h a s b e e n t h o r o u g h l y u t i l i z e d f o r t h e s y n t h e s i s o f h o s t — g u e s t m a t e r i a l s ‘ 8 ' 4 9 . T h e r m o g r a v i m e t r i c a n a l y s i s ( T G A ) o n t h e V 0 ( 0 3 P N p ) ( H 2 0 ) - n R 0 H h o m o l o g o u s s e r i e s , s u p p o r t s t h e o b s e r v a t i o n o f J o h n s o n a n d c o w o r k e r s 5 3 t h a t t h e v a n a d y l 2 — n a p t h y l p h o s p h o n a t e b e l o n g s t o t h i s s t r u c t u r a l t y p e . T h e T G A p l o t s a r e d e p i c t e d i n F i g u r e 2 1 , f o r e t h a n o l , b u t a n o l , h e x a n o l , a n d o c t a n o l . T h e e t h a n o l a n d b u t a n o l i n t e r c a l a t e d d e r i v a t i v e s d i s p l a y a t w o — s t a g e w e i g h t l o s s , w i t h t h e s e c o n d s t a g e s t a r t i n g a t a p p r o x i m a t e l y 1 5 5 C ° . T h e fi r s t s t a g e c o r r e s p o n d s t o t h e r e m o v a l o f t h e i n t e r c a l a t e d a l c o h o l w h i c h w e a k l y c o o r d i n a t e s t o t h e v a n a d i u m a x i a l s i d e . T h e s e c o n d o n e i s a t t r i b u t e d t o t h e l o s s o f t h e i n t r a l a y e r w a t e r , w h i c h c o m p l e m e n t s t h e v a n a d i u m e q u a t o r i a l p l a n e . A l t h o u g h n o t s o d i s t i n c t i v e d u e t o t h e i n c r e a s e d b o i l i n g p o i n t o f t h e i n t e r c a l a n t a l c o h o l , t h e o t h e r t w o d e r i v a t i v e s a l s o d i s p l a y a s t e p - w i s e T G A p l o t , w i t h t h e s e c o n d s t a g e s t a r t i n g a t a p p r o x i m a t e l y 1 5 5 C ° . a s i n d i c a t e d b y t h e a r r o w s i n F i g u r e 2 1 . T h e p r e s e n c e o f t w o w e l l — r e s o l v e d s t e p s i n t h e T G A o f t h e b u t a n o l d e r i v a t i v e , e n a b l e d t h e a c c u r a t e d e t e r m i n a t i o n o f t h e w a t e r a n d b u t a n o l c o n t e n t . S o l u t i o n o f t w o q u a d r a t i c e q u a t i o n s r e s u l t e d i n v a l u e s o f 0 . 9 w a t e r a n d 0 . 7 b u t a n o l m o l e c u l e s p e r f o r m u l a u n i t . F o r t h e r e s t o f t h e d e r i v a t i v e s , a w a t e r m o l e c u l e c o n t e n t o f 1 . 0 w a s a s s u m e d i n o r d e r t o d e t e r m i n e t h e a m o u n t o f i n t e r c a l a t e d a l c o h o l , w h i c h v a r i e s f r o m 0 . 7 t o 0 . 9 ( T a b l e 6 ) f o r t h e s e s i n g l e — p h a s e m a t e r i a l s i n a c c o r d a n c e w i t h r e c e n t o b s e r v a t i o n s “ . 1 2 1 1 0 0 9 8 9 6 g 9 4 § 9 2 1 5 . 5 % ( A ) E 9 ° / 3 g 8 8 8 6 8 4 1 1 : 1 1 1 1 1 1 4 1 1 L 4 1 1 1 L 4 1 1 1 1 1 1 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 T I C ° 1 0 0 r a 9 5 f g : 1 5 . 8 % 5 9 ° : 3 ) - ( B ) a C : / \ I % 8 0 T 1 5 5 c ° 1 1 1 L ‘ I l 1 l 1 1 l l l J J l l L l A — L l l l A L 1 4 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 T I C ° 1 0 0 9 5 D 5 9 0 E 2 6 . 8 % _ 8 5 3 ! 8 ° 1 5 5 0 ° 7 5 7 o L L L L I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 T I C ° 1 0 0 9 5 g 9 0 E 8 5 / ' 3 2 . 7 5 % . 9 ( D ) i 8 0 1 5 5 c ° 3 ‘ 7 5 7 0 6 5 L A L l L l L L l l l l L L L L 4 1 1 1 1 1 1 1 1 1 1 1 1 1 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 T I C ° F i g u r e 2 1 . T h e r m o g r a v i m e t r i c a n a l y s i s p l o t s o f t h e ( V 0 ) ( 0 3 P N p ) ( H 2 0 ) ~ n R 0 H h o m o l o g o u s s e r i e s , f o r e t h a n o l ( A ) , b u t a n o l ( B ) , h e x a n o l ( C ) , a n d o c t a n o l ( D ) . T h e a r r o w i n d i c a t e s t h e t e m p e r a t u r e w h e r e r e m o v a l o f t h e e q u a t o r i a l m o l e c u l e s i s s t a r t i n g t o t a k e p l a c e . 1 2 2 T a b l e 6 . F o r m u l a , s t r u c t u r e , m a g n e t i s m a n d e m i s s i o n d a t a f o r V 0 ( 0 3 P N p ) ( H 2 0 ) - n R 0 H F o r m u l a 8 . S t r u c t u r e R O H N o n e E t h a n o l B u t a n o l H e x a n o 0 c t a n o l n 0 0 . 7 0 . 7 0 . 8 0 . 9 M a g n e t i c D a t a d — S p a c e / A T m a x / K 1 2 . 1 0 1 4 . 5 4 1 7 . 4 0 1 8 . 4 5 2 0 . 8 3 3 . 8 3 . 8 3 . 8 3 . 8 3 . 8 Q e x p 1 . 9 6 1 1 . 9 6 1 1 . 9 6 1 1 . 9 6 1 1 . 9 6 1 J / k / K — 1 . 6 — 1 . 6 — 1 . 6 — 1 . 6 — 1 . 6 E m i s s i o n D a t a k m a x / n m 4 0 5 ( e x c i m e r ) 3 7 7 ( m o n o m e r ) 3 7 8 ( m o n o m e r ) 3 7 7 ( m o n o m e r ) 3 7 9 ( m o n o m e r ) 1 2 3 b . M a g n e t i c P r o p e r t i e s P o w d e r S u s c e p t i b i l i t y S t u d i e s . T h e m a g n e t i c p r o p e r t i e s o f t h e V 0 ( 0 3 P N p ) ( H 2 0 ) ° n R 0 H h o m o l o g o u s s e r i e s w e r e d e t e r m i n e d b y p o w d e r s u s c e p t i b i l i t y a n d E P R m e a s u r e m e n t s . A l l fi v e c o m p o u n d s e x h i b i t e d i d e n t i c a l m a g n e t i c b e h a v i o r , a n d h e n c e o n l y t h e s u s c e p t i b i l i t y o f t h e h e x a n o l i n t e r c a l a t e i s p l o t t e d v s t e m p e r a t u r e i n F i g u r e 2 2 . T h e d o w n t u r n s e e n i n t h e s u s c e p t i b i l i t y d a t a i n d i c a t e s i n t r a l a y e r a n t i f e r r o m a g n e t i c c o u p l i n g s b e t w e e n t h e V “ c e n t e r s . A l t h o u g h n o i n d i c a t i o n o f l o n g r a n g e m a g n e t i c o r d e r i n g c a n b e f o u n d d o w n t o 2 K , t h e b r o a d p a r a m a g n e t i c m a x i m u m c e n t e r e d a t 3 . 8 K f o r t h e s e c o m p o u n d s i s c h a r a c t e r i s t i c o f l o w d i m e n s i o n a l a n t i f e r r o m a g n e t i c i n t e r a c t i o n s . C l o s e e x a m i n a t i o n o f t h e l a y e r e d s t r u c t u r e ( F i g u r e 2 0 ) r e v e a l s t h a t a d j a c e n t v a n a d y l c e n t e r s a r e j o i n e d b y s i n g l e p h o s p h o n a t e b r i d g e s . T h i s b r i d g i n g m o d e c o r r e s p o n d s t o t h e M 1 1 t y p e o f e x c h a n g e p a t h w a y s d i s p l a y e d i n F i g u r e 7 C h a p t e r l l . T a k i n g i n t o c o n s i d e r a t i o n t h e s t r u c t u r a l i n t r a l a y e r f e a t u r e s t h e d a t a w e r e a n a l y z e d b y u s i n g a t w o - d i m e n s i o n a l H e i s e n b e r g m o d e l f o r a s q u a r e l a t t i c e . T h e t e r m s o f t h e s e r i e s a r e t a k e n f r o m L i n e s 5 4 y i e l d i n g t h e f o l l o w i n g s u s c e p t i b i l i t y e x p r e s s i o n N 0 1 2 1 1 : { 1 4 3 4 . 3 1 . 3 3 3 0 . 2 5 0 . 4 8 3 3 0 . 0 0 3 7 9 7 - 1 = + + + + 3 . 8 X M 4 k 3 T X x 2 x 3 x 4 x 5 x 6 j ( ) T h e e x p e r i m e n t a l d a t a p r o d u c e a s a t i s f a c t o r y fi t t o e q u a t i o n ( 3 . 8 ) b y u s i n g a v a l u e o f J i j / k 8 = — 1 . 6 K . T h e s e r e s u l t s a l o n g w i t h s t r u c t u r a l a n d e m i s s i o n d a t a 5 5 a r e c o l l e c t e d i n T a b l e 6 . 1 2 4 0 . 0 5 0 . 0 5 0 . 0 4 0 0 4 0 . 0 3 ' 1 ' o - 0 . 0 2 E 0 . 0 3 9 ' 2 — 0 . 0 1 2 0 m ; 0 0 4 1 1 1 1 1 1 1 A 2 : 0 5 1 0 1 5 2 0 2 5 3 0 X h 0 . 0 1 i ; . . _ 0 ~ . 1 1 1 1 . 1 7 7 1 1 1 7 7 9 8 1 3 5 8 1 9 9 9 0 0 0 9 0 5 5 1 0 1 5 1 5 1 0 5 0 1 0 0 1 5 0 2 0 0 $ 0 3 0 0 T I K F i g u r e 2 2 . T h e r m a l v a r i a t i o n o f t h e m o l a r s u s c e p t i b i l i t y o f V 0 ( 0 3 P N p ) ( H 2 0 ) - 0 . 7 H e x 0 H . T h e i n s e t d i s p l a y s t h e m a x i m u m o b s e r v e d i n t h e s u s c e p t i b i l i t y , t y p i c a l o f l o w — d i m e n s i o n a l a n t i f e r r o m a g n e t i c b e h a v i o r . 1 2 5 C . D i s c u s s i o n O u r s t u d i e s o n l a y e r e d v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s h a v e c o v e r e d a w i d e r a n g e o f s t r u c t u r a l e n v i r o n m e n t s . I n t e r c o n n e c t i o n o f v a n a d i u m o c t a h e d r a a n d p h o s p h o r u s t e t r a h e d r a v i a v a r i o u s l i n k i n g m o d e s r e s u l t s i n c o m p l e x i n t r a l a y e r e n v i r o n m e n t s . T h e i n n e r s t r u c t u r e o f t h e l a y e r s i s i n fl u e n c e d b y t h e s t e r i c a n d e l e c t r o n i c r e q u i r e m e n t s o f t h e p h o s p h a t e / p h o s p h o n a t e u n i t s . T h e c o m m o n b u i l d i n g b l o c k s o f t h e i n t r a l a y e r l a t t i c e w e r e i d e n t i fi e d b y V i l l e n e u v e a n d c o w o r k e r s ” , a n d a l l s t r u c t u r a l d e s c r i p t i o n s d i s c u s s e d i n t h e p r e v i o u s s e c t i o n s w e r e b a s e d u p o n t h e i r c l a s s i fi c a t i o n . H e n c e m a g n e t o s t r u c t u r a l c o r r e l a t i o n s p r e s e n t e d b e l o w , w i l l b e d e r i v e d b y r e c o g n i z i n g t h e s e s t r u c t u r a l u n i t s a s p o t e n t i a l e x c h a n g e p a t h w a y s a n d b y e s t i m a t i n g t h e i r r e l a t i v e c o n t r i b u t i o n t o t h e o v e r a l l m a g n e t i c p r o p e r t i e s . I n T a b l e 7 t h e l a y e r e d v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s u t i l i z e d i n t h i s s t u d y a l o n g w i t h r e l a t e d m a t e r i a l s a r e c a t e g o r i z e d t o f o u r s t r u c t u r a l t y p e s ( t y p e s 1 , 2 , 3 , a n d 4 ) a c c o r d i n g t o t h e n a t u r e o f t h e i n t r a l a y e r c o n n e c t i v i t y . T h e s t r u c t u r a l b u i l d i n g b l o c k s o f e a c h t y p e a r e i d e n t i f i e d a n d t h e m a g n e t i c p r o p e r t i e s ( i n t h e f o r m o f t h e e x c h a n g e c o n s t a n t J / k ) a r e a l s o r e p o r t e d . T h e c o m m o n f e a t u r e s h a r e d b y a l l t h e v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s g a t h e r e d i n T a b l e 7 i s t h e i r l a y e r e d c h a r a c t e r . T h e i n t e r l a y e r v o l u m e i s f i l l e d b y i n t e r c a l a t e d i o n s a n d w a t e r m o l e c u l e s ( v a n a d y l p h o s p h a t e s ) , o r b y o r g a n i c p e n d a n t s ( v a n a d y l p h o s p h o n a t e s ) . T h e p a c k i n g a r r a n g e m e n t o f t h e s e g r o u p s i s a c c o m p l i s h e d a c c o r d i n g t o t h e i r s t e r e o c h e m i c a l d e m a n d s , a n d i n t r a l a y e r l a t t i c e s a r e t h e n b u i l t u p a r o u n d t h e i n t e r l a y e r s p a c e . F o r e x a m p l e , a l t h o u g h t h e fl u o r o — a n d n i t r o - s u b s t i t u t e d p h e n y l p h o s p h o n a t e s a r e i s o s t r u c t u r a l t o t h e p a r e n t v a n a d y l p h e n y l p h o s p h o n a t e m o n o h y d r a t e " , p a r a — s u b s t i t u t i o n b y t h e b u l k y m e t h y l — a n d c h l o r o — c o n s t i t u e n t s r e s u l t e d i n a c h a n g e t o a m o r e o p e n i n t r a l a y e r s t r u c t u r e , 1 2 6 T a b l e 7 . S t r u c t u r a l T y p e s o f L a y e r e d V a n a d y l P h o s p h a t e s a n d P h o s p h o n a t e s S t r u c t u r a l T y p e B u i l d i n g B l o c k s E x a m p l e s J / k / K N a o , 5 V 0 P 0 4 - 2 H 2 0 + 0 . 6 K 0 . 5 V 0 P 0 4 - 1 . 5 H 2 0 + 0 . 6 M 1 1 R b o , 5 V 0 P 0 4 - 1 . 5 H 2 0 + 0 . 6 T y p e 1 S r o , 5 V 0 P 0 4 - 2 H 2 0 — 2 . 5 D V ” V 0 H P 0 4 0 4 H 2 0 — 4 . 7 B - V O H P 0 4 - 2 H 2 0 — 5 . 0 a — V O S O 4 + 1 . 5 V 0 ( 0 3 P C 5 H 5 ) - H 2 0 — 5 . 5 o 1 1 1 V 0 ( 0 3 P 0 6 H 4 — p - F ) - H 2 0 — 4 . 5 T y p e 2 V 0 ( 0 3 P 0 6 H 4 — m - F ) - H 2 0 — 3 . 3 D V V 0 ( 0 3 P 0 6 H 4 — p - N 0 2 ) - H 2 0 0 a — V O H P 0 4 - 2 H 2 0 — 2 3 . 0 V 0 ( 0 3 P 0 6 H 4 — p - C H 3 ) - 1 . 5 H 2 0 - 4 8 . 0 o 1 1 V 0 ( 0 3 P 0 6 H 4 — p - C l ) - 1 . 5 H 2 0 — 4 2 . 0 V 0 H P 0 4 - 0 . 5 H 2 0 — 4 3 . 0 T y p e 3 D 1 1 1 V 0 ( 0 3 P C H 3 ) - 1 . 5 H 2 0 — 4 3 . 8 o v V 0 ( 0 3 P C H 2 C H 3 ) - 1 . 5 H 2 0 — 5 1 . 6 V 0 ( 0 3 P ( C H 2 ) 2 0 H 3 ) - 1 . 5 H 2 0 — 5 2 . 0 T y p e 4 M 1 1 V 0 ( 0 3 P N p ) ( H 2 0 ) ° n R 0 H - 1 . 6 1 2 7 s i m i l a r t o t h a t o f v a n a d y l a l k y l p h o s p h o n a t e s ( ( C H 3 ( C H 2 ) , . P 0 3 ) V 0 w i t h n = 0 , 1 , a n d 2 4 3 ) . T h e m o r e s t e r i c a l l y d e m a n d i n g n a p h t h y l p h o s p h o n a t e s a r e a c c o m m o d a t e d i n e v e n m o r e o p e n v a n a d y l p h o s p h o n a t e l a y e r s a l o n g w i t h t w o w a t e r m o l e c u l e s p e r f o r m u l a u n i t . T h e m a g n e t i c p r o p e r t i e s o f v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s d i f f e r f r o m o n e s t r u c t u r a l t y p e t o t h e o t h e r . B o t h f e r r o m a g n e t i c a n d a n t i f e r r o m a g n e t i c i n t e r a c t i o n s a r e o b s e r v e d i n t y p e 1 m a t e r i a l s ( T a b l e 7 ) , w h i l e a n t i f e r r o m a g n e t i s m i s t h e d o m i n a n t e f f e c t i n t h e o t h e r s t r u c t u r a l t y p e s . T h e s t r o n g e s t a n d t h e w e a k e s t a n t i f e r r o m a g n e t i c c o u p l i n g s a r e o b s e r v e d i n t y p e 3 ( t a b l e 7 ) a n d t y p e 4 T a b l e 7 ) c o m p o u n d s r e s p e c t i v e l y , w h i l e i n t y p e 2 ( t a b l e 7 ) m a t e r i a l s a n o t i c e a b l e d i f f e r e n c e i n t h e m a g n i t u d e o f t h e e f f e c t i s p e r c e i v e d , w i t h t h e e x c h a n g e c o u p l i n g i n a — V O H P 0 4 - 0 . 5 H 2 0 b e i n g m u c h s t r o n g e r t h a n t h a t o f t h e V 0 ( 0 3 P C G H 4 - X ) - H 2 0 s e r i e s . A t t e m p t s t o u n d e r s t a n d t h e m a g n e t i c p r o p e r t i e s i n l a y e r e d v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s m u s t i n c o r p o r a t e g e o m e t r i c a l a n d e l e c t r o n i c v a r i a b l e s . T h e fi r s t c o n c e r n r e g a r d i n g t h e m a g n e t i c p r o p e r t i e s o f t h e s e s y s t e m s i s w h e t h e r e x c h a n g e i n t e r a c t i o n s a r e f e a s i b l e a m o n g n e i g h b o r i n g l a y e r s . R e c e n t l i t e r a t u r e r e s u l t s 5 6 s u g g e s t t h a t v a r i a t i o n o f t h e i n t e r l a y e r d i s t a n c e d o e s n o t m o d i f y m a g n e t i c p r o p e r t i e s o f l a y e r e d m e t a l p h o s p h o n a t e s . T o f u r t h e r a d d r e s s t h i s q u e s t i o n w e h a v e u n d e r t a k e n t h e i n v e s t i g a t i o n o f t h e m a g n e t i c p r o p e r t i e s o f a s e r i e s o f l a y e r e d v a n a d y l n a p h t h y l p h o s p h o n a t e d i h y d r a t e s . S u b s t i t u t i o n o f o n e w a t e r m o l e c u l e b y a l k a n o l s p r o v i d e s t h e m e a n s t o m e c h a n i c a l l y j a c k t h e l a y e r s a p a r t , i n c r e a s i n g t h e i n t e r l a y e r s p a c e w i t h o u t a l t e r i n g t h e i n t r a l a y e r e n v i r o n m e n t . O u r r e s u l t s c o n f i r m t h e l i t e r a t u r e o b s e r v a t i o n , s i n c e a l l fi v e c o m p o u n d s s t u d i e d ( c o v e r i n g a d — s p a c e r a n g e o f 1 2 . 1 t o 2 0 . 8 A ) d i s p l a y e d i d e n t i c a l m a g n e t i c b e h a v i o u r ( T a b l e 6 ) . H e n c e f o r t y p e 2 , 3 , a n d 4 m a t e r i a l s w h e r e t h e i n t e r l a y e r s p a c e i s w i t h i n t h e s t u d i e d r a n g e , t h e m a g n e t i c p r o p e r t i e s a r e s o l e l y d u e t o 1 2 8 i n t r a l a y e r e f f e c t s . T y p e 1 m a t e r i a l s o n t h e o t h e r h a n d d i s p l a y m u c h s m a l l e r d - s p a c i n g s . N o n e t h e l e s s , s i n c e n o e v i d e n c e o f t h r e e — d i m e n s i o n a l m a g n e t i c o r d e r w a s t r a c e d d o w n t o 2 K , t h e i r m a g n e t i c b e h a v i o r i s a l s o c o n s i d e r e d t o o r i g i n a t e f r o m i n t r a l a y e r c o u p l i n g . T h e m a i n f a c t o r r e s p o n s i b l e f o r t h e w i d e r a n g e o f m a g n e t i c p r o p e r t i e s o b s e r v e d i n l a y e r e d v a n a d y l p h o p s p h a t e s a n d p h o s p h o n a t e s s h o u l d t h e r e f o r e b e t h e n a t u r e o f t h e i n t r a l a y e r c o n n e c t i v i t y . I n o r d e r t o e v a l u a t e t h e e f f e c t o f g e o m e t r i c a l d i s t o r t i o n o f i n d i v i d u a l b u i l d i n g b l o c k s a n d p o t e n t i a l e x c h a n g e p a t h w a y s i n t h e m a g n i t u d e a n d s i g n o f t h e e x c h a n g e c o u p l i n g , t h e r o l e o f t h e 0 — P — 0 l i n k s a s s p i n c o n d u c t o r s h a s fi r s t t o b e e s t a b l i s h e d . R e c e n t l i t e r a t u r e k 5 ' 1 7 , w i t h t h e e x c e p t i o n o f o n e s t u d y 5 7 s u p p o r t s t h e r o l e o f t h e s e d i a m a g n e t i c w o r l i n k a g e s a s v a l u a b l e e x c h a n g e p a t h w a y s . O u r o w n 3 1 P — N M R r e s u l t s p r o v i d e a d d i t i o n a l e v i d e n c e f o r t h e a b o v e h y p o t h e s i s . T h e l a r g e i s o t r o p i c s h i f t s o b s e r v e d i n t h e m e t a l i n t e r c a l a t e d v a n a d y l p h o s p h a t e s e r i e s a n d t h e i r l i n e a r t e m p e r a t u r e d e p e n d e n c e s u g g e s t t h e p r e s e n c e o f f i n i t e s p i n d e n s i t y o n p h o s p h o r u s a t o m i c s o r m o l e c u l a r s p 3 o r b i t a l s . T h i s s p i n d e n s i t y i s i d e n t i c a l a m o n g t h e m i x e d - v a l e n c e a l k a l i m e t a l d e r i v a t i v e s , w h e r e f e r r o m a g n e t i c i n t e r a c t i o n s o f t h e s a m e m a g n i t u d e a r e o b s e r v e d , w h i l e i s a l m o s t d o u b l e i n t h e 0 0 2 + d e r i v a t i v e , w h e r e e a c h v a n a d i u m s i t e b e a r s a n u n p a i r e d e l e c t r o n . T h i s d i f f e r e n c e i n s p i n d e n s i t y i s t r a n s l a t e d t o a l a r g e r i s o t r o p i c 3 1 P — N M R s h i f t f o r t h e l a t t e r d e r i v a t i v e . T h e p a r a m a g n e t i c s h i f t s o f v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s c o n t a i n i n g o n l y V 4 + m e t a l s i t e s d i f f e r w i d e l y , c o v e r i n g a r a n g e o f a l m o s t 2 0 0 0 p p m . S u c h a l a r g e d i f f e r e n c e s h o u l d b e a s s o c i a t e d t o t h e a m o u n t o f s p i n d e n s i t y o n t h e p h o s p h o r u s o r b i t a l s . l r r e s p e c t i v e l y o f t h e s p i n t r a n s f e r m e c h a n i s m ( s p i n p o l a r i z a t i o n v e r s u s d i p o l a r c o u p l i n g o r b o t h ) , t h e m a g n i t u d e o f t h e p a r a m a g n e t i c s h i f t s h o u l d c o r r e l a t e w i t h f e a t u r e s o f t h e p o t e n t i a l e x c h a n g e p a t h w a y s . I n F i g u r e 2 3 t h e r o o m t e m p e r a t u r e s h i f t s o f f i v e l a y e r e d v a n a d y l p h o s p h a t e s a n d 1 2 9 m l fi 8 8 1 6 1 ) 1 4 ( 1 ) 1 2 1 1 1 G ! ) 8 O l l l l l l l l l l l l l l l l l l L ' l l l l l j l l l l l l 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 D / A 8 F i g u r e 2 3 . P l o t o f t h e i s o t r o p i c 3 1 P — N M R c h e m i c a l s h i f t o f s e l e c t e d v a n a d y l p h o s p h a t e s / p h o s p h o n a t e s v e r s u s t h e p h o s p h o r o u s d i s p l a c e m e n t D f r o m t h e b a s a l v a n a d y l p l a n e . 1 3 0 p h o s p h o n a t e s ( S r o , 5 V 0 P 0 4 - 2 H 2 0 , V 0 H P 0 4 ' 4 H 2 0 , B — V O H P 0 4 - 2 H 2 0 , V 0 ( 0 3 P 0 6 H 5 ) - H 2 0 , a n d a — V O H P O 4 ' 2 H 2 0 ) a r e p l o t t e d a g a i n s t t h e d i s p l a c e m e n t D i n A o f t h e p h o s p h o r u s a t o m f r o m t h e v a n a d i u m b a s a l p l a n e ( d e fi n e d a s t h e b e s t p l a n e p a s s i n g t h r o u g h t h e f o u r e q u a t o r i a l a t o m s ) . S m a l l v a l u e s o f D ( l i k e t h o s e o f V 0 ( 0 3 P 0 5 H 5 ) - H 2 0 , a n d a — V 0 H P 0 4 - 2 H 2 0 ) , c o r r e l a t e w i t h l a r g e 3 1 P - N M R i s o t r o p i c s h i f t s ( a n d t h u s l a r g e r s p i n d e n s i t y o n p h o s p h o r u s o r b i t a l s ) . A s D v a l u e s a p p r o a c h t h e 1 A d i s p l a c e m e n t o f p h o s p h o r u s f r o m t h e b a s a l p l a n e o b s e r v e d i n c h a i r — l i k e b u i l d i n g b l o c k s o f t h e D V I I t y p e , t h e i s o t r o p i c c h e m i c a l s h i f t d e c r e a s e s s i g n i fi c a n t l y . I t s h o u l d b e p o i n t e d o u t t h a t a l t h o u g h a l i n e a r c o r r e l a t i o n i s o b t a i n e d , t h e u s e f u l n e s s o f t h e p l o t i s r a t h e r q u a l i t a t i v e . D a t a w e r e i n c o r p o r a t e d i n t o i t a c c o r d i n g t o 3 1 P — N M R d a t a a v a i l a b i l i t y , t h e p r e s e n c e o f o n e m a j o r b u i l d i n g b l o c k w i t h t h e p o t e n t i a l t o a c t a s a n e x c h a n g e p a t h w a y , a n d b y c o n s i d e r i n g t h e s h o r t e s t v a l u e o f D w h e n t w o o r m o r e w e r e a v a i l a b l e . N e v e r t h e l e s s F i g u r e 2 3 e s t a b l i s h e s t h a t t h e m a g n i t u d e o f t h e p a r a m a g n e t i c c h e m i c a l s h i f t c o r r e l a t e s t o a g e o m e t r i c a t t r i b u t e o f a n e x c h a n g e p a t h w a y a n d i t f u r t h e r s o l i d i fi e s t h e h y p o t h e s i s t h a t 0 — P — 0 l i n k a g e s a r e e s s e n t i a l e l e m e n t s o f s p i n c o m m u n i c a t i o n . V i a b l e e x c h a n g e p a t h w a y s t h r o u g h t h e p h o s p h a t e a n d p h o s p h o n a t e b r i d g e s t h e r e f o r e i n v o l v e fi n i t e a m o u n t s o f s p i n d e n s i t y o n p h o s p h o r u s o r b i t a l s . T h e s e o r b i t a l s s h o u l d a l s o h a v e a p p r o p r i a t e e n e r g i e s i n o r d e r t o s u f fi c i e n t l y i n t e r a c t w i t h t h e m e t a l b a s e d d — o r b i t a l s . T h e o r y p r e d i c t s 5 8 t h a t e l e c t r o n - w i t h d r a w i n g s u b s t i t u e n t s , p o s i t i o n e d i n a n i n fl u e n t i a l m a n n e r t o t h e s t r u c t u r a l c o r e o f t h e e x c h a n g e p a t h w a y , w i l l d e c r e a s e t h e m a g n i t u d e o f t h e e x c h a n g e i n t e r a c t i o n ( C h a p t e r 1 ) b y t u n i n g t h e e n e r g y l e v e l s o f t h e p h o s p h o r u s o r b i t a l s . T h i s e f f e c t i s d e m o n s t r a t e d e x p e r i m e n t a l l y i n t h e a r y l p h o s p h o n a t e s y s t e m s V 0 ( 0 3 P C G H 4 — X ) - H 2 0 ( X = p - N 0 2 , m - F , p - F , - H ) , w h e r e t h e 0 — P — 0 p a t h w a y 1 3 1 d o m i n a t e s e x c h a n g e b e t w e e n v a n a d y l c e n t e r s . T h e m a g n e t i c c o u p l i n g r e s p o n d s t o v a r i a t i o n s i n H a m m e t t 0 ' v a l u e s w h i c h , i n t u r n , r e fl e c t t h e e l e c t r o n i c e n v i r o n m e n t a t t h e P a t o m ( T a b l e 5 ) . T h e r e f o r e , t u r n i n g — o f f o f t h e m a g n e t i c e x c h a n g e i n V 0 ( 0 3 P C G H 4 — N 0 2 ) - H 2 0 d o e s n o t i m p l y t h e a b s e n c e o f s p i n d e n s i t y o n p h o s p h o r u s o r b i t a l s ; 3 1 P — N M R d a t a o n t h i s c o m p o u n d c o n s i s t o f a l o w — fi e l d s i n g l e l i n e c e n t e r e d a t 1 4 2 1 p p m a t r o o m t e m p e r a t u r e . T h e H a m m e t t 0 ' c o n s t a n t i s d e f i n e d v i a t h e a c i d i t y o f t h e b e n z o i c a c i d s X — 0 6 H 4 — 0 0 0 H w i t h X i n t h e m e t a o r p a r a p o s i t i o n o n t h e p h e n y l r i n g . T h e v a l u e o f a f o r t h e p - N 0 2 g r o u p , f o r i n s t a n c e , i s t h e n t h e d i f f e r e n c e i n p K a ( a c i d s t r e n g t h ) b e t w e e n p a r e n t a n d s u b s t i t u t e d b e n z o i c a c i d s [ i . e . 0 ' : p K a ( X = H ) - p K a ( X = p - N 0 2 ) ] ; t h e p - N 0 2 — b e n z o i c a c i d i s m o r e r e a d i l y i o n i z e d ( i . e . s t r o n g e r , p K a l o w e r ) d u e t o t h e e l e c t r o n a c c e p t i n g a b i l i t y o f t h e N 0 2 g r o u p , s o a i s p o s i t i v e f o r s u c h e l e c t r o n w i t h d r a w i n g g r o u p s . T h e c c o n s t a n t s t h u s r e fl e c t c o m p o s i t e r e s o n a n c e a n d s i g m a t r o p i c e l e c t r o n w i t h d r a w a l a l o n g w i t h d i p o l e c h a n g e s i n t h e m o l e c u l e s . A s s e e n i n F i g u r e 2 4 , a p l o t o f J / k v s . 0 ' i s m o n o t o n i c ; f o r a s i m p l e l i n e a r fi t , a s l o p e o f 6 . 8 i s o b t a i n e d . O t h e r p r o p e r t i e s t h a t d e p e n d o n t h e e l e c t r o n i c e n v i r o n m e n t o f p h o s p h o r u s — s p e c i fi c a l l y , t h e p K a v a l u e s i n a r y l p h o s p h o n i c a c i d s 5 9 a n d 3 1 P - - N M R c h e m i c a l s h i f t s i n t h e r e l a t e d a r y l p h o s p h o n i c d i c h l o r i d e s 6 0 — s h o w l i n e a r c o r r e l a t i o n s w i t h 0 ' . A t r e n d t o w e a k e r c o u p l i n g w i t h i n c r e a s i n g a s e e m s s e n s i b l e o n t h e t e r m s o f t h e a c t i v e — e l e c t r o n a p p r o x i m a t i o n “ ; a s s u b s t i t u e n t s b e c o m e m o r e e l e c t r o n w i t h d r a w i n g , t h e e n e r g y m i s m a t c h b e t w e e n p h o s p h o n a t e o r b i t a l e n e r g i e s a n d v a n a d y l d l e v e l s w i d e n s , l e a d i n g t o d e c r e a s e d i n t e r a c t i o n a n d h e n c e c o u p l i n g ( s e e e q u a t i o n 1 . 1 3 , C h a p t e r 1 ) . I n t h e p - N 0 2 d e r i v a t i v e f o r e x a m p l e , t h e e n e r g y m i s m a t c h b e c o m e s l a r g e e n o u g h t o e s s e n t i a l l y t u r n o f f s p i n c o m m u n i c a t i o n b e t w e e n a d j a c e n t v a n a d y l c e n t e r s . T h e e f f e c t s d e s c r i b e d a b o v e m a k e a r e l a t i v e s m a l l c o n t r i b u t i o n t o t h e m a g n i t u d e o f t h e e x c h a n g e i n t e r a c t i o n . T h e y e s t a b l i s h h o w e v e r t h e p r e s e n c e o f 1 3 2 K / k I J - 6 1 1 1 1 1 1 - 0 . 2 0 0 . 2 0 . 4 0 . 6 0 . 8 1 0 ' F i g u r e 2 4 . P l o t o f J / k v s . a f o r t h e f o u r L V P S V 0 ( 0 3 P 0 5 H 4 — X ) - H 2 0 ( X = p - N 0 2 , m - F , p - F , a n d H ) . 1 3 3 s p i n d e n s i t y o n p h o s p h o r u s o r b i t a l s a n d v a l i d a t e t h e h y p o t h e s i s t h a t 0 — P — 0 l i n k a g e s a r e g e n u i n e m a g n e t i c c o u p l i n g p a t h w a y s . I n t y p e s 1 , 2 , a n d 4 a l l t h e s t r u c t u r a l b u i l d i n g b l o c k s i n v o l v e p h o s p h a t e / p h o s p o n a t e l i n k s , i n d i c a t i n g t h a t s p i n c o m m u n i c a t i o n p r o p a g a t e s v i a o n e o r m o r e o f t h e s e 0 — P — 0 l i n k a g e s . 0 n | y t y p e 3 m a t e r i a l s c o n t a i n t h e D I I s t r u c t u r a l u n i t w h e r e a V ( , u Z - 0 ) 2 V d i m e r a s s u m e s t h e r o l e o f t h e e x c h a n g e p a t h w a y a . A l l s i x m a t e r i a l s c r y s t a l l i z i n g i n t h i s s t r u c t u r a l t y p e p o s s e s s a l m o s t i d e n t i c a l m a g n e t i c p r o p e r t i e s . T h e s t r o n g a n t i f e r r o m a g n e t i c c o u p l i n g i s a c o n s e q u e n c e o f t h e d x y p l a n e s ' c o p l a n a r i t y , i n a c c o r d a n c e w i t h t h e c a l c u l a t i o n ” 6 2 s t u d i e s p e r f o r m e d f o r a n a l o g o u s c o p p e r s y s t e m s w i t h i n t h e f r a m e w o r k o f t h e a c t i v e — e l e c t r o n a p p r o x i m a t i o n . F r o m t h e r e m a i n i n g s t r u c t u r a l t y p e s t h e s i m p l e s t o n e i s t y p e 4 , w h e r e t h e V 0 ( 0 3 P N p ) ( H 2 0 ) - n R 0 H s e r i e s o f c o m p o u n d s c r y s t a l l i z e s . T h e o n l y s t r u c t u r a l e l e m e n t i n v o l v e d i s o f t h e M I I t y p e w h e r e a d j a c e n t v a n a d y l o c t a h e d r a a r e c o n n e c t e d t h r o u g h s i n g l e — b r i d g e d p h o s p h o n a t e u n i t s . W e a k a n t i f e r r o m a g n e t i c i n t e r a c t i o n s a r e o b s e r v e d a s i n d i c a t e d b y t h e b r o a d m a x i m u m c e n t e r e d a t 3 . 8 K i n t h e x v s T d a t a ( F i g u r e 2 2 ) . T h e s u s c e p t i b i l i t y d a t a w e r e fi t t e d a d e q u a t e l y b y a t w o d i m e n s i o n a l H e i s e n b e r g m o d e l f o r a s q u a r e l a t t i c e , r e s u l t i n g i n a J / k v a l u e o f - 1 . 6 K . S u c h a s m a l l c o u p l i n g i s a t t r i b u t e d t o t h e M I I e x c h a n g e p a t h w a y , w h e r e a d j a c e n t m e t a l c e n t e r s a r e p o s i t i o n e d a l m o s t 6 A a p a r t f r o m e a c h o t h e r . T h e V 0 ( 0 3 P C 5 H 4 — X ) - H 2 0 s e r i e s o f c o m p o u n d s w i t h X = p - N 0 2 , m - F , p - F , a n d - H , c r y s t a l l i z e s a l o n g w i t h a — V O H P 0 4 - 2 H 2 0 i n t h e t y p e 2 s t r u c t u r a l c l a s s . T h e m a g n e t i c p r o p e r t i e s a l o n g t h e i s o s t r u c t u r a l v a n a d y l p h o s p h o n a t e s e r i e s c o r r e l a t e w e l l w i t h t h e e l e c t r o n i c p r o p e r t i e s o f t h e s u b s t i t u t e d p h o s p h o n a t e s , a s w a s d i s c u s s e d a b o v e . T h e r i g i d n a t u r e o f t h e i n t r a l a y e r f r a m e w o r k , a n d i t s i s o l a t i o n f r o m t h e s u b s t i t u t i o n s i t e s , p r e s e r v e t h e s t r u c t u r a l b l o c k m e t r i c p a r a m e t e r s . S t r u c t u r a l c o m p a r i s o n s a r e t h e r e f o r e v a l i d a t e d a m o n g t h e p a r e n t v a n a d y l p h e n y l p h o s p h o n a t e h y d r a t e a n d t h e v a n a d y l h y d r o g e n p h o s p h a t e 1 3 4 d i h y d r a t e . A l t h o u g h b o t h m a t e r i a l s b e l o n g t o t h e s a m e s t r u c t u r a l t y p e a n d 3 1 P — N M R d a t a s u g g e s t t h a t a l m o s t i d e n t i c a l fi n i t e a m o u n t s o f s p i n d e n s i t y a r e p l a c e d i n p h o s p h o r u s o r b i t a l s , t h e a n t i f e r r o m a g n e t i c c o u p l i n g i s m u c h s t r o n g e r i n t h e l a t t e r c o m p o u n d i n d i c a t i n g s i g n i f i c a n t g e o m e t r i c a l d i f f e r e n c e s w i t h i n t h e b a s i c s t r u c t u r a l b u i l d i n g b l o c k s . T h e s e a r e o f t h e 0 H I a n d D V t y p e a s i n d i c a t e d i n T a b l e 7 ( F i g u r e 2 5 ) . T h e f o r m e r a s s e m b l e s i n fi n i t e l i n e a r c h a i n s w h i l e t h e l a t t e r c o m p r i s e s i s o l a t e d d i m e r s w i t h i n t h e i n t r a l a y e r l a t t i c e . N o s i g n i fi c a n t c o u p l i n g i s e x p e c t e d t h r o u g h t h e 0 I I I p a t h w a y , s i n c e t h e o r i e n t a t i o n o f t h e c o n n e c t i n g l i n k s i s o r t h o g o n a l t o t h e d x y m a g n e t i c o r b i t a l s 3 . I n a d d i t i o n , t h e s u s c e p t i b i l i t y d a t a w e r e a d e q u a t e l y f i t t e d t o a B l e a n e y — B o w e r s m o d e l f o r d i m e r s ” , w h i l e n o fi t w a s p o s s i b l e b y u s i n g 1 — D m o d e l s . V a r i a t i o n s i n t h e s t r e n g t h o f t h e m a g n e t i c e x c h a n g e s h o u l d b e a t t r i b u t e d t o g e o m e t r i c a l d i f f e r e n c e s w i t h i n t h e d o u b l e — b r i d g e d D V p a t h w a y s . T h e l a r g e i n t e r — m e t a l d i s t a n c e p r e c l u d e s t h e p o s s i b i l i t y o f a n y s i g n i fi c a n t c o n t r i b u t i o n f r o m t h r o u g h - s p a c e i n t e r a c t i o n s . A s u p e r e x c h a n g e m e c h a n i s m , w h i c h n e c e s s a r i l y i n v o l v e s t h e p h o s p h a t e / p h o s p h o n a t e b r i d g e s a n d t h e m e t a l o r b i t a l s , i s m o r e p l a u s i b l e . I n o r d e r t o q u a l i t a t i v e l y d e r i v e a n y v a l i d m a g n e t o s t r u c t u r a l c o r r e l a t i o n s e a c h e x c h a n g e p a t h w a y h a s t o b e e x a m i n e d w i t h r e s p e c t t o t h e g e o m e t r i c a l a s p e c t s o f t h e f r o n t i e r o r b i t a l s i n v o l v e d . A l t h o u g h a s s i g n i n g t h e l i g a n d o r b i t a l s d o e s n o t p r e s e n t a n y d i f fi c u l t y t h e s a m e i s n o t t r u e f o r t h e m e t a l o r b i t a l s . T h e v a n a d i u m d i s p l a c e m e n t f r o m i t s b a s a l p l a n e c o m p l i c a t e s m a t t e r s i n t e r m s o f d e fi n i n g t h e o r i e n t a t i o n o f t h e d x y m e t a l o r b i t a l . I t i s u s u a l l y c o n s i d e r e d t h a t t h e p l a n e o f t h i s o r b i t a l c o i n c i d e s w i t h t h e b a s a l p l a n e o f t h e v a n a d i u m o c t a h e d r o n . H o w e v e r r e c e n t c a l c u l a t i o n s t u d i e s 6 4 o n c o p p e r c o m p l e x e s h a v e s h o w n a s t r o n g d e p e n d e n c e o f t h e m a g n i t u d e o f t h e a n t i f e r r o m a g n e t i c c o u p l i n g o n t h e c o p p e r d i s p l a c e m e n t f r o m i t s b a s a l p l a n e ; t h e l a r g e r t h e d i s t o r t i o n , t h e l e s s a n t i f e r r o m a g n e t i c J b e c o m e s . T h e s e s t u d i e s c l e a r l y p o i n t o u t t h a t t a k i n g t h e d x y 1 3 5 0 I I I F i g u r e 2 5 . 0 I I I s t r u c t u r a l b u i l d i n g b l o c k ( t o p ) a n d t h e c o r r e s p o n d i n g D V o n e s f o r t h e p h o s p a t e ( l e f t ) a n d t h e p h o s p h o n a t e ( r i g h t ) . 1 3 6 o r b i t a l o r i e n t a t i o n f o r g r a n t e d m i g h t l e a d t o m i s i n t e r p r e t a t i o n o f t h e e x p e r i m e n t a l r e s u l t s . I n t h e m a t e r i a l s e x a m i n e d h e r e , t h e m a g n e t i c p r o p e r t i e s a r e d u e t o i s o l a t e d d i m e r i c e n t i t i e s . G i v e n t h e q u a l i t a t i v e f r a m e w o r k o f t h i s w o r k , t h e d x y o r b i t a l i s t h e n c o n s i d e r e d a s e i t h e r t h e v a n a d i u m b a s a l p l a n e ( i n d i c a t e d a s 0 4 " ) o r a s t h e p l a n e d e fi n e d b y v a n a d i u m a n d t h e t w o b a s a l o x y g e n a t o m s p a r t i c i p a t i n g i n t h e e x c h a n g e p a t h w a y ( i n d i c a t e d a s V 0 2 ) . I n t h e c a s e o f t y p e 2 m a t e r i a l t h e l a t t e r i s c o n s i d e r e d a s a m o r e v a l i d a p p r o x i m a t i o n . I n s p e c t i o n o f T a b l e 8 , w h e r e t h e m e t r i c p a r a m e t e r s o f t h e D V e x c h a n g e p a t h w a y s o f t h e p h o s p h o n a t e a n d t h e p h o s p h a t e a r e g a t h e r e d , v a l i d a t e s t h e a b o v e a r g u m e n t s . W h e n t h e o r i e n t a t i o n o f t h e d x y p l a n e i s c o n s i d e r e d t o c o i n c i d e w i t h t h a t o f t h e v a n a d i u m b a s a l p l a n e t h e t w o e x c h a n g e p a t h w a y s a p p e a r t o b e a l m o s t i d e n t i c a l . T h e v a r i a n c e i n t h e m a g n i t u d e o f t h e e x c h a n g e c o u p l i n g c o u l d t h e n o n l y a r i s e f r o m t h e e n e r g y m i s m a t c h b e t w e e n t h e m e t a l o r b i t a l s a n d t h e p h o s p h o n a t e v e r s u s t h e p h o s p h a t e f r o n t i e r o r b i t a l s . A l t e r n a t i v e l y i f t h e V 0 2 p l a n e c o i n c i d e s w i t h t h e m e t a l d x y p l a n e t h e n t h e t w o e x c h a n g e p a t h w a y s p r e s e n t s i g n i fi c a n t d i f f e r e n c e s . T h e m e t a l o r b i t a l s i n t h e p h o s p h a t e a r e a l m o s t c o p l a n a r w h i l e t h e s a m e i s n o t t r u e f o r t h e p h o s p o n a t e . U n d e r t h e t h e o r e t i c a l f r a m e w o r k o f t h e a c t i v e - e l e c t r o n a p p r o x i m a t i o n , a n a p p r o a c h fi r s t d e v e l o p e d b y H o f f m a n n a n d c o w o r k e r s “ , t h e d i m e r ' s m a g n e t i c o r b i t a l s a r e c o n s i d e r e d t o b e a s y m m e t r i c ( a b s ) a n d a n a n t i s y m m e t r i c ( 0 0 A ) c o m b i n a t i o n o f m e t a l a n d l i g a n d o r b i t a l s ( F i g u r e 2 6 ) . T h e m a g n i t u d e o f t h e e x c h a n g e i n t e r a c t i o n i s t h e n d i r e c t l y p r o p o r t i o n a l t o t h e s q u a r e o f t h e e n e r g y d i f f e r e n c e b e t w e e n t h e s e o r b i t a l s ( s e e e q u a t i o n 1 . 8 , C h a p t e r 1 ) . B y u s i n g s i m p l e a r g u m e n t s , a q u a l i t a t i v e e n e r g y d i a g r a m i s c o n s t r u c t e d w h i c h r e l a t e s t h e m a g n i t u d e o f t h i s e n e r g y d i f f e r e n c e t o t h e d e v i a t i o n f r o m c o p l a n a r i t y ( d v ( V 0 2 l V 0 2 ) ) o f t h e m e t a l o r b i t a l s . F o r d v = 0 , ( D A i s h i g h e r i n e n e r g y t h a n ( D s , a n d a s i t s v a l u e i n c r e a s e s t h e e n e r g y d i f f e r e n c e b e c o m e s s m a l l e r r e a c h i n g a p o i n t w h e r e t h e t w o s h o u l d b e p r a c t i c a l l y d e g e n e r a t e . 1 3 7 T a b l e 8 . M e t r i c P a r a m e t e r s f o r t h e D V E x c h a n g e P a t h w a y M e t r i c P a r a m e t e r s V 0 ( 0 3 P C G H 5 ) - H 2 0 a — V 0 H P 0 4 - 2 H 2 0 d ( V . . . . . . V ) , A 3 5 . 0 1 0 5 . 1 3 8 < v o 2 1 v o 2 / ° b 0 0 < V O 2 I O 4 P / ° ° 1 5 3 . 9 8 1 7 8 . 3 2 d V ( V 0 2 l v 0 2 ) / A d 1 . 0 2 6 0 . 0 7 5 < o . 1 " 1 o . , V / ° 6 0 0 < o . . " i o 1 1 P / ° ’ 1 6 3 . 7 7 1 6 4 . 5 3 d o ( 0 4 V | 0 4 V ) I A 9 0 . 6 3 0 . 6 9 J / k / K h — 5 . 5 - 2 3 a D i s t a n c e b e t w e e n t h e v a n a d y l c e n t e r s w i t h i n t h e D V b u i l d i n g b l o c k . ° D i h e d r a | a n g l e b e t w e e n t h e V 0 2 p l a n e s ( d e fi n e d b y v a n a d i u m a n d t h e t w o b a s a l o x y g e n a t o m s o f t h e D V r i n g ) . ° D i h e d r a l a n g l e b e t w e e n t h e V 0 2 p l a n e a n d t h e p l a n e 0 4 " ( d e fi n e d b y t h e f o u r D V r i n g o x y g e n a t o m s ) . d D i s t a n c e b e t w e e n t h e V 0 2 p l a n e s . ° D i h e d r a l a n g l e b e t w e e n t h e 0 ) ’ p l a n e s ( d e fi n e d b y t h e f o u r b a s a l o x y g e n s o f t h e v a n a d i u m o c t h e d r o n ) . ' D i h e d r a l a n g l e b e t w e e n t h e 0 4 V a n d t h e 0 4 p p l a n e s . 9 D i s t a n c e b e t w e e n t h e 0 ) ’ p l a n e s . h F r o m B l e a n e y — B o w e r s d i m e r m o d e l . T a b l e 9 . M e t r i c P a r a m e t e r s f o r t h e D V I I E x c h a n g e P a t h w a y M e t r i c N a ” a — V O S O 4 B — V O H P 0 4 - 2 H 2 0 5 r “ V 0 H P 0 4 - 4 H 2 0 d ( V . . . . . . V ) / A 4 . 6 0 8 4 . 5 3 0 4 . 8 0 5 4 . 6 8 0 4 . 5 9 5 < 0 4 V | 0 4 V I ° 0 0 0 2 . 3 8 6 . 6 6 < 0 4 V | 0 4 P I ° 1 1 9 . 1 1 3 1 . 8 1 4 5 . 3 1 3 3 . 8 1 3 1 . 0 d o ( 0 4 V I 0 4 V ) / A 1 . 8 7 1 . 7 6 1 . 4 3 — — J / k / K + 0 . 6 + 1 . 5 — 5 . 0 - 2 . 5 — 4 . 7 “ N a o , 5 V 0 P 0 4 - 2 H 2 0 . ” S r o 5 V 0 P 0 4 - 2 H 2 0 . 1 3 8 F i g u r e 2 6 . S y m m e t r i c ( ( 1 ) 3 ) a n d a n t i s y m m e t r i c ( C I D A ) c o m b i n a t i o n o f v a n a d i u m d x y a n d p h o s p h a t e / p h o s p h o n a t e m o l e c u l a r o r b i t a l s a n d t h e i r e n e r g y d e p e n d e n c e u p o n d e v i a t i o n f r o m c o p l a n a r i t y o f t h e l o c a l m e t a l e n v i r o n m e n t s . 1 3 9 T h e r e f o r e t h e s m a l l e r t h e v a l u e o f d v t h e h i g h e r t h e a n t i f e r r o m a g n e t i c c o u p l i n g s h o u l d b e , i n a c c o r d a n c e w i t h e q u a t i o n 1 . 8 . T h i s b e h a v i o r m a y b e u n d e r s t o o d f r o m t h e i n t e r a c t i o n s o f t h e d m e t a l — b a s e d o r b i t a l s w i t h t h e l o w e r — l y i n g fi l l e d o r b i t a l s o f t h e d i a m a g n e t i c p h o s p h a t e / p h o s p h o n a t e l i n k s . T h e l a t t e r a r e a c o m b i n a t i o n o f o x y g e n p a n d p h o s p o r o u s d a t o m i c o r b i t a l s , w h i c h f o r m a p a i r o f d e g e n e r a t e p h o s p h a t e / p h o s p h o n a t e n o n b o n d i n g M 0 ' s . H e n c e , t h e e n e r g y d i f f e r e n c e b e t w e e n t h e m a g n e t i c o r b i t a l s s h o u l d b e d e p e n d e n t o n t h e m a n n e r t h a t m e t a l — b a s e d o r b i t a l s i n t e r a c t t h r o u g h t h e b r i d g e . I n F i g u r e 2 6 ( b o t t o m ) a v i e w o f t h e s e c t i o n o f t h e e x c h a n g e p a t h w a y , f o r b o t h t h e ( D s a n d t h e ( D A , a t t w o e x t r e m e c o n f o r m a t i o n s i s d r a w n . W h e n t h e m e t a l ' s l o c a l d x y p l a n e s a r e c o p l a n a r , f o r b o t h t h e s y m m e t r i c a n d a n t i s y m m e t r i c c o m b i n a t i o n s , t h e y c a n i n t e r a c t w i t h t h e p h o s p h a t e / p h o s p h o n a t e m o l e c u l a r o r b i t a l s . S u c h a n i n t e r a c t i o n s t a b i l i z e s ( D s m a k i n g i t l e s s a n t i b o n d i n g i n c h a r a c t e r w h i l e i t h a s a n o p p o s i t e e f f e c t o n t h e ( D A c o m b i n a t i o n . A s d e v i a t i o n s f r o m c o p l a n a r i t y o c c u r t h e s e o v e r l a p s d e c r e a s e i n m a g n i t u d e , r a i s i n g t h e e n e r g y o f ( D 3 a n d l o w e r i n g t h a t o f 4 2 4 , s i n c e t h e l a t t e r c o m b i n a t i o n b e c o m e s l e s s a n t i b o n d i n g . I n a c c o r d a n c e w i t h t h e s e a r g u m e n t s t h e e x c h a n g e c o u p l i n g i n t h e p h o s p h a t e i s f o u r t i m e s s t r o n g e r t h a n t h a t o f t h e p h o s p h o n a t e a l t h o u g h b o t h p o s s e s s a l m o s t i d e n t i c a l a m o u n t s o f s p i n d e n s i t y o n p h o s p h o r u s o r b i t a l s . T h e r e l a t i v e o r i e n t a t i o n a n d d i s p l a c e m e n t o f t h e d x y o r b i t a l s a r e t h u s t h e m a i n f a c t o r s t h a t c o n t r i b u t e t o s u c h a d i f f e r e n c e . I n C h a p t e r I V a d d i t i o n a l d a t a o n d i m e r c o m p l e x e s p r e s e n t i n g s i m i l a r e x c h a n g e p a t h w a y s w i l l f u r t h e r v a l i d a t e t h e s e q u a l i t a t i v e m a g n e t o s t r u c t u r a l c o r r e l a t i o n s . T h e l a s t s t r u c t u r a l c l a s s o f e x t e n d e d m a t e r i a l s d i s c u s s e d i n t h i s C h a p t e r i s t y p e 1 m a t e r i a l s w h e r e b o t h f e r r o m a g n e t i c a n d a n t i f e r r o m a g n e t i c i n t e r a c t i o n s h a v e b e e n e n c o u n t e r e d . T h e s e t w o — d i m e n s i o n a l c o m p o u n d s s h o w a n i n t r a l a y e r e d n e t w o r k a s s e m b l e d b y i n t e r c o n n e c t i o n o f D V I I a n d M H t y p e 1 4 0 b u i l d i n g b l o c k s . A l t h o u g h t h e y a r e s t r u c t u r a l l y s i m p l e , t h e i r m a g n e t i c p r o p e r t i e s a r e q u i t e c o m p l e x w i t h c o n t r o v e r s i a l r e p o r t s i n t h e l i t e r a t u r e g ' 1 5 r e g a r d i n g t h e s i g n o f t h e i n t e r a c t i o n . S u c h c o m p l i c a t i o n s a r e p r o m i n e n t i n t h e m i x e d — v a l e n c e a l k a l i m e t a l i n t e r c a l a t e d s e r i e s . T h e m a i n c o n c e r n i n t h e s e m a t e r i a l s i s w h e t h e r t h e e l e c t r o n i s l o c a l i z e d i n d i s t i n c t V 4 + c e n t e r s o r e l e c t r o n d e l o c a l i z a t i o n o c c u r s r e s u l t i n g i n e q u i v a l e n t m e t a l s i t e s w i t h a n a v e r a g e o x i d a t i o n s t a t e o f + 4 . 5 . S i n g l e c r y s t a l X - r a y s t u d i e s p e r f o r m e d a t r o o m t e m p e r a t u r e a n d a t 1 7 3 K d e t e r m i n e d , i n b o t h i n s t a n c e s , t h e p r e s e n c e o f o n e c r y s t a l l o g r a p h i c a l l y u n i q u e v a n a d i u m c e n t e r . 3 1 P - N M R s p e c t r o s c o p y o n t h e o t h e r h a n d , c l e a r l y s h o w s t h a t t h e s i n g l e l i n e o b s e r v e d a t r o o m t e m p e r a t u r e i s s p l i t i n t o t h r e e p e a k s a t l o w e r t e m p e r a t u r e s , i n d i c a t i n g a t l e a s t t h r e e d i f f e r e n t p h o s p h o r u s e n v i r o n m e n t s w i t h i n t h e i n t r a l a y e r n e t w o r k . I n a d d i t i o n t h e s e l i n e s d i s p l a y l i n e a r t e m p e r a t u r e d e p e n d e n c e i n d i c a t i n g t h e p a r a m a g n e t i c o r i g i n o f t h e i r s h i f t . T h e 3 1 P — N M R r e s u l t s i n d i c a t e t h e l o c a l i z a t i o n o f t h e u n p a i r e d e l e c t r o n i n h a l f o f t h e m e t a l s i t e s , a t l e a s t o n t h e e x p e r i m e n t ' s t i m e s c a l e . S u c h a c o n d i t i o n c a n b e a c h i e v e d i n n u m e r o u s w a y s , a f e w o f w h i c h a r e d r a w n i n F i g u r e 2 7 . A l l t h e s e e l e c t r o n i c c o n fi g u r a t i o n s s h o u l d n o t b e i s o e n e r g e t i c s i n c e o n e h a s t o t a k e i n t o a c c o u n t e l e c t r o n — e l e c t r o n r e p u l s i o n s w h i c h a r e d i s t a n c e d e p e n d e n t . H o w e v e r t h e e n e r g y o f i n t e r c o n v e r s i o n f r o m o n e t o t h e o t h e r s h o u l d b e s m a l l i n l i g h t o f t h e r e l a t i v e l y l a r g e d i s t a n c e a m o n g t h e p o t e n t i a l s p i n c a r r i e r s . T h u s t h e s y s t e m i s b e s t d e s c r i b e d b y c o n s i d e r i n g a d y n a m i c e q u i l i b r i u m a m o n g t h e v a r i o u s c o n f i g u r a t i o n s , w h i c h s h o w t e m p e r a t u r e d e p e n d e n t p o p u l a t i o n s . T h e e s t a b l i s h m e n t o f e q u i l i b r i u m m i g h t a c c o u n t f o r t h e a n t i f e r r o m a g n e t i c c o u p l i n g o b s e r v e d i n i m p u r e p h a s e s o f t h e K + d e r i v a t i v e s a n d t h e c o n t r o v e r s i a l m a g n e t i c r e s u l t s i n t h e N a + d e r i v a t i v e s . T h e w e a k f e r r o m a g n e t i c a n d a n t i f e r r o m a g n e t i c c o u p l i n g s o b s e r v e d i n t h e s e c o m p o u n d s a r e p r o b a b l y d e p e n d e n t o n t h e p u r i t y o f t h e s t u d i e d m a t e r i a l . T h e p r e s e n c e o f i m p u r i t i e s , w h i c h s h o u l d b e a c c o m m o d a t e d 1 4 1 A I V v f V ‘ v i , v V T A A V v v V V v v 1 V V v V f V V I 1 ‘ " “ V V — — — > V V V A A v v ‘ v . ‘ v ‘ v V 1 V ‘ v ' V V V V A 1 4 , A ‘ I \ , \ , I V V + V V A , A A i v V V 1 \ , v v 1 I Q I \ T V 1 V ‘ V v \ ' 1 ‘ I 1 ’ V V V ‘ — _ _ , T V i v V v ‘ v V V ‘ v V I \ + \ V ‘ v V \ I v I V ‘ : T V A V 1 V l V v V V ‘ 1 , I V V 1 V v V \ : V V ‘ I A l \ l V 1 V i v , V V V ‘ — — ’ . 1 . A . V V V \ r ( , 1 ! 1 V V V V V ‘ v V v V V V i ‘ v ‘ 1 V F i g u r e 2 7 . V a r i o u s e l e c t r o n i c c o n fi g u r a t i o n s o f t h e m i x e d v a l e n c e a l k a l i m e t a l i n t e r c a l a t e d v a n a d y l p h o s p h a t e s h y d r a t e s . 1 4 2 w i t h i n t h e i n t e r l a y e r s p a c e , m i g h t i n fl u e n c e t h e r e l a t i v e w e i g h t o f e a c h e l e c t r o n i c c o n fi g u r a t i o n . S i n c e t h e o b s e r v e d m a g n e t i c c o u p l i n g s a r e w e a k i n m a g n i t u d e a n d b a s i c a l l y a r e t h e s u m o f a l m o s t e q u a l a n t i f e r r o m a g n e t i c a n d f e r r o m a g n e t i c c o n t r i b u t i o n s , s u c h s m a l l c h a n g e s m a y v e r y w e l l e n h a n c e o n e f a c t o r o v e r t h e o t h e r . I n t h i s s t u d y a l l t h r e e i s o s t r u c t u r a l a l k a l i m e t a l i n t e r c a l a t e d d e r i v a t i v e s d i s p l a y w e a k f e r r o m a g n e t i c i n t e r a c t i o n s o f t h e s a m e m a g n i t u d e , c o r r e l a t i n g w e l l w i t h t h e 3 1 P — N M R r e s u l t s . I n a n t i t h e s i s , t h e r e s t o f t h e i s o s t r u c t u r a l v a n a d y l p h o s p h a t e l a y e r e d m a t e r i a l s , g a t h e r e d i n T a b l e 7 , a r e c o u p l e d a n t i f e r r o m a g n e t i c a l l y , r a i s i n g t h e q u e s t i o n a s t o w h e t h e r t h e s i g n o f t h e i n t e r a c t i o n c o r r e l a t e s w i t h t h e l a y e r s ' m i x e d — v a l e n c y o r n o t . T h e o n l y c o m p o u n d t h a t p o s s e s s e s f e r r o m a g n e t i c a l l y c o u p l e d l a y e r s w i t h a l l v a n a d i u m s i t e s b e a r i n g a n u n p a i r e d e l e c t r o n i s t i t - v a n a d y l s u l f a t e , w h i c h i s i s o s t r u c t u r a l ‘ 5 5 t o t h e p a r e n t v a n a d y l p h o s p h a t e d i h y d r a t e a n d t h u s t o i t s m e t a l i n t e r c a l a t e d d e r i v a t i v e s . I t s m a g n e t i c p r o p e r t i e s h a v e b e e n s t u d i e d b y t w o d i f f e r e n t r e s e a r c h g r o u p s ; L o n g o a n d A r n o t t ‘ 5 5 w h o d e s c r i b e d t h e m a t e r i a l a s a f e r r i m a g n e t a n d V i l l e n e u v e a n d c o w o r k e r s 6 6 w h o s t a t e d i n t h e i r p u b l i c a t i o n s t h a t r e p e a t e d m e a s u r e m e n t s i n t h r e e i n d e p e n d e n t l y p r e p a r e d s a m p l e s i n d i c a t e d w e a k i n t r a l a y e r e d f e r r o m a g n e t i c c o u p l i n g . T h e s e a u t h o r s a l s o c o m m e n t e d o n t h e c o m p l e x i t y o f t h e p r o b l e m , w h i c h r e s u l t s f r o m t h e f a c t t h a t t h e f e r r o m a g n e t i c a n d t h e a n t i f e r r o m a g n e t i c c o m p o n e n t s o f t h e e x c h a n g e i n t e r a c t i o n a r e b o t h r a t h e r s m a l l a n d i n f a c t o f t h e s a m e o r d e r o f m a g n i t u d e . T h e i r s t u d y c o m p l e m e n t s t h e r e s u l t s i n a l k a l i m e t a l i n t e r c a l a t e d l a y e r e d v a n a d y l p h o s p h a t e s p r e s e n t e d i n t h i s t h e s i s , i n d i c a t i n g t h a t t h e r e i s a t l e a s t a n e x c h a n g e p a t h w a y c a p a b l e o f f e r r o m a g n e t i c a l l y c o u p l i n g n e i g h b o r i n g v a n a d y l c e n t e r s . I n l i g h t o f t h e r e s u l t s i n t y p e 4 m a t e r i a l s , w h e r e t h e s i n g l e - b r i d g e d M I I p h o s p h o n a t e u n i t s t r a n s m i t a n t i f e r r o m a g n e t i c i n t e r a c t i o n s , t h e o n l y p o t e n t i a l 1 4 3 f e r r o m a g n e t i c e x c h a n g e p a t h w a y i s t h e d o u b l e — b r i d g e d D V I I s t r u c t u r a l b l o c k . I n T a b l e 9 t h e m e t r i c p a r a m e t e r s o f t h e l a t t e r e x c h a n g e p a t h w a y a r e g a t h e r e d f o r a l l m a t e r i a l s b e l o n g i n g t o s t r u c t u r a l t y p e 1 . F r o m t h e a l k a l i m e t a l i n t e r c a l a t e d s e r i e s o n l y o n e o f t h e s e , n a m e l y t h e N a + d e r i v a t i v e , i s d i s p l a y e d , s i n c e a l l t h r e e m a t e r i a l s p o s s e s s i d e n t i c a l s t r u c t u r a l a n d m a g n e t i c p r o p e r t i e s . I n s p e c t i o n o f T a b l e 9 r e v e a l s o n e m a j o r d i f f e r e n c e ; t h e d x y p l a n e s w i t h i n t h e D V I I d i m e r c o r e a r e p a r a l l e l f o r M o , 5 V 0 P 0 4 - n H 2 0 ( M = N a " , K “ , a n d R b “ ) , a - V O S O 4 a n d B — V 0 H P 0 4 - 2 H 2 0 , w h i l e n o n z e r o d i h e d r a l a n g l e s a r e e x h i b i t e d i n S r o , 5 V 0 P 0 4 - 2 H 2 0 a n d V 0 H P 0 4 - 4 H 2 0 . I n t h e l a t t e r c o m p o u n d s t h e l a y e r s a r e a n t i f e r r o m a g n e t i c a l l y c o u p l e d , a n d , i n t e r e s t i n g l y , t h e l a r g e r d i h e d r a l a n g l e i s a l s o r e fl e c t e d i n a l a r g e r a n t i f e r r o m a g n e t i c e x c h a n g e i n t e r a c t i o n . B y u s i n g t h e q u a l i t a t i v e f r o n t i e r o r b i t a l s c h e m e d e p i c t e d i n F i g u r e 2 6 , t h e a n t i f e r r o m a g n e t i c c o u p l i n g i n t h e s e c o m p o u n d s c a n b e e x p l a i n e d . T h e n o n p a r a l l e l a l i g n m e n t o f t h e d x y p l a n e s a s s u r e s t h a t o v e r l a p i n t e r a c t i o n s a r e a l w a y s p r e s e n t b e t w e e n t h e m , t h r o u g h t h e d i a m a g n e t i c p h o s p h a t e g r o u p . S u c h a s i t u a t i o n r e s u l t s i n d i f f e r e n t e n e r g i e s f o r t h e ( D 3 a n d ( D A m o l e c u l a r o r b i t a l s e v e n a t l a r g e d i s p l a c e m e n t s o f t h e m e t a l ' s l o c a l e n v i r o n m e n t s . A s a c o n s e q u e n c e a n o n z e r o a n t i f e r r o m a g n e t i c c o n t r i b u t i o n i s a n t i c i p a t e d t h r o u g h t h e D V I I e x c h a n g e p a t h w a y . 0 n t h e o t h e r h a n d , w h e n p a r a l l e l d x y p l a n e s a r e c o n s i d e r e d , q u a l i t a t i v e a r g u m e n t s p r e d i c t a l a r g e e n e r g y s e p a r a t i o n b e t w e e n t h e ( P S a n d ( D A o r b i t a l s f o r s m a l l c l x y d i s p l a c e m e n t s . W h e n t h e l a t t e r s e p a r a t i o n b e c o m e s l a r g e e n o u g h , i t w a s a s s u m e d i n F i g u r e 2 6 t h a t t h e s e o r b i t a l s b e c o m e i s o e n e r g e t i c l e a d i n g t o a v a n i s h i n g a n t i f e r r o m a g n e t i c c o m p o n e n t . T h e m a g n e t i c r e s u l t s i n t h e M o , 5 V 0 P 0 4 - n H 2 0 ( M = N a ” , K ‘ “ , a n d R b ” ) , a — V 0 8 0 4 a n d B - V 0 H P 0 4 - 2 H 2 0 s e r i e s o f c o m p o u n d s c a n b e u n d e r s t o o d u n d e r t h i s q u a l i t a t i v e t r e a t m e n t . T h e l a r g e d i s p l a c e m e n t o f t h e d x y p l a n e s o b s e r v e d f o r t h e fi r s t f o u r c o m p o u n d s , 1 4 4 r e s u l t s i n a f e r r o m a g n e t i c c o n t r i b u t i o n o f t h e D V I I p a t h w a y . T h e o v e r a l l m a g n e t i c p r o p e r t i e s o f t h e s e m a t e r i a l s a r e t h e n t h e s u m o f a w e a k a n t i f e r r o m a g n e t i c c o m p o n e n t o f t h e M I I p a t h w a y a n d a w e a k f e r r o m a g n e t i c c o m p o n e n t o f t h e D V I I o n e . T h u s i n t h e m i x e d — v a l e n c e s e r i e s l o c a l i z a t i o n o f t h e e l e c t r o n s i n D V I I v e r s u s M I I p a t h w a y s w o u l d h a v e a m a r k e d i n fl u e n c e o n t h e m a g n e t i c p r o p e r t i e s o f t h e m a t e r i a l s . T h e s m a l l e r d i s p l a c e m e n t o f t h e d x y p l a n e s o n t h e o t h e r h a n d i n B — V O H P 0 4 - 2 H 2 0 r e t a i n s s o m e e n e r g y d i f f e r e n c e b e t w e e n t h e ( D 3 a n d ( D A o r b i t a l s . T h u s t h e D V I I p a t h w a y i n t h i s c o m p o u n d c o n t r i b u t e s t o t h e o v e r a l l a n t i f e r r o m a g n e t i c c o u p l i n g . A d e t a i l e d c a l c u l a t i o n , w h i c h w o u l d b e a b l e t o r e p r o d u c e i n r e a s o n a b l e a c c u r a c y t h e e x p e r i m e n t a l r e s u l t s , w i l l b e c r u c i a l i n d e t e r m i n i n g t h e v a l u e o f t h e q u a l i t a t i v e e n e r g y d i a g r a m d e p i c t e d i n F i g u r e 2 6 . O n l y r e c e n t l y h o w e v e r D e n s i t y F u n c t i o n a l T h e o r y ( D F T ) c a l c u l a t i o n s , p e r f o r m e d i n c o m p l e x s y s t e m s , g a v e s a t i s f a c t o r y a g r e e m e n t b e t w e e n t h e o r y a n d e x p e r i m e n t a l “ . T h e a u t h o r s c l e a r l y p o i n t e d o u t t h a t t h e m a g n e t i c p r o p e r t i e s o f c o m p l e x s y s t e m s c o u l d b e d e s c r i b e d i n r e a s o n a b l e a c c u r a c y b y t h e c a l c u l a t i o n s o n l y w h e n s i m p l i fi c a t i o n s r e g a r d i n g t h e b r i d g i n g a n d t h e t e r m i n a l l i g a n d s w e r e a v o i d e d . I n o t h e r w o r d s t h e a c t u a l c o m p l e x e s h a v e t o b e u t i l i z e d i n t h e c a l c u l a t i o n s t u d i e s a s w e l l . S m a l l e n e r g y d i f f e r e n c e s r e g a r d i n g t h e s i n g l e t — t r i p l e t s p l i t t i n g , s u c h a s t h e s e o b s e r v e d i n t h e s e m a t e r i a l s , a r e s t i l l h a r d t o p r e d i c t . O u r e f f o r t s t h e r e f o r e t o w a r d s a b e t t e r u n d e r s t a n d i n g o f t h e m a g n e t i c p r o p e r t i e s o f t h e s e l a y e r e d m a t e r i a l s , w e r e f o c u s e d o n a c q u i r i n g m o r e e x p e r i m e n t a l d a t a , e s t a b l i s h i n g t h e v a l i d i t y o f t h e e n e r g y d i a g r a m d e p i c t e d i n F i g u r e 2 6 . W e h a v e a c c o m p l i s h e d i t b y s y n t h e s i z i n g a s e r i e s o f d i m e r c o m p o u n d s m o d e l i n g t h e g e o m e t r i c a l f e a t u r e s o f t h e D V I I s t r u c t u r a l b u i l d i n g b l o c k . T h e s e d a t a , a l o n g w i t h d a t a f r o m o t h e r d i m e r m o d e l c o m p o u n d s , a r e p r e s e n t e d i n t h e n e x t c h a p t e r . 1 4 5 L I S T O F R E F E R E N C E S ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 1 0 ) ( 1 1 ) ( 1 2 ) ( 1 3 ) ( 1 4 ) ( 1 5 ) L a u d i s e , R . A . C h e m i c a l a n d E n g i n e e r i n g N e w s 1 9 8 7 , 3 0 . V i l l e n e u v e , G . ; A m o r o s , P . ; B e l t r a n , D . ; D r i l l o n , M . i n O r g a n i c a n d I n o r g a n i c L o w D i m e n s i o n a l C r y s t a l l i n e M a t e r i a l s , D e l h a e s , P . ; D r i l l o n , M . ; E d s , N a t o A s i S e r i e s , P l e n u m P r e s s : N e w Y o r k 1 9 8 7 . B e l t r a n , D . ; A m o r o s , P . ; l b a f l e z , R . ; M a r t i n e z , E . ; B e l t r a n , A . ; L e B a l l A . ; F e r e y , G . ; V i l l e n e u v e , G . S o l i d S t a t e I o n i c s 1 9 8 9 , 3 2 / 3 3 , 5 7 . ( a ) L e o n o w i e z , M . E . ; J o h n s o n , J . W . ; B r o d y , J . F . ; S h a n s o n , H . F . ; N e w s a m , J . M . J . S o l i d S t a t e C h e m . 1 9 8 5 , 5 6 , 3 7 0 . ( b ) T o r a r d i , C . G . ; C a l a b r e s e , J . C . I n o r g . C h e m . 1 9 8 4 , 2 3 , 1 3 0 8 . V i l l e n e u v e , G . ; S u h , K . S . ; A m o r o s , P . ; C a s a fi - P a s t o r , N . ; B e l t r a n — P o r t e r , D . C h e m . M a t e r . 1 9 9 2 , 4 , 1 0 8 . W r o b l e s k i , J . T . I n o r g . C h e m . 1 9 8 8 , 2 7 , 9 4 6 . B e l t r a n - P o r t e r , D . ; B e l t r a n — P o r t e r , A . ; A m o r o s , P . ; I b a fi e z , R . ; M a r t i n e z , E . ; L e B a i l , A . ; F e r e y , G . ; V i l l e n e u v e , G . E u r . J . S o l i d S t a t e I n o r g . C h e m . 1 9 9 1 , 2 8 , 1 3 1 . J a c o b s o n , A . J . ; J o h n s o n , J . W . ; B r o d y , J . F . ; S c a n l o n , J . C . ; L e w a n d o w s k i , J . T . I n o r g . C h e m . 1 9 8 5 , 2 4 , 1 7 8 2 . S i s k o v a , R . ; B e n e s , L . ; Z i m a , V . ; V l c e k , M . ; V o t i n s k y , J . ; K a l o u s o v é , J . P o l y h e d r o n 1 9 9 3 , 1 2 , 1 8 1 . L i l , K . H . J . C h i n . C h e m . S o c . 1 9 9 2 , 3 9 , 5 6 9 . L e B i d e a u , J . ; P a p o u t s a k i s , D . ; J a c k s o n , J . E . ; N o c e r a , D . G . ; J . A m . C h e m . S o c . 1 9 9 7 , 1 1 9 , 1 3 1 3 . T o r g e r s o n , M . R . P h . D D i s s e r t a t i o n M . S . U . 1 9 9 6 . W a n g , S . L . ; K a n g , H . Y . ; C h e n g , C . Y . ; L i i , K . H . I n o r g . C h e m . 1 9 9 1 , 3 0 , 3 4 9 6 . K a n g , H . Y . ; L e e , W . 0 . ; W a n g , S . L . ; L i i , K . H . I n o r g . C h e m . 1 9 9 2 , 3 1 , 4 7 4 3 . P a p o u t s a k i s , D . ; J a c k s o n , J . E . ; N o c e r a , D . G . I n o r g . C h e m . 1 9 9 6 , 3 5 , 8 0 0 . 1 4 6 ( 1 6 ) ( 1 7 ) ( 1 3 ) ( 1 9 ) ( 2 0 ) ( 2 1 ) ( 2 2 ) ( 2 3 ) ( 2 4 ) ( 2 5 ) ( 2 6 ) ( 2 7 ) ( 2 8 ) ( 2 9 ) ( 3 0 ) ( 3 1 ) ( 3 2 ) ( 3 3 ) ( a ) T i e t z e , H . R . A u s t . J . C h e m . 1 9 8 1 , 3 4 , 2 0 3 5 . ( b ) T a c h e z , M . ; T h e o b a l d , F . ; B e r n a r d , J . ; H e w a t , A . W . R e v . C h i m . M i n . 1 9 8 2 , 1 9 , 2 9 1 . S a n a n e s , M . T . ; T u e l , A . J . C h e m . S o c . C h e m . C o m m u n . 1 9 9 5 , 1 3 2 3 . F e r m i , E . ; Z . P h y s . 1 9 3 0 , 6 0 , 3 2 0 . ( a ) H o r r o c k s , W . D . , J r . I n o r g . C h e m . 1 9 7 0 , 9 , 6 9 0 . ( b ) H o r r o c k s , W . 0 , J r . ; G r e e n b e r g , E . S . I n o r g . C h e m . 1 9 7 1 , 1 0 , 2 1 9 0 . K u r l a n d , R . J . ; M c G a r v e y B . R . J . M a g n . R e s o n a n c e 1 9 7 0 , 2 , 2 8 6 . C a r r i n g t o n , A . ; M c L a c h l a n , A . D . i n I n t r o d u c t i o n t o M a g n e t i c R e s o n a n c e ; H a r p e r : N e w Y o r k 1 9 6 7 ; C h . 6 . ( a ) T u r n e r , G . L . ; S m i t h , K . A . ; K i r k p a t r i c k , R . J . ; O l d fi e l d , E . J . M a g n . R e s o n . 1 9 8 6 , 7 0 , 4 0 8 . ( b ) P r a b h a k a r , S . ; R a o , K . J . ; r a o , C . N . R . C h e m . P h y s . L e t t . 1 9 8 7 , 1 3 9 , 9 6 . ( c ) H a y a s h i , S . ; H a y a m i z u , K . B u l l . C h e m . S o c . l p n . 1 9 8 9 , 6 2 , 3 0 6 1 . K i e l y , C . J . ; B u r r o w s , A . ; H u t c h i n g s , G . J . ; B e r e , K . E . ; V o l t a , J . - C . ; T u e l , A . ; A b o n , M . F a r a d a y D i s c u s s . 1 9 9 6 , 1 0 5 , 1 0 3 . K u r l a n d , R . J . ; M c G a r v e y , B . J . M a g n . R e s o n . 1 9 7 0 , 2 , 2 8 6 . S h u l m a n , R . G . ; J a c c a r i n o , V . P h y s . R e v . 1 9 5 7 , 1 0 8 , 1 2 1 9 . ( a ) G r a y , H . B . ; B a l l h a u s e n , C . J . I n o r g . C h e m . 1 9 6 2 , 1 , 1 1 1 . ( b ) S e l b i n , J . ; H o l m e s , L . H . , J r . ; M c G I y n n , S . P . J . I n o r g . N u c l . C h e m . 1 9 6 3 , 2 5 , 1 3 5 9 . H o r r o c k s , W . D e W . , J r . i n N M R o f P a r a m a g n e t i c M o l e c u l e s ; L a M a r , G . N . ; H o r r o c k s , W . D e W . , J r . ; H o l m , R . H . ; E d s . ; A c a d e m i c P r e s s : N e w Y o r k 1 9 7 3 ; C h a p t e r 4 . D r a g o , R . S . i n P h u s i c a l M e t h o d s i n C h e m i s t r y , W . B . S a u n d e r s C o . : P h i l a d e l p h i a 1 9 7 7 . S a n a n e s , M . T . ; T u e l , A . ; V o l t a , J . C . J . C a t a l . 1 9 9 4 , 1 4 5 , 2 5 1 . S i s k o v a , R . ; B e n e s , L . ; Z i m a , V . ; V l c e k , M . ; V o t i n s k y , J . ; K a l o u s o v a , J . P o l y h e d r o n 1 9 9 3 , 1 2 , 1 8 1 . R u s b r o o k e , G . S . ; W o o d , P . J . M o l . P h y s . 1 9 5 8 , 1 , 2 5 7 . H a t fi e l d , W . E . I n M a g n e t o - S t r u c t u r a l C o r r e l a t i o n s i n E x c h a n g e C o u p l e d S y s t e m s ; W i l l e t t , R . D . , G a t t e s c h i , D . , K a h n , 0 . , E d s . ; N A T O A S I S e r i e s ; R e i d e l : D o r d r e c h t , 1 9 8 5 . P l a s s , W . A n g e w . C h e m , I n t . E d . E n g l . 1 9 9 6 , 3 5 , 6 2 7 . 1 4 7 ( 3 4 ) ( 3 5 ) ( 3 6 ) ( 3 7 ) ( 3 8 ) ( 3 9 ) ( 4 0 ) ( 4 1 ) ( 4 2 ) ( 4 3 ) ( 4 4 ) ( 4 5 ) ( 4 6 ) ( 4 7 ) ( 4 8 ) ( 4 9 ) ( 5 0 ) ( 5 1 ) G o r u n , S . M . ; L i p p a r d , S . J . I n o r g . C h e m . 1 9 9 1 , 3 0 , 1 6 2 5 . N i e m a n n , A . ; B o s s e k , U . ; W i e g h a r d t , K . ; B u t z l a f f , 0 . ; T r a u t w e i n , A . X . ; N u b e r , B . A n g e w . C h e m , I n t . E d . E n g l . 1 9 9 2 , 3 1 , 3 1 1 . N a n d a , K . K . ; T h o m p s o n , L . K . ; B r i d s o n , J . N . ; N a g . K . J . C h e m . S o c . , C h e m . C o m m u n . 1 9 9 4 , 1 3 3 7 . ( a ) J o u r n a u x , Y . ; K a h n , 0 . ; M o r g e n s t e r n - B a d a r a u , l . ; G a l y , J . ; J a u d , J . J . A m . C h e m . S o c . 1 9 8 3 , 1 0 5 , 7 5 8 5 . ( b ) K a h n , 0 . ; G a l y , J . ; J o u r n a u x , Y . ; M o r g e n s t e r n - B a d a r a u , I . J . A m . C h e m . S o c . 1 9 8 2 , 1 0 4 , 2 1 6 5 . ( c ) M o r g e n s t e r n - B a d a r a u , l . ; R e r a t , M . ; K a h n , 0 . ; J a u d , J . ; G a l y , J . I n o r g . C h e m . 1 9 8 2 , 2 1 , 3 0 5 0 . L e h n , J . - M . S u p r a m o l e c u l a r C h e m i s t r y , V C H : W e i n h e i m , 1 9 9 5 . S u p r a m o l e c u l a r A r c h i t e c t u r e ; B e i n , T . , E d . ; A C S S y m p o s i u m S e r i e s N o . 4 9 9 ; A m e r i c a n C h e m i c a l S o c i e t y : W a s h i n g t o n , D O , 1 9 9 2 . ( a ) W h i t e s i d e s , G . M . ; S i m a n e k , E . E . ; M a t h i a s , J . P . ; S e t o , C . T . ; C h i n , D . N . ; M a m m e n , M . ; G o r d o n , D . M . A c c . C h e m . R e s . 1 9 9 5 , 2 8 , 3 7 . ( b ) W h i t e s i d e s , G . M . ; M a t h i a s , J . P . ; S e t o , C . T . S c i e n c e 1 9 9 1 , 2 5 4 , 1 3 1 2 . D e s i r a j u , G . R . A n g e w . C h e m , I n t . E d . E n g l . 1 9 9 5 , 3 4 , 2 3 1 1 . H u a n , G . ; J a c o b s o n , A . J . ; J o h n s o n , J . W . ; C o r c o r a n , E . W . , J r . C h e m . M a t e r . 1 9 9 0 , 2 , 9 1 . H u a n , G . ; J o h n s o n , J . W . ; B r o d y , J . F . ; G o s h o r n , D . P . ; J a c o b s o n , A . J . M a t e r . C h e m . P h y s . 1 9 9 3 , 3 5 , 1 9 9 . L e z a m a , L . ; V i l l e n e u v e , G . ; M a r c o s , M . D . ; P i z a r r o , J . L . ; H a g e n m u l l e r , P . ; R o j o , T . S o l i d S t a t e C o m m u n . 1 9 8 9 , 7 0 , 8 9 9 . S h i n , Y . - g . K . ; N o c e r a , D . G . J . A m . C h e m . S o c . 1 9 9 2 1 1 4 , 1 2 6 4 . C a r l i n , R . L . M a g n e t o c h e m i s t r y , S p r i n g e r - V e r l a g : B e r l i n , 1 9 8 6 . C l e a r fi e l d , A . P r o g r e s s i n I n o r g a n i c C h e m i s t r y 1 9 9 8 , 4 7 , 3 7 1 . J o h n s o n , J . W . ; J a c o b s o n , A . J . ; B u t l e r , W . M . ; R o s e n t h a l , S . E . ; B r o d y , J . F . ; L e w a n d o w s k i , J . T . J . A m . C h e m . S o c . 1 9 8 9 , 1 1 1 , 3 8 1 . J o h n s o n , J . W . ; J a c o b s o n , A . J . ; B r o d y , J . F . ; L e w a n d o w s k i , J . T . I n o r g . C h e m . 1 9 8 4 , 2 3 , 3 8 4 4 . C o s t a n t i n o , U . i n I n o r g a n i c I o n — E x c h a n g e M a t e r i a l s ; C l e a r fi e l d , A . , E d s . ; C R C P r e s s : B o c a R a t o n , F L , 1 9 8 2 ; C h a p t e r 3 . H u a n , G . ; J a c o b s o n , A . L . ; J o h n s o n , J . W . ; C o r c o r a n , E . W . , J r . C h e m . 1 4 8 ( 5 2 ) ( 5 3 ) ( 5 4 ) ( 5 5 ) ( 5 5 ) ( 5 7 ) ( 5 8 ) ( 5 9 ) ( 5 0 ) ( 5 1 ) ( 6 2 ) ( 6 3 ) ( 5 4 ) ( 6 5 ) ( 6 6 ) M a t e r . 1 9 9 0 , 2 , 9 1 . ( a ) S u t o r , D . J . A c t a C r y s t a l l o g r . 1 9 6 7 , 2 3 , 4 1 8 . ( b ) A b b o n n a , F . ; B o i s t e l l e , R . ; H a s e r , R . A c t a C r y s t a l l o g r . 1 9 7 9 , B 3 5 , 2 5 1 4 . J o h n s o n , J . W . ; B r o d y , J . F . ; A l e x a n d e r , R . M . C h e m . M a t e r . 1 9 9 0 , 2 , 1 9 8 . L i n e s , M . E . J . P h y s . C h e m . S o l i d s 1 9 7 0 , 3 1 , 1 0 1 . T o r g e r s o n , M . R . ; N o c e r a , D . G . J . A m . C h e m . S o c . 1 9 9 6 , 1 1 8 , 8 7 3 9 . L e B i d e a u , J . ; P a y e n , C . ; B u j o l i , B . C o m p . R e n d u A c a d . S c i . P a r i s 1 9 9 5 , 3 2 0 , 1 4 1 . C a n a d e l l , E . ; P r o v o s t , J . ; G u e s d o n , A . ; B o r e l , M . M . ; L e c l a i r e , A . C h e m . M a t e r . 1 9 9 7 , 9 , 6 8 . H a y , P . J . ; T h i b e a u l t , J . C . ; H o f f m a n n , R . J . A m . C h e m . S o c . 1 9 7 5 , 9 7 , 4 8 8 4 . N a g a r a j a n , K . ; S h e l l y , K . P . ; P e r k i n s , R . R . ; S t e w a r t , R . C a n . J . C h e m . 1 9 8 7 , 6 5 , 1 7 2 9 . G r a b i a k , R . 0 . ; M i l e s , J . A . ; S c h w e n z e r , G . M . P h o s p h o r u s a n d S u l f u r 1 9 8 0 , 9 , 1 9 7 K a h n , 0 . M o l e c u l a r M a g n e t i s m ; V C H P u b l i s h e r s : N e w Y o r k 1 9 9 3 . ( a ) R u i z , E . ; A l e m a n y , P . ; S a n t i a g o , A . ; C a n o , J . J . A m . C h e m . S o c . 1 9 9 7 , 1 1 9 , 1 2 9 7 . ( b ) R u i z , E . ; A l e m a n y , P . ; S a n t i a g o , A . ; C a n o , J . I n o r g . C h e m . 1 9 9 7 , 3 6 , 3 6 8 3 . C a r l i n , R . L . M a g n e t o c h e m i s t r y , S p r i n g e r - V e r l a g : B e r l i n , 1 9 8 6 . C a n o , J . A l e m a n y , P . ; A l v a r e z , S . ; V e r d a g u e r , M . ; R u i z , E . C h e m . E u r . J . 1 9 9 8 , 4 , 4 7 6 L o n g o , J . M . ; A r n o t t , R . J . J . S o l i d S t a t e C h e m . 1 9 7 0 , 1 , 3 9 4 . ( a ) L e z a m a , L . ; V i l l e n e u v e , G . ; M a r c o s , M . D . ; P i z a r r o , J . L . ; H a g e n m u l l e r , P . S o l i d S t a t e C o m m u n . 1 9 8 9 , 7 0 , 8 9 9 . ( b ) V i l l e n e u v e , G . ; L e z a m a , L . M o l . C r y s t . L i q . C r y s t . 1 9 8 9 , 1 7 6 , 4 9 5 . 1 4 9 “11111111111111 . . . w A . I 4 r } h ‘ : 4 l ~ 2 3 a « “ n h a a . m . . g 3 . a . m \ . . . . ; . 3 3 1 . . . A C . Q 3 . a » u . w . M - h ‘ £ 3 W : a . i n » . . . . v i r a l k . 3 1 . . . 4 4 w A $ 3 . l C H i G A N S T A T E L I B R A R I E S L J I I I I I U I I I I W I I I l l l l l l i l l I I I I H l l l ‘ . I I H E l l l U l l U l l l l l l l l l l l i 3 1 2 9 3 0 1 7 7 2 6 5 9 1 L I B R A R Y M i c h i g a n S t a t e U n i v e r s i t y P L A C E I N R E I ' U R N B O X t o r e m o v e t h i s c h e c k o u t f r o m y o u r r e c o r d . T o A V O I D F I N E S r e t u r n o n o r b e f o r e d a t e d u e . M A Y B E R E C A L L E D w i t h e a r l i e r d u e d a t e i f r e q u e s t e d . D A T E D U E D A T E D U E D A T E D U E C H A P T E R 4 M a g n e t o s t r u c t u r a l C o r r e l a t i o n s i n D i n u c l e a r V a n a d y l P h o s p h i n a t e C o m p l e x e s A . I n t r o d u c t i o n T h e s t r u c t u r a l a n d c h e m i c a l p r o p e r t i e s o f v a n a d y l p h o s p h a t e / p h o s p h o n a t e e x t e n d e d m a t e r i a l s c o n t i n u e t o a t t r a c t t h e a t t e n t i o n o f a g r o w i n g a u d i e n c e o f r e s e a r c h s c i e n t i s t s . I n i t i a l e f f o r t s t o r e l a t e s t r u c t u r e a n d m a g n e t i c p r o p e r t i e s a f f o r d e d a s e r i e s o f q u a l i t a t i v e r u l e s , p r e d i c t i n g t h e s i g n a n d t h e s t r e n g t h o f t h e i n t e r a c t i o n ” . O u r w o r k i n l a y e r e d v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s p r o v i d e d a d d i t i o n a l e v i d e n c e a s t o t h e a c t i v e r o l e o f t h e O — P — O l i n k a g e s i n t h e s u p e r e x c h a n g e s e q u e n c e . T h e i r s e n s i t i v i t y t o e l e c t r o n i c 3 a n d s t r u c t u r a l t u n i n g 4 h a s b e e n e s t a b l i s h e d , a l t h o u g h d e t a i l e d m a g n e t o s t r u c t u r a l c o r r e l a t i o n s 1 5 0 w e r e h a r d t o d e r i v e . T o f u r t h e r p r o b e t h e s e n s i t i v i t y o f m a g n e t i c p r o p e r t i e s t o s t r u c t u r a l c h a n g e s o f t h e e x c h a n g e p a t h w a y , g e o m e t r i c a l d i s t o r t i o n s o f t h e l a t t e r h a v e t o b e i n d u c e d b y c h e m i c a l m e a n s . T h i s i s h a r d t o a c h i e v e i n e x t e n d e d l a y e r e d s y s t e m s , s i n c e s m a l l s t r u c t u r a l c h a n g e s o f t e n r e s u l t i n d i f f e r e n t i n t r a l a y e r f r a m e w o r k s . T h e m a g n e t i c p r o p e r t i e s o f m o s t o f t h e s e s y s t e m s c a n b e u n d e r s t o o d a t a q u a l i t a t i v e l e v e l b y i n s p e c t i o n o f t h e i r s t r u c t u r a l b u i l d i n g b l o c k s , w h i c h u s u a l l y c o n s i s t o f d i m e t a l l i c f r a g m e n t s b r i d g e d b y p h o s p h a t e / p h o s p h o n a t e l i g a n d s i n a s i n g l e o r d o u b l e l i n k i n g f a s h i o n . H e n c e , t h e s y n t h e s i s o f d i m e r c o m p o u n d s , w h o s e c o n n e c t i v i t y r e s e m b l e s t h a t o f t h e v a n a d y l p h o s p h a t e / p h o s p h o n a t e b u i l d i n g b l o c k s , c o u l d p r o v i d e m o d e l s y s t e m s f o r t h e s t u d y o f m a g n e t o s t r u c t u r a l c o r r e l a t i o n s . I n a d d i t i o n , s u c h s y s t e m s a r e r e a d i l y m o d i fi e d v i a c h e m i c a l m e a n s b y p r o p e r s e l e c t i o n o f t h e b r i d g i n g a n d t e r m i n a l l i g a n d s . W e h a v e s y n t h e s i z e d a n d c h a r a c t e r i z e d t w o s e r i e s o f v a n a d y l d i m e r s . T h e y a r e b a s e d o n b i p y r i d y l — t y p e a n d t h e h y d r o t r i s ( 1 — p y r a z o l y | ) b o r a t e t e r m i n a l l i g a n d s , w h i l e b r i d g i n g o f t h e m e t a l s i s a c c o m p l i s h e d b y a s e r i e s o f b i s - ( p - p h e n y l ) s u b s t i t u t e d p h o s p h i n a t e s . T h e b a s i c s t r u c t u r e o f t h e d i m e r c o r e i s m a i n l y d e t e r m i n e d b y t h e n a t u r e o f t h e t e r m i n a l l i g a n d s . p - S u b s t i t u t i o n o f t h e p h o s p h i n a t e p h e n y l r i n g s a l l o w s s y s t e m a t i c i n t r o d u c t i o n o f s m a l l s t r u c t u r a l a n d e l e c t r o n i c c h a n g e s , w h i c h h a v e a m a r k e d i n fl u e n c e o n t h e o v e r a l l m a g n e t i c p r o p e r t i e s . 1 5 1 B . R e s u l t s 1 . S y n t h e s i s a n d C h a r a c t e r i z a t i o n o f { L V O M - ( X — C G H 4 ) 2 P 0 2 ] 1 , 5 } 2 { C | 0 4 } D i m e r s , ( L = s u b s t i t u t e d 2 , 2 ' - b i p y r i d y l , a n d X = H — , C H 3 O — , C l - , F — ) a . S y n t h e s i s a n d C h a r a c t e r i z a t i o n T h e s e c o m p l e x e s a r e f o r m e d b y l i g a n d s u b s t i t u t i o n r e a c t i o n s , w h i c h o c c u r e x c l u s i v e l y a t t h e v a n a d i u m ( 4 + ) l e v e l , s o t h a t t h e r e a r e n o o v e r a l l r e d o x p r o c e s s e s i n v o l v e d . T h e g e n e r a l s y n t h e t i c s c h e m e ( F i g u r e 1 ) i n v o l v e s i n i t i a l l y t h e p r e p a r a t i o n o f L 2 V O C I 2 c o m p l e x e s s , w h e r e L 2 i s a s u b s t i t u t e d 2 , 2 ' — b i p y r i d y l l i g a n d . T h e s e c o m p o u n d s p r o v i d e a s t a b l e L 2 V O v a n a d y l f r a g m e n t w h e r e t h r e e o f t h e v a n a d i u m c o o r d i n a t i o n s i t e s a r e o c c u p i e d a n d a t t h e s a m e t i m e o f f e r t w o l a b i l e V — C l b o n d s w h i c h c a n b e e a s i l y s u b s t i t u t e d u p o n t r e a t m e n t w i t h t h e d e s i r e d p h o s p h i n i c a c i d s . T h e p r o d u c t s a r e o b t a i n e d i n t h e f o r m o f s m a l l g r e e n c r y s t a l s b y a l l o w i n g t h e m e t h a n o l i c r e a c t i o n m i x t u r e t o s t a n d a t r o o m t e m p e r a t u r e f o r a f e w d a y s . A l t h o u g h a l l c o m p o u n d s s y n t h e s i z e d a n d s t r u c t u r a l l y c h a r a c t e r i z e d i n t h i s m a n n e r p o s s e s s e d t h e s a m e g e n e r a l f o r m u l a — { L 2 V O [ , u — ( X — C e H 4 ) 2 P 0 2 ] 1 , 5 } 2 { C l O 4 } w i t h X = H — , C H 3 0 — , C l — , F — , a n d L 2 = 2 , 2 ' — b i p y r i d y l ( b p y ) , 4 , 4 ' — d i m e t h y l — 2 , 2 ' — b i p y r i d y l ( d m b p y ) , a n d 3 , 3 ' , 4 , 4 ' — t e t r a m e t h y l — 2 , 2 ' — b i p y r i d y l ( t m b p y ) — t w o d i f f e r e n t t y p e s o f d i m e r c o r e s w e r e o b s e r v e d . T h e c l a s s i fi c a t i o n w a s b a s e d o n t h e r e l a t i v e o r i e n t a t i o n o f t h e v a n a d y l g r o u p s . I n t h r e e c o m p l e x e s — { b p y V o l fl - ( C e H s h P O z h . s } 2 { C | 0 4 } ( 1 ) . { d m b p y V O U I - ( C e H s h p o z h . s } 2 { C | 0 4 } ( 2 ) . a n d { t m b p y V O U J — ( C S H 5 ) 2 P 0 2 ] 1 _ 5 } 2 { C I O 4 } ( 3 ) — t h e v a n a d y l g r o u p s a r e t w i s t e d a n d a l m o s t o r t h o g o n a l w i t h r e s p e c t t o e a c h o t h e r . T h e r e m a i n i n g c o m p l e x e s — { b P Y V O U l - ( P - F — C S H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C I O 4 } ( 4 ) : { b P Y V O W — ( P ' C I — C G H 4 ) 2 P O 2 ] 1 . 5 } 2 { C | O 4 } ( 5 ) , a n d { b p y V O M — ( p - C H 3 0 - 0 6 H 4 ) 2 P 0 2 ] 1 , 5 } 2 { C I O 4 } ( 6 ) — c r y s t a l l i z e d w i t h t h e 1 5 2 c c n 4 V C I 4 4 ' X S C H 3 O H = V O C | 2 ( C H 3 O H ) 3 5 0 C ° L 2 ( C s z b O l l C H 3 0 H { L 2 V 0 [ ( P ‘ X — C 6 H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C ' O 4 } < L Z V O C I Z 1 ) ( p - X — C S H 4 ) 2 P 0 2 H 2 ) N a C l O 4 b p y x : H — , C l - , F — , C H 3 O — F i g u r e 1 . G e n e r a l s y n t h e t i c s c h e m e f o r v a n a d y l p h o s p h i n a t e d i m e r s w i t h b i p y r i d y I — t y p e t e r m i n a l l i g a n d s . 1 5 3 v a n a d y l g r o u p s b e i n g s y n t o e a c h o t h e r . S u b s t i t u t i o n o f t h e b p y t e r m i n a l l i g a n d s i n c o m p l e x e s 5 a n d 6 b y t m b p y a f f o r d e d c o m p l e x e s { t m b p y V O U I — ( p - C l — C 5 H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C I O 4 } ( 5 A ) , a n d { t m b p y V O M — ( p — C H 3 0 — C s H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C I O 4 } ( 6 A ) . T h e s t r u c t u r e o f t h e f o r m e r w a s n o t d e t e r m i n e d d u e t o t h e l a c k o f s u i t a b l e s i n g l e c r y s t a l s , a n d t h e s t r u c t u r e o f t h e l a t t e r , w h i c h b e l o n g s t o t h e t w i s t - t y p e , w a s o n l y p a r t i a l l y s o l v e d d u e t o t h e p o o r q u a l i t y o f t h e d a t a s e t . C r y s t a l d a t a f o r c o m p o u n d s 1 , 2 , 3 a n d 6 A ( t w i s t — t y p e d i m e r s ) a r e s u m m a r i z e d i n T a b l e s 1 a n d 2 , a n d s e l e c t e d b o n d d i s t a n c e s a n d m e t r i c p a r a m e t e r s o f i n t e r e s t a r e g a t h e r e d i n T a b l e 3 . T h e fi r s t t h r e e c o m p l e x e s c o n t a i n t h e d i p h e n y l p h o s p h i n a t e a s t h e b r i d g i n g l i n k a n d o n l y d i f f e r i n t h e n a t u r e o f t h e t e r m i n a l 2 , 2 ‘ — b i p y r i d y l l i g a n d , w h i c h b e a r s O ( b p y ) , 2 ( d m b p y ) , a n d 4 ( t m b p y ) m e t h y l g r o u p s f o r 1 , 2 , a n d 3 r e s p e c t i v e l y . I n c o m p o u n d 6 A , w h e r e t m b p y w a s t h e t e r m i n a l l i g a n d , t h r e e b i s ( p - m e t h o x y p h e n y l ) p h o s p h i n a t e g r o u p s b r i d g e d t h e v a n a d y l o c t a h e d r a . O n e c r y s t a l l o g r a p h i c a l l y u n i q u e d i m e r m o l e c u l e w i t h a n e t c h a r g e o f + 1 c r y s t a l l i z e s w i t h i n t h e u n i t c e l l , a l o n g w i t h o n e p e r c h l o r a t e a n i o n a n d m e t h a n o l m o l e c u l e s . 4 a n d 3 . 5 s o l v e n t m o l e c u l e s p e r d i m e r w e r e l o c a t e d f r o m F o u r i e r d i f f e r e n c e s m a p s i n t h e u n i t c e l l o f c o m p l e x e s 2 a n d 3 , w h i c h a l t h o u g h t h e y p o s s e s s e d l a r g e a n i s o t r o p i c t e m p e r a t u r e f a c t o r s , b e h a v e d r e a s o n a b l y w e l l d u r i n g s t r u c t u r e r e fi n e m e n t . T h e m e t h a n o l m o l e c u l e s i n t h e c r y s t a l s t r u c t u r e o f c o m p o u n d s 1 a n d 6 A c o u l d n o t b e l o c a t e d a n d m o d e l e d t o f u l l o r p a r t i a l o c c u p a n c y s i n c e t h e y w e r e h i g h l y d i s o r d e r e d . T h e r e l a t i v e l y l a r g e R 1 f a c t o r s f o r t h e l a t t e r t w o d i m e r s a r e a t t r i b u t e d t o t h i s d i f fi c u l t y . I n c o m p o u n d 1 t h e d a t a w e r e c o r r e c t e d f o r t h e p r e s e n c e o f s o l v e n t b y t h e p r o g r a m P L A T O N G , r e s u l t i n g i n m u c h b e t t e r R 1 v a l u e s ( s e e C h a p t e r I I f o r d e t a i l s ) w i t h o u t a c t u a l l y m o d e l i n g t h e s o l v e n t . A l l t h e a t o m s b e l o n g i n g t o t h e d i m e r p o r t i o n o f t h e c r y s t a l s w e r e w e l l b e h a v e d a n d r e fi n e d w i t h a n i s o t r o p i c t e m p e r a t u r e f a c t o r s . 1 5 4 T a b l e 1 . C r y s t a l l o g r a p h i c D a t a f o r C o m p o u n d s 1 , a n d 2 f o r m u l a c r y s t a l h a b i t , c o l o r F w c r y s t a l s i z e ( m m 3 ) c r y s t a l s y s t e m s p a c e g r o u p a ( A ) b ( A ) c ( A ) 0 1 ( d e g ) l 3 ( d e g ) Y ( d e g ) v ( A 3 ) 2 a s . . . ( M g / m 3 ) F ( 0 0 0 ) , u ( M o K o t ) , m m - 1 2 9 m m . ( d e g ) i n d e x r a n g e s t e m p e r a t u r e / K r e fl e c t i o n s c o l l e c t e d i n d e p e n d e n t r e fl e c t i o n s R ( i n t ) ( % ) R e fi n e m e n t m e t h o d R i n d i c e s ( I > 2 0 ( 1 ) ) R i n d i c e s a l l d a t a A ( p ) ( f f / A s ) G O F 1 ( A ) C r y s t a l P a r a m e t e r s C s e H 4 G C | N 4 O 1 2 P 3 V 2 b l o c k , g r e e n 1 1 9 7 . 2 1 0 . 5 0 x 0 . 4 0 x 0 . 1 6 t r i c l i n i c P 7 1 1 . 8 0 6 0 ( 2 ) 1 6 . 8 1 9 4 ( 1 ) 1 7 . 0 9 0 6 ( 3 ) 6 7 . 4 5 9 ( 1 ) 7 7 . 1 4 6 ( 1 ) 7 3 . 7 2 1 ( 1 ) 2 9 8 3 . 3 3 ( 7 ) 2 1 . 3 3 3 1 2 2 8 0 . 4 9 9 ( B ) D a t a C o l l e c t i o n 5 0 . 0 - 1 3 s h s 1 4 - 1 8 s k s 1 9 0 s l s 2 0 1 7 3 ( 2 ) 1 7 5 7 8 1 0 1 7 9 2 . 0 1 ( C ) R e fi n e m e n t F u l l — m a t r i x l e a s t - s q u a r e s o n F 2 R 1 = 0 . 0 4 1 9 W R 2 = 0 . 1 0 1 8 R 1 = 0 . 0 5 5 6 W R 2 = 0 . 1 0 9 4 0 . 8 8 1 1 . 0 3 5 1 5 5 2 C 6 4 H 7 o C | N 4 0 1 6 P 3 V 2 b l o c k , g r e e n 1 3 8 1 . 4 8 0 . 7 7 x 0 . 7 3 x 0 . 6 2 t r i c l i n i c P T 1 4 . 7 1 0 2 ( 1 ) 1 4 . 8 9 1 0 ( 1 ) 1 7 . 0 2 6 3 ( 1 ) 9 2 . 1 5 3 ( 1 ) 1 1 3 . 1 5 1 ( 1 ) 9 5 . 8 6 2 ( 1 ) 3 3 9 8 . 9 0 ( 5 ) 2 1 . 3 5 0 1 4 3 6 0 . 4 5 2 5 0 . 0 — 1 3 . < _ h s . 1 7 — 1 7 s k s 1 5 — 2 0 s I 5 2 0 1 7 3 ( 2 ) 2 0 4 6 9 1 1 5 6 8 1 . 1 0 F u l l — m a t r i x l e a s t — s q u a r e s o n F 2 R 1 = 0 . 0 3 6 3 W R 2 = 0 . 1 0 2 3 R 1 = 0 . 0 4 1 3 W R 2 = 0 . 1 0 5 7 0 . 8 8 7 1 . 0 3 4 T a b l e 2 . C r y s t a l l o g r a p h i c D a t a f o r C o m p o u n d s 3 , a n d 6 A 3 6 A ( A ) C r y s t a l P a r a m e t e r s f o r m u l a 0 5 7 . 5 H 7 5 C I N 4 O 1 5 5 P 3 V 2 C 7 5 H 3 3 C I N 4 0 2 0 P 3 V 2 c r y s t a l h a b i t , c o l o r b l o c k , g r e e n b l o c k , g r e e n F W 1 4 2 1 . 5 6 1 6 0 2 . 7 0 c r y s t a l s i z e ( m m 3 ) 0 . 5 4 x 0 . 4 2 x 0 . 2 8 0 . 3 9 x 0 . 1 9 x 0 . 1 9 c r y s t a l s y s t e m t r i c l i n i c m o n o c l i n i c s p a c e g r o u p P 1 P 2 1 / n a ( A ) 1 4 . 8 3 4 5 ( 2 ) 1 1 . 9 7 8 ( 2 ) b ( A ) 1 8 . 3 2 9 8 ( 2 ) 1 9 . 2 8 4 ( 2 ) c ( A ) 2 6 . 9 2 7 5 ( 1 ) 2 1 . 8 9 5 ( 4 ) 0 1 ( d e g ) 7 4 . 5 1 1 ( 1 ) 9 0 [ 3 ( d e g ) 8 9 . 6 1 0 ( 1 ) 9 5 5 1 ( 3 ) 7 ( d e g ) 8 8 . 9 3 4 ( 1 ) 9 0 v ( A 3 ) 7 0 5 5 . 1 ( 1 ) 7 6 4 4 . 0 ( 9 ) Z 4 4 d c . . . ( M g / m 3 ) 1 . 3 8 8 1 . 3 9 3 F ( 0 0 0 ) 2 9 6 4 3 3 4 0 p ( M o K 0 1 ) , m m ' 1 0 . 4 3 7 0 . 4 1 7 ( B ) D a t a C o l l e c t i o n Z e m a x ( d e g ) 5 0 . 0 5 0 . 0 — 1 9 $ h s 1 6 — 1 4 s h s 1 4 i n d e x r a n g e s — 2 4 s k s 2 4 - 3 4 s k s 3 4 — 3 4 s | s 3 4 — 2 6 $ l 5 2 6 t e m p e r a t u r e / K 1 7 3 . 0 ( 2 ) 1 3 1 . 0 ( 2 ) r e fl e c t i o n s c o l l e c t e d 4 6 8 3 8 7 1 6 7 9 i n d e p e n d e n t r e fl e c t i o n s 2 3 7 8 2 1 3 4 3 7 R ( i n t ) ( % ) 2 . 7 9 2 8 . 3 ( C ) R e fi n e m e n t R e f i n e m e n t m e t h o d F u l l — m a t r i x 2 F u l l — m a t r i x 2 l e a s t — s q u a r e s o n F l e a s t — s q u a r e s o n F R i n d i c e s < l > 2 o < l > > 5 1 1 . 2 3 1 . 8 1 2 3 0 1 . 2 3 . 1 9 . 4 3 5 . R i n d i c e s a l l d a t a R 1 = 0 . 0 9 8 2 R 1 = 0 . 2 4 6 3 W R 2 = 0 . 2 4 0 4 W R 2 = 0 . 2 0 7 5 A ( p ) ( e ’ l A 3 ) 1 . 6 4 2 0 . 7 4 3 G O F 0 . 9 8 9 1 . 0 4 0 1 5 6 T a b l e 3 . B o n d D i s t a n c e s a n d D i m e r M e t r i c P a r a m e t e r s f o r { L 2 V O [ p — ( X - C 6 H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C | O 4 } , 1 , 2 , 3 , a n d 6 A 8 B o n d D i s t a n c e s 1 2 3 6 A v = 0 . . 1 . 6 0 6 ( 2 ) 1 . 6 0 6 ( 1 ) 1 . 8 1 8 ( 2 ) 1 . 5 9 8 ( 5 ) 1 . 8 0 0 ( 2 ) 1 . 8 0 3 ( 2 ) 1 . 6 1 2 ( 3 ) 1 . 5 9 7 ( 5 ) v — N , q 2 . 1 3 5 ( 2 ) 2 . 1 2 9 ( 2 ) 2 . 1 4 3 ( 3 ) 2 . 1 2 8 ( 7 ) 2 . 1 3 0 ( 2 ) 2 . 1 3 2 ( 2 ) 2 . 1 3 8 ( 3 ) 2 . 1 1 6 ( 6 ) v — N , q 2 . 1 4 5 ( 2 ) 2 . 1 5 0 ( 2 ) 2 . 1 8 1 ( 3 ) 2 . 1 3 8 ( 8 ) 2 . 1 3 1 ( 2 ) 2 . 1 3 3 ( 2 ) 2 . 1 4 5 ( 3 ) 2 . 1 4 0 ( 7 ) v — 0 . . q 2 . 0 0 1 ( 2 ) 1 . 9 9 9 ( 1 ) 2 . 0 0 8 ( 3 ) 1 . 9 8 4 ( 5 ) 1 . 9 9 1 ( 2 ) 1 . 9 9 9 ( 1 ) 1 . 9 9 9 ( 3 ) 1 . 9 9 4 ( 5 ) v — 0 . . q 2 . 0 2 2 ( 2 ) 2 . 0 1 4 ( 1 ) 2 . 0 1 1 ( 2 ) 1 . 9 9 8 ( 5 ) 1 . 9 9 2 ( 2 ) 2 . 0 0 0 ( 1 ) 2 . 0 1 4 ( 3 ) 2 . 0 1 2 ( 5 ) v — 0 . . 2 . 1 4 5 ( 2 ) 2 . 1 2 8 ( 1 ) 2 . 1 2 6 ( 2 ) 2 . 1 1 3 ( 5 ) 2 . 1 4 4 ( 2 ) 2 . 1 4 8 ( 1 ) 2 . 1 0 9 ( 2 ) 2 . 1 3 9 ( 8 ) T l K 1 7 3 1 7 3 1 7 3 1 3 1 v 1 . . . . . . v 2 , A 4 . 9 0 8 4 . 9 0 8 ( 1 ) 4 . 8 8 3 ( 2 ) 4 . 8 3 5 ( 2 ) < N 2 0 2 ‘ ” / N 2 0 2 V 2 > / ° b 3 9 . 2 4 5 . 3 ( 1 ) 5 8 . 0 ( 1 ) 5 5 . 0 ( 1 ) < 0 1 - V 1 — V 2 — C ) 2 > / ° c 1 2 8 . 8 ( 3 ) 1 1 3 . 2 ( 1 ) 1 0 0 . 5 ( 2 ) 1 0 9 . 8 ( 4 ) ‘ 1 : L = b p y ; X = H . 2 : L = d m b p y ; X = H . 3 : l . = t m b p y ; X = H . 6 A : L = t m b p y ; X = C H 3 0 — . b D i h e d r a l a n g l e b e t w e e n t h e N Z O Z V p l a n e s ( d e fi n e d b y t h e f o u r b a s a l a t o m s o f t h e r e s p e c t i v e v a n a d i u m o c t h e d r o n ) . ° D i h e d r a l a n g l e b e t w e e n t h e a x e s d e fi n e d b y t h e v a n a d y l g r o u p s . 1 5 7 T h e f o u r d e r i v a t i v e s a r e f o u n d a s t r i s m — p h o s p h i n a t o — 0 , 0 ' ) d i v a n a d y l c o m p l e x e s a n d h a v e m a n y s t r u c t u r a l f e a t u r e s i n c o m m o n . F i g u r e 2 ( A ) d i s p l a y s a n O R T E P v i e w o f t h e s t r u c t u r e o f c o m p o u n d 2 . E a c h c r y s t a l l o g r a p h i c a l l y u n i q u e v a n a d i u m a t o m w i t h i n t h e d i m e r c o r e a s s u m e s a d i s t o r t e d o c t a h e d r o n c o o r d i n a t i o n w i t h t h e c h a r a c t e r i s t i c s h o r t v a n a d y l b o n d ( T a b l e 3 ) . T h e e q u a t o r i a l p l a n e i s s u p p l e m e n t e d b y t h e t w o n i t r o g e n a t o m s o f t h e d m b p y t e r m i n a l l i g a n d a n d b y t w o p h o s p h i n a t e o x y g e n s . T h e t r a n s — t o t h e v a n a d y l s i t e i s a l s o o c c u p i e d b y a p h o s p h i n a t e o x y g e n , a f e a t u r e w h i c h h a s n e v e r b e e n o b s e r v e d i n t h e d i m e r i c s t r u c t u r a l b u i l d i n g b l o c k s o f t h e p h o s p h a t e / p h o s p h o n a t e e x t e n d e d m a t e r i a l s , a s r e m a r k e d b y V i l l e n e u v e a n d c o w o r k e r s z . I n f a c t b r i d g i n g o f t h e t w o m e t a l s i t e s b y t h r e e p h o s p h a t e - t y p e l i g a n d s h a s b e e n a c h i e v e d o n l y r e l a t i v e l y r e c e n t l y i n h e t e r o m e t a l l i c v a n a d i u m ( 3 + ) c l u s t e r s 7 . T h e a x i a l V — O p ( w h e r e O p i s a p h o s p h i n a t e o x y g e n ) b o n d s a r e s l i g h t l y l o n g e r ( 2 . 1 4 5 A ) t h a n t h e e q u a t o r i a l ( ~ 2 . 0 0 1 A ) o n e s , i n a c c o r d a n c e w i t h t h e w e a k c o o r d i n a t i o n a b i l i t y o f t h e t r a n s - v a n a d y l s i t e . O n l y o n e o f t h e p h o s p h i n a t e g r o u p s b i n d s t o e q u a t o r i a l s i t e s i n b o t h v a n a d y l c e n t e r s , t h e o t h e r t w o b i n d i n g o n e a x i a l a n d o n e e q u a t o r i a l p o s i t i o n o f e a c h o c t a h e d r o n ( F i g u r e 2 ( 8 ) ) . T h e o u t c o m e o f s u c h l i g a n d t o p o l o g y i s a n a l m o s t o r t h o g o n a l t w i s t b e t w e e n t h e v a n a d y l g r o u p s , a s i n d i c a t e d b y t h e O 1 — V 1 — V 2 — 0 2 d i h e d r a l a n g l e s d i s p l a y e d i n T a b l e 3 . T h e y r a n g e f r o m 1 2 6 . 8 ° f o r 1 t o 1 0 0 . 5 ° i n 3 r e s u l t i n g i n a n a l m o s t o r t h o g o n a l a r r a n g e m e n t b e t w e e n t h e v a n a d i u m b a s a l p l a n e s . W h e n t h e p h e n y l r i n g s o f t h e p h o s p h i n a t e l i g a n d s a r e s u b s t i t u t e d i n t h e p a r a p o s i t i o n w i t h e i t h e r e l e c t r o n w i t h d r a w i n g o r d o n a t i n g s u b s t i t u e n t s t h e b p y d i m e r c o r e a d o p t s a d i f f e r e n t s t r u c t u r a l f r a m e w o r k . T h e s t r u c t u r e s o f t h r e e s u c h c o m p o u n d s w e r e d e t e r m i n e d b y s i n g l e c r y s t a l X - r a y s t u d i e s ( T a b l e 4 ) , a n d a l l w e r e f o u n d t o b e t r i s ( , u — b i s - p - s u b s t i t u t e d — p h e n y l p h o s p h i n a t o — 0 , 0 ’ ) d i v a n a d y l c o m p l e x e s . F i g u r e 3 ( A ) d i s p l a y s a n O R T E P v i e w o f t h e p - C H 3 0 — d e r i v a t i v e 6 . 1 5 8 ( A ) Q . C O ’ 1 3 C ( 2 1 ) 0 5 1 ) ‘ 3 0 ( 2 ) 0 1 4 ) ‘ é k P l l ) “ ‘ ‘ N H ) 1 1 , 1 v ' 4 ! 1 ‘ ? ‘ N M ) - : - ' ‘ 3 l “ " N l 2 ) ( B ) I “ , b . ( 1 ) ( x x , M 3 ) o n ) F i g u r e 2 . O R T E P r e p r e s e n t a t i o n o f { d m b p y V O [ p — ( C 5 H 5 ) 2 P O Z ] 1 , 5 } 2 { C I O 4 } - 4 C H 3 O H ( A ) , a n d v i e w o f i t s t w i s t d i m e r c o r e ( B ) . T h e P ( 3 ) p h o s p h i n a t e g r o u p b r i d g e s t h e e q u a t o r i a l s i t e s o f t h e t w o v a n a d y l o c t a h e d r a . 1 5 9 T a b l e 4 . C r y s t a l l o g r a p h i c D a t a f o r C o m p o u n d s 4 , 5 , a n d 6 f o r m u l a o r . h a b i t , c o l o r F W c r . s i z e ( m m a ) c r y s t a l s y s t e m s p a c e g r o u p a ( A ) b ( A ) c ( A ) 9 ( d e g ) B ( d e 9 ) 1 ( d e g ) ‘ V ( A ? ) Z d c a l c ( M g / m 3 ) F ( 0 0 0 ) , u ( M o K 0 1 ) , m m ‘ 1 2 9 m a x ( d e g ) i n d e x r a n g e s t e m p e r a t u r e / K r e fl . c o l l e c t e d ) i n d . r e fl e c t i o n s R ( i n t ) ( % ) R e f . m e t h o d R i n d . ( I > 2 8 ( 1 ) ) R i n d . a l l d a t a A ( p ) ( e ’ W ’ ) ( m o F 4 ( A ) C r y s t a l P a r a m e t e r s C 5 7 5 H 4 8 C | F 8 N 4 O 1 3 5 P 3 V f a c e t t e d o v a l , g r e e n 1 3 5 3 . 2 2 0 . 2 8 x 0 . 2 5 x 0 . 1 8 o r t h o r o m b i c P 2 , 2 , 2 , 1 3 . 1 8 9 8 ( 2 ) 1 7 . 6 2 0 6 ( 3 ) 2 4 . 9 1 4 2 ( 1 ) 9 0 9 0 9 0 5 7 9 0 . 3 6 ( 1 3 ) 4 1 . 5 5 2 2 7 5 6 0 . 5 4 0 ( B ) D a t a C o l l e c t i o n 5 0 . 1 — 1 5 s h s 1 5 0 s k s 2 0 0 _ < _ l s 2 9 1 7 3 ( 2 ) 2 9 0 5 8 1 0 0 7 6 3 . 9 8 ( C ) R e f i n e m e n t F u l l — m a t r i x l e a s t - s q u a r e s o n F 2 R 1 = 0 . 0 5 3 5 W R 2 = 0 . 1 0 7 9 R 1 = 0 . 0 7 3 4 W R 2 = 0 . 1 1 8 5 0 . 6 7 9 1 . 0 2 5 1 6 0 5 C S 6 H 4 O C | 7 N 4 O 1 2 P 3 V 2 p l a t e , g r e e n 1 4 0 3 . 8 6 0 . 2 8 x 0 . 2 5 x 0 . 0 4 m o n o c l i n i c P 2 , / c 1 8 . 5 1 1 1 1 ( 1 ) 2 3 . 0 6 8 9 ( 3 ) 1 5 . 0 1 5 5 ( 2 ) 9 0 1 0 0 . 7 3 8 ( 1 ) 9 0 6 2 9 9 . 8 ( 1 ) 4 1 . 4 8 0 2 8 4 0 0 . 7 3 1 5 0 1 2 - 2 2 s h s m O s k s Z 7 O s l s 1 7 1 7 3 0 8 2 9 5 1 0 1 0 9 2 3 $ 1 8 3 F u l l — m a t r i x l e a s t — s q u a r e s o n F 2 R 1 = 0 . 0 7 1 1 W R 2 = 0 . 1 3 8 9 R 1 = 0 . 1 5 4 5 W R 2 = 0 . 1 7 3 4 0 . 6 8 2 0 . 9 0 1 T a b l e 4 ( c o n t ' d ) 6 ( A ) C r y s t a l P a r a m e t e r s f o r m u l a C 6 2 H 5 3 0 1 N 4 O 1 8 P 3 V 2 c r . h a b i t , c o l o r b l o c k , g r e e n F W 1 3 7 7 . 3 6 o r . s i z e ( m m ? ) 0 . 3 5 x 0 . 2 0 x 0 . 1 8 c r y s t a l s y s t e m t r i c l i n i c s p a c e g r o u p P 7 a ( A ) 1 2 . 5 5 4 4 ( 5 ) b ( A ) 1 4 . 6 4 6 1 ( 6 ) c ( A ) 1 8 . 8 8 7 0 ( 7 ) 0 1 ( d e g ) 7 6 . 3 7 5 ( 1 ) 8 ( d e g ) 7 7 . 8 9 9 ( 1 ) 7 ( d e g ) 6 9 . 5 9 6 ( 1 ) v ( A 3 ) 3 1 3 2 . 2 ( 2 ) Z 2 d c . . . ( M g / m 3 ) 1 . 4 6 0 F ( 0 0 0 ) 1 4 2 0 p ( M o K 0 1 ) , m r r r 1 0 . 4 9 3 ( B ) D a t a C o l l e c t i o n 2 0 m a x ( d e g ) 5 0 . 1 — 1 4 s h s 1 4 i n d e x r a n g e s — 1 6 s k s 1 7 0 s l s 2 2 t e m p e r a t u r e / K 1 7 3 ( 2 ) r e fl . c o l l e c t e d 1 7 4 1 7 i n d . r e fl e c t i o n s 1 0 5 0 9 R ( i n t ) ( % ) 3 . 3 4 ( C ) R e fi n e m e n t R e f . m e t h o d F u l l — m a t r i x 2 l e a s t — s q u a r e s o n F R i n d . ( I > 2 8 ( I ) ) W R 2 2 % ? 5 1 7 5 R i n d . a l l d a t a m 2 ; 0 : 3 1 7 : 5 8 A ( p ) ( e - / A 3 ) 1 . 0 0 9 G O F 1 . 0 1 6 1 6 1 T h e m e t r i c p a r a m e t e r s o f t h e v a n a d y l o c t a h e d r a f o r a l l t h r e e c o m p o u n d s ( T a b l e 5 ) w e r e s i m i l a r t o t h o s e o b s e r v e d i n t h e t w i s t s t r u c t u r a l t y p e . I n t e r c o n n e c t i o n o f t h e o c t a h e d r a i s a c c o m p l i s h e d b y t w o p h o s p h i n a t e s b r i d g i n g e q u a t o r i a l s i t e s a n d o n e b r i d g i n g t h e a x i a l s i t e s ( F i g u r e 3 ( 8 ) ) . S u c h a n a r r a n g e m e n t r e s u l t s i n t h e f o r m a t i o n o f a c o n v e x b o a t s , w h e r e v a n a d y l g r o u p s a r e s y n w i t h r e s p e c t t o e a c h o t h e r . T h e a x e s d e fi n e d b y t h e v a n a d y l g r o u p s a r e a l m o s t c o p l a n a r a s i n d i c a t e d b y t h e s m a l l 0 1 — V 1 — V 2 — O z d i h e d r a l a n g l e s , w h i c h r a n g e f r o m 8 1 ° t o 1 5 4 ° ( T a b l e 5 ) . F i g u r e 4 d e p i c t s t h e e l e c t r o n i c s p e c t r u m o f { b p y V O U J — ( p - M e O - C e H 4 ) 2 P 0 2 ] 1 , 5 } 2 { C I O 4 } i n a c e t o n e w h i c h r e p r e s e n t s a t y p i c a l s p e c t r u m d i s p l a y e d b y t h i s s e r i e s o f c o m p o u n d s . T h e r e s p e c t i v e d a t a f o r t h e r e m a i n i n g d e r i v a t i v e s a r e g a t h e r e d i n T a b l e 6 . T h r e e w e a k a b s o r p t i o n s a r e o b s e r v e d w h i c h a r e a t t r i b u t e d t o d — d t r a n s i t i o n s , a c c o r d i n g t o t h e m o l e c u l a r o r b i t a l s c h e m e d e v i s e d b y G r a y a n d B a l l h a u s e n 9 f o r v a n a d y l c o m p l e x e s w i t h l o c a l C 4 1 , s y m m e t r y . I n t h i s p o i n t g r o u p t h e e n e r g y o r d e r i n g o f t h e d l e v e l s i s a s , b 2 ( d x y ) , e ( d x z , d y z ) , b 1 ( d e - y 2 ) , a n d a 1 ( d Z Z ) . D e v i a t i o n s i n s y m m e t r y r e s u l t i n t h e l i f t i n g o f t h e d e g e n e r a c y o f t h e e o r b i t a l s e t , a s i t i s t h e c a s e f o r t h e c o m p o u n d s i n s t u d y , w h e r e t h e l o c a l m e t a l s y m m e t r y i s b e t t e r a p p r o x i m a t e d b y t h e C s p o i n t g r o u p . T h e c r y s t a l fi e l d t r a n s i t i o n s i n t h e C W p o i n t g r o u p i n v o l v e m o v i n g o f t h e u n p a i r e d e l e c t r o n t h a t r e s i d e s i n t h e b 2 o r b i t a l t o t h e 9 , b 1 , a n d a 1 M O s , w h i c h a r e e s s e n t i a l l y t h e 3 d m e t a l a t o m i c o r b i t a l s , r e s u l t i n g i n 2 E , 2 3 1 , a n d 2 A 1 e x c i t e d s t a t e s , r e s p e c t i v e l y . T o a g o o d a p p r o x i m a t i o n e l e c t r o n r e p u l s i o n e f f e c t s a r e c o n s i d e r e d t o b e t h e s a m e f o r a l l t h e s e s t a t e s , a n d h e n c e t r a n s i t i o n s a r e e x p e c t e d t o o c c u r t o 2 E , 2 8 1 , a n d 2 A 1 i n o r d e r o f i n c r e a s i n g e n e r g y . W h e n t h e s y m m e t r y i s l o w e r t h a n C w , t h e 2 B 2 t o 2 E t r a n s i t i o n i s e x p e c t e d t o a p p e a r a s t w o s e p a r a t e a b s o r p t i o n p r o fi l e s r e s u l t i n g i n a t o t a l o f f o u r b a n d s , a s h a s b e e n o b s e r v e d i n a f e w v a n a d y l c o m p l e x e s " ) . 1 6 2 v v v v v V T V B < < o n = d 0 , _ . — — _ 1 N / 0 2 N N o 0 O . — _ K . 0 1 . . 2 s t a n c e s , . . D x e e a . . i . . q q x q , . V . 1 v V 2 / 1 I 2 A 0 v N — 2 2 V 2 — > 0 / 2 0 > b / ° ° 1 0 8 8 8 9 2 2 2 3 3 4 2 1 2 9 4 0 2 9 9 5 3 8 ( ( ( ( ( ( ( ( ( ( ( ( 3 3 4 4 4 4 3 3 3 3 3 3 ) ) ) ) ) ) ) ) ) ) ) ) 3 3 2 . 8 4 4 1 1 1 1 1 1 8 6 9 9 9 9 9 . . . . . . . . . . . . . 7 0 . 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 8 4 4 4 5 5 5 5 4 4 4 4 4 4 ) ) ) ) ) ) ) ) ) ) ) ) 5 5 5 1 1 1 1 0 0 1 1 9 9 3 2 8 . 9 9 8 9 1 2 4 4 0 2 4 1 7 . 0 . . . . 7 0 3 . . . . . . . . . 2 2 2 2 2 2 2 2 4 1 1 1 1 1 1 1 ( ( ( ( ( ( ( ( ( ( ( ( 0 4 6 6 2 4 4 0 5 2 3 2 9 2 4 4 4 4 4 4 3 3 3 4 4 3 ) ) ) ) ) ) ) ) ) ) ) ) ( ( ( ( ( ( ( ( ( ( ( ( 7 0 8 8 9 2 4 9 3 8 3 5 0 5 6 9 9 9 5 1 1 1 1 0 1 1 7 3 8 . . 1 1 1 1 1 1 1 2 2 2 2 2 2 2 4 9 . . . . . 5 . . . . . . . . 9 9 0 8 7 9 2 1 3 2 0 1 2 8 8 4 T a b l e 5 . B o n d D i s t a n c e s a n d D i m e r M e t r i c P a r a m e t e r s f o r { L 2 V O L u — ( X — C 8 H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C ' O 4 } . 4 . 5 . 8 0 d 5 3 ' 4 : L = b p y ; X = F - . 5 : L = b p y ; X = C l - . 6 : L = b p y ; X = C H 3 0 - . " D i h e d r a l a n g l e b e t w e e n t h e N Z O Z V p l a n e s ( d e fi n e d b y t h e f o u r b a s a l a t o m s o f t h e r e s p e c t i v e v a n a d i u m o c t h e d r o n ) . ° D i h e d r a l a n g l e b e t w e e n t h e a x e s d e fi n e d b y t h e v a n a d y l g r o u p s . 1 6 3 ( A ) ( B ) N l 4 l ( S i n C ( 2 8 ) I - ‘ 3 1 ! ” C 1 2 1 ) F i g u r e 3 . O R T E P r e p r e s e n t a t i o n o f { b p y V O [ p — ( p - C H 3 0 — C s H 4 ) 2 P O Z ] 1 , 5 } 2 { C I O 4 } ( A ) , a n d v i e w o f i t s s y n d i m e r c o r e ( B ) . T h e P ( 1 ) p h o s p h i n a t e g r o u p b r i d g e s t h e a x i a l s i t e s o f t h e t w o v a n a d y l o c t a h e d r a . 1 8 4 0 . 7 0 . 6 0 . 5 0 . 4 0 . 3 A b s o r b a n c e 0 . 2 0 . 1 0 ’ L L l l l l l l l l l l l l l l l l l l l l I l l l l l l l l l l l l l l l 3 ( 1 ) 4 ( 1 ) 5 ( 1 ) 6 “ ) 7 ( 1 ) 8 0 0 9 0 0 1 ( 0 ) 1 1 ( 1 ) A / n m F i g u r e 4 . A b s o r p t i o n s p e c t r u m o f { b p y V O U r — ( p - M e O — C G H 4 ) 2 P 0 2 ] 1 , 5 } 2 { C I O 4 } i n a c e t o n e s o l u t i o n . T h e t h r e e m a x i m a a r e a t t r i b u t e d t o d — d t r a n s i t i o n s . 1 6 5 a m c m n 5 m c m n 3 1 " m c m n X - T a b l e 6 . E l e c t r o n i c A b s o r p t i o n S p e c t r a o f { b p y V O [ ( p - X — C e H 4 ) 2 P 0 2 ] 1 _ 5 } 2 { C l O 4 } , 1 , 4 , 5 , 6 , a n d { t m b p y V O [ ( p — C H 3 0 — C s H 4 O ) 2 P 0 2 ] } 2 { C I O 4 } , 6 A , i n a c e t o n e — H ( 1 ) 3 8 1 2 6 2 1 2 2 0 6 6 1 7 1 6 2 0 7 4 0 7 6 4 1 3 0 8 9 6 6 — F ( 4 ) 4 0 4 2 4 7 5 2 7 6 6 3 5 1 5 7 4 8 1 7 7 5 8 1 3 1 9 3 3 3 — C l ( 5 ) 4 0 5 2 4 7 1 6 9 1 6 5 2 1 5 3 4 7 3 0 7 5 3 1 3 2 8 0 4 9 — O C H 3 ( 6 ) 4 2 0 2 3 7 9 8 9 4 6 3 3 1 5 7 8 8 3 6 7 6 6 1 3 0 5 5 5 7 1 6 6 — O C H 3 ( 6 A ) a 4 0 2 2 4 8 7 6 6 8 6 3 1 1 5 8 5 3 2 0 7 7 1 1 2 9 6 7 5 0 I n s p e c t i o n o f T a b l e 6 r e v e a l s t h a t t h r e e a b s o r p t i o n s a r e o b s e r v e d f o r a l l d i m e r c o m p o u n d s b e l o n g i n g t o t h i s s e r i e s . H e n c e , a l t h o u g h l i f t i n g o f t h e d e g e n e r a c y i s e x p e c t e d b a s e d o n t h e s t r u c t u r a l e n v i r o n m e n t o f t h e v a n a d y l i o n , t h e e n e r g y s e p a r a t i o n b e t w e e n t h e d x z a n d d y z o r b i t a l s s h o u l d b e s m a l l . T h e s t r o n g e r t r a n s i t i o n , a t l o w e n e r g i e s , i s a t t r i b u t e d t o t h e 2 8 2 t o 2 E e x c i t a t i o n . T h e s e c o n d o n e , w h i c h a p p e a r s a s a w e a k s h o u l d e r , i s a s s i g n e d t o a 2 B 2 t o 2 B 1 t r a n s i t i o n a n d i s o n l y v i b r o n i c a l l y a l l o w e d . T h e fi n a l o n e i s a t t r i b u t e d t o t h e a l s o f o r b i d d e n 2 3 2 t o 2 A 1 t r a n s i t i o n . b . M a g n e t i c S u s c e p t i b i l i t i e s S t u d i e s T h e m a g n e t i c p r o p e r t i e s o f t h e s t r u c t u r a l l y c h a r a c t e r i z e d d i m e r c o m p l e x e s 1 - 6 a n d t h o s e o f c o m p o u n d s 5 A a n d 6 A h a v e b e e n d e t e r m i n e d b y p o w d e r s u s c e p t i b i l i t y s t u d i e s . T h e d a t a f o r t h e d i p h e n y l p h o s p h i n a t e c o m p l e x e s 1 , 2 , a n d 3 a r e g a t h e r e d i n T a b l e 7 a l o n g w i t h m e t r i c p a r a m e t e r s o f t h e d i m e r c o r e , w h i l e t h o s e o f t h e r e m a i n i n g c o m p l e x e s 4 , 5 , 5 A , 6 , a n d 6 A a r e c o l l e c t e d i n T a b l e 8 . T h e m o l e c u l a r s u s c e p t i b i l i t i e s s h o w a m o n o t o n i c i n c r e a s e w i t h d e c r e a s i n g t e m p e r a t u r e t i l l t h e y r e a c h a m a x i m u m f o r c o m p l e x e s 2 , 3 , 4 , 5 , 6 , a n d 6 A ( F i g u r e s 5 a n d 6 ) . T h i s m a x i m u m i s c h a r a c t e r i s t i c o f i n t r a d i m e r a n t i f e r r o m a g n e t i c i n t e r a c t i o n , a b e h a v i o r a l s o i n d i c a t e d b y t h e d e v i a t i o n t o w a r d s z e r o o f t h e M T p r o d u c t a s t h e t e m p e r a t u r e a p p r o a c h e s z e r o . T h e l a t t e r i s t r u e e v e n f o r c o m p l e x e s 1 a n d 5 A w h i c h d o n o t d i s p l a y a m a x i m u m i n t h e s u s c e p t i b i l i t y v e r s u s t e m p e r a t u r e p l o t . T h e d a t a w e r e fi t t e d t o a B l e a n e y — B o w e r s 1 1 m o d e l f o r a n S = 1 / 2 s y s t e m 2 N g 2 8 2 7 " ” = K T [ 3 + e x p ( — J / k T ) ( 4 . 1 ) 1 6 7 T a b l e 7 . S u s c e p t i b i l i t y D a t a a n d D i m e r M e t r i c P a r a m e t e r s f o r { ( L 2 V O U l - ( P h ) 2 P 0 2 ] } 2 { C ' 0 4 } a 1 2 3 J / k i n K — 2 . 9 - 8 . 9 — 1 1 . 3 g 1 . 9 7 2 . 0 2 1 . 9 8 T m a x i n K b — 5 . 0 6 . 5 T m a x i n K ° 1 . 8 5 . 5 7 . 0 % i m p u r i t y — 6 . 1 6 . 0 T / K 1 7 3 1 7 3 1 7 3 v 1 . . . . . . v 2 , A 4 . 9 0 8 4 . 9 0 6 ( 1 ) 4 . 8 8 1 ( 3 ) < N 2 0 2 V 1 / N 2 0 2 V 2 > / ° d 3 9 . 2 4 5 . 3 ( 1 ) 5 8 . 0 ( 2 ) < N V O / N V O > / ° ° 5 1 . 4 4 3 . 4 2 7 . 5 < 0 1 — v 1 — v 2 — 0 2 > / ° ‘ 1 2 8 . 8 1 1 3 . 2 ( 1 ) 1 0 0 . 5 ( 5 ) ' 1 : L = b p y . 2 : L = d m b p y . 3 : L = t m b p y . " E x p e r i m e n t a l . ° F r o m e q u a t i o n 4 . 2 . " D i h e d r a l a n g l e b e t w e e n t h e N Z O Z V p l a n e s ( d e fi n e d b y t h e f o u r b a s a l a t o m s o f t h e v a n a d i u m o c t a h e d r o n ) . ° D i h e d r a l a n g l e s b e t w e e n t h e N V O p l a n e s ( d e fi n e d a s t h e p l a n e o r t h o g o n a l t o t h e V — 0 . , q b o n d ) . ' D i h e d r a l a n g l e b e t w e e n t h e a x e s d e fi n e d b y t h e v a n a d y l g r o u p s . 1 6 8 T a b l e 8 . S u s c e p t i b i l i t y D a t a a n d D i m e r M e t r i c P a r a m e t e r s f o r { ( s z o l fl - ( P ' X ‘ P h ) 2 P 0 2 ] } 2 { C I O 4 } a 4 5 5 A 8 6 A J / k i n K — 2 6 . 0 - 2 5 . 0 — 4 . 5 — 2 3 . 9 — 1 1 . 3 g 1 . 9 7 2 . 0 8 1 . 9 8 1 . 9 0 1 . 9 4 T m . . . i n K b 1 5 . 5 1 5 . 5 — 1 4 . 5 7 . 0 T m . . . x i n K ° 1 6 . 3 1 5 . 8 2 . 8 1 5 . 0 7 . 1 " / 0 i m p u r i t y 5 . 9 1 . 4 — 1 . 9 2 . 9 T I K 1 7 3 1 7 3 — 1 7 3 1 3 1 v . . . . . . . v 2 , A 4 . 9 2 8 4 . 8 7 9 — 4 . 8 8 0 4 . 8 3 5 < N 2 0 2 V 1 / N 2 0 2 V 2 > / ° d 1 0 3 . 4 1 0 2 . 2 — 9 9 . 8 5 5 . 0 < 0 , — v , — v 2 — 0 2 > / 0 e 8 . 1 1 3 . 0 — 1 5 . 4 1 0 9 . 8 a , ‘ 0 . 0 8 0 . 2 3 0 . 2 3 — 0 . 2 7 — 0 . 2 7 ‘ 4 : L = b p y ; X = F - . 5 : L = b p y ; X = C l - . 5 A : L = t m b p y ; X = C l - . 6 : L = b p Y : X = C H 3 0 — . 6 A : L = t m b p y ; X = C H 3 0 — . ” E x p e r i m e n t a l . c F r o m e q u a t i o n 4 . 2 . d D i h e d r a l a n g l e b e t w e e n t h e N Z O Z V p l a n e s ( d e fi n e d b y t h e f o u r b a s a l a t o m s o f t h e r e s p e c t i v e v a n a d i u m o c t h e d r o n ) . ° D i h e d r a l a n g l e b e t w e e n t h e a x e s d e fi n e d b y t h e v a n a d y l g r o u p s . f H a m m e t t e l e c t r o n i c p a r a m e t e r s . 1 6 9 1 X M I e m u - m o l ' ( A ) 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 T / K ' 1 ' . O . E 3 ( B ) 5 x : ' L . E ( C ) a e 0 x 2 0 5 0 1 0 0 F i g u r e 5 . M o l a r s u s c e p t i b i l i t y v e r s u s t e m p e r a t u r e p l o t s o f c o m p m p o u n d s 1 ( A ) , 2 ( B ) , a n d 3 ( C ) . T h e s o l i d l i n e r e p r e s e n t s t h e b e s t f i t o b t a i n e d b y u s i n g a B l e a n e y — B o w e r s d i m e r m o d e l . 1 7 0 1 ' l o m - u m e l M X 1 X M [ e m u - m o i ( A ) 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 T / K 0 . 0 6 0 . 0 5 ' 1 ‘ . ) 0 0 4 , , 1 . — e — ( b p y v o m — ( p - C H a o — P n ) z p o z 1 , 5 ) 2 ( C l q } g - _ _ E , ) _ { t m b p y V O h l - ( o - C l - g O - P t h o z l w b { C l q j ( B ) « E » ' S X 0 . 1 4 0 . 1 2 0 . 1 0 ( C ) 0 0 8 _ e _ { b p y v o u l — ( p - C I — P h ) 2 P 0 2 1 , 5 ) 2 ( 0 1 0 4 ) — a — ( t m b p y v o p - ( o - C I — P h ) 2 P g 1 1 . 5 L { C l q } - - - - - - n - - - - l ‘ [ W i l t - fi r . . . u . I v a v v o . - o e . . - . . . - 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 T / K F i g u r e 6 . M o l e c u l a r s u s c e p t i b i l i t y v e r s u s t e m p e r a t u r e p l o t s o f c o m p o u n d s 4 ( A ) , 6 a n d 6 A ( B ) , a n d 5 a n d 5 A ( C ) . T h e s o l i d l i n e r e p r e s e n t s t h e b e s t fi t o b t a i n e d b y u s i n g a B l e a n e y — B o w e r s d i m e r m o d e l . 1 7 1 w h e r e J i s t h e s i n g l e t — t r i p l e t e n e r g y s p l i t t i n g . F o r J < 0 , t h e m o d e l p r e d i c t s a m a x i m u m f o r t h e m a g n e t i c s u s c e p t i b i l i t y w h i c h t e n d s t o w a r d z e r o w h e n T a p p r o a c h e s z e r o . T h e t e m p e r a t u r e a t w h i c h t h e m a x i m u m o c c u r s , w h i c h i s a s i g n a t u r e o f a n t i f e r r o m a g n e t i c i n t e r a c t i o n , i s r e l a t e d t o J t h r o u g h i = 1 . 5 9 9 ( 4 . 2 ) k T m a x I n s p e c t i o n o f T a b l e s 7 a n d 8 s h o w s e x c e l l e n t a g r e e m e n t b e t w e e n t h e e x p e r i m e n t a l a n d t h e c a l c u l a t e d T m . . . f u r t h e r s t r e n g t h e n i n g t h e v a l i d i t y o f t h e m a g n e t i c m o d e l u t i l i z e d f o r d a t a fi t t i n g . T h e s i n g l e t — t r i p l e t e n e r g y s p l i t t i n g s c a l c u l a t e d b y t h e d a t a fi t s h o w a n i n c r e a s e f o r t h e d i p h e n y l p h o s p h i n a t e d e r i v a t i v e s u p o n m e t h y l — s u b s t i t u t i o n o f t h e t e r m i n a l l i g a n d s . I n a n t i t h e s i s , t h e b p y c o m p l e x e s 5 , 6 d i s p l a y s t r o n g e r a n d a l m o s t i d e n t i c a l e x c h a n g e c o u p l i n g s t h a n t h e i r t m b p y a n a l o g s 5 A , a n d 6 A . T h e d e c r e a s e u p o n m e t h y l s u b s t i t u t i o n o f t h e t e r m i n a l l i g a n d s w a s 5 — f o l d f o r t h e p - C H 3 0 — d e r i v a t i v e s a n d o n l y 2 — f o l d f o r t h e p - C l — o n e . 2 . S y n t h e s i s a n d C h a r a c t e r i z a t i o n o f { L V O [ p — ( p - X - C ( ; H 4 ) 2 P 0 2 ] } 2 D i m e r s , ( L = h y d r o t r i s ( 1 - p y r a z o l y l ) b o r a t e , a n d X = H - , C H 3 O - , C H 3 - , F — ) , a n d o f { L V O [ p — ( p - N O z — C S H 4 ) Z O P 0 2 ] } 2 - S , ( L = h y d r o t r i s ( 1 — p y r a z o l y l ) b o r a t e , a n d S = C H 2 C I 2 , C H 3 C O C H 3 , C 4 H 5 N , C 4 H 4 S , a n d C s z s z ) a . S y n t h e s i s a n d C h a r a c t e r i z a t i o n U t i l i z a t i o n o f h y d r o t r i s ( 1 — p y r a z o l y l ) b o r a t e a s a t e r m i n a l l i g a n d a f f o r d s a n e w s e r i e s o f d i m e r i c c o m p o u n d s , w i t h d i m e r c o r e s s i m i l a r t o t h e D V I I e x c h a n g e p a t h w a y o f t h e e x t e n d e d l a y e r e d v a n a d y l p h o s p h a t e s / p h o s p h o n a t e s . T h e fi r s t d i m e r c o m p l e x o f t h i s t y p e w a s s y n t h e s i z e d b y C a r r a n o a n d c o w o r k e r s 8 w h o 1 7 2 d e v i s e d t h e g e n e r a l s y n t h e t i c s c h e m e d e p i c t e d i n F i g u r e 7 . R e a c t i o n o f t h e v a n a d y l m o n o n u c l e a r c o m p l e x H B ( p z ) 3 V O ( a c a c ) 1 2 i n a c e t o n i t r i l e o r d i c h l o r o m e t h a n e w i t h t h e d e s i r e d p h o s p h i n i c a c i d a f f o r d e d t h e d i m e r c o m p o u n d s a s b l u e p o l y c r y s t a l l i n e p o w d e r s . R e c r y s t a l l i z a t i o n o f t h e p o w d e r s a m p l e s f r o m e i t h e r a c e t o n i t r i l e o r d i c h l o r o m e t h a n e p r o d u c e d b l u e c r y s t a l s , t h e s i z e a n d s h a p e o f w h i c h i s a f u n c t i o n o f t h e c r y s t a l l i z a t i o n m e d i u m . I n t h e o r i g i n a l l i t e r a t u r e w o r k t w o d i m e r i c c o m p o u n d s w e r e s y n t h e s i z e d h a v i n g a s d i a m a g n e t i c b r i d g i n g g r o u p s t h e d i p h e n y l p h o s p h i n a t e a n d d i p h e n y l p h o s p h o n a t e l i g a n d s . B y i n t r o d u c i n g s u b s t i t u e n t s i n t h e p a r a — p o s i t i o n o f t h e p h e n y l r i n g s w e h a v e s y n t h e s i z e d a s e r i e s o f h o m o l o g o u s c o m p l e x e s , w h e r e m i n o r s t r u c t u r a l c h a n g e s a r e i n t r o d u c e d w i t h i n t h e d i m e t a l l i c c o r e . C o r r e l a t i o n o f m a g n e t i c p r o p e r t i e s t o t h e s e s u b t l e g e o m e t r i c a l v a r i a t i o n s w a s a c c o m p l i s h e d b y X — r a y s t r u c t u r e d e t e r m i n a t i o n o f t h e s e c o m p o u n d s . p — S u b s t i t u t i o n o n t h e t w o p h e n y l r i n g s o f t h e d i p h e n y l p h o s p h i n a t e b y C H 3 — , C H 3 0 — , a n d F - , i n a d d i t i o n t o t h e u n s u b s t i t u t e d p a r e n t c o m p o u n d , p r o v i d e s a s e r i e s o f f o u r c l o s e l y r e l a t e d d i m e r c o r e s . T h e r o o m t e m p e r a t u r e c r y s t a l s t r u c t u r e o f t h e p a r e n t c o m p o u n d c r y s t a l l i z e d i n a c e t o n i t r i l e h a s b e e n p r e v i o u s l y r e p o r t e d ” . I t w a s h o w e v e r r e p e a t e d a t 1 4 3 K , i n c r y s t a l s g r o w n i n d i c h l o r o m e t h a n e . T h e c r y s t a l l o g r a p h i c d a t a o f { H B ( p z ) 3 V O [ p — ( P h ) 2 P 0 2 ] } 2 ° Z C H z c l 2 ( 7 ) , { H B ( p z ) 3 V O [ p — ( p - C H 3 O - P h ) 2 P O z ] } 2 - Z C H 3 0 N ( 8 ) , a n d { H B ( p z ) 3 V O [ p — ( p - F — P h ) 2 P 0 2 ] } 2 - 2 C H 3 0 N ( 9 ) , a r e g a t h e r e d i n T a b l e 9 . T a b l e 1 0 d i s p l a y s t h e c r y s t a l d a t a f o r { H B ( p z ) 3 V O [ , u — ( p - C H 3 — P h ) 2 P 0 2 ] } 2 - Z C H 3 0 N ( 1 0 ) , a n d { H B ( p z ) 3 V O [ p — ( p - C H 3 — P h ) 2 P 0 2 ] } 2 - Z C H Z C | 2 ( 1 1 ) , f r o m c r y s t a l s g r o w n i n a c e t o n i t r i l e a n d d i c h l o r o m e t h a n e a n d d a t a c o l l e c t e d a t 1 7 3 a n d 1 3 3 K r e s p e c t i v e l y . T h e c r y s t a l s t r u c t u r e o f t h e l a t t e r c o m p l e x i s d e s c r i b e d i n d e t a i l w h i l e o n l y n o t a b l e d i f f e r e n c e s o f t h e r e m a i n i n g s t r u c t u r e s w i l l b e d i s c u s s e d . 1 7 3 C H 3 O H V O ( a c a c ) 2 + K I H B ( P Z ) 3 ] — — - — > { [ H B ( p z ) 3 V O ( a c a c ) } r e fl u x ( p - X - C S H 4 ) 2 P 0 2 H C H C N { H B ( p z ) 3 V O [ ( p - X — C 6 H 4 ) 2 P 0 2 ] } 2 { [ H B ( p z ) 3 V O ( a c a c ) } + o r — — 3 — - > o r ( P ' N 0 2 — 0 8 H 4 0 ) 2 P 0 2 H { H B ( p z ) 3 V O [ ( p - N 0 2 - C 5 H 4 O ) 2 P 0 2 ] } 2 . @ _ \ / N N \ « H N W W » ) 1 ‘ “ F ‘ N ’ \ 3 ' C / N \ \ : 7 / N a c a c I x : H — , 0 1 4 3 — , F - , C H 3 O — F i g u r e 7 . G e n e r a l s y n t h e t i c s c h e m e f o r p h o s p h i n a t e a n d p h o s p h o n a t e d i m e r s w i t h t r i s ( 1 — p y r a z o l y l ) b o r a t e a s t h e t e r m i n a l l i g a n d . 1 7 4 T a b l e 9 . C r y s t a l l o g r a p h i c D a t a f o r C o m p o u n d s 7 , 8 , a n d 9 f o r m u l a c r y s t a l h a b i t , c o l o r F W c r y s t a l s i z e ( m m 3 ) c r y s t a l s y s t e m s p a c e g r o u p a ( A ) b ( A ) c ( A ) 0 1 ( d e g ) B ( d e g ) 1 1 ( d e g ) v ( A 3 ) Z d c . . . c ( M g / m 3 ) F ( 0 0 0 ) p ( M o K 0 1 ) , m r n ‘ 1 2 9 m a x ( d e g ) i n d e x r a n g e s t e m p e r a t u r e / K r e fl e c t i o n s c o l l e c t e d i n d e p e n d e n t r e fl e c t i o n s R ( i n t ) ( % ) R e fi n e m e n t m e t h o d R i n d i c e s ( I > 2 8 ( / ) ) R i n d i c e s a l l d a t a A ( P ) ( 9 7 / 5 1 3 ) G O F 7 ( A ) C r y s t a l P a r a m e t e r s C 4 3 H 4 Z B Z C | 2 N 1 2 0 6 P 2 V 2 b l o c k , b l u e 1 0 7 9 . 2 3 0 . 7 5 x 0 . 3 5 x 0 . 2 3 t r i c l i n i c P 1 — 1 2 . 2 5 5 3 ( 1 ) 1 3 . 6 3 7 7 ( 2 ) 1 6 . 2 7 7 3 ( 1 ) 9 1 . 5 7 8 ( 1 ) 9 9 . 9 9 8 ( 1 ) 1 1 0 . 9 7 3 ( 1 ) 2 4 8 9 . 7 ( 1 ) 2 1 . 4 4 0 1 1 0 4 0 . 6 0 6 ( B ) D a t a C o l l e c t i o n 5 0 . 0 — 1 4 s h _ < . 1 4 — 1 5 s k _ < _ 1 6 - 1 9 s I s 1 9 1 4 3 ( 2 ) 1 7 9 8 0 8 6 0 2 1 . 7 4 ( C ) R e fi n e m e n t F u l l — m a t r i x l e a s t - s q u a r e s o n F 2 R 1 = 0 . 0 4 3 5 W R 2 = 0 . 1 1 0 6 R 1 = 0 . 0 4 9 2 W R 2 = 0 . 1 1 3 5 1 . 1 1 5 1 . 0 8 9 1 7 5 C 4 8 H 5 1 B Z N 1 3 O 1 0 P 2 V 2 p l a t e , b l u e 1 1 5 5 . 4 6 0 . 4 5 x 0 . 2 3 x 0 . 0 6 m o n o c l i n i c C 2 / c 2 0 . 7 7 5 7 ( 4 ) 1 2 . 7 3 4 0 ( 3 ) 2 0 . 1 1 5 8 ( 4 ) 9 0 9 1 . 0 5 1 ( 1 ) 9 0 5 3 2 0 . 9 ( 2 ) 4 1 . 4 4 2 2 3 8 4 0 . 4 8 1 5 0 . 1 — 2 4 s h s 2 4 O s k s 1 5 0 s l s 2 3 1 7 3 ( 2 ) 1 3 0 2 9 4 8 5 7 2 . 5 1 F u l l — m a t r i x l e a s t — s q u a r e s o n F 2 R 1 = 0 . 0 4 5 6 W R 2 = 0 . 1 0 1 8 R 1 = 0 . 0 5 7 0 W R 2 = 0 . 1 0 7 7 0 . 7 5 3 1 . 0 4 8 T a b l e 9 ( c o n t ' d ) 9 ( A ) C r y s t a l P a r a m e t e r s f o r m u l a C 4 5 H 4 2 3 2 F 4 N 1 4 0 6 P 2 V 2 c r y s t a l h a b i t , c o l o r b l o c k , b l u e F W 1 1 4 8 . 3 8 c r y s t a l s i z e ( m m ? ) 0 . 5 4 x 0 . 5 0 x 0 . 3 8 c r y s t a l s y s t e m t r i c l i n i c s p a c e g r o u p P 7 a ( A ) 9 . 5 4 9 7 ( 7 ) b ( A ) 1 3 . 6 6 2 2 ( 9 ) c ( A ) 2 0 . 8 9 4 5 ( 1 4 ) 0 1 ( d e g ) 7 9 . 5 9 4 ( 2 ) 8 ( d e g ) 8 5 . 0 0 6 ( 1 ) y ( d e g ) 7 6 . 5 5 4 ( 1 ) v ( A 3 ) 2 6 0 4 . 9 ( 3 ) Z 2 d c . . . ( M g / m 3 ) 1 . 4 8 4 , , F ( 0 0 0 ) 1 1 7 2 p ( M O K 0 1 ) , m m ' 1 0 . 4 9 8 ( B ) D a t a C o l l e c t i o n 2 8 , . . . ( d e g ) 4 6 . 6 — 1 0 s h s 1 0 i n d e x r a n g e s — 1 5 s k . < _ 1 5 — 2 3 s | s 2 3 t e m p e r a t u r e / K 1 3 1 ( 2 ) r e fl e c t i o n s c o l l e c t e d 2 1 5 6 0 i n d e p e n d e n t r e fl e c t i o n s 7 5 0 4 R ( i n t ) ( % ) 4 . 6 5 ( C ) R e fi n e m e n t R e fi n e m e n t m e t h o d F u l l — m a t r i x 2 l e a s t — s q u a r e s o n F R i n d i c e s ( I > 2 8 ( I ) ) 0 1 1 2 2 3 0 0 8 7 3 9 0 R i n d i c e s a l l d a t a 5 V 1 R 2 2 3 4 8 3 4 9 A ( p ) ( e r / A 3 ) 0 . 3 5 8 G O F 0 . 9 4 0 1 7 6 T a b l e 1 0 . C r y s t a l l o g r a p h i c D a t a f o r C o m p o u n d s 1 1 , a n d 1 2 f o r m u l a c r y s t a l h a b i t , c o l o r F w c r y s t a l s i z e ( m m 3 ) c r y s t a l s y s t e m s p a c e g r o u p a ( A ) b ( A ) c ( A ) 9 ( d e g ) l 3 ( d e g ) 1 1 ( d e g ) v ( A 3 ) 2 d c . . . c ( M g / m 3 ) F ( 0 0 0 ) p ( M o K 0 1 ) , m r n ‘ 1 2 9 . . . . . . ( d e g ) i n d e x r a n g e s t e m p e r a t u r e / K r e fl e c t i o n s c o l l e c t e d i n d e p e n d e n t r e fl e c t i o n s R ( i n t ) ( % ) R e fi n e m e n t m e t h o d R i n d i c e s ( I > 2 8 ( I ) ) R i n d i c e s a l l d a t a A ( p ) ( 6 7 1 5 9 ) G O F 1 0 ( A ) C r y s t a l P a r a m e t e r s C s o H 5 4 3 2 N 1 4 0 8 P 2 V 2 p l a t e , b l u e 1 1 3 2 . 5 1 0 . 2 2 x 0 . 1 9 x 0 . 0 4 m o n c l i n i c P 2 , l c 1 1 . 9 3 5 5 ( 5 ) 2 2 . 1 5 2 6 ( 9 ) 1 2 . 0 0 0 9 ( 5 ) 9 0 1 1 8 . 5 0 3 ( 1 ) 9 0 2 7 8 8 . 5 ( 2 ) 2 1 . 3 4 9 1 1 7 2 0 . 4 5 3 ( B ) D a t a C o l l e c t i o n 5 0 . 1 — 1 4 s h s 1 2 0 s k s 2 6 0 s l s 1 4 1 7 3 ( 2 ) 1 3 6 1 8 4 8 8 1 3 . 7 2 ( C ) R e fi n e m e n t F u l l — m a t r i x l e a s t — s q u a r e s o n F 2 R 1 = 0 . 0 5 1 7 W R 2 = 0 . 1 0 5 8 R 1 = 0 . 0 7 8 9 W R 2 = 0 . 1 1 5 7 0 . 6 6 6 1 . 0 2 9 1 7 7 1 1 C 4 8 H S Z B Z C I 4 N 1 2 0 6 P 2 V 2 b l o c k , b l u e 1 2 2 0 . 2 6 0 . 7 5 x 0 . 6 5 x 0 . 3 1 m o n o c l i n i c P 2 , / c 1 2 . 1 5 9 0 ( 2 ) 2 2 . 0 2 5 6 ( 2 ) 1 2 . 1 0 9 4 ( 1 ) 9 0 1 1 8 . 5 8 5 ( 1 ) 9 0 2 8 4 7 . 6 ( 1 ) 2 1 . 4 2 3 1 2 5 2 0 . 6 2 9 5 0 . 0 — 1 4 s h s 1 3 — 2 6 s k s 2 8 — 1 3 s i s 1 4 1 3 3 ( 2 ) 2 3 4 3 3 5 0 0 8 5 . 5 3 F u l l — m a t r i x l e a s t - s q u a r e s o n F 2 R 1 = 0 . 0 3 8 8 W R 2 = 0 . 1 0 2 2 R 1 = 0 . 0 4 5 8 W R 2 = 0 . 1 0 5 9 0 . 5 5 9 1 . 0 2 8 T h e C H 3 — d e r i v a t i v e i s f o u n d a s b i s ( , u — d i ( t o l y l ) p h o s p h i n a t o — 0 , 0 ' ) d i v a n a d y l c o m p l e x ( F i g u r e 8 ( A ) ) , w i t h o n l y h a l f o f t h e d i m e r b e i n g c r y s t a l l o g r a p h i c a l l y u n i q u e s i n c e a n i n v e r s i o n c e n t e r r e l a t e s o n e s i d e o f t h e d i m e r t o t h e o t h e r . T h e v a n a d i u m a t o m i s f o u n d i n a d i s t o r t e d o c t a h e d r a l c o o r d i n a t i o n e n v i r o n m e n t w i t h t h e t y p i c a l s h o r t v a n a d y l b o n d o c c u p y i n g o n e o f t h e a x i a l p o s i t i o n s . T h e h y d r o t r i s ( 1 — p y r a z o l y l ) b o r a t e c a p p i n g l i g a n d o c c u p i e s t h r e e o f t h e r e m a i n i n g c o o r d i n a t i o n s i t e s , o n e o f w h i c h i s t r a n s — t o t h e v a n a d y l o x y g e n . T h e e q u a t o r i a l V — N a q b o n d d i s t a n c e s a r e a l m o s t e q u i v a l e n t ( 2 . 1 1 6 ( 2 ) a n d 2 . 1 1 9 ( 2 ) A ) , w h i l e t h e V — N a x b o n d i s m u c h l o n g e r ( 2 . 3 1 0 ( 2 ) A ) . T h e r e m a i n i n g t w o f r e e s i t e s o f t h e o c t a h e d r o n a r e s u p p l e m e n t e d b y t w o o x y g e n a t o m s p r o v i d e d b y d i f f e r e n t p h o s p h i n a t e l i g a n d s . T h e V — 0 . . . , b o n d s a r e i n t h e o r d e r o f 1 . 9 8 6 ( 2 ) a n d 1 . 9 9 2 ( 2 ) A , d i s t a n c e s s i m i l a r t o t h o s e o b s e r v e d i n t h e e x t e n d e d v a n a d y l p h o s p h a t e s / p h o s p h o n a t e s . B r i d g i n g o f t h e t w o m e t a l s i t e s i s a c c o m p l i s h e d b y t h e l a t t e r l i g a n d s a f f o r d i n g a n a n t i o r i e n t a t i o n o f t h e v a n a d y l g r o u p s ( F i g u r e 8 ( 8 ) ) , a s e x p e c t e d f r o m t h e p r e s e n c e o f t h e i n v e r s i o n c e n t e r w i t h i n t h e d i m e r c o r e . S u c h o r i e n t a t i o n s , a p a r t f r o m t h e w o r k o f C a r r a n o a n d c o w o r k e r s s ' ” , h a v e a l s o b e e n o b s e r v e d i n t h e o t h e r k n o w n d i m e r p h o s p h o n a t e c o m p l e x r e p o r t e d b y Z u b i e t a a n d c o w o r k e r s “ . T h e l o c a l s y m m e t r y p o i n t g r o u p o f e a c h v a n a d i u m c e n t e r i s a p p r o x i m a t e d a s C , , w i t h t h e m e t a l b e i n g s l i g h t l y d i s p l a c e d f r o m t h e b a s a l p l a n e o f t h e o c t a h e d r o n ( d e fi n e d b y t h e f o u r e q u a t o r i a l a t o m s a n d s y m b o l i z e d a s N 2 0 2 " ) . T h e r e m a i n i n g d e r i v a t i v e s o f t h i s h o m o l o g o u s s e r i e s d i s p l a y d i m e r c o r e s w i t h s i m i l a r m e t r i c p a r a m e t e r s ( T a b l e 1 1 ) . E v e n i n t h e p a r e n t a n d t h e F - c o m p l e x e s , w h e r e t w o d i f f e r e n t d i m e r s c r y s t a l l i z e d w i t h i n t h e u n i t c e l l , t h e m e t r i c p a r a m e t e r s o f t h e i n d i v i d u a l d i m e r s a r e a l m o s t i d e n t i c a l . S m a l l s t r u c t u r a l v a r i a t i o n s a r e o b s e r v e d o n l y i n t h e r e l a t i v e o r i e n t a t i o n s o f t h e a r o m a t i c r i n g s i n s p a c e a n d w i t h r e s p e c t t o t h e fi v e - m e m b e r e d p y r a z o l y l r i n g s o f t h e t e r m i n a l 1 7 8 ( a ) 0 1 1 ) ‘ 2 ’ ‘ N 3 ) 0 1 3 ) 1 W 1 ) ( 1 1 m : 1 / / / ‘ . ' { 1 % ) ‘ 5 1 1 1 1 . 5 . , , ‘ ( I ( B ) ' I I I I . ‘ 1 1 C 1 1 8 A ) 0 ( 2 ) N l l ) . s 5 ‘ ( “ 9 P l l A l N l S l C l l O A ) ' ~ “ N l S A l V 3 P 1 1 ) 3 0 1 2 A ) 4 . 4 | 1 1 1 ' 1 1 1 : C l 1 6 ) 2 x ' 6 3 ) 0 ( 3 A l F i g u r e 8 . O R T E P v i e w o f { H B ( p z ) 3 V O [ , u — ( p - C H 3 - P h ) 2 P O z ] } 2 - Z C H Z C I Z ( 1 1 ) , w h e r e h a l f o f t h e a t o m s a r e c r y s t a l l o g r a p h i c a l l y u n i q u e ( A ) , a n d v i e w o f i t s a n t i d i m e r c o r e ( 8 ) . 1 7 9 T a b l e 1 1 . B o n d D i s t a n c e s a n d D i m e r M e t r i c P a r a m e t e r s f o r { H 8 ( p z ) 3 V O [ , u — ( p - X — C 6 H 4 ) 2 P O Z ] } 2 7 , 8 , 9 , 1 0 , a n d 1 1 a B o n d D i s t a n c e s H " C H 3 - C H 3 “ C H 3 O ‘ F - ( 7 ) ( 1 0 ) ( 1 1 ) ( 3 ) ( 9 ) v = o . , . 1 5 0 1 ( 2 ) 1 . 5 9 8 ( 2 ) 1 . 5 9 4 ( 2 ) 1 . 5 9 9 ( 2 ) 1 5 9 2 ( 2 ) 1 . 6 0 0 ( 2 ) 1 . 5 9 3 ( 2 ) V — N e q “ 2 6 ( 2 ) 2 . 1 1 4 ( 3 ) 2 . 1 1 6 ( 2 ) 2 . 1 0 4 ( 2 ) 2 4 0 0 ( 2 ) 2 . 1 1 7 ( 2 ) 2 . 1 0 1 ( 2 ) v — N . . . q 2 4 3 0 ( 2 ) 2 . 1 1 6 ( 3 ) 2 . 1 1 9 ( 2 ) 2 . 1 2 2 ( 2 ) 2 ' 1 1 ” ) 2 . 1 4 8 ( 3 ) 2 . 1 2 0 ( 2 ) v — o , q 1 9 8 9 ( 2 ) 1 . 9 8 7 ( 2 ) 1 . 9 8 8 ( 2 ) 1 . 9 8 3 ( 2 ) 1 9 8 1 ( 2 ) 1 . 9 8 3 ( 2 ) 1 . 9 8 5 ( 2 ) v — o e q 1 9 9 1 ( 2 ) 1 . 9 8 9 ( 2 ) 1 . 9 9 2 ( 2 ) 1 . 9 8 4 ( 2 ) 1 9 8 6 ( 2 ) 1 . 9 8 9 ( 2 ) 1 . 9 8 8 ( 2 ) V — N a x 1 3 0 9 ( 2 ) 2 . 2 9 9 ( 3 ) 2 . 3 1 0 ( 2 ) 2 . 3 0 3 ( 2 ) 2 3 2 1 ( 2 ) 2 . 3 1 0 ( 2 ) 2 . 3 2 2 ( 2 ) T / K 1 4 3 1 7 3 1 3 3 1 7 3 1 3 1 V " " " " V / A l # 1 l " 5 2 9 1 ( 1 ) 5 . 2 5 7 ( 1 ) 5 . 2 3 3 ( 1 ) 5 . 2 1 9 ( 1 ) 5 2 6 5 ( 1 ) V . . . . . . V I A ( # 2 ) ‘ : 5 . 2 8 5 ( 1 ) 5 . 2 7 0 ( 1 ) < V 0 2 / O 4 P > / ° d ( # 1 ) 1 7 1 . 3 ( 1 ) 1 6 4 . 2 1 6 4 . 6 1 6 2 . 1 1 7 2 . 7 ( 1 ) < V 0 2 I 0 4 " > I ° d ( # 2 ) 1 7 5 . 3 ( 1 ) 1 7 4 . 5 ( 1 ) < N 2 0 2 V / O 4 P > / ° ° ( # 1 ) 1 5 9 . 9 ( 1 ) 1 5 3 . 2 1 5 3 . 3 1 5 2 . 2 1 8 1 . 8 ( 1 ) < N 2 0 2 V / 0 5 > / ° ° ( # 2 ) 1 8 3 . 9 ( 1 ) 1 8 3 . 3 ( 1 ) D ( N 2 0 2 V / N 2 0 2 V ) I A f ( # 1 ) 0 . 8 5 2 1 . 1 6 0 1 . 1 5 4 1 . 1 8 , 0 . 7 7 2 D ( N 2 0 2 " / N 2 0 2 V ) I A l ( # 2 ) 0 . 8 8 9 0 . 8 9 8 < C g H 3 N 2 / C 5 H 5 > a x / ° 9 ( # 1 ) 2 2 . 1 ( 2 ) 4 3 8 ( 1 ) 4 1 2 ( 1 ) 3 1 4 ( 1 ) 1 7 . 3 ( 1 ) < C 3 H 3 N 2 / C s H 5 > a x / o g ( # 2 ) 2 6 . 4 ( 2 ) 1 1 . 3 ( 1 ) ' 7 : X = H - . 8 : X = C H 3 0 — . 9 : X = F — . 1 0 : X = C H 3 - ; r e c r y s t a l l i z e d f r o m a c e t o n i t r i l e . 1 1 : X = C H 3 - ; r e c r y s t a l l i z e d i n d i c h l o r o m e t h a n e . " R e f e r s t o t h e fi r s t o f t h e t w o c r y s t a l l o g r a p h i c a l l y u n i q u e d i m e r m o l e c u l e s . ° R e f e r s t o t h e s e c o n d o f t h e t w o c r y s t a l l o g r a p h i c a l l y u n i q u e d i m e r m o l e c u l e s . d D i h e d r a l a n g l e b e t w e e n t h e V 0 2 p l a n e ( d e fi n e d b y v a n a d i u m a n d t h e t w o b a s a l o x y g e n a t o m s o f t h e d i m e r r i n g ) a n d t h e p l a n e 0 4 " ( d e fi n e d b y t h e f o u r p h o s p h o n a t e r i n g o x y g e n a t o m s ) . ° D i h e d r a l a n g l e b e t w e e n t h e 0 4 " a n d t h e M O } p l a n e s ( d e fi n e d b y t h e f o u r b a s a l o x y g e n s o f t h e v a n a d i u m o c t a h e d r o n ) . ' D i s t a n c e b e t w e e n t h e N Z O Z V p l a n e s . ° D i h e d r a l a n g l e s b e t w e e n t h e a x i a l p y r a z o l y l ( C 3 H 3 N 2 ) a n d t h e r e s p e c t i v e a r y l ( C e H s ) g r o u p s o f t h e t e r m i n a l s a n d b r i d g i n g l i g a n d s . 1 8 0 l i g a n d s . T h u s , i n t h e F — d e r i v a t i v e , o n e o f t h e p - fl u o r o p h e n y l r i n g s i s a l m o s t p a r a l l e l t o t h e a x i a l ( t o t h e v a n a d y l ) p y r a z o l y l r i n g w i t h a n g l e s o f 1 1 . 3 ( 1 ) ° a n d 1 7 . 3 ( 1 ) ° f o r t h e t w o d i f f e r e n t d i m e r s . T h e r e s p e c t i v e v a l u e s f o r t h e r e m a i n i n g d e r i v a t i v e s ( T a b l e 1 1 ) a r e 2 2 . 1 ( 2 ) ° a n d 2 6 . 4 ( 2 ) ° f o r t h e p a r e n t c o m p o u n d , 3 1 . 4 ( 1 ) ° f o r C H 3 0 — , a n d 4 3 . 8 ( 1 ) ° f o r C H 3 — . S u c h d i f f e r e n c e s a l o n g w i t h t h e p a c k i n g r e q u i r e m e n t s o f e a c h d i m e r i m p o s e d b y s u b s t i t u t i o n a t t h e p a r a p o s i t i o n o f t h e p h e n y l r i n g s p r o d u c e s o m e n o t a b l e d i s c r e p a n c i e s a m o n g t h e b r i d g e c o r e s o f t h e v a r i o u s d e r i v a t i v e s . T h e y c o n t r i b u t e t o t h e fl a t t e n i n g o r n o t o f t h e e i g h t - m e m b e r e d r i n g t h a t c o n s t i t u t e s t h e b r i d g e c o r e . F i g u r e 9 d i s p l a y s t w o b o r d e r l i n e c o n f o r m a t i o n s o f t h e l a t t e r , o n e c o r r e s p o n d i n g t o a n i d e a l c h a i r — l i k e a n d t h e o t h e r t o a fl a t c o n f o r m a t i o n . S i n c e i n t h e f o l l o w i n g s e c t i o n s t h e o r i e n t a t i o n o f t h e v a n a d i u m d x y o r b i t a l i s a p p r o x i m a t e d a s t h e o r i e n t a t i o n o f i t s b a s a l p l a n e , a n i d e a l c h a i r - l i k e r i n g i s c o n s i d e r e d a s o n e h a v i n g a 1 2 0 ° a n g l e b e t w e e n t h e b a s a l a n d t h e p l a n e d e fi n e d b y t h e f o u r o x y g e n r i n g a t o m s ( s y m b o l i z e d a s 0 4 " ) . A s t h e e i g h t — m e m b e r e d r i n g fl a t t e n s , t h e l a t t e r a n g l e a p p r o a c h e s 1 8 0 ° . l n a fl a t r i n g t h e v a n a d i u m b a s a l p l a n e s b e c o m e c o p l a n a r — d ( N 2 0 2 V l N Z O Z V ) = 0 A — w h i l e i n a c h a i r - l i k e c o n f o r m a t i o n t h e s e p l a n e s h a v e a l a r g e d i s p l a c e m e n t . F i g u r e 1 0 d e p i c t s t h e p l o t o f t h a t d i s p l a c e m e n t v e r s u s t h e a n g l e b e t w e e n t h e N 2 0 2 V a n d 0 . , " p l a n e s , f o r t h e d i m e r c o r e s u t i l i z e d i n t h i s s t u d y ( 1 5 t o t a l n u m b e r o f p o i n t s ) . A l i n e a r c o r r e l a t i o n w a s o b s e r v e d , f r o m w h i c h t h e f o l l o w i n g e q u a t i o n w a s d e d u c e d : d ( N 2 0 2 V N Z O Z V ) = 7 . 2 3 — 0 . 0 3 9 9 2 . < N Z O Z V 0 , , ” > ( 4 . 3 ) E q u a t i o n 4 . 3 p r e d i c t s t h a t t h e d i s p l a c e m e n t o f t h e v a n a d i u m b a s a l p l a n e s i s 0 . 0 4 A f o r t h e fl a t r i n g ( w h e r e < N 2 0 2 V l O 4 P > = 1 8 0 ° ) , a v a l u e w h i c h i s v e r y c l o s e t o t h e a c t u a l 0 A d i s p l a c e m e n t e x p e c t e d f o r t h e c o p l a n a r a r r a n g e m e n t . T h e v a l u e o f 2 . 4 4 A p r e d i c t e d f o r t h e c h a i r c o n f o r m a t i o n ( w h e r e < N 2 0 2 V l O 4 P > = 1 2 0 ° ) , o n t h e 1 8 1 C h a i r C o n f o r m a t i o n F l a t C h a i r C o n f o r m a t i o n < N 2 0 2 V | 0 4 " > 1 2 0 ° < N 2 0 2 V l o 4 P > 1 8 0 1 1 1 ( N 2 0 2 v l N Z O Z V ) ~ 2 . 0 0 A d ( N 2 0 2 V l N Z O Z V ) 0 A F i g u r e 9 . C h a i r ( l e f t ) a n d fl a t ( r i g h t ) c o n f o r m a t i o n s o f t h e e l g h t — m e m b e r e d d i m e r c o r e o f t h e { H B ( p z ) 3 V O [ p — ( p - X — P h ) 2 P 0 2 ] } 2 C o m p l e x e s . 1 8 2 < \ A > 3 0 » . 7 : > 2 6 0 . . . t h R h ) 3 . 0 ) < . . . I I I I T T j i l A I ) V 2 l 0 2 N 1 V 2 0 2 N ( d j l I I I i ) I I I r 1 . 6 1 . 4 1 . 2 1 . 0 0 . 8 - I I ) - - I I I I i — I I I I I I I I I r I . - I I I I - 0 . 6 5 8 2 1 5 0 1 5 5 1 8 0 1 6 6 < N 2 0 2 V l 0 4 P > I 0 F i g u r e 1 0 . B a s a l p l a n e d i s p l a c e m e n t o f t h e v a n a d y l o c t a h e d r a p l o t t e d a g a i n s t t h e < N 2 0 2 V / O 4 P > d i h e d r a l a n g l e . 1 8 3 o t h e r h a n d , i s g e o m e t r i c a l l y i m p o s s i b l e i f o n e c o n s i d e r s t h e a c t u a l b o n d d i s t a n c e s a n d a n g l e s . T h e c o r r e s p o n d i n g v a l u e s o f t h e d i m e r u n i t s i n t h e m e t a l i n t e r c a l a t e d v a n a d y l p h o s p h a t e s w e r e i n t h e o r d e r o f ~ 1 . 9 A f o r a l m o s t i d e a l c h a i r c o n f o r m a t i o n s , i n d i c a t i n g t h a t e q u a t i o n 4 . 3 w i l l s t a r t d e v i a t i n g f r o m l i n e a r i t y a s < N 2 0 2 V | O 4 P > a p p r o a c h e s 1 2 0 ° . F o r t h e p h o s p h i n a t e d e r i v a t i v e s p r e s e n t e d i n t h i s s t u d y , t h e b a s a l p l a n e d i s p l a c e m e n t r a n g e s f r o m 0 . 6 8 9 A ( f o r o n e o f t h e p a r e n t d i m e r 8 c r y s t a l l i z e d i n d i c h l o r o m e t h a n e ) t o 1 . 1 8 1 A ( f o r t h e C H 3 0 - d e r i v a t i v e 8 ) . T h e d i m e r c o r e s o f t h e c o m p l e x e s d e s c r i b e d s o f a r a r e c l o s e r t o a fl a t c o n f o r m a t i o n t h a n t o t h e i d e a l i z e d c h a i r . T h i s c a n p r o b a b l y b e a t t r i b u t e d t o t h e r e l a t i v e o r i e n t a t i o n s o f t h e p h o s p h i n a t e a r o m a t i c r i n g s a n d t h e p y r a z o l y l g r o u p s o f t h e t e r m i n a l l i g a n d . A c h a i r — l i k e a r r a n g e m e n t w o u l d b r i n g t h e m i n t o c l o s e p r o x i m i t y e n h a n c i n g u n f a v o r a b l e s t e r i c i n t e r a c t i o n , a n d t h e r e f o r e a fl a t t e n e d a r r a n g e m e n t i s p r e f e r r e d . l n f a v o r o f t h i s h y p o t h e s i s , u t i l i z a t i o n o f d i p h e n y l p h o s p h o n a t e a s a b r i d g i n g l i g a n d r e s u l t s i n a d i m e r c o r e t h a t b e t t e r a p p r o x i m a t e s a c h a i r — l i k e d i m e r r i n g ( < N 2 0 2 V l O 4 P > = 1 4 1 . 5 ° , a n d d ( N Z O , — ) _ V l N 2 0 2 " ) = 1 . 5 9 7 A ) . T h e p r e s e n c e o f t h e o x y g e n a t o m b e t w e e n t h e p h o s p h o r o u s a n d t h e p h e n y l g r o u p p l a c e s t h e l a t t e r f u r t h e r a p a r t f r o m t h e p y r a z o l y l r i n g s o f t h e t e r m i n a l l i g a n d s , d i m i n i s h i n g s t e r i c i n t e r a c t i o n s . W h e n t h e t e r m i n a l l i g a n d i s r e p l a c e d b y t h e b u l k i e r h y d r i d o t r i s ( 3 , 5 — d i m e t h y l - 1 — p y r a z o l y l ) b o r a t e s t e r i c i n t e r a c t i o n s a r e a g a i n e n h a n c e d a n d a fl a t o r i e n t a t i o n i s p r e f f e r e d a . I n a c c o r d a n c e w i t h t h e s e o b s e r v a t i o n s , t h e p - N O z - d e r i v a t i v e o f t h e { H B ( p Z ) 3 V O [ / J - ( P h 0 ) 2 P 0 2 ] } 2 c o m p l e x w a s s y n t h e s i z e d i n a n e f f o r t t o p r e p a r e a n o t h e r d i m e r c o r e t h a t a p p r o x i m a t e s t h e c h a i r — l i k e c o n f o r m a t i o n o f t h e e i g h t — m e m b e r e d b r i d g i n g c o r e . T h e c o m p o u n d w a s s y n t h e s i z e d f o l l o w i n g t h e g e n e r a l s y n t h e t i c s c h e m e d e p i c t e d i n F i g u r e 7 . B l u e n e e d l e s w e r e o b t a i n e d b y s l o w l y 1 8 4 c o o l i n g t o r o o m t e m p e r a t u r e a d i c h l o r o m e t h a n e s o l u t i o n o f t h e c o m p l e x . A s i n g l e c r y s t a l X — r a y s t r u c t u r e d e t e r m i n a t i o n ( T a b l e 1 2 ) c o n fi r m e d t h e p r e p a r a t i o n o f t h e d e s i r e d d i m e r , { H B ( p z ) 3 V O [ , u — ( p - N O z — P h O ) 2 P 0 2 ] } 2 - Z C H 2 C I 2 ( 1 2 ) . A s i n t h e p h o s p h i n a t e s e r i e s , o n l y h a l f o f t h e c o m p l e x i s c r y s t a l l o g r a p h i c a l l y u n i q u e ( F i g u r e 1 1 ( A ) ) . I t d i s p l a y s s i m i l a r m e t r i c p a r a m e t e r s ( T a b l e 1 3 ) w i t h t h e V — O e q b o n d s b e i n g s l i g h t l y l o n g e r ( 2 . 0 2 0 ( 3 ) a n d 2 . 0 2 9 ( 3 ) A ) , i n a c c o r d a n c e w i t h t h e l e s s e l e c t r o n e g a t i v e n a t u r e o f t h e p h o s p h o n a t e o x y g e n s . S h o r t e r V — N e q b o n d s c o m p e n s a t e f o r t h e d e c r e a s e d e l e c t r o n d e n s i t y t r a n s f e r r e d f r o m t h e b r i d g i n g l i g a n d s t o t h e m e t a l c e n t e r . S u r p r i s i n g l y , t h e d i m e r c o r e o f t h e c o m p l e x ( F i g u r e 1 1 ( 8 ) ) r e s e m b l e s m o r e t h a t o f t h e p h o s p h i n a t e a n a l o g s , a s j u d g e d b y t h e < N 2 0 2 V l O 4 P > = 1 4 9 . 2 ° a n g l e . T h i s d i s c r e p a n c y c a n b e u n d e r s t o o d b y e x a m i n i n g t h e r e l a t i v e o r i e n t a t i o n s o f t h e a r y l a n d p y r a z o l y l r i n g s i n t h e u n s u b s t i t u t e d a n d t h e p - N O z — s u b s t i t u t e d c o m p o u n d s . I n t h e f o r m e r t h e a n g l e b e t w e e n t h e p h e n y l a n d t h e a x i a l p y r a z o l y l r i n g i s o n t h e o r d e r o f 4 9 3 ° , w i t h n o c l o s e c o n t a c t s a m o n g t h e a t o m s o f t h e s e g r o u p s . i n o t h e r w o r d s t h e p h e n y l r i n g s p o i n t a w a y f r o m t h e t e r m i n a l l i g a n d s . I n t h e p — N O z - s u b s t i t u t e d d e r i v a t i v e o n t h e o t h e r h a n d t h e c o r r e s p o n d i n g r i n g s a r e a l m o s t p a r a l l e l ( a n g l e = 1 2 ° ) w i t h r e s p e c t t o e a c h o t h e r , w h i l e t h e a n g l e b e t w e e n t h e o t h e r a r y l g r o u p a n d a n e q u a t o r i a l p y r a z o l y l g r o u p i s 2 0 7 ° . T h e s e 1 1 — 1 1 i n t e r a c t i o n e f f e c t s 1 5 p r o d u c e a n e n e r g e t i c a l l y f a v o r a b l e s i t u a t i o n , w h i c h i s r e t a i n e d b y t h e fl a t c o n f o r m a t i o n o f t h e d i m e r c o r e . W e t e s t e d t h e s t r e n g t h o f t h a t i n t e r a c t i o n b y c r y s t a l l i z i n g t h e c o m p o u n d i n v a r i o u s s o l v e n t s , o f d i f f e r e n t s t e r i c r e q u i r e m e n t s , h y d r o g e n b o n d i n g a b i l i t i e s a n d e l e c t r o n i c p r o p e r t i e s . T h e p r e s e r v a t i o n o r n o t o f t h e d i m e r c o r e w a s e s t a b l i s h e d b y e i t h e r s i n g l e c r y s t a l X — r a y s t r u c t u r e d e t e r m i n a t i o n o r i n f r a r e d a n d m a g n e t i c s u s c e p t i b i l i t y m e a s u r e m e n t s ( d e s c r i b e d b e l o w ) . T a b l e s 1 2 , 1 4 , a n d 1 5 d i s p l a y t h e c r y s t a l d a t a f o r t h e { H B ( p z ) 3 V O [ , u — ( p - N O z — P h O ) 2 P 0 2 ] } 2 - S ( w h e r e S = a c e t o n e 1 8 5 T a b l e 1 2 . C r y s t a l l o g r a p h i c D a t a f o r { H B ( p z ) 3 V O [ p — ( p - N O Z — P h O ) 2 P 0 2 ] } 2 - S , w i t h S = C H 2 0 1 2 ( 1 2 ) , C H 3 C O C H 3 ( 1 3 ) a n d C 4 H 5 N ( 1 4 ) 1 2 1 3 ( A ) C r y s t a l P a r a m e t e r s f o r m u l a C 4 4 H 4 0 3 2 C 1 4 N 1 6 0 1 8 P 2 V 2 C 4 3 H 4 3 8 2 N 1 6 0 2 0 P 2 V 2 c r y s t a l h a b i t , c o l o r p l a t e , b l u e p l a t e , b l u e F W 1 4 0 8 . 1 6 1 3 5 4 . 4 6 c r y s t a l s i z e ( m m ‘ ) 0 . 5 4 x 0 . 3 1 x 0 . 0 8 0 . 4 8 x 0 . 1 9 x 0 . 0 8 c r y s t a l s y s t e m t r i c l i n i c t r i c l i n i c s p a c e g r o u p P 7 P 7 a ( A ) 8 . 5 8 4 8 ( 4 ) 8 . 5 6 1 3 ( 4 ) b ( A ) 1 1 . 9 3 4 1 ( 6 ) 1 2 . 3 3 6 0 ( 6 ) c ( A ) 1 4 . 8 4 3 8 ( 7 ) 1 5 . 4 0 2 1 ( 7 ) 0 1 ( d e g ) 9 9 . 7 8 1 ( 1 ) 1 0 8 . 8 5 0 ( 1 ) [ 3 ( d e g ) 9 6 . 6 0 5 1 ) 9 4 . 9 3 7 ( 1 ) ) 1 ( d e g ) 1 0 2 . 8 5 2 ( 1 ) 1 0 5 . 3 1 0 ( 1 ) v ( A 3 ) 1 4 4 2 . 5 ( 1 ) 1 4 5 8 . 4 ( 1 ) Z 1 1 d c . . . ( M g / m 3 ) 1 . 8 2 1 1 . 5 4 2 F ( 0 0 0 ) 7 1 4 6 9 4 , u ( M o K 0 1 ) , m m “ 0 . 8 5 0 0 . 4 6 5 ( B ) D a t a C o l l e c t i o n 2 9 m a x ( d e g ) 5 0 . 0 5 0 . 0 — 1 0 $ h s 1 0 - 1 0 $ h s 1 0 i n d e x r a n g e s 4 4 $ s t — 1 4 s k s 1 3 — 1 7 _ < . l s 1 7 - 1 8 $ I s 1 8 t e m p e r a t u r e / K 1 4 3 ( 2 ) 1 7 3 ( 2 ) r e fl e c t i o n s c o l l e c t e d 5 7 0 9 8 9 2 1 i n d e p e n d e n t r e fl e c t i o n s 4 1 4 2 5 0 1 8 R ( i n t ) ( % ) 3 . 3 2 2 . 6 4 ( C ) R e f i n e m e n t R e fi n e m e n t m e t h o d F u l l — m a t r i x 2 F u l l - m a t r i x 2 l e a s t — s q u a r e s o n F l e a s t — s q u a r e s o n F R i n d i c e s ( ’ > 2 ° ” ) ) @ 1 1 3 2 0 : 0 7 1 : 4 0 0 1 1 3 2 3 . 0 2 3 8 5 9 7 R i n d i c e s a l l d a t a R 1 = 0 . 0 7 9 4 R 1 = 0 . 0 5 9 2 W R 2 = 0 . 1 3 6 7 W R 2 = 0 . 0 9 6 8 A ( p ) ( e ' l A 3 ) 0 . 6 3 8 0 . 2 5 3 G O F 0 . 9 6 3 1 . 0 1 9 1 8 6 T a b l e 1 2 ( c o n t ' d ) 1 4 ( A ) C r y s t a l P a r a m e t e r s f o r m u l a C 5 0 H 4 8 3 2 N 1 8 0 1 8 P 2 V 2 c r y s t a l h a b i t , c o l o r b l o c k , b l u e F W 1 3 7 2 . 4 9 c r y s t a l s i z e ( m m 3 ) 0 . 4 0 x 0 . 3 0 x 0 . 2 2 c r y s t a l s y s t e m t r i c l i n i c s p a c e g r o u p P 7 a ( A ) 8 . 5 9 3 7 ( 2 ) b ( A ) 1 2 . 4 9 9 1 ( 3 ) c ( A ) 1 4 . 7 8 8 1 ( 3 ) 0 1 ( d e g ) 1 0 1 . 9 2 2 ( 1 ) ( 3 ( d e g ) 9 0 . 6 1 7 ( 1 ) y ( d e g ) 1 0 5 . 9 2 6 ( 1 ) v ( A 3 ) 1 4 9 0 . 7 ( 1 ) Z 1 1 1 , . . . c ( M g / m 3 ) 1 . 5 2 9 F ( 0 0 0 ) 7 0 2 p ( M o K 0 1 ) , m m ’ 1 0 . 4 5 4 ( B ) D a t a C o l l e c t i o n 2 0 m a x ( d e g ) 5 0 . 0 — 9 s h s 1 0 i n d e x r a n g e s - 1 4 s k s 1 4 - 1 6 s l _ < _ 1 7 t e m p e r a t u r e / K 1 7 3 ( 2 ) r e fl e c t i o n s c o l l e c t e d 9 1 5 2 i n d e p e n d e n t r e fl e c t i o n s 5 1 6 1 R ( i n t ) ( % ) 1 . 3 7 ( C ) R e fi n e m e n t R e fi n e m e n t m e t h o d F u l l — m a t r i x 2 l e a s t — s q u a r e s o n F R i n d i c e s ( I > 2 8 ( I ) ) 0 R 2 E g g , 8 . . R 1 = 0 . 0 3 7 9 R I n d l c e s a l l d a t a W R 2 = 0 . 0 8 4 5 A ( p ) ( e ' l A 3 ) 0 . 3 9 1 G O F 1 . 0 4 7 ( A ) C O 8 1 : ) ( 2 3 ‘ ) . N W “ . . . , ” 9 . 1 " . ‘ 1 0 ‘ 2 ) P 1 1 4 ) v m g } . 5 B . . . C ( 1 8 ) ( i n . ‘ 1 ) . I I ‘ 5 N 1 5 ) ‘ 4 £ 2 “ - 0 1 5 4 1 3 . , 0 ( 3 A l 6 3 % N 1 3 4 ) B ' . : 1 4 ‘ I ' 0 | V I I 0 ( 3 ) ‘ f 4 1 1 1 . Q ‘ " M 3 ) ( 3 . . . . ) $ 1 1 1 9 W A ) N 1 5 4 ) A “ P ( 1 ) 0 1 2 4 ) s c : N 1 l C ( 1 4 ) a s “ . . - 1 1 0 ) F i g u r e 1 1 . O R T E P v i e w o f { H B ( p z ) 3 V O [ p — ( p - N O z - P h O ) 2 P O Z ] } 2 - 2 C H Z C I Z ( 1 2 ) , w h e r e h a l f o f t h e a t o m s a r e c r y s t a l l o g r a p h i c a l l y u n i q u e ( A ) , a n d v i e w o f i t s a n t i d i m e r c o r e ( 8 ) . 1 8 8 ( 1 3 ) , p y r r o l e ( 1 4 ) , t h i o p h e n e ( 1 5 ) a n d 1 , 2 - e t h a n e d i t h i o l ( 1 6 ) d e r i v a t i v e s a n d T a b l e s 1 3 a n d 1 6 t h e i r m e t r i c p a r a m e t e r s . A p a r t f o r t h e m i n o r c h a n g e s i n b o n d d i s t a n c e s a n d a n g l e s , t h e p a r a m e t e r s o f i n t e r e s t a r e t h e d ( N 2 0 2 V I N z o z " ) d i s t a n c e a n d t h e < N 2 0 2 V I O 4 P > a n g l e . T h e c o r r e s p o n d i n g v a l u e s a r e a l m o s t i d e n t i c a l f o r t h e d i c h l o r o m e t h a n e a n d a c e t o n e s o l v a t e s , t h e s m a l l v a r i a n c e o b s e r v e d a t t r i b u t e d t o t h e 3 0 K d i f f e r e n c e i n t h e d a t a c o l l e c t i o n t e m p e r a t u r e . I n t h e p y r r o l e , 1 , 2 — e t h a n e d i t h i o l , a n d t h i o p h e n e s o l v a t e s o n t h e o t h e r h a n d , t h e s e v a l u e s d i f f e r w i d e l y , w i t h t h e l a t t e r c o m p o u n d p o s s e s s i n g a d ( N 2 0 2 V l N 2 0 2 V ) = 1 . 3 8 7 A . T h i s v a l u e i s 0 . 1 1 0 A l a r g e r t h a n t h e c o r r e s p o n d i n g o n e i n t h e a c e t o n e s o l v a t e ( X — r a y d a t a c o l l e c t i o n f o r t h e s e d e r i v a t i v e s w a s p e r f o r m e d a t t h e s a m e t e m p e r a t u r e , 1 7 3 K ) . S t r u c t u r e d e t e r m i n a t i o n o f t h e 1 , 2 — e t h a n e d i t h i o l , a n d t h i o p h e n e s o l v a t e s w a s a l s o p e r f o r m e d a t r o o m t e m p e r a t u r e s h o w i n g a v a r i a n c e i n t h e p a r a m e t e r s o f i n t e r e s t ( T a b l e 1 6 ) . I n b o t h d e r i v a t i v e s a s t h e t e m p e r a t u r e i s l o w e r e d t h e v a n a d i u m b a s a l p l a n e d i s p l a c e m e n t i n c r e a s e s t o w a r d s a m o r e c h a i r - l i k e c o n f o r m a t i o n . S t r u c t u r a l e x a m i n a t i o n o f t h e v a r i o u s s o l v a t e s r e v e a l s t h a t i n d e e d t h e r e l a t i v e o r i e n t a t i o n s o f t h e a r y l a n d p y r a z o l y l g r o u p s c h a n g e s a s s o l v e n t a n d t e m p e r a t u r e a r e v a r i e d . T h e a n g l e b e t w e e n t h e a x i a l p y r a z o l y l r i n g a n d t h e a r y l g r o u p c h a n g e d f r o m 1 2 ° ( d i c h l o r o m e t h a n e ) t o 1 1 0 ° ( t h i o p h e n e ) , w h i l e t h a t b e t w e e n t h e e q u a t o r i a l p y r a z o l y l a n d t h e a r y l g r o u p s d e c r e a s e d f r o m 2 0 . 7 ° ( d i c h l o r o m e t h a n e ) d o w n t o 1 1 . 9 ° ( t h i o p h e n e ) . I n a d d i t i o n t h e t h i o p h e n e r i n g i s a l m o s t p a r a l l e l t o t h e e q u a t o r i a l p y r a z o l y l g r o u p ( 3 . 3 ( 2 ) ° ) , f o r m i n g t h u s a t h r e e m o l e c u l e n — s t a c k c o m p l e x ( F i g u r e 1 2 ( A ) ) , w h i l e p y r r o l e a p p e a r s t o b e a l m o s t O r t h o g o n a l ( 7 8 . 1 ( 1 ) ° ) t o t h e r e s p e c t i v e e q u a t o r i a l r i n g ( F i g u r e 1 2 ( 3 ) ) . T h e i n f r a r e d s p e c t r a o f t h e p h o s p h i n a t e d i m e r s a r e a l m o s t i d e n t i c a l ( T a b l e 1 7 ) w i t h s m a l l d i f f e r e n c e s i n t h e B — H a n d V = O s t r e t c h e s . T h e a r o m a t i c r i n g b r e a t h i n g m o d e s ( 1 6 0 0 t o 1 4 0 0 c m “ ) a l s o p r e s e n t l i t t l e v a r i a t i o n f r o m o n e 1 8 9 T a b l e 1 3 . B o n d D i s t a n c e s a n d D i m e r M e t r i c P a r a m e t e r s f o r { H B ( p z ) 3 V O [ p — ( p - N O z — C 5 H 4 O ) 2 P 0 2 ] } 2 ' S 1 2 , 1 3 , a n d 1 4 a B o n d D i s t a n c e s 1 2 1 3 1 4 v = 0 , , 1 . 6 0 0 ( 3 ) 1 . 5 9 5 ( 2 ) 1 . 5 9 4 ( 1 ) v — N , q 2 . 0 9 3 ( 3 ) 2 . 0 8 8 ( 2 ) 2 . 0 9 8 ( 2 ) v — N e , 2 . 1 0 7 ( 3 ) 2 . 0 9 2 ( 2 ) 2 . 0 9 9 ( 2 ) v — o e q 2 . 0 2 0 ( 3 ) 2 . 0 0 6 ( 2 ) 2 . 0 0 9 ( 1 ) v — - 0 . , 2 . 0 2 9 ( 3 ) 2 . 0 2 6 ( 2 ) 2 . 0 2 9 ( 1 ) v - — N a x 2 . 3 3 1 ( 4 ) 2 . 3 2 9 ( 2 ) 2 . 3 2 7 ( 2 ) T / K 1 4 3 1 7 3 1 7 3 v . . . . . . v 5 . 2 4 2 ( 1 ) 5 . 2 3 1 ( 1 ) 5 . 2 2 7 ( 1 ) < V 0 2 / o 4 P > / ° b 1 5 9 . 0 9 1 5 9 . 0 2 1 5 7 . 9 0 < N 2 0 2 " / o 4 P > / ° ° 1 4 9 . 1 6 1 4 8 . 8 5 1 4 7 . 9 1 0 ( N 2 0 2 V / N z o z v ) / A d 1 . 2 6 5 1 . 2 7 7 1 . 3 2 0 5 < C 3 H 3 N 2 / C 5 H 5 > a x / ° ° 1 . 2 ( 1 ) 5 . 4 ( 1 ) 7 . 5 ( 1 ) < C 3 H 3 N 2 / c . 3 H ¢ - , > . a q / ° ‘ 2 0 . 7 ( 3 ) 1 9 . 0 ( 2 ) 1 1 . 2 ( 1 ) < C 3 H 3 N 2 / C 4 H 5 N > / ° 9 — — 7 8 . 1 ( 1 ) ' 1 2 : S = C H Z C l z . 1 3 : S = C H 3 C O C H 3 . 1 4 : S = C 4 H 5 N . b D i h e d r a l a n g l e b e t w e e n t h e V 0 2 p l a n e ( d e fi n e d b y v a n a d i u m a n d t h e t w o b a s a l o x y g e n a t o m s o f t h e d i m e r r i n g ) a n d t h e p l a n e 0 4 " ( d e fi n e d b y t h e f o u r p h o s p h o n a t e r i n g o x y g e n a t o m s ) . ° D i h e d r a l a n g l e b e t w e e n t h e 0 4 ° a n d t h e N Z O Z V p l a n e s ( d e fi n e d b y t h e f o u r b a s a l o x y g e n s o f t h e v a n a d i u m o c t h e d r o n ) . d D i s t a n c e b e t w e e n t h e N 1 0 2 " p l a n e s . ° D i h d r a l a n g l e s b e t w e e n t h e a x i a l p y r a z o l y l ( C 3 H 3 N 2 ) a n d t h e r e s p e c t i v e a r y l ( C 6 H 5 ) g r o u p s o f t h e t e r m i n a l s a n d b r i d g i n g l i g a n d s . ' D i h e d r a l a n g l e s b e t w e e n t h e e q u a t o r i a l p y r a z o l y l a n d t h e r e s p e c t i v e a r y l g r o u p s o f t h e t e r m i n a l s a n d b r i d g i n g l i g a n d s . ° D i h e d r a l a n g l e s b e t w e e n t h e e q u a t o r i a l p y r a z o l y l g r o u p a n d t h e p y r r o l e s o l v e n t ( C 4 H 5 N ) . 1 9 0 T a b l e 1 4 . C r y s t a l l o g r a p h i c D a t a o f { H B ( p z ) 3 V O [ p — ( p - N O z - P h O ) 2 P 0 2 ] } 2 - C 4 H 4 S , a t R o o m T e m p e r a t u r e ( 1 5 A ) a n d a t 1 7 3 K ( 1 5 3 ) f o r m u l a c r y s t a l h a b i t , c o l o r F W c r y s t a l s i z e ( m m 3 ) c r y s t a l s y s t e m s p a c e g r o u p a ( A ) b c A ) c ( A ) 0 1 ( d e g ) 1 3 ( d e g ) Y ( d e g ) v ( A 3 ) 2 d o a l c ( M g / m 3 ) F ( 0 0 0 ) p ( M o K 0 1 ) , m r n ' 1 2 9 m m : ( d e g ) i n d e x r a n g e s t e m p e r a t u r e / K r e fl e c t i o n s c o l l e c t e d i n d e p e n d e n t r e fl e c t i o n s R ( i n t ) ( % ) R e fi n e m e n t m e t h o d R i n d i c e s ( I > 2 0 ( I ) ) R i n d i c e s a l l d a t a 4 ( 9 ) ( e ‘ l A a ) G O F 1 5 A ( A ) C r y s t a l P a r a m e t e r s C 5 0 H 4 4 3 2 N 1 6 0 1 8 P 2 8 2 V 2 b l o c k , b l u e 1 4 0 6 . 5 7 0 . 8 5 x 0 . 7 7 x 0 . 1 5 t r i c l i n i c P T 8 . 5 6 0 9 ( 2 ) 1 2 . 5 7 7 5 ( 1 ) 1 5 . 4 0 0 2 ( 1 ) 1 0 1 . 1 7 2 ( 2 ) 1 0 0 . 2 4 6 ( 2 ) 1 0 4 . 8 8 6 ( 2 ) 1 5 2 6 . 2 ( 1 ) 1 1 . 5 3 0 7 1 8 0 . 5 1 1 ( B ) D a t a C o l l e c t i o n 5 0 . 0 — 1 0 _ < _ h s 9 - 1 4 s k _ < _ 1 4 — 1 8 _ < _ l s 1 8 2 9 6 ( 2 ) 9 2 1 9 5 2 2 9 1 . 8 5 ( C ) R e f i n e m e n t F u l l — m a t r i x l e a s t - s q u a r e s o n F 2 R 1 = 0 . 0 4 8 4 W R 2 = 0 . 1 4 1 6 R 1 = 0 . 0 5 6 8 W R 2 = 0 . 1 4 8 0 0 . 6 9 9 1 . 0 8 2 1 9 1 1 5 8 C 5 0 H 4 4 8 2 N 1 6 0 1 8 P 2 $ 2 V 2 b l o c k , b l u e 1 4 0 6 . 5 7 0 . 6 2 x 0 . 5 4 x 0 . 2 3 t r i c l i n i c P T 8 . 5 1 3 1 ( 1 ) 1 2 . 4 3 0 5 ( 2 ) 1 5 . 2 3 3 9 ( 3 ) 1 0 0 . 2 2 4 ( 1 ) 1 0 0 . 9 4 5 ( 1 ) 1 0 4 . 4 1 9 ( 1 ) 1 4 8 9 . 5 ( 1 ) 1 1 . 5 6 8 7 1 8 0 . 5 2 4 5 0 . 0 — 9 s h s 1 0 — 1 4 s k _ < _ 1 3 4 8 3 1 3 1 7 1 7 3 ( 2 ) 9 0 2 8 5 1 1 8 1 . 5 1 F u l l — m a t r i x l e a s t — s q u a r e s o n F 2 R 1 = 0 . 0 3 8 3 W R 2 = 0 . 1 0 6 6 R 1 = 0 . 0 4 3 8 W R 2 = 0 . 1 1 0 3 0 . 5 8 5 1 . 0 6 0 T a b l e 1 5 . C r y s t a l l o g r a p h i c D a t a o f { H B ( p z ) 3 V O [ , u — ( p - N O z — P h 0 ) 2 P 0 2 ] } 2 - 0 2 H 5 8 2 , a t R o o m T e m p e r a t u r e ( 1 6 A ) a n d a t 1 7 3 K ( 1 6 8 ) 1 6 A 1 6 3 ( A ) C r y s t a l P a r a m e t e r s f o r m u l a C 4 6 H 4 8 3 2 N 1 6 0 1 8 P 2 S 4 V 2 C 4 6 H 4 8 3 2 N 1 6 0 1 8 P 2 S 4 V 2 c r y s t a l h a b i t , c o l o r p l a t e , b l u e p l a t e , b l u e F W 1 4 2 6 . 6 8 1 4 2 6 . 6 8 c r y s t a l s i z e ( m m a ) 0 . 6 6 x 0 . 3 1 x 0 . 0 8 0 . 6 6 x 0 . 3 1 x 0 . 0 8 c r y s t a l s y s t e m t r i c l i n i c t r i c l i n i c s p a c e g r o u p P T P T a ( A ) 8 . 7 1 8 ( 1 ) 8 . 6 0 3 6 ( 2 ) b ( A ) 1 2 . 4 8 5 ( 2 ) 1 2 . 1 8 9 5 ( 4 ) c ( A ) 1 6 . 0 3 3 ( 3 ) 1 5 . 9 2 0 3 ( 5 ) 0 1 ( d e g ) 1 0 4 . 0 6 7 ( 4 ) 1 0 3 . 5 0 7 ( 1 ) 8 ( d e g ) 9 9 . 9 6 9 ( 4 ) 1 0 0 . 6 8 8 ( 1 ) 7 ( d e g ) 1 0 5 . 4 9 3 ( 4 ) 1 0 5 . 2 1 4 ( 1 ) v ( A 3 ) 1 5 7 7 . 3 ( 5 ) 1 5 1 1 . 4 1 ) 2 1 1 6 8 . 1 8 ( M g / m 3 ) 1 . 5 0 2 1 . 5 6 7 F ( 0 0 0 ) 7 3 0 7 3 0 , u ( M o K 0 1 ) , m m “ 0 . 5 5 9 0 . 5 8 3 ( B ) D a t a C o l l e c t i o n 2 9 m a x ( d e g ) 5 0 . 0 5 0 . 0 — 9 $ h . < _ 1 0 — 1 0 s h _ < . 1 0 i n d e x r a n g e s — 1 4 s k s 1 2 — 1 4 s k s 1 2 — 1 9 $ | s 1 7 - 1 7 s l s 1 8 t e m p e r a t u r e / K 2 9 6 ( 2 ) 1 7 3 ( 2 ) r e fl e c t i o n s c o l l e c t e d 6 6 1 3 8 9 4 2 i n d e p e n d e n t r e fl e c t i o n s 5 0 1 1 5 1 2 2 R ( i n t ) ( % ) 3 . 0 3 2 . 7 0 ( C ) R e f i n e m e n t R e fi n e m e n t m e t h o d F u l l — m a t r i x 2 F u l l — m a t r i x 2 l e a s t — s q u a r e s o n F l e a s t — s q u a r e s o n F 1 . 1 . 2 1 1 4 . 5 . 1 . 3 1 1 8 . R i n d i c e s a l l d a t a R 1 = 0 . 1 2 3 2 R 1 = 0 . 0 7 1 1 W R 2 = 0 . 1 3 9 8 W R 2 = 0 . 1 1 7 5 A ( p ) ( e 7 4 3 ) 0 . 3 8 8 0 . 7 2 0 G O F 0 . 9 3 4 1 . 0 2 3 1 9 2 T a b l e 1 6 . B o n d D i s t a n c e s a n d D i m e r M e t r i c P a r a m e t e r s f o r { H B ( p z ) 3 V O [ p — ( p - N O z - C G H 4 O ) 2 P 0 2 ] } 2 - S 1 5 A , 1 5 8 , 1 6 A , a n d 1 6 B 3 B o n d D i s t a n c e s 1 6 A 1 6 B 1 5 A 1 5 8 v = 0 , , 1 . 5 9 9 ( 3 ) 1 . 5 9 4 ( 2 ) 1 . 5 8 8 ( 2 ) 1 . 5 9 2 ( 1 ) v — N , q 2 . 0 9 7 ( 4 ) 2 . 0 8 6 ( 3 ) 2 . 0 8 9 ( 2 ) 2 . 0 9 0 ( 2 ) v — N . q 2 . 1 0 6 ( 4 ) 2 . 0 9 5 ( 3 ) 2 . 1 0 3 ( 2 ) 2 . 0 9 9 ( 2 ) v — 0 . . . , 2 . 0 1 3 ( 3 ) 2 . 0 0 3 ( 2 ) 2 . 0 0 8 ( 2 ) 2 . 0 0 9 ( 2 ) v — 0 . , 2 . 0 3 0 ( 3 ) 2 . 0 0 5 ( 2 ) 2 . 0 2 7 ( 2 ) 2 . 0 2 7 ( 2 ) v — N . . . 2 . 3 3 9 ( 4 ) 2 . 3 2 4 ( 2 ) 2 . 3 3 5 ( 2 ) 2 . 3 3 2 ( 2 ) T / K 2 9 6 1 7 3 2 9 6 1 7 3 v . . . . . . v 5 . 2 1 2 ( 2 ) 5 . 2 1 6 ( 1 ) 5 . 2 3 5 ( 1 ) 5 . 2 4 0 ( 1 ) < V 0 2 / o . . " > / ° b 1 5 9 . 8 7 1 5 8 . 0 2 1 5 7 . 2 5 1 5 6 . 1 4 < N 2 0 2 V / o 4 " > / ° ° 1 4 9 . 5 9 1 4 7 . 7 3 1 4 7 . 1 6 1 4 6 . 1 0 ( N z o z v / N z o z v ) I A d 1 . 2 5 4 1 . 3 1 7 1 . 3 5 3 1 . 3 8 7 < C 3 H 3 N 2 / C s H 5 > a x / ° ° 1 0 . 6 ( 1 ) 8 . 1 ( 1 ) 1 1 . 0 ( 1 ) 8 . 9 ( 1 ) < c 3 H 3 N 2 / c . 3 1 4 5 ? e q / ° ' 1 4 . 5 ( 3 ) 1 5 . 1 ( 2 ) 1 1 . 9 ( 3 ) 1 2 . 0 ( 2 ) < C 3 H 3 N 2 / C 4 H 4 S > / ° 9 — — 1 . 1 ( 4 ) 3 . 3 ( 2 ) ' 1 5 a : S = C 4 H 4 S , s t r u c t u r e d e t e r m i n a t i o n a t 2 9 6 K . 1 5 b : 8 = C 4 H 4 S , s t r u c t u r e d e t e r m i n a t i o n a t 1 7 3 K . 1 6 a : S = C Z H S S Z , s t r u c t u r e d e t e r m i n a t i o n a t 2 9 6 K . 1 6 b : 8 = c s z s z , s t r u c t u r e d e t e r m i n a t i o n a t 1 7 3 K . ” D i h e d r a l a n g l e b e t w e e n t h e V 0 2 p l a n e ( d e fi n e d b y v a n a d i u m a n d t h e t w o b a s a l o x y g e n a t o m s o f t h e d i m e r r i n g ) a n d t h e p l a n e 0 4 " ( d e fi n e d b y t h e f o u r p h o s p h o n a t e r i n g o x y g e n a t o m s ) . ° D i h e d r a l a n g l e b e t w e e n t h e 0 4 " a n d t h e N z o z " p l a n e s ( d e fi n e d b y t h e f o u r b a s a l o x y g e n s o f t h e v a n a d i u m o c t h e d r o n ) . ° D i s t a n c e b e t w e e n t h e N Z O Z V p l a n e s . ° D i h d r a l a n g l e s b e t w e e n t h e a x i a l p y r a z o l y l ( C 3 H 3 N 2 ) a n d t h e r e s p e c t i v e a r y l ( C G H S ) g r o u p s o f t h e t e r m i n a l s a n d b r i d g i n g l i g a n d s . ' D i h d r a l a n g l e s b e t w e e n t h e e q u a t o r i a l p y r a z o l y l a n d t h e r e s p e c t i v e a r y l g r o u p s o f t h e t e r m i n a l s a n d b r i d g i n g l i g a n d s . ° D i h e d r a l a n g l e s b e t w e e n t h e e q u a t o r i a l p y r a z o l y l g r o u p a n d t h e t h i o p h e n e s o l v e n t ( C 4 H 5 N ) . 1 9 3 ( A ) ( B ) N ( 1 S ) F i g u r e 1 2 . 1 r — 1 t I n t e r a c t i o n s b e t w e e n t h e s o l v e n t a n d t h e l i g a n d s i n t h e t h i o p h e n e ( A ) a n d p y r r o l e ( B ) s o l v a t e s o f { H B ( p z ) 3 V O [ , u — ( p - N 0 2 — P h O ) 2 P 0 2 ] } 2 . 1 9 4 T a b l e 1 7 . I n f r a r e d D a t a o f { H B ( p z ) 3 V O [ ( X ) 2 P 0 2 ] } 2 - n C H z C l z C o m p l e x e s a 3 4 3 5 2 4 7 4 1 6 2 5 1 5 0 5 1 4 0 4 1 3 1 0 1 1 9 9 1 1 3 2 1 0 5 3 9 6 9 1 0 3 4 3 2 2 4 8 7 1 5 9 9 1 5 0 3 1 4 0 5 1 3 0 8 1 2 1 7 1 1 8 6 1 1 2 9 1 0 7 1 1 0 5 2 9 6 8 1 2 3 4 4 5 2 4 7 7 1 6 0 5 1 5 0 4 1 4 0 3 1 3 1 0 1 1 9 2 1 1 2 7 1 0 5 3 9 7 2 3 4 3 2 2 4 7 6 1 5 9 4 1 5 0 2 1 4 0 5 1 3 1 0 1 2 2 0 1 1 9 8 1 1 2 9 1 0 7 1 1 0 5 2 9 7 1 A s s i g n . V ( B — H ) V a s ( P — 0 ) V ( V = 0 ) 1 9 5 a 8 : X = p - C H 3 0 — C 5 H 4 — . 9 : X = p - F - C e r ‘ . 1 0 . X = p - C H 3 - C s H 4 - . 1 2 . p - N O Z - C 5 H 4 O — . c o m p o u n d t o t h e o t h e r . R e c r y s t a l l i z a t i o n o f { H B ( p z ) 3 V O [ ( p - N 0 2 - P h 0 ) 2 P 0 2 } 2 f r o m v a r i o u s s o l v e n t s a f f o r d s c o m p l e x e s t h a t h a v e i d e n t i c a l i n f r a r e d s p e c t r a ( T a b l e 1 8 ) . S m a l l d i f f e r e n c e s a r e o b s e r v e d i n t h e r e g i o n o f t h e V = O s t r e t c h e s , w h e r e t h r e e p e a k s a r e f o u n d . T h e t w o o u t e r p e a k s r e m a i n i d e n t i c a l f o r a l l t h e s o l v a t e s s t u d i e d , w h i l e t h e m i d d l e p e a k i s s h i f t e d t o w a r d l o w e r e n e r g i e s f o r t h i o p h e n e , p y r r o l e a n d 1 , 2 — e t h a n e d i t h i o l . I n t e r e s t i n g l y , t h e s e a r e t h e s o l v a t e s t h a t s h o w g e o m e t r i c a l d i s t o r t i o n s f r o m t h e d i c h l o r o m e t h a n e a n d a c e t o n e d e r i v a t i v e s . T h e e l e c t r o n i c a b s o r p t i o n d a t a ( F i g u r e 1 3 ) f o r a l l fi v e c o m p o u n d s a r e p r e s e n t e d i n T a b l e 1 9 ( d u e t o t h e i r l o w s o l u b i l i t y i n C H 2 C I 2 , a b s o r p t i o n c o e f fi c i e n t s f o r t h e - H a n d — N 0 2 d e r i v a t i v e s w e r e n o t d e t e r m i n e d ) . A l t h o u g h t h e l o c a l s y m m e t r y a r o u n d t h e v a n a d y l c e n t e r s i s l o w ( C s p o i n t g r o u p ) o n l y t w o a b s o r p t i o n b a n d s w e r e o b s e r v e d . T h e 2 B 2 t o 2 A 1 t r a n s i t i o n i s c o v e r e d u n d e r c h a r g e t r a n s f e r b a n d s , w h i l e a s m a l l e n e r g y s e p a r a t i o n b e t w e e n t h e d x z , d y z o r b i t a l s e t i s a n t i c i p a t e d b y t h e p r e s e n c e o f a s i n g l e b a n d f o r t h e 2 B 2 t o 2 E e x c i t a t i o n ( e n e r g y s t a t e s c o r r e s p o n d t o t h e C W p o i n t g r o u p ) . A l l f o u r p h o s p h i n a t e s h a v e q u a l i t a t i v e l y s i m i l a r s p e c t r a , w h i l e t h e a b s o r p t i o n m a x i m a o f t h e p h o s p h o n a t e s a r e s l i g h t l y s h i f t e d t o w a r d h i g h e r e n e r g i e s . b . E l e c t r o n P a r a m a g n e t i c R e s o n a n c e a n d M a g n e t i c S u s c e p t i b i l i t y S t u d i e s E P R s p e c t r a o f a l l fi v e c o m p o u n d s u t i l i z e d i n t h i s s t u d y w e r e r e c o r d e d i n d i c h l o r o m e t h a n e s o l u t i o n s a t r o o m t e m p e r a t u r e a n d a t v a r i o u s t e m p e r a t u r e s i n t h e r a n g e 4 . 1 t o 7 7 K . F i g u r e s 1 4 a n d 1 5 d e p i c t t h e r o o m t e m p e r a t u r e s p e c t r a o f t h e fi v e c o m p o u n d s . E a c h o f t h e m d i s p l a y s a w e l l r e s o l v e d i s o t r o p i c s p e c t r u m c o m p r i s i n g fi f t e e n l i n e s , w h i c h i s t y p i c a l o f d i v a n a d y l c o m p l e x e s ” . T h e s p e c t r a o f 1 9 6 T a b l e 1 8 . I n f r a r e d D a t a o f { H B ( p z ) 3 V O [ ( p - N O z - C 5 H 4 O ) 2 P 0 2 ] } 2 - S C H z C l z 3 4 3 8 2 5 1 0 1 6 1 4 1 5 9 1 1 5 1 9 1 4 8 9 1 4 0 7 1 3 4 7 1 3 1 0 1 2 7 9 1 2 1 3 1 1 5 7 1 1 2 8 1 1 1 5 1 0 5 5 9 7 6 9 5 7 9 3 8 C H 3 0 - C 5 H 5 3 4 3 8 2 5 0 9 1 6 1 4 1 5 9 1 1 5 1 9 1 4 8 9 1 4 0 7 1 3 4 7 1 3 1 0 1 2 7 9 1 2 1 3 1 1 5 7 1 1 2 8 1 1 1 5 1 0 5 5 9 7 6 9 5 7 9 3 8 C H 3 C O C H 3 3 4 3 2 2 5 0 5 1 6 1 4 1 5 9 1 1 5 1 9 1 4 8 9 1 4 0 7 1 3 4 7 1 3 1 0 1 2 8 0 1 2 1 3 1 1 5 7 1 1 2 8 1 1 1 5 1 0 5 5 9 7 6 9 5 7 9 3 8 ( H S C H 2 ) 2 3 4 3 8 2 5 0 5 1 6 1 4 1 5 9 1 1 5 1 9 1 4 8 9 1 4 0 7 1 3 4 6 1 3 0 9 1 2 8 1 1 2 1 2 1 1 5 9 1 1 2 8 1 1 1 5 1 0 5 4 9 7 6 9 4 8 9 3 8 3 4 6 0 2 5 1 1 1 6 1 4 1 5 9 1 1 5 1 9 1 4 8 9 1 4 0 7 1 3 4 7 1 3 1 0 1 2 8 1 1 2 1 2 1 1 5 9 1 1 2 8 1 1 1 5 1 0 5 3 9 7 6 9 5 1 9 3 7 C 4 H 5 N C 4 H 4 S 3 4 3 9 2 5 1 0 1 6 1 4 1 5 9 1 1 5 2 0 1 4 8 9 1 4 0 7 1 3 4 6 1 3 1 0 1 2 8 1 1 2 1 3 1 1 5 8 1 1 2 8 1 1 1 6 1 0 5 5 9 7 6 9 5 1 9 3 8 A s s i g n . V ( B — H ) v a s ( P — O ) V ( V = O ) 1 9 7 0 . 8 0 . 6 0 . 4 A b s o r b a n c e 0 . 2 0 l l I j l l l l l l l l l l J — I I L I L J I I I l l l l l I l l l j l l l l _ L l 3 ( 1 ) 4 C D 5 ( 1 ) 6 ( 1 ) 7 ( 1 ) 8 ' 1 ) 9 0 0 1 ( X I ) 1 1 ( 1 ) A / n m F i g u r e 1 3 . A b s o r p t i o n s p e c t r u m o f { H B ( p z ) 3 V O [ p - ( p - C H 3 0 — P h ) 2 P 0 2 ] } 2 8 , i n d i c h l o r o m e t h a n e s o l u t i o n . T h e t w o m a x i m a a r e a t t r i b u t e d t o d — d t r a n s i t i o n s . 1 9 8 T a b l e 1 9 . E l e c t r o n i c A b s o r p t i o n S p e c t r a o f { H B ( p z ) 3 V O [ ( p - X — C 5 H 4 ) 2 P 0 2 ] } 2 a n d { H B ( p z ) 3 V O [ ( p - N O z - C 5 H 4 O ) 2 P 0 2 ] } 2 i n D i c h l o r o m e t h a n e — X n m c m 8 n m c m — 1 8 - H ( 7 ) 6 1 5 1 6 2 5 5 — 7 7 9 1 2 8 3 7 — — F ( 9 ) 6 1 0 1 6 3 9 3 6 6 7 7 9 1 2 8 3 7 1 0 3 — C H » , ( 1 1 ) 6 1 0 1 6 3 9 3 4 4 7 7 9 1 2 8 3 7 8 4 - O C H 3 ( 8 ) 6 1 5 1 6 2 5 5 5 1 7 7 6 1 2 8 8 0 9 4 — N 0 2 ( 1 2 ) 5 9 7 1 6 7 5 0 — 7 5 0 1 3 3 2 6 — 1 9 9 M W ( A ) ( B ) l l l l l I l l l I l l l I l l l l l I l I I I l I l I l l l I J 2 6 0 0 2 8 0 0 3 0 0 0 3 2 0 0 3 4 0 0 3 6 0 0 3 8 0 0 4 0 0 0 4 2 0 0 H / G a u s s F i g u r e 1 4 . R o o m t e m p e r a t u r e E P R s p e c t r a o f c o m p o u n d s 7 ( A ) , 9 ( B ) , a n d 1 2 ( C ) - 2 0 0 1 ) ( B ) I I I L L I I I I I I I I I I I I I I I I I I I I I I I I I I I I 2 6 0 0 2 8 0 0 3 0 0 0 3 2 0 0 3 4 0 0 3 6 0 0 3 8 0 0 4 0 0 0 4 2 0 0 H / G a u s s F i g u r e 1 5 . R o o m t e m p e r a t u r e E P R s p e c t r a o f c o m p o u n d s 1 1 ( A ) a n d 8 ( B ) . 2 0 1 t h e — H , - F , a n d — N 0 2 d e r i v a t i v e s w e r e q u a l i t a t i v e l y s i m i l a r ( F i g u r e 1 4 ) a n d c o u l d b e s i m u l a t e d b y c o n s i d e r i n g t h e H a m i l t o n i a n H = g B e B S + A S o I ( 4 . 4 ) w h e r e A i s t h e h y p e r fi n e c o n s t a n t . T h e s i m u l a t i o n a f f o r d e d g = 1 . 9 5 8 a n d A = 5 7 G a u s s f o r t h e t h r e e c o m p o u n d s . T h e s e v a l u e s a r e v e r y c l o s e t o t h e o n e o b s e r v e d b y C a r r a n o a n d c o w o r k e r s 8 f o r { H B ( p z ) 3 V O [ p — ( P h 0 ) 2 P 0 2 ] } 2 i n a d i c h l o r o m e t h a n e / t o l u e n e s o l u t i o n . M a b b s 1 7 h a s p o i n t e d o u t h o w e v e r , t h a t i s o t r o p i c d i m e r c o m p l e x e s s h o u l d b e a l s o t r e a t e d f o r t h e e f f e c t s o f i s o t r o p i c m a g n e t i c e x c h a n g e ( w h i c h a d d s a J S 1 o s z t e r m i n t h e h a m i l t o n i a n 4 . 4 ) , i n a d d i t i o n t o t h e m e t a l h y p e r f i n e i n t e r a c t i o n a n d t h e e l e c t r o n Z e e m a n t e r m . A s a r e s u l t t h e s h a p e o f t h e fi f t e e n — l i n e s p e c t r a o f d i v a n a d y l c o m p l e x e s i s a f u n c t i o n o f t h e J / A r a t i o . H e n c e , t h e p e c u l i a r s h a p e o f t h e r o o m t e m p e r a t u r e s p e c t r a o f t h e e l e c t r o n d o n a t i n g C H 3 — a n d C H 3 0 — d e r i v a t i v e s ( F i g u r e 1 5 ) m i g h t b e a t t r i b u t e d t o s u c h e f f e c t s . T h e f r o z e n — g l a s s E P R s p e c t r a o f t h e s e c o m p o u n d s a r e t y p i c a l o f t r i p l e t s . M o r e t h a n fi f t e e n l i n e s w e r e o b s e r v e d ( F i g u r e 1 6 ) , w h i c h a r e a t t r i b u t e d t o t h e a n i s o t r o p y o f t h e g a n d A t e n s o r a n d a l s o t o t h e p r e s e n c e o f Z e r o F i e l d S p l i t t i n g . T h e l a t t e r w a s c a l c u l a t e d b y t h e p o i n t — d i p o l e a p p r o x i m a t i o n 1 8 t o b e i n t h e o r d e r o f 0 . 0 1 5 0 c m " . A t t e m p t s t o s i m u l a t e t h e s p e c t r a w i t h t h e p r o g r a m S i m F o n i a ( w h i c h u s e s s e c o n d o r d e r p e r t u r b a t i o n t h e o r y ) w e r e u n s u c c e s s f u l . V a r i a b l e t e m p e r a t u r e m a g n e t i c s u s c e p t i b i l i t y d a t a w e r e d e t e r m i n e d o n p o w d e r s p e c i m e n s . F i g u r e 1 7 d i s p l a y s t h e m o l a r s u s c e p t i b i l i t y v e r s u s t e m p e r a t u r e p l o t f o r t h e f o u r p h o s p h i n a t e d e r i v a t i v e s . T h e d a t a s h o w a m o n o t o n i c i n c r e a s e w i t h d e c r e a s i n g t e m p e r a t u r e t i l l t h e y r e a c h a m a x i m u m a t l o w t e m p e r a t u r e . T h i s b e h a v i o r i s t y p i c a l o f a n t i f e r r o m a g n e t i c e x c h a n g e c o u p l i n g 2 0 2 ( A ) ( B ) 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0 4 5 0 0 H / G a u s s F i g u r e 1 6 . F r o z e n g l a s s E P R s p e c t r a o f c o m p o u n d s 7 ( A ) , a n d 8 ( B ) a t 4 . 1 K . 2 0 3 0 . 0 1 2 - X M I e m u - m o f ( A ) ' B E a ( B ) E , 2 X 0 . 0 1 2 — 7 5 s a ( C ) , E , > < E ' 5 E 0 . 0 1 0 ~ 9 ( D ) 5 ‘ 2 0 . 0 0 5 1 > < 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 T / K F i g u r e 1 7 . S u s c e p t i b i l i t y v e s r u s t e m p e r a t u r e p l o t s o f c o m p o u n d s 7 ( A ) , 1 1 ( B ) , 9 ( C ) , a n d 8 ( D ) . T h e s o l i d l i n e s r e p r e s e n t t h e b e s t fi t o b t a i n e d b y u s i n g a B l e a n e y — B o w e r s d i m e r m o d e l . 2 0 4 a n d t h e d a t a w e r e fi t t e d t o a B l e a n y — B o w e r s 1 9 m o d e l f o r S = 1 / 2 s y s t e m ( e q u a t i o n 4 . 1 ) . T h e r e s u l t s o f t h e fi t t i n g a r e g a t h e r e d i n T a b l e 2 0 , a l o n g w i t h g e o m e t r i c p a r a m e t e r s o f t h e b r i d g e c o r e . T h e l a r g e s t s i n g l e t — t r i p l e t s p l i t t i n g i s o b s e r v e d f o r t h e p a r e n t c o m p o u n d 7 , w h e r e t h e s o l v e n t o f r e c r y s t a l l i z a t i o n h a d a m a r k e d i n fl u e n c e i n t h e m a g n i t u d e o f t h e i n t e r a c t i o n , a n d t h e s m a l l e s t f o r t h e p - C H 3 0 - d e r i v a t i v e 8 . T h e b e s t f i t w a s o b t a i n e d w i t h t h e L a n d é f a c t o r b e i n g a f r e e v a r i a b l e . T h e v a l u e s o b t a i n e d a r e c l o s e t o t h e e x p e r i m e n t a l l y d e t e r m i n e d g i s o = 1 . 9 5 8 ( f r o m E P R ) i n d i c a t i n g t h e p u r i t y o f t h e m a t e r i a l s u t i l i z e d i n t h e s t u d y . T h e c o r r e s p o n d i n g d a t a f o r t h e p — N O z - s o l v a t e d e r i v a t i v e s ( F i g u r e 1 8 ) a r e g a t h e r e d i n T a b l e 2 1 . T h e d i c h l o r o m e t h a n e , a c e t o n e , a n d a n i s o l e s o l v a t e s d i s p l a y e d i d e n t i c a l m a g n e t i c p r o p e r t i e s ; n a m e l y , w e a k a n t i f e r r o m a g n e t i c c o u p l i n g w i t h i n t h e d i v a n a d y l c o r e , w i t h a s i n g l e t — t r i p l e t s p l i t t i n g o f — 1 4 K . D e v i a t i o n s f r o m t h a t v a l u e w e r e o b s e r v e d f o r t h e t h i o p h e n e , 1 , 2 — e t h a n e d i t h i o l , a n d p y r r o l e s o l v a t e s , w i t h t h e s i n g l e t — t r i p l e t s p l i t t i n g i n t h e l a t t e r b e i n g 6 . 3 K l a r g e r . C . D i s c u s s i o n E x t e n d e d v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s c r y s t a l l i z e i n a w i d e v a r i e t y o f s t r u c t u r a l f r a m e w o r k s . T h e i r b u i l d i n g b l o c k s c o n s i s t m a i n l y o f d i v a n a d y l o c t a h e d r a b r i d g e d b y p h o s p h a t e — t y p e l i g a n d s . T h e m a g n e t i c p r o p e r t i e s o f t h e s e m a t e r i a l s h a v e b e e n c o r r e l a t e d t o g e o m e t r i c a l f e a t u r e s o f t h e i r s t r u c t u r a l b u i l d i n g b l o c k s , w h i c h i n c l u d e t h e p h o s p h a t e / p h o s p h o n a t e b r i d g e s a s a c t i v e e l e m e n t s o f t h e e x c h a n g e p a t h w a y s . D e t a i l e d m a g n e t o s t r u c t u r a l c o r r e l a t i o n i s n o t a n e a s y t a s k , d u e t o t h e m a n y v a r i a b l e s i n v o l v e d . P a r t o f t h e p r o b l e m i s t h e l a c k o f a l a r g e b o d y o f c o m p o u n d s w i t h c l o s e l y r e l a t e d s t r u c t u r e s , w h i c h w o u l d e n a b l e t h e 2 0 5 T a b l e 2 0 . S u s c e p t i b i l i t y D a t a a n d D i m e r M e t r i c P a r a m e t e r s f o r { H B ( D Z ) 3 V O [ u - ( p - X — P h ) 2 P 0 2 ] } 2 - S H - 9 H - ( 7 ) C H 3 — F — ( 9 ) c 1 1 3 0 — J / k i n K — 8 4 . 4 — 6 1 . 5 — 5 8 . 4 — 5 5 . 2 — 4 3 . 0 g 2 . 0 5 2 . 0 4 2 . 0 2 1 . 9 6 2 . 0 0 7 . . . . . . i n K 9 5 2 . 5 3 9 . 0 3 7 . 0 3 5 . 0 2 6 . 5 T m . . . i n K 9 5 2 . 8 3 8 . 5 3 6 . 5 3 4 . 5 2 6 . 9 % i m p u r i t y 1 . 8 0 . 5 0 . 3 0 . 3 0 . 7 T / K 2 9 6 1 4 3 1 3 3 1 3 1 1 7 3 V . . . . . . V , A ( # 1 ) ” 5 . 2 5 8 5 . 2 9 1 ( 1 ) 5 2 3 3 ( 1 ) 5 . 2 6 5 ( 1 ) 5 . 2 1 9 ( 1 ) V . . . . . . V , A ( # 2 ) e 5 . 2 9 4 5 . 2 8 5 ( 1 ) 5 . 2 7 0 ( 1 ) < N 2 0 2 V / o . . " > / ° f ( 1 1 : 1 ) 1 6 3 . 1 2 1 5 9 . 9 ( 1 ) 1 5 3 . 3 1 6 1 . 6 ( 1 ) 1 5 2 . 2 < N 2 0 2 v I o 4 P > / 9 ‘ ( # 2 ) 1 6 3 . 1 8 1 6 3 . 9 ( 1 ) 1 6 3 . 3 ( 1 ) D ( N 2 0 2 V / N 2 0 2 V ) / A 9 ( # 1 ) 0 . 7 2 2 0 . 8 5 2 1 . 1 5 4 0 . 7 7 2 1 . 1 8 1 D ( N 2 0 2 V / N 2 0 2 V ) / A 9 ( # 2 ) 0 . 7 1 6 0 . 6 8 9 0 . 6 9 6 ' C r y s t a l d a t a t a k e n f r o m r e f e r e n c e 1 3 , w h e r e c r y s t a l s w e r e g r o w n i n a c e t o n i t r i l e . " E x p e r i m e n t a l . ° F r o m e q u a t i o n 4 . 2 . d R e f e r s t o t h e fi r s t o f t h e t w o c r y s t a l l o g r a p h i c a l l y u n i q u e d i m e r m o l e c u l e s . ° R e f e r s t o t h e s e c o n d o f t h e t w o c r y s t a l l o g r a p h i c a l l y u n i q u e d i m e r m o l e c u l e s . ' D i h e d r a l a n g l e b e t w e e n t h e 0 4 ” ( d e fi n e d b y t h e f o u r p h o s p h o n a t e r i n g o x y g e n a t o m s ) a n d t h e N Z O Z V p l a n e s ( d e fi n e d b y t h e f o u r b a s a l o x y g e n s o f t h e v a n a d i u m o c t a h e d r o n ) . 9 D i s t a n c e b e t w e e n t h e N Z O Z V p l a n e s . 2 0 6 0 . 0 5 0 . 0 4 ' L . E 0 : 0 . 0 3 E O ( A ) x : 0 . 0 2 0 . 0 1 3 . o I I I I I J J k I L I I l I I I I I I I I I 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 T I K 0 . 0 3 0 0 . 0 2 5 L o . 8 0 . 0 2 0 3 ( B ) § 0 . 0 1 5 * 2 0 . 0 1 0 \ \ Q i b e a q 0 . 0 0 5 “ W 3 ; “ fi t m fi fi e m fi o P I P I I L J I + I L I L I I L I I l l l l l l I l l I l J 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 T / K F i g u r e 1 8 . S u s c e p t i b i l i t y v e r s u s t e m p e r a t u r e p l o t s o f t h e d i c h l o r o m e t h a n e ( A ) a n d p y r r o l e ( B ) s o l v a t e s o f { H B ( p z ) 3 V O [ p — ( p - N O z — P h O ) 2 P O Z ] } 2 . T h e s o l i d l i n e s r e p r e s e n t t h e b e s t fi t o b t a i n e d b y u s i n g a B l e a n e y — B o w e r s d i m e r m o d e l . 2 0 7 ) 7 ( 4 5 2 2 . 2 3 7 3 2 . 1 7 . 4 . 1 ) 1 ) 5 ( 2 9 0 1 . c - 1 1 1 1 5 ) 1 ) z 8 ( 2 H . 6 ( 7 7 5 8 1 1 . 1 C 3 1 8 9 2 . 7 3 S 7 . 0 4 . 5 . . H — 9 5 1 1 1 1 1 1 ( ) 1 ( 2 0 1 ( 7 4 . 0 8 ) 3 2 . 6 3 7 . 4 . 2 1 1 1 1 5 5 H 5 0 0 3 H C 3 H ) 1 ) 5 C 0 ( 2 . 1 ( 8 7 O 4 5 3 0 . 7 1 5 8 0 2 . 3 8 2 a . . . . 7 4 . 9 H 1 1 1 1 - 2 — 8 8 5 C 2 I 0 ( . 2 4 4 7 8 6 1 5 . 6 ) 2 ( 7 ) 1 C 0 0 1 5 8 2 . 3 9 2 2 . . . , . 0 4 4 . H — 2 8 0 5 8 2 1 1 1 C K n i k / y t i r u p m i J 9 % 2 0 8 T a b l e 2 1 . S u s c e p t i b i l i t y D a t a a n d D i m e r M e t r i c P a r a m e t e r s f o r H B ( p z ) 3 V O [ p — ( p - N O z - P h O ) 2 P 0 2 ] } 2 - S T m a x i n K a 7 . . . . . . i n K b — 1 4 . 0 2 . 1 0 8 . 5 8 . 8 0 . 0 0 3 C 4 H 4 S — 1 5 . 6 1 . 9 2 9 . 5 9 . 7 — 2 0 . 3 1 . 9 9 1 2 . 5 1 2 . 7 0 . 8 T / K V . . . . . . V < N 2 0 2 V / o 4 P > / ° ° 0 ( N 2 0 2 V l N z o z v ) I A 9 < C 3 H 3 N 2 / C 5 H 5 > e q / 0 e " E x p e r i m e n t a l . b F r o m e q u a t i o n 4 . 4 . ° D i h e d r a l a n g l e b e t w e e n t h e 0 4 " ( d e fi n e d b y t h e f o u r p h o s p h o n a t e r i n g o x y g e n a t o m s ) a n d t h e N Z O Z V p l a n e s ( d e fi n e d b y t h e f o u r b a s a l o x y g e n s o f t h e v a n a d i u m o c t a h e d r o n ) . ‘ D i s t a n c e b e t w e e n t h e N Z O Z V p l a n e s . ° D i h e d r a l a n g l e s b e t w e e n t h e e q u a t o r i a l p y r a z o l y l ( C a H 3 N 2 ) a n d t h e r e s p e c t i v e a r y l g r o u p s o f t h e t e r m i n a l s a n d b r i d g i n g l i g a n d s . s y s t e m a t i c s t u d y o f t h e s e v a r i a b l e s . I n a d d i t i o n , s m a l l c h a n g e s i n t h e l i g a n d p e r i p h e r y s o m e t i m e s l e a d t o d r a m a t i c c h a n g e s i n t h e i n t r a l a y e r c o n n e c t i v i t y . O u r e f f o r t t o s y n t h e s i z e m o l e c u l a r a n a l o g s o f t h e e x t e n d e d m a t e r i a l e x c h a n g e p a t h w a y s h a s t a r g e t e d t h e d e t a i l e d u n d e r s t a n d i n g o f t h e f a c t o r s a f f e c t i n g t h e s t r e n g t h a n d t h e s i g n o f t h e m a g n e t i c i n t e r a c t i o n . T h e a d v a n t a g e s t h a t s u c h m o l e c u l a r a n a l o g s o f f e r a r e t h e i r e a s e o f s y n t h e s i s a n d t h e a b i l i t y t o i n t r o d u c e s u b t l e c h a n g e s w i t h i n t h e d i m e r c o r e . I n a d d i t i o n , t h e p r o p e r c h o i c e o f t h e t e r m i n a l l i g a n d s i s p a r t i a l l y r e s p o n s i b l e f o r t h e g e n e r a t i o n o f d e s i r a b l e m o d e l c o m p l e x e s . T h e i n n e r g e o m e t r y o f t h e d i m e r h o w e v e r , c a n n o t b e t o t a l l y d e s i g n e d . W e a k n o n c o v a l e n t f o r c e s a m o n g t h e v a r i o u s l i g a n d s a n d t h e l i g a n d s w i t h t h e s o l v e n t o f t e n d i c t a t e t h e w a y t h a t v a n a d y l o c t a h e d r a a r e i n t e r c o n n e c t e d . U n f o r t u n a t e l y s u c h f o r c e s a r e n o t w e l l u n d e r s t o o d a n d o n l y r e c e n t l y d e t a i l e d s t u d i e s 2 0 o n t h e i r r o l e i n t h e d e s i g n o f m o l e c u l a r s o l i d s h a v e b e e n u n d e r t a k e n . I n t h e p r e v i o u s s e c t i o n s t h e s y n t h e s i s a n d s t r u c t u r a l c h a r a c t e r i z a t i o n o f a s e r i e s o f p h o s p h i n a t e a n d p h o s p h o n a t e d i m e r s h a s b e e n d e s c r i b e d . T h r e e t y p e s o f d i m e r c o r e s w e r e i d e n t i fi e d — t w i s t , s y n , a n d a n t i — w i t h t h e c l a s s i fi c a t i o n b a s e d o n t h e r e l a t i v e o r i e n t a t i o n o f t h e v a n a d y l g r o u p s . T h e t w i s t d i m e r c o r e s , w h e r e v a n a d y l g r o u p s a r e a l m o s t o r t h o g o n a l w i t h r e s p e c t t o e a c h o t h e r , w e r e o b s e r v e d i n c o m p o u n d s 1 , 2 , 3 , a n d 6 A . T h e fi r s t t h r e e c o m p l e x e s c o n t a i n t h e d i p h e n y l p h o s p h o n a t e a s t h e b r i d g i n g l i g a n d a n d b p y , d m b p y a n d t m b p y r e s p e c t i v e l y a s t e r m i n a l l i g a n d s . C o m p o u n d 6 A o n t h e o t h e r h a n d i s a t m b p y d e r i v a t i v e o f b i s ( p — m e t h o x y p h e n y l ) p h o s p h i n a t e . A l l t h e b p y a n a l o g s o f t h e r e m a i n i n g p - s u b s t i t u t e d p h e n y l p h o s p h i n a t e s c r y s t a l l i z e d w i t h t h e s y n — t y p e d i m e r c o r e . E x a m i n a t i o n o f t h e s t r u c t u r a l c o r e s o f t h e s e c o m p l e x e s i n d i c a t e s t h a t t h e d r i v i n g f o r c e f o r t h e f o r m a t i o n o f o n e s t r u c t u r a l t y p e o v e r t h e o t h e r i s t h e r e l a t i v e o r i e n t a t i o n o f t h e c o m p o u n d s ' a r o m a t i c u n i t s . I n t h e s y n — t y p e d i m e r c o r e s t h e v o l u m e b e t w e e n t h e b p y l i g a n d s i s o c c u p i e d b y p h e n y l r i n g s o f t h e b r i d g e . T h e 2 0 9 a d d i t i o n a l m e t h y l g r o u p s i n t h e d m b p y a n d t m b p y d e r i v a t i v e s d i m i n i s h t h i s v o l u m e , i n d u c i n g t h e r e l a t i v e t w i s t o f t h e v a n a d i u m o c t a h e d r a . I n t h e t w i s t d i m e r c o r e t h e t e r m i n a l l i g a n d s p o i n t i n o p p o s i t e d i r e c t i o n s i n s p a c e e n a b l i n g t h e a c c o m m o d a t i o n o f t h e p h o s p h i n a t e ' s a r o m a t i c g r o u p s . T h e 2 , 2 ' — b i p y r i d y l t e r m i n a l l i g a n d a n a l o g s o c c u p y t w o o f t h e fi v e o p e n c o o r d i n a t i o n s i t e s o f t h e v a n a d y l o c t a h e d r o n . T h e r e m a i n i n g t h r e e s i t e s a r e o c c u p i e d b y o x y g e n a t o m s o f t h e p h o s p h i n a t e b r i d g i n g g r o u p s , e a c h o n e b i n d i n g i n b o t h v a n a d y l o c t a h e d r a o f t h e d i m e r c o m p l e x . L i n k i n g o f t h e m e t a l s b y t h r e e p h o s p h i n a t e l i g a n d s p r e c l u d e s t h e g e n e r a t i o n o f a n a n t i d i m e r c o r e . T h e l a t t e r a r r a n g e m e n t i s a c h i e v e d b y u t i l i z a t i o n o f a t r i d e n t a t e l i g a n d ( h y d r o t r i s 1 — p y r a z o l y l b o r a t e ) , w h i c h b l o c k s t h e s i t e t r a n s t o t h e v a n a d y l g r o u p . T h e b r i d g i n g o f t h e v a n a d y l o c t a h e d r a i n t h i s c a s e i s a c c o m p l i s h e d b y t w o p h o s p h i n a t e / p h o s p h o n a t e H g a n d s . T h e s t r u c t u r a l f r a m e w o r k o f a n t i v a n a d y l d i m e r s r e s e m b l e s t h a t o f t h e D V H e x c h a n g e p a t h w a y o f e x t e n d e d v a n a d y l p h o s p h a t e s / p h o s p h o n a t e s . S u b s t i t u t i o n o f t h e p h e n y l u n i t s w i t h v a r i o u s g r o u p s i n t r o d u c e s s i g n i fi c a n t c o n f o r m a t i o n a l c h a n g e s . T h e s e a r e m a i n l y a t t r i b u t e d t o t h e p a c k i n g r e q u i r e m e n t s o f t h e i n d i v i d u a l d i m e r c o m p l e x e s . I n s o m e i n s t a n c e s h o w e v e r , w e a k n o n c o v a l e n t i n t e r a c t i o n s , p r i m a r i l y a m o n g t h e l i g a n d a r o m a t i c u n i t s o r b e t w e e n t h e l a t t e r g r o u p s a n d t h e c r y s t a l l i z a t i o n s o l v e n t , a l s o i n d u c e c o n f o r m a t i o n a l v a r i a t i o n s . T h i s i s t h e c a s e f o r c o m p l e x e s 9 a n d 1 2 w h e r e s t r o n g e l e c t r o n w i t h d r a w i n g s u b s t i t u e n t s a r e a t t a c h e d t o t h e p h e n y l r i n g s o f t h e b r i d g i n g l i g a n d s . T h e s e g r o u p s a r e f o u n d t o b e i n c l o s e p r o x i m i t y a n d p o s s e s s i n g a p a r a l l e l a r r a n g e m e n t w i t h t h e p y r a z o l y l r i n g s o f t h e t e r m i n a l l i g a n d ( T a b l e s 1 1 , 1 3 a n d 1 6 ) . C r y s t a l l i z a t i o n o f c o m p o u n d 1 2 i n v a r i o u s s o l v e n t s , p a r t i c u l a r l y t h i o p h e n e a n d p y r r o l e , s h o w f u r t h e r e v i d e n c e f o r t h e e x i s t e n c e o f t h e s e l i g a n d - s o l v e n t i n t e r a c t i o n s , w h i c h a r e m a n i f e s t e d i n t h e p a r a l l e l a n d a l m o s t o r t h o g o n a l 2 1 0 a r r a n g e m e n t o f a n e q u a t o r i a l p y r a z o l y l r i n g w i t h t h i o p h e n e a n d p y r r o l e r e s p e c t i v e l y ( F i g u r e 1 2 ) . T h e c u r r e n t v i e w o n n — i n t e r a c t i o n s c o n s i d e r s t h e m t o b e m a i n l y e l e c t r o s t a t i c i n n a t u r e " . A c c o r d i n g t o t h i s m o d e l t h e a r o m a t i c m o l e c u l e s c o n s i s t o f a p o s i t i v e l y c h a r g e d a f r a m e w o r k s a n d w i c h e d b y t h e n e g a t i v e l y c h a r g e d 1 1 e l e c t r o n c l o u d . H e n c e t h e m o s t f a v o r a b l e a r r a n g e m e n t i s e i t h e r a n o f f s e t 1 1 : - - s t a c k e d g e o m e t r y ( o b s e r v e d i n t h e t h i o p h e n e s o l v a t e ) o r a n e d g e - o n o r T — s h a p e d g e o m e t r y ( o b s e r v e d i n t h e p y r r o l e s o l v a t e ) , w h e r e f a v o r a b l e n — o e l e c t r o s t a t i c i n t e r a c t i o n s a r e d o m i n a n t . I d e a l c o n d i t i o n f o r s t r o n g n — i n t e r a c t i o n s t o o c c u r i s t h e p r e s e n c e o f e l e c t r o n w i t h d r a w i n g s u b s t i t u e n t s i n t h e i n t e r a c t i n g m o l e c u l e s ” . C o n t r a r y t o p o p u l a r b e l i e f s , n — i n t e r a c t i o n s b e t w e e n e l e c t r o n p o o r a n d e l e c t r o n r i c h m o l e c u l e s a r e o n l y m o d e r a t e i n s t r e n g t h . T h e d i m e r c o m p o u n d s r e p o r t e d i n t h i s s t u d y a l l d i s p l a y w e a k t o m o d e r a t e a n t i f e r r o m a g n e t i c c o u p l i n g , t h e o n l y e x c e p t i o n b e i n g { H B ( p z ) 3 V O [ , u — ( P h 0 ) 2 P 0 2 ] } 2 s y n t h e s i z e d a n d m a g n e t i c a l l y c h a r a c t e r i z e d b y C a r r a n o a n d c o w o r k e r s " . T h e l a t t e r c o m p l e x p o s s e s s e s a t r i p l e t g r o u n d s t a t e w i t h a n e n e r g y s e p a r a t i o n f r o m t h e l o w e s t s i n g l e t o f 6 . 6 K . S u b s t i t u t i o n o f t h e b r i d g i n g a n d t e r m i n a l l i g a n d s w i t h e l e c t r o n w i t h d r a w i n g o r d o n a t i n g s u b s t i t u e n t s a f f e c t s t h e s t r e n g t h a n d t h e s i g n o f t h e i n t e r a c t i o n i n t w o w a y s ; f i r s t , b y c h a n g i n g t h e e n e r g i e s o f t h e m e t a l a n d b r i d g i n g l i g a n d s t h a t p a r t i c i p a t e i n t h e e x c h a n g e p a t h w a y ( J a r ) . a n d s e c o n d b y i n d u c i n g s m a l l b u t m a g n e t i c a l l y s i g n i fi c a n t s t r u c t u r a l c h a n g e s t o t h e d i m e r c o r e ( J s t ) . T h e o v e r a l l e x c h a n g e c o n s t a n t i s t h e r e f o r e t h e s u m o f t h e s e t w o c o n t r i b u t i o n s J = J F + J A F = J 6 , + J ( 4 . 5 ) s t w h i c h s h o u l d a f f e c t b o t h t h e f e r r o m a g n e t i c a n d t h e a n t i f e r r o m a g n e t i c c o m p o n e n t o f t h e e x c h a n g e i n t e r a c t i o n . T h e d o m i n a n t t e r m i s p r o b a b l y J 3 ) i n a n a l o g y t o 2 1 1 c o p p e r 2 3 a n d v a n a d i u m 2 4 d i m e r s y s t e m s w h e r e s m a l l s t r u c t u r a l v a r i a t i o n s h a d a m a r k e d i n fl u e n c e t o t h e s t r e n g t h o f t h e i n t e r a c t i o n . E l e c t r o n i c e f f e c t s , h o w e v e r , c a n b e r a t h e r i m p o r t a n t f o r w e a k l y c o u p l e d e x c h a n g e d d i m e r s 3 . F o r m o d e r a t e a n t i f e r r o m a g n e t i c i n t e r a c t i o n s t h e i r c o n t r i b u t i o n i s a d d i t i v e t o t h e J . . . t e r m r e s u l t i n g i n s i g n i fi c a n t c o m p l i c a t i o n s , s i n c e o t h e r t h a n t h e o r e t i c a l c a l c u l a t i o n s t h e r e a r e n o m e a n s o f d e t e r m i n i n g t h e r e l a t i v e c o n t r i b u t i o n o f e a c h t e r m . T h e s e o b s e r v a t i o n s a r e a p p a r e n t i n t h e t h r e e s e r i e s o f d i m e r c o m p l e x e s p r e s e n t e d i n t h i s s t u d y . T h e m a g n e t i c p r o p e r t i e s a n d i m p o r t a n t m e t r i c p a r a m e t e r s o f t h e s y n — t y p e d i m e r s c o r e s a r e p r e s e n t e d i n T a b l e 8 . A n u n p a i r e d e l e c t r o n i n t h e s e c o m p l e x e s r e s i d e s i n a m a i n l y d x y t y p e m e t a l o r b i t a l w i t h c o n t r i b u t i o n s f r o m l i g a n d o r b i t a l s . I t s o r i e n t a t i o n i s a p p r o x i m a t e d a s t h a t o f t h e v a n a d i u m b a s a l p l a n e , a l t h o u g h t h i s i s n o t e n t i r e l y c o r r e c t d u e t o t h e d i s p l a c e m e n t o f t h e v a n a d i u m a t o m f r o m t h e p l a n e . O n e o f t h e p h o s p h i n a t e g r o u p s b i n d s t o t h e t r a n s v a n a d y l s i t e s i n b o t h m e t a l o c t a h e d r a , i n a d i r e c t i o n o r t h o g o n a l t o t h e m a g n e t i c o r b i t a l . A s s u c h , t h i s g r o u p d o e s n o t a s s u m e a n a c t i v e r o l e i n t h e s u p e r e x c h a n g e p a t h w a y . T h e l a t t e r i s c o n s i d e r e d t o b e t h e e i g h t — m e m b e r e d r i n g d e p i c t e d i n F i g u r e 1 9 ( A ) , w h e r e t h e t w o v a n a d y l o c t a h e d r a a r e l i n k e d b y t w o p h o s p h i n a t e g r o u p s i n a c o n v e x — b o a t a r r a n g e m e n t . U n d e r t h e f r a m e w o r k o f t h e a c t i v e - e l e c t r o n a p p r o x i m a t i o n 2 5 t h e m a g n e t i c M O s a r e c o n s i d e r e d a s a c o m b i n a t i o n o f m e t a l a n d l i g a n d — b a s e d o r b i t a l s . T h e s y m m e t r i c a n d a n t i s y m m e t r i c m e t a l — b a s e d o r b i t a l s , d s a n d d A i n S c h e m e 1 , c a n i n t e r a c t w i t h t h e s y m m e t r y a d a p t e d c o m b i n a t i o n s o f p h o s p h a t e t y p e o r b i t a l s , I s a n d [ , 4 a l s o s h o w n i n S c h e m e 1 . T h e l a t t e r a r e i s o e n e r g e t i c , s i n c e e a c h o n e c o n s i s t o f a p h o s p h o r o u s a t o m i c d o r b i t a l i n t e r a c t i n g i n a b o n d i n g f a s h i o n w i t h t w o o x y g e n ' s p o r b i t a l s . T h e i r e n e r g y h o w e v e r , c a n b e t u n e d w i t h e l e c t r o n w i t h d r a w i n g o r d o n a t i n g s u b s t i t u e n t s r e s i d i n g o n t h e p e r i p h e r y o f t h e p h o s p h i n a t e a r o m a t i c u n i t s . T h e s u b s t i t u e n t ' s a b i l i t y t o w i t h d r a w o r d o n a t e 2 1 2 fi fl , c w m . 0 1 ) 2 . 1 ( A ) N 1 2 ) é ! M m m m M “ C I S I I 1 9 % ’ i \ . € 4 9 P ( 3 ) 0 1 2 ) 0 1 7 ) g . 0 1 8 ) 9 . 6 " 1 8 8 3 ’ V l 2 l M I ) W ‘ 8 \ ‘ 4 5 . , 1 : , ” 1 | m ‘ W ; a t 1 : 1 1 ) : ‘ ’ 1 ‘ ! ‘ 1 - J N I 3 I ( B ) 0 m ‘ E m y m u v 1 1 ) ‘ 1 ‘ 3 K ? ' . 0 6 ) 0 5 M “ ‘ 8 8 ) N 1 2 ) F i g u r e 1 9 . S u p e r e x c h a n g e p a t h w a y s o f s y n ( A ) a n d t w i s t ( B ) t y p e d i m e r c o r e s . T h e l a t t e r i s d i s p l a y e d i n t w o v i e w s , w h i c h s h o w t h e r e l a t i v e o r i e n t a t i o n o f t h e v a n a d i u m b a s a l p l a n e s . 2 1 3 e l e c t r o n s i s r e fl e c t e d i n t h e v a l u e a n d t h e s i g n o f t h e o p H a m m e t t p a r a m e t e r “ , w i t h n e g a t i v e v a l u e s c o r r e s p o n d i n g t o e l e c t r o n d o n a t i n g g r o u p s ( C H 3 O - ) a n d p o s i t i v e t o e l e c t r o n w i t h d r a w i n g o n e s ( C l - , a n d F — ) . T h e c o m b i n a t i o n o f t h e m e t a l S c h e m e 1 a n d l i g a n d o r b i t a l s g e n e r a t e s t h e s y m m e t r i c ( 0 3 a n d a n t i s y m m e t r i c ( D A m a g n e t i c M O s d e p i c t e d i n F i g u r e 2 0 ( A ) . I n a c o p l a n a r a r r a n g e m e n t — w h e r e < N 2 0 2 V 1 I N 2 0 2 V 2 > = 1 8 0 ° a n d < 0 1 — V 1 — V 2 — 0 2 > = 0 ° — t h e ( D A o r b i t a l i s h i g h e r i n e n e r g y t h a n 4 9 3 . W h e n t h e a n g l e b e t w e e n t h e b a s a l p l a n e s d e v i a t e s f r o m c o p l a n a r i t y t h e a n t i b o n d i n g c h a r a c t e r o f 4 5 A d e c r e a s e s w h i l e i t b e c o m e s m o r e p r o n o u n c e d f o r t h e a b s m a g n e t i c o r b i t a l . A s t h e y a p p r o a c h a n o r t h o g o n a l a r r a n g e m e n t t h e e n e r g y m i s m a t c h b e t w e e n a b s a n d ( D A d e c r e a s e s , r e d u c i n g t h e m a g n i t u d e o f t h e a n t i f e r r o m a g n e t i c t e r m J A F . T h e e f f e c t o f t h a t t i l t i s d e m o n s t r a t e d i n t h e q u a l i t a t i v e e n e r g y d i a g r a m d e p i c t e d i n F i g u r e 2 0 ( 8 ) , w h i c h i s i n a c c o r d a n c e w i t h t h e e x p e r i m e n t a l r e s u l t s i n c o m p o u n d s 4 , 5 , a n d 6 . I n s p e c t i o n o f T a b l e 8 r e v e a l s t h a t t h e e x c h a n g e c o u p l i n g c o n s t a n t J / k i n c r e a s e s i n t h e o r d e r , 2 1 4 ( A ) ( B ) < N 2 0 2 V 1 1 N 2 0 2 V 2 > = 9 0 ° < N 2 0 2 V 1 1 N 2 0 2 V 2 > = 1 8 0 ° 6 6 9 — 1 - 3 . 9 1 ’ s < 0 1 — V 1 — V 2 — 0 2 > = 9 0 ° < O 1 — V 1 — V 2 — 0 2 > = 1 8 0 ° ( C ) 8 4 ‘ 8 8 F i g u r e 2 0 . S y m m e t r i c ( ( 1 ) 3 ) a n d a n t i s y m m e t r i c ( C I J A ) o r t h o g o n a l i z e d m a g n e t i c o r b i t a l s ( A ) . T h e i r e n e r g y s e p a r a t i o n i s i n fl u e n c e d b y t h e r e l a t i v e o r i e n t a t i o n o f t h e v a n a d i u m b a s a l p l a n e s ( N 2 0 2 V ' ) ( B ) a n d b y t h e r e l a t i v e t i l t o f t h e v a n a d y l g r o u p s ( C ) . 2 1 5 6 ( C H 3 O - ) < 5 ( C l — ) < 4 ( F — ) f o r t h e 2 , 2 ' — b i p y r i d y l d e r i v a t i v e s o f t h e s y n — t y p e d i m e r c o r e s , w h e r e t h e b a s a l p l a n e s a n g l e s a r e 8 0 2 ° , 7 7 8 ° , a n d 7 6 6 ° r e s p e c t i v e l y . F i g u r e 2 0 ( C ) d i s p l a y s t h e v a r i a t i o n o f t h e I 8 4 — a s l e n e r g y d i f f e r e n c e u p o n t h e d e v i a t i o n f r o m c o p l a n a r i t y o f t h e v a n a d y l g r o u p s . A s i m i l a r t r e n d i s p r e d i c t e d , n a m e l y d e c r e a s e o f t h e a n t i f e r r o m a g n e t i c c o n t r i b u t i o n a s t h e < 0 1 — V 1 — V 2 — 0 2 > a n g l e d e v i a t e s f r o m 0 ° , w h i c h a l s o a g r e e s w i t h t h e J / k o r d e r i n g 6 ( C H 3 0 — ) < 5 ( C l — ) < 4 ( F — ) f o r d e v i a t i o n s o f 1 5 4 ° , 1 3 0 ° , a n d 8 1 ° r e s p e c t i v e l y . S u b s t i t u t i o n o n t h e a r o m a t i c u n i t s o f t h e b r i d g i n g a n d t e r m i n a l l i g a n d s a l s o i n fl u e n c e s t h e m a g n i t u d e o f t h e a n t i f e r r o m a g n e t i c c o m p o n e n t . T h e a c t i v e — e l e c t r o n a p p r o x i m a t i o n a c c o u n t s f o r s u b s t i t u e n t e l e c t r o n i c e f f e c t s 2 7 ( s e e C h a p t e r I ) , p r e d i c t i n g t h a t e l e c t r o n w i t h d r a w i n g ( d o n a t i n g ) g r o u p s o n t h e b r i d g i n g l i g a n d s s h o u l d d e c r e a s e ( i n c r e a s e ) t h e m a g n i t u d e o f t h e a n t i f e r r o m a g n e t i c i n t e r a c t i o n b y l o w e r i n g ( r a i s i n g ) t h e e n e r g y o f t h e l i g a n d s M O s . T h i s e f f e c t i s p r o b a b l y r e s p o n s i b l e f o r t h e s m a l l d i f f e r e n c e s s e e n i n t h e s t r e n g t h o f t h e e x c h a n g e c o u p l i n g c o n s t a n t i n c o m p o u n d s 4 , 5 , a n d 6 . T h e r e d u c t i o n o f t h e J A ) : t e r m i n 6 f r o m s t r u c t u r a l e f f e c t s i s p r o b a b l y c o m p e n s a t e d b y i t s e n h a n c e m e n t f r o m t h e e l e c t r o n d o n a t i n g a b i l i t y o f t h e p - C H 3 O — g r o u p . R e p l a c e m e n t o f t h e b p y l i g a n d i n c o m p l e x e s 5 a n d 6 b y t m b p y g e n e r a t e d c o m p l e x e s 5 A a n d 6 A , t h e m a g n e t i c p r o p e r t i e s o f w h i c h d i f f e r w i d e l y f o r m t h o s e o f t h e p a r e n t d e r i v a t i v e s . T h e r e d u c t i o n o f t h e J / k c o n s t a n t w a s fi v e f o l d a n d t w o f o l d r e s p e c t i v e l y . S u c h a g r e a t d i f f e r e n c e c a n b e e i t h e r a t t r i b u t e d t o t h e t e r m i n a l l i g a n d s e l e c t r o n i c e f f e c t o r t o a d r a m a t i c c h a n g e o f t h e d i m e r c o r e g e o m e t r y . T h e X — r a y s t r u c t u r e d e t e r m i n a t i o n o f c o m p o u n d 6 A r e v e a l e d t h a t i n d e e d t h e d i m e r c o r e o f t h e c o m p l e x i s s t r u c t u r a l l y q u i t e d i f f e r e n t f r o m t h e p a r e n t c o m p o u n d 6 . A t w i s t — t y p e a r r a n g e m e n t i s a d o p t e d b y t h e v a n a d y l g r o u p s , a s 2 1 6 j u d g e d b y t h e l a r g e < 0 1 — V 1 — V 2 — 0 2 > a n g l e o f 1 0 9 . 6 ° , a v a l u e w h i c h i s s i m i l a r t o t h o s e o f c o m p l e x e s 1 , 2 , a n d 3 . T h e s t r u c t u r e o f c o m p o u n d 5 A o n t h e o t h e r h a n d , w a s n o t d e t e r m i n e d d u e t o t h e l a c k o f s u i t a b l e s i n g l e c r y s t a l s . l t s m a g n e t i c p r o p e r t i e s h o w e v e r , f a l l i n t h e s a m e r a n g e ( T a b l e 7 ) a s t h o s e o f t h e t w i s t — t y p e d i m e r s , s u g g e s t i n g t h a t t h i s c o m p l e x a l s o b e l o n g s t o t h e s a m e s t r u c t u r a l t y p e . T h e s i g n i fi c a n t t w i s t o f t h e v a n a d y l g r o u p s p l a c e s t h e s e c o m p l e x e s i n t h e i n t e r m e d i a t e r e g i m e b e t w e e n t h e s y n a n d t h e a n t i s t r u c t u r a l t y p e s . T w o o f t h e p h o s p h i n a t e g r o u p s b r i d g e t h e e q u a t o r i a l s i t e o f o n e v a n a d y l o c t a h e d r o n t o t h e a x i a l s i t e o f t h e o t h e r . H e n c e p a r t i c i p a t i o n o f t h e s e l i g a n d s i n t h e e x c h a n g e p a t h w a y m a y b e e x c l u d e d ; t h e r e r e m a i n s t h e s i n g l e — b r i d g e d d i v a n a d y l f r a g m e n t d i s p l a y e d i n F i g u r e 1 9 ( 8 ) . C o m p a r i s o n o f t h e m a g n e t i c d a t a b e t w e e n t h e s y n a n d t h e t w i s t — t y p e d i m e r s i n d i c a t e s t h a t t h e m a g n i t u d e o f t h e a n t i f e r r o m a g n e t i c c o u p l i n g i n t h e l a t t e r c o m p l e x e s i s c o n s i s t e n t l y s m a l l e r . T w o f a c t o r s c o n t r i b u t e t o t h i s r e d u c t i o n i n t h e m a g n i t u d e o f t h e J A F t e r m . T h e fi r s t c o n c e r n s t h e n a t u r e o f t h e e x c h a n g e p a t h w a y . A s w a s a l s o o b s e r v e d i n t h e m a g n e t i c p r o p e r t i e s o f e x t e n d e d v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s , t h e c o u p l i n g a m o n g s i n g l e — b r i d g e d v a n a d y l c e n t e r s w a s m u c h s m a l l e r t h a n t h a t o f d o u b l e - b r i d g e d o n e s . T h e s e c o n d a n d p r o b a b l y m o s t i m p o r t a n t f a c t o r i s t h e s i g n i fi c a n t t i l t f r o m c o p l a n a r i t y o f t h e m a g n e t i c o r b i t a l s 4 9 3 a n d ( D A i n t r o d u c e d i n t h e t w i s t d i m e r c o r e s ( d e t e r m i n e d b y t h e v a l u e o f t h e d i h e d r a l a n g l e < 0 1 — V 1 — V 2 — 0 2 > ) . F i g u r e 2 0 ( C ) q u a l i t a t i v e l y d e s c r i b e s t h i s e f f e c t a n d p r e d i c t s t h a t a s d e v i a t i o n s f r o m c o p l a n a r i t y i n c r e a s e , t h e e n e r g y d i f f e r e n c e b e t w e e n t h e m a g n e t i c o r b i t a l s i s r e d u c e d . T h e o u t c o m e o f t h i s t w i s t i s t h e d e c r e a s e o f t h e k i n e t i c e x c h a n g e t e r m , i n a c c o r d a n c e w i t h t h e m a g n e t i c r e s u l t s p r e s e n t e d i n t h i s s t u d y . A l t h o u g h t h e v a r i a n c e i n t h e m a g n e t i c p r o p e r t i e s b e t w e e n t h e s y n a n d t h e t w i s t — t y p e d i m e r s i s u n d e r s t o o d b y u t i l i z a t i o n o f t h e e n e r g y d i a g r a m o f F i g u r e 2 0 ( 0 ) , t h e l a t t e r f a i l s t o 2 1 7 p r e d i c t t h e m a g n i t u d e o f t h e a n t i f e r r o m a g n e t i c c o u p l i n g w i t h i n t h e s e r i e s o f t h e t w i s t — t y p e d i m e r s . T h e o r d e r i n g p r e d i c t e d b y t h e v a l u e o f t h e < 0 1 — V 1 — V 2 — 0 2 > a n g l e a n d a s s u m i n g t h a t t h e o r i e n t a t i o n o f t h e d x y o r b i t a l s c o i n c i d e w i t h t h e v a n a d i u m b a s a l p l a n e s ( 3 < 6 A < 2 < 1 ) , i s e x a c t l y t h e o p p o s i t e o f t h e o b s e r v e d b e h a v i o r . S c h e m e 2 T h e o r i g i n o f t h i s d i s c r e p a n c y , i s e i t h e r d u e t o f a c t o r s n o t a c c o u n t e d f o r b y t h e a c t i v e — e l e c t r o n a p p r o x i m a t i o n , o r t o e r r o r s i n t r o d u c e d i n t h e d e fi n i t i o n o f t h e m a g n e t i c o r b i t a l s ' o r i e n t a t i o n s . I n t h e t w i s t — t y p e e x c h a n g e p a t h w a y d e p i c t e d i n S c h e m e 2 , t h e m e t a l c l X y o r b i t a l s i n t e r a c t w i t h l i g a n d M 0 s , w h i c h c o n s i s t o f o x y g e n p a n d p h o s p h o r o u s d o r b i t a l s . T h e t w i s t o f t h e d x y l e v e l s i s a c c o m p a n i e d b y a t i l t o f t h e l i g a n d p o r b i t a l s , t h e r e l a t i v e o r i e n t a t i o n o f w h i c h s h o u l d p l a y a p r o m i n e n t r o l e i n t h e m a g n i t u d e o f t h e k i n e t i c e x c h a n g e . I f t h e o r i e n t a t i o n o f e a c h p o r b i t a l i s a p p r o x i m a t e d a s t h e d i r e c t i o n o f t h e N V O p l a n e n o r m a l t o t h e r e s p e c t i v e o x y g e n a t o m , t h e a n g l e s b e t w e e n t h e p o r b i t a l s i n t h e e x c h a n g e p a t h w a y a r e 5 1 4 ° ( 1 ) , 4 3 4 ° ( 2 ) a n d 2 7 5 ° ( 3 ) . T h e m a g n i t u d e o f t h e k i n e t i c e x c h a n g e i s e x p e c t e d t o d e c r e a s e a s t h e p o r b i t a l s a p p r o a c h o r t h o g a n a l i t y , l e a d i n g t o a J / k o r d e r i n g o f 1 < 2 < 3 , w h i c h i s e x a c t l y t h e e x p e r i m e n t a l l y o b s e r v e d o r d e r . T h e a b o v e a s s u m p t i o n i s p u r e l y q u a l i t a t i v e a n d t h e o r e t i c a l c a l c u l a t i o n s a r e n e e d e d i n o r d e r t o d e fi n e a c c u r a t e l y t h e r e l a t i v e o r i e n t a t i o n s o f t h e m a g n e t i c o r b i t a l s . 2 1 8 T h e fi n a l c l a s s o f m o l e c u l a r c o m p l e x e s s y n t h e s i z e d i s t h e a n t i — t y p e , w h i c h i s t h e o n l y c l a s s t h a t r e s e m b l e s t h e g e o m e t r y o f a s t r u c t u r a l b u i l d i n g b l o c k o f t h e e x t e n d e d v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s . M a g n e t i c s u s c e p t i b i l i t y s t u d i e s b y C a r r a n o a n d c o w o r k e r s 8 o n { H B ( p z ) 3 V 0 [ , u — ( P h 0 ) 2 P 0 2 ] } 2 i n d i c a t e d w e a k f e r r o m a g n e t i c c o u p l i n g , w h i l e a n t i f e r r o m a g n e t i c i n t e r a c t i o n s w e r e f o u n d t o d o m i n a t e i n t h e { H B ( 3 , 4 — M e 2 p z ) 3 V 0 [ p — ( P h 0 ) 2 P 0 2 ] } 2 a n d { H B ( p z ) 3 V 0 [ , u — ( P h ) 2 P 0 2 ] } 2 ' 2 0 H 3 C N d e r i v a t i v e s ” . T h e a u t h o r s e x p l a i n e d t h e m a g n e t i c p r o p e r t i e s b y u s i n g a d i r e c t o v e r l a p m o d e l . T h e f e r r o m a g n e t i c c o u p l i n g i s a t t r i b u t e d t o t h e c h a i r c o n f o r m a t i o n t h a t f a c i l i t a t e s d i r e c t o v e r l a p o f t h e m e t a l ' s c l x y o r b i t a l w i t h t h e V = 0 z r — s y s t e m ( t h e V = 0 z r - o r b i t a l i s o r t h o g o n a l t o t h e m a g n e t i c ( 1 , , y o r b i t a l ) . A n t i f e r r o m a g n e t i c i n t e r a c t i o n s d o m i n a t e o n t h e o t h e r h a n d a s t h e c h a i r fl a t t e n s a n d t h e d x y — V = 0 n — o v e r l a p d i m i n i s h e s w h i l e t h e d x y — d x y o v e r l a p i n c r e a s e s . T h i s m o d e l a s s u m e s a d i s t a n c e d e p e n d e n t e x c h a n g e c o u p l i n g . T h e m a g n e t i c s t u d i e s o n t h e a n t i — t y p e d i m e r c o m p l e x e s p r e s e n t e d i n t h i s t h e s i s d o n o t s h o w a c o r r e l a t i o n o f t h e m a g n e t i c p r o p e r t i e s t o t h e i n t e r r n e t a l s e p a r a t i o n ( T a b l e s 2 0 a n d 2 1 ) . T h e l a t t e r i s r a t h e r l o n g ( ~ 5 A ) f o r d i r e c t o v e r l a p t o m a k e a n y s i g n i fi c a n t c o n t r i b u t i o n t o t h e c o u p l i n g i n t e r a c t i o n . E v e n i n C u 2 ( C H 3 C 0 0 ) 4 - 1 2 H 2 0 2 7 a n d [ L 2 C u 0 H ] 2 X 2 2 8 w h e r e m e t a l d i s t a n c e s a r e m u c h s h o r t e r , s u p e r e x c h a n g e i n t e r a c t i o n s a r e c o n s i d e r e d t o b e t h e d o m i n a n t m a g n e t i c c o u p l i n g m e c h a n i s m . I n a d d i t i o n , 3 1 P s o l i d s t a t e N M R d a t a o n e x t e n d e d v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s z g ' 3 O s u p p o r t a n a c t i v e r o l e f o r t h e d i a m a g n e t i c l i n k i n t h e s p i n c o m m u n i c a t i o n p r o c e s s . T h e m a g n e t i c p r o p e r t i e s o f e x t e n d e d m a t e r i a l s p o s s e s s i n g a D V H c h a i r — l i k e d i m e r c o r e a s t h e m a i n e x c h a n g e p a t h w a y , w e r e e x p l a i n e d u n d e r t h e f r a m e w o r k o f t h e a c t i v e - e l e c t r o n a p p r o x i m a t i o n . A q u a l i t a t i v e e n e r g y d i a g r a m ( F i g u r e 2 1 , ) a t t r i b u t e s t h e s i g n a n d t h e s t r e n g t h o f t h e m a g n e t i c i n t e r a c t i o n t o t h e v a n a d i u m b a s a l p l a n e d i s p l a c e m e n t , d ( N 2 0 2 V l N 2 0 2 " ) . L a r g e d i s p l a c e m e n t s ( 1 . 8 7 A f o r 2 1 9 F i g u r e 2 1 . S y m m e t r i c ( C P S ) a n d a n t i s y m m e t r i c ( ( 1 ) 4 ) c o m b i n a t i o n o f v a n a d i u m ( I X ) , a n d p h o s p h a t e / p h o s p h o n a t e m o l e c u l a r o r b i t a l s a n d t h e i r e n e r g y d e p e n d e n c e u p o n t r a n s f o r m a t i o n o f t h e fl a t r i n g c o n f o r m a t i o n t o t h e r e s p e c t i v e c h a i r . 2 2 0 A o , 5 V 0 P 0 4 - n H 2 0 w i t h A = N a , K , a n d R b a n d 1 . 7 6 A f o r a — V 0 8 0 4 ) d i m i n i s h t h e k i n e t i c e x c h a n g e t e r m ( J A F ) l e a d i n g t o f e r r o m a g n e t i c i n t e r a c t i o n . S m a l l e r d i s p l a c e m e n t s o n t h e o t h e r h a n d ( 1 . 4 3 A f o r 8 - V 0 H P 0 4 - 2 H 2 0 ) l i f t t h e d e g e n e r a c y o f t h e m a g n e t i c o r b i t a l s , r e s u l t i n g i n a n o n v a n i s h i n g k i n e t i c e x c h a n g e c o n t r i b u t i o n . I n a g r e e m e n t w i t h t h e s e q u a l i t a t i v e a r g u m e n t s i s t h e f e r r o m a g n e t i c c o u p l i n g d i s p l a y e d b y { H B ( p z ) 3 V 0 [ , u — ( P h 0 ) 2 P 0 2 ] } 2 , w h e r e t h e b a s a l v a n a d i u m p l a n e s a r e 1 . 5 9 7 A a p a r t . T h e l a t t e r v a l u e i s t h e l o w e r e x p e r i m e n t a l l i m i t f o r t h e o b s e r v a t i o n o f f e r r o m a g n e t i c c o u p l i n g i n m o l e c u l a r c o m p l e x e s o r e x t e n d e d m a t e r i a l s t h a t p o s s e s s t h e D V I I c h a i r — l i k e s t r u c t u r a l u n i t . 0 n t h e o t h e r h a n d t h e v a l u e o f 1 . 4 3 A f o r B — V O H P 0 4 - 2 H 2 0 i s t h e h i g h e r e x p e r i m e n t a l l i m i t f o r a n t i f e r r o m a g n e t i c c o u p l i n g . I n s p e c t i o n o f T a b l e s 2 0 a n d 2 1 , w h e r e t h e m a g n e t i c a n d s t r u c t u r a l p r o p e r t i e s o f t h e d i m e r c o r e s u t i l i z e d i n t h i s s t u d y a r e g a t h e r e d , s h o w s t h a t t h e s e c o m p l e x e s p o s s e s s s m a l l e r v a l u e s o f b a s a l p l a n e d i s p l a c e m e n t s . T h e s e r e s u l t s a l s o i n d i c a t e t h a t t h e m a g n i t u d e o f t h e e x c h a n g e i n t e r a c t i o n i s n o t s o l e l y d e p e n d e n t o n t h e v a l u e o f d ( N 2 0 2 V l N 2 0 2 V ) . T h e m a g n e t i c p r o p e r t i e s o f t h e { H B ( p z ) 3 V 0 [ u — ( P h ) 2 P 0 2 ] } 2 d e r i v a t i v e w e r e d e t e r m i n e d f o r s p e c i m e n s r e c r y s t a l l i z e d f r o m a c e t o n i t r i l e a n d d i c h l o r o m e t h a n e . S i n g l e c r y s t a l X - r a y s t r u c t u r e d e t e r m i n a t i o n f r o m c r y s t a l s g r o w n i n t h e s e s o l v e n t s r e v e a l e d t h a t t h e d i m e r m e t r i c p a r a m e t e r s a r e d i f f e r e n t . T h e s m a l l e r d ( N 2 0 2 V l N 2 0 2 V ) d i s p l a c e m e n t i n t h e a c e t o n i t r i l e s o l v a t e ( m e a n v a l u e 0 . 7 1 9 v e r s u s 0 . 7 7 0 A f o r t h e d i c h l o r o m e t h a n e s o l v a t e 7 ) c o r r e l a t e s t o a l a r g e r s i n g l e t — t r i p l e t s p l i t t i n g ( - 8 1 . 4 a n d — 6 1 . 5 K r e s p e c t i v e l y ) . T h e c o r r e s p o n d i n g v a l u e s f o r t h e p — F — d e r i v a t i v e ( 0 . 7 3 4 A , - 5 5 . 2 K ) a r e s i m i l a r t o t h o s e o f 7 . T h e s m a l l d i f f e r e n c e o b s e r v e d i s a t t r i b u t e d t o t h e e l e c t r o n w i t h d r a w i n g n a t u r e o f t h e fl u o r o — s u b s t i t u e n t . D e v i a t i o n s f r o m t h e e n e r g y s c h e m e d e p i c t e d i n F i g u r e 2 1 a r e f o u n d f o r t h e d e r i v a t i v e s 8 a n d 1 1 t h a t p o s s e s s t h e e l e c t r o n d o n a t i n g s u b s t i t u e n t s C H 3 0 - a n d 2 2 1 C H 3 — r e s p e c t i v e l y . T h e e l e c t r o n i c e f f e c t i s e x p e c t e d t o i n c r e a s e t h e a n t i f e r r o m a g n e t i c c o n t r i b u t i o n , w h i l e t h e l a r g e r d ( N 2 0 2 V l N 2 0 2 V ) v a l u e s ( 1 . 1 8 1 a n d 1 . 1 5 4 A r e s p e c t i v e l y ) t o d e c r e a s e i t . S i n c e b o t h t h e e l e c t r o n i c a n d m e t r i c p a r a m e t e r s o f t h e d i m e r c o r e s a r e r a t h e r s i m i l a r t h e o b s e r v e d d i f f e r e n c e i n t h e s i n g l e t — t r i p l e t s p l i t t i n g s ( — 4 3 . 0 K f o r 8 a n d - 5 8 . 4 K f o r 1 1 ) c a n n o t b e u n d e r s t o o d b y t h e u s e o f t h e q u a l i t a t i v e a r g u m e n t s p r e s e n t e d s o f a r . A d d i t i o n a l c o m p l i c a t i o n s w e r e e n c o u n t e r e d i n t h e s e r i e s o f t h e { H B ( p z ) 3 V 0 [ p — ( p - N 0 2 - P h 0 ) 2 P 0 2 ] } 2 - S c o m p l e x e s . I n s p e c t i o n o f T a b l e 2 1 s h o w s t h a t t h e d i c h l o r o m e t h a n e ( 1 2 ) , a c e t o n e ( 1 3 ) , a n d a n i s o l e s o l v a t e s d i s p l a y e d i d e n t i c a l m a g n e t i c p r o p e r t i e s . T h e s e t h r e e c o m p l e x e s p o s s e s s i d e n t i c a l i n f r a r e d s p e c t r a , w h i l e X - r a y s t r u c t u r e d e t e r m i n a t i o n f o r t h e fi r s t t w o r e v e a l e d t h a t t h e p a r a m e t e r s o f i n t e r e s t w e r e s i m i l a r . T h e b a s a l p l a n e d i s p l a c e m e n t i n t h e s e d e r i v a t i v e s i s 1 . 2 7 7 A ( d e t e r m i n e d a t 1 7 3 K f o r t h e a c e t o n e s o l v a t e ) , a v a l u e m u c h l a r g e r t h a n t h o s e o f t h e p h o s p h i n a t e a n a l o g s , a n d t h e s i n g l e t — t r i p l e t s e p a r a t i o n i s s m a l l e r a s e x p e c t e d . A t t e m p t s t o i n c r e a s e t h e l a t t e r p a r a m e t e r ( a n d t h u s d e c r e a s e t h e m a g n i t u d e o f t h e a n t i f e r r o m a g n e t i c e x c h a n g e ) b y u t i l i z a t i o n o f h y d r o g e n — b o n d i n g d o n a t i n g a n d e l e c t r o n r i c h s o l v e n t s w e r e s u c c e s s f u l f o r 1 , 2 — e t h a n e d i t h i o l ( 1 6 ) , p y r r o l e ( 1 4 ) , a n d t h i o p h e n e ( 1 5 ) . T h e c o r r e s p o n d i n g d ( N 2 0 2 V l N 2 0 2 V ) v a l u e s a n d m a g n e t i c p a r a m e t e r s ( g i v e n i n p a r e n t h e s i s ) w e r e : 1 . 3 1 7 A ( — 1 5 . 8 K ) , 1 . 3 2 0 A ( — 2 0 . 3 K ) a n d 1 . 3 8 7 A ( — 1 5 . 6 K ) r e s p e c t i v e l y . S u r p r i s i n g l y t h e e x c h a n g e c o n s t a n t i s l a r g e r t h a n t h e c o r r e s p o n d i n g o n e i n c o m p l e x e s 1 2 a n d 1 3 ( — 1 4 K ) t h a t h a v e a s m a l l e r b a s a l p l a n e d i s p l a c e m e n t ( 1 . 2 7 7 A ) . T h e m a g n e t i c p r o p e r t i e s o f t h e a n t i — t y p e d i m e r s p r e s e n t e d i n t h i s s t u d y , c a n n o t b e e n t i r e l y u n d e r s t o o d w i t h t h e q u a l i t a t i v e m o d e l u t i l i z e d i n t h e m a g n e t o s t r u c t u r a l c o r r e l a t i o n s o f t h e c h a i r — l i k e e x c h a n g e p a t h w a y s . T h e s e s t u d i e s c l e a r l y s h o w t h a t l a r g e b a s a l p l a n e d i s p l a c e m e n t s c o r r e l a t e w i t h f e r r o m a g n e t i c i n t e r a c t i o n s a n d t h a t a s t h e c h a i r c o r e fl a t t e n s a n t i f e r r o m a g n e t i s m 2 2 2 b e c o m e s t h e d o m i n a n t e f f e c t . H o w e v e r a d d i t i o n a l f a c t o r s a d e q u a t e l y r e p r e s e n t e d b y t h e a c t i v e - e l e c t r o n a p p r o x i m a t i o n p r o b a b l y i n fl u e n c e t h e m a g n i t u d e o f t h e a n t i f e r r o m a g n e t i c i n t e r a c t i o n s . T h i s m o d e l 2 7 c o n s i d e r s t h a t t h e a n t i f e r r o m a g n e t i c c o m p o n e n t o f t h e e x c h a n g e i n t e r a c t i o n i s d o m i n a t e d b y o n l y o n e t e r m , n a m e l y t h e k i n e t i c e x c h a n g e . I t i s t h e l a t t e r t h a t c o r r e l a t e s w i t h g e o m e t r i c f e a t u r e s o f t h e e x c h a n g e p a t h w a y s . R e c e n t d e n s i t y f u n c t i o n a l c a l c u l a t i o n s ( D F T ) d i s p l a y e d e x c e l l e n t a g r e e m e n t w i t h e x p e r i m e n t a l r e s u l t s z e ' 3 ‘ , b y u s i n g t h i s m o d e l . H o w e v e r , t h e c a l c u l a t i o n s w e r e s u c c e s s f u l o n l y w h e n s i m p l i fi c a t i o n s c o n c e r n i n g t h e n a t u r e o f t h e t e r m i n a l l i g a n d s w e r e a v o i d e d . T h e s e fi n d i n g s p o i n t e d o u t t h a t t h e n a t u r e o f t h e t e r m i n a l l i g a n d s a n d t h e i r o v e r a l l g e o m e t r y m i g h t i n fl u e n c e t h e m a g n i t u d e o f t h e i n t e r a c t i o n . T h e r e f o r e o n e n e e d s t o g o b e y o n d t h e a c t i v e — e l e c t r o n a p p r o x i m a t i o n t o a c c o u n t f o r s u c h e f f e c t s . T h e p i o n e e r i n g w o r k o f d e L o t h a n d c o w o r k e r s ” , w h o c a l c u l a t e d d i r e c t l y t h e e n e r g y g a p b e t w e e n t h e s i n g l e t a n d t h e t r i p l e t , s h o w t h a t t h e r e a r e o t h e r t e r m s t h a t c o n t r i b u t e t o t h e m a g n i t u d e o f t h e e x c h a n g e i n t e r a c t i o n . T h e d o m i n a n t c o n t r i b u t i o n t o t h e a n t i f e r r o m a g n e t i c c o m p o n e n t w a s t h e k i n e t i c e x c h a n g e , b u t c h a r g e t r a n s f e r t e r m s w e r e a l s o f o u n d t o h a v e a s i g n i fi c a n t m a g n i t u d e . T h e s e i n v o l v e d s t a b i l i z a t i o n o f t h e s i n g l e t g r o u n d s t a t e b y e x c i t e d s i n g l e t s t a t e s w h e r e e l e c t r o n s f r o m t h e l i g a n d ( m e t a l ) a r e t r a n s f e r t o t h e m e t a l ( l i g a n d ) , a s s h o w n i n S c h e m e 3 . T h e m a g n i t u d e o f t h e s e c o n t r i b u t i o n s d e p e n d s u p o n t h e r e l a t i v e e n e r g i e s o f t h e s i n g l e t g r o u n d a n d e x c i t e d s t a t e s . T h e l a t t e r a r e s e n s i t i v e t o t h e s t r u c t u r a l a n d e l e c t r o n i c e n v i r o n m e n t o f t h e t e r m i n a l a n d b r i d g i n g l i g a n d . F o r e x a m p l e , a l t h o u g h d o n o r — a c c e p t o r i n t e r a c t i o n s f r o m n — n s t a c k i n g a r e n o t i m p o r t a n t i n g r o u n d s t a t e e l e c t r o n i c c o n fi g u r a t i o n s z ‘ , t h e y c a n s i g n i fi c a n t l y s t a b i l i z e e x c i t e d s t a t e s 3 3 w h e r e s o m e o f t h e l i g a n d o r b i t a l s a r e h a l f — fi l l e d . 2 2 3 M — — — > L C h a r g e T r a n s f e r j . + + ‘ * L — — > M C h a r g e T r a n s f e r S c h e m e 3 I t i s i n t e r e s t i n g t o n o t e t h e r e f o r e t h e e f f e c t t h a t t h e c r y s t a l l i z a t i o n s o l v e n t h a s o n s o m e o f t h e m e t r i c p a r a m e t e r s o f t h e { H B ( p z ) 3 V 0 [ u — ( p - N 0 2 — P h 0 ) 2 P 0 2 ] } 2 - S c o m p l e x e s . I n t h e d i c h l o r o m e t h a n e a n d a c e t o n e s o l v a t e s o n e o f t h e e q u a t o r i a l p y r a z o l y l g r o u p s a n d a p - n i t r o p h e n y l r i n g f o r m a n a n g l e ( < C 3 H 3 N 2 / C 5 H 5 > e q ) o f a p p r o x i m a t e l y 2 0 ° . T h e m a g n e t i c p r o p e r t i e s o f t h e t w o c o m p o u n d s a r e i d e n t i c a l . I n t h e 1 , 2 — e t h a n e d i t h i o l ( 1 6 ) , t h i o p h e n e ( 1 5 ) a n d p y r r o l e ( 1 4 ) d e r i v a t i v e s , < C 3 H 3 N 2 / C 5 H 5 > M I d r o p p e d t o 1 5 1 ° , 1 2 0 ° , a n d 1 1 2 ° r e s p e c t i v e l y . A l t h o u g h t h e b a s a l p l a n e d i s p l a c e m e n t i s i d e n t i c a l i n s o l v a t e s 1 6 a n d 1 4 , t h e l a t t e r c o m p l e x s h o w s a l a r g e r J / k w h i c h c o r r e l a t e s w i t h a s m a l l e r < C 3 H 3 N 2 / C ( 5 H 5 > e q a n g l e . I n 1 5 a n d 1 4 , w h e r e s i m i l a r < C 3 H 3 N 2 / C ( ; H 5 > e q a n g l e s a r e o b s e r v e d , t h e l a r g e r J / k i n 1 4 c o r r e l a t e s w i t h a s m a l l e r b a s a l p l a n e d i s p l a c e m e n t d ( N 2 0 2 V / N z o z v ) . 2 2 4 D . C o n c l u s i o n s T h e m a g n e t i c p r o p e r t i e s o f e x t e n d e d l a y e r e d v a n a d y l p h o s p h a t e s a n d p h o s p h o n a t e s h a v e b e e n t r e a t e d q u a l i t a t i v e l y u n d e r t h e f r a m e w o r k o f t h e a c t i v e — e l e c t r o n a p p r o x i m a t i o n . T h e a n t i f e r r o m a g n e t i c c o m p o n e n t w a s a p p r o x i m a t e d a s t h e k i n e t i c e x c h a n g e t e r m , t h e m a g n i t u d e o f w h i c h c o r r e l a t e s w i t h g e o m e t r i c f e a t u r e s o f t h e e x c h a n g e p a t h w a y s . T h e s e w e r e i d e n t i fi e d a s d i m e r u n i t s w i t h s i n g l e — o r d o u b l e — b r i d g e d v a n a d y l c e n t e r s . S y n t h e s i s o f m o l e c u l a r a n a l o g s o f t h e e x c h a n g e p a t h w a y s a n d t h e s t u d y o f t h e i r m a g n e t i c p r o p e r t i e s p r o v i d e d a d d i t i o n a l i n f o r m a t i o n c o n c e r n i n g t h e e x c h a n g e c o u p l i n g . H e n c e , f o r t h e c h a i r — I i k e D V I I e x c h a n g e p a t h w a y - n o n — p a r a l l e l v a n a d y l b a s a l p l a n e s c o r r e l a t e w i t h a n t i f e r r o m a g n e t i c c o u p l i n g - p a r a l l e l b a s a l p l a n e s c o r r e l a t e w i t h e i t h e r a n t i f e r r o m a g n e t i c o r f e r r o m a g n e t i c c o u p l i n g - t h e s i g n o f t h e i n t e r a c t i o n ( f e r r o v s a n t i f e r r o ) f o r p a r a l l e l b a s a l p l a n e s d e p e n d s u p o n t h e i r r e l a t i v e d i s p l a c e m e n t d ( N 2 0 2 V / N 2 0 2 V ) - t h e c o n f o r m a t i o n o f t h e c h a i r c o r e ( a n d t h u s t h e p a r a m e t e r ( I ( N 2 0 2 V / N 2 0 2 V ) ) v a r i e s w i t h t e m p e r a t u r e - f e r r o m a g n e t i s m w a s o b s e r v e d f o r d ( N 2 0 2 V / N 2 0 2 V ) v a l u e s l a r g e r t h a n 1 . 6 0 A - a n t i f e r r o m a g n e t i s m w a s o b s e r v e d f o r d ( N 2 0 2 V / N 2 0 2 V ) v a l u e s s m a l l e r t h a n 1 . 4 3 A - t h e m a g n i t u d e o f t h e a n t i f e r r o m a g n e t i c i n t e r a c t i o n d i s p l a y s a r o u g h c o r r e l a t i o n t o t h e d ( N 2 0 2 V / N 2 0 2 V ) v a l u e , w i t h s m a l l e r e x c h a n g e c o u p l i n g s o b s e r v e d f o r l a r g e r d ( N 2 0 2 V / N 2 0 2 V ) d i s p l a c e m e n t s 2 2 5 - s u b s t i t u e n t e l e c t r o n i c e f f e c t s i n fl u e n c e d i r e c t l y t h e m a g n i t u d e o f t h e e x c h a n g e i n t e r a c t i o n b y c h a n g i n g t h e r e l a t i v e e n e r g i e s o f t h e m a g n e t i c o r b i t a l s - s u b s t i t u e n t e l e c t r o n i c e f f e c t s a r e p r o b a b l y i n fl u e n c e i n d i r e c t l y t h e m a g n i t u d e o f t h e e x c h a n g e i n t e r a c t i o n b y c h a n g i n g t h e e n e r g y o f t h e m e t a l ' s d x y o r b i t a l - l i g a n d - s o l v e n t n o n - c o v a l e n t i n t e r a c t i o n h a v e a p r o n o u n c e d i n fl u e n c e i n t h e c o n f o r m a t i o n g e o m e t r y o f t h e c h a i r c o r e - a d d i t i o n a l t e r m s o f l i g a n d t o m e t a l a n d m e t a l t o l i g a n d c h a r g e t r a n s f e r h a v e s i g n i fi c a n t c o n t r i b u t i o n t o t h e m a g n i t u d e o f t h e a n t i f e r r o m a g n e t i c t e r m - t h e c h a r g e t r a n s f e r t e r m s a r e s e n s i t i v e t o t h e i n t e r a c t i o n o f t h e l i g a n d s 1 : — s y s t e m s w i t h t h o s e o f o t h e r l i g a n d s a n d t h o s e o f s u r r o u n d i n g s o l v e n t m o l e c u l e s I n a d d i t i o n , t h e s y n t h e s i s a n d m a g n e t o s t r u c t u r a l c h a r a c t e r i z a t i o n o f t h e s y n — a n d t w i s t — t y p e d i m e r c o r e s ( b a s e d o n 2 , 2 ' — b i p y r i d y l l i g a n d s ) p r o v i d e d i n f o r m a t i o n r e g a r d i n g t h e c o r r e l a t i o n o f t h e a n t i f e r r o m a g n e t i c c o u p l i n g w i t h t h e r e l a t i v e o r i e n t a t i o n s o f t h e v a n a d i u m b a s a l p l a n e s . H e n c e , - a s t h e a n g l e b e t w e e n t h e v a n a d i u m b a s a l p l a n e s a p p r o a c h e s 9 0 ° t h e m a g n i t u d e o f t h e a n t i f e r r o m a g n e t i c i n t e r a c t i o n d e c r e a s e s . a s i m i l a r t r e n d i s o b s e r v e d a s t h e < 0 1 — V 1 — V 2 — 0 2 > a n g l e a p p r o a c h e s 9 0 ° - c o m p l i c a t i o n s a r i s e d u e t o t h e c o m p l e x g e o m e t r y o f t h e e x c h a n g e p a t h w a y , w h i c h m a k e s d i f f i c u l t t o q u a l i t a t i v e l y d e f i n e t h e o r i e n t a t i o n o f t h e m a g n e t i c o r b i t a l s 2 2 6 T h e q u a l i t a t i v e a r g u m e n t s p r e s e n t e d i n C h a p t e r s 3 a n d 4 c o r r e c t l y p r e d i c t e d t h e s i g n o f t h e m a g n e t i c i n t e r a c t i o n i n b o t h t h e e x t e n d e d a n d t h e m o l e c u l a r c o m p o u n d s . T h e m a g n i t u d e o f t h e m a g n e t i c c o u p l i n g , h o w e v e r , w a s h a r d e r t o e v a l u a t e . M a g n e t o s t r u c t u r a l c o r r e l a t i o n s b e y o n d t h e q u a l i t a t i v e a p p r o a c h u t i l i z e d i n t h i s w o r k s h o u l d t a k e u n d e r c o n s i d e r a t i o n b o t h t h e c o n f o r m a t i o n a l fl e x i b i l i t y o f t h e d i m e r c o r e a n d t h e v a r i e t y o f f a c t o r s t h a t i n fl u e n c e t h e e n e r g y o f t h e l i g a n d a n d m e t a l m o l e c u l a r o r b i t a l s . 2 2 7 L I S T O F R E F E R E N C E S ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 5 ) ( 7 ) ( 3 ) ( 9 ) ( 1 0 ) ( 1 1 ) ( 1 2 ) ( 1 3 ) ( 1 4 ) B e l t r a n , D . ; A m o r o s , P . ; l b a fi e z , R . ; M a r t i n e z , E . ; B e l t r a n , A . ; L e B a l l A . ; F e r e y , G . ; V i l l e n e u v e , G . S o l i d S t a t e I o n i c s 1 9 8 9 , 3 2 / 3 3 , 5 7 . B e l t r a n — P o r t e r , D . ; B e l t r a n — P o r t e r , A . ; A m o r o s , P . ; l b a fi e z , R . ; M a r t i n e z , E . ; L e B a i l , A . ; F e r e y , G . ; V i l l e n e u v e , G . E u r . J . S o l i d S t a t e I n o r g . C h e m . 1 9 9 1 , 2 8 , 1 3 1 . L e B i d e a u , J . ; P a p o u t s a k i s , D . ; J a c k s o n , J . E . ; N o c e r a , D . G . ; J . A m . C h e m . S o c . 1 9 9 7 , 1 1 9 , 1 3 1 3 . P a p o u t s a k i s , D . ; J a c k s o n , J . E . ; N o c e r a , D . G . I n o r g . C h e m . 1 9 9 6 , 3 5 , 8 0 0 . F o w l e s , G . W . A . ; R i c e , D . A . ; W i l k i n s , J . D . I n o r g . C h i m . A c t a 1 9 7 3 , 7 , 6 4 2 . S p e k , A . L . A c t a C r y s t . 1 9 9 0 , A 4 6 , C 3 4 . ( a ) D e a n , N . S . ; M o k r y , L . M . ; B o n d , M . R . ; O ' C o n n o r , C . J . ; C a r r a n o , C . J . I n o r g . C h e m . 1 9 9 6 , 3 5 , 3 5 4 1 . ( b ) D e a n , N . 8 . ; M o k r y , L . M . ; B o n d , M . R . ; M o h a n , M . ; O t i e n o , T . ; O ' C o n n o r , C . J . ; S p a r t a l i a n , K . ; C a r r a n o , C . J . I n o r g . C h e m . 1 9 9 7 , 3 6 , 1 4 2 4 . B o n d , M . R . ; M o k r y , L . M ; 0 t i e n o , T . ; T h o m p s o n , J . ; C a r r a n o , C . J . I n o r g . C h e m . 1 9 9 5 , 3 4 , 1 8 9 4 . B a l l h a u s e n , C . J . ; G r a y , H . B . I n o r g . C h e m . 1 9 6 2 , 1 , 1 1 1 . ( a ) B e d d o e s , R . L . ; C o l l i s o n , D . ; M a b b s , F . E . ; P a s s a n d , M . A . P o l y h e d r o n 1 9 9 0 , 9 , 2 4 8 3 . ( b ) P a t e l , K . S . ; K o l a w o l e , G . A . ; E a r n s h a w , A . J . I n o r g . N u c l . C h e m . 1 9 8 1 , 4 3 , 3 1 0 7 . B l e a n e y , B . ; B o w e r s , K . D . P r o c . R o y . S o c . ( L o n d o n ) 1 9 5 2 , S e r . A 2 1 4 , 4 5 1 . M o h a n , M . ; H o l m e s , S . M . ; B u t c h e r , R . J . ; J a s i n s k i , J . P . ; C a r r a n o , C . J . I n o r g . C h e m . 1 9 9 2 , 3 1 , 2 0 2 9 . D e a n , 8 . ; B o n d , M . R . ; O ' C o n n o r , C . J . ; C a r r a n o , C . J . I n o r g . C h e m . 1 9 9 6 , 3 5 , 7 6 4 3 . C h e n , 0 . ; S a l t a , J . ; Z u b i e t a , J . I n o r g . C h e m . 1 9 9 3 , 3 2 , 4 4 8 5 . 2 2 8 ( 1 5 ) ( 1 5 ) ( 1 7 ) ( 1 8 ) ( 1 9 ) ( 2 0 ) ( 2 1 ) ( 2 2 ) ( 2 3 ) ( 2 4 ) ( 2 5 ) ( 2 6 ) ( 2 7 ) ( 2 8 ) ( a ) H u n t e r , C . A . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 3 , 3 2 , 1 5 8 4 . ( b ) H u n t e r , C . A . C h e m . S o c . R e v . 1 9 9 4 , 2 3 , 1 0 1 . H a h n , C . W . ; R a s m u s s e n , P . G . ; B a y o n , J . C . I n o r g . C h e m . 1 9 9 2 , 3 1 , 1 9 6 3 . ( a ) M a b b s , F . E . ; C o l l i s o n , D . i n E l e c t r o n P a r a m a g n e t i c R e s o n a n c e o f d T r a n s i t i o n M e t a l C o m p o u n d s ; E l s e v i e r : A m s t e r d a m 1 9 9 2 . ( b ) C o l l i s o n , D . ; M a b b s , F . E . ; T u r n e r , S . S . J . C h e m . S o c . F a r a d a y T r a n s . 1 9 9 3 , 8 9 , 3 7 0 5 . ( c ) M a b b s , F . E . C h e m . S o c . R e v . , , 3 1 3 . B e l f o r d , R . L . ; C h a s t e e n , N . D . ; 8 0 , H . ; T a p s c o t t , R . E . J . A m . C h e m . S o c . 1 9 6 9 , 9 1 , 4 6 7 5 . B l e a n e y , B . ; B o w e r s , K . D . P r o c . R o y . S o c . ( L o n d o n ) 1 9 5 2 , S e r . A 2 1 4 , 4 5 1 . ( a ) W h i t e s i d e s , G . M . ; M a t h i a s , J . P . ; S e t o , C . T . S c i e n c e 1 9 9 1 , 2 5 4 , 1 3 1 2 . ( b ) M a c D o n a l d , J . C . ; W h i t e s i d e s , G . M . C h e m . R e v . 1 9 9 4 , 9 4 , 2 3 8 3 . ( c ) E t t e r , M . C . J . P h y s . C h e m . 1 9 9 1 , 9 5 , 4 6 0 1 . ( d ) E t t e r , M . C . A c c . C h e m . R e s . 1 9 9 0 , 2 3 , 1 2 0 . ( e ) R u s s e l l , V . A . ; W a r d , M . 0 . C h e m . M a t e r . 1 9 9 6 , 8 , 1 6 5 4 . ( f ) C l a e s s e n s , C . G . ; S t o d d a r t , J . F . J . P h y s . O r g . C h e m . 1 9 9 7 , 1 0 , 2 5 4 . H u n t e r , 0 ; S a n d e r s , J . K . M . J . A m . C h e m . S o c . 1 9 9 0 , 1 1 2 , 5 5 2 5 . ( a ) C o z z i , F . ; C i n q u l n i , M . ; A n n u n z i a t a , R . ; I w y e r , T . ; S i e g e l , J . S . J . A m . C h e m . S o c . 1 9 9 2 , 1 1 4 , 5 7 2 9 . ( b ) C o z z i , F . ; C i n q u i n i , M . ; A n n u n z i a t a , R . ; S i e g e l , J . S . J . A m . C h e m . S o c . 1 9 9 3 , 1 1 5 , 5 3 3 0 . ( c ) C o z z i , F . ; P o n z i n i , F . ; A n n u n z i a t a , R . ; C i n q u i n i , M . ; S i e g e l , J . S . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 5 , 3 4 , 1 0 1 9 . H a t fi e l d , W . E . i n M a g n e t o - S t r u c t u r a l C o r r e l a t i o n s i n E x c h a n g e C o u p l e d S y s t e m s ; W i l l e t t , R . D . , G a t t e s c h i , D , K a h n , 0 . , E d s . ; N A T O A S l S e r i e s ; R e i d e l : D o r d r e c h t , 1 9 8 5 . P l a s s , W . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 6 , 3 5 , 6 2 7 . K a h n , O . i n M o l e c u l a r M a g n e t i s m ; V C H P u b l i s h e r s : N e w Y o r k 1 9 9 3 . L o w r y , T . H . ; R i c h a r d s o n , K . S . i n M e c h a n i s m a n d T h e o r y i n O r g a n i c C h e m i s t r y , H a r p e r C o l l i n s P u b l i s h e r s , N e w Y o r k 1 9 8 7 . H a y , P . J . ; T h i b e a u l t , J . C . ; H o f f m a n n , R . J . A m . C h e m . S o c . 1 9 7 5 , 9 7 , 4 8 8 4 . R u i z , E . ; A l e m a n y , P . ; A l v a r e z , S . ; C a n o , J . J . A m . C h e m . S o c . 1 9 9 7 , 1 1 9 , 1 2 9 7 . 2 2 9 ( 2 9 ) ( 3 0 ) ( 3 1 ) ( 3 2 ) ( 3 3 ) S a n a n e s , M . T . ; T u e l , A . J . C h e m . S o c . C h e m . C o m m u n . 1 9 9 5 , 1 3 2 3 . V i l l e n e u v e , G . ; S u h , K . S . ; A m o r o s , P . ; C a s a fi — P a s t o r , N . ; B e l t r a n - P o r t e r , D . C h e m . M a t e r . 1 9 9 2 , 4 , 1 0 8 . C a n o , J . ; A l e m a n y , P . ; A l v a r e z , S . ; V e r d a g u e r , M . ; R u i z , E . C h e m . E u r . J . 1 9 9 8 , 4 , 4 7 6 . d e L o t h P . ; C a s s o u x , P . ; D a u d e y , J . P . ; M a l r i e u , J . P . J . A m . C h e m . S o c . 1 9 8 1 , 1 0 3 , 4 0 0 7 . ( a ) S t r o n g , R . L . i n I n t e r m o l e c u l a r F o r c e s ; P u l l m a n , 8 . , E d . ; D . R e i d e l : D o r d r e c h t 1 9 8 1 . ( b ) C l a v e r i e , P . i n I n t e r m o l e c u l a r I n t e r a c t i o n s : F r o m D i a t o m i c s t o B i o p o l y m e r s ; P u l l m a n , B . , E d . ; W i l e y : C h i c h e s t e r 1 9 7 8 . 2 3 0 C H A P T E R 5 A m i d i n i u m - C a r b o x y l a t e S a l t B r i d g e : A S y n t h o n f o r S t r u c t u r a l D e s i g n a n d T r a n s m i s s i o n o f M a g n e t i c P r o p e r t i e s A . I n t r o d u c t i o n T h e fi e l d o f s u p r a m o l e c u l a r c h e m i s t r y , “ t h e c h e m i s t r y b e y o n d t h e m o l e c u l e ” i s d e f i n e d b y L e h n 1 a s “ t h e d e s i g n e d c h e m i s t r y o f t h e i n t e r m o l e c u l a r b o n d , j u s t a s m o l e c u l a r c h e m i s t r y i s t h a t o f t h e c o v a l e n t b o n d . ” T h e r e l a t i v e l y n e w r e s e a r c h fi e l d o f s u p r a m o l e c u l a r c h e m i s t r y i s r a p i d l y e x p a n d i n g a n d a t t r a c t i n g n e w r e s e a r c h e r s , d u e t o t h e e n d l e s s p e r s p e c t i v e s o f f e r e d b y i t s l o c a t i o n a t t h e i n t e r s e c t i o n o f c h e m i s t r y , b i o l o g y a n d p h y s i c s . I n s u p r a m o l e c u l a r c h e m i s t r y , t h e s u p r a m o l e c u l e s a r e n o t a n y m o r e v i e w e d a s a c o l l e c t i o n o f i n d i v i d u a l s p e c i e s o r a s r a n d o m m o l e c u l a r a g g r e g a t e s . T h e r e a r e d i s t i n c t 2 3 1 n a n o s t r u c t u r e s w i t h d i f f e r e n t p r o p e r t i e s f r o m t h o s e o f t h e i n d i v i d u a l b u i l d i n g b l o c k s t h a t a r e t h e r e s u l t o f t h e s u p r a m o l e c u l e ' s t e r t i a r y s t r u c t u r e z . T h e c o l l e c t i v e p r o p e r t i e s o f n a n o s t r u c t u r e s c a n b e t u n e d o r m o d i fi e d b y c h e m i c a l c h a n g e s i n t h e m o l e c u l a r b u i l d i n g b l o c k s . I t i s t h e r e f o r e c l e a r t h a t o n e h a s t o t a k e i n t o a c c o u n t m a n y d i f f e r e n t f a c t o r s i n t h e s u c c e s s f u l d e s i g n o f a s u p r a m o l e c u l e . I t i s t h i s c o m p l e x i t y t h a t p r o d u c e s m a t e r i a l s w i t h u n i q u e f u n c t i o n s a n d a p p l i c a t i o n s . F o r t u n a t e l y t h e s e c h a l l e n g e s a r e g u i d e d b y t h e s t u d y o f n a t u r a l s y s t e m s , w h e r e c o m p o s i t e s t r u c t u r e s a r e f o r m e d b y t h e s e l f — o r g a n i z a t i o n o f m o l e c u l a r c o m p o n e n t s w h i c h i n t e r a c t i n c e r t a i n , w e l l — d e fi n e d w a y s 3 . A l t h o u g h i n t e r p e n e t r a t i o n b e t w e e n a r e a s t a k e s p l a c e , n o v e l l i n e s o f i n v e s t i g a t i o n h a v e b e e n d e v e l o p e d i n t h e s u p r a m o l e c u l a r c h e m i s t r y 4 t h a t i n v o l v e m o l e c u l a r r e c o g n i t i o n e f f e c t s , t h e s y n t h e s i s a n d s t u d y o f s u p r a m o l e c u l a r d e v i c e s t h a t a r e a b l e t o m i m i c t h e f u n c t i o n s o f n a t u r a l s y s t e m s , a n d s e l f - a s s e m b l y p h e n o m e n a ( F i g u r e 1 ) . M o l e c u l a r r e c o g n i t i o n i s d e f i n e d a s t h e s e l e c t i v e b i n d i n g o f a s u b s t r a t e b y a m o l e c u l a r r e c e p t o r t o f o r m a s u p r a m o l e c u l e . S y s t e m s t h a t m e e t t h e a b o v e d e fi n i t i o n i n c l u d e t h e t w o c a t a l y t i c r e a c t i o n s r e p o r t e d b y K e l l y a n d c o w o r k e r s s , w h e r e a t e m p l a t e m o l e c u l e b i n d s t h e r e a c t a n t s t h r o u g h a n e t w o r k o f h y d r o g e n b o n d s . T h e t e m p l a t e m o l e c u l e i s a c t i n g a s a n a r t i fi c i a l e n z y m e b y b r i n g i n g t h e r e a c t a n t s i n c l o s e p r o x i m i t y a n d a c c e l e r a t i n g t h e i r r e a c t i o n . W h e n t h e r e a c t i o n p r o d u c t c a n s e r v e a s t e m p l a t e f o r i t s o w n f o r m a t i o n a n d , i n a d d i t i o n i s c a p a b l e o f c o n s e r v i n g a n d e x p r e s s i n g i t s s t r u c t u r e , t h e n t h e r e a c t i o n i s t e r m e d a s e l f — r e p l i c a t i o n p r o c e s s . T h e fi r s t e x a m p l e s o f s e l f — r e p l i c a t i o n w e r e c o n c e r n e d w i t h t h e n o n e n z y m a t i c l i g a t i o n o f n u c l e o t i d e s ” . P u r e l y s y n t h e t i c s e l f — r e p l i c a t i n g s y s t e m s w e r e l a t t e r d e v e l o p e d 8 w i t h t h e s i m p l e s t o n e ( F i g u r e 2 ) c o n t a i n i n g a n a m i d i n i u m - c a r b o x y l a t e s a l t b r i d g e a s a k e y c o m p o n e n t f o r t h e a s s e m b l y o f t h e s u p r a m o l e c u l e g . I n t h i s e x a m p l e , t h e c o n d e n s a t i o n o f 3 - a m i n o b e n z i d i n e s a n d 2 — 2 3 2 C H E M I S T R Y M O L E C U L A R S U P R A M O L E C U L A R S E L F - A S S E M B L Y S E L F - O R G A N I Z A T I O N p o l y m o l e o u l a r a s s e m b l i e s R E C E P T O R R E C O G N I T I O N I N T E R A C T I O N M O L E C U L A R A N D S U P R A M O L E C U L E H T R A N S F O R M A T I O N 2 : ) S I E J S Q E I I Q O L E C U L A R i n t e r m o l e c u l a r b o n d s T R A N S L O C A T I O N S U B S T R A T E F U N C T I O N A L C O M P O N E N T S F i g u r e 1 . F r o m m o l e c u l a r t o s u p r a m o l e c u l a r c h e m i s t r y : m o l e c u l e s , s u p r a m o l e c u l e s , m o l e c u l a r a n d s u p r a m o l e c u l a r d e v i c e s . 2 3 3 R 1 R , F i g u r e 2 . C o n d e n s a t i o n r e a c t i o n o f 3 — a m i n o b e n z i d i n e s w i t h 2 — f o r m y l p h e n o x y a c e t i c a c i d s v i a t h e a s s e m b l y o f a t e r n a r y c o m p l e x , a m i a b l e b y a n a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e . 2 3 4 f o r m y l p h e n o x y a c e t i c a c i d s i s f a c i l i t a t e d b y t h e c l o s e p r o x i m i t y o f t h e r e a c t a n t s o n - t h e t e r n a r y c o m p l e x f o r m e d b y t h e s t r o n g i n t e r a c t i o n i n t h e a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e . S u p r a m o l e c u l a r d e v i c e s o n t h e o t h e r h a n d a r e s t r u c t u r a l l y o r g a n i z e d a n d f u n c t i o n a l l y i n t e g r a t e d c h e m i c a l s y s t e m s b u i l t i n t o s u p r a m o l e c u l a r a r r a y s “ ) . T h e d i s t i n c t m o l e c u l a r c o m p o n e n t s , w h e n p l a c e d i n a p r o p e r o r d e r , p e r f o r m e d s p e c i fi c f u n c t i o n s c h a r a c t e r i s t i c o f t h e s u p r a m o l e c u l e . T h i s a r e a o f s u p r a m o l e c u l a r c h e m i s t r y i s t h e f o c u s o f m a n y r e s e a r c h g r o u p s a f f o r d i n g a v a s t 3 . 1 0 a n d v a r i e t y o f d e v i c e s a n d h a s b e e n t h e t o p i c o f m a n y i n t e r e s t e d r e v i e w s m o n o g r a p h s " . S u c h a n e x a m p l e i s s e l e c t e d f r o m t h e w o r k o f D r . J . A . R o b e r t s ” , a n d i s i l l u s t r a t e d i n F i g u r e 3 w h e r e d o n o r — a c c e p t o r c o m p l e x e s f o r e l e c t r o n t r a n s f e r r e a c t i o n s a r e d r a w n . T h e a s s e m b l y o f t h e t w o s p e c i e s i s a c h i e v e d i n s o l u t i o n w i t h t h e a i d o f a n a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e . T h i s s t r u c t u r a l e l e m e n t n o t o n l y f a c i l i t a t e s t h e f o r m a t i o n o f t h e t e r n a r y c o m p l e x b u t a l s o p e r m i t s e l e c t r o n i c c o m m u n i c a t i o n a n d a c t i v e l y p a r t i c i p a t e s i n t h e e l e c t r o n t r a n s f e r e v e n t . S e l f — a s s e m b l y p h e n o m e n a i n v o l v e t h e s p o n t a n e o u s g e n e r a t i o n o f s u p r a m o l e c u l a r a r c h i t e c t u r e s , v i a m o l e c u l a r r e c o g n i t i o n s e q u e n c e s , b y i t s i n d i v i d u a l c o m p o n e n t s i n t h e l i q u i d o r t h e s o l i d s t a t e p h a s e . T h e s e t y p e s o f p h e n o m e n a m a n i f e s t t h e s y n t h e s i s a n d f u n c t i o n s o f n u m e r o u s c o m p l e x b i o l o g i c a l s y s t e m s , w h i c h a r e n o t e n t i r e l y b u i l t u p b y c o v a l e n t l y l i n k e d m o l e c u l a r u n i t s . N o n c o v a l e n t b o n d i n g p l a y s a p r o m i n e n t r o l e t o t h e s e l f — o r g a n i z a t i o n o f t h e s e m a c r o m o l e c u l e s a n d i t i s b y t h i s i n t e l l i g e n t d e s i g n t h a t N a t u r e i n t r o d u c e s s y n t h e t i c e c o n o m y , r e d u c e s s t r u c t u r a l e r r o r s u p o n r e p r o d u c t i o n a n d f a c i l i t a t e s t h e f o r m a t i o n o f t h e d e s i r e d s u p r a m o l e c u l e s ” . A s p r o g r e s s i n o r g a n i c a n d i n o r g a n i c s y n t h e s i s i s s u s t a i n e d b y s u c c e s s f u l i m i t a t i o n o f n a t u r a l s y s t e m s , t h e r e i s a n e e d f o r t h e d e v e l o p m e n t o f n o v e l s y n t h e t i c r o u t e s t h a t w i l l a l l o w t h e s u c c e s s f u l d e s i g n a n d s y n t h e s i s o f s u p r a m o l e c u l a r s p e c i e s . T h e l a c k o f s i m p l e 2 3 5 N o 2 N o 2 ( A ) H N o 2 / ( b p y ) 2 R U " \ 0 " " H _ N N - + ) O - - - - H - - N \ H N 0 2 ( 3 ) F i g u r e 3 . S u p r a m o l e c u l a r c o m p l e x e s ( A ) a n d ( B ) a s s e m b l e d i n s o l u t i o n , f o r e l e c t r o n t r a n s f e r s t u d i e s , w i t h a n a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e a s t h e c o n n e c t i n g s t r u c t u r a l e l e m e n t . 2 3 6 r u l e s , a n a l o g o u s t o t h e o n e s a p p l i e d f o r t h e f o r m a t i o n o f c o v a l e n t a n d i o n i c b o n d s , i s m o r e p r o m i n e n t a s t h e w e a l t h o f s t r u c t u r a l m o t i f s i n c r e a s e s , w h i l e a t t h e s a m e t i m e t h e p r e d i c t i v e p o w e r s o f t h e r e s e a r c h e r s a r e v e r y l i m i t e d . I t i s t h r o u g h t h i s n e c e s s i t y t h a t t h e fi e l d o f c r y s t a l e n g i n e e r i n g h a s e m e r g e d ” . I t w a s t “ , w h o d e m o n s t r a t e d t h a t n o v e l o r i g i n a t e d b y t h e p i o n e e r i n g s t u d i e s o f S c h m i d s o l i d s t a t e p a c k i n g a r r a n g e m e n t s o f c i n n a m i c a c i d d e r i v a t i v e s d i s p l a y e d d i f f e r e n t p h o t o d i m e r i z a t i o n b e h a v i o r . A r e c e n t d e fi n i t i o n g i v e n b y D e s i r a j u 1 5 l a y s t h e f o u n d a t i o n s o f t h e f i e l d a s : “ t h e u n d e r s t a n d i n g o f i n t e r m o l e c u l a r i n t e r a c t i o n s i n t h e c o n t e x t o f c r y s t a l p a c k i n g a n d i n t h e u t i l i z a t i o n o f s u c h u n d e r s t a n d i n g i n t h e d e s i g n o f n e w s o l i d s w i t h d e s i r a b l e p h y s i c a l a n d c h e m i c a l p r o p e r t i e s . ” S o , i t i s t h e g o a l o f t h e fi e l d t o s y s t e m a t i z e t h e p r i n c i p l e s t h a t g o v e r n n o n c o v a l e n t b o n d i n g a n d a p p l y t h e m t o s u p r a m o l e c u l a r s y n t h e s i s . H y d r o g e n — b o n d i n g , d i p o l e , h y d r o p h o b i c , a r o m a t i c n — s t a c k i n g a n d v a n d e r W a a l s f o r c e s a r e s o m e o f t h e n o n c o v a l e n t i n t e r m o l e c u l a r i n t e r a c t i o n s t h a t h a v e b e e n f o u n d t o s e l f — a s s e m b l e m o l e c u l e s i n t o s o l i d s 1 6 . T h i s s y s t e m a t i c a n a l y s e s o f s t r u c t u r a l d a t a a i d e d b y t h e o n g o i n g i m p r o v e m e n t s a n d d e v e l o p m e n t s o f t h e C a m b r i d g e S t r u c t u r a l D a t a b a s e " , n o t o n l y u n m a s k s t h e i n t e r m o l e c u l a r f o r c e s r e s p o n s i b l e f o r t h e s e l f — o r g a n i z a t i o n o f m o l e c u l a r u n i t s t o s u p r a m o l e c u l e s b u t i d e n t i fi e s c o m m o n b u i l d i n g b l o c k s t h a t i n t e r a c t i n k n o w n w a y s . T h e s e a r e r e f e r r e d t o a s s u p r a m o l e c u l a r s y n t h o n s 2 o r m o d u l e s ‘ s ‘ e ) a n d t h e i r v a l u e i s a n a l o g o u s t o t h e v a l u e o f r e s p e c t i v e s t r u c t u r a l f e a t u r e s i n a t a r g e t m o l e c u l e o f o r g a n i c s y n t h e s i s . M o s t o f t h e s y n t h o n s a r e b a s e d o n t r a d i t i o n a l h y d r o g e n — b o n d i n g i n t e r a c t i o n s i n v o l v i n g t h e h y d r o g e n a t o m o f a n — N H R o r — 0 H m o i e t y a n d a h i g h l y e l e c t r o n e g a t i v e a c c e p t o r a t o m l i k e 0 , N o r F . T y p i c a l e x a m p l e s a r e s y n t h o n s 1 a n d 2 s h o w n i n F i g u r e 4 , w h e r e t h e t w o c a r b o x y l i c u n i t s c o m p r i s i n g t h e b u i l d i n g b l o c k c a n e i t h e r f o r m a t w o — o r o n e — p o i n t h y d r o g e n b o n d r e s p e c t i v e l y . V a r i o u s f a c t o r s c o u l d g o v e r n t h e p r e f e r e n c e f o r o n e o v e r t h e o t h e r , a s i t w a s d e m o n s t r a t e d b y E t t e r a n d 2 3 7 n : 1 : : o ' . c 8 3 : : 0 8 ‘ 3 : Z “ ! 2 l I / " ' N ‘ O 2 i O s - - I — Z \ 1 ° x N H I I 1 “ _ f : I — N l \ H ’ N N ‘ / / ) 1 N x N / \ \ . H . 3 " 0 3 4 F i g u r e 4 . R e p r e s e n t a t i v e s u p r a m o l e c u l a r s y n t h o n s . I \ / / Z O E Z - I z - Z . > f ‘ ) < Y ) * 2 / — \ / I I — I I ‘ I m r 1 — O T I o ‘ ' ' g o o I \ ' h \ I ] , 1 - , / n I g m I , \ I n o \ \ Z - - I - z / r N ‘ , z n i 1 z 2 ‘ I ’ 1 \ $ 0 1 5 m I m L / \ fl ’ Z - - : l : — z a > < n O 0 O — H Z - - I — Z I - Z / _ \ I / o - - : r : — z 8 1 T - - - ' 0 f 0 0 ” \ ‘ o l : E N o — 1 1 - - - - o - - - ) 1 — o ) — — 1 O H - O O — I - I - - - o - - - 4 ) — - - - - o C / \ N N I 1 1 I N 2 1 2 N - - - - H 1 I 1 : I c r - - - o 1 : : I S r : 0 - 1 N - - - - c 1 O / = N 3 - 8 4 — 1 9 1 ' 1 1 T N ‘ \ H I i I O J L N 1 ' : 1 1 2 9 N - - - - C l 4 ; ) . 1 H - - - - O / O N \ ‘ 9 4 O \ z \ : 1 : I Z = O - - I ’ 2 : ) — \ / / ( " 3 I : : ’ l \ \ > 0 ’ O ‘ - 2 — 2 . 9 I ' O 1 I Q I ‘ \ a I - - O n 1 a m _ : 4 I 9 o o H = 8 " : / + 8 . . ) < I / \ z — ' I 0 2 3 8 c o w o r k e r s “ , w h e r e t h e b o n d i n g m o d e w a s i n fl u e n c e d b y t h e s t e r i c d e m a n d i m p o s e d b y t h e n e i g h b o r i n g t o t h e c a r b o x y l a t e a l k y l g r o u p s . A t t r a c t i v e h y d r o g e n — b o n d i n g i n t e r a c t i o n s t h a t i n v o l v e w e a k e r a c c e p t o r m o l e c u l e s o r “ u n u s u a l ” d o n a t i n g h y d r o g e n s o u r c e s , h a v e a l s o b e e n u s e d q u i t e s u c c e s s f u l l y a s m o l e c u l a r c e m e n t o f s u p e r s t r u c t u r e s . S y n t h o n s 7 - 1 2 a n d 3 1 - 3 2 ( F i g u r e 4 ) d e m o n s t r a t e s u c h e x a m p l e s . I t i s n o t e w o r t h y t h a t t h e h y d r o g e n a t o m s i n v o l v e d i n h y d r o g e n b o n d i n g , p o s s e s s e n h a n c e d a c i d i t y b y b e i n g a l w a y s p l a c e d i n t h e a — p o s i t i o n o f a d o u b l e b o n d o r o t h e r e l e c t r o n — r i c h g r o u p s . A p a r t f r o m h y d r o g e n — b o n d i n g , w h i c h m o s t o f t h e t i m e s s e t s t h e p r i m a r y t y p e o f i n t e r a c t i o n s i n a s u p r a m o l e c u l a r a r c h i t e c t u r e , t h e o v e r a l l t e r t i a r y s t r u c t u r e o f t h e m a t e r i a l i s d e t e r m i n e d b y t h e s y n e r g i s t i c c o n t r i b u t i o n o f w e a k e r i n t e r m o l e c u l a r f o r c e s . T h e i r r e l a t i v e w e i g h t i s h a r d t o e s t i m a t e s i n c e m o s t o f t h e t i m e s t h e y r e m a i n m a s k e d d u e t o t h e p r e s e n c e o f s t r o n g e r i n t e r a c t i o n s . R e l a t i v e l y r e c e n t l y , s o m e e f f o r t h a s b e e n d e v o t e d t o t h e s u b j e c t b y e n g i n e e r i n g s t r u c t u r e s b a s e d o n s y n t h o n s t h a t d o n o t i n v o l v e h y d r o g e n — b o n d i n g i n t e r a c t i o n s ( e n t r i e s 1 7 , 2 5 - 2 7 , a n d 3 3 - 3 5 i n F i g u r e 4 ) . F o r e x a m p l e D e s i r a j u a n d c o w o r k e r s ” , h a v e a s s e m b l e d t a p e s a n d l a m e l l a r s t r u c t u r e s b a s e d o n n i t r o g e n — c h l o r i n e b o n d s , w h i l e t h r e e — d i m e n s i o n a l d i a m o n d t y p e n e t w o r k s 2 0 h a v e b e e n c o n s t r u c t e d w i t h t h e a i d o f h a l o g e n — h a l o g e n i n t e r a c t i o n s . C h a r g e d s p e c i e s a r e s e l d o m u s e d a s b u i l d i n g b l o c k s o f e x t e n d e d s t r u c t u r e s . T h e n o n d i r e c t i o n a l i t y o f t h e e l e c t r o s t a t i c i n t e r a c t i o n a l o n g w i t h t h e i n a b i l i t y t o d e s o l v a t e c h a r g e d s p e c i e s f r o m p o l a r e n v i r o n m e n t s a n d t h e n e e d f o r c o u n t e r i o n s t o m a i n t a i n c h a r g e n e u t r a l i z a t i o n i n t h e c r y s t a l l i n e e n v i r o n m e n t , a r e s o m e o f t h e i r d r a w b a c k s . T h e s e p r o b l e m s h o w e v e r c a n b e o v e r c o m e w h e n t h e s y n t h o n i s a s a l t b r i d g e . T h e s e a r e c h a r g e d s p e c i e s w h e r e i n a d d i t i o n t o h y d r o g e n — b o n d i n g , t h e e l e c t r o s t a t i c a t t r a c t i o n e n h a n c e s t h e s t r e n g t h o f t h e n o n b o n d i n g i n t e r a c t i o n p r o v i d i n g a p o w e r f u l t o o l f o r c r y s t a l e n g i n e e r i n g . 2 3 9 A m m o n i u m — c a r b o x y l a t e s a l t b r i d g e s 2 1 h a v e l e d t o s u c c e s s f u l e x a m p l e s o f e n g i n e e r e d s t r u c t u r e s , w h i l e t h e u s e o f g u a n i d i n i u m — s u l f o n a t e s a s s y n t h o n s b y W a r d a n d c o w o r k e r s ” , h a s p r o v i d e d n u m e r o u s t a p e s a n d l a y e r e d m o t i f s i n c l u d i n g a r e c e n t e x a m p l e o f n a n o p o r o u s m a t e r i a l s w i t h m o l e c u l a r — s c a l e v o i d s o f c o n t r o l l e d s i z e s ” . C h o o s i n g t h e d i m e n s i o n a l i t y b e t w e e n t a p e s o r l a y e r s c a n b e d i f fi c u l t . T h i s i s n o t t h e c a s e i n n a t u r a l s y s t e m s w h e r e t h e t e r t i a r y s t r u c t u r e o f p r o t e i n s a n d e n z y m e s i s o f t e n d e t e r m i n e d b y s e c o n d a r y e l e c t r o s t a t i c i n t e r a c t i o n s o f s a l t b r i d g e s b u t t r e s s e d a n d o r i e n t e d w i t h h y d r o g e n b o n d i n g . U s i n g N a t u r e ’ s e x a m p l e w e h a v e e x p l o i t e d t h e a b i l i t y o f s a l t b r i d g e s t o s e t t h e d i m e n s i o n a l i t y i n e n g i n e e r e d s o l i d s . O u r a p p r o a c h i s c e n t e r e d o n t h e a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e a s a s y n t h o n f o r s e l f — a s s e b l y . N — — < < C + ) H 9 3 > — N — H - - - - O H / S c h e m e 1 A s s h o w n i n S c h e m e 1 , t h i s s y n t h o n m o d e l s t h e p r i m a r y i n t e r a c t i o n o f t h e g u a n i d i n i u m — c a r b o x y l a t e i n t e r f a c e i n c o r p o r a t e d i n a r g i n i n e ( A r g ) a n d a s p a r t a t e ( A s p ) r e s i d u e s o f m a n y n a t u r a l s y s t e m s “ , w h i l e t h e d e s i g n s t r a t e g y i s s i m p l i fi e d b y o f f e r i n g o n l y o n e c a r b o x y l a t e b i n d i n g m o d e w i t h i n t h e s a l t b r i d g e . I n a d d i t i o n , t h e s u c c e s s f u l u s e o f t h i s s y n t h o n f o r t h e a s s e m b l y o f t h e s e l f — r e p l i c a t i n g s y s t e m d e p i c t e d i n F i g u r e 2 a n d t h e s u p r a m o l e c u l a r c o m p l e x f o r e l e c t r o n t r a n s f e r s h o w n i n F i g u r e 3 i l l u s t r a t e s t h e s t r e n g t h o f t h e p r i m a r y i n t e r a c t i o n s i n c e t h e s e 2 4 0 s u p r a m o l e c u l e s w e r e a s s e m b l e d i n s o l u t i o n . I n t h e l a t t e r c a s e , t i t r a t i o n s t u d i e s c o n d u c t e d b y D r . J . P . K i r b y ” , h a v e m o n i t o r e d t h e f o r m a t i o n o f t h e 1 : 1 a m i d i n i u m — c a r b o x y l a t e c o m p l e x e s a n d i n d i c a t e d t h e p r e s e n c e o f s e c o n d a r y i n t e r a c t i o n s a s t h i s r a t i o i s e x c e e d e d . T h e m a i n s c o p e o f t h i s w o r k i s t o e x p l o r e p o s s i b i l i t i e s o f u t i l i z i n g s a l t b r i d g e s n o t o n l y a s s t r u c t u r a l e l e m e n t s , b u t a l s o a s c o n d u c t o r s o f e l e c t r o n i c c o m m u n i c a t i o n . W o r k o n e l e c t r o n t r a n s f e r ( F i g u r e 3 ) p l a c e s t h e a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e a t t h e c e n t e r o f a t t e n t i o n a s a s t r u c t u r a l a n d c o m m u n i c a t i o n e l e m e n t ” . B y t h e s a m e r e a s o n i n g , t h e s a l t b r i d g e c a n b e u t i l i z e d a s a c o u p l i n g l i n k f o r r a d i c a l c e n t e r s l o c a t e d o n t h e o x y g e n a t o m s o f o r g a n i c n i t r o x i d e s . T h e a b i l i t y o f t h e n i t r o x y l g r o u p t o f u n c t i o n a s a c r y s t a l e n g i n e e r i n g e l e m e n t i n c o n j u n c t i o n w i t h h y d r o g e n d o n o r g r o u p s h a s b e e n e x p l o r e d r e l a t i v e l y r e c e n t l y ” . V e c i a n a a n d c o w o r k e r s ” , s y s t e m a t i z e d t h e m a g n e t o s t r u c t u r a l b e h a v i o r o f a — p h e n y l n i t r o n y l n i t r o x i d e r a d i c a l s b y p l a c i n g a n O — H g r o u p a t v a r i o u s p o s i t i o n s o n t h e a r o m a t i c r i n g . T h e s t r u c t u r a l m o t i f s o b t a i n e d , r a n g i n g f r o m z e r o — d i m e n s i o n a l t o t h r e e — d i m e n s i o n a l , w e r e a c c o m p a n i e d b y a r e m a r k a b l e r a n g e o f m a g n e t i c b e h a v i o r s . T h e fi r s t p a r t o f t h i s c h a p t e r d e a l s w i t h t h e s e l f — a s s e m b l y o f t h e b i f u n c t i o n a l m o l e c u l e 3 — a m i d i n i u m b e n z o a t e ( 1 ) a n d e s t a b l i s h e s t h e r o l e o f t h e a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e a s a s y n t h o n f o r t h e s u c c e s s f u l o r g a n i z a t i o n o f s u p e r s t r u c t u r e s . I t a l s o d e m o n s t r a t e s t h e a b i l i t y o f a n i t r o x y l r a d i c a l g r o u p , i n 2 , 2 , 5 , 5 — t e t r a m e t h y I — 3 — c a r b o x y p y r r o l i n e — 1 — o x y l ( 2 ) , t o f o r m e x t e n s i v e s t r u c t u r a l n e t w o r k s e v e n w h e n o t h e r f u n c t i o n a l g r o u p s , t r a d i t i o n a l l y u s e d i n c r y s t a l e n g i n e e r i n g , c o e x i s t i n t h e s a m e m o l e c u l a r f r a m e w o r k . I n t h e s e c o n d p a r t , t h e s a l t b r i d g e i n c o n j u n c t i o n w i t h t h e n i t r o x y l g r o u p i s u s e d f o r t h e a s s e m b l y o f t h e e x t e n d e d s o l i d s b e n z a m i d i n i u m 2 , 2 , 5 , 5 - t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 — o x y l h y d r a t e ( 3 ) , a n d 3 — c y a n o b e n z a m i d i n i u m 2 , 2 , 5 , 5 - t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e 2 4 1 — 1 — o x y l ( 4 ) , w h e r e s p i n c o m m u n i c a t i o n i s t u r n — o f f a n d — o n r e s p e c t i v e l y , r e fl e c t i n g t h e s y n t h o n s ' i n t e r c o n n e c t i o n . B . R e s u l t s 1 . S y n t h e s i s a n d S t r u c t u r e o f 3 — A m i d i n i u m B e n z o a t e ( 1 ) T h e b i f u n c t i o n a l m o l e c u l e 3 — a m i d i n i u m b e n z o a t e ( 1 ) w a s s y n t h e s i z e d i n a o n e — p o t s t e p b y m o d i fi c a t i o n o f a k n o w n l i t e r a t u r e p r o c e d u r e ” , a s d e s c r i b e d i n d e t a i l i n C h a p t e r 2 . I n t h e fi r s t s t e p , a s o d i u m m e t h o x i d e s o l u t i o n i n m e t h a n o l i s a d d e d t o 3 — c y a n o b e n z o i c a c i d . N u c l e o p h i l i c a t t a c k o f t h e m e t h o x i d e i o n o n t h e c a r b o n - n i t r o g e n t r i p l e b o n d , a f f o r d s t h e i n t e r m e d i a t e i m i d a t e e s t e r c a r b o x y l a t e d e p i c t e d i n S c h e m e 2 . A d d i t i o n o f e x c e s s a m m o n i u m c h l o r i d e , w h i c h a l s o s e r v e s a s a n e u t r a l i z i n g a g e n t f o r t h e e x t r a s o d i u m m e t h o x i d e i n t h e s o l u t i o n , p r o m o t e s t h e n u c l e o p h i l i c a t t a c k o f a m m o n i a a n d g e n e r a t i o n o f t h e a m i d i n i u m f u n c t i o n a l g r o u p . C / ( N H 2 C H 3 O H x s N H 4 C I C N + 2 C H 3 0 N a r e fl u x \ O C H 3 H O O C N a O O C S c h e m e 2 C o m p o u n d 1 f o r m s w h i t e s q u a r e - l i k e c r y s t a l s u p o n r e c r y s t a l l i z a t i o n f r o m a h o t a q u e o u s s o l u t i o n . A s i n g l e c r y s t a l X — r a y s t u d y w a s u n d e r t a k e n , a n d t h e s t r u c t u r a l d a t a a r e s u m m a r i z e d i n T a b l e 1 ( d e t a i l s o f t h e e x p e r i m e n t a l c o n d i t i o n s , s t r u c t u r e s o l u t i o n a n d r e fi n e m e n t c a n b e f o u n d i n C h a p t e r 2 ) . C o m p o u n d 1 s e l f - a s s e m b l e s t o a t h r e e d i m e n s i o n a l s t r u c t u r a l n e t w o r k , b u i l t u p b y e x t e n s i v e 2 4 2 T a b l e 1 . C r y s t a l l o g r a p h i c D a t a f o r C o m p o u n d s 1 , a n d 2 1 2 ( A ) C r y s t a l P a r a m e t e r s f o r m u l a C 3 H 3 N 2 0 2 C 9 H 1 4 N 0 3 F W 1 6 4 . 1 6 1 8 4 . 2 1 c r y s t a l s i z e ( m m 3 ) 0 . 6 5 x 0 . 4 0 x 0 . 2 0 0 . 5 8 x 0 . 5 8 x 0 . 3 8 c r y s t a l s y s t e m m o n o c l i n i c m o n o c l i n i c s p a c e g r o u p P 2 1 / n P 2 1 / n a ( A ) 7 . 2 5 3 ( 2 ) 5 . 9 8 9 8 ( 1 ) b ( A ) 6 . 9 3 4 ( 3 ) 1 2 . 8 0 9 2 ( 2 ) c ( A ) 1 4 . 6 0 2 ( 2 ) 2 6 . 3 9 2 0 ( 5 ) 0 ( d e g ) 9 3 . 6 4 ( 2 ) 9 1 . 8 7 2 ( 1 ) V ( A 3 ) 7 3 3 . 0 ( 4 ) 2 0 2 3 . 8 3 ( 6 ) Z 4 8 d c a l c ( g l c m 3 ) 1 . 4 8 8 1 . 2 0 9 F ( 0 0 0 ) 3 4 4 7 9 2 p ( M o K 0 1 ) , c m - 1 1 . 1 0 0 . 9 1 ( B ) D a t a C o l l e c t i o n 2 9 m a x ( d e g ) 5 0 . 0 5 0 . 0 0 s h s 8 — 7 s h s 7 i n d e x r a n g e s O S K S B — 1 6 5 k s 1 7 — 1 7 s | s 1 7 ~ 3 0 $ | s 3 5 s c a n s p e e d ( d e g / m i n i n 2 t e m p e r a t u r e 2 9 6 ( 2 ) 1 7 3 r e fl e c t i o n s c o l l e c t e d 1 3 9 7 1 0 7 7 6 u n i q u e r e fl e c t i o n s 1 2 8 8 3 5 4 3 R ( m e r g ) ( % ) 3 . 2 7 2 . 4 5 ( C ) R e fi n e m e n t R e fi n e m e n t m e t h o d F u l l — m a t r i x 2 F u l l — m a t r i x 2 l e a s t — s q u a r e s o n F l e a s t - s q u a r e s o n F R i n d i c e s ( ’ > 2 ° " ) ) @ 1 1 2 2 3 % ? 1 7 1 6 9 5 W R 2 2 % ? ( ‘ 3 2 8 6 6 4 R i n d i c e s a l l d a t a R 1 = 0 . 0 5 1 9 R 1 = 0 . 0 4 0 0 W R 2 = 0 . 1 2 9 1 W R 2 = 0 . 0 8 9 9 A ( p ) ( e ' l A 3 ) 0 . 1 8 0 0 . 2 4 6 E x t i n c t i o n c o e f fi c i e n t 0 . 0 3 4 ( 9 ) 0 . 0 1 4 ( 2 ) G O P 1 . 1 7 4 1 . 0 6 5 2 4 3 h y d r o g e n - b o n d i n g . F i g u r e 5 i l l u s t r a t e s t h e p r i m a r y i n t e r a c t i o n i n v o l v e d t o t h e o r g a n i z a t i o n o f t h e s t r u c t u r e , w h i c h c o n s i s t s o f a t w o — p o i n t h y d r o g e n b o n d b e t w e e n t h e a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e . T h e r e l a t i v e l y s h o r t N t o O d i s t a n c e s o f 2 . 7 7 6 ( 1 ) a n d 2 . 7 9 0 ( 2 ) A , i n d i c a t e t h e s t r e n g t h o f s u c h i n t e r a c t i o n s w h i c h a r e e n h a n c e d b y b o t h h y d r o g e n b o n d i n g a n d e l e c t r o s t a t i c f o r c e s ” . I n a d d i t i o n , t w o f a v o r a b l e s e c o n d a r y e l e c t r o s t a t i c i n t e r a c t i o n s 2 9 c o n f e r f u r t h e r s t a b i l i t y o n t h e i n t e r f a c e ‘ 2 ' 3 0 . A z i g — z a g t a p e p a t t e r n r e s u l t s f r o m t h e c a t e n a t i o n o f t h e s a l t b r i d g e s , a s a c o n s e q u e n c e t o t h e i r m e t a p o s i t i o n i n g o n t h e a r o m a t i c r i n g . T h e t a p e s a l i g n i n a h e a d — t o — h e a d a r r a n g e m e n t a l o n g t h e c — a x i s o f t h e u n i t c e l l a n d p a c k t o g e t h e r a t a v a n d e r W a a l s c o n t a c t d i s t a n c e t o c r e a t e t h e s h e e t s o f t h e b c p l a n e . T h e r e p e a t d i s t a n c e b e t w e e n p o s i t i o n a l a t o m s o f n e i g h b o r i n g t a p e s i s 6 . 9 3 A , t h e r e b y e s t a b l i s h i n g t h e b - d i m e n s i o n o f t h e u n i t c e l l . W h e r e a s t h e p h e n y l r i n g s l i e i n t h e b c p l a n e , a r o t a t i o n o f t h e a m i d i n i u m g r o u p b y 3 0 . 0 ( 1 ) ° f r o m t h e p l a n e o f t h e a r o m a t i c r i n g i s c o m p l e m e n t e d b y a 2 3 . 3 ( 1 ) ° c o u n t e r — r o t a t i o n o f t h e c a r b o x y l a t e g r o u p . T h i s 7 ° d i f f e r e n c e i n r o t a t i o n r e s u l t s i n a s l i g h t t w i s t o f t h e a m i d i n i u m — c a r b o x y l a t e i n t e r f a c e ( d i h e d r a l a n g l e o f 8 4 1 ° f o r t h e p l a n e s d e fi n e d b y t h e C N 2 a n d C O Z a t o m s o f t h e s a l t b r i d g e ) w i t h r e s p e c t t o t h e b c p l a n e . A l t h o u g h t h e s e l f — a s s e m b l y p r o c e s s i s d i c t a t e d b y t h e t w o - p o i n t h y d r o g e n b o n d d e s c r i b e d a b o v e , t h e c a n t i n g o f t h e s a l t b r i d g e s p e r m i t s t h e f o r m a t i o n o f s e c o n d a r y h y d r o g e n b o n d i n g i n t e r a c t i o n s , w h i c h e x t e n d t h e d i m e n s i o n a l i t y o f t h e s t r u c t u r e b e y o n d t h e s h e e t s o f z i g — z a g t a p e s . T h e a m i d i n i u m p r o t o n s o u t s i d e t h e s a l t b r i d g e f o r m h y d r o g e n b o n d s t o c a r b o x y l a t e o x y g e n s o f t a p e s f r o m a d j a c e n t s h e e t s a b o v e a n d b e l o w t h e b c p l a n e . T h i s s e c o n d a r y i n t e r a c t i o n i n v o l v e s o n e - p o i n t h y d r o g e n b o n d s t h a t g e n e r a t e l a d d e r s , a s s h o w n i n F i g u r e 6 w h e r e t h e c r y s t a l s t r u c t u r e h a s b e e n r o t a t e d s u c h t h a t o n e o f t h e l a d d e r s i s p r o j e c t e d i n t h e p l a n e o f t h e p a p e r . T h e h y d r o g e n b o n d i n g a r r a n g e m e n t o f t h e l a d d e r n e c e s s a r i l y e n f o r c e s t h e a m i d i n i u m - c a r b o x y l a t e s a l t b r i d g e s i n n e i g h b o r i n g s h e e t s t o 2 4 4 F i g u r e 5 . T h e p a c k i n g o f t h e z i g — z a g t a p e s i n t h e b c p l a n e o f t h e c r y s t a l s t r u c t u r e o f 1 . T h e a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e i s r o t a t e d 2 6 . 1 ( p l a n e d e fi n e d b y t h e o x y g e n a n d n i t r o g e n a t o m s o f t h e s a l t b r i d g e ) o u t o f t h e p l a n e o f t h e a r o m a t i c r i n g . 2 4 5 F i g u r e 6 . R o t a t i o n o f t h e c r y s t a l s t r u c t u r e o f 1 s u c h t h a t t h e l a d d e r i s v i e w e d i n t h e p l a n e o f t h e p a p e r . T h e l a d d e r s t r u c t u r e i s f o r m e d f r o m t h e h y d r o g e n b o n d i n g b e t w e e n p r o t o n s e x t e r n a l t o t h e s a l t b r i d g e o f a g i v e n t a p e a n d t h e c a r b o x y l a t e o x y g e n s o f s a l t b r i d g e s i n n e i g h b o r i n g i n t e r l a y e r s . 2 4 6 O F i g u r e 7 . T h e a c p l a n e o f 1 s h o w i n g t h e l a y e r e d s h e e t s t r u c t u r e s u p p o r t e d b y a l a d d e r s c a f f o l d . T h e l a d d e r s t i l t a l t e r n a t e l y i n t o a n d o u t o f t h e p l a n e o f t h e p a p e r b y 3 0 . 0 ° a n d 2 3 3 ° r e s p e c t i v e l y . 2 4 7 a r r a n g e s u c h t h a t t h e i r d i p o l e s a r e o p p o s e d , t h e r e b y s e t t i n g t h e h e a d — t o — t a i l o r i e n t a t i o n o f t a p e s a l o n g t h e l a d d e r . T h i s o r i e n t a t i o n h a s t h e a d d e d b e n e fi t o f s a t i s f y i n g t h e d o m i n a n t d i p o l e i n t e r a c t i o n w i t h i n t h e t h r e e — d i m e n s i o n a l s t r u c t u r e . T h e d i p o l e s o f s a l t b r i d g e s a b o v e a n d b e l o w a p l a n e i n t h e l a d d e r s t r u c t u r e a r e a t a d i s t a n c e o f 3 A w h e r e a s t h e d i p o l e s w i t h i n t h e b c p l a n e a r e a t a d i s t a n c e o f 7 A . C o n s e q u e n t l y , t h e m a x i m u m s t a b i l i z a t i o n o f t h e d i p o l e s a r i s i n g f r o m t h e c o u l o m b i c p o t e n t i a l i s d e r i v e d f r o m i n t e r l a y e r s a l t b r i d g e s i n t h e h e a d — t o — t a i l a r r a n g e m e n t . A v i e w o f t h e a c p l a n e ( F i g u r e 7 ) i n t h e c r y s t a l s t r u c t u r e o f 1 , s h o w s t h a t t h e l a d d e r s i n t e r s e c t t h e b c p l a n e a t a n o b l i q u e a n g l e , f u r t h e r i n t e r c o n n e c t i n g t h e i n t e r l a y e r p l a n e s o f z i g — z a g t a p e s w i t h i n s h e e t s t o f o r m a l a y e r e d s t r u c t u r e ( d — s p a c i n g o f 3 . 1 6 A ) . T h e l a d d e r s a r e p a r a l l e l t o e a c h o t h e r b u t a l t e r n a t e l y t i l t i n a n d o u t o f t h e a c p l a n e o w i n g t o t h e r o t a t i o n o f t h e a m i d i n i u m a n d c a r b o x y l a t e g r o u p s w i t h r e s p e c t t o t h e a r o m a t i c r i n g s ( v i d e s u p r a ) . A l t h o u g h t h e o n e — p o i n t h y d r o g e n b o n d i s s l i g h t l y w e a k e r t h a n t h e t w o — p o i n t i n t e r a c t i o n , a s e v i d e n c e d b y t h e l o n g e r N t o O d i s t a n c e s o f 2 . 8 7 8 ( 5 ) A a n d 2 . 9 0 4 ( 6 ) A , i t c o m p o s e s t h e l a d d e r s t h a t r a d i a t e f r o m t h e a r o m a t i c s u b u n i t s p r o v i d i n g t h e s c a f f o l d i n g w h i c h s u p p o r t s t h e l a y e r s t r u c t u r e . T h e l a t t e r i s f u r t h e r s t a b i l i z e d b y t h e v a n d e r W a a l s i n t e r a c t i o n s o f t h e a r o m a t i c r i n g s f r o m n e i g h b o r i n g s h e e t s . 2 . S y n t h e s i s a n d S t r u c t u r e o f 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e - 1 — o x y l ( 2 ) C o m p o u n d 2 , n a m e l y 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 — o x y l , w a s s y n t h e s i z e d b y a k n o w n l i t e r a t u r e p r o c e d u r e 3 1 f r o m t h e c o m m e r c i a l l y a v a i l a b l e c a r b o x i m i d e I a s i l l u s t r a t e d i n S c h e m e 3 . T h e c a r b o x a m i d e i s c a t a l y t i c a l l y o x i d i z e d b y s o d i u m t u n g s t a t e , w h i c h i s c o n s t a n t l y r e g e n e r a t e d b y h y d r o g e n p e r o x i d e . S u b s e q u e n t h y d r o l y s i s u n d e r b a s i c c o n d i t i o n s a n d 2 4 8 r e c r y s t a l l i z a t i o n f r o m b e n z e n e a f f o r d e d 2 a s a b r i g h t y e l l o w s o l i d . C O N H 2 C O N H 2 C O O H fl N a W O 4 W 1 0 % N a O H N E D T A N N | 3 0 % H 2 0 2 | | H O ' 0 ‘ I I I ( 2 ) S c h e m e 3 A l t h o u g h c o m p o u n d 2 i s u t i l i z e d a s a s p i n l a b e l a n d a s p i n t r a p f o r b i o l o g i c a l s y s t e m s , a n e x t e n s i v e s e a r c h o f t h e C a m b r i d g e S t r u c t u r a l D a t a b a s e r e v e a l e d n o s t r u c t u r a l d a t a . S i n c e t h e c a r b o x y l a t e o f 2 i s u s e d a l o n g w i t h t h e b e n z a m i d i n i u m a n d 3 — c y a n o b e n z a m i d i n i u m c a t i o n s f o r t h e e n g i n e e r i n g o f m a g n e t i c s o l i d s , w e d e c i d e d t o s o l v e i t s c r y s t a l s t r u c t u r e a n d s t u d y i t s m a g n e t i c p r o p e r t i e s . T h e s t r u c t u r a l a n d m a g n e t i c d a t a o f 2 i n a d d i t i o n t o t h o s e o f 3 2 1 3 3 3 “ , p r o v i d e a s o l i d b a s i s f o r u n d e r s t a n d i n g t h e b o n d i n g a n a l o g o u s c o m p o u n d s p r e f e r e n c e s o f t h e n i t r o x y l s y n t h o n . W e l l f o r m e d y e l l o w s q u a r e — l i k e c r y s t a l s w h e r e p r e p a r e d b y s l o w l y c o o l i n g t o r o o m t e m p e r a t u r e a b e n z e n e s o l u t i o n o f c o m p o u n d 2 . T w o c r y s t a l l o g r a p h i c a l l y i n d e p e n d e n t m o l e c u l e s A a n d B , c r y s t a l l i z e i n t h e m o n o c l i n i c s y s t e m , s p a c e g r o u p P 2 1 / n ( 1 4 ) ( T a b l e 1 ) . I n s p e c t i o n o f c o v a l e n t b o n d d i s t a n c e s a n d a n g l e s f o r t h e t w o i n d e p e n d e n t m o l e c u l e s r e v e a l s v e r y s m a l l d i f f e r e n c e s b e t w e e n t h e m . T h e a v e r a g e N t o 0 b o n d d i s t a n c e i n t h e n i t r o x y l g r o u p i s 1 . 2 7 5 ( 1 ) A , a v a l u e t h a t c o m p a r e s w e l l w i t h t h e t y p i c a l d i s t a n c e s f o u n d i n o t h e r s i m i l a r m o l e c u l e s 2 6 b e a r i n g t h i s f u n c t i o n a l g r o u p . T h e p l a n e o f t h e c a r b o x y l i c g r o u p ( d e fi n e d b y t h e C O Z a t o m s ) i s t w i s t e d f r o m t h e p l a n e o f t h e p y r r o l l i n e fi v e m e m b e r r i n g b y o n l y 1 . 4 ( 2 ) ° a n d 3 . 0 ( 2 ) ° r e s p e c t i v e l y f o r t h e A a n d B m o l e c u l e s . 2 4 9 A l t h o u g h c a r b o x y l i c g r o u p s h a v e t h e t e n d e n c y t o f o r m t w o — o r o n e — p o i n t h y d r o g e n b o n d s a m o n g t h e m s e l v e s ( s e e s y n t h o n s 1 a n d 2 , F i g u r e 4 ) , i n c o m p o u n d 2 t h e p r e s e n c e o f t h e n i t r o x y l m o i e t y i m p e d e s t h i s t y p e o f c o n t a c t . I t s e n h a n c e d e l e c t r o n e g a t i v e c h a r a c t e r l e a d s t o t h e f o r m a t i o n o f a h y d r o g e n b o n d i n g p a t t e r n i n v o l v i n g i t s e l f a n d t h e O — H g r o u p o f t h e c a r b o x y l i c m o i e t y . T h i s p r i m a r y i n t e r a c t i o n e s t a b l i s h e s o n e — d i m e n s i o n a l c h a i n s r u n n i n g a l o n g t h e c — a x i s o f t h e u n i t c e l l a s s h o w n i n F i g u r e 8 w h e r e t h e b c p l a n e i s p r o j e c t e d . M o l e c u l e s A a n d B a l t e r n a t e a l o n g t h e c h a i n w i t h h y d r o g e n b o n d i n g d i s t a n c e s o f 2 . 5 9 4 ( 1 ) A a n d 2 . 6 5 2 ( 1 ) A f r o m t h e h y d r o x y l o x y g e n ( 0 2 f o r A , 0 5 f o r B ) t o t h e n i t r o x y l o x y g e n ( 0 6 f o r B , 0 3 f o r A ) r e s p e c t i v e l y ( 1 7 3 ( 2 ) A a n d 1 . 7 5 ( 2 ) A f r o m t h e h y d r o x y l h y d r o g e n a t o m ) . T h e s e c h a i n s a r e n o t s i m p l y a r e p e t i t i o n o f a n . . A B A B . . p a t t e r n s i n c e a n o t h e r t y p e o f a l t e r n a t i o n i s i n v o l v e d . T h e a l t e r n a t i n g A a n d B m o l e c u l e s a r e p l a c e d s u c h t h a t t h e i r c a r b o x y l a t e o x y g e n a t o m s ( 0 1 f o r A , a n d 0 4 f o r B ) a r e p o s i t i o n e d a n t i p a r a l l e l b e t w e e n a d j a c e n t m o l e c u l e s o f t h e s a m e t y p e f o r m i n g a p a t t e r n , w h e r e e a c h u n i q u e m o l e c u l e i s r e p e a t e d e v e r y f o u r t h t i m e a l o n g t h e c h a i n . T h i s c o n c r e t e p a t t e r n o f t h e c h a i n i s n o t a c o i n c i d e n t a l c h o i c e o f c o m p o u n d 2 f o r s e l f — a s s e m b l y . I t e s t a b l i s h e s a h y d r o g e n b o n d i n g i n t e r a c t i o n a m o n g a d j a c e n t c h a i n s t h a t i n v o l v e s t h e o l e fi n i c h y d r o g e n o f t h e A t y p e m o l e c u l e s a n d t h e c a r b o x y l a t e o x y g e n o f t h e B t y p e m o l e c u l e s . T h i s i s a r e l a t i v e l y w e a k i n t e r a c t i o n j u d g i n g f r o m t h e l o n g C 3 t o O 4 d i s t a n c e o f 3 . 2 5 9 ( 1 ) A ( t h e H 3 t o O 4 d i s t a n c e i s 2 . 3 9 ( 1 ) A ) b u t m u c h s t r o n g e r t h a n s i m i l a r c o n t a c t s r e p o r t e d i n t h e l i t e r a t u r e z m ’ . N o h y d r o g e n b o n d i n g i s e s t a b l i s h e d b e t w e e n t h e t w o — d i m e n s i o n a l s h e e t s , r e s u l t i n g i n a s i m p l e s t a c k i n g o f t h e l a y e r s o n t h e t o p o f e a c h o t h e r a t v a n d e r W a a l s c o n t a c t d i s t a n c e s a l o n g t h e a - a x i s o f t h e u n i t c e l l . 2 5 0 F i g u r e 8 T h e l a y e r e d s t r u c t u r e o f c o m p o u n d 2 . O n l y a t o m s i n v o l v e d i n t h e h y d r o g e n b o n d i n g p a t t e r n a r e n u m b e r e d a l o n g o n e o f t h e c h a i n s . 2 5 1 3 . S y n t h e s i s a n d S t r u c t u r e o f b e n z a m i d i n i u m - 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 — o x y l h y d r a t e ( 3 ) T h e t i t l e c o m p o u n d 3 i s p r e p a r e d b y m i x i n g e q u i m o l a r a q u e o u s s o l u t i o n s o f b e n z a m i d i n i u m c h l o r i d e a n d 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 — o x y l n e u t r a l i z e d b y s o d i u m h y d r o x i d e . S l o w e v a p o r a t i o n o f t h e r e s u l t i n g s o l u t i o n a f f o r d e d l a r g e , w e l l — f o r m e d y e l l o w c r y s t a l s o f a m o n o h y d r a t e d a m i d i n i u m — c a r b o x y l a t e s a l t ( c r y s t a l d a t a a r e g a t h e r e d i n T a b l e 2 ) . T h e a v e r a g e c a r b o n t o o x y g e n a n d c a r b o n t o n i t r o g e n b o n d d i s t a n c e s a r e 1 . 2 4 7 ( 3 ) A , a n d 1 . 3 0 7 ( 3 ) A f o r t h e c a r b o x y l a t e a n d t h e a m i d i n i u m g r o u p s r e s p e c t i v e l y , w h i l e t h e n i t r o g e n t o o x y g e n d i s t a n c e i n t h e n i t r o x y l f u n c t i o n a l g r o u p i s 1 . 2 7 4 ( 3 ) A , a v a l u e c o m p a r a b l e t o t h e o n e f o u n d i n t h e p a r e n t c o m p o u n d 2 . T h e 0 0 2 p l a n e o f t h e c a r b o x y l a t e i s r o t a t e d 1 2 . 8 ( 3 ) ° w i t h r e s p e c t t o t h e p l a n e d e fi n e d b y t h e p y r r o l i n e fi v e - m e m b e r r i n g , w h i l e t h e C N 2 p l a n e o f t h e a m i d i n i u m d e v i a t e s s i g n i f i c a n t l y f r o m t h e b e n z e n e r i n g p l a n e b y 5 2 . 5 ( 2 ) ° . T h e t w o - p o i n t h y d r o g e n b o n d o f t h e a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e i s t h e p r i m a r y i n t e r a c t i o n i n v o l v e d i n t h e e x t e n d e d s t r u c t u r e o f 3 , a s h a s b e e n o b s e r v e d p r e v i o u s l y ” . T h i s t y p e o f b o n d i n g i s d i r e c t i o n a l a n d s t r o n g , a s j u d g e d b y t h e r e l a t i v e l y s h o r t n i t r o g e n t o o x y g e n d i s t a n c e s o f 2 . 8 5 3 ( 3 ) A a n d 2 . 8 4 2 ( 2 ) A . D i m e r s o f t h e b e n z a m i d i n i u m ( A m ) a n d t h e 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 - o x y l ( C a ) i o n s f o r m v i a t h i s p r i m a r y i n t e r a c t i o n , a s s h o w n i n F i g u r e 9 ( A ) . F o r m a t i o n o f a t a p e m o t i f b y t h i s t w o — p o i n t h y d r o g e n b o n d p a t t e r n i s n o t p o s s i b l e i n t h i s c a s e , a s i t w a s i n t h e s t r u c t u r e o f c o m p o u n d 1 . I f o n l y t h i s p r i m a r y i n t e r a c t i o n w e r e o p e r a t i v e , t h e s t r u c t u r e o f c o m p o u n d 3 w o u l d b e t e r m i n a t e d b y d i m e r f o r m a t i o n o f t h e ( A m C a ) t y p e . H o w e v e r t h e e x t e r n a l h y d r o g e n a t o m s o f t h e a m i d i n i u m g r o u p a r e i n v o l v e d i n a v a r i e t y o f o n e - p o i n t h y d r o g e n b o n d s , a l s o s h o w n i n F i g u r e 9 ( A ) . O n e o f t h e s e i n t e r a c t i o n s , i n v o l v e s 2 5 2 T a b l e 2 . C r y s t a l l o g r a p h i c D a t a f o r C o m p o u n d s 3 , a n d 4 2 5 3 3 4 ( A ) C r y s t a l P a r a m e t e r s f o r m u l a C 1 5 H 2 4 N 3 O 4 C 1 7 H 2 1 N 4 O 3 F W 3 2 2 . 3 8 3 2 9 . 3 8 c r y s t a l s i z e ( m m 3 ) 0 . 5 7 x 0 . 3 2 x 0 . 3 0 0 . 4 6 x 0 . 2 3 x 0 . 1 5 ’ c r y s t a l s y s t e m m o n o c l i n i c m o n o c l i n i c s p a c e g r o u p P 2 1 / n P 2 1 / c a ( A ) 9 . 2 3 2 ( 1 ) 8 . 1 0 7 ( 4 ) b ( A ) 9 . 4 7 9 ( 5 ) 1 8 . 4 6 3 ( 2 ) c ( A ) 2 0 . 6 9 5 ( 3 ) 1 2 . 2 3 1 ( 2 ) [ 3 ( d e g ) 9 7 . 9 4 ( 2 ) 1 0 3 . 1 5 ( 2 ) v ( A 3 ) 1 7 9 3 . 8 ( 9 ) 1 7 8 2 . 9 ( 9 ) Z 4 4 d c a l c ( g / c m 3 ) 1 . 1 9 4 1 . 2 2 7 F ( 0 0 0 ) 6 9 2 7 0 0 , u ( M o K a ) , c m " 0 . 8 6 0 . 8 6 ( B ) D a t a C o l l e c t i o n 2 0 m a x ( d e g ) 5 0 . 0 5 0 . 0 0 s h s . 9 0 s h s 9 i n d e x r a n g e s O s k s 1 1 O s k 3 2 1 - 2 4 s l 3 2 4 — 1 4 s l s 1 4 s c a n s p e e d ( d e g / m i n i n 2 2 t e m p e r a t u r e 2 9 6 ( 2 ) 2 9 6 ( 2 ) r e fl e c t i o n s c o l l e c t e d 2 9 3 7 3 3 6 9 u n i q u e r e fl e c t i o n s 2 7 2 5 3 1 4 0 R ( m e r g ) ( % ) 4 . 5 3 ~ 2 . 9 9 ( C ) R e f i n e m e n t R e fi n e m e n t m e t h o d F u l l - m a t r i x 2 F u l l - m a t r i x 2 l e a s t — s q u a r e s o n F l e a s t - s q u a r e s o n F R i n d i c e s U > 2 ° “ ) ) W R 2 2 . 5 1 1 5 3 9 0 3 1 : 1 2 3 . 5 5 1 2 5 5 4 R i n d i c e s a l l d a t a R 1 = 0 . 0 9 1 8 R 1 = 0 . 1 2 7 5 W R 2 = 0 . 1 3 3 4 W R 2 = 0 . 1 3 7 0 A ( p ) ( e ’ l A 3 ) 0 . 1 5 2 0 . 1 7 7 E x t i n c t i o n c o e f fi c i e n t 0 . 0 1 6 ( 2 ) 0 . 0 0 5 ( 1 ) G O F 1 . 1 3 5 1 . 0 3 0 ( B ) F i g u r e 9 . T h e m o l e c u l a r c l u s t e r o f t w o c a t i o n s a n d t w o a n i o n s ( A ) a n d t h e r e s u l t i n g i n fi n i t e l a d d e r s a l o n g t h e b — a x i s o f t h e u n i t c e l l t h a t r e s u l t u p o n b r i d g i n g t h e c l u s t e r s w i t h t h e w a t e r m o l e c u l e s ( B ) . 2 5 4 t h e c a r b o x y l a t e o x y g e n 0 ( 1 ) a n d t h e a m i d i n i u m n i t r o g e n N ( 2 ) . T h e s e p a r t n e r s h y d r o g e n b o n d a t a d i s t a n c e o f 2 . 8 8 6 ( 4 ) A ( 1 9 9 ( 4 ) A f r o m t h e h y d r o g e n a t o m ) c r e a t i n g a c l u s t e r o f f o u r m o l e c u l e s , t w o o f e a c h i o n , w i t h t h e m a x i m u m n u m b e r o f h y d r o g e n b o n d i n g a n d f a v o r a b l e d i p o l e a r r a n g e m e n t a c h i e v e d . T h e o t h e r a m i d i n i u m n i t r o g e n , N ( 1 ) , i s c o n n e c t e d t o o x y g e n 0 ( 4 ) o f t h e w a t e r m o l e c u l e a t a d i s t a n c e o f 2 . 8 2 9 ( 4 ) A ( 1 . 8 7 ( 4 ) A f r o m t h e h y d r o g e n a t o m ) , a d i s t a n c e t h a t i s e v e n s h o r t e r t h a n t h e o n e s i n v o l v e d i n t h e p r i m a r y i n t e r a c t i o n o f t h e s a l t b r i d g e . T h e w a t e r m o l e c u l e s a r e c o p l a n a r t o t h e a m i d i n i u m g r o u p , b u t a l t e r n a t e l y p l a c e d a b o v e a n d b e l o w t h e p l a n e o f t h e c a r b o x y l a t e g r o u p s , t o w h i c h a r e c o n n e c t e d v i a t h e 0 ( 1 ) o x y g e n a t a d i s t a n c e o f 3 . 0 6 1 ( 3 ) A . T h e r e s u l t o f s u c h a n a r r a n g e m e n t i s t h e f o r m a t i o n o f i n fi n i t e l a d d e r s r u n n i n g a l o n g t h e b — a x i s o f t h e u n i t c e l l , b y c o n n e c t i n g t h e c l u s t e r s v i a N ( 1 ) t o 0 ( 4 ) a n d 0 ( 4 ) t o 0 ( 1 ) h y d r o g e n b o n d s , a s s h o w n i n F i g u r e 9 ( 8 ) . T h e d i m e n s i o n a l i t y o f t h e s t r u c t u r e i s f u r t h e r e x t e n d e d b y t h e p a r t i c i p a t i o n o f t h e n i t r o x y l g r o u p i n t h e b o n d i n g p a t t e r n . I t f o r m s s t r o n g o n e — p o i n t h y d r o g e n b o n d s t o t h e w a t e r m o l e c u l e a s j u d g e d b y t h e s o r t d i s t a n c e o f 2 . 7 9 3 ( 3 ) A ( 1 . 9 1 ( 3 ) A f r o m t h e H ( 4 A ) w a t e r h y d r o g e n ) . I n F i g u r e 1 0 ( A ) , w h e r e t h e b e n z a m i d i n i u m i o n s h a v e b e e n o m i t t e d f o r c l a r i t y , a v i e w o f t h e h y d r o g e n b o n d p a t t e r n i n v o l v i n g t h e 2 , 2 , 5 , 5 — t e t r a m e t h y l - 3 — c a r b o x y p y r r o l i n e — 1 — o x y l i o n s a n d t h e w a t e r m o l e c u l e s i s d r a w n . L i n e a r c h a i n s , r u n n i n g a l o n g t h e a - a x i s , a r e f o r m e d v i a t h e 0 ( 3 ) , 0 ( 4 ) a n d 0 ( 1 ) o x y g e n a t o m s . I n F i g u r e 1 0 ( 8 ) t w o n e i g h b o r i n g c h a i n s a r e d r a w n a l o n g w i t h t h e r e s p e c t i v e b e n z a m i d i n i u m i o n s . T h e c h a i n s a r e c o n n e c t e d i n t h e h y d r o g e n — b o n d e d c l u s t e r s o f t h e s a l t b r i d g e a n d t h e w a t e r m o l e c u l e s . T h e r e s u l t i s a d o u b l e h e l i x t h a t r u n s a l o n g t h e a — a x i s o f t h e u n i t c e l l . T h e o v e r a l l s t r u c t u r e o f c o m p o u n d 3 c a n b e d e s c r i b e d a s d o u b l e h e l i c e s , p o s i t i o n e d p a r a l l e l t o e a c h o t h e r a l o n g t h e a — a x i s , t h a t i n t e r s e c t t h e i n fi n i t e l a d d e r s r u n n i n g a l o n g t h e b - a x i s o f t h e u n i t c e l l . T h i s t w o — d i m e n s i o n a l c h a r a c t e r 2 5 5 ( A ) ( 3 ) F i g u r e 1 0 . V i e w ( A ) o f t h e o n e — d i m e n s i o n a l c h a i n s f o r m e d b y t h e w a t e r h y d r o g e n b o n d i n g t o t h e c a r b o x y l a t e a n d t h e n i t r o x o g r o u p o f t h e a n i o n ( t h e b e n z a m i d i n i u m c a t i o n s h a v e b e e n r e m o v e d f o r c l a r i t y ) . T w o n e i g b o r i n g c h a i n s a r e c o n n e c t e d v i a t h e h y d r o g e n b o n d i n g i n t e r a c t i o n o f t h e s a l t b r i d g e f o r m i n g d o u b l e h e l i c e s t h a t r u n a l o n g t h e a a x i s o f t h e u n i t c e l l ( B ) . 2 5 6 r e s u l t s f r o m t h e i n t e r a c t i o n o f t h i s a m i d i n i u m — c a r b o x y l a t e s a l t w i t h t h e w a t e r o f c r y s t a l l i z a t i o n , w h i c h s e r v e s a s a c o n n e c t i n g p i e c e f o r b o t h t h e l a d d e r a n d t h e h e l i x p a r t s o f t h e s t r u c t u r e . 4 . S y n t h e s i s a n d S t r u c t u r e o f m — c y a n o b e n z a m i d i n i u m — 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 — o x y l ( 4 ) C o c r y s t a l l i z a t i o n o f t h e 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 - o x y l a n i o n w i t h t h e m — c y a n o b e n z a m i d i n i u m c a t i o n a f f o r d s l a r g e y e l l o w c r y s t a l s o f t h e t i t l e c o m p o u n d 4 . T h e y w e r e g r o w n b y t h e s l o w e v a p o r a t i o n o f a n a q u e o u s s o l u t i o n c o n t a i n n i n g e q u i m o l a r a m o u n t s o f t h e t w o r e a c t a n t s . A n X — r a y s t r u c t u r e d e t e r m i n a t i o n r e v e a l e d t h a t n o s o l v e n t c r y s t a l l i z e s a l o n g w i t h t h e t w o i o n s ( T a b l e 2 ) . T h e s t r u c t u r a l f e a t u r e s o f t h e m o l e c u l a r c o m p o n e n t s o f t h e s a l t a r e v e r y s i m i l a r t o t h e r e s p e c t i v e o n e s o b s e r v e d i n c o m p o u n d 3 . H e n c e , t h e a v e r a g e c a r b o n t o o x y g e n a n d c a r b o n t o n i t r o g e n b o n d d i s t a n c e s a r e 1 . 2 5 5 ( 3 ) A a n d 1 . 3 1 2 ( 4 ) A r e s p e c t i v e l y , a n d t h e l e n g t h o f t h e n i t r o x y l g r o u p b o n d i s 1 . 2 7 3 ( 3 ) A . T h e b i g g e s t d i f f e r e n c e c o n c e r n s t h e r o t a t i o n o f t h e C N 2 p l a n e o f t h e a m i d i n i u m g r o u p w i t h r e s p e c t t o t h e p l a n e o f t h e p h e n y l r i n g , w h i c h i s 3 4 . 7 ( 3 ) ° , a v a l u e t h a t i s a l m o s t 1 7 ° s m a l l e r t h a n t h e r e s p e c t i v e v a l u e o f c o m p o u n d 3 a n d 5 ° l a r g e r f r o m t h e o n e o f c o m p o u n d 1 . T h e c o u n t e r - r o t a t i o n o f t h e c a r b o x y l a t e g r o u p i s 2 0 . 8 ( 3 ) ° . A l t h o u g h t h e m o l e c u l a r u n i t s d o n o t d i f f e r a l o t , c o m p o u n d 4 a d o p t s a t o t a l l y d i f f e r e n t e x t e n d e d s t r u c t u r e . T h e s e l f — o r g a n i z a t i o n o f t h e a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e v i a t h e t w o — p o i n t h y d r o g e n b o n d i s a g a i n t h e p r i m a r y i n t e r a c t i o n . I n t h i s p a r t i c u l a r c a s e a h i g h l y u n s y m m e t r i c a l s a l t b r i d g e i s a s s e m b l e d w i t h o n e b o n d b e i n g 0 . 1 7 3 A l o n g e r t h a n t h e o t h e r , s i n c e t h e n i t r o g e n t o o x y g e n d i s t a n c e s a r e 2 . 8 5 3 ( 3 ) A a n d 2 . 6 8 0 ( 3 ) A . A s s h o w n i n F i g u r e 1 1 t h e 2 5 7 F i g u r e 1 1 . S t r u c t u r a l b u i l d i n g b l o c k o f c o m p o u n d 4 b u i l t u p b y a m o l e c u l a r c l u s t e r o f t w o a n i o n s a n d t w o c a t i o n s h e l d b y t h e s a l t b r i d g e i n t e r a c t i o n . T h e e x t e r n a l a m i d i n i u m p r o t o n s o f t h e c l u s t e r , h y d r o g e n b o n d t o t h e n i t r o x o o x y g e n a t o m s o f a n i o n s b e l o n g i n g t o d i f f e r e n t c l u s t e r s . 2 5 8 e x t e r n a l a m i d i n i u m p r o t o n s a r e a b l e t o p a r t i c i p a t e i n h y d r o g e n b o n d i n g p r e v e n t i n g t h e t e r m i n a t i o n o f t h e s t r u c t u r e ' s d i m e n s i o n a l i t y . A f o u r m o l e c u l e c l u s t e r , s i m i l a r t o t h e o n e o b s e r v e d i n c o m p o u n d 3 , i s f o r m e d v i a t h e b o n d i n g o f N ( 2 ) t o 0 ( 2 ) a t a d i s t a n c e o f 2 . 7 8 9 ( 4 ) A . T h e o t h e r e x t e r n a l a m i d i n i u m h y d r o g e n o f t h e N ( 1 ) a t o m b i n d s t o t h e n i t r o x y l o x y g e n 0 ( 1 ) o f t h e a n i o n w i t h a n i t r o g e n t o o x y g e n d i s t a n c e o f 2 . 8 5 1 ( 3 ) A . T h i s p o s i t i o n w a s o c c u p i e d b y t h e w a t e r m o l e c u l e i n t h e e x t e n d e d s t r u c t u r e o f c o m p o u n d 3 a s i t i s r e v e a l e d b y a c o m p a r i s o n o f F i g u r e 9 ( A ) a n d F i g u r e 1 1 w h e r e t h e p r i m e b u i l d i n g b l o c k s o f t h e t w o s t r u c t u r e s a r e d r a w n . A p a r t f r o m t h i s n o t i c e a b l e s i m i l a r i t y , t h e t w o s a l t s s e l f — a s s e m b l e a r o u n d t h e s e p r i m e b u i l d i n g b l o c k s a c c o r d i n g t o t h e d i f f e r e n t h y d r o g e n b o n d i n g c a p a b i l i t i e s o f t h e i r e x t e r n a l t o t h e c l u s t e r u n i t s . T h e e x t e n d e d s t r u c t u r e o f 4 i s a r e p e t i t i o n o f t h e p r i m e b u i l d i n g b l o c k d e p i c t e d i n F i g u r e 1 1 . A t w o — d i m e n s i o n a l n e t w o r k a l o n g t h e b c p l a n e o f t h e u n i t c e l l , s h o w n i n F i g u r e 1 2 , i s f o r m e d w h e r e a d j a c e n t c l u s t e r s a r e p o s i t i o n e d v e r t i c a l l y t o e a c h o t h e r a n d t h e y a r e i n t e r c o n n e c t e d v i a t h e 0 ( 1 ) t o N ( 1 ) h y d r o g e n b o n d . T h e e m p t y s p a c e o f t h e l a y e r i s fi l l e d u p b y t h e a r o m a t i c u n i t s o f t h e c a t i o n w h i c h a r e p o s i t i o n e d i n a f a c e o n a r r a n g e m e n t . T h e c y a n o g r o u p i s n o t i n v o l v e d i n a n y t y p e o f h y d r o g e n b o n d i n g a n d a d j a c e n t l a y e r s s i m p l y s t a c k o n t h e t o p o f e a c h o t h e r . 5 . M a g n e t i c P r o p e r t i e s o f C o m p o u n d s 2 , 3 , a n d 4 T h e m a g n e t i c p r o p e r t i e s o f t h e c o m p o u n d s c o n t a i n i n g t h e n i t r o x y l — m o i e t y h a v e b e e n s t u d i e d b y e l e c t r o n s p i n r e s o n a n c e a n d m a g n e t i c s u s c e p t i b i l i t y m e t h o d s ( e x p e r i m e n t a l c o n d i t i o n s a r e d e s c r i b e d i n C h a p t e r 2 ) . T h e s o l u t i o n E P R s p e c t r u m o f c o m p o u n d 4 s h o w n i n F i g u r e 1 3 ( A ) d i s p l a y s t h e t y p i c a l t h r e e - l i n e p a t t e r n , w i t h t h e s p l i t t i n g a r i s i n g f r o m t h e 1 “ N h y p e r fi n e c o u p l i n g t o t h e f r e e e l e c t r o n . T h e L a n d é g - f a c t o r i s 2 . 0 1 0 a n d t h e v a l u e o f t h e n i t r o g e n i s o t r o p i c 2 5 9 F i g u r e 1 2 . T w o — d i m e n s i o n a l s h e e t s o f c o m p o u n d 4 a s s e m b l e d b y n i t r o x y l r a d i c a l s i n t e r c o n n e c t i n g a d j a c e n t c l u s t e r s u b u n i t s . T h e n i t r o x y l s p i n c a r r i e r s c o m p o s e a l i n e r a c h a i n , d i a g o n a l l y s i t u a t e d w i t h i n t h e l a y e r . 2 6 0 M e l b a . / / / ( A ) 1 0 G ( B ) ( C ) 1 2 . 5 G F i g u r e 1 3 . R o o m t e m p e r a t u r e E P R s p e c t r a o f c o m p o u n d 4 ( A ) i n d e u t e r a t e d m e t h a n o l ( B ) i t s m N = 0 l i n e s h o w i n g s h f s t r u c t u r e a n d ( C ) f o r a s o l i d s a m p l e . 2 6 1 H = — 2 J , . j z { a s f s j + B s i s j + v s f s j i ( 6 . 1 ) h y p e r fi n e c o u p l i n g , o b t a i n e d d i r e c t l y f r o m t h e e x p e r i m e n t a l s p e c t r u m , i s 1 5 . 3 G , t y p i c a l o f t h e n i t r o x y l r a d i c a l i n s o l u t i o n 3 6 ' 3 7 . A s h a s b e e n n o t e d p r e v i o u s l y ” , o x y g e n — f r e e s o l u t i o n s o f n i t r o x y l c o m p o u n d s p r o v i d e a d d i t i o n a l d e t a i l s r e g a r d i n g p r o t o n s u p e r h y p e r fi n e ( s h f ) c o u p l i n g . F i g u r e 1 3 ( 3 ) d i s p l a y s t h e c e n t r a l n i t r o g e n h y p e r fi n e l i n e o f c o m p o u n d 4 , w h e r e g o o d r e s o l u t i o n o f t h e p r o t o n h y p e r fi n e i s o b s e r v e d . C o m p u t e r s i m u l a t i o n o f t h e s p e c t r u m y i e l d s v a l u e s o f 0 . 2 3 5 G a n d 0 . 4 6 5 G f o r t h e c o u p l i n g t o t h e m e t h y l a n d v i n y l i c p r o t o n s r e s p e c t i v e l y , i n a g r e e m e n t w i t h l i t e r a t u r e r e s u l t s “ . T h e s e v a l u e s e s t a b l i s h t h a t d e l o c a l i z a t i o n o f t h e u n p a i r e d e l e c t r o n i s n o t l i m i t e d t o t h e n i t r o x y l m o i e t y , b u t e x t e n d s t o t h e r i n g b a c k b o n e o f t h e r a d i c a l . P o w d e r E P R e x p e r i m e n t s a f f o r d e d f e a t u r e l e s s , r e l a t i v e l y b r o a d g a u s s i a n — s h a p e d l i n e p r o fi l e s ( F i g u r e 1 3 ( C ) ) . T h e l a c k o f h y p e r fi n e s p l i t t i n g i n t h e p o w d e r s a m p l e s y i e l d s n o i n f o r m a t i o n r e g a r d i n g e x c h a n g e i n t e r a c t i o n s , w h i c h w e r e , h o w e v e r , s t u d i e d v i a m a g n e t i c s u s c e p t i b i l i t y m e a s u r e m e n t s . T h e p r o d u c t o f m o l a r s u s c e p t i b i l i t y a n d t e m p e r a t u r e i s p l o t t e d v e r s u s t e m p e r a t u r e i n F i g u r e 1 4 . C o m p o u n d 3 a f f o r d s a s t r a i g h t l i n e w i t h a X M T v a l u e o f 0 . 3 7 7 i n t h e w h o l e t e m p e r a t u r e r a n g e s t u d i e d ( 2 t o 3 0 0 K ) i n d i c a t i n g t h e p u r e l y p a r a m a g n e t i c b e h a v i o r o f t h e m a t e r i a l . A t h i g h t e m p e r a t u r e s t h e X M T p r o d u c t o f c o m p o u n d 2 i s a l s o l i n e a r b u t i t s t a r t s d e v i a t i n g f r o m l i n e a r i t y b e l o w 4 0 K r e a c h i n g a v a l u e o f 0 . 1 6 6 a t 2 K . T h i s b e h a v i o r i s i n d i c a t i v e o f w e a k a n t i f e r r o m a g n e t i c e x c h a n g e a n d t h e m o l a r s u s c e p t i b i l i t y w a s fi t t e d b y u s i n g t h e H e i s e n b e r g l i n e a r c h a i n t h e o r y w i t h a m e a n fi e l d a p p r o x i m a t i o n ” . F o r a n i n fi n i t e l i n e a r c h a i n , t h e g e n e r a l H e i s e n b e r g - D i r a c — V a n V l e c k ( H D W ) H a m i l t o n i a n 4 0 m a y b e w r i t t e n a s w h e r e t h e s u b s c r i p t s i a n d j c o r r e s p o n d t o t h e t w o d i f f e r e n t i n t e r a c t i n g s p i n s a n d 2 6 2 . 0 p . . 0 . 3 5 T . g 0 . 3 E 1 ’ 1 — 0 . 2 5 5 X 0 . 2 0 . 1 5 l l l l l l l l l l l l l l l l l l l I l l l l l l l l l l l l l l l O 5 0 1 0 0 1 5 0 2 0 0 2 5 0 K I ) 3 5 0 T I K F i g u r e 1 4 . M a g n e t i c s u s c e p t i b i l i t y d a t a f o r c o m p o u n d s 2 ( x ) , 3 ( o ) , a n d 4 ( 0 ) , e x p r e s s e d i n t h e f o r m o f X T v e r s u s T p l o t . 2 6 3 J , - i s t h e e x c h a n g e c o u p l i n g c o n s t a n t . F o r a = B = y , t h e i s o t r o p i c H e i s e n b e r g c a s e a r i s e s , w h i l e a n i s o t r o p y i s t a k e n i n t o a c c o u n t w h e n a = [ 3 = 0 , y = 1 ( l s i n g m o d e l ) , a n d w h e n a = 8 = 1 , y = 0 ( X Y m o d e l ) . F o r a n t i f e r r o m a g n e t i c a l l y e x c h a n g e — c o u p l e d s p i n 1 / 2 i s o t r o p i c c h a i n c o m p o u n d s a n a p p r o x i m a t e s o l u t i o n w a s a t t a i n e d b y B o n n e r a n d F i s h e r “ . H a l l 4 2 fi t t h e i r n u m e r i c a l r e s u l t s t o t h e a b o v e e x p r e s s i o n x = ” 9 2 1 1 3 x 0 . 2 5 + 0 . 1 4 9 9 5 x + 0 . 3 0 0 9 4 x 2 k B T 1 + 1 . 9 8 6 2 X + 0 . 6 8 8 5 4 X 2 + 6 . 0 6 2 6 X 3 ( 6 . 2 ) w h e r e X = L I } ? T ' l n t e r c h a i n i n t e r a c t i o n i s a c c o u n t e d a s a c o r r e c t i o n t o t h e 8 l i n e a r c h a i n m o d e l b y a t e r m a r i s i n g f r o m m e a n f i e l d t h e o r y a n d i s e x p r e s s e d a s 3 9 X H x m = , ( 6 . 3 ) ( 1 — 2 2 . 1 x H / N g 2 m § ) w h e r e x ” i s t h e m a g n e t i c s u s c e p t i b i l i t y o f a n i s o l a t e d l i n e a r c h a i n o f S = 1 / 2 i o n s , 2 i s t h e n u m b e r o f n e a r n e i g h b o r s i n a d j a c e n t c h a i n s , a n d J ' i s t h e l n t e r c h a i n e x c h a n g e p a r a m e t e r . A n a l y s i s o f t h e d a t a o f c o m p o u n d 2 u s i n g t h e L a n d é 9 — f a c t o r d e t e r m i n e d f r o m E P R , g a v e J y / k a = — 1 . 2 K a n d z J ' / k B = — 0 . 9 K . T h e r a d i c a l c e n t e r s i n c o m p o u n d 4 a r e a l s o a n t i f e r r o m a g n e t i c a l l y c o u p l e d , a s j u d g e d b y t h e d e v i a t i o n o f t h e X M T p r o d u c t f r o m t h e v a l u e o f 0 . 3 6 0 a t h i g h t e m p e r a t u r e s t o t h e v a l u e o f 0 . 2 4 3 a t 2 K . T h e d a t a w e r e a n a l y z e d b y u s i n g a o n e — d i m e n s i o n a l H e i s e n b e r g m o d e l . T h e e x p e r i m e n t a l d a t a p r o d u c e a s a t i s f a c t o r y fi t b y u s i n g t h e e x p e r i m e n t a l l y d e t e r m i n e d L a n d é g — f a c t o r a n d a . l , , / k , 3 = - 0 . 8 K . 2 6 4 C . D i s c u s s i o n T h e a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e h a s b e e n u s e d s u c c e s s f u l l y f o r t h e o r g a n i z a t i o n o f m o l e c u l a r u n i t s i n t o s o l i d s o f h i g h e r d i m e n s i o n a l i t y . T h e s p o n t a n e o u s s e l f — a s s e m b l y p r o c e s s e v e n f r o m s o l v e n t s o f e n h a n c e d p o l a r i t y , i s d r i v e n b y t h e s t r e n g t h o f t h e s a l t b r i d g e i n t e r a c t i o n w h i c h i s a c o m b i n a t i o n o f a n e l e c t r o s t a t i c a t t r a c t i o n a n d a t w o - p o i n t h y d r o g e n b o n d b e t w e e n t h e i n t e r n a l a m i d i n i u m p r o t o n s a n d t h e c a r b o x y l a t e o x y g e n s . F u r t h e r m o r e , f a v o r a b l e s e c o n d a r y e l e c t r o s t a t i c i n t e r a c t i o n s ( S E I ) s t r e n g t h e n t h e p r i m a r y f o r c e s ” , a s i l l u s t r a t e d i n S c h e m e 4 . \ 5 _ — < < e - ' 3 " “ ‘ " ' < - ‘ 3 > — — < j i > : < . . : > — S c h e m e 4 T h e p r i m a r y t w o - p o i n t h y d r o g e n b o n d o f t h e a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e i s s i m i l a r t o t h e i n t e r a c t i o n e s t a b l i s h e d a m o n g c a r b o x y l i c a c i d m o i e t i e s ( s y n t h o n 1 i n F i g u r e 4 ) . F o r e x a m p l e t h e o n e — d i m e n s i o n a l z l g — z a g t a p e s o f c o m p o u n d 1 a s s e m b l e d b y t h i s p r i m a r y i n t e r a c t i o n a r e a l s o s e e n i n t h e c r y s t a l o f i s o p h t h a l i c a c i d “ . H o w e v e r t h e o v e r a l l s t r u c t u r e o f t h e l a t t e r r e m a i n s o n e — d i m e n s i o n a l d u e t o t h e i n a b i l i t y o f t h e c a r b o x y l i c g r o u p i n t e r f a c e s t o f u r t h e r i n t e r c o n n e c t w i t h e a c h o t h e r . O n t h e o t h e r h a n d t h e d i m e n s i o n a l i t y o f 1 i s e x t e n d e d b e y o n d t h e t a p e s b y i n t e r c o n n e c t i n g t h e m i n t o i n f i n i t e l a d d e r s . T h e s e o n e — d i m e n s i o n a l l a d d e r s a r e a c o m m o n f e a t u r e o f a m i d i n i u m — c a r b o x y l a t e 2 6 5 b r i d g e s 3 5 a n d a r e a s s e m b l e d b y h y d r o g e n - b o n d i n g a m o n g t h e t w o e x t e r n a l a m i d i n i u m p r o t o n s a n d c a r b o x y l a t e o x y g e n s f r o m a b o v e a n d b e l o w t h e p l a n e o f t h e s a l t b r i d g e . T h i s s e c o n d a r y i n t e r a c t i o n i s f u r t h e r s t r e n g t h e n e d b y e l e c t r o s t a t i c a t t r a c t i o n s , s i n c e t h e d i p o l e s o f a d j a c e n t s a l t b r i d g e s a r e a r r a n g e d i n a h e a d t o t a i l f a s h i o n a l o n g t h e l a d d e r s . W h e n o t h e r f u n c t i o n a l g r o u p s c a p a b l e o f h y d r o g e n — b o n d i n g a r e p r e s e n t i n t h e m o l e c u l e s , t h e f o r m a t i o n o f t h e s a l t b r i d g e l a d d e r s i s p r e v e n t e d . T h i s i s t h e c a s e i n c o m p o u n d s 3 a n d 4 w h e r e a l t h o u g h t h e p r i m a r y i n t e r a c t i o n o f t h e a m i d i n i u m — c a r b o x y l a t e b r i d g e i s s t i l l o p e r a t i v e , t h e p r e s e n c e o f t h e n i t r o x y l m o i e t y s e t s a d i f f e r e n t m o d e f o r t h e i r i n t e r c o n n e c t i o n . A d d i t i o n a l i n s i g h t s o f t h e r o l e o f t h e n i t r o x y l g r o u p a s a s y n t h o n h a v e b e e n g a i n e d b y t h e s t u d y o f t h e s t r u c t u r e o f 2 , w h i c h a l o n g w i t h r e c e n t l i t e r a t u r e e x a m p l e s ” , e s t a b l i s h e s i t s p o t e n t i a l n o t o n l y t o a c t a s a r a d i c a l c e n t e r b u t a l s o a s a s t r u c t u r a l b u i l d i n g b l o c k . T h e c o n fi g u r a t i o n o f t h e n i t r o g e n a t o m i n a l l t h r e e c o m p o u n d s i s p l a n a r , a s j u d g e d b y t h e s m a l l d e v i a t i o n o f t h e o x y g e n a t o m f r o m t h e C N C p l a n e w h i c h a r e i n t h e o r d e r o f 0 . 0 1 ( 1 ) A , 0 . 0 6 ( 1 ) A a n d 0 . 0 5 ( 1 ) A f o r 2 , 3 a n d 4 r e s p e c t i v e l y . I n a d d i t i o n t h e n i t r o x y l g r o u p i s a b l e t o a d j u s t i t s p o l a r i t y a c c o r d i n g t o t h e e n v i r o n m e n t . | < — > | : Q : - . 0 S c h e m e 5 A s s h o w n i n S c h e m e 5 , t w o r e s o n a n c e s t r u c t u r e s a r e p o s s i b l e : a z w i t t e r i o n i c o n e t h a t p l a c e s t h e r a d i c a l c e n t e r o n t h e n i t r o g e n a t o m a n d a n e u t r a l 2 6 6 o n e w h e r e t h e u n p a i r e d e l e c t r o n d e n s i t y r e s i d e s o n t h e o x y g e n a t o m . l n p o l a r e n v i r o n m e n t s t h e f o r m e r i s f a v o r e d , a s s h o w n b y E P R e x p e r i m e n t s . S p i n d e n s i t i e s o f 0 . 6 0 a n d 0 . 5 5 a r e a s s i g n e d o n t h e n i t r o g e n a t o m o f t h e s o d i u m s a l t y “ ) a n d t h e a m i d e 4 4 o f c o m p o u n d 2 i n e t h a n o l a n d m e t h a n o l r e s p e c t i v e l y . T h e a b o v e e f f e c t i n c r e a s e s t h e e l e c t r o n e g a t i v e c h a r a c t e r o f t h e n i t r o x y l o x y g e n a t o m e n h a n c i n g i t s a b i l i t y t o p e r f o r m a s a n a c c e p t o r o f h y d r o g e n — b o n d i n g . T h e r e f o r e i t i s n o t s u r p r i s i n g t h a t t h e n i t r o x y l g r o u p i s i n v o l v e d i n t h e p r i m a r y i n t e r a c t i o n i n t h e s t r u c t u r e o f 2 b y p r e v e n t i n g t h e f o r m a t i o n o f t h e u s u a l t w o - p o i n t h y d r o g e n b o n d b e t w e e n a c i d m o i e t i e s . I n c o n t r a s t t h e d r i v i n g f o r c e f o r t h e a s s e m b l y o f t h e a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e i s l a r g e e n o u g h t h a t i t s f o r m a t i o n i s n o t h i n d e r e d b y t h e n i t r o x y l g r o u p i n t h e s t r u c t u r e s o f 3 a n d 4 . T h e a s s e m b l y o f l a d d e r s h o w e v e r , i s h a m p e r e d a n d n e w t y p e s o f i n t e r a c t i o n s a r e o b s e r v e d . B o t h s t r u c t u r e s s h a r e a s a c o m m o n b u i l d i n g b l o c k a f o u r m o l e c u l e c l u s t e r s h o w n i n F i g u r e s 9 ( A ) a n d 1 1 . T h e s a m e t y p e o f c l u s t e r , w h i c h c o n s i s t s o f t w o s a l t b r i d g e s a s s e m b l e d v i a t h e t w o - p o i n t h y d r o g e n b o n d a n d j o i n e d t o g e t h e r b y a o n e — p o i n t h y d r o g e n b o n d b e t w e e n a n e x t e r n a l a m i d i n i u m p r o t o n a n d a c a r b o x y l a t e o x y g e n f r o m e a c h s a l t b r i d g e , e v o l v e s t o t h e l a d d e r s o f c o m p o u n d 1 b y d i r e c t c l u s t e r i n t e r c o n n e c t i o n . I n 3 a n d 4 i n t e r c o n n e c t i o n o f t h e s a l t b r i d g e s i s n o t d i r e c t a n d i s a c h i e v e d v i a a w a t e r m o l e c u l e a n d t h e n i t r o x y l r a d i c a l a n i o n r e s p e c t i v e l y r e s u l t i n g i n t h e f o r m a t i o n o f d i f f e r e n t t w o - d i m e n s i o n a l p a t t e r n s . T h e s t r u c t u r a l o r g a n i z a t i o n o f c o m p o u n d s 2 , 3 , a n d 4 i s r e fl e c t e d i n t h e i r m a g n e t i c p r o p e r t i e s , w h i c h , a l t h o u g h t h e y o r i g i n a t e f r o m t h e s a m e r a d i c a l c e n t e r , d i f f e r r e m a r k a b l y . T h e a n t i f f e r o m a g n e t i c b e h a v i o r o f 2 w a s a n a l y z e d b y c o n s i d e r i n g e x c h a n g e i n t e r a c t i o n s a l o n g h e a d ( n i t r o x i d e ) t o t a i l ( c a r b o x y l a t e ) l i n e a r c h a i n a r r a n g e m e n t s o f t h e r a d i c a l s i n t e r c o n n e c t e d b y N — 0 - - - - - - H — 0 h y d r o g e n b o n d s ( F i g u r e 8 ) . A l t h o u g h t h e r a d i c a l c e n t e r s a r e m a i n l y l o c a l i z e d o n t h e n i t r o x y l m o i e t y , s m a l l b u t a p p r e c i a b l e a m o u n t s o f s p i n d e n s i t y c a n b e 2 6 7 t r a n s f e r r e d b y t h e s p i n p o l a r i z a t i o n m e c h a n i s m 4 5 t o r e m o t e a t o m s e i t h e r i n t r a m o l e c u l a r l y v i a c o v a l e n t b o n d i n g o r i n t e r m o l e c u l a r l y v i a h y d r o g e n — b o n d i n g . D i r e c t e v a l u a t i o n o f t h e i n t r a m o l e c u l a r l y i n d u c e d s p i n d e n s i t y i s a c c o m p l i s h e d b y E P R a n d m a i n l y E N D O R t e c h n i q u e s b y m e a s u r i n g t h e i s o t r o p i c h y p e r fi n e c o u p l i n g o f a g i v e n m a g n e t i c n u c l e u s i n f r o z e n o r fl u i d s o l u t i o n s . S u c h a m e a s u r e m e n t o f t h e A i s o o f t h e c a r b o x y l i c p r o t o n i n c o m p o u n d 2 h a s n o t b e e n r e p o r t e d , b u t a fi n i t e a m o u n t o f s p i n d e n s i t y i s p r o b a b l y t r a n s f e r r e d i n t r a m o l e c u l a r l y v i a c o v a l e n t b o n d i n g , b y a n a l o g y t o t h e N — H p r o t o n s o f t h e c o r r e s p o n d i n g a m i d e 4 6 ( A ; s o v a l u e s w e r e o n t h e o r d e r o f - 0 . 0 1 0 a n d — 0 . 0 8 3 M H z ) . A d d i t i o n a l c o n t r i b u t i o n s a r e r e n d e r e d b y t h e d i r e c t h y d r o g e n b o n d i n g o f t h e c a r b o x y l i c p r o t o n t o a n e i g h b o r i n g r a d i c a l c e n t e r , i n a c c o r d a n c e w i t h r e c e n t l i t e r a t u r e e x a m p l e s ” 2 7 w h e r e s p i n c o m m u n i c a t i o n a d v a n c e s t h r o u g h h y d r o g e n b o n d e d n e t w o r k s o f s i m i l a r t y p e a s t h e o n e o b s e r v e d i n 2 . M a g n e t i c c o m m u n i c a t i o n a l s o p r o p a g a t e s a m o n g a d j a c e n t c h a i n s , w h i c h a r e j o i n e d b y a w e a k e r i n t e r a c t i o n i n v o l v i n g t h e v i n y l i c h y d r o g e n a t o m a n d t h e c a r b o x y l a t e o x y g e n . T h e l a c k o f t h e l a t t e r i n t e r a c t i o n i n t h e s a t u r a t e d a n a l o g u e o f 2 , c o n fi n e s i t s d i m e n s i o n a l i t y t o l i n e a r c h a i n s “ . A p a r t f r o m t h e i r s i g n i fi c a n c e a s a s t r u c t u r a l e l e m e n t ( F i g u r e 4 ) , h y d r o g e n b o n d s i n v o l v i n g t h e v i n y l i c p r o t o n a p p a r e n t l y r e p r e s e n t e f fi c i e n t e x c h a n g e p a t h w a y s f o r s p i n c o m m u n i c a t i o n . E N D O R s t u d i e s o n r a d i c a l 2 3 6 ( 3 ) a n d i t s a m i d e a n a l o g u e 4 6 i n d i c a t e t h e p r e s e n c e o f s u b s t a n t i a l s p i n d e n s i t y o n t h i s p r o t o n a s j u d g e d b y t h e v a l u e s o f A i s o w h i c h a r e — 1 . 5 2 a n d — 1 . 8 1 M H z . T h e f o r m e r v a l u e c o r r e s p o n d t o a f r a c t i o n a l n - s p i n d e n s i t y o f 0 . 0 2 6 , l o c a l i z e d o n t h e 2 p z o r b i t a l o f t h e v i n y l i c c a r b o n , b u t i t i s l i k e l y t h a t t h e s p i n t r a n s f e r i n t h i s u n c o n j u g a t e d s y s t e m i s m o r e c o m p l e x , i n v o l v i n g 0 ' b o n d s p i n p o l a r i z a t i o n . T h e s p i n c o m m u n i c a t i o n i s t u r n e d o f f i n t h e a m i d i n i u m — c a r b o x y l a t e s a l t 3 . H o w e v e r e x a m i n a t i o n o f t h e p o s s i b l e e x c h a n g e p a t h w a y s i n t h i s c o m p o s i t e t w o — 2 6 8 d i m e n s i o n a l c r y s t a l f a c i l i t a t e s m a g n e t o s t r u c t u r a l a n a l y s i s o f t h e o t h e r t w o c o m p o u n d s . T h e r e a r e t w o p a t h w a y s i n t e r c o n n e c t i n g a d j a c e n t r a d i c a l c e n t e r s . T h e fi r s t o n e , d r a w n i n F i g u r e 1 0 ( A ) , r e s e m b l e s t h e h e a d t o t a i l l i n e a r c h a i n s o f t h e p a r e n t n i t r o x i d e 2 . T h e a b s e n c e o f t h e c a r b o x y l i c p r o t o n p r e v e n t s d i r e c t h y d r o g e n — b o n d i n g o f a d j a c e n t r a d i c a l m o l e c u l e s , w h i c h i s n o w a c c o m p l i s h e d w i t h t h e a i d o f w a t e r m o l e c u l e s a l t e r n a t i v e l y p l a c e d a m o n g t h e m . T h i s i n d i r e c t b o n d i n g i n c r e a s e s t h e d i s t a n c e b e t w e e n n e i g h b o r i n g r a d i c a l s , i n c o m p a r i s o n t o t h e p a r e n t c o m p o u n d 2 , a n d a s a r e s u l t t u r n s o f f t h e i r m a g n e t i c c o m m u n i c a t i o n . T h e r a d i c a l c e n t e r s a r e a l s o c o n n e c t e d b y i n t e r a c t i o n s i n v o l v i n g t h e a m i d i n i u m - c a r b o x y l a t e s a l t b r i d g e i t s e l f , w h i c h a s s e m b l e s t h e m o l e c u l a r c l u s t e r d e p i c t e d i n F i g u r e 9 ( A ) . H o w e v e r s p i n c o m m u n i c a t i o n h e r e i s n o t e f f e c t i v e s i n c e t h i s a r r a n g e m e n t p l a c e s t h e r a d i c a l c e n t e r s 1 4 b o n d s a w a y f r o m e a c h o t h e r , w i t h t w o o f t h e m b e i n g h y d r o g e n b o n d s . T h e a n t i f e r r o m a g n e t i c c o u p l i n g o b s e r v e d i n t h e a m i d i n i u m - c a r b o x y l a t e s a l t 4 i s h a r d e r t o u n d e r s t a n d d u e t o t h e c o m p l e x i t y o f t h e i n t r a l a y e r n e t w o r k . E x a m i n a t i o n o f F i g u r e s 1 1 a n d 1 2 r e v e a l s f o u r p o s s i b l e p a t h w a y s f o r s p i n c o m m u n i c a t i o n , a l l o f w h i c h i n v o l v e t h e s a l t b r i d g e . T a k i n g t h e n i t r o x y l o x y g e n a s t h e s e a t o f u n p a i r e d s p i n , a n d t r a c i n g p a t h s i n t h e s i x — s u b u n i t f r a g m e n t s h o w n i n F i g u r e 1 1 , w e d e s i g n a t e 0 ( 1 ) - - - - - - 0 ( 4 ) , 0 ( 1 ) - - - - - - 0 ( 4 A ) , 0 ( 4 ) - - - - - - 0 ( 4 A ) , a n d 0 ( 1 ) - - - - - - 0 ( 1 A ) a s p a t h s 1 — 4 , r e s p e c t i v e l y . T h e fi r s t , a n d s h o r t e s t , i s t h e o n e w e b e l i e v e t o b e m a g n e t i c a l l y s i g n i fi c a n t ( s e e b e l o w ) ; i t i s a 9 — b o n d p a t h i n w h i c h n i t r o x y l r a d i c a l s i n t e r n a l a n d e x t e r n a l t o t h e f o u r m o l e c u l e l a d d e r c l u s t e r a r e c o u p l e d v i a N — 0 ( 4 ) - - - H — N ( 1 ) — — H - - - 0 ( 3 ) — C h y d r o g e n b o n d i n g . P a t h s 2 , 3 a n d 4 i n v o l v e 1 1 , 1 2 a n d 1 4 b o n d s , r e s p e c t i v e l y ; p a t h 3 , p r o p a g a t i n g a l o n g a n d a c r o s s t h e l a d d e r c l u s t e r , i n c l u d e s f o u r h y d r o g e n b o n d s r a t h e r t h a n t h e t w o f o u n d i n e a c h o f t h e o t h e r t h r e e p a t h s . I t i s u n l i k e l y t h a t t h e t r a n s f e r o f s p i n t h r o u g h p a t h s 2 - 4 c o u l d e f f e c t i v e l y c o m p e t e w i t h t h e s h o r t e r p a t h 1 . T h e d i f f e r i n g 2 6 9 m a g n e t i c b e h a v i o r o f 4 a n d 3 f a v o r s t h e l a t t e r s t a t e m e n t . I t s u g g e s t s t h a t c o u p l i n g b e t w e e n e x t e r n a l a n d i n t e r n a l n i t r o x y l r a d i c a l s i s t h e i m p o r t a n t e x c h a n g e p a t h w a y s i n c e i t i s t h e p r e s e n c e o r a b s e n c e o f t h i s i n t e r a c t i o n t h a t d i s t i n g u i s h e s t h e s t r u c t u r e s . I f i n t r a c l u s t e r c o u p l i n g w e r e d o m i n a n t , t h e n s i m i l a r b e h a v i o r f o r b o t h c o m p o u n d s w o u l d b e e x p e c t e d o n t h e b a s i s o f t h e r e t e n t i o n o f p a t h 4 i n b o t h s t r u c t u r e s . M o r e o v e r , t h e s e d a t a s u p p o r t o u r i n i t i a l i n f e r e n c e t h a t p a t h 1 s h o u l d d o m i n a t e t h e m a g n e t i c c o u p l i n g ; t h e e x t r a H 2 0 i n 3 a d d s o n e H — b o n d a n d o n e 0 — H c o v a l e n t b o n d t o p a t h 1 , m a k i n g i t a n 1 1 - b o n d p a t h w a y t h a t i n c l u d e s t h r e e H — b o n d s . N o t i n g t h a t p a t h 2 i s a n 1 1 - b o n d l i n k a g e i n c o r p o r a t i n g t w o h y d r o g e n b o n d s , a n d t h a t p a t h 3 h a s 1 4 b o n d s w i t h f o u r h y d r o g e n b o n d s , i t s e e m s u n l i k e l y t h a t t h e s e c o n n e c t i o n s c o n t r i b u t e t o t h e c o u p l i n g i n 4 . D . C o n c l u s i o n s T h e r e s u l t s p r e s e n t e d i n t h i s c h a p t e r r e v e a l e d t h e s t r u c t u r a l d i v e r s i t y a c c e s s i b l e b y c o m b i n i n g a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e s w i t h m o i e t i e s o f i n t e r e s t , s u c h a s n i t r o x y l . J u x t a p o s i t i o n o f s u c h l o c a l i z e d s p i n c e n t e r s i n a p r e d i c t a b l e c r y s t a l f r a m e w o r k e x p a n d s t h e p o s s i b i l i t i e s f o r t h e c o n t r o l a b l e c o n s t r u c t i o n o f o r g a n i c — b a s e d m a g n e t i c m a t e r i a l s . T h e p r i m a r y t w o — p o i n t h y d r o g e n b o n d b o l s t e r e d b y t h e c o u l o m b i c a t t r a c t i o n b e t w e e n t h e n e g a t i v e l y c h a r g e d c a r b o x y l a t e b y t h e p o s i t i v e l y c h a r g e d a m i d i n u m , i s t h e r o b u s t f r a m e w o r k f r o m w h i c h e a c h i n d i v i d u a l s t r u c t u r e r a d i a t e s . M o r e s p e c i f i c a l l y o u r w o r k h a s s h o w n t h a t ° t h e s t r o n g t w o — p o i n t h y d r o g e n b o n d i n g i n t e r a c t i o n o f t h e a m i d i n i u m — c a r b o x y l a t e s a l t b r i d g e w a s t h e e s s e n t i a l p r i m a r y b u i l d i n g b l o c k o f a l l s t r u c t u r e s s t u d i e d 2 7 0 - t h e p r e s e n c e o f t h e n i t r o x y l f u n c t i o n a l g r o u p d i d n o t i n fl u e n c e t h i s t w o — p o i n t h y d r o g e n b o n d i n g i n t e r a c t i o n ° e x p a n s i o n o f t h e s t r u c t u r e s ' d i m e n s i o n a l i t y w a s a c h i e v e d v i a s e c o n d a r y o n e — p o i n t h y d r o g e n b o n d s b e t w e e n t h e a m i d i n i u m p r o t o n s e x t e r n a l t o t h e s a l t b r i d g e i n t e r f a c e a n d t h e p r o p e r L e w i s b a s i c s i t e s - i n a l l c a s e s s t u d i e d t h e a s s e m b l y o f a f o u r — m o l e c u l e c l u s t e r w a s o b s e r v e d - i n t e r c o n n e c t i o n o f t h e c l u s t e r s b y t h e m s e l v e s o r v i a t h e n i t r o x y l f u n c t i o n a l g r o u p a f f o r d e d t h e e x t e n d e d s o l i d s - w e a k m a g n e t i c e x c h a n g e w a s t h e r e s u l t o f t h e d i r e c t i n t e r a c t i o n b e t w e e n t h e e x t e r n a l t o t h e s a l t b r i d g e a m i d i n i u m p r o t o n s w i t h t h e n i t r o x y l s p i n c e n t e r s - i n c r e a s i n g t h e l e n g t h o f t h e e x c h a n g e p a t h w a y b y i n v o l v e m e n t o f c r y s t a l l i z a t i o n w a t e r i n t h e b o n d i n g t u r n e d o f f t h e m a g n e t i c i n t e r a c t i o n T h e s t u d i e s p r e s e n t e d i n t h i s c h a p t e r , a l t h o u g h a s s o c i a t e d w i t h n e g l i g i b l e m a g n e t i c i n t e r a c t i o n s , a r e o f t h e f i r s t e x a m p l e s w h e r e c r y s t a l e n g i n e e r i n g i s u s e d t o d i c t a t e t h e w a y s t h a t s p i n c e n t e r s i n t e r a c t w i t h e a c h o t h e r . S y n t h e s i s o f r e l a t e d s o l i d s w h e r e b o t h t h e c a r b o x y l a t e a n d t h e a m i d i n i u m c o m p o n e n t s o f t h e s a l t b r i d g e b e a r a n i t r o x y l r a d i c a l o r r a d i c a l a n a l o g s o f 3 — a m i d i n i u m b e n z o a t e c o u l d p r o v i d e f u r t h e r i n f o r m a t i o n r e g a r d i n g t h e s p i n c o u p l i n g v i a n o n — c o v a l e n t b o n d i n g . 2 7 1 L I S T O F R E F E R E N C E S ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 1 0 ) ( 1 1 ) ( 1 2 ) ( a ) L e h n , J . — M . P u r e A p p l . C h e m . 1 9 7 8 , 5 0 , 8 7 1 . ( b ) L e h n , J . — M . S c i e n c e 1 9 8 5 , 2 2 7 , 8 4 9 . ( c ) L e h n , J . — M . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 8 , 2 7 , 8 9 . D e s i r a j u , G . R . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 5 , 3 4 , 2 3 1 1 . P h i l i p , D . ; S t o d d a r t , J . F . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 6 , 3 5 , 1 1 5 4 . L e h n , J . — M . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 0 , 2 9 , 1 3 0 4 . ( a ) K e l l y , T . R . ; Z h a o , C . ; B r i d g e r , G . J . J . A m . C h e m . S o c . 1 9 8 9 , 1 1 1 , 3 7 4 4 . ( b ) K e l l y , T . R . ; B r i d g e r , G . J . ; Z h a o , C . J . A m . C h e m . S o c . 1 9 9 0 , 1 1 2 , 8 0 2 4 . ( a ) v o n K i e d r o w s k i , G . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 6 , 2 5 , 9 3 2 . ( b ) v o n K i e d r o w s k i , G . ; W l o t z k a , B . ; H e l b i n g , J . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 9 , 2 8 , 1 2 3 5 . ( c ) v o n K i e d r o w s k i , G . ; W l o t z k a , B . ; H e l b i n g , J . ; M a t z e n , M . ; J o r d a n , 8 . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 1 , 3 0 , 4 2 3 . ( d ) v o n K i e d r o w s k i , G . B i o o r g . C h e m . F r o n t . 1 9 9 3 , 3 , 1 1 3 . ( e ) A c h i l l e s , T . ; v o n K i e d r o w s k i , G . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 3 , 3 2 , 1 1 9 8 . ( f ) S i e v e r s , D . ; v o n K i e d r o w s k i , G . N a t u r e 1 9 9 4 , 3 6 9 , 2 2 1 . ( a ) Z i e l i n s k i , W . S . ; O r g e l , L . E . N a t u r e 1 9 8 7 , 3 2 7 , 3 4 6 . ( b ) W u , T . ; O r g e l , L . E . J . A m . C h e m . S o c . 1 9 9 2 , 1 1 4 , 3 1 7 . ( a ) R e b e k , J . , J r . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 0 , 2 9 , 2 4 5 . ( b ) R e b e k , J . , J r . A c c . C h e m . R e s . 1 9 9 0 , 2 3 , 3 9 9 . ( c ) T j i v i k u a , T . ; B a l l e s t e r , P . ; R e b e k , J . , J r . J . A m . C h e m . S o c . 1 9 9 0 , 1 1 2 , 1 2 4 9 . ( d ) N o w i c k , J . S . ; F e n g , 0 . ; T j i v i k u a , T . ; B a l l e s t e r , P . ; R e b e k , J . , J r . J . A m . C h e m . S o c . 1 9 9 1 , 1 1 3 , 8 8 3 1 . T e r f o r t , A . ; v o n K i e d r o w s k i , G . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 2 , 3 1 , 6 5 4 . L a w r e n c e , D . S . ; J i a n g , T . ; L e v e t t , M . C h e m . R e v . 1 9 9 5 , 9 5 , 2 2 2 9 . ( a ) v o g t l e , F . ; S u p r a m o l e c u l a r C h e m i s t r y , W i l e y : C h i c h e s y e r 1 9 9 1 . ( b ) L e h n , J . — M . M a c r o c y c l i c C h e m i s t r y , V C H : N e w Y o r k 1 9 9 3 . ( c ) L e h n , J . — M . S u p r a m o l e c u l a r C h e m i s t r y ; V C H : W e i n h e i m 1 9 9 5 . ( d ) B a l z a n i , V . ; S c a n d o l a , F . S u p r a m o l e c u l a r P h o t o c h e m i s t r y , E l l i s H o r w o o d : W e s t S u s s e x 1 9 9 1 . ( e ) C r a m , D . J . C o n t a i n e r M o l e c u l e s a n d t h e i r G u e s t s ; R o y a l S o c i e t y o f C h e m i s t r y : C a m b r i d g e 1 9 9 4 . ( a ) R o b e r t s , J . A . ; P h . D . D i s s e r t a t i o n , M . S . U . 1 9 9 7 . ( b ) R o b e r t s , J . A . ; 2 7 2 ( 1 3 ) ( 1 4 ) ( 1 5 ) ( 1 6 ) ( 1 7 ) ( 1 8 ) ( 1 9 ) ( 2 0 ) ( 2 1 ) ( 2 2 ) ( 2 3 ) ( 2 4 ) K i r b y , J . P . ; N o c e r a , D . G . J . A m . C h e m . S o c . 1 9 9 5 , 1 1 7 , 8 0 5 1 . ( c ) K i r b y , J . P . ; R o b e r t s , J . A . ; N o c e r a , D . G . J . A m . C h e m . S o c . I n p r e s s . A a k e r d y , C . B . A c t a C r y s t . 1 9 9 7 , B 5 3 , 5 6 9 . ( a ) S c h m i d t , G . M . J . P u r e A p p l . C h e m . 1 9 7 1 , 2 7 , 6 4 7 . ( b ) C o h e n , M . D . ; S c h m i d t , G . M . J . J . C h e m . S o c . 1 9 9 6 , 1 9 6 4 . D e s i r a j u , G . R . C r y s t a l E n g i n e e r i n g : T h e D e s i g n o f O r g a n i c S o l i d s 1 9 8 9 , A m s t e r d a m : E l s e v i e r . ( a ) W h i t e s i d e s , G . M . ; M a t h i a s , J . P . ; S e t o , C . T . S c i e n c e 1 9 9 1 , 2 5 4 , 1 3 1 2 . ( b ) M a c D o n a l d , J . C . ; W h i t e s i d e s , G . M . C h e m . R e v . 1 9 9 4 , 9 4 , 2 3 8 3 . ( c ) E t t e r , M . C . J . P h y s . C h e m . 1 9 9 1 , 9 5 , 4 6 0 1 . ( d ) E t t e r , M . C . A c c . C h e m . R e s . 1 9 9 0 , 2 3 , 1 2 0 . ( e ) R u s s e l l , V . A . ; W a r d , M . D . C h e m . M a t e r . 1 9 9 6 , 8 , 1 6 5 4 . ( f ) C l a e s s e n s , C . G . ; S t o d d a r t , J . F . J . P h y s . O r g . C h e m . 1 9 9 7 , 1 0 , 2 5 4 . A l l e n , F . H . ; K e n n a r d , 0 . ; T a y l o r , R . A c c . C h e m . R e s . 1 9 8 3 , 1 6 , 1 4 6 . ( a ) R e u t z e l , S . M . ; E t t e r , M . C . J . P h y s . O r g . C h e m . 1 9 9 2 , 5 , 4 4 . ( b ) E t t e r , M . C . ; B r i t t o n , D . ; R e u t z e l , S . M . A c t a C r y s t a l l o g r . 1 9 9 1 , C 4 7 , 5 5 6 . ( c ) E t t e r , M . C . ; R e u t z e l , S . M . J . A m . C h e m . S o c . 1 9 9 1 , 1 1 3 , 2 5 8 6 . R e d d y , D . 8 . ; O v c h i n n i k o v , Y . E . ; S h i s h k i n , O . V . ; S t r u c h k o v , Y . T ; D e s i r a j u , G . R . J . A m . C h e m . S o c . 1 9 9 6 , 1 1 8 , 4 0 8 5 . R e d d y , D . 8 . ; C r a i g , D . C . ; D e s i r a j u , G . R . J . A m . C h e m . S o c . 1 9 9 6 , 1 1 8 , 4 0 9 0 . ( a ) A a k e r o y , C . B . ; H i t c h c o c k , P . B . ; S e d d o n , K . R . J . C h e m . S o c . C h e m . C o m m u n . 1 9 9 2 , 5 5 3 . ( b ) A a k e r o y , C . B . ; N i e u w e n h u y z e n , M . J . A m . C h e m . S o c . 1 9 9 4 , 1 1 6 , 1 0 9 8 3 . ( c ) A a k e r o y , C . B . ; N i e u w e n h u y z e n , M . J . M o l . S t r u c t . 1 9 9 6 , 3 7 4 , 2 2 3 . ( a ) R u s s e l l , V . A . ; E t t e r , M . C . ; W a r d , M . D . J . A m . C h e m . S o c . 1 9 9 4 , 1 1 6 , 1 9 4 1 . ( b ) R u s s e l l , V . A . ; E t t e r , M . C . ; W a r d , M . D . C h e m . M a t e r . 1 9 9 4 , 6 , 1 2 0 6 . R u s s e l l , V . A . ; E v a n s , C . C . ; L i , W . ; W a r d , M . D . S c i e n c e 1 9 9 7 , 2 7 6 , 5 7 5 . ( a ) P u g l i s i , J . D . ; C h e n , L . ; F r a n k e l , A . D . ; W i l l i a m s o n , J . R . P r o c . N a t l . A c a d . S c i . U S A 1 9 9 3 , 9 0 , 3 6 8 0 . ( b ) P a v l e t i c h , N . P . ; P a b o , C . 0 . S c i e n c e 1 9 9 1 , 2 5 2 , 8 0 9 . ( c ) B e r g , J . M . A c c . C h e m . R e s . 1 9 9 5 , 2 8 , 1 4 . ( d ) H o w e l l , E . H . ; V i l l a f r a n c a , J . E . ; W a r r e n , M . S . ; O a t l e y , S . J . ; K r a u t , J . S c i e n c e 1 9 8 6 , 2 3 1 , 8 0 9 . ( e ) R a m i r e z , E . B . ; M a l m s t r b m , G . B . ; W i n k l e r , R . J . ; G r a y , H . B . P r o c . N a t l . A c a d . S c i . U S A 1 9 9 5 , 9 2 , 1 1 9 4 9 . ( f ) E n g l i s h , A . M . ; T s a p r a i l i s , G . A d v . I n o r g . C h e m . 1 9 9 5 , 4 3 , 7 9 . ( g ) C r a n e , B . R . ; L e w i s , M . S . ; G e t z o f f , E . D . S c i e n c e 1 9 9 5 , 2 7 0 , 5 9 . ( h ) L i p p a r d , J . S . ; B e r g , M . J . 2 7 3 ( 2 5 ) ( 2 6 ) ( 2 7 ) ( 2 8 ) ( 2 9 ) ( 3 0 ) ( 3 1 ) ( 3 2 ) ( 3 3 ) ( 3 4 ) ( 3 5 ) ( 3 6 ) ( 3 7 ) P r i n c i p l e s o f B i o i n o r g a n i c C h e m i s t r y , U n i v e r s i t y S c i e n c e B o o k s : M i l l V a l l e y , C A , 1 9 9 4 ; p 1 4 1 . K i r b y , J . P . P h . D . D i s s e r t a t i o n , M . S . U . 1 9 9 7 . ( a ) L a n g , A . ; P e i , Y . ; Q u a h a b , L . ; K a h n , 0 . A d v . M a t e r . 1 9 9 6 , 8 , 6 0 . ( b ) S u g a w a r a , T . ; M a t s u s h i t a , M . M . ; l z u o k a , A . ; W a d a , N . ; T a k e d a , N . ; l s h i k a w a , M . J . C h e m . S o c . C h e m . C o m m u n . 1 9 9 4 , 1 7 2 3 . ( c ) T a m u r a , M . ; N a k a z a w a , Y . ; S h i o m i , D . ; N o z a w a , K . ; H o s o k o s h i , Y . ; l s h i k a w a , M . ; T a k a h a s h i , M . ; K i n o s h i t a , M . C h e m . P h y s . L e t t . 1 9 9 1 , 1 8 6 , 4 0 1 . ( d ) N a k a z a w a , Y . ; T a m u r a , M . ; S h i r a k a w a , N . ; S h i o m i , D . ; T a k a h a s h i , M . ; K i n o s h i t a , M . ; l s h i k a w a , M . ; P h y s . R e v . 1 9 9 2 , B 4 6 , 8 9 0 6 . ( a ) H e r n a n d e z , E . ; M a s , M . ; M o l i n s , E . ; R o v i r a , C . ; V e c i a n a , J . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 3 , 3 2 , 8 8 2 . ( b ) C i r u j e d a , J . ; O c h a n d o , L . E . ; A m i g o , J . M . ; R o v i r a , C . ; R i u s , J . ; V e c i a n a , J . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 5 , 3 4 , 5 5 . ( c ) C i r u j e d a , J . ; M a s , M . ; M o l i n s , E . ; d e P a n t h o u , F . L . ; L a u g i e r , J . ; P a r k , J . G . ; P a u l s e n , C . ; R e y , P . ; R o v i r a , C . ; A m i g o , J . M . ; V e c i a n a , J J . C h e m . S o c . C h e m . C o m m u n . 1 9 9 5 , 7 0 9 . W a g n e r , G . ; V i e w e g , H . ; K u e h m s t e d t , H . P h a n n a z i e 1 9 7 3 , 2 8 , 2 8 8 . ( a ) P r a n a t a , J . ; W i e r s c h k e , S . G . ; J o r g e n s e n , W . L . J . A m . C h e m . S o c . 1 9 9 1 , 1 1 3 , 2 8 1 0 . ( b ) J o r g e n s e n , W . L . ; P r a n a t a , J . J . A m . C h e m . S o c . 1 9 9 0 , 1 1 2 , 2 0 0 8 . ( a ) K i r b y , J . P . ; D a n t z i g , N . A . v a n ; C h a n g . C . K . ; N o c e r a , D . G T e t r a h e d r o n L e t t . 1 9 9 5 , 3 6 , 3 4 7 7 . R o z a n t e v , E . G . ; K r i n i t z a k a y a , L . A . T e t r a h e d r o n 1 9 6 5 , 2 1 , 4 9 1 . B o e y e n s , J . C . A . ; K r u g e r , G . J . A c t a . C r y s t . 1 9 7 0 , B 2 6 , 6 6 8 . ( a ) C h i o n , P . B . ; L a j z é r o w i c z , J . A c t a . C r y s t . 1 9 7 5 , B 3 1 , 1 4 3 0 . ( b ) T u r l e y , W . ; B o e r , F . P . A c t a . C r y s t . 1 9 7 2 , B 2 8 , 1 6 4 1 . W e t h e r i n g t o n , J . B . ; A m e n t , S . S . ; M o n c r i e f , J . W . A c t a . C r y s t . 1 9 7 4 , B 3 0 , 5 6 8 . ( a ) K r a t o c h v i l , B . ; O n d r a c e k , J . ; M a l y , K . ; C s o r d a s , L . C o l l e c t . C z e c h . C h e m . C o m m u n . 1 9 8 8 , 5 3 , 2 9 4 . ( b ) K r a t o c h v i l , B . ; O n d r a c e k , J . ; K r e c h l , J . ; H a s e k , J . A c t a . C r y s t . 1 9 8 7 , C 4 3 , 2 1 8 2 . ( c ) P a p o u t s a k i s , 0 ; K i r b y , J . P . ; J a c k s o n , J . E . ; N o c e r a , D . G . S u b m i t t e d f o r P u b l i c a t i o n . ( a ) M u s t a fi , D . ; J o e l a , H . J . P h y s . C h e m . 1 9 9 5 , 9 9 , 1 1 3 7 0 . ( b ) B u l l o c k , A . T . ; H o w a r d , C . B . J . C h e m . S o c . F a r a d a y I 1 9 8 0 , 7 6 , 1 2 9 6 . ( c ) O t t a v i a n i , M . F . ; M a r t i n i , G . ; N u t i , L . M a g n . R e s o n . C h e m . 1 9 8 7 , 2 5 , 8 9 7 . G r i f fi t h , O . H . ; D e h l i n g e r , P . J . ; V a n , S . P . J . M e m b r . B i o l . 1 9 7 4 , 1 5 , 1 5 9 . 2 7 4 ( 3 8 ) ( 3 9 ) ( 4 0 ) ( 4 1 ) ( 4 2 ) ( 4 3 ) ( 4 4 ) ( 4 5 ) ( 4 5 ) a ) C . A . P o p p , J . S . H y d e , J . M a g n . R e s o n . 1 9 8 1 , 4 3 , 2 4 9 ; b ) J . S . H y d e , W . K . S u b c z y n s k i , J . M a g n . R e s o n . 1 9 8 4 , 5 6 , 1 2 5 . H a t fi e l d , w . E . J . A p p l . P h y s . 1 9 8 1 , 5 2 , 1 9 8 5 . ( a ) H e i s e n b e r g , W . Z . P h y s i k . 1 9 2 6 , 3 8 , 4 1 1 . ( b ) D i r a c , P . A . M . P r o c . R o y . S o c . 1 9 2 6 , 1 1 2 A , 6 6 1 . B o n n e r , J . 0 ; F i s h e r , M . E . P h y s . R e v . 1 9 6 4 , A 1 3 3 , 7 6 8 . ( a ) H a l l , J . W . P h . D . D i s s e r t a t i o n 1 9 7 7 , U n i v e r s i t y o f N o r t h C a r o l i n a , C h a p e l H i l l , N C . ( b ) H a t fi e l d , W . E . ; T r o j a n , K . L . R e s e a r c h F r o n t i e r s i n M a g n e t o c h e m i s t r y 1 9 9 3 , W o r d S c i e n t i fi c P u b l i s h i n g C o . P t e . L t d . : S i n g a p o r e , 1 . D e r i s s e n , J . L . A c t a . C r y s t . 1 9 7 4 , B 3 0 , 2 7 6 4 . M u s t a fi , D . ; S a c h l e b e n , J . R . ; W e l l s , J . B . ; M a k i n e n , M . W . J . A m . C h e m . S o c . 1 9 9 0 , 1 1 2 , 2 5 5 8 . K o l l a m r , C . ; K a h n , 0 . A c c . C h e m . R e s . 1 9 9 3 , 2 6 , 2 5 9 . M u s t a fi , D . ; J o e l a , H . ; M a k i n e n , M . W . J . M a g n . R e s o n . 1 9 9 1 , 9 1 , 4 9 7 . 2 7 5 A P P E N D I X T a b l e 1 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r R b o , 5 V O P O 4 - 1 . 5 H 2 0 ( T = 2 9 3 K ) , ( 3 . 1 A ) . A t o m R b ( 1 ) R b ( 2 ) V ( 1 ) P ( 1 ) 0 ( 1 ) 0 ( 2 ) 0 ( 3 ) 0 ( 4 ) 0 ( 5 ) 0 ( 6 ) 0 ( 7 ) 0 ( 8 ) X 0 8 2 7 ( 3 2 ) 2 8 9 9 ( 2 ) 2 4 9 4 ( 2 ) 3 1 1 8 ( 8 ) 2 9 0 7 ( 8 ) 3 8 9 2 ( 7 ) 5 6 ( 7 ) 2 1 4 4 ( 8 ) 3 9 8 7 ( 1 0 ) — 2 6 7 ( 4 7 ) 2 5 1 ( 1 7 ) y 0 — 5 5 8 6 ( 2 7 ) — 2 5 1 8 ( 2 ) 2 4 9 6 ( 2 ) 4 3 9 7 ( 7 ) 5 3 5 ( 7 ) 2 4 1 0 ( 7 ) 2 5 9 7 ( 7 ) - 2 5 0 8 ( 8 ) — 2 5 0 0 ( 1 0 ) — 4 9 9 8 ( 5 3 ) - 3 9 0 ( 1 6 ) z 0 — 2 8 ( 1 9 ) 5 9 5 7 ( 2 ) 5 0 4 7 ( 2 ) 8 5 0 2 ( 8 ) 8 4 8 5 ( 7 ) 3 5 8 2 ( 7 ) 3 8 8 5 ( 8 ) 3 5 0 8 ( 7 ) 9 5 5 5 ( 8 ) — 2 0 ( 4 0 ) 4 2 ( 1 6 ) 0 . , , 6 . 0 ( 1 ) 3 . 3 ( 5 ) 0 . 9 ( 1 ) 1 . 0 ( 1 ) 2 . 0 ( 1 ) 1 . 7 ( 1 ) 1 . 6 ( 1 ) 1 . 9 ( 1 ) 2 . 1 ( 1 ) 3 . 2 ( 1 ) 1 . 7 ( 5 ) 8 . 2 ( 2 . 8 ) O c c u p a n c y 0 . 3 9 0 . 0 7 1 . 0 1 . 0 1 . 0 1 . 0 1 . 0 1 . 0 1 . 0 1 . 0 0 . 4 2 0 . 1 0 2 7 6 1 1 1 1 ' " T a b l e 2 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r R b o , 5 V O P O 4 - 1 . 5 H 2 0 ( T = 2 9 3 K ) , ( 3 . 1 A ) . A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 R b ( 1 ) 8 7 ( 2 ) 8 2 ( 1 ) 2 2 ( 1 ) — 2 ( 1 ) 5 ( 1 ) 5 1 ( 1 ) R b ( 2 ) 5 8 ( 1 3 ) 2 2 ( 7 ) 1 8 ( 6 ) 4 ( 5 ) 7 ( 5 ) — 6 ( 7 ) V ( 1 ) 8 ( 1 ) 8 ( 1 ) 1 2 ( 1 ) 0 ( 1 ) 3 ( 1 ) 0 ( 1 ) P ( 1 ) 7 ( 1 ) 7 ( 1 ) 1 7 ( 1 ) 0 ( 1 ) 4 ( 1 ) 0 ( 1 ) o m 2 0 ( 2 ) 8 ( 2 ) 3 1 ( 3 ) — 7 ( 2 ) 6 ( 2 ) — 2 ( 2 ) 0 ( 2 ) 1 9 ( 2 ) 1 1 ( 2 ) 2 2 ( 2 ) 2 ( 2 ) 7 ( 2 ) — 2 ( 2 ) 0 ( 3 ) 8 ( 2 ) 2 1 ( 2 ) 1 7 ( 2 ) — 1 ( 2 ) 2 ( 2 ) — 2 ( 2 ) 0 ( 4 ) 8 ( 2 ) 1 9 ( 2 ) 2 8 ( 2 ) 1 ( 2 ) 3 ( 2 ) 2 ( 2 ) 0 ( 5 ) 2 4 ( 2 ) 2 3 ( 2 ) 1 5 ( 2 ) — 1 ( 2 ) 4 ( 2 ) 3 ( 2 ) 0 ( 8 ) 3 9 ( 3 ) 4 0 ( 3 ) 1 8 ( 2 ) 2 ( 2 ) 7 ( 2 ) 9 ( 2 ) 2 7 7 T a b l e 3 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r R b o , 5 V O P O 4 - 1 . 5 1 1 2 0 ( T = 1 7 3 K ) , ( 3 . 1 8 ) . A t o m X y z U e q O c c u p a n c y R b ( 1 ) 0 0 1 0 0 0 0 2 9 ( 1 ) 0 . 8 0 2 R b ( 2 ) 3 6 ( 7 0 ) 4 4 9 ( 5 0 ) 1 2 8 ( 6 0 ) 6 2 ( 1 2 ) 0 . 0 8 0 V ( 1 ) 2 9 1 2 ( 2 ) - 2 5 2 9 ( 1 ) 5 9 7 5 ( 2 ) 8 ( 1 ) 1 P ( 1 ) 7 5 0 8 ( 2 ) - 2 4 9 7 ( 2 ) 4 9 4 8 ( 3 ) 1 0 ( 1 ) 1 0 ( 1 ) 2 1 4 9 ( 8 ) - 2 5 2 6 ( 7 ) 3 5 0 2 ( 7 ) 1 6 ( 1 ) 1 0 ( 2 ) 3 9 4 3 ( 1 0 ) - 2 4 6 6 ( 1 0 ) 9 5 7 4 ( 8 ) 3 0 ( 1 ) 1 0 ( 3 ) 2 8 6 6 ( 7 ) 5 2 2 ( 7 ) 6 4 7 2 ( 7 ) 1 4 ( 1 ) 1 0 ( 4 ) 6 1 3 1 ( 7 ) - 2 3 8 5 ( 7 ) 6 4 7 3 ( 7 ) 1 3 ( 1 ) 1 0 ( 5 ) - 6 5 ( 7 ) - 2 6 5 9 ( 8 ) 6 3 5 1 ( 8 ) 1 8 ( 1 ) 1 0 ( 6 ) 3 1 8 5 ( 8 ) - 5 6 2 7 ( 7 ) 6 5 2 8 ( 9 ) 1 8 ( 1 ) 1 0 ( 7 ) 0 - 5 0 0 0 1 0 0 0 0 1 7 ( 4 ) 0 . 8 2 0 ( 8 ) - 4 7 ( 7 0 ) - 9 ( 6 0 ) 8 9 5 ( 1 0 0 ) 2 ( 8 ) 0 . 0 1 2 7 8 T a b l e 4 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r R b o , 5 V O P O 4 - 1 . 5 H 2 0 ( T = 1 7 3 K ) , ( 3 . 1 B ) . A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 R b ( 1 ) 4 1 ( 1 ) 2 4 ( 1 ) 2 0 ( 1 ) - 1 ( 1 ) 5 ( 1 ) 2 0 ( 1 ) R b ( 2 ) 1 0 0 ( 2 0 ) 2 5 ( 1 4 ) 2 8 ( 1 1 ) 2 8 ( 8 ) - 2 3 ( 9 ) - 1 ( 1 0 ) V ( 1 ) 6 ( 1 ) 2 ( 1 ) 1 6 ( 1 ) 0 ( 1 ) 4 ( 1 ) 0 ( 1 ) P ( 1 ) 6 ( 1 ) 2 ( 1 ) 2 3 ( 1 ) 1 ( 1 ) 5 ( 1 ) 0 ( 1 ) 0 ( 1 ) 1 7 ( 2 ) 1 5 ( 2 ) 1 6 ( 2 ) 0 ( 2 ) 5 ( 2 ) 4 ( 2 ) 0 ( 2 ) 3 1 ( 3 ) 4 0 ( 3 ) 1 6 ( 2 ) - 1 ( 2 ) 4 ( 2 ) 1 9 ( 2 ) 0 ( 3 ) 1 4 ( 2 ) 2 ( 2 ) 2 4 ( 2 ) 4 ( 2 ) 4 ( 2 ) - 1 ( 1 ) 0 ( 4 ) 4 ( 2 ) 1 5 ( 2 ) 1 9 ( 2 ) 1 ( 2 ) 1 ( 2 ) 0 ( 1 ) 0 ( 5 ) 4 ( 2 ) 1 5 ( 2 ) 3 1 ( 3 ) 4 ( 2 ) 0 ( 2 ) 1 ( 2 ) 0 ( 6 ) 1 5 ( 2 ) 2 ( 2 ) 3 8 ( 3 ) - 5 ( 2 ) 9 ( 2 ) - 1 ( 2 ) 0 ( 7 ) 3 4 ( 8 ) 6 ( 1 2 ) 0 ( 7 ) 2 5 ( 7 ) - 1 1 ( 7 ) — 9 ( 8 ) 2 7 9 L . . T a b l e 5 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { b p y V O L u — ( C 5 H 5 ) 2 P O Z ] 1 , 5 } 2 { C I O 4 } , ( 4 . 1 ) . A t o m V ( 1 ) W ) 0 ( 1 ) 0 ( 2 ) 0 ( 3 ) 0 ( 4 ) 0 ( 5 ) 0 ( 6 ) 0 ( 7 ) 0 ( 8 ) N ( 1 ) N ( 2 ) M 3 ) M 4 ) P ( 1 ) P ( 2 ) P ( 3 ) 0 ( 1 ) 0 ( 2 ) 0 ( 3 ) 0 ( 4 ) 0 ( 5 ) 0 ( 6 ) 0 ( 7 ) 0 ( 8 ) 0 ( 9 ) C ( 1 0 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) C ( 1 4 ) C ( 1 5 ) C ( 1 8 ) C ( 1 7 ) X 3 5 8 7 ( 1 ) 4 6 1 8 ( 1 ) 2 7 3 8 ( 2 ) 5 8 8 4 ( 2 ) 4 8 4 8 ( 2 ) 4 9 1 5 ( 2 ) 4 4 1 8 ( 2 ) 4 9 1 9 ( 2 ) 2 4 3 1 ( 2 ) 2 8 3 4 ( 2 ) 3 0 8 0 ( 2 ) 4 9 3 4 ( 2 ) 3 7 8 1 ( 2 ) 3 7 8 8 ( 2 ) 5 0 6 7 ( 1 ) 5 1 9 8 ( 1 ) 1 9 8 2 ( 1 ) 2 0 7 0 ( 3 ) 1 7 2 9 ( 3 ) 2 4 3 7 ( 4 ) 3 4 9 1 ( 3 ) 3 7 9 2 ( 3 ) 4 8 8 5 ( 3 ) 5 8 1 1 ( 3 ) 8 7 9 9 ( 3 ) 8 8 2 9 ( 3 ) 5 8 7 9 ( 2 ) 3 8 1 5 ( 2 ) 3 1 8 3 ( 3 ) 2 4 8 4 ( 3 ) 2 4 1 4 ( 3 ) 3 0 8 2 ( 2 ) 3 0 3 8 ( 2 ) 2 3 1 0 ( 3 ) Y 1 6 5 1 ( 1 ) 4 4 7 2 ( 1 ) 1 0 4 3 ( 1 ) 4 7 4 8 ( 1 ) 2 3 0 7 ( 1 ) 3 9 5 8 ( 1 ) 1 8 0 4 ( 1 ) 3 3 2 5 ( 1 ) 2 8 1 7 ( 1 ) 4 3 0 0 ( 1 ) 1 4 8 2 ( 2 ) 5 8 8 ( 1 ) 5 1 6 9 ( 1 ) 5 7 1 4 ( 1 ) 3 1 2 9 ( 1 ) 2 3 5 2 ( 1 ) 3 7 0 0 ( 1 ) 1 9 3 5 ( 2 ) 1 7 5 0 ( 2 ) 1 0 8 2 ( 3 ) 8 2 0 ( 2 ) 8 3 4 ( 2 ) 3 7 2 ( 2 ) - 2 1 0 ( 2 ) - 6 1 2 ( 2 ) 4 3 9 ( 2 ) 1 5 5 ( 2 ) 4 8 5 1 ( 2 ) 5 3 2 0 ( 2 ) 8 1 4 8 ( 2 ) 8 4 8 0 ( 2 ) 5 9 7 9 ( 2 ) 8 2 7 2 ( 2 ) 7 0 4 8 ( 2 ) Z 3 8 8 1 ( 1 ) 3 1 0 1 ( 1 ) 4 3 7 9 ( 1 ) 2 9 4 7 ( 1 ) 2 7 1 1 ( 1 ) 2 1 8 2 ( 1 ) 4 5 1 3 ( 1 ) 4 0 5 5 ( 1 ) 3 4 2 5 ( 1 ) 3 2 8 7 ( 1 ) 2 8 4 1 ( 1 ) 3 4 7 6 ( 1 ) 3 9 6 0 ( 1 ) 2 2 8 3 ( 1 ) 1 9 8 0 ( 1 ) 4 5 7 5 ( 1 ) 3 5 5 8 ( 1 ) 2 2 9 7 ( 2 ) 1 8 7 9 ( 2 ) 1 4 0 1 ( 2 ) 1 7 4 2 ( 2 ) 2 3 8 4 ( 2 ) 2 7 8 3 ( 2 ) 2 4 9 5 ( 2 ) 2 9 2 7 ( 2 ) 3 8 5 2 ( 2 ) 3 9 0 3 ( 2 ) 4 8 0 5 ( 2 ) 5 3 4 1 ( 2 ) 4 9 8 7 ( 2 ) 4 1 1 8 ( 2 ) 3 8 1 3 ( 2 ) 2 8 7 8 ( 2 ) 2 2 2 8 ( 2 ) 2 8 0 ” a s 2 3 ( 1 ) 2 2 ( 1 ) 3 0 ( 1 ) 3 2 ( 1 ) 2 7 ( 1 ) 2 7 ( 1 ) 2 6 ( 1 ) 2 9 ( 1 ) 2 7 ( 1 ) 2 6 ( 1 ) 2 9 ( 1 ) 2 6 ( 1 ) 2 4 ( 1 ) 2 5 ( 1 ) 2 4 ( 1 ) 2 4 ( 1 ) 2 2 ( 1 ) 3 7 ( 1 ) 4 7 ( 1 ) 5 8 ( 1 ) 5 0 ( 1 ) 3 3 ( 1 ) 3 1 ( 1 ) 4 1 ( 1 ) 4 4 ( 1 ) 4 0 ( 1 ) 3 1 ( 1 ) 3 1 ( 1 ) 3 7 ( 1 ) 4 2 ( 1 ) 3 8 ( 1 ) 2 8 ( 1 ) 2 7 ( 1 ) 3 8 ( 1 ) O c c u p a n c y A — l — L — A — l — L — L — k — l é — A - A — B — A — A — X — A — L — L — B A A A — L A — k — k — L - A A - A — L — L C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) C ( 2 5 ) C ( 2 8 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) C ( 3 3 ) C ( 3 5 ) C ( 3 8 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) C ( 4 2 ) C ( 4 3 ) C ( 4 4 ) C ( 4 5 ) C ( 4 8 ) C ( 4 7 ) C ( 4 9 ) C ( 5 0 ) C ( 5 1 ) C ( 5 2 ) C ( 5 3 ) C ( 5 4 ) C ( 5 8 ) C ( 5 7 ) C ( 5 8 ) C ( 5 9 ) 2 3 3 2 ( 3 ) 3 0 9 9 ( 3 ) 3 8 0 5 ( 3 ) 8 5 7 5 ( 2 ) 7 2 2 9 ( 3 ) 8 3 9 1 ( 3 ) 8 8 9 5 ( 3 ) 8 2 8 0 ( 3 ) 7 1 0 7 ( 3 ) 4 0 7 8 ( 2 ) 4 2 7 3 ( 3 ) 3 4 3 9 ( 3 ) 2 3 9 7 ( 3 ) 2 1 8 4 ( 3 ) 3 0 2 5 ( 3 ) 5 0 2 2 ( 2 ) 3 8 7 4 ( 3 ) 3 8 7 3 ( 3 ) 4 8 0 8 ( 3 ) 5 7 3 8 ( 3 ) 5 9 5 0 ( 3 ) 8 7 4 7 ( 2 ) 7 3 8 4 ( 2 ) 8 5 5 5 ( 3 ) 9 1 1 8 ( 3 ) 8 4 9 4 ( 3 ) 7 3 0 8 ( 3 ) 7 2 7 ( 2 ) 2 1 9 ( 2 ) - 1 2 0 6 ( 3 ) - 1 2 5 9 ( 3 ) - 3 2 2 ( 3 ) 8 7 0 ( 2 ) 1 3 9 8 ( 2 ) 1 1 0 8 ( 2 ) 7 0 8 ( 3 ) 5 9 4 ( 3 ) T a b l e 5 ( c o n ' t ) 7 2 5 1 ( 2 ) 8 6 9 3 ( 2 ) 5 9 3 3 ( 2 ) 2 8 9 0 ( 2 ) 3 5 4 3 ( 2 ) 3 3 5 6 ( 3 ) 2 5 3 0 ( 3 ) 1 8 7 7 ( 3 ) 2 0 4 3 ( 2 ) 3 4 0 4 ( 2 ) 2 9 4 2 ( 2 ) 3 1 1 6 ( 3 ) 3 7 4 5 ( 3 ) 4 2 0 6 ( 2 ) 4 0 4 3 ( 2 ) 2 2 7 8 ( 2 ) 2 6 0 1 ( 2 ) 2 6 4 1 ( 2 ) 2 3 3 5 ( 2 ) 2 0 0 3 ( 2 ) 1 9 8 1 ( 2 ) 1 9 0 1 ( 2 ) 2 3 9 9 ( 2 ) 2 0 5 2 ( 2 ) 1 2 1 6 ( 2 ) 7 0 8 ( 2 ) 1 0 4 8 ( 2 ) 4 3 0 3 ( 2 ) 3 9 1 3 ( 2 ) 4 4 0 0 ( 2 ) 5 2 7 1 ( 2 ) 5 6 6 2 ( 2 ) 5 1 7 6 ( 2 ) 3 4 9 9 ( 2 ) 2 6 9 6 ( 2 ) 2 5 4 8 ( 2 ) 3 2 0 5 ( 2 ) 1 3 5 7 ( 2 ) 9 5 4 ( 2 ) 1 4 3 8 ( 2 ) 1 4 7 2 ( 2 ) 1 1 0 5 ( 2 ) 7 0 2 ( 2 ) 6 6 3 ( 2 ) 1 0 3 3 ( 2 ) 1 4 5 0 ( 2 ) 1 1 9 8 ( 2 ) 6 3 5 ( 2 ) 9 7 ( 2 ) 1 2 9 ( 2 ) 6 8 0 ( 2 ) 1 2 0 7 ( 2 ) 5 6 8 3 ( 2 ) 6 0 4 1 ( 2 ) 6 8 5 8 ( 2 ) 7 3 4 2 ( 2 ) 7 0 0 3 ( 2 ) 6 1 7 4 ( 2 ) 4 2 7 5 ( 2 ) 3 5 4 9 ( 2 ) 3 2 9 6 ( 2 ) 3 7 6 5 ( 2 ) 4 4 8 6 ( 2 ) 4 7 4 1 ( 2 ) 2 9 6 0 ( 2 ) 3 0 5 7 ( 2 ) 2 6 3 6 ( 2 ) 2 1 2 4 ( 2 ) 2 0 0 8 ( 2 ) 2 4 2 9 ( 2 ) 4 6 7 1 ( 2 ) 5 1 9 8 ( 2 ) 6 0 6 6 ( 2 ) 6 4 0 0 ( 2 ) 2 8 1 4 4 ( 1 ) 3 9 ( 1 ) 3 0 ( 1 ) 2 9 ( 1 ) 4 0 ( 1 ) 5 7 ( 1 ) 6 2 ( 1 ) 5 8 ( 1 ) 4 3 ( 1 ) 2 9 ( 1 ) 4 2 ( 1 ) 5 6 ( 1 ) 5 7 ( 1 ) 5 0 ( 1 ) 3 9 ( 1 ) 2 8 ( 1 ) 3 7 ( 1 ) 4 7 ( 1 ) 4 8 ( 1 ) 4 5 ( 1 ) 3 6 ( 1 ) 2 8 ( 1 ) 3 3 ( 1 ) 4 5 ( 1 ) 5 2 ( 1 ) 4 6 ( 1 ) 3 5 ( 1 ) 2 4 ( 1 ) 3 4 ( 1 ) 4 4 ( 1 ) 4 4 ( 1 ) 4 0 ( 1 ) 3 1 ( 1 ) 2 6 ( 1 ) 3 3 ( 1 ) 4 1 ( 1 ) 4 2 ( 1 ) C ( 6 0 ) 8 6 3 ( 2 ) 4 0 0 7 ( 2 ) 5 8 8 0 ( 2 ) 3 7 ( 1 ) 1 C ( 6 1 ) 1 2 6 3 ( 2 ) 4 1 5 5 ( 2 ) 5 0 1 7 ( 2 ) 3 0 ( 1 ) 1 C l ( 1 ) 1 7 1 1 ( 1 ) 1 5 7 3 ( 1 ) - 9 0 7 ( 1 ) 7 4 ( 1 ) 1 0 ( 1 0 0 ) 9 7 9 ( 4 ) 1 1 0 9 ( 3 ) - 1 6 8 ( 2 ) 1 1 3 ( 1 ) 1 0 ( 1 0 1 ) 1 8 1 7 ( 4 ) 2 3 1 8 ( 2 ) - 7 6 5 ( 3 ) 1 2 7 ( 2 ) 1 0 ( 1 0 2 ) 1 1 9 6 ( 4 ) 1 8 4 0 ( 2 ) - 1 6 6 7 ( 2 ) 1 1 3 ( 1 ) 1 0 ( 1 0 3 ) 2 8 2 9 ( 4 ) 1 0 0 8 ( 3 ) - 9 6 6 ( 2 ) 1 5 6 ( 2 ) 1 T a b l e 5 ( c o n ' t ) 2 8 2 T a b l e 6 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { b p y V O [ p — ( C 5 H 5 ) 2 P 0 2 ] 1 . 5 } 2 { C | O 4 } , ( 4 . 1 ) . A t o m \ / ( 1 ) V 1 2 ) 0 ( 1 ) ( 3 ( 2 ) ( 3 6 3 ) ( 3 ( 4 ) 0 ( 5 ) C 3 0 3 ) O ( 7 ) 0 ( 8 ) N ( 1 ) N ( 2 ) N ( 3 ) | “ ( 4 ) P ( 1 ) P ( 2 ) P ( 3 ) C ( 1 ) C ( 2 ) ( 3 6 3 ) ( 3 ( 4 ) C ( 5 ) ( 3 0 5 ) ( 3 ( 7 ) C ( 8 ) C ( 9 ) C ( 1 0 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) C ( 1 4 ) C ( 1 5 ) C ( 1 6 ) C ( 1 7 ) U 1 1 2 3 ( 1 ) 2 0 ( 1 ) 3 3 ( 1 ) 2 4 ( 1 ) 2 9 ( 1 ) 3 2 ( 1 ) 2 6 ( 1 ) 3 1 ( 1 ) 2 5 ( 1 ) 2 1 ( 1 ) 3 2 ( 1 ) 3 1 ( 1 ) 2 4 ( 1 ) 2 5 ( 1 ) 2 4 ( 1 ) 2 3 ( 1 ) 1 9 ( 1 ) 3 4 ( 2 ) 4 9 ( 2 ) 7 9 ( 3 ) 7 1 ( 2 ) 4 5 ( 2 ) 4 3 ( 2 ) 5 7 ( 2 ) 4 7 ( 2 ) 3 9 ( 2 ) 3 2 ( 2 ) 2 9 ( 1 ) 3 6 ( 2 ) 4 2 ( 2 ) 3 2 ( 2 ) 2 7 ( 1 ) 2 7 ( 1 ) 4 0 ( 2 ) U 2 2 2 2 ( 1 ) 2 3 ( 1 ) 2 7 ( 1 ) 3 8 ( 1 ) 2 6 ( 1 ) 2 4 ( 1 ) 3 0 ( 1 ) 2 6 ( 1 ) 2 5 ( 1 ) 2 8 ( 1 ) 3 1 ( 1 ) 2 3 ( 1 ) 2 8 ( 1 ) 2 4 ( 1 ) 2 5 ( 1 ) 2 5 ( 1 ) 2 3 ( 1 ) 4 0 ( 2 ) 5 3 ( 2 ) 6 0 ( 2 ) 4 2 ( 2 ) 2 9 ( 2 ) 2 3 ( 1 ) 3 1 ( 2 ) 3 1 ( 2 ) 3 3 ( 2 ) 2 9 ( 2 ) 4 0 ( 2 ) 5 8 ( 2 ) 5 0 ( 2 ) 3 8 ( 2 ) 2 9 ( 2 ) 2 4 ( 1 ) 2 5 ( 2 ) U 3 3 2 4 ( 1 ) 2 3 ( 1 ) 3 1 ( 1 ) 3 5 ( 1 ) 2 4 ( 1 ) 2 3 ( 1 ) 2 5 ( 1 ) 2 7 ( 1 ) 3 1 ( 1 ) 2 9 ( 1 ) 2 9 ( 1 ) 2 4 ( 1 ) 2 4 ( 1 ) 2 6 ( 1 ) 2 2 ( 1 ) 2 2 ( 1 ) 2 3 ( 1 ) 3 8 ( 2 ) 4 8 ( 2 ) 4 9 ( 2 ) 4 7 ( 2 ) 2 8 ( 2 ) 3 0 ( 2 ) 3 2 ( 2 ) 3 9 ( 2 ) 4 0 ( 2 ) 2 9 ( 2 ) 2 9 ( 2 ) 2 7 ( 2 ) 4 4 ( 2 ) 4 1 ( 2 ) 3 3 ( 2 ) 3 0 ( 2 ) 3 8 ( 2 ) 2 8 3 U 2 3 - 8 ( 1 ) - 8 ( 1 ) - 9 ( 1 ) 4 3 ( 1 ) - 7 ( 1 ) - 9 ( 1 ) 4 1 ( 1 ) - 6 ( 1 ) - 1 0 ( 1 ) - 1 1 ( 1 ) - 1 2 ( 1 ) - 8 ( 1 ) - 1 1 ( 1 ) - 9 ( 1 ) - 9 ( 1 ) - 6 ( 1 ) - 8 ( 1 ) - 1 1 ( 1 ) - 1 6 ( 2 ) - 2 1 ( 2 ) - 2 3 ( 2 ) - 1 1 ( 1 ) - 1 0 ( 1 ) - 1 6 ( 1 ) - 1 2 ( 1 ) - 1 0 ( 1 ) - 9 ( 1 ) - 1 3 ( 1 ) - 2 1 ( 2 ) - 3 3 ( 2 ) - 2 2 ( 2 ) - 1 6 ( 1 ) - 1 0 ( 1 ) - 1 2 ( 1 ) U 1 3 - 4 ( 1 ) - 4 ( 1 ) - 3 ( 1 ) - 5 ( 1 ) - 2 ( 1 ) - 1 ( 1 ) - 5 ( 1 ) - 7 ( 1 ) - 7 ( 1 ) - 4 ( 1 ) - 6 ( 1 ) - 3 ( 1 ) - 3 ( 1 ) - 1 ( 1 ) - 2 ( 1 ) - 5 ( 1 ) - 4 ( 1 ) - 1 3 ( 1 ) - 2 3 ( 2 ) - 3 1 ( 2 ) - 2 0 ( 2 ) - 6 ( 1 ) “ 4 ( 1 ) 0 ( 2 ) 6 ( 2 ) - 6 ( 1 ) - 5 ( 1 ) - 5 ( 1 ) - 2 ( 1 ) 2 ( 1 ) - 2 ( 1 ) - 3 ( 1 ) - 3 ( 1 ) “ 4 ( 1 ) U 1 2 - 4 ( 1 ) “ 4 ( 1 ) - 8 ( 1 ) - 7 ( 1 ) - 6 ( 1 ) - 5 ( 1 ) - 5 ( 1 ) - 3 ( 1 ) - 1 ( 1 ) - 5 ( 1 ) - 1 0 ( 1 ) - 4 ( 1 ) - 7 ( 1 ) - 7 ( 1 ) - 3 ( 1 ) - 3 ( 1 ) - 2 ( 1 ) - 7 ( 1 ) - 1 4 ( 2 ) - 1 9 ( 2 ) - 8 ( 2 ) - 1 1 ( 1 ) - 3 ( 1 ) - 1 ( 2 ) 4 ( 1 ) 4 ( 1 ) - 3 ( 1 ) - 1 3 ( 1 ) - 1 5 ( 2 ) - 1 0 ( 2 ) “ 4 ( 1 ) - 7 ( 1 ) - 6 ( 1 ) 0 ( 1 ) C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) C ( 2 5 ) C ( 2 6 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) C ( 3 3 ) C ( 3 5 ) C ( 3 6 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) C ( 4 2 ) C ( 4 3 ) C ( 4 4 ) C ( 4 5 ) C ( 4 6 ) C ( 4 7 ) C ( 4 9 ) C ( 5 0 ) C ( 5 1 ) C ( 5 2 ) C ( 5 3 ) C ( 5 4 ) C ( 5 6 ) C ( 5 7 ) C ( 5 8 ) C ( 5 9 ) 4 9 ( 2 ) 4 8 ( 2 ) 3 6 ( 2 ) 2 8 ( 1 ) 3 2 ( 2 ) 3 2 ( 2 ) 2 7 ( 2 ) 4 5 ( 2 ) 4 2 ( 2 ) 3 1 ( 2 ) 4 3 ( 2 ) 6 1 ( 2 ) 5 4 ( 2 ) 4 5 ( 2 ) 4 1 ( 2 ) 3 2 ( 2 ) 3 4 ( 2 ) 4 6 ( 2 ) 6 1 ( 2 ) 5 0 ( 2 ) 3 3 ( 2 ) 2 5 ( 1 ) 2 9 ( 2 ) 3 1 ( 2 ) 2 5 ( 2 ) 3 2 ( 2 ) 3 0 ( 2 ) 2 2 ( 1 ) 2 6 ( 1 ) 2 5 ( 2 ) 3 2 ( 2 ) 4 3 ( 2 ) 3 2 ( 2 ) 1 9 ( 1 ) 2 7 ( 2 ) 3 1 ( 2 ) 3 0 ( 2 ) T a b l e 6 ( c o n ' t ) 3 0 ( 2 ) 3 3 ( 2 ) 2 8 ( 2 ) 3 6 ( 2 ) 4 9 ( 2 ) 8 8 ( 3 ) 1 0 7 ( 4 ) 6 8 ( 3 ) 4 0 ( 2 ) 3 1 ( 2 ) 5 4 ( 2 ) 8 3 ( 3 ) 7 8 ( 3 ) 5 1 ( 2 ) 3 9 ( 2 ) 2 9 ( 2 ) 4 4 ( 2 ) 5 6 ( 2 ) 5 8 ( 2 ) 5 5 ( 2 ) 4 2 ( 2 ) 3 0 ( 2 ) 3 4 ( 2 ) 4 7 ( 2 ) 5 2 ( 2 ) 3 3 ( 2 ) 2 9 ( 2 ) 3 0 ( 2 ) 3 7 ( 2 ) 6 0 ( 2 ) 5 7 ( 2 ) 3 4 ( 2 ) 2 9 ( 2 ) 3 1 ( 2 ) 3 2 ( 2 ) 4 1 ( 2 ) 5 7 ( 2 ) 4 1 ( 2 ) 2 8 ( 2 ) 2 6 ( 2 ) 2 1 ( 1 ) 3 7 ( 2 ) 4 3 ( 2 ) 3 9 ( 2 ) 4 8 ( 2 ) 4 0 ( 2 ) 2 3 ( 1 ) 3 6 ( 2 ) 4 1 ( 2 ) 4 0 ( 2 ) 4 9 ( 2 ) 3 4 ( 2 ) 2 4 ( 1 ) 3 1 ( 2 ) 3 5 ( 2 ) 2 9 ( 2 ) 3 7 ( 2 ) 3 3 ( 2 ) 2 9 ( 2 ) 3 7 ( 2 ) 5 1 ( 2 ) 7 2 ( 2 ) 6 6 ( 2 ) 4 3 ( 2 ) 2 1 ( 1 ) 3 6 ( 2 ) 4 6 ( 2 ) 3 8 ( 2 ) 3 3 ( 2 ) 3 0 ( 2 ) 2 4 ( 1 ) 3 4 ( 2 ) 3 4 ( 2 ) 2 8 ( 2 ) 2 8 4 4 ( 1 ) - 3 ( 1 ) - 1 0 ( 1 ) - 1 0 ( 1 ) - 1 1 ( 2 ) 4 2 ( 2 ) - 2 6 ( 2 ) - 2 9 ( 2 ) - 1 6 ( 2 ) - 7 ( 1 ) - 2 4 ( 2 ) - 3 3 ( 2 ) - 9 ( 2 ) - 1 0 ( 2 ) - 8 ( 1 ) - 5 ( 1 ) 4 2 ( 1 ) - 1 9 ( 2 ) - 1 7 ( 2 ) 4 2 ( 2 ) - 1 1 ( 1 ) - 1 2 ( 1 ) - 1 1 ( 1 ) - 1 6 ( 2 ) - 2 2 ( 2 ) 4 2 ( 2 ) - 1 0 ( 1 ) - 1 2 ( 1 ) - 1 0 ( 1 ) - 1 6 ( 2 ) - 1 6 ( 2 ) - 6 ( 1 ) - 9 ( 1 ) - 8 ( 1 ) - 9 ( 1 ) 0 ( 1 ) - 1 3 ( 2 ) - 1 4 ( 2 ) - 3 ( 1 ) - 2 ( 1 ) - 4 ( 1 ) - 3 ( 1 ) 2 ( 2 ) - 1 ( 2 ) - 3 ( 2 ) - 5 ( 1 ) - 3 ( 1 ) - 1 ( 1 ) - 7 ( 2 ) - 2 2 ( 2 ) - 2 0 ( 2 ) - 1 2 ( 1 ) - 7 ( 1 ) - 1 1 ( 1 ) - 4 ( 2 ) - 8 ( 2 ) - 1 8 ( 2 ) - 1 1 ( 1 ) - 8 ( 1 ) - 5 ( 1 ) 5 ( 1 ) 0 ( 2 ) - 1 3 ( 2 ) - 7 ( 1 ) 4 ( 1 ) - 6 ( 1 ) - 9 ( 1 ) - 1 8 ( 1 ) - 1 4 ( 1 ) - 6 ( 1 ) - 5 ( 1 ) - 2 ( 1 ) 1 ( 1 ) 4 ( 1 ) 3 ( 1 ) - 5 ( 1 ) - 7 ( 1 ) - 1 ( 1 ) 4 2 ( 1 ) 4 9 ( 2 ) 6 ( 2 ) 2 3 ( 2 ) 5 ( 2 ) - 9 ( 1 ) - 1 0 ( 2 ) - 2 5 ( 2 ) - 1 8 ( 2 ) - 4 ( 2 ) - 7 ( 1 ) - 1 1 ( 1 ) - 3 ( 1 ) - 5 ( 2 ) - 1 5 ( 2 ) - 1 8 ( 2 ) - 8 ( 1 ) - 5 ( 1 ) - 6 ( 1 ) - 1 1 ( 2 ) - 1 ( 2 ) 2 ( 1 ) 4 ( 1 ) - 3 ( 1 ) - 7 ( 1 ) - 9 ( 2 ) 7 ( 2 ) 5 ( 1 ) - 4 ( 1 ) 0 ( 1 ) - 2 ( 1 ) - 3 ( 1 ) 3 ( 2 ) T a b l e 6 ( c a n ' t ) C ( 8 0 ) 2 9 ( 2 ) 4 9 ( 2 ) 3 2 ( 2 ) - 2 0 ( 2 ) 4 ( 1 ) 1 ( 1 ) C ( 6 1 ) 2 4 ( 1 ) 3 5 ( 2 ) 3 0 ( 2 ) 4 1 ( 1 ) - 7 ( 1 ) - 2 ( 1 ) C l ( 1 ) 9 9 ( 1 ) 6 7 ( 1 ) 3 7 ( 1 ) - 2 0 ( 1 ) 4 1 ( 1 ) 1 8 ( 1 ) 0 ( 1 0 0 ) 1 2 6 ( 3 ) 1 3 9 ( 3 ) 5 4 ( 2 ) - 2 0 ( 2 ) 4 ( 2 ) - 2 8 ( 3 ) 0 ( 1 0 1 ) 1 7 8 ( 4 ) 8 2 ( 3 ) 1 4 3 ( 4 ) 5 4 ( 3 ) - 8 7 ( 3 ) 1 5 ( 3 ) 0 ( 1 0 2 ) 1 7 8 ( 4 ) 1 0 7 ( 3 ) 5 5 ( 2 ) 4 7 ( 2 ) 5 0 ( 2 ) - 1 8 ( 3 ) 0 ( 1 0 g 1 6 8 ( 4 ) 1 2 4 ( 3 ) 8 3 ( 3 ) - 2 7 ( 2 ) 1 3 3 ) 7 4 ( 3 ) 2 8 5 T a b l e 7 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { d m b p y V O U z — ( C 5 H 5 ) 2 P 0 2 ] 1 . 5 } 2 { C l 0 4 } - 4 C H 3 0 H , ( 4 . 2 ) . A t o m V ( 1 ) 0 ( 1 ) N ( 1 ) 0 ( 1 ) 0 ( 2 ) 0 ( 3 ) C ( 3 A ) C ( 4 ) 0 ( 5 ) 0 ( 6 ) 0 ( 7 ) C ( 8 ) C ( 8 A ) 0 ( 9 ) C ( 1 0 ) N ( 2 ) V ( 2 ) 0 ( 2 ) N ( 3 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) C ( 1 3 A ) C ( 1 4 ) C ( 1 5 ) C ( 1 6 ) C ( 1 7 ) C ( 1 8 ) C ( 1 8 A ) C ( 1 9 ) C ( 2 0 ) M 4 ) 0 ( 3 ) P ( 1 ) X 6 5 6 ( 1 ) 6 6 1 ( 1 ) 1 4 2 5 ( 1 ) 2 4 1 8 ( 2 ) 2 8 7 2 ( 2 ) 2 2 9 2 ( 2 ) 2 7 5 5 ( 2 ) 1 2 6 5 ( 2 ) 8 4 8 ( 2 ) - 2 4 3 ( 2 ) 9 4 3 ( 2 ) 4 9 6 1 ( 2 ) - 2 7 2 1 ( 2 ) - 2 2 3 0 ( 2 ) 4 4 9 7 ( 2 ) - 5 1 6 ( 1 ) 7 3 8 ( 1 ) 1 5 4 4 ( 1 ) 6 0 4 ( 1 ) 1 2 1 5 ( 2 ) 1 0 8 4 ( 2 ) 2 7 6 ( 2 ) 8 8 ( 3 ) - 3 6 2 ( 2 ) 4 7 8 ( 2 ) - 8 1 4 ( 2 ) 4 6 5 9 ( 2 ) - 2 2 1 0 ( 2 ) - 3 1 1 9 ( 2 ) 4 8 7 9 ( 2 ) 4 0 3 8 ( 2 ) - 5 0 5 ( 1 ) 7 2 6 ( 1 ) 3 9 9 ( 1 ) Y 6 9 4 8 ( 1 ) 7 1 3 3 ( 1 ) 5 7 7 8 ( 1 ) 5 7 8 6 ( 2 ) 5 0 0 7 ( 2 ) 4 1 6 3 ( 2 ) 3 2 9 1 ( 2 ) 4 1 5 6 ( 2 ) 4 9 6 6 ( 1 ) 5 0 0 4 ( 1 ) 4 2 3 8 ( 2 ) 4 3 1 9 ( 2 ) 3 4 9 1 ( 2 ) 5 1 9 0 ( 2 ) 5 9 2 6 ( 2 ) 5 8 4 8 ( 1 ) 8 5 5 3 ( 1 ) 8 7 0 3 ( 1 ) 9 9 5 8 ( 1 ) 1 0 5 5 1 ( 2 ) 1 1 4 5 4 ( 2 ) 1 1 7 7 0 ( 2 ) 1 2 7 4 8 ( 2 ) 1 1 1 5 2 ( 2 ) 1 0 2 5 6 ( 1 ) 9 5 6 1 ( 1 ) 9 7 4 5 ( 2 ) 9 0 7 0 ( 2 ) 9 2 6 7 ( 2 ) 8 2 2 0 ( 2 ) 8 0 7 5 ( 2 ) 8 7 2 7 ( 1 ) 6 5 5 7 ( 1 ) 6 3 8 5 ( 1 ) Z 4 1 4 6 ( 1 ) 5 0 8 4 ( 1 ) 4 4 9 7 ( 1 ) 4 8 9 8 ( 1 ) 5 0 4 9 ( 2 ) 4 7 9 4 ( 2 ) 4 9 3 1 ( 2 ) 4 4 0 7 ( 1 ) 4 2 6 0 ( 1 ) 3 8 4 4 ( 1 ) 3 5 8 7 ( 1 ) 3 2 2 2 ( 1 ) 2 9 5 0 ( 2 ) 3 1 1 8 ( 2 ) 3 3 7 6 ( 1 ) 3 7 4 1 ( 1 ) 1 7 0 7 ( 1 ) 1 2 9 2 ( 1 ) 1 8 3 3 ( 1 ) 2 4 8 7 ( 1 ) 2 5 4 3 ( 2 ) 1 9 1 1 ( 2 ) 1 9 4 5 ( 2 ) 1 2 3 8 ( 2 ) 1 2 1 0 ( 1 ) 5 0 1 ( 1 ) 4 8 2 ( 2 ) - 8 3 8 ( 2 ) 4 5 9 0 ( 2 ) - 7 7 2 ( 2 ) - 6 9 ( 1 ) 5 6 1 ( 1 ) 2 9 5 9 ( 1 ) 2 0 0 6 ( 1 ) 2 8 6 U e q 1 9 ( 1 ) 2 7 ( 1 ) 2 1 ( 1 ) 2 7 ( 1 ) 3 2 ( 1 ) 3 1 ( 1 ) 5 0 ( 1 ) 2 7 ( 1 ) 2 2 ( 1 ) 2 1 ( 1 ) 2 6 ( 1 ) 2 9 ( 1 ) 4 5 ( 1 ) 3 0 ( 1 ) 2 8 ( 1 ) 2 2 ( 1 ) 2 2 ( 1 ) 3 3 ( 1 ) 2 4 ( 1 ) 3 0 ( 1 ) 3 4 ( 1 ) 3 6 ( 1 ) 5 7 ( 1 ) 3 2 ( 1 ) 2 5 ( 1 ) 2 5 ( 1 ) 3 1 ( 1 ) 3 6 ( 1 ) 5 3 ( 1 ) 3 7 ( 1 ) 3 3 ( 1 ) 2 6 ( 1 ) 2 3 ( 1 ) 2 0 ( 1 ) O c c u p a n c y A A — L A — L — L — t — L — k — l — L A A - L — A — S - A — L — l — A — A — k t — I l — L — S - A — A A — k — L A — k — L — L C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) C ( 2 5 ) C ( 2 6 ) C ( 2 7 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) 0 ( 4 ) 0 ( 5 ) P ( 2 ) C ( 3 3 ) C ( 3 4 ) C ( 3 5 ) C ( 3 6 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) C ( 4 3 ) C ( 4 4 ) 0 ( 6 ) 0 ( 7 ) P ( 3 ) C ( 4 5 ) C ( 4 6 ) C ( 4 7 ) C ( 4 8 ) C ( 4 9 ) C ( 5 0 ) C ( 5 1 ) 1 1 5 8 ( 2 ) 1 7 8 7 ( 2 ) 2 3 7 8 ( 2 ) 2 3 4 0 ( 2 ) 1 7 2 3 ( 2 ) 1 1 3 1 ( 2 ) 8 7 7 ( 2 ) 4 6 6 2 ( 2 ) 2 6 4 2 ( 2 ) - 2 8 4 5 ( 2 ) 2 0 7 6 ( 2 ) 4 0 9 3 ( 2 ) 4 4 3 ( 1 ) - 3 2 1 ( 1 ) - 7 0 2 ( 1 ) 2 7 9 ( 2 ) 6 1 4 ( 2 ) 9 5 6 ( 2 ) 3 9 2 ( 2 ) 4 9 9 ( 2 ) 8 3 1 ( 2 ) 2 0 5 3 ( 2 ) 2 5 2 4 ( 2 ) - 3 5 5 8 ( 2 ) 4 1 2 3 ( 2 ) - 3 6 6 7 ( 2 ) 2 6 3 1 ( 2 ) 4 5 4 ( 1 ) 1 8 8 5 ( 1 ) 2 3 6 1 ( 1 ) 3 1 1 2 ( 2 ) 3 5 3 8 ( 2 ) 4 0 7 1 ( 2 ) 4 1 8 8 ( 2 ) 3 7 8 7 ( 2 ) 3 2 5 0 ( 2 ) 3 2 0 2 ( 2 ) T a b l e 7 ( c o n ' t ) 5 5 9 1 ( 1 ) 5 1 5 6 ( 2 ) 4 5 4 7 ( 2 ) 4 3 7 4 ( 2 ) 4 8 0 5 ( 2 ) 5 4 1 6 ( 2 ) 5 8 3 4 ( 1 ) 6 3 5 7 ( 2 ) 5 9 4 1 ( 2 ) 5 0 0 8 ( 2 ) 4 4 8 0 ( 2 ) 4 8 9 5 ( 2 ) 7 2 0 3 ( 1 ) 7 7 9 0 ( 1 ) 8 4 9 7 ( 1 ) 9 6 0 5 ( 1 ) 9 7 4 0 ( 2 ) 1 0 5 9 4 ( 2 ) 1 1 3 0 1 ( 2 ) 1 1 1 7 3 ( 2 ) 1 0 3 2 5 ( 2 ) 8 3 4 5 ( 1 ) 8 1 0 4 ( 2 ) 7 9 6 5 ( 2 ) 8 0 8 5 ( 2 ) 8 3 4 0 ( 2 ) 8 4 6 6 ( 2 ) 8 4 7 0 ( 1 ) 7 8 0 3 ( 1 ) 8 2 9 0 ( 1 ) 9 2 9 6 ( 1 ) 9 9 5 8 ( 2 ) 1 0 7 5 8 ( 2 ) 1 0 8 9 7 ( 2 ) 1 0 2 3 9 ( 2 ) 9 4 3 9 ( 2 ) 7 5 9 3 ( 1 ) 1 8 1 4 ( 1 ) 2 4 9 0 ( 2 ) 2 3 4 7 ( 2 ) 1 5 3 2 ( 2 ) 8 5 7 ( 2 ) 9 9 6 ( 2 ) 1 5 3 7 ( 1 ) 1 2 4 6 ( 2 ) 9 2 1 ( 2 ) 8 8 1 ( 2 ) 1 1 6 7 ( 2 ) 1 4 9 8 ( 1 ) 1 5 0 6 ( 1 ) 3 5 4 4 ( 1 ) 2 9 1 5 ( 1 ) 3 5 0 3 ( 1 ) 4 2 2 8 ( 1 ) 4 6 7 8 ( 2 ) 4 4 2 2 ( 2 ) 3 7 0 8 ( 2 ) 3 2 3 9 ( 2 ) 2 5 2 8 ( 2 ) 3 0 7 3 ( 2 ) 2 7 6 7 ( 2 ) 1 9 2 2 ( 3 ) 1 3 7 4 ( 2 ) 1 6 7 3 ( 2 ) 2 1 3 7 ( 1 ) 4 3 2 1 ( 1 ) 3 7 8 1 ( 1 ) 4 4 3 7 ( 2 ) 4 0 7 5 ( 2 ) 4 5 6 2 ( 2 ) 5 4 0 3 ( 2 ) 5 7 6 9 ( 2 ) 5 2 8 6 ( 2 ) 3 5 9 2 ( 2 ) 2 8 7 2 3 ( 1 ) 3 3 ( 1 ) 4 1 ( 1 ) 4 0 ( 1 ) 4 4 ( 1 ) 3 5 ( 1 ) 2 4 ( 1 ) 3 2 ( 1 ) 4 4 ( 1 ) 4 6 ( 1 ) 4 0 ( 1 ) 3 1 ( 1 ) 2 6 ( 1 ) 2 4 ( 1 ) 2 1 ( 1 ) 2 4 ( 1 ) 2 9 ( 1 ) 3 6 ( 1 ) 3 8 ( 1 ) 4 0 ( 1 ) 3 4 ( 1 ) 2 8 ( 1 ) 3 5 ( 1 ) 5 2 ( 1 ) 6 6 ( 1 ) 6 6 ( 1 ) 4 4 ( 1 ) 2 5 ( 1 ) 2 5 ( 1 ) 2 3 ( 1 ) 2 8 ( 1 ) 3 6 ( 1 ) 4 5 ( 1 ) 5 0 ( 1 ) 5 3 ( 1 ) 3 9 ( 1 ) 2 8 ( 1 ) A A A A — L A A A A A — 8 A A A — l — k — l — ‘ A ‘ A — k - A — B — J — K — A — L — L - L — ‘ L — L — k — K A — k — K T a b l e 7 ( c o n ' t ) C ( 5 2 ) 3 8 9 0 ( 2 ) 7 2 2 2 ( 2 ) 4 2 9 2 ( 2 ) 3 3 ( 1 ) 1 C ( 5 3 ) 4 5 0 3 ( 2 ) 6 6 3 1 ( 2 ) 4 1 6 3 ( 2 ) 4 4 ( 1 ) 1 C ( 5 4 ) 4 4 5 1 ( 2 ) 6 4 2 6 ( 2 ) 3 3 4 6 ( 2 ) 5 0 ( 1 ) 1 C ( 5 5 ) 3 7 9 7 ( 2 ) 6 8 1 3 ( 2 ) 2 6 5 4 ( 2 ) 4 9 ( 1 ) 1 C ( 5 6 ) 3 1 8 6 ( 2 ) 7 3 9 6 ( 2 ) 2 7 7 6 ( 2 ) 3 7 ( 1 ) 1 0 ( 8 ) 1 6 6 6 ( 1 ) 8 5 9 0 ( 1 ) 2 9 3 9 ( 1 ) 2 8 ( 1 ) 1 C l ( 1 ) 5 4 3 4 ( 1 ) 7 0 1 6 ( 1 ) 6 8 6 3 ( 1 ) 4 8 ( 1 ) 1 0 ( 1 C ) 5 6 3 5 ( 2 ) 6 8 9 2 ( 2 ) 7 7 4 5 ( 2 ) 7 8 ( 1 ) 1 0 ( 2 C ) 6 3 4 6 ( 2 ) 7 3 3 7 ( 2 ) 6 8 0 4 ( 2 ) 7 8 ( 1 ) 1 0 ( 3 C ) 4 7 4 9 ( 2 ) 7 6 7 4 ( 2 ) 6 5 8 3 ( 2 ) 7 9 ( 1 ) 1 0 ( 4 C ) 5 0 1 3 ( 3 ) 6 1 9 9 ( 2 ) 6 3 6 7 ( 2 ) 1 1 3 ( 1 ) 1 0 ( 1 8 ) 7 5 0 0 ( 3 ) 2 1 4 8 ( 2 ) 4 4 6 ( 2 ) 1 1 0 ( 1 ) 1 C ( 1 8 ) 7 2 5 5 ( 4 ) 2 4 7 1 ( 4 ) - 3 8 1 ( 3 ) 1 1 0 ( 2 ) 1 0 ( 2 8 ) 5 3 0 6 ( 2 ) 5 0 3 0 ( 2 ) 2 1 7 0 ( 2 ) 9 1 ( 1 ) 1 C ( 2 S ) 4 7 7 0 ( 3 ) 5 2 4 5 ( 3 ) 1 3 4 4 ( 3 ) 8 0 ( 1 ) 1 0 ( 3 8 ) 5 7 0 5 ( 3 ) 1 3 7 0 ( 4 ) 2 0 6 4 ( 4 ) 1 6 7 ( 2 ) 1 C ( 3 8 ) 6 5 5 6 ( 6 ) 9 3 2 ( 5 ) 2 3 9 0 ( 5 ) 1 5 3 ( 3 ) 1 0 ( 4 S A ) 5 5 8 9 ( 6 ) 2 1 1 4 ( 6 ) 6 5 5 ( 4 ) 1 3 4 ( 3 ) 0 . 6 1 6 C ( 4 S A ) 5 1 3 5 ( 8 ) 2 9 2 9 ( 5 ) 6 3 0 ( 4 ) 8 5 ( 2 ) 0 . 6 1 6 0 ( 4 S B ) 5 8 2 0 ( 9 ) 1 3 0 3 ( 9 ) 3 0 3 ( 7 ) 1 4 1 ( 5 ) 0 . 3 8 4 C ( 4 S B ) 5 7 4 3 ( 1 6 ) 3 1 4 ( 1 1 ) 2 ( 1 1 ) 1 7 6 ( 9 ) 0 . 3 8 4 2 8 8 T a b l e 8 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { d m b p y V O L u - ( C 5 H 5 ) 2 P 0 2 ] 1 . 5 } 2 { C | O 4 } ' 4 C H 3 O H , ( 4 . 2 ) . A t o m V 1 1 ) ( 3 ( 1 ) I V ( 1 ) C 4 1 ) C 4 2 ) C 4 3 ) c 1 3 4 0 C 4 4 ) C 4 5 ) C 4 6 ) C 4 7 ) C 4 8 ) c x e p o C 4 9 ) C X 1 0 ) 0 K 2 ) V 4 2 ) C 4 2 ) 0 K 3 ) c x 1 1 ) C X 1 2 ) C X 1 3 ) ( 3 ( 1 3 4 0 C K 1 4 ) C X 1 5 ) ( 3 ( 1 6 ) ( 3 ( 1 7 ) ( 3 ( 1 8 ) ( 3 ( 1 8 A 0 C ( 1 9 ) C K 2 0 ) 0 K 4 ) C 4 3 ) P ( 1 ) L h 1 2 3 ( 1 ) 3 8 ( 1 ) 2 3 ( 1 ) 2 4 ( 1 ) 2 3 ( 1 ) 3 0 ( 1 ) 3 4 ( 1 ) 2 8 ( 1 ) 2 4 ( 1 ) 2 6 ( 1 ) 2 9 ( 1 ) 2 8 ( 1 ) 3 4 ( 1 ) 2 1 ( 1 ) 2 6 ( 1 ) 2 3 ( 1 ) 2 9 ( 1 ) 4 1 ( 1 ) 3 0 ( 1 ) 3 3 ( 1 ) 4 0 ( 1 ) 4 2 ( 1 ) 6 5 ( 2 ) 3 4 ( 1 ) 2 9 ( 1 ) 3 1 ( 1 ) 3 2 ( 1 ) 3 4 ( 1 ) 4 3 ( 2 ) 4 5 ( 1 ) 4 6 ( 1 ) 3 4 ( 1 ) 2 8 ( 1 ) 2 6 ( 1 ) L 2 2 1 6 ( 1 ) 2 2 ( 1 ) 2 0 ( 1 ) 2 7 ( 1 ) 3 4 ( 1 ) 2 8 ( 1 ) 3 2 ( 1 ) 2 2 ( 1 ) 2 1 ( 1 ) 2 2 ( 1 ) 2 2 ( 1 ) 3 0 ( 1 ) 3 8 ( 1 ) 3 5 ( 1 ) 2 8 ( 1 ) 2 2 ( 1 ) 1 8 ( 1 ) 2 8 ( 1 ) 2 0 ( 1 ) 2 6 ( 1 ) 2 4 ( 1 ) 2 1 ( 1 ) 2 3 ( 1 ) 2 2 ( 1 ) 2 2 ( 1 ) 2 0 ( 1 ) 2 5 ( 1 ) 3 6 ( 1 ) 4 7 ( 2 ) 3 1 ( 1 ) 2 4 ( 1 ) 2 2 ( 1 ) 2 0 ( 1 ) 1 6 ( 1 ) L 8 3 1 9 ( 1 ) 2 4 ( 1 ) 2 0 ( 1 ) 2 8 ( 1 ) 3 5 ( 1 ) 3 5 ( 1 ) 7 7 ( 2 ) 3 1 ( 1 ) 1 9 ( 1 ) 1 8 ( 1 ) 2 6 ( 1 ) 2 8 ( 1 ) 5 4 ( 2 ) 3 4 ( 1 ) 3 1 ( 1 ) 2 3 ( 1 ) 2 3 ( 1 ) 4 0 ( 1 ) 2 5 ( 1 ) 2 7 ( 1 ) 3 5 ( 1 ) 4 4 ( 1 ) 7 0 ( 2 ) 3 7 ( 1 ) 2 7 ( 1 ) 2 5 ( 1 ) 3 4 ( 1 ) 3 2 ( 1 ) 4 6 ( 2 ) 2 8 ( 1 ) 2 8 ( 1 ) 2 3 ( 1 ) 2 1 ( 1 ) 2 0 ( 1 ) 2 8 9 L b a 2 ( 1 ) 3 ( 1 ) 3 ( 1 ) 3 ( 1 ) 7 ( 1 ) 9 ( 1 ) 1 5 ( 1 ) 5 ( 1 ) 4 ( 1 ) 5 ( 1 ) 6 ( 1 ) 5 ( 1 ) 4 ( 1 ) 6 ( 1 ) 6 ( 1 ) 3 ( 1 ) 5 ( 1 ) 1 1 ( 1 ) 6 ( 1 ) 3 ( 1 ) - 2 ( 1 ) 3 ( 1 ) - 3 ( 1 ) 8 ( 1 ) 6 ( 1 ) 8 ( 1 ) 1 1 ( 1 ) 1 1 ( 1 ) 1 1 ( 1 ) 1 ( 1 ) 2 ( 1 ) 4 ( 1 ) 2 ( 1 ) 2 ( 1 ) L h 3 9 ( 1 ) 1 5 ( 1 ) 9 ( 1 ) 1 0 ( 1 ) 9 ( 1 ) 1 3 ( 1 ) 1 4 ( 1 ) 1 0 ( 1 ) 9 ( 1 ) 1 0 ( 1 ) 9 ( 1 ) 1 0 ( 1 ) 1 0 ( 1 ) 1 0 ( 1 ) 1 2 ( 1 ) 1 1 ( 1 ) 1 2 ( 1 ) 2 5 ( 1 ) 1 2 ( 1 ) 9 ( 1 ) 1 2 ( 1 ) 1 7 ( 1 ) 1 1 ( 2 ) 9 ( 1 ) 1 3 ( 1 ) 1 3 ( 1 ) 1 1 ( 1 ) 7 ( 1 ) - 5 ( 1 ) 1 0 ( 1 ) 1 5 ( 1 ) 1 3 ( 1 ) 1 2 ( 1 ) 1 1 ( 1 ) L h z 1 ( 1 ) 6 ( 1 ) 1 ( 1 ) - 1 ( 1 ) 4 ( 1 ) 7 ( 1 ) 1 1 ( 1 ) 2 ( 1 ) 2 ( 1 ) 3 ( 1 ) 1 ( 1 ) - 3 ( 1 ) - 9 ( 1 ) 2 ( 1 ) 7 ( 1 ) 2 ( 1 ) 5 ( 1 ) 9 ( 1 ) 4 ( 1 ) 3 ( 1 ) 1 ( 1 ) 6 ( 1 ) 1 1 ( 1 ) 6 ( 1 ) 2 ( 1 ) 1 ( 1 ) 1 ( 1 ) - 5 ( 1 ) - 5 ( 1 ) - 6 ( 1 ) 3 ( 1 ) 4 ( 1 ) 3 ( 1 ) 4 ( 1 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) C ( 2 5 ) C ( 2 6 ) C ( 2 7 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) 0 ( 4 ) 0 ( 5 ) P ( 2 ) C ( 3 3 ) C ( 3 4 ) C ( 3 5 ) C ( 3 6 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) C ( 4 3 ) C ( 4 4 ) 0 ( 6 ) 0 ( 7 ) P ( 3 ) C ( 4 5 ) C ( 4 6 ) C ( 4 7 ) C ( 4 8 ) C ( 4 9 ) C ( 5 0 ) C ( 5 1 ) 2 5 ( 1 ) 4 2 ( 1 ) 4 4 ( 2 ) 3 8 ( 1 ) 5 0 ( 2 ) 4 0 ( 1 ) 2 9 ( 1 ) 3 2 ( 1 ) 3 0 ( 1 ) 2 9 ( 1 ) 4 4 ( 2 ) 3 4 ( 1 ) 3 9 ( 1 ) 2 7 ( 1 ) 2 3 ( 1 ) 3 0 ( 1 ) 3 2 ( 1 ) 3 3 ( 1 ) 4 4 ( 1 ) 4 8 ( 2 ) 3 8 ( 1 ) 2 6 ( 1 ) 3 0 ( 1 ) 3 5 ( 2 ) 2 5 ( 1 ) 3 9 ( 2 ) 3 6 ( 1 ) 3 2 ( 1 ) 2 4 ( 1 ) 2 3 ( 1 ) 2 3 ( 1 ) 2 9 ( 1 ) 3 2 ( 1 ) 4 0 ( 2 ) 5 7 ( 2 ) 4 2 ( 1 ) 2 3 ( 1 ) T a b l e 8 ( c o n ' t ) 1 7 ( 1 ) 3 1 ( 1 ) 3 4 ( 1 ) 2 9 ( 1 ) 4 9 ( 2 ) 4 0 ( 1 ) 2 4 ( 1 ) 3 2 ( 1 ) 5 3 ( 2 ) 6 1 ( 2 ) 3 5 ( 1 ) 2 6 ( 1 ) 1 8 ( 1 ) 2 0 ( 1 ) 1 7 ( 1 ) 1 9 ( 1 ) 2 6 ( 1 ) 3 3 ( 1 ) 2 4 ( 1 ) 2 4 ( 1 ) 2 4 ( 1 ) 2 1 ( 1 ) 3 0 ( 1 ) 4 5 ( 2 ) 6 1 ( 2 ) 7 0 ( 2 ) 4 4 ( 2 ) 2 2 ( 1 ) 2 2 ( 1 ) 1 9 ( 1 ) 2 1 ( 1 ) 3 1 ( 1 ) 2 5 ( 1 ) 3 0 ( 1 ) 4 6 ( 2 ) 3 3 ( 1 ) 2 2 ( 1 ) 2 9 ( 1 ) 3 3 ( 1 ) 5 2 ( 2 ) 5 6 ( 2 ) 3 9 ( 1 ) 2 8 ( 1 ) 1 9 ( 1 ) 3 1 ( 1 ) 4 4 ( 2 ) 4 0 ( 1 ) 3 9 ( 1 ) 3 2 ( 1 ) 2 4 ( 1 ) 2 7 ( 1 ) 2 2 ( 1 ) 2 8 ( 1 ) 3 2 ( 1 ) 3 9 ( 1 ) 4 8 ( 2 ) 5 1 ( 2 ) 4 0 ( 1 ) 3 5 ( 1 ) 4 6 ( 1 ) 8 0 ( 2 ) 9 8 ( 3 ) 6 3 ( 2 ) 4 0 ( 1 ) 2 5 ( 1 ) 2 5 ( 1 ) 2 5 ( 1 ) 3 7 ( 1 ) 4 3 ( 1 ) 7 3 ( 2 ) 7 2 ( 2 ) 5 4 ( 2 ) 4 1 ( 1 ) 3 9 ( 1 ) 2 9 0 0 ( 1 ) 8 ( 1 ) 1 2 ( 1 ) - 5 ( 1 ) 4 0 ( 1 ) 1 ( 1 ) 4 ( 1 ) 4 ( 1 ) 2 ( 1 ) - 3 ( 1 ) 4 ( 1 ) 4 ( 1 ) 4 ( 1 ) 4 ( 1 ) 2 ( 1 ) - 1 ( 1 ) - 2 ( 1 ) - 8 ( 1 ) 4 0 ( 1 ) 1 ( 1 ) 0 ( 1 ) - 2 ( 1 ) - 4 ( 1 ) - 7 ( 2 ) - 3 ( 2 ) 5 ( 2 ) 6 ( 1 ) 2 ( 1 ) 1 ( 1 ) 3 ( 1 ) 3 ( 1 ) 1 1 ( 1 ) 1 2 ( 1 ) 4 4 ( 1 ) 2 0 ( 1 ) - 4 ( 1 ) 3 ( 1 ) 1 4 ( 1 ) 1 9 ( 1 ) 2 2 ( 1 ) 2 4 ( 1 ) 2 4 ( 1 ) 1 3 ( 1 ) 9 ( 1 ) 1 0 ( 1 ) 9 ( 1 ) 1 0 ( 1 ) 1 5 ( 1 ) 1 2 ( 1 ) 1 6 ( 1 ) 1 2 ( 1 ) 1 0 ( 1 ) 1 6 ( 1 ) 1 4 ( 1 ) 1 5 ( 1 ) 2 4 ( 1 ) 2 1 ( 1 ) 1 3 ( 1 ) 9 ( 1 ) 1 8 ( 1 ) 3 0 ( 2 ) 1 0 ( 2 ) - 9 ( 2 ) 3 ( 1 ) 1 3 ( 1 ) 8 ( 1 ) 9 ( 1 ) 9 ( 1 ) 1 0 ( 1 ) 1 8 ( 1 ) 2 1 ( 1 ) 2 6 ( 2 ) 2 1 ( 1 ) 1 4 ( 1 ) 2 ( 1 ) 1 4 ( 1 ) 1 8 ( 1 ) 9 ( 1 ) 1 5 ( 1 ) 1 3 ( 1 ) 3 ( 1 ) 8 ( 1 ) 1 1 ( 1 ) - 7 ( 1 ) - 8 ( 1 ) 3 ( 1 ) 6 ( 1 ) 5 ( 1 ) 4 ( 1 ) 3 ( 1 ) 4 ( 1 ) 0 ( 1 ) - 2 ( 1 ) 1 1 ( 1 ) 7 ( 1 ) 6 ( 1 ) 3 ( 1 ) 0 ( 1 ) 5 ( 1 ) 1 3 ( 2 ) 1 1 ( 1 ) 5 ( 1 ) - 2 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 4 ( 1 ) - 9 ( 1 ) 4 7 ( 1 ) 4 0 ( 1 ) 4 ( 1 ) C ( 5 2 ) 2 5 ( 1 ) 3 2 ( 1 ) 4 2 ( 1 ) 9 ( 1 ) 1 3 ( 1 ) 0 ( 1 ) C ( 5 3 ) 2 6 ( 1 ) 4 1 ( 2 ) 6 7 ( 2 ) 1 7 ( 1 ) 1 9 ( 1 ) 8 ( 1 ) C ( 5 4 ) 3 6 ( 1 ) 4 3 ( 2 ) 8 0 ( 2 ) 2 ( 1 ) 3 0 ( 2 ) 1 2 ( 1 ) C ( 5 5 ) 4 4 ( 2 ) 5 6 ( 2 ) 5 6 ( 2 ) - 3 ( 1 ) 2 8 ( 1 ) 1 3 ( 1 ) C ( 5 6 ) 3 4 ( 1 ) 4 1 ( 1 ) 4 1 ( 1 ) 5 ( 1 ) 1 8 ( 1 ) 8 ( 1 ) 0 ( 8 ) 3 1 ( 1 ) 2 4 ( 1 ) 2 8 ( 1 ) 5 ( 1 ) 9 ( 1 ) 4 ( 1 ) C l ( 1 ) 3 8 ( 1 ) 4 9 ( 1 ) 4 8 ( 1 ) 1 2 ( 1 ) 8 ( 1 ) 4 ( 1 ) 0 ( 1 C ) 8 1 ( 2 ) 9 0 ( 2 ) 5 6 ( 1 ) 3 2 ( 1 ) 1 5 ( 1 ) 1 5 ( 1 ) 0 ( 2 C ) 6 0 ( 2 ) 7 1 ( 2 ) 1 1 8 ( 2 ) 2 2 ( 2 ) 4 9 ( 2 ) 1 4 ( 1 ) 0 ( 3 C ) 8 4 ( 2 ) 1 0 3 ( 2 ) 8 1 ( 2 ) 4 7 ( 2 ) 3 1 ( 1 ) 4 5 ( 2 ) 0 ( 4 C ) 1 1 0 ( 3 ) 7 4 ( 2 ) 1 1 1 ( 2 ) - 2 6 ( 2 ) 5 ( 2 ) 4 2 ( 2 ) 0 ( 1 S ) 1 0 4 ( 3 ) 9 4 ( 2 ) 1 0 1 ( 2 ) 1 3 ( 2 ) 3 ( 2 ) 3 0 ( 2 ) C ( 1 8 ) 1 2 5 ( 4 ) 1 2 9 ( 4 ) 7 0 ( 3 ) 4 ( 3 ) 2 3 ( 3 ) 6 8 ( 4 ) 0 ( 2 8 ) 5 9 ( 2 ) 9 4 ( 2 ) 1 0 8 ( 2 ) 2 8 ( 2 ) 2 0 ( 2 ) 1 ( 1 ) C ( 2 8 ) 6 4 ( 2 ) 1 0 7 ( 3 ) 7 1 ( 2 ) 1 8 ( 2 ) 2 8 ( 2 ) 1 9 ( 2 ) 0 ( 3 S ) 1 0 2 ( 3 ) 1 9 3 ( 5 ) 2 1 0 ( 5 ) - 9 1 ( 4 ) 8 8 ( 3 ) 2 6 ( 3 ) C ( 3 S ) 1 8 1 ( 7 ) 1 1 6 ( 5 ) 1 7 7 ( 7 ) 2 1 ( 5 ) 7 7 ( 6 ) 6 8 ( 5 ) O ( 4 S A ) 1 4 9 ( 6 ) 1 5 0 ( 7 ) 9 4 ( 5 ) 2 4 ( 4 ) 2 8 ( 4 ) 5 7 ( 5 ) C ( 4 S A ) 9 9 ( 5 ) 7 2 ( 4 ) 6 5 ( 4 ) 1 ( 3 ) 9 ( 4 ) 2 7 ( 4 ) 0 ( 4 S B ) 1 1 5 ( 8 ) 1 4 0 ( 1 0 ) 1 2 5 ( 8 ) 2 7 ( 7 ) 1 ( 7 ) 1 1 ( 7 ) C ( 4 S B ) 2 6 0 ( 2 0 ) 9 6 ( 1 2 ) 1 2 4 ( 1 3 ) 3 9 ( 1 0 ) 2 9 ( 1 5 ) 2 4 ( 1 3 ) T a b l e 8 ( c o n ' t ) 2 9 1 L — T a b l e 9 . A t o m i c C o o r d i n a t e s ( x 1 0 ‘ ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { t m b p y V O [ , u — ( C 5 H 5 ) 2 P 0 2 ] 1 , 5 } 2 { C l 0 4 } - 3 . 5 C H 3 0 H , ( 4 . 3 ) . A t o m V ( 1 ) 0 ( 1 ) N ( 1 ) C ( 1 ) C ( 2 ) C ( 2 A ) 0 ( 3 ) C ( 3 A ) C ( 4 ) C ( 5 ) C ( 6 ) C ( 7 ) C ( 8 ) C ( 8 A ) 0 ( 9 ) C ( 9 A ) C ( 1 0 ) N ( 2 ) V ( 2 ) 0 ( 2 ) N ( 3 ) 0 ( 1 1 ) C ( 1 2 ) C ( 1 2 A ) C ( 1 3 ) C ( 1 3 A ) C ( 1 4 ) C ( 1 5 ) C ( 1 6 ) C ( 1 7 ) C ( 1 8 ) C ( 1 8 A ) C ( 1 9 ) C ( 1 9 A ) X 8 0 7 2 ( 1 ) 7 8 2 0 ( 2 ) 9 0 1 9 ( 2 ) 8 8 1 7 ( 3 ) 9 4 6 5 ( 3 ) 9 1 9 0 ( 3 ) 1 0 3 5 6 ( 3 ) 1 1 1 0 6 ( 4 ) 1 0 5 5 7 ( 3 ) 9 8 8 5 ( 2 ) 1 0 0 6 1 ( 2 ) 1 0 9 1 2 ( 3 ) 1 1 0 3 6 ( 3 ) 1 1 9 5 8 ( 3 ) 1 0 2 8 7 ( 3 ) 1 0 3 4 8 ( 3 ) 9 4 8 1 ( 3 ) 9 3 3 6 ( 2 ) 6 4 3 4 ( 1 ) 8 3 8 3 ( 2 ) 5 0 1 0 ( 2 ) 4 4 0 2 ( 3 ) 3 4 7 7 ( 3 ) 2 8 5 0 ( 3 ) 3 1 5 9 ( 3 ) 2 1 5 8 ( 3 ) 3 7 9 1 ( 3 ) 4 7 0 5 ( 2 ) 5 4 1 6 ( 2 ) 5 2 3 4 ( 3 ) 5 9 3 3 ( 3 ) 5 7 2 4 ( 4 ) 6 8 2 2 ( 3 ) 7 6 2 5 ( 3 ) Y 8 7 1 9 ( 1 ) 9 5 4 1 ( 1 ) 9 1 6 4 ( 2 ) 9 3 7 3 ( 2 ) 9 6 2 5 ( 2 ) 9 8 2 8 ( 3 ) 9 6 7 6 ( 2 ) 9 9 5 0 ( 3 ) 9 4 6 6 ( 2 ) 9 1 9 9 ( 2 ) 8 9 3 1 ( 2 ) 8 9 5 0 ( 2 ) 8 6 6 6 ( 2 ) 8 6 8 3 ( 3 ) 8 3 5 4 ( 2 ) 8 0 0 4 ( 3 ) 8 3 7 8 ( 2 ) 8 6 5 2 ( 2 ) 6 4 0 1 ( 1 ) 5 6 1 8 ( 1 ) 6 4 9 7 ( 2 ) 6 8 6 3 ( 2 ) 6 8 8 1 ( 2 ) 7 3 3 2 ( 3 ) 8 4 5 4 ( 3 ) 8 3 9 8 ( 4 ) 6 0 8 9 ( 2 ) 6 1 3 4 ( 2 ) 5 8 0 2 ( 2 ) 5 4 6 2 ( 2 ) 5 1 6 8 ( 2 ) 4 7 9 3 ( 3 ) 5 2 3 9 ( 2 ) 4 9 5 6 ( 3 ) Z 5 1 5 4 ( 1 ) 5 2 3 3 ( 1 ) 4 5 3 9 ( 1 ) 4 0 3 3 ( 1 ) 3 8 4 4 ( 2 ) 3 0 8 4 ( 2 ) 3 7 9 7 ( 2 ) 3 4 0 5 ( 2 ) 4 3 2 1 ( 2 ) 4 6 8 5 ( 1 ) 5 2 5 0 ( 1 ) 5 4 7 0 ( 2 ) 6 0 0 4 ( 2 ) 6 2 4 0 ( 2 ) 6 3 0 8 ( 2 ) 6 8 8 4 ( 2 ) 6 0 5 8 ( 2 ) 5 5 4 5 ( 1 ) 5 2 4 6 ( 1 ) 5 6 9 4 ( 1 ) 5 1 0 2 ( 1 ) 5 3 2 6 ( 2 ) 5 2 3 9 ( 2 ) 5 4 9 8 ( 2 ) 4 9 0 8 ( 2 ) 4 8 1 6 ( 2 ) 4 6 7 2 ( 2 ) 4 7 5 7 ( 1 ) 4 4 8 9 ( 1 ) 4 0 9 6 ( 1 ) 3 8 5 0 ( 1 ) 3 4 3 2 ( 2 ) 4 0 0 3 ( 2 ) 3 7 5 4 ( 2 ) 2 9 2 U e q 1 4 ( 1 ) 2 1 ( 1 ) 1 7 ( 1 ) 2 2 ( 1 ) 2 8 ( 1 ) 4 1 ( 1 ) 3 1 ( 1 ) 5 4 ( 2 ) 2 7 ( 1 ) 1 8 ( 1 ) 1 9 ( 1 ) 2 5 ( 1 ) 2 5 ( 1 ) 3 7 ( 1 ) 2 8 ( 1 ) 3 9 ( 1 ) 2 6 ( 1 ) 2 0 ( 1 ) 1 6 ( 1 ) 2 6 ( 1 ) 1 9 ( 1 ) 2 4 ( 1 ) 2 8 ( 1 ) 4 1 ( 1 ) 3 3 ( 1 ) 5 9 ( 2 ) 2 9 ( 1 ) 2 0 ( 1 ) 1 8 ( 1 ) 2 5 ( 1 ) 2 6 ( 1 ) 4 5 ( 1 ) 2 7 ( 1 ) 4 4 ( 1 ) O c c u p a n c y C ( 2 0 ) M 4 ) 0 ( 3 ) P ( 1 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) C ( 2 5 ) C ( 2 6 ) C ( 2 7 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) 0 ( 4 ) 0 ( 5 ) P ( 2 ) C ( 3 3 ) C ( 3 4 ) C ( 3 5 ) C ( 3 6 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) C ( 4 3 ) C ( 4 4 ) 0 ( 6 ) 0 ( 7 ) P ( 3 ) C ( 4 5 ) C ( 4 6 ) C ( 4 7 ) 6 9 5 7 ( 3 ) 6 2 7 8 ( 2 ) 8 5 7 6 ( 2 ) 8 6 4 1 ( 1 ) 9 2 4 3 ( 2 ) 8 8 5 8 ( 3 ) 9 3 1 2 ( 3 ) 1 0 1 5 5 ( 3 ) 1 0 5 4 3 ( 3 ) 1 0 0 9 9 ( 3 ) 9 3 0 7 ( 3 ) 9 4 5 4 ( 3 ) 9 9 1 0 ( 3 ) 1 0 2 2 6 ( 4 ) 1 0 1 3 1 ( 4 ) 9 6 6 7 ( 3 ) 7 7 7 4 ( 2 ) 7 0 4 8 ( 2 ) 6 4 4 4 ( 1 ) 5 3 0 2 ( 2 ) 5 0 7 3 ( 3 ) 4 1 7 3 ( 3 ) 3 5 1 3 ( 3 ) 3 7 2 0 ( 3 ) 4 6 1 4 ( 3 ) 6 7 6 9 ( 3 ) 6 3 8 2 ( 3 ) 6 6 9 1 ( 4 ) 7 3 8 0 ( 4 ) 7 8 0 2 ( 4 ) 7 4 8 4 ( 3 ) 6 4 6 9 ( 2 ) 7 5 2 8 ( 2 ) 6 7 5 2 ( 1 ) 5 8 8 7 ( 2 ) 5 1 1 2 ( 3 ) 4 4 5 4 ( 3 ) T a b l e 9 ( c o n ' t ) 5 5 9 9 ( 2 ) 5 8 6 4 ( 2 ) 7 7 0 1 ( 1 ) 6 8 5 0 ( 1 ) 6 4 5 3 ( 2 ) 5 8 7 5 ( 2 ) 5 5 7 6 ( 2 ) 5 8 4 9 ( 3 ) 6 4 1 8 ( 3 ) 6 7 1 9 ( 2 ) 8 6 3 3 ( 2 ) 5 8 8 2 ( 3 ) 5 7 1 5 ( 3 ) 6 2 9 0 ( 4 ) 7 0 4 9 ( 4 ) 7 2 1 8 ( 3 ) 6 4 0 9 ( 1 ) 8 6 6 7 ( 1 ) 8 2 1 9 ( 1 ) 8 5 6 1 ( 2 ) 8 9 8 2 ( 2 ) 9 2 0 5 ( 3 ) 9 0 1 9 ( 3 ) 8 5 9 8 ( 3 ) 8 3 6 1 ( 2 ) 8 4 3 7 ( 2 ) 9 0 1 5 ( 3 ) 9 1 4 8 ( 3 ) 8 7 2 9 ( 3 ) 8 1 6 6 ( 3 ) 8 0 1 9 ( 3 ) 7 3 6 6 ( 1 ) 8 0 8 7 ( 1 ) 7 5 5 0 ( 1 ) 8 1 1 0 ( 2 ) 7 7 8 0 ( 2 ) 8 1 8 5 ( 3 ) 4 3 9 8 ( 2 ) 4 6 4 0 ( 1 ) 5 0 0 9 ( 1 ) 5 1 2 4 ( 1 ) 5 7 1 8 ( 1 ) 6 1 0 8 ( 1 ) 6 5 7 2 ( 2 ) 6 6 5 1 ( 2 ) 6 2 7 1 ( 2 ) 5 8 0 0 ( 2 ) 4 6 1 1 ( 2 ) 4 5 9 9 ( 2 ) 4 1 8 8 ( 2 ) 3 7 9 3 ( 2 ) 3 8 0 4 ( 2 ) 4 2 1 4 ( 2 ) 5 1 6 5 ( 1 ) 4 6 8 0 ( 1 ) 4 4 1 6 ( 1 ) 4 4 5 7 ( 1 ) 4 8 0 4 ( 2 ) 4 8 5 1 ( 2 ) 4 5 5 2 ( 2 ) 4 2 0 9 ( 2 ) 4 1 5 9 ( 2 ) 3 7 3 9 ( 1 ) 3 3 4 9 ( 2 ) 2 8 4 0 ( 2 ) 2 7 1 3 ( 2 ) 3 1 0 2 ( 2 ) 3 6 0 5 ( 2 ) 4 6 1 1 ( 1 ) 5 8 0 3 ( 1 ) 6 0 3 6 ( 1 ) 6 2 4 6 ( 1 ) 6 5 0 0 ( 2 ) 6 6 7 5 ( 2 ) 2 9 3 2 4 ( 1 ) 2 0 ( 1 ) 2 0 ( 1 ) 1 6 ( 1 ) 2 0 ( 1 ) 2 4 ( 1 ) 3 3 ( 1 ) 3 9 ( 1 ) 3 6 ( 1 ) 2 7 ( 1 ) 2 6 ( 1 ) 3 6 ( 1 ) 5 2 ( 1 ) 6 7 ( 2 ) 6 9 ( 2 ) 4 6 ( 1 ) 2 3 ( 1 ) 2 1 ( 1 ) 1 5 ( 1 ) 2 0 ( 1 ) 3 1 ( 1 ) 4 3 ( 1 ) 4 7 ( 1 ) 4 4 ( 1 ) 3 1 ( 1 ) 2 2 ( 1 ) 4 4 ( 1 ) 5 9 ( 2 ) 5 2 ( 1 ) 5 0 ( 1 ) 3 9 ( 1 ) 1 9 ( 1 ) 1 9 ( 1 ) 1 5 ( 1 ) 1 8 ( 1 ) 3 1 ( 1 ) 4 0 ( 1 ) C ( 4 8 ) C ( 4 9 ) C ( 5 0 ) C ( 5 1 ) C ( 5 2 ) C ( 5 3 ) C ( 5 4 ) C ( 5 5 ) C ( 5 6 ) 0 ( 8 ) V ( 3 ) 0 ( 9 ) N ( 5 ) C ( 5 7 ) C ( 5 8 ) C ( 5 8 A ) C ( 5 9 ) C ( 5 9 A ) C ( 6 0 ) C ( 6 1 ) C ( 6 2 ) C ( 8 3 ) C ( 8 4 ) C ( 6 4 A ) C ( 6 5 ) C ( 6 5 A ) C ( 8 6 ) N ( 6 ) V ( 4 ) 0 ( 1 0 ) N ( 7 ) C ( 8 7 ) C ( 6 8 ) C ( 6 8 A ) C ( 6 9 ) C ( 6 9 A ) C ( 7 0 ) 4 5 5 2 ( 3 ) 5 3 1 6 ( 3 ) 5 9 8 3 ( 3 ) 7 1 5 4 ( 2 ) 6 8 5 6 ( 3 ) 7 1 8 2 ( 3 ) 7 7 5 2 ( 3 ) 8 0 6 5 ( 3 ) 7 7 4 7 ( 3 ) 8 3 0 9 ( 2 ) 6 9 2 4 ( 1 ) 7 1 8 5 ( 2 ) 5 9 3 1 ( 2 ) 6 0 7 6 ( 3 ) 5 3 9 6 ( 3 ) 5 6 1 8 ( 4 ) 4 5 4 1 ( 3 ) 3 7 8 2 ( 4 ) 4 3 9 1 ( 3 ) 5 0 8 4 ( 2 ) 4 9 4 8 ( 3 ) 4 1 2 7 ( 3 ) 4 0 3 3 ( 3 ) 3 1 3 2 ( 3 ) 4 7 9 8 ( 3 ) 4 7 7 7 ( 4 ) 5 6 0 1 ( 3 ) 5 6 9 1 ( 2 ) 8 5 9 3 ( 1 ) 8 7 2 1 ( 2 ) 8 7 1 0 ( 2 ) 8 0 2 3 ( 3 ) 8 1 1 5 ( 4 ) 7 2 9 1 ( 5 ) 8 9 8 7 ( 4 ) 9 1 6 2 ( 5 ) 9 6 9 8 ( 4 ) T a b l e 9 ( c o n ' t ) 8 9 5 6 ( 3 ) 9 3 1 7 ( 2 ) 8 8 9 0 ( 2 ) 6 8 7 8 ( 2 ) 6 1 3 0 ( 2 ) 5 6 1 5 ( 2 ) 5 8 3 8 ( 3 ) 6 5 7 8 ( 3 ) 7 0 9 3 ( 2 ) 7 1 2 2 ( 1 ) 6 2 7 4 ( 1 ) 5 4 2 4 ( 2 ) 5 9 3 1 ( 2 ) 5 8 3 2 ( 2 ) 5 8 0 6 ( 3 ) 5 5 4 4 ( 4 ) 5 4 4 8 ( 3 ) 5 1 5 1 ( 5 ) 5 5 8 0 ( 3 ) 5 8 3 8 ( 2 ) 6 0 3 3 ( 2 ) 5 9 7 9 ( 2 ) 6 2 0 0 ( 3 ) 6 1 5 4 ( 3 ) 6 4 8 9 ( 4 ) 6 7 7 2 ( 5 ) 6 4 9 2 ( 3 ) 6 2 7 9 ( 2 ) 8 6 1 0 ( 1 ) 9 3 7 7 ( 2 ) 9 1 7 0 ( 2 ) 9 4 6 8 ( 2 ) 9 7 9 2 ( 2 ) 1 0 1 0 4 ( 3 ) 9 8 0 8 ( 3 ) 1 0 1 6 9 ( 3 ) 9 4 8 7 ( 3 ) 6 5 9 1 ( 2 ) 6 3 4 3 ( 2 ) 6 1 6 8 ( 2 ) 6 6 1 8 ( 1 ) 6 7 5 3 ( 2 ) 7 2 0 7 ( 2 ) 7 5 2 4 ( 2 ) 7 4 0 2 ( 2 ) 6 9 5 1 ( 2 ) 5 6 9 2 ( 1 ) 9 8 7 2 ( 1 ) 9 8 4 7 ( 1 ) 1 0 4 7 0 ( 1 ) 1 0 9 7 7 ( 2 ) 1 1 3 5 0 ( 2 ) 1 1 9 1 7 ( 2 ) 1 1 1 8 9 ( 2 ) 1 1 5 6 4 ( 2 ) 1 0 6 6 1 ( 2 ) 1 0 3 1 1 ( 1 ) 9 7 4 4 ( 2 ) 9 5 1 4 ( 2 ) 8 9 7 9 ( 2 ) 8 7 3 2 ( 2 ) 8 6 8 4 ( 2 ) 8 0 9 9 ( 2 ) 8 9 4 6 ( 2 ) 9 4 6 2 ( 1 ) 9 6 6 4 ( 1 ) 9 2 0 7 ( 1 ) 1 0 2 6 1 ( 1 ) 1 0 4 6 8 ( 2 ) 1 0 8 7 8 ( 2 ) 1 1 0 9 5 ( 2 ) 1 1 0 8 0 ( 2 ) 1 1 5 1 5 ( 2 ) 1 0 8 6 5 ( 2 ) 2 9 4 4 3 ( 1 ) 3 8 ( 1 ) 2 6 ( 1 ) 2 0 ( 1 ) 2 8 ( 1 ) 3 6 ( 1 ) 3 9 ( 1 ) 3 8 ( 1 ) 3 0 ( 1 ) 2 2 ( 1 ) 1 7 ( 1 ) 2 8 ( 1 ) 2 1 ( 1 ) 2 9 ( 1 ) 4 4 ( 1 ) 7 0 ( 2 ) 5 0 ( 1 ) 8 1 ( 2 ) 3 9 ( 1 ) 2 2 ( 1 ) 2 4 ( 1 ) 2 8 ( 1 ) 3 8 ( 1 ) 4 9 ( 1 ) 5 3 ( 2 ) 9 2 ( 3 ) 5 0 ( 1 ) 2 9 ( 1 ) 2 0 ( 1 ) 3 0 ( 1 ) 2 6 ( 1 ) 3 5 ( 1 ) 4 4 ( 1 ) 6 3 ( 2 ) 4 8 ( 1 ) 6 9 ( 2 ) 4 5 ( 1 ) C ( 7 1 ) C ( 7 2 ) C ( 7 3 ) C ( 7 4 ) C ( 7 4 A ) C ( 7 5 ) C ( 7 5 A ) C ( 7 6 ) N ( 8 ) 0 ( 1 1 ) ( ” ( 4 ) C ( 7 7 ) C ( 7 8 ) C ( 7 9 ) C ( 8 0 ) C ( 8 1 ) C ( 8 2 ) C ( 8 3 ) C ( 8 4 ) C ( 8 5 ) C ( 8 6 ) C ( 8 7 ) C ( 8 8 ) 0 ( 1 2 ) 0 ( 1 3 ) F ’ ( 5 ) C ( 8 9 ) C ( 9 0 ) C ( 9 1 ) C ( 9 2 ) C ( 9 3 ) C ( 9 4 ) C ( 9 5 ) C ( 9 6 ) C ( 9 7 ) C ( 9 8 ) C ( 9 9 ) 9 5 5 2 ( 3 ) 1 0 2 7 6 ( 3 ) 1 1 1 9 1 ( 3 ) 1 1 8 2 3 ( 3 ) 1 2 7 9 0 ( 4 ) 1 1 5 1 8 ( 3 ) 1 2 1 4 1 ( 3 ) 1 0 5 9 8 ( 3 ) 9 9 9 4 ( 2 ) 7 8 9 1 ( 2 ) 8 5 5 6 ( 1 ) 8 4 2 3 ( 3 ) 8 3 1 6 ( 3 ) 8 2 2 4 ( 4 ) 8 2 6 6 ( 5 ) 8 3 9 4 ( 5 ) 8 4 6 6 ( 4 ) 9 6 8 5 ( 2 ) 9 8 4 5 ( 3 ) 1 0 7 2 1 ( 3 ) 1 1 4 1 9 ( 3 ) 1 1 2 7 8 ( 3 ) 1 0 4 1 1 ( 3 ) 8 4 9 8 ( 2 ) 7 5 2 0 ( 2 ) 8 2 5 2 ( 1 ) 7 7 8 6 ( 3 ) 7 1 6 8 ( 3 ) 6 8 1 5 ( 3 ) 7 1 0 7 ( 3 ) 7 7 2 9 ( 3 ) 8 0 7 8 ( 3 ) 9 0 9 6 ( 3 ) 9 0 1 0 ( 3 ) 9 6 6 3 ( 4 ) 1 0 3 9 0 ( 3 ) 1 0 4 8 4 ( 3 ) T a b l e 9 ( c o n ' t ) 9 1 7 3 ( 2 ) 8 8 0 3 ( 2 ) 8 7 6 5 ( 3 ) 8 4 0 6 ( 4 ) 8 3 7 5 ( 5 ) 8 0 6 6 ( 3 ) 7 6 5 0 ( 3 ) 8 1 2 6 ( 2 ) 8 4 8 7 ( 2 ) 6 3 5 7 ( 1 ) 6 8 4 1 ( 1 ) 6 6 7 8 ( 2 ) 5 9 4 6 ( 2 ) 5 8 3 1 ( 3 ) 8 4 2 9 ( 4 ) 7 1 6 6 ( 3 ) 7 2 8 7 ( 3 ) 6 4 9 4 ( 2 ) 6 0 7 0 ( 2 ) 5 8 1 7 ( 2 ) 5 9 7 2 ( 3 ) 6 3 8 7 ( 3 ) 6 6 5 7 ( 2 ) 7 6 8 9 ( 1 ) 6 8 5 2 ( 2 ) 7 3 9 0 ( 1 ) 8 0 5 1 ( 2 ) 7 8 2 6 ( 3 ) 8 3 3 5 ( 3 ) 9 0 7 6 ( 3 ) 9 3 0 4 ( 3 ) 8 8 0 3 ( 2 ) 6 8 3 4 ( 2 ) 6 0 4 4 ( 2 ) 5 6 1 7 ( 3 ) 5 9 8 2 ( 3 ) 6 7 5 8 ( 3 ) 1 0 4 5 8 ( 2 ) 1 0 2 1 6 ( 2 ) 1 0 3 5 1 ( 2 ) 1 0 1 0 8 ( 2 ) 1 0 2 5 9 ( 3 ) 9 7 2 9 ( 2 ) 9 4 4 6 ( 2 ) 9 6 1 4 ( 2 ) 9 8 4 3 ( 1 ) 1 0 3 7 3 ( 1 ) 1 0 5 6 3 ( 1 ) 1 1 2 5 5 ( 1 ) 1 1 5 8 0 ( 2 ) 1 2 1 1 1 ( 2 ) 1 2 3 2 1 ( 2 ) 1 2 0 0 8 ( 2 ) 1 1 4 7 7 ( 2 ) 1 0 4 7 7 ( 1 ) 1 0 1 1 9 ( 2 ) 1 0 0 5 2 ( 2 ) 1 0 3 3 7 ( 2 ) 1 0 6 9 0 ( 2 ) 1 0 7 5 7 ( 2 ) 1 0 3 3 4 ( 1 ) 9 2 1 3 ( 1 ) 8 9 4 3 ( 1 ) 8 3 7 2 ( 1 ) 8 0 5 6 ( 2 ) 7 6 1 2 ( 2 ) 7 4 7 8 ( 2 ) 7 7 7 6 ( 2 ) 8 2 2 3 ( 2 ) 8 7 1 7 ( 1 ) 8 8 1 0 ( 2 ) 8 6 2 5 ( 2 ) 8 3 4 4 ( 2 ) 8 2 4 4 ( 2 ) 2 9 5 3 1 ( 1 ) 3 1 ( 1 ) 5 0 ( 1 ) 5 9 ( 2 ) 9 7 ( 3 ) 4 5 ( 1 ) 8 4 ( 2 ) 3 4 ( 1 ) 2 6 ( 1 ) 2 2 ( 1 ) 1 6 ( 1 ) 2 5 ( 1 ) 3 5 ( 1 ) 5 1 ( 1 ) 7 5 ( 2 ) 7 4 ( 2 ) 5 0 ( 1 ) 2 1 ( 1 ) 3 0 ( 1 ) 4 0 ( 1 ) 4 7 ( 1 ) 4 4 ( 1 ) 3 0 ( 1 ) 2 0 ( 1 ) 2 6 ( 1 ) 2 0 ( 1 ) 2 5 ( 1 ) 3 7 ( 1 ) 4 5 ( 1 ) 4 3 ( 1 ) 4 0 ( 1 ) 3 7 ( 1 ) 2 2 ( 1 ) 3 1 ( 1 ) 4 4 ( 1 ) 4 5 ( 1 ) 4 1 ( 1 ) C ( 1 0 0 ) 0 ( 1 4 ) 0 ( 1 5 ) P ( 5 ) C ( 1 0 1 ) C ( 1 0 2 ) C ( 1 0 3 ) C ( 1 0 4 ) C ( 1 0 5 ) C ( 1 0 6 ) C ( 1 0 7 ) C ( 1 0 8 ) C ( 1 0 9 ) C ( 1 1 0 ) C ( 1 1 1 ) C ( 1 1 2 ) 0 ( 1 6 ) C l ( 1 ) 0 ( 1 P ) 0 ( 2 P ) 0 ( 3 P ) 0 ( 4 P ) C l ( 2 ) 0 ( 5 P ) 0 ( 6 P ) 0 ( 7 P ) 0 ( 8 P ) 0 ( 1 S ) C ( 1 S ) C ( 2 8 ) C ( 2 8 ) C ( 3 3 ) C ( 3 S ) C ( 4 8 ) C ( 4 8 ) C ( 5 8 ) C ( 5 8 ) 9 8 4 3 ( 3 ) 8 7 3 0 ( 2 ) 6 4 3 7 ( 2 ) 6 3 7 5 ( 1 ) 5 8 6 5 ( 3 ) 5 1 9 5 ( 4 ) 4 8 7 9 ( 4 ) 5 1 9 6 ( 4 ) 5 8 5 8 ( 5 ) 8 1 9 5 ( 4 ) 5 6 6 1 ( 3 ) 4 8 7 6 ( 3 ) 4 3 7 3 ( 3 ) 4 6 2 8 ( 3 ) 5 3 9 6 ( 4 ) 5 9 0 9 ( 3 ) 7 2 4 5 ( 2 ) 7 3 5 5 ( 1 ) 7 3 7 2 ( 3 ) 8 2 1 6 ( 4 ) 6 6 6 6 ( 4 ) 7 2 9 9 ( 3 ) 9 3 1 2 ( 1 ) 9 2 6 3 ( 5 ) 8 8 3 7 ( 5 ) 1 0 2 4 8 ( 4 ) 8 9 7 0 ( 5 ) 6 7 8 9 ( 7 ) 6 3 5 8 ( 1 2 ) 8 5 5 3 ( 6 ) 9 1 3 0 ( 8 ) 6 3 8 9 ( 5 ) 7 2 2 2 ( 6 ) 5 7 2 8 ( 6 ) 6 5 6 3 ( 8 ) 4 2 7 2 ( 6 ) 5 0 9 7 ( 6 ) T a b l e 9 ( c o n ' t ) 7 1 8 7 ( 2 ) 7 8 3 4 ( 2 ) 7 3 4 0 ( 2 ) 8 1 9 0 ( 1 ) 8 4 1 9 ( 2 ) 8 9 7 8 ( 3 ) 9 1 4 6 ( 4 ) 8 7 7 2 ( 3 ) 8 2 1 9 ( 4 ) 8 0 3 8 ( 3 ) 8 5 4 1 ( 2 ) 8 1 5 8 ( 3 ) 8 3 7 6 ( 3 ) 8 9 8 8 ( 3 ) 9 3 7 9 ( 3 ) 9 1 5 2 ( 2 ) 8 6 3 1 ( 2 ) 3 4 9 4 ( 1 ) 2 8 6 7 ( 2 ) 3 8 3 9 ( 3 ) 4 0 0 6 ( 4 ) 3 2 3 3 ( 2 ) 1 6 0 4 ( 1 ) 1 7 8 6 ( 4 ) 2 2 1 3 ( 4 ) 1 5 7 8 ( 4 ) 9 0 7 ( 4 ) 3 4 1 8 ( 5 ) 2 7 3 6 ( 8 ) 3 2 2 4 ( 6 ) 3 8 1 7 ( 6 ) 3 7 2 5 ( 5 ) 3 7 6 1 ( 7 ) 1 2 1 9 ( 5 ) 1 3 2 0 ( 7 ) 2 9 1 5 ( 5 ) 2 6 6 7 ( 4 ) 8 4 2 9 ( 2 ) 9 2 6 2 ( 1 ) 9 9 1 9 ( 1 ) 9 7 9 4 ( 1 ) 1 0 3 4 6 ( 2 ) 1 0 3 1 0 ( 2 ) 1 0 7 6 0 ( 3 ) 1 1 2 3 1 ( 2 ) 1 1 2 7 0 ( 2 ) 1 0 8 3 1 ( 2 ) 9 2 3 5 ( 2 ) 9 1 7 5 ( 2 ) 8 7 2 1 ( 2 ) 8 3 3 4 ( 2 ) 8 3 8 5 ( 2 ) 8 8 3 3 ( 2 ) 9 6 7 0 ( 1 ) 2 7 5 4 ( 1 ) 2 5 2 8 ( 2 ) 2 6 4 4 ( 2 ) 2 5 6 4 ( 2 ) 3 3 1 0 ( 1 ) 7 6 9 8 ( 1 ) 8 1 9 8 ( 2 ) 7 3 5 5 ( 3 ) 7 5 8 6 ( 4 ) 7 7 2 6 ( 4 ) 7 9 3 4 ( 3 ) 8 2 8 7 ( 6 ) 8 1 3 4 ( 4 ) 7 8 1 3 ( 4 ) 6 9 2 8 ( 4 ) 6 6 8 7 ( 4 ) 7 4 3 5 ( 5 ) 7 2 5 5 ( 6 ) 7 0 5 9 ( 4 ) 6 8 8 3 ( 4 ) 2 9 6 3 2 ( 1 ) 2 6 ( 1 ) 2 7 ( 1 ) 2 3 ( 1 ) 3 2 ( 1 ) 5 5 ( 1 ) 7 1 ( 2 ) 6 5 ( 2 ) 7 4 ( 2 ) 5 9 ( 2 ) 2 7 ( 1 ) 4 4 ( 1 ) 5 5 ( 2 ) 4 6 ( 1 ) 4 5 ( 1 ) 3 6 ( 1 ) 3 0 ( 1 ) 3 1 ( 1 ) 6 4 ( 1 ) 1 0 0 ( 2 ) 1 2 9 ( 2 ) 7 3 ( 1 ) 8 6 ( 1 ) 1 2 8 ( 2 ) 1 5 0 ( 2 ) 1 5 1 ( 3 ) 1 7 2 ( 3 ) 1 5 9 ( 3 ) 2 4 0 ( 8 ) 1 7 5 ( 3 ) 1 3 8 ( 4 ) 1 7 2 ( 4 ) 1 2 2 ( 3 ) 2 0 3 ( 5 ) 1 6 9 ( 5 ) 1 8 4 ( 3 ) 1 0 6 ( 3 ) T a b l e 9 ( c o n ' t ) 0 ( 6 8 ) 7 2 6 6 ( 1 6 ) 9 8 9 ( 1 7 ) 8 4 8 1 ( 7 ) 4 1 1 ( 1 0 ) 1 C ( 6 8 ) 7 3 7 4 ( 7 ) 5 1 0 ( 6 ) 8 9 6 9 ( 7 ) 2 0 3 ( 7 ) 1 0 ( 7 8 ) 7 7 9 1 ( 8 ) 1 3 9 3 ( 5 ) 2 1 7 4 ( 3 ) 1 6 1 ( 3 ) 1 C ( 7 S ) 7 2 0 3 ( 6 ) 1 3 5 8 ( 4 ) 2 5 0 4 ( 3 ) 1 0 2 ( 3 ) 1 2 9 7 T a b l e 1 0 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { t m b p y V O [ p — ( C 5 H 5 ) 2 P 0 2 ] 1 . 5 } 2 { C | O 4 } ' 3 . 5 C H 3 O H , ( 4 H 3 ) A t o m V ( 1 ) 0 ( 1 ) N ( 1 ) C ( 1 ) C ( 2 ) C ( 2 A ) C ( 3 ) C ( 3 A ) C ( 4 ) C ( 5 ) C ( 6 ) C ( 7 ) C ( 8 ) C ( 8 A ) C ( 9 ) C ( 9 A ) C ( 1 0 ) N ( 2 ) V ( 2 ) 0 ( 2 ) N ( 3 ) C ( 1 1 ) C ( 1 2 ) C ( 1 2 A ) C ( 1 3 ) C ( 1 3 A ) C ( 1 4 ) C ( 1 5 ) C ( 1 6 ) C ( 1 7 ) C ( 1 8 ) C ( 1 8 A ) C ( 1 9 ) C ( 1 9 A ) U 1 1 1 0 ( 1 ) 1 8 ( 1 ) 1 5 ( 2 ) 2 5 ( 2 ) 3 3 ( 2 ) 4 6 ( 3 ) 2 9 ( 2 ) 3 9 ( 3 ) 1 8 ( 2 ) 1 5 ( 2 ) 1 5 ( 2 ) 1 7 ( 2 ) 1 7 ( 2 ) 2 3 ( 2 ) 2 7 ( 2 ) 3 4 ( 3 ) 2 2 ( 2 ) 1 7 ( 2 ) 1 6 ( 1 ) 3 2 ( 2 ) 2 0 ( 2 ) 2 5 ( 2 ) 2 3 ( 2 ) 3 0 ( 3 ) 1 9 ( 2 ) 1 9 ( 3 ) 2 2 ( 2 ) 1 7 ( 2 ) 1 7 ( 2 ) 2 3 ( 2 ) 3 9 ( 2 ) 5 4 ( 3 ) 3 1 ( 2 ) 4 5 ( 3 ) U 2 2 1 3 ( 1 ) 1 7 ( 1 ) 1 3 ( 1 ) 1 7 ( 2 ) 2 7 ( 2 ) 4 9 ( 3 ) 3 3 ( 2 ) 7 8 ( 4 ) 2 9 ( 2 ) 1 4 ( 2 ) 1 5 ( 2 ) 2 3 ( 2 ) 2 5 ( 2 ) 4 4 ( 3 ) 3 0 ( 2 ) 5 1 ( 3 ) 3 2 ( 2 ) 2 2 ( 2 ) 1 3 ( 1 ) 1 8 ( 1 ) 1 9 ( 2 ) 2 1 ( 2 ) 3 1 ( 2 ) 4 6 ( 3 ) 4 5 ( 3 ) 1 0 3 ( 5 ) 4 1 ( 2 ) 2 2 ( 2 ) 1 8 ( 2 ) 2 8 ( 2 ) 2 4 ( 2 ) 5 6 ( 3 ) 2 2 ( 2 ) 4 8 ( 3 ) U 3 3 1 9 ( 1 ) 3 3 ( 2 ) 2 3 ( 2 ) 2 4 ( 2 ) 2 5 ( 2 ) 2 5 ( 2 ) 2 9 ( 2 ) 4 1 ( 3 ) 3 3 ( 2 ) 2 7 ( 2 ) 2 9 ( 2 ) 3 5 ( 2 ) 3 6 ( 2 ) 4 6 ( 3 ) 2 8 ( 2 ) 3 1 ( 2 ) 2 4 ( 2 ) 2 3 ( 2 ) 2 0 ( 1 ) 2 6 ( 1 ) 2 0 ( 2 ) 2 7 ( 2 ) 2 5 ( 2 ) 4 6 ( 3 ) 3 3 ( 2 ) 6 4 ( 4 ) 2 6 ( 2 ) 1 9 ( 2 ) 1 9 ( 2 ) 2 3 ( 2 ) 1 8 ( 2 ) 3 5 ( 3 ) 2 9 ( 2 ) 4 8 ( 3 ) 2 9 8 U 2 3 - 6 ( 1 ) - 1 2 ( 1 ) - 4 ( 1 ) - 3 ( 2 ) - 3 ( 2 ) - 2 ( 2 ) - 6 ( 2 ) - 4 ( 3 ) - 9 ( 2 ) - 7 ( 2 ) - 9 ( 2 ) - 9 ( 2 ) - 1 3 ( 2 ) - 1 4 ( 2 ) - 9 ( 2 ) - 1 ( 2 ) - 9 ( 2 ) - 9 ( 1 ) - 5 ( 1 ) - 2 ( 1 ) - 7 ( 1 ) 4 3 ( 2 ) - 3 ( 2 ) - 1 1 ( 2 ) - 7 ( 2 ) - 3 5 ( 3 ) - 1 1 ( 2 ) - 3 ( 2 ) - 4 ( 1 ) - 7 ( 2 ) - 7 ( 2 ) - 2 7 ( 2 ) - 9 ( 2 ) - 2 9 ( 2 ) U 1 3 2 ( 1 ) 4 ( 1 ) 1 ( 1 ) 1 ( 2 ) 9 ( 2 ) 3 ( 2 ) 1 3 ( 2 ) 2 1 ( 2 ) 7 ( 2 ) 1 ( 2 ) 2 ( 2 ) 1 ( 2 ) 4 3 ( 2 ) 4 3 ( 2 ) - 6 ( 2 ) - 8 ( 2 ) 1 ( 2 ) 0 ( 1 ) - 2 ( 1 ) - 5 ( 1 ) 3 ( 1 ) 6 ( 2 ) 8 ( 2 ) 1 3 ( 2 ) 1 ( 2 ) 0 ( 2 ) - 2 ( 2 ) 0 ( 1 ) - 1 ( 1 ) - 2 ( 2 ) 4 ( 2 ) 1 ( 2 ) 8 ( 2 ) 1 2 ( 2 ) U 1 2 - 3 ( 1 ) - 4 ( 1 ) - 3 ( 1 ) - 5 ( 2 ) - 6 ( 2 ) 4 3 ( 2 ) - 7 ( 2 ) - 1 8 ( 3 ) 4 3 ( 2 ) - 4 ( 1 ) - 3 ( 1 ) 1 ( 2 ) 1 ( 2 ) 4 ( 2 ) 1 ( 2 ) - 6 ( 2 ) - 8 ( 2 ) - 5 ( 1 ) - 4 ( 1 ) - 7 ( 1 ) - 5 ( 1 ) - 5 ( 2 ) 0 ( 2 ) 2 ( 2 ) 4 3 ( 2 ) - 1 ( 3 ) - 8 ( 2 ) 4 3 ( 2 ) - 7 ( 1 ) - 1 ( 2 ) - 5 ( 2 ) - 8 ( 3 ) - 1 ( 2 ) 1 ( 2 ) C ( 2 0 ) N ( 4 ) 0 ( 3 ) P ( 1 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) C ( 2 5 ) C ( 2 8 ) C ( 2 7 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) 0 ( 4 ) 0 ( 5 ) P ( 2 ) C ( 3 3 ) C ( 3 4 ) C ( 3 5 ) C ( 3 6 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) C ( 4 3 ) C ( 4 4 ) 0 ( 6 ) 0 ( 7 ) P ( 3 ) C ( 4 5 ) C ( 4 6 ) C ( 4 7 ) 1 9 ( 2 ) 2 0 ( 2 ) 1 9 ( 1 ) 1 3 ( 1 ) 1 6 ( 2 ) 2 2 ( 2 ) 3 5 ( 3 ) 4 0 ( 3 ) 2 0 ( 2 ) 1 5 ( 2 ) 2 3 ( 2 ) 3 5 ( 3 ) 4 3 ( 3 ) 6 6 ( 4 ) 7 0 ( 4 ) 5 1 ( 3 ) 1 6 ( 1 ) 1 7 ( 1 ) 1 2 ( 1 ) 1 6 ( 2 ) 3 3 ( 2 ) 3 6 ( 3 ) 1 8 ( 2 ) 1 6 ( 2 ) 1 6 ( 2 ) 2 3 ( 2 ) 4 7 ( 3 ) 7 1 ( 4 ) 7 2 ( 4 ) 5 7 ( 3 ) 4 8 ( 3 ) 1 9 ( 1 ) 1 5 ( 1 ) 1 5 ( 1 ) 1 7 ( 2 ) 2 6 ( 2 ) 2 2 ( 2 ) T a b l e 1 0 ( c o n ' t ) 2 1 ( 2 ) 1 4 ( 1 ) 1 5 ( 1 ) 1 4 ( 1 ) 2 1 ( 2 ) 2 5 ( 2 ) 3 6 ( 2 ) 4 7 ( 3 ) 4 7 ( 3 ) 3 0 ( 2 ) 2 8 ( 2 ) 3 5 ( 2 ) 6 4 ( 3 ) 1 0 1 ( 5 ) 9 0 ( 5 ) 4 6 ( 3 ) 1 7 ( 1 ) 1 9 ( 1 ) 1 4 ( 1 ) 1 8 ( 2 ) 2 7 ( 2 ) 3 5 ( 2 ) 4 3 ( 3 ) 5 1 ( 3 ) 4 1 ( 2 ) 2 0 ( 2 ) 3 8 ( 3 ) 5 6 ( 3 ) 5 2 ( 3 ) 5 4 ( 3 ) 4 0 ( 3 ) 1 4 ( 1 ) 2 3 ( 1 ) 1 6 ( 1 ) 2 2 ( 2 ) 2 9 ( 2 ) 4 4 ( 3 ) 3 3 ( 2 ) 2 5 ( 2 ) 2 7 ( 1 ) 2 2 ( 1 ) 2 5 ( 2 ) 2 7 ( 2 ) 2 3 ( 2 ) 3 0 ( 2 ) 4 6 ( 3 ) 3 5 ( 2 ) 2 8 ( 2 ) 4 2 ( 3 ) 6 1 ( 3 ) 4 3 ( 3 ) 3 6 ( 3 ) 3 5 ( 3 ) 3 7 ( 2 ) 2 8 ( 1 ) 1 9 ( 1 ) 2 6 ( 2 ) 3 6 ( 2 ) 5 9 ( 3 ) 7 2 ( 4 ) 8 2 ( 3 ) 3 7 ( 2 ) 2 1 ( 2 ) 3 4 ( 2 ) 3 3 ( 3 ) 2 8 ( 2 ) 3 9 ( 3 ) 2 9 ( 2 ) 2 3 ( 1 ) 2 0 ( 1 ) 1 6 ( 1 ) 1 6 ( 2 ) 3 8 ( 2 ) 5 1 ( 3 ) 2 9 9 4 3 ( 2 ) - 6 ( 1 ) - 7 ( 1 ) - 6 ( 1 ) - 9 ( 2 ) - 8 ( 2 ) - 3 ( 2 ) - 1 ( 2 ) 4 9 ( 2 ) - 7 ( 2 ) 4 1 ( 2 ) 4 7 ( 2 ) - 3 8 ( 3 ) - 3 6 ( 3 ) 0 ( 3 ) - 4 ( 2 ) - 9 ( 1 ) - 6 ( 1 ) - 5 ( 1 ) - 4 ( 2 ) 4 2 ( 2 ) 4 5 ( 2 ) 0 ( 3 ) - 7 ( 3 ) - 9 ( 2 ) 4 ( 2 ) 1 2 ( 2 ) 1 8 ( 2 ) - 3 ( 2 ) 4 4 ( 2 ) - 8 ( 2 ) - 5 ( 1 ) - 6 ( 1 ) - 6 ( 1 ) - 5 ( 1 ) 4 1 ( 2 ) - 1 ( 2 ) 3 ( 2 ) 0 ( 1 ) 2 ( 1 ) - 1 ( 1 ) - 1 ( 2 ) 4 ( 2 ) 2 ( 2 ) - 1 1 ( 2 ) - 1 ( 2 ) - 1 ( 2 ) - 4 ( 2 ) - 1 ( 2 ) 2 ( 3 ) 5 ( 3 ) 2 1 ( 3 ) 1 ( 2 ) 4 5 ( 1 ) - 4 ( 1 ) - 1 ( 1 ) 0 ( 2 ) 7 ( 2 ) 2 0 ( 2 ) 1 5 ( 2 ) - 7 ( 2 ) - 5 ( 2 ) - 2 ( 2 ) 1 1 ( 2 ) 6 ( 3 ) 1 5 ( 2 ) 3 ( 2 ) 1 ( 2 ) 0 ( 1 ) 4 ( 1 ) 3 ( 1 ) 2 ( 1 ) 9 ( 2 ) 1 8 ( 2 ) - 2 ( 2 ) - 3 ( 1 ) 1 ( 1 ) 2 ( 1 ) 5 ( 2 ) 0 ( 2 ) 9 ( 2 ) 2 1 ( 2 ) 6 ( 2 ) 0 ( 2 ) 8 ( 2 ) 1 1 ( 2 ) 1 9 ( 3 ) 3 2 ( 4 ) 1 2 ( 4 ) 9 ( 2 ) - 1 ( 1 ) - 4 ( 1 ) - 1 ( 1 ) 0 ( 1 ) - 2 ( 2 ) 3 ( 2 ) 6 ( 2 ) - 1 ( 2 ) - 1 ( 2 ) 0 ( 2 ) 1 5 ( 2 ) 9 ( 3 ) - 9 ( 3 ) 8 ( 3 ) 1 2 ( 2 ) - 2 ( 1 ) - 8 ( 1 ) - 5 ( 1 ) - 3 ( 2 ) - 1 1 ( 2 ) - 7 ( 2 ) C ( 4 8 ) C ( 4 9 ) C ( 5 0 ) C ( 5 1 ) C ( 5 2 ) C ( 5 3 ) C ( 5 4 ) C ( 5 5 ) C ( 5 6 ) 0 ( 8 ) V ( 3 ) 0 ( 9 ) N ( 5 ) C ( 5 7 ) C ( 5 8 ) C ( 5 8 A ) C ( 5 9 ) C ( 5 9 A ) C ( 6 0 ) C ( 6 1 ) C ( 6 2 ) C ( 6 3 ) C ( 6 4 ) C ( 6 4 A ) C ( 6 5 ) C ( 6 5 A ) C ( 6 6 ) N ( 6 ) V ( 4 ) 0 ( 1 0 ) N ( 7 ) C ( 6 7 ) C ( 6 8 ) C ( 6 8 A ) C ( 6 9 ) C ( 6 9 A ) C ( 7 0 ) 3 4 ( 3 ) 4 3 ( 3 ) 2 6 ( 2 ) 1 9 ( 2 ) 3 4 ( 2 ) 5 0 ( 3 ) 4 6 ( 3 ) 3 3 ( 3 ) 2 7 ( 2 ) 2 2 ( 1 ) 1 3 ( 1 ) 2 6 ( 2 ) 2 0 ( 2 ) 2 4 ( 2 ) 4 3 ( 3 ) 5 6 ( 4 ) 2 9 ( 3 ) 4 6 ( 4 ) 1 8 ( 2 ) 1 5 ( 2 ) 1 9 ( 2 ) 1 8 ( 2 ) 2 4 ( 2 ) 2 6 ( 3 ) 3 6 ( 3 ) 4 9 ( 4 ) 3 1 ( 3 ) 1 8 ( 2 ) 1 9 ( 1 ) 3 4 ( 2 ) 3 3 ( 2 ) 4 8 ( 3 ) 7 1 ( 4 ) 9 0 ( 5 ) 8 7 ( 4 ) 1 1 2 ( 6 ) 6 3 ( 3 ) T a b l e 1 0 ( c o n ' t ) 4 2 ( 3 ) 2 2 ( 2 ) 2 1 ( 2 ) 2 3 ( 2 ) 2 6 ( 2 ) 2 4 ( 2 ) 4 2 ( 3 ) 5 2 ( 3 ) 3 6 ( 2 ) 2 4 ( 1 ) 2 1 ( 1 ) 2 6 ( 1 ) 2 2 ( 2 ) 3 8 ( 2 ) 6 5 ( 3 ) 1 2 6 ( 6 ) 8 2 ( 4 ) 1 4 0 ( 7 ) 6 2 ( 3 ) 2 6 ( 2 ) 2 8 ( 2 ) 3 0 ( 2 ) 5 4 ( 3 ) 6 8 ( 3 ) 9 3 ( 4 ) 1 8 8 ( 8 ) 9 6 ( 4 ) 4 6 ( 2 ) 1 8 ( 1 ) 2 7 ( 2 ) 1 6 ( 2 ) 2 1 ( 2 ) 2 5 ( 2 ) 4 3 ( 3 ) 3 0 ( 2 ) 6 2 ( 4 ) 3 8 ( 3 ) 5 3 ( 3 ) 4 7 ( 3 ) 3 0 ( 2 ) 1 7 ( 2 ) 2 2 ( 2 ) 2 8 ( 2 ) 2 3 ( 2 ) 2 5 ( 2 ) 2 6 ( 2 ) 2 3 ( 1 ) 1 9 ( 1 ) 3 9 ( 2 ) 2 0 ( 2 ) 2 4 ( 2 ) 1 7 ( 2 ) 2 1 ( 2 ) 3 0 ( 2 ) 4 7 ( 3 ) 3 3 ( 2 ) 2 3 ( 2 ) 2 5 ( 2 ) 3 4 ( 2 ) 3 5 ( 2 ) 5 1 ( 3 ) 2 6 ( 2 ) 2 5 ( 3 ) 2 1 ( 2 ) 2 3 ( 2 ) 2 2 ( 1 ) 2 6 ( 1 ) 2 8 ( 2 ) 3 9 ( 2 ) 4 1 ( 3 ) 6 3 ( 4 ) 2 8 ( 2 ) 4 3 ( 3 ) 3 1 ( 2 ) 3 0 0 4 1 ( 2 ) - 9 ( 2 ) 4 ( 2 ) - 5 ( 2 ) - 4 ( 2 ) 1 ( 2 ) 2 ( 2 ) - 5 ( 2 ) - 4 ( 2 ) 4 2 ( 1 ) - 9 ( 1 ) - 1 8 ( 1 ) - 6 ( 1 ) - 6 ( 2 ) - 1 ( 2 ) - 1 ( 3 ) - 2 ( 2 ) - 5 ( 4 ) - 3 ( 2 ) - 3 ( 2 ) - 5 ( 2 ) 4 ( 2 ) 4 1 ( 2 ) - 9 ( 3 ) - 7 ( 3 ) - 5 ( 4 ) 4 2 ( 2 ) - 8 ( 2 ) - 4 ( 1 ) 1 ( 1 ) - 4 ( 1 ) - 9 ( 2 ) 4 5 ( 2 ) 2 8 ( 3 ) - 9 ( 2 ) 2 7 ( 3 ) - 4 ( 2 ) 1 6 ( 2 ) 1 2 ( 2 ) 7 ( 2 ) 5 ( 1 ) 6 ( 2 ) 1 2 ( 2 ) 8 ( 2 ) - 5 ( 2 ) - 1 ( 2 ) 1 ( 1 ) 4 ( 1 ) 9 ( 1 ) 3 ( 1 ) 1 ( 2 ) 7 ( 2 ) 5 ( 2 ) 1 2 ( 2 ) 2 6 ( 3 ) 7 ( 2 ) 2 ( 2 ) 3 ( 2 ) 1 ( 2 ) 4 5 ( 2 ) - 1 5 ( 2 ) - 7 ( 2 ) 4 3 ( 2 ) 3 ( 2 ) 6 ( 1 ) 0 ( 1 ) - 2 ( 1 ) - 3 ( 2 ) 2 ( 2 ) 1 5 ( 3 ) 1 6 ( 3 ) 5 ( 3 ) 1 ( 3 ) 4 ( 2 ) 1 ( 2 ) 5 ( 2 ) 4 ( 2 ) 0 ( 2 ) - 9 ( 2 ) - 3 ( 2 ) 7 ( 2 ) - 6 ( 2 ) - 7 ( 2 ) - 6 ( 1 ) - 7 ( 1 ) 4 1 ( 1 ) 4 ( 1 ) - 2 ( 2 ) 1 ( 2 ) - 2 ( 4 ) - 7 ( 3 ) 2 0 ( 4 ) - 8 ( 2 ) - 2 ( 2 ) - 8 ( 2 ) - 7 ( 2 ) - 1 6 ( 2 ) 4 3 ( 2 ) 2 4 ( 3 ) 4 6 ( 4 ) 2 9 ( 3 ) - 1 8 ( 2 ) - 6 ( 1 ) 4 1 ( 1 ) - 8 ( 1 ) - 6 ( 2 ) 4 4 ( 2 ) 2 ( 3 ) 2 3 ( 3 ) 4 0 ( 4 ) 8 2 ( 2 ) C ( 7 1 ) C ( 7 2 ) C ( 7 3 ) C ( 7 4 ) C ( 7 4 A ) C ( 7 5 ) C ( 7 5 A ) C ( 7 6 ) N ( 3 ) 0 ( 1 1 ) F ’ ( 4 ) C ( 7 7 ) C ( 7 8 ) C ( 7 9 ) C ( 8 0 ) C ( 8 1 ) C ( 8 2 ) C ( 8 3 ) C ( 8 4 ) C ( 8 5 ) C ( 8 6 ) C ( 8 7 ) C ( 8 8 ) 0 ( 1 2 ) 0 ( 1 3 ) P ( 5 ) C ( 8 9 ) C ( 9 0 ) C ( 9 1 ) C ( 9 2 ) C ( 9 3 ) C ( 9 4 ) C ( 9 5 ) C ( 9 6 ) C ( 9 7 ) C ( 9 8 ) C ( 9 9 ) 4 2 ( 3 ) 3 0 ( 2 ) 3 8 ( 3 ) 2 3 ( 3 ) 3 0 ( 3 ) 2 3 ( 2 ) 2 6 ( 3 ) 2 6 ( 2 ) 2 3 ( 2 ) 1 9 ( 1 ) 1 6 ( 1 ) 2 7 ( 2 ) 4 2 ( 3 ) 6 5 ( 4 ) 1 2 8 ( 6 ) 1 3 9 ( 7 ) 8 4 ( 4 ) 2 1 ( 2 ) 3 1 ( 2 ) 4 0 ( 3 ) 2 4 ( 2 ) 1 9 ( 2 ) 2 4 ( 2 ) 2 2 ( 1 ) 2 3 ( 2 ) 1 6 ( 1 ) 2 1 ( 2 ) 3 8 ( 3 ) 4 1 ( 3 ) 4 8 ( 3 ) 5 6 ( 3 ) 4 7 ( 3 ) 2 1 ( 2 ) 3 6 ( 2 ) 6 0 ( 3 ) 4 7 ( 3 ) 2 9 ( 2 ) T a b l e 1 0 ( c o n ' t ) 2 4 ( 2 ) 2 6 ( 2 ) 6 4 ( 3 ) 8 0 ( 4 ) 1 6 3 ( 8 ) 4 8 ( 3 ) 7 0 ( 4 ) 3 1 ( 2 ) 2 2 ( 2 ) 1 6 ( 1 ) 1 5 ( 1 ) 2 6 ( 2 ) 3 0 ( 2 ) 4 6 ( 3 ) 6 8 ( 4 ) 5 5 ( 3 ) 3 3 ( 3 ) 1 8 ( 2 ) 2 7 ( 2 ) 2 8 ( 2 ) 3 6 ( 3 ) 4 5 ( 3 ) 3 3 ( 2 ) 1 7 ( 1 ) 3 6 ( 2 ) 2 6 ( 1 ) 3 2 ( 2 ) 3 4 ( 2 ) 5 2 ( 3 ) 4 6 ( 3 ) 3 6 ( 2 ) 3 6 ( 2 ) 2 8 ( 2 ) 2 7 ( 2 ) 2 8 ( 2 ) 4 5 ( 3 ) 5 4 ( 3 ) 2 7 ( 2 ) 3 1 ( 2 ) 4 0 ( 3 ) 5 9 ( 3 ) 8 8 ( 5 ) 5 2 ( 3 ) 8 1 ( 4 ) 3 9 ( 2 ) 3 1 ( 2 ) 3 2 ( 1 ) 1 8 ( 1 ) 2 2 ( 2 ) 3 0 ( 2 ) 3 0 ( 2 ) 2 4 ( 3 ) 3 5 ( 3 ) 3 3 ( 3 ) 2 1 ( 2 ) 3 4 ( 2 ) 5 2 ( 3 ) 7 3 ( 4 ) 6 3 ( 3 ) 3 5 ( 2 ) 2 2 ( 1 ) 2 2 ( 1 ) 1 9 ( 1 ) 2 3 ( 2 ) 3 7 ( 2 ) 4 0 ( 3 ) 2 8 ( 2 ) 2 3 ( 2 ) 2 7 ( 2 ) 1 7 ( 2 ) 2 8 ( 2 ) 4 0 ( 3 ) 3 7 ( 3 ) 3 8 ( 3 ) 3 0 1 - 3 ( 2 ) 3 ( 2 ) - 1 ( 2 ) 1 ( 3 ) 4 6 ( 5 ) 7 ( 2 ) 8 ( 3 ) - 1 ( 2 ) - 3 ( 1 ) 4 5 ( 1 ) - 5 ( 1 ) - 4 ( 2 ) - 1 ( 2 ) 1 ( 2 ) - 5 ( 3 ) 2 2 ( 3 ) - 1 ( 2 ) 2 ( 2 ) 4 1 ( 2 ) 4 1 ( 2 ) - 1 ( 2 ) - 5 ( 2 ) - 1 ( 2 ) - 5 ( 1 ) - 1 ( 1 ) - 8 ( 1 ) - 9 ( 2 ) - 5 ( 2 ) - 8 ( 2 ) 0 ( 2 ) 1 ( 2 ) - 4 ( 2 ) - 5 ( 2 ) - 5 ( 2 ) - 5 ( 2 ) - 3 ( 2 ) - 3 ( 2 ) 2 ( 2 ) - 6 ( 2 ) - 8 ( 2 ) - 4 ( 2 ) - 1 ( 3 ) 4 ( 2 ) 1 8 ( 3 ) 7 ( 2 ) - 1 ( 1 ) 4 3 ( 1 ) - 2 ( 1 ) 2 ( 2 ) - 3 ( 2 ) 2 ( 2 ) 1 4 ( 3 ) 1 4 ( 3 ) 3 ( 3 ) 0 ( 2 ) 1 ( 2 ) 1 5 ( 2 ) 1 2 ( 2 ) - 8 ( 2 ) - 6 ( 2 ) - 1 ( 1 ) 7 ( 1 ) 6 ( 1 ) 1 ( 2 ) - 7 ( 2 ) 4 3 ( 2 ) 3 ( 2 ) 8 ( 2 ) 6 ( 2 ) 4 ( 2 ) 7 ( 2 ) 7 ( 2 ) 1 1 ( 2 ) 1 7 ( 2 ) 1 8 ( 2 ) 1 7 ( 2 ) 2 6 ( 3 ) 1 3 ( 3 ) 4 4 ( 4 ) 4 3 ( 2 ) 5 ( 3 ) - 7 ( 2 ) - 9 ( 1 ) - 6 ( 1 ) - 3 ( 1 ) - 1 ( 2 ) - 1 ( 2 ) - 7 ( 3 ) 1 ( 4 ) - 6 ( 4 ) 0 ( 3 ) - 1 ( 2 ) - 2 ( 2 ) 5 ( 2 ) 2 ( 2 ) - 3 ( 2 ) - 5 ( 2 ) - 3 ( 1 ) 1 5 ( 1 ) - 8 ( 1 ) - 1 ( 2 ) - 5 ( 2 ) - 3 ( 2 ) 9 ( 2 ) - 1 ( 2 ) 1 8 ( 2 ) - 4 ( 2 ) - 3 ( 2 ) 9 ( 2 ) 2 1 ( 2 ) 0 ( 2 ) 0 ( 1 0 0 ) 0 ( 1 4 ) 0 ( 1 5 ) P ( 6 ) C ( 1 0 1 ) C ( 1 0 2 ) C ( 1 0 3 ) C ( 1 0 4 ) C ( 1 0 5 ) C ( 1 0 6 ) C ( 1 0 7 ) C ( 1 0 8 ) C ( 1 0 9 ) C ( 1 1 0 ) C ( 1 1 1 ) C ( 1 1 2 ) 0 ( 1 6 ) C l ( 1 ) 0 ( 1 P ) 0 ( 2 P ) 0 ( 3 P ) 0 ( 4 P ) C l ( 2 ) 0 ( 5 P ) 0 ( 6 P ) 0 ( 7 P ) 0 ( 8 P ) C ( 1 8 ) C ( 1 8 ) C ( 2 8 ) C ( 2 8 ) 0 ( 3 S ) C ( 3 8 ) C ( 4 8 ) C ( 4 8 ) 0 ( 5 8 ) C ( 5 8 ) 2 4 ( 2 ) 2 2 ( 1 ) 2 1 ( 2 ) 1 7 ( 1 ) 3 0 ( 2 ) 5 7 ( 4 ) 8 3 ( 4 ) 7 8 ( 4 ) 1 1 5 ( 6 ) 7 7 ( 4 ) 2 2 ( 2 ) 2 2 ( 2 ) 2 6 ( 3 ) 4 0 ( 3 ) 5 8 ( 3 ) 4 1 ( 3 ) 2 1 ( 2 ) 3 1 ( 1 ) 9 1 ( 3 ) 9 3 ( 4 ) 1 4 0 ( 4 ) 1 1 2 ( 4 ) 8 7 ( 1 ) 1 7 0 ( 6 ) 1 7 2 ( 8 ) 8 2 ( 4 ) 1 2 7 ( 6 ) 1 7 6 ( 7 ) 3 2 7 ( 2 0 ) 1 2 4 ( 6 ) 1 7 3 ( 1 1 ) 9 8 ( 5 ) 9 0 ( 7 ) 1 5 4 ( 8 ) 1 2 5 ( 1 0 ) 1 8 9 ( 9 ) 9 4 ( 6 ) T a b l e 1 0 ( c o n ' t ) 3 0 ( 2 ) 3 3 ( 2 ) 2 6 ( 1 ) 2 2 ( 1 ) 2 6 ( 2 ) 5 2 ( 3 ) 7 0 ( 4 ) 8 9 ( 4 ) 6 3 ( 4 ) 5 7 ( 3 ) 2 8 ( 2 ) 5 0 ( 3 ) 7 1 ( 4 ) 5 7 ( 3 ) 4 0 ( 3 ) 3 0 ( 2 ) 2 7 ( 1 ) 3 3 ( 1 ) 5 0 ( 2 ) 1 2 2 ( 4 ) 1 7 7 ( 5 ) 6 9 ( 3 ) 6 8 ( 1 ) 1 2 6 ( 5 ) 1 5 0 ( 5 ) 1 1 4 ( 4 ) 1 0 8 ( 5 ) 1 4 2 ( 6 ) 1 8 3 ( 1 2 ) 2 5 4 ( 1 0 ) 9 7 ( 7 ) 1 7 1 ( 7 ) 1 8 0 ( 1 0 ) 1 2 1 ( 6 ) 1 4 3 ( 1 0 ) 1 3 5 ( 7 ) 7 0 ( 5 ) 3 7 ( 2 ) 2 8 ( 1 ) 3 3 ( 2 ) 2 8 ( 1 ) 3 8 ( 2 ) 5 7 ( 3 ) 9 1 ( 5 ) 5 4 ( 3 ) 4 3 ( 3 ) 3 7 ( 3 ) 2 8 ( 2 ) 5 0 ( 3 ) 5 9 ( 3 ) 3 7 ( 3 ) 3 1 ( 2 ) 3 8 ( 2 ) 3 8 ( 2 ) 2 9 ( 1 ) 6 1 ( 2 ) 8 9 ( 4 ) 1 0 1 ( 4 ) 3 8 ( 2 ) 1 0 2 ( 1 ) 7 8 ( 4 ) 9 9 ( 4 ) 2 7 5 ( 8 ) 2 9 7 ( 9 ) 1 6 0 ( 7 ) 1 9 2 ( 1 5 ) 1 9 7 ( 8 ) 1 1 4 ( 7 ) 1 9 4 ( 8 ) 9 3 ( 7 ) 2 7 6 ( 1 2 ) 2 4 5 ( 1 5 ) 2 1 8 ( 1 0 ) 1 4 3 ( 8 ) 3 0 2 4 ( 2 ) - 1 6 ( 1 ) - 8 ( 1 ) - 3 ( 1 ) - 8 ( 2 ) 4 7 ( 3 ) 4 2 ( 4 ) 2 9 ( 3 ) 4 3 ( 3 ) - 5 ( 2 ) - 3 ( 2 ) 8 ( 2 ) 0 ( 3 ) - 6 ( 2 ) 3 ( 2 ) - 7 ( 2 ) - 1 ( 1 ) - 1 ( 1 ) 8 3 ( 2 ) 8 2 ( 3 ) - 9 5 ( 4 ) 4 3 ( 2 ) 2 0 ( 1 ) 4 5 ( 3 ) 1 4 ( 4 ) 8 0 ( 5 ) - 7 7 ( 5 ) 4 3 ( 5 ) 2 7 ( 1 0 ) 4 4 8 ( 8 ) 2 0 ( 6 ) 4 5 ( 7 ) 8 1 ( 7 ) 4 6 ( 7 ) - 6 6 ( 1 0 ) 8 1 ( 8 ) 4 ( 5 ) 1 1 ( 2 ) 4 ( 1 ) 2 ( 1 ) 2 ( 1 ) 6 ( 2 ) 3 ( 3 ) 2 2 ( 4 ) 2 8 ( 3 ) 1 9 ( 3 ) 7 ( 3 ) 3 ( 2 ) 4 ( 2 ) 4 5 ( 2 ) - 8 ( 2 ) 3 ( 2 ) 3 ( 2 ) - 1 ( 1 ) 4 ( 1 ) 8 ( 2 ) 2 5 ( 3 ) 8 1 ( 3 ) 1 ( 2 ) 1 7 ( 1 ) 2 ( 4 ) 8 ( 4 ) 3 9 ( 4 ) 9 ( 5 ) 0 ( 6 ) 3 7 ( 1 3 ) 4 1 ( 6 ) 3 5 ( 7 ) 4 0 ( 5 ) 4 7 ( 5 ) - 9 ( 8 ) 1 ( 1 0 ) 5 2 ( 7 ) 2 5 ( 6 ) - 6 ( 2 ) - 9 ( 1 ) 1 ( 1 ) 0 ( 1 ) - 2 ( 2 ) 1 6 ( 3 ) 1 5 ( 3 ) - 2 ( 3 ) 8 ( 4 ) 2 0 ( 3 ) 2 ( 2 ) - 8 ( 2 ) 2 ( 2 ) 1 8 ( 2 ) 8 ( 2 ) 0 ( 2 ) - 2 ( 1 ) 1 ( 1 ) 0 ( 2 ) - 5 8 ( 3 ) 1 2 2 ( 4 ) - 6 ( 2 ) - 3 ( 1 ) 4 2 ( 4 ) 5 8 ( 5 ) 4 5 ( 3 ) 4 9 ( 4 ) 3 2 ( 5 ) - 1 1 6 ( 1 2 ) 2 6 ( 6 ) 3 7 ( 7 ) 2 2 ( 5 ) 8 ( 7 ) 1 3 ( 6 ) 5 8 ( 9 ) 4 5 ( 6 ) 5 ( 4 ) T a b l e 1 0 ( c o n ' t ) 0 ( 6 8 ) 4 2 3 ( 2 3 ) 5 3 9 ( 2 8 ) 2 5 0 ( 1 5 ) - 5 7 ( 1 5 ) 6 8 ( 1 4 ) - 1 8 6 ( 1 8 ) C ( 6 8 ) 7 8 ( 8 ) 1 5 1 ( 1 0 ) 4 4 8 ( 2 3 ) 2 0 3 ( 1 3 ) - 5 0 ( 1 1 ) 2 5 ( 7 ) 0 ( 7 S ) 1 6 6 ( 7 ) 2 1 4 ( 8 ) 1 1 3 ( 6 ) - 6 5 ( 6 ) 2 3 ( 5 ) 5 8 ( 6 ) C ( 7 8 ) 1 3 4 ( 8 ) 7 5 ( 5 ) 1 0 5 ( 6 ) 8 6 ( 5 ) 5 1 ( 6 ) 2 8 ( 5 ) 3 0 3 T a b l e 1 1 . A t o m i c C o o r d i n a t e s ( x 1 0 ‘ ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { b p y V O U r — ( p - F C 5 H 4 ) 2 P 0 2 ] 1 , 5 } 2 { C I O 4 } - 1 . 5 C H 3 0 H , ( 4 . 4 ) . A t o m V ( 1 ) 0 ( 1 ) 0 ( 2 ) 0 ( 3 ) 0 ( 4 ) V ( 2 ) 0 ( 5 ) 0 ( 6 ) 0 ( 7 ) 0 ( 8 ) P ( 1 ) N ( 1 ) C ( 1 ) C ( 2 ) C ( 3 ) C ( 4 ) C ( 5 ) C ( 6 ) C ( 7 ) C ( 8 ) C ( 9 ) C ( 1 0 ) N ( 2 ) N ( 3 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) C ( 1 4 ) C ( 1 5 ) C ( 1 6 ) C ( 1 7 ) C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) X 2 1 3 3 ( 1 ) 2 1 4 0 ( 3 ) 3 3 6 5 ( 2 ) 2 1 0 5 ( 3 ) 1 1 5 1 ( 2 ) 2 7 5 6 ( 1 ) 2 9 0 0 ( 3 ) 3 8 3 0 ( 2 ) 2 5 4 4 ( 2 ) 1 6 3 6 ( 3 ) 3 9 2 9 ( 1 ) 2 9 5 5 ( 3 ) 3 9 5 4 ( 4 ) 4 4 4 9 ( 4 ) 3 8 8 9 ( 5 ) 2 8 5 8 ( 4 ) 2 4 0 1 ( 4 ) 1 3 0 5 ( 4 ) 6 2 1 ( 4 ) 8 9 0 ( 4 ) 2 2 1 ( 4 ) 4 2 ( 4 ) 9 8 0 ( 3 ) 3 7 9 0 ( 3 ) 4 8 0 1 ( 4 ) 5 4 4 2 ( 4 ) 5 0 2 2 ( 4 ) 3 9 7 5 ( 4 ) 3 3 7 2 ( 4 ) 2 2 5 3 ( 4 ) 1 8 9 0 ( 4 ) 6 4 1 ( 4 ) 1 8 6 ( 4 ) 7 7 6 ( 4 ) Y 5 1 1 9 ( 1 ) 5 7 0 3 ( 2 ) 4 5 1 4 ( 2 ) 4 4 9 3 ( 2 ) 4 3 6 6 ( 2 ) 2 3 6 2 ( 1 ) 1 7 4 9 ( 2 ) 3 0 9 8 ( 2 ) 3 0 6 3 ( 2 ) 2 9 5 0 ( 2 ) 3 8 7 6 ( 1 ) 5 8 8 4 ( 2 ) 6 0 0 0 ( 3 ) 6 5 2 8 ( 3 ) 6 9 4 4 ( 3 ) 6 8 3 1 ( 3 ) 6 2 8 9 ( 2 ) 6 1 2 7 ( 3 ) 6 3 8 7 ( 3 ) 6 2 0 9 ( 3 ) 5 7 8 0 ( 3 ) 5 5 2 2 ( 3 ) 5 6 8 1 ( 2 ) 1 8 0 1 ( 2 ) 1 8 8 0 ( 3 ) 1 4 5 9 ( 3 ) 9 8 2 ( 3 ) 9 1 5 ( 3 ) 1 3 2 9 ( 3 ) 1 2 9 0 ( 2 ) 9 1 1 ( 3 ) 9 0 2 ( 3 ) 1 2 6 9 ( 3 ) 1 6 4 8 ( 3 ) Z 7 4 4 1 ( 1 ) 7 9 3 9 ( 1 ) 7 6 1 1 ( 1 ) 6 7 0 9 ( 1 ) 7 7 2 4 ( 1 ) 7 4 1 0 ( 1 ) 7 8 7 7 ( 1 ) 7 8 2 6 ( 1 ) 6 7 1 3 ( 1 ) 7 7 4 7 ( 1 ) 7 8 7 9 ( 1 ) 6 9 4 7 ( 2 ) 6 9 7 7 ( 2 ) 6 6 6 4 ( 2 ) 6 2 9 2 ( 2 ) 6 2 6 2 ( 2 ) 6 5 9 2 ( 2 ) 6 5 9 4 ( 2 ) 6 2 1 1 ( 2 ) 6 2 5 6 ( 2 ) 6 6 8 3 ( 2 ) 7 0 4 4 ( 2 ) 6 9 9 9 ( 2 ) 6 8 8 7 ( 2 ) 6 9 2 0 ( 2 ) 6 5 8 3 ( 2 ) 6 2 0 8 ( 3 ) 6 1 6 6 ( 2 ) 6 5 1 3 ( 2 ) 6 5 1 8 ( 2 ) 6 1 3 7 ( 2 ) 6 1 7 8 ( 3 ) 6 6 0 0 ( 3 ) 6 9 7 0 ( 2 ) 3 0 4 U e q 2 5 ( 1 ) 3 3 ( 1 ) 3 0 ( 1 ) 3 4 ( 1 ) 3 6 ( 1 ) 2 9 ( 1 ) 3 8 ( 1 ) 3 3 ( 1 ) 3 1 ( 1 ) 3 5 ( 1 ) 2 8 ( 1 ) 2 9 ( 1 ) 3 9 ( 1 ) 4 2 ( 1 ) 4 5 ( 1 ) 3 9 ( 1 ) 2 9 ( 1 ) 3 1 ( 1 ) 4 1 ( 1 ) 4 3 ( 1 ) 4 3 ( 1 ) 3 5 ( 1 ) 2 8 ( 1 ) 3 4 ( 1 ) 3 4 ( 1 ) 4 7 ( 2 ) 5 0 ( 2 ) 4 0 ( 1 ) 3 4 ( 1 ) 3 1 ( 1 ) 4 2 ( 1 ) 4 7 ( 2 ) 4 8 ( 2 ) 3 7 ( 1 ) O c c u p a n c y - L N ( 4 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) F ( 1 ) C ( 2 5 ) C ( 2 6 ) C ( 2 7 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) F ( 2 ) C ( 3 1 ) C ( 3 2 ) P ( 2 ) C ( 3 3 ) C ( 3 4 ) C ( 3 5 ) C ( 3 6 ) F ( 3 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) F ( 4 ) C ( 4 3 ) C ( 4 4 ) P ( 3 ) C ( 4 5 ) C ( 4 6 ) C ( 4 7 ) C ( 4 8 ) F ( 5 ) C ( 4 9 ) 1 7 9 6 ( 3 ) 3 5 7 0 ( 4 ) 3 1 7 8 ( 4 ) 2 9 4 5 ( 5 ) 3 1 0 5 ( 4 ) 2 8 5 8 ( 3 ) 3 4 7 1 ( 4 ) 3 7 0 8 ( 4 ) 5 2 4 7 ( 4 ) 5 8 9 5 ( 4 ) 6 9 0 8 ( 4 ) 7 2 3 0 ( 4 ) 8 2 2 3 ( 2 ) 6 6 3 6 ( 4 ) 5 6 3 9 ( 4 ) 2 4 0 6 ( 1 ) 3 5 6 3 ( 5 ) 3 7 1 0 ( 9 ) 4 5 7 7 ( 1 1 ) 5 2 8 1 ( 9 ) 6 1 2 9 ( 8 ) 5 2 0 5 ( 6 ) 4 3 1 9 ( 5 ) 1 4 2 2 ( 5 ) 8 5 6 ( 5 ) 4 5 ( 6 ) 4 6 8 ( 6 ) 4 0 0 2 ( 4 ) 3 5 0 ( 6 ) 1 1 6 8 ( 5 ) 8 6 0 ( 1 ) 2 8 7 ( 3 ) 8 9 4 ( 4 ) 4 2 3 9 ( 5 ) 4 9 7 7 ( 4 ) 2 8 2 1 ( 3 ) 4 9 1 0 ( 4 ) T a b l e 1 1 ( c o n ' t ) 1 6 6 7 ( 2 ) 3 8 2 2 ( 3 ) 4 4 5 7 ( 3 ) 4 4 3 9 ( 3 ) 3 7 9 1 ( 3 ) 3 7 6 3 ( 2 ) 3 1 4 0 ( 3 ) 3 1 6 0 ( 3 ) 4 1 2 7 ( 3 ) 4 0 8 8 ( 3 ) 4 2 7 5 ( 3 ) 4 5 6 2 ( 3 ) 4 7 9 6 ( 2 ) 4 8 2 1 ( 3 ) 4 4 0 0 ( 3 ) 3 7 8 9 ( 1 ) 3 9 7 4 ( 3 ) 4 6 5 8 ( 4 ) 4 8 0 3 ( 5 ) 4 2 6 2 ( 6 ) 4 3 5 9 ( 4 ) 3 5 8 3 ( 6 ) 3 4 4 1 ( 4 ) 3 6 4 8 ( 3 ) 4 2 3 8 ( 3 ) 4 1 1 6 ( 4 ) 3 3 8 7 ( 4 ) 3 2 6 1 ( 3 ) 2 7 7 6 ( 4 ) 2 9 1 5 ( 3 ) 3 5 5 6 ( 1 ) 3 3 4 0 ( 2 ) 3 5 9 8 ( 3 ) 3 4 1 7 ( 4 ) 2 9 7 6 ( 3 ) 2 8 1 1 ( 2 ) 2 7 1 7 ( 3 ) 6 9 3 0 ( 2 ) 8 5 7 1 ( 2 ) 8 8 2 6 ( 2 ) 9 3 6 9 ( 2 ) 9 6 4 7 ( 2 ) 1 0 1 7 6 ( 1 ) 9 4 1 9 ( 2 ) 8 8 6 8 ( 2 ) 7 8 4 3 ( 2 ) 8 2 8 5 ( 2 ) 8 2 4 0 ( 2 ) 7 7 6 7 ( 2 ) 7 7 2 8 ( 1 ) 7 3 2 1 ( 3 ) 7 3 5 8 ( 2 ) 6 4 0 7 ( 1 ) 6 0 4 1 ( 2 ) 5 7 9 2 ( 4 ) 5 5 0 6 ( 6 ) 5 4 6 8 ( 5 ) 5 1 7 5 ( 4 ) 5 7 3 0 ( 3 ) 6 0 1 5 ( 3 ) 5 9 1 5 ( 2 ) 5 7 0 2 ( 2 ) 5 3 6 0 ( 2 ) 5 2 2 5 ( 3 ) 4 9 0 2 ( 2 ) 5 4 1 1 ( 3 ) 5 7 5 4 ( 2 ) 7 8 6 1 ( 1 ) 7 4 9 5 ( 2 ) 6 9 6 7 ( 2 ) 6 6 6 9 ( 2 ) 6 9 0 9 ( 2 ) 6 6 1 4 ( 1 ) 7 4 1 2 ( 2 ) 3 0 5 3 3 ( 1 ) 3 0 ( 1 ) 3 7 ( 1 ) 4 8 ( 2 ) 4 5 ( 1 ) 7 1 ( 1 ) 4 5 ( 1 ) 3 9 ( 1 ) 3 1 ( 1 ) 3 6 ( 1 ) 4 0 ( 1 ) 4 2 ( 1 ) 5 7 ( 1 ) 5 0 ( 2 ) 4 0 ( 1 ) 3 1 ( 1 ) 4 4 ( 1 ) 1 3 3 ( 5 ) 2 0 9 ( 9 ) 1 3 8 ( 5 ) 2 2 4 ( 5 ) 8 9 ( 3 ) 6 1 ( 2 ) 4 1 ( 1 ) 5 2 ( 2 ) 6 3 ( 2 ) 6 4 ( 2 ) 9 9 ( 2 ) 6 9 ( 2 ) 5 1 ( 2 ) 2 9 ( 1 ) 3 1 ( 1 ) 4 3 ( 1 ) 5 4 ( 2 ) 4 7 ( 1 ) 7 1 ( 1 ) 4 8 ( 1 ) A A A A — k — S A A A A - A — L A - B - L — k — k — k — L — L — L - A — L — t — L — K — k A — ‘ L — K - A A — l - L - A — A - fi C ( 5 0 ) 4 0 5 9 ( 4 ) 2 8 9 6 ( 3 ) 7 7 1 7 ( 2 ) 4 0 ( 1 ) 1 C ( 5 1 ) 5 4 4 ( 3 ) 3 5 0 5 ( 3 ) 8 5 6 3 ( 2 ) 3 0 ( 1 ) 1 C ( 5 2 ) 2 1 3 ( 4 ) 3 9 6 3 ( 3 ) 8 7 7 2 ( 2 ) 3 9 ( 1 ) 1 C ( 5 3 ) 4 7 5 ( 4 ) 3 9 2 3 ( 3 ) 9 3 1 7 ( 2 ) 4 7 ( 1 ) 1 C ( 5 4 ) 6 2 ( 5 ) 3 4 3 4 ( 3 ) 9 6 3 4 ( 2 ) 4 1 ( 1 ) 1 F ( 6 ) 4 7 5 ( 3 ) 3 3 9 2 ( 2 ) 1 0 1 6 4 ( 1 ) 5 6 ( 1 ) 1 C ( 5 5 ) 8 1 5 ( 4 ) 2 9 7 0 ( 3 ) 9 4 4 3 ( 2 ) 3 9 ( 1 ) 1 C ( 5 6 ) 1 0 5 3 ( 4 ) 3 0 0 9 ( 3 ) 8 8 9 7 ( 2 ) 3 2 ( 1 ) 1 C l ( 1 ) 8 2 8 2 ( 1 ) 6 0 8 9 ( 1 ) 4 8 1 7 ( 1 ) 4 6 ( 1 ) 1 0 ( 9 ) 8 1 0 3 ( 5 ) 6 6 5 0 ( 3 ) 4 4 2 7 ( 2 ) 1 1 0 ( 2 ) 1 0 ( 1 0 ) 9 3 2 9 ( 4 ) 6 0 0 9 ( 4 ) 4 9 0 5 ( 3 ) 1 0 7 ( 2 ) 1 0 ( 1 1 ) 7 8 5 8 ( 4 ) 5 3 9 9 ( 2 ) 4 6 4 8 ( 2 ) 7 1 ( 1 ) 1 0 ( 1 2 ) 7 7 9 2 ( 4 ) 6 3 2 5 ( 3 ) 5 3 0 6 ( 2 ) 7 5 ( 1 ) 1 0 ( 1 3 ) 6 8 8 7 ( 1 3 ) 5 4 5 8 ( 1 2 ) 6 0 9 2 ( 7 ) 1 8 7 ( 9 ) 0 . 5 C ( 5 7 ) 7 2 7 4 ( 1 1 ) 5 0 1 6 ( 1 0 ) 5 9 9 7 ( 6 ) 9 2 ( 7 ) 0 . 5 0 ( 1 4 ) 2 2 3 7 ( 1 0 ) 6 4 1 8 ( 1 0 ) 9 2 6 8 ( 6 ) 3 4 1 ( 1 1 ) 1 C ( 5 8 ) 1 7 2 7 ( 1 1 ) 6 3 6 1 ( 8 ) 9 6 1 3 ( 4 ) 1 9 4 ( 8 ) 1 T a b l e 1 1 ( c o n ' t ) 3 0 6 T a b l e 1 2 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { b p y V O L u — ( p — F C 6 H 4 ) 2 P 0 2 ] 1 , 5 } 2 { C I O 4 } - 1 . 5 C H 3 0 H , ( 4 . 4 ) . A t o m V ( 1 ) 0 ( 1 ) 0 ( 2 ) 0 ( 3 ) 0 ( 4 ) V ( 2 ) 0 ( 5 ) 0 ( 6 ) 0 ( 7 ) 0 ( 8 ) P ( 1 ) N ( 1 ) C ( 1 ) C ( 2 ) C ( 3 ) C ( 4 ) C ( 5 ) C ( 6 ) C ( 7 ) C ( 8 ) C ( 9 ) C ( 1 0 ) N ( 2 ) N ( 3 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) C ( 1 4 ) C ( 1 5 ) C ( 1 6 ) C ( 1 7 ) C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) U 1 1 2 6 ( 1 ) 3 5 ( 2 ) 2 5 ( 2 ) 4 8 ( 2 ) 3 2 ( 2 ) 3 0 ( 1 ) 4 3 ( 2 ) 2 7 ( 2 ) 3 9 ( 2 ) 3 6 ( 2 ) 2 4 ( 1 ) 3 0 ( 2 ) 3 4 ( 3 ) 3 1 ( 3 ) 5 3 ( 4 ) 5 1 ( 3 ) 4 2 ( 3 ) 4 2 ( 3 ) 5 0 ( 4 ) 4 4 ( 3 ) 3 3 ( 3 ) 3 2 ( 3 ) 3 1 ( 2 ) 3 4 ( 2 ) 2 9 ( 3 ) 3 8 ( 3 ) 4 1 ( 3 ) 5 1 ( 4 ) 3 7 ( 3 ) 3 8 ( 3 ) 4 0 ( 3 ) 4 4 ( 4 ) 3 4 ( 3 ) 3 2 ( 3 ) U 2 2 2 2 ( 1 ) 3 3 ( 2 ) 3 2 ( 2 ) 2 2 ( 2 ) 2 9 ( 2 ) 2 2 ( 1 ) 2 9 ( 2 ) 2 9 ( 2 ) 2 3 ( 2 ) 3 2 ( 2 ) 2 8 ( 1 ) 2 4 ( 2 ) 3 6 ( 3 ) 4 4 ( 3 ) 4 2 ( 3 ) 3 2 ( 3 ) 2 0 ( 2 ) 2 1 ( 2 ) 3 8 ( 3 ) 3 2 ( 3 ) 3 7 ( 3 ) 2 7 ( 3 ) 2 2 ( 2 ) 2 5 ( 2 ) 2 7 ( 3 ) 4 0 ( 3 ) 4 2 ( 3 ) 2 8 ( 3 ) 2 4 ( 3 ) 1 6 ( 2 ) 3 1 ( 3 ) 2 7 ( 3 ) 3 6 ( 3 ) 2 5 ( 3 ) U 3 3 2 8 ( 1 ) 3 1 ( 2 ) 3 3 ( 2 ) 3 3 ( 2 ) 4 6 ( 2 ) 3 5 ( 1 ) 4 3 ( 2 ) 4 4 ( 2 ) 3 1 ( 2 ) 3 6 ( 2 ) 3 2 ( 1 ) 3 3 ( 2 ) 4 6 ( 3 ) 5 0 ( 3 ) 4 1 ( 3 ) 3 3 ( 3 ) 2 6 ( 2 ) 3 0 ( 3 ) 3 5 ( 3 ) 5 2 ( 4 ) 5 8 ( 4 ) 4 7 ( 3 ) 3 0 ( 2 ) 4 3 ( 3 ) 4 7 ( 3 ) 6 4 ( 4 ) 6 6 ( 4 ) 4 2 ( 3 ) 4 2 ( 3 ) 3 9 ( 3 ) 5 5 ( 4 ) 7 1 ( 4 ) 7 3 ( 4 ) 5 3 ( 3 ) 3 0 7 U 2 3 1 ( 1 ) 1 ( 1 ) 1 ( 2 ) - 1 ( 1 ) 9 ( 2 ) 2 ( 1 ) 1 0 ( 2 ) 0 ( 2 ) 2 ( 1 ) - 2 ( 2 ) 1 ( 1 ) 1 ( 2 ) 0 ( 2 ) 3 ( 3 ) 3 ( 3 ) 1 ( 2 ) - 3 ( 2 ) - 2 ( 2 ) - 1 ( 2 ) - 7 ( 3 ) 5 ( 3 ) 0 ( 2 ) 0 ( 2 ) 2 ( 2 ) 1 ( 2 ) - 4 ( 3 ) 4 0 ( 3 ) - 6 ( 2 ) 2 ( 2 ) 0 ( 2 ) - 4 ( 3 ) - 5 ( 3 ) 7 ( 3 ) 3 ( 2 ) U 1 3 1 ( 1 ) 3 ( 2 ) 0 ( 2 ) - 3 ( 2 ) 3 ( 2 ) 3 ( 1 ) - 2 ( 2 ) 0 ( 2 ) 5 ( 2 ) 7 ( 2 ) 1 ( 1 ) 5 ( 2 ) 5 ( 2 ) 6 ( 2 ) 8 ( 3 ) - 1 ( 3 ) 4 ( 2 ) - 1 ( 2 ) - 2 ( 3 ) 4 5 ( 3 ) 4 2 ( 3 ) 1 ( 2 ) - 3 ( 2 ) 2 ( 2 ) 4 ( 2 ) 3 ( 3 ) 1 1 ( 3 ) 5 ( 3 ) 0 ( 2 ) 0 ( 2 ) 1 ( 3 ) - 9 ( 3 ) 3 ( 3 ) 5 ( 3 ) U 1 2 - 1 ( 1 ) 0 ( 2 ) 2 ( 1 ) - 2 ( 2 ) 4 5 ( 2 ) 0 ( 1 ) 2 ( 2 ) - 1 ( 2 ) - 1 ( 2 ) 2 ( 2 ) 0 ( 1 ) 4 ( 2 ) - 6 ( 3 ) - 9 ( 3 ) 4 1 ( 3 ) 0 ( 3 ) - 2 ( 2 ) 5 ( 2 ) 9 ( 3 ) 5 ( 3 ) 1 ( 3 ) - 2 ( 2 ) 0 ( 2 ) 7 ( 2 ) 4 ( 2 ) 6 ( 3 ) 1 2 ( 3 ) 2 ( 3 ) 2 ( 2 ) 3 ( 2 ) - 1 ( 3 ) - 4 ( 3 ) - 4 ( 3 ) 4 ( 2 ) N ( 4 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) F ( 1 ) C ( 2 5 ) C ( 2 6 ) C ( 2 7 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) F ( 2 ) C ( 3 1 ) C ( 3 2 ) P ( 2 ) C ( 3 3 ) C ( 3 4 ) C ( 3 5 ) C ( 3 6 ) P ( 3 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) F ( 4 ) C ( 4 3 ) C ( 4 4 ) P 1 3 ) C ( 4 5 ) C ( 4 6 ) C ( 4 7 ) C ( 4 8 ) F ( 5 ) C ( 4 9 ) 3 2 ( 2 ) 2 9 ( 3 ) 4 5 ( 3 ) 6 4 ( 4 ) 4 5 ( 4 ) 9 7 ( 3 ) 4 3 ( 3 ) 3 0 ( 3 ) 2 5 ( 3 ) 3 1 ( 3 ) 2 7 ( 3 ) 2 5 ( 3 ) 2 5 ( 2 ) 3 5 ( 3 ) 3 3 ( 3 ) 4 3 ( 1 ) 8 5 ( 4 ) 2 0 5 ( 1 1 ) 2 8 3 ( 1 7 ) 1 5 6 ( 1 0 ) 2 2 5 ( 8 ) 7 1 ( 5 ) 5 3 ( 4 ) 6 7 ( 4 ) 7 5 ( 4 ) 7 9 ( 5 ) 8 5 ( 5 ) 1 1 3 ( 4 ) 1 0 5 ( 6 ) 7 5 ( 5 ) 2 7 ( 1 ) 3 4 ( 3 ) 3 3 ( 3 ) 5 8 ( 4 ) 4 0 ( 3 ) 5 8 ( 2 ) 3 8 ( 3 ) T a b l e 1 2 ( c o n ' t ) 1 9 ( 2 ) 2 9 ( 3 ) 3 4 ( 3 ) 4 4 ( 3 ) 6 0 ( 4 ) 8 7 ( 3 ) 5 1 ( 4 ) 3 5 ( 3 ) 2 5 ( 3 ) 3 8 ( 3 ) 4 5 ( 3 ) 3 9 ( 3 ) 6 4 ( 2 ) 5 8 ( 4 ) 5 0 ( 3 ) 2 3 ( 1 ) 2 7 ( 3 ) 3 8 ( 4 ) 5 2 ( 5 ) 9 0 ( 7 ) 1 4 9 ( 5 ) 1 2 9 ( 8 ) 7 3 ( 5 ) 3 1 ( 3 ) 3 6 ( 3 ) 6 5 ( 4 ) 6 5 ( 5 ) 1 0 3 ( 3 ) 4 8 ( 4 ) 3 6 ( 3 ) 2 7 ( 1 ) 2 2 ( 2 ) 4 5 ( 3 ) 6 8 ( 4 ) 4 7 ( 3 ) 8 6 ( 3 ) 4 5 ( 3 ) 4 7 ( 3 ) 3 1 ( 3 ) 3 2 ( 3 ) 3 6 ( 3 ) 3 1 ( 3 ) 2 9 ( 2 ) 4 1 ( 3 ) 5 1 ( 3 ) 4 2 ( 3 ) 3 9 ( 3 ) 4 7 ( 3 ) 6 3 ( 4 ) 8 2 ( 3 ) 5 8 ( 4 ) 3 7 ( 3 ) 2 7 ( 1 ) 3 9 ( 3 ) 1 5 6 ( 9 ) 2 9 2 ( 1 7 ) 1 6 8 ( 1 0 ) 2 9 7 ( 9 ) 6 7 ( 5 ) 5 7 ( 4 ) 2 5 ( 3 ) 4 3 ( 3 ) 4 3 ( 4 ) 4 3 ( 4 ) 8 2 ( 3 ) 5 5 ( 4 ) 4 3 ( 3 ) 3 3 ( 1 ) 3 7 ( 3 ) 5 1 ( 4 ) 3 5 ( 3 ) 5 3 ( 4 ) 6 8 ( 2 ) 6 1 ( 4 ) 3 0 8 6 ( 2 ) 5 ( 2 ) 3 ( 2 ) 4 ( 3 ) 8 ( 3 ) 1 4 ( 2 ) 2 1 ( 3 ) 7 ( 3 ) - 1 ( 2 ) 1 ( 2 ) - 5 ( 3 ) 4 0 ( 3 ) - 1 ( 2 ) 1 6 ( 3 ) 4 ( 3 ) 0 ( 1 ) 4 2 ( 2 ) 2 8 ( 5 ) 4 ( 8 ) 2 8 ( 7 ) - 6 1 ( 6 ) 4 3 ( 5 ) 2 0 ( 4 ) 6 ( 2 ) 4 ( 3 ) 1 0 ( 3 ) 1 ( 3 ) 2 1 ( 3 ) 4 ( 3 ) 5 ( 3 ) 4 ( 1 ) - 2 ( 2 ) - 5 ( 3 ) 3 ( 3 ) 4 ( 3 ) 4 ( 2 ) 1 0 ( 3 ) 2 ( 2 ) - 2 ( 2 ) - 1 ( 2 ) 5 ( 3 ) 6 ( 2 ) 5 ( 2 ) - 5 ( 3 ) 2 ( 2 ) 2 ( 2 ) 2 ( 2 ) - 2 ( 2 ) 5 ( 3 ) 1 1 ( 2 ) 1 3 ( 3 ) 1 ( 2 ) 3 ( 1 ) 1 5 ( 3 ) 1 3 6 ( 9 ) 2 4 4 ( 1 6 ) 1 3 6 ( 9 ) 2 2 1 ( 8 ) 2 6 ( 4 ) 1 3 ( 3 ) - 1 ( 3 ) - 6 ( 3 ) 2 2 ( 3 ) 2 5 ( 4 ) - 5 9 ( 3 ) 2 5 ( 4 ) 4 9 ( 3 ) 4 ( 1 ) 0 ( 2 ) 5 ( 3 ) - 5 ( 3 ) - 9 ( 3 ) 2 5 ( 2 ) - 6 ( 3 ) - 2 ( 2 ) 4 ( 2 ) - 5 ( 3 ) - 5 ( 3 ) - 1 ( 3 ) 0 ( 2 ) 3 ( 3 ) 5 ( 2 ) - 2 ( 2 ) 1 ( 2 ) - 3 ( 2 ) 3 ( 3 ) 4 1 ( 2 ) - 2 ( 3 ) 0 ( 3 ) - 2 ( 1 ) - 1 6 ( 3 ) 7 ( 5 ) - 1 9 ( 8 ) 8 0 ( 7 ) 8 4 ( 6 ) 4 1 ( 6 ) - 5 ( 4 ) 0 ( 3 ) 0 ( 3 ) 9 ( 4 ) 4 0 ( 4 ) 2 9 ( 3 ) - 1 6 ( 4 ) - 7 ( 3 ) - 2 ( 1 ) 3 ( 2 ) 4 2 ( 3 ) 4 2 ( 4 ) - 8 ( 3 ) 2 7 ( 2 ) 4 2 ( 3 ) T a b l e 1 2 ( c o n ' t ) C ( 5 0 ) 4 0 ( 3 ) 3 8 ( 3 ) 4 3 ( 3 ) 1 4 ( 2 ) 4 ( 2 ) 4 0 ( 3 ) C ( 5 1 ) 2 5 ( 3 ) 2 4 ( 2 ) 3 9 ( 3 ) 1 ( 2 ) 0 ( 2 ) 8 ( 2 ) C ( 5 2 ) 3 7 ( 3 ) 3 8 ( 3 ) 4 5 ( 3 ) 4 ( 3 ) 3 ( 2 ) 5 ( 3 ) C ( 5 3 ) 5 0 ( 4 ) 4 2 ( 3 ) 4 8 ( 4 ) 5 ( 3 ) 1 5 ( 3 ) 5 ( 3 ) C ( 5 4 ) 5 8 ( 4 ) 3 8 ( 3 ) 2 8 ( 3 ) 8 ( 2 ) 4 ( 3 ) 4 5 ( 3 ) F ( 6 ) 7 3 ( 2 ) 5 8 ( 2 ) 3 6 ( 2 ) 1 ( 2 ) 1 2 ( 2 ) - 8 ( 2 ) C ( 5 5 ) 4 3 ( 3 ) 3 2 ( 3 ) 4 2 ( 3 ) 5 ( 2 ) 8 ( 3 ) 8 ( 3 ) C ( 5 6 ) 3 1 ( 3 ) 2 1 ( 2 ) 4 5 ( 3 ) 0 ( 2 ) 6 ( 2 ) 1 ( 2 ) 0 ( 9 ) 1 7 3 ( 7 ) 7 2 ( 4 ) 8 5 ( 4 ) 3 9 ( 3 ) 8 ( 4 ) 1 4 ( 4 ) 0 ( 1 0 ) 4 6 ( 3 ) 1 2 9 ( 5 ) 1 4 4 ( 5 ) 4 ( 4 ) 8 ( 3 ) 1 ( 4 ) 0 ( 1 1 ) 7 9 ( 3 ) 3 7 ( 2 ) 9 8 ( 3 ) 2 4 ( 2 ) 4 ( 3 ) - 5 ( 2 ) 0 ( 1 2 ) 7 2 ( 3 ) 9 6 ( 4 ) 5 8 ( 3 ) 8 0 ( 3 ) 8 ( 3 ) 0 ( 3 ) 0 ( 1 3 ) 1 3 1 ( 1 6 ) 2 9 6 ( 2 5 ) 1 3 4 ( 1 4 ) 8 1 ( 1 5 ) 1 0 ( 1 2 ) 2 1 ( 1 4 ) C ( 5 7 ) 6 5 ( 1 0 ) 1 6 8 ( 1 8 ) 4 4 ( 8 ) 6 3 ( 1 0 ) 8 8 ( 8 ) - 7 5 ( 1 1 ) 0 ( 1 4 ) 2 3 6 ( 1 2 ) 5 0 5 ( 2 4 ) 2 8 1 ( 1 5 ) 3 0 9 ( 1 7 ) 1 2 7 ( 1 2 ) 1 3 0 ( 1 5 ) C ( 5 8 ) 2 5 3 ( 1 7 ) 2 5 5 ( 1 7 ) 7 3 ( 7 ) 8 7 ( 8 ) 8 6 ( 7 ) 1 8 2 ( 1 3 ) 3 0 9 T a b l e 1 3 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 ° ) f o r { b p y V O [ , u — ( p - C I C 5 H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C I O 4 } , ( 4 . 5 ) . A t o m V ( 1 ) 0 ( 1 ) 0 ( 2 ) 0 ( 3 ) 0 ( 4 ) V ( 2 ) 0 ( 5 ) 0 ( 6 ) 0 ( 7 ) 0 ( 8 ) N ( 1 ) C ( 1 ) C ( 2 ) C ( 3 ) C ( 4 ) C ( 5 ) C ( 6 ) C ( 7 ) C ( 8 ) C ( 9 ) C ( 1 0 ) N ( 2 ) N ( 3 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) C ( 1 4 ) C ( 1 5 ) C ( 1 6 ) C ( 1 7 ) C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) N ( 4 ) X 3 5 6 8 ( 1 ) 4 3 2 7 ( 2 ) 2 5 7 9 ( 2 ) 2 9 8 8 ( 2 ) 3 8 4 1 ( 2 ) 1 8 6 8 ( 1 ) 2 0 3 4 ( 2 ) 1 5 1 4 ( 2 ) 2 2 0 4 ( 2 ) 2 7 6 0 ( 2 ) 3 8 2 4 ( 2 ) 4 1 6 6 ( 3 ) 4 1 4 0 ( 3 ) 3 7 3 6 ( 3 ) 3 4 0 9 ( 3 ) 3 4 6 5 ( 3 ) 3 1 4 2 ( 3 ) 2 8 8 0 ( 3 ) 2 6 2 5 ( 4 ) 2 6 1 6 ( 4 ) 2 8 8 0 ( 3 ) 3 1 4 7 ( 3 ) 1 3 1 9 ( 3 ) 1 6 4 6 ( 4 ) 1 2 5 6 ( 5 ) 4 9 3 ( 5 ) 1 6 3 ( 4 ) 5 7 6 ( 4 ) 2 6 3 ( 4 ) 4 7 1 ( 4 ) - 7 1 8 ( 4 ) 2 3 2 ( 4 ) 4 9 2 ( 4 ) 7 4 0 ( 3 ) Y 5 0 9 7 ( 1 ) 5 0 0 0 ( 2 ) 5 1 2 3 ( 2 ) 5 4 6 6 ( 2 ) 5 8 5 5 ( 2 ) 6 7 1 4 ( 1 ) 7 3 7 4 ( 2 ) 5 8 6 2 ( 2 ) 6 3 9 3 ( 2 ) 6 5 0 9 ( 2 ) 4 5 4 9 ( 2 ) 4 7 0 5 ( 3 ) 4 3 8 4 ( 3 ) 3 8 7 1 ( 3 ) 3 6 9 5 ( 3 ) 4 0 2 8 ( 2 ) 3 8 6 5 ( 3 ) 3 3 0 8 ( 3 ) 3 1 8 8 ( 3 ) 3 8 1 8 ( 3 ) 4 1 6 2 ( 3 ) 4 2 8 0 ( 2 ) 8 8 9 6 ( 2 ) 6 9 2 9 ( 2 ) 6 9 5 7 ( 3 ) 6 9 4 3 ( 3 ) 6 9 2 7 ( 3 ) 6 9 1 0 ( 2 ) 6 9 0 2 ( 2 ) 7 0 2 7 ( 3 ) 6 9 9 0 ( 3 ) 6 8 3 4 ( 3 ) 6 7 3 5 ( 3 ) 6 7 7 9 ( 2 ) Z 8 4 7 1 ( 1 ) 8 1 3 9 ( 3 ) 9 0 1 7 ( 2 ) 7 3 5 5 ( 2 ) 9 1 2 2 ( 3 ) 8 4 6 5 ( 1 ) 8 2 6 4 ( 3 ) 8 6 7 1 ( 3 ) 7 3 7 7 ( 2 ) 9 3 5 7 ( 3 ) 9 8 3 9 ( 3 ) 1 0 4 7 1 ( 4 ) 1 1 2 4 0 ( 4 ) 1 1 1 4 9 ( 5 ) 1 0 2 8 8 ( 5 ) 9 5 4 2 ( 4 ) 8 6 0 1 ( 4 ) 8 3 5 6 ( 5 ) 7 4 6 7 ( 5 ) 6 8 2 0 ( 5 ) 7 1 1 0 ( 5 ) 7 9 8 6 ( 3 ) 9 5 5 7 ( 4 ) 1 0 4 2 6 ( 5 ) 1 1 1 2 6 ( 5 ) 1 0 9 0 5 ( 5 ) 1 0 0 1 6 ( 5 ) 9 3 3 6 ( 4 ) 8 3 7 0 ( 5 ) 8 0 0 7 ( 5 ) 7 0 9 4 ( 5 ) 6 5 3 9 ( 5 ) 6 9 3 0 ( 4 ) 7 8 0 3 ( 3 ) 3 1 0 U e q 3 0 ( 1 ) 3 7 ( 1 ) 2 9 ( 1 ) 3 1 ( 1 ) 3 2 ( 1 ) 3 2 ( 1 ) 4 1 ( 1 ) 3 4 ( 1 ) 3 4 ( 1 ) 3 6 ( 1 ) 2 9 ( 1 ) 3 3 ( 2 ) 4 2 ( 2 ) 4 3 ( 2 ) 3 9 ( 2 ) 3 0 ( 2 ) 3 0 ( 2 ) 3 6 ( 2 ) 4 7 ( 2 ) 4 7 ( 2 ) 4 2 ( 2 ) 3 2 ( 1 ) 3 7 ( 1 ) 4 1 ( 2 ) 5 4 ( 2 ) 5 7 ( 2 ) 5 0 ( 2 ) 3 4 ( 2 ) 3 7 ( 2 ) 4 6 ( 2 ) 5 1 ( 2 ) 4 8 ( 2 ) 3 7 ( 2 ) 3 2 ( 1 ) O c c u p a n c y u — S P ( 1 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) C l ( 1 ) C ( 2 5 ) C ( 2 6 ) C ( 2 7 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) P ( 2 ) C l ( 2 ) C ( 3 3 ) C ( 3 4 ) C ( 3 5 ) C ( 3 6 ) C l ( 3 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) C l ( 4 ) C ( 4 3 ) C ( 4 4 ) P ( 3 ) C ( 4 5 ) C ( 4 6 ) C ( 4 7 ) C ( 4 8 ) C l ( 5 ) C ( 4 9 ) 1 7 6 7 ( 1 ) 1 4 4 9 ( 3 ) 1 7 1 9 ( 4 ) 1 4 7 6 ( 4 ) 9 5 4 ( 4 ) 6 3 3 ( 1 ) 6 6 4 ( 3 ) 9 0 9 ( 3 ) 1 2 8 6 ( 3 ) 1 1 6 5 ( 4 ) 7 9 2 ( 4 ) 5 4 1 ( 4 ) 6 6 6 ( 4 ) 1 0 4 4 ( 4 ) 2 7 7 7 ( 1 ) 3 8 ( 1 ) 2 4 0 6 ( 3 ) 2 2 5 4 ( 5 ) 1 9 3 8 ( 6 ) 1 7 8 7 ( 4 ) 1 3 8 3 ( 1 ) 1 9 1 6 ( 4 ) 2 2 2 5 ( 4 ) 3 5 8 7 ( 3 ) 4 2 3 1 ( 4 ) 4 8 6 3 ( 4 ) 4 8 2 8 ( 4 ) 5 6 2 8 ( 1 ) 4 1 9 6 ( 4 ) 3 5 7 7 ( 4 ) 3 5 5 0 ( 1 ) 4 1 1 0 ( 4 ) 4 8 4 9 ( 4 ) 5 2 7 8 ( 4 ) 4 9 5 3 ( 4 ) 5 4 9 6 ( 1 ) 4 2 2 1 ( 4 ) T a b l e 1 3 ( c o n ' t ) 5 2 4 8 ( 1 ) 5 0 2 9 ( 2 ) 4 5 4 2 ( 3 ) 4 3 7 5 ( 3 ) 4 7 0 3 ( 3 ) 4 4 9 9 ( 1 ) 5 1 9 1 ( 3 ) 5 3 4 3 ( 3 ) 4 8 0 1 ( 3 ) 4 2 1 4 ( 3 ) 3 8 9 1 ( 4 ) 4 1 2 6 ( 5 ) 4 7 1 3 ( 5 ) 5 0 4 1 ( 3 ) 6 0 6 7 ( 1 ) 3 7 3 1 ( 2 ) 6 0 0 0 ( 3 ) 5 4 8 4 ( 3 ) 5 4 4 9 ( 4 ) 5 9 4 8 ( 3 ) 5 9 1 8 ( 1 ) 6 4 6 1 ( 3 ) 6 4 8 3 ( 3 ) 6 5 1 0 ( 3 ) 6 2 7 1 ( 3 ) 6 6 0 1 ( 3 ) 7 1 8 1 ( 3 ) 7 5 9 7 ( 1 ) 7 4 3 5 ( 3 ) 7 0 9 7 ( 3 ) 6 3 3 0 ( 1 ) 6 9 6 6 ( 3 ) 6 9 2 6 ( 3 ) 7 4 2 0 ( 3 ) 7 9 5 3 ( 3 ) 8 5 7 2 ( 1 ) 8 0 0 6 ( 3 ) 8 8 7 1 ( 1 ) 9 8 8 6 ( 4 ) 1 0 3 7 9 ( 5 ) 1 1 1 6 1 ( 5 ) 1 1 4 4 6 ( 4 ) 1 2 4 1 2 ( 1 ) 1 0 9 7 8 ( 4 ) 1 0 1 9 1 ( 4 ) 7 9 5 6 ( 4 ) 8 0 8 8 ( 5 ) 7 3 6 9 ( 7 ) 6 5 4 8 ( 7 ) 6 4 0 9 ( 6 ) 7 1 3 3 ( 5 ) 6 9 8 6 ( 1 ) 5 6 6 6 ( 2 ) 5 8 0 7 ( 4 ) 5 3 6 9 ( 5 ) 4 4 4 5 ( 6 ) 3 9 7 7 ( 5 ) 2 8 3 3 ( 1 ) 4 3 9 2 ( 5 ) 5 2 9 7 ( 5 ) 7 0 6 8 ( 4 ) 6 8 9 4 ( 4 ) 6 9 4 0 ( 4 ) 7 1 4 9 ( 4 ) 7 2 2 6 ( 1 ) 7 3 2 0 ( 4 ) 7 2 7 4 ( 4 ) 9 8 5 8 ( 1 ) 9 6 4 0 ( 4 ) 9 5 8 7 ( 4 ) 9 5 9 2 ( 4 ) 9 6 3 9 ( 4 ) 9 6 4 6 ( 1 ) 9 6 7 0 ( 4 ) 3 1 1 3 0 ( 1 ) 3 0 ( 2 ) 4 8 ( 2 ) 5 0 ( 2 ) 4 1 ( 2 ) 7 3 ( 1 ) 4 1 ( 2 ) 3 3 ( 2 ) 3 6 ( 2 ) 5 3 ( 2 ) 6 9 ( 3 ) 8 3 ( 3 ) 8 3 ( 3 ) 5 7 ( 2 ) 3 2 ( 1 ) 1 4 2 ( 1 ) 3 3 ( 2 ) 8 3 ( 3 ) 1 0 2 ( 4 ) 4 8 ( 2 ) 7 3 ( 1 ) 6 7 ( 2 ) 6 2 ( 2 ) 3 2 ( 2 ) 4 2 ( 2 ) 4 7 ( 2 ) 4 7 ( 2 ) 7 2 ( 1 ) 4 8 ( 2 ) 3 8 ( 2 ) 3 3 ( 1 ) 3 3 ( 2 ) 4 2 ( 2 ) 4 7 ( 2 ) 5 0 ( 2 ) 7 1 ( 1 ) 4 3 ( 2 ) C ( 5 0 ) 3 8 0 4 ( 4 ) 7 5 1 5 ( 3 ) 9 6 7 3 ( 4 ) 4 0 ( 2 ) 1 C ( 5 1 ) 3 6 5 0 ( 4 ) 6 1 0 0 ( 3 ) 1 0 8 1 5 ( 4 ) 3 4 ( 2 ) 1 C ( 5 2 ) 4 3 1 3 ( 4 ) 6 1 1 5 ( 3 ) 1 1 4 1 8 ( 5 ) 4 1 ( 2 ) 1 C ( 5 3 ) 4 4 1 1 ( 4 ) 5 8 9 2 ( 3 ) 1 2 2 7 8 ( 5 ) 4 9 ( 2 ) 1 C ( 5 4 ) 3 8 1 0 ( 5 ) 5 6 4 1 ( 3 ) 1 2 5 4 7 ( 5 ) 5 9 ( 2 ) 1 C l ( 6 ) 3 9 1 3 ( 2 ) 5 3 3 1 ( 1 ) 1 3 6 2 6 ( 1 ) 1 0 1 ( 1 ) 1 C ( 5 5 ) 3 1 2 8 ( 5 ) 5 6 2 1 ( 3 ) 1 1 9 7 5 ( 5 ) 6 0 ( 2 ) 1 C ( 5 6 ) 3 0 5 7 ( 4 ) 5 8 4 6 ( 3 ) 1 1 1 2 1 ( 5 ) 4 7 ( 2 ) 1 C l ( 7 ) 4 8 8 6 ( 1 ) 7 3 7 4 ( 1 ) 9 7 7 4 ( 1 ) 4 4 ( 1 ) 1 0 ( 9 ) 2 0 6 9 ( 3 ) 7 0 4 0 ( 2 ) 8 9 5 5 ( 3 ) 6 9 ( 2 ) 1 0 ( 1 0 ) 2 5 4 3 ( 3 ) 7 8 2 0 ( 2 ) 9 9 7 8 ( 3 ) 6 3 ( 2 ) 1 0 ( 1 1 ) 4 5 4 8 ( 3 ) 7 0 1 2 ( 2 ) 1 0 5 1 9 ( 3 ) 8 9 ( 2 ) 1 0 ( 1 2 ) 4 3 8 3 ( 2 ) 7 8 2 4 ( 2 ) 9 6 1 8 ( 3 ) 6 2 ( 1 ) 1 T a b l e 1 3 ( c o n ' t ) 3 1 2 T a b l e 1 4 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { b p y V O L u — ( p - C I C 5 H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C I O 4 } , ( 4 . 5 ) . 3 1 3 A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 V ( 1 ) 3 2 ( 1 ) 2 5 ( 1 ) 3 3 ( 1 ) 4 ( 1 ) 7 ( 1 ) 1 ( 1 ) 0 ( 1 ) 3 4 ( 3 ) 3 4 ( 3 ) 4 5 ( 3 ) - 7 ( 2 ) 1 1 ( 2 ) 2 ( 2 ) 0 ( 2 ) 2 9 ( 2 ) 2 9 ( 2 ) 3 0 ( 2 ) 0 ( 2 ) 7 ( 2 ) 4 ( 2 ) 0 ( 3 ) 3 8 ( 3 ) 2 6 ( 2 ) 3 0 ( 2 ) 1 ( 2 ) 6 ( 2 ) 0 ( 2 ) 0 ( 4 ) 3 5 ( 3 ) 2 3 ( 2 ) 3 8 ( 3 ) 4 ( 2 ) 8 ( 2 ) 4 ( 2 ) V ( 2 ) 3 7 ( 1 ) 2 6 ( 1 ) 3 3 ( 1 ) 0 ( 1 ) 7 ( 1 ) 2 ( 1 ) 0 ( 5 ) 5 2 ( 3 ) 2 6 ( 3 ) 4 6 ( 3 ) 0 ( 2 ) 1 4 ( 2 ) 0 ( 2 ) 0 ( 6 ) 3 7 ( 3 ) 2 3 ( 2 ) 4 1 ( 3 ) 0 ( 2 ) 9 ( 2 ) 1 ( 2 ) 0 ( 7 ) 3 6 ( 3 ) 3 4 ( 3 ) 3 5 ( 3 ) 4 ( 2 ) 1 6 ( 2 ) 1 ( 2 ) 0 ( 8 ) 3 6 ( 3 ) 3 8 ( 3 ) 3 4 ( 3 ) 2 ( 2 ) 3 ( 2 ) 4 ( 2 ) N ( 1 ) 2 8 ( 3 ) 2 5 ( 3 ) 3 3 ( 3 ) 3 ( 2 ) 5 ( 2 ) 0 ( 2 ) C ( 1 ) 2 8 ( 4 ) 3 2 ( 4 ) 3 5 ( 4 ) - 7 ( 3 ) - 5 ( 3 ) 1 ( 3 ) C ( 2 ) 4 6 ( 5 ) 4 7 ( 5 ) 2 9 ( 4 ) 8 ( 3 ) 4 ( 3 ) 1 ( 4 ) C ( 3 ) 3 9 ( 4 ) 3 6 ( 4 ) 5 3 ( 5 ) 1 6 ( 4 ) 4 ( 4 ) 3 ( 3 ) C ( 4 ) 3 7 ( 4 ) 3 5 ( 4 ) 4 6 ( 5 ) 8 ( 4 ) 6 ( 4 ) 6 ( 3 ) C ( 5 ) 2 6 ( 4 ) 2 1 ( 4 ) 4 4 ( 4 ) 1 1 ( 3 ) 7 ( 3 ) 7 ( 3 ) C ( 6 ) 2 5 ( 4 ) 3 2 ( 4 ) 3 4 ( 4 ) 1 ( 3 ) 9 ( 3 ) - 3 ( 3 ) 0 ( 7 ) 3 7 ( 4 ) 2 8 ( 4 ) 4 4 ( 5 ) 3 ( 3 ) 1 3 ( 3 ) 7 ( 3 ) C ( 8 ) 5 4 ( 5 ) 3 3 ( 4 ) 5 6 ( 5 ) 4 0 ( 4 ) 1 6 ( 4 ) 4 0 ( 3 ) C ( 9 ) 5 9 ( 5 ) 3 0 ( 4 ) 5 2 ( 5 ) - 1 6 ( 4 ) 8 ( 4 ) - 8 ( 4 ) C ( 1 0 ) 5 3 ( 5 ) 3 2 ( 4 ) 4 0 ( 5 ) 3 ( 3 ) 4 ( 4 ) 4 ( 3 ) N ( 2 ) 3 5 ( 3 ) 2 9 ( 3 ) 3 2 ( 3 ) 1 ( 3 ) 6 ( 3 ) 1 ( 2 ) N ( 3 ) 5 0 ( 4 ) 2 3 ( 3 ) 3 8 ( 4 ) 0 ( 3 ) 1 3 ( 3 ) 7 ( 3 ) C ( 1 1 ) 6 3 ( 5 ) 2 2 ( 4 ) 3 9 ( 5 ) 0 ( 3 ) 1 3 ( 4 ) 9 ( 3 ) C ( 1 2 ) 9 8 ( 7 ) 3 1 ( 4 ) 3 3 ( 5 ) 2 ( 3 ) 1 5 ( 5 ) 1 6 ( 4 ) C ( 1 3 ) 8 8 ( 7 ) 4 3 ( 5 ) 5 0 ( 6 ) 1 3 ( 4 ) 3 9 ( 5 ) 2 9 ( 4 ) C ( 1 4 ) 6 4 ( 5 ) 4 3 ( 5 ) 4 7 ( 5 ) 1 ( 4 ) 2 2 ( 4 ) 1 4 ( 4 ) C ( 1 5 ) 4 6 ( 5 ) 2 1 ( 4 ) 3 8 ( 4 ) 6 ( 3 ) 1 7 ( 4 ) 1 2 ( 3 ) C ( 1 6 ) 4 6 ( 5 ) 2 1 ( 4 ) 4 5 ( 5 ) 3 ( 3 ) 1 3 ( 4 ) 4 ( 3 ) C ( 1 7 ) 4 1 ( 5 ) 4 8 ( 5 ) 5 0 ( 5 ) 5 ( 4 ) 1 4 ( 4 ) 7 ( 3 ) C ( 1 8 ) 4 2 ( 5 ) 4 4 ( 5 ) 6 4 ( 6 ) 1 4 ( 4 ) 4 ( 4 ) 5 ( 4 ) C ( 1 9 ) 4 7 ( 5 ) 5 4 ( 5 ) 3 9 ( 5 ) 7 ( 4 ) - 5 ( 4 ) - 5 ( 4 ) C ( 2 0 ) 4 4 ( 5 ) 3 3 ( 4 ) 3 3 ( 4 ) - 3 ( 3 ) 4 ( 3 ) 8 ( 3 ) N ( 4 ) 3 9 ( 3 ) 2 2 ( 3 ) 3 4 ( 4 ) 5 ( 2 ) 7 ( 3 ) 6 ( 2 ) P ( 1 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) C l ( 1 ) C ( 2 5 ) C ( 2 6 ) C ( 2 7 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) P ( 2 ) C l ( 2 ) C ( 3 3 ) C ( 3 4 ) C ( 3 5 ) C ( 3 6 ) C l ( 3 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) 0 1 ( 4 ) C ( 4 3 ) C ( 4 4 ) P ( 3 ) C ( 4 5 ) C ( 4 6 ) C ( 4 7 ) C ( 4 8 ) C l ( 5 ) C ( 4 9 ) 3 2 ( 1 ) 2 9 ( 4 ) 5 5 ( 5 ) 6 5 ( 5 ) 4 9 ( 5 ) 1 0 8 ( 2 ) 3 3 ( 4 ) 3 7 ( 4 ) 2 7 ( 4 ) 3 7 ( 5 ) 5 6 ( 6 ) 2 2 ( 5 ) 5 5 ( 6 ) 4 9 ( 5 ) 3 7 ( 1 ) 6 0 ( 2 ) 3 6 ( 4 ) 1 6 1 ( 9 ) 1 9 7 ( 1 1 ) 6 7 ( 5 ) 1 0 3 ( 2 ) l 0 5 ( 7 ) 1 0 8 ( 7 ) 2 9 ( 4 ) 3 9 ( 4 ) 3 5 ( 4 ) 4 8 ( 5 ) 5 5 ( 1 ) 6 0 ( 5 ) 4 1 ( 4 ) 3 6 ( 1 ) 4 2 ( 4 ) 4 8 ( 5 ) 4 6 ( 5 ) 7 2 ( 6 ) 8 1 ( 2 ) 6 0 ( 5 ) T a b l e 1 4 ( c o n ' t ) 2 7 ( 1 ) 1 9 ( 4 ) 3 7 ( 4 ) 3 7 ( 4 ) 2 8 ( 4 ) 5 7 ( 1 ) 3 8 ( 4 ) 3 1 ( 4 ) 4 5 ( 5 ) 5 1 ( 5 ) 5 8 ( 6 ) 1 2 7 ( 1 0 ) 1 3 3 ( 1 0 ) 6 6 ( 6 ) 2 9 ( 1 ) 1 9 8 ( 3 ) 2 3 ( 4 ) 3 9 ( 5 ) 4 0 ( 6 ) 4 1 ( 5 ) 7 9 ( 2 ) 4 0 ( 5 ) 2 5 ( 4 ) 4 0 ( 4 ) 5 0 ( 5 ) 7 2 ( 6 ) 5 3 ( 5 ) 8 3 ( 2 ) 4 0 ( 5 ) 3 8 ( 4 ) 3 1 ( 1 ) 3 5 ( 4 ) 2 7 ( 4 ) 3 8 ( 5 ) 2 9 ( 5 ) 4 1 ( 1 ) 1 9 ( 4 ) 3 2 ( 1 ) 4 3 ( 4 ) 6 0 ( 5 ) 5 8 ( 5 ) 5 0 ( 5 ) 6 9 ( 2 ) 5 3 ( 5 ) 2 9 ( 4 ) 3 3 ( 4 ) 6 8 ( 6 ) 9 5 ( 8 ) 9 4 ( 8 ) 5 2 ( 6 ) 4 6 ( 5 ) 3 1 ( 1 ) 1 5 6 ( 3 ) 4 2 ( 4 ) 3 4 ( 5 ) 5 4 ( 6 ) 3 6 ( 5 ) 3 0 ( 1 ) 4 5 ( 5 ) 4 1 ( 5 ) 2 7 ( 4 ) 3 7 ( 4 ) 3 4 ( 4 ) 3 8 ( 5 ) 7 4 ( 2 ) 4 5 ( 5 ) 3 4 ( 4 ) 3 1 ( 1 ) 1 8 ( 4 ) 5 1 ( 5 ) 5 7 ( 5 ) 4 5 ( 5 ) 8 5 ( 2 ) 5 0 ( 5 ) 3 1 4 - 3 ( 1 ) - 1 ( 3 ) 8 ( 4 ) 1 3 ( 4 ) - 8 ( 3 ) 6 ( 1 ) 4 4 ( 4 ) - 3 ( 3 ) 4 5 ( 3 ) 4 1 ( 4 ) 4 2 ( 6 ) - 7 5 ( 8 ) 2 7 ( 8 ) 4 2 ( 4 ) 0 ( 1 ) 4 4 0 ( 3 ) 1 ( 3 ) 3 ( 4 ) - 1 8 ( 5 ) 2 ( 4 ) 4 ( 1 ) 1 9 ( 4 ) - 1 ( 4 ) 9 ( 3 ) 1 1 ( 3 ) 1 5 ( 4 ) 9 ( 4 ) 1 8 ( 1 ) 4 ( 3 ) 4 ( 3 ) - 4 ( 1 ) 4 ( 3 ) 0 ( 3 ) 5 ( 4 ) 1 ( 3 ) 7 ( 1 ) 3 ( 3 ) 7 ( 1 ) 1 0 ( 3 ) 3 0 ( 4 ) 3 3 ( 4 ) 2 4 ( 4 ) 5 6 ( 1 ) 1 4 ( 4 ) 1 ( 3 ) - 1 ( 3 ) 5 ( 4 ) 1 8 ( 5 ) - 8 ( 5 ) 4 2 ( 4 ) 4 4 ( 4 ) 9 ( 1 ) 4 2 ( 2 ) 9 ( 3 ) 2 2 ( 5 ) - 1 5 ( 6 ) 1 0 ( 4 ) - 6 ( 1 ) 4 8 ( 4 ) - 1 8 ( 4 ) 3 ( 3 ) 8 ( 3 ) 6 ( 3 ) 1 ( 4 ) 4 ( 1 ) 1 1 ( 4 ) 5 ( 3 ) 3 ( 1 ) 4 ( 3 ) 1 0 ( 4 ) 1 1 ( 4 ) 3 ( 4 ) 3 ( 1 ) 7 ( 4 ) 0 ( 1 ) 6 ( 3 ) 1 0 ( 4 ) 9 ( 4 ) - 7 ( 3 ) 4 0 ( 1 ) - 2 ( 3 ) 0 ( 3 ) 1 ( 3 ) - 7 ( 4 ) 4 4 ( 4 ) 3 ( 5 ) 3 0 ( 6 ) 2 0 ( 4 ) - 2 ( 1 ) 1 1 ( 2 ) 2 ( 3 ) 2 8 ( 5 ) 3 7 ( 6 ) 0 ( 4 ) 4 0 ( 1 ) 2 2 ( 4 ) 4 7 ( 4 ) - 6 ( 3 ) - 5 ( 4 ) 2 ( 4 ) 4 7 ( 4 ) 8 1 ( 1 ) 4 3 ( 4 ) - 5 ( 3 ) - 2 ( 1 ) - 4 ( 3 ) 4 ( 3 ) 4 0 ( 4 ) 4 9 ( 4 ) 2 7 ( 1 ) - 2 ( 4 ) T a b l e 1 4 ( c o n ' t ) C ( 5 0 ) 4 4 ( 4 ) 3 6 ( 4 ) 4 0 ( 4 ) 3 ( 3 ) 4 ( 3 ) 3 ( 3 ) C ( 5 1 ) 3 8 ( 4 ) 2 5 ( 4 ) 3 8 ( 4 ) - 6 ( 3 ) 8 ( 3 ) 6 ( 3 ) C ( 5 2 ) 5 2 ( 5 ) 3 1 ( 4 ) 4 1 ( 5 ) - 5 ( 3 ) 1 0 ( 4 ) 2 ( 3 ) C ( 5 3 ) 6 1 ( 5 ) 4 3 ( 5 ) 3 8 ( 5 ) 2 ( 4 ) - 5 ( 4 ) 4 ( 4 ) C ( 5 4 ) 8 9 ( 7 ) 4 8 ( 5 ) 3 9 ( 5 ) 3 ( 4 ) 8 ( 5 ) 2 ( 5 ) C l ( 6 ) 1 5 0 ( 2 ) 1 0 2 ( 2 ) 4 6 ( 1 ) 2 6 ( 1 ) 5 ( 1 ) 2 9 ( 2 ) C ( 5 5 ) 6 7 ( 6 ) 6 9 ( 6 ) 4 6 ( 5 ) 4 ( 4 ) 1 4 ( 4 ) 4 9 ( 4 ) C ( 5 6 ) 4 9 ( 5 ) 5 0 ( 5 ) 4 0 ( 5 ) 4 ( 4 ) 5 ( 4 ) - 8 ( 4 ) C l ( 7 ) 4 1 ( 1 ) 3 7 ( 1 ) 5 3 ( 1 ) 9 ( 1 ) 8 ( 1 ) 4 ( 1 ) 0 ( 9 ) 9 3 ( 4 ) 5 9 ( 4 ) 5 8 ( 4 ) 4 1 ( 3 ) 2 0 ( 3 ) - 5 ( 3 ) 0 ( 1 0 ) 5 7 ( 3 ) 3 9 ( 3 ) 1 0 0 ( 4 ) 1 0 ( 3 ) 3 5 ( 3 ) 8 ( 3 ) 0 ( 1 1 ) 6 3 ( 4 ) 7 4 ( 4 ) 6 9 ( 4 ) 3 4 ( 3 ) 9 ( 3 ) 1 1 ( 3 ) 0 ( 1 2 ) 5 0 ( 3 ) 5 1 ( 3 ) 8 1 ( 4 ) 2 3 ( 3 ) 3 ( 3 ) 4 9 ( 3 ) 3 1 5 L — l — l — A ‘ — A - k — A — l — k — l — L — k — A ‘ — k — A - A L - L — X — A — L . . 4 4 8 — A A A A 8 — A A A T a b l e 1 5 . A t o m i c C o o r d i n a t e s ( x 1 0 ‘ ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { b p y V O [ , u — ( p - C H 3 0 C 5 H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C I O 4 } , ( 4 . 6 ) . A t o m V ( 1 ) 0 ( 1 ) N ( 1 ) C ( 1 ) C ( 2 ) C ( 3 ) C ( 4 ) C ( 5 ) C ( 6 ) 0 ( 7 ) C ( 8 ) C ( 9 ) C ( 1 0 ) N ( 2 ) V ( 2 ) 0 ( 2 ) N ( 3 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) C ( 1 4 ) C ( 1 5 ) C ( 1 6 ) C ( 1 7 ) C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) N ( 4 ) P ( 1 ) 0 ( 3 ) 0 ( 4 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) X 1 6 3 4 ( 1 ) 9 2 0 ( 3 ) 7 9 8 ( 4 ) 4 9 0 ( 5 ) 8 3 0 ( 6 ) 4 7 ( 6 ) 9 6 2 ( 6 ) 1 3 7 2 ( 5 ) 2 4 2 2 ( 5 ) 3 0 8 8 ( 5 ) 4 0 3 2 ( 5 ) 4 3 0 6 ( 5 ) 3 6 0 4 ( 5 ) 2 6 9 2 ( 4 ) 3 1 5 7 ( 1 ) 2 9 7 8 ( 3 ) 3 1 3 0 ( 4 ) 2 1 7 9 ( 5 ) 2 2 2 0 ( 6 ) 3 2 4 5 ( 7 ) 4 2 4 6 ( 6 ) 4 1 8 7 ( 5 ) 5 1 7 7 ( 5 ) 6 3 1 8 ( 5 ) 7 1 8 0 ( 6 ) 6 9 1 4 ( 5 ) 5 7 7 3 ( 5 ) 4 9 2 1 ( 4 ) 3 2 7 7 ( 1 ) 2 5 9 5 ( 3 ) 3 5 6 5 ( 3 ) 2 5 1 2 ( 5 ) 1 3 2 0 ( 5 ) 7 0 1 ( 5 ) Y 7 3 8 0 ( 1 ) 7 0 7 2 ( 3 ) 8 9 2 5 ( 3 ) 9 4 4 0 ( 5 ) 1 0 4 6 3 ( 5 ) 1 0 9 6 2 ( 5 ) 1 0 4 4 1 ( 5 ) 9 4 1 9 ( 4 ) 8 7 9 4 ( 4 ) 9 1 7 4 ( 5 ) 8 5 3 8 ( 5 ) 7 5 3 6 ( 5 ) 7 1 9 9 ( 4 ) 7 8 1 3 ( 3 ) 5 5 9 8 ( 1 ) 4 7 0 9 ( 3 ) 6 5 0 0 ( 3 ) 7 1 0 9 ( 4 ) 7 6 9 8 ( 5 ) 7 6 6 2 ( 5 ) 7 0 4 5 ( 5 ) 6 4 6 2 ( 4 ) 5 7 9 1 ( 4 ) 5 6 9 5 ( 5 ) 5 0 7 0 ( 5 ) 4 5 3 5 ( 5 ) 4 6 3 2 ( 4 ) 5 2 8 0 ( 3 ) 7 8 0 3 ( 1 ) 7 9 9 1 ( 3 ) 6 7 9 0 ( 2 ) 8 7 3 2 ( 4 ) 9 0 9 7 ( 4 ) 9 7 6 4 ( 4 ) Z 1 3 6 7 ( 1 ) 9 0 8 ( 2 ) 1 0 7 7 ( 2 ) 1 4 3 9 ( 3 ) 1 2 7 8 ( 3 ) 7 2 1 ( 4 ) 3 2 5 ( 4 ) 5 2 1 ( 3 ) 1 3 2 ( 3 ) 4 6 9 ( 3 ) 8 1 6 ( 3 ) - 5 5 1 ( 3 ) 4 5 ( 3 ) 3 9 1 ( 2 ) 3 6 5 8 ( 1 ) 4 2 9 8 ( 2 ) 4 3 9 1 ( 2 ) 4 7 1 0 ( 3 ) 5 1 7 5 ( 3 ) 5 3 0 8 ( 3 ) 4 9 8 3 ( 3 ) 4 5 2 4 ( 3 ) 4 1 3 1 ( 3 ) 4 1 5 2 ( 3 ) 3 7 5 7 ( 4 ) 3 3 5 6 ( 4 ) 3 3 5 8 ( 3 ) 3 7 3 1 ( 2 ) 2 4 2 5 ( 1 ) 1 8 0 7 ( 2 ) 2 8 9 2 ( 2 ) 3 0 0 1 ( 3 ) 3 0 7 2 ( 3 ) 3 5 3 2 ( 3 ) 3 1 6 U e q 2 9 ( 1 ) 4 4 ( 1 ) 3 4 ( 1 ) 4 5 ( 2 ) 5 4 ( 2 ) 5 9 ( 2 ) 5 6 ( 2 ) 3 8 ( 1 ) 3 5 ( 1 ) 4 8 ( 2 ) 5 1 ( 2 ) 4 9 ( 2 ) 3 8 ( 1 ) 3 0 ( 1 ) 2 7 ( 1 ) 3 8 ( 1 ) 3 2 ( 1 ) 3 9 ( 1 ) 5 0 ( 2 ) 5 8 ( 2 ) 5 0 ( 2 ) 3 5 ( 1 ) 3 6 ( 1 ) 4 4 ( 2 ) 5 4 ( 2 ) 5 4 ( 2 ) 4 1 ( 2 ) 3 1 ( 1 ) 2 8 ( 1 ) 3 2 ( 1 ) 2 8 ( 1 ) 2 9 ( 1 ) 3 5 ( 1 ) 4 2 ( 2 ) O c c u p a n c y C ( 2 4 ) C ( 2 5 ) C ( 2 6 ) C ( 9 ) C ( 2 7 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) C ( 3 3 ) C ( 1 0 ) C ( 3 4 ) P ( 2 ) 0 ( 5 ) 0 ( 6 ) C ( 3 5 ) C ( 3 6 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) 0 ( 1 1 ) C ( 4 1 ) C ( 4 1 ’ ) C ( 4 2 ) C ( 4 3 ) C ( 4 4 ) C ( 4 5 ) C ( 4 6 ) C ( 4 7 ) C ( 1 2 ) C ( 4 8 ) P ( 3 ) 0 ( 7 ) 0 ( 8 ) C ( 4 9 ) 1 2 9 1 ( 5 ) 2 4 6 7 ( 6 ) 3 0 6 7 ( 5 ) 5 9 6 ( 4 ) 1 1 6 0 ( 7 ) 4 6 3 3 ( 5 ) 4 7 7 5 ( 5 ) 5 8 5 9 ( 6 ) 6 7 8 1 ( 5 ) 6 8 4 9 ( 6 ) 5 5 7 3 ( 5 ) 7 8 8 1 ( 4 ) 8 4 3 0 ( 6 ) 5 6 5 ( 1 ) 6 4 5 ( 3 ) 1 5 2 3 ( 3 ) 2 3 4 ( 4 ) 4 5 2 7 ( 5 ) 2 5 3 2 ( 6 ) 2 7 2 1 ( 6 ) 4 9 6 3 ( 6 ) - 9 8 3 ( 5 ) 8 7 1 5 ( 4 ) 8 7 2 6 ( 1 2 ) 4 5 4 6 ( 1 3 ) 3 8 1 ( 4 ) 2 3 8 ( 5 ) 4 8 0 ( 5 ) 4 0 3 ( 5 ) 5 0 9 ( 5 ) 7 4 0 ( 5 ) 4 0 4 ( 4 ) - 9 8 ( 7 ) 3 5 4 1 ( 1 ) 2 7 8 2 ( 3 ) 3 4 9 0 ( 3 ) 3 1 8 3 ( 4 ) T a b l e 1 5 ( c o n ' t ) 1 0 0 8 4 ( 4 ) 9 7 4 8 ( 4 ) 9 0 6 7 ( 4 ) 1 0 7 4 4 ( 3 ) 1 1 0 2 4 ( 6 ) 8 0 0 3 ( 4 ) 8 5 0 0 ( 4 ) 8 5 5 1 ( 5 ) 8 1 2 0 ( 5 ) 7 6 4 9 ( 5 ) 7 5 8 3 ( 5 ) 8 1 5 0 ( 4 ) 7 4 3 0 ( 5 ) 6 6 1 8 ( 1 ) 7 3 5 6 ( 3 ) 6 3 1 6 ( 3 ) 7 1 8 7 ( 4 ) 8 0 5 9 ( 5 ) 8 4 5 4 ( 6 ) 7 9 2 4 ( 5 ) 7 0 3 4 ( 5 ) 6 6 7 2 ( 4 ) 8 3 1 3 ( 4 ) 7 8 4 6 ( 1 1 ) 9 2 7 7 ( 1 1 ) 5 5 6 6 ( 4 ) 5 6 9 0 ( 5 ) 4 9 2 4 ( 5 ) 4 0 0 7 ( 4 ) 3 8 3 3 ( 5 ) 4 6 4 1 ( 4 ) 3 2 8 1 ( 3 ) 2 3 2 0 ( 5 ) 5 0 9 4 ( 1 ) 6 0 6 7 ( 2 ) 4 9 1 1 ( 2 ) 4 1 0 4 ( 4 ) 3 9 2 5 ( 3 ) 3 8 5 0 ( 3 ) 3 3 8 8 ( 3 ) 4 3 7 4 ( 2 ) 4 8 2 8 ( 4 ) 2 0 1 3 ( 3 ) 1 2 8 9 ( 3 ) 9 5 8 ( 3 ) 1 3 4 7 ( 4 ) 2 0 6 5 ( 4 ) 2 3 9 1 ( 4 ) 1 0 2 2 ( 3 ) 5 7 5 ( 4 ) 3 0 6 2 ( 1 ) 2 3 5 1 ( 2 ) 3 5 1 9 ( 2 ) 3 6 3 7 ( 3 ) 3 4 1 6 ( 3 ) 3 8 7 2 ( 4 ) 4 5 7 3 ( 3 ) 4 8 0 7 ( 3 ) 4 3 3 6 ( 3 ) 5 0 2 8 ( 3 ) 5 8 4 1 ( 7 ) 4 7 9 0 ( 9 ) 2 8 5 6 ( 3 ) 2 2 8 3 ( 3 ) 2 1 3 9 ( 3 ) 2 5 3 9 ( 3 ) 3 1 1 3 ( 4 ) 3 2 6 3 ( 4 ) 2 3 5 4 ( 3 ) 2 7 9 0 ( 5 ) 1 9 8 1 ( 1 ) 1 8 2 6 ( 2 ) 2 8 1 1 ( 2 ) 1 7 8 0 ( 3 ) 3 1 7 4 2 ( 2 ) 4 4 ( 2 ) 4 1 ( 2 ) 6 0 ( 1 ) 7 8 ( 2 ) 3 2 ( 1 ) 4 0 ( 2 ) 5 1 ( 2 ) 5 0 ( 2 ) 6 5 ( 2 ) 5 3 ( 2 ) 7 1 ( 2 ) 6 0 ( 2 ) 2 9 ( 1 ) 3 2 ( 1 ) 3 4 ( 1 ) 2 9 ( 1 ) 5 5 ( 2 ) 7 0 ( 2 ) 4 9 ( 2 ) 4 7 ( 2 ) 4 2 ( 2 ) 7 0 ( 2 ) 6 9 ( 5 ) 7 4 ( 6 ) 3 1 ( 1 ) 4 1 ( 2 ) 4 7 ( 2 ) 3 8 ( 2 ) 5 0 ( 2 ) 4 6 ( 2 ) 6 2 ( 1 ) 7 7 ( 2 ) 2 8 ( 1 ) 3 0 ( 1 ) 3 1 ( 1 ) 2 6 ( 1 ) 0 . 5 1 6 4 0 ' 6 E T a b l e 1 5 ( c o n ' t ) C ( 5 0 ) 2 6 0 0 ( 5 ) 4 2 5 5 ( 4 ) 1 1 9 2 ( 3 ) 3 2 ( 1 ) 1 C ( 5 1 ) 2 3 2 1 ( 5 ) 3 4 9 7 ( 4 ) 1 0 4 0 ( 3 ) 3 7 ( 1 ) 1 C ( 5 2 ) 2 6 4 5 ( 5 ) 2 5 6 5 ( 4 ) 1 4 7 0 ( 3 ) 3 5 ( 1 ) 1 C ( 5 3 ) 3 2 3 0 ( 5 ) 2 3 9 1 ( 4 ) 2 0 5 6 ( 3 ) 3 5 ( 1 ) 1 C ( 5 4 ) 3 4 9 9 ( 5 ) 3 1 6 4 ( 4 ) 2 2 0 6 ( 3 ) 3 5 ( 1 ) 1 0 ( 1 3 ) 2 3 3 9 ( 4 ) 1 8 5 7 ( 3 ) 1 2 6 8 ( 2 ) 4 9 ( 1 ) 1 C ( 5 5 ) 2 6 8 0 ( 7 ) 8 7 5 ( 5 ) 1 6 8 1 ( 4 ) 6 2 ( 2 ) 1 C ( 5 6 ) 4 9 9 4 ( 4 ) 5 0 0 3 ( 4 ) 1 5 6 6 ( 3 ) 2 9 ( 1 ) 1 C ( 5 7 ) 5 3 0 4 ( 5 ) 5 8 5 3 ( 4 ) 1 2 5 7 ( 3 ) 3 8 ( 1 ) 1 C ( 5 8 ) 6 4 0 5 ( 5 ) 5 8 0 0 ( 4 ) 9 4 3 ( 3 ) 3 9 ( 2 ) 1 C ( 5 9 ) 7 2 5 0 ( 5 ) 4 8 9 5 ( 4 ) 9 2 8 ( 3 ) 3 5 ( 1 ) 1 C ( 6 0 ) 6 9 8 2 ( 5 ) 4 0 3 4 ( 4 ) 1 2 5 4 ( 3 ) 3 9 ( 1 ) 1 C ( 6 1 ) 5 8 5 9 ( 5 ) 4 0 9 6 ( 4 ) 1 5 6 4 ( 3 ) 3 7 ( 1 ) 1 0 ( 1 4 ) 8 3 1 5 ( 3 ) 4 9 2 9 ( 3 ) 5 9 3 ( 2 ) 4 2 ( 1 ) 1 C ( 6 2 ) 9 1 9 0 ( 5 ) 4 0 0 7 ( 5 ) 4 8 6 ( 4 ) 4 7 ( 2 ) 1 C l ( 1 ) 6 8 6 8 ( 5 ) 1 2 8 1 ( 5 ) 2 8 8 8 ( 3 ) 9 9 ( 2 ) 0 . 7 2 6 0 ( 1 5 ) 7 5 4 0 ( 1 0 ) 8 6 1 ( 6 ) 3 4 1 1 ( 5 ) 1 3 3 ( 5 ) 0 . 7 2 6 0 ( 1 6 ) 7 3 6 1 ( 1 0 ) 1 8 5 6 ( 7 ) 2 3 1 2 ( 6 ) 1 7 7 ( 6 ) 0 . 7 2 6 0 ( 1 7 ) 6 7 3 9 ( 1 6 ) 5 6 2 ( 9 ) 2 5 8 3 ( 8 ) 3 1 5 ( 1 0 ) 0 . 7 2 6 0 ( 1 8 ) 5 8 3 6 ( 8 ) 1 8 5 9 ( 1 2 ) 3 1 4 4 ( 8 ) 3 7 1 ( 1 2 ) 0 . 7 2 8 C l ( 1 ' ) 7 0 4 9 ( 9 ) 1 4 9 3 ( 7 ) 2 8 6 9 ( 5 ) 5 8 ( 3 ) 0 . 2 7 4 0 ( 1 5 ' ) 8 0 5 1 ( 1 4 ) 7 4 1 ( 1 2 ) 2 9 5 5 ( 1 1 ) 8 1 ( 7 ) 0 . 2 7 4 0 ( 1 6 ’ ) 6 7 7 6 ( 1 4 ) 1 5 8 7 ( 1 2 ) 2 1 8 9 ( 6 ) 5 9 ( 6 ) 0 . 2 7 4 0 ( 1 7 ' ) 7 1 6 1 ( 2 1 ) 2 3 6 0 ( 1 0 ) 2 9 4 0 ( 9 ) 1 7 7 ( 1 3 ) 0 . 2 7 4 0 ( 1 8 ’ ) 6 2 1 2 ( 1 7 ) 1 2 8 6 ( 1 9 ) 3 4 0 4 ( 8 ) 1 9 8 ( 1 6 ) 0 . 2 7 4 3 1 8 T a b l e 1 6 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { b p y V O L u — ( p - C H 3 O C $ H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C I O 4 } , ( 4 H 6 ) A t o m V ( 1 ) 0 ( 1 ) N ( 1 ) C ( 1 ) C ( 2 ) C ( 3 ) C ( 4 ) C ( 5 ) C ( 6 ) C ( 7 ) C ( 8 ) C ( 9 ) C ( 1 0 ) N ( 2 ) V ( 2 ) 0 ( 2 ) N ( 3 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) C ( 1 4 ) C ( 1 5 ) C ( 1 6 ) C ( 1 7 ) C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) N ( 4 ) 9 ( 1 ) 0 ( 3 ) 0 ( 4 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) U 1 1 2 8 ( 1 ) 4 2 ( 2 ) 3 0 ( 3 ) 3 9 ( 4 ) 4 6 ( 4 ) 5 8 ( 5 ) 5 4 ( 4 ) 4 1 ( 3 ) 3 5 ( 3 ) 4 5 ( 4 ) 4 4 ( 4 ) 4 4 ( 4 ) 4 0 ( 4 ) 3 1 ( 3 ) 3 1 ( 1 ) 5 1 ( 3 ) 4 1 ( 3 ) 5 4 ( 4 ) 7 2 ( 5 ) 9 4 ( 6 ) 7 1 ( 5 ) 5 6 ( 4 ) 4 4 ( 4 ) 5 0 ( 4 ) 3 7 ( 4 ) 3 5 ( 4 ) 3 6 ( 4 ) 3 5 ( 3 ) 3 1 ( 1 ) 3 4 ( 2 ) 3 4 ( 2 ) 3 6 ( 3 ) 3 8 ( 3 ) 3 1 ( 3 ) U 2 2 3 3 ( 1 ) 6 0 ( 3 ) 4 2 ( 3 ) 5 6 ( 4 ) 4 1 ( 4 ) 3 7 ( 4 ) 4 2 ( 4 ) 3 4 ( 4 ) 4 2 ( 4 ) 4 6 ( 4 ) 5 4 ( 5 ) 6 0 ( 5 ) 4 1 ( 4 ) 3 1 ( 3 ) 2 8 ( 1 ) 3 6 ( 2 ) 3 4 ( 3 ) 3 8 ( 4 ) 4 8 ( 4 ) 4 9 ( 4 ) 4 9 ( 4 ) 3 6 ( 3 ) 4 1 ( 4 ) 5 6 ( 4 ) 7 6 ( 5 ) 6 7 ( 5 ) 4 3 ( 4 ) 3 2 ( 3 ) 2 7 ( 1 ) 3 3 ( 2 ) 2 7 ( 2 ) 2 6 ( 3 ) 3 7 ( 3 ) 4 4 ( 4 ) U 3 3 2 2 ( 1 ) 3 3 ( 2 ) 2 2 ( 2 ) 2 4 ( 3 ) 4 5 ( 4 ) 6 0 ( 5 ) 5 6 ( 4 ) 2 8 ( 3 ) 2 4 ( 3 ) 4 4 ( 4 ) 4 4 ( 4 ) 3 6 ( 4 ) 2 9 ( 3 ) 2 1 ( 2 ) 2 1 ( 1 ) 2 7 ( 2 ) 2 0 ( 2 ) 2 1 ( 3 ) 3 0 ( 4 ) 4 0 ( 4 ) 4 1 ( 4 ) 2 0 ( 3 ) 2 3 ( 3 ) 3 3 ( 3 ) 4 6 ( 4 ) 4 5 ( 4 ) 3 5 ( 3 ) 2 5 ( 2 ) 2 5 ( 1 ) 2 6 ( 2 ) 2 2 ( 2 ) 2 3 ( 3 ) 3 3 ( 3 ) 4 5 ( 4 ) 3 1 9 U 2 3 - 5 ( 1 ) - 9 ( 2 ) 4 5 ( 2 ) 1 ( 3 ) - 5 ( 3 ) - 4 ( 3 ) - 7 ( 3 ) - 1 ( 3 ) - 5 ( 3 ) - 4 ( 3 ) - 3 ( 3 ) - 1 7 ( 3 ) - 1 2 ( 3 ) - 4 ( 2 ) - 3 ( 1 ) 1 ( 2 ) 1 ( 2 ) 0 ( 3 ) - 1 6 ( 3 ) - 2 0 ( 3 ) - 5 ( 3 ) 5 ( 3 ) 9 ( 3 ) 5 ( 3 ) 1 ( 4 ) - 2 ( 4 ) - 1 ( 3 ) 1 ( 2 ) - 5 ( 1 ) - 7 ( 2 ) - 1 ( 2 ) - 2 ( 2 ) - 1 1 ( 3 ) - 1 4 ( 3 ) U 1 3 2 0 ) - 7 ( 2 ) - 5 ( 2 ) - 2 ( 3 ) 2 ( 3 ) 4 ( 4 ) 9 ( 3 ) - 3 ( 3 ) 2 ( 3 ) 8 ( 3 ) 1 6 ( 3 ) 1 1 ( 3 ) 1 ( 3 ) - 1 ( 2 ) 4 ( 1 ) 4 0 ( 2 ) - 6 ( 2 ) - 7 ( 3 ) 0 ( 3 ) 4 1 ( 4 ) 2 3 ( 4 ) 4 0 ( 3 ) 4 2 ( 3 ) 4 9 ( 3 ) 4 4 ( 3 ) - 6 ( 3 ) 4 0 ( 3 ) 4 3 ( 2 ) - 1 ( 1 ) 4 ( 2 ) - 6 ( 2 ) 1 ( 2 ) - 6 ( 3 ) 4 ( 3 ) U 1 2 - 6 ( 1 ) 4 7 ( 2 ) 0 ( 2 ) 2 ( 3 ) 1 8 ( 3 ) 2 ( 3 ) - 7 ( 3 ) 8 ( 3 ) 4 0 ( 3 ) 4 3 ( 3 ) 4 7 ( 3 ) 4 1 ( 3 ) 8 ( 3 ) - 5 ( 2 ) 4 0 ( 1 ) 4 6 ( 2 ) 4 2 ( 2 ) 4 3 ( 3 ) 4 7 ( 4 ) 2 8 ( 4 ) 2 7 ( 4 ) - 2 6 ( 3 ) 2 0 ( 3 ) 2 6 ( 3 ) 4 5 ( 4 ) 4 ( 3 ) - 5 ( 3 ) - 7 ( 2 ) - 7 ( 1 ) - 7 ( 2 ) 4 0 ( 2 ) 4 1 ( 3 ) 4 3 ( 3 ) 8 ( 3 ) C ( 2 4 ) C ( 2 5 ) C ( 2 6 ) C ( 9 ) C ( 2 7 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) C ( 3 3 ) C ( 1 0 ) C ( 3 4 ) P ( 2 ) 0 ( 5 ) 0 ( 6 ) C ( 3 5 ) C ( 3 6 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) 0 ( 1 1 ) C ( 4 1 ) C ( 4 1 ’ ) C ( 4 2 ) C ( 4 3 ) C ( 4 4 ) C ( 4 5 ) C ( 4 6 ) C ( 4 7 ) C ( 4 8 ) P ( 3 ) 0 ( 7 ) 0 ( 8 ) C ( 4 9 ) C ( 5 0 ) 4 7 ( 4 ) 6 0 ( 4 ) 4 0 ( 4 ) 6 7 ( 3 ) 9 3 ( 6 ) 3 7 ( 3 ) 5 2 ( 4 ) 6 7 ( 5 ) 3 4 ( 4 ) 3 5 ( 4 ) 3 8 ( 4 ) 5 5 ( 3 ) 5 1 ( 4 ) 2 6 ( 1 ) 2 8 ( 2 ) 3 0 ( 2 ) 3 0 ( 3 ) 4 4 ( 4 ) 5 6 ( 5 ) 5 0 ( 4 ) 6 0 ( 4 ) 4 7 ( 4 ) 5 6 ( 3 ) 6 1 ( 1 0 ) 5 0 ( 1 0 ) 2 4 ( 3 ) 4 5 ( 4 ) 5 4 ( 4 ) 3 7 ( 3 ) 4 5 ( 4 ) 3 8 ( 4 ) 8 0 ( 6 ) 3 1 ( 1 ) 3 6 ( 2 ) 4 0 ( 2 ) 2 5 ( 3 ) 3 4 ( 3 ) T a b l e 1 6 ( c o n ' t ) 3 3 ( 4 ) 4 3 ( 4 ) 4 2 ( 4 ) 5 1 ( 3 ) 7 8 ( 6 ) 2 8 ( 3 ) 3 2 ( 3 ) 4 8 ( 4 ) 4 2 ( 4 ) 7 0 ( 5 ) 5 9 ( 5 ) 6 5 ( 3 ) 6 4 ( 5 ) 3 4 ( 1 ) 3 8 ( 2 ) 4 3 ( 2 ) 3 3 ( 3 ) 5 2 ( 4 ) 6 0 ( 5 ) 5 4 ( 4 ) 4 2 ( 4 ) 3 2 ( 3 ) 6 7 ( 3 ) 9 3 ( 1 2 ) 7 5 ( 1 2 ) 3 3 ( 3 ) 4 7 ( 4 ) 5 2 ( 4 ) 3 8 ( 4 ) 3 5 ( 4 ) 4 0 ( 4 ) 3 0 ( 4 ) 2 5 ( 1 ) 2 6 ( 2 ) 2 8 ( 2 ) 2 2 ( 3 ) 3 0 ( 3 ) 3 9 ( 4 ) 3 6 ( 4 ) 4 1 ( 4 ) 5 8 ( 3 ) 7 5 ( 5 ) 3 0 ( 3 ) 3 6 ( 3 ) 3 9 ( 4 ) 6 4 ( 5 ) 7 6 ( 5 ) 4 7 ( 4 ) 9 0 ( 4 ) 6 1 ( 5 ) 2 3 ( 1 ) 2 4 ( 2 ) 2 8 ( 2 ) 2 5 ( 3 ) 3 6 ( 4 ) 5 8 ( 5 ) 4 2 ( 4 ) 3 1 ( 3 ) 3 7 ( 3 ) 5 5 ( 3 ) 4 2 ( 9 ) 7 2 ( 1 1 ) 3 2 ( 3 ) 3 4 ( 3 ) 4 2 ( 4 ) 4 5 ( 4 ) 5 6 ( 4 ) 6 0 ( 4 ) 1 0 8 ( 7 ) 2 6 ( 1 ) 2 7 ( 2 ) 2 5 ( 2 ) 2 6 ( 3 ) 3 3 ( 3 ) 3 2 0 4 6 ( 3 ) 4 5 ( 3 ) 4 5 ( 3 ) 8 4 ( 2 ) - 5 7 ( 5 ) - 8 ( 3 ) - 4 ( 3 ) - 7 ( 3 ) 4 3 ( 3 ) 8 ( 4 ) 1 3 ( 3 ) 8 3 ( 3 ) 4 5 ( 4 ) - 7 ( 1 ) - 6 ( 2 ) 4 0 ( 2 ) - 8 ( 2 ) 5 ( 3 ) - 4 ( 4 ) 2 2 ( 3 ) - 7 ( 3 ) - 4 ( 3 ) 4 4 ( 3 ) - 2 7 ( 8 ) 2 4 ( 9 ) - 9 ( 3 ) - 7 ( 3 ) 4 5 ( 3 ) 4 9 ( 3 ) 1 ( 3 ) - 7 ( 3 ) 5 ( 4 ) - 6 ( 1 ) - 3 ( 2 ) - 7 ( 2 ) - 9 ( 2 ) - 7 ( 3 ) 5 ( 3 ) - 3 ( 3 ) - 6 ( 3 ) 3 ( 2 ) - 1 ( 5 ) - 1 ( 3 ) - 1 ( 3 ) 1 6 ( 3 ) 1 5 ( 3 ) - 6 ( 4 ) - 4 ( 3 ) 3 3 ( 3 ) 1 0 ( 4 ) 0 ( 1 ) 3 ( 2 ) - 3 ( 2 ) 1 ( 2 ) 1 3 ( 3 ) 1 3 ( 4 ) 2 1 ( 3 ) 2 0 ( 3 ) 3 ( 3 ) 2 8 ( 2 ) 3 6 ( 7 ) 1 1 ( 8 ) 2 ( 2 ) - 3 ( 3 ) - 5 ( 3 ) 4 ( 3 ) 3 ( 3 ) 4 3 ( 3 ) 2 ( 5 ) - 3 ( 1 ) - 4 ( 2 ) - 5 ( 2 ) 0 ( 2 ) - 6 ( 3 ) - 6 ( 3 ) 2 1 ( 3 ) - 9 ( 3 ) - 5 ( 2 ) 2 0 ( 5 ) 4 1 ( 3 ) 4 6 ( 3 ) 8 5 ( 4 ) 4 1 ( 3 ) 4 3 ( 4 ) 4 1 ( 3 ) - 3 0 ( 3 ) 2 1 ( 4 ) - 7 ( 1 ) - 6 ( 2 ) - 9 ( 2 ) 4 2 ( 3 ) 9 ( 3 ) 9 ( 4 ) 2 1 ( 4 ) 2 3 ( 3 ) - 9 ( 3 ) - 1 ( 3 ) 2 6 ( 8 ) 7 ( 9 ) - 5 ( 3 ) 2 0 ( 3 ) 2 3 ( 4 ) 4 5 ( 3 ) - 5 ( 3 ) 4 2 ( 3 ) 2 2 ( 4 ) - 7 ( 1 ) - 8 ( 2 ) 4 0 ( 2 ) - 2 ( 2 ) - 9 ( 3 ) T a b l e 1 6 ( c o n ' t ) C ( 5 1 ) 4 7 ( 4 ) 4 5 ( 4 ) 2 7 ( 3 ) — 7 ( 3 ) 4 2 ( 3 ) 4 7 ( 3 ) C ( 5 2 ) 3 7 ( 3 ) 3 7 ( 4 ) 3 4 ( 3 ) 4 4 ( 3 ) 3 ( 3 ) 4 3 ( 3 ) C ( 5 3 ) 4 2 ( 3 ) 2 7 ( 3 ) 3 4 ( 3 ) 0 ( 3 ) - 7 ( 3 ) 4 0 ( 3 ) C ( 5 4 ) 4 7 ( 4 ) 3 2 ( 3 ) 2 8 ( 3 ) - 6 ( 3 ) 4 0 ( 3 ) 4 3 ( 3 ) 0 ( 1 3 ) 8 9 ( 3 ) 3 7 ( 3 ) 5 1 ( 3 ) - 9 ( 2 ) 4 7 ( 2 ) 2 5 ( 2 ) C ( 5 5 ) 8 6 ( 6 ) 3 7 ( 4 ) 7 1 ( 5 ) 4 4 ( 4 ) 4 4 ( 4 ) 2 4 ( 4 ) 0 ( 1 2 ) 7 7 ( 4 ) 4 9 ( 3 ) 8 4 ( 3 ) 4 3 ( 2 ) 8 ( 3 ) 2 4 ( 3 ) C ( 5 6 ) 3 1 ( 3 ) 3 1 ( 3 ) 2 9 ( 3 ) 4 0 ( 2 ) 4 ( 2 ) 4 1 ( 3 ) C ( 5 7 ) 4 4 ( 4 ) 3 1 ( 3 ) 3 8 ( 3 ) - 9 ( 3 ) 1 ( 3 ) 4 1 ( 3 ) C ( 5 8 ) 4 4 ( 4 ) 3 0 ( 3 ) 4 0 ( 4 ) 8 ( 3 ) 7 ( 3 ) 4 6 ( 3 ) C ( 5 9 ) 2 9 ( 3 ) 3 9 ( 4 ) 3 7 ( 3 ) 4 3 ( 3 ) 4 ( 3 ) 4 0 ( 3 ) C ( 6 0 ) 3 1 ( 3 ) 3 0 ( 3 ) 4 8 ( 4 ) 4 1 ( 3 ) 8 ( 3 ) 4 ( 3 ) C ( 6 1 ) 4 0 ( 4 ) 2 6 ( 3 ) 4 3 ( 4 ) 8 ( 3 ) 2 ( 3 ) 4 1 ( 3 ) 0 ( 1 4 ) 3 6 ( 2 ) 4 2 ( 3 ) 4 5 ( 2 ) 4 5 ( 2 ) 2 ( 2 ) 4 1 ( 2 ) C ( 6 2 ) 3 3 ( 3 ) 5 1 ( 4 ) 5 5 ( 4 ) 2 3 ( 3 ) 1 ( 3 ) - 7 ( 3 ) C l ( 1 ) 9 4 ( 3 ) 1 4 3 ( 5 ) 4 7 ( 3 ) - 1 6 ( 2 ) 2 ( 2 ) 2 9 ( 3 ) 0 ( 1 5 ) 1 9 6 ( 1 2 ) 7 1 ( 7 ) 1 3 4 ( 9 ) 8 1 ( 6 ) - 9 1 ( 8 ) 3 ( 7 ) 0 ( 1 6 ) 2 2 3 ( 1 5 ) 6 2 ( 7 ) 1 6 2 ( 1 0 ) 1 7 ( 6 ) 5 2 ( 8 ) 4 2 ( 7 ) 0 ( 1 7 ) 7 0 9 ( 3 1 ) 2 4 2 ( 1 3 ) 1 3 8 ( 1 1 ) 1 0 4 ( 8 ) 2 5 7 ( 1 5 ) - 3 0 2 ( 1 7 ) 0 ( 1 8 ) 6 9 ( 8 ) 6 6 7 ( 3 5 ) 2 1 5 ( 1 8 ) 4 0 4 ( 1 7 ) 2 4 ( 7 ) 7 5 ( 9 ) C l ( 1 ' ) 7 0 ( 6 ) 5 4 ( 5 ) 3 4 ( 5 ) 4 9 ( 4 ) 2 ( 4 ) 3 ( 4 ) 0 ( 1 5 ' ) 7 1 ( 1 0 ) 7 8 ( 1 1 ) 8 9 ( 1 6 ) 4 2 ( 1 3 ) 4 7 ( 1 0 ) 1 ( 7 ) 0 ( 1 6 ’ ) 5 4 ( 1 2 ) 5 5 ( 1 3 ) 5 9 ( 8 ) 4 9 ( 9 ) 2 4 ( 7 ) 1 0 ( 9 ) 0 ( 1 7 ' ) 4 3 5 ( 4 2 ) 5 5 ( 9 ) 5 1 ( 1 3 ) 2 2 ( 1 1 ) 8 4 ( 1 8 ) - 5 2 ( 1 4 ) 0 ( 1 8 ’ ) 1 0 6 ( 1 5 ) 5 1 6 ( 4 9 ) 7 1 ( 1 2 ) 4 8 4 ( 2 3 ) 6 9 ( 1 5 ) - 1 7 8 ( 2 5 ) 3 2 1 L — A - L — L ‘ — S — l — L — u k — L ‘ — A - K — l — k — A - A - L — A - A L — A - A t — L — S — L — K — L — L — L — L ‘ — A A A T a b l e 1 7 . A t o m i c C o o r d i n a t e s ( x 1 0 ‘ ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { t m b p y V O [ p — ( p - C H 3 O C 5 H 4 ) 2 P 0 2 ] 1 , 5 } 2 { C I O 4 } ~ 2 C H 3 C O C H 3 , ( 4 . 6 A ) . A t o m V ( 1 ) V ( 2 ) C l ( 1 ) P ( 1 ) P ( 2 ) P ( 3 ) 0 ( 1 ) 0 ( 2 ) 0 ( 3 ) 0 ( 4 ) 0 ( 5 ) 0 ( 6 ) 0 ( 7 ) 0 ( 8 ) 0 ( 9 ) 0 ( 1 0 ) 0 ( 1 1 ) 0 ( 1 2 ) 0 ( 1 3 ) 0 ( 1 4 ) 0 ( 1 5 ) 0 ( 1 6 ) 0 ( 1 7 ) 0 ( 1 8 ) N ( 1 ) N ( 2 ) N ( 3 ) N ( 4 ) C ( 1 ) C ( 2 ) C ( 3 ) C ( 4 ) C ( 5 ) 0 ( 6 ) X 6 0 9 7 ( 1 ) 8 5 4 6 ( 1 ) 8 5 7 2 ( 2 ) 5 8 2 8 ( 2 ) 7 4 5 0 ( 2 ) 8 7 5 9 ( 2 ) 4 9 1 0 ( 4 ) 9 7 3 0 ( 4 ) 5 7 3 2 ( 4 ) 6 9 2 6 ( 4 ) 7 6 2 8 ( 4 ) 7 7 5 1 ( 4 ) 6 9 7 5 ( 4 ) 8 9 1 2 ( 4 ) 2 9 2 5 ( 6 ) 3 0 9 1 ( 5 ) 4 4 8 2 ( 5 ) 1 1 3 2 2 ( 5 ) 1 0 2 1 3 ( 5 ) 1 2 0 7 1 ( 5 ) 9 5 1 7 ( 6 ) 8 3 4 0 ( 6 ) 7 6 0 7 ( 6 ) 8 8 2 3 ( 6 ) 5 6 3 8 ( 5 ) 6 6 8 3 ( 5 ) 9 0 1 6 ( 5 ) 7 9 6 7 ( 5 ) 5 2 1 7 ( 7 ) 4 8 2 9 ( 7 ) 4 8 6 5 ( 7 ) 5 3 4 1 ( 6 ) 5 7 4 0 ( 7 ) 6 3 3 8 ( 6 ) Y 2 3 0 5 ( 1 ) 2 4 8 0 ( 1 ) 8 7 ( 1 ) 2 7 5 3 ( 1 ) 1 5 8 5 ( 1 ) 2 7 9 0 ( 1 ) 2 0 6 5 ( 2 ) 2 2 3 7 ( 2 ) 2 5 8 2 ( 2 ) 1 7 6 3 ( 2 ) 2 8 8 7 ( 2 ) 1 9 3 7 ( 2 ) 2 8 3 2 ( 2 ) 2 8 1 9 ( 2 ) 4 4 0 1 ( 2 ) 1 5 8 4 ( 2 ) 1 8 1 ( 2 ) 3 8 3 ( 2 ) 4 5 2 3 ( 2 ) 1 4 8 8 ( 2 ) 2 3 8 ( 2 ) 8 6 1 ( 2 ) 2 5 2 ( 2 ) 2 8 1 ( 2 ) 2 8 9 7 ( 2 ) 2 1 6 0 ( 2 ) 3 0 6 3 ( 2 ) 2 3 1 2 ( 2 ) 3 2 8 4 ( 3 ) 3 6 5 3 ( 3 ) 3 5 9 6 ( 3 ) 3 2 0 1 ( 3 ) 2 8 6 1 ( 3 ) 2 4 5 3 ( 3 ) Z 4 1 4 9 ( 1 ) 6 0 2 2 ( 1 ) 2 7 5 5 ( 1 ) 5 5 8 4 ( 1 ) 5 1 2 4 ( 1 ) 4 5 8 0 ( 1 ) 3 9 8 2 ( 2 ) 6 1 8 8 ( 2 ) 4 9 3 2 ( 2 ) 4 5 1 5 ( 2 ) 4 2 7 5 ( 2 ) 5 6 2 1 ( 2 ) 5 9 0 4 ( 2 ) 5 2 7 7 ( 2 ) 5 6 3 0 ( 3 ) 7 0 8 7 ( 3 ) 6 0 9 1 ( 3 ) 4 7 4 5 ( 3 ) 3 4 6 8 ( 3 ) 3 7 0 8 ( 3 ) 2 6 3 6 ( 4 ) 2 2 5 8 ( 3 ) 2 7 9 7 ( 4 ) 3 3 2 8 ( 3 ) 3 6 2 2 ( 3 ) 3 2 7 9 ( 3 ) 6 5 7 8 ( 3 ) 6 8 7 8 ( 3 ) 3 8 2 5 ( 4 ) 3 4 5 1 ( 4 ) 2 8 1 8 ( 4 ) 2 6 0 9 ( 4 ) 3 0 0 9 ( 4 ) 2 8 2 3 ( 3 ) 3 2 2 U e q 2 4 ( 1 ) 2 4 ( 1 ) 5 0 ( 1 ) 2 5 ( 1 ) 2 6 ( 1 ) 2 5 ( 1 ) 3 1 ( 2 ) 2 9 ( 1 ) 2 9 ( 2 ) 2 7 ( 1 ) 2 7 ( 1 ) 2 9 ( 1 ) 3 1 ( 2 ) 2 7 ( 1 ) 5 8 ( 2 ) 4 2 ( 2 ) 5 0 ( 2 ) 5 2 ( 2 ) 4 4 ( 2 ) 5 0 ( 2 ) 7 8 ( 2 ) 5 8 ( 2 ) 7 6 ( 2 ) 6 4 ( 2 ) 2 5 ( 2 ) 2 3 ( 2 ) 2 6 ( 2 ) 2 2 ( 2 ) 3 0 ( 2 ) 2 9 ( 2 ) 2 6 ( 2 ) 2 8 ( 2 ) 2 8 ( 2 ) 2 2 ( 2 ) O c c u p a n c y _ L 0 ( 7 ) C ( 8 ) C ( 9 ) C ( 1 0 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) C ( 1 4 ) C ( 1 5 ) C ( 1 6 ) C ( 1 7 ) C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) C ( 2 5 ) C ( 2 6 ) C ( 2 7 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) C ( 3 3 ) C ( 3 4 ) C ( 3 5 ) C ( 3 6 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) C ( 4 3 ) 6 6 1 2 ( 7 ) 7 2 3 0 ( 7 ) 7 6 2 1 ( 7 ) 7 3 0 2 ( 7 ) 4 4 0 6 ( 8 ) 4 3 9 9 ( 8 ) 7 4 8 8 ( 8 ) 8 3 5 6 ( 8 ) 9 5 4 4 ( 7 ) 9 9 5 1 ( 7 ) 9 8 3 7 ( 7 ) 9 2 5 8 ( 6 ) 8 8 5 1 ( 7 ) 8 2 6 2 ( 6 ) 7 9 8 6 ( 6 ) 7 4 2 6 ( 7 ) 7 0 8 8 ( 6 ) 7 3 9 5 ( 7 ) 1 0 5 2 0 ( 8 ) 1 0 2 8 9 ( 7 ) 7 1 6 2 ( 8 ) 6 4 4 0 ( 7 ) 5 0 2 3 ( 7 ) 5 3 5 9 ( 8 ) 4 6 8 6 ( 9 ) 3 6 7 6 ( 9 ) 3 3 4 6 ( 8 ) 3 9 9 9 ( 7 ) 5 0 5 0 ( 6 ) 5 0 3 9 ( 7 ) 4 3 8 3 ( 7 ) 3 7 1 5 ( 7 ) 3 7 3 2 ( 7 ) 4 3 8 4 ( 7 ) 8 6 5 3 ( 7 ) 8 6 4 0 ( 8 ) 9 5 0 2 ( 8 ) T a b l e 1 7 ( c o n ' t ) 2 3 7 3 ( 3 ) 1 9 9 5 ( 3 ) 1 7 1 2 ( 3 ) 1 8 0 4 ( 3 ) 4 0 7 6 ( 3 ) 3 9 5 7 ( 3 ) 1 9 1 3 ( 3 ) 1 3 0 7 ( 3 ) 3 4 3 3 ( 3 ) 3 7 7 5 ( 3 ) 3 7 3 0 ( 3 ) 3 3 4 9 ( 3 ) 3 0 1 6 ( 3 ) 2 6 0 1 ( 3 ) 2 5 0 9 ( 3 ) 2 1 1 4 ( 3 ) 1 8 1 6 ( 3 ) 1 9 3 4 ( 3 ) 4 1 8 5 ( 3 ) 4 0 7 7 ( 3 ) 2 0 0 0 ( 3 ) 1 3 9 8 ( 3 ) 3 2 7 2 ( 3 ) 3 8 4 4 ( 3 ) 4 0 2 8 ( 3 ) 4 0 4 6 ( 3 ) 3 6 8 5 ( 3 ) 3 3 0 3 ( 3 ) 2 3 7 7 ( 3 ) 2 4 3 5 ( 3 ) 2 1 7 1 ( 3 ) 1 8 2 9 ( 3 ) 1 7 5 7 ( 3 ) 2 0 3 3 ( 3 ) 1 2 5 6 ( 3 ) 9 7 3 ( 3 ) 6 8 9 ( 3 ) 2 2 2 5 ( 3 ) 2 0 9 3 ( 4 ) 2 5 6 4 ( 4 ) 3 1 5 2 ( 4 ) 3 7 2 7 ( 4 ) 2 3 7 0 ( 4 ) 1 4 4 5 ( 4 ) 2 4 7 5 ( 4 ) 6 3 9 5 ( 4 ) 6 7 8 4 ( 4 ) 7 4 1 5 ( 4 ) 7 5 9 7 ( 4 ) 7 1 8 2 ( 3 ) 7 3 4 9 ( 3 ) 7 9 3 9 ( 4 ) 8 0 6 5 ( 4 ) 7 5 7 9 ( 4 ) 7 0 0 1 ( 4 ) 6 5 2 4 ( 4 ) 7 8 8 3 ( 4 ) 8 7 1 1 ( 4 ) 7 6 6 4 ( 4 ) 5 5 7 9 ( 4 ) 5 9 5 2 ( 4 ) 5 9 7 3 ( 4 ) 5 6 2 4 ( 4 ) 5 2 4 8 ( 4 ) 5 2 2 8 ( 4 ) 6 0 1 7 ( 3 ) 6 6 5 7 ( 4 ) 6 9 9 3 ( 4 ) 6 7 1 5 ( 4 ) 6 0 8 7 ( 4 ) 5 7 6 0 ( 4 ) 4 9 8 4 ( 3 ) 4 4 6 8 ( 4 ) 4 3 7 0 ( 4 ) 3 2 3 2 6 ( 2 ) 2 9 ( 2 ) 2 9 ( 2 ) 2 8 ( 2 ) 4 4 ( 3 ) 4 4 ( 3 ) 4 3 ( 3 ) 4 6 ( 3 ) 2 7 ( 2 ) 2 7 ( 2 ) 2 8 ( 2 ) 2 6 ( 2 ) 2 3 ( 2 ) 2 3 ( 2 ) 2 6 ( 2 ) 2 8 ( 2 ) 2 1 ( 2 ) 2 5 ( 2 ) 4 3 ( 3 ) 3 9 ( 2 ) 4 1 ( 3 ) 3 8 ( 2 ) 2 6 ( 2 ) 4 2 ( 3 ) 4 6 ( 3 ) 4 1 ( 3 ) 3 5 ( 2 ) 3 2 ( 2 ) 2 3 ( 2 ) 2 9 ( 2 ) 3 1 ( 2 ) 3 3 ( 2 ) 3 4 ( 2 ) 3 5 ( 2 ) 2 2 ( 2 ) 3 5 ( 2 ) 3 8 ( 2 ) C ( 4 4 ) 1 0 4 1 4 ( 7 ) 6 6 8 ( 3 ) 4 7 9 7 ( 5 ) 3 7 ( 2 ) 1 C ( 4 5 ) 1 0 4 6 1 ( 8 ) 9 3 6 ( 3 ) 5 3 2 1 ( 4 ) 3 9 ( 3 ) 1 C ( 4 6 ) 9 5 9 7 ( 7 ) 1 2 2 7 ( 3 ) 5 4 0 3 ( 4 ) 3 5 ( 2 ) 1 C ( 4 7 ) 6 5 1 9 ( 7 ) 1 1 7 5 ( 3 ) 5 4 0 3 ( 4 ) 2 3 ( 2 ) 1 C ( 4 8 ) 5 5 0 7 ( 7 ) 1 0 5 8 ( 3 ) 5 0 8 3 ( 4 ) 3 3 ( 2 ) 1 C ( 4 9 ) 4 8 0 3 ( 8 ) 7 2 7 ( 3 ) 5 2 8 3 ( 4 ) 4 6 ( 3 ) 1 C ( 5 0 ) 5 1 1 0 ( 8 ) 5 1 1 ( 3 ) 5 8 2 8 ( 4 ) 3 4 ( 2 ) 1 C ( 5 1 ) 6 1 1 0 ( 8 ) 6 1 2 ( 3 ) 6 1 5 8 ( 4 ) 3 8 ( 2 ) 1 C ( 5 2 ) 6 7 9 8 ( 7 ) 9 3 4 ( 3 ) 5 9 4 8 ( 4 ) 3 2 ( 2 ) 1 C ( 5 3 ) 9 1 3 2 ( 7 ) 3 3 3 5 ( 3 ) 4 2 8 5 ( 3 ) 2 4 ( 2 ) 1 C ( 5 4 ) 8 5 5 6 ( 7 ) 3 5 0 8 ( 3 ) 3 7 4 6 ( 4 ) 3 5 ( 2 ) 1 C ( 5 5 ) 8 8 5 5 ( 7 ) 3 9 1 1 ( 3 ) 3 4 8 7 ( 4 ) 3 5 ( 2 ) 1 C ( 5 6 ) 9 7 7 1 ( 8 ) 4 1 4 2 ( 3 ) 3 7 1 3 ( 4 ) 3 4 ( 2 ) 1 C ( 5 7 ) 1 0 3 6 0 ( 8 ) 3 9 8 8 ( 3 ) 4 2 6 8 ( 4 ) 3 7 ( 2 ) 1 C ( 5 8 ) 1 0 0 3 2 ( 7 ) 3 5 9 2 ( 3 ) 4 5 3 7 ( 4 ) 2 9 ( 2 ) 1 C ( 5 9 ) 9 7 8 0 ( 7 ) 2 3 9 6 ( 3 ) 4 3 4 4 ( 4 ) 2 4 ( 2 ) 1 C ( 6 0 ) 1 0 6 3 9 ( 7 ) 2 2 2 0 ( 3 ) 4 7 4 9 ( 4 ) 3 5 ( 2 ) 1 C ( 6 1 ) 1 1 4 2 3 ( 8 ) 1 9 2 0 ( 3 ) 4 5 5 3 ( 4 ) 4 0 ( 3 ) 1 C ( 6 2 ) 1 1 3 5 6 ( 8 ) 1 7 8 3 ( 3 ) 3 9 4 8 ( 4 ) 3 6 ( 2 ) 1 C ( 6 3 ) 1 0 5 0 6 ( 7 ) 1 9 6 1 ( 3 ) 3 5 3 2 ( 4 ) 3 4 ( 2 ) 1 C ( 6 4 ) 9 7 2 0 ( 7 ) 2 2 6 5 ( 3 ) 3 7 2 7 ( 4 ) 3 1 ( 2 ) 1 C ( 6 5 ) 3 1 9 8 ( 1 0 ) 4 7 5 6 ( 4 ) 6 0 8 2 ( 5 ) 8 0 ( 4 ) 1 C ( 6 6 ) 2 4 1 9 ( 8 ) 1 2 2 2 ( 3 ) 6 8 2 6 ( 5 ) 5 7 ( 3 ) 1 C ( 6 7 ) 3 4 4 4 ( 8 ) 4 1 ( 3 ) 5 7 7 6 ( 5 ) 6 1 ( 3 ) 1 C ( 6 8 ) 1 1 3 1 3 ( 9 ) 1 0 4 ( 3 ) 4 2 1 7 ( 5 ) 6 4 ( 3 ) 1 C ( 6 9 ) 9 7 2 2 ( 9 ) 4 6 5 3 ( 3 ) 2 8 6 7 ( 4 ) 5 5 ( 3 ) 1 C ( 7 0 ) 1 2 8 9 4 ( 8 ) 1 2 6 6 ( 3 ) 4 1 2 6 ( 5 ) 5 7 ( 3 ) 1 0 ( 1 S ) 2 9 4 0 ( 8 ) 3 2 1 ( 3 ) 2 9 4 6 ( 5 ) 1 1 6 ( 3 ) 1 C ( 1 8 ) 1 7 7 8 ( 1 0 ) 8 5 8 ( 4 ) 2 4 0 9 ( 5 ) 7 8 ( 4 ) 1 C ( 2 8 ) 2 2 6 8 ( 1 0 ) 4 0 6 ( 4 ) 2 4 5 3 ( 6 ) 9 8 ( 5 ) 1 C ( 3 8 ) 2 0 3 9 ( 1 3 ) 3 1 ( 4 ) 2 0 3 5 ( 7 ) 1 1 6 ( 6 ) 1 0 ( 2 8 ) 2 8 1 7 ( 1 1 ) 7 4 1 ( 4 ) 9 6 6 ( 7 ) 1 7 6 ( 5 ) 1 C ( 4 8 ) 2 1 6 5 ( 1 2 ) 8 6 1 ( 5 ) 8 5 ( 6 ) 1 1 1 ( 5 ) 1 C ( 5 8 ) 2 7 9 3 ( 1 6 ) 5 8 7 ( 6 ) 3 9 8 ( 8 ) 1 6 7 ( 8 ) 1 C ( 6 8 ) 3 4 9 8 ( 1 5 ) 2 0 0 ( 6 ) 2 7 7 ( 8 ) 1 7 1 ( 8 ) 1 T a b l e 1 7 ( c o n ' t ) 3 2 4 T a b l e 1 8 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { t m b p y V O L u — ( p - C H 3 O C 5 H 4 ) 2 P 0 2 ] 1 . 5 } 2 { C I O 4 } - 2 C H 3 C O C H 3 , ( 4 . 6 A ) . 3 2 5 A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 V ( 1 ) 2 7 ( 1 ) 3 1 ( 1 ) 1 3 ( 1 ) 0 ( 1 ) 0 ( 1 ) - 2 ( 1 ) V ( 2 ) 2 6 ( 1 ) 3 4 ( 1 ) 1 3 ( 1 ) 0 ( 1 ) - 1 ( 1 ) - 2 ( 1 ) C l ( 1 ) 4 3 ( 2 ) 4 0 ( 2 ) 6 6 ( 2 ) 7 ( 1 ) 6 ( 1 ) 2 ( 1 ) P ( 1 ) 2 7 ( 1 ) 3 6 ( 1 ) 1 3 ( 1 ) - 1 ( 1 ) 1 ( 1 ) 2 ( 1 ) P ( 2 ) 3 1 ( 1 ) 3 1 ( 1 ) 1 6 ( 1 ) 0 ( 1 ) - 2 ( 1 ) 1 ( 1 ) P ( 3 ) 2 4 ( 1 ) 3 3 ( 1 ) 1 7 ( 1 ) 1 ( 1 ) 3 ( 1 ) - 2 ( 1 ) 0 ( 1 ) 2 8 ( 4 ) 4 6 ( 4 ) 1 8 ( 3 ) 5 ( 3 ) - 2 ( 3 ) - 6 ( 3 ) 0 ( 2 ) 2 9 ( 3 ) 3 9 ( 4 ) 1 7 ( 3 ) 1 ( 3 ) - 1 ( 3 ) - 1 ( 3 ) 0 ( 3 ) 2 2 ( 3 ) 5 3 ( 4 ) 1 1 ( 3 ) - 2 ( 3 ) 0 ( 2 ) 2 ( 3 ) 0 ( 4 ) 3 9 ( 4 ) 2 5 ( 3 ) 1 6 ( 3 ) 2 ( 3 ) - 2 ( 3 ) - 1 ( 3 ) 0 ( 5 ) 2 5 ( 3 ) 3 5 ( 4 ) 2 0 ( 3 ) - 2 ( 3 ) 1 ( 3 ) - 7 ( 3 ) 0 ( 6 ) 3 4 ( 4 ) 3 4 ( 4 ) 1 7 ( 3 ) - 2 ( 3 ) - 3 ( 3 ) - 3 ( 3 ) 0 ( 7 ) 3 1 ( 4 ) 4 4 ( 4 ) 1 6 ( 3 ) 4 ( 3 ) 1 ( 3 ) - 1 ( 3 ) 0 ( 8 ) 3 5 ( 4 ) 4 0 ( 4 ) 6 ( 3 ) 1 ( 3 ) 3 ( 3 ) - 5 ( 3 ) 0 ( 9 ) 8 4 ( 6 ) 4 2 ( 5 ) 4 9 ( 5 ) 0 ( 4 ) 9 ( 4 ) 1 7 ( 4 ) 0 ( 1 0 ) 4 8 ( 4 ) 4 8 ( 4 ) 3 0 ( 4 ) 9 ( 3 ) 5 ( 3 ) - 1 1 ( 3 ) 0 ( 1 1 ) 4 0 ( 4 ) 4 7 ( 4 ) 6 5 ( 5 ) 1 2 ( 4 ) 8 ( 4 ) - 9 ( 4 ) 0 ( 1 2 ) 4 7 ( 4 ) 5 2 ( 5 ) 5 8 ( 5 ) - 1 4 ( 4 ) 1 0 ( 4 ) 1 3 ( 4 ) C ( 1 3 ) 5 2 ( 4 ) 3 3 ( 4 ) 4 5 ( 4 ) 1 2 ( 3 ) 0 ( 3 ) - 1 2 ( 3 ) C ( 1 4 ) 3 9 ( 4 ) 5 9 ( 5 ) 5 2 ( 4 ) - 7 ( 4 ) 1 1 ( 4 ) 1 6 ( 4 ) C ( 1 5 ) 4 9 ( 5 ) 6 2 ( 5 ) 1 2 4 ( 7 ) 1 0 ( 5 ) 1 9 ( 5 ) - 1 5 ( 4 ) C ( 1 6 ) 7 1 ( 5 ) 5 6 ( 5 ) 4 3 ( 4 ) - 2 ( 4 ) - 7 ( 4 ) - 8 ( 4 ) C ( 1 7 ) 4 7 ( 5 ) 6 1 ( 5 ) 1 2 3 ( 7 ) 1 4 ( 5 ) 2 3 ( 5 ) 1 8 ( 4 ) C ( 1 8 ) 9 5 ( 6 ) 5 8 ( 5 ) 3 8 ( 4 ) 7 ( 4 ) - 2 ( 4 ) 1 3 ( 4 ) N ( 1 ) 2 3 ( 4 ) 2 8 ( 4 ) 2 3 ( 4 ) - 5 ( 3 ) 5 ( 3 ) - 5 ( 3 ) N ( 2 ) 1 8 ( 4 ) 2 8 ( 4 ) 2 0 ( 4 ) - 1 ( 3 ) - 3 ( 3 ) - 1 ( 3 ) N ( 3 ) 2 5 ( 4 ) 3 8 ( 5 ) 1 4 ( 4 ) - 1 ( 3 ) - 2 ( 3 ) 4 ( 4 ) N ( 4 ) 2 6 ( 4 ) 2 4 ( 4 ) 1 5 ( 4 ) 4 ( 3 ) - 3 ( 3 ) - 7 ( 3 ) C ( 1 ) 2 6 ( 5 ) 4 4 ( 6 ) 1 8 ( 5 ) 3 ( 5 ) - 2 ( 4 ) - 9 ( 5 ) C ( 2 ) 3 2 ( 6 ) 2 7 ( 5 ) 2 9 ( 5 ) 7 ( 4 ) 1 ( 4 ) - 6 ( 4 ) C ( 3 ) 2 3 ( 5 ) 3 3 ( 6 ) 2 1 ( 5 ) - 3 ( 4 ) - 6 ( 4 ) - 4 ( 4 ) C ( 4 ) 2 6 ( 5 ) 4 7 ( 6 ) 1 3 ( 5 ) 0 ( 4 ) 8 ( 4 ) - 1 ( 5 ) C ( 5 ) 2 7 ( 5 ) 4 2 ( 6 ) 1 3 ( 5 ) 0 ( 4 ) - 5 ( 4 ) - 1 2 ( 4 ) C ( 6 ) 2 2 ( 5 ) 2 2 ( 5 ) 2 1 ( 5 ) 0 ( 4 ) 4 ( 4 ) 0 ( 4 ) C ( 7 ) C ( 8 ) C ( 9 ) C ( 1 0 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) C ( 1 4 ) C ( 1 5 ) C ( 1 6 ) C ( 1 7 ) C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) C ( 2 5 ) C ( 2 6 ) C ( 2 7 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) C ( 3 3 ) C ( 3 4 ) C ( 3 5 ) C ( 3 6 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) C ( 4 3 ) 3 3 ( 5 ) 3 0 ( 5 ) 2 9 ( 5 ) 3 7 ( 6 ) 5 0 ( 7 ) 5 0 ( 7 ) 4 7 ( 6 ) 5 3 ( 7 ) 3 4 ( 6 ) 2 1 ( 5 ) 3 2 ( 6 ) 2 5 ( 5 ) 2 3 ( 5 ) 2 3 ( 5 ) 2 6 ( 5 ) 2 6 ( 5 ) 2 3 ( 5 ) 3 2 ( 5 ) 6 3 ( 7 ) 4 7 ( 6 ) 4 9 ( 6 ) 4 4 ( 6 ) 3 6 ( 6 ) 4 1 ( 6 ) 6 1 ( 8 ) 5 6 ( 7 ) 4 1 ( 6 ) 3 2 ( 6 ) 2 0 ( 5 ) 2 2 ( 5 ) 3 3 ( 5 ) 2 7 ( 6 ) 4 0 ( 6 ) 3 5 ( 6 ) 2 6 ( 5 ) 4 3 ( 6 ) 4 2 ( 6 ) T a b l e 1 8 ( c o n ' t ) 4 0 ( 6 ) 3 6 ( 6 ) 3 7 ( 6 ) 2 0 ( 5 ) 4 6 ( 7 ) 3 7 ( 6 ) 6 1 ( 7 ) 4 7 ( 7 ) 3 1 ( 6 ) 2 5 ( 5 ) 2 4 ( 5 ) 3 4 ( 6 ) 3 0 ( 5 ) 3 0 ( 8 ) 2 8 ( 5 ) 3 7 ( 6 ) 1 8 ( 5 ) 2 5 ( 5 ) 3 6 ( 6 ) 4 4 ( 6 ) 5 1 ( 7 ) 4 7 ( 6 ) 2 5 ( 5 ) 4 3 ( 7 ) 2 8 ( 6 ) 3 3 ( 6 ) 4 2 ( 6 ) 4 2 ( 6 ) 3 4 ( 6 ) 4 7 ( 6 ) 4 7 ( 8 ) 4 0 ( 6 ) 3 5 ( 6 ) 4 8 ( 6 ) 2 6 ( 5 ) 3 6 ( 6 ) 3 7 ( 6 ) 7 ( 4 ) 2 1 ( 5 ) 2 0 ( 5 ) 2 5 ( 5 ) 3 7 ( 6 ) 4 4 ( 6 ) 2 4 ( 5 ) 4 0 ( 6 ) 1 7 ( 5 ) 3 3 ( 6 ) 2 8 ( 5 ) 1 8 ( 5 ) 1 6 ( 5 ) 1 4 ( 5 ) 2 3 ( 5 ) 1 9 ( 5 ) 2 1 ( 5 ) 1 6 ( 5 ) 2 8 ( 6 ) 2 7 ( 5 ) 2 5 ( 5 ) 2 2 ( 5 ) 1 7 ( 5 ) 3 9 ( 6 ) 5 0 ( 7 ) 3 7 ( 6 ) 2 2 ( 5 ) 2 2 ( 5 ) 1 3 ( 4 ) 1 7 ( 5 ) 1 2 ( 5 ) 3 4 ( 6 ) 2 9 ( 6 ) 2 1 ( 5 ) 1 3 ( 5 ) 2 4 ( 5 ) 3 4 ( 6 ) 3 2 6 0 ( 4 ) - 8 ( 4 ) - 2 ( 4 ) 4 ( 4 ) 8 ( 5 ) 6 ( 5 ) 4 3 ( 5 ) 4 ( 5 ) 1 2 ( 4 ) - 4 ( 4 ) 1 ( 4 ) - 4 ( 4 ) - 4 ( 4 ) 8 ( 4 ) - 6 ( 4 ) 2 ( 4 ) 8 ( 4 ) 4 0 ( 4 ) - 8 ( 5 ) 4 2 ( 5 ) 3 ( 5 ) - 3 ( 5 ) - 1 ( 4 ) 6 ( 5 ) 0 ( 5 ) 1 4 ( 5 ) - 2 ( 5 ) - 8 ( 4 ) 1 ( 4 ) 1 ( 4 ) - 4 ( 4 ) 1 8 ( 5 ) - 4 ( 4 ) - 5 ( 5 ) 3 ( 4 ) 3 ( 4 ) 4 4 ( 5 ) 5 ( 4 ) 4 ( 4 ) 2 ( 4 ) - 9 ( 4 ) 3 ( 5 ) 1 ( 5 ) 1 3 ( 5 ) 1 5 ( 5 ) 3 ( 4 ) - 4 ( 4 ) - 3 ( 4 ) - 2 ( 4 ) - 3 ( 4 ) 0 ( 4 ) - 4 ( 4 ) 4 ( 4 ) 1 ( 4 ) - 4 ( 4 ) - 5 ( 5 ) 7 ( 5 ) 1 4 ( 5 ) - 1 ( 4 ) 9 ( 4 ) - 5 ( 5 ) 4 ( 5 ) 1 3 ( 6 ) - 3 ( 4 ) 3 ( 4 ) - 2 ( 4 ) 4 ( 4 ) 2 ( 4 ) 1 3 ( 5 ) 8 ( 5 ) - 2 ( 4 ) 2 ( 4 ) - 9 ( 5 ) 5 ( 5 ) - 1 1 ( 4 ) - 2 ( 5 ) - 4 ( 4 ) - 5 ( 4 ) 1 5 ( 5 ) 3 ( 5 ) - 7 ( 5 ) 4 ( 5 ) - 4 ( 5 ) 1 ( 4 ) 1 ( 4 ) 7 ( 4 ) 1 1 ( 4 ) 3 ( 4 ) 3 ( 4 ) 8 ( 4 ) 2 ( 4 ) 4 ( 4 ) - 1 3 ( 5 ) - 4 ( 5 ) 1 1 ( 5 ) - 5 ( 5 ) - 4 ( 4 ) - 6 ( 5 ) - 5 ( 5 ) 5 ( 6 ) 3 ( 5 ) 0 ( 5 ) 5 ( 4 ) 0 ( 4 ) - 2 ( 5 ) 1 ( 5 ) — 1 6 ( 5 ) - 1 6 ( 5 ) - 3 ( 4 ) 1 0 ( 5 ) 5 ( 5 ) T a b l e 1 8 ( c o n ‘ t ) C ( 4 4 ) 2 2 ( 6 ) 3 3 ( 6 ) 5 5 ( 7 ) 9 ( 5 ) 3 ( 5 ) 8 ( 5 ) C ( 4 5 ) 3 4 ( 6 ) 4 4 ( 6 ) 3 5 ( 6 ) - 7 ( 5 ) 2 4 ( 5 ) 5 ( 5 ) C ( 4 6 ) 4 1 ( 6 ) 3 6 ( 6 ) 2 6 ( 5 ) 4 ( 4 ) 8 ( 5 ) 3 ( 5 ) C ( 4 7 ) 2 4 ( 5 ) 2 5 ( 5 ) 2 0 ( 5 ) 3 ( 4 ) 4 ( 4 ) 2 ( 4 ) C ( 4 8 ) 3 7 ( 6 ) 3 7 ( 6 ) 2 4 ( 5 ) 9 ( 4 ) 4 ( 5 ) 4 0 ( 5 ) C ( 4 9 ) 4 0 ( 6 ) 5 1 ( 7 ) 4 3 ( 7 ) 7 ( 5 ) - 9 ( 5 ) 8 ( 5 ) C ( 5 0 ) 3 4 ( 6 ) 2 9 ( 6 ) 4 2 ( 8 ) 1 ( 5 ) 1 1 ( 5 ) 2 ( 5 ) C ( 5 1 ) 4 8 ( 7 ) 4 0 ( 6 ) 2 6 ( 5 ) 1 6 ( 5 ) 2 ( 5 ) 1 ( 5 ) C ( 5 2 ) 3 2 ( 6 ) 3 5 ( 6 ) 3 0 ( 5 ) 2 ( 4 ) 4 ( 4 ) 4 ( 5 ) C ( 5 3 ) 2 5 ( 5 ) 3 6 ( 6 ) 1 0 ( 4 ) - 3 ( 4 ) 2 ( 4 ) - 7 ( 4 ) C ( 5 4 ) 3 6 ( 6 ) 4 3 ( 6 ) 2 6 ( 5 ) 4 ( 5 ) - 7 ( 4 ) - 1 8 ( 5 ) C ( 5 5 ) 3 3 ( 6 ) 3 7 ( 6 ) 3 3 ( 6 ) 1 4 ( 5 ) 4 ( 5 ) 8 ( 5 ) C ( 5 6 ) 4 8 ( 7 ) 1 9 ( 5 ) 3 8 ( 8 ) 8 ( 4 ) 1 4 ( 5 ) 9 ( 5 ) C ( 5 7 ) 4 7 ( 8 ) 2 8 ( 6 ) 3 8 ( 6 ) - 6 ( 5 ) 8 ( 5 ) 4 7 ( 5 ) C ( 5 8 ) 2 5 ( 5 ) 3 7 ( 6 ) 2 4 ( 5 ) - 5 ( 4 ) 4 ( 4 ) 5 ( 4 ) C ( 5 9 ) 3 5 ( 5 ) 1 8 ( 5 ) 1 9 ( 5 ) 1 ( 4 ) 7 ( 4 ) - 6 ( 4 ) C ( 6 0 ) 3 2 ( 6 ) 4 9 ( 6 ) 2 5 ( 5 ) 9 ( 5 ) 3 ( 4 ) 4 ( 5 ) C ( 6 1 ) 3 6 ( 6 ) 5 3 ( 7 ) 3 2 ( 6 ) 1 3 ( 5 ) 4 ( 5 ) 1 3 ( 5 ) C ( 6 2 ) 3 8 ( 6 ) 3 0 ( 6 ) 3 9 ( 6 ) 8 ( 5 ) 1 2 ( 5 ) - 5 ( 5 ) C ( 6 3 ) 2 3 ( 5 ) 5 4 ( 7 ) 2 4 ( 5 ) 5 ( 5 ) - 7 ( 4 ) 4 ( 5 ) C ( 6 4 ) 2 2 ( 5 ) 3 7 ( 6 ) 3 1 ( 5 ) 0 ( 5 ) - 7 ( 4 ) 1 ( 5 ) C ( 6 5 ) 1 0 2 ( 1 0 ) 4 9 ( 8 ) 8 8 ( 1 0 ) 4 3 ( 7 ) 6 ( 8 ) 3 5 ( 7 ) C ( 6 6 ) 5 8 ( 7 ) 5 6 ( 7 ) 5 8 ( 7 ) 5 ( 6 ) 2 2 ( 6 ) 2 3 ( 6 ) C ( 6 7 ) 4 4 ( 7 ) 5 9 ( 8 ) 8 1 ( 9 ) 2 ( 6 ) 5 ( 6 ) - 2 0 ( 6 ) C ( 6 8 ) 6 8 ( 8 ) 5 1 ( 7 ) 7 5 ( 9 ) 4 3 ( 6 ) 2 1 ( 7 ) 2 3 ( 6 ) C ( 6 9 ) 7 8 ( 8 ) 5 0 ( 7 ) 3 9 ( 6 ) 9 ( 5 ) 1 1 ( 8 ) - 2 ( 6 ) C ( 7 0 ) 4 3 ( 7 ) 6 2 ( 8 ) 6 7 ( 8 ) 3 ( 6 ) 1 3 ( 6 ) 6 ( 6 ) 0 ( 1 S ) 9 6 ( 8 ) 1 2 0 ( 8 ) 1 3 4 ( 9 ) 2 8 ( 7 ) 2 4 ( 7 ) 5 ( 6 ) C ( 1 S ) 8 3 ( 1 0 ) 6 0 ( 8 ) 8 3 ( 1 0 ) 2 5 ( 7 ) - 2 8 ( 7 ) 4 ( 7 ) C ( 2 8 ) 3 9 ( 8 ) 1 6 3 ( 1 8 ) 8 7 ( 1 1 ) 2 1 ( 1 2 ) - 1 4 ( 8 ) - 7 ( 9 ) C ( 3 S ) 1 2 3 ( 1 3 ) 7 1 ( 1 0 ) 1 5 3 ( 1 5 ) 8 2 ( 1 0 ) 7 ( 1 1 ) 4 5 ( 9 ) 0 ( 2 8 ) 1 5 8 ( 8 ) 1 7 3 ( 8 ) 1 9 3 ( 9 ) 4 4 ( 7 ) 8 ( 7 ) 1 8 ( 7 ) C ( 4 S ) 1 1 9 ( 9 ) 1 1 4 ( 8 ) 1 0 2 ( 8 ) 1 7 ( 7 ) 2 1 ( 7 ) 2 1 ( 7 ) C ( 5 6 ) 1 8 9 ( 1 1 ) 1 7 5 ( 1 1 ) 1 5 6 ( 1 1 ) 8 ( 9 ) 1 4 ( 9 ) 2 9 ( 9 ) C ( 6 8 ) 1 8 9 ( 1 1 ) 1 5 6 ( 1 3 1 8 4 ( 1 1 ) 4 3 ( 8 ) 2 ( 9 9 1 2 8 1 ) 3 2 7 T a b l e 1 9 . A t o m i c C o o r d i n a t e s ( x 1 0 ‘ ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ , u — ( C 5 H 5 ) 2 P 0 2 ] } 2 - C H 2 C l 2 ( 4 . 7 ) . A t o m V ( 1 ) 0 ( 1 ) N ( 1 ) C ( 1 ) C ( 2 ) C ( 3 ) N ( 2 ) 6 ( 1 ) N ( 3 ) C ( 4 ) C ( 5 ) 0 ( 6 ) N ( 4 ) N ( 5 ) 0 ( 7 ) C ( 8 ) C ( 9 ) N ( 6 ) 0 ( 2 ) P ( 1 ) C ( 1 0 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) C ( 1 4 ) C ( 1 5 ) C ( 1 6 ) C ( 1 7 ) C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) C ( 2 1 ) 0 ( 3 ) V ( 2 ) X 8 3 8 9 ( 1 ) 7 2 9 6 ( 2 ) 9 8 2 2 ( 2 ) 1 0 7 8 7 ( 2 ) 1 1 3 4 1 ( 3 ) 1 0 6 4 4 ( 3 ) 9 7 3 9 ( 2 ) 8 6 6 9 ( 3 ) 8 5 8 7 ( 2 ) 8 5 6 2 ( 3 ) 8 6 3 4 ( 3 ) 8 7 0 5 ( 3 ) 8 8 7 4 ( 2 ) 7 3 0 3 ( 2 ) 6 2 6 5 ( 2 ) 5 7 7 3 ( 3 ) 6 6 0 1 ( 3 ) 7 5 0 8 ( 2 ) 8 4 5 5 ( 2 ) 9 0 2 5 ( 1 ) 7 9 8 5 ( 2 ) 8 2 7 9 ( 3 ) 7 4 8 5 ( 3 ) 6 4 0 2 ( 3 ) 6 1 0 0 ( 3 ) 6 8 8 8 ( 3 ) 9 1 5 5 ( 3 ) 8 1 3 8 ( 3 ) 8 2 2 4 ( 4 ) 9 3 2 4 ( 4 ) 1 0 3 4 0 ( 4 ) 1 0 2 6 1 ( 3 ) 1 0 2 4 9 ( 2 ) 5 9 9 0 ( 1 ) ) 7 8 9 0 ( 1 ) 1 8 9 ( 2 ) 2 0 4 8 ( 2 ) 1 9 9 3 ( 2 ) 2 8 9 0 ( 2 ) 3 4 8 8 ( 2 ) 2 9 7 9 ( 2 ) 3 2 4 0 ( 3 ) 2 3 3 5 ( 2 ) 2 5 5 4 ( 2 ) 3 5 9 0 ( 2 ) 3 9 9 6 ( 2 ) 3 2 3 7 ( 2 ) 1 3 2 0 ( 2 ) 7 2 1 ( 2 ) 1 3 4 4 ( 3 ) 2 3 6 5 ( 3 ) 2 3 4 0 ( 2 ) 4 8 4 ( 2 ) - 9 5 1 ( 1 ) 2 2 6 3 ( 2 ) 8 1 4 7 ( 2 ) 4 1 4 8 ( 3 ) 4 2 6 8 ( 3 ) 8 4 0 2 ( 3 ) 2 3 9 9 ( 2 ) 8 7 8 ( 2 ) 4 0 5 6 ( 3 ) 8 9 2 ( 3 ) - 7 5 3 ( 3 ) - 5 6 9 ( 3 ) 8 3 1 ( 3 ) - 7 8 0 ( 2 ) 1 5 1 1 ( 1 ) Z 4 7 5 7 ( 1 ) 4 0 2 7 ( 1 ) 5 8 0 8 ( 1 ) 6 3 0 2 ( 2 ) 6 8 8 5 ( 2 ) 6 7 1 6 ( 2 ) 6 0 6 8 ( 1 ) 5 6 3 1 ( 2 ) 4 2 2 4 ( 1 ) 3 4 2 7 ( 2 ) 3 3 5 2 ( 2 ) 4 1 5 6 ( 2 ) 4 6 7 9 ( 2 ) 5 4 7 4 ( 1 ) 5 6 6 6 ( 2 ) 6 0 5 4 ( 2 ) 6 0 9 9 ( 2 ) 5 7 4 5 ( 2 ) 5 5 4 7 ( 1 ) 5 8 7 9 ( 1 ) 5 4 5 6 ( 2 ) 5 6 1 4 ( 2 ) 5 2 6 7 ( 3 ) 4 7 6 7 ( 2 ) 4 6 1 1 ( 2 ) 4 9 5 2 ( 2 ) 7 0 0 3 ( 2 ) 7 3 4 7 ( 2 ) 8 2 1 8 ( 2 ) 8 7 3 6 ( 2 ) 8 4 0 7 ( 2 ) 7 5 3 9 ( 2 ) 5 6 9 9 ( 1 ) 1 2 5 0 ( 1 ) 3 2 8 U e q 1 6 ( 1 ) 2 6 ( 1 ) 2 0 ( 1 ) 2 3 ( 1 ) 2 7 ( 1 ) 2 6 ( 1 ) 2 1 ( 1 ) 2 3 ( 1 ) 2 0 ( 1 ) 2 5 ( 1 ) 3 2 ( 1 ) 2 9 ( 1 ) 2 3 ( 1 ) 2 1 ( 1 ) 2 5 ( 1 ) 3 0 ( 1 ) 2 8 ( 1 ) 2 2 ( 1 ) 2 2 ( 1 ) 1 7 ( 1 ) 2 1 ( 1 ) 3 7 ( 1 ) 4 8 ( 1 ) 4 5 ( 1 ) 4 1 ( 1 ) 2 9 ( 1 ) 2 2 ( 1 ) 3 4 ( 1 ) 4 5 ( 1 ) 4 6 ( 1 ) 4 3 ( 1 ) 3 1 ( 1 ) 2 2 ( 1 ) 1 9 ( 1 ) O c c u p a n c y A T a b l e 1 9 ( c o n ' t ) 0 ( 4 ) 7 1 8 5 ( 2 ) 1 3 6 7 ( 2 ) 1 8 9 8 ( 1 ) 3 3 ( 1 ) 1 N ( 7 ) 4 3 5 5 ( 2 ) 1 8 8 8 ( 2 ) 6 4 2 ( 2 ) 2 4 ( 1 ) 1 C ( 2 2 ) 3 4 7 8 ( 3 ) 1 4 2 2 ( 3 ) 2 2 ( 2 ) 2 9 ( 1 ) 1 C ( 2 3 ) 2 7 5 6 ( 3 ) 2 0 1 5 ( 3 ) 4 9 2 ( 2 ) 4 1 ( 1 ) 1 C ( 2 4 ) 3 2 4 1 ( 3 ) 2 8 6 5 ( 3 ) 4 0 9 ( 2 ) 4 1 ( 1 ) 1 N ( 8 ) 4 1 9 6 ( 2 ) 2 7 7 9 ( 2 ) 9 0 6 ( 2 ) 3 0 ( 1 ) 1 8 ( 2 ) 5 1 1 4 ( 4 ) 3 4 9 4 ( 3 ) 1 6 5 6 ( 2 ) 3 4 ( 1 ) 1 N ( 9 ) 6 8 4 9 ( 2 ) 3 1 7 7 ( 2 ) 1 1 8 9 ( 2 ) 2 9 ( 1 ) 1 C ( 2 5 ) 7 8 9 8 ( 3 ) 3 7 4 4 ( 3 ) 1 0 0 1 ( 2 ) 3 8 ( 1 ) 1 C ( 2 6 ) 8 0 8 8 ( 4 ) 4 8 1 9 ( 3 ) 1 0 7 9 ( 3 ) 5 3 ( 1 ) 1 C ( 2 7 ) 7 0 9 1 ( 4 ) 4 8 7 4 ( 3 ) 1 3 2 1 ( 2 ) 4 8 ( 1 ) 1 N ( 1 0 ) 6 3 5 1 ( 3 ) 3 8 8 4 ( 2 ) 1 3 9 4 ( 2 ) 3 4 ( 1 ) 1 N ( 1 1 ) 5 5 4 0 ( 2 ) 1 9 8 7 ( 2 ) 2 3 5 3 ( 2 ) 2 4 ( 1 ) 1 C ( 2 8 ) 5 5 8 7 ( 3 ) 1 6 2 4 ( 2 ) 3 1 0 7 ( 2 ) 2 8 ( 1 ) 1 C ( 2 9 ) 5 2 8 3 ( 3 ) 2 2 3 5 ( 3 ) 3 6 6 8 ( 2 ) 3 6 ( 1 ) 1 C ( 3 0 ) 5 0 3 6 ( 3 ) 2 9 8 4 ( 3 ) 3 2 0 2 ( 2 ) 3 7 ( 1 ) 1 N ( 1 2 ) 5 1 9 8 ( 2 ) 2 8 3 7 ( 2 ) 2 4 1 1 ( 2 ) 2 9 ( 1 ) 1 0 ( 5 ) 3 9 2 9 ( 2 ) - 1 1 8 6 ( 2 ) - 6 9 ( 1 ) 2 5 ( 1 ) 1 P ( 2 ) 4 0 4 4 ( 1 ) 4 0 1 1 ( 1 ) 8 6 6 ( 1 ) 1 8 ( 1 ) 1 C ( 3 1 ) 2 5 5 5 ( 3 ) 4 3 7 8 ( 2 ) 1 0 7 8 ( 2 ) 2 3 ( 1 ) 1 C ( 3 2 ) 2 3 9 6 ( 3 ) 4 3 4 0 ( 3 ) 1 9 0 8 ( 2 ) 3 4 ( 1 ) 1 C ( 3 3 ) 1 2 5 3 ( 3 ) 4 6 6 1 ( 3 ) 2 0 8 4 ( 2 ) 4 4 ( 1 ) 1 C ( 3 4 ) 2 6 8 ( 3 ) 2 0 3 3 ( 3 ) 1 4 3 7 ( 2 ) 4 5 ( 1 ) 1 C ( 3 5 ) 4 1 7 ( 3 ) 2 0 8 0 ( 3 ) 6 0 9 ( 2 ) 4 3 ( 1 ) 1 C ( 3 6 ) 1 5 5 3 ( 3 ) 4 7 3 7 ( 3 ) 4 2 9 ( 2 ) 3 2 ( 1 ) 1 C ( 3 7 ) 4 6 6 0 ( 2 ) 4 9 0 2 ( 2 ) 1 3 9 7 ( 2 ) 2 2 ( 1 ) 1 C ( 3 8 ) 5 5 5 7 ( 3 ) 4 5 3 8 ( 2 ) 2 1 1 1 ( 2 ) 2 7 ( 1 ) 1 C ( 3 9 ) 5 9 6 4 ( 3 ) 2 2 5 1 ( 3 ) 2 5 4 2 ( 2 ) 3 5 ( 1 ) 1 C ( 4 0 ) 5 4 8 9 ( 3 ) 8 3 1 4 ( 3 ) 2 2 6 3 ( 2 ) 4 0 ( 1 ) 1 C ( 4 1 ) 4 6 1 0 ( 3 ) 8 6 7 3 ( 3 ) 1 5 4 2 ( 3 ) 4 6 ( 1 ) 1 C ( 4 2 ) 4 1 9 2 ( 3 ) 2 9 7 4 ( 3 ) 1 1 0 8 ( 2 ) 3 7 ( 1 ) 1 0 ( 6 ) 4 7 8 4 ( 2 ) 8 8 ( 2 ) 1 2 8 2 ( 1 ) 2 5 ( 1 ) 1 C ( 1 S A ) 1 4 1 7 ( 7 ) 5 5 8 6 ( 7 ) 1 9 0 8 ( 5 ) 5 2 ( 2 ) 0 . 5 C l ( 1 A ) 1 1 1 3 ( 4 ) 5 0 6 8 ( 5 ) 8 8 8 ( 3 ) 1 3 0 ( 2 ) 0 . 5 C l ( 2 A ) 1 9 5 8 ( 1 0 ) 4 8 0 2 ( 5 ) 2 5 7 6 ( 4 ) 2 3 5 ( 6 ) 0 . 5 C ( 1 S B ) 1 2 8 8 ( 1 6 ) 3 5 1 5 ( 8 ) 1 9 1 8 ( 8 ) 1 0 0 ( 5 ) 0 . 5 C l ( 1 B ) 1 1 6 6 ( 5 ) 4 1 6 5 ( 7 ) 1 1 5 2 ( 5 ) 2 0 2 ( 3 ) 0 . 5 C l ( 2 B ) 2 3 8 1 ( 1 7 ) 4 2 7 8 ( 1 1 ) 2 5 5 7 ( 8 ) 4 3 5 ( 1 3 ) 0 . 5 3 2 9 T a b l e 2 0 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ , u — ( C 5 H 5 ) 2 P 0 2 ] } 2 ° C H 2 C 1 2 , ( 4 . 7 ) . 3 3 0 A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 V ( 1 ) 1 5 ( 1 ) 1 5 ( 1 ) 1 8 ( 1 ) 1 ( 1 ) 2 ( 1 ) 6 ( 1 ) 0 ( 1 ) 2 3 ( 1 ) 2 3 ( 1 ) 2 8 ( 1 ) 2 ( 1 ) 0 ( 1 ) 7 ( 1 ) N ( 1 ) 2 1 ( 1 ) 1 9 ( 1 ) 2 2 ( 1 ) 0 ( 1 ) 4 ( 1 ) 9 ( 1 ) C ( 1 ) 1 9 ( 1 ) 2 8 ( 2 ) 2 4 ( 1 ) 5 ( 1 ) 5 ( 1 ) 1 1 ( 1 ) C ( 2 ) 2 1 ( 1 ) 3 2 ( 2 ) 2 5 ( 2 ) 4 ( 1 ) 2 ( 1 ) 7 ( 1 ) 0 ( 3 ) 2 8 ( 2 ) 2 0 ( 1 ) 2 4 ( 2 ) 2 ( 1 ) 2 ( 1 ) 3 ( 1 ) N ( 2 ) 2 3 ( 1 ) 1 7 ( 1 ) 2 1 ( 1 ) 0 ( 1 ) 3 ( 1 ) 6 ( 1 ) 3 ( 1 ) 2 8 ( 2 ) 1 8 ( 2 ) 2 5 ( 2 ) 4 ( 1 ) 4 ( 1 ) 1 1 ( 1 ) N ( 3 ) 2 1 ( 1 ) 1 7 ( 1 ) 2 0 ( 1 ) 2 ( 1 ) 1 ( 1 ) 8 ( 1 ) C ( 4 ) 2 4 ( 2 ) 2 5 ( 2 ) 2 0 ( 1 ) 2 ( 1 ) 0 ( 1 ) 6 ( 1 ) C ( 5 ) 4 2 ( 2 ) 2 6 ( 2 ) 2 4 ( 2 ) 8 ( 1 ) 2 ( 1 ) 9 ( 1 ) C ( 6 ) 3 8 ( 2 ) 1 8 ( 1 ) 3 1 ( 2 ) 6 ( 1 ) 3 ( 1 ) 1 2 ( 1 ) N ( 4 ) 2 7 ( 1 ) 1 8 ( 1 ) 2 4 ( 1 ) 2 ( 1 ) 3 ( 1 ) 1 0 ( 1 ) N ( 5 ) 2 1 ( 1 ) 2 1 ( 1 ) 2 4 ( 1 ) 2 ( 1 ) 4 ( 1 ) 1 0 ( 1 ) 0 ( 7 ) 1 9 ( 1 ) 3 0 ( 2 ) 2 5 ( 2 ) 5 ( 1 ) 4 ( 1 ) 6 ( 1 ) C ( 8 ) 2 2 ( 2 ) 4 8 ( 2 ) 2 5 ( 2 ) 5 ( 1 ) 9 ( 1 ) 1 6 ( 1 ) C ( 9 ) 2 9 ( 2 ) 4 1 ( 2 ) 2 4 ( 2 ) 8 ( 1 ) 4 ( 1 ) 2 4 ( 1 ) N ( 6 ) 2 3 ( 1 ) 2 3 ( 1 ) 2 4 ( 1 ) 1 ( 1 ) 4 ( 1 ) 1 4 ( 1 ) 0 ( 2 ) 2 3 ( 1 ) 2 0 ( 1 ) 2 6 ( 1 ) 7 ( 1 ) 9 ( 1 ) 1 0 ( 1 ) P ( 1 ) 1 8 ( 1 ) 1 6 ( 1 ) 1 8 ( 1 ) 3 ( 1 ) 6 ( 1 ) 6 ( 1 ) C ( 1 0 ) 2 2 ( 1 ) 1 9 ( 1 ) 2 2 ( 1 ) 2 ( 1 ) 8 ( 1 ) 5 ( 1 ) C ( 1 1 ) 2 5 ( 2 ) 2 4 ( 2 ) 6 1 ( 2 ) 6 ( 2 ) 4 ( 2 ) 9 ( 1 ) C ( 1 2 ) 4 2 ( 2 ) 1 9 ( 2 ) 8 6 ( 3 ) 3 ( 2 ) 1 9 ( 2 ) 1 3 ( 2 ) C ( 1 3 ) 4 0 ( 2 ) 2 6 ( 2 ) 5 5 ( 2 ) 4 3 ( 2 ) 1 2 ( 2 ) 4 ( 2 ) C ( 1 4 ) 3 0 ( 2 ) 4 0 ( 2 ) 3 9 ( 2 ) 2 ( 2 ) 8 ( 2 ) 2 ( 2 ) C ( 1 5 ) 2 8 ( 2 ) 2 7 ( 2 ) 3 0 ( 2 ) 3 ( 1 ) 3 ( 1 ) 8 ( 1 ) C ( 1 6 ) 2 6 ( 2 ) 1 9 ( 1 ) 2 1 ( 1 ) 2 ( 1 ) 8 ( 1 ) 7 ( 1 ) C ( 1 7 ) 3 1 ( 2 ) 4 0 ( 2 ) 2 9 ( 2 ) 5 ( 1 ) 1 2 ( 1 ) 9 ( 1 ) C ( 1 8 ) 5 6 ( 2 ) 4 9 ( 2 ) 3 4 ( 2 ) 9 ( 2 ) 2 6 ( 2 ) 1 6 ( 2 ) C ( 1 9 ) 7 1 ( 3 ) 4 5 ( 2 ) 2 2 ( 2 ) 5 ( 2 ) 1 0 ( 2 ) 2 0 ( 2 ) C ( 2 0 ) 5 2 ( 2 ) 4 6 ( 2 ) 2 6 ( 2 ) 4 ( 2 ) - 6 ( 2 ) 2 0 ( 2 ) C ( 2 1 ) 3 2 ( 2 ) 3 5 ( 2 ) 2 9 ( 2 ) 1 ( 1 ) 2 ( 1 ) 1 6 ( 1 ) 0 ( 3 ) 2 0 ( 1 ) 2 1 ( 1 ) 2 6 ( 1 ) 2 ( 1 ) 8 ( 1 ) 8 ( 1 ) V ( 2 ) 1 9 ( 1 ) 2 0 ( 1 ) 1 6 ( 1 ) 4 ( 1 ) 1 ( 1 ) 8 ( 1 ) T a b l e 2 0 ( c o n ' t ) 0 ( 4 ) 2 9 ( 1 ) 4 4 ( 1 ) 2 7 ( 1 ) - 5 ( 1 ) 4 ( 1 ) 1 9 ( 1 ) N ( 7 ) 2 6 ( 1 ) 2 6 ( 1 ) 2 4 ( 1 ) 2 ( 1 ) 5 ( 1 ) 1 3 ( 1 ) C ( 2 2 ) 2 5 ( 2 ) 4 0 ( 2 ) 2 3 ( 2 ) 3 ( 1 ) 4 ( 1 ) 1 4 ( 1 ) C ( 2 3 ) 3 4 ( 2 ) 6 4 ( 2 ) 3 2 ( 2 ) 1 0 ( 2 ) 4 ( 1 ) 2 9 ( 2 ) C ( 2 4 ) 4 6 ( 2 ) 5 0 ( 2 ) 4 4 ( 2 ) 1 6 ( 2 ) 1 0 ( 2 ) 3 6 ( 2 ) N ( 8 ) 3 6 ( 2 ) 2 9 ( 1 ) 3 1 ( 1 ) 6 ( 1 ) 8 ( 1 ) 2 0 ( 1 ) 8 ( 2 ) 4 8 ( 2 ) 2 4 ( 2 ) 3 5 ( 2 ) 1 ( 2 ) 9 ( 2 ) 2 0 ( 2 ) N ( 9 ) 3 1 ( 1 ) 2 3 ( 1 ) 2 6 ( 1 ) 2 ( 1 ) 3 ( 1 ) 5 ( 1 ) C ( 2 5 ) 3 6 ( 2 ) 3 5 ( 2 ) 3 3 ( 2 ) 8 ( 1 ) 5 ( 1 ) 0 ( 2 ) C ( 2 6 ) 5 6 ( 2 ) 3 3 ( 2 ) 4 7 ( 2 ) 2 ( 2 ) 1 2 ( 2 ) 4 0 ( 2 ) C ( 2 7 ) 6 7 ( 3 ) 2 1 ( 2 ) 4 5 ( 2 ) 2 ( 2 ) 1 0 ( 2 ) 4 ( 2 ) N ( 1 0 ) 4 5 ( 2 ) 2 0 ( 1 ) 3 4 ( 2 ) 2 ( 1 ) 6 ( 1 ) 9 ( 1 ) N ( 1 1 ) 2 6 ( 1 ) 2 3 ( 1 ) 2 2 ( 1 ) 2 ( 1 ) 2 ( 1 ) 1 0 ( 1 ) C ( 2 8 ) 2 8 ( 2 ) 3 1 ( 2 ) 2 3 ( 2 ) 4 ( 1 ) 4 ( 1 ) 9 ( 1 ) C ( 2 9 ) 3 9 ( 2 ) 4 3 ( 2 ) 2 1 ( 2 ) 8 ( 1 ) 7 ( 1 ) 1 0 ( 2 ) C ( 3 0 ) 4 1 ( 2 ) 3 6 ( 2 ) 3 1 ( 2 ) 4 2 ( 1 ) 9 ( 2 ) 1 3 ( 2 ) N ( 1 2 ) 3 8 ( 2 ) 2 6 ( 1 ) 2 6 ( 1 ) 4 ( 1 ) 6 ( 1 ) 1 5 ( 1 ) 0 ( 5 ) 3 0 ( 1 ) 2 8 ( 1 ) 1 8 ( 1 ) 1 ( 1 ) 6 ( 1 ) 1 2 ( 1 ) P ( 2 ) 2 1 ( 1 ) 1 9 ( 1 ) 1 6 ( 1 ) 2 ( 1 ) 4 ( 1 ) 9 ( 1 ) C ( 3 1 ) 2 6 ( 2 ) 2 4 ( 2 ) 2 4 ( 2 ) 5 ( 1 ) 5 ( 1 ) 1 3 ( 1 ) C ( 3 2 ) 3 4 ( 2 ) 5 1 ( 2 ) 2 5 ( 2 ) 1 3 ( 1 ) 9 ( 1 ) 2 2 ( 2 ) C ( 3 3 ) 4 4 ( 2 ) 6 8 ( 3 ) 3 5 ( 2 ) 2 4 ( 2 ) 2 2 ( 2 ) 3 1 ( 2 ) C ( 3 4 ) 2 9 ( 2 ) 6 2 ( 2 ) 5 4 ( 2 ) 2 7 ( 2 ) 2 1 ( 2 ) 2 2 ( 2 ) C ( 3 5 ) 2 4 ( 2 ) 5 8 ( 2 ) 4 7 ( 2 ) 1 1 ( 2 ) 2 ( 2 ) 1 6 ( 2 ) C ( 3 6 ) 2 8 ( 2 ) 4 3 ( 2 ) 2 6 ( 2 ) 5 ( 1 ) 4 ( 1 ) 1 5 ( 1 ) C ( 3 7 ) 2 2 ( 1 ) 2 2 ( 1 ) 2 5 ( 1 ) 5 ( 1 ) 7 ( 1 ) 1 0 ( 1 ) C ( 3 8 ) 2 8 ( 2 ) 3 0 ( 2 ) 2 6 ( 2 ) 0 ( 1 ) 3 ( 1 ) 1 4 ( 1 ) C ( 3 9 ) 3 4 ( 2 ) 4 6 ( 2 ) 3 0 ( 2 ) 4 ( 2 ) 4 ( 1 ) 2 4 ( 2 ) C ( 4 0 ) 4 3 ( 2 ) 3 8 ( 2 ) 5 0 ( 2 ) 1 6 ( 2 ) 6 ( 2 ) 2 7 ( 2 ) C ( 4 1 ) 4 9 ( 2 ) 2 5 ( 2 ) 6 2 ( 2 ) 4 ( 2 ) 4 ( 2 ) 1 7 ( 2 ) C ( 4 2 ) 3 8 ( 2 ) 2 5 ( 2 ) 4 3 ( 2 ) 0 ( 1 ) 8 ( 2 ) 1 2 ( 1 ) 0 ( 6 ) 3 2 ( 1 ) 2 0 ( 1 ) 2 2 ( 1 ) 1 ( 1 ) 6 ( 1 ) 9 ( 1 ) C ( 1 S A ) 4 4 ( 4 ) 4 9 ( 5 ) 6 4 ( 5 ) 1 0 ( 4 ) 2 3 ( 4 ) 1 3 ( 4 ) C l ( 1 A ) 7 9 ( 2 ) 1 9 6 ( 5 ) 9 2 ( 2 ) 1 6 ( 3 ) 2 4 ( 2 ) 2 2 ( 3 ) C l ( 2 A ) 4 4 0 ( 1 4 ) 9 3 ( 3 ) 1 1 4 ( 4 ) 8 ( 3 ) 1 0 2 ( 6 ) 1 0 ( 6 ) C ( 1 S B ) 2 1 2 ( 1 6 ) 4 4 ( 6 ) 7 6 ( 8 ) 1 3 ( 5 ) 5 6 ( 9 ) 7 2 ( 8 ) C l ( 1 B ) 9 0 ( 3 ) 2 4 8 ( 8 ) 2 5 3 ( 9 ) 4 4 ( 7 ) - 5 ( 4 ) 6 7 ( 5 ) C l ( 2 B ) 8 1 0 ( 3 0 ) 3 7 7 ( 1 9 ) 3 5 1 ( 1 7 ) 2 5 9 ( 1 6 ) 4 4 0 ( 2 0 ) 3 3 g 2 0 ) 3 3 1 A T a b l e 2 1 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ , u — ( p - C H 3 0 C 6 H 4 ) 2 P 0 2 ] } 2 - C H 3 C N , ( 4 . 8 ) . A t o m V ( 1 ) 0 ( 1 ) 0 ( 2 ) 6 ( 1 ) N ( 1 ) C ( 1 ) C ( 2 ) C ( 3 ) N ( 2 ) N ( 3 ) C ( 4 ) C ( 5 ) C ( 6 ) N ( 4 ) N ( 5 ) C ( 7 ) C ( 8 ) C ( 9 ) N ( 6 ) 0 ( 3 ) P ( 1 ) C ( 1 0 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) C ( 1 4 ) C ( 1 5 ) 0 ( 4 ) C ( 1 6 ) C ( 1 7 ) C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) C ( 2 1 ) X 2 0 9 2 ( 1 ) 2 8 7 2 ( 1 ) 1 8 1 3 ( 1 ) 2 2 1 9 ( 2 ) 2 6 1 4 ( 1 ) 2 9 8 0 ( 2 ) 3 2 5 6 ( 2 ) 3 0 3 1 ( 2 ) 2 8 4 6 ( 1 ) 1 5 1 2 ( 1 ) 9 6 2 ( 2 ) 4 5 4 ( 2 ) 7 3 0 ( 1 ) 1 3 7 1 ( 1 ) 2 4 8 1 ( 1 ) 2 7 4 4 ( 2 ) 2 9 0 7 ( 2 ) 2 7 2 7 ( 1 ) 2 4 6 9 ( 1 ) 1 6 0 2 ( 1 ) 1 5 4 9 ( 1 ) 8 7 0 ( 1 ) 2 3 8 ( 1 ) 2 8 4 ( 2 ) 4 9 1 ( 2 ) 4 2 6 ( 2 ) 9 4 9 ( 1 ) 2 3 7 ( 1 ) 8 6 4 ( 2 ) 1 3 7 0 ( 1 ) 1 0 7 0 ( 1 ) 9 2 4 ( 2 ) 1 0 7 1 ( 1 ) 1 3 7 6 ( 2 ) Y 1 7 5 9 ( 1 ) 2 4 9 7 ( 2 ) 2 6 5 3 ( 2 ) 2 2 8 ( 3 ) 2 5 ( 2 ) 4 5 6 ( 3 ) 7 8 6 ( 3 ) 1 5 1 3 ( 3 ) 1 0 6 8 ( 2 ) 8 3 7 ( 2 ) 8 4 9 ( 3 ) 4 8 2 ( 3 ) 7 5 8 ( 3 ) 6 6 5 ( 2 ) 8 5 0 ( 2 ) 4 3 7 9 ( 3 ) 8 0 3 ( 3 ) 1 4 1 ( 2 ) 2 9 9 ( 2 ) 2 0 5 8 ( 2 ) 2 0 8 8 ( 1 ) 2 8 9 7 ( 2 ) 2 5 2 2 ( 3 ) 3 1 8 6 ( 3 ) 4 2 4 1 ( 3 ) 4 6 2 3 ( 2 ) 3 9 4 6 ( 2 ) 4 8 2 8 ( 2 ) 5 9 3 5 ( 3 ) 7 8 6 ( 2 ) 5 5 ( 2 ) 8 3 8 ( 2 ) - 1 2 2 8 ( 2 ) 8 1 8 ( 2 ) Z 1 1 2 6 ( 1 ) 8 1 6 ( 1 ) 1 5 9 8 ( 1 ) 1 5 9 9 ( 2 ) 2 0 5 1 ( 1 ) 2 5 9 7 ( 2 ) 2 8 0 3 ( 2 ) 2 3 5 2 ( 1 ) 1 8 9 6 ( 1 ) 1 5 8 1 ( 1 ) 1 7 1 1 ( 2 ) 1 6 0 8 ( 2 ) 1 4 0 6 ( 2 ) 1 3 8 9 ( 1 ) 8 9 3 ( 1 ) 4 9 5 ( 2 ) 8 0 ( 2 ) 4 5 ( 2 ) 5 8 0 ( 1 ) 2 9 2 ( 1 ) 4 5 9 ( 1 ) 8 6 5 ( 1 ) 8 9 7 ( 2 ) 8 7 6 ( 2 ) 8 2 4 ( 1 ) 8 0 2 ( 2 ) 8 3 0 ( 2 ) 8 9 1 ( 1 ) 8 7 9 ( 2 ) 2 5 5 ( 1 ) 8 4 6 ( 1 ) 8 7 5 ( 2 ) 4 2 2 0 ( 2 ) 4 6 3 4 ( 2 ) 3 3 2 U e q 1 9 ( 1 ) 2 5 ( 1 ) 2 8 ( 1 ) 3 1 ( 1 ) 2 8 ( 1 ) 3 4 ( 1 ) 3 8 ( 1 ) 3 2 ( 1 ) 2 5 ( 1 ) 2 9 ( 1 ) 4 0 ( 1 ) 4 2 ( 1 ) 3 2 ( 1 ) 2 5 ( 1 ) 2 9 ( 1 ) 3 9 ( 1 ) 4 0 ( 1 ) 2 9 ( 1 ) 2 4 ( 1 ) 2 4 ( 1 ) 1 9 ( 1 ) 2 3 ( 1 ) 3 2 ( 1 ) 3 9 ( 1 ) 3 3 ( 1 ) 3 2 ( 1 ) 2 9 ( 1 ) 4 4 ( 1 ) 4 8 ( 1 ) 2 1 ( 1 ) 2 8 ( 1 ) 3 1 ( 1 ) 2 9 ( 1 ) 3 1 ( 1 ) O c c u p a n c y A — A A — L — l — k - A — k — L — L — t — L — A — L — l — k — k — k — K — ‘ L — h — A — L o — L — L — L A — L — K — k — L — B — ‘ L C ( 2 2 ) 1 5 1 8 ( 1 ) 4 8 1 ( 2 ) 4 3 9 8 ( 1 ) 2 8 ( 1 ) 1 0 ( 5 ) 8 9 3 ( 1 ) 2 2 2 4 ( 2 ) - 1 3 9 8 ( 1 ) 4 2 ( 1 ) 1 C ( 2 3 ) 1 0 5 3 ( 2 ) 2 5 6 5 ( 3 ) 2 0 5 0 ( 2 ) 5 6 ( 1 ) 1 N ( 7 ) 0 4 6 8 3 ( 5 ) 2 5 0 0 7 7 ( 2 ) 1 C ( 2 4 ) 0 5 5 8 7 ( 5 ) 2 5 0 0 5 4 ( 1 ) 1 C ( 2 5 ) 0 6 7 0 3 ( 5 ) 2 5 0 0 6 5 ( 2 ) 1 T a b l e 2 1 ( c o n ' t ) 3 3 3 T a b l e 2 2 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ p — ( p - C H 3 O C $ H 4 ) 2 P 0 2 ] } 2 ' C H 3 C N , ( 4 . 8 ) . 3 3 4 A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 V ( 1 ) 2 2 ( 1 ) 1 7 ( 1 ) 1 8 ( 1 ) 0 ( 1 ) 0 ( 1 ) 1 ( 1 ) 0 ( 1 ) 2 2 ( 1 ) 2 4 ( 1 ) 2 8 ( 1 ) 4 ( 1 ) 0 ( 1 ) 8 ( 1 ) 0 ( 2 ) 3 4 ( 1 ) 2 6 ( 1 ) 2 4 ( 1 ) 4 ( 1 ) 0 ( 1 ) 4 ( 1 ) 8 ( 1 ) 3 7 ( 2 ) 2 1 ( 2 ) 3 7 ( 2 ) 5 ( 1 ) 0 ( 2 ) 0 ( 2 ) N ( 1 ) 3 2 ( 1 ) 2 4 ( 1 ) 2 6 ( 1 ) 7 ( 1 ) 2 ( 1 ) 4 ( 1 ) C ( 1 ) 3 5 ( 2 ) 3 8 ( 2 ) 2 8 ( 2 ) 1 1 ( 1 ) 0 ( 1 ) 9 ( 1 ) C ( 2 ) 3 8 ( 2 ) 4 8 ( 2 ) 2 8 ( 2 ) 2 ( 2 ) 4 1 ( 1 ) 6 ( 2 ) 0 ( 3 ) 3 5 ( 2 ) 3 4 ( 2 ) 2 7 ( 2 ) 8 ( 1 ) - 5 ( 1 ) 0 ( 1 ) N ( 2 ) 2 9 ( 1 ) 2 2 ( 1 ) 2 5 ( 1 ) 3 ( 1 ) 2 ( 1 ) 4 ( 1 ) N ( 3 ) 3 1 ( 1 ) 2 6 ( 1 ) 3 0 ( 1 ) 4 ( 1 ) 2 ( 1 ) - 5 ( 1 ) C ( 4 ) 4 4 ( 2 ) 3 3 ( 2 ) 4 3 ( 2 ) 5 ( 2 ) 3 ( 2 ) 4 5 ( 2 ) C ( 5 ) 2 7 ( 2 ) 5 4 ( 2 ) 4 6 ( 2 ) 4 ( 2 ) 2 ( 1 ) 4 4 ( 2 ) C ( 6 ) 2 6 ( 2 ) 4 0 ( 2 ) 3 0 ( 2 ) 4 ( 1 ) 2 ( 1 ) 4 ( 1 ) N ( 4 ) 2 6 ( 1 ) 2 6 ( 1 ) 2 4 ( 1 ) 1 ( 1 ) 1 ( 1 ) 0 ( 1 ) N ( 5 ) 3 4 ( 1 ) 2 0 ( 1 ) 3 3 ( 1 ) 4 ( 1 ) 0 ( 1 ) 3 ( 1 ) C ( 7 ) 4 5 ( 2 ) 2 4 ( 2 ) 4 8 ( 2 ) 2 ( 2 ) 1 ( 2 ) 9 ( 1 ) C ( 8 ) 4 4 ( 2 ) 3 7 ( 2 ) 4 0 ( 2 ) 4 3 ( 2 ) 1 0 ( 2 ) 6 ( 2 ) C ( 9 ) 2 6 ( 2 ) 3 5 ( 2 ) 2 7 ( 2 ) 4 ( 1 ) 2 ( 1 ) 0 ( 1 ) N ( 6 ) 2 6 ( 1 ) 2 3 ( 1 ) 2 5 ( 1 ) 1 ( 1 ) 4 ( 1 ) 0 ( 1 ) 0 ( 3 ) 2 7 ( 1 ) 2 3 ( 1 ) 2 1 ( 1 ) 1 ( 1 ) 8 ( 1 ) 2 ( 1 ) P ( 1 ) 2 0 ( 1 ) 1 9 ( 1 ) 1 9 ( 1 ) 2 ( 1 ) 2 ( 1 ) 4 ( 1 ) C ( 1 0 ) 2 3 ( 1 ) 2 6 ( 2 ) 1 9 ( 1 ) 4 ( 1 ) 2 ( 1 ) 2 ( 1 ) C ( 1 1 ) 2 8 ( 2 ) 3 1 ( 2 ) 3 6 ( 2 ) 8 ( 1 ) 4 ( 1 ) 8 ( 1 ) C ( 1 2 ) 2 3 ( 2 ) 4 9 ( 2 ) 4 4 ( 2 ) 7 ( 2 ) 0 ( 1 ) 3 ( 1 ) C ( 1 3 ) 3 1 ( 2 ) 4 3 ( 2 ) 2 4 ( 2 ) 2 ( 1 ) - 8 ( 1 ) 1 2 ( 1 ) C ( 1 4 ) 3 5 ( 2 ) 2 7 ( 2 ) 3 5 ( 2 ) 0 ( 1 ) 8 ( 1 ) 7 ( 1 ) C ( 1 5 ) 2 5 ( 2 ) 2 9 ( 2 ) 3 2 ( 2 ) 1 ( 1 ) - 5 ( 1 ) 0 ( 1 ) 0 ( 4 ) 3 3 ( 1 ) 5 2 ( 2 ) 4 8 ( 1 ) 1 ( 1 ) - 8 ( 1 ) 1 9 ( 1 ) C ( 1 7 ) 2 0 ( 1 ) 2 1 ( 1 ) 2 1 ( 1 ) 1 ( 1 ) 4 ( 1 ) 0 ( 1 ) C ( 1 8 ) 3 7 ( 2 ) 2 8 ( 2 ) 2 0 ( 1 ) 4 ( 1 ) 6 ( 1 ) 8 ( 1 ) C ( 1 9 ) 4 1 ( 2 ) 2 7 ( 2 ) 2 6 ( 2 ) 2 ( 1 ) 7 ( 1 ) 8 ( 1 ) C ( 2 0 ) 3 2 ( 2 ) 2 2 ( 2 ) 3 2 ( 2 ) 2 ( 1 ) 2 ( 1 ) 4 ( 1 ) C ( 2 1 ) 3 9 ( 2 ) 3 2 ( 2 ) 2 3 ( 2 ) 8 ( 1 ) 9 ( 1 ) 2 ( 1 ) C ( 2 2 ) 3 2 ( 2 ) 2 6 ( 2 ) 2 5 ( 2 ) 3 ( 1 ) 6 ( 1 ) 8 ( 1 ) T a b l e 2 2 ( c o n ' t ) 0 ( 5 ) 6 2 ( 2 ) 2 7 ( 1 ) 3 7 ( 1 ) - 9 ( 1 ) 1 4 ( 1 ) 4 3 ( 1 ) N ( 7 ) 1 0 4 ( 5 ) 7 2 ( 4 ) 5 4 ( 3 ) 0 - 5 ( 3 ) 0 C ( 2 4 ) 6 2 ( 4 ) 6 2 ( 4 ) 3 7 ( 3 ) 0 2 ( 3 ) 0 C ( 2 5 L 9 2 ( 5 ) 8 0 ( 4 ) 4 3 ( 3 ) 0 1 1 ( 3 ) 0 3 3 5 T a b l e 2 3 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ p — ( p - F — C 5 H 4 ) 2 P 0 2 ] } 2 - 2 C H 3 C N , ( 4 . 9 ) . A t o m V ( 1 ) 0 ( 1 ) 0 ( 2 ) 0 ( 3 ) N ( 1 ) N ( 2 ) C ( 1 ) C ( 2 ) C ( 3 ) N ( 3 ) N ( 4 ) C ( 4 ) C ( 5 ) C ( 6 ) N ( 5 ) N ( 6 ) 0 ( 7 ) C ( 8 ) C ( 9 ) 6 ( 1 ) P ( 1 ) C ( 1 0 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) C ( 1 4 ) C ( 1 5 ) P ( 1 ) C ( 1 6 ) C ( 1 7 ) C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) C ( 2 1 ) X 2 6 0 2 ( 1 ) 3 4 9 2 ( 2 ) 6 8 7 ( 2 ) 1 9 8 9 ( 2 ) 3 1 6 4 ( 2 ) 3 6 5 4 ( 2 ) 3 9 6 9 ( 2 ) 3 6 8 9 ( 3 ) 3 2 0 4 ( 3 ) 4 3 5 9 ( 2 ) 4 6 9 9 ( 2 ) 5 8 6 3 ( 3 ) 6 2 9 1 ( 3 ) 5 3 1 8 ( 2 ) 1 5 3 4 ( 2 ) 2 2 3 3 ( 2 ) 1 3 7 7 ( 3 ) 1 0 3 ( 3 ) 2 5 2 ( 3 ) 3 7 5 5 ( 3 ) - 8 1 4 ( 1 ) 4 3 4 3 ( 2 ) 2 5 8 2 ( 3 ) 2 9 0 8 ( 3 ) 4 9 9 0 ( 3 ) 2 6 4 ( 3 ) 4 4 8 ( 3 ) 2 2 8 9 ( 2 ) 2 4 8 ( 2 ) 4 7 3 ( 3 ) 5 0 9 ( 3 ) 8 6 7 ( 3 ) 4 8 9 2 ( 3 ) 4 9 1 8 ( 3 ) Y 3 9 1 7 ( 1 ) 4 6 4 1 ( 1 ) 4 4 5 1 ( 1 ) 4 6 6 8 ( 1 ) 2 7 8 6 ( 1 ) 1 7 5 8 ( 1 ) 1 2 1 2 ( 2 ) 1 8 5 8 ( 2 ) 2 8 2 0 ( 2 ) 3 0 6 5 ( 1 ) 2 0 2 0 ( 1 ) 1 7 0 4 ( 2 ) 2 5 4 1 ( 2 ) 3 3 7 4 ( 2 ) 2 6 8 4 ( 1 ) 1 6 8 2 ( 1 ) 1 1 1 0 ( 2 ) 1 7 4 0 ( 2 ) 2 7 1 5 ( 2 ) 1 4 1 6 ( 2 ) 4 6 0 4 ( 1 ) 3 3 9 9 ( 2 ) 3 2 7 6 ( 2 ) 2 3 2 3 ( 2 ) 1 5 1 7 ( 2 ) 1 6 0 1 ( 2 ) 2 5 5 3 ( 2 ) 5 7 2 ( 1 ) 5 0 8 9 ( 2 ) 5 4 1 5 ( 2 ) 5 8 3 3 ( 2 ) 5 8 9 9 ( 2 ) 5 5 9 2 ( 2 ) 5 1 8 0 ( 2 ) Z 2 7 7 ( 1 ) 4 9 7 ( 1 ) 6 8 2 ( 1 ) - 5 9 5 ( 1 ) 1 0 9 5 ( 1 ) 1 0 4 2 ( 1 ) 1 6 3 5 ( 1 ) 2 0 8 5 ( 1 ) 1 7 2 4 ( 1 ) 2 0 6 ( 1 ) 4 0 3 ( 1 ) 4 8 7 ( 1 ) 8 4 5 ( 1 ) 8 4 9 ( 1 ) 2 2 ( 1 ) 1 1 7 ( 1 ) 8 5 ( 1 ) 2 3 9 ( 1 ) 4 9 9 ( 1 ) 3 7 4 ( 1 ) 9 9 0 ( 1 ) 1 1 8 8 ( 1 ) 9 3 7 ( 1 ) 1 0 2 2 ( 1 ) 1 3 6 2 ( 1 ) 1 6 2 8 ( 1 ) 1 5 4 0 ( 1 ) 1 4 3 3 ( 1 ) 1 7 3 0 ( 1 ) 1 8 5 3 ( 1 ) 2 4 0 8 ( 1 ) 2 8 3 5 ( 1 ) 2 7 3 6 ( 1 ) 2 1 7 8 ( 1 ) 3 3 6 U e q . 1 8 ( 1 ) 2 8 ( 1 ) 2 3 ( 1 ) 2 4 ( 1 ) 2 2 ( 1 ) 2 3 ( 1 ) 2 8 ( 1 ) 3 2 ( 1 ) 2 7 ( 1 ) 2 1 ( 1 ) 2 2 ( 1 ) 2 8 ( 1 ) 3 3 ( 1 ) 2 6 ( 1 ) 2 3 ( 1 ) 2 4 ( 1 ) 3 3 ( 1 ) 3 5 ( 1 ) 2 5 ( 1 ) 2 5 ( 1 ) 1 9 ( 1 ) 2 0 ( 1 ) 2 5 ( 1 ) 2 9 ( 1 ) 3 3 ( 1 ) 3 1 ( 1 ) 2 6 ( 1 ) 5 3 ( 1 ) 2 2 ( 1 ) 2 6 ( 1 ) 3 1 ( 1 ) 3 3 ( 1 ) 3 7 ( 1 ) 3 0 ( 1 ) O c c u p a n c y _ L A — L - fi — A — k — ‘ L — L — ‘ A — B — l — L — S ‘ A — L — L A A A A - A A A — L - A — t — L — b - A — l — S — k F ( 2 ) V ( 2 ) 0 ( 4 ) 0 ( 5 ) 0 ( 6 ) N ( 7 ) N ( 8 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) N ( 9 ) N ( 1 0 ) C ( 2 5 ) C ( 2 6 ) C ( 2 7 ) N ( 1 1 ) N ( 1 2 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) l 3 ( 2 ) F ’ ( 2 ) C ( 3 1 ) C ( 3 2 ) C ( 3 3 ) C ( 3 4 ) C ( 3 5 ) C ( 3 6 ) F ( 3 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) F ( 4 ) N ( 1 3 ) 8 2 8 ( 2 ) 7 4 3 6 ( 1 ) 6 5 1 0 ( 2 ) 8 0 0 8 ( 2 ) 9 3 5 1 ( 2 ) 8 9 5 9 ( 2 ) 8 4 6 8 ( 2 ) 6 0 9 8 ( 3 ) 6 3 6 1 ( 3 ) 6 8 7 9 ( 2 ) 5 4 0 0 ( 2 ) 5 6 8 6 ( 2 ) 4 2 1 9 ( 3 ) 3 7 2 8 ( 3 ) 4 6 7 3 ( 3 ) 8 5 3 3 ( 2 ) 7 9 0 3 ( 2 ) 8 7 9 4 ( 3 ) 1 0 0 1 6 ( 3 ) 9 8 1 0 ( 3 ) 6 3 8 4 ( 3 ) 1 0 8 5 8 ( 1 ) 1 1 4 6 8 ( 2 ) 1 0 6 0 9 ( 3 ) 1 0 9 9 9 ( 3 ) 1 2 2 5 3 ( 3 ) 1 3 1 4 2 ( 3 ) 1 2 7 4 2 ( 2 ) 1 2 6 2 2 ( 2 ) 1 0 7 6 8 ( 2 ) 1 1 9 4 0 ( 3 ) 1 1 8 9 1 ( 3 ) 1 0 6 5 0 ( 3 ) 9 4 7 2 ( 3 ) 9 5 3 4 ( 3 ) 1 0 5 8 8 ( 2 ) 4 3 4 8 ( 3 ) T a b l e 2 3 ( c o n ' t ) 6 2 9 0 ( 1 ) 1 0 9 2 ( 1 ) 3 2 4 ( 1 ) 5 2 8 ( 1 ) 4 2 7 ( 1 ) 2 0 7 1 ( 1 ) 3 1 0 4 ( 1 ) 3 5 1 3 ( 2 ) 2 7 4 4 ( 2 ) 1 8 6 6 ( 2 ) 3 1 3 1 ( 1 ) 2 0 9 8 ( 1 ) 3 5 6 8 ( 2 ) 2 8 2 3 ( 2 ) 1 9 1 4 ( 2 ) 2 3 8 5 ( 1 ) 3 3 8 3 ( 1 ) 3 9 8 3 ( 2 ) 3 3 8 5 ( 2 ) 2 3 9 4 ( 2 ) 3 6 1 5 ( 2 ) 2 0 0 ( 1 ) 1 3 6 3 ( 2 ) 2 1 8 8 ( 2 ) 3 1 2 1 ( 2 ) 3 2 0 1 ( 2 ) 2 4 0 5 ( 2 ) 1 4 7 7 ( 2 ) 4 1 2 0 ( 1 ) 8 6 2 ( 2 ) 8 2 1 ( 2 ) 8 9 3 ( 2 ) 4 2 9 5 ( 2 ) 4 1 5 9 ( 2 ) 8 8 4 ( 2 ) 4 7 5 2 ( 1 ) 6 1 6 1 ( 2 ) 3 3 8 8 ( 1 ) 4 6 6 1 ( 1 ) 4 5 2 8 ( 1 ) 5 5 8 9 ( 1 ) 4 3 1 1 ( 1 ) 3 7 6 0 ( 1 ) 3 7 1 5 ( 1 ) 3 1 0 2 ( 1 ) 2 7 3 4 ( 1 ) 3 1 6 5 ( 1 ) 4 8 4 7 ( 1 ) 5 0 5 2 ( 1 ) 5 1 8 0 ( 1 ) 5 6 0 9 ( 1 ) 5 5 1 0 ( 1 ) 4 7 9 6 ( 1 ) 4 5 7 8 ( 1 ) 4 6 5 3 ( 1 ) 4 9 2 6 ( 1 ) 5 0 0 9 ( 1 ) 4 3 1 9 ( 1 ) 4 0 1 2 ( 1 ) 3 7 5 2 ( 1 ) 3 3 6 8 ( 1 ) 3 2 2 0 ( 1 ) 3 4 6 8 ( 1 ) 3 8 3 4 ( 1 ) 3 9 7 9 ( 1 ) 3 3 3 8 ( 1 ) 3 3 0 4 ( 1 ) 2 8 6 2 ( 1 ) 2 3 3 4 ( 1 ) 2 2 5 9 ( 1 ) 2 6 8 2 ( 1 ) 3 2 0 9 ( 1 ) 1 7 3 8 ( 1 ) 2 7 1 9 ( 2 ) 3 3 7 5 1 ( 1 ) 1 8 ( 1 ) 2 6 ( 1 ) 2 2 ( 1 ) 2 1 ( 1 ) 2 1 ( 1 ) 2 1 ( 1 ) 2 8 ( 1 ) 2 9 ( 1 ) 2 5 ( 1 ) 2 3 ( 1 ) 2 2 ( 1 ) 3 1 ( 1 ) 3 6 ( 1 ) 2 9 ( 1 ) 2 3 ( 1 ) 2 4 ( 1 ) 3 2 ( 1 ) 3 5 ( 1 ) 2 7 ( 1 ) 2 4 ( 1 ) 1 8 ( 1 ) 2 0 ( 1 ) 2 4 ( 1 ) 2 9 ( 1 ) 3 0 ( 1 ) 2 8 ( 1 ) 2 4 ( 1 ) 5 0 ( 1 ) 2 0 ( 1 ) 2 9 ( 1 ) 3 3 ( 1 ) 3 2 ( 1 ) 3 3 ( 1 ) 2 7 ( 1 ) 5 0 ( 1 ) 6 6 ( 1 ) _ L A — k — L — L — A — k A A A A A A — L A — L — t — L — k — K — l — A — A - A — k A — B — L — k - l — A — k — k — k - l o — L — A T a b l e 2 3 ( c o n ' t ) C ( 4 3 ) 3 6 8 4 ( 3 ) 6 4 7 6 ( 2 ) 3 1 4 7 ( 2 ) 4 4 ( 1 ) 1 C ( 4 4 ) 2 8 1 7 ( 4 ) 6 8 7 7 ( 3 ) 3 6 8 6 ( 1 ) 6 2 ( 1 ) 1 N ( 1 4 ) 5 6 0 0 ( 3 ) 8 6 9 1 ( 2 ) 2 4 8 2 ( 2 ) 8 2 ( 1 ) 1 C ( 4 5 ) 6 2 1 9 ( 3 ) 8 2 9 8 ( 2 ) 2 0 7 6 ( 2 ) 5 0 ( 1 ) 1 C ( 4 6 ) 7 0 4 3 ( 4 ) 7 8 1 4 ( 3 ) 1 5 6 1 ( 2 ) 6 3 ( 1 ) 1 3 3 8 C 5 H 4 ) 2 P 0 2 ] } 2 ' Z C H 3 C N , ( 4 . 9 ) . T a b l e 2 4 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ p — ( p - F — A t o m V 1 1 ) ( 3 ( 1 ) ( > 6 2 ) ( > 6 3 ) 0 K 1 ) | V ( 2 ) C 4 1 ) C ( 2 ) C 4 3 ) ( “ ( 3 ) 0 K 4 ) C 4 4 ) C 4 5 ) C 4 6 ) | V ( 5 ) | V ( 6 ) C K ? ) C 4 8 ) C 4 9 ) 6 ( 1 ) P ( 1 ) ( 3 ( 1 0 ) C ( 1 1 ) ( 3 ( 1 2 ) ( 3 ( 1 3 ) ( C ( 1 4 ) ( 3 ( 1 5 ) F ( 1 ) ( 3 ( 1 6 ) ( 3 ( 1 7 ) ( 3 ( 1 8 ) ( 3 ( 1 9 ) ( 3 ( 2 0 ) C ( 2 1 ) L h i 1 8 ( 1 ) 2 8 ( 1 ) 2 1 ( 1 ) 2 2 ( 1 ) 1 9 ( 1 ) 2 1 ( 1 ) 2 3 ( 1 ) 3 2 ( 2 ) 2 7 ( 2 ) 2 0 ( 1 ) 2 2 ( 1 ) 2 1 ( 1 ) 2 5 ( 2 ) 2 4 ( 1 ) 2 2 ( 1 ) 2 4 ( 1 ) 3 6 ( 2 ) 3 0 ( 2 ) 2 0 ( 1 ) 2 6 ( 2 ) 1 9 ( 1 ) 2 0 ( 1 ) 2 5 ( 1 ) 2 8 ( 2 ) 3 8 ( 2 ) 2 7 ( 2 ) 2 3 ( 1 ) 5 7 ( 1 ) 2 5 ( 1 ) 2 6 ( 1 ) 3 6 ( 2 ) 4 4 ( 2 ) 3 4 ( 2 ) 2 7 ( 2 ) ) J 2 2 1 7 ( 1 ) 2 3 ( 1 ) 2 1 ( 1 ) 2 3 ( 1 ) 2 0 ( 1 ) 1 8 ( 1 ) 2 4 ( 1 ) 4 3 ( 2 ) 3 3 ( 2 ) 1 7 ( 1 ) 1 8 ( 1 ) 2 6 ( 1 ) 3 9 ( 2 ) 2 4 ( 1 ) 2 3 ( 1 ) 1 7 ( 1 ) 2 3 ( 1 ) 4 0 ( 2 ) 3 1 ( 2 ) 1 7 ( 1 ) 1 8 ( 1 ) 2 3 ( 1 ) 2 7 ( 1 ) 3 7 ( 2 ) 2 5 ( 1 ) 2 1 ( 1 ) 2 8 ( 1 ) 2 9 ( 1 ) 1 7 ( 1 ) 2 2 ( 1 ) 2 7 ( 1 ) 3 1 ( 2 ) 4 8 ( 2 ) 3 6 ( 2 ) l J 3 3 2 1 ( 1 ) 3 6 ( 1 ) 2 4 ( 1 ) 2 2 ( 1 ) 2 7 ( 1 ) 2 9 ( 1 ) 3 2 ( 2 ) 2 1 ( 1 ) 2 3 ( 1 ) 2 6 ( 1 ) 2 7 ( 1 ) 3 8 ( 2 ) 3 5 ( 2 ) 3 0 ( 1 ) 2 3 ( 1 ) 3 2 ( 1 ) 4 5 ( 2 ) 3 9 ( 2 ) 2 4 ( 1 ) 3 3 ( 2 ) 1 9 ( 1 ) 1 8 ( 1 ) 2 0 ( 1 ) 2 6 ( 1 ) 4 0 ( 2 ) 4 0 ( 2 ) 2 8 ( 1 ) 7 8 ( 1 ) 2 2 ( 1 ) 2 9 ( 1 ) 3 4 ( 2 ) 2 5 ( 2 ) 3 2 ( 2 ) 2 9 ( 1 ) 3 3 9 U 2 3 “ 4 ( 1 ) - 9 ( 1 ) - 4 ( 1 ) 1 ( 1 ) - 4 ( 1 ) 0 ( 1 ) 8 ( 1 ) 2 ( 1 ) - 7 ( 1 ) “ 4 ( 1 ) - 7 ( 1 ) - 1 4 ( 1 ) - 1 3 ( 1 ) - 6 ( 1 ) - 5 ( 1 ) - 5 ( 1 ) - 5 ( 1 ) - 9 ( 1 ) “ 4 ( 1 ) - 4 ( 1 ) - 2 ( 1 ) - 4 ( 1 ) - 1 ( 1 ) - 5 ( 1 ) - 7 ( 1 ) 2 ( 1 ) - 1 ( 1 ) - 3 ( 1 ) - 1 ( 1 ) - 3 ( 1 ) - 5 ( 1 ) - 1 2 ( 1 ) - 1 6 ( 1 ) - 1 0 ( 1 ) L h a - 1 ( 1 ) - 1 ( 1 ) 2 ( 1 ) 0 ( 1 ) - 2 ( 1 ) - 5 ( 1 ) - 7 ( 1 ) “ 4 ( 1 ) - 3 ( 1 ) “ 4 ( 1 ) “ 4 ( 1 ) - 1 ( 1 ) 6 ( 1 ) 4 ( 1 ) - 1 ( 1 ) - 5 ( 1 ) - 1 0 ( 1 ) - 9 ( 1 ) - 4 ( 1 ) - 5 ( 1 ) 1 ( 1 ) 2 ( 1 ) - 3 ( 1 ) - 3 ( 1 ) 5 ( 1 ) - 4 ( 1 ) - 3 ( 1 ) - 1 1 ( 1 ) - 1 ( 1 ) 0 ( 1 ) - 9 ( 1 ) - 1 ( 1 ) 9 ( 1 ) 4 ( 1 ) L h z - 3 ( 1 ) - 9 ( 1 ) - 3 ( 1 ) 0 ( 1 ) - 4 ( 1 ) “ 4 ( 1 ) - 5 ( 1 ) - 1 0 ( 1 ) - 8 ( 1 ) - 4 ( 1 ) - 1 ( 1 ) 2 ( 1 ) - 5 ( 1 ) - 7 ( 1 ) - 4 ( 1 ) - 3 ( 1 ) - 1 3 ( 1 ) - 1 6 ( 1 ) “ 4 ( 1 ) - 4 ( 1 ) - 3 ( 1 ) - 5 ( 1 ) - 4 ( 1 ) - 1 4 ( 1 ) - 1 6 ( 1 ) - 2 ( 1 ) - 7 ( 1 ) - 2 3 ( 1 ) - 2 ( 1 ) - 5 ( 1 ) - 9 ( 1 ) - 5 ( 1 ) - 1 0 ( 1 ) - 1 2 ( 1 ) F ( 2 ) V ( 2 ) 0 ( 4 ) 0 ( 5 ) 0 ( 6 ) N ( 7 ) N ( 8 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) N ( 9 ) N ( 1 0 ) C ( 2 5 ) C ( 2 6 ) C ( 2 7 ) N ( 1 1 ) N ( 1 2 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) B ( 2 ) P ( 2 ) C ( 3 1 ) C ( 3 2 ) C ( 3 3 ) C ( 3 4 ) C ( 3 5 ) C ( 3 6 ) F ( 3 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) F ( 4 ) N ( 1 3 ) 6 3 ( 1 ) 1 6 ( 1 ) 2 4 ( 1 ) 2 1 ( 1 ) 1 9 ( 1 ) 1 8 ( 1 ) 1 9 ( 1 ) 2 4 ( 1 ) 2 7 ( 2 ) 2 2 ( 1 ) 2 0 ( 1 ) 2 0 ( 1 ) 2 4 ( 2 ) 2 4 ( 2 ) 2 3 ( 1 ) 2 0 ( 1 ) 2 1 ( 1 ) 3 0 ( 2 ) 2 5 ( 2 ) 1 8 ( 1 ) 2 2 ( 2 ) 1 7 ( 1 ) 1 8 ( 1 ) 2 1 ( 1 ) 2 7 ( 2 ) 3 2 ( 2 ) 2 2 ( 1 ) 2 2 ( 1 ) 4 6 ( 1 ) 2 1 ( 1 ) 2 5 ( 2 ) 3 2 ( 2 ) 4 0 ( 2 ) 3 1 ( 2 ) 2 2 ( 1 ) 5 8 ( 1 ) 5 9 ( 2 ) T a b l e 2 4 ( c a n ' t ) 6 1 ( 1 ) 1 9 ( 1 ) 2 6 ( 1 ) 2 5 ( 1 ) 2 3 ( 1 ) 2 1 ( 1 ) 2 0 ( 1 ) 2 9 ( 1 ) 3 9 ( 2 ) 3 1 ( 1 ) 2 3 ( 1 ) 2 4 ( 1 ) 3 2 ( 2 ) 4 8 ( 2 ) 3 8 ( 2 ) 2 5 ( 1 ) 2 2 ( 1 ) 2 6 ( 1 ) 4 3 ( 2 ) 3 6 ( 2 ) 1 9 ( 2 ) 2 1 ( 1 ) 2 5 ( 1 ) 3 0 ( 1 ) 2 7 ( 1 ) 2 4 ( 1 ) 3 8 ( 2 ) 2 7 ( 1 ) 3 1 ( 1 ) 2 0 ( 1 ) 3 8 ( 2 ) 4 2 ( 2 ) 3 2 ( 2 ) 3 7 ( 2 ) 2 9 ( 1 ) 8 4 ( 1 ) 5 7 ( 2 ) 3 9 ( 1 ) 1 9 ( 1 ) 3 0 ( 1 ) 1 8 ( 1 ) 2 0 ( 1 ) 2 4 ( 1 ) 2 4 ( 1 ) 2 7 ( 2 ) 1 8 ( 1 ) 2 3 ( 1 ) 2 7 ( 1 ) 2 2 ( 1 ) 3 8 ( 2 ) 3 6 ( 2 ) 2 6 ( 1 ) 2 4 ( 1 ) 3 1 ( 1 ) 4 4 ( 2 ) 4 5 ( 2 ) 2 8 ( 1 ) 3 1 ( 2 ) 1 6 ( 1 ) 1 5 ( 1 ) 2 2 ( 1 ) 3 1 ( 2 ) 3 7 ( 2 ) 2 8 ( 1 ) 2 1 ( 1 ) 7 5 ( 1 ) 1 9 ( 1 ) 2 7 ( 1 ) 2 8 ( 1 ) 2 4 ( 1 ) 3 5 ( 2 ) 2 9 ( 1 ) 3 9 ( 1 ) 7 9 ( 2 ) 3 4 0 - 3 1 ( 1 ) - 5 ( 1 ) - 5 ( 1 ) - 3 ( 1 ) - 5 ( 1 ) - 7 ( 1 ) - 2 ( 1 ) 5 ( 1 ) 4 ( 1 ) - 9 ( 1 ) 4 0 ( 1 ) - 5 ( 1 ) 2 0 ( 1 ) - 1 8 ( 1 ) - 6 ( 1 ) 2 ( 1 ) - 8 ( 1 ) - 1 6 ( 1 ) - 1 8 ( 1 ) 4 3 ( 1 ) - 6 ( 1 ) - 4 ( 1 ) - 5 ( 1 ) - 4 ( 1 ) 1 ( 1 ) - 4 ( 1 ) - 5 ( 1 ) - 4 ( 1 ) 4 ( 1 ) - 3 ( 1 ) 4 0 ( 1 ) - 1 6 ( 1 ) 4 5 ( 1 ) 4 1 ( 1 ) - 3 ( 1 ) - 3 4 ( 1 ) 4 5 ( 2 ) 4 ( 1 ) - 1 ( 1 ) - 2 ( 1 ) 1 ( 1 ) 1 ( 1 ) 0 ( 1 ) - 3 ( 1 ) - 2 ( 1 ) - 3 ( 1 ) 0 ( 1 ) - 3 ( 1 ) - 3 ( 1 ) - 1 ( 1 ) 8 ( 1 ) 5 ( 1 ) - 2 ( 1 ) - 2 ( 1 ) 1 ( 1 ) - 4 ( 1 ) - 2 ( 1 ) - 4 ( 1 ) 0 ( 1 ) 2 ( 1 ) - 3 ( 1 ) - 3 ( 1 ) 3 ( 1 ) - 3 ( 1 ) - 1 ( 1 ) 4 4 ( 1 ) - 2 ( 1 ) 2 ( 1 ) 5 ( 1 ) - 5 ( 1 ) - 7 ( 1 ) 2 ( 1 ) - 2 ( 1 ) 1 2 ( 2 ) - 1 6 ( 1 ) - 3 ( 1 ) - 7 ( 1 ) 4 ( 1 ) - 2 ( 1 ) - 4 ( 1 ) - 4 ( 1 ) - 6 ( 1 ) - 8 ( 1 ) - 5 ( 1 ) 4 ( 1 ) - 3 ( 1 ) 2 ( 1 ) - 4 ( 1 ) - 7 ( 1 ) - 3 ( 1 ) - 4 ( 1 ) 4 1 ( 1 ) 4 3 ( 1 ) - 3 ( 1 ) - 1 ( 1 ) - 2 ( 1 ) - 4 ( 1 ) 4 5 ( 1 ) 4 5 ( 1 ) 4 2 ( 1 ) 4 2 ( 1 ) 8 ( 1 ) 2 0 ( 1 ) - 1 ( 1 ) - 8 ( 1 ) - 6 ( 1 ) - 3 ( 1 ) 4 0 ( 1 ) - 2 ( 1 ) 4 3 ( 1 ) - 7 ( 2 ) T a b l e 2 4 ( c o n ' t ) C ( 4 3 ) 3 6 ( 2 ) 3 5 ( 2 ) 5 8 ( 2 ) 2 ( 2 ) 4 3 ( 2 ) 8 ( 1 ) C ( 4 4 ) 6 5 ( 2 ) 7 6 ( 2 ) 4 3 ( 2 ) 4 5 ( 2 ) 4 4 ( 2 ) 4 ( 2 ) N ( 1 4 ) 5 1 ( 2 ) 8 3 ( 2 ) 1 1 1 ( 3 ) 8 1 ( 2 ) 2 1 ( 2 ) 4 1 ( 2 ) C ( 4 5 ) 3 1 ( 2 ) 4 7 ( 2 ) 7 1 ( 2 ) 4 ( 2 ) 4 1 ( 2 ) - 9 ( 2 ) C ( 4 6 ) 6 7 ( 2 ) 7 1 ( 2 ) 5 2 ( 2 ) 4 0 ( 2 ) 4 7 ( 2 ) - 1 1 2 ) 3 4 1 T a b l e 2 5 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ , u — ( p - C H 3 C 5 H 4 ) 2 P 0 2 ] } 2 - 2 C H 3 C N , ( 4 . 1 0 ) . A t o m x y z U e q O c c u p a n c y V ( 1 ) 8 8 0 5 ( 1 ) 3 9 7 2 ( 1 ) 4 1 0 8 ( 1 ) 2 4 ( 1 ) 1 0 ( 1 ) 8 6 9 0 ( 2 ) 4 7 6 8 ( 1 ) 3 2 9 4 ( 2 ) 2 8 ( 1 ) 1 0 ( 2 ) 9 4 7 0 ( 2 ) 3 5 8 2 ( 1 ) 3 4 6 6 ( 2 ) 3 5 ( 1 ) 1 3 ( 1 ) 6 2 7 2 ( 4 ) 3 5 7 2 ( 2 ) 4 3 8 4 ( 4 ) 3 6 ( 1 ) 1 N ( 1 ) 5 9 8 2 ( 3 ) 3 6 2 6 ( 1 ) 2 9 8 9 ( 3 ) 3 5 ( 1 ) 1 C ( 1 ) 4 8 8 0 ( 4 ) 3 5 5 1 ( 2 ) 1 9 0 8 ( 4 ) 4 6 ( 1 ) 1 C ( 2 ) 5 0 9 2 ( 4 ) 3 6 5 6 ( 2 ) 8 9 3 ( 4 ) 4 8 ( 1 ) 1 C ( 3 ) 6 3 7 6 ( 3 ) 3 8 0 1 ( 2 ) 1 4 3 2 ( 3 ) 3 7 ( 1 ) 1 N ( 2 ) 6 9 1 7 ( 3 ) 3 7 8 6 ( 1 ) 2 6 9 9 ( 2 ) 3 0 ( 1 ) 1 N ( 3 ) 7 3 9 1 ( 3 ) 3 1 3 4 ( 1 ) 5 0 6 0 ( 3 ) 3 4 ( 1 ) 1 C ( 4 ) 7 5 0 8 ( 4 ) 2 6 4 8 ( 2 ) 5 7 8 3 ( 3 ) 4 4 ( 1 ) 1 C ( 5 ) 8 7 1 3 ( 4 ) 2 4 1 7 ( 2 ) 6 2 3 2 ( 4 ) 4 7 ( 1 ) 1 C ( 6 ) 9 3 0 4 ( 4 ) 2 7 8 7 ( 2 ) 5 7 4 1 ( 3 ) 3 8 ( 1 ) 1 N ( 4 ) 8 3 1 3 ( 3 ) 3 2 2 6 ( 1 ) 5 0 4 1 ( 2 ) 2 9 ( 1 ) 1 N ( 5 ) 6 6 9 8 ( 3 ) 4 1 9 3 ( 1 ) 5 0 1 0 ( 2 ) 3 0 ( 1 ) 1 C ( 7 ) 6 2 5 2 ( 3 ) 4 5 5 3 ( 2 ) 5 6 0 5 ( 3 ) 3 8 ( 1 ) 1 C ( 8 ) 6 9 9 6 ( 3 ) 5 0 6 0 ( 2 ) 6 0 1 7 ( 3 ) 3 9 ( 1 ) 1 C ( 9 ) 7 9 1 8 ( 3 ) 4 9 7 6 ( 2 ) 5 6 3 8 ( 3 ) 3 0 ( 1 ) 1 N ( 6 ) 7 7 4 1 ( 2 ) 4 4 5 1 ( 1 ) 5 0 2 5 ( 2 ) 2 8 ( 1 ) 1 0 ( 3 ) 1 0 3 5 4 ( 2 ) 4 2 0 6 ( 1 ) 5 6 9 4 ( 2 ) 2 8 ( 1 ) 1 P ( 1 ) 1 1 3 1 5 ( 1 ) 4 5 5 5 ( 1 ) 6 8 2 2 ( 1 ) 2 3 ( 1 ) 1 C ( 1 0 ) 1 2 8 7 4 ( 3 ) 4 2 7 2 ( 2 ) 7 2 0 8 ( 3 ) 2 8 ( 1 ) 1 C ( 1 1 ) 1 3 0 4 1 ( 4 ) 3 6 6 3 ( 2 ) 7 0 9 5 ( 4 ) 4 3 ( 1 ) 1 C ( 1 2 ) 1 4 2 4 1 ( 4 ) 3 4 3 1 ( 2 ) 7 4 1 4 ( 4 ) 5 3 ( 1 ) 1 C ( 1 3 ) 1 5 2 9 7 ( 4 ) 3 8 0 0 ( 2 ) 7 8 5 5 ( 3 ) 4 5 ( 1 ) 1 C ( 1 4 ) 1 5 1 2 9 ( 3 ) 4 4 0 9 ( 2 ) 7 9 8 0 ( 4 ) 4 7 ( 1 ) 1 C ( 1 5 ) 1 3 9 3 5 ( 3 ) 4 6 4 4 ( 2 ) 7 6 6 0 ( 3 ) 3 7 ( 1 ) 1 C ( 1 6 ) 1 6 5 9 7 ( 4 ) 3 5 4 5 ( 2 ) 8 1 9 5 ( 4 ) 6 9 ( 1 ) 1 C ( 1 7 ) 1 1 0 8 3 ( 3 ) 4 3 8 8 ( 1 ) 8 1 6 2 ( 3 ) 2 5 ( 1 ) 1 C ( 1 8 ) 1 0 1 6 9 ( 3 ) 3 9 8 3 ( 2 ) 8 0 8 8 ( 3 ) 3 9 ( 1 ) 1 C ( 1 9 ) 9 9 8 5 ( 4 ) 3 8 7 7 ( 2 ) 9 1 3 0 ( 3 ) 4 4 ( 1 ) 1 C ( 2 0 ) 1 0 6 7 5 ( 4 ) 4 1 7 9 ( 2 ) 1 0 2 5 3 ( 3 ) 3 9 ( 1 ) 1 C ( 2 1 ) 1 1 5 9 3 ( 4 ) 4 5 7 7 ( 2 ) 1 0 3 2 9 ( 4 ) 6 0 ( 1 ) 1 C ( 2 2 ) 1 1 7 9 3 ( 4 ) 4 6 7 9 ( 2 ) 9 3 0 1 ( 3 ) 5 2 ( 1 ) 1 3 4 2 T a b l e 2 5 ( c o n ' t ) C ( 2 3 ) 1 0 4 2 2 ( 4 ) 4 0 8 5 ( 2 ) 1 1 3 3 8 ( 4 ) 5 6 ( 1 ) 1 N ( 7 ) 1 2 5 9 9 ( 5 ) 2 8 3 9 ( 2 ) 1 2 5 8 2 ( 6 ) 9 7 ( 2 ) 1 C ( 2 4 ) 1 2 3 5 5 ( 5 ) 2 7 2 2 ( 2 ) 1 3 3 5 5 ( 6 ) 7 1 ( 1 ) 1 C ( 2 5 ) 1 1 9 7 8 ( 6 ) 2 5 5 0 ( 1 ) 1 4 3 1 8 ( 5 ) 1 0 4 ( 2 ) 1 3 4 3 T a b l e 2 6 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ p — ( p - C H 3 C e H 4 ) 2 P 0 2 ] } 2 ' 2 C H 3 C N , ( 4 . 1 0 ) . 3 4 4 A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 V ( 1 ) 2 8 ( 1 ) 2 3 ( 1 ) 2 0 ( 1 ) 4 ( 1 ) 1 2 ( 1 ) 4 ( 1 ) 0 ( 1 ) 3 1 ( 1 ) 2 7 ( 1 ) 2 7 ( 1 ) 4 ( 1 ) 1 4 ( 1 ) 0 ( 1 ) 0 ( 2 ) 4 3 ( 2 ) 3 2 ( 1 ) 3 5 ( 1 ) 8 ( 1 ) 2 2 ( 1 ) 2 ( 1 ) B ( 1 ) 3 2 ( 2 ) 4 1 ( 2 ) 3 8 ( 2 ) 3 ( 2 ) 1 9 ( 2 ) - 9 ( 2 ) N ( 1 ) 3 0 ( 2 ) 3 7 ( 2 ) 3 3 ( 2 ) 2 ( 1 ) 1 2 ( 1 ) 4 0 ( 1 ) C ( 1 ) 3 4 ( 2 ) 4 9 ( 2 ) 4 3 ( 2 ) 8 ( 2 ) 9 ( 2 ) 4 3 ( 2 ) C ( 2 ) 4 1 ( 2 ) 5 9 ( 3 ) 2 9 ( 2 ) - 5 ( 2 ) 4 ( 2 ) 8 ( 2 ) C ( 3 ) 4 4 ( 2 ) 3 6 ( 2 ) 2 4 ( 2 ) 8 ( 2 ) 1 1 ( 2 ) - 3 ( 2 ) N ( 2 ) 3 3 ( 2 ) 2 8 ( 2 ) 2 7 ( 2 ) 0 ( 1 ) 1 3 ( 1 ) 4 ( 1 ) N ( 3 ) 3 9 ( 2 ) 2 8 ( 2 ) 3 4 ( 2 ) 3 ( 1 ) 1 8 ( 1 ) - 6 ( 1 ) C ( 4 ) 6 5 ( 3 ) 3 2 ( 2 ) 4 0 ( 2 ) 4 ( 2 ) 2 9 ( 2 ) 4 1 ( 2 ) C ( 5 ) 6 6 ( 3 ) 3 1 ( 2 ) 3 9 ( 2 ) 1 1 ( 2 ) 2 0 ( 2 ) 1 ( 2 ) C ( 6 ) 4 6 ( 2 ) 2 9 ( 2 ) 3 2 ( 2 ) 4 ( 2 ) 1 3 ( 2 ) 3 ( 2 ) N ( 4 ) 3 1 ( 2 ) 2 5 ( 2 ) 2 8 ( 2 ) 2 ( 1 ) 1 1 ( 1 ) 2 ( 1 ) N ( 5 ) 2 6 ( 2 ) 3 7 ( 2 ) 2 9 ( 2 ) 4 ( 1 ) 1 6 ( 1 ) 1 ( 1 ) C ( 7 ) 3 3 ( 2 ) 5 3 ( 2 ) 3 6 ( 2 ) 6 ( 2 ) 2 2 ( 2 ) 8 ( 2 ) C ( 8 ) 4 0 ( 2 ) 4 6 ( 2 ) 3 3 ( 2 ) - 5 ( 2 ) 1 9 ( 2 ) 9 ( 2 ) C ( 9 ) 3 2 ( 2 ) 2 9 ( 2 ) 2 7 ( 2 ) 4 ( 1 ) 1 3 ( 2 ) 1 ( 2 ) N ( 6 ) 2 7 ( 2 ) 3 2 ( 2 ) 2 6 ( 1 ) 2 ( 1 ) 1 4 ( 1 ) 4 ( 1 ) 0 ( 3 ) 2 5 ( 1 ) 3 2 ( 1 ) 2 3 ( 1 ) 2 ( 1 ) 8 ( 1 ) 2 ( 1 ) P ( 1 ) 2 4 ( 1 ) 2 5 ( 1 ) 2 1 ( 1 ) 2 ( 1 ) 1 1 ( 1 ) 4 ( 1 ) C ( 1 0 ) 2 8 ( 2 ) 3 5 ( 2 ) 2 2 ( 2 ) 2 ( 1 ) 1 2 ( 1 ) 2 ( 2 ) C ( 1 1 ) 3 4 ( 2 ) 3 7 ( 2 ) 5 6 ( 2 ) 4 ( 2 ) 1 9 ( 2 ) 2 ( 2 ) C ( 1 2 ) 4 6 ( 3 ) 5 0 ( 3 ) 5 8 ( 3 ) - 3 ( 2 ) 2 2 ( 2 ) 1 6 ( 2 ) C ( 1 3 ) 3 7 ( 2 ) 7 0 ( 3 ) 3 4 ( 2 ) 1 3 ( 2 ) 2 2 ( 2 ) 1 5 ( 2 ) C ( 1 4 ) 2 6 ( 2 ) 7 3 ( 3 ) 4 1 ( 2 ) 8 ( 2 ) 1 6 ( 2 ) 4 ( 2 ) C ( 1 5 ) 3 4 ( 2 ) 4 0 ( 2 ) 3 6 ( 2 ) 3 ( 2 ) 1 7 ( 2 ) 4 ( 2 ) C ( 1 6 ) 4 6 ( 3 ) 1 0 7 ( 4 ) 6 3 ( 3 ) 2 5 ( 3 ) 3 3 ( 2 ) 3 0 ( 3 ) C ( 1 7 ) 2 8 ( 2 ) 2 3 ( 2 ) 2 2 ( 2 ) 1 ( 1 ) 1 1 ( 1 ) 4 ( 1 ) C ( 1 8 ) 4 3 ( 2 ) 4 5 ( 2 ) 2 9 ( 2 ) - 5 ( 2 ) 1 7 ( 2 ) 4 4 ( 2 ) C ( 1 9 ) 4 4 ( 2 ) 5 5 ( 3 ) 4 1 ( 2 ) 2 ( 2 ) 2 5 ( 2 ) 2 1 ( 2 ) C ( 2 0 ) 4 6 ( 2 ) 4 7 ( 2 ) 2 8 ( 2 ) 2 ( 2 ) 2 2 ( 2 ) 8 ( 2 ) C ( 2 1 ) 7 6 ( 3 ) 7 6 ( 3 ) 3 3 ( 2 ) 2 0 ( 2 ) 3 0 ( 2 ) 4 4 ( 3 ) C ( 2 2 ) 6 3 ( 3 ) 6 6 ( 3 ) 3 3 ( 2 ) - 9 ( 2 ) 2 7 ( 2 ) 8 7 ( 2 ) T a b l e 2 6 ( c o n ' t ) C ( 2 3 ) 7 0 ( 3 ) 6 9 ( 3 ) 4 2 ( 2 ) 4 ( 2 ) 3 7 ( 2 ) 4 5 ( 2 ) N ( 7 ) 8 7 ( 4 ) 8 5 ( 4 ) 1 3 8 ( 5 ) 0 ( 3 ) 6 9 ( 4 ) 8 ( 3 ) C ( 2 4 ) 5 2 ( 3 ) 6 4 ( 3 ) 8 4 ( 4 ) 4 7 ( 3 ) 2 3 ( 3 ) 0 ( 2 ) C ( 2 5 ) 9 9 ( 5 ) 1 3 9 ( 6 ) 6 4 ( 4 ) 4 1 ( 4 ) 3 1 9 ) 2 5 ( 4 ) 3 4 5 4 . T a b l e 2 7 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ p — ( p - C H 3 C 5 H 4 ) 2 P 0 2 ] } 2 - 2 C H 2 C l 2 , ( 4 . 1 1 ) . A t o m V ( 1 ) 0 ( 1 ) N ( 1 ) C ( 1 ) C ( 2 ) C ( 3 ) N ( 2 ) 6 ( 1 ) N ( 3 ) C ( 4 ) C ( 5 ) 0 ( 6 ) N ( 4 ) N ( 5 ) C ( 7 ) C ( 8 ) C ( 9 ) N ( 6 ) 0 ( 2 ) 0 ( 3 ) P ( 1 ) C ( 1 0 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) C ( 1 3 A ) C ( 1 4 ) C ( 1 5 ) C ( 1 6 ) C ( 1 7 ) C ( 1 8 ) C ( 1 9 ) C ( 1 9 A ) C ( 2 0 ) X 1 1 9 6 ( 1 ) 5 6 6 ( 2 ) 3 0 6 1 ( 2 ) 3 5 8 1 ( 2 ) 4 8 4 5 ( 3 ) 5 0 6 0 ( 3 ) 3 9 8 4 ( 2 ) 3 7 0 2 ( 3 ) 1 5 0 2 ( 2 ) 7 2 6 ( 3 ) 1 3 2 3 ( 3 ) 2 4 9 8 ( 3 ) 2 6 0 8 ( 2 ) 2 2 3 1 ( 2 ) 2 0 5 4 ( 2 ) 2 9 6 9 ( 2 ) 3 7 1 1 ( 2 ) 3 2 7 0 ( 2 ) 1 3 0 0 ( 1 ) 8 4 3 ( 1 ) 4 2 9 5 ( 1 ) 2 8 2 6 ( 2 ) 8 8 6 0 ( 2 ) 8 0 2 3 ( 2 ) 8 1 8 6 ( 2 ) 8 4 5 6 ( 3 ) 4 1 6 6 ( 3 ) 2 9 9 9 ( 2 ) 4 0 5 1 ( 2 ) 8 2 ( 2 ) 1 4 4 ( 3 ) 8 0 5 ( 3 ) 8 2 8 ( 4 ) 4 6 3 5 ( 4 ) Y 3 9 7 9 ( 1 ) 3 5 9 4 ( 1 ) 3 8 0 7 ( 1 ) 3 8 2 5 ( 1 ) 3 6 8 0 ( 1 ) 3 5 7 3 ( 1 ) 3 8 4 8 ( 1 ) 3 5 9 2 ( 1 ) 3 2 3 1 ( 1 ) 2 7 8 9 ( 1 ) 2 4 2 0 ( 1 ) 2 6 5 4 ( 1 ) 3 1 4 2 ( 1 ) 4 4 7 0 ( 1 ) 4 9 9 3 ( 1 ) 5 0 8 1 ( 1 ) 4 5 7 5 ( 1 ) 4 2 1 2 ( 1 ) 4 7 8 4 ( 1 ) 4 1 8 7 ( 1 ) 4 5 3 5 ( 1 ) 4 2 4 1 ( 1 ) 4 6 1 6 ( 1 ) 4 3 7 0 ( 1 ) 3 7 5 1 ( 1 ) 3 4 9 1 ( 2 ) 3 3 7 9 ( 1 ) 3 6 1 8 ( 1 ) 4 3 7 7 ( 1 ) 4 0 2 2 ( 1 ) 3 9 3 4 ( 1 ) 4 2 0 5 ( 1 ) 4 1 3 2 ( 2 ) 4 5 3 3 ( 2 ) Z 9 0 0 ( 1 ) 1 5 6 4 ( 2 ) 2 3 0 5 ( 2 ) 3 5 5 8 ( 2 ) 4 1 0 3 ( 3 ) 3 1 0 6 ( 3 ) 2 0 2 7 ( 2 ) 6 4 2 ( 3 ) 4 8 ( 2 ) 2 2 5 ( 2 ) 4 2 0 2 ( 3 ) 2 4 7 ( 3 ) - 2 6 ( 2 ) 2 0 ( 2 ) 8 3 1 ( 2 ) 8 9 8 ( 2 ) 8 7 9 ( 2 ) 8 ( 2 ) 1 6 8 4 ( 1 ) 8 8 8 ( 1 ) 4 8 1 3 ( 1 ) 2 2 1 0 ( 2 ) 2 5 5 9 ( 2 ) 2 8 5 4 ( 3 ) 2 8 0 5 ( 3 ) 8 1 0 7 ( 4 ) 2 4 8 2 ( 3 ) 2 1 9 2 ( 3 ) 8 1 3 7 ( 2 ) 8 0 2 5 ( 2 ) 4 0 4 9 ( 2 ) 8 1 9 3 ( 3 ) 8 2 8 0 ( 3 ) 8 3 1 8 ( 3 ) 3 4 6 U e q 2 1 ( 1 ) 3 5 ( 1 ) 3 0 ( 1 ) 3 9 ( 1 ) 5 4 ( 1 ) 5 2 ( 1 ) 3 6 ( 1 ) 3 7 ( 1 ) 3 1 ( 1 ) 4 0 ( 1 ) 5 1 ( 1 ) 4 4 ( 1 ) 3 5 ( 1 ) 2 6 ( 1 ) 3 0 ( 1 ) 4 0 ( 1 ) 4 0 ( 1 ) 3 0 ( 1 ) 2 7 ( 1 ) 2 6 ( 1 ) 2 1 ( 1 ) 2 6 ( 1 ) 3 7 ( 1 ) 4 7 ( 1 ) 4 5 ( 1 ) 7 1 ( 1 ) 5 1 ( 1 ) 4 2 ( 1 ) 2 5 ( 1 ) 3 3 ( 1 ) 4 1 ( 1 ) 4 7 ( 1 ) 7 6 ( 1 ) 7 0 ( 1 ) O c c u p a n c y T a b l e 2 7 ( c o n ' t ) C ( 2 1 ) 4 8 4 8 ( 3 ) 4 6 2 1 ( 2 ) 4 3 0 8 ( 3 ) 5 5 ( 1 ) 1 C ( 1 8 ) 2 1 5 6 ( 5 ) 6 9 8 9 ( 2 ) 8 1 6 ( 4 ) 9 6 ( 1 ) 1 C l ( 1 ) 1 9 6 2 ( 3 ) 7 6 8 9 ( 2 ) 2 8 9 ( 2 ) 8 8 ( 1 ) 0 . 7 0 5 C l ( 2 ) 2 4 8 0 ( 2 ) 7 9 8 0 ( 1 ) 2 8 7 0 ( 2 ) 7 2 ( 1 ) 0 . 5 9 9 C l ( 1 A ) 1 9 4 9 ( 7 ) 7 7 1 2 ( 4 ) 1 0 0 ( 2 0 ) 1 7 8 ( 5 ) 0 . 2 9 5 C l ( 2 A ) 3 2 0 3 ( 4 ) 7 0 2 3 ( 2 ) 4 0 1 3 ( 8 ) 1 3 0 ( 2 ) 0 . 4 0 1 3 4 7 T a b l e 2 8 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ , u — ( p - C H 3 C 6 H 4 ) 2 P 0 2 ] } 2 ’ 2 C H 2 C | 2 , ( 4 . 1 1 ) . 3 4 8 A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 V ( 1 ) 2 5 ( 1 ) 2 1 ( 1 ) 1 8 ( 1 ) 2 ( 1 ) 9 ( 1 ) 1 ( 1 ) 0 ( 1 ) 4 5 ( 1 ) 3 2 ( 1 ) 3 2 ( 1 ) 7 ( 1 ) 2 0 ( 1 ) 2 ( 1 ) N ( 1 ) 3 2 ( 1 ) 2 9 ( 1 ) 2 4 ( 1 ) 1 ( 1 ) 9 ( 1 ) 5 ( 1 ) C ( 1 ) 4 3 ( 2 ) 4 1 ( 1 ) 2 3 ( 1 ) 3 ( 1 ) 8 ( 1 ) 4 ( 1 ) C ( 2 ) 4 4 ( 2 ) 6 6 ( 2 ) 2 8 ( 2 ) 5 ( 1 ) 2 ( 1 ) 9 ( 1 ) C ( 3 ) 3 4 ( 2 ) 6 0 ( 2 ) 4 1 ( 2 ) 0 ( 1 ) 2 ( 1 ) 1 6 ( 1 ) N ( 2 ) 2 9 ( 1 ) 4 0 ( 1 ) 3 1 ( 1 ) 2 ( 1 ) 7 ( 1 ) 1 1 ( 1 ) 3 ( 1 ) 2 9 ( 1 ) 4 3 ( 2 ) 3 7 ( 2 ) 8 ( 1 ) 1 4 ( 1 ) 8 ( 1 ) N ( 3 ) 3 4 ( 1 ) 2 6 ( 1 ) 2 6 ( 1 ) 2 ( 1 ) 9 ( 1 ) 5 ( 1 ) C ( 4 ) 4 7 ( 2 ) 2 7 ( 1 ) 3 5 ( 1 ) - 5 ( 1 ) 1 1 ( 1 ) - 3 ( 1 ) C ( 5 ) 7 3 ( 2 ) 2 9 ( 1 ) 4 2 ( 2 ) 4 1 ( 1 ) 2 0 ( 2 ) 1 ( 1 ) C ( 6 ) 6 1 ( 2 ) 3 1 ( 1 ) 4 0 ( 2 ) - 5 ( 1 ) 2 5 ( 1 ) 1 1 ( 1 ) N ( 4 ) 4 0 ( 1 ) 2 9 ( 1 ) 3 3 ( 1 ) 8 ( 1 ) 1 5 ( 1 ) 9 ( 1 ) N ( 5 ) 2 6 ( 1 ) 3 1 ( 1 ) 2 2 ( 1 ) 4 ( 1 ) 1 2 ( 1 ) 1 ( 1 ) C ( 7 ) 3 2 ( 1 ) 3 4 ( 1 ) 2 3 ( 1 ) 1 ( 1 ) 1 4 ( 1 ) - 3 ( 1 ) C ( 8 ) 4 2 ( 2 ) 4 6 ( 2 ) 3 9 ( 2 ) 2 ( 1 ) 2 5 ( 1 ) 4 1 ( 1 ) C ( 9 ) 3 5 ( 1 ) 5 4 ( 2 ) 3 9 ( 2 ) 4 1 ( 1 ) 2 4 ( 1 ) 4 0 ( 1 ) N ( 6 ) 2 4 ( 1 ) 3 7 ( 1 ) 3 1 ( 1 ) 2 ( 1 ) 1 5 ( 1 ) 4 ( 1 ) 0 ( 2 ) 3 0 ( 1 ) 2 6 ( 1 ) 2 6 ( 1 ) 4 ( 1 ) 1 4 ( 1 ) 1 ( 1 ) 0 ( 3 ) 2 4 ( 1 ) 3 2 ( 1 ) 2 0 ( 1 ) 1 ( 1 ) 8 ( 1 ) 1 ( 1 ) P ( 1 ) 2 0 ( 1 ) 2 4 ( 1 ) 1 7 ( 1 ) 2 ( 1 ) 9 ( 1 ) 0 ( 1 ) C ( 1 0 ) 2 4 ( 1 ) 3 5 ( 1 ) 1 9 ( 1 ) 2 ( 1 ) 1 0 ( 1 ) 8 ( 1 ) C ( 1 1 ) 2 9 ( 1 ) 4 2 ( 1 ) 3 9 ( 1 ) - 9 ( 1 ) 1 6 ( 1 ) 4 ( 1 ) C ( 1 2 ) 2 5 ( 1 ) 6 8 ( 2 ) 4 9 ( 2 ) - 1 8 ( 1 ) 1 8 ( 1 ) 0 ( 1 ) C ( 1 3 ) 3 1 ( 1 ) 7 2 ( 2 ) 3 6 ( 2 ) 4 5 ( 1 ) 1 9 ( 1 ) - 1 8 ( 1 ) C ( 1 3 A ) 4 3 ( 2 ) 1 0 7 ( 3 ) 7 2 ( 2 ) 8 0 ( 2 ) 3 6 ( 2 ) 8 3 ( 2 ) C ( 1 4 ) 4 2 ( 2 ) 5 0 ( 2 ) 5 5 ( 2 ) 3 ( 1 ) 1 9 ( 1 ) - 1 6 ( 1 ) C ( 1 5 ) 3 1 ( 1 ) 3 9 ( 1 ) 5 3 ( 2 ) 7 ( 1 ) 1 6 ( 1 ) - 3 ( 1 ) C ( 1 6 ) 2 8 ( 1 ) 2 7 ( 1 ) 2 1 ( 1 ) 2 ( 1 ) 1 3 ( 1 ) 0 ( 1 ) C ( 1 7 ) 3 2 ( 1 ) 4 3 ( 1 ) 2 4 ( 1 ) 2 ( 1 ) 1 4 ( 1 ) 8 ( 1 ) C ( 1 8 ) 3 9 ( 2 ) 5 3 ( 2 ) 3 5 ( 2 ) 4 ( 1 ) 2 2 ( 1 ) 1 4 ( 1 ) C ( 1 9 ) 6 4 ( 2 ) 5 6 ( 2 ) 3 3 ( 2 ) 2 ( 1 ) 3 2 ( 1 ) 1 5 ( 1 ) C ( 1 9 A ) 1 0 6 ( 3 ) 9 6 ( 3 ) 5 1 ( 2 ) 1 2 ( 2 ) 5 8 ( 2 ) 3 7 ( 2 ) C ( 2 0 ) 9 0 ( 3 ) 9 6 ( 3 ) 2 8 ( 2 ) 2 0 ( 2 ) 3 2 ( 2 ) 5 6 ( 2 ) T a b l e 2 8 ( c o n ' t ) C ( 2 1 ) 6 2 ( 2 ) 7 6 ( 2 ) 2 9 ( 1 ) 2 4 ( 1 ) 4 3 ( 2 ) C ( 1 S ) 1 1 1 ( 4 ) 1 0 0 ( 3 ) 6 7 ( 3 ) 3 5 ( 3 ) 8 0 ( 3 ) C l ( 1 ) 1 0 2 ( 2 ) 8 1 ( 2 ) 7 7 ( 2 ) 4 1 ( 1 ) 8 ( 1 ) C l ( 2 ) 7 2 ( 1 ) 8 3 ( 1 ) 8 0 ( 2 ) 5 2 ( 1 ) 4 7 ( 1 ) C l ( 1 A ) 6 3 ( 4 ) 6 9 ( 4 ) 3 8 7 ( 1 5 ) 9 7 ( 7 ) 1 5 ( 3 ) C l ( 2 A ) 8 8 ( 3 ) 1 7 3 ( 4 ) 1 6 0 ( 5 L 8 5 ( 3 ) A j Z L 3 4 9 T a b l e 2 9 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ , u — ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 - 2 C H Z C I Z , ( 4 . 1 2 ) . 3 5 0 A t o m x y z U e q , O c c u p a n c y V ( 1 ) 8 7 2 8 ( 1 ) 4 1 1 7 ( 1 ) 3 2 6 3 ( 1 ) 1 9 ( 1 ) 1 0 ( 1 ) 6 8 0 0 ( 3 ) 3 6 8 3 ( 3 ) 3 1 3 6 ( 2 ) 3 0 ( 1 ) 1 N ( 1 ) 1 1 5 1 6 ( 4 ) 4 7 4 4 ( 3 ) 3 3 1 4 ( 2 ) 2 2 ( 1 ) 1 C ( 1 ) 1 2 8 0 8 ( 5 ) 5 2 1 3 ( 4 ) 3 9 8 0 ( 3 ) 2 2 ( 1 ) 1 C ( 2 ) 1 4 2 2 2 ( 5 ) 5 3 6 8 ( 4 ) 3 5 9 5 ( 3 ) 2 7 ( 1 ) 1 C ( 3 ) 1 3 7 3 1 ( 5 ) 4 9 7 7 ( 4 ) 2 6 6 0 ( 3 ) 2 5 ( 1 ) 1 N ( 2 ) 1 2 1 0 8 ( 4 ) 4 6 1 1 ( 3 ) 2 4 9 9 ( 2 ) 2 1 ( 1 ) 1 B ( 1 ) 1 0 9 1 8 ( 6 ) 4 2 0 4 ( 5 ) 1 5 8 3 ( 3 ) 2 6 ( 1 ) 1 N ( 3 ) 8 9 8 2 ( 4 ) 2 7 4 3 ( 3 ) 2 2 3 8 ( 2 ) 2 4 ( 1 ) 1 C ( 4 ) 8 2 2 9 ( 6 ) 1 6 0 2 ( 4 ) 2 0 2 4 ( 3 ) 3 1 ( 1 ) 1 C ( 5 ) 8 5 9 9 ( 6 ) 1 0 6 8 ( 4 ) 1 2 0 5 ( 3 ) 3 9 ( 1 ) 1 C ( 6 ) 9 6 4 5 ( 6 ) 1 9 6 1 ( 4 ) 9 1 7 ( 3 ) 3 4 ( 1 ) 1 N ( 4 ) 9 8 6 3 ( 4 ) 2 9 6 8 ( 3 ) 1 5 4 9 ( 2 ) 2 4 ( 1 ) 1 N ( 5 ) 8 7 6 7 ( 4 ) 5 1 0 6 ( 3 ) 2 2 2 5 ( 2 ) 2 3 ( 1 ) 1 C ( 7 ) 7 9 8 5 ( 5 ) 5 9 3 9 ( 4 ) 2 0 7 7 ( 3 ) 2 7 ( 1 ) 1 C ( 8 ) 8 5 0 3 ( 6 ) 6 4 3 8 ( 4 ) 1 3 4 9 ( 3 ) 3 0 ( 1 ) 1 C ( 9 ) 9 6 3 3 ( 5 ) 5 8 6 3 ( 4 ) 1 0 6 2 ( 3 ) 2 8 ( 1 ) 1 N ( 6 ) 9 7 8 7 ( 4 ) 5 0 6 8 ( 3 ) 1 5 8 4 ( 2 ) 2 4 ( 1 ) 1 0 ( 2 ) 9 0 5 5 ( 4 ) 5 5 9 7 ( 2 ) 4 2 2 8 ( 2 ) 2 6 ( 1 ) 1 0 ( 3 ) 9 2 6 1 ( 3 ) 3 2 0 9 ( 2 ) 4 2 4 6 ( 2 ) 2 3 ( 1 ) 1 P ( 1 ) 1 0 3 8 0 ( 1 ) 3 2 6 6 ( 1 ) 5 1 0 5 ( 1 ) 2 0 ( 1 ) 1 0 ( 4 ) 1 1 9 8 5 ( 3 ) 2 8 8 5 ( 2 ) 4 8 8 3 ( 2 ) 2 3 ( 1 ) 1 C ( 1 0 ) 1 2 0 6 0 ( 5 ) 2 0 8 2 ( 4 ) 4 0 9 5 ( 3 ) 2 3 ( 1 ) 1 C ( 1 1 ) 1 3 4 0 2 ( 5 ) 2 3 8 2 ( 4 ) 3 6 6 2 ( 3 ) 2 5 ( 1 ) 1 C ( 1 2 ) 1 3 5 7 6 ( 6 ) 1 6 0 3 ( 4 ) 2 9 0 0 ( 3 ) 3 2 ( 1 ) 1 C ( 1 3 ) 1 2 3 8 5 ( 6 ) 5 5 8 ( 4 ) 2 5 8 1 ( 3 ) 2 8 ( 1 ) 1 N ( 7 ) 1 2 5 7 4 ( 6 ) - 2 5 8 ( 4 ) 1 7 5 8 ( 3 ) 4 1 ( 1 ) 1 0 ( 6 ) 1 1 3 9 0 ( 5 ) - 1 0 3 2 ( 4 ) 1 3 4 8 ( 2 ) 5 7 ( 1 ) 1 0 ( 7 ) 1 3 9 3 5 ( 5 ) - 1 4 0 ( 3 ) 1 5 3 3 ( 3 ) 6 0 ( 1 ) 1 C ( 1 4 ) 1 1 0 5 3 ( 6 ) 2 6 3 ( 4 ) 3 0 0 7 ( 3 ) 2 9 ( 1 ) 1 C ( 1 5 ) 1 0 9 0 3 ( 6 ) 1 0 2 7 ( 4 ) 3 7 9 2 ( 3 ) 2 8 ( 1 ) 1 0 ( 5 ) 9 6 0 7 ( 3 ) 2 2 3 6 ( 2 ) 5 6 0 0 ( 2 ) 2 5 ( 1 ) 1 C ( 1 6 ) 8 0 6 8 ( 5 ) 2 0 8 8 ( 4 ) 5 8 7 3 ( 3 ) 2 2 ( 1 ) 1 C ( 1 7 ) 8 0 1 7 ( 5 ) 2 3 6 6 ( 4 ) 6 8 0 6 ( 3 ) 2 6 ( 1 ) 1 C ( 1 8 ) 6 5 3 3 ( 6 ) 2 1 4 9 ( 4 ) 7 1 0 7 ( 3 ) 3 0 ( 1 ) 1 C ( 1 9 ) 5 1 5 4 ( 6 ) 1 6 5 5 ( 4 ) 6 4 4 9 ( 4 ) 3 1 ( 1 ) 1 N ( 8 ) 3 5 6 1 ( 6 ) 1 3 7 1 ( 4 ) 6 7 6 1 ( 4 ) 5 0 ( 1 ) 1 0 ( 8 ) 2 3 8 2 ( 6 ) 8 3 3 ( 4 ) 6 1 7 2 ( 4 ) 7 7 ( 1 ) 1 0 ( 9 ) 3 5 2 2 ( 5 ) 1 7 0 0 ( 4 ) 7 5 9 7 ( 3 ) 7 3 ( 1 ) 1 C ( 2 0 ) 5 2 1 3 ( 6 ) 1 3 9 4 ( 4 ) 5 5 1 9 ( 3 ) 3 2 ( 1 ) 1 C ( 2 1 ) 6 7 0 9 ( 6 ) 1 6 3 1 ( 4 ) 5 2 1 9 ( 3 ) 2 9 ( 1 ) 1 C ( 1 8 ) 4 4 7 1 ( 9 ) 2 3 4 4 ( 7 ) 4 0 4 ( 8 ) 9 1 ( 3 ) 1 C l ( 1 ) 6 3 0 4 ( 2 ) 2 2 2 6 ( 2 ) 8 3 5 ( 1 ) 7 4 ( 1 ) 1 C l ( 2 ) 3 8 0 2 ( 2 ) 8 6 1 8 ( 2 ) 2 6 2 ( 2 ) 8 9 ( 1 ) 1 T a b l e 2 9 ( c o n ' t ) 3 5 1 T a b l e 3 0 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ , u - ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 ' 2 C H 2 C 1 2 , ( 4 . 1 2 ) . 3 5 2 A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 V ( 1 ) 7 ( 1 ) 2 3 ( 1 ) 2 6 ( 1 ) 3 ( 1 ) 4 ( 1 ) 2 ( 1 ) 0 ( 1 ) 9 ( 2 ) 3 7 ( 2 ) 4 4 ( 2 ) 9 ( 2 ) 6 ( 1 ) 2 ( 2 ) N ( 1 ) 1 4 ( 2 ) 2 6 ( 2 ) 2 5 ( 2 ) 3 ( 2 ) 3 ( 2 ) 4 ( 2 ) C ( 1 ) 1 5 ( 3 ) 2 1 ( 2 ) 2 6 ( 2 ) 1 ( 2 ) 2 ( 2 ) 1 ( 2 ) C ( 2 ) 1 0 ( 3 ) 2 4 ( 3 ) 4 2 ( 3 ) 5 ( 2 ) 2 ( 2 ) 1 ( 2 ) C ( 3 ) 9 ( 3 ) 2 7 ( 3 ) 4 0 ( 3 ) 9 ( 2 ) 1 0 ( 2 ) 3 ( 2 ) N ( 2 ) 8 ( 2 ) 2 9 ( 2 ) 2 5 ( 2 ) 4 ( 2 ) 4 ( 2 ) 4 ( 2 ) B ( 1 ) 1 7 ( 3 ) 3 6 ( 3 ) 2 6 ( 3 ) 2 ( 2 ) 9 ( 2 ) 9 ( 3 ) N ( 3 ) 1 6 ( 2 ) 3 0 ( 2 ) 2 5 ( 2 ) 0 ( 2 ) 4 ( 2 ) 4 ( 2 ) C ( 4 ) 2 3 ( 3 ) 2 2 ( 3 ) 3 8 ( 3 ) 0 ( 2 ) 2 ( 2 ) 8 ( 2 ) C ( 5 ) 3 4 ( 3 ) 2 8 ( 3 ) 4 7 ( 3 ) 8 ( 2 ) 3 ( 2 ) 7 ( 3 ) C ( 6 ) 2 8 ( 3 ) 3 9 ( 3 ) 3 1 ( 3 ) 8 ( 2 ) 1 ( 2 ) 1 3 ( 3 ) N ( 4 ) 1 6 ( 2 ) 2 8 ( 2 ) 2 7 ( 2 ) 1 ( 2 ) 4 ( 2 ) 5 ( 2 ) N ( 5 ) 1 6 ( 2 ) 2 8 ( 2 ) 2 6 ( 2 ) 6 ( 2 ) 6 ( 2 ) 7 ( 2 ) 0 ( 7 ) 1 2 ( 3 ) 3 1 ( 3 ) 3 8 ( 3 ) 7 ( 2 ) 8 ( 2 ) 7 ( 2 ) C ( 8 ) 2 1 ( 3 ) 3 1 ( 3 ) 3 6 ( 3 ) 1 3 ( 2 ) 2 ( 2 ) 6 ( 2 ) C ( 9 ) 2 3 ( 3 ) 3 8 ( 3 ) 2 3 ( 2 ) 7 ( 2 ) 3 ( 2 ) 5 ( 2 ) N ( 6 ) 1 2 ( 2 ) 3 3 ( 2 ) 2 5 ( 2 ) 5 ( 2 ) 4 ( 2 ) 5 ( 2 ) 0 ( 2 ) 2 2 ( 2 ) 2 7 ( 2 ) 3 0 ( 2 ) 3 ( 1 ) 8 ( 1 ) 9 ( 2 ) 0 ( 3 ) 1 8 ( 2 ) 2 4 ( 2 ) 2 6 ( 2 ) 4 ( 1 ) 7 ( 1 ) 5 ( 1 ) P ( 1 ) 1 3 ( 1 ) 2 2 ( 1 ) 2 7 ( 1 ) 4 ( 1 ) 7 ( 1 ) 5 ( 1 ) 0 ( 4 ) 1 1 ( 2 ) 2 6 ( 2 ) 3 0 ( 2 ) 0 ( 1 ) 5 ( 1 ) 3 ( 1 ) C ( 1 0 ) 1 8 ( 3 ) 2 4 ( 3 ) 3 1 ( 2 ) 6 ( 2 ) 7 ( 2 ) 9 ( 2 ) C ( 1 1 ) 1 8 ( 3 ) 2 3 ( 2 ) 3 5 ( 3 ) 5 ( 2 ) 8 ( 2 ) 3 ( 2 ) C ( 1 2 ) 3 3 ( 3 ) 2 9 ( 3 ) 3 8 ( 3 ) 8 ( 2 ) 1 4 ( 2 ) 1 2 ( 3 ) C ( 1 3 ) 3 4 ( 3 ) 2 2 ( 3 ) 2 8 ( 2 ) 0 ( 2 ) 2 ( 2 ) 1 1 ( 2 ) N ( 7 ) 6 5 ( 4 ) 3 0 ( 3 ) 3 1 ( 2 ) 1 ( 2 ) 1 3 ( 2 ) 1 8 ( 3 ) 0 ( 6 ) 7 1 ( 3 ) 5 1 ( 3 ) 3 7 ( 2 ) 4 2 ( 2 ) 2 ( 2 ) 1 3 ( 2 ) 0 ( 7 ) 7 3 ( 3 ) 4 7 ( 2 ) 6 4 ( 3 ) 4 ( 2 ) 4 6 ( 2 ) 1 7 ( 2 ) C ( 1 4 ) 1 9 ( 3 ) 2 3 ( 3 ) 3 8 ( 3 ) 0 ( 2 ) 4 ( 2 ) 1 ( 2 ) C ( 1 5 ) 1 6 ( 3 ) 2 7 ( 3 ) 4 2 ( 3 ) 6 ( 2 ) 8 ( 2 ) 6 ( 2 ) 0 ( 5 ) 1 2 ( 2 ) 2 7 ( 2 ) 4 0 ( 2 ) 1 4 ( 1 ) 1 0 ( 1 ) 6 ( 2 ) C ( 1 6 ) 1 2 ( 3 ) 1 7 ( 2 ) 3 7 ( 3 ) 9 ( 2 ) 8 ( 2 ) 0 ( 2 ) C ( 1 7 ) 1 3 ( 3 ) 2 2 ( 2 ) 3 9 ( 3 ) 8 ( 2 ) 2 ( 2 ) 4 ( 2 ) T a b l e 3 0 ( c o n ' t ) C ( 1 8 ) 2 7 ( 3 ) 2 6 ( 3 ) 4 3 ( 3 ) 1 4 ( 2 ) 1 6 ( 2 ) 9 ( 2 ) C ( 1 9 ) 1 7 ( 3 ) 1 8 ( 2 ) 6 3 ( 3 ) 1 3 ( 2 ) 1 7 ( 2 ) 3 ( 2 ) N ( 8 ) 3 0 ( 3 ) 3 6 ( 3 ) 9 5 ( 4 ) 2 7 ( 3 ) 3 1 ( 3 ) 1 2 ( 3 ) 0 ( 8 ) 2 3 ( 3 ) 7 6 ( 3 ) 1 2 6 ( 4 ) 1 6 ( 3 ) 2 2 ( 3 ) 4 ( 3 ) 0 ( 9 ) 4 5 ( 3 ) 9 6 ( 4 ) 9 1 ( 3 ) 2 8 ( 3 ) 4 5 ( 3 ) 2 3 ( 3 ) C ( 2 0 ) 1 2 ( 3 ) 2 2 ( 3 ) 5 5 ( 3 ) 4 ( 2 ) 8 ( 2 ) 4 ( 2 ) C ( 2 1 ) 2 2 ( 3 ) 2 8 ( 3 ) 3 2 ( 3 ) 2 ( 2 ) 2 ( 2 ) 2 ( 2 ) C ( 1 S ) 6 3 ( 5 ) 1 1 1 ( 6 ) 1 2 9 ( 7 ) 4 2 ( 5 ) 4 9 ( 5 ) 5 7 ( 5 ) C l ( 1 ) 6 1 ( 1 ) 1 0 5 ( 1 ) 8 0 ( 1 ) 4 5 ( 1 ) 3 4 ( 1 ) 4 0 ( 1 ) C l ( 2 ) 5 1 ( 1 ) 8 2 ( 1 ) 1 2 0 ( 2 ) 1 1 ( 1 ) 2 5 ( 1 ) 4 2 m 3 5 3 T a b l e 3 1 . A t o m i c C o o r d i n a t e s ( x 1 0 ‘ ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ , u — ( p - — N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 - 2 C H 3 C O C H 3 , ( 4 - 1 3 ) A t o m V ( 1 ) 0 ( 1 ) N ( 1 ) C ( 1 ) C ( 2 ) C ( 3 ) N ( 2 ) B ( 1 ) N ( 3 ) C ( 4 ) C ( 5 ) C ( 5 ) N ( 4 ) N ( 5 ) C ( 7 ) C ( 8 ) C ( 9 ) N ( 5 ) C 3 ( 2 ) 0 ( 3 ) P ( 1 ) 0 ( 4 ) C ( 1 0 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) N ( 7 ) 0 ( 6 ) 0 ( 7 ) C ( 1 4 ) C ( 1 5 ) 0 ( 5 ) C ( 1 6 ) C ( 1 7 ) X 3 7 6 0 ( 1 ) 1 7 9 3 ( 2 ) 6 6 1 0 ( 3 ) 7 9 1 4 ( 3 ) 9 3 8 5 ( 3 ) 8 8 9 7 ( 3 ) 7 2 3 0 ( 3 ) 6 0 4 0 ( 4 ) 4 0 2 3 ( 3 ) 3 3 5 7 ( 3 ) 3 8 5 9 ( 4 ) 4 8 8 5 ( 3 ) 4 9 6 5 ( 3 ) 3 9 2 6 ( 3 ) 3 1 8 0 ( 3 ) 3 6 8 1 ( 3 ) 4 7 9 1 ( 3 ) 4 9 2 0 ( 3 ) 4 1 4 3 ( 2 ) 4 1 6 2 ( 2 ) 5 2 3 9 ( 1 ) 4 4 0 0 ( 2 ) 2 8 3 8 ( 3 ) 1 4 3 8 ( 3 ) - 8 6 ( 3 ) 4 4 7 ( 3 ) Y 9 0 6 5 ( 1 ) 8 6 1 3 ( 2 ) 9 7 8 2 ( 2 ) 1 0 2 6 1 ( 2 ) 1 0 4 6 0 ( 2 ) 1 0 0 5 4 ( 2 ) 9 6 4 3 ( 2 ) 9 1 5 9 ( 3 ) 7 6 6 9 ( 2 ) 6 4 7 7 ( 2 ) 5 9 0 0 ( 2 ) 6 8 1 5 ( 2 ) 7 8 7 8 ( 2 ) 1 0 0 6 6 ( 2 ) 1 0 8 6 6 ( 2 ) 1 1 3 1 4 ( 2 ) 1 0 7 3 2 ( 2 ) 9 9 8 0 ( 2 ) 8 1 4 9 ( 2 ) 1 0 5 7 3 ( 2 ) 8 2 5 1 ( 1 ) 7 2 0 3 ( 2 ) 7 0 0 7 ( 2 ) 6 5 9 8 ( 2 ) 6 3 5 1 ( 2 ) 6 5 4 2 ( 2 ) 4 7 8 4 ( 3 ) 8 0 0 3 ( 3 ) 4 8 2 0 ( 3 ) 1 2 5 0 ( 4 ) 2 7 7 6 ( 3 ) 6 8 4 7 ( 2 ) 6 9 2 2 ( 3 ) 5 8 0 9 ( 3 ) 6 2 7 4 ( 2 ) 5 8 9 9 ( 2 ) 6 4 5 0 ( 3 ) 6 9 5 7 ( 2 ) 7 1 9 7 ( 2 ) 7 9 1 0 ( 1 ) 7 0 0 6 ( 2 ) 5 8 6 4 ( 2 ) Z 3 2 1 2 ( 1 ) 3 0 2 0 ( 1 ) 3 3 4 7 ( 1 ) 4 0 4 4 ( 2 ) 3 7 0 7 ( 2 ) 2 7 5 8 ( 2 ) 2 5 4 0 ( 1 ) 1 6 0 4 ( 2 ) 2 0 8 8 ( 1 ) 1 8 1 2 ( 2 ) 1 0 0 1 ( 2 ) 7 9 9 ( 2 ) 1 4 4 5 ( 1 ) 2 3 3 6 ( 1 ) 2 2 6 9 ( 2 ) 1 5 8 8 ( 2 ) 1 2 3 9 ( 2 ) 1 6 8 2 ( 1 ) 4 0 4 8 ( 1 ) 4 3 2 7 ( 1 ) 4 8 9 2 ( 1 ) 5 2 4 8 ( 1 ) 5 4 9 0 ( 2 ) 4 8 1 9 ( 2 ) 5 0 8 1 ( 2 ) 6 0 0 7 ( 2 ) 6 2 7 5 ( 2 ) 5 6 7 8 ( 2 ) 7 0 9 2 ( 2 ) 6 6 8 8 ( 2 ) 6 4 2 3 ( 2 ) 4 6 3 8 ( 1 ) 3 8 2 8 ( 2 ) 3 5 0 9 ( 2 ) 3 5 4 U e q . 1 8 ( 1 ) 2 6 ( 1 ) 2 1 ( 1 ) 2 4 ( 1 ) 2 8 ( 1 ) 2 8 ( 1 ) 2 4 ( 1 ) 2 4 ( 1 ) 2 3 ( 1 ) 2 8 ( 1 ) 3 4 ( 1 ) 3 1 ( 1 ) 2 4 ( 1 ) 2 2 ( 1 ) 2 6 ( 1 ) 3 0 ( 1 ) 2 9 ( 1 ) 2 4 ( 1 ) 2 2 ( 1 ) 2 6 ( 1 ) 1 9 ( 1 ) 2 5 ( 1 ) 2 2 ( 1 ) 2 4 ( 1 ) 2 6 ( 1 ) 2 7 ( 1 ) 4 1 ( 1 ) 6 1 ( 1 ) 9 3 ( 1 ) 3 1 ( 1 ) 2 7 ( 1 ) 2 2 ( 1 ) 1 9 ( 1 ) 2 6 ( 1 ) O c c u p a n c y A C ( 1 8 ) 6 0 4 0 ( 3 ) 4 9 8 6 ( 2 ) 2 7 5 2 ( 2 ) 2 9 ( 1 ) 1 C ( 1 9 ) 7 3 9 4 ( 3 ) 5 2 7 8 ( 2 ) 2 3 5 4 ( 2 ) 2 6 ( 1 ) 1 N ( 8 ) 7 7 0 9 ( 3 ) 4 3 2 3 ( 2 ) 1 5 8 6 ( 2 ) 3 9 ( 1 ) 1 0 ( 8 ) 6 6 9 1 ( 3 ) 3 3 2 4 ( 2 ) 1 2 8 3 ( 2 ) 4 7 ( 1 ) 1 0 ( 9 ) 8 9 9 0 ( 3 ) 4 5 7 3 ( 2 ) 1 2 9 7 ( 2 ) 7 6 ( 1 ) 1 C ( 2 0 ) 8 5 1 5 ( 3 ) 6 4 2 3 ( 2 ) 2 6 7 2 ( 2 ) 2 9 ( 1 ) 1 C ( 2 1 ) 8 2 5 7 ( 3 ) 7 3 0 2 ( 2 ) 3 4 1 1 ( 2 ) 2 6 ( 1 ) 1 C ( 1 8 ) 8 5 4 ( 4 ) 1 5 8 8 ( 3 ) 5 1 1 ( 3 ) 6 3 ( 1 ) 1 C ( 2 8 ) 5 9 5 ( 4 ) 2 4 2 7 ( 3 ) 1 5 7 ( 2 ) 3 8 ( 1 ) 1 0 ( 1 8 ) 2 0 4 1 ( 3 ) 2 8 4 6 ( 2 ) 4 9 0 ( 2 ) 4 7 ( 1 ) 1 C ( 3 8 ) 4 5 3 ( 6 ) 2 7 0 3 ( 4 ) - 6 1 6 ( 3 ) 7 7 ( 1 ) 1 T a b l e 3 1 ( c o n ' t ) 3 5 5 T a b l e 3 2 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ , u — ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 ‘ 2 C H 3 C O C H 3 . ( 4 . 1 3 ) . 3 5 6 A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 V ( 1 ) 1 4 ( 1 ) 1 9 ( 1 ) 2 1 ( 1 ) 7 ( 1 ) 6 ( 1 ) 4 ( 1 ) 0 ( 1 ) 1 4 ( 1 ) 3 0 ( 1 ) 3 2 ( 1 ) 1 1 ( 1 ) 6 ( 1 ) 5 ( 1 ) N ( 1 ) 2 0 ( 1 ) 2 1 ( 1 ) 2 3 ( 1 ) 8 ( 1 ) 9 ( 1 ) 6 ( 1 ) C ( 1 ) 2 3 ( 2 ) 1 9 ( 1 ) 2 8 ( 2 ) 8 ( 1 ) 4 ( 1 ) 5 ( 1 ) C ( 2 ) 1 6 ( 1 ) 2 3 ( 2 ) 4 2 ( 2 ) 1 0 ( 1 ) 2 ( 1 ) 2 ( 1 ) 0 ( 3 ) 1 7 ( 2 ) 2 5 ( 2 ) 4 4 ( 2 ) 1 3 ( 1 ) 1 4 ( 1 ) 5 ( 1 ) N ( 2 ) 1 8 ( 1 ) 2 5 ( 1 ) 2 6 ( 1 ) 7 ( 1 ) 1 0 ( 1 ) 6 ( 1 ) B ( 1 ) 2 5 ( 2 ) 2 6 ( 2 ) 2 2 ( 2 ) 7 ( 1 ) 1 2 ( 1 ) 6 ( 1 ) N ( 3 ) 2 0 ( 1 ) 2 3 ( 1 ) 2 4 ( 1 ) 8 ( 1 ) 7 ( 1 ) 4 ( 1 ) C ( 4 ) 2 9 ( 2 ) 1 8 ( 1 ) 3 3 ( 2 ) 7 ( 1 ) 5 ( 1 ) 4 ( 1 ) C ( 5 ) 3 8 ( 2 ) 2 0 ( 2 ) 3 7 ( 2 ) 2 ( 1 ) 5 ( 1 ) 7 ( 1 ) C ( 6 ) 3 4 ( 2 ) 3 0 ( 2 ) 2 6 ( 2 ) 2 ( 1 ) 9 ( 1 ) 1 3 ( 1 ) N ( 4 ) 2 5 ( 1 ) 2 4 ( 1 ) 2 1 ( 1 ) 5 ( 1 ) 8 ( 1 ) 8 ( 1 ) N ( 5 ) 1 8 ( 1 ) 2 6 ( 1 ) 2 2 ( 1 ) 8 ( 1 ) 7 ( 1 ) 6 ( 1 ) C ( 7 ) 1 8 ( 1 ) 2 7 ( 2 ) 3 4 ( 2 ) 1 0 ( 1 ) 2 ( 1 ) 6 ( 1 ) C ( 8 ) 2 8 ( 2 ) 2 7 ( 2 ) 3 3 ( 2 ) 1 6 ( 1 ) - 3 ( 1 ) 4 ( 1 ) C ( 9 ) 3 3 ( 2 ) 2 8 ( 2 ) 2 3 ( 2 ) 1 2 ( 1 ) 4 ( 1 ) 2 ( 1 ) N ( 6 ) 2 7 ( 1 ) 2 5 ( 1 ) 1 9 ( 1 ) 9 ( 1 ) 8 ( 1 ) 5 ( 1 ) 0 ( 2 ) 2 2 ( 1 ) 2 1 ( 1 ) 2 4 ( 1 ) 1 0 ( 1 ) 7 ( 1 ) 6 ( 1 ) 0 ( 3 ) 2 8 ( 1 ) 2 4 ( 1 ) 2 4 ( 1 ) 6 ( 1 ) 1 0 ( 1 ) 9 ( 1 ) P ( 1 ) 1 7 ( 1 ) 1 8 ( 1 ) 2 3 ( 1 ) 8 ( 1 ) 8 ( 1 ) 7 ( 1 ) 0 ( 4 ) 1 8 ( 1 ) 2 8 ( 1 ) 3 8 ( 1 ) 2 0 ( 1 ) 1 3 ( 1 ) 1 0 ( 1 ) C ( 1 0 ) 1 9 ( 1 ) 1 6 ( 1 ) 3 4 ( 2 ) 1 4 ( 1 ) 9 ( 1 ) 4 ( 1 ) C ( 1 1 ) 2 4 ( 2 ) 2 2 ( 1 ) 2 6 ( 1 ) 1 1 ( 1 ) 5 ( 1 ) 4 ( 1 ) C ( 1 2 ) 2 1 ( 2 ) 2 1 ( 1 ) 3 5 ( 2 ) 1 2 ( 1 ) 0 ( 1 ) 3 ( 1 ) C ( 1 3 ) 2 2 ( 2 ) 2 1 ( 1 ) 4 0 ( 2 ) 1 3 ( 1 ) 1 4 ( 1 ) 6 ( 1 ) N ( 7 ) 3 1 ( 2 ) 3 9 ( 2 ) 5 8 ( 2 ) 2 4 ( 1 ) 2 3 ( 2 ) 9 ( 1 ) 0 ( 6 ) 2 1 ( 1 ) 9 0 ( 2 ) 9 3 ( 2 ) 6 1 ( 2 ) 1 6 ( 1 ) 1 3 ( 1 ) 0 ( 7 ) 4 6 ( 2 ) 1 5 2 ( 3 ) 5 5 ( 2 ) 2 3 ( 2 ) 3 1 ( 1 ) 1 ( 2 ) C ( 1 4 ) 3 4 ( 2 ) 3 0 ( 2 ) 2 8 ( 2 ) 1 0 ( 1 ) 1 2 ( 1 ) 5 ( 1 ) C ( 1 5 ) 2 0 ( 2 ) 2 9 ( 2 ) 2 7 ( 2 ) 1 1 ( 1 ) 0 ( 1 ) 1 ( 1 ) 0 ( 5 ) 1 7 ( 1 ) 2 0 ( 1 ) 2 6 ( 1 ) 4 ( 1 ) 7 ( 1 ) 6 ( 1 ) C ( 1 6 ) 1 8 ( 1 ) 2 0 ( 1 ) 2 2 ( 1 ) 7 ( 1 ) 4 ( 1 ) 9 ( 1 ) C ( 1 7 ) 2 0 ( 1 ) 2 3 ( 1 ) 3 6 ( 2 ) 1 0 ( 1 ) 1 2 ( 1 ) 7 ( 1 ) T a b l e 3 2 ( c o n ' t ) C ( 1 8 ) 2 3 ( 2 ) 2 0 ( 1 ) 3 6 ( 2 ) 6 ( 1 ) 5 ( 1 ) 3 ( 1 ) C ( 1 9 ) 2 8 ( 2 ) 2 1 ( 1 ) 2 7 ( 2 ) 6 ( 1 ) 8 ( 1 ) 9 ( 1 ) N ( 8 ) 4 4 ( 2 ) 2 9 ( 2 ) 4 2 ( 2 ) 7 ( 1 ) 1 9 ( 1 ) 1 3 ( 1 ) 0 ( 8 ) 5 5 ( 2 ) 2 2 ( 1 ) 4 9 ( 1 ) 4 ( 1 ) 1 7 ( 1 ) 5 ( 1 ) 0 ( 9 ) 7 0 ( 2 ) 4 4 ( 1 ) 9 4 ( 2 ) 4 ( 1 ) 6 0 ( 2 ) 6 ( 1 ) C ( 2 0 ) 3 1 ( 2 ) 2 5 ( 2 ) 3 3 ( 2 ) 1 0 ( 1 ) 1 6 ( 1 ) 9 ( 1 ) C ( 2 1 ) 2 2 ( 2 ) 1 9 ( 1 ) 3 3 ( 2 ) 9 ( 1 ) 9 ( 1 ) 3 ( 1 ) C ( 1 S ) 4 6 ( 2 ) 5 0 ( 2 ) 8 9 ( 3 ) 2 0 ( 2 ) 2 3 ( 2 ) 1 0 ( 2 ) C ( 2 6 ) 4 3 ( 2 ) 3 7 ( 2 ) 3 4 ( 2 ) 4 ( 1 ) 9 ( 2 ) 2 1 ( 2 ) 0 ( 1 S ) 3 5 ( 1 ) 5 8 ( 2 ) 5 8 ( 2 ) 3 0 ( 1 ) 1 2 ( 1 ) 1 4 ( 1 ) C ( 3 S ) 9 5 ( 3 ) 9 5 ( 3 ) 4 5 ( 2 ) 2 2 ( 2 ) 2 ( 2 ) 4 5 ( 3 ) 3 5 7 T a b l e 3 3 . A t o m i c C o o r d i n a t e s ( x 1 0 ‘ ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ p — ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 - 2 C 4 H 5 N , ( 4 . 1 4 ) . 3 5 8 A t o m x y 2 U . . , _ O c c u p a n c y V ( 1 ) 4 0 9 4 ( 1 ) 4 2 7 8 ( 1 ) 3 2 3 5 ( 1 ) 2 1 ( 1 ) 1 0 ( 1 ) 2 1 7 0 ( 2 ) 3 8 2 7 ( 1 ) 3 0 5 1 ( 1 ) 3 1 ( 1 ) 1 N ( 1 ) 6 9 1 3 ( 2 ) 4 9 4 3 ( 1 ) 3 3 5 5 ( 1 ) 2 4 ( 1 ) 1 C ( 1 ) 8 0 7 7 ( 2 ) 5 3 9 9 ( 2 ) 4 0 4 6 ( 1 ) 2 6 ( 1 ) 1 C ( 2 ) 9 6 1 2 ( 2 ) 5 6 3 0 ( 2 ) 3 7 0 2 ( 2 ) 3 3 ( 1 ) 1 C ( 3 ) 9 3 1 7 ( 2 ) 5 2 9 2 ( 2 ) 2 7 5 7 ( 2 ) 3 4 ( 1 ) 1 N ( 2 ) 7 7 0 2 ( 2 ) 4 8 8 6 ( 1 ) 2 5 5 5 ( 1 ) 2 8 ( 1 ) 1 B ( 1 ) 6 7 0 3 ( 3 ) 4 4 9 4 ( 2 ) 1 6 1 3 ( 2 ) 3 1 ( 1 ) 1 N ( 3 ) 4 5 4 6 ( 2 ) 3 0 1 2 ( 1 ) 2 1 8 5 ( 1 ) 2 7 ( 1 ) 1 C ( 4 ) 3 8 3 1 ( 3 ) 1 8 8 8 ( 2 ) 1 9 4 9 ( 1 ) 3 5 ( 1 ) 1 C ( 5 ) 4 4 5 0 ( 3 ) 1 4 0 6 ( 2 ) 1 1 5 5 ( 2 ) 4 6 ( 1 ) 1 C ( 6 ) 5 5 9 0 ( 3 ) 2 2 9 7 ( 2 ) 9 1 9 ( 1 ) 4 1 ( 1 ) 1 N ( 4 ) 5 6 3 3 ( 2 ) 3 2 5 9 ( 1 ) 1 5 3 7 ( 1 ) 3 0 ( 1 ) 1 N ( 5 ) 4 4 5 9 ( 2 ) 5 3 1 8 ( 1 ) 2 2 6 4 ( 1 ) 2 5 ( 1 ) 1 C ( 7 ) 3 7 8 4 ( 2 ) 6 1 2 8 ( 2 ) 2 1 4 3 ( 1 ) 3 0 ( 1 ) 1 C ( 8 ) 4 4 6 9 ( 3 ) 6 6 2 5 ( 2 ) 1 4 2 9 ( 2 ) 3 7 ( 1 ) 1 C ( 9 ) 5 5 9 9 ( 3 ) 6 0 6 7 ( 2 ) 1 1 1 7 ( 1 ) 3 5 ( 1 ) 1 N ( 6 ) 5 5 8 4 ( 2 ) 5 2 7 8 ( 1 ) 1 6 1 6 ( 1 ) 2 9 ( 1 ) 1 0 ( 2 ) 4 3 4 7 ( 2 ) 3 3 3 2 ( 1 ) 4 1 5 9 ( 1 ) 2 5 ( 1 ) 1 0 ( 3 ) 4 2 3 0 ( 2 ) 5 6 4 8 ( 1 ) 4 2 5 4 ( 1 ) 3 0 ( 1 ) 1 P ( 1 ) 5 3 0 3 ( 1 ) 3 3 1 0 ( 1 ) 4 9 9 9 ( 1 ) 2 1 ( 1 ) 1 0 ( 4 ) 4 3 8 9 ( 2 ) 2 2 3 1 ( 1 ) 5 3 9 9 ( 1 ) 2 9 ( 1 ) 1 C ( 1 0 ) 2 7 7 5 ( 2 ) 2 0 0 0 ( 2 ) 5 6 3 2 ( 1 ) 2 6 ( 1 ) 1 C ( 1 1 ) 2 4 9 6 ( 2 ) 2 0 7 4 ( 2 ) 6 5 5 9 ( 1 ) 3 4 ( 1 ) 1 C ( 1 2 ) 9 0 8 ( 3 ) 1 7 9 6 ( 2 ) 6 8 1 2 ( 2 ) 4 0 ( 1 ) 1 C ( 1 3 ) - 3 3 2 ( 2 ) 1 4 4 3 ( 2 ) 6 1 2 2 ( 2 ) 3 3 ( 1 ) 1 N ( 7 ) - 2 0 2 4 ( 2 ) 1 1 5 0 ( 2 ) 6 3 8 6 ( 2 ) 4 9 ( 1 ) 1 0 ( 6 ) - 3 1 0 8 ( 2 ) 8 4 5 ( 2 ) 5 7 8 3 ( 2 ) 6 7 ( 1 ) 1 0 ( 7 ) 2 2 6 3 ( 3 ) 1 2 0 9 ( 3 ) 7 1 9 5 ( 2 ) 1 2 9 ( 1 ) 1 C ( 1 4 ) - 6 4 ( 2 ) 1 3 6 5 ( 2 ) 5 1 9 5 ( 2 ) 3 1 ( 1 ) 1 C ( 1 5 ) 1 5 2 2 ( 2 ) 1 6 5 5 ( 2 ) 4 9 4 5 ( 1 ) 2 9 ( 1 ) 1 0 ( 5 ) 6 9 4 6 ( 2 ) 3 0 0 3 ( 1 ) 4 7 4 5 ( 1 ) 2 5 ( 1 ) 1 C ( 1 6 ) 7 1 0 0 ( 2 ) 2 2 3 4 ( 2 ) 3 9 3 7 ( 1 ) 2 3 ( 1 ) 1 C ( 1 7 ) 6 0 5 4 ( 2 ) 1 1 4 2 ( 2 ) 3 6 9 4 ( 1 ) 2 8 ( 1 ) 1 C ( 1 8 ) 6 2 8 5 ( 3 ) 4 1 3 ( 2 ) 2 9 0 1 ( 1 ) 3 3 ( 1 ) 1 C ( 1 9 ) 7 5 7 1 ( 3 ) 7 9 5 ( 2 ) 2 3 8 4 ( 2 ) 3 7 ( 1 ) 1 N ( 8 ) 7 7 8 2 ( 3 ) 3 4 ( 2 ) 1 5 2 5 ( 2 ) 6 3 ( 1 ) 1 0 ( 8 ) 6 6 9 2 ( 3 ) - 8 2 8 ( 2 ) 1 2 1 8 ( 2 ) 8 4 ( 1 ) 1 0 ( 9 ) 9 0 6 9 ( 4 ) 2 9 2 ( 2 ) 1 1 6 2 ( 2 ) 1 1 8 ( 1 ) 1 C ( 2 0 ) 8 6 4 7 ( 3 ) 1 8 7 6 ( 2 ) 2 6 3 8 ( 2 ) 4 1 ( 1 ) 1 C ( 2 1 ) 8 4 0 0 ( 2 ) 2 6 0 8 ( 2 ) 3 4 2 8 ( 2 ) 3 3 ( 1 ) 1 N ( 1 S ) 9 1 5 0 ( 3 ) 7 9 6 0 ( 2 ) 8 7 ( 2 ) 6 0 ( 1 ) 1 C ( 1 3 ) 6 6 7 3 ( 3 ) 6 9 1 3 ( 2 ) 8 9 2 ( 2 ) 4 7 ( 1 ) 1 C ( 2 8 ) 9 4 1 7 ( 3 ) 6 2 3 8 ( 2 ) 2 6 8 ( 2 ) 5 2 ( 1 ) 1 C ( 3 8 ) 1 0 4 1 0 ( 3 ) 6 9 0 5 ( 3 ) 5 1 2 ( 2 ) 6 3 ( 1 ) 1 C ( 4 8 ) 1 0 2 4 2 ( 4 ) 7 9 5 9 ( 3 ) 6 3 5 ( 2 ) 6 5 ( 1 ) 1 T a b l e 3 3 ( c o n ' t ) 3 5 9 T a b l e 3 4 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ , u — ( p - N 0 2 0 5 H 4 O ) 2 P 0 2 ] } 2 ' 2 C 4 H 5 N , ( 4 . 1 4 ) . 3 6 0 A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 V ( 1 ) 1 6 ( 1 ) 2 6 ( 1 ) 1 9 ( 1 ) 4 ( 1 ) 2 ( 1 ) 6 ( 1 ) 0 ( 1 ) 2 0 ( 1 ) 3 8 ( 1 ) 3 2 ( 1 ) 9 ( 1 ) 1 ( 1 ) 6 ( 1 ) N ( 1 ) 2 0 ( 1 ) 2 9 ( 1 ) 2 2 ( 1 ) 5 ( 1 ) 4 ( 1 ) 7 ( 1 ) C ( 1 ) 2 4 ( 1 ) 2 4 ( 1 ) 2 8 ( 1 ) 5 ( 1 ) 2 ( 1 ) 5 ( 1 ) 0 ( 2 ) 2 1 ( 1 ) 3 2 ( 1 ) 4 3 ( 1 ) 7 ( 1 ) 2 ( 1 ) 3 ( 1 ) C ( 3 ) 1 9 ( 1 ) 4 0 ( 1 ) 4 3 ( 1 ) 1 2 ( 1 ) 9 ( 1 ) 7 ( 1 ) N ( 2 ) 2 0 ( 1 ) 3 8 ( 1 ) 2 6 ( 1 ) 8 ( 1 ) 7 ( 1 ) 9 ( 1 ) B ( 1 ) 2 9 ( 1 ) 4 3 ( 1 ) 2 2 ( 1 ) 7 ( 1 ) 9 ( 1 ) 1 1 ( 1 ) N ( 3 ) 2 6 ( 1 ) 3 3 ( 1 ) 2 2 ( 1 ) 4 ( 1 ) 1 ( 1 ) 9 ( 1 ) C ( 4 ) 4 2 ( 1 ) 2 9 ( 1 ) 3 2 ( 1 ) 5 ( 1 ) 8 ( 1 ) 9 ( 1 ) C ( 5 ) 7 1 ( 2 ) 3 4 ( 1 ) 3 2 ( 1 ) 4 ( 1 ) 8 ( 1 ) 2 0 ( 1 ) C ( 6 ) 5 6 ( 2 ) 4 7 ( 1 ) 2 3 ( 1 ) 0 ( 1 ) 4 ( 1 ) 2 6 ( 1 ) N ( 4 ) 3 3 ( 1 ) 3 9 ( 1 ) 1 9 ( 1 ) 2 ( 1 ) 4 ( 1 ) 1 5 ( 1 ) N ( 5 ) 2 0 ( 1 ) 3 2 ( 1 ) 2 2 ( 1 ) 7 ( 1 ) 2 ( 1 ) 6 ( 1 ) 0 ( 7 ) 2 3 ( 1 ) 3 4 ( 1 ) 3 2 ( 1 ) 8 ( 1 ) 8 ( 1 ) 9 ( 1 ) C ( 8 ) 3 5 ( 1 ) 4 0 ( 1 ) 3 8 ( 1 ) 1 8 ( 1 ) - 6 ( 1 ) 7 ( 1 ) C ( 9 ) 3 4 ( 1 ) 4 5 ( 1 ) 2 6 ( 1 ) 1 6 ( 1 ) 1 ( 1 ) 5 ( 1 ) N ( 6 ) 2 7 ( 1 ) 3 8 ( 1 ) 2 1 ( 1 ) 8 ( 1 ) 4 ( 1 ) 7 ( 1 ) 0 ( 2 ) 2 3 ( 1 ) 3 0 ( 1 ) 2 4 ( 1 ) 9 ( 1 ) 3 ( 1 ) 8 ( 1 ) 0 ( 3 ) 3 4 ( 1 ) 3 4 ( 1 ) 2 3 ( 1 ) 3 ( 1 ) 6 ( 1 ) 1 2 ( 1 ) P ( 1 ) 2 0 ( 1 ) 2 4 ( 1 ) 2 2 ( 1 ) 6 ( 1 ) 5 ( 1 ) 8 ( 1 ) 0 ( 4 ) 2 2 ( 1 ) 3 3 ( 1 ) 4 0 ( 1 ) 1 8 ( 1 ) 9 ( 1 ) 1 0 ( 1 ) C ( 1 0 ) 2 1 ( 1 ) 2 3 ( 1 ) 3 4 ( 1 ) 1 1 ( 1 ) 5 ( 1 ) 5 ( 1 ) C ( 1 1 ) 2 6 ( 1 ) 4 2 ( 1 ) 3 1 ( 1 ) 1 0 ( 1 ) 0 ( 1 ) 1 ( 1 ) C ( 1 2 ) 3 2 ( 1 ) 5 1 ( 1 ) 3 1 ( 1 ) 9 ( 1 ) 7 ( 1 ) 4 ( 1 ) C ( 1 3 ) 2 2 ( 1 ) 2 9 ( 1 ) 4 5 ( 1 ) 1 1 ( 1 ) 8 ( 1 ) 3 ( 1 ) N ( 7 ) 2 6 ( 1 ) 5 4 ( 1 ) 6 3 ( 1 ) 1 9 ( 1 ) 1 1 ( 1 ) 4 ( 1 ) 0 ( 6 ) 2 4 ( 1 ) 9 2 ( 2 ) 9 3 ( 2 ) 5 7 ( 1 ) 1 ( 1 ) 3 ( 1 ) 0 ( 7 ) 4 0 ( 1 ) 2 5 0 ( 4 ) 6 0 ( 2 ) 2 2 ( 2 ) 2 0 ( 1 ) 4 5 ( 2 ) C ( 1 4 ) 2 7 ( 1 ) 2 5 ( 1 ) 4 1 ( 1 ) 1 0 ( 1 ) 4 ( 1 ) 2 ( 1 ) C ( 1 5 ) 3 2 ( 1 ) 2 7 ( 1 ) 2 8 ( 1 ) 8 ( 1 ) 2 ( 1 ) 6 ( 1 ) 0 ( 5 ) 2 0 ( 1 ) 2 6 ( 1 ) 2 6 ( 1 ) 1 ( 1 ) 3 ( 1 ) 7 ( 1 ) C ( 1 6 ) 2 0 ( 1 ) 2 5 ( 1 ) 2 6 ( 1 ) 4 ( 1 ) 2 ( 1 ) 1 0 ( 1 ) C ( 1 7 ) 2 3 ( 1 ) 2 8 ( 1 ) 3 2 ( 1 ) 5 ( 1 ) 6 ( 1 ) 5 ( 1 ) T a b l e 3 4 ( c o n ' t ) C ( 1 8 ) 3 3 ( 1 ) 2 7 ( 1 ) 3 6 ( 1 ) 3 ( 1 ) 4 ( 1 ) 5 ( 1 ) C ( 1 9 ) 4 9 ( 1 ) 2 9 ( 1 ) 3 4 ( 1 ) 5 ( 1 ) 1 5 ( 1 ) 1 6 ( 1 ) N ( 8 ) 9 8 ( 2 ) 3 4 ( 1 ) 5 3 ( 1 ) 5 ( 1 ) 3 9 ( 1 ) 1 7 ( 1 ) 0 ( 8 ) 1 0 6 ( 2 ) 5 7 ( 1 ) 6 1 ( 1 ) 2 5 ( 1 ) 2 0 ( 1 ) 3 ( 1 ) 0 ( 9 ) 1 6 9 ( 3 ) 4 3 ( 1 ) 1 1 9 ( 2 ) - 6 ( 1 ) 1 1 5 ( 2 ) 4 ( 1 ) C ( 2 0 ) 4 5 ( 1 ) 3 0 ( 1 ) 5 0 ( 1 ) 1 0 ( 1 ) 2 7 ( 1 ) 1 2 ( 1 ) C ( 2 1 ) 2 9 ( 1 ) 2 3 ( 1 ) 4 4 ( 1 ) 5 ( 1 ) 1 4 ( 1 ) 7 ( 1 ) N ( 1 S ) 8 6 ( 2 ) 5 4 ( 1 ) 4 9 ( 1 ) 1 5 ( 1 ) 9 ( 1 ) 3 0 ( 1 ) C ( 1 S ) 5 1 ( 2 ) 6 1 ( 2 ) 3 2 ( 1 ) 1 1 ( 1 ) 2 ( 1 ) 2 1 ( 1 ) C ( 2 8 ) 5 5 ( 2 ) 5 6 ( 2 ) 5 2 ( 2 ) 1 1 ( 1 ) 1 1 ( 1 ) 2 9 ( 1 ) C ( 3 8 ) 4 5 ( 2 ) 9 6 ( 2 ) 6 2 ( 2 ) 3 7 ( 2 ) 2 ( 1 ) 2 7 ( 2 ) C ( 4 8 ) 8 7 ( 2 ) 7 3 ( 2 ) 3 7 ( 1 ) 6 ( 1 ) 5 ( 1 ) 8 ( 2 ) 3 6 1 T a b l e 3 5 . A t o m i c C o o r d i n a t e s ( x 1 0 ‘ ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ p — ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 - 2 C 4 H 4 S , ( 4 . 1 5 A ) . A t o m V ( 1 ) 0 ( 1 ) N ( 1 ) C ( 1 ) C ( 2 ) 0 ( 3 ) N ( 2 ) 6 ( 1 ) N ( 3 ) C ( 4 ) C ( 5 ) C ( 6 ) N ( 4 ) N ( 5 ) C ( 7 ) C ( 8 ) C ( 9 ) N ( 6 ) 0 ( 2 ) 0 ( 3 ) P ( 1 ) 0 ( 4 ) C ( 1 0 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) N ( 7 ) 0 ( 6 ) 0 ( 7 ) C ( 1 4 ) C ( 1 5 ) 0 ( 5 ) C ( 1 6 ) C ( 1 7 ) X 3 5 9 9 ( 1 ) 1 6 2 5 ( 3 ) 8 4 7 2 ( 3 ) 7 8 2 1 ( 4 ) 9 2 6 7 ( 4 ) 8 7 1 3 ( 4 ) 7 0 4 1 ( 3 ) 5 7 8 0 ( 5 ) 3 7 3 8 ( 3 ) 2 9 9 7 ( 4 ) 3 4 5 5 ( 5 ) 4 5 1 8 ( 5 ) 4 6 8 1 ( 3 ) 3 7 5 7 ( 3 ) 2 9 4 4 ( 5 ) 3 3 2 5 ( 7 ) 4 4 1 0 ( 6 ) 4 6 7 2 ( 3 ) 4 0 4 9 ( 3 ) 4 0 5 4 ( 2 ) 5 2 4 2 ( 1 ) 4 4 3 0 ( 3 ) 2 8 9 8 ( 4 ) 2 9 3 6 ( 4 ) 1 4 4 3 ( 5 ) 4 9 ( 4 ) 4 6 0 6 ( 5 ) 2 8 9 4 ( 4 ) 4 5 7 6 ( 6 ) - 5 4 ( 4 ) 1 4 3 3 ( 4 ) 6 7 9 0 ( 2 ) 6 7 2 9 ( 3 ) 7 9 3 8 ( 4 ) Y 4 3 2 9 ( 1 ) 3 9 0 9 ( 2 ) 4 9 5 3 ( 2 ) 5 3 8 4 ( 2 ) 5 6 1 0 ( 3 ) 5 3 0 1 ( 3 ) 4 9 1 8 ( 2 ) 4 5 5 2 ( 3 ) 5 3 9 8 ( 2 ) 6 1 9 3 ( 3 ) 6 6 6 7 ( 3 ) 6 1 2 0 ( 3 ) 5 3 4 9 ( 2 ) 3 0 8 1 ( 2 ) 1 9 7 5 ( 3 ) 1 5 1 5 ( 4 ) 2 3 8 6 ( 3 ) 3 3 3 0 ( 2 ) 5 6 8 4 ( 2 ) 3 3 6 1 ( 2 ) 3 3 0 0 ( 1 ) 2 2 1 8 ( 2 ) 1 9 7 4 ( 2 ) 1 9 6 7 ( 3 ) 1 6 5 4 ( 4 ) 1 3 7 5 ( 3 ) 1 0 4 6 ( 3 ) 8 2 1 ( 4 ) 8 9 2 ( 6 ) 1 3 7 6 ( 3 ) 1 6 8 8 ( 3 ) 2 9 7 5 ( 2 ) 2 1 9 3 ( 2 ) 2 5 2 3 ( 3 ) Z 3 2 5 2 ( 1 ) 3 0 5 1 ( 2 ) 3 4 0 3 ( 2 ) 4 0 9 3 ( 2 ) 3 7 7 2 ( 2 ) 2 8 4 5 ( 2 ) 2 6 2 7 ( 2 ) 1 7 0 0 ( 2 ) 2 3 5 6 ( 2 ) 2 2 4 7 ( 2 ) 1 5 6 1 ( 3 ) 1 2 5 3 ( 2 ) 1 7 3 0 ( 2 ) 2 1 8 7 ( 2 ) 1 9 0 1 ( 3 ) 1 1 0 9 ( 3 ) 9 2 2 ( 2 ) 1 5 7 0 ( 2 ) 4 3 0 0 ( 1 ) 4 1 1 8 ( 1 ) 4 9 2 7 ( 1 ) 5 2 6 3 ( 2 ) 5 5 0 2 ( 2 ) 6 3 9 7 ( 2 ) 6 6 4 5 ( 3 ) 6 0 0 1 ( 2 ) 6 2 8 3 ( 3 ) 5 8 9 6 ( 3 ) 7 0 0 7 ( 3 ) 5 1 0 7 ( 3 ) 4 8 5 6 ( 2 ) 4 6 5 6 ( 1 ) 3 8 6 2 ( 2 ) 3 4 0 4 ( 2 ) 3 6 2 U e q , 3 2 ( 1 ) 5 0 ( 1 ) 3 6 ( 1 ) 4 0 ( 1 ) 5 1 ( 1 ) 5 3 ( 1 ) 4 3 ( 1 ) 4 9 ( 1 ) 4 1 ( 1 ) 5 2 ( 1 ) 6 4 ( 1 ) 6 1 ( 1 ) 4 5 ( 1 ) 4 2 ( 1 ) 6 1 ( 1 ) 8 2 ( 1 ) 6 8 ( 1 ) 4 7 ( 1 ) 4 7 ( 1 ) 4 0 ( 1 ) 3 3 ( 1 ) 4 7 ( 1 ) 3 9 ( 1 ) 5 7 ( 1 ) 6 9 ( 1 ) 5 4 ( 1 ) 8 2 ( 1 ) 1 2 5 ( 2 ) 1 9 4 ( 3 ) 5 2 ( 1 ) 4 8 ( 1 ) 3 9 ( 1 ) 3 6 ( 1 ) 4 7 ( 1 ) O c c u p a n c y A A — ‘ L — k — L — k — L — L — ‘ L — l — t A A — l — l — t - A — l — l — S — K — l — k — l é — ‘ L — B — K — l — L A — k - A o — L C ( 1 8 ) 8 0 2 1 ( 5 ) 1 7 5 8 ( 3 ) 2 6 5 2 ( 2 ) 5 8 ( 1 ) 1 C ( 1 9 ) 8 8 5 4 ( 5 ) 6 9 6 ( 3 ) 2 3 6 8 ( 2 ) 5 9 ( 1 ) 1 N ( 8 ) 6 9 2 0 ( 7 ) 4 2 1 ( 3 ) 1 5 6 2 ( 3 ) 1 0 2 ( 2 ) 1 0 ( 8 ) 5 8 2 8 ( 7 ) 4 0 0 6 ( 3 ) 1 2 6 7 ( 3 ) 1 5 6 ( 2 ) 1 0 ( 9 ) 8 1 2 7 ( 8 ) 1 2 6 ( 4 ) 1 2 4 4 ( 4 ) 1 7 4 ( 3 ) 1 C ( 2 0 ) 5 6 4 5 ( 5 ) 3 6 3 ( 3 ) 2 8 2 7 ( 2 ) 5 8 ( 1 ) 1 C ( 2 1 ) 5 5 8 2 ( 4 ) 1 1 2 1 ( 3 ) 3 5 8 8 ( 2 ) 4 9 ( 1 ) 1 8 ( 1 ) 9 1 6 8 ( 4 ) 7 0 5 6 ( 4 ) 7 9 5 ( 3 ) 2 3 6 ( 2 ) 1 C ( 1 S ) 1 0 4 5 3 ( 9 ) 8 2 1 6 ( 5 ) 6 5 7 ( 5 ) 1 1 8 ( 2 ) 1 C ( 2 8 ) 1 0 9 0 2 ( 1 1 ) 7 9 3 3 ( 8 ) 4 1 1 ( 5 ) 1 4 2 ( 3 ) 1 C ( 3 8 ) 1 0 2 9 0 ( 1 3 ) 6 7 3 7 ( 1 0 ) 8 7 7 ( 4 ) 1 3 9 ( 4 ) 1 C ( 4 8 ) 9 3 1 1 ( 1 3 ) 6 2 9 2 ( 8 ) 4 5 7 ( 9 ) 1 9 5 ( 6 ) 1 T a b l e 3 5 ( c o n ' t ) 3 6 3 T a b l e 3 6 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ , u — ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 ' Z C 4 H 4 S , ( 4 . 1 5 A ) . 3 6 4 A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 V ( 1 ) 2 9 ( 1 ) 3 5 ( 1 ) 3 1 ( 1 ) 5 ( 1 ) 9 ( 1 ) 9 ( 1 ) 0 ( 1 ) 3 4 ( 1 ) 5 7 ( 1 ) 5 7 ( 1 ) 1 2 ( 1 ) 1 2 ( 1 ) 1 2 ( 1 ) N ( 1 ) 3 3 ( 1 ) 4 2 ( 1 ) 3 4 ( 1 ) 9 ( 1 ) 1 2 ( 1 ) 1 1 ( 1 ) C ( 1 ) 3 7 ( 2 ) 3 4 ( 2 ) 4 4 ( 2 ) 6 ( 1 ) 5 ( 1 ) 8 ( 1 ) C ( 2 ) 3 2 ( 2 ) 4 8 ( 2 ) 6 5 ( 2 ) 1 0 ( 2 ) 6 ( 1 ) 6 ( 1 ) 0 ( 3 ) 3 8 ( 2 ) 5 6 ( 2 ) 6 8 ( 2 ) 1 6 ( 2 ) 2 4 ( 2 ) 1 1 ( 2 ) N ( 2 ) 3 7 ( 1 ) 5 1 ( 2 ) 4 2 ( 1 ) 1 1 ( 1 ) 1 8 ( 1 ) 1 1 ( 1 ) B ( 1 ) 5 1 ( 2 ) 6 1 ( 2 ) 3 6 ( 2 ) 1 2 ( 2 ) 2 0 ( 2 ) 1 4 ( 2 ) N ( 3 ) 3 9 ( 1 ) 4 4 ( 1 ) 3 8 ( 1 ) 1 1 ( 1 ) 7 ( 1 ) 1 1 ( 1 ) C ( 4 ) 4 2 ( 2 ) 4 6 ( 2 ) 6 3 ( 2 ) 1 5 ( 2 ) 4 ( 2 ) 1 2 ( 1 ) C ( 5 ) 6 2 ( 2 ) 5 5 ( 2 ) 7 4 ( 2 ) 3 2 ( 2 ) 4 ( 2 ) 1 4 ( 2 ) C ( 6 ) 6 5 ( 2 ) 6 6 ( 2 ) 4 5 ( 2 ) 2 7 ( 2 ) 5 ( 2 ) 6 ( 2 ) N ( 4 ) 4 9 ( 2 ) 5 0 ( 2 ) 3 4 ( 1 ) 1 4 ( 1 ) 9 ( 1 ) 9 ( 1 ) N ( 5 ) 4 6 ( 1 ) 4 1 ( 1 ) 3 4 ( 1 ) 4 ( 1 ) 1 0 ( 1 ) 1 1 ( 1 ) C ( 7 ) 7 3 ( 2 ) 4 0 ( 2 ) 6 0 ( 2 ) 2 ( 2 ) 1 4 ( 2 ) 7 ( 2 ) 0 ( 8 ) 1 1 9 ( 4 ) 4 8 ( 2 ) 6 0 ( 2 ) 4 3 ( 2 ) 2 0 ( 2 ) 1 7 ( 2 ) C ( 9 ) 9 6 ( 3 ) 6 3 ( 2 ) 4 2 ( 2 ) 4 ( 2 ) 2 2 ( 2 ) 2 9 ( 2 ) N ( 6 ) 5 6 ( 2 ) 5 1 ( 2 ) 3 2 ( 1 ) 2 ( 1 ) 1 3 ( 1 ) 1 8 ( 1 ) 0 ( 2 ) 5 5 ( 1 ) 4 6 ( 1 ) 3 9 ( 1 ) 1 ( 1 ) 1 6 ( 1 ) 1 8 ( 1 ) 0 ( 3 ) 4 0 ( 1 ) 4 4 ( 1 ) 4 0 ( 1 ) 1 4 ( 1 ) 1 3 ( 1 ) 1 3 ( 1 ) P ( 1 ) 3 6 ( 1 ) 3 2 ( 1 ) 3 5 ( 1 ) 8 ( 1 ) 1 5 ( 1 ) 1 2 ( 1 ) 0 ( 4 ) 4 2 ( 1 ) 4 8 ( 1 ) 6 8 ( 1 ) 3 0 ( 1 ) 2 7 ( 1 ) 2 0 ( 1 ) C ( 1 0 ) 3 9 ( 2 ) 3 2 ( 1 ) 5 0 ( 2 ) 1 5 ( 1 ) 1 8 ( 1 ) 1 0 ( 1 ) C ( 1 1 ) 4 8 ( 2 ) 6 8 ( 2 ) 4 5 ( 2 ) 1 7 ( 2 ) 8 ( 2 ) 4 ( 2 ) C ( 1 2 ) 6 4 ( 2 ) 8 3 ( 3 ) 4 6 ( 2 ) 1 4 ( 2 ) 2 2 ( 2 ) - 5 ( 2 ) C ( 1 3 ) 4 6 ( 2 ) 4 4 ( 2 ) 7 0 ( 2 ) 1 3 ( 2 ) 2 7 ( 2 ) 5 ( 2 ) N ( 7 ) 6 5 ( 2 ) 7 9 ( 2 ) 1 0 2 ( 3 ) 2 5 ( 2 ) 4 5 ( 2 ) 2 ( 2 ) 0 ( 6 ) 5 2 ( 2 ) 1 6 8 ( 4 ) 1 9 4 ( 4 ) 1 1 7 ( 4 ) 4 8 ( 3 ) 3 1 ( 2 ) 0 ( 7 ) 9 2 ( 3 ) 3 2 9 ( 8 ) 9 3 ( 3 ) 2 9 ( 4 ) 5 0 ( 2 ) 8 2 ( 4 ) C ( 1 4 ) 4 0 ( 2 ) 4 6 ( 2 ) 7 0 ( 2 ) 2 4 ( 2 ) 8 ( 2 ) 9 ( 1 ) C ( 1 5 ) 5 1 ( 2 ) 4 8 ( 2 ) 4 7 ( 2 ) 1 9 ( 1 ) 1 2 ( 1 ) 1 2 ( 2 ) 0 ( 5 ) 3 5 ( 1 ) 3 7 ( 1 ) 4 2 ( 1 ) 1 ( 1 ) 1 3 ( 1 ) 1 0 ( 1 ) C ( 1 6 ) 3 6 ( 2 ) 3 4 ( 1 ) 4 0 ( 2 ) 6 ( 1 ) 1 3 ( 1 ) 1 5 ( 1 ) C ( 1 7 ) 5 2 ( 2 ) 3 4 ( 2 ) 5 6 ( 2 ) 9 ( 1 ) 2 8 ( 2 ) 9 ( 1 ) T a b l e 3 6 ( c a n ' t ) C ( 1 8 ) 7 5 ( 2 ) 4 4 ( 2 ) 6 5 ( 2 ) 1 4 ( 2 ) 4 4 ( 2 ) 1 8 ( 2 ) C ( 1 9 ) 8 5 ( 3 ) 4 2 ( 2 ) 5 3 ( 2 ) 4 ( 2 ) 3 2 ( 2 ) 2 1 ( 2 ) N ( 8 ) 1 6 6 ( 4 ) 5 3 ( 2 ) 8 9 ( 3 ) 4 ( 2 ) 8 2 ( 3 ) 1 8 ( 3 ) 0 ( 8 ) 2 1 8 ( 5 ) 7 3 ( 2 ) 1 2 8 ( 3 ) 4 7 ( 2 ) 1 0 4 ( 3 ) 2 7 ( 3 ) 0 ( 9 ) 2 5 7 ( 6 ) 9 0 ( 3 ) 1 7 1 ( 4 ) 2 1 ( 3 ) 1 7 0 ( 5 ) 7 ( 3 ) C ( 2 0 ) 6 5 ( 2 ) 3 8 ( 2 ) 6 1 ( 2 ) 8 ( 2 ) 2 6 ( 2 ) 3 ( 2 ) C ( 2 1 ) 4 6 ( 2 ) 3 9 ( 2 ) 5 8 ( 2 ) 4 ( 1 ) 2 5 ( 2 ) 6 ( 1 ) 3 ( 1 ) 1 3 7 ( 2 ) 2 8 4 ( 4 ) 3 2 7 ( 5 ) 1 3 8 ( 4 ) 8 4 ( 3 ) 6 9 ( 3 ) C ( 1 S ) 1 2 8 ( 5 ) 7 8 ( 4 ) 1 4 1 ( 8 ) 1 9 ( 4 ) 9 ( 4 ) 4 0 ( 4 ) C ( 2 3 ) 1 9 3 ( 8 ) 1 5 1 ( 7 ) 9 8 ( 5 ) 7 7 ( 5 ) 2 6 ( 5 ) 4 9 ( 6 ) C ( 3 S ) 1 6 5 ( 8 ) 2 1 3 ( 1 1 ) 3 4 ( 3 ) 4 0 ( 4 ) 8 ( 3 ) 9 5 ( 8 ) C ( 4 8 ) 1 3 3 ( 8 ) 1 1 5 ( 6 ) 2 2 8 ( 1 1 ) 8 4 ( 8 ) 8 9 ( 7 ) 5 1 ( 6 ) 3 6 5 T a b l e 3 7 . A t o m i c C o o r d i n a t e s ( x 1 0 ‘ ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ , u — ( p - N 0 2 C 6 H 4 O ) 2 P 0 2 ] } 2 - 2 0 4 H 4 S , ( 4 . 1 5 3 ) . A t o m V ( 1 ) 0 ( 1 ) N ( 1 ) C ( 1 ) C ( 2 ) C ( 3 ) N ( 2 ) B ( 1 ) N ( 3 ) C ( 4 ) C ( 5 ) C ( 6 ) N ( 4 ) N ( 5 ) C ( 7 ) C ( 8 ) C ( 9 ) N ( 5 ) 0 ( 2 ) 0 ( 3 ) P ( 1 ) 0 ( 4 ) C ( 1 0 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) N ( 7 ) 0 ( 5 ) 0 ( 7 ) C ( 1 4 ) C ( 1 5 ) C 3 ( 5 ) C ( 1 6 ) C ( 1 7 ) X 3 5 8 6 ( 1 ) 1 5 9 8 ( 2 ) 6 4 7 1 ( 2 ) 7 8 2 1 ( 3 ) 9 2 8 0 ( 3 ) 8 7 3 3 ( 3 ) 7 0 5 7 ( 2 ) 5 8 0 4 ( 4 ) 3 7 6 8 ( 2 ) 2 9 4 8 ( 4 ) 3 3 4 1 ( 4 ) 4 4 4 7 ( 4 ) 4 6 9 2 ( 3 ) 3 7 2 2 ( 2 ) 2 9 6 3 ( 3 ) 3 4 4 3 ( 3 ) 4 5 3 0 ( 3 ) 4 8 8 8 ( 2 ) 4 0 2 6 ( 2 ) 4 0 4 4 ( 2 ) 5 2 6 5 ( 1 ) 6 8 3 1 ( 2 ) 6 7 6 6 ( 3 ) 5 6 0 4 ( 3 ) 5 6 6 6 ( 3 ) 6 9 0 3 ( 4 ) 6 9 8 6 ( 4 ) 8 2 5 8 ( 5 ) 5 8 1 0 ( 5 ) 8 0 7 5 ( 3 ) 7 9 8 5 ( 3 ) 4 4 8 8 ( 2 ) 2 9 4 4 ( 3 ) 1 4 7 7 ( 3 ) Y 4 3 1 4 ( 1 ) 3 8 9 8 ( 1 ) 4 9 4 2 ( 2 ) 5 3 8 3 ( 2 ) 5 6 2 0 ( 2 ) 5 3 0 7 ( 2 ) 4 9 0 4 ( 2 ) 4 5 4 6 ( 2 ) 3 0 6 8 ( 2 ) 1 9 5 4 ( 2 ) 1 4 8 7 ( 2 ) 2 3 7 0 ( 2 ) 3 3 2 1 ( 2 ) 5 3 9 3 ( 2 ) 6 1 9 9 ( 2 ) 6 6 9 0 ( 2 ) 6 1 3 9 ( 2 ) 5 3 5 4 ( 2 ) 5 6 6 3 ( 1 ) 3 3 3 5 ( 1 ) 3 2 9 7 ( 1 ) 2 9 7 3 ( 1 ) 2 1 9 0 ( 2 ) 1 1 1 8 ( 2 ) 3 5 7 ( 2 ) 6 8 2 ( 2 ) 4 4 1 ( 2 ) 5 2 ( 2 ) 8 8 8 ( 2 ) 1 7 4 8 ( 2 ) 2 5 1 9 ( 2 ) 2 2 2 0 ( 1 ) 1 9 8 3 ( 2 ) 1 6 5 9 ( 2 ) Z 3 2 3 3 ( 1 ) 3 0 1 7 ( 1 ) 3 4 0 5 ( 1 ) 4 1 1 3 ( 2 ) 3 8 0 1 ( 2 ) 2 8 5 6 ( 2 ) 2 6 2 9 ( 1 ) 1 6 8 2 ( 2 ) 2 1 7 1 ( 1 ) 1 8 8 5 ( 2 ) 1 0 9 1 ( 2 ) 9 0 4 ( 2 ) 1 5 5 6 ( 1 ) 2 3 1 7 ( 1 ) 2 1 9 2 ( 2 ) 1 4 9 5 ( 2 ) 1 2 0 4 ( 2 ) 1 6 9 7 ( 1 ) 4 2 8 8 ( 1 ) 4 1 2 6 ( 1 ) 4 9 5 4 ( 1 ) 4 6 8 7 ( 1 ) 3 8 8 9 ( 2 ) 3 6 1 5 ( 2 ) 2 8 5 1 ( 2 ) 2 3 9 8 ( 2 ) 1 6 0 3 ( 2 ) 1 3 2 4 ( 2 ) 1 2 6 2 ( 2 ) 2 6 7 5 ( 2 ) 3 4 2 7 ( 2 ) 5 3 3 1 ( 1 ) 5 5 5 4 ( 2 ) 4 8 7 5 ( 2 ) 3 6 6 U e q , 1 7 ( 1 ) 2 7 ( 1 ) 2 0 ( 1 ) 2 3 ( 1 ) 2 8 ( 1 ) 2 9 ( 1 ) 2 4 ( 1 ) 2 7 ( 1 ) 2 3 ( 1 ) 3 5 ( 1 ) 4 7 ( 1 ) 3 8 ( 1 ) 2 6 ( 1 ) 2 3 ( 1 ) 2 8 ( 1 ) 3 5 ( 1 ) 3 3 ( 1 ) 2 5 ( 1 ) 2 6 ( 1 ) 2 2 ( 1 ) 1 8 ( 1 ) 2 2 ( 1 ) 2 1 ( 1 ) 2 7 ( 1 ) 3 4 ( 1 ) 3 5 ( 1 ) 6 0 ( 1 ) 9 3 ( 1 ) 9 9 ( 1 ) 3 3 ( 1 ) 2 6 ( 1 ) 2 6 ( 1 ) 2 2 ( 1 ) 2 7 ( 1 ) O c c u p a n c y — l A — ‘ L — ‘ L — h — L — k — k — L — k — l — K — L — k — L — t — L — S A — K — L — B — L — A — L - ‘ A — L — ‘ L — k - A - A — t — t C ( 1 8 ) 8 1 ( 3 ) 1 3 4 7 ( 2 ) 5 1 1 4 ( 2 ) 2 8 ( 1 ) 1 C ( 1 9 ) 4 9 ( 3 ) 1 3 7 7 ( 2 ) 6 0 2 4 ( 2 ) 3 1 ( 1 ) 1 N ( 8 ) - 1 6 2 8 ( 3 ) 1 0 3 5 ( 2 ) 6 2 7 0 ( 2 ) 4 6 ( 1 ) 1 0 ( 8 ) 2 9 1 2 ( 3 ) 7 6 6 ( 2 ) 5 6 7 1 ( 2 ) 6 5 ( 1 ) 1 0 ( 9 ) 4 6 0 4 ( 4 ) 9 7 8 ( 4 ) 7 0 5 7 ( 2 ) 1 2 7 ( 2 ) 1 C ( 2 0 ) 1 4 4 1 ( 4 ) 1 7 0 7 ( 3 ) 6 7 0 7 ( 2 ) 4 0 ( 1 ) 1 C ( 2 1 ) 2 9 5 8 ( 3 ) 2 0 1 4 ( 2 ) 6 4 6 9 ( 2 ) 3 3 ( 1 ) 1 8 ( 1 ) 9 1 7 5 ( 2 ) 7 0 7 7 ( 1 ) 8 4 4 ( 1 ) 9 6 ( 1 ) 1 C ( 1 8 ) 1 0 4 4 9 ( 5 ) 8 2 3 3 ( 3 ) 6 4 4 ( 3 ) 6 9 ( 1 ) 1 C ( 2 8 ) 1 0 9 3 2 ( 7 ) 7 9 8 8 ( 4 ) 4 3 1 ( 3 ) 7 9 ( 1 ) 1 C ( 3 S ) 1 0 2 4 8 ( 7 ) 8 7 8 4 ( 5 ) 8 0 6 ( 2 ) 8 5 ( 2 ) 1 C ( 4 8 ) 9 2 5 1 ( 6 ) 6 2 4 9 ( 4 ) 4 2 7 ( 4 ) 1 0 8 ( 2 ) 1 T a b l e 3 7 ( c o n ' t ) 3 6 7 T a b l e 3 8 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ p — ( p - N 0 2 C 6 H 4 O ) 2 P 0 2 ] } 2 ° 2 C 4 H 4 S , ( 4 . 1 S B ) . A t o m V 4 1 ) ( 3 ( 1 ) 6 K 1 ) C 4 1 ) C 4 2 ) C 4 3 ) 6 K 2 ) 3 ( 1 ) r 1 ( 3 ) C 4 4 ) C 4 5 ) C 4 5 ) h fl 4 ) 6 K 5 ) C 4 7 ) C 4 3 ) C 4 9 ) ' “ ( 5 ) C 4 2 ) C 4 3 ) P ( 1 ) C 4 4 ) C ( 1 0 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) 6 K 7 ) C 4 5 ) C 4 7 ) C ( 1 4 ) C ( 1 5 ) C 4 5 ) C ( 1 6 ) C ( 1 7 ) U 1 1 1 6 ( 1 ) 1 9 ( 1 ) 2 1 ( 1 ) 2 3 ( 1 ) 1 8 ( 1 ) 2 2 ( 1 ) 2 1 ( 1 ) 2 9 ( 1 ) 2 4 ( 1 ) 4 3 ( 2 ) 6 9 ( 2 ) 5 4 ( 2 ) 3 1 ( 1 ) 2 1 ( 1 ) 2 2 ( 1 ) 3 3 ( 1 ) 3 6 ( 1 ) 2 7 ( 1 ) 3 1 ( 1 ) 2 3 ( 1 ) 2 0 ( 1 ) 2 0 ( 1 ) 2 2 ( 1 ) 2 7 ( 1 ) 3 9 ( 2 ) 5 3 ( 2 ) 1 0 3 ( 2 ) 1 3 3 ( 3 ) 1 4 0 ( 3 ) 4 2 ( 2 ) 2 8 ( 1 ) 2 3 ( 1 ) 2 4 ( 1 ) 3 0 ( 1 ) U 2 2 1 9 ( 1 ) 3 1 ( 1 ) 2 3 ( 1 ) 1 9 ( 1 ) 2 6 ( 1 ) 3 0 ( 1 ) 2 8 ( 1 ) 3 4 ( 2 ) 2 3 ( 1 ) 2 3 ( 1 ) 2 7 ( 1 ) 3 6 ( 2 ) 2 9 ( 1 ) 2 5 ( 1 ) 2 5 ( 1 ) 3 0 ( 1 ) 3 5 ( 1 ) 2 8 ( 1 ) 2 5 ( 1 ) 2 3 ( 1 ) 1 8 ( 1 ) 2 0 ( 1 ) 1 9 ( 1 ) 2 3 ( 1 ) 2 3 ( 1 ) 2 3 ( 1 ) 3 0 ( 1 ) 5 2 ( 2 ) 4 6 ( 2 ) 2 7 ( 1 ) 2 0 ( 1 ) 2 6 ( 1 ) 1 6 ( 1 ) 2 6 ( 1 ) U 3 3 1 7 ( 1 ) 3 1 ( 1 ) 1 8 ( 1 ) 2 4 ( 1 ) 3 7 ( 1 ) 3 8 ( 1 ) 2 3 ( 1 ) 1 9 ( 1 ) 2 0 ( 1 ) 3 3 ( 1 ) 3 5 ( 2 ) 2 3 ( 1 ) 1 8 ( 1 ) 2 2 ( 1 ) 3 4 ( 1 ) 3 9 ( 2 ) 2 4 ( 1 ) 1 9 ( 1 ) 2 2 ( 1 ) 2 3 ( 1 ) 1 9 ( 1 ) 2 3 ( 1 ) 2 2 ( 1 ) 3 1 ( 1 ) 3 4 ( 1 ) 3 1 ( 1 ) 5 1 ( 2 ) 1 0 2 ( 2 ) 7 8 ( 2 ) 3 7 ( 1 ) 3 1 ( 1 ) 3 5 ( 1 ) 2 8 ( 1 ) 2 6 ( 1 ) 3 6 8 U 2 3 2 ( 1 ) 6 ( 1 ) 4 ( 1 ) 3 ( 1 ) 5 ( 1 ) 1 0 ( 1 ) 6 ( 1 ) 6 ( 1 ) 2 ( 1 ) 1 ( 1 ) - 7 ( 1 ) - 2 ( 1 ) 1 ( 1 ) 5 ( 1 ) 6 ( 1 ) 1 6 ( 1 ) 1 4 ( 1 ) 7 ( 1 ) 1 ( 1 ) 7 ( 1 ) 4 ( 1 ) 0 ( 1 ) 3 ( 1 ) 3 ( 1 ) 0 ( 1 ) 2 ( 1 ) 0 ( 1 ) - 7 ( 2 ) 8 3 ( 1 ) 1 1 ( 1 ) 6 ( 1 ) 1 5 ( 1 ) 8 ( 1 ) 1 0 ( 1 ) U 1 3 5 ( 1 ) 7 ( 1 ) 7 ( 1 ) 3 ( 1 ) 3 ( 1 ) 1 4 ( 1 ) 1 0 ( 1 ) 1 0 ( 1 ) 6 ( 1 ) 1 0 ( 1 ) 1 2 ( 1 ) 1 2 ( 1 ) 7 ( 1 ) 4 ( 1 ) - 1 ( 1 ) - 2 ( 1 ) 2 ( 1 ) 6 ( 1 ) 9 ( 1 ) 8 ( 1 ) 3 ( 1 ) 7 ( 1 ) 7 ( 1 ) 1 3 ( 1 ) 1 4 ( 1 ) 2 1 ( 1 ) 5 2 ( 2 ) 9 5 ( 2 ) 6 7 ( 2 ) 2 5 ( 1 ) 1 3 ( 1 ) 1 4 ( 1 ) 1 0 ( 1 ) 8 ( 1 ) U 1 2 4 ( 1 ) 5 ( 1 ) 6 ( 1 ) 6 ( 1 ) 3 ( 1 ) 6 ( 1 ) 6 ( 1 ) 8 ( 1 ) 6 ( 1 ) 4 ( 1 ) 7 ( 1 ) 1 6 ( 1 ) 1 0 ( 1 ) 5 ( 1 ) 6 ( 1 ) 4 ( 1 ) 1 ( 1 ) 4 ( 1 ) 8 ( 1 ) 6 ( 1 ) 6 ( 1 ) 5 ( 1 ) 9 ( 1 ) 4 ( 1 ) 2 ( 1 ) 1 2 ( 1 ) 1 0 ( 2 ) 1 1 ( 2 ) 2 7 ( 2 ) 1 1 ( 1 ) 5 ( 1 ) 1 1 ( 1 ) 5 ( 1 ) 6 ( 1 ) T a b l e 3 8 ( c o n ' t ) C ( 1 8 ) 2 6 ( 1 ) 2 3 ( 1 ) 3 6 ( 1 ) 1 2 ( 1 ) 5 ( 1 ) 5 ( 1 ) C ( 1 9 ) 2 7 ( 1 ) 2 3 ( 1 ) 4 2 ( 2 ) 7 ( 1 ) 1 7 ( 1 ) 2 ( 1 ) N ( 8 ) 3 8 ( 2 ) 4 4 ( 1 ) 5 7 ( 2 ) 1 2 ( 1 ) 2 6 ( 1 ) 0 ( 1 ) 0 ( 8 ) 2 8 ( 1 ) 8 7 ( 2 ) 9 5 ( 2 ) 5 8 ( 2 ) 2 2 ( 1 ) 1 5 ( 1 ) 0 ( 9 ) 5 3 ( 2 ) 2 3 2 ( 5 ) 5 1 ( 2 ) 1 4 ( 2 ) 2 9 ( 1 ) 8 7 ( 2 ) C ( 2 0 ) 4 0 ( 2 ) 4 8 ( 2 ) 2 6 ( 1 ) 7 ( 1 ) 1 4 ( 1 ) 2 ( 1 ) C ( 2 1 ) 2 8 ( 1 ) 3 8 ( 1 ) 2 6 ( 1 ) 8 ( 1 ) 5 ( 1 ) 4 ( 1 ) 8 ( 1 ) 6 3 ( 1 ) 9 2 ( 1 ) 1 3 4 ( 1 ) 2 6 ( 1 ) 3 4 ( 1 ) 1 9 ( 1 ) C ( 1 S ) 7 7 ( 3 ) 4 5 ( 2 ) 7 9 ( 3 ) 6 ( 2 ) 7 ( 2 ) 2 4 ( 2 ) C ( 2 8 ) 1 2 3 ( 4 ) 6 8 ( 3 ) 4 9 ( 2 ) 2 9 ( 2 ) 1 0 ( 2 ) 3 3 ( 3 ) C ( 3 S ) 1 1 2 ( 4 ) 1 0 6 ( 4 ) 2 2 ( 2 ) 8 ( 2 ) 4 5 ( 2 ) 4 6 ( 3 ) C ( 4 8 ) 7 3 ( 3 ) 4 9 ( 2 ) 1 4 0 ( 5 ) 4 9 ( 3 ) 8 5 ( 3 ) 8 ( 2 ) 3 6 9 T a b l e 3 9 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ p — ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 - 2 C 2 H 4 8 2 , ( 4 . 1 6 A ) . A t o m x y z U e q , O c c u p a n c y V ( 1 ) 3 5 3 6 ( 1 ) 4 1 9 6 ( 1 ) 3 3 0 5 ( 1 ) 4 4 ( 1 ) 1 0 ( 1 ) 1 5 7 8 ( 3 ) 3 7 3 1 ( 3 ) 3 1 3 3 ( 2 ) 6 3 ( 1 ) 1 N ( 1 ) 6 3 5 7 ( 4 ) 4 8 6 3 ( 3 ) 3 4 0 5 ( 3 ) 4 7 ( 1 ) 1 C ( 1 ) 7 7 5 0 ( 5 ) 5 3 2 6 ( 3 ) 4 0 6 1 ( 3 ) 4 7 ( 1 ) 1 C ( 2 ) 9 1 3 2 ( 6 ) 5 5 5 1 ( 4 ) 3 7 2 9 ( 4 ) 5 8 ( 1 ) 1 C ( 3 ) 8 5 2 8 ( 6 ) 5 1 9 3 ( 4 ) 2 8 2 6 ( 4 ) 6 0 ( 1 ) 1 N ( 2 ) 6 8 6 1 ( 5 ) 4 7 8 8 ( 3 ) 2 6 3 1 ( 2 ) 5 2 ( 1 ) 1 B ( 1 ) 5 5 4 1 ( 7 ) 4 3 4 5 ( 5 ) 1 7 4 6 ( 4 ) 6 1 ( 2 ) 1 N ( 3 ) 3 5 7 9 ( 4 ) 5 2 2 1 ( 3 ) 2 4 3 6 ( 2 ) 5 1 ( 1 ) 1 C ( 4 ) 2 8 3 8 ( 6 ) 6 0 2 4 ( 4 ) 2 3 6 5 ( 4 ) 6 5 ( 2 ) 1 C ( 5 ) 3 2 3 1 ( 7 ) 6 4 8 7 ( 5 ) 1 7 0 3 ( 4 ) 8 2 ( 2 ) 1 C ( 6 ) 4 2 6 3 ( 7 ) 5 9 2 3 ( 5 ) 1 3 7 0 ( 4 ) 7 8 ( 2 ) 1 N ( 4 ) 4 4 5 9 ( 5 ) 5 1 5 3 ( 3 ) 1 8 0 9 ( 3 ) 5 8 ( 1 ) 1 N ( 5 ) 3 6 1 6 ( 5 ) 2 8 6 3 ( 3 ) 2 2 4 4 ( 2 ) 5 5 ( 1 ) 1 C ( 7 ) 2 8 5 2 ( 7 ) 1 6 9 5 ( 4 ) 1 9 7 8 ( 4 ) 7 2 ( 2 ) 1 C ( 8 ) 3 2 0 4 ( 8 ) 1 1 8 2 ( 5 ) 1 1 9 5 ( 4 ) 9 4 ( 2 ) 1 C ( 9 ) 4 2 1 2 ( 8 ) 2 0 9 0 ( 5 ) 9 9 5 ( 4 ) 8 3 ( 2 ) 1 N ( 6 ) 4 4 6 7 ( 5 ) 3 0 9 5 ( 3 ) 1 6 2 8 ( 3 ) 5 9 ( 1 ) 1 0 ( 2 ) 4 0 4 7 ( 4 ) 5 6 5 0 ( 2 ) 4 3 2 8 ( 2 ) 5 6 ( 1 ) 1 0 ( 3 ) 4 0 8 2 ( 3 ) 3 2 7 2 ( 2 ) 4 1 2 9 ( 2 ) 5 0 ( 1 ) 1 P ( 1 ) 5 2 4 0 ( 1 ) 3 2 5 9 ( 1 ) 4 9 1 8 ( 1 ) 4 4 ( 1 ) 1 0 ( 4 ) 4 4 0 8 ( 4 ) 2 1 6 7 ( 2 ) 5 2 3 1 ( 2 ) 6 0 ( 1 ) 1 C ( 1 0 ) 2 9 2 1 ( 6 ) 1 9 6 5 ( 4 ) 5 4 9 0 ( 3 ) 4 8 ( 1 ) 1 C ( 1 1 ) 3 0 1 2 ( 6 ) 2 0 1 5 ( 4 ) 6 3 5 6 ( 3 ) 6 6 ( 1 ) 1 C ( 1 2 ) 1 5 4 5 ( 8 ) 1 7 6 2 ( 5 ) 6 6 2 3 ( 4 ) 7 7 ( 2 ) 1 C ( 1 3 ) 8 6 ( 7 ) 1 4 5 4 ( 4 ) 6 0 0 5 ( 4 ) 6 3 ( 1 ) 1 N ( 7 ) - 1 4 7 8 ( 8 ) 1 1 7 6 ( 5 ) 6 3 0 3 ( 6 ) 1 0 4 ( 2 ) 1 0 ( 6 ) - 1 3 9 3 ( 1 1 ) 1 0 4 0 ( 8 ) 7 0 5 0 ( 6 ) 1 9 2 ( 4 ) 1 0 ( 7 A ) - 1 7 1 0 ( 1 4 0 ) 1 7 1 0 ( 1 0 0 ) 6 8 2 0 ( 9 0 ) 1 8 1 ( 1 0 ) 0 . 0 7 9 0 ( 7 B ) - 2 7 7 4 ( 7 ) 9 7 6 ( 6 ) 5 7 6 7 ( 6 ) 1 4 5 ( 3 ) 0 . 9 2 1 C ( 1 4 ) - 1 4 ( 6 ) 1 4 0 9 ( 4 ) 5 1 5 1 ( 4 ) 6 4 ( 2 ) 1 C ( 1 5 ) 1 4 3 3 ( 6 ) 1 6 7 1 ( 4 ) 4 8 8 5 ( 3 ) 5 7 ( 1 ) 1 0 ( 5 ) 6 7 6 7 ( 3 ) 2 9 1 4 ( 2 ) 4 6 6 8 ( 2 ) 4 9 ( 1 ) 1 C ( 1 6 ) 6 6 7 8 ( 5 ) 2 0 8 8 ( 4 ) 3 8 7 8 ( 3 ) 4 5 ( 1 ) 1 3 7 0 T a b l e 3 9 ( c o n ' t ) C ( 1 7 ) 7 8 6 0 ( 6 ) 2 4 3 5 ( 4 ) 3 4 3 4 ( 3 ) 6 0 ( 1 ) 1 C ( 1 8 ) 7 8 8 6 ( 7 ) 1 8 5 3 ( 4 ) 2 6 6 7 ( 4 ) 7 7 ( 2 ) 1 C ( 1 9 ) 8 7 1 6 ( 7 ) 5 4 6 ( 4 ) 2 3 6 0 ( 3 ) 6 8 ( 2 ) 1 N ( 8 ) 6 7 0 4 ( 9 ) 2 8 9 ( 5 ) 1 5 3 0 ( 4 ) 1 1 2 ( 2 ) 1 0 ( 8 A ) 7 9 8 0 ( 5 0 ) 4 2 0 ( 3 0 ) 1 2 9 0 ( 3 0 ) 1 5 9 ( 1 1 ) 0 . 5 2 0 ( 8 B ) 7 5 1 0 ( 6 0 ) 1 4 0 ( 3 0 ) 1 0 4 0 ( 3 0 ) 1 6 4 ( 1 1 ) 0 . 4 8 0 ( 9 A ) 5 9 0 0 ( 5 0 ) 4 3 1 0 ( 3 0 ) 1 3 4 0 ( 3 0 ) 1 2 2 ( 9 ) 0 . 5 0 ( 9 B ) 5 3 8 0 ( 4 0 ) 4 1 1 0 ( 3 0 ) 1 1 5 0 ( 3 0 ) 1 2 1 ( 8 ) 0 . 5 C ( 2 0 ) 5 5 7 2 ( 6 ) 2 0 4 ( 4 ) 2 8 0 7 ( 4 ) 6 8 ( 2 ) 1 C ( 2 1 ) 5 5 6 5 ( 6 ) 9 7 9 ( 4 ) 3 5 6 3 ( 3 ) 5 9 ( 1 ) 1 S ( 1 S ) 8 6 2 2 ( 4 ) 6 7 1 0 ( 3 ) 8 4 3 ( 2 ) 2 1 5 ( 1 ) 1 C ( 1 8 A ) 9 7 2 0 ( 2 0 ) 7 8 7 3 ( 1 2 ) 6 6 5 ( 1 3 ) 2 1 2 ( 9 ) 0 . 7 C ( 2 6 A ) 1 0 0 7 1 ( 1 7 ) 7 6 2 3 ( 1 3 ) 8 3 9 ( 1 1 ) 1 6 2 ( 6 ) 0 . 7 S ( 2 8 A ) 1 1 4 2 9 ( 1 3 ) 7 2 1 1 ( 1 1 ) - 5 5 8 ( 1 0 ) 2 9 3 ( 6 ) 0 . 7 C ( 1 S B ) 9 4 3 0 ( 6 0 ) 7 6 8 0 ( 2 0 ) 3 9 2 ( 1 9 ) 2 2 0 ( 2 0 ) 0 . 3 C ( Z S B ) 9 5 5 0 ( 3 0 ) 6 6 4 0 ( 3 0 ) - 3 0 2 ( 1 8 ) 1 6 7 ( 1 4 ) 0 . 3 S ( 2 8 B ) 1 1 0 1 0 ( 2 0 ) 6 6 1 7 ( 1 1 ) - 6 7 7 ( 1 0 ) 1 4 1 ( 5 ) 0 . 3 3 7 1 T a b l e 4 0 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ p — ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] ) 2 ' 2 0 2 H 4 8 2 , ( 4 . 1 6 A ) . 3 7 2 A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 V ( 1 ) 4 0 ( 1 ) 4 8 ( 1 ) 4 3 ( 1 ) 1 0 ( 1 ) 1 4 ( 1 ) 1 3 ( 1 ) 0 ( 1 ) 4 0 ( 2 ) 7 2 ( 2 ) 7 4 ( 2 ) 2 1 ( 2 ) 1 7 ( 2 ) 1 4 ( 2 ) N ( 1 ) 4 5 ( 2 ) 4 7 ( 2 ) 4 4 ( 3 ) 8 ( 2 ) 1 0 ( 2 ) 1 4 ( 2 ) C ( 1 ) 4 6 ( 3 ) 4 5 ( 3 ) 4 6 ( 3 ) 1 3 ( 2 ) 1 1 ( 3 ) 1 1 ( 2 ) C ( 2 ) 3 8 ( 3 ) 5 4 ( 3 ) 7 3 ( 4 ) 1 1 ( 3 ) 1 6 ( 3 ) 7 ( 2 ) C ( 3 ) 4 9 ( 3 ) 6 7 ( 3 ) 6 9 ( 4 ) 2 0 ( 3 ) 3 3 ( 3 ) 1 5 ( 3 ) N ( 2 ) 4 9 ( 3 ) 6 5 ( 3 ) 4 4 ( 3 ) 1 3 ( 2 ) 2 4 ( 2 ) 1 5 ( 2 ) B ( 1 ) 6 8 ( 4 ) 7 5 ( 4 ) 3 5 ( 4 ) 1 1 ( 3 ) 2 1 ( 3 ) 1 5 ( 4 ) N ( 3 ) 4 4 ( 2 ) 5 5 ( 2 ) 5 0 ( 3 ) 1 5 ( 2 ) 8 ( 2 ) 1 2 ( 2 ) C ( 4 ) 5 1 ( 3 ) 6 5 ( 3 ) 7 5 ( 4 ) 2 6 ( 3 ) 4 ( 3 ) 2 1 ( 3 ) C ( 5 ) 7 4 ( 4 ) 7 9 ( 4 ) 9 6 ( 5 ) 4 9 ( 4 ) 4 ( 4 ) 2 0 ( 3 ) C ( 6 ) 7 8 ( 4 ) 9 4 ( 4 ) 6 1 ( 4 ) 3 9 ( 4 ) 9 ( 3 ) 1 5 ( 4 ) N ( 4 ) 5 7 ( 3 ) 6 9 ( 3 ) 4 4 ( 3 ) 1 8 ( 2 ) 1 1 ( 2 ) 1 4 ( 2 ) N ( 5 ) 6 0 ( 3 ) 5 7 ( 3 ) 4 2 ( 3 ) 8 ( 2 ) 1 5 ( 2 ) 1 6 ( 2 ) C ( 7 ) 8 7 ( 4 ) 5 0 ( 3 ) 6 0 ( 4 ) 4 ( 3 ) 9 ( 3 ) 1 0 ( 3 ) C ( 8 ) 1 2 6 ( 6 ) 6 0 ( 4 ) 6 7 ( 5 ) 4 3 ( 3 ) 9 ( 4 ) 2 6 ( 4 ) C ( 9 ) 1 0 7 ( 5 ) 8 0 ( 4 ) 4 8 ( 4 ) 4 0 ( 3 ) 2 1 ( 3 ) 3 2 ( 4 ) N ( 6 ) 6 5 ( 3 ) 6 5 ( 3 ) 3 5 ( 3 ) 4 ( 2 ) 1 0 ( 2 ) 2 1 ( 2 ) 0 ( 2 ) 6 1 ( 2 ) 5 7 ( 2 ) 4 6 ( 2 ) 5 ( 2 ) 1 8 ( 2 ) 2 1 ( 2 ) 0 ( 3 ) 5 1 ( 2 ) 5 5 ( 2 ) 4 7 ( 2 ) 1 7 ( 2 ) 1 6 ( 2 ) 1 9 ( 2 ) P ( 1 ) 4 8 ( 1 ) 4 3 ( 1 ) 4 6 ( 1 ) 1 3 ( 1 ) 2 2 ( 1 ) 1 8 ( 1 ) 0 ( 4 ) 5 7 ( 2 ) 5 7 ( 2 ) 8 6 ( 3 ) 3 8 ( 2 ) 3 7 ( 2 ) 2 6 ( 2 ) C ( 1 0 ) 4 8 ( 3 ) 4 0 ( 3 ) 5 9 ( 4 ) 2 0 ( 2 ) 2 0 ( 3 ) 1 3 ( 2 ) C ( 1 1 ) 5 5 ( 3 ) 7 9 ( 4 ) 5 4 ( 4 ) 2 3 ( 3 ) 9 ( 3 ) 6 ( 3 ) C ( 1 2 ) 8 0 ( 4 ) 9 1 ( 4 ) 5 4 ( 4 ) 2 3 ( 3 ) 2 9 ( 4 ) 1 1 ( 3 ) C ( 1 3 ) 5 6 ( 4 ) 5 0 ( 3 ) 8 5 ( 5 ) 1 9 ( 3 ) 3 5 ( 4 ) 1 1 ( 3 ) N ( 7 ) 7 6 ( 4 ) 9 2 ( 4 ) 1 5 5 ( 6 ) 4 5 ( 4 ) 6 5 ( 4 ) 1 5 ( 3 ) 0 ( 6 ) 1 3 8 ( 5 ) 2 6 3 ( 1 0 ) 1 5 1 ( 6 ) 6 4 ( 6 ) 8 7 ( 4 ) - 8 ( 6 ) 0 ( 7 A ) 1 3 0 ( 4 0 ) 2 2 0 ( 5 0 ) 2 3 0 ( 3 0 ) 6 0 ( 2 0 ) 1 9 4 ( 1 9 ) 2 0 ( 4 0 ) O ( 7 B ) 6 7 ( 4 ) 1 7 7 ( 6 ) 2 5 9 ( 9 ) 1 4 5 ( 6 ) 7 9 ( 4 ) 5 5 ( 4 ) C ( 1 4 ) 4 7 ( 3 ) 5 9 ( 3 ) 9 1 ( 5 ) 3 7 ( 3 ) 1 5 ( 3 ) 1 6 ( 3 ) C ( 1 5 ) 6 0 ( 4 ) 5 8 ( 3 ) 5 8 ( 4 ) 2 5 ( 3 ) 1 8 ( 3 ) 1 8 ( 3 ) 0 ( 5 ) 4 3 ( 2 ) 4 8 ( 2 ) 5 0 ( 2 ) 3 ( 2 ) 1 8 ( 2 ) 1 4 ( 1 ) C ( 1 6 ) 4 5 ( 3 ) 4 5 ( 3 ) 4 9 ( 3 ) 1 1 ( 2 ) 1 8 ( 2 ) 2 0 ( 2 ) T a b l e 4 0 ( c o n ' t ) C ( 1 7 ) 6 6 ( 3 ) 4 4 ( 3 ) 6 9 ( 4 ) 7 ( 3 ) 4 0 ( 3 ) 1 3 ( 2 ) C ( 1 8 ) 9 3 ( 4 ) 6 0 ( 3 ) 8 3 ( 4 ) 1 4 ( 3 ) 5 8 ( 4 ) 2 0 ( 3 ) C ( 1 9 ) 8 5 ( 4 ) 5 5 ( 3 ) 6 5 ( 4 ) 4 ( 3 ) 3 7 ( 3 ) 2 5 ( 3 ) N ( 8 ) 1 5 8 ( 6 ) 7 1 ( 3 ) 9 8 ( 5 ) 2 ( 3 ) 7 7 ( 4 ) 1 9 ( 4 ) 0 ( 8 A ) 2 0 6 ( 1 4 ) 9 6 ( 1 5 ) 1 8 0 ( 3 0 ) 4 ( 1 2 ) 1 5 0 ( 1 7 ) 3 7 ( 9 ) 0 ( 8 B ) 3 0 0 ( 3 0 ) 8 3 ( 1 4 ) 1 0 9 ( 1 4 ) 3 ( 9 ) 1 3 6 ( 1 7 ) 2 4 ( 1 3 ) 0 ( 9 A ) 1 7 0 ( 2 0 ) 6 4 ( 7 ) 1 1 0 ( 2 0 ) 4 ( 8 ) 5 3 ( 1 5 ) 1 3 ( 1 0 ) 0 ( 9 B ) 1 7 6 ( 1 4 ) 7 9 ( 1 3 ) 7 1 ( 1 3 ) 4 5 ( 9 ) 3 9 ( 1 1 ) 1 3 ( 1 0 ) C ( 2 0 ) 7 0 ( 4 ) 4 3 ( 3 ) 7 6 ( 4 ) 0 ( 3 ) 2 5 ( 3 ) 5 ( 3 ) C ( 2 1 ) 5 5 ( 3 ) 4 6 ( 3 ) 6 8 ( 4 ) 7 ( 3 ) 2 8 ( 3 ) 7 ( 3 ) S ( 1 S ) 2 1 3 ( 3 ) 2 5 5 ( 4 ) 1 8 4 ( 3 ) 9 6 ( 3 ) 8 7 ( 3 ) 3 7 ( 3 ) C ( 1 S A ) 1 2 6 ( 1 2 ) 1 4 3 ( 1 1 ) 3 3 0 ( 2 0 ) 1 5 ( 1 2 ) 1 1 4 ( 1 4 ) 1 1 ( 9 ) C ( Z S A ) 1 0 8 ( 1 1 ) 1 7 0 ( 1 3 ) 2 5 9 ( 1 8 ) 1 3 5 ( 1 3 ) 6 0 ( 1 0 ) 5 5 ( 9 ) S ( 2 8 A ) 1 6 3 ( 7 ) 5 4 0 ( 1 7 ) 1 9 3 ( 7 ) 7 4 ( 1 1 ) 6 7 ( 7 ) 1 6 2 ( 1 0 ) C ( 1 S B ) 4 7 0 ( 7 0 ) 3 3 0 ( 4 0 ) 1 3 0 ( 2 0 ) 2 1 0 ( 3 0 ) 2 4 0 ( 4 0 ) 3 2 0 ( 5 0 ) C ( Z S B ) 8 8 ( 1 6 ) 2 0 0 ( 3 0 ) 8 0 ( 2 0 ) 8 3 ( 1 9 ) 4 6 ( 1 3 ) 4 0 ( 2 0 ) S ( Z S B ) 2 2 4 ( 1 5 ) 1 2 9 ( 8 ) 9 8 ( 7 ) 1 0 ( 5 ) 8 0 ( 8 ) 9 % ) 3 7 3 A k — L — X — u L ‘ — A — l — L ‘ — A L — L — fi — l - L — l — k — A L — k — A ‘ A — A ‘ — A A A A k — \ _ L _ l — A A T a b l e 4 1 . A t o m i c C o o r d i n a t e s ( x 1 0 ‘ ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r { H B ( p z ) 3 V O [ , u — ( p - N 0 2 C 5 H 4 O ) 2 P 0 2 ] } 2 - 2 0 2 H 4 8 2 , ( 4 . 1 6 8 ) . A t o m V ( 1 ) 0 ( 1 ) N ( 1 ) C ( 1 ) C ( 2 ) C ( 3 ) N ( 2 ) B ( 1 ) N ( 3 ) C ( 4 ) C ( 5 ) C ( 6 ) N ( 4 ) N ( 5 ) C ( 7 ) C ( 8 ) C ( 9 ) N ( 6 ) 0 ( 2 ) 0 ( 3 ) P ( 1 ) 0 ( 4 ) C ( 1 0 ) C ( 1 1 ) C ( 1 2 ) C ( 1 3 ) N ( 7 ) 0 ( 6 ) 0 ( 7 ) C ( 1 4 ) C ( 1 5 ) 0 ( 5 ) C ( 1 6 ) C ( 1 7 ) X 3 4 5 9 ( 1 ) 1 4 8 3 ( 3 ) 6 2 9 0 ( 3 ) 7 7 0 5 ( 4 ) 9 0 9 0 ( 4 ) 8 4 4 2 ( 4 ) 6 7 6 6 ( 3 ) 5 4 1 6 ( 4 ) 3 5 7 9 ( 3 ) 2 8 5 6 ( 4 ) 3 1 6 9 ( 5 ) 4 1 3 0 ( 4 ) 4 3 7 0 ( 3 ) 3 4 3 0 ( 3 ) 2 6 5 1 ( 4 ) 2 9 9 8 ( 4 ) 4 0 2 9 ( 4 ) 4 2 8 2 ( 3 ) 3 9 5 0 ( 3 ) 4 0 8 4 ( 2 ) 5 3 1 4 ( 1 ) 4 5 3 4 ( 3 ) 3 0 2 1 ( 4 ) 3 0 8 4 ( 4 ) 1 6 1 3 ( 4 ) 1 2 5 ( 4 ) 4 4 5 7 ( 4 ) 2 7 5 0 ( 4 ) 4 3 8 6 ( 4 ) 4 6 ( 4 ) 1 5 2 5 ( 4 ) 6 8 5 5 ( 2 ) 6 7 1 9 ( 4 ) 5 5 8 2 ( 4 ) Y 4 1 3 0 ( 1 ) 3 6 2 9 ( 2 ) 4 8 4 3 ( 2 ) 5 3 2 1 ( 3 ) 5 5 4 8 ( 3 ) 5 1 8 6 ( 3 ) 4 7 7 4 ( 2 ) 4 3 3 2 ( 3 ) 2 7 9 5 ( 2 ) 1 8 1 9 ( 3 ) 1 1 0 0 ( 3 ) 2 0 3 1 ( 3 ) 3 0 4 9 ( 2 ) 5 1 7 4 ( 2 ) 5 9 8 4 ( 3 ) 6 4 6 6 ( 3 ) 5 9 0 5 ( 3 ) 5 1 3 1 ( 2 ) 5 5 8 8 ( 2 ) 3 2 0 9 ( 2 ) 3 2 6 6 ( 1 ) 2 2 1 6 ( 2 ) 2 0 0 5 ( 3 ) 2 0 9 5 ( 3 ) 1 8 2 8 ( 3 ) 1 4 6 8 ( 3 ) 1 1 7 1 ( 3 ) 9 4 9 ( 3 ) 1 1 2 9 ( 4 ) 1 3 9 4 ( 3 ) 1 6 6 7 ( 3 ) 2 9 0 2 ( 2 ) 2 0 6 3 ( 3 ) 9 3 1 ( 3 ) Z 3 3 0 0 ( 1 ) 3 1 2 5 ( 2 ) 3 3 9 3 ( 2 ) 4 0 5 4 ( 2 ) 3 7 1 1 ( 2 ) 2 8 0 3 ( 2 ) 2 6 1 5 ( 2 ) 1 7 2 1 ( 2 ) 2 2 3 7 ( 2 ) 1 9 8 5 ( 2 ) 1 1 8 4 ( 2 ) 9 6 6 ( 2 ) 1 6 0 0 ( 2 ) 2 4 3 2 ( 2 ) 2 3 6 5 ( 2 ) 1 6 8 9 ( 2 ) 1 3 4 1 ( 2 ) 1 7 8 7 ( 2 ) 4 3 3 0 ( 1 ) 4 1 4 2 ( 1 ) 4 9 5 3 ( 1 ) 5 3 3 5 ( 2 ) 5 5 6 8 ( 2 ) 6 4 4 7 ( 2 ) 8 7 0 6 ( 2 ) 6 0 6 0 ( 2 ) 6 3 2 5 ( 3 ) 5 7 6 3 ( 3 ) 7 0 8 5 ( 2 ) 5 1 7 6 ( 2 ) 4 9 2 3 ( 2 ) 4 7 0 6 ( 1 ) 3 9 0 0 ( 2 ) 3 6 3 4 ( 2 ) 3 7 4 U e q , 2 1 ( 1 ) 3 2 ( 1 ) 2 3 ( 1 ) 2 3 ( 1 ) 3 0 ( 1 ) 2 9 ( 1 ) 2 6 ( 1 ) 2 7 ( 1 ) 2 8 ( 1 ) 3 5 ( 1 ) 4 2 ( 1 ) 3 7 ( 1 ) 2 8 ( 1 ) 2 3 ( 1 ) 3 1 ( 1 ) 3 7 ( 1 ) 3 5 ( 1 ) 2 7 ( 1 ) 2 9 ( 1 ) 2 5 ( 1 ) 2 1 ( 1 ) 2 9 ( 1 ) 2 3 ( 1 ) 3 3 ( 1 ) 3 7 ( 1 ) 3 0 ( 1 ) 4 8 ( 1 ) 7 7 ( 1 ) 9 7 ( 1 ) 3 1 ( 1 ) 2 7 ( 1 ) 2 4 ( 1 ) 2 3 ( 1 ) 2 9 ( 1 ) O c c u p a n c y T a b l e 4 1 ( c o n ' t ) C ( 1 8 ) 5 5 1 0 ( 4 ) 1 3 6 ( 3 ) 2 8 4 3 ( 2 ) 3 3 ( 1 ) 1 C ( 1 9 ) 6 6 1 3 ( 5 ) 5 0 2 ( 3 ) 2 3 5 1 ( 2 ) 3 8 ( 1 ) 1 N ( 8 ) 6 5 0 5 ( 5 ) 8 2 9 ( 3 ) 1 4 9 6 ( 2 ) 5 9 ( 1 ) 1 0 ( 8 ) 7 4 9 8 ( 5 ) 2 2 ( 3 ) 1 0 7 6 ( 3 ) 1 0 8 ( 2 ) 1 0 ( 9 ) 5 4 1 4 ( 5 ) - 1 2 8 5 ( 3 ) 1 2 2 5 ( 2 ) 9 0 ( 1 ) 1 C ( 2 0 ) 7 8 3 3 ( 4 ) 2 4 1 1 ( 3 ) 3 4 2 0 ( 2 ) 3 1 ( 1 ) 1 C ( 2 1 ) 7 7 8 7 ( 5 ) 1 6 1 9 ( 3 ) 2 8 3 4 ( 3 ) 4 1 ( 1 ) 1 8 ( 1 ) 8 3 7 8 ( 2 ) 6 7 1 4 ( 1 ) 7 7 2 ( 1 ) 7 6 ( 1 ) 1 C ( 1 8 ) 9 6 8 9 ( 5 ) 7 9 1 5 ( 4 ) 5 0 8 ( 3 ) 5 7 ( 1 ) 1 C ( 2 8 ) 9 9 7 6 ( 6 ) 7 6 3 8 ( 5 ) 4 1 7 ( 3 ) 7 4 ( 2 ) 1 S ( 2 A ) 1 1 2 0 1 ( 4 ) 8 6 8 7 ( 4 ) 8 1 4 ( 1 ) 6 5 ( 1 ) 0 . 7 6 3 S ( 2 B ) 1 1 6 7 0 ( 1 0 ) 7 5 6 0 ( 2 0 ) 8 9 0 ( 6 ) 1 1 5 ( 5 ) 0 . 2 3 7 3 7 5 T a b l e 4 2 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r { H B ( p z ) 3 V O [ p — ( p - N 0 2 C 6 H 4 O ) 2 P 0 2 ] } 2 - 2 C 2 H 4 S Z , ( 4 . 1 6 8 ) . 3 7 6 A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 V ( 1 ) 1 7 ( 1 ) 2 3 ( 1 ) 2 1 ( 1 ) 4 ( 1 ) 7 ( 1 ) 4 ( 1 ) 0 ( 1 ) 2 1 ( 1 ) 3 6 ( 1 ) 3 9 ( 1 ) 1 2 ( 1 ) 1 0 ( 1 ) 6 ( 1 ) N ( 1 ) 2 3 ( 1 ) 2 3 ( 2 ) 2 2 ( 1 ) 3 ( 1 ) 9 ( 1 ) 7 ( 1 ) C ( 1 ) 2 5 ( 2 ) 2 1 ( 2 ) 2 0 ( 2 ) 2 ( 1 ) 5 ( 1 ) 6 ( 1 ) C ( 2 ) 2 0 ( 2 ) 2 8 ( 2 ) 3 5 ( 2 ) 6 ( 2 ) 7 ( 1 ) 1 ( 1 ) C ( 3 ) 2 1 ( 2 ) 2 9 ( 2 ) 3 5 ( 2 ) 7 ( 2 ) 1 4 ( 2 ) 4 ( 1 ) N ( 2 ) 2 2 ( 1 ) 3 0 ( 2 ) 2 6 ( 2 ) 7 ( 1 ) 1 2 ( 1 ) 6 ( 1 ) B ( 1 ) 2 8 ( 2 ) 3 2 ( 2 ) 2 0 ( 2 ) 4 ( 2 ) 1 0 ( 2 ) 4 ( 2 ) N ( 3 ) 2 7 ( 2 ) 2 6 ( 2 ) 2 6 ( 2 ) 4 ( 1 ) 7 ( 1 ) 5 ( 1 ) C ( 4 ) 4 0 ( 2 ) 2 5 ( 2 ) 3 4 ( 2 ) 5 ( 2 ) 7 ( 2 ) 5 ( 2 ) 0 ( 5 ) 5 4 ( 2 ) 2 5 ( 2 ) 3 4 ( 2 ) 8 ( 2 ) 9 ( 2 ) 7 ( 2 ) C ( 6 ) 4 0 ( 2 ) 3 7 ( 2 ) 2 7 ( 2 ) - 5 ( 2 ) 9 ( 2 ) 1 1 ( 2 ) N ( 4 ) 2 7 ( 1 ) 3 3 ( 2 ) 2 0 ( 2 ) 2 ( 1 ) 7 ( 1 ) 9 ( 1 ) N ( 5 ) 2 1 ( 1 ) 2 4 ( 2 ) 2 3 ( 1 ) 6 ( 1 ) 6 ( 1 ) 5 ( 1 ) C ( 7 ) 2 3 ( 2 ) 3 1 ( 2 ) 3 9 ( 2 ) 1 0 ( 2 ) 6 ( 2 ) 8 ( 2 ) C ( 8 ) 3 1 ( 2 ) 3 6 ( 2 ) 4 2 ( 2 ) 1 8 ( 2 ) 4 ( 2 ) 8 ( 2 ) C ( 9 ) 3 5 ( 2 ) 3 8 ( 2 ) 2 6 ( 2 ) 1 4 ( 2 ) 4 ( 2 ) 5 ( 2 ) N ( 6 ) 2 7 ( 1 ) 2 9 ( 2 ) 2 3 ( 2 ) 9 ( 1 ) 8 ( 1 ) 5 ( 1 ) 0 ( 2 ) 3 2 ( 1 ) 2 8 ( 1 ) 2 6 ( 1 ) 4 ( 1 ) 1 2 ( 1 ) 9 ( 1 ) 0 ( 3 ) 2 6 ( 1 ) 2 4 ( 1 ) 2 7 ( 1 ) 9 ( 1 ) 1 1 ( 1 ) 7 ( 1 ) P ( 1 ) 2 2 ( 1 ) 2 0 ( 1 ) 2 3 ( 1 ) 6 ( 1 ) 1 1 ( 1 ) 7 ( 1 ) 0 ( 4 ) 2 6 ( 1 ) 3 2 ( 1 ) 4 0 ( 1 ) 2 0 ( 1 ) 1 8 ( 1 ) 1 4 ( 1 ) C ( 1 0 ) 2 3 ( 2 ) 1 6 ( 2 ) 3 2 ( 2 ) 9 ( 1 ) 1 2 ( 1 ) 6 ( 1 ) C ( 1 1 ) 2 8 ( 2 ) 3 3 ( 2 ) 3 1 ( 2 ) 1 0 ( 2 ) 6 ( 2 ) 1 ( 2 ) C ( 1 2 ) 4 0 ( 2 ) 3 7 ( 2 ) 3 3 ( 2 ) 1 0 ( 2 ) 1 7 ( 2 ) 3 ( 2 ) C ( 1 3 ) 2 9 ( 2 ) 1 9 ( 2 ) 4 5 ( 2 ) 1 0 ( 2 ) 2 0 ( 2 ) 4 ( 1 ) N ( 7 ) 3 8 ( 2 ) 3 6 ( 2 ) 7 4 ( 3 ) 1 8 ( 2 ) 3 0 ( 2 ) 5 ( 2 ) 0 ( 6 ) 3 1 ( 2 ) 1 0 1 ( 3 ) 1 3 4 ( 3 ) 8 2 ( 3 ) 3 6 ( 2 ) 2 6 ( 2 ) 0 ( 7 ) 5 6 ( 2 ) 1 4 6 ( 4 ) 6 0 ( 2 ) 1 2 ( 2 ) 3 7 ( 2 ) 4 4 ( 2 ) C ( 1 4 ) 2 4 ( 2 ) 2 6 ( 2 ) 4 2 ( 2 ) 1 3 ( 2 ) 7 ( 2 ) 6 ( 2 ) C ( 1 5 ) 3 0 ( 2 ) 2 2 ( 2 ) 3 1 ( 2 ) 1 1 ( 2 ) 1 0 ( 2 ) 6 ( 1 ) 0 ( 5 ) 2 2 ( 1 ) 2 4 ( 1 ) 2 5 ( 1 ) 2 ( 1 ) 1 0 ( 1 ) 7 ( 1 ) C ( 1 6 ) 2 1 ( 2 ) 2 4 ( 2 ) 2 6 ( 2 ) 6 ( 1 ) 7 ( 1 ) 9 ( 1 ) C ( 1 7 ) 2 7 ( 2 ) 2 5 ( 2 ) 3 2 ( 2 ) 6 ( 2 ) 1 2 ( 1 ) 4 ( 2 ) T a b l e 4 2 ( c o n ' t ) C ( 1 8 ) 3 7 ( 2 ) 2 2 ( 2 ) 3 5 ( 2 ) 0 ( 2 ) 1 2 ( 2 ) 3 ( 2 ) C ( 1 9 ) 4 5 ( 2 ) 2 7 ( 2 ) 4 0 ( 2 ) 1 ( 2 ) 2 1 ( 2 ) 1 1 ( 2 ) N ( 8 ) 8 1 ( 3 ) 3 4 ( 2 ) 5 2 ( 2 ) 8 ( 2 ) 4 0 ( 2 ) 4 ( 2 ) 0 ( 8 ) 1 3 8 ( 3 ) 6 5 ( 2 ) 9 0 ( 3 ) 2 7 ( 2 ) 9 1 ( 3 ) 4 5 ( 2 ) 0 ( 9 ) 1 3 6 ( 3 ) 3 5 ( 2 ) 6 4 ( 2 ) 2 0 ( 2 ) 5 6 ( 2 ) - 1 8 ( 2 ) C ( 2 0 ) 3 1 ( 2 ) 2 3 ( 2 ) 3 8 ( 2 ) 3 ( 2 ) 1 8 ( 2 ) 4 ( 2 ) C ( 2 1 ) 4 7 ( 2 ) 3 2 ( 2 ) 4 7 ( 2 ) 5 ( 2 ) 3 2 ( 2 ) 8 ( 2 ) 8 ( 1 ) 7 6 ( 1 ) 8 1 ( 1 ) 5 8 ( 1 ) 1 8 ( 1 ) 2 1 ( 1 ) 2 ( 1 ) C ( 1 8 ) 5 1 ( 3 ) 7 1 ( 3 ) 5 3 ( 3 ) 1 6 ( 2 ) 1 7 ( 2 ) 2 3 ( 2 ) C ( 2 6 ) 5 9 ( 3 ) 1 0 5 ( 4 ) 6 2 ( 3 ) 2 8 ( 3 ) 2 2 ( 2 ) 2 6 ( 3 ) S ( 2 A ) 6 3 ( 2 ) 9 5 ( 3 ) 4 6 ( 1 ) 1 0 ( 1 ) 1 8 ( 1 ) 4 5 ( 2 ) S ( 2 B ) 6 8 ( 5 ) 1 2 9 ( 1 5 ) 1 1 7 ( 7 ) 4 0 ( 6 ) 4 4 ( 4 ) 9 ( 6 ) 3 7 7 T a b l e 4 3 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r 3 - a m i d i n i u m b e n z o a t e , ( 5 . 1 ) . A t o m x y z U e q , O c c u p a n c y 0 ( 1 ) 5 8 2 3 ( 2 ) 2 3 7 4 ( 2 ) 9 4 9 ( 1 ) 4 3 ( 1 ) 1 0 ( 2 ) 7 5 0 5 ( 2 ) 4 9 4 8 ( 2 ) 5 9 2 ( 1 ) 4 1 ( 1 ) 1 N ( 1 ) 4 2 1 5 ( 2 ) 2 3 6 0 ( 2 ) 4 3 3 0 ( 1 ) 3 6 ( 1 ) 1 N ( 2 ) 2 1 7 9 ( 2 ) 4 7 9 0 ( 2 ) 4 5 5 0 ( 1 ) 3 5 ( 1 ) 1 C ( 1 ) 6 3 7 7 ( 2 ) 4 0 8 3 ( 3 ) 1 0 6 9 ( 1 ) 3 1 ( 1 ) 1 C ( 2 ) 5 6 4 1 ( 2 ) 5 1 8 2 ( 3 ) 1 8 6 4 ( 1 ) 2 8 ( 1 ) 1 C ( 3 ) 5 6 3 1 ( 2 ) 7 1 8 4 ( 3 ) 1 8 7 4 ( 1 ) 3 3 ( 1 ) 1 C ( 4 ) 4 9 0 0 ( 2 ) 8 1 6 8 ( 3 ) 2 5 9 3 ( 1 ) 3 7 ( 1 ) 1 C ( 5 ) 4 2 1 4 ( 2 ) 7 1 7 7 ( 3 ) 3 3 2 3 ( 1 ) 3 3 ( 1 ) 1 C ( 6 ) 4 2 7 3 ( 2 ) 5 1 6 8 ( 3 ) 3 3 3 3 ( 1 ) 2 8 ( 1 ) 1 C ( 7 ) 4 9 6 8 ( 2 ) 4 1 8 1 ( 3 ) 2 5 9 6 ( 1 ) 2 9 ( 1 ) 1 C ( 8 ) 3 5 3 7 ( 2 ) 4 0 6 9 ( 3 ) 4 1 0 1 ( 1 ) 2 9 ( 1 ) 1 3 7 8 T a b l e 4 4 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r 3 — a m i d i n i u m b e n z o a t e , ( 5 . 1 ) . A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 0 ( 1 ) 4 6 ( 1 ) 3 7 ( 1 ) 4 7 ( 1 ) 4 2 ( 1 ) 1 8 ( 1 ) 4 3 ( 1 ) 0 ( 2 ) 4 2 ( 1 ) 4 1 ( 1 ) 4 1 ( 1 ) 8 ( 1 ) 1 9 ( 1 ) - 8 ( 1 ) N ( 1 ) 3 5 ( 1 ) 3 5 ( 1 ) 3 9 ( 1 ) 7 ( 1 ) 1 2 ( 1 ) 7 ( 1 ) N ( 2 ) 3 5 ( 1 ) 3 7 ( 1 ) 3 6 ( 1 ) 5 ( 1 ) 1 1 ( 1 ) 7 ( 1 ) C ( 1 ) 2 9 ( 1 ) 3 4 ( 1 ) 3 2 ( 1 ) 8 ( 1 ) 5 ( 1 ) 2 ( 1 ) 0 ( 2 ) 2 4 ( 1 ) 3 1 ( 1 ) 3 0 ( 1 ) 0 ( 1 ) 4 ( 1 ) 2 ( 1 ) C ( 3 ) 3 2 ( 1 ) 3 3 ( 1 ) 3 4 ( 1 ) 5 ( 1 ) 4 ( 1 ) 2 ( 1 ) C ( 4 ) 4 1 ( 1 ) 2 3 ( 1 ) 4 5 ( 1 ) 1 ( 1 ) 3 ( 1 ) 1 ( 1 ) C ( 5 ) 3 5 ( 1 ) 2 8 ( 1 ) 3 6 ( 1 ) - 5 ( 1 ) 2 ( 1 ) 4 ( 1 ) C ( 6 ) 2 5 ( 1 ) 3 0 ( 1 ) 2 9 ( 1 ) 0 ( 1 ) 2 ( 1 ) 0 ( 1 ) C ( 7 ) 2 9 ( 1 ) 2 6 ( 1 ) 3 4 ( 1 ) 4 ( 1 ) 6 ( 1 ) 4 ( 1 ) C ( 8 ) 2 6 ( 1 ) 3 0 ( 1 ) 3 0 ( 1 ) - 2 ( 1 ) 2 ( 1 ) 0 ( 1 ) 3 7 9 T a b l e 4 5 . A t o m i c C o o r d i n a t e s ( x 1 0 “ ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 - c a r b o x y p y r r o l i n e — 1 — o x y l , ( 5 . 2 ) . A t o m x y z U e q . O c c u p a n c y 0 ( 1 ) 7 5 4 9 ( 2 ) 3 7 7 9 ( 1 ) 8 2 4 ( 1 ) 3 8 ( 1 ) 1 0 ( 2 ) 7 7 5 9 ( 2 ) 2 0 4 0 ( 1 ) 8 0 9 ( 1 ) 5 4 ( 1 ) 1 C ( 1 ) 7 1 0 1 ( 2 ) 2 9 3 7 ( 1 ) 1 0 0 0 ( 1 ) 2 7 ( 1 ) 1 C ( 2 ) 5 7 4 4 ( 2 ) 2 7 8 5 ( 1 ) 1 4 5 6 ( 1 ) 2 4 ( 1 ) 1 C ( 3 ) 5 1 9 9 ( 2 ) 1 8 6 7 ( 1 ) 1 6 5 1 ( 1 ) 2 8 ( 1 ) 1 C ( 4 ) 3 7 8 8 ( 2 ) 1 9 5 9 ( 1 ) 2 1 0 9 ( 1 ) 2 5 ( 1 ) 1 C ( 4 A ) 4 9 3 1 ( 3 ) 1 5 1 6 ( 1 ) 2 5 8 7 ( 1 ) 3 8 ( 1 ) 1 C ( 4 B ) 1 4 7 3 ( 2 ) 1 4 7 8 ( 1 ) 2 0 2 4 ( 1 ) 3 7 ( 1 ) 1 N ( 1 ) 3 6 3 2 ( 2 ) 3 1 1 3 ( 1 ) 2 1 4 1 ( 1 ) 2 5 ( 1 ) 1 0 ( 3 ) 2 5 5 2 ( 2 ) 3 5 9 3 ( 1 ) 2 4 7 9 ( 1 ) 3 9 ( 1 ) 1 C ( 5 ) 4 8 4 1 ( 2 ) 3 7 0 0 ( 1 ) 1 7 4 9 ( 1 ) 2 3 ( 1 ) 1 C ( 5 A ) 3 1 8 3 ( 2 ) 4 3 6 8 ( 1 ) 1 4 4 1 ( 1 ) 3 6 ( 1 ) 1 C ( 5 B ) 6 6 6 6 ( 3 ) 4 3 6 7 ( 1 ) 2 0 0 3 ( 1 ) 3 7 ( 1 ) 1 0 ( 4 ) 5 7 6 5 ( 2 ) 9 3 3 7 ( 1 ) 1 6 6 4 ( 1 ) 4 1 ( 1 ) 1 0 ( 5 ) 4 7 0 0 ( 2 ) 7 6 9 0 ( 1 ) 1 7 9 1 ( 1 ) 3 8 ( 1 ) 1 C ( 6 ) 5 7 9 6 ( 2 ) 8 4 2 7 ( 1 ) 1 5 4 5 ( 1 ) 2 7 ( 1 ) 1 C ( 7 ) 7 0 3 7 ( 2 ) 8 0 1 9 ( 1 ) 1 1 1 1 ( 1 ) 2 3 ( 1 ) 1 C ( 8 ) 7 2 0 3 ( 2 ) 7 0 2 3 ( 1 ) 9 7 4 ( 1 ) 2 8 ( 1 ) 1 C ( 9 ) 8 5 6 2 ( 2 ) 6 8 6 3 ( 1 ) 5 1 1 ( 1 ) 2 9 ( 1 ) 1 C ( 9 A ) 1 0 6 3 8 ( 3 ) 6 1 9 8 ( 1 ) 6 1 3 ( 1 ) 4 5 ( 1 ) 1 C ( 9 B ) 7 1 7 7 ( 3 ) 6 4 3 7 ( 1 ) 6 3 ( 1 ) 4 9 ( 1 ) 1 N ( 2 ) 9 2 0 9 ( 2 ) 7 9 6 2 ( 1 ) 4 1 9 ( 1 ) 3 0 ( 1 ) 1 0 ( 6 ) 1 0 4 7 6 ( 2 ) 8 2 4 0 ( 1 ) 6 6 ( 1 ) 5 8 ( 1 ) 1 C ( 1 0 ) 8 2 5 6 ( 2 ) 8 7 4 9 ( 1 ) 7 6 4 ( 1 ) 2 4 ( 1 ) 1 C ( 1 0 A ) 6 6 7 8 ( 3 ) 9 4 6 2 ( 1 ) 4 5 6 ( 1 ) 3 8 ( 1 ) 1 C ( 1 0 B ) 1 0 1 4 2 ( 3 ) 9 3 6 6 ( 1 ) 1 0 2 5 ( 1 ) 4 1 ( 1 ) 1 3 8 0 T a b l e 4 6 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 — o x y l , ( 5 . 2 ) . A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 0 ( 1 ) 5 1 ( 1 ) 3 0 ( 1 ) 3 5 ( 1 ) 2 ( 1 ) 1 8 ( 1 ) - 6 ( 1 ) 0 ( 2 ) 8 9 ( 1 ) 3 1 ( 1 ) 4 4 ( 1 ) 1 ( 1 ) 4 3 ( 1 ) 8 ( 1 ) C ( 1 ) 3 2 ( 1 ) 2 7 ( 1 ) 2 3 ( 1 ) 4 ( 1 ) 6 ( 1 ) 1 ( 1 ) 0 ( 2 ) 2 7 ( 1 ) 2 2 ( 1 ) 2 2 ( 1 ) 4 ( 1 ) 4 ( 1 ) 2 ( 1 ) C ( 3 ) 3 8 ( 1 ) 2 2 ( 1 ) 2 7 ( 1 ) 2 ( 1 ) 9 ( 1 ) 3 ( 1 ) C ( 4 ) 3 1 ( 1 ) 1 8 ( 1 ) 2 6 ( 1 ) 2 ( 1 ) 7 ( 1 ) 1 ( 1 ) C ( 4 A ) 4 2 ( 1 ) 3 9 ( 1 ) 3 3 ( 1 ) 1 0 ( 1 ) 6 ( 1 ) 7 ( 1 ) C ( 4 B ) 4 0 ( 1 ) 3 4 ( 1 ) 3 8 ( 1 ) 4 ( 1 ) 7 ( 1 ) 4 0 ( 1 ) N ( 1 ) 3 3 ( 1 ) 2 0 ( 1 ) 2 4 ( 1 ) 2 ( 1 ) 1 1 ( 1 ) 1 ( 1 ) 0 ( 3 ) 5 5 ( 1 ) 2 7 ( 1 ) 3 6 ( 1 ) 4 ( 1 ) 2 7 ( 1 ) 2 ( 1 ) C ( 5 ) 2 8 ( 1 ) 1 9 ( 1 ) 2 2 ( 1 ) 0 ( 1 ) 8 ( 1 ) 4 ( 1 ) C ( 5 A ) 4 0 ( 1 ) 3 1 ( 1 ) 3 6 ( 1 ) 7 ( 1 ) 9 ( 1 ) 1 0 ( 1 ) C ( 5 B ) 4 2 ( 1 ) 3 5 ( 1 ) 3 3 ( 1 ) - 8 ( 1 ) 8 ( 1 ) 4 1 ( 1 ) 0 ( 4 ) 6 1 ( 1 ) 2 6 ( 1 ) 3 8 ( 1 ) 4 ( 1 ) 2 3 ( 1 ) 0 ( 1 ) 0 ( 5 ) 5 3 ( 1 ) 2 8 ( 1 ) 3 6 ( 1 ) 3 ( 1 ) 2 6 ( 1 ) 1 ( 1 ) C ( 6 ) 3 2 ( 1 ) 2 5 ( 1 ) 2 3 ( 1 ) 3 ( 1 ) 6 ( 1 ) 3 ( 1 ) C ( 7 ) 2 5 ( 1 ) 2 4 ( 1 ) 2 0 ( 1 ) 2 ( 1 ) 2 ( 1 ) 2 ( 1 ) C ( 8 ) 3 3 ( 1 ) 2 3 ( 1 ) 2 8 ( 1 ) 3 ( 1 ) 6 ( 1 ) 0 ( 1 ) C ( 9 ) 3 7 ( 1 ) 2 1 ( 1 ) 2 9 ( 1 ) 2 ( 1 ) 8 ( 1 ) 1 ( 1 ) C ( 9 A ) 4 8 ( 1 ) 3 4 ( 1 ) 5 5 ( 1 ) 2 ( 1 ) 1 3 ( 1 ) 1 3 ( 1 ) C ( 9 B ) 5 7 ( 1 ) 5 0 ( 1 ) 4 0 ( 1 ) 4 7 ( 1 ) 6 ( 1 ) - 6 ( 1 ) N ( 2 ) 4 2 ( 1 ) 2 4 ( 1 ) 2 5 ( 1 ) 0 ( 1 ) 1 6 ( 1 ) 1 ( 1 ) 0 ( 6 ) 9 3 ( 1 ) 3 8 ( 1 ) 4 7 ( 1 ) - 5 ( 1 ) 5 0 ( 1 ) 4 0 ( 1 ) C ( 1 0 ) 3 3 ( 1 ) 2 1 ( 1 ) 2 1 ( 1 ) 4 ( 1 ) 8 ( 1 ) 1 ( 1 ) C ( 1 0 A ) 5 4 ( 1 ) 2 9 ( 1 ) 3 1 ( 1 ) 9 ( 1 ) 7 ( 1 ) 1 0 ( 1 ) C ( 1 0 3 ) 3 9 ( 1 ) 4 0 ( 1 ) 4 3 ( 1 ) - 7 ( 1 ) 1 0 ( 1 ) - 1 1 ( 1 ) 3 8 1 T a b l e 4 7 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r b e n z a m i d i n i u m — 2 , 2 , 5 , 5 — t e t r a m e t h y I — 3 - c a r b o x y p y r r o l i n e — 1 — o x y l h y d r a t e , ( 5 . 3 ) . A t o m x y z U e q , O c c u p a n c y 0 ( 1 ) 1 9 1 3 ( 2 ) 8 8 7 4 ( 2 ) 5 6 2 0 ( 1 ) 7 8 ( 1 ) 1 0 ( 2 ) 2 9 4 1 ( 2 ) 6 9 0 4 ( 2 ) 5 3 5 2 ( 1 ) 9 3 ( 1 ) 1 0 ( 3 ) 8 2 6 1 ( 2 ) 8 6 0 8 ( 2 ) 6 4 4 9 ( 1 ) 8 8 ( 1 ) 1 0 ( 4 ) - 2 0 ( 2 ) 3 5 1 9 ( 2 ) 3 9 6 1 ( 1 ) 7 4 ( 1 ) 1 N ( 1 ) 4 9 9 ( 3 ) 6 3 2 8 ( 3 ) 4 3 9 4 ( 1 ) 6 2 ( 1 ) 1 N ( 2 ) - 3 8 ( 3 ) 8 6 8 1 ( 3 ) 4 4 2 8 ( 1 ) 6 7 ( 1 ) 1 N ( 3 ) 6 8 8 7 ( 2 ) 8 8 0 9 ( 2 ) 6 3 2 7 ( 1 ) 6 0 ( 1 ) 1 C ( 1 ) - 2 8 0 ( 3 ) 7 4 2 7 ( 3 ) 4 1 7 6 ( 1 ) 5 2 ( 1 ) 1 C ( 2 ) - 1 4 6 7 ( 3 ) 7 2 4 7 ( 3 ) 3 6 2 0 ( 1 ) 5 0 ( 1 ) 1 C ( 3 ) - 1 5 1 1 ( 3 ) 8 1 1 8 ( 3 ) 3 0 8 1 ( 1 ) 6 7 ( 1 ) 1 C ( 4 ) - 2 5 8 6 ( 4 ) 7 9 4 4 ( 4 ) 2 5 5 3 ( 2 ) 7 7 ( 1 ) 1 C ( 5 ) - 3 6 3 9 ( 3 ) 6 9 4 5 ( 4 ) 2 5 6 9 ( 2 ) 7 4 ( 1 ) 1 C ( 6 ) - 3 6 2 1 ( 3 ) 6 1 0 8 ( 3 ) 3 1 0 3 ( 2 ) 7 4 ( 1 ) 1 C ( 7 ) - 2 5 2 6 ( 3 ) 6 2 3 4 ( 3 ) 3 6 3 4 ( 1 ) 6 2 ( 1 ) 1 C ( 8 ) 6 1 6 7 ( 3 ) 9 9 4 9 ( 3 ) 6 6 4 7 ( 1 ) 6 4 ( 1 ) 1 C ( 9 ) 4 6 1 7 ( 3 ) 9 6 9 1 ( 3 ) 6 3 5 1 ( 1 ) 6 2 ( 1 ) 1 C ( 1 0 ) 4 4 5 1 ( 2 ) 8 5 9 5 ( 3 ) 5 9 5 3 ( 1 ) 4 9 ( 1 ) 1 C ( 1 1 ) 5 8 9 4 ( 3 ) 7 8 8 5 ( 3 ) 5 8 8 8 ( 1 ) 5 1 ( 1 ) 1 C ( 1 2 ) 6 7 4 9 ( 3 ) 1 1 3 7 4 ( 4 ) 6 4 6 3 ( 2 ) 9 5 ( 1 ) 1 C ( 1 3 ) 6 3 9 9 ( 4 ) 9 7 2 7 ( 5 ) 7 3 8 9 ( 2 ) 1 0 6 ( 1 ) 1 C ( 1 4 ) 6 0 2 0 ( 4 ) 6 3 8 7 ( 3 ) 6 1 5 3 ( 2 ) 8 6 ( 1 ) 1 C ( 1 5 ) 6 2 9 8 ( 3 ) 7 9 5 5 ( 4 ) 5 2 0 4 ( 2 ) 7 6 ( 1 ) 1 C ( 1 6 ) 2 9 9 7 ( 3 ) 8 0 8 9 ( 3 ) 5 6 1 2 ( 1 ) 5 9 ( 1 ) 1 3 8 2 T a b l e 4 8 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r b e n z a m i d i n i u m — 2 , 2 , 5 , 5 — t e t r a m e t h y I — 3 - c a r b o x y p y r r o l i n e — 1 — o x y l h y d r a t e , ( 5 . 3 ) . A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 0 ( 1 ) 3 7 ( 1 ) 9 6 ( 2 ) 9 4 ( 2 ) 2 2 ( 1 ) 4 3 ( 1 ) 7 ( 1 ) 0 ( 2 ) 6 6 ( 1 ) 6 9 ( 1 ) 1 2 9 ( 2 ) 4 5 ( 1 ) 4 2 ( 1 ) 0 ( 1 ) 0 ( 3 ) 3 5 ( 1 ) 9 8 ( 2 ) 1 2 1 ( 2 ) 8 2 ( 1 ) 4 9 ( 1 ) 1 1 ( 1 ) 0 ( 4 ) 6 3 ( 1 ) 8 9 ( 2 ) 9 3 ( 2 ) - 1 6 ( 1 ) 1 7 ( 1 ) 2 ( 1 ) N ( 1 ) 5 4 ( 2 ) 6 3 ( 2 ) 6 4 ( 2 ) 4 0 ( 1 ) 4 5 ( 1 ) 6 ( 1 ) N ( 2 ) 5 6 ( 2 ) 6 1 ( 2 ) 7 6 ( 2 ) 4 6 ( 1 ) 4 7 ( 1 ) 6 ( 1 ) N ( 3 ) 3 4 ( 1 ) 7 1 ( 2 ) 7 1 ( 2 ) 4 0 ( 1 ) 4 1 ( 1 ) 2 ( 1 ) C ( 1 ) 4 1 ( 1 ) 6 2 ( 2 ) 5 2 ( 2 ) - 5 ( 1 ) 3 ( 1 ) 2 ( 1 ) C ( 2 ) 3 9 ( 1 ) 5 9 ( 2 ) 4 8 ( 1 ) - 5 ( 1 ) 4 ( 1 ) 5 ( 1 ) C ( 3 ) 5 5 ( 2 ) 7 8 ( 2 ) 6 5 ( 2 ) 8 ( 2 ) 2 ( 1 ) - 8 ( 2 ) C ( 4 ) 7 3 ( 2 ) 9 4 ( 2 ) 5 9 ( 2 ) 1 3 ( 2 ) 8 ( 2 ) 4 ( 2 ) C ( 5 ) 6 5 ( 2 ) 8 3 ( 2 ) 6 5 ( 2 ) 2 ( 2 ) 4 9 ( 2 ) 3 ( 2 ) C ( 6 ) 5 5 ( 2 ) 7 6 ( 2 ) 8 4 ( 2 ) 2 ( 2 ) 4 2 ( 2 ) 4 3 ( 2 ) C ( 7 ) 5 3 ( 2 ) 6 8 ( 2 ) 6 3 ( 2 ) 2 ( 2 ) 8 ( 1 ) 8 ( 2 ) C ( 8 ) 4 0 ( 2 ) 7 7 ( 2 ) 6 9 ( 2 ) 2 1 ( 2 ) 8 ( 1 ) 1 ( 1 ) C ( 9 ) 3 6 ( 1 ) 8 1 ( 2 ) 6 7 ( 2 ) 4 3 ( 2 ) 4 ( 1 ) 4 ( 1 ) C ( 1 0 ) 3 7 ( 1 ) 5 9 ( 2 ) 4 8 ( 1 ) 6 ( 1 ) 4 ( 1 ) 2 ( 1 ) C ( 1 1 ) 4 1 ( 1 ) 5 5 ( 2 ) 5 3 ( 2 ) 2 ( 1 ) - 8 ( 1 ) 0 ( 1 ) C ( 1 2 ) 5 6 ( 2 ) 7 8 ( 2 ) 1 4 8 ( 4 ) 2 9 ( 2 ) 0 ( 2 ) 8 ( 2 ) C ( 1 3 ) 7 6 ( 2 ) 1 6 3 ( 4 ) 7 0 ( 2 ) 8 8 ( 2 ) - 1 6 ( 2 ) 5 ( 2 ) C ( 1 4 ) 6 8 ( 2 ) 6 3 ( 2 ) 1 1 8 ( 3 ) 2 1 ( 2 ) 2 2 ( 2 ) 0 ( 2 ) C ( 1 5 ) 5 9 ( 2 ) 1 0 8 ( 3 ) 6 0 ( 2 ) 2 ( 2 ) 3 ( 1 ) 1 1 ( 2 ) C ( 1 6 ) 4 3 ( 2 ) 6 5 ( 2 ) 6 3 ( 2 ) 4 ( 2 ) - 9 ( 1 ) - 5 ( 2 ) 3 8 3 T a b l e 4 9 . A t o m i c C o o r d i n a t e s ( x 1 0 4 ) a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 2 ) f o r m — c y a n o b e n z a m i d i n i u m - 2 , 2 , 5 , 5 — t e t r a m e t h y l — 3 — c a r b o x y p y r r o l i n e — 1 — o x y l , ( 5 . 4 ) . A t o m x y z U e q _ O c c u p a n c y 0 ( 1 ) - 2 4 1 3 ( 3 ) 8 5 7 2 ( 1 ) 6 6 7 9 ( 2 ) 6 6 ( 1 ) 1 0 ( 2 ) 1 6 5 ( 3 ) 5 9 0 2 ( 1 ) 9 0 0 0 ( 2 ) 5 9 ( 1 ) 1 0 ( 3 ) 2 2 3 5 ( 2 ) 6 6 5 4 ( 1 ) 8 8 2 5 ( 2 ) 5 5 ( 1 ) 1 N ( 1 ) 4 4 1 0 ( 3 ) 5 8 3 5 ( 1 ) 1 0 5 4 7 ( 2 ) 4 5 ( 1 ) 1 N ( 2 ) 2 2 1 8 ( 3 ) 5 0 5 9 ( 2 ) 1 0 5 0 5 ( 2 ) 5 3 ( 1 ) 1 N ( 3 ) 1 0 5 1 6 ( 4 ) 4 4 9 7 ( 2 ) 1 3 9 1 6 ( 3 ) 8 0 ( 1 ) 1 N ( 4 ) - 2 0 2 9 ( 3 ) 8 0 2 9 ( 1 ) 7 3 2 9 ( 2 ) 4 5 ( 1 ) 1 C ( 1 ) 4 6 8 5 ( 3 ) 4 9 4 8 ( 2 ) 1 2 0 4 6 ( 2 ) 3 8 ( 1 ) 1 C ( 2 ) 6 4 3 7 ( 3 ) 4 8 9 3 ( 2 ) 1 2 3 0 7 ( 2 ) 3 9 ( 1 ) 1 C ( 3 ) 7 2 6 1 ( 3 ) 4 6 1 3 ( 2 ) 1 3 3 3 5 ( 2 ) 4 2 ( 1 ) 1 C ( 4 ) 6 3 5 1 ( 4 ) 4 3 8 4 ( 2 ) 1 4 1 0 0 ( 3 ) 5 4 ( 1 ) 1 C ( 5 ) 4 6 1 1 ( 4 ) 4 4 3 2 ( 2 ) 1 3 8 3 5 ( 3 ) 5 7 ( 1 ) 1 C ( 6 ) 3 7 7 9 ( 4 ) 4 7 1 0 ( 2 ) 1 2 8 0 8 ( 3 ) 5 1 ( 1 ) 1 C ( 7 ) 3 7 3 4 ( 3 ) 5 2 8 8 ( 2 ) 1 0 9 8 2 ( 2 ) 3 8 ( 1 ) 1 C ( 8 ) 9 0 8 5 ( 4 ) 4 5 5 2 ( 2 ) 1 3 6 3 3 ( 3 ) 5 4 ( 1 ) 1 C ( 9 ) - 2 9 2 ( 3 ) 7 7 1 9 ( 2 ) 7 6 0 3 ( 2 ) 4 2 ( 1 ) 1 C ( 1 0 ) - 6 0 5 ( 3 ) 7 0 6 9 ( 2 ) 8 2 8 0 ( 2 ) 3 8 ( 1 ) 1 C ( 1 1 ) - 2 1 5 6 ( 4 ) 7 0 6 4 ( 2 ) 8 4 3 6 ( 3 ) 5 0 ( 1 ) 1 C ( 1 2 ) - 3 2 3 9 ( 3 ) 7 6 8 1 ( 2 ) 7 9 0 5 ( 3 ) 4 7 ( 1 ) 1 C ( 1 3 ) - 3 7 2 3 ( 6 ) 8 2 0 0 ( 2 ) 8 7 5 7 ( 4 ) 8 3 ( 1 ) 1 C ( 1 4 ) 4 8 2 3 ( 4 ) 7 4 3 5 ( 2 ) 7 0 5 7 ( 4 ) 7 4 ( 1 ) 1 C ( 1 5 ) 9 2 4 ( 4 ) 8 2 6 9 ( 2 ) 8 2 8 9 ( 4 ) 6 5 ( 1 ) 1 C ( 1 6 ) 2 1 7 ( 4 ) 7 5 2 5 ( 2 ) 6 5 1 3 ( 3 ) 6 2 ( 1 ) 1 C ( 1 7 ) 7 1 5 ( 4 ) 6 5 0 2 ( 2 ) 8 7 3 2 ( 2 ) 4 1 ( 1 ) 1 3 8 4 T a b l e 5 0 . A n i s o t r o p i c T h e r m a l P a r a m e t e r s ( A 2 x 1 0 3 ) f o r m — c y a n o b e n z a m i d i n i u m — 2 , 2 , 5 , 5 - t e t r a m e t h y l - 3 — c a r b o x y p y r r o l i n e — 1 — o x y l , ( 5 . 4 ) . A t o m U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 0 ( 1 ) 4 6 ( 1 ) 5 8 ( 2 ) 8 9 ( 2 ) 3 0 ( 1 ) 7 ( 1 ) 1 6 ( 1 ) 0 ( 2 ) 4 4 ( 1 ) 4 9 ( 1 ) 7 5 ( 2 ) 2 4 ( 1 ) - 6 ( 1 ) - 4 ( 1 ) 0 ( 3 ) 3 6 ( 1 ) 5 2 ( 2 ) 7 3 ( 2 ) 1 8 ( 1 ) 4 ( 1 ) 4 ( 1 ) N ( 1 ) 3 8 ( 2 ) 4 5 ( 2 ) 4 7 ( 2 ) 6 ( 1 ) 8 ( 1 ) - 8 ( 1 ) N ( 2 ) 3 3 ( 2 ) 5 3 ( 2 ) 6 3 ( 2 ) 1 9 ( 2 ) 8 ( 1 ) - 9 ( 1 ) N ( 3 ) 4 1 ( 2 ) 1 2 5 ( 3 ) 6 8 ( 2 ) 4 ( 2 ) 2 ( 2 ) 1 3 ( 2 ) N ( 4 ) 3 6 ( 1 ) 3 9 ( 2 ) 5 8 ( 2 ) 1 1 ( 1 ) 4 ( 1 ) 8 ( 1 ) C ( 1 ) 3 2 ( 2 ) 3 3 ( 2 ) 4 6 ( 2 ) 3 ( 1 ) 4 ( 1 ) 4 ( 1 ) C ( 2 ) 3 4 ( 2 ) 3 7 ( 2 ) 4 5 ( 2 ) 4 ( 1 ) 7 ( 1 ) 2 ( 1 ) 0 ( 3 ) 3 3 ( 2 ) 4 4 ( 2 ) 4 6 ( 2 ) 8 ( 2 ) 2 ( 1 ) 3 ( 1 ) C ( 4 ) 4 5 ( 2 ) 6 6 ( 2 ) 4 5 ( 2 ) 1 2 ( 2 ) 0 ( 2 ) 5 ( 2 ) C ( 5 ) 4 5 ( 2 ) 7 3 ( 2 ) 5 4 ( 2 ) 1 5 ( 2 ) 1 2 ( 2 ) 2 ( 2 ) C ( 6 ) 3 3 ( 2 ) 6 1 ( 2 ) 5 4 ( 2 ) 6 ( 2 ) 3 ( 2 ) 4 ( 2 ) C ( 7 ) 3 1 ( 2 ) 3 5 ( 2 ) 4 6 ( 2 ) 0 ( 1 ) 6 ( 1 ) 4 ( 1 ) C ( 8 ) 3 9 ( 2 ) 7 3 ( 3 ) 4 6 ( 2 ) 0 ( 2 ) 2 ( 2 ) 8 ( 2 ) C ( 9 ) 3 0 ( 2 ) 4 5 ( 2 ) 4 8 ( 2 ) 1 0 ( 1 ) 2 ( 1 ) 1 ( 1 ) C ( 1 0 ) 3 2 ( 2 ) 4 2 ( 2 ) 3 7 ( 2 ) 0 ( 1 ) 2 ( 1 ) 1 ( 1 ) C ( 1 1 ) 4 8 ( 2 ) 4 6 ( 2 ) 5 6 ( 2 ) 1 2 ( 2 ) 1 4 ( 2 ) 1 ( 2 ) C ( 1 2 ) 3 4 ( 2 ) 5 0 ( 2 ) 5 9 ( 2 ) 9 ( 2 ) 1 4 ( 2 ) 7 ( 2 ) C ( 1 3 ) 8 3 ( 3 ) 8 4 ( 3 ) 8 8 ( 3 ) 5 ( 3 ) 3 5 ( 3 ) 3 4 ( 3 ) C ( 1 4 ) 4 0 ( 2 ) 7 2 ( 3 ) 1 0 4 ( 3 ) 1 6 ( 3 ) 4 ( 2 ) 1 ( 2 ) C ( 1 5 ) 4 3 ( 2 ) 4 8 ( 2 ) 9 4 ( 3 ) 2 ( 2 ) - 6 ( 2 ) - 8 ( 2 ) C ( 1 6 ) 5 2 ( 2 ) 7 7 ( 3 ) 5 9 ( 2 ) 2 3 ( 2 ) 1 9 ( 2 ) 1 8 ( 2 ) C ( 1 7 ) 3 6 ( 2 ) 4 3 ( 2 ) 4 0 ( 2 ) 2 ( 1 ) 1 ( 1 ) 1 ( 1 ) 3 8 5 H I H C I 11; 3 R N 8 2 9 R T 1111111111 V . 3 0 U 7 1 7 2 L I B R R I E S ( l i l l / 1 1 1 1 1 7 5 9 1 i l l