

THE'

-

(¢

LIBRARY

Michigan State
University

This is to certify that the

dissertation entitled

A Generic Framework for Formalizing
Object Oriented Modeling Notations for
Embedded Systems Development

presented by

William Eugene McUmber

has been accepted towards fulfillment
of the requirements for

Ph.D. degree in Computer Science and Engineering

Bett, N. Clben,

M ajor professor [4)

Date 8)/7" /00

MSU is an Affirmative Action/Equal Opportunity Institution 0-12T1

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE

DATE DUE

DATE DUE

1100 Cc/CIRC/DateDue.p65-p.14

Mot

A GENERIC FRAMEWORK FOR FORMALIZING OBJECT-ORIENTED
MODELING NOTATIONS FOR EMBEDDED SYSTEMS DEVELOPMENT

By

William Eugene McUmber

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DoOCTOR OF PHILOSOPHY

Department of Computer Science and Engineeering

August 8, 2000

A GEy

Enb
displays
develap ‘
Applicar
aphicy
elng Ly
Provides
formai,
Che«:kmg
the dep,
b,
g

in le‘d@r

ABSTRACT
A GENERIC FRAMEWORK FOR FORMALIZING OBJECT-ORIENTED MODELING
NOTATIONS FOR EMBEDDED SYSTEMS DEVELOPMENT
By

William FEugene McUmber

Embedded systems are 10 to 100 times more numerous than traditional systems with
displays and keyboards But even though the object-oriented paradigm has been used to
develop many traditional systems, it has not been widely applied to embedded systems.
Application of the object-oriented paradigm in industry is encouraged and reinforced by
graphical methods such as the Object Modeling Technique (OMT) and the Universal Mod-
eling Language (UML), but the semantics of the diagrams are not rigorous. This research
provides formal semantics for UML models in order to build embedded systems. This
formalization enables the automated analysis of diagrams, such as simulation and model
checking, which are particularly critical for the development of embedded systems, given
the demand for specifying temporal and concurrency properties. This research constructs
homomorphisms between metamodels of the source semi-formal language and the target
formal language, so that consistency of formalization rules can be mechanically established

in order to provide precise semantics to the semi-formal notation.

© Copyright August 8, 2000 by William Eugene McUmber

All Rights Reserved

Tomy s

through

To my wife, Cheryl, and my sons, Robbie and Weston, who have supported me

throughout while enduring my long hours and lack of availability

iv

[have kn
family. an
excellent |
woild no
dtudent 4

It wa
asked
ad { tr

I“‘iSh
h")mumm
oy

Som

I“L\h L

crs

ey,
Finy)

ther

'Lu)ugh

e Sacrj

ACKNOWLEDGMENTS

I have known Dr. Betty H. C. Cheng for quite some time because working, caring for
family, and earning a Ph.D. all at once, takes a long time. Without her extreme patience,
excellent advice, frequent encouragement, and expert editing capabilities, this dissertation
would not have occurred. I'll bet she’ll be careful about taking a “non-traditional” Ph.D.
student again.

It was during my friend Enoch Wang’s dissertation defense, that Dr. Anthony Wojcik
asked the critical question that became central to this dissertation. It was a good question
and I tried to build on Enoch’s work to answer that question.

I wish also to thank Dr. Kurt Stirewalt for our many discussions about many things from
homomorphic mappings, to semantics. Dr. Stirewalt was extremely helpful formulating the
formalities and meanings of the homomorphisms.

So many others provided help along the way it is impossible to list them all in this space.
I wish to thank my committee members: Dr. Betty H. C. Cheng (chairperson), Dr. Kurt
Stirewalt, Dr. Anthony Wojcik, and Dr. Jacob Plotkin.

Finally, my wife, Cheryl, and my sons Rob and Weston, shared, and at times suffered,
through this long process. I couldn’t have done it without them and I deeply appreciate

the sacrifices they made because I didn’t have time for this or that. I do now.

LIST OF

1 Introd
11 Probl
12 Resea
13 Thesi

l4 Orgar

1 Backgr
1ML
2 VHDI
1 S
0 Sy
124 D
13 Pron,
Ul Su
32 (L
33 Dif
N Mod
M1 (7
41 9p

2'5 Furm

3 Meta;
W Clase

TABLE OF CONTENTS

LIST OF FIGURES

1 Introduction

1.1 Problem Description
1.2 Research Program,
1.3 ThesisStatement
1.4 Organization of Dissertation

2 Background

2.1 UML Overview e e e e
22 VHDL Overview i e e e e e
2.2.1 Structure and Statements
2.2.2 Signals and Communications
2.2.3 Signal Busses — Multiple Signal Drivers
224 DataTyping e e
2.3 Promela/SPIN Overview
2.3.1 Structure and Statements
2.3.2 Channels and Communications
2.3.3 Differences From Other Guarded Languages
2.4 Model Checking
24.1 CTLandLTL Logics,
242 SPIN e e
2.5 Formal and Informalmodels.
3 Metamodels and Mapping Framework

3.1 Class Model Formalization.
3.1.1 Foundation to Class Formalization
3.1.2 Enhanced Class Formalization
3.1.3 Multiplicity Constraints, Revisited
3.1.4 Example of a Class Formalization
3.2 Mapping Framework Lo
3.2.1 Informal Discussion of the Mapping Framework
3.2.2 Homomorphic Mappings on Metamodels
3.2.3 Handling Structurally Different Metamodels
3.2.4 Target Metamodel Templates
3.3 Unified UML Class and Dynamic Metamodel

vi

]

(=R S R

{ Design
{1 Desigr

{11
112
113
14
{15
{16
{7

Use

Dy

Simi

12 Chous
13 Feedh
{44 Relati

§ UML t
il ML

ill

Hon

i1 DML

321
il

313

(la
Dy
Joir

33 Exany

331
332
333

VH
Bel
Dis

§ UML |
YY)

611

Hoj

B2 Ty

62]
622
623

GIU
Cla
Dy

! Relate

7.1.1

il Emby

Ad

4 Design Process

4.1 DesignProcessDataFlow
4.1.1 Use Case and Context Model
412 UseCaseScenarios i
413 ClassModel.
4.1.4 Class Responsibility List
4.1.5 Sequence Diagrams
4.1.6 Dynamic Model
4.1.7 Simulation and Model Checking
4.2 Choosing Semantics L
4.3 Feedback Loops.o
4.4 Relation of the methodology to Formalization Integration

5 UML to VHDL Mapping Rules

5.1 UML to VHDL Diagram Homomorphisms
5.1.1 Homomorphic Mapping
5.2 UML to VHDL MappingRules
5.2.1 Class Diagram Formalizations
5.2.2 Dynamic Model Formalizations
5.2.3 Joining Concurrent Threads
53 Example. e e
5.3.1 VHDL Specifications
5.3.2 Behavior Validation L
533 Discussion. e e e
6 UML to Promela/SPIN Mapping Rules

6.1 UML to Promela Diagram Homomorphisms,
6.1.1 Homomorphic Mapping
6.2 UML to Promela Mapping Rules
6.2.1 Global Requirements
6.2.2 Class Diagram Formalizations
6.2.3 Dynamic Model Formalizations
7 Related Work

7.1 Embedded Systems Methodologies
7.1.1 AdHoc e e
7.1.2 Structured Methods
7.1.3 RTOOSA
7.1.4 ROOM e e
7.1.5 Real-Time UML i e
7.2 Graphical Languages for Embedded Systems
721 DFD-CFD e e e
722 Flowcharts e
7.2.3 Finite State Machines FSA
7.24 Extended Finite State Machine
7.2.5 Statecharts
7.26 Speccharts e
727 PetriNets. e

vii

73 For
1310
4 For
4l F
) T
1) F
iid E

§ Tool
51 Ove
32 Hye
53 Hy
4 Lan
M1 0
342 R
£23 1T

9 Indu
Des

7.3 Formalization of UML 158

73.1 OCL e 160
7.4 Formalization of OO and Other Notations 162
741 Fusion e 162
742 TROLL e 164
7.43 Formalized OMT 166
7.4.4 Extended Hierarchical Finite State Machines 169
8 Tool Development 171
81 Overviewof Hydra 171
82 HydraLanguage 172
8.3 Hydra Tool Structure 179
8.4 Language-Specific Class Library 180
8.4.1 Operationofthe LSCL 184
8.4.2 Resolving Transitions Crossing Composite State Boundaries 184
8.4.3 Target Specification Generation. 187
9 Industrial Case Study 189
9.1 Description of “Smart Cruise” 190
9.1.1 Requirements e 191
9.1.2 System Environment and Use Case 191
9.1.3 System Components 194
9.2 [Imitial System Design 194
921 UseCaseScenarios. it 196
93 ClassDiagram e 197
9.4 Class Responsibilities 199
9.4.1 Sequence Diagram o o oo 202
9.5 Dynamic Behavior Design, . 203
9.5.1 Calculation and Timing Conventions 204
9.5.2 Notation 205
9.5.3 Class Radar Dynamic Model 205
9.54 Class Car DynamicModel 206
9.5.5 Version 1 Class Control Dynamic Model 208
956 SYSTEMCIlass o i ittt s e e e e e 211
9.6 Initial Simulation Testing 212
9.6.1 Refined Control Class Dynamic Model 214
9.6.2 Summary of Simulation-Based Refinements 217
9.7 SPIN-Based Model Checking 218
9.7.1 State Explosion Problem 0. 218
9.7.2 Commonly Checked Properties 220
9.7.3 State Assertions 221
9.7.4 State Reachability Analysis 224
9.7.5 Progress State Analysis L o oo 0oL 225
976 NeverClaims e 228
9.7.7 Acceptance Cycles in Never Claims 232
9.7.8 Analysis With Non-Deterministic Transitions 235
9.8 Discussion of Using SPIN for Analysis 239
981 Bugs. 239

432 Ch
933 La
434 Ne

10 Concl
10 Sumi
102 Futu

A VHD!
B Hydr.
C Prom
D Yace
E CML
F UML
G VHD

H SPIN

9.8.2 Challenges e 240

983 LackofFairness 240
984 NeverClaims 242
10 Conclusions and Future Investigations 244
10.1 Summary of Contributions 245
10.2 Future Research o 248
A VHDL for Furnace Example 257
B Hydra Language Input for the Smart Cruise Case Study 265
C Promela Specifications for Smart Cruise 270
D Yacc Grammar for the Hydra Language 279
E UML to VHDL Mapping Rules 282
F UML to Promela Mapping Rules 293
G VHDL LCS Files 307
H SPIN LCS Files 331

ix

3
1

2.1
2.2
23
24

2.5
2.6
2.7

3.1
3.2
3.3

34

3.5
3.6
3.7
3.8

3.9
3.10
3.11

4.1
4.2
4.3
4.4

5.1
5.2

5.3

5.4
5.5

5.6

5.7

LiST OF FIGURES

State transition event syntax conventions.
An example of a sequence diagram. L.
Metamodel of a UML dynamicmodel.
A VHDL entity specification for a simple state machine implementation of por-
tionofaCDoplayer e
VHDL specification for a simple state machine implementing a CD Player.
Promela model for a simple client-server system
Fraser’s taxonomy of integration methodologies.

Bourdeau and Cheng’s basic approach to formalization.
Metamodel of a UML dynamic model.
The four basis relations from which all other association relationships can be

formed. e
Example showing how multiplicities 0..1 and 1..x are decomposed to find the set

of constraints for an association.
A small metamodel to demonstrate the predicate constraints.
Example of dependencies between classes and associations.
Example of an ambiguous section of a UML diagram.
The relationship between the semi-formal source language, the formal target

language, the homomorphic binding and the instance-specific mapping rules.

Aggregations between A’ and B’ areinferred
UML class metamodel with behavior included as a relation to a class.
The unified class/dynamic UML metamodel.

Design processdata flowo oo
Sample use case for a heating and cooling system.
System Context Model for a hypothetical heating/cooling system.
Sample sequence diagram. Lo

Unified UML class/dynamic diagram metamodel.
The list of non-aggregate and non-generalization relationship predicates from
the formalized representation of the UML metamodel.
The list aggregation relationships predicates from the formalized representation
of the UML metamodel.
Metamodel for VHDL models
The definition of the homomorphic mapping of classes from the UML metamodel
to the VHDL metamodel.
The definition of the homomorphic mapping of relationship predicates from the
UML metamodel to the VHDL metamodel.
The preserved hasComp and hasPart relationship predicates.

X

11
12

16
17
24
31

33
36

38

39
40
42
44

46
49
51
52

%)
56
57
59

65

66

67
68

69

33 Sa
59 Tt
510 Er
511 V]
512 Sa
513 Es
514 Ex
515 Tl

516 Ti

il B
il8 E:

M9 T
0T
3T

5%
Bl T
02
63 71

—

64 1
65 1

6.6 b

b1 7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15

5.16
5.17
5.18

5.19
5.20
5.21
5.22
5.23
5.24

5.25

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

6.14

Sampleclassmodel 71

The VHDL package statements generated for each class. 75
Entity /Architecture pair from diagram 5.8 class A 76
VHDL generated for an instance of class D from Figure 5.8 76
Sample dynamic model to illustrate the mapping of dynamic model components. 79
Example of the generated state D2 82
Example entity and architecture for composite state D 86
The instantiation of composite state D as contained in parent state CP2. Line

3 shows the mapping for the ’in state’ predicate for state CP2. 86
This example illustrates the mapping from Rule VHDL 8 to generate two con-

current composite states. Lo e 88
Example of the join pseudo-state generated by Rule VHDL 9 in state TOP . . 90
Example of the generated history initial state generated by Rule VHDL 11. Non-

history initial states, per Rule VHDL 10, are the same except the assignment

on line 11 is a constant and lines 2 and 6 are not needed. 91
The class diagram for a heating and cooling system. 93
The dynamic model for the controller class for the heating—cooling system . . . 93
The entity section from the FurnaceRelay component of the top state from

Figure 5.20. The matching architecture is in Figure 5.22. 94
The architecture section from the FurnaceRelay component of the top state from

Figure 5.20 The matching entity is in Figure 5.21 95
Output from driver scenarioone. 96

Execution output for scenario two. Turning on the heat after the thermostat

demands heat should result in the furnace starting. This sequence shows it

does mot. e e e e 96
Scenario three. Driving the controller into a furnace on and AC on condition. . 98
The unified class/dynamic metamodel for UML. Repeated from Figure 5.1 . . . 102
The metamodel for SPIN/Promela metamodels. 103
The list of non-aggregate and non-generalization relationship predicates from

the formalized representation of the UML metamodel. 104
The list of non-aggregate and non-generalization relationship predicates from

the formalized representation of the UML metamodel. 104
The definition of the homomorphic mapping of classes from the UML metamodel

to the Promela metamodel. 105
The definition of the homomorphic mapping of relationship predicates from the

UML metamodel to the Promela metamodel. 105
The preserved hasComp and hasPart relationship predicates. 106
Sampleclassmodel. 108
Promela specifications generated for class A in Figure 6.8. 110
A sample dynamic model for class A from Figure 6.8 114
The Promela specifications generated for Object A in Figure 6.10 (the top level

ofthemodel). e 116
Promela specifications generated by Rule Promela 8 from Figure 6.10 for com-

positestate d L e e e 120
Promela specifications generated by Rule Promela 8 from Figure 6.10 for the

transitiontostatedo o o o 121
Promela specifications generated for class A in Figure 6.8. 124

xi

§.15 Pron
616 Com
617 Stat
f
f.13 Ane
g
§.19 The
§20 The
I
621 The
1
£22 Hist
i

§1 The
§2 The
83 Res
I
3 Thn
e

§1 Syst
82 Syst
93 Var
94 Maj
5 Exc
36 Exc
7 Exc

6.15
6.16
6.17

6.18

6.19
6.20

6.21

6.22

8.1
8.2
8.3

8.4

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
9.9

9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18

9.19
9.20
9.21
9.22

9.23
9.24

Promela specifications generated for state a in Figure 6.10. 126
Composite state cp2 from diagram Figure 6.10. 131
State d2 from Figure 6.10 illustrating the statements generated by Rule

Promela 15 for an upward transition. 131
An extreme example of multiple transitions on a single event guarded by varying

guards. The bottom half of the figure shows eventless guarded transitions. . 133
The Promela generated by Rule Promela 16 for state S in the top half of Figure 6.18134
The Promela generated by Rule Promela 16 for state S in the bottom half of

Figure 6.18 134
The Promela specifications generated by Rule Promela 18 for the join in Fig-

ure 6.10 e e e e 137
History state statements generated by Rule Promela 20 for composite state cpl

in Figure 6.10. 139
The data flow model for the Hydra translation system. 173
The generic class model for the LSCL. Dotted lines represent method calls. . . 181
Resolving a transition destination in a composite state hierarchy. The ovals

represent composite states. L Lo oo 186
Three different portions of generated specifications written by methods Output

and LclOutput from states Object, Init, and State, respectively. 188
System Class Context Model for Smart Cruise. 192
System Use Case Model for Smart Cruise. 193
Various distances involved to close on and maintain a safe trailing distance. . . 195
Main flow of events from Use Case “Maintain Cruise” 196
Exception “Car going too fast” from Use Case “Maintain Cruise”. 197
Exception “Target Turns” from Use Case “Maintain Cruise”. 198
Exception “Brakes Applied” from Use Case “Maintain Cruise”. 198
Smart Cruise class diagram. oL 199
The data dictionary for Smart Cruise. Definition of the instance variables is in

Figure 9.8. e 200
Sequence diagram for initial sequence until target is within range. 203
State transition event syntax conventions. 205
The radar class dynamicmodel 207
The car class dynamicmodel, 209
Version 1 of the Control class dynamicmodel. 210
The SYSTEM class dynamicmodel. 211
The Promela statements equivalent to the model in Figure 9.15. 211
The refined Car class dynamicmodel. 215
States “getspd” and “calc” from class Control prior to modifying the order of

obtaining car speed and next distance., 217
Data flow digram for building a SPIN analyzer 220
Modification of state “calc” to include an assertion statement.. 222
pan output from the model with no assertion violation. 223
pan output from the model with a target speed of 80 ft/sec and a car speed of

110 ft/sec producing an assertion violation. 223
Last part of SPIN output when closing velocity is too high. 226
pan analysis run showing a non-progress cycle in the target trail loop. 227

xii

425 The
:
0% An
(
07 An
928 Nev

929 Mo
030 Ang

431 Sta

032 Tre

933 Sta
934 Th

13 A

9.25
9.26
9.27
9.28
9.29

9.30

9.31

9.32

9.33
9.34

9.35

The same analysis as shown in Figure 9.24 but with a progress label attached to
state “calc”. e
A never claim specifying that state “idle” is only entered once, at the start of
execution. L. e e e e e e e
An analysis run using the never claim from Figure 9.26.
Never claim to check for the issuance of an acknowledgment when a target mes-
sage is sent. This claim was generated by the input to SPIN seen on line 1.
Line 1 was derived from Formula (9.2).
Modification of the transition to remove the acknowledge message.
Analyzer output using the never claim in Figure 9.30 and a modified model to
disable message acknowledgement.
State “r3” after adding another transition to cause a brakes message to be gen-
erated non-deterministically. The dashed lines show the existing transitions
and the solid line shows the new transition.
Trace output showing acceptance cycle in never claim used to verify behavior of
“brakes” message. e e e
States getspd, calc, and caroff from object Control.
The three states from Figure 9.33 modified to add carspeed(vc) transition to
state “caroff” o
A earlier version of the dynamic model for class Radar using concurrent sub-
states. The model fails due to lack of fairness.

xiii

228
230
230
233

234

234

235

237
238

238

Cha

Intr

Em}»(dde
pas (1.
SOfIWare
Situation,
embedde
Ih(‘)‘ con
na Cri
and Tigo
C‘lrremh
Emb‘fddm
le\'e]_ pr
L&r"g‘l”dgn‘
iy ang p,

Moty

Chapter 1

Introduction

Embedded systems are typically 10 to 100 times more common than their desktop counter-
parts [1], residing in systems ranging from engine systems, to toasters, to autopilots. The
software for embedded systems is, in general, more difficult to write and debug because em-
bedded systems software usually involves time-dependent sections in difficult to instrument
situations. For example, embedded systems rarely have a keyboard or display. Nonetheless,
embedded systems usually must achieve a higher level of robustness and reliability because
they control real-world physical processes or devices upon which we depend, frequently,
in a critical way. Consequently, methods for developing and modeling embedded systems
and rigorously verifying behavior before committing to code, are increasingly important.
Currently, much of the embedded systems industry use ad hoc approaches for developing
embedded systems [2]. Frequently, there are few, if any, intermediate steps between high-
level, prose descriptions of requirements and code written in the target implementation
language, such as C. With automotive and appliance applications, requirements traceabil-
ity and reuse are two important tasks, but they are difficult to accomplish when using only

informal development techniques.

Object-
of embedde
inefficient
between re
dsa resul
through tl

A num
recently. i
abject-ori
and gain
addition,
bow obje
At prese;
iﬂdi\‘idu;_
diagram
UML 1y
tsting,

In or
1ﬁnguag<
Teseare},
e wi,
& the ¢
®hable

Whil(— [

Object-oriented development methods have not been widely used for the development
of embedded systems, perhaps because of the perception that object-orientation produces
inefficient code. On the other hand, especially in an embedded system, the correlation
between real components in the physical system and software objects is often very good.
As a result, our premise is that the benefits in software quality gained in other domains
through the use of object-orientation should also apply to embedded systems.

A number of object-oriented techniques and notations have been introduced [3, 4, 5], but
recently, it appears that the Unified Modeling Language (UML) [6] could be an approach to
object-oriented modeling that is broad enough in scope to represent a variety of domains
and gain widespread use. Currently, UML comprises several different notations [6, 7, 8]. In
addition, there appears to be interest from the embedded systems community in exploring
how object-oriented modeling, specifically UML, can be used for embedded systems [1].
At present, however, UML is only a notation, with no formal semantics attached to the
individual diagrams, nor is there a formally defined semantics for the integration of the
diagrams. Therefore, it is not possible to apply rigorous automated analysis or to execute a
UML model in order to test its behavior, short of writing code and performing exhaustive
testing.

In order to address this problem, we have developed a framework for deriving formal
language specifications from a subset of the UML models. One overarching goal of this
research, motivated by technology transfer objectives, is to enable developers to continue to
use widely accepted development techniques, both in terms of the modeling language as well
as the target specification language. We have developed a set of formalization rules that
enable automated techniques to generate specifications from the individual UML notations.

While UML offers several different notations, our preliminary investigations indicate that for

podeling T
modeling €
formalizati
of embedd
metamodel
wttenin
nodefing |
semi-form;

enable us

L1 P

A simple,
1eI's abst
lmllili\'e]
Sfmi-form
®Main ¢
tell are €
point,
long bef,,

Three
iti\‘e. gra]
PTF:r.is(;]y
ey

laze for

modeling requirements and high-level design, the class and state diagrams are sufficient for
modeling embedded systems. This dissertation presents results from investigations into the
formalization of the class and state diagrams for capturing the structure and the behavior
of embedded systems, respectively. The formalizations are based on mappings between
metamodels of the modeling notation. A metamodel is a model of the notation itself,
written in the class-structure notation where “classes” represent syntactic components of the
modeling language. Homomorphic mappings are established between the metamodels of the
semi-formal (source) and the formal (target) languages. These homomorphic relationships

enable us to rigorously establish the consistency of the formalization rules.

1.1 Problem Description

A simple, intuitive notation for describing a system that also accurately captures the sys-
tem’s abstract behavior has long been a goal in the Software Engineering Community [9, 10].
Intuitive notations such as those included in UML are gaining widespread use, where their
semi-formality is probably one of the reasons for their popularity. Abstraction requires that
certain components and concepts not be specified too tightly because the appropriate de-
tails are either not known or because the detail is “implementation specific’. But, at some
point, the specific behavior of the system being designed must be ascertained, hopefully
long before the system is actually implemented in code.

Three major objectives guide this research. First, we wanted to enable the use of intu-
itive, graphical notations for the design of embedded systems while providing a means of
precisely specifying the semantics of the written diagrams. Second, we wanted to develop
a general framework for creating mappings from diagram components to elements of the

target formal specification language. The general framework provides the rigor to ensure

consistel
work ens
exercise
sperifica
can be 1

their res

12]

Asa m
industri;
Because
languag

The |
Sandard
Executed
Straight
bfh&\'ior
and thyg
Precise 1]
o Qany

ln orqd
o the oy

dﬁcribe .

Retutioy,

consistency between the diagrams and formal specification. In addition, the general frame-
work enables us to alter the semantics of the diagram. The third objective was to enable and
exercise complementary analysis techniques for the semi-formal diagram via their formal
specifications. Specifically, we wanted to investigate how model checking and simulation
can be used independently and in an integrated fashion to analyze the UML models via

their respective specifications.

1.2 Research Program

As a means to facilitate technology transfer for our results, we use notations already in
industrial use, both in terms of source semi-formal language and target formal languages.
Because UML is the de facto standard for object-oriented modeling, we use it as the source
language.

The initial formal target language we chose is VHDL [11, 12, 13]. VHDL is an IEEE
standard [14] and is commonly used in industry. Since VHDL specifications can be directly
executed, they provide precise semantics. In addition, simulation of a VHDL model is
straightforward, therefore, a system mapped to VHDL allows rapid examination of system
behavior without directly writing code. VHDL was initially designed to model hardware,
and thus has a rich set of constructs for specifying timing properties. The ability to model
precise timing constraints in an embedded systems model is very useful, and is not present
in many other formal languages.

In order to explore complementary analysis techniques, we also formalized UML in terms
of the commonly used language Promela/SPIN [15, 16]. Promela is the language used to
describe models that are analyzed with SPIN. SPIN analyses also include simulation through

execution but, in addition, state reachability and model checking analyses can be performed.

Vodel che
asystem |

Forma
%0222
frameworl
have disti
examined
“incorrect
quently, t
linguage

We in
tase) thre
which for,
Lapping,
Constrycets
betweep g

the sep. g

Model checking provides the analyst with a set of tools for checking temporal properties of
a system through exhaustive state exploration.

Formal semantics have been added to graphical OO languages previously [5, 17, 18, 19,
20, 21, 22, 23], but the mapping from semi-formal to formal was not based on a general
framework. There is, of course, no one “correct” mapping of semantics; but some mappings
have distinct advantages over others in providing perspectives on system properties to be
examined or analysis to be performed. On the other hand, it is possible to describe an
“incorrect” mapping that produces inconsistent, or even contradictory, semantics. Conse-
quently, the means used to achieve a mapping from a semi-formal language to a formal
language is relevant and important.

We introduce formal semantics to a semi-formal language (having chosen UML in this
case) through a metamodel mapping that dictates which semi-formal constructs map to
which formal target language constructs. We use a homomorphic mapping to achieve this
mapping, thus the homomorphic mapping provides a binding of semi-formal source language
constructs to the formal language. Construction of the homomorphism (that is, the mapping
between semi-formal components and formal components) dictates the semantics given to

the semi-formal language.

1.3 Thesis Statement

This research is intended to define a methodology for designing embedded systems using
Object Oriented (OO) notation. The approach relies on a flexible formalization framework

for binding semantics to semi-formal graphical OO models.

Thesis Statement Constructing a homomorphic mapping between metamodels of an

14

The ren
fround
temporg
semi-for
Worphis
Lotatiop
& Tigorg,
dﬁiigniru
Id]]‘:d)
amyple
gl
g Iy
Hy'.‘irq th
g‘fﬂﬁrate

Yy o,

object-oriented modeling notation and a formal language provides the basis for precise
mapping rules that enables automated generation of specifications in a formal lan-
guage. Any one of several formal languages can provide the target, where the domain
being modeled determines the requirements for the target language. The consistency
of the mapping rules is established by the formalism of the homomorphic mapping
between metamodels. Automatically generated formal specifications enable automated

analysis of the diagrams, specifically model checking and simulation.

1.4 Organization of Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2 we review back-
ground material regarding UML, VHDL, Promela/SPIN, model checking and the respective
temporal logics they use. This chapter also discusses the relationships between informal,
semi-formal, and formal modeling notations. Chapter 3 describes metamodels and homo-
morphisms between metamodels. Since metamodel notation is based on the class model
notation, this chapter also discusses formalization of the class model in order to provide
a rigorous basis for the homomorphic mapping. Chapter 4 presents our methodology for
designing embedded systems using our formalization technique. Chapter 5 contains de-
tailed rules for formalizing the UML class and dynamic models and is illustrated by a small
example of a system designed using these rules. Chapter 6 contains the detailed rules for
formalizing a second language, Promela, which can be used for simulation and model check-
ing. In Chapter 7 we review related work. Chapter 8 describes a prototype tool called
Hydra that has been developed to implement the detailed mapping rules and automatically
generate VHDL and Promela specifications. Chapter 9 presents an extended industrial case

study of the design of an embedded system. This chapter also contains a detailed account of

model chex

preseuits ¢

model checking and simulation used together on an industrial system. Finally, Chapter 10

presents conclusions, summarizes contributions, and discusses future work.

Cha

Ba

This ch,
OVerviey
sed thy
the forn
dhecking
the simy
be chec
ChECking
Siuce
e proyi

mUdﬁIs a

21 T

The (g

mr:‘d‘f]ing

Chapter 2

Background

This chapter provides overviews on five topics central to the research. We first provide an
overview of UML because it is the source semi-formal object-oriented modeling language
used throughout our research. Next, the VHDL language is described because it is one of
the formal languages to which UML is mapped. We then discuss Promela/SPIN and model
checking for two reasons: first, model checking is an analysis technique complementary to
the simulation capabilities provided by a language such as VHDL. Secondly, the model to
be checked is first encoded into a formal language, such as Promela, from which the model
checking procedure (SPIN) can determine the validity of assertions made about the model.
Since the model checking language is formal, we use it as a target formal language. Finally,
we provide an overview of previous work on integrating formal, semi-formal and informal

models and more precisely define the meanings of these three terms.

2.1 UML Overview

The Unified Modeling Language (UML) (7, 8] is described as a “general-purpose visual

modeling language that is designed to specify, visualize, construct, and document the arti-

facts of @
structure
svstell. |
Object M
namic m
model to

UML
Dynamic
Compong

we deal v

Class D
cla
ant
clas
asy
sta
Mg
849
dia
trig
r(']a
en(
Par

coly

facts of a software system” [24]. UML is based on a series of diagrams that depict the class
structure, dynamic properties, and event sequencing for an object-oriented (OO) software
system. UML is an extension and melding of several modeling languages, most notably the
Object Modeling Technique [3] (OMT) and StateCharts [25]. UML class diagrams and dy-
namic model diagrams use notation similar to OMT. Unlike OMT, UML has no functional
model to depict data flow.

UML contains seven distinct types of diagrams: Class Diagrams, Use Case Diagrams,
Dynamic Models (state diagrams), Interaction Diagrams (sequence and activity diagrams),
Component Diagrams, Collaboration Diagrams, and Deployment Diagrams. In this thesis

we deal with the class, dynamic, use case, and interaction diagrams.

Class Diagram: The class diagram depicts the classes and the interrelations between the
classes. Classes are drawn as rectangles with relationships between classes drawn as
annotated lines between the rectangles. There are four types of relationships between
classes. Association is a binary relationship between two classes. Multiplicities on
associations are written as a number at each end, with the number applying to in-
stances at that end of the line. An optional instance is denoted by “0..1”7, “*” indicates
many, and “1..*¥” denotes one or many. Three additional relationships are subtype,
aggregation, and composition, which are drawn as a small hollow triangle, an empty
diamond, and a filled diamond, respectively. Subtyping is denoted by a small hollow
triangle on the superclass end of the association. The derived class end of the subtype
relationship is not marked. Filled and empty diamonds are placed on the aggregate
end of composition and aggregation relationships, while the classes that constitute the
parts of the aggregation are not marked. Both aggregation and composition indicate

collections where the part plays a role in the behavior of the whole but composition is

the ¢

of th

Dynamic
seril

are |

con
one

staf

Use Cas
Teq
An
Con
dia
Wit
Cay
the
Use

Use

the stronger relationship because the existence of the part depends on the existence

of the whole. In aggregation, this dependency does not hold.

Dynamic Model: The dynamic model is based on Statechart [25] conventions and de-
scribes dynamic behavior of objects through the use of Statechart-like notation. States
are drawn as boxes with rounded corners with transitions between states drawn as
arrows between the boxes, where the arrow indicates the direction of the transition.
Transitions are labeled with the transition event, which has its own syntax as shown in
Figure 2.1. Composite states are drawn as a large rounded corner rectangle containing
a sub-state diagram. This construction may continue recursively to an arbitrary nest-
ing level. Concurrency of composite state machines is indicated by partitioning the
composite states with dotted lines. Each rectangular component bordered on at least
one side with a dotted line executes concurrently with the other denoted composite

states.

Use Case: The use case diagram documents Use Cases and is used to capture system
requirements. A use case contains actors, the system, and the use cases themselves.
An actor is an idealization of an external process, a person, a system, or some external
component that interacts with the system. The system is represented in the use case
diagram as a large rectangle containing oval use cases. Each use case is connected
with lines to labeled actors on the outside of the system rectangle. Each use case
can be instantiated as a scenario, often presented as a sequence diagram, which gives
the specific actions for actors and the system in a particular situation. Use cases are
useful for capturing high level requirements and the goals of the system. Increasingly,

use cases are providing information useful for validating the system during system

10

analy

Interactic
withi
ally
of sv
8576
acro:
and
diag
d(‘\"p

prov

The ¢
)
ofthe 4,

&gy illi

Eamm

analysis.

Interaction Diagrams: Interaction diagrams depict the interaction between objects
within the system, and with actors outside of the system. Interaction diagrams visu-
ally show objects and the flow of messages between objects for a particular scenario
of system operation. The interaction diagram we use in this work is the Sequence Di-
agram. Figure 2.2 shows a sequence diagram listing objects car, radar, and control
across the top along with one external actor. The vertical lines depict time downward
and the horizontal lines show message interaction between the objects. Interaction
diagrams are useful for showing the operation of the system at a level higher than the
deep view provided by dynamic models. As mentioned above, interaction diagrams

provide snapshots of system behavior that can be verified with analysis tools.

Event [7ard] /Action List A message, A message,” ...A message,,

Guard checked
when event occurs.

Sequence of actions
pertormed during transition.
May be a sequence of
actons such as:

action1; action2; action3

Massages sent during
transition. Format is either
simple event name or
Object. Event notation,

Figure 2.1: State transition event syntax conventions.

The syntax of UML diagrams is described in a small subset of UML itself using metamod-
els [26]. A metamodel is a class diagram where the classes describe syntactic components
of the type of diagram being described. An instance of a metamodel is a UML diagram just
as an instance of a UML class diagram is a set of specific objects in a system. Figure 2.3

is a metamodel of the UML dynamic model. The metamodel describes the interrelation-

11

ship betw
Classes d
Dents ip .
Signifes
or Sub)
Pear ip .
sllea(

A diy
d‘i‘(‘()ra[(.(
Bath gp
erongpr
of the o
C(”"D')si[

[n Fl

%] control radar [m

ser on
getspeed
. ackradar
Set cruise oet
carv(speed)
carspeed(speed) q
seispeed(speed) ;
R | ettt geiv """ IR ;Lv——
' R
Look for target vehicle ' carv(speed) 1 {until within 400 ft)*
1
L SR S
(indefinite period of time
until target acquired)
Begin closing on vehicle larget
ackcontrol
ety
cary(s‘ﬂ‘h
dist(x1)
ackcantrol gty
U | (1

Figure 2.2: An example of a sequence diagram.

ship between states, transitions, events and the other parts of the UML dynamic model.
Classes decorated with italics are abstract, and therefore are not realized by actual compo-
nents in a UML dynamic model diagram. The empty arrow on class State in Figure 2.3
signifies a specialization association between State and CompositeState, SimpleState,
or SubMachineState. Since State is abstract, components of type State will not ap-
pear in a dynamic model but components of types CompositeState, SimpleState, or
SubMachineState can appear wherever a type State is required.

A diamond on an association end specifies a collection with the aggregate class on the
decorated end. UML distinguishes two types of collections, aggregation and composition.
Both specify that the part plays a role in the behavior of the collection but composition is a
stronger relationship characterized by dependence of the existence of the part upon existence
of the collection. Aggregation is signified in UML diagrams with a hollow diamond while
composition is denoted with a filled diamond.

In Figure 2.3 type State (and its subtypes) contain compositions of ActionSequence

12

0.1
StateMachine [@——
Guard
¢]
0..1
. - 1
source outgoing
substate State Vert 1 . . Transition ;
1. e | target incomin il
T |
I] 1f0p 0..1 entry 0.1
D> Pseudostate State 0..1 exit ActionSequence
>—————————|
yaN I 0..1
parent
60..1
CompositeState SimpleState SubmachineState Action
| I]
Branch Start Final
. trigger
StateMachine Event 0.1
Fork T
Join
SignalEvent CallEvent TimeEvent ChangeEvent
History

Figure 2.3: Metamodel of a UML dynamic model.

13

under tw
with sets.

In imj
references
contain t
necessari]

Anott
part. Cor
be memb
hidden re
example.
and q are
side effect
patential}

Based
tion of ¢,

Chines,

under two different roles. Collection relationships are similar to membership relationships
with sets, with composition closely mimicking set membership.

In implementations, simple aggregation might be the relationship where an object holds
references to other (child) objects. In a composition relationship, the parent object would
contain the child data type such that if the parent were destroyed, the child object would
necessarily also be destroyed.

Another distinction can be made by the number of collections that can hold a given
part. Composed parts can only be a member of one collection, where aggregated parts can
be members of more than one collection. If this were not true for composition, very complex
hidden relations would exist between collection classes by virtue of their aggregations. For
example, suppose objects p and q contained ¢ as a composition component (the types of p
and q are not important). Now suppose object p is destroyed. This necessarily implies the
side effect of destroying ¢, thus destroying the composition relation between ¢ and q and
potentially altering the behavior of q.

Based on the metamodel in Figure 2.3 a StateMachine is constrained to be an aggrega-
tion of States, which are realized as CompositeStates, SimpleStates, or SubStateMa-
chines. A CompositeState is further specified to be an aggregation of StateVertices,
each of which is either a State or a PseudoState, thus forming a recursive relationship.
StateVertex has two required associations with transitions, one in an outgoing role and

another in an incoming role.

14

99 VI

VHDL' is
adopted by
dard as ad
This resea

In forn
Very High
language |
closer exar
mmunic
wtax,
and comy

Althm
Perhaps
iscrete ¢
Series of ¢
Bvents g
ae execy
tr;msactic

\
ID .Th? Da,

tegrateq

2.2 VHDL Overview

VHDL! is a language for describing digital electronic hardware systems and has been
adopted by the IEEE as Standard 1076 [14]. Two versions are commonly available: the stan-
dard as adopted in 1987 (VHDL’87) and an updated version adopted in 1993 (VHDL’93).
This research assumes the use of VHDL’93.

In form, VHDL resembles Ada, likely because VHDL arose out of the U.S. Government’s
Very High Speed Integrated Circuits (VHSIC) program. VHDL is a hardware description
language primarily intended for description of hardware component behavior. However, on
closer examination, it is evident that VHDL is a language for describing multiply concurrent,
communicating processes similar to CSP [27] or LOTOS [28]. Instead of a process algebra
syntax, VHDL uses an Ada-like syntax with procedures and signals to describe processes
and communication channels.

Although VHDL is useful for describing the behavior and structure of hardware systems,
perhaps its most useful aspect is the ability to execute a VHDL specification. VHDL
discrete time simulators simulate the behavior of a model through time by scheduling a
series of events based on the VHDL model statements. At each simulated time step, all
events scheduled for that time are carried out (in zero simulated time). As statements
are executed, more transactions are scheduled for future simulated times. When no more

transactions are available, the simulation ends.

!The name VHDL is a double acronym with the V derived from VHSIC, which denotes Very High Speed
Integrated Circuit, and HDL derived from Hardware Description Language.

15

221 S

4sin Ada
icerface.

descriptio
izplement
a port des
the outsid

represent

1 -De
2 use
use
entit

end

T
Flgu_re 2

puttion ¢

The b
that Tefor
deelay atic
g belyg,
Pl st
Gefipeg ar
Signglg de

hiteey

2.2.1 Structure and Statements

As in Ada, most blocks of VHDL model statements have two parts: a declaration of the
interface, and a separate description of behavior. The basic building block of a VHDL
description is the entity. Figure 2.4 shows a VHDL entity declaration for a state machine
implementing a simple CD Player. Entities begin with a declaration of the entity name and
a port description. The port description declares the signals passed into the entity from
the outside, analogous to formal parameters on a procedure. In hardware, ports essentially

represent “pins” on a component, but in VHDL their semantics are much richer.

play : in boolean; - play button
stop : boolean); - stop button
end cdplayer;

1 - Define the CD Player entity. Entity description is declared first
2 use std.textio.all;

3 use work.easyio.all;

4 entity cdplayer is

5 port (e.on : in boolean; - on button event.

6 eoff : boolean; - off button event.

7

8

9

Figure 2.4: A VHDL entity specification for a simple state machine implementation of
portion of a CD player

The behavior description of an entity is contained in a separate architecture section
that references the entity declaration. The architecture section itself may also contain
declarations for local variables and signals, and contains a set of VHDL statements describ-
ing behavior. Figure 2.5 contains an excerpt of the architecture description for the CD
Player state machine (the initial states and one state are shown). The process statement
defines an independent, concurrent process for the entity. Input to the process comes from
signals declared in the entity statement and from other variables and signals within the

architecture.

16

1 -Be
2 archi
3 - St
[
5
6
! :
§ -t
9 :
10 {
11 [
12 begin
13
4 - Iy
15]
16 t
17
18
1
LU
il g
2 b
B
%
%
%
bij
3 e

1 - Behavioral portion of the CD Player

2 architecture one of cdplayer is

3 - Standard state support header

4 type states.r is (noner, ri, r2);

5 type states._c is (nonec, cil, c2, c3);
6 signal stater : states.r;

7 signal state.c : statesc;

8 - internal events between substates

9 signal i_on, i_off, i_play, i.stop : boolean;
10 signal instater : states.r;

11 signal instatec : states._c;

12 begin

13

14 - Initial process that starts the other processes.
15 initial : process

16 begin

17 stater <= ri, noner after 1 fs;
18 state_.c <= cl1, none_c after 1 fs;
19 wait;

20 end process;

21 staterl : process

22 begin

23 wait until stater = ri;

24 say("in state ri");

25 wait until e_on;

26 ion <= true, false after 1 fs; - internal event
27 state.r <= r2, none.r after 1 fs;
28 end process;

Figure 2.5: VHDL specification for a simple state machine implementing a CD Player.

17

Entit
instantia
instantia
with the

VHD
and Con
suggests.
2810 Sl
construc
In proce
statemer
CASE. &
A ment;
the SUSpy

A prl
Current |
Process |
et blg
the pro,
Bever ey

Wait ;"

Entities can incorporate other entities through an instantiation process. In order to
instantiate an entity, a port map must be specified to describe how the signals in the
instantiating entit.y are connected to signals in the instantiated entity. Communication
with the instantiated entity is strictly through the instantiated entity’s ports.

VHDL “executable” statements are divided into two groups: Sequential statements
and Concurrent statements. Concurrent statements are executed in parallel, as the name
suggests, and generally reference a signal in some way. Sequential statements execute in
zero simulated time and are written in blocks inside procedure-like concurrent statement
constructs. Sequential statements are analogous to common programming statements found
in procedural languages and provide the major source of behavior specification. Sequential
statements include all the statements commonly found in a procedural language such as IF,
CASE, assignment statement, function definitions and calls, and a variety of loop constructs.
As mentioned earlier, the wait statement is an important sequential statement that causes
the suspension of the current section of the model until the specified event occurs.

A primary concurrent statement is the process statement. Each process defines a con-
current procedure with its own variables and sequential statements. The statements in a
process block are contained in an implicit loop. At the logical conclusion of a process state-
ment block, where a procedural language sub-program normally executes an implicit return,
the process statement restarts from the beginning. Consequently, once started, processes
never terminate, although a process can be made to suspend indefinitely by executing a

“wait;” statement, waiting essentially for no event.

18

2.2.2

QOneoft
is the s1
wpe. T
is callec
etent I
oceurs. ¢
using th
value,
variable
state _c,
Sign
lation ey
in the w
SWspeny;
Notice ¢
Statem
Sign,
in”‘.‘IIJer
Ih(‘ ‘ﬁlu«
Ues 5 tr
Ouly chy

twi, fOr s

2.2.2 Signals and Communications

One of the important features of VHDL that makes it useful for embedded systems modeling
is the signal. Signals are VHDL distinguished variables that can assume any arbitrary data
type. The signal mechanism works as follows: Each write to a variable declared as a signal
is called a transaction. If the variable’s value is changed because of the assignment, an
event is scheduled for the simulated time when the event is to fire. When an event’s time
occurs, every reference to the signal, usually through a VHDL wait statement, is executed
using the new signal value. A special kind of assignment statement of the form signal <=
value, [value...] is used for signals to denote their fundamental difference from regular
variables. Statements 17 and 18 in Figure 2.5 show assignments to the signals state_r and
state_c, respectively.

Signals are the implicit or explicit objects of a VHDL wait statement. When the simu-
lation encounters a wait, execution of the enclosed unit “suspends” until the event specified
in the wait occurs. For example, the statement “wait until state = my_state;” causes
suspension of the containing process until the signal state nezt assumes the value my_state.
Notice that execution stops even if state already has the value my_state because the wait
sstatement is waiting for an event to occur (the changing of signal state).

Signal assignments allow several values to be specified in one statement, each with an
incremental time specification. For example, sig X <= alpha, beta after 1 ns; assigns
the value alpha to sig_X now (with appropriate transaction—event processing), and sched-
ules a transaction to assign beta to sig X one nanosecond in the simulated future. Since
only changes produce events, this statement will produce at least one event, and perhaps

two for signal sig X depending on the current value of sig X.

19

223 |

Ofienas
presence

the resul
bus impl
computa
drivers fc
results in
dictates |
multiple ¢
function |
value of ¢
data type
signal by
the drive,
and rep
wl] afe
femtosey
ovent to |,

mplete

224 D

VHDL'S d;

¢

g Strillg_\

2.2.3 Signal Busses — Multiple Signal Drivers

Often a signal is used to represent a hardware bus. The distinguishing feature of a bus is the
presence of multiple drivers (multiple assignments to the signal). In hardware situations,
the result of driving a bus with more than one source depends on the specifics of the
bus implementation, and thus, the appropriate final signal value requires some sort of
computation for resolution. In our UML to VHDL mapping, we frequently use multiple
drivers for a signal in order to simulate messages and events, however our mapping rarely
results in two active signal drivers at once. Nonetheless, gpod VHDL modeling practice
dictates handling the multiple driver situation. The appropriate VHDL facility to resolve
multiple drivers is called a resolved signal. In essence, a resolved signal inserts a user-defined
function between signal assignment and transaction processing to calculate the desired final
value of a signal. In practice, the user function is passed an array of values for the signal
data type with each element of the array set to the current value being contributed to the
signal by some driver statement. A special assignment value called null, “disconnects”
the driver from the signal, effectively eliminating this driver’s contribution to the signal
and removing its value from the array. A statement of the form state <= new_state,
null after 1 fs; assigns a new value to state, then disconnects from the signal after 1
femtosecond (the shortest possible simulated time increment). Such a construct causes an
event to be scheduled for state and disconnects the driver from further contributions. The

complete semantics of signals can be complex and is covered in [11].

2.2.4 Data Typing

VHDL's data typing model closely parallels that used in Ada. Arbitrary data types includ-

ing strings, various forms of numbers, boolean (logical), and bit strings are all provided.

20

Arrays a
{ypes ca
contains

defined f

2.3 1

SPIN /13
ing langy
Promela
tive statg
more det

The s
of proces
global o,

Variableg

231

Figure 9,
Wenged
ad g)

Every
4 tongyj,
Mot

feh o .

Arrays and enumerated types are a common tool in a VHDL model and new aggregate sub-
types can be easily formed through typing and subtyping mechanisms. In addition, VHDL
contains special data types for units, including time, so that new units of measure can be

defined for specialized purposes.

2.3 Promela/SPIN Overview

SPIN [15, 16] is a tool for analyzing concurrent systems, specifically protocols. The model-
ing language for SPIN is called Promela. SPIN can either perform random simulations on
Promela models or generate a C program to perform a variety of analyses based on exhaus-
tive state explorations. Sections 2.4 and 9.7 describe SPIN’s model checking capabilities in
more detail.

The syntax of Promela is loosely based on the language C. Promela programs consist
of processes, channels, and variables. Processes, which are called called proctypes, are
global objects that execute asynchronously and can be created dynamically. Chénnels and

variables may either be local or global.

2.3.1 Structure and Statements

Figure 2.6 shows an example of a model written in Promela. The specification is only
intended to illustrate Promela statements. The line numbers have been added for clarity
and are not part of the language.

Every Promela statement in a model potentially has a dual role. Every statement is
a condition that is evaluated prior to execution. If the result is false, then the statement
blocks. If the result is true, then the statement executes with its associated side-effect

(such as variable assignment), if any. Therefore, any statement becomes a guard for the

21

dtatemen
gither by

The |
Figure 2.
are start
initial pr
11. forces
within ar

A do
long as g
include a
on line |
true, the,
chooses ¢

An i

P I om
Stal‘3ﬂlf‘m
aleq in li

statement following it. To make the syntax easier to read, statements may be separated
either by semicolons or ->.

The primary structuring element in Promela is the proctype. Lines 10-14 and 15-30 in
Figure 2.6 are complete processes, called proctypes in Promela. One or more proctypes
are started by the run statement, as on line 13. The init proctype is distinguished as the
initial process started during a Promela execution. The atomic construction, shown on line
11, forces all statements within its context to execute as one. No interleaving is permitted
within an atomic block.

A do-od construct is shown on lines 18-20. The do-od “loop” continues executing as
long as one of the conditions, delimited by “:”, is true. Constructs after a “:” typically
include a guard and an executable statement, although this is not required. The condition
on line 18 guards the assignment statements on the same line. If no guard in the loop is
true, then the do-od block as a whole blocks. If more than one guard is true, then Promela
chooses one of the true guards nondeterministically and executes that statement.

An if-fi construct is shown on lines 22-26. The semantics of the guards and statement
execution are the same as in the do-od block, except the if-fi block is only executed once.

Assignment statements and logical expressions are the same as in C. Promela has many
of the “features” of C, including the increment (i++) and decrement (i--) statements.

Variables in Promela include integers, boolean, bit (the same as boolean) and mtype,
which is an enumeration type. Line 9 defines three enumeration values, on, off, and none.

Promela allows for the creation of C-type data structures through the use of typdef
statemenps. Lines 1-6 define a typedef named A_type. The structure is actually instanti-

ated in line 8. References to elements of the structure are the same as in C, as seen in lines

12 and 19.

22

23.2

Promela
and sem.
channel
operatio
three ho
contain 1

Rece
field. W
3 messag
Statemer
When a.
Datched
the varj
Svitch
three g,

pie ¢

2.3.2 Channels and Communications

Promela uses channels for communicating between, and even within, processes. The syntax
and semantics of channels are similar to CSP [27]. Line 21 in Figure 2.6 shows a send on the
channel named queue. The value sent is the enumeration constant on. Line 23 is a receive
operation on channel queue. Channel queue is declared on line 7 as a queue of depth of
three holding messages of type mtype. Channels can be any depth, including zero, and can
contain messages of arbitrary length and type.

Receive operations on a channel may have either constant values or variables in each
field. When a channel receive contains a constant, the value is considered to be a pattern
a message must match in order to be received. Line 29 in Figure 2.6 is an example. This
statement blocks until the message off is at the head of the message queue named queue.
When a combination of variables and constants is used in a receive operation, a message is
matched by the constant values, then the remaining values in the message are copied into
the variables in the receive statement. The statement xyz?on,x,switch,y, where on and
switch are constants, and x and y are variables, receives a message where fields one and
three contain on and switch, respectively. Fields two and four of the matched message are

copied to variables x and y, respectively.

23

: typedef A
it x;
int y;
bool unus
ttjpe val
6}

e os

o

T: dan queu

§: l_ty‘pe i;
19 stypes{cn

10: 1njt

1: {

12: atonic
1 run abe

|45: Proctype

X: og;
* Queue! op

it
** Queye’
iy
iy
1,

XEREN

skipy. I
: !hp2:);
© O quay

}

sy

\

: typedef A_type {
: int x;

int y;

bool unused;
mtype vals;

}

DD WN -

~

: chan queue=[3] of {mtype};

8: A_type A;
9: mtype={on, off, nomne};

10: init

11: {

12: atomic {A.x = 1; A.y = 2}
13: run abc()

14: }

15: proctype abc()

16: {

17: int i;

18: do

19: (s Ax > 1 ->Ay=Ay+1; Ax=Ax+1
20: od;

21: queue'on;

22: if
23 :: queue?vals;

24: :: A.y > 4 -> goto skipl
25: :: A.y > 6 -> goto skip2
26: fi;

27: skipl: printf(“"ve are at skip 1") -> i = 12;
28: skip2: printf(" we are at skip 2");

29: queue?off

30: }

Figure 2.6: Promela model for a simple client-server system

24

233 L

Promela v
stra 29 a
Dijkstra’s
clusively ¢
{channel d
tion of me
in guards
The s
other guar
are false, |

and hence

24)

The beha
e oftep
ot freque
Smple 4,
o &Curyte
00 the g
Tuire 5 o

In the I

temp()ra] lo

2.3.3 Differences From Other Guarded Languages

Promela was influenced significantly by the “guarded command languages” of E.-W. Dijk-
stra [29] and C.A.R. Hoare’s CSP [27] language. There are, however, important differences.
Dijkstra’s language has no primitives for process interaction. Hoare’s language was based ex-
clusively on synchronous communication, constructed in Promela as an unbuffered channel
(channel depth of zero), but Promela also permits buffered channels, allowing the construc-
tion of message queues. Also in Hoare’s language, the type of statements that can appear
in guards is restricted, while Promela has no restrictions.

The semantics of the do-od and if-fi statements in Promela are also different from
other guarded command languages in that these statements are not aborted when all guards
are false. Instead, a false guard blocks execution until true. In fact, any statement can block

and hence can become a guard.

2.4 Model Checking

The behavior of objects are described in UML by finite state machines and since there
are often many occurrences of objects in a real system, concurrent finite state machines
are frequently found in a system design. The behavior of such a system can be extremely
complex and verification through testing is notoriously troublesome because of the difficulty
of accurately reproducing event sequences. Although there has been considerable research
on the use of automated theorem provers, these techniques are time consuming and often
require a great deal of manual intervention.

In the model checking approach, system specifications are expressed in propositional

temporal logic and the system itself is expressed as a state transition system. Efficient search

25

procedu
Inaspec
Tempora
A comme
Yand }
temporal
Expre
stle of te
atomie pr
true in th

Operators

' Xg:

v Fg:1

on thy
' Gg .
is, 9 1

* gUh .

assyy,

the St

procedures are used to determine if the specification is true of the given transition system.
In a specification, propositional logic expresses conditions that must be true in a given state.
Temporal logic expresses how expressions change throughout the state transition process.
A common example might state that when X is true, then eventually Y must become true.
X and Y are each propositional phrases while the “eventually” portion is expressed with
temporal logic.

Expressions define a condition either relative to a state or to a path, depending on the
style of temporal logic used. A path is a sequence of states starting at a defined state. An
atomic proposition, p, is said to be true in a given state, or if p is true of a path, then it is
true in the first state of the path. Given atomic propositions g and h, the temporal path

operators common to the logics described are:

e Xg: The “next” operator. True if g is true in the next state on the path.

e Fg: The “eventually” operator. True if g eventually becomes true, that is, somewhere

on the path g is true.

e Gg : The “always” or “global” operator. True if g is true now and henceforth, that

is, g is true at all states henceforth on the path.

e gUh : The “until” operator. True if g is true until h is true. The semantics usually

assumes h will eventually occur (this is called “strong until”).

e gRh : The “releases” operator. True if h is true all along the path up to and including

the state where g is true.

26

241 C

Temporal |
or branchii
and path f
apath fon
while o alo
exist are c;
addition tc:
existential
formula. Fy
bence nesr.

Operators:
* AXp
v AFp
* AGp
* ApU

* ApR
CTL ey
the tree rep
te Statery,.
e ¢ i,

2There are
Mk logies g,
o lelﬂp(,xa] I

2.4.1 CTL and LTL Logics

Temporal logics are often classified according to whether time is assumed to have a linear
or branching structure. Propositional temporal logics include definitions for state formulas
and path formulas. A state formula is a propositional statement that is true in a state while
a path formula expresses conditions along a path. For example, aUb is a path formula
while a alone could be either. Two temporal logics for which computational procedures
exist are called Linear Temporal Logic (LTL) and Computational Tree Logic (CTL)2. In
addition to the temporal operators above, CTL contains universal path quantifier A and
existential path quantifier E, each of which requires a path formula and produces a state
formula. Furthermore, CTL limits the operand of a temporal operator to a state formula,
hence nested temporal operators are not permitted. Effectively, this produces ten CTL

operators:

e AXp (and EXp) - for all (there exists) paths, in the next state p is true.

AFp (and EFp) - for all (there exists) paths, eventually p becomes true.

AGp (and EGp) - for all (there exists) paths, p is always true.

ApUq (and EpUq) - for all (there exists) paths, p is true until q.

ApRq (and EpRq) - for all (there exists) paths, p releases q.

CTL expresses the possible next states in the form of a branching tree with each path in
the tree representing one possible computation path. The CTL formula AG(EFe) expresses
the statement, on all paths, from every state, there exists a path on which there is a state

where e is true. In other words, it is always possible to reach a state where e is true.

2There are many temporal logics based on how path quantifiers and temporal operators are combined.
The logics form a complex relation of relative expressiveness. See [30] for a discussion of the relative powers
of temporal logics.

27

In
above
paths.
LTL ar
path fo
p becon
formula
i5a state
which on

this is no

242 S

The SPIN
in Wittep
Correct
1pes of be
e the v,
¥hen pogs
techmques ,
Since ¢,
Bevtg, ol
S,

Pfﬁmela

T 5ere

In contrast, LTL formulas are written relative to paths using only the path operators
above and atomic propositions. In effect, every LTL formula is prefixed with A, for all
paths, because there is no sense of branching in LTL. The expressive power of CTL and
LTL are not comparable [30] because one applies to state formulas while the other applies to
path formulas. The LTL formula AFGp, meaning eventually (on all execution sequences)
p becomes, and stays true, is not expressible in CTL. On the other hand, consider the CTL
formula AG(EFe), meaning on all paths, from every state, there exists a path where there
is a state in which e is eventually true. The F quantifier permits two branching paths down
which on one e never becomes true and another on which it does becomes true. Clearly,

this is not expressible in LTL.

2.4.2 SPIN

The SPIN system is used to verify properties expressible in LTL. The system to be verified
in written in SPIN’s procedurally based language called Promela, as described above.

Correctness claims about the behavior of a Promela model are formalized in SPIN. Two
types of behaviors are generally that a behavior is inevitable, to impossible. To deter-
mine the validity of a claim, SPIN exhaustively searches the entire state space of a model,
when possible. When the state space is too large, both approximation and state reduction
techniques are available for partial searching of the state space.

Since checking for an impossible behavior is easier and faster than checking for an
inevitable claim, SPIN claims generally express a negative behavior that we no not wish to
see.

Promela has several types of constructs for making correctness claims about a model.

The assert(p) statement can be placed anywhere, and when executed, verifies that con-

28

ditir

358¢

Paps

haus
the

state

are
ass¢;
Teve
The
aly
g,

prod

Tepre

dition p is true in the current global state. Global invariants can be checked by placing an
assert statement alone in a process such that the condition is continuously checked.
SPIN can also check for state reachability in several forms. The most general, is an ex-
haustive search to determine which states are unreached. SPIN analyses can also determine
the presence or absence of cycles, or loops in the model. Depending on how the Promela
statements are marked, the loop is considered acceptable behavior or incorrect behavior.
The most powerful form of the claim specification is called a never claim. Never claims
are Promela statements contained in a block delimited by never { ... } . The never claim
asserts that the statements in the never block should not execute to completion. Formally,
never claims are based on the ability to translate LTL expressions into Buchi automata 3.
The automata representing the product of the LTL automata and the model itself accepts
only states for which the LTL claim is true. Since it is much easier to check for an empty
language, normally the LTL formula is first negated, hence the term “never claim”. The
product of the Buchi automata from the negated LTL claim and the model should then

represent an empty language.

2.5 Formal and Informal models

A formal software specification is a system behavior constraint expressed in a formal spec-
ification language whose vocabulary, syntax and semantics are rigorously defined in math-
ematical terms. Predicate logic, LOTOS [31] and CSP [27] are examples of formal speci-
fication languages, as are computer languages such as Java. Software specifications start

as informal descriptions of the tasks to be performed, often expressed in imprecise natural

3Buchi automata are finite state automata that can accept infinite input sequences. Buchi-acceptance
is defined as passing through an acceptance state an infinite number of times. In the case of a terminating
final state, SPIN (and others) stutter that state, effectively transitioning to the same state endlessly, thus
forming an infinite sequence.

29

langu
have L
compu
ment |
to forn
Fra
gies the

formalis

Inform;

car

Semi-fo;
mat

are ;

Forma;
derl_\"
Dotat
Ples.

their

Ffasen

dla‘?’ em-

areuged‘[J

i

th

¢ Wpro

Whﬂh@f r":.

language. If the project is finally realized in executable code, then the specification will
have been translated, by definition, to a formal specification language, namely the target
computer language in which the project is implemented. Somewhere during the develop-
ment process the imprecise specification will necessarily cross the boundary from informal
to formal.

Fraser et al. [32] suggest a taxonomy for classifying software development methodolo-
gies that integrate informal and formal specifications. The authors classify categories of

formalism as follows:

Informal: Techniques that do not have complete sets of rules to constrain the models that

can be created. Natural language and unstructured pictures are examples.

Semi-formal: Techniques that have a defined syntax. Typical instances include diagram-
matic techniques with precise rules that specific conditions under which constructs

are allowed. OMT and UML fit in this category.

Formal: Techniques that have a rigorously defined syntax and semantics. There is an un-
derlying theoretical model against which a description expressed in a mathematical
notation can be verified. Specification languages based on predicate logic are exam-
ples, as are actual programming languages, which have precise semantics by virtue of

their execution behavior.

Fraser, et al. further classify the integration of informal and formal by the use of interme-
diary semi-formal specifications as bridging mechanisms. When semi-formal specifications
are used, the approach is termed transitional. When semi-formal specifications are not used,
the approach is called direct. The transitional approach is further decomposed based on
whether formal specifications are produced directly from semi-formal specifications or semi-

30

for!
met
suce
sum!
apprc
methe
sem-f
provid;
a set o
forall ¢
tesearch,
disgram
we able ¢
the congiy
dpproach ¢

aforma] |
'\

formal and formal are produced successively in parallel. The former approach is termed
sequential while the latter is termed parallel-successive. All approaches bifurcate on the di-
mension of computer-assisted support, consequently we have both the transitional parallel-
successive assisted and transitional parallel-successive unassisted approaches. Figure 2.7
summarizes the taxonomy. Fraser notes no examples of the transitional parallel assisted
approach. Subsequently, Wang and Cheng [17] described an object-oriented development
methodology using OMT based on the transitional parallel assisted approach. In that work,
semi-formal specifications written in OMT are translated into LOTOS [18, 19, 20, 33], thus
providing precise semantics for OMT models. The emphasis of that project was to develop
a set of rules and a process to enable the automated generation of formal specifications
for all three types of OMT diagrams that could be analyzed using existing tools. In this
research, we build on that approach by describing a method to attach semantics to any
diagrammatic semi-formal model in a precise and rigorous manner. That is, not only are
we able to assign formal semantics to the diagrams, we are also able to formally establish
the consistency of the formalization rules themselves. In order to provide semantics, this
approach develops a homomorphism between metamodels of the semi-formal notation and

a formal language.

Methdologies

Direct
Transitional
A d U d
W Parallel-Successive
Assisted Unassi A d Unassisted

Figure 2.7: Fraser’s taxonomy of integration methodologies.
g gr g

31

Chapter 3

Metamodels and Mapping

Framework

As described in Section 2.1, a UML metamodel is a type of class model that describes the
syntax of models written in UML notation. Unless the class model itself is formalized,
the mappings developed between metamodels will not rest upon a rigorous basis. This
chapter presents a formalization of the class model, which enables the formal description
of homomorphic mappings between metamodels. Using a formalization of the class model,

the mapping framework central to generating semantics for UML models is then presented.

3.1 Class Model Formalization

The class model, upon which the metamodel is built, has been formalized by Bourdeau
and Cheng [18]. Bourdeau and Cheng showed that a class model! can be formalized using

algebraic specifications and specific algebras related to object instance diagrams. We draw

!Bourdeau and Cheng’s work pertained to OMT class models but the difference between OMT and UML
class models are very slight and most symbols are common between UML and OMT.

32

for

3]

Au
how
that
I
ML
specif
st of
Each i
10 the
 Figy
proac
djﬂgram;
the set

usist oy
~——

luh

upon Bourdeau and Cheng’s formalization with the intent of providing a class formalization

for metamodels to support a mapping between metamodels.

3.1.1 Foundation to Class Formalization

An algebraic specification consists of a set of types or sorts, a set of signatures that describes
how functions in the specification map types to types, and a set of axioms or constraints
that describe the interrelationship between the types and functions.

In Bourdeau and Cheng’s class diagram formalization, an object model (the same as a
UML class model) is formalized as an algebraic specification. The semantics of the algebraic
specification are derived from their corresponding algebras. Instance diagrams, one possible
set of instantiations of objects from the object diagram, represent algebras in their approach.
Each instance diagram consistent with the object model generates an algebra that conforms
to the algebraic specification derived from the object diagram. The commuting diagram
in Figure 3.1 is adapted from that used by Bourdeau and Cheng [18] and shows their
approach to formalization. There are two ways to generate the algebras for an instance
diagram: compute the the algebraic specification from the object diagram and examine
the set of algebras that satisfy the specification, or determine the set of instance diagrams

consistent with the object model and compute the corresponding set of algebras.

diagram semantics

object models > Instance Diagrams
formalized asl lforma.lized as
Algebraic Specifications > Algebras

algebraic semantics

Figure 3.1: Bourdeau and Cheng’s basic approach to formalization.

In this approach, a class is considered a type, or sort in an alg<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>