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ABSTRACT
ESSAYS ON PSEUDO PANEL DATA AND TREATMENT EFFECTS
By
Fei Jia
This dissertation is composed of three chapters that study two suitable estimation methods
for identifying causal relationships in the presence of (pseudo) panel data. The first and
the second chapters are devoted to minimum distance estimation for pseudo panel models,
whereas the third chapter is concerned with the estimation of controlled direct effects in
causal mediation analyses using panel data.

The first chapter focuses on finite sample properties of minimum distance estimators
in pseudo panel models. Previous research shows theoretically that the minimum distance
asymptotic theory is a natural fit for pseudo panel models when cohort sizes are large.
However, little is known about how minimum distance estimation performs with a realistic
sample size. In a carefully designed simulation study that mimics the sampling scheme
of repeated cross sections, we compare the optimal minimum distance estimator to the
fixed effects estimator which is identical to the minimum distance estimators using identity
weighting matrix. The results show that both estimators perform well in realistic finite
sample setups. The results also confirm that the optimal minimum distance estimator is
generally more efficient than the fixed effect estimator. In particular, we find that cohort-
wise heteroskedasticity and varying cohort size are the two typical scenarios that call for the
use of optimal weighting. For the fixed effects estimator, we find that the minimum distance
inference is more suitable than the naive inference which incorrectly ignores the estimation
errors in the pseudo panel of variable cohort means.

The second chapter extends the basic pseudo panel models in the first chapter by adding
extra instrumental variables. The additional instruments, if non-redundant, can improve

estimation efficiency. To have the efficiency gain result in a general form, we derive it in



a non-separable minimum distance framework developed in this chapter. Along with the
efficiency gain result, consistency, asymptotic normality, and optimal weighting theorems
are also established. This efficiency gain result echoes the property of generalized methods
of moments that more moment conditions do not hurt. After developing the results in the
non-separable minimum distance framework, we apply them to the extended pseudo panel
models. we show that the minimum distance estimators in the extended pseudo panels are
generalized least squares estimators, and the optimal weighting matrix is block diagonal.
Because of the last fact, the use of optimal weighting becomes more important than in basic
pseudo panels. Simulation evidence confirms the theoretical findings in realistic finite sample
setups. For an empirical illustration, we apply the method to estimate returns to education
using data from the Current Population Survey in the US.

The third chapter, coauthored with Zhehui Luo and Alla Sikorskii, proposes a flexible
plug-in estimator for controlled direct effects in mediation analyses using the potential out-
come framework. A controlled direct effect is the direct treatment effect on an outcome when
the indirect treatment effect through a mediator is shut off by holding the mediator fixed.
The flexible plug-in estimator for controlled direct effects is a parametric g-formula with
an additional partially linear assumption on the outcome equation. Compared to simula-
tion based method in the literature, this estimator avoids estimation of conditional densities
and numerical evaluation of expectations. We compare the flexible plug-in estimator to the
sequential g-formula estimator, and prove theoretically and via simulation that they are nu-
merically equivalent under certain settings. We also discuss a sensitivity analysis to check
the robustness of the flexible plug-in estimator to a particular violation of the sequential ig-
norability assumption. We illustrate the use of the flexible plug-in estimator in a secondary
analysis of a random sample of low birthweight and normal birthweight infants to estimate
the controlled direct effect of low birth weight on reading scores at age 17 when a behavior

problem index is used as the mediator.
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CHAPTER 1

FINITE SAMPLE PROPERTIES OF THE MINIMUM DISTANCE
ESTIMATOR FOR PSEUDO PANEL DATA

1.1 Introduction

Repeated cross-sectional data is available when a series of different random samples can
be obtained from the population over time. The Current Population Survey in the U.S.A,
conducted monthly, is an example of such type of data sets. By combining cross sections at
consecutive points in time, repeated cross-sectional data gains the replicability over time in
absence of genuine panel data. Although we still cannot track each individual over time, we
are able to estimate certain panel data models, especially those with fixed individual-specific
effects and those with individual dynamics, under appropriate conditions.

The literature that makes possible the estimation of these panel data models with only
repeated cross sections dates back to the seminal work by Deaton (1985). Deaton’s idea is
to divide individuals into cohorts according to certain predetermined characteristics, such as
year of birth, and then use the cohort means of all relevant variables to construct a panel at
the cohort level. Since the variable cohort means are estimated rather than directly observed,
such a constructed panel is often called a pseudo panel. Common panel data approaches
such as first difference and fixed effects (FE) estimation are readily applicable because of
this panel structure. In this chapter, our focus is on the pseudo panel FE estimator.

Despite the fact that the cohort means are error-ridden estimates, the pseudo panel FE
coefficient estimator is generally consistent. The corresponding standard error estimators
(the naive standard errors hereafter), however, are potentially problematic for ignoring the
estimation errors in the cohort means, whether they are made robust to heteroskedasticity
and /or serial correlation. To make the standard errors right, Imbens and Wooldridge (2007)

propose a minimum distance (MD) approach for pseudo panel models. With asymptotics



relying on large cohort sizes, this approach is a natural fit for many microeconomic analyses,
since for microeconomic data the cohort-wise number of observations is often large, and
the number of cohorts and the number of time periods are often small. The MD approach
effectively takes account of the estimated cohort means. More importantly, it provides
an asymptotically efficient way to utilize all the moment conditions through its weighting
procedure. In fact, Imbens and Wooldridge (2007) show that the pseudo panel fixed effect
estimator is exactly the MD estimator that puts equal weights on the moment conditions
via an identity weighting matrix.

The superiority of the MD approach for pseudo panels relies on large sample theory, but
its finite sample properties have not been fully studied. It is possible that the naive FE
standard errors, especially those made robust to heteroskedasticity and/or serial correlation,
can still achieve acceptable accuracy under certain circumstances. Moreover, although the
result on optimal weighting in Imbens and Wooldridge (2007) implies that departures from
identity weighting call for optimal weighting, it is unclear what are the typical causes of
those departures.

In this chapter, we investigate the finite sample properties of the MD approach for pseudo
panels through a carefully designed simulation study. In particular, the attention is paid to
the comparison of the optimal MD estimator and the MD estimator with identity weighting
matrix. We identify two stylized causes, namely varying cohort sizes and cohort-wise error
heteroskedasticity, of departures of the optimal weighting matrix from identity. In presence
of these two features, optimal weighting evidently outperforms identity weighting. As for the
naive FE inference, we find that it is always inferior to the MD FE inference. Therefore, we
should never throw away individual-level data in empirical studies, for they contain useful
information that the sample cohort means do not have.

The MD approach is certainly not the only approach to pseudo panels. Deaton (1985), for
example, treats the estimated cohort means as a measurement error problem, and proposes a

measurement-error corrected ordinary least squares (OLS) estimator. Collado (1997) extends



the analysis to dynamic models, and develops a measurement-error corrected GMM estimator
based on the instrument variables (IV) method in Arellano and Bond (1991). Another strand
of researches go beyond pseudo panels and dive into individual level. Moffitt (1993) considers
both dynamic and binary choice models, and proposes an IV estimator that constructs IV
from functions of cohort and/or time. In particular, Moffit points out that aggregating to
the cohort level is equivalent to using a full set of cohort, time, and cohort-time dummies
as IV. Girma (2000) quasi-differences pairs of individuals in the same cohort to circumvent
the problem of missing individual trajectories, and proposes a particular GMM IV method
that uses past and present values of the dependent and explanatory variables within the
same group. Verbeek and Vella (2005) propose an alternative computationally attractive IV
estimator. A more thorough review that also covers important empirical applications can be
found in Verbeek (2008).

The rest of the chapter is organized as follows. In section 2 we set up the notations
and framework. In section 3 we reports and discusses the results from the simulation study.

Section 4 concludes.

1.2 Framework

Deaton (1985) shows the importance of distinguishing between the population model and
the sampling scheme. This distinction, as pointed out by Imbens and Wooldridge (2007),
“is critical for understanding the nature of the identification problem, and in deciding the
appropriate asymptotic analysis”. Therefore we follow this convention in this paper . The

exposition in this section borrows heavily from Imbens and Wooldridge (2007).

1.2.1 The population models

Consider the population model

yzt:thﬁ+77t+fz+uzta tzlaaT (11)



in which y;; is the dependent random variable, x;; is a 1 x K vector of random covariates
with the first entry a constant term, f; is the unobserved time invariant effect , and w;; is
the unobserved idiosyncratic error. 3 is the parameter of practical interest. 7;’s are the time
varying intercepts and are also treated as parameters to estimate since we are considering
applications with small 7. An alternative representation is to include time dummies in x;
and then the ny’s are obsorbed in 3. The index ¢ refers to the same individual over time
in the population model. Writing the subscript ¢ explicitly helps to indicate whether the
quantities are changing only across t, changing only across ¢, or changing across both, which
will become useful later. The model (1.1) imposes the same data generating structure for all
T time periods, which assumes a stationary population over time. Later we will see that, by
stationary population, we essentially means that the population cohort means of f; do not
change over time.

Following Deaton (1985), we assume the population can be divided into G predetermined
group. The group designation must be determined before the samples are drawn, and must
be independent of time. Birth year, for example, is one of the most commonly used charac-
teristic to define the group designation. Let g; be the random variable indicating the group
membership of a random draw i. g; takes values in {1,2,...G}. Take expectation of (1.1)

conditional on group membership, we have

E(yitlgi = 9) = E(xit|gi = 9)B+m~+E(filgi = 9)+E(uilgi = g), t=1,....T, g=1,...,G.

(1.2)
Define the population cohort means as
wor = Eyitlgi = 9)
?q( E(x;tlg; = 9) (1.3)
= E(filgi = 9)

5gt = E(uitlgi = 9)

forg=1,...,Gand t =1,...,T. Note that all the four quantities above are deterministic



population cohort means. Then we can rewrite (1.2) as
Vo= g, g=1,...,G, t=1,...,T 1.4
Ngt—ﬂgtlg+7lt+ag+ gtag_ [ ) I IR I ()

(1.2) and (1.4) are different notations for the population model at the cohort level. The
parameter dg can be considered as the effect of the cohort-time cell (g,t) net of the cohort
effect oy and the time effect 7;.

Even if ,uzt and p7, are known, the system of linear equations in (1.4) is not identified
if we leave d4¢ vary freely. Therefore, we need certain restrictions on dg. In a standard
panel data model, a weak exogeneity assumption we usually make is the contemporaneous

exogeneity of x;; given f;:
E(uit|xit7fi> =0,t=1,...,T. (15>

This condition is, however, is not required here. A weaker condition that is relevant in the
context of (1.1) is

E’(uzt|fz) = 0, t= 1, cee ,T. (16)

Note that by iterated expectation, (1.5) implies (1.6). This gives certain flexibility to pseudo
panels on the exogeneity of x;;, which will be discussed in more details later.

Because f; summarized all time-invariant unobservables, Imbens and Wooldridge (2007)
argue that (1.6) should be true for not only the lump sum f; but also any time-invariant
factors including g;. In other words, f; should represent any random variable that does not
depend on time. While this thought experiment makes sense, rigorously speaking, it does
impose stronger conditions than (1.6).1 Nevertheless, we keep this treatment in this chapter.

In particular, replacing f; with the group indicator g;, we obtain

E(uit]gi) = 0, t= 1, cen ,T. (17)

IThe sigma algebra generated by f; is not necessarily a subset of the sigma algebra
generated by g;



Note that E(u;t|g;) is still a random variable. Since g; takes only finitely many values, an

alternative way to write (1.7) is

Sgt = E(ugglgi =) =0, g=1,...,G, t=1,...,T. (1.8)
Substitute (1.8) in (1.4), we get

po =B+ +ag, g=1,...,G, t=1,..T (1.9)

Let 8 = (8',n',a) be the (K + T + G) x 1 column vector of parameters with n =

/

(m,...,nr) and @ = (aq,...,aq)’. There are, however, only T + GG — 2 parameters to

estimate. Since x;; includes a constant term, only (G'— 1) parameters in oy and (7' —1) in 7y
are separately identifiable. We impose the normalization a; = 0 and n; = 0 which is slightly
different from the normalization 23:1 ag = 0 and 71 = 0 in Imbens and Wooldridge (2007).
With this treatment, ag, g =2,--- ,G and 1, t = 2,--- , T represent the net effects relative
to the first cohort at the first time period. If “gt and lfg(t are known, GT' > K+T+ G — 2,
and the equations in (1.9) are linearly independent, then (1.9) contains enough (maybe
over-identified) restrictions to solve for .

As pointed out in Imbens and Wooldridge (2007), what (1.7) really imposes is that the
cohort-level equations contain only the set of cohort and time effects but not the cohort-
time interaction effects. If for any cohort-time cell (g,t) d4¢ is nonzero, then there is a
misspecification in the population model (1.1). In the extreme case where the true model
contains a full set of cohort-time net effects, nothing is identified since the identification of
any parameter comes from the variation of its associated variable over cohort and/or time.

Perhaps another representation helps understanding this better. Write the population

model with a full set of cohort-time effects as
Yit = XigB+ne + fi +0g, 1+, t=1,...,T,

where g, + = E(ujt|g;), the cohort-time effect of cell (g;,?), is properly treated as a random



variable. Then (1.7) is exactly.
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i
i.e. the population model does not contain a full set of cohort-time effects.

Details about some common estimation strategies given (1.9), such as OLS, FE and FD
can be found in Imbens and Wooldridge (2007). They are straightforward after treating the

cohort means as known.

1.2.2 Discussion on exogeneity

We argue that a subtle flexibility is gained thanks to the fact that (1.6) is weaker than (1.5).
Specifically, the weaker condition (1.6) allows the deviation of x;; from its cohort mean to be
non-exogenous with respect to the deviation of u;; from its cohort mean. Put it differently,
within a given cohort-time cell, x;; and u;; are allowed to be correlated. But at the cohort
level, the cohort mean of x;; must be exogenous with respect to the cohort mean of u;y, if we
treat the variation in their cohort means over cohort and time as the source of randomness.
In sum, endogeneity at the individual level is allowed, but exogeneity at the cohort level is
still required.

The first implication of this is that the allowed dependence between x;; and wu;+ is not
arbitrary. x;; can still contain lagged dependent variables, most commonly y;; 1, or ex-
planatory variables that are contemporaneously endogenous, but the dependence cannot be
fundamental, meaning that it exists at the cohort level. In our setup, this is guaranteed by
two restrictions: (i) the specification in the individual level population model (1.1) is correct,
and (ii) the zero cohort mean of u;; condition in (1.7) holds. They together translate to the
exclusion of a full set of cohort-time effects.

Another implication is that, if G is large enough so that we can rely on large G asymp-

2

totics,” we do not need the zero cohort mean of u;; condition imposed in (1.7) for consistent

2 Alternatively, we can assume the conditional distribution of gt given u;‘t is normal and
use maximum likelihood estimation.



estimation of 3. The condition can be relaxed to some form of exogeneity at the cohort level.
Let g = g; to simplify notation, and denote the cohort-level random explanatory variable
and error by ”gt and dg¢, which treats the cohort dimension as random but still leaves the

time dimension fixed. Then one form of such exogeneity assumption can be expressed as
E(égtmgt) =0,t=1,...,T. (1.10)

Apparently, the condition (1.7) implies (1.10). The analysis in Deaton (1985) goes a bit
further to treat the time dimension as random as well, and thus relies on large G'T" asymp-
totics, but the idea is essentially the same. Nevertheless, this treatment “seems unnatural for
the way pseudo panels are constructed, and the thought experiment about how one might
sample more and more groups is convoluted”, as pointed out by Imbens and Wooldridge
(2007). Therefore, if we do not have large G but only large cohort-time cell size, Ny, MD
estimation is the way to go, and we need to impose the stronger zero cohort mean of w;;
condition (1.7).

The treatment regarding “B(t and dgt above also breaks the barrier between the view
of constructing cohort-level equations from the individual level, as represented by Deaton
(1985) and Imbens and Wooldridge (2007), and the view of starting the analysis right from
the cohort level. Both views make sense and are unified under this treatment. But when
starting the analysis from the cohort level, we need to make sure that the assumptions are
consistent with the process of construction from the individual level. In particular, attention

should be paid to proper asymptotics.

1.2.3 Minimum distance estimation

Given a repeated cross-sectional data set with large cohort sizes, small number of cohorts
and small number of time periods, the MD estimator is a natural fit. Because of the large
cohort sizes, the cohort means “Zt and “)g(t in (1.9) can be estimated fairly precisely by their

sample analogs in each cohort-time cell . The system of equations (1.9) is the link between



the reduced-form parameter {(ugt,u’g‘t), g=1...,G, t =1,...,T} and the structural
parameter 8. The MD approach is essentially a delta method, recovering structural estimates
from reduced-form estimates.

In the next several subsections, we derive the limiting distribution of the sample cohort
means, present the minimization problem of MD estimators, and give a closed-form expres-
sion of the general MD estimator for pseudo panels. In particular, the optimal MD estimator

and the FE estimator as the MD estimator with identity weighting are discussed in detail.

1.2.3.1 Limiting distribution of cohort-time cell means

Specifically, assume we have a random sample on (x;¢, y;¢) of size ny for each ¢, and we denote
them collectively by{(z;s, yit), ¢ = 1,...,n¢}. i may refer to different individuals in different
time periods. This notation works fine as long as we keep in mind the in each time period
we have a new random sample.

For each random draw 4, let r; = (131,712, .- ,Tit,G) be a vector of group indicators
such that riq = 17—y, where 14 is the indicator function that takes values in {0,1}
and equals 1 only if A is true. In this way we properly treat the group membership of the
random draw ¢ as a random vector r;. With r;, the sample average of the response variable

in cohort-time cell (g,t) can be written as

ny ny

X 1 11

flgy = gy > " ritgyit = (ngt/ne) " g Y i gyt (1.11)
i=1 i—1

where ng = Zgl Tit,g 1s properly treated as a random variable.
ﬂgt is generally consistent for ugg/t. Specifically, let pg = P(rj; 4 = 1), the fraction of
the population in cohort g. We have treated p; as time invariant because we assume the

population is stationary. Then

pgt = (ngt/ne) = py. (1.12)



and thus we have

ng
Y oa—1 —1 p. -1 — Y
= Parny 'Y Titgyit = Py E(rit gyit) = 1y
i=1

The last equality holds because E(r;; gyit) = P(rit,g = V) E(yit|rirg = 1) = pguzt. The same
argument also holds for the other cohort means.
Let sy = (yit.Xjt), and define frg, = (ﬂzt,ﬂ’g‘t) as in (1.11). Then the asymptotic
distribution of ﬂfyt is
V(i) — phy) — Normal(0, py ' €25,
where

Qg = Var(sitlg)

is the (K + 1) x (K + 1) variance-covariance matrix for the cohort-time cell (g,t). When

later we stack the means across groups and time periods, it is useful to have the result

\/ﬁ(ﬂ;t/ — uzt’) — Normal(0, (pg/ft)_lﬁzt) (1.13)

where n = Zg;l n¢ and Ky = limy—y00(ng/n) is essentially the fraction of all observations
accounted for by cross section t. pgky is consistently estimated by ngt/n. A consistent
estimator for Q;t is
nt
s 1 A A
Qg =ngy D ritg(sie — i) (sie — ). (1.14)
=1

which is the sample variance-covariance matrix of s within the cell (g, t).

Let m = (u3;, u39, - U5, M5) - - ,NZT)’, the column vector of all cell means. 7 is a
GT(K + 1) vector since each “Zt is K + 1. Define 7 by replacing “Et with ﬂzt. Now, ﬂ;t
are independent across g because we have random sampling for each . When x;; does not
contain lags or leads, ﬂzt are independent across ¢, too. Then, by stacking (1.13) for all
(g,t), we have

Vn(w — ) — Normal(0,Q), (1.15)
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where @ is the GT(K + 1) x GT(K + 1) block diagonal matrix with the gt-th block
(pg/ﬁt)*lﬁzt. Note that €2 incorporates both different cell variance-covariance matrices as
well as the different frequencies of observations. As we will see in the simulation study, this
is exactly the reason why the optimal MD estimator outperforms other MD estimators when

there are cohort-wise heteroskedasticity and varying cohort sizes.

1.2.3.2 Minimum distance approach for pseudo panels

Classical MD estimation is useful for obtaining structural estimates from reduced form esti-
mates when a known relationship exists between the structural and reduced form parameters
(see, e.g., Wooldridge (2010)). In the pseudo panel setup, the group means in 7 are the re-
duced form parameters, @ contains the structural parameters, and the cohort-level equations
embody the known relationship between 7 and 6.

To facilitate the discussion, we rearrange terms in (1.9) by putting everything on the left

hand side of the equality sign. Write the resulting expression as
h(w,0) =0 (1.16)

where h(-,-) is a GT x 1 vector valued function (recall @ = (3, n',a’)"). The gt-th row of

h(m, ) is —uzt - u;‘tﬁ + Mt + ag, or equivalently,
mo(=1,8) + e + ag (1.17)

where 74 is the g-th 7" x 1 block of 7v. The parameters 7 and 6 do not appear in a separable
way directly in h(zr, @), but it can be shown that this is a separable case.

The classical MD estimator is a solution to the minimization problem

min h(#,8) W h(7, 6). (1.18)
0cO

where © is the space of @ and W is a GT' x G'T" weighting matrix. W is needed when the

restrictions in (1.16) over-identifies @ (GT > K +G+T —2). We focus on the over-identified

11



case because it is usually the case in practice. Chamberlain (Harvard lecture notes) shows
that the optimal weighting matrix is the inverse of
M = V,h(w,0)QV h(r, 0) (1.19)

where Vzh(m,0) is the GT x GT(K + 1) Jacobian of h(w,0) with respect to . Use

Kronecker product (notation ®) and (1.17), we have

Vrzh(m,0) =1gr @ (-1,8")
where I is the GT x GT identity matrix. This last result is exciting because, with €2
block diagonal, it implies that (1.19) is a GT x GT diagonal matrix with the gt-th diagonal
entry

(pgre) (1, 8)25,(~1.8). (1.20)

But recall that £, = Var(si|g), we have

72 = (-1,8)9(~1,8) = Var(yi — xu8l9),

and therefore, a consistent estimator of Tg2t is

Ny
) -1 2 < \2
Tgt = Nyt E Tz't,g(yz't — X8 — 1t — Oég)
i=1

which is the sample residual variance within cell (g,t). Here @ is the initial estimator of
0 obtained by putting W = Iop. Note that & = (7). 0 is exactly the least squares
dummy variables (LSDV) estimator of 8 on the pseudo panel. Since (pg/it)_l is consistently

estimated by (ngt/n)_l7 (1.20) can be consistently estimated by

(ngt/n) 175 (1.21)

Denote by M1 the estimated optimal weighting matrix, where the gt-th diagonal entry
of M~ is (ngt/n)/%g%f. Note that M = M(0) = C(8(#)) is a function of the reduced-form

estimate 7r. Then the minimization problem of the optimal MD estimator is

min h(#,0) M~ h(x, ). (1.22)
6cO
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1.2.3.3 Closed-form MD estimators for pseudo panels

In the pseudo panel setup, h(7r, ) is linear in each argument, and the MD estimator of 6 is
in closed form. We derive this expression in this section.
Let ,u,ft = (Mg, di, cg) be the 1 x (K + G + T — 1) row vector of regressors, where dy is

a1 x (T —1) vector of time dummies and ¢, is a 1 x G vector of group dummies. Let

Ky , Tx(K+G+T-1),

px = , GTx (K+G+T-1).

X
atel
Then Vgh(m,0) = p*, and the FOC for (1.22) is

X M (20 — i¥) = 0,

where p* = ([Eg(t, d¢, cg). Therefore, the optimal MD estimator is

A

0 = (@' M~ X)X M (1.23)

which looks like a weighted least squares estimator. Following Chamberlain, the estimated
asymptotic variance of 0 is simply

—

A

Avar(0) = (X' M~ pX) "1 /n. (1.24)

Because M1 is the diagonal matrix with entries (ng/n)/72, it is easy to weight each cell
g gt
(g.t) by \/ngt/n/Tg and then compute both 0 and its asymptotic standard errors via a

weighted regression. In STATA, this can be done by specifying aweight (ng:/n) /%gzt.
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The FE estimator applied to the pseudo panel of cohort means turns out to be the MD
estimator with identity weighting matrix. To see that, we simply replace M~! with the
identity matrix Iy in (1.23),

0 = (i )~ X! (1.25)
Strictly speaking, (1.25) is the LSDV estimator on the pseudo panel. But since it gives
the same estimates for 3, we also call it the FE estimator. The MD asymptotic variance

estimator for 0 is

Avar(6) = (= @)~ (@2 M EE) (' j52) (1.26)
Apparently, this formula is different from the naive FE asymptotic variance estimators to
be discussed in the next section, whether they are made robust to heteroskedasticity and/or

serial correlation.

1.2.3.4 Discussion on the difference between MD FE and naive FE inference

Unlike the optimal MD asymptotic variance, the MD asymptotic variance for @ can not be
estimated directly from a weighted regression. In fact, since the corresponding weighting
matrix for FE is the identity matrix, the correct weight for each cell is simply no weight
(equal weight). Without any weighting, a linear regression gives us the naive asymptotic

variance estimator>

Avarg(0) = (X' @)~ 152 (1.27)

where

. 2
7 = (T =)y (il — B~ — )
g;t
Clearly, (1.26) and (1.27) coincide if nM ™1 equals %Iy, which is generally not the case.

Making it robust to heteroskedasticity (White (1980)), we get the naive heteroskedasticity-

robust asymptotic variance estimator

3Proper adjustment of degrees of freedom can also be proposed, which we do not discuss
for simplicity. It also applies to the two robust naive variance estimators.
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Avars(0) = (& i)~ (ﬂ"’ (dmg(mfgx) (i =)~

where diag(ﬂﬁ) is the diagonal matrix created by putting the vector &% on the principal

diagonal. 1% is the column vector that stacks all cohort-level residuals over g and ¢, and its
_|_

(9 — 1)T" + t]-th entry is

Mgt = ngt Z Tit,gUit-

That is, ﬂgt is the sample cohort mean of the individual-level residuals within cell (g,¢). The

individual level residual, 1, is defined as
it = yit — XitB — (7 + g).

Note that (ﬂgt) is different from Tgt The former is the square of the residual cohort mean
for cell (g,t), which only contains cohort-level information, where as the latter is the sample
variance of the residuals within cell (g, t), which contains individual-level information.
Further making it robust to heteroskedasticity and serial correlation (see, e.g. Wooldridge
(2010)), we get the naive cluster-robust asymptotic variance estimator
Avar(6) = (' %) " (¥ diage (W) diaga (") i) (i i)~
where diago(f1™) is the block diagonal matrix with the g-th diagonal block ﬂg for g =
,G. The subscript G in the notation diags indicates that the block diagonal matrix
has G blocks on the diagonal. ;lg‘ is a T x 1 vector with the ¢-th entry ﬂgt. Alternatively,

the middle term can be written as

diage (") diagg (") = diag(fr

zu zul

Unlike the diagonal matrix nM ™!, this is a block diagonal matrix with Fig “prg " on the
g-th diagonal block.
To summarize, the three naive FE asymptotic variance estimators can be obtained

by replacing Vg = M~!/n in (1.26) with Vy = 6%Igp, Vi = (diag([ﬂ))2 and V¢ =

15
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diaga (") diaga (1), respectively. But the naive FE inference is fundamentally different

from the MD inference. The former only relies on cohort-level information, where as the latter

—_—

abstracts information from the individual level. The robustness of Avar,(0) and Avarc(0)
is also with respect to cohort-level heteroskedasticity and/or serial correlation only, i.e. het-
eroskedasticity and/or serial correlation in :“Zt? which requires at least large G asymptotics.
As illustrated by the simulation study in the next section, the naive FE inference is far less

efficient since it discards all individual-level information.

1.3 Simulation and results

We now present the Monte Carlo simulation study that investigates the finite sample proper-
ties of the MD approach for pseudo panels. The simulation study focuses on two questions.

First, what are the typical scenarios in which the optimal MD estimator outperforms the
FE estimator? From (1.21), we know that if there is cohort-wise heteroskedasticity and/or
varying the cell sizes, the optimal MD estimator is expected to outperform the FE estimator.
In general, if there is any pattern in the population model that makes the optimal weighting
matrix evidently different from the identity matrix, the optimal MD estimator is supposed
to perform better. We check if it is the case in the simulation study.

Secondly, can the naive FE inference still provide satisfactory accuracy and if it could,
what are these typical scenarios? As discussed in the last section, the naive FE asymptotic
variances and the MD FE asymptotic variance are alike in their formulae. On the other
hand, the naive FE inference is fundamentally different form the MD FE inference in that
the former discards all information at the individual level. The simulation study helps to
understand these two seemingly conflicting facts.

As Imbens and Wooldridge (2007) point out, the simulation design should be careful in
at least two places.

First, data for each cross section should be drawn from the population independently

16



across time, and the group identifier should also be randomly drawn. This is accomplished
by a two step procedure. In the first step, we draw the population using (1.1). The population
cohort sizes are fixed and depending on the design may or may not depend on cohort and/or
time.? In the second step, we mimic the sampling scheme of repeated cross sections by
drawing independent random samples over time. In each period, we draw a tiny portion of
the population as the cross-sectional sample for that period.

Second, the underlying model should have full time effects to be realistic. If, as in Verbeek
and Vella (2005), we omit the aggregate time effects while let explanatory variables to have
means differ by cohort-time cell, the variation in /{)q(t will be relatively rich and thus we may
set up too optimistic a situation for the estimators.

We consider five scenarios. The first is a benchmark scenario in which all things are bal-
anced across cohort-time cells. In the remaining four scenarios, we manipulate four different
features of the population model, namely the time effects, the covariate distribution, the
cohort-wise heteroskedasticity and the varying cohort sizes, one at a time. In this way, it is

easy to isolate the cause. We begin with the benchmark scenario.

1.3.1 Benchmark

In the benchmark scenario, we generate the outcome y;; as a linear function of the covariates
(2145t = 1,294, T3¢, T45¢), the time effect 7, the individual effect f; and the idiosyncratic

erTor u;; as in

Yit = B1 + Boxait + Bawgir + Bavaye +me + fi +wyg, i =1,--- Ny, t=1,--- T (1.28)

The parameter values used are 3 = (01, 52,53, 54) = (1,1,1,1). The time effects are gen-

erated by 7 = t — 1, and the cohort effects are generated by oy = g — 1. Individual

41deally, we would like a population with infinity many observations so that it is infinitely
close to the population distribution defined by (1.1). In reality this is impossible, so we draw
a large number of individuals to approximate the population distribution.
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fixed effects are generated by adding a random normal disturbance to the cohort effects, i.e.
fi ~ N(ag,1). The distribution of idiosyncratic error is given by u;; ~ N(0, 10).

To fix ideas, it might be helpful to think of x9;;, x3;+ and x4 as education, experience
and marital status, respectively. The outcome y;; is the log hourly wage, and there is an
individual effect f; representing some unobserved ability. The three explanatory variables

x9;t, T35+ and x4y are generated as follows

wo;p ~ N(gt/6,1),

w3t~ N(sin(gt), 1),

B li 1
T4it ~ DBernouli '
44t 1+ exp[l.5 * sin(gt/2)]

That is, x9;; is a continuous variable with population cohort mean gt /6 and with-cell variance
1. x3; is a continuous variable with the population cohort mean sin(gt) and within-cell

The

variance 1, and x4 is a binary variable equal to 1 with probability 7 Feap(l. 51<Sin(g 72
key is to let the three variable cohort means have distinct variation over g and ¢.

We apply the optimal MD estimator and the MD estimator with identity weighting. The
latter is numerically equivalent to the FE estimator on the pseudo panel of cohort means.
For each estimator, we compute the MD coefficient and standard error estimates. For the
MD estimator with identity weighting, we also compute the three naive FE standard errors
discussed in the last section.

We consider a small panel with G = 6 cohorts and T" = 4 time periods. The population
cell sizes Nyt are 2 X 10%, 10° and 5 x 10° respectively in the three cases considered. After the
population panel is generated, we fix it over simulation replications. To mimic the sampling
scheme of repeated cross-sectional surveys, we draw .2% of the population in each period.
The resulting sample cell sizes ng are approximately 40, 200 and 1000, respectively. For
each case, we consider three different numbers of replications. The results are reported in

Table 1.1, Table 1.2 and Table 1.3.

There are several observations worth discussing. First of all, the optimal MD estimator
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Table 1.1 Results for benchmark. G = 6, T' = 4, ng ~ 40, sampling rate = .2%; R denotes
number of replications; Monte Carlo averages on top, Monte Carlo standard deviations in
parentheses.

MD Identity MD Optimal

— e —

~ ~ ~ ~ A A

s se()  sen(P) ser(B)  sec(f) B se(f)

R=1000 x5 0977 0353 0345 0313 0322 0979  0.347
(0.345) (0.041) (0.080) (0.097) (0.142) (0.343) (0.041)

z3 0999 0199 0194 0185 0201  1.001  0.196
(0.191) (0.017) (0.042) (0.047) (0.080) (0.195) (0.016)

x4 1001 0634 0619 0584 0.657 0998  0.622
(0.631) (0.063) (0.139) (0.163) (0.249) (0.633) (0.061)

co 0980 0433 0424 0400 0.198 0.977  0.425
(0.420) (0.032) (0.090) (0.122) (0.092) (0.423) (0.031)

dy  1.025 0412 0404 0387 0469  1.023  0.405
(0.417) (0.036) (0.088) (0.108) (0.174) (0.420) (0.035)
cons 0973 0380 0373 0347 0290 0978  0.373
(0.364) (0.034) (0.079) (0.116) (0.108) (0.365) (0.032)

R=5000 2o 0981 0351 0339 0308 0320 0982 0.345
(0.345) (0.041) (0.079) (0.095) (0.143) (0.347) (0.040)

zg3 1003 0.198 0192 0182 0194 1.003  0.195
(0.193) (0.017) (0.042) (0.046) (0.075) (0.195) (0.017)

x4 1009 0632 0611 0574 0.645 1.006  0.621
(0.640) (0.062) (0.136) (0.159) (0.243) (0.644) (0.060)

¢y 0984 0432 0419 0393 0194 0985  0.425
(0.420) (0.032) (0.090) (0.118) (0.090) (0.424) (0.031)

dy  1.020 0410 0398 0.380 0459  1.021  0.403
(0.414) (0.036) (0.087) (0.105) (0.169) (0.416) (0.035)
cons 0975 0379 0368 0340 0286 0975  0.372
(0.372)  (0.033) (0.079) (0.113) (0.109) (0.374) (0.032)

R=10000 x5 098 0350 0338 0306 0320 0984 0.344
(0.344)  (0.041) (0.079) (0.095) (0.141) (0.346) (0.040)

xg3 1003 0.198 0.191 0182 0.193 1.004  0.195
(0.194) (0.017) (0.042) (0.047) (0.075) (0.195) (0.017)

x4 1007 0.632 0.610 0574 0.646 1.005  0.620
(0.634) (0.061) (0.137) (0.159) (0.246) (0.637) (0.059)

co 0984 0432 0417 0392 0.193 0985  0.424
(0.422) (0.031) (0.090) (0.119) (0.089) (0.426) (0.030)

dy 1017 0410 0397 0.380 0458  1.018  0.402
(0.411) (0.035) (0.087) (0.105) (0.169) (0.414) (0.034)
cons 0979 0378 0367 0339 028 0978  0.372
(0.373) (0.032) (0.079) (0.113) (0.108) (0.375) (0.031)
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Table 1.2 Results for benchmark. G = 6, T' = 4, ng ~ 200, sampling rate = .2%; R denotes
number of replications; Monte Carlo averages on top, Monte Carlo standard deviations in
parentheses.

MD Identity MD Optimal

— e —

~ ~ ~ ~ A A

s se()  sen(P) ser(B)  sec(f) B se(f)

R=1000 x5 0990 0161 0157 0140 0.143 0.990  0.160
(0.165) (0.009) (0.034) (0.042) (0.062) (0.165) (0.009)

z3 1008 0.089 0.087 0082 0.087 1.008  0.089
(0.088) (0.003) (0.018) (0.021) (0.033) (0.087) (0.003)

x4 1010 0286 0279 0262 0299 1.011  0.285
(0.289) (0.012) (0.059) (0.072) (0.110) (0.288) (0.012)

co 0996 0191 0.8 0175 0.088 0.995  0.190
(0.194)  (0.006) (0.039) (0.052) (0.036) (0.194) (0.006)

dy 1.000 0.184 0.180 0.171 0206 1.000  0.183
(0.181) (0.007) (0.038) (0.047) (0.075) (0.182) (0.007)
cons 00982 0.168 0.164 0.151 0.128 0.982  0.167
(0.165) (0.007) (0.035) (0.049) (0.047) (0.165) (0.006)

R=5000 9 0991 0160 0157 0.140 0.142 0.992  0.160
(0.161) (0.009) (0.033) (0.042) (0.063) (0.161) (0.009)

zg3 1005 0.089 0087 0082 0.087 1.005  0.089
(0.089) (0.003) (0.018) (0.020) (0.032) (0.089) (0.003)

x4 1010 0286 0280 0263 0.298 1.011  0.285
(0.287) (0.012) (0.059) (0.071) (0.109) (0.287) (0.012)

co 0991 0191 0187 0174 0088 0991  0.190
(0.192) (0.006) (0.039) (0.051) (0.036) (0.192) (0.006)

dy  1.006 0.184 0.180 0.171 0207 1.006 0.184
(0.181) (0.007) (0.038) (0.046) (0.074) (0.181) (0.007)
cons 00983  0.168 0.164 0.150 0.127  0.983  0.167
(0.168) (0.006) (0.034) (0.049) (0.046) (0.169) (0.006)

R=10000 x5 0995 0161 0157 0.140 0.143  0.995  0.160
(0.161) (0.009) (0.034) (0.042) (0.063) (0.161) (0.009)

xg 1004 0.089 0.087 0082 0.088 1.004  0.089
(0.089) (0.003) (0.018) (0.020) (0.032) (0.089) (0.003)

x4 1012 0286 0279 0263 0.298 1.013  0.285
(0.286) (0.012) (0.059) (0.071) (0.110) (0.286) (0.012)

co 0990 0191 018 0174 0088 0.990  0.190
(0.191) (0.006) (0.039) (0.052) (0.036) (0.191) (0.006)

dy 1002 0.184 0.180 0.171 0206 1.002  0.183
(0.183) (0.007) (0.038) (0.046) (0.074) (0.183) (0.007)
cons 0985 0.168 0.164 0.150 0.127  0.985  0.167
(0.168) (0.007) (0.035) (0.050) (0.047) (0.168) (0.007)
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Table 1.3 Results for benchmark. G = 6, T' = 4, ng ~ 1000, sampling rate = .2%; R
denotes number of replications; Monte Carlo averages on top, Monte Carlo standard
deviations in parentheses.

MD Identity

MD Optimal

B

—_—

se()

b

—_—

N

se()

R = 1000 9
r3
T4

2

cons

1.003
(0.072)
0.997
(0.040)
1.001
(0.130)
1.004
(0.085)
1.004
(0.083)
1.003
(0.079)

0.072
(0.002)
0.040
(0.001)
0.128
(0.002)
0.085
(0.001)
0.082
(0.001)
0.075
(0.001)

1.003
(0.072)
0.997
(0.040)
1.001
(0.130)
1.004
(0.085)
1.004
(0.083)
1.003
(0.079)

0.072
(0.002)
0.040
(0.001)
0.128
(0.002)
0.085
(0.001)
0.082
(0.001)
0.075
(0.001)

R = 5000 9
T3
L4

€2

cons

1.003
(0.072)
0.998
(0.040)
1.009
(0.127)
0.998
(0.084)
1.002
(0.081)
1.003
(0.076)

0.072
(0.002)
0.040
(0.001)
0.128
(0.002)
0.085
(0.001)
0.082
(0.001)
0.075
(0.001)

1.003
(0.072)
0.998
(0.040)
1.009
(0.127)
0.999
(0.085)
1.002
(0.081)
1.002
(0.076)

0.072
(0.002)
0.040
(0.001)
0.128
(0.002)
0.085
(0.001)
0.082
(0.001)
0.075
(0.001)

R =10000 x9
3
4
co
d2

cons

0.999
(0.073)
0.997
(0.040)
1.009
(0.127)
1.002
(0.084)
1.001
(0.082)
1.001
(0.075)

0.072
(0.002)
0.040
(0.001)
0.128
(0.002)
0.085
(0.001)
0.082
(0.001)
0.075
(0.001)

0.999
(0.073)
0.997
(0.040)
1.009
(0.127)
1.002
(0.084)
1.001
(0.082)
1.001
(0.075)

0.072
(0.002)
0.040
(0.001)
0.128
(0.002)
0.085
(0.001)
0.082
(0.001)
0.075
(0.001)
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has no advantage over the MD estimator with identity weighting in benchmark. This is
under the current specification the optimal weighting matrix is an identity matrix, so the
MD estimator with identity weighting is the optimal MD estimator.

Second, even in the case where the sample cohort size is about 40, the two MD estimators
perform well. The Monte Carlo averages of the coefficient estimates are fairly close to
the true parameter values. For each covariate, the Monte Carlo averages of the standard
error estimates are also fairly close to the Monte Carlo standard deviations the coefficient
estimates. Since the results are fairly stable across the three different numbers of replications,
we will report the results for 10,000 only in later discussions.

Third, the three naive FE standard errors are much more volatile than the MD FE
standard error. This observation is consistent with the fact that the naive FE inference
relies on cohort-level information and discards all individual-level information. Moreover,
there seems to be downward small-sample bias in the naive FE standard errors than in the
MD FE standard errors. This is mainly due to the small G setting. It is well known that
(g’s are inconsistent under fixed G, which contaminate the residual estimates and in turn
the naive FE standard errors. Another reason is that the degree-of-freedom adjustment used
does not take into account the fact that the cohort means are estimated. Although the FE
MD standard errors seem also biased downwards, the size of the biases is always smaller
across the three tables. Clearly, in the benchmark scenarios the MD FE inference is superior
to the naive FE inference.

Fourth, the cluster-robust naive FE standard errors are severely biased downwards for
the cohort effect as. This observation remains valid for all the scenarios considered in this
chapter. The explanation is again the fact that the estimates for the fixed effects obtained via
LSDV are essentially based on only T observations, so the cluster-robust naive FE standard
errors are inconsistent for fixed 7.

Lastly, the performance of all estimators improve universally as the the cohort size in-

creases. For the naive FE standard errors, the reason is that the sample cohort means of the
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residuals approaches zero as cohort size increases. To keep the discussion concise, we will

report the results for ng ~ 200 in later discussions.

1.3.2 Deterministic aggregate time effects

The aggregate time effects, i.e. the time intercepts 7;’s, are treated as parameters in the
population. Therefore, to generate the aggregate time effects properly, only deterministic
functions of time need to be considered. If randomness is otherwise imposed on 7, the
random disturbance would become part of the idiosyncratic error, which is a separate scenario
considered in section 1.3.4.

In the benchmark scenario, the aggregate time effects are ny = ¢ — 1 which is linear in ¢.
In this section, we consider two additional deterministic functions of time: quadratic, and

natural log

ne=(t—1)%
ne = In(t).

The variation in the quadratic function is greater than that in the natural log function.

The results are reported in Table 1.4. The patterns of the results are similar to those
in the last section. In fact, the two panels in Table 1.4 are exactly the same as the third
panel in Table 1.2 except for the coefficient estimates on the time dummy do in the lower
panel where 1 = In(t). Note that the true coefficient on dg is In(2) ~ .693 in that case.
These results suggest that the aggregate time effect process has little effect on effect on the
performance of the estimators. It only changes the true parameter values of the time effects.
Of course, the fact the models are correct specified also plays a role. Correct specification
implies that both estimators are consistent. As a result, changes in the deterministic process
of the aggregate time effect have little effect on the estimated residuals and thus do not

matter for inference or the estimation of other coefficients.
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Table 1.4 Results for different aggregate time effect processes. G =6, T' = 4, ng ~ 200,
sampling rate = .2%; 10,000 replications; Monte Carlo averages on top, Monte Carlo
standard deviations in parentheses.

MD Identity MD Optimal

— —

~ ~ ~ ~ N N

B se(B)  sen(B) ser(B)  sec(B) B se(3)

m=(t—12% xz9 0995 0161 0157 0140 0.143 0995  0.160
(0.161)  (0.009) (0.034) (0.042) (0.063) (0.161) (0.009)

zg  1.004 0089 0087 0.082 0.088 1.004  0.089
(0.089) (0.003) (0.018) (0.020) (0.032) (0.089) (0.003)

zg 1012 028 0279 0263 0.298 1.013  0.285
(0.286) (0.012) (0.059) (0.071) (0.110) (0.286) (0.012)

ca 0990 0191 018  0.174 0.088  0.990  0.190
(0.191)  (0.006) (0.039) (0.052) (0.036) (0.191) (0.006)

dy  1.002 0184 0.180 0.171 0206 1.002  0.183
(0.183) (0.007) (0.038) (0.046) (0.074) (0.183) (0.007)
cons 00985 0.168 0.164 0.150 0.127 0.985  0.167
(0.168)  (0.007) (0.035) (0.050) (0.047) (0.168) (0.007)

ne = In(t) zo 0995 0.161 0157 0140 0.143 0995  0.160
(0.161) (0.009) (0.034) (0.042) (0.063) (0.161) (0.009)

zg3 1004 0.089 0.087 0.082 0.088 1.004  0.089
(0.089) (0.003) (0.018) (0.020) (0.032) (0.089) (0.003)

x4 1012 0286 0279 0263 0298 1.013  0.285
(0.286) (0.012) (0.059) (0.071) (0.110) (0.286) (0.012)

c; 0990 0191 0.8 0.174 0.088 0.990  0.190
(0.191) (0.006) (0.039) (0.052) (0.036) (0.191) (0.006)

dy 0695 0184 0.180 0.171 0206 0.695 0.183
(0.183)  (0.007) (0.038) (0.046) (0.074) (0.183) (0.007)
cons 0985 0.168 0.164 0.150 0.127 0985  0.167
(0.168) (0.007) (0.035) (0.050) (0.047) (0.168) (0.007)
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1.3.3 Covariate distributions

To understand how the distributions of the covariates affect estimation, we manipulate the
distribution of the covariates in this section. In particular, attention is paid to the covariate
x9.

In addition to the distribution x9; ~ N(gt/6,1) considered in the benchmark, we look

at the following two distributions

oi ~ N((g1)?/6,1),

293t ~ N(in(gt) /6, 1).
The quadratic product of g and ¢ embodies a greater variation than the product only, and
the product in turn embodies a greater variation than its natural log transformation. All
the other variables are generated as in the benchmark.

The results are summarized in Table 1.5. The pattern is similar to the last section.
The only difference is that the greater variation in the cohort mean of x9;; in the first panel
makes the estimation of its coefficient easier, whereas in the second panel the weaker variation
renders estimation harder. Changes in the distribution of x9;; have little effect on the two
MD estimators. The explanation is the same as that for the aggregate time effects. Since
both estimators are consistent, the variation in the distribution of x9;; does not enter the
residuals. The optimal weighting matrix is still an identity matrix, so the performance of

the two MD estimators are similar.

1.3.4 Cohort-wise heteroskedasticity in the idiosyncratic error

In the benchmark, the idiosyncratic error u;+ is homoskedastic. In this section, we investigate
how cohort-wise heteroskedasticity in u;; would affect estimation. We present the results for

two case in which the variance of u;; depends on (g,t). Specifically, we consider
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Table 1.5 Results for distribution of x9. G =6, T' = 4, ng ~ 200, sampling rate = .2%;
10,000 replications; Monte Carlo averages on top, Monte Carlo standard deviations in
parentheses.

MD Identity MD Optimal
B 56(6) 56n(5) 337“(6) 360(8) B 56(6)
T ~ 9 1.000  0.004  0.004  0.004 0.004 1.000  0.004

(0.004) (0.000) (0.001) (0.001) (0.002) (0.004) (0.000)
N((gt)2/6,1) x5 1.004 0.08 0.084 0080 0083 1.004 0.086
(0.087) (0.003) (0.018) (0.020) (0.032) (0.087) (0.003)

x4 1011 0286 0279 0263 0299 1.012  0.285
(0.286) (0.012) (0.059) (0.071) (0.111) (0.286) (0.012)

ca 098 0176 0172 0.167 0.058 0988  0.175
(0.176)  (0.004) (0.036) (0.050) (0.023) (0.176) (0.004)

dy  1.000 0.157 0.153 0.152 0.189  1.000  0.157
(0.155) (0.004) (0.032) (0.039) (0.065) (0.156) (0.004)
cons 00986 0163 0.159 0.153 0.125 0.986  0.162
(0.163) (0.004) (0.033) (0.048) (0.044) (0.163) (0.004)

g ~ zog  1.003 1.023 0954 0.884 0979 1.003  1.020
(1.002) (0.252) (0.286) (0.303) (0.433) (1.002) (0.251)

N(ln(gt)/6,1) x5  1.003 0.090 0.084 0080 0086 1.003  0.090
(0.086) (0.009) (0.018) (0.021) (0.033) (0.086) (0.009)

x4 1014 0306 0287 0268 0301 1.015  0.305

(0.293) (0.031) (0.063) (0.072) (0.112) (0.294) (0.031)

c; 0987 0224 0210 0202 0.130 0987  0.223

(0.216) (0.040) (0.055) (0.065) (0.073) (0.216) (0.040)

dy 0998 0201 0188 0.182 0213 0998  0.201

(0.195) (0.038) (0.051) (0.056) (0.085) (0.195) (0.038)

cons 00987 0.160 0.150 0.146 0.111  0.987  0.159

(0.153) (0.015) (0.033) (0.045) (0.042) (0.153) (0.015)
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uig ~ N(0,10 + (gt)?),
The degree of heteroskedasticity is greater in the first case. All the other variables are

generated in the same way as in the benchmark.

f

We note here that introducing variation in the distribution of f; = a4 +&; is at most
another way to introduce heteroskedasticity. First of all, it is not interesting to vary the
deterministic process of the cohort effects ag’s, because they are parameters to estimate.
Secondly, it is not interesting to vary the mean of the distribution of 6{ , because that would
only affect the process of ayg’s. Lastly, letting the variance of szf depend on g is the same as
introducing cohort-wise heteroskedasticity in u;+. It does not make sense to let the variance
of 5{ depend on t because f; is time invariant.

The results in Table 1.6 show that cohort-wise heteroskedasticity has two major effects.
First, the optimal MD estimator outperforms the MD estimator with identity weighting,
especially in the top panel where u;; ~ N (0,10 + (gt)?). This is because cohort-wise het-
eroskedasticity makes the optimal weighting matrix non-identity. Secondly, the strict in-

crease in the variance of u;; in either case raises the standard errors of both MD estimators

compared to the benchmark. This rise is universal.

1.3.5 Cohort-time cell size

In this section, we let the cohort-time cell size vary by cohort and time. Specifically, we ma-
nipulate the sampling rate so that the sample size for cohort ¢ at time ¢ follows approximately

the following two processes
L. ngt ~ (200 + 180 x 1.5) — 180|g — 3.5| = 470 — 180|g — 3.5|, g=1,....G

2. ngt ~ (200450 x 1.5) —50|g — (3.5 — (t —3))| = 275—50lg +¢t — 6.5, g=1,...,G

27



Table 1.6 Results for cohort-wise heteroskedasticity in error term. G = 6, T' = 4, ng ~ 200,
sampling rate = .2%; 10,000 replications; Monte Carlo averages on top, Monte Carlo
standard deviations in parentheses.

MD Identity MD Optimal
p se(B)  sen(B) ser(B) sec(B) B se(f)
Uiy ~ 9 0.989  0.651 0.510  0.505  0.509  0.991  0.448

(0.653) (0.051) (0.141) (0.202) (0.256) (0.448) (0.031)
N(0,10+ (¢t)2) 23 1012 0323 0283 0280 0291 1.012 0.214
(0.326) (0.019) (0.077) (0.090) (0.115) (0.214) (0.013)

x4 1040 1.101 0910 0943  1.098  1.002  0.762
(1.100) (0.062) (0.248) (0.320) (0.472) (0.758) (0.048)

co 0969 04838  0.608 0495 0343 0988  0.321
(0.489) (0.040) (0.164) (0.159) (0.163) (0.316) (0.023)

dy 1.000 0589 0585 0541  0.645 1.007  0.326
(0.589) (0.046) (0.159) (0.180) (0.271) (0.324) (0.026)
cons 0976 0348 0534 0416  0.356 0979  0.265
(0.349) (0.030) (0.144) (0.149) (0.138) (0.263) (0.016)

ujp ~ zg 0994 0221 0209 0.190 0.193  0.993  0.213
(0.222) (0.013) (0.046) (0.059) (0.087) (0.215) (0.012)
N(0,10 + gt) xg3  1.006 0.122 0116 0.111 0.117  1.006  0.119

(0.123)  (0.005) (0.025) (0.028) (0.044) (0.120) (0.005)
x4 1017 0403 0372 0361 0411  1.012  0.390
(0.403) (0.018) (0.081) (0.102) (0.158) (0.391) (0.018)
co 0985 0233 0249 0221 0122 0988  0.227
(0.233) (0.009) (0.054) (0.064) (0.051) (0.227) (0.009)
dy 1001 0236 0239 0223 0268 1.003  0.226
(0.235) (0.011) (0.052) (0.060) (0.096) (0.226) (0.011)
cons 00983 0.194 0218 0.8 0.161 0.983  0.191
(0.195) (0.008) (0.047) (0.060) (0.058) (0.192) (0.008)
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Table 1.7 Cohort-time cell sizes for the two sampling schemes

ngt = 1 Ngt 2
t t
g 1 2 3 4 g 1 2 3 4
1 20 20 20 20 1 285 217 149 81
2 200 200 200 200 2 285 285 217 149
3 380 380 380 380 3 217 285 285 217
4 380 380 380 380 4 149 217 285 285
) 200 200 200 200 ) 81 149 217 285
6 20 20 20 20 6 13 81 149 217

col. sum 1200 1200 1200 1200 col. sum 1030 1234 1302 1234
total 4800 total 4800

In the first case, the cohort size starts from 20 at cohort 1, increases linearly with step 180
up to 380 at cohorts 3 and 4, and then decreases with the same step down to 20 at cohort
6. The idea is to let the cohorts in the middle have more observations. The overall sample
size is about 4800. The second case has approximately the same overall sample size, but the
middle peak cohorts shifts over time. The highest sample cell size is 285, and the step is 68.
The two schemes are shown in Table 1.7. Note that the changes in the two schemes are both
quite radical.

The results are summarized in Table 1.8. The impact of varying cell size is similar to that
of cohort-wise heteroskedasticity. The optimal MD estimator significantly outperforms the
MD estimator with identity weighting in both cases. This is again due to the non-identity
weighting matrix caused by the varying cell size.

The naive FE inference cannot provide satisfactory standard error estimates. Depend on
the covariate and the robust type, it can either overestimate or underestimate, and the bias

is overall large.

1.4 Conclude

Build upon the theoretical analysis in Imbens and Wooldridge (2007), we study the finite

sample properties of the MD estimator for pseudo panels in this chapter. In particular, we
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Table 1.8 Results for varying cohort size. G = 6, T' = 4; ng follows the three specifications
given in section 1.3.5 and is generated by varying the sampling rate; 10,000 replications;
Monte Carlo averages on top, Monte Carlo standard deviations in parentheses.

MD Identity MD Optimal

— —

~ < ~ ~ A N

B se(B)  sen(B) ser(B) sec(B) B se()
ngt:1 w9 0993 0444 0298 0328  0.285  1.008  0.282

(0.443) (0.067) (0.097) (0.127) (0.157) (0.289) (0.027)
x5 1004 0.155 0.166 0.148 0.162 1.002  0.095
(0.155) (0.017) (0.049) (0.045) (0.068) (0.095) (0.006)
zg 1005 0480 0529 0457 0538  1.020  0.308
(0.482) (0.062) (0.156) (0.149) (0.226) (0.311) (0.020)
ca 0993 0472 0362 0383  0.177 0984  0.412
(0.468) (0.063) (0.107) (0.146) (0.100) (0.436) (0.039)
dy  1.005 0455 0347 0370 0424  0.987  0.263
(0.453) (0.063) (0.105) (0.140) (0.207) (0.266) (0.021)
cons 00983 0461 0319 0353 0232  0.992  0.398
(0.457) (0.070) (0.094) (0.154) (0.109) (0.422) (0.039)

Ngt =2 19 0.993 0.303 0.196 0.205 0.220  0.998 0.220

(0.306) (0.065) (0.062) (0.090) (0.121) (0.226) (0.018)
zg  1.005 0099 0.108 0.099 0108 1.004  0.088
(0.100) (0.008) (0.032) (0.029) (0.045) (0.088) (0.004)
x4 1008 0431 0350 0342 0415 1.015  0.308
(0.438) (0.086) (0.106) (0.126) (0.186) (0.312) (0.017)
co 0994 0437 0236 0286 0.145 0983  0.271
(0.444) (0.099) (0.072) (0.140) (0.084) (0.279) (0.016)
dy  1.003 0418 0228 0272 0354 0996  0.265
(0.421) (0.095) (0.071) (0.131) (0.194) (0.271) (0.019)
cons 0983 0466 0209 0276 0205 0.992  0.289
(0.473) (0.118) (0.065) (0.158) (0.109) (0.298) (0.021)
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focus on the comparison of the optimal MD estimator and the MD estimator with identity
weighting matrix. The latter is of interest because it coincides with the FE estimator ap-
plied to the pseudo panel of cohort means. We find that in cases where there is significant
heteroskedasticity by cohort-time cells, or in cases where the cohort-time cell size varies, the
optimal MD estimator significantly outperform the MD estimator with identity weighting
in that the former’s standard errors are smaller. This finding is consistent with the large
cohort size asymptotics under the MD estimation framework, as the optimal MD estimator
achieves the smallest asymptotic variance.

We also compare the MD FE inference to the naive FE inference. We find that in cases
where the optimal weighting matrix is close to an identity matrix, the naive FE standard
errors are barely satisfactory. But when the optimal weighting matrix is far from identity,
the naive FE standard errors are not acceptable without doubt. In any case, the MD FE
inference is always more efficient than the naive FE inference. This finding is consistent
with the fact that the FE inference relies on large number of cohorts and it discards all
individual-level information. In a setup with small number of cohorts and time periods, the
naive FE inference cannot work well.

The simulation setup in this analysis considers sample cohort sizes in hundreds, and
the results are already promising provided that the variation in covariate cohort means are
rich enough. In practice, sample cohort sizes of repeated cross sections can easily exceed
thousands. Therefore, the results in this chapter should bring confidence to the application
of the MD approach to pseudo panels.

In future studies, we could extend the analysis to dynamic models where we have lagged
dependent or explanatory variables. For robustness check, we should allow correlation co-
variates and individual fixed effects. Moreover, given the weak exogeneity condition (1.7),
we could also allow covariates that are endogenous at the individual level but not at the

cohort level. Results from these extensions can provide more practical implications.
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CHAPTER 2

EXPLORING ADDITIONAL MOMENT CONDITIONS IN
NON-SEPARABLE MINIMUM DISTANCE ESTIMATION WITH AN
APPLICATION TO PSEUDO PANELS

2.1 Introduction

Minimum distance (MD) estimation is a useful approach to recover structural estimates from
reduced form estimates when there exists a known relationship between the structural and
reduced form parameters. The known relationship is often in the form of structural equations,

1 or restrictions, which are terminology used interchangeably hereafter.

moment conditions,
When applying MD, researchers may encounter situations in which they need to introduce
additional moment conditions into estimation. This could happen, for example, when some
new instrument variables (IVs) become available as the research proceeds. An important
question to ask in such a situation is whether we can always improve asymptotic efficiency
by using all the moment conditions than using just part of them. In this chapter, we provide
an affirmative answer to this question. We show that in MD estimation it never hurts to
have more moment conditions. In particular, when the additional moment conditions are
non-redundant, adding them to estimation strictly improves efficiency. This efficiency gain
result echoes the similar property for generalized method of moments (GMM) in Breusch
et al. (1999).

The motivation for deriving this efficiency gain result comes from the need in pseudo
panel models to incorporate external IVs. A pseudo panel model can estimate an underlying
unobserved effect panel data model with only repeated cross sections. The idea, which

dates back to Deaton (1985), is to divide the population into a number of groups by certain

predetermined group membership such as age cohorts. Then the group averages of the

I'\More precisely, the moment conditions in MD are conditional moment conditions.
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variables can be used to construct a panel at the group level. Since the group averages
are error ridden estimates, Deaton suggests to treat the estimation as a measurement error
problem. In this chapter, we adopt the MD perspective proposed by Imbens and Wooldridge
(2007). Within the MD framework, the group averages of the variables are the reduced
form estimates, and the group averages of the panel data model are the structural equations
linking the reduced form to the structural parameters. When new IVs become available,
the additional set of structural equations induced by the IVs can be easily added to the
estimation. Clearly, the aim of having more structural equations is to improve estimation
efficiency. However, there is no such theory in MD estimation telling us whether efficiency
gain can be achieved. Therefore, we attempt to derive such a result in this chapter to fill
this gap.

We derive the result within a so called non-separable minimum distance (NMD) frame-
work developed in this chapter. The framework is a special case of the “high level” MD
framework in Newey and McFadden (1994).2 The key difference between NMD and the
high level MD framework is that NMD models the reduced form parameters explicitly. This
feature makes the NMD framework convenient to use when our exact purpose is to recover
structural estimates from reduced form estimates. The qualifier “non-separable” highlights
NMD'’s capability to deal with structural equations that are non-separable in the struc-
tural and reduced form parameters. Note, however, that the separable framework, i.e. the
Classical Minimum Distance (CMD) framework, is still covered as a special case.

We establish consistency and asymptotic normality within the NMD framework. We also
derive the optimal weighting matrix for the over-identified case in which the the number of
structural equations is greater than that of the structural parameters. The optimal weighting
matrix turns out to be the asymptotic variance of the rescaled structural equations, which

gives an intuitive explanation of the weighting procedure. That is, the optimal weighting

2In effect, the MD framework in Newey and McFadden (1994) is so general that both
generalized method of moments (GMM) and classical minimum distance (CMD) are its
special cases.
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matrix readjusts the relative importance of the conditions according to their own volatility
as well as their correlation with each other. Building on these basic results, we then give the
main efficiency result discussed at the beginning of the chapter.

After the general results are established in the NMD framework, we apply them back to
the case of pseudo panels with external IVs. We show that a pseudo panel NMD estima-
tor with an arbitrary weighting matrix is a generalized least squares (GLS) estimator. The
inverse of the optimal weighting matrix corresponds to the usual unconditional variance-
covariance matrix in GLS estimation. As a result of the added structural equations, the
optimal weighting matrix becomes block diagonal. This result generalizes the finding in Im-
bens and Wooldridge (2007) that the optimal weighting matrix is diagonal in the case without
external IVs. The inclusion of extra IVs in pseudo panel models also highlights a typical case
where the optimal weighting matrix should be used over the naive identity matrix. In the
first chapter, we have shown that varying cohort sizes and cohort-wise heteroskedasticity in
idiosyncratic errors are two typical causes of a non-identity yet diagonal optimal weighting
matrix. When IVs are added, the optimal weighting matrix is usually block diagonal since
within-cohort dependence between structural equations generally exists. As a result, it is
more likely to achieve efficiency gain by using the optimal weighing matrix.

A related question is whether we can estimate pseudo panel models naively by apply-
ing fixed effect on the sample cohort means and then making the inference robust to het-
eroskedasticity and/or serial correlation. In this chapter, we show that the naive fixed effect
coefficient estimator is still valid because it coincides with the NMD estimator using the
identity weighting matrix. But the naive inference, whether made robust or not, is invalid
because it is different from the correct NMD inference. The fundamental reason of the dif-
ference is that the naive inference only uses the cohort averages and ignores any individual
level information. In terms of asymptotic theory, the naive inference requires the number
of cohorts tend to infinity and the number of time periods remain fixed (see, e.g., Arellano

(1987); Wooldridge (2010); Hansen (2007a)), or both tend to infinity (Kezdi (2003); Hansen
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(2007b)). In pseudo panel models, however, we often have large cohort sizes but fixed num-
bers of cohorts and time periods. This fact makes the MD framework a natural fit to the
pseudo panel models.

As mentioned in Verbeek (2008), repeated cross sections have several advantages over
panel data sets. Because it is usually easier and less costly to collect random samples than
panel data, the sample sizes of repeated cross sections are often much larger than common
panel data sets. Moreover, repeated cross sections are naturally immune to attrition which
is a common issue for panel data. Therefore, the availability of the NMD approach to
pseudo panels potentially opens many new research opportunities in cases where unobserved
individual fixed effects are a concern.

The rest of the chapter is organized as follows. In section 2, we lay out the NMD frame-
work. The consistency and asymptotic normality the NMD estimator, the optimal weighting
matrix, and the property that more moment conditions do not hurt are discussed. In section
3, we apply the NMD framework to pseudo panel models with additional instruments. There
are also two special subsections in which we discuss the GLS perspective and the naive vari-
ance estimators. Section 4 contains a simulation study of the pseudo panel NMD estimators.

The last section concludes.

2.2 The NMD framework

Minimum distance is essentially a delta method - it recovers structural estimates from re-
duced form estimates when there exists a known set of structural equations that links the
structural and reduced form parameters. Formally, let II x © be an subset of RT x RX,
which is the product space for the reduced form parameter 7 and the structural parameter

0. Let h: II x ©® — R be an vector-valued function satisfying

h(mg, 8g) = 0 (2.1)
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for some true parameter value (7, 8g) € Il x ©. Hereafter, h is referred to as the structural
function, and eq. (2.1) is the set of structural equations. Suppose there is an estimator

75 7. Then an NMD estimator 0 of 0 is defined as

6 = argmin h(#,0) W h(#, 0). (2.2)
0cO

where W is a J-dimensional positive semi-definite matrix and w 4w,

2.2.1 Consistency

A consistency result for NMD is summarized in the following theorem (similar to Theorem

2.6 in Newey and McFadden (1994)):

Theorem 1. Suppose that 7 E wy, W i W, and (i) (Identification) W is positive semi-
definite and Wh(m(,0) = 0 only if @ = 0; (ii) (Boundedness) 8y € ©, which is compact;
(i) (Continuity) h;(m,@) is continuous on I and on O, for j = 1,---,J; (iv) (Uniform

convergence) supgc@|h;(7,0) — hj(mg,0)| L0, forj=1,---,J. Then 6 5 0.

Proof. See Appendix. O

2.2.2 Asymptotic normality

Theorem 3.2 in Newey and McFadden (1994) requires v/nh(7, 0y) 4 N (0,€2), which de-
mands effort to verify when h(m, ) takes on some general functional form. If in addition
continuous differentiability of h(7r, @) with respect to 7 is assumed, a Taylor expansion of
h(7r, 8p) around 7( can be used to verify that v/nh(7, 8) 4 N(0, ) holds. The verification

step however could be saved with the establishment of the following theorem.

Theorem 2. Suppose that 0 satisfies (2.2), 0 LA 0y, W LW where W is positive semi-
definite, and

(1) wo € interior(II) and Oy € interior(©);
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(11) h(m,0) is continuously differentiable with respect to @ in a neighborhood A (6g) of
0o, and h(m,0) is continuously differentiable with respect to 7 in a neighborhood N () of
™05

(iii) /i (7 —m0) 5 N(0,9);

(iv) For L(m,0) = Vgh(m,0), SuPge. 1 (6,) IL(#,0) — L(m, 0)|| 2 0, and for B(w, ) =
Vrh(m,8), supge_y(g,) |B(%,68) — B(mo,0)|| - 0;

(v) LWL is nonsingular, where L = L(m, 0g).

Let B = B(m, 0q). Then

Jn (é - 00) 4 N0, (WL) ' 'WBQB'WL (L'WL) ). (2.3)
Proof. See Appendix. n

With the presence of the added smoothness assumption with respect to 7, the theorem
above provides a more constructive and straightforward version of the “high level” theorem
in Newey and McFadden (1994). To obtain the asymptotic variance of the MD estimator,

all we need is to find the two partial derivatives of h and plugging them in eq. (2.3).

2.2.3 Optimal weighting matrix

The asymptotic variance in (2.3) depends on the probability limit W of the weighting matrix
W. When W = M~ where
M = BQB’ (2.4)

the asymptotic variance simplifies to
Avar (\/ﬁ (é - 90)) — (U(BQB)"L)"L. (2.5)

As shown in the following theorem, the inverse of BQ2B' is the optimal weighting matrix
since (2.5) is the “smallest” asymptotic variance that can be obtained by optimizing over all

possible nonsingular weighting matrices.
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Theorem 3. Suppose M = BQB’ is nonsingular. Then an NMD estimator with w 4
W =M1 is asymptotically efficient in the class of NMD estimators based on the same set

of structural eqations.
Proof. See Appendix. n

The intuition for using an optimal weighting matrix is straightforward. Asymptotically, it
is not about over-identification. Rather, it is because the the conditions in v/nh(mg,8y) = 0
are asymptotically random. More accurate conditions exhibit less volatility, and the condi-
tions are potentially correlated. To use all the conditions optimally, more weights should
be given to less volatile conditions, and the correlation between conditions should also be
accounted for.

The best characterization of the relative volatility of all conditions is the the asymptotic
variance-covariance matrix of the rescaled conditions. It turns out that M is exactly that
variance-covariance matrix . Specifically, the first part of condition (ii) in Theorem 2 and a

Taylor expansion imply that

Vnh(7,00) = B-n(x—m)+op(1),

4 N(0,BQB). (2.6)

The optimal weighting operation is essentially a standardization that assigns more load-
ings to less volatile conditions and untangles the correlation between conditions. It stan-
dardizes the asymptotic variance-covariance matrix to an identity matrix. Admittedly, that
the inverse of the optimal weighting matrix is the asymptotic variance is a known result
which can be found in, e.g., Newey and McFadden (1994), and the idea of standardization
by volatility can also be found in the generalized method of moments (GMM) and general-
ized least squares (GLS) literature. However, this intuitive explanation is often overlooked

when it comes to MD estimation.
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In the application to pseudo panel, the intuition is even clearer, for M is exactly the

variance-covariance matrix of individual level residuals.

2.2.4 Estimation

Given a consistent estimator 7 for g, the NMD estimator using the identity weighting
matrix, i.e.

0 = argmin h(#,0)'h(#, ),
0cO

can be used as an initial estimator for 6. Consistency of @ follows from Theorem 1. By
continuity of the partial derivatives, the plug-in estimator B = V h(x, é) L B. Then,
given a consistent estimator Q for Q, M = BQB' is a consistent estimator for M, and an

asymptotically efficient for 8 can be obtained by

o™ = argmin h(#,0)'M ™ h(#, 6).
0cO

The corresponding consistent estimator for the asymptotic variance-covariance matrix is
given by

Avar(@™") = (L/(BOB')1L) "1 /n
where B = V;h(#,0) and L = V h(#, 6).

The estimator defined above iterates only once. Multiple iterations are also allowed.

They are, however, asymptotically equivalent.

2.2.5 More conditions do not hurt

Partition the restrictions in (2.1) into two parts:

hy(mq, 0
h(m, 00) = ilmo.80)| _ o (2.7)

hy (7o, 6p)
where hy is J1 x 1, hg is Jo x 1, and J; + Jo = J. Let

0 = argmin hy(#,0)'M] 1hy (7, 0)
0cO ’
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with M171 = BlﬂBfl for Ly = Ly (7, 00) = Vghi(m, 0p), B1 = B1(mg,00) = Vzhi(mg,0p).
Then
~ d o o
V(0 —6y) 5 N(0,[L)(B1QB)) 1L~ 1).

On the other hand, if all restrictions are used, we have
Jn (éol’t ~60) 5 N(0,[(BOB) 'L,

The following theorem shows that asymptotically 0 is at least as efficient as 6. The theorem

as well as the proof is similar to its GMM counterpart in Breusch et al. (1999).

Theorem 4. Let L; = L;(m(,0) = Vgh,(mg,0y) and B; = B;(m(,0) = Vrh;(m, )
fori=1,2. Let M; ; = BZ'QB;. fori=1,2 and j = 1,2. Assume BQB' and B19B’1 are

both nonsingular. Let F = My 9 — M271M1_&M172. Then
L'(BQB') "L - L) (B1QB})'L;
= (My My 1L - L2>’ Pl (M My 1Ly - 1)
and thus is positive semi-definite.
Proof. See Appendix. O
The condition ho (g, 8g) = 0 is redundant if Ly = M271M1_7%L1, ie.
Ly = BoOQB| (B1QB)) 'Ly, (2.8)

We can think of ® = (BlﬂB’l)_lBlﬂB’2 as the coefficient matrix from the GLS of B, on
B with weight . Then ho(m(, 8g) = 0 is redundant if Ly is a linear transformation of L
with the transformation matrix ®’.

Eq. (2.8) is similar to condition (C) of Theorem 1 in Breusch et al. (1999). We can
also derive a condition similar to condition (B) in that theorem to have a more intuitive

explanation of the redundancy condition. Specifically, define

Vnry(#, 80) = v/nhy (7, 6g) — Mg 1M 1/nhy (, ). (2.9)
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By eq. (2.6), M j is the asymptotic variance of \/nhy(7,6p), and My 1 is the asymptotic
covariance of ho (7, 6g) and hy (7, 8). Therefore, asymptotically, Mg,lMi%\/ﬁhl(ﬁ', 0p) is
the linear projection of /nho(7,8y) on /nhi(w,0y), and /nra(m,0g) is the residual in
this linear projection. It follows that a redundancy condition that is equivalent to but more

intuitive than eq. (2.8) is

Vo [Viira(#,80)] = Vg [Viths (7, 6g) — My M 1v/hy (7, 60) | = 0.

That is, the condition for ha(7,0)) = 0 to be redundant is that ro(7,6g) is marginally

uninformative for 6.

2.3 Pseudo panels with additional IVs

In the case of pseudo panels with additional IVs, the restrictions defined by (2.1) are not
additively separable in 7r and @ as in the CMD case. Therefore it serves as a good example
to illustrate the NMD framework. Moreover, the first-order condition takes the form of the
normal equation of a GLS estimation. Therefore, the optimal NMD estimator in this case
turns out to be a GLS estimator using the optimal weighting matrix as the unconditional
variance-covariance matrix.

The adoption of the MD perspective in pseudo panel models provides a new way to
deal with errors in variables. In the seminal work of Deaton (1985), this issue is treated
as a measurement error problem. By specifying the measurement error structure, Deaton
proposes a measurement-error corrected estimator. Collado (1997) follows the measurement
error thinking and extends Deaton’s method to a more general measurement-error corrected
GMM estimator. In the MD framework, group averages are treated as estimates for the
reduced form parameters. Since the group sizes are usually large for repeated cross sections,
the MD framework is a natural fit for pseudo panel models.

In the following subsections we go through the derivation of the particular contents of

h, 7, 6 , L, B and M in the pseudo panel case, discuss estimation, and summarize the
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asymptotics.

2.3.1 Population model and structural equations

Formally, for outcome y;;, covariate x;; (1 x K), coefficient 3 (K x 1), time effect 7, fixed
effect f;, and idiosyncratic error u;+, consider the following model for a generic individual in
the population

Yit =XpB+me+ fi +u, t=1,...,7T. (2.10)

fi and u;+ are unobserved. The first entry of x;; is unity for notation convenience. Essentially,
we are thinking of the population as a genuine panel data set from which different samples

are drawn each period. The same treatment is also adopted in Verbeek and Vella (2005).

Let zjs = (1, 295, -+, zp;t) be a 1 X P row vector of instrumental variables satisfying
E(zjui| f;) = 0, (2.11)
Cov(zpit, filgi) =0, p=1,2,-- P, (2.12)

where, for convenience, zq;+ is also set to 1.

In a standard panel, the conditional exogeneity of x;; given f; is usually assumed:
E(ujt|xit, fi) =0, t=1,...,T. (2.13)
This condition is not required here. A weaker condition that suffices is
E(uyfi) =0, t=1,...,T. (2.14)

Note that by iterated expectation, (2.13) implies (2.14). Because f; aggregates all time-
constant unobservables, we should think of (2.13) and (2.14) as being true for not only the
lump sum f; but also any time constant factors. In particular, replacing f; with the group

indicator g; (i.e. applying iterated expectation) leads to
E(uit|lg;) =0, t=1,...,T. (2.15)
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Let E(-|g) be the shorthanded notation for E(-|g; = g), and let ag = E(f;]g) be the group

fixed effect for group g. By (2.12) and the fact that

E(Z'pz’t - filg) = COU(Zpit,fi!g) + E(zpit]g) -E(filg), p=1,---, P,

the structural model follows as

E(zlyitlg) =E(zlxit|9)B + E(zly|9)nt + E(z)g)y, (2.16)

fort=1,...T; g=1,--- .G.

Thanks to z1;; = 1, the first row in eq. (2.16) represents the cohort level equations without
instruments, which is the basic case studied in Imbens and Wooldridge (2007).

The exogeneity condition (2.15) might appear non-substantial at the first glance, because
it seems we can always make F(uj|g;) = 0 holds by subtracting E(u;|g;) from w; and
redefine the deviation as w;;. But this subtraction operation is equivalent to the inclusion
of a full set of cohort-time effects in the structural model (2.16). Perhaps the following

equivalent representation of (2.15) makes the explanation clearer
dgt = E(ujlgi =9) =0, 9=1,...,G, t=1,...,T. (2.17)

If eq. (2.17) (or equivalently (2.15)) is not imposed, the GT parameters 04 for g =
1,...,G, t = 1,...,T will enter the structural model (2.16) as the full set of cohort-time
effects. Including the full set of cohort-time effects is equivalent to not imposing (2.17) (or
(2.15)). Therefore, the key assumption disguised by eq. (2.15) together with the specification
in (2.10) is that the structural model (2.16) requires only the set of group and time effects
(nt and ayg) but not the full set of cohort-time effects (d4¢). If any such cohort-time effect
is required, then, as pointed out in Imbens and Wooldridge (2007), one way to think about
the misspecification is that some 4t = E(u;t|g; = g) is not zero.

Note that the structural model with the full set of cohort-time effects is always correctly

specified, but it is not interesting because the variation in the covariate cohort means is
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absorbed by d4¢. As a result, such a the model is only identified up to the GT" cohort-time
effects.

A technical point here is that, due to the setup x1;; = 215+ = 1, there are only (G — 1)
parameters in ag and (7" — 1) in 7 to estimate. Imbens and Wooldridge (2007) make the
normalization Zgzl ag = 0 and 71 = 0. This chapter however proceeds with a; = 0 and
n1 = 0. The purpose of this slightly different normalization is to cope with the estimation
convention that the dummies for the first cohort and the first time period are always dropped.
As a result of the dropout, the sum (81 + a1 + 71) is identified, but 81, oy and n; are not
separately identifiable. The remaining estimated group and time effects are the relative
effects (ag — ) for g =2,--- G and (n; —m) for t =2,--- | T. Setting oy = m; = 0 then

conveniently simplifies (51 + a1 +n1), (ag — 1) and (n; —m1) to f1, ag and 7.

2.3.2 Useful notations

Some notations are useful later. Let Mgt = F(zjt|g) denote the population mean of a generic
variable x;; conditional on g; = g. For a vector (e.g. x;+) or a matrix (e.g. zgtxit) variable,

bold symbols like peg; or ,uggx will be used. In this notation, eq. (2.16) can be written as

/ / /
0 = —pp” + pg B + pg(ne + ag), (2.18)

fort=1,....T; g=1,--- G.

Also, for a generic variable x;; and j = (9 — 1)T +t, let u* denote the column “vector” with
ugt the jth row block. Depending on the dimension of x;;, u* can be either a column vector
or a matrix.

Let vyt = (yit, X;) and sz = z;3 ® v with ® denotes Kronecker product. s;; is a long

row vector. Assume the variance-covariance matrix of s;; exists and is denoted by

Qg = Var(sitlg). (2.19)

An explicit formula for Q;t is given in Appendix.
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Then the reduced form parameter 7t in this pseudo panel case can be expressed as

S/

m=ps = (uly, uSy, o )

The structural parameter is @ = (3,7, /) with o = (a1, ..., aq) and n = (n1,...,n7)".

Moreover, the right hand side of eq. (2.18) says the j-th row block of the h function is
/ / /
hj(m,0) = —pg” + pg 8 + py (e + ag) (2.20)

with j = (g — 1)T +t. Note that each h;(mw,0) is P x 1. Let x;; = (x;4,d,c) with d the
vector of time dummies and c the vector of group dummies. Then a second useful expression
for h; is

/

/
hj(m,0) = —pg,” + pug, 0. (2.21)

Later we will see that the two expressions (2.20) and (2.21) are convenient for calculating

partial derivatives of h.

2.3.3 The partial derivatives L and B and the inverse optimal weighting matrix
M

By eq. (2.21), it is trivial that

L = Vyh(m,0) = HZ/K (2.22)

/ /
where, as defined in the last section, pu?%* is the matrix with “gtz the j-th row block for

j=(g—-1)T+t.

On the other hand, recall eq. (2.20). For z1;+ = 1, u;% = 1, define VNE% [M;% (e + ag)] =
(nt + ag). Define By by replacing the first entry of B, i.e. B1, with (81 + m¢ + ), and
let byt(0) = Ip ® (-1, B’gt) with Ip the P-dimensional identity matrix. Some algebra (see
Appendix ) then shows that

bt(68), if §=gandi=t,

0, otherwise.
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Define another block diagonal matrix b(@) by putting bg(0) on its gt-th diagonal block.
Then
B =V h(m,0) =b(0). (2.23)

With the general formula in eq. (2.4) and the particular contents in eq. (2.19) and (2.23),

the inverse of the optimal weighting matrix, M, is given by
M = b(6)Q2°b(6)". (2.24)
In the Appendix, we show that an expansion of the right hand side of eq. (2.24) leads to

M = diaggr|(p1r1) ' b11(0)25b11(8)', (p152) 1b12(0)5,b12(8), - -

e (pG,KLT)_1bGT(9)Q?;TbGT(0)/}'

That is, M is a block diagonal matrix with (pg/it)_lbgt(e)ﬂztb;t(e) on the gt-th diagonal

(2.25)

block.
We also show in the Appendix that bgt(e)Q;tb’gt(O) is actually the variance-covariance

matrix of the composite errors within cell (g, t)
bgt(0)Q25,by,(0) = Egt = Var(zjyir — zixuB — 244 (ne + ag)|g]- (2.26)
Therefore another useful expression for M is

M = diaggT [(pllﬂ)_lau, (p1r2) =19, -, (parr) 1Ear| - (2.27)

2.3.4 Estimation
Assume we have T repeated cross-sectional random samples denoted by
{(y’itvxit7 Zitagit>> 1= ]-7 g U= 17 T T}

where n; is the number of observations for cross section t. Note that in each time period we
have a new random sample, so in general the same index ¢ refers to different individuals in

different time periods, and thus g;; sees a subscript ¢ added.
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2.3.4.1 Asymptotics of 7

Let 14 be the indicator function equal to 1 if A is true and equal to 0 otherwise. Let
vt = (71,72, Tit,¢) be a vector of group indicators with ry , = 1{g;s = g} where
1{-} is the indicator function equal to one if the event in {-} is ture. In this way the group
membership of the random draw ¢ at time t is properly treated as a random variable. It
follows that the number of observations in cell (g,¢) is also a random variable given by
Ngt = Z;Zl Tit,g-

Let ﬂgt denote the sample average within cell (g,t) for a generic variable z;;. Let pg =
P(rit g = 1) be the fraction of the population in cohort g and assume pgr = ngt/ny L pg-
Let k¢ = limp—sont/n be the fraction of all observations accounted for by cross section t.

By (essentially) the central limit theorem, for g =1,--- /Gand t=1,--- T,

X d _
V() — p) = Normal(0, (pgre) ~ Q5).

Furthermore, let 7 = (i3, 139, - - - , 1gp) and wp = (K5 Bgg ,p,zt)'. Then the results
above can be stacked in

Vi (& — ) % N(0,0)

where Q8 is a block diagonal matrix with (pgﬁ;t)_lﬂzt on the gt-th diagonal block.

2.3.4.2 Estimation of L

Eq. (2.22) suggests that a straightforward estimator for L is

~ /

L=p%% (2.28)

/ !/
p%% is the sample analog of u?*. Recall that x;; = (xj,d,c) and that x;; contains a

/
constant term. Then 1”2 is the matrix of the sample cohort means of the explanatory

variables, the instruments, and their interactions. Its dimension is GPT x (K +G + 1T —2).
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2.3.4.3 The general estimator 0 and the FE estimator 0

There exists an analytical solution to eq. (2.2) in the current setup, which turns out to be
a GLS estimator.
Specifically, given eq.(2.21) and (2.28), the first-order condition to eq. (2.2) in the current

setup can be written as>

()W (%0 — 4#v) = 0,

P,
Assume (1% %)W % % is nonsingular, then the general pseudo panel NMD estimator with

a weighting matrix W is given by

0 = ()W)~ (i) Wil (2.29)
Clearly, (2.29) is of the form of a GLS estimator where W serves as the inverse of the
“unconditional variance-covariance matrix of the error term”, and the cohort means ,&,Z/X
and ﬂz’y are the matrix of right-hand-side variables and left-hand-side variable, receptively.

In particular, replacing W with the identity matrix gives the fixed effect estimator

/ /

. -1
6 = (@)™ (W) ", (2.30)
The standard case without instrument in Imbens and Wooldridge (2007) corresponds to the

case P =1, i.e. deleting the letter z in eq. (2.30).

2.3.4.4 Estimation of B, M and éOpt

With @ as an initial estimator, an estimator for B follows from eq. (2.23) by substituting
with @ which leads to

~

B =b(6).

An obvious estimator for the variance-covariance matrix of s defined in (2.19) is

nt
- S _1 N N
Qe =1t Y ring(sie — i) (sie — £15y)-
i=1

!/ / /
3Note that (1% X)’ is the transpose of 1% X and is not the same as fi* 2.
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Then an estimator for %, QS, can be defined as the block diagonal matrix with the gt-th

diagonal block (ngt/n)_lflzt, ie.,

QO = diagar((n11/n) 1051, (n1a/n) 1, -, (ngr/n) " Q67).

Given B and QS, the following estimator for the inverse of the optimal weighting matrix
follows from eq. (2.24)
M = b(6)2°b(8)’. (2.31)

Eq. (2.31), however, may involve big matrices in calculation when the number of covari-
ates and/or instruments is large (the dimension of s increase quickly with multiple instru-
ments). Fortunately, eq. (2.27) provides an alternative but numerically equivalent way to
estimate M - all we need is an estimator for Eg¢. By eq. (2.26), E4 can be conveniently
estimated by Egt, the sample variance-covariance matrix of the residuals in cell (g,t) to be
defined as follows.

First, using the fixed effect estimator 8 to obtain the individual residual
Wit = Yir — X8 — (7 + dg). (2.32)

The cohort residual is then defined as

. nt
ﬂ;fu = ng_tl Zrit,gzpitﬁit- (2.33)
1=1
For p,q = 1,---, P, let 74 (drop subscript g,t from 7 for simplicity) denote the entry on
row p, column ¢ of égt. Then 74 is given by
nt 5 3
Tpg =yt Y Titg (zpmit — figh “) (zqita# - ﬂé?“) . (2.34)
=1

Finally, égt is defined as the matrix with the pg-th entry 7p,

[

gt = (Tpq)-
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Given égt, the second method to estimate M is via

M = diaggr|(n11/n) " E11, (n12/n) ' Bi, -+, (ngr/n) B (2.35)

which is the block diagonal matrix with the gt-th diagonal block (ng:/ n)_légt.

The numerical equivalence of the two estimators for M is summarized in the following

theorem.

Theorem 5. The two ways of computing M defined in eq. (2.31) and (2.35) are numerically

equivalent.
Proof. See Appendix. n

Whenp=q=1, 711 = n;tl Z:il Tit.g (ait — ﬂgt>2 which is of the same form as the 72
defined in Imbens and Wooldridge (2007),4 and M becomes a diagonal matrix that coincides
with the matrix C in Imbens and Wooldridge (2007).

With M in hand, by replacing W with M~ in eq. (2.29), the optimal pseudo panel

NMD estimator is obtained as

~opt ey 1 I NTL e
eop _ <(Mz X)IM 1/-le g) (“z Z)/M 1NZ Yy (2.36)
The above formula in its appearance is similar to a GLS estimator on the cohort level data.
But the weighting matrix is not the usual one used by a feasible GLS because M is computed
... . . . ~opt
from individual level data. For more detail about the connection and difference of 8™ to

GLS, see the next section.

4The formula in Imbens and Wooldridge (2007) needs the correction of demeaning. Be-
cause in STATA, the command for calculating the sample variance automatically demeans
the residuals.
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N ~opt
2.3.4.5 Estimation of the asymptotic variances of 6, 8 and 0"

~

With all the pieces worked out, and by Theorem 2, the asymptotic variance estimator for 0
is

Avar(®) = (W) () Warw ) (g Wirx)

For 0, it is

Avar(®) = (")) " (G sage) (@) s ()

Finally, for éOpt, it is

- . -1
Avar(GOpt) = ((ﬂzlz)'l\/[flﬂzlx) /n.

With the presence of additional IVs, dependence between restrictions are introduced since
each cohort repeats itself several times in the restrictions. The optimal weighing matrix is
more likely to be non-diagonal (it is block diagonal with block (ng:/ n)_légt). In fact, some

algebra (see Appendix) shows that another expression for Eg; is

[11

1

gt = E[(f?f‘l’uit)QZ;tZzﬂg : (2.38)

where

I'=fi—aq (2.39)

is the deviation of individual effect from its cohort mean. Without further assumptions

f

regarding the correlation between the quadratic terms (g5 + uit)Q and z;tzit, and the corre-

lation among the IVs in z;, Byt is generally non-diagonal. As a result, the use of optimal

weighting matrix becomes more important with the presence of additional I'Vs.

2.3.5 The GLS perspective

~opt . .
To better understand the relationship between 6" and its relation to GLS, define the

individual composite error as
eit = Yit — XitB — (t + ag) = 8{ + ujp.
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The residual @;; given in (2.32) is obviously an consistent estimator for e;. With e;;, the
vector of individual composite errors in cohort g is z;teit, and an alternative expression for
Egt in (2.26) is

Egt = Var[zéteiﬂg]. (2.40)

For a given g, define the cohort composite error as

g
~ARpE -1
'uggf7 = Nyt Zrit,gzpiteit- (2.41)
1=1
/
ﬂgte is similarly defined and represents the vector of cohort composite errors in cell (g,t).

/
The variance-covariance matrix of ﬂgte conditional on g is given by
!/
N 1=
Var(figlg] = ng Egt. (2.42)

From the MD perspective, ng is large, and ngtlEgt — 0 as ng — oo. It thus does not
make sense to model and estimate the “cohort composite errors” because they degenerate to
0 asymptotically.

The usual feasible GLS on the pseudo panel of cohort means ignores individual level data
and relies on much stringent assumptions on the unconditional variance-covariance structure
of the cohort composite error. In particular, the underlying asymptotics rely on large G.
The GLS estimator in eq. (2.36) is apparently not the usual feasible GLS. Rather, it is an
GLS imposing the following block diagonal variance-covariance structure of all the cohort

composite errors

diaggriniy Bi1,n15 B1a, -+ ngrEar) (2.43)
Eq. (2.43) contains GT'P(P + 1)/2 parameters, and thus is never feasible if only the GT'P
cohort means are observed. But if the individual level data are available, eq. (2.43) can be

well estimated by

diager[ni E11, 75 E12, ngpEer] =1 M. (2.44)
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Using n~'M in a GLS formula leads to eq. (2.36); the n~! cancels off. From the GLS
perspective, the weighting by n 1M~ standardizes the sample cohort composite errors so
that they become close to uncorrelated and homoskedastic.

It is worth noting that eq. (2.43) is not the unconditional variance-covariance matrix of

/
7€ On each diagonal block is eq. (2.42), the conditional variance-covariance matrix of

ﬂg;e given g.

From the MD perspective, there is no asymptotic variance-covariance matrix for the
sample cohort composite errors because Var[ﬂzle] — 0 as ngt — 005 s0 is nIM1 =0
as ngt — o0o. Rather, what matters is the following set of relocated and rescaled estimated

structural equations,

/

! o / R, /
0 =— Vn(fg” — mp”) + V(g — pg) B+ Vnlfg — pg) (0 + ag), (2.45)
)
= — Vg, (2.46)

fort=1,....T;, g=1,--- ,G.

The above equation is obtained by manipulating eq. (2.18). Asymptotically, eq. 2.46

z/e

converges to GT P random restrictions. The asymptotic variance of \/ﬁﬂgt

is exactly M.
Therefore, to use all the random conditions efficiently, the random restrictions need to be
weighted by the square root of ML, In estimation, M~! is replaced by M_l, but their
function is equivalent asymptotically. Given fixed GG, T" and P, and ng — oo, the use of
M—1is totally legit since M~ does not converge to 0. The weight M1 adjusts the relative

importance of each sample restriction according to its level of accuracy. The level of accuracy

for the gt-th sample restriction is measured by (ng¢/ n)_légt.

2.3.6 Naive variance estimators for

Because 0 is the fixed effect estimator on the pseudo panel of the sample cohort means,

it is also convenient to compute the usual asymptotic variance estimators for a fixed effect
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estimator. These naive estimators, however, are generally incorrect because they only make
use of the sample cohort means.

Before listing the formulae for the naive variance estimators, we summarize several pos-
sible reasons in repeated random cross sections that may ruin their validity. We cite the
reasons that apply to the breakdown of each estimator in later discussion.

1. ,&Zf “ and ﬂ;‘t]u are generally correlated (dependence over p for fixed g and t)

. ~2pl . ~ZpU ~2ql
2. the variance of i g}t) , as well as the covariance of [ glt) and [ gg , depends on z;; (het-

eroskedasticity)

3. ,[Lzltj B depends on ¢ because of either z;; or even w;; itself depends on g (non-identical

distribution over g)

Among the three items, the last one is the most crucial because all the naive variance
estimators discussed below rely on large G.

We consider three naive asymptotic variance estimators. Their formulae in a standard
model can be found in Wooldridge (2010) as well as other textbooks. The first is the non-
robust variance estimator for which the consistency relies on a scalar (proportional to an
identity matrix) variance-covariance structure of the cohort composite errors. To obtain this
formula, recall the definition of ﬂ;fﬂ in eq. (2.33). Define the mean squared error for the
pseudo panel as

62 = (GTP—K-G-T+2)7" 3 (a"?.

g,t,p

Then the naive non-robust variance estimator can be written as
-1

— /
A -2 ~ X 2Zp ~ ZpX
Avary(0) =& Pogt  Fbgt

g;t,p

The subscript n in typewriter font stands for “non-robust”. Its validity hings on i.i.d. sam-
pling over (g, t, p) and homoskedasticity of ﬂ;zg u, neither of which holds in a pseudo panel of

sample cohort means due to all three reason listed.
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The second is the naive heteroskedasticity-robust variance estimator whose formula is

given by
-1 —1
- x 2 . 2px 2pl x' 2y . 2px x 2 . 2px
_ L R PUND A D ~~PZ L
g,t,p g,t,p g,t,p

The subscript r stands for “robust”. The estimator is robust to heteroskedasticity in the
cohort composite error ﬂ;f “. But its validity still relies on i.i.d. sampling over (g, t, p) which
does not hold due to reasons 1 and 3 mentioned above.

The third is the naive cluster-robust variance estimator and its formula is
-1 -1

Avarg(@) = | ux Pt S A g u;in it | (Y ux Pi™
gt:p gt,r,pyq gt:p
The middle term can also be written as
S il g u;(t/Zp figh = Zm;?“)?u;‘fp AP Y g u;(t/Zp gt

g:t:rp.q g;tp gt#r.p#q
where the first sum is exactly the middle term in the naive heteroskedasticity-robust variance
estimator. The naive cluster-robust variance estimator is robust to arbitrary heteroskedas-
ticity and serial correlation in the cohort composite errors IJS €. But its validity relies on
i.i.d. sampling over g which may not hold due to reason 3 listed above.

Some other equivalent representations of the three naive variance estimators are infor-

—

mative of their link to Avar(@). Write the three naive estimators as

/ /

Amé) _ <(ﬂz’x)/ﬂz’x>_1 ((ﬂZ/K)’(éQI)ﬂZ 5) <(ﬂ XY/ 7 x>_1 ’
Amé) _ ((ﬂzlx)/ﬂzlx>—1 ((ﬂzlx)l (diag(ﬂzla)>2 (i x) <(ﬂZ/X)/ﬂz/x>—1 |
Amé) _ ((ﬂz/X)/ﬂz/X>_1 (( X diage (p® )dzagG(MZ/ﬁ),ﬂz/§> ((ﬂzlx)/llz/x)_l ;

!~ /-

where diag(fx” ") is the square, diagonal matrix created by putting the vector g “ on the
/.

principal diagonal, and diagg(® *) is the block diagonal matrix with the gth diagonal block

/.
;],3 “for g = 1,---,G. Then clearly, the three naive variance estimators can be obtained
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/-

N 1o\ 2 /-
by replacing M/n in eq. (2.37) with (5%I), <diag(ﬂz “)) or diagg(p® ) diaga(p® ™),
respectively.
Yet another set of equivalent representations provide some insights on the large G per-

spective of the naive estimators. Specifically, write
— / o\ ! / / / 2\ !
Avara(6) = (Z(ﬂz *) i ") (Z(ﬂz ) (T p) i ") (Z(ﬂZ *) i X) ,
g
- AZX/AZ/X - ~Z X\/ . Azlﬂj 2AZ/X AZ,X/AZ/X !
Avarg(0) = (> (frg ) frg > (g ™) (dwg(ug )) g =) D g ) g ™ |
g
/ o\ / / / o\
- . . . S R N
Avare(6) = (Z(uf; *) g X> (Z(uf; a2 (gl fug X) (Z(ug *) fug X) .
g

/- /-
where diag(f17 ") is the square, diagonal matrix created by putting the vector fig “ on the
principal diagonal. In essence, the three naive variance estimators differ in estimating (treat

g as random)

/ZX

B A A

i.e. the middle term of the sandwich-form. But they all need i.i.d. sampling over g, which
is not satisfied in the MD framework due to reason 3 listed above. The estimation errors in

the cohort means are also ignored.
—_— —_—

The last point we want to make is about the relationship between Avarc(0) and Avar(0).

First, rewrite

~1 -1
AW@):(Z(;);X)%;X) (Z(ﬂz")’(n—lmgmzx) (Z(ﬂz")’ﬂz") .

g
(2.48)

—

A

It is then clear that /lg (u “) and n_lmg are the the only difference between Avar¢(0) and

—_—

PR /v

Awar(0). Notice that frg ( ) R~ diag(,&g/la(ugl“)’ ﬂ;T“(/l %)) and that n’ll\A/Ig =
!~

diag(ng_llEgl, - gT'_'QT> Moreover, notice that Ngt (/fL ) = (,ugfu,u;u)pq and that
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gtl Bgt = Ny 1(qu)p g- Therefore, the comparison boils down to the difference between

I ng
L Zpl . ZqU -1 . -1 -

i=1 =1
and
nt . .
—1A o -2 o AZp’U, o AZq’LL
=1

—

That is, Avarc(é) uses /l;f " ,&z(gu to approximate the covariance between the cohort composite
errors ﬂZ]t) “ and ,&Z?e, which uses only cohort-level information, and is not an estimator for
C’ov(,u?; e, ,& gt | g) because [ [1, gt ,u gt " is observed only once for given g, ¢, p. On the other hand,
var(0) uses 7y, to estimate the covariance between the individual composite errors zpe an
A 0 Tpq to estimate th i bet the individual it pe and
zqe, which uses individual-level information, and is indeed an estimator for Cov(zpe, z4€|g)
because 7pq averages over mg; observations. The additional n;fl then transform it to a

legitimate estimator for C’ov(,ugf e,u;?6| g). Apparently, n qu is a better estimator for

Cov(figyfigt |g) than Mzﬁuu§§u~

What conclusion do we get from this comparison? First of all, Algrc\(é) can only make
sense if we have random sample over g, because eq. (2.47) averages over g. Second, a
relatively large number of groups is also needed for the large G asymptotics to work. In the
just-identified case, there is no Az;r’c\(é) because the residuals are all 0. Third, A@é)
also needs fixed ngs, otherwise the cohort composite error ﬂg;e degenerates to 0. This is

however not too much a problem because in a sample ng is always finite.

2.4 Simulation

This section contains a simulation study for the optimal NMD estimator and the NMD

estimator with identity matrix (i.e. the FE estimator) in the pseudo panel case with instru-

SNote that we do not need the formula above to calculate u gt ,uzgu, ;LZ]Z u,u;gu can be

obtained from calculating the cohort-level residuals. The formula is to provide an insight of
its relationship to n&lqu.
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ments. The major purposes of this simulation study are (i) to illustrate that the formulae
derived in the last section work when the model are correctly specified, and (ii) to show that
valid instruments improve estimation efficiency. We also look at naive ways of computing the
standard errors that only make use of the cohort level data. Their performance is compared

to the NMD standard errors, and explanations for the difference are provided.

2.4.1 Simulation design

Throughout the simulation study, the outcome y;; is generated as a linear function of the
covariates (z1;+ = 1,29, T3it, T44t), the time effect n, the individual effect f;, and the

idiosyncratic error w;:
Yit = B1 + Bowoir + B3wzi + Bavair +me + fi tugg, i=1,--- Ny, t=1,--- T, (2.49)

The parameter values used are 8 = (01, 82,3, 04) = (1,1,1,1). The time effects are gen-
erated by ny = t — 1, and the cohort effects are generated by ay = g — 1. Individual
fixed effects are generated by adding a random normal disturbance to the cohort effects, i.e.
fi ~ N(ag,1). To fix ideas, it might be helpful to think of x9;, x3;; and x4; as education,
experience and marital status, respectively. The outcome y;; is the log hourly wage, and
there is an individual effect f; representing some unobserved ability.

We focus on estimating the coefficient of z9;; for which the distribution is given later.

The distributions of the two auxiliary variables x3;; and x4 are given by

3t~ N(sin(gt), 1),

1
.~ B I '
T 45t ernoult (1 + exp[l.5 sin(gt/Q)})

That is, x3; is a continuous variable with population cohort mean sin(gt) and within cell

variance 1; x4+ is a binary variable equal to 1 with probability Treap(l 518111(9 727 Since the
individual-level disturbance to zs;; and x4, are independently generated, they are always

valid IVs. A time-invariant external instrument is generated as z; ~ N(0,1).
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We investigate a small pseudo panel (G = 6, T = 4) and a middle sized one (G = 30,
T = 20). In the small pseudo panel, the idiosyncratic error wu;; follows N(0,10), and the

following 5 cases for x9;; are considered

—_

- it ~ N(gt/6,1),

2. x9;t ~ N(gt/6,1) + f;,

3. w9t ~ N(gt/6,1) + z;,

4. w9y ~ N(gt/6,1) + z; + fi,
5. w9y ~ N(gt/2,1) + z; + f;.

The standard deviation for ,ugtz over (g,t) is about 1. Note that x9;; is a valid IV in cases 1
through 3, but not valid in cases 4 and 5.
In the middle sized pseudo panel, u; follows N(0,100) which has a bigger variance than

in the small pseudo panel. The five cases considered for x9;; are

—_

. mo; ~ N(gt/150,1),

2. w9y ~ N(gt/150,1) + f;,

3. woi ~ N(gt/150,1) + 2,

4. woj ~ N(gt/150,1) + z; + f;,
5. wo; ~ N(gt/50,1) + z; + fi,

The standard deviation for /L;? over (g,t) is about 23. The variance-covariance as well as
correlation matrix of (p;’?, ugt?’, ugf) are given in Table 2.1.

Case 4 in each setup is the case of major interest. Cases 1 through 3 are used to isolate
the effect of adding f; or z; as part of x9;+. Case 5 checks the effect of a larger variation in

the cohort mean of x9;¢.
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Table 2.1 Variance-covariance and correlation matrix of (,uzf, 1 gf, 1 gf); correlation

coefficients in parentheses. u;:? = sin(gt), u;? = (1 + exp[1.5 *sin(gt/2)]) L.

G=6,T=4 G =30, T = 20;
gt = gt/6 gt = gt/150
Ho? 1.078 ot 0.834
(1) (1)
T -0.142 0.488 Hop -0.013 0.507
(-0.195) (1) (-0.020) (1)
T 0.107 0.018  0.054 ot 0.009 -0.001  0.056
(0.444)  (0.109) (1) (0.040)  (-0.006) (1)
G=6,T=4 G =30, T = 20;
2 2
T T T x x T
ot Hoi Hot Kot Hop Hot
ot 9.701 ot 7.508
(1) (1)
ot -0.425 0.488 ot -0.039 0.507
(-0.195) (1) (-0.020) (1)
ot 0.322 0.018  0.054 ot 0.026 -0.001  0.056
(0.444)  (0.109) (1) (0.040)  (-0.006) (1)

In the ideal situation, we would like to draw a population of size infinity so that the
cohort level population equations hold exactly. Take case 4 as an example, that would mean

the following set of equations holds exactly

1
1 + exp[l.5sin(gt/2)]

E(yitlg) = b1 + 5219—;0 + B3 sin(gt) + B4

But drawing an infinite number of observations is obviously infeasible. Therefore, we choose
a relatively large number as the population size. The true distribution of the resulting

population is of course its empirical distribution, but we could think of it as an approximation
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of the population defined by eq. (2.49). Eq. (2.50) also holds only approximately, but the
difference should be negligible for the purpose of this simulation study.

In the current setup, the population cohort sizes are set equally to Ng = 10° for all g
and t. That means a population panel of N = 2.4 x 105 individual-time points for G = 6
and T =4, and N = 6 x 107 for G = 30 and T = 20.

After the population is generated, we fix it over simulations. In each replication, we
draw repeated random cross sections from this fixed population. To have an idea on how
the sample size affects the estimates, we consider two different sampling rates, 0.2% and 1%,
which result in the sample cohort sizes ng = 200 and 1000, respectively.

The simulation design above is careful in the two places emphasized by Imbens and
Wooldridge (2007). First, data for each section is drawn from the population independently
across time, and because of the random sampling in each period, the group identifier is also
randomly drawn. Second, eq. (2.49) has full time effects which is more realistic than Verbeek
and Vella (2005) that omits the aggregate time effects, for the variation in /{i](t here is net of
the time effects.

For 8 = (B8,m,) in eq. (2.49), we consider the NMD estimator with identity matrix
(6) and its standard error (s.e.), and the optimal NMD estimator () and its s.e.. Because
0 is the fixed effect estimator on the pseudo panel of sample cohort means, three naive s.e.
estimators, namely the non-robust s.e., the heteroskedasticity-robust s.e. and the cluster-
robust s.e., are also computed. They are the usual s.e. estimators routinely computed for
the fixed effect estimator in a true panel, but are naive in a pseudo panel because they
treat the sample cohort means as observations carrying no errors and completely ignore the
individual-level data.

Besides the basic NMD uses no IV, each of z, x9, x3 and x4 is used one at a time as the

6 A relatively higher sampling rate might introduce too much overlap among the repeated
cross-sectional samples. Therefore, we also consider the setup Ny = 1.5 % 107 with sampling
rate 0.2%. The result shows that there is no essential difference from the setup Ny = 3 % 103
with sampling rate 1%.
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additional IV. The NMD using all 4 variables as the additional IVs is also estimated.

2.4.2 Simulation results for the small pseudo panel

At the center of the simulation study is Case 4, as cases 1 through 3 are its simplified cases to
pin down the effect of the correlation of x9;; with z; and f;, and Case 5 is a variation of Case
4 that increases the variation in the cohort mean of x9. Therefore we focus on analyzing Case
4 in this section. The Monte Carlo simulation results for case 4 from 1000 replications for
the coefficient and s.e. estimators of x9 are presented in Table 2.3. Two sample cohort sizes,
ngt = 200 and 1000, are considered. For each considered quantity, the Monte Carlo average
and standard deviation over the 1000 replications are reported, with the standard deviation
in parentheses. The estimators with no IV, z as IV, and x9 as IV are picked because they
provide most of the insights. The results on the same quantities in Case 3 are reported in
Table 2.2. Detailed results are in Tables B.1 through B.20 in Appendix B.

Several observations stand out from Table 2.3. First of all, the NMD coefficient estimators
work well in all cases except when the invalid IV z9 is used. Both fy and Bg are close to
the true value in columns 1, 2, 4 and 5. As the sample cohort size ng gets bigger, the
slight biases in (9 and BQ get even smaller; and their Monte Carlo standard deviations also
shrink. Second, the NMD s.e. estimators also work well, even when 9 is used as the IV. The
Monte Carlo averages of 3?(\52) and @ are close to the standard deviations of f and

—

Bg throughout all columns, and having a bigger cohort size, as expected, reduces 36(52) and
sgﬁ\z) universally. Third, using a valid and relevant IV improves efficiency, but the validity
of IV is crucial. Compared to using no IV (column 1 and 4), using z as IV (columns 2 and 5)
leads to reduced Monte Carlo averages of @ and 3?(\,@2) and smaller finite sample bias in
B9 and BQ. The usage of the invalid IV x5 (columns 3 and 6), however, introduces persistent
biases in 39 and Bg that do not vanish as cohort size gets larger. Note that x9 is not a valid

IV because it is correlated with f;, which violates the condition in (2.12).

A comparison with the results in Table 2.2 confirms that the correlation between x9;; and
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Table 2.2 Finite sample properties of various estimators of #9 and its standard error,
G =6,T =4. Case 3. x9; ~ N(gt/6,1) + z;

ngt = 200 ngt = 1000
none z 9 none z 9
B 19909 19980 19965 9937 19982 19964
(.1623) (.0430) (.0421) (.0714) (.0191) (.0191)
se(Bs) 1590 0463 0436 0720 0206 0192
(.0117) (.0012) (.0020) (.0023) (.0002) (.0004)
sen(fB2) 1552 0457 0488 0698 0205 0218
(.0349) (.0054) (.0092) (.0144) (.0025) (.0039)
ser(Ba) 1393 0508 0490 0627 0229 0217
(.0425) (.0073) (.0094) (.0181) (.0034) (.0040)
sec( ) 1423 0496 0431 0639 0223 0189
(.0603) (.0159) (.0154) (.0283) (.0073) (.0069)
B 9911 9979 9981 9936 19982 9987
(.1623) (.0437) (.0324) (.0713) (.0191) (.0143)
se(B2) 1585 0452 0327 0720 0205 0148
(.0117) (.0012) (.0007) (.0023) (.0002) (.0001)

fi invalidates xo;+ as IV. In absence of the correlation between x9;; and f;, x9;; is exogenous
and becomes a valid IV for itself. As a result, no obvious bias is observed in 9 and BQ when
x9 is used as IV in Table 2.2. In effect, x9 is a better IV than z, since Table 2.2 shows that
5@ and s?(\52) become smaller on average when the IV is changed from z to x9. This
makes sense because no IV is more relevant to a variable than the variable itself.

—

When the IV is changed from z to x9 in Table 2.2, a larger reduction is observed in 36(32)
than in se(fs). This observation highlights a typical situation to use the optimal weighting
matrix - when the IV brings in within-cell heteroskedasticity and correlation. Specifically,

when z is the IV, we show in the Appendix that
) (2.51)

where 02 =F (5f + ujr)?| g] . This implies that the optimal weighting matrix is proportional

7
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Table 2.3 Finite sample properties of various estimators of 39 and its standard error,
G =6,T =4. Case 4. x9; ~ N(gt/6,1) + z; + f;

ngt = 200 ngt = 1000
none z 9 none z 9
B 1.0153 1.0048 1.2218 19989 19996 1.2166
(.1599) (.0431) (.0947) (.0716) (.0191) (.0423)
se(Bs) 1575 0462 0951 0719 0206 0421
(.0143) (.0014) (.0071) (.0029) (.0003) (.0014)
sen(fB2) 1537 0455 0728 0697 0205 0405
(.0356) (.0054) (.0188) (.0145) (.0025) (.0082)
ser(Ba) 1388 0506 0752 0627 0229 0458
(.0427) (.0074) (.0191) (.0181) (.0034) (.0106)
sec( ) 1440 0494 0947 0642 0223 0711
(.0631) (.0159) (.0420) (.0284) (.0073) (.0254)
B 1.0155 1.0048 1.3194 19989 19996 1.3220
(.1598) (.0437) (.0266) (.0715) (.0191) (.0120)
se(B2) 1569 0451 0266 0719 0205 0120
(.0142) (.0014) (.0006) (.0029) (.0003) (.0001)

—_—

to an identity matrix, which explains why the averages of 56(32) and se(f39) are close to each
other and to the standard deviations of B9 and BQ in Table 2.2 when z is the IV. On the

other hand, when x9 is used as the IV, we show that

gt
1 150
g

. 2o (2.52)
g

— 2
:dgt — O-e

which has within-cell heteroskedasticity and correlation. The resulting optimal weighting
matrix is distinct from an identity matrix.
The results on the naive s.e. estimators, se,(32), ser(B2) and seq(f2) are also consistent

with the theory. We leave the discussion to the next subsection because the pattern is more

obvious when G is greater.
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Table 2.4 Finite sample properties of various estimators of 39 and its standard error,
G =30, T =20. Case 3. x9; ~ N(gt/150,1) + z;

ngt = 200 ngt = 1000
none z x9 none z x9
3 1.0134 1.0022 1.0012 19980 19996 19996
(.0839) (.0277) (.0248) (.0399) (.0121) (.0106)
se(fo) 0842 0277 10239 0387 0123 0105
(.0011) (.0001) (.0002) (.0002) (.0000) (.0000)
sen(f2) 0842 0274 0286 0388 0123 0129
(.0028) (.0006) (.0009) (.0012) (.0003) (.0004)
ser(Bo) 0838 0281 10269 0387 0125 0119
(.0045) (.0008) (.0009) (.0021) (.0003) (.0004)
sec(fBa) 0841 0282 0241 0385 0124 0105
(.0143) (.0037) (.0035) (.0067) (.0016) (.0016)
By 1.0134 1.0020 1.0016 9979 19995 19993
(.0843) (.0279) (.0209) (.0400) (.0121) (.0087)
se(f9) 0837 10269 0196 0387 0123 .0089
(.0011) (.0001) (.0001) (.0002) (.0000) (.0000)

2.4.3 Simulation results for the middle sized pseudo panel

The results in Table 2.5 and 2.4 for the middle sized pseudo panel basically tell the same
story as the small pseudo panel. We focus on two points that stand out. These two points

are less clear, although also exist, in the small pseudo panel.

First, the results on the naive s.e. estimators, sep(32), ser(f2) and seq(f2) are consistent

with the theory. This is best seen from the last column in Table 2.4. Moving down the list
sen(B2), ser(B2) and seq(f32), the bias in the Monte Carlo averages gradually declines. The
Monte Carlo average of 360(52) rounded four decimal places is even identical to that of

—_—

se(Ba). The reason is that, when z9 is used as IV,
7 Z/e - —1’ﬂ —ll—
Va'r[lu“l-l’g |g} = dlag(ngl :‘glv T >ngT‘:‘gT)

is indeed block diagonal by eq. (2.52). Among the three naive variance estimators, only the
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Table 2.5 Finite sample properties of various estimators of 59 and its standard error,
G =30, T =20. Case 4. x9; ~ N(gt/150,1) + z; + f;

ngt = 200 ngt = 1000
none z 9 none z 9
B 1.0496 1.0106 1.1137 1.0061 1.0013 1.0285
(.0830) (.0276) (.1376) (.0395) (.0120) (.0642)
se(Bs) 0826 0276 1339 0386 0123 0633
(.0012) (.0002) (.0026) (.0003) (.0000) (.0006)
sen(fB2) 0826 0273 0783 0387 0123 0382
(.0028) (.0006) (.0037) (.0012) (.0003) (.0016)
ser(Ba) 0822 0280 1249 0385 0125 0594
(.0045) (.0008) (.0111) (.0020) (.0003) (.0051)
sec( ) 0824 0281 1222 0384 0124 0585
(.0139) (.0037) (.0302) (.0066) (.0016) (.0151)
Bo 1.0493 1.0104 1.3186 1.0060 1.0013 1.3199
(.0835) (.0279) (.0175) (.0395) (.0120) (.0071)
se(B2) 0821 0268 0162 0385 0122 0073
(.0012) (.0002) (.0001) (.0003) (.0000) (.0000)

cluster-robust version correctly accounts for the variance-covariance structure of the cohort
composite error. The heteroskedasticity-robust version only captures the heteroskedasticity
but not the within-cluster correlation. The non-robust version accounts for neither.

As a comparison, in the 4th and 5th columns of Table 2.4, the Monte Carlo averages of
sg@), sg@) and SZ(E) are all close to that of sj(\ﬁz). This is because Var[ﬂgle| g] is
proportional to an identity matrix when none or z is used as IV. As a result, all three versions
of the naive variance estimators are correct in their modeling of Var[ﬂ§,6|g]. Moreover,
from sg@) through S;(E) to s;(g), the s.e. estimators become less and less efficient,
indicated by greater and greater Monte Carlo standard deviations. This is also consistent
with their well-known relative efficiency property. Of course, @ is much more efficient

than any of the naive estimators, for se(Bg) makes use of the extra information from the

individual-level data.
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Secondly, the first column in Table 2.5 shows noticeable bias in (y and BQ. It is finite
sample bias because as ngt gets larger, the bias shrinks quickly. A comparison with the first
column in Table 2.4 confirms that the correlation between x9;; and f; contributes to a large

part of the bias.

2.5 Concluding remarks

This chapter develops a general NMD framework that imposes (partial) differentiability on
the structural equations. The differentiability conditions are stronger than the MD frame-
work in Newey and McFadden (1994), but the resulting framework is more convenient to
work with in application. Consistency and asymptotic normality are established, as well as
the optimal weighting matrix expressed as functions of the partial derivatives of the struc-
tural equations. A theorem that echoes the GMM property that more moment conditions
do not hurt is given. The general framework is then applied to the special case of pseudo
panel. Simulation results are consistent with the theory.

The property that having more moment conditions could improve efficiency is first noticed
in the exercise of adding external instruments in pseudo panel MD estimation, which is
an extension to the work on pseudo panel by Imbens and Wooldridge (2007). We would
like to establish this property in a more general setup, hence the NMD framework at the
beginning of this chapter is motivated. Having both the general framework and the case
of pseudo panel as an example in the same chapter helps the understanding of the general
concepts. In particular, we find that the inverse optimal weighting matrix is exactly the
variance-covariance of the relocated and rescaled structural equations in the pseudo panel
application, which provides straightforward intuition for why the optimal weighting matrix
works. Essentially, the optimal weighting matrix down-weights the structural equations that
are volatile and give more weights to those that are less volatile, and correlation between

structural equations are also accounted for.
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The NMD estimation in pseudo panel correctly relies on large ng: but fixed G, T' asymp-
totics. Naive methods like FE on the cohort means are found to be the NMD estimators
using the identity weighting matrix. But the naive s.e. estimators, including the usual s.e.,
the s.e. robust to heteroskedasticity and the cluster-robust s.e., rely on at least large G
asymptotics. Even when G is moderate or large, depending on how complicated the I'Vs are,
the usual s.e. and the one only robust to heteroskedasticity may not capture the correct
variance-covariance structure. The cluster-robust s.e. though has the potential to work for
large G because it is fully robust. But since it ignores the individual level data completely,
it is always less efficient than the NMD s.e. estimator using identity weighting matrix. The
optimal NMD is always the most efficient among these candidates. we conclude that when
there are extra IVs to explore, it is important to use optimal weighting.

The comments in Imbens and Wooldridge (2007) regarding flexible specifications provide
several ideas we would like to investigate in future research. First, we intend to extend
the application to dynamic models, i.e., to add lagged dependent variables in the list of
explanatory variables. This is an issue that has been studied by Moffitt (1993); Collado
(1997); Girma (2000); Verbeek and Vella (2005); McKenzie (2004) among others. In dynamic
models, the advantage of having the general NMD framework stands out. There is no
need to tailor the framework in any way, since we can still define the vector of reduced
form parameters as before. Because cohort means of the dependent variable do not appear
redundantly in the reduce-form parameters, their asymptotics are well defined. The cohort-
level equations are also of the same form as before; the only difference is that the equations
for the first several periods need to be dropped because of the lags. Second, we intend to
add unit-specific trend in the unobserved heterogeneity as in the random growth model of
Heckman and Hotz (1989). Third, an even more flexible extension is to let the factor loads
on the unobserved heterogeneity be time-varying. These extensions should be easily handled
by the NMD framework. Lastly, we are also interested in an empirical application of the

method. Currently, we am working on applying the pseudo panel method to estimate returns
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to education using data from the U.S. Current Population Survey.
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APPENDIX A

PROOFS AND ALGEBRA

A.1 Proof of consistency

Proof. Prove by verifying verifying (i)-(iv) of Theorem 2.1 in Newey and McFadden (1994)
]

A.2 Proof of asymptotic normality

A sketch of the idea first. By the first part of (ii), a mean value expansion of each com-
ponent of h(#,8) around 6y leads to h(#,0) = h(#,0y) + L(#,0)(0 — 6y) where 0 is a
vector of mean values. A similar expansion, h(7, 8y) = B(m,0) (7 — m), follows by the
second part of (ii) and h(mwg,8p) = 0. Substituting the two expansions in the first-order
condition and solving gives /(0 — 8y) = —[L(#,0)WL(#,0)]"! - L(#,0)WB(x, ) -
V(& — 7). By the first part of (iv), 8 2 6, and continuity of L(7,0) on 4 (0) in (i),

~

we have that, with probability approaching one, HL(ﬁ', 9) —L|| < HL(ﬁ', é) — L(mg, 0)

+
HL(wo,é) —LH < supgey (g, IL(#.8) — L(mo, 0) | + HL(ﬁo,é) - LH P 0. Similar, the
convergence ||L(#,8) — L|| & 0 follows by 8 % 6, and |B(7,8) — B|| & 0 by © & mg
and continuity of B(sw,8) on .#(8p). Condition (iv) guarantees that (L’ VVL)i1 exists,
and thus, with probability approaching one, the existence of [L(#,0)WL(#,8)]"1. The
conclusion then follows by (iii), Slutsky’s theorem and the asymptotic equivalence theorem.

A full proof with technical details is given below.

Proof. By (i), without of generality .4 (8g) (.4 (mg)) can be assumed to be a convex, open
set contained in © (IT). Then A4 () (A (mg)) is also connected since @ € RY (IT € RX).

73



Let 14 denote the indicator function for an event A. Let A} = {6 € A4 ()} and Ay =
{# € A (m()}, and . Note that 6 Lo, (7 LA () implies 14, L (14, LA 1).

(1) By the first part of condition (ii) and the first order condition for a minimum, 14, -
L(#,0)Wh(#,0) = 0. The multiplication by 14, is needed because by (ii) L(r, 6) only
exists on A (6g). 0 is pointwise defined by 8 = argmin h(7, 9)’Wh(ﬁ', 0), not by the first

0cO
order condition L(7r,8)Wh(7r, 0) = 0. For some realization of 7, the corresponding 6 may

not lie in .47 (8y).

(2) Since A4(6g) is connected, by condition (ii) and mean value expansion theorem,
La, - hj(7,0) = 14, - hj(7,60) + 14, - Lj(#,0;)(0 — 6) for j = 1,---,.J, where ; is
a random variable equal to the mean value if 1 A = 1 and equal to @y otherwise. Again,
this complication is needed because 6 is not necessarily in 4°(0g). Clearly, éj L 0g as
6L 0g. Collect all the J mean values in the matrix 0, and let L(7,0) be the matrix with
J-th row Lj(m, éj). Then those expansions can be written collectively as 14, - h(m, ) =
14, -h(m,00) + 14, - L(m, 6)(0 — 0). Substituting in 0 = 14, - L(m, 6)Wh(#, 6) leads to
0=1y, - L(#, 6)Wh(#,60) + 14, - L(#,0)'WL(#,0)(6 — ).

(3) By a similar reasoning and the fact h(mg,8p) = 0, write 14, - h(m,0) = 14, -
B(7,8p)(7 — m), where 7, the j-th column of the matrix 7r, equals to a mean value the if
1y =1 and equal to m( otherwise, and B(7r, 6) is the matrix with the j-th row B (7, 6)).
T L ™) as T LA mp. Also, 14, L1, and B(m, 0y) LB by the second part of condition
(iv). Substituting again gives 0 = 14,4, - L(, 0)Wh(#,00)B(7, 00) (7 — m() + 1404y -
L(#,0)WL(#,0)(0 — 6).

(4) Let A3 = {L(#,0)WL(#,8) is nonsingular}. Let V be a random variable equal
to L(#,0) WL(#, 0) if 1 Ag = 1 and equal to the K-dimensional identity matrix otherwise.
By the first part of condition (iv), L(#,0) & L and L(#,0) & L. Then by condition
(v) and w 4 W, lag L 1and V & L'WL. Substituting for another time gives 0 =
14,nA9n 45 - L(7, 8)Wh(#, 60)B(, 60) (7 — 7o) + 140450144 - V(0 — 60).

Now, let Ag = A1NA2NA3. Note that lg, = 1aq-1a, '1A3 L Multiplying by 1/n and
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solving gives /(6 — 6p) = —14, - V" 'L(#,0)'Wh(#, 00)B(#, 80) - /(& — mg) — (14, —
1)\/5(9 —6p). The conclusion follows by Slutsky’s theorem and the asymptotic equivalence

theorem. O

A.3 Proof of optimal weighting matrix

Proof. For an arbitrary W,
(L'WL) ' 'WBQB'WL (L'WL) ' — (I/(BQB')~'L) !
= D'(BOB)"'D

is positive semi-definite, where

1

D= (UWL) 'L'W - [/ ('WL) ' L] 'L/(BQB') ..

A.4 Proof that extra conditions do not hurt

Proof. Notice that

Vaiahi(mg, 0 B
B — Vyh(mo.00) = | " 1(m0,600) _ B
Vrha(mg,0) B»

Then
/
B B
M=BOB = | |a| "
B,| |B,
| BiB] BB, | | M1 Mip
B,OB)| ByOB) M1 My

Also notice that

Vghi(mo, 0 L
L — Vph(rg.00) — eh1(mo, 0) _ I
Veha(m,0)) Lo

1)



Now, define F = My 9 — M271M1_%M1,2. F is the Schur complement of M 1 in M. Then

L'M~'L
- a7 -1
I M1 Mo Ly
Lo My Moo Lo

- 9/ r

Ly MﬂJrMﬁMl,gF_lMg’lMi} —MHMLQF_l L,

Lo —F—1M271M1—7} F1 Lo
— L3 (M} + MMy oF M M 1) — LoF My M ],
LMY IM P LR b
Lo
Ly (M} + M M1 oF "My M 1) Ly = LyF M M L
- L’le&MLQF_lLQ + LR Ly,
Therefore,
L'M 'L - LiM] |1y
L (M} + MMy oF M M 1) Ly — LyF ' M M Ly
— LM (M oF 'Ly + LHF Ty — L’lMl—le.
:L’1M1—7}M1,2F—1M271M1—7%L1 — L’QF—1M2,1M1—jL1
— LM M oF 'Ly + LoF 'Ly
= (AMIMy 5 — 1)) FIMp M L
~ (LM {My, — L)) F'Ly
_ (L'lMl_&MLQ _ L’Q) Fl (Mg,lMﬁLl — L2>
_ (1\/12,11\4;@1 _ LQ)IF1 (MQJMI&Ll . L2)
where the fact My o = 1\/1/2’1 is used in the last equality. Clearly, the last expression

is in quadratic form and thus is positive semi-definite. The condition for redundancy of
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hy (o, 00) = 0 is
Mg,lMl_&Ll — Ly =0,

or
B,QB(B1QB)) 1L — Ly =0.

A.5 Useful expressions for s;; and ta

For v+ = (y;+,Xj¢) and s;y = zj; ® v, an explicit expression for s;; is

sit = (Vit, 22itVit, -+, 2PitVit)-
Hence,
Var(vitlg) Cov(vit, 20ivitlg) -+ Cov(Vit, 2pitVitl9)
o8 Cov(22itVit, Vitlg) Var(z0ivitlg) -+ Cov(z0vit, 2pitVitlg)
gt —
Var(zpivit|g)

| Cov(zpitvit: Vitlg)  Cov(22itVits 22itVit|g)

~ZpV. ] ng . .
For fuy =mng >0 ritgZpitVit, an estimator for Cov(zpitVit, 2¢it Vit|g) is

n
A o —1 ~ ZpV / ~ ZqV
qu,gt =Nyt Z 7“it,g(zpitvit — By ) (Zqitvit Mg )-
=1
It is also informative to write s;; as
sit = (Wits Xit» 22itYit» 22itXit, "+ » ZPitVit» 2PitXit)-

Because x;; includes unity, s;; contains all y;;, X;¢, z;; and the interactions of z;; with (y;¢, x;¢)-
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A.6 Derivation for M

1795
PR
bar(6)] |
7
ber(0) ]
b19(6)Q25,b12(6)’
p1K2
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A.7 Equivalence of the two ways of computing M

Proof. Expanding M = b(8)2°b(8)’ shows that

b11(6)Q71b11(8)

ni1/n

ber(6)

b12(8)Q79b12(6)’

nig/n
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nGT/n_

bor(0)QGbaT(0)

nar/n




For each (g,t),

byi(0)2;bgt (8)

) N < !
= IP ® (_Lﬂgt)} [qu,gt]P [IP ® (_17/6gt>

\// A A A
(=1, B84) Tiigt Ti2gt - Tipge
v, A A A
B (—1,Bgt) Porgt To2gt -+ Uppg
v/ A A A
I (=1.8g)| , [TPrgt Up2ge - Tppgi]
- -/
~/
(_17/Bgt)
>/
<_17/Bgt>
(1, By
L et | p
_ / / /
—1 . —1 —1 . —1 -1 N
§ Piige | . 5 Proge | . § ipgt
Bgt Bgt Bgt /6gt Bgt
/ / /
—1 . —1 —1 . —1 —1 R
) Cotgt | . § Loogt | - SR I'ppgt
- Bgt Bgt Bgt IBgt Bgt
/ / / /
—1 . —1 —1 . —1 -1 R
3 Ipigt| . 5 Ppogt | - 3 Lppgt
ﬁgt IBgt ﬁgt Bgt Bgt

For each (p,q; g,t), recall v;+ = (y;,%;+) and notice that

—1

vie | | = — Wit — xitByt)

g

/Bgt
= —(Yit — X8 — (M + &g)) = —Uyy
and that
ZpV —1 1 t —1 1 Ut
Mgf 3 = Nyt Z Tit,g?pitVit | _ = Nyt Z Tit,g%pit Uit
gt i=1 Byt i=1
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we have

-1\ . —1
. Uppgt |
Bgt Bgt
/
—1 i ZpVv zZqVv —1
_ -1 ~ PN 4
= | | gt D ritg(zpievie — gt ) Gaievie — gt ) |
Byt i=1 Byt
B /
n¢
-1 —1 ~ ZpV —1 -1 . 2qV -1
=Nt Tit,g | #pitVit | — Mgt . ZqitVit | — Mgt .
g g g
i=1 Byt Byt Byt Byt
ng B ng / ng
-1 - -1 - - -1 -
=Nyt Z Tit,g | #pittWit — Tyt Z Tit,gpit Wit “qitUit — Mgy Z Tit,g?pit Wit
i=1 L i=1 1=1
nt
r /
o 71 o VZp’lL o VZpU oA
=Nyt ZT’ it,g |~pittit — Hgt } [Zqituit — Mgt ] = Tpq-
1=1 i

Hence the two ways are numerically equivalent.

A.8 Further algebra on =

In general,

=gt = Var[zgtyit - Z;txitﬁ — th(nt + ag)|g]

= Varlz)(e] + uy)lg

= B |(jy(e] +uir) = Blajy(=] +uin)la)) (2] + uir) — Elzjy(=] +uit>|gJ)’]
= b :(Ezf + Uz’t)2zétzz‘t|g] - B [Z;t(ng + Uit)|9} E [(5{ + Uit)zit|g}

= FE _(€f + uit)2zgtzit’9]

7

= FE (6{ + uit)2\g} E [zgtziﬂg] if independent

= o§f+u(g) - Q% if independent of g; & mean zero
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For z;; = (1, z9;;) in Case 3,

[11

gt

b [(ﬁzf + uit)ZthZitW}
E [(6{ + uit)2|g] E [zl,zi|g] if independent

o2 B (L w2i) (1L waie)lg]

I xoi
o2 E ’ lg
€f+u 2
L2t Lot
9 1 gt/150
o.f
el +u

gt/150 2+ (gt/150)?
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Table B.1 Small panel with G = 6, T' = 4. Case l.a: xg9; ~ N(gt/6,1), ng = 200, sampling
rate= 1%. sey, se, and se. are the non-roust, robust and cluster-robust standard errors,
receptively.

MD Identity MD Optimal

— —

~ ~ ~ ~ A N

b se(B)  sen(B)  ser(B)  sec(P) p se(f)

IV:none x5 1.0021 01590  0.1555  0.1397  0.1413  1.0020  0.1585
(0.1534)  (0.0122) (0.0326) (0.0424) (0.0628) (0.1531) (0.0121)

x3 09973  0.0887  0.0866  0.0826  0.0878  0.9976  0.0884
(0.0901) (0.0040) (0.0176) (0.0195) (0.0315) (0.0904) (0.0040)

zqg  1.0127 02848  0.2780 02624  0.2943  1.0129  0.2833
(0.2818) (0.0137) (0.0570) (0.0659) (0.1070) (0.2834) (0.0137)

IV:z a9 1.0530 01504 0.1486  0.1225 0.1240  1.0532  0.1486
(0.1447)  (0.0104) (0.0206) (0.0304) (0.0514) (0.1452) (0.0103)

xg 0.9880  0.0870  0.0858  0.0690  0.0736  0.9875  0.0360
(0.0884) (0.0037) (0.0105) (0.0148) (0.0263) (0.0892) (0.0036)

zqg 1.0230 02788  0.2749  0.2187  0.2455  1.0221  0.2755
(0.2764)  (0.0129) (0.0349) (0.0496) (0.0870) (0.2774) (0.0127)

IV:zg w9 12350 01360  0.0931  0.1025 0.1344  1.4768  0.0326
(0.1365)  (0.0085) (0.0216) (0.0257) (0.0535) (0.0329) (0.0009)

zg 1.0028 01100 0.0528  0.0709  0.0708  0.9063  0.0802
(0.1091) (0.0048) (0.0118) (0.0235) (0.0304) (0.0833) (0.0027)

zg 0.9988 03415  0.1670 02146  0.2608  1.1332  0.2694
(0.3368) (0.0184) (0.0384) (0.0699) (0.1138) (0.2681) (0.0116)

IV:zg a9 1.0329 01634 01218 0.1115 0.1253  1.0504  0.1424
(0.1561) (0.0117) (0.0190) (0.0258) (0.0532) (0.1404) (0.0098)

xg  0.9879  0.0463  0.0353  0.0367  0.0406  0.9885  0.0415
(0.0458)  (0.0016) (0.0049) (0.0064) (0.0138) (0.0419) (0.0012)

x4 1.0083 02932 02332 02191 02567 1.0254  0.2617
(0.2885) (0.0134) (0.0333) (0.0421) (0.0918) (0.2607) (0.0112)

IV:zqy a9 10061 01588  0.1007 0.1011  0.1173  1.0505  0.1479
(0.1546)  (0.0119) (0.0175) (0.0269) (0.0509) (0.1463) (0.0105)

zg  0.9975  0.0863  0.0542  0.0564  0.0693  0.9892  0.0812
(0.0862) (0.0036) (0.0088) (0.0120) (0.0252) (0.0811) (0.0032)

x4 1.0097 01585  0.1271  0.1303  0.1408  1.0143  0.1011
(0.1550)  (0.0043) (0.0206) (0.0268) (0.0491) (0.1008) (0.0023)

IV:all 2y 12449 01267 0.0574 0.0867  0.1108  1.4718  0.0319
(0.1268)  (0.0079) (0.0111) (0.0218) (0.0446) (0.0335) (0.0008)

zg  0.9943  0.0881  0.0301 0.0514 0.0582  0.9687  0.0392
(0.0871) (0.0034) (0.0055) (0.0157) (0.0226) (0.0406) (0.0009)

x4 09839 03163 01043  0.1798  0.2246  1.0243  0.0972
(0.3119)  (0.0155) (0.0198) (0.0578) (0.0964) (0.0983) (0.0016)
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Table B.2 Small panel with G = 6, T' = 4. Case 1.b: x9; ~ N(gt/6,1), ng = 1000,
sampling rate= 1%. sey, se, and se. are the non-roust, robust and cluster-robust standard
errors, receptively.

MD Identity MD Optimal

— —

~ ~ ~ ~ A N

b se(B)  sen(B)  ser(B)  sec(P) p se(f)

IV:none x5 0.9940  0.0722  0.0700  0.0628  0.0639  0.9939  0.0721
(0.0715) (0.0018) (0.0144) (0.0180) (0.0286) (0.0714) (0.0018)

x3  1.0037  0.0398  0.0385  0.0367 0.0390  1.0037  0.0397
(0.0391) (0.0007) (0.0079) (0.0085) (0.0146) (0.0391) (0.0007)

x4 1.0067 01282 0.1244 0.1174 0.1333  1.0069  0.1281
(0.1274)  (0.0024) (0.0256) (0.0308) (0.0486) (0.1276) (0.0024)

IV:z a9 09940 00718 00714 0.0517 0.0531  0.9940  0.0716
(0.0709) (0.0018) (0.0088) (0.0142) (0.0233) (0.0710) (0.0018)

zg 1.0038  0.0397 0.0395 0.0301  0.0322 1.0037  0.0396
(0.0389) (0.0007) (0.0049) (0.0069) (0.0120) (0.0390) (0.0007)

x4 10064 01278 01272  0.0963  0.1100 1.0067  0.1275
(0.1274)  (0.0024) (0.0156) (0.0247) (0.0399) (0.1278) (0.0024)

IV:zg a9 09979  0.0360 0.0336  0.0312  0.0306  0.9987  0.0205
(0.0372)  (0.0011) (0.0064) (0.0057) (0.0120) (0.0208) (0.0002)

zg  1.0036  0.0464  0.0270  0.0286  0.0373  1.0026  0.0371
(0.0459)  (0.0009) (0.0052) (0.0071) (0.0140) (0.0357) (0.0005)

x4 1.0219 01536 0.0751  0.0839  0.1172  1.0086  0.1259
(0.1538)  (0.0033) (0.0145) (0.0273) (0.0518) (0.1241) (0.0023)

IV:izg a9 0.9998  0.0768  0.0565 0.0512  0.0573  0.9946  0.0680
(0.0778)  (0.0020) (0.0078) (0.0110) (0.0248) (0.0658) (0.0016)

xg 1.0025  0.0207 0.0158 00165 0.0181  1.0031  0.0188
(0.0206)  (0.0003) (0.0022) (0.0028) (0.0065) (0.0186) (0.0002)

x4 1.0097 01337 01059  0.0992  0.1159  1.0070  0.1202
(0.1327)  (0.0025) (0.0147) (0.0195) (0.0408) (0.1218) (0.0020)

IV:izqg w9 09959  0.0728  0.0457  0.0458  0.0534  0.9936  0.0708
(0.0711) (0.0018) (0.0075) (0.0114) (0.0238) (0.0695) (0.0017)

x3  1.0040  0.0387  0.0242  0.0251  0.0313  1.0045  0.0370
(0.0381) (0.0006) (0.0040) (0.0053) (0.0117) (0.0370) (0.0006)

x4 1.0028  0.0705 0.0567 0.0580  0.0635  1.0011  0.0454
(0.0686)  (0.0007) (0.0093) (0.0121) (0.0218) (0.0442) (0.0003)

IV:all x5 1.0002 0.0377 0.0256  0.0271  0.0300  0.9986  0.0203
(0.0390)  (0.0010) (0.0030) (0.0045) (0.0112) (0.0208) (0.0002)

xg 1.0028  0.0250 0.0132  0.0150 0.0201  1.0031  0.0182
(0.0248)  (0.0003) (0.0015) (0.0024) (0.0073) (0.0179) (0.0002)

x4 10154 0.1166  0.0515  0.0599  0.0872  1.0014  0.0448
(0.1157)  (0.0018) (0.0060) (0.0167) (0.0357) (0.0440) (0.0003)
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Table B.3 Small panel with G = 6, T' = 4. Case 1.1: x9; ~ N(gt/6,1), ng = 200, sampling
rate= 0.2%. sey, se, and se. are the non-roust, robust and cluster-robust standard errors,

receptively.

MD Identity

MD Optimal

—

b se()

—

sen(B)

—_— —_—

~ ~ A N

ser(B)  sec(B) B se(B)

IV: none

L2

3

L4

0.9898  0.1606
(0.1652)  (0.0089)
1.0083  0.0889
(0.0875)  (0.0034)
1.0103  0.2863
(0.2886)  (0.0124)

0.1568
(0.0342)
0.0868
(0.0185)
0.2794
(0.0593)

0.1402  0.1430  0.9900  0.1601
(0.0423) (0.0615) (0.1652) (0.0089)
0.0823  0.0871  1.0081  0.0886
(0.0208) (0.0326) (0.0874) (0.0034)
0.2619  0.2086  1.0113  0.2853
(0.0716) (0.1097) (0.2882) (0.0123)

IV: 2

L2

3

L4

0.9896  0.1565
(0.1599)  (0.0084)
1.0091  0.0879
(0.0864)  (0.0033)
1.0095  0.2817
(0.2832)  (0.0119)

0.1546
(0.0198)
0.0868
(0.0105)
0.2783
(0.0341)

0.1186  0.1203  0.9905  0.1547
(0.0308) (0.0477) (0.1599) (0.0083)
0.0682  0.0716  1.0084  0.0869
(0.0160) (0.0268) (0.0863) (0.0033)
0.2179  0.2447  1.0111  0.2785
(0.0541) (0.0908) (0.2818) (0.0117)

IV: 29

L2

3

T4

0.9966  0.0309
(0.0829)  (0.0052)
1.0086  0.1035
(0.1007)  (0.0043)
1.0183  0.3417
(0.3441)  (0.0167)

0.0752
(0.0153)
0.0606
(0.0122)
0.1684
(0.0341)

0.0701  0.0687  0.9978  0.0453
(0.0131) (0.0255) (0.0476) (0.0010)
0.0642  0.0817  1.0065  0.0819
(0.0165) (0.0322) (0.0808) (0.0027)
0.1871  0.2611  1.0130  0.2750
(0.0628) (0.1184) (0.2811) (0.0113)

IV: z3

L2

3

T4

1.0019  0.1681
(0.1685)  (0.0089)
1.0038  0.0464
(0.0468)  (0.0013)
1.0200  0.2956
(0.2924)  (0.0123)

0.1241
(0.0180)
0.0353
(0.0048)
0.2340
(0.0327)

0.1127  0.1275  0.9931  0.1473
(0.0253) (0.0542) (0.1513) (0.0073)
0.0367  0.0399  1.0035  0.0416
(0.0060) (0.0140) (0.0433) (0.0010)
02198  0.2580  1.0173  0.2633
(0.0441) (0.0882) (0.2629) (0.0101)

IV: x4

L2

3

L4

0.9909  0.1610
(0.1641)  (0.0087)
1.0105  0.0865
(0.0840)  (0.0030)
1.0028  0.1582
(0.1582)  (0.0036)

0.1020
(0.0177)
0.0544
(0.0091)
0.1276
(0.0210)

0.1020  0.1189  0.9899  0.1529
(0.0263) (0.0507) (0.1565) (0.0079)
0.0563  0.0693  1.0093  0.0814
(0.0126)  (0.0266) (0.0800) (0.0027)
0.1301  0.1415  1.0005  0.1008
(0.0278)  (0.0498) (0.0996) (0.0016)

IV: all

L2

3

L4

0.9993  0.0839
(0.0849)  (0.0045)
1.0059  0.0559
(0.0547)  (0.0017)
1.0151  0.2579
(0.2575)  (0.0091)

0.0566
(0.0070)
0.0296
(0.0035)
0.1144
(0.0140)

0.0602  0.0668  0.9979  0.0443
(0.0104)  (0.0250) (0.0479) (0.0010)
0.0335  0.0443  1.0036  0.0398
(0.0056) (0.0167) (0.0421) (0.0008)
0.1336  0.1932  1.0013  0.0984
(0.0385) (0.0819) (0.1007) (0.0015)
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Table B.4 Small panel with G = 6, T' = 4. Case 1.1: xg9; ~ N(gt/6,1), ng = 200, sampling
rate= 0.2%. sey, se, and se. are the non-roust, robust and cluster-robust standard errors,

receptively.

MD Identity

MD Optimal

—

b se()

—

sen(B)

—_— —_—

~ ~ A N

ser(B)  sec(B) B se(B)

IV: none

L2

3

L4

1.0027  0.0722
(0.0722)  (0.0017)
0.9971  0.0398
(0.0401)  (0.0007)
1.0010  0.1279
(0.1304)  (0.0024)

0.0697
(0.0145)
0.0384
(0.0079)
0.1235
(0.0256)

0.0618  0.0622  1.0027  0.0721
(0.0181) (0.0281) (0.0722) (0.0017)
0.0366  0.0390  0.9972  0.0398
(0.0086) (0.0138) (0.0401) (0.0007)
0.1167  0.1325  1.0012  0.1278
(0.0306)  (0.0490) (0.1304) (0.0024)

IV: 2

L2

3

L4

1.0028  0.0718
(0.0715)  (0.0017)
0.9971  0.0397
(0.0400)  (0.0007)
1.0009  0.1275
(0.1304)  (0.0024)

0.0709
(0.0087)
0.0392
(0.0048)
0.1259
(0.0152)

0.0510  0.0516  1.0029  0.0716
(0.0143)  (0.0229) (0.0715) (0.0017)
0.0300  0.0323  0.9973  0.0396
(0.0069) (0.0114) (0.0401) (0.0007)
0.0957  0.1092  1.0009  0.1272
(0.0245) (0.0403) (0.1302) (0.0024)

IV: 29

L2

3

T4

1.0030  0.0360
(0.0353)  (0.0011)
0.9962  0.0465
(0.0461)  (0.0009)
1.0016  0.1535
(0.1567)  (0.0034)

0.0332
(0.0066)
0.0267
(0.0053)
0.0742
(0.0148)

0.0303  0.0301  0.9992  0.0205
(0.0058) (0.0115) (0.0204) (0.0002)
0.0284  0.0359  0.9980  0.0372
(0.0072) (0.0137) (0.0374) (0.0005)
0.0832  0.1166  0.9999  0.1256
(0.0290) (0.0554) (0.1278) (0.0023)

IV: z3

L2

3

T4

1.0005  0.0769
(0.0754)  (0.0018)
0.9989  0.0207
(0.0211)  (0.0003)
1.0006  0.1335
(0.1349)  (0.0025)

0.0565
(0.0075)
0.0158
(0.0021)
0.1057
(0.0139)

0.0511  0.0574  1.0006  0.0680
(0.0112) (0.0255) (0.0674) (0.0015)
0.0165  0.0180  0.9998  0.0188
(0.0026)  (0.0060) (0.0190) (0.0002)
0.0993  0.1159  0.9981  0.1198
(0.0182) (0.0404) (0.1211) (0.0021)

IV: x4

L2

3

L4

1.0030  0.0729
(0.0731)  (0.0017)
0.9965  0.0388
(0.0391)  (0.0006)
1.0027  0.0705
(0.0713)  (0.0007)

0.0456
(0.0074)
0.0242
(0.0039)
0.0564
(0.0091)

0.0452  0.0518  1.0031  0.0708
(0.0114) (0.0234) (0.0707) (0.0017)
0.0251  0.0310  0.9970  0.0370
(0.0053) (0.0117) (0.0369) (0.0006)
0.0579  0.0628  1.0032  0.0454
(0.0120) (0.0222) (0.0461) (0.0003)

IV: all

L2

3

L4

1.0022  0.0378
(0.0369)  (0.0010)
0.9980  0.0250
(0.0252)  (0.0004)
1.0025  0.1164
(0.1185)  (0.0019)

0.0255
(0.0029)
0.0132
(0.0015)
0.0512
(0.0059)

0.0268  0.0299  0.9991  0.0203
(0.0046) (0.0113) (0.0203) (0.0002)
0.0149  0.0197  0.9998  0.0182
(0.0024) (0.0069) (0.0183) (0.0002)
0.0595  0.0863  1.0026  0.0449
(0.0175) (0.0377) (0.0460) (0.0003)
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Table B.5 Small panel with G =6, T = 4. Case 2.a: x9;; ~ N(gt/6,1) + f;, ngt = 200,
sampling rate= 1%. sey, se, and se. are the non-roust, robust and cluster-robust standard
errors, receptively.

MD Identity MD Optimal

— —

~ ~ ~ ~ A N

b se(B)  sen(B)  ser(B)  sec(P) p se(f)

IV:none x5 1.0021 01590  0.1555  0.1397  0.1413  1.0020  0.1585
(0.1534)  (0.0122) (0.0326) (0.0424) (0.0628) (0.1531) (0.0121)

x3 09973  0.0887  0.0866  0.0826  0.0878  0.9976  0.0884
(0.0901) (0.0040) (0.0176) (0.0195) (0.0315) (0.0904) (0.0040)

zqg  1.0127 02848  0.2780 02624  0.2943  1.0129  0.2833
(0.2818) (0.0137) (0.0570) (0.0659) (0.1070) (0.2834) (0.0137)

IV:z a9 1.0530 01504 0.1486  0.1225 0.1240  1.0532  0.1486
(0.1447)  (0.0104) (0.0206) (0.0304) (0.0514) (0.1452) (0.0103)

xg 0.9880  0.0870  0.0858  0.0690  0.0736  0.9875  0.0360
(0.0884) (0.0037) (0.0105) (0.0148) (0.0263) (0.0892) (0.0036)

zqg 1.0230 02788  0.2749  0.2187  0.2455  1.0221  0.2755
(0.2764)  (0.0129) (0.0349) (0.0496) (0.0870) (0.2774) (0.0127)

IV:zg w9 12350 01360  0.0931  0.1025 0.1344  1.4768  0.0326
(0.1365)  (0.0085) (0.0216) (0.0257) (0.0535) (0.0329) (0.0009)

zg 1.0028 01100 0.0528  0.0709  0.0708  0.9063  0.0802
(0.1091) (0.0048) (0.0118) (0.0235) (0.0304) (0.0833) (0.0027)

zg 0.9988 03415  0.1670 02146  0.2608  1.1332  0.2694
(0.3368) (0.0184) (0.0384) (0.0699) (0.1138) (0.2681) (0.0116)

IV:zg a9 1.0329 01634 01218 0.1115 0.1253  1.0504  0.1424
(0.1561) (0.0117) (0.0190) (0.0258) (0.0532) (0.1404) (0.0098)

xg  0.9879  0.0463  0.0353  0.0367  0.0406  0.9885  0.0415
(0.0458)  (0.0016) (0.0049) (0.0064) (0.0138) (0.0419) (0.0012)

x4 1.0083 02932 02332 02191 02567 1.0254  0.2617
(0.2885) (0.0134) (0.0333) (0.0421) (0.0918) (0.2607) (0.0112)

IV:zqy a9 10061 01588  0.1007 0.1011  0.1173  1.0505  0.1479
(0.1546)  (0.0119) (0.0175) (0.0269) (0.0509) (0.1463) (0.0105)

zg  0.9975  0.0863  0.0542  0.0564  0.0693  0.9892  0.0812
(0.0862) (0.0036) (0.0088) (0.0120) (0.0252) (0.0811) (0.0032)

x4 1.0097 01585  0.1271  0.1303  0.1408  1.0143  0.1011
(0.1550)  (0.0043) (0.0206) (0.0268) (0.0491) (0.1008) (0.0023)

IV:all 2y 12449 01267 0.0574 0.0867  0.1108  1.4718  0.0319
(0.1268)  (0.0079) (0.0111) (0.0218) (0.0446) (0.0335) (0.0008)

zg  0.9943  0.0881  0.0301 0.0514 0.0582  0.9687  0.0392
(0.0871) (0.0034) (0.0055) (0.0157) (0.0226) (0.0406) (0.0009)

x4 09839 03163 01043  0.1798  0.2246  1.0243  0.0972
(0.3119)  (0.0155) (0.0198) (0.0578) (0.0964) (0.0983) (0.0016)
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Table B.6 Small panel with G =6, T'= 4. Case 2.b: x9; ~ N(gt/6,1) + f;, ngt = 1000,
sampling rate= 1%. sey, se, and se. are the non-roust, robust and cluster-robust standard
errors, receptively.

MD Identity MD Optimal

— —

~ ~ ~ ~ A N

b se(B)  sen(B)  ser(B)  sec(P) p se(f)

IV:none x5 0.9993  0.0721  0.0698  0.0628  0.0642  0.9992  0.0720
(0.0717) (0.0025) (0.0144) (0.0181) (0.0287) (0.0716) (0.0025)

xg 1.0027  0.0398  0.0385  0.0367  0.0390  1.0027  0.0397
(0.0391) (0.0008) (0.0079) (0.0085) (0.0146) (0.0392) (0.0008)

x4 1.0082 01283 0.1244 0.1174  0.1333  1.0084  0.1282
(0.1274)  (0.0026) (0.0256) (0.0309) (0.0487) (0.1277) (0.0026)

IV:z a9 1.0107 00712 00709 0.0526 0.0545 1.0107  0.0711
(0.0706) (0.0025) (0.0088) (0.0140) (0.0235) (0.0706) (0.0024)

xg 1.0004 0.0396 0.0394 0.0301  0.0323 1.0004 0.0395
(0.0389)  (0.0008) (0.0048) (0.0068) (0.0120) (0.0390) (0.0008)

x4 10113 01277 01271  0.0966  0.1102  1.0115  0.1274
(0.1272)  (0.0026) (0.0156) (0.0247) (0.0401) (0.1276) (0.0025)

IV:zg w9 12316  0.0609 0.0555 0.0664  0.1070  1.4756  0.0147
(0.0608) (0.0017) (0.0095) (0.0135) (0.0301) (0.0147) (0.0002)

zg 1.0107  0.0491  0.0312  0.0354  0.0398  0.9080  0.0365
(0.0480)  (0.0009) (0.0052) (0.0098) (0.0134) (0.0352) (0.0005)

x4 10146  0.1532  0.0992  0.1064  0.1261  1.1474  0.1233
(0.1537)  (0.0034) (0.0166) (0.0313) (0.0536) (0.1225) (0.0023)

IV:zg a9 10101 0.0763 0.0562 00512  0.0571  1.0094  0.0675
(0.0776) (0.0026) (0.0078) (0.0110) (0.0247) (0.0658) (0.0022)

xg 1.0016  0.0207 0.0158 0.0165 0.0181  1.0023  0.0188
(0.0206) (0.0003) (0.0022) (0.0028) (0.0065) (0.0185) (0.0002)

x4 10115 01337 01058  0.0991  0.1160  1.0087  0.1201
(0.1325) (0.0026) (0.0147) (0.0195) (0.0408) (0.1217) (0.0022)

IV:zqg w9 1.0027 00726  0.0456  0.0458  0.0537  1.0094  0.0703
(0.0712)  (0.0025) (0.0075) (0.0114) (0.0238) (0.0690) (0.0024)

zg 1.0030  0.0387  0.0242  0.0251  0.0313  1.0018  0.0369
(0.0382) (0.0007) (0.0040) (0.0053) (0.0117) (0.0370) (0.0007)

x4 1.0039  0.0705 0.0567 0.0580  0.0635  1.0017  0.0454
(0.0687) (0.0008) (0.0092) (0.0121) (0.0218) (0.0442) (0.0004)

IV:all 2y 12392 00574 0.0337 0.0573  0.0867 14726  0.0146
(0.0575) (0.0016) (0.0050) (0.0117) (0.0257) (0.0146) (0.0002)

xg 1.0034  0.0394 0.0175  0.0263 00337 0.9803  0.0179
(0.0387) (0.0006) (0.0025) (0.0065) (0.0100) (0.0176) (0.0002)

zq 0.9986  0.1423  0.0609  0.0899  0.1093  1.0102  0.0442
(0.1424)  (0.0029) (0.0088) (0.0260) (0.0448) (0.0429) (0.0003)
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Table B.7 Small panel with G = 6, T' = 4. Case 2.1: xg;; ~ N(gt/6,1) + f;, ngt = 200,
sampling rate= 0.2%. sey, se, and se. are the non-roust, robust and cluster-robust

standard errors, receptively.

MD Identity

MD Optimal

5

—

se(p)

—

sen(B)

—_—

ser(B)

—

sec()

5

—

N

se(f)

IV: none

L2

3

L4

1.0147
(0.1624)
1.0034
(0.0871)
1.0175
(0.2885)

0.1591
(0.0126)
0.0889
(0.0041)
0.2864
(0.0133)

0.1553
(0.0351)
0.0868
(0.0187)
0.2795
(0.0597)

0.1399
(0.0428)
0.0824
(0.0209)
0.2623
(0.0720)

0.1450
(0.0643)
0.0875
(0.0327)
0.2987
(0.1101)

1.0148
(0.1624)
1.0033
(0.0871)
1.0184
(0.2881)

0.1586
(0.0125)
0.0886
(0.0041)
0.2854
(0.0132)

IV: 2

L2

3

L4

1.0622
(0.1535)
0.9950
(0.0855)
1.0297
(0.2812)

0.1505
(0.0110)
0.0872
(0.0037)
0.2804
(0.0124)

0.1490
(0.0202)
0.0863
(0.0106)
0.2775
(0.0341)

0.1216
(0.0303)
0.0687
(0.0159)
0.2190
(0.0543)

0.1253
(0.0516)
0.0725
(0.0269)
0.2455
(0.0905)

1.0638
(0.1538)
0.9942
(0.0855)
1.0314
(0.2796)

0.1487
(0.0109)
0.0862
(0.0037)
0.2772
(0.0122)

IV: 29

L2

3

T4

1.2409
(0.1366)
1.0163
(0.1082)
1.0187
(0.3458)

0.1363
(0.0084)
0.1100
(0.0046)
0.3425
(0.0175)

0.0920
(0.0235)
0.0525
(0.0126)
0.1662
(0.0403)

0.1010
(0.0265)
0.0702
(0.0238)
0.2122
(0.0745)

0.1331
(0.0548)
0.0707
(0.0311)
0.2587
(0.1200)

1.4705
(0.0328)
0.9150
(0.0793)
1.1427
(0.2719)

0.0324
(0.0009)
0.0804
(0.0026)
0.2708
(0.0113)

IV: z3

L2

3

T4

1.0486
(0.1633)
0.9996
(0.0465)
1.0287
(0.2912)

0.1630
(0.0119)
0.0463
(0.0016)
0.2948
(0.0129)

0.1211
(0.0189)
0.0352
(0.0049)
0.2336
(0.0328)

0.1114
(0.0259)
0.0366
(0.0061)
0.2195
(0.0442)

0.1277
(0.0546)
0.0399
(0.0140)
0.2580
(0.0887)

1.0592
(0.1457)
1.0002
(0.0430)
1.0250
(0.2612)

0.1422
(0.0099)
0.0415
(0.0012)
0.2626
(0.0107)

IV: x4

L2

3

L4

1.0223
(0.1602)
1.0058
(0.0836)
1.0077
(0.1577)

0.1584
(0.0123)
0.0864
(0.0036)
0.1581
(0.0043)

0.1008
(0.0184)
0.0545
(0.0092)
0.1276
(0.0212)

0.1012
(0.0268)
0.0564
(0.0127)
0.1302
(0.0279)

0.1200
(0.0525)
0.0696
(0.0268)
0.1417
(0.0498)

1.0598
(0.1503)
0.9974
(0.0793)
1.0033
(0.0991)

0.1478
(0.0108)
0.0812
(0.0032)
0.1008
(0.0022)

IV: all

L2

3

L4

1.2502
(0.1276)
1.0080
(0.0864)
1.0039
(0.3193)

0.1271
(0.0078)
0.0881
(0.0032)
0.3170
(0.0145)

0.0568
(0.0120)
0.0299
(0.0059)
0.1038
(0.0206)

0.0854
(0.0223)
0.0510
(0.0159)
0.1782
(0.0619)

0.1108
(0.0458)
0.0579
(0.0234)
0.2232
(0.1021)

1.4657
(0.0335)
0.9815
(0.0415)
1.0100
(0.0996)

0.0318
(0.0008)
0.0392
(0.0009)
0.0970
(0.0016)
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Table B.8 Small panel with G = 6, T' = 4. Case 2.1: xg;; ~ N(gt/6,1) + f;, ngt = 200,
sampling rate= 0.2%. sey, se, and se. are the non-roust, robust and cluster-robust

standard errors, receptively.

MD Identity

MD Optimal

5

—

se(p)

—

sen(B)

—_—

ser(B)

—

sec()

5

—

N

se(f)

IV: none

L2

3

L4

1.0080
(0.0721)
0.9961
(0.0401)
1.0026
(0.1304)

0.0719
(0.0024)
0.0398
(0.0008)
0.1279
(0.0027)

0.0694
(0.0145)
0.0384
(0.0079)
0.1235
(0.0255)

0.0615
(0.0179)
0.0366
(0.0086)
0.1166
(0.0305)

0.0619
(0.0280)
0.0390
(0.0138)
0.1322
(0.0489)

1.0080
(0.0721)
0.9961
(0.0401)
1.0028
(0.1303)

0.0719
(0.0024)
0.0398
(0.0008)
0.1278
(0.0027)

IV: 2

L2

3

L4

1.0191
(0.0714)
0.9939
(0.0400)
1.0057
(0.1302)

0.0711
(0.0024)
0.0396
(0.0008)
0.1273
(0.0026)

0.0702
(0.0086)
0.0391
(0.0047)
0.1258
(0.0151)

0.0514
(0.0138)
0.0300
(0.0068)
0.0957
(0.0244)

0.0520
(0.0227)
0.0323
(0.0115)
0.1090
(0.0403)

1.0193
(0.0715)
0.9940
(0.0400)
1.0057
(0.1300)

0.0709
(0.0023)
0.0395
(0.0008)
0.1270
(0.0026)

IV: 29

L2

3

T4

1.2376
(0.0602)
1.0016
(0.0485)
0.9972
(0.1544)

0.0610
(0.0018)
0.0492
(0.0010)
0.1535
(0.0035)

0.0545
(0.0092)
0.0308
(0.0051)
0.0979
(0.0163)

0.0645
(0.0132)
0.0350
(0.0098)
0.1051
(0.0310)

0.1023
(0.0293)
0.0389
(0.0128)
0.1255
(0.0525)

1.4775
(0.0147)
0.9031
(0.0364)
1.1404
(0.1251)

0.0146
(0.0002)
0.0365
(0.0006)
0.1235
(0.0023)

IV: z3

L2

3

T4

1.0108
(0.0749)
0.9980
(0.0211)
1.0025
(0.1349)

0.0763
(0.0025)
0.0207
(0.0003)
0.1334
(0.0027)

0.0562
(0.0076)
0.0158
(0.0021)
0.1057
(0.0139)

0.0509
(0.0111)
0.0165
(0.0026)
0.0993
(0.0182)

0.0571
(0.0253)
0.0180
(0.0060)
0.1158
(0.0403)

1.0152
(0.0672)
0.9991
(0.0189)
0.9998
(0.1210)

0.0674
(0.0021)
0.0188
(0.0003)
0.1198
(0.0022)

IV: x4

L2

3

L4

1.0096
(0.0730)
0.9955
(0.0391)
1.0038
(0.0713)

0.0725
(0.0024)
0.0388
(0.0008)
0.0704
(0.0009)

0.0454
(0.0074)
0.0241
(0.0039)
0.0564
(0.0091)

0.0450
(0.0114)
0.0251
(0.0053)
0.0578
(0.0120)

0.0515
(0.0233)
0.0310
(0.0116)
0.0627
(0.0221)

1.0191
(0.0703)
0.9943
(0.0368)
1.0038
(0.0460)

0.0701
(0.0023)
0.0370
(0.0007)
0.0454
(0.0005)

IV: all

L2

3

L4

1.2440
(0.0568)
0.9957
(0.0391)
0.9832
(0.1436)

0.0575
(0.0017)
0.0394
(0.0007)
0.1426
(0.0030)

0.0332
(0.0048)
0.0172
(0.0025)
0.0601
(0.0086)

0.0555
(0.0114)
0.0260
(0.0065)
0.0886
(0.0260)

0.0824
(0.0251)
0.0329
(0.0093)
0.1086
(0.0443)

1.4744
(0.0147)
0.9777
(0.0180)
1.0106
(0.0448)

0.0145
(0.0002)
0.0179
(0.0002)
0.0442
(0.0003)
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Table B.9 Small panel with G = 6, T' = 4. Case 3.a: wo;; ~ N(gt/6,1) + z;, ngt = 200,
sampling rate= 1%. sey, se, and se. are the non-roust, robust and cluster-robust standard
errors, receptively.

MD Identity MD Optimal

— —

~ ~ ~ ~ A N

b se(B)  sen(B)  ser(B)  sec(P) p se(f)

IV:none x5 0.9764  0.1586  0.1548  0.1389  0.1403  0.9765  0.1581
(0.1533)  (0.0116) (0.0325) (0.0425) (0.0621) (0.1528) (0.0116)

xg 1.0024 0.0887  0.0865 0.0825 0.0874  1.0027  0.0384
(0.0902) (0.0038) (0.0175) (0.0195) (0.0315) (0.0903) (0.0038)

x4 1.0051 02850 0.2779  0.2626  0.2944  1.0055  0.2840
(0.2823) (0.0131) (0.0569) (0.0663) (0.1072) (0.2839) (0.0131)

IV:z a9 1.0018 0.0463  0.0456  0.0508  0.0499  1.0020  0.0452
(0.0460) (0.0012) (0.0055) (0.0077) (0.0154) (0.0462) (0.0011)

xg  0.9980  0.0826  0.0813  0.0667 0.0713  0.9976  0.0816
(0.0841) (0.0027) (0.0098) (0.0150) (0.0257) (0.0850) (0.0026)

x4 10087 02766 02723 02202  0.2462  1.0080  0.2734
(0.2738) (0.0118) (0.0341) (0.0495) (0.0869) (0.2751) (0.0116)

IV:zg w9 1.0042  0.0440  0.0487  0.0489  0.0422  1.0041  0.0329
(0.0431)  (0.0020) (0.0088) (0.0092) (0.0154) (0.0331) (0.0007)

zg  0.9967 01092  0.0679  0.0707  0.0881  0.9978  0.0815
(0.1076)  (0.0046) (0.0126) (0.0175) (0.0335) (0.0846) (0.0026)

zg 0.9932 03584  0.1885  0.2042  0.2764  1.0090  0.2734
(0.3591) (0.0192) (0.0365) (0.0643) (0.1203) (0.2779) (0.0117)

IV:zg a9 09840 0.1633 01215  0.1104  0.1236  0.9850  0.1423
(0.1582) (0.0111) (0.0189) (0.0257) (0.0529) (0.1420) (0.0091)

zg  0.9923  0.0464  0.0353  0.0367  0.0403  0.9919  0.0416
(0.0460) (0.0014) (0.0049) (0.0064) (0.0137) (0.0421) (0.0011)

zg 09989 02941  0.2333 02192 02552 1.0189  0.2625
(0.2890) (0.0129) (0.0332) (0.0421) (0.0917) (0.2617) (0.0107)

IV:zqg a9 09740  0.1582  0.1002  0.1004 0.1162  0.9828  0.1474
(0.1543)  (0.0113) (0.0173) (0.0270) (0.0502) (0.1441) (0.0096)

xg 1.0025 0.0863 0.0541  0.0563  0.0689  1.0010  0.0812
(0.0862) (0.0034) (0.0087) (0.0119) (0.0252) (0.0810) (0.0030)

x4 1.0045 0.1586  0.1270  0.1303  0.1406  1.0111  0.1011
(0.1553)  (0.0036) (0.0205) (0.0269) (0.0490) (0.1014) (0.0017)

IV:all 25 1.0052 0.0404 0.0296 0.0335  0.0379  1.0043  0.0322
(0.0399) (0.0013) (0.0037) (0.0051) (0.0126) (0.0333) (0.0007)

zg  0.9925  0.0565 0.0312  0.0348  0.0458  0.9914  0.0397
(0.0559) (0.0017) (0.0039) (0.0058) (0.0160) (0.0414) (0.0008)

zq 09959  0.2653  0.1211  0.1423  0.2010  1.0133  0.0985
(0.2635) (0.0101) (0.0157) (0.0383) (0.0807) (0.1012) (0.0015)
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Table B.10 Small panel with G = 6, T' = 4. Case 3.b: xg9; ~ N(gt/6,1) + 2;, ng = 1000,
sampling rate= 1%. sey, se, and se. are the non-roust, robust and cluster-robust standard
errors, receptively.

MD Identity MD Optimal

— —

~ ~ ~ ~ A N

b se(B)  sen(B)  ser(B)  sec(P) p se(f)

IV:none x5 0.9937  0.0720  0.0698  0.0627  0.0639  0.9936  0.0720
(0.0714)  (0.0023) (0.0144) (0.0181) (0.0283) (0.0713) (0.0023)

zg 1.0038  0.0398  0.0385 0.0366  0.0391  1.0038  0.0397
(0.0391) (0.0007) (0.0079) (0.0085) (0.0146) (0.0391) (0.0007)

x4 1.0066 01283 0.1244 0.1174  0.1332  1.0068  0.1282
(0.1273)  (0.0025) (0.0256) (0.0308) (0.0487) (0.1276) (0.0025)

IV:z a9 09982 00206 00205 0.0229 0.0223 0.9982  0.0205
(0.0191)  (0.0002) (0.0025) (0.0034) (0.0073) (0.0191) (0.0002)

zg 1.0029 0.0372 0.0371  0.0295 0.0317  1.0029  0.0371
(0.0356)  (0.0005) (0.0045) (0.0067) (0.0121) (0.0357) (0.0005)

x4 10077 01261 01258  0.0982  0.1118  1.0080  0.1259
(0.1244)  (0.0023) (0.0154) (0.0243) (0.0403) (0.1249) (0.0023)

IV:zg w9 09964 00192  0.0218  0.0217  0.0189  0.9987  0.0148
(0.0191)  (0.0004) (0.0039) (0.0040) (0.0069) (0.0143) (0.0001)

zg  1.0049  0.0489  0.0307  0.0320  0.0406  1.0027  0.0370
(0.0489)  (0.0009) (0.0055) (0.0077) (0.0153) (0.0355) (0.0005)

x4 10179 0.1624  0.0859  0.0921  0.1246  1.0084  0.1258
(0.1651) (0.0036) (0.0154) (0.0290) (0.0553) (0.1239) (0.0023)

IV:izg a9 09995  0.0763  0.0562  0.0510  0.0570  0.9945  0.0675
(0.0773) (0.0025) (0.0078) (0.0109) (0.0245) (0.0654) (0.0021)

x5 1.0026  0.0207 0.0158 0.0165 0.0180 1.0031  0.0188
(0.0206)  (0.0003) (0.0022) (0.0028) (0.0065) (0.0186) (0.0002)

x4 1.0097 01338 01059  0.0992  0.1159  1.0070  0.1202
(0.1327)  (0.0025) (0.0147) (0.0195) (0.0408) (0.1218) (0.0020)

IV:izqg a9 09956  0.0726  0.0456  0.0457  0.0533  0.9933  0.0703
(0.0710)  (0.0023) (0.0075) (0.0114) (0.0236) (0.0692) (0.0022)

x3  1.0041  0.0387  0.0242  0.0251  0.0314  1.0046  0.0369
(0.0382)  (0.0007) (0.0040) (0.0054) (0.0117) (0.0371) (0.0006)

x4 10028  0.0705 0.0567  0.0580  0.0634  1.0011  0.0454
(0.0686)  (0.0007) (0.0093) (0.0121) (0.0219) (0.0442) (0.0003)

IV:all x5 09979 00178  0.0133  0.0150 0.0168  0.9986  0.0147
(0.0171)  (0.0003) (0.0016) (0.0022) (0.0058) (0.0144) (0.0001)

xg 1.0037  0.0252 0.0141 00158 0.0208 1.0031  0.0182
(0.0252) (0.0004) (0.0017) (0.0026) (0.0076) (0.0179) (0.0002)

x4 10120 01203  0.0553  0.0646  0.0910  1.0014  0.0448
(0.1207)  (0.0019) (0.0067) (0.0176) (0.0377) (0.0440) (0.0003)
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Table B.11 Small panel with G = 6, T'= 4. Case 3.1: xg;; ~ N(gt/6,1) + z;, ngt = 200,
sampling rate= 0.2%. sey, se, and se. are the non-roust, robust and cluster-robust

standard errors, receptively.

MD Identity

MD Optimal

5

—

se(p)

—

sen(B)

—_—

ser(B)

—

sec()

5

—

N

se(f)

IV: none

L2

3

L4

0.9909
(0.1623)
1.0079
(0.0870)
1.0113
(0.2880)

0.1590
(0.0117)
0.0890
(0.0037)
0.2868
(0.0127)

0.1552
(0.0349)
0.0868
(0.0185)
0.2798
(0.0594)

0.1393
(0.0425)
0.0825
(0.0210)
0.2625
(0.0714)

0.1423
(0.0603)
0.0873
(0.0329)
0.2991
(0.1095)

0.9911
(0.1623)
1.0077
(0.0870)
1.0123
(0.2877)

0.1585
(0.0117)
0.0887
(0.0037)
0.2858
(0.0127)

IV: 2

L2

3

L4

0.9980
(0.0430)
1.0070
(0.0804)
1.0131
(0.2794)

0.0463
(0.0012)
0.0827
(0.0027)
0.2780
(0.0115)

0.0457
(0.0054)
0.0820
(0.0097)
0.2757
(0.0336)

0.0508
(0.0073)
0.0670
(0.0159)
0.2210
(0.0535)

0.0496
(0.0159)
0.0704
(0.0269)
0.2490
(0.0888)

0.9979
(0.0437)
1.0065
(0.0803)
1.0138
(0.2780)

0.0452
(0.0012)
0.0818
(0.0027)
0.2749
(0.0113)

IV: 29

L2

3

T4

0.9965
(0.0421)
1.0109
(0.1051)
1.0141
(0.3642)

0.0436
(0.0020)
0.1090
(0.0048)
0.3598
(0.0184)

0.0488
(0.0092)
0.0688
(0.0129)
0.1914
(0.0358)

0.0490
(0.0094)
0.0712
(0.0177)
0.2046
(0.0669)

0.0431
(0.0154)
0.0886
(0.0343)
0.2767
(0.1251)

0.9981
(0.0324)
1.0064
(0.0801)
1.0140
(0.2797)

0.0327
(0.0007)
0.0816
(0.0026)
0.2749
(0.0113)

IV: z3

L2

3

T4

1.0028
(0.1629)
1.0036
(0.0467)
1.0203
(0.2919)

0.1633
(0.0111)
0.0465
(0.0014)
0.2961
(0.0125)

0.1213
(0.0187)
0.0353
(0.0049)
0.2343
(0.0328)

0.1105
(0.0252)
0.0367
(0.0061)
0.2202
(0.0442)

0.1241
(0.0517)
0.0400
(0.0140)
0.2588
(0.0881)

0.9952
(0.1465)
1.0034
(0.0433)
1.0180
(0.2629)

0.1426
(0.0092)
0.0417
(0.0010)
0.2638
(0.0103)

IV: x4

L2

3

L4

0.9917
(0.1605)
1.0102
(0.0836)
1.0034
(0.1576)

0.1583
(0.0112)
0.0865
(0.0033)
0.1584
(0.0037)

0.1006
(0.0182)
0.0545
(0.0091)
0.1277
(0.0210)

0.1008
(0.0264)
0.0564
(0.0128)
0.1303
(0.0278)

0.1172
(0.0498)
0.0695
(0.0268)
0.1417
(0.0498)

0.9920
(0.1498)
1.0088
(0.0795)
1.0010
(0.0992)

0.1477
(0.0098)
0.0813
(0.0029)
0.1010
(0.0017)

IV: all

L2

3

L4

0.9980
(0.0376)
1.0071
(0.0550)
1.0122
(0.2666)

0.0402
(0.0013)
0.0564
(0.0018)
0.2656
(0.0100)

0.0296
(0.0037)
0.0314
(0.0039)
0.1223
(0.0153)

0.0335
(0.0050)
0.0350
(0.0059)
0.1432
(0.0408)

0.0379
(0.0125)
0.0458
(0.0171)
0.2011
(0.0858)

0.9981
(0.0330)
1.0036
(0.0421)
1.0013
(0.1007)

0.0321
(0.0007)
0.0397
(0.0008)
0.0984
(0.0015)
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Table B.12 Small panel with G = 6, T' = 4. Case 3.1: xg;; ~ N(gt/6,1) + z;, ngt = 200,
sampling rate= 0.2%. sey, se, and se. are the non-roust, robust and cluster-robust

standard errors, receptively.

MD Identity

MD Optimal

5

—

se(p)

—

sen(B)

—_—

ser(B)

—

sec()

5

—

N

se(f)

IV: none

L2

3

L4

1.0027
(0.0721)
0.9971
(0.0401)
1.0010
(0.1305)

0.0720
(0.0023)
0.0398
(0.0008)
0.1280
(0.0025)

0.0695
(0.0146)
0.0384
(0.0080)
0.1235
(0.0256)

0.0618
(0.0182)
0.0366
(0.0086)
0.1166
(0.0305)

0.0623
(0.0281)
0.0390
(0.0138)
0.1324
(0.0489)

1.0027
(0.0722)
0.9972
(0.0401)
1.0012
(0.1304)

0.0720
(0.0023)
0.0398
(0.0008)
0.1279
(0.0025)

IV: 2

L2

3

L4

1.0012
(0.0196)
0.9975
(0.0372)
1.0004
(0.1286)

0.0206
(0.0002)
0.0373
(0.0005)
0.1258
(0.0023)

0.0203
(0.0024)
0.0369
(0.0045)
0.1245
(0.0150)

0.0227
(0.0034)
0.0295
(0.0069)
0.0977
(0.0240)

0.0222
(0.0073)
0.0320
(0.0115)
0.1110
(0.0398)

1.0012
(0.0197)
0.9976
(0.0372)
1.0005
(0.1283)

0.0205
(0.0002)
0.0372
(0.0005)
0.1256
(0.0023)

IV: 29

L2

3

T4

1.0005
(0.0186)
0.9963
(0.0476)
1.0004
(0.1665)

0.0192
(0.0004)
0.0490
(0.0010)
0.1621
(0.0038)

0.0216
(0.0041)
0.0305
(0.0057)
0.0849
(0.0161)

0.0216
(0.0040)
0.0317
(0.0081)
0.0912
(0.0305)

0.0189
(0.0069)
0.0389
(0.0149)
0.1240
(0.0578)

1.0000
(0.0145)
0.9978
(0.0372)
1.0000
(0.1274)

0.0148
(0.0001)
0.0371
(0.0005)
0.1255
(0.0023)

IV: z3

L2

3

T4

1.0004
(0.0751)
0.9989
(0.0211)
1.0005
(0.1350)

0.0765
(0.0024)
0.0207
(0.0003)
0.1335
(0.0025)

0.0563
(0.0076)
0.0158
(0.0021)
0.1057
(0.0139)

0.0511
(0.0113)
0.0165
(0.0026)
0.0993
(0.0182)

0.0573
(0.0254)
0.0180
(0.0060)
0.1158
(0.0403)

1.0003
(0.0673)
0.9998
(0.0190)
0.9980
(0.1212)

0.0675
(0.0019)
0.0188
(0.0002)
0.1199
(0.0021)

IV: x4

L2

3

L4

1.0028
(0.0730)
0.9965
(0.0391)
1.0027
(0.0713)

0.0727
(0.0023)
0.0388
(0.0007)
0.0705
(0.0007)

0.0455
(0.0075)
0.0242
(0.0039)
0.0564
(0.0091)

0.0451
(0.0115)
0.0251
(0.0053)
0.0579
(0.0120)

0.0518
(0.0233)
0.0310
(0.0116)
0.0628
(0.0221)

1.0026
(0.0699)
0.9971
(0.0369)
1.0032
(0.0461)

0.0703
(0.0022)
0.0370
(0.0006)
0.0454
(0.0003)

IV: all

L2

3

L4

1.0004
(0.0172)
0.9983
(0.0251)
1.0008
(0.1228)

0.0178
(0.0003)
0.0252
(0.0004)
0.1200
(0.0020)

0.0132
(0.0016)
0.0140
(0.0017)
0.0549
(0.0066)

0.0149
(0.0022)
0.0156
(0.0025)
0.0640
(0.0181)

0.0170
(0.0057)
0.0203
(0.0072)
0.0902
(0.0386)

1.0000
(0.0145)
0.9998
(0.0183)
1.0026
(0.0460)

0.0147
(0.0001)
0.0182
(0.0002)
0.0449
(0.0003)
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Table B.13 Small panel with G = 6, T'= 4. Case 4.a: x9;+ ~ N(gt/6,1) + z; + fi,

ngt = 200, sampling rate= 1%. se;, se; and se. are the non-roust, robust and

cluster-robust standard errors, receptively.

MD Identity

MD Optimal

5

—

se(p)

—

sen(B)

—_—

ser(B)

—

sec()

5

—

N

se(f)

IV: none

L2

3

L4

1.0020
(0.1521)
0.9972
(0.0901)
1.0131
(0.2825)

0.1570
(0.0139)
0.0888
(0.0043)
0.2854
(0.0140)

0.1533
(0.0329)
0.0866
(0.0176)
0.2783
(0.0571)

0.1380
(0.0425)
0.0825
(0.0196)
0.2628
(0.0662)

0.1399
(0.0620)
0.0875
(0.0314)
0.2947
(0.1072)

1.0020
(0.1516)
0.9975
(0.0903)
1.0133
(0.2839)

0.1565
(0.0138)
0.0884
(0.0043)
0.2844
(0.0139)

IV: 2

L2

3

L4

1.0084
(0.0456)
0.9967
(0.0841)
1.0104
(0.2735)

0.0460
(0.0014)
0.0825
(0.0027)
0.2764
(0.0119)

0.0454
(0.0055)
0.0813
(0.0098)
0.2722
(0.0342)

0.0505
(0.0078)
0.0667
(0.0150)
0.2201
(0.0495)

0.0495
(0.0154)
0.0712
(0.0257)
0.2462
(0.0869)

1.0086
(0.0459)
0.9963
(0.0850)
1.0097
(0.2747)

0.0450
(0.0013)
0.0816
(0.0027)
0.2732
(0.0117)

IV: 29

L2

3

T4

1.2218
(0.0963)
1.0029
(0.1114)
0.9978
(0.3442)

0.0954
(0.0072)
0.1121
(0.0048)
0.3470
(0.0185)

0.0741
(0.0173)
0.0529
(0.0122)
0.1676
(0.0396)

0.0775
(0.0191)
0.0726
(0.0237)
0.2207
(0.0705)

0.0979
(0.0426)
0.0728
(0.0311)
0.2681
(0.1154)

1.3252
(0.0276)
0.9357
(0.0841)
1.0932
(0.2715)

0.0267
(0.0006)
0.0803
(0.0026)
0.2699
(0.0115)

IV: z3

L2

3

T4

1.0304
(0.1521)
0.9880
(0.0459)
1.0083
(0.2888)

0.1585
(0.0128)
0.0463
(0.0016)
0.2938
(0.0135)

0.1187
(0.0190)
0.0352
(0.0049)
0.2335
(0.0333)

0.1090
(0.0251)
0.0367
(0.0064)
0.2194
(0.0422)

0.1223
(0.0512)
0.0405
(0.0137)
0.2572
(0.0922)

1.0463
(0.1369)
0.9887
(0.0420)
1.0252
(0.2608)

0.1377
(0.0107)
0.0415
(0.0012)
0.2622
(0.0112)

IV: x4

L2

3

L4

1.0055
(0.1523)
0.9975
(0.0861)
1.0098
(0.1552)

0.1557
(0.0133)
0.0863
(0.0038)
0.1587
(0.0043)

0.0990
(0.0177)
0.0542
(0.0088)
0.1272
(0.0206)

0.0995
(0.0271)
0.0564
(0.0120)
0.1304
(0.0268)

0.1154
(0.0500)
0.0691
(0.0252)
0.1410
(0.0490)

1.0488
(0.1402)
0.9894
(0.0805)
1.0140
(0.1008)

0.1426
(0.0110)
0.0811
(0.0033)
0.1013
(0.0023)

IV: all

L2

3

L4

1.1804
(0.0720)
0.9944
(0.0890)
0.9829
(0.3180)

0.0713
(0.0056)
0.0897
(0.0033)
0.3207
(0.0151)

0.0412
(0.0074)
0.0309
(0.0054)
0.1070
(0.0196)

0.0544
(0.0116)
0.0520
(0.0160)
0.1838
(0.0584)

0.0698
(0.0279)
0.0576
(0.0234)
0.2289
(0.0978)

1.3193
(0.0285)
0.9766
(0.0416)
1.0171
(0.0999)

0.0263
(0.0006)
0.0393
(0.0009)
0.0975
(0.0015)
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Table B.14 Small panel with G = 6, T = 4. Case 4.b: z9;; ~ N(gt/6,1) + z; + f;,

ngt = 1000, sampling rate= 1%. sep, se; and se. are the non-roust, robust and

cluster-robust standard errors, receptively.

MD Identity

MD Optimal

B

—_—

se(f)

—

sen(B)

—

ser(B)

—

sec(B)

b

—

~

se(f)

IV: none

T2

3

L4

0.9989
(0.0716)
1.0027
(0.0391)
1.0081
(0.1274)

0.0719
(0.0029)
0.0398
(0.0009)
0.1283
(0.0027)

0.0697
(0.0145)
0.0385
(0.0079)
0.1244
(0.0256)

0.0627
(0.0181)
0.0366
(0.0085)
0.1174
(0.0309)

0.0642
(0.0284)
0.0391
(0.0146)
0.1332
(0.0488)

0.9989
(0.0715)
1.0028
(0.0392)
1.0083
(0.1277)

0.0719
(0.0029)
0.0397
(0.0009)
0.1282
(0.0027)

IV: z

T2

3

L4

0.9996
(0.0191)
1.0026
(0.0356)
1.0082
(0.1244)

0.0206
(0.0003)
0.0372
(0.0005)
0.1261
(0.0023)

0.0205
(0.0025)
0.0371
(0.0045)
0.1258
(0.0154)

0.0229
(0.0034)
0.0295
(0.0067)
0.0982
(0.0243)

0.0223
(0.0073)
0.0317
(0.0121)
0.1118
(0.0403)

0.9996
(0.0191)
1.0026
(0.0357)
1.0085
(0.1249)

0.0205
(0.0003)
0.0371
(0.0005)
0.1259
(0.0023)

IV: 29

T2

T3

L4

1.2166
(0.0423)
1.0113
(0.0491)
1.0149
(0.1568)

0.0421
(0.0014)
0.0500
(0.0009)
0.1559
(0.0035)

0.0405
(0.0082)
0.0286
(0.0057)
0.0910
(0.0182)

0.0458
(0.0106)
0.0357
(0.0104)
0.1077
(0.0325)

0.0711
(0.0254)
0.0402
(0.0145)
0.1274
(0.0546)

1.3220
(0.0120)
0.9385
(0.0353)
1.1027
(0.1224)

0.0120
(0.0001)
0.0365
(0.0005)
0.1241
(0.0023)

IV: z3

L2

r3

T4

1.0097
(0.0771)
1.0017
(0.0206)
1.0115
(0.1325)

0.0758
(0.0030)
0.0207
(0.0003)
0.1337
(0.0026)

0.0559
(0.0079)
0.0158
(0.0022)
0.1058
(0.0147)

0.0509
(0.0110)
0.0165
(0.0028)
0.0991
(0.0195)

0.0569
(0.0243)
0.0181
(0.0065)
0.1159
(0.0408)

1.0091
(0.0653)
1.0024
(0.0186)
1.0087
(0.1216)

0.0671
(0.0025)
0.0188
(0.0003)
0.1201
(0.0022)

IV: x4

L2

T3

L4

1.0024
(0.0710)
1.0031
(0.0382)
1.0038
(0.0687)

0.0724
(0.0029)
0.0387
(0.0008)
0.0705
(0.0008)

0.0455
(0.0076)
0.0242
(0.0040)
0.0567
(0.0093)

0.0457
(0.0114)
0.0251
(0.0053)
0.0580
(0.0121)

0.0536
(0.0236)
0.0314
(0.0117)
0.0635
(0.0219)

1.0090
(0.0689)
1.0019
(0.0371)
1.0017
(0.0442)

0.0698
(0.0027)
0.0369
(0.0007)
0.0454
(0.0004)

IV: all

T2

3

L4

1.1734
(0.0317)
1.0038
(0.0395)
0.9986
(0.1451)

0.0314
(0.0011)
0.0401
(0.0006)
0.1446
(0.0028)

0.0235
(0.0031)
0.0174
(0.0023)
0.0608
(0.0081)

0.0345
(0.0060)
0.0252
(0.0070)
0.0877
(0.0268)

0.0533
(0.0158)
0.0304
(0.0111)
0.1063
(0.0455)

1.3182
(0.0121)
0.9883
(0.0182)
1.0073
(0.0444)

0.0120
(0.0001)
0.0180
(0.0002)
0.0444
(0.0003)
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Table B.15 Small panel with G = 6, T'= 4. Case 4.1: x9;+ ~ N(gt/6,1) + z; + fi,
ngt = 200, sampling rate= 0.2%. sep, se; and se. are the non-roust, robust and
cluster-robust standard errors, receptively.

MD Identity

MD Optimal

B

—_—

se(f)

—

sen(B)

—

ser(B)

—

sec(B)

b

—

~

se(f)

IV: none

T2

3

L4

1.0153
(0.1599)
1.0031
(0.0867)
1.0184
(0.2879)

0.1575
(0.0143)
0.0890
(0.0043)
0.2869
(0.0135)

0.1537
(0.0356)
0.0868
(0.0187)
0.2799
(0.0597)

0.1388
(0.0427)
0.0825
(0.0211)
0.2628
(0.0718)

0.1440
(0.0631)
0.0876
(0.0331)
0.2990
(0.1099)

1.0155
(0.1598)
1.0029
(0.0866)
1.0194
(0.2877)

0.1569
(0.0142)
0.0887
(0.0043)
0.2859
(0.0135)

IV: z

T2

3

L4

1.0048
(0.0431)
1.0057
(0.0804)
1.0149
(0.2792)

0.0462
(0.0014)
0.0827
(0.0027)
0.2779
(0.0115)

0.0455
(0.0054)
0.0820
(0.0097)
0.2756
(0.0336)

0.0506
(0.0074)
0.0670
(0.0159)
0.2210
(0.0535)

0.0494
(0.0159)
0.0704
(0.0270)
0.2488
(0.0889)

1.0048
(0.0437)
1.0052
(0.0803)
1.0157
(0.2778)

0.0451
(0.0014)
0.0818
(0.0027)
0.2748
(0.0113)

IV: 29

T2

T3

L4

1.2218
(0.0947)
1.0175
(0.1094)
1.0190
(0.3531)

0.0951
(0.0071)
0.1119
(0.0048)
0.3481
(0.0175)

0.0728
(0.0188)
0.0522
(0.0129)
0.1655
(0.0410)

0.0752
(0.0191)
0.0715
(0.0243)
0.2170
(0.0755)

0.0947
(0.0420)
0.0722
(0.0320)
0.2634
(0.1217)

1.3194
(0.0266)
0.9439
(0.0790)
1.1004
(0.2737)

0.0266
(0.0006)
0.0806
(0.0026)
0.2714
(0.0112)

IV: z3

L2

r3

T4

1.0478
(0.1584)
0.9997
(0.0465)
1.0287
(0.2908)

0.1585
(0.0127)
0.0463
(0.0016)
0.2953
(0.0130)

0.1185
(0.0191)
0.0352
(0.0049)
0.2339
(0.0328)

0.1092
(0.0256)
0.0366
(0.0061)
0.2199
(0.0441)

0.1239
(0.0524)
0.0400
(0.0139)
0.2586
(0.0884)

1.0572
(0.1415)
1.0003
(0.0431)
1.0252
(0.2615)

0.1379
(0.0106)
0.0415
(0.0012)
0.2631
(0.0108)

IV: x4

L2

T3

L4

1.0224
(0.1568)
1.0056
(0.0832)
1.0083
(0.1572)

0.1557
(0.0136)
0.0864
(0.0038)
0.1583
(0.0044)

0.0994
(0.0187)
0.0545
(0.0092)
0.1278
(0.0212)

0.1000
(0.0266)
0.0565
(0.0128)
0.1303
(0.0279)

0.1179
(0.0514)
0.0698
(0.0270)
0.1418
(0.0499)

1.0573
(0.1437)
0.9976
(0.0789)
1.0035
(0.0988)

0.1430
(0.0116)
0.0811
(0.0033)
0.1010
(0.0022)

IV: all

T2

3

L4

1.1794
(0.0707)
1.0090
(0.0875)
1.0036
(0.3253)

0.0710
(0.0057)
0.0896
(0.0032)
0.3215
(0.0143)

0.0407
(0.0078)
0.0306
(0.0057)
0.1062
(0.0198)

0.0531
(0.0114)
0.0514
(0.0163)
0.1814
(0.0624)

0.0677
(0.0273)
0.0573
(0.0243)
0.2260
(0.1035)

1.3142
(0.0275)
0.9894
(0.0424)
1.0073
(0.1018)

0.0262
(0.0006)
0.0393
(0.0009)
0.0974
(0.0015)
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Table B.16 Small panel with G = 6, T'= 4. Case 4.1: x9;+ ~ N(gt/6,1) + z; + fi,
ngt = 200, sampling rate= 0.2%. sep, se; and se. are the non-roust, robust and
cluster-robust standard errors, receptively.

MD Identity

MD Optimal

B

—_—

se(f)

—

sen(B)

—

ser(B)

—

sec(B)

b

—

~

se(f)

IV: none

T2

3

L4

1.0079
(0.0721)
0.9961
(0.0401)
1.0026
(0.1305)

0.0718
(0.0028)
0.0398
(0.0009)
0.1279
(0.0027)

0.0693
(0.0146)
0.0384
(0.0079)
0.1235
(0.0255)

0.0615
(0.0181)
0.0365
(0.0086)
0.1165
(0.0305)

0.0620
(0.0280)
0.0390
(0.0138)
0.1321
(0.0488)

1.0079
(0.0721)
0.9961
(0.0400)
1.0027
(0.1304)

0.0717
(0.0028)
0.0398
(0.0009)
0.1279
(0.0027)

IV: z

T2

3

L4

1.0025
(0.0196)
0.9972
(0.0372)
1.0008
(0.1285)

0.0205
(0.0003)
0.0373
(0.0006)
0.1258
(0.0023)

0.0203
(0.0024)
0.0369
(0.0045)
0.1244
(0.0150)

0.0226
(0.0034)
0.0295
(0.0069)
0.0977
(0.0240)

0.0221
(0.0073)
0.0320
(0.0115)
0.1109
(0.0398)

1.0026
(0.0196)
0.9973
(0.0372)
1.0009
(0.1283)

0.0204
(0.0003)
0.0372
(0.0006)
0.1255
(0.0023)

IV: 29

T2

T3

L4

1.2219
(0.0420)
1.0015
(0.0490)
0.9986
(0.1587)

0.0422
(0.0015)
0.0501
(0.0010)
0.1561
(0.0036)

0.0397
(0.0079)
0.0281
(0.0056)
0.0895
(0.0179)

0.0445
(0.0105)
0.0352
(0.0104)
0.1057
(0.0324)

0.0677
(0.0250)
0.0389
(0.0138)
0.1275
(0.0540)

1.3238
(0.0121)
0.9336
(0.0367)
1.0948
(0.1257)

0.0120
(0.0001)
0.0366
(0.0005)
0.1238
(0.0023)

IV: z3

L2

r3

T4

1.0106
(0.0747)
0.9980
(0.0211)
1.0024
(0.1349)

0.0759
(0.0029)
0.0207
(0.0003)
0.1335
(0.0027)

0.0560
(0.0076)
0.0158
(0.0021)
0.1057
(0.0139)

0.0509
(0.0111)
0.0165
(0.0026)
0.0992
(0.0181)

0.0570
(0.0251)
0.0180
(0.0060)
0.1158
(0.0402)

1.0148
(0.0670)
0.9991
(0.0189)
0.9997
(0.1211)

0.0669
(0.0024)
0.0188
(0.0003)
0.1198
(0.0023)

IV: x4

L2

T3

L4

1.0094
(0.0729)
0.9955
(0.0391)
1.0038
(0.0713)

0.0723
(0.0028)
0.0388
(0.0008)
0.0705
(0.0009)

0.0453
(0.0075)
0.0241
(0.0039)
0.0564
(0.0091)

0.0449
(0.0115)
0.0251
(0.0053)
0.0578
(0.0119)

0.0515
(0.0233)
0.0310
(0.0116)
0.0627
(0.0220)

1.0185
(0.0696)
0.9944
(0.0368)
1.0038
(0.0461)

0.0697
(0.0026)
0.0370
(0.0007)
0.0454
(0.0005)

IV: all

T2

3

L4

1.1771
(0.0312)
0.9954
(0.0395)
0.9840
(0.1473)

0.0316
(0.0012)
0.0402
(0.0007)
0.1447
(0.0029)

0.0232
(0.0030)
0.0172
(0.0022)
0.0601
(0.0078)

0.0336
(0.0058)
0.0248
(0.0071)
0.0861
(0.0270)

0.0513
(0.0157)
0.0294
(0.0103)
0.1059
(0.0456)

1.3198
(0.0123)
0.9849
(0.0185)
1.0069
(0.0458)

0.0120
(0.0001)
0.0180
(0.0002)
0.0444
(0.0003)
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Table B.17 Small panel with G = 6, T'= 4. Case 5.a: x9;+ ~ N(gt/2,1) + z; + fi,

ngt = 200, sampling rate= 1%. se;, se; and se. are the non-roust, robust and

cluster-robust standard errors, receptively.

MD Identity

MD Optimal

5

—

se(p)

—

sen(B)

—_—

ser(B)

—

sec()

5

—

N

se(f)

IV: none

L2

3

L4

0.9951
(0.0524)
1.0007
(0.0906)
1.0074
(0.2817)

0.0539
(0.0021)
0.0887
(0.0033)
0.2843
(0.0129)

0.0527
(0.0106)
0.0866
(0.0175)
0.2777
(0.0569)

0.0470
(0.0142)
0.0825
(0.0194)
0.2625
(0.0661)

0.0472
(0.0211)
0.0875
(0.0316)
0.2945
(0.1070)

0.9951
(0.0522)
1.0010
(0.0908)
1.0078
(0.2834)

0.0537
(0.0021)
0.0884
(0.0032)
0.2834
(0.0128)

IV: 2

L2

3

L4

1.0029
(0.0360)
0.9966
(0.0863)
1.0107
(0.2754)

0.0359
(0.0010)
0.0847
(0.0028)
0.2777
(0.0120)

0.0354
(0.0043)
0.0833
(0.0101)
0.2733
(0.0345)

0.0358
(0.0053)
0.0687
(0.0143)
0.2200
(0.0494)

0.0352
(0.0117)
0.0727
(0.0256)
0.2460
(0.0865)

1.0030
(0.0361)
0.9962
(0.0871)
1.0099
(0.2765)

0.0352
(0.0010)
0.0836
(0.0028)
0.2744
(0.0118)

IV: 29

L2

3

T4

1.0240
(0.0782)
0.9991
(0.1104)
0.9839
(0.3425)

0.0787
(0.0044)
0.1118
(0.0048)
0.3461
(0.0188)

0.0380
(0.0098)
0.0487
(0.0126)
0.1403
(0.0369)

0.0456
(0.0120)
0.0692
(0.0237)
0.2007
(0.0720)

0.0469
(0.0193)
0.0668
(0.0319)
0.2496
(0.1127)

1.2598
(0.0252)
0.8485
(0.0867)
1.2129
(0.2806)

0.0247
(0.0007)
0.0824
(0.0028)
0.2737
(0.0119)

IV: z3

L2

3

T4

1.0004
(0.0552)
0.9908
(0.0461)
1.0021
(0.2886)

0.0572
(0.0022)
0.0463
(0.0013)
0.2932
(0.0129)

0.0422
(0.0059)
0.0353
(0.0049)
0.2331
(0.0332)

0.0381
(0.0087)
0.0368
(0.0063)
0.2190
(0.0420)

0.0426
(0.0187)
0.0405
(0.0136)
0.2554
(0.0911)

1.0026
(0.0496)
0.9907
(0.0422)
1.0212
(0.2612)

0.0502
(0.0018)
0.0415
(0.0010)
0.2617
(0.0107)

IV: x4

L2

3

L4

0.9950
(0.0534)
1.0009
(0.0867)
1.0061
(0.1549)

0.0544
(0.0022)
0.0863
(0.0029)
0.1583
(0.0036)

0.0343
(0.0056)
0.0541
(0.0087)
0.1269
(0.0205)

0.0343
(0.0091)
0.0563
(0.0119)
0.1303
(0.0269)

0.0395
(0.0173)
0.0689
(0.0253)
0.1407
(0.0491)

1.0018
(0.0515)
0.9971
(0.0818)
1.0121
(0.1011)

0.0522
(0.0020)
0.0815
(0.0027)
0.1008
(0.0017)

IV: all

L2

3

L4

1.0226
(0.0740)
0.9952
(0.1000)
0.9774
(0.3333)

0.0745
(0.0040)
0.1014
(0.0041)
0.3369
(0.0176)

0.0227
(0.0052)
0.0284
(0.0065)
0.0857
(0.0199)

0.0388
(0.0101)
0.0565
(0.0189)
0.1775
(0.0634)

0.0409
(0.0166)
0.0575
(0.0265)
0.2239
(0.1009)

1.2477
(0.0255)
0.9575
(0.0421)
1.0247
(0.1011)

0.0240
(0.0006)
0.0399
(0.0009)
0.0986
(0.0016)
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Table B.18 Small panel with G = 6, T'= 4. Case 5.b: z9;s ~ N(gt/2,1) + z; + f;,

ngt = 1000, sampling rate= 1%. sep, se; and se. are the non-roust, robust and

cluster-robust standard errors, receptively.

MD Identity

MD Optimal

5

—

se(p)

—

sen(B)

—_—

ser(B)

—

sec()

5

—

N

se(f)

IV: none

L2

3

L4

0.9985
(0.0239)
1.0034
(0.0391)
1.0072
(0.1273)

0.0241
(0.0004)
0.0397
(0.0006)
0.1282
(0.0024)

0.0233
(0.0048)
0.0385
(0.0079)
0.1244
(0.0256)

0.0209
(0.0060)
0.0366
(0.0085)
0.1174
(0.0308)

0.0213
(0.0095)
0.0390
(0.0146)
0.1333
(0.0486)

0.9985
(0.0239)
1.0034
(0.0391)
1.0074
(0.1276)

0.0241
(0.0004)
0.0397
(0.0006)
0.1281
(0.0024)

IV: 2

L2

3

L4

0.9991
(0.0150)
1.0031
(0.0368)
1.0075
(0.1251)

0.0160
(0.0002)
0.0382
(0.0006)
0.1268
(0.0023)

0.0160
(0.0019)
0.0380
(0.0047)
0.1264
(0.0156)

0.0161
(0.0022)
0.0304
(0.0065)
0.0981
(0.0243)

0.0157
(0.0052)
0.0324
(0.0120)
0.1116
(0.0404)

0.9992
(0.0151)
1.0030
(0.0369)
1.0078
(0.1256)

0.0160
(0.0002)
0.0381
(0.0006)
0.1265
(0.0023)

IV: 29

L2

3

T4

1.0251
(0.0355)
1.0089
(0.0489)
1.0059
(0.1551)

0.0351
(0.0008)
0.0498
(0.0009)
0.1552
(0.0035)

0.0193
(0.0041)
0.0247
(0.0052)
0.0715
(0.0150)

0.0217
(0.0052)
0.0312
(0.0104)
0.0902
(0.0330)

0.0229
(0.0093)
0.0307
(0.0149)
0.1118
(0.0517)

1.2599
(0.0109)
0.8485
(0.0368)
1.2361
(0.1265)

0.0111
(0.0001)
0.0374
(0.0006)
0.1259
(0.0023)

IV: z3

L2

3

T4

1.0010
(0.0260)
1.0023
(0.0206)
1.0104
(0.1325)

0.0257
(0.0005)
0.0207
(0.0002)
0.1337
(0.0025)

0.0189
(0.0026)
0.0158
(0.0022)
0.1059
(0.0147)

0.0171
(0.0037)
0.0165
(0.0028)
0.0991
(0.0195)

0.0191
(0.0083)
0.0180
(0.0065)
0.1159
(0.0408)

0.9998
(0.0221)
1.0028
(0.0186)
1.0076
(0.1217)

0.0227
(0.0004)
0.0188
(0.0002)
0.1201
(0.0020)

IV: x4

L2

3

L4

0.9993
(0.0238)
1.0037
(0.0381)
1.0032
(0.0686)

0.0243
(0.0004)
0.0387
(0.0006)
0.0705
(0.0007)

0.0153
(0.0025)
0.0242
(0.0040)
0.0567
(0.0093)

0.0153
(0.0038)
0.0251
(0.0053)
0.0579
(0.0121)

0.0178
(0.0079)
0.0313
(0.0117)
0.0635
(0.0218)

0.9995
(0.0233)
1.0036
(0.0370)
1.0013
(0.0442)

0.0237
(0.0004)
0.0369
(0.0005)
0.0454
(0.0003)

IV: all

L2

3

L4

1.0231
(0.0337)
1.0052
(0.0444)
0.9991
(0.1511)

0.0333
(0.0008)
0.0452
(0.0008)
0.1512
(0.0033)

0.0117
(0.0021)
0.0147
(0.0026)
0.0445
(0.0080)

0.0188
(0.0043)
0.0257
(0.0082)
0.0801
(0.0290)

0.0197
(0.0081)
0.0267
(0.0123)
0.1005
(0.0463)

1.2498
(0.0109)
0.9681
(0.0183)
1.0142
(0.0447)

0.0109
(0.0001)
0.0182
(0.0002)
0.0448
(0.0003)
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Table B.19 Small panel with G = 6, T'= 4. Case 5.1: x9;+ ~ N(gt/2,1) + z; + f;,

ngt = 200, sampling rate= 0.2%. sep, se; and se. are the non-roust, robust and

cluster-robust standard errors, receptively.

MD Identity

MD Optimal

5

—

se(p)

—

sen(B)

—_—

ser(B)

—

sec()

5

—

N

se(f)

IV: none

L2

3

L4

0.9993
(0.0550)
1.0066
(0.0874)
1.0131
(0.2886)

0.0539
(0.0021)
0.0888
(0.0032)
0.2859
(0.0124)

0.0527
(0.0113)
0.0868
(0.0185)
0.2794
(0.0595)

0.0471
(0.0141)
0.0823
(0.0208)
0.2623
(0.0718)

0.0479
(0.0206)
0.0871
(0.0326)
0.2988
(0.1102)

0.9994
(0.0550)
1.0064
(0.0874)
1.0141
(0.2882)

0.0537
(0.0021)
0.0885
(0.0032)
0.2849
(0.0124)

IV: 2

L2

3

L4

1.0017
(0.0342)
1.0058
(0.0826)
1.0151
(0.2798)

0.0360
(0.0010)
0.0848
(0.0028)
0.2793
(0.0117)

0.0355
(0.0042)
0.0841
(0.0100)
0.2767
(0.0339)

0.0359
(0.0051)
0.0683
(0.0154)
0.2209
(0.0534)

0.0353
(0.0115)
0.0715
(0.0270)
0.2483
(0.0897)

1.0017
(0.0347)
1.0052
(0.0828)
1.0159
(0.2784)

0.0353
(0.0010)
0.0838
(0.0028)
0.2761
(0.0115)

IV: 29

L2

3

T4

1.0280
(0.0797)
1.0159
(0.1086)
1.0101
(0.3527)

0.0785
(0.0042)
0.1117
(0.0048)
0.3470
(0.0178)

0.0376
(0.0107)
0.0483
(0.0134)
0.1393
(0.0385)

0.0449
(0.0125)
0.0684
(0.0242)
0.1977
(0.0766)

0.0466
(0.0206)
0.0662
(0.0324)
0.2463
(0.1195)

1.2559
(0.0244)
0.8574
(0.0821)
1.2250
(0.2813)

0.0245
(0.0006)
0.0825
(0.0027)
0.2751
(0.0116)

IV: z3

L2

3

T4

1.0062
(0.0569)
1.0022
(0.0468)
1.0234
(0.2921)

0.0571
(0.0022)
0.0464
(0.0013)
0.2950
(0.0123)

0.0420
(0.0059)
0.0353
(0.0049)
0.2338
(0.0328)

0.0381
(0.0086)
0.0367
(0.0061)
0.2197
(0.0443)

0.0432
(0.0184)
0.0399
(0.0139)
0.2577
(0.0886)

1.0058
(0.0514)
1.0023
(0.0432)
1.0203
(0.2627)

0.0502
(0.0018)
0.0416
(0.0010)
0.2628
(0.0102)

IV: x4

L2

3

L4

1.0004
(0.0550)
1.0088
(0.0839)
1.0047
(0.1579)

0.0543
(0.0021)
0.0864
(0.0028)
0.1580
(0.0037)

0.0344
(0.0058)
0.0544
(0.0091)
0.1276
(0.0211)

0.0344
(0.0087)
0.0563
(0.0127)
0.1303
(0.0279)

0.0400
(0.0171)
0.0694
(0.0267)
0.1418
(0.0502)

1.0051
(0.0536)
1.0049
(0.0800)
1.0017
(0.0993)

0.0522
(0.0020)
0.0815
(0.0026)
0.1007
(0.0017)

IV: all

L2

3

L4

1.0262
(0.0755)
1.0115
(0.0984)
1.0035
(0.3431)

0.0743
(0.0038)
0.1012
(0.0040)
0.3378
(0.0165)

0.0225
(0.0056)
0.0283
(0.0069)
0.0852
(0.0207)

0.0382
(0.0106)
0.0559
(0.0194)
0.1750
(0.0674)

0.0409
(0.0176)
0.0572
(0.0271)
0.2212
(0.1072)

1.2446
(0.0250)
0.9700
(0.0428)
1.0149
(0.1026)

0.0239
(0.0006)
0.0399
(0.0009)
0.0985
(0.0017)
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Table B.20 Small panel with G = 6, T'= 4. Case 5.2: x9;+ ~ N(gt/2,1) + z; + fi,
ngt = 1000, sampling rate= 0.2%. sep, se; and sec are the non-roust, robust and
cluster-robust standard errors, receptively.

MD Identity

MD Optimal

5

—

se(p)

—

sen(B)

—_—

ser(B)

—

sec()

5

—

N

se(f)

IV: none

L2

3

L4

1.0015
(0.0241)
0.9967
(0.0401)
1.0016
(0.1304)

0.0241
(0.0004)
0.0398
(0.0006)
0.1279
(0.0024)

0.0232
(0.0048)
0.0384
(0.0079)
0.1235
(0.0255)

0.0206
(0.0060)
0.0366
(0.0086)
0.1166
(0.0305)

0.0207
(0.0094)
0.0390
(0.0138)
0.1324
(0.0489)

1.0015
(0.0241)
0.9968
(0.0401)
1.0018
(0.1304)

0.0241
(0.0004)
0.0398
(0.0006)
0.1278
(0.0024)

IV: 2

L2

3

L4

1.0018
(0.0151)
0.9966
(0.0383)
1.0017
(0.1293)

0.0160
(0.0002)
0.0383
(0.0006)
0.1265
(0.0023)

0.0158
(0.0019)
0.0378
(0.0046)
0.1251
(0.0151)

0.0160
(0.0022)
0.0304
(0.0066)
0.0975
(0.0239)

0.0157
(0.0054)
0.0327
(0.0114)
0.1107
(0.0399)

1.0019
(0.0151)
0.9967
(0.0384)
1.0018
(0.1290)

0.0159
(0.0002)
0.0382
(0.0006)
0.1262
(0.0023)

IV: 29

L2

3

T4

1.0291
(0.0343)
0.9982
(0.0489)
0.9876
(0.1574)

0.0351
(0.0008)
0.0500
(0.0010)
0.1554
(0.0036)

0.0190
(0.0039)
0.0245
(0.0050)
0.0708
(0.0146)

0.0214
(0.0050)
0.0309
(0.0106)
0.0891
(0.0336)

0.0219
(0.0086)
0.0296
(0.0143)
0.1111
(0.0533)

1.2617
(0.0109)
0.8421
(0.0381)
1.2310
(0.1299)

0.0111
(0.0001)
0.0375
(0.0006)
0.1255
(0.0023)

IV: z3

L2

3

T4

1.0014
(0.0253)
0.9985
(0.0212)
1.0012
(0.1350)

0.0257
(0.0004)
0.0207
(0.0003)
0.1334
(0.0025)

0.0189
(0.0025)
0.0158
(0.0021)
0.1057
(0.0139)

0.0171
(0.0037)
0.0165
(0.0026)
0.0993
(0.0181)

0.0192
(0.0085)
0.0180
(0.0060)
0.1158
(0.0403)

1.0019
(0.0226)
0.9995
(0.0190)
0.9987
(0.1211)

0.0227
(0.0003)
0.0188
(0.0002)
0.1198
(0.0021)

IV: x4

L2

3

L4

1.0017
(0.0244)
0.9962
(0.0392)
1.0031
(0.0713)

0.0243
(0.0004)
0.0388
(0.0006)
0.0705
(0.0007)

0.0152
(0.0025)
0.0241
(0.0039)
0.0564
(0.0091)

0.0151
(0.0038)
0.0251
(0.0053)
0.0579
(0.0120)

0.0173
(0.0078)
0.0309
(0.0117)
0.0628
(0.0221)

1.0028
(0.0237)
0.9961
(0.0369)
1.0034
(0.0460)

0.0237
(0.0004)
0.0370
(0.0005)
0.0454
(0.0004)

IV: all

L2

3

L4

1.0270
(0.0325)
0.9952
(0.0445)
0.9816
(0.1535)

0.0333
(0.0008)
0.0453
(0.0008)
0.1514
(0.0033)

0.0116
(0.0020)
0.0146
(0.0026)
0.0440
(0.0078)

0.0185
(0.0042)
0.0254
(0.0084)
0.0790
(0.0297)

0.0188
(0.0074)
0.0258
(0.0118)
0.0997
(0.0478)

1.2514
(0.0110)
0.9645
(0.0187)
1.0142
(0.0461)

0.0109
(0.0001)
0.0182
(0.0002)
0.0448
(0.0003)
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CHAPTER 3

A FLEXIBLE PLUG-IN G-FORMULA FOR CONTROLLED DIRECT
EFFECTS IN MEDIATION ANALYSIS

3.1 Introduction

In the literature of epidemiology and biostatistics, the term g-methods (e.g., Westreich et al.,
2012) are often used to collectively refer to g-formula (Robins, 1986), g-estimation of struc-
tural nested models (Robins, 1998), and inverse probability weighting of marginal structural
models (Horvitz and Thompson, 1952; Robins, 1989; Hernan and Robins, 2015), all of which
are useful approaches in estimating the effects of time-varying treatments in the presence of
time-varying confounders. The g-formula in its original form is non-parametric and is the
foundation for the other two. While non-parametric g-formula is flexible in its model specifi-
cation, it is also quite demanding on data. Therefore, we often introduce semi-parametric or
parametric modeling. Despite the fact that parametric models are almost always misspec-
ified, the parametric g-formula often yields satisfactory estimates as long as the specified
models are reasonably flexible. However, most applications of the parametric g-formula (e.g.,
Westreich et al., 2012; Taubman et al., 2009; Young et al., 2011; Danaei et al., 2013; Lajous
et al., 2013; Garcia-Aymerich et al., 2014) still use Monte Carlo integration to calculate be-
cause closed-form expressions of the treatment effects of interest are either non-existent or
tedious to derive.

The application of these g-method to mediation analysis is straightforward as mediation
analysis is conceptually equivalent to a sequential treatment of two periods. Since Robins
and Greenland (1992) conceptualize the natural and controlled effects in mediation analysis
using the potential outcome (counterfactual) framework, several mediation analysis meth-
ods are developed from g-methods. These methods include, among others, the parametric

g-formula in Daniel, De Stavola and Cousens (2011) and Valeri and Vanderweele (2013),
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and the parametric version of the sequential g-estimation of structural nested mean models
(SNMMs) studied by Vansteelandt (2009). As in the case of g-methods, these methods also
rely on Monte Carlo integration to calculate the treatment effects of interest, which can be
computationally demanding. Meanwhile, since there is no closed-form expressions, we almost
always need to bootstrap the standard errors, which raises the computation intensity rapidly.
When the estimation itself is time-consuming, the problem gets amplified even further. This
includes, but not limited to, maximum likelihood estimation when it converges slowly and
most semi-parametric or non-parametric techniques that require cross validation for tuning
parameter selection.

In view of this limitation, in this chapter we propose a so called flexible plug-in g-formula
for controlled direct effects (CDE) in mediation analysis. The key assumption needed is
that the conditional expectation of the outcome is linear in time-varying confounders. This
partial linearity allows us to replace the confounders with their fitted values, which results
in a plug-in estimator for CDE. At the same time, it also relaxes the fully linear assumptions
that are commonly used in empirical studies, which gives us more flexibility in choosing the
functional form of the outcome conditional mean. As a result, we have a better chance to
be closer to the true underlying model.

Besides the partial linearity assumption, another necessary condition for the consistency
of the flexible plug-in g-formula is the sequential ignorability assumption (Robins, 1986). To
check the robustness of the estimator to a particular violation of the sequential ignorability
assumption, we present a sensitivity analysis that is similar in spirit to that proposed by
Imai, Keele and Tingley (2010). The proposed estimator is evaluated in a small simulation
and its use is illustrated in a longitudinal cohort study.

The rest of this chapter is organized as follows. We first set up the counterfactual
mediation analysis framework in the second section. In the third section, we review the
general g-formula as well as the sequential g-estimation. In the fourth section, we present

in detail the flexible plug-in g-formula. In particular, it is compared to the sequential g-
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estimation in some commonly used linear specifications. The next two sections outline the

sensitivity analysis and an empirical application, respectively. The last section concludes.

3.2 Framework

A causal mediation analysis is typically guided by a directed acyclic graphs (DAG) (Pearl,
2009). We use the DAG G in Figure 1 for illustration, but our method can be applied in
similar models that satisfy the assumptions below. Throughout this paper, a DAG is viewed
as a graphical representation of an underlying non-parametric structural equation model with
independent errors (NPSEM-IE) (Pearl, 2009).] A DAG and the associated NPSEM-IE are
related as usual: “there is an equation for each variable in the model, specifying that variable
as a function of its parents in the graph” (Richardson and Robins, 2013). The counterfactual
outcomes, defined by intervening on certain variables in the NPSEM-IE model, are used in
constructing the CDEs of interest.

Specifically, assume we have a longitudinal study in which each respondent was inter-
viewed 3 times at £ = 0,1,2, with a one-time treatment A at & = 0. Each interview
generates data Ly. The purpose is to learn to what extent the treatment effect of A on Y
is mediated by a mediator M. (A, M) are the intervention nodes, and {L;. : k = 0, 1,2} are
observed non-intervention nodes or confounders. L contains all baseline information, and
Ly contains all post-treatment non-intervention nodes that occur before M and confounds
the mediator-outcome relationship. As noted in Pearl (2014), we cannot identify natural
mediation effects non-parametrically because of the existence of L. Hence, we focus on the

CDEs in this paper. The model allows for a type of harmless unobserved variables, collec-

1 Although the NPSEM-IE model makes many more counterfactual independence assump-
tions than, and is a strict submodel of, the finest fully randomized causally interpretable
structured tree graph (FFRCISTG) model of (Robins, 1986; Robins and Richardson, 2010),
the generality of the latter does not play an essential role in our paper. The adoption of
NPSEM-IE, however, makes the description of the model straightforward and easy to follow,
since it is built on the traditional structural equation models and imposes simple distribution
assumptions on the errors (exogenous variables).
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Figure 3.1 A directed acyclic graph for a longitudinal study with three time points. (A, M)
are the intervention nodes, (Lg, L1,Y’) the non-intervention nodes, and Uy the
unobservables.

g

tively denoted by Uj that are parents of the observed non-intervention nodes. Based on the
back-door criterion the observed non-intervention nodes block the confounding effects of Uy
Pearl (2009).

Each node (including the unobservable Upy) has an exogenous error (not shown in the
graph) attached solely to itself. For example, ey is the exogenous error for Y, as £V is for
Up. All errors are unobserved and are assumed to be jointly independent in NPSEM-IE. The
independence assumption will be relaxed in our sensitivity analysis in which a more general
NPSEM allowing correlations between ¢’s will be used.

Let Y™ be the counterfactual outcome where A and M are intervened to be fixed at
a and m. In the context of NPSEM-IEs, such an intervention would correspond to the
operation of deleting the equations for A and M from the system and substituting A = a
and M = m in the system. This operation is called the do operation in Pearl (2009). In
this paper, we consider a binary A so that a € {0,1}. An extension to multi-valued A
is trivial. For a fixed m, we are interested in the CDE(m) defined as E(Y1™ — y9m) or

E(Y (1,m) — Y(0,m)).
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3.3 Existing Methods

In the context of DAG G, we discuss two existing methods for estimating the CDE. The first
method is the g-formula for the marginal distribution of Y introduced in Robins (1986) and
revisited in Richardson and Robins (2013), which is the basis for the parametric g-formula
and in particular for the flexible plug-in estimator. The second method is the sequential
g-estimation Vansteelandt (2009), which is, as we will show, numerically equivalent to the

flexible plug-in estimator in certain linear cases.

3.3.1 The g-Formula

In Richardson and Robins (2013), the term g-formula refers to the unextended g-formula
of Robins (1986), the extended g-formula of Robins, Hernan and SIEBERT (2004), or the
g-formula for a sequence of treatments and a single response. Among the three, the last one
is of interest in the context of DAG G and the estimation of CDEs.

Let P(Y%"™ = y) be the distribution of the potential response Y under the sequence
of interventions (A = a,M = m), from which we can construct the CDE. Assume the
consistency rule holds Robins (1994), that is, a potential response under a hypothetical
condition that happened to take place is precisely the observed response. In addition, the

following form of sequential ignorability condition from Robins (2000) is imposed:

Yom | A| L,
for all a,m (3.1)

where L represents distributional independence. Note that condition (3.1) summarizes the
set of independence conditions for all possible values of a and m, which are needed to identify
CDEs for all possible values of M.

A logically equivalent algorithm of finding the right conditioning set of variables as the

sequential ignorability conditions in (3.1) is the sequential back-door criterion developed in
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Figure 3.2 Subgraphs for G where an upper bar means arrows pointing to a node are
removed and an under bar means arrows emitting from a node are removed.

112



Pearl and Robins (1995), which states

YLA|L .,
(Y LA| Log .

(Y L M| LO,A,Ll)gM,
where G(M) denotes the subgraph obtained by removing from G all arrows emerging from M
(Figure 3.2, B), and G ADT denotes the removal of both incoming arrows to M and outgoing
arrows from A (Figure 3.2, A).

Under either (3.1) or (3.2), the g-formula for the expected counterfactual outcome is

EY™™) :///Z/fY|L0,A,L1,M(y|lOvaa lm) Sy 0 (il @) fr(lo)dydlydly - (3.3)
= [ [ Btslo,astim) g . o) g o)t (3.4)

where, e.g, P(y|ly,a,l1,m) is shorthand for P(Y = y|Lg = lyp, A = a,L1 =11, M = m). See
Appendix A for detail. Then the CDE is

= [ [ Bllto. 1m0 1 o, ) g o)l
_//E(y‘lanyllam)leL0(11’l07)fL0(lO)dl1le~ (3:5)

Equation (3.3) is non-parametric in the sense that no parametric assumptions are made
yet for fY|L0,A,L1,M(y|l0>aa l1,m), fL1|L0(l1|l0,a) and fLO(lo). Equation (3.4) adds an
additional assumption that the conditional mean E(y|ly, a,l1, m) exits and is finite.

Two straightforward estimation strategies to estimate E(Y %) follow from equations
(3.3) and (3.4). The first strategy exploits equation (3.3), with either non-parametric or
parametric specification of the distributions. This strategy generally involves Monte Carlo
simulation and numerical integration for calculating CDEs (Daniel, De Stavola and Cousens,
2011; Imai, Keele and Tingley, 2010; Hicks and Tingley, 2011).

The second strategy exploits equation (3.4), which avoids the estimation of the den-

sity function fY|L0,A,L1,M(y|l0a a,ly,m). Instead, we only estimates the conditional mean
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E (Ylly,a,ly,m). We can keep the non-parametric feature or choose suitable parametric
models to reduce computation burdens. Many applications have shown that a properly cho-
sen parametric method can provide good approximations (Westreich et al., 2012; Taubman
et al., 2009; Young et al., 2011; Danaei et al., 2013; Lajous et al., 2013; Garcia-Aymerich
et al., 2014). The estimator proposed in this chapter falls in the second estimation strategy
and imposes a particular parametric assumption on E (Y |ly, a, 1, m) that simplifies equation

(3.4) even further (details below).

3.3.2 The Sequential g-formula estimator

The sequential g-estimation for CDEs is a two-step estimator based on an SNMM (Vanstee-
landt, 2009). The idea is to first partial out the effect of the mediator on the outcome and
then regress the adjusted outcome on the treatment, the confounders, and possibly their
interactions to identify the direct effect. The sequential g-formula estimator assumes an

additive separable functional form in the conditional mean equation for Y

E(Y”O?a’allam) = QA(l07a7ll;7) +qM(l0,a,l1,m;’y) (36)

where q4(+) and gp(-) are arbitrary known functions with finite dimensional parameter ~,
satisfying qps(lo, a,l1,m = 0;y) = 0. For example, we can assume g4 = 79 + 40 + 7L0l0 +
vr,l1 and gpy = ypm. In addition, assume an SNMM for E(Y"" — Y97 1) = ¢ 4a where

@ 4 is the CDE. Then the sequential g-estimation procedure is:

1. regress Y on (1, Lo, A, L1, M) and obtain the ordinary least square (OLS) estimator

Apr for vps and generate Y_M =Y — Ay M, and

2. regress Y_); on (1, Ly, A). Denote by ¢4 the OLS estimator for the coefficient of A.

It can be shown ¢ 4 is a consistent estimator for ¢ 4.2

2Under the sequential ignorability conditions and additive separability (3.6), Vanstee-
landt (2009) gave the key identification result E [Y — qps(Lo, A, L1, M; )| Lo = lp, A = a] =
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See Appendices C and D for the validity of the estimation procedure.

Table 3.1 lists five typical examples of SNMMs compatible with DAG G that can be
estimated using the sequential g-formula estimator. The simple example above is Model 1 in
Table 3.1. The first three models were discussed in Vansteelandt (2009), and we added the
latter two models with more flexible specifications. One difficulty in applying the sequential
g-formula estimator is to find the proper g4(-) and ¢p;(-) functions for a given SNMM, as
can been seen in Table 3.1. The derivation of standard errors of the estimator is also no
mean feat.

The sequential g-estimation is not always as simple as it looks in Model 1. For example,
in a model with up to two-way interactions (Model 5 in Table 3.1), we need to estimate
YAMs ALy and P ALy 0 BV =YY = oy + o anrm+ary E(Lo) + ¢ anrrymE(Lo)-
It turns out that in this case only E(L1|Ly = lgp,A = 0) = mg + TLylo is not enough to

identify @ opr or AN Lo What is needed is the stronger assumption
E(Li{|Ly =1y, A=a) =my+ Trolo +maa+marya < Iy
which implies (by setting YAMLy = YAML, = 0 in Appendix B)
PAM = VAM + VML, TA;

$AMLy = YTMLTALgy:

Clearly, the above equations show that ¢ 45 and @ 4ps L cannot be obtained directly from
the first-step regression, since now an additional regression for F(Lq{|Lg = lp, A = a) is

needed to estimate .

E [YaO|L0 = lp]. We show that, in addition to the assumptions in Vansteelandt (2009),
necessary and sufficient condition for the validity of the second-step regression is f(ly,a)
E(Li|Ly =1y, A=0) =my + Trlo- See Appendix B for detail.

11~
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Table 3.1 Compare the plug-in estimator with the sequential g-estimator under different specifications for the outcome

conditional mean and different structural nested mean models.

Structural Nested Mean
Model (SNMM)
E(yam _ Y0m|l0)

Sequential g-formula estimator

Flexible Plug-in g-formula estimator

EY|ly,a,ly,m) =
qallo, a,l1;y) + apr(lo, a, 1y, m; )

E(Yly,a,ly,m) =
ho(a, m)lp + hi(a, m)ly + h(a,m)

1] pga

gA =0 + 40+ vr4lo + 0l
aM = YMM
flp,0) = mo + 7w, lo

ho =Ly M1 =714
h =70 +v4a+yum
f(lo,a) =m0 + 7y lo + T4a

2| pqa+papa-m

44 =0 +vaa+vr4lo +yrh
M = YM™M +YAMG T
flo,0) = mo + 7r,lo

ho =Ly, M =71,
h =0+ y40 +ypm+yapa-m
flo,a) = mo + 7w ylo + maa

3| pAa+parya-lo

gA =70 +y4a+vr4lo + Lyl
+y4La - lo

aM = YMM

f(l,0) = mo + 7l

ho =Ly + 740y M1 =71,
h =70+ vaa+yym
flo,a) = mo + wpylo + maa
—HTALOa-lo

4| pAa +wapa-m
Toarya - lo

qA =0 +vaa+yrglo +yrh
+y4Ly@ - lo

M = YM™M T YAMG - ™
f(lo,0) = mo + 7o

hO = ’}/LO + 7ALOa7 hl = P)/Ll

h =70 +y4a +ypm+yapa-m
f(lg,a) = 7y + 7TL0l() + Ty
—|—7TALO(1 -lp

pAQC+ QApQ - M
5| Fwarge-lo+earya-lo
+oamrya-m -l

gA =0 +y4a+ L4l + 0l
+y4Lya - lo+vaLa-

AM = YMM A YAMG ™+ YLy™m - lo
+ymrLym -l

flp,a) =my + WLOZO + g0

FTALYE - lo

ho = YLy +7ALya + YMLy™

hi =L, + AL 0+ VML

h =10+ y4a+ypmm +yanpa-m
f(lg,a) = 7o + 71'L0l() + Tga
FTALYE lo

Notation: g4 = qa(lo, a,l157), am = amlos a, 1, m57), flo, @) = E(L1|Lg = lp, A = a).
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3.4 The Flexible Plug-in g-formula estimator

3.4.1 The Partial Linearity Assumption and the Plug-in g-formula estimator

Although the idea of using linear outcome conditional mean is not particularly new (Robins,
2000; Van der Wal et al., 2009), to the best of our knowledge, the flexible plug-in g-formula
estimator proposed here is the first to make full use of this idea. This parametric g-formula
has a closed-form expression for CDE and thus does not require numerical integration.

Specifically, let the conditional expectation of Y given (Lg, A, L1, M) be linear in Lg and
L1, namely

E(Ylly, a,l1,m) = ho(a, m;¥)lo + hi(a,m;¥)ly + h(a, m; ) (3.7)

where the h’s are arbitrary known functions of (a,m) known up to certain parameters -y,
for K = {0,1,0}. This is of course a strong parametric assumption since it ignores any
interaction among confounders. We should think of Equation (3.7) as the first order Taylor
approximation to any function of (Lg, L1). The plug-in g-formula estimator can be extended
to include higher order terms of confounders.

Equations (3.4) and (3.7) lead to the proposed flexible plug-in g-formula estimator for
E(yam):

E(YY™) = ho(a,m;¥)E(Lg) + hi(a, m;~)E [E(L1|Lg, A = a)] + h(a,m;). (3.8)

See Appendix A for proof.

The last column of Table 3.1 shows that, by varying the specifications of h;’s, equation
(3.7) can provide the same specification on E(Y|ly,a,l;, m) as equation (3.6) in all the five
models there. The separability in g4 and g, for the sequential g-formula estimator and the
estimating equation that is linear in confounders for the plug-in g-formula estimator do not
nest within each other. Neither estimator is strictly more flexible than the other. Note that
the unknown parameters 4 in (3.7) are not the structural parameters that would appear

in the structural equation Y = fy(Lg, A, L1, M, ey) in the NPSEM-IE. Equation (3.7) is
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an estimating equation only. The parameters in this equation are not of direct interest in
general, but they eventually identify F(Y ).

Note also that as long as equation (3.7) holds, the presence of Uy does not affect the
identification of CDE. However, we do need a model for F(Lq|Lg, A). This model needs not
be linear, and can potentially be semi- or non-parametric if the dimension of the conditioning
set is low. For example, if Ly is binary, a logistic model can be used. But in the application

below, we use the following linear model for simplicity:
E(L1|Lg, A) =m0 + mgA+ 7w Lo + mar,A x Lo, (3.9)

and thus

E[E(L1|Ly, A=a)] =my+ mga+ WLOE(L()) + TALH@ X E(Ly). (3.10)

3.4.2 Estimation Procedure for the Flexible Plug-in g-formula estimator of
CDE

Given the discussion above, the CDE can be estimated as follows:

1. estimate « in equation (3.7) using a proper method, e.g., a quasi-maximum likelihood
estimator, which is consistent given correctly specified conditional mean (Wooldridge,

2010); and

—

2. estimate E(Lg) using a proper method, e.g., the sample mean, and get E(Ly).

—

3. Estimate E(L1|Lg, A) using a proper method and get E [E(L1| Ly, A = a)]. For ex-
ample, regress L1 on (1, A, Lo, ALy).
4. Plug m and E[/E(\Ll\ Ly, A = a)] into (3.8) to obtain EW) Then C@) =

E(yam) — B(yOm).

—

CDE(m) is the flexible plug-in estimator for the CDE evaluated at m. Bootstrap can be

used to obtain the standard errors for the estimated CDEs.
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3.4.3 plim of Parametric g-Formula is the Flexible Plug-in g-formula estimator

By the law of large numbers, the flexible plug-in g-formula estimator of CDE is the plim of
the corresponding parametric g-formula in section 3.1. This is simply because the former is
an analytical solution for the integral which the latter is trying to evaluate via Monte Carlo
simulation. We verify this claim using Model 5 in Table 3.1 through a simulation study with
the aid of the Stata command gformula developed in Daniel, De Stavola and Cousens (2011).
In the simulation study, we let the number of Monte Carlo simulations used by the gformula
command increase towards infinity. The results show that the estimates obtained using the
gformula command indeed come closer and closer to those obtained using the flexible plug-in
g-formula as the simulations increase.

One reason for using Model 5 is that the specification is complex enough to make no-
ticeable difference in computation time between the two methods. Obviously, if we are only
interested in a point estimate of the controlled direct effect, the flexible plug-in g-formula
does not gain us much. However, since we also need to obtain the standard errors for the
estimators, and bootstrap is often inevitable in g-methods, the flexible plug-in g-formula can

save considerable amount of computation time.

3.4.4 Flexible Plug-in g-formula estimator Is Numerically Equivalent to Se-
quential g-formula estimator

We show that, in each of the five models in Table 3.1, the flexible plug-in g-formula estimator
and the sequential g-formula estimator are numerically identical. See Appendix C for proof.
It is worth emphasizing the following two conditions that are met by each of the five models
in Table 3.1.

First, the SNMM used by the sequential g-formula estimator must be compatible with the
specification on F(Y|ly,a,l1,m). Note that a given SNMM and a compatible specification
on E(Ylly,a,ly,m) implies a specification on F(L1|Lg, A =0) (or on E(L1|Lg, A) in Model

5) as shown in Table 3.1. Second, the specification on E(Li|A, Lg) used by the flexible
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plug-in estimator must be properly chosen. By “properly chosen”, we mean the specification
on F(L1|A, Ly) must be of the same level of flexibility as the second-step regression of the
sequential g-formula estimator. See the remark in Appendix C for more detail.

Later when we discuss the issue of “one single parameter”, the two estimators are not
identical except for the no interaction case. The sequential g-formula estimator forces
E(yem — Yom) to be pa when it is actually not, a typical case in which the incompati-

bility issue arises.

3.4.5 Simulation

We use a simple simulation study to evaluate the equivalency. Assume the data generating

process (DGP) is as follows:

Uy = €U

Ly = Uy+ €Ly

A = llexpit(Lg) > e4]

L1 = U0+L0+A+€L1

M = 50 x expit(Lg+ A+ L1 +¢€pp)

Y = Logxlog(l+A+ M)+ Ly x(A+M)+Uy+ey

where all ¢’s except €4 are standard normal, 4 is uniform on (0,1), and expit(z) =
exp(x)/(exp(x) + 1) is the inverse of the logit transformation. All ¢’s are independent
of each other. For simplicity, all coefficients are set to unity. The resulting true CDE is
CDE(m) = m+ 1 for any fixed value m. Under this DGP, the following estimating equation

that is linear in Ly and L1 holds:

1 1
E(Y|Ly, A, L1, M) = |log(1+ A+ MQ)] Lo+ (§ + A+ M)Ly + (—§A>. (3.11)
ho(a,m) h1(a,m) h(a,m)
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Table 3.2 Simulation results: flexible plug-in g-formula v.s. sequential g-estimator

A: Simulation Results for Model 4

E(L1|A7 LO) = E<L1|A7 LO) =
7T0—|—7TAA—|—7TL0LO 7T0+7TAA—|—7TL0L0+7TALOA><LO
m  ture CDE FPG SG Difference FPG SG Difference
1 2 57.0846 57.0781 —6.481e~3 57.0781 57.0781 0 (0)
(8.5109) (8.5106) (.1090) (8.5106) (8.5106)
25 26 40.1442 40.1377 —6.481¢3 40.1377 40.1377 0 (0)
(5.1294) (5.1285) (.1090) (5.1285) (5.1285)
50 51 22.4979 22.4914 —6.481e~3 22.4914 22.4914 0 (0)
(7.1983) (7.1973) (.1090) (7.1973) (7.1973)
B: Simulation Results for Model 5
E<L1|Aa LO) = E(L1|A7 LO) =
7T0—|-7TAA+7TLOL0 7T0—|—7TAA+7TLOL0+7TALOA><LO
m  ture CDE FPG SG Difference FPG SG Difference
1 2 0426 (.4303) .04219 (.4303) —4.951e~ 4 .0419 (.4303) .0419 (.4303) 0 (0)
(.0236)
25 26 24.9052 24.9047 —4.951e~% 24.8994 24.8994 0 (0)
(2.3424) (2.3425) (.0236) (2.3411) (2.3411)
50 51 50.8037 50.8032 —4.951e~% 50.7926 50.7926 0 (0)
(4.6871) (4.6871) (.0236) (4.6847) (4.6847)

121



For illustration purposes, we only show the estimation results for the two estimators in
Models 4 and Model 5 in Table 3.1. The following two specifications for E(L1|A, Ly) which
differ in their flexibility are considered for both Model 4 and Model 5:

E(L1|A, Ly) :7T0+7TAA+7TLOL0, (3.12)

E(L1|Lg, A) :’/T0+7TAA+7TLOL0—I—7TAL0A>< Ly. (3.13)

The specifications for F(L1|A, Lg) affect the estimates of the flexible plug-in estimator in
both Model 4 and Model 5. As for the sequential g-formula estimator, the specifications for
E(L1]A, Lg) have no effect in Model 4 since no estimates involve the estimation of 7r, which
is in turn a result of the specification that L; does not interact with M but they do have
an effect in Model 5 since both ¢ 457 and 47 Ly need the estimation of wr. When the same
specification on E(Y|Lg, A, L1, M) and the same proper specification on E(Lq|Lgy, A) are
used, the flexible plug-in g-formula estimator and the sequential g-formula estimator must
give exactly the same estimates on each occasion.

The simulation consists of 1000 runs with 500 observations in each sample. To save space,
we report in Table 3.2 the results for CDE(1), CDE(25) and CDE(50) only, m ranges from
1 to 50. For each estimator, the average and standard deviation (in parenthesis) over the
1000 simulations are reported. We also calculate the difference of the two estimates in each
simulation run and report the average and standard deviation of the difference over the 1000
simulations.

There are two important observations from the simulation results in Table 3.2. First, the
flexibility of the specification on E(Y|Lg, A, L1, M) is important. Although Models 4 and
5 both misspecify the true estimating equation, however, compared to Model 5, Model 4 is
more restrictive, leading to larger biases in both estimators. Note that in terms of g4(-) and
qp(+), Model 4 is typical in causal mediation analysis, partly because researchers usually

think the two-way interactions A x L and M x Lj are unnecessary. On the other hand, if
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the flexible plug-in g-formula estimator is used, the complete set of two-way interactions in
Model 5 becomes typical.

Second, when E(L1|A, Lg) = mo + T4 A+ 7 Lo, the two estimates are close but not the
same. Because the CDE is linear in m for both estimators, the difference does not depend on
m. When the proper specification F(L1|A, Lg) = mg + 74 A+ 7TL0L0 + WALOA X L is used,
the two estimates become identical. This supports the numerical equivalence claim made in

the last section.

3.4.6 Comparison of Flexible plug-in g-formula estimator with Sequential g-
formula estimator

In cases where the two estimators are identical, the flexible plug-in g-formula estimator
inherits everything the sequential g-formula estimator has. However, the difference in the
estimation procedures grants the former several advantage over the latter in applications.
We discuss several points of importance in this respect.

First, when applying the sequential g-formula estimator, one needs to make sure the
specifications for g4(-) and ¢ps(-) are compatible with the chosen SNMM. For example,
E(Yyom —y0m) — »q is not compatible with the ¢pz(-) in Model 2. As q4(-) and q37(-) be-
come more complex, it becomes more difficult to find the corresponding SNMM. The flexible
plug-in g-formula estimator avoids this issue, because it starts from assuming the specifica-
tions on E(Y|lg, a,l1,m) and E(L|a,ly), and the model for CDEs follows naturally. The
resulting SNMM can even be nonlinear depending on the specifications on E(Y|ly, a,li,m)
and E(Lqla,lp).

Second, unless the SNMM is forced to be E(Y " — YY) = ya, the sequential g-formula
estimator does not always depend on “one single parameter” for CDE Vansteelandt (2009).
For example, if there is a strong belief that there is treatment-mediator interaction in gz ()
as in Model 2, then E(Y¥™ — YY) = o 4a + pp7a X m is a function of two parameters.

The aforementioned compatibility issue will arise if, in order to force CDE to depend on “one
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single parameter”, the SNMM is assumed to be E(Y# — Y0M) — ©q. In an incompatible
case it is difficult to interpret what effect the single parameter ¢ captures. Without further
investigation, all we can say is that it is some average of the CDE evaluated at different
values of m, and it is unknown whether it is practically relevant. As a result, the test of
existence of CDE based on this average becomes less useful than a test evaluated at different
values of m.

Third, there are interesting specifications on E(Y'|ly,a,l1,m) that the sequential g-
estimation does not allow. The feasibility of the sequential g-formula estimator hinges on
the additive separability between g4(-) and ¢ps(+), and clearly, not all specifications for
E(Y|ly,a,l1,m) satisfy this restriction. Practically interesting examples include cases where
h = log(yp +vaa +yarm?) or h = exp(yo+y4a+vym?), i.e. we use the link function idea
of generalized linear models to enrich specifications on the hj, functions. To be fair, however,
we also note that there are specifications that the flexible plug-in g-formula estimator cannot
handle. For example, if the conditional expectation of Y is nonlinear in Lg and L;, equation
(3.7) will not hold, but equation (3.6) may still be satisfied provided that the nonlinearity
does not interfere with the additive separability requirement. Extensions of equation (3.7)
to be nonlinear in Ly and Ly are possible but complicated, in which case the original para-
metric g-formula might be a better choice. In sum, the sequential g-formula estimator has
the potential of allowing nonlinearity in confounders but generally not in the treatment and
mediator, and for the flexible plug-in g-formula estimator the converse is true. In this sense
these two estimators complement each other.

Finally, the sequential g-estimation procedure changes in a nontrivial way as the specifi-
cation for g4 () and qp(-) changes, unless one does not care about compatibility and always
uses E(Y " —Y0™) = pa. The two steps of the procedure must be derived and tailored
individually, and become more complex as we move from Model 1 to Model 5 (see Appendix
B). In particular, in Model 5 (or whenever there are ML and/or AML; interactions),

@A) in SNMM can not be estimated simply by the first-step regression anymore, and the
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derivation of the formula is not trivial. Moreover, there is an additional parameter o 4,/ Ly
to be estimated. These scenarios make the sequential g-formula estimator inconvenient to
use when one would like to build more flexibility into the model. On the other hand, the
estimation procedure for the plug-in g-formula works uniformly across different settings, and

there is no derivation by hand because the work is done by the computer.

3.5 Sensitivity Analysis

The untestable sequential ignorability conditions in (3.1) is crucial for any g-formula driven
estimators. The second part of the assumption is particularly vulnerable in mediation anal-
yses since sequential randomization is not always the case in practice. In this section, we
provide a sensitivity analysis for one type of violation of the sequential ignorability condi-
tions. For illustration purposes, this section only shows the sensitivity analysis for Model 1.
Similar procedures can be derived for other models in Table 3.1.

Recall the exogenous parents ¢’s omitted from DAG G are assumed to be jointly inde-
pendent in NPSEM-IE. Suppose now ), and ey are correlated, then the original g-formula
and consequently the flexible plug-in g-formula estimator do not work any more. To identify

the CDE in the analysis, we use the following conditions to perform a sensitivity analysis.

1. The unobservable Uy does not enter the structural equation of Y, i.e. the arrow from

Up to Y in Figure 1 is deleted.

2. The structural equation for Y is linear in its coefficients. If we use fy (Lg, A, L1, M) to
denote the structural equation for Y, then in Model 1, the linearity assumption means
fy(:) =0 +vryLo + 744+ vo L1 + ymuM + ey, which is stronger than a linear

estimation equation.

3. The structural equation for M is additive separable in €y, i.e. M = fpr(Lg, A, L1) +

ey for some function fy;.
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Given these assumptions, the counterfactual Y is
YO =50+ vpyLo + vaa+ v, L1+ yum + ey,

and the CDE is

To consistently estimate v4, let Z = (1, Ly, A, L1, M) and v, = (’VOa’VL07’YA:’YL17’YM)~
Then we can write
Y =Z~v7 +c¢y.
Define 'ygLS = [E(Z'Z)] - E(Z'Y). Because )y and ey are correlated, in general 'ygLS is

not equal to 7. But under conditions (1-3), v can be derived through a bias correction

term:

0
vz =7%7" - [BEZ'Z)] !

Tepey
where 0z ¢y is the covariance between €,y and ey, and 0 is a 4 X 1 vector. (See Appendix
D for derivation.)

To see how sensitive the flexible plug-in g-formula estimator is to this particular violation
of sequential ignorability conditions, we let ¢, ¢y~ vary within some range and estimate the
CDE accordingly. As a rule of thumb, the covariance between M and Y could provide a
reference on the choice of the range for o MEy s Since epg (ey) only represents part of the
variation in M (Y") if one believes that the chosen model is a sound one.

Compared to the sensitivity analysis in Imai, Keele and Tingley (2010), the sensitivity
analysis in this section relaxes the structural assumption on the mediator. One major reason
that this relaxation can be made is that CDE is the parameter of interest in this paper
instead of the natural direct effect, which is not nonparametrically identified in a model with

post-treatment confounders.
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3.6 An Application

In a longitudinal study by Breslau, Johnson and Lucia (2001) and Breslau, Paneth and Lucia
(2004), a random sample of low birthweight (LBW, < 2500 grams) and normal birthweight
(NBW, > 2500 grams) infants is selected from two socioeconomically disparate populations
in southeast Michigan and followed over 17 years. The goal is to study the long term impact
of LBW on academic achievements. The first assessment occurs when the children are 6
years old, the second assessment occurs when the children are 11, and the last assessment
when the children are 17. A test from the Woodcock-Johnson Psychoeducational Battery-
Revised (WJ-R) by Woodcock, Johnson and Mather (1990) is used to measure their academic
achievement in reading at ages 11 and 17. The WJ-R tests are age standardized with a mean
of 100 and a standard deviation of 15. An earlier paper by Breslau, Johnson and Lucia (2001)
found that the reading score for LBW children at age 11 is 3.6 points lower than those of NBW
children. However, the difference became trivial and insignificant after adjusting for their 1Q),
visual-motor-integration (VMI) function from Beery (1989) and phonologic awareness (PA)
from Rosner and Simon (1971) at age 6. Their conclusion is thus that the deficit in reading
score in LBW children at age 11 relative to NBW children is accounted for (mediated) mostly
by the deficit in their cognitive skills at age 6. In the follow-up study Breslau, Paneth and
Lucia (2004), a similar conclusion is obtained for reading score at age 17.

In this application, we estimate the CDE of LBW on reading scores at age 17 when a
behavior problem index is used as the mediator. The behavior problem index is constructed
by summing up 8 binary indicators for different behavior problems at age 17, including ever
smoked a cigarette, ever smoked cigarettes daily, ever used alcohol, ever used marijuana,
ever used cocaine, ever used crack, ever used any hallucinogen, and ever used inhalants. The
index ranges from 0 to 8. Based on Breslau, Johnson and Lucia (2001); Breslau, Paneth
and Lucia (2004); Luo et al. (2014), we put the subject’s gender and residence at birth and

mother’s 1Q, education and marital status as the baseline confounders in Ly. For post-
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treatment confounders in Lq, the subject’s 1Q, VMI and PA at age 6 were used. After
deleting observations that contain missing values, we obtain a sample of 704 complete cases
out of the total 713 who were assessed at age 17. The five models in Table 3.1 were applied,
and the results are presented in Figure 3.3.

The results for Model 1 show a negative constant CDE estimate, and the effect is not
statistically significant according to the normal-based bootstrap confidence intervals. When
the interaction A x M is added as in Model 2, the CDE estimates show a downward trend
as the behavior problem became more severe. Specifically, the CDE estimate decreases
from —.75 to —7.62 as the mediating behavior problem changes from 0 to 8. The effect
is significant when the number of behavior problems is greater than 1. Model 3 includes
the M x Ly interaction, but the result is almost identical to Model 1 because the resulting
SNMM is not a function of m. Model 4 has both A x M and M x Lg interactions, and its
result is similar to Model 2 but with slightly wider confidence intervals. Finally, Model 5
included M x Lj interactions on top of Model 4 but led to similar results.

The downward trends in Model 2, 4 and 5 mainly comes from the negative effect of the
A x M interaction, although this interaction is not statistically significant. Ignoring other
channels, this negative interaction effect essentially indicated that even if the immediate
effect of the behavior problem on reading is shut down by controlling the behavior problem,
a more severe behavior problem would still exacerbate the negative effect of LBW on reading

by altering the mechanism through which LBW exerts its effect.

3.7 Conclusion

In this chapter, wee formalize the idea of using partially linear conditional mean models of
the outcome and propose a flexible plug-in g-formula estimator in for controlled direct effects
causal mediation analysis. Partial linearity of outcome conditional expectation is of interest

because under this linear assumption, we can replace the confounders in the conditional
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Figure 3.3 Controlled direct effect of LBW on reading with bad behavior as mediator,

Model 1 to 5
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mean model for the outcome by properly fitted values of the confounders, which results in
a plug-in estimator for the controlled direct effects. The flexible plug-in g-formula is closed-
form and thus can save some computation time by avoiding Monte Carlo integration that
the traditional parametric g-formula usually relies on to evaluate integrals.

We also show that under certain conditions the flexible plug-in g-formula estimator is
numerically equivalent to the sequential g-formula estimator in the literature. Although the
sequential g-formula estimator is supposed to be a parametric version of the g-estimation of
structural nested mean models, this equivalence result indicates that it can also be viewed as
a particular parametric g-formula. Indeed, since the g-estimation of structural nested models
is a semiparametric version of the original g-formula, when stronger parametric assumptions
are imposed, we should expect it to come close to the parametric g-formula. Therefore the
equivalence result provides a new insight of the connections between parametric g-formula
and g-estimation of structural nested mean models.

The interest in the flexible plug-in g-formula estimator is manifold. First, in the linear
case, the flexible plug-in g-formula estimator provides an closed-form expression without
introducing additional assumptions than those commonly made in empirical studies. In view
of the fact that linear regression is often the first choice for modeling continuous outcomes in
parametric g-formula, the flexible plug-in g-formula actually imposes no stronger parametric
assumption than some of the parametric g-formulae that already exist in the literature.

Second, the flexible plug-in g-formula estimator connects to the sequential g-estimation
but may be more straightforward to use. The two estimators also complement each other
in giving practitioners choices of reasonable specifications in their context. For example, if
there is reason to believe the functional form for Y should be nonlinear in A and M, we
can use the flexible plug-in estimator; and on the other hand, if the nonlinearity lies in the
confounding factors, we can use the sequential g-formula estimator. In any case, if the results

from both methods are similar, the estimates are more likely to be robust.
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APPENDIX A

PROOFS AND ALGEBRA ON G-FORMULA

A.1 A direct proof of the g-formula for fy.(y)

The proof for the g-formula has been given in a series of paper by Robins and his colleagues.
Here we repeat it for the continuous outcome case for easy reference. We adopt the convention
to use upper case letters for random variables and lower case letters for realizations.

Under sequential ignorability and consistency,

fyam(y) = fy|Lg.a,0,,mWllo, a by, m) g aUillo, @) fr, (o)
lp,lq

where, e.g., fY|LO,A,L1,M(y|l07 a,ly,m) is the shorthanded notation for the conditional den-

sity function of Y given (Lg, A, L1, M).

Proof. 1t can be shown that

fram() = [ Framjzy(ollo) g (o)l
= /fYam|LO,A(y|lO7a)fLO(ZO)dZO
= [ [ fvamizg .z, Olosa.10) i gl g o)y
= [ [ Fvempig g sl st g (o) g o)

— [ [ i ay anloltos st m) i 1l g o)y

where the first and the third equality uses law of total probability, the second uses Y*'" I

A|Lg, the fourth uses (Y% I M|Lgy, A = a, L1), and the last uses the consistency axiom. [
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Remark 6. Based on the g-formula for fyam(y), it follows that the g-formula for E(Y*™) is
By = /yV/fy|LO,A,L1,M(y|lo7a,l1,m)fL1|L0(l1|loaa)fLO(lo)dhdlo dy
=[] [ svizgamy o actamsy g Gl o) g o)yl
- // [ [ vz Ay sl midy | f (o, 0) g (o)l
= [ [ Bls.a.tim) a0, 0) g o)l

A.2 The flexible plug-in g-formula for F(Y*")

If sequential ignorability and consistency hold, and the outcome conditional mean is given
by
E(Y|ly,a,ly,m) = ho(a, m)ly + h1(a,m)ly + h(a,m),

then

E(Y™) = ho(a, m)E(Lo) + h1(a, m)E [E(L1|Lo, A = a)] + h(a, m).
Proof. Under the assumptions, we get
™) =[] uslo. oty m) £ . o) o) dyisaty
= [ ][ wroto.atsmian) s ooy
_ //E(Y!lo,a,ll,m)f(llllo,a)f(lo)dlldlo
_ /UE(YuO,a, ll,m)f(l1|lo,a)dll] F(lo)dl
_ / { / (ho(as m)lo + It (as m)ly + h(a, m)] f(zlyzo,a)dzl} J(lo)dly
_ / [ho(a, m)lo + hi(a,m)E(Ly|l, ) + h(a,m)] f(lo)dlo

— ho(a,m)E(Lo) + ha(a, m) / E(Lullg. a)f(lo)dlo + h(a,m)

= ho(a,m)E(Lgy) + hi(a,m)E [E(L1|Lg, A = a)] + h(a,m)
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Remark 7. Note that F [E(L1|Ly, A = a)] # E(L1|A = a). For example, L1 = exp(Lg) + A.
Then E(Li|Lg, A = a) = exp(Lg) + a, and the LHS is E [exp(Lg) + a] = E [exp(Lg)] + a.
But the RHS is E[exp(Lg) + A|A = a] = E[exp(Lg)|A =a] + a. If A L Ly, the equality
holds.

In general, let the structural model for L; be L1 = f(LO,A,eLl). Then the LHS is
E [f(LO, a, eLl)\LO]. The RHS is F [f(LO, a,e)|A= a} . If we assume €, is independent
of (Lgy, A), the LHS becomes F [f(Lo,a, ng)} If in addition A 1L Lg, the RHS becomes
E [f(LO, a,er, )] and the equality holds.
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APPENDIX B

PROOFS AND ALGEBRA ON SEQUENTIAL G-ESTIMATOR

B.1 Validity of the second step of sequential g-estimator

The proof of the validity of the sequential g-estimator in the Appendix of Vansteelandt
(2009) needs to be extended because L is included in our analysis. Specifically, we want
to show that, in presence of L, and under additive separability, ¢ps(lo,a,l1,0;v) = 0, and

sequential ignorability,
EY —qp(Lo, A, L1, M;7)|Lo, Al = E [YAolLo} :
i.e. for any (ly,a), show
EY —qy(Lo, A, Ly, Msy)|Lo =1, A=a] = F [YGOILO = lo} : (B.1)
Proof. Under the assumptions, we have
EY —aqn(lo, a,ly,m;y)|Lo = lo, A = a, Ly =11, M = m] = q4(lp, a,l1;7).
The last equality holds for any m. Therefore
EY —aqn(lo,a,l, M5v)|Lo = lp, A= a, Ly = 11, M] = q4(lp, a, 115 7).

Take expectation of both sides conditional on Ly = Iy, A = a,L1 = [1 and use iterated

expectation, we get

EY —qp(lo,a,ly, M) | Lo = lp, A= a, L1 = l1] = qa(lo, a,l1; 7).
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Now, sequential ignorability implies

E [YQO|L0 o, A=a, L = 11}
_E [Y“OyLO g, A=a, Ly =1y, M = 0]
—E[Y|Lo=lp,A=a,Li =1y, M = 0]
=E[qa(Lo, A, L1;7) + qur (Lo, A, L1, M;7y)| Lo = log, A = a, L1 = 11, M = 0]
=E[qa(lo, a,11;7) + ap(los a, 11, 07) [ Lo = lp, A = a, Ly = 1y, M = (]

=qa(lo, a,l157)
The equality holds for any ;. Therefore
EY — gy, a, L, M; )| Lo = lg, A = a,Ly] = E [Y“O\LO —lp, A=a, Ll] .
Take expectation of both sides conditional on (Lg = Iy, A = a), we get
E[Y — qy(lo,a, L1, M;7)| Lo = lp, A=a] = E [YGO\LO — g, A= a} .
Lastly, notice that Y% 1 A|Lg, we have

EY = qurllo, a, L1, M;7)|Lo = lo, A = a] = E [Y™|Lg = o

We provide an alternative proof below.

Proof. (alternative proof) First, we show that

E[Y - QM(L07A7L17M;7)|L07A7 leM] =FE <YAO|L()’A7L1> .
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Specifically,

EY —qp(Lo, A, L1, M;7)|Lo, A, Ly, M]

=qa(Lo, A, L1;7)

=E[ga(Lo, A, L1;7)|Lo, A, L1, M = 0]

=E[q4(Lo, A, L1;7) + anr (Lo, A, L1,0;7)[ Lo, A, Ly, M = 0]

=FE[qa(Lo, A, L1;7) + an (Lo, A, L1, M3 v)| Lo, A, Ly, M = 0]

=F|Y|Lg, A, L1,M = 0]

_E [YAO|L0, ALy, M = 0}

_E [YA0|LO,A,L1}
where the first equality holds by the definition of q4(Lg, A, L1; ), the second equality holds
since g4 is a function of L, A, Ly, the third equality holds because q;;(Lg, A, L1,0;v) =0,
the fourth and fifth are simply rewriting, the sixth by consistency, and the last by Y% I
M|Ly, A, L.

Then, take expectation of both sides conditional on (Lg, A), we get
BIY = an(Lo, A, L1, M3 )| Lo, A] = B [Y 4% Lo, A].
Lastly, by Y% 1 A|Lg, we have

EIY - qu(Lo, A, L1, M; )| Lo, 4] = B [y 4% o]

B.2 Estimation procedures and interpretations for the sequential
g-estimator in Model 1 and in a general setup with up to three-
way interactions in E(Y|Ly, A, L1, M)

We discuss Model 1 and Model 5. Model 1 is the simplest specification, so it is used as an

example to illustrate the idea. Model 5 is the most general specification, so the discussion
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on Model 5 shows that the conclusion applies to all 5 models.

B.2.1 Model 1 (No interaction)

Model assumptions

1. The NPSEM-IE associated with DAG G. (Thus consistency and sequential ignorability

hold.)

2. Structural Nested Mean Model:

E(YY™ —Y%ly) = ¢ 4a.

3. Conditional mean of the outcome:
E(Y|Lo, A, L1, M) =50 + vy Lo + 7aA +v0, L1 + vy M,

so that
qA(Lo, A, L1;7) =0 +vrgLo +74A + 1, L1,

an (Lo, A, Ly, M3 ~y) = v M.

4. Conditional mean of the post-treatment confounder at A = 0:

f(lo,0) = E(L1|Lo = lp, A = 0) = mo + 7, lo.

Estimation procedure

(B.2)

(B.3)

(B.4)

(B.5)

1. Regress Y on (1, Ly, A, L1, M) and obtain the OLS estimator 4, for v5;. Generate

Yy =Y —AyM.

2. Regress Y_s on (1, Ly, A). Denote by ¢4 the OLS estimator for the coefficient of A.

~

Then ¢ 4 is a consistent estimator for 4. Hence, CDE (m) =¢q.
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Validity of the second-step regression (i.e. the consistency of ¢4 for ¢,)

Proof. (i) First of all, we show

E(Y®|Lo = lo) = 70 +74l0 + 7L,/ (0, 0). (B.6)
Under sequential ignorability, consistency, and the specification in (B.3), we have

EYPLy=1y,A=a,L1 =1;)
—EB(Y®|Lg=ly,A=a,L; =1, M =0)
—E(Y|Ly=1lyp,A=a,Li =11, M = 0)

=30+ v4a+ vLylo + 7L, l1- (B.7)
The equality holds for any (g, a,l1), and therefore we can write
E(YA Lo, A, L1) = 70 + v4A + vy Lo + 71, L1+ var, AL
Take expectation of both sides conditional on (Lg, A), we get

B(Y40|Lp, A)
=70 +74A +70yLo +vaLyALo + vL E(L1|Lo, A) + 4L, AE(L1|Lo, A)

=70 +74A +vLyLo +vaLyALo + VL, f (Lo, A) +v4aL, Af (Lo, A),
i.e. for any (ly,a),

E(Y®|Ly =1y, A = a)
=30 + 740+ vLylo +vargalo + vr, f(lo, @) + yar,af (lo, ).

Then the first part of the sequential ignorability implies

E(Y|Ly = lp)

=30 + 740+ vrylo +vargalo + vr, f(lo, @) + yar,af (lo, ).
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Set a = 0, we get
E(YP|Ly = ly) =10 + 74l0 + 72,/ (10, 0)-

(ii) Secondly, we show
E(Y = qm(Lo, A, L1, M;7)| Lo = lp, A = a)
=paa+ 0 + vLylo + 71, f(l0,0).
By setting m = 0 in (B.2), we have
By — y®lig) = g 4a.
Then, (B.1) and (B.6) imply

E(Y — gm(Lo, A, L1, M;~)|Lg = lp, A = a)
=E(Y|Lo = ly)
=B —yO|Ly =1y) + BE(Y"|Ly = o)

=paa+ 0 + vLylo + 71, f(l0,0).

(iii) Lastly, given (B.5), we have

E(Y — qm(Lo, A, L1, M;7)|Lg = lp, A = a)

=40+ +TLylo,

(B.9)

where 79 = 9 + YL, 70 and ’NyLO =YLy + VL 7Ly Therefore, the OLS estimator ¢ 4 in the

second-step regression is consistent for ¢ 4.

O

Necessity and sufficiency of (B.5) given all the other model assumptions and that

Ly is not binary

Proof. The sufficiency of (B.5) given all the other model assumptions have been shown by

(B.9).
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To show its necessity, first we rewrite (B.8) as
Yoy =paAd+50+vryLo + v (B.10)

where
Y—M =Y _QTH(L07A7L17M;7) =Y _VMMa
Jo =10 + 71, £ 1f (Lo, 0) — Lol ,

f(Lo,0) = [f(Lo,0) — Lo] — E[f(Lo,0) — Lo] ,

§=Y_ = E[Y_ A, Lo,
v =1, F(Lo, 0) +&.
Since Lg is not binary, equation (B.10) indicates that f(ly,0) must be linear for ¢4 to be

consistent for ¢ 4. We prove this by contradiction. If f(ly,0) is nonlinear in [y, in general

we have

Cov(Lg,v) = E(Lov) = vz, E [Lof(Lo,0)] # 0

unless, e.g, f(Lg,0) = Ly I and E(Ly 1) = 0, or some other particular conditions hold by
fluke. But then, unless a regression of Y_; on (1, A, L) would yield inconsistent estimators

for all coeflicients. O

B.2.2 General model with a three-way interaction in E(Y|Lgy, A, L1, M)

Model assumptions

1. The NPSEM-IE associated with DAG G. (Thus consistency and sequential ignorability
hold.)

2. Structural Nested Mean Model:

E(Y™ —Y"|lg) = p a0+ parram + @ aryalo + ¢ arrgamlo (B.11)
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3. Conditional mean of the outcome:

E(Y|Lg, A, L1, M)
=70 +7AA + M +yapm AM
+v9Lo +vaLyALo + yamryMLo + vam Ly AM Lo

+r, L1+ van AL+ vy MLy + yanp AM Ly, (B.12)

so that

QA(L()a A7 Ll; ’Y)

=70 + vaA +vLyLo +vaLgALo + +y0, L1 + v, ALl

anr(Lo, A, L1, M)
=Y M +vap AM + yprpyMLo +vap Ly AM Lo

+ ML MLy +vamn, AM Ly

4. Conditional mean of the post-treatment confounder, which is given by the following
equation

f(lg,a) = E(L1lly,a) = mp + Trolo + 740+ maralp. (B.13)

Estimation procedure

1. Regress Y on (1, A, M, AM, Lo, ALy, M Ly, AM Lgy, L1, ALy, ML{, AML{) and obtain
the OLS estimator 4 for v. Generate

~

Y_np

Y =M = yapm AM — YppgM Lo — YanpyAM Lo

—mrLy MLy —Yapn, AMLy.

2. Regress Y_; on (1, Lo, A, ALg) and obtain the OLS estimators, ¢ 4 and P AL for the

coefficients of A and AL, respectively.
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3. Regress L on (1, Ly, A, ALg) and obtain the OLS estimator 7 for . Then the sequen-
tial g-formula estimator for the controlled direct effect at M = m is

—

E(YIm —YO0m) = g+ @anm + @ary Lo + @anrrymLo,
where
PAM = YAM + ML TA T YAML, (Fo+T4),

PAMLy = YAMLy T ML TALy T YAML, (W Ly T 7 AL0> :

Validity of the second step (i.e. the consistency of ¢4 and @ALO for ¢ 4 and @ALO)

Proof. (i) First of all, we show

E(YP|Ly = lp) =10 +74l0 + 72,/ (10, 0)- (B.14)

which is exactly the same as (B.6).
Under sequential ignorability, consistency, and the specification in (B.12), and using a
similar argument to that for (B.7), we have
BE(YVLy=1y,A=a,L1 =1)
=B\ Ly=1lyp,A=a,Ly =1, M =0)
=FE(Y|Ly=1ly,A=a,L; =1;,M =0)

=70 + 740+ vrylo + vaLyalo + v, h + yaL ali- (B.15)
The equality holds for any (I, a,l;), and therefore we can write

E(YA% Ly, A, Ly)

=70 +74A +v0Lo +vALyALo + L, L1 + 4L AL

143



Take expectation of both sides conditional on (Lg, A), we get
B Lo, 4)
=0 +74A +v0yLo +vaLyALo + vL  E(L1|Lo, A) +vaL, AE(L1|Lo, A)
=70 +74A +v09Lo +vargALo + Ly f (Lo, A) +var, Af (Lo, A),
i.e. for any (ly,a),
EY WMLy =1y,A=a)
=70 + 740+ vLylo +vaLyalo + Ly f(lo, a) +var,af(lo, a).
Then the first part of the sequential ignorability implies
E(Y®|Lg = ly)
=70 + 740 + vLylo + vaLyalo + vLy f(lo, a) + var,af(lo, a).
Set a = 0, we get
E(Y®|Lo = lo) = 70 +74l0 + 7L, f (0, 0).
(ii) Secondly, we show
E(Y = gm(Lo, A, L1, M;7)|Lo = lp, A = a)
=paa+70 +vrylo + 7Ly S0, 0). (B.16)
By setting m = 0 in (B.11), we have
E(Y* —Y®ly) = ppa + par,alo.
Then, (B.1) and (B.14) imply
E(Y = qm(Lo, A, L1, M;7)|Lo = lp, A = a)
=E(Y™|Ly = o)
—E(YP -y Ly =1y)+ EYP|Ly = Ip)

=paa+par alo + 70 +vrylo + 72, f (o, 0).
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(iii) Lastly, given (B.5), we have

E(Y — gm(Lo, A, L1, M;7)|Lo = lp, A = a)
=paa+paryalo + 0 + Lyl (B.17)

where 79 = v + YL, ™0 and ’yLO =YLy T VLT Ly Therefore, in the second-step regression

the OLS estimators ¢4 and ¢4 L are consistent for o4 and gy Lo respectively. O

Necessity and sufficiency of (B.5) for the validity of the second step, given all
the other model assumptions and that L is not binary

The same argument as that in D.1 can be used.

Validity of the third step (i.e. the consistency of ¢ 4;; and @AMLO for 457 and
PAML)

Proof. Given equation (B.12) and Y% 1 M|Lg, A, L1, we have

E(Y*™|Lo,a, L)

=0 T YAQ + VMM + YAM AN
+ vy Lo + vargalo + varrgmlo +vamryemlo
+y0, L+ yar ely +ymnymLy +vapn amly.

Take expectation conditional on (Lg, a), and notice Y™ 1 A|Lg, we have

E(Y*™|Lo)

=70 T YAQ T Y™+ YAM AN
+7LgLo +varLgaLlo + ymrymlo +vamr amlo
+ 1, E(L1|Lo, a) + var,aE(L1[Lg, a)

+vmrLymE(L1|Lo, a) + yanr, amE(L1|Lo, ).
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Hence,
(Y™ —yom|Ly)
=YAQ+ yAMOM + VAL Lo +vAMm L amLo
+71y [E(L1]Lo, a) — E(L1|Lo,a = 0)] + v, aE(L1| Lo, a)
+ vy m [E(L1|Lo, a) — E(L1|Lo, a = 0)] + yanr,amE(Ly| Lo, a).
Assume F(Lq|Lg, A) = m + TroLo +maA +mar ALy, we have
B —yOm L)
=YAC+ yAMOM + VAL Lo +vAM L am Lo
+ 714 <7rAa + WALOGL0> + 4L, 0 <7r0 + 7Ly Lo+ a0+ WALOCLL0>
+YmLym <7rAa + 7TALOCLL0> +YAML O <7T0 +mryLo +maa + 7TALOCLL0>
= [’YA +YL,7A +7AL, (70 + WA)} a
+ :VAM + VML TA+ YAM Ly (T0 + WA)} am

+ |VYALy T VL TALy T VAL, (WLO + 7TALOH alg

+ :’YAMLO +YMLTALy T YAML, <7TLO + 7TAL0>] amLy.
Compare the last equation with B.11, we see that
A =74+7L,TA+v4Ly (T0+7T4)
PAM = VYAM + YML{TA +YAML, (T0+74)
$ALy = VALy T YL{TALy T VAL, <7TLO + 7TALO)
PAMLy = YVAMLy + TML{TALy T YAML, (7T Lypt+T™ AL0>
Therefore, we can estimate @457 and @ s Lo consistently by
PAM =AM + ML TA T YAML, (Fo+T4),
$AMLy = YAMLy + ML TALy + YAML, (W Ly t™ ALO) ;

where # is from the first step regression, and 7 is from the third step regression.
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APPENDIX C

NUMERICAL EQUIVALENCE

We prove the numerical equivalence for Model 5 which is the most flexible model in all the
five models considered. The proof for the other four models can be obtained in a similar
fashion.

To present the results rigorously, we first need to express the two estimators using the
same set of notation. Let X1 = (1, A, Lo, ALgy), Xo = (L1, AL1), W = (M, AM, M Loy, M Ly),
Z=(X,W)ande=Y — E(Y|Z). Let

Y = (7905 VA VLgs YALg» VL1 YALy » YM> YAM s YM Lo YMLy) -

Assume the sample size is n. Stack all observations in the matrix denoted by the correspond-

ing bold letters. Under these notations, Model 5 says that
Y =Zv+e.
Denote the OLS estimator for v by 4. Then
Y =Z4 +é, where Z'é = 0.

Both the flexible plug-in estimator and the SG estimator use the above linear regression in

the first step. In addition, the sequential g-formula estimator generates the fitted outcome

Your = Y =AM = amAM — AnrpgM Lo — Yy, MLy

= Y -X3w

which is free of the effect of M.

/ / . .
Let 81 = (Bo. Ba, BLy: Bar,) and B2 = (8L, BaL,) - Combine them in B = (87, 85)
Let w = (7T0,7TA,7TLO,7TAL0),. Define e = Y_ 5y — E(Y_p/1X), u=Y_p; — E(Y_p71X1), and

/
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v= Ly — E(L1|X1). Then
Y_y=XB+e,
Yoy =Xi161 +u,
L =Xy +w.

Denote the linear projection coefficients in the above three equations by ,@, B]_ and 7,

respectively. Then

Y y=XB+e, Xe=0 (C.1)
Y y=XiB +a Xa=0 (C.2)
L =Xiw+o. Xo=0 (C.3)

Note that (C.2) represents the second-step regression of the sequential g-estimation.
Finally, let ¢ = (¢4, ALy PAM; @AMLO)/- Let ¢ denote the sequential g-formula esti-
mator, and ¢ the flexible plug-in estimator. The two estimators are the same in estimating
@AM and AN
PAM = PAM = YAM + YML,T A (C.4)
PAMLy = PAMLy = YAMLy + ML ALy + YAML, (fTLO +7 ALO> , (C.5)

but they differ in estimating p 4 and p4 Lo

P4 =Ba, (C.6)

PaLy = Bary: (C.7)

PA =94+, %4+ 4L, (Fo+74), (C.8)
$ALy =VALy VL TALy T VAL, (ﬁLO> : (C.9)

Theorem 8. (Numerical Equivalence in Model 5) The flexible plug-in g-formula and the

sequential g-estimation are numerically equivalent in Model 5. That is
PA= QA
ALy = PALy-
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Proof. Regarding those linear projection coefficients, the first fact is that

B=7x (C.10)

where 7y is the sub-vector of 4 associated with X. To see why, let 4y, be the sub-vector
of 4 associated with W. Then the regression of Y. A on X can equivalently be cast as the
restricted regression of Y on Z = (X, W) with the constraint vy = 4y, and the later
restricted regression is known to yield 4 x.

The second fact is that the orthogonality condition following each of the three equations
(C.1), (C.2) and (C.3) is definitional for the corresponding linear projection coefficient vector.
Note that the rank condition always hold in practice unless by fluke. Therefore, given a data
set, ﬁ , Bl and 7 are uniquely defined by their respective orthogonality conditions.

Now we are ready to prove the equivalence. Plug equation (C.3) into (C.1), we have

A,

Y uy = XB+é
= fo+BaA+ BryLo + BaryALo + O, Ln + Bap, ALy + &
= fo+BaA + BryLo + BaryALo + Br, (Fo + 7aA + 7r Lo +
ALy ALg + ©) + Bap, Alfo + T aA + 7 Lo + 7ar, ALg + ©) + &
= (Bo+ B, R0) + |Ba+ BryFa+Bar, (Fo + ﬁA)} A+ (Bry + By Lo
+|Bary + BryFary + Bar, (Fr, + ﬁALO)} AL + [(BLl + Bar,)® + é]
= 06+ P4A + B1 Lo + B ALo + &
= X6, +¢&"
where we define
65 = Bo + B, o,
B4 = Ba+ Br fa+ Bar, (Fo+7a), (C.11)
b1y = Bry + Brii,
Bir, = Barg + BryFarg + Bary (Fry + % arg), (C.12)
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N N ~ /
g" = (BLl + BALl)f] + €.
But (C.3) and (C.2) imply that

! / ~ ~ . R
X&" = Xy |(BL, +BaL v +é

N A ! !
= (Bry +Bap ) X0+ X €

= 0. (C.13)
Hence, by definition and uniqueness, Bl = BT In particular, we have
Ba =Py,
ﬁALO = /B:ZL()‘
It follows immediately from (C.6), (C.7), (C.10), (C.11) and (C.12) that
PA= DA
ALy = PALy:-
m

Remark 1: In proving Xllé* = 0, it shows why we need the regressors be the same in the
model of Ly as in the model of the second-step regression.
Remark 2: If the statistical model for E(L1|A, Lg) is of the same level of flexibility as
the second step regression of the SG estimator, we say the model is properly chosen. For
example, in Model 1, the second step of the SG estimator is to regress Y. M on (1, Ay, Log),
and the proper model for E(L1|A, Lg) is E(L1|A, Lg) = ¢ + T4 A+ mryLo. In Model 5,
the second step of the SG estimator is to regress Y_ M on (1, Ay, Loi, ALg;), and the proper
model for E(L1|A, Ly) should be E(L1|A, Ly) = 7c + m4A + TroyLo + maryALo.

If the second-step regression of the SG estimation contains ALg, but the linear model

for E(L1|A, Lgy) excludes AL, then the numerical equivalence does not hold any more. The

150



intuition is that when 74 Ly 18 forced to be zero, it will alter the the estimates for g, 74 and
TLy» which can be viewed as some restricted estimates. The math is explained in (C.13):

I
X0 is not zero anymore.
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APPENDIX D

SENSITIVITY ANALYSIS

In this section we provide the derivation details for the sensitivity analysis in section 5 of

main text. Specifically, we want to show that

0
vy =9 — [E(2Z'Z)] 7!

Teprey
Proof. Recall that

Y =Zvyy + ¢y, (D.1)
Z = (1,Ly, A, L1, M),
Oy ey = Covlenr,ey) # 0.
Premultiply both sides of equation (D.1) by X', take expectation, we have
E(Z'Y) = E(Z'Z)vz+ E(Zey).
Assume E(Z'Y) has full rank, then
vy = [BE(Z'Z)] EZ'Y) - [E(Z'2)] 'B(Zey)

Now notice that the three additional assumptions in Section 5 imply

E[(1, Ly, A, L1) ey] = 0. (D.2)

where 0 is a 4 x 1 zero vector. Meanwhile recall that 'ygLS = [E(Z'Z)] —1E(Z'Y). 1t follows

immediately that

0
vz =7%7" - [BEZ'Z)] !

Oeprey
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