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ABSTRACT

ESSAYS ON PSEUDO PANEL DATA AND TREATMENT EFFECTS

By

Fei Jia

This dissertation is composed of three chapters that study two suitable estimation methods

for identifying causal relationships in the presence of (pseudo) panel data. The first and

the second chapters are devoted to minimum distance estimation for pseudo panel models,

whereas the third chapter is concerned with the estimation of controlled direct effects in

causal mediation analyses using panel data.

The first chapter focuses on finite sample properties of minimum distance estimators

in pseudo panel models. Previous research shows theoretically that the minimum distance

asymptotic theory is a natural fit for pseudo panel models when cohort sizes are large.

However, little is known about how minimum distance estimation performs with a realistic

sample size. In a carefully designed simulation study that mimics the sampling scheme

of repeated cross sections, we compare the optimal minimum distance estimator to the

fixed effects estimator which is identical to the minimum distance estimators using identity

weighting matrix. The results show that both estimators perform well in realistic finite

sample setups. The results also confirm that the optimal minimum distance estimator is

generally more efficient than the fixed effect estimator. In particular, we find that cohort-

wise heteroskedasticity and varying cohort size are the two typical scenarios that call for the

use of optimal weighting. For the fixed effects estimator, we find that the minimum distance

inference is more suitable than the naive inference which incorrectly ignores the estimation

errors in the pseudo panel of variable cohort means.

The second chapter extends the basic pseudo panel models in the first chapter by adding

extra instrumental variables. The additional instruments, if non-redundant, can improve

estimation efficiency. To have the efficiency gain result in a general form, we derive it in
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a non-separable minimum distance framework developed in this chapter. Along with the

efficiency gain result, consistency, asymptotic normality, and optimal weighting theorems

are also established. This efficiency gain result echoes the property of generalized methods

of moments that more moment conditions do not hurt. After developing the results in the

non-separable minimum distance framework, we apply them to the extended pseudo panel

models. we show that the minimum distance estimators in the extended pseudo panels are

generalized least squares estimators, and the optimal weighting matrix is block diagonal.

Because of the last fact, the use of optimal weighting becomes more important than in basic

pseudo panels. Simulation evidence confirms the theoretical findings in realistic finite sample

setups. For an empirical illustration, we apply the method to estimate returns to education

using data from the Current Population Survey in the US.

The third chapter, coauthored with Zhehui Luo and Alla Sikorskii, proposes a flexible

plug-in estimator for controlled direct effects in mediation analyses using the potential out-

come framework. A controlled direct effect is the direct treatment effect on an outcome when

the indirect treatment effect through a mediator is shut off by holding the mediator fixed.

The flexible plug-in estimator for controlled direct effects is a parametric g-formula with

an additional partially linear assumption on the outcome equation. Compared to simula-

tion based method in the literature, this estimator avoids estimation of conditional densities

and numerical evaluation of expectations. We compare the flexible plug-in estimator to the

sequential g-formula estimator, and prove theoretically and via simulation that they are nu-

merically equivalent under certain settings. We also discuss a sensitivity analysis to check

the robustness of the flexible plug-in estimator to a particular violation of the sequential ig-

norability assumption. We illustrate the use of the flexible plug-in estimator in a secondary

analysis of a random sample of low birthweight and normal birthweight infants to estimate

the controlled direct effect of low birth weight on reading scores at age 17 when a behavior

problem index is used as the mediator.
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CHAPTER 1

FINITE SAMPLE PROPERTIES OF THE MINIMUM DISTANCE
ESTIMATOR FOR PSEUDO PANEL DATA

1.1 Introduction

Repeated cross-sectional data is available when a series of different random samples can

be obtained from the population over time. The Current Population Survey in the U.S.A,

conducted monthly, is an example of such type of data sets. By combining cross sections at

consecutive points in time, repeated cross-sectional data gains the replicability over time in

absence of genuine panel data. Although we still cannot track each individual over time, we

are able to estimate certain panel data models, especially those with fixed individual-specific

effects and those with individual dynamics, under appropriate conditions.

The literature that makes possible the estimation of these panel data models with only

repeated cross sections dates back to the seminal work by Deaton (1985). Deaton’s idea is

to divide individuals into cohorts according to certain predetermined characteristics, such as

year of birth, and then use the cohort means of all relevant variables to construct a panel at

the cohort level. Since the variable cohort means are estimated rather than directly observed,

such a constructed panel is often called a pseudo panel. Common panel data approaches

such as first difference and fixed effects (FE) estimation are readily applicable because of

this panel structure. In this chapter, our focus is on the pseudo panel FE estimator.

Despite the fact that the cohort means are error-ridden estimates, the pseudo panel FE

coefficient estimator is generally consistent. The corresponding standard error estimators

(the naive standard errors hereafter), however, are potentially problematic for ignoring the

estimation errors in the cohort means, whether they are made robust to heteroskedasticity

and/or serial correlation. To make the standard errors right, Imbens and Wooldridge (2007)

propose a minimum distance (MD) approach for pseudo panel models. With asymptotics
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relying on large cohort sizes, this approach is a natural fit for many microeconomic analyses,

since for microeconomic data the cohort-wise number of observations is often large, and

the number of cohorts and the number of time periods are often small. The MD approach

effectively takes account of the estimated cohort means. More importantly, it provides

an asymptotically efficient way to utilize all the moment conditions through its weighting

procedure. In fact, Imbens and Wooldridge (2007) show that the pseudo panel fixed effect

estimator is exactly the MD estimator that puts equal weights on the moment conditions

via an identity weighting matrix.

The superiority of the MD approach for pseudo panels relies on large sample theory, but

its finite sample properties have not been fully studied. It is possible that the naive FE

standard errors, especially those made robust to heteroskedasticity and/or serial correlation,

can still achieve acceptable accuracy under certain circumstances. Moreover, although the

result on optimal weighting in Imbens and Wooldridge (2007) implies that departures from

identity weighting call for optimal weighting, it is unclear what are the typical causes of

those departures.

In this chapter, we investigate the finite sample properties of the MD approach for pseudo

panels through a carefully designed simulation study. In particular, the attention is paid to

the comparison of the optimal MD estimator and the MD estimator with identity weighting

matrix. We identify two stylized causes, namely varying cohort sizes and cohort-wise error

heteroskedasticity, of departures of the optimal weighting matrix from identity. In presence

of these two features, optimal weighting evidently outperforms identity weighting. As for the

naive FE inference, we find that it is always inferior to the MD FE inference. Therefore, we

should never throw away individual-level data in empirical studies, for they contain useful

information that the sample cohort means do not have.

The MD approach is certainly not the only approach to pseudo panels. Deaton (1985), for

example, treats the estimated cohort means as a measurement error problem, and proposes a

measurement-error corrected ordinary least squares (OLS) estimator. Collado (1997) extends
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the analysis to dynamic models, and develops a measurement-error corrected GMM estimator

based on the instrument variables (IV) method in Arellano and Bond (1991). Another strand

of researches go beyond pseudo panels and dive into individual level. Moffitt (1993) considers

both dynamic and binary choice models, and proposes an IV estimator that constructs IV

from functions of cohort and/or time. In particular, Moffit points out that aggregating to

the cohort level is equivalent to using a full set of cohort, time, and cohort-time dummies

as IV. Girma (2000) quasi-differences pairs of individuals in the same cohort to circumvent

the problem of missing individual trajectories, and proposes a particular GMM IV method

that uses past and present values of the dependent and explanatory variables within the

same group. Verbeek and Vella (2005) propose an alternative computationally attractive IV

estimator. A more thorough review that also covers important empirical applications can be

found in Verbeek (2008).

The rest of the chapter is organized as follows. In section 2 we set up the notations

and framework. In section 3 we reports and discusses the results from the simulation study.

Section 4 concludes.

1.2 Framework

Deaton (1985) shows the importance of distinguishing between the population model and

the sampling scheme. This distinction, as pointed out by Imbens and Wooldridge (2007),

“is critical for understanding the nature of the identification problem, and in deciding the

appropriate asymptotic analysis”. Therefore we follow this convention in this paper . The

exposition in this section borrows heavily from Imbens and Wooldridge (2007).

1.2.1 The population models

Consider the population model

yit = xitβ + ηt + fi + uit, t = 1, . . . , T. (1.1)
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in which yit is the dependent random variable, xit is a 1 × K vector of random covariates

with the first entry a constant term, fi is the unobserved time invariant effect , and uit is

the unobserved idiosyncratic error. β is the parameter of practical interest. ηt’s are the time

varying intercepts and are also treated as parameters to estimate since we are considering

applications with small T . An alternative representation is to include time dummies in xt

and then the ηt’s are obsorbed in β. The index i refers to the same individual over time

in the population model. Writing the subscript i explicitly helps to indicate whether the

quantities are changing only across t, changing only across i, or changing across both, which

will become useful later. The model (1.1) imposes the same data generating structure for all

T time periods, which assumes a stationary population over time. Later we will see that, by

stationary population, we essentially means that the population cohort means of fi do not

change over time.

Following Deaton (1985), we assume the population can be divided into G predetermined

group. The group designation must be determined before the samples are drawn, and must

be independent of time. Birth year, for example, is one of the most commonly used charac-

teristic to define the group designation. Let gi be the random variable indicating the group

membership of a random draw i. gi takes values in {1, 2, . . . G}. Take expectation of (1.1)

conditional on group membership, we have

E(yit|gi = g) = E(xit|gi = g)β+ηt+E(fi|gi = g)+E(uit|gi = g), t = 1, . . . , T, g = 1, . . . , G.

(1.2)

Define the population cohort means as

µ
y
gt = E(yit|gi = g)

µx
gt = E(xit|gi = g)

αg = E(fi|gi = g)

δgt = E(uit|gi = g)

(1.3)

for g = 1, . . . , G and t = 1, . . . , T . Note that all the four quantities above are deterministic
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population cohort means. Then we can rewrite (1.2) as

µ
y
gt = µx

gtβ + ηt + αg + δgt, g = 1, . . . , G, t = 1, . . . , T. (1.4)

(1.2) and (1.4) are different notations for the population model at the cohort level. The

parameter δgt can be considered as the effect of the cohort-time cell (g, t) net of the cohort

effect αg and the time effect ηt.

Even if µygt and µ
x
gt are known, the system of linear equations in (1.4) is not identified

if we leave δgt vary freely. Therefore, we need certain restrictions on δgt. In a standard

panel data model, a weak exogeneity assumption we usually make is the contemporaneous

exogeneity of xit given fi:

E(uit|xit, fi) = 0, t = 1, . . . , T. (1.5)

This condition is, however, is not required here. A weaker condition that is relevant in the

context of (1.1) is

E(uit|fi) = 0, t = 1, . . . , T. (1.6)

Note that by iterated expectation, (1.5) implies (1.6). This gives certain flexibility to pseudo

panels on the exogeneity of xit, which will be discussed in more details later.

Because fi summarized all time-invariant unobservables, Imbens and Wooldridge (2007)

argue that (1.6) should be true for not only the lump sum fi but also any time-invariant

factors including gi. In other words, fi should represent any random variable that does not

depend on time. While this thought experiment makes sense, rigorously speaking, it does

impose stronger conditions than (1.6).1 Nevertheless, we keep this treatment in this chapter.

In particular, replacing fi with the group indicator gi, we obtain

E(uit|gi) = 0, t = 1, . . . , T. (1.7)

1The sigma algebra generated by fi is not necessarily a subset of the sigma algebra
generated by gi
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Note that E(uit|gi) is still a random variable. Since gi takes only finitely many values, an

alternative way to write (1.7) is

δgt = E(uit|gi = g) = 0, g = 1, . . . , G, t = 1, . . . , T. (1.8)

Substitute (1.8) in (1.4), we get

µ
y
gt = µx

gtβ + ηt + αg, g = 1, . . . , G, t = 1, . . . , T. (1.9)

Let θ = (β′,η′,α′)′ be the (K + T + G) × 1 column vector of parameters with η =

(η1, . . . , ηT )′ and α = (α1, . . . , αG)′. There are, however, only T + G − 2 parameters to

estimate. Since xit includes a constant term, only (G−1) parameters in αg and (T −1) in ηt

are separately identifiable. We impose the normalization α1 = 0 and η1 = 0 which is slightly

different from the normalization
∑G
g=1 αg = 0 and η1 = 0 in Imbens and Wooldridge (2007).

With this treatment, αg, g = 2, · · · , G and ηt, t = 2, · · · , T represent the net effects relative

to the first cohort at the first time period. If µygt and µ
x
gt are known, GT ≥ K + T +G− 2,

and the equations in (1.9) are linearly independent, then (1.9) contains enough (maybe

over-identified) restrictions to solve for θ.

As pointed out in Imbens and Wooldridge (2007), what (1.7) really imposes is that the

cohort-level equations contain only the set of cohort and time effects but not the cohort-

time interaction effects. If for any cohort-time cell (g, t) δgt is nonzero, then there is a

misspecification in the population model (1.1). In the extreme case where the true model

contains a full set of cohort-time net effects, nothing is identified since the identification of

any parameter comes from the variation of its associated variable over cohort and/or time.

Perhaps another representation helps understanding this better. Write the population

model with a full set of cohort-time effects as

yit = xitβ + ηt + fi + δgi,t + uit, t = 1, . . . , T,

where δgi,t = E(uit|gi), the cohort-time effect of cell (gi, t), is properly treated as a random
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variable. Then (1.7) is exactly.

δgi,t = 0,

i.e. the population model does not contain a full set of cohort-time effects.

Details about some common estimation strategies given (1.9), such as OLS, FE and FD

can be found in Imbens and Wooldridge (2007). They are straightforward after treating the

cohort means as known.

1.2.2 Discussion on exogeneity

We argue that a subtle flexibility is gained thanks to the fact that (1.6) is weaker than (1.5).

Specifically, the weaker condition (1.6) allows the deviation of xit from its cohort mean to be

non-exogenous with respect to the deviation of uit from its cohort mean. Put it differently,

within a given cohort-time cell, xit and uit are allowed to be correlated. But at the cohort

level, the cohort mean of xit must be exogenous with respect to the cohort mean of uit, if we

treat the variation in their cohort means over cohort and time as the source of randomness.

In sum, endogeneity at the individual level is allowed, but exogeneity at the cohort level is

still required.

The first implication of this is that the allowed dependence between xit and uit is not

arbitrary. xit can still contain lagged dependent variables, most commonly yi,t−1, or ex-

planatory variables that are contemporaneously endogenous, but the dependence cannot be

fundamental, meaning that it exists at the cohort level. In our setup, this is guaranteed by

two restrictions: (i) the specification in the individual level population model (1.1) is correct,

and (ii) the zero cohort mean of uit condition in (1.7) holds. They together translate to the

exclusion of a full set of cohort-time effects.

Another implication is that, if G is large enough so that we can rely on large G asymp-

totics,2 we do not need the zero cohort mean of uit condition imposed in (1.7) for consistent

2Alternatively, we can assume the conditional distribution of δgt given µx
gt is normal and

use maximum likelihood estimation.
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estimation of β. The condition can be relaxed to some form of exogeneity at the cohort level.

Let g = gi to simplify notation, and denote the cohort-level random explanatory variable

and error by µx
gt and δgt, which treats the cohort dimension as random but still leaves the

time dimension fixed. Then one form of such exogeneity assumption can be expressed as

E(δgt|µx
gt) = 0, t = 1, . . . , T. (1.10)

Apparently, the condition (1.7) implies (1.10). The analysis in Deaton (1985) goes a bit

further to treat the time dimension as random as well, and thus relies on large GT asymp-

totics, but the idea is essentially the same. Nevertheless, this treatment “seems unnatural for

the way pseudo panels are constructed, and the thought experiment about how one might

sample more and more groups is convoluted”, as pointed out by Imbens and Wooldridge

(2007). Therefore, if we do not have large G but only large cohort-time cell size, Ngt, MD

estimation is the way to go, and we need to impose the stronger zero cohort mean of uit

condition (1.7).

The treatment regarding µx
gt and δgt above also breaks the barrier between the view

of constructing cohort-level equations from the individual level, as represented by Deaton

(1985) and Imbens and Wooldridge (2007), and the view of starting the analysis right from

the cohort level. Both views make sense and are unified under this treatment. But when

starting the analysis from the cohort level, we need to make sure that the assumptions are

consistent with the process of construction from the individual level. In particular, attention

should be paid to proper asymptotics.

1.2.3 Minimum distance estimation

Given a repeated cross-sectional data set with large cohort sizes, small number of cohorts

and small number of time periods, the MD estimator is a natural fit. Because of the large

cohort sizes, the cohort means µygt and µ
x
gt in (1.9) can be estimated fairly precisely by their

sample analogs in each cohort-time cell . The system of equations (1.9) is the link between

8
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the reduced-form parameter {(µygt,µ
x
gt), g = 1, . . . , G, t = 1, . . . , T} and the structural

parameter θ. The MD approach is essentially a delta method, recovering structural estimates

from reduced-form estimates.

In the next several subsections, we derive the limiting distribution of the sample cohort

means, present the minimization problem of MD estimators, and give a closed-form expres-

sion of the general MD estimator for pseudo panels. In particular, the optimal MD estimator

and the FE estimator as the MD estimator with identity weighting are discussed in detail.

1.2.3.1 Limiting distribution of cohort-time cell means

Specifically, assume we have a random sample on (xit, yit) of size nt for each t, and we denote

them collectively by{(xit, yit), i = 1, . . . , nt}. i may refer to different individuals in different

time periods. This notation works fine as long as we keep in mind the in each time period

we have a new random sample.

For each random draw i, let ri = (rit,1, rit,2, . . . , rit,G) be a vector of group indicators

such that rit,g = 1{gi=g}, where 1A is the indicator function that takes values in {0, 1}

and equals 1 only if A is true. In this way we properly treat the group membership of the

random draw i as a random vector ri. With ri, the sample average of the response variable

in cohort-time cell (g, t) can be written as

µ̂
y
gt = n−1

gt

nt∑
i=1

rit,gyit = (ngt/nt)
−1n−1

t

nt∑
i=1

rit,gyit (1.11)

where ngt =
∑nt
i=1 rit,g is properly treated as a random variable.

µ̂
y
gt is generally consistent for µygt. Specifically, let ρg = P (rit,g = 1), the fraction of

the population in cohort g. We have treated ρg as time invariant because we assume the

population is stationary. Then

ρ̂gt = (ngt/nt)
p−→ ρg, (1.12)
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and thus we have

µ̂
y
gt = ρ̂−1

gt n
−1
t

nt∑
i=1

rit,gyit
p−→ ρ−1

g E(rit,gyit) = µ
y
gt.

The last equality holds because E(rit,gyit) = P (rit,g = 1)E(yit|rit,g = 1) = ρgµ
y
gt. The same

argument also holds for the other cohort means.

Let sit = (yit,xit), and define µ̂s
gt = (µ̂

y
gt, µ̂

x
gt) as in (1.11). Then the asymptotic

distribution of µ̂s
gt is

√
nt(µ̂

s ′
gt − µs ′

gt) −→ Normal(0, ρ−1
g Ωs

gt)

where

Ωs
gt = V ar(sit|g)

is the (K + 1) × (K + 1) variance-covariance matrix for the cohort-time cell (g, t). When

later we stack the means across groups and time periods, it is useful to have the result

√
n(µ̂s ′

gt − µs ′
gt) −→ Normal(0, (ρgκt)

−1Ωs
gt) (1.13)

where n =
∑T
t=1 nt and κt = limn→∞(nt/n) is essentially the fraction of all observations

accounted for by cross section t. ρgκt is consistently estimated by ngt/n. A consistent

estimator for Ωs
gt is

Ω̂
s
gt = n−1

gt

nt∑
i=1

rit,g(sit − µ̂s
gt)(sit − µ̂s

gt)
′. (1.14)

which is the sample variance-covariance matrix of s within the cell (g, t).

Let π = (µs
11,µ

s
12, . . . ,µ

s
1T ,µ

s
21 . . . ,µ

s
GT )′, the column vector of all cell means. π is a

GT (K + 1) vector since each µs
gt is K + 1. Define π̂ by replacing µs

gt with µ̂
s
gt. Now, µ̂s

gt

are independent across g because we have random sampling for each t. When xit does not

contain lags or leads, µ̂s
gt are independent across t, too. Then, by stacking (1.13) for all

(g, t), we have
√
n(π̂ − π) −→ Normal(0,Ω), (1.15)
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where Ω is the GT (K + 1) × GT (K + 1) block diagonal matrix with the gt-th block

(ρgκt)
−1Ωs

gt. Note that Ω incorporates both different cell variance-covariance matrices as

well as the different frequencies of observations. As we will see in the simulation study, this

is exactly the reason why the optimal MD estimator outperforms other MD estimators when

there are cohort-wise heteroskedasticity and varying cohort sizes.

1.2.3.2 Minimum distance approach for pseudo panels

Classical MD estimation is useful for obtaining structural estimates from reduced form esti-

mates when a known relationship exists between the structural and reduced form parameters

(see, e.g., Wooldridge (2010)). In the pseudo panel setup, the group means in π are the re-

duced form parameters, θ contains the structural parameters, and the cohort-level equations

embody the known relationship between π and θ.

To facilitate the discussion, we rearrange terms in (1.9) by putting everything on the left

hand side of the equality sign. Write the resulting expression as

h(π,θ) = 0 (1.16)

where h(·, ·) is a GT × 1 vector valued function (recall θ = (β′,η′,α′)′). The gt-th row of

h(π,θ) is −µygt + µx
gtβ + ηt + αg, or equivalently,

π′g(−1,β′)′ + ηt + αg (1.17)

where πg is the g-th T ×1 block of π. The parameters π and θ do not appear in a separable

way directly in h(π,θ), but it can be shown that this is a separable case.

The classical MD estimator is a solution to the minimization problem

min
θ∈Θ

h(π̂,θ)′W h(π̂,θ). (1.18)

where Θ is the space of θ and W is a GT × GT weighting matrix. W is needed when the

restrictions in (1.16) over-identifies θ (GT > K+G+T −2). We focus on the over-identified
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case because it is usually the case in practice. Chamberlain (Harvard lecture notes) shows

that the optimal weighting matrix is the inverse of

M = ∇πh(π,θ)Ω∇πh(π,θ)′, (1.19)

where ∇πh(π,θ) is the GT × GT (K + 1) Jacobian of h(π,θ) with respect to π. Use

Kronecker product (notation ⊗) and (1.17), we have

∇πh(π,θ) = IGT ⊗ (−1,β′)′

where IGT is the GT × GT identity matrix. This last result is exciting because, with Ω

block diagonal, it implies that (1.19) is a GT ×GT diagonal matrix with the gt-th diagonal

entry

(ρgκt)
−1(−1,β′)Ωs

gt(−1,β′)′. (1.20)

But recall that Ωs
gt = V ar(sit|g), we have

τ2
gt ≡ (−1,β′)Ωs

gt(−1,β′)′ = V ar(yit − xitβ|g),

and therefore, a consistent estimator of τ2
gt is

τ̌2
gt = n−1

gt

Nt∑
i=1

rit,g(yit − xitβ̌ − η̌t − α̌g)2

which is the sample residual variance within cell (g, t). Here θ̌ is the initial estimator of

θ obtained by putting W = IGT . Note that θ̌ = θ̌(π̂). θ̌ is exactly the least squares

dummy variables (LSDV) estimator of θ on the pseudo panel. Since (ρgκt)
−1 is consistently

estimated by (ngt/n)−1, (1.20) can be consistently estimated by

(ngt/n)−1τ̌2
gt. (1.21)

.

Denote by M̌−1 the estimated optimal weighting matrix, where the gt-th diagonal entry

of M̌−1 is (ngt/n)/τ̌2
gt. Note that M̌ = M(θ̌) = C(θ̌(π̂)) is a function of the reduced-form

estimate π̂. Then the minimization problem of the optimal MD estimator is

min
θ∈Θ

h(π̂,θ)′ M̌−1 h(π̂,θ). (1.22)
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1.2.3.3 Closed-form MD estimators for pseudo panels

In the pseudo panel setup, h(π,θ) is linear in each argument, and the MD estimator of θ is

in closed form. We derive this expression in this section.

Let µx
gt = (µx

gt,dt, cg) be the 1× (K +G+ T − 1) row vector of regressors, where dt is

a 1× (T − 1) vector of time dummies and cg is a 1×G vector of group dummies. Let

µ
x
g =



µ
x
g1

µ
x
g2
...

µ
x
gT


, T × (K +G+ T − 1),

µx =



µ
x
1

µ
x
2
...

µ
x
G


, GT × (K +G+ T − 1).

Then ∇θh(π,θ) = µx, and the FOC for (1.22) is

µ̂x ′ M̌−1(µ̂x θ̂ − µ̂y) = 0,

where µ̂x = (µ̂x
gt,dt, cg). Therefore, the optimal MD estimator is

θ̂ = (µ̂x ′ M̌−1µ̂x)−1µ̂x ′ M̌−1µ̂y. (1.23)

which looks like a weighted least squares estimator. Following Chamberlain, the estimated

asymptotic variance of θ̂ is simply

Âvar(θ̂) = (µ̂x ′ M̌−1µ̂x)−1/n. (1.24)

Because M̌−1 is the diagonal matrix with entries (ngt/n)/τ̌2
gt, it is easy to weight each cell

(g, t) by
√
ngt/n/τ̂gt and then compute both θ̂ and its asymptotic standard errors via a

weighted regression. In STATA, this can be done by specifying aweight (ngt/n)/τ̌2
gt.
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The FE estimator applied to the pseudo panel of cohort means turns out to be the MD

estimator with identity weighting matrix. To see that, we simply replace M̌−1 with the

identity matrix IGT in (1.23),

θ̌ = (µ̂x ′ µ̂x)−1µ̂x ′ µ̂y (1.25)

Strictly speaking, (1.25) is the LSDV estimator on the pseudo panel. But since it gives

the same estimates for β, we also call it the FE estimator. The MD asymptotic variance

estimator for θ̌ is

Âvar(θ̌) = (µ̂x ′ µ̂x)−1(µ̂x ′ M̌−1µ̂x)(µ̂x ′ µ̂x)−1/n. (1.26)

Apparently, this formula is different from the naive FE asymptotic variance estimators to

be discussed in the next section, whether they are made robust to heteroskedasticity and/or

serial correlation.

1.2.3.4 Discussion on the difference between MD FE and naive FE inference

Unlike the optimal MD asymptotic variance, the MD asymptotic variance for θ̌ can not be

estimated directly from a weighted regression. In fact, since the corresponding weighting

matrix for FE is the identity matrix, the correct weight for each cell is simply no weight

(equal weight). Without any weighting, a linear regression gives us the naive asymptotic

variance estimator3

̂Avarn(θ̌) = (µ̂x ′ µ̂x)−1σ̌2 (1.27)

where

σ̌2 = (GT − 1)−1
∑
g,t

(
µ̂
y
gt − µ̂

x
gtβ̌ − η̌t − α̌g

)2
.

Clearly, (1.26) and (1.27) coincide if nM̌−1 equals σ̌2IGT , which is generally not the case.

Making it robust to heteroskedasticity (White (1980)), we get the naive heteroskedasticity-

robust asymptotic variance estimator
3Proper adjustment of degrees of freedom can also be proposed, which we do not discuss

for simplicity. It also applies to the two robust naive variance estimators.
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̂Avarr(θ̌) =
(
µ̂x ′ µ̂x)−1

(
µ̂x ′

(
diag(µ̂ǔ)

)2
µ̂x
)(
µ̂x ′ µ̂x)−1

where diag(µ̂ǔ) is the diagonal matrix created by putting the vector µ̂ǔ on the principal

diagonal. µ̂ǔ is the column vector that stacks all cohort-level residuals over g and t, and its

[(g − 1)T + t]-th entry is

µ̂ǔgt = n−1
gt

nt∑
i=1

rit,gǔit.

That is, µ̂ǔgt is the sample cohort mean of the individual-level residuals within cell (g, t). The

individual level residual, ǔit, is defined as

ǔit = yit − xitβ̌ − (η̌t + α̌g).

Note that (µ̂ǔgt)
2 is different from τ̌2

gt. The former is the square of the residual cohort mean

for cell (g, t), which only contains cohort-level information, where as the latter is the sample

variance of the residuals within cell (g, t), which contains individual-level information.

Further making it robust to heteroskedasticity and serial correlation (see, e.g. Wooldridge

(2010)), we get the naive cluster-robust asymptotic variance estimator

̂Avarc(θ̌) =
(
µ̂x ′ µ̂x)−1

(
µ̂x ′diagG(µ̂ǔ)diagG(µ̂ǔ)′µ̂x

) (
µ̂x ′ µ̂x)−1

where diagG(µ̂ǔ) is the block diagonal matrix with the g-th diagonal block µ̂ǔg for g =

1, · · · , G. The subscript G in the notation diagG indicates that the block diagonal matrix

has G blocks on the diagonal. µ̂ǔg is a T × 1 vector with the t-th entry µ̂ǔgt. Alternatively,

the middle term can be written as

diagG(µ̂ǔ)diagG(µ̂ǔ)′ = diag(µ̂ǔ1µ̂
ǔ ′
1 , µ̂ǔ2µ̂

ǔ ′
2 , · · · , µ̂ǔGµ̂

ǔ ′
G )

Unlike the diagonal matrix nM̌−1, this is a block diagonal matrix with µ̂z′ǔ
g µ̂z′ǔ ′

g on the

g-th diagonal block.

To summarize, the three naive FE asymptotic variance estimators can be obtained

by replacing V̌0 = M̌−1/n in (1.26) with V̌n = σ̌2IGT , V̌r =
(
diag(µ̂ǔ)

)2 and V̌c =
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diagG(µ̂ǔ)diagG(µ̂ǔ)′, respectively. But the naive FE inference is fundamentally different

from the MD inference. The former only relies on cohort-level information, where as the latter

abstracts information from the individual level. The robustness of ̂Avarr(θ̌) and ̂Avarc(θ̌)

is also with respect to cohort-level heteroskedasticity and/or serial correlation only, i.e. het-

eroskedasticity and/or serial correlation in µugt, which requires at least large G asymptotics.

As illustrated by the simulation study in the next section, the naive FE inference is far less

efficient since it discards all individual-level information.

1.3 Simulation and results

We now present the Monte Carlo simulation study that investigates the finite sample proper-

ties of the MD approach for pseudo panels. The simulation study focuses on two questions.

First, what are the typical scenarios in which the optimal MD estimator outperforms the

FE estimator? From (1.21), we know that if there is cohort-wise heteroskedasticity and/or

varying the cell sizes, the optimal MD estimator is expected to outperform the FE estimator.

In general, if there is any pattern in the population model that makes the optimal weighting

matrix evidently different from the identity matrix, the optimal MD estimator is supposed

to perform better. We check if it is the case in the simulation study.

Secondly, can the naive FE inference still provide satisfactory accuracy and if it could,

what are these typical scenarios? As discussed in the last section, the naive FE asymptotic

variances and the MD FE asymptotic variance are alike in their formulae. On the other

hand, the naive FE inference is fundamentally different form the MD FE inference in that

the former discards all information at the individual level. The simulation study helps to

understand these two seemingly conflicting facts.

As Imbens and Wooldridge (2007) point out, the simulation design should be careful in

at least two places.

First, data for each cross section should be drawn from the population independently
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across time, and the group identifier should also be randomly drawn. This is accomplished

by a two step procedure. In the first step, we draw the population using (1.1). The population

cohort sizes are fixed and depending on the design may or may not depend on cohort and/or

time.4 In the second step, we mimic the sampling scheme of repeated cross sections by

drawing independent random samples over time. In each period, we draw a tiny portion of

the population as the cross-sectional sample for that period.

Second, the underlying model should have full time effects to be realistic. If, as in Verbeek

and Vella (2005), we omit the aggregate time effects while let explanatory variables to have

means differ by cohort-time cell, the variation in µx
gt will be relatively rich and thus we may

set up too optimistic a situation for the estimators.

We consider five scenarios. The first is a benchmark scenario in which all things are bal-

anced across cohort-time cells. In the remaining four scenarios, we manipulate four different

features of the population model, namely the time effects, the covariate distribution, the

cohort-wise heteroskedasticity and the varying cohort sizes, one at a time. In this way, it is

easy to isolate the cause. We begin with the benchmark scenario.

1.3.1 Benchmark

In the benchmark scenario, we generate the outcome yit as a linear function of the covariates

(x1it = 1, x2it, x3it, x4it), the time effect ηt, the individual effect fi and the idiosyncratic

error uit as in

yit = β1 + β2x2it + β3x3it + β4x4it + ηt + fi + uit, i = 1, · · · , Nt, t = 1, · · · , T. (1.28)

The parameter values used are β = (β1, β2, β3, β4) = (1, 1, 1, 1). The time effects are gen-

erated by ηt = t − 1, and the cohort effects are generated by αg = g − 1. Individual

4Ideally, we would like a population with infinity many observations so that it is infinitely
close to the population distribution defined by (1.1). In reality this is impossible, so we draw
a large number of individuals to approximate the population distribution.
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fixed effects are generated by adding a random normal disturbance to the cohort effects, i.e.

fi ∼ N(αg, 1). The distribution of idiosyncratic error is given by uit ∼ N(0, 10).

To fix ideas, it might be helpful to think of x2it, x3it and x4it as education, experience

and marital status, respectively. The outcome yit is the log hourly wage, and there is an

individual effect fi representing some unobserved ability. The three explanatory variables

x2it, x3it and x4it are generated as follows

x2it ∼ N(gt/6, 1),

x3it ∼ N(sin(gt), 1),

x4it ∼ Bernouli

(
1

1 + exp[1.5 ∗ sin(gt/2)]

)
.

That is, x2it is a continuous variable with population cohort mean gt/6 and with-cell variance

1. x3it is a continuous variable with the population cohort mean sin(gt) and within-cell

variance 1, and x4it is a binary variable equal to 1 with probability 1
1+exp(1.5∗sin(gt/2))

. The

key is to let the three variable cohort means have distinct variation over g and t.

We apply the optimal MD estimator and the MD estimator with identity weighting. The

latter is numerically equivalent to the FE estimator on the pseudo panel of cohort means.

For each estimator, we compute the MD coefficient and standard error estimates. For the

MD estimator with identity weighting, we also compute the three naive FE standard errors

discussed in the last section.

We consider a small panel with G = 6 cohorts and T = 4 time periods. The population

cell sizes Ngt are 2×104, 105 and 5×105 respectively in the three cases considered. After the

population panel is generated, we fix it over simulation replications. To mimic the sampling

scheme of repeated cross-sectional surveys, we draw .2% of the population in each period.

The resulting sample cell sizes ngt are approximately 40, 200 and 1000, respectively. For

each case, we consider three different numbers of replications. The results are reported in

Table 1.1, Table 1.2 and Table 1.3.

There are several observations worth discussing. First of all, the optimal MD estimator
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Table 1.1 Results for benchmark. G = 6, T = 4, ngt ≈ 40, sampling rate = .2%; R denotes
number of replications; Monte Carlo averages on top, Monte Carlo standard deviations in
parentheses.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

R = 1000 x2 0.977 0.353 0.345 0.313 0.322 0.979 0.347
(0.345) (0.041) (0.080) (0.097) (0.142) (0.343) (0.041)

x3 0.999 0.199 0.194 0.185 0.201 1.001 0.196
(0.191) (0.017) (0.042) (0.047) (0.080) (0.195) (0.016)

x4 1.001 0.634 0.619 0.584 0.657 0.998 0.622
(0.631) (0.063) (0.139) (0.163) (0.249) (0.633) (0.061)

c2 0.980 0.433 0.424 0.400 0.198 0.977 0.425
(0.420) (0.032) (0.090) (0.122) (0.092) (0.423) (0.031)

d2 1.025 0.412 0.404 0.387 0.469 1.023 0.405
(0.417) (0.036) (0.088) (0.108) (0.174) (0.420) (0.035)

cons 0.973 0.380 0.373 0.347 0.290 0.978 0.373
(0.364) (0.034) (0.079) (0.116) (0.108) (0.365) (0.032)

R = 5000 x2 0.981 0.351 0.339 0.308 0.320 0.982 0.345
(0.345) (0.041) (0.079) (0.095) (0.143) (0.347) (0.040)

x3 1.003 0.198 0.192 0.182 0.194 1.003 0.195
(0.193) (0.017) (0.042) (0.046) (0.075) (0.195) (0.017)

x4 1.009 0.632 0.611 0.574 0.645 1.006 0.621
(0.640) (0.062) (0.136) (0.159) (0.243) (0.644) (0.060)

c2 0.984 0.432 0.419 0.393 0.194 0.985 0.425
(0.420) (0.032) (0.090) (0.118) (0.090) (0.424) (0.031)

d2 1.020 0.410 0.398 0.380 0.459 1.021 0.403
(0.414) (0.036) (0.087) (0.105) (0.169) (0.416) (0.035)

cons 0.975 0.379 0.368 0.340 0.286 0.975 0.372
(0.372) (0.033) (0.079) (0.113) (0.109) (0.374) (0.032)

R = 10000 x2 0.984 0.350 0.338 0.306 0.320 0.984 0.344
(0.344) (0.041) (0.079) (0.095) (0.141) (0.346) (0.040)

x3 1.003 0.198 0.191 0.182 0.193 1.004 0.195
(0.194) (0.017) (0.042) (0.047) (0.075) (0.195) (0.017)

x4 1.007 0.632 0.610 0.574 0.646 1.005 0.620
(0.634) (0.061) (0.137) (0.159) (0.246) (0.637) (0.059)

c2 0.984 0.432 0.417 0.392 0.193 0.985 0.424
(0.422) (0.031) (0.090) (0.119) (0.089) (0.426) (0.030)

d2 1.017 0.410 0.397 0.380 0.458 1.018 0.402
(0.411) (0.035) (0.087) (0.105) (0.169) (0.414) (0.034)

cons 0.979 0.378 0.367 0.339 0.286 0.978 0.372
(0.373) (0.032) (0.079) (0.113) (0.108) (0.375) (0.031)
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Table 1.2 Results for benchmark. G = 6, T = 4, ngt ≈ 200, sampling rate = .2%; R denotes
number of replications; Monte Carlo averages on top, Monte Carlo standard deviations in
parentheses.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

R = 1000 x2 0.990 0.161 0.157 0.140 0.143 0.990 0.160
(0.165) (0.009) (0.034) (0.042) (0.062) (0.165) (0.009)

x3 1.008 0.089 0.087 0.082 0.087 1.008 0.089
(0.088) (0.003) (0.018) (0.021) (0.033) (0.087) (0.003)

x4 1.010 0.286 0.279 0.262 0.299 1.011 0.285
(0.289) (0.012) (0.059) (0.072) (0.110) (0.288) (0.012)

c2 0.996 0.191 0.186 0.175 0.088 0.995 0.190
(0.194) (0.006) (0.039) (0.052) (0.036) (0.194) (0.006)

d2 1.000 0.184 0.180 0.171 0.206 1.000 0.183
(0.181) (0.007) (0.038) (0.047) (0.075) (0.182) (0.007)

cons 0.982 0.168 0.164 0.151 0.128 0.982 0.167
(0.165) (0.007) (0.035) (0.049) (0.047) (0.165) (0.006)

R = 5000 x2 0.991 0.160 0.157 0.140 0.142 0.992 0.160
(0.161) (0.009) (0.033) (0.042) (0.063) (0.161) (0.009)

x3 1.005 0.089 0.087 0.082 0.087 1.005 0.089
(0.089) (0.003) (0.018) (0.020) (0.032) (0.089) (0.003)

x4 1.010 0.286 0.280 0.263 0.298 1.011 0.285
(0.287) (0.012) (0.059) (0.071) (0.109) (0.287) (0.012)

c2 0.991 0.191 0.187 0.174 0.088 0.991 0.190
(0.192) (0.006) (0.039) (0.051) (0.036) (0.192) (0.006)

d2 1.006 0.184 0.180 0.171 0.207 1.006 0.184
(0.181) (0.007) (0.038) (0.046) (0.074) (0.181) (0.007)

cons 0.983 0.168 0.164 0.150 0.127 0.983 0.167
(0.168) (0.006) (0.034) (0.049) (0.046) (0.169) (0.006)

R = 10000 x2 0.995 0.161 0.157 0.140 0.143 0.995 0.160
(0.161) (0.009) (0.034) (0.042) (0.063) (0.161) (0.009)

x3 1.004 0.089 0.087 0.082 0.088 1.004 0.089
(0.089) (0.003) (0.018) (0.020) (0.032) (0.089) (0.003)

x4 1.012 0.286 0.279 0.263 0.298 1.013 0.285
(0.286) (0.012) (0.059) (0.071) (0.110) (0.286) (0.012)

c2 0.990 0.191 0.186 0.174 0.088 0.990 0.190
(0.191) (0.006) (0.039) (0.052) (0.036) (0.191) (0.006)

d2 1.002 0.184 0.180 0.171 0.206 1.002 0.183
(0.183) (0.007) (0.038) (0.046) (0.074) (0.183) (0.007)

cons 0.985 0.168 0.164 0.150 0.127 0.985 0.167
(0.168) (0.007) (0.035) (0.050) (0.047) (0.168) (0.007)
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Table 1.3 Results for benchmark. G = 6, T = 4, ngt ≈ 1000, sampling rate = .2%; R
denotes number of replications; Monte Carlo averages on top, Monte Carlo standard
deviations in parentheses.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

R = 1000 x2 1.003 0.072 0.070 0.062 0.062 1.003 0.072
(0.072) (0.002) (0.014) (0.018) (0.028) (0.072) (0.002)

x3 0.997 0.040 0.038 0.037 0.039 0.997 0.040
(0.040) (0.001) (0.008) (0.009) (0.014) (0.040) (0.001)

x4 1.001 0.128 0.124 0.117 0.132 1.001 0.128
(0.130) (0.002) (0.026) (0.031) (0.049) (0.130) (0.002)

c2 1.004 0.085 0.082 0.076 0.039 1.004 0.085
(0.085) (0.001) (0.017) (0.022) (0.015) (0.085) (0.001)

d2 1.004 0.082 0.079 0.075 0.090 1.004 0.082
(0.083) (0.001) (0.016) (0.019) (0.031) (0.083) (0.001)

cons 1.003 0.075 0.072 0.065 0.056 1.003 0.075
(0.079) (0.001) (0.015) (0.021) (0.020) (0.079) (0.001)

R = 5000 x2 1.003 0.072 0.071 0.063 0.064 1.003 0.072
(0.072) (0.002) (0.015) (0.019) (0.029) (0.072) (0.002)

x3 0.998 0.040 0.039 0.037 0.039 0.998 0.040
(0.040) (0.001) (0.008) (0.009) (0.015) (0.040) (0.001)

x4 1.009 0.128 0.126 0.119 0.135 1.009 0.128
(0.127) (0.002) (0.026) (0.032) (0.050) (0.127) (0.002)

c2 0.998 0.085 0.084 0.077 0.040 0.999 0.085
(0.084) (0.001) (0.017) (0.023) (0.016) (0.085) (0.001)

d2 1.002 0.082 0.081 0.077 0.093 1.002 0.082
(0.081) (0.001) (0.017) (0.021) (0.033) (0.081) (0.001)

cons 1.003 0.075 0.073 0.067 0.057 1.002 0.075
(0.076) (0.001) (0.015) (0.022) (0.021) (0.076) (0.001)

R = 10000 x2 0.999 0.072 0.071 0.063 0.064 0.999 0.072
(0.073) (0.002) (0.015) (0.019) (0.028) (0.073) (0.002)

x3 0.997 0.040 0.039 0.037 0.039 0.997 0.040
(0.040) (0.001) (0.008) (0.009) (0.015) (0.040) (0.001)

x4 1.009 0.128 0.125 0.118 0.134 1.009 0.128
(0.127) (0.002) (0.026) (0.031) (0.049) (0.127) (0.002)

c2 1.002 0.085 0.083 0.077 0.039 1.002 0.085
(0.084) (0.001) (0.017) (0.023) (0.015) (0.084) (0.001)

d2 1.001 0.082 0.080 0.076 0.092 1.001 0.082
(0.082) (0.001) (0.017) (0.020) (0.033) (0.082) (0.001)

cons 1.001 0.075 0.073 0.067 0.057 1.001 0.075
(0.075) (0.001) (0.015) (0.022) (0.020) (0.075) (0.001)
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has no advantage over the MD estimator with identity weighting in benchmark. This is

under the current specification the optimal weighting matrix is an identity matrix, so the

MD estimator with identity weighting is the optimal MD estimator.

Second, even in the case where the sample cohort size is about 40, the two MD estimators

perform well. The Monte Carlo averages of the coefficient estimates are fairly close to

the true parameter values. For each covariate, the Monte Carlo averages of the standard

error estimates are also fairly close to the Monte Carlo standard deviations the coefficient

estimates. Since the results are fairly stable across the three different numbers of replications,

we will report the results for 10, 000 only in later discussions.

Third, the three naive FE standard errors are much more volatile than the MD FE

standard error. This observation is consistent with the fact that the naive FE inference

relies on cohort-level information and discards all individual-level information. Moreover,

there seems to be downward small-sample bias in the naive FE standard errors than in the

MD FE standard errors. This is mainly due to the small G setting. It is well known that

α̌g’s are inconsistent under fixed G, which contaminate the residual estimates and in turn

the naive FE standard errors. Another reason is that the degree-of-freedom adjustment used

does not take into account the fact that the cohort means are estimated. Although the FE

MD standard errors seem also biased downwards, the size of the biases is always smaller

across the three tables. Clearly, in the benchmark scenarios the MD FE inference is superior

to the naive FE inference.

Fourth, the cluster-robust naive FE standard errors are severely biased downwards for

the cohort effect α2. This observation remains valid for all the scenarios considered in this

chapter. The explanation is again the fact that the estimates for the fixed effects obtained via

LSDV are essentially based on only T observations, so the cluster-robust naive FE standard

errors are inconsistent for fixed T .

Lastly, the performance of all estimators improve universally as the the cohort size in-

creases. For the naive FE standard errors, the reason is that the sample cohort means of the
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residuals approaches zero as cohort size increases. To keep the discussion concise, we will

report the results for ngt ≈ 200 in later discussions.

1.3.2 Deterministic aggregate time effects

The aggregate time effects, i.e. the time intercepts ηt’s, are treated as parameters in the

population. Therefore, to generate the aggregate time effects properly, only deterministic

functions of time need to be considered. If randomness is otherwise imposed on ηt, the

random disturbance would become part of the idiosyncratic error, which is a separate scenario

considered in section 1.3.4.

In the benchmark scenario, the aggregate time effects are ηt = t− 1 which is linear in t.

In this section, we consider two additional deterministic functions of time: quadratic, and

natural log

ηt = (t− 1)2,

ηt = ln(t).

The variation in the quadratic function is greater than that in the natural log function.

The results are reported in Table 1.4. The patterns of the results are similar to those

in the last section. In fact, the two panels in Table 1.4 are exactly the same as the third

panel in Table 1.2 except for the coefficient estimates on the time dummy d2 in the lower

panel where ηt = ln(t). Note that the true coefficient on d2 is ln(2) ≈ .693 in that case.

These results suggest that the aggregate time effect process has little effect on effect on the

performance of the estimators. It only changes the true parameter values of the time effects.

Of course, the fact the models are correct specified also plays a role. Correct specification

implies that both estimators are consistent. As a result, changes in the deterministic process

of the aggregate time effect have little effect on the estimated residuals and thus do not

matter for inference or the estimation of other coefficients.
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Table 1.4 Results for different aggregate time effect processes. G = 6, T = 4, ngt ≈ 200,
sampling rate = .2%; 10,000 replications; Monte Carlo averages on top, Monte Carlo
standard deviations in parentheses.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

ηt = (t− 1)2 x2 0.995 0.161 0.157 0.140 0.143 0.995 0.160
(0.161) (0.009) (0.034) (0.042) (0.063) (0.161) (0.009)

x3 1.004 0.089 0.087 0.082 0.088 1.004 0.089
(0.089) (0.003) (0.018) (0.020) (0.032) (0.089) (0.003)

x4 1.012 0.286 0.279 0.263 0.298 1.013 0.285
(0.286) (0.012) (0.059) (0.071) (0.110) (0.286) (0.012)

c2 0.990 0.191 0.186 0.174 0.088 0.990 0.190
(0.191) (0.006) (0.039) (0.052) (0.036) (0.191) (0.006)

d2 1.002 0.184 0.180 0.171 0.206 1.002 0.183
(0.183) (0.007) (0.038) (0.046) (0.074) (0.183) (0.007)

cons 0.985 0.168 0.164 0.150 0.127 0.985 0.167
(0.168) (0.007) (0.035) (0.050) (0.047) (0.168) (0.007)

ηt = ln(t) x2 0.995 0.161 0.157 0.140 0.143 0.995 0.160
(0.161) (0.009) (0.034) (0.042) (0.063) (0.161) (0.009)

x3 1.004 0.089 0.087 0.082 0.088 1.004 0.089
(0.089) (0.003) (0.018) (0.020) (0.032) (0.089) (0.003)

x4 1.012 0.286 0.279 0.263 0.298 1.013 0.285
(0.286) (0.012) (0.059) (0.071) (0.110) (0.286) (0.012)

c2 0.990 0.191 0.186 0.174 0.088 0.990 0.190
(0.191) (0.006) (0.039) (0.052) (0.036) (0.191) (0.006)

d2 0.695 0.184 0.180 0.171 0.206 0.695 0.183
(0.183) (0.007) (0.038) (0.046) (0.074) (0.183) (0.007)

cons 0.985 0.168 0.164 0.150 0.127 0.985 0.167
(0.168) (0.007) (0.035) (0.050) (0.047) (0.168) (0.007)
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1.3.3 Covariate distributions

To understand how the distributions of the covariates affect estimation, we manipulate the

distribution of the covariates in this section. In particular, attention is paid to the covariate

x2.

In addition to the distribution x2it ∼ N(gt/6, 1) considered in the benchmark, we look

at the following two distributions

x2it ∼ N((gt)2/6, 1),

x2it ∼ N(ln(gt)/6, 1).

The quadratic product of g and t embodies a greater variation than the product only, and

the product in turn embodies a greater variation than its natural log transformation. All

the other variables are generated as in the benchmark.

The results are summarized in Table 1.5. The pattern is similar to the last section.

The only difference is that the greater variation in the cohort mean of x2it in the first panel

makes the estimation of its coefficient easier, whereas in the second panel the weaker variation

renders estimation harder. Changes in the distribution of x2it have little effect on the two

MD estimators. The explanation is the same as that for the aggregate time effects. Since

both estimators are consistent, the variation in the distribution of x2it does not enter the

residuals. The optimal weighting matrix is still an identity matrix, so the performance of

the two MD estimators are similar.

1.3.4 Cohort-wise heteroskedasticity in the idiosyncratic error

In the benchmark, the idiosyncratic error uit is homoskedastic. In this section, we investigate

how cohort-wise heteroskedasticity in uit would affect estimation. We present the results for

two case in which the variance of uit depends on (g, t). Specifically, we consider
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Table 1.5 Results for distribution of x2. G = 6, T = 4, ngt ≈ 200, sampling rate = .2%;
10,000 replications; Monte Carlo averages on top, Monte Carlo standard deviations in
parentheses.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

x2 ∼ x2 1.000 0.004 0.004 0.004 0.004 1.000 0.004
(0.004) (0.000) (0.001) (0.001) (0.002) (0.004) (0.000)

N((gt)2/6, 1) x3 1.004 0.086 0.084 0.080 0.083 1.004 0.086
(0.087) (0.003) (0.018) (0.020) (0.032) (0.087) (0.003)

x4 1.011 0.286 0.279 0.263 0.299 1.012 0.285
(0.286) (0.012) (0.059) (0.071) (0.111) (0.286) (0.012)

c2 0.989 0.176 0.172 0.167 0.058 0.988 0.175
(0.176) (0.004) (0.036) (0.050) (0.023) (0.176) (0.004)

d2 1.000 0.157 0.153 0.152 0.189 1.000 0.157
(0.155) (0.004) (0.032) (0.039) (0.065) (0.156) (0.004)

cons 0.986 0.163 0.159 0.153 0.125 0.986 0.162
(0.163) (0.004) (0.033) (0.048) (0.044) (0.163) (0.004)

x2 ∼ x2 1.003 1.023 0.954 0.884 0.979 1.003 1.020
(1.002) (0.252) (0.286) (0.303) (0.433) (1.002) (0.251)

N(ln(gt)/6, 1) x3 1.003 0.090 0.084 0.080 0.086 1.003 0.090
(0.086) (0.009) (0.018) (0.021) (0.033) (0.086) (0.009)

x4 1.014 0.306 0.287 0.268 0.301 1.015 0.305
(0.293) (0.031) (0.063) (0.072) (0.112) (0.294) (0.031)

c2 0.987 0.224 0.210 0.202 0.130 0.987 0.223
(0.216) (0.040) (0.055) (0.065) (0.073) (0.216) (0.040)

d2 0.998 0.201 0.188 0.182 0.213 0.998 0.201
(0.195) (0.038) (0.051) (0.056) (0.085) (0.195) (0.038)

cons 0.987 0.160 0.150 0.146 0.111 0.987 0.159
(0.153) (0.015) (0.033) (0.045) (0.042) (0.153) (0.015)
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uit ∼ N(0, 10 + (gt)2),

uit ∼ N(0, 10 + gt).

The degree of heteroskedasticity is greater in the first case. All the other variables are

generated in the same way as in the benchmark.

We note here that introducing variation in the distribution of fi = αg + ε
f
i is at most

another way to introduce heteroskedasticity. First of all, it is not interesting to vary the

deterministic process of the cohort effects αg’s, because they are parameters to estimate.

Secondly, it is not interesting to vary the mean of the distribution of εfi , because that would

only affect the process of αg’s. Lastly, letting the variance of εfi depend on g is the same as

introducing cohort-wise heteroskedasticity in uit. It does not make sense to let the variance

of εfi depend on t because fi is time invariant.

The results in Table 1.6 show that cohort-wise heteroskedasticity has two major effects.

First, the optimal MD estimator outperforms the MD estimator with identity weighting,

especially in the top panel where uit ∼ N(0, 10 + (gt)2). This is because cohort-wise het-

eroskedasticity makes the optimal weighting matrix non-identity. Secondly, the strict in-

crease in the variance of uit in either case raises the standard errors of both MD estimators

compared to the benchmark. This rise is universal.

1.3.5 Cohort-time cell size

In this section, we let the cohort-time cell size vary by cohort and time. Specifically, we ma-

nipulate the sampling rate so that the sample size for cohort g at time t follows approximately

the following two processes

1. ngt ≈ (200 + 180× 1.5)− 180|g − 3.5| = 470− 180|g − 3.5|, g = 1, . . . , G

2. ngt ≈ (200 + 50× 1.5)− 50|g− (3.5− (t− 3))| = 275− 50|g+ t− 6.5|, g = 1, . . . , G
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Table 1.6 Results for cohort-wise heteroskedasticity in error term. G = 6, T = 4, ngt ≈ 200,
sampling rate = .2%; 10,000 replications; Monte Carlo averages on top, Monte Carlo
standard deviations in parentheses.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

uit ∼ x2 0.989 0.651 0.510 0.505 0.509 0.991 0.448
(0.653) (0.051) (0.141) (0.202) (0.256) (0.448) (0.031)

N(0, 10 + (gt)2) x3 1.012 0.323 0.283 0.280 0.291 1.012 0.214
(0.326) (0.019) (0.077) (0.090) (0.115) (0.214) (0.013)

x4 1.040 1.101 0.910 0.943 1.098 1.002 0.762
(1.100) (0.062) (0.248) (0.320) (0.472) (0.758) (0.048)

c2 0.969 0.488 0.608 0.495 0.343 0.988 0.321
(0.489) (0.040) (0.164) (0.159) (0.163) (0.316) (0.023)

d2 1.000 0.589 0.585 0.541 0.645 1.007 0.326
(0.589) (0.046) (0.159) (0.180) (0.271) (0.324) (0.026)

cons 0.976 0.348 0.534 0.416 0.356 0.979 0.265
(0.349) (0.030) (0.144) (0.149) (0.138) (0.263) (0.016)

uit ∼ x2 0.994 0.221 0.209 0.190 0.193 0.993 0.213
(0.222) (0.013) (0.046) (0.059) (0.087) (0.215) (0.012)

N(0, 10 + gt) x3 1.006 0.122 0.116 0.111 0.117 1.006 0.119
(0.123) (0.005) (0.025) (0.028) (0.044) (0.120) (0.005)

x4 1.017 0.403 0.372 0.361 0.411 1.012 0.390
(0.403) (0.018) (0.081) (0.102) (0.158) (0.391) (0.018)

c2 0.985 0.233 0.249 0.221 0.122 0.988 0.227
(0.233) (0.009) (0.054) (0.064) (0.051) (0.227) (0.009)

d2 1.001 0.236 0.239 0.223 0.268 1.003 0.226
(0.235) (0.011) (0.052) (0.060) (0.096) (0.226) (0.011)

cons 0.983 0.194 0.218 0.188 0.161 0.983 0.191
(0.195) (0.008) (0.047) (0.060) (0.058) (0.192) (0.008)
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Table 1.7 Cohort-time cell sizes for the two sampling schemes

ngt : 1 ngt : 2
t t

g 1 2 3 4 g 1 2 3 4
1 20 20 20 20 1 285 217 149 81
2 200 200 200 200 2 285 285 217 149
3 380 380 380 380 3 217 285 285 217
4 380 380 380 380 4 149 217 285 285
5 200 200 200 200 5 81 149 217 285
6 20 20 20 20 6 13 81 149 217

col. sum 1200 1200 1200 1200 col. sum 1030 1234 1302 1234
total 4800 total 4800

In the first case, the cohort size starts from 20 at cohort 1, increases linearly with step 180

up to 380 at cohorts 3 and 4, and then decreases with the same step down to 20 at cohort

6. The idea is to let the cohorts in the middle have more observations. The overall sample

size is about 4800. The second case has approximately the same overall sample size, but the

middle peak cohorts shifts over time. The highest sample cell size is 285, and the step is 68.

The two schemes are shown in Table 1.7. Note that the changes in the two schemes are both

quite radical.

The results are summarized in Table 1.8. The impact of varying cell size is similar to that

of cohort-wise heteroskedasticity. The optimal MD estimator significantly outperforms the

MD estimator with identity weighting in both cases. This is again due to the non-identity

weighting matrix caused by the varying cell size.

The naive FE inference cannot provide satisfactory standard error estimates. Depend on

the covariate and the robust type, it can either overestimate or underestimate, and the bias

is overall large.

1.4 Conclude

Build upon the theoretical analysis in Imbens and Wooldridge (2007), we study the finite

sample properties of the MD estimator for pseudo panels in this chapter. In particular, we
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Table 1.8 Results for varying cohort size. G = 6, T = 4; ngt follows the three specifications
given in section 1.3.5 and is generated by varying the sampling rate; 10,000 replications;
Monte Carlo averages on top, Monte Carlo standard deviations in parentheses.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

ngt : 1 x2 0.993 0.444 0.298 0.328 0.285 1.008 0.282
(0.443) (0.067) (0.097) (0.127) (0.157) (0.289) (0.027)

x3 1.004 0.155 0.166 0.148 0.162 1.002 0.095
(0.155) (0.017) (0.049) (0.045) (0.068) (0.095) (0.006)

x4 1.005 0.480 0.529 0.457 0.538 1.020 0.308
(0.482) (0.062) (0.156) (0.149) (0.226) (0.311) (0.020)

c2 0.993 0.472 0.362 0.383 0.177 0.984 0.412
(0.468) (0.063) (0.107) (0.146) (0.100) (0.436) (0.039)

d2 1.005 0.455 0.347 0.370 0.424 0.987 0.263
(0.453) (0.063) (0.105) (0.140) (0.207) (0.266) (0.021)

cons 0.983 0.461 0.319 0.353 0.232 0.992 0.398
(0.457) (0.070) (0.094) (0.154) (0.109) (0.422) (0.039)

ngt : 2 x2 0.993 0.303 0.196 0.205 0.220 0.998 0.220
(0.306) (0.065) (0.062) (0.090) (0.121) (0.226) (0.018)

x3 1.005 0.099 0.108 0.099 0.108 1.004 0.088
(0.100) (0.008) (0.032) (0.029) (0.045) (0.088) (0.004)

x4 1.008 0.431 0.350 0.342 0.415 1.015 0.308
(0.438) (0.086) (0.106) (0.126) (0.186) (0.312) (0.017)

c2 0.994 0.437 0.236 0.286 0.145 0.983 0.271
(0.444) (0.099) (0.072) (0.140) (0.084) (0.279) (0.016)

d2 1.003 0.418 0.228 0.272 0.354 0.996 0.265
(0.421) (0.095) (0.071) (0.131) (0.194) (0.271) (0.019)

cons 0.983 0.466 0.209 0.276 0.205 0.992 0.289
(0.473) (0.118) (0.065) (0.158) (0.109) (0.298) (0.021)
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focus on the comparison of the optimal MD estimator and the MD estimator with identity

weighting matrix. The latter is of interest because it coincides with the FE estimator ap-

plied to the pseudo panel of cohort means. We find that in cases where there is significant

heteroskedasticity by cohort-time cells, or in cases where the cohort-time cell size varies, the

optimal MD estimator significantly outperform the MD estimator with identity weighting

in that the former’s standard errors are smaller. This finding is consistent with the large

cohort size asymptotics under the MD estimation framework, as the optimal MD estimator

achieves the smallest asymptotic variance.

We also compare the MD FE inference to the naive FE inference. We find that in cases

where the optimal weighting matrix is close to an identity matrix, the naive FE standard

errors are barely satisfactory. But when the optimal weighting matrix is far from identity,

the naive FE standard errors are not acceptable without doubt. In any case, the MD FE

inference is always more efficient than the naive FE inference. This finding is consistent

with the fact that the FE inference relies on large number of cohorts and it discards all

individual-level information. In a setup with small number of cohorts and time periods, the

naive FE inference cannot work well.

The simulation setup in this analysis considers sample cohort sizes in hundreds, and

the results are already promising provided that the variation in covariate cohort means are

rich enough. In practice, sample cohort sizes of repeated cross sections can easily exceed

thousands. Therefore, the results in this chapter should bring confidence to the application

of the MD approach to pseudo panels.

In future studies, we could extend the analysis to dynamic models where we have lagged

dependent or explanatory variables. For robustness check, we should allow correlation co-

variates and individual fixed effects. Moreover, given the weak exogeneity condition (1.7),

we could also allow covariates that are endogenous at the individual level but not at the

cohort level. Results from these extensions can provide more practical implications.
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CHAPTER 2

EXPLORING ADDITIONAL MOMENT CONDITIONS IN
NON-SEPARABLE MINIMUM DISTANCE ESTIMATION WITH AN

APPLICATION TO PSEUDO PANELS

2.1 Introduction

Minimum distance (MD) estimation is a useful approach to recover structural estimates from

reduced form estimates when there exists a known relationship between the structural and

reduced form parameters. The known relationship is often in the form of structural equations,

moment conditions,1 or restrictions, which are terminology used interchangeably hereafter.

When applying MD, researchers may encounter situations in which they need to introduce

additional moment conditions into estimation. This could happen, for example, when some

new instrument variables (IVs) become available as the research proceeds. An important

question to ask in such a situation is whether we can always improve asymptotic efficiency

by using all the moment conditions than using just part of them. In this chapter, we provide

an affirmative answer to this question. We show that in MD estimation it never hurts to

have more moment conditions. In particular, when the additional moment conditions are

non-redundant, adding them to estimation strictly improves efficiency. This efficiency gain

result echoes the similar property for generalized method of moments (GMM) in Breusch

et al. (1999).

The motivation for deriving this efficiency gain result comes from the need in pseudo

panel models to incorporate external IVs. A pseudo panel model can estimate an underlying

unobserved effect panel data model with only repeated cross sections. The idea, which

dates back to Deaton (1985), is to divide the population into a number of groups by certain

predetermined group membership such as age cohorts. Then the group averages of the

1More precisely, the moment conditions in MD are conditional moment conditions.
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variables can be used to construct a panel at the group level. Since the group averages

are error ridden estimates, Deaton suggests to treat the estimation as a measurement error

problem. In this chapter, we adopt the MD perspective proposed by Imbens and Wooldridge

(2007). Within the MD framework, the group averages of the variables are the reduced

form estimates, and the group averages of the panel data model are the structural equations

linking the reduced form to the structural parameters. When new IVs become available,

the additional set of structural equations induced by the IVs can be easily added to the

estimation. Clearly, the aim of having more structural equations is to improve estimation

efficiency. However, there is no such theory in MD estimation telling us whether efficiency

gain can be achieved. Therefore, we attempt to derive such a result in this chapter to fill

this gap.

We derive the result within a so called non-separable minimum distance (NMD) frame-

work developed in this chapter. The framework is a special case of the “high level” MD

framework in Newey and McFadden (1994).2 The key difference between NMD and the

high level MD framework is that NMD models the reduced form parameters explicitly. This

feature makes the NMD framework convenient to use when our exact purpose is to recover

structural estimates from reduced form estimates. The qualifier “non-separable” highlights

NMD’s capability to deal with structural equations that are non-separable in the struc-

tural and reduced form parameters. Note, however, that the separable framework, i.e. the

Classical Minimum Distance (CMD) framework, is still covered as a special case.

We establish consistency and asymptotic normality within the NMD framework. We also

derive the optimal weighting matrix for the over-identified case in which the the number of

structural equations is greater than that of the structural parameters. The optimal weighting

matrix turns out to be the asymptotic variance of the rescaled structural equations, which

gives an intuitive explanation of the weighting procedure. That is, the optimal weighting

2In effect, the MD framework in Newey and McFadden (1994) is so general that both
generalized method of moments (GMM) and classical minimum distance (CMD) are its
special cases.
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matrix readjusts the relative importance of the conditions according to their own volatility

as well as their correlation with each other. Building on these basic results, we then give the

main efficiency result discussed at the beginning of the chapter.

After the general results are established in the NMD framework, we apply them back to

the case of pseudo panels with external IVs. We show that a pseudo panel NMD estima-

tor with an arbitrary weighting matrix is a generalized least squares (GLS) estimator. The

inverse of the optimal weighting matrix corresponds to the usual unconditional variance-

covariance matrix in GLS estimation. As a result of the added structural equations, the

optimal weighting matrix becomes block diagonal. This result generalizes the finding in Im-

bens andWooldridge (2007) that the optimal weighting matrix is diagonal in the case without

external IVs. The inclusion of extra IVs in pseudo panel models also highlights a typical case

where the optimal weighting matrix should be used over the naive identity matrix. In the

first chapter, we have shown that varying cohort sizes and cohort-wise heteroskedasticity in

idiosyncratic errors are two typical causes of a non-identity yet diagonal optimal weighting

matrix. When IVs are added, the optimal weighting matrix is usually block diagonal since

within-cohort dependence between structural equations generally exists. As a result, it is

more likely to achieve efficiency gain by using the optimal weighing matrix.

A related question is whether we can estimate pseudo panel models naively by apply-

ing fixed effect on the sample cohort means and then making the inference robust to het-

eroskedasticity and/or serial correlation. In this chapter, we show that the naive fixed effect

coefficient estimator is still valid because it coincides with the NMD estimator using the

identity weighting matrix. But the naive inference, whether made robust or not, is invalid

because it is different from the correct NMD inference. The fundamental reason of the dif-

ference is that the naive inference only uses the cohort averages and ignores any individual

level information. In terms of asymptotic theory, the naive inference requires the number

of cohorts tend to infinity and the number of time periods remain fixed (see, e.g., Arellano

(1987); Wooldridge (2010); Hansen (2007a)), or both tend to infinity (Kezdi (2003); Hansen
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(2007b)). In pseudo panel models, however, we often have large cohort sizes but fixed num-

bers of cohorts and time periods. This fact makes the MD framework a natural fit to the

pseudo panel models.

As mentioned in Verbeek (2008), repeated cross sections have several advantages over

panel data sets. Because it is usually easier and less costly to collect random samples than

panel data, the sample sizes of repeated cross sections are often much larger than common

panel data sets. Moreover, repeated cross sections are naturally immune to attrition which

is a common issue for panel data. Therefore, the availability of the NMD approach to

pseudo panels potentially opens many new research opportunities in cases where unobserved

individual fixed effects are a concern.

The rest of the chapter is organized as follows. In section 2, we lay out the NMD frame-

work. The consistency and asymptotic normality the NMD estimator, the optimal weighting

matrix, and the property that more moment conditions do not hurt are discussed. In section

3, we apply the NMD framework to pseudo panel models with additional instruments. There

are also two special subsections in which we discuss the GLS perspective and the naive vari-

ance estimators. Section 4 contains a simulation study of the pseudo panel NMD estimators.

The last section concludes.

2.2 The NMD framework

Minimum distance is essentially a delta method - it recovers structural estimates from re-

duced form estimates when there exists a known set of structural equations that links the

structural and reduced form parameters. Formally, let Π × Θ be an subset of RP × RK ,

which is the product space for the reduced form parameter π and the structural parameter

θ. Let h : Π×Θ→ RJ be an vector-valued function satisfying

h(π0,θ0) = 0 (2.1)
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for some true parameter value (π0,θ0) ∈ Π×Θ. Hereafter, h is referred to as the structural

function, and eq. (2.1) is the set of structural equations. Suppose there is an estimator

π̂
p→ π0. Then an NMD estimator θ̂ of θ0 is defined as

θ̂ = argmin
θ∈Θ

h(π̂,θ)′ Ŵ h(π̂,θ). (2.2)

where Ŵ is a J-dimensional positive semi-definite matrix and Ŵ
p→W.

2.2.1 Consistency

A consistency result for NMD is summarized in the following theorem (similar to Theorem

2.6 in Newey and McFadden (1994)):

Theorem 1. Suppose that π̂
p→ π0, Ŵ

p→W, and (i) (Identification) W is positive semi-

definite and Wh(π0,θ) = 0 only if θ = θ0; (ii) (Boundedness) θ0 ∈ Θ, which is compact;

(iii) (Continuity) hj(π,θ) is continuous on Π and on Θ, for j = 1, · · · , J ; (iv) (Uniform

convergence) supθ∈Θ|hj(π̂,θ)− hj(π0,θ)| p→ 0, for j = 1, · · · , J . Then θ̂
p→ θ0.

Proof. See Appendix.

2.2.2 Asymptotic normality

Theorem 3.2 in Newey and McFadden (1994) requires
√
nh(π̂,θ0)

d→ N(0,Ω), which de-

mands effort to verify when h(π,θ) takes on some general functional form. If in addition

continuous differentiability of h(π,θ) with respect to π is assumed, a Taylor expansion of

h(π̂,θ0) around π0 can be used to verify that
√
nh(π̂,θ0)

d→ N(0,Ω) holds. The verification

step however could be saved with the establishment of the following theorem.

Theorem 2. Suppose that θ̂ satisfies (2.2), θ̂
p→ θ0, Ŵ

p→ W where W is positive semi-

definite, and

(i) π0 ∈ interior(Π) and θ0 ∈ interior(Θ);
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(ii) h(π,θ) is continuously differentiable with respect to θ in a neighborhood N (θ0) of

θ0, and h(π,θ) is continuously differentiable with respect to π in a neighborhood N (π0) of

π0;

(iii)
√
n (π̂ − π0)

d→ N(0,Ω);

(iv) For L(π,θ) ≡ ∇θh(π,θ), supθ∈N (θ0) ‖L(π̂,θ)− L(π0,θ)‖ p→ 0, and for B(π,θ) :=

∇πh(π,θ), supθ∈N (θ0) ‖B(π̂,θ)−B(π0,θ)‖ p→ 0;

(v) L′WL is nonsingular, where L ≡ L(π0,θ0).

Let B ≡ B(π0,θ0). Then

√
n
(
θ̂ − θ0

)
d→ N(0,

(
L′WL

)−1
L′WBΩB′WL

(
L′WL

)−1
). (2.3)

Proof. See Appendix.

With the presence of the added smoothness assumption with respect to π, the theorem

above provides a more constructive and straightforward version of the “high level” theorem

in Newey and McFadden (1994). To obtain the asymptotic variance of the MD estimator,

all we need is to find the two partial derivatives of h and plugging them in eq. (2.3).

2.2.3 Optimal weighting matrix

The asymptotic variance in (2.3) depends on the probability limit W of the weighting matrix

Ŵ. When W = M−1 where

M = BΩB′ (2.4)

the asymptotic variance simplifies to

Avar
(√

n
(
θ̂ − θ0

))
= (L′(BΩB′)−1L)−1. (2.5)

As shown in the following theorem, the inverse of BΩB′ is the optimal weighting matrix

since (2.5) is the “smallest” asymptotic variance that can be obtained by optimizing over all

possible nonsingular weighting matrices.
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Theorem 3. Suppose M = BΩB′ is nonsingular. Then an NMD estimator with Ŵ
p→

W = M−1 is asymptotically efficient in the class of NMD estimators based on the same set

of structural eqations.

Proof. See Appendix.

The intuition for using an optimal weighting matrix is straightforward. Asymptotically, it

is not about over-identification. Rather, it is because the the conditions in
√
nh(π0,θ0) = 0

are asymptotically random. More accurate conditions exhibit less volatility, and the condi-

tions are potentially correlated. To use all the conditions optimally, more weights should

be given to less volatile conditions, and the correlation between conditions should also be

accounted for.

The best characterization of the relative volatility of all conditions is the the asymptotic

variance-covariance matrix of the rescaled conditions. It turns out that M is exactly that

variance-covariance matrix . Specifically, the first part of condition (ii) in Theorem 2 and a

Taylor expansion imply that

√
nh(π̂,θ0) = B ·

√
n (π̂ − π0) + op(1),

d→ N(0,BΩB′). (2.6)

The optimal weighting operation is essentially a standardization that assigns more load-

ings to less volatile conditions and untangles the correlation between conditions. It stan-

dardizes the asymptotic variance-covariance matrix to an identity matrix. Admittedly, that

the inverse of the optimal weighting matrix is the asymptotic variance is a known result

which can be found in, e.g., Newey and McFadden (1994), and the idea of standardization

by volatility can also be found in the generalized method of moments (GMM) and general-

ized least squares (GLS) literature. However, this intuitive explanation is often overlooked

when it comes to MD estimation.
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In the application to pseudo panel, the intuition is even clearer, for M is exactly the

variance-covariance matrix of individual level residuals.

2.2.4 Estimation

Given a consistent estimator π̂ for π0, the NMD estimator using the identity weighting

matrix, i.e.

θ̌ = argmin
θ∈Θ

h(π̂,θ)′h(π̂,θ),

can be used as an initial estimator for θ0. Consistency of θ̌ follows from Theorem 1. By

continuity of the partial derivatives, the plug-in estimator B̌ = ∇πh(π̂, θ̌)
p→ B. Then,

given a consistent estimator Ω̂ for Ω, M̂ ≡ B̌Ω̂B̌′ is a consistent estimator for M, and an

asymptotically efficient for θ0 can be obtained by

θ̂
opt

= argmin
θ∈Θ

h(π̂,θ)′M̂−1h(π̂,θ).

The corresponding consistent estimator for the asymptotic variance-covariance matrix is

given by
̂

Avar(θ̂
opt

) = (L̂′(B̂Ω̂B̂′)−1L̂)−1/n

where B̂ ≡ ∇πh(π̂, θ̌) and L̂ ≡ ∇πh(π̂, θ̌).

The estimator defined above iterates only once. Multiple iterations are also allowed.

They are, however, asymptotically equivalent.

2.2.5 More conditions do not hurt

Partition the restrictions in (2.1) into two parts:

h(π0,θ0) =

h1(π0,θ0)

h2(π0,θ0)

 = 0, (2.7)

where h1 is J1 × 1, h2 is J2 × 1, and J1 + J2 = J . Let

θ̃ = argmin
θ∈Θ

h1(π̂,θ)′M−1
1,1h1(π̂,θ)
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with M1,1 = B1ΩB′1 for L1 ≡ L1(π0,θ0) ≡ ∇θh1(π0,θ0), B1 ≡ B1(π0,θ0) ≡ ∇πh1(π0,θ0).

Then
√
n(θ̃ − θ0)

d→ N(0, [L′1(B1ΩB′1)−1L1]−1).

On the other hand, if all restrictions are used, we have

√
n
(
θ̂
opt − θ0

)
d→ N(0, [L′(BΩB′)−1L]−1).

The following theorem shows that asymptotically θ̂ is at least as efficient as θ̃. The theorem

as well as the proof is similar to its GMM counterpart in Breusch et al. (1999).

Theorem 4. Let Li ≡ Li(π0,θ0) ≡ ∇θhi(π0,θ0) and Bi ≡ Bi(π0,θ0) ≡ ∇πhi(π0,θ0)

for i = 1, 2. Let Mi,j = BiΩB′j for i = 1, 2 and j = 1, 2. Assume BΩB′ and B1ΩB′1 are

both nonsingular. Let F = M2,2 −M2,1M−1
1,1M1,2. Then

L′(BΩB′)−1L− L′1(B1ΩB′1)−1L1

=
(
M2,1M−1

1,1L1 − L2

)′
F−1

(
M2,1M−1

1,1L1 − L2

)
and thus is positive semi-definite.

Proof. See Appendix.

The condition h2(π0,θ0) = 0 is redundant if L2 = M2,1M−1
1,1L1, i.e.

L2 = B2ΩB′1(B1ΩB′1)−1L1. (2.8)

We can think of Φ = (B1ΩB′1)−1B1ΩB′2 as the coefficient matrix from the GLS of B′2 on

B1 with weight Ω. Then h2(π0,θ0) = 0 is redundant if L2 is a linear transformation of L1

with the transformation matrix Φ′.

Eq. (2.8) is similar to condition (C) of Theorem 1 in Breusch et al. (1999). We can

also derive a condition similar to condition (B) in that theorem to have a more intuitive

explanation of the redundancy condition. Specifically, define

√
nr2(π̂,θ0) ≡

√
nh2(π̂,θ0)−M2,1M−1

1,1

√
nh1(π̂,θ0). (2.9)
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By eq. (2.6), M1,1 is the asymptotic variance of
√
nh1(π̂,θ0), and M2,1 is the asymptotic

covariance of h2(π̂,θ0) and h1(π̂,θ0). Therefore, asymptotically, M2,1M−1
1,1

√
nh1(π̂,θ0) is

the linear projection of
√
nh2(π̂,θ0) on

√
nh1(π̂,θ0), and

√
nr2(π̂,θ0) is the residual in

this linear projection. It follows that a redundancy condition that is equivalent to but more

intuitive than eq. (2.8) is

∇θ
[√
nr2(π̂,θ0)

]
≡ ∇θ

[√
nh2(π̂,θ0)−M2,1M−1

1,1

√
nh1(π̂,θ0)

]
= 0.

That is, the condition for h2(π̂,θ0) = 0 to be redundant is that r2(π̂,θ0) is marginally

uninformative for θ0.

2.3 Pseudo panels with additional IVs

In the case of pseudo panels with additional IVs, the restrictions defined by (2.1) are not

additively separable in π and θ as in the CMD case. Therefore it serves as a good example

to illustrate the NMD framework. Moreover, the first-order condition takes the form of the

normal equation of a GLS estimation. Therefore, the optimal NMD estimator in this case

turns out to be a GLS estimator using the optimal weighting matrix as the unconditional

variance-covariance matrix.

The adoption of the MD perspective in pseudo panel models provides a new way to

deal with errors in variables. In the seminal work of Deaton (1985), this issue is treated

as a measurement error problem. By specifying the measurement error structure, Deaton

proposes a measurement-error corrected estimator. Collado (1997) follows the measurement

error thinking and extends Deaton’s method to a more general measurement-error corrected

GMM estimator. In the MD framework, group averages are treated as estimates for the

reduced form parameters. Since the group sizes are usually large for repeated cross sections,

the MD framework is a natural fit for pseudo panel models.

In the following subsections we go through the derivation of the particular contents of

h, π, θ , L, B and M in the pseudo panel case, discuss estimation, and summarize the
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asymptotics.

2.3.1 Population model and structural equations

Formally, for outcome yit, covariate xit (1×K), coefficient β (K × 1), time effect ηt, fixed

effect fi, and idiosyncratic error uit, consider the following model for a generic individual in

the population

yit = xitβ + ηt + fi + uit, t = 1, . . . , T. (2.10)

fi and uit are unobserved. The first entry of xit is unity for notation convenience. Essentially,

we are thinking of the population as a genuine panel data set from which different samples

are drawn each period. The same treatment is also adopted in Verbeek and Vella (2005).

Let zit = (1, z2it, · · · , zPit) be a 1× P row vector of instrumental variables satisfying

E(z′ituit|fi) = 0, (2.11)

Cov(zpit, fi|gi) = 0, p = 1, 2, · · · , P, (2.12)

where, for convenience, z1it is also set to 1.

In a standard panel, the conditional exogeneity of xit given fi is usually assumed:

E(uit|xit, fi) = 0, t = 1, . . . , T. (2.13)

This condition is not required here. A weaker condition that suffices is

E(uit|fi) = 0, t = 1, . . . , T. (2.14)

Note that by iterated expectation, (2.13) implies (2.14). Because fi aggregates all time-

constant unobservables, we should think of (2.13) and (2.14) as being true for not only the

lump sum fi but also any time constant factors. In particular, replacing fi with the group

indicator gi (i.e. applying iterated expectation) leads to

E(uit|gi) = 0, t = 1, . . . , T. (2.15)
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Let E(·|g) be the shorthanded notation for E(·|gi = g), and let αg = E(fi|g) be the group

fixed effect for group g. By (2.12) and the fact that

E(zpit · fi|g) = Cov(zpit, fi|g) + E(zpit|g) · E(fi|g), p = 1, · · · , P,

the structural model follows as

E(z′ityit|g) =E(z′itxit|g)β + E(z′it|g)ηt + E(z′it|g)αg, (2.16)

for t = 1, . . . , T ; g = 1, · · · , G.

Thanks to z1it = 1, the first row in eq. (2.16) represents the cohort level equations without

instruments, which is the basic case studied in Imbens and Wooldridge (2007).

The exogeneity condition (2.15) might appear non-substantial at the first glance, because

it seems we can always make E(uit|gi) = 0 holds by subtracting E(uit|gi) from uit and

redefine the deviation as uit. But this subtraction operation is equivalent to the inclusion

of a full set of cohort-time effects in the structural model (2.16). Perhaps the following

equivalent representation of (2.15) makes the explanation clearer

δgt = E(uit|gi = g) = 0, g = 1, . . . , G, t = 1, . . . , T. (2.17)

If eq. (2.17) (or equivalently (2.15)) is not imposed, the GT parameters δgt for g =

1, . . . , G, t = 1, . . . , T will enter the structural model (2.16) as the full set of cohort-time

effects. Including the full set of cohort-time effects is equivalent to not imposing (2.17) (or

(2.15)). Therefore, the key assumption disguised by eq. (2.15) together with the specification

in (2.10) is that the structural model (2.16) requires only the set of group and time effects

(ηt and αg) but not the full set of cohort-time effects (δgt). If any such cohort-time effect

is required, then, as pointed out in Imbens and Wooldridge (2007), one way to think about

the misspecification is that some δgt = E(uit|gi = g) is not zero.

Note that the structural model with the full set of cohort-time effects is always correctly

specified, but it is not interesting because the variation in the covariate cohort means is
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absorbed by δgt. As a result, such a the model is only identified up to the GT cohort-time

effects.

A technical point here is that, due to the setup x1it = z1it = 1, there are only (G − 1)

parameters in αg and (T − 1) in ηt to estimate. Imbens and Wooldridge (2007) make the

normalization
∑G
g=1 αg = 0 and η1 = 0. This chapter however proceeds with α1 = 0 and

η1 = 0. The purpose of this slightly different normalization is to cope with the estimation

convention that the dummies for the first cohort and the first time period are always dropped.

As a result of the dropout, the sum (β1 + α1 + η1) is identified, but β1, α1 and η1 are not

separately identifiable. The remaining estimated group and time effects are the relative

effects (αg − α1) for g = 2, · · · , G and (ηt − η1) for t = 2, · · · , T . Setting α1 = η1 = 0 then

conveniently simplifies (β1 + α1 + η1), (αg − α1) and (ηt − η1) to β1, αg and ηt.

2.3.2 Useful notations

Some notations are useful later. Let µxgt = E(xit|g) denote the population mean of a generic

variable xit conditional on gi = g. For a vector (e.g. xit) or a matrix (e.g. z′itxit) variable,

bold symbols like µx
gt or µ

z′x
gt will be used. In this notation, eq. (2.16) can be written as

0 = −µz′y
gt + µz′x

gt β + µz′
gt(ηt + αg), (2.18)

for t = 1, . . . , T ; g = 1, · · · , G.

Also, for a generic variable xit and j = (g− 1)T + t, let µx denote the column “vector” with

µxgt the jth row block. Depending on the dimension of xit, µx can be either a column vector

or a matrix.

Let vit = (yit,xit) and sit = zit ⊗ vit with ⊗ denotes Kronecker product. sit is a long

row vector. Assume the variance-covariance matrix of sit exists and is denoted by

Ωs
gt = V ar(sit|g). (2.19)

An explicit formula for Ωs
gt is given in Appendix.
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Then the reduced form parameter π in this pseudo panel case can be expressed as

π = µs′ = (µs
11,µ

s
12, · · · ,µ

s
GT )′.

The structural parameter is θ = (β′,η′,α′)′ with α = (α1, . . . , αG)′ and η = (η1, . . . , ηT )′.

Moreover, the right hand side of eq. (2.18) says the j-th row block of the h function is

hj(π,θ) = −µz′y
gt + µz′x

gt β + µz′
gt(ηt + αg) (2.20)

with j = (g − 1)T + t. Note that each hj(π,θ) is P × 1. Let xit = (xit,d, c) with d the

vector of time dummies and c the vector of group dummies. Then a second useful expression

for hj is

hj(π,θ) = −µz′y
gt + µ

z′x
gt θ. (2.21)

Later we will see that the two expressions (2.20) and (2.21) are convenient for calculating

partial derivatives of h.

2.3.3 The partial derivatives L and B and the inverse optimal weighting matrix
M

By eq. (2.21), it is trivial that

L = ∇θh(π,θ) = µz′x (2.22)

where, as defined in the last section, µz′x is the matrix with µz′x
gt the j-th row block for

j = (g − 1)T + t.

On the other hand, recall eq. (2.20). For z1it = 1, µz1gt = 1, define ∇
µ
z1
gt

[µ
z1
gt (ηt +αg)] =

(ηt + αg). Define βgt by replacing the first entry of β, i.e. β1, with (β1 + ηt + αg), and

let bgt(θ) = IP ⊗ (−1,β′gt) with IP the P -dimensional identity matrix. Some algebra (see

Appendix ) then shows that

∇π
g̃t̃

hj(π,θ) =


bgt(θ), if g̃ = g and t̃ = t,

0, otherwise.
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Define another block diagonal matrix b(θ) by putting bgt(θ) on its gt-th diagonal block.

Then

B = ∇πh(π,θ) = b(θ). (2.23)

With the general formula in eq. (2.4) and the particular contents in eq. (2.19) and (2.23),

the inverse of the optimal weighting matrix, M, is given by

M = b(θ)Ωsb(θ)′. (2.24)

In the Appendix, we show that an expansion of the right hand side of eq. (2.24) leads to

M = diagGT [(ρ1κ1)−1b11(θ)Ωs
11b11(θ)′, (ρ1κ2)−1b12(θ)Ωs

12b12(θ)′, · · ·

· · · , (ρGκT )−1bGT (θ)Ωs
GTbGT (θ)′].

(2.25)

That is, M is a block diagonal matrix with (ρgκt)
−1bgt(θ)Ωs

gtb
′
gt(θ) on the gt-th diagonal

block.

We also show in the Appendix that bgt(θ)Ωs
gtb
′
gt(θ) is actually the variance-covariance

matrix of the composite errors within cell (g, t)

bgt(θ)Ωs
gtb
′
gt(θ) = Ξgt ≡ V ar[z′ityit − z′itxitβ − z′it(ηt + αg)|g]. (2.26)

Therefore another useful expression for M is

M = diagGT

[
(ρ1κ1)−1Ξ11, (ρ1κ2)−1Ξ12, · · · , (ρGκT )−1ΞGT

]
. (2.27)

2.3.4 Estimation

Assume we have T repeated cross-sectional random samples denoted by

{(yit,xit, zit, git), i = 1, · · · , nt; t = 1, · · ·T}

where nt is the number of observations for cross section t. Note that in each time period we

have a new random sample, so in general the same index i refers to different individuals in

different time periods, and thus git sees a subscript t added.
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2.3.4.1 Asymptotics of π̂

Let 1A be the indicator function equal to 1 if A is true and equal to 0 otherwise. Let

rit = (rit,1, rit,2, . . . , rit,G) be a vector of group indicators with rit,g = 1{git = g} where

1{·} is the indicator function equal to one if the event in {·} is ture. In this way the group

membership of the random draw i at time t is properly treated as a random variable. It

follows that the number of observations in cell (g, t) is also a random variable given by

ngt =
∑nt
i=1 rit,g.

Let µ̂xgt denote the sample average within cell (g, t) for a generic variable xit. Let ρg =

P (rit,g = 1) be the fraction of the population in cohort g and assume ρ̂gt = ngt/nt
p→ ρg.

Let κt = limn→∞nt/n be the fraction of all observations accounted for by cross section t.

By (essentially) the central limit theorem, for g = 1, · · · , G and t = 1, · · · , T ,

√
nt(µ̂

s ′
gt − µs ′

gt )
d→ Normal(0, (ρgκt)

−1Ωs
gt).

Furthermore, let π̂ = (µ̂s
11, µ̂

s
12, · · · , µ̂

s
GT )′ and π0 = (µs

gt,µ
s
gt, · · · ,µs

gt)
′. Then the results

above can be stacked in
√
n (π̂ − π0)

d→ N(0,Ωs)

where Ωs is a block diagonal matrix with (ρgκt)
−1Ωs

gt on the gt-th diagonal block.

2.3.4.2 Estimation of L

Eq. (2.22) suggests that a straightforward estimator for L is

L̂ = µ̂z′x. (2.28)

µ̂z′x is the sample analog of µz′x. Recall that xit = (xit,d, c) and that xit contains a

constant term. Then µ̂z′x is the matrix of the sample cohort means of the explanatory

variables, the instruments, and their interactions. Its dimension is GPT × (K +G+ T − 2).
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2.3.4.3 The general estimator θ̂ and the FE estimator θ̌

There exists an analytical solution to eq. (2.2) in the current setup, which turns out to be

a GLS estimator.

Specifically, given eq.(2.21) and (2.28), the first-order condition to eq. (2.2) in the current

setup can be written as3

(µ̂z′x)′Ŵ
(
µ̂z′xθ − µ̂z′y

)
= 0.

Assume (µ̂z′x)′Ŵµ̂z′x is nonsingular, then the general pseudo panel NMD estimator with

a weighting matrix Ŵ is given by

θ̂ =
(

(µ̂z′x)′Ŵµ̂z′x
)−1

(µ̂z′x)′Ŵµ̂z′y (2.29)

Clearly, (2.29) is of the form of a GLS estimator where Ŵ serves as the inverse of the

“unconditional variance-covariance matrix of the error term”, and the cohort means µ̂z′x

and µ̂z′y are the matrix of right-hand-side variables and left-hand-side variable, receptively.

In particular, replacing Ŵ with the identity matrix gives the fixed effect estimator

θ̌ =
(

(µ̂z′x)′µ̂z′x
)−1

(µ̂z′x)′µ̂z′y. (2.30)

The standard case without instrument in Imbens and Wooldridge (2007) corresponds to the

case P = 1, i.e. deleting the letter z in eq. (2.30).

2.3.4.4 Estimation of B, M and θ̂
opt

With θ̌ as an initial estimator, an estimator for B follows from eq. (2.23) by substituting θ

with θ̌ which leads to

B̂ = b(θ̌).

An obvious estimator for the variance-covariance matrix of s defined in (2.19) is

Ω̂
s
gt = n−1

gt

nt∑
i=1

rit,g(sit − µ̂s
gt)
′(sit − µ̂s

gt).

3Note that (µ̂z′x)′ is the transpose of µ̂z′x and is not the same as µ̂x′z.
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Then an estimator for Ωs, Ω̂
s, can be defined as the block diagonal matrix with the gt-th

diagonal block (ngt/n)−1Ω̂
s
gt, i.e.,

Ω̂
s

= diagGT ((n11/n)−1Ω̂
s
11, (n12/n)−1Ω̂

s
12, · · · , (nGT /n)−1Ω̂

s
GT ).

Given B̂ and Ω̂
s
, the following estimator for the inverse of the optimal weighting matrix

follows from eq. (2.24)

M̂ = b(θ̌)Ω̂
s
b(θ̌)′. (2.31)

Eq. (2.31), however, may involve big matrices in calculation when the number of covari-

ates and/or instruments is large (the dimension of s increase quickly with multiple instru-

ments). Fortunately, eq. (2.27) provides an alternative but numerically equivalent way to

estimate M - all we need is an estimator for Ξgt. By eq. (2.26), Ξgt can be conveniently

estimated by Ξ̂gt, the sample variance-covariance matrix of the residuals in cell (g, t) to be

defined as follows.

First, using the fixed effect estimator θ̌ to obtain the individual residual

ǔit = yit − xitβ̌ − (η̌t + α̌g). (2.32)

The cohort residual is then defined as

µ̂
zpǔ
gt = n−1

gt

nt∑
i=1

rit,gzpitǔit. (2.33)

For p, q = 1, · · · , P , let τ̂pq (drop subscript g, t from τ for simplicity) denote the entry on

row p, column q of Ξ̂gt. Then τ̂pq is given by

τ̂pq = n−1
gt

nt∑
i=1

rit,g

(
zpitǔit − µ̂

zpǔ
gt

)(
zqitǔit − µ̂

zqǔ
gt

)
. (2.34)

Finally, Ξ̂gt is defined as the matrix with the pq-th entry τ̂pq

Ξ̂gt = (τ̂pq).
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Given Ξ̂gt, the second method to estimate M is via

M̂ = diagGT [(n11/n)−1Ξ̂11, (n12/n)−1Ξ̂12, · · · , (nGT /n)−1Ξ̂GT ] (2.35)

which is the block diagonal matrix with the gt-th diagonal block (ngt/n)−1Ξ̂gt.

The numerical equivalence of the two estimators for M is summarized in the following

theorem.

Theorem 5. The two ways of computing M̂ defined in eq. (2.31) and (2.35) are numerically

equivalent.

Proof. See Appendix.

When p = q = 1, τ̂11 = n−1
gt

∑nt
i=1 rit,g

(
ǔit − µ̌ugt

)2
which is of the same form as the τ̂2

defined in Imbens and Wooldridge (2007),4 and M̂ becomes a diagonal matrix that coincides

with the matrix Ĉ in Imbens and Wooldridge (2007).

With M̂ in hand, by replacing Ŵ with M̂−1 in eq. (2.29), the optimal pseudo panel

NMD estimator is obtained as

θ̂
opt

=
(

(µ̂z′x)′M̂−1µ̂z′x
)−1

(µ̂z′x)′M̂−1µ̂z′y. (2.36)

The above formula in its appearance is similar to a GLS estimator on the cohort level data.

But the weighting matrix is not the usual one used by a feasible GLS because M̂ is computed

from individual level data. For more detail about the connection and difference of θ̂
opt

to

GLS, see the next section.

4The formula in Imbens and Wooldridge (2007) needs the correction of demeaning. Be-
cause in STATA, the command for calculating the sample variance automatically demeans
the residuals.
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2.3.4.5 Estimation of the asymptotic variances of θ̂, θ̌ and θ̂
opt

With all the pieces worked out, and by Theorem 2, the asymptotic variance estimator for θ̂

is

Âvar(θ̂) =
(

(µ̂z′x)′Ŵµ̂z′x
)−1 (

(µ̂z′x)′ŴM̂Ŵµ̂z′x
)(

(µ̂z′x)′Ŵµ̂z′x
)−1

/n.

For θ̌, it is

̂Avar(θ̌) =
(

(µ̂z′x)′µ̂z′x
)−1 (

(µ̂z′x)′M̂µ̂z′x
)(

(µ̂z′x)′µ̂z′x
)−1

/n. (2.37)

Finally, for θ̂
opt

, it is

̂
Avar(θ̂

opt
) =

(
(µ̂z′x)′M̂−1µ̂z′x

)−1
/n.

With the presence of additional IVs, dependence between restrictions are introduced since

each cohort repeats itself several times in the restrictions. The optimal weighing matrix is

more likely to be non-diagonal (it is block diagonal with block (ngt/n)−1Ξ̂gt). In fact, some

algebra (see Appendix) shows that another expression for Ξgt is

Ξgt = E
[
(ε
f
i + uit)

2z′itzit|g
]
. (2.38)

where

ε
f
i ≡ fi − αg (2.39)

is the deviation of individual effect from its cohort mean. Without further assumptions

regarding the correlation between the quadratic terms (ε
f
i + uit)

2 and z′itzit, and the corre-

lation among the IVs in zit, Ξgt is generally non-diagonal. As a result, the use of optimal

weighting matrix becomes more important with the presence of additional IVs.

2.3.5 The GLS perspective

To better understand the relationship between θ̂
opt

and its relation to GLS, define the

individual composite error as

eit ≡ yit − xitβ − (ηt + αg) = ε
f
i + uit.
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The residual ǔit given in (2.32) is obviously an consistent estimator for eit. With eit, the

vector of individual composite errors in cohort g is z′iteit, and an alternative expression for

Ξgt in (2.26) is

Ξgt = V ar[z′iteit|g]. (2.40)

For a given g, define the cohort composite error as

µ̂
zpe
gt = n−1

gt

nt∑
i=1

rit,gzpiteit. (2.41)

µ̂z′e
gt is similarly defined and represents the vector of cohort composite errors in cell (g, t).

The variance-covariance matrix of µ̂z′e
gt conditional on g is given by

V ar[µ̂z′e
gt |g] = n−1

gt Ξgt. (2.42)

From the MD perspective, ngt is large, and n−1
gt Ξgt → 0 as ngt → ∞. It thus does not

make sense to model and estimate the “cohort composite errors” because they degenerate to

0 asymptotically.

The usual feasible GLS on the pseudo panel of cohort means ignores individual level data

and relies on much stringent assumptions on the unconditional variance-covariance structure

of the cohort composite error. In particular, the underlying asymptotics rely on large G.

The GLS estimator in eq. (2.36) is apparently not the usual feasible GLS. Rather, it is an

GLS imposing the following block diagonal variance-covariance structure of all the cohort

composite errors

diagGT [n−1
11 Ξ11, n

−1
12 Ξ12, · · · , n−1

GTΞGT ] (2.43)

Eq. (2.43) contains GTP (P + 1)/2 parameters, and thus is never feasible if only the GTP

cohort means are observed. But if the individual level data are available, eq. (2.43) can be

well estimated by

diagGT [n−1
11 Ξ̂11, n

−1
12 Ξ̂12, n

−1
GT Ξ̂GT ] = n−1M̂. (2.44)
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Using n−1M̂ in a GLS formula leads to eq. (2.36); the n−1 cancels off. From the GLS

perspective, the weighting by n−1M̂−1 standardizes the sample cohort composite errors so

that they become close to uncorrelated and homoskedastic.

It is worth noting that eq. (2.43) is not the unconditional variance-covariance matrix of

µ̂z′e. On each diagonal block is eq. (2.42), the conditional variance-covariance matrix of

µ̂z′e
gt given g.

From the MD perspective, there is no asymptotic variance-covariance matrix for the

sample cohort composite errors because V ar[µ̂z′e] → 0 as ngt → ∞; so is n−1M̂−1 → 0

as ngt → ∞. Rather, what matters is the following set of relocated and rescaled estimated

structural equations,

0 =−
√
n(µ̂

z′y
gt − µ

z′y
gt ) +

√
n(µ̂z′x

gt − µz′x
gt )β +

√
n(µ̂z′

gt − µz′
gt)(ηt + αg), (2.45)

=−
√
nµ̂z′e

gt , (2.46)

for t = 1, . . . , T ; g = 1, · · · , G.

The above equation is obtained by manipulating eq. (2.18). Asymptotically, eq. 2.46

converges to GTP random restrictions. The asymptotic variance of
√
nµ̂z′e

gt is exactly M.

Therefore, to use all the random conditions efficiently, the random restrictions need to be

weighted by the square root of M−1. In estimation, M−1 is replaced by M̂−1, but their

function is equivalent asymptotically. Given fixed G, T and P , and ngt → ∞, the use of

M̂−1 is totally legit since M̂−1 does not converge to 0. The weight M̂−1 adjusts the relative

importance of each sample restriction according to its level of accuracy. The level of accuracy

for the gt-th sample restriction is measured by (ngt/n)−1Ξ̂gt.

2.3.6 Naive variance estimators for θ̌

Because θ̌ is the fixed effect estimator on the pseudo panel of the sample cohort means,

it is also convenient to compute the usual asymptotic variance estimators for a fixed effect
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estimator. These naive estimators, however, are generally incorrect because they only make

use of the sample cohort means.

Before listing the formulae for the naive variance estimators, we summarize several pos-

sible reasons in repeated random cross sections that may ruin their validity. We cite the

reasons that apply to the breakdown of each estimator in later discussion.

1. µ̂
zpǔ
gt and µ̂

zqǔ
gt are generally correlated (dependence over p for fixed g and t)

2. the variance of µ̂
zpǔ
gt , as well as the covariance of µ̂

zpǔ
gt and µ̂

zqǔ
gt , depends on zit (het-

eroskedasticity)

3. µ̂
zpǔ
gt depends on g because of either zit or even uit itself depends on g (non-identical

distribution over g)

Among the three items, the last one is the most crucial because all the naive variance

estimators discussed below rely on large G.

We consider three naive asymptotic variance estimators. Their formulae in a standard

model can be found in Wooldridge (2010) as well as other textbooks. The first is the non-

robust variance estimator for which the consistency relies on a scalar (proportional to an

identity matrix) variance-covariance structure of the cohort composite errors. To obtain this

formula, recall the definition of µ̂
zpǔ
gt in eq. (2.33). Define the mean squared error for the

pseudo panel as

σ̌2 = (GTP −K −G− T + 2)−1
∑
g,t,p

(µ̂
zpǔ
gt )2.

Then the naive non-robust variance estimator can be written as

̂Avarn(θ̌) = σ̌2

∑
g,t,p

µ̂
x′zp
gt µ̂

zpx
gt

−1

.

The subscript n in typewriter font stands for “non-robust”. Its validity hings on i.i.d. sam-

pling over (g, t, p) and homoskedasticity of µ̂
zpǔ
gt , neither of which holds in a pseudo panel of

sample cohort means due to all three reason listed.
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The second is the naive heteroskedasticity-robust variance estimator whose formula is

given by

̂Avarr(θ̌) =

∑
g,t,p

µ̂
x′zp
gt µ̂

zpx
gt

−1∑
g,t,p

(µ̂
zpǔ
gt )2µ̂

x′zp
gt µ̂

zpx
gt

∑
g,t,p

µ̂
x′zp
gt µ̂

zpx
gt

−1

.

The subscript r stands for “robust”. The estimator is robust to heteroskedasticity in the

cohort composite error µ̂
zpe
gt . But its validity still relies on i.i.d. sampling over (g, t, p) which

does not hold due to reasons 1 and 3 mentioned above.

The third is the naive cluster-robust variance estimator and its formula is

̂Avarc(θ̌) =

∑
g,t,p

µ̂
x′zp
gt µ̂

zpx
gt

−1 ∑
g,t,r,p,q

µ̂
zpǔ
gt µ̂

ǔzq
gr µ̂

x′zp
gt µ̂

zqx
gr

∑
g,t,p

µ̂
x′zp
gt µ̂

zpx
gt

−1

.

The middle term can also be written as

∑
g,t,r,p,q

µ̂
zpǔ
gt µ̂

ǔzq
gr µ̂

x′zp
gt µ̂

zqx
gr =

∑
g,t,p

(µ̂
zpǔ
gt )2µ̂

x′zp
gt µ̂

zpx
gt +

∑
g,t6=r,p 6=q

µ̂
zpǔ
gt µ̂

ǔzq
gr µ̂

x′zp
gt µ̂

zqx
gr

where the first sum is exactly the middle term in the naive heteroskedasticity-robust variance

estimator. The naive cluster-robust variance estimator is robust to arbitrary heteroskedas-

ticity and serial correlation in the cohort composite errors µ̂z′e
g . But its validity relies on

i.i.d. sampling over g which may not hold due to reason 3 listed above.

Some other equivalent representations of the three naive variance estimators are infor-

mative of their link to ̂Avar(θ̌). Write the three naive estimators as

̂Avarn(θ̌) =
(

(µ̂z′x)′µ̂z′x
)−1 (

(µ̂z′x)′(σ̌2I)µ̂z′x
)(

(µ̂z′x)′µ̂z′x
)−1

,

̂Avarr(θ̌) =
(

(µ̂z′x)′µ̂z′x
)−1

(
(µ̂z′x)′

(
diag(µ̂z′ǔ)

)2
µ̂z′x

)(
(µ̂z′x)′µ̂z′x

)−1
,

̂Avarc(θ̌) =
(

(µ̂z′x)′µ̂z′x
)−1 (

(µ̂z′x)′diagG(µ̂z′ǔ)diagG(µ̂z′ǔ)′µ̂z′x
)(

(µ̂z′x)′µ̂z′x
)−1

,

where diag(µ̂z′ǔ) is the square, diagonal matrix created by putting the vector µ̂z′ǔ on the

principal diagonal, and diagG(µ̂z′ǔ) is the block diagonal matrix with the gth diagonal block

µ̂z′ǔ
g for g = 1, · · · , G. Then clearly, the three naive variance estimators can be obtained
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by replacing M̂/n in eq. (2.37) with (σ̌2I),
(
diag(µ̂z′ǔ)

)2
or diagG(µ̂z′ǔ)diagG(µ̂z′ǔ)′,

respectively.

Yet another set of equivalent representations provide some insights on the large G per-

spective of the naive estimators. Specifically, write

̂Avarn(θ̌) =

(∑
g

(µ̂
z′x
g )′µ̂z′x

g

)−1(∑
g

(µ̂
z′x
g )′(σ̌2ITP )µ̂

z′x
g

)(∑
g

(µ̂
z′x
g )′µ̂z′x

g

)−1

,

̂Avarr(θ̌) =

(∑
g

(µ̂
z′x
g )′µ̂z′x

g

)−1(∑
g

(µ̂
z′x
g )′

(
diag(µ̂z′ǔ

g )
)2
µ̂

z′x
g

)(∑
g

(µ̂
z′x
g )′µ̂z′x

g

)−1

,

̂Avarc(θ̌) =

(∑
g

(µ̂
z′x
g )′µ̂z′x

g

)−1(∑
g

(µ̂
z′x
g )′µ̂z′ǔ

g (µ̂z′ǔ
g )′µ̂z′x

g

)(∑
g

(µ̂
z′x
g )′µ̂z′x

g

)−1

.

(2.47)

where diag(µ̂z′ǔ
g ) is the square, diagonal matrix created by putting the vector µ̂z′ǔ

g on the

principal diagonal. In essence, the three naive variance estimators differ in estimating (treat

g as random)

E

[
(µ̂

z′x
g )′µ̂z′e

g (µ̂z′e
g )′µ̂z′x

g

]
,

i.e. the middle term of the sandwich-form. But they all need i.i.d. sampling over g, which

is not satisfied in the MD framework due to reason 3 listed above. The estimation errors in

the cohort means are also ignored.

The last point we want to make is about the relationship between ̂Avarc(θ̌) and Âvar(θ̌).

First, rewrite

Âvar(θ̌) =

(∑
g

(µ̂
z′x
g )′µ̂z′x

g

)−1(∑
g

(µ̂
z′x
g )′(n−1M̂g)µ̂

z′x
g

)(∑
g

(µ̂
z′x
g )′µ̂z′x

g

)−1

.

(2.48)

It is then clear that µ̂z′ǔ
g (µ̂z′ǔ

g )′ and n−1M̂g are the the only difference between ̂Avarc(θ̌) and

Âvar(θ̌). Notice that µ̂z′ǔ
g (µ̂z′ǔ

g )′ ≈ diag(µ̂z′ǔ
g1 (µ̂z′ǔ

g1 )′, · · · , µ̂z′ǔ
gT (µ̂z′ǔ

gT )′) and that n−1M̂g =

diag(n−1
g1 Ξ̂g1, · · · , n−1

gT Ξ̂gT ). Moreover, notice that µ̂z′ǔ
gt (µ̂z′ǔ

gt )′ = (µ̂
zpǔ
gt µ̂

zqǔ
gt )p,q and that
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n−1
gt Ξ̂gt = n−1

gt (τ̂pq)p,q. Therefore, the comparison boils down to the difference between

µ̂
zpǔ
gt µ̂

zqǔ
gt =

(
n−1
gt

nt∑
i=1

rit,gzpitǔit

)(
n−1
gt

nt∑
i=1

rit,gzqitǔit

)

5and

n−1
gt τ̂pq = n−2

gt

nt∑
i=1

rit,g

(
zpitǔit − µ̂

zpǔ
gt

)(
zqitǔit − µ̂

zqǔ
gt

)
.

That is, ̂Avarc(θ̌) uses µ̂
zpǔ
gt µ̂

zqǔ
gt to approximate the covariance between the cohort composite

errors µ̂
zpe
gt and µ̂

zqe
gt , which uses only cohort-level information, and is not an estimator for

Cov(µ̂
zpe
gt , µ̂

zqe
gt |g) because µ̂

zpǔ
gt µ̂

zqǔ
gt is observed only once for given g, t, p. On the other hand,

Âvar(θ̌) uses τ̂pq to estimate the covariance between the individual composite errors zpe and

zqe, which uses individual-level information, and is indeed an estimator for Cov(zpe, zqe|g)

because τ̂pq averages over ngt observations. The additional n−1
gt then transform it to a

legitimate estimator for Cov(µ̂
zpe
gt , µ̂

zqe
gt |g). Apparently, n−1

gt τ̂pq is a better estimator for

Cov(µ̂
zpe
gt , µ̂

zqe
gt |g) than µ̂

zpǔ
gt µ̂

zqǔ
gt .

What conclusion do we get from this comparison? First of all, ̂Avarc(θ̌) can only make

sense if we have random sample over g, because eq. (2.47) averages over g. Second, a

relatively large number of groups is also needed for the large G asymptotics to work. In the

just-identified case, there is no ̂Avarc(θ̌) because the residuals are all 0. Third, ̂Avarc(θ̌)

also needs fixed ngt, otherwise the cohort composite error µ̂z′e
gt degenerates to 0. This is

however not too much a problem because in a sample ngt is always finite.

2.4 Simulation

This section contains a simulation study for the optimal NMD estimator and the NMD

estimator with identity matrix (i.e. the FE estimator) in the pseudo panel case with instru-

5Note that we do not need the formula above to calculate µ̂
zpǔ
gt µ̂

zqǔ
gt ; µ̂

zpǔ
gt µ̂

zqǔ
gt can be

obtained from calculating the cohort-level residuals. The formula is to provide an insight of
its relationship to n−1

gt τ̂pq.
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ments. The major purposes of this simulation study are (i) to illustrate that the formulae

derived in the last section work when the model are correctly specified, and (ii) to show that

valid instruments improve estimation efficiency. We also look at naive ways of computing the

standard errors that only make use of the cohort level data. Their performance is compared

to the NMD standard errors, and explanations for the difference are provided.

2.4.1 Simulation design

Throughout the simulation study, the outcome yit is generated as a linear function of the

covariates (x1it = 1, x2it, x3it, x4it), the time effect ηt, the individual effect fi, and the

idiosyncratic error uit:

yit = β1 + β2x2it + β3x3it + β4x4it + ηt + fi + uit, i = 1, · · · , Nt, t = 1, · · · , T. (2.49)

The parameter values used are β = (β1, β2, β3, β4) = (1, 1, 1, 1). The time effects are gen-

erated by ηt = t − 1, and the cohort effects are generated by αg = g − 1. Individual

fixed effects are generated by adding a random normal disturbance to the cohort effects, i.e.

fi ∼ N(αg, 1). To fix ideas, it might be helpful to think of x2it, x3it and x4it as education,

experience and marital status, respectively. The outcome yit is the log hourly wage, and

there is an individual effect fi representing some unobserved ability.

We focus on estimating the coefficient of x2it for which the distribution is given later.

The distributions of the two auxiliary variables x3it and x4it are given by

x3it ∼ N(sin(gt), 1),

x4it ∼ Bernouli

(
1

1 + exp[1.5 sin(gt/2)]

)
.

That is, x3it is a continuous variable with population cohort mean sin(gt) and within cell

variance 1; x4it is a binary variable equal to 1 with probability 1
1+exp(1.5∗sin(gt/2))

. Since the

individual-level disturbance to x3it and x4it are independently generated, they are always

valid IVs. A time-invariant external instrument is generated as zi ∼ N(0, 1).
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We investigate a small pseudo panel (G = 6, T = 4) and a middle sized one (G = 30,

T = 20). In the small pseudo panel, the idiosyncratic error uit follows N(0, 10), and the

following 5 cases for x2it are considered

1. x2it ∼ N(gt/6, 1),

2. x2it ∼ N(gt/6, 1) + fi,

3. x2it ∼ N(gt/6, 1) + zi,

4. x2it ∼ N(gt/6, 1) + zi + fi,

5. x2it ∼ N(gt/2, 1) + zi + fi.

The standard deviation for µx2
gt over (g, t) is about 1. Note that x2it is a valid IV in cases 1

through 3, but not valid in cases 4 and 5.

In the middle sized pseudo panel, uit follows N(0, 100) which has a bigger variance than

in the small pseudo panel. The five cases considered for x2it are

1. x2it ∼ N(gt/150, 1),

2. x2it ∼ N(gt/150, 1) + fi,

3. x2it ∼ N(gt/150, 1) + zi,

4. x2it ∼ N(gt/150, 1) + zi + fi,

5. x2it ∼ N(gt/50, 1) + zi + fi,

The standard deviation for µx2
gt over (g, t) is about 23. The variance-covariance as well as

correlation matrix of (µ
x2
gt , µ

x3
gt , µ

x4
gt ) are given in Table 2.1.

Case 4 in each setup is the case of major interest. Cases 1 through 3 are used to isolate

the effect of adding fi or zi as part of x2it. Case 5 checks the effect of a larger variation in

the cohort mean of x2it.
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Table 2.1 Variance-covariance and correlation matrix of (µ
x2
gt , µ

x3
gt , µ

x4
gt ); correlation

coefficients in parentheses. µx3
gt = sin(gt), µ

x4
gt = (1 + exp[1.5 ∗ sin(gt/2)])−1.

G = 6, T = 4;

µ
x2
gt = gt/6

G = 30, T = 20;

µ
x2
gt = gt/150

µ
x2
gt µ

x3
gt µ

x4
gt µ

x2
gt µ

x3
gt µ

x4
gt

µ
x2
gt 1.078 µ

x2
gt 0.834

(1) (1)

µ
x3
gt -0.142 0.488 µ

x3
gt -0.013 0.507

(-0.195) (1) (-0.020) (1)

µ
x4
gt 0.107 0.018 0.054 µ

x4
gt 0.009 -0.001 0.056

(0.444) (0.109) (1) (0.040) (-0.006) (1)

G = 6, T = 4;

µ
x2
gt = gt/2

G = 30, T = 20;

µ
x2
gt = gt/50

µ
x2
gt µ

x3
gt µ

x4
gt µ

x2
gt µ

x3
gt µ

x4
gt

µ
x2
gt 9.701 µ

x2
gt 7.508

(1) (1)

µ
x3
gt -0.425 0.488 µ

x3
gt -0.039 0.507

(-0.195) (1) (-0.020) (1)

µ
x4
gt 0.322 0.018 0.054 µ

x4
gt 0.026 -0.001 0.056

(0.444) (0.109) (1) (0.040) (-0.006) (1)

In the ideal situation, we would like to draw a population of size infinity so that the

cohort level population equations hold exactly. Take case 4 as an example, that would mean

the following set of equations holds exactly

E(yit|g) = β1 + β2
gt

150
+ β3 sin(gt) + β4

1

1 + exp[1.5 sin(gt/2)]
+ (t− 1) + (g − 1), (2.50)

g = 1, · · · , G; t = 1, · · · , T.

But drawing an infinite number of observations is obviously infeasible. Therefore, we choose

a relatively large number as the population size. The true distribution of the resulting

population is of course its empirical distribution, but we could think of it as an approximation
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of the population defined by eq. (2.49). Eq. (2.50) also holds only approximately, but the

difference should be negligible for the purpose of this simulation study.

In the current setup, the population cohort sizes are set equally to Ngt = 105 for all g

and t. That means a population panel of N = 2.4 × 106 individual-time points for G = 6

and T = 4, and N = 6× 107 for G = 30 and T = 20.

After the population is generated, we fix it over simulations. In each replication, we

draw repeated random cross sections from this fixed population. To have an idea on how

the sample size affects the estimates, we consider two different sampling rates, 0.2% and 1%,

which result in the sample cohort sizes ngt = 200 and 1000, respectively.6

The simulation design above is careful in the two places emphasized by Imbens and

Wooldridge (2007). First, data for each section is drawn from the population independently

across time, and because of the random sampling in each period, the group identifier is also

randomly drawn. Second, eq. (2.49) has full time effects which is more realistic than Verbeek

and Vella (2005) that omits the aggregate time effects, for the variation in µx
gt here is net of

the time effects.

For θ = (β,η,α) in eq. (2.49), we consider the NMD estimator with identity matrix

(θ̌) and its standard error (s.e.), and the optimal NMD estimator (θ̂) and its s.e.. Because

θ̌ is the fixed effect estimator on the pseudo panel of sample cohort means, three naive s.e.

estimators, namely the non-robust s.e., the heteroskedasticity-robust s.e. and the cluster-

robust s.e., are also computed. They are the usual s.e. estimators routinely computed for

the fixed effect estimator in a true panel, but are naive in a pseudo panel because they

treat the sample cohort means as observations carrying no errors and completely ignore the

individual-level data.

Besides the basic NMD uses no IV, each of z, x2, x3 and x4 is used one at a time as the

6A relatively higher sampling rate might introduce too much overlap among the repeated
cross-sectional samples. Therefore, we also consider the setup Nt = 1.5 ∗ 107 with sampling
rate 0.2%. The result shows that there is no essential difference from the setup Nt = 3 ∗ 103

with sampling rate 1%.
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additional IV. The NMD using all 4 variables as the additional IVs is also estimated.

2.4.2 Simulation results for the small pseudo panel

At the center of the simulation study is Case 4, as cases 1 through 3 are its simplified cases to

pin down the effect of the correlation of x2it with zi and fi, and Case 5 is a variation of Case

4 that increases the variation in the cohort mean of x2. Therefore we focus on analyzing Case

4 in this section. The Monte Carlo simulation results for case 4 from 1000 replications for

the coefficient and s.e. estimators of x2 are presented in Table 2.3. Two sample cohort sizes,

ngt = 200 and 1000, are considered. For each considered quantity, the Monte Carlo average

and standard deviation over the 1000 replications are reported, with the standard deviation

in parentheses. The estimators with no IV, z as IV, and x2 as IV are picked because they

provide most of the insights. The results on the same quantities in Case 3 are reported in

Table 2.2. Detailed results are in Tables B.1 through B.20 in Appendix B.

Several observations stand out from Table 2.3. First of all, the NMD coefficient estimators

work well in all cases except when the invalid IV x2 is used. Both β̌2 and β̂2 are close to

the true value in columns 1, 2, 4 and 5. As the sample cohort size ngt gets bigger, the

slight biases in β̌2 and β̂2 get even smaller, and their Monte Carlo standard deviations also

shrink. Second, the NMD s.e. estimators also work well, even when x2 is used as the IV. The

Monte Carlo averages of ŝe(β̌2) and ŝe(β̂2) are close to the standard deviations of β̌2 and

β̂2 throughout all columns, and having a bigger cohort size, as expected, reduces ŝe(β̌2) and

ŝe(β̂2) universally. Third, using a valid and relevant IV improves efficiency, but the validity

of IV is crucial. Compared to using no IV (column 1 and 4), using z as IV (columns 2 and 5)

leads to reduced Monte Carlo averages of ŝe(β̌2) and ŝe(β̂2) and smaller finite sample bias in

β̌2 and β̂2. The usage of the invalid IV x2 (columns 3 and 6), however, introduces persistent

biases in β̌2 and β̂2 that do not vanish as cohort size gets larger. Note that x2 is not a valid

IV because it is correlated with fi, which violates the condition in (2.12).

A comparison with the results in Table 2.2 confirms that the correlation between x2it and
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Table 2.2 Finite sample properties of various estimators of β2 and its standard error,
G = 6, T = 4. Case 3. x2it ∼ N(gt/6, 1) + zi

ngt = 200 ngt = 1000

none z x2 none z x2

β̌2 .9909 .9980 .9965 .9937 .9982 .9964
(.1623) (.0430) (.0421) (.0714) (.0191) (.0191)

ŝe(β̌2) .1590 .0463 .0436 .0720 .0206 .0192
(.0117) (.0012) (.0020) (.0023) (.0002) (.0004)

̂sen(β̌2) .1552 .0457 .0488 .0698 .0205 .0218
(.0349) (.0054) (.0092) (.0144) (.0025) (.0039)

̂ser(β̌2) .1393 .0508 .0490 .0627 .0229 .0217
(.0425) (.0073) (.0094) (.0181) (.0034) (.0040)

ŝec(β̌2) .1423 .0496 .0431 .0639 .0223 .0189
(.0603) (.0159) (.0154) (.0283) (.0073) (.0069)

β̂2 .9911 .9979 .9981 .9936 .9982 .9987
(.1623) (.0437) (.0324) (.0713) (.0191) (.0143)

ŝe(β̂2) .1585 .0452 .0327 .0720 .0205 .0148
(.0117) (.0012) (.0007) (.0023) (.0002) (.0001)

fi invalidates x2it as IV. In absence of the correlation between x2it and fi, x2it is exogenous

and becomes a valid IV for itself. As a result, no obvious bias is observed in β̌2 and β̂2 when

x2 is used as IV in Table 2.2. In effect, x2 is a better IV than z, since Table 2.2 shows that

ŝe(β̌2) and ŝe(β̂2) become smaller on average when the IV is changed from z to x2. This

makes sense because no IV is more relevant to a variable than the variable itself.

When the IV is changed from z to x2 in Table 2.2, a larger reduction is observed in ŝe(β̂2)

than in ŝe(β̌2). This observation highlights a typical situation to use the optimal weighting

matrix - when the IV brings in within-cell heteroskedasticity and correlation. Specifically,

when z is the IV, we show in the Appendix that

Ξgt = σ2
e

1 0

0 1

 , (2.51)

where σ2
e = E

[
(ε
f
i + uit)

2|g
]
. This implies that the optimal weighting matrix is proportional
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Table 2.3 Finite sample properties of various estimators of β2 and its standard error,
G = 6, T = 4. Case 4. x2it ∼ N(gt/6, 1) + zi + fi

ngt = 200 ngt = 1000

none z x2 none z x2

β̌2 1.0153 1.0048 1.2218 .9989 .9996 1.2166
(.1599) (.0431) (.0947) (.0716) (.0191) (.0423)

ŝe(β̌2) .1575 .0462 .0951 .0719 .0206 .0421
(.0143) (.0014) (.0071) (.0029) (.0003) (.0014)

̂sen(β̌2) .1537 .0455 .0728 .0697 .0205 .0405
(.0356) (.0054) (.0188) (.0145) (.0025) (.0082)

̂ser(β̌2) .1388 .0506 .0752 .0627 .0229 .0458
(.0427) (.0074) (.0191) (.0181) (.0034) (.0106)

ŝec(β̌2) .1440 .0494 .0947 .0642 .0223 .0711
(.0631) (.0159) (.0420) (.0284) (.0073) (.0254)

β̂2 1.0155 1.0048 1.3194 .9989 .9996 1.3220
(.1598) (.0437) (.0266) (.0715) (.0191) (.0120)

ŝe(β̂2) .1569 .0451 .0266 .0719 .0205 .0120
(.0142) (.0014) (.0006) (.0029) (.0003) (.0001)

to an identity matrix, which explains why the averages of ŝe(β̂2) and ŝe(β̌2) are close to each

other and to the standard deviations of β̌2 and β̂2 in Table 2.2 when z is the IV. On the

other hand, when x2 is used as the IV, we show that

Ξgt = σ2
e

 1 gt
150

gt
150 2 +

(
gt

150

)2

 , (2.52)

which has within-cell heteroskedasticity and correlation. The resulting optimal weighting

matrix is distinct from an identity matrix.

The results on the naive s.e. estimators, ̂sen(β̌2), ̂ser(β̌2) and ŝec(β̌2) are also consistent

with the theory. We leave the discussion to the next subsection because the pattern is more

obvious when G is greater.
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Table 2.4 Finite sample properties of various estimators of β2 and its standard error,
G = 30, T = 20. Case 3. x2it ∼ N(gt/150, 1) + zi

ngt = 200 ngt = 1000

none z x2 none z x2

β̌2 1.0134 1.0022 1.0012 .9980 .9996 .9996
(.0839) (.0277) (.0248) (.0399) (.0121) (.0106)

ŝe(β̌2) .0842 .0277 .0239 .0387 .0123 .0105
(.0011) (.0001) (.0002) (.0002) (.0000) (.0000)

̂sen(β̌2) .0842 .0274 .0286 .0388 .0123 .0129
(.0028) (.0006) (.0009) (.0012) (.0003) (.0004)

̂ser(β̌2) .0838 .0281 .0269 .0387 .0125 .0119
(.0045) (.0008) (.0009) (.0021) (.0003) (.0004)

ŝec(β̌2) .0841 .0282 .0241 .0385 .0124 .0105
(.0143) (.0037) (.0035) (.0067) (.0016) (.0016)

β̂2 1.0134 1.0020 1.0016 .9979 .9995 .9993
(.0843) (.0279) (.0209) (.0400) (.0121) (.0087)

ŝe(β̂2) .0837 .0269 .0196 .0387 .0123 .0089
(.0011) (.0001) (.0001) (.0002) (.0000) (.0000)

2.4.3 Simulation results for the middle sized pseudo panel

The results in Table 2.5 and 2.4 for the middle sized pseudo panel basically tell the same

story as the small pseudo panel. We focus on two points that stand out. These two points

are less clear, although also exist, in the small pseudo panel.

First, the results on the naive s.e. estimators, ̂sen(β̌2), ̂ser(β̌2) and ŝec(β̌2) are consistent

with the theory. This is best seen from the last column in Table 2.4. Moving down the list
̂sen(β̌2), ̂ser(β̌2) and ŝec(β̌2), the bias in the Monte Carlo averages gradually declines. The

Monte Carlo average of ŝec(β̌2) rounded four decimal places is even identical to that of

ŝe(β̌2). The reason is that, when x2 is used as IV,

V ar[µµ̂z′e
g |g] = diag(n−1

g1 Ξg1, · · · , n−1
gTΞgT )

is indeed block diagonal by eq. (2.52). Among the three naive variance estimators, only the
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Table 2.5 Finite sample properties of various estimators of β2 and its standard error,
G = 30, T = 20. Case 4. x2it ∼ N(gt/150, 1) + zi + fi

ngt = 200 ngt = 1000

none z x2 none z x2

β̌2 1.0496 1.0106 1.1137 1.0061 1.0013 1.0285
(.0830) (.0276) (.1376) (.0395) (.0120) (.0642)

ŝe(β̌2) .0826 .0276 .1339 .0386 .0123 .0633
(.0012) (.0002) (.0026) (.0003) (.0000) (.0006)

̂sen(β̌2) .0826 .0273 .0783 .0387 .0123 .0382
(.0028) (.0006) (.0037) (.0012) (.0003) (.0016)

̂ser(β̌2) .0822 .0280 .1249 .0385 .0125 .0594
(.0045) (.0008) (.0111) (.0020) (.0003) (.0051)

ŝec(β̌2) .0824 .0281 .1222 .0384 .0124 .0585
(.0139) (.0037) (.0302) (.0066) (.0016) (.0151)

β̂2 1.0493 1.0104 1.3186 1.0060 1.0013 1.3199
(.0835) (.0279) (.0175) (.0395) (.0120) (.0071)

ŝe(β̂2) .0821 .0268 .0162 .0385 .0122 .0073
(.0012) (.0002) (.0001) (.0003) (.0000) (.0000)

cluster-robust version correctly accounts for the variance-covariance structure of the cohort

composite error. The heteroskedasticity-robust version only captures the heteroskedasticity

but not the within-cluster correlation. The non-robust version accounts for neither.

As a comparison, in the 4th and 5th columns of Table 2.4, the Monte Carlo averages of
̂sen(β̌2), ̂ser(β̌2) and ŝec(β̌2) are all close to that of ŝe(β̌2). This is because V ar[µ̂z′e

g |g] is

proportional to an identity matrix when none or z is used as IV. As a result, all three versions

of the naive variance estimators are correct in their modeling of V ar[µ̂z′e
g |g]. Moreover,

from ̂sen(β̌2) through ̂ser(β̌2) to ŝec(β̌2), the s.e. estimators become less and less efficient,

indicated by greater and greater Monte Carlo standard deviations. This is also consistent

with their well-known relative efficiency property. Of course, ŝe(β̌2) is much more efficient

than any of the naive estimators, for ŝe(β̌2) makes use of the extra information from the

individual-level data.
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Secondly, the first column in Table 2.5 shows noticeable bias in β̌2 and β̂2. It is finite

sample bias because as ngt gets larger, the bias shrinks quickly. A comparison with the first

column in Table 2.4 confirms that the correlation between x2it and fi contributes to a large

part of the bias.

2.5 Concluding remarks

This chapter develops a general NMD framework that imposes (partial) differentiability on

the structural equations. The differentiability conditions are stronger than the MD frame-

work in Newey and McFadden (1994), but the resulting framework is more convenient to

work with in application. Consistency and asymptotic normality are established, as well as

the optimal weighting matrix expressed as functions of the partial derivatives of the struc-

tural equations. A theorem that echoes the GMM property that more moment conditions

do not hurt is given. The general framework is then applied to the special case of pseudo

panel. Simulation results are consistent with the theory.

The property that having more moment conditions could improve efficiency is first noticed

in the exercise of adding external instruments in pseudo panel MD estimation, which is

an extension to the work on pseudo panel by Imbens and Wooldridge (2007). We would

like to establish this property in a more general setup, hence the NMD framework at the

beginning of this chapter is motivated. Having both the general framework and the case

of pseudo panel as an example in the same chapter helps the understanding of the general

concepts. In particular, we find that the inverse optimal weighting matrix is exactly the

variance-covariance of the relocated and rescaled structural equations in the pseudo panel

application, which provides straightforward intuition for why the optimal weighting matrix

works. Essentially, the optimal weighting matrix down-weights the structural equations that

are volatile and give more weights to those that are less volatile, and correlation between

structural equations are also accounted for.
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The NMD estimation in pseudo panel correctly relies on large ngt but fixed G, T asymp-

totics. Naive methods like FE on the cohort means are found to be the NMD estimators

using the identity weighting matrix. But the naive s.e. estimators, including the usual s.e.,

the s.e. robust to heteroskedasticity and the cluster-robust s.e., rely on at least large G

asymptotics. Even when G is moderate or large, depending on how complicated the IVs are,

the usual s.e. and the one only robust to heteroskedasticity may not capture the correct

variance-covariance structure. The cluster-robust s.e. though has the potential to work for

large G because it is fully robust. But since it ignores the individual level data completely,

it is always less efficient than the NMD s.e. estimator using identity weighting matrix. The

optimal NMD is always the most efficient among these candidates. we conclude that when

there are extra IVs to explore, it is important to use optimal weighting.

The comments in Imbens and Wooldridge (2007) regarding flexible specifications provide

several ideas we would like to investigate in future research. First, we intend to extend

the application to dynamic models, i.e., to add lagged dependent variables in the list of

explanatory variables. This is an issue that has been studied by Moffitt (1993); Collado

(1997); Girma (2000); Verbeek and Vella (2005); McKenzie (2004) among others. In dynamic

models, the advantage of having the general NMD framework stands out. There is no

need to tailor the framework in any way, since we can still define the vector of reduced

form parameters as before. Because cohort means of the dependent variable do not appear

redundantly in the reduce-form parameters, their asymptotics are well defined. The cohort-

level equations are also of the same form as before; the only difference is that the equations

for the first several periods need to be dropped because of the lags. Second, we intend to

add unit-specific trend in the unobserved heterogeneity as in the random growth model of

Heckman and Hotz (1989). Third, an even more flexible extension is to let the factor loads

on the unobserved heterogeneity be time-varying. These extensions should be easily handled

by the NMD framework. Lastly, we are also interested in an empirical application of the

method. Currently, we am working on applying the pseudo panel method to estimate returns
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to education using data from the U.S. Current Population Survey.
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APPENDIX A

PROOFS AND ALGEBRA

A.1 Proof of consistency

Proof. Prove by verifying verifying (i)-(iv) of Theorem 2.1 in Newey and McFadden (1994)

A.2 Proof of asymptotic normality

A sketch of the idea first. By the first part of (ii), a mean value expansion of each com-

ponent of h(π̂, θ̂) around θ0 leads to h(π̂, θ̂) = h(π̂,θ0) + L(π̂, θ̄)(θ̂ − θ0) where θ̄ is a

vector of mean values. A similar expansion, h(π̂,θ0) = B(π̄,θ0)(π̂ − π0), follows by the

second part of (ii) and h(π0,θ0) = 0. Substituting the two expansions in the first-order

condition and solving gives
√
n(θ̂ − θ0) = −[L(π̂, θ̂)′ŴL(π̂, θ̄)]−1 · L(π̂, θ̂)′ŴB(π̄,θ0) ·

√
n(π̂ − π0). By the first part of (iv), θ̂

p→ θ0 and continuity of L(π,θ) on N (θ0) in (ii),

we have that, with probability approaching one,
∥∥∥L(π̂, θ̂)− L

∥∥∥ ≤ ∥∥∥L(π̂, θ̂)− L(π0, θ̂)
∥∥∥ +∥∥∥L(π0, θ̂)− L

∥∥∥ ≤ supθ∈N (θ0) ‖L(π̂,θ)− L(π0,θ)‖ +
∥∥∥L(π0, θ̂)− L

∥∥∥ p→ 0. Similar, the

convergence
∥∥L(π̂, θ̄)− L

∥∥ p→ 0 follows by θ̄
p→ θ0, and ‖B(π̄,θ0)−B‖ p→ 0 by π̄

p→ π0

and continuity of B(π,θ) on N (θ0). Condition (iv) guarantees that
(
L′WL

)−1 exists,

and thus, with probability approaching one, the existence of [L(π̂, θ̂)′ŴL(π̂, θ̄)]−1. The

conclusion then follows by (iii), Slutsky’s theorem and the asymptotic equivalence theorem.

A full proof with technical details is given below.

Proof. By (i), without of generality N (θ0) (N (π0)) can be assumed to be a convex, open

set contained in Θ (Π). Then N (θ0) (N (π0)) is also connected since Θ ∈ RP (Π ∈ RK).
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Let 1A denote the indicator function for an event A. Let A1 = {θ̂ ∈ N (θ0)} and A2 =

{π̂ ∈ N (π0)}, and . Note that θ̂
p→ θ0 (π̂

p→ π0) implies 1A1

p→ 1 (1A2

p→ 1).

(1) By the first part of condition (ii) and the first order condition for a minimum, 1A1
·

L(π̂, θ̂)′Ŵh(π̂, θ̂) = 0. The multiplication by 1A1
is needed because by (ii) L(π,θ) only

exists on N (θ0). θ̂ is pointwise defined by θ̂ = argmin
θ∈Θ

h(π̂,θ)′ Ŵ h(π̂,θ), not by the first

order condition L(π̂, θ̂)′Ŵh(π̂, θ̂) = 0. For some realization of π̂, the corresponding θ̂ may

not lie in N (θ0).

(2) Since N (θ0) is connected, by condition (ii) and mean value expansion theorem,

1A1
· hj(π̂, θ̂) = 1A1

· hj(π̂,θ0) + 1A1
· Lj(π̂, θ̄j)(θ̂ − θ0) for j = 1, · · · , J , where θ̄j is

a random variable equal to the mean value if 1A1
= 1 and equal to θ0 otherwise. Again,

this complication is needed because θ̂ is not necessarily in N (θ0). Clearly, θ̄j
p→ θ0 as

θ̂
p→ θ0. Collect all the J mean values in the matrix θ̄, and let L(π̂, θ̄) be the matrix with

j-th row Lj(π̂, θ̄j). Then those expansions can be written collectively as 1A1
· h(π̂, θ̂) =

1A1
· h(π̂,θ0) + 1A1

·L(π̂, θ̄)(θ̂ − θ0). Substituting in 0 = 1A1
·L(π̂, θ̂)′Ŵh(π̂, θ̂) leads to

0 = 1A1
· L(π̂, θ̂)′Ŵh(π̂,θ0) + 1A1

· L(π̂, θ̂)′ŴL(π̂, θ̄)(θ̂ − θ0).

(3) By a similar reasoning and the fact h(π0,θ0) = 0, write 1A2
· h(π̂,θ0) = 1A2

·

B(π̄,θ0)(π̂−π0), where π̄j , the j-th column of the matrix π̄, equals to a mean value the if

1A2
= 1 and equal to π0 otherwise, and B(π̄,θ0) is the matrix with the j-th row Bj(π̄j ,θ0).

π̄j
p→ π0 as π̄j

p→ π0. Also, 1A2

p→ 1, and B(π̄,θ0)
p→ B by the second part of condition

(iv). Substituting again gives 0 = 1A1∩A2
·L(π̂, θ̂)′Ŵh(π̂,θ0)B(π̄,θ0)(π̂−π0) + 1A1∩A2

·

L(π̂, θ̂)′ŴL(π̂, θ̄)(θ̂ − θ0).

(4) Let A3 = {L(π̂, θ̂)′ŴL(π̂, θ̄) is nonsingular}. Let V̄ be a random variable equal

to L(π̂, θ̂)′ŴL(π̂, θ̄) if 1A3
= 1 and equal to the K-dimensional identity matrix otherwise.

By the first part of condition (iv), L(π̂, θ̂)
p→ L and L(π̂, θ̄)

p→ L. Then by condition

(v) and Ŵ
p→ W, 1A3

p→ 1 and V̄
p→ L′WL. Substituting for another time gives 0 =

1A1∩A2∩A3
· L(π̂, θ̂)′Ŵh(π̂,θ0)B(π̄,θ0)(π̂ − π0) + 1A1∩A2∩A3

· V̄(θ̂ − θ0).

Now, let A0 = A1∩A2∩A3. Note that 1A0
= 1A1

·1A2
·1A3

p→ 1. Multiplying by
√
n and
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solving gives
√
n(θ̂ − θ0) = −1A0

· V̄−1L(π̂, θ̂)′Ŵh(π̂,θ0)B(π̄,θ0) ·
√
n(π̂ −π0)− (1A0

−

1)
√
n(θ̂− θ0). The conclusion follows by Slutsky’s theorem and the asymptotic equivalence

theorem.

A.3 Proof of optimal weighting matrix

Proof. For an arbitrary W,(
L′WL

)−1
L′WBΩB′WL

(
L′WL

)−1 − (L′(BΩB′)−1L)−1

= D′(BΩB′)−1D

is positive semi-definite, where

D =
(
L′WL

)−1
L′W − [L′

(
L′WL

)−1
L]−1L′(BΩB′)−1.

A.4 Proof that extra conditions do not hurt

Proof. Notice that

B = ∇πh(π0,θ0) =

∇πh1(π0,θ0)

∇πh2(π0,θ0)

 =

B1

B2

 .
Then

M = BΩB′ =

B1

B2

Ω

B1

B2


′

=

 B1ΩB′1 B1ΩB′2

B2ΩB′1 B2ΩB′2

 =

 M1,1 M1,2

M2,1 M2,2

 .
Also notice that

L = ∇θh(π0,θ0) =

∇θh1(π0,θ0)

∇θh2(π0,θ0)

 =

L1

L2

 .
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Now, define F = M2,2 −M2,1M−1
1,1M1,2. F is the Schur complement of M1,1 in M. Then

L′M−1L

=

L1

L2


′  M1,1 M1,2

M2,1 M2,2


−1 L1

L2


=

L1

L2


′  M−1

1,1 + M−1
1,1M1,2F−1M2,1M−1

1,1 −M−1
1,1M1,2F−1

−F−1M2,1M−1
1,1 F−1


L1

L2


=
[
L′1
(
M−1

1,1 + M−1
1,1M1,2F−1M2,1M−1

1,1

)
− L′2F−1M2,1M−1

1,1, ...

... −L′1M−1
1,1M1,2F−1 + L′2F−1

]L1

L2


=L′1

(
M−1

1,1 + M−1
1,1M1,2F−1M2,1M−1

1,1

)
L1 − L′2F−1M2,1M−1

1,1L1

− L′1M−1
1,1M1,2F−1L2 + L′2F−1L2.

Therefore,

L′M−1L− L′1M−1
1,1L1

=L′1
(
M−1

1,1 + M−1
1,1M1,2F−1M2,1M−1

1,1

)
L1 − L′2F−1M2,1M−1

1,1L1

− L′1M−1
1,1M1,2F−1L2 + L′2F−1L2 − L′1M−1

1,1L1.

=L′1M−1
1,1M1,2F−1M2,1M−1

1,1L1 − L′2F−1M2,1M−1
1,1L1

− L′1M−1
1,1M1,2F−1L2 + L′2F−1L2

=
(
L′1M−1

1,1M1,2 − L′2
)

F−1M2,1M−1
1,1L1

−
(
L′1M−1

1,1M1,2 − L′2
)

F−1L2

=
(
L′1M−1

1,1M1,2 − L′2
)

F−1
(
M2,1M−1

1,1L1 − L2

)
=
(
M2,1M−1

1,1L1 − L2

)′
F−1

(
M2,1M−1

1,1L1 − L2

)
where the fact M1,2 = M′2,1 is used in the last equality. Clearly, the last expression

is in quadratic form and thus is positive semi-definite. The condition for redundancy of
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h2(π0,θ0) = 0 is

M2,1M−1
1,1L1 − L2 = 0,

or

B2ΩB′1(B1ΩB′1)−1L1 − L2 = 0.

A.5 Useful expressions for sit and Ωs
gt

For vit = (yit,xit) and sit = zit ⊗ vit, an explicit expression for sit is

sit = (vit, z2itvit, · · · , zPitvit).

Hence,

Ωs
gt =



V ar(vit|g) Cov(vit, z2itvit|g) · · · Cov(vit, zPitvit|g)

Cov(z2itvit,vit|g) V ar(z2itvit|g) · · · Cov(z2itvit, zPitvit|g)

...
... . . . ...

Cov(zPitvit,vit|g) Cov(z2itvit, z2itvit|g) · · · V ar(zPitvit|g)


.

For µ̂
zpv
gt = n−1

gt

∑nt
i=1 rit,gzpitvit, an estimator for Cov(zpitvit, zqitvit|g) is

Γ̂pq,gt = n−1
gt

nt∑
i=1

rit,g(zpitvit − µ̂
zpv
gt )′(zqitvit − µ̂

zqv
gt ).

It is also informative to write sit as

sit = (yit,xit, z2ityit, z2itxit, · · · , zPityit, zPitxit).

Because xit includes unity, sit contains all yit,xit, zit and the interactions of zit with (yit,xit).
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A.6 Derivation for M

M

=b(θ)Ωsb(θ)′

=



b11(θ)

b12(θ)

. . .

bGT (θ)





Ωs
11

ρ1κ1
Ωs

12
ρ1κ2

. . .
Ωs
GT

ρGκT


·



b11(θ)

b12(θ)

. . .

bGT (θ)



′

=



b11(θ)Ωs
11b11(θ)′

ρ1κ1
b12(θ)Ωs

12b12(θ)′
ρ1κ2

. . .
bGT (θ)Ωs

GTbGT (θ)′
ρGκT


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A.7 Equivalence of the two ways of computing M̂

Proof. Expanding M̂ = b(θ̌)Ω̂
s
b(θ̌)′ shows that

b(θ̌)Ω̂
s
b(θ̌)′

=



b11(θ̌)

b12(θ̌)

. . .

bGT (θ̌)





Ω̂
s
11

n11/n

Ω̂
s
12

n12/n

. . .
Ω̂

s
GT

nGT /n


·



b11(θ̌)

b12(θ̌)

. . .

bGT (θ̌)



′

=



b11(θ̌)Ω̂
s
11b11(θ̌)′

n11/n

b12(θ̌)Ω̂
s
12b12(θ̌)′

n12/n

. . .
bGT (θ̌)Ω̂

s
GTbGT (θ̌)′

nGT /n


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For each (g, t),

bgt(θ̌)Ω̂
s
gtbgt(θ̌)′

=
[
IP ⊗ (−1, β̌

′
gt)
]

[Γ̂pq,gt]P

[
IP ⊗ (−1, β̌

′
gt)
]′

=



(−1, β̌
′
gt)

(−1, β̌
′
gt)

. . .

(−1, β̌
′
gt)


P



Γ̂11,gt Γ̂12,gt · · · Γ̂1P,gt

Γ̂21,gt Γ̂22,gt · · · Γ̂PP,gt
...

... . . . ...

Γ̂P1,gt Γ̂P2,gt · · · Γ̂PP,gt


·



(−1, β̌
′
gt)

(−1, β̌
′
gt)

. . .

(−1, β̌
′
gt)



′

P

=



−1

β̌gt


′

Γ̂11,gt

−1

β̌gt


−1

β̌gt


′

Γ̂12,gt

−1

β̌gt

 · · ·

−1

β̌gt


′

Γ̂1P,gt

−1

β̌gt


−1

β̌gt


′

Γ̂21,gt

−1

β̌gt


−1

β̌gt


′

Γ̂22,gt

−1

β̌gt

 · · ·

−1

β̌gt


′

Γ̂PP,gt

−1

β̌gt


...

... . . . ...−1

β̌gt


′

Γ̂P1,gt

−1

β̌gt


′ −1

β̌gt


′

Γ̂P2,gt

−1

β̌gt

 · · ·

−1

β̌gt


′

Γ̂PP,gt

−1

β̌gt




For each (p, q; g, t), recall vit = (yit,xit) and notice that

vit

−1

β̌gt

 = −(yit − xitβ̌gt)

= −(yit − xitβ̌ − (η̌t + α̌g)) = −ǔit

and that

µ̂
zpv
gt

−1

β̌gt

 = n−1
gt

nt∑
i=1

rit,gzpitvit

−1

β̌gt

 = n−1
gt

nt∑
i=1

rit,gzpitǔit
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we have−1

β̌gt


′

Γ̂pp,gt

−1

β̌gt


=

−1

β̌gt


′

n−1
gt

nt∑
i=1

rit,g(zpitvit − µ̂
zpv
gt )′(zqitvit − µ̂

zqv
gt )

−1

β̌gt


=n−1

gt

nt∑
i=1

rit,g

zpitvit
−1

β̌gt

− µ̂zpvgt

−1

β̌gt



′ zqitvit

−1

β̌gt

− µ̂zqvgt

−1

β̌gt




=n−1
gt

nt∑
i=1

rit,g

[
zpitǔit − n−1

gt

nt∑
i=1

rit,gzpitǔit

]′ [
zqitǔit − n−1

gt

nt∑
i=1

rit,gzpitǔit

]

=n−1
gt

nt∑
i=1

rit,g

[
zpitǔit − µ̌

zpu
gt

]′ [
zqitǔit − µ̌

zpu
gt

]
= τ̂pq.

Hence the two ways are numerically equivalent.

A.8 Further algebra on Ξgt

In general,

Ξgt = V ar[z′ityit − z′itxitβ − z′it(ηt + αg)|g]

= V ar[z′it(ε
f
i + uit)|g]

= E

[(
z′it(ε

f
i + uit)− E[z′it(ε

f
i + uit)|g]

)(
z′it(ε

f
i + uit)− E[z′it(ε

f
i + uit)|g]

)′]
= E

[
(ε
f
i + uit)

2z′itzit|g
]
− E

[
z′it(ε

f
i + uit)|g

]
E
[
(ε
f
i + uit)zit|g

]
= E

[
(ε
f
i + uit)

2z′itzit|g
]

= E
[
(ε
f
i + uit)

2|g
]
E
[
z′itzit|g

]
if independent

= σ2
εf+u

(g) ·Ωz if independent of gi & mean zero
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For zit = (1, x2it) in Case 3,

Ξgt = E
[
(ε
f
i + uit)

2z′itzit|g
]

= E
[
(ε
f
i + uit)

2|g
]
E
[
z′itzit|g

]
if independent

= σ2
εf+u

E
[
(1, x2it)

′(1, x2it)|g
]

= σ2
εf+u

E


 1 x2it

x2it x2
2it

 |g


= σ2
εf+u

 1 gt/150

gt/150 2 + (gt/150)2


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APPENDIX B

ADDITIONAL TABLES

83



84

Table B.1 Small panel with G = 6, T = 4. Case 1.a: x2it ∼ N(gt/6, 1), ngt = 200, sampling
rate= 1%. sen, ser and sec are the non-roust, robust and cluster-robust standard errors,
receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 1.0021 0.1590 0.1555 0.1397 0.1413 1.0020 0.1585
(0.1534) (0.0122) (0.0326) (0.0424) (0.0628) (0.1531) (0.0121)

x3 0.9973 0.0887 0.0866 0.0826 0.0878 0.9976 0.0884
(0.0901) (0.0040) (0.0176) (0.0195) (0.0315) (0.0904) (0.0040)

x4 1.0127 0.2848 0.2780 0.2624 0.2943 1.0129 0.2838
(0.2818) (0.0137) (0.0570) (0.0659) (0.1070) (0.2834) (0.0137)

IV: z x2 1.0530 0.1504 0.1486 0.1225 0.1240 1.0532 0.1486
(0.1447) (0.0104) (0.0206) (0.0304) (0.0514) (0.1452) (0.0103)

x3 0.9880 0.0870 0.0858 0.0690 0.0736 0.9875 0.0860
(0.0884) (0.0037) (0.0105) (0.0148) (0.0263) (0.0892) (0.0036)

x4 1.0230 0.2788 0.2749 0.2187 0.2455 1.0221 0.2755
(0.2764) (0.0129) (0.0349) (0.0496) (0.0870) (0.2774) (0.0127)

IV: x2 x2 1.2350 0.1360 0.0931 0.1025 0.1344 1.4768 0.0326
(0.1365) (0.0085) (0.0216) (0.0257) (0.0535) (0.0329) (0.0009)

x3 1.0028 0.1100 0.0528 0.0709 0.0708 0.9063 0.0802
(0.1091) (0.0048) (0.0118) (0.0235) (0.0304) (0.0833) (0.0027)

x4 0.9988 0.3415 0.1670 0.2146 0.2608 1.1332 0.2694
(0.3368) (0.0184) (0.0384) (0.0699) (0.1138) (0.2681) (0.0116)

IV: x3 x2 1.0329 0.1634 0.1218 0.1115 0.1253 1.0504 0.1424
(0.1561) (0.0117) (0.0190) (0.0258) (0.0532) (0.1404) (0.0098)

x3 0.9879 0.0463 0.0353 0.0367 0.0406 0.9885 0.0415
(0.0458) (0.0016) (0.0049) (0.0064) (0.0138) (0.0419) (0.0012)

x4 1.0083 0.2932 0.2332 0.2191 0.2567 1.0254 0.2617
(0.2885) (0.0134) (0.0333) (0.0421) (0.0918) (0.2607) (0.0112)

IV: x4 x2 1.0061 0.1588 0.1007 0.1011 0.1173 1.0505 0.1479
(0.1546) (0.0119) (0.0175) (0.0269) (0.0509) (0.1463) (0.0105)

x3 0.9975 0.0863 0.0542 0.0564 0.0693 0.9892 0.0812
(0.0862) (0.0036) (0.0088) (0.0120) (0.0252) (0.0811) (0.0032)

x4 1.0097 0.1585 0.1271 0.1303 0.1408 1.0143 0.1011
(0.1550) (0.0043) (0.0206) (0.0268) (0.0491) (0.1008) (0.0023)

IV: all x2 1.2449 0.1267 0.0574 0.0867 0.1108 1.4718 0.0319
(0.1268) (0.0079) (0.0111) (0.0218) (0.0446) (0.0335) (0.0008)

x3 0.9943 0.0881 0.0301 0.0514 0.0582 0.9687 0.0392
(0.0871) (0.0034) (0.0055) (0.0157) (0.0226) (0.0406) (0.0009)

x4 0.9839 0.3163 0.1043 0.1798 0.2246 1.0243 0.0972
(0.3119) (0.0155) (0.0198) (0.0578) (0.0964) (0.0983) (0.0016)
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Table B.2 Small panel with G = 6, T = 4. Case 1.b: x2it ∼ N(gt/6, 1), ngt = 1000,
sampling rate= 1%. sen, ser and sec are the non-roust, robust and cluster-robust standard
errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 0.9940 0.0722 0.0700 0.0628 0.0639 0.9939 0.0721
(0.0715) (0.0018) (0.0144) (0.0180) (0.0286) (0.0714) (0.0018)

x3 1.0037 0.0398 0.0385 0.0367 0.0390 1.0037 0.0397
(0.0391) (0.0007) (0.0079) (0.0085) (0.0146) (0.0391) (0.0007)

x4 1.0067 0.1282 0.1244 0.1174 0.1333 1.0069 0.1281
(0.1274) (0.0024) (0.0256) (0.0308) (0.0486) (0.1276) (0.0024)

IV: z x2 0.9940 0.0718 0.0714 0.0517 0.0531 0.9940 0.0716
(0.0709) (0.0018) (0.0088) (0.0142) (0.0233) (0.0710) (0.0018)

x3 1.0038 0.0397 0.0395 0.0301 0.0322 1.0037 0.0396
(0.0389) (0.0007) (0.0049) (0.0069) (0.0120) (0.0390) (0.0007)

x4 1.0064 0.1278 0.1272 0.0963 0.1100 1.0067 0.1275
(0.1274) (0.0024) (0.0156) (0.0247) (0.0399) (0.1278) (0.0024)

IV: x2 x2 0.9979 0.0360 0.0336 0.0312 0.0306 0.9987 0.0205
(0.0372) (0.0011) (0.0064) (0.0057) (0.0120) (0.0208) (0.0002)

x3 1.0036 0.0464 0.0270 0.0286 0.0373 1.0026 0.0371
(0.0459) (0.0009) (0.0052) (0.0071) (0.0140) (0.0357) (0.0005)

x4 1.0219 0.1536 0.0751 0.0839 0.1172 1.0086 0.1259
(0.1538) (0.0033) (0.0145) (0.0273) (0.0518) (0.1241) (0.0023)

IV: x3 x2 0.9998 0.0768 0.0565 0.0512 0.0573 0.9946 0.0680
(0.0778) (0.0020) (0.0078) (0.0110) (0.0248) (0.0658) (0.0016)

x3 1.0025 0.0207 0.0158 0.0165 0.0181 1.0031 0.0188
(0.0206) (0.0003) (0.0022) (0.0028) (0.0065) (0.0186) (0.0002)

x4 1.0097 0.1337 0.1059 0.0992 0.1159 1.0070 0.1202
(0.1327) (0.0025) (0.0147) (0.0195) (0.0408) (0.1218) (0.0020)

IV: x4 x2 0.9959 0.0728 0.0457 0.0458 0.0534 0.9936 0.0708
(0.0711) (0.0018) (0.0075) (0.0114) (0.0238) (0.0695) (0.0017)

x3 1.0040 0.0387 0.0242 0.0251 0.0313 1.0045 0.0370
(0.0381) (0.0006) (0.0040) (0.0053) (0.0117) (0.0370) (0.0006)

x4 1.0028 0.0705 0.0567 0.0580 0.0635 1.0011 0.0454
(0.0686) (0.0007) (0.0093) (0.0121) (0.0218) (0.0442) (0.0003)

IV: all x2 1.0002 0.0377 0.0256 0.0271 0.0300 0.9986 0.0203
(0.0390) (0.0010) (0.0030) (0.0045) (0.0112) (0.0208) (0.0002)

x3 1.0028 0.0250 0.0132 0.0150 0.0201 1.0031 0.0182
(0.0248) (0.0003) (0.0015) (0.0024) (0.0073) (0.0179) (0.0002)

x4 1.0154 0.1166 0.0515 0.0599 0.0872 1.0014 0.0448
(0.1157) (0.0018) (0.0060) (0.0167) (0.0357) (0.0440) (0.0003)
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Table B.3 Small panel with G = 6, T = 4. Case 1.1: x2it ∼ N(gt/6, 1), ngt = 200, sampling
rate= 0.2%. sen, ser and sec are the non-roust, robust and cluster-robust standard errors,
receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 0.9898 0.1606 0.1568 0.1402 0.1430 0.9900 0.1601
(0.1652) (0.0089) (0.0342) (0.0423) (0.0615) (0.1652) (0.0089)

x3 1.0083 0.0889 0.0868 0.0823 0.0871 1.0081 0.0886
(0.0875) (0.0034) (0.0185) (0.0208) (0.0326) (0.0874) (0.0034)

x4 1.0103 0.2863 0.2794 0.2619 0.2986 1.0113 0.2853
(0.2886) (0.0124) (0.0593) (0.0716) (0.1097) (0.2882) (0.0123)

IV: z x2 0.9896 0.1565 0.1546 0.1186 0.1203 0.9905 0.1547
(0.1599) (0.0084) (0.0198) (0.0308) (0.0477) (0.1599) (0.0083)

x3 1.0091 0.0879 0.0868 0.0682 0.0716 1.0084 0.0869
(0.0864) (0.0033) (0.0105) (0.0160) (0.0268) (0.0863) (0.0033)

x4 1.0095 0.2817 0.2783 0.2179 0.2447 1.0111 0.2785
(0.2832) (0.0119) (0.0341) (0.0541) (0.0908) (0.2818) (0.0117)

IV: x2 x2 0.9966 0.0809 0.0752 0.0701 0.0687 0.9978 0.0453
(0.0829) (0.0052) (0.0153) (0.0131) (0.0255) (0.0476) (0.0010)

x3 1.0086 0.1035 0.0606 0.0642 0.0817 1.0065 0.0819
(0.1007) (0.0043) (0.0122) (0.0165) (0.0322) (0.0808) (0.0027)

x4 1.0183 0.3417 0.1684 0.1871 0.2611 1.0130 0.2750
(0.3441) (0.0167) (0.0341) (0.0628) (0.1184) (0.2811) (0.0113)

IV: x3 x2 1.0019 0.1681 0.1241 0.1127 0.1275 0.9931 0.1473
(0.1685) (0.0089) (0.0180) (0.0253) (0.0542) (0.1513) (0.0073)

x3 1.0038 0.0464 0.0353 0.0367 0.0399 1.0035 0.0416
(0.0468) (0.0013) (0.0048) (0.0060) (0.0140) (0.0433) (0.0010)

x4 1.0200 0.2956 0.2340 0.2198 0.2580 1.0173 0.2633
(0.2924) (0.0123) (0.0327) (0.0441) (0.0882) (0.2629) (0.0101)

IV: x4 x2 0.9909 0.1610 0.1020 0.1020 0.1189 0.9899 0.1529
(0.1641) (0.0087) (0.0177) (0.0263) (0.0507) (0.1565) (0.0079)

x3 1.0105 0.0865 0.0544 0.0563 0.0693 1.0093 0.0814
(0.0840) (0.0030) (0.0091) (0.0126) (0.0266) (0.0800) (0.0027)

x4 1.0028 0.1582 0.1276 0.1301 0.1415 1.0005 0.1008
(0.1582) (0.0036) (0.0210) (0.0278) (0.0498) (0.0996) (0.0016)

IV: all x2 0.9993 0.0839 0.0566 0.0602 0.0668 0.9979 0.0443
(0.0849) (0.0045) (0.0070) (0.0104) (0.0250) (0.0479) (0.0010)

x3 1.0059 0.0559 0.0296 0.0335 0.0443 1.0036 0.0398
(0.0547) (0.0017) (0.0035) (0.0056) (0.0167) (0.0421) (0.0008)

x4 1.0151 0.2579 0.1144 0.1336 0.1932 1.0013 0.0984
(0.2575) (0.0091) (0.0140) (0.0385) (0.0819) (0.1007) (0.0015)
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Table B.4 Small panel with G = 6, T = 4. Case 1.1: x2it ∼ N(gt/6, 1), ngt = 200, sampling
rate= 0.2%. sen, ser and sec are the non-roust, robust and cluster-robust standard errors,
receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 1.0027 0.0722 0.0697 0.0618 0.0622 1.0027 0.0721
(0.0722) (0.0017) (0.0145) (0.0181) (0.0281) (0.0722) (0.0017)

x3 0.9971 0.0398 0.0384 0.0366 0.0390 0.9972 0.0398
(0.0401) (0.0007) (0.0079) (0.0086) (0.0138) (0.0401) (0.0007)

x4 1.0010 0.1279 0.1235 0.1167 0.1325 1.0012 0.1278
(0.1304) (0.0024) (0.0256) (0.0306) (0.0490) (0.1304) (0.0024)

IV: z x2 1.0028 0.0718 0.0709 0.0510 0.0516 1.0029 0.0716
(0.0715) (0.0017) (0.0087) (0.0143) (0.0229) (0.0715) (0.0017)

x3 0.9971 0.0397 0.0392 0.0300 0.0323 0.9973 0.0396
(0.0400) (0.0007) (0.0048) (0.0069) (0.0114) (0.0401) (0.0007)

x4 1.0009 0.1275 0.1259 0.0957 0.1092 1.0009 0.1272
(0.1304) (0.0024) (0.0152) (0.0245) (0.0403) (0.1302) (0.0024)

IV: x2 x2 1.0030 0.0360 0.0332 0.0308 0.0301 0.9992 0.0205
(0.0353) (0.0011) (0.0066) (0.0058) (0.0115) (0.0204) (0.0002)

x3 0.9962 0.0465 0.0267 0.0284 0.0359 0.9980 0.0372
(0.0461) (0.0009) (0.0053) (0.0072) (0.0137) (0.0374) (0.0005)

x4 1.0016 0.1535 0.0742 0.0832 0.1166 0.9999 0.1256
(0.1567) (0.0034) (0.0148) (0.0290) (0.0554) (0.1278) (0.0023)

IV: x3 x2 1.0005 0.0769 0.0565 0.0511 0.0574 1.0006 0.0680
(0.0754) (0.0018) (0.0075) (0.0112) (0.0255) (0.0674) (0.0015)

x3 0.9989 0.0207 0.0158 0.0165 0.0180 0.9998 0.0188
(0.0211) (0.0003) (0.0021) (0.0026) (0.0060) (0.0190) (0.0002)

x4 1.0006 0.1335 0.1057 0.0993 0.1159 0.9981 0.1198
(0.1349) (0.0025) (0.0139) (0.0182) (0.0404) (0.1211) (0.0021)

IV: x4 x2 1.0030 0.0729 0.0456 0.0452 0.0518 1.0031 0.0708
(0.0731) (0.0017) (0.0074) (0.0114) (0.0234) (0.0707) (0.0017)

x3 0.9965 0.0388 0.0242 0.0251 0.0310 0.9970 0.0370
(0.0391) (0.0006) (0.0039) (0.0053) (0.0117) (0.0369) (0.0006)

x4 1.0027 0.0705 0.0564 0.0579 0.0628 1.0032 0.0454
(0.0713) (0.0007) (0.0091) (0.0120) (0.0222) (0.0461) (0.0003)

IV: all x2 1.0022 0.0378 0.0255 0.0268 0.0299 0.9991 0.0203
(0.0369) (0.0010) (0.0029) (0.0046) (0.0113) (0.0203) (0.0002)

x3 0.9980 0.0250 0.0132 0.0149 0.0197 0.9998 0.0182
(0.0252) (0.0004) (0.0015) (0.0024) (0.0069) (0.0183) (0.0002)

x4 1.0025 0.1164 0.0512 0.0595 0.0863 1.0026 0.0449
(0.1185) (0.0019) (0.0059) (0.0175) (0.0377) (0.0460) (0.0003)
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Table B.5 Small panel with G = 6, T = 4. Case 2.a: x2it ∼ N(gt/6, 1) + fi, ngt = 200,
sampling rate= 1%. sen, ser and sec are the non-roust, robust and cluster-robust standard
errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 1.0021 0.1590 0.1555 0.1397 0.1413 1.0020 0.1585
(0.1534) (0.0122) (0.0326) (0.0424) (0.0628) (0.1531) (0.0121)

x3 0.9973 0.0887 0.0866 0.0826 0.0878 0.9976 0.0884
(0.0901) (0.0040) (0.0176) (0.0195) (0.0315) (0.0904) (0.0040)

x4 1.0127 0.2848 0.2780 0.2624 0.2943 1.0129 0.2838
(0.2818) (0.0137) (0.0570) (0.0659) (0.1070) (0.2834) (0.0137)

IV: z x2 1.0530 0.1504 0.1486 0.1225 0.1240 1.0532 0.1486
(0.1447) (0.0104) (0.0206) (0.0304) (0.0514) (0.1452) (0.0103)

x3 0.9880 0.0870 0.0858 0.0690 0.0736 0.9875 0.0860
(0.0884) (0.0037) (0.0105) (0.0148) (0.0263) (0.0892) (0.0036)

x4 1.0230 0.2788 0.2749 0.2187 0.2455 1.0221 0.2755
(0.2764) (0.0129) (0.0349) (0.0496) (0.0870) (0.2774) (0.0127)

IV: x2 x2 1.2350 0.1360 0.0931 0.1025 0.1344 1.4768 0.0326
(0.1365) (0.0085) (0.0216) (0.0257) (0.0535) (0.0329) (0.0009)

x3 1.0028 0.1100 0.0528 0.0709 0.0708 0.9063 0.0802
(0.1091) (0.0048) (0.0118) (0.0235) (0.0304) (0.0833) (0.0027)

x4 0.9988 0.3415 0.1670 0.2146 0.2608 1.1332 0.2694
(0.3368) (0.0184) (0.0384) (0.0699) (0.1138) (0.2681) (0.0116)

IV: x3 x2 1.0329 0.1634 0.1218 0.1115 0.1253 1.0504 0.1424
(0.1561) (0.0117) (0.0190) (0.0258) (0.0532) (0.1404) (0.0098)

x3 0.9879 0.0463 0.0353 0.0367 0.0406 0.9885 0.0415
(0.0458) (0.0016) (0.0049) (0.0064) (0.0138) (0.0419) (0.0012)

x4 1.0083 0.2932 0.2332 0.2191 0.2567 1.0254 0.2617
(0.2885) (0.0134) (0.0333) (0.0421) (0.0918) (0.2607) (0.0112)

IV: x4 x2 1.0061 0.1588 0.1007 0.1011 0.1173 1.0505 0.1479
(0.1546) (0.0119) (0.0175) (0.0269) (0.0509) (0.1463) (0.0105)

x3 0.9975 0.0863 0.0542 0.0564 0.0693 0.9892 0.0812
(0.0862) (0.0036) (0.0088) (0.0120) (0.0252) (0.0811) (0.0032)

x4 1.0097 0.1585 0.1271 0.1303 0.1408 1.0143 0.1011
(0.1550) (0.0043) (0.0206) (0.0268) (0.0491) (0.1008) (0.0023)

IV: all x2 1.2449 0.1267 0.0574 0.0867 0.1108 1.4718 0.0319
(0.1268) (0.0079) (0.0111) (0.0218) (0.0446) (0.0335) (0.0008)

x3 0.9943 0.0881 0.0301 0.0514 0.0582 0.9687 0.0392
(0.0871) (0.0034) (0.0055) (0.0157) (0.0226) (0.0406) (0.0009)

x4 0.9839 0.3163 0.1043 0.1798 0.2246 1.0243 0.0972
(0.3119) (0.0155) (0.0198) (0.0578) (0.0964) (0.0983) (0.0016)
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Table B.6 Small panel with G = 6, T = 4. Case 2.b: x2it ∼ N(gt/6, 1) + fi, ngt = 1000,
sampling rate= 1%. sen, ser and sec are the non-roust, robust and cluster-robust standard
errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 0.9993 0.0721 0.0698 0.0628 0.0642 0.9992 0.0720
(0.0717) (0.0025) (0.0144) (0.0181) (0.0287) (0.0716) (0.0025)

x3 1.0027 0.0398 0.0385 0.0367 0.0390 1.0027 0.0397
(0.0391) (0.0008) (0.0079) (0.0085) (0.0146) (0.0392) (0.0008)

x4 1.0082 0.1283 0.1244 0.1174 0.1333 1.0084 0.1282
(0.1274) (0.0026) (0.0256) (0.0309) (0.0487) (0.1277) (0.0026)

IV: z x2 1.0107 0.0712 0.0709 0.0526 0.0545 1.0107 0.0711
(0.0706) (0.0025) (0.0088) (0.0140) (0.0235) (0.0706) (0.0024)

x3 1.0004 0.0396 0.0394 0.0301 0.0323 1.0004 0.0395
(0.0389) (0.0008) (0.0048) (0.0068) (0.0120) (0.0390) (0.0008)

x4 1.0113 0.1277 0.1271 0.0966 0.1102 1.0115 0.1274
(0.1272) (0.0026) (0.0156) (0.0247) (0.0401) (0.1276) (0.0025)

IV: x2 x2 1.2316 0.0609 0.0555 0.0664 0.1070 1.4756 0.0147
(0.0608) (0.0017) (0.0095) (0.0135) (0.0301) (0.0147) (0.0002)

x3 1.0107 0.0491 0.0312 0.0354 0.0398 0.9080 0.0365
(0.0480) (0.0009) (0.0052) (0.0098) (0.0134) (0.0352) (0.0005)

x4 1.0146 0.1532 0.0992 0.1064 0.1261 1.1474 0.1238
(0.1537) (0.0034) (0.0166) (0.0313) (0.0536) (0.1225) (0.0023)

IV: x3 x2 1.0101 0.0763 0.0562 0.0512 0.0571 1.0094 0.0675
(0.0776) (0.0026) (0.0078) (0.0110) (0.0247) (0.0658) (0.0022)

x3 1.0016 0.0207 0.0158 0.0165 0.0181 1.0023 0.0188
(0.0206) (0.0003) (0.0022) (0.0028) (0.0065) (0.0185) (0.0002)

x4 1.0115 0.1337 0.1058 0.0991 0.1160 1.0087 0.1201
(0.1325) (0.0026) (0.0147) (0.0195) (0.0408) (0.1217) (0.0022)

IV: x4 x2 1.0027 0.0726 0.0456 0.0458 0.0537 1.0094 0.0703
(0.0712) (0.0025) (0.0075) (0.0114) (0.0238) (0.0690) (0.0024)

x3 1.0030 0.0387 0.0242 0.0251 0.0313 1.0018 0.0369
(0.0382) (0.0007) (0.0040) (0.0053) (0.0117) (0.0370) (0.0007)

x4 1.0039 0.0705 0.0567 0.0580 0.0635 1.0017 0.0454
(0.0687) (0.0008) (0.0092) (0.0121) (0.0218) (0.0442) (0.0004)

IV: all x2 1.2392 0.0574 0.0337 0.0573 0.0867 1.4726 0.0146
(0.0575) (0.0016) (0.0050) (0.0117) (0.0257) (0.0146) (0.0002)

x3 1.0034 0.0394 0.0175 0.0263 0.0337 0.9803 0.0179
(0.0387) (0.0006) (0.0025) (0.0065) (0.0100) (0.0176) (0.0002)

x4 0.9986 0.1423 0.0609 0.0899 0.1093 1.0102 0.0442
(0.1424) (0.0029) (0.0088) (0.0260) (0.0448) (0.0429) (0.0003)
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Table B.7 Small panel with G = 6, T = 4. Case 2.1: x2it ∼ N(gt/6, 1) + fi, ngt = 200,
sampling rate= 0.2%. sen, ser and sec are the non-roust, robust and cluster-robust
standard errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 1.0147 0.1591 0.1553 0.1399 0.1450 1.0148 0.1586
(0.1624) (0.0126) (0.0351) (0.0428) (0.0643) (0.1624) (0.0125)

x3 1.0034 0.0889 0.0868 0.0824 0.0875 1.0033 0.0886
(0.0871) (0.0041) (0.0187) (0.0209) (0.0327) (0.0871) (0.0041)

x4 1.0175 0.2864 0.2795 0.2623 0.2987 1.0184 0.2854
(0.2885) (0.0133) (0.0597) (0.0720) (0.1101) (0.2881) (0.0132)

IV: z x2 1.0622 0.1505 0.1490 0.1216 0.1253 1.0638 0.1487
(0.1535) (0.0110) (0.0202) (0.0303) (0.0516) (0.1538) (0.0109)

x3 0.9950 0.0872 0.0863 0.0687 0.0725 0.9942 0.0862
(0.0855) (0.0037) (0.0106) (0.0159) (0.0269) (0.0855) (0.0037)

x4 1.0297 0.2804 0.2775 0.2190 0.2455 1.0314 0.2772
(0.2812) (0.0124) (0.0341) (0.0543) (0.0905) (0.2796) (0.0122)

IV: x2 x2 1.2409 0.1363 0.0920 0.1010 0.1331 1.4705 0.0324
(0.1366) (0.0084) (0.0235) (0.0265) (0.0548) (0.0328) (0.0009)

x3 1.0163 0.1100 0.0525 0.0702 0.0707 0.9150 0.0804
(0.1082) (0.0046) (0.0126) (0.0238) (0.0311) (0.0793) (0.0026)

x4 1.0187 0.3425 0.1662 0.2122 0.2587 1.1427 0.2708
(0.3458) (0.0175) (0.0403) (0.0745) (0.1200) (0.2719) (0.0113)

IV: x3 x2 1.0486 0.1630 0.1211 0.1114 0.1277 1.0592 0.1422
(0.1633) (0.0119) (0.0189) (0.0259) (0.0546) (0.1457) (0.0099)

x3 0.9996 0.0463 0.0352 0.0366 0.0399 1.0002 0.0415
(0.0465) (0.0016) (0.0049) (0.0061) (0.0140) (0.0430) (0.0012)

x4 1.0287 0.2948 0.2336 0.2195 0.2580 1.0250 0.2626
(0.2912) (0.0129) (0.0328) (0.0442) (0.0887) (0.2612) (0.0107)

IV: x4 x2 1.0223 0.1584 0.1008 0.1012 0.1200 1.0598 0.1478
(0.1602) (0.0123) (0.0184) (0.0268) (0.0525) (0.1503) (0.0108)

x3 1.0058 0.0864 0.0545 0.0564 0.0696 0.9974 0.0812
(0.0836) (0.0036) (0.0092) (0.0127) (0.0268) (0.0793) (0.0032)

x4 1.0077 0.1581 0.1276 0.1302 0.1417 1.0033 0.1008
(0.1577) (0.0043) (0.0212) (0.0279) (0.0498) (0.0991) (0.0022)

IV: all x2 1.2502 0.1271 0.0568 0.0854 0.1108 1.4657 0.0318
(0.1276) (0.0078) (0.0120) (0.0223) (0.0458) (0.0335) (0.0008)

x3 1.0080 0.0881 0.0299 0.0510 0.0579 0.9815 0.0392
(0.0864) (0.0032) (0.0059) (0.0159) (0.0234) (0.0415) (0.0009)

x4 1.0039 0.3170 0.1038 0.1782 0.2232 1.0100 0.0970
(0.3193) (0.0145) (0.0206) (0.0619) (0.1021) (0.0996) (0.0016)
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Table B.8 Small panel with G = 6, T = 4. Case 2.1: x2it ∼ N(gt/6, 1) + fi, ngt = 200,
sampling rate= 0.2%. sen, ser and sec are the non-roust, robust and cluster-robust
standard errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 1.0080 0.0719 0.0694 0.0615 0.0619 1.0080 0.0719
(0.0721) (0.0024) (0.0145) (0.0179) (0.0280) (0.0721) (0.0024)

x3 0.9961 0.0398 0.0384 0.0366 0.0390 0.9961 0.0398
(0.0401) (0.0008) (0.0079) (0.0086) (0.0138) (0.0401) (0.0008)

x4 1.0026 0.1279 0.1235 0.1166 0.1322 1.0028 0.1278
(0.1304) (0.0027) (0.0255) (0.0305) (0.0489) (0.1303) (0.0027)

IV: z x2 1.0191 0.0711 0.0702 0.0514 0.0520 1.0193 0.0709
(0.0714) (0.0024) (0.0086) (0.0138) (0.0227) (0.0715) (0.0023)

x3 0.9939 0.0396 0.0391 0.0300 0.0323 0.9940 0.0395
(0.0400) (0.0008) (0.0047) (0.0068) (0.0115) (0.0400) (0.0008)

x4 1.0057 0.1273 0.1258 0.0957 0.1090 1.0057 0.1270
(0.1302) (0.0026) (0.0151) (0.0244) (0.0403) (0.1300) (0.0026)

IV: x2 x2 1.2376 0.0610 0.0545 0.0645 0.1023 1.4775 0.0146
(0.0602) (0.0018) (0.0092) (0.0132) (0.0293) (0.0147) (0.0002)

x3 1.0016 0.0492 0.0308 0.0350 0.0389 0.9031 0.0365
(0.0485) (0.0010) (0.0051) (0.0098) (0.0128) (0.0364) (0.0006)

x4 0.9972 0.1535 0.0979 0.1051 0.1255 1.1404 0.1235
(0.1544) (0.0035) (0.0163) (0.0310) (0.0525) (0.1251) (0.0023)

IV: x3 x2 1.0108 0.0763 0.0562 0.0509 0.0571 1.0152 0.0674
(0.0749) (0.0025) (0.0076) (0.0111) (0.0253) (0.0672) (0.0021)

x3 0.9980 0.0207 0.0158 0.0165 0.0180 0.9991 0.0188
(0.0211) (0.0003) (0.0021) (0.0026) (0.0060) (0.0189) (0.0003)

x4 1.0025 0.1334 0.1057 0.0993 0.1158 0.9998 0.1198
(0.1349) (0.0027) (0.0139) (0.0182) (0.0403) (0.1210) (0.0022)

IV: x4 x2 1.0096 0.0725 0.0454 0.0450 0.0515 1.0191 0.0701
(0.0730) (0.0024) (0.0074) (0.0114) (0.0233) (0.0703) (0.0023)

x3 0.9955 0.0388 0.0241 0.0251 0.0310 0.9943 0.0370
(0.0391) (0.0008) (0.0039) (0.0053) (0.0116) (0.0368) (0.0007)

x4 1.0038 0.0704 0.0564 0.0578 0.0627 1.0038 0.0454
(0.0713) (0.0009) (0.0091) (0.0120) (0.0221) (0.0460) (0.0005)

IV: all x2 1.2440 0.0575 0.0332 0.0555 0.0824 1.4744 0.0145
(0.0568) (0.0017) (0.0048) (0.0114) (0.0251) (0.0147) (0.0002)

x3 0.9957 0.0394 0.0172 0.0260 0.0329 0.9777 0.0179
(0.0391) (0.0007) (0.0025) (0.0065) (0.0093) (0.0180) (0.0002)

x4 0.9832 0.1426 0.0601 0.0886 0.1086 1.0106 0.0442
(0.1436) (0.0030) (0.0086) (0.0260) (0.0443) (0.0448) (0.0003)
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Table B.9 Small panel with G = 6, T = 4. Case 3.a: x2it ∼ N(gt/6, 1) + zi, ngt = 200,
sampling rate= 1%. sen, ser and sec are the non-roust, robust and cluster-robust standard
errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 0.9764 0.1586 0.1548 0.1389 0.1403 0.9765 0.1581
(0.1533) (0.0116) (0.0325) (0.0425) (0.0621) (0.1528) (0.0116)

x3 1.0024 0.0887 0.0865 0.0825 0.0874 1.0027 0.0884
(0.0902) (0.0038) (0.0175) (0.0195) (0.0315) (0.0903) (0.0038)

x4 1.0051 0.2850 0.2779 0.2626 0.2944 1.0055 0.2840
(0.2823) (0.0131) (0.0569) (0.0663) (0.1072) (0.2839) (0.0131)

IV: z x2 1.0018 0.0463 0.0456 0.0508 0.0499 1.0020 0.0452
(0.0460) (0.0012) (0.0055) (0.0077) (0.0154) (0.0462) (0.0011)

x3 0.9980 0.0826 0.0813 0.0667 0.0713 0.9976 0.0816
(0.0841) (0.0027) (0.0098) (0.0150) (0.0257) (0.0850) (0.0026)

x4 1.0087 0.2766 0.2723 0.2202 0.2462 1.0080 0.2734
(0.2738) (0.0118) (0.0341) (0.0495) (0.0869) (0.2751) (0.0116)

IV: x2 x2 1.0042 0.0440 0.0487 0.0489 0.0422 1.0041 0.0329
(0.0431) (0.0020) (0.0088) (0.0092) (0.0154) (0.0331) (0.0007)

x3 0.9967 0.1092 0.0679 0.0707 0.0881 0.9978 0.0815
(0.1076) (0.0046) (0.0126) (0.0175) (0.0335) (0.0846) (0.0026)

x4 0.9932 0.3584 0.1885 0.2042 0.2764 1.0090 0.2734
(0.3591) (0.0192) (0.0365) (0.0643) (0.1203) (0.2779) (0.0117)

IV: x3 x2 0.9840 0.1633 0.1215 0.1104 0.1236 0.9850 0.1423
(0.1582) (0.0111) (0.0189) (0.0257) (0.0529) (0.1420) (0.0091)

x3 0.9923 0.0464 0.0353 0.0367 0.0403 0.9919 0.0416
(0.0460) (0.0014) (0.0049) (0.0064) (0.0137) (0.0421) (0.0011)

x4 0.9989 0.2941 0.2333 0.2192 0.2552 1.0189 0.2625
(0.2890) (0.0129) (0.0332) (0.0421) (0.0917) (0.2617) (0.0107)

IV: x4 x2 0.9740 0.1582 0.1002 0.1004 0.1162 0.9828 0.1474
(0.1543) (0.0113) (0.0173) (0.0270) (0.0502) (0.1441) (0.0096)

x3 1.0025 0.0863 0.0541 0.0563 0.0689 1.0010 0.0812
(0.0862) (0.0034) (0.0087) (0.0119) (0.0252) (0.0810) (0.0030)

x4 1.0045 0.1586 0.1270 0.1303 0.1406 1.0111 0.1011
(0.1553) (0.0036) (0.0205) (0.0269) (0.0490) (0.1014) (0.0017)

IV: all x2 1.0052 0.0404 0.0296 0.0335 0.0379 1.0043 0.0322
(0.0399) (0.0013) (0.0037) (0.0051) (0.0126) (0.0333) (0.0007)

x3 0.9925 0.0565 0.0312 0.0348 0.0458 0.9914 0.0397
(0.0559) (0.0017) (0.0039) (0.0058) (0.0160) (0.0414) (0.0008)

x4 0.9959 0.2653 0.1211 0.1423 0.2010 1.0133 0.0985
(0.2635) (0.0101) (0.0157) (0.0383) (0.0807) (0.1012) (0.0015)
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Table B.10 Small panel with G = 6, T = 4. Case 3.b: x2it ∼ N(gt/6, 1) + zi, ngt = 1000,
sampling rate= 1%. sen, ser and sec are the non-roust, robust and cluster-robust standard
errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 0.9937 0.0720 0.0698 0.0627 0.0639 0.9936 0.0720
(0.0714) (0.0023) (0.0144) (0.0181) (0.0283) (0.0713) (0.0023)

x3 1.0038 0.0398 0.0385 0.0366 0.0391 1.0038 0.0397
(0.0391) (0.0007) (0.0079) (0.0085) (0.0146) (0.0391) (0.0007)

x4 1.0066 0.1283 0.1244 0.1174 0.1332 1.0068 0.1282
(0.1273) (0.0025) (0.0256) (0.0308) (0.0487) (0.1276) (0.0025)

IV: z x2 0.9982 0.0206 0.0205 0.0229 0.0223 0.9982 0.0205
(0.0191) (0.0002) (0.0025) (0.0034) (0.0073) (0.0191) (0.0002)

x3 1.0029 0.0372 0.0371 0.0295 0.0317 1.0029 0.0371
(0.0356) (0.0005) (0.0045) (0.0067) (0.0121) (0.0357) (0.0005)

x4 1.0077 0.1261 0.1258 0.0982 0.1118 1.0080 0.1259
(0.1244) (0.0023) (0.0154) (0.0243) (0.0403) (0.1249) (0.0023)

IV: x2 x2 0.9964 0.0192 0.0218 0.0217 0.0189 0.9987 0.0148
(0.0191) (0.0004) (0.0039) (0.0040) (0.0069) (0.0143) (0.0001)

x3 1.0049 0.0489 0.0307 0.0320 0.0406 1.0027 0.0370
(0.0489) (0.0009) (0.0055) (0.0077) (0.0153) (0.0355) (0.0005)

x4 1.0179 0.1624 0.0859 0.0921 0.1246 1.0084 0.1258
(0.1651) (0.0036) (0.0154) (0.0290) (0.0553) (0.1239) (0.0023)

IV: x3 x2 0.9995 0.0763 0.0562 0.0510 0.0570 0.9945 0.0675
(0.0773) (0.0025) (0.0078) (0.0109) (0.0245) (0.0654) (0.0021)

x3 1.0026 0.0207 0.0158 0.0165 0.0180 1.0031 0.0188
(0.0206) (0.0003) (0.0022) (0.0028) (0.0065) (0.0186) (0.0002)

x4 1.0097 0.1338 0.1059 0.0992 0.1159 1.0070 0.1202
(0.1327) (0.0025) (0.0147) (0.0195) (0.0408) (0.1218) (0.0020)

IV: x4 x2 0.9956 0.0726 0.0456 0.0457 0.0533 0.9933 0.0703
(0.0710) (0.0023) (0.0075) (0.0114) (0.0236) (0.0692) (0.0022)

x3 1.0041 0.0387 0.0242 0.0251 0.0314 1.0046 0.0369
(0.0382) (0.0007) (0.0040) (0.0054) (0.0117) (0.0371) (0.0006)

x4 1.0028 0.0705 0.0567 0.0580 0.0634 1.0011 0.0454
(0.0686) (0.0007) (0.0093) (0.0121) (0.0219) (0.0442) (0.0003)

IV: all x2 0.9979 0.0178 0.0133 0.0150 0.0168 0.9986 0.0147
(0.0171) (0.0003) (0.0016) (0.0022) (0.0058) (0.0144) (0.0001)

x3 1.0037 0.0252 0.0141 0.0158 0.0208 1.0031 0.0182
(0.0252) (0.0004) (0.0017) (0.0026) (0.0076) (0.0179) (0.0002)

x4 1.0120 0.1203 0.0553 0.0646 0.0910 1.0014 0.0448
(0.1207) (0.0019) (0.0067) (0.0176) (0.0377) (0.0440) (0.0003)
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Table B.11 Small panel with G = 6, T = 4. Case 3.1: x2it ∼ N(gt/6, 1) + zi, ngt = 200,
sampling rate= 0.2%. sen, ser and sec are the non-roust, robust and cluster-robust
standard errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 0.9909 0.1590 0.1552 0.1393 0.1423 0.9911 0.1585
(0.1623) (0.0117) (0.0349) (0.0425) (0.0603) (0.1623) (0.0117)

x3 1.0079 0.0890 0.0868 0.0825 0.0873 1.0077 0.0887
(0.0870) (0.0037) (0.0185) (0.0210) (0.0329) (0.0870) (0.0037)

x4 1.0113 0.2868 0.2798 0.2625 0.2991 1.0123 0.2858
(0.2880) (0.0127) (0.0594) (0.0714) (0.1095) (0.2877) (0.0127)

IV: z x2 0.9980 0.0463 0.0457 0.0508 0.0496 0.9979 0.0452
(0.0430) (0.0012) (0.0054) (0.0073) (0.0159) (0.0437) (0.0012)

x3 1.0070 0.0827 0.0820 0.0670 0.0704 1.0065 0.0818
(0.0804) (0.0027) (0.0097) (0.0159) (0.0269) (0.0803) (0.0027)

x4 1.0131 0.2780 0.2757 0.2210 0.2490 1.0138 0.2749
(0.2794) (0.0115) (0.0336) (0.0535) (0.0888) (0.2780) (0.0113)

IV: x2 x2 0.9965 0.0436 0.0488 0.0490 0.0431 0.9981 0.0327
(0.0421) (0.0020) (0.0092) (0.0094) (0.0154) (0.0324) (0.0007)

x3 1.0109 0.1090 0.0688 0.0712 0.0886 1.0064 0.0816
(0.1051) (0.0048) (0.0129) (0.0177) (0.0343) (0.0801) (0.0026)

x4 1.0141 0.3598 0.1914 0.2046 0.2767 1.0140 0.2749
(0.3642) (0.0184) (0.0358) (0.0669) (0.1251) (0.2797) (0.0113)

IV: x3 x2 1.0028 0.1633 0.1213 0.1105 0.1241 0.9952 0.1426
(0.1629) (0.0111) (0.0187) (0.0252) (0.0517) (0.1465) (0.0092)

x3 1.0036 0.0465 0.0353 0.0367 0.0400 1.0034 0.0417
(0.0467) (0.0014) (0.0049) (0.0061) (0.0140) (0.0433) (0.0010)

x4 1.0203 0.2961 0.2343 0.2202 0.2588 1.0180 0.2638
(0.2919) (0.0125) (0.0328) (0.0442) (0.0881) (0.2629) (0.0103)

IV: x4 x2 0.9917 0.1583 0.1006 0.1008 0.1172 0.9920 0.1477
(0.1605) (0.0112) (0.0182) (0.0264) (0.0498) (0.1498) (0.0098)

x3 1.0102 0.0865 0.0545 0.0564 0.0695 1.0088 0.0813
(0.0836) (0.0033) (0.0091) (0.0128) (0.0268) (0.0795) (0.0029)

x4 1.0034 0.1584 0.1277 0.1303 0.1417 1.0010 0.1010
(0.1576) (0.0037) (0.0210) (0.0278) (0.0498) (0.0992) (0.0017)

IV: all x2 0.9980 0.0402 0.0296 0.0335 0.0379 0.9981 0.0321
(0.0376) (0.0013) (0.0037) (0.0050) (0.0125) (0.0330) (0.0007)

x3 1.0071 0.0564 0.0314 0.0350 0.0458 1.0036 0.0397
(0.0550) (0.0018) (0.0039) (0.0059) (0.0171) (0.0421) (0.0008)

x4 1.0122 0.2656 0.1223 0.1432 0.2011 1.0013 0.0984
(0.2666) (0.0100) (0.0153) (0.0408) (0.0858) (0.1007) (0.0015)
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Table B.12 Small panel with G = 6, T = 4. Case 3.1: x2it ∼ N(gt/6, 1) + zi, ngt = 200,
sampling rate= 0.2%. sen, ser and sec are the non-roust, robust and cluster-robust
standard errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 1.0027 0.0720 0.0695 0.0618 0.0623 1.0027 0.0720
(0.0721) (0.0023) (0.0146) (0.0182) (0.0281) (0.0722) (0.0023)

x3 0.9971 0.0398 0.0384 0.0366 0.0390 0.9972 0.0398
(0.0401) (0.0008) (0.0080) (0.0086) (0.0138) (0.0401) (0.0008)

x4 1.0010 0.1280 0.1235 0.1166 0.1324 1.0012 0.1279
(0.1305) (0.0025) (0.0256) (0.0305) (0.0489) (0.1304) (0.0025)

IV: z x2 1.0012 0.0206 0.0203 0.0227 0.0222 1.0012 0.0205
(0.0196) (0.0002) (0.0024) (0.0034) (0.0073) (0.0197) (0.0002)

x3 0.9975 0.0373 0.0369 0.0295 0.0320 0.9976 0.0372
(0.0372) (0.0005) (0.0045) (0.0069) (0.0115) (0.0372) (0.0005)

x4 1.0004 0.1258 0.1245 0.0977 0.1110 1.0005 0.1256
(0.1286) (0.0023) (0.0150) (0.0240) (0.0398) (0.1283) (0.0023)

IV: x2 x2 1.0005 0.0192 0.0216 0.0216 0.0189 1.0000 0.0148
(0.0186) (0.0004) (0.0041) (0.0040) (0.0069) (0.0145) (0.0001)

x3 0.9963 0.0490 0.0305 0.0317 0.0389 0.9978 0.0371
(0.0476) (0.0010) (0.0057) (0.0081) (0.0149) (0.0372) (0.0005)

x4 1.0004 0.1621 0.0849 0.0912 0.1240 1.0000 0.1255
(0.1665) (0.0038) (0.0161) (0.0305) (0.0578) (0.1274) (0.0023)

IV: x3 x2 1.0004 0.0765 0.0563 0.0511 0.0573 1.0003 0.0675
(0.0751) (0.0024) (0.0076) (0.0113) (0.0254) (0.0673) (0.0019)

x3 0.9989 0.0207 0.0158 0.0165 0.0180 0.9998 0.0188
(0.0211) (0.0003) (0.0021) (0.0026) (0.0060) (0.0190) (0.0002)

x4 1.0005 0.1335 0.1057 0.0993 0.1158 0.9980 0.1199
(0.1350) (0.0025) (0.0139) (0.0182) (0.0403) (0.1212) (0.0021)

IV: x4 x2 1.0028 0.0727 0.0455 0.0451 0.0518 1.0026 0.0703
(0.0730) (0.0023) (0.0075) (0.0115) (0.0233) (0.0699) (0.0022)

x3 0.9965 0.0388 0.0242 0.0251 0.0310 0.9971 0.0370
(0.0391) (0.0007) (0.0039) (0.0053) (0.0116) (0.0369) (0.0006)

x4 1.0027 0.0705 0.0564 0.0579 0.0628 1.0032 0.0454
(0.0713) (0.0007) (0.0091) (0.0120) (0.0221) (0.0461) (0.0003)

IV: all x2 1.0004 0.0178 0.0132 0.0149 0.0170 1.0000 0.0147
(0.0172) (0.0003) (0.0016) (0.0022) (0.0057) (0.0145) (0.0001)

x3 0.9983 0.0252 0.0140 0.0156 0.0203 0.9998 0.0182
(0.0251) (0.0004) (0.0017) (0.0025) (0.0072) (0.0183) (0.0002)

x4 1.0008 0.1200 0.0549 0.0640 0.0902 1.0026 0.0449
(0.1228) (0.0020) (0.0066) (0.0181) (0.0386) (0.0460) (0.0003)
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Table B.13 Small panel with G = 6, T = 4. Case 4.a: x2it ∼ N(gt/6, 1) + zi + fi,
ngt = 200, sampling rate= 1%. sen, ser and sec are the non-roust, robust and
cluster-robust standard errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 1.0020 0.1570 0.1533 0.1380 0.1399 1.0020 0.1565
(0.1521) (0.0139) (0.0329) (0.0425) (0.0620) (0.1516) (0.0138)

x3 0.9972 0.0888 0.0866 0.0825 0.0875 0.9975 0.0884
(0.0901) (0.0043) (0.0176) (0.0196) (0.0314) (0.0903) (0.0043)

x4 1.0131 0.2854 0.2783 0.2628 0.2947 1.0133 0.2844
(0.2825) (0.0140) (0.0571) (0.0662) (0.1072) (0.2839) (0.0139)

IV: z x2 1.0084 0.0460 0.0454 0.0505 0.0495 1.0086 0.0450
(0.0456) (0.0014) (0.0055) (0.0078) (0.0154) (0.0459) (0.0013)

x3 0.9967 0.0825 0.0813 0.0667 0.0712 0.9963 0.0816
(0.0841) (0.0027) (0.0098) (0.0150) (0.0257) (0.0850) (0.0027)

x4 1.0104 0.2764 0.2722 0.2201 0.2462 1.0097 0.2732
(0.2735) (0.0119) (0.0342) (0.0495) (0.0869) (0.2747) (0.0117)

IV: x2 x2 1.2218 0.0954 0.0741 0.0775 0.0979 1.3252 0.0267
(0.0963) (0.0072) (0.0173) (0.0191) (0.0426) (0.0276) (0.0006)

x3 1.0029 0.1121 0.0529 0.0726 0.0728 0.9357 0.0803
(0.1114) (0.0048) (0.0122) (0.0237) (0.0311) (0.0841) (0.0026)

x4 0.9978 0.3470 0.1676 0.2207 0.2681 1.0932 0.2699
(0.3442) (0.0185) (0.0396) (0.0705) (0.1154) (0.2715) (0.0115)

IV: x3 x2 1.0304 0.1585 0.1187 0.1090 0.1223 1.0463 0.1377
(0.1521) (0.0128) (0.0190) (0.0251) (0.0512) (0.1369) (0.0107)

x3 0.9880 0.0463 0.0352 0.0367 0.0405 0.9887 0.0415
(0.0459) (0.0016) (0.0049) (0.0064) (0.0137) (0.0420) (0.0012)

x4 1.0083 0.2938 0.2335 0.2194 0.2572 1.0252 0.2622
(0.2888) (0.0135) (0.0333) (0.0422) (0.0922) (0.2608) (0.0112)

IV: x4 x2 1.0055 0.1557 0.0990 0.0995 0.1154 1.0488 0.1426
(0.1523) (0.0133) (0.0177) (0.0271) (0.0500) (0.1402) (0.0110)

x3 0.9975 0.0863 0.0542 0.0564 0.0691 0.9894 0.0811
(0.0861) (0.0038) (0.0088) (0.0120) (0.0252) (0.0805) (0.0033)

x4 1.0098 0.1587 0.1272 0.1304 0.1410 1.0140 0.1013
(0.1552) (0.0043) (0.0206) (0.0268) (0.0490) (0.1008) (0.0023)

IV: all x2 1.1804 0.0713 0.0412 0.0544 0.0698 1.3193 0.0263
(0.0720) (0.0056) (0.0074) (0.0116) (0.0279) (0.0285) (0.0006)

x3 0.9944 0.0897 0.0309 0.0520 0.0576 0.9766 0.0393
(0.0890) (0.0033) (0.0054) (0.0160) (0.0234) (0.0416) (0.0009)

x4 0.9829 0.3207 0.1070 0.1838 0.2289 1.0171 0.0975
(0.3180) (0.0151) (0.0196) (0.0584) (0.0978) (0.0999) (0.0015)
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Table B.14 Small panel with G = 6, T = 4. Case 4.b: x2it ∼ N(gt/6, 1) + zi + fi,
ngt = 1000, sampling rate= 1%. sen, ser and sec are the non-roust, robust and
cluster-robust standard errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 0.9989 0.0719 0.0697 0.0627 0.0642 0.9989 0.0719
(0.0716) (0.0029) (0.0145) (0.0181) (0.0284) (0.0715) (0.0029)

x3 1.0027 0.0398 0.0385 0.0366 0.0391 1.0028 0.0397
(0.0391) (0.0009) (0.0079) (0.0085) (0.0146) (0.0392) (0.0009)

x4 1.0081 0.1283 0.1244 0.1174 0.1332 1.0083 0.1282
(0.1274) (0.0027) (0.0256) (0.0309) (0.0488) (0.1277) (0.0027)

IV: z x2 0.9996 0.0206 0.0205 0.0229 0.0223 0.9996 0.0205
(0.0191) (0.0003) (0.0025) (0.0034) (0.0073) (0.0191) (0.0003)

x3 1.0026 0.0372 0.0371 0.0295 0.0317 1.0026 0.0371
(0.0356) (0.0005) (0.0045) (0.0067) (0.0121) (0.0357) (0.0005)

x4 1.0082 0.1261 0.1258 0.0982 0.1118 1.0085 0.1259
(0.1244) (0.0023) (0.0154) (0.0243) (0.0403) (0.1249) (0.0023)

IV: x2 x2 1.2166 0.0421 0.0405 0.0458 0.0711 1.3220 0.0120
(0.0423) (0.0014) (0.0082) (0.0106) (0.0254) (0.0120) (0.0001)

x3 1.0113 0.0500 0.0286 0.0357 0.0402 0.9385 0.0365
(0.0491) (0.0009) (0.0057) (0.0104) (0.0145) (0.0353) (0.0005)

x4 1.0149 0.1559 0.0910 0.1077 0.1274 1.1027 0.1241
(0.1568) (0.0035) (0.0182) (0.0325) (0.0546) (0.1224) (0.0023)

IV: x3 x2 1.0097 0.0758 0.0559 0.0509 0.0569 1.0091 0.0671
(0.0771) (0.0030) (0.0079) (0.0110) (0.0243) (0.0653) (0.0025)

x3 1.0017 0.0207 0.0158 0.0165 0.0181 1.0024 0.0188
(0.0206) (0.0003) (0.0022) (0.0028) (0.0065) (0.0186) (0.0003)

x4 1.0115 0.1337 0.1058 0.0991 0.1159 1.0087 0.1201
(0.1325) (0.0026) (0.0147) (0.0195) (0.0408) (0.1216) (0.0022)

IV: x4 x2 1.0024 0.0724 0.0455 0.0457 0.0536 1.0090 0.0698
(0.0710) (0.0029) (0.0076) (0.0114) (0.0236) (0.0689) (0.0027)

x3 1.0031 0.0387 0.0242 0.0251 0.0314 1.0019 0.0369
(0.0382) (0.0008) (0.0040) (0.0053) (0.0117) (0.0371) (0.0007)

x4 1.0038 0.0705 0.0567 0.0580 0.0635 1.0017 0.0454
(0.0687) (0.0008) (0.0093) (0.0121) (0.0219) (0.0442) (0.0004)

IV: all x2 1.1734 0.0314 0.0235 0.0345 0.0533 1.3182 0.0120
(0.0317) (0.0011) (0.0031) (0.0060) (0.0158) (0.0121) (0.0001)

x3 1.0038 0.0401 0.0174 0.0252 0.0304 0.9883 0.0180
(0.0395) (0.0006) (0.0023) (0.0070) (0.0111) (0.0182) (0.0002)

x4 0.9986 0.1446 0.0608 0.0877 0.1063 1.0073 0.0444
(0.1451) (0.0028) (0.0081) (0.0268) (0.0455) (0.0444) (0.0003)
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Table B.15 Small panel with G = 6, T = 4. Case 4.1: x2it ∼ N(gt/6, 1) + zi + fi,
ngt = 200, sampling rate= 0.2%. sen, ser and sec are the non-roust, robust and
cluster-robust standard errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 1.0153 0.1575 0.1537 0.1388 0.1440 1.0155 0.1569
(0.1599) (0.0143) (0.0356) (0.0427) (0.0631) (0.1598) (0.0142)

x3 1.0031 0.0890 0.0868 0.0825 0.0876 1.0029 0.0887
(0.0867) (0.0043) (0.0187) (0.0211) (0.0331) (0.0866) (0.0043)

x4 1.0184 0.2869 0.2799 0.2628 0.2990 1.0194 0.2859
(0.2879) (0.0135) (0.0597) (0.0718) (0.1099) (0.2877) (0.0135)

IV: z x2 1.0048 0.0462 0.0455 0.0506 0.0494 1.0048 0.0451
(0.0431) (0.0014) (0.0054) (0.0074) (0.0159) (0.0437) (0.0014)

x3 1.0057 0.0827 0.0820 0.0670 0.0704 1.0052 0.0818
(0.0804) (0.0027) (0.0097) (0.0159) (0.0270) (0.0803) (0.0027)

x4 1.0149 0.2779 0.2756 0.2210 0.2488 1.0157 0.2748
(0.2792) (0.0115) (0.0336) (0.0535) (0.0889) (0.2778) (0.0113)

IV: x2 x2 1.2218 0.0951 0.0728 0.0752 0.0947 1.3194 0.0266
(0.0947) (0.0071) (0.0188) (0.0191) (0.0420) (0.0266) (0.0006)

x3 1.0175 0.1119 0.0522 0.0715 0.0722 0.9439 0.0806
(0.1094) (0.0048) (0.0129) (0.0243) (0.0320) (0.0790) (0.0026)

x4 1.0190 0.3481 0.1655 0.2170 0.2634 1.1004 0.2714
(0.3531) (0.0175) (0.0410) (0.0755) (0.1217) (0.2737) (0.0112)

IV: x3 x2 1.0478 0.1585 0.1185 0.1092 0.1239 1.0572 0.1379
(0.1584) (0.0127) (0.0191) (0.0256) (0.0524) (0.1415) (0.0106)

x3 0.9997 0.0463 0.0352 0.0366 0.0400 1.0003 0.0415
(0.0465) (0.0016) (0.0049) (0.0061) (0.0139) (0.0431) (0.0012)

x4 1.0287 0.2953 0.2339 0.2199 0.2586 1.0252 0.2631
(0.2908) (0.0130) (0.0328) (0.0441) (0.0884) (0.2615) (0.0108)

IV: x4 x2 1.0224 0.1557 0.0994 0.1000 0.1179 1.0573 0.1430
(0.1568) (0.0136) (0.0187) (0.0266) (0.0514) (0.1437) (0.0116)

x3 1.0056 0.0864 0.0545 0.0565 0.0698 0.9976 0.0811
(0.0832) (0.0038) (0.0092) (0.0128) (0.0270) (0.0789) (0.0033)

x4 1.0083 0.1583 0.1278 0.1303 0.1418 1.0035 0.1010
(0.1572) (0.0044) (0.0212) (0.0279) (0.0499) (0.0988) (0.0022)

IV: all x2 1.1794 0.0710 0.0407 0.0531 0.0677 1.3142 0.0262
(0.0707) (0.0057) (0.0078) (0.0114) (0.0273) (0.0275) (0.0006)

x3 1.0090 0.0896 0.0306 0.0514 0.0573 0.9894 0.0393
(0.0875) (0.0032) (0.0057) (0.0163) (0.0243) (0.0424) (0.0009)

x4 1.0036 0.3215 0.1062 0.1814 0.2260 1.0073 0.0974
(0.3253) (0.0143) (0.0198) (0.0624) (0.1035) (0.1018) (0.0015)
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Table B.16 Small panel with G = 6, T = 4. Case 4.1: x2it ∼ N(gt/6, 1) + zi + fi,
ngt = 200, sampling rate= 0.2%. sen, ser and sec are the non-roust, robust and
cluster-robust standard errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 1.0079 0.0718 0.0693 0.0615 0.0620 1.0079 0.0717
(0.0721) (0.0028) (0.0146) (0.0181) (0.0280) (0.0721) (0.0028)

x3 0.9961 0.0398 0.0384 0.0365 0.0390 0.9961 0.0398
(0.0401) (0.0009) (0.0079) (0.0086) (0.0138) (0.0400) (0.0009)

x4 1.0026 0.1279 0.1235 0.1165 0.1321 1.0027 0.1279
(0.1305) (0.0027) (0.0255) (0.0305) (0.0488) (0.1304) (0.0027)

IV: z x2 1.0025 0.0205 0.0203 0.0226 0.0221 1.0026 0.0204
(0.0196) (0.0003) (0.0024) (0.0034) (0.0073) (0.0196) (0.0003)

x3 0.9972 0.0373 0.0369 0.0295 0.0320 0.9973 0.0372
(0.0372) (0.0006) (0.0045) (0.0069) (0.0115) (0.0372) (0.0006)

x4 1.0008 0.1258 0.1244 0.0977 0.1109 1.0009 0.1255
(0.1285) (0.0023) (0.0150) (0.0240) (0.0398) (0.1283) (0.0023)

IV: x2 x2 1.2219 0.0422 0.0397 0.0445 0.0677 1.3238 0.0120
(0.0420) (0.0015) (0.0079) (0.0105) (0.0250) (0.0121) (0.0001)

x3 1.0015 0.0501 0.0281 0.0352 0.0389 0.9336 0.0366
(0.0490) (0.0010) (0.0056) (0.0104) (0.0138) (0.0367) (0.0005)

x4 0.9986 0.1561 0.0895 0.1057 0.1275 1.0948 0.1238
(0.1587) (0.0036) (0.0179) (0.0324) (0.0540) (0.1257) (0.0023)

IV: x3 x2 1.0106 0.0759 0.0560 0.0509 0.0570 1.0148 0.0669
(0.0747) (0.0029) (0.0076) (0.0111) (0.0251) (0.0670) (0.0024)

x3 0.9980 0.0207 0.0158 0.0165 0.0180 0.9991 0.0188
(0.0211) (0.0003) (0.0021) (0.0026) (0.0060) (0.0189) (0.0003)

x4 1.0024 0.1335 0.1057 0.0992 0.1158 0.9997 0.1198
(0.1349) (0.0027) (0.0139) (0.0181) (0.0402) (0.1211) (0.0023)

IV: x4 x2 1.0094 0.0723 0.0453 0.0449 0.0515 1.0185 0.0697
(0.0729) (0.0028) (0.0075) (0.0115) (0.0233) (0.0696) (0.0026)

x3 0.9955 0.0388 0.0241 0.0251 0.0310 0.9944 0.0370
(0.0391) (0.0008) (0.0039) (0.0053) (0.0116) (0.0368) (0.0007)

x4 1.0038 0.0705 0.0564 0.0578 0.0627 1.0038 0.0454
(0.0713) (0.0009) (0.0091) (0.0119) (0.0220) (0.0461) (0.0005)

IV: all x2 1.1771 0.0316 0.0232 0.0336 0.0513 1.3198 0.0120
(0.0312) (0.0012) (0.0030) (0.0058) (0.0157) (0.0123) (0.0001)

x3 0.9954 0.0402 0.0172 0.0248 0.0294 0.9849 0.0180
(0.0395) (0.0007) (0.0022) (0.0071) (0.0103) (0.0185) (0.0002)

x4 0.9840 0.1447 0.0601 0.0861 0.1059 1.0069 0.0444
(0.1473) (0.0029) (0.0078) (0.0270) (0.0456) (0.0458) (0.0003)
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Table B.17 Small panel with G = 6, T = 4. Case 5.a: x2it ∼ N(gt/2, 1) + zi + fi,
ngt = 200, sampling rate= 1%. sen, ser and sec are the non-roust, robust and
cluster-robust standard errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 0.9951 0.0539 0.0527 0.0470 0.0472 0.9951 0.0537
(0.0524) (0.0021) (0.0106) (0.0142) (0.0211) (0.0522) (0.0021)

x3 1.0007 0.0887 0.0866 0.0825 0.0875 1.0010 0.0884
(0.0906) (0.0033) (0.0175) (0.0194) (0.0316) (0.0908) (0.0032)

x4 1.0074 0.2843 0.2777 0.2625 0.2945 1.0078 0.2834
(0.2817) (0.0129) (0.0569) (0.0661) (0.1070) (0.2834) (0.0128)

IV: z x2 1.0029 0.0359 0.0354 0.0358 0.0352 1.0030 0.0352
(0.0360) (0.0010) (0.0043) (0.0053) (0.0117) (0.0361) (0.0010)

x3 0.9966 0.0847 0.0833 0.0687 0.0727 0.9962 0.0836
(0.0863) (0.0028) (0.0101) (0.0143) (0.0256) (0.0871) (0.0028)

x4 1.0107 0.2777 0.2733 0.2200 0.2460 1.0099 0.2744
(0.2754) (0.0120) (0.0345) (0.0494) (0.0865) (0.2765) (0.0118)

IV: x2 x2 1.0240 0.0787 0.0380 0.0456 0.0469 1.2598 0.0247
(0.0782) (0.0044) (0.0098) (0.0120) (0.0193) (0.0252) (0.0007)

x3 0.9991 0.1118 0.0487 0.0692 0.0668 0.8485 0.0824
(0.1104) (0.0048) (0.0126) (0.0237) (0.0319) (0.0867) (0.0028)

x4 0.9839 0.3461 0.1403 0.2007 0.2496 1.2129 0.2737
(0.3425) (0.0188) (0.0369) (0.0720) (0.1127) (0.2806) (0.0119)

IV: x3 x2 1.0004 0.0572 0.0422 0.0381 0.0426 1.0026 0.0502
(0.0552) (0.0022) (0.0059) (0.0087) (0.0187) (0.0496) (0.0018)

x3 0.9908 0.0463 0.0353 0.0368 0.0405 0.9907 0.0415
(0.0461) (0.0013) (0.0049) (0.0063) (0.0136) (0.0422) (0.0010)

x4 1.0021 0.2932 0.2331 0.2190 0.2554 1.0212 0.2617
(0.2886) (0.0129) (0.0332) (0.0420) (0.0911) (0.2612) (0.0107)

IV: x4 x2 0.9950 0.0544 0.0343 0.0343 0.0395 1.0018 0.0522
(0.0534) (0.0022) (0.0056) (0.0091) (0.0173) (0.0515) (0.0020)

x3 1.0009 0.0863 0.0541 0.0563 0.0689 0.9971 0.0815
(0.0867) (0.0029) (0.0087) (0.0119) (0.0253) (0.0818) (0.0027)

x4 1.0061 0.1583 0.1269 0.1303 0.1407 1.0121 0.1008
(0.1549) (0.0036) (0.0205) (0.0269) (0.0491) (0.1011) (0.0017)

IV: all x2 1.0226 0.0745 0.0227 0.0388 0.0409 1.2477 0.0240
(0.0740) (0.0040) (0.0052) (0.0101) (0.0166) (0.0255) (0.0006)

x3 0.9952 0.1014 0.0284 0.0565 0.0575 0.9575 0.0399
(0.1000) (0.0041) (0.0065) (0.0189) (0.0265) (0.0421) (0.0009)

x4 0.9774 0.3369 0.0857 0.1775 0.2239 1.0247 0.0986
(0.3333) (0.0176) (0.0199) (0.0634) (0.1009) (0.1011) (0.0016)
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Table B.18 Small panel with G = 6, T = 4. Case 5.b: x2it ∼ N(gt/2, 1) + zi + fi,
ngt = 1000, sampling rate= 1%. sen, ser and sec are the non-roust, robust and
cluster-robust standard errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 0.9985 0.0241 0.0233 0.0209 0.0213 0.9985 0.0241
(0.0239) (0.0004) (0.0048) (0.0060) (0.0095) (0.0239) (0.0004)

x3 1.0034 0.0397 0.0385 0.0366 0.0390 1.0034 0.0397
(0.0391) (0.0006) (0.0079) (0.0085) (0.0146) (0.0391) (0.0006)

x4 1.0072 0.1282 0.1244 0.1174 0.1333 1.0074 0.1281
(0.1273) (0.0024) (0.0256) (0.0308) (0.0486) (0.1276) (0.0024)

IV: z x2 0.9991 0.0160 0.0160 0.0161 0.0157 0.9992 0.0160
(0.0150) (0.0002) (0.0019) (0.0022) (0.0052) (0.0151) (0.0002)

x3 1.0031 0.0382 0.0380 0.0304 0.0324 1.0030 0.0381
(0.0368) (0.0006) (0.0047) (0.0065) (0.0120) (0.0369) (0.0006)

x4 1.0075 0.1268 0.1264 0.0981 0.1116 1.0078 0.1265
(0.1251) (0.0023) (0.0156) (0.0243) (0.0404) (0.1256) (0.0023)

IV: x2 x2 1.0251 0.0351 0.0193 0.0217 0.0229 1.2599 0.0111
(0.0355) (0.0008) (0.0041) (0.0052) (0.0093) (0.0109) (0.0001)

x3 1.0089 0.0498 0.0247 0.0312 0.0307 0.8485 0.0374
(0.0489) (0.0009) (0.0052) (0.0104) (0.0149) (0.0368) (0.0006)

x4 1.0059 0.1552 0.0715 0.0902 0.1118 1.2361 0.1259
(0.1551) (0.0035) (0.0150) (0.0330) (0.0517) (0.1265) (0.0023)

IV: x3 x2 1.0010 0.0257 0.0189 0.0171 0.0191 0.9998 0.0227
(0.0260) (0.0005) (0.0026) (0.0037) (0.0083) (0.0221) (0.0004)

x3 1.0023 0.0207 0.0158 0.0165 0.0180 1.0028 0.0188
(0.0206) (0.0002) (0.0022) (0.0028) (0.0065) (0.0186) (0.0002)

x4 1.0104 0.1337 0.1059 0.0991 0.1159 1.0076 0.1201
(0.1325) (0.0025) (0.0147) (0.0195) (0.0408) (0.1217) (0.0020)

IV: x4 x2 0.9993 0.0243 0.0153 0.0153 0.0178 0.9995 0.0237
(0.0238) (0.0004) (0.0025) (0.0038) (0.0079) (0.0233) (0.0004)

x3 1.0037 0.0387 0.0242 0.0251 0.0313 1.0036 0.0369
(0.0381) (0.0006) (0.0040) (0.0053) (0.0117) (0.0370) (0.0005)

x4 1.0032 0.0705 0.0567 0.0579 0.0635 1.0013 0.0454
(0.0686) (0.0007) (0.0093) (0.0121) (0.0218) (0.0442) (0.0003)

IV: all x2 1.0231 0.0333 0.0117 0.0188 0.0197 1.2498 0.0109
(0.0337) (0.0008) (0.0021) (0.0043) (0.0081) (0.0109) (0.0001)

x3 1.0052 0.0452 0.0147 0.0257 0.0267 0.9681 0.0182
(0.0444) (0.0008) (0.0026) (0.0082) (0.0123) (0.0183) (0.0002)

x4 0.9991 0.1512 0.0445 0.0801 0.1005 1.0142 0.0448
(0.1511) (0.0033) (0.0080) (0.0290) (0.0463) (0.0447) (0.0003)
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Table B.19 Small panel with G = 6, T = 4. Case 5.1: x2it ∼ N(gt/2, 1) + zi + fi,
ngt = 200, sampling rate= 0.2%. sen, ser and sec are the non-roust, robust and
cluster-robust standard errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 0.9993 0.0539 0.0527 0.0471 0.0479 0.9994 0.0537
(0.0550) (0.0021) (0.0113) (0.0141) (0.0206) (0.0550) (0.0021)

x3 1.0066 0.0888 0.0868 0.0823 0.0871 1.0064 0.0885
(0.0874) (0.0032) (0.0185) (0.0208) (0.0326) (0.0874) (0.0032)

x4 1.0131 0.2859 0.2794 0.2623 0.2988 1.0141 0.2849
(0.2886) (0.0124) (0.0595) (0.0718) (0.1102) (0.2882) (0.0124)

IV: z x2 1.0017 0.0360 0.0355 0.0359 0.0353 1.0017 0.0353
(0.0342) (0.0010) (0.0042) (0.0051) (0.0115) (0.0347) (0.0010)

x3 1.0058 0.0848 0.0841 0.0688 0.0715 1.0052 0.0838
(0.0826) (0.0028) (0.0100) (0.0154) (0.0270) (0.0828) (0.0028)

x4 1.0151 0.2793 0.2767 0.2209 0.2483 1.0159 0.2761
(0.2798) (0.0117) (0.0339) (0.0534) (0.0897) (0.2784) (0.0115)

IV: x2 x2 1.0280 0.0785 0.0376 0.0449 0.0466 1.2559 0.0245
(0.0797) (0.0042) (0.0107) (0.0125) (0.0206) (0.0244) (0.0006)

x3 1.0159 0.1117 0.0483 0.0684 0.0662 0.8574 0.0825
(0.1086) (0.0048) (0.0134) (0.0242) (0.0324) (0.0821) (0.0027)

x4 1.0101 0.3470 0.1393 0.1977 0.2463 1.2250 0.2751
(0.3527) (0.0178) (0.0385) (0.0766) (0.1195) (0.2813) (0.0116)

IV: x3 x2 1.0062 0.0571 0.0420 0.0381 0.0432 1.0058 0.0502
(0.0569) (0.0022) (0.0059) (0.0086) (0.0184) (0.0514) (0.0018)

x3 1.0022 0.0464 0.0353 0.0367 0.0399 1.0023 0.0416
(0.0468) (0.0013) (0.0049) (0.0061) (0.0139) (0.0432) (0.0010)

x4 1.0234 0.2950 0.2338 0.2197 0.2577 1.0203 0.2628
(0.2921) (0.0123) (0.0328) (0.0443) (0.0886) (0.2627) (0.0102)

IV: x4 x2 1.0004 0.0543 0.0344 0.0344 0.0400 1.0051 0.0522
(0.0550) (0.0021) (0.0058) (0.0087) (0.0171) (0.0536) (0.0020)

x3 1.0088 0.0864 0.0544 0.0563 0.0694 1.0049 0.0815
(0.0839) (0.0028) (0.0091) (0.0127) (0.0267) (0.0800) (0.0026)

x4 1.0047 0.1580 0.1276 0.1303 0.1418 1.0017 0.1007
(0.1579) (0.0037) (0.0211) (0.0279) (0.0502) (0.0993) (0.0017)

IV: all x2 1.0262 0.0743 0.0225 0.0382 0.0409 1.2446 0.0239
(0.0755) (0.0038) (0.0056) (0.0106) (0.0176) (0.0250) (0.0006)

x3 1.0115 0.1012 0.0283 0.0559 0.0572 0.9700 0.0399
(0.0984) (0.0040) (0.0069) (0.0194) (0.0271) (0.0428) (0.0009)

x4 1.0035 0.3378 0.0852 0.1750 0.2212 1.0149 0.0985
(0.3431) (0.0165) (0.0207) (0.0674) (0.1072) (0.1026) (0.0017)

102



10
3

Table B.20 Small panel with G = 6, T = 4. Case 5.2: x2it ∼ N(gt/2, 1) + zi + fi,
ngt = 1000, sampling rate= 0.2%. sen, ser and sec are the non-roust, robust and
cluster-robust standard errors, receptively.

MD Identity MD Optimal

β̌ ŝe(β̌) ŝen(β̌) ŝer(β̌) ŝec(β̌) β̂ ŝe(β̂)

IV: none x2 1.0015 0.0241 0.0232 0.0206 0.0207 1.0015 0.0241
(0.0241) (0.0004) (0.0048) (0.0060) (0.0094) (0.0241) (0.0004)

x3 0.9967 0.0398 0.0384 0.0366 0.0390 0.9968 0.0398
(0.0401) (0.0006) (0.0079) (0.0086) (0.0138) (0.0401) (0.0006)

x4 1.0016 0.1279 0.1235 0.1166 0.1324 1.0018 0.1278
(0.1304) (0.0024) (0.0255) (0.0305) (0.0489) (0.1304) (0.0024)

IV: z x2 1.0018 0.0160 0.0158 0.0160 0.0157 1.0019 0.0159
(0.0151) (0.0002) (0.0019) (0.0022) (0.0054) (0.0151) (0.0002)

x3 0.9966 0.0383 0.0378 0.0304 0.0327 0.9967 0.0382
(0.0383) (0.0006) (0.0046) (0.0066) (0.0114) (0.0384) (0.0006)

x4 1.0017 0.1265 0.1251 0.0975 0.1107 1.0018 0.1262
(0.1293) (0.0023) (0.0151) (0.0239) (0.0399) (0.1290) (0.0023)

IV: x2 x2 1.0291 0.0351 0.0190 0.0214 0.0219 1.2617 0.0111
(0.0343) (0.0008) (0.0039) (0.0050) (0.0086) (0.0109) (0.0001)

x3 0.9982 0.0500 0.0245 0.0309 0.0296 0.8421 0.0375
(0.0489) (0.0010) (0.0050) (0.0106) (0.0143) (0.0381) (0.0006)

x4 0.9876 0.1554 0.0708 0.0891 0.1111 1.2310 0.1255
(0.1574) (0.0036) (0.0146) (0.0336) (0.0533) (0.1299) (0.0023)

IV: x3 x2 1.0014 0.0257 0.0189 0.0171 0.0192 1.0019 0.0227
(0.0253) (0.0004) (0.0025) (0.0037) (0.0085) (0.0226) (0.0003)

x3 0.9985 0.0207 0.0158 0.0165 0.0180 0.9995 0.0188
(0.0212) (0.0003) (0.0021) (0.0026) (0.0060) (0.0190) (0.0002)

x4 1.0012 0.1334 0.1057 0.0993 0.1158 0.9987 0.1198
(0.1350) (0.0025) (0.0139) (0.0181) (0.0403) (0.1211) (0.0021)

IV: x4 x2 1.0017 0.0243 0.0152 0.0151 0.0173 1.0028 0.0237
(0.0244) (0.0004) (0.0025) (0.0038) (0.0078) (0.0237) (0.0004)

x3 0.9962 0.0388 0.0241 0.0251 0.0309 0.9961 0.0370
(0.0392) (0.0006) (0.0039) (0.0053) (0.0117) (0.0369) (0.0005)

x4 1.0031 0.0705 0.0564 0.0579 0.0628 1.0034 0.0454
(0.0713) (0.0007) (0.0091) (0.0120) (0.0221) (0.0460) (0.0004)

IV: all x2 1.0270 0.0333 0.0116 0.0185 0.0188 1.2514 0.0109
(0.0325) (0.0008) (0.0020) (0.0042) (0.0074) (0.0110) (0.0001)

x3 0.9952 0.0453 0.0146 0.0254 0.0258 0.9645 0.0182
(0.0445) (0.0008) (0.0026) (0.0084) (0.0118) (0.0187) (0.0002)

x4 0.9816 0.1514 0.0440 0.0790 0.0997 1.0142 0.0448
(0.1535) (0.0033) (0.0078) (0.0297) (0.0478) (0.0461) (0.0003)
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CHAPTER 3

A FLEXIBLE PLUG-IN G-FORMULA FOR CONTROLLED DIRECT
EFFECTS IN MEDIATION ANALYSIS

3.1 Introduction

In the literature of epidemiology and biostatistics, the term g-methods (e.g., Westreich et al.,

2012) are often used to collectively refer to g-formula (Robins, 1986), g-estimation of struc-

tural nested models (Robins, 1998), and inverse probability weighting of marginal structural

models (Horvitz and Thompson, 1952; Robins, 1989; Hernan and Robins, 2015), all of which

are useful approaches in estimating the effects of time-varying treatments in the presence of

time-varying confounders. The g-formula in its original form is non-parametric and is the

foundation for the other two. While non-parametric g-formula is flexible in its model specifi-

cation, it is also quite demanding on data. Therefore, we often introduce semi-parametric or

parametric modeling. Despite the fact that parametric models are almost always misspec-

ified, the parametric g-formula often yields satisfactory estimates as long as the specified

models are reasonably flexible. However, most applications of the parametric g-formula (e.g.,

Westreich et al., 2012; Taubman et al., 2009; Young et al., 2011; Danaei et al., 2013; Lajous

et al., 2013; Garcia-Aymerich et al., 2014) still use Monte Carlo integration to calculate be-

cause closed-form expressions of the treatment effects of interest are either non-existent or

tedious to derive.

The application of these g-method to mediation analysis is straightforward as mediation

analysis is conceptually equivalent to a sequential treatment of two periods. Since Robins

and Greenland (1992) conceptualize the natural and controlled effects in mediation analysis

using the potential outcome (counterfactual) framework, several mediation analysis meth-

ods are developed from g-methods. These methods include, among others, the parametric

g-formula in Daniel, De Stavola and Cousens (2011) and Valeri and Vanderweele (2013),
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and the parametric version of the sequential g-estimation of structural nested mean models

(SNMMs) studied by Vansteelandt (2009). As in the case of g-methods, these methods also

rely on Monte Carlo integration to calculate the treatment effects of interest, which can be

computationally demanding. Meanwhile, since there is no closed-form expressions, we almost

always need to bootstrap the standard errors, which raises the computation intensity rapidly.

When the estimation itself is time-consuming, the problem gets amplified even further. This

includes, but not limited to, maximum likelihood estimation when it converges slowly and

most semi-parametric or non-parametric techniques that require cross validation for tuning

parameter selection.

In view of this limitation, in this chapter we propose a so called flexible plug-in g-formula

for controlled direct effects (CDE) in mediation analysis. The key assumption needed is

that the conditional expectation of the outcome is linear in time-varying confounders. This

partial linearity allows us to replace the confounders with their fitted values, which results

in a plug-in estimator for CDE. At the same time, it also relaxes the fully linear assumptions

that are commonly used in empirical studies, which gives us more flexibility in choosing the

functional form of the outcome conditional mean. As a result, we have a better chance to

be closer to the true underlying model.

Besides the partial linearity assumption, another necessary condition for the consistency

of the flexible plug-in g-formula is the sequential ignorability assumption (Robins, 1986). To

check the robustness of the estimator to a particular violation of the sequential ignorability

assumption, we present a sensitivity analysis that is similar in spirit to that proposed by

Imai, Keele and Tingley (2010). The proposed estimator is evaluated in a small simulation

and its use is illustrated in a longitudinal cohort study.

The rest of this chapter is organized as follows. We first set up the counterfactual

mediation analysis framework in the second section. In the third section, we review the

general g-formula as well as the sequential g-estimation. In the fourth section, we present

in detail the flexible plug-in g-formula. In particular, it is compared to the sequential g-
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estimation in some commonly used linear specifications. The next two sections outline the

sensitivity analysis and an empirical application, respectively. The last section concludes.

3.2 Framework

A causal mediation analysis is typically guided by a directed acyclic graphs (DAG) (Pearl,

2009). We use the DAG G in Figure 1 for illustration, but our method can be applied in

similar models that satisfy the assumptions below. Throughout this paper, a DAG is viewed

as a graphical representation of an underlying non-parametric structural equation model with

independent errors (NPSEM-IE) (Pearl, 2009).1 A DAG and the associated NPSEM-IE are

related as usual: “there is an equation for each variable in the model, specifying that variable

as a function of its parents in the graph” (Richardson and Robins, 2013). The counterfactual

outcomes, defined by intervening on certain variables in the NPSEM-IE model, are used in

constructing the CDEs of interest.

Specifically, assume we have a longitudinal study in which each respondent was inter-

viewed 3 times at k = 0, 1, 2, with a one-time treatment A at k = 0. Each interview

generates data Lk. The purpose is to learn to what extent the treatment effect of A on Y

is mediated by a mediator M . (A,M) are the intervention nodes, and {Lk : k = 0, 1, 2} are

observed non-intervention nodes or confounders. L0 contains all baseline information, and

L1 contains all post-treatment non-intervention nodes that occur before M and confounds

the mediator-outcome relationship. As noted in Pearl (2014), we cannot identify natural

mediation effects non-parametrically because of the existence of L1. Hence, we focus on the

CDEs in this paper. The model allows for a type of harmless unobserved variables, collec-

1Although the NPSEM-IE model makes many more counterfactual independence assump-
tions than, and is a strict submodel of, the finest fully randomized causally interpretable
structured tree graph (FFRCISTG) model of (Robins, 1986; Robins and Richardson, 2010),
the generality of the latter does not play an essential role in our paper. The adoption of
NPSEM-IE, however, makes the description of the model straightforward and easy to follow,
since it is built on the traditional structural equation models and imposes simple distribution
assumptions on the errors (exogenous variables).
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Figure 3.1 A directed acyclic graph for a longitudinal study with three time points. (A,M)
are the intervention nodes, (L0, L1, Y ) the non-intervention nodes, and U0 the
unobservables.

G

tively denoted by U0 that are parents of the observed non-intervention nodes. Based on the

back-door criterion the observed non-intervention nodes block the confounding effects of U0

Pearl (2009).

Each node (including the unobservable U0) has an exogenous error (not shown in the

graph) attached solely to itself. For example, εY is the exogenous error for Y , as εU0
is for

U0. All errors are unobserved and are assumed to be jointly independent in NPSEM-IE. The

independence assumption will be relaxed in our sensitivity analysis in which a more general

NPSEM allowing correlations between ε’s will be used.

Let Y am be the counterfactual outcome where A and M are intervened to be fixed at

a and m. In the context of NPSEM-IEs, such an intervention would correspond to the

operation of deleting the equations for A and M from the system and substituting A = a

and M = m in the system. This operation is called the do operation in Pearl (2009). In

this paper, we consider a binary A so that a ∈ {0, 1}. An extension to multi-valued A

is trivial. For a fixed m, we are interested in the CDE(m) defined as E(Y 1m − Y 0m), or

E(Y (1,m)− Y (0,m)).
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3.3 Existing Methods

In the context of DAG G, we discuss two existing methods for estimating the CDE. The first

method is the g-formula for the marginal distribution of Y am introduced in Robins (1986) and

revisited in Richardson and Robins (2013), which is the basis for the parametric g-formula

and in particular for the flexible plug-in estimator. The second method is the sequential

g-estimation Vansteelandt (2009), which is, as we will show, numerically equivalent to the

flexible plug-in estimator in certain linear cases.

3.3.1 The g-Formula

In Richardson and Robins (2013), the term g-formula refers to the unextended g-formula

of Robins (1986), the extended g-formula of Robins, Hernán and SiEBERT (2004), or the

g-formula for a sequence of treatments and a single response. Among the three, the last one

is of interest in the context of DAG G and the estimation of CDEs.

Let P (Y am = y) be the distribution of the potential response Y under the sequence

of interventions (A = a,M = m), from which we can construct the CDE. Assume the

consistency rule holds Robins (1994), that is, a potential response under a hypothetical

condition that happened to take place is precisely the observed response. In addition, the

following form of sequential ignorability condition from Robins (2000) is imposed:

Y am ⊥⊥ A | L0,

Y am ⊥⊥M | L0, A, L1,
for all a,m (3.1)

where ⊥⊥ represents distributional independence. Note that condition (3.1) summarizes the

set of independence conditions for all possible values of a andm, which are needed to identify

CDEs for all possible values of M .

A logically equivalent algorithm of finding the right conditioning set of variables as the

sequential ignorability conditions in (3.1) is the sequential back-door criterion developed in
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Figure 3.2 Subgraphs for G where an upper bar means arrows pointing to a node are
removed and an under bar means arrows emitting from a node are removed.

GAM

G(M)

112



11
3

Pearl and Robins (1995), which states

(Y ⊥⊥ A | L0)G
AM

,

(Y ⊥⊥M | L0, A, L1)GM
,

(3.2)

where G(M) denotes the subgraph obtained by removing from G all arrows emerging fromM

(Figure 3.2, B), and GAM denotes the removal of both incoming arrows to M and outgoing

arrows from A (Figure 3.2, A).

Under either (3.1) or (3.2), the g-formula for the expected counterfactual outcome is

E(Y am) =

ˆ ˆ ˆ
yfY |L0,A,L1,M

(y|l0, a, l1,m)fL1|L0
(l1|l0, a)fL0

(l0)dydl1dl0 (3.3)

=

ˆ ˆ
E(y|l0, a, l1,m)fL1|L0

(l1|l0, a)fL0
(l0)dl1dl0 (3.4)

where, e.g, P (y|l0, a, l1,m) is shorthand for P (Y = y|L0 = l0, A = a, L1 = l1,M = m). See

Appendix A for detail. Then the CDE is

E(Y 1m − Y 0m)

=

ˆ ˆ
E(y|l0, 1, l1,m)fL1|L0

(l1|l0, 1)fL0
(l0)dl1dl0

−
ˆ ˆ

E(y|l0, 0, l1,m)fL1|L0
(l1|l0, )fL0

(l0)dl1dl0. (3.5)

Equation (3.3) is non-parametric in the sense that no parametric assumptions are made

yet for fY |L0,A,L1,M
(y|l0, a, l1,m), fL1|L0

(l1|l0, a) and fL0
(l0). Equation (3.4) adds an

additional assumption that the conditional mean E(y|l0, a, l1,m) exits and is finite.

Two straightforward estimation strategies to estimate E(Y am) follow from equations

(3.3) and (3.4). The first strategy exploits equation (3.3), with either non-parametric or

parametric specification of the distributions. This strategy generally involves Monte Carlo

simulation and numerical integration for calculating CDEs (Daniel, De Stavola and Cousens,

2011; Imai, Keele and Tingley, 2010; Hicks and Tingley, 2011).

The second strategy exploits equation (3.4), which avoids the estimation of the den-

sity function fY |L0,A,L1,M
(y|l0, a, l1,m). Instead, we only estimates the conditional mean
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E (Y |l0, a, l1,m). We can keep the non-parametric feature or choose suitable parametric

models to reduce computation burdens. Many applications have shown that a properly cho-

sen parametric method can provide good approximations (Westreich et al., 2012; Taubman

et al., 2009; Young et al., 2011; Danaei et al., 2013; Lajous et al., 2013; Garcia-Aymerich

et al., 2014). The estimator proposed in this chapter falls in the second estimation strategy

and imposes a particular parametric assumption on E (Y |l0, a, l1,m) that simplifies equation

(3.4) even further (details below).

3.3.2 The Sequential g-formula estimator

The sequential g-estimation for CDEs is a two-step estimator based on an SNMM (Vanstee-

landt, 2009). The idea is to first partial out the effect of the mediator on the outcome and

then regress the adjusted outcome on the treatment, the confounders, and possibly their

interactions to identify the direct effect. The sequential g-formula estimator assumes an

additive separable functional form in the conditional mean equation for Y

E(Y |l0, a, l1,m) = qA(l0, a, l1;γ) + qM (l0, a, l1,m;γ) (3.6)

where qA(·) and qM (·) are arbitrary known functions with finite dimensional parameter γ,

satisfying qM (l0, a, l1,m = 0;γ) = 0. For example, we can assume qA = γ0 + γAa+ γL0
l0 +

γL1
l1 and qM = γMm. In addition, assume an SNMM for E(Y am − Y 0m|l0) = ϕAa where

ϕA is the CDE. Then the sequential g-estimation procedure is:

1. regress Y on (1, L0, A, L1,M) and obtain the ordinary least square (OLS) estimator

γ̂M for γM and generate Ŷ−M ≡ Y − γ̂MM , and

2. regress Ŷ−M on (1, L0, A). Denote by ϕ̂A the OLS estimator for the coefficient of A.

It can be shown ϕ̂A is a consistent estimator for ϕA.2

2Under the sequential ignorability conditions and additive separability (3.6), Vanstee-
landt (2009) gave the key identification result E [Y − qM (L0, A, L1,M ;γ)|L0 = l0, A = a] =
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See Appendices C and D for the validity of the estimation procedure.

Table 3.1 lists five typical examples of SNMMs compatible with DAG G that can be

estimated using the sequential g-formula estimator. The simple example above is Model 1 in

Table 3.1. The first three models were discussed in Vansteelandt (2009), and we added the

latter two models with more flexible specifications. One difficulty in applying the sequential

g-formula estimator is to find the proper qA(·) and qM (·) functions for a given SNMM, as

can been seen in Table 3.1. The derivation of standard errors of the estimator is also no

mean feat.

The sequential g-estimation is not always as simple as it looks in Model 1. For example,

in a model with up to two-way interactions (Model 5 in Table 3.1), we need to estimate

ϕAM , ϕAL0
and ϕAML0

in E(Y 1m−Y 0m) = ϕA+ϕAMm+ϕAL0
E(L0)+ϕAML0

mE(L0).

It turns out that in this case only E(L1|L0 = l0, A = 0) = π0 + πL0
l0 is not enough to

identify ϕAM or ϕAML0
. What is needed is the stronger assumption

E(L1|L0 = l0, A = a) = π0 + πL0
l0 + πAa+ πAL0

a× l0

which implies (by setting γAML0
= γAML1

= 0 in Appendix B)

ϕAM = γAM + γML1
πA,

ϕAML0
= γML1

πAL0
,

Clearly, the above equations show that ϕAM and ϕAML0
cannot be obtained directly from

the first-step regression, since now an additional regression for E(L1|L0 = l0, A = a) is

needed to estimate π.

E
[
Y a0|L0 = l0

]
. We show that, in addition to the assumptions in Vansteelandt (2009), a

necessary and sufficient condition for the validity of the second-step regression is f(l0, a) ≡
E(L1|L0 = l0, A = 0) = π0 + πL0

l0. See Appendix B for detail.
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Table 3.1 Compare the plug-in estimator with the sequential g-estimator under different specifications for the outcome
conditional mean and different structural nested mean models.

Structural Nested Mean
Model (SNMM)
E(Y am − Y 0m|l0)

Sequential g-formula estimator Flexible Plug-in g-formula estimator
E(Y |l0, a, l1,m) =
qA(l0, a, l1; γ) + qM (l0, a, l1,m; γ)

E(Y |l0, a, l1,m) =
h0(a,m)l0 + h1(a,m)l1 + h(a,m)

1 ϕAa

qA = γ0 + γAa+ γL0
l0 + γL1

l1
qM = γMm
f(l0, 0) = π0 + πL0

l0

h0 = γL0
, h1 = γL1

h = γ0 + γAa+ γMm
f(l0, a) = π0 + πL0

l0 + πAa

2 ϕAa+ ϕAMa ·m

qA = γ0 + γAa+ γL0
l0 + γL1

l1
qM = γMm+ γAMa ·m
f(l0, 0) = π0 + πL0

l0

h0 = γL0
, h1 = γL1

h = γ0 + γAa+ γMm+ γAMa ·m
f(l0, a) = π0 + πL0

l0 + πAa

3 ϕAa+ ϕAL0
a · l0

qA = γ0 + γAa+ γL0
l0 + γL1

l1
+γAL0

a · l0
qM = γMm
f(l0, 0) = π0 + πL0

l0

h0 = γL0
+ γAL0

a, h1 = γL1
h = γ0 + γAa+ γMm
f(l0, a) = π0 + πL0

l0 + πAa

+πAL0
a · l0

4
ϕAa+ ϕAMa ·m
+ϕAL0

a · l0

qA = γ0 + γAa+ γL0
l0 + γL1

l1
+γAL0

a · l0
qM = γMm+ γAMa ·m
f(l0, 0) = π0 + πL0

l0

h0 = γL0
+ γAL0

a, h1 = γL1
h = γ0 + γAa+ γMm+ γAMa ·m
f(l0, a) = π0 + πL0

l0 + πAa

+πAL0
a · l0

5
ϕAa+ ϕAMa ·m+
+ϕAL0

a · l0 + ϕAL0
a · l0

+ϕAML0
a ·m · l0

qA = γ0 + γAa+ γL0
l0 + γL1

l1
+γAL0

a · l0 + γAL1
a · l1

qM = γMm+ γAMa ·m+ γML0
m · l0

+γML1
m · l1

f(l0, a) = π0 + πL0
l0 + πAa

+πAL0
a · l0

h0 = γL0
+ γAL0

a+ γML0
m

h1 = γL1
+ γAL1

a+ γML1
m

h = γ0 + γAa+ γMm+ γAMa ·m
f(l0, a) = π0 + πL0

l0 + πAa

+πAL0
a · l0

Notation: qA ≡ qA(l0, a, l1; γ), qM ≡ qM (l0, a, l1,m; γ), f(l0, a) ≡ E(L1|L0 = l0, A = a).
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3.4 The Flexible Plug-in g-formula estimator

3.4.1 The Partial Linearity Assumption and the Plug-in g-formula estimator

Although the idea of using linear outcome conditional mean is not particularly new (Robins,

2000; Van der Wal et al., 2009), to the best of our knowledge, the flexible plug-in g-formula

estimator proposed here is the first to make full use of this idea. This parametric g-formula

has a closed-form expression for CDE and thus does not require numerical integration.

Specifically, let the conditional expectation of Y given (L0, A, L1,M) be linear in L0 and

L1, namely

E(Y |l0, a, l1,m) = h0(a,m;γ)l0 + h1(a,m;γ)l1 + h(a,m;γ) (3.7)

where the hk’s are arbitrary known functions of (a,m) known up to certain parameters γ,

for k = {0, 1, ∅}. This is of course a strong parametric assumption since it ignores any

interaction among confounders. We should think of Equation (3.7) as the first order Taylor

approximation to any function of (L0, L1). The plug-in g-formula estimator can be extended

to include higher order terms of confounders.

Equations (3.4) and (3.7) lead to the proposed flexible plug-in g-formula estimator for

E(Y am):

E(Y am) = h0(a,m;γ)E(L0) + h1(a,m;γ)E [E(L1|L0, A = a)] + h(a,m;γ). (3.8)

See Appendix A for proof.

The last column of Table 3.1 shows that, by varying the specifications of hk’s, equation

(3.7) can provide the same specification on E(Y |l0, a, l1,m) as equation (3.6) in all the five

models there. The separability in qA and qM for the sequential g-formula estimator and the

estimating equation that is linear in confounders for the plug-in g-formula estimator do not

nest within each other. Neither estimator is strictly more flexible than the other. Note that

the unknown parameters γ in (3.7) are not the structural parameters that would appear

in the structural equation Y = fY (L0, A, L1,M, εY ) in the NPSEM-IE. Equation (3.7) is
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an estimating equation only. The parameters in this equation are not of direct interest in

general, but they eventually identify E(Y am).

Note also that as long as equation (3.7) holds, the presence of U0 does not affect the

identification of CDE. However, we do need a model for E(L1|L0, A). This model needs not

be linear, and can potentially be semi- or non-parametric if the dimension of the conditioning

set is low. For example, if L1 is binary, a logistic model can be used. But in the application

below, we use the following linear model for simplicity:

E(L1|L0, A) = π0 + πAA+ πL0
L0 + πAL0

A× L0, (3.9)

and thus

E [E(L1|L0, A = a)] = π0 + πAa+ πL0
E(L0) + πAL0

a× E(L0). (3.10)

3.4.2 Estimation Procedure for the Flexible Plug-in g-formula estimator of
CDE

Given the discussion above, the CDE can be estimated as follows:

1. estimate γ in equation (3.7) using a proper method, e.g., a quasi-maximum likelihood

estimator, which is consistent given correctly specified conditional mean (Wooldridge,

2010); and

2. estimate E(L0) using a proper method, e.g., the sample mean, and get Ê(L0).

3. Estimate E(L1|L0, A) using a proper method and get ̂E [E(L1 | L0, A = a)]. For ex-

ample, regress L1 on (1, A, L0, AL0).

4. Plug Ê(L0) and ̂E [E(L1 | L0, A = a)] into (3.8) to obtain Ê(Y am). Then ̂CDE(m) =

Ê(Y am)− Ê(Y 0m).

̂CDE(m) is the flexible plug-in estimator for the CDE evaluated at m. Bootstrap can be

used to obtain the standard errors for the estimated CDEs.
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3.4.3 plim of Parametric g-Formula is the Flexible Plug-in g-formula estimator

By the law of large numbers, the flexible plug-in g-formula estimator of CDE is the plim of

the corresponding parametric g-formula in section 3.1. This is simply because the former is

an analytical solution for the integral which the latter is trying to evaluate via Monte Carlo

simulation. We verify this claim using Model 5 in Table 3.1 through a simulation study with

the aid of the Stata command gformula developed in Daniel, De Stavola and Cousens (2011).

In the simulation study, we let the number of Monte Carlo simulations used by the gformula

command increase towards infinity. The results show that the estimates obtained using the

gformula command indeed come closer and closer to those obtained using the flexible plug-in

g-formula as the simulations increase.

One reason for using Model 5 is that the specification is complex enough to make no-

ticeable difference in computation time between the two methods. Obviously, if we are only

interested in a point estimate of the controlled direct effect, the flexible plug-in g-formula

does not gain us much. However, since we also need to obtain the standard errors for the

estimators, and bootstrap is often inevitable in g-methods, the flexible plug-in g-formula can

save considerable amount of computation time.

3.4.4 Flexible Plug-in g-formula estimator Is Numerically Equivalent to Se-
quential g-formula estimator

We show that, in each of the five models in Table 3.1, the flexible plug-in g-formula estimator

and the sequential g-formula estimator are numerically identical. See Appendix C for proof.

It is worth emphasizing the following two conditions that are met by each of the five models

in Table 3.1.

First, the SNMM used by the sequential g-formula estimator must be compatible with the

specification on E(Y |l0, a, l1,m). Note that a given SNMM and a compatible specification

on E(Y |l0, a, l1,m) implies a specification on E(L1|L0, A = 0) (or on E(L1|L0, A) in Model

5) as shown in Table 3.1. Second, the specification on E(L1|A,L0) used by the flexible
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plug-in estimator must be properly chosen. By “properly chosen”, we mean the specification

on E(L1|A,L0) must be of the same level of flexibility as the second-step regression of the

sequential g-formula estimator. See the remark in Appendix C for more detail.

Later when we discuss the issue of “one single parameter”, the two estimators are not

identical except for the no interaction case. The sequential g-formula estimator forces

E(Y am − Y 0m) to be ϕa when it is actually not, a typical case in which the incompati-

bility issue arises.

3.4.5 Simulation

We use a simple simulation study to evaluate the equivalency. Assume the data generating

process (DGP) is as follows:

U0 = εU0

L0 = U0 + εL0

A = 1[expit(L0) ≥ εA]

L1 = U0 + L0 + A+ εL1

M = 50× expit(L0 + A+ L1 + εM )

Y = L0 × log(1 + A+M2) + L1 × (A+M) + U0 + εY

where all ε’s except εA are standard normal, εA is uniform on (0, 1), and expit(x) =

exp(x)/(exp(x) + 1) is the inverse of the logit transformation. All ε’s are independent

of each other. For simplicity, all coefficients are set to unity. The resulting true CDE is

CDE(m) = m+ 1 for any fixed value m. Under this DGP, the following estimating equation

that is linear in L0 and L1 holds:

E(Y |L0, A, L1,M) =
[
log(1 + A+M2)

]
︸ ︷︷ ︸

h0(a,m)

L0 + (
1

3
+ A+M)︸ ︷︷ ︸
h1(a,m)

L1 +

(
−1

3
A

)
︸ ︷︷ ︸
h(a,m)

. (3.11)
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Table 3.2 Simulation results: flexible plug-in g-formula v.s. sequential g-estimator

A: Simulation Results for Model 4
E(L1|A,L0) =

π0 + πAA+ πL0
L0

E(L1|A,L0) =
π0 + πAA+ πL0

L0 + πAL0
A× L0

m ture CDE FPG SG Difference FPG SG Difference
1 2 57.0846

(8.5109)
57.0781
(8.5106)

−6.481e−3

(.1090)
57.0781
(8.5106)

57.0781
(8.5106)

0 (0)

25 26 40.1442
(5.1294)

40.1377
(5.1285)

−6.481e−3

(.1090)
40.1377
(5.1285)

40.1377
(5.1285)

0 (0)

50 51 22.4979
(7.1983)

22.4914
(7.1973)

−6.481e−3

(.1090)
22.4914
(7.1973)

22.4914
(7.1973)

0 (0)

B: Simulation Results for Model 5
E(L1|A,L0) =

π0 + πAA+ πL0
L0

E(L1|A,L0) =
π0 + πAA+ πL0

L0 + πAL0
A× L0

m ture CDE FPG SG Difference FPG SG Difference
1 2 .0426 (.4303) .04219 (.4303) −4.951e−4

(.0236)
.0419 (.4303) .0419 (.4303) 0 (0)

25 26 24.9052
(2.3424)

24.9047
(2.3425)

−4.951e−4

(.0236)
24.8994
(2.3411)

24.8994
(2.3411)

0 (0)

50 51 50.8037
(4.6871)

50.8032
(4.6871)

−4.951e−4

(.0236)
50.7926
(4.6847)

50.7926
(4.6847)

0 (0)
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For illustration purposes, we only show the estimation results for the two estimators in

Models 4 and Model 5 in Table 3.1. The following two specifications for E(L1|A,L0) which

differ in their flexibility are considered for both Model 4 and Model 5:

E(L1|A,L0) = π0 + πAA+ πL0
L0, (3.12)

E(L1|L0, A) = π0 + πAA+ πL0
L0 + πAL0

A× L0. (3.13)

The specifications for E(L1|A,L0) affect the estimates of the flexible plug-in estimator in

both Model 4 and Model 5. As for the sequential g-formula estimator, the specifications for

E(L1|A,L0) have no effect in Model 4 since no estimates involve the estimation of π, which

is in turn a result of the specification that L1 does not interact with M ; but they do have

an effect in Model 5 since both ϕAM and ϕAML0
need the estimation of π. When the same

specification on E(Y |L0, A, L1,M) and the same proper specification on E(L1|L0, A) are

used, the flexible plug-in g-formula estimator and the sequential g-formula estimator must

give exactly the same estimates on each occasion.

The simulation consists of 1000 runs with 500 observations in each sample. To save space,

we report in Table 3.2 the results for CDE(1), CDE(25) and CDE(50) only, m ranges from

1 to 50. For each estimator, the average and standard deviation (in parenthesis) over the

1000 simulations are reported. We also calculate the difference of the two estimates in each

simulation run and report the average and standard deviation of the difference over the 1000

simulations.

There are two important observations from the simulation results in Table 3.2. First, the

flexibility of the specification on E(Y |L0, A, L1,M) is important. Although Models 4 and

5 both misspecify the true estimating equation, however, compared to Model 5, Model 4 is

more restrictive, leading to larger biases in both estimators. Note that in terms of qA(·) and

qM (·), Model 4 is typical in causal mediation analysis, partly because researchers usually

think the two-way interactions A× L1 and M × L1 are unnecessary. On the other hand, if
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the flexible plug-in g-formula estimator is used, the complete set of two-way interactions in

Model 5 becomes typical.

Second, when E(L1|A,L0) = π0 + πAA+ πL0
L0, the two estimates are close but not the

same. Because the CDE is linear in m for both estimators, the difference does not depend on

m. When the proper specification E(L1|A,L0) = π0 + πAA+ πL0
L0 + πAL0

A×L0 is used,

the two estimates become identical. This supports the numerical equivalence claim made in

the last section.

3.4.6 Comparison of Flexible plug-in g-formula estimator with Sequential g-
formula estimator

In cases where the two estimators are identical, the flexible plug-in g-formula estimator

inherits everything the sequential g-formula estimator has. However, the difference in the

estimation procedures grants the former several advantage over the latter in applications.

We discuss several points of importance in this respect.

First, when applying the sequential g-formula estimator, one needs to make sure the

specifications for qA(·) and qM (·) are compatible with the chosen SNMM. For example,

E(Y am − Y 0m) = ϕa is not compatible with the qM (·) in Model 2. As qA(·) and qM (·) be-

come more complex, it becomes more difficult to find the corresponding SNMM. The flexible

plug-in g-formula estimator avoids this issue, because it starts from assuming the specifica-

tions on E(Y |l0, a, l1,m) and E(L1|a, l0), and the model for CDEs follows naturally. The

resulting SNMM can even be nonlinear depending on the specifications on E(Y |l0, a, l1,m)

and E(L1|a, l0).

Second, unless the SNMM is forced to be E(Y am−Y 0m) = ϕa, the sequential g-formula

estimator does not always depend on “one single parameter” for CDE Vansteelandt (2009).

For example, if there is a strong belief that there is treatment-mediator interaction in qM (·)

as in Model 2, then E(Y am − Y 0m) = ϕAa + ϕAMa ×m is a function of two parameters.

The aforementioned compatibility issue will arise if, in order to force CDE to depend on “one
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single parameter”, the SNMM is assumed to be E(Y am − Y 0m) = ϕa. In an incompatible

case it is difficult to interpret what effect the single parameter ϕ captures. Without further

investigation, all we can say is that it is some average of the CDE evaluated at different

values of m, and it is unknown whether it is practically relevant. As a result, the test of

existence of CDE based on this average becomes less useful than a test evaluated at different

values of m.

Third, there are interesting specifications on E(Y |l0, a, l1,m) that the sequential g-

estimation does not allow. The feasibility of the sequential g-formula estimator hinges on

the additive separability between qA(·) and qM (·), and clearly, not all specifications for

E(Y |l0, a, l1,m) satisfy this restriction. Practically interesting examples include cases where

h = log(γ0 + γAa+ γMm2) or h = exp(γ0 + γAa+ γMm2), i.e. we use the link function idea

of generalized linear models to enrich specifications on the hk functions. To be fair, however,

we also note that there are specifications that the flexible plug-in g-formula estimator cannot

handle. For example, if the conditional expectation of Y is nonlinear in L0 and L1, equation

(3.7) will not hold, but equation (3.6) may still be satisfied provided that the nonlinearity

does not interfere with the additive separability requirement. Extensions of equation (3.7)

to be nonlinear in L0 and L1 are possible but complicated, in which case the original para-

metric g-formula might be a better choice. In sum, the sequential g-formula estimator has

the potential of allowing nonlinearity in confounders but generally not in the treatment and

mediator, and for the flexible plug-in g-formula estimator the converse is true. In this sense

these two estimators complement each other.

Finally, the sequential g-estimation procedure changes in a nontrivial way as the specifi-

cation for qA(·) and qM (·) changes, unless one does not care about compatibility and always

uses E(Y am − Y 0m) = ϕa. The two steps of the procedure must be derived and tailored

individually, and become more complex as we move from Model 1 to Model 5 (see Appendix

B). In particular, in Model 5 (or whenever there are ML1 and/or AML1 interactions),

ϕAM in SNMM can not be estimated simply by the first-step regression anymore, and the
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derivation of the formula is not trivial. Moreover, there is an additional parameter ϕAML0

to be estimated. These scenarios make the sequential g-formula estimator inconvenient to

use when one would like to build more flexibility into the model. On the other hand, the

estimation procedure for the plug-in g-formula works uniformly across different settings, and

there is no derivation by hand because the work is done by the computer.

3.5 Sensitivity Analysis

The untestable sequential ignorability conditions in (3.1) is crucial for any g-formula driven

estimators. The second part of the assumption is particularly vulnerable in mediation anal-

yses since sequential randomization is not always the case in practice. In this section, we

provide a sensitivity analysis for one type of violation of the sequential ignorability condi-

tions. For illustration purposes, this section only shows the sensitivity analysis for Model 1.

Similar procedures can be derived for other models in Table 3.1.

Recall the exogenous parents ε’s omitted from DAG G are assumed to be jointly inde-

pendent in NPSEM-IE. Suppose now εM and εY are correlated, then the original g-formula

and consequently the flexible plug-in g-formula estimator do not work any more. To identify

the CDE in the analysis, we use the following conditions to perform a sensitivity analysis.

1. The unobservable U0 does not enter the structural equation of Y , i.e. the arrow from

U0 to Y in Figure 1 is deleted.

2. The structural equation for Y is linear in its coefficients. If we use fY (L0, A, L1,M) to

denote the structural equation for Y , then in Model 1, the linearity assumption means

fY (·) = γ0 + γL0
L0 + γAA + γL1

L1 + γMM + εY , which is stronger than a linear

estimation equation.

3. The structural equation for M is additive separable in εM , i.e. M = fM (L0, A, L1) +

εM for some function fM .
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Given these assumptions, the counterfactual Y am is

Y am = γ0 + γL0
L0 + γAa+ γL1

L1 + γMm+ εY ,

and the CDE is

E
(
Y 1m − Y 0m

)
= γA.

To consistently estimate γA, let Z = (1, L0, A, L1,M) and γZ = (γ0, γL0
, γA, γL1

, γM ).

Then we can write

Y = ZγZ + εY .

Define γOLSZ =
[
E(Z′Z)

]−1
E(Z′Y ). Because εM and εY are correlated, in general γOLSZ is

not equal to γZ . But under conditions (1-3), γZ can be derived through a bias correction

term:

γZ = γOLSZ −
[
E(Z′Z)

]−1

 0

σεMεY


where σεMεY

is the covariance between εM and εY , and 0 is a 4× 1 vector. (See Appendix

D for derivation.)

To see how sensitive the flexible plug-in g-formula estimator is to this particular violation

of sequential ignorability conditions, we let σεMεY
vary within some range and estimate the

CDE accordingly. As a rule of thumb, the covariance between M and Y could provide a

reference on the choice of the range for σεMεY
, since εM (εY ) only represents part of the

variation in M (Y ) if one believes that the chosen model is a sound one.

Compared to the sensitivity analysis in Imai, Keele and Tingley (2010), the sensitivity

analysis in this section relaxes the structural assumption on the mediator. One major reason

that this relaxation can be made is that CDE is the parameter of interest in this paper

instead of the natural direct effect, which is not nonparametrically identified in a model with

post-treatment confounders.
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3.6 An Application

In a longitudinal study by Breslau, Johnson and Lucia (2001) and Breslau, Paneth and Lucia

(2004), a random sample of low birthweight (LBW, < 2500 grams) and normal birthweight

(NBW, ≥ 2500 grams) infants is selected from two socioeconomically disparate populations

in southeast Michigan and followed over 17 years. The goal is to study the long term impact

of LBW on academic achievements. The first assessment occurs when the children are 6

years old, the second assessment occurs when the children are 11, and the last assessment

when the children are 17. A test from the Woodcock-Johnson Psychoeducational Battery-

Revised (WJ-R) by Woodcock, Johnson and Mather (1990) is used to measure their academic

achievement in reading at ages 11 and 17. The WJ-R tests are age standardized with a mean

of 100 and a standard deviation of 15. An earlier paper by Breslau, Johnson and Lucia (2001)

found that the reading score for LBW children at age 11 is 3.6 points lower than those of NBW

children. However, the difference became trivial and insignificant after adjusting for their IQ,

visual-motor-integration (VMI) function from Beery (1989) and phonologic awareness (PA)

from Rosner and Simon (1971) at age 6. Their conclusion is thus that the deficit in reading

score in LBW children at age 11 relative to NBW children is accounted for (mediated) mostly

by the deficit in their cognitive skills at age 6. In the follow-up study Breslau, Paneth and

Lucia (2004), a similar conclusion is obtained for reading score at age 17.

In this application, we estimate the CDE of LBW on reading scores at age 17 when a

behavior problem index is used as the mediator. The behavior problem index is constructed

by summing up 8 binary indicators for different behavior problems at age 17, including ever

smoked a cigarette, ever smoked cigarettes daily, ever used alcohol, ever used marijuana,

ever used cocaine, ever used crack, ever used any hallucinogen, and ever used inhalants. The

index ranges from 0 to 8. Based on Breslau, Johnson and Lucia (2001); Breslau, Paneth

and Lucia (2004); Luo et al. (2014), we put the subject’s gender and residence at birth and

mother’s IQ, education and marital status as the baseline confounders in L0. For post-
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treatment confounders in L1, the subject’s IQ, VMI and PA at age 6 were used. After

deleting observations that contain missing values, we obtain a sample of 704 complete cases

out of the total 713 who were assessed at age 17. The five models in Table 3.1 were applied,

and the results are presented in Figure 3.3.

The results for Model 1 show a negative constant CDE estimate, and the effect is not

statistically significant according to the normal-based bootstrap confidence intervals. When

the interaction A ×M is added as in Model 2, the CDE estimates show a downward trend

as the behavior problem became more severe. Specifically, the CDE estimate decreases

from −.75 to −7.62 as the mediating behavior problem changes from 0 to 8. The effect

is significant when the number of behavior problems is greater than 1. Model 3 includes

the M × L0 interaction, but the result is almost identical to Model 1 because the resulting

SNMM is not a function of m. Model 4 has both A ×M and M × L0 interactions, and its

result is similar to Model 2 but with slightly wider confidence intervals. Finally, Model 5

included M × L1 interactions on top of Model 4 but led to similar results.

The downward trends in Model 2, 4 and 5 mainly comes from the negative effect of the

A ×M interaction, although this interaction is not statistically significant. Ignoring other

channels, this negative interaction effect essentially indicated that even if the immediate

effect of the behavior problem on reading is shut down by controlling the behavior problem,

a more severe behavior problem would still exacerbate the negative effect of LBW on reading

by altering the mechanism through which LBW exerts its effect.

3.7 Conclusion

In this chapter, wee formalize the idea of using partially linear conditional mean models of

the outcome and propose a flexible plug-in g-formula estimator in for controlled direct effects

causal mediation analysis. Partial linearity of outcome conditional expectation is of interest

because under this linear assumption, we can replace the confounders in the conditional
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Figure 3.3 Controlled direct effect of LBW on reading with bad behavior as mediator,
Model 1 to 5
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mean model for the outcome by properly fitted values of the confounders, which results in

a plug-in estimator for the controlled direct effects. The flexible plug-in g-formula is closed-

form and thus can save some computation time by avoiding Monte Carlo integration that

the traditional parametric g-formula usually relies on to evaluate integrals.

We also show that under certain conditions the flexible plug-in g-formula estimator is

numerically equivalent to the sequential g-formula estimator in the literature. Although the

sequential g-formula estimator is supposed to be a parametric version of the g-estimation of

structural nested mean models, this equivalence result indicates that it can also be viewed as

a particular parametric g-formula. Indeed, since the g-estimation of structural nested models

is a semiparametric version of the original g-formula, when stronger parametric assumptions

are imposed, we should expect it to come close to the parametric g-formula. Therefore the

equivalence result provides a new insight of the connections between parametric g-formula

and g-estimation of structural nested mean models.

The interest in the flexible plug-in g-formula estimator is manifold. First, in the linear

case, the flexible plug-in g-formula estimator provides an closed-form expression without

introducing additional assumptions than those commonly made in empirical studies. In view

of the fact that linear regression is often the first choice for modeling continuous outcomes in

parametric g-formula, the flexible plug-in g-formula actually imposes no stronger parametric

assumption than some of the parametric g-formulae that already exist in the literature.

Second, the flexible plug-in g-formula estimator connects to the sequential g-estimation

but may be more straightforward to use. The two estimators also complement each other

in giving practitioners choices of reasonable specifications in their context. For example, if

there is reason to believe the functional form for Y should be nonlinear in A and M , we

can use the flexible plug-in estimator; and on the other hand, if the nonlinearity lies in the

confounding factors, we can use the sequential g-formula estimator. In any case, if the results

from both methods are similar, the estimates are more likely to be robust.
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APPENDICES
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APPENDIX A

PROOFS AND ALGEBRA ON G-FORMULA

A.1 A direct proof of the g-formula for fY am(y)

The proof for the g-formula has been given in a series of paper by Robins and his colleagues.

Here we repeat it for the continuous outcome case for easy reference. We adopt the convention

to use upper case letters for random variables and lower case letters for realizations.

Under sequential ignorability and consistency,

fY am(y) =
∑
l0,l1

fY |L0,A,L1,M
(y|l0, a, l1,m)fL1|L0,A

(l1|l0, a)fL0
(l0)

where, e.g., fY |L0,A,L1,M
(y|l0, a, l1,m) is the shorthanded notation for the conditional den-

sity function of Y given (L0, A, L1,M).

Proof. It can be shown that

fY am(y) =

ˆ
fY am|L0

(y|l0)fL0
(l0)dl0

=

ˆ
fY am|L0,A

(y|l0, a)fL0
(l0)dl0

=

ˆ ˆ
fY am|L0,A,L1

(y|l0, a, l1)fL1|L0
(l1|l0, a)fL0

(l0)dl1dl0

=

ˆ ˆ
fY am|L0,A,L1,M

(y|l0, a, l1,m)fL1|L0
(l1|l0, a)fL0

(l0)dl1dl0

=

ˆ ˆ
fY |L0,A,L1,M

(y|l0, a, l1,m)fL1|L0
(l1|l0, a)fL0

(l0)dl1dl0

where the first and the third equality uses law of total probability, the second uses Y am ⊥⊥

A|L0, the fourth uses (Y am ⊥⊥M |L0, A = a, L1), and the last uses the consistency axiom.
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Remark 6. Based on the g-formula for fY am(y), it follows that the g-formula for E(Y am) is

E(Y am) =

ˆ
y

[ˆ ˆ
fY |L0,A,L1,M

(y|l0, a, l1,m)fL1|L0
(l1|l0, a)fL0

(l0)dl1dl0

]
dy

=

ˆ ˆ ˆ
yfY |L0,A,L1,M

(y|l0, a, l1,m)fL1|L0
(l1|l0, a)fL0

(l0)dydl1dl0

=

ˆ ˆ [ˆ
yfY |L0,A,L1,M

(y|l0, a, l1,m)dy

]
fL1|L0

(l1|l0, a)fL0
(l0)dl1dl0

=

ˆ ˆ
E(y|l0, a, l1,m)fL1|L0

(l1|l0, a)fL0
(l0)dl1dl0.

A.2 The flexible plug-in g-formula for E(Y am)

If sequential ignorability and consistency hold, and the outcome conditional mean is given

by

E(Y |l0, a, l1,m) = h0(a,m)l0 + h1(a,m)l1 + h(a,m),

then

E(Y am) = h0(a,m)E(L0) + h1(a,m)E [E(L1|L0, A = a)] + h(a,m).

Proof. Under the assumptions, we get

E(Y am) =

˚
yf(y|l0, a, l1,m)f(l1|l0, a)f(l0)dydl1dl0

=

ˆ ˆ [ˆ
yf(y|l0, a, l1,m)dy

]
f(l1|l0, a)f(l0)dl1dl0

=

ˆ ˆ
E(Y |l0, a, l1,m)f(l1|l0, a)f(l0)dl1dl0

=

ˆ [ˆ
E(Y |l0, a, l1,m)f(l1|l0, a)dl1

]
f(l0)dl0

=

ˆ {ˆ
[h0(a,m)l0 + h1(a,m)l1 + h(a,m)] f(l1|l0, a)dl1

}
f(l0)dl0

=

ˆ
[h0(a,m)l0 + h1(a,m)E(L1|l0, a) + h(a,m)] f(l0)dl0

= h0(a,m)E(L0) + h1(a,m)

ˆ
E(L1|l0, a)f(l0)dl0 + h(a,m)

= h0(a,m)E(L0) + h1(a,m)E [E(L1|L0, A = a)] + h(a,m)
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Remark 7. Note that E [E(L1|L0, A = a)] 6= E(L1|A = a). For example, L1 = exp(L0) +A.

Then E(L1|L0, A = a) = exp(L0) + a, and the LHS is E [exp(L0) + a] = E [exp(L0)] + a.

But the RHS is E [exp(L0) + A|A = a] = E [exp(L0)|A = a] + a. If A ⊥⊥ L0, the equality

holds.

In general, let the structural model for L1 be L1 = f(L0, A, εL1
). Then the LHS is

E
[
f(L0, a, εL1

)|L0

]
. The RHS is E

[
f(L0, a, εL1

)|A = a
]
. If we assume εL1

is independent

of (L0, A), the LHS becomes E
[
f(L0, a, εL1

)
]
. If in addition A ⊥⊥ L0, the RHS becomes

E
[
f(L0, a, εL1

)
]
and the equality holds.
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APPENDIX B

PROOFS AND ALGEBRA ON SEQUENTIAL G-ESTIMATOR

B.1 Validity of the second step of sequential g-estimator

The proof of the validity of the sequential g-estimator in the Appendix of Vansteelandt

(2009) needs to be extended because L0 is included in our analysis. Specifically, we want

to show that, in presence of L0, and under additive separability, qM (l0, a, l1, 0; γ) = 0, and

sequential ignorability,

E [Y − qM (L0, A, L1,M ; γ)|L0, A] = E
[
Y A0|L0

]
,

i.e. for any (l0, a), show

E [Y − qM (L0, A, L1,M ; γ)|L0 = l0, A = a] = E
[
Y a0|L0 = l0

]
. (B.1)

Proof. Under the assumptions, we have

E [Y − qM (l0, a, l1,m; γ)|L0 = l0, A = a, L1 = l1,M = m] = qA(l0, a, l1; γ).

The last equality holds for any m. Therefore

E [Y − qM (l0, a, l1,M ; γ)|L0 = l0, A = a, L1 = l1,M ] = qA(l0, a, l1; γ).

Take expectation of both sides conditional on L0 = l0, A = a, L1 = l1 and use iterated

expectation, we get

E [Y − qM (l0, a, l1,M ; γ)|L0 = l0, A = a, L1 = l1] = qA(l0, a, l1; γ).
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Now, sequential ignorability implies

E
[
Y a0|L0 = l0, A = a, L1 = l1

]
=E

[
Y a0|L0 = l0, A = a, L1 = l1,M = 0

]
=E [Y |L0 = l0, A = a, L1 = l1,M = 0]

=E [qA(L0, A, L1; γ) + qM (L0, A, L1,M ; γ)|L0 = l0, A = a, L1 = l1,M = 0]

=E [qA(l0, a, l1; γ) + qM (l0, a, l1, 0; γ)|L0 = l0, A = a, L1 = l1,M = 0]

=qA(l0, a, l1; γ)

The equality holds for any l1. Therefore

E [Y − qM (l0, a, L1,M ; γ)|L0 = l0, A = a, L1] = E
[
Y a0|L0 = l0, A = a, L1

]
.

Take expectation of both sides conditional on (L0 = l0, A = a), we get

E [Y − qM (l0, a, L1,M ; γ)|L0 = l0, A = a] = E
[
Y a0|L0 = l0, A = a

]
.

Lastly, notice that Y a0 ⊥⊥ A|L0, we have

E [Y − qM (l0, a, L1,M ; γ)|L0 = l0, A = a] = E
[
Y a0|L0 = l0

]
.

We provide an alternative proof below.

Proof. (alternative proof) First, we show that

E [Y − qM (L0, A, L1,M ; γ)|L0, A, L1,M ] = E
(
Y A0|L0, A, L1

)
.
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Specifically,

E [Y − qM (L0, A, L1,M ; γ)|L0, A, L1,M ]

=qA(L0, A, L1; γ)

=E [qA(L0, A, L1; γ)|L0, A, L1,M = 0]

=E [qA(L0, A, L1; γ) + qM (L0, A, L1, 0; γ)|L0, A, L1,M = 0]

=E [qA(L0, A, L1; γ) + qM (L0, A, L1,M ; γ)|L0, A, L1,M = 0]

=E [Y |L0, A, L1,M = 0]

=E
[
Y A0|L0, A, L1,M = 0

]
=E

[
Y A0|L0, A, L1

]
where the first equality holds by the definition of qA(L0, A, L1; γ), the second equality holds

since qA is a function of L0, A, L1, the third equality holds because qM (L0, A, L1, 0; γ) = 0,

the fourth and fifth are simply rewriting, the sixth by consistency, and the last by Y am ⊥⊥

M |L0, A, L1.

Then, take expectation of both sides conditional on (L0, A), we get

E [Y − qM (L0, A, L1,M ; γ)|L0, A] = E
[
Y A0|L0, A

]
.

Lastly, by Y am ⊥⊥ A|L0, we have

E [Y − qM (L0, A, L1,M ; γ)|L0, A] = E
[
Y A0|L0

]
.

B.2 Estimation procedures and interpretations for the sequential
g-estimator in Model 1 and in a general setup with up to three-
way interactions in E(Y |L0, A, L1,M)

We discuss Model 1 and Model 5. Model 1 is the simplest specification, so it is used as an

example to illustrate the idea. Model 5 is the most general specification, so the discussion
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on Model 5 shows that the conclusion applies to all 5 models.

B.2.1 Model 1 (No interaction)

Model assumptions

1. The NPSEM-IE associated with DAG G. (Thus consistency and sequential ignorability

hold.)

2. Structural Nested Mean Model:

E(Y am − Y 0m|l0) = ϕAa. (B.2)

3. Conditional mean of the outcome:

E(Y |L0, A, L1,M) = γ0 + γL0
L0 + γAA+ γL1

L1 + γMM, (B.3)

so that
qA(L0, A, L1; γ) = γ0 + γL0

L0 + γAA+ γL1
L1,

qM (L0, A, L1,M ; γ) = γMM.
(B.4)

4. Conditional mean of the post-treatment confounder at A = 0:

f(l0, 0) ≡ E(L1|L0 = l0, A = 0) = π0 + πL0
l0. (B.5)

Estimation procedure

1. Regress Y on (1, L0, A, L1,M) and obtain the OLS estimator γ̂M for γM . Generate

Ŷ−M ≡ Y − γ̂MM .

2. Regress Ŷ−M on (1, L0, A). Denote by ϕ̂A the OLS estimator for the coefficient of A.

Then ϕ̂A is a consistent estimator for ϕA. Hence, ˆCDE(m) = ϕ̂A.
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Validity of the second-step regression (i.e. the consistency of ϕ̂A for ϕA)

Proof. (i) First of all, we show

E(Y 00|L0 = l0) = γ0 + γL0
l0 + γL1

f(l0, 0). (B.6)

Under sequential ignorability, consistency, and the specification in (B.3), we have

E(Y a0|L0 = l0, A = a, L1 = l1)

=E(Y a0|L0 = l0, A = a, L1 = l1,M = 0)

=E(Y |L0 = l0, A = a, L1 = l1,M = 0)

=γ0 + γAa+ γL0
l0 + γL1

l1. (B.7)

The equality holds for any (l0, a, l1), and therefore we can write

E(Y A0|L0, A, L1) = γ0 + γAA+ γL0
L0 + γL1

L1 + γAL1
AL1.

Take expectation of both sides conditional on (L0, A), we get

E(Y A0|L0, A)

=γ0 + γAA+ γL0
L0 + γAL0

AL0 + γL1
E(L1|L0, A) + γAL1

AE(L1|L0, A)

=γ0 + γAA+ γL0
L0 + γAL0

AL0 + γL1
f(L0, A) + γAL1

Af(L0, A),

i.e. for any (l0, a),

E(Y a0|L0 = l0, A = a)

=γ0 + γAa+ γL0
l0 + γAL0

al0 + γL1
f(l0, a) + γAL1

af(l0, a).

Then the first part of the sequential ignorability implies

E(Y a0|L0 = l0)

=γ0 + γAa+ γL0
l0 + γAL0

al0 + γL1
f(l0, a) + γAL1

af(l0, a).
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Set a = 0, we get

E(Y 00|L0 = l0) = γ0 + γL0
l0 + γL1

f(l0, 0).

(ii) Secondly, we show

E(Y − qm(L0, A, L1,M ; γ)|L0 = l0, A = a)

=ϕAa+ γ0 + γL0
l0 + γL1

f(l0, 0). (B.8)

By setting m = 0 in (B.2), we have

E(Y a0 − Y 00|l0) = ϕAa.

Then, (B.1) and (B.6) imply

E(Y − qm(L0, A, L1,M ; γ)|L0 = l0, A = a)

=E(Y a0|L0 = l0)

=E(Y a0 − Y 00|L0 = l0) + E(Y 00|L0 = l0)

=ϕAa+ γ0 + γL0
l0 + γL1

f(l0, 0).

(iii) Lastly, given (B.5), we have

E(Y − qm(L0, A, L1,M ; γ)|L0 = l0, A = a)

=ϕAa+ γ̃0 + γ̃L0
l0, (B.9)

where γ̃0 = γ0 + γL1
π0 and γ̃L0

= γL0
+ γL1

πL0
. Therefore, the OLS estimator ϕ̂A in the

second-step regression is consistent for ϕA.

Necessity and sufficiency of (B.5) given all the other model assumptions and that
L0 is not binary

Proof. The sufficiency of (B.5) given all the other model assumptions have been shown by

(B.9).
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To show its necessity, first we rewrite (B.8) as

Y−M = ϕAA+ γ̈0 + γL0
L0 + v (B.10)

where

Y−M ≡ Y − qm(L0, A, L1,M ; γ) = Y − γMM,

γ̈0 ≡ γ0 + γL1
E [f(L0, 0)− L0] ,

f̄(L0, 0) ≡ [f(L0, 0)− L0]− E [f(L0, 0)− L0] ,

ξ ≡ Y−M − E [Y−M |A,L0] ,

v ≡ γL1
f̄(L0, 0) + ξ.

Since L0 is not binary, equation (B.10) indicates that f(l0, 0) must be linear for ϕ̂A to be

consistent for ϕA. We prove this by contradiction. If f(l0, 0) is nonlinear in l0, in general

we have

Cov(L0, v) = E(L0v) = γL1
E
[
L0f̄(L0, 0)

]
6= 0

unless, e.g, f̄(L0, 0) = L−1
0 and E(L−1

0 ) = 0, or some other particular conditions hold by

fluke. But then, unless a regression of Y−M on (1, A, L0) would yield inconsistent estimators

for all coefficients.

B.2.2 General model with a three-way interaction in E(Y |L0, A, L1,M)

Model assumptions

1. The NPSEM-IE associated with DAG G. (Thus consistency and sequential ignorability

hold.)

2. Structural Nested Mean Model:

E(Y am − Y 0m|l0) = ϕAa+ ϕAMam+ ϕAL0
al0 + ϕAML0

aml0 (B.11)

.
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3. Conditional mean of the outcome:

E(Y |L0, A, L1,M)

=γ0 + γAA+ γMM + γAMAM

+ γL0
L0 + γAL0

AL0 + γML0
ML0 + γAML0

AML0

+ γL1
L1 + γAL1

AL1 + γML1
ML1 + γAML1

AML1, (B.12)

so that

qA(L0, A, L1; γ)

=γ0 + γAA+ γL0
L0 + γAL0

AL0 + +γL1
L1 + γAL1

AL1

qM (L0, A, L1,M ; γ)

=γMM + γAMAM + γML0
ML0 + γAML0

AML0

+ γML1
ML1 + γAML1

AML1

4. Conditional mean of the post-treatment confounder, which is given by the following

equation

f(l0, a) ≡ E(L1|l0, a) = π0 + πL0
l0 + πAa+ πAL0

al0. (B.13)

Estimation procedure

1. Regress Y on (1, A,M,AM,L0, AL0,ML0, AML0, L1, AL1,ML1, AML1) and obtain

the OLS estimator γ̂ for γ. Generate

Ŷ−M ≡ Y − γ̂MM − γ̂AMAM − γ̂ML0
ML0 − γ̂AML0

AML0

−γ̂ML1
ML1 − γ̂AML1

AML1.

2. Regress Ŷ−M on (1, L0, A,AL0) and obtain the OLS estimators, ϕ̂A and ϕ̂AL0
, for the

coefficients of A and AL0, respectively.
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3. Regress L1 on (1, L0, A,AL0) and obtain the OLS estimator π̂ for π. Then the sequen-

tial g-formula estimator for the controlled direct effect at M = m is

̂E(Y 1m − Y 0m) = ϕ̂A + ϕ̂AMm+ ϕ̂AL0
L̄0 + ϕ̂AML0

mL̄0,

where

ϕ̂AM = γ̂AM + γ̂ML1
π̂A + γ̂AML1

(π̂0 + π̂A) ,

ϕ̂AML0
= γ̂AML0

+ γ̂ML1
π̂AL0

+ γ̂AML1

(
π̂L0

+ π̂AL0

)
.

Validity of the second step (i.e. the consistency of ϕ̂A and ϕ̂AL0
for ϕA and ϕAL0

)

Proof. (i) First of all, we show

E(Y 00|L0 = l0) = γ0 + γL0
l0 + γL1

f(l0, 0). (B.14)

which is exactly the same as (B.6).

Under sequential ignorability, consistency, and the specification in (B.12), and using a

similar argument to that for (B.7), we have

E(Y a0|L0 = l0, A = a, L1 = l1)

=E(Y a0|L0 = l0, A = a, L1 = l1,M = 0)

=E(Y |L0 = l0, A = a, L1 = l1,M = 0)

=γ0 + γAa+ γL0
l0 + γAL0

al0 + γL1
l1 + γAL1

al1. (B.15)

The equality holds for any (l0, a, l1), and therefore we can write

E(Y A0|L0, A, L1)

=γ0 + γAA+ γL0
L0 + γAL0

AL0 + γL1
L1 + γAL1

AL1

143



14
4

Take expectation of both sides conditional on (L0, A), we get

E(Y A0|L0, A)

=γ0 + γAA+ γL0
L0 + γAL0

AL0 + γL1
E(L1|L0, A) + γAL1

AE(L1|L0, A)

=γ0 + γAA+ γL0
L0 + γAL0

AL0 + γL1
f(L0, A) + γAL1

Af(L0, A),

i.e. for any (l0, a),

E(Y a0|L0 = l0, A = a)

=γ0 + γAa+ γL0
l0 + γAL0

al0 + γL1
f(l0, a) + γAL1

af(l0, a).

Then the first part of the sequential ignorability implies

E(Y a0|L0 = l0)

=γ0 + γAa+ γL0
l0 + γAL0

al0 + γL1
f(l0, a) + γAL1

af(l0, a).

Set a = 0, we get

E(Y 00|L0 = l0) = γ0 + γL0
l0 + γL1

f(l0, 0).

(ii) Secondly, we show

E(Y − qm(L0, A, L1,M ; γ)|L0 = l0, A = a)

=ϕAa+ γ0 + γL0
l0 + γL1

f(l0, 0). (B.16)

By setting m = 0 in (B.11), we have

E(Y a0 − Y 00|l0) = ϕAa+ ϕAL0
al0.

Then, (B.1) and (B.14) imply

E(Y − qm(L0, A, L1,M ; γ)|L0 = l0, A = a)

=E(Y a0|L0 = l0)

=E(Y a0 − Y 00|L0 = l0) + E(Y 00|L0 = l0)

=ϕAa+ ϕAL0
al0 + γ0 + γL0

l0 + γL1
f(l0, 0).
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(iii) Lastly, given (B.5), we have

E(Y − qm(L0, A, L1,M ; γ)|L0 = l0, A = a)

=ϕAa+ ϕAL0
al0 + γ̃0 + γ̃L0

l0, (B.17)

where γ̃0 = γ0 + γL1
π0 and γ̃L0

= γL0
+ γL1

πL0
. Therefore, in the second-step regression

the OLS estimators ϕ̂A and ϕ̂AL0
are consistent for ϕA and ϕAL0

, respectively.

Necessity and sufficiency of (B.5) for the validity of the second step, given all
the other model assumptions and that L0 is not binary

The same argument as that in D.1 can be used.

Validity of the third step (i.e. the consistency of ϕ̂AM and ϕ̂AML0
for ϕAM and

ϕAML0
)

Proof. Given equation (B.12) and Y am ⊥⊥M |L0, A, L1, we have

E(Y am|L0, a, L1)

=γ0 + γAa+ γMm+ γAMam

+ γL0
L0 + γAL0

aL0 + γML0
mL0 + γAML0

amL0

+ γL1
L1 + γAL1

aL1 + γML1
mL1 + γAML1

amL1.

Take expectation conditional on (L0, a), and notice Y am ⊥⊥ A|L0, we have

E(Y am|L0)

=γ0 + γAa+ γMm+ γAMam

+ γL0
L0 + γAL0

aL0 + γML0
mL0 + γAML0

amL0

+ γL1
E(L1|L0, a) + γAL1

aE(L1|L0, a)

+ γML1
mE(L1|L0, a) + γAML1

amE(L1|L0, a).
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Hence,

E(Y am − Y 0m|L0)

=γAa+ γAMam+ γAL0
aL0 + γAML0

amL0

+ γL1
[E(L1|L0, a)− E(L1|L0, a = 0)] + γAL1

aE(L1|L0, a)

+ γML1
m [E(L1|L0, a)− E(L1|L0, a = 0)] + γAML1

amE(L1|L0, a). (B.18)

Assume E(L1|L0, A) = π0 + πL0
L0 + πAA+ πAL0

AL0, we have

E(Y am − Y 0m|L0)

=γAa+ γAMam+ γAL0
aL0 + γAML0

amL0

+ γL1

(
πAa+ πAL0

aL0

)
+ γAL1

a
(
π0 + πL0

L0 + πAa+ πAL0
aL0

)
+ γML1

m
(
πAa+ πAL0

aL0

)
+ γAML1

am
(
π0 + πL0

L0 + πAa+ πAL0
aL0

)
=
[
γA + γL1

πA + γAL1
(π0 + πA)

]
a

+
[
γAM + γML1

πA + γAML1
(π0 + πA)

]
am

+
[
γAL0

+ γL1
πAL0

+ γAL1

(
πL0

+ πAL0

)]
aL0

+
[
γAML0

+ γML1
πAL0

+ γAML1

(
πL0

+ πAL0

)]
amL0.

Compare the last equation with B.11, we see that

ϕA = γA + γL1
πA + γAL1

(π0 + πA) (B.19)

ϕAM = γAM + γML1
πA + γAML1

(π0 + πA) (B.20)

ϕAL0
= γAL0

+ γL1
πAL0

+ γAL1

(
πL0

+ πAL0

)
(B.21)

ϕAML0
= γAML0

+ γML1
πAL0

+ γAML1

(
πL0

+ πAL0

)
(B.22)

Therefore, we can estimate ϕAM and ϕAML0
consistently by

ϕ̂AM = γ̂AM + γ̂ML1
π̂A + γ̂AML1

(π̂0 + π̂A) ,

ϕ̂AML0
= γ̂AML0

+ γ̂ML1
π̂AL0

+ γ̂AML1

(
π̂L0

+ π̂AL0

)
,

where γ̂ is from the first step regression, and π̂ is from the third step regression.
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APPENDIX C

NUMERICAL EQUIVALENCE

We prove the numerical equivalence for Model 5 which is the most flexible model in all the

five models considered. The proof for the other four models can be obtained in a similar

fashion.

To present the results rigorously, we first need to express the two estimators using the

same set of notation. LetX1 = (1, A, L0, AL0),X2 = (L1, AL1),W = (M,AM,ML0,ML1),

Z = (X,W ) and e = Y − E(Y |Z). Let

γ = (γ0, γA, γL0
, γAL0

, γL1
, γAL1

, γM , γAM , γML0
, γML1

)′.

Assume the sample size is n. Stack all observations in the matrix denoted by the correspond-

ing bold letters. Under these notations, Model 5 says that

Y = Zγ + e.

Denote the OLS estimator for γ by γ̂. Then

Y = Zγ̂ + ê, where Z′ê = 0.

Both the flexible plug-in estimator and the SG estimator use the above linear regression in

the first step. In addition, the sequential g-formula estimator generates the fitted outcome

Ŷ−M = Y − γ̂MM − γ̂AMAM − γ̂ML0
ML0 − γ̂ML1

ML1

= Y −X3γ̂W

which is free of the effect of M .

Let β1 = (β0, βA, βL0
, βAL0

)
′
and β2 = (βL1

, βAL1
)
′
. Combine them in β = (β′1,β

′
2)
′
.

Let π = (π0, πA, πL0
, πAL0

)
′
. Define ε = Ŷ−M −E(Ŷ−M |X), u = Ŷ−M −E(Ŷ−M |X1), and
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v = L1 − E(L1|X1). Then

Ŷ−M = Xβ + ε,

Ŷ−M = X1β1 + u,

L1 = X1π + v.

Denote the linear projection coefficients in the above three equations by β̂, β̃1 and π̂,

respectively. Then

Ŷ−M = Xβ̂ + ε̂, X
′
ε̂ = 0 (C.1)

Ŷ−M = X1β̃1 + ũ, X
′
1ũ = 0 (C.2)

L1 = X1π̂ + v̂. X
′
1v̂ = 0 (C.3)

Note that (C.2) represents the second-step regression of the sequential g-estimation.

Finally, let ϕ = (ϕA, ϕAL0
, ϕAM , ϕAML0

)′. Let ϕ̂ denote the sequential g-formula esti-

mator, and ϕ̌ the flexible plug-in estimator. The two estimators are the same in estimating

ϕAM and ϕAML0
:

ϕ̂AM = ϕ̌AM = γ̂AM + γ̂ML1
π̂A, (C.4)

ϕ̂AML0
= ϕ̌AML0

= γ̂AML0
+ γ̂ML1

π̂AL0
+ γ̂AML1

(
π̂L0

+ π̂AL0

)
, (C.5)

but they differ in estimating ϕA and ϕAL0
:

ϕ̂A = β̃A, (C.6)

ϕ̂AL0
= β̃AL0

. (C.7)

ϕ̌A = γ̂A + γ̂L1
π̂A + γ̂AL1

(π̂0 + π̂A) , (C.8)

ϕ̌AL0
= γ̂AL0

+ γ̂L1
π̂AL0

+ γ̂AL1

(
π̂L0

)
. (C.9)

Theorem 8. (Numerical Equivalence in Model 5) The flexible plug-in g-formula and the

sequential g-estimation are numerically equivalent in Model 5. That is

ϕ̂A = ϕ̌A,

ϕ̂AL0
= ϕ̌AL0

.

148



14
9

Proof. Regarding those linear projection coefficients, the first fact is that

β̂ = γ̂X (C.10)

where γ̂X is the sub-vector of γ̂ associated with X. To see why, let γ̂W be the sub-vector

of γ̂ associated with W . Then the regression of Ŷ−M on X can equivalently be cast as the

restricted regression of Y on Z = (X,W ) with the constraint γW = γ̂W , and the later

restricted regression is known to yield γ̂X .

The second fact is that the orthogonality condition following each of the three equations

(C.1), (C.2) and (C.3) is definitional for the corresponding linear projection coefficient vector.

Note that the rank condition always hold in practice unless by fluke. Therefore, given a data

set, β̂, β̃1 and π̂ are uniquely defined by their respective orthogonality conditions.

Now we are ready to prove the equivalence. Plug equation (C.3) into (C.1), we have

Ŷ−M = Xβ̂ + ε̂

= β̂0 + β̂AA + β̂L0
L0 + β̂AL0

AL0 + β̂L1
L1 + β̂AL1

AL1 + ε̂

= β̂0 + β̂AA + β̂L0
L0 + β̂AL0

AL0 + β̂L1
(π̂0 + π̂AA + π̂L0

L0 +

π̂AL0
AL0 + v̂) + β̂AL1

A(π̂0 + π̂AA + π̂L0
L0 + π̂AL0

AL0 + v̂) + ε̂

= (β̂0 + β̂L1
π̂0) +

[
β̂A + β̂L1

π̂A + β̂AL1
(π̂0 + π̂A)

]
A + (β̂L0

+ β̂L1
π̂L0

)L0

+
[
β̂AL0

+ β̂L1
π̂AL0

+ β̂AL1
(π̂L0

+ π̂AL0
)
]

AL0 +
[
(β̂L1

+ β̂AL1
)v̂ + ε̂

]
= β̂∗0 + β̂∗AA + β̂∗L0

L0 + β̂∗AL0
AL0 + ε̂∗

= X1β̂
∗
1 + ε̂∗

where we define

β̂∗0 = β̂0 + β̂L1
π̂0,

β̂∗A = β̂A + β̂L1
π̂A + β̂AL1

(π̂0 + π̂A), (C.11)

β̂∗L0
= β̂L0

+ β̂L1
π̂L0

β̂∗AL0
= β̂AL0

+ β̂L1
π̂AL0

+ β̂AL1
(π̂L0

+ π̂AL0
), (C.12)
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β̂
∗
1 = (β∗0 , β

∗
A, β̂

∗
L0
, β̂∗AL0

)
′
,

ε̂∗ = (β̂L1
+ β̂AL1

)v̂ + ε̂.

But (C.3) and (C.2) imply that

X
′
1ε̂
∗ = X

′
1

[
(β̂L1

+ β̂AL1
)v̂ + ε̂

]
= (β̂L1

+ β̂AL1
)X
′
1v̂ + X

′
1ε̂

= 0. (C.13)

Hence, by definition and uniqueness, β̃1 = β̂
∗
1. In particular, we have

β̃A = β̂∗A,

β̃AL0
= β̂∗AL0

.

It follows immediately from (C.6), (C.7), (C.10), (C.11) and (C.12) that

ϕ̂A = ϕ̌A,

ϕ̂AL0
= ϕ̌AL0

.

Remark 1: In proving X
′
1ε̂
∗ = 0, it shows why we need the regressors be the same in the

model of L1 as in the model of the second-step regression.

Remark 2: If the statistical model for E(L1|A,L0) is of the same level of flexibility as

the second step regression of the SG estimator, we say the model is properly chosen. For

example, in Model 1, the second step of the SG estimator is to regress Ŷ−M,i on (1, Ai, L0i),

and the proper model for E(L1|A,L0) is E(L1|A,L0) = πC + πAA + πL0
L0. In Model 5,

the second step of the SG estimator is to regress Ŷ−M,i on (1, Ai, L0i, AL0i), and the proper

model for E(L1|A,L0) should be E(L1|A,L0) = πC + πAA+ πL0
L0 + πAL0

AL0.

If the second-step regression of the SG estimation contains AL0, but the linear model

for E(L1|A,L0) excludes AL0, then the numerical equivalence does not hold any more. The
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intuition is that when πAL0
is forced to be zero, it will alter the the estimates for π0, πA and

πL0
, which can be viewed as some restricted estimates. The math is explained in (C.13):

X
′
1v̂ is not zero anymore.
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APPENDIX D

SENSITIVITY ANALYSIS

In this section we provide the derivation details for the sensitivity analysis in section 5 of

main text. Specifically, we want to show that

γZ = γOLSZ −
[
E(Z′Z)

]−1

 0

σεMεY

 .
Proof. Recall that

Y = ZγZ + εY , (D.1)

Z = (1, L0, A, L1,M),

σεMεY
= Cov(εM , εY ) 6= 0.

Premultiply both sides of equation (D.1) by X ′, take expectation„ we have

E(Z′Y ) = E(Z′Z)γZ + E(Z′εY ).

Assume E(Z′Y ) has full rank, then

γZ =
[
E(Z′Z)

]−1E(Z′Y )−
[
E(Z′Z)

]−1E(Z′εY )

Now notice that the three additional assumptions in Section 5 imply

E[(1, L0, A, L1)′εY ] = 0. (D.2)

where 0 is a 4×1 zero vector. Meanwhile recall that γOLSZ =
[
E(Z′Z)

]−1E(Z′Y ). It follows

immediately that

γZ = γOLSZ −
[
E(Z′Z)

]−1

 0

σεMεY

 .
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