

THESIS

P
A

This is to certify that the
dissertation entitled
Teaching for Fluency with Information Technology:
An Evaluative Study
presented by

Mark George Urban-Lurain

has been accepted towards fulfillment
of the requirements for

Ph'D'

degreein _Educational Psychology

Major professor

Date_11/1/2000

MSU is an Affirmative Action/Equal Opportunity Institution 0-121

LIBRARY

Michigan State

University

PLACE INRETURN BOX toremove this checkout from your record.

TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.
DATE DUE DATE DUE DATE DUE
3 974
AY 2 0 2007
0125 07

1100 c/CIRC/DeseDue 985-D.14

TEACHING FOR FLUENCY WITH INFORMATION TECHNOLOGY:
AN EVALUATIVE STUDY

VOLUME |

By

Mark George Urban-Lurain

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Counseling, Educational Psychology and Special Education

2000

An,

oy

o

“.

ABSTRACT

TEACHING FOR FLUENCY WITH INFORMATION TECHNOLOGY:
AN EVALUATIVE STUDY

By

Mark George Urban-Lurain

Higher education faces the challenge of helping students learn to be
Fluent with Information Technology (FIT) so they are prepared for a lifetime of
constant technological change. This study evaluated one effort to prepare
students to be FIT: an introduction to computing course for non-computer
science majors at a large university. The major goal of the course is to help
students leam to use computing technology to solve problems in a variety of
domains without learning computer programming. To meet this goal, the course
uses an inductive, problem-based curriculum with unique, modified mastery
model, criterion referenced, performance-based assessments called bridge tasks
(BTs.) This study describes the course curriculum and assessments in detail.

The impact on student outcomes of three major course components were
analyzed: incoming student variables, instructional and classroom variables and
computing concepts as measured by the BTs. For each component, discriminant
analysis was used to predict final student course grades. The data (n = 5068)
were divided into two sets. The first data set (70%) was used to derive the
discriminant functions; the remaining data set (30%) was used to test the

classification accuracy of the discriminant functions. If the functions performed

b
e

nanr
Tive

iR
b

-
¥

¢
o

e

ra

i
-

no better than chance, they would correctly classify 12.5% of the cases. The
incoming student variable model correctly classified 32.8% of the test data

(p < .000). For the second model, adding instructional variables to the incoming
variables increased classification accuracy to 42.4% (p < .000). For the third
model, adding the computing concepts to the model increased the classification
accuracy to 56.5% (p < .000). The computing skills variable loadings on the
discriminant functions clustered on the underlying computing concepts, predicting
students’ abilities to apply the concepts to higher-level problem solving.

This study has implications in at least three areas. First, it provides
evidence that it is possible to teach students to be FIT without learning computer
programming. Second, this study has implications for the use of technology in
instruction. It shows that, by using database technology, it is possible to create,
deliver and evaluate complex, performance-based assessments on a large scale,
with high inter-rater reliability, in a cost-effective manner. Using this technology,
it is also possible to model student learing and to identify student conceptual
difficulties, then use this information to intervene and improve leaming. Finally,
this study has institutional implications for improving the instructional design of
courses and curricula. The data collected and feedback processes used in the
course can be used to document instructional outcomes for accreditation
purposes. The study also has implications for distance education by
demonstrating that it is possible to deploy instruction and performance-based
assessments at the large scale needed to make distance education fiscally

viable.

Copyright by
Mark George Urban-Lurain
2000

To Jan, for your love and support.

Pame
w.

am
e

Ta%
an
(Sead

SN

-
oo

a
«

v

ACKNOWLEDGMENTS

I would like to thank Dr. Yong Zhao, who agreed to chair my dissertation
committee, for guiding me through the labyrinth of the dissertation process,
keeping me focused on the big picture when | was lost in minutiae. | also want to
thank the members of my committee: Dr. Joe Byers, who was especially helpful
as my advisor and provided wise counsel throughout my studies; Dr. Donald
Weinshank, my colleague and friend, from whom | have leamed so much about
teaching with — and about — technology; and Dr. Stephen Yelon, whose ideas
about instructional design were instrumental in the creation of the course that is
the basis for this study.

I would also like to thank the other members of the design team
responsible for the creation of the Computing Concepts and Competencies
course: Gary McCuaig, with whom | worked for many years at Instructional
Television and who contributed so much to this course; Tom Danieli, who, as a
Computer Science graduate student helped to get the project underway before
he moved on to Perot Systems; and Ryan McFall, who joined the project as a
Ph.D. candidate in Computer Science and Engineering, and without whose
database expertise the course could never have been implemented.

| also wish to thank the members of the Computing Concepts and
Competencies team. Especially Bemie Holmes for his cool, calm and collected
management of our complex computing systems and Mary Gebbia for

overseeing the massive administration of a course of this size. | wish | had room

vi

P
P
!

s raa
v 3T

RoAAm
Vvew i

hesm
vuu

250A A
e

to acknowledge by name the hundreds of graduate and undergraduate teaching
assistants and grading staff who actually make this course run. Working with this
fabulous team has been a rewarding and leaming experience. Without their
efforts, | would not have had the luxury to undertake this research.

| also want to acknowledge the thousands of students who have taken this
course. In many ways, you were all participants in this research. You have
helped me remain focused on the purpose of the project: to help students
become fluent with information technology. | have seen your joys and pains
throughout the course and hope that it has been a worthwhile experience for
each of you.

| also must acknowledge the creators of Microsoft Office. Without this
product with which | produced the final manuscript, | might have forgotten how
frustrating computing can be.

Finally, | would like to thank my family for their support throughout this
protracted process. In particular, | would like to express my deepest love and
thanks to my wife Jan, who spent many lonely hours while | toiled away in the

computing hut. I'll be home soon, hon.

vii

1AL
‘.\.!(n

Ty
Wi

&S
Thanae
-,

1 C

Ty

TABLE OF CONTENTS

ACKNOWLEDGMENTS ...ttt ettt e vi
TABLE OF CONTENTS ...ttt ettt st viii
LISTOF TABLESco ottt et s xiii
LISTOF FIGURES...........oooiiiiietteeeete ettt sttt s xviii
LIST OF ABBREVIATIONScooiiiiiiitiitee ettt XX
Chapter 1 INtrodUCHIONooiiiieiiee et e et rnee e eans 1
Primary QUESHIONScccciiiiieieeieete ettt ae s 3
What Constitutes FITNESS?cccceviiiieiiiiiienecneereceeet et 3
What is an Appropriate Curriculum and How Do We Determine t? 4
What is the Best Instructional Design to Meet These Goals?..............c..ccc..... 5
How do we assess student outcomes to determine if we are meeting the
OAUIST? ...ttt ettt et e sttt st et e bt s bt e e bt e s b e e e aee e e reeeate s 6
The CSO0 Course at Michigan State University...............ccocccviiininininiinnenn 6
The CUITICUIUM ..ottt s eeaeesnae s e e s rae e sseeenns 8
The Instructional DeSIgN...........ccoveiieiiiieie ittt seee e 9
The ASSESSMENLEScooeiiiiiiiiie ettt et e ettt e e s br e e be e s e nanes 10
Research QUESHIONS...........ccooiiiiiciiiriiiie et st sre e esbe e e sreee s e aaeeenes 11
Data SOUICES.......ccuuiiriiiiieiiee et e et e e e s nnnes 11
Chapter 2 Literature ReVIEW..............c.cceviiiiiiiiiniieeieeee ettt e 14
What Constitutes FITNESS?ccccceiriciieiiiiierieinciieecreeseeesssveeessiens e sseneesesnes 14
What is an Appropriate Curriculum and How Do We Determine 1t7? 16
History of Computer Science Instruction for Non-Majors...............cccceuueene.en. 17
Traditional Computer Science Curriculumcccooeeiiiieriiniinnec e 17
Curriculum for Non-Computer Science Majorscc.cccoecervceinneennieenennn. 18
Trends iN CSO COUPSESc..oocieeiieieiie ittt st e et e e e s sreeens 20
APPICAtIONScooiiiiiiiee ettt e e e cere e e e e e e e e e e e s e ananne 20
ManagemMBNtoooiiiiiiiiietee ettt et e et e e eaane s 22
MURIMEAIAcoiiiiiiiiiiect e 23
Programming.........c.ccceciiiiiiiinniiiicnie et e 24
SIMUIAtIONS ..o e 27
S0CHAN. ..cieueeeriereirereieireertee e ettt e s e st e et s bt e e bt e st s e e ane e s e e neeeenas 28
SUIVEY ...ttt sttt e st e st e s e st s e e sab e e e e e e e e enes 29
Discussion of Trends in CSO COUrses..........ccocceviieriiinieciieeiieniee e 30
Transfer from Programming to Other Domainscc.cccceeveieiiiieeiieneennnee 35

viii

Cognition and Programming...........ccceeervueerriiereeeniireeriee e eseeeeserecsseeeesens 37

Expert Versus Novice Knowledgeccccoeeirieieiiiiiiieriiiiiiiieiieiiieeiieeneeeeeen, 38
The Importance of Conceptual Understanding........c.ccooeeveeevevieeiinccininienenn. 40
What is the Best Instructional Design to Meet These Goals?.......................... 44
o] (V7= (T o IRt 45
Computers and COognition.............cceieereiiiiiiiiciiiieren e ereeeeeeeea e s 46
How do we assess student outcomes to determine if we are meeting the goals?
.. 48
SUMMANY ..ot e e et r e e e e s e aerreeeeesstaeaeeesnseeesenraneesensnn 52
Chapter 3 Methods............cccuviiiiieee e e e e e e nrne e e 55
Research Setting..............ooo e 55
Program D@SigN........c.cocumiiiiiiieiie ettt e e 58
DeSIgN INPULS ..ot e e s e e e e e e s e eeaeas 58
Instructional GoAlS...............eeiiiiiiiiiiiiie e 59
Instructional Designccoo i 60
Inductive, spiral curriCulUMoooiiiiiiiiiiiii e 60
MURIPIB “Lracks”oeeeeieiiiiiieeeere e s 61
Problem-based, collaborative learningcccoooiiiiiiiiiiiiriiiicicieeneees 62
Performance-based assessment............cccccccoviiiiiiiiiiiiiiiienrineceeeneee 64
Program Implementationoccoviiiiiiiiiiiiii e s 67
INSEIUCHION ...ttt re e e e e s eeseeeesanaeas 68
ClassSroom StrUCIUIEcooovcvviieieiieieiiceiiieree e e e e e s easnaenes 68
Instruction and assessment schedule................ccccccuviriviiiiiiiiinieiiniennnenn. 70
ASSBSSMONL ..ot eer e re ettt a e e et e s e e e aeaeeaeanas 73
Creating bridge tasks...........c.cuuviiieiiiiiiccire e 74
Delivering bridge tasksccccoouireeiiiiimicccc e 77
Evaluation criteria............cccooiviiiiiiriieie e e e e e e e e e e eenes 78
Evaluating bridge taskscccceiiiiiiiiiie e, 81

FiNal ProJECE.......cuveiiiiiiiiieicritre ettt e e s eeee s 82

Data And Hypotheses..............ccciiiiiiiiiiie e 84
Evaluation FrameworkK.............coooiiiiiiiciiii e 84
IncomMING StUBNES.........eeeiii e 85
Instructional Vanablesc..eovuueeiiimieiiiiceereeeeee e 86
ASSESSIMONES ...ttt nannes 88
OULCOMBS ...ttt ettt e e s s e s e s e e e e s aseeaeaaes 89
Analysis FrameworKcccceiiiiiiiiiiiiiiiert e 91
Discriminant ANalysiscccccoviiiiiiiiiiiiiii e 94
Data SOUICES........uueiiieieeirriee ettt e e st e s s mrne e e s e 99
Incoming Student Data.............cccceiiiiiiiiiii e 99
Instructional System Data............ccoccciiiiiiiiiiie e 100
Assessment Datacceeeviieiiiiiiiiiieiecc e 101
OUtcoMES Data..........eueeeriiiiiiiiiiiee et 101
HYPOIhESEScoeeieiierree e 101
Individual Incoming Student Differences Hypotheses...........ccccccceeeennn.e 102
Instructional System Hypothesesc.ccceeeviiiiiiiiicinrieieirceieeeeeeee e 103

ix

Assessment Hypothesescccv e 104

Outcome Hypotheses.............coouciiiiieiiiiieee et 104
Chapter 4 RESUMS..........c.coieiiiiiieieie ettt s 106
StuEnt OUICOMES.......c..eeiieiiieeieeee et s 107
Incoming Student Variables...............cccooiiiiiiiiiini e 108
Demographic Variablescccoeviiiiiiiiniinieci e 108
Grade Point Averages (GPA)cooiiiiiiieeiiee et siee e see e 109
ACT SCOMEScoveeueriirieeeeirtereieeetr et st re e teeesaseeessressbessteesssseesneessssens 111
StUdeNts’ MajOrs........oocuiiiiieiieceeeeee e e 112
Class Standingccooceeriiiiiiirie et 114
SHUAENT Aottt st 115
Gender and Ethnic Classificationcccccceveeiciiiirieiniciiiecee e 116
Incoming Student Computing EXperienceccoccceeceeevireieniennieeseenseennees 117
General Computing EXperiencecccccoceeiniiniieininieciencienee e 117
Computer Application EXperiencecccccccvevveriinieieniciniecee e 121
Algebra and Computer Programming Experience.............cc.ccceevevevecnennnenn. 126
Survey Factor ANAIYSIS.........ccccverrrieerriiireieeeeeieessireeerinresieessenesenresssnsaesns 128
Incoming Data Model...............oooiiiiiiii e 130
Discriminant Function Derivation...............ccccoeeeiviiiiieciieineneeeneeceree e 130
Discriminant Function Validationcccccceviiciiiiiiininccciee e 136
Interpretation of the Discriminant Functionsccccccoeiiiieiinniiinccenn. 141
SUMMANY ...ttt ettt et e et s see s s b e vt e s e s e mnees 151
Instructional Vaniablescceoviiiinriiiiiine e 152
Teaching ASSIStaNtscoociiiiiiiii e 152
Teaching Assistant EXperiencecccccveeeciiereennicnen e eeeeee e 152
Student Ratings of Teaching Assistants.............cccceccerveeriiencnerecnieennnnen, 153
Student Participationc.cccveeiiiiiiiiiei e e 155
AREBNAANCEoriiiriiieeee e 165
Number of Bridge Tasks Taken...........ccccvevimiiiiniecnienniiecienecnncceeees 157
Student Preparation.............ccocoveeeiiieeeinniiiieesieseeeesessree e e s sereeseesnnene 158
Interactions Between Students and Course Instructors............c.cccocuveenneee. 159
Instructional Data Model..........cccooeiiiiiiiiiiiinire e, 163
Discriminant Function Derivation............cccccccoiiiiiiiiiinciiiin e, 163
Discriminant Function Validationcc.ccceveiiiriiiiiiiniiiicecr, 169
Interpretation of the Discriminant FUNCtionsc..ccccceeeivvieeenieeeniecnne 173
SUMMATY ...ttt ettt s e s see e s enesnns 180
Computing Concepts and Skill Variables.............ccccocvevveviiiienniiiiinieeccieeeenns 181
Bridge TasKScccccveiieiiieieiieentrceseete et e s 181
Computing Concepts and Skills Model...........ccccccerrvciiriiinnicinnienneeennee, 186
Discriminant Function Derivation..............ccccveviininiienniieceeeeee e 187
Discriminant Function Validationccccoeeiiiiiiiiiinncceeeee e, 195
Interpretation of the Discriminant Functionsccccccooeeiieiiinicencnnen. 199
SUMMANY ...ttt e s a s sses 209
Student Evaluations..............cccceueiiiiiiiiiiniiii e 209
Student Course Evaluations...........c..ccecceeriiiinienicnienreieeescre e 210

-
1
|
|

Student Evaluations of Their Teaching Assistantscccccceeeivveieennennne 214

Student Evaluations of Their Assistant Teaching Assistants...................... 217
Analysis of the Student Evaluationscccccoveiieeeiicccciieeee e 220
The Course “Faimess” Factor..............cceoieeiiireciin e 220
The “Preparation and Participation” Factor..............ccceccvvveriivienieeccnnnnn. 223
The “Course Resources” FACOr........cccoccevvviiiiiiiiiiie e eseeeerveee 225
The Teaching Assistant SIRS...........cccccoeiiiriiiinrierereeeee e 227
The Assistant Teaching Assistant SIRSccccovciiiiriiierieceeees 229
Summary of the Student Evaluationsccccveeeeeiinieececeiec e 231
Student Course Evaluations..............cccovvieiiiiierniieniiie et sie e reans 231
Student Ratings of the Teaching Assistants.........c.cccccocvvveiieccinienenienns 235
Evaluation of Hypotheses............ccceiriiiiiniiiiiiiiiiennreeccsrece e 236
Individual Incoming Student Differences Hypotheses...............cceu..n.... 236
Instructional System Hypothesescccceevviirviiiniiinniiineeeceen, 248
Assessment Hypothesesccoocvvviiiieiiiiiiiiitie e e 250
Outcome Hypotheses...........ccccuiiiiiiiiiiiiiieiectteee et 252
SUMMANY ...ttt ettt e e te e st e s rae e s taesnneessaesseessseennees 253
Chapter 5 DISCUSSIONc..c.eeriiieriiieiieeieecie et e e sere e teasreeseeeseeeeees 255
L F= o] gl oo Te [T Vo TP 255
Incoming Students and Generalizability of Findings...........ccccccevvvvrcveneeene 255
What Constitutes FITNESS?ccocciiiriiiiiiiiienitiesrseeeessssnesssvnesssneesenns 256
Instructional FINAINGS..........cceiiiririiiiiiiiiniie e e e e e 260
Authentic, Performance-Based ASSeSSMENtscoceevvueereieeniiereeivenienenes 262
IMPHCALIONSeeeeiiieeiiic e s ee e e e e e 264
How to Teach FITNESSuvvieiiiiiiiiiiei ettt e eree e e 264
Single CS0 Course or Computing Across the Curriculum? 266
Technology in INSErUCtioN.............cooviiiiiiie e 269
Institutional IMplICatioNsccooiiiiiiiii e 271
Future Research DireCtions..............cccovvverieieieceinciienis e 275
Appendix A Sample Lesson Plan for Day 6...............cccocoviviiininciicniieicne, 280
Appendix B Sample Bridge Tasks from Fall, 1999cccccovvirrvvvievnieennen. 307
Sample 1.0 BT From Fall 1999..........ccccoeviriiriiiiieniiiiienienieniesesiesnene 308
Sample 1.5 BT From Fall 1999.........c.ccccciiiiiiiiiiieiniiieecieeesee et sieeee 310
Sample 2.0 BT From Fall 1999...........cccceiriiiiiiieitee et csvee e 312
Sample 2.5 BT From Fall 1999..........coccevvieriiniiiiiiiicciccte e 315
Sample 3.0 Track A BT From Fall 1999cccccooiiiiiiiniinieniniceneneene 321
Sample 3.0 Track C BT From Fall 1999cccccooiiriiiiniiiniieniecnee e 328
Sample 3.0 Track D BT From Fall 1998...........cccoocviiriiinniiiiiteenienieeeiee e 332
Appendix C Evaluation Criteria for Sample Bridge Tasks............cccoecveveeieennnns 336
Sample 1.0 BT Criteriac.cceieiiiiiiiiiinieecence et 336
Sample 1.5 BT Criteriac.cccoivviiiiiiiiiiiiiiiiie e 339
Xi

Sample 2.0 BT CHteNaooccvieiiie ettt eecre e s e sree e sevesesnaeesane e 342

SamPle 2.5 BT CHtEMAcueeveeeeeieiieeeeeteeeeeeeeeeee et aneneans 346
Sample 3.0 Track A BT Criteria.......cccccceevvieiieiiieeeecieee s cereee e srree e s eerveeeenaens 352
Sample 3.0 Track C BT Criteria...........ccccvverieriiiiieeiienieneeee et 358
Sample 3.0 Track D BT Criteria.........cccccvvviiiiiiieeerieeeeecriee e eervee e 362
Appendix D Student Course Survey and SIRS Questions..............cccveeveeveneneen. 368
Course Survey QUESHONS...........ccocuerieiiiiiieeie ettt 369
Lead TA SIRS ...ttt ettt s e e e b e e s ree e e aaesanes 371
ASSIStaNt TA SIRS ... et e 372
REfErENCEScoooiteiei e e e s e bre e e e s nta e e e s s earaee e eenraes 373

Xii

LIST OF TABLES

Table 1 Course Syllabus for Fall, 1999..........cccccovvvirevirirciireiee e, 71
Table 2 Number Of Students by Semester...........ccccoccevreiiiiciienceiecie e 109
Table 3 Correlations Between Course Grade, Semester GPA and Cumulative
GPA DY Class LeVelccceoiieiiiiniiiienieeieceestee et s 110
Table 4 ACT SCOTEScoouiiiiiiiiiiiiecceeee ettt 111
Table 5 Number of Students from the Majors with Highest Enroliments 113

Table 6 Percentage of Students Enrolled Each Semester by Class Standing.. 115
Table 7 Ethnic Classifications................cccocviiiiiiiiniciiiicccce 116
Table 8 Length of Time Incoming Students Report Working with Computers .. 118
Table 9 How Students Report Leaming to Type.........cccccccvvevecieeeiirecceee e 118

Table 10 Student Self-Reported Understanding of the Meaning of the Term
WINAOWS' ...ttt ettt sttt s bt ba e e s sae e s sae e s saneesanneassns 119

Table 11 Student Self-Reported Understanding of the Meaning of the Term “User
INEIfACE” ..ot 120

Table 12 Student Self-Reported Understanding of the Meaning of the Term

HYPOREXE ...t e s s s e e s e s rbe e e s s re e e e s nraas 121
Table 13 Student Self-Reported Experience with E-mail...........c.ccccuevveeennnennee. 122
Table 14 Student Self-Reported Experience with the World Wide Web............ 123
Table 15 Student Self-Reported Experience with Word Processing................. 123
Table 16 Student Self-Reported Experience with Spreadsheets...................... 124
Table 17 Student Self-Reported Experience with Electronic Databases.......... 125

xiii

i
\acie

-
Las

G
o2

«w>»

o
P,

.;
@
o
U

i

e

.4 i
< a»
& &

- +°

«"7
(34

e

Table 18 When Students Report Taking College-Level Algebra....................... 126

Table 19 Amount of Student Computer Programming Experience.................... 127
Table 20 Final Set of Survey Variables and Factor Loadings................cc........ 129
Table 21 Distribution of Cases by Final Course Gradeccccccevveerreennenne 131
Table 22 Tests of Equality of Group Meanscc.cccecveeeviieenceeniieneeeneenes 132
Table 23 Stepwise Variable Inclusion and Removal Summaryccc..ee. 134
Table 24 Significance of the Discriminant Functions.............cccccceecienieeniieenen. 136

Table 25 Incoming Data Classification Results for Cases Used to Derive the
Discriminant FUNCHIONSccceiiiiiniienieerie ettt 138

Table 26 Incoming Data Classification Results for Unselected Cases 140

Table 27 Correlations Between Independent Variables and Standardized
Canonical Discriminant FUNCHIONSeuvevieivreeiiieeeeeeeeeereeereeeeeens 143

Table 28 Correlations Between Independent Variables and Rotated Functions

.. 145
Table 29 F-Statistics Among Each Pair of Group Centroid Means................... 147
Table 30 Unstandardized Functions at Group Centroids..........cc.ccccoceereernnenne 148
Table 31 Teaching Assistant Experience By Semester............cccccevvennnnnnnnne 153
Table 32 Factor Loadings for Average SIRS Ratings of TAs...........ccccceeuennnene. 154

Table 33 Student Self-Reports of Doing Homework and Attending Help Room159

Table 34 Correlations with Student Interaction and Factors............ccccccuueenneee. 162

Table 35 Tests of Equality of Group Meansccccceeveirvieenieenscnsiee e 165

Table 36 Stepwise Variable Inclusion and Removal Summaryc.cceueeee. 167
xiv

TR TS -.FP'1

@ a £ w I @ - ar @
£ . - <
S 4 14 4 3 X
K 3 . [o3 PO

Table 37 Significance of the Discriminant Functions............cccccccvveereciveeennnneen. 169

Table 38 Incoming and Classroom Data Classification Results for Cases Used to
Derive the Discriminant FUNCHIONS............ccccvvirciieiniieennieeeesreesesnreessnns 171

Table 39 Incoming and Classroom Data Classification Results for Unselected
CaSES ...ttt ettt e e s e e reas 172

Table 40 Correlations Between Independent Variables and Rotated Functions

.. 174
Table 41 F- Statistics Among Each Pair of Group Centroid Means.................. 177
Table 42 Unstandardized Functions at Group Meansccccocceevvieeniecnen. 178
Table 43 Bridge Task Skill and Concept Difficultyccocoeveiiincieennennnnen. 185
Table 44 Tests of Equality of Group Meanscccccciirviiiriiicinnicieeneeeene 188
Table 45 Stepwise Variable Inclusion and Removal Summarycc.......... 190
Table 46 Significance of the Discriminant Functions...............cccccoeeevcenieennen. 195

Table 47 Incoming Data, Classroom Data and Computing Concepts
Classification Results for Cases Used to Derive the Discriminant Functions

Table 48 Incoming Data, Classroom Data and Computing Concepts
Classification Results for Unselected Cases...........cccccoecveereernrciiencneennnnen. 198

Table 49 Correlations Between Independent Variables and Rotated Functions

.. 200
Table 50 F- Statistics Among Each Pair of Group Centroid Means.................. 205
Table 51 Unstandardized Functions at Group Meanscc.cccoeveiiriernnenen. 206
Table 52 Student Responses to Course Survey Questions............cccceveeenenee 211
Table 53 Correlations Between Survey Questions and Rotated Factors.......... 213

i

e

b4

w a»
Y
oy las]

@ a L 2 cJ
1) .
< £ P & «
i G:d »

Table 54 Student Instructional Rating System Responses for Their Lead TAs 215
Table 55 Lead Teaching Assistant Grades Assigned by Students................... 215
Table 56 Lead Teaching Assistant SIRS Factor Loadingsccccooeveecnene 216
Table 57 Student Instructional Rating System Responses for Assistant TAs...218
Table 58 Assistant Teaching Assistant Grades Assigned by Students 218
Table 59 Assistant Teaching Assistant SIRS Factor Loadings............c..ccecveunee 219
Table 60 Summary of Regression Model for the Course “Faimess” Factor...... 222

Table 61 Summary of Regression Model for the Course “Preparation and
Participation” FaCOrceeeeieeiiiieietie e 224

Table 62 Summary of Regression Model for the “Course Resources” Factor .. 226
Table 63 Summary of Regression Model for the Teaching Assistant Ratings .. 228

Table 64 Summary of Regression Model for the Assistant Teaching Assistant

Ratingsccovoeiiiiiiiiiii e 230
Table 65 Final Grades by Ethnic Classificationccccocoiiiniiniinniinnn 240
Table 66 Cumulative GPA and ACT Scores by Ethnic Classification............... 242

Table 67 Experience Using Computers for Communication by Ethnic
Classificationcoooereiienieee e 243

Table 68 Incoming Knowledge of Computing Terms by Ethnic Classification .. 244
Table 69 Number of BT Attempts by Ethnic Classificationcccccovueene 245
Table 70 Attendance Rates by Ethnic Classificationccccecovviniininnnnes 245

Table 71 How Often Students Report Doing Homework by Ethnic Classification
.. 246

Lie]

gne
i

T2

Table 72 How Often Students Report Attending Help Room by Ethnic

Classificationccceeiriiiiniiicc e 247
Table 73 Instructor — Student E-mail by Ethnic Classification 248
Table 74 Sample 1.0 Bridge Task Evaluation Criteria...............cccoooereiennieenee. 337
Table 75 Sample 1.5 Bridge Task Evaluation Criteria..............ccccooevevnveenniennnn 339
Table 76 Sample 2.0 Bridge Task Evaluation Criteriacccccoeoeeeiiernieenne 342
Table 77 Sample 2.5 Bridge Task Evaluation Criteria.............ccccccoceeviincnennenns 346
Table 78 Sample 3.0 A Bridge Task Evaluation Criteria..............ccocccoeveiiennenn. 352
Table 79 Sample 3.0 C Bridge Task Evaluation Criteria..............cccccoovirinnncnn. 358
Tablé 80 Sample 3.0 D Bridge Task Evaluation Criteria..............cccocovvieennnnen. 362

xvii

M |

Fyetl
Fae2 [

P 3

RCIVEY

Faredf

LIST OF FIGURES

Figure 1 Distribution of articles by category.............cccceevverciiirceeeciee e, 31
Figure 2 Distribution of CSO0 article types by year............cccooeieeviinniiciccieeeen, 32
Figure 3 Concept map of relationship among skills, schema and concepts 43
Figure 4 Program Design and Implementation...............c.ccoceeveniineinienseniicnenns 57
Figure 5 Logical structure of Bridge Tasksccccccevriiiriierniirieieieeeeeee e 76
Figure 6 Evaluation Criteria.............cccocciiieiiiiieiiieeee et er e 79
Figure 7 Evaluation of the implementationcccoccciriiinniiiiniceree e, 85
Figure 8 Assistant TA exercise feedback questions.............cccecveeriiieecicenniennn. 90
Figure 9 Two group discriminant analysiscc.cccceeviiiiiieeniieeniienree e 95
Figure 10 Distribution of final course gradesccoccovvriiiiiinieencnece 107
Figure 11 Group centroids for function 1............ccccceciiiiiiinnninicicneeee 149
Figure 12 Group centroids for functions 2 through 7 ..., 150
Figure 13 Class attendance distributionccccoiiiiiiiinniiinnieeeee, 156
Figure 14 Number of bridge task attemptscccccocvvvrevveieceeccceee e, 157
Figure 15 Number of E-mail messages sent to students by semester 160
Figure 16 Group centroids for functions 1 through 7cccceeeieeiiiniennnennne 179
Figure 17 Bridge task repeat ratescccceceeeiiiiiiiiniiiiiiniiiiece e 182
Figure 18 Group centroids for function 1c..ccciiiiiiiiiiiieeee, 207
Figure 19 Group centroids for functions 2 through 7ccccceevvinniiiiiennen. 208

XViii

Figure 20 Concept map of computing skill schematic structure

Xix

o

ACT.

LIST OF ABBREVIATIONS

ACM Lo Association for Computing Machinery

ACT ...originally: American College Testing Program, now pronounced "A" "C" "T"

ATA e Assistant Teaching Assistant
BT s Bridge Task
00 | PRSP RS Continuous Quality Improvement
01 SO S Computer Science
CSE ... Computer Science and Engineering
CS80 .. e Computer Science 0 (zero) course
B e e Computer Science 1 (one) course
CS2..eetee e Computer Science 2 (two) course
CUMGPA.........oooieeeeeeteereerte et Cumulative Grade Point Average
I ettt Fluent with Information Technology
GPA......eeeeeeee ettt st naaeas Grade Point Average
11 S Michigan State University
SIGCSE.......ccccceeecvvvee. Special Interest Group for Computer Science Education
SIRS ... e Student Instructor Rating System
. PO OO U PP Teaching Assistant
ZPD ...ttt s Zone of Proximal Development
XX

-—n

st

570

<>
a
<ry

iz

CHAPTER 1
INTRODUCTION

As college students prepare to be the “information workers” of tomorrow,
they must be able to use a variety of rapidly changing computing systems and
tools to solve an ever-expanding range of problems across disciplines. This need
is no longer restricted to students in technical disciplines; information technology
now infuses all aspects of life. In business, computers have been responsible for
over 5% of the current increase in worker productivity in the U.S. On average,
workers who use computers on their jobs eam 15% more than workers who do
not use computers (U. S. Department of Labor, 1996). Technology has been the
primary driving force behind the longest bull market in U.S. history. The impact
of technology is not a temporary “blip” in the stock market. On November 1,
1999, the Dow Jones Industrial Average removed long standing blue chip stocks
Chevron, Goodyear, Sears, and Union Carbide, replacing them with Home
Depot, Intel, Microsoft, and SBC Communications, companies that reflect the
importance of information technology to the U. S. economy.

Information technology is also changing what it means to be educated or
literate. The role of teacher is changing from transmitter of a particular canon of
knowledge to helping students learn to access and evaluate information
effectively and critically (American Association of School Librarians, 1999). The
need to prepare students to use information technology has spread from the
traditional technical disciplines, such as the sciences and engineering, to

encompass every academic discipline. As a result, higher education faces the

[T
Vi

e

he
£

frana.

P

e
we

et

challenge of helping students learn to be Fluent with Information Technology
(FIT) over a lifetime of constant technological change (Committee on Information
Technology Literacy, 1999). Michigan State University — a large, land-grant
university — is a microcosm of these trends. Interviews with the chairs of 67
academic units at MSU indicate that employers in every discipline expect the
college graduates they hire to know not only the important concepts and
principles of their domains, but to be able to use information technology
effectively. Employers count on recent college graduates to play a key role in
helping other employees learn to use information technology.

There are several questions that need to be answered if we are going to
prepare students to be FIT. What constitutes FITness? What is an appropriate
curriculum and how do we determine it? What is the best instructional design to
meet these goals? How do we assess student outcomes to determine if we are
meeting the goals? Michigan State University addressed these questions by
developing an introductory computer science course for non-computer science
majors. This dissertation is an evaluative study of how well this course prepares
students to be FIT.

The rest of this chapter sketches an overview of the above questions and
the structure of the course. It then outlines the research questions an data

sources used to evaluate how well the course answers these questions.

Th

,.'npu.ol,
i Vi

Iﬁ"'w:t.,ﬂ
S T U]

Jeererlen
'h:‘.'.tejg(
kg
MiTe
wryter

WA

wd

Primary Questions

What Constitutes FITness?

The report Being Fluent with Information Technology (Committee on

Information Technology Literacy, 1999) introduces the term Fluency with
Information Technology (FIT). Persons who are FIT move beyond “training” to a
deeper level of conceptual understanding that allows them to apply their
knowledge of information technology to solving new problems in new domains
and to leam to use new software as it becomes available. FITness requires
three types of knowledge: (a) contemporary skills, the ability to use various
computer applications; (b) foundational concepts, the basic principles and
concepts of computing that form the basis of computer science; and (c)
intellectual capabilities, the ability to apply information technology in particular
situations and use this technology to solve new problems. The contemporary
skills will change quickly over time, with the advances of computer software,
while the underlying concepts are more stable. Intellectual capabilities are not
restricted to a single course but should be developed throughout the
undergraduate curriculum. Therefore, students should leam both skills with
applications and computing concepts and principles so they could use computers
to solve problems in a variety of disciplines after they leave the course. While
this definition of FITness is one that many faculties in computer science and
educational psychology can suppont, the best curriculum to achieve these goals

is not so clear.

diee e
ey

al
-3
Ca

manm

=%

CJTC

~an
R

e
v

What is an Appropriate Curriculum and How Do We Determine It?

Because computer science (CS) is a young and quickly changing
discipline, the structure and content of the curricula and courses is evolving
rapidly. The Association for Computing Machinery (ACM) published its first
recommendations for CS undergraduate recommendations in 1968 (ACM
Curriculum Committee on Computer Science, 1968). The most recent ACM
report (Tucker & ACM/IEEE-CS Joint Curriculum Task Force, 1991) specifies the
subject matter that should be included in a CS curriculum as a series of
"knowledge units" and is generally accepted as the basis for the undergraduate
computer science curricula in most accredited institutions.

ACM also has recommendations about the contents of specific courses
within the undergraduate CS curriculum. These courses were labeled CS1
(Koffman, Miller, & Wardie, 1984) and CS2 (Koffman, Miller, & Wardle, 1985).
Some writers refer to introductory service courses for non-CS majors with the
designation CSO (e.g., Goldweber, Barr, & Leska, 1994). However, the ACM has
not formally addressed the CSO0 service course intended for the non-computer
science students. Therefore, introductory service courses have had no-advocates
from within the computer science community to provide guidelines on the nature,
content or structure of these courses. As a result, there is disagreement over
what to teach and why it should be taught in much of the ACM CSO0 literature.

A review of all 54 articles about CSO0 courses that have appeared in the
ACM Special Interest Group on Computer Science Education (SIGCSE) literature

between 1979 and 1998 suggests that this literature may be broadly classified

g
shouidw
3 S

feach wt

fonnant

iy
L N
i "Ch «

*ﬁn~=p0<

wWeivBu.,

Fams
vi T,

along two dimensions. The first dimension is "what" should be taught; that is,
should we teach CSO students to program or should we teach them something
else (usually application software)? The second dimension is "why" we should
teach whatever we are teaching.

While these authors agree that it is important for students to have a
conceptual understanding of information technology, there is no consensus about
which concepts are critical and what curriculum best helps students leam the
concepts. One of the questions this study explores is the curricular perspective

reflected by the course design.

What is the Best Instructional Design to Meet These Goals?

The desired outcome is for students to learmn the underlying computing
concepts and principles so they can transfer them to solving problems in their
major fields of study. Furthemmore, students should acquire the ability and
confidence to leam to use new software and to solve new problems on their own.
Maintaining student motivation is important to ensure a high degree of retention
and transfer. However, it is often difficult to stimulate interest among non-majors
who often see the course only as a “requirement.” Combine these factors with
traditional assessments such as quizzes and multiple choice exams and
students’ primary motivation often becomes a quest for the extrinsic rewards of
“points.” Under these conditions, there is little retention and even less transfer to

new problems.

e

tey wil e
§Rasche

M3
tomes
wsem;

ed o

3

0

Yeon:

Levne, 1.
am'ﬂ"‘_g
Ty

Al
3 ser

g

L,
s
e
fur,
»

How do we assess student outcomes to determine if we are meeting the goals?

Assessments must be consistent with the instructional objectives and
require students to demonstrate competence in a variety of situations (Merrill,
1983). Computing lends itself to authentic performance-based assessments that
require the students to apply their knowledge to solve problems similar to those
they will encounter in courses in their majors or in the workplace (Smith, diSessa,
& Roschelle, 1993, p. 149).

Mastery learning is one strategy for coupling assessment with desired
outcomes. In traditional mastery learning, students continue to work on the
course materials until they demonstrate mastery of specified materials at the
desired level. They do not take a fixed set of examinations in order to receive a
grade on the basis of single-attempt assessments (Block, Efthim, & Bums, 1989;
Levine, 1985). Instead of the instructor setting the pace, mastery leaming can
accommodate individual student variation (Lee & Pruitt, 1984). However, in a
large university curriculum, students are expected to complete courses within a
single semester, so there is usually little opportunity to use true mastery leaming

(Osin & Lesgold, 1996).

The CSO0 Course at Michigan State University

Michigan State University’s CSO course is a large (1800 students per
semester), introductory computer science course for non-computer science
majors. To meet these enroliment demands, the design team applied
Continuous Quality Improvement (CQl) principles to the design, development,

implementation, management, and evaluation of the course (Kaufman & Zahn,

19T

93!

pam
£ 20ne
ner-ma:!

WIS

o‘ tha an
Me o

Mregy

1993). This included extensive needs assessment interviews with 67 client
apartments and extended discussion with other computer science faculty about
the concepts and principles that needed to be part of an introductory course for
non-majors’.

One of the earliest decisions the design team made was to design a
course structure that would be very modular, allowing for changes in some or all
of the content while minimizing the disruption on parts of the instruction that did
not require change. An important part of the instructional framework is that the
various parts are tightly coupled with feedback loops built into all phases of the
process. These feedback loops provide the data that is used to help determine
what instructional and assessment changes are needed. This allows the course
to evolve with the rapidly changing computing environments by changing and
rearranging course content within this modular instructional framework. The
feedback loops also provide a rich data set for extensive evaluation of how well

the course prepares students to be FIT.

' The design team consisted of:
Don Weinshank, Professor, Department of Computer Science and
Engineering, Michigan State University.

Mark Urban-Lurain, Instructor, Department of Computer Science and
Engineering; Ph.D. candidate, Department of Counseling and Educational
Psychology, Michigan State University.

Gary McCuaig, Instructional Designer/Producer, Instructional Television,
Michigan State University.

Ryan McFall, Ph.D. candidate, Department of Computer Science and
Engineering, Michigan State University.

Tom Danieli, then a M.S. candidate, Department of Computer Science and
Engineering, Michigan State University.

o
v

b e

tAnr-
p' R

Yoain

The Curriculum

The design team decided that the curriculum had to focus on computing
concepts and principles. However, the client departments needed their students
to be fluent with a variety of ever-changing computing applications. They
reported that students who had taken the previous CSO0 course in which they
leamed computer programming were unable to transfer what they leamed about
programming to the use of a variety of application software. However, simply
“training" students on application software would not prepare them for the higher
level problem-solving aspects of FITness.

Rather than taking a deductive approach, the design team took an
inductive approach. The course uses a spiral curriculum to introduce students to
computing concepts by having them solve a series of problems that epitomize
classes of problems for which various computing skills are the solutions
(Reigeluth & Stein, 1983). Students thus build from procedural skills towards
conceptual understanding, rather than first trying to leam decontextualized
concepts and then attempting to use those concepts to solve problems
(Tennyson & Cocchiarella, 1986).

As students grapple with what may appear to be unrelated problems, the
instructor ties them together, showing how each is an example of particular
concepts or principles. Subsequent instruction relates the new problems to the
previously leamed concepts and principles. Students can thereby “triangulate”
on these concepts and principles, refining their schemas as they solve

successively more abstract problems. Ultimately, the students’ conceptual

understanding becomes rich enough to support independent problem solving

beyond that which is possible with solely procedural skills.

The Instructional Design

The course was designed to enhance student motivation. First, the
course offers several different “tracks,” with each track having focal problems
from a variety of domains to pique student curiosity. Students can select the track
most appropriate to their interests or major, increasing the relevance of the
materials. Students who are interested in fields in which data analysis is crucial
may take the track that concentrates on problems requiring the collection and
analysis of data. Students interested in disciplines that emphasize writing might
take a track that concentrates on creating Web sites and preparing reports and
presentations. Regardless of the focal problems in the track, the purpose of each
track is to help students leam the underlying computing concepts and principles
that are common to all computers and software, such as data representation and
manipulation.

Second, rather than an individualistic, competitive structure, the course is
based on a collaborative leaming model. One of the characteristics of such
instruction is that specifically addresses student expectancy of success.
Exercises are designed to encourage students to help each other succeed and
engender feelings of competence, rather than to stratify and categorize students

in a competitive manner (Johnson, Johnson, & Smith, 1991, p. 2:9).

a0
Sk
8
At
an

Inna
v

.

a2
<
1
e

The Assessments

To accommodate individual student differences, keep assessments
consistent with the goals of encouraging student problem-solving, and work
within the institutional constraints of a fixed-credit semester, the design team
created a modified mastery model assessment called bridge tasks (BT). The
course progresses at the pace specified in the instructional design. At regularly
scheduled intervals, students take a bridge task. Bridge tasks are individualized,
performance-based assessments that require students to synthesize the
concepts and competencies they have leamed to solve a variety of computing
problems.

A key factor in the bridge tasks is that each one contains one or more
extension tasks that are designed to evaluate transfer. Extension tasks test the
students’ ability to apply the concepts and principles they have leamed to solve
new classes of problems about which they have not received direct instruction.
Although leaming a set of skills for using particular software may help students
complete routine tasks, they must understand the underlying concepts or
principles to complete these extension tasks.

Bridge tasks are criterion referenced and evaluated on a mastery pass/fail
basis. If a student fails a bridge task, he or she continues in the class but must
repeat the failed bridge task until he or she has successfully passed it before
being allowed to take subsequent bridge tasks to increase his/her course grade.

There are several advantages to this assessment model: 1) it provides a

greater opportunity for formative feedback than traditional multiple choice

10

Bid

G

Gt

-

G

Afin,
Gl

Al a
il

examinations; 2) the student’s motivation shifts from the extrinsic accumulation of
points, to the intrinsic goal of mastering of the concepts so they can complete
tasks similar to those they will encounter in their subsequent courses and after
graduation; and 3) the course grade indicates what concepts and competencies
the student has mastered. Thus, client departments have a more reliable
measure of student abilities when planning subsequent instruction that requires

this course as a prerequisite.

Research Questions

Recall that FITness requires three types of knowledge: (a) contemporary
skills; (b) foundational concepts; and (c) intellectual capabilities (Committee on
Information Technology Literacy, 1999). However, the best curriculum to achieve
these goals is not so clear. How does this definition of FITness meet the MSU
client department needs for their students? How well does the curriculum
address questions of FITness? How well does the curriculum meet the MSU
client department needs?

Since the goals of FITness reach across all disciplines, it is important to
design instruction to maximize retention and transfer. How well does the course

prepare students to solve new problems? How well do the assessments

Measure transfer?

Data Sources

The course design provides three sets of data to answer these questions:

Stua dent data, instructor and teaching assistant data and extemal data from

11

AP
vl

Ara
W

§.54

Lot

HLIS
“w
e

students and the client departments. There are several types of student data.
On the first day of each semester, students complete a survey to determine their
incoming computing experience. Each student’s daily class attendance is
recorded. Each student’s email correspondence with the course instructor is
saved. Data from each student’s bridge tasks include fine-grained information
about the performance on each criterion of each BT.

The course has a large number of teaching assistants (TAs) who are
responsible for the daily classroom instruction. There is extensive data both
about and from each teaching assistant. Records are retained for each TA about
the number of sections and semesters of teaching experience. Students
complete instructor ratings for their TAs at both midterm and at the end of the
semester. The teaching assistants complete on-line forms that provide feedback
to the course instructors on individual daily exercises and overall feedback on
each day's class. The course instructors use this data to evaluate the
effectiveness of each classroom exercise and refine the instruction each
semester.

The course instructors maintain contact with students to assess how well
the course is meeting the design objectives. Each instructor teaches sections of

the course to assess the effectiveness of the lesson plans. The course
instructors also meet with students from all sections during office hours and
record the nature of the students’ problems in the course database.
At the end of each semester, students complete an extensive survey

2 ot the course and about their teaching assistants. Client departments provide

12

> '-\r»_‘f1

feedback through semi-annual meetings of an oversight committee composed of
the academic deans from each of the client colleges.

These rich sets of data were incorporated as part of the instructional
design with two purposes. First, to provide feedback for the ongoing revisions of
the instructional design and delivery. Second, to allow evaluation of how well the
course meets the goal of preparing students to be FIT. This study examines

questions of how well this approach meets the goals of FiTness.

13

o
Tex
i

vy

#

CHAPTER 2
LITERATURE REVIEW

The primary questions identified in the introduction cut a wide swath
across the educational literature. First, what constitutes Fluency with Information
Technology (FIT)? This question has cultural, economic, political and
educational facets. Once we select a perspective from which to define FITness,
we can then ask “What is an appropriate curriculum and how do we determine
it?” The educational psychology and computer science education literature can

inform curricular decisions and the answers to the question “What is the best

I

instructional design to meet these goals?” Finally, the assessment literature
should inform the question “How do we assess student outcomes to determine if
we are meeting the goals?” Each of these questions can be — and has been —
the subject for copious research. For this study, the literature was reviewed from

the theoretical perspectives adopted by the design team.

What Constitutes FITness?

Questions about preparing students to use information technology must
be considered from a cultural perspective to understand what may be implicit
assumptions in the criteria that we eventually select. As Bowers points out,
“When we think that expertise in the area of computers involves only a technical
form of knowledge for using and improving computers, we are, in fact, under the
influence of the conceptual guidance system of our culture. In terms of the
cultural bias built into our way of thinking, new ideas and technologies are

understood as progressive by their very nature” (Bowers, 1988, p. 2). Bowers

14

goes on to argue that these cultural biases lead to a “conduit” view of language
rather than a view of language as a “dynamic process that shapes our thoughts
as we use it to communicate with others” (p. 41). This conduit view of language
can lead to the perspective that information technology is simply a way of
expanding the language conduit. Furthermore, in the United States, these
cultural paradigms lead to an overwhelmingly economic perspective on answers
to what constitutes FITness (Besser, 1993).

Since the early 1980's, reports on the needs and crises in education have
explicitly addressed the need to prepare students to be part of a computer-

literate workforce. A Nation at Risk frames the “risk” in the context of a workforce

that may not be prepared to compete in a global economy that is driven by
technology (Gardner & and others, 1983). More recently, the 1999 National

Academy of Sciences report Being Fluent with Information Technology

(Committee on Information Technology Literacy, 1999) asked "what should
everyone know about information technology in order to use it more effectively
now and in the future?" The report claims that the term "computer literacy" has
come to be associated with superficial "training" on computer applications rather
than concentrating on deeper conceptual understanding that will prepare
students to cope with rapidly changing information technology. The report
therefore introduces the term Fluency with Information Technology (FIT) to
replace the term “computer literacy.” Persons who are FIT: (a) are able to cope
with unexpected difficulties due to immature technology; (b) have a deeper

understanding that allows them to customize off-the-shelf applications to meet

15

their needs; (c) have abilities beyond the rudimentary use of the tools that makes
the tools more useful to them; (d) have a better understanding that allows them
to exploit new developments with information technology and comprehend their
capabilities more quickly; and (e) have a better understanding that allows them to
cope when things go wrong or new applications become available.

According to the report, FITness requires three types of knowledge: (a)
contemporary skills, the ability to use various computer applications; (b)
foundational concepts, the basic principles and concepts of computing that form
the basis of computer science; and (c) intellectual capabilities, the ability to apply
information technology in particular situations and use this technology to solve
new problems. Regardless of the cultural biases that may underlie these types
of knowledge, they do provide a useful framework in which to make curricular

decisions.

What is an Appropriate Curriculum and How Do We Determine It?

In higher education, the task of teaching about computers has traditionally
fallen to the computer science departments. Since most course curriculum
decisions are made by faculty at the department or college level, it is important to
understand what content computer science faculties deem to be important. This
next section reviews the history of computer science instruction for non-computer

science majors in higher education.

16

An
w

-

History of Computer Science Instruction for Non-Majors

Traditional Computer Science Curriculum

There is general agreement among computer science professionals as to
what should constitute the curriculum for a degree in computer science (CS).
The Association for Computing Machinery (ACM), the oldest professional
computer science organization, published the first recommendations for CS
undergraduate recommendations (ACM Curriculum Committee on Computer
Science, 1968). These recommendations were updated a decade later to reflect
the advances in computing technologies and the maturing of the discipline (ACM
Curriculum Committee on Computer Science, 1979). ACM also made
recommendations about the contents of specific courses within the CS
curriculum. The first two courses in a CS curriculum were designated CS1
(Koffman et al., 1984) and CS2 (Koffman et al., 1985). Because of the rapid
advances in computing technology, ACM again revised their recommendations
for the computer science curriculum for majors in 1991 (Tucker & ACM/IEEE-CS
Joint Curriculum Task Force, 1991).

The purpose of an introductory CS1 course usually includes an
introduction to the field of computer science, problem solving, algorithms and
programming to prepare students for subsequent courses in the curriculum
(Barrett, 1996). The conditions of instruction vary by institution, but generally the
students in CS1 courses have relatively homogeneous math and science
backgrounds and are motivated to leam the material in order to pursue further

courses in computer science. The desired outcome of CS1 courses is for

17

students to have the background they need to move into a CS2 course and to be
prepared for the rest of the computer science curriculum. There are a number of
instructional methods that are appropriate for meeting these outcomes, but in
most CS1 courses, students spend a substantial amount of time designing and
writing computer programs to learn the fundamentals of problem decomposition,
algorithm development and programming language syntax. This curriculum is
intended to provide students with a foundation upon which their subsequent

courses can build a deep structural understanding of computing concepts and

principles.

Curriculum for Non-Computer Science Majors

With the advent of microcomputers, introductory computer science
courses specifically intended for non-computer science and non-
science/engineering majors flourished at most colleges and universities. Initially,
the primary content of these courses was an introduction to computer
programming, since it was still necessary to program in order to use
microcomputers. Microcomputers changed a number of the conditions for these
courses by allowing stratification of the curriculum. While computer science
students learned Pascal with an emphasis on algorithms and data structures,
engineering and science students often leamed FORTRAN, with an emphasis on
solving computational problems. At the same time, students who had not
previously taken computer science courses began to take introductory courses
that focused on programming in BASIC (e.g., Weinshank, Urban-Lurain, &

Danieli, 1990; Weinshank, Urban-Lurain, Danieli, & McCuaig, 1995; Weinshank,

18

Urban-Lurain, & Olds, 1988). However, an underlying assumption of these
courses was still that for students to understand computing concepts, they had to
understand how to program computers.

While the ACM has been actively involved in revising recommendations
for CS curricula and courses intended for undergraduate computer science
courses, they have not addressed the curricula of CS service courses intended
for the non-computer science students. This means that there are no
professional organizations providing guidelines for the nature, content or
structure of the non-major courses. This does not mean that faculty in computer
science departments have ignored these courses. For example, some writers
refer to introductory service courses for non-CS majors as CSO following the CS1
and CS2 designations (e.g., Goldweber et al., 1994). However, there is no set of
accreditation guidelines to which computer science departments or faculty tum
when creating these courses as they do when creating curricula and courses for
majors. One resource for faculty creating CSO courses is the ACM Special
Interest Group on Computer Science Education (SIGCSE).

Within ACM, SIGCSE provides a forum for university faculties who are
involved in teaching computer science. They hold annual conferences and
publish regular bulletins and conference proceedings (ACM Special Interest
Group on Computer Science Education, 1998). Until 1997, ACM SIGCSE was
associated with the National Educational Computing Conference but ended that
association because the foci of the two organizations were diverging, with NECC

concentrating on computing in K-12 and SIGCSE focusing on higher education.

19

Trends in CSO Courses

Since computer science faculties have had the responsibility for
addressing the needs of non-major students, this section analyzes the trends in
courses for non-majors. All of the National Educational Computing Conference
Proceedings from 1979 through 1981, and all of the SIGCSE Bulletins and
SIGCSE Conference Proceedings from 1982 through 1998 (Vol. 1) were
reviewed. All articles in which the primary focus was CSO courses were
included. Generally, these articles conform to the SIGCSE "regular paper”
format, describing classroom experiences, new curricular initiatives, new
teaching techniques, or an educational research project related to particular CSO
courses at the authors’ institutions. That is, they represent what departments are
actually doing in this area as opposed to what computer science faculty believe
should be done.

Each of the 54 articles was classified into one of seven categories based
on its primary emphasis. In alphabetical order, the categories are: Applications,

Management, Multimedia, Programming, Simulations, Social and Survey.

Applications

These are courses in which the primary instructional focus is on learmning
about computers through the use of a variety of application software. For
example, Wetmore (1980) identifies three different classes of students who need
computer education: computer science students, other science students and
everybody else. He reports that from 1969 until 1976, they taught all students

batch programming but for the non-majors they "were not successful in

20

convincing the students that the computer was a useful tool, however, as most of
them never used it during the rest of their academic careers" (p. 140). As a
result, they taught non-majors word processing, using the EDT line editor on a
time-sharing system. This is one of the earliest reports of teaching word
processing rather than programming in a CSO0 course.

By the mid-1980’s, the proliferation of microcomputers prompted many
authors to question the need to teach programming to non-majors. Bailey (1987)
argues that programming is "archaic” (p. 503) and that students can leamn to use
computers to solve "real" problems and design algorithms by using spreadsheets
or databases, allowing them to focus on higher level problem solving while
avoiding the frustration and minutiae of programming.

While many authors identify problems trying to teach programming to non-
majors, others point out that simply replacing programming with applications
“training” that focuses on keystrokes does not prepare students to be
independent problem solvers (Goldweber et al., 1994). Some authors report
teaching non-majors by replacing programming with applications and grappling
with assessing what students have leamed. Lee and Pruitt (1997) used
homework, rather than exams, to assess students’ leaming. Townsend (1998)
identifies problems evaluating students with the traditional software applications
approach, either by objective tests that only test keystrokes or by projects in
which it is difficult to verify that the work is that of the student. She added first-
hand observation of student work on their projects as part of her evaluation

process.

21

The complete list of articles categorized as having primarily an application
emphasis includes (Bailey, 1987; Curl & Hussin, 1993; Dyck, Black, & Fenton,
1987; Goldweber et al., 1994; Kolesar & Allan, 1995; Kolodny & Ott, 1981; Lee &
Wu, 1997; Martin, 1986; Peterson, 1987; Rabung, 1994; Townsend, 1998;

Wetmore, 1980).

Management

In recent years, the demand for CSO courses has significantly increased
enrollments and course sizes at many institutions. As a result, some articles
focus on the logistics and management of courses of this size. Canup and
Shackelford (1998) discuss several pieces of software they implemented to
support the large service courses. They use software to help them manage
groups of students, distribute, collect, grade and provide students with feedback
on assignments, and provide some individualization for students in a large
course. Kay (1998) discusses some of the logistic problems faculty must address
as enroliment in CS0 courses expands to hundreds of students per semester. He
identifies three problems associated with increased course size: (a) increased
faculty workload, which includes more time to prepare and evaluate assignments
and managing the greater diversity of student abilities; (b) student anonymity,
leading to reduced student motivation and engagement and increased attrition;
and (c) instructional inconsistency, if large courses are broken into multiple
sections with Teaching Assistants, instruction and evaluation can vary across the
sections. Kay discusses several strategies that faculty can employ to address

these problems.

22

Nulden (1998) contends that most instructional uses of computers have
focused either on presenting information or on using computers for student
practice. He used a Newton®to keep notes about student and group work and
used this system to provide rapid feedback to his students. His premise was that
assessment in higher education should focus more on process and less on
product, and that mobile computing can support this. This system allowed
continuous assessments to be integrated into the course. While the author
suggests using such as system in large-enroliment courses, he had only tested it

in small classroom settings.

Multimedia

The primary instructional focus of these courses is on the creation of
multimedia content. These are fundamentally programming courses. However,
rather than studying procedural programming languages, students leam how to
program to create multimedia content. King and Barr (1997) emphasi;v.ed
computing concepts by teaching scripting languages so that art students could
create multimedia content. Spooner and Skolnick (1997) used hypermedia to
allow engineering and science students to explore case studies in their domains.
Gurwitz (1998) used HTML as a "gentle" introduction to programming and reports
that students were more motivated to learn the material because of their interest

in the World Wide Web.

23

Programming

The primary focus of these courses is on learmning to program in a variety
of languages including Basic, Scheme, Pascal, and others. The earliest CSO
literature advocates programming since at that time there were few other ways to
use computers. However, even the earliest articles acknowledge that students
taking CSO courses have different interests, needs and motivations than do
majors. Clark (1979) advocated a developmental metaphor for defining computer
literacy. "Instead of understanding how computers work, computer literacy is
simply the ability to exchange information with computers at a level appropriate
to the problem the user wants to solve” (p. 107). Clark proposes a five level
developmental model of computer literacy. Level one involves communicating
with a computing system. At level 2 users can use programs that require
decisions about program function but still require no decisions about computer
function (e.g., which analyses to select when using SPSS). Levels 3 through 5
require the ability to program.

Rodriguez and Anger (1981) offer a pragmatic definition of computer
literacy as a justification for teaching all students to program.

[Computer literacy is] the ability to read and write computer programs of

moderate complexity in some high-level language and the ability to

choose an appropriate computer to carry out a particular implementation.

In short it means having sufficient knowledge for living and working with

computers in the present computerized age. (p. 66)

24

Thus, the rationale for teaching programming to CS0 students was that
programming constitutes the minimum "sufficient knowledge" that literate
members of society required at that point in time. This requirement was
pragmatic; it did not imbue learning to program with any cognitive attributes other
than equipping students with the knowledge needed to use computers to
accomplish tasks in other domains. However, as microcomputer software
advanced rapidly in the 1980’s, the rationale for programming began to change.

Halaris and Sloan (1985) approach the issues of computer literacy from a
liberal arts perspective. They define four levels of computing knowledge: (a)
computing awareness, including an introduction to computing, understanding the
applications of computing, and the roles of data and computing; (b) computing
literacy, including "hands on" computing experiences, experience with computer-
based problem solving and computer-based information services, and some
introduction to computer programming; (c) computing fluency, which requires
advanced computer-based problem solving using structured analysis, design and
programming; (d) computing expertise, the level of knowledge exhibited by
computer professionals. They discuss the "controversy" over programming,
since by 1985 computer applications allowed people to complete tasks far more
complex than could be accomplished only by programming just a few years
earlier. While they admit that most non-majors will never program, they assert
that "since computing is based upon programming and programs, all individuals

should understand the concept and process of programming” (p. 324). Thus, the

25

definition of literacy moved from the pragmatism of Rodriguez and Anger (1981)
to the more abstract requirement for understanding deeper computing concepts.

By the mid-1990’s, authors who advocated programming acknowledged
that students would not need to program to use computers, but most still claimed
that programming was necessary to understand computing. Biermann et al.
(1994) propose four levels of abstraction that literate persons should understand:
(a) language translators, (b) machine architecture at the assembly language
level, (c) the switching circuit implementation of computer architecture, and (d)
the VLSI circuitry from which the computer components are constructed. Their
goal “is to enable students to understand the mechanisms of computation
throughout the hierarchy beginning with a higher level language (Pascal in this
case) continuing through translation and execution phases down to the electrons
in the semiconductor chip” (p. 295). Clearly, the definition of literacy was
becoming more abstract than the pragmatism of the 1980’s.

Konstam and Howland (1994) used the Scheme language in introductory
courses for liberal arts students. They used the analogy of programming as a
"language" in the human sense, with different dialects, syntax, semantics, etc.
They claim non-majors should learn to program for two reasons: (a) to leam
about structure of languages, in particular, natural languages; and (b) to teach
about data and procedural abstractions. This moves beyond the definition of
literacy as a deep understanding of computing to an assumption that there is a
deep structural relationship between natural and computing languages. This

implies that there is some underlying similarity between how computing

26

languages are implemented in computer hardware and how human language
works.

As computing technology advanced and faculty continued to teach
programming in CS0 courses, many encountered problems with student
motivation to leamn programming; students did not see how programming would
actually help them use computers. Herrmann and Popyack (1994; 1995) address
the impact of students’ perceptions of the relevance of leaming to program on
motivation. They structured a course that focuses on using programming to
solve data analysis problems developed in conjunction with faculty from students’
major departments. They based their instructional design on situated cognition
research, incorporating authentic learning environments and tying the
programming concepts to data analysis to enhance student motivation.

The complete list of articles categorized as having primarily a
programming emphasis includes (Arnow, 1991; Amow, 1994; Baruch, 1986;
Beidler, Cassel, Lidtke, & Owens, 1985; Biermann et al., 1994; Cherry, 1986;
Clark, 1979; Dalbey, 1991; Ellison, 1980; Halaris & Sloan, 1985; Herrmann &
Popyack, 1994; Herrmann & Popyack, 1995; Konstam & Howland, 1994, Levine,
Woolf, & Filoramo, 1984 ; McFall & Stegink, 1997; Popyack & Herrmann, 1993;
Price, Archer, & Moressi, 1988; Ricardo et al., 1986; Rodriguez & Anger, 1981;

Ryder, 1984; Schimming, 1980; Spresser, 1985; Tu & Johnson, 1990).

Simulations

The emphasis in these courses is on leaming about computers by creating

or using simulations. Woodson (1982) created a Personalized Instruction System

27

with self-paced modules for a computer-managed course designed to teach
introductory computer literacy. The simulations allowed students to explore the
operation of computing systems. They also used computers to facilitate course
administration by using E-mail for student-instructor interaction and computer-
administered quizzes for assessment. Taffe (1991) had students using
simulation software to build models and simulations of phenomena such as deer

populations, small town growth and environmental pollution.

Social

The course emphasis in these articles is on the social impact of
computers, their roles in a changing society and the resulting literacy
requirements. Baron (1984) asks how educators make decisions in any discipline
about appropriate content for a particular audience. She proposes four
categories that can be used to make these decisions: (a) acculturation, the fact
that computing is becoming more ubiquitous; (b) economic considerations,
students who understand computing will be able to obtain better jobs; (c) social
mechanisms, the need to understand computing to function in a changing
society; and (d) mental discipline, the idea that leaming in one discipline results
in general improvement in mental functioning. She notes that even though
Thomdike refuted "mental muscle" theories as early as 1901, discussions of
computer literacy often invoke mental discipline as one justification for leaming
programming.

Another aspect of the social impact of computers is that there are ethical

and legal issues that did not exist before the advent of computing. Turk and

28

Wiley (1997) note that issues of intellectual property, software piracy, viruses,
hackers, targeted marketing, online privacy, and data collection affect the lives of
everyone in society. They argue that computer literacy courses must address

these issues if students are to be adequately prepared to deal with them.

Surve

This category includes both courses that are intended to be an
introduction or overview to the discipline of computer science and "computer
appreciation” courses. Schneider (1986) notes that in many scientific disciplines
(e.g., physics) courses for non-majors focus on an introduction to the discipline.
Such courses outline the key concepts and principles, and the nature of the
problems studied by professionals in the discipline. He notes that many people
outside of computer science misunderstand what computer scientists do (e.g.,
they think that computer science is programming.) The course he proposed
emphasizes the theoretical constructs of computer science (hardware, operating
systems, algorithms, programming languages, etc.) but spends little time
teaching students the details of leamning to write computer programs. Parker and
Schneider, (1987) elaborate on this proposal. Interestingly, in 1987, they
predicted that there will soon be declining demand for CS0 courses in higher
education because they expect that students will learn this material in high
school, a prediction that has not yet come true.

Ourusoff (1986) advocates teaching a "computational view" of nature,
focusing on how computer science contributes to building models of natural,

biological and social phenomena. Kay (1993) also focuses on the concepts and

29

urer
pon's
R

need

emph
Fairg

Sehng

current issues in computer science in an honors course for non-majors. He
points out that many non-majors will eventually be in positions where they will be
required to make purchase, strategic or policy decisions about computing, so will
need a conceptual understanding in order to make the best decisions.

The complete list of articles categorized as having primarily a survey
emphasis includes (Allen, Porter, Nanney, & Abermethy, 1990; Biermann, 1990;
Feinstein & Langan, 1985; Joyce, 1998; Kay, 1993; Ourusoff, 1986; Parker &

Schneider, 1987; Schneider, 1986; Sellars, 1988).

Discussion of Trends in CS0 Courses

The overall distribution of articles by category is shown in Figure 1. Note
that three categories, Programming, Applications and Survey constitute 80% of
the articles. Programming is the largest category — with 42% of the articles
having programming as their primary focus — while applications account for 21%,
half of the number of programming articles. However, while the programming

category is the largest, the trend over time has away from programming.

30

Surve!
:J 7%y Applications

21%

Social
4%
Simulations
4% Management
6%

Programming
42%

Figure 1 Distribution of articles by category

The distribution of the various types of articles over the years is shown in
Figure 2. Programming has been the major focus of these courses until very
recently. In the decade between 1979 and 1988, 52% of the articles had a
programming focus. However, the number of courses with programming as the
primary emphasis has decreased recently. From 1990 to 1998, 36% of the
articles had a programming focus. Note that four of the 10 articles from that
period were published in 1994. In 1998, there were no articles about CSO
courses in which the primary focus was programming. In that year, the emphasis
was on management issues: coping with the rising demands of large student
enrollments in these courses. This shift may be due to institutional, rather than

departmental, requirements. There are institutional demands to prepare

31

increasing numbers of ever more heterogeneous students to use computing
technology effectively. Furthermore, many colleges and universities are now

requiring technological competence among students in a wide variety of

H Applications B Management Multimedia
0O Programming @ Simulations B Social
7 B Survey
6 —
5 .
n
o
£
< 4
S
Q
g
=} e
p4 | 2
0 - R 5 I N d B
[+ N M <« v O © = o g O © N~ ®©
~ @ W O W ®© D O O D D OO O D»
2 2222 22222222
disciplines.

Figure 2 Distribution of CSO0 article types by year

Just as there are no ACM CSO0 guidelines, most computer science
departments do not include the CSO0 course in their curriculum concems. Such
courses are often taught on a rotation basis, with each faculty member doing
whatever s/he believes to be appropriate when it is her/his tumn to teach the

course. However, with the explosive expansion of information technology in all

32

facets of society, the role of technological expertise and understanding as part of
being a literate person cuts across most disciplines in higher education.
Computer science faculties are increasingly being called upon to be the experts
who define "computer literacy." Recall that computer science faculty create most
of these courses and that the conventional wisdom among CS faculty has been
that leamning programming is the first and most fundamental way to leam about
computers. However, the role of programming in CSO courses is controversial.
Soloway (1993) asked several well-known computer scientists to discuss the
need for "everyone" to learn programming. Soloway maintains that teaching
programming to non-CS majors is no longer necessary because modem
software eliminates the requirement to know programming to be a sophisticated
computer user. His colleagues disagree and assert that learning to program does
indeed have general educational benefits and argue that leaming to program
should be part of "computer literacy" for the general population.

The Committee on Information Technology Literacy (1999) discusses the
debate over the role programming in understanding information technology. The
authors — most of whom are computer scientists — assert that algorithmic thinking
is valuable for educated people and provide three reasons for leaming
programming concepts as part of FITness:

1. Exploiting information technology systems. The report argues that
educated people need to be able to customize the software to use these tools to
their fullest and that such customization requires programming. However, one

has to ask how likely it is that persons with one or two computing courses will

33

attempt to build complex systems using a large, object-oriented, event-driven
programming environment such as Microsoft’s Visual Basic for Applications.
Such an undertaking requires not only good programming skills but also software
engineering and systems analysis expertise rarely taught in introductory courses
(including CS1 and CS2 courses.)

2. Gaining knowledge assumed for capabilities. The report claims that
programming knowledge enhances the ability to engage in sustained reasoning
and manage complexity and that this knowledge better enables people to
troubleshoot or debug a computing system. Again, the practical exigencies of
such situations make it unlikely that learning to program in a CSO0 course will
prepare students to do such troubleshooting. For example, consider the
complexity of debugging new software or operating system upgrades that result
in erratic system operation or crashes. An in-depth understanding of
programming constructs does not make this task any less daunting when the
advice from technical support is to reinstall the offending application and/or
operating system.

3. Application to non-information technology problems. Finally, the report
claims that leaming to program enhances other abstract reasoning capabilities.
It cites Papert’'s (1980) claims that a deep understanding of programming can
support the development of new ways of thinking in domains outside of computer
science. Papert was teaching LOGO to elementary students and claimed to

have found evidence that leaming LOGO enhanced general problem solving

abilities in students. Although his claims initially generated excitement,

subsequent research has failed to find improvement in general problem solving.

Transfer from Programming to Other Domains

Claims that learning computer programming transfers to other domains
and improves general problem solving are widespread. Mayer, Dyck and Vilberg
(1986) reviewed several studies that examined the relationship between learming
to program and general problem solving abilities. They point out that the few
studies that support the claim that learning to program enhances general thinking
abilities are either based on anecdotal or personal introspection data, both of
which are unreliable. They conclude that "there is no convincing evidence that
leamning a [sic] program enhances students’ general intellectual ability, or that
programming is any more successful than Latin for teaching ‘proper habits of
mind’ * (p. 609).

The particular conditions in which students leam to program may have a
significant impact on how much transfer occurs. Littlefield et al. (1988) thought
that there could be problems with some of the studies of transfer from
programming to general problem solving because most students receive
instruction that focuses only on leaming to program. They claim that many
studies that look for transfer assume that general problem solving skills will
develop and transfer incidentally, regardless of the type of instruction. Littlefield
et al. investigated the impact of teaching 5th grade students LOGO by having the
teacher provide structured lessons that focused on the various elements of the

language. Their hypothesis was that this more structured instruction would

35

enhance transfer. They found that students in the more structured environment
leamed LOGO better than students who explored LOGO with little explicit
direction from the teachers. However, they found no differences between the
experimental and control groups on tests of general problem solving abilities.
There are many possible types of transfer that might occur from
programming. Transfer to general problem solving would constitute far transfer.
However, such transfer is much more difficult to engender, and measure, than
near transfer to more constrained domains (Kurland, Pea, Clement, & Mawby,
1989). Howe, Ross, Johnson, Plane and Inglis (1989) examined a more modest
goal of incorporating LOGO as part of mathematics instruction, asking if students’
mathematics abilities would improve. They report that after two years of using
LOGO as part of the math curriculum, the students' teachers rated the
experimental group as able to reason and argue mathematical concepts better
than the control group. However, the authors acknowledge that there were
confounding variables such as the experimental group receiving close personal
attention and taking extra time to study math that could be likely explanations for
their results. Olson, Catrambone and Soloway (1987) examined a still more
constrained claim: that learmning to program may provide students with skills that
transfer to solving algebra word problems. They selected word problems
because (a) such problems are difficult for students to learn and (b) word
problems are procedural, hence they should be a “nearer" transfer from

programming. However, they found no transfer to algebra word problems for the

programming group.

36

In another test of far transfer, Kurland, Pea, Clement and Mawby (1989)
studied the impact of leaming programming on the general problem solving skills
of high school students who had studied programming for two years. The
authors found that not only did the students general problem solving not improve,
the students actually had little understanding of programming at the end of two
years of study. The authors conclude that the pedagogy of teaching
programming needs further study before it is possible to begin making claims that

leaming to program transfers to other domains.

Coagnition and Programming

In an effort to provide a framework in which to consider the relationship
between programming and problems solving, Linn and Dalbey (1989) describe
an "ideal chain of cognitive accomplishments" (p. 57) that students should obtain
from leaming computer programming. This chain has three components: (a)
single language features, (b) designing skills, and (c) general problem solving
skills. To test this framework, Linn and Dalbey examined students from 17
different middle school programming courses. They conclude that the students
who receive exemplary instruction that focuses on higher-level problem solving
move further along the chain of cognitive accomplishments than students who
receive typical instruction that focused on the syntax of the language. However,
regardless of the type of teaching, learning programming per se had no impact
on students’ general problem solving abilities. Discussing the lack of transfer,

Linn and Dalbey conclude

37

It is certainly unreasonable to expect progress in general problem solving
from a first course in programming. If the proposed chain of cognitive
accomplishments is an accurate depiction of how such learning might
occur, considerable proficiency in programming will first be necessary.
Students are probably more likely to develop problem solving skills from
leaming several programming languages and developing some robust and

general templates for programming. (p. 78)

Linn and Dalbey do not find any evidence that students derive general
cognitive benefits from the limited programming experience of an introductory
course because there are differences between the deep structural knowledge of

expert programmers and the more fragile knowledge of novices.

Expert Versus Novice Knowledge

Regardless of the domain, experts notice features and meaningful
pattems of information not noticed by novices. Experts have a large repertoire of
knowledge from which to draw, and their knowledge is “conditionalized” (Simon,
1980). That is, experts not only have a broad range of experience and
knowledge but they understand the appropriate conditions under which to apply
particular principles. For example, it is this type of conditionalized knowledge
that allows chess experts to consider only a subset of moves, rather than
performing an exhaustive search. This principle also holds true in the domain of
programming. Lewis and Olson (1987) point out that expert programmers have

several sets of "operations” (collections of sequential statements that perform

38

common programming functions) that they can apply to classes of common
programming problems when they encounter them. Novice programmers
approach each of these classes of problems as if they are unique and must
grapple with them as new problems rather than being able to apply known
solutions to a recognized classes of problems.

Holt, Boehm-Davis and Schultz (1987) compared expert programmers’
cognitive representations of software with those of college student programmers.
Both groups were asked to modify programs written by other programmers and
then to describe their mental models of the programs. The experts’ mental
models were influenced primarily by the difficulty of the modifications they had to
perform on the programs. This group categorized the programs based on the
similarities and differences in the types of modifications, invoking sequences of
actions that form sets of operations (Lewis & Olson, 1987). In contrast, the
novice programmers’ mental models focused on the structure and content of the
programs. This group tended to categorize the programs based on the
similarities to other such programs they had encountered (e.g., programs that
use search trees, linked lists, etc.), rather than on the modifications requested.

Although the idea that learming to program “enhances general problem
solving” persists, as we have seen, this claim has little support in the research
literature. As Baron (1984) points out, Thorndike dismissed the "mental muscle"
concept of leaming as early as 1901. Other writers (Michaels & O'Connor, 1990;
Rogoff & Lave, 1984) refute the idea that learning to solve problems in a specific

context — such as the constrained domain of a programming language — transfers

39

to

the

pro
exc

den

to other domains. It is a fallacy to claim that programming is "mental calisthenics"
that builds strong minds.

So why did the computer scientists who authored the FIT report still assert
that leaming to program would have general educational benefits? The authors
may have been extrapolating from their expert experiences with computing.
Expert knowledge allows experts (e.g., computer scientists) to see the
connections between problems in one domain and problem solving in other
domains. In such situations, they are doing what all learners do as they
construct knowledge: they are attempting to connect that which they do not know
to that which they do know. However, concluding that programming causes
improved problem solving in other domains is the logical fallacy of post hoc, ergo
propter hoc. It is the deep knowledge of expert programmers, not the mere
exposure to programming, which facilitates transfer to problem solving in other
domains. This type of transfer requires expert knowledge that results from years
of study (Bransford, Brown, & Cocking, 1999). It is precisely this expert
knowledge base that the novice not only lacks but also cannot acquire in one or

two courses.

The Importance of Conceptual Understanding

It is only through a conceptual understanding of technology that
individuals can transfer their knowledge about technology from the conditions in
which they learned about technology to new situations, allowing them to adapt to
rapidly changing information technology. However, leaming theory calls into

question the idea that conceptual understanding requires leaming to program.

40

Programming was originally necessary to be FIT because all interactions with the
computer required programming (e.g., Rodriguez & Anger, 1981). Interaction
with information technology has now moved to higher levels of abstraction. For
example, where collecting and analyzing data used to require writing computer
programs, today we use spreadsheets and databases to do these tasks with
much greater ease and sophistication. So, if students do not program, how are
they to learn and understand computing concepts? How can they leam more
than a set of isolated skills that will be obsolete as soon as they leave the class?
For students to adapt to new computing systems and solve new problems,
they must have a deeper understanding than is generally acquired by training
with specific software packages. Students need to construct mental models or
schemas of the computing systems they are using. One way to help students
construct mental models is by using an inductive, rather than a deductive,
approach to instruction. Course content should be organized to introduce
students to computing concepts by having them solve a series of problems that
epitomize classes of problems for which various computing skills are the
solutions (Reigeluth & Stein, 1983). One way to accomplish this with an inductive
approach is by structuring the course with a spiral curriculum (Bruner, 1960) in
which students are presented with increasingly challenging problems to solve
using a variety of software packages. They thus build from procedural skills
towards conceptual understanding, rather than first trying to leam
decontextualized concepts and then attempting to use those concepts to solve

problems.

41

As Tennyson and Cocchiarella note, people learn concepts “as contextual
entities (correlational structures), with common attributes that are the most
typical, or average, members of a class” (1986, p 45). As students grapple with
apparently unrelated problems, the instructor must tie them together, showing
how each is an example of particular concepts or principles. Subsequent
instruction must relate the new problems to the previously leamed concepts and
principles. Students can thereby “triangulate” on these concepts and principles,
refining their schemas as they solve successively more abstract problems. This
pedagogy is consistent with a constructivist perspective on how novice
knowledge evolves into expert knowledge (Smith et al., 1993, p 148). Figure 3

represents the process.

42

Schema 1 Schema 2

Figure 3 Concept map of relationship among skills, schema and concepts

Students leamn Skill 1 (represented by the smaller circle) and build a
mental schema representing a generalization of this particular skill (indicated by
the larger circle), Schema 1. This schema may consist of accurate
representations of the computing concepts along with misconceptions. Students
then learn subsequent skills and build corresponding schemas. The intersection
of these schemas triangulates on a more accurate representation of the concept
(Anderson, 1984; Shuell, 1986). As learners understand the concepts underlying
an increasing number of discrete skills, they reduce the cognitive load required to
represent the knowledge, as compared with the requirements of storing an

increasing number of discrete, unrelated skills (Chandler & Sweller, 1991).

43

Ultimately, the students’ conceptual understanding becomes rich enough to
support independent problem solving beyond that which is possible with solely
procedural skills. This approach not only engenders improved conceptual
development, but also enhances transfer.
When a subject is taught in multiple contexts, however, and includes
examples that demonstrate wide application of what is being taught,
people are more likely to abstract the relevant features of concepts and to
develop a flexible representation of knowledge. ... One way to deal with
lack of flexibility is to ask learmers to solve a specific case and then
provide them with an additional, similar case; the goal is to help them
abstract general principles that lead to more flexible transfer. (Gick &

Holyoak, 1983, p. 50)

Although this approach entails additional instructional expense over instructional
models that focus merely on skills, the goals of retention and transfer justify the

additional effort (Foshay, 1991).

What is the Best Instructional Design to Meet These Goals?

Our desired outcome is for students to learn the underlying computing
concepts and principles so they can transfer them to solving problems in their
major fields of study. Furthermore, students should acquire the ability and
confidence to be able to learn to use new software and to solve new problems on
their own. This means that the instructional design must address motivation and

cognition issues that are appropriate for the CS0 student population.

44

Motivation

When designing instruction, student motivation is important to ensure a
high degree of retention and transfer. Keller (1983) notes four dimensions of
motivation: (a) interest, whether the leamers’ curiosity is aroused; (b) relevance,
whether the leamer perceives the instruction meets personal needs or goals; (c)
expectancy, the degree to which the leamer’s perceived likelihood of success is
under his or her control; and (d) satisfaction, the leamer’s intrinsic motivations
and reactions to extrinsic rewards. Similarly, Yelon notes that students are best
motivated to leam something new when they see it as relevant (1996, p 8).

In courses for CS majors, we presume a high degree of interest, relevance
and sense of control. In contrast, with non-majors, it is difficult to stimulate
interest among students who often see the course only as a “requirement.”
Further, many non-majors have enormous anxiety about using computers and
fear that this is an area in which they have little control (Mclnemey, Mcinemey, &
Sinclair, 1994; Ropp, 1997). When these factors are combined with traditional
assessment measures such as quizzes and multiple choice exams, students’
primary motivation often becomes the short term goal of completing the
assignments in a quest for the extrinsic rewards of “poinfs.” Under these
conditions, there is little retention and even less transfer to new problems.
Students must see the course content as relevant to their interests, the
instruction must account for the diverse range of student incoming experiences
with computing technology, and the assessments must motivate the students to

focus on higher level problem-solving, rather than extrinsic rewards.

45

Computers and Cognition

Much of the educational psychology literature on leaming in recent years
claims that learmners construct their knowledge by interacting with their
environment and other people. There are a number of constructivist schools of
thought. Some focus primarily on the individual leamer (e.g., Beilin, 1985;
Berliner, 1992; Cahan, 1992; Greeno, Collins, & Resnick, 1996). Others focus
primarily on the social nature of knowledge construction (e.g., Gergen, 1994,
Rogoff, 1994; St. Julien, 1994; Vygotsky, 1978). In either case, the consensus is
that learning is not the mere transmission of knowledge from the teacher to the
student but requires that students actively construct their knowledge. The more
social perspectives emphasize the importance of linguistic interactions among
individuals as a way of negotiating and constructing meaning. Winograd and
Flores (1986) note that

Computers do not exist, in the sense of things possessing objective

features and functions, outside of language. They are created in the

conversations human beings engage in when they cope with and
anticipate breakdown. ... Computers are not only designed in language
but are themselves equipment for language. They will not just reflect our
understanding of language, but will at the same time create new
possibilities for the speaking and listening that we do — for creating

ourselves in language. (pp. 78-79)

If our goal is to have students develop a conceptual understanding of

computing technology, the instructional design must support active student

46

inquiry. We can adopt one of the two constructivist perspectives. An individual
perspective focuses on the action of the individual learner in the construction of
her/his knowledge (e.g., Piaget, 1977). The design team initially approached the
instructional design from an individual, cognitive perspective. For a time, they
considered a instructional design with a heavy emphasis on Intelligent Tutoring
Systems (ITS) as the basis for instruction. However, an extensive review of the
ITS literature (Urban-Lurain, 1996) showed that ITS were not likely to be fruitful.
As Rosenberg (1987) points out, most ITS do not base their representations on
any cognitive theory and almost all enforce one standardized style of leaming.

Adopting a linguistic perspective when designing computing instruction
moves us away from the idea of teaching students to think like a computer
towards helping students learn to think with computers. Vygotsky defines the
Zone of Proximal Development (ZPD) as "the distance between the actual
developmental level as determined by independent problem solving and the level
of potential development as determined through problem solving under adult
guidance or in collaboration with more capable peers" (Vygotsky, 1978, p. 86).
Designing instruction to emphasize collaborative leamning allows students to
experience the ZPD with each other in the context of using computers to solve
problems. Grappling with problems in a collaborative setting brings
intersubjectivity to the foreground as students interact and negotiate meaning
during the problem-solving process. As peers work together to solve problems,
they co-construct solutions and knowledge which they then individually

interalize (Tomasello, Kruger, & Ratner, 1993). Collaborative leaming also

47

offers several benefits such as improved achievement, enhanced critical thinking
competencies, improved attitudes towards the subject area, and reduced student

anxiety when leaming new material (Johnson et al., 1991).

How do we assess student outcomes to determine if we are meeting the goals?

It is critical to consider assessments as an integral part of instructional
design. While cooperative leaming can improve student leaming over
individualized, competitive classrooms, assessments in a cooperative classroom
can provide a new set of challenges. As Bloom, Hastings, and Madaus (1971)
note, assessments are most frequently used to classify and stratify students. If
assessments are norm-referenced and competitive, students will view each other
as competitors, sabotaging our efforts to encourage cooperation in the
classroom. To overcome this problem, instructors who adopt a cooperative
leaming instructional design sometimes assess students based on their
performances on group projects or assessments. However, there can be serious
equity problems when assessing students as a group, depending on the
distribution of abilities across the group members. Groups that have high-ability
students tend to have better interactions and perform better than groups that do
not have such students (Webb, Nemer, Chizhik, & Sugrue, 1999). This suggests
that it is important to assess and identify incoming abilities before assigning
students to groups upon which their performance will be assessed, a task that is
not only difficult but also expensive.

Another possibility is to use individual, criterion-referenced assessments in

a cooperative classroom. If students are not competing against each other, they

48

are much more willing to help each other strive towards the performance goals
set by those criteria (Johnson et al., 1991). Criterion-referenced assessments
are also an integral part of mastery learning. In traditional mastery leaming,
students continue to work on the course materials until they demonstrate mastery
of specified materials at the desired level. They do not take a fixed set of
examinations in order to receive a grade on the basis of single-attempt
assessments (Block et al., 1989; Levine, 1985). Instead of the instructor setting
the pace, mastery leaming can accommodate individual student variation (Lee &
Pruitt, 1984). Some students may require a year to master a subject, while other
students may master it in a few months. However, in a large university
curriculum, students are expected to complete courses within a single semester,
so there is usually little opportunity to use true mastery leaming (Osin & Lesgold,
1996). Designing instruction and assessment with mastery learning as the goal
within a fixed semester system is a formidable challenge.

Computing lends itself to assessments that require the students to apply
their knowledge to solve problems similar to those they will encounter in courses
in their majors or in the workplace (Smith et al., 1993, p 149). Performance
assessment is a broad term for assessments that require students to construct
responses, rather than select responses from multiple choices. Khattri, Reeve
and Kane (1998) propose several characteristics of performance assessments

systems that can vary. The first is the assessment task, which ranges from

short, time-constrained examinations to longer portfolio work. The second

characteristic is the scoring method used to evaluate the performance and can

49

include general guidelines or structured frameworks intended to ensure inter-
rater reliability and validity. Combining the assessment task and the scoring
method provides taxonomy that Khattri et al., use to define two categories of
performance assessments. Task-centered performance assessments evaluate
particular skills and competencies. These are fairly constrained and generally
have well-defined scoring rubrics, but the underlying principles behind the tasks
may not be clear to the students. Construct-centered performance assessments
emphasize general skills, but do not have clear-cut scoring guidelines and are
more difficult to use for summative evaluation.

Validity is a concem for performance assessments and has several
components. Content validity is the most obvious. Does the assessment
measure the content that we intend to measure? Beyond that, even if the
assessment measures the content, is the measure meaningful? That is, does it
represent “real world” applications of the content? A second aspect of validity is
generalizability. Generalizability pertains to the relationship between the scores
on the particular assessment and a student’s ability to perform in other similar
circumstances (e.g., transfer.) Finally, faimess is an aspect of performance
assessments that has only begun to receive attention. Do different outcomes
reflect differences that are not related to the students’ abilities or knowledge of
the content we are trying to assess?

Closely related to validity are concerns about reliability. There are two
types of reliability that must be addressed in performance assessments. The

first, inter-rater reliability is the area in which the most work has been done. It is

50

relatively straightforward to provide scoring rubrics to raters and calibrate scoring
from different raters using statistical methods (e.g., Raymond & Viswesvaran,
1993). The bigger challenge is inter-task reliability. With a large number of
complex performance measurements, student performance can be affected by
not only rater variability, but also by variability in the sampling of the tasks.
Shavelson, Baxter and Gao (1993) found that, in typical mathematics and
science performance assessments, ten or more tasks per student are required to
obtain high generalizability ratings. This means that we must have many
opportunities to assess students with performance assessments; we cannot rely
on one or two high-stakes performance evaluations.

Finally, if an instructional goal is to promote conceptual understanding, the
assessments must be designed to evaluate the students’ higher cognitive
activities. Baxter and Glaser (1997) suggest a framework for evaluating the
cognitive complexities of science performance assessments. They note that
there are four types of cognitive activity that can be used to distinguish between
experts and novices in many areas of scientific inquiry. The first is problem
representation. Experts form mental models of problems before they attempt to
solve them and use these representations to guide their actions. On the other
hand, novices may focus on surface features of the problem that look familiar.
The second type is the type of solution strategies that students apply to the
problem. Experts have a rich set of strategies that they apply in the context of
their mental models. Novices follow rote procedures or continue to repeat

mistakes in the face of failure because they have no other altematives to try. A

51

third area is self-monitoring. Experts are aware of the procedures that they are
following and how successful these procedures are at converging on a solution to
the problem. Novices are less inclined to engage in self-regulatory behavior.
Finally, experts can explain the concepts and principles that form the basis for
their solutions. Novices often simply describe their actions, rather than concepts
or principles that motivated the actions. Baxter and Glaser recommend that test
developers use this cognitive framework to help clarify performance objectives

and determine how well the objectives fit with the actual performance scores.

Summary

This chapter reviewed the literature from the perspective adopted by the
course design team. The Committee on Information Technology Literacy coined
the term Fluency with Information Technology (FIT) to describe a deeper
conceptual understanding of information technology than has been traditionally
associated with “computer literacy.” In most colleges and universities, the task of
defining and teaching the course content of the introductory course for non-CS
majors (CSO0) generally falls to computer science faculties. The CSO course has
traditionally included programming. However, the trend in these courses between
1979 and 1998 has been away from teaching programming. There has been
much controversy over the role of programming for non-CS majors. Over the
years, the justification for teaching programming in the CSO course has moved
from the practical — programming used to be necessary to use computers at all -

to the contention that learning to program is needed for conceptual

52

understanding or to enhance general problem solving skills. However, the
literature on transfer does not support these contentions.

Conceptual understanding is important if we are to teach for transfer.
However, the best instructional design to promote transfer depends upon the
domain and the intended audience. Maintaining student motivation is important
in any instructional design. For a course that is intended for non-CS majors, the
content and problems must be presented in a context that the students perceive
as relevant in order to promote student interest. Collaborative learmning is an
effective way to promote active student leaming and maintain student
engagement and motivation.

Assessments must be designed that determine if students are FIT.
However, a collaborative classroom structure requires criterion-referenced, rather
than norm-referenced assessments. If students are competing for norm-
referenced grades, they will not participate fully in collaborative exercises
because they will perceive doing so as detrimental to their grade.

Finally, because FITness requires the ability to apply concepts to solving
problems, it is best measured with performance-based assessments that require
students demonstrate their conceptual understanding in the context of solving
representative problems from domains in which they will need to use information
technology. However, performance-based assessments are labor intensive to
create, administer and grade. Validity and reliability are critical issues that must
be addressed if performance-based assessments are to be used in a large

enroliment course.

53

The next chapter reviews how the design team addressed these
challenges by outlining the design of the course. It then presents the research

questions and hypothesis and outlines the analyses to evaluate them.

54

CHAPTER 3
METHODS

Recall that there are several questions that need to be answered if we are
going to prepare students to be Fluent with Information Technology (FIT.) What
constitutes FITness? What is an appropriate curriculum and how do we
determine it? What is the best instructional design to meet these goals? How do
we assess student outcomes to determine if we are meeting the goals? This
chapter reviews how Michigan State University has addressed these questions
by tracing the design and implementation of Michigan State University’s CSO
course. It traces the process that the design team followed to determine their
operational definition of FITness and the curriculum they designed to meet the
needs of their students. It then outlines the instructional design that they created
to meet these needs and the unique assessment system they created to
measure student outcomes. The course implementation includes a large number
of data sources that are used as part of the ongoing operation of the course and
provide a rich set of data for evaluating the coherence and success of the
instructional system. There are three sources of data: student data, data from
the instructional staff (course faculty and teaching assistants), and feedback from
the client departments. Using these data, a number of hypotheses may be

tested to evaluate the success of the instructional design and implementation.

Research Setting

The design team applied Continuous Quality Improvement (CQl)

principles to the design and implementation of the course (Kaufman & Zahn,

55

1993). Figure 4 provides an overview of the process. The program design took
place during 1996 and 1997. It was an iterative process consisting of collecting
inputs, articulating instructional goals, and developing the instructional design.
The arrows in the program design portion of the figure show this iteration. From
the resulting design, the team implemented the instructional system; the course
was first offered for approximately 200 students during summer, 1997. Currently,
the course has enrollments of approximately 1800 students per semester during
fall and spring semesters and approximately 200 students during summer

semesters.

56

Program Design

Design Inputs Instructional Instructional
Design team Goals Design
experience FITness Inductive, spiral
Literature Problem solving curriculum
Cso ”| Retention Multiple “tracks”
Learning Transfer Problem-based,
Assessment collaborative
Client department learning
needs Performance-based
assessments
Program Imp
Instruction
Track
Lesson plans
Exercises
Incoming Homework Outcomes
Students Instructional resources Student course grade
GPA Classroom staff Student course
ACT Student correspondence evaluation
Class standing SIRS for TAs
Major i TA feedback
Ci D Client department
Age Assessment Toechack
Gen(_ier Bridge Tasks
Ethnic Formative
Summative
Final project
Instructional System

Figure 4 Program Design and Implementation

57

Program Design

Design Inputs

The design process began in the design inputs box of Figure 4. The
course was going to replace two other courses, so the design team began by
assessing the strengths and weaknesses of the courses that the new course was
intended to replace. The first course was a “computer literacy” course in which
the primary focus was on the history of computing, the social impacts of
computing and learning a variety of computer applications. The second course
was an introduction to programming course in which the primary focus was on
leaming the fundamentals programming with some exposure to computer
applications. Neither course was satisfactory in terms of retention, transfer and
problem solving. Before addressing these problems, the design team reviewed
the literature outlined in Chapter 2. Based on their evaluation of the two existing
courses and the literature review, the design team developed an outline of the
preliminary instructional goals for the new course.

In the summer of 1996, after developing this preliminary set of
instructional goals, the design team conducted a series of hour-long interviews
with the chairs and faculty representatives of the 67 client departments whose
students would be taking this course. The purpose of these interviews was to
identify the computing concepts and skills the client departments considered
important for their majors in their future courses and careers.

The interviews with the client departments indicated that they were

concemed about the previous courses. They found that students did not retain

58

or transfer what they had learned to the new software or computing environments
they needed to use in their majors. Furthermore, the overwhelming consensus
among the client departments was that their students did not need to know or
use computer programming in their subsequent courses or careers. The
competencies that the client departments did identify included using computers
to solve problems in a wide variety of domains and the ability to adapt to new
computing systems and use them to solve a wide range of problems. Another
theme that emerged from the interviews was that, regardiess of the discipline,
employers expect the college graduates they hire to be capable of helping their

existing employees learn to use information technology.

Instructional Goals

Based upon the analysis of the interviews and the literature along with the
experience the design team had teaching CSO courses, the design team refined
the instructional goals for the course. The competencies that the client
departments did identify were consistent with many of the principles of FITness.
They wanted students to be able to use computers to solve a variety of different
problems across a variety of domains throughout the curriculum and into their
careers. This meant that the instruction would have to promote retention.
Finally, since computing systems and software are changing rapidly, the ability to
transfer the concepts to new computing systems and problems was a significant
objective. Although understanding computing concepts is critical to meet these

goals, the traditional approach of teaching programming had been shown to be

59

no longer viable. This meant that the design team had to adopt a new approach

to teaching computing concepts.

Instructional Design

The next step was creating the instructional design. In the previous CSO
course, the design team had created a highly integrated instructional design
using television, textbooks, and computer simulations (Weinshank, Urban-Lurain,
Danieli, & McCuaig, 1992; Weinshank et al., 1995). The focus of that course —
like most CSO0 courses up to that time — was programming. Because of the
rapidly changing nature of computing, that course, which used a state-of-the-art
programming language when it was designed, was outdated within four years.
Furthermore, reaching the instructional goals of FITness, problem solving,
retention, and transfer without leaming programming required a different

instructional design.

Inductive, spiral curriculum

As we saw in the literature in Chapter 2, many CSO0 courses take a
deductive approach that is an extension of the curriculum for CS majors. They
present abstract computing concepts to students with the goals of having
students a) leam the concepts, b) leam to identify a variety of disparate
computing problems, c) link the problems to the underlying concepts and d) apply
the concepts to the solution of the problems. This is a long chain of inference

that has rarely been successful in CS0 courses. Students come away with little

60

W
CL

Sy

Co

th

Set

Th

understanding of the computing concepts and scant ability to solve new
problems.

The design team decided to take the inductive approach discussed in
Chapter 2 and shown in Figure 3. Critical to the success of this approach is
maintaining the importance of computing concepts. Although having students
develop a set of computing skills is a necessary condition for this approach, it is
not sufficient. Training students on a set of “keystrokes” in a variety of software
will not meet the instructional goals. Instead, the design team structured the
curriculum to present increasingly challenging problems that require students to
synthesize the apparently discrete skills they are leaming. In this process,
students begin to comprehend the utility and importance of understanding the
computing concepts for the practical requirements of adapting to new and

changing software.

Multiple “tracks”

After analyzing the client department needs, the design team identified a
set of “core” competencies that appeared to be common across the university.
These included a) the basic functions of an operating system; b) hierarchical file
structures; c) computer networking (E-mail, the Web, distributed file systems); d)
the ability search for and make sense of information from a variety of sources;
and e) the ability to use word processing software to create research reports.
Beyond the core competencies, various departments had different requirements.
Some wanted their students to be able to create more elaborate reports and

presentations; some wanted their students to be able to perform sophisticated

61

d

D:

ct

it

os

an

€0

S¢

e

data analysis; and some wanted their students to use computers for financial and
business applications.

Given the different applications required by the various departments, the
design team decided that a single, monolithic course would not meet the needs
of all of the clients. While the underlying computing concepts that the design
team identified are similar across domains (e.g., using parameters to allow the
computer to take different actions depending on the values of parameters) the
instantiation of these concepts varies across applications. For example, Web
pages can be used to demonstrate parameters by exploring the effects of
changing parameters in the HTML tags for Java applets. Students can use
spreadsheets to see the effects of changing function parameters on the resulting
calculations. Multiple tracks allow students to leamn the underlying concepts in a
context that is useful to their majors. This approach maintains student interest

and motivation, a key factor in leaming (Keller, 1983; Yelon, 1996).

Problem-based, collaborative learning

In the previous courses, students attended lectures about computing
concepts one week and then tried to apply those concepts to actual problem
solving in a computer lab the subsequent week. Many students had difficulty
retaining and connecting the de-contextualized concepts of the lectures to the
problems they were being asked to solve a week later. Since one goal was
preparing students to use computers for problem solving in their domains, the
design team decided that problem-based leaming had to be a major component

of the instructional design. Students had to actively use computers to solve

62

problems rather than listening to lectures. This meant that all instruction had to
take place in a computer laboratory so students could be working with computers
continuously during class time.

After reviewing the collaborative learning literature and the client
departments’ needs for students to work with and teach computing to others, the
design team decided on a collaborative leaming model. Because this is an
introductory course for which there are no prerequisites, incoming students have
a wide range of computing knowledge and experience. This presents a number
of instructional challenges such as a) ascertaining and keeping pace with
changing incoming student experience; b) maintaining motivation among the
more experienced students; and c) ensuring that novice students do not become
discouraged or fall behind. To accommodate the variance in student knowledge,
each day the students are randomly assigned to groups of two to four so that
they work with different peers every day. One day, a student may be the more
knowledgeable other in the Zone of Proximal Development (Vygotsky, 1978) and
will provide scaffolding for the less knowledgeable students in the group. The
next day that student may be the less knowledgeable member of the group and
have to articulate to the other group members what is unclear or difficult about
the particular problem.

Each class consists of a series of focal problems, the solution of which
requires students to learn and practice new skills. Each problem builds on
previous skills and concepts, extending the range of the students' capabilities

(see Figure 3.) Generally, students spend some time discussing possible

63

solutio
The T/
the prc

solving

the ins
Gesign
feferer
soling
sumog,

duther

solutions to the problem in small groups and then attempt to solve the problem.
The TA then leads a debriefing where the groups report on their solutions and
the problems they encountered. This helps the students focus on their problem

solving and how it relates to the underlying concepts.

Performance-based assessment

Assessment is a critical component of the instructional design. Because
the instructional goals included retention and transfer, and the instructional
design uses collaborative learning, the assessments needed to be criterion-
referenced (Johnson et al., 1991). In addition, to evaluate students’ problem
solving skills, the design team knew it was important that the assessments not be
surrogate measures such as multiple choice tests but rather they wanted to use
authentic, performance-based assessments.

To accommodate individual student differences, keep assessments
consistent with the goals of encouraging student problem solving, and work
within the institutional constraints of a fixed-credit semester, the course uses a
modified mastery, performance-based assessment model. In this model, the
curriculum progresses at the pace specified in the syllabus. At regularly

scheduled intervals, students take a Bridge Task (BT) that requires them to

synthesize the concepts and competencies to that point in the course®. The
students must use their homework, in-class assignments and materials provided
to them as part of the bridge task to solve the problem (Urban-Lurain &
Weinshank, 1999b).

To test transfer, the bridge tasks contain one or more “extension tasks”
that require students to apply the concepts and principles they have leamed to
solve new problems they have not previously encountered. Although leaming a
set of skills for using particular software may help the students complete routine
tasks, they must understand the underlying concepts or principles to complete
the extension tasks.

Bridge tasks are evaluated on a mastery level pass/fail basis. If a student
demonstrates sufficient mastery on the first bridge task, he or she “locks in” a
grade of 1.0 in the course. If a student fails a bridge task, he or she must repeat
the failed bridge task until passing before taking the next bridge task. For each

subsequent bridge task passed, the student’s course grade is incremented by 0.5

? The design team coined the term Bridge Task to convey many different
ideas. First, students are concemed about how their grades are determined and
bring years of experience and expectations about assessments to the course.
Bridge tasks are not regular norm-referenced “tests” with which most students
are familiar; they are different than any assessments they have previously
experienced. A unique term helps break the students’ preconceptions. Second,
the assessments test transfer. Students must use the material from the class
and their conceptual understanding as a “bridge” to solving new problems. Third,
the assessments are based on a mastery model. Students must cross each
“bridge” in order before coming to the next “bridge.” Finally — following on the
physical bridge metaphor — some students have a hard time changing
perspectives on assessments; they are used to collecting “points” as an extrinsic
reward. To those students, the instructors can seem to be “trolls under the
bridge” (Asbjorsen & Moe, 1859/1969, p. 184-5) when they are required to
demonstrate mastery by repeating any bridge tasks they do not pass.

65

untithe 0
bndge ta
ncrease
Ir
matenal
evel. T
the bas
Instead
ndnidy
tumey!
sothe
Studgy
sam
nda
the ir
Sl by
andy
Teliak

a1

until he or she has passed the 3.0 bridge task. Once the student passes the 3.0
bridge task, he or she completes an integrative semester project that may
increase his or her course grade to 3.5 or 4.0.

In traditional mastery leaming, students continue to work on the course
materials until they demonstrate mastery of specified materials at the desired
level. They do not take a fixed set of examinations in order to receive a grade on
the basis of single-attempt assessments (Block et al., 1989; Levine, 1985).
Instead of the instructor setting the pace, mastery learning can accommodate
individual student variation (Lee & Pruitt, 1984). However, in a large university
curriculum, students are expected to complete courses within a single semester,
so the design team had to adapt the course to use a modified-mastery model.
Students proceed through the course at the pace outlined in the syllabus. There
is a maximum of twelve opportunities to take bridge tasks during the semester
and a total of five bridge tasks that students must pass to be eligible to complete
the final project. Therefore, students may take each bridge task two times and
still be able to complete them all. Allowing students to repeat failed bridge tasks
and providing twelve testing opportunities addresses the problems of inter-task
reliability and generalizabilty in performance-based assessments (Shavelson et
al., 1993).

There are several advantages to this assessment model. First, bridge
tasks are criterion-referenced, not norm-referenced. While students complete
the bridge tasks individually, they are not evaluated on a competitive basis;

students’ grades are not dependent on doing better or worse than their peers.

66

This is a requirement of a collaborative learing model that fosters cooperation
and peer-teaching (Johnson et al., 1991). Second, bridge tasks provide
formative feedback, resulting in a greater opportunity for leaming than traditional
multiple choice examinations. The students’ motivation shifts from accumulating
points to mastering the concepts so they can complete tasks similar to those they
will encounter in their subsequent courses and after graduation. Third, bridge
tasks provide summative feedback; the course grade actually indicates which
concepts and competencies a student has mastered. In courses that use norm-
referenced assessment, a grade of 2.0 often means that a student has
accumulated the mean number of points from a variety of exams and homework
assignments. The grade does not indicate what knowledge the student does or
does not have. The intent of this model is that the course grade reflects the

concepts and competencies on which a student has demonstrated mastery.

Program Implementation

Program implementation began in the summer semester of 1997. As
indicated by the arrows in Figure 4, instruction and assessment are closely
coupled. The design team determined the sequence of the concepts and
competencies to be taught. From that sequence, they determined which
concepts and competencies each bridge task would assess. This then dictated
the sequence of the instruction. Feedback from the outcomes is then used to
refine the bridge tasks and instruction each semester. This tightly coupled

system provides a structure in which the content and assessment can evolve

67

quickly I

from the

Instuct

|
1800s
compL
Tequire
sectio
52l
under
desi
assig

plan;

Th

quickly in response to changes in the incoming student population and feedback

from the outcomes.

Instruction

Institutional demand for the course necessitates an enroliment capacity of
1800 students per semester. The design goal of meeting each class in a
computer laboratory coupled with the capacity of the computer laboratories
required 60 sections of 30 students. Resource constraints dictated that each
section would be met by teaching assistants (TAs) rather than instructors. There
is a “lead TA,” usually a graduate student, and an “assistant TA,” usually an
undergraduate student. To ensure instructional consistency across sections, the
design team created detailed lesson plans, exercises and homework
assignments for each day's instruction. (See Appendix A for an example lesson

plan.)

Classroom structure

Each section of the course meets twice per week for one hour and 50
minutes per meeting. Each day begins with the students "signing in" using a
computer program that records their attendance. These data are used to
generate random groups in which the students work that day so that only those
students who are present are assigned to groups. The attendance data are
tracked in the database but students are not graded on class attendance.

Each class consists of the series of problems on which the students work.

The design team structured the problems so that they draw upon the concepts

68

from the readings for that day. Each exercise begins with the lead teaching
assistant setting up the problem and leading discussions about how the concepts
apply to the problem. The instructors created a series of PowerPoint slides for
each day'’s instruction that are keyed to the lesson plan. These resources assure
consistency across sections.

The students next work for 5 to 30 minutes to solve the problem. During
this time, both teaching assistants circulate among the students to facilitate their
problem solving. This is an important portion of the class since interaction with
the students as they struggle with the problems is critical to the students’
leaming. The teaching assistants generally do not answer students’ questions by
telling them how to do a particular task. Rather, the teaching assistants ask
leading questions such as "Where did you look in the help system?" or "What
does your partner have to say about that?" The purpose is to facilitate the
interaction among the students and encourage their metacognition about how
computing systems work.

After the students complete the exercise, the lead TA then guides a
discussion of the problem, calling on students to review their solutions and
asking questions to help the students to reflect on the relative merits of their
solutions.

Homework assignments generally extend the material leared in class and
set up material for use in the subsequent class. Homework is not collected and
graded in the traditional sense. Rather, the homework is used in the next day's

classroom assignments and is used to complete the bridge tasks.

69

At the conclusion of each class, the teaching assistants complete
feedback forms on the course Web site about each of the exercises and the

overall class. The instructors use this feedback when they revise the instruction.

Instruction and assessment schedule

The sequences of instruction and bridge tasks are closely coupled. The

course syllabus for fall semester, 1999 is shown in Table 1.

70

Table 1

Course Syllabus for Fall, 1999

Class Topic
Day

1 General introduction to the course; introduction to the World Wide
Web; survey of prior computing experience

2 Introduction to cooperative leaming; Introduction to electronic mail;
Basic window skills

3 On-line Help; networked file systems; MSU’s AFS file system

4 Networked filesystems; Locating, copying files; disk quotas

5 Bridge Task 1.0

6 Introduction to WWW authoring; HTML; creating Web pages.

7 More WWW authoring; Links; Images

8 Searching bibliographic databases; Boolean operators.

9 Bridge Task 1.5

10 Word Processing; entering, editing and manipulating text.

11 More Word Processing; formatting commands.

12 Word processing: Styles

13 Word processing: Large documents; document-wide formatting

14 Bridge Task 2.0

15 Spreadsheets: Introduction, dynamically changing data; MS-Excel

environment.

table continues)

71

Table 1 (cont'd)

Class Topic
Day
16 Spreadsheets: Formulas, copying data, functions.
17 Computer Hardware and Software Specifications
18 Spreadsheets: Sorting; creating and modifying charts.
19 Bridge Task 2.5 TRACKS DIVERGE
20 Designing a Web Introduction to data Introduction to
Site analysis; data Financial analysis
importing.
21 Using Tables to Logical functions; Modeling; financial
control page layout data transformations. analysis; Absolute
Cell references
22 Using Applets on Data queries; Advanced spread-
Web Pages autofilter. sheets: Modeling;
financial analysis
23 Adding new pages. Pivot tables; Logical functions,
Completing the Web graphing. nesting functions,
site charting
24 Bridge Task 3.0 Bridge Task 3.0 Bridge Task 3.0
25 Object embedding Object embedding Object embedding
and linking. and linking. and linking.
26 - 28 Final Project Final Project Final Project

72

Five of the class instructional days (in fall, 1999, days 5, 9, 14, 19, and 24
as shown in Table 1) are reserved for in-class bridge tasks. These are the first
opportunities the students have to take each of the bridge tasks. The days on
which these bridge tasks are offered varies each semester depending on the
other instructional revisions but are generally offered biweekly. Opportunities for
students to repeat bridge tasks that they have not passed are offered during the
weeks in which there are no in-class bridge tasks. This means that there is a
total of 12 possible bridge task opportunities during the semester.

Since students must repeat any bridge task until they do pass it, students
do not necessarily take the "scheduled" in-class bridge tasks. Rather, they
receive the next bridge task that they have not yet passed. Since there is a finite
number of bridge task opportunities during the semester, it is important that
students remain "on schedule" so that they have sufficient opportunities to pass
all of the bridge tasks. Student progress is tracked in the database and email

messages are sent to students warming them if they fall behind schedule.

Assessment

Due to the large enrollments and institutional resource constraints, the
cost-effectiveness of the instructional design is a major consideration. The design
team decided to make exclusive use of perfformance-based assessments rather
than attempting a hybrid model that would include more traditional assessments
such as multiple choice exams, graded homework assignments, and so forth.
Performance-based assessments often require a larger amount of labor to

Create, administer, and evaluate than do traditional multiple choice or computer-

73

based training exams (Schoenfeld, 1994). In order to optimize the use of
resources and to ensure consistency of evaluation of bridge tasks while working
with TAs from a wide variety of backgrounds, the design team considered several
factors. First, students complete the bridge tasks in a standard instructional
computer lab, where the computers are located close together. This meant that
the bridge tasks had to be individualized so different students receive different
bridge tasks. Furthermore, when a student repeats a bridge task, it has to be
different from the version that student received the first time. Second, the
evaluation criteria for the bridge tasks had to be clear enough to ensure a high
degree of consistency among raters. Third, the instructors needed to track and
analyze student performance to ensure that the bridge tasks meet the design
goals. The creation, maintenance, delivery and record keeping needed to
address these factors required an elaborate software infrastructure (Urban-Lurain

& Weinshank, 1999a).

Creating bridge tasks

Each bridge task appears to the students as a long “story problem” in
which they are given realistic scenarios of problems to solve. They must be able
to determine what are the appropriate computing skills and concepts and apply
them correctly to solve the problems. Figure 5 shows the logical structure of a
bridge task. Each bridge task has a series of (M) dimensions. Each dimension
consists of (n) instances. An “instance” is the smallest unit of text that can define
a problem, sub-problem or a task that is representative of that dimension. For

©xample, one dimension may address using reference tools. Within that

74

dimension, there are several instances. One instance may require the students
to use a thesaurus to look up a synonym for a particular word. Another may ask
students to use the dictionary to insert a definition of a word into a document.

The next dimension may address text fonts, with one instance of 10 point Times

Roman, another of 12 point Helvetica, and so on.

75

® Each Bridge Task (BT) has
dimensions (m) that define
the skills and concepts
being evaluated.

® Within each dimension is
some number (n) of
instances of text describing
tasks for that dimension.

* A bridge task consists of
one randomly selected
instance from each
dimension for that bridge

task.

/\

Instance i

e DIm2 - &

g Dim 3 &

Instance i

Instance i

Instance i

Instance i+1

Instance j+1

Instance i+1

Instance i+1

Instance i+2

Instance i+2

Instance i+2

Instance i+2

Instance i+n

Instance i+n

Instance i+n

Instance i+n

S—

Bridge Task Database

Figure 5 Logical structure of Bridge Tasks

76

A single bridge task is thus constructed by randomly selecting a single
instance from each dimension so that each student receives a different bridge
task. In addition, if a student repeats a bridge task, the instances are sampled
without replacement for that student so repeated bridge tasks do not repeat any
instances that a student had on previous attempts for that bridge task. The
number of unique bridge tasks is given by:

BT, =1 xI,xI,...1,
where: BT, is the number of unique bridge tasks

1, is the number of instances in the n" dimension

n is the number of dimensions
For example, the 1.0 bridge task has seven dimensions, with 17, 5, 8, 14,
4, 4 and 3 instances in each dimension respectively. This yields 456,960 unique
1.0 bridge tasks. Appendix B contains samples of the 1.0, 1.5, 2.0, 2.5, 3.0A,
3.0C, and 3.0D bridge tasks.

Delivering bridge tasks

All of the text for the bridge task is stored as HTML in a SQL database. For each
bridge task, the database selects one instance from each dimension and
generates a custom Web page. Bridge tasks are delivered in real time to the
student’s computer screen in a supervised laboratory. Security is maintained by
software that requires the proctor authenticate each student after verifying the

student’s identity against a picture ID.

77

Evaluation criteria

Evaluating the performance of 1,800 students’ bridge tasks requires
maintaining a stringent set of evaluation criteria for each of the instances in the
bridge task database to ensure inter-rater reliability. This is done with a set of
database tables containing evaluation criteria in a one-to-many relationship for

each of the bridge task instances. This relationship is depicted in Figure 6.

78

< Bridge Task Database >

> Dim1i_] ..: Dim2 . ..Dimm,
— Instance i Instance i Instance j
Instance i+1 Instance i+1 Instance i+1
Instance i+2 Instance i+2 Instance i+2
Instance i+n Instance i+n Instance i+n
Fopimt
Criteria j Criteria j Criteria j
Criteria j+1 Criteria j+1 Criteria j+1
Criteria j+2 Criteria j+2 Criteria j+2
Criteria j+n Criteria j+n Criteria j+n

N

* Each dimension instance has some number (j) of criteria.

® Each criterion is mandatory or optional.
® Each criterion is evaluated as pass or fail.

* To pass a dimension, all mandatory and some number of
optional criteria must be passed.

* Each dimension is mandatory or optional.

* To pass a bridge task, all mandatory and some number of
optional dimensions must be passed.

Figure 6 Evaluation Criteria

79

Each instance of a bridge task dimension usually consists of more than
one sentence — often a paragraph or more — of text because the dimensions
must be combined randomly and still make sense in the context of the BT. While
the granularity of multiple sentences of text is sufficient for creating the bridge
task text, it is too coarse for the specification of the grading criteria. Therefore,
each instance of every dimension in the bridge task has associated with it one or
more criteria. Each criterion is designed to have the smallest possible granularity
so that the graders can quickly and consistently evaluate that criterion as pass or
fail. The pass/fail results for each of the criteria are combined to determine
whether or not a student has passed a particular dimension. The pass/fail results
for each dimension are then combined to determine whether a student has
passed or failed the bridge task as a whole.

Although the goal of mastery model evaluation is for the student to
demonstrate mastery, this does not require passing all criteria and all
dimensions. To allow for minor student errors that do not indicate a lack of
understanding, dimensions and criteria can be either mandatory or optional. To
pass a dimension, students must pass all mandatory criteria and some portion
(e.g., 3 out of 5) of the optional criteria for the dimension. Likewise, dimensions
can themselves be mandatory or optional. Students must pass all mandatory
dimensions and some portion of the optional dimensions to pass the bridge task.

For example, suppose a bridge task is composed of the three dimensions
shown in Figure 6. Instance i of dimension 1 has the criteria shown in the figure.

Assume that criteria jand /1 are mandatory and criteria 42 and j+n are optional,

80

with a requirement for passing one of the two optional criteria. To pass
dimension 1, the student must pass criteria jand +1 and pass at least one of
criteria 42 and j+n. This hierarchical framework provides a flexible structure for
creating, maintaining and updating assessments as the course content evolves.

Appendix C lists the evaluation criteria for the sample bridge tasks in Appendix B.

Evaluating bridge tasks

Bridge tasks are graded by running an application that retrieves from the
database the appropriate set of criteria for a student’s particular bridge task. The
application then presents each of the criteria, and the grader evaluates each
criterion in a binary (pass/fail) fashion. The database computes the overall pass
or fail for the bridge task based on the individual pass/fail scores on each of the
mandatory and optional criteria. The grader may also enter comments for each
of the criteria. These comments become part of the student’s formative feedback
for the bridge task.

The bridge task database has both operational and evaluative value.
Operationally, the pass/fail rates on each criterion and each instance of each
dimension can be analyzed to determine which items have results that deviate
from the target performance goals. If such items are found, they can be revised
or the instruction associated with the concepts these items test can be revised.
Since each of the criteria on the bridge task is scored in a dichotomous manner,
the distribution of responses follows a logistic function (Baker, 1985). By

analyzing the repeat rates for the bridge tasks the instructors can evaluate the

81

Qver

mef

(o

dr

overall difficulty and discrimination of the bridge tasks to determine if they are

meeting the instructional and performance goals.

Final project

The bridge tasks provide a well-defined framework for evaluating students
competencies with the various software packages. The “extension task”
dimensions of the bridge tasks test the students’ ability to transfer their
knowledge to new categories of problems. However, the same framework that
ensures uniformity in evaluating the bridge tasks restricts the range of creative
approaches to completing the bridge tasks. For that reason, once a student has
passed the 3.0 bridge task, she or he may complete a final project that has a
more open set of specifications and evaluation criteria than do the bridge tasks.
Depending on the quality of the final project, it may have no impact on the
student’s final grade (if the project is of poor quality) or it may raise the student’s
grade to a 3.5 or 4.0. It cannot reduce the final grade.

The emphasis on the final project shifts from having students demonstrate
their mastery of skills and concepts to having them demonstrate how well they
can integrate what they have learned to solve a larger problem. The purpose is
to evaluate how well students apply the computing skills and concepts to doing
research, data gathering and analysis and preparing research reports and
presentations in their own disciplines. Students must first define a topic or
problem. There are no constraints on the topic, but it should be one that allows
students to use a range of computer applications. The students are encouraged

to use a term paper or project from another class to motivate their interest. Once

82

they
fes
wir
ang
par
P
o
50
tra

be

they have defined the topic, students perform research using electronic
resources available in the library and on the Web to gather data that they analyze
with a spreadsheet. They then prepare a report that includes images and charts
and cites the references they located in the library and on the Web. In the final
part of the project, students demonstrate transfer by leaming how to use a new
type of application software. It must be a class of software that is not used in the
course but which allows students to do something that cannot be done using the
software they learned to use in the course. For example, in the data analysis
track, they may decide to learn to use SPSS to analyze data in ways that cannot
be done using a spreadsheet.

The final projects are evaluated in a more open-ended manner than the
bridge tasks. There are two primary dimensions on which the projects are
evaluated. First, how well students demonstrate mastery and understanding of
the appropriate use of computing technology. For example, does the word
processing document demonstrate the correct use of abstractions such as styles
for controlling formatting and embedding objects from other applications? The
second dimension is how well students can explain what, why and how they used
different applications to do various parts of the project. Doing so requires that
students reflect on their understanding of the material and be able to articulate

this understanding in an authentic context.

83

the

cou

the

po

an

13

Data And Hypotheses

Evaluation Framework

Figure 7 shows the program implementation from Figure 4. The boxes in
the center labeled instructional system represent the course. However, the
course is part of a larger system. Incoming students bring many attributes to
their experience of the course. The course design is intended to be as neutral as
possible with respect to individual incoming student differences. However, there
are different outcomes in terms of performance on bridge tasks and student
ratings of their experiences in the course. The intent of this study is to determine
how the instructional system interacts with incoming student differences to
produce different student outcomes. This model provides a framework for
evaluating the results of the program implementation— and by inference the
program design — of the course. The data and research hypotheses are

discussed in the context this framework.

84

Program Imp ion

Instruction

Track
Lesson plans
Exercises

Incoming Homework Outcomes
Students Instructional resources Student course grade
GPA Classioom staff Student course
ACT Student correspondence evaluation
Class standing | SIRS for TAs
Major P! TA feedback
Computing experience oo Client department
é o Assessment
anaer Bridge Tasks
Ethnic
Formative
Summative
Final project

Figure 7 Evaluation of the implementation

Incoming Students

Each student comes to the course with a wide range of abilities and
experiences that may have an impact on what and how the student leams in the
course. While there are likely a number of latent variables that are not
accessible to us, there are some behavioral variables that may be predictors of
outcomes. These include general measures of academic ability, as shown by
grade point average (GPA), ACT scores, class standing and major. To the
degree that students differ in academic ability, we may see some difference in

their outcomes from the course. Better students may master the material more

85

quickly than less able students but, in a course using mastery, criterion-
referenced assessment, student grades should be distributed in a linear fashion,
rather than the “bell curve” resulting from using norm-referenced assessments
(Bloom, Madaus, & Hastings, 1981).

Another factor that may have an impact on outcomes is incoming
computing experience. Although the course has no prerequisites, students come
to the course with a variety of computing backgrounds that may have an impact
on student outcomes. However, if the course is meeting the design goals,
incoming computing experience should not be a major predictor of student
outcomes.

Finally, demographic factors such as age, gender and ethnic background
that have no direct relationship to the course design and implementation may
confound students’ performance in the course. It is important to understand if —

and how — these factors impact student outcomes.

Instructional Variables

Ideally, students’ outcomes should be a function of their experiences in
the course. One design goal is for the instructional system to be a “black box”
which is uniform with respect to student outcomes. However, there are two
major categories of variables in the instructional model that may have impact on
student outcomes. The first is student participation in the course. Students
make choices about attending class, remaining engaged with the class
exercises, completing the homework preparing for and completing the bridge

tasks. While many of these are the result of latent variables such as motivation,

86

some behaviors may be measured. Class attendance and repeat rates on the
bridge tasks are recorded, although they do not directly contribute to student
grades (that is, no “points” are awarded for these variables.)

A second set of variables that may account for variance in the instruction
is related to the classroom staff. Although each day'’s instruction is planned in
detail with the goal of consistent instruction across sections and TAs, each TA
brings different abilities and experiences to the classroom. These may interact
with individual student variables to affect outcomes. The number of semesters of
teaching experience and student evaluations of the TAs’ classroom abilities may
contribute to different student outcomes.

Electronic mail is the primary mode of communication between the course
instructors and individual students. Students are encouraged to write to their
teaching assistants or the course instructors with questions, problems or
concems. All of the email is stored in the course database so that when the
instructors meet with a student during office hours they can access a student’s
correspondence records along with bridge task performance data. The
instructors also record the results of office visits and phone calls in the
correspondence database. This helps the instructors quickly understand the
context of the problem when working with students. This data also provides a
rich set of qualitative data about student perceptions and concems. The
instructors can query this database for keywords or phrases to understand areas
that cause problems or confusion for student and use this information to revise

the instruction.

87

Assessments

Student bridge task performance has several metrics. These include a)
the highest bridge task passed by each student; b) the number of times each
student repeats each bridge task; c) the overall pass rates across the course for
each bridge task; d) the distribution of pass rates by dimension within each
bridge task; and e) the distribution of pass rates by instance within each
dimension of each bridge task. The instructors evaluate the aggregate student
bridge task data at the end of each semester to determine what instructional or
assessment revisions are needed for the following semester. For example, if
particular instances within dimensions have pass rates that are significantly
higher or lower than the other instances in that dimension, the instructors analyze
those instances to determine what factors contribute to the variance. Sometimes
the particular wording of an instance may be confusing and need revision.
Sometimes an instance may not assess the students’ concepts in the way that
the instructors intended. The instructors then revise those bridge task instances
and/or the associated instruction for the next semester.

The individual student performance on each dimension of each bridge
task provides measures of the difficulty of the skills and concepts that are being
evaluated by that dimension. These data can be analyzed to determine how the
skills and concepts are clustering and provide insight into how students

organized their schemas and concepts.

88

Outcomes

There are several sets of data available from the outcomes in Figure 7.
The instructional design incorporates these data for the continuous quality
improvement (CQI) of the instructional system. Each semester, the instructors
evaluate and revise the instruction and assessment in light of these data.

The students’ final grades in the course are the primary outcome
measures. The instructors analyze these data, along with the fine-grained BT
performance data and TA feedback to determine what revisions may be needed
in the instruction or the BTs.

Students complete a survey about the course and Student Instructional
Rating System (SIRS) questions about their teaching assistants at the end of
each semester. These data consist of both Likert scale responses to questions
and open-ended comments. Appendix D lists the survey and SIRS questions.
The instructors use the SIRS responses to improve both the course content and
lesson plans. The instructors use the SIRS items about the teaching assistants
as part of the evaluation of the teaching assistants’ performance to help them
improve their classroom skills.

Each lesson plan incorporates on-line evaluation instruments that the
teaching assistants complete for each class. For each classroom exercise, the
teaching assistants are asked to complete the survey shown in Figure 8. The
course Web site also has feedback forms for the teaching assistants to complete

on each day’s overall class experience.

89

1) Time allotted for the exercise:
e Not Enough
e Just Right
e Too Much
2) About what percentage of the students seemed to understand the topic
after the exercise?
o 0%
o 25%
o 50%
e 75%
e 100%
3) Did students stay "on task" during the exercise?
e Not At All
e Somewhat
e Very Much
4) What features or parts of the exercise worked best?
5) What features or parts of the exercise worked worst?

6) Suggestions for improving the exercise?

Figure 8 Assistant TA exercise feedback questions

90

The instructors use this feedback as part of the CQIl process to improve
the instruction by revising individual exercises or the entire instruction for a day.

The final component in the CQI process is a framework for evaluating the
external validity of student FITness after completing the course. There is an
oversight committee made up of representatives from undergraduate deans of
the client colleges for the course. This committee meets semi-annually to review
the current content of the course and provide feedback on how well their
students who have completed the course are prepared to use computers in their

subsequent courses.

Analysis Framework

The instructional system can be evaluated using multivariate techniques.
The general model for the observed data may be written:
Y=XB+E
where: Y is the n x p matrix of observations on the p dependent
variables for the n students
X is the n x g matrix of the g independent variables for each
of the n students
B is the g x p matrix of unknown parameters for which the
equation will be solved
E is the n x p matrix of random variables that accounts for
measurement errors and unknown latent variables

(Krzanowski, 1988, p. 455).

o1

The variables defined in the evaluation framework may be partitioned
across these matrices. Matrix Y partitions into the vectors of variables that
measure bridge task performance (e.g., highest bridge task passed, number of
times a student repeated each bridge task) and vectors of variables that measure
student ratings of the course. The Matrix X partitions into vectors of incoming
student variables and each student’s classroom variables. The vector of
classroom variables consists of daily attendance records, the self-reported
variables (e.g., participation in group exercises, how frequently they did the
homework and the reading) and variables that measure the ability of the teaching
assistant (e.g., amount of classroom experience, average SIRS ratings for the
teaching assistant across sections and semesters.) The matrix E is partitioned
into vectors of latent incoming student variables (unmeasured factors that impact
the student’s ability), vectors of latent instructional variables (unmeasured
classroom factors), vectors of latent outcome variables (the extent to which the
outcome measures do not capture what students learmed in class) and a vector
of measurement errors.

Although bridge tasks are sequential, the vectors of student bridge task
variables are categorical; students receive a grade based on the highest bridge
task passed (1.0, 1.5, 2.0, 2.5, 3.0). Therefore we may evaluate this model using
classification techniques that predict categorical dependent variables based on
the values of the independent variables. The goal of such a procedure is to

determine the parameters (B) that best predict values on the categorical

92

depen

classif

into g
variat
mem
indiv

(Coo

Sets
parz
set

det;

nor
nor

dic

ey
af

lin

dependent variables (Y) given the values of the dependent variables (X). The
classification rules are based on the general form:
Pr(H; | BX)

where the probability that the hypothesis of an individual being classified
into group j (H;) is conditional on the scores of that individual / on the dependent
variables (X) and the estimated parameters (B). The probabilities of group
membership in each group (j) are computed for each individual (i) and the
individual is classified into the group with the highest computed probability
(Cooley & Lohnes, 1971, p. 264).

To estimate and test the model, the data are randomly divided into two
sets for analysis. The first data set is used to estimate the model. The estimated
parameters (B) are then used to evaluate the model by classifying the remaining
set of data. The accuracy of the resulting classifications are then evaluated to
determine how well the model predicts group membership.

Since student outcomes are based on criterion-referenced, rather than
nom-referenced assessments, it is not appropriate to assume a multivariate
normal distribution of the underlying variables. Bridge tasks are evaluated on a
dichotomous basis, so the underlying distribution follows a logistic function
(Baker, 1985). Therefore, we need to use multivariate techniques that do not
require the dependent variable to be normally distributed. Discriminant analysis is
a multivariate technique similar to multiple regression that identifies an optimal

linear combination of independent variables that best discriminates among two or

93

more gr

into the

|
discrirr
interpr
derva
Studer
will be
and 3

Score

tha

more groups. The resulting discriminant functions can be used to classify cases

into the groups defined by the dependent variable.

Discriminant Analysis

Discriminant analysis is usually applied in three stages: 1) derivation of the
discriminant functions, 2) validation of the discriminant functions and 3)
interpretation of the resulting functions (Hair, Anderson, & Tatham, 1987). In the
derivation stage, the first step is identifying the categorical variable. In this study,
student final grades will be the categorical variable. The independent variables
will be obtained from data collected for each part of the evaluation framework
and are described in the next section. The objective is to derive a discriminant
score for each individual (Z,) from the independent variables such that:

Z =by+bx,+bx,+-+b,x,
where: x;; is the value on the /" independent variable for individual i
b, is the discriminant coefficient of the /" variable
Z.is the M individual’s discriminant score

Classification boundaries (Z,,) are defined in n-dimensional space such
that if:

Z,> Z_, individual i is classified in group 1

Z,< Z . individual jis classified in group 2

This process is shown graphically in Figure 9 (after Hair et al., 1987, p 80).

94

Fig

X2

Discriminant Function

p4

Figure 9 Two group discriminant analysis

The figure represents the scatter diagram of two groups, A (the solid dots)
and B (the open dots) on two sets of variables, X1 and X,. The dots are the
individual measures for each case on the two variables. The ellipses represent
some defined confidence interval for the distribution from each group. The line
that is defined by the two points where the ellipses intersect is projected to a
“lower” dimension on the Z-axis which represents the discriminant function that
discriminate between the two groups. This line defines the classification

boundary between the two groups. The means of the distributions of A’ and B’

95

aret
the ¢
base
that
belo
clas:
grou

Aca

indiy
disc;

being

acey
the ¢
dispy
dista

(Van

are the group centroids for each group on the discriminant function. Projecting
the scores for each case onto the Z-axis allows us to assign group membership
based upon the relatively probabilities represented by A’ and B'. Individual cases
that are on the left side of the classification boundary line are classified as
belonging to group A. All of the open dots from group B on the left side of this
classification boundary are group B cases that are mis-classified as belonging to
group A, the solid dots on the right side of the classification boundary are group
A cases that are mis-classified as belonging to group B.

For more than two groups, the number of functions is increased so that
individuals are classified into the group based on the combination of their
discriminant scores on multiple functions, with the maximum number of functions
being one less than the number of groups.

There are a number of ways to attempt to maximize the classification
accuracy among groups. Most are based on maximizing the distances among
the group centroids in n-dimensional space and/or reducing the multivariate

dispersion of the resulting classification scores. One way of maximizing the

distance is to maximize the Mahalanobis Distance (D*) between group means

(Van De Geer, 1971, p. 256):
Di,z' = (xi - xj)v—l(xi - xj)
where: x; and x, are vectors of coordinates in n-dimensional space

V is the variance-covariance matrix

96

va

ing

va

of

fun

the

the

The axes of the group ellipsoids are rotated to minimize correlations

among variables and maximize the distance among group centroids. D*then
defines the distance — and discriminatory power — among the groups.
Like multiple regression, variable selection in discriminant analysis may be

done in a stepwise manner. There are several criteria that may be used to select

variables, but most attempt to find combination of variables that maximize D’by

including or deleting variables. These stepwise procedures are usually evaluated
by comparing D?based on the current subset of variables to D*for the full set of

variables. If D; is based on the k subset of variables and D is based on the set

of p variables, then, for sample sizes n, for group 1 and n, for group 2, the

statistic:
((mn—p+1)(p-k)k* (D} - D})
(m + czD,f)
where: ¢t =2

m=n+n,-2

is distributed F

p-k.m=p+1
When F is no longer significant, no additional variables are included in the
function (Mardia, Kent, & Bibby, 1979, p. 322).
The second stage of using discriminant analysis, validation, involves using
the computed classification scores for each individual to “assign” each individual
to a predicted group, based on the group for which that individual’s scores assign

the highest probability. The number of individuals for whom the predicted group

97

matches the actual group determines the accuracy of the prediction. Accuracy
may be evaluated using standard chi-square expected frequency measures to
compare the accuracy of the model with chance expectations. Validation usually
is done by splitting the original sample into two sub-samples. The first sample is
used to derive the function. This sample is then tested for classification
accuracy. Since this sample’s data was used to derive the function, cross-
validation with the second sub-sample is a check against upward bias of the
prediction accuracy that may result from testing the function on the data from
which it was derived. A certain “shrinkage” is expected from the first sub-sample
to the cross-validation sample. Lower shrinkage indicates more stable
classification boundaries.

If the first two stages of discriminant analysis are successful, the third
stage is interpretation of the resulting functions (Hair et al., 1987). This stage is
similar to interpreting factors in factor analysis. First, we examine the
discriminant functions to determine the contribution of the independent variables
to each function. After that, we attempt to characterize the differences among
groups based on their multivariate means or group centroids. While factor
analysis attempts to identify commonality among variables (factors) that underlie
the observed variables, interpreting discriminant functions involves attempts to
identify common factors that are associated with individuals who are classified in
the same group (dependent variable.) This procedure should allow us to

determine factors that distinguish among successful and unsuccessful students

98

P

in the course. It should also allow us to gain a better structural understanding of
the issues that contribute to FITness.

A series of discriminant analyses was used to understand the
contributions of each part of the evaluation framework. The first examined only
the incoming student variables to identify the key incoming student factors. The
second analysis added the instructional system variables, to see what
contributions and interactions they have with the incoming student variables. For
the third analysis, the data from the bridge tasks was added to the model to
identify the underlying computing concepts and competencies — as represented
in the bridge tasks — that are associated with success or failure in the course.

The outcomes portion of the model was analyzed by using factor analysis
to reduce the dimensionality of the student course evaluations and SIRS. These
factors were used as variables in regression analyses to understand the
relationship among the factors and the variables from the other three par<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>