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ABSTRACT
STRUCTURE-PROPERTY-PROCESSING
RELATIONSHIPS AND THE EFFECTS OF PHYSICAL
STRUCTURE ON THE HYGROTHERMAL DURABILITY
AND MECHANICAL RESPONSE OF POLYIMIDES
By

Jason E. Lincoln

Structure-property-processing interrelationships are characterized for a variety
of polyimide composite matrices used in advanced aerospace structural
applications. The relatonships between chemical/physical structure and (i)
fabrication conditions, (ii) mechanical, thermal, and physical properties, and (ii1)
hydrolytic stability, are investigated. Major findings determined from this
research are presented below.

Carbon fiber/bismaleimide (BMI) cross-ply composite laminates are
microcracked after standard cure and postcure procedures. Using a unique in-
situ characterization of microcracking, it is demonstrated that extended cure
times at low temperatures (177°C) prior to postcure can shift the microcracking
threshold in these composites. Ultimately cure induced microcracking can be
prevented under standard fabrication postcure temperatures as a result of a
reduction in composite residual stress and an improved fiber/matrix

interphase.
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Structure-property-processing characterization of BMI, polyetherimide
(PEI), poly(4,4'-oxydiphenylene pyromellitimide) (POPPI), and a phenylethynyl
terminated imide oligomer (PETI-5) demonstrates that deformation in
thermoplastic polyimides is controlled primarily by free volume. In thermosets,
deformation is controlled by netwotrk defects, packing efficiency, and free
volume. Interestingly, PETI-5 was shown to crystallize under certain time-
temperature cure cycles, which results in dramatic changes in neat resin
mechanical properties. The observed crystallization behavior appears to be a
result of liquid crystal-like ordering due to the phenylethynyl end groups.

With respect to hygrothermal durability, thermoset polyimides prove to
be more resistant to blistering and associated macroscopic damage than
thermoplastics under hygrothermal excursions unless hydrolytic degradation
induced chain scission has occurred. Accelerated hygrothermal exposure also
demonstrated that the hydrolytic stability of polyimides is strongly dependent
on the chemical nature of the polyimide and the end caps in thermosets.
Phenylethynyl terminated imide oligomers displayed dramatically higher
hydrolytic stability than norbomene terminated polyimides as a result of
hydrolytic attack of the crosslinks associated with the Michael addition reaction.

Compilation of the results presented provides insight into controlling the
thermal, physical, and mechanical properties as well as the hydrolytic stability of

polyimides based on chemical structure and processing conditions.
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Figure 3.5: Maximum moisture content as a function of cure conditions.
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Figure 4.6(c): Initial processing defects of resin matrix voids. Marker bar is
30um. The overall void content for the composites was less than 0.1%.

(p. 126)
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Figure 4.12(a): DMA spectrum for the 1.5 h at 177°C followed by the LY’
postcure cycle. Heating rate was 3°C/min, and peak designations are o is T, B

results from incomplete cure from the ‘L2’ postcure, and Y is associated with
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Figure 5.2: Fracture topography of POPPI annealed at 375°C / 24 h for (a)
slow, (b) intermediate, and (c) fast fracture regions. All marker bats are 50im.

(p. 170)

Figure 5.3: Cavitation and fibrillation structure of POPPI annealed at 375°C /
24 h. Cavity diameter ranges from 0.1 — 1.0lm and fibrils range from 30 —
60nm in size. Marker bars are 1um. (p. 170)

Figure 5.4: Fracture topography of POPPI annealed at 473°C / 24 h
Cavitation is less well developed due to embrittlement of craze fibrils resulting
from thermooxidative degradation and possible crosslinking. (p. 171)

Figure 5.5: Schematic two-dimensional representation of geometric network
packing constraints in the BMI resin network. BMPM segments are
represented by a rigid rod (steel) and DABPA segments by flexible coils (rope).
Case A has excess DABPA segments and Case B represents an excess of stiffer
BMPM segments. (p. 174)

Figure 5.6(a): Flexural strength as a function of cure and monomer
stoichiometry for flexural test temperature of 23°C. (p. 177)

Figure 5.6(b): Flexural strength as a function of cure and monomer
stoichiometry for flexural test temperature of 177°C. (p. 178)

Figure 5.6(c): Flexural strength as a function of cure and monomer
stoichiometry for flexural test temperature of 250°C. (p. 178)

Figure 5.7: Schematic of common defects in crosslinked glassy polymers: (a)
terminating chain ends (open circles), (b) intramolecular reactions (dashed line),
(c) permanent entanglements, and (d) a heterogeneously crosslinked network.
Solid lines represent polymer chains and solid circles signify crosslink junctions.

(p. 179)

Figure 5.8(a): Flexural modulus as a function of cure and monomer
stoichiometry for test temperature of 23°C. (p. 181)

Figure 5.8(b): Flexural modulus as a function of cure and monomer
stoichiometry for test temperature of 177°C. (p. 181)
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Figure 5.8(c): Flexural modulus as a function of cure and monomer
stoichiometry for test temperature of 250°C. (p. 182)

Figure 5.9: Flexural modulus as a function of mass density at 23°C for resins
cured at temperatures <250°C. (p. 182)

Figure 5.10: Tensile properties of PEI at 23°C. (p. 183)

Figure 5.11: Tensile stress-strain curves for annealed and as-molded PEIL (p.
185)
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Figure 5.14: DSC scans (20°C/min) of amorphous and semicrystalline PETI-5.
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Figure 5.19: Effects of annealing temperature on tensile strength of
semicrystalline PETI-5 resin for slow cooled (top) and ice quenched (bottom).

(p. 198)

Figure 5.20: Effects of annealing temperature the mass density of
semicrystalline PETI-5 resin for slow cooled (top) and ice quenched (bottom).

(p. 199)

Figure 6.1: Processing conditions for the manufacture of thermoplastic K3B
compression molded panels. (p. 204)

Figure 6.2: Mechanical property changes of K3B polyimide after matrix
plasticization due to absorbed moisture (1.37 weight %). (p. 207)

Figure 6.3: Mass loss due to thermooxidative degradation of K3B as a
function of aging temperature. (p. 208)
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(p. 208)
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(p. 209)
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(p- 210)
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Figure 7.2(b): Representative stress-strain curve for PEI after 20 acid fog
cycles. (p. 219)

Figure 7.3: Polarized light micrograph displaying polymer orientation and
elastic stresses for annealed (top) and as-molded (bottom) PEI. Image in this
dissertatin is presented in color. (p. 221)

Figure 7.4: Optical micrographs of as-molded control top surface (left), top
surface for as-molded after 20 cycles of acid fog exposure (middle), and side
view of cracks and etching of as-molded after 20 cycles of acid fog exposure

(right). (p. 222)

Figure 7.5: Determination of the zero heating rate T, from TMA experiments
for dry as-molded control PEI. The extrapolated value is 212°C. (p. 224)

Figure 7.6: Decrease in the weight average molecular weight of PEI per year as
a function of pH in boiling (100°C) solution. (p. 227)

Figure 8.1: Temperature profile of a [0°],, IM7/BMI laminate exposed to a
thermal spike of 250°C. (p. 233)

Figure 8.2: Drying conditions and experimental design used after pressure
bomb exposure of K3B and AFR700B neat matrix materials. (p. 235)

Figure 8.3: Overall moisture absorption-desorption behavior for polyimide
matrices and composites after 250°C thermal spiking. (p. 236)

Figure 8.4: Optical micrograph showing edge delamination of an IM7/K3B
composite laminate due to blistering after one hygrothermal spike of 250°C.

(p. 237)

Figure 8.5: Optical micrograph of the center cross-section showing a
macroscopic blister and subsequent delamination of an IM7/K3B composite
laminate after one hygrothermal spike of 250°C. (p. 238)

Figure 8.6(a): Moisture absorption (H,0O) (80°C/100% RH) of K3B neat
polymer before and after pressure bomb exposure. (p. 243)

Figure 8.6(b): Moisture absorption (H,0) (80°C/100% RH) of AFR700B neat
resin before and after pressure bomb exposure. (p. 244)
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Figure 8.7(a): Comparative diffusivities for absorption (80°C/100% RH) and
desorption (80°C / vacuum) after pressure bomb exposure for K3B. (p. 240)

Figure 8.7(b): Comparative diffusivities for absorption (80°C/100% RH) and
desorption (80°C / vacuum) after pressure bomb exposure for AFR700B.
(p- 246)

Figure 8.8(a): Drying of pressure bomb exposed K3B as a function of time-
temperature conditions under vacuum. (p. 247)

Figure 8.8(b): Drying of pressure bomb exposed AFR700B as a function of
time-temperature conditions under vacuum. (p. 247)

Figure 8.9(a): Mass density of hygrothermally aged (pressure bomb exposed)
K3B polyimide under various isothermal vacuum drying temperatures. (p. 251)

Figure 8.9(b): Mass density of hygrothermally aged (pressure bomb exposed)
AFR700B polyimide under various isothermal vacuum drying temperatures.

(p. 251)

Figure 8.10: Typical TMA curve (shown is AFR700B wet control) used to
measure the blistering and glass transition temperatures of pressure bomb
exposed polyimides. (p. 253)

Figure 8.11(a): Glass transition temperature of K3B after hygrothermal aging
as a function of drying time-temperature conditions. (p. 254)

Figure 8.11(b): Glass transition temperature of AFR700B after hygrothermal
aging as a function of drying time-temperature conditions. (p. 254)

Figure 8.12(a): Glass transition temperature of K3B after hygrothermal aging
as a function of moisture content. (p. 256)

Figure 8.12(b): Glass transition temperature of AFR700B after hygrothermal
aging as a function of moisture content. (p. 257)

Figure 8.13: Blistering characterization in a TMA experiment for an AFR700B
polyimide hygrothermally aged then dried at 100°C for 6 h. (p. 260)

Figure 8.14(a): Blistering threshold characterization for K3B polyimide.
(p- 260)
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Figure 8.14(b): Blistering threshold characterization for AFR700B polyimide.
(p. 261)

Figure 9.1: Comparative depiction of the chemical structures for K3B,
AFR700B, and PETI-5 polyimides analyzed in the hygrothermal aging study.
(p. 265)

Figure 9.2: Norbornene and maleimide crosslinking reactions for AFR700B:
(a) biradical homopolymerization, (b) retro Diels-Alder reaction, (c) BMI
homocrosslink reaction, (d) Michael addition reaction, and (e) aminolysis
reaction [114, 223]. R represents a continuation of the polymer network.

(p. 268)

Figure 9.3: Effects of processing pressure on the norbornene crosslinking
reactions in AFR700B [223]. (p. 270)

Figure 9.4: DSC trace of hydrolytically degraded K3B showing possible
hydrolysis reaction products from endothermic melting peaks. (p. 277)

Figure 9.5(a): Common first scan DSC traces of polyimides showing the
control and the case where a physical aging induced endothermic peak appears.

(p. 278)

Figure 9.5(b): Common first scan DSC traces of polyimides showing the
instance where two glass transition temperatures exist. (p. 278)

Figure 9.5(c): Common first scan DSC traces of polyimides showing multiple
endothermic peaks, physical aging effect, and T,. (p. 279)

Figure 9.6(a): Typical second scan DSC traces of polyimides showing no
reduction and permanent reduction of T, after hygrothermal exposure. (p. 280)

Figure 9.7(a): Plot of endothermic peak temperature as a function of aging
time at various temperatures. Regression analysis used for peak correlation.

(p. 283)

Figure 9.7(b): Plot of endothermic peak temperature as a function of the
residual enthalpy used in determination of T, masked by physical aging. (p. 283)

Figure 9.8: Multiple DSC repeat scans to measure T, for various exposure
conditions of polyimides. (p. 284)
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Figure 9.9(a): FTIR spectra of K3B hygrothermally aged in a pressure bomb
for various times at 250°C. Shown is characteristic region. (p. 280)

Figure 9.9(b): FTIR spectra of AFR700B hygrothermally aged in a pressure
bomb for various times at 250°C. Shown is characteristic region. (p. 286)

Figure 9.10(a): Extent of degradation (EOD) diagram for K3B polyimide after
177°C hygrothermal aging for various times in a pressure bomb. (p. 288)

Figure 9.10(b): Extent of degradation (EOD) diagram for K3B polyimide
after 200°C hygrothermal aging for various times in a pressure bomb. (p. 288)

Figure 9.10(c): Extent of degradation (EOD) diagram for K3B polyimide after
250°C hygrothermal aging for various times in a pressure bomb. (p. 289)

Figure 9.11: Extent of degradaton (EOD) master diagram for K3B polyimide
for 177 — 250°C hygrothermal aging temperatures. (p. 289)

Figure 9.12: Hygrothermal phase diagram compating the stability of K3B,
AFR700B, and PETI-5. (p. 291)

Figure 9.13: Temperature dependence of the hydrolytic degradaton rate
constant for AFR700B, K3B, and PETI-5 polyimides. (p. 294)

Figure 9.14: Michael addition model compounds used by Thorp et a/ [223]
which was found to be hydrolytically unstable; the weak link in AFR700B.

(p. 295)
Figure 10.1: Synthesis of AFR-PEPA-N imide oligomers. (p. 302)

Figure 10.2: Representative time exclusion chromatograph of the imide
oligomers (AFR-PEPA-4 at 254 nm wavelength). (p. 308)

Figure 10.3: Representative mass spectrum of polyimides (AFR-PEPA-2).
(p- 309)

Figure 10.4: Plot of reaction peak temperature and enthalpy as a function of
imide oligomer repeat unit (estimated from mass spectrometry and
chromatography). (p. 310)
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Figure 10.5: Typical DSC trace of imide oligomer at heating rates of 20°C/min
(AFR-PEPA-2). (p. 311)

Figure 10.6: Typical isothermal viscosity profile, shown above for AFR-PEPA-
2 at 371°C. (p. 312)

Figure 10.7(a): Typical ATR-FTIR spectrum of AFR-PEPA-2. (p. 315)

Figure 10.7(b): ATR-FTIR spectrum showing the triple bond consumption.
(p. 315)

Figure 10.8: Degree of cure as a function of cure time at 330°C for AFR-
PEPA-2, determined from FTIR analysis and normalized to various peaks.

(p. 316)
Figure 10.9: T, as a function of the degree of cure for AFR-PEPA-2. (p. 317)

Figure 10.10: Degree of cure as a function of time for AFR-PEPA-2,
determined from isothermal DSC experiments. (p. 318)

Figure 10.11: Glass transition temperature as a function of 8 h cure time for
AFR-PEPA-N polyimides. (p. 320)

Figure 10.12: Representative TGA scan of AFR-PEPA-N polyimides showing
determination of the thermal decomposition temperature. (p. 322)

Figure 10.13: Determination of the activation energy for thermal degradation
by plotting Equation 10.2. (p. 324)

Figure 10.14(a): Lifetime thermal stability model prediction based on weight
loss for AFR-PEPA-2. (p. 325)

Figure 10.14(b): Lifetime thermal stability model prediction based on weight
loss for AFR-PEPA-4. (p. 320)

Figure 10.14(c): Lifetime thermal stability model prediction based on weight
loss for AFR-PEPA-8. (p. 326)

Figure A.1: Laminated cantilever beam. (p. 334)
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Chapter 1

Introduction

1.1 Focus of Research

This dissertation and research contained herein represents a portion of two
multi-investigator Air Force Office of Scientific Research (AFOSR) funded
programs under Dr. Charles Lee, entitled (i) Characterization of Cntical
Fundamental Aging Mechanisms of High Temperature Polymer Matrix
Composites, AFOSR grant number F49620-95-1-0129 and (if) The Durability
Characterization of High Temperature Polymer Matrix — Carbon Fiber
Composites for Future Air Force Applications, AFOSR grant number F49620-
98-1-0377. Dr. Roger J. Morgan of Texas A&M University served as the
principal investigator for these programs.

In addition to Michigan State University, additional collaborators include
the University of Michigan, NASA Glen Research Center, Adherent
Technologies, University of Dayton Research Institute, Polycomp, Indiana
State University, Air Force Research Laboratory / Wright-Patterson Air Force

Base, and Texas A&M University.
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1.2 Background

There is a growing need in industry for lighter, stiffer, and stronger materials to
achieve simultaneous reductions in weight coupled with performance
improvements. Many automotive and aerospace applications are fulfilling new
requirements through the application of polymer matrix composite materials.
In the automotive industry, the primary driving forces are cost reduction and
fuel efficiency. Conversely, aerospace applications, especially for military
functions, often take on the perspective that performance outweighs cost.

In composite materials used for structural applications, the matrix
constituent has a variety of roles that consist primarily of the following: (i)
transfer the applied load to the reinforcing phase (e.g. fibers), (ii) protect the
reinforcing phase, and (i) bind the reinforcements together so that design
anisotropy can be achieved. The matrix also limits the applications of a
particular composite material in terms of upper use temperature, service
environment, fatigue, thermooxidative stability, and toughness. For example,
in thermoset polymer matrix composites reinforced with carbon fibers
(common aerospace materials) the glass transition temperature (T,) of the
matrix usually defines the upper use temperature of the composite, since
significant reductions in stiffness are associated with the transformation from a

glassy solid to a rubbery, highly viscous material.



For aerospace environments that require exposure to extreme service
environments of  synergistic  stress-time-temperature-chemical-gaseous
conditions, the polymer matrix must demonstrate significant thermooxidative
stability, hygrothermal durability, solvent resistance, and high temperature
strength. Traditionally, thermoset epoxies were employed for most aerospace
composite applications due to their processability, but have drawbacks
associated with a limited use temperature (relatively low T,), moisture
absorption and corresponding plasticization, and often a brttle mechanical
response, especially after exposure to the aforementioned synergistic exposure
conditions.

Polyimides were originally developed in the 1950’s at DuPont’s Film
Department at the Experiment Station in Wilmington, Delaware to obtain
thermally stable polymers, which result from their highly aromatic chemical
structure [97]. Today, polyimides are available as thermoplastics, thermosets,
and as oligomers which can be crosslinked in the melt by the application of
energy. There is generally a trade-off, however, between thermal stability and
properties, including processability and mechanical toughness.  Other
drawbacks include toxicity of the starting monomers and hydrolytic stability.

As a result, present and future research related to Air Force aircraft and

space applications involves determination of the critical damage mechanisms
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and thresholds for polyimides based on chemical structure, and new material
development derived from these characterizations.

Thermoset bismaleimide (BMI) resins were developed to bridge the
performance and processing gaps between epoxies and polyimides. They can
be processed like epoxies, but have T, values closer to those of polyimides (up
to ~350°C). BMI resins suffer from brittleness (which leads to composite
microcracking) and catbon fiber/BMI composites have been shown to
galvanically corrode in some military service environments.

Certainly, higher speeds cannot be achieved without the use of polymer
matrix composite materials, but for future applications this requires the
development of new, processable matrix materials that exhibit durability under
severe, synergistic service environment conditions. The goals of this
dissertation were to contribute to the current understanding of the structure-
property-processing relationships of high temperature polymers (predominantly
polyimides and bismaleimides) so that new materials may be developed to meet
future Air Force military and space needs. A detailed synopsis is presented in

Chapter 2.
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1.3 Program Goals

High temperature polymer matrix-carbon fiber composites are and will be
utilized for aerospace structural applications for a whole range of components
that will be exposed to prolonged, extreme service conditions. These complex
service environment conditions of stress, time, temperature, moisture,
chemical, and gaseous environments require a thorough understanding of the
most probable critical failure path of the composite component. Such an
understanding of the critical fundamental aging mechanisms is necessary for
credible long-term composite performance predictions based on experimentally
observed shorter time service environment induced composite performance
deterioration mechanisms.  In addition, this understanding generates
meaningful information for mechanics modeling-structural design analyses and
associated materials structural optimization at all dimensional levels.

With respect to the aforementioned variables, the contribution from this
dissertation involves three primary areas: (i) carbon fiber/bismaleimide (BMI)
composite structure-property-processing relationships, (i) hygrothermal and
thermooxidative damage thresholds of polyimide composite matrices and the
relationships between chemical structure and durability, and (iii) structure-

property-processing interrelationships of polyimides.
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1.3.1 Carbon Fiber/Bismaleimide Composites

Carbon fiber/BMI composites are presently used in primary structural

applications in Air Force aircraft. The BMI matrices used in these composite

applications are based on the thermoset copolymer system composed of 4,4' —

bismaleimidodiphenylmethane (BMPM) and 0,0' — diallyl bisphenol A

(DABPA). Although this system has been used extensively, there remain some

critical gaps in the present understanding of the structure-property-processing

relations for this composite and the matrix constituent. These fall namely into

two categories, described here:

@

The BMI cure reactions are incomplete after standard composite
fabrication and postcure conditions, and further cure can occur during
service environment exposure to elevated temperatures which leads to
resulting increases in T,, mechanical property deterioration, and further
microcrack development. Further cure occurs as a result of dehydration
induced formation of ether crosslinks which themselves then undergo
unknown chemical structure modifications. These chemical changes are
believed to account for the observed mechanical and thermal property
modifications. The chemistry and kinetics that cause these critical
chemical and physical BMI structural modifications are not fully
understood and such information is important from a fundamental

perspective so that meaningful lifeime models can be developed. A



(1)

further understanding of these chemical and physical structural changes
may allow a simple, economical chemical structural modification of the
DABPA monomer that minimizes or alleviates these further cure
reactions.

As a result, the structure-property-processing relationships for the
BMPM/DABPA BMI resin system will be explored in this dissertation
to improve upon the present understanding of the crosslinked network
formation.

Carbon fiber/BMI composite laminates contain transverse microcracks
after standard cure and fabrication conditions, which has been attributed
to the poor interfacial integrity in this system, resin shrinkage during
cure, and interlaminar residual stresses [5-9]. Attempts to alleviate
microcracking in these composite laminates by modification of postcure
time-tftmperature conditions and fiber sizings have been unsuccessful [5-
9]. In this dissertation, microcracking will be thoroughly characterized
and cure induced microcrack prevention will be attempted in a new
approach through initial cure cycle modification rather than postcure

cycle variations.
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